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This research explores the stochastic resonance effect in several nonlinear signal
processing systems. Stochastic resonance or SR occurs when noise enhances the output
of the system that processes input signals. The performance measures can be an output
signal-to-noise ratio (output SNR), cross-correlation measure, or mutual information of input
and output. The effort studies in more depth a threshold system that processes random
binary input signals and uses mutual information as a performance measure. The research
effort results in theorems that provide both necessary and sufficient conditions for the SR
effect. The results suggest how the noise mean or location parameter should relate to the
input signals and the system's threshold. The result holds for broad classes of noise
distributions that include all finite-variance noise with both symmetric-shaped and
unsymmetric-shaped distributions as well as infinite-variance (impulsive) noise in alpha-
stable distributions. Regression analysis reveals both an exponential relationship for the
optimal noise dispersion as a function of the alpha bell-curve tail thickness and an
approximate linear relationship for the SR-maximal mutual information as a function of the
alpha-bell curve tail thickness. The research also explores several models of continuous
neuron widely used in neural network applications. Simulations show that these neuron
models also exhibit the SR effect when they process small random binary signals. The
neurons' mutual information measures are maximal when the system's noise is nonzero.
The SR effect also occurs in these feedback nonlinear dynamical systems even when the
noise is impulsive. Finally the research reports the benefits of noise in color object
segmentation algorithm used in image processing and computer vision. Experiments show
that the proposed noise-added color thresholding scheme can help improve several
measures used in object segmentation. These measures include mutual information, error
pixel counts, and position error. The results suggest that scientists and engineers should

consider exploiting the benefits of noise as well as canceling or filtering it out.



1 Summary: Stochastic Resonance and

Noise-Enhanced Systems

Noise has been an unwanted signal or source of energy. Scientists and engineers have
largely tried to filter noise or cancel it or mask it out of existence. But noise can
sometimes enhance a signal as well as hurt it. The fact that “noise can help” may
seem at odds with almost a century of effort in signal processing to filter noise or
to mask or cancel it. But noise is itself a signal and a free source of energy. Noise
can amplify a faint signal in some feedforward and feedback nonlinear systems even
though too much noise can swamp the signal. This implies that a system’s optimal
noise level need not be zero noise. It also suggests that nonlinear signal systems with
nonzero-noise optima may be the rule rather than the exception.

The new field of stochastic resonance or SR [7, 8, 13, 32, 37, 66, 67, 76, 90| rests
on an exception to this undeclared war on noise. SR occurs when noise enhances a
faint signal in a nonlinear system. It occurs when the addition of a small amount of
noise increases a nonlinear system’s performance measure such as its signal-to-noise
ratio, cross-correlation, or mutual information. The nonlinearity is often as simple as
a memoryless threshold. So a great deal of SR research has focused on how dither-like
noise can help spiking neurons process data streams [16, 38, 46]. SR occurs in physical
systems such as ring lasers [70], threshold hysteretic Schmitt triggers [33], Chua’s
electrical circuit [5], superconducting quantum interference devices (SQUIDs) [44],
Josephson junctions [11], chemical systems [31], and quantum-mechanical systems
[40]. SR also occurs in biological systems such as the rat [23], crayfish [29], cricket
[62], river paddlefish [82], and in many types of model neurons [12, 14, 21, 22, 78].

Figure 1 shows that a small amount of Gaussian pixel noise can improve our sub-
jective perception of an image. The system quantizes the original gray-scale “baboon”
image into a binary image of black and white pixels. It emits a white pixel as output
if the input gray-scale pixel equals or exceeds a threshold. It emits a black pixel
as output if the input gray-scale pixel falls below the threshold. This quantizer is
biased because it does not set the threshold at the midpoint of the gray scale. So the
quantized version of the original image contains almost no information. A small level
of noise sharpens the image contours and helps fill in features when it adds to the
original image before the system applies the threshold. Too much noise swamps the
image and degrades its contours. Gammaitoni [35] and others [87] have proposed a

dithering argument for this SR effect and still others [69] have applied this argument
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Figure 1: Gaussian pixel noise can improve subjective quality of an image through a
stochastic-resonance or dithering process [35, 87]. The noise produces a nonmonotonic
response: A small level of noise sharpens the image features while too much noise
degrades them. These noisy images result when we apply a pixel threshold to the
‘baboon’ image: y = g((z +n) — @) where g(z) = 1if x > 0 and g(z) = 0if 2 < 0
for an input pixel value z € [0,1] and output pixel value y € {0,1}. The input
image’s gray-scale pixels vary from 0 (black) to 1 (white). The threshold is # = 0.06.
Thresholding the original “baboon” image gives the faint image in (a). The Gaussian
noise n has zero mean for images (b)-(d). The noise variance 0% grows from (b)-(d):
02 =1.00 x 1072 in (b), 0% = 2.25 x 1072 in (c), and 0 = 9.00 x 1072 in (d).

to still images. The argument involves adding dither noise to a signal before quanti-
zation. Consider gray-scale pixel x € [0, 1] and binary output pixel y € {0,1} with
threshold § = 3. Then the dithered quantizer gives E[Y|z] =1 -Pr{n < -z} ==z
if and only if the noise is uniform on (—3, 3). But the subjective SR result in 1 holds
for Gaussian noise and for many other types of nonuniform noise distributions that
also includes the infinite-variance noise types in the broad family of alpha-stable dis-
tributions [72, 59]. So the dithering argument only partially explains this subjective
SR effect.

Simulation and theoretical results show that memoryless threshold neurons benefit
from small amounts of almost all types of additive noise and so produce the stochastic-
resonance or SR effect. Figure 2 shows a typical simulation confirmation of this SR
result for additive Gaussian noise. Input-output mutual information measures the
performance of such threshold systems that use subthreshold signals. The SR result
holds for all possible noise probability density functions with finite variance. The
only constraint is that the noise mean must fall outside a “forbidden” threshold-
related interval that the user can control. The theorem shows that this condition

is also necessary. A corollary and simulations show that the SR effect occurs for
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Figure 2: The non-monotonic signature of stochastic resonance. The graph shows
the smoothed input-output mutual information of a threshold system as a function of
the standard deviation of additive white Gaussian noise n;. The vertical dashed lines
show the absolute deviation between the smallest and largest outliers in each sample
average of 100 outcomes. The system has a nonzero noise optimum at o, ~ 0.328
and thus shows the SR effect. The noisy signal-forced threshold system has the form

6). The Gaussian noise n; adds to the external forcing bipolar signal s;.
g g

right-sided beta, gamma, and Weibull noise as well. These SR results further hold
for the entire uncountably infinite class of alpha-stable probability density functions.
Alpha-stable noise densities have infinite variance and infinite higher-order moments
and often model impulsive noise environments. The stable noise densities include
the special case of symmetric bell-curve densities with thick tails such as the Cauchy
probability density. The SR result for alpha-stable noise densities shows that the
SR effect in threshold and threshold-like systems is robust against occasional or even
frequent violent fluctuations in noise. Regression analysis reveals both an exponential
relationship for the optimal noise dispersion as a function of the alpha bell-curve
tail thickness and an approximate linear relationship for the SR-maximal mutual
information as a function of the alpha bell-curve tail thickness.

The report next shows extensive simulations that confirms the SR effect in several
standard continuous sigmoidal neurons and for Gaussian radial basis functions. It
then reviews a robust learning law can find the optimal noise variance and dispersion
for both threshold and continuous neurons and for both finite-variance and infinite-

variance noise. It derives and tests a new robustified learning law that finds the



entropically optimal noise level given histogram estimates of the underlying marginal
and conditional probability density functions. This statistically robust algorithm uses
only the sign of the noise gradient rather than the gradient itself.

The results show that model neurons can exploit low levels of crosstalk or other
forms of noise in their local environment. Even highly impulsive noise can help
neurons maximize their throughput information. Such noise-based information max-
imization is consistent with Linsker’s principle of information maximization in neu-
ral networks [63, 64]. These findings support the implicit SR conjecture that bi-
ological neurons have evolved to computationally exploit their noisy environments
[15, 23, 24, 29, 62, 74, 79, 86]. Further support is that these adaptive SR effects still
hold for other sigmoidal and nonsigmoidal (Gaussian) neurons as Figure 20 shows.
These results suggest that biological neurons should experience less mutual informa-
tion if they do not use their local noise.

Then the report presents an SR effect in object segmentation with color thresh-
olding algorithm in image processing. This preliminary result shows that an addition
of a small amount of noise can improve the accuracy of color object segmentation.
It shows that this SR effect does occur for various performance indices that measure
how well an object is segmented from the background. The performance measures are
mutual information, error pixels count, and object position error. These measures
compare the segmented images obtained from the original thresholding algorithm
with the proposed SR-extended algorithm. The study confirms by examples that
addition of noise can robustify the color thresholding algorithm and thus provides an

alternative for engineers when they need to detect color objects in noisy input images.

2 Mutual Information and SR in Neuron Models

This section reviews Shannon’s measure of mutual information between two random
variables. Then it reviews the simple nonlinear threshold model of a neuron and the
continuous neuron model that show the SR effect for bipolar signals.

Mutual information [25] can measure the stochastic resonance (SR) effect [16, 27,
38, 52, 84]. The discrete Shannon mutual information of the input S and output YV

has the form

I(S,Y) = H(Y)- H(Y|S) (1)
= — ZPY(?J) log Py (y) + ZZPSY(S, y) log Py s(y|s) (2)
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We can view the mutual information in the form of expectation of a random variable
_Psy(sy) .
log Ps?st(y)'
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Here Ps(s) is the probability density of the input S, Py(y) is the probability
density of the output Y, Py|s(y|s) is the conditional density of the output Y given
the input S, and Psy (s, y) is joint density of the input S and the output Y.

Mutual information also measures the pseudo-distance between the joint proba-

bility density Psy (s,y) and the product density Ps(s)Py(y). This holds for the Kull-

P,
back [25] pseudo-distance measure I(S,Y) =) ZPSY $,Y) logﬂ. Then

Jensen’s inequality implies that 7(S,Y") > 0. Random variables S and Y are statisti-
cally independent if and only if I(S,Y) = 0. Hence I(S,Y) > 0 implies some degree

of dependence.

2.1 Noisy Threshold Neuron (Threshold System)

We use the discrete-time threshold neuron model [16, 35, 47, 54, 57|

1 ifs;+mn, >0
Yy = sgn(s;+n,—0) = o= (6)
—1 1fst+nt<9

where 6 > 0 is the neuron’s threshold, s, is the bipolar input Bernoulli signal (with
success probability %) with amplitude A > 0, and n; is the additive white noise with
probability density p(n). Experiments with other success probabilities near  did not

produce substantially different simulation results.

2.2 Noisy Continuous Neuron

We use the additive continuous neuron model with a neuronal signal function S(x)
[57]

T = —x+S(x)+ s(t) +n(t) (7)
y(t) = sgn(x(t)). (8)

5



Here s(t) and n(t) are the input and additive noise of the neuron and y(t) is the
binary output. The neuron feeds its output signal S(z) back to itself and emits the
threshold bipolar signal y(t) as output.

e Hyperbolic Tangent. This signal function gives an additive neuron model
that is bistable [4, 14, 20, 47, 48, 57|

S(z) = 2tanhx 9)

e Linear-Threshold. This simple linear-threshold signal function [57] also gives

the SR effect in the neuron:
cr |ex| <1
S(x) = 1 cx>1 (10)
-1 cx<—1

for a constant ¢ > 0. We use ¢ = 2.

e Exponential. This signal function is asymmetric with the form [57]

1 —exp{—cry >0
S() = e ()
0 otherwise
for a constant ¢ > 0. We use c = 10.
e Gaussian. The Gaussian or “radial basis” signal function [57] differs from other

signal functions above because it is nonmonotonic:
S(z) = exp{—cz’} (12)

for a constant ¢ > 0. We use ¢ = 100.

3 Mutual Information of the Threshold Neuron
with Bipolar Input Signals

This section derives analytical SR results for the noisy threshold neuron based on the
marginal probability density function of the output Py (y) and the conditional density
Pys(y|s). The system is the binary neuron with a fixed threshold . The bipolar
(Bernoulli with success probability p) input signal s, has amplitude A: s, € {—A, A}
with probability density Ps(s). The noise n;, adds to the signal s, before it enters
the neuron. So the neuron’s output y; has the form (6). Figure 5 plots the mutual

information 7(S,Y’) for four standard closed-form noise probability density functions

6



(19)-(38). The central result is a theorem that holds for almost all noise probability
densities so long as the mean noise falls outside a user-controlled interval that depends
on the threshold 6.

The symbol ‘0" denotes the input signal s = —A and output signal y = —1. The
symbol ‘1’ denotes the input signal s = A and output signal y = 1. We also assume

subthreshold input signals: A < . Then the conditional probabilities Py ¢(y|s) are

Pyis(0[0) = Pr{s+n<6}

6+A
= Pr{n< 0+ A} = / p(n)dn (13)
Pyis(110) = 1 - Py5(0[0) (14)
Pyis(0]1) = Pr{s+n<6}
0—A
— Pr{n<f— A} = / p(n)dn (15)
Pyis(11) = 1= Pys(0[1) (16)
and the marginal density is
Py(y) = > Pyis(yls)Ps(s) (17)

Researchers have derived the conditional probabilities Py s(y|s) of the threshold
system with Gaussian noise with bipolar inputs [16] and Gaussian inputs [84]. We
next derive Py|g(y|s) for uniform, Laplace, and (infinite-variance) Cauchy noise as
well. Figure 3 shows four examples of the unimodal noise densities and their realiza-
tions. Then we introduce stable distributions to model a spectrum of impulsive noise

types.

e Gaussian Noise. The Gaussian density with zero mean and variance o2 = o

has the form

1 n?
- - 1
R e (1)
Then the conditional probabilities Py s(y|s) are
P R " g
0j0) = / —exp{—
v15(0[0) e oV21 exp{ 20’2} "
1 1 0+ A
= -+ cerf 19
5 T2 ( o2 ) (19)
1 1 0+ A
Py (1 = — — —erf 2
v1s(1]0) 5 7 (0\/5) (20)
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Figure 3: Probability density functions and sample realizations. The figure shows
Gaussian, Laplace, and uniform random variables n with zero mean and variance of
two: E[n] = 0 and E[n?] = 0? = 2. The Cauchy density function has zero location
and unit dispersion but infinite variance. The pseudo-random number generators in

[65] act as noise sources for these probability densities.

1 1 f— A
1 1 0— A
Pys(1[1) g — et o8 (22)

The error function erf is

erf(z) = % /Oxexp{—tQ}dt (23)

e Uniform Noise. The uniform density with zero mean and variance o2 = %
has the form
1 a a
~if =5 <n< g
pn) = ¢ 2 2 ’ (24)
0 otherwise



Then the conditional probabilities Py s(y|s) are

1 fe<h+ A
Py5(0[0) = ’
v15(0]0) { L4 A0 otherwise
1 6+A
min{ '3 + a ¥ (25)
1 6+A
Pys(1]0) = max{0,5 - ——} -
. 1 6—-A
Py|s(0|1) = min{l, 3 + T} (27)
1 0-A

Pys(1]1) = max{0 } (28)

e Laplace Noise. The Laplace density with zero mean and variance o2 = 23

has the form

pn) = zexp{=|3]) (29)
Then the conditional probabilities Py s(y|s) are
Prs(O0) = 1 Fexp{-"" (30)
Puslll) = gesp{- 227 31
Pys(0]1) = 1- ;exp{—g_ﬁA (32)
Prs(1) = jexp{-"—" (33

e Cauchy Noise. The Cauchy density with zero location and finite dispersion

(but infinite variance) has the form

L v
— . 34
pin) = E (34)
Then the conditional probabilities Py s(y|s) are
1 1 0+ A
Pyis(0[0) = -+ —tan” 35
ys(O0) = 5+ an (35)
1 1 0+ A
Pyg(1l0) = = — —tan ' —>— 36
vs(10) = 5 - tan (30)
1 1 60— A
Pyis(0]1) = -4 —tan™' —— 37
Vs(O]) = 5~ tan (37
1 1 60— A
Pyis(1]1) = - ——tan ' —— (38)
2 7 ¥



e Symmetric Alpha-Stable Noise: Thick-Tailed Bell Curves

We model many types of impulsive noise with symmetric alpha-stable bell-curve
probability density functions with parameter « in the characteristic function p(w) =
exp{—7|w|*}. Here ~ is the dispersion parameter [10, 34, 41, 77]. The parameter
a controls tail thickness and lies in 0 < a < 2. Noise grows more impulsive as «
falls and the bell-curve tails grow thicker. The (thin-tailed) Gaussian density results
when o = 2 or when p(w) = exp{—yw?}. So the standard Gaussian random variable
has zero mean and variance 0> = 2 (when v = 1). The parameter o gives the
thicker-tailed Cauchy bell curve when a =1 or ¢(w) = exp{—|w|} for a zero location
(a = 0) and unit dispersion (y = 1) Cauchy random variable. The moments of
stable distributions with o < 2 are finite only up to the order k£ for k¥ < a. The
Gaussian density alone has finite variance and higher moments. Alpha-stable random
variables characterize the class of normalized sums of independent random variables
that converge in distribution to a random variable [10] as in the famous Gaussian
special case called the “central limit theorem.” Alpha-stable models tend to work well
when the noise or signal data contains “outliers” — and all do to some degree. Models
with @ < 2 can accurately describe impulsive noise in telephone lines, underwater
acoustics, low-frequency atmospheric signals, fluctuations in gravitational fields and
financial prices, and many other processes [58, 77]. Note that the best choice of « is
an empirical question for bell-curve phenomena. Bell-curve behavior alone does not
justify the (extreme) assumption of the Gaussian bell curve.

Figure 4 shows realizations of four symmetric alpha-stable random variables. A
general alpha-stable probability density function f has characteristic function ¢ [3,
9, 41, 77]:

p(lw) = exp {iaw — y|wl|® (1 + ifsign(w) tan %) } fora#1 (39)
and
p(w) = expiaw — y|w|(1 — 2iFIn |w|sign(w)/7)} fora=1  (40)
where
1 ifw>0
sign(w) = 0 ifw=0 (41)
-1 ifw<0

and i = /-1, 0 < aa <2, =1 < g <1, and v > 0. The parameter « is the

characteristic exponent. Again the variance of an alpha-stable density does not exist

10



if & < 2. The location parameter a is the “mean” of the density when o > 1. 3 is
a skewness parameter. The density is symmetric about @ when S = 0. The theorem
below still holds even when 3 # 0. The dispersion parameter v acts like a variance
because it controls the width of a symmetric alpha-stable bell curve. There are no
known closed forms of the a-stable densities for most a’s. Numerical integration of
@ gives the probability densities in Figure 4.

The main results are theorems that show the SR effect in simple (memoryless)
threshold neurons as often found in literature of neural networks [42, 43, 57]. The
first theorem (Theorem 1.1) shows that threshold neurons exhibit the SR effect for all
finite-variance noise densities if the system performance measure is Shannon’s mutual
information and if the mean or location parameter falls outside a “forbidden” interval
that one can often pick in advance. A corollary shows that this SR effect still occurs
for right-sided gamma, beta, and Weibull noise. Traditional SR research has focused
almost exclusively on two-sided noise. The second theorem (Theorem 2.1) shows that
this also holds for all infinite-variance densities that belong to the large class of stable
distributions. Both theorems assume that all signals are subthreshold signals. The
other two theorems (Theorems 1.2 and 2.2) show that there is no SR effect if the
mean or location parameters fall within the forbidden threshold interval. Figure 11
shows a simulation instance of this predicted forbidden-interval effect for Gaussian
and Cauchy noise.

We can derive more specific results for closed-form noise densities. Figure 5 shows
I-versus-o profiles of a threshold system with four kinds of noise: Gaussian, uniform,
Laplace, and Cauchy. The I profile of the uniform noise has the highest peak among
the four noise densities for the same system (same threshold 6 and same input am-
plitude A). And the I profile has a distinct shape: it drops sharply after it reaches
its peak as o grows. Gaussian noise gives the second highest I while Cauchy gives
the lowest. The threshold system requires different optimal standard deviations (or
dispersions) for different kinds of noise.

The closed form of the I-versus-o profiles in Figure 5 also allows a direct analysis
of how the optimal noise depends on the signal amplitude A for Gaussian, uniform,
Laplace, and Cauchy noise. Suppose the signal amplitude A is a subthreshold input
in a noisy threshold neuron with threshold : A < #. Then will the optimal noise o,
(or yopt) decrease as the signal amplitude A moves closer to the threshold 67

Intuition might suggest that the threshold system should need less noise to produce

the entropic SR effect as the amplitude moves closer to the threshold #. But the results

11



in Figure 6 show that the compound nonlinearities involved produce no such simple
relationship. The different noise types produce different SR optimality schedules.
Figure 6 shows four optimal noise schedules for the threshold value # = 0.5. Other
threshold values produced similar results. Only optimal Laplace and Cauchy noise
produce the more intuitive monotone decrease in the optimal noise level with rising
signal amplitude A. Optimal uniform noise grows linearly with signal amplitude while

optimal Gaussian noise defines a nonmonotonic schedule.

12



0.35 T T T T T 5

100 200 300 400 500 600 700 800 900 1000

10for18 | ]
noo
_10b i

100 200 300 400 500 600 700 800 900 1000

40
20k =15 I l i
n‘ 0 A" It Ay L_.[l A wv““‘v duubiapily Y Ay MY i !
oof 'l [ 1
~40 . . . . . . . . .
200 100 200 300 400 500 600 700 800 900 1000

a=‘i.0

ht 0 . i L A'J" l . n
-200

100 200 300 400 500 600 700 800 900 1000

Sample t
(a) (b)
05 ‘ ‘ ‘ ‘ ‘ 10 ; ; ; ;
=05
0
n(
10} ]
0 200 400 600 800 1000
20 ‘ ; ; ;
1o V=1 1
n
o ”WWWWMWVW ity
10} ]
0 200 400 600 800 1000

0 200 400 600 800 1000

(c) (d)

Figure 4: Samples of standard symmetric alpha-stable probability densities and their
realizations. (a) Density functions with zero location (¢ = 0) and unit dispersion
(y =1) for @« = 2, 1.8, 1.5, and 1. The densities are bell curves that have thicker
tails as a decreases and thus that model increasingly impulsive noise as a decreases.
The case @ = 2 gives a Gaussian density with variance two (or unit dispersion).
The parameter o = 1 gives the Cauchy density. (b) Samples of alpha-stable random
variables with zero location and unit dispersion. The plots show realizations when
a =2, 1.8, 1.5, and 1. Note the scale differences on the y-axes. The alpha-stable
noise n becomes more impulsive as the parameter « falls. The algorithm in [17, 85]
generates these realizations. (c) Density functions for e = 1.8 with dispersions v =
0.5, 1, and 2. (d) Samples of alpha-stable noise n for & = 1.8 with dispersions v =0.5,
1, and 2.
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4 SR for Threshold Systems with Finite-Variance

Noise

Almost all finite-variance noise densities produce the SR effect in threshold neurons
with subthreshold signals. This holds for all probability density functions defined on a
two-symbol alphabet. The proof of Theorem 1.1 in [60] shows that if (S, Y") > 0 then
eventually the mutual information 7(S,Y") tends toward zero as the noise variance
tends toward zero. So the mutual information I(S,Y’) must increase as the noise
variance increases from zero. The only limiting assumption is that the noise mean
Eln] does not lie in the “forbidden” signal-threshold interval (6§ — A, 0 + A).

Theorem 1.1. Suppose that the threshold signal system (6) has noise probability
density function p(n) and that the input signal S is subthreshold (A < ). Suppose
that there is some statistical dependence between input random variable S and output
random variable Y (so that 1(S,Y) > 0). Suppose that the noise mean E[n] does not
lie in the signal-threshold interval (0 — A,0+ A) if p(n) has finite variance. Then the
threshold system (6) exhibits the nonmonotone SR effect in the sense that 1(S,Y) — 0

as o — 0.

Corollary 1.1. The threshold neuron (6) exhibits stochastic resonance for the ad-
ditive gamma, beta, and Weibull noise densities under the hypotheses of Theorem
1.1.

The gamma density has the form

naflefn/ﬁ
pn) = { Tpe =0 (42)

0 otherwise

Parameters a and 3 are positive constants and I' is the gamma function
o0
Ix) = / y*levdy x> 0. (43)
0

Gamma random variables have finite mean «f and functionally related finite vari-
ance o/32. Gamma family of random variables includes the popular special cases of
exponential, Erlang, and chi-square random variables. Figure 7 shows simulation

realizations of this corollary for the gamma noise density.
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The generalized beta probability density function has the form

« n—a\ol _n B—1
p(n) = biag((a)?(?)(b_ﬁ <2_a) a<n<b

0 otherwise

(44)

Parameters o and [ are positive shape constants, parameters a and b are constants
—o0 < a<b< oo, and I' is the gamma function

I(z) = / y“letdy x> 0. (45)
0

The mean and variance of the beta density are

m, = a,+(b—a,)a+ﬁ (46)
2 (b - a)Qaﬁ
= (ot Aa+ A ) "

So the beta density is right-sided for @ > 0. We used a = 0 and b = 10 and
so defined the beta density in the interval [0,10] for the SR simulation instance in
Figure 8. The algorithm in [18] generated the beta noise. Bayesian statisticians
often use a beta density to encode prior information about a parameter (such as a
binomial success parameter p) over a fixed-length interval [81]. The beta density
can also model the semblance or the ratio of stacked energy to total energy across a
signal array [56], fluctuations of the radar-scattering cross-sections of targets [61], the
self-similar process of video traffic [6], and the variation of the narrow-band vector
channels or spatial signature variations due to movement [55].

The Weibull probability density function has the form

anf~le—en/B >0

p(n) = { (48)

0 otherwise

for positive shape parameters @ and 3. The mean and variance of the Weibull density

m, = (i):: r (1 + %) 2 (49)
o (g) {r(u%)-{r(u%)}} (50)

Figure 9 shows simulation realizations of this corollary for the Weibull noise density.
Matlab 6.5 [28] generated the Weibull noise. Weibull [89] first proposed this paramet-

ric probability density function to model the fracture of materials under repetitive

are
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stress. This density has become a standard model of multi-part system reliability
[71]. It can also effectively model signals and noise in many systems such as radar

clutter [83] and confocal laser scanning microscope data [49].

Proof of Theorem 1.1.

Assume 0 < Pg(s) < 1 to avoid triviality when Pg(s) = 0 or 1. We show that S
and Y are asymptotically independent: I(c) — 0 as 0 — 0. Recall that I(S,Y) =
if and only if S and Y are statistically independent [25]. So we need to show only
that Psy(s,y) = Ps(s)Py(y) or Pys(y|s) = Py(y) as 0 — 0 for some signal symbols
s € S and y € Y. The two-symbol alphabet set S gives

Py(y) = ZPYH(M )Ps(s 51

= PY‘S(y|0)PS( ) + Pyis(y|1)Ps(1)
= Pys(y|0)Ps(0) + Pys(y[1)(1 — Ps(0))
= (Pyis(y|0) = Pyis(y[1)) Ps(0) + Pyis(y|1)

22
53

)
)
)
54)

) (
( (
( (
) (
So we need to show only that Pys(y|0) — Pyis(y|1) = 0 as 0 — 0. This condition
implies that Py-(y) = Pys(y|1) and Py(y) = Py|s(y|0). We assume for simplicity
that the noise density p(n) is integrable. The argument below still holds if p(n) is
discrete and if we replace integrals with appropriate sums.
Consider y = ‘0’. Then (13) and (15) imply that

Py15(0]0) — Py5(0[1)

6+ 0—A
= / p(n)dn—/ p(n)dn (55)
044 '
= ) dn, o6
| plnydn (56)
Similarly for y = ‘1":
Pys(10) = [~ p(n)dn (57)
0+A
Pys(i1) = [~ p(n)dn (58)
Jo-a
Then
6+A
Pys(1]0) — Pyys(1]1) = —/G_A p(n)dn (59)
The result now follows if
6+A
/ p(n)dn — 0 as 0 — 0 (60)
oA
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Let the mean of the noise be m = E[n] and the variance be 0® = E[(xz — m)?]. Then
m ¢ [0 — A, 0+ A] by hypothesis.

Now suppose that m < § — A. Pick e = 2d(0 — A,m) = 3(0 — A—m) > 0. So
0—A—ec=0—A—c+m—m=m+0—A—m)—ec=m+2 —c=m+e. Then

Py5(0[0) —

<

IN

VAN VAN

{

0+A
Pys(0]1) = / dn
Y\S( 1) A p(n)dn
/ p(n)dn
0—-A

d
/0 7Hp(n) n
/ p(n)dn
Jm+e

Prin>m+c¢c}
Prin—m > ¢}

Pr{|n —m| > ¢}
2

o . )
=) by Chebyshev’s inequality
0 as o — 0

A symmetric argument shows that for m > 6 + A

Py15(0[0) —

Q.E.D.

