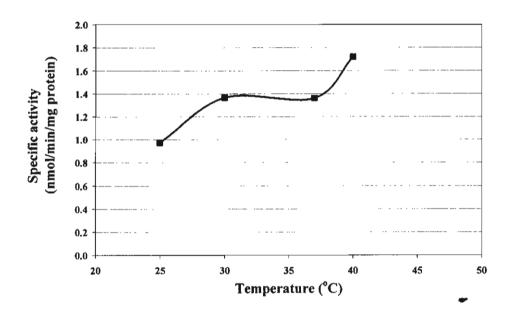

ยึดหยุ่นมากขึ้น นอกจากนี้การเพิ่มแคลเซียมยังมีผลเพิ่มแรงกระทำไฮโครโฟบิก ซึ่งเกิดจากการเพิ่ม พื้นผิวไฮโครโฟบิกของแอกโตมัยโอซิน การเพิ่มทั้งพันธะเปปไทด์และแรงกระทำไฮโครโฟบิก ส่งผล ให้ได้เจลที่มีความแข็งและยึดหยุ่นเพิ่มขึ้น

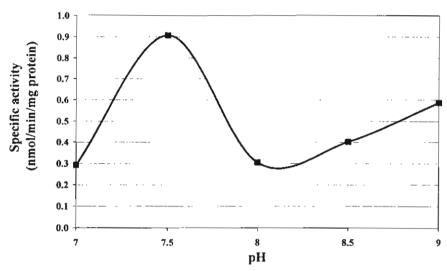
ผลการศึกษานี้แสดงให้เห็นว่าแนวทางหนึ่งในการปรับปรุงลักษณะเนื้อสัมผัสของเจลโปรตีน ปลาคือการเติม CaCl₂ ในระหว่างการเตรียมเพสและบ่มที่ 25 หรือ 40^oซ โดย CaCl₂ ไม่เพียงแต่มีผล กระตุ้นกิจกรรมทรานสกลูทามิเนส แต่ยังมีผลต่การเปลี่ยนแปลง conformation ของมัยโอซิน แอคติน และแอคโตมัยโอซิน ซึ่งส่งเสริมให้เกิดแรงกระทำไฮโดรโฟบิกในระหว่างการเกิดเจล

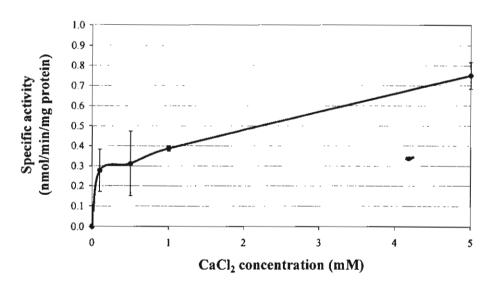


รูปที่ 18 ค่าแรง (a) และระยะทาง ณ จุดแตกหัก (b) ของเจลแอคโตมัยโอซินที่ระดับการเติมแคลเซียม และสภาวะในการบุ่มต่างๆ

3. คุณลักษณะทางชีวเคมีของ crude ทรานสกลูทามิเนสจากน้ำล้างปลาทรายแดง

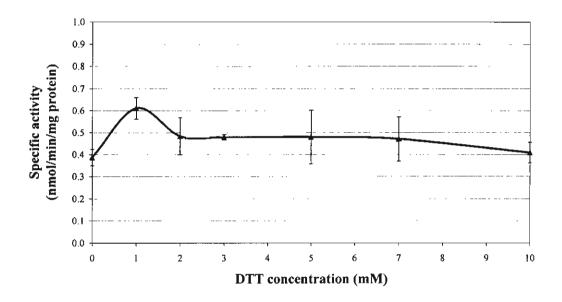
3.1 <u>สภาวะที่เหมาะสมต่อการเร่งปฏิ</u>กิริยาของ crude ทรานสกลูทามิเนส


อุณหภูมิที่ crude ทรานสกลูทามิเนสแสดงค่ากิจกรรมได้สูงสุดคือที่ 40 °ซ (รูปที่ 19) เนื่องจาก ผลการทดลองที่อุณหภูมิสูงกว่า 40 °ซ เกิดความขุ่นเนื่องจากการตกตะกอนของโปรตีนใน crude เอนไซม์ จึงทำให้ได้ค่า fluorescent intensity สูง ซึ่งทำให้เกิดความแปรปรวนในการวัด ดังนั้นจึง รายงานเพียงในช่วงอุณหภูมิ 25-40 °ซ เท่านั้น อุณหภูมิที่เหมาะสมต่อการเร่งปฏิกิริยาของทรานสกลู-ทามิเนสบริสุทธิ์ในปลานิล ตับปลา red sea bream อยู่ในช่วง 40-60 °ซ ส่วนทรานสกลูทามิเนสที่ทำ บริสุทธิ์ จากหอยนางรมญี่ปุ่นแสดงค่ากิจกรรมสูงสุดที่ 25 และ 40 °ซ (Kumazawa et al., 1997)


รูปที่ 19 ผลของอุณหภูมิต่อกิจกรรมทรานสกลูทามิเนสในน้ำล้างปลาทรายแดง

ทรานสกลูทามิเนสในน้ำล้างปลาทรายแคงแสดงกิจกรรมสูงสุดที่พีเอช 7.5 (รูปที่ 20) ทรานสกลูทามิเนสที่ทำบริสุทธิ์จากกล้ามเนื้อปลานิล แสดงค่ากิจกรรมสูงสุดที่พีเอช 7-9 (Worratao and Yongsawatdigul, 2005) เมื่อพิจารณาผลของแคลเซียมต่อกิจกรรมทรานสกลูทามิเนส (รูปที่ 21) พบว่า ทรานสกลูทามิเนสในน้ำล้างนี้เป็นเอนไซม์ที่ต้องการแคลเซียมในการเร่งปฏิกิริยา เอนไซม์ไม่แสดง กิจกรรมในสภาวะที่ไม่มีแคลเซียม ซึ่งเป็นลักษณะจำเพาะของทรานสกลูทามิเนสจากสัตว์ที่มีกระคูก สันหลัง นอกจากนี้พบว่ากิจกรรมมีค่าสูงขึ้นตามระดับการเติมแคลเซียม เนื่องจากในระบบ crude

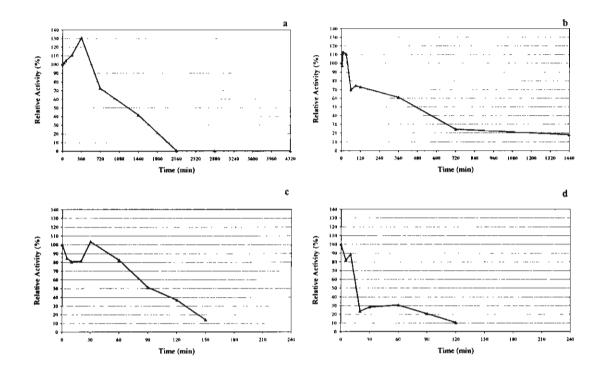
เอนไซม์นี้ การเพิ่มแคลเซียมมากกว่า 5 มิลลิโมลาร์ทำให้เกิดความขุ่น สันนิษฐานว่าเนื่องจากการ ตกตะกอนของโปรตีนใน crude จึงไม่สามารถวัดค่าที่แน่นอนได้ ดังนั้นจึงใช้ค่าความเข้มข้นที่ 5 มิลลิ-โมลาร์ เป็นระดับที่เหมาะสมต่อการเร่งกิจกรรมของ crude ทรานสกลูทามิเนสจากน้ำล้าง


รูปที่ 20 ผลของพีเอชต่อกิจกรรมของ crude ทรานสกลูทามิเนสจากน้ำล้างปลาทรายแดง

รูปที่ 21 ผลของระดับแคลเซียมคลอไรค์ต่อกิจกรรมของ crude ทรานสกลูทามิเนสจากน้ำล้างปลา ทรายแดง

.

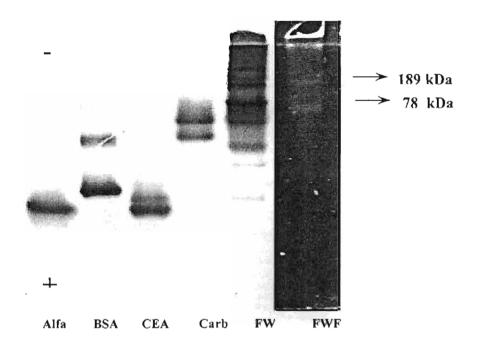
กิจกรรมของเอนไซม์ทรานสกลูทามิเนสเพิ่มขึ้นตามระดับความเข้มข้นของ DTT โดยเพิ่ม สูงสุดที่ความเข้มข้น 1 มิลลิโมลาร์ จากนั้นมีแนวโน้มลดลงเมื่อระดับความเข้มข้นเพิ่มขึ้น (รูปที่ 22) เป็นที่น่าสังเกตว่าเอนไซม์ยังคงแสดงกิจกรรมแม้ไม่มีการเติม DTT หน้าที่สำคัญของ DTT คือการ ปกป้องการเกิดออกซิเดชันของกลุ่ม SH ที่บริเวณเร่ง (active site) แม้ในสภาวะที่ไม่มี DTT กลุ่ม SH ที่ มีบทบาทในการเร่งปฏิกิริยาอาจไม่ได้เกิดออกซิเดชันจนหมด เอนไซม์จึงยังสามารถแสดงกิจกรรมได้ ซึ่งสอดกล้องกับรายงานของ Woratao and Yongsawatdigul (2003) ที่ศึกษากิจกรรมของ crude ทรานสกลูทามิเนสในปลานิล



รูปที่ 22 ผลของระดับความเข้มข้น DTT ต่อกิจกรรมเอนไซม์ทรานสกลูทามิเนส

3.2 <u>ผลของอุณหภูมิต่อเสถียรภาพของเอนไซม์</u>

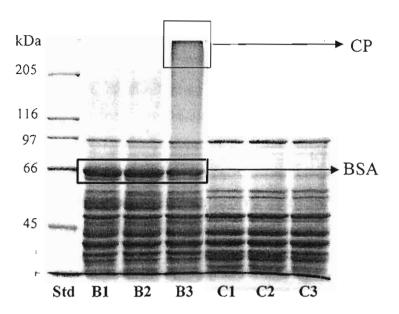
กิจกรรมของเอนไซม์ลดลงเหลือประมาณ 70% หลังจากเก็บที่ 4 °ซ เป็นเวลา 12 ชั่วโมง (รูปที่ 23a) และไม่สามารถตรวจพบกิจกรรมได้เมื่อเก็บไว้ 36 ชั่วโมง กิจกรรมของเอนไซม์ลดลงเหลือ ประมาณ 70% เมื่อเก็บที่ 25 °ซ เป็นเวลา 1 ชั่วโมง และกิจกรรมลดลงเหลือประมาณ 20% เมื่อเก็บไว้ 24 ชั่วโมง (รูปที่ 23b) เสถียรภาพของเอนไซม์ลดลงอย่างมากเมื่อเพิ่มอุณหภูมิเป็น 30 และ 40 °ซ ซึ่ง เป็นช่วงอุณหภูมิที่เอนไซม์สามารถเร่งกิจกรรมได้ดี ดังจะเห็นได้ว่ากิจกรรมลดลงเหลือเพียง 10% เมื่อ บ่มที่ 30 และ 40 °ซ เป็นเวลา 2.5 และ 2 ชั่วโมง ตามลำดับ (รูปที่ 23c,d) ผลดังกล่าวอาจบ่งชี้ว่า เอนไซม์มีเสถียรภาพต่ำที่อุณหภูมิสูง (30-40 °ซ) ดังนั้นอุณหภูมิในระหว่างการทำบริสุทธิ์ควรเป็น


ปัจจัยหนึ่งที่จะต้องมีการควบคุม นอกจากนี้การเกิดเซทติ้งที่อุณหภูมิสูงอาจเหนี่ยวนำให้เกิดการเชื่อม ข้ามของโปรตีนอย่างจำกัดแม้จะเป็นช่วงอุณหภูมิที่เอนไซม์สามารถเร่งกิจกรรมได้ดีก็ตาม เนื่องจาก เสถียรภาพในช่วงอุณหภูมิดังกล่าวมีค่อนข้างน้อย

รูปที่ 23 ความคงทนต่ออุณหภูมิที่ 4 (a), 25 (b), 30 (c) และ 40 ซ (d) ของ crude ทรานสกลูทามิ-เนสจากน้ำล้างปลาทรายแดง

3.3 Activity staining

การเรื่องแสงภายใต้คลื่นแสงอัลตราไวโอเลท (UV) แสดงถึงการเชื่อมข้ามระหว่าง DMC และ MDC โดยเอนไซม์ทรานสกลูทามิเนส ซึ่งจะพบการเรื่องแสงที่แถบโปรตีนซึ่งมีขนาดมวลโมเลกุล ประมาณ 78 และ 189 กิโลดาลตัน (รูปที่ 24) มวลโมเลกุลของทรานสกลูทามิเนสที่ทำบริสุทธิ์ จากกล้ามเนื้อปลาในมีค่าประมาณ 80 กิโลดาลตัน (Kishi et al., 1991) และจากหอยนางรมญี่ปุ่นมีค่าประมาณ 84 และ90 กิโลดาลตัน (Kumazawa et al., 1997) ในขณะที่เอนไซม์ที่ทำบริสุทธิ์จากปลานิล มีขนาด 85 กิโลดาลตัน (Woratao and Yongsawatdigul, 2005) ยังไม่เคยมีรายงานถึงเอนไซม์ทรานสกลูทามิเนสจากเนื้อเยื่อ (tissue TGase) ที่มีขนาดใหญ่ถึง 189 กิโลดาลตัน มาก่อน

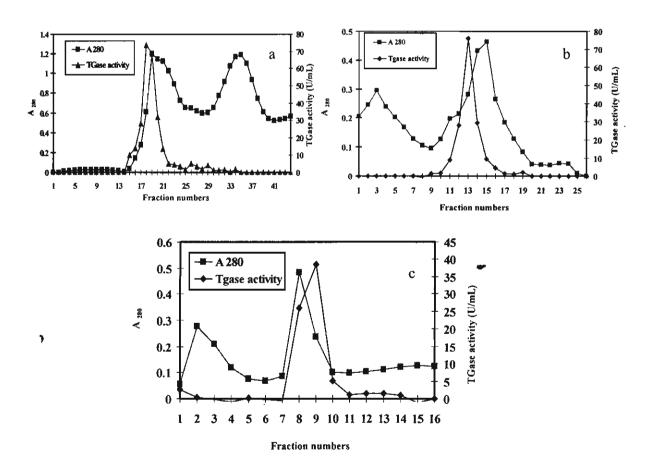


รูปที่ 24 รูปแบบโปรตีนของน้ำถ้างครั้งที่ 1 โดยการวิเคราะห์ Native-PAGE (8.0 % polyacrylamide)

Alfa=A-lactalbumin standard, BSA=bovine serum albumin standard, CEA=chicken egg albumin standard, Carb=carbonic anhydrase standard, FW=น้ำถ้างครั้งที่ 1, FWF= น้ำถ้างครั้งที่ 1 ภายใต้แสงอัลตราไวโอเลท

3.4 การเชื่อมข้ามโปรตีนโดย crude ทรานสกลูทามิเนส

พบการเชื่อมข้ามของโปรตีนอัลบูมินจากวัว (BSA) โดยทรานสกลูทามิเนสจากน้ำล้างปลา ทรายแดง เมื่อบุ่มที่ 25 °ซ เป็นเวลา 6 ชั่วโมง (รูปที่ 25) โดยจะเห็นความเข้มของแถบโปรตีนอัลบูมินจากวัวมีขนาดลดลง และเกิดแถบโปรตีนที่มีมวลโมเลกุลขนาดใหญ่ อย่างไรก็ตามไม่พบการเชื่อม ข้ามของโปรตีนอัลบูมินเมื่อบุ่มที่ 40 °ซ เป็นเวลา 30 นาที ทั้งนี้อาจเนื่องจากเอนไซม์มีเสถียรภาพค่ำที่ 40 °ซ ดังรูปที่ 23d นอกจากนี้ยังพบว่า crude เอนไซม์ไม่สามารถเร่งปฏิกิริยาการเชื่อมข้ามในเคซีนทั้ง ที่ 25 และ 40 °ซ ผลดังกล่าวแสดงสวามจำเพาะเจาะจง (substrate specificity) ต่อสารตั้งต้นของ เอนไซม์ มีรายงานว่าทรานสกลูทามิเนสที่ทำบริสุทธิ์จากเม็ดเลือดแดงของหมู (porcine erythocyte) สามารถเร่งปฏิกิริยาการเชื่อมข้ามโปรตีนเคซีนได้ดีกว่าโปรตีนโปรตีนอัลบูมิน (de-Jong et al., 2001).


