

รายงานวิจัยฉบับสมบูรณ

โครงการพัฒนาหุนยนตบินไดควบคุมอัตโนมัติ

โดย รศ. ดร. มนูกิจ พานิชกุล

ธันวาคม 2548

สัญญาเลขที่ RSA/19/2545

รายงานวิจัยฉบับสมบูรณ

โครงการพัฒนาหุนยนตบินไดควบคุมอัตโนมัติ

รศ. ดร. มนูกิจ พานิชกุล
สถาบันเทคโนโลยีแหงเอเชีย

สนับสนุนโดยสํานักงานกองทุนสนับสนุนการวิจัย
(ความเห็นในารายงานี้เปนของผูวิจัย สกว. ไมจําเปนตองเห็นดวยเสมอไป)

บทคัดยอ
การควบคุมหุนยนตบินใหบินอัตโนมัติเปนเรื่องที่คอนขางยาก นักวิจัยสวนใหญจะประสพความสําเร็จในการควบคุม

หุนยนตประเภทนี้เฉพาะในระบบจําลองเทาน้ัน มีสวนนอยที่จะสามารถนํามาพัฒนากับหุนยนตบินจริงไดสําเร็จ ในการที่จะ
ควบคุมใหหุนยนตบินสามารถทํางานไดในแบบอัตโนมัตินั้น จําเปนจะตองควบคุมท้ังมุมและตําแหนงของหุนยนต ใน
โครงการวิจัยนี้นักวิจัยไดทดลองควบคุมหุนยนตบินโดยใชวิธีการควบคุมตาง ๆ ที่เคยมีมา แตพบวาประสิทธิภาพไมเปนที่พอใจ
ดังนั้นนักวิจัยจึงไดวิจัยคนควาหาวิธีการควบคุมใหมที่เหมาะสมกับหุนยนตบินโดยเฉพาะ ผลจากการทดลองพบวาประสิทธิภาพ
ของการควบคุมหุนยนตบินเปนที่นาพอใจหากมุมของหุนยนตบินจะถูกควบคุมโดยใช Neuro-Fuzzy Control (NFC) ในขณะที่
ตําแหนงของหุนยนตจะใชวิธีการควบคุมแบบผสมผสานกัน โดยวิธีควบคุมดังกลาวใชชื่อวา “Hybrid Adaptive Neuro-Fuzzy
Model Reference Control (Hybrid-ANFMRC) ” ระบบควบคุมแบบ Neuro-Fuzzy จะถูกออกแบบโดยใชขอมูลจากการบินจริง
ของหุนยนต ในขณะที่การควบคุมแบบ Hybrid-ANFMRC จะเรียนรูและปรับตัวเองเพ่ือใหไดลักษณะการตอบสนองตาม
Reference Model ที่กําหนด ในขณะเดียวกันก็จะใหผลการตอบสนองที่ดีและคา steady state error เปนศูนย ประสิทธิภาพของ
ระบบควบคุมที่ไดเสนอจะพิสูจนโดยผลที่ไดจากการทดลอง

Abstract
Control of 6-DOF fully autonomous helicopter type flying robot is very difficult. Many

researchers verified their control algorithms only on simulation. There are very few success

experiments on fully control of the flying robot. In order to make the robot fly autonomously, the

attitude and position controls are needed. In this research project, performance of the existing

control algorithms was investigated. It was found that their performance was not satisfied to

control fully autonomous flying robot. The researchers in this project propose new control

algorithms which are specifically designed to control 6-DOF fully autonomous flying robot.

Neuro-fuzzy controllers (NFC) are proposed to control roll, pitch and yaw angles of the flying

robot, while the hybrid adaptive neuro-fuzzy model reference control (Hybrid-ANFMRC) is

proposed to control the robot’s position. The attitude controllers are trained offline to reduce roll,

pitch and yaw errors. Position control in the flying robot applies a hybrid technique called,

“hybrid adaptive neuro-fuzzy model reference control”. The position controller learns online to

track the velocity reference model, while trying to obtain smooth response and zero steady state

error. Robustness design of the proposed control algorithm is addressed by testing in the

experiments under various ranges of the controller gains. The experimental results show the

satisfactory performance of the proposed control algorithm.

Executive Summary

ความสําคัญและที่มาของปญหา
 โดยธรรมชาติของสิ่งแวดลอมท่ีหุนยนตจะถูกนําไปใช เราสามารถแบงหุนยนตเคล่ือนที่ออกเปน 3 กลุมใหญๆ คือ
หุนยนตที่ทํางานบนพื้นและผนัง หุนยนตที่ทํางานในน้ํา และหุนยนตที่ทํางานในอากาศรวมถึงในอวกาศ ขอจํากัดของหุนยนต
ประเภทตางๆอยูที่การเขาถึงตําแหนงตางๆ จะถูกกําหนดโดยลักษณะของพื้นที่ที่หุนยนตเคล่ืนที่ตัวนั้นถูกนําไปใช สําหรับ
หุนยนตที่ทํางานในอากาศหรืออวกาศนั้น องศาความมีอิสระมีอยูถึง 6 มิติครบถวน โดย 3 มิติแรก เปนองศาความมีอิสระของ
ตําแหนงของหุนยนต ซ่ึงประกอบไปดวย ตําแหนง x , y และ z โดยเทียบกับแกนอางอิงบนโลกอีก 3 มิตหลังเปนองศาความมี
อิสระของทิศทางการหมุนของหุนยนต ซ่ึงประกอบไปดวยทิศทางการหมุนรอบแกน θ (roll), φ (pitch) , และ α (yaw)
เนื่องจากองศาของความมีอิสระของหุนยนตที่ทํางานในอากาศ หรืออวกาศมีอยูสูง ดังนั้นหุนยนตบินไดจึงมีความสามารถใน
การเขาถึงตําแหนงตางๆในทิศทางตางๆในบริเวณการทํางานไดอยางอิสระ อยางไรก็ตามการควบคุมหุนยนตบินไดใหมี
ความสามารถในการเคลื่อนที่ไดโดยอัตโนมัตินั้น ยังเปนส่ิงท่ีทําไดยากเนื่องจากมีปจจัยหลายอยางที่จะมามีผลตอการเคลื่อนที่
ของหุนยนต และหุนยนตยังตองการอุปกรณตรวจวดัประเภทตางๆอีกหลายประเภท ที่มีความละเอียดแมนยําสูงเพียงพอเพื่อใช
ในการควบคุมการเคลื่อนที่ของหุนยนต

วัตถุประสงค
1. เพื่อศึกษาและพัฒนาหุนยนตบินไดควบคุมอัตโนมัติข้ึนงานวิจัยนี้จะเปนงานวิจัยที่บุกเบิก วงการหุนยนตในประเทศไทยใหมี
ความตื่นตัวและจะยังเปนงานวิจัยที่สรางศักยภาพของวงการหุนยนตในประเทศไทยใหกาวหนาทัน หรือนําหนาประเทศอ่ืนๆใน
โลกได
2. เพ่ือที่จะผลิตเทคโนโลยีใหมๆที่จําเปนและเกิดขึ้นระหวางกระบวนการพัฒนาหุนยนต บินไดควบคุมอัตโนมัติ เชนเทคโนโลยี
การหาตําแหนง ทิศทางและความสูงของวัตถุที่เคล่ือนท่ี ในบริเวณ 3 มิติเทคโนโลยีการควบคุมการเคลื่อนทีของวัตถุในอากาศ
เทคโนโลยีการเรียนรูแบงแยกสิ่งแวดลอมภายนอก เทคโนโลยีการวางแผนการเคลื่อนที่และเทคโนโลยีอ่ืนๆอีกมากมาย
เทคโนโลยีเหลานี้สามารถถูกนําไปใชในสาขาอ่ืนๆ รวมถึงการนําไปประยุกตใชในโรงงานอุตสาหกรรมในอนาคตอีกดวย
3. เพ่ือที่จะไดนําหุนยนตบินไดควบคุมอัตโนมัตที่ไดรับการพัฒนาขึ้นไปใชในการศึกษาคนควาวิจัยและพัฒนาตอไปในอนาคต
4. ประโยชนอ่ืนๆที่คาดวาจะไดรับจากการวิจัย
 4.1 การนําหุนยนตไปใชในกิจกรรมทางการเกษตร เชนการหวานเมล็ดพืช ปุย หรือยากําจัดศัตรูพืชเปนตน
 4.2 การนําหุนยนตไปใชในการสํารวจทรัพยากรธรณี แหลงนํ้า ปา ประมงและอื่นๆ
 4.3 การนําหุนยนตไปใชในการติดตอส่ือสารและการขนสง
 4.4 การนําหุนยนตไปใชในการบรรเทาและชวยเหลือผูประสบภัยตางๆ
 4.5 การนําหุนยนตไปใชในโรงงานอุตสาหกรรม
 4.6 การนําหุนยนตไปใชในสภาวะแวดลอมที่มนุษยไมเหมาะสมที่จะเขาไปดําเนินการดวยตัวเอง

ระเบียบวิธีวิจัย
 ระเบียบวิธีการวิจัยประกอบดวยข้ันตอนตางๆดังนี้

ขั้นตอนที่1 ทําการศึกษาคนควาและเลือกตนแบบทีจะนํามาใชเปนหุนยนตบินไดควบคุมอัตโนมัติโดยพิจารณาจากหลักการทาง
เครื่องกล อากาศพลศาสตร ความสามารถในการรับภาระและสามารถในการแกไขดัดแปลงไดของอุปกรณตนแบบ งานวิจัยนี้จะ
ไมเนนสรางหุนยนตตนแบบใหม แตจะเนนเลือกตนแบบที่มีอยูแลวแลวนํามาดัดแปลงใหสามารถควบคุมไดโดยอัตโนมัติ
ขั้นตอนที่2 ทําการศึกษาคนควาและพัฒนาเทคโนโลยีของการตรวจวดัตางๆ ท่ีจําเปนตอการควบคุมหุนยนต เทคโนโลยีการตรวจ
หาตําแหนงและทิศทางการหมุน เทคโนโลยีในการหาความสูง เทคโนโลยีในการแบงแยกส่ิงกีดขวางภายนอกและ เทคโนโลยี
เสริมอ่ืน ๆ
ขั้นตอนที่ 3 ทําการศึกษาคนควาและพัฒนาวิธีการควบคุมหุนยนตตนแบบจากขั้นตอนที่ 1 วิธีการควบคุม (Control Algorithm)
จะขึ้นอยูกับสวนขับเคลื่อนของตัวหุนยนต (Actuator) วิธีการควบคุมน้ีจะตองสามารถควบคุมหุนยนตใหเคล่ือนที่ไดอยางสมดุลย
แมนยํามีความคลาดเคลื่อนนอยที่สุดและ การควบคุมตองอัตโนมัติยืดหยุนและฉลาดตอการเปลี่ยนแปลงของปจจัยภายนอกที่เกิดขึ้น
ตลอดเวลาอีกดวย
ขั้นตอนที่ 4 ทําการพัฒนาประกอบหุนยนตบินไดควบคุมอัตโนมัติใหเปนจริงโดยประกอบอุปกรณตรวจวดัตาง ๆ เขากับหุนยนต
สรางวงจรติดตอส่ือสารเพ่ือสงขอมูลตางๆแลวทําการโปรแกรมหุนยนตตามวิธีการควบคุมที่ไดพัฒนาข้ึนในขั้นตอนที่ 2
ขั้นตอนที่ 5 ทําการทดสอบ ประเมินผล และสรุป จากขอมูลท่ีไดจากการ Simulation และการทดลอง

1. บทนํา
ในอนาคตอันใกลนี้ หุนยนตบินจะถูกนํามาใชงานแทนการทํางานของมนุษยมากขึ้น โดยเฉพาะอยางยิ่งในงานที่เส่ียง

ตออันตราย ยกตัวอยางเชน การสอดแนมหรือถายทอดภาพวีดีโอในบริเวณที่อาจเต็มไปดวยสารเคมีที่เปนอันตรายตอมนุษย เปน
ตน ในการที่จะใชงานหุนยนตบินในลักษณะดังกลาวได หุนยนตบินจําเปนตองสามารถทํางานไดในแบบอัตโนมัติ หุนยนตบิน
ที่พัฒนาขึ้นมาที่สถาบันเทคโนโลยีแหงเอเชีย (AIT) ไดพัฒนาข้ึนมาใหสามารถบินในหลายๆลักษณะ นับตองแตการบินน่ิงอยู
กับท่ี ไปจนกระทั่งการบินเคลื่อนท่ีไปยังตําแหนงตางๆ ในโลกปจจุบันไดมีนักวิจัยจํานวนมากที่กําลังพัฒนาหุนยนตบินชนิดนี้
ข้ึนมา มีเพียงสวนนอยเทานั้นที่สามารถทําใหหุนยนตบินสามารถบินไดในแบบอัตโนมัติทั้งหมด เมื่อพิจารณาจะสามารถ
แบงกลุมนักวิจัยเหลานี้ไดเปน 2 กลุม คือ นักวิจัยที่เนนการพัฒนาโดยอาศัยแบบจําลองทางคณิตศาสตรของหุนยนตบิน และ
นักวิจัยกลุมที่พัฒนาหุนยนตบินโดยไมใชแบบจาํลอง นักวิจัยกลุมแรกสวนมากจะสามารถควบคุมหุนยนตบินไดในระบบ
จําลองเทาน้ัน ทั้งน้ีเนื่องมาจากการออกแบบระบบควบคุมโดยใชแบบจําลองทางคณิตศาสตร จําเปนตองหาแบบจําลองของ
หุนยนตบินใหมีความแมนยําพอ แตหุนยนตบินเปนระบบที่ซับซอนมากๆ ทําใหการหาแบบจําลองดังกลาวผิดพลาดไปจาก
ความเปนจริงมาก สุดทายจึงไมสามารถนํามาพัฒนาเพื่อควบคุมหุนยนตบินจริงได ดังน้ันในปจจุบัน นักวิจัยอีกกลุมหนึ่งจึงได
มุงเนนมาใชวิธีการออกแบบโดยไมใชแบบจําลอง ซ่ึง Fuzzy Logic และ Neural Network เปนระบบควบคุมท่ีถูกนํามาพัฒนาใช
กับหุนยนตบินมากที่สุด

ในโครงการนี้ จะเปนการพัฒนาระบบควบคุมการบินในลักษณะที่ไมใชแบบจําลองทางคณิตศาสตรของหุนยนตบิน
ระบบควบคุมแยกออกเปน 2 ระบบ ซ่ึงใชวิธีการควบคุมท่ีแตกตางกัน การควบคุม มุม roll, มุม pitch และ มุม yaw ของหุนยนต
บินจะใชวิธีการควบคุมโดยใช Neuro-Fuzzy Control สวนการควบคุมตําแหนงของหุนยนตบิน จะใชวีการควบคุม Hybrid-
ANFMRC การออกแบบระบบควบคุมโดยใช Neuro-Fuzzy Control จะไมจําเปนตองใชแบบจําลองทางคณิตศาสตรของหุนยนต
การออกแบบจะอาศัยการสอนใหระบบควบคุมสามารถควบคุมมุมของหุนยนตบินได โดยใชขอมูลที่บันทึกมาจากการบินของ
หุนยนตบิน สวนการออกแบบระบบควบคุมตําแหนงของหุนยนตบินนอกจากไมจําเปนตองใชแบบจําลองทางคณิตศาสตรแลว
ระบบควบคุมยังออกแบบมาใหเรียนรูและปรับตัวไดดวยตวัเองจนสามารถควบคุมใหหุนยนตบินสามารถบินไปยังตําแหนงตาง
ไดตามท่ีตองการ ระบบควบคุมแบบ Hybrid-ANFMRC จะใชเทคนิคการควบคุมแบบผสมผสานกันระหวาง Proportional
Control และ Adaptive Neuro-Fuzzy Model Reference Control โดยระบบควบคุมจะเรียนรูท่ีจะปรับตัวเองใหไดการ
ตอบสนองตามลักษณะของความเร็วการบินที่ตองการ โดยรูปแบบของความเร็วดังกลาว จะอยูในรูปของสมการที่มี
ความสัมพันธกับคา position error ของหุนยนตขณะบิน สําหรับการควบคุมแบบ Neuro-Fuzzy จะใชแบบจําลองทาง
คณิตศาสตรของหุนยนตบินมาวิเคราะหและประเมินประสิทธิภาพในการควบคุมกอนที่จะมีการนําไปพัฒนาบนหุนยนตบิน ซ่ึง
ผลที่ไดจากการวิเคราะหโดยใชแบบจําลองทางคณิตศาสตรและผลที่ไดจากการทดลอง ใหผลการควบคุมที่ดีและคลายคลึงกัน
สวนการควบคุมตําแหนงจะใชผลท่ีไดจากการทดลองมาประเมินประสิทธิการควบคุมเปนหลัก รวมทั้งมีการทดสอบความ
คงทนของระบบควบคุมตําแหนงโดยการเปลี่ยนคา Proportional Gain ในชวงตางๆดวยเชนกัน

2. ระบบตางๆของหุนยนตบิน

หุนยนตบินไดถูกดัดแปลงมาจากเฮลิคอปเตอรขนาดเล็กบังคับดวยวิทยุ มีเสนผาศูนยกลางของใบพัดหลักเทากับ 1.80 เมตร
ติดตั้งเครื่องยนตที่มีกําลัง 3.0 แรงมา ทําใหสามารถบรรทุกน้ําหนักไดประมาณ 5.0 กิโลกรัม และบินไดนานประมาณ 15 นาที
ในรูปท่ี 1 แสดงใหเห็นหุนยนตบินที่ติดตองอุปกรณที่ใชในการควบคุมเรียบรอยแลว อุปกรณท่ีใชในการควบคุมการทํางานของ
หุนยนตบินจะประกอบไปดวยส่ิงตางๆดังตอไปนี้

• คอมพิวเตอรควบคุมการบิน ใชคอมพิวเตอรขนาดเล็ก เปนคอมพิวเตอรแบบ 16-bits ทําหนาที่ในการคํานวณและสราง
สัญญาณควบคุมไปขับ Servomotors ท่ีติดตั้งใชงานบนหุนยนตบิน คอมพิวเตอรควบคุมการบินจะติดตอกับ
คอมพิวเตอรควบคุมที่ภาคพื้นทุกๆ 0.2 วินาที เพื่อรับคา DGPS และ คําส่ังตางๆ รวมทั้งสงคาสถานะตางๆของ การบิน
กลับลงไปที่ภาคพื้นดวยเชนกัน

• เซนเซอร วัดมุมของหุนยนตบิน ภายในจะประกอบไปดวย เซนเซอรวัดอัตราเร็วเชิงมุม, เซนเซอรวัดความเรง,
เซนเซอรวัดสนามแมเหล็ก ครบทั้ง 3 แกน ขอมูลที่ใชจากเซนเซอรชนิดน้ีคือ มุม Roll, มุม Pitch และ มุม Yaw ของ
หุนยนตบิน

• จีพีเอส (GPS) จะใหขอมูลตําแหนงของหุนยนตบิน ดวยความแมนยํา 20 เซนติเมตร (CEP)
• เซนเซอรวัดระยะสูง ประกอบไปดวยเซนเซอร 2 ชนิด คือ Ultrasonic Sensor ใชวัดระยะสูงจากพื้นดินเมื่อหุนยนตบิน

ในระยะต่ํา และ Pressure Altimeter วัดระยะสูงของหุนยนตเทียบกับระดับนํ้าทะเล ใชในกรณีที่หุนยนตบินบินที่ความ
สูงมากๆ

