บทคัดย่อ

รหัสโครงการ : RSA4580041

ชื่อโครงการ: อีพ๊อกซี-เส้นใยแก้วคอมโพสิทอบด้วยคลื่นไมโครเวฟ

ชื่อนักวิจัย: รองศาสตราจารย์ ดร. วราภรณ์ ตันรัตนกุล

สถาบัน: สาขาวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์

varaporn.t@psu.ac.th

ระยะเวลาโครงการ : 42 เดือน

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการอบอีพ๊อกซี-เส้นใยแก้วคอมโพสิทด้วยเตาไมโครเวฟ โดยเปรียบเทียบ กับคอมโพสิทที่อบด้วยตู้อบความร้อน คอมโพสิทประกอบด้วยอีพ๊อกซีเรซิน (ชนิด diglycidyl ether of bisphenol A) สารทำให้แข็งกลุ่มแอนไฮไดร์ด ได้แก่ methyl tetrahydrophthalic anhydride (MTHPA) และ methyl hexahydrophthalic anhydride (MHHPA) และตัวเร่งปฏิกิริยา ได้แก่ tris-2,4,6-dimethyl aminomethyl phenol, 2ethyl-4-methyl imidazole และ N,N-dimethylbenzylamine และเส้นใยแก้วชนิด chopped strand mat ที่มีน้ำหนัก เฉพาะ 300 g/m² ผสมอีพ็อกซีและสารทำให้แข็งในอัตราส่วน 100:80 โดยน้ำหนัก เติมตัวเร่งปฏิกิริยาตามน้ำหนัก ของอีพ๊อกซีในปริมาณ 1% และ 4% ผสมแผ่นใยแก้วประมาณ 15% ของเรซิน สูตรเรซินที่ศึกษามีทั้งหมด 7 สูตร โดนแปรเปลี่ยนตามชนิดของสารทำให้แข็งและตัวเร่งปฏิกิริยา อบเรซินและคอมโพสิทด้วยเตาไมโครเวฟที่ใช้ในครัว เรือน เลือกสภาวะการอบที่เหมาะสม โดยให้ได้ชิ้นงานที่แข็งทั่วทั้งแผ่น ไม่มีฟองอากาศ ไม่มีรอยไหม้ การอบด้วย เตาไมโครเวฟมี 2 แบบ คือ การอบแบบขั้นตอนเดียวและการอบแบบหลายขั้นตอน ส่วนการอบด้วยตู้อบความร้อน ้ มีขั้นตอนเดียว คือ ใช้อุณหภูมิ 150°C และเวลาที่ใช้อบขึ้นอยู่กับปริมาณตัวเร่งปฏิกิริยาและความหนาของชิ้นงาน ทดสอบสมบัติเชิงกลของชิ้นงานที่อบด้วยเตาไมโครเวฟและตู้อบความร้อนตามมาตรฐาน ASTM ได้แก่ tensile properties, flexural properties (three-point bending) และ impact strength วิเคราะห์ตัวอย่างด้วยเทคนิค DSC, DMTA TGA และ SEM และตรวจสอบความหนึ่ดของเรซินและอุณหภูมิของเรซินระหว่างการอบในระยะเวลาต่างๆ ก่อนที่เรซินจะแข็งตัว ผลการทดลองพบว่าการอบด้วยเตาไมโครเวฟแบบขั้นตอนเดียว สามารถให้สมบัติเชิงกลที่ ้เทียบเท่ากับการอบด้วยตู้อบความร้อน ความแตกต่างของสมบัติเชิงกลระหว่างชิ้นงานที่อบด้วยเตาไมโครเวฟและตู้ อบความร้อนขึ้นอยู่กับสูตรเรซินและประเภทของสมบัติเชิงกล เนื่องจากมีสมบัติเชิงกลทั้งที่สูงขึ้นและต่ำลงเมื่ออบ ด้วยเตาไมโครเวฟ มีสูตรเรซินบางสูตรที่เหมาะต่อการอบด้วยเตาไมโครเวฟ การอบด้วยเตาไมโครเวฟแบบหลาย ขั้นตอน ให้ค่าสมบัติเชิงกลที่สูงกว่าการอบแบบขั้นตอนเดียวและการอบด้วยตู้อบความร้อน ทั้งนี้เป็นเพราะการอบ แบบหลายขั้นตอนจะมีการอุ่นเรซินในการอบขั้นตอนแรก ทำให้เรซินมีอุณหภูมิและความหนืดไม่สูงมากนัก การ เกาะติดกับเส้นใยแก้วจะดีขึ้น ทำให้แรงยึดเกาะระหว่างเรซินและเส้นใยแก้ว (interfacial adhesion) สูงขึ้น ในทาง ์ ตรงข้ามการอบแบบขั้นตอนเดียวจะทำให้เรซินมีอุณหภูมิสูงขึ้นทันที จึงทำให้เรซินมีความหนืดเพิ่มขึ้นอย่างรวดเร็ว การยึดเกาะระหว่างเรซินและเส้นใยแก้วจึงลดลง และทำให้มีการกักขังโมเลกุลอยู่ในโครงร่างแห สมบัติเชิงกลจึงต่ำ กว่า เตาไมโครเวฟที่ใช้ในครัวเรือนจะควบคุมระดับกำลังวัตต์โดยมีระยะเวลาที่ให้คลื่นออกมา ดังนั้น ระยะเวลาที่ ีกำหนดไว้จึงไม่ใช่ระยะเวลาที่เรซินได้รับคลื่นไมโครเวฟ ระยะเวลาที่ได้รับคลื่นขึ้นอยู่กับระดับกำลัง (power level) ที่ใช้ และจะมีค่าน้อยกว่าระยะเวลาที่ใช้ เช่น ที่ระดับกำลัง 3 เรซินจะได้รับคลื่นไมโครเวฟเป็นระยะเวลา 30% ของ ระยะเวลาที่ตั้งไว้ในการใช้เตาไมโครเวฟนี้ ด้วยเหตุนี้จึงกล่าวได้ว่า การอบด้วยเตาไมโครเวฟจะใช้เวลาน้อยกว่ากา และสามารถให้สมบัติเชิงกลที่ดีกว่าตัวอย่างที่อบด้วยตู้อบความร้อน รอบด้วยตู้อบความร้อน สภาวะการอบที่เหมาะสม ข้อจำกัดของโครงการวิจัยนี้คือ ไม่สามารถสร้างเตาไมโครเวฟได้เอง ทำให้ไม่สามารถ ควบคุมการปล่อยคลื่นให้แม่นยำ ไม่สามารถปล่อยคลื่นให้เป็นเวลาต่อเนื่อง และควบคุมกำลังวัตต์ใด้