รูปที่ 25 การเชื่อมข้ามโปรตีน BSA (B1-B3) และเคซีน (C1-C3) โดย crude ทรานสกลูทามิเนสจากน้ำ ล้าง B1,C1 =ตัวอย่างที่ไม่ได้บ่ม B2,C2=ตัวอย่างบ่มที่ 40 ° ซ 30 นาที B3,C3ตัวอย่างบ่มที่ 25 ° ซ 6 ชั่วโมง Stdโปรตีนมาตรฐาน CP=โปรตีนที่เกิดจากการเชื่อมข้าม (cross-linked polymer)

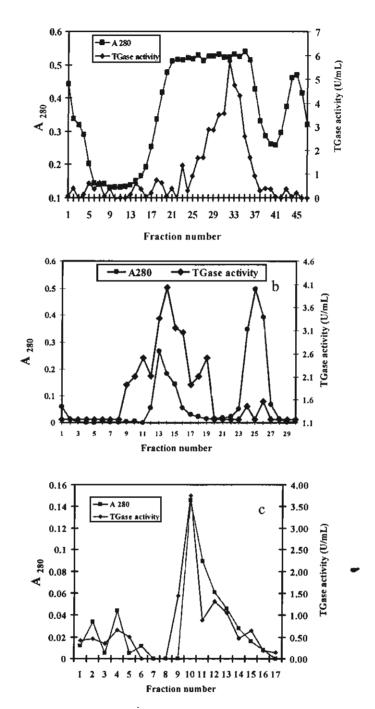
จากผลการศึกษาในส่วนนี้จะเห็นได้ว่าน้ำล้าง ซึ่งเกิดขึ้นในระหว่างกระบวนการผลิตซูริมิมี กิจกรรมของเอนไซม์ทรานสกลูทามิเนสอยู่ ซึ่งน่าจะเป็นเอนไซม์ที่มาจากส่วนของกล้ามเนื้อปลา โดย เอนไซม์ดังกล่าวสามารถเร่งปฏิกิริยาการเชื่อมข้ามโปรตีนเมื่อทดสอบเบื้องต้นโดยโปรตีนอัลบูมิน ดังนั้นจึงได้ศึกษาการทำบริสุทธิ์เอนไซม์นี้และทดสอบการเชื่อมข้ามโปรตีนกล้ามเนื้อต่อไป

4. คุณสมบัติของทรานสกลูทามิเนสจากปลาทรายแดง

4.1 การทำบริสุทธิ์ทรานสกลูทามิเนส

จากการศึกษาเบื้องต้นพบกิจกรรมทรานสกลูทามิเนสในตับสูงกว่าในกล้ามเนื้อ ทำบริสุทธิ์ โดยใช้เทกนิก ion exchange และ gel filtration chromatography ขั้นตอนการทำบริสุทธิ์ทรานสกลูทามิเนสในตับแสดงได้ดังรูปที่ 26 จะเห็นได้ว่าการใช้ Ca hydroxyapatite เป็นขั้นตอนที่สามารถกำจัด โปรตีนได้อย่างมีประสิทธิภาพ (ตารางที่ 2) ประจุลบของโปรตีนจะจับกับแคลเซียมบนตัวกลาง (media) ซึ่งโปรตีนจะสามารถถูกชะออก (elute) โดยการเพิ่มความเข้มข้นของฟอสเฟต (Karlsson et al., 1998) จากขั้นตอนการทำบริสุทธิ์ที่ใช้ในการศึกษานี้ สามารถทำบริสุทธิ์ทรานสกลูทามิเนสจากตับประมาณ 43 เท่า และได้ activity yield ประมาณ 7.4%

รูปที่ 26 การทำบริสุทธิ์ทรานสกลูทามิเนสจากตับปลาทรายแดงโดยใช้ DEAE-Sephacel (a), Sephacryl S-200 (b), Ca hydroxyapatite (c)


ตารางที่ 2 ขั้นตอนการทำบริสุทธิ์ทรานสกลูทามิเนสจากตับปลาทรายแดง

Step	Total activity	Specific activity	Fold	Yield (%)	
	(U)	(U/mg)			
Crude	6122.1	45.5	1	100	
DEAE-Sephacel	1940.9	96.3	2.1	31.7	
Sephacryl S-200	614.0	198.1	4.4	10.0	
Ca hydroxyapatite	451.0	1960.9	43.1	7.4	

ตารางที่ 3 ขั้นตอนการทำบริสุทธิ์ทรานสกลูทามิเนสจากกล้ามเนื้อปลาทรายแดง

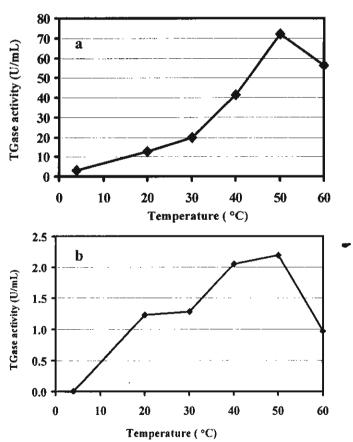
Step	Total activity	Specific activity	Fold	Yield (%)	
	(U)	(U/mg)			
Crude	1381.5	1.3	1	100	
DEAE-Sephacel	134.4	4.1	3.2	9.7	
Sephacryl S-200	53.4	8.3	6.6	3.9	
Ca hydroxyapatite	45.5	47.4	37.6	3.3	

เมื่อใช้ขั้นตอนเดียวกันในการทำบริสุทธิ์ทรานสกลูทามิเนสจากส่วนของกล้ามเนื้อ พบว่าความ บริสุทธิ์เพิ่มขึ้น 37 เท่า และได้ yield activity ประมาณ 3.3% (ตารางที่ 3) โดย chromatogram ที่ได้จาก การแยกแสดงได้ดังรูปที่ 27 Ca hydroxyapatite สามารถทำบริสุทธิ์เอนไซม์ได้อย่างมีประสิทธิภาพ เช้นเดียวกับในตับ จะเห็นได้ว่า yield ลดลงค่อนข้างมากหลังจากผ่าน DEAE-Sephacel (ตารางที่ 3) ทั้งนี้อาจเนื่องจาก บรรจุ (load) ตัวอย่าง crude เอนไซม์มากเกินความสามารถในการจับยึดโปรตีน (binding capacity) ของคอลัมน์ จึงเกิดการสูญเสียกิจกรรมของเอนไซม์ในระหว่างการบรรจุตัวอย่าง จะเห็นได้ว่า Specific activity ของ crude ทรานสกลูทามิเนสในกล้ามเนื้อน้อยกว่าในส่วนของตับกว่า 40 เท่า Worratao and Yongsawatdigul (2005) ทำบริสุทธิ์เอนไซม์ทรานสกลูทามิเนสจากกล้ามเนื้อปลา นิลโดยใช้เทคนิก ion exchange (DEAE-Sephacel), gel filtration (Sephacryl-S200), affinity

รูปที่ 27 การทำบริสุทธิ์ทรานสกลูทามิเนสจากกล้ามเนื้อปลาทรายแดงโดยผ่านขั้นตอน DEAE-Sephacel (a), Sephacryl S-200 (b), Ca hydroxyapatite (c)

chromatography (HiTrap Heparin) โดยพบว่าความบริสุทธิ์ของเอนไซม์เพิ่มขึ้นประมาณ 70 เท่าและได้ ผลผลิตประมาณ 13% นอกจากนี้ Nozawa et al (2001a) ทำบริสุทธิ์ทรานสกลูทามิเนสจาก squid gill และได้ความบริสุทธิ์เพิ่มขึ้นประมาณ 14.1 เท่า ส่วนการทำบริสุทธิ์ทรานสกลูทามิเนสจาก หอยเชลล์ (scallop) นั้นมีความบริสุทธิ์เพิ่มขึ้น 101.9 เท่า (Nozawa et al., 2001b) ในขณะที่ทรานสกลูทามิเนสจาก red sea bream มีความบริสุทธิ์เพิ่มขึ้น 195 เท่า (Yasueda et al., 1994)

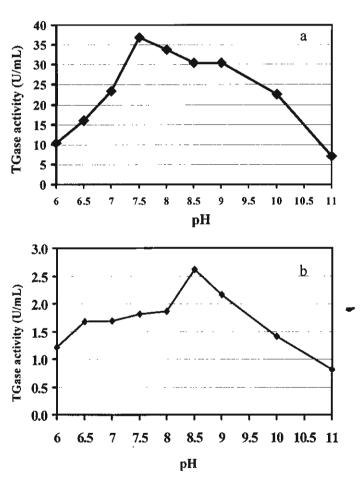
เมื่อนำทรานสกลูทามิเนสที่ทำบริสุทธิ์ได้จากกล้ามเนื้อมาวิเคราะห์ activity staining พบแถบ เรื่องแสงที่เกิดจากการเชื่อมข้ามระหว่าง MDC และ DMC ดังรูปที่ 28a และเมื่อพิจารณา native-PAGE ที่ย้อมด้วย Coomassie blue (รูปที่ 28b) จะพบแถบโปรตีน 1 แถบ ซึ่งสอดคล้องกับแถบที่เรื่องแสง ดังนั้นอาจกล่าวได้ว่าแถบโปรตีนที่พบเห็นน่าจะเป็นเอนไซม์ที่ทำบริสุทธิ์ได้ซึ่งมีขนาด138 กิโลดาลตัน ซึ่งใกล้เคียงกับที่พบในน้ำล้าง (รูปที่ 24) นอกจากนี้ เป็นที่น่าสังเกตว่าใน crude เอนไซม์มีแถบการ เรื่องแสงที่ชัดเจนอีก 1 แถบที่มีมวลโมเลกุลเล็กกว่าเอนไซม์ที่ทำบริสุทธิ์ได้ (รูปที่ 28a) อย่างไรก็ตาม แถบการเรื่องแสงดังกล่าวไม่ปรากฏในตัวอย่างที่ได้จาก DEAE ผลจากการวิเคราะห์ด้วย activity staining บ่งชี้ว่าอาจมีทรานสกลูทามิเนสมากกว่า 1 ชนิคใน crude เอนไซม์ที่สกัดได้จากปลาทรายแดงโดยทรานสกลูทามิเนสที่มีมวลโมเลกุลเล็กกว่านี้อาจมีเสถียรภาพต่ำจึงไม่พบหลังจากทำบริสุทธิ์ด้วย


รูปที่ 28 Native-PAGE ของทรานสกฤทามิเนสจากกล้ามเนื้อปลาทรายแดงโดยการย้อมแบบ activity staining (a) และ protein staining (b) C=crude enzyme, DEAE= pooled fractions after DEAE, CaHP=pooled fractions after Ca-hydroxyapatite

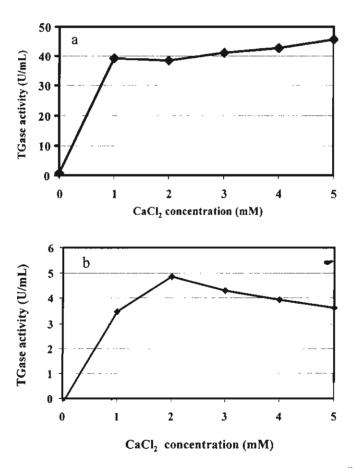
DEAE หรืออาจไม่สามารถจับกับ DEAE ได้และหลุดไปในระหว่างการล้าง (washing) ควรศึกษาถึง คุณลักษณะทางชีวเคมีและการทำบริสุทธิ์ทรานสกลูทามิเนสที่มีมวลโมเลกุลที่เล็กกว่านี้ค่อไป

