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Figure 13. Variations with time of variance at the lower left comer (v.) of MFSHE
solutions to the third test problem.

= 0.8F

0 0.1 0.2 0.3 0.4 0.

tn

Figure 14. Variations with time of temperature at the lower left corner (7.} from
MFSMH solutions 1o the problem without exact solution. The solid line represents the
solution corresponding to exact initial and boundary conditions, whereas four other
fines represent solutions corresponding to four sets of random initial and boundary
conditions: (a) s =13, ¢ =06, (b s=1.2, ¢=04; and (¢) s=1.1, ¢=0.2.
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Figure 15. Varjations with time of temperature at the lower left comer (7;) from

MESHE solutions to the problem without exact solution. The solid line repre-

sents the solution corresponding to exact initial and boundary conditions, whereas

four other lines represent solutions corresponding to four sets of random initial

and boundary conditions: (a} s = 1.4, 4 = 097; {b) s = 1.22, d = 0.6]; and
(c) s =1.06, d =0.2.

to evaluate performances of MFSMH and MFSHE, the expression of the solution of &
method in terms of the initial and boundary conditions is derived. It is found that MFSN
performs better than MFSHE in solving three test problems having different boundary condifi
because MFSMH solutions are more accurate and Jess sensitive to uncertainties in initial g
boundary conditions than MESHE solutions. Furthermore, MFESMH produces solutions thaty
comparable to FDM solutions.
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firact

liror and variance of the solution to the heat conduction problem having stochastic irnitial and boundary conditions are
imined by a formulation based on a meshless methed known as the multiquadric coliocation method. This formutation
feses the solution in terms of initial and boundary conditions, Tnspection of solutions to two test problems reveals that a large
irof the shape parameter, which is the free parameter of multiquadrics, should not be used for a stochastic problem because it
| %ud to a solution that is too sensitive to uncertainties in boundary and initial conditions.

1S Elsevier Ltd. All rights reserved.

Wnis: Stochastic; Meshless; Radial basis function

Introduction

A radial basis function is a function that depends on the distance between the point where the function is to be
lisied and the center point. Radial basis functions have been used for multivariate data interpolation.
Wliguadrics is & well-known radial basis function that has been shown to converge faster than other radial basis
Wioss [1]. Kansa extended the use of multiquadrics in a collocation method for solving partial differential
[ions [2]. The multiquadric collocation method or the Kansa’s method has been successfully used to solve steady-
& problems [3—5] and time-dependent problems [6-8]. Compared with conventional methods such as the finite
it method and the finite difference method, the multiquadric collocation method has advantages that include
i}‘implememation, simple preprocessing, and ability to handle complex geometries. A system of algebraic
hi:ns produced by the multiquadric collocation method has a dense coefficient matrix, which is considered to be a
tage. However, the prospect of cheaper computers with higher computing power may lessen the importance
ik disadvantage. The free parameter in multiquadrics, known as the shape parameter, affects solution accuracy.
S et al. [97 showed that the accuracy of the solution to a partial differential equation can be increased either by
ing the mesh size or increasing the shape parameter. The latter method seems like an efficient way to achieve
accuracy. However, the shape of multiquadrics becomes increasingly flat as the shape parameter is increased,
nise to li-conditioned coefficient matrix. When the shape parameter is too large, round-off error dominates, and
ion loses its accuracy. Therefore, in order to obtain a very accurate solution by the multiquadric collocation
d, a machine with higher computing power is needed so that computation can be performed with higher

lmmmnicated by W.J. Minkowycz,
sl idedress: somehari@engr.tu.ac. th.

rmir's - see front matter € 2005 Elsevier Lid. All rights reserved.
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Nomenclature

al™ Coefficient

B Boundary value operator

B, C  Coefficient matrices

¢ The shape parameter of multiquadrics

D,, D, Coefficient matrices
e Average error

f Probability density function for random error

g Boundary value

N The total aumber of nodes

My The number of boundary nodes

N; The number of interior nodes

n Time level

T Temperature

Ty Initial temperature

t Time coordinate

At Time step

v Normalized average variance

X Coeflicient of the relation between the solution and the initial condition

Y Coefficient of the refation between the solution and the boundary condition

X,y Space coordinates

g1, 82 Random error

i Coeflicient matrix

b Multiquadrics

o’ Variance of random errors in initial and boundary conditions

precision. Alternatively, the Contour—Pade algorithm, proposed by Fornberg and Wright [10], may be used 1|
algorithm enables stable computation of multiquadric interpolation for large values of the shape parameter using ¢
a desktop computer. Larsson and Fornberg [11] applied this algorithm in solving elliptic partial differential equatio

It is well known that actual engineering problems such as heat conduction problems are characterized!
uncertainties in material properties, boundary, and initial conditions. Unfortunately, most previous applications of!
multiquaddc collocation method have not paid attention to sensitivities of solutions to these uncertainties. Sincew
few actual heat conduction problems are deterministic problems, the quality of the solution to such a problem shg
depend not only on the accuracy but also the variance of the solution. In this paper, the formulation of the multiquad
collocation method for solving time-dependent heat conduction problem having stochastic boundary and im
conditions is considered. In order to determine accuracy and variance, the solution will be expressed in tems
boundary and initial conditions. Two test problems will be used to assess the performance of the multiquad
collocation method.

2. Multiguadric collocation method

Consider a non-dimensional deterministic problem described by the following governing equation, initial &
boundary conditions.

ar 62T+ 2'T
dr axt | gyt

B{T(xy1)} = glxyt) |

T{xy,0) = To(x,y) [
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nsere B=1 for Dirichlet boundary and ¢/&n for Neumann boundary, with n being the coordinate normal to the
undary. Discretization of Eq. (1) yields

T(ﬂ)_T(n—l)

= 0.5Vt 40592700 (4)

hich can be rearranged into an inhomogeneous modified Helmholtz equation.

27 Grpemn 2T
A

20 e 5
v N (5)

Assume that there are N nodes, divided into N, interior nodes and &y, boundary nodes. Let¥; (i=1, 2, ..., NV;} denote
ssitions of interior nodes, and ¥'; (i=N;+1, N;+2, ..., N;+N,) denote positions of boundary nodes. The multiquadric
dllocation method approximates T as follows.

N
T(xy.nA1) = Z aj(-")qb(x,y,xj,yj) {6)

=

ere

blewy) =/ (x-x) + 0y + & (7)

sknown as multiquadrics. Note that this function contains the shape parameter ¢. This parameter may either be a
snstant or a variable. For simple implementation, ¢ is chosen to be a constant in this paper. Eq. (6) leads to the
oliowing matrix equation.

7" - o5 (8)

here ]-")(n) is the vector of nodal temperatures at time #A¢, and 7 ™ is the vector of coefficients at time nA¢. Inserting
fg. (6) into Eqs. (2), (3) and (5) results in

N
& Vb AtZ " (i yix8)

Mz

-
il

N N
"n- 2 n- .
_Z aJ( Vy? F o {xiyigy) EZ a,;( I)¢ (xiyie%,97) (i=12,.M) (9)
= =y
N
S " B{¢xyigy) = gluwindl) (i =N+ LN+ 2, N) (10)
i=1
N
Z d)(x,y,,xj,}{,) To(xy:,0) {(i=12..N) {ty)

Eqs. (9) and (10) may be rewritten as & matrix equation:

o 7 r=1)
Ba()=c[;(”) ] (12)

which can be solved to obtain a recurrence formula for a "

(?(”) — D]E'("*I) + Dlé'(") (13)
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Fig. 1. Variations with the shape parameser of errors and variances of solutions to the twe test problems corresponding to V=121 and At=Il
four times,

Eq. (I1) may be rewnitten as

&z = T,

which can be solved for @

0 =a7,

Combining Egs. (8), (13) and (13) gives an expression for the solution in terms of initial and boundary condi

—n) = n i ik
T" =@D;9'To+2> Dy Dyg™
k=1

or
n

N Ny
o = Z X)) (o), + Z(m)gf(\f)ﬂ

j=1 k=1 j=i
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Stochastic heat conduction problem

In stochastic heat conduction problems under consideration, material properties are deterministic, whereas boundary
fimtia} conditions are stochastic. Thercfore, these problems are described by Eq. (1), and the proposed multiquadric
location method is applicable. Let To{x,.y;) and g {x,,y;,nAt) be expected values of initial and boundary conditions at
le i and time nA7 Random functions of initial and boundary conditions are given by

To(xiws) = Tolxigi) + &1 (x; i) (18)
glx; i, ndt) = glx yi,nAL) + e3(x;,y5,n41) (19)
gre &y and &, are random errors. Assume that the probability density function for &, and &; is
BRI
o) — N 20
1te) o ZnBXpl 2(0) ] (20)

fat the expected value of &, and &, is zero, and the variance of &; and &; is a?. Moreover, random errors at different
fes or times are uncorrelated. As a result, the expected value and variance of the solution at node i are
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1 Variations with the shape parameter of errors and variances o solutions to the two test problems corresponding to = 121 and four time steps at

0.
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Fig. 3. Variations with the shape parameter of errors and variances of solutions to the two test problems corresponding to four numbers of nodems
Ar=0.005 at i=1.00.

E(7") = IS i(r.-‘f))gﬁilf i

= =l =1
() S 1 2
n Y
Var (17) = |30 6" + 32 3 (1) | @
i=1 k=1 J=1

If the exact solution in case of no random errors is available, the average error may be computed from

[u
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ind the normalized average variance may be computed from

P = e NZI Var( T(")) (24)
Nio® ’

4 Resuits and discussion

Lonsider two test problems in a | x ] square domain. In the first test problem, all four sides of the domain are subjected to the
irchiet boundary condition. In the second test problem, all four sides of the domain are subjected to the Neumann boundary
ilion. The exact solution for both problems is

Teaulxpd) = ¥ Meos(x + v+ 44) (25)

This solution is used to generate g (x,v,f) and T (x,»). The multiquadric collocation method is then used to calculate the solution
geh interior node, from which ¢ and v are determined using Eqgs. (23) and (24). Several parameters affect the solution. Considered
lieters arc the shape parameter, time step, time, the number of nodes, and grid spacing. Let there be N nodes distributed
immly in the domain so that M;=(VN—2)?, Ny=4(YN- 1), and the grid spacing is A=1/(¥N— ]). Results obtained for the two test
s are shown in Figs. 1-3.
Virittions of average errors and normalized average variances at +=0.25, 0.50, 0.75, and 1.00 with the shape parameter for the
::151 probiems are shown in Fig. 1. In this figure, the number of nodes and the time step are kept constart at 121 and 0.005,
ively. Errors decrease monotonically with the shape parameter until solutions become unstable due to large condition
fumbers. Variances initially decrease with increasing shape parameter, reach minimum vatues, and then increase rapidly. Therefore,
Hlhough solutions are quite accurate at a large value of the shape parameter, they are also very sensitive to random errors in initial
#lboundary conditions.

