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(ระยะเวลาโครงการ)

Inspired by the general goals of the proposed research project (to reinterpret Tomita-
Takesaki modular theory in non-commutative geometry), we have worked out a definition
of morphism and of category of A. Connes’ spectral triples. As an application, we
have constructed a model functor from the category of discrete groups equipped with
a length function to our category of spectral triples.
A motivation for the introduction of these concepts comes from the consideration of
non-commutative submanifolds and quotient manifolds in A. Connes spectral triples’
context. This work opens the way to a systematic analysis of the notion of morphism
of spectral triples, to be applied to different situations. Several variants of our
notion of morphism are expected to be relevant for a complete categorical study of
non-commutative geometry including a wide range of applications.

จากความพยายามในการอธิบายเรขาคณิตแบบไม่สลับที่ด้วยทฤษฎีของโทมิตะ-ทาเกซากิ ในงาน
น้ี เราได้ให้บทนิยามของสัณฐาน และประเภทของสเปกตรัลทริเปิลของคอนนส์ ในการประยุกต์
เราได้สร้างตัวแบบฟังก์เทอร์จากประเภทของกรุปวิยุตต์ที่มีฟังก์ชันความยาว ไปยังประเภทของ
สเปกตรัลทริเปิล
แรงบันดาลใจสำหรับมโนมติเหล่าน้ีได้มาจากการพิจารณาสับแมนิโฟลด์แบบไม่สลับที่ และแมนิ-
โฟลด์ผลหารในบริบทของ สเปกตรัลทริเปิลของคอนนส์งานน้ีได้เปิดหนทางการวิเคราะห์อย่าง
เป็นระบบของแนวคิดเกี่ยวกับประเภทของสเปกตรัลทริเปิล เพ่ือที่จะนำไปประยุกต์กับสถาน-
การณ์ต่างๆ แนวคิดเกี่ยวกับสัณฐานในแบบต่างๆ คาดว่าจะเป็นสิ่งที่จำเป็นสำหรับการศึกษาที่
สมบูรณ์สำหรับประเภทของเรขาคณิตแบบไม่สลับที่ ซึ่งรวมถึงการประยุกต์ในวงกว้าง

Keywords: Non-commutative Geometry, Spectral Triple, Morphism, Category.
(คําหลัก) เรขาคณิตแบบไม่สลับที่ สเปกตรัลทริเปิล สัณฐาน ประเภท
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2 Executive Summary

2.1 Objectives

• Spectral construction of Space-Time from Tomita-Takesaki Modular theory;

• Discussing categorical structure of Connes’ spectral triples;

• Construction and discussion of relevant model examples.

2.2 Results

In order to construct a “spectral space-time” from Tomita’s modular theory, we have
been naturally led to the problem of “dimensional reduction” of the degrees of freedom
of the theory i.e. to the possible definition of substructures in the context of A. Connes
spectral triples. One way to implement such idea is by means of category theory.
In this direction, we have worked out the first definition of morphism of spectral
triples in the framework of A. Connes’ non-commutative geometry and proposed a
related notion of category of spectral triples including the “real” and “even” cases.
In order to assess the validity of our proposed definitions, we have constructed a model
functor from the category of discrete groups equipped with a length function to the
category of spectral triples.
An output of this research appears in the following paper:

P. Bertozzini, R. Conti, W. Lewkeeratiyutkul, A Category of Spectral
Triples and Discrete Groups with Length Function, Osaka Journal of
Mathematics (to appear).