รูปที่ 1 หุนยนตบินอัตโนมัติ

นักวิจัยสวนใหญ จะใชคอมพิวเตอร PC104 เปนคอมพิวเตอรสําหรับการควบคุมการบิน แตหุนยนตบินท่ีพัฒนาขึ้นมา
นี้จะใชคอมพิวเตอร 16-bits ในการประมวลผล ซ่ึงมีขอไดเปรียบในเรื่องของน้ําหนัก ขนาด และความประหยัดพลังงานไฟฟา
ซ่ึงจะเปนประโยชนอยางมากสําหรับหุนยนตบินที่มีขอจํากัดในเรื่องของน้ําหนักและพื้นที่ที่ติดตั้งอุปกรณซ่ึงจํากัดมากๆ แตก็มี
ขอจํากัดในเรื่องของความเร็วในการประมวลผล เนื่องจากการควบคุมหุนยนตบินใน 1 วงรอบ จําเปนตองเสร็จสิ้นภายในเวลา
0.02 วินาที ฉะนั้นระบบควบคุมและวิธีการควบคุมท่ีเสนอนี้ นอกจากจะคํานึงถึงประสิทธิภาพในการควบคุมแลว ยังคํานึงถึง
ความเปนไปไดในการพัฒนาบนระบบคอมพิวเตอรขนาดเล็กนี้ดวย ดังนั้น Membership Functions ที่ใชในบทความนี้จะเปน
Membership Function ที่เปน สามเหลี่ยมสมมาตร เทาน้ัน

รูปที่ 2 คอมพิวเตอรควบคุมการบิน

3. ระบบการควบคุม
3.1 Neuro-Fuzzy Control

Neuro-fuzzy Control จะใชในการควบคุม มุม Roll, มุม Pitch และ มุม Yaw ของหุนยนตบิน Neuro-Fuzzy Control
เปนระบบควบคุมที่ผสมผสานกันระหวาง Fuzzy Logic และ Neural Network ระบบควบคุมท่ีใชแสดงไวใน รูปที่ 3

รูปท่ี 3 ระบบควบคุมแบบ Neuro-fuzzy

ในรูปที่ 3 NFC มี 2 Inputs โดยที่ Input แรกคือ Attitude Error และ Input ที่สอง คือ Change of Attitude Error สวน

Output คือ Change of Actuator Command และ Inputs ของ NFC คํานวณไดโดยใชสมการที่ (1) และ สมการที่ (2) ตามลําดับ
)()()(kkke desired Φ−Φ= (1)

)1()()(−−=∆ kekeke (2)

z-1

+
-

Flying
Robot

 Fine-Tune Mechanism

T
 Neuro-Fuzzy Controller

edesiredΦ

Φ

g2

g1

e∆

ne

ne∆

δ∆

trimδ

δγ
δk

โดยที ่)(kdesiredΦ คือ คา Desired Attitude และ)(kΦ คือ คามุมของหุนยนตบิน
Inputs ท้ังสองจะถูก Normalized ใหมีคาอยูในชวงที่ตองการ การคํานวณแสดงไดโดยสมการที่ (3) และ สมการที่ (4)

ตามลําดับ
))(()(1 kegken = (3)

))(()(2 kegken ∆=∆ (4)
โดยท่ี)(1 •g และ)(2 •g คือ Function ที่ใชในการ Normalized คา Inputs ทั้งสองของ NFC ซ่ึงแสดงไดโดยสมการ

ที่ (5)
))((1 keg)(1 kegk nege= if 0)(≤ke

)(1 kegk pose= if 0)(>ke
))((2 keg ∆)(2 kegk nege ∆= ∆ if 0)(≤∆ ke

)(2 kegk pose ∆= ∆ if 0)(>∆ ke (5)
โดยที่ ek และ ek∆ คือคา Gains ของ Attitude Error และ Change of Attitude Error ตามลําดับ สวน negg1 , posg1 , negg2
และ posg2 เปนคาคงที่ที่ใชในการทํา Normalization

ดวยคา Normalized Attitude Error และ Normalized Change of Attitude Error จะสามารถคํานวณหาคา Change of
Actuator Command ไดตามสมการที่ (6) และคา Actuator Command จะคํานวณดังสมการที่ (7)

)()(kkk γδ δ=∆ (6)
)()()(kkk trim δδδ ∆+= (7)

โดยที่ δk คือ คา Actuator Gain และ)(ktrimδ คือ คา Trim ของหุนยนตบิน
ในทางทฤษฎี สามารถปรับประสิทธิภาพในการควบคุมของ NFC ไดโดยการเปลี่ยนแปลงคาคงที่ตางๆที่ใชในการทํา

Normalization ซ่ึงในกรณีน้ี คือคา Attitude Error Gain, คา Change of Attitude Error Gain และคา Actuator Gain ในรูปที่ 4
แสดงใหเห็นถึงลักษณะทั่วไปของระบบที่ตอบสนองตอคา Command ที่เปน Step Input

รูปที่ 4 Response ของระบบตอ Step Input Command

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Typical Step Response

Time

R
es

po
ns

e

response
Command

a

b

พิจารณาบริเวณ “a” ในรูปท่ี 4 จะเห็นวาผลท่ีเกิดขึ้นนั้นเนื่องมากจากคา Output มีคานอย ซ่ึงสามารถปรับปรุงระบบ
การควบคุมไดโดยการเพิ่มคา Gain ของ Error และลดคา Gain ของ Change of Error ซ่ึงจะมีผลทําใหการควบคุมสามารถ Track
คา Command ไดรวดเร็วข้ึน สวนในบริเวณ “b” ซ่ึงเกิด Overshoots ข้ึน สามารถปรับปรุงระบบควบคุมไดโดยการเพิ่มคา Gain
ของ Change of Error ซ่ึงจะสามรถลดการเกิด Overshoots หรือการเกิด Oscillations ลงได วิธีการดังกลาวน้ีจะนํามาใชในการ
ปรับคา Gains ของ NFC หลังจากผานขั้นตอนการ Train ระบบควบคุมดวยขอมูลจากการบินของหุนยนตบินไปแลว

ในงานวิจัยนี้ NFC จะเริ่มตนออกแบบดวยการ Train แบบ Offline โดยใชขอมูลซ่ึงบันทึกมาจากการบินของหุนยนต
บิน โดยใชวิธีการเรียนรูแบบ Back Propagation Algorithm ในรูปท่ี 5 แสดงรูปรางของ Membership Functions ซ่ึงในบทความ
จะใช Membership Functions ท่ีมีรูปทรงแบบสามเหลี่ยมสมมาตร

รูปท่ี 5 Membership Functions ที่ใชสําหรับ NFC

โดยท่ี Membership Function ดังกลาวสามารถแสดงไดดวยสมการที่ (8)

j
i

j
ii

iA b

ax
xj

i

−
−=

2
1)(µ , ni ,...2,1= mj ,...,2,1= (8)

เมื่อ ix คือ คาของ Input(s), j
ia คือ คาก่ึงกลางของสามเหลี่ยม และ j

ib คือ คาความกวางฐานของสามเหลี่ยม สําหรับกฎของ
NFC [1] ที่ใชคือ

Rule j: If ix is jA1 and 2x is jA2 and … and nx is j
nA then γ is jw .

Output จาก NFC คํานวณโดยใชสมการที่ (9)

)(

)()(
)(

1

1

k

kwk
k m

j
j

m

j
jj

∑

∑

=

==
µ

µ

γ (9)

โดยที ่

)()(1
2

1 iAiAj xx
j

µµµ = …)(1 iA x
n

µ (10)
ในกระบวนการ Training ของระบบควบคุม Weights ของ NFC จะถูกปรับเปลี่ยนโดยการสราง Cost Function ข้ึนมา

j
ia
j

ib

)(ij
iA

xµ

ix

ซ่ึงนิยามไดดังสมการที่ (11) สวนสมการที่ใชในการปรับคา Weights ของ NFC แสดงไวในสมการที่ (12)
2)(

2
1

Φ−Φ= desiredE (11)

j
jj w

Ekwkw
∂
∂

−=+ η)()1((12)

เมื่อ 0≥η คือ Learning Rate.

เทอม jw
E

∂
∂ ในสมการที่ (12) สามารถหาไดจากการใช Chain Rule ดังแสดงในสมการที่ (13)

))()((
)(

)(

1

kk
k

k
w
E

desiredm

j
j

j

j
Φ−Φ=

∂
∂

∑
=

µ

µ (13)

3.2 Hybrid Adaptive Neuro-Fuzzy Model Reference Control (Hybrid-ANFMRC)

ในงานวิจัยนี้ Hybrid-ANFMRC จะใชในการควบคุมตําแหนงของหุนยนตบิน ระบบควบคุมดังกลาวเปนการนําเอา
ระบบควบคุมแบบ Proportional Control และระบบควบคุมแบบ Adaptive Neuro-Fuzzy Model Reference Control มา
ผสมผสานกัน โดยท่ี Proportional Control จะสราง Output ที่มีคาแปรผันตาม Error ท่ีเกิดขึ้น ในขณะที่ Adaptive Neuro-Fuzzy
Model Reference Control จะสราง Output ออกมา โดยพยายามที่จะเรียนรูและปรับตัวเองเพื่อใหไดผลการตอบสนองตาม
Reference Model ที่กําหนดไว โครงสรางของระบบควบคุมดังกลาวแสดงในรูปที่ 6

รูปที่ 6 โครงสรางของ Hybrid-ANFMRC

ในรูปที่ 6, คา Position Error คํานวณจากผลตางระหวาง Desired Position และ Position ของหุนยนตบิน ดังแสดงใน
สมการที่ (14)

)()()(kPkPke robotdesiredp −= (14)
คา Output จาก Proportional Control คํานวณไดดวยสมการที่ (15)

- (d /d t)

k p

R L

P ro p o rt io na l C o ntro lle r

 N eu ro -F u zzy C o ntro lle r

 L ea rn ing M echanismR efe rence M o d e l

-
+

+
+

+ -

d e sire dΡ Pe

P

++

ro b o t

p ro pu

n eu rou

u

vg

trimu

h yb ridu

ro b o tP&

ro b o tP&

))1()(()1()(−−+−= kekekkuku ppPpropprop (15)
เมื่อ Pk คือ คา Proportional Gain.

โดยปกติ ผลจากการใชระบบควบคุมแบบ Proportional Control จะทําให Error ของระบบลดลง แตถึงอยางไรก็ตาม ก็
จะยังคงมี Steady State Error เกิดขึ้น ฉะน้ัน Adaptive Neuro-Fuzzy Model Reference Control จะสราง Output ออกมารวมกับ
คา Output ที่ไดจาก Proportional Control โดยเรียนรูและปรับตัวเองเพื่อใหเกิดการตอบสนองตอการควบคุมตามรูปแบบของ
Reference Model ท่ีกําหนดไว ซ่ึงนอกจากจะทําให Steady State Error ไมเกิดขึ้นแลว ยังมีขอดีตรงที่สามารถกําหนดลักษณะ
ของการตอบสนองของระบบที่ตองการควบคุมได Outputs จากทั้งสองสวนยอยจะถูกนํามาคํานวณไดดังแสดงดวยสมการที่ (16)
และคา Output ของ Hybrid-ANFMRC คํานวณดวยสมการที่ (17)

)()()(kukuku neuroprophybrid += (16)
trimhybrid ukuku +=)()((17)

Input ของ Adaptive Neuro-Fuzzy Model Reference Control คือ คาความเร็วของหุนยนตในแกนนั้นๆ โดยที่คา
ความเร็วดังกลาวจะถูก Normalized ใหอยูในชวงที่ตองการ การ Normalization ดงักลาวคํานวณโดยใชสมการที่ (18)

)()(, kPgkP robotvrobotn
&& = (18)

โดยที่ vg คือคา Normalized Factor
สวนคา Output จาก Adaptive Neuro-Fuzzy Model Reference Control สามารถคํานวณไดดวยสมการท่ี (19)

)(

)()(
)(

1

1

k

kwk
ku m

j
j

m

j
jj

neuro

∑

∑

=

==
µ

µ

 (19)

โดยที่)(kjµ ในสมการที่ (18) คํานวณไดดังแสดงในสมการที่ (20)
))(()(,1 kPAk robotn

i
j

&=µ (20)
เมือ))((1 kPA robot

i & คํานวณไดเชนเดียวกับสมการที่ (8)
Hybrid-ANFMRC จะเรียนรูและปรับตัวเองใหระบบมีการตอบสนองตามรูปแบบของ Reference Model ที่กําหนด

โดยรูปแบบดังกลาวจะอยูในรูปของ Function ของ Position Error ดังแสดงในสมการที่ (21)
))(()(kPfkr robot= (21)

โดยที ่)(•f คือ Function ที่เปนไดทั้งเชิงเสน และไมเปนเชิงเสน
Hybrid-ANFMRC จะปรับตัวเอง โดยใชวิธีการปรับคา Weights โดยการสราง Cost Function ข้ึนมา ซ่ึง Cost Function

แสดงไวในสมการที่ (22)
2))()((

2
1 kPkrE robot

&−= (22)

สวนสมการที่ใชในการปรับคา Weights คือ

j
jj w

Ekwkw
∂
∂

−=+ η)()1((23)

โดยที ่ 0≥η คือ คา Learning Rate.

คาของ jw
E

∂
∂ สามารถคํานวณไดดวยสมการท่ี (24)

))()((
)(

)(

1

kPkr
k

k
w
E

robotm

j
j

j

j

&−=
∂
∂

∑
=

µ

µ (24)

4. ผลการทํา Simulations และผลการทดลองบิน
4.1 การจําลองการควบคุมมุม Yaw โดยใช NFC

การศึกษาโดยใชแบบจําลอง เพ่ือทดสอบประสิทธิภาพของ NFC ในการควบคุมมุมของหุนยนตบิน กอนที่จะนําไปใช
จริงกับหุนยนตบิน โดยใชการควบคุมมุม Yaw ในการศึกษา แบบจําลองของหุนยนตบินท่ีใชไดมาจากบทความ J. Morris, M.
van Nieuwstadt, and P. Bendotti. Identification and control of a model helicopter in hover. In Proceeding of the American
Control Conference 1994. แบบจําลองดังกลาวแสดงในสมการที่ (25) และสมการที่ (26)

)()()1(kBukAxkx +=+ (25)
)()(kCxky = (26)

โดยที ่

 







−

=
8947.01376.0

1 sT
A









−

=
0269.2
0

B

[]01=C
และ sT คือ คา Sampling Time ซ่ึงมีคาเทากับ 0.02 วนิาที.

ในการสรางขอมูลท่ีนํามาใชในการ Train ระบบควบคุมแบบ NFC การควบคุมแบบ Proportional Control จึงได
นํามาใชในการสราง Control Signals แทนคาสัญญาณควบคุมจากคนบังคับหุนยนตบิน โดยใชวิธีการปรับคา Proportional Gain
จนกระทั่งระบบเกิดการ Oscillations ดังแสดงในรูปที่ 7 โดยคา Desired Yaw คือ 45 องศา และคา Proportional Gain คือ 0.98

รูปที่ 7 Response จากการทํา Simulation ดวยคา Proportional Gain = 0.98

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

30

40

50

60

Step response of yaw control with Kp = 0.98

Time (s)

Y
aw

 (d
eg

)

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5
-1

-0.5

0

0.5
Control signal (rudder)

V
al

ue

Response
Command

ในรูปที่ 7 เฉพาะขอมูลบางสวนเทาน้ันที่นํามาสรางเปนขอมูลสําหรับใชในการเรียนรูของ NFC ขอมูลดังกลาวแสดง
ไวในรูปที่ 8

รูปที่ 8 ขอมูลที่ใชในการเรียนรูของ NFC

ในการศึกษา NFC ออกแบบโดยใช 7-Membership Functions สําหรับ Inputs แตละตัว โดย Membership Function
ดังกลาวแสดงไวในรูปที่ 9 และคาตางๆที่ใชในการออกแบบ NFC แสดงไวในตารางที่ 1

รูปที่ 9 Membership Function

ผลการศึกษาโดยใชแบบจําลองแสดงในรูปท่ี 10, ในชวงเริ่มตนกอนที่จะมีการปรับคา Gains ของ NFC จะสังเกตุเห็น

การ Oscillations ของระบบ แตภายหลังการปรับคา Gains แลว การควบคุมทําไดดีข้ึน แตยังคงมี Steady State Error อยูในระบบ
เพ่ือขจัด Steady State Error การปรับแบบอัตโนมัติจึงมีความจําเปน ภายหลังจากการใชวิธีการปรับแบบอัตโนมัติดังกลาว จะ
สังเกตุเห็นวา Steady State Error จะไมเกิดขึ้นในระบบ การปรับแบบอัตโนมัติจะใชเกณฑดังตอไปน้ี

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
N o rm a lized yaw e rro r

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
N orm a lized change o f yaw e rro r

0 0.5 1 1.5 2 2.5 3 3.5
-0.6

-0.4

-0.2

0

0.2

0.4
C hange o f con tro l s igna l (rudde r)

T a rge t
T ra ined resu lt

NB NM NS PS PM PBZE

-1.2 1.20.80.40.0-0.4-0.8

>η 0.0 if, ake ≤)(and bke ≥)(and cke ≤∆)(
 =η 0.0 otherwise,

เมื่อ a , b และ c คือ คาคงที่ใดๆ ที่มีคาเปนบวก.