2
Pysol) < 2 50 aso—0
9
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Figure 7: Stochastic resonance with (finite-variance) gamma noise. The noisy signal-
forced threshold neuron has the form (6). The gamma noise n; adds to the bipolar
input Bernoulli signal s;. The neuron has threshold §# = 1. The input Bernoulli
signal has amplitude A = 0.8 with success probability p = % Each trial produced
10,000 input-output samples {s;, y;} that estimated the probability densities to obtain
the mutual information. The algorithm in [1, 2] generated realizations of the gamma
random variable. (a) The graph shows the smoothed input-output mutual information
of a threshold neuron as a function of the parameters «v and 3 of additive white gamma
noise n;. The neuron’s mutual information has a nonzero noise optimum o,y > 0 for
each a > 0. It also has a nonzero noise optimum o,, > 0 for each 5 > 0. Figure
(b) shows the cross section of the mutual-information surface for « = 2. Figure (c)
shows the cross section for 5 = 1. Note that the mean and variance of the gamma

noise are m = af3 and o? = af3%. 19
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Figure 8: Stochastic resonance with (right-sided) beta noise. The noisy signal-forced
threshold neuron has the form (6). The beta noise n; adds to the bipolar input
Bernoulli signal s;. The parametrized interval [a,b] of the beta density (44) has
a = 0 and b = 10. The neuron has threshold § = 1. The input Bernoulli signal has
amplitude A = 0.8 with success probability p = % Each trial produced 10,000 input-
output samples {s;, y;} that estimated the probability densities to obtain the mutual
information. The graph shows the smoothed input-output mutual information of a
threshold neuron as a function of the parameters o and 3 of additive white beta noise

ny. The neuron’s mutual information has a nonzero noise optimum o,, > 0 where
2
2 (b—a)’ap

the variance has the form = .
v T (at B at B+ 1)
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noise n;. The neuron’s mutual information has a nonzero noise optimum o,,; > 0

. . (8] 9 1\\’]
where the variance has the form o, = | — [F I+ <D [1+ .

a 5 5] |
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5 SR for Threshold Systems with Infinite-Variance

Noise

We now proceed to the more general (and more realistic) case where infinite-variance
noise interferes with the threshold neuron. The SR effect also occurs in other sys-
tems with impulsive infinite-variance noise [59, 72]. We can model many types of
impulsive noise with symmetric alpha-stable bell-curve probability density functions
with parameter a in the characteristic function ¢(w) = exp{—-y|w|*}. Here v is the
dispersion parameter [10, 34, 41, 77]. Figure 4 shows examples of symmetric (bell-
curve) alpha-stable probability density functions with different « tail thicknesses and
different bell-curve dispersions ~.

Theorem 2.1 applies to any alpha-stable noise model. The density need not be
symmetric. The proof of Theorem 2.1 is simpler than the proof in the finite-variance
case because all stable noise densities have a characteristic function with the ex-
ponential form in (39)-(40). So zero noise dispersion gives ¢ as a simple complex
exponential and hence gives the corresponding density as a delta spike that can fall

outside the interval (§ — A,0 + A).

Theorem 2.1. Suppose I(S,Y) > 0 and the threshold neuron (6) uses alpha-stable
noise with location parameter a ¢ (6 — A,0 + A). Then the neuron (6) exhibits the

nonmonotone SR effect if the input signal is subthreshold.

Proof of Theorem 2.1. Again the result follows if

0+A
/ p(n)dn — 0 asy — 0 (71)
09— A

The characteristic function ¢(w) of alpha-stable noise density p(n) has the expo-
nential form (39)-(40). This reduces to a simple complex exponential in the zero-

dispersion limit:

lim p(w) = exp {iaw} (72)

v—0
for all o’s, skewness (3’s, and location a’s. So Fourier transformation gives the corre-
) )

sponding density function in the limiting case (7 — 0) as a translated delta function

limp(n) = 5n ) (73)
Then
Prs(00) = Pris(ol) = [ pln)an (74)

22



because a ¢ [0 — A, 0 + Al. Q.E.D.

We next state two theorems that show that we cannot in general omit the threshold-
interval condition in the hypothesis of Theorem 1.1. Noise does not help a threshold
0 that already lies between # — A and 6 + A.

Theorem 1.2. Suppose that the threshold signal system (6) has noise probability
density function p(n) and that the input signal S is subthreshold (A < ). Suppose
that the noise mean E[n] lies in the signal-threshold interval (0 — A, 6 + A) if p(n)
has finite variance. Then the threshold system (6) does not exhibit the nonmonotone

SR effect in the sense that 1(S,Y’) is mazimum as o — 0:

I(S,Y) = H(Y) = H(S) as o — 0 (77)

Theorem 2.2. Suppose that the threshold signal system (6) has subthreshold input
signal and use alpha-stable noise with location parameter a € (6 — A, 0+ A). Then the
threshold system (6) does not exhibit the nonmonotone SR effect: 1(S,Y) is mazimum
as vy — 0:

I(S,)Y) = H(Y) = H(S) as vy — 0 (78)

The two proofs below use the same idea as do the proofs for Theorems 1.1 and
2.1. Assume 0 < Ps(s) < 1 to avoid triviality when Pg(s) = 0 or 1. We show that
H(Y)— H(S)and H(Y|S) > 0asoc —-0ory— 0. So I(S,Y) — H(S) aso — 0
or v — 0 and is maximum since I(S,Y) = H(Y) — H(Y'|S) and I(S,Y) < H(S) by
the Data Processing Inequality: 1(S,S) > I(S,g(S)) = I(S,Y) for a Markov chain
S — S — Y [25]. The boundary case 1(S,S) = H(S) implies I(S,Y) < H(S).

Proof of Theorem 1.2: Finite-variance noise case. Now we show that Py 5(y|s)
is either 1 or 0 as 0 — 0 or v — 0. Let the mean of the noise be m = E[n| and the
variance be 0% = E[(z — m)?]. Then m € (§ — A, 0 + A) by hypothesis.
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Consider Py 5(0]0). Pick e = 2d(0 + A,m) = (0 +A—m) >0. So 0+ A —¢ =
0+A—c+m—m=m+OB+A—m)—ec=m+2—c=m+e. Then

6+A
Pys(0/0) = [ p(n)dn (79)
0+A—e
> [ pn)dn (80)
. m-+e
= [ pmydn (81)
= 1- / p(n)dn (82)
Jm+te
= 1-Pr{n>m+e}=1-Pr{n—m>¢} (83)
> 1—-Pr{ln—m|>c¢e} (84)
2
> 1- Z_Q by Chebyshev’s inequality (85)
— 1 as o — 0 (86)

So Py‘S(O‘O) =1.
Similarly for Py(s(1/1). Picke = 3d(0 — A, m) = 5(m—0+A) > 0. So 0~ A+e =
06— A+e+m—-—m=m+(0@—A—m)+e=m—2c+ec=m—e. Then

Prs) = [~ p(m)dn (87)
> /eooA+s p(n)dn (88)
— :5 p(n)dn (89)
_ - / " p(n)dn (90)
= 1—P;?n§m—s}:1—Pr{n—m§—5} (91)
> 1-Pr{ln—m|>c¢c} (92)
> 1- U—z by Chebyshev’s inequality (93)
— 1 ) as 0 — 0 (94)

So Pys(1]1) = 1.

Proof of Theorem 2.2: Alpha-stable noise case. The characteristic function
¢(w) of alpha-stable noise density p(n) has the exponential form (39)-(40). This

reduces to a simple complex exponential in the zero-dispersion limit:

lim p(w) = exp {iaw} (95)

v—=0
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for all characteristic exponent a’s, skewness [3’s, and location a’s. So Fourier trans-
formation gives the corresponding density function in the limiting case (7 — 0) as a

translated delta function

limp(n) = 6(n—a) (96)
Then
0+A
Prs(00) = [ pln)dn (97)
0+A
— / d(n—a)dn =1 as 7 — 0 (98)
Similarly
Pysl) = [~ pn)dn (99)
Y d(n—a)dn = 1 asy — 0 (100)
-

The two conditional probabilities for both finite-variance and infinite-variance
cases imply that Py |s(0/1) = Py|g(1|0) = 0 as 0 — 0 and v — 0. (We can proceed in

a similar manner to obtain these two probabilities). These four probabilities further

imply that
H(Y|S) = _ZZPSY(Say) 10g2PY\S(y|S) (101)
= D Ps(s) ) Pris(yls) log, Pris(yls) (102)
=0 (103)

where we use the convention that 0log, 0 = 0. The entropy H(Y') becomes

H(Y) = =Y Py(y)log, Py(y) (104)
= = Ps(s)log, Ps(s) (105)
= H(S) (106)

since

Py(y) = XS:PY\S(Q\S)PS(S) (107)
= Py5(y[0)Ps(0) 4+ Pys(y[1)Ps(1) (108)
= Pyis(y[0)Ps(0) + Pyis(y[1)(1 — Ps(0)) (109)
= (Pyis(y/0) — Pyis(yl1))Ps(0) + Pyis(y[1) (110)
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= (PY\S(?/H) - PY|S(,U|0))PS(1) + PY\S(?J|0) (111)

= " (112)
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Figure 10: Stochastic resonance with highly impulsive (infinite-variance) alpha-stable
noise. The graphs show the smoothed input-output mutual information of a threshold
system as a function of the dispersion of additive white alpha-stable noise n; with
a = 1 (Cauchy noise) in (a) and aw = 1.5 in (b). The vertical dashed lines show the
absolute deviation between the smallest and largest outliers in each sample average
of 100 outcomes. The system has a nonzero noise optimum at v, ~ 0.285 for a =1
and 7, ~ 0.129 for @ = 1.5 and thus shows the SR effect. The noisy signal-forced
threshold system has the form (6). The alpha-stable noise n; adds to the bipolar input
Bernoulli signal s;. The system has threshold # = 0.5. The input Bernoulli signal
has amplitude A = 0.3 with success probability p = % Each trial produced 10,000
input-output samples {s;,y;} that estimated the probability densities to obtain the
mutual information. Note that decreasing the tail-thickness parameter « increases the
optimal noise dispersion 7,,; as in Figure 12 and decreases the SR-maximal mutual

information I,,,,,(S,Y") as in Figure 13.

Figure 10 gives a typical example of the SR effect for highly impulsive noise with
infinite variance. The alpha-stable noises have @ = 1 (Cauchy) and a = 1.5. So fre-
quent and violent noise spikes interfere with the signal. Figure 10 also illustrates the
empirical trends in Figures 12 and 13: A falling tail-thickness parameter o produces

an increasing optimal noise dispersion 7,y but a decreasing SR-maximal mutual in-
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formation I,,,,(S,Y). We next state a new sufficient condition for SR not to occur

in an impulsive threshold system.
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Figure 11: No SR in the “forbidden” interval (per Theorems 1.2 and 2.2)—mutual
information versus alpha-stable noise dispersion when the noise mean (location) lies
in the “forbidden” signal-threshold interval: a € (6§ — A,0 + A). The graphs show
the smoothed input-output mutual information of 100 trials of a threshold system
as a function of the dispersion of additive white alpha-stable noise n; with a = 2
(Gaussian) in (a) and o = 1 (Cauchy noise) in (b). The system is optimal when
v — 0 and and thus does not show the SR effect: The mutual information I(S,Y)
is maximum as it equals the input entropy H(S). The noisy signal-forced threshold
system has the form (6). The alpha-stable noise n; has location a = 0.4 and adds
to the bipolar input Bernoulli signal s;. The system has threshold # = 0.5. The
input Bernoulli signal has amplitude A = 0.4 with success probability p = % Each
trial produced 10,000 input-output samples {s;,y;} that estimated the probability

densities to obtain the mutual information.

Statistical regression confirmed an exponential relationship between the optimal
noise dispersion v,,; and the bell-curve tail-thickness parameter a: 7, (o) = 100+
for parameters [y and (; that depend on the signal amplitude A. Then the log-
transformation of the optimal dispersion gives the linear model log;, Yop(a) = Sy +
[Bra. Table 1 shows the estimated parameters BO and 51 and the coefficient of deter-
mination r} for 20 signal amplitudes in the threshold neuron using SPSS software.
All observed significance levels or p-values were less than 10~*. The p-values mea-

sure the credibility of the null hypothesis that the regression lines have zero slope
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or other coefficients. The exponential trend’s exponent is linear for most amplitudes
but becomes quadratic for very small amplitudes and for amplitudes close to the
threshold 6 = L (or yppi(a) = 10%0+510+6207 for 3 quadratic fit to the data). Figure 12
shows 6 of the 20 log-linear plots. We also found an approximate linear relationship
Imaz (S, Y ) = By + fra for the SR-maximal mutual information I,,,,(S,Y) as a
function of the tail-thickness parameter a. Table 2 shows the estimated parameters
ﬁg and Bl and the coefficient of determination r? for 20 signal amplitudes in the
threshold neuron. All observed significance levels or p-values were less than 10~%.
There is a clear linear trend for most amplitudes A. The trend becomes quadratic

for very small amplitudes and for amplitudes close to the threshold 6 = % Figure 13

shows 6 of the 20 linear plots.
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Figure 12: Exponential law for optimal noise dispersion 7, as a function of bell-
curve thickness parameter o for the mutual-information performance measure and
for different signal amplitudes A. The optimal noise dispersion 7,,; depends on the
parameter a through the exponential relation 7, (a) = 10%07512 for parameters 3,
and By (or ygpi(a) = 10%0+F1at620" for 5 quadratic fit to the data). Table 1 shows
the estimated parameters /30 and Bl for 20 input Bernoulli signal amplitudes A. The
exponential trend’s exponent is linear for most amplitudes but becomes quadratic for
very small amplitudes and for amplitudes close to the threshold 6§ = % All observed

significance levels or p-values were less than 107,
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Signal Linear model Quadratic
Amplitude Regression coefficients model
A Bo Bl Tl2 7“3
0.025 0.0701 | —0.5944 | 0.9003 0.9444
0.050 0.1002 | —0.6087 | 0.9321 0.9723
0.075 0.1124 | —0.6192 | 0.9490 0.9842
0.100 0.1180 | —0.6261 | 0.9558 0.9888
0.125 0.1090 | —0.6228 | 0.9594 | 0.9910
0.150 0.1078 | —0.6251 | 0.9679 0.9921
0.175 0.1026 | —0.6273 | 0.9672 0.9933
0.200 0.0915 | —0.6214 | 0.9699 0.9942
0.225 0.0810 | —0.6161 | 0.9737 | 0.9950
0.250 0.0694 | —0.6172 | 0.9781 0.9959
0.275 0.0595 | —0.6149 | 0.9826 0.9964
0.300 0.0439 | —0.6148 | 0.9869 0.9961
0.325 0.0290 | —0.6184 | 0.9903 0.9962
0.350 0.0116 | —0.6211 | 0.9935 0.9961
0.375 —0.0134 | —0.6215 | 0.9957 0.9960
0.400 —0.0313 | —0.6367 | 0.9947 | 0.9951
0.425 —0.0705 | —0.6432 | 0.9903 0.9950
0.450 —0.1107 | —0.6688 | 0.9757 | 0.9944
0.475 —0.1837 | —0.7217 | 0.9408 0.9911
0.490 —0.2805 | —0.8053 | 0.8987 |  0.9863

Table 1: Linear regression estimates of the SR-optimal log dispersion 7,,; as a func-
tion of the bell-curve tail-thickness parameter « from a symmetric alpha-stable noise
density. The parameters 3, and ; relate log,, vt and o through a linear relation-
ship: 1ogg Yopt(@) = Bo + fra. The coefficient of determination r7 shows how well
the linear model fits the log-transformed data. The last column shows the coefficient

of determination 7"3 for the quadratic model log,, Yope(@t) = Bo + Brcx + fea®. All

observed significance levels or p-values were less than 10~
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Signal Linear model Quadratic
Amplitude | Regression coefficients model
A Bo /5)1 7“;2 7“2
0.025 —0.0001 | 0.0006 | 0.9312 | 0.9907
0.050 —0.0008 | 0.0022 | 0.9370 | 0.9972
0.075 —0.0018 | 0.0049 | 0.9401 0.9985
0.100 —0.0031 | 0.0086 | 0.9440 | 0.9990
0.125 —0.0048 | 0.0134 | 0.9477 | 0.9993
0.150 —0.0068 | 0.0190 | 0.9521 0.9995
0.175 —0.0090 | 0.0256 | 0.9558 | 0.9997
0.200 —0.0113 | 0.0329 | 0.9612 |  0.9998
0.225 —0.0138 | 0.0411 | 0.9658 | 0.9998
0.250 —0.0161 | 0.0500 | 0.9715 |  0.9997
0.275 —0.0185 | 0.0596 | 0.9764 | 0.9995
0.300 —0.0207 | 0.0698 | 0.9816 | 0.9993
0.325 —0.0224 | 0.0807 | 0.9866 | 0.9990
0.350 —0.0236 | 0.0920 | 0.9913 | 0.9987
0.375 —0.0240 | 0.1039 | 0.9951 0.9984
0.400 —0.0229 | 0.1161 | 0.9976 | 0.9981
0.425 —0.0196 | 0.1286 | 0.9972 | 0.9977
0.450 —0.0120 | 0.1408 | 0.9905 | 0.9975
0.475 0.0058 | 0.1513 | 0.9655 | 0.9973
0.490 0.0336 | 0.1527 | 0.9145 |  0.9959

Table 2: Linear regression of the SR-maximal mutual information I,,,,,(S,Y) as a
function of the bell-curve tail-thickness parameter o from a symmetric alpha-stable
noise density. The parameters [, and (31 relate I,,,,,(S,Y) and « through a linear
relationship: Ipu..(S,Y;a) = By + Bia. The coefficient of determination 77 shows
how well the linear model fits the data. The last column shows the coefficient of

determination r} for the quadratic model I, (S,Y;0) = o + S + foo®.  All

observed significance levels or p-values were less than 10,
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Figure 13: Linear regression for maximal mutual information 1,,,,(S,Y’) as a func-
tion of bell-curve thickness parameter « for different signal amplitudes A. The max-
imal mutual information I,,,,,(S,Y) depends on the parameter a through the lin-
ear relationship I,,,.(S,Y; ) = By + fia for parameters Sy and 5y (or Ipe. (o) =
Bo + Bia + Bea? for a quadratic fit to the data). Table 2 shows the estimated pa-
rameters Bg and Bl for 20 input Bernoulli signal amplitudes A. The linear trend is
strong for most amplitudes A. The trend becomes quadratic for very small ampli-
tudes and for amplitudes close to the threshold 6 = % All observed significance levels

or p-values were less than 1074,
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6 Computer Simulation for the SR Effect in

Continuous Neurons

Discrete simulations can model continuous-time nonlinear dynamical systems if a
stochastic numerical scheme approximates the system dynamics and its signal and
noise response. We used a simple stochastic version of the Euler scheme to model a
nonlinear system with input forcing signal and noise. We measured how the system
performed based on only the system’s input-output samples.

Consider the forced dynamical system with additive forcing input signal s and

“white” noise n

& = f(z)+s(t) +n(?) (113)
y(t) = g(x(t)). (114)

These models simply add a noise term to a differential equation rather than use for-
mal Ito or Stratonovich stochastic differentials [19, 30, 36]. “Whiteness” of a random
variable n here means that n is white only over some large but finite frequency band-
width interval [—B, B] for some large B > 0. Random numbers from the algorithms
in [17, 80, 85] act as noise from various probability densities in our simulations. The
next, sections show how discretized continuous-time systems produced the discrete-

time systems we used for computer simulations.

6.1 Nonlinear Systems with White Gaussian Noise

Consider the dynamical system (113) with initial condition x(#;) = 9. Here the white
Gaussian noise w has zero mean and unit variance so that n = ocw has zero mean and

variance o2. This system corresponds to the stochastic initial value problem [36]

dX = f(t,X)+o(t, X)dW (115)

for initial condition X (t5) = X,. Here f(t,X) = f(X) + s(t), o(t, X) = o, and W
is the standard Wiener process [36]. We used Euler’s method (the Euler-Maruyama

scheme) [26, 36, 51] to obtain the discrete form for computer simulation:

Tir1 = Tt + AT (f('lft) + St) + oV ATU)t (116)
ye = g(x) (117)
for t = 0,1,2,... and initial condition z,. The input sample s; has the value of the

signal s(tAT') at time step ¢. The zero-mean white Gaussian noise sequence {w;} has
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unit variance 03] = 1. The term /AT scales w, so that v/ATw; conforms with the
Wiener increment [36, 51, 75]. The output sample ¥, is some transformation g of the
system’s state x;.

This simple algorithm gives fairly accurate results for moderate nonlinear systems
[36, 51, 65, 75]. Other algorithms may give more accurate numerical solutions of the
stochastic differential equations for more complicated system dynamics [36, 68]. All
of our simulations used the Euler’s scheme in (116)-(117).

The numerical algorithm in [80] generates a sequence of pseudo-random numbers
from a Gaussian density with zero mean and unit variance for {w;} in (116). Figure

3 shows the Gaussian and other densities that have zero mean and a variance of two.

6.2 Nonlinear Systems with Other Finite-Variance Noise

We next consider a system (113) with finite-variance noise n. Suppose the noise n

2

has variance ¢ and again apply the above Euler’s method:

Ty1 = 1+ AT (f(Tt) + St) + oV AT w, (118)

Y1 = g(xp)- (119)

Here the random sequence {w;} has density function p(w) with zero mean and unit
variance. The numerical algorithms in [80] generate sequences of random variables
for Laplace and uniform density functions. Figure 3 plots these probability density
functions and their realizations with mean zero and variance of two: E[z] = 0 and
E[x?] = 2.

6.3 Nonlinear Systems with Alpha-Stable Noise

Figure 3-4 show realizations of the symmetric alpha-stable random variable when
a =1 (Cauchy density). Again we assume that the Euler’s method above applies to
this class of random variables with infinite variance. Let w be a standard alpha-stable
random variable with parameter v and zero location and unit dispersion: ¢ = 0 and

1/a

v=1. Let kK = v'/® denote a “scale” factor of a random variable. Then n = kw has

zero location and dispersion v = k®. This leads to the Euler’s numerical solution

Typ1 = xp+ AT (f(xt) + st) + sV ATw, (120)
yr = g(x). (121)

The algorithm in [17, 85] generates a standard alpha-stable random variable w.
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7 SR and Adaptive SR in Continuous Neurons

This section shows the SR effect in several models of continuous neurons shown in
Section 2. Then it shows that the robustified gradient ascent algorithm can also learn

the optimal noise levels of these neuron models.

7.1 Derivation of SR Learning Law

The stochastic gradient ascent has the form [72, 73]:

ol
Oky1 — Of + kT~ (122)
+ H 90

We assume that P(s) does not depend on o and we use the natural logarithm. Then

the learning term g—i has the form

Zi = ;J(ZPL log P(y +ZP Z y|s)log P(yls )) (123)

_ 1 0Py 0P(y)
= (P50 5 “OgP(y)aT)

P (PP s Tl Potoe Pl ) (12
= =) <3P6(7y) + log P(y) (9P(y)>

do
+ 2; (P(S)apa(gs) + P(s) logP(?J|S)aPa(gs)> (125)

The sum >, P(y) = 1 implies }°, 30') - %Zy P(y) = 0. And 2,5, aP( y\ —0
because }°, P(y|s) =1. So

ol

O0P(y|s
o S (yls)
y

o (126)

s)log P(yls)

We estimate the partial derivative with a ratio of time differences and replace the

denominator with the signum function to avoid numerical instability:

OP(y) Pi(y) — Pi1(y)

%

do Ok — Ok_1
~ sgn(ox — ox-1)[Pr(y) — Pi-1(y)] (127)
OP(yls) _ Pelyls) — Per(yls)
do Ok — Ok—1
~ sgn(oy — op-1)[Pr(yls) — Pe-1(yls)] (128)
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where Py (y) is the marginal density function of the output Y at time ¢ and Py (y|s)

is the conditional density function at time ¢. Then the learning term becomes

g—i ~ sgn(oy — op_1) (— > [Pi(y) — Pe_1(y)]log Pi(y)

Y

DO WS Pk_1<y|s>]logpk<y|s>) (129)

Our previous work [59 72] on adaptive SR found through statistical tests that the
random learning term had an approximately Cauchy distribution for the spectral
signal-to-noise and Cross—correlatlon performance measures P. These frequent and
energetic Cauchy impulse spikes destabilized the stochastic learning process. So we
“robustified” the learning term with the standard Cauchy error suppressor ¢(zx) =
221 /(1 + z2) [45, 50]. This included the threshold neuron given a periodic input
sequence.

But detailed simulations revealed a special pattern in the case of mutual informa-
tion: The density Py(y) tends to stay close to the past density Py ;(y) if the values
of o, and o;_; are close. This causes the learning paths o, to converge quickly near

oI

the initial conditions. So we can replace the learning term 7~ with its sign sgn(g—i)

and the learning law simplifies to

Ok+1 = Ok + pgsgn(~— (130)

30)
The signum is a simple robustifier and formally consistent with a two-sided Laplacian
distribution [45].

7.2 Simulation Results

We tested the robust learning law in (130) with the approximation of the learning term
n (129). We needed to estimate the marginal and conditional probability densities
Py(y), Pi(s), and Px(y|s) at each iteration k. So at each k we collected 1000 input-
output samples {s;, y;} and used them to estimate the densities with histograms for
the threshold system. We used 500 of the input-output symbols to estimate the
probability densities for the continuous neuron model. We chose the neurons’ and
signals’ parameters below to demonstrate the algorithm. Other parameters gave

similar results.
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7.2.1 Noisy Threshold Neuron

The threshold neuron had a fixed threshold § = 0.5. The bipolar input Bernoulli
signal has probability Ps(—A) = Pg(A) = 5 where the amplitude A varied from
A = 0.1 to A = 0.4 (subthreshold inputs). We tried several noise densities that
included the Gaussian, uniform, Laplace, and the impulsive Cauchy density. All
noise densities had zero mean (zero location for Cauchy). We tried to learn the
optimal standard deviation o,y (or optimal dispersion 7,, for Cauchy noise). We
used constant learning rates p = 0.01 for Gaussian and uniform noise, p; = 0.02 for
Laplace and Cauchy noise, and pu; = 0.02 for alpha-stable noise with a = 1.9 and
a = 1.5. We started the learning from several initial conditions with different noise
seeds.

Figures 14-16 show the adapted SR profiles and the o,,; learning paths for different
noise types. The learning paths converged to the optimal standard deviation o,,; (or
dispersion 7,p;) if the initial value was near o,,. The learning paths tended to stay

nearer the optimal values for larger input amplitudes.

7.2.2 Noisy Continuous Neuron

We used the discrete model in Section 6 for simulations. We used dt = 0.01 s and
let each input symbol stay for 50 s. So for each input symbol we presented the
corresponding “spikes” (plus noise) 5000 times to the neuron. And we collected 5000
discrete-time output “spikes” and averaged them to get the output symbol. This

procedure applied to all types of signal functions and for all types of noise.

e Continuous Neurons with Hyperbolic Tangent Signal Function

We tested the continuous neuron model with hyperbolic tangent signal function
with several noise densities such as the Gaussian, uniform, Laplace, and alpha-
stable (which included the Cauchy density). All noise densities had zero mean (zero
location for Cauchy). The bipolar input Bernoulli signal had success probability
Ps(—A) = Ps(A) = £ where the amplitude A varied from A = 0.1 to A = 0.4 (sub-
threshold inputs). We used constant learning rates p; = 0.03 for Gaussian, uniform,
and Laplace noise. We used the smaller learning rates py = 0.02 for alpha-stable
noise with a = 1.9 and a = 1.5 and used the still smaller learning rate p; = 0.005 for
Cauchy noise. We started the learning from several initial conditions with different

noise seeds. Figures 17-19 show the adapted SR profiles and the o, learning paths
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Figure 14: Finite-variance noise cases: Adaptive stochastic resonance for the noisy
threshold neuron (6) with bipolar input signal s;, amplitude A = 0.2, and threshold
§ = 0.5. The additive noise are (a) Gaussian, (b) uniform, and (c) Laplace. The
graphs at the top show the nonmonotonic signatures of SR. The sample paths at the
bottom plots show the convergence if the initial condition oy is close to the optimal
noise level o,,,. Distant initial conditions may lead to divergence as the third learning
path in (a) shows. The constant learning rates are i, = 0.01 for Gaussian and uniform

noise and p; = 0.02 for Laplace noise.
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Figure 15: Finite-variance noise cases: Adaptive stochastic resonance for the noisy

threshold neuron (6) with bipolar input signal s;, amplitude A = 0.4, and threshold

6 = 0.5. The additive noise are (a) Gaussian, (b) uniform, and (¢) Laplace. The

graphs at the top show the nonmonotonic signatures of SR. The sample paths at the

bottom plots show the convergence of the noise standard deviation o4 to the noise

optimum o,,; for each noise density. The constant learning rates are p; = 0.01 for

Gaussian and uniform noise and p; = 0.02 for Laplace noise.
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Figure 16: Impulsive noise cases: Adaptive stochastic resonance for the noisy thresh-
old neuron (6) with bipolar input signal s;, amplitude A = 0.4, and threshold § = 0.5.
The additive noise are a-stable distributed with the parameter (a) a = 1.9, (b)
a = 1.5, and (c) @ = 1 or Cauchy density. The graphs at the top show the nonmono-
tonic signatures of SR. The sample paths at the bottom plots show the convergence
of the noise scale k; to the noise optimum £, for each noise density. The corre-
sponding dispersions are v = k® for each a-stable noise. The constant learning rates

are u = 0.01 for « = 1.9 and o = 1.5 noise and p = 0.02 for Cauchy noise.

for different noise types. The learning paths converged near the optimal standard

deviation o, (or dispersion 7,y) if the initial value was near o,p,.

e Continuous Neurons with Linear-Threshold, Exponential, and Gaussian

(Radial Basis) Signal Functions

We further tested the continuous neuron model with linear-threshold, exponential,
and Gaussian (radial basis) signal functions in Gaussian noise to show the generality
of the SR effect. We used the same bipolar input Bernoulli signal with success prob-
ability Pg(—A) = Pg(A) = 5 where the amplitude is A = 0.4 for the linear-threshold
and Gaussian signal functions and A = 0.6 for the exponential signal function. The
input amplitudes were “subthreshold” for the neuron models with these signal func-

tions. We used constant learning rates p; = 0.02 for the exponential and Gaussian

39



04
0.35 045 0.35
£ 2 04 1 2
= 3 ! 3 03
3)-_ ;0.35 ! =
=0 2 I Lo.25
= = 03 | =
2 S ! S
= 5025 | T 02
£ E | E
S L2 ! 2
o £ 02 ! Zo15
] So1s ! E]
2 5 I 3 01
= = 01 ! =
0.05 !
.05 ! 0.05
I
L
05 1 15 2 0 05 1 15 2
Standard deviation ¢ of additive white uniform noise Standard deviation ¢ of additive white Laplace noise
2
S L N ALY Sak AV AR A WA
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
2 2
15
Gk
PR i
0. 0.
o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
4
0 1000 00 3000 4000 5000 0 1000 2000 . 3000 4000 5000 0 1000 2000 . 3000 4000 5000
Iteration k Iteration k Iteration k

Figure 17: Finite-variance noise cases: Adaptive stochastic resonance for the noisy
continuous neuron (7) with hyperbolic signal function (9) and bipolar input signal s,
with amplitude A = 0.2. The additive noise are (a) Gaussian, (b) uniform, and (c)
Laplace. The graphs at the top show the nonmonotonic signatures of SR. The sample
paths at the bottom plots show the convergence of the noise standard deviation oy
to the noise optimum o,, for each noise density. The constant learning rates are

i = 0.03 for all cases.
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Figure 18: Finite-variance noise cases: Adaptive stochastic resonance for the noisy
continuous neuron (7) with hyperbolic signal function (9) and bipolar input signal s;
with amplitude A = 0.4. The additive noise are (a) Gaussian, (b) uniform, and (c)
Laplace. The graphs at the top show the nonmonotonic signatures of SR. The sample
paths at the bottom plots show the convergence of the noise standard deviation oy
to the noise optimum o,, for each noise density. The constant learning rates are

. = 0.03 for all cases.
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Figure 19: Impulsive noise cases: Adaptive stochastic resonance for the noisy contin-

uous neuron (7) with hyperbolic signal function (9) and bipolar input signal s, with

amplitude A = 0.4. The additive noise are a-stable distributed with the parameter
(a) @ = 1.9, (b) @ = 1.5, and (¢) @ = 1 or Cauchy density. The graphs at the top

show the nonmonotonic signatures of SR. The sample paths at the bottom show the

convergence of the noise standard deviation oy to the noise optimum o,,; for each

noise density. The constant learning rates are p, = 0.02 for o = 1.9, p, = 0.01 for
a = 1.5, and pi = 0.005 for a = 1.
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Figure 20: Adaptives stochastic resonance for continuous neurons with linear-
threshold, exponential, and Gaussian (radial basis) signal functions. The bipolar
input signal s; has amplitude A = 0.4 for the linear-threshold and Gaussian signal
functions and A = 0.6 for the exponential signal function. The additive noise n,
is Gaussian. The graphs at the top show the nonmonotonic signatures of SR. The
sample paths at the bottom show the convergence of the noise standard deviation
ok, to the noise optimum o,,; for each case of signal functions: (a) linear-threshold,
(b) exponential, and (c) Gaussian. The constant learning rates are p; = 0.05 for
the linear-threshold signal function and p; = 0.02 for the exponential and Gaussian

signal functions.

signal functions and p; = 0.05 for the linear-threshold signal functions. We started
the learning from several initial conditions with different noise seeds. Figures 20
shows the adapted SR profiles and the o,y learning paths for the three other signal
functions. The learning paths converged near the optimal standard deviation oy, if

the initial value was near o,p.
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8 Stochastic Resonance Effect in Object
Segmentation with Color Thresholding

Object segmentation is one of the most important tasks in image analysis and com-
puter vision. Color thresholding provides a fast and simple scheme for such task. But
it is sensitive to lighting conditions and other noise effect in images obtained from
the real world applications. This section shows that addition of a small amount of
noise can improve the accuracy of such color object segmentation and thus this SR

effect offers an alternative to detecting color objects in noisy input images.