The need to reduce the “degrees of freedom” passing from the algebra of observables
(phase space) to a suitable subalgebra (configuration space), has also led us to
approach the delicate problem of a canonical choice of an appropriate “non-commutative
polarization” inside the observables’ algebra. This is somehow related to the solution
of an open problem mentioned by Fröhlich and collaborators [FGR4]: how to pass
form operational spectral data on a phase space to spectral triples on a configuration
space.
As a warming up towards a solution of the latter problem, we started examining
some algebraic issues related to the mutual relationships between Clifford and Toeplitz
algebras in the context of Hilbert modules equipped with a real structure.
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Two of our Master’s students in Thammasat university (Miss Areeya Sararak and Miss
Supaporn Theesoongnern) have been directly involved in this part of the project that
has led to the preparation of their respective Master’s theses [Sa, Th]1. In the specific:

• Using the language of category theory, we have performed (with Miss Areeya)
a detailed and unified study of the several notions of complexification and
decomplexification starting from the well-known case of vector spaces and
introducing new appropriate definitions in the case of algebras, modules over
algebras and module-algebras.

• We have reviewed (with Miss Supaporn) the study of the “multilinear algebra”
of “second quantization” with particular emphasis on its extensions to the case
of “inner product modules” over involutive algebras and we have defined (by
universal factorization methods) Hermitian-Clifford algebras of inner product
modules, i.e. analogs of the classical Clifford algebra of orthogonal spaces in the
case of modules equipped with an Hermitian (or anti-Hermitian) product. These
algebras are deemed to be relevant in the discussion of second quantization (field
theory) on non-commutative space-times.

3 Content of the Research

Part of this section is a slightly modified version of the our original research proposal.

3.1 Motivation

• Generalities
Non-commutative Geometry is the name of a very young and fast developing mathe-
matical theory that is making use of Operator Algebras (itself a branch of Functional
Analysis created by von Neumann in 1929 [V]) to find algebraic generalizations of most
of the structures currently available in mathematics: algebraic, measurable, topological,
differential, metric etc. Even if, from the algebraic point of view, mathematicians have
been dealing with “non-commutative” algebraic structures since a relatively long time
ago (for example under the form of Groups, Matrices in Linear Algebra and Hamilton’s
Quaternions), the first seeds of Non-commutative Geometry (i.e. the idea to substitute

1Abstracts of the results obtained so far are attached as pdf files.
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a commutative algebra with a non-commutative one) is strictly linked with physics’
developments and can be traced back to the beginning of Quantum Mechanics in the
form of Heisenberg’s Matrix Mechanics in 1925, where noncommuting matrices (op-
erators) take the place of classical commuting observables of a physical system (hence
the fashionable name of Quantum Mathematics often cited in the recent literature).
The fundamental idea, implicitly used in Non-commutative Geometry is that of
trading geometric spaces X of points, with algebras of (say complex-valued) functions
f : X → C and to use these algebras to “reconstruct” the original geometric space
X as a derived entity (the spectrum of the algebra), a technique that appeared for the
first time in the work of Gel’fand on abelian C∗-algebras in 1939 [G] (similar ideas
are well-known and used also in Algebraic Geometry). Anyway, it is only starting
in 1980 (see [C1]), with the extraordinary work of Alain Connes, the real founder of
Non-commutative Geometry, that a complete systematic theory capable of describing
differential and metric structures becomes available.
In order to develop non-commutative geometries, we usually proceed as follows: first
we find a suitable way to “codify” or translate the geometric properties of a space
X (topology, measure, metric . . . ) in algebraic terms, using a commutative algebra
of functions over X, then we try to see if this codification “survives” generalizing to
the case of non-commutative algebras. The generalized properties are taken as axioms
defining what a “non-commutative” (topological, measurable, differential, metric, . . . )
space is, without referring to any underlying point space. Of course the process of
generalization of the properties from the commutative to the non-commutative algebra
case is highly non trivial and, as a result, several alternative possible axiomatizations
arise in the non-commutative case, corresponding to a unique “commutative limit”.
The general reference source for Non-commutative Geometry is Alain Connes’
book [C3]. For a detailed study we suggest the recent textbook by Gracia-Bondia,
Figueroa and Varilly [FGV]. Shorter introductions are contained in Landi’s book [La],
in the earlier papers by Coquereaux [Co1, Co2], Gracia-Bondia and Varilly [GV, Va]
or, for the real beginner, in our seminar’s notes [B].
Spectral Triples
A. Connes has developed a spectral notion of non-commutative spin manifold, that has
been very effective in generalizing Atiyah-Singer index theory in several directions.
Accordingly, he has started a deep theory of such non-commutative spaces that is
customarily referred to as Non-commutative Geometry.
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In this research work, we consider only some aspects of “metric” Non-commutative Ge-
ometry i.e. those parts of Non-commutative Geometry dealing with the non-commutative
generalizations of notions such as Riemannian and Semi-Riemannian Manifolds. Fur-
thermore, for the moment, we focus only on Connes’ Spectral Triple definition: there
are in fact also several other alternative and interesting definitions of non-commutative
geometries making use for example of Sauvageot’s Modules [S], Lipschitz Algebras
(see N. Weaver [W]), Lipschitz seminorms and compact Lie groups ergodic actions
(see the works by Rieffel [Ri1, Ri2, Ri3]) or modules of derivations (see Bratteli [Br],
Madore [M] and references there).
Following A. Connes, “non-commutative manifolds”2 are axiomatized by the following
structure, called a (compact) Spectral Triple3:
A (compact) Spectral Triple (A,H, D) is given by a unital C∗-algebra4 A; a Hilbert
space H on which the algebra A is represented by bounded operators π(a) ∈ B(H)