ในการศึกษา, คาของ Learning Rate คือ 0.02 สวนคาของ a , b และ c คือ 4.0, 0.05 และ 0.1, ตามลําดับ คาคงที่ a
และ c ใชเพื่อปองกันการปรับโครงสรางของระบบควบคุมเมื่อระบบยังไมเขาสู Steady State สวนคาของ b คือ คา Threshold
ของการปรับ

รูปที่ 9 ผลการควบคุมมุม Yaw โดยใช NFC

ตารางที่ 1 คาตางๆที่ใชสําหรับ neuro-fuzzy * แสดงคาท่ีไดหลังจากการปรับ

1g 2g k
negg1 posg1 negg2 posg2 ek ek∆ δk

1.0 1.0 1.0
2.5453

3.8146

25.7061

10.9662 *1.0 *5.0 *1.0

4.2 ผลการทดลองควบคุมมุม Yaw โดยใช NFC

ในการทดลอง, ขอมูลที่ใชในการเรียนรูของ NFC ไดมาจากการบินของหุนยนตบิน โดยการเก็บขอมูลดังกลาวทําได
โดยการที่คนบังคับโยกคันบังคับบนชุดวิทยุควบคุมในลักษณะใหเกิดการแกวงรอบจุดสมดุลของแกนการหมุนของมุม Yaw
โดยมีการลดขนาดของการโยกลงจนกระทั่งไมมีการหมุนรอบแกน Yaw ในขณะที่จะตองพยายามใหแกนอื่นของหุนยนตบินอยู
ในสมดุลในการบินใหมากที่สุด ขอมูลที่บันทึกไดแสดงไวในรูปที่ 11

0 5 10 15 20 25 30 35 40
-10

0

10

20

30

40

50
Simulated neuro-fuzzy yaw control

Time (s)

Y
aw

 (d
eg

)

Desired yaw
Change of error gain = 1.0, learning rate =0.0
Change of error gain = 2.0, learning rate =0.0
Change of error gain = 5.0, learning rate =0.0
Change of error gain = 5.0, learning rate =0.02

Online tuning to eliminate steady state error

รูปที่ 11 ขอมูลที่บันทึกจากการบินเพื่อนํามาใชในการเรียนรูของระบบควบคุม

รูปที่ 12 ขอมูลเพื่อใชในการเรียนรูของระบบควบคุม
 ขอมูลที่ใชในการเรียนรูของ NFC และผลจากเรียนรูแสดงในรูปท่ี 12 โดยในการทดลองจะใช Membership
Functions ในรูปแบบเดียวกับในการศึกษาจากแบบจําลอง หลังจากการเรียนรูในขั้นตอนแรกเสร็จส้ินลง ระบบควบคุมมีความ
จําเปนที่จะตองถูกปรับอีกครั้ง ซ่ึงผลการทดลองดังกลาวไดแสดงไวในรูปที่ 13 และทํานองเดียวกันกับการศึกษาดวยแบบจําลอง
ระบบยังคงมี Steady State Error ซ่ึงสามารถขจัดไดดวยวิธีการปรับคา Weights ของ NFC ในขณะบินเมื่อระบบเขาสู Steady

0 5 10 15 20 25
10

20

30

40

50

60

70
Yaw response to the pilot open-loop control signal

Time (s)

Y
aw

 (d
eg

)

0 5 10 15 20 25
2400

2500

2600

2700

2800

2900

3000

3100
The pilot open-loop control signal

Time (s)

V
al

ue

Training Region

Training Region

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
Normalized yaw error

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
Normalized change of yaw error

0 0.5 1 1.5 2 2.5 3 3.5
-400

-200

0

200

400
Change of control signal (rudder)

Target
Trained result

State ผลดังกลาวไดแสดงไวในรูปท่ี 13 เชนกัน สวนในรูปท่ี 14 แสดงผลการทดลองเมื่อมีการเปลี่ยนคา Desired Yaw ใน
ลักษณะของ Step Input จะเห็นไดวา การใช NFC ตามท่ีออกแบบมาจะใหผลการควบคุมที่ไมมี Overshoots หรือ การ
Oscillations รวมทั้งคา Steady State Error ยังมีคาเปนศูนยอีกดวย

รูปที่ 13 ผลการทดลองการควบคุมมุม Yaw ดวย NFC

รูปที่ 14 ผลการทดลองเมื่อมีการเปลี่ยนคา Desired Yaw

0 5 10 15 20 25 30 35 40 45 50
40

60

80

100

120

140

160

180
Neuro-Fuzzy yaw control, tuning

Time (s)

Y
aw

 (d
eg

)
Desired yaw
Yaw response

Online Tuning "ON"

Manually tuned

Switched to autonomous mode here

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

Neuro-Fuzzy yaw control, step input

Time (s)

Y
aw

 (d
eg

)

0 10 20 30 40 50 60 70 80 90 100
2600

2650

2700

2750

2800

2850

2900

2950

3000
Control signal (rudder)

Time (s)

V
al

ue

Desired yaw
Yaw response

Manual Control

Switched to autonomous mode here

ตารางที่ 2 คาตางๆที่ใชสําหรับ neuro-fuzzy * แสดงคาท่ีไดหลังจากการปรับเปล่ียน
1g 2g k
negg1 posg1 negg2 posg2 ek ek∆ δk

1.0 1.0 1.0
0.0529

0.0684

0.7619

0.4706 *1.0 *2.1 *1.39

4.3 ผลการควบคุมตําแหนง โดยใช Hybrid-ANFMRC
 รูปที่ 17, รูปที่ 18 และ รูปที่ 19 แสดงผลจาการใช Hybrid-ANFMRC ในการควบคุมตําแหนงในแนว Lateral,
Longitudinal และ ความสูง ตามลําดับ คา Outputs ของการควบคุมในแนว Lateral, Longitudinal และ ความสูง คือ คา Desired
Roll, คา Desired Pitch และ คา Change of Collective Command, ตามลําดับ สวนการควบคุม มุม Roll, มุม Pitch ไดใชวิธีการ
ควบคุมเชนเดียวกับการควบคุม มุม Yaw ในบทความชวงท่ีแลวในการทดลองใชคา Proportional Gains สําหรับแกน Lateral
และ แกน Longitudinal เปน 8.0 เทากัน สวนคา Proportional Gain ของการควบคุมความสูงมีคาเปน 30.0 คา Desired Lateral
Position และ Desired Longitudinal Position มีคาเปน 0.0 เมตร คา Desired Altitude คือ 13.0 เมตร คา Learning Rate ที่ใชใน
การควบคุมทั้งสามแกนมีคาเทากันคือ 0.4 สวนVelocity Reference Model ที่ใชถูกกําหนดใหมีลักษณะของ Linear Function ดัง
แสดงในรูปท่ี 15 Membership Functionsท่ีใชมีลักษณะเดียวกันกับท่ีใชในการควบคุม มุม Yaw แตกตางกันตรงที่คา Weights
ของระบบควบคุมตําแหนงที่จะมีเพียง 7 คาเทาน้ัน ทั้งน้ีเนื่องมาจากระบบควบคุมมี Input เพียงคาเดียว น้ันคือ คาความเร็วของ
หุนยนตบิน Membership Functions แสดงไวในรูปที่ 16.

รูปที่ 15 Velocity Reference Model

2

- 1

1

- 2

r (m / s)

e P (m)

รูปท่ี 16 Membership Functions สําหรับ Hybrid-ANFMRC

ในรูปที่ 17, รูปที่ 18 และ รูปที่ 19 เปนผลการควบคุมตําแหนงของหุนยนตบิน โดยการทดลองเริ่มจากการใชเพียง
Proportional Control ในการควบคุมเพียงอยางเดียวในชวงเริ่มตน หลังจากนั้นจึงไดมีการเริ่มตนการเรียนรูละปรับตัวเองของ
ระบบควบคุม ซ่ึงจากผลการควบคุมที่ได จะเห็นวา ระบบควบคุมที่ออกแบบมามีประสิทธิภาพในการควบคุมตําแหนงของ
หุนยนตบินไดอยางดี โดยท่ีขณะเริ่มตนการทดลองคา Weights ทั้งหมดจะถูกกําหนดใหมีคาเปนศูนย น่ันหมายความวา ระบบ
ควบคุมจะตองเริ่มตนเรียนรูท่ีจะควบคุมตําแหนงของหุนยนตใหไดจากศูนย

รูปที่ 17 Hybrid-ANFMRC, lateral position

0 50 100 150
-15

-10

-5

0

5

10

15

20

25

30
Hybrid-ANFMRC result, lateral position control

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Learning "ON"

Switched to autonomous mode here

NB NM NS PS PM PBZE

-1.2 1.20.80.40.0-0.4-0.8

รูปที่ 18. Hybrid-ANFMRC, longitudinal position
 ในรูปที่ 19, เปนผลการควบคุมความสูงของหุนยนตบิน ระหวางการบินจะมีการสลับการควบคุมระหวางการควบคุม
โดยอัตโนมัติและการควบคุมโดยคนบังคับ ขณะที่หุนยนตถูกควบคุมโดยคนบังคับ ระบบการเรียนรูของระบบควบคุมจะไม
ทํางาน และเมื่อกลับไปสูการควบคุมโดยอัตโนมัติระบบการเรียนรูจึงจะเริ่มตนอีกครั้ง ทั้งนี้เพ่ือเปนการปองกันไมใหระบบ
ควบคุมปรับตัวเองขณะที่หุนยนตบินถูกควบคุมโดยคนบังคับ จากกราฟจะเห็นประสิทธิภาพของระบบควบคุมไดเปนอยางดี
โดยในรอบแรกจะสังเกตุเห็นวาเกิด Oscillations ข้ึน แตในรอบถัดๆไป Oscillations จะคอยๆลดลง จนในที่สุดระบบควบคุมจะ
เรียนรูที่จะควบคุมความสูงของหุนยนตบินไดอยางดี

0 20 40 60 80 100 120
-12

-10

-8

-6

-4

-2

0

2

4

6

8
Hybrid-ANFMRC result, longitudinal position control

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Learning "ON"

Switched to autonomous mode here

รูปท่ี 19. Hybrid-ANFMRC, altitude

จากผลการทดลองขางตน, จะเห็นไดวา Hybrid-ANFMRC มีประสิทธิภาพในการควบคุมตําแหนงของหุนยนตบินได
เปนอยางดี คา weights ทั้งหมดของระบบควบคุมไดแสดงไวในตารางที่ 3

ตารางที่ 3. Weights of Hybrid-ANFMRC
 w1 w2 w3 w4 w5 w6 w7

Before 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Lateral
After 104.9 13.65 10.67 -7.48 -14.31 -15.64 -58.63
Before 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Longitudinal
After -140.77 -15.8 -15.14 -2.18 8.35 13.61 83.79
Before 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Altitude
After -92.7 -23.8 -59.98 53.19 95.2 39.16 119.6

4.4 การทดสอบความ Robustness ของ Hybrid-ANFMRC
 ในการทดลองนี้ เปนการทดลองผลการควบคุมเมื่อมีการเปลี่ยนคา Proportional Gain ในระบบควบคุม กรณีที่
สามารถใชคา Proportional Gain ไดในชวงกวางนั้นจะมีขอดีในแงของการออกแบบระบบควบคุมที่จะสามารถใชคา
Proportional Gain ไดโดยไมตองใชเวลามากนักในการปรับคาดังกลาว เพ่ือจุดประสงคน้ี การควบคุมตําแหนงทางแกน Lateral
จึงถูกนํามาศึกษาอีกครั้ง ซ่ึงผลการควบคุมไดแสดงในรูปที่ 20, รูปที่ 21 และ รูปที่ 22 ดวยคา Proportional Gains เปน 2.0, 4.0
และ 8.0 ตามลําดับ

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20
Hybrid-ANFMRC, altitude control

Time (s)

A
lti

tu
de

 (m
)

Command
Response
Learning status

Learning "ON"

Switch to autonomous node here

รูปที่ 20 ผลการทดลอง Hybrid-ANFMRC ดวย Pk = 2.0

รูปที่ 21 ผลการทดลอง Hybrid-ANFMRC ดวย Pk = 4.0

0 50 100 150 200 250 300 350 400 450
-15

-10

-5

0

5

10

15
Hybrid-ANFMRC, robustness test

Time (s)

D
is

ta
nc

e
(m

)
Command
Response
Learning status

Kp = 2.0

Learning "ON"

Switched to autonomous mode here

0 100 200 300 400 500 600
-15

-10

-5

0

5

10

15

20
Hybrid-ANFMRC, robustness test

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Kp = 5.0

Learning "ON"

Switched to autonomous mode here

รูปที่ 22 ผลการทดลอง Hybrid-ANFMRC ดวย Pk = 8.0

ในรูปดานบน, เปนการแสดงใหเห็นอยางชัดเจนถึงความ Robust ของระบบควบคุมตอการเปลี่ยนแปลงของคา
Proportional Gain โดยที่ระบบจะยังคงเรียนรูที่จะปรับตัวเองเพื่อใหไดผลของการควบคุมตามที่กําหนด อันเปนการแสดงใหเห็น
ถึงผลของการใชระบบควบคุมชนิดที่สามารถปรับตัวเองได

4.5 ผลการควบคุมแบบอัตโนมัติท้ัง 6 แกน

รูปท่ี 23, รูปที่ 24, และ รูปที่ 25, แสดงผลการควบคุมตําแหนงของหุนยนตบิน เมื่อการควบคุมทั้งหมดเปนแบบ
อัตโนมัติพรอมกัน โดยที่หุนยนตบินถูกกําหนดใหบินเคลื่อนที่เปนส่ีเหลี่ยมจัตุรัสขนาด 10x10 เมตร คา Desired Altitude คือ
13.0 เมตร คา Desired Yaw คือ 0.0 องศา เมื่อหุนยนตบินบินเขาไปในรัศมี 0.30 เมตรของแตละจุดจะถือวาหุนยนตบินเขาไปยัง
จุดท่ีตองการ และบินไปยังจุดตอๆไปในลักษณะนี้เรื่อยๆ

0 100 200 300 400 500 600
-20

-15

-10

-5

0

5

10
Hybrid-ANFMRC , robustness experiment

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Kp = 8.0

Learning "ON"

Switched to autonomous mode here

รูปที่ 23 ผลการควบคุมตําแหนงของหุนยนตบิน, ตําแหนงทางแกน lateral และ longitudinal

รูปที่ 24 ผลการควบคุมตําแหนงของหุนยนตบิน

-15 -10 -5 0 5 10 15 20 25 30
-20

-15

-10

-5

0

5

N
S

 d
is

ta
nc

e
(m

)

EW distance (m)

Hybrid-ANFMRC result, lateral & longitudinal position control

1st round
2nd round
3rd round
4th round
Desired path

Start Point

1st

2 nd

3rd

4th

0 100 200 300 400 500 600
-20

-15

-10

-5

0

5

Time (s)

D
is

ta
nc

e
(m

)

Hybrid-ANFMRC result, longitudinal position control

0 100 200 300 400 500 600
-20

-10

0

10

20

30

Time (s)

D
is

ta
nc

e
(m

)

Hybrid-ANFMRC result, lateral position control

Command
response
Learning status

Command
response
Learning status

Kp = 8.0

Kp = 8.0

Learning "ON"

Learning "ON"

รูปท่ี 25 ผลการควบคุมความสูง

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16
Hybrid-ANFMRC result, altitude control

Time (s)

A
lti

tu
de

 (m
)

Desired altitude
Altitude
Learning status

Learning "ON"

switched to autonomous mode here

รูปที่ 26 ภาพแสดงแบบอัตโนมัติ
(a) บินผานจุดที่ 1, (b) บินผานจุดท่ี 2, (c) บินผานจุดที่ 3, (d) บินผานจุดที่ 4

 จากผลการควบคุมจะเห็นวาระบบควบคุมสามารถเรียนรูและปรับตัวเอง จากคา Weights ทั้งหมดมีคาเปนศูนย
จนกระทั่งสามารถควบคุมตําแหนงของหุนยนตใหสามารถบินไปยังตําแหนงตางๆที่ตองการไดเปนอยางดี

5. สรุป
 งานวิจัยนี้เปนการนําเสนอและออกแบบระบบควบคุมสําหรับหุนยนตบิน โดยใช Neuro-Fuzzy Control (NFC) ใน
การควบคุม มุม roll, มุม pitch และ มุม yaw ใช Hybrid-ANFMRC ในการควบคุมตําแหนงของหุนยนตบิน การออกแบบระบบ
ควบคุมดวย NFC เริ่มตนดวยการใชขอมูลจากการบินของหุนยนตบินมาทําการ Train ใหไดโครงสรางของระบบควบคุม
หลังจากนั้นจึงทําการปรับระบบควบคุมโดยการใชควบคุมหุนยนตจริงๆ และการเปดการปรับตัวเองของระบบควบคุมเพื่อให
Steady State Error หมดไป การออกแบบระบบควบคุมตําแหนง ซ่ึงใช Hybrid-ANFMRC เริ่มตนจากการปรับคา Proportional
Gain ซ่ึงระบบควบคุมแบบนี้มีขอดีคือ สามารถเลือกใชคา Proportional Gain ไดในชวงที่กวาง เนื่องจากระบบควบคุมเปนระบบ
ที่สามารถเรียนรูและปรับตัวเองได โดยมีขอแมเพียงแตวา อยาทําใหเกิดการ Saturation ข้ึนในชวงตําแหนงที่ตองการควบคุม
หลังจากนั้นระบบจะเริ่มเรียนรูและปรับตัวเองจนไดประสิทธิภาพตามที่กําหนด จากผลของการควบคุมหุนยนตบินใหบิน

(a) (b)

(c) (d)

อัตโนมัติ ไดแสดงใหเห็นถึงประสิทธิภาพในการควบคุมดวยระบบควบคุมดังกลาว ทั้งน้ีในบทความนี้ใชเพียง Reference Model
ที่เปนเสนตรง ซ่ึงสามารถที่จะเปลี่ยนไปใช Reference Model ที่เปนลักษณะที่ไมเปนเชิงเสน เชน Exponential Function ก็จะ
สามารถเพิ่มประสิทธิภาพของการควบคุมไดดีย่ิงขึ้น

ผลลัพธท่ีได
1. ไดตนแบบของหุนยนตบินไดท่ีเหมาะสมที่สามารถนํามาใชจริง ดังแสดงในรูปตอไป

2. ไดอุปกรณตรวจวดัตาง ๆ ที่จําเปนในการควบคุมหุนยนตบินไดแบบอัตโนมัติ โดยมีการเชื่อมตอของอุปกรณตาง ๆ ดังแสดงใน
แผนภูมิตอไปน้ี

3DM-GX1
AHRS

 RT-20
GPS

ground computer

GPS
base station

Ground

Onboard

PC-104

aileron
servo

collective
servo

elvator
servo

rudder
servo

rate gyro

throttle
servo

68HC11 68HC11

SRF04
altimeter

governor

RC
transmitter

16 bits D I/O

WLAN 802.11b
TCP/IP

40.81 MHz

rs232

115.2 kbps

4 PWMs

multiplexer

rs232

38.4 kbps

A/D 12 bits

57.6 kbps

rs232

rs232

38.4 kbps

57.6 kbps

3. ไดวิธีการควบคุมที่เหมาะสมที่สามารถควบคุมหุนยนตบินได ในการควบคุม มุม roll, มุม pitch และ มุม yaw ของหุนยนตบินจะใชวิธีการ
ควบคุมโดยใช Neuro-Fuzzy Control และในการควบคุมตําแหนง x, y, และ z ไดใชวิธีการควบคุมแบบ Hybrid-Adaptive Neuro-Fuzzy
Model Reference Control
4. ไดหุนยนตบินไดควบคุมอัตโนมัติที่สมบูรณ วิดีโอเทปการบินแบบควบคุมอัตโนมัติไดถูกบนัทึกไวใน CD ที่แนบมากับ
รายงานฉบับน้ีดวย
5. ไดตีพิมพผลการวิจัย
ไดผลงานทางวิชาการตีพิมพลงในวารสารระดับนานาชาติ

1. Sukon Puntunan and Manukid Parnichkun. “An Online Self-Tuning Precompensation for a PID Controller: An
Application to Control Heading Direction of a Flying Robot,” International Journal of Advanced Robotics. Robotics
Society of Japan. (ไดถูกแกใขตามขอเสนอแนะของผูประเมินบทความและถูกสงไปพิจารณาเปนครั้งท่ี 2 ขณะนี้กําลัง
รอฟงผลการพิจารณาบทความ)

2. Vatee Pariyapong and Manukid Parnichkun. “Evolutional Sensor Fusion for an Autonomous Flying Robot,” Journal
of Intelligent &Fuzzy Systems. IOSPress. (ถูกสงไปพิจารณาเปนครั้งแรก ขณะนี้กําลังรอฟงผลการพิจารณาบทความ)

3. Sukon Puntunan and Manukid Parnichkun. “Development and Control of 6-DOF Fully Autonomous Flying Robot
by Hybrid Adaptive Neuro-Fuzzy Model Reference Control,” International Journal of Mechatronics. Elsevier
Science Ltd., Pergamon. (กําลังแกใขภาษาและจะสงไปพิจารณาเปนครั้งแรกในไมชา)

ไดผลงานทางวิชาการตีพิมพลงในวารสารในประเทศ
1. Sukon Puntunan, Manukid Parnichkun. “Control of Attitude and Heading of an Autonomous Flying Robot,” Journal

of the Thai Robotics Society, Vol 3, No. 1, 2005, pp. 53-65.
2. Sukon Puntunan, Manukid Parnichkun. “Control of a Floating Height and Heading Direction of an Autonomous

Flying Robot,” Journal of the Thai Robotics Society, Vol. 2, No. 1, 2004, pp. 1-9.
ไดผลงานทางวิชาการตีพิมพลงในเอกสารการประชุม

1. Sukon Puntunan, Manukid Parnichkun, “Self-Tuning Preecompensation of PID based Heading Control of a Flying
Robot.” Proceedings of IEEE Workshop on Advanced Robotics and Its Social Impacts, ARSO ’05, Nagoya, 2005.
(Conference CD-ROM).

2. Sukon Puntunan, Manukid Parnichkun, “An Online Self-Tuning Precompensation for a PID Controller.”
Proceedings of the Fourth Asian Conference on Industrial Automation and Robotics, ACIAR 2005, Bangkok, 2005.
(Conference CD-ROM).

3. Sukon Puntunan, Manukid Parnichkun, “Self-Tuning Preecompensation of PID based Heading Control of a Flying
Robot.” Proceedings of the Fifth AIT-KIST International Joint Symposium, Seoul, Korea, 2005

4. Sukon Puntunan, Manukid Parnichkun, “Attitude and Heading Control of an Autonomous Flying Robot.”
Proceedings of the 2004 IEEE International Conference on Industrial Electronics, IECON 2004, Busan, Korea,
2004. (Conference CD-ROM).