8.1 Color Image Thresholding

The thresholding method described here can be used with general multidimensional,
color spaces that have discrete component color levels [53, 39] such as RGB, HIS.
This paper uses the RGB color space. An color object is segmented with a set of six
threshold values, two for each color dimension in the RGB color space. A pixel which
has color component value in the interval of the two thresholds, lower and upper
thresholds, is represented as one or otherwise is zero:

gly) = (131)

1 gmin S Yy S Hmax
0 otherwise

where is the image pixel value, O, is the lower threshold and 6., is the upper
threshold. Red, Green, and Blue color components of the input image are compared
and classified to three binary images of each color space by the set of RGB thresholds.
The AND operation of the pixels of these three binary images gives a target object

region.

8.2 Performance Measures
8.2.1 Mutual Information Measure

We use Shannon mutual information I(S,Y") to measure the SR effect in Section 2 for
image segmentation task. The input S is the correctly segmented (binary) image and
the output Y is the output segmented (binary) images using the color thresholding
algorithm and its modified (SR) version.

44



8.2.2 Error Pixels Count

This measure directly describes mistaken pixels between two binary images. The bit-
wise XOR operation shows the pixels in which their binary values do not match the
pixels in another binary image at the same locations. So we can obtain the amount
of the error pixels by counting the results of 1 of the bit-wise XOR. The error pixels
count C, between a correctly segmented binary image S and an output binary image

Y with m x n dimensions has the form

Co = .Y S PV (132)
i=1 j=1
where
0 if S;; =Y,
S DYy, = AT (133)
1 if Sij 7é )/ij

8.2.3 Position Error

In many applications of image processing [53, 39, 88] an object positioning has been
a useful function. But noise sensitivity in the image segmentation process causes
error in estimating the object region and so error of the estimated position. Thus the
position error is also a necessary measure for showing the SR effect of our approach.
We apply this measure to the binary images of classified target objects using the
color image thresholding. We determine the position of an object by calculate-ing
the centroid of the classified region (region classified as an object):
Cs 1 | oz

{Cy] - N;[yz] (134)

where ¢, and ¢, are row and column coordinates of the centroid. Then the position

error P, is

Pe - d(Cm, Cout) - \/(C:z:,in - C:I:,out)2 + (Cy,in - Cy,out)2 (135)

where [z; ;] is the coordinate vector of a pixel which would be a target object, N is
the number of pixels of an object region, ¢;, and c,,; are centroids of the target object

of original image and noisy image: ¢, = [Czin  Cyin)’ and Cout = [Coout  Cyoout)” -
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Figure 21: The SR segmentation system consists of the multiple-stage RGB color
thresholdings where N is the number of stages and n; is independent Gaussian noise

for stage i. S and Y are correctly segmented and output segmented (binary) images.

8.3 Proposed SR Segmentation System and Experimental
Results

8.3.1 SR Segmentation System

We propose a new image segmentation technique using N stages of noisy RGB color
thresholding system. Each stage simply adds independent white (Gaussian noise to a
noisy input image before performing the usual color thresholding. Binary output im-
ages of all stages are combined with an OR operation to obtain a binary output image
of the SR segmentation system. We measure the performance of the SR segmentation
system using mutual information I(S,Y’), error pixels count C,, and position error
P, to determine how the output segmented (binary) image ¥ matches the correctly

segmented (binary) image S as shown in Figure 21.

8.3.2 Experimental Results: Synthetic Images

We first tested the SR segmentation system with synthetic images. The original
image consisted of an orange circle (as an object) on the green background. Then we
added Gaussian noise to the original image and performed the blurring and shadowing
operations on it to produce noisy test images shown in Figure 22. By using this

synthetic image we could precisely determine the pixels that actually belong to the
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object. The SR segmentation system in Figure 21 1 has N = 1 stage of RGB color
thresholding system. The additive noise is (Gaussian. The segmentation system will
separate the target object (the orange circle) from the noisy image. In this experiment
the RGB color thresholding algorithm uses the following thresholds (based on the 0-
255 levels of intensity):

Red . HRmin =120 ngaX = 255
Green: Ocmin =50  OBamax = 120 (136)
Blue: Ogmin =0 O Bmax = 40

The images that we tested are the noisy images (with 0%, 10%, 20% and 50% bright-
ness) shown in Figure 22. We did not show the test image with 20% brightness here.
Figure 23 shows the performances when the noise standard deviation increases. The
system has nonzero optimal noise level and thus shows the SR effect for the synthetic
test images. The effect is more pronounced for very noisy images.

Object positioning error can be a good indicator as well. Figure 26 (a)-(d) graph-
ically show the positions obtained from SR and non-SR segmentation systems com-
paring to the correct position in all four test images in Figurefg:Synthethiclmages.
The Figure shows that the positions obtained from the SR-system (with optimal
amount of noise) are more accurate than the ones obtained from the original (non-
SR) segmentation system. A specific case of Figure fg:Synthethiclmages (d) shows
that conventional color thresholding cannot detect any pixels as an object. So we
do not have an estimate of the position in this case (and so there is no white circle
shown). But the SR segmentation algorithm can find some pixels that belong to the

object and gives an estimate of the object position.

8.3.3 Experimental Results: Real Images

Here we tested the SR segmentation system on images taken from the real world
using a digital camera. The images show an orange golf ball on the green carpet as
a background. We measured the position of the golf ball against the known mark on
the carpet. Three images shown in Figure 24 are taken in three different illuminations
(different light settings).

The SR segmentation used in this system is the same as in Section 8.3.2 (the
system in Figure 21) but now with N = 50 stages. The noise in each stage is

independent Gaussian noise. The thresholds used for the RGB color thresholding
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Figure 22: Synthetic images of an orange object on a green background. The first

(far-left) image is the original image and the second image is a noisy, blurred, and
shadowed version of the original one. The third and fourth images are the brightness-
increased versions of the noisy image (the second one). We label the second image as
“Brightness 0%,” the third one as “Brightness 10%,” and the last one (far-right) as
“Brightness 50%”. We do not show the “Brightness 20%” image here.

Brightness 20% Brightness 50% 400

0.03 Brightness 0%

0015 Brightness 10%
001

Brightness 20%
0005 /x oo
Brightness 50%

100

N
8
3

—Brightness 50%

Position error(pixel)

Brightness 0% Brightness 20%

Mutual Information I(S,Y)
o
2
8
Error pixels count(pixel)
@
8
8
8

Brightness 10%
Brightness 0%

20 0 60 8l 100 100
Standard deviation ¢ of additive white Gaussian noise

20 40 60 20 40 60 80
Standard deviation ¢ of additive white Gaussian noise Standard deviation ¢ of additive white Gaussian noise

Figure 23: SR effect in image segmentation for synthetic images using SR segmenta-
tion system in Figurefg:SRsystem with Gaussian noise n;. The performance measures
are mutual information, error pixels count, and position error. The graphs show the

results of the SR segmentation system with N = 1 for the four synthetic images.
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Figure 24: Real images of an orange golf ball on the green carpet. The three images
were taken from three different illuminations (different light settings). From left to

right: “Imagel,” “Image2,” and “Image3.”
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Figure 25: SR effect in image segmentation for real images using the SR segmentation
system in Figure 21 with Gaussian noise n;. The performance measures are mutual
information, error pixels count, and position error. The graphs show the results of

SR segmentation system with N = 50 for the real images (Imagel - Image3).
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(a) (b) (c) (d) (e) (f) (8)

Figure 26: Actual and estimated positions of the objects. The white ‘+’ denotes the
actual positions of the objects (at the center). The white circles are positions obtained
from non-SR segmentation systems (original RGB color thresholding algorithm). The
dark circles represent positions from the optimal SR effect in segmentation. The SR
system gives estimated position with less error. The four panels (a)-(d) are results of
the four synthetic images where the Gaussian noise has SR-optimal standard devia-
tions around 22, 24, 24, and 30 for (a)-(d). The three panels (e)-(g) are results of the
three real images with SR-optimal standard deviations of Gaussian noise around 13,
13, and 19. These positions refer to the SR optimal results of the synthetic and real

images in Figures 23 and 25.

scheme in each stage are (based on the 0-255 levels of intensity):

Red : ngin =150 HRmax = 255
Green : BOamin = 110 Ogmax = 205 (137)
Blue: Opmin =0 0 Bmax = D0

These set of thresholds are manually set for optimal segmentation of Imagel. So
they are different from the optimal thresholds for the synthetic image “Brightness
Oand Figure 26 (e)-(g) show how white Gaussian pixel noise can improve our image
information and segmentation in terms of mutual information, error pixels count,
and position error. The results show that noise can improve the segmentation per-
formances when the preset RGB thresholds do not match the light-ing conditions.
The perfect threshold case of “Imagel” also shows that a small amount of noise does
not ruin the accuracy of segmentation while it can increase the accuracy of the noisy
images (“Image2” and “Image3”).

The results show that the stochastic resonance or SR effect occurs when we use
this algorithm to segment a color object from a plane background in an image that is
not perfectly captured or that the preset thresholds do not perfectly match the color
distribution. They suggest that addition of white Gaussian noise can enhance the
mutual information between the correct image and the image acquired from the actual

environment. The number of error pixels and the object’s position error also decrease

20



when we add the right amount of noise to the noisy input images. These results
confirm that noise can robustify segmentation using RGB thresholding algorithm.
For an image with good lighting condition (so the RGB thresholds perfectly match
its histograms) and with no other distortion, a little amount of noise only worsens
the performance of the segmentation a little white noise can significantly improve
the performance of the noisy ones. So for real-word applications in which captured
images contain a lot of interferences, engineers might consider using optimal noise to

design a more robust image segmentation algorithm.
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9 Conclusions

The counter-intuitive SR phenomenon is more general than most people have realized.
The results show that various models of signal processing systems and applications
(such as threshold systems, continuous neurons, and color thresholding scheme in
this report) exhibit the SR effect. The results confirm that this SR effect does not
depend only on a few popular noise density functions such as uniform noise that audio
engineers use in dithering the analog signal before they digitize it or Gaussian noise
that system engineers often use to model interferences in communications systems.
The effect also persists for impulsive noise. This implies that noise should be equally
treated as a working source of energy to help boost the system’s performance as well
as a source of bad effect that destroys the system’s output.

Future research in this direction should examine in details the effect of noise in con-
nected neurons that form a network or other more complex systems that include the
threshold systems as their building blocks. This includes the regular neural networks
that we use in various applications in communications, control, signal processing, or
pattern recognition. The evidence of the benefits of noise implies that we always need
to consider two possibilities: try to eliminate the noise or try to make the most out

of it.
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10 Research Output and Deliverables

Part of this research effort produced the following journal and conference papers. The
Appendix includes the reprints of the journal and conference papers.

Journal Articles

[1] B. Kosko and S. Mitaim, “Stochastic Resonance in Noisy Threshold Neurons,”
Neural Networks, vol. 16, pp. 755-761, 2003.

[2] S. Mitaim and B. Kosko, “Adaptive Stochastic Resonance in Noisy Neurons Based
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Abstract

Stochastic resonance occurs when noise improves how a nonlinear system performs. This paper presents two general stochastic-resonance
theorems for threshold neurons that process noisy Bernoulli input sequences. The performance measure is Shannon mutual information. The
theorems show that small amounts of independent additive noise can increase the mutual information of threshold neurons if the neurons
detect subthreshold signals. The first theorem shows that this stochastic-resonance effect holds for all finite-variance noise probability density
functions that obey a simple mean constraint that the user can control. A corollary shows that this stochastic-resonance effect occurs for the
important family of (right-sided) gamma noise. The second theorem shows that this effect holds for all infinite-variance noise types in the
broad family of stable distributions. Stable bell curves can model extremely impulsive noise environments. So the second theorem shows that

this stochastic-resonance effect is robust against violent fluctuations in the additive noise process.

© 2003 Elsevier Science Ltd. All rights reserved.
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1. The benefits of noise

Noise can sometimes help neural or other nonlinear
systems. Fig. 1 shows that small amounts of Gaussian pixel
noise improves the standard ‘baboon’ image while too much
noise degrades the image.

Small amounts of additive noise can also improve the
performance of threshold neurons or of neurons with
steep signal functions when the neurons process noisy
Bernoulli sequences. Several researchers have found
some form of this “stochastic resonance” (SR) effect
(Bulsara & Zador, 1996; Collins, Chow, Capela, &
Imhoff, 1996; Collins, Chow, & Imhoff, 1995; Douglass,
Wilkens, Pantazelou, & Moss, 1993; Gammaitoni, 1995;
Godivier & Chapeau-Blondeau, 1998; Hess & Albano,
1998; Jung, 1995; Jung & Mayer-Kress, 1995; Stocks,
2001) when either mutual information or input—output
correlation (or signal-to-noise ratio) measures a neuron’s
response to a pulse stream of noisy subthreshold signals.
But these studies have all used simple finite-variance
noise types such as Gaussian or uniform noise. They
further assume that the noise is both symmetric and two-
sided (hence zero mean). We show that SR still occurs if
the noise violates these assumptions.

* Corresponding author.

The two theorems below establish that the mutual-
information form of the SR effect occurs for almost all noisy
threshold neurons. The first theorem holds for any finite-
variance noise type that obeys a simple mean condition. A
corollary shows that the SR effect still occurs for right-sided
noise from the popular family of gamma probability density
functions. Fig. 3 shows some simulation instances of this
corollary. The second theorem holds for any infinite-
variance noise type from the broad family of stable
distributions. All signals are subthreshold.

Infinite variance does not imply infinite dispersion.
Stable probability densities have finite dispersions but have
infinite variances and infinite higher-order moments. The
dispersion controls the width of the bell curve for symmetric
stable densities (see Fig. 4). Fig. 2 shows a simulation
instance of the second theorem. Infinite-variance Cauchy
noise corrupts the subthreshold signal stream but still
produces the characteristic nonmonotonic signature of SR.
The theorem on infinite-variance noise implies that the SR
effect is robust against impulsive noise: a threshold neuron
can extract some information-theoretic gain even from noise
streams that contain occasional violent spikes of noise. The
noise stream itself is a local form of free energy that neurons
can exploit.

The combined results support Linsker’s hypothesis
(Linsker, 1988, 1997) that neurons have evolved to

0893-6080/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
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(a) (b) (c) (d)

Fig. 1. Gaussian pixel noise can improve the quality of an image through a stochastic-resonance or dithering process (Gaimmaitoni, 1995; Wannamaker,
Lipshitz & Vanderkooy, 2000). The noise produces a nonmonotonic response: A small level of noise sharpens the image features while too much noise
degrades them. These noisy images result when we apply a pixel threshold to the ‘baboon’ image. The system first quantizes the original gray-scale baboon
image into a binary image of black and white pixels. It gives a white pixel as output if the input gray-scale pixel equals or exceeds a threshold 6. It gives a black
pixel as output if the input gray-scale pixel falls below the threshold 6 : y = g((x + n) — 0) where g(x) = 1 if x = 0 and g(x) = 0 if x < O for an input pixel
valuex € [0, 1] and output pixel value y € {0, 1}. The input image’s gray-scale pixels vary from 0 (black) to 1 (white). The threshold is 6 = 0.04. Thresholding
the original baboon image gives the faint image in (a). The Gaussian noise n has zero mean for images (b)—(d). The noise variance o2 grows from (b) to (d):
o2 =1.00x 1072 in (b), 02 = 2.25% 1072 in (c), and o2 = 9.00 X 1072 in (d).

maximize the information content of their local environ- Jung, 1995; Kosko, 1991; Kosko & Mitaim, 2001)
ment. The new twist to the hypothesis is that maximizing a .
threshold neuron’s mutual information requires deliberate Lifs 4+n =0
. . y; = sgn(s; +n, — 6) = . M
use of environmental noise. 0 ifs,+n <6

where 6 > 0 is the neuron’s threshold, s, is the bipolar input

2. Threshold neurons and Shannon’s mutual Bernoulli signal (with arbitrary success probability p such

information that 0 < p < 1) with amplitude A > 0, and n, is the additive
white noise with probability density p(n).

We use the standard discrete-time threshold neuron model The threshold neuron uses subthreshold binary signals. The

(Bulsara & Zador, 1996; Gammaitoni, 1995; Hopfield, 1982; symbol ‘0’ denotes the input signal s = —A and output signal
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Fig. 2. SR with infinite-variance Cauchy noise. (a) The graph shows the smoothed input-output mutual information of a threshold neuron as a function of the
dispersion of additive white Cauchy noise n,. The dispersion vy controls the width of the Cauchy bell curve. The vertical dashed lines show the absolute
deviation between the smallest and largest outliers in each sample average of 100 outcomes. The neuron has a nonzero noise optimum at y,, = 0.438 and thus
shows the SR effect. The noisy signal-forced threshold neuron has the form of Eq. (1). The Cauchy noise n, adds to the bipolar input Bernoulli signal s,. The
neuron has threshold # = 1. The input Bernoulli signal has amplitude A = 0.8 with success probability p = % Each trial produced 10,000 input—output
samples {s;,y,} that estimated the probability densities to obtain the mutual information. (b) Sample realizations of symmetric (bell-curve) alpha-stable random
variables with zero location (¢ = 0) and unit dispersion (y = 1). The plots show realizations when a = 2,1.8,1.5, and 1. Note the scale differences on the y-
axes. The alpha-stable variable n becomes more impulsive as the parameter « falls. The algorithm in (Chambers, Mallows, & Stuck, 1976; Tsakalides &
Nikias, 1996) generated these realizations.
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y = 0. The symbol ‘1’ denotes the input signal s = A and
output signal y = 1. We assume subthreshold input signals:
A < 6. Then the conditional probabilities Py g(yls) are

Pyis(0l0) = Pr{is+n< @} __, =Prin< 0+ A}

O+A
- j ~ pnan @)

Pyi5(110) = 1 = Py5(010) 3)

PysOl1) = Pris+n < 0}|,_, = Prin < 6 — A}

0—A
- J ~ plman 4

Pyis(111) = 1 = Py5(011) S)
and the marginal density is

Py(y) = > Pys(ls)Ps(s) (6)

Other researchers have derived the conditional probabilities
Py s(yls) of the threshold system with Gaussian noise with
bipolar inputs (Bulsara & Zador, 1996) and Gaussian inputs
(Stocks, 2001). We neither restrict the noise density to be
Gaussian nor require that the density have finite variance even
if the density has a bell-curve shape.

We use Shannon mutual information (Cover & Thomas,
1991) to measure the noise enhancement or SR effect
(Bulsara & Zador, 1996; Deco & Schiirmann, 1998;
Godivier & Chapeau-Blondeau, 1998; Inchiosa, Robinson,
& Bulsara, 2000; Stocks, 2001). The discrete Shannon
mutual information of the input S and output Y is the
difference between the output unconditional entropy H(Y)
and the output conditional entropy H(Y|X):

IS, Y)=H(Y)— H(YIS) (7)
== > PyMlogPy(»)+ > > Psy(s.y)log Pys(ls)
y sy

®)
== PyMlog Py(y)+ > Ps(5) > Pyis(yls)
y s y
X logpy‘s(yls) (9)
_ PSY(s’y)
=2 Psr(sylogp s (10)

s,y

So the mutual information is the expectation of the random
variable log[Psy (s, y)/(Ps(s)Py(y))]

PSY(say) ]

16, Y>:E[l°gm

1)

Here Pg(s) is the probability density of the input S, Py(y) is
the probability density of the output Y, Pys(yls) is the
conditional density of the output Y given the input S, and
Pgy(s,y) is the joint density of the input S and the output Y.
Simple bipolar histograms of samples can estimate these
densities in practice.

Mutual information also measures the pseudo-dis-
tance between the joint probability density Pgy(s,y) and
the product density Pg(s)Py(y). This holds for the
Kullback (Cover & Thomas, 1991) pseudo-distance
measure

Pgy(s,y)

I8,7)=> ZPSY(S,y)IOgm (12)

Then Jensen’s inequality implies that I(S,Y) = 0. Ran-
dom variables S and Y are statistically independent if and
only if I(S,Y)=0. Hence I(S,Y)> 0 implies some
degree of dependence. We use this fact in the following
proofs.

3. Proof of stochastic resonance for threshold neurons

We now prove that almost all finite-variance noise
densities produce the SR effect in threshold neurons with
subthreshold signals. This holds for all probability distri-
butions on a two-symbol alphabet. The proof shows that if
I(S,Y) > 0 then eventually the mutual information I(S,Y)
tends toward zero as the noise variance tends toward zero.
So the mutual information /(S, Y) must increase as the noise
variance increases from zero. The only limiting assumption
is that the noise mean E[n] does not lie in the signal-
threshold interval [0 — A, 6 + A].

Theorem 1. Suppose that the threshold neuron (1) has
noise probability density function p(n) and that the input
signal S is subthreshold (A < 6). Suppose that there is
some statistical dependence between input random
variable S and output random variable Y (so that
1(S,Y) > 0). Suppose that the noise mean E[n] does not
lie in the signal-threshold interval [0 — A, 0+ A] if p(n)
has finite variance. Then the threshold neuron (1)
exhibits the nonmonotone SR effect in the sense that
I1(S,Y)—0 as o— 0.

Proof. Assume 0 < Pg(s) <1 to avoid triviality when
Ps(s) =0or 1. We show that S and Y are asymptotically
independent: /(o) — 0 as o — 0. Recall that I(S,Y) = 0 if
and only if S and Y are statistically independent (Cover &
Thomas, 1991). So we need to show only that Pgy(s,y) =
Pg(s)Py(y) or Pys(yls) = Py(y) as o— 0 for some signal
symbols s € ¥ and y € #. The two-symbol alphabet set .¥’
gives

Py(y) = D Pyis(yls)Ps(s) (13)
= Pyis(710)Ps(0) + Pyis(y11)Ps(1) (14)
= Pyis(710)Ps(0) + Pyis11)(1 — Pg(0)) (15)
= (Pyis(10) = Pyisr1)Ps(0) + Pyis(yl1) (16)
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So we need to show only that Py s(yl0) — Pyis(yI1) = 0 as
o— 0. This condition implies that Py(y) = Py¢(y/1) and
Py(y) = Py5(y|0). We assume for simplicity that the noise
density p(n) is integrable. The argument below still holds if
p(n) is discrete and if we replace integrals with appropriate
sums.

Consider y = ‘0’. Then Egs. (2) and (4) imply that

0+A 0—A
Prs©10) = Pys(OID = [ pindn = [ pman— 17)

6+A
= [, pooan (18)

-A
Similarly for y = “1:
Pyis(110) = J p(n)dn 19

6+A
Pys(1l1) = J _Ap(n)dn (20
Then
0+A

Pyis(110) = Pyg(111) = — JeiAp(n)dn 21

The result now follows if
0+A

J p(n)dn—0 asc—0 (22)
6—A

Let the mean of the noise be m = E[n] and the variance
be o> =E[(x—m)*]. Then mé&[0—A 0+A] by
hypothesis.

Now suppose that m < 6 — A. Pick e = 1d(6 — A,m) =
%(0—A—m)>().So(9—A—E=0—A—e+m—m=
m+(@—A—m)—e=m+2e — € =m+ €. Then

0+A
Prs(010) = Pys(OI) = [ ploan 23)
= Jm p(n)dn (24)
6—A
=, oo 5)
= J“’ p(nydn (26)
m+e
=Prin=m+ €} 27)
=Pr{in—m= €} 28)
= Pr{ln —ml = €} 29)

o
= P by Chebyshev inequality (30)

—0 asoc—0 31

A symmetric argument shows that for m > 6+ A

0.2
Pys(010) = Pys(Ol1) = — =0 aso—0 0 (32)

Corollary. The threshold neuron Eq. (1) exhibits SR for the
additive gamma noise density

a—1_—nlB
% n=0

Ia)p (33)

0 otherwise

pn) =

under the hypotheses of Theorem 1. Parameters « and 3 are
positive constants and I"is the gamma function

Ix) = J yledy x>0 (34)
0

Gamma random variables have finite mean a3 and function-
ally related finite variance «3>. Gamma family of random
variables includes the popular special cases of exponential,
Erlang, and chi-square random variables. All these random
variables are right-sided. Fig. 3 shows simulation realizations
of this corollary. This appears to be the first demonstration of
the SR effect for right-sided noise processes.

We now proceed to the more general (and more realistic)
case where infinite-variance noise interferes with the
threshold neuron. The SR effect also occurs in other systems
with impulsive infinite-variance noise (Kosko & Mitaim,
2001; Mitaim & Kosko, 1998). We can model many types of
impulsive noise with symmetric alpha-stable bell-curve
probability density functions with parameter o« in the
characteristic function @(w) = exp{ — ylwl®}. Here v is
the dispersion parameter (Breiman, 1968; Feller, 1966;
Grigoriu, 1995; Nikias & Shao, 1995). Fig. 4 shows
examples of symmetric (bell-curve) alpha-stable probability
density functions with different « tail thicknesses and
different bell-curve dispersions 7.

The parameter « controls tail thickness and lies in 0 <
a = 2. Noise grows more impulsive as « falls and the bell-
curve tails grow thicker. The (thin-tailed) Gaussian density
results when a = 2 or when ¢(w) = exp{ — ywz}. So the
standard Gaussian random variable has zero mean and
variance o® = 2 (when y = 1). The parameter « gives the
thicker-tailed Cauchy bell curve when a =1 or ¢(w) =
exp{ — lwl} for a zero location (a = 0) and unit dispersion
(y=1) Cauchy random variable. The moments of stable
distributions with a < 2 are finite only up to the order k for
k < a. The Gaussian density alone has finite variance and
higher moments. Alpha-stable random variables character-
ize the class of normalized sums of independent random
variables that converge in distribution to a random variable
(Breiman, 1968) as in the famous Gaussian special case
called the “central limit theorem.”

