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Abstract

Project Code : RSA 4680022
Project Title : Fixed point theorems for generalized of nonexpansive mappings.
Investigator : Assoc. Dr. Somyot Plubtieng

Project Period : August 15, 2003-August 14, 2005

In this paper we present some results on fixed point theorems of mappings of
nonexpansive, asymptotically nonexpansive, asymptotically quasi-nonexpansive, and
asymptotically nonexpansive in the intermediate sense. Firstly, we proved weak and strong
convergence theorems of three step (multi-step) iterative scheme with errors to a fixed
point for generalized of nonexpansive mappings as above mension. Moreover, we also
prove strong convergence theorem of implicit iteration process for self (nonself) mappings
of nonexpansive and asymptotically nonexpansive, respectively. Finally, we proved the
rahdom fixed point theorems for nonexpansive random operators and multi-valued

nonexpansive random operators.

Keywords : Fixed point theorem, Three-step iteration, implicit iteration, Random operators,

Random fixed point.
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nquuwamﬂw (Fixed point theorem) mmu‘.lumqwuummmwﬁmmmn'lunﬁuﬂﬂ ﬂs"qnm’fa
unrinadamanioay 1ua1maw| msﬁmsmu'lmsamamqvquwav\mwuuﬂmummaL{Iu M
dowlilfiveneiasvinldtedin T Adennisatos K vans? 1pfivime X i K ua@m\m (m:.ﬂmzuaﬂ
a lu K il T(a) = o) noujunsansiuusipfunweiiddydudunntull as. 1922 Banach
TERgattndh (X, d) dwi3gfwednudysel wag T : X — X iu contraction (fufla asfi ¢ € (0,1)
Faitlll | T(z) - TW)|| < cllz—yl 19 z,y € X)ud %’asﬁaﬂmﬁl.ﬁmamﬁm fowludl a.a. 1930

-, Yt 1 J ] L] -
 Schauder gt K dwisadesiiliihuaaieds dufusaramnduassaneunndraalgiumia

X was T : K — K dwlafiudailaus T awiqanei uasdomlui) a.a. 1965 Browder Wfigatih
K ihwandositbidaaniedain ﬁ’qmmi‘lﬂﬁﬁﬂaummuamaunn'ﬁ'naq uniformly convex Banach
space X v.a" T : K — K \{lu nonexpansive (iuda [|T(z) ()} < flz—y| nn9 7,y € K)ud
T aziizeasit wilmnbududunlditnadamaniammunn 'nmm-iﬁm:n‘mtﬁamwm‘lﬂmﬂuﬂm

andidvnismadianai guuuin lﬂa‘lﬁﬁﬁauﬂqwqumaﬂﬂmam%’u nonexpansive mappings
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L. ednmgauamAimasmadinreni giiviwe fisewafiasigml Fixed point theorems for
generalized nonexpansive mappings.

2. Wefnmguanifimasmadianaawigluwe filuswefiaviigad Fixed point theorems for
multivalued nonexpansive mappings

3. tﬂ'aﬁnmqmauﬁ’ﬁmmmﬂcﬁmaw‘%gﬁmma fufipawoTiaziigait Random fixed point theo-
rems for (multivalued) nonexpansive random operators

4. Wadnmmsgdhoosadufliionn Tterative contraction of Mann iteration, Ishikawa iteration,
Three-siep iteration and multi-step iteration

NansIAY

L. Three-step and multi-step iteration
L1 S. Plubtieng and R. Wangkeeree, Fixed point iteration for asymptotically quasi-
nonexpansive mappings in Banach spaces,
Theorem ! Let X be a real uniformly convex Banach space, C' a nonempty closed
convex subset of X. Let T be uniformly L-Lipschitzian, completely continuous
and asymptotically quasi-nonexpansive mapping with sequence {k,}n>; such

i
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that 3°%° | k, < oo and F(T) # 0. Let xp € C and for each n > 0,

za = QT @0+ frZn + Totn
Yn = a;;Tnzn + ﬁ:;a:n + ')’:zvﬂ
Tntl = anTnyn + BnZn + Ynln,

where {tn,}, {vn} and {w, } are three bounded sequences in C and {an }, {07, }, {ca },
{8}, (B4}, ALY, {va} {74} and (¥4} are real sequences in [0, 1] which sat-
isfies the same assumptions as Lemma ?? and the additional assumption that
0 < a < an,Bn, 0, 8, < 8 <1 forsome a, 8 in (0,1). Then {2}, {yn} and
{zn} converge strongly to a fixed point of T'.

S. Plubtieng and R. Wangkeeree, Noor Iterations with error for non-Lipschitzian
mappings in Banach spaces,

Theorem 1 Let X be a real uniformly convex Banach space, C' a nonempty
closed convex subset of X. Let T be a completely continucus asymptotically
nonexpansive in the intermediate sense. Put

Gp= sup{|T"z—T"y|| - lz—yll) vO,¥n > L.
z,yeC

Let g € C and for each n > 0,

zm = T %0+ Bpn + Yatn
Yo = T zp + BhTn +7hvn
Tyl = T Yn + BnZn + YalWn,

where {an}, {al}, (@}, {Ba}, (B}, {B2). {7}, {75} and {72} are real se-
quences in [0,1] and {u,}, {vs} and {w,} are three bounded sequences in C
such that

Dont+Pntm=0p+Brtm=ai+0fi+1=1

(i) 372 Tn < 00,3701 Ta < 90,3000 Ya < 00

(i) 0 < @ < ap, o), € B < 1. Then {z,}, {yn} and {2z} converges strongly to
a fixed point of T

S. Plubtieng and R. Wangkeeree, Strong convergence theorems for multi-step
Noor iterations with errors in Banach spaces,

Let C be a nonempty subset of normed space X and let T : C — C be a
mapping. For a given ;7 € C, and a fixed m € N (N denote the set of all
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positive integers), compute the jterative sequences {x )}, {x(m)} defined by

) = aWT s, + 80z, + i Duld),
2® = o7 4 g0z, + 7Dy 2)
o = T 4 fz 42O,
x%m-—l) = aslm—l)Tnxi(im—-Z) +18$1m-1)$n +'7,§Lm"3)u${"'l),

14

where, {ul},-. { )} are bounded sequences in C' and {a(‘) } {ﬁ(‘)} {’yg)}
are appropriate real sequences in [0, 1] such that o) 4 ﬁ(l) + 'yn) = 1 for each
i€ {1,2,...,m}.

Theorem 1 Let X be a uniformly convex Banach space, C a nonempty closed
bounded convex subset of X and T : C — C be a completely continuous
asymptotically nonexpansive in the intermediate sense. Put

Gr= sup (|T"z - Tyl -z -yl vO,¥n 2 1,
z,yeC

so that 372 | Gn < oo. Let the sequence {2} be defined by (0.2) whenever
{aPy, {ﬁ(’)} (7§71 satisfies the following restrictions:

(1)a£1 +Bn +'y,(,,) =1foralli€ {1,2,..,m} and forall n > 1;

i) 2, ) < oo forall i € {1,2, ..., m}. IfO <a<o™ N oM <p<t
for all n > np, for some ng € N. Then {:r:n } converges strongly to a fixed
point of T foreach £k = 1,2,3,...,m

Theorem 2 Let X be a real uniformly convex Banach space, C'a nonempty closed
convex subset of X and T : C — C be an uniformly L-Lipschitzian, completely
continuous asymptotically quasi-nonexpansive with the sequence {rp}n>1 such
that 52 | r,, < oo and F(T) # 0. Let the sequence {z,} be defined by (0.2)
whenever {a oy, {ﬁ(‘)} {+$)y satisfies the following restrictions:

5} am +Bn, +'yn =1foralli€ {1,2,..,m} and foralln > 1;
(u)zn_lfyﬂ < oo foralli € {1,2,..,m}. If0<a<a(‘)<{3<1forall
i € {m —1,m}. Then {mg‘)} converge strongly to a fixed point of T, for each
k=1,23,....m

S. Plubtieng and R. Wangkeeree, Strong convergence theorems for three-step
iterations with errors for non-Lipschitzian nonself-mappings in Banach spaces,
Algorithm Li(Three step iterative scheme for nonself maps with errors) Let C be
a nonempty subset of normed space X. Let P : X — C be the nonexpansive
retraction of X onto C and a mapping T : € — X. For a given x5 € C,
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" compute the iteration sequences {z,},{yn} and {z,} defined by

zn, = P (af’,iT(PT)“‘lxn + Bnzn + Youn) -
Yo = P(AT(PT)" ‘20 + BpZn + Yovn)
Tny1 = P (anT(PT)n_lyn + Buzn + 'Yn'wn) )

where {an}, {0}, {00}, {Ba}, {8}, {82}, {n}, {7} and {721} are appropri-
ate real sequences in [0, 1] and {u,}, {vn} and {w,} are three bounded sequences
inC.

Theorem 1 Let X be a real uniformly convex Banach space, C' a nonempty
closed convex subset of X. Let T be an asymptotically nonexpansive in the
intermediate sense nonself mapping with nonempty fixed point set F(T). Put

Gn = sup (|T(PT)" 'z — T(PT)" 'yl — ||lz - yll} vO,vn > L.

1.5

z,yel
Let the sequence {z,} be defined by (0.2} with the following restrictions
Don+Bntm=on+fo+m=0n+tB8+m=1
(i) Dopm; Tn < 00, Y mey Tn < 00, 2 nly Yo < OO
(ili) 0 € @ < an, B, af, B, < B < 1. Then {z,} converges strongly to a fixed
point of T'.
S. Plubtieng and R. Wangkeeree Ishikawa Iteration Sequences for Asymp-
totically Quasi-Nonexpansive Nonself -Mappings with Error Members,

Let C be a nonempty closed convex subset of a real uniformly convex Banach
space X. The following iteration process is studied:

Ty €C,Zppn = P (anmn + ﬁnT(PT)n_lyn + 'Yn'un) )
Yn P (a;mn +B.T(PTY Lz, + ’ﬁlvn)

where {un}, {5} are bounded sequences in C and {a, }, {Bn}, {1}, {al }{B,}
and {+,} are sequences in [0,1] and P is a nonexpansive retraction of X onto
C.
Theorem 1 Let X be a real uniformly convex Banach space, C' a nonempty closed
convex subset of X. Let T : C — X be an asymptotically quasi-nonexpansive
nonself-mapping with sequence {k,} in [0, c0) such that 3 >° | kn < oo and
F(T) # 0. Let @1 € C,{an}, {Ba} {1} (@}, {8} and {74} be sequences
in [0,1] such that an + Bn + 7 = 1 = ol + B, + ¥, Sooo | 7n < 00 and
o1 Yr < 00. Then the sequence {z,} defined by (0.3) strongly converges to
a fixed point of T if and only if lim infy oo d(zn, F(T)) = 0, where d(z, F(T))
denote the distance of x to the set F(T'), i.e., d(z, F(T)) = infyepr d(z, ).
Theorem 2 Let X be a real uniformly convex Banach space, C a nonempty
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closed convex subset of X. Let T : C — X be an uniformly L-Lipschitzian
completely continuous and asymptotically quasi-nonexpansive nonself-mapping
with sequence {k.} in [0,c0) such that 3.°° , k, < oo and F(T) # 0. Let
z1 € C,{an}, {Bn} {m}, {an}. {B,} and {4} be sequences in [0, 1] such that
0<a<anbnayb,<B<liantfbntm=1=a,+8,+7 YoM <
oo and 377 7, < oo Then the sequence {z,} defined by (0.3) strongly
converges to a fixed point of 7T

L Inchan and S. Plubtieng, Weak and strong convergence of scheme with errors
for a finite family of nonexpansive mappings,

Let ' be a nonempty subset of normed space X and let T3,7%,...,Tn be
nonexpansive mappings of C into itself. The sequence {x,} defined by

4

z1=x€C,
z} = olTiz, + Blan + ylul,
2 = alTox), + Blan + 12 un,
., zn-—a3T3a: +ﬁ3$n+'y (1.1}

zd = odTyzd + Biz, + ylud,

Topr =l =l Tnal 1 + Bl zn + v ull \n 2 1,

.

where {al}, .., {a}, {BL}, -, {BY}, {7}, - {%Y} are sequences in [0,1]
with o}, + 8% + 4% = 1 forall i = 1,2,3,...,N and {u}}, {u2},.., {ul} are
bounded sequences in C.

Theorem 1 Let X be a uniformly convex Banach space and C be a nonempty
closed convex subset of X. Let 71,75, ..., Tn be a nonexpansive mappings of
C into itself satisfying condition (A") and {z,} be a sequence as defined in
(11) with 22 72 < ccand0 < a<al, < f < 1foralln € N and for all
t=12...,N. If F = ﬂ?’;l F(T;) # @, then {z,} converges strongly to a
common fixed point in £

Theorem 2 Let X be a uniformly convex Banach space satisfying the Opial's
condition, C its nonempty closed convex subset of X. Let 77,73,...,Ty be
nonexpansive mappings of C into itself and {z,} be a sequence defined by
(1.1) with 300 v, < v and 0 < a < af, < 8 < 1 forall n € N and for all
i=1,2,...,N. If F = ﬂﬁilF(Ti) # &, then {z,} converges weakly to a
common fixed point in F.

Theorem 3 Let C be a nonempty closed convex subset of uniformly convex
Banach space X, and let T}, T, . .., Ty nonexpansive mappings of C into itself
suchthat F = (¥, F(T}) # @. If P is a metric projection of C onto F and {z}

T v o
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is a sequence defined by (1.1) with 302, i < v and 0 < < af < f <1
forsall n € N and for all i = 1,2,..., N, then {Pz,} converges strongly to a
common fixed point in F.

S. Plubtieng, R. Punpeang and R. Wangkeeree, Weak and strong convergence
of modified Noor iterations with errors for three asymptotically nonexpansive
mappings

Let X be a normed space, C be a nonempty convex subset of X, and 11,75, T3 :
C — C be three given mappings. Then for a given ¢; € C, compute the

sequence {xn}, {yn} and {z,} by

2 = Tz, + Bazn + Yotn
Yo = o TFazn + BpZn+ Yntn
In+l = anTPyn + BnTn + wn n 21,

where {an}, {0}, {odr}, {Ba}, {801 (B}, (), (74} and {42} are real se-
quences in [0,1] with ap + Bp + T =0, + B, + ¥, = oh + B+~ =1 and
{un}, {vn}, {wn} are bounded sequences in C.

Theorem 1 Let X be a real uniformly convex Banach space, C a nonempty closed
convex subset of X. Let 17,75 and T3 be asymptotically nonexpansive self-maps
of C with sequences {rm} {r(z)} {r } respectively such that 3 o2 , 7 ) < oo
forall i = 1,2, 3 and satisfying condition (A”). Let {z,} be sequence as defined
in (0.4) and some o, 3 € (0, 1) with the following restrictions:

N0 < a<aya,al <f<1,¥n > ng for some ng € N.

(”)E 1’7'n<002n—171’1<002n 17n<°o

If F{(T1) N F(T2) N F(Ty) # 0, then {zn}, {yn}. {2n} converges strongly to a
common fixed point of 77,75 and T3. A

Theorem 2 Let X be a real uniformly convex Banach space which satisfies Opial’
s condition, and C' a nonempty closed convex subset of X. Let 77,75 and T3 be
asymptotically nonexpansive self-maps of C with sequence {r(l)} {r(z)} (¥
respectively such that 372, 7 r# < oo foralii=1,2,3. Let {za} be sequence
as defined in (0.4} and some a, § € (0, 1) with the following restrictions:

()0 < a<anal, ol <B<1,Vn > ng for some ng € N,

(351 Yn < 00, 3001 Tn < 00,2050 Ya < 00,

If F(T1) N F(T2) N F(T3) # 0, then {zn}. {yn} {zn} converges weakly to a
common fixed point of 77,75 and T3.