for every a ∈ A; and a (non-necessarily bounded) self-adjoint operator D, called
the Dirac Operator, whose resolvent (D − λ)−1 is compact for every λ ∈ C − R

and [D, π(a)]− ∈ B(H), for every a ∈ A, where [x, y]− := xy − yx denotes the
commutator of x, y. The spectral triple is called even if there exists a Grading Operator,
i.e. a bounded self-adjoint operator Γ ∈ B(H) such that:

Γ2 = IdH; [Γ, π(a)]− = 0, ∀a ∈ A; [Γ, D]+ = 0,

where [x, y]+ := xy + yx is the anticommutator of x, y. A spectral triple that is not
even is called odd.
A spectral triple is regular if π(a), [D, π(a)]− ∈ ∩∞

m=1Domδm, where δ(x) :=

[|D|, x]−.

The spectral triple is n-dimensional iff there exists an integer n such that the Dixmier
trace of |D|−n is finite nonzero.
A spectral triple is θ-summable if exp(−tD2) is a trace class operator for every
t > 0.

2at least in the case of compact, finite dimensional, Riemannian, orientable, spinc manifolds
3or K-cycle, in the earlier literature
4actually a unital pre-C∗-algebra is sufficient
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A spectral triple is real if there exists an antiunitary operator J : H → H such that:

[π(a), Jπ(b∗)J−1]− = 0, ∀a, b ∈ A;

[[D, π(a)]−, Jπ(b∗)J−1]− = 0, ∀a, b ∈ A first order condition;

J2 = ±IdH; [J, D]± = 0; and, only in the even case, [J, Γ]± = 0,

where the choice of ± in the last three formulas depends on the “dimension” n of the
spectral triple modulo 8.

