

โครงการวิจัยนี้ เป็นความพยายามที่จะเพิ่มประโยชน์การใช้งานพอลิเอทิลีนนิดความหนาแน่นสูงในการผลิตเส้นใยที่มีสมบัติเชิงกล หรือความแข็งแรงสูง ซึ่งโดยทั่วไปแล้ว การดึงพอลิเอทิลีนให้เป็นเส้นใยที่มีความแข็งแรงสูงนั้นถูกจำกัดด้วยการเกิดตัวหนีซึ่นในโครงสร้างของเส้นใย ด้านนี้เหล่านี้ นอกจากจะจำกัดการดึงอัตราส่วนการดึงยืดสูงสุดแล้ว ยังจำกัดความแข็งแรงของเส้นใยที่ได้ออกด้วย ดังนั้นหากสามารถเข้าใจการเกิดตัวหนีในเส้นใยได้ อาจนำความรู้ที่ได้ไปประยุกต์ในการผลิตเส้นใยให้มีความแข็งแรงสูงขึ้นกว่าเดิมได้ ตัวหนีที่กล่าวถึงนี้ เป็นตัวหนีขนาดใหญ่ซึ่งสามารถสังเกตุเห็นภายในจุลทรรศน์อิเล็กตรอนในตัวอย่างที่ผ่านการกัดด้วยกรด แนวทากใน การวิจัยของโครงการเริ่มจากการศึกษาธรรมชาติของตัวหนีเหล่านี้ ในตัวอย่างพอลิเอทิลีนบางเกรดจากแหล่งผลิตภายในประเทศ โดยตัวอย่างเหล่านี้มีน้ำหนักโมเลกุลแตกต่างกัน จากการศึกษาพบว่า ตัวหนีดังกล่าวนี้ เกิดขึ้นในทุกด้วยพอลิเอทิลีน โดยพอลิเอทิลีนที่มีน้ำหนักโมเลกุลสูงจะเกิดตัวหนีที่อัตราส่วนการดึงยืดไม่สูงมาก และอัตราส่วนการดึงยืดที่เริ่มเกิดตัวหนีนี้ จะเลื่อนไปที่ค่าสูงขึ้นเมื่อพอลิเอทิลีนมีน้ำหนักโมเลกุลต่ำลง โดยตัวหนีที่เกิดขึ้นในทุก ๆ ตัวอย่างจะมีลักษณะที่คล้ายกัน คือ ประกอบด้วยແນนที่วางตัวด้วยกันที่ชื่อว่า หรือแกนของเส้นใย สลับกับช่องที่ถูกกรดกัดออกไป เมื่อเริ่มเกิดตัวหนี ระยะระหว่างແນนที่วางตัวด้วยกันนี้จะมีค่าที่เท่ากันในทุก ๆ ตัวอย่างที่ประมาณ 4-5 ไมครอน เมื่อตัวอย่างถูกดึงออกให้มีความยาวเพิ่มขึ้น พอลิเอทิลีนที่มีน้ำหนักโมเลกุลสูง จะมีระยะระหว่างແນนนี้เพิ่มมากขึ้น ในขณะที่พอลิเอทิลีนที่มีน้ำหนักโมเลกุลต่ำนั้น ระยะระหว่างແນนจะค่อนข้างคงที่ ไม่เปลี่ยนแปลง หรือเปลี่ยนแปลงน้อยมากเมื่อตัวอย่างถูกยืดออกให้มีความยาวเพิ่มขึ้น ผลจากการศึกษาโครงสร้างด้วย Atomic Force Microscope (AFM) โดยพุติกรรมเชิงกลในแต่ละพื้นที่ของตัวหนี ทำให้เชื่อได้ว่า บริเวณແນนนี้ เป็นบริเวณที่ถูกยืดнатอย่างร้าว ในการศึกษาพุติกรรมของโมเลกุลโดยเฉลี่ยด้วย solid state ¹³C-NMR โดยการวัด relaxation time ของอะดอมคาร์บอนในบริเวณต่าง ๆ พบว่า สามารถแยกชนิดของคาร์บอนได้ถึงอย่างน้อย 7-8 ชนิด ซึ่งกับอัตราส่วนการดึงยืด โดยในการนี้ พบว่ามีองค์ประกอบใหม่ที่ยังไม่เคยมีการรายงาน และได้เสนอว่าเป็นส่วนของสายโซ่ที่ถูกดึงออกให้ตึง และพาดผ่านบริเวณที่ไม่เป็นผลึก นอกจากนี้ยังพบว่าพอลิเอทิลีนที่มีน้ำหนักสูง จะมี longitudinal relaxation time ของโมเลกุลในผลึกเพิ่มขึ้นอย่างรวดเร็ว เมื่อตัวอย่างถูกดึงยืด ในขณะที่พอลิเอทิลีนที่มีน้ำหนักโมเลกุลต่ำลงมา จะมีอัตราการเพิ่มขึ้นของ longitudinal relaxation time ต่างตามลำดับ ผลดังกล่าวนี้ ซึ่งให้เห็นว่าโครงสร้างภายในของพอลิเอทิลีนที่ผ่านการดึงยืดนี้ ค่อนข้างซับซ้อนกว่าปกติมาก และโมเลกุลมีการตอบสนองโดยการเปลี่ยนแปลงตามแรงดึง เช่น โมเลกุลตึง หรือผลึกมีขนาดยาวขึ้น ได้แตกต่างกัน ซึ่งผลการทดลองต่าง ๆ ที่ได้ นำไปสร้างแบบจำลองการเกิดตัวหนี และได้นำความรู้ด้านกลไกนี้ ไปใช้ในการช่วยในการเกิดตัวหนี โดยทดสอบด้วยการใช้พอลิเมอร์ผสมระหว่างน้ำหนักโมเลกุลสูง และน้ำหนักโมเลกุลต่ำ เพื่อผลิตเส้นใยพอลิเอทิลีนความแข็งแรงสูงอย่างต่อเนื่อง พนวณพอลิเมอร์ผสมสามารถดึงยืดได้มากกว่าพอลิเมอร์เกรดเดิมๆ และได้เส้นใยที่ได้มีสมบัติเชิงกลสูงขึ้นมาก นอกจากนี้แล้ว ยังได้ทดสอบการยับยั้งการเกิดตัวหนี โดยการใช้ออร์กโนเคลย์ ซึ่งมีลักษณะเป็นแผ่นบาง ใส่ลงในพอลิเอทิลีน เพื่อควบคุมพุติกรรมการดึงยืด พนวณ สามารถเพิ่มอัตราส่วนการดึงยืดได้อย่างมาก แนวโน้มของมอตุลลัสยังคงเดิม แต่ได้ค่าสูงสุดเพิ่มขึ้น ในขณะที่ความแข็งแรงเพิ่มขึ้นอย่างมาก ในการศึกษาโครงสร้างภายใน พนวณเส้นใยที่มีออร์กโนเคลย์เป็นองค์ประกอบนี้ ไม่เกิดตัวหนีชนิดที่กล่าวถึงข้างต้น มีเพียงรอยแตกขนาดเล็กบางเท่านั้น การที่ตัวหนีถูกยับยั้งไม่ให้เกิดขึ้นนี้ ทำให้เส้นใยยืดได้มากในระหว่างการทดสอบ ดังนั้น ความแข็งแรงที่วัดได้จึงสูงขึ้นอย่างมาก ได้มีการนำแนวทางในการผลิตเส้นใยความแข็งแรงสูงจากพอลิเมอร์ผสมไปขยายผลต่อ โดยการผลิตคอมพอสิตสำหรับเป็นวัสดุกันกระสุน (ร่วมกับวัสดุอื่น) ซึ่งได้ผลลัพธ์เป็นที่น่าพอใจ