Alpha-stable models tend to work well when the noise or
signal data contains ‘outliers’—and all do to some degree.
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Fig. 4. Samples of standard symmetric (8 = 0) alpha-stable probability densities. (a) Density functions with zero location (a = 0) and unit dispersion (y = 1)
for a = 2,1.8,1.5, and 1. The densities are bell curves that have thicker tails as a decreases and thus that model increasingly impulsive noise as « decreases. The
case = 2 gives a Gaussian density with variance two (or unit dispersion). The parameter & = 1 gives the Cauchy density with infinite variance. (b) Density

functions for a = 1.5 with dispersions y = 0.5,1, and 2.
and

o(w) =expliaw— Ylol(1 — 2iBInlwlsign(w)/m)} fora=1

(36)
where
1 ifw>0
sign(w)=10 ifw=0 37
-1 ifw<0

and i=\/—_1, 0<a=2, —1=B8=1, and y>0. The
parameter « is the characteristic exponent. Again the
variance of an alpha-stable density does not exist if o <<2.
The location parameter « is the “mean” of the density when
a>1. Bis a skewness parameter. The density is symmetric
about @ when 8= 0. Theorem 2 still holds even when 8 # 0.
The dispersion parameter vy acts like a variance because it
controls the width of a symmetric alpha-stable bell curve.
There are no known closed forms of the a-stable densities
for most a’s.

The proof of Theorem 2 is simpler than the proof in the
finite-variance case because all stable noise densities have a
characteristic function with the exponential form in Egs.
(35) and (36). So zero noise dispersion gives ¢ as a simple
complex exponential and hence gives the corresponding
density as a delta spike that can fall outside the interval
[6—A, 04+ A]

Theorem 2. Suppose I(S,Y) > 0 and the threshold neuron
Eq (1) uses alpha-stable noise with location parameter a &
[0 — A, 0+ A). Then the neuron (1) exhibits the nonmono-
tone SR effect if the input signal is subthreshold.

Proof. Again the result follows if

6+A
J p(n)ydn—0 as y—0 (38)
A

The characteristic function ¢(w) of alpha-stable noise
density, p(n) has the exponential form Egs. (35) and (36).
This reduces to a simple complex exponential in the zero-
dispersion limit:

lim ¢(w) = exp{iaw} 39)
y—0
for all «’s, skewness (’s, and location a’s. So Fourier

transformation gives the corresponding density function in
the limiting case (y— 0) as a translated delta function

limp(n) = 8(n — a) (40)
y—0
Then
0+A
Prs(010) = Pys@) = [~ pnn @1)
0+A
= J 6(n — a)dn 42)
0-A
=0 (43)
because a & [0 — A, 0+ A]. O

Fig. 2 gives a typical example of the SR effect for highly
impulsive noise with infinite variance. Here the noise type is
Cauchy (a = 1) and thus frequent and violent noise spikes
interfere with the signal.
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Fig. 3. SR with (finite-variance) gamma noise. The noisy signal-forced threshold neuron has the form of Eq. (1). The gamma noise 7, adds to the bipolar input
Bernoulli signal s,. The neuron has threshold 6 = 1. The input Bernoulli signal has amplitude A = 0.8 with success probability p = % Each trial produced
10,000 input—output samples {s,,y,} that estimated the probability densities to obtain the mutual information. The algorithm in (Ahrens & Dieter, 1974, 1982)
generated realizations of the gamma random variable. (a) The graph shows the smoothed input—output mutual information of a threshold neuron as a function
of the parameters a and § of additive white gamma noise 7,. The neuron’s mutual information has a nonzero noise optimum o, > 0 for each & > 0. It also has
anonzero noise optimum o, > 0 for each 8 > 0. (b) The graph shows the cross-section of the mutual-information surface for a« = 2. (c) The graph shows the

cross-section for 8 = 1. Note that the mean and variance of the gamma noise are m, = a8 and o2 = af’.

Models with a < 2 can accurately describe impulsive noise
in telephone lines, underwater acoustics, low-frequency
atmospheric signals, fluctuations in gravitational fields and
financial prices, and many other processes (Kosko, 1996;
Nikias & Shao, 1995). Note that the best choice of « is an
empirical question for bell-curve phenomena. Bell-curve
behavior alone does not justify the (extreme) assumption of
the Gaussian bell curve.

Theorem 2 applies to any alpha-stable noise model. The
density need not be symmetric. A general alpha-stable
probability density function f has characteristic function ¢
(Akgiray & Lamoureux, 1989; Bergstrom, 1952; Grigoriu,
1995; Nikias & Shao, 1995):

o(w)= exp{iaw - 'y|w|“(1 + iBsign(w)tana—;)} fora # 1
(35)
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4. Conclusions

Noise affects neural systems in complex ways. The above
theorems show that almost all noise types produce SR in
threshold neurons that use subthreshold signals and small
amounts of noise. This includes right-sided finite-variance
noise such as gamma noise. The theorems do not guarantee
that the predicted increase in mutual information will be
significant. They guarantee only that some increase will
occur. Other work (Kosko & Mitaim, 2001) suggests that
the increase will decrease in significance as the impulsive-
ness of the noise process increases. All our simulations
showed a significant and visible SR effect.

These results help explain the widespread occurrence of
the SR effect in mechanical and biological threshold
systems (Braun, Wissing, Schifer, & Hirsch, 1994;
Douglass et al., 1993; Fauve & Heslot, 1983; Melnikov,
1993; Levin & Miller, 1996; Russell, Willkens, & Moss,
1999). The broad generality of the results suggests that SR
should occur in any nonlinear system whose input—output
structure approximates a threshold system and that includes
most model neurons. The infinite-variance result further
implies that such widespread SR effects should be robust
against violent noise impulses. The combined results
support the hypothesis (Linsker, 1988, 1997) that neurons
have evolved to maximize their local information if they
process subthreshold signals in the presence of noise. This
need not hold for suprathreshold signals.
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Simulation and theoretical results show that memoryless threshold neurons benefit from small amounts of
almost all types of additive noise and so produce the stochastic-resonance or SR effect. Input-output mutual
information measures the performance of such threshold systems that use subthreshold signals. The SR result
holds for all possible noise probability density functions with finite variance. The only constraint is that the
noise mean must fall outside a “forbidden” threshold-related interval that the user can control—a new theorem
shows that this condition is also necessary. A corollary and simulations show that the SR effect occurs for
right-sided beta and Weibull noise as well. These SR results further hold for the entire uncountably infinite
class of alpha-stable probability density functions. Alpha-stable noise densities have infinite variance and
infinite higher-order moments and often model impulsive noise environments. The stable noise densities
include the special case of symmetric bell-curve densities with thick tails such as the Cauchy probability
density. The SR result for alpha-stable noise densities shows that the SR effect in threshold and thresholdlike
systems is robust against occasional or even frequent violent fluctuations in noise. Regression analysis reveals
both an exponential relationship for the optimal noise dispersion as a function of the alpha bell-curve tail
thickness and an approximate linear relationship for the SR-maximal mutual information as a function of the

alpha bell-curve tail thickness.
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I. ALMOST ALL THRESHOLD SYSTEMS EXHIBIT
STOCHASTIC RESONANCE

Several researchers have found that threshold neurons and
other threshold systems exhibit stochastic resonance [1-8]:
Small amounts of noise improve the threshold neuron’s
input-output correlation measure [9,10] or mutual informa-
tion [1,8,11]. All of these simulations and analyses assume a
noise probability density function that has finite variance.
Most further assume that the noise is simply Gaussian or
uniform. Yet the statistics of real-world noise can differ sub-
stantially from these simple and finite-variance probability
descriptions. The noise can be impulsive and irregular and
have infinite variance and infinite higher-order moments.
Computer simulations alone cannot decide whether this un-
countable class of noise densities produces the SR effect in
threshold systems. Theoretical techniques can decide the is-
sue and we show that the answer is positive: Almost all
threshold systems exhibit the SR effect in terms of mutual
information or a bit-based measure of system performance.

The two theorems in [12] show the SR effect in simple
(memoryless) threshold neurons as often found in the litera-
ture of neural networks [13—15]. We state these two theorems
below (Theorems 1.1 and 2.1) without proof and derive a
corollary and two new related theorems. The first theorem
(Theorem 1.1) shows that threshold neurons exhibit the SR
effect for all finite-variance noise densities if the system per-
formance measure is Shannon’s mutual information and if
the mean or location parameter falls outside a “forbidden”
interval that one can often pick in advance. A corollary
shows that this SR effect still occurs for right-sided beta and
Weibull noise. Traditional SR research has focused almost
exclusively on two-sided noise. The second theorem (Theo-
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rem 2.1) shows that this also holds for all infinite-variance
densities that belong to the large class of stable distributions.
Both theorems assume that all signals are subthreshold sig-
nals. The two new theorems (Theorems 1.2 and 2.2) show
that there is no SR effect if the mean or location parameters
fall within the forbidden threshold interval. Figure 4 shows a
simulation instance of this predicted forbidden-interval effect
for Gaussian and Cauchy noise.

The paper then presents several regression analyses of
simulation experiments that confirm and extend the exponen-
tial relationship between the optimal noise dispersion and
alpha bell-curve tail thickness [16]. This exponential rela-
tionship corresponds to a similar one for infinite-variance SR
systems that use a signal-to-noise ratio or a cross correlation
for the system performance measure [16]. Regression also
shows that the SR-maximal mutual information in noisy
threshold neurons depends approximately linearly on the
bell-curve tail thickness for symmetric alpha-stable noise.

Figure 1 shows the system-flow diagram of a noisy
threshold neuron system that processes subthreshold signals.
Figure 2 shows the first use of (right-sided) beta noise for

signal s @
0

FIG. 1. System-flow diagram of a noisy threshold neuron. The
neuron’s signal function has the form (1) with threshold parameter
6, where s is the input signal and » is the input additive noise. We
assume subthreshold signals: 4 < 6, where 4 is the amplitude of the
Bernoulli input s.

output y

——

noise n

©2004 The American Physical Society
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FIG. 2. (Color online) Stochastic resonance with (right-sided)
beta noise. The noisy signal-forced threshold neuron has the form
(1). The beta noise 7, adds to the bipolar input Bernoulli signal s,.
The parametrized interval [a, b] of the beta density (14) has a=0
and »=10. The neuron has threshold #=1. The input Bernoulli sig-
nal has amplitude 4=0.8 with success probability p:%. Each trial
produced 10 000 input-output samples {s;,y,} that estimated the
probability densities to obtain the mutual information. The graph
shows the smoothed input-output mutual information of a threshold
neuron as a function of the parameters « and B of additive white
beta noise #,. The neuron’s mutual information has a nonzero noise
optimum 0, >0 where the variance has the form 0'2n=[(b

—a)’ apl/[(a+p)*(a+B+1)].

SR. The beta density generalizes the uniform density and is
popular in Bayesian statistics [17] because it allows analysts
to control the shape of the density with two parameters and
scale or translate the finite-length domain. Figure 3 shows
the first use of (right-sided) Weibull noise for SR. The
Weibull density generalizes the exponential and Rayleigh
densities and has an infinite-length domain. Figure 4 shows
several symmetrical alpha-stable noise densities whose bell
curves have thick tails that produce infinite variance and of-
ten highly impulsive noise spikes. Figure 5 shows a simula-
tion instance of both Theorem 2.1 and the empirical trends in
Figs. 7 and 8. Infinite-variance Cauchy noise produces the
SR effect when plotted against the Shannon mutual informa-
tion of the threshold system. The linear regression results in
Table I and Fig. 7 reveal the exponential relationship be-
tween the optimal noise dispersion and the alpha bell-curve
tail thickness. The linear dependence of the log-transformed
optimal noise dispersion on the bell-curve thickness becomes
quadratic when the signal amplitude is too small or too close
to the neuron’s threshold. The regression results in Table II
and Fig. 8 show a similar pattern. The linear dependence of
the SR-maximal mutual information on the bell-curve thick-
ness also becomes quadratic when the signal amplitude is too
small or too close to the neuron’s threshold.

II. THRESHOLD NEURONS AND SHANNON’S MUTUAL
INFORMATION

We use the standard discrete-time threshold neuron model
[1,2,6,15,16,18]
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FIG. 3. (Color online) Stochastic resonance with (right-sided)
Weibull noise. The noisy signal-forced threshold neuron has the
form (1). The Weibull noise 7, adds to the bipolar input Bernoulli
signal s,. The neuron has threshold #=0.5. The input Bernoulli sig-
nal has amplitude 4=0.2 with success probability p=%. Each trial
produced 10 000 input-output samples {s;,y,} that estimated the
probability densities to obtain the mutual information. The graph
shows the smoothed input-output mutual information of a threshold
neuron as a function of the parameters o and S of additive white
Weibull noise #,. The neuron’s mutual information has a nonzero
noise optimum oy, >0 where the variance has the form o'f,

=(B/a)¥AT(1+2/B)-{(1+1/B)}?].

1 ifs,+n,=6
0 ifs,+n<6’

y,—sgn(s,+n,—0)—{ (1)

where 6> 0 is the neuron’s threshold, s, is the bipolar input
Bernoulli signal (with arbitrary success probability p such
that 0 <p<1) with amplitude 4>0, and », is the additive
white noise with probability density p(n). Figure 1 shows the
system flow of the threshold system.

The threshold system uses subthreshold binary signals.
The symbol “0” denotes the input signal s=—A and output
signal y=0. The symbol “1” denotes the input signal s=4
and output signal y=1. We assume subthreshold input sig-
nals: A< 6. Then the conditional probabilities Pys(y|s) are

Py5(0]0) =Pr{s +n < 6}, 2
=Pr{n < 0+ A4}
6+4
= f p(n)dn 3)
PY|S(1|O) =1 _PY\S(0|0) 4)

031911-2
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FIG. 4. Samples of standard symmetric alpha-stable probability densities and their realizations. (a) Density functions with zero location
(a=0) and unit dispersion (y=1) for «=2,1.8,1.5, and 1. The densities are bell curves that have thicker tails as « decreases and thus that
model increasingly impulsive noise as « decreases. The case =2 gives a Gaussian density with variance 2 (or unit dispersion). The
parameter a=1 gives the Cauchy density with infinite variance. (b) Samples of alpha-stable random variables with zero location and unit
dispersion. The plots show realizations when @=2, 1.8, 1.5, and 1. Note the scale differences on the y axes. The alpha-stable variable n
becomes more impulsive as the parameter « falls. The algorithm in [39,40] generated these realizations. (c) Density functions for a=1.8 with
dispersions y=0.5, 1, and 2. (d) Samples of alpha-stable noise » for a=1.8 with dispersions y=0.5, 1, and 2.

Pys(0[1) = Pr{s +n < 6}, (5) Py(y) =2 Pys(v|s)Ps(s). (8)
s

=Pr{n < 6— A} Other researchers have derived the conditional probabili-

i ties PY‘S(y|s) of the threshold system with Gaussian noise

_f p(n)dn, (6) with bipolar inputs [1] and Gaussian inputs [8]. We neither

—o restrict the noise density to be Gaussian nor require that the

density have finite variance even if the density has a bell-
curve shape.
Pys(1]1) =1 Py5(0]1) (7) We use Shannon mutual information [19] to measure the
noise enhancement or “stochastic resonance” (SR) effect
[1,3,8,20,21]. The discrete Shannon mutual information of
and the marginal density is the input S and output Y is the difference between the output
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unconditional entropy H(Y) and the output conditional en-
tropy H(Y|X):

1(S,Y) = H(Y) = H(Y|S) )
:_2 Py(y)logy Py(y)
y
+ 20 2 Psy(s.9)logyPy;s(v]s) (10)
sy
= E Py(y)log,Py(y)
y
+ 2 P(s) 2 P(yls)log, P(ys) (11)
s y
= Pgyls y)logzm- (12)
K% ’ PS(S)PY(V)

So the mutual information is the expectation of the random
variable log,{[ Psy(s,»)]/[Ps(s)Py(y)]}:

P SY(S»y) ]
*Py(s)Py(y) ]

Here Pg(s) is the probability density of the input S, Py(y) is
the probability density of the output ¥, Py, s(v|s) is the con-
ditional density of the output Y given the input S, and
Pgy(s,y) is the joint density of the input S and the output Y.
Simple bipolar histograms of samples can estimate these
densities in practice.

Mutual information also measures the pseudodistance be-
tween the joint probability density Pgy(s,y) and the product
density Pg(s)Py(y). This holds for the Kullback [19] pseudo-
distance measure

1(S,Y) =E[log (13)

PHYSICAL REVIEW E 70, 031911 (2004)

PSY(S,)/)
Ps(s)Py(y)

Then Jensen’s inequality implies that /(S,Y)=0. Random
variables S and Y are statistically independent if and only if
1(S,Y)=0. Hence /(S,Y) >0 implies some degree of depen-
dence. The proofs in [12] and the Appendix use this fact.

I(S,Y) =2 X Pgyls,p)log,
sy

III. SR FOR THRESHOLD SYSTEMS WITH
FINITE-VARIANCE NOISE

Almost all finite-variance noise densities produce the SR
effect in threshold neurons with subthreshold signals. This
holds for all probability density functions defined on a two-
symbol alphabet. The proof of Theorem 1.1 in [12] shows
that if /(S,Y)>0 then eventually the mutual information
I(S,Y) tends toward zero as the noise variance tends toward
zero. So the mutual information (S, Y) must increase as the
noise variance increases from zero. The only limiting as-
sumption is that the noise mean E[n] does not lie in the
“forbidden” signal-threshold interval (6—4, 6+A4).

Theorem 1.1. Suppose that the threshold signal system (1)
has noise probability density function p(n) and that the input
signal S is subthreshold (4 < 6). Suppose that there is some
statistical dependence between input random variable S and
output random variable Y [so that /(S,Y)>0]. Suppose that
the noise mean E[n] does not lie in the signal-threshold in-
terval (6—A,60+A) if p(n) has finite variance. Then the
threshold system (1) exhibits the nonmonotone SR effect in
the sense that /(S,Y)—0 as o—0.

Corollary 1.1. The threshold neuron (1) exhibits stochas-
tic resonance for the additive beta and Weibull noise densi-
ties under the hypotheses of Theorem 1.1.

The generalized beta probability density function has the
form

b—al(a)T'(B)
0

p(n) =

Parameters « and B are positive shape constants, parameters
a and b are constants —0<<g<<bh<<o, and I" is the gamma
function

I'x)= f ylevdy, x>0. (15)
0
The mean and variance of the beta density are

o
>

a+f

m,=a+(b—a)

(16)

1 I'(at+p) (na

alfp_\B1
b ) ifasn<bd
)

b—a (14)

otherwise.

2

0'}27 _ (b . a)af . (17)
(a+Bia+ 1)

So the beta density is right-sided for a=0. We used a=0 and
b=10 and so defined the beta density in the interval [0,10]
for the SR simulation instance in Fig. 2. The algorithm in
[22] generated the beta noise. Bayesian statisticians often use
a beta density to encode prior information about a parameter
(such as a binomial success parameter p) over a fixed-length
interval [23]. The beta density can also model the semblance
or the ratio of stacked energy to total energy across a signal
array [24], fluctuations of the radar-scattering cross sections

031911-4
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FIG. 5. Stochastic resonance with highly impulsive (infinite-
variance) alpha-stable noise. The graphs show the smoothed input-
output mutual information of a threshold system as a function of the
dispersion of additive white alpha-stable noise 7, with a=1
(Cauchy noise) in (a) and @=1.5 in (b). The vertical dashed lines
show the absolute deviation between the smallest and largest outli-
ers in each sample average of 100 outcomes. The system has a
nonzero noise optimum at o, = 0.285 for a=1 and y,p = 0.129 for
a=1.5 and thus shows the SR effect. The noisy signal-forced
threshold system has the form (1). The alpha-stable noise #, adds to
the bipolar input Bernoulli signal s,. The system has threshold 6
=0.5. The input Bernoulli signal has amplitude 4=0.3 with success
probability p:%. Each trial produced 10 000 input-output samples
{s,,y} that estimated the probability densities to obtain the mutual
information. Note that decreasing the tail-thickness parameter «
increases the optimal noise dispersion Y,y as in Fig. 7 and de-
creases the SR-maximal mutual information 7,,,,,(S,Y) as in Fig. 8.

of targets [25], the self-similar process of video traffic [26],
and the variation of the narrowband vector channels or spa-
tial signature variations due to movement [27].

The Weibull probability density function has the form
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FIG. 6. No SR in the “forbidden” interval (per Theorems 1.2
and 2.2)—mutual information versus alpha-stable noise dispersion
when the noise mean (location) lies in the “forbidden” signal-
threshold interval: a € (—A4, 0+A4). The graphs show the smoothed
input-output mutual information of 100 trials of a threshold system
as a function of the dispersion of additive white alpha-stable noise
n; with @=2 (Gaussian) in (a) and a=1 (Cauchy noise) in (b). The
system is optimal when y— 0 and thus does not show the SR effect:
The mutual information /(S,Y) is maximum when it equals the
input entropy H(S). The noisy signal-forced threshold system has
the form (1). The alpha-stable noise #, has location a=0.4 and adds
to the bipolar input Bernoulli signal s,. The system has threshold
6=0.5. The input Bernoulli signal has amplitude 4=0.4 with suc-
cess probability p:%. Each trial produced 10 000 input-output
samples {s,,y,} that estimated the probability densities to obtain the
mutual information.

anﬂ—le—anﬁ/ﬁ itn=0

n)= 18
pn) 0 otherwise (18)

for positive shape parameters a and 8. The mean and vari-
ance of the Weibull density are
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1/B
mn—<é> F(1+l), (19)
a B

T g

Figure 3 shows simulation realizations of this corollary for
the Weibull noise density. MATLAB 6.5 [28] generated the
Weibull noise. Weibull [29] first proposed this parametric
probability density function to model the fracture of materi-
als under repetitive stress. This density has become a stan-
dard model of multipart system reliability [30]. It can also
effectively model signals and noise in many data-rich sys-
tems such as radar clutter [31] and confocal laser scanning
microscopy [32].

We next state a result that shows that we cannot in general
omit the threshold-interval condition in the hypothesis of
Theorem 1.1. Noise does not help a threshold 6 that already
lies between 6—A and 6+A4.

Theorem 1.2. Suppose that the threshold signal system (1)
has noise probability density function p(n) and that the input
signal S is subthreshold (4 < 6). Suppose that the noise mean
E[n] lies in the signal-threshold interval (6—A4, 0+A4) if p(n)
has finite variance. Then the threshold system (1) does not
exhibit the nonmonotone SR effect in the sense that /(S, Y) is
maximum as o — 0:

I(S,Y)=H(Y)=H(S) as o—0. (21)

The Appendix gives the proof.

IV. SR FOR THRESHOLD SYSTEMS WITH INFINITE-
VARIANCE NOISE

We now proceed to the more general (and more realistic)
case where infinite-variance noise interferes with the thresh-
old system. The SR effect also occurs in other systems with
impulsive infinite-variance noise [16,33]. We can model
many types of impulsive noise with symmetric alpha-stable
bell-curve probability density functions with parameter « in
the characteristic function ¢(w)=exp{—7y|w|*}. Here v is the
dispersion parameter [34-37].

The parameter « controls tail thickness and lies in 0 <«
=<2. Noise grows more impulsive as « falls and the bell-
curve tails grow thicker. The (thin-tailed) Gaussian density
results when a=2 or when ¢(w)=exp{—yw?}. So the stan-
dard Gaussian random variable has zero mean and variance
0?=2 (when y=1). The parameter « gives the thicker-tailed
Cauchy bell curve when a=1 or ¢(w)=exp{—|o|} for a zero
location (a=0) and unit dispersion (y=1) Cauchy random
variable. The moments of stable distributions with a<<2 are
finite only up to order k for k<a. The Gaussian density
alone has finite variance and higher moments. Alpha-stable
random variables characterize the class of normalized sums
of independent random variables that converge in distribu-
tion to a random variable [34] as in the famous Gaussian
special case called the “central limit theorem.”

Alpha-stable models tend to work well when the noise or
signal data contain “outliers”— and all do to some degree.

PHYSICAL REVIEW E 70, 031911 (2004)

Models with @<<2 can accurately describe impulsive noise
in telephone lines, underwater acoustics, low-frequency at-
mospheric signals, fluctuations in gravitational fields and fi-
nancial prices, and many other processes [37,38]. Note that
the best choice of « is an empirical question for bell-curve
phenomena. Bell-curve behavior alone does not justify the
(extreme) assumption of the Gaussian bell curve. Figure 4
shows realizations of four symmetric alpha-stable noise ran-
dom variables.

Theorem 2.1 applies to any alpha-stable noise model. The
density need not be symmetric. A general alpha-stable prob-
ability density function f has characteristic function ¢
[36,37,41,42]

am
o(w)= exp{iaw - y|w|"< 1+iB sgn(w)tanT)}
for a # 1 (22)
and

o(w) = expliaw— y|o|[1 - 2iB In|o|sgn(w)/7]} for a=1,

(23)
where
1 ifw>0
sgn(w)=9 0 ifw=0 (24)
-1 ifw<0

and i=\-1, 0<a<2, -1 =<pB=<1, and y>0. The parameter
a is the characteristic exponent. Again the variance of an
alpha-stable density does not exist if a<<2. The location pa-
rameter a is the “mean” of the density when a>1. B is a
skewness parameter. The density is symmetric about a when
B=0. The theorem below still holds even when B# 0. The
dispersion parameter vy acts like a variance because it con-
trols the width of a symmetric alpha-stable bell curve. There
are no known closed forms of the a-stable densities for most
a’s. Numerical integration of ¢ produced the simulation re-
sults in Fig. 4.

The proof of Theorem 2.1 in [12] is simpler than the proof
in the finite-variance case because all stable noise densities
have a characteristic function with the exponential form in
Egs. (22) and (23). So zero noise dispersion gives ¢ as a
simple complex exponential and hence gives the correspond-
ing density as a delta spike that can fall outside the interval
(6—A4,0+A4).

Theorem 2.1. Suppose I(S,Y) >0 and the threshold sys-
tem (1) uses alpha-stable noise with location parameter
a& (6—A4,0+A). Then the system (1) exhibits the nonmono-
tone SR effect if the input signal is subthreshold.

Figure 5 gives a typical example of the SR effect for
highly impulsive noise with infinite variance. The alpha-
stable noises have a=1 (Cauchy) and a=1.5. So frequent
and violent noise spikes interfere with the signal. Figure 5
also illustrates the empirical trends in Figs. 7 and 8: A falling
tail-thickness parameter « produces an increasing optimal
noise dispersion 7y, but a decreasing SR-maximal mutual
information 7,,,,,(S,Y). We next state a new sufficient condi-
tion for SR not to occur in an impulsive threshold system.
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TABLE 1. Linear regression estimates of the SR-optimal log
dispersion 7y, as a function of the bell-curve tail-thickness param-
eter o from a symmetric alpha-stable noise density. The parameters
By and B relate logioyoy and « through a linear relationship:
log o Yopi(@) =B+ Bia. The coefficient of determination r? shows
how well the linear model fits the log-transformed data. The last
column shows the coefficient of determination ri for the quadratic
model log;oYop(@)=Bo+ Bra+ B,a?. All observed significance lev-
els or p-values were less than 1074,

Linear model

Signal amplitude Regression coefficients Quadratic model

A Bo B r r(zi
0.025 0.0701 —0.5944 0.9003 0.9444
0.050 0.1002 —0.6087 0.9321 0.9723
0.075 0.1124 -0.6192 0.9490 0.9842
0.100 0.1180 —0.6261 0.9558 0.9888
0.125 0.1090 —0.6228 0.9594 0.9910
0.150 0.1078 —0.6251 0.9679 0.9921
0.175 0.1026 —0.6273 0.9672 0.9933
0.200 0.0915 —-0.6214 0.9699 0.9942
0.225 0.0810 —0.6161 0.9737 0.9950
0.250 0.0694 -0.6172 0.9781 0.9959
0.275 0.0595 —0.6149 0.9826 0.9964
0.300 0.0439 -0.6148 0.9869 0.9961
0.325 0.0290 —0.6184 0.9903 0.9962
0.350 0.0116 —0.6211 0.9935 0.9961
0.375 —0.0134 -0.6215 0.9957 0.9960
0.400 —0.0313 —0.6367 0.9947 0.9951
0.425 —=0.0705 -0.6432 0.9903 0.9950
0.450 —0.1107 -0.6688 0.9757 0.9944
0.475 —0.1837 —0.7217 0.9408 0.9911
0.490 —0.2805 —0.8053 0.8987 0.9863

Theorem 2.2. Suppose that the threshold signal system (1)
has subthreshold input signal and use alpha-stable noise with
location parameter a € (—A, 6+A). Then the threshold sys-
tem (1) does not exhibit the nonmonotone SR effect: I(S,Y)
is maximum as y—0:

I(S,Y)=H(Y)=H(S) as y— 0. (25)

The Appendix gives the proof. Figure 6 shows the noise-
mutual information profile of the subthreshold signal system
with noise location (mean) in the “forbidden” signal-
threshold interval.

Statistical regression confirmed an exponential relation-
ship between the optimal noise dispersion 7, and the bell-
curve tail-thickness parameter a: Yo ()=10A"A1¢ for pa-
rameters B, and B; that depend on the signal amplitude 4.
Then the log-transformation of the optimal dispersion gives
the linear model logg¥ep(a@)=By+B . Table I shows the

estimated parameters ,éo and /;’1 and the coefficient of deter-
mination r,2 for 20 signal amplitudes in the threshold neuron
using SPSS software. All observed significance levels or
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opt

Logarithm of optimal dispersion: logy__(a)

Logarithm of optimal dispersion: log yom(a)

0.5 1 1.5 2
o in alpha-stable distribution

FIG. 7. Exponential law for optimal noise dispersion 7y, as a
function of bell-curve thickness parameter « for the mutual-
information performance measure and for different signal ampli-
tudes 4. The optimal noise dispersion ,,,, depends on the parameter
a through the exponential relation 7y, (a)= 1080*B1¢ for parameters
Bo and By [or Yop(a)=10P*Fi a2’ for 2 quadratic fit to the data].
Table I shows the estimated parameters Bo and ,él for 20 input
Bernoulli signal amplitudes 4. The exponential trend’s exponent is
linear for most amplitudes but becomes quadratic for very small
amplitudes and for amplitudes close to the threshold 0=§. All ob-
served significance levels or p-values were less than 107,

p-values were less than 107, The p-values measure the cred-
ibility of the null hypothesis that the regression lines have
zero slope or other coefficients. The exponential trend’s ex-
ponent is linear for most amplitudes but becomes quadratic
for very small amplitudes and for amplitudes close to the
threshold 6= [or yyp(@)= 10Po*B1aB2a” for g quadratic fit to
the data]. Figure 7 shows 6 of the 20 log-linear plots.