Three additional axioms: Finiteness, Orientability and Poincaré Duality must be added
in order to recover spinc manifolds in the commutative case. The first complete proof
of such a theorem (Connes’ theorem), i.e. the fact that, in the case of a commutative
C∗-algebra A, a finite dimensional, regular, real spectral triple that satisfies the axioms
of finiteness, orientability and Poincaré duality allows us to recover a compact, finite
dimensional, orientable, spinc manifold, has been given by A. Rennie in [R1].
Axioms for non-compact manifolds have been proposed by Connes and are under inves-
tigation by Rennie [R2] and also by Gracia-Bondia, Lizzi, Marmo and Vitale [GLMV].
A proposal for an axiomatic definition of spectral triples describing “non-commutative”
compact, finite dimensional, Riemann manifold that are not necessarily spinc has been
recently presented by S. Lord in [L]. Furthermore several papers (see for example
the works of Parfionov-Zapatrin [PZ], Kopf-Pasche [Ko, KP1, KP2] and especially
the recent paper by Strohmaier [St]) have been dealing with the problem to find an
axiomatization of “non-commutative” semi-Riemannian manifolds (whose importance
should be clear from the point of view of physics, since space-time is described in
general relativity by a Lorenzian manifold).
Modular Theory
The Modular Theory of von Neumann algebras has been created by M. Tomita in
1967 [T] and perfectioned by M. Takesaki around 1970 [Ta1]. It is a very deep theory
that, to every von Neumann algebra M ⊂ B(H) acting on a Hilbert space H, and
equipped with a generating (i.e. Mu− = H) and separating (i.e. Au = 0 ⇒ A = 0

when A ∈ M) vector u ∈ H, associates a one parameter unitary goup t 7→ ∆it and
an antilinear isometry J such that:

∆itM∆−it = M, ∀t ∈ R;

JMJ = M′ where M′ is the commutant of M.
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More generally, given a von Neumann algebra M and a faithful, normal, semifinite
weight (in particular a faithful, normal state) ω on the algebra M, the modular theory
allows to create a one parameter goup of automorphism t 7→ σω

t of the algebra M

such that, in the Gel’fand-Naimark-Segal representation πω induced by the weight ω,

on the Hilbert space Hω, the automorphism group σω is implemented by a unitary one
parameter group t 7→ ∆it

ω and there is an antilinear isometry Jω whose adjoint action
maps πω(M) in its commutant i.e.:

πω(σω
t (x)) = ∆itπω(x)∆−it, ∀x ∈ M, ∀t ∈ R;

Jωπω(x)Jω ∈ πω(M)′, ∀x ∈ M.

Jω and ∆ω are called respectively the modular conjugation and the modular operator
induced by ω. We will call “modular generator” the operator Kω := log ∆ω that is
the generator of the unitary one parameter group t 7→ ∆it. The modular automorphism
group associated with ω is the only one parameter automorphism group that satisfies
the Kubo-Martin-Schwinger (KMS) condition (see Kadison Ringrose vol. 2 [KR] for
details) with respect to ω.

Tomita-Takesaki theory has been central in most of the rigorous formulations of
quantum field theory and quantum statistical mechanics [H] [BR, vol. 2].
The most elementary background in functional analysis is covered for example
in Sunder’s book [Su]; general references in Operator Algebras, include Kadison-
Ringrose [KR], Bing Ren [Bi], Bratteli-Robinson [BR, vol. 1] and Takesaki [Ta2]. For
modular theory, the most complete book source is Strătil̆a [Str].
• Motivations and origins of the problem
The main goal of this project is to construct “spectral triple like objects” canonically
induced by the modular theory of a von Neumann algebra with respect to a faithful
normal state (or more generally a faithful, normal, semifinite weight). There are several
different motivations to look for such a structure:

a) First of all there is a purely mathematical interest in trying to define geometrical
objects associated with von Neumann algebras and in particular factors and to
classify them;

b) Then there is an interesting possibility of using this construction to create a huge
family of examples of non-commutative geometries: it is well-known that one of
the major problems in non-commutative geometry is the small number of natural
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examples available. On the other side, normal faithful states over von Neumann
algebras are abundant!

c) The final and main interest in developing such a project is directly related to
physics and it is the hope that such a construction might cast some light on how
to formulate a purely algebraic theory of quantum relativity. The solution to the
problem of finding a coherent theory (often called quantum gravity) embracing
both quantum mechanics and general relativity has eluded mathematical physicists
since 1926. Some of the problems of the standard formulation of quantum field
theory are due to the rigidity of the notion of the underlying space-time.