Vimations of average errors and normalized average variances at = 1.00 with the shape parameter corresponding to time steps of
JE5, 0,005, 0.01, and 0.02 for the two test problems are shown in Fig. 2. In this figure, the number of nodes is kept constant at 121,
Mits of the shape parameters on variations of errors and variances in Fig. 2 are similar to those in Figs. [ and 2. In addition, it is
Bieting to note that a smaller time step leads to a selution of lower varance without affecting the accuracy of the solution significantly.

Veriations of average errors and normalized average variances at /= 1.00 with shape parameter corresponding to numbers of
pkmN‘), 81, 121, and 169 for the two test problems are shown in Fig. 3. In this figure, the time step s kept constant at 0.005.
flam; cffects of shape parameters on variations of errors and variances in Fig. 3 are similar to those in Fig. 1. In addition, it is
fieresting to note that the larger number of nodes leads 10 instability at a smaller value of shape parameter.

§ Conclusions

Foermulation of the multiquadric collocation method for solving the heat equation having stochastic initial and
undary conditions is presented. The solution is expressed in terms of initial and boundary conditions, enabling
ightforward computation of error and variance. Two test problems are used to show effects on various parameters
fmors and variances of solutions. It is found that, with the same parameters, the solution to the test problem that has
the Dirichlet boundary condition and the solution to the test problem that has only the Neumann boundary

ition behave similarly. It is also found that the parameter that affects solutions most significantly is the shape
miteter of multiquadrics. Sclutions become more accurate as the shape parameter increases. However, when the
parameter is too large, solutions become unstable and very sensitive to random errors in initial and boundary
iitons. Similar results were obtained by Chantasiriwan in solving steady-state problems with stochastic boundary
itions by the multiquadric collocation method [12].
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Collocation methods based on radial basis functions for solving
stochastic Poisson problems

Somchart Chantasiriwan*: T
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SUMMARY

Collocation methods based on radial basis functions can be used to provide accurate solutions to
deterministic problems. For stochastic problems, accurate solutions may not be desirable if they are
too sensitive to random inputs. In this paper, four methods are used to solve stochastic Poisson prob-
lems by expressing solutions in terms of source terms and boundary conditions. Comparison among the
methods reveals that the method based on fundamental solutions performs better than other methods.
Copyright & 2006 John Wiley & Sons, Lid.
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1. INTRODUCTION

{tis customary to judge the performance of a numerical method by its accuracy. However, if
inputs to the problem are stochastic, the solution will also be stochastic. Two important statistical
properties of the solution are its expected value and its variance. In this case, the performance
of the numerical method should be judged by hoth the accuracy and the variance of its solution
because an accurate solution would be useful only if inputs arc known eractly. In reality, there are
always uncertainties in inputs, which will cause a solution of high accuracy and large variance to
be useless in practice.

A Poisson problem is stochastic when the source term or the boundary condition is stochastic.
Conventional methods such as the finite difference method and the finite element method can be
shown to produce a solution that is insensitive to randomness in the source term or the boundary
condition. Recently, collocation methods based on radial basis functions have gained interest from
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2

I researchers due to the ability of these methods to solve various types of problems accurately.
Whereas conventional methods produce sparse coefficient matrices with small condition numbers,
3 these collocation methods produce dense coefficient matrices with large condition numbers. There-
fore, it is unreasonable 1o assume that these methods behave similar to conventional methods in
5  solving stochastic problems. [t 15 important that collocation methods based on radial basis functions
must be shown to produce solutions of satisfactory accuracy and variance before they can be used
7 with confidence.

This paper describes formulations of four collocation methods for solving stochastic Poisson
9  problems. Three mechods use multiquadrics for collocation at both interior nodes and boundary
nodes, whereas the fourth method uses multiquadrics for collocation at interior nodes and fun-
11 damental solutions for collocation at boundary nodes. Solutions are expressed in terms of source
terms and boundary conditions so that errors and vartances are computed conveniently. Influences
13 of frec parameters of the methods on the solutions are investigated. and the performances of the

four methods in solving two test problems are compared.

15 2. COLLOCATION METHODS

Consider the foliowing Poisson problem:

R R%
dxd o gve
Bluix. y)}=gx, v} (2)

17  where B is an operator thal is equal to 1 for the Dirichlet boundary, or d/dn for the Neumann
boundary with # being the co-ordinate normal to the boundary. Assume that there are N nodes,
19 divided into &, interior nodes and Ny boundary nodes. Let ry, ra, ..., ry, denote positions of
interior nodes, and rx. 1. ry;—2, . . .. 'y denote positions of boundary nodes. In the four coltocation
21 methods, 1(x, v) is approximated as follows:

N

(A)ulv.vy= 3 a;b(x, y.x;, vj) (

(%]

)

N i vox v P voai v
(B) u(x._\-)zzaj(‘" ALIPITINT d/(x,_\..x,..»,,))
j=t

ox? dy?
N
+ Y @By ) @)
j=Ni—1
N N=Ny
O u(.yy= 3 ajpl(x, y, x5, ¥)) + 3 @iy (x,y. xj-N. ¥j-N) (5)
Jj=1 Jj=N-—1
N Ny
(DY ulx. x)= 3 ajp(x, v, xj. v;)+ 3 byix, v, &5, ") {6)
i=l1 ji=l1
Copyright € 2006 John Wiley & Sons, Lid. Commun. Numer. Meth. Engng (in press)
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RBF COLLOCATION METHODS FOR STOCHASTIC POISSON PROBILEMS 3
where
l,{/(.!:,)‘,,\'j.'\*j)z\/(i— Py — ¥R+ (N
WOy xi ) = (= ) d? (8)
dlx, v &) =Ml — &)+ (v — )7 9

and (¢;, n;) are the co-ordinates of a source point located at a fictitious boundary outside the
problem domain.

Method A is the multiquaric collocation method with straight collocation as proposed by
Kansa [1]. Method B is the muitiquaric collocation method with Hermite collocation, which
was shown to produce more accurate sojutions than method A in some cases {2, 3}. Method C is
the multiquaric collocation method with additional collocation at the boundary, which was shown
by Chantasiriwan to be more accurate than method A [4]. Method D is the method of fundamental
solutions [5). According to Equations (3)-(5), the vectors of solutions at interior nodes u; and at
boundary nodes u;, may be expressed as

u, =%;a (am
u, ="¥pa (11

Instead of using different symbols, the same symbols ¥;, ¥, and a are used for methods A, B,
and C with the understanding that they are different for different method. Collocating Equations
(10} and {11) at interior and boundary nodes using Equations (1) and (2) resuits in

Lovva )= 1
B{¥,} g

The solution vector u; may also be expressed in terms of f and g.

g

After solving Equation (12) for e, inserting the result into Equation (10), and comparing the
resulting equation with Equation (13), it can be seen that C is the solution of

vy,
C[ =W, {14)
LB{‘Ph}:|

For method D, veclors of solutions (u; and u;) may be expressed as

u; =H,a+ G;b (15}
up = Hpa + Gpb (16)
Copyright € 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (in press)
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Collocating Equations (15) and (16) at interior and boundary nodes using Equations (1} and (2}
results in

VHia=f a7n
BlHpla+ B{Gplb =g (18)
Solve Equations (17) and (18) for ¢ and b
a=|V'H;]"'f (19)
b=1B(G,)]""{g — BIH,}[V'H,]"'f) (20)

The solution vector &; may also be expressed in terms of f and g.

u; =D f+Dog 21

Comparing Equation (21} with the expression of #; in terms of f and g from Equations (15), (19)
and (20) gives equations for D and D-

D2 B{G,}=G; 22
DV’H; =H; — D> B{H,} (23)

3. STOCHASTIC POISSON PROBLEM

If the source term and the boundary condition of the Poisson prablem are stochastic, the Poisson
problem will be stochastic. However, since the differential operator in Equation (1) does nol
change, the methods described in the previous section can be used to solve the stochastic Poisson
problem. According to Equations (13) and (21), the solution at nodes i can be expressed as

N N
=3 Xi,fi+ Y. Yijg 24)
=t JEN -1

Let f (x;, ;) and g{x;, ;) be expected values of the source term and the boundary condition at
node i. Random functions of the source term and the boundary condition are given by

SO, y) = Flxg, yi) + ey, ¥i) (25)
alxi, yi) =g(xi, vi) + e2(xi, ¥i) (26)

where g) and &5 are random errors. Assume that the probability density function for ¢; and & is

PO = —— exp [—% (;)} | @7

o 2n
so that the expected value and the variance of ¢ are zero and o, respectively. This probability
density function also implies that £; and & at the same node are uncorrelated, and random errors at

Copyright © 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (in press)
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different nodes are uncorrelated. Consequently, the expected value and the variance of the solution
at node i are

N - N
E(uj)= z! Xijfit+ %: lYi.j.S-’j (28)
i= =N+
N bl N ] el
Var(u;) = j};] Xijt j_§+: Yiije (29)
The normalized average variance may be defined as follows:
1 N
U= N o Z:] Var{u;) (30
! 1=

If the exact solution in case of no random errors is available, and is not equal to zero. the average

ercor may be computed from
) E@)\>
ezﬁ-z(l— (’)) an

ii=l Hj exact

4. RESULTS AND DISCUSSION

Consider two test problems ina 1 x 1 square domain. There are 121 nodes distributed uniformly in
the domain so that N; =81, Ny =40, and grid spacing is 0.1. The fictitious boundary for method
D is the perimeter of the concentric § x § square. Ny source points are evenly distributed on the
fictitious boundary. In the first test problem, all four sides of the domain are subjected to ihe
Dirichlet boundary condition. In the second test problem. the bottom and right sides of the domain
are subjected to the Dirichlet boundary condition, whereas the top and left sides of the domain are
subjected to the Neumann boundary condition. Let the exact solution in case of no random errors
for both problems be

Ueyaer(X, ¥} = e"ty (32)

This solution can be used to generate f(x,y) and g(x, y). The values of ¢ and v at each interior
node can then be determined by the four methods as functions of the free parameters of methods
A, B, and C, which are the shape parameters (¢ and d) of multiquadrics, and the free parameters of
method D, which are the shape parameter and the fictitious boundary parameter (s). For method C,
it is found that the value of the shape parameter d of function ¥’ that yields the best performance is
around ¢ — 0.2 in both test problems. Therefore, this value is used to obtain the following results.