We also found an approximate linear relationship
Lx(S,Y; a)=By+ B« for the SR-maximal mutual informa-
tion 7., (S, Y) as a function of the tail-thickness parameter a.

Table II shows the estimated parameters ,éo and ,él and the
coefficient of determination r]2 for 20 signal amplitudes in the
threshold neuron. All observed significance levels or
p-values were less than 1074, There is a clear linear trend for
most amplitudes 4. The trend becomes quadratic for very
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TABLE II. Linear regression of the SR-maximal mutual infor-
mation /.., (S,Y) as a function of the bell-curve tail-thickness pa-
rameter « from a symmetric alpha-stable noise density. The param-
eters By and B, relate I,,,,(S,Y) and « through a linear relationship:
Lax(S,Y;a)=pBy+ Bra. The coefficient of determination r? shows
how well the linear model fits the data. The last column shows the
coefficient of determination rj for the quadratic model
Tnax(S, Y;0)=By+ Bia+ Bra?. All observed significance levels or
p-values were less than 1074,

Linear model

Signal amplitude Regression coefficients Quadratic model

A Bo B r Vﬁ
0.025 —0.0001 0.0006 0.9312 0.9907
0.050 —0.0008 0.0022 0.9370 0.9972
0.075 —0.0018 0.0049 0.9401 0.9985
0.100 —0.0031 0.0086 0.9440 0.9990
0.125 —0.0048 0.0134 0.9477 0.9993
0.150 —0.0068 0.0190 0.9521 0.9995
0.175 —0.0090 0.0256 0.9558 0.9997
0.200 —=0.0113 0.0329 0.9612 0.9998
0.225 —0.0138 0.0411 0.9658 0.9998
0.250 —0.0161 0.0500 0.9715 0.9997
0.275 —0.0185 0.0596 0.9764 0.9995
0.300 —0.0207 0.0698 0.9816 0.9993
0.325 —0.0224 0.0807 0.9866 0.9990
0.350 —0.0236 0.0920 0.9913 0.9987
0.375 —0.0240 0.1039 0.9951 0.9984
0.400 —0.0229 0.1161 0.9976 0.9981
0.425 —=0.0196 0.1286 0.9972 0.9977
0.450 —0.0120 0.1408 0.9905 0.9975
0.475 0.0058 0.1513 0.9655 0.9973
0.490 0.0336  0.1527 0.9145 0.9959

small amplitudes and for amplitudes close to the threshold
=%. Figure 8 shows 6 of the 20 linear plots.

V. CONCLUSIONS

Both theory and detailed simulations show that almost all
noise types produce stochastic resonance in threshold sys-
tems that use subthreshold signals. These results help explain
the widespread occurrence of the SR effect in mechanical
and biological threshold systems [43—49]. The broad gener-
ality of the results suggests that SR should occur in any
nonlinear system whose input-output structure approximates
a threshold system as in the many models of continuous
neurons [50-52]. The infinite-variance theoretical and simu-
lation results further imply that such widespread SR effects
should be robust against violent noise impulses.
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FIG. 8. Linear regression for maximal mutual information
I,ax(S,Y) as a function of bell-curve thickness parameter « for
different signal amplitudes 4. The maximal mutual information
I,ax(S,Y) depends on the parameter « through the linear relation-
ship 1,,,(S,Y;a)=By+ B, for parameters By and B, [or [,.(a)
=By+ B a+ B,a? for a quadratic fit to the data]. Table II shows the
estimated parameters ,[ASO and ,él for 20 input Bernoulli signal am-
plitudes A. The linear trend is strong for most amplitudes A. The
trend becomes quadratic for very small amplitudes and for ampli-
tudes close to the threshold 6’=%. All observed significance levels or
p-values were less than 107%.

APPENDIX: PROOFS OF THEOREMS 1.2 AND 2.2

The two proofs below use the same idea as do the proofs
for Theorems 1.1 and 2.1 [12]. Assume 0<Pg(s)<l to
avoid triviality when Pg(s)=0 or 1. We show that H(Y)
—H(S) and H(Y|S)—0 as 0—0 or y—0. So I(S,Y)
—H(S) as 0—0 or y—0 and is maximum since /(S,Y)
=H(Y)-H(Y|S) and I(S,Y)<H(S) by the data processing
inequality: 1(S,8)=1I(S,g(S5))=1(S,Y) for a Markov chain §
—S—7Y [19]. The boundary case I(S,S)=H(S) implies
I1(S,Y)<H(S).

Finite-variance noise case (Theorem 1.2)

Now we show that PY‘S()/|S) is either 1 or 0 as 00— 0 or
v— 0. Let the mean of the noise be m=E[n] and the variance
be o?=E[(n—m)?]. Then m € (6—4, 6+A4) by hypothesis.
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Consider first Py5(0/0). Pick s:%d(0+A,m):%(0+A
-m)>0. So O+A—e=0+A—et+tm—m=m+(0+4A—m)—¢
=m+2e—e=m+e. Then

6+A
Py|s(0|0)—f p(n)dn (A1)
O+A—¢
Bf p(n)dn (A2)
- f " pndn (A3)
=1- j” p(n)dn (A4)

=1-Prin=m+e}=1-Pr{ln—m=¢e} (AS)

=1-Pr{jn—m|= &} (A6)

>1 - —
=1 3

by Chebyshev ’ s inequality (A7)

(A8)

—1 aso—0.

So Py5(0]0)=1.

Similarly for Py|S(1|l): Pick SZ%d(H—A,m):%(m—G
+A4)>0. So O-A+e=0-A+et+tm—m=m+(0—A—m)+e
=m—2ete=m—e. Then

©

Pys(1[1) = p(n)dn (A9)
0-4
Bf p(n)dn (A10)
6-A+e
—J p(n)dn (A11)
=1 —J p(n)dn (A12)
=l1-Prin<m-¢e}=1-Prln—-m<-¢} (A13)
=1-Pr{ln—m| =&} (A14)
=1—-— by Chebyshev’s inequality ~ (A15)
€
—1 as o—0. (A16)

So Py‘s(l | 1)=1.

PHYSICAL REVIEW E 70, 031911 (2004)

Alpha-stable noise case (Theorem 2.2)

The characteristic function ¢(w) of alpha-stable noise
density p(n) has the exponential form (22) and (23). This
reduces to a simple complex exponential in the zero-
dispersion limit:

lim ¢(w) = exp{iaw} (A17)
y—0
for all characteristic exponents «, skewnesses 3, and loca-
tions a. So Fourier transformation gives the corresponding
density function in the limiting case (y—0) as a translated
delta function &:

lim p(n)=8n—a). (A18)
'y—>0
Then a e (6—A4, 6+A4) gives
04
Py5(0]0) = f p(n)dn (A19)
0+4
—>f Sn—a)dn=1 asy—0. (A20)
Similarly
Pys(1]1) = f p(n)dn (A21)
-4
— Sn—a)dn=1 as y—0. (A22)

6-A

The two conditional probabilities for both the finite-
variance and infinite-variance cases likewise imply that
Pys(0[1)=Py5(1]0)=0 as 0—0 or y—0. These four prob-
abilities further imply that

H(Y|S) == 2 X Poyls.y)log, Prs(ls)  (A23)

sy
=2 Ps(s)> Pyjs(y|s)log, Pyjs(yls) (A24)
s v

=0, (A25)

where we use the fact (L’Hopital) that 0 log,0=0. The un-
conditional entropy H(Y) becomes

H(Y) == 2, Py(y)log, Py(y) (A26)
y

== Py(s)log, Py(s) (A27)

=H(S) (A28)

because
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Py(y)=2 Pys(y]s)Ps(s) (A29)
=Py5(y]0)P5(0) + Py5(y[1)Ps(1) (A30)
=Pys(y]0)Ps(0) + Pys(v[)[1 - Ps(0)]  (A31)

PHYSICAL REVIEW E 70, 031911 (2004)
=[Pys(¥|0) = Pys(y[1)]Ps(0) + Pys(y[1)  (A32)
=[Pys(v|1) = Pys(v|0)]Pg(1) + Pys(v[0)  (A33)

Py(1) ify=1

:{PS(O) ify=0. (A34)

[1] A. R. Bulsara and A. Zador, Phys. Rev. E 54, R2185 (1996).

[2] L. Gammaitoni, Phys. Lett. A 208, 315 (1995).

[3] X. Godivier and F. Chapeau-Blondeau, Int. J. Bifurcation
Chaos Appl. Sci. Eng. 8, 581 (1998).

[4] S. M. Hess and A. M. Albano, Int. J. Bifurcation Chaos Appl.
Sci. Eng. 8, 395 (1998).

[5]1 N. Hohn and A. N. Burkitt, in Proceedings of the 2001 IEEE
International Joint Conference on Neural Networks (IJCNN
’01) (IEEE, Washington, D.C., 2001), pp. 644—647.

[6] P. Jung, Phys. Lett. A 207, 93 (1995).

[7]1 P. Jung and G. Mayer-Kress, Nuovo Cimento D 17, 827
(19995).

[8] N. G. Stocks, Phys. Rev. E 63 041114 (2001).

[9] J. J. Collins, C. C. Chow, A. C. Capela, and T. T. Imhoff, Phys.
Rev. E 54, 5575 (1996).

[10] J. J. Collins, C. C. Chow, and T. T. Imhoft, Nature (London)
376, 236 (19995).

[11] S. Mitaim and B. Kosko, in Proceedings of the 2002 IEEE
International Joint Conference on Neural Networks (IJCNN
’02), Honolulu (IEEE, Honolulu, 2002), pp. 1980-1985.

[12] B. Kosko and S. Mitaim, Neural Networks 16, 755 (2003).

[13] S. Grossberg, Studies of Mind and Brain: Neural Principles of
Learning, Perception, Development, Cognition, and Motor
Control (Kluwer Academic Publishers, Dordrecht, 1982).

[14] S. Haykin, Neural Networks: A Comprehensive Foundation
(McMillan, 1994).

[15] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical
Systems Approach to Machine Intelligence (Prentice Hall,
Englewood Cliffs, NJ, 1992).

[16] B. Kosko and S. Mitaim, Phys. Rev. E 64, 051110 (2001).

[17] L. Miller and M. Miller, Mathematical Statistics, 6th ed. (Pren-
tice Hall, Englewood Cliffs, NJ, 1999).

[18] J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).

[19] T. M. Cover and J. A. Thomas, Elements of Information
Theory (John Wiley & Sons, 1991).

[20] G. Deco and B. Schiirmann, Physica D 117, 276 (1998).

[21] M. E. Inchiosa, J. W. C. Robinson, and A. R. Bulsara, Phys.
Rev. Lett. 85, 3369 (2000).

[22] R. C. H. Cheng, Commun. ACM 21, 317 (1978).

[23] E. A. Tanis and R. V. Hogg, Probability and Statistical Infer-
ence, 6th ed. (Prentice Hall, Englewood Cliffs, NJ, 2001).

[24] C. V. Kimball and D. J. Scheibner, Geophysics 63, 345
(1998).

[25] R. L. Kulp, Electromagnetics 4, 165 (1984).

[26] N. Ansari, H. Liu, Y. Q. Shi, and H. Zhao, IEEE Trans. Broad-
casting 48, 337 (2002).

[27] A. Kavak, M. Torlak, W. J. Vogel, and G. Xu, IEEE Trans.

Microwave Theory Tech. 46, 930 (2000).

[28] L. Devroye, Non-Uniform Random Variate Generation
(Springer-Verlag, Berlin, 1986).

[29] W. Weibull, J. Appl. Mech. 18, 293 (1951).

[30] W. Mendenhall and T. Sincich, Statistics for Engineering and
the Sciences, 4th ed. (Prentice Hall, Englewood Cliffs, NJ,
1995).

[31] M. A. Sletten, IEEE Trans. Antennas Propag. 46, 45 (1998).

[32] J. Hu, A. Razden, G. M. Nielson, G. E. Farin, D. P. Baluch,
and D. G. Capco, IEEE Trans. Vis. Comput. Graph. 9, 320
(2003).

[33] S. Mitaim and B. Kosko, Proc. IEEE 86, 2152 (1998), special
issue on intelligent signal processing.

[34] L. Breiman, Probability (Addison-Wesley, Reading, MA,
1968).

[35] W. Feller, An Introduction to Probability Theory and Its Ap-
plications (John Wiley & Sons, Reading, MA,1966) Vol. II.

[36] M. Grigoriu, Applied Non-Gaussian Processes (Prentice Hall,
Englewood Cliffs, NJ, 1995).

[37] C. L. Nikias and M. Shao, Signal Processing with Alpha-
Stable Distributions and Applications (John Wiley & Sons,
1995).

[38] B. Kosko, Fuzzy Engineering (Prentice Hall, Englewood
Cliffs, NJ, 1996).

[39] J. M. Chambers, C. L. Mallows, and B. W. Stuck, J. Am. Stat.
Assoc. 71, 340 (1976).

[40] P. Tsakalides and C. L. Nikias, IEEE Trans. Signal Process.
44, 1623 (1996).

[41] V. Akgiray and C. G. Lamoureux, J. Bus. Econ. Stat. 7, 85
(1989).

[42] H. Bergstrom, Arkiv Feur Matematik 2, 375 (1952).

[43] H. A. Braun, H. Wissing, K. Schéfer, and M. C. Hirsch, Nature
(London) 367, 270 (1994).

[44] J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, Nature
(London) 365, 337 (1993).

[45] S. Fauve and F. Heslot, Phys. Lett. 97A, 5 (1983).

[46] L. Gammaitoni, P. Hianggi, P. Jung, and F. Marchesoni, Rev.
Mod. Phys. 70, 223 (1998).

[47] J. E. Levin and J. P. Miller, Nature (London) 380, 165 (1996).

[48] V. I. Melnikov, Phys. Rev. E 48, 2481 (1993).

[49] D. F. Russell, L. A. Willkens, and F. Moss, Nature (London)
402, 291 (1999).

[50] A. R. Bulsara, A. J. Maren, and G. Schmera, Biol. Cybern. 70,
145 (1993).

[51] A. Longtin, J. Stat. Phys. 70, 309 (1993).

[52] H. E. Plesser and S. Tanaka, Phys. Lett. A 225, 228 (1997).

031911-10



1526

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 6, NOVEMBER 2004

Adaptive Stochastic Resonance in Noisy Neurons
Based on Mutual Information

Sanya Mitaim and Bart Kosko

Abstract—Noise can improve how memoryless neurons process
signals and maximize their throughput information. Such favor-
able use of noise is the so-called ‘“‘stochastic resonance” or SR ef-
fect at the level of threshold neurons and continuous neurons. This
paper presents theoretical and simulation evidence that 1) lone
noisy threshold and continuous neurons exhibit the SR effect in
terms of the mutual information between random input and output
sequences, 2) a new statistically robust learning law can find this
entropy-optimal noise level, and 3) the adaptive SR effect is robust
against highly impulsive noise with infinite variance. Histograms
estimate the relevant probability density functions at each learning
iteration. A theorem shows that almost all noise probability den-
sity functions produce some SR effect in threshold neurons even if
the noise is impulsive and has infinite variance. The optimal noise
level in threshold neurons also behaves nonlinearly as the input
signal amplitude increases. Simulations further show that the SR
effect persists for several sigmoidal neurons and for Gaussian ra-
dial-basis-function neurons.

Index Terms—Alpha-stable noise, impulsive noise, infinite-vari-
ance statistics, mutual information, noise processing, sigmoidal
neurons and radial basis functions, stochastic gradient learning,
stochastic resonance (SR), threshold neurons.

I. NOISE AND ADAPTIVE STOCHASTIC RESONANCE

OISE is an unwanted signal or source of energy. Scientists

and engineers have largely tried to filter noise or cancel it
or mask it out of existence. The Noise Pollution Clearinghouse
condemns noise outright: “Noise is unwanted sound. It is de-
rived from the Latin word ‘nausea’ meaning seasickness. Noise
is among the most pervasive pollutants today. Noise from road
traffic, jet planes, jet skis, garbage trucks, construction equip-
ment, manufacturing processes, lawn mowers, leaf blowers, and
boom boxes, to name a few, are among the unwanted sounds that
are routinely broadcast into the air.”

The new field of stochastic resonance or SR [3], [4], [9],
[26], [32], [52], [53], [61], [71] rests on an exception to this
undeclared war on noise. SR occurs when noise enhances a
faint signal in a nonlinear system. It occurs when the addition
of a small amount of noise increases a nonlinear system’s
performance measure such as its signal-to-noise ratio (SNR),
cross-correlation, or mutual information. The nonlinearity is
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often as simple as a memoryless threshold. So a great deal of SR
research has focused on how dither-like noise can help spiking
neurons process data streams [12], [33], [38]. SR occurs in
physical systems such as ring lasers [56], threshold hysteretic
Schmitt triggers [27], superconducting quantum interference
devices (SQUIDs) [36], Josephson junctions [7], chemical
systems [25], and quantum-mechanical systems [34]. SR also
occurs in biological systems such as the rat [18], crayfish [23],
cricket [48], river paddlefish [66], and in many types of model
neurons [8], [10], [16], [17], [63].

Fig. 1 shows how uniform pixel noise can improve our subjec-
tive perception of an image. The system quantizes the original
gray-scale “Lena” image into a binary image of black and white
pixels. It emits a white pixel as output if the input gray-scale
pixel equals or exceeds a threshold. It emits a black pixel as
output if the input gray-scale pixel falls below the threshold.
This quantizer is biased because it does not set the threshold at
the midpoint of the gray scale. So the quantized version of the
original image contains almost no information. A small level
of noise sharpens the image contours and helps fill in features
when it adds to the original image before the system applies
the threshold. Too much noise swamps the image and degrades
its contours. Gammaitoni [29] and others [70] have proposed a
dithering argument for this SR effect and still others [55] have
applied this argument to still images. The argument involves
adding dither noise to a signal before quantization. Consider
gray-scale pixel € [0, 1] and binary output pixel y € {0,1}
with threshold # = 1/2. Then the dithered quantizer gives
EY|z] =1 —Pr{n < § — «} = z if and only if the noise is
uniform on (—1/2, 1/2). But the subjective SR result in Fig. 1
holds for nonuniform infinite-variance Cauchy noise and for
many other types of nonuniform noise. So the dithering argu-
ment only partially explains this subjective SR effect.

We first show that noise added to a memoryless threshold
neuron produces the SR effect in terms of the Shannon mu-
tual information I(S,Y) between realizations of a random
(Bernoulli) bipolar input signal S and realizations of the
thresholded output random variable Y. Fig. 2 shows a typical
simulation confirmation of this SR result for additive Gaussian
noise. The theorem holds for more general bell curves that have
thicker tails and thus that have infinite variance and can pro-
duce impulsive noise. Extensive simulations reproduce these
SR effects for several standard continuous sigmoidal neurons
and for Gaussian radial basis functions (see Fig. 13).

We next show that a new robust learning law can find the op-
timal noise variance and dispersion for both threshold and con-
tinuous neurons and for both finite-variance and infinite-vari-
ance noise. We introduced adaptive stochastic resonance in [57]

1045-9227/04$20.00 © 2004 IEEE
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Fig. 1.

A “dithering” Cauchy pixel noise can improve subjective image quality. The noise produces a nonmonotonic response: A small level of noise sharpens

the image features while too much noise degrades them. These noisy images result when we apply a pixel threshold to the popular “Lena” image used in signal
processing [60]: y = g((x + n) — 0) where g(x) = 1if > 0 and g(x) = 0 if < O for an input pixel value = € [0, 1] and output pixel value y € {0,1}.
The input image’s gray-scale pixels vary from 0 (black) to 1 (white). The threshold is # = 0.06. Thresholding the original “Lena” image gives the faint image in

(a). The Cauchy noise n has zero location and its dispersion +,, grows from (b)—(d): v,, = 0.01 in (b), v,, = 0.08 in (c), and 7,, = 0.50 in (d).
0.25 " ) " evolved to computationally exploit their noisy environments

o~ [11], [18], [19], [23], [48], [58], [64], [69]. Further support

2 ool X | is that these adaptive SR effects still hold for other sigmoidal

2 T and nonsigmoidal (Gaussian) neurons as Fig. 13 shows. These

;— E results suggest that biological neurons should experience less

\g 0.15} : 1 mutual information if they do not use their local noise.

= 1

§ o E . 5 II. MUTUAL INFORMATION AND SR IN NEURON MODELS

£ : - This section reviews Shannon’s measure of mutual informa-

© : = tion between two random variables. Then it reviews the simple

g 0.05f E N . 1 nonlinear threshold model of a neuron and the continuous
' R neuron model that show the SR effect for bipolar signals.
{Opt = 0-328 e

05 T 1 15 2 A. Mutual Information Measure

Standard deviation ¢ of additive white Gaussian noise

Fig. 2. The nonmonotonic signature of stochastic resonance. The graph
shows the smoothed input-output mutual information of a threshold system
as a function of the standard deviation of additive white Gaussian noise 7.
The vertical dashed lines show the absolute deviation between the smallest
and largest outliers in each sample average of 100 outcomes. The system has a
nonzero noise optimum at o, ~ (.328 and thus shows the SR effect. The
noisy signal-forced threshold system has the form (6). The Gaussian noise n+
adds to the external forcing bipolar signal s, .

and [47] as a robustified stochastic gradient ascent algorithm
that slowly finds the optimal noise variance or dispersion given
thousands of joint samples of the noise input and the nonlinear
system’s spectral SNR or its cross correlation. This paper ex-
tends adaptive SR to the mutual-information performance mea-
sure. The last section derives and tests a new robustified learning
law that finds the entropically optimal noise level given his-
togram estimates of the underlying marginal and conditional
probability density functions. This statistically robust algorithm
uses only the sign of the noise gradient rather than the gradient
itself.

The results show that model neurons can exploit low levels
of crosstalk or other forms of noise in their local environment.
Even highly impulsive noise can help neurons maximize their
throughput information. Such noise-based information maxi-
mization is consistent with Linsker’s principle of information
maximization in neural networks [49], [50]. These findings
support the implicit SR conjecture that biological neurons have

Mutual information [20] can measure the SR effect [12], [22],
[33], [43], [67]. The discrete Shannon mutual information of the
input S and output Y has the form

I(S,Y)=H(Y) - H(Y|S) (1)
= —>_ Py(y)log Pr(y)

Y
+Y > Psv(s,y)logPyis(yls) ()
s Yy
= =Y Py(y)log Pr(y)

+> P(s)Y_ Plyls)log P(yls) (3
‘ PSY(Svy)

Ps(s)Pry) 7

= Psy(s,y)log

5,y

We can view the mutual information in the form of expectation
of a random variable log(Psy (s,y)/Ps(s) Py (y)):

Psy (s,y) ] _

& Ps(s) Py (4) ©)

I(S,Y)=FE [lo
Here Ps(s) is the probability density of the input .S, Py-(y) is the
probability density of the output Y, Py-5(yls) is the conditional
density of the output Y given the input S, and Psy (s, y) is joint
density of the input S and the output Y.
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Mutual information also measures the pseudodis-
tance between the joint probability density Psy(s,y)
and the product density Ps(s)Py(y). This holds for
the Kullback [20] pseudodistance measure I(S,Y) =
> s 2oy Psv(s,y)log(Psy (s,y)/Ps(s) Py (y)). Then Jensen’s
inequality implies that I(S,Y) > 0. Random variables S
and Y are statistically independent if and only if I(S,Y) =
0. Hence I(S,Y) > 0 implies some degree of dependence.

B. Noisy Threshold Neuron

We use the discrete-time threshold neuron model [12], [29],
[39], [44], [45]

1 1fst+nt29

yr = sgn(s; +ny — 6) = {
where 6 > 0 is the neuron’s threshold, s; is the bipolar input
Bernoulli signal (with success probability 1/2) with amplitude
A > 0, and n; is the additive white noise with probability den-
sity p(n). Experiments with other success probabilities near 1/2
did not produce substantially different simulation results.

C. Noisy Continuous Neurons

We use the additive continuous neuron model with a neuronal
signal function S(z) [45]

&= —x4+S(x)+ s(t) +n(t) (7)
y(t) = sen (x(1)) .- ®)

Here s(t) and n(t) are the input and additive noise of the neuron
and y(t) is the binary output. The neuron feeds its output signal
S(x) back to itself and emits the threshold bipolar signal y(t)
as output.
* Hyperbolic Tangent This signal function gives an addi-
tive neuron model that is bistable [2], [10], [15], [39], [40],
[45]

S(z) = 2tanhz. )

¢ Linear-Threshold This simple linear-threshold signal
function [45] also gives the SR effect in the neuron

cx |ex| <1
S(z) = 1 ecx>1 (10)
-1 cx< -1

for a constant ¢ > 0. We use ¢ = 2.
* Exponential This signal function is asymmetric with the
form [45]

S(x) = {1 —exp{—cz} x>0 (11

0 otherwise
for a constant ¢ > 0. We use ¢ = 10.
* Gaussian. The Gaussian or “radial basis” signal function
[45] differs from the other signal functions above because
it is nonmonotonic

S(z) = exp{—ca®} (12)

for a constant ¢ > 0. We use ¢ = 100.
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III. MUTUAL INFORMATION OF THE THRESHOLD NEURON
WITH BIPOLAR INPUT SIGNALS

A. SR in Memoryless Threshold Neurons

This section derives analytical SR results for the noisy
threshold neuron based on the marginal probability density
function of the output Py (y) and the conditional density
Py|s(yls). The system is the binary neuron with a fixed
threshold #. The bipolar (Bernoulli with success probability p)
input signal s; has amplitude A: s, € {—A, A} with proba-
bility density Ps(s). The noise n; adds to the signal s; before
it enters the neuron. So the neuron’s output y; has the form (6).
Fig. 5 plots the mutual information 7(S,Y") for four standard
closed-form noise probability density functions 18, 24, 29, and
38. The central result is a theorem that holds for almost all noise
probability densities so long as the mean noise falls outside a
user-controlled interval that depends on the threshold 6.

The symbol ‘0’ denotes the input signal s = — A and output
signal y = —1. The symbol ‘1’ denotes the input signal s = A
and output signal y = 1. We also assume subthreshold input
signals: A < 6 for positive A. Then the conditional probabilities
Py s(yls) are

Py5(0[0) = Pr{s+n <0}, ,__,
O+A

=Pr{n<§+ A} = / p(n)dn  (13)
Py 5(1]0) =1 — Py 5(0]0) (14)

Pyis(0]1) = Pr{s+n < 0},_4

o—A
=Pr{n<f—- A} = / p(n)dn  (15)
Pys(1]1) =1 — Py 5(0[1) (16)
and the marginal density is

17)

Pr(y) = 3 Pyis(ls) Ps(s).

Researchers have derived the conditional probabilities
Py s(y|s) of the threshold system with Gaussian noise with
bipolar inputs [12] and Gaussian inputs [67]. We next derive
Py s(yls) for uniform, Laplace, and (infinite-variance) Cauchy
noise as well. Fig. 3 shows four examples of the unimodal
noise densities and their realizations. Then we introduce stable
distributions to model a spectrum of impulsive noise types.

* Gaussian Noise The Gaussian density with zero mean and
2 — 52 has the form

variance o,
1 n?
= — —— . 18
p(n) — eXp{ 202} (18)
Then the conditional probabilities Py-|s(y|s) are
f+A
| n?
Py 5(0]0) = ——rd
v15(0]0) /U 27TeXP{ 202} n
1 1 6+ A
=+ —erf | —= 19
2 2 ( o2 ) 4
1 1 0+ A
Py 5(110) == — —erf | — = 20
sl =5 -yt (252 o)
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Probability density functions and sample realizations. The figure shows Gaussian, Laplace, and uniform random variables n with zero mean and variance

of two: E[n] = 0 and E[n?] = ¢? = 2. The Cauchy density function has zero location and unit dispersion but infinite variance. The pseudorandom number

generators in [65] act as noise sources for these probability densities.

1 1 f— A
1 1 f—A
The error function erf is
f(z) 2 7 {—t*}dt (23)
erf(z) = — [ exp{— .
vr ) P
0

* Uniform Noise The uniform density with zero mean and
variance 02 = a?/12 has the form

1 6 _a a
p(n):{a if -3 <n<3g (24)
0 otherwise.
Then the conditional probabilities Py-|s(y|s) are
1 ife2<f+ A
_ 2
Py15(0[0) = { 1+ 4 otherwise
1 0+4
- min{l, L7t } (25)
2 a

Py 5(1]0) = maX{O,l _0t A} (26)
2 a
1 6-A
Py 5(0[]1) = min {1 -+ } 27)
2 a
1 6-A
Pyis(1]1) = maX{O, 3”3 } (28)

¢ Laplace Noise The Laplace density with zero mean and
variance 02 = 23? has the form
n
—| . (29)
B }

Then the conditional probabilities Py-|s(y|s) are

1
p(n) = 25 P {

Pys(0]0) =1 — %exp {—9?—3‘4} (30)
Pyis(1]0) :%exp{—%} 31)
Pasl) =1 gen{ -“2AL @
Pas(ii) = jexp { -T2}, 33
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¢ Cauchy Noise The Cauchy density with zero location and
finite dispersion -y (but infinite variance) has the form

[
= ——. 34
p(n) = —— e (34)
Then the conditional probabilities Py|s(y|s) are
1 1 0+ A
Py5(0]0) == + —tan™! r+Aa (35)
2 0w ¥
1 1 6+ A
Pyis(1]0) = = — —tan ' —— 36
y|s(1]0) = 5~ tan 5 (36)
1 1 - A
Pyis(0]1) == + = tan~ ' —— (37)
2 7 ol
1 1 - A
Py s(1]1 — — —tan ' ——
vis(Uf1) =5 = tan ! (38)
¢ Symmetric Alpha-Stable Noise: Thick-Tailed Bell
Curves

We model many types of impulsive noise with sym-
metric alpha-stable bell-curve probability density func-
tions with parameter « in the characteristic function
o(w) = exp{—~|w|*}. Here v is the dispersion param-
eter [6], [28], [35], [62]. The parameter o controls tail
thickness and lies in 0 < o < 2. Noise grows more
impulsive as « falls and the bell-curve tails grow thicker.
The (thin-tailed) Gaussian density results when @ = 2
or when p(w) = exp{—7w?}. So the standard Gaussian
random variable has zero mean and variance 02 = 2
(when v = 1). The parameter « gives the thicker-tailed
Cauchy bell curve when o = 1 or p(w) = exp{—|w|}
for a zero location (a = 0) and unit dispersion (y = 1)
Cauchy random variable. The moments of stable distribu-
tions with @ < 2 are finite only up to order £ for k& < «.
The Gaussian density alone has finite variance and higher
moments. Alpha-stable random variables characterize the
class of normalized sums of independent random vari-
ables that converge in distribution to a random variable [6]
as in the famous Gaussian special case called the “central
limit theorem.” Alpha-stable models tend to work well
when the noise or signal data contains “outliers”—and all
do to some degree. Models with & < 2 can accurately
describe impulsive noise in telephone lines, underwater
acoustics, low-frequency atmospheric signals, fluctua-
tions in gravitational fields and financial prices, and many
other processes [46], [62]. Note that the best choice of
a is an empirical question for bell-curve phenomena.
Bell-curve behavior alone does not justify the assumption
of the Gaussian bell curve.