5. Sukon Puntunan, Manukid Parnichkun, “Control of Attitude and Heading of an Autonomous Flying Robot.”
Proceedings of the 2004 TRS Conference on Robotics and Industrial Technology, CRIT 2004, Nakorn Pathom,
Thailand, 2004, pp. 45-49.

6. Vatee Pariyapong, Manukid Parnichkun, “Pose Estimation of an Autonomous Flying Robot Using Evolutional
Ensemble Structure of Multiple Local Sensor Fusion Networks.” Proceedings of the Third Asian Conference on
Industrial Automation and Robotics, ACIAR 2003, Bangkok, 2003, pp. 116-123.

7. Sukon Puntunan, Manukid Parnichkun, “Control of Heading Direction and Floating of a Flying Robot.” Proceedings
of the 1st Aeronautic and Aerospace Engineering Network Conference, Bangkok, 2003, pp. 88-91. (in Thai)

8. Vatee Pariyapong, Manukid Parnichkun, “Ensemble Structure of Multiple Local Sensor Fusion Machine Using
Evolutional Pruning Technique [An Application to Heading and Rate of Turn Estimation].” Proceedings of the 2002
IEEE International Conference on Industrial Technology, ICIT’ 02, Bangkok, 2002, pp. 421-426.

9. Sukon Puntunan, Manukid Parnichkun, “Control of Heading Direction and Floating Height of a Flying Robot.”
Proceedings of the 2002 IEEE International Conference on Industrial Technology, ICIT’ 02, Bangkok, 2002, pp.
690-693.

ทั้งน้ีไดมีการกลาวในกิติกรรมประกาศถึงการสนับสนุนดานเงินวิจัยจากสํานักงานกองทุนสนับสนุน การวิจัยของทุกผลงานที่ถูก
ตีพิมพ

ภาคผนวก

ตนฉบับบทความที่สงไปพิจารณาเพื่อตีพิมพในวารสารวิชาการระดับนานาชาติ

1. Sukon Puntunan and Manukid Parnichkun. “An Online Self-Tuning Precompensation for a PID Controller: An
Application to Control Heading Direction of a Flying Robot,” International Journal of Advanced Robotics. Robotics
Society of Japan.

2. Vatee Pariyapong and Manukid Parnichkun. “Evolutional Sensor Fusion for an Autonomous Flying Robot,” Journal
of Intelligent & Fuzzy Systems. IOSPress.

3. Sukon Puntunan and Manukid Parnichkun. “Development and Control of 6-DOF Fully Autonomous Flying Robot
by Hybrid Adaptive Neuro-Fuzzy Model Reference Control,” International Journal of Mechatronics. Elsevier
Science Ltd., Pergamon.

AN ONLINE SELF-TUNING PRECOMPENSATION

FOR A PID CONTROLLER: AN APPLICATION TO CONTROL

HEADING DIRECTION OF A FLYING ROBOT

SUKON PUNTUNAN and MANUKID PARNICHKUN

Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand

Tel: +66-2-524-5229, Fax: +66-2-524-5697, Email: manukid@ait.ac.th

Abstract

In this paper, an online self-tuning precompensation for a Proportional-Integral-Derivative (PID)

controller is proposed to control heading direction of a flying robot. The flying robot is a highly nonlinear

plant, it is a modified X-Cell 60 radio-controlled helicopter. Heading direction is controlled to evaluate

efficiency of the proposed precompensation algorithm. The heading control is based on the conventional PID

control combined with an online self-tuning precompensation so that both the desired transient and steady state

responses can be achieved. The precompensation is applied to compensate unsatisfied performances of the

conventional PID controller by adjusting reference command of the conventional PID controller. The

precompensator is based on Takagi-Sugeno’s type fuzzy model, which learns to tune itself online. The main

contribution of the proposed controller is to enhance the controlled performance of the conventional PID

controller by adding a self-tuning precompensator on the existing conventional PID controller. The results

show that the conventional PID controller with an online self-tuning precompensation has a superior

performance than the conventional PID controller. In addition, the online self-tuning precompensation

algorithm is implemented simply by adding the precompensator to the existing conventional PID controller

and letting the self-tuning mechanism tune itself online.

Keywords: Flying Robot, PID control, Fuzzy Logic, Online Self-Tuning

1. INTRODUCTION

A flying robot developed at AIT is modified from X-Cell 60 radio-controlled helicopter. It is

developed to support autonomous flight control covering wide-mode missions of operation from hovering to

other maneuvers. Currently, there are many researches on development of autonomous flying robots with

different control techniques [5]. The conventional PID controller is still widely used due to its simple

implementation and tuning. The weakness of the conventional PID controller is that it exhibits poor

performance when applied to control the system that contains nonlinear and cross coupling effects. Various

techniques are applied to accomplish this purpose, ranging from adjusting the controller gains to using the

precompensation technique. The latter has many advantages since it is simple to implement and safe. In the

precompensation technique, the controller gains are the same as the ones obtained in stable response and the

precompensated amounts can be bounded within reasonable ranges of safety.

Since the introduction of fuzzy set by Zadeh [4], fuzzy logic-based controllers have received

considerable interest from many researchers. Kim et al. [2] applied a fuzzy precompensated PID controller to

control position of a DC servomotor by compensation of overshoots and undershoots of transient response

under load variation. In our work, the conventional PID controller with an online self-tuning precompensation

is used to control heading direction of our flying robot. The precompensator is based on the Takagi-Sugino’s

type fuzzy model. There are three main reasons to apply the precompensator to overcome the unsatisfied

controlled performance. Firstly, to eliminate steady state error. Even when the integral term is included in the

controller, steady state error still occurs in the results, due to many factors such as, deadzones in the linkage

mechanism, slow speed and delay of the actuator, varying of rotation speed of the tail rotor and unsymmetrical

yaw dynamics in clockwise and counter clockwise rotations. Secondly, to reduce cross coupling effected from

the Z-axis. Lastly, to decrease settling time in the yaw dynamics response. By using online self-tuning

precompensation with the conventional PID controller, the system exhibits superior transient as well as steady

state performances.

The precompensation technique described in this paper is different from the precompensation

addressed by Kim, et al in [2]. Firstly, the system and fuzzy model are totally different. In Kim’s work, the

fuzzy model is based on Mamdani’s model. In this work, the fuzzy model is based on Takagi-Sugeno’s model.

Secondly, technique of tuning of the fuzzy logic is different. The technique used by Kim is based on manual

tuning. In this work, it is based on online self-tuning by gradient descent method. Thirdly, compensation

design by Kim is based on an attempt to compensate overshoots and undershoots in the transient response

when the conventional PID controller is applied to a DC servo position controlled testbed with load varying. In

this work, the design is based on compensation of steady state error and reduction of cross coupling effects as

well as improvement of settling time when the conventional PID controller is applied to control heading

direction of the flying robot.

This paper is organized as follows. In section 2, we describe architecture of our flying robot. Section 3

describes control structure of the precompensation. Section 4 describes experimental results, which

demonstrate performances of the algorithm. Section 5 shows the fully autonomous flight experiment. Finally,

the conclusion is made in section 6.

2. FLYING ROBOT AND FLIGHT CONTROL SYSTEM

Our flying robot is a modified X-Cell 60 radio-controlled helicopter with a main rotor diameter of

1.80 meters. The robot’s OS91 glow plug engine has power rating of 3.0 HP, resulting in the maximum

payload of 5.0 kg and flight duration of approximately 15 minutes. Fig. 1 shows the flying robot and its

avionics box of the robot. The avionics box, which is installed underneath the robot, contains the following

processors and sensors.

• An onboard PCM3350 PC-104 flight control computer running at 300 MHz.

• Two 68HC11 microprocessors. The first microprocessor generates pulse width modulation

(PWM) signals to drive 4 actuators. The second microprocessor is used to drive and read an

ultrasonic altimeter.

• A 3DM-GX1 attitude and heading reference sensor containing three angular rate gyros, three

orthogonal linear accelerometers, and three orthogonal magnetometers to provide three orientation

angles (roll, pitch, yaw).

• An OEM4 RT-20 GPS card. The GPS provides latitudes and longitudes information within 20 cm

CEP (circular error probable) when operated in a real time kinematics mode.

• An SRF-04 ultrasonic altimeter to provide ground-to-robot distance at the update rate of 25 Hz.

• A circuit board containing actuator-interfacing circuit and control signal multiplexing circuit.

Fig. 1 Flying robot testbed

In the control inner loop, the PC-104 computer receives attitude information (roll, pitch, and yaw)

from the attitude and heading reference sensor and runs the core PID attitude control at the rate of 50 Hz,

effecting the aileron, elevator and rudder actuators. The control outer loop, the position control, is run at 5 Hz

to generate the roll, pitch and yaw (heading) attitude commands for the inner loop while the height control is

run at 25 Hz to control the position in Z-axis. The flying robot continuously communicates with ground station

via an 802.11b wireless network using TCP/IP protocol. The communication occurs every 2 seconds and the

range of communication covers up to 0.5 km. The ground station sends DGPS correction signal and updates

user commands to the flying robot. Fig. 2 shows the flight control system of our flying robot.

Tail rotor on the flying robot is used to control the robot heading direction by altering pitch angle on

the tail rotor blades. By doing so, it can increase or decrease the yaw angular moment of the robot. The robot

actuators are the S9206 dc servomotor, accompanied with GY401 rate gyros.

To evaluate control performance of online self-tuning precompensation on the conventional PID

controller. The engine governor is always turned off during the experiments.

Fig. 2 Flight control system

3. ONLINE SELF-TUNING PRECOMPENSATION

Normally, control performance of a system can be improved by tuning of the controller gains. This

method can harm the flying robot, since the robot flies in the turbulent air where the system parameters change

all the time. The proposed algorithm in this paper applies the method that adjusts the heading reference

command of the controller instead of directly adjusts the controller gains. The precompensator uses the

gradient descent method to tune the fuzzy parameters. The originality on this proposed method is the use of the

conventional PID controller together with the online self-tuning precompensator to control heading direction

of the flying robot. The steady state error is eliminated online during the flight. The cross coupling effect to the

control axis is also reduced. It is a kind of an adaptive control, since when the robot dynamics changes, the

control system will tune itself and adapt to the new flight condition. The main advantage of online tuning is

that it makes the development simpler in practical. Unlike in the work of Kim et al [2], where the fuzzy

parameters are tuned by the operator experience to obtain the best result. In this proposed method, the fuzzy

parameters are adapted based on the control performance. The process is done online automatically.

An online self-tuning precompensation for the conventional PID controller is proposed and applied to

control heading direction of the flying robot. Fig.3 illustrates block diagram of the controller. The diagram

consists of the conventional PID controller and the online self-tuning precompensator.

3DM-GX1
AHRS

 RT-20
GPS

ground computer

GPS
base station

Ground

Onboard

PC-104

aileron
servo

collective
servo

elvator
servo

rudder
servo

rate gyro

throttle
servo

68HC11 68HC11

SRF04
altimeter

governor

RC
transmitter

16 bits D I/O

WLAN 802.11b
TCP/IP

40.81 MHz

rs232

115.2 kbps

4 PWMs

multiplexer

rs232

38.4 kbps

A/D 12 bits

57.6 kbps

rs232

rs232

38.4 kbps

57.6 kbps

Fig. 3 Online self-tuning precompensation of PID controller

Purpose of the precompensation is to modify reference command to compensate steady state error,

overshoots, and cross-coupling effects. The precompensator consists of two parts; fuzzy logic and online self-

tuning mechanism. Heading error,)(ke , and change of heading error,)(ke∆ , are determined as followings.

)()()(kykyke r −= (1)

)1()()(−−=∆ kekeke (2)

where)(kyr is the command reference and)(ky is the actual output response.

Two input variables of the fuzzy logic are the normalized heading error,)(ken , and the normalized

change of heading error,)(ken∆ . They are obtained by multiplying the heading error, and the change of

heading error, with their corresponding scaling factors 1G and 2G , as followings.

)()(1 keGken = (3)

)()(2 keGke nn ∆=∆ (4)

 The normalized correction value,)(knγ , is the result of mapping from)(ken and)(ken∆ to)(knγ

based on Takagi-Sugeno’s fuzzy model as shown in equation (5).

[])(),()(kekeFk nnn ∆=γ (5)

To obtain the actual correction value,)(kγ , the normalized correction value must be multiplied with a

coefficient 3G as shown in equation (6).

)()(3 kGk nγγ = (6)

Fuzzy
Logic

d/dt

Online
Tuning

-
+

PID
Flying
Robot

+
)(ky)(kyr′)(ke′)(ku

)(kyr

)(kγ

)(ken∆

)(ken

)(knγ

)(ke

)(ke∆

)(ke

+ +
-

1G

2G

3G

The precompensated reference command,)(kyr′ , is the sum of the reference,)(kyr , and the

correction term,)(kγ , as shown in equation (7).

)()()(kkyky rr γ+=′ (7)

The precompensated reference command is, finally, used as the input to the conventional PID

controller as followings.

)()()(kykyke r −′=′ (8)

[] [])2()1(2)()()1()()1()(−′+−′−′+′+−′−′+−= kekekeKkeKkekeKkuku DiP (9)

where PK , IK , and DK are the proportional, integral and derivative gains, respectively.

In equation (8), the error)(ke′ is the tracking error between the precompensated heading reference,

)(kyr′ , and the actual heading,)(ky . Equation (9) represents velocity version of PID controller. The

controller output,)(ku , is then converted to PWM signal to drive rudder actuator of the flying robot.

The precompensation applies Takagi-Sugino’s fuzzy model. The model is formulated following the

form.

:iL If)(ke′ is iA1 and)(ke′∆ is iA2 then)(ki
nγ = ia0 (10)

where),...2,1(liLi = denotes the i-th implication, i is the number of fuzzy implication,),...,2,1(0 lia i = is the

consequent parameter, iA1 and iA2 are fuzzy sets of input membership functions. Membership functions of the

inputs are shown in Fig.4. The membership functions are symmetrical triangular shape. Each linguistic value is

expressed by its mnemonic; for example, NB stands for “negative big”, NM stands for “negative medium”,

NS stands for “negative small”, ZO stands for “zero”, and likewise for the positive (P) mnemonic.

(a)

NB NM NS ZO PS PM PB

-1 0 1

))((1 keA n
i

)(ken

(b)

Fig. 4 Membership functions of the normalized heading error in (a)

and the normalized change of heading error in (b)

 The output of fuzzy logic is calculated by the weight average method, given inputs))(),((keke nn ∆ ,

the final output is the weight average of i
nγ as shown in equation (11).

)(

)()(
)(

1

1

kw

kkw
k l

i

i

l

i

i
n

i

n

∑

∑

=

==
γ

γ (11)

where iw >0, i
nγ is the consequent of the i-th implication, and the weight, iw , implies the overall truth value

of premise of the i-th implication calculated in equation (12).

))(())(()(21 keAkeAkw n
i

n
ii ∆•= (12)

where))((1 keA n
i and))((2 keA n

i ∆ are truth-values of heading error and change of heading error of the i-th

fuzzy rule calculated in equation (13).

i
j

i
jj

j
i
j b

ax
xA

−
−=

2
1)(2,1;,...,3,2,1 == jli (13)

where jx is the input value, i
ja is the center of triangle, i

jb is the width of triangle membership function as

define in Fig. 5.

NB NM NS ZO PS PM PB

-1 0 1
)(ken∆

))((2 keA n
i ∆

Fig. 5 Triangle membership function

The second part of the precompensator is the online self-tuning mechanism. The self-tuning method of

the precompensator applies gradient descent technique. The precompensator is tuned by minimizing a cost

function. The cost function is defined as the square of the difference between the actual heading and the

reference command as expressed in equation (14).

 2)(
2
1

ryyE −= (14)

In the self-tuning, only the parameters in the consequent part of the rules are updated. Self-tuning of

the precompensator parameters, ia0 , by gradient descent method is expressed by equation (15).

i
ii

o a
Ekaka

0
0)()1(

∂
∂

−=+ η (15)

where η , is a non-negative learning rate, ia0 is tuned by equation (15). The gradient of the cost function with

respect to ia0 parameter is calculated from equation (16).

))()((
)(

)(

1

0

kyky
kw

kw
a
E

rl

i

i

i

i −=
∂
∂

∑
=

 (16)

4. FLIGHT EXPERIMENT RESULTS

In the experiments, performances of the conventional PID controller and the PID controller with

online self-tuning precompensation are compared. The PID gains, which result in a satisfactory system

performance, are the result of trial and error of many experiments. Finally, the PID gains used in the

experiments are PK =10, IK =0.0125 and DK =6.4. The fuzzy logic consists of 49 rules. The heading

reference is compensated when the heading error is in the range of ±80 degrees. So, scaling factor for the

j
ia
j

ib

)(ij
iA

xµ

ix

heading error is selected at 1G =
80
1

 to ensure that the overall normalized heading error is in the applicable

boundary of the fuzzy input. The change of heading error range is limited within ±5 degrees. So, the scaling

factor for the change of heading error is selected at 2G =
5
1

 to ensure that overall normalized change of

heading error is in the applicable boundary of the fuzzy input. For safety reason, the correction output is

bounded within ±10 degrees by applying the output scaling factor at 3G = 10. For simplicity, the centers of the

input membership functions of NB , NM , NS , ZO , PS , PM and PB are selected at the points–1.0, -0.66,

-0.33, 0, 0.33, 0.66, and 1.0, respectively. The learning rate is selected at 0.5. The same PID gains are used in

both the conventional PID and the PID controller with the online self-tuning precompensation. The initial

values of all the consequent parts of the fuzzy logic are set at zero. It means the correction of zero at the

beginning.

00 =
ia for all i (17)

The heading control loop and the precompensation loop in the experiment are run at 50 Hz. Fig. 6

shows results of the flight experiments. The centers of the output membership functions at the end of the self-

tuning process are shown in Table 1. Fig. 7 shows the fuzzy output of the precompensator. In Fig. 7(a), the

correction value is zero because all of the consequent parts of the fuzzy logic are initialized at zero. Fig. 7(b)

shows the outputs of the precompensator after the tuning process is done.

Fig. 6 Heading control experiment

Fig.6 illustrates significantly improvement when the online self-tuning precompensation is turned on

at time t = 90 seconds. At the beginning, only the conventional PID controller is applied, it results in a steady

state error in the output response. By the precompensation, the steady state error is eliminated.

Table 1 Consequent parameters of fuzzy logic after tuning

 en(k)

 NB NM NS ZO PS PM PB

NB 0 -0.0034 -0.0426 0 0 0 0

NM 0 -0.0022 -0.0279 0 0 0 0

NS 0 0 0 0 0 0 0

ZO 0 -0.0368 -1.0 -0.7795 1.0 0.0198 0

PS 0 0 -0.0046 -0.0007 0 0 0

PM 0 0 0 0 0.0140 0.0010 0

∆ en(k)

PB 0 0 0 0 0.0214 0.0015 0

 Fig. 8 (a) shows the effects of cross coupling from Z-axis of flying robot to the heading control

performance. Firstly, the precompensation algorithm is turned off. The flying robot takes off and head to 120

degree by the conventional PID control. The flying robot then rapidly changes its altitude from 1 meter to 3

meters and changes back to 1 meter again. By the conventional PID controller, the heading moves away from

the setpoint to 50 degree in the counter clockwise direction, which is 70 degrees away from the setpoint. The

similar experiment is conducted on the flying robot again by using the online self-tuning precompensation. The

result is shown in Fig. 8 (b). The precompensation significantly reduces the effect of cross coupling.

(a)

(b)

Fig. 7 Compensation output (a) before tuning and (b) after tuning

 The other experiment tests the effect of self-tuning as shown in Fig. 9. The flying robot lands at time

t = 5 seconds. During landing, self-tuning is saturated. Then the flying robot takes off again at time t = 32

seconds. The result shows the efficiency of the online self-tuning mechanism of the precompensation.