คำหลัก : อีพ๊อกซี คอมโพสิท เส้นใยแก้ว ไมโครเวฟ การอบ

Abstract

Project Code: RSA4580041

Project Title: Microwave cured glass fiber reinforced epoxy composites

Investigator: Dr. Varaporn Tanrattanakul

Polymer Science Program, Faculty of Science, Prince of Songkla University

varaporn.t@psu.ac.th

Project Period: 41 months

The objective of this study was to compare the mechanical properties between epoxy composites cured by thermal heating and microwave heating. Epoxy-anhydride (100:80, wt/wt) resins reinforced with glass fiber were cured in a domestic microwave oven and in a thermal oven. Hardening agents included methyl tetrahydrophthalic anhydride and methyl hexahydrophthalic anhydride. Tris-2,4,6-dimethyl aminomethyl phenol, 2-ethyl-4-methyl imidazole and N,N-dimethylbenzylamine were used as an accelerator. Thermal curing was performed at 150°C for various cure time depending on accelerator concentration and specimen thickness. Microwave curing was carried out at various conditions, including 1-step, 2-step, and 3-step heating cycle, whereby each cycle employed different power level and time. Tensile properties, notched Izod impact resistance and flexural properties (three-point bending) were tested according to ASTM standards. Sample characteristics were determined by using DSC, DMTA, TGA and SEM. It is found that the microwave-cured composites produced mechanical properties as good as the thermally cured composites. The 2-step and 3-step heating cycle using in the microwave curing process produced better mechanical properties higher than those obtained from the microwaved 1-step and thermally curing process. This is attributed to the slow increase in temperature during the beginning of the microwave curing process whereby the very low power level was applied in the first cycle of the multi-step heating process. This affected the slower rate of viscosity increment, resulting in better wettability of the glass fiber with enhanced interfacial adhesion between the fibers and the resins. The viscosity of resins affected the homogeneity of the crosslinked structure. Therefore, rapid increment in viscosity may cause defects in the structure because of the entrapment of uncrosslinked resins. In domestic microwave ovens, the magnetron is operated at full power. During a specified time, the current is turned on and off for segments of the period, and the average power is reduced. This on/off type of control is often referred to as duty cycle control. Therefore, the actual heating time in the microwave oven is much shorter than the setting time. The output power of the domestic microwave is governed by the duty cycle control, and the microwave output power depends on the actual heating time. Consequently, cure time in the microwave oven was shorter than that in the thermal oven. The restriction of this work is to be unable to control the system of the microwave oven such as "true" power and "true" irradiation time of microwave.

Keywords: epoxy, composites, glass fiber, microwave curing