2. Implicit iteration process
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2.2

S. Plubtieng and R. Punpaeng, Implicit iteration process of nonexpansive
nonself-mappings )

In this paper, we extend Xu and Yin's results to study the contractions Tj, Sr
and U, define by

The = (1 - on)u+asT((1— Bn)z+ BuTa]
Spz = (11— ap)u+anPT|(1 = Ba)x + 5o PTx]
Unz = P{(I—an)u+tanTP((1- Gn)z+ BT,

where {an} C (0,1),0 < B, € f < 1, and P is the nearest point projection of
H onto C.

Theorem 1 Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, and T : C — H be a nonexpansive nonself-mapping. Suppose
that for some v € C, {e,} € (0,1} and 0 < 8, < 8 < 1, the mapping T,
defined by (0.5) has a (unique) fixed point z, € C forallm > 1. Then T has a
fixed point if and only if {z,} remains bounded as a, — 1. In this case, {zn}
converges strongly as a, — 1 to a fixed point of T,

Theorem 2 Let A be a Hilbert space, C be a nonempty closed convex subset
of H, T': C — H be a nonexpansive nonself-mapping satisfying the weak
inwardness cendition, and P : H — C be the nearest point projection. Suppose
that for some v € C, each {a,} € (0,1) and 0 € B, < 8 < 1. Then, a
mapping S, defined by (0.20) has a unique fixed point ¥, € C. Further, T has
a fixed point if and only if {y,,} remains bounded as o, — 1. In this case, {y,}
converges strongly as o, — 1 to a fixed point of T'.

Theorem 3 Let H,C,T,P,u,{a,} and {f,} be as in Theorem 7. Then a
mapping Uy, defined by (0.7) has a unique fixed point 2, € C. Further, T has a
fixed point if and only if {2, } remains bounded as &, — 1 and 8, — 0. In this
case, {zn } converges strongly as a, — 1 and Brn — 0 1o a fixed point of T,

S. Plubtieng and R. Wangkeeree, Strong convergence theorems of viscosity
averaging iterations for asymptotically nonexpansive nonself_mappings

In this paper, we first show that, for an asymptotically nonexpansive nonself-
mapping T with a sequence {kn} C [1, 00), there exists two sequences {z, } and
{yn} which defined by

n

T = anf(Tn) + (1 — an)% Z(PT)jxn, Yn > 1

i=1



and

. 1 & ) .
©0.9) Un == 3 P(anf(ya) + (1 = @a)(TP)yn), Yn > 1
where
1 by — 1
bn== (1+11 —k;|+e),an=2—,¥n>1,
n;( 1 il ),@n -

0<a<fB<l, f:C — Cisa contraction mapping with coefficient o € (0, 1)
and P is the metric projection from H onto C. Theorem 1 Let C be a closed
convex subset of a real Hilbert space H, P the metric projection from H onto
C, T be an asymptotically nonexpansive nonself-mapping from C into H with
Lipschitz constant ky, and suppose that F(T) is nonempty. Let f: C — C be
a contraction mapping with coefficient & € (0, 1),

bn_l
bn—ﬁ’

1 < ;
—_ — k. =7 =
bn_n}:(1+|1 ki +e9) and a,
j=1
where 0 < @ < 8 < 1. If T satisfies (N NO) condition then the sequence {z,}

defined by (0.8) converges strongly to z where, z is the unique solution in F(T")
to the variation inequality

0.10) {(I—flz,z—2)>0, z€ F(T)

or equivalently z = G(f(z)), where G is the metric projection from H onto
F(T).

Theorem 2 Let C be a closed convex subset of a real Hilbert space H, P
the metric projection from H onto C, T be an asymptotically nonexpansive
nonself-mapping from C into H with Lipschitz constant k,, and suppose that
F(T) is nonempty. Let f : C — C be a contraction mapping with coefficient
a € (0,1),

by — 1
bn‘—ﬂ,

1 -
b, = EZ(1+|1_kj|+e 7} and an =
Jj=1
where 0 < o < § < 1. If T satisfies (NNO) condition then the sequence {y,}
defined by (0.13) converges strongly to z where, z is the unique solution in F'(T")
to the variation inequality

2.3 S. Plubtieng and R. Wangkeeree, Strong convergence theorems of vicosity
averaging iterations for nonexpansive nonself-mappings in Hilbert spaces,
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In this paper, we study the three type iterations process as follows: for yg, 29 € C
and

=t f(zn)+ {1 —t,)= Z(F‘T)-"‘:z:1r1

_',--1

Z(PT Y, 2 0

=0

yn+1 = anf(yn 1 - an — ]

and
Znt1 = %ﬂ ; Planf(z) + (1 — an)(TPY 20),n > 0

where {t,} C (0,1), {@,} is a sequence such that 0 < @, <1, f: C—Cisa
contraction mapping and P is the metric projection of H onto C.

Theorem 1 Let H be a Hilbert space, C' a nonempty closed convex subset
of H, P the metric projection of H onto C and T : C -+ H a nonexpansive
nonself-mapping with F(T) # 0. Let {¢,} be sequence in (0, 1) which satisfies
liMmy oo tn = 0. Then for a contraction mapping f : C — C with coefficient
a € (0,1), the sequence {z,,} defined by (0.11)converges strongly to z, where,
z is the unique solution in F(T'} to the variation inequality

{(I-flz,z—2)20, z€ F(T)

or equivalently z = G(f(z)), where G is a metric projection mapping from H
onto F(T).

Theorem 2 Let C be a nonempty closed convex subset of a Hilbert space
H, P be the metric projection of H onto C and T : C — H a nonexpansive
nonself-mapping with F(T") # 0. Let {an} be a sequence in [0, 1] which satisfies
limp oo, = 0 and 350 ) @y = 00. Then for a contraction mapping f : C —
C with coefficient & € (0,1), the sequence {y,} defined by (0.12)converges
strongly to z, where, 2 is the unique solution in F(T') to the variation inequality
Theorem 3 Let C be a nonempty closed convex subset of a Hilbert space H, P the
metric projection of H onto C and T' : C — H a nonexpansive nonself-mapping
with F(T) # 0. Let {a} be sequence in {0, 1) which satisfies limp_.co 0t = 0
and 300 | an = oo. Then for a contraction mapping f : C — C with coefficient
a € (0,1), the sequence {z,} defined by (0.13)converges strongly to z, where,
z is the unique solution in F(T') to the variation inequality

{((I-f)z,z—2)20, ze€ F(T)

or equivalentdy z = G(f(2)), where G is a metric projection mapping from H
onto F(T).
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2.4 S. Plubtieng and R. Punpeang, Implicit iteration process of nonexpansive

2.5

nonself-mappings in Banach spaces ‘
In this paper, we extend Xu and Yin's results [?] to study the contractions T, Sn
and Uy, define by

Tnx = (1 - a’n)u + anT[(I - ﬁn)x + ﬁnT:r]
Spz = (1 —an)u+aPT[(1 - Bn)z + BnPTx]
Unz P{(1 — ap)u+ oy TP[(1 — Br)x + BuTz]),

where {an} € (0,1),0 £ 8, < f < 1, and P is the nearest point projection of
H onto C. '

Theorem 1| Let E be a real reflexive Banach space with a uniformly Géateauz
differentiable norm. Let C be a nonempty closed convex subset of E which has
normmal structure, and T : € — C be a nonexpansive mapping. Suppose that
for some u € C, {on}i2; € (0,1) and 0 < B, < B < 1. Then, a mapping T,
defined by (0.19) has a unique fixed point z, € C. Futher, T has a fixed point
if and only if {z} remains bounded as o, — 1. In this case, {z,} converges
strongly as o, — 1 to a fixed point of T,

Theorem 2  Let E be a uniformly convex Banach space with a uniformly
Gateaur differentiable norm. Let C be a nonempty closed convex subset of
E,and T : C — E be a nonexpansive nonself-mapping satisfying the weak
inwardness condition. Suppose that C is a sunny nonexpansive retract of E
and that for some u € C, {an}5%; € (0,1) and 0 < 8, < 8 < 1. Then, a
mapping S, defined by (0.20) has a unique fixed point y, € C. Further, T has
a fixed point if and only if {y,} remains bounded as o, — 1. In this case, {yn}
converges strongly as o, — 1 to a fixed point of T'.

Theorem 3 Let E be a uniformly convex Banach space with a uniformly
Gateaur differentiable norm. Let C be a nonempty closed convex subset of
E, and T : C — E be 2 nonexpansive nonself-mapping satisfying the weak
inwardness condition. Suppose that C is a sunny nonexpansive retract of E,
that for some v € C, {an}?2; € (0,1),0 < 8, < 8 < 1. Then a mapping
U, defined by (0.21) has a unique fixed point 2z, € C. Further, then T has
a fixed point if and only if {2} remains bounded as &, — 1 and 8, — 0.
In this case, {z,} converges strongly as a, — 1 and G, — 0 to a fixed point of T".

A. Kangtunyakarn and S. Plubtieng, Strong convergence of an implicit iteration
process for asymptotically nonexpansive mappings,

Theorem 1 Let C be a closed convex subset of Hilbert space H and T be
asymptotically nonexpensive mapping on C into itself with Lipschitz condition
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(0.19)
(0.20)
0.21)

1l

k, and suppose that F'(T') is nonempty.
Let

bn = % E?:l(% + !% - kil +e77),
Then, a mapping T, on C given by

Toz = anzo + (1 — an)An[Baz + (1 = Bu) Ani] forall z € C

2.6

has a unique fixed point u, in C, when
_ b 6o |

T bp—14a T ba-i+44d

1=,
Bn and Ay = ; Z T,
Further {uy,} converges strongly to the element of F(T} which nearest to xp.

S. Plubtieng and R. Punpeang, Implicit iteration process with errors of nonex-
pansive nonself-mappings in Banach spaces,

In this paper, we extend Xu and Yin's results [?] to study the contractions Ty, Sn
and Uy, define by

Toz = anut+ b,Tldnz + 05T + Crtin] + cnvn
Spz = anpu+ anT[a,'.n;c + b_,,lPTw + c'nun] + cptn,
Upz = Plagt+ bpTPltng + 5T + Gutin] + crvn]

where {an}, {bn}, {cn}. {@n}, {bn}, and {c,} be real sequences on [0,1] such
that @ + by +Cy = dn +0n+ & =1, 0 < by < 8 < Lb, < 6 < 1,

20 16n €00, 300 &, < 00, and P is the nearest point projection of H onto
C.
Theorem1 Let E be a real reflexive Banach space with a uniformly Gateaus dif-
ferentiable norm. Let C be a nonempty closed convex subset of £ which has nor-
mal structure, and T' : €' — C be a nonexpansive mapping. Letu € C, {u,} and
{vn} be bounded sequences on C and let {a, }, {bn}, {cn}, {dn}, {bn}. and{cn}
be real sequences on [0,1] satisfying the conditions: '

() an+bnten=dn+bat =1,

(i 0Sbp<F<Lb <B<L, Y21,

(i) D502 en < 00, Do G < 00
Then the mapping T,, defined by (0.19) has a unique fixed point z,, € C. Futher,
T has a fixed point if and only if {z,} remains bounded as a, — 0. In this
case, {z,} converges strongly as a, — 0 to a fixed point of T

-Theorem 2 Let E be a uniformly convex Banach space with a uniformly

Gateauz differentiable norm. Let C be a nonempty closed convex subset of
E, and T : C — F be a nonexpansive nonself-mapping satisfying the weak

0<a<%,0gal<%andxgec.
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inwardness condition. Suppose that C is a sunny nonexpansive retract of E and
that for some u € C, let {u,} and {v,} be bounded sequences on C and let
{an}, {ba}: {cn}, {Gn}, {bn}, and{c,} be real sequences on [0,1] satisfying the
conditions:

(i) @+ b+ Cp = dn+ b + G =1,

() 0<ba < F<LBSB<, VR 21,

(i) Yo% Cn < 00, P onry En < 00
Then, a mapping S,, defined by (0.20) has a unique fixed point y,, € C. Further,
T has a fixed point if and only if {y,} remains bounded as a, — 0. In this
case, {yn} converges strongly as a, — 0 to a fixed point of T
Theorem 3 Let E be & uniformly convex Banach space with a uniformly
Géteaus differentiable norm. Let C be a nonempty closed convex subset of
E, and T : C — E be a nonexpansive nonself-mapping satisfying the weak
inwardness condition. Suppose that C' is a sunny nonexpansive retract of £ and
that for some u € C, let {u,} and {v,} be bounded sequences on C and let
{an}, {bn}, {en}, {dn}, {In}, and{c,} be real sequences on [0,1] satisfying the
conditions:

(i) @n +bn+Co=dn+bo+cn=1,

(i) 0<b, <P< b, <B<1, ¥n21,

(i) Yoot cn < 00, P oneyCn < 00
Then, a mapping U, defined by (0.21) has a unique fixed point z, € C. Further,
T has a fixed point if and only if {2,} remains bounded as a, — 0. In this
case, {z,} converges strongly as a, — 0 to a fixed point of 7.

A. Kangtunyakarn and S. Plubtieng, Strong convergence theorems of an implicit
iteration process with errors for asymptotically nonexpansive mappings,
Theorem 1 Let C be a closed convex subset of Hilbert space H and T be

-asymptotically nonexpensive mapping on C into itself with Lipschitz condition

kn and suppose that F(T) is nonempty.
Let :

bo=1 ;.‘=1(1+|1-kj|+e"j) 0O<a<l and zo € C,

and let T; : ¢ — C be a mapping given by
Thz = anZo + BrnAnZ + Ynvn Ve e Cv, € C,
where {an} {8n} and {yn} are sequences in [0,1) such that o + Bp + Y = 1,
2

b br—1
o = KEI_-:-a' and ¥y, < T foraln > 1, b, = %Z?:l(l + 11— ksl +

e),An =137 ,T9,0<a <1.0<a<1and{v,}is a bounded sequence in C.

Then T}, has a unique fixed point u,, in C. Further {un} converges strongly to
the element of F{T") which nearest to zy.
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3. Random fixed point theorems
3.1 P. Kumam and S. Plubtieng, The characteristic of noncompact convexity and
random fixed point theorem for set-valued operators,

Theorem 1 Let C be a nonempty closed bounded convex subset of a Banach
space X such that eg{X) < 1, and T : C — K(C(C) a nonexpansive mapping.
Then T has a fixed point.

Theorem 2 Let C be a nonempty closed bounded convex separable sub-
set of a Banach space X such that eg(X) < 1, and T : @ x C — KC(C)
be a set-valued nonexpansive random operator, Then T has a random fixed point.

3.2 P. Kumam and S. Plubtieng, Random fixed point theorems for multivalued
nonexpansive non-self random operators,

Theorem 1 let C be a nonempty ¢losed bounded convex separable subset of
a Banach spaces X such that ¢5(X) < 1, and T : @ x C — KC(X) be a
multivalued nonexpansive random operator and t-y-contractive mapping, such
that for each w € 2, T(w, C) is a bounded set, which satisfies the inwardness
condition, i.e., for eachw € Q, T(w,z) C Ig(z), Vz € C.

Then T has a random fixed point.

Theorem 2 Let C be a nonempty closed bounded convex separable subset
of a Banach spaces X such that &,(X) < 1, and T : Q@ x C — KC(X) be
a multivalued nonexpansive random operator and 1-y-contractive nonexpansive
mapping, such that for each w € Q, T(w,C) is a bounded set; which satisfies
the inwardness condition. i.e., for each w € , T(w,z) C I¢(z), Yz € C.
Then T has a random fixed point.