(a)

(b)

Fig. 8 Effects of cross coupling from Z-axis of flying robot to heading control by

(a) PID alone and (b) PID with online self-tuning precompensation

Fig. 9 Saturation of an online self-tuning precompensation

5. AUTONOMOUS FLIGHT TEST

In order to test the control performance of the proposed algorithm, the flying robot is commanded to

fly in a 3 meters by 3 meters square area. The flight experiment is shown in Fig.10. There are 4 points marked

with the white spot on the ground. The flying robot is automatically controlled in 6 DOF, including roll, pitch,

yaw, X-axis position, Y-axis position and Z-axis position. The altitude command is 1.5 meters above the

ground. The X-Y position commands are changed sequentially among the 4 marked points. The X-Y position

commands are changed every 30 seconds. The heading command is maintained at 0 degree (pointing to the

North). Fig.10 shows the flying robot tracking to the marked points. In the fully autonomous flight, the

heading control was disturbed by air turbulent and ground effect. From the results, the zero degree heading

command can be maintained with good performance. Fig. 10 (a) shows the robot flying over the first point.

Fig. 10(b) shows the robot flying to the second point. Fig. 10 (c) shows the robot flying over the second point.

Fig. 10(d) shows the robot flying to the third point. Fig. 10(e) shows the robot flying over the third point. Fig.

10(f) shows the robot flying to the fourth point. Fig. 10(g) shows the robot flying over the fourth point. Lastly,

Fig. 10(h) shows the robot flying to the home point and the mission is accomplished.

(a) (b)

(d)()

Fig. 10 Autonomous flight test with heading point to 0 degree

6. CONCLUSION

 In this paper, the conventional PID controller with and without online self-tuning precompensation

were applied to control heading direction of a flying robot. The conventional PID controller was used as the

basis control method. The adaptable component that used as the command precompensator was successfully

applied. There are two advantages of the proposed method in improving the control performance of the

conventional PID controller. Firstly, the existing PID controller is still used. Secondly, the precompensator

parameters are tuned automatically online. The precompensation is very simple to be integrated into the

existing conventional PID controller. This is simply done by adding the precompensation in front of the

existing PID controller. The performance was evaluated by many flight experiments. The results demonstrated

good performance of online self-tuning precompensation. The conventional PID controller with online self-

tuning precompensation provided much better responses compared to the conventional PID controller alone.

The steady state error was eliminated. The effect of cross coupling was reduced. The settling time was

decreased. However, as shown in the results, there existed overshoots in the output responses. This was

because of the fixed learning rate. In order to achieve a better result, variation of the learning rate is required.

(e) (f)

(h)()

7. ACKNOWLEDGEMENT

 This research project is financially supported by Thailand Research Fund.

REFERENCES

[1] G. Padfield. Helicopter flight dynamics. Blachwell Science Ltd, 1996.

[2] J. -H. Kim, K. -C. Kim, and S. -W. Lee. Fuzzy precompensation of PID controllers. The IEEE conference

on control applications, 1993.

[3] J. -H. Kim, J. -H. Park, S. -W. Lee, and E. K. P. Chong. Fuzzy precompensation of PD controllers for

systems with Deadzones. Journal of intelligent and fuzzy system, 1993.

[4] L. A. Zadeh. Fuzzy set. Informat. Control; Vol. 8, 1965.

[5] S. Saripalli, J. M. Roberts, P. I. Corke, G. Buskey. A tale of two helicopters. Robotics research lab,

University of Southern California, 2002.

Evolutional Sensor Fusion for an Autonomous Flying Robot

VATEE PARIYAPONG1, MANUKID PARNICHAKUN2

1 Phd. Student, Mechatronics, School of Advanced Technologies, Asian Institute of

Technology, Thailand. E-mail: rtafa40@hotmail.com, vatee@genex-school.com,

Tel: 669-133-7709, Fax: 662-524-5697.

2 Associate Professor, Mechatronics, School of Advanced Technologies, Asian Institute of

Technology, Thailand. E-mail: manukid@ait.ac.th, Tel: 662-524-5229, Fax: 662-524-5697.

Abstract

In this paper, we propose an approach based on a mixture of divide-and-conquer principle, Radial Basis
Function network (RBFN), and Evolutional Algorithm (EA) to fuse highly corrupted data from a digital
compass with those from a rate gyro and an angular accelerometer such that the reliability and robustness

on the heading information of an autonomous flying robot is greatly improved in the sense that the
uncertainty hyper-ellipsoid of fused data is minimized. The whole fusion process is taken as a generic,
time-invariant, nonlinear dynamics model which relates a sensory (raw) data input vector to a fused
output as the heading position of such a robot. The architecture contains two hierarchical levels: local and

global fuser engine; hence decomposing design process into two independent steps. Two key algorithms
called “Hybrid GA/OLS (HGAOLS)” and “Evolutional Ensemble Averaging (EEA)” are composed for a
purpose of local and global fuser construction process. The resulting fusion network shows a great deal of
improvement when compared with an original digital compass in aspect of robustness to statistical

uncertainty of the sensors, modular network structure, and fault-tolerance. Also our fusion approach
outperforms conventional fusion methods (e.g. kalman filter and Bayesian filter) in that it is model-free
and adaptive to a changing environmental condition. The approach is considered as a generic model
which can be implemented to any kind of sensor platform. Also, unlike conventional methods, an

assumption on a known statistics of the sensors is not necessary since it can be learned iteratively. So a
set of raw data can be directly fed through the fusion engine and the fused data is obtained without any
prior sensor error distribution knowledge.

Keywords – Sensor Fusion, Divide-and-Conquer, Evolutional algorithm, Radial Basis Function network

1. INTRODUCTION

A digital compass is commonly used to determine heading information of an autonomous robot. However, in practice
compass itself possesses some limitation. Its accuracy often depends on several conditions; such as the robot movement,
magnetic field around the sensor module, sampling speed, and sometimes the vibration of the robot structure itself.
Additionally, the nonlinearity during a conversion process from raw sensory data to heading information usually occurs.
To cope with such an undesirable effect, a sensor fusion process is implemented by integrating other kinds of sensors
with the compass such that fused information is more accurate. Majumder [15], for example, fuses a set of internal
sensors (rate gyro, accelerometer,) with external sensors (digital compass, and pressure sensor) to extract a feature of
unstructured environment around an autonomous robot. In our work, the heading data from digital compass is fused with
the velocity data from a rate gyro and the acceleration data from an accelerometer to better estimate the heading
information of a flying robot (shown in Fig. (1)).

Sensory Data Fusion (SDF) has become a promising technology for the robotics community. For years, both of the
statistical and probabilistic fusion methods have been concurrently developed by many researchers [9], [21]. In the
statistical approach, a fused feature of the target object is obtained in a framework of statistical detection theory. By
doing so, with a set of noisy measurement from different sensors, a fused data is found such that it minimizes the integral
of probability of unacceptable error. Among all, kalman filter and its variants ([20], [23], and [12]) are considered the
most widely accepted techniques due to their computational simplicity and hardware memory saving. However, the main
drawback of kalman fileter-based fusion is that it is model-based technique; i.e., the state and measurement equation
must be provided a priori. Furthers, the complete knowledge of noise distribution both on the process and sensor
measurement is a must in order to implement the kalman estimator effectively. The whole problem gets worse, when the
state and/or measurement equation is intrinsically nonlinear. An optimal filter results can no longer be guaranteed. While
in probabilistic approach, sensor fusion has its root from Bayesian rule of inference. The fused data is the one that
maximized the posterior output distribution conditioned on a given set of current sensor measurements. Normally, in
literatures, this leads to the ML (Maximum Likelihood) and MAP (Maximum A Posteriori) estimator [1]-[2]. In spite of
the usefulness of ML and MAP, like the statistical approach, Lua and Su [14] argued that the pitfall of the probabilistic
fusion is the fact that the requirement of complete (or partial) statistical information of the sensor is inevitable during the
filter computation. Unfortunately, no such sensor can, in fact, be completely represented by its statistical characteristics
in the real world due to a non-uniform error distribution of such a sensor. Besides, most of the practical sensors need
calibration process before being put in use, and it is often not an easy task to do so. Consequently, this makes the sensor
modeling problem more involved than the sensor fusion problem itself. Sensor modeling problem gets even harder when
the sensor statistics is highly sensitive to the environment around it.

In recent years, intelligent learning framework of sensor fusion has been applied as a counterpart to the statistical and
probabilistic approach [8], [10]-[11], and [24]-[25]. One of the merits of such techniques over the statistical and
probabilistic methods is that the statistical information (probability distribution) of each sensor is now only a sufficient
condition. In principles, by considering the fusion engine as a (possibly) nonlinear parameterized function that acts as an

expected value of fused data conditioned on a given input vector from sensory measurement,)(]|[xfxyEfusedy == , an

ultimate goal is to train such a fusion model to learn for intrinsic property of the underlying distribution (nonlinear
conversion from raw to fused data ouput, and measurement error distribution). For realizing learning mechanism,
Artificial Neural Network (ANN) model is a common method due to its nonlinear learning capability. Whereas in
aspects of high-level information fusion process, Fuzzy Logic (FL) and possibility theorem, like Dempster-Shafer theory
(DS; [25]), are quite popular. Both FL and DS are capable of dealing with vagueness in data both qualitatively and
quantitatively. However, ANN, FL, and DS possess one major drawback. Their required network size (complexity) to
effectively estimate an underlying process grows exponentially larger as the dimension of input vector to the model is
increased.

Following the intelligent learning framework, in this paper, a sensor fusion system based on the mixture of “Divide-and-
Conquer” [7] principle, RBFN [3], and EA [16][26] is designed. Based on an idea of “Divide-and-Conquer”, instead of
a (commonly complicated) single sensor fusion model (RBFN), we come up with a combination of a set of smaller, yet
simpler, fusion sub-networks, each of which works best in their corresponding part of the data space. In literatures, an
approach being applied is similar to ensemble or committee machines ([6], [22]) and Bayesian Model Averaging [19]
concept in machine learning community. The only difference is that we apply our concept to sensor fusion problem. In
doing so, we generalize a sensor fusion engine as a generic nonlinear, time-invariant, parameterized function model (i.e.
RBFN) that represents a mapping from an input space (a set of raw data from physical sensors) to an output space (the
fused information). All the parameters contained inside the fusion network model are adjusted iteratively to capture the
intrinsic properties of the underlying system based upon a global optimization technique, i.e. GA. According to neural
network learning theory, our proposed fusion network is proved to best trade-off the two heuristic problems: Curse of
Dimensionality, and Bias/Variance Dilemma ([17] in an intelligent fashion. Furthermore, our final fusion network is
fault-tolerant, robust, and adaptive to a changing environmental condition, as one will see on the empirical results.

The organization of this paper is as follows. In Section 2, we put our sensor fusion process into a framework of
geometric sensor fusion problem. Some issues will be discussed to point out our current requirements for our sensor
fusion design problem In section 3, the sensor fusion architecture is proposed and its unique characteristics are posted.
The two algorithms (HGAOLS, EEA) are then derived in section 4 and 5. Next, experimental study is performed on our
heading motion test-bed to verify our proposed methods in section 6. In the last section, concluding remarks are given to
close our discussion and recommendation on how to extend our proposed architecture to a more general problem.

2. SENSOR FUSION PROBLEM FORMULATION

2.1 Physical sensor and logical Sensor
 Consider a sensory information module, s.i.m, as a logical sensor that represents a nonlinear parametrized mapping ,

nRmRf →: , from a raw data vector obtained from a set of physical sensors, S∈Rm, to sensory information vector,

X∈Rn as follows:

)1(),(Σ= SfX

)2(..1);2(

),0,(;

mi
i

diagQ

QSNSSSS

==

⇔+=

σ

δδδ

)5(
1

∑
=

=
p

i iXiWX

)6(
1 pI

p

i iW =∑
=

where Σ denotes a set of parameters contained inside the s.i.m. In reality, the values of Σ affects the accuracy of such a
s.i.m. In order for X to be uniquely classified, it is necessary that n ≤ m, otherwise X cannot be determined completely.
Further, S is assumed to be a measured sensory data vector which is corrupted by zero mean gaussian white noise as
follows:

Eq. (2) assumes that all the sensory data elements are statistically uncorrelated. Based on the assumption above, we can
compute the mean and error variance matrix of X as:

From Eq. (3), one can easily see that even though the sensor noise elements from a set of sensor measurements are
statistically independent, the final information data elements are not. This is due to the nonlinear transformation given in
eq.(1). If we do some further analysis by applying Singular Value Decomposition (SVD) technique on H in Eq. (4), we
can say that H represents an uncertainty hyper-ellipsoid of s.i.m. in Eq. (1), where each singular value, σ, represents the
length of each principle axis of the ellipsoid with the rotation confined by the diagonal matrix of those singular values.
So if the system contains more than one s.i.m, the next task is how to combine this uncertain information such that the
resulting fused data provides the smallest uncertainty ellipsoid as possible.

2.2 Geometric sensory information fusion
Now suppose that the information data is derived from p different s.i.m.. To simplify the analysis, we propose a solution
on sensor fusion problem for these p sensor modules as a
weighted linear combination of all individual s.i.m.

If we make an assumption that each s.i.m. is calibrated and all eventually give the same true value, X , so we can assure
that an expected value of the fused information, E[X], will be equal to the true value. This assumption leads us to an
important constraint on the weighting matrix as:

where Ip is a (pxp) identity matrix. Using the relationship in Eq. (4) and Eq. (5), we find an error covariance matrix of the
fuse information data as:

)4(
)(

,)()(

])()([]))([(][

)3()(][

nxmR
S

Sf
JTSQJSJ

TSJTSSSJETXXXXEXV

XSfXE

ε
∂

∂
=Η==

∆∆=−−=

==

)3.7(
1

)2.7(
1

)1.7(]))([(][

∑
=

Η=

∑
=

=

−−=

p

i
T
iWiW

p

i
T
iWT

iJiQiJiW

TXXXXEXV

i

()

())2.8(1
11

1

)1.8(
11

1)
1
(

−
−−

∑
=

=

−−
−∑

=
=

















iHiH
p

i

T
iJiQiJ

p

i
T
iJiQiJ

opt
iW

)9(

11

1
][

−−
∑
=

= 






 p

i
XV iH

From Eq. (7.3), our optimal weighted linear combination of these s.i.m. can be found by solving for an optimum weight
matrix W such that Eq. (7.3) is minimized, based on the weighting matrix constraint in Eq. (6). To do so, we apply
Lagrange multiplier technique on such a problem, we get an optimal weight matrix as:

Substitute Wi in Eq. (8.2) into Eq. (7.3), the error covariance matrix of X becomes:

Regarding of Eq. (9), each individual H matrix is computed based on an important assumption that the statistics for each
physical sensor is known a priori. Unfortunately, this rarely happens in the real-world application since the statistics is
hard to be computed precisely (due to non-gaussian property on the uncertainty and noise distribution), and the only
estimated value from an experiment is available at-hand. Additionally, the statistics could sometimes change over
different operational conditions. The statistics of TCM2-50 digital compass model in our experiment, for example,
changes with respect to the tilt angle and electromagnetic field condition around it. So an uncertainty in the values of H
itself will lead to an erroneous result if one tries to use a fixed relation in Eq. (8.2). Further, taking a closer look for the
solution of Eq. (8.2) once again, one can easily see that the existence of an optimal W lies on the critical condition that
individual JQJT is a non-singular matrix; hence the choice of s.i.m. greatly affects the stability of such the solutions.
Consequently, we can conclude that Wopt is, therefore, a complex function of a chosen s.i.m., and the current condition of
the statistics of a set of sensors being used, H. This can be represented mathematically as:

So an important contribution of this paper is as follows: based on the idea of geometric sensor fusion above, we propose
a sensor fusion architecture and a way to solve for Wopt in Eq. (10). Later, we will decompose the process into 2 steps;
i.e., to first find the best f(S) for each local s.i.m. to make sure that the stability condition for the optimal solution exists,
and secondly to search for a set of Wopt which is robust to an uncertainty for the statistics of the sensors at various
conditions.

3. SENSOR FUSION ARCHITECTURE

In this paper, our proposed sensor fusion engine contains the following key characters:

• Almost all non-ideality of physical sensors in used is captured.
• A resulting fusion topology is fault-tolerant, and robust to uncertainty for sensor statistics.

)10(),),((HSSfGoptW =

• It can be easily extended with a new sensor set or modules. In other words, its architecture will be modular
as much as possible.

The architecture used for our sensor fusion engine is shown in Fig. 2 (b). We select a model known as “Hammerstein
model” [13], providing a general nonlinear time-invariant parameterized model (Fig. 2 (a)) which maps a set of sensory
(raw) data to a fused data output. Speaking of modularity property, the architecture comsists of series of nonlinear static
mapping and linear filter model. For sake of ensemble networks idea, we use a weighted linear combination of multiple
nonlinear mapping to fully describe nonlinearity properties in a local sense. In other words, with such architecture, each
nonlinear mapping acts as a local s.i.m. defined in Eq. (1), while the combination serves as an ensemble averaging
among these local s.i.m. to minimize uncertainty hyper-ellipsoid based on Eq. (10). Furthermore, the linear filter portion
is implemented just to capture the dynamics of the overall sensor dynamics. Theoretically, the complexity and flexibility
of the sensor fusion engine depends mainly upon the type and structure of both of the two portions. In our work, RBFN
is selected as a local s.i.m., and an ARX model as the linear filter (Fig. 3). The RBFN is twofold. It is used to represent
all local properties (possessed by each individual physical sensor) via its receptive field width mechanism; hence a
smooth transition occurs while the data point is moving across different operational regions. Also, the RBFN is proved to
be a universal nonlinear function approximator with various levels of accuracy. So, as a complete structure, a discrete
model of the fused data output from the fusion engine at fixed time step, k, is as follows:

where y(K) is defined as a fused output data at the current time step, F(S) as a local s.i.m. (RBFN), w as weighting
constant for each local fuser as in Eq. (5), Ф(S) as a basis function contained inside RBFN, and S(K) as a sensory raw
data at time step, K, respectively. The paprameter a, b, w, and α are all the weighting constants. Noting that from Eq.
(11), an order of the linear dynamic portion (N), the suitable number of local s.i.m. (P), and the optimal values of w and
α are all to be determined later by our proposed algorithm.

4. LOCAL FUSION NETWORK CONSTRUCTION

The RBFN as a local s.i.m. provides some nice properties as mentioned previously. However, it contains one major
drawback. Its complexity (network’s size) grows exponentially while the dimension of input vector gets larger. In this
paper, we propose HGAOLS algorithm to solve such a problem by incorporating EA approach into a design process.
Also, during a desing process, we use a basis function of RFBN as a gaussian function with dead zone on the top, shown
in Fig. (4). The principle behind this is to let each basis function imitate a range of physical reliability of different
physical sensors; i.e., it remains constant around an nominal point and continues to drop as the distance grows from that
nominal point. By this means, we will consider a set of centers of each individual basis function, radius of the dead zone

)11(
1 1 1

)]([)]([)(

1
)(

1
)()(

∑
=

∑
=

∑
=

Φ==

∑
=

−+∑
=

−=

P

i

P

i

L

j
kSjjiwkSifiwku

where

M

j
jkujb

N

i
ikyiaky

α

area, and the receptive field width as a set of structural parameters that need to be learned during the training process of
the RFBN.