Non-commutative geometry provides us with the a “quantum” version of geometry
that should play a role completely analogous to that of classical Lorentzian
geometry in the formulation of General Relativity (as an example see the
proposal of quantum space-time by Doplicher-Fredenhagen-Roberts [DFR]).

The tentative usage of Tomita-Takesaki modular theory in physics has a long history
(see [H] and [CR]). The first to conjecture a deep relation between modular theory,
supersymmetry and non-commutative geometry has been A. Connes himself as reported
in Daniel Kastler’s paper in 1988 [K]. The topic received immediately considerable
attention in the works of Jaffe, Lesniewski and Osterwalder [JLO1, JLO2, J] on
supersymmetric KMS functionals defining K-cycles in the context of supersymmetric
quantum field theories.
We initially got involved in this kind of research long time ago, around 1990, when
we realized that non-commutative geometry was offering the possibility to define
“quantized” space-time in a spectral way and that the only missing ingredient for a
physical theory of quantum space-time, was a method to obtain spectral triples from
the operationally defined physical concepts of states and observables. Motivated by
the fact that in quantum physics we always deal with C∗-algebras A of observables
and that states ω over A naturally provide representations πω : A → B(Hω) of A
on a Hilbert space Hω by GNS construction, we started in 1994 to ask if also the
information contained in the specification of the Dirac operator of a spectral triple could
have been obtained from the knowledge of suitable state on the algebra of observables
and in April 1995 we conjectured that the Tomita-Takesaki modular automorphisms
group could be used for this purpose. When Connes’ definition of real spectral triples
(making use of the modular conjugation operator!) appeared in print [C4], we became
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completely convinced that the original intuition was on the right track. Between
1995 and 1997 we tried to work on the problem using the generator of the modular
automorphism group as a “first order” operator (a sort of “non-supersymmetric square
root” of the D’Alembertian of a manifold), but at that time no viable axiomatizations for
“non-supersymmetric” non-commutative geometries (read manifolds that are not spinc)
were known, nor useful definitions of semi-Riemannian non-commutative manifolds.
After 1997, we have been working on several other aspects partly related to the
original problem: in particular its possible relations with Isham’s History Projection
Operator Theory5 and Algebraic Quantum Field Theory6 (but also questions related to
the foundational aspects of physics such as covariance and equivalence principle).
In the meantime, other people have started to publish results that can partially help to
overcome some of the technical difficult points in the original project, opening the way
for a positive solution:

- Several possible variants of axiomatizations for spectral triples and their relations
with supersymmetry have been the object of the investigations of J. Fröhlich,
O. Grandjean and A. Recknagel in a series of papers [FGR1, FGR2, FGR3, FGR4]
from 1996 to 1999;

- A clear detailed proof of the Connes’ theorem (eliminating unnecessary hypothesis
on the algebra A) has been available through the work of A. Rennie [R1] in
1999;

- An important axiomatization of Riemannian (non-spinc manifolds) has been given
by S. Lord [L] in 2000;

- A first approach to the definition of semi-Riemannian, non-commutative manifold,
using Krein spaces7, has been developed by A. Strohmaier [St] in 2001.

It is in this context, that after discussing some of the ideas with Dr. Roberto Conti
(during his visit to Thammasat University in August 2001), we proposed to Dr. Roberto
Conti and to Dr. Wicharn Lewkeeratiyutkul to join us in the study of this topic under
this project.

5See Saviddu [Sv] and Isham, Linden [I, IL] for a review.
6See the Araki’s [A] and Hagg’s [H] books for details.
7See J. Bognar [Bo] for the definitions.
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3.2 Obtained Results

Motivated by physically meaningful examples (such as quantum mechanics of a particle
on a manifold, see [FGR1, FGR2]) and further elaborating on it, we were led to
conjecture the existence of a close relationship between modular theory and geometry
of phase and configuration spaces respectively: the generator of the Tomita-Takesaki
modular automorphism group of a suitable KMS-state, might define a first order operator
on the algebra of observables of the physical system (phase space) and, when considered
on an appropriate subalgebra (configuration space), the same modular generator should
actually provide the information necessary to recover a second order operator (the
Laplacian) whose square root is exactly the Dirac operator necessary in order to define
the Connes’ spectral triple associated to the configuration space of the system.