4.2 คณลักษณะทางชีวเคมีของทรานสกลทามิเนส

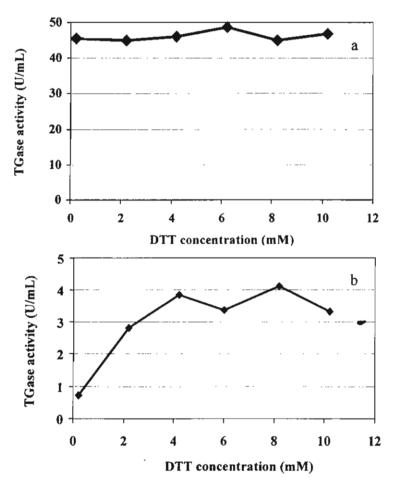
7


อุณหภูมิที่เหมาะสมสำหรับการเร่งปฏิกิริยาของทรานสกลูทามิเนสจากตับและกล้ามเนื้อปลา ทรายแคงคือ 50 °ซ (รูปที่ 29a,b) การทำบริสุทธิ์สามารถกำจัดโปรตีนชนิคอื่นออก ซึ่งลดปัญหาการ ตกตะกอนที่อุณหภูมิสูงในขณะที่ทำการวิเคราะห์ดังใน crude เอนไซม์ (รูปที่ 23) กิจกรรมทรานสกลู-ทามิเนสต่อหน่วยปริมาตรจากตับปลาสูงกว่าจากกล้ามเนื้อ ทรานสกลูทามิเนสจากกล้ามเนื้อปลานิล แสคงกิจกรรมสูงสุดในช่วง 37-50 °ซ ในขณะที่ทรานสกลูทามิเนสจากตับปลา red sea beam สามารถ เร่งปฏิกิริยาได้สูงในช่วง 55-60 °ซ (Yasueda et al., 1994) ซึ่งเป็นช่วงที่สูงกว่าที่ได้จากตับปลาทราย แคงเล็กน้อย ส่วนอุณหภูมิที่เหมาะสมต่อการเร่งปฏิกิริยาของทรานสกลูทามิเนสจากหอยนางรมคือที่

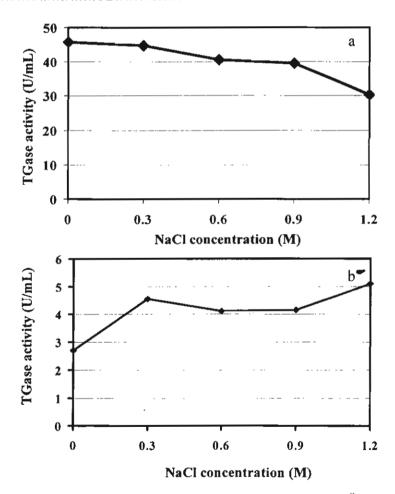
รูปที่ 29 ผลของอุณหภูมิต่อกิจกรรมทรานสกลูทามิเนสจากตับ (a) และกล้ามเนื้อ (b)


25 และ 40 °ซ (Kumazawa et al., 1997) จะเห็นได้ว่าอุณหภูมิที่เหมาะสมต่อการเร่งปฏิกิริยาจะแตกต่าง กันตามแหล่งของเอนไซม์ ทรานสกลูทามิเนสที่สกัดจากสัตว์น้ำในเขตร้อนร้อน เช่นปลานิล ปลาทราย แดง อุณหภูมิที่เหมาะสมต่อการเร่งปฏิกิริยามีแนวโน้มอยู่ในช่วงที่ค่อนข้างสูง ในขณะที่เอนไซม์ที่สกัด จากสัตว์น้ำที่อาศัยในแถบน้ำเย็น อุณหภูมิที่เหมาะสมต่อการเร่งปฏิกิริยาจะอยู่ในช่วง 25 °ซ

พีเอชที่เหมาะสมต่อการเร่งปฏิกิริยาของทรานสกลูทามิเนสจากดับและกล้ามเนื้อคือ 7.5 และ 8.5 ตามลำดับ (รูปที่ 30a,b) ซึ่งอยู่ในช่วงที่ใกล้เกียงกับทรานสกลูทามิเนสบริสุทธิ์ที่สกัดได้จากแหล่ง อื่น เช่นที่สกัดได้จากกล้ามเนื้อปลานิลมีค่าพีเอชที่เหมาะสมที่ 7.5 และที่ได้จากสัตว์น้ำชนิดอื่นมีค่าที่ 8-9.5 (Yasueda et al., 1994; Kumazawa, et al., 1996; Kumazawa et al., 1997; Nozawa et al., 1997; Nozawa et al., 2001b)


รูปที่ 30 ผลของพีเอชต่อกิจกรรมทรานสกลูทามิเนสจากตับ (a) และกล้ามเนื้อ (b)

เอนไซม์ที่ทำบริสุทธิ์ได้จากทั้งตับและกล้ามเนื้อของปลาทรายแดงเป็นเอนไซม์ที่ด้องการ
แคลเซียมในการเร่งปฏิกิริยา ในสภาวะที่ไม่มีแคลเซียม เอนไซม์แสดงค่ากิจกรรมน้อยมากหรือไม่
สามารถตรวจวัดได้เลย (รูปที่ 31a,b) ทรานสกลูทามิเนสจากตับจำเป็นต้องมีแคลเซียมอย่างน้อยที่สุด 1
มิลลิโมลาร์ (รูปที่ 31a) เพื่อให้สามารถเร่งปฏิกิริยา ความเข้มข้นของแคลเซียมที่มากกว่า 1 มิลลิโมลาร์
มีผลเพิ่มกิจกรรมของเอนไซม์เพียงเล็กน้อย ในขณะที่ทรานสกลูทามิเนสจากกล้ามเนื้อมีกิจกรรม
เพิ่มขึ้นตามความเข้มข้นของแคลเซียม (รูปที่ 31b) และสูงสุดที่ 6 มิลลิโมลาร์ ความเข้มข้นที่เหมาะสม
สำหรับการเร่งปฏิกิริยาของทรานสกลูทามิเนสที่ทำบริสุทธิ์จากปลานิลคือ 1.25 มิลลิโมลาร์ (Worratao
and Yongsawatdigul, 2005) ส่วนทรานสกลูทามิเนสที่สกัดจากตับปลา red sea beam หอยนางรม หอย
เซลล์ (scallop) และตับปลา Alaska pollock คือ 0.5, 25, 10 และ 3 มิลลิโมลาร์ ตามลำดับ (Kumazawa
et al., 1996, 1997; Nozawa et al., 2001b; Yasueda et al., 1994)


รูปที่ 31 ผลของแคลเซียมต่อกิจกรรมของทรานสกลูทามิเนสจากตับ (a) และกล้ามเนื้อ (b) ปลาทราย แดง

DTT ไม่มีผลต่อกิจกรรมของทรานสกลูทามิเนสจากตับดังรูปที่ 32a ในขณะที่กิจกรรมของ ทรานสกลูทามิเนสจากปลาทรายแดงเพิ่มขึ้นตามความเข้มข้นของ DTT จนถึง 8 มิลลิโมลาร์ (รูปที่ 32b) บทบาทของ DTT ต่อกิจกรรมของทรานสกลูทามิเนสคือการป้องกันการเกิดออกซิเดชันของกลุ่ม SH ที่ บริเวณเร่งของเอนไซม์ ทรานสกลูทามิเนสจากแหล่งต่างๆ ตอบสนองต่อความเข้มข้นของ DTT ต่างกัน กิจกรรมของทรานสกลูทามิเนสจากปลานิลไม่ขึ้นกับปริมาณ DTT (Worratao and Yongsawatdigul, 2005) ซึ่งเป็นลักษณะเดียวกับทรานสกลูทามิเนสจาก limulus hemocyte (Tachypleus tridentatus) (Tokunaga et al., 1993) ในขณะที่ทรานสกลูทามิเนสจากเยื่อหุ้มไข่ปลา (chorion) rainbow trout มีกิจกรรมเพิ่มขึ้นเมื่อความเข้มข้นของ β-mercaptoethanol เพิ่มขึ้น (Ha and Iuchi, 1997) ซึ่ง β-mercaptoethanol มีบทบาทเช่นเดียวกับ DTT คือเป็นสารรีดิวซ์ (reducing agent)

รูปที่ 32 ผลของ DTT ต่อกิจกรรมทรานสกลูทามิเนสจากตับ (a) และกล้ามเนื้อ (b) ปลาทรายแดง

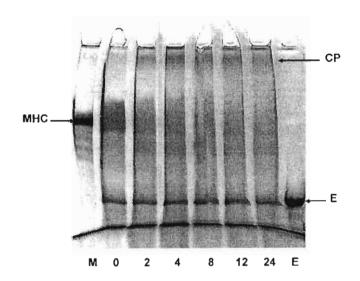
เอนไซม์ทรานสกลูทามิเนสจากดับมีกิจกรรมลดลงเมื่อความเข้มข้นของ NaCl เพิ่มขึ้น (รูปที่ 33a) ในขณะที่เอนไซม์ที่ทำบริสุทธิ์ได้จากกล้ามเนื้อปลามีกิจกรรมเพิ่มขึ้นตามค่าความเข้มข้นของ NaCl (รูปที่ 33b) เป็นที่น่าสังเกตุว่าเอนไซม์จากคนละแหล่งตอบสนองต่อระดับ NaCl ต่างกันโดย สิ้นเชิง ทรานสกลูทามิเนสจากปลานิลซึ่งเป็นปลาน้ำจืดมีกิจกรรมลดลงเมื่อความเข้มข้นของ NaCl เพิ่มขึ้น (Worratao and Yongsawatdigul, 2005) คล้ายกับผลที่ได้จากดับปลาทรายแดง โดยกิจกรรมของทรานสกลูทามิเนสจากปลานิลที่ความเข้มข้นของ NaCl 1.2 โมลาร์ มีประมาณ 25% ของตัวอย่างที่ ไม่มี NaCl ในขณะที่เอนไซม์จากตับปลาทรายแดงนี้ยังคงมีกิจกรรมอยู่ประมาณ 60% ที่ความเข้มข้น NaCl เท่ากัน ทั้งนี้อาจเนื่องจากปลาทรายแดงเป็นปลาทะเล เอนไซม์ที่สกัดได้จึงมีความคงทนต่อเกลือ มากกว่าเอนไซม์ที่สกัดได้จากปลาน้ำจืด Nozawa et al. (1997) รายงานว่ากิจกรรมของทรานสกลูทามิเนสที่สกัดจากสัตว์ทะเลหลายชนิดเช่น หอยเชลล์ กุ้ง และปลาหมึก สามารถูกกระตุ้นด้วย NaCl ซึ่ง สอดกล้องกับผลที่ได้จากกล้ามเนื้อปลาทรายแดง

รูปที่ 33 ผลของ NaCl ต่อกิจกรรมทรานสกลูทามิเนสจากตับ (a) และกล้ามเนื้อ (b) ปลาทรายแดง

เมื่อพิจารณาผลของไอออนต่อกิจกรรมของทรานสกลูทามิเนสจากทั้งดับและกล้ามเนื้อ พบว่า Mn^{2+} , Cu^{2+} , Co^{2+} , และ Fe^{2+} มีผลยับยั้งกิจกรรมของทรานสกลูทามิเนสทั้ง 2 โดยสมบรูณ์ ส่วน Zn^{2+} สามารถยับยั้งทรานสกลูทามิเนสจากตับได้บางส่วน (50%) และยับยั้งกิจกรรมทรานสกลูทามิเนสจากกล้ามเนื้อโดยสมบรูณ์ (ตารางที่ 4) Cu^{2+} และ Zn^{2+} มีความจำเพาะ (affinity) ต่อกลุ่ม SH ที่บริเวณ active site ของเอนไซม์ (Nozawa et al., 1997) จึงส่งผลในการยับยั้งกิจกรรม ทรานสกลูทามิเนสจากตับมีความทนทานต่อ Zn^{2+} สูงกว่าเอนไซม์จากกล้ามเนื้อ ส่วน Ba^{2+} , Mg^{2+} ซึ่งเป็นไดวาเถนท์ไอออนกลุ่มเดียวกับแกลเซียมมีผลยับยั้งกิจกรรมของเอนไซม์จากทั้ง 2 แหล่ง (ตารางที่ 4) โดย Ba^{2+} มีผลยับยั้งทรานสกลูทามิเนสจากกล้ามเนื้อมากกว่าจากตับ ในขณะที่ Sr^{2+} มีผลกระตุ้นกิจกรรมของทรานสกลูทามิเนสจากตับ แต่มีผลยับยั้งกิจกรรมของทรานสกลูทามิเนสจากตับ แต่มีผลยับยั้งกิจกรรมของทรานสกลูทามิเนสจากตับ แต่มีผลยับยั้งกิจกรรมของทรานสกลูทามิเนสจากตับ เหมีผลยับยั้งกิจกรรมของทรานสกลูทามิเนสที่ทำบริสุทธิ์จากปลา red sea bream และจากตับปลา Alaska pollock ไม่ถูกกระทบโดย Sr^{2+} (Kumazawa et al., 1996; Yasueda et al., 1994) ในขณะที่ Sr^{2+} มีผลลดกิจกรรมของทรานสกลูทามิเนสจากปลานิลและปลาไน (Worratao and Yongsawatdigul, 2005; Kishi et al., 1991) ผลของไอออนบ่งชี้ว่าทรานสกลูทามิเนสจากส่วนของกล้ามเนื้อและตับอาจเป็น isozyme

ตารางที่ 4 ผลของไอออนต่อกิจกรรมทรานสกลูทามิเนส

Ions	Remaining activity (%)	
	Muscle	Liver
Fe ²⁺	0	0
Cu ²⁺	0	0
Mn^{2+}	0	3.7
Co ²⁺	0	0
Zn^{2+}	3	50.6
Mg^{2+}	33.1	0
Ba ²⁺	25.8	61.4
Sr ²⁺	0	124.2


กลุ่มสารที่สามารถทำปฏิกิริยากับกลุ่ม SH เช่น IAA หรือ NEM สามารถยับยั้งกิจกรรมของ ทรานสกลูทามิเนสจากทั้งคับและกล้ามเนื้อ (ตารางที่ 5) ส่วนสาร EDTA ซึ่งเป็นสารจับยึดแคลเซียม (Ca²¹-chelating agent) มีผลยับยั้งกิจกรรมของเอนไซม์ทั้งสองเช่นกัน ผลนี้สนับสนุนข้อเท็จจริงที่ว่า ทรานสกลูทามิเนสเป็นเอนไซม์ที่จำเป็นต้องถูกเร่งปฏิกิริยาโดยแคลเซียม สาร PMSF มีผลยับยั้ง กิจกรรมทรานสกลูทามิเนสได้ประมาณ 35-51% โดยทั่วไป PMSF เป็นสารยับยั้งเอนไซม์โปรติเนส ในกลุ่มซีรีน (serine protienase) โดยเข้าทำปฏิกิริยากับกรดอะมิโนซีรีนที่ active site นอกจากนี้ยัง สามารถทำปฏิกิริยากับกลุ่มฮีสติดีน (histidine) ที่เกี่ยวข้องกับการเร่งปฏิกิริยาของโปรติเนสในกลุ่มซีรีน ค้วย (Neurath, 1989) มีข้อสันนิษฐานว่านอกจากกรดอะมิโนซิสติดีน (cysteine) ที่มีบทบาทในการเร่งปฏิกิริยาของทรานสกลูทามิเนสแล้ว ยังมีกรดอะมิโนซิสติดีนที่เกี่ยวข้องด้วย (Yee et al., 1994) ดังนั้น PMSF อาจเข้าทำปฏิกิริยากับกลุ่มฮีสติดีนดังกล่าว ทำให้กิจกรรมของเอนไซม์ลดลง ทรานสกลูทามิเนส จากปลานิลและจากจุลินทรีย์ Streptoverticillium ladakanum ถูกยับยั้งด้วย PMSF เช่นกัน (Worratao and Yongsawatdigul, 2005; Tsai et al., 1996) ในขณะที่ทรานสกลูทามิเนสจากปลา red sea bream หอยนางรม และดับปลา Alaska pollock ไม่ถูกยับยั้งด้วย PMSF (Kumazawa et al., 1996, 1997; Yasueda et al., 1994)