4.1. Hybrid GA/OLS: OLS with Adaptive Structure.
The OLS algorithm and its modified version were derived in [4] as a forward regression procedure to select a suitable set
of centers (regressors) of each individual basis function from a large set of candidate points. Normally, those candidates
are slected from a pool of training samples at each step of the regression, the increment to the explained variance of the
desired output is maximized by incrementing a number of orthogonal bases to the network. The OLS is proved to be an
excellent method for constructing a parsimonious RBFN. Unfortunately, an optimum solution exists only if all the
structural parameters mentioned eariler are known or chosen a priori; hence different sets of structural parameters
chosen come with different performance in the final network. To find an optimal set of structural parameters is yet
another critical issue. In our approach, we employ a full advantage of the OLS with further development to solve its
pitfall. In words, an optimal solution on both of the number of most significant basis functions and the basis function
structure itself is solved simultaneously by our proposed HGAOLS algorithm. Referring to Fig. (4), HGAOLS works as
follows: on every iteration of the GA, all of the structural parameters of each basis function as a chromosome of the GA
process are created, and each individual candidate undergoes an original OLS algorithm to obtain individual optimal
network. Random recombination and mutation are applied in order to generate a pool of parental chromosomes for the
next generation, the chromosomes for next generation are selected based on their fitness function (MSE on a set of
testing data), and the whole process is repeated until the stopping criterion is satisfied. Noting that we use a floating
version of GA to fit with a current problem and we implement an intermediate combination on a pair of randomly chosen
parental chromosomes in order to have a smooth transition between the two candidates. For sake of the mutation
mechanism, a mutation with Gaussian distribution is applied on each individual process parameters.

5. GLOBAL FUSION NETWORK CONSTRUCTION

5.1. Ensemble Machines in Geometric Sensor Fusion problem
This section deals with Eq. (5); i.e., how to fuse a set of output from local s.i.m. (RBFN) such that the uncertainty hyper-
ellipsoid is minimized. In machine intelligent learning community, people tackle a problem of how to combine
differently trained networks in various ways (e.g., committee machines, support vector machines, ensemble machines,
and Bayesian Model Averaging). Regardless of the techniques, an ultimate goal of combining multiple networks is to
reduce uncertainty in term of smaller error variance matrix (uncertainty hyper-ellipsoid), while maintaining an accuracy
of the overall system. It is proved that ensemble of multiple neural networks always outperforms a single neural network.
However, an optimal set of weighting constants must be calculated based on the training data. In this paper, our work has
the same principle as in [18], except that we apply such a problem around a sensor fusion design framework. Based on
weighting constraint in Eq. (6), modify Eq. (5) by adding and subtracting the true value of information, X , on the right
hand side as follow:

)12(
1

11
)()

1
(

∑
=

+=

∑
=

∑
=

+−=+∑
=

−=

p

i imiWX

p

i iWX
p

i
XiXiWXX

p

i iXiWX

where m is defined as a miss or an error on each individual local s.i.m. (RBFN) compared with the true value X . The
error variance is recalculated as

][ji mmE represents an error cross-covariance matrix between the ith and jth local s.i.m. on a particular point of

information. An optimum value of W’s can also be determined again by Lagrange multiplier technique as:

Wopt in Eq. (14) is the same as that in Eq. (8.2) only with different interpretation. Eq. (8.2) posts an existence of Wopt
w.r.p. to each individual local s.i.m. through its variance matrix, JQJT, whereas Eq. (14) puts more focus on the
statistical relationship between two local s.i.m.. Consequently, an additional assumption for the existence of Wopt is that
the cross-covariance matrix between any pair of local s.i.m. must be invertable; i.e, any two local s.i.m. (RBFN) must be
as statistically independent as possible in order to have mainly diagonal covariance metrix. Unfortunately, in practice, as
the number of local s.i.m. (RBFN) gets larger, there are often some of the networks that are quite similar in performance,
which make the cross-covariance matrix close to singular.

5.2 Evolutional Ensemble Averaging (EEA): Multi-Objective Ensemble Machines
In this section, we construct an EEA algorithm to solve for each weighting matrix W in Eq. (8.2) or in Eq. (14) such that
Eq. (13) is minimized. Our EEA algorithm is an GA-based ensemble averaging technique. It helps us avoid
computational burden by avoiding direct calculation on an inversion of error cross-covariance matrix and to be assure
that every local s.i.m. is as dissimilar from each other as possible. Also, it allows a linear filter portion of the sensor
fusion engine in Fig. (5) to be found simultaneously.

To achieve our design objective, instead of combining all the local s.i.m., the EEA algorithm allows some of local s.i.m.
to be activated or de-activated at sometime, depending upon the current performance of the final fusion engine (indicated
by the fitness function of GA). Noting that our fitness function must indicate that the final sensor fusion network
contains the smallest size (total number of basis functions) as possible, while maintaining the performance
(generalization error on unseen data) at a reasonable level. Further, the final fuser engine should, at least, outperform the

∑
=

∑
=

=−−=
P

i

P

j
T
jmimEjWiWTXXXXEXV

1
)13(

1
][])()[(][

)14(
1

1][

11

1 1
][∑

=
−

−−
∑
=

∑
=

= 








 P

j
T
jmimE

P

j

P

k
T
kmjmEoptiW

(16)
ortherwise1

kpoint dataat s.i.m. local thi thesoutperformfuser final if0
ikβ







=

)2.18(341|2|

)1.18(1|
3

||,1|

aa

aa

+<

≤

best sensor model and each individual local s.i.m. in the mean square sense. Following these concept, the EEA algorithm
can be though of as a “multi-objective” optimization technique. It minimizes our proposed fitness function as in Eq.
(15).

where np be the total number of basis function contained in each activated RBFN, and T be the size of training data
respectively. The first term on the right hand side of Eq. (15) represents an original performance measurement in Eq.
(13) which, in turn, reflects the statistical independencies among local s.i.m.. The second term controls the structural
complexity (Bayesian Statistical Significance Measure, BSSM, is selected in our work), The last term is to assure that
the final fusion network will be on the average more accurate than each local s.i.m. at each data point. The value of βik
is defined as follows:

Refer to Fig. (5) again, if we consider a z-transform of each linear filter block as

There is a chance during GA learning process that some of coefficient a escape into an unstable area (|a|>1). So in order
to assure that a stable solution of Eq. (17) always exists, we must post one more constraint as:

It is worth noting that Eq. (17)-(18) generalize the fusion architecture to an unlimited order of the linear filter portion of
the fusion network. However, for sake of verifying our idea, we will simply limit the maximum order to five. This leads
to a possible combination of one first-order, and two second-order linear filter blocks.

6. EXPERIMENTAL SETUP

6.1 Local s.i.m. Construction Process
Fig. (6) shows a sensor fusion test-bed to determine the simulated heading movement of our autonomous flying robot in
yaw movement. A set of sensors consists of a piezo-electric angular accelerometers (and gyroscope) model from CFX
Technologies. One GY-240 rate gyro model from FUTABA, and TCM2-50 (microprocessor-controlled fluxgate digital

)15(
1 1

1
()2ln(

1 1
][

























∑
=

∑
=

×+×∑
=

∑
=

=
T

k

P

i ikTpnT
P

i

P

j
T
jmimEjWiWfitness β

)2.17(2
3

1
21

2
)(

)(
:2

)1.17(1
11
1

)(

)(
:1

−+−+
=

−+
=

zaza

K

zU

zY
ordernd

za

K

zU

zY
orderst

compass from PNI Cooperation). The reference heading output of the test-bed happens to be from a shaft encoder from
KOYO with 2500 pulse per round specification (0.144 degree per pulse). In the experiment, the sampling rate of 25 Hz
is used to update heading position via a sensor fusion engine. During data gathering process, the test-bed is rotated in
both directions at different speed configurations. Regarding of all the sensor models, the digital compass is the poorest
one; i.e., while the test-bed is moving with the faster speed, the response of the compass is more prone to error. The
fusion process then aims at reducing such an adversary effect, by augmenting the accelerometer, and the rate gyro with
the original compass to improve the quality of the heading data.

We split the sensor measurement input vector into 3 subsets; 1:{compass, gyro#1}, 2:{compass, accelerometer}, and
3:{accelerometer, rate gyro}. Each subset of sensors forms one local s.i.m. (RBFN), and each local s.i.m. is
independently trained on 3 different data sets as shown in Fig. (7). As a result, there are totally 9 local s.i.m. to be
trained. Noting that from Fig. (7), “NETi/j” means local s.i.m. with an input subseti , and trained on data setj, where i, j
=1,2,3. Each “NETi/j” is found based on our HGAOLS algorithm, and the final network combination is formulated via
the EEA method.

Regarding to HGAOLS algorithm in Fig. (4), a floating version of GA with population of 30 chromozomes is
implemented in our experiment. Each individual chromosome consists of structural and process parameters. A set of
structural parameters includes the center location (C), radius of dead zone (R), and the receptive field width of each basis
function (σ). While the process parameters involve with crossover (Pc) and mutation probability (Pm)constant. In the
experiment, we use decaying functions of Pc and Pm with high initial values (Pc=0.7 and Pm=0.5) in order to promote
information interchange among parental chromosomes and mutation on individual chromosome. The mutation process is
based on a Gaussian distribution, and the crossover between two parental chromosomes is an intermediate combination.
An elitism selection process with a ratio of 5-8% is utilized, meaning that the first two fittest chromosomes (out of 30)
are preserved for the next generation and the rest are selected based on stochastic uniform technique.

Table (1)-(2), and Fig. (8) give the empirical results on each local s.i.m. being trained on 2000 data points. One can
easily see that each local s.i.m. comes with different set of structural parameters (dead zone radii, receptive field width,
and height of each basis function). Also they perform with different levels of accuracy (Table (1)). However, all
outperforms the original digital compass in the means square sense. On the experiment, the best local s.i.m. is NET2/3
and the second runner is NET2/1. Even though NET2/3 contains more nodes than NET2/1, it is not necessary that it will
perform better. This verifies the key idea of our HGAOLS algorithm (Fig. (8)). In fact, it is able to trade-off between
complexity (network size) and accuracy (MSE on training data) in order for the final local s.i.m. (RBFN) to best perform
on an unseen data (minimum generalization error).

6.2 Global Fuser Construction Process
For the global fuser construction process, referring to fig. (5), the goal is to find an optimum set of all constant parameter
inside the global fuser engine; i.e., weighting constant for each NETi/j (wij), an input delay coefficient (b1, b2), and all

coefficients contained in each linear filter block (ai; i=1..5). We create a population of 50 chromozomes. It takes 80
iterations until the algorithm stops. Noting that at this step, a chromosome topology is different from that of local s.i.m..
In fact, a set of structural parameters is as {wij, b1, b2, a1, a2, a3, a4, a5, nw, nb, na}. Nw, nb, and na are on/off switching
patterns for local s.i.m., delay unit, and linear filter block. These three constant parameters lead to adaptive fusion
network configuration of each candidate chromosome.

Table (3) shows results on the top 4 winners and Fig. (9) gives a performance comparison among the local s.i.m., global
fuser, and original compass. Also, we calculate a simple averaging network (NETAVG) by adding an output from all the
local s.i.m. and divided by the total number of those local s.i.m.. One can see that both of the NETAVG and final global
fuser engine yield a better performance than even the best local s.i.m., NET2/3. So combining more than one local s.i.m.
really makes thing work out than using each individual local s.i.m.. However, in case of NETAVG, the cost of higher
accuracy (MSE) is high complexity of the final network configuration (all basis function nodes are connected). To solve
such a problem, our EEA algorithm lets some of the unnecessary local s.i.m. to be discarded during the search process
making sure that the complexity and accuracy is best trade-off. Regarding Table (3), candidate#1 has higher MSE
(17.0721) than cadidate #3 (15.6769). However, when taking a structural complexity into account (described as MSEtotal ;
fitness in Eq. (15)), candidate#1 is the first winner since it contains one local s.i.m. less than candidate#3. Consequently,
we can conclude that our EEA algorithm provides the best network combination in the sense that all the objectives in Eq.
(15) are most satisfied.

7. CONCLUSION

In this paper, we propose a viable approach based on a mixture of divide-and-conquer principle, RBFN, and EA to fuse
highly corrupted data from a digital compass with those from a rate gyro and angular accelerometer such that the
reliability and robustness on heading information of an autonomous flying robot is greatly improved in the sense that an
uncertainty hyper-ellipsoid of the fused data is minimized. To generalize our problem, the whole fusion process is treated
as a generic, time-invariant, nonlinear dynamics mapping which relates a sensory (raw) data input vector to a fused data
output (heading position). The architecture contains two hierarchical levels: local and global fuser engine; hence
decomposing design process into two independent steps. The HGAOLS algorithm is proposed to construct each local
s.i.m. (RBFN), and EEA is used to search for the final global fuser engine.

The empirical data indicate that our HGAOLS algorithm can exploit a full advantage of the original OLS in an intelligent
way to yield a parsimonious local s.i.m. (RBFN). In one hand, based on idea of ensemble machines, the EEA can
adaptively combine the local s.i.m. such that the final global fuser engine can best trade-off between the complexity and
the accuracy through the fitness function mechanism of the GA.

Our sensor fusion architecture is also modular; hence one can add a new sensor set as local s.i.m. at any time in the
future. This can be easily done by initializing the weighting factor of a newly trained local s.i.m. to zero, and have the
EEA learn a new global network configuration. Further, the resulting fusion engine is robust to uncertainty of sensor

statistics. This is verified by our experimental results at different speed configurations that our global fuser outperforms
the best local s.i.m.. Lastly, the fusion architecture is considered as a generic model for any type of fusion, meaning that
a designer has freedom to select any kind of nonlinear mapping part and the linear dynamic filter block with various
orders to satisfy his design objective with a reasonable level of accuracy. Regardless of the type of mapping and order of
the filer, our HGAOLS and EEA algorithms can still be applied to tackle the new problem.

Acknowledgement
This research project is financial supported by Thailand Research Fund.

References
[1] Alhakeem, S. and Vashney, P.K. (1996.), Decentralized Bayesian Detection with Feedback, IEEE
 Trans. On Systems, Man, and Cybernetics, Vol. 26, No. 4, pp. 503-513.
[2] Bar-shalom, Y.B. Li, X.R. and Kirubarajan, T. (2001), Estimation with Applications to Tracking and
 Navigation, John Wiley & Son, Inc.
[3] Blanziera, E. (2003), “Theoretical Interpretation and Application of Radial Basis Function
 Networks”, Technical Report#DIT-03-023, University of Trento, Italy, submitted to Elsevier Science,
 May.
[4] Chen, S. Cowan, C.F.N. and Grant, P.M. (1991), “Orthogonal Least Squares Learning Algorithm For
 Radial Basis Function Networks”, IEEE Trans. Of Neural Networks, Vol.2, No.2, March.

[5] Dietterich, T.G. (2000), Ensemble Methods in Machine Learning, In Kittler, J. and Roli, F., editors,
 Multiple Classifer Systems, Vol. 1857 of lecture Notes in Computer Science, pp. 1-15, Cagliara, Italy.
[6] Hashem, S. (1994), “Optimal Combinations of Neural Networks”, Neural Networks, Oct.
[7] Haykin, S. (1999), Neural Network: A Comprehensive Foundation 2nd edition, Prentice Hall Inc.,
 Upper Saddle River, New Jersey, N.W.
[8] Hiransoog, C. and Malcolm, C.A. (1999), “Multi-sensor/ Knowledge Fusion”, Proc. of the 1999
 IEEE Int. Con.On Multisensor Fusion and Integration for Intelligent Systems, Taipei, Taiwan,
 pp.117-122, Aug (2):285-299.
[9] Kamberova, G, Mandelbaum, R. and Mintz, M. (1996), “Statistical Decision theory for Mobile
 Robotics: Theory and Application”, in Proc. Of 1996 IEE/SICE/RSJ International Conference on
 Multisensor Fusion and Integration for Intelligent Systems (Washington DC, Dec.). pp. 17-24.
[10] Kobayashi, F. Arai, F Fukuda, T. Onoda, M. and Hotta, Y. (1999), “Sensor Selected Fusion System
 (Application to Inference of Surface Roughness in Grinding System)”, Proc. of the 1999 IEEE
 Int.Con.On Multisensor Fusion and Integration for Intelligent Systems, Taipei, Taiwan, August.
[11] Kobayashi, F. Arai, F. Shimojima, K. and Fukuda, T. (2000), Sensor Fusion System Using
 Recurrent Fuzzy Inference, In Sinha, N.K. Gupta, M.M., editors, Soft Computing and Intelligent
 Systems: Theory and Application, Academic Press, A Harcourt Science and Technology Company,
 San Diego, CA, USA.
[12] Lefebvre, T. Bruyninckx, H and De Schutter, J. (2001), “Kalman Filters for nonlinear systems: a

 comparison of performance”, Internal Report#01R033, Department of Mechanical Engineering,
 Katholieke Universiteit, Leuven, Belgium, Oct.
[13] Ljung, L. (1999), System Identification: Theory for theUser, Prentice Hall PTR, Upper Saddle River,
 New Jersey.
[14] Lua, R.C. and Su, K.L. (1999), “A Review of High-Level Multi sensor Fusion: Approaches and
 Applications”, Proc. of the 1999 IEEE Int. Con. On Multi-Sensor Fusion and Integration for
 Intelligent Systems, Taipei, Taiwan.
[15] Majumder, S. (2001), “Sensor fusion and Feature Based Navigation for Subsea Robot”, Phd. Thesis,
 University of Sydney.
[16] Michalewicz, Z. (1999), Genetic Algorithms + Data Structures = Evolution Programs: Thrid
 Edition, Springer Verlag, printed in USA.
[17] Niu, S.S. and Ljung, L. (1994), “Multiple Model Parameter estimation”, Technical Report,
 Department of Electrical Engineering, Linkoping University, S-58183 Linkoping, Sweden.
[18] Perrone, M.P. (1993), “Improving Regression Estimation: Averaging Methods for Variance with
 Extensions to General Convex Measure Optimization”, Phd. thesis, Brown University.

[19] Raftery, A.E. Madigan, D. and Hoeting, J.A. (1997), “Bayesian Model Averaging for Linear
 Regression Model”, Jounal of the American Statistical Association (1997) 2, pp. 179-191.
[20] Roumeliotis, S.I. and Bakey, G.A. (1997), “An Extended Kalman Filter for Frequent Local and
 Infrequent Global Sensor Data Fusion”, In SPIE International Symposium on Intelligent Sysems and
 Advanced Manufacutring.
[21] Thrun, S. Fox, D. and Burgard, W. (1997), “Probabilistic Methods for State Estimation in Robotics”,
 Proc. Of The Workshop SOAVE’97, VDI-Verlag, pp. 195-202.
[22] Tresp, V., Committee Machines, In Hu, Y.H. and Hwang, J.N. (2001), editors, Handbook for Neural
 Network Signal Processing, CRC Press.
[23] Wan, E.A. and Van Der Merwe, R. (2000), “The Unscented Kalman Filter for Nonlinear
 Estimation”, In Proc. Of IEEE Symposium (AS-SPCC), Lake Louise, Alberta, Canada, Oct.
[24] Wijesoma, W.S. Khaw, P.P. and Teoh, E.K. (2001), “Sensor Modelling and Fusion for Fuzzy
 Navigation of an AGV”, Int. J. of Robotics and Automation, Vol. 16, No.1.
[25] Wu, H. Siegel, M. Stiefelhagen, R. and Yand, J. (2002), “Sensor Fusion Using Dempster-Shafer
 Theory”, IEEE Instrumentation and Measurement Technology Conference, Achorage, AK, USA, 21-
 23 May.
[26] Zhou, Z.H. Wu, J.X. Jiang, Y. and Chen, S.F. (2001), “Genetic Algorithm based Selective Neural
 Network Ensemble”, in Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, Seattle, WA,
 vol.2, pp.797-802.