3.3 P. Kumam and S. Plubtieng, Random fixed point theorems for asymptotically
regular mappings, -
Theorem 1 Let C be a nonempty weakly compact convex separable subset
of a Banach space with WCS(X) > 1 and T : 2 x C — C be a random
uniformly Lipschitzian mapping such that o(T(w,")) < WCS(X) for all
w € §1. Suppose in addition that T" is asymptotically regular on C. Then T has
a random fixed point.
Theorem 2 Let X be a reflexive Banach space, C be a nonempty bounded
convex separable subset of X and T : {2 x ' — C be a random asymptotically
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regular operator. If there exist a constant ¢ € R such that

1+ /T+4WCS(X) (ko (X) -1
2
for all w € © then T has a random fixed point.

o(T(w,")) <c<
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FIXED POINT ITERATION FOR ASYMPTOTICALLY
QUASI-NONEXPANSIVE MAPPINGS
IN BANACH SPACES

SOMYOT PLUBTIENG AND RABIAN WANGKEEREE
Received 21 October 2004 and in revised form 20 April 2005

Suppose that C is a nonempty closed convex subset of a real uniformly convex Banach
space X. Let T : C — C be an asymptotically quasi-nonexpansive mapping. In this paper,
we introduce the three-step iterative scheme for such map with error members. More-
over, we prove that if 7' is uniformly L-Lipschitzian and completely continuous, then the
iterative scheme converges strongly to some fixed point of T,

1. Introduction

Let C be a subset of normed space X, and let T be a self-mapping on C. T is said to be
nonexpansive provided that ||[Tx — Ty|l < llx ~ yll for all x,y € G; T is called asymptoti-
cally nonexpansive if there exists a sequence {k,} in [0,0) with lim,_.k, = 0 such that
(TPx - Tryll = (1 +k,)llx — yll forallx,y € Cand a1 = 1. T is said to be an asymptotically
quasi-nonexpansive map if there exists a sequence {kx} in [0, ) with limp... ks = 0 such
that | T"x - pil < (1 +k,)llx - pli forall x € C and p € F(T), and n > 1 (F(T) denotes
the set of fixed points of T, that is, F(T) = {x € C: Tx = x}).

From the above definitions, if F(T) # ©, then asymptotically nonexpansive mapping
must be asymptotically quasi-nonexpansive mapping.

The concept of asymptotically nonexpansiveness was introduced by Goebel and Kirk
in 1972 [2]. In 2001, Noor [5, 6] introduced the three-step iterative scheme and he stud-
ied the approximate solutions of variational inclusions (inequalities) in Hilbert spaces.
The three-step iterative approximation problems were studied extensively by Noor [5, 6],
Glowinski and Le Tallec [1}], and Haubruge et al. [3].

Recently, Xu and Noor (8] introduced the three-step iterative scheme for asymptoti-
cally nonexpansive mappings and they proved the following strong convergence theorem
in Banach spaces.

Tueorem 1.1 (sce {8, Theorem 2.11). Let X be a real uniformly convex Banach space, let
C be a nonempty closed, bounded convex subset of X. Let T be a completely continuous
and asymptotically nonexpansive self-mapping with sequence {k,) satisfying k, = 0 and

Copyright © 2005 Hindawi Publishing Corporation
Internationsl Journal of Mathematics and Mathematical Sciences 2005:11 (2005} 1685-1692
DOI: 10.1155/1JMMS.2005.1685
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5% 1 kn < 0. Let {ay},{Bn}, and {y.} be real sequences in [0, 1] satisfying
(i) 0 <liminf,_ o & < limsup,_,on <1,
(ii) 0 < liminfy—c Bn < limsup,_,fB. < 1.
For a given xy € D, define

= Yu T %y + {1- Yﬂ)xm
= By T"2Zu+ (1 — Bn) %, (1.1)
Xnil = @ T"Yn+ (1 = Q) X

Then {x,}, {yn}. and {z,} converge strongly to a fixed point of T.

In this paper, we will extend the iterative scheme (1.1) to the iterative scheme of asymp-
totically quasi-nonexpansive mappings with error members. Moreover, we will prove the
strong convergence of iterative scheme to a fixed point of T (C need not to be a bounded
set), requiring T to be uniformly L-Lipschitzian and completely continuous. The results
presented in this paper generalize and extend the corresponding main results of Xu and
Noor [8].

2. Preliminaries
For the sake of convenience, we first recal] some definitions and conclusions.
Definition 2.1 (see [2]). A Banach space X is said to be uniformly convex if the modulus

of convexity of X

flx+ yll
2

6x(e)=inf{l— il = Nyl = 1, |[x—y||=e} >0 (2.1)

forall0 < e <2 (i.e., 8x(€) is a function {0,2) — (0,1)).
Definition 2.2, A mapping T : C — C is called uniformiy L- L:psch:tzmn if there exists a
constant L > 0 such that forall x,y € C,

IT'x-T"y|| s Lix~yll, Vaz=Ll (2.2)

In what follows, we will make use of the following lemmas.

LemMma 2.3 (see [4]). Let the nonnegative number sequences {a,},{b,}, and {d,} satisfy
that

ane) < (1 +byla,+dey Yn Zb < o0, Zd < o, (2.3)

n=1

Then,
(1) Him,,~ s g, exists;
(2) if liminf,_ewa, =0, then lim,_ o a, = 0.
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Lemma 2.4 ([7], . Schu’s Lemma). Let X be a real uniformly convex Banach space, 0 <
a <ty <<, xpyn € X limsup,_ Izl <a limsup,_, llynll <4, and lim,—o |[tzx0 +
(1 =t)yall = a, a= 0. Then, limy—co llxn — yull = 0.

3. Main results

In this section, we prove our main theorem. First of all, we will need the following lem-
mas.

Lemma 3.1. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X. Let T be an asymptotically quasi-nonexpansive mapping with sequence {kn}nz1
such that 3ok, < o and F(T) # @. Let xp € C and

Zn = oty T + B, X + ¥yt tns
Pu = &y T"Zy + BLXn + YV, (3.1)

Xn+l = ‘an"}’n +ﬁnxn + ¥YuWn,

where {an}, {a,}, {an ), {Bahs {Behs {Br }s {yn)s {yn), and {y, } are real sequences in [0,1]
and fu,}, {v,}, and {w,} are three bounded sequences in C such that

() antPutyn=an+tPptyn=ay+8 +y, =1,

(i) ZamiPn <00, o Pn <00, Ty ¥ < .
If p € F(T), then limy_ » ||xn — pll exists.

Proof. Let p € F(T). Since {uy},{va}, and {w,} are bounded sequences in C, put
M = sup||u, = pl| v sup|v. — pil v supliw, — pli. (3.2)
nz=l nzl nx1
Then M is a finite number. So for each n = 1, we note that

1xns1 = pll = llotnT" yie + But + yuwi — p|
< ul[T" v~ pll + Ballxtn = pll+ yullwa — plf (3.3)
< an(1+kn}l[yn = pll + Ballxa — plf + yullwa — pll,
yn = pll = ll&n T2 + Brxa + ¥ovn — |
< o[ 7724 — pll + Bullxa = pll + y3llva — (3.4)
=< a, (1 +kn)llzn — Pl + Brllxn — Pl + yallva = pll.
lizn = pll < @ (1 + k)l = pll + Byl = pll+ y5 lletw — I (3.5)
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Substituting (3.5) into (3.4),

llyn = pll < @y (14 kn} |l = pl| |
+a, By (14 ka)fhtn = pll + sy (14 k) lst = pl1+ Bollxn — pll + ¥ollve — P
< (1= B~y ey (1+ k) llxn — pll+ Brllxa — pll
+ (1 =B~ Y ) By lln — pll + 12
< B (14 k)|l — pll + (1 = By (1 + k)|l = p|
+ (L= BBy (1 +kn) l{n — pll + s
= B, (14 k) |l = Pl + (1 = B (o + BY) (14 k) [0 = pl| +
< B {1+ k) i — pll+ (1= ) (14 k)l — pl| + 14
= (1 +ka)’||%a = pli + 15,

(3.6)
where m,, == y;/ (I + k,)M + y,,M. Substituting (3.6) into (3.3) again, we have
(15601 = Pl < a1+ k) ((1 4 k) [0 = pll + 1120} + Bl = plI + yillwe = pl|
= aq(1 +k,,)3f|x., = pll+ an{L 4 kn) g+ Bl — pll + yullwa — pll
< (an ) (1+) [0 = pll+ (1 + ko)1 + 3l = pll 57)

={1 +kn)3”-’~’n — plt+ (1 +ka}omtn + puliwn - p|
< (1+kn) |l — pll + (14 ko) g + yuM
= (1+d,)||xn — p|| + ba:

where d, = 3k, + 3k + k3 and b, = (1 + kn)mu + y,M. Since 3, dy < o0 and 3, by <
o0, by Lemma 2.3, we have that lim,_ [lx, — pll exists. This completes the proof. O

Lemma 3.2, Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X. Let T be an asymiptotically quasi-nonexpansive mapping with sequence {k,} 521
such that > k, < 00 and F(T) # @. Let xo € C and for each n = 0,

Zn = ey T+ By X + Vi tins
Vn = @ T 20t BXn+ Yy Vns (3.8)
Xne1 = anTnyn +ﬁnxn + YnWns

witere {u,}, {v.}, and {w,} are three bounded sequences in C and {a,}, {a;,}, {a, }, {Bs},
{Boh 1B Y Aynds {yn), and Ly} are real sequences in [0,1) which satisfy the same as-
sumptions as Lemma 3.1 and the additional assumption that 0 < a < &, fn o, << 1
for some o, B in (0,1). Thent iMp—oo I T7 ¥ — Xpll = 0 = limpaeo | T2, — x4l
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i Proof. For any p € F(T), it follows from Lemma 3.1, that lim,_ llxx — pll exists. Let

limy— |l — pll = a for some a = 0. From (3.6), we have
[y = pll = (U+ka) llxn = pll 470 (3.9)
Taking limsup,,_ , in both sides, we obtain
liglsgpllyu -pll= lirp_sgpllxn = pll = fim ||xn ~ pl| = a. (3.10)
Note that
limsup||T"y, = plf < limsup (1 +kn)llyx = pl| = limsup|lys - plf < a,

= lim |22 = Il = lim |l&n T" y + Bxn + yaren — plf

(3.11)
= iim‘a,,[T Yu— P+2an( » p)]+ﬁn[xn P+2ﬁ (Wn ~ ]H
_hm‘an[T Yn— P+ ( n-"p)]‘f'(l—an)[ —p+ =5 (Wr; P)]H
n 25"
By J. Schu’s Lemma 2.4, we have
e (- -
tim 77 - 2+ (Za,, 25 ) (=) (3.12)
Since limy - {yn/ 2y — ¥n/2Bn){wn — p)il = 0, it follows that
Jim ||T" yn — || = 0. (3.13)
Finally, we will prove that lim,—« || T"z, = x,]| = 0. To this end, we note that for each

n=1,

llxe = Pl < 17" yn = all + Ty = Pl < NT"y = xall + (Lt ka)llyn = pll. (3.24)

Since limy—o | T"yy — x|l = 0 = imp-. o0 ky, we obtain that

a = lim |jx, - p|| < liminf ||y, - pl}. (3.15)
It follows that
a < liminf||y, - pll limsup Iy, — plf < a. (3.16)
This implies that
lim ||y - pll = & ' (3.17)
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On the other hand, we note that

o= il =l T2+ B =
< oy (1+kq)|lxn = pil + 81 lbxa = pll + vy e = 2l (3.18)
< &y (1+ka)llxn — pll+ (1= o)) (14 ka)blxn — pll + y7 llea — '
< (2 +ka)llxa = pll + 77 l|un = Bl
By boundedness of the sequence {u,} and limy—w ky = 0 = limy- ¥, , we have
limsup||z, - p|| < limsup||x, — pll = a, (3.19)
H—0o0 n—os
and so
limsup||T"z, — pl| < limsup (1 +k,}{z. — pl| =@,
= lim ||y — plf = lim {la, 77z, + Bx0 + yivm = |
|y - n . Pr (3.20)
= i 77~ 2 0 )| 1 50 50
= lim [l [ 77 - p+ %:—:'(v,,-—p)] +—a) [z p e -]
By J. Schu’s Lemma 2.4, we have
lim || 772, - % +(”—:’-”—:')(v,,—p)H=o. (3.21)
f—oo O 2an 28
Since limp—w || (4720, ~ ¥a/2B84)(va — p)il = 0, it follows that
lim [| 772, — x| = 0. (3:22)
This completes the proof. a

THeorEM 3.3. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X. Let T be uniformly L-Lipschitzian, completely continuous, and an asymptotically
quasi-nonexpansive mapping with sequence {kn}tux1 such that Y o kn < 0o and F(T) # @.
Let xg € C and for each n = 0,

Zn = 0 T X0 4 B X + Vit iy
Y =0T 2y + Brxn + Y Vs (3.23)
xn+] =Qn Tﬂy" + ﬁan 4 }',,‘Wm

where {u,},{vs}, and {w,} are three bounded sequences in C and {ax}, {ap}, {a)/}, {Bn}.
(B} (B Y {yads {¥n}, and {y,} are real sequences in [0,1] which satisfy the same as-
sumptions as Lemma 3.1 and the additional assumption that 0 < a < @y, PP <f< 1
Jor somea, Bin{(0,1). Then {x,},{ya}, and {z;} converge strongly to a fixed point of T,
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Proof. It follows from Lemma 3.2 that
Ai_p;HT"y,,—x,,H = 0= lim || 7"z, — xall (3.24)
and this implies that
[1%ne1 = Xne|| < &a] T ¥ = Xnl| + YallWn = Xul| — 0 a5 52— o0, (3.25)
We note that
NT"xn — xnl| < | T"%n — T" yn|| + {|T7 yr — %all = Ll{xn — yul| + ”T"}‘n — Xl
< o Ll|xy — T2, + yaLl|lvie = xall + 1T yn — ]| — 0 as n — o0,
- (3.26)
B
A\ ”xn - Tx,,H Sllxrﬂ-l "'xn”"'“xrﬁl - T"Han”"'”T"quH - Tﬂﬂxr:“"'”Tonn - Tx,,[l
< |21 = Xnl|* [ %ns1 = T et ||+ (1 + Kot Y| Xma1 = ||+ L] | T — xa] |-
(3.27)
i
It follows from (3.25), (3.26), and the above inequality that
i,El_'n;”.vc,, - Txy|| = 0. (3.28)
By Lemma 3.1, {x.} is bounded. It follows from our assumption that T’ is completely
continuous and that there exists a subsequence {Txp, } of {Txa} such that Tx,, ~ pe C
as k — oo, Moreover, by (3.28), we have || Tx, — x5, | = 0 which implies that x,, — p as
k — oo, By (3.28) again, we have
llp—Tpll = !i_n;”xm - Txp| = 0. (3.29)
This shows that p € F(T). Furthermore, since limg.llxs — pll exists, we have
limp_ o llx, ~ pll = 0, that is, {x,} converges to some fixed point of T. It follows that
- - .
R ' : yn = xall < @]l T2 = xall + yallve — xull — 0, (3.30)
||2,,—x,,,|‘| _<_a:,’”T”x,,-—x,,||+y,','||u,,-—x,,||—-0. .
Therefore, lim,.o ¥4 = p = limy— e z4. This completes the proof. O
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ABSTRACT. Suppose C' is a nonempty closed convex subset of a real uniformly convex
Banach space X. Let T': C' — C be an asymptotically nonexpansive in the intermediate
sense mapping. In this paper we introduced the three-step iterative sequence for such map
with error members. Moreover, we prove that, if T is completely continuous then the cur
iterative sequence converges strongly to a fixed point of 7.

1. Introduction

Let C be a subset of real normed linear space X, and let T be a self-mapping on
C. T is said to be nonexpansive provided [Tz ~Ty|| < |z -yl foralz,y € C; Tis
called asymptotically nonexpansive if there exists a sequence {k,} of real numbers
with lim, . k, = 1 such that for each z,y € Cand n > 1,

IT*z — Tyl < knllz - yll-

T is called asymptotically nonexpansive in the intermediate sense [1] provided Tis
uniformly continuous and

limsup sup ([IT"z—T"yli - |z - yll) <

L= OO :r:,ye

From the above definitions, it follows that asymptotically nonexpansive mapping
must be asymptotically nonexpansive in the intermediate sense and asymptotically

quasi-nonexpansive mapping. But the converges dose not holds as the followmg
example:

Example 1.1 (see [6]). Let X =R, C = 1) and [k| < 1. For each z € C,

1r'1r

define
- -l- v
T(z) = kxsin 2, }fz#ﬂ,
0, ifx=0.