ตารางที่ 5 ผลของสารยับยั้งต่อกิจกรรมของทรานสกลูทามิเนส

Inhibitors	Remaining activity (%)		
	Muscle	Liver	
Iodoacetic acid	9.1	7.1	
(IAA)		•	
N-ethylmaleimide (NEM)	11.9	17.1	
Phenyl methanesulfonyl	51.5	35.4	
fluoride (PMSF)			
Ethylenediamine	0	0	
tetraacetic acid (EDTA)			

5. ความสามารถในการเชื่อมข้ามมัยโอซินโดยทรานสกลูทามิเนส

ทรานสกลูทามิเนสที่ทำบริสุทธิ์จากกล้ามเนื้อปลาทรายแดงสามารถเร่งปฏิกิริยาการเชื่อมข้าม ของมัยโอซิน (รูปที่ 33) เมื่อบุ่มที่ 30 ° ซ เป็นเวลา 2 ชั่วโมงจะเห็นแถบความเข้มของมัยโอซินสายหลัก (myosin heavy chain) ลดลง และเกิดแถบโปรตีนขนาดใหญ่ (CP) นอกจากนี้ไม่พบแถบมัยโอซินสาย หลักเมื่อบุ่มนาน 8 ชั่วโมง ซึ่งสันนิษฐานว่าเกิดจากการเชื่อมข้าม คังนั้นจะเห็นได้ว่าเอนไซม์ที่ทำ บริสุทธิ์ได้จากกล้ามเนื้อมีบทบาทในการเชื่อมข้ามโปรตีนมัยโอซินสายหลัก ดังเช่นการเกิดเซทติ้ง ส่วนทรานสกลูทามิเนสจากตับนั้นสามารถเชื่อมข้ามมัยโอซินสายหลักได้เช่นกันแต่ในอัตราที่ช้ากว่า จากการวิเกราะห์ด้วย SDS-PAGE พบว่ายังคงพบแถบมัยโอซินสายหลักสดลงเพียงเล็กน้อยหลังจากบุ่ม เป็นเวลา 24 ชั่วโมง (ไม่ได้แสดงผล) ผลดังกล่าวสนับสนุนแนวคิดที่ว่าทรานสกลูทามิเนสจากตับและ กล้ามเนื้ออาจเป็นคนละเอนไซม์ แม้ว่าจะเป็น tissue TGase เหมือนกัน นอกจากนี้ทรานสกลูทามิเนสจากล้ามเนื้อน่าจะมีบทบาทในการเชื่อมข้ามของมัยโอซินมากกว่าที่สกัดได้จากตับ

รูฟที่ 34 SDS-PAGE ของการเชื่อมข้ามโปรตีนมัยโอซินสายหลักโดยทรานสกลูทามิเนสจากกล้ามเนื้อ ปลาทรายแดง M=myosin, 0-24 เวลาในการบุ่มที่ 30 ^oซ ในหน่วยชั่วโมง, E=purified TGase, MHC=myosin beavy chain, CP=cross-linked polymer

สรุป

แอกโตมัยโอซินของปลาทรายแดงเปิดตัว (unfold) ที่ 36.1 °ซ แกลเซียมคลอไรค์ในระดับ 10100 มิลลิโมลาร์ เหนี่ยวนำให้เกิดการสูญเสีย conformation มากขึ้นโดยทำให้ทั้งมัยโอซินและแอกติน
เปิดตัวออกมากขึ้น รวมถึงเกิดการสูญเสียโครงสร้างฮีลิกซ์มากขึ้น เมื่อบ่มที่ 25 และ 40 °ซ ซึ่งเป็น
อุณหภูมิที่ใช้ในการเหนี่ยวนำเซทติ้ง การเปิดตัวดังกล่าวส่งเสริมให้โปรตีนจับตัวกันด้วยแรงกระทำ
ไฮโครโฟบิกและพันธะไดซัลไฟด์ ดังนั้นการเติมแกลเซียมคลอไรค์ไม่เพียงแต่ส่งเสริมการเกิดพันธะ
ไอโซเปปไทด์ซึ่งเกิดจากปฏิกิริยาของทรานสกลูทามิเนสเท่านั้น แต่ยังส่งเสริมแรงกระทำไฮโดรโฟบิก
และพันธะไดซัลไฟด์ในระหว่างการเกิดเซทติ้งด้วย การเติมแคลเซียมในระดับ 100 มิลลิโมลาร์
สามารถช่วยเพิ่มก่าแรงและระยะทาง ณ จุดแตกหักของเจลแอกโตมัยโอซินได้อย่างมีนัยสำคัญ
(P<0.05) โดยเฉพาะเมื่อบ่มที่ 40 °ซ

ทรานสกลูทามิเนสจากตับแสดงกิจกรรมที่สูงกว่าจากกล้ามเนื้อประมาณ 45 เท่า เอนไซม์จาก ทั้งสองแหล่งแสดงกุณลักษณะทางเคมี เช่น ต่อสาร dithiothreitol (DTT) โซเดียมคลอไรค์ และไอออน ที่ต่างกัน นอกจากนี้ทรานสกลูทามิเนสจากตับสามารถเร่งปฏิกิริยาการเชื่อมข้ามของมัยโอซินได้น้อย กว่าทรานสกลูทามิเนสจากกล้ามเนื้อ ซึ่งสามารถเร่งปฏิกิริยาการเชื่อมข้ามมัยโอซินสายหลัก (myosin heavy chain) ได้ภายใน 2 ชั่วโมงที่ 30 °ซ ดังนั้นทรานสกลูทามิเนสจากกล้ามเนื้อมีบทบาทสำคัญต่อ การเกิดการเชื่อมข้ามสายโปรตีนด้วยพันธะไอโซเปปไทด์ ในระหว่างการเกิดเซทติ้ง

เอกสารอ้างอิง

- นุชจรินทร์ เกตุนิล 2548. เนื้อปลาแช่แข็งและผลิตภัณฑ์ชูริมิ สินค้าที่มีโอกาสเติบโตสูง วารสาร สถาบันอาหาร ปีที่ 7 ฉบับที่ 40 (มี.ค-เม.ย.) หน้า 22-30.
- Bradford, M. 1976. A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-252.
- Burke, M., Himmelfarb, S., Harrington, W. F. 1973. Studies on the "hinge" region of myosin. Biochemistry 12: 701-709.
- De-Jong, C.A.H., Winjngaards, G., Boumans, H., Koppleman, S.J., Hessing, M. 2001. Purification and substrate specificity of transglutaminase from blood and Strptoverticillium mobaraense. J. Agric. Food Chem. 49: 3389-3393.
- Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82:70-77.
- Folk, J.E. 1980. Transglutaminase. Ann. Rev. Biochem. 49:517-531.
- Folk, J.E., Cole, P.W. 1966. Identification of a functional cysteine essential for the activity of guinea pig liver transglutaminase. J. Biol. Chem. 41: 3238-3240.
- Gill, T.A., Chan, J.K., Phonchareon, K.F., Paulson, A.T. 1992. Effect of salt concentration and temperature on heat-induced aggregation and gelation of fish myosin. Food Res. Inter. 25:333-341.
- Ha, C.H., Iuchi, I. 1997. Purification and characterization of 76 kDa transglutaminase in the egg envelope (Chrion) of rainbow trout, Oncorhynchus mykiss. J. Biochem. 122: 947-954.
- Huff-Lonergan, E., Mitsuhashi, T., Parrish, F. C. Jr., Robson, R. M. 1996. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting comparisons of purified myofibrils and whole muscle preparation for evaluating titin and nebulin in postmortem bovine muscle.
 J. Anim. Sci. 74: 779-785.
- Karlsson, E., Ryden, L., Brewer, J. 1998. Ion exchange chromatography. In "Protein Purification" 2nd Edition, J.A. Janson and L. Ryden (Eds.), pp.145-206, John Wiley & Sons, Inc., New York.
- Kishi, H., Nozawa, H., Seki, N. 1991. Reactivity of muscle transglutaminase on carp myofibrils and myosin B. Nippon Suisan Gakkaishi. 57:1203-1210.

- Kumazawa, Y., Nakanishi, K., Yasueda, H., Motoki, M. 1996. Purification and characterization of transglutaminase from walleye pollack liver. Fish. Sci. 62:959-964.
- Kumazawa, Y., Sano, K., Seguro, K., Yasueda, H., Nio, N., Motoki, M. 1997. Purification and characterization of transglutaminase from Japanese oyster (*Crassostrea gigas*). J. Agric. Food Chem. 45:604-610.
- Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685.
- Lanier, T. C. 2000. Surimi gelation chemistry. In *Surimi and Surimi Seafood*. J.W. Park (Ed.), pp. 237-265. Marcel Dekker, New York.
- Lee, N., Park, J.W. 1998. Calcium compounds to improve gel functionality of Pacific whiting and Alaska pollock surimi. J. Food Sci. 63: 969-974.
- Lehrer, S.S., Kerwar, G. 1972. Intrinsic fluorescence of actin. Biochem. 11:1211-1217.
- Li-Chan, E., Nakai, S., Wood, D.F. 1985. Relationship between functional (Fat binding, emulsifying) and physicochemical properties of muscle protiens. Effects of heating, Freezing, pH and Species. J. Food Sci. 50: 1034-1040.
- Lorand, L., Siefring, Jr.G.E., Tong Y.S., Bruner-Lorand, J., Gray, Jr.A.J. 1979. Dansylcadaverine specific staining for transglutaminase enzymes. Anal.Biochem. 93: 453-458.
- Lowry, O.H., Rosebrough N.J., Fart A.L., Randall R.J. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:256-275.
- Macdonald, G.A., Lanier, T.C. 1994. Actomyosin stabilitzation to freeze-thaw and heat denaturation by Lactate salts. J. Food Sci. 59:101-105.
- Martone, C.B., Busconi, L., Folco, E.J., Trucco, R.E., Sanchez, J.J. 1986. A simplified myosin preparation from marine fish species. J. Food Sci. 51:1554-1555.
- Nagy, B., Goaszewska, H.S. 1972. Optical rotatory dispersion and circular dichroic spectra of G-actin.

 Arch. Biochem. Biophy. 150:428-435.
- Neurath, M.J. 1989. The diversity of proteolytic enzymes. In *Proteolytic Enzymes: A Practical Approach*. R.J. Beynon and J.S. Bond (Eds), IRL Press, Oxford, England.

- Nozawa, H., Mamegoshi S., Seki N. 1997. Partial purification and characterization of six transglutamianses from ordinary muscles of various fishes and marine invertebrates. Comp. Biochem. Physiol. 118B(2):313-317.
- Nozawa, H., Cho, S.Y., Seki, N. 2001a. Purification and characterization of transglutamianse from squid gill. Fish. Sci. 67: 912-919.
- Nozawa, H., Seki, N. 2001b. Purification of transglutaminase from scallop striated adductor muscle and NaCl-induced inactivation. Fish Sci. 67:493-499.
- Ogawa, M., Ehara, T., Tamiya, T., Tsuchiya, T. 1993. Thermal stability of fish myosin. Comp. Biochem. Physiol. 106B: 517-521.
- Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T., Tsuchiya, T. 1995. Alpha-helical structure of fish actomyosin: Changes during setting. J. Food Sci. 60: 297-299.
- Ogawa, M., Nakamura, S., Horimoto, Y., An, H., Tsuchiya, T., and Nakai, S. 1999. Raman spectroscropic study of changes in fish actomyosin during setting. J. Agric. Food Chem. 47(8): 3309-3318.
- Philips, M.A., Stewart, B.E., Qin, Q., Chakravarty, R., Floyd, E.E., Jetten, A.M., Rice, R.H. 1990.

 Primary structure of kerinocyte transglutaminase. Proc. Natl. Acad. Sci. 87: 9333-9337.
- Sano, T., Ohno, T., Otsuka-Fuchino, H., Matsumoto, J. J., Tsuchiya, T. 1994. Carp natural actomyosin: thermal denaturation mechanism. J. Food Sci. 59: 1002-1008.
- Simons, J.W.F.A., Losters, H.A., Visschers, R.W., Jongh, H.H.J. 2002. Role of calcium as trigger in thermal β-latoglobulin aggregation. Arch. Biochem. Biophy. 406:143-152.
- Stefansson, C., Hultin, H.O. 1994. On the solubility of cod muscle proteins in water. J. Agric. Food Chem .42: 2656-2664.
- Takagi, J., Saito, Y., Kikuchi, T., Inada, Y. 1986. Modification of transglutaminase assay: use of ammonium sulfate to stop the reaction. Anal. Biochem. 153:295-298.
- Togashi, M., Kakinuma, M., Nakaya, M., Ooi, T., Watabe, S. 2002. Differential scanning calorimetry and circular dichroism spectrometry of walleye pollack myosin and light meromyosin. J. Agric. Food Chem. 50: 4803-4811.

- Tokunaga, F., Yamada, M., Miyata, T., Ding Y-L., Hiranaga-Kawabata, M., Muta, T., Iwanga, S. 1993. Limulus hemocyte transglutaminase:its purification and characterization, and identification of the intracellular substrates. J. Biol. Chem. 268:252-261.
- Tsai, G.J., Lin, S.M., Jiang, S.H. 1996. Transglutaminase from *Streptoverticillium ladakanum* and application to minced fish product. J. Food Sci. 61(6):1234-1238.
- Turoverov, K.K., Biktashev, A.G., Khaitlina, S.Y., Kuznetsova, I.M. 1999. The structure and dynamics of partially folded actin. Biochemistry. 38: 6261-6269.
- Valle, L.J., Escribano, C., Perez, J.J., Garriga, P. 2002. Calcium-induced decrease of the thermal stability and chaperone activity of α-crystalline. Biochem. Biophy. Acta. 1601:100-109.
- Wicker, L., Lanier, T. C., Hamann, D. D., Akahane, T. 1986. Thermal transition in myosin-ANS fluorescence and gel rigidity. J. Food Sci. 51: 1540-1543, 1562.
- Wilhelm, B, Meinhardt, A., Seitz, J. 1996. Transglutaminases: purification and activity assays. J. Chromatogr. B, Biomed. Appl. 684: 163-177.
- Worratao, A., Yongsawatdigul, J. 2003. Cross-linking of actomyosin by crude tilapia (*Oreochromis niloticus*) transglutaminase. J. Food Biochem. 27: 35-51.
- Worratao, A., Yongsawatdigul, J. 2005. Purification and characterization of transglutaminase from tropical tilapia (*Oreochromis niloticus*). Food Chem. 93:651-658.
- Yasueda, H., Kumazawa, Y., Motoki, M. 1994. Purification and characterization of a tissue-type transglutaminase from red sea bream (*Pagrus major*). Biosci. Biotechnol. Biochem. 58:2041-2045.
- Yee, V.C., Pedersen, L.C., Le T.I., Bishop, P.D., Stenkamp, R.E., Teller, D.C. 1994. Three-dimensional structure of a transglutaminase: Human blood coagulation factor XIII.
 Proceeding of the National Academy of Sciences of the United State of America, 91, 7296-7300.
- Yongsawatdigul, J., Worratao, A., Park, J.W. 2002. Effect of endogenous transglutaminase on threadfin bream surimi gelation. J. Food Sci. 67: 3258-3263.
- Yongsawatdigul, J., Park, J.W. 1999. Thermal aggregation and dynamic rheological properties of Pacific whiting and cod myosins as affected by heating rate. J. Food Sci. 64: 679-683.