As an immediate consequence of this insight, in order to continue and complete our
initial research project, it appeared necessary to consider in more precise terms the
exact definitions of submanifold and quotient manifold in the non-commutative case.
A bit surprisingly, we found that this problem, at least in the case of Connes’ spectral
triples approach to non-commutative geometry, had not been considered before.
We decided to fill the gap and chose to approach these issues in the context of category
theory that is a powerful tool for expressing physical concepts related to covariance,
such as “coordinate transformation” and “group of transformations”, in a mathematically
sound form (see e.g. J. Baez [Ba]).
We have thus shifted our attention to uncover the categorical structure of spectral
triples providing tentative definitions of “morphism”, “category of spectral triples”, and
we have investigated some of their properties. In detail, given two spectral triples
(Aj ,Hj, Dj), with j = 1, 2, a morphism of spectral triples is a pair

(φ, Φ) ∈ MorS [(A1,H1, D1), (A2,H2, D2)],

(A1,H1, D1)
(φ,Φ)
−−−→ (A2,H2, D2),

where φ : A1 → A2 is a ∗-morphism between the pre-C∗-algebras A1, A2 and
Φ : H1 → H2 is a bounded linear map in B(H1,H2) that “intertwines” the
representations π1, π2 ◦ φ and the Dirac operators D1, D2 :

π2(φ(x)) ◦ Φ = Φ ◦ π1(x), ∀x ∈ A1,

D2 ◦ Φ = Φ ◦ D1,
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i.e. such that the following diagrams commute for every x ∈ A1 :

H1

D1

��

Φ
//

	

H2

D2

��

H1
Φ

// H2

H1

π1(x)
��

Φ
//

	

H2

π2◦φ(x)
��

H1
Φ

// H2

Such definition carries over without substantial changes to the case of real and even
spectral triples.
It should be mentioned that in the process of developing formal definitions of several
new concepts (such as Morphism of Spectral Triples, Immersions of Spectral Triples,
Submersions of Spectral Triples, Sub-Spectral Triples, Quotient Spectral Triples) in the
general setting that reduce to the usual notions in the commutative case, we run into a
series of technical obstacles:

• there is neither an available notion of “pull-back” for spinor fields between
Riemannian spin manifolds of different dimension nor formal definitions of
“spin-preserving” maps in such case;

• some results circulating in the literature were affected by serious flaws and
needed major revision.

In order to show the validity of the proposed definition of morphisms, we considered
a construction by A. Connes. Given a length function ℓ on a discrete group G, there
is a spectral triple

(CG, ℓ2(G), Mℓ)

where Mℓ is the multiplication operator by ℓ. We have constructed a natural covariant
functor from the category of discrete groups equipped with a length function to our
category of spectral triples. We have also outlined the main differences between the
functor in the case of inclusion of a subgroup and a relator in the case of a projection
onto a quotient group, that point to general features of the construction.

In a wider perspective a morphism of the spectral triples (Aj,Hj, Dj), with j = 1, 2,
might be formalized as a “suitable” functor F : A2

M → A1
M , between the categories

Aj
M of Aj-modules, having “appropriate intertwining” properties with the Dirac

operators Dj .
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The morphisms described in the paper are only a special case of a more general picture.
However for the present purposes that level of generality was not necessary, and so we
sticked to the more restrictive definition provided by homomorphisms φ : A1 → A2

of algebras with an intertwining operators Φ : H1 → H2 between the Dirac operators.
The main technical result contained in our paper states that Connes’ construction of
spectral triples from group algebras [C2] is functorial in nature.