Figure 1 shows variations of average errors and normalized average variances of solutions to
the first test problem by method A, B, and C. It can be seen that both errors and variances are
quite sensitive to ¢. In comparing performances of the three methods, it should be reminded that
a method is considered to perform better if its solution has both less error and less variance. The
solution by method B is slightly more accurate than the solution by method A over the range of ¢
between 0.3} and 0.84. However, the solution by method A has less variance over that range of ¢.
It can then be concluded that, despite more complicate formulation, method B is not better than

Copyright © 2006 John Wiley & Sons, Lid. Commun. Numer. Meth. Engng (in press)
DOL: 10.1002/enm
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Figure 1. (a) Variations of average errors (e) with ¢ for the solutions to the first test problem
by methods A, B, and C; and (b) variations of normalized average variance {v) with ¢ for
solutions to the first test problem by methods A, B. and C.

method A. Comparison between method A and method C shows that method C can give a better
solution than method A because there exists a range of ¢ in which the solution by method C has
less error and less variance than the solution by method A.

It has been recognized that the accuracy of the multiquadric collocation method depends on
the shape parameter. Cheng et al. showed that the accuracy of the solution to a partial differential
equation could bhe increased by reducing the shape parameter [6]. When ¢ is too large, however,
round-off error dominates, and the solution loses its accuracy. [n order to maintain accuracy,
computation must be performed with higher precision by a computer that has a higher computing
power. Alternatively, the Contour-Pade algorithm (7] may be used. This algorithm enables stable
computation of multiquadric interpolation for large values of shape parameter using a desktop
computer. Larsson and Fornberg 8] used this algorithm in solving partial differential equations.
Although using a large value of shape parameter may yield a very accurate solution, results in
Figurce 1 show that the solution is likely to be quite sensitive to random errors in inputs. If both
the accuracy and the variance of the solution are taken into consideration, the recommended value
of shape parameter should not be too large.

Variations of error and variance of the solution to the first test probiem by method D as functions
of ¢ and s are shown in Figure 2. Error decreases almost monotonically with ¢ until ¢ is around
1.14 when a large condition number of the coefficient matrix results in instability. Variance is
insensitive to ¢ for the value of ¢ between (.01 and 1.0. Both error and variance are insensitive to
s for the value of 5 between 1.4 and 4.6. Insensitivities of error and variance to free parameters
of the solution by method D are considered to be an advantage of this method since this means
that free parameters of the method may be chosen quite arbitrarily, whereas free parameters of
methods A, B, and CC may have to be chosen carefully to ensure optimal performance.

Solutions to the second test problem by methods A, B and C are compared in Figure 3. It can
be seen that both errors and variances are quite sensitive to ¢. Method C is better than methods
A and B in solving this problem because it yields the solution of less error and less variance for
¢>0.23. Method A is more accurate than method B when ¢ is less than 0.39. Although method B is
more accurate than method A when ¢ is greater than (.39, the variance of solution by method B is
also greater. Therefore, method B cannot be considered to be better than method A in solving the

Copyright € 2006 John Wiley & Sons, Lid. Commun. Numer. Meth. Engng {in press)
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Figure 3. (a) Variations of average errors (e) with ¢ for the solutions to the second test problem
by methads A, B, and C,; and (b) variations of normalized average variance (i) with ¢ for

the solutious to the second test problem by methods A, B, and C.

second problem. Previously, a comparison analysis found that the Hermite coliocation (method B)
outperformed the straight muultiquadric collocation method (method A) [2]. Problems considered
in that analysis were deterministic problems in which accuracy was the only concern. Results from
Figures 1 and 3 show that the performance of meihod B in solving stochastic Poisson probleras is

not guite impressive.

In Figure 4(a). it is shown that the influence of ¢ on the solution by method D in the second
lest problem is similar to the influence of ¢ on the solution by method D in the first test problem.
However, the solution to the second test problem has more error and more variance than the
solution to the first test problem for the same values of ¢ and s. Figure 4(b) shows that the variance
of the solution is quite sensitive to s. The optimal value of 5 is between 1.9 and 2.6 since the
solution is stable in this range. and both error and variance are not 1oo large.

Copyright € 2006 lohn Wiley & Sons, Ltd.
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Figure 4. (a) Variations of average error (¢} and normalized average variance (v) as functions
of ¢ for the solution 1o the second test problem by method D with s =2.0; and (b} variations
of average error {¢) and normalized average varlance (v) as functions of s for the solution

to the seccond test problem by method DY with ¢ =0.6.

Table [. Comparison of errors and variances of solutions
to the first test problem by methods A, B, C. D and the
finite difference method.

Method e @

A (c=0.3) 6.628 x 1074 0.1168
B (c=0.3 6.707 x 107% 0.1338
Cic=03 d=0.1 1.666 x 10~4 0.09542
D {(c=06. s=2) 7.372 % 1077 0.09331
FDM 8.006 x 1073 0.1044

Table [I. Comparison of errors and variances of solutions
to the second test problem by methods A, B, C, D and
the finite difference method.

Method € r

A (c=03) 1.064 % 1072 1109
B (¢c=0.3) 2.084 x 102 0.6417
Cie=03 d=0.1 2,408 x 1072 0.1410
D (c=06 s=2 1.148 x 103 0.4700
FDM 7.599 x 10~ 0.1330

The finite difference method provides the benchmark solutions to the first and the second test
problems with which the solutions by methods A, B, C and D may be compared. In Tables I
and I, parameters of the four methods are chosen so that no other parameters give solutions
that have lower errors and lower variances than the chosen parameters. It can be seen that FDM
performs better than methods A, B and C. However, method D performs better than FDM in

Capyright © 2006 John Wiley & Sons, Lid. Commun. Numer. Meth. Engng (in press)
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solving the first test problem. The performances of method D and FDM in solving the second test
problem are comparable.

Since only two problems are used to test the four collocation methods in this paper, a rigorous
analysis will be needed before it can be concluded that method C performs better than methods
A and B, and that method D performs better than method C in solving general partial differential
equations. [n the meantime, there are reasons to believe that analogous results will be obtained
when the four collocation methods are used to solve other linear partial differential equations.
In a paper by Fornberg ez al. [9], it was shown that adding collocation nodes near the boundary
could improve the cotlocation method. Although method C does not require additional collocation
nodes near the boundary, it does require additional basis functions. The reason why methods A
and B do not perform as well as method C may be attributed to the fact that methods A and B
use fewer basis functions than method C. However, the number of basis functions is not the only
factor that determine the performance of a collocation method. Despite having the same number
of basis functions, method D is apparently better than method C because some of basis functions
in method D are fundamental soiutions to the Poisson problem, whereas all basis functions in
method C are multiquadrics. Results from this study agree with those from a previous study by
Chantasiriwan (4], which shows that the method of fundamental solutions performs better than
collocation methods that use multiquadrics as basis functions.

5. CONCLUSIONS

The quality of a solution to a stochastic Poisson problem depends on both its accuracy and its
variance. Four methods presented in this paper are formulated so that the expression for the solution
is given in terms of the source term and the boundary condition. Results from two test problems
reveal that although a large value of the shape parameter of multiquadrics may yield an accurate
solution, the solution may also be too sensitive to random errors in inputs. Furthermore, it is
found that the multiouadric collocation method with addition collocation at boundary outperforms
both the straight multiquadric collocation and the multiquadric collocation method with Hermite
collocation because it can yield a solution of lower error and variance. The method of fundamental
solutions is found to outperform all multiquadric collocation methods.
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Multiquadric collocation method for time-dependent heat conduction problems

Multiquadric Collocation Method for Time-dependent Heat Conduction Problems
with Temperature-dependent Thermal Properties
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ABSTRACT

The multiquadric collocation method is a meshless method that uses
multiquadrics as its basis function. Problems of nonlinear time-dependent heat
conduction in materials having temperature-dependent thermal properties are solved
by using this method and the Kirchhoff transformation. Variable transformation is
simplified by assuming that thermal properties are piecewise linear functions of
temperature. The resulting nonlinear equation is solved by an iterative scheme. The
multiquadric collocation method is tested by a heat conduction problem for which the
exact solution is known. Results indicate satisfactory performance of the m=thod.

Key Words: Kirchhoft transformation, meshless, radial basis function

Introduction

Multiquadrics is a radial basis function discovered by Hardy [1]. The
multiquadric collocation method, also known as the Kansa’s method [2], has been
used to solve various steady-state problems [3-6] and time-dependent problems [7-9]
in mechanics. It has been shown that this method can yield satisfactory solutions to
linear problems. Being a meshless method, this method has advantages over
conventional numerical methods such as the finite element method and the finite
difference method. However, before considering the m!+immadric collocation method
as a serious alternative to the finite element method and the finite difference method,
this method must be tested with nonlinear time-dependent problems. There have been
relatively few such problems solved by the multiquadric collocation method [10, 11].

A well-known nonlinear time-dependent problem is the time-dependent heat
conduction problem with temperature-dependent thermal properties. Several
algorithms have been proposed to find its solution. Previous algorithms, however,
depend on mesh-dependent methods such as the finite element method and the finite
difference method. In this paper, an algorithm making use of the multiquadric
collocation method is proposed. First, the problem is simplified by the Kirchhoff
transformation. Then the multiquadric collocation method is formulated to deal with
the problem in an iterative manner. The proposed algorithm is used to solve heat
conduction problems in a fictitious material. Results show that solutions for problems
in which heat capacities and thermal conductivities are piecewise linear functions of
temperature are satisfactorily accurate.