Output จากงานวิจัย

- ผลิตนักศึกษาปริญญาเอกภายใต้โครงการกาญจนาภิเษก นางสาว บังอร เหมัง นักศึกษา คปก. รุ่นที่
 สาขาเทคโนโลยีอาหาร ซึ่งนักศึกษาเตรียมเดินทางไปยัง University of Alberta, Canada เพื่อศึกษา การเชื่อมข้ามด้วยเทคนิค mass spectrometry ซึ่งเป็นการศึกษาในขั้นสุดท้ายของวิทยานิพนธ์
- 2. ผลิตนักศึกษาปริญญาโท นางสาว เพ็ญประภา ปีขธรรมวิบูลย์ สาขาเทคโนโลยีอาหาร นักศึกษา บัณฑิตปีที่ 2 ซึ่งส่วนหนึ่งของงานวิทยานิพนธ์คือ Biochemical characteristics of transglutaminase from threadfin bream wash water

3. ผลงานตีพิมพ์ในวารสารระดับนานาชาติ

- Yongsawatdigul, J. and Park, J.W. 2003. Thermal denaturation and aggregation of threadfin bream actomyosin. Food Chem. 83(3): 406-416.
- Hemung, B and Yongsawatdigul, J. 2005. Ca²⁺ affects physicochemical and conformational changes of threadfin bream myosin and actin in a setting model. J Food Sci. In press.
- Yongsawatdigul. J. and Sinsuwan, S. 2005. Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocolloids. Submitted.
- Hemung, B and Yongsawatdigul, J. Partial purification and characterization of transglutaminase from liver and muscle of threadfin bream. Food Chem. In preparation.
- Piyadhammaviboon, P. and Yongsawatdigul, J. Biochemical characteristics of transglutaminase from threadfin bream wash water. J. Sci Food Agric. In preparation.

4. การเสนอผลงานในที่ประชุมนานาชาติด้วยวาจา (Oral presentation)

Yongsawatdigul, J., Hemung, B., Sinsuwan, S. 2005. Ca²⁺-induced conformational changes of fish muscle proteins during setting. Institute of Food Technologists (IFT) Annual Meeting 2005, New Orleans, LA, USA. June 15-20, 2005.

5. การเสนอผลงานในที่ประชุมระดับชาติ

<u>Piyadhammaviboon, P., Yongsawatdigul, J. 2005.</u> Biochemical characteristics of transglutaminase from threadfin bream washed water. **Poster presentation**. The 7th Agro-industrial conference, June 22-24, 2005, Bangkok. (*Won the third place of poster presentation*)

Sinsuwan, S., Yongsawatdigul, J. 2005. Calcium induces conformational changes in tilapia actomyosin. Poster presentation. The 7th Agro-industrial conference, June 22-24, 2005, Bangkok.

ชื่อที่ขีคเส้นใต้คือผู้นำเสนอผลงาน

ภาคผนวก

1. Reprint จากผลงานที่ได้รับการตีพิมพ์

Yongsawatdigul, J. and Park, J.W. 2003. Thermal denaturation and aggregation of threadfin bream actomyosin. Food Chem. 83(3): 406-416.

2. Manuscript ที่ได้รับการตอบรับพร้อมหนังสือตอบรับการตีพิมพ์

Hemung, B and Yongsawatdigul, J. 2005. Ca²⁺ affects physicochemical and conformational changes of threadfin bream myosin and actin in a setting model. J Food Sci. In press.

3. Manuscript ที่ส่งเพื่อเข้าสู่ขั้นตอนการพิจารณา

7

Yongsawatdigul. J. and Sinsuwan, S. 2005. Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocolloids. Submitted.

Food Chemistry 83 (2003) 409-416

www.elsevier.com/locate/foodchem

Thermal denaturation and aggregation of threadfin bream actomyosin

J. Yongsawatdigula,*, J.W. Parkb

*School of Food Technology, Institute of Agricultural Technology, Suranuree University of Technology, Nakhon Ratchasima 30000, Thailand

*Seafood Laboratory, Oregon State University, 2001 Marine Drive 253, Astoria, OR 97103, USA

Received 21 January 2003; accepted 17 February 2003

Abstract

Threadfin bream (Nemipierus bleekeri) actomyosin formed insoluble aggregates at >40 °C. Conformational changes, as measured by surface hydrophobicity, began at >30 °C and continued to increase with heating temperature. Reactive sulfhydryl groups increased as heating progressed and decreased at 50 °C, indicating the formation of disulfide linkages of threadfin bream actomyosin at >50 °C. Two distinct a-helical transition temperatures of actomyosin were found at 36.1 and 47.9 °C, while major endothemic transitions were at 38.4, 51.0, and 80.7 °C. Storage modulus (G') started to increase at 34.5 °C, implying the simultaneous occurrence of denaturation and aggregation. Gel network formation began to develop at >41 °C.

Keywords: Actomyosin; Threadfin bream; Thermal denaturation; Aggregation

1. Introduction

Threadfin bream (Nemipterus spp.) is a major resource for surimi production in Thailand. Gel forming ability of surimi is mainly contributed by actomyosin (Yasui, Ishioroshi, & Samejima 1981). Gelation of food proteins is generally governed by denaturation and aggregation. Denaturation is a process in which proteins undergo conformational changes, primarily unfolding, without alteration of the amino acid sequence (Hermansson, 1979). The denatured proteins aggregate in an ordered fashion to form a continuous network structure (Beveridge, Arntfield, & Murray, 1985). Thermal denaturation and aggregation of fish actomyosin and myosin have been widely studied among cold water species (Bea, Wagner, Crupkin, & Anon, 1990; Chan, Gill, & Paulson, 1992; Sano, Ohno, Otsuka-Fuchino, Matsumoto, & Tsuchiya, 1994; Visessanguan, Ogawa, Nakai, & An, 2000). Ogawa, Ehara, Tamiya, and Tsuchiya (1993) reported that myosin of

fish living in colder temperatures is more labile than of those living in warmer temperatures. Therefore, denaturation and aggregation patterns of fish from different temperature habitats would be varied.

Knowledge of protein denaturation and aggregation is a critical basis on which to manipulate the gel-forming ability of fish actomyosin. It was suggested that myosin tail mainly contributed to the development of gel networks (Sano, Noguchi, Matsumoto, & Tsuchiya, 1990). Chan et al. (1992) reported that herring, cod, and silver hake aggregated in different fashions, accounting for differences in gel elasticity between the three species. In addition, gel elasticity of cod myosin was improved by slow heating that promoted the aggregation of denatured myosin (Yongsawatdigul & Park, 1999). However, information related to denaturation and aggregation patterns of tropical fish actomyosin is very limited. Fundamental knowledge underlying the gelation mechanism is primarily based on cold water species. Such knowledge might impair the optimum utilization of surimi from tropical fish actomyosin. Therefore, our objective was to investigate the thermal denaturation and aggregation patterns of threadfin bream actomyosin.

Corresponding author.
 E-mail address: jirawat@ccs.sut.ac.th (J. Yongsawatdigul).

2. Materials and methods

2.1. Preparation of fish actomyosin

Threadfin bream (Nemipterus bleekeri) was caught off the Gulf of Thailand and immediately transported in ice, packed in polystyrene foam boxes, to a laboratory at Suranaree University of Technology. Fish weight was about 50-100 g. Actomysosin was prepared from the dorsal muscle according to the method of Ogawa et al. (1999) with slight modification as follows: fish muscle (50 g) was mixed in five volumes of cold phosphate buffer (pH 7.0) containing 50 mM KC1, 20 mM potassium, and 0.05 mM phenylmethanesulfonyl fluoride (PMSF). Homogenization was conducted in a Polytron homogenizer (Brinkmann Instruments, Westbury, NY, USA) for 2 min. The homogenate was centrifuged at 5000×g for 10 min at 4 °C. The precipitate was homogenized with the same buffer and centrifuged once more. The resultant residue was homogenized in 500 ml (0.6 M KCI and 20 mM potassium phosphate, pH 7.0) and then centrifuged at 10,000 xg for 5 min at 4 °C. The supernatant was collected and diluted with three volumes of cold distilled water (4 °C). The precipitate was collected by centrifugation at 10,000 xg for 10 min at 4 °C and used as actomyosin throughout the study.

2.2. Heat treatment

One mililitre of actomyosin solution (2.5 mg/ml) in buffer (0.6 M KCl and 20 mM potassium phosphate, pH 7.0) was heated from 5 to 90 °C in a temperature-controlled water bath (NesLab, Portsmouth, NH, USA) at a heating rate of 1 °C/min. The sample was covered with parafilm and aluminium foil during heating to avoid evaporation. Upon reaching each studied temperature, the actomyosin solution was immediately cooled in ice water and centrifuged at 5000×g for 15 min. The supernatant was collected and analysed for protein content, surface hydrophobicity, and total and reactive sulfhydryls.

2.3. Soluble protein

Protein concentration of the supernatant was determined by the dye binding method (Bradford; 1976) using bovine serum albumin as a standard.

2.4. Surface hydrophobicity

Surface hydrophobicity (S_0) of actomyosin was determined using a hydrophobic fluorescence probe, 1-anilino-8-napthalenesulfonate (ANS), according to Hayakawa and Nakai (1985). Actomyosin solution (1 mg/ml) was diluted with 0.6 M KCl, 20 mM potassium

phosphate buffer (pH 7.0) to obtain a series of protein concentrations, from 0 to 1 mg/ml. To 2 ml of each protein solution, $10 \mu l$ of 8 mM ANS in 0.1 M potassium phosphate buffer (pH 7.0) was added and mixed well. Samples were kept under dark conditions for 10 min. Fluorescence intensity of the mixture was measured using a luminescence spectrophotometer (LS 50B, Perkin-Elmer, Beaconsfield, UK) at excitation and emission wavelengths of 374 and 485 nm, respectively, and a 5 nm width for both the excitation and emission slits. S_0 of each sample was calculated from the slope of the relative fluorescence (R) vs. percentage (W) protein concentration. The relative fluorescence was defined according to Monahan, German, and Kinsella (1995) as follows:

$$R = (F - F_0)/F_0$$

where F is the fluorescence of the protein-ANS conjugate and F_0 is the reading of the ANS solution without actomyosin.

2.5. Total and reactive sulfhydryls (SHs)

Total SHs were determined according to Jiang, Hwang, and Chen (1988). To 1 ml of actomyosin (4 mg/ml), 9 ml of buffer, containing 50 mM potassium phosphate buffer, 10 mM ethylenediaminetetraacetic acid (10 mM), 0.6 M KCI, 8 M urea (pH 7.0) were added. To 4 ml of the resultant mixture 0.4 ml of 0.1% 5, 5'-dinitrobis(2-nitrobenzoic acid) was added. The mixture was incubated at 40 °C for 25 min. The absorbance was measured at 412 nm to calculate the total SH groups using the extinction coefficient of 13,600 M⁻¹cm⁻¹ (Ellman, 1959). Reactive SH groups were conducted by incubating the reaction mixtures in the absence of urea at 4 °C for 1 h.

2.6. Circular dichroism (CD)

The purified actomyosin was diluted to a protein concentration of 0.19 mg/ml with 0.6 M KCI, 20 mM phosphate buffer (pH 7.0). CD spectra were taken with a J-720 spectropolarimeter (JASCO, Tokyo, Japan) operating with nitrogen gas purging at 222 nm and a bandpass of 2 nm. The instrument was equipped with a JASCO thermal control device (PTC-348W, JASCO, Tokyo, Japan). A 1 mm path length quartz cell was used. Actomyosin solutions were heated from 10 to 80 °C at a heating rate of 1 °C/min. The instrument was calibrated for intensity accuracy at 290.5 nm and 192 nm, respectively, using (1S)-(+)-10-camphorsulfonic acid (Sigma-Aldrich, St. Louis, MO, USA). Molar ellipticities of actomyosin were determined using a mean residue weight of 115 g/mol, as described by Price (1996). \(\alpha\)-Helicity (\(\% \)) was estimated from ellipticities at

222 nm, $[\theta]_{222}$, by the following equation (Ogawa, Kanamura, Miyashita, Tamiya, & Tsuchiya, 1995):

% α -Helicity = 100 $\times \{ [\theta]_{222}/-40,000 \}$

2.7. Differential scanning calorimetry (DSC)

DSC studies were performed in a DuPont 910 differential scanning calorimeter (DuPont Co., Wilmington, DE). The temperature calibrations were performed using indium. Actomyosin solutions (75 mg/ml) in 0.6 M KCI, 20 mM phosphate buffer (pH 7.0) were weighed to 18-20 mg, wet basis, in DSC hermetic pans, ensuring good contact between the sample and the capsule bottom. An empty pan was used as a reference. Samples were scanned at 10 °C/mm over the range 5-95 °C. Helium gas was purged through the purging port at 40 ml/min during heating. Quadruplicate samples with reproducible thermograms were analysed.

2.8. Oscillatory dynamic-measurement

Development of an actomyosin network was measured as a function of temperature using a CS-50 rheometer (Bohlin Instruments, Inc., Cranbury, NJ, USA). Actomyosin samples (75 mg/ml in 0.6M KCI, 20 mM phosphate buffer, pH 7.0) at 4 °C were placed between parallel plates (20 mm) with a gap of 1 mm. To avoid sample drying during heating, a plastic cover (trapper) with a moistened sponge inside was used. The sample was heated from 10 to 80 °C at a heating rate of 1 °C/min. Maximum input strain for dynamic analysis was 0.02 at a frequency of 0.1 Hz, a value found to be in the linear viscoelastic region for actomyosin in this study.