Received October 19, 2004, and, in revised form, December 16, 2004.
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Then T is an asymptotically nonexpansive in the intermediate sense but it is not
asymptotically nonexpansive mapping.

The concept of asymptotically nonexpansiveness was introduced by Goebel
and Kirk ([3)) in 1992. In 2001, Noor ([8], [9]) have introduced the three-step
iterative sequences and he studied the approximate solutions of variational inclu-
sions(inequalities) in Hilbert spaces. The three-step iterative approximation prob-
lems were studied extensively by Noor ([8], [9]), Glowinski and Le Tallec ({2]),
Haubruge et al ([4]).

In 2002, Xu and Noor ([14]) introduced the three-step iterative for asymptot-
ically nonexpansive mappings and they proved the following strong convergence
theorem in Banach spaces;

Theorem XN ({14], Theorem 2.1). Let X be e real uniformly conver Banach
space, C be a nonempty closed, bounded conver subset of X. Let T' be a completely
continuous asymptotically nonezpansive self-mapping with sequence {k,} satisfying
kn 21 and 3,7 (kn — 1) < co. Let {an}, {Bn} and {va} be real sequences in [0,1]
satisfying, :

(i} 0 <liminf, o0 @y < limsup,,_,, on < 1, and
(ii} 0 < liminf, e By < limsup,, .. Ge < 1.
For a give g € C, define

(1.1) zZn = T zn+ (1 - Y)zn
Yn = BT 2+ (1 - ﬁn)xn
Tnyr = nT yn+ (1 — an)zp.

Then {z.}, {yn} ond {z.} converges strongly to a fized point of T.

Algorithm 1.1{Noor iterations with errors). Let C be a nonempty subset of
normed space X and let T : C ~» C be a mapping. For a given x¢ € C, find the
‘sequence {Tp41} such that '

(1.2) : Zn = ohT zn+ fuza +70up
- Yn = a:.Tnzn + ﬂ:zzn + 7:11’!1
Tpyl = nT™Yn + Brnzn + TntWn,

where {an}, {o}, {an} {Bn}: {Bo}: {81 {7}, {7n} and {77} are real sequences
in [0,1] and {un}, {v.} and {w,} are three bounded sequences in C.

It is clear that the Mann and Ishikawa iterations processes are all special case
of the Noor iterations with error.

In this paper, we will extend the process (1.1) to Noor iteration with error (1.2)
for asymptotically nonexpansive in the intermediate sense and without boundedness
conditions on €. The results presented in this paper generalize and extend the
corresponding main results of Xu and Noor ([14]).
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2. Preliminaries

‘ For the sake of convenience, we first recall some definitions and conclusions.
Definition 2.1 (see |3]). A Banach space X is said to be uniformily eonvex if the
modulus of convexity of X

. +
sx(@) =me(1 = B oy =1 oyl = > 0

for ali 0 < € <2 (i.e, dx(€) is a function (0,2] — (0,1)).

Lemma 2.2 (see |7]). Let the nonnegative number sequences {a,},{b,} and {d,}
satisfy that

00 0
Gny1 £ (1+bn)an +dn,Vﬂ= 1:2y"' ,an<00,2dn<00.
n=1

n=1
Then
(1} limpeweo @n exists;
(2) If liminf, oo an =0, then limp_, 00 ap = 0.
Lemma 2.3 ([13], J. Schu’s Lemma). Let X be o real uniformly conver Banach

space, 0 <o S in S P <1, Tn, yn € X, limsup,,_,, [|znl < a, limsup,,_, ., [yl <
@, and liMp oo [taZn + (1 = ta)ynll = @, @ > 0. Then limp_.oo || 2n — a] = 0.

3. Main results

In this section, we prove our main theorem. First of all, we shall need the
following lammas.

Lemma 3.1. Let X be o real uniformly convez Banach space, C a nonempty closed

conver subset of X. Let T be an asymptotically nonezpansive in the intermediate
sense. Put

Gn = sup (|T"z - T"y|| - llz — yl[) V0,Vn > 1,
z,y€C

s0 that 307, Gn < 00. Let 2o € C and

Zn = a::zmxn -+ ﬁ:zn + 'Y::un
Yn = T2+ B %n +Vivn
Tntl = c-'nTnyn + Pntn + “Intin,

where {an}, {al,}, {an}: {Ba}, {Bo}: {6} {m} {7n} and {1} are real sequences in
(0,1] and {un}, {vn} and {wn} are threc bounded sequences in C such that

) et Bt =+ O v =l B+l =1,
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(ii) E?:: o < 00,
Then for each p € F(T),limp_o0 ||zn — p|| exists.

Proof. By the Schauder fixed-point theorem {12], we obtain that F(T) # 0. Let

AANWIN 2/4

8. Plubtieng and R. Wangkeeree

E?:l ‘YI"I < o0, E:o=1 7"’: <0

p € F(T), since {un},{vn} and {w,} are bounded sequences in C, so we put

K = sup [up — pfl V sup|lvn = pll V sup fwn — p|l.
n>1 n>1 n>1

For each n > 1, we note that

(3.1) s =Pl = llanZaT™yn + BnZn + Ynwn — |l
< anllTyn — Pl + Bullen — Pl + Wllwn — Bl
< anllyn — 2l + G + Ballza — pll + ullws — 2l
) and
(3.2) yn —2ll = "a:zT“Zn + ﬁ::xn + 7::1’" - P“
< Tz, — pll + Brllzn — pll + Yallva — 2l
< Q:t“zn - P” + Gy +16:1|I-Tn "'P" + 'Y;i]'un - P“
and
(3.3) llzn = pll = || < egtllzn — pll + Gn + Bpllzn — pll + ¥ ||un ~ 2]

Substituting (3.3) into (3.2},

(34)  llyn —pll

IA

!

anafflzn = pll + anGn + ofBnllzn — pll + oz llun — 2

+ Gr + BLllzn — pll + Yillve — pll

IA A

IA

where m, = 2G, + 7, |[va — pll + viillzn — pl|. Substituting (3.4) into (3.1) again,

we have

a1 — ol

A A A A

(1- ﬂ:: —Taenlza —pll + Bullze —pll + (1 — B, - WL)ﬂ::Hxn —pll +mn
Ballzn = pll + (1~ Br)anllza = pll + (1 = Bn)Byllzn — pll +ma
Bollzn = pll + (1 = Bu)(a + B)|zn ~ pll + ma

Ballzn — pll + (1 = Bu)llzn — pll +mn

za — )| + ma,

en(||zn = pll + mn) + Gn + Ballzn - pll + Yallwn — pll
(an + Br)llza — || + anmn + Gp + Yallwn ~ 7
Iza — Pll + M + G + nllwa — pl|

lza — pll + 3Gn + (¥ + 710 + Y2) M

lon — pll + ba,
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where b, = 3G + (¥a + 74 + Y )M. Since T77 by < co, by Lemma 2.2, we have
liMp oo ||Tn — pli exists. This completes the proof. O

Lemma 3.2. Let X be a real uniformly conver Banach space, C ¢ nonemply closed
convex subset of X. Let T be an asymploticatly nonexpansive in the intermediate
sense. Put

Gn= sup (JT"z— Ty -z -yl vO,¥n 21
zyeC

Let xg € C and jor eachn 2 0,

zn = AT "z, + Fn2n + Y itn
Un T2y + BZn + Yo¥n
Zntr = T Yn+ BnZn + YnWn,
where {an}, {o }, {e} (B} {Bh}: {Ba} {1} {7 } and {7} are real sequences in
[0,1] and {un}, {vn} and {wn} are three bounded sequences in C such that
(i) an+ﬁn+'¥n=ai|+ﬁ:;+7:1 =Qg+6:+’fnl =1
(ii) Zf;; In < 00,23;11 Yn < 00, 2?:1 Y < 0.
(iii) 0 < a < ap,a,, <8< 1. Then

It

A%,

(8) limp_oo [T Yn — Zall = 0;
(b) limp—so [1T"z, — zy| = 0.

Proof. (a). For any p € F(T), it follows from Lemma 3.1, we have limp_. ||z — p|
exists. Let limy oo ||Za — »|| = a for some a > 0. From (3.4), we have

Hyn = Pll < llza — Bl + mny Yo 2 1.

Taking limsup, _, ., in both sides, we obtain
limsup |lyn — pl| < limsup |z —pl = lim |lzn - p| = a.
n—o0 . n—oo n—oa
a Note that
limsup |7y, — plf < limsup([ly, — plf + Ga) = limsup ||y - p[| < a.
n—+00 Nn—0o0 n—oa
Next, consider

IT7Yn = p + oW — 20)]| S [T"Yn = Pl + nllwn — zaf-
Thus,

(3.5) imsup [T"gn ~ p+ Mn(ttn — Ta)|| S @
n—oo

K
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IMPLICIT ITERATION PROCESS OF NONE.XPANSIVE

NONSELF-MAPPINGS

SOMYOT PLUBTIENG AND RATTANAPORN PUNPAENG

Department of Mathematics, Faculty of Science, Naresuan University, Pitsanulok 65000,

Thailand

ABsTrACT. Suppose C is a nonempty closed convex subset of real Hilbert space
H. Let T : ¢ — H be a nonexpansive nonself-mapping and P is the nearest
point projection of H onto €. In this paper, we study the convergence of the

sequences {Tn}, {yn}, {2n} satisfying

In = (1 - Cfn)u + anT[(l - Bn)mn + 3-1T$n]
n = (1 —an)u+ &nPT[{L — Gn)yn + BnPTyn], and
zn = Pl =an)u+onTP[(1 - fr)zn + BnTznl|

where {an} € (0,1), 0 < Gn < 8 <! and an — 1l asn — co. The results
obtained in this paper extend and improve the recent ones announced by Xu and
Yin, and many others.

Keywords and phrases: Nonexpansive mapping, nearest point projection, fixed
points, weak inwardness condition, strong convergence theorems.

2000 Mathematics Subject Classification: 47H10, 4TH(09, 46B20.

1. INTRODUCTION

Let € be a nonempty closed convex subset of a Banach space E. Then a

nonself-mapping T from C into E is called nonezpansive if [Tz — Ty|| < |z ~ yll

" Corresponding author.
: Email eddresses: Somyotp@nu.ac.th{Somyot Plubtieng) and g46060088@nu.ac.th.
* (Rattanaporn Punpaeng).
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for all z,y € C. Given u € C and {a,} is a sequence such that 0 < a;, < 1. We can
define a contraction T, : C — FE by

Taz = (1~ ap)ut+a,Tz, z€C. (1.1)

If T is a self-mapping(i.e. T(C) C C), then T,, maps C into itself, and hence, by
Banach’s contraction principle, T}, has a unique fixed point z,, in C, that is, we have

Tn = (1 — ap)u+ 0Ty, Vn > 1. (1.2)

(Such a sequence {z,} is said to be an approximating fixed point of T since it
possesses the property that if {z,} is bounded, then lim, . ||Tzn — 24| = 0)
whenever lim,__,o, a, = 1. The strong convergence of {z,} as &, — 1 for a self-
mapping T of a bounded C was proved in a Hilbert space independently by Browder
[1] and Halpern [3] and in a uniformly smooth Banach space by Reich [7]. Thereafter,
Singh and Watson (8] extended the resuit of Browder and Halpern to nonexpansive
nonself-mapping T sa.tisff,fiug Rothe’s boundary condition: T(8C) C C (here 8C
denotes the boundary of C). Recently, Xu and Yin [11] proved that if C is a
nonempty closed convex(not necessarily bounded) subset of Hilbert space H, if
T : C — H is a nonexpansive nonself-mapping, and if {z,} is the sequence defined
by (1.2) which is bounded, then {z.} converges strongly as o, — 1 to a fixed point
of T. Marino and Trombetta [5] defined contractions S, and Uy, from C into itself
by
: Spz=(1-—ap)uta,PlzforallzeC (1.3)
and
Unz = P[(1 — an)u+ a,Tz] for all z € C, (1.4)
where P is the nearest point projection of H onto C. Then by the Banach contrac-
tion principle, there exists a unique fixed point yn(resp. z,) of Sp(resp. U,) in C
ie.
yn = (1 — op)u+ on PTyn (1.5)
and
zn = P[(1 — ap)u + anT'zy). (1.6)
Xu and Yin [11] also proved that if C is a nonempty closed convex subset of a
Hilbert space H, if T : C — H is a nonexpansive nonself-mapping satisfying the
weak inwardness condition, and {z,} is bounded, the {y} (resp. {zn}) defined by
(1.5) {resp.(1.6)) converges strongly as o, —+ 1 to a fixed point of T

Let C be a nonempty convex subset of Banach space E. Then for x € C we
define the inward set I.(x) as follows:

I(z)={ye€ E:y=z+a(z —z) for some z € C and a > 0}.
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A mapping T : C — E is said to be inward if Tz € I,(z) for all z € C. T is also
said to be weakly inward if for each = € C, Tz belongs to the closure of I.(x).

In this paper, we extend Xu and Yin's results {11] to study the contractions
Th, Sn and Uy, define by

Toz = (1—oap)u+o,T[(1— Bn)z+ BTx] (1.7)
Spx = (1-an)u+anPT[(1 - B)z + BnPTzx] (1.8)
Uz = Pl(1-an)u+anTP[(1 - )z + B,.Tz]], (1.9)

where {a,} € (0,1),0 < 8, < 8 < 1, and P is the nearest point projection of H
onto C. We also prove the strong convergence of the sequences {z,}, {yn} and {z,}
satisfying

Tn = (1—ap)u+aonT((1 — Bn)zn + BTy, (1.10)
Yn = (1—an)u+anPT{(1 - Bn)yn + B PTyy], (1.11)
z = Pl -ap)u+anTP{(1 = 0n)zn + BnT 2], (1.12)

where ¢, — 1 as n — o0.

We note that if 8, = 0, then (1.10), (1.11), (1.12) reduces to (1.2), (1.5), and (1.6)
respectively.

2. MAIN RESULTS

In this section, we prove the strong convergence theorems for nonexpansive
nonself-mappings. To prove our results, we use the following Theorem.

Theorem 2.1. Let H be ¢ real Hilbert space, C be a nonempty closed conver subset
of H, and T : ' — H be a nonezpansive nonself-mapping. Suppose that for some
u € C, {ap} C (0,1) and0 < B, < B < 1, the mapping T,, defined by (1.7) has
a (unique) fized point x, € C for alln > 1. Then T has a fized point if and only
if {xn} remains bounded as o, — 1. In this case, {xzn} converges strongly as
an —+ 1 to a fized point of T.



.

a Y

AARKIN 3/4

4 S. PLUBTIENG AND R. PUNPAENG

Proof. We denote by F(T) the fixed point set of T'. Suppose that F(T') is nonempty.
Let w € F(T). Then for each n > 1, we have

lw—=2al| = |lw—{1-an)u—axT[(1— fn)zn+ BaTzn]l
< (1= an)llw—ull + anllw — TH1 - Br)zn + BaTza||
< (- an)lw—ull +anflw - (1 = Ba)an — BuTzall
< (1 -an)llw —ull + ona(l = Ba)llw — Zall + omBrllw — zn||

(1 = an)llw — u]| + anflw — 24

and hence (I — ap)ljlw — znfl € (1 — an)|lw — u|| for all n > 1. This implies
lw = zu|] € ||w—ul| for all n > 1. Then {z,} is a bounded sequence. Conversely,
suppose that {z,} is bounded, z is a weak cluster point of {#,}, and ap, — 1 as
n — o00. Then we show that F(T) # @ and {x.} converges strongly to a fixed
point of T. We choose a subsequence {z,,} of the sequence {z,} with a,, — 1

such that x,, — z weakly, we can define a real valued function g on H given by

g(z) = limsup ||z, — z]|* for every = € H.
i—o0

Observeing [|zn, — z/|* = |[2n; — 2I|2 + 2T, — 2,2~ ) + ||z — z|®. Since zn, — z
weakly, we immediately get

g(z) = g(2) + ||z — 2||® for all z € H,

- in particular,

9(T2) = g(2) + 1Tz — z|*. (2.1)

On the other hand, we have

fzn, — Tznll < (1= an)llu— Tonll + and|T{(1 = Bri)zn; + BniTzn] — Tanll
< (1- an)flu — Tn|l + anl|(X — Bn)Tn, + B Tn, — o, ||
< (1- ane)"" — Tzp, Il + Br; ||T:L‘m - mn.‘”s

for all ¢ > 1. This implies that (1 — Bn)||zn; — T2n ]l < (1 — ag,)|lu — Tzx, || and
hence

_ Q-an),
fon, = Tanll = (T3 u—Ten
(l_am‘) .
< Ty, — — 0.
) [l — Tz, Qasi 00
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Note that,

|2, — Fz|l |%ne — Ty + Tn; — T2
(H#n, = Tz, |l + |1 T 20, ~ T2]|)?