Heat Conduction Problem

Heat conduction phenomena in which heat capacities and thermal
conductivities depend on temperature are described by the following partial
differential equation.

pcp(T)an = V(T )+ s(F 1) for 7 in Q (1)
O
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Without the loss of generality, density is assumed to be constant. In addition, initial
and boundary conditions are given by

(7,0 = 7, (F) for 7 in Q (2)
7.1 = T.(F.1) for 7 onT (3)
k(l)fiz = q.(7.7) for F on T, (4)

én
Define « by using the Kirchhoff transformation.

ulF 1) = J';k(T)dT (5)

Transform the dependent variable in Eqs. (1) - (4) from T'to «.

y(u)%lti = Viu + s(7,1) for 7 in Q (6)
u(F,O) = u(.(F) for ¥ in Q) (7)
ul(r 1) = u, (F,1) for 7 onl’y (8)
a = gy (7,1) for ¥ onI; (9)
on

where y = pc,/k is the reciprocal of thermal diffusivity .

Discretization Scheme

Consider thermal properties of three materials shown in Tables 1, 2 and 3.
Thermal conductivities and heat capacities of materials A, B, and C are the same as
those of zircomum, tungsten, and tantalum, respectively, which are obtained from ref.
{12]. However, the densities of materials A, B, and C are constant instead of
temperature-dependent as the actual densities of zirconium, tungsten, and tantalum
are. It can be seen that thermal conductivities of these materials are not linear
functions of 7. Equation (5) indicates that #(7) is a monotonically increasing function
because 4(T) 1s always positive, and an explicit function #(7) can be found quite easily
no matter how complicated 4(7) is. On the contrary, an explicit function of 7(u) is
difficult to determine unless A&(7) is a linear function. Therefore, although it is possible
to approximate &(7) as a sixth-order polynomial function of 7 using data from 7
temperatures, it is more efficient for computational purpose to approximate &(7) as a
piecewise linear function:

WD - k,_i{’]‘j;"*ij(r—m (Ta<T<T)  (10)

P Fi-l
where 71, 73, ..., 77 are 7 temperatures in Tables 1 — 3 in the ascending ord-=r, and 4,
ky. ..., k7 are the corresponding thermal conductivities. Let 7, = 100 K. Substituting
k(T) from Eq. (10) into Eq. (5) yields

1 k,' - k,'_[ 2
i = i Tk \T-T )= —— \T-T_
I‘T) i ]( 1) 2(72*7;!]( 1)
(I = T<1) (1D
from which the inversion formula for 7{w) can be obtained as follows.

]:' - ?—;7 2 ki - ki— 2z
wy = 7, +[k, —k.--: j{— k., -I-JI(,‘; + 2[—]:—_7_:}11 —u,-_1) }

(o1 < u < uy) (12)
HT-03-1166, Chantasiriwan Page 2 24/7/06
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After values of » corresponding to 7 temperatures in Tables 1 — 3 for each
material are calculated, and y can be plotted as functions of #. Figure | shows that, for
each material, y does not vary rapidly with #, and can be approximated as a piecewise
linear function. It is interesting to note that variations of y with  for the three
materials are quite different.

Discretization of Eqs. (6) — (9) yields

() (1)

Y[%J = Vi +(1-0WVu!"" + s(7,(n—1+0)Ar) (13)
= u, (f‘; ) (14)
w = us (F ,nAr) (15)
~ fn)
e R g, (7., nAr) (16)

on

whrere

y' = y(@u,‘"J +(l—8)uf""”) (17)

Relaxation parameter © must be greater than 0. In this study, 6 = 0.5,

Multiquadric Collocation Method

Let 7 (i=1, 2, ..., N;) denote positions of boundary nodes, and F (i =N, + 1,
Ny +2, .., Ny + N)) denote positions of interior nodes. The multiquadric collocation
method approximates v as a linear combination of radial basis functions ¢.

Np+N,
u(7, nit) g7 - 7)) (18)

[
8

/=t

or)y = Vrl 4t (19)
1s known as multiquadrics. This function contains the shape parameter ¢. A suitable
value of ¢ is to be found by numerical experiments in this paper. Coefficients af,-o) are
determined directly from collocation using Eq. (14).

Np+A,
Ta-R) = w@) =12 NN 20
=1

where

Coefficients aff") (7 = 1) must be determined iteratively. First, Eq. (13) is rearranged.

*

ov2ulr) [‘f_},;n' - (e [l’_]u,w s (r-1+6)A1)
Al Af
(21)
Next substitute #' and »!"™" from Eq. (18) into Eqs. (21), (15), and (16).

Np+N;

0 > avialf -7, D-[Hf%ﬁ"w]a 7)) -
i=1 i=1
Np+ N : ,Y* Np +N,
(-0 S Vil -1 S o)t o)
j=l /=

(G=Ny+1,Ny+2, ..., Ny + N (22)

HT-05-1166. Chantasiriwan Page 3 24/7/06
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Nyr N,

Saef 7)) = u(Fear) (=12 ., Na)  (23)

.‘\':jL', ad) )

> a§">a— = g (FonAl)  (=Np+ LNa+2, . Nu+N2) (24)
H

3=l

[nitially, it must be assumed that aﬂ"J =a

{n-
i

(22) — (24) can be solved for ai"’ . After the determination of a&"’, Eqs. (22) - (24) are

solved for new values of a|” . The iteration process continues until the average

‘' so that ¥" can be determined, and Eqgs.

difference between new and old values of #'™ is less than a tolerance number §.

7

1 Nexd (I [n))n | 2
- 1* ! ew 6 25
N; jzgq[ ”I”; bold < ( )

provided that no value of #!" is zero. Otherwise. a new measure of the difference

between new and old values of #" must be used. In this study, § = 1.0 x 107,
After converged values of #'" have been found, T,‘"’ can be determined from

Eq. (12). If exact temperatures are known, average error in computed temperatures ()
can be found from the average difference between computed temperatures and exact

temperatures at N, test nodes, of which locations are denoted by é ,0=12 .., N

24

1 Ny T;(")
LRGN =

where 7" is determined from

Ny +N;

”r[n) = Zaﬂn)d)qu‘ _Fj
)=l

using Eq. (12), and (T,‘"')ﬂm is the exact solution at location £, and time nAt.

) 27

Results and Discussion

Consider a 0.12 m x 0.12 m square domain having the thermal properties of
material A. Let N nodes be uniformly distributed in the domain so that there are (VN —
2)? interior nodes and (4VN — 4) boundary nodes. The spacing between two adjacent
nodes is, therefore, 0.12/(VN — 1) m, which is denoted by A. Coordinates of N nodes
are ((i-1)A, (j—1)A), where i and j run from 1 to VN. As shown in Fig. 2, the bottom,
right, and top sides of the domain are subjected to the Dirichiet boundary condition,
whereas the left side of the domain is subjected to the Neumann boundary condition.
The exact solution is

ToxactX, 1, 1) = [104.43 + 4.43¢0s(0.01)].exp[ 10(x + y)] (28)
s0 that the minimum and maximum values are approximate!y 100 K and 1200 K,
respectively, which are the lower and upper limits of the temperature range in Tables
1 - 3. This function is used to generate the initial value function 7y(x, y), the Dirichlet
boundary value function Ty(x, y, 7), the Neumann boundary value function gs(x, y, 1)
function, and the source function s(x, y, f) according to

HT-05-1166, Chantasiriwan Page 4 24/7/06



Multiquadric collocation method for time-dependent heat conduction problems

[ 3 b

or . N&'T &7 diklfery [(oT

T ——kl7 —_—— —
pel )6t ( {c‘?xz +€3er dT{[Ex} +(E’vy] }

(29)
The multiquadric collocation method is then used to obtain an approximate solution,
which can be compared with the exact solution to evaluate the performance of the
method.

s(x, y, 1)

Effects of shape parameter. It is well known that the accuracy of the
multiquadric collocation method is sensitive to the shape parameter, which may be
chosen to optimize the performance of multiquadrics as an interpolating function.
Although a variable shape parameter has been suggested [13, 14], there is an evidence
that using a variable shape parameter does not always lead to a more accurate solution
than using a constant shape parameter [7]. In order to investigate effects of the shape
parameter on solution by the proposed method, variations with time of average error
are calculated for 5 values of the shape parameter (0.1, 0.11, 0.12, 0.13, and 0.14).
Coordinates of 36 interior test nodes are (0.02i —0.01, 0.02j — 0.01), where i and j run
from 1 to 6, N=49, and Ar = 0.5 s. Figure 3 shows that average error depends on the
shape parameter. It is obvious that there exists an optimum value of shape parameter
as far as accuracy is concerned. For matenial A, the optimum value is around 0.11. It
is also found that the optimum values for material B and C are 0.11 and 0.14,
respectively. Instead of proposing an algorithm for finding the optimum value, it is
proposed that the value of 0.12 is an appropriate value since this value gives a

solution that is not much less accurate than the solution at the optimum value of shape
parameter.

Convergence test. Behaviors of solutions by the multiquadric collocation
method as A and At decrease are investigated by using three values of N. With A#/A?
kept constant at 1250 s/m?, values of (A, Af) corresponding N = 25, 49, and 169 are
(0.03m, 1.125 ), (0.02 m, 0.5 s), and (0.01 m, 0.125 s), respectively. The shape
parameter is varied according to ¢/A = 6. Wong et al. [8] and Fasshauer [15] also
suggested that ¢ should be proportional to A. Results in Fig. 4 indicate that reducing A
and At in the multiquadric collocation method results in a more accurate solution.

Effects of random node arrangement. The multiquadric collocation method
does not require a uniform arrangement of nodes like the finite difference method. In
fact, a random arrangement may be preferable if it makes the process of node
placement easier. A random node arrangement results from distributing each interior
node / randomly according to (x;, y;) = (%, + diA, ¥, + dbA), where (%, ;) is the
position of node 7 in the uniform arrangement, and «; and > are random numbers
between —0.5 and 0.5. The result for the uniform arrangement is compared with
results for 5 random arrangements with N =49, Ar=0.5 s, and ¢ = 0.12. Figure 5

shows that a random node arrangement does not significantly affect the accuracy of
the solution.