Fig. 4 shows realizations of four symmetric alpha-stable
random variables. A general alpha-stable probability density
function f has characteristic function ¢ [1], [5], [35], [62]

o(w) :exp{mw—’y|w|0‘ (1 +ifsign(w) tan O;—W)} fora#1

(39)
and
2i31 i
w(w)—exp{iaw—'y|w|<l—w fora=1
T
(40)
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where
1 ifw>0
sign(w) = { 0 ifw=0 (41)
-1 ifw<0

andi = /~1,0< a <2 —-1<p<1,andy > 0. The pa-
rameter « is the characteristic exponent. Again the variance of
an alpha-stable density does not exist if & < 2. The location pa-
rameter a is the “mean” of the density when o > 1. (3 is a skew-
ness parameter. The density is symmetric about a when 3 = 0.
The theorem shown still holds even when /3 # 0. The dispersion
parameter ~y acts like a variance because it controls the width of
a symmetric alpha-stable bell curve. There are no known closed
forms of the alpha-stable densities for most «’s. Numerical in-
tegration of ¢ gives the probability densities in Fig. 4.

The following theorem shows that noisy threshold neurons
produce some SR effect for almost all noise probability descrip-
tions. The proof shows that if 7(S,Y") > 0 then eventually the
mutual information I(S,Y) tends toward zero as the noise vari-
ance or dispersion tends toward zero. So the mutual information
1(S,Y) must increase as the noise variance increases from zero.
The crucial assumption is that the noise mean E/[n] (or location
parameter) not lie in the signal-threshold interval (§ — A, 0+ A).

Theorem: Suppose that the threshold signal system (6) has
noise probability density function p(n) and that the input signal
S is subthreshold (A < ). Suppose that there is some statis-
tical dependence between input random variable S and output
random variable Y (so that 7(S,Y) > 0). Suppose that the
noise mean E[n] does not lie in the signal-threshold interval
(0 — A,6 + A) if p(n) has finite variance. Suppose that a &
(0 — A7 6 + A) for the location parameter a of an alpha-stable
noise density with characteristic function (39), (40). Then the
threshold system (6) exhibits the nonmonotone SR effect in the
sense that I(S,Y) — 0aso — Oory — 0.

Proof: Assume 0 < Pg(s) < 1 to avoid triviality when
Ps(s) = 0 or 1. We show that S and Y are asymptotically
independent: I(S,Y) — 0 as ¢ — 0 (or as v — 0). Recall that
I1(S,Y) = 0ifand only if S and Y are statistically independent
[20]. So we need to show only that Psy (s,y) = Ps(s)Py (y)
or Py|s(yls) = Py(y) as ¢ — 0 (or as v — 0) for all signal
symbols s € Sandy € Y. The two-symbol alphabet set S gives

Py(y ZPm yls)Ps(s) (42)
—PY|S(y|0)PS( )+ Py s(y|1)Ps(1) (43)
= Pys(y]0)Ps(0)+ Py s(y|1 )(1 Ps(0)) (44)
= (Py|s(y]0)— Py s(y|1)) Ps(0)+ Py s(yl1). (45)

So we need to show only that Py-s(y|0) — Pys(y|1) = 0 as
o — 0 (or as v — 0). This condition implies that Py (y) =
Py s(y|1) and Py (y) = Py |s(y|0). We assume for simplicity
that the noise density p(n) is integrable. The argument below
still holds if p(n) is discrete and if we replace integrals with
appropriate sums.

Consider y = ‘0'. Then (13) and (15) imply that

6+ A 6—A

Py‘5(0|0)—Py|5(0|1):/p(n)dn—/p(n)dn (46)

— 00 — 00
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Fig. 4. Samples of standard symmetric alpha-stable probability densities and their realizations. (a) Density functions with zero location (¢ = 0) and unit
dispersion (v = 1) for a = 2, 1.8, 1.5, and 1. The densities are bell curves that have thicker tails as o decreases and thus that model increasingly impulsive noise

as « decreases. The case &« = 2 gives a Gaussian density with variance two (or unit dispersion). The parameter &« = 1 gives the Cauchy density. (b) Samples of
alpha-stable random variables with zero location and unit dispersion. The plots show realizations when a = 2, 1.8, 1.5, and 1. Note the scale differences on the
y-axes. The alpha-stable noise » becomes more impulsive as the parameter « falls. The algorithm in [13], [68] generates these realizations. (c) Density functions
for o = 1.8 with dispersions v = 0.5, 1, and 2. (d) Samples of alpha-stable noise n for & = 1.8 with dispersions v = 0.5, 1, and 2.

6+ A

_ /A p(n)dn.

[4

Similarly for y = ‘1'

Pyis(10) = [ p(n)dn
| 9 +/
Prisi) = [ pla)dn.
6—A
Then
0+A
Pris(10) = Pris([1) == [ p(a)dn.
6—A

(47)

(48)

(49)

(50)

The result now follows if we can show that
6+A

p(n)dn — 0 aso — 0ory — 0. (51

oA
Case 1) Finite-variance noise. Let the mean of the noise be
m = E[n] and the variance be 0> = E[(n — m)?]. Then
m & (0 — A,0 + A) by hypothesis.

Now suppose that m < 6 — A. Pick e = (1/2)d(6 —
Am)=(1/2) (0 —A—m)>0.S00 —A—ec=0—-A—
e+tm—m=m+(@—-—A—m)—e=m+2e—c=m+e.
Then

Py 5(0[0) — Py 5(0[1)

0+ A
= / p(n)dn (52)

9-A
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=Pr{in>m+e}=Pr{n—m>¢}

<Pr{|ln—m|>c¢e}
2
< 0—2 by Chebyshev's inequality
€

—0 aso—0.

(53)

(54)

(35)
(56)
(57)

(58)
(59)

Suppose next that m > 6 + A. Then pick e = (1/2)d(0 +
Am) = (1/2)(m —0 — A) > Oandsof + A+ ¢ =
O+ A+e+m—m=m—(m—0—A)+e = m—2e+e = m—e.

Then

Py 5(0]0) — Pys(0[1)
944

IN

=
s
=
3

=Pr{n<m—-¢e} =Pr{n—m < —¢}

<Pr{|ln—m|>c¢e}
o2

< — by Chebyshev's inequality
€

—0 aso—0.

(60)

(61)

(62)

(63)
(64)
(65)

(66)
(67)

Case 2) Impulsive noise: Alpha-stable noise. The character-
istic function ¢(w) of alpha-stable density p(n) has the ex-
ponential form (39), (40). This reduces to a simple complex

exponential in the zero-dispersion limit

lim p(w) = exp{iaw}
7—0

(68)

for all «, skewness 3, and location a. So Fourier transforma-
tion gives the corresponding density function in the limiting

case (7 — 0) as a translated delta function

lin%)p(n) =6(n — a).

(69)
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Fig. 5. Mutual information I profiles of a threshold system with bipolar input
for four kinds of noise. The system has threshold 8 = 0.5. The input Bernoulli

signal is bipolar with amplitude A = 0.4.
Then
6+ A
Py5(0]0) — Py 5(0[1) = / p(n)dn (70)
—A
6+A
= 6(n — a)dn (71)
—A
=0 (72)

because a & (0 — A, 0 + A).

Then Py (y) = Py s(y|s) asy — 0. So Cases 1 and 2 imply
that I(S,Y) — 0as o — O for finite-variance noise oras y — 0
for alpha-stable noise. Q.E.D.

B. Theoretical Results for Closed-Form Noise Densities

Inserting Gaussian or other specific closed-form conditional
probability densities Py-5(y|s) from (19)=(38) into (1)—~(4)
gives exact solutions of the mutual information 7(S,Y") as a
function of the noise parameter o. Fig. 5 shows [-versus-o pro-
files of a threshold system with four kinds of noise: Gaussian,
uniform, Laplace, and Cauchy. The I profile of the uniform
noise has the highest peak among the four noise densities for
the same system (same threshold 6 and same input amplitude
A). And the I profile has a distinct shape: it drops sharply after
it reaches its peak as o grows. Gaussian noise gives the second
highest I while Cauchy gives the lowest. The threshold system
requires different optimal standard deviations (or dispersions)
for different kinds of noise.

The closed form of the I versus o profiles in Fig. 5 also al-
lows a direct analysis of how the optimal noise depends on the
signal amplitude A for Gaussian, uniform, Laplace, and Cauchy
noise. Suppose the signal amplitude A is a subthreshold input in
anoisy threshold neuron with threshold #: A < 6. Then will the
optimal noise oqpt (Or Yopt) decrease as the signal amplitude A
moves closer to the threshold 6?

Intuition might suggest that the threshold system should need
less noise to produce the entropic SR effect as the amplitude
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Fig. 6. Optimal SR noise schedules for a noisy threshold neuron with threshold § = 0.5. The schedules show how optimal noise variance or dispersion depends

on signal amplitude A for the four closed-form noise results in Fig. 5.

moves closer to the threshold 6. But the results in Fig. 6 show
that the compound nonlinearities involved produce no such
simple relationship. The different noise types produce different
SR optimality schedules. Fig. 6 shows four optimal noise
schedules for the threshold value § = 0.5. Other threshold
values produced similar results. Only optimal Laplace and
Cauchy noise produce the more intuitive monotone decrease in
the optimal noise level with rising signal amplitude A. Optimal
uniform noise grows linearly with signal amplitude while
optimal Gaussian noise defines a nonmonotonic schedule.

IV. STOCHASTIC RESONANCE IN COMPUTER SIMULATIONS

Discrete simulations can model continuous-time nonlinear
dynamical systems if a stochastic numerical scheme approxi-
mates the system dynamics and its signal and noise response.
We used a simple stochastic version of the Euler scheme to
model a nonlinear system with input forcing signal and noise.
We measured how the system performed based on only the
system’s input-output samples.

Consider the forced dynamical system with additive forcing
input signal s and “white” noise n

i = f(x)+ s(t) + n(t)
y(t) =g (z(1)).

These models simply add a noise term to a differential equation
rather than use formal Ito or Stratonovich stochastic differentials
[14], [24], [31]. “Whiteness” of a random variable n here means
that n is white only over some large but finite frequency band-
width interval [— B, B] for some large B > 0. Random num-

(73)
(74)

Il

bers from the algorithms in [13], [65], [68] act as noise from
various probability densities in our simulations. The next sec-
tions show how discretized continuous-time systems produced
the discrete-time systems we used for computer simulations.

A. Nonlinear Systems With White Gaussian Noise

Consider the dynamical system (73) with initial condition
x(tg) = x¢. Here the white Gaussian noise w has zero mean and
unit variance so that n = ow has zero mean and variance o2.
This system corresponds to the stochastic initial value problem

(31]

dX = f(t, X) 4 o(t, X)dW (75)

for initial condition X (£y) = Xo. Here f(t, X) = f(X)+s(t),
o(t,X) = o, and W is the standard Wiener process [31]. We
used Euler’s method (the Euler-Maruyama scheme) [21], [31],
[42] to obtain the discrete form for computer simulation

Tip1 =2 + AT (f(z1) + s¢) + oVATw,
Yt = g(wt)

(76)
(77)

fort =0,1,2,... and initial condition z¢. The input sample s,
has the value of the signal s(tAT') at time step ¢. The zero-mean
white Gaussian noise sequence {w; } has unit variance o2 = 1.
The term /AT scales w; so that \/ﬁwt conforms with the
Wiener increment [31], [42], [59]. The output sample y, is some
transformation g of the system’s state x;.

This simple algorithm gives fairly accurate results for mod-
erate nonlinear systems [31], [42], [51], [59]. Other algorithms
may give more accurate numerical solutions of the stochastic



1534

differential equations for more complicated system dynamics
[31], [54]. All of our simulations used the Euler’s scheme in
(76), (77).

The numerical algorithm in [65] generates a sequence of
pseudo-random numbers from a Gaussian density with zero
mean and unit variance for {w;} in (76). Fig. 3 shows the
Gaussian and other densities that have zero mean and a vari-
ance of two.

B. Nonlinear Systems With Other Finite-Variance Noise

We next consider a system (73) with finite-variance noise n.
Suppose the noise n has variance o2 and again apply Euler’s
method

Tip1 =2 + AT (f(z4) + s¢) + oVATw,
Yt+1 :.0(37t+1)-

(78)
(79)

Here the random sequence {w; } has density function p(w) with
zero mean and unit variance. The numerical algorithms in [65]
generate sequences of random variables for Laplace and uni-
form density functions. Fig. 3 plots these probability density
functions and their realizations with mean zero and variance of
two: E[n] = 0 and E[n?] = 2.

C. Nonlinear Systems With Alpha-Stable Noise

Figs. 3 and 4 show realizations of the symmetric alpha-stable
random variable for several characteristic exponents «. Again
we assume that the Euler’s method above applies to this class
of random variables with infinite variance. Let w be a standard
alpha-stable random variable with parameter a and zero loca-
tion and unit dispersion: a = 0and y = 1. Let k = ~1/ denote
a “scale” factor of a random variable. Then n = kw has zero
location and dispersion v = x®. This leads to the Euler’s nu-
merical solution

Tir1 =2 + AT (f(z4) + s¢) + 6V ATw,
yr = g(w1).

(80)
(81)

The algorithm in [13], [68] generates a standard alpha-stable
random variable w.

V. DERIVATION OF SR LEARNING LAW

We show that a memoryless neuron can use stochastic gra-
dient ascent to learn the SR effect [47], [57]

ol

Oky1 = O + Pk (82)

We assume that P(s) does not depend on o and we use the
natural logarithm. Then the learning term 91 /do has the form

8—0 ( Z P(y)log P(y
+Y P(s) Y P(yls)log P(yls)> (83)
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1 oOP
- zJ: (P(y)P(y) 8((72/) o
L oP(yls)
DB (PP s 2o

gP(y)a];—((fy)>

PPl )
== Z (aP gP(y)—ag((f/)>
+zz( =

+P(s)log P(y|s)%) . (85)

The sum > P(y) = 1 implies > (9P(y)/do) =

(0/00)%, Ply) = 0. And X, 5, (0B(yls)/do) = 0
because >, P(y[s) = 1. So

g—i:—;logf’ +ZZP )log P(yls) P(g|s)

(86)

We estimate the partial derivative with a ratio of time differences
and replace the denominator with the signum function to avoid
numerical instability

P(y) _ Pr(y) — Pi-1(y)
Jdo Ok — Ok—1
~sgn(oy, — ok—1) [Pr(y)
OP(yls) _ Pr(yls) = Pr-1(yls)
do O — Ok—1
~sgn(or — ok—1) [Pr(y]s)

— Pr_1(y)] (87)

— Pra(yls)] (88)

where Py (y) is the marginal density function of the output Y at
time k and Py (y|s) is the conditional density function at time &.
Then the learning term becomes

g_[ ~ sgn(ok — 0k-1) (— D [Pi(y) = Pe-1(y)]log Pr(y)

+ZZPk ) [Pe(yls) — Pkl(y|s)]10ng(y|s)>. (89)

Our previous work [47], [57] on adaptive SR found through
statistical tests that the random learning term 9 P/9c had an ap-
proximately Cauchy distribution for the spectral signal-to-noise
and cross-correlation performance measures P. These frequent
and energetic Cauchy impulse spikes destabilized the stochastic
learning process. So we “robustified” the learning term with the
standard Cauchy error suppressor ¢(z) = 22 /(1 + 27) [37],
[41]. This included the threshold neuron given a periodic input
sequence.

But detailed simulations revealed a special pattern in the case
of mutual information: The density Py (y) tends to stay close to
the past density P_1(y) if the values of o and o1 are close.
This causes the learning paths o, to converge quickly near the
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Finite-variance noise cases: adaptive stochastic resonance for the noisy threshold neuron (6) with bipolar input signal s,, amplitude A = 0.2, and threshold

6 = 0.5. The additive noise are (a) Gaussian, (b) uniform, and (c) Laplace. The graphs at the top show the nonmonotonic signatures of SR. The sample paths at
the bottom plots show the convergence if the initial condition o is close to the optimal noise level o, ;. Distant initial conditions may lead to divergence as the
third learning path in (a) shows. The constant learning rates are ;. = 0.01 for Gaussian and uniform noise and y;, = 0.02 for Laplace noise.

initial conditions. So we can replace the learning term 01 /0c
with its sign sgn(91/9d0) and the learning law simplifies to

ol
Ok41 = O + [pSgN (8) . (90)
g
The signum is a simple robustifier and formally consistent with
a two-sided Laplacian distribution [37].

VI. SIMULATION RESULTS

We tested the robust learning law in (90) with the approx-
imation of the learning term in (89). We needed to estimate
the marginal and conditional probability densities P (y), Pr(s),
and Py (y|s) at each iteration k. So at each k we collected 1000
input-output samples {s;, y; } and used them to estimate the den-
sities with histograms for the threshold system. We used 500 of
the input-output symbols to estimate the probability densities
for the continuous neuron model. We chose the neurons’ and
signals’ parameters below to demonstrate the algorithm. Other
parameters gave similar results.

A. Noisy Threshold Neuron

The threshold neuron had a fixed threshold § = 0.5. The
bipolar input Bernoulli signal has probability Ps(—A) =
Pg(A) = 1/2 where the amplitude A varied from A = 0.1 to
A = 0.4 (subthreshold inputs). We tried several noise densities
that included the Gaussian, uniform, Laplace, and the impulsive
alpha-stable densities that include the Cauchy density. All noise
densities had zero mean (zero location for Cauchy). We tried to
learn the optimal standard deviation o, (or optimal dispersion
Yopt for alpha-stable noise). We used constant learning rates

pr = 0.01 for Gaussian and uniform noise, pr = 0.02 for
Laplace and Cauchy noise, and p; = 0.02 for alpha-stable
noise with @« = 1.9 and o = 1.5. We started the learning from
several initial conditions with different noise seeds.

Figs. 7-9 show the adapted SR profiles and the o, learning
paths for different noise types. The learning paths converged to
the optimal standard deviation ooy (or dispersion ~yop¢) if the
initial value was near o,;¢. The learning paths tended to stay
nearer the optimal values for larger input amplitudes.

B. Noisy Continuous Neuron

We used the discrete model in Section IV for simulations.
We used dt = 0.01 s and let each input symbol stay for 50 s. So
for each input symbol we presented the corresponding “spikes”
(plus noise) 5000 times to the neuron. And we collected 5000
discrete-time output “spikes” and averaged them to get the
output symbol. This procedure applied to all types of signal
functions and for all types of noise.

1) Continuous Neurons with Hyperbolic Tangent Signal
Function: We tested the continuous neuron model with hyper-
bolic tangent signal function with several noise densities such
as the Gaussian, uniform, Laplace, and alpha-stable (which
included the Cauchy density). All noise densities had zero
mean (zero location for Cauchy). The bipolar input Bernoulli
signal had success probability Ps(—A) = Pg(A) = 1/2
where the amplitude A varied from A = 0.1 to A = 0.4 (sub-
threshold inputs). We used constant learning rates pu; = 0.03
for Gaussian, uniform, and Laplace noise. We used the smaller
learning rates p = 0.02 for alpha-stable noise with o = 1.9
and o = 1.5 and used the still smaller learning rate px = 0.005
for Cauchy noise. We started the learning from several initial
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o. o
0.18

@ 02 ©0.16 £
5 5
= ! 5°0.14]
%) ! 2 |
=0.15 | =012 1
< =
S 1 S 1
T I T 0.1 |
E | £ I
(=} (=}
2 o1 | 2o.08 |
= | = 1
E | Soos X
s I 3

0.05 , 0.04 :

! 002 !
1K oy = 0-228 I,y = 0.212 ~0.204
0 1 0 | Lopt
0 o 0 2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 05 1 15
Noise scale « of additive white o—stable noise (0:=1.9) Noise scale « of additive white a—stable noise (0=1.5) Dispersion y of additive white Cauchy noise

(2) (b) ()

1 1 1
K05 ’A K05 A " %5
[
0 2000 4000 6000 8000 10000 % 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
1 1 1
K05 ; K05 o5
0 0 o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
2
1 1 T
1
. VPP Yy, SAropisr Sy Rpurp el L I, WY - o
Y et e ot s, din i e st SN el it cslicinnt e s s [N S g
0 2000 4000 6000 8000 10000 Gl) 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration k Iteration k Iteration k
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conditions with different noise seeds. Figs. 10-12 show the 2) Continuous Neurons with Linear-Threshold, Exponential,
adapted SR profiles and the o, learning paths for different and Gaussian (Radial Basis) Signal Functions: We further
noise types. The learning paths converged near the optimal tested the continuous neuron model with linear-threshold,
standard deviation o, (or dispersion 7,p¢) if the initial value exponential, and Gaussian (radial basis) signal functions in
was near Oopt. Gaussian noise to show the generality of the SR effect. We
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SR. The sample paths at the bottom plots show the convergence of the noise standard deviation o}, to the noise optimum o, for each noise density. The constant

learning rates are yt,, = 0.03 for all cases.
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used the same bipolar input Bernoulli signal with success
probability Ps(—A) = Pg(A) = (1/2) where the amplitude
is A = 0.4 for the linear-threshold and Gaussian signal func-
tions and A = 0.6 for the exponential signal function. The
input amplitudes were “subthreshold” for the neuron models

with these signal functions. We used constant learning rates
wr = 0.02 for the exponential and Gaussian signal functions
and pr = 0.05 for the linear-threshold signal functions. We
started the learning from several initial conditions with different
noise seeds. Fig. 13 shows the adapted SR profiles and the oop¢
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Fig. 13. Adaptive stochastic resonance for continuous neurons with linear-threshold, exponential, and Gaussian (radial basis) signal functions. The bipolar input
signal s, has amplitude A = (0.4 for the linear-threshold and Gaussian signal functions and A = 0.6 for the exponential signal function. The additive noise n, is
Gaussian. The graphs at the top show the nonmonotonic signatures of SR. The sample paths at the bottom show the convergence of the noise standard deviation
o to the noise optimum o, for each case of signal functions: (a) linear-threshold, (b) exponential, and (c) Gaussian. The constant learning rates are p,, = 0.05
for the linear-threshold signal function and g, = 0.02 for the exponential and Gaussian signal functions.

learning paths for the three other signal functions. The learning VII. CONCLUSION
paths converged near the optimal standard deviation oy if the Threshold neurons exhibit stochastic resonance—they in-
initial value was near oop. crease their throughput mutual information when faint input
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noise increases in intensity. A theorem shows that this holds for
almost all noise densities. Such noise-based information max-
imization is consistent with Linsker’s principle of information
maximization in neural networks [49], [50]. Closed-form noise
densities allow us to derive the exact dependence of mutual
information on noise dispersion and to observe the nonlinear
relationships between the optimal noise level and the magnitude
of the input signal amplitude. Extensive simulations confirmed
this entropic SR effect for noisy threshold (memoryless) neu-
rons and for simple continuous neurons.

A simple robust stochastic learning law can find the entropi-
cally optimal noise level for both threshold and continuous neu-
rons that process noisy bipolar input signals. This result holds
for many types of finite-variance and infinite-variance (impul-
sive) noise. These noise types can model energetic disturbances
that range from thermal jitter to unmodeled environmental ef-
fects to the random crosstalk of neurons in large neural net-
works. This robust finding supports the implicit SR conjecture
that biological neurons [11], [18], [19], [23], [48], [58], [64],
[69] have evolved over genetic eons to exploit the noise energy
freely available in their local environment.
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Almost All Noise Types Can Improve the Mutual Information of Threshold Neurons
That Detect Subthreshold Signals

Bart Kosko
Department of Electrical Engineering
Signal and Image Processing Institute

University of Southern California
Los Angeles, California 90089-2564

Abstract—Two new theorems show that small amounts of
naise ¢an increase the mutual information of threshold neurons
that detect subthreshold signals. The first theorem shows that
this “stochastic resonance” effect holds for all finite-variance
noise probability density functions that obey a simple mean
constraint that the user can control. The second theorem shows
that this effect holds for =2ll infinite-variamce noise types in
the broad class of stable distributions. Stable bell curves can
model extremely impulsive noise environments. So the second
theorem shows that this stochastic-resonance effect is robust
against violent fluctuations in the additive noise process.

I. STOCHASTIC RESONANCE IN THRESHOLD NEURONS

Small amounts of noise can improve the performance of
threshold neurons or of neurons with steep signal functions.
Several researchers have found some form of this “stochastic
resonance’ (SR) effect [5], [7], [8], [14], [16], [18], [19],
(221, [23], [33], [36] when either mutual information or
input-output correlation measures a neuron’s response o a
pulse stream of noisy subthreshold signals. But these studies
have all used simple finite-variance noise types such as
Gaussian or uniform noise.

We prove that the mutual-information form of the SR ef-
fect holds for any finite-variance noise type that obeys a sim-
ple mean condition and for any infinite-variance noise type
from the broad family of stable distributions. All signals are
subthreshold. Stable probability densities have finite disper-
sions but infinite variances and higher-order moments. The
dispersion controls the width of the bell curve for symmetric
stable densities (see Figure 2). Figure 1 shows a simulation
instance of the second thecrem. Infinite-variance Cauchy
noise corrupts the subthreshold signal stream but still pro-
duces the characteristic nonmonotonic signature of stochastic
resonance. The second theorem on infinite-variance noise
implies that the SR effect is robust against impulsive noise—
a threshold neuron can extract some information-theoretic
gain even from noise streams that contain occasional violent
spikes of noise. Figure 3 shows the SR effects for four types
of non-Cauchy noise with infinite variance. The noise stream
itself is a local form of free energy. So the combined results
support Linsker’s hypothesis [28], [29] that neurons have
evolved to maximize the information content of their local
environment.

0-7803-7898-9/03/517.00 @2003 [EEE

Sanya Mitaim
Department of Electrical Engineering
Faculty of Engineering
Thammasat University
Pathumthani 12121, Thailand

[[. THRESHOLD NEURONS AND SHANNON'S MUTUAL
INFORMATION

We use the standard discrete-time threshold neuron model
[5]. [14], [20]. [22], [24], [20]

1 if&t+n¢25

y‘_"sgn{s”"‘_g):{ 0 ifs;+n, <8 (1)

where 8 > 0 is the neuron's threshold, s; is the bipolar
input Bernoulli signal {with arbitrary success probability p
such that 0 < p < 1) with amplitude A > 0, and ny is the
additive white noise with probability density p(n).

The threshold neuron uges subthreshold binary signals.
The symbol ‘0" denotes the input signal s = —A and output
signal 4 = 0. The symbol ‘1" denotes the input signal s = A
and output signal y = 1. We assume subthreshold input
signals: A < 6. Then the conditional probabilities Py g(y|s)
are

Pyis{0[0) = Pris+n< 6'5'}]5“_‘4
- 6+A
= Pr{n<@+ A} = f p(nidn  (2)
Pys(1j0) = 1- Pyi5(0]0) (3)
Pyis(01) = Pr{s+n< e}‘ _,
4—A
= Prin<¥-A) = [ p(nidn (4)
Pyis(11) = 1-Py5(0)1) (5)
and the marginal density is
Fly) = ZPY|S(.1I|3)PS(5) (6}

Other researchers have derived the conditional probabili-
ties Py s(yls) of the threshold system with Gaussian noise
with bipolar inputs [5] and Gaussian inputs [36]. We neither
restrict the noise density to be Gaussian nor require that the
density have finite variance even if the density has a bell-
curve shape.

We use Shannon mutual information [9] to measure the
noise enhancement or stochastic resonance (SR) effect 5],
[10], [L6], [21], [36). The discrete Shannon mutual in-
formation of the input § and output Y is the difference

2740



©
5

ts
[
5§

)
e g
B %

Mulual Inforration I(S,
o e o
2 2 &

;

0.01

= 0,438

__?__..-_._-____-___—..._..-_

0 1. 5
Dlspersmn ¥ of addltlve white Cauchy noise

(a)

N

Fig. 1.