”xﬂi - T.’l:n‘.”2 + 2”2:"{ - Tx“i ””Ta:“i - Tz” + "T*Tﬂ.' - Tz"2

IA

for all n € N. Hence

o(T2) = limsup|an, — T2

P00

< limsup ||Tzn, — Tz|?

t—t00
< limsup||zn, — 2||* = g(2).

1t
This, together with (2.1) implies that Tz = zand z is a fixed point of T'. Now since
F(T) is nonempty, closed and convex, there exists a unique v € F(T') that is closest
to u; namely, v is the nearest point projection of v onto F(T'). For any y € F(T),
we have

(zn — u) + nlu ~ 9)?

A2|IT[(1 = Bn)an + BuTxn] — yl>

< ar?z"(l — Bp)on + BnTxy — y||2
| = Q{1 - Ba){an — 1) + Bu(Tan — )|
' < @2((1 - Bo)lzn — yll + Ballzn — yll)?

2
olz, -y

oz —u+u—yl?

and so
2n ~ wll? + e2]lu — gl + 20n(zn — v, u—y) < ei(len —ull® + flu—y?
+ 2{zn —uyu—y))
< opllzn - “"2 + an|u — 9’”2

+ 20n{%n — u,u— ¥
for all n > 1. It follows that
|lzn—ull?® < anlly—u||? < ||y—ul? for all y € F(T) and {an} € (0,1) for all n € N.
Since the norm of H is weakly lower semicontinuous(w-ls.c.), we get

|z — u|| < lminf ||z, — | < ||y —u| for all y € F(T).
1—00

(1 = an)u+ anT((1 — Bn)an + BuTTn] — u) 4+ anfu — y)l|2
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rIfherefore, we must have z = v for v is the unique element in F(T') that is closest
to u. This shows that v is the only weak cluster point of {z,} with an ~— 1. It
remains to verify that the convergence is strong. In fact, it follows

lzn = vl = llzn = ul? - llu—2l* = 2(zs = v,v - )
< —2zp—v,v—u) —0asn— oo.
This completes the proof. a

Corollary 2.2, Let H,C,T be as in Theorem 2.1. Suppose in addition that C 1is
bounded and that the weak inwardness condition is satisfied. Then for eachu € C,
the sequence {z,} satisfying (1.10) converges strongly as an — 1 to e fized point
of T.

Theorem 2.3. Let H be a Hilbert space, C be a nonempty closed convez subset of
H, T:C — H be a nonezpansive nonself-mapping satisfying the weak inwardness
condition, and P : H — C be the nearest point projection. Suppose that for some
u € C, each {an} € (0,1) and 0 < B, € B8 < 1. Then, a mapping S, defined by
(1.8) has a unique fired point y, € C. Further, T has a fized point if and only if {yn}
remains bounded as an — 1. In this case, {yn} converges strongly as o — 1 to
a fized point of T.

Proof. 1t is straightforward that S, : ¢ — C is a contraction for every n > 1.
Therefore by the Banach contraction principle there exists a unique fixed point y,
of Sy in C satisfying (1.11). Let w be a fixed point of T. Then as in the proof of
Theorem 2.1, {y,} is bounded. Conversely, suppose that {y,.} is bounded. Apply
Theorem 2.1, we obtain that {y,} converges strongly to a fixed point z of PT. Next,
let us show that z € F(T'). Since z = PTz and P is the nearest point projection of
H onto C, it follows by (9] that

(Tz—2z,J(z—v)) 20forallveC.

On the other hand, Tz belongs to the closure of I.(z) by the weak inwardness
conditions. Hence for each integer n > 1, there exists z, € C and a,, > 0 such that
the sequence

Tn = 2+ 0p{2, —2) — Tz
Thus it follows that

0 < an{Tz—22—2)

(Tz — z,a,(z — 2,))
(Tz—2zz—1q) — (T2—2,2—T2)

= Tz -
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Hence we have Tz = z. g

Corollary 2.4. ([11, Theorem 2]). Let H,C,T, P,u, and {a,} be as in Theorem
2.3. Then, a mapping S, given by (1.3) has a unique fixed point y, € C such that
Yn = (1 — an)u + an PTy,. Further, T has a fixed point if and only if {y,} remains
bounded as a, — 1. In this case, {y,} converges strongly as o, — 1 to a fixed
point of T'.

Theorem 2.5. Let H,C,T, P,u, {a,} and {Bp} be as in Theorem 2.9. Then a
mapping U, defined by (1.9) has a unique fired point z,, € C. Further, T has a fized
point if and only if {z,} remains bounded as a, — 1 and B, — 0. In this case,
{zn} converges strongly as a, — 1 and B, — 0 to ¢ fized point of T

Proof. It follows by the Banach contraction principle that there exists a unique fixed
pojnt 2z, of U, such that
zn = P{(1 — an)u + anTP|(1 = Bn)zn + BrT 2]

Let w € F(T). Then for each n > 1, we have

lw—2zall = [IPw~P[(1~o0m)+0onTP((1=Br)zm+ LTzl
< lw— (1 —an)u—anTP(1 - Bn)zn + BuTzn]|l
< (I —an)lw—ul+anlw—TP[(1 - Ba)zn + BTzl
< (I-ap)llw —uf + an(l = Ba)llw — 2l + enfniiw — Tzl
< (1—an)llw - ull + an(l = Ba)llw — znl| + anBallw — 2l

(1 — an)llw — ul| + anllw — z||

and hence (1 — an)llw — 2»| < (1 — ap}ljw — ul|, ¥n > 1. This implies ||w — z,|| <
|lw—wu||, ¥n > 1. Then {z,} is bounded. Conversely, suppose that {z,} is bounded,
onp — 1 and B, — 0. To show that F(T) # 0. For any subsequence {z} of
thef sequence {2} converging weakly to Z such that a,, — 1, we can define a real
valued function g on H given by

9(z) = limsup ||z, — 2||? for every z € H. (2.2)

T— 03

Observing ||zn; — 2| = 120, — 2I1® + 2{2n; — 2,2 — 2) + ||z — z||%. Since z,, — Z
weakly, we get

g9(z) =g(z) + |z - z||? for all z € H,
in particular,
g(PTz) = g(3) + |PTz — 2| (2.3)
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For instance, that the straightforward verification gives

Nzn; — PTzn,|| = ||P[(1— an)u+ an,TP{(1 ~ Bn;)zn; + Bn,T2n;)] — PTzy,||
(1 - aﬂi)”u’ - Tzﬂi” + aﬂiﬁﬂi“Tzﬂi - zﬂi”: for all ¢ 21

FaN

and this implies that ||2n, ~ PT 2y, || € (1—an u—Tzn, ||+ B0 | T2n, — 2, ]| — O
as 1 — co. Moreover, we note that

lza; — PTZ|2 = |2n; ~ PT2n, + PTz,, — PTZ|?
oy < (lzn; — PTan|| + [|PT2n, — PT2[})?
= [le; — PT2o,|> + 2l|7n, = PT || PT 20, — PTz|| + ||PT2n, — PT2|*
for all 7 € N. It follows that
g(PTz) = limsup|jz,, — PTz|?
i—00
< limsup ||PTzn, — PTZ||
femetOO
< limsup ||z, — Z|* = g(2)
i—co
which in turn, together with (2.3), implies that PT(z) = Z. Since T satisfies the
weak inwardness condition, by the same argument as in the proof of Theorem 2.3,
we-see that Z is a fixed point of T. For any w € F(T), we have
an[TP((1 - Br)w+ Bow) —ul+u = an(w—u)+u
= aaw+(1—an)u
= Plogw+ (1 — ap)u)
=i
& for all n € N. By follows as in the proof of Theorem 2.1, we have

lza—u|® < anllw—ull? < ||w—u|? for all w € F(T) and {on} € (0,1) foralln € N.
(2.4)
From (2.4) and the w-l.s.c. of the norm of H, it follows that

I = ull < liminf 1z~ ] < lw — uj

for all w € F(T'). Hence Z is the nearest point projection z in F (T) of v onto F(T)
which exists uniquely since F(T') is nonempty, closed and convex. Moreover,

flzn — 2I2 = flzn —uf? = lu - 2{* - 2(z — 2,2 — w)
< —-2zp—2z,z2—u) — 0 as n — oo.

This complete in the proof. O

o
,;"Al
ey
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Corollary 2.6. ([11,Theorem 3]). Let H,C,T, P,u, and {ay,} be as in Theorem
2.3. Then a mapping Uy, defined by (1.4) has a unique fixed point z, € C. Further,
T has a fixed point if and only if {z,} remains bounded as o, — 1. In this case,
{zn} converges strongly as a, — 1 to a fixed point of T",

Acknowledgement. The authors would like to thanks The Thailand Research
Fund for financial support.
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Abstract

In this paper, we established two strong convergence theorems for a multi-
step Noor iterative scheme with errors for mappings of asymptotically nonex-
pansive in the intermediate sense{asymptotically quasi-nonexpansive, respec-
tively) in Banach spaces, Qur results extend and improve the recent ones
announced by Xu and Noor [20], Che, Zhou and Guo (2], and many others.

keywords: Asymptotically nonexpansive in the intermediate sense; Asymp-
totically quasi-nonexpansive mappings; Completely continuous; Uniformly con-
vex; Uniformly L-Lipschitzian.

1 Introduction

Let C be a subset of real normed linear space X. A mapping T : C — C
is said to be asymptotically nonexpansive on C if there exists a sequence {r,} in
[0, 00} with Hmyp oo T = 0 such that for each z,y € C,

IT"2 — T"y|| < (1 +ra)liz —yl,Vn 2 1.
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If rp, =0, then T is known as a nonezpansive mapping. T is called asymptotically
nonerpansive in the intermediate sense[l] provided T is uniformly continuous and

limsup sup (|72 — T"y|| — ||z - yl) < 0.

n—o0 x,pc

T is said to be asymptotically quasi-nonezpansive mapping, if there exists a sequence
{rs} in [0, 00) with lim,—,00Tn = 0 such that for all z € C, p € F(T),

1T7z - pll < (1 + ra)llz — o,

for all n > 1, where F(T") denotes the set of fixed points of T i.e. F{(T)={zx € C:
Tz = z}. T is said to be uniformly L-Lipschitzian if there exists a constant L > 0
such that

Tz — Tyl < Lz - yll,

foralln>land z,y € C.

From the above definitions, it follows that asymptotically nonexpansive map-
ping must be asymptotically nonexpansive in the intermediate sense, asymptotically
quasi-nonexpansive mapping and L-Lipschitzian mapping. But the converges dose
not holds such as the following example:

Example 1.1 (see [9]). Let X =R, C = ["?1,;1;] and |k| < 1. For each z € C,
define
T(z) = { kmsin:—c, fifx-,é 0,
0, ifz=0.
Then T is an esymptoticelly nonerpansive in the intermediate sense. It is well
known in (8] that T2 — 0 uniformly, but is not a Lipschitzian mapping so that it
is not asymptotically nonexpansive mapping.

Fixed-point iterations process for asymptotically nonexpansive mappings in Ba-
nach spaces including Mann and Ishikawa iterations process have been studied ex-
tensively by many authors to solve the nonlinear operator equations as well as
variational inequations; see[6-14,16-18]. In 2000, Noor {13] introduced a three-step
iterative scheme and studied the approximate solution of variational inclusion in
Hilbert spaces by using the techniques of updating the solution and the auxiliary
priciple. Glowinski and Le Tallec [3] used three-step iterative schemes to find the
approximate solutions of the elastoviscoplasticity problem, liquid crystal theory,
and eigenvalue computation. It has been shown in [3] that the three-step iterative
scheme give better numerical results then the two-step and one step approximal iter-
ations. In 1998, Haubruge, Nguyen and Strodiot|5] studied the convergence analysis
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of three-step schemes of Glowinski and Le Tallec[3] and applied these schemes to
obtain new splitting-type algorithms for solving variation inequalities. They also
proved that three-step iterations lead to highly parallelized algorithms under cer-
tain conditions. '

Recently, Xu and Noor {20] introduced and studied a three-step scheme to ap-
proximate fixed points of asymptotically nonexpansive mappings in Banach space.
In 2004, Cho, Zhou and Guo[2] extended the work of Xu and Noor to the three-step
iterative scheme with errors and gave weak and strong convergence theorems for
asymptotically nonexpansive mappings in a Banach space. Moreover, Suantai {18]
gave weak and strong convergence theorems for a new three-step iterative scheme
of asymptotically nonexpansive mappings. Inspired and motivated by these facts,
we introduce and study a multi-step scheme with errors for asymptotically non-
expansive mappings in the intermediate sense mapping and asymptotically quasi-
nonexpansive mappings, respectively. Qur results include the Ishikawa, Mann and
Noor iterative schemes for solving variational inclusions (inequalities} and related
problems as special case. The scheme is defined as follows.

Let C be a nonempty subset of normed space X and let T : C — C be a
mapping. For a given z; € C, and a fixed m € N {N denote the set of ail positive

integers), compute the iterative sequences {mg)}, vy {xf{")} defined by
2 = o7z, + M2, + 4 DulD,
2@ = o@7me) 4 gDz, 4 4@y @),
N Y CH CH )
(1.1)
S = oI g B, 4 A,
Top =20 = oM7) 4 8, + U™, n>1

where, {u&}, ....,{u,(lm)} are bounded sequences in C and {ag)},{ﬂ,(f)},{'y,(f)} are
appropriate real sequences in [0,1] such that a,(:) + 6,(:) + 'y,(:) =1 for each i €
{1,2,..,m}.

The iterative schemes (1.1) is called the multi-step Noor iterations with errors.
This iterations include the Mann-Ishikawa-Noor iterations as special case. If m = 3
and ﬁ,(:) =1- as,' ) -—'y,(,') for all 1 = 1,2,3 then (1.1} reduces to Noor iterations with
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errors defined by Cho, Zhou and Guo [2]:

) = o7z, + (1 - &V — Nz, + 4 PuD),

2l = @772 4 (1~ o — D)z, + 42O, (1.2)
Tner =2 = @7 + (1 - o —4P)zn + 1P,

where {a,(rf)}, {'y,(: )} are appropriate real sequences in {0, 1] for all i € {1,2,3}.
For m = 3 and 'y,(,l) = ,(12) = 'y,?) = 0, then (1.1} reduces to Noor iterations

defined by Xu and Noor [20]:

g = oIz, + (1 — D)z,
= T4 (1 o, 13
Tpel = :r:,(f) = aﬁf”T":rSf} +(1 - a,(f)).‘cn, n>1,

where {asll)}, {a,{f)}, {a.(na)} are appropriate real sequences in [0, 1].

The purpose of this paper is to establish several strong convergence theorems
of the multi-step Noor iterative scheme with errors for mappings of asymptotically
nonexpansive in the intermediate sense (asymptotically quasi-nonexpansive map-
pings, respectively) in a uniformly convex Banach space. This results presented in
this paper extend and improve the corresponding ones announced by Xu and Noor
[20], Cho, Zhou and Guo [2], and many others.

2 Preliminaries

In this section, we recall the well-known concepts and results.