Boundary solution. Boundary solution by a collocation method may be less
accurate than interior solution. Figure 6 compares average error for the 36 interior test
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nodes used to obtain Figs. 3 - 5 with average error for 6 boundary test nodes on I'; as
shown in Fig, 2. It can be seen that boundary solution is slightly less accurate than
interior solution. In addition, Fig. 6 shows variation of average error in heat flux (g4)
for 18 test nodes on [y as shown in Fig. 2.

1
Ll g YT "
€ = — D> ==
! N, Z a")..
where
Ne-tvs () 6(1) = .

J-1

and (qf”)lm is the exact heat flux at boundary location &, and time nAr. Average error

in computed heat flux is about one order of magnmitude larger than average error in
computed temperatures.

Comparison with the finite difference method. The finite difference method
can be considered as a benchmark with which meshless methods such as the
multiquadric collocation method should be compared. Although meshless methods
have an advantage over the finite difference method in that an arbitrary problem
geometry can be easily dealt with, this advantage should not mean solution accuracy
has to be compromised. Figure 7 compares the solution to the test problem by the
finite difference method having NN = 169 and A7 = 0.125 s with the solution by the
multiquadric collocation method having N = 169, Ar=0.125 s, and ¢ = 0.06.
Coordinates of the 121 test nodes used for computing both solutions are (0.017, 0.01)),
where 7 and j run from | to 11. It is evident that both methods yield solutions of
comparable accuracy. It 1s interesting to note, however, that comparison performed
using 3.0 GHz Pentium 4 CPU indicated that the finite difference method was a little
faster because it used less CPU time {116.95 seconds) than the multiquadric
collocation method (134.55 seconds).

Conclusions

Heat conduction problems in materials of which thermal properties are
temperature-dependent can be solved by the multiguadric collocation method. Results
show that the shape parameter of multiquadrics affects the accuracy of the solution. A
value of the shape parameter that yields solutions of satisfactory accuracy is
suggested. In addition, it is shown that the multiquadric collocation method is more
accurate as grid spacing and time step decrease, a random arrangement of nodes does
not affect the accuracy of the method significantly, average error in computed heat
flux is about an order of magnitude larger than average error in computed
temperatures, and solutions by the multiquadric collocation method and the finite
difference method have comparable accuracy.

It has been accepted that meshless methods have advantages over the finite
difference method and the finite element method in their ability to deal with domains
of complex geometry without requiring mesh generation. Acceptance of these
methods depends on more testing of these methods using nonlinear time-dependent
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problems. This paper has shown that the multiquadric collocation method has the

Multiquadric collocation method for time-dependent heat conduction problems

potential to be an acceptable alternative numerical method for solving general partial
differential equations.
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Nomenclature

a = coefficient

c shape parameter

Cp heat capacity, J/(kg K)

di,dy = random numbers

k thermal conductivity, W/(m.K)

N = number of nodes

n normal coordinate or 1ime level

g = heat flux, W/m’

r = distance between two nodes, m

F = position vector of a boundary or an interior node
s = source function

T = temperature, K

! = time, s

7 = Kirchhoff transformation variable, W/m
X = horizontal coordinate, m

y = vertical coordinate, m

Greek symbols

A = grid spacing, m

Af = time step, s

o = tolerance number

€ = average error in computed temperature
€y = average error in computed heat flux
¢ = multiquadrics

I = Dirichlet boundary

I = Neumann boundary

¥ = reciprocal of thermal diffusivity, s/m’
8 relaxation parameter

P = density, kg/m’

Q = domain

g = position vector of a test node
Subscripts

0 = initial value

b = boundary

i = position index or interior

] = position index

r reference

1 = test
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Superscript

H

= time index
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Multiguadric collocation method for time-dependent heat conduction problems

TABLE CAPTIONS

Thermal properties of material A
Thermal properties of material B
Thermal properties of material C

FIGURE CAPTIONS

Variations of the reciprocal of thermal diffusivities of materials A, B,
and C with Kirchhoff transformation variable.

Domain of test problem is a 0.12 m x 0.12 m square. The left side is
the Neumann boundary, and the other three sides are the Dirichlet
boundary. Black circles indicate locations of 24 boundary test nodes.
Variations with time of average error for 36 interior test nodes
corresponding to different shape parameters of multiquadrics.
Variations with time of average error for 36 interior test nodes
corresponding to different grid spacings and time steps.

Variations with time of average error for 36 interior test nodes
corresponding to different node arrangements. The solid line represents
the uniform arrangement, whereas five other lines represent five
random arrangements.

Comparison of average error in computed temperatures for 36 interior
test nodes, average error in computed temperatures for 6 boundary test
nodes, and average error in computed heat flux for 18 boundary test
nodes.

Comparison of average errors for 121 interior test nodes by the
multiquadric collocation method (MCM) and the finite difference
method (FDM).
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Table 1

T (K) p (kg.m™) k(W.m'K") c(Jkg' K
100 19300 208 87

200 19300 186 122

400 19300 159 137

600 19300 137 142

800 19300 125 145
1000 19300 118 148
1200 19300 113 152

Table 2
I'(K) p (kgm™) k(Wm' K" e (TkgTKT
100 6570 33. 205
200 6570 25.2 264
400 6570 21.6 300
600 6570 20.7 322
800 6570 21.6 342
1000 6570 23.7 362
1200 6570 , 26 344
Table 3

T (K) p (kgm>) k(WmTKH c (J kg™ KT
100 5000 90 420
200 5000 100 400
400 5000 120 360
600 5000 140 320
800 5000 160 280
1000 5000 180 240

1200 5000 200 200
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Figure 4
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Figure 7

0.004

0.003

0.002

0.001

O L L ] 1 I 1 L A i I ] 1 1 L l | L 1 L l L 1 1 L !

100 200 300 400 500
t(s)

HT-05-1166, Chantasiriwan Page 24 1/5/06



[ INME 1806|| (rroo vvee_com ' ED: Kavya I

np- 1-14 {col fig - Nil} |

INTERNATIONAL JOURNAL FOR NUMERICAL METHOQODS 1 ENGINEERING
Int. J. Numer. Meth. Engng (in press)

Published online in Wiley InterScience {www.interscience wiley.cor; DO 10 1002/nme. 1806

An alternative approach for numerical solutions of the
Navier—Stokes equations

S. Chantasiriwan™ ¥

Faculty of Engineering, Thammasat University, Rangsit Campus, Kidong Luang, Pathvm Thani 12121, Thailand

SUMMARY

Conventional approaches for solving the Navier—Stokes equztions of inccrapressible fluid dynamics are
the primitive-variable approach and the vertizity—velocity apjroach. In this paper. an alternative approach
is presented. In this approach, pressure and one of the velocity components are eiiminated from the
governing equations. The result is one higher-order partial ditferaatial equation wit: one unknown for
two-dimensional problems or two higher-order partial differential equatior: with two unknowns for three-
dimensional problems. A meshless collocation method based on radiz’ basis functions for solving the
Navier-Stokes equations using this approach is presented. The propose.t method is used to solve a two-
and a three-dimensional test problem of which exact solution- cie known. Ir is found thai, with appropriate
values of the method parameters, solutions of satisfactory accuracy can be obtuned. Copyright © 2006
John Wiley & Sons, Ltd.

Received | December 2005; Revised 17 May 2006; Accepted 19 May 2606

KEY WORDS: Navier-Stokes; meshless; radial basis function: multiquadrics

1. INTRODUCTION

The incompressible Navier—Stokes equations are coupled rartial diderential equations of pressure
and velocity components. The two most popular approaches {or solving these equations are
the primitive-variable approach and the vorticity—velocizy approach [1]. [n the primitive-variable
approach, the Navier—Stokes equations are to be sol2d for primitive variables (pressure and
velocity components). The number of equations is three and four for tw- an? three-dimensional
problems, respectively. Imposition of boundary conditions in this anproach is quite straightforward.
The vorticity—velocity approach requires the transformatica of the Navier-Stokes equations into
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equations of derived variables (stream function and vortizity components). Pressure and velocity
components can be easily determined once these derived variables are known. An aavantage of
solving the transformed equations is that there are two and three equations for two- and three-
dimensional problems, respectively, which are fewer than the number of equations for correspond-
ing problems in the primitive-variable approach. However, imposition of boundary conditions in
the vorticity—velocity approach may require substantial effort, especially for three-dimensional
problems, which is a major disadvantage of this strategy.

For two-dimensional problems, there is only one vorticity component, and the vorticity—velocity
approach is generally known as the vorticity-streamn function approach. Two equations of vorticity
and stream function can be reduced to a fourth-order partial differential equation of stream function
[2]. This implies that it should be possible to reduce the {our Navier—Stokes equations for three-
dimensional problems to two equations of two variabies. Unfortunately, the vorticity—velocity
approach does not allow a straighiforward reduction of ecuations.

In this paper, an alternative approach for solving the incompressible Navier—Stokes equations
is proposed. This approach reduces the number of the Navier-Stokes equations for two- and
three-dimensional problems by two without requiring the transformation of the Navier-Stokes
equations into equations of derived variables like the vorticity-velocity approach. The number
of equations is reduced by eliminating pressure and one of the velocity components from the
governing equations. As a result, there is only one equation for two-dimensional problems and
two equations for three-dimensional problems. Unlike the vorticity—velocity approach, imposition
of boundary conditions in the proposed approach is simiple because variables to be solved for are
still primitive variables. Therefore, this approach has advantages over both the primitive-variable
approach and the vorticity—velocity approach. The following sections give detaiis of this approach,
a collocation method using this approach, and numerical results of using this methed to solve
problems with known exact solutions.