500 600 TOO 800 860

100 200 300 400
1

wlae 81_ T T T T T - T T ]
n AR ATH
U i L
—10 A — E— Il L
a0 100 200 300 400 500 600 700 800 900 1000
P H T ——r .
2 PRI TP 1 DTIVG TAPIY ¥ BN gty ‘.J P ..1 .Jml T *
"[ o] l\r e Pty L mad ) L]. e
-20 ‘
;;g 100 200 300 400 500 600 70D 800 900 1000
a=10 \
nl a T P IJ'] y J..] [ e i
_200 . . PR ' . N "
100 200 300 400 500 600 700 800 QOO 1000
Sample t
(b)

Slochastic resonance with infinite-vaniance Cauchy noise. (a) The graph shows the smoothed input-output mutual information of a threshold

neuron as a functon of the dispersion of additive while Cauchy noise ng. The dispersion « controls the width of the Cauchy bell curve. The vertcal
dashed lines show the absolute deviation between the smallest and 1arge51 oulliers in each sample average of 100 outcomes. The neuron has a nonzero
noise oplimum at Yept =3 0.438 and thus shows the SR effect. The noisy signal-forced threshold neuron has the form (1). The Cauchy noise ny adds to
the bipolar input Bernoulli signal s¢. The neuron has threshold § = 1. The input Bernoulli signal has ampliude A = 0.8 with success probability p = E'
Each trial produced 10,000 input-output samples {s¢,%:} that estimated the probability densities to obtain the mutual information, (b} Sample realizations
of symmetric {(bell-curve) alpha-stable random variables with zero location (@ = 0) and unit dispersion {(y = 1). The plots show realizations when a = 2,
1.8, 1.3, and 1. Note the scale differences on the y-axes. The alpha-stable variable n becomes more impulsive as the parameter o falls. The algorithra in

[6]. [37] generated these realizations.

between the outpﬁt unconditional entropy H(Y) and the
output conditional entropy H{Y|X):

KSY) = H(Y)-H{Y|$) %
= = Py(y)log Pr(y)
¥

+3 > Psy(s,y)log Pyis(yls) (8)
= =3 Pr(y)log Pr(y)
+Zﬂﬂ2mwmywm ©)

= Y Posy(s, y)logF()(—’y) (10)

p” Py (y)
So the mutual information 1s the expectation of the random
Psy (s,
variable log & TslsiPe s

1(S,¥) = Por(s,) |

g o i
Here Pg(s) is the probability density of the input S, Py (y)
is the probability density of the output ¥, Py g(yl|s) is the
conditional density of the output Y given the input §, and
Psy(s,y) is the joint density of the input § and the output
Y. Simple bipolar histograms of samples can estimate these
densities in practice.

Mutual information also measures the pseudo-distance
between the joint probability density Psy{s,y) and the
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product density Ps(s)Py (). This holds for the Kullback
[9] pseudo-distance measure

Psy (s, y)
Z Z Pov (s,9)los PS?:)-PY(Q)

Then Jensen’s inequality implies that I{5,¥) > 0. Random
variables S and Y are statistically independent if and only
if I{S,Y) = 0. Hence I($,Y) > 0 implies some degree of
dependence. We use this fact in the following proofs.

I(S,Y) (12)

III. PROOF OF STOCHASTIC RESONANCE FOR
THRESHOLD NEURONS

We now prove that almost all finite-variance noise den-
sities produce the SR effect in threshold neurons with sub-
threshold signals. This holds for all probability distribulions
on a two-symbol alphabet. The proof shows that if 7{S,Y) >
0 then eventually the mutual information I{S,V) tends
toward zero as the noise variance tends toward zero. So
the mutual information (S,Y) must increase as the noise
variance increases from zero. The only limiting assumption is
that the noise mean E[n] does not lie in the signal-threshold
interval (6 — A,8 + Al

Theorem 1. Suppose that the threshold neuron (1) has noise
probability density funciion p(n} and that the input signal §
is subthreshold (A4 < 8). Suppose that there is some statistical
dependence between input random variable § and output
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Samples of standard symmetric (f = 0) alpha-stable probability densities. (a) Density functions with zero location (@ = 0) and unit dispersion

(y=1)fora =218, L5 and |. The densities are bell curves that have thicker tails as o decreases and thus that model increasingly impulsive noise as
a decreases. The case ¢ = 2 gives a Gaussian density with variance two (or unit dispersion). The parameter « = 1 gives the Cauchy density with infinite
varance. (d} Density functions for o >= 1.5 with dispersions v = 0.5, 1, and 2. -

random variable ¥ (so that J{S,Y} > 0). Suppose that the
noise mean E[n] does not lie in the signal-threshold interval
[# — A, @+ A] if p(n) has finite variance. Then the threshold
neuron {1) exhibits the nonmonotone SR effect in the sense
that I(5,Y) =+ 0as o = (.

Proof. Assume 0 < Ps(s) < 1 to avoid triviality when
Ps(s) = 0 or 1. We show that § and Y are asymptotically
independent: I{c) — 0 as ¢ — 0. Recall that I{5,Y) =0
if and only if § and Y are statistically independent [9]. So
we need to show only that Pgy(s,y) = Ps(s)Py(y) or
Pyis(yl3) = Py(y) as ¢ — 0 for some signal symbols
s € S and y € Y. The two-symbol alphabet set S gives

Py(y) = Y Pyis(yls)Ps(s) (13)
Py 5(y|0}Ps(0) + Py s{y11)Ps(1) (14)
= Pysyl0)Ps(0) + Pyis(y|1)(1 — Ps(0))  (15)

(Py1s(wl0) ~ Py s(y|1) Ps(0) + Py s(y|1)(16)

So we need to show only that Py|g(y|0} — Py|s(y|1) = 0 as
a — 0. This condition implies that Py (y) = Py|g{y|1) and
Py () = Py 5(y|0). We assume for simplicity that the noise
density p(n) is integrable. The argument below still halds if
p(n) is discrete and if we replace integrals with appropriate
sums.

Consider ¢y = ‘0’. Then (2) and (4} imply that

Py15(0[0) — Py 5{0]1) (7
644 #—A
= [ p(n)dn—f p(n)dn (18}
A o
= f p(n)dn (19)
9--A
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Similarly for y = ‘1"

Prs0) = [ pwjan 20)
P A
Pyis(1l) = / pin)dn @
9—A
Then
6+A
Py5(1|0) — Pyis(1j1) = —fg .\ p(n)dn (22
The result now follows if
0+4
f p(n)dn —+ 0 as o = 0 23
p-A

Let the mean of the noise be m = E[n] and the variance be
o? = E[(z —m)?]. Then m ¢ [§ — 4,9 + A] by hypothesis.
Now supposc that m < 8 — A. Pick e = 1d(8 — A,m) =
10—A-m)>0S0f-A—ec=0-A—c+m-m=
m+(f-A-m)—e=m+2-—-e=m+e Then

B A

Py15(010) — Pris(0l1) = fe , plndn 24)
< d. 25
< [ smyan es)

d 26
< fo _A_Ep(n) n (26)
= f p(n)dn (27
m+e

= Pr{inzm+e} (28)
= Pr{in—-m3>zs} (29}
< Prin-m|>¢} (30)
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o

— by Chebyshev’s inequality (31)

2
asag—0 (32)

=4

-

A symmetric argument shows that for m > 8+ A4

\ |
Py 15(010) — Py5(0]1) < % S0 asa—0 (3D
QED. '

We now proceed to the more general (and more realistic)
case where infinite-variance noise interferes with the thresh-
old neuron. The SR effect also occurs in other systems with
impuisive infinite-variance noise [26], [32]. We can model
many types of impulsive noise with symmetric alpha-stable
beli-curve probability density functions with parameter «
in the characteristic function ¢(w) = exp{—~}w|*}. Here
~ is the dispersion parameter [4], [13], {17], [34]. Figure
2 shows examples of symmetric (bell-curve} alpha-stable
probability density functions with different o tail thicknesses
and different bell-curve dispersions +.

The parameter o controls tail thickness and lies in 0 <
a < 2. Noise grows more impulsive as o falls and the
bell-curve tails grow thicker. The (thin-tailed) Gaussian den-
sity results when o = 2 or when o{w) = exp{—yuw?}.
So the standard Gaussian random variable has zero mean
and variance o? = 2 (when 4 = 1). The parameter o
gives the thicker-tailed Cauchy bell curve when o = 1 or
o(w) = exp{—|w|} for a zero locarion (@ = 0) and unit
dispersion (y = 1} Cauchy random variable. The moments
of stable distributions with « < 2 are finite only up to the
order k for & < o. The Gaussian density alone has finite
variance and higher moments. Alpha-stable random variables
characterize the class of normalized sums of independent
random variables that converge in distribution to a random
variable {4] as in the famous Gaussian special case called
the “central limit theorem.”

Alpha-siable models tend to work well when the noise
or signal data contains “outliers” — and all do to some
degree. Models with & < 2 can accurately describe impulsive
noise in telephone lines, underwater acoustics, low-frequency
atmospheric signals, fluctuations in gravitational fields and
financial prices, and many other processes [25], [34]. Note
that the best choice of & is an empirical question for bell-
curve phenomena. Bell-curve behavior alone does not justify
the (extreme) assumption of the Gaussian bell curve.

Theorem 2 applies 1o any alpha-stable noise model. The
density need not be symmetric. A general alpha-stable prob-
ability density function f has characteristic function ¢ {1},
[2], [171, [34):

. o ar
plw) = exp {zaw — |el® (1 + ¢3sign{w) tan T) }
fora#1l (34)
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and
e(w) = expiow —vlwl(l — 2fn |w]sign(w)/7)}
fora=1 (35)
where
1 fw>0
sign{w) = 0 ifw=20 (36)
-1 fw<0

and i = /-1, 0 < <2 -1<38<1ad~ >0
The parameter «x is the characteristic exponent. Again the
variance of an alpha-stable density distribution does not exist
if v «< 2. The location parameter g is the “mean” of the
density when ¢ > 1. 3 is a skewness parameter. The density
is symmetric about ¢ when 8 = Q. The theorem below still
holds even when § # 0. The dispersion parameter 4 acts
like a variance because it controls the width of a symmetric
alpha-stable bell curve. There are no known closed forms of
the a-stable densities for most ¢’s.

The proof of Theorem 2 is simpler than the proof in the
finite-variance case because all stable noise densities have
a characteristic function with the exporential form in (34)-
(33). So zero noise dispersion gives ¢ as a simple complex
exponential and kence gives the corresponding density as a
delta spike that can fall outside the interval [# — 4,8 + A].

Theorem 2. Suppose I1(S,Y) > 0 and the threshold neuron
(1} uses alpha-stable noise with location parameter g ¢ [0 —
A, 8+ A). Then the neuron (1) exhibits the nonmonotone SR
effect if the input signal is subthreshold.

Proof. Again the result follows if

o+A
/ p{nldn =0 asy =0 {37)
§-A
The characteristic function p(w) of alpha-stable noise
density p{n) has the exponential form (34)-(35). This reduces

to a simple complex exponential in the zero-dispersion limit:

li = 1418 3

lim () exp {iaw} (38)
for all «’s, skewness £'s, and location a’s. So Fourier
transformation gives the corresponding density functien in

the limiting case (v — () as a translated delta function

lllﬂ] s(n) = dn—e) (39
Then
8+4 ,
Py1(010) — Pyis(0[1) = L plmdn o)
g4+A
= f d(n — a)dn (41)
04
= ( 42

because a ¢ [ — 4,8 + A Q.ED.
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maximum bit count I(yept) decreases for more impulsive noise (lower o valucs).

Note that the above theorems hold for any success prob-
ability 0 < p < 1 of the Bernoulli signal.

Figures 1 and 3 instantiate Theorem 2 for three types
of infinite-variance symmetric alpha-stable noise. Figure 1
shows the SR effect for the highly impulsive Cauchy case of
@ = 1. Figure 3 shows the SR effect for the comparatively
less impulsive cases of v = 1.8, @ = 1.6, o = 1.4, and
@ = 1.2 noise bell curves. Frequent and violent noise spikes
interfere with the signal in all three cases.
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IV. CONCLUSIONS

We have shown that almost all necise types produce
stochastic resonance in threshold neurons that use sub-
threshold signals. These results heip expiain the widespread
occurrence of the SR effect in mechanical and biological
threshold systems [3], [11], [121, [15], [27], [30). (31}, [35].
The broad generality of the results suggests that SR should
occur in any nonlinear system whose input-output structure
approximates a threshold system. The infinite-variance result
further implies that such widespread SR effects should be
robust against violent noise impulses. The combined results



support the hypothesis [28], [29] that neurons have evolved
to maximize their local information—at least if they process
subthreshold signals in the presence of noise.
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Abstract

This paper presents theoretical and simulation re-
sults that show the stochastic-resonance (SR) effect
in threshold neurons. Small amounts of additive
noise can enhance input-output mutual information
that measures the performance of threshold systems
that process subthreshold input signals. The SR re-
sult holds for all possible noise probability density
functions with finite variance as well as the entire
uncountably infinite class of alpha-stable probabil-
ity density functions. The SR result for alpha-stable
noise densities shows that the SR effect in threshold
and threshold-like systems is robust against occa-
sional or even frequent violent fluctuations in noise.
Regression analysis reveals (1) an exponential rela-
tionship for the optimal noise dispersion as a func-
tion of the alpha bell-curve tail thickness and (2) an
approximate linear relationship for the SR-maximal
mutual information as a function of the alpha bell-
curve tail thickness.

Keywords: stochastic resonance, impulsive noise,
alpha-stable noise, infinite-variance statistics, thresh-
old systems, mutual information, dithering.

I. Stochastic Resonance in Threshold
Neurons

Noise can sometimes help neural or other nonlin-
ear systems. Figure 1 shows that a small amount
of alpha-stable impulsive pixel noise improves the
‘baboon’ image while too much noise degrades the
image.

Several researchers have found that threshold neu-
rons and other threshold systems exhibit stochastic
resonance [7], [17], [19], [21], [22], [25], [26], [38]:
Small amounts of noise improve the threshold neu-
ron’s input-output correlation measure [9], [10] or
mutual information [7], [30], [38]. All of these simu-
lations and analyses assume a noise probability den-
sity function that has finite variance. Most further
assume that the noise is simply Gaussian or uni-
form. Yet the statistics of real-world noise can differ
substantially from these simple and finite-variance

v
o

probability descriptions. The noise can be impulsive
and irregular and have infinite variance and infinite
higher-order moments.

The paper shows that finite-variance noise as well
as infinite-variance (impulsive) noise can enhance
mutual information in threshold neurons that pro-
cess subthreshold input signals. Two theorems [30]
confirm the existence of this SR effect. The first
theorem shows that threshold neurons exhibit the
SR effect for all finite-variance noise densities if the
system performance measure is Shannon’s mutual
information and if the mean or location parameter
falls outside an interval that one can often pick in
advance. The second theorem shows that this also
holds for all infinite-variance densities that belong
to the large class of stable distributions. Both theo-
rems assume that all signals are subthreshold sig-
nals. The paper also presents statistical findings
on the relationship of the SR effects and the bell-
curve tail thickness parameter from simulation ex-
periments. The regression analysis confirms and ex-
tends the exponential relationship between the op-
timal noise dispersion and the alpha bell-curve tail
thickness [29]. This exponential relationship corre-
sponds to a similar one for infinite-variance SR sys-
tems that use a signal-to-noise ratio or a cross cor-
relation for the system performance measure [29].
Regression also shows that the SR-maximal mutual
information in noisy threshold neurons depend ap-
proximately linearly on the bell-curve tail thickness
for symmetric alpha-stable noise.

Figure 2 shows some typical symmetrical noise
densities whose bell curves have thick tails that pro-
duce infinite variance and often highly impulsive noise
spikes. Figure 3 shows a simulation instance of both
Theorem 2 and the empirical trends in Figure 4.
Infinite-variance alpha-stable noise produces the SR
effect when plotted against the Shannon mutual in-
formation of the threshold system. This also holds
for the impulsive Cauchy noise that belongs to this
alpha-stable family for & = 1. The linear regression
results in Table 1 and Figure 4 reveal the exponen-
tial relationship between the optimal noise disper-
sion and alpha bell-curve tail thickness. The linear
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@ (b) © (@)

Figure 1: Alpha-stable (« = 1.5) pixel noise can improve the quality of an image through a stochastic-
resonance or dithering process [16], [40]. The noise produces a nonmonotonic response: A small level of
noise sharpens the image features while too much noise degrades them. These noisy images result when we
apply a pixel threshold to the ‘baboon’ image. The system quantizes the noisy gray-scale ‘baboon’ image
into a binary image of black and white pixels. It gives a white pixel as output if the input gray-scale pixel
equals or exceeds a threshold 6. It gives a black pixel as output if the input gray-scale pixel falls below the
threshold 6: y = g((z + n) — 0) where g(z) = 1 if z > 0 and g(z) = 0 if z < 0 for an input pixel value
z € [0,1] and output pixel value y € {0,1}. The input image’s gray-scale pixels vary from 0 (black) to 1
(white). The threshold is § = 0.1. Thresholding the original ‘baboon’ image gives the faint image in (a).
The alpha-stable noise n has zero “mean” for images (b)-(d). The noise scale x grows from (b)-(d): x = 0.1
in (b), K = 0.2 in (¢), and k = 0.5 in (d). Note that the noise dispersion is v = k* where @ = 1.5 in this
case.

0+A
p(n)dn(2)

dependence of the log-transformed optimal noise dis-
persion on the bell-curve thickness becomes quadratic

= Pr{in< 6+ A} = /

—0C

when the signal amplitude is too small or too close Py g(1/0) = 1 — Pyg(0|0) (3)
to the neuron’s threshold. They also shows a similar
pattern: The linear dependence of the SR-maximal Pyis(0)1) = Pr{s+n< 0}‘3:,4
mutual information on the bell-curve thickness also -4
becomes quadratic when the signal amplitude is too = Prin<t-A} = /_OO p(n)dn(4)
small or too close to the neuron’s threshold. PY\S(1|1) - 1- PY‘S(0|1) (5)
II. Threshold Neurons and Shannon’s and the marginal density is
Mutual Information
We use the standard discrete-time threshold neu- Prly) = Z: Py|s(yls) Ps(s) (6)

ron model [7], [17], [23], [25], [27], [29]

abilities Py |g(y|s) of the threshold system with Gaus-
(D) gian noise with bipolar inputs [7] and Gaussian in-
puts [38]. Our theorems and proofs in [30] neither

1 ifs;+n; >80
yt:Sgn(St+nt_9):{ 0 1fsz+nz<9

where 6§ > 0 is the neuron’s threshold, s; is the
bipolar input Bernoulli signal (with arbitrary suc-
cess probability p such that 0 < p < 1) with ampli-
tude A > 0, and n; is the additive white noise with
probability density p(n).

The threshold system uses subthreshold binary
signals: A < 6. The symbol ‘0’ denotes the input
signal s = —A and output signal y = 0. The symbol
‘1’ denotes the input signal s = A and output signal
y = 1. Then the conditional probabilities Py g (y|s)
are

Pyis(0[0) = Pris+n<0}

v
o

restrict the noise density to be Gaussian nor require
that the density have finite variance even if the den-
sity has a bell-curve shape.

We use Shannon mutual information [11] to mea-
sure the noise enhancement or “stochastic resonance”
(SR) effect [7], [12], [19], [24], [38]. The discrete
Shannon mutual information of the input S and out-
put Y is the difference between the output uncon-
ditional entropy H(Y) and the output conditional
entropy H(Y|X):

I1(8,Y) H(Y) - H(Y|S) (7)

= _ Z Py (y) log Py (y)
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Other researchers have derived the conditional prob- S




> Psy(s,y) log Py|s(yls) (8)

+
sy

= Y Psy(s,y)log
Y

-PSY(Sa y)

Ps(s) Py (y) ©)

So the mutual information is the expectation of the

random variable log 1{:(557%:
o R‘?Y(Su y)

Here Ps(s) is the probability density of the input
S, Py (y) is the probability density of the output Y,
Py s(y|s) is the conditional density of the output Y
given the input S, and Pgy (s,y) is the joint density
of the input S and the output Y. Simple bipolar
histograms of samples can estimate these densities
in practice.

nonmonotone SR effect in the sense that I(S,Y) — 0
as 0 — 0.

Theorem 2 applies to any alpha-stable noise model.
The density need not be symmetric. We use the
alpha-stable bell-curve probability density functions
to model many types of impulsive noise. A general
alpha-stable probability density function f has char-
acteristic function ¢ [1], [3], [20], [34]:

Mutual information also measures the pseudo-distance

between the joint probability density Psy (s,y) and
the product density Pgs(s)Py (y). This holds for the
Kullback [11] pseudo-distance measure I(S,Y) =
25 2y Psy (s,y) log Pfgi%' Then Jensen’s inequal-
ity implies that I(S,Y) > 0. Random variables S
and Y are statistically independent if and only if
I(S,Y) = 0. Hence I(S,Y) > 0 implies some degree
of dependence.

III. SR for Threshold Neurons: Theoretical
and Simulation Results

Two theorems state that almost all finite-variance
and infinite-variance noise densities produce the SR
effect in threshold neurons with subthreshold sig-
nals. This holds for all probability distributions on
a two-symbol input alphabet. The proofs in [30]
show that if I(S,Y) > 0 then eventually the mutual
information I(S,Y’) tends toward zero as the noise
variance ¢ or noise dispersion v tends toward zero.
So the mutual information I(S,Y’) must increase as
the noise variance increases from zero. The only lim-
iting assumption is that the noise mean m = Eln]
or the noise location a of the alpha-stable distri-
butions does not lie in the signal-threshold interval

[0 — A0+ Al

Theorem 1. Suppose that the threshold signal sys-
tem (1) has noise probability density function p(n)
and that the input signal S is subthreshold (A4 < 6).
Suppose that there is some statistical dependence
between input random variable S and output ran-
dom variable Y (so that I(S,Y) > 0). Suppose
that the noise mean E[n| does not lie in the signal-
threshold interval [ — A,6 + A] if p(n) has finite
variance. Then the threshold system (1) exhibits the

v
o

p(w) = exp {iaw — y|w|® (1 + ifsign(w) tan O;_’/T) }
fora #1 (11)
and
pw) = exp{iaw —7|w|(l - 2if1n |w[sign(w)/7)}
fora=1 (12)
where
1 ifw>0
sign(w) = 0 ifw=0 (13)
-1 ifw<0

andi=+v—1,0<a<2 —-1<p<1,and v > 0.
The parameter « is the characteristic exponent. The
variance of an alpha-stable density does not exist if
a < 2. The location parameter a is the “mean” of
the density when o > 1. 3 is a skewness parameter.
The density is symmetric about a when § = 0. The-
orem 2 still holds even when 8 # 0. The dispersion
parameter <y acts like a variance because it controls
the width of a symmetric alpha-stable bell curve [5],
[15], [20], [34]. The (thin-tailed) Gaussian density
results when o = 2 or when ¢(w) = exp{—yw?}.
So the standard Gaussian random variable has zero
mean and variance 02 = 2 (when v = 1). The pa-
rameter « gives the thicker-tailed Cauchy bell curve
when a = 1 or p(w) = exp{—|w|} for a zero location
(a = 0) and unit dispersion (y = 1) Cauchy random
variable. There are no known closed forms of the a-
stable densities for most a’s. Numerical integration
of ¢ produced the simulation results in Figure 2.
Alpha-stable models tend to work well when the
noise or signal data contains “outliers” — and all
do to some degree. Models with a < 2 can accu-
rately describe impulsive noise in telephone lines, un-
derwater acoustics, low-frequency atmospheric sig-
nals, fluctuations in gravitational fields and financial
prices, and many other processes [28], [34]. Note
that the best choice of a is an empirical question
for bell-curve phenomena. Bell-curve behavior alone
does not justify the (extreme) assumption of the
Gaussian bell curve. Figure 2 shows realizations of
four symmetric alpha-stable noise random variables.

m3tszauImnmsmadanssulvlvh a3ai 26 (BECON-26) 6-7 nainmiou 2546 aam.

1022



0 i
n ohtlll]
0.3F 0=2.0 t 0 v
_5 . . . . . . . . .
100 200 300 400 500 600 700 800 900 1000
0.25f o=1.8 g T T T T T T T T T
10r s 1.8 ,
n o
z oz *=15 | -op 1 s ‘ ‘ ‘ s ‘ ‘ M
s 100 200 300 400 500 600 700 800 900 1000
208k - 10 40 : ‘ ‘ ‘ ‘ ‘ : : :
. o="1. 20t =15 . l k
M opey f Aoty okt ‘Wﬂf’wﬂ”
-20f ' 1
0.1 —40 . . . . . . . . .
200 100 200 300 400 500 600 700 800 900 1000
0.05f g a=1.0
n 0 At etk ‘
t I [ "
0 T N N N I -200 " . . . . 1 L A .
-6 -4 -2 0 2 4 6 100 200 300 400 500 600 700 800 900 1000
n Sample t
(a) (b)
0.5

045} Density function pa(mn) foraa=1.8

04
0381 0 200 400 600 800 1000
03} 20
1o ¥=1 .
0.25} n‘ 0 A o At o
w”' LA LA
0.2f —-10} 4
0.15+ 0 200 400 600 800 1000
0.1
0.05f
0 1 1 1 1
-6 0 200 400 600 800 1000
Time step t

(d)

Figure 2: Samples of standard symmetric alpha-stable probability densities and their realizations. (a)
Density functions with zero location (¢ = 0) and unit dispersion (y = 1) for @ = 2, 1.8, 1.5, and 1. The
densities are bell curves that have thicker tails as a decreases and thus that model increasingly impulsive
noise as « decreases. The case @ = 2 gives a Gaussian density with variance two (or unit dispersion).
The parameter o = 1 gives the Cauchy density with infinite variance. (b) Samples of alpha-stable random
variables with zero location and unit dispersion. The plots show realizations when o = 2, 1.8, 1.5, and
1. Note the scale differences on the y-axes. The alpha-stable variable n becomes more impulsive as the
parameter « falls. The algorithm in [8], [39] generated these realizations. (c) Density functions for o = 1.8
with dispersions v = 0.5, 1, and 2. (d) Samples of alpha-stable noise n for o = 1.8 with dispersions vy =0.5,
1, and 2.

DSO01

Theorem 2. Suppose I(S,Y) > 0 and the thresh-
old system (1) uses alpha-stable noise with location
parameter a ¢ [#—A, 6+ A]. Then the system (1) ex-
hibits the nonmonotone SR effect if the input signal
is subthreshold.

Figure 3 gives a typical example of the SR effect
for finite-variance noise and highly impulsive noise
with infinite variance. The alpha-stable noises have
a = 2 (Gaussian), « = 1.8, @ = 14, and a = 1
(Cauchy). So frequent and violent noise spikes in-

v
o

terfere with the signal. Figure 3 also illustrates the
empirical trends in Figure 4: A falling tail-thickness
parameter « produces an increasing optimal noise
dispersion ,,; but a decreasing SR-maximal mutual
information I, (S,Y).

We next show the exponential relationship be-
tween the optimal noise dispersion 7,,; and the bell-

curve tail-thickness parameter a: Yopi () = 1087011

for parameters (3, ¢ and 3,,1 that depend on the sig-
nal amplitude A. Then the log-transformation of the

optimal dispersion gives the linear model log yops () =

msszamInmamadenssu vl a5 26 (EECON-26) 6-7 noadneu 2546 aam.

1023



0.25 T T T T 0.25

o
)
T
o
)
T

) bits
) bits

I(S,Y
I(S,Y

=0.15} 0.15}

Mutual Information
o

Mutual Information
o

o
o
53}
o
=}
o

]
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

opt =~ ‘ [Top, = 0071

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Dispersion v of additive white Gaussian noise (o = 2) Dispersion v of additive white alpha-stable noise (o. = 1.8)

0.25 : : : : 0.25
o 02F o 02f
il s
= )
<) )
=0.15 =0.15
c c
© [
£ | £
2 01 | 2 01
S l T i
2 I 2 !
=) | =] |
= 0.0s} } = 0.0s} }
| |
| |
| |
0 1 Topt = 0'109 . . 0 . 1 Topt = 0'2? .
0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 03 0.4 0.5

Dispersioh v of additive white alphé—stable noise (a=1.4) Dispersion vy of additive white Cauchy noise (o = 1)

Figure 3: Stochastic resonance with finite-variance and highly impulsive (infinite-variance) alpha-stable
noise. The graphs show the smoothed input-output mutual information of a threshold system as a function
of the dispersion of additive white alpha-stable noise n; with a = 2 (Gaussian noise), « = 1.8, a = 1.4,
and @ = 1 (Cauchy noise). The vertical dashed lines show the absolute deviation between the smallest
and largest outliers in each sample average of 100 outcomes. The system has a nonzero noise optimum at
Yopt = 0.055 for a = 2, yopt = 0.071 for @ = 1.8, yopr = 0.109 for o = 1.4, and 7,pt = 0.220 for « = 1 and
thus shows the SR effect. The noisy signal-forced threshold system has the form (1). The Cauchy noise n;
adds to the bipolar input Bernoulli signal s;. The system has threshold § = 0.5. The input Bernoulli signal
has amplitude A = 0.4 with success probability p = % Each trial produced 10,000 input-output samples
{st,y:} that estimated the probability densities to obtain the mutual information. Note that decreasing the
tail-thickness parameter « increases the optimal noise dispersion 7,,; and decreases the SR-maximal mutual
information Ip;4,(S,Y) as in Figure 4.

By,0+By,1c. Table 1 shows the estimated parameters  linear relationship Ipn.,(S,Y;a) = Bro + fBria for

By,0 and 3,1 and the coefficient of determination 7“12
for different input signal amplitudes in the thresh-
old neuron using SPSS software. All observed sig-
nificant levels or p-values were less than 107%. The
exponential trend’s exponent is linear for most am-
plitudes but becomes quadratic for very small ampli-
tudes and for amplitudes close to the threshold 8 = %
(or Yopt(@) = 108votBviathy20” for 5 quadratic fit
to the data). Figure 4(a) shows samples of the log-
linear plots.