Definition 2.1 (see [4]). A Banach space X is said to be uniformly convez if the
modulus of convexity of X

. z+
x(e) = inf(1 - XU o =y = 1, o -yl = >0

for all 0 < € < 2(i.e., &x(€) is a function (0,2] — (0,1)).

It is known [12] that if X is a uniformly convex Banach space and T is a
self-mapping of bounded closed convex subset C of X which is an asymptotically
nonexpansive in the intermediate sense, then F(T') # 0.
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Lemma 2.2 (see [10]). Let {an},{bn} and {ym} be sequences of nonnegative real
numbers satisfying the inequality

an41 & (14 mlen+bn,Vrn=1,2,..
If 320 < 0o and Yoo, by < 00, then
(i) limy,—, o an exists;
(ii) limp—o0 2, = 0, whenever liminf,_ca, =0.

Lemma 2.3 ([17], J. Schu’s Lemma }, Let X be a uniformly convez Banach space,
O<asty €0 <1,zp,yn € X,limsup,__ ||znl £ a,limsup,,_ ., l|ynll £ a, and
limy— o [[trzn + (1 — t2)ynll = @, for some a = 0. Then limg—o ||2n — ] = 0.

3 Non-Lipschitzian mappings

Our first result is the strong convergence theorem for asymptotically nonexpan-
sive in the intermediate sense mappings. Note the proof given below is different
from that proof of Xu and Noor. In order to prove our main result, the following
lemmas are needed.

Lemma 3.1. Let X be a uniformly conver Banach space with z,,y, € X, real
numbers a > 0,a,8 € (0,1) and {e} be a real sequence number which satisfying

(i) O<a<a, <8 <1,Vn>ng and for some ng € N;
(i) 1imsupy .o lmnll < @ ond limsup, _.q, luall < o
(iii) limp—.o0 [|@nTn + (1 — an)yn| = a.

Then limp—0 |2n ~ ynl = 0.

Proof. The proof is clear by Lemma 2.3. 8

Lemma 3.2. Let X be a uniformly convezr Banach space, C a nonempty closed
bounded convez subset of X and T' : C — C be an asymptotically nonezpansive in
the intermediate sense. Put

Gn = sup (|[T7z - Tyl — |z —yl) VO, ¥Vn = 1,
z,yeC

s0 that 302 Gn < 00. Let the sequence {zn} be defined by (1.1) with the following
restrictions:
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(i) aﬁf) + ﬁg) + 7,(:" =1 forallic{l,2,..,m} and for alln > 1;
(i1) Z?;l'y,(f) < oo forallice {1,2,..,m}.

If pe F(T), then imp— oo [lzn — pl| exists.

Proof. By [12], we have F(T) # 0 . Let p € F(T"). For each n > 1, we note that

Iz —pl = (a8 zq + BN en + ¥ ulD — p|
< o Tz — plf + B lzn — pll + 1V |ul? - pf
< allen = pll + G + AP l|zn — pll + 1P - pl|
= (i) + B zn — pll + &G + 4P [l - p|
< |l —pll +dP (3.1)

where dg) = aﬁ,l)G'n +’71(11)Hu9) —p|l. Since 3_p>; Gn < 00, we see that 3 o0, dg) <
oo. It follows from {3.1) that

le® —pl < a2l - pll +afDCn + Bl ~ pl + ¥ ul? — ]
< o (flzn — pll + 4 + PG + Bz — plf + 1P — p
= (o + BOllzn — pll + 2Pdl) + oG + PP -]
< lzn = plf 4 d? (3:2)

where d¥) = af)d#)+a$;2)Gn+'y,(,2)||u$3)—p||. Since 307, G, < oo and § .00, D <

n=1
o0 it follows that 2:;1 dg‘)) < 0o0. Moreover, we see that

Iz —pl < @)@ — pil + PG + B 2w - pll + ¥ [ - ol
< of(|zn — pl + d) + afIGr, + 8P|z — plf + 1l - pl|
= (& + )z — pll + 2PdP + PG + 1P| ~ p
< lzn—pll +dP (3.3)

where dﬁ;) = an")dQ’ + af’)Gn + 7,‘13)”%,(,,3) ~pll. So that 377, d&s) < o00. By con-
tinuiting the above method, there are nonnegative real sequences {d,g’)} such that
oo (k)
dr’ < o0 and

n=1
|',:z:,(1k) -2l € |lzn — 2|l + ds,"), forall k=1,2,...,m.

This together with Lemma 2.2, we have lim,__, o ||zn — p|| exists. This completes
the proof, (]
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Lemma 3.3. Let X be a real uniformly convez Banach space, C a nonempty closed
conver subset of X and T : C — C be an asymptotically nonerpansive in the
intermediate sense. Put

Gn = sup (|77 ~ Tyl - = — ) vO.¥n 2 1,
z,yeC

s that 1% | G < 00. Let the sequence {zn} be defined by (1.1) whenever {al}, 881, (¥

satisfies the same assumptions as Lemma 3.2 for each i € {1,2,...,m} and the ad-

ditional assumption that 0 < a £ a(m 1) (m) < 3 <1 for all n > ng, for some

ng € N. Then

(m-1)

(a): limpeco [T"2Zn" " — 2ol = 0;

(b). limp o [| T2 — 24 = 0.

Proof. (a). For any p € F(T), it follows from Lemma 3.2 that limp 0 l|2n — 2l
exists. Let limp,_. ||z — pl| = o for some a > 0. We note that

|z{m= = p|| < [l&n — pl| +df™ NV, ¥n 2 1

o0 d(m Ve It

where {d&m-l)} is a nonnegative real sequence such that 3 07,

follows that
limsup ||z~ ~ p|| < limsup [|lzn —pll = _lim ||z, — pl| = a,
n—00 n—od n—oo

from which we have

limsup [Tz — p|| < 11msup([|sc(’““1) pll + Gp) = limsup |20V - p| < a.
n— 00

n=—00

Next, we observe that
17250 — p 4+ ™ (™ — o)) < T2 = pll + 4™ |ul™ ~ 2al.
Thus we have

lim sup |77z — p + A (™) — )| < a. (3.4)

n—_Cco
Also, [|zn — p + 1™ (@™ — za)| < llen — pll + W™ ul™ — zall,

gives that
limsup || — p + 7™ (@{™ — z,)|| € q, (3.5)

i—O0
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and note that

a = lim_|z{™ - p|
= dim [T + Bz, + 1Ml - ol
= lim [a{™7"2{™ Y + (1 - afM)zq - WM + A ul
— (1= af™)p ~ afMp
= lim llefT2{*D — ofPp + oM rMul — oMWz, + (1 - o)
= (1= af™)p — M + 1wl - ol Mu + MMz
= lim_Jaf™(T72{" Y — p+ M (™ - zn))

+{1— o™ (2 — p+ 1 (W™ — za))l.
This together with (3.4), (3.5) and Lemma 3.1, we have

lim 7™z — 2, = 0. (3.6)

n

This completes the proof of (a).

Proof of (b). For each n > 1,

lza =PIl < o — T2 D + [T — o]
ke = T2 V| + |28 — pll + G

IA

Since limp— .00 ||Zn ~ T"a:,(nm_l)[! =0 = limp—c0 Gn, we obtain that
a= lim [z, - p| < limin =™ - p|).
Ti———r 0 Nn—*oo

It follows that

m-1)

* a < liminf ﬂa:s“—l) - p|| £ limsup Iz& -7 £ a.
N==mo0o L=t OO

This implies that

s {m—1) _ =
Jim_jja{m? - pl = a.

On the other hand, we note that
28" — plf < fjza — pll + a2, Vr 2 1
where {d(nm_z)} is a nonnegative real sequence such that 3 2 d™ ¥ < 00. So that

limsup ||z0™2 — p|| < I:IH_I_S";? lzn - 2l = a,

n——00
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and hence

limsup |[T"z{™=2 - p|| < limsg;("zgm—z) —pll+Gn) < a.
wn—

n=—

Next we observe that

IT =" —p 4 WP D (WP - )| < 17725 = pf| + 4D |ufm D ~ 2.

Thus,
limsup [Tz — p+ 1™ V(™™ - 2ol < a. (3.7)
n—00 .
Also, flzn — p+ 4™ P @™V — 2)|| < llon - pll + WVl — 2,
gives that
: limsup ||z, — p + v D™D - z)|| < a (3.8)
TL=—tr OO
and note that
- 1 {m-1) _
o = lim [0 —p

e B e B WS
= lim_ el (T - p oD 5,))
+ (1= oY) zn ~ p+ AP D@ — )l (3.9)
It follows from (3.7), (3.8), (3.9) and Lemma 3.1 that
i [T — 2| = 0.

This completes the proof of (b). O
‘We now state and prove the first main result of this paper and this is the main

motivation of our next result.

Theorem 3.4. Let X be a uniformly convexr Banach space, C a nonempty closed
bounded conver subset of X and T : C — C be a completely continuous asymptot-
ically nonexpansive in the intermediate sense. Put

Gn = *a‘upc(ll’f'“ﬂE —T%ll = ll= - #il) v0,¥n > 1,
z,ye

s0 that 300 | Gy, < oo. Let the sequence {z,} be defined by (1.1) whenever {an)}, {ﬁf.i)}, {75,")}
satisfies the same assumptions as Lemma 3.2 for each i € {1,2,...,m} and the
additional assumption that 0 < a < aslm_l),aﬁ,m) < B <1 for all n > ng,
for some ng € N. Then {:cﬁlk) } conuerges strongly to a fized point of T for each

k=1,23,..,m.
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Proof. 1t follows from Lemma. 3.3 that
Jim [T — ) = 0= lim [T - g

and this implies that,

I2ns1 = 2all = 25 ~ @all < YT 2 = zn] + 9Tl - 2
— 0 asn— oo, (3.10)

it follows from (3.10) that

170 = zall < (1T @0 — T2 DN + T2 - 24|

< lzn =270+ Ga + T2 - 24
< ol Djzn = T2 + G+ 2" Dl — 2,

+ |72 ~ g, ]| — 0 as n — oo. (3.11)
Since

I&n = Tzall £ |2+t — 2ol + 1Tt = T zppl)
+ (T s — T an|| + 1T 20 — Tzal,

it follows from (3.10), (3.11) and uniformly continuity of T that
lim |zp — Tzg|| = 0. (3.12)
n—=oo

Since {zn} is a bounded and T is completely continuous, there exists a subsequence
(T2} of {Tz,} such that Txz,, — p € C as k.— oo. Moreover, by (3.12), we
have ||T'zy, — Tn, || — O which implies that =5, — p as kK — oo. By (3.12) again,
we have
lp—Tpll = klim [#n, — Txn,[| = 0.
— OO

It show that p € F(T). Since limp .o | 2n—p|| exists, we have limy, —. || T2 —p|| = 0;

that is limgy.—.o a:,(,f“) = limp—.q Zn, = p. Moreover, we observe that ”ng) -l <
Iz — p|l + 5 for all k= 1,2,3,...,m — 1 and each limp—.co dS) = 0. Therefore
lim;—eo :c,(lk) =pforall k=1,23,..,m— 1. The proof is completed. |

4 Asymptotically quasi-nonexpansive mappings

In the next result, we prove strong convergence theorem for the multi-step Noor it-
erations {1.1) for asymptotically quasi-nonexpansive mapping in a uniformly convex
Banach space. To do this, we need the following lemmas.
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Lemma 4.1, Let X be ¢ uniformly convex Banach space, C a nonempty closed
convez subset of X and T be an esymptotically quesi-nonezpansive with the sequence
{rnlnz1 such that 3 o2 rp < 00 and F(T) # 0. Let the sequence {zn} be defined
by (1.1) with the followmg restrictions:

(i) @ 3 +ﬁ(i) =1 forallie {1,2,...,m} and for alln > 1;
(11) p sl 1’Yn < oo forallie{1,2,..,m}.

If p € F(T), then lim,, o ||2n — p|| exists.

Proof. Let p € F(T). For each n 2 1, we note that

Iz —pl| = [aPT %z, + Bz, + v Pull — ||
< afIT e~ pll + B llzn — pll + 20 ull) g
< P +ra)lzn - pll + ALz - ol + 1D — 5l
< (4 ra)lza —pl +d (4.1)

where d{ (1)||u(1) —p|l- Since {u,(,l)} is bounded and 3 >, 'y,(,l) < 00 we see that
o d < co. It follows from (4.1) that
12 = pll < o@(1+ra)llz) — pll + BPNzn — pll + ¥ u? - pl
< (1 4 ) (1 r)llzn = pll + d) + BP (A + rn)?||za — pl|
+ 72 ul® - p|
@ + B2 (1 + ra)llzn — pll + &P dS (1 + 7a) + 1P|l - pl|
(1 +ro)l|zn — pfl + PdD (1 + ) + 7PN u@ - p|
(1 + 70)?|za — p|) +dP, (4.2)

il

IA

]

where d{2 = a(z)dnl)(1+rn)+'y(2) ||u(2) —p|. Since {ug)} isbounded and } 27 dP <
o0, it follows that 3 02, d?) < co. Moreover, we see that

Iz -2l < a1 +r)lz? - pll + B Nea — pll + 7O - o

S o +ra)(1+ ) lzn = pll + d) + 6P (1 + ) llzn — pl

+73u - o
(@ + A)(1 + rn)*lzm — 2l + DD (1 + 70) + 9D
< (L4 ra)len — pll + ofPdP (1 +73) + 4P u — o)
= (1 +7n)llzn - pll +d, (4.3)

IA

where d) = )d(z)(1+ n)+'y(3)||u(3) ~p||. Sothat ) oo, d¥ < co. By continuiting
the above method, there are nonnegative real sequence {dsl )} such that 3 > ; dP <

11
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oo and
=% = pl < (1 + rn)tllzn — pll + dP, for all k = 1,2,...,m.

By Lemma 2.2, we have lim,. o || zn — p|| exists. This completes the proof. O

Lemma 4.2. Let X be a uniformly convex Banach space, C a nonempty closed
convex subset of X and T : C — C be an asymptotically quasi-nonexpansive with
the sequence {ro}nz1 such that ) oo rn < 00 and F(T) # . Let the sequence {x,}
be defined by (1.1) whenever {a,(f)},{ﬁ,(f) s {’yy(f)} satisfies the same assumptions as
Lemma 4.1 for each i € {1,2,...,m} and the additional assumption that 0 < a <
AV M <pet for all n > ng, for some ng € N. Then

(m—1)
i

(a)- limn—oo ”Tﬂx - mn” _ 0;

(b). limp oo [ T2 — 2| = 0.

Proof. (a). For any p € F(T), it follows from Lemma 4.1 that lim, . ||z, — pi|
exists. Let lim, oo ||Zn — pl| = @ for some a > 0. We note that

|25 — pll < (1 + )™ Hlon — pl| +d{™ Y, ¥ > 1

1)

where {dﬁ{"“’ } is a nonnegative real sequence such that 3 52, ™ < oo It

follows that

limsup ™Y — p|| < limsup((1+ 7)™ |za —pll + " V) = lim iz, —pl=a
00 n—oo N—r 0

and so

tim sup [[T"2{™~) = p|| < limsup(1 + ry)[|z§" ™ — pf = limsup 2"~ — p| < .
=00 n—oo 00

Next, consider

17725 — p+ A (™ — o)l < 1T = plf + 1™ lul™ — zall.

- Thus,
limsup [Tz — p + 4™ (uf™ — z,)| < a. (44)
— 00
Algo, flzn — p + ¥ (@™ — o)l < llzn — pll + W™ — 2,
gives that
limsup [z — p+ 1™ (W™ - z,)[| < o, (4.5)
n—oo

5
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and we observe that
- K (m) _
a JimJlzy™ — pl]

= lim o T 2D 4 Bz, + A ul™
= lim T2 4 (1= o) - 2
+ AU — (1 - of™)p - oMy
= Jim_[lefMT{" Y — afPp + oMy Mul ~ ofmy M,
+(1- ez — (1 - o)y
2 AP — QP 4 0|
= im (T2 — pot ol — 20) + (- o)z — p+ D@ ~ ).
It follows from (4.4), (4.5) and Lemma 3.1 that
Jim [T — 2| = 0.
This completes the proof of (a).