2. REDUCTION OF EQUATIONS

The two-dimensional incompressible Navier—-Stokes equztions are

Ju " dut 1 dp n & + &u )
U—t V—= =4 V| =+ —
&x oy p 6x e
v v 1 ép Py v
(—+v—=—tv| 5+ — 2
“ax T Ve p oy (f7.‘\.'2 + E_v'—’) @
fu  dv .
— 4+ =—=0 (3)
dx  dy

Elimination of p from Equations (1) and (2) results in

y fu _631) +a 82:1_ v _y & u +63u_63v_ & -0 @
oxdy ox? dv?  Oxdy a2y Ay 8x dxav?)
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Next, Equation (3) is used to express v in terms of u.

ou
=— | —gd 5
v . ¥ (5

The incompressible three-dimensional Navier—Stokes equations ae

ﬁu Gy au L au _l@_p v (:.‘311 é 4 & u )
61 Jy 57 p Ox \ e U '
v v v 10p e @e e
22 £ iy 7
TR TYET e ( Tzt a~2) @
S an dw 1ép oy { w N Py w ®)
U— + v— —————
ox dy 0z dz ( fxT 0 &y 822 '
on f‘v dw
&g 9
P + = (9

Elimination of p from Equations (6) and (7) results in

Fu v e Fu v St qu v + ou Ju N Jv u L dw Cu
u _—— y| —— —_— —_———t———_——
dx &y dx? dy?  dx oy dyd: dxdz cvéx  dydy oy iz

udv dvdv Owdv Fu Pu Tu v P Py
—————————— et e aaE T ) =0 (0
dx2dy 4y £viz? ox3 Bx ay®  (xdz?

dxéx dxdy Ox dz

Elimination of p from Equations (7) and (&) results in

v Fw N v Fw + v Fw + du dv + dv v Low dw av
u — v — w| ——— PRSI G
fxdz oy dydz  dy? 02 éydz)  dréx 0o by 0z oz

_ﬁu@w Bvr}w_ﬁwﬁ‘w ) P &v 7(‘311 Fw 76311) Fw —0(11)
oz oy e i oxloy oyd évaz)

Next, Equation (9) is used to express w in terms of u and v.

Ju dv
p=— | (& 4+ 2Z2) a:
u f(ax + ay) (12)

It can be seen that a two-dimensional problem has ocly one equation and one unknown (i),
and a three-dimensional problem has only two equations and two unknowns (u and v). As an
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expense, the highest differential order of the reduced Navier-Stokes equations increases by one.
Appropriate methods for solving these equations are collocation methods.

3. BASIS FUNCTIONS

In order to solve Equation (4) for two-dimensional probiems or Equations (10) and (11) for three-
dimensional problems, velocity components are expressed as linear combinations of basis functions.

Let there be N collocation points. For two-dimensional problems, if the velocity component « is
approximated by

Ry
w(x, yy= 3 a;d(x, ¥, x:. vj) (13)

j=1
the approximation for the velocity component v can be obtained from Equation (5):

N

vix, ¥)= 3 ajPlx, v, x,.¥)) {14)
i=1
where
fats)
kb(x,y-xj,yj)=—jE;(x,,\’.-xnyj)dy (15)

Hence, there are only N unknown coefficients that can be determined by a coilocation method.

Similarly, for three-dimensional problems, if the velocity components # and v are approximated
by

N
ux,y,2)= > b;d(x,y,2.%;,¥;,2;) (16)
j=1
N
vz, ¥, 2)= 3, ¢;P(x, ¥, 2. X}, ¥j, 2) (17)
Jj=1

the approximation for the velocity component w can be obtained from Equation (12):

N N
wlx,y, )= 3 bjylx,y,2,x;,¥;,2;) + 2. ¢;lx, vy, 5, 55, ¥/, 75) (18)
j:l j:l
where
d¢
(X, ¥, 2, X5, ¥j,2j)=— b;(x.,\',z,xbyj,z;)d: (19)
. d
{x, v, 2, x5, y5,25)=— ;,3;(-\',;\‘,?., Xj,¥j,2;)dz 20)

Hence, there are only 2N unknown coefficients that can be determined by a coliocation method.

Copyright © 2006 John Wiley & Sons, Ltd. Int. S Numer. Meth. Engng (in press)
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lu order to generate N linearly independent basis functions in Equations (133, (16) and (17), 1t
15 convenient to ase radial basis functions. A radial basis function is a function that depends on
the distance between the point where the function is to be evaluated and a reference point. Radial
basis functions have been used for interpolating multivariate data and solving partial differential
equations. Radial basis functions that are suitable for solving higher-order partial differential
equations like Equations (4}, (10) and (11) should be infinitely differentiable. The most commonly
used radial basis functions are

Multiquadrics; ¢(r) = Ny
Thin-plate splines: ¢(r) = 2 n(r)
Gaussians: ¢(r) = exp{—cr?)

Inverse multiquadrics: ¢(r)=

1
V42

In addition, there is a special class of radial basis functions known as fundamental solutions,
which satisfy homogeneous differential equations of certain types {3.4]. Unfortunately, such
fundamental solutions are not known for most non-linear differential equations including the
Navier-Stokes equations.

4. COLLOCATION METHOD

In recemt decades, different collocation methods based on radial basis functions have been devel-
oped. Examples of these methods are the Kansa method [5], the method of fundamental solutions
[6], the boundary knot method {7], the boundary particle method [8], etc. The Kansa method [5]
has successfully been tested with a varety of linear and non-linear partial differential equations
{9-14]. The collocation method used in this study is a variation of the Kansa method. Previously,
the two-dimensional Navier—Stokes equations have been solved in the varticity--velocity approach
[15, 16] by collocation methods that use radial basis functions. As mentioned earlier, the devel-
opment of the vorticity—velocity approach to solve the three-dimensional Navier-Stokes equations
is not quite straightforward. Therefore, the primitive-variable approach has been resorted to in
order to solve the three-dimensional Navier—Stokes eguations by a collocatior. method [17]. In
this section, the collocation method for solving the two- and three-dimensional Navier-Stokes
equations in the proposed alternative approach is described. The collocation method is known as
the multiquadric collocation method with additional collocation at the boundary. This method was
used by Chantasiriwan to solve linear partial differential equations [18], and found to give more
accurate solutions than the standard multiquadric collocation method that was used by Kansa [5).

4.1. Bwo-dimensional problem

Assume that there are N collocation nodes, divided into N; interior nodes (indexed byi=1,2, ...,
N;) and N, boundary nodes (indexed by i =N; + L, N; + 2, .... N). The velocity components u«,
v and their derivatives at the kth iteration are approximated as

Np

N :
Wi ny=3% aj-""cﬁ(x, Yo Xj, VO + Y aﬁ-ﬁNé(x,y,xHN,-, vian;,d) (21
=1 j=1

Copyright € 2006 John Wiley & Sons, Lid. Int. J Numer. Meth. Engng (in press)
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I+ . -
P ﬂ—ml{u‘.)( ) % * a! md) , :
X, v)= a., —— (X, Vv, X;,¥;.C
PXI ay'" =1 Foax! cym A
Np ~f+m
0 € ¢ .
+ Zl aj+N Ayl dym {x, ¥ XNy Yy +Nis d) (22)
i= A0

) N . Np .
pW e, Vi=3 a}“l‘l}(x, Vo Xi, ¥+ Y a}’:Ngb(x, VXN Yjan, d) 23

I+m k) N ~+m
a7 w €W
— &, V)= a; ———x, y,x;,¥;,¢
ax! aym( - jgl byt cym AR )
Np ~f
k) : lp Cne v e e N o)
+J§] ajy e P (x, y.xj_~n. ¥jan,. d) 24y
where
dx, vy, x;, y;,0)= \/(x P+ (y v+ (25)
W, y, xj, yj,o)=—(x —x;3In{2¢{x, v, x;, yj. ) + 2(y — y;1] (26)

and ¢ # d. For the purpose of iterative determination of N + Np unknown coefficients al.“,
non-linear terms in Equation (4) are linearized by the scheme proposed by Ferziger and Peric [119].

For example,

2 (k) 2k 22 (k—1) 2 k=11
w0 u7 _ w-nH Ll _-nfu

- = (27
ox Oy ox d'y éx 8y ax iy )
After linearization, Equation (4) represents N equations for (x. y)=(x;. w) (i=1,2,..., N).
Boundary conditions for # and v yield 2N, more equations. Therefore, the resulting system of
equations can be solved by a least-square method because there are more equations than unknowns.

Initially, let afim = (). The iteration process is continued until the convergence criterion a.e satisfied:
. k1)
1 N !
—3 |1~ fT <107° (28)
Nf i=l ff

where f represents a velocity component.

4.2, Three-dimensional problem

The velocity components #, v, w and their derivatives at the kth iteration are approximated as
N
& tk
WWix,y, 2= _Zl a; ‘d(x, v, 2. x5, ¥ 27, €)
j:

Copyright © 2006 John Wiley & Sons, Ltd, Int. J. Numer. Merhr. Engng (in press)
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N.') &)
T2 NP Y T NN YN, 2N ) 29
=1
AfAmn {+m—+n
Lt (x,v,2)= % a‘-“—-———({) (x.y. 2, X7, v, 2,€)
fxt gymgzn T Ty axbeym o T T frodrm
Niy - Tlﬂ+ll¢
+J§1 aj_er(x. ¥o T XN VikN; LN d) (30)
k il (k)
vy D= 3 bl vz xg, vy 2500
j=1
Nh (L)
+2. by NP, ¥ XN YN DN, ) 3N
i=0
Sfbmbn N ~l+mn
{ ¥ -
Ty 0=2 b(-“?'i_«_q'(x- Yi T X Vi), 0)
Ox a}‘m Oz = I x cym az"
Ny 6I+m+n¢'
(k) ’ o o e ;. -
+J§1 Pisn dx! gvm gzn (X, ¥ 20 Xjtny s Vit N> 2itN;» 4) (32)
N
. x)
w®n,y, 2) = _Zlaj- 2, ¥, 2, X, ¥, 24, 0)
j:
Moo
+ Z aj+NX(x! ¥. 2, xj-rN,‘a y_f‘;'N,' . :-_l'+N,' » d)
j=1
Now
+zlbj é(xs Y:Z.xj, _\_,'1 -:-’-jyc)
J:
Ne @
+ _Zl b QX ¥, 2o XN YN 2 ny ) (33)
J:
al+m+nw(k) N ") af%—m-.‘-n '
BT ayn e T L @ G O B ¥y €)
N w I+m+n
X T g O Y e i b )
Copyright € 2006 John Wiley & Sons, Lid. int. L Numer. Meth. Engng (in press)

DOL: 10.1602/ame



NME 1806

g 5. CHANTASIRIWAN

N ! al+m+uu
+z b“) 4

e (X V.2 X Y T
o 7 oxt gy 6:”(L}”"x”hw’”c)

al+m+nz

Np
(13] > . -
L T (0 S i i T ) (39
J: B ~

where

P, ¥, 2, X, ¥ 2. 0= @ =Y (=¥ (- )2+ (35)
ey, 2,0 x5, v, 25,0 = —(x —x;) In[2¢(x, y. 2, x5, ¥, 75, €) + 2(z ~ z;)] (36)

s vz x, v g0 =—(y —y)In2¢x, v, z, x5, ¥5. 25, €+ 2(2 — z)] (37

and ¢ # d. For the purpose of iterative determination of 2(N + N,) unknown coefficients aj.“
and bj-“ , non-linear terms in Equations (10) and (11) are linearized by a scheme proposed by
Ferziger and Peric [19]. After hinearization, Equations (10) and (11) represent 2N equations
for (v, y,2)=(x;,¥,2) (i=1.2,..., N). Boundary conditions for », v and w yield 3N, more
equations. Therefore, the resulting system of equations can be solved by a least-square method
because there are more equations than unknowns. Initially, let a® =" = 0. The iteration process
is continued until the convergence criterion (Equation (28)) is satisfied.