2.9. SDS-PAGE

Degradation of actomyosin during heating was studied on SDS-PAGE. Actomyosin solutions heated at 1 °C/ min to various temperatures were removed from the water bath and an equal volume of 10% SDS (w/v) (90 °C) was immediately added. The mixture was centrifuged at 5000×g for 10 mm. The supernatant was used for gel electrophoresis as described by Laemmli (1971). Stacking gel and separating gel were made of 4% (w/v) and 10% (w/v) polyacrylamide, respectively. The amount of protein loaded onto the polyacrylarnide gel was 40 µg. The separated proteins were stained with 0.125% Coomassie brilliant blue R-250 (Bio-Rad, Hercules, CA), and destained in a solution containing 25% ethanol and 10% acetic acid. A wide range molecular weight standards (Sigma-Aldrich, St. Louis, MO, USA) included rabbit myosin (205 kDa), β-galactosidase (116 kDa), rabbit phosphorylase b (97 kDa), fructose-6phasphate kinase (84 Wa), bovine serum albumin (66 kDa), bovine glutamic dehydrogenase (55 kDa), ovalbumin (45 kDa), glyceraldehyde-3-phosphate dehydrogenase (36 kDa), carbonic anhydrase (29 kDa), trypsinogen (24 kDa), soybean trypsin inhibitor (20 kDa), α-lactalbumin (14.2 kDa), and aprotinin (6.5 kDa)

3. Results and discussion

3.1. Protein solubility

Solubility of actomyosin remained constant between 10 and 30 °C and started to decrease at temperatures above 40 °C (Fig. 1). Solubility gradually decreased

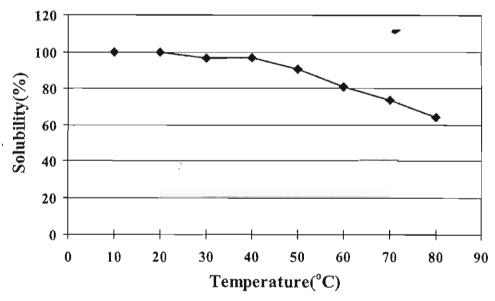


Fig. 1. Changes in solubility of threadfin bream actomyosin heated at 1 °C/min.

afterwards and reached a minimum of 60% at 80 °C. This is similar to that of Sano et al. (1994) who reported a marked decrease in the solubility of carp actomyosin between 40 and 80 °C. Yongsawatdigul and Park (1999) found that aggregation of cod and Pacific whiting myosin, as followed by absorbance at 320 nm, began to increase from 20 °C. Our results implied that threadtin bream actomyosin aggregated to form insoluble actomyosin at higher temperatures than cold water species, such as cod and Pacific whiting.

3.2. Surface hydrophobicity (S_0)

 S_0 of actomyosin continually increased at temperatures above 30 °C and reached a maximum at 70 °C (Fig. 2). S_0 indicates an exposure of nonpolar amino acids that unfold in a polar environment. Hence, the conformation of threadfin bream actomyosin began to unfold and expose the buried nonpolar amino acids at temperatures above 30 °C.

The extent of conformational changes increased with temperature. A slight decrease in S_0 above 70 °C suggested the involvement of hydrophobic residues in the actomyosin aggregation. A significant increase in ANS fluorescence was also reported in carp actomyosin from 30 to 50 °C (Sano et al., 1994), while that of Pacific whiting (Yongsawatdigul & Park, 1999) and arrowtooth flounder (Visessanguan et al., 2000) began to increase at 20 °C. The changes of hydrophobicity of rabbit and chicken myosin exhibited a single transition temperature of 44 °C (Wicker, Lanier, Hamann, & Akahane, 1986). The rabbit light meromyosin (LMM) were unfolded and non-polar amino acids exposed at 35–40 °C (Morita & Yasui, 1991).

Changes in S_0 , of threadfin bream actomyosin could mainly be contributed by its myosin. It should be noted

that actomyosin from threadfin bream, a tropical fish, underwent conformational changes at temperatures similar to carp and rabbit, but at higher temperatures than cold water species such as, cod, Pacific whiting (Yongsawatdigul & Park, 1999) and arrowtooth flounder (Visessanguan et al., 2000).

3.3. Total and reactive sulfhydryls (SHs)

Reactive SH groups started to increase at 30 °C, attained a maximum at 50 °C, and decreased at temperatures higher than 50 °C (Fig. 3). An increased reactive SH indicates unfolding of actomyosin. Total SH groups remained unchanged up to 30 °C and gradually decreased from 40 to 80 °C (Fig. 3), suggesting the formation of disulfide linkages upon heating. Decreased reactive SH groups implies the formation of inter and/ or intra-molecular disulfide bonds at > 50 °C. It appears that the formation of disulfide linkages occurred simultaneously with protein unfolding. These results were in agreement with that of Sano et al. (1994), who found formation of disultide linkages of carp actomyosin at 30-50 °C. Ishioroshi, Samejima, and Yasui (1981) indicated that oxidation of SH groups took place only in heavy meromyosin (HMM) and not in light meromyosin (LMM). This could lead us to hypothesize that oxidation of SH groups at the globular head of myosin is initiated at 30 °C, resulting in disulfide linkages.

3.4. CD

 α -Helix of threadfin bream actomyosin decreased gradually as heating temperature extended above 30 °C, suggesting that the α -helical portion of actomyosin unfolded with increased temperature (Fig. 4). α -Helix

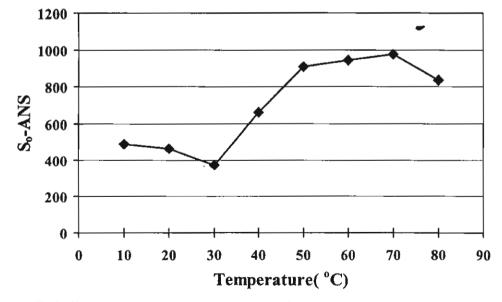


Fig. 2. Changes in surface hydrophobicity (S₀) of threadfin bream actomyosin heated at 1 °C/min.

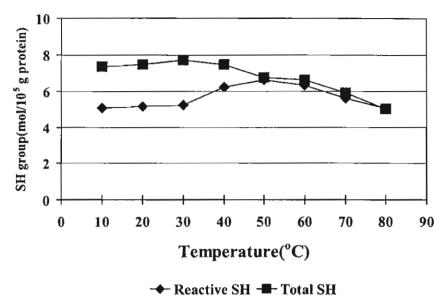


Fig. 3. Changes in reactive and total suithydryl (SH) groups of threadfin bream heated at 1 °C/min.



Fig. 4. Changes in molar ellipticity at 222 nm and α-helical content of actomyosin heated at 1 °C/min.

content before heating was 66%, while it decreased to 24.2% upon heating to 80 °C, indicating that approximately 63% of the α-helical portions of the actomyosin molecules unfolded by heating to 80 °C. Two distinct cooperative transitions of threadfin bream actomyosin, exhibited by different slopes, were found at 36.1 and 47.9 °C, respectively (Fig. 4).

The transition of actomyosin helix-coil occurs in myosin because α-helicity of actomyosin belongs to the myosin tail (Ogawa et al., 1995). Burke, Hirnmelfarb, and Harrington (1973) reported that the melting profile of rabbit myosin rod was also biphasic, with transition temperatures at 44 and 55 °C. Multiphasic transitions of

myosin rod, which indicated the existence of a quasi-independent melting domain within the structure, were reported by Smyth, Smith, Vega-Warner, and O'Neill (1996). In addition, two sharp decreases in the helicity of pollock myosin, occurring between 28.2 and 41.3 °C, were reported by Togashi, Kakinima, Nakaya, Ooi, and Watanabe (2002). Alaska pollock (Theragra chalco-gramma) lives at low environmental temperatures in the range 2–5 °C (Togashi et al., in press) and its myosin exhibited lower α -helical transition than actomyosin of threadfin bream. It is therefore postulated that the two transitions observed in our study were contributed by unfolding of the α -helical portion of the myosin rod.

3.5. Differential scanning calorimetry (DSC)

Threadfin bream actomyosin exhibited three major transitions at 38.4, 51.0, and 80.7 °C with onset temperatures of 36.5, 47.0. and 76.2 °C, respectively. Enthalpies of denaturation of each major transition were 0.152, 0.169, and 0.251 J/g respectively. Wright, Leach, and Wilding (1977) reported that actomyosin of rabbit exhibited three transitions, with myosin transitions at 51.5, 60 °C and actin transition at 73 °C. Three endothermic transitions have also been reported in DSC thermograms of rabbit (Wright et al., 1977; Wright & Wilding, 1984) and fish myosin (Lo et al. 1991; Togashi et al., 2002). Multiple transitions of myosin imply structural changes in discrete regions of the myosin molecule, namely the hinge, head, and rod regions (Wright & Wilding, 1984). Lo et al. (1991) reported that the S-1 sub-fragment of black marlin showed one transition at 41 °C, but the rod subfragment gave two peaks at 41 and 62 °C, respectively.

In our study, the first two transitions from DSC were similar to the transition temperatures obtained from the α-helical content (Fig. 4). Therefore, the transitions at 36.5 and 47.0 °C could result from structural changes of threadtin bream myosin, while transition of actin was at 76.2 °C. Lower transition temperatures of threadfin bream actomyosin indicated its lower thermal stability as compared with rabbit. Thermal stability of myosin increases as the species adapts to higher environmental temperatures (Davies, Bardsley, Ledward, & Poulter, 1988; Hasting, Rodger, Park, Matthews, & Anderson, 1985).

3.6. Oscillatory dynamic rheology

Storage moduli (G') of threadfin bream actomyosin started to increase at 34.5 °C, reached the first peak at 38.8 °C, and gradually decreased before steadily increasing again at 46.3 °C (Fig. 5). An initial increase of G' indicated the cross-linking of myosin filament, resulting in the transformation from a viscous sol to an elastic network (Egelandsdal, Fretheim, & Samejima, 1986). The onset of gel network development, based on G' (34.5 °C), was slightly lower than the melting temperature obtained from CD spectra (36.1 °C) and the onset of denaturation temperature obtained from DSC (36.5 °C). These results indicated that aggregation of actomyosin and denaturation might have occurred simultaneously.

Hydrophobic interactions and disulfide linkages also appeared to be involved in aggregation of actomyosin (Figs. 2 and 3). As actomyosin unfolded its helical structure, hydrophobic interactions and disulfide linkages prevailed. Formation of such interactions was greater at relatively high temperature (>50 °C) when the extent of unfolding was increased (Fig. 4), corresponding to a stronger gel network at >46.3 °C.

The decline of G' after reaching the first peak has also been reported in myosin (Egelandsdal et al., 1986; Wu, Hamann & Foegeding, 1991; Yongsawatdigul & Park 1999) and myofibrillar proteins (Xiong & Blanchard, 1994a, 1994b). There is no evidence of myosin heavy chain (MHC) or actin degradation in the studied temperature range (Fig. 6). Therefore, a decreased G' was unlikely to be caused by proteolysis. Helix-to-coil

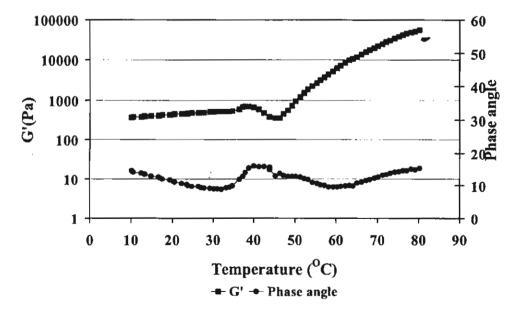


Fig. 5. Changes in storage modulus (G') and phase angle of threadfin bream actomyosin.

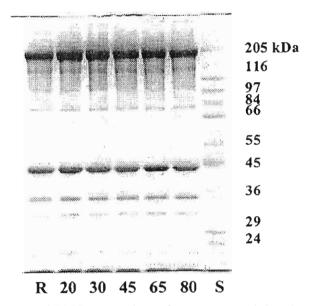


Fig. 6. SDS-PAGE patterns of threadfin bream actomyosin heated to various temperatures at 1 °C/min. R, unheated actomyosin; S. broadrange molecular weight standard. Numbers indicate final heating temperature.

transformation of myosin leads to a large increase in the fluidity of semi-gels and may disrupt some protein networks that have already been formed, resulting in a declined storage modulus (Xiong & Blanchard, 1994a). Subsequently, formation of new bonds produced a more permanent protein network structure, observed at 46.3 °C.

The phase angle, a ratio of G''/G', gradually decreased from 14 to 9 °C when heated from 10 to 32 °C (Fig. 5). It then increased to a maximum at 41 °C and decreased thereafter, corresponding to an increase of G'. It appeared that threadfin bream actomyosin underwent conformational changes and unfolded its helical structure at 36 °C, based on DSC thermogram and CD spectra. Denatured proteins, especially myosin, aggregated to form gel networks. This supports the idea that denaturation and aggregation processes occurred simultaneously.

As the temperature increased to >41 °C, unfolding of myosin progressively increased, allowing the formation of intermolecular bonds, namely hydrophobic interactions and disulfide linkages. As a result, an increase of G' and a decrease of phase angle were observed at >41 °C. Therefore, development of a strong gel network of threadfin bream actomyosin required a relatively high temperature (>41 °C). Visessanguan et al. (2000) reported a similar pattern of the phase angle of myosin extracted from arrowtooth flounder, except that a decrease of phase angle was at 35 °C, instead of 41°C, as found in our study, probably due to a difference in the thermal stability of each species. In addition, a decrease of phase angle of Pacific whiting surimi began

at 30 °C (Esturk, Park, & Kim, 2003). This could imply that, not only denaturation, but also aggregation, of threadfin bream actomyosin took place at relatively higher temperatures than those of cold water species.

Yongsawatdigul, Park, and Worratao (2002) reported that threadfin bream surimi exhibited an increased breaking force when pre-incubated at 40 °C up to 2 h, followed by heating at 90 °C. This is known as the "setting" phenomenon. High temperature setting was also reported in tropical tilapia (Oreochromis niloticus) surimi (Klesk, Yongsawatdigul, Park, Viruihakul, & Viratchakul, 2000). In contrast, coldwater fish, such as Pacific whiting and Alaska Pollock, typically exhibited low temperature setting at 25 and 5 °C, respectively (Klesk et al., 2000; Park, Yongsawatdigul, & Lin, 1994). Denaturation and aggregation patterns of threadfin bream found in our study can explain the setting mechanism of threadfin bream surimi, which requires a relatively higher temperature. Pre-incubation of actomyosin (surimi) sol at 40 °C allows myosin to unfold and aggregate to form a three-dimensional gel network, resulting in an enhancement of gel strength.