3.3 Potential Future Work

As we said before, the long term goal of our research is to identify new possible
axiomatizations of spectral geometry that might be more efficient than spectral triples
in order to deal with non-commutative geometric objects (uselful in Quantum Physics),
with particular emphasis on those originating from Tomita-Takesaki modular theory.
The quest for a suitable formalization of non-commutative geometries arising from
Tomita’s modular theory (and its applications to Quantum Physics) is still at its
beginning and the present work has been mainly dealing with some of the important
preliminary conceptual and technical problems.
During our previous study we have recognized that all the relevant information necessary
to prove theorems about spectral triples is conveniently codified in certain “algebra
modules” equipped with additional structures (inner products, real structures . . . ) and
that such “module-algebras” might exist also in cases when the underlying spectral
triple cannot be constructed. The categorical properties of non-commutative spaces
are probably better dealt with inside the categories of these “algebra modules” and
(extremely important for our purposes) a KMS-state ω of an observable algebra A

seems to give rise directly to such an object.
We plan to explore the relationships between modular pairs (A, ω) and the algebras
with real structure and the possibility to perform and intrinsic “polarization” for every
such modular pair leading to a spectral definition of configuration space, which is one
of our ultimate goals.
As more immediate short term goals:

a) Now that some notion of morphism (and category) of spectral triple is avail-
able, we can proceed to the study of “substructures” i.e. “non-commutative
submanifolds” and “dimensional reduction”.
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b) After the completion of the preliminary study initiated with our Master’s students
on “real/complex structures for modules” [Sa] and “Hermitian-Clifford algebras
for Hermitian modules” [Th], we expect a couple of publications (together
with Miss Areeya Sararak and Miss Supaporn Theesoongnern, respectively) that
might lead to the definition of “non-commutative polarizations” and “second
quantization on non-commutative spaces”.

As an unexpected direct fallout, this project (specifically the definition of morphism
of spectral triples) has opened the way towards a full investigation of the categorical
properties of spectral triples and more generally non-commutative spaces that look
extremely promising in their relations with other branches such us algebraic geometry
and that we deem necessary to consider in detail in the near future.
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4 Output

One research paper8 with the following title:

P. Bertozzini, R. Conti, W. Lewkeeratiyutkul,
“A Category of Spectral Triples and Discrete Groups with Length Function”

has been accepted for publication in the Osaka Journal of Mathematics on 20 June
2005 and is currently in press.
The preprint is also available on-line on the ArXive at the following URL:
http://xxx.lanl.gov/math.OA/0502583

Partial reports of the present research project have been presented in the form of
seminars9:

• Paolo Bertozzini,
“Non-commutative Geometry and Spectral Space-Time”
Physics Department, Mahidol University, Bangkok, Thailand
August 19, 2003;

• Paolo Bertozzini,
“Non-commutative Submanifolds and Quotient Manifolds”
Mathematics Department, Thammasat University, Bangkok, Thailand
December 22, 2003;

• Roberto Conti,
“Observables and Space-Time”
Department of Mathematics, University of Oslo, Norway
20 April 2005.

8See attachment a) in the appendix.
9See the pdf files on the CDs.
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5 Appendix

The following documents are attached to this final report:

a) Budget summary.

b) A copy of the preprint of the paper “A Category of Spectral Triples and Discrete
Groups with Length Function” submitted to the Osaka Journal of Mathematics
on February 28, 2005.

c) A copy of the submission letter to the Osaka Journal of Mathematics.

d) A copy of the acceptance e-mail from the editor of the Osaka Journal of
Mathematics on June 20, 2005.

e) An electronic copy (only on the attached CDs) of:

– two seminars’ slides containing material produced during this research
project, but not yet published (NOT TO BE DISTRIBUTED!),

– two seminars’ slides with a summary of the theses’ results produced by the
two Master’s students in Thammasat University involved in the research.

f) Two CDs containing an electronic copy of all of the abovementioned documents
a)-e).
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