5. RESULTS AND DISCUSSION

Two test problems having Dirichlet boundary corditions are considered. Let (;, n;) be co-ordirates
of a test node in the two-dimensional test problem and (£;, #;, ;) be co-ordinates of a test node in
the three-dimenstonal test problem. Velocity components at the test node can bz calculated from
Equations (13) and (14) or Equations (16)—(18) after coefficients have been determined. If the
exact solutions are known, errors can be computed from

N o) — R}
Ef — Zi:l [fnUl'I"IJr(gn Vh) fexaclfé; 1 ﬂl)] (38)
Zi=’1 [fcxacl(fis i?i)]"

or

Z,{\L [ foumee (€ 15 1) — Sesacl&is i, 7)1

Sf = (39)
N, 2
Zj:’] [fexact(éi 1 f?! » ?,)]-
where N, is the number of test nodes, and f represents velocity component u, v or w.
Copyright € 2006 John Wiley & Sons, Ltd. int. J. Numer. Meth. Engng (in press)
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5.1. Two-dimensional test problem

The domain for the two-dimensional test probleniis a 1 x 1 square. There are 64 1051 nodes located

at (% + l_‘6” %4— TIE) with integers { and j running from —4 to 3. N collocation nodes are uniformty
distributed in the domain, forming a square grid. Exact solutions for this problem are

Heyact (X, ¥)= E)'“T'” + Av 40y

Vexact (X, ¥) = =¥ 4 iy @n

From these exact solutions, boundary coanditions are geverated, and numerical solutions are deter-
mined by the proposed method. In the following resulis, it is shown how ¢, and ¢, vary with the
shape parameters (¢ and «) and other paramelters.

Figure 1 shows influences of the shape parameters ¢ and ¢ on ¢, and &, for the case in which
A=—1, v=1, and N =81. Solutions are more accurate as ¢ is increased. Whzn ¢ is too large,
however, it is found that no converged solution can be found. A large value of ¢ is associated
with high condition number of the coefficient matrix of the system of linear ec sations. Since the
computing machine used in this study has a limited precision, an ift-conditioned system of linear
equations cannot be solved with high precision. This may be a reason why the proposed method
does not converge when a certain value of ¢ is reached. In addition. Figure 1 also shows that
solutions are relatively insensitive to the shape parameter d between ¢ + 0.1 and ¢ + 0.2.

Figure 2 compares g, and &, of solutions for three values of N {49,81. 121} with A= —1 and
v=1. The shape parameter d is varied with N so that the difference between & and ¢ scales with
grid spacing. The range of the shape parameter ¢ in which a converged solution can be obtained
is narrower as N is increased. An interesting conscquence of this is that solutions with a larger

€, £,
107 107 5 o
L d=c+0.1 L e - d=c+0.1 |
————— d=c+0.15 [ T ~- - d=c+ 015
————— d=¢+0.2 ; - \-\ \\,“ i —— === d=c+02 !
:\.‘ : = b e o e K
3 %‘-7—_____‘_ 3 e T2
10 3 o N .—-""-.__ 10 g‘ “::f\g_;\_
\\ o ~ F TR
~ - —— i
.._____q:?‘ \\ \‘“.-.-.__
-\" ) \\ .
10°} S 107
E “-'.\::__ P r
[ T e,
,,,.1..1.l.-‘.l..L*l.;__k_.l..Lul..:.-...a._.;_.} P P N (] P B PN NP i
¢4 0.5 0.6 0.7 X.] 0.9 1 0.4 0.5 0.% 0.7 0.8 0.9 1
(a) C {5 c

Figure 1. Variations of errors of velocity compenents (¢, and «,) with the shape param-
eters ¢ and d for the two-dimensional test problem having parameters 1= —1 and v=1.
The number of collocation nodes (N} is 81.

Copyright © 2006 John Wiley & Sons, Lid. Int. J. Numer. Meth. Engng (in press)
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\\ \\ \\ ~
\\_ HES . \\ %
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Figure 2. Variations of errors of velocity components (g, and g,) with the shape parameters ¢ and the
number of collocation nodes (N) for the two-dimensional test problem having parawmeters A= —1 and
v= . The shape parameter 4 equais ¢ + 0.2 for N =49, ¢ + 0.15 for N =81, and ~ + 0.12 for N = 121.

€, .
"k he-ly =1 T i
we o I A=-2v =0l L A=-2y =41

S A=-3, v =061 £ \\\ . e _R=-3,y =0
e T Eyo TS T
N T _ : N -
-3 \\ T N i T ‘\.
g T 107 = [
E — N . : e
\-“‘ - \“‘_ l: \::\\
™ T R y S
T = H e
-+ \‘Aq__\- - -~ . E .
107 \"\\ = 104;'
: e
F - g
L P T e [ TN SN SRS SR | o
¢4 0.5 0.6 0.7 .8 4.9 1 0.4 0.5 0.6 o o5 0.0

{a) 'y (b ¢

Figure 3. Varations of errors of velocity components (&, and &,) with the shape parameter ¢ for the
two-dimensional test problem having three sets of parameters: (4, v) ={(—1, 1), {=2, 0.1}, and (-3, 0.01).
The number of collocation nodes (V) is 81, and the shape paremeter d =c¢ + 0.15.

number of nodes and smaller values of shape parameters may not be more accurate than solutions
with a smaller number of nodes and larger values of shape parameters.

The proposed method is also tested with cases in which A and v are smaller than —1 and 1,
respectively. These cases present a stiffer challenge because their exact solutions are less smooth
than the exact solution for which 2= —1, v=1. It can be seen from Figure 3 that the proposed
method can solve the test problem in which (4, v) = (—2.0.1) and {—3, 0.01). It is found, however,
the method requires nmiore iterations to converge and the converged solution is less accurate as 4
and v become smaller.

Copyright € 2006 John Wiley & Sons, Lid. Int. J. Numer. Meth. Engng (in press)
DOI: 10.1002/ame
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Figure 4. Variations of errors of velocity components (z,, ,, and &,,) with the shape param-
eters ¢ and d for the three-dimensional test problem having parameters A=-1{ and v=1.
The number of collocation nodes (N) 1s 729,

5.2. Three-dimensional test problem

The domain for the three-dimensional test problem is a 1 x 1 x 1 cube. There are 512 test nodes
located at (% + % -é + Tlﬁ % + 1]—6) with integers i, j and k running from —4 to 3. N collocation

nodes are uniformly distributed in the domain, forming a cube grid. Exact solutions for this problem
are

Hexact (X, ¥, 2) = 2623 4 gy (42)
Vexaar (X, ¥, 7) = —e XHYTI 4 2y (43)
Wenaer(X. ¥, 2) = —eAEHYT 4y (44)
Capyright € 2006 John Wiley & Sons, Lid. Int. J. Numer. Meth, Engng (in press)
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Figure 5. Variations of errors of velocity components (&, £, and &,,) with the shape parameters

¢ and the number of collocation nodes (N) for the two-dimensional test problem having

parameters £ = —I and v= 1. The shape parameter d equals ¢ + 0.2 for N =343, ¢ + 0.15
for N =729, and ¢+ 0.12 for N =1331.

From these exact solutions, boundary conditions are generated, and numerical solutions are deter-
mined by using the proposed method. In the following results, it is shown how ¢,, g, and ¢, vary
with the shape parameter ¢ and other parameters.

Results for the three-dimensional test problem are similar to those for the two-dimensional
test problem. Figure 4 shows that a larger value of the shape parameter ¢ leads to more ac-
curate solutions, but the method may not converge if ¢ is too large. Figure 5 compares errors
of solutions obtained with N =343, 729, and 1331. It can be seen that the range of the shape
parameter ¢ for which the proposed method converges is narrower as N is increased. Figure 6
compares errors of solutions for which (4, v)=(--1, 1}, (—2,0.1) and (-3, 0.01). The method

is more difficult to converge, and the converged solution is less accurate as A and v become
smaller.

Copyright € 2006 John Wilcy & Sons, Lid. Int. I Numer. Meth. Engng {in press)
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Figure 6. Variations of errors of velocity components (&, £, and £,,) with the shape parame.er ¢ for the
three-dimensional test problem having three sets of parameters: (4, v) =(—"1, 1), (=2,0.1), and (-3, 0.01).
The number of collocation nodes (V) is 729, and the shape parameter d = ¢ + 0.15.