Proof of (b). For each n > 1, we have

len—pll < l&n—T 2 V| + |21 - p))
< g = T2V + (L4 1) |20 - p|l.

Since limp—.oo ||Tn — Tz V|| = 0 = limp o0 7, we obtain that

a= lim_[an - p| < liminf {1 - p|.
n—o =00
It follows that
a < Liminf ||z{™ Y - p| < limsup ||z™ —p|| < q,
n—:as0 0

which implies that

i (12D — pll = a.
UL B pll=a
On the other hand, we note that
2§~ — pll < (1 + 7)™ zn - pll +di™ Vo > 1

where {dﬁ,’"_z)} is & nonnegative real sequence such that 3 ;> d™? < oo. Thus

lim sup [|a{™~? — p|| < limsup(1 + )™ 2lzn — pl| =,

n—0oc
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and hence
lim sup [ 723" ~ pi| < lim sup(1 + 1) [l2{™2 - p|| < a.
Tfl—Cx)
Next, consider |
-2 - - -
1772 = p 4 AP Dl — 2| S T2 — o] + AL D =D — ]

Thus,
limsup |77z — p+ 7" D(uf"V - z,)[| < a. (4.6)
i—o0

Also, flzg — p + 1 VW™ ~ 2] < lzn — pfl + %™ V)™ — 2,

gives that
limsup fjzn — p + %" D™ — 2,)] < q, (4.7)
nN—o0
and noth that
= i (m-1) _
a = lim |z{" g

= lim jlaf® VT + pim D, 4 AmDufm —
lim [l Tz D — p 4 AV - 2,))
n—ece

+(1 = o™ D)z —p + A"V - za)).
It follows from (4.6}, (4.7) and Lemma 3.1 that
Jim [T 2] =0
This completes the proof of (b). O

Theorem 4.3. Let X be a real uniformly convexr Banach space, C' o nonempty closed
convex subset of X and T : C — C be an uniformly L-Lipschitzian, completely
continuous asymptotically quasi-nonezpansive with the sequence {rn}n>1 such that
YomeiTa < 00 and F(T) # 9. Let the sequence {zn} be defined by (1.1) when-
ever {ag)},{ﬁr(f)},{”fﬁi)} satisfies the same assumptions as Lemma {.1 for each
i € {1,2,..,m} and the additional assumption thet 0 < a < a,(f) < g8 <1 for
alli € {m —1,m}. Then {:L',(,k)} converge strongly to a fixed point of T, for each
k=1,2,3,..,m.

Proaf. 1t follows from Lemma 4.2 that

Jim 1T = gl =0 = fim [772{"" - 2.
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This implies that,
l#nt1 = znll = 20 — 2| < (|7 20—z | + Y ) — 2|
— 0asn — oo. ' (4.8)

Thus, we have

IT"2n — 2ol < NT"%p — T2 D) + [T 2™ — 2|
< Lljgn — 2| + | T2 — 2|
< " Ljon = T2 + DL - 2
+ ||T"z$l“‘_1) —zp|| —0asn —co (4.9)
and we note that
lzn =Tzl < "xn-l-l = Tnl| + flZnt1 — Tn+1mn+1|E

+ T aney = T za|| + | T 20 — Tza|
<

[Za41 = @nll + |Znt1 — T 2oy

-+

(1 + a1 fllZnt1 = Zall + LI T 2n — x|
This together with (4.8) and (4.9) we cbtain
"I_i__rpno |zn — Tz, = 0. (4.10)

By the boundedness of {z,} and our assumption that T is completely continuous,
there exists a subsequence {Tz,, } of {Tzn} such that Tx,, — p€ C as k — co.
Moreover, by (4.10), we have |TZn, — Zn, || — 0 which implies that z,, — p as
k — co. By (4.10) again, we have .

lp—Tpll = lim [z, = Ton, || =0.

It show that p € F(T). Furthermore, since lim, o [|zn — p| exist we obtain
limp—oo llzn — pl| = 0, that is lima_.e0 ms.m) = liMp—eo Zn = p. Moreover we
observe that |25 — pl| < lzn — pl| +d$¥ for all k = 1,2,3,...,m — 1 and each
limp 00 ¥ = 0. Therefore limy—.co 24 = p for all k = 1,2,3,...,m — 1. The

proof is completed. o

For m = 3 and ﬂ,(f) =1 —a,(f) —753) forall {1 =1, 2,3 in Theorem 3.4 or Theorem
4.3, we obtain the following result.
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Theorem 4.4. (see [2]) Let X be uniformly convex Banach space and C be a non-
empty closed conver subset of X. Let T : C — C be an completely continuous
asymptotically nonezpansive mapping with the nonempty fized-point set F(T) and o
sequence {ra} in [0,00) and 352, r < 00. Let a sequence {z,,} be defined by (1.2)
with the following restrictions:

Ho<a<a®P <be1
(i1) limsup,,_, (1 + rn)ag) <1
(iii) > opey 'y,(f) <eo foralli=1,2,3.

Then the sequence {zn,} converges strongly to a fized point p of T.

When m = 3 and 'y,(f) = ,(,2) = 7&3) = 0 in Theorem 3.4 or Theorem 4.3, we
obtain strong convergence theorem for Noor iteration as follows:

Theorem 4.5. [20, Theorem 2.1]. Let X be a real uniformly convex Banach space,
C be ¢ nonempty closed, bounded convex subset of X. Let T : C — C be a
completely continuous esymptotically nonezpansive self-mapping with sequence {ry}
satisfying rn, > 0 and 3 ooy 1 < 00. Let {ag)}, {a,(?)}, {a,(f')} be real sequences in
[0,1] satisfying;

{i) 0 < liminf, .. a,(us) < limsup,, - oo asls) <1, and

(ii) 0 < lim infp—co &% < limsup, o0& < 1.

For a given =1 € C, the sequence {z,}, {29)}, {3:512)} defined by (1.3} converges

strongly to a fived point of T.

Proof. 1t follows from the condition (i) and (ii) that there are o, 8 € (0,1) and
ng € N such that

0<a<a® ol <p<t
for all n > ng. So that the conclusion of Theorem follows from the Theorem 3.4 or

Theorem 4.3. O

Acknowledgment: The author thanks the Thailand Research Fund for their fi-
nancial support.
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THE CHARACTERISTIC OF NONCOMPACT CONVEXITY AND
"RANDOM FIXED POINT THEOREM FOR SET-VALUED OPERATORS

POOM KUMAM AND SOMYOT PLUBTIENG

=2
T
e Abstract. Let (£, %) be a measurable space, X a Banach space whose char-
acteristic of noncompact convexity is less than 1, C a bounded closed convex
subset of X, KC(C) the family of all compact convex subsets of C. We prove
that a set-valued nonexpansive mapping T : C — KC(C) has a fixed point.
Furthermore, if X is separable then we also prove that a set-valued nonex-
pansive operator T : §} x C — K'C(C) has a random fixed point.
Keywords : random fixed point, set-valued random operator, measure of noncompacness.
Meathematics Subject Classification 2000 : 47H10, 4TH09, 4THO4.

1. INTRODUCTION

The study of random fixed points has been a very active area of research in probabilistic
.operator theory in the last decade. In this direction, there have appeared various papers
concerning random fixed point theorems for single-valued and set-valued random operators;
see, for example, {6},(8],(10],[11],[12]{15],[21) and the references therein.

In 2002, P. Lorenzo Ramirez [10] proved the existence of a random fixed point theorems
for a random nonexpansive operator in the framework of Banach spaces with the characteristic
of noncompact convexity £4{X) less than 1. On the other hand, Dominguez Benavides and
Ramirez {4} proved a fixed point theorem for a set-valued nonexpansive and 1-y-contractive

- mapping in the framework of Banach spaces whose characteristic of noncompact convexity
associated to the separation measure of noncompaciness £g(X) less than 1. -

1
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The purpose of the present paper is to prove a fixed point theorem for set-valued random
nonexpansive operators in the framework of Banach spaces with characteristic of noncompact
convexity associated to the separation measure of noncompactness ég(X ) less than 1. More-
over, we also prove a fixed point theorem for set-valued nonexpansive mappings in Banach
spaces with characteristic of noncompact convexity associated to the separation measure of
noncompactness £4(X) less than 1. Our results can also be viewed as an extension of Theorem
6 in [10] and Theorem 4.2 in [4], respectively.

2. PRELIMINARIES

Through out this paper we will consider a measurable space (€1, Z) (where ¥ is a c—algebra
of subsets of ) and (X, d) will be 2 metric space. We denote by CL{X)(resp. CB(X), KC(X))
the family of all nonempty closed (resp. closed bounded, compact convex} subsets of X, and
by H the Hausdorff metric on CB(X) induced by 4, i.e.,

H(A, B) = max {sup d(a, B),sup d(b, A)}
aEA beB

for A, B € CB(X), where d{z, E) = inf{d(z,y)|y € E} is the distance from z to £ C X.

Let C be a nonempty closed subset of a Banach space X. Recall now that a set-valued
mapping T : C — 2% is said to be upper semicontinuous on C if {zx € C' : T C V} is open
in C whenever V C X is open; T is said to be lower semicontinuous if T-}(V) := {z € C :
TzNV s# @} is open in C whenever V C X is open; and T is said to be continuous if it is
both upper and lower semicontinuous (¢f.[2] and [3] for details). There is another different
kind of continuity for multivalued operators: T : ¢ — CB(X) is said to be continuous on C
(with respect to the Hausdorff metric H) if H{(Tz,,Tz} — 0 whenever z, — z. It is not hard

to see (see Deimling [3]) that both definitions of continuity are equivalent if Tz is compact

for every z € C.

A set-valued operator T :  — 2% is called (£)— measurable if, for any open subset B
of X,
T-YB):={weN: T(w)NB # 0}
belongs to £. A mapping = : 2 — X is said to be a measurable selector of a measurable
set-valued operator T : Q — 2% if z(-) is measurable and z{w) € T(w) for all w € Q. An
operator T : © x C — 2% is called a random operator if, for each fixed z € C, the operator
T(-,z) : 2 ~ 2% is measurable. We will denote by F(w) the fixed point set of T'(w, ), i.e.,

Flw):={z € C:ze T(w,z}}.



I:!‘é?y

2

45

W

/7

;e
t

ANANWIN 5/3

RANDOM FIXED POINT THEOREMS 3

Note that if we do not assume the existence of a fixed point for the deterministic mapping
T(w,-) : ¢ — 2%, F(w) may be empty. A measurable operator z : £ — € is said to be a
random fized point of an operator T : §) x C — 2X.if z(w) € T(w,z(w)) for all w € . Recall
that 7" : Q x C' — 2% is continuous if, for each fixed w € §, the operator T : (w,-) — 2% is
continuous.

If C is a closed convex subset of 2 Banach space X, then a set-valued mapping T : C —
CB(X) is said to be a contraction if there exists a constant k € [0, 1) such that

H(TI:Ty) < k”ﬂ: - yl[s T,y € Ca
and T is said to be nonexpansive if

H(Tz,Ty) < |z —yl, =z,yeCl.

A random operator T : £ x C — 2% is said to be nonezpansive if, for each fixed w € Q,
the map T : (w, ) — C is nonexpansive.

For later convenience, we list the following results related to the concept of measurability.

Lemma 2.1. (Wagner cf.[14]) Let (X,d) be a complete separable metric space and F: Q —
CL(X) a measurable map. Then F has a measurable selector.

Lemma 2.2. (Itoh 1977, cf.|8]) Suppose {T,} is a sequence of measurable set-valued operator
fromQ to CB(X) and T : Q@ — CB(X) is an operators. If, for eachw € §t, H(T,(w),T(w)) =
0, then T is measurable.

Lemma 2.3. (Tan and Yuan cf.[13]) Let X be a separable metric space and Y a metric space.
Iff:QxX =Y is measurable inw €  and continuous inzx € X, and if x : Q — X is
measureble, then f(,z(-)) : @ = Y is measurable.

As an easy application of Proposition 3 of Itoh[8| we have the following result.

Lemma 2.4. Let C be 2 closed separable subset of a Banach space X, T : @ xC = C a
random continuous operator and F : @ — 2€ a measurable closed-valued operator. Then for
any s > 0, the operator G : & — 2 given by

Gw)={re Flw):|z—-T{w,z)|| <s}, we
is measurable and so is the operator cl{G(w)} of the closure of G(w).

Lemma 2.5. (Dominguez Benavidel, Lopez Acedo and Xu cf.[6]) Suppose C is ¢ weakly closed

nonempty seperable subset of a Banach space X, F : Q — 2% a measurable map with weakly
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compact velues and f : @ x C — R a measurable, continuous and weakly lower semicontinuous
function. Then the marginal function v : ! — R defined by

r(w) = Ieigfz) flw,z)
and the marginel mag R : 2 — X defined by
R(w) := {z € F(z) : f(w,z) =r(w}}

are measurable.

Recall that the Kuratowski and Hausdorff measures of noncompactness of & nonempty
bounded subset B of X are respectively defined as the number

a(B) =inf {r > 0: B can be covered by finitely many sets of diameter < r},
x(B) =inf{r > 0: B can be covered by finitely many balls of radius < r}.

The separation measure of noncompacness of a nonempty bounded subset B of X defined by
f(B) = sup {e : there exists a sequence {z,} in B such that sep({zn}) > €}.

Let X be a Banach space and ¢ = ¢, 8 or x. The modulus of noncompact convexity associated
to ¢ is defined in the following way:

Ax (e} = inf {1 — d(0, A) : A C By is convex, ¢(A) 2 €},

where By is the unit ball of X.

The characteristic of noncompact convexity of X associated with the measure of noncom-
pactness ¢ is defined by

ea(X)=sup{e 2 0:Ax () =0}.
The following relationships among the different moduli are easy to obtain
(2.1) Axole) < Axple} < Dxxle),
and consequently
(2.2) £a(X) 2 £p(X) 2 ex(X}.

When X is a reflexive Banach space we have some alternative expressions for the moduli of
noncompact convexity associated to 8 and x.

Axple) = inf {1 — ||z : {za} C Bx,x = w — limy, Tn,sep({Zn}) = £},

Axx(e) =inf {1 - ||z|| : {#n} C Bx,z = w — limp zn, x({zn}) = €} .
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Let C be a nonempty bounded closed subset of a Banach space X and {z,} a bounded
sequence in X. We use 7(C, {zx}) and A(C,{z,}) to denote the asymptotic radius and the
asymptotic center of {z,} in C, respectively, i.e.

r(C,{z,}) =inf {lim sup||zn —xl 1z € C} )

AlC {z,}) = {:c € C: limsup ||z, — z|| = r(C, {xn})} .
n
If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

re(D) :=inf {sup{|lz — y|| : ¥y € D} : z € C}.

~ Let {z.} and C be nonempty bounded closed subsets of a Banach space X. Then {z,}
is called regular with respect to C if r(C,{zn}) = r(C, {zn,}) for all subsequences {zn,} of

{zn).

Moreover, we also need the following Lemmas.

Lemma 2.6. (Dominguez Benavides and Lorenzo Ramirez Theorem 4.3 cf. [4]) Let C be a
closed convex subset of a reflerive Banach spece X, and let z,, be a bounded sequence in C
which is regular with respect to C. Then

(2.3) ro(A(C, zn)) < (1 = Ax,(17))r(C, {za})-

Moreover, if X satisfies the nonstrict Opial condition then

(24) ro(A(C, 2a)) € (1 - Ax (17)7(C, {z2}).

The following result are now basic in the fixed point theorem for multivalued mappings.