Abstract

This research project is an attempt to make more benefit on using high density polyethylene (HDPE) in making strong fiber. Generally, drawing of HDPE into strong fiber is limited by the formation of defect in the fiber. The defect not only limits the maximum draw ratio but also limits the strength of the fiber. In order to reduce, delay or even suppress the formation of this defect, it is essential to understand the nature of it and, if possible, formation mechanism. In this project, the nature of this defect was studied in some HDPEs of different molecular weights (MW) from local source. It was found that the defect was formed in all HDPEs studied at a certain draw ratio, depending on MW. The higher the MW, the lower the draw ratio at which defect was formed. The defect contains bands orienting perpendicular to drawing direction and etched pockets between bands. At the formation point, the bands separation is about 4-5 μm for all HDPEs. When the sample was further drawn, HDPE with higher MW would have larger separation while for the lower MW the separation remains roughly constant. AFM was used to study local mechanical properties of band and etched pocket. It is suggested that heterogeneous deformation had occurred and etched pocket is the area the material deformed more. Solid state $^{13}\text{C-NMR}$ was used to study average molecular dynamic of carbon atom in different regions in the sample. It was found that, by using relaxation times as criterions, 7-8 components can be separated depending upon draw ratio. A new component, which hasn't been reported, was found in this work. It is proposed that this component is composed of chains that are stretched taut and traverse non-crystalline region. In addition, it was also found that the longitudinal relaxation time of crystalline region in high MW HDPE increased sharply with increasing draw ratio. The change became less for lower MW. These results indicate a very complex structure of drawn HDPE. Molecules in HDPE with different MWs respond differently to drawing. This information was used to deduce the mechanism of defect formation. The deduced mechanism was tested by preparing continuous fiber from HDPE blend of high and low MWs. It was found that this HDPE blend could be drawn to higher maximum draw ratio than neat HDPEs. As a result, fiber with higher modulus and tensile strength was obtained. In addition, alternative method was used to suppress the defect formation in the fiber. This was achieved by incorporating of organoclay into HDPE. Composite fibers were drawn to much higher draw ratio than fiber from neat HDPE. Therefore fibers with higher modulus and tensile strength were obtained. The most striking feature is that tensile strength of the composite fiber is much higher than that of neat HDPE. The knowledge acquired from this project has been put to test by making a sufficient amount of high modulus and tensile strength polyethylene fibers for fabrication of bulletproof composite armour. The test was very satisfactory.