6. CONCLUSIONS

This paper presents an alternative approach for solving the Navier-Stokes equations, in which
pressure and one of the velocity components are eliminated, and the governing equations are reduced
to higher-order partial differential equations of the remaining velocity components. The resulting
equations are solved by a meshless collocation method that uses multiquadrizs and associated
functions as basis functions. Inspection of solutions to two test problerus by the proposed method
reveals that shape parameters of multiquadrics influence the accuracy of solutions. There appears
to be an upper limit to values of shape parameters for which the method is capable of providing
a converged solution. This limit decreases as the number of collocation nodes increases.
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Abstract. The stationary three-dimensional Navier-Stokes equations consisting of four equa-
tions and four unknowns have been solved by conventional methods using the primitive-variable
approach. By getting rid of pressure and one of the velocity components, the Navier-Stokes
equations can be reduced to two higher-order partial differential equations with the remaining
two velocity components as the only unknowns. In this paper, a meshless method based on a ra-
dial basis function, known as multiquadrics, is proposed for solving such equations. Unknown
velocity components are approximated as linear combinations of multiquadrics centered at do-
main nodes and boundary nodes. Unknown coefficients are determined by an iterative scheme.
The proposed method is used to solve a test problem, for which exact solution is known. It is
SJound that the number of iterations required for a converged solution and the accuracy of the
solution depend on the shape parameter of multiquadrics. A small value of the shape parameter
results in a low number of required iterations, but the resulting solution may not be accurate.

On the other hand, a large value of the shape parameter can yield a very accurate solution
provided that a converged solution is obtained.



Somchart Chantasiriwan

1 INTRODUCTION

The incompressible Navier-Stokes equations are coupled partial differential equations of
pressure and velocity components. The two most popular approaches for solving these equa-
tions are the primitive-variable approach and the vorticity-velocity approach [1]. In the primitive-
variable approach, the Navier-stokes equations are solved for primitive variables (pressure and
velocity components). Imposition of boundary conditions in this approach is quite straightfor-
ward. The vorticity-velocity approach requires the transformation of the Navier-Stokes equa-
tions into equations of derived variables (vorticity components and velocity potential). Pressure
and velocity components can be easily determined once these derived variables are known. An
advantage of solving the transformed equations is that there are fewer equations to be solved.
However, imposition of boundary conditions in the vorticity-velocity approach may require sub-
stantial effort, especially for three-dimensional problems, which is an important disadvantage
of this approach.

In this paper, an alternative approach for solving the three-dimensional Navier-Stokes equa-
tions is proposed. This approach reduces the number of the Navier-Stokes equations by two
without requiring the transformation of the Navier-Stokes equations into equations of derived
variables like the vorticity-velocity approach. The number of equations is reduced by elimi-
nating pressure and one of the velocity components from the governing equations. As a result,
there are only two equations left. Unlike the vorticity-velocity approach, imposition of bound-
ary conditions in the proposed approach is simple because variables to be solved for are still
primitive variables. Therefore, this approach has advantages over both the primitive-variable
approach and the vorticity-velocity approach. The following sections give details of this ap-
proach, a collocation method using this approach, and numerical results of using this method to
solve a test problem with known exact solution.

2 REDUCTION OF EQUATIONS

The three-dimensional Navier-Stokes equations are

u;a-l-[i +'t=—a—‘l£ -I—‘;'th’— —}»?}3 v (a"'u + — Fu + @) ()
ox dy Oz pox ox?  dy?r  9:2
u?j—’ +'u£)—r—l+wggw—~l@+u (@%—@-i-@) (2)
Oz My 0z p Oy ax?  yr o 0z2 ’
ow S S 1dp Fw FPw  Fw
Ud_'r+ By +w—z = WEE (6 - + a0 + 3:2) (3)
% + 3—; + %T-ii =0 (4)
Elimination of p from Equations (1) and (2) results in
Fu O v 9% 0u O
v (59‘5?; B ﬁ) v (d_y? a an:ay) w (m - @_153_) *
auaquanaqu@@_@gﬂ_@au @@_
Oydr Oydy OyoO: Orxdr Oxdy Ox0z
( Fu C}?' w  Pu P P & )
— + t+t S T S 5 =5 3 =0 (5)
Oy | By Oyd2 B3 Ordy?  Dxd:?
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Elimination of p from Equations (2) and (3) results in
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(6)

Next, Equation (4) is used to express w in terms of v and v.

_ / (@tf c?zv) D

It can be seen that the problem has only two equations and two unknowns (. and ). In exchange
for the reduction of the number of equations, the resulting governing equations are now higher-
order nonlinear partial differential equations. An appropriate method for solving these equations
15 a collocation method.

3 COLLOCATION METHOD

Collocation methods based on radial bagis functions were popularized by Kansa [2]. They
have been used to solve a variety of linear and nonlinear partial differential equations [3, 4,
5, 6, 7, 8]. Previously, the two-dimensional Navier-Stokes equations have been solved in
the vorticity-velocity approach [9, 10] by collocation methods that use radial basis functions.
As mentioned earlier, the development of the vorticity-velocity approach to solve the three-
dimensional Navier-Stokes equations is not quite straightforward. Therefore, the primitive-
variable approach has been resorted to in order to solve the three-dimensional Navier-Stokes
equations by a collocation method [11]. In this section, the collocation method for solving the
three-dimensional Navier-Stokes equations is described. The collocation method is known as
the multiquadric collocation method with additional collocation at the boundary. This method
was used by Chantasiriwan to solve linear partial differential equations [12], and found to give
more accurate solutions than the standard multiquadric collocation method that was used by
Kansa [2].

Assume that there are N nodes, divided into N, boundary nodes (indexedby i =1, 2, ..., Np)
and [V, interior nodes {indexed by i = N, + 1, N, + 2, ..., N). The first derivatives of the velocity
components u and v at the k' iteration are approximated as

()u k)N
- Z G(k)qs(r Yy ST, Uy, 25, F) + ZGE,‘:_)N(,b(T-, Y, 2,05, Y4, 55, d‘) (8)
j=1 i=1
au{k) N oy Ny : ‘
_aT = Z b;k)(p(:t, Y, 2, L5, Y4, 25, C) + Z b;’_‘l,)N@(:r:, Yy 5, Ty Yo T4, ) )
j=1 =1
where
Ay, 2,05, 25,00 = \/(.1; —a Py -y (e =52+ (10)

The shape parameters « and d of the multiquadrics must not be equal so that basis functions in
Eq. (8) and (9} are linearly independent. It will be shown that their values affect the accuracy

3



Somchart Chantasiriwan

of the solution. Insert Eqs. (8) and (9) into Eq. (4), and rearrange the result..

gk N *) Ny (k)
5= = _Za]‘ @(-T,‘y, zamj1yj1zj1c)‘Zaj—{-i\'(s‘)(g;!ya <y mjayjazjad)
“ J:l ]=J.
(R S (k)
—Zb_j (b(x!ya’:amjayjszjac) _ij-i-h'é(m:y': Z,mj,yj,zj,d) (11)
j=1 i1

Approximation of the velocity components and other partial derivatives of the velocity compo-
nents can be obtained since ¢ can be easily integrated and differentiated. For the purpose of
iterative determination of N + N, unknown coefficients a.g-k) ard bgk) , nonlinear terms in Egs.
(5) and (6) are lineartzed by a scheme proposed by Ferziger and Peric [13]. For example,
2, (k 52, (k a2, (k- 32, (k-
.U(k>a u @ g PutD Y

= U (23 —_— — U
Ordy Oy Oz dy dx Oy
After linearization, Egs. (5) and (6) represent 2V equations for (x,y, 2z} = (7, v, ) (1=
1, 2, ..., N). Boundary conditions for «, v and w yield 3N, more equations. Therefore, the
resulting system of equations can be solved by the method of least square because there are
more equations than unknowns. Initially, let a!” = b;m = (). The iteration process is continued

7
until the following convergence criterion is satisfied:

T

1 N i) E )
-y (1———-}“)) <1077 _ (13)

(12)

i =Ny +1

where f represents a velocity component.

4 RESULTS AND DISCUSSION

The domain for the three-dimensional test problemisa | x 1 x 1 cube. There are 512 test
nodes located at (§ + 15,3 + 75.5 + 75) with integers i, j and & running from -4 to 3. There
are 729 nodes uniformly distributed in the domain, forming a cube grid. Exact solution for this
problem is

Uoract(T, Y, 2) = v + 26/THF3 (14)
Ut’.‘.ta(‘t('?:': i, :) =V - G(I+y+Z) (15)
Uf'e:mct(m1 Y, ‘:) = p gttt (16)

From this exact solution; boundary condition is generated, and numerical solution is determined
‘by using the proposed method. In the following results, it is shown how ¢, ¢, and ¢,, vary with
the shape parameters ¢ and d.

The test problem having Dirichlet boundary condition is considered. Let (&;,7;, v} be coor-
dinates of a test node. Velocity components at the test node can be calculated after coefficients
have been determined. Subsequently, errors are computed from

N
Z {fnumer(&ia s 'Yi) - fe.‘mct (&, iy i ”2
=1

€ = (17)

N .
Z [fc:cact (51, T];‘, ﬁ/i)]z
i=1
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Figure 1: Variation of error of velocity component ¢, with the shape parameters c and .
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Figure 2: Variation of error of velocity component €, with the shape parameters ¢ and d.

where V¢ is the number of test nodes, and f represents velocity component w, v or w.
Figures 1, 2, and 3 show influences of the shape parameters ¢ and d on €,, €,, and ¢,,
respectively, for v = 1.© Solution 1s more accurate as ¢ is increased. When ¢ is too large,
however, it is found that no converged solution can be found. A large value of ¢ is associated
with high condition number of the coefficient matrix of the system of linear equations. Since
the computing machine used in this study has a limited precision, an ill-conditioned system of
linear equations cannot be solved with high precision. This may be a reason why the proposed
method does not converge when a certain value of ¢ is reached. In addition, Figs. 1, 2, and 3

also show that solutions are relatively insensitive to the shape parameter d between ¢ + 0.1 and
c+02.
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Figure 3: Variation of error of velocity component ¢, with the shape parameters ¢ and .

5 CONCLUSIONS

This paper presents an alternative approach for solving the three-dimenisional Navier-Stokes
equations, in which pressure and one of thp velocity components are eliminated, and the four
governing equations are reduced to two higher-order partial differential equations of the re-
maining two velocity components. The resulting equations are solved by a meshless collocation
method that uses multiquadrics and associated functions as basis functions. Inspection of the so-

lutton to a test problem by the proposed method reveals that shape parameters of multiquadrics
influence the accuracy of the solution.
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