Figure1 An autonomous flying robot platform under studied. The robot
is equipped with different kinds of sensors to detect its movement

Figure 2 Sensor Fusion Architecture. (a) The sensor fusion engine is treated as a generic nonlinear, time-invariant,
dynamics module; relating a set of (raw) sensory input to an out put as a fused data. (b) A so-called “Hammerstien” model is
implemented as our proposed fusion engine. It consists of a series connection of nonlinear static mapping (local fuser) and
linear dynamics model (global fuser)

Figure 3 Inside the sensor fusion network, each individual local fuser engine is modeled by RBFN, while a global fuser
engine is represented by a linear filter model (ARX model)

Figure 4 Hybrid ES/OLS algorithm is used in training an individual local fuser
engine (RBFN). It is a modified OLS algorithm with an adaptive structure on each
basis function of the network

Figure 5 EEA algorithm allows an adaptive structure of sensor fusion network. Its ultimate goal is to find the best possible
solution on both a weighted linear combination of a subset of local fuser networks, and the final global fuser topology

“TCM2 50” digital compass

A l t f CFX

“GY 240 model” rate Gyro

AVR and

68HC11

Master PC

Figure 6 Test Bed for hardware simulation on sensor fusion network for our flying robot to
determine its heading information

 5 10 15 20 25
20

40

60

80

100

120

140

160

180

200
Comparison of various local fusers (RBFN) trained by Hybrid ES/OLS algorithm

Number of nodes (complexity)

M
S

E
 (a

cc
ur

ac
y)

NET11

NET13

NET12

NET21

NET22

NET23

NET31

NET32

NET33

best local fuser

Figure 8 All local fuser engines (RBFN) are independently trained by Hybrid ES/OLS algorithm. The best local fuser
is the one which best trade-off the complexity (number of nodes) and accuracy (lower MSE) compared with the real
data

Figure 7 The training data are collected from experiment under different conditions. To train each local fuser, the whole
data pool is split into three data sets, each of which is randomly selected from the same distribution. Also, each local
fuser is fed with a subset of input vector.

Table2: Local Fuser configuration. Each basis function has two input elements [physical sensors].

Module Num of Node Basis Function Configuration
dead zone radius (r) height (h) receptive field width (σ)

Net1/1 17 [99.47627 99.51393] [0.45765 0.25997] [63.84345 63.78425]
Net1/2 10 [130.30891 119.97139] [0.48874 0.91872] [90.23078 90.59792]
Net1/3 18 [155.07836 106.75874] [0.43982 0.63708] [0.43982 0.63708]
Net2/1 22 [154.40800 125.71423] [0.40692 0.57588] [100.000 100.000]
Net2/2 14 [155.40772 107.77353] [0.24711 0.69409] [100.00000 77.96618]
Net2/3 18 [0.00000 0.00000] [0.20000 0.20000] [93.58083 93.51969]
Net3/1 14 [142.19408 150.93108] [0.48840 0.51848] [56.82354 48.34572]
Net3/2 10 [0.00000 18.60694] [0.20000 0.97978] [89.00272 100.0000]
Net3/3 10 [153.3542 0.00000] [0.7852 1.00000] [101.1358 51.56257]

Best local fuser

Second runner

Table 1: Result ing Local Fusers compared with original digit al compass on
 T est Set [2000 data point s]

Module MSE Num of Node Rel. MSE
compass 484.7365849 - 0.364485692

Net1/1 70.63411128 17 0.053111574
Net1/2 85.52948096 10 0.064311779
Net1/3 51.93115431 18 0.039048348
Net2/1 43.1681132 22 0.032459196
Net2/2 58.64328534 14 0.044095369
Net2/3 31.30426693 18 0.02353847
Net3/1 144.7417427 14 0.108834975
Net3/2 172.6081981 10 0.129788468
Net3/3 186.6224398 10 0.14032613

Candidate # 1:

w11 = 0.1766 w12= 0.0633 w13= 0.2079

w21 = 0.0000 w22= 0.0000 w23= 0.2633

w31 = 0.0000 w32= 0.1599 w33= 0.0000

b1= 0.5507 b2=0.2751

a1= 0.3943 a2= 0.0000 a3= 0.6203 a4= 0.0000 a5 = 0.0000

MSE = 17.0721 MSEtotal = 1263.3381

Candidate # 2:

w11 = 0.2298 w12= 0.0835 w13= 0.1734

w21 = 0.0000 w22= 0.0000 w23= 0.2503

w31 = 0.0000 w32= 0.2334 w33= 0.0000

b1= 0.4510 b2= 0.0000

a1= 0.5464 a2= 0.0000 a3= 0.3687 a4= 0.0000 a5 = 0.0346

MSE = 17.3100 MSEtotal = 1280.9375

Table 3 Resulting configurations of the candidate sensor fusion architectures from the EEA
algorithm [num of pop: 50, iteration: 80]

0 10 20 30 40 50 60
0

100

200

300

400
Test Run#3: High Speed Clock-wise [Position]

Time (sec)

A
ng

ul
ar

 P
os

iti
on

 (d
eg

)

0 10 20 30 40 50 60
-100

0

100

200

300
[Velocity]

Time (sec)

A
ng

ul
ar

 v
el

oc
ity

 (d
eg

/s
ec

)

compass Net1/1 Ne1/2 Net1/3 Net2/1 Net2/2 Ne2/3 Net3/1 Net3/2 Net3/3 Avg Global Fuser
0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 M
S

E

0 10 20 30 40 50 60
0

200

400
Test Run# 2: Mid speed on both directions [Position]

Time (sec)

A
ng

ul
ar

 P
os

iti
on

 (d
eg

)

0 10 20 30 40 50 60
-100

0

100
[Velocity]

Time (sec)A
ng

ul
ar

 v
el

oc
ity

 (d
eg

/s
ec

)

compass Net1/1 Net1/2 Net1/3 Net2/1 Net2/2 Net2/3 Net3/1 Net3/2 Net3/3 Avg Global Fuser
0

0.05

0.1

0.15

0.2

N
or

m
al

iz
ed

 M
S

E

0 10 20 30 40 50 60
0

100

200

300

400
Test Run#1: varying speed on both directions [Position]

Time (sec)

A
ng

ul
ar

 P
os

iti
on

 (d
eg

)

0 10 20 30 40 50 60
-50

0

50

100

150
[Velocity]

Time (sec)

A
ng

ul
ar

 v
el

oc
ity

 (d
eg

/s
ec

)

compass Net1/1 Net1/2 Net1/3 Net2/1 Net2/2 Net2/3 Net3/1 Net3/2 Net3/3 Avg Global Fuser
0

0.05

0.1

0.15

0.2

0.25

N
or

m
al

iz
ed

 M
S

E

(a)

(b)

(c)

Figure 9 The performance of a final sensor fusion engine compared with an original
digital compass, each individual local fuser, and a simple averaging of all local fuser
networks

},...,,,,...,,,...,,{ 212121 mmM xxxnnn σσσ

Figure 7: The multi-level structure of chromosome in HES.

DEVELOPMENT AND CONTROL OF 6 DOF
FULLY AUTONOMOUS FLYING ROBOT BY HYBRID

ADAPTIVE NEURO-FUZZY MODEL REFERENCE CONTROL

SUKON PUNTUNAN and MANUKID PARNICHKUN
Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand

Tel: +66-2-524-5229, Fax: +66-2-524-5697, Email: manukid@ait.ac.th

Abstract

Control of 6-DOF fully autonomous helicopter type flying robot is very difficult. Many researchers verified their
control algorithms only on simulation. There are very few success experiments on fully control of the flying robot. In order to
make the robot fly autonomously, the attitude and position controls are needed. In this paper, the neuro-fuzzy controllers
(NFC) are developed to control the roll, pitch and yaw of the flying robot, while the hybrid adaptive neuro-fuzzy model
reference control (Hybrid-ANFMRC) is developed to control its position. The attitude controllers are trained offline to zero
out the roll, pitch and yaw errors. The position control uses the hybrid technique called, “hybrid adaptive neuro-fuzzy model
reference control”. The position control learns online to track the velocity reference model, while trying to obtain the smooth
response and zero steady state error. Design robustness of the proposed control algorithm is addressed by testing in the
experiments under various ranges of the controller gains. In this paper, the experimented results are used to show the
performance of the proposed control algorithm.

Keyword: neuro-fuzzy control, flying robot, adaptive control, hybrid control, model reference adaptive control.

1. Introduction

Over the coming century, flying robots will take the place of human labor in many areas, particularly in various
hazardous duties. For example, they can hover and transmit video image from hostage situations, enemy positions, or areas
contaminated by chemicals or biological agents. To make use of robots in these various circumstances, they should have the
ability to fly automatically. A flying robot developed at AIT is modified from X-Cell 60 radio-controlled helicopter. It is
developed to support autonomous flight control covering wide-mode missions of operation from hovering to other maneuvers.
The flying robot has six degrees of freedom in its motion. It can make various flights, such as forward flight, backward flight,
sideward flight, hovering, vertical climb, etc. The problem with this kind of flying robot is that it is inherently unstable,
especially at low speed. There are nonlinear variations in the dynamics with air speed. Also the natural environment such as
wind easily affects the flight dynamics. Hence control of the robot is a difficult one.

Currently, there are many researches on development of autonomous flying robots with different control techniques
[7]. There are very few success experiments on fully control of this kind of robot. Two groups of researcher can be
considering separately. The first is the researcher who is related on the model-based control. The second is the researcher who
is concentrated on the model free approach. The first way is very difficult to make it usable in the real world, because it is
difficult to find the acceptable accurate dynamics model. As system increase in complexity, completely and accurately
deriving their mathematical models become more difficult. Therefore, the equations that model a system are approximations.
To overcome this drawback, some recent research projects have scope to the model free designed technique. Neural network
and fuzzy logic are the most popular controllers that have been used. In [2], the neural network controller is trained offline
from the flight data. Its uses direct mapping of sensor inputs to the actuator. The control used a “cause” and “effect” approach.
Their experiment result is not accomplished with this approach. In [3], a “teaching by showing” methodology is developed to
train the fuzzy-neural controller. The controller is generated and tuned using training data gathered while the teacher operates
the flying robot. The methodology has been successfully applied in simulation but failed to control the flying robot for real
world validation. In [5], a fuzzy logic controller was successfully applied to control the flying robot. Their used the knowledge
and technique of an experienced pilot/engineer to design the fuzzy logic controller. Their also compared the performance of
fuzzy logic control and linear control under a windy environment. Fuzzy control shows much more robustness against winds
than linear control. However, the designed process used much more time and required the experimental skill from the expert
pilot. The drawback of the fuzzy logic is that it requires more knowledge about the operation of the plant. Normally, the
parameters of the fuzzy logic controller need to be finding manually. The drawback of the neural network controller is that it is
difficult to re-tune it after the training process is accomplished. The neuro-fuzzy controller combines the advantage of the
fuzzy logic controller and neural network together. The learning capability of the neural network and the tuning capability of
the fuzzy logic controller are merged.

In this paper, the model free approach is developed. The neuro-fuzzy is proposed to control the roll, pitch and yaw of

the flying robot. The neuro-fuzzy is trained from the flight data. The hybrid adaptive neuro-fuzzy model reference control
(Hybrid-ANFMRC) is proposed to control the position of the flying robot. The position control combines the neuro-fuzzy with
the proportional control. The proportional control does as the basis controller, while the adaptive neuro-fuzzy model reference
control try to learn to track the velocity reference model. The reference model is defined as the function of the position error. It
can be the linear or exponentially relation of the position error. The position control learns from scratch without using any
expert knowledge. Experiments were undertaken to evaluate the efficiency of the proposed control algorithm. The robustness
of the position controllers was addressed by testing in the experiments under various ranges of the proportional gains.

This paper is organized as follows. In section 2, provides a description of the flying robot. Section 3 provides the
structure of the neuro-fuzzy and the hybrid adaptive neuro-fuzzy model reference control. Section 4 provides the simulation
and experimental results, which demonstrate performances of the proposed control algorithm. Finally, the conclusion is made
in section 5.

2. System Description

The flying robot airframe is a modified X-Cell 60 radio-controlled helicopter with a main rotor diameter of 1.80 meters.
The robot’s OS91 glow plug engine has power rating of 3.0 HP, resulting in the maximum payload of 5.0 kg and flight
duration of approximately 15 minutes. Fig. 1 shows the flying robot and its avionics box. The control system contains the
following processors and sensors.

• The flight control microprocessor, based on the 16-bits digital signal controller. The flight control microprocessor
controls the roll, pitch, yaw and position of the flying robot. It is also generated pulse width modulation (PWM)
signals to drive 4 actuators. The flight control microprocessor continuously communicates with ground station via a
serial radio modem. The communication occurs every 200 milliseconds and the range of communication covers up to
3 km. The ground station sends DGPS correction signal and updates user commands to the flying robot.

• A 3DM-GX1 attitude and heading reference sensor (AHRS) containing three angular rate gyros, three orthogonal
linear accelerometers, and three orthogonal magnetometers to provide three orientation angles (roll, pitch and yaw).

• An OEM4 RT-20 GPS card. The GPS provides latitudes and longitudes information within 20 cm CEP (circular error
probable) when operated in a real time kinematics.

• There are 2 altitude sensors. In a short range and high precision measurement, an SRF-08 ultrasonic altimeter is used
to provide ground-to-robot distance. At the higher altitude, the barometric pressure altimeter is used to provide the
altitude with 1-meter resolution.

Fig. 1. Flying robot testbed

The robot has five control inputs [5].

• The throttle, Thrδ this is the input for the engine control to drive the rotor. There is a feedback loop for the throttle
control to maintain the rotation speed of the main rotor constant. The engine governor is used for this purpose.

• The collective pitch, Colδ this is the input for the climb or descent control by changing the main rotor’s lift though the
change of the main rotor blade angle. It is used in the altitude control.

• The longitudinal cyclic or elevator, Lonδ this is an input for forward and backward flight control by tilting the main
rotor path plane forward or backward. It is used in the pitch and longitudinal position control.

• The lateral cyclic pitch or aileron, Latδ this is the input for the rightward or leftward flight control by tilting the main
rotor path plane right or left. It is used in the roll and lateral position control.

• The rudder cyclic pitch, rudδ this is an input for the yaw control by changing the lift of the tail rotor through the
change of the tail rotor blade angle. It is used in the yaw control.
Most of the researchers [7] have used the PC104 computer as the onboard computer. In our flying robot, the onboard

computer is an embedded microprocessor as shown in Fig. 2. For the small-sized flying robot, this can be reduced the weight,
space and electrical power consumption of the control system. The control cycle of one completely calculation must be within
20 microseconds (50 Hz). The control algorithms presented in this paper is not only designed in the control performance
viewpoint. It is optimized to suit with the low computing power of the embedded microprocessor. So, all of the membership
function in the fuzzy layer of the neuro-fuzzy and the Hybrid-ANFMRC are selected as the symmetrical triangle membership
functions.

Fig. 2. The onboard microprocessor

3. Control Algorithms
3.1 Neuro-fuzzy control

The neuro-fuzzy is developed to control the roll, pitch and yaw of the flying robot. The neuro-fuzzy
controllers constitute a class of hybrid soft controllers that fuse fuzzy logic and neural networks. It combines
the advantages of neural network in learning ability, optimization abilities and connectionist structure with the
advantage of fuzzy logic control in human like structure, ease of incorporating expert knowledge [1]. The
structure of the neuro-fuzzy attitude controller is shown in the Fig. 3.

Fig. 3. Neuro-fuzzy attitude control

In Fig.3, there are two inputs and one output of the neuro-fuzzy control. The first is the attitude error,)(ke . The
second is the change of attitude error,)(ke∆ . The output of the neuro-fuzzy is the change of the actuator command,)(kδ∆ .
The attitude error,)(ke and change of attitude error,)(ke∆ , are determined as followings.

)()()(kkke desired Φ−Φ= (1)
)1()()(−−=∆ kekeke (2)

where)(kdesiredΦ is the desired attitude, and)(kΦ is the actual attitude of the flying robot.
The input variables of the neuro-fuzzy are normalized to the normalized attitude error,)(ken and the normalized

change of attitude error,)(ken∆ . The normalized values are calculated as followings.
))(()(1 kegken = (3)

))(()(2 kegken ∆=∆ (4)
where)(1 •g and)(2 •g are the normalization functions of the attitude error,)(ke and change of attitude error,)(ke∆ ,
respectively.

The normalization functions are defined as the followings.
))((1 keg)(1 kegk nege= if 0)(≤ke

)(1 kegk pose= if 0)(>ke

))((2 keg ∆)(2 kegk nege ∆= ∆ if 0)(≤∆ ke

)(2 kegk pose ∆= ∆ if 0)(>∆ ke (5)

where ek and ek∆ are the attitude error and the change of attitude error gains, respectively. The constant values of negg1 ,

posg1 , negg2 and posg2 are the normalization factors for each input variables.

The output of the neuro-fuzzy control is the result of mapping from the normalized attitude error,)(ken and
normalized change of attitude error,)(ken∆ to the output,)(kγ . The change of actuator command,)(kδ∆ , is obtained by
multiplying the output,)(kγ with the output gain δk as the following.

)()(kkk γδ δ=∆ (6)
The actuator command,)(kδ , is the summation between the change of actuator command,)(kδ∆ and the control

z-1

+
-

Flying
Robot

 Fine-Tune Mechanism

T
 Neuro-Fuzzy Controller

edesiredΦ

Φ

g2

g1

e∆

ne

ne∆

δ∆

trimδ

δγ
δk

trim, trimδ . The value is calculated as the following.
)()(kk trim δδδ ∆+= (7)

In addition, the performance of the neuro-fuzzy control is affected by the input-output normalization factors [6]. The
normalized values are affected directly by changing the attitude error gain, ek , the change of attitude error gain, ek∆ and the
output gain δk . So, the system time response can be also improved by using the variation of these gains. Fig. 4 is the general
system response of the step input.

Fig. 4. Typical time response of the step input

For example, the region “a” in Fig. 4, it indicates the system control signal is too small. By increasing of the attitude
error gain, ek and decrease the change of attitude gain, ek∆ , it can improve positive value of control signal and make the
response tracking the reference input more quickly. In the region “b”, the overshoot happens. One can increase change of
attitude error gain, ek∆ . This makes the value of the control effort more negative and reduces the overshoot. This principle is
used to re-tune the neuro-fuzzy control after the offline-training is accomplished.

In this paper, the neuro-fuzzy control is trained to zero out the attitude errors. The flight data is used as the training
set. The offline training of the neuro-fuzzy control is the back propagation algorithm. In Fig. 5, a neuro-fuzzy control with
fuzzy singleton rule is presented. The symmetrical triangle membership function is selected because of its simplicity.

Fig. 5. Symmetrical triangle membership function

j
ia
j

ib

)(ij
iA

xµ

ix

0 0 .5 1 1 .5 2 2 .5 3 3 .5
0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4
T y p ic a l s te p re s p o n s e

T im e

R
es

po
ns

e

re s p o n s e
C o m m a n d

a

b

The triangle membership function is expressed by the following equitation.

j
i

j
ii

iA b

ax
xj

i

−
−=

2
1)(µ , ni ,...2,1= mj ,...,2,1= (8)

where ix is the input value, j
ia is the center of triangle and j

ib is the width of triangle. The fuzzy rules, also called fuzzy
singleton, are in the following form [1].

Rule j: If ix is jA1 and 2x is jA2 and … and nx is j
nA then γ is jw .

where j
iA is a linguistic term with the membership function,)(i

i
A xj

i
µ , jw is a real number of weight in the neural part. By the

singleton rule, control output,)(kγ from the neuro-fuzzy controller is calculated by the following equation.

)(

)()(
)(

1

1

k

kwk
k m

j
j

m

j
jj

∑

∑

=

==
µ

µ

γ (9)

where
)()(1

2
1 iAiAj xx
j

µµµ = …)(1 iA x
n

µ (10)

The weights of the neuro-fuzzy control are modified with the steepest gradient method by trying to minimize a cost
function. The cost function is defined as the square of the difference between the command attitude and the actual attitude as
expressed by the following.

2)(
2
1

Φ−Φ= desiredE (11)

The weights of the neuro-fuzzy control are modified with the steepest gradient method as the following.

j
jj w

Ekwkw
∂
∂

−=+ η)()1((12)

where 0≥η is the learning rate.
By using the chain rule, the adjusted weights can be expressed and calculated as the following.