Table 1 and Figure 4(b) also show an approximate

v
o

the SR-maximal mutual information Ip,.;(S,Y) as
a function of the tail-thickness parameter . There
is a clear linear trend for most amplitudes A but the
trend becomes quadratic for very small amplitudes
and for amplitudes close to the threshold 6 = %

IV. Conclusions

This paper shows that almost all noise types pro-
duce stochastic resonance in threshold systems that
use subthreshold signals. This result helps explain
the widespread occurrence of the SR effect in me-
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Input Linear regression estimates of log yop: Linear regression estimates of Ipqz(S,Y)
signal Linear model Quadratic Linear model Quadratic
amplitude Regression coefficients model Regression coeflicients model
A B0 ‘ Byt ‘ 2 2, Br,0 ‘ Br,1 ‘ s ur
0.050 0.1002 | —0.6087 | 0.9321 0.9723 —0.0008 | 0.0022 | 0.9370 0.9972
0.100 0.1180 | —0.6261 | 0.9558 0.9888 —0.0031 | 0.0086 | 0.9440 0.9990
0.150 0.1078 | —0.6251 | 0.9679 0.9921 —0.0068 | 0.0190 | 0.9521 0.9995
0.200 0.0915 | —0.6214 | 0.9699 0.9942 —0.0113 | 0.0329 | 0.9612 0.9998
0.250 0.0694 | —0.6172 | 0.9781 0.9959 —0.0161 | 0.0500 | 0.9715 0.9997
0.300 0.0439 | —0.6148 | 0.9869 0.9961 —0.0207 | 0.0698 | 0.9816 0.9993
0.350 0.0116 | —0.6211 | 0.9935 0.9961 —0.0236 | 0.0920 | 0.9913 0.9987
0.400 —0.0313 | —0.6367 | 0.9947 0.9951 —0.0229 | 0.1161 | 0.9976 0.9981
0.450 —0.1107 | —0.6688 | 0.9757 0.9944 —0.0120 | 0.1408 | 0.9905 0.9975
0.490 —0.2805 | —0.8053 | 0.8987 0.9863 0.0336 | 0.1527 | 0.9145 0.9959

Table 1: Linear regression estimates of the SR-optimal log dispersion 7,,; and the SR-maximal mutual
information Ip,4;(S,Y’) as functions of the bell-curve tail-thickness parameter « from a symmetric alpha-
stable noise density. The parameters ,, and 3, relate log~y,,; and « through a linear relationship:
log Yopt(a) = By,0 + By for base-10 logarithm. Likewise the parameters 7o and (i, relate ez (S,Y)
and « through a linear relationship: I,q2(S,Y;a) = Br,0 + Br,1a. The coefficients of determination 7"3,1 and
r%l shows how well the linear models fits the data. The Table also shows the coeflicients of determination
r,Qy’q for the quadratic model log yopt (@) = B0 + By,10 + 85,202 of the optimal dispersion as well as r%’q for
the quadratic model of the SR-maximal mutual information. All observed significant levels or p-values were
less than 10~%.
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e E
£ £
5 12 5 Y
> =
o
- : : : -0.05 : : :
0 0.5 1 1.5 2 0 0.5 1 1.5 2
o in alpha-stable distribution o in alpha-stable distribution
(a) (b)

Figure 4: Linear regression estimates. (a) Exponential law for optimal noise dispersion 7y, as a function of
bell-curve thickness parameter o for the mutual-information performance measure and for different signal
amplitudes A. The optimal noise dispersion v,,; depends on the parameter a through the exponential
relation Yoyt (@) = 1057015712 for parameters 3, and 8,1 (or Yepi(@) = 108v.0+By10465.207 for a quadratic
fit to the data). (b) Linear regression for maximal mutual information Ip,.;(S,Y) as a function of bell-
curve thickness parameter « for different signal amplitudes A. The maximal mutual information ;44 (S,Y)
depends on the parameter « through the linear relationship I, (S,Y; @) = Bro + fBr,1a for parameters (1 o
and Br1 (or Imaz(a) = Bro + Braia + Praa? for a quadratic fit to the data). Table 1 shows the estimated
parameters for different input Bernoulli signal amplitudes A.
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chanical and biological threshold systems [4], [13],
[14], [18], [31], [33], [37]. The broad generality of the
results suggests that SR should occur in any non-
linear system whose input-output structure approx-
imates a threshold system as in the many models
of continuous neurons [6], [32], [36]. This applies
to a broad class of physical and biological systems.
The infinite-variance result further implies that such
widespread SR effects should be robust against vio-
lent noise impulses. The result further suggests that
scientists and engineers should consider the practi-
cal use of noise when they design their information
and signal processing systems [2], [35], [41].
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Abstract

This paper studies the problem of simultaneous
room response equalization for multiple listeners. The
classical fuzzy c-means (FCM) algorithm already proves
useful to deriving an equalizing filter for multiple listeners.
The FCM algorithm gives fewer prototypes for several
room responses. But the FCM algorithm uses equal
weights for all parts of sound reverberation. The paper
proposes an algorithm to obtain a room acoustic
equalization filter based on weighted fuzzy c-mean
(WFCM) algorithm. The use of WFCM can give clustering
more flexibility in obtaining a prototype for each cluster.
Then combining the prototypes to obtain a representative
room response that derives the inverse filter will be more
effective. We use spectral deviation to measure how well
each equalizing filter works. Experiments show that an
equalizing filter obtaining from the prototypes using
WFCM gives better performance for most listener
locations.

Keyword: room acoustic equalization, inverse filtering,
weighted fuzzy c-means algorithm.

1. Introduction

Room acoustic equalization has been a classic
inverse filtering problem [1,2]. The design of equalizing
filter using simple inverse technique works well for a
single-location or a single-listener. But in real-world
listening environments we must consider equalization for
multiple listeners. Examples of such environments are
typical classrooms, meeting rooms, and theatres. Then the
problem of designing an equalizing filter that best suits all
locations becomes difficult. This also holds for small
rooms in which standing waves at low frequencies cause
significant variations in the frequency responses at the
listening positions [1,3].

Researchers model a room acoustic response at
each particular listening position as a linear system [1,3].
So an impulse response or a room impulse response
h(n),n=0,1,2,... (with frequency response H(e’*)) can
model the effect the sound undergoes when it travels from
a source to a receiver (from microphone to listener) [3].
The equalizing filter g(n) is to eliminate the effect of the

room impulse response. So for a single listener the
convolution of the designed equalizing filter and the room
impulse response at that particular location should result to
the delayed delta function: g(n) ® h(n)=6(n-T).
However, designing an equalizing filter that
simultaneously flattens the overall frequency responses at
all locations is not as trivial. Fig. 1 shows a diagram of
how the equalizing filter should work for multiple listeners.
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Researchers have worked on finding techniques to design
the best possible equalizing filter for all listeners [1,3,7].
One technique is to find a representative room response for
all locations [1,3]. Then a simple inverse filtering
algorithm will give the desired equalizing filter. The fuzzy
c-means (FCM) algorithm can perform the task of deriving
room response prototypes and then a fuzzy system can
combine each prototype to result in a representative
response [1,3].

The FCM algorithm considers distances between
room responses and put all responses into smaller clusters
[5]- The algorithm does not partition the space of room
responses: clusters can overlap and a room response can
belong to the cluster with degree in the interval [0,1]. But
the FCM treats each component in the room impulse
response with equal weight. This restricts the condition
that clusters can form. Some part of room impulse
response may have more effect on the reverberation than
the other parts. So we propose the use of a weighted fuzzy
c-means (WFCM) algorithm to identify the representative
response in each cluster. Then inverse filtering the
representative response gives an equalizing filter.

Section 2 reviews the FCM and WFCM
algorithms and presents a way to derive an equalizing filter.
Section 3 shows the experimental results of equalization in
aroom. The results show that equalizing filter design with
the use of WFCM performs better. Section 4 gives the
conclusion and discusses future research.

Room Response

yi(n) = x(n-T;)

()~ 5 (n-Ty)

Input Signal
0yl Thirros

Equalization
Filter

hdm ’
“ )\*D——- ) = 5(n-Tye)

Fig. 1.

simultaneously equalize sound reverberation for several
locations in a room. Here, x(n) is input signal, y(n) is
output signal and /4n) is the room response.

An equalizing filter g(n) is designed to

2. Equalizing Filter Design and Performance
Measure

2.1 Fuzzy c-means algorithm

The fuzzy c-mean (FCM) and its generalized
version of weighted fuzzy c-mean (WFCM) clustering
algorithms have found many applications in signal
processing and communications, system modeling, pattern
recognition, computer vision, and data mining [5]. In
general a clustering procedure forms a new structure from
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data in terms of a smaller number of clusters where a
centroid or prototype represents each cluster. Clustering
algorithm uses a measure of similarity to perform such

grouping.

In our case the data are a set of N room impulse
responses in terms of d-dimensional vectors 4 € R? or a
sequence {h,,(n)}j:1 for i = 1,2,...,N. Then a clustering

algorithm partitions the data set into ¢ nonempty
subclasses or clusters €3,...,€ (usually we let 1<c <N ):

for each sample 4, and cluster Q, either i € Q, or i Q)
and if h €Q, then h ¢( fork = j. This implies that
h €Q, with degree 1 or 0. We can use the discrete
membership function 4, : R’ —{0,1} to define the degree
to which a sample 4,
,uj(hi)zlif h Q) and ,Uj(h,-)ZO if heQ,.

room responses with strong similarity belong to the same

belongs to the clusterQ,. So
Then

cluster and prototype (or centroid) A, represents the

cluster Q. Since ¢ < N then a set of all prototypes {ﬁ ; }C
; j=1

is a compact representation of the data set.

Fuzzy c-means algorithm (FCM) does not restrict
that a sample /, from the data set must belong to only one
cluster Q, for some j. FCM provides more flexibility to

clustering by allowing that a sample can belong to several
clusters simultaneously and with degrees as any real
numbers between 0 and 1. The membership function is a

fuzzy membership function 4 : R —[0,1]. So FCM does

not partition the set of all room responses: clusters can
overlap and a room response may belong to each cluster
with a degree between 0 and 1.

One of the commonly used similarity measures in
FCM is the Euclidean distance d;; between a sample A,

and a prototype E [2]:
2 ~ 12
i =[ - | (1)
The centroid or prototype of the cluster i is

> ({1 ))

b= )
L
d’ d’
and 1, (B )=| dgk - lkl 3)
] Y
7719

for i=12..,c and k=1,2..,N. Then an iterative procedure
of the FCM algorithm as in [2] determines the cluster
prototypes.

2.2 Proposed weighted fuzzy c-means algorithm for
generating acoustical room response prototypes

Clustering with the usual unweighted distance in
equation (1) may not be the best choice to determine the
prototypes of several room responses since the distance
does not give more weights to the region that has more
effects on reverberation than the others. We propose a
weighted distance FCM algorithm [5] for room response
clustering:

~\T .
=iy -y ) (i - ) “)
where the weight matrix W is positive definite. We
use a diagonal matrix W in our study:
W =diag(w;|, Wy, Ws3,...,wyy ).  Other forms of positive
definite matrix W may give better results. The weights

that we used in our experiments were obtained from a

linear function of the tap i.
i
10— if i=j
W = 200 T forij=1,..,4000 (5)
0 if i#j

2.3 Obtaining a representative response from room
response prototypes

We combine the prototypes E to obtain a
representative room impulse response h

—rep

standard additive model (SAM) of fuzzy system [6,8]:
C 2 A
> S )]
By, =0 ) ©)
ST
= e

The SAM allows combining the throughputs of fuzzy
systems before defuzzification. The advantage of SAM (s

any additive fuzzy model lies in its ability to approximate

using the

any continuous function on a compact (closed and
bounded) domain [6].

After obtaining the representative of the room
responses we designed and enhanced equalizing filter by
inverting the minimum phase component of the
representative room response 4 as in (10).

Zrep

2.4 Inverse filters
Fig. 1 implies that the magnitude of the equalized

room response ‘E(eﬂ”)‘ equals the magnitude of the

product of the room response H; (e/?) and the equalizing
filter G(e’?)
‘E(ej(u)

:‘Hi(ej‘”)G(ejw)‘ Vi 7)
We want ‘E(e‘i“’)‘:l. In practice we cannot obtain an

equalizing filter G(e/”) that simultaneously satisfies (7)
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for all locations i. So we use the representative response
H,, (e/®) to derive an equalizing filter G(¢’”) . So we set

B = M, (7")Gle™)| =1 ®
and obtain the inverse filter by
G(e'”)=1/H,,,(e'") )

where H,,,(

e/ is the representative room response and
G(e’) is the desired equalization filter [4]. Note also that

in our approach the corresponding equalization filter is
obtained by inverting the minimum phase component:

G(e’”)=1/H,,, pin () (10)

Here H e’®) is the minimum-phase component of

rep,min(

. jo
the representative room response H,,,(e’") and

¢’?) is the all-pass component:

Hrep (eja)) = Hrep,min (ejw)Hrep,ap (ejw) (l 1)
Inverse filters can also be obtained from other methods

such as inverse system identification, Least Mean Square
(LMS) algorithm, etc.

Hrep,ap(

2.5 Spectral Deviation Measure
This section shows the performances using a
spectral deviation measure [1,3,7] that has the form

E(e!®h)

2
-A VG} (12)

] P-1
op= (P .20 10 log,,

=

B’

P-1 .
where 4yG = L Y 10log . This measure
. 10
P i=0
provides a measure of residual spectral distortion from a
constant level. Flatter room responses with have lower

values of 0.

3. Experimental Results

This section shows the results of room
equalization using methods in [1,3] combining with the
WFCM algorithm. Fig. 2 shows a room configuration as a
reverberant enclosure to test our algorithm.  The
microphone locations were arranged in a rectangular grid
at N = 9 locations. The spacing between the microphones
in both directions of the grids was roughly the same at
about 1 m. The loudspeaker was placed about 0 degree to a
vertical axis at a distance of about 1 m from the right
bottom of the grid. The axis passed through the right side
location of the grid. Both the microphone and the
loudspeaker were positioned approximately one meter
from the ground.

The number of clusters determined was c¢ =3.
Room responses obtained from each of the nine
microphone locations were clustered using (2) with the
distance (4) and weights (5) to obtain the prototypes ﬁ
Then the prototypes are combined to obtain h. asin (6).

—rep

¥
v A

v
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Fig. 2. Nine locations in a room.

The magnitude responses measured at the nine receiver
locations are shown in Fig. 3 with the corresponding time-
domain in Fig. 4. Magnitude responses of the
representative room responses clustered by FCM and
WFCM algorithms are depicted in Fig. 5. The results of
equalized room magnitude responses using FCM and
WEFCM algorithms are depicted in Fig. 6 and Fig. 7. The
corresponding results of spectral deviation measure o, are

tabulated in Table 1. The results show that the equalized
room magnitude responses using WFCM are flatter than
the results of FCM algorithm.

The proposed WFCM algorithm that we used to
obtain room response prototypes yielded better results than
FCM algorithm for most listener locations. The only
exception is that the proposed WFCM performed slightly
worse than the FCM algorithm in location P9. The linear
weight tended to give more emphasis on direct paths of
room responses than others and thus tended to give better
prototypes than the non-weighted FCM.

Table 1 Experimental Results: Spectral deviation measure (07, )

Original Equalized Room Response
Location Room FCM Algorithm Linear Weighted
Response FCM Algorithm
P1 14.45 5.43 3.34
P2 14.69 4.76 3.82
P3 14.53 4.43 3.54
P4 14.96 5.56 3.42
P5 14.89 4.87 3.53
P6 14.78 4.86 4.22
P7 14.95 5.64 5.53
P8 15.25 6.23 4.98
P9 14.66 6.15 6.17

4. Conclusion

This paper shows the use of WFCM clustering
technique to calculate response prototypes from multiple
acoustical room responses. We combined these prototypes
using fuzzy SAM to obtain a representative response.
Then we obtained the equalization filter from the
representative response using inverse filtering technique.
We compare the proposed WFCM algorithm with the
conventional FCM algorithm. The spectral deviation
measure at several room locations show that the WFCM
can give better results. This shows that different weights
of the distance metric in the WFCM algorithm can give
better room response prototypes. Future research will
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focus on how to obtain the best weights for the WFCM to
obtain the prototypes. Another possibility is to optimally
tune the fuzzy SAM combiner used to obtain the
representative room responses from prototypes.
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Abstract

Object segmentation is one of the most important
tasks in image analysis and computer vision. Color
thresholding provides a fast and simple scheme for such
task. But it is sensitive to lighting conditions and other
noise effect in images obtained from the real world ap-
plications. This paper shows that addition of a small
amount of noise can improve the accuracy of such color
object segmentation. It shows that this “stochastic res-
onance” or SR effect does occur for various performance
indices that measure how well an object is segmented
from the background. We use mutual information, error
pixels count, and object position error as performance
measures to compare the segmented images obtained
from the original thresholding algorithm with the pro-
posed SR-extended algorithm. The study confirms by ex-
amples that addition of noise can robustify the color
thresholding algorithm and thus provides an alternative
for engineers when they need to detect color objects in
noisy input images.

Keywords: stochastic resonance, noise processing,
image segmentation, color thresholding, mutual informa-
tion, error pixels count, object position error.

1. Introduction to SR

Stochastic resonance or SR is noise benefit phenom-
enal. SR occurs when noise enhances a faint signal in a
nonlinear system. The system’s performance such as sig-
nal-to-noise ratio, cross-correlation, or mutual informa-
tion increases when the small amount of noise is added
to the system and so the system has nonzero-noise opti-
mality. The system’s nonlinearity is often as simple as a
memoryless threshold. SR occurs in physical systems
such as ring lasers [12], threshold hysteretic Schmitt trig-
gers [6], superconducting quantum interference devices
(SQUIDs) [8], flash A/D [15], chemical systems [5]. SR
also occurs in biological systems such as rat [2], crayfish
[4], cricket [11], river paddlefish [14], and in types of
model neurons [13].

Color image segmentation applies to several image
analysis and computer vision. Object detection, pos-
itioning, classification, and other tasks employ segmen-
tation. Color thresholding is a simple algorithm that can
effectively segment objects in controlled lighting condi-
tion [1],[14],[18]. The algorithm uses a set of thresholds
for each color dimension. But in many applications the
conditions of acquired images do not match with the pre-
set thresholds. The conditions of the acquired images can
be the difference in lighting conditions derived from
physical environments as well as pixel noise occurred in

optical sensors of a digital camera [10]. These deviated
conditions can greatly worsen the performance of the
color thresholding algorithm to segment objects if the
thresholds do not match with the image’s pixel colors.
We can adapt thresholds to each image’s lighting condi-
tions but the algorithm is complex [14].

This paper shows that noise can enhance the color
threshold algorithm. The proposed noise-added algo-
rithm extends the single-stage color thresholding to a
multiple-stage scheme. The experiments tested the SR-
extended algorithm with synthetic images of a plain-
color circle as our object on a plain background with dif-
ferent color. We modified the synthetic images to be
noisy and blurred versions of the original image.

We used several performance indices such as mutual
information, error pixel count, and object’s position error
to measure how well the algorithm works. The results
show that the addition of noise in our extended SR-
algorithm can improve these measures when the images
already contain noise or other distortion. This improve-
ment still holds for images of actual objects taken with a
digital camera. The extended SR-threshold algorithm
can improve the performances when the images are not
from good environment settings.

2. Color Image Thresholding

The thresholding method described here can be used
with general multidimensional, color spaces that have
discrete component color levels [1],[7] such as RGB,
HIS. This paper uses the RGB color space. An color ob-
ject is segmented with a set of six threshold values, two
for each color dimension in the RGB color space. A
pixel which has color component value in the interval of
the two thresholds, lower and upper thresholds, is repre-
sented as one or otherwise is zero:

1 Oin <V<0,,
— 1 X 1
&) { 0 otherwise M
where y is the image pixel value, 6, is the lower

threshold and &

) ax 1S upper threshold.

Red, Green and Blue color components of the input
image are compared and classified to three binary
images of each color spaces by the set of RGB thresh-
olds. The AND operation of the pixels of these three bi-

nary images gives a target object region.

3. Performance Measures
3.1 Mutual Information Measure

We use Shannon mutual information [3] to measure
the SR effect. The discrete Shannon mutual information
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of the random variable S and Y has the form

IS, Y)=HXY)-H{|S) (2)
= _zPy(y)IOgPy(y)
+ZZPS,Y(S5y)10gPY\S(y|S) ®)
sy
_ Py y(s,y) 4
—g&,y(s,y)logi% RO )

Here P, (s)is the probability density of the random
variable S, P, (y) is the probability density of the ran-

dom variable Y, p,

the random variable Y given the random variable §,
and Ps y (s, y) is the joint density of the random variable

Sand Y.

sl is the conditional density of

3.2 Error Pixels Count

This measure directly describes mistaken pixels be-
tween two binary images. The bit-wise XOR operation
shows the pixels in which their binary values do not
match the pixels in another binary image at the same
locations. So we can obtain the amount of the error
pixels by counting the results of 1 of the bit-wise XOR.
The error pixels count C,between an original binary

image S and an output binary image Y having mxn of
dimension has the form

C,=). DS, ®Y (5)
i=1 j=I
0 if S, =Y,
where S, ®Y, = . (6)
7 if S, #Y;

3.3 Position Error

In many applications of image processing [1],[18],
an object positioning has been a useful function. But
noise sensitivity in the image segmentation process
causes error in estimating the object region and so error
of the estimated position. Thus the position error is a sig-
nificant measure for showing the SR effect of our ap-
proach. We apply this measure to the binary images of
classified target objects using the color image threshold-
ing. We determine the position of an object by calculate-
ing the centroid of the classified region (region classified

as an object):
Cy 1 N X;
=— (7
Lj N ,Z_:‘L/J

where ¢, , ¢ are row and column coordinates of the

centroid. Then the position error P, is

})e = d(cin >Cout ) = \/(cxin ~Crout )2 + (cyin - Cyout )2 (8)

T. . .
where [xi yl.] is the coordinate vector of a pixel

which would be a target object, N is the number of

¥
v A

pixels of an object region, c;, and c,,, are centroids of
the target object of original image and noisy image:

T T
Cin = I:cxin Cyinj| and Cout = |:cx0ut cyout:|

4. Proposed SR Segmentation System and
Experimental Results

4.1 SR Segmentation System

We propose a new image segmentation technique
using N stages of noisy RGB color thresholding system.
Each stage simply adds independent white Gaussian
noise to a noisy input image before performing the usual
color thresholding. Binary output images of all stages are
combined with an OR operation to obtain a binary output
image Y of the SR segmentation system. We measure the
performance of the SR segmentation system using mu-
tual information /(S,Y) , error pixels countC,, and pos-

ition error P, to determine how the binary output image
Y match the original binary image S as shown in Fig 1.

S

] Original Binary Image
RGB
Thresholding
Mutual
1 stages i | R |nFurl|IT:&]lllion
1 RGB 1 @ Informaton |[——
Thresholding Computation
N I 7} * Error Pixcls
01‘5)’ mo RGB oR Y Error Pixels Count | Count
mage Thresholding Binary Computation
Output
Image
& RGB - * Position
Thresholding Position Error Error
Computation

Fig 1. The SR segmentation system consists of the multiple-
stage RGB color thresholdings where A is the number of stages

and #; is independent noise for stagei. S and Y are original
and output binary images.

4.2 Experimental Results: Synthetic Images

We first tested the SR segmentation system with
synthetic images. The original image consisted of an
orange circle (as an object) on the green background.
Then we added Gaussian noise to the original image and
performed the blurring and shadowing operations on it to
produce noisy test images shown in Fig. 2. By using this
synthetic image we could precisely determine the actual
pixels that belong to the object.

The SR segmentation system in Fig. 1 has N = 1
stage of RGB color thresholding system. The additive
noise is Gaussian. The segmentation system will separate
the target object (the orange circle) from the noisy
image. In this experiment the RGB color thresholding
algorithm uses the following thresholds (based on the 0-
255 levels of intensity):

Red : ngin =120, HRmax =255
Green: Ogpin =50, Ogma =120
Blue - aBmin =0, eBmaX =40
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Fig 2. Synthetic images of an orange object on a green back-
ground. The top-left image is the original image and the top-
right is a noisy, blurred, and shadowed version of the original
one. The images at the bottom are brightness-increase versions
of the noisy image of the top-right position. We label the top-
right image as “Brightness 0%,” the bottom-left as “Brightness
10%,” and the bottom-right as “Brightness 50%”. The SR re-
sults of these images are in Fig. 3 (a)-(c). We do not include
the Brightness 20% image here.

The images that we tested are the noisy images (with
0%, 10%, 20% and 50% brightness) shown in Fig. 2. We
did not show the test image with 20% brightness here.
Fig. 3 (a)-(c) show the performances when the noise
standard deviation increases. The system has nonzero
optimal noise level and thus shows the SR effect for the

005 12000

synthetic test images. The effect is more pronounced for
very noisy images.

Object positioning error can be a good indicator as
well. Fig. 4 (a)-(d) graphically show the positions ob-
tained from SR and non-SR segmentation systems com-
paring to the actual position in all four test images in
Fig. 2. The Figure shows that the positions obtained
from the SR-system (with optimal amount of noise) are
more accurate than the ones obtained from the original
(non-SR) segmentation system. A specific case of Fig. 4
(d) shows that conventional color thresholding cannot
detect any pixels as an object. So we do not have an
estimate of the position in this case (and so there is no
white circle shown). But the SR segmentation algorithm
can find some pixels that belong to the object and gives
an estimate of the object position.

4.3 Experimental Results: Real Images

Here we tested the SR segmentation system on
images taken from the real world using a digital came-
ra. The images show an orange golf ball on the green
carpet as a background. We measured the position of the
golf ball against the known mark on the carpet. Three
images shown in Fig. 3 (d)-(f) are taken in three different
illuminations (different light settings).

Brightness 50% aso
0045 11000 400
= 004 & Brightness 20% |
w ] s 350 Brightness 50%
B goas Brightness 0% = )
= 8 10000 X £ so0
£ oo [iiaan SNSRI [ Brightness 10% &
-] 3 [ B 250
E oo2s o anod §
2 . 2 S 200
£ o002 Brightness 10% 2 Erightness 0% 2 .
T o m\_"‘m.h__ & so00 d g 150 Brightness 20%
5 P
2 oo Brightness 20% = % o0 _Brightness 10%
7000 50 __ Brightness 0%
0.005 Brightness 50% N b
= Too EO00 DU 20 40 60 B0 100
d noise 5 deviation = of additive white g in noise
©
£0
a5
40
é as Image1
Image3 S
£
225
< -
5 20
= Image3
o 15
o
10
5
Imugez
o 2 o : 1IU I A‘U 2‘{‘) 20 U 30
-~ - . (3 5
cn(f ) white noise St dard di iati o of additi white i noise = of additi hv""lﬂ i noise

Fig 3. SR effect in image segmentation for both synthetic images real images using SR segmentation system in Fig. 1. The
performance measures are mutual information in (a) and (g), error pixels count in (b) and (h), and position error in (c) and (i). The
additive noise in the SR segmentation system is Gaussian. The graphs (a)-(c) show the results of the SR segmentation system with
N =1 for the four synthetic images. The graphs (g)-(i) show the results of SR segmentation system with N = 50 for the actual

images in (d)-(f) (Imagel — Image3).
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The SR segmentation used in this system is the same
as in Section 4.2 (the system in Fig. 1) but now with N =
50 stages. The noise in each stage is independent
Gaussian noise. The thresholds used for the RGB color
thresholding scheme in each stage are (based on the 0-
255 levels of intensity):

Red:  Opi, =150, 6. =255
Green: O;unin =110, g . =205
Blue: Opin=0, g =50

These set of thresholds are manually set for optimal
segmentation of Imagel. So they are different from the
optimal thresholds for the synthetic image “Brightness
0%” in Fig 2. Fig. 3 (g)-(i) and Fig. 4 (e)-(g) show how
white Gaussian pixel noise can improve our image infor-
mation and segmentation in terms of mutual information,
error pixels count, and position error. The results show
that noise can improve the segmentation performances
when the preset RGB thresholds do not match the light-
ing conditions. The perfect threshold case of “Imagel”
also shows that a small amount of noise does not ruin the
accuracy of segmentation while it can increase the accur-
acy of the noisy images (“Image2” and “Image3”).

(e)

Fig 4. Actual and estlmated posmons of the objects. The white
‘+’ denotes the actual positions of the objects (at the center).
The white circles are positions obtained from non-SR
segmentation systems (original RGB color thresholding). The
dark circles represent positions from the optimal SR effect in
segmentation. The SR system gives estimated position with less
error. The top four panels (a)-(d) are results of the four
synthetic images where the SR optimal noise has standard
deviation (SD) of 22, 24, 24, and 30. The bottom three panels
(e)-(g) are results of the three real images with SR optimal noise
at SD of 13, 13, and 19. These positions refer to the SR optimal
results from Fig. 3.

5. Conclusions

This paper studies the effect of noise addition in ob-
ject segmentation using RGB color thresholding scheme.
The paper shows that the stochastic resonance or SR ef-
fect occurs when we use this algorithm to segment a
color object from a plane background in an image that is
not perfectly captured or that the preset thresholds do not
perfectly match the color distribution.

The experimental results suggest that addition of
white Gaussian noise can enhance the mutual informa-
tion between the correct image and the image acquired
from the actual environment. The number of error pixels

v
o

and the object’s position error also decrease when we add
the right amount of noise to the noisy input images.
These results confirm that noise can robustify segmenta-
tion using RGB thresholding algorithm. For an image
with good lighting condition (so the RGB thresh-olds
perfectly match its histograms) and with no other distort-
ion, a little amount of noise only worsens the perform-
ance of the segmentation a little white noise can signify-
cantly improve the performance of the noisy ones. So for
real word applications in which captured images contain
a lot of interferences, engineers might consider using op-
timal noise to design a more robust image segmentation
algorithm.
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