4. Conclusion

Actomyosin of threadfm bream underwent thermal denaturation and aggregation at relatively high temperatures compared to coldwater species, as shown by increased surface hydrophobicity, reactive sulfhydryl group, loss of α -helix structure of myosin, and changes in G' as well as phase angle. Disulfide linkages and hydrophobic interactions appeared to be critical for the gel network development of threadfin bream actomyosin.

Acknowledgements

The authors would like to thank the Thailand Research Fund for financially supporting this research under grant RSA/15/2545. The authors also thank Walter A. Baase, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA for technical assistance on circular dichroism measurements.

References

Bea, V. E., Wagner, J. R., Crupkin, M., & Anon, M. (1990). Thermal denaturation of hake (*Merluccius hubbsi*) myofibrillar proteins. A differential scanning calorimetric and electrophoretic study. *Journal* of Food Science, 55, 683-687,696.

Beveridge, T., Arntfield, S. D., & Murray, E. D. (1985). Protein structure development in relation to denaturation temperatures. Canadian Institute of Food Science and Technology Journal, 18, 189-191.

Bradford, M. (1976). A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-252.

- Burke, M., Himmelfarb, S., & Harrington, W. F. (1973). Studies on the "hinge" region of myosin. *Biochemistry*, 12, 701-709.
- Chan, J. K., Gill, T. A., & Paulson, A. T. (1992). Cross-linking of myosin heavy chains from cod, herring, and silver hake during thermal setting. *Journal of Food Science*, 57, 906-912.
- Davies, J. R., Bardsley, R. G., Ledward, D. A., & Poulter, R. G. (1988). Myosin thermal stability in fish muscle. *Journal of the Science of Food and Agriculture*, 45, 61-68.
- Egelandsdal, B., Fretheim, K., & Samejima, K. (1986). Dynamic theological measurements on heat induced myosin gels: effect of ionic strength, protein concentration and addition of adenosine triphosphate or pyrophosphate. Journal of the Science of Food and Agriculture, 37, 915-926.
- Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77.
- Esturk, O., Park, J. W., & Kim, B. Y. (2003). Early determination of rheological properties of Pacific whiting proteins using oscillatory dynamic test. International Journal of Food Science and Technology. Submitted.
- Hastings, R., Rodger, G. W., Park, R., Matthews, A. D., & Anderson, E. M. (1985). Differential scanning calorimetry of fish muscle: the effect of processing and species variation. *Journal of Food Science*, 50, 1503-1510.
- Hayakawa, S., & Nakai, S. (1985). Relationships of hydrophobicity and net charge to 12 solubility of milk and soy proteins. *Journal of Food Science*, 50, 486-491.
- Hermansson, A. M. (1979). Aggregation and denaturation involved in gel formation. In A. Pour-El (Ed.), Functionality and protein structure. Washington, DC: American Chemical Society.
- Ishioroshi, M., Samejima, K., & Yasui, T. (1981). Further studies on the roles of the head and tail regions of the myosin molecule in heatinduced gelation. *Journal of Food Science*, 47, 114-120,124.
- Jiang, S. T., Hwang, D. C., & Chen, C. S. (1988). Effect of storage temperature on the formation of disulfides and denaturation of milkflsh actontyosin (Chanos chanos). Journal of Food Science, 53, 1333-1335,1386.
- Klesk, K., Yongsawatdigul, J., Park, J. W., Viratchakul, S., & Virulhakul, P. (2000). Gel forming ability of tropical tilapia surimi as compared with Alaska pollock and Pacific whiting surimi. *Journal of Aquatic Food Product Technology*, 9, 91-104.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 277, 680-685.
- Lo, J. R., Mochisuki, Y., Nagashima, Y., Tanaka, M., iso, N., & Taguchi, T. (1991). Thermal transitions of myosins/subfragments from black marlin (*Makaira mazara*) ordinary and dark muslees. *Journal of Food Science*, 56, 954-957.
- Monahan, F. J., German, J. B., & Kinsella, J. E. (1995). Effect of pH and temperature on protein unfolding and thiol/difulfide interchange reactions during heat-induced gealtion of whey proteins. Journal of Agricultural and Food Chemistry, 43, 46-52.
- Morita, J. J., & Yasui, T. (1991). Involvement of hydrophobic residues in heat-2 induced gelation of myosin tail subgragments front rabbit skeletal muscle. Agricultural and Biological Chemistry, 55, 597-599.
- Ogawa, M., Ehara, T., Tamiya, T., & Tsuchiya, T. (1993). Thermal stability of fish myosin. Comprehensive Biochemistry & Physiology, 106B, 517-521.

- Ogawa, M., Kanarnura, J., Miyashita, H., Tarniya, T., & Tsuchiya, T. (1995). Alpha-helical structure of fish actomyosin: changes during setting. *Journal of Food Science*, 60, 297-299.
- Ogawa, M., Nakamura, S., Horimoto, Y., An, H., Tsuchiya, T., & Nakai, S. (1999). Raman spectroscopic study of changes in fish actomyosin during setting. *Journal of Agricultural and Food Chemistry*, 47, 3309-3318.
- Park, J. W., Yongsawatdigul, J., & Lin, T. M. (1994). Rheological behavior and potential cross-linking of Pacific whiting surimi. *Journal of Food Science*, 59, 773-776.
- Price, N. (1996). Circular dichroism in protein analysis. In Encyclopedia of molecular biology and molecular medicine. Weinheim, New York.
- Sano, T., Noguchi, S. F., Matsumoto, J. J., & Tsuchiya, T. (1990). Thermal gelation characteristics of myosin subfragments. *Journal of Food Science*, 55, 55-58,70.
- Sano, T., Ohno, T., Otsuka-Fuchino, H., Matsumoto, J. J., & Tsuchiya, T. (1994). Carp natural actomyosin: thermal denaturation mechanism. *Journal of Food Science*, 59, 1002-1008.
- Smyth, A. B., Smith, D. M., Vega-Warner, V., & O'Neill, E. (1996). Thermal denaturation and aggregation of chicken breast muscle myosin and subfragments. *Journal of Agricultural and Food Chemistry*, 44, 1005-1010.
- Togashi, M., Kakinuma, M., Nakaya, M., Ooi, T., & Watanabe, S. (2002). Differential scanning calorimetry and circular dichroism spectrometry of walleye Pollack myosin and light meromyosin. Journal of Agricultural and Food Chemistry, 50, 4803-4811.
- Visessanguan, W., Ogawa, M., Nakai, S., & An, H. (2000). Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. *Journal of Agricultural and Food Chemistry*, 48, 1016-1023.
- Wicker, L., Lanier, T. C., Harnann, D. D., & Akahane, T. (1986).
 Thermal transition in myosin-ANS fluorescence and gel rigidity.
 Journal of Food Science, 51, 1540-1543,1562.
- Wright, D. J., Leach, I. B., & Wilding, P. (1977). Differential scanning calorimetric studies of muscle and its constituent proteins. *Journal* of the Science of Food and Agriculture, 28, 557-564.
- Wright, D. J., & Wilding, P. (1984). Differential scanning calorimetric study of muscle and its proteins: myosin and its subfragments. Journal of the Science of Food and Agriculture, 35, 357-372.
- Wu, J. Q., Hamann, D. D., & Foegeding, E. A. (1991). Myosin gelation kinetic study based in rheological measurements. *Journal of Agricultural and Food Chemistry*, 39, 229-236.
- Xiong, Y. L., & Blanchard, S. P. (1994a). Dynamic gelling properties of myofibrillar protein from skeletal muscles of different chicken parts. Journal of Agricultural and Food Chemistry, 42, 670-674.
- Xiong, Y. L., & Blanchard, S. P. (1994b). Myofibrillar protein gelation: viscoelastic changes related to heating procedures. *Journal of Food Science*, 59, 734-738.
- Yasui, T., Ishioroshi, M., & Samejima, K. (1982). Effect of actomyosin on heat induced gelation of myosin. Agricultural and Biological Chemistry, 46, 1049-1059.
- Yongsawatdigul, J., & Park, J. W. (1999). Thermal aggregation and dynamic rheological properties of Pacific whiting and cod myosins as affected by heating rate. *Journal of Food Science*, 64, 679-683.
- Yongsawatdigul, J., Park, J. W., & Worratao, A. (2002). Effect of endogeous transglutaminase on threadfin bream surimi gelation. *Journal of Food Science*, 67, 3258-3263.

2	To be submitted to Journal of Food Science
3	JFS2005-0240-R1
4	Ca ²⁺ Affects Physicochemical and Conformational Changes of
5	Threadfin Bream Myosin and Actin in a Setting Model
6	
7	
8	Bung-Orn Hemung and Jirawat Yongsawatdigul
9	
10	Running head: Effect of Ca ²⁺ on conformation of myosin
11	School of Food Technology
12	Institute of Agricultural Technology
13	Suranaree University of Technology
14	Nakhon Ratchasima 30000
15	THAILAND
16	Tel: 66-44-224-359
17	Fax: 66-44-224-150
18	E-mail: jirawat@ccs.sut.ac.th
19	
20	Address all correspondence to J. Yongsawatdigul. (E-mail: jirawat@ecs.sut.ac.th)

From: min.2@osu.edu
To: jirawat@sut.ac.th
Cc: crhirth@ift.org

communicacy

Date: 06/18/2005 12:00 PM

Subject: Acceptance of Journal of Food Science MS # JFS-2005-0240.R1

Jun 18, 2005

Dear Dr. Yongsawatdigul:

We are pleased to inform you that your manuscript,

"Ca²⁺ Affected Physicochemical and Conformational

Changes of Threadfin Bream Myosin and Actin in a Setting Model,*

(JFS-2005-0240.R1) has been accepted for publication in the

Journal of Food Science.

A few comments of the Editor follow and, if applicable, please

take appropriate action.

Editor's Comments to Author:

PLEASE NOTE: If this manuscript was submitted AFTER April 1, 2002 in Microsoft Word (.doc) format and all aspects conform to the stipulations outlined in this letter, you need do nothing more — the production process has begun.

If. however, you did submit your manuscript in Microsoft Word (.doc) format but need to make changes to bring your manuscript into conformity with those stipulations, please make the required changes and submit as a Microsoft Word (.doc) document as an e-mail attachment to Carole R. Hirth (crhirth@ift.org).

If your manuscript was SUBMITTED IN PDF FORMAT, you must do the following to proceed with publication: Please transmit the final, accepted version as an Microsoft Word (.doc) document, being sure it conforms to all stipulations outlined above, as an e-mail attachment to Carole R. Hirth (crhirth@ift.org). If necessary, files may be mailed on disk to Carole R. Hirth.

Manager Online Manuscript Submission, IFT Scientific Journals, 525 W. Van Buren Street, Suite 1000, Chicago, IL 60607-3814.

Please be certain that your manuscript conforms to the 'Information For Authors: IFT Scientific Journals,' available either on IFT's Website (http://www.ift.org/cms/?pid=1000635): on Manuscript Central's Website

USA.

http://ift.manuscriptcentral.com/author-instructions/jfs-2004-styleguide.pdf

), or in the Nov/Dec 2003 issue of JFS. If your paper does NOT conform (especially references), the publication of your paper will be delayed due to the additional editing necessary.

To summarize, the following items are essential to the publication of your manuscript and may be sent by e-mail within THREE DAYS of acceptance (to crhirth@ift.org) as an attached file(s):

- (1) The final draft of your fully revised and complete, accepted manuscript with all components in a SINGLE document/file and arranged as they will be when published. Include the title page. the up-to-250-word abstract and keywords, all tables and their titles, all figures and their captions, acknowledgments, and references, using a current version of MS Word.
- (2) Electronic versions of any figures, in high-resolution (300+ dpi) TIFF, EPS, GIF, or JPEG format. If you cannot produce electronic versions of your figures, you may forward hard copies (figures only) to the address above. Please label ALL electronic files or hard copies with your s-digit JFS manuscript number, followed by the figure number.

Please note that, to avoid delays in publication, it is your responsibility to make sure that the complete text, and all figures and tables are submitted.

During the latter part of the production process -- which should take about 3 months -- you will receive PDF files of your page proofs and author forms attached to an e-mail. Your prompt correction and return of the proofs will expedite publication of vour paper.

We greatly appreciate your choice of the Journal of Food Science as an outlet for your fine work.

Sincerely.

Dr. David Min Scientific Editor, Journal of Food Science

This letter was generated automatically from IFT's ManuscriptCentraiTM by ScholarOne. http://ift.manuscriptcentral.com

Abstracts

The effect of Ca^{2+} on physicochemical and conformational changes of threadfin bream (TB) myosin and actin during setting at 25 and 40 °C was investigated. Ca^{2+} ion at 10-100 mM induced the unfolding of myosin and actin as evident by an increase of surface hydrophobicity (S_o ANS) at 40 °C. Total SH groups also decreased with an increased Ca^{2+} concentration, suggesting that Ca^{2+} promoted the formation of disulfide bonds during setting at 40 °C. Both hydrophobic interactions and disulfide linkages were involved in formation of myosin aggregates at 40 °C, and were enhanced by addition of 10-100 mM Ca^{2+} . Myosin Ca-ATPase activity decreased at $Ca^{2+} > 50$ mM, indicating conformational changes of myosin head. Circular dichroism spectra demonstrated that Ca^{2+} reduced the α -helical content of myosin and actin incubated at either 25 or 40 °C. Ca^{2+} induced conformational changes of TB myosin and actin incubated at 40 °C to a greater extent than at 25 °C.

Key words: Threadfin bream, myosin, actin, calcium, setting

Introduction

When fish muscle proteins are grounded with 2- 4 % salt and pre- incubated at 4- 40 °C for a period of time prior to heating, an increase in gel elasticity is observed. Such phenomenon is known as "setting" or "suwari" in Japanese (Lanier 2000). It has been generally accepted that setting is mainly attributed from the activity of endogenous transglutaminase (TGase), the Ca^{2+} -dependent enzyme (Kumazawa and others 1995; Benjakul and others 2004). The enzyme catalyzes an acyl transfer reaction between γ -carboxy amide groups of glutamyl residues in proteins as the acyl donor and variety of primary amines as the acyl acceptor (Folk 1980). The formation of ϵ -(γ -glutamyl) lysyl isopeptide bonds between glutamine (acyl donors) and lysine (acyl acceptor) resulted in a covalent cross-linking of muscle proteins.