))()((
)(

)(

1

kk
k

k
w
E

desiredm

j
j

j

j
Φ−Φ=

∂
∂

∑
=

µ

µ
 (13)

3.2 Hybrid adaptive neuro-fuzzy model reference control

The Hybrid-ANFMRC is proposed to control position of the flying robot. The control is a hybrid of the proportional
control and the adaptive neuro-fuzzy model reference control. In the proposed control algorithm, the proportional control
generates the output proportional to the position error. The adaptive neuro-fuzzy model reference control generates the output
by learning to track the velocity reference model. The structure of the Hybrid-ANFMRC is shown in Fig. 6.

Fig. 6. Structure of the Hybrid-ANFMRC

In Fig. 6, the Hybrid-ANFMRC consists of the proportional control and the neuro-fuzzy control. The position error

)(ke p is the different between the desired position,)(kPdesired and the actual robot position,)(kProbot . It is calculated as the
following.

)()()(kPkPke robotdesiredp −= (14)

The proportional control is used to generate the control output,)(ku prop proportional to the position error,)(ke p .
The output of the proportional control is calculated as the following.

))1()(()1()(−−+−= kekekkuku ppPpropprop (15)

where Pk is the proportional gain.
The effect of the proportional control will tend to reduce the overall error. However, the effect of the proportional

control will reduce as the error approaches zero. In most system, the error will get very close to zero, but will not converge.
The adaptive neuro-fuzzy model reference control is used to drive the steady state error to zero, while damp out any
oscillation. The output of the proportional control,)(ku prop , is summed with the output of adaptive neuro-fuzzy model

reference control,)(kuneuro to the hybrid control output,)(kuhybrid as the following.

)()()(kukuku neuroprophybrid += (16)

The hybrid output,)(kuhybrid , is added with the control trim, trimu , to generate the control output,)(ku . The
calculation is expressed as the following.

trimhybrid ukuku +=)()((17)
The input of the adaptive neuro-fuzzy model reference control is the velocity of the robot. The robot velocity is

normalized to the normalized velocity,)(, kP robotn
& . The normalization processes by multiplying the velocity,)(kProbot

& with

the scaling factor, vg as the following.
)()(, kPgkP robotvrobotn

&& = (18)

 The output of the adaptive neuro-fuzzy model reference control is the mapping result from the velocity,)(kProbot
& to

the adaptable output,)(kuneuro . The output of adaptive neuro-fuzzy model reference control is calculated by the weight
average method, given inputs,)(, kP robotn

& the final output is the weight average of)(kuneuro as shown in equation (19).

-(d/dt)

kp

R L

Proportional Controller

 Neuro-Fuzzy Controller

 Learning MechanismReference Model

-
+

+
+

+ -

desiredΡ Pe

P

++

robot

propu

neurou

u

vg

trimu

hybridu

robotP&

robotP&

)(

)()(
)(

1

1

k

kwk
ku m

j
j

m

j
jj

neuro

∑

∑

=

==
µ

µ

 (19)

where
))(()(,1 kPAk robotn

i
j

&=µ (20)

where))((1 kPA robot
i & is calculated as in equation (8).

The adaptive neuro-fuzzy model reference control learns to track the desired velocity reference model,)(kr . The
velocity reference model is defined as the function of the position error as the following.

))(()(kPfkr robot= (21)
where)(•f is an linear or nonlinear function.

The weights of the adaptive neuro-fuzzy model reference control are modified with the steepest gradient method by
trying to minimize a cost function. The cost function is defined as the square of the difference between the velocity reference
model and the actual velocity as expressed by the following.

2))()((
2
1 kPkrE robot

&−= (22)

The equation for updating the weight is described as the following.

j

jj w
Ekwkw

∂
∂

−=+ η)()1((23)

where 0≥η is the learning rate.
By using the chain rule, the adjusted weights can be expressed and calculated as the following.

))()((
)(

)(

1

kPkr
k

k
w
E

robotm

j
j

j

j

&−=
∂
∂

∑
=

µ

µ
 (24)

4. Simulation and Experimental Results
4.1 Simulations of yaw control

In the simulation study, the neuro-fuzzy yaw control is evaluated. The objectives of the study are to
verify the desired procedure and evaluate the control performance of the neuro-fuzzy control. The yaw
dynamic mathematical model of a flying robot is taken from [4]. The discrete-time LTI model is given by the
followings.

)()()1(kBukAxkx +=+ (25)
)()(kCxky = (26)

where









−

=
8947.01376.0

1 sT
A , 








−

=
0269.2
0

B and []01=C

where sT is a sampling time, that is 0.02 s.
In order to generate the training data, the conventional proportional control is used to simulate the pilot control signal.

The training data should have at lease two regions of overshoot. To accomplish this propose, the proportional gain of the
proportional controller is tuned until the oscillation occurs. Fig. 7 shows the step input response of the yaw control with the
proportional control. The yaw command is 45 degrees and the proportional gain is 0.98.

Fig. 7. Step input response of yaw control

The training region is selected. The yaw error and change of yaw error are generated. Fig. 8 shows the training data

and the training result for the neuro-fuzzy yaw control.

Fig. 8. Inputs and target data for neuro-fuzzy yaw control

In the simulation, there are 7 membership functions for each input. Each linguistic value is expressed by its
mnemonic; for example, NB stands for “negative big”, NM stands for “negative medium”, NS stands for “negative small”,
ZO stands for “zero”, and likewise for the positive (P) mnemonic. The membership functions are shown in Fig. 9. The yaw

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
Normalized yaw error

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
Normalized change of yaw error

0 0.5 1 1.5 2 2.5 3 3.5
-0.6

-0.4

-0.2

0

0.2

0.4
Change of control signal (rudder)

Target
Trained result

0 0.5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5

0

10

20

30

40

50

60

S te p re s p o n s e o f y a w c o n tro l w ith K p = 0 .9 8

T im e (s)

Y
aw

 (d
eg

)

0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 5
-1

-0 .5

0

0 .5
C o n tro l s ig n a l (ru d d e r)

T im e (s)

V
al

ue

R e s p o n s e
C o m m a n d

error and change of yaw error are normalized to the range between –1.2 and 1.2. The normalized factors are shown in Table 1.

Fig. 9. Inputs and target data for neuro-fuzzy controller

Fig. 10 shows the simulation result of the neuro-fuzzy yaw control. The blue response shows the oscillation of the

output response. It is indicated that the neuro-fuzzy need to be re-tuned. To damp out the oscillation, the change of yaw error
gain, ek∆ , need to be increased. The control performance is improved as shown by the green response and yellow response by
increasing of the change of yaw error gain, ek∆ , to 2.0 and 5.0 respectively. With the gain, ek∆ , of 5.0, there is a steady state
error. The steady state error is eliminated by locally fine-tuned the neuro-fuzzy controller. The fine-tuning is done online as
the result in the cyan response. The fine-tuning uses the steepest gradient method as in equation (12). The weights of the
neuro-fuzzy controller are tuned locally by using the following condition.

>η 0.0 if, ake ≤)(and bke ≥)(and cke ≤∆)(
=η 0.0 otherwise,

where a , b and c are positive constants.
In the simulation, the learning rate is 0.02. The values of a , b and c are 4.0, 0.05 and 0.1, respectively. The constant

a and c are used to prevent the online fine-tuning not to modify the global structure of the neuro-fuzzy controller. The
constant b is the threshold of the tuning.

Fig. 10. The output response of neuro-fuzzy control

N B N M N S P S P M P BZ E

-1 .2 1 .20 .80 .40 .0-0 .4-0 .8

0 5 10 15 20 25 30 35 40
-10

0

10

20

30

40

50
Simulated neuro-fuzzy yaw control

Y
aw

 (d
eg

)

Desired yaw
Change of error gain = 1.0, learning rate =0.0
Change of error gain = 2.0, learning rate =0.0
Change of error gain = 5.0, learning rate =0.0
Change of error gain = 5.0, learning rate =0.02

Online tuning to eliminate steady state error

Table 1. Neuro-fuzzy yaw control parameters, * indicated for the values after re-tune the controller

1g 2g k

negg1 posg1 negg2 posg2 ek ek∆ δk
1.0 1.0 1.0

2.5453

3.8146

25.7061

10.9662 *1.0 *5.0 *1.0

4.2 Experiments on neuro-fuzzy yaw control

In this section, the experiment of the yaw control is presented. The training data are generated by applying the open-
loop stimulus control signal to the yaw axis, while try to maintain the flying robot in trim in the others axes. The signal causes
the robot to oscillate about the z-axis. The yaw and the pilot control signals are recorded. Fig. 11 shows the recorded data.

Fig. 11. Recorded yaw and the rudder signal

0 5 10 15 20 25
10

20

30

40

50

60

70
Yaw response to the pilot open-loop control signal

Time (s)

Y
aw

 (d
eg

)

0 5 10 15 20 25
2400

2500

2600

2700

2800

2900

3000

3100
The pilot open-loop control signal

Time (s)

V
al

ue

Training Region

Training Region

Fig. 12. Training data for neuro-fuzzy yaw control

 Fig. 12 shows the training data and the offline training result of the neuro-fuzzy yaw control. The membership
functions are same as used in the simulation. The desired parameters are shown in Table 2.

Table 2. Neuro-fuzzy yaw control parameters, * indicated for the values after re-tune the controller

1g 2g k

negg1 posg1 negg2 posg2 ek ek∆ δk
1.0 1.0 1.0

0.0529

0.0684

0.7619

0.4706 *1.0 *2.1 *1.39

After the offline training, the neuro-fuzzy is re-tuned. The result is shown in Fig. 13. At the beginning, the gains of the
neuro-fuzzy control are manually re-tuned, until the acceptable control performance is achieved. After that, the neuro-fuzzy
control is fine-tuned online. This fine-tuning process eliminates the steady state error.

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
Normalized yaw error

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2
Normalized change of yaw error

0 0.5 1 1.5 2 2.5 3 3.5
-400

-200

0

200

400
Change of control signal (rudder)

Target
Trained result

Fig. 13. Tuning result of neuro-fuzzy yaw control

Fig. 14. Step input response of neuro-fuzzy yaw control

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

Neuro-Fuzzy yaw control, step input

Time (s)

Y
aw

 (d
eg

)

0 10 20 30 40 50 60 70 80 90 100
2600

2650

2700

2750

2800

2850

2900

2950

3000
Control signal (rudder)

Time (s)

V
al

ue

Desired yaw
Yaw response

Manual Control

Switched to autonomous mode here

0 5 10 15 20 25 30 35 40 45 50
40

60

80

100

120

140

160

180
Neuro-Fuzzy yaw control, tuning

Time (s)

Y
aw

 (d
eg

)
Desired yaw
Yaw response

Online Tuning "ON"

Manually tuned

Switched to autonomous mode here

The final yaw control experiment is shown in Fig. 14. The step inputs are applied. According to the proposed control
algorithm, the steady state error as well as the smooth response is achieved as seen in Fig. 14. There are not the
overshoot/oscillations. The steady state error is always zero.

4.3 Experiments on position control with Hybrid-ANFMRC
 Fig. 17, Fig. 18 and Fig. 19 show the experiment results of the lateral position, longitudinal position and altitude
control, respectively. The outputs of the lateral position, longitudinal position and altitude control are the desired roll, desired
pitch and the change of collective command, respectively. The roll and pitch control are designed according to the yaw control
in section 4.2. The proportional gains of the lateral and longitudinal position control are 8.0. The proportional gain of the
altitude control is 30.0. The lateral and longitudinal position command are 0 meter. The altitude command is 13.0 meter. The
learning rate values for the lateral, longitudinal position and altitude control are 0.4. The velocity reference model is defined as
the linear function of the position error as shown in Fig.15. The membership functions are designed by using 7 symmetrical
triangle functions as shown in Fig. 16. The robot velocities are normalized within the range of –1.2 and 1.2. There are 7
elements of the weight for each controller, which are initialized to zero at the beginning.

Fig. 15 The velocity reference model

Fig. 16 Membership function for Hybrid-ANFMRC

In Fig. 17 and Fig. 18, applying only the proportional control at the beginning. After that, the learning process of the
Hybrid-ANFMRC is activated, which is indicated by the yellow line in each figure. After the learning is started, the controller
adapts the control parameters and learns how to control the position of robot. Finally, it can track the desired position with
zero steady state error.

NB NM NS PS PM PBZE

-1.2 1.20.80.40.0-0.4-0.8

2

- 1

1

- 2

r (m / s)

e P (m)

Fig. 17. Hybrid-ANFMRC, lateral position

Fig. 18. Hybrid-ANFMRC, longitudinal position

 In Fig. 19, the control is switched between the pilot controlled and the computer controlled. Every time the pilot
takes control the robot, the learning process is stopped. In the first round, there are the large oscillations. The next round, the
oscillation are reduced. Finally, the oscillations are eliminated. The controller can learn to control the altitude of the robot
effectively.

0 20 40 60 80 100 120
-12

-10

-8

-6

-4

-2

0

2

4

6

8
Hybrid-ANFMRC result, longitudinal position control

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Learning "ON"

Switched to autonomous mode here

0 50 100 150
-15

-10

-5

0

5

10

15

20

25

30
Hybrid-ANFMRC result, lateral position control

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Learning "ON"

Switched to autonomous mode here

Fig. 19. Hybrid-ANFMRC, altitude

From the results, it was verified that the proposed Hybrid-ANFMRC was very effectively to control position of the
flying robot. The weights of each controller are shown in Table 3.

Table 3. Weights of Hybrid-ANFMRC

 w1 w2 w3 w4 w5 w6 w7
Before 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lateral

After 104.9 13.65 10.67 -7.48 -14.31 -15.64 -58.63

Before 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Longitudinal

After -140.77 -15.8 -15.14 -2.18 8.35 13.61 83.79

Before 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Altitude

After -92.7 -23.8 -59.98 53.19 95.2 39.16 119.6

4.4 Robustness of Hybrid-ANFMRC
 In this section, the robustness of the hybrid adaptive neuro-fuzzy model reference is presented. In order to evaluate
the robust performance of the proposed control algorithm, the longitudinal position control is studied. The proportional gain of
the longitudinal position controller is varied. In Fig. 20, the proportional gain of 2.0 is used. In Fig. 21 and Fig. 22 the
proportional gain of 4.0 and 8.0 are used, respectively.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20
Hybrid-ANFMRC, altitude control

Time (s)

A
lti

tu
de

 (m
)

Command
Response
Learning status

Learning "ON"

Switch to autonomous node here

Fig. 20 Response of Hybrid-ANFMRC with Pk = 2.0

Fig. 21 Response of Hybrid-ANFMRC with Pk = 4.0

0 50 100 150 200 250 300 350 400 450
-15

-10

-5

0

5

10

15
Hybrid-ANFMRC, robustness test

Time (s)

D
is

ta
nc

e
(m

)
Command
Response
Learning status

Kp = 2.0

Learning "ON"

Switched to autonomous mode here

0 100 200 300 400 500 600
-15

-10

-5

0

5

10

15

20
Hybrid-ANFMRC, robustness test

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Kp = 5.0

Learning "ON"

Switched to autonomous mode here

Fig. 22 Response of Hybrid-ANFMRC with Pk = 8.0

In Fig. 20, Fig. 21 and Fig. 22, the results indicate that the Hybrid-ANFMRC robust to the variation of the
proportional gain. The control can learns and adapts itself to control the position of the flying robot. In the next section, the
experiment on fully autonomous flight will be presented.

4.5 Experiments on fully 6-DOF autonomous controls

In order to test the control performance of the proposed control algorithm, the flying robot is commanded to fly in a
10 meters by 10 meters square area. The flying robot is automatically controlled in 6 DOF, including roll, pitch, yaw, lateral
position, longitudinal position and altitude. The altitude command is 13.0 meters above the ground. The position commands
are changed sequentially among the 4 marked points. When the flying robot reaches the desired position within the radius of
0.30 meter, the position commands are changed to the next points. For simplicity, the yaw is maintained at 0 degree. In this
experiment, all the weights of the control are initialized to zero at the beginning.

0 100 200 300 400 500 600
-20

-15

-10

-5

0

5

10
Hybrid-ANFMRC , robustness experiment

Time (s)

D
is

ta
nc

e
(m

)

Command
Response
Learning status

Kp = 8.0

Learning "ON"

Switched to autonomous mode here

Fig. 23 Fully autonomous flight experiment results, lateral and longitudinal positions

Fig. 24 Fully autonomous flight experiment results, top view

-15 -10 -5 0 5 10 15 20 25 30
-20

-15

-10

-5

0

5

N
S

 d
is

ta
nc

e
(m

)

EW distance (m)

Hybrid-ANFMRC result, lateral & longitudinal position control

1st round
2nd round
3rd round
4th round
Desired path

Start Point

1st

2 nd

3rd

4th

0 100 200 300 400 500 600
-20

-15

-10

-5

0

5

Time (s)

D
is

ta
nc

e
(m

)

Hybrid-ANFMRC result, longitudinal position control

0 100 200 300 400 500 600
-20

-10

0

10

20

30

Time (s)

D
is

ta
nc

e
(m

)

Hybrid-ANFMRC result, lateral position control

Command
response
Learning status

Command
response
Learning status

Kp = 8.0

Kp = 8.0

Learning "ON"

Learning "ON"

Fig. 25 Fully autonomous flight experiment results, altitude

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16
Hybrid-ANFMRC result, altitude control

Time (s)

A
lti

tu
de

 (m
)

Desired altitude
Altitude
Learning status

Learning "ON"

switched to autonomous mode here

Fig. 26 Fully autonomous flight experiment result, pictures
(a) over the 1st point, (b) over the 2nd point, (c) over the 3rd point and (d) over the 4th point

 In Fig. 23, Fig. 24 and Fig. 25, the first round of an autonomous flight shows the large overshoot. In the first round,
the weights of the controller are all set to zero that resulted in an overshoot. In the next rounds, the tracking performance is
better. In the final round, the tracking performance is completely successful. The control starts to learn from scratch, until it
can adapts itself to perform a good control performance.

5. Conclusion
 In this paper, the neuro-fuzzy control and the Hybrid-ANFMRC are evaluated. The neuro-fuzzy is applied to control
the roll, pitch and yaw of the flying robot. The control is trained using the flight data and re-tuned to achieve the desired
response. After the roll, pitch and yaw controls are accomplished, the position control is evaluated. The control performance of
the Hybrid-ANFMRC is verified by the results from many experiments. The proposed control algorithm shows the good
performance even when the proportional gain is changed. The control can be designed without using the mathematical model
of the plant. The experiments have shown that the proposed control algorithms are able to successfully control the flying robot
both in hover and moving flight. With the proposed control algorithms, using the different velocity reference model can shape
the system response. In this paper, the experiment used only the simple linear reference model. For a better response, the
exponential or any nonlinear reference models are also useful.

6. Acknowledgements
 This work is financially supported by Thailand Research Fund.

(a) (b)

(c) (d)

References
[1] C. Teng, C.S. George. Neural fuzzy systems. Prentice Hall Inc; 1999.
[2] Gordon Wyeth, Gregg Buskey, Jonathan Roberts. Flight control using an artificial neural network.. University of
Queensland, 2002.
[3] Jame F. Montgomery and George A. Bekey. Learning helicopter control through “Teaching by Showing”.
[4] J. Morris, M. van Nieuwstadt, and P. Bendotti. Identification and control of a model helicopter in hover. In Proceeding of
the American Control Conference 1994.
[5] M. Sugeno. Development of an intelligent unmanned helicopter. Fuzzy modeling and control, selected works of M.
Sugeno. P.13-43.
 [6] Ming-Chang S., Niarn-Liarng L. Self-tuning neural fuzzy control the position of pneumatic cylinder under vertical load.
National Cheng Kung University, Taiwan.
[7] S. Saripalli, J. M. Roberts, P. I. Corke, G. Buskey. A tale of two helicopters. Robotics research lab, University of Southern
California, 2002