Addition of Ca²⁺ has been reported to improve textural properties of Pacific whiting, threadfin bream, and Alaska pollock surimi (Lee and Park 1998; Yongsawatdigul and others 2002). Gel enhancing effect is more evident when sample is subjected to setting. It has been typically believed that Ca²⁺ improves gel-forming ability of fish proteins by activating fish endogenous TGase (Lanier 2000). However, Ca²⁺ is also known as a destabilizing salt in the Hofmeister series (Baldwin 1996). Binding of Ca²⁺ to proteins prevents the salt exclusion, resulting in a decrease of preferential hydration and destabilized structure (Arakawa and Timasheff 1984). The effects of Ca²⁺ on structural changes of various proteins have been reported. Ca²⁺ solubilized rabbit myofibrillar proteins by salting-in effect (Taylor and Etherington 1991). Tertiary and secondary structure of α-crystallin decreased in the presence of Ca²⁺ (Valle and others 2002). Moreover, binding of Ca²⁺ to β-lactoglobulin induced partial unfolding which led

to an increased hydrophobicity during gelation (Jeyarajah and Allen 1994). Therefore,

Ca2+ could also have a direct effect on structure of muscle proteins, which could affect

gelation during setting. The role of Ca2+ on such conformation changes of fish protein

has not been thoroughly investigated.

Ogawa and others (1995) found that the unfolding of actomyosin as measured by a decrease in α -helicity was a pre-requisite to initiate setting of actomyosin. Hydrophobic interactions were also responsible for aggregate formation of cod and herring myosin during setting at 40 °C (Gill and others 1992). In addition, formation of disulfide bonds was noticed during setting of herring myofibrillar proteins (Chan and others 1995). These studies suggested that other bondings, besides ϵ -(γ -glutamyl) lysyl isopeptide bonds, were involved in setting. However, the effect of Ca²⁺ on hydrophobic interactions and disulfide linkages of fish myosin and actin during setting have not been elucidated.

Threadfin bream (*Nemipterus spp.*) is the second largest resource used for surimi production, after Alaska pollock. Thailand is one of the major threadfin bream surimi producers in the world with an approximate annual production of over 80,000 metric tons. Despite of its large production quantity and value, scientific information related to setting phenomenon is still limited. Understanding the role of Ca²⁺ ion on conformational changes of myosin and actin would be critical knowledge for improving textural properties of surimi gels from threadfin bream and other warm water species. Therefore, our objectives were to investigate the effects of CaCl₂ on physicochemical and conformational changes of threadfin bream myosin and actin during incubated at 25 and 40 °C, typical setting temperatures of fish proteins.

Materials and Methods

Fish sample

Threadfin breams (TB) (Nemipterus bleekeri) were caught off the Gulf of 3 Thailand at Rayong province. Fish were immediately transported to a Suranaree 4 University of Technology laboratory in polystyrene boxes packed with ice. Fish were 5 manually eviscerated upon arrival and kept on ice. Myosin preparation was carried out 6 24 h after catch. 7

8

9

21

1

2

Myosin Preparation

Myosin was purified according to the method of Martone and others (1986) with 10 slight modifications. All steps were performed at 0-4 °C to minimize proteolysis and 11 protein denaturation. TB mince was added with 10 volumes of buffer A (0.10 M KCl, 1 12 mM phenylmethanesulfonyl fluoride (PMSF), 0.02 % NaN₃ and 20 mm Tris-HCl, pH7.5) 13 and homogenized at 15,000 rpm for 2 min in a homogenizer (AM-8, Nihonseiki Kaisha, 14 Ltd., Tokyo, Japan). The homogenate was stirred for 10 min and centrifuged at 1,000×g 15 (Sorvall RC-5C Plus, Dupont, Del., USA) for 10 min. The pellet was collected and 16 washed with the same buffer twice. The washed pellet was subsequently extracted with 5 17 volumes of buffer B (0.45 mM KCl, 5 mM β-mercaptoethanol (BME), 0.2 M Mg 18 (CH₃COO)₂, 1 mM ethylene glycol bis (β-aminoethyl ether) N,N,N',N'- tetraacetic acid 19 (EGTA), and 20 mM Tris-maleate, pH, 6.8). Adenosine 5'-triphosphate (ATP) was 20 added to a final concentration of 15 mM. The mixture was kept for 1 h with stirring on ice and then centrifuged at 10,000×g for 15 min. Pellets were collected for actin 22 Twenty five volumes of 1 mM NaHCO3 was slowly added to the preparation. 23

supernatant and kept on ice for 30 min. The precipitate was recovered by centrifugation at 12,000×g for 15 min. The pellet was resuspended with 5 volumes of buffer C (0.50 M KCl, 5 mM BME, and 20 mM Tris-HCl, pH7.5) and homogenized for 30 s. The solution was kept on ice for 10 min and MgCl₂ was added to a final concentration of 10 mM. Myosin was obtained by ammonium precipitation at 40-50 % saturation. The myosin pellet was kept at -40 °C and used throughout the study. The purity of extracted myosin was estimated using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) with densitometric analysis (Lab works Version 4.0,UVB Ltd., New York, USA). Before used, myosin pellet was dissolved in 0.6 M NaCl, 20 mM Tris-maleate, pH 7.0 and dialyzed against 100 volumes of the same solution. Dialyzed myosin was clarified by centrifugation at 10,000×g for 15 min and used as myosin solution. Protein concentrations were determined by Lowry and others (1951).

Actin Preparation

Actin pellet was added with buffer D (0.80 M KCl, 5 mM BME, 20 mM Tris-HCl, pH 7.5) and stirred for 30 min before centrifugation at 10,000×g for 15 min. The pellet was collected and added with 5 volumes of 2 mM NaHCO₃. The mixture was stirred on ice for 1 h and centrifuged at 75,000×g for 1 h. The supernatant was used as actin preparation. Actin was dialyzed against 0.6 M NaCl, 20 mM Tris-maleate, pH 7.0. Dialyzed actin solution was concentrated by ultrafiltration using molecular weight-cut-off 10,000 Da membrane (Viva flow 50, Vivascience Sartorius AG, Goettingen, Germany). Purity of actin was estimated using SDS-PAGE and densitometric analysis.

Turbidity measurement

Myosin (3 mg/mL) and actin (1.5 mg/mL) solutions were solubilized in 0.6 M NaCl, 20 mM Tris-maleate, pH 7.0 containing 0, 10, 30, 50 and 100 mM CaCl₂. Turbidity at 25 and 40 °C were monitored at 350 nm using UV/VIS 916 spectrophotometer (GBC Scientific Equipment, Ltd., Victoria, Australia.) equipped with a circulating water bath set at either 25 or 40 °C. Turbidity changes at 25 and 40 °C were monitored at each time interval for 4 and 2 h, respectively.

Aggregation of TB myosin and actin

Myosin (3.2 mg/mL) and actin (1 mg/mL) solutions containing 0-100 mM CaCl₂ were incubated at either 25 or 40 °C for 4 and 2 h, respectively. Subsequently, samples were centrifuged at 84000×g for 1 h (XL-100 Ultracentrifuge, Beckman instruments, Inc., California, USA) to precipitate large aggregates. Protein concentrations in supernatants were determined by dye binding method due to interference of CaCl₂ with Lowry method (Bradford 1986). Bovine serum albumin (BSA) was used as a standard. Remaining proteins (%) was expressed as a ratio of protein remained in the supernatant at any CaCl₂ concentrations to that of sample without CaCl₂ at 4 °C.

Surface hydrophobicity (S₀)

Changes of S_o were monitored using 1-anilino-8-napthalenesulfonate (ANS) according to the method of Li-Chan and others (1985) with slight modifications. Myosin and actin were diluted to various protein concentrations: 0, 0.125, 0.25, 0.5 and 1 mg/mL in the presence of 0-100 mM CaCl₂ and incubated at either 25 or 40 °C for 4 and 2 h,

respectively. To 2.0 mL of diluted myosin and actin, 10 μL of 10 mM ANS dissolved in 20 mM Tris-maleate (pH 7.0) was added. Fluorescence intensity (FI) was measured using a RF-1501 spectrofluorophotometer (Shimadzu, Kyoto, Japan) at an excitation

using a recommendation (similarity, rejote, supun) at an exercision

wavelength of 374 nm and an emission wavelength of 485 nm. Blanks were prepared

without protein solution. The regression slope between FI and protein concentrations (%)

was calculated as So ANS.

Total sulfhydryl groups (SHs)

Total SH groups of myosin and actin were determined using 5,5'-dithiobis(2-nitrobenzoic acid), (DTNB). Myosin (3 mg/mL) and actin (1 mg/mL) solutions containing 0, 10, 30, 50 and 100 mM CaCl₂ were incubated at 25 and 40 °C for 4 and 2 h, respectively. Then, 1.5 mL of 0.2 M Tris-HCl (pH 6.8) containing 8 M urea, 2 % SDS and 10 mM EDTA was added. Subsequently, 0.2 mL of 0.1% DTNB solution were added to all samples before incubated at 40 °C for 15 min and absorbance at 412 nm was measured. Total SH content was calculated using molar extinction of 13600 M ⁻¹ cm⁻¹ for myosin (Ellman, 1959). Molar extinction of actin used for the calculation was 12508 M⁻¹ cm⁻¹, which was obtained using standard L-cysteine. Blanks were performed without protein solution.

Ca-ATPase activity

Ca-ATPase activity of myosin was estimated using the method described by MacDonald and others (1994). The reaction was carried out at 1.5 mg of myosin, 17 mM Tris-maleate, pH 7.0 at 0-200 mM CaCl₂ concentrations. The mixtures were incubated at

1 25 °C for 5 min. ATP was added to final concentration of 0.67 mM and samples were

incubated for 10 min. To stop the reaction, chilled TCA was added to final concentration

of 5 % and samples were centrifuged at 3,000×g for 10 min. The supernatant was

collected for inorganic phosphate (Pi) determination using KH₂PO₄ as a standard. Ca-

ATPase activity was expressed as μmole of Pi/mg protein/min at 25 °C.

Circular dichroism (CD)

The effect of CaCl₂ on secondary structural changes of myosin and actin were analyzed using CD measurement. Myosin and actin were dissolved in 0.6 M NaCl, 20 mM Tris-HCl, pH 7.0 due to strong UV absorption of Tris-maleate buffer. Myosin and actin solutions (0.25 mg/mL) containing CaCl₂ (0-100 mM) were incubated at either 25 or 40 °C for 4 and 2 h, respectively. Samples were scanned at far UV (195-280 nm) using a JASCO PS-150J spectropolarimeter (Jasco spectroscopic Co, Ltd., Tokyo, Japan) equipped with a circulating water bath set at each respective incubating temperature. CD spectra of samples without incubation were also measured at 4 °C. The instrument was calibrated using (1S)-(+)-10-camphorsulfonic acid (CSA). The circular quartz cuvette (0.02 cm path length) was used. Resolution was set at 1 nm, bandwidth was 2 nm, sensitivity 50 mdeg, response 2 s and scanning speed was 50 nm/min. Molar mean ellipticity [θ] and α-helical content from [θ] at 222 nm was calculated according to Ogawa and others (1993).

Results and Discussion

Effect of CaCl₂ on aggregation of myosin and actin

Purity of myosin was estimated to be 90-91%. Four minor contaminated bands with Mw of 43, 37, 34, and 27 kDa were observed in myosin (Figure 1). The 43 and 37 kDa bands were possibly actin and tropomyosin, respectively. TB actin showed molecular weight of 43 kDa and exhibited high purity (>97%). Ca-ATPase activity of purified myosin at 3.3 mM CaCl₂ was 0.220 µmole Pi/mg protein/min.

1

2

3

4

5

11

17

18

19

20

21

22

23

Low concentrations of CaCl₂ (0-50 mM) did not affect turbidity of myosin 6 solution incubated at 25 °C for 4 h, while 100 mM CaCl₂ increased turbidity of myosin at 7 25 °C (Figure 2a). Gill and others (1992) demonstrated that an increase in turbidity of 8 heated fish myosin solution was the direct result of formation of myosin aggregates. Therefore, aggregation of TB myosin was enhanced at 25 °C in the presence of 100 mM 10 CaCl₂. Moreover, aggregation of TB myosin occurred to a greater extent at 40 °C than at 12 25 °C (Figure 2b). Turbidity of actin solution incubated at 25 °C sharply increased with CaCl₂ concentration, especially at 50 and 100 mM CaCl₂ (Figure 2c). Aggregation of 13 actin dramatically increased when incubated in the presence of 10 mM CaCl₂ at 40 °C. 14 However, a further increase of CaCl₂ from 30 to 100 mM did not increase actin 15 aggregation (Figure 2d). Actin appeared to aggregate to a greater extent than myosin 16 even at lower protein concentration.

Large protein aggregates tend to precipitate under high centrifugal force. TB myosin incubated at 25 °C did not form large aggregates that could be precipitated under centrifugation at any studied levels of CaCl₂ (Figure 3a). In contrast, precipitation of myosin was observed when incubated at 40 °C and the extent of aggregation appeared to increase with CaCl₂ (10-100 mM). Based on turbidity results, TB myosin appeared to form soluble aggregates at 25 °C, while large aggregates were formed at 40° C. Since

denaturation temperature (Td) of TB actomyosin was about 35 °C (Yongsawatdigul and Park 2003), TB myosin subjected to 40 °C could unfold and re-associate to form aggregates. Addition of 10-100 mM CaCl₂ further promoted myosin aggregation. These myosin aggregates were unlikely to be resulted from the catalytic reaction of endogenous TGase because the enzyme was mainly removed during extensive washing and precipitation steps of myosin purification. This was evident by the absence of nondisulfide covalent cross-links of myosin when incubated at either 25 or 40 °C to induce endogenous TGase (data not shown).

Actin readily precipitated even at 4 °C without CaCl₂ (Figure 3b). The extent of actin aggregation also increased with temperature. Similar to myosin, actin aggregation was also enhanced by CaCl₂. The extent of aggregation monitored by ultracentrifugation corresponded with changes of turbidity. Moreover, aggregation of actin was completely attained when incubated at 10-100 mM CaCl₂ at 40 °C for 2 h (Figure 3b). These results indicated that Ca²⁺ induced aggregation of TB myosin and actin when incubated at 40 °C to a greater extent than at 25 °C.

Effect of CaCl₂ on surface hydrophobicity (So ANS) of myosin and actin

S_o ANS of myosin slightly increased with CaCl₂ concentration at all studied temperatures (Figure 4a), indicating that Ca²⁺ promoted the unfolding of myosin. It was noted that changes in S_o ANS of myosin incubated at 25 °C for 4 h were similar to those incubated at 40 °C, but higher than those at 4 °C (Figure 4a). It should be noted that TB myosin only form soluble aggregates at 25 °C (Figure 3a). Incubation of myosin at 25 °C was far below Td of tropical fish myosin, which has been reported to be 37-43 °C (Sano