Lemma 2.7. (Xu cf. Theorem 1.6 of [19]) Let E be a nonempty bounded closed closed convex
s'c;bset of a Banach space and T : E — KC(X) a contraction. Assume Tz N Ig(z) # 0
for all z € E. Then T has a fived point. (Here Ip(x) is call the inward set at = defined by
Ip={z+My—2z): 2>0,yc E})

Proposition 2.8. (Kirk-Massa Theorem ¢f.[16]) Let C be a nonempty weskly compact sep-
arable subset of o Banach space X, T : C — K(C) a nonezpansive mapping, and {z,} o
sequence in C such that limy, d(z, — Tz,.) = 0. Then, there exists a subsequence {zn} of {zn}
such that

TxNA#0,Vz € A= A(C,{zn})
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3. THE RESULTS

We begin this section by showing that in Benavides-Ramirez’s result, the 1-y-contractive
condition on T can be removed.

Theorem 3.1. Let C be a nonempty closed bounded convex subset of a Banach space X such
that eg(X) <1, and T : C — KC(C) a nonexpansive mapping. Then T has a fired point.

Proof The condition gg(X) < 1 implies reflexivity [2], so C is weakly compact. Let zo € C
be fixed and, for each n > 1, define T, : C — KC(C) by

1 1
Tz =—xo+ (1- =Tz, Yz C.
n n

Then T,, is a set-valued contraction and hence has a fixed point z,. It is easily seen that
dist(zn,Tzn) < 2diamC — 0 as n ~ co. By Goebel and Kirk {7], we may assume that {z,}
is regular with respect to C' and using Proposition 2.8 we can also assume that

TzNA#0D, Vze A:=A(C, {z.}).
We apply Lemma 2.6 to obtain
(31) Tc(A) < AT(C: {mn}):
where A := (1~ Axg(17)) < 1.
It is clear that A is a weakly compact convex subset of C. Now fix #; € A and for each
n > 1, define the contraction T} : A — KC(C) by
1 1
T':(:L') = ;.‘1’21 + (1 - E)TI, Vo€ A
Since 4 is convex, each T} satisfies the same boundary condition as T does, that is, we have
TizNTa(z)#0, Vz € A,

Hence by Lemma 2.7, T has a fixed point z,, € A. Consequently, we can get a sequence {z}
in A satisfying d{z}, T(zl)) — 0 as n — oco. Again, applying Lemma. 2.6, we obtain

(3-2) re(AY) < Ar(C {z3)),

where A := A(C, {z1}). Since {xl(w)} C 4, we have

(3.3) #(C, {z3}) < ro(A),
and then
(3.4) re(A') € Mre(4).
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By induction, for each m > 1, we construct A™, and {2} }n where A™ = A(C, {z}),z] C
A™~1 such that d(zI®, Tz") — 0 as n — co and

(3.5) ro(A™) < Arg(A) € A™r(C, {za)).

By assumption gg{X) < 1 and diamA™ < 2rg(A™) leads to lim,_..o diamA™ = 0. Since
{A™} is a descending sequence of weakly compact subsets of C, we have N, A™ = {z} for
sq'_me z € C. Finally, we will show that z is a fixed point of T. Indeed, for each m > 1, we

have

d(z, Tz) lz =z + d(z}}, TaP) + H(Tz3, Tz)

<
< 2z =27 + d(zr, T2y
<  2diamA™ + d{z7*, Txl).

Taking the upper limit as n — oo,
d(z,Tz) < 2diamA™.

Now taking the limit in m on both sides we obtain z € T'z. 2

Corollary 3.2. (Dominguez Benavides and Lorenzo Ramirez. Theorem 4.2 in [4]) Let C be
a nonempty closed bounded convexr subset of a Banach space X such that eg(X) < 1, and
T:C — KC(C) a nonezpansive and I-x-contractive mapping. Then T has a fized point.

Now we are ready to prove the main result of this paper.

Theorem 3.3. Let C be a nonempty closed bounded convexr separable subset of a Banach
space X such that epg(X) <1, and T : Q@ x C — KC(C) be a set-valued nonerpansive random
operator. Then T has a random fized point.

Proof For each w € 2, and for every n > 1, we set
Flwy={zeC:z e T(w,z)},

and
Fow) = {z € C: d(z, T(w,z) < %diamc.}

1t follows from Theorem 3.1 that F{w) is nonempty. Clearly F(w) € F,(w), and F,(w)
is closed and convex. Furthermore, by [8, Proposition 3], each F,, is measurable. Then, by

Lemma 2.1, each F,, admits a measurable selector z,{w) and
d{an (W), T{w, zp(w))) < %diamC - 0 as n — o0,
Define a function f; : Q@ x € — R by

fi(w,z) = limsup ||z,(w) — 2|, Yw e
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By Lemma 2.3, it is easily seen that for each z € C, fi(-,z) : 2 — R* is measurable and for
eachw € Q, fi(w,) : C — Rt is continuous and convex {and hence weakly lower semicontin-
uous (w-ls.c.)). Note that the condition £4(X) < 1 implies reflexivity (see [2]) and so C is
weakly compact. Hence, by Lemma 2.5 the marginal functions

rl(w) = ;gé fl(wr :B),
and
Bi(w) :={z € C: filw,z)} = r1{w)}
are measurable. By Goebel [7], for any w € £ we may assume that the sequence {z,(w)} is

regular with respect to C. Observe that Ri(w) = A(C, {zn(w)}) and ri{w) = r(C, {zn(w)}),
thus we can apply Lemma 2.6 to obtain

(3.6) re(Ra(w)) < Ar(w),

where A := 1 - Axg(17) < 1, since €g(X) < 1. It is clear that R;(w) is a weakly compact
and convex subset of C. By Lemma 2.1 we can take z;(w) as a measurable selector of R; (w).
For each w € { and n > 1, we define the contraction T2 (w,-) : Ri{w) — KC(C) by

Thw,2) = ~m() + (1 = 2)T(w,2), Vo & Ry(w).
Since Ry (w) is convex, each T}, satisfies the same boundary condition as T does, that is, we
have
THw, )N TR, (W) (z) £#0, Vr € Ry(w).

Hence by Lemma 2.7, T} (w, ) has a fixed point z,(w) € Ry (w),i.e.F(w) N By (w) # 0. Also it
is easily seen that

dist(zn (), T(w, za(w))) < %diamC —08sn— oo

Thus Fl(w) = {z € Ry(w) : d(z,T{(w, z)) < 2diamC} # @ for each n > 1, is closed and, by
Lemma. 2.4, measurable. Hence, by Lemma 2.1, we can choose z a measurable selector of
F}, and from its definition we have z (w) € Ri(w) and d(z}(w), T(w,zL{w)}) — 0 as n — co.

Consider the function f; : @ x C — R* defined by
f2(w, ) = limsup ||z} (w) — z|, Yw e

n
As above, fs is a measurable function and weakly lower semicontinuous function. Thus the
marginal functions

= inf s

ra(w) m€1Rnl » felw, x)

and

Ry(w) = {z € By{w) : fé(w,z) = ro(w)}

are measurable. Since R(w) = A(Ry(w), {zL(w)}), it follows that Ra(w) is weakly compact
and convex. Also ro(w) = r(Ra(w), {x}(w)}). Again reasoning as above, for any w € (2, we can
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assume that the sequence {zl(w)} is regular with respect to R;(w). Again, applying Lemma
2.6, we obtain

3.7 re(Ra(w)) < Arg(w).

Furthermore, {z}(w}} C Ri(w). Hence

(3.8) r2(w) < re(Ra(w)),
and thus
(3.9) ro(Ra(w) € Ari(w).

By induction, for each m > 1, we construct Ry, (w), 7 (w) and {2 (w)}, where 27 (w) &
R (w) such that d{zw), T'(w, 27 (w))} — 0 as n — oo and

(3.10) re(Rm(w)) € Arp{w) < A (w).

Since diamRm(w) < 2rc(Rm(w)) and A < 1, it follows that limm— o diamRm(w) = 0. Since
{Rm(w)} is a descending sequence of weakly compact subsets of C for each w € £2, we have
N B (w) = {z(w)} for some z(w)} € C. Furthermore, we see that

H(Rp(w), {z(w}}) < diamRp,(w) — 0 as n — +o00.

Therefore, by Lemma 2.2, z{w) is measurable. Finally, we will show that z(w) is a fixed point
of T Indeed, for each m > 1, we have

d(z(w), T(w, 2(w) < [z(w) —z7{(w)|| + d(z7' (W), T(w, 27 (w)))
' + H(T(w,z7(w)), T(w, z(w)})
< 2f|z(w) — 2 (w)l| + d(zT{w), T(w, z7' (w)))
< 2diamR,,(w) + d{z(w), T{w, 27 (w))).

Taking the upper limit as n — oo,
d(z(w), T(w,2(w)) < 2diamR,,(w).
Finally, taking limit in m in both sides we obtain z{w) € T(w, z{w)). O

Corollary 3.4. Let C be a nonempty closed bounded convex separable subset of a Banach

space X such that eg(X) < 1, and T :  x C — C a random nonexpansive operator. Then T
has a random fized point.

Corollary 3.5. (Lorenzo Ramirez, Theorem 6 in [10]} Let C be ¢ nonempty closed bounded
convex separeble subset of a Banach space X such that £o(X) < 1, and T : QO xC = C a
random nonecpansive operator. Then T has a random fized point.

Proof By (2.2) we see that £,(X) < 1 implies £54(X) < 1.
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RANDOM FIXED POINT THEOREMS FOR MULTIVALUED
NONEXPANSIVE NON-SELF RANDOM OPERATORS

S. PLUBTIENG AND P. KUMAM

Abstract. Let (©2, ) be a measurable space, with }, a sigma-algebra of subset of {2, and
let C be & nonempty bounded closed convex separable subset of a Banach space X, whose
characteristic of noncompact convexity is less than 1, KC(X) the family of all compact
convex subsets of X. We prove that a multivalued nonexpansive non-gelf random operator
T:0x C — KC({X), 1-x-contractive map;ﬂﬁg, satisfying a inwardness condition has a
random fixed point.

1. INTRODUCTION

In recent years there have appeared various random fixed point theorems for single-
valued and set-valued random operator; see for example, Itoh |7], Ramirez [11], Tan and
Yuan [12], Xu [14], and [15] Yuan and Yu [17] and references therein.

In 2002, P. L. Ramirez [11] proved the existence of random fixed point theorems for a
random nonexpansive operator in the framework of a Banach spaces with a characteristic
of ‘noncompact convexity €4 (X} is less than 1. On the other hand, Dominguez Benavides
and Ramirez [3] proved a fixed point theorem for a set-valued nonexpansive self-mapping
and 1-x-contractive mapping in the framework of a Banach spaces whose characteristic of
noncompact convexity associated to the separation measure of noncompactness eg(X) is less
than 1. In 2004, Dominguez Benavides and Ramirez [4] proved a fixed point theorem for
a multivalued nonexpansive non-self mapping and 1-y-contractive mapping in the frame-
work of a Banach spaces whose characteristic of noncompact convexity associated to the
Kuratowski measure of noncompactness £4(X) is less than 1.

0

Key words and phrases: random fized point, multivalued random operator, inwardness condition.
2000 Mathematics Subject Classification: 4TH10, 47HO09, 47H40.
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The purpose of the present paper is to prove.a random fixed. point theorem for mul-
tivalued nonexpansive non-self random operators which is 1-y-contractive mapping, in the
framework of a Banach spaces with characteristic of noncompact convexity associated to
the separation measure of noncompactness eg{X) less than 1. and satisfying a inwardness
condition. Our result can also be seen as an extension of Theorem 3.4 in [4]

2. PRELIMINARIES AND NOTATIONS

We begin with establishing sotne preliminaries. By (2,Z) we denote a measurable
space with I a sigma-algebra of subset of Q0. Let (X,d) be a metric space. \We dencte
by CL{X)(resp CB(X)},KC(X)) the family of all nonempty closed (resp. closed bounded,
compact convex) subset of X, and by H the Hausdorff metric on CB(X) induced by d, i.e.,

H(A, B) = max {sup d{a, B),sup d(b, A)}
acA beB

for A, B € CB(X), where d{z, E) = inf{d(z,y)|ly € E} is the distance from z to £ C X,

Let C be a nonempty closed subset of a Banach space X. Recall now that a Multivalued
mapping T : C — 2% is said to be upper semicontinuous on C if {x € C: Tz C V} is open
in C whenever V C X is open; T is said to be lower semicontinuous if 7=-'(V):= {zr € C:
TNV # @}s open in C whenever V C X is open; and T is said to be continuous if it is
both upper and lower semicontinuous (cf.[1] and [2] for details). There is another different
kind of continuity for multivalued operator: T : € — CB(X) is said to be continuous on
C (with respect to the Hausdorff metric H) if H(Tx,,Tz) — 0 whenever z, — z. It is
not hard to see (see Deimling [2])that both definitions of continuity are equivalent if T'z is
compact for every z € C.

If C is a closed convex subset of a Banach spaces X, then a multivalued mapping
T : C — CB(X) is said to be a contraction if there exists a constant & € [0, 1) such that

H(T&L‘, Ty) < k”I - y”a T,y € C:
and T is said to be nonczpansive if

H(Tz,Ty) < |z—vyl, =zy€C,

A multivalued operator T : @ — 2% is called (£)— measurable if, for any open subset
Bof X,

T-YB)={we Q: T(w)N B #0}
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belongs to L. A mapping = : @ — X is said to be a measurable selector of a measurable
Multivalued operator T : €2 — 2% if z(.) is measurable and z(w) € T(w) for all w € . An
operator T : @ x C — 2% is calied a random operator if, for each fixed z € C, the operator
T(-,x) : @ — 2% is measurable. We will denote by F(w) the fixed point set of T'(w, -), i.e.,

Flw):={zeC:z e T{w,)}.

Note that if we do not assume the existence of fixed point for the deterministic mapping
T(w,) : C — 2%, F{w) may be empty. A measurable operator z : 8 — C is said to be a
random fized point of e operator T : § x C — 2X if z{w) € T(w, z(w)) for all w € . Recall
that T : @ x C = 2% is continuous if, for each fixed w € Q the operator T : (w,-) — 2% is
continuous.

A random operator T :  x C — 2% is said to be nonezpansive if, for each fixed w € Q

the map T : (w,-) — C is nonexpansive.

For later convenience, we list the following results related to the concept of measurability.

Lemma 2.1. { Wagner ¢[.[13]). Let (X,d) be a complete separable metric space and F :
2 — CL{X) a measurable map. Then F has a measurable selector.

Lemma 2.2. ( Itoh 1977, cf.[7]). Suppose {T,.} is a sequence of measurable Muliival-
ued operator from § to CB(X) and T : Q@ — CB(X) is an operator. If, for each w €
Q, H{To(w), T(w)) = 0, then T is measurable.

Lemma 2.3. { Tan and Yuan cf.[12]). Let X be a separabie metric space and Y a metric
space. If f: Q% X — Y is a measurable in w € §1 and continuous in z € X, and if
% : Q — X is measurable, then f(-,2(-)): @ =Y is measurnble.

As an easy application of Proposition 3 of Itoh[7] we have the following result.

Lemma 2.4, Let C be ¢ closed separable subset of a Banach space X, T : QO xC - C a
random continuous operator and F : ©2 — 2€ o measurable closed-valued operator. Then for
any 8 > 0, the operator G : 2 — 2C given by

Glw)={ze Flw): |l —T(w,z}|| <s}, we
is measureble and so is the operator cl{G(w)} of the closure of G{w).

Lemma 2.5. ( Dominguez Benavidel and Lopez Acedo c¢f.(5]). Suppose C is ¢ weakly
closed nonempty separable subset of a Banach space X, F : § — 2% a measurable with

-weakly compact values, f : 1 x C — R is a measurable, continuous and weakly lower

semicontinuous function. Then the marginal function r : @ — R defined by

r(w) = Ieig{w)f(w,x)
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and the marginal map R : Q — X defined by
R(w) :={r€ Fw): flw,z) = r(w)}

are measurable.

Recall that the Kuratowski and Hausdorff measures of noncompactness of a nonempty
bounded subset B of X are respectively defined as the number

a(B)=inf{r > 0: B can be covered by finitely many sets of diameter < r},

x(B)=inf{r > 0: B can be covered by finitely many ball of radius < r}.

The separation measure of noncompacness of a nonempty bounded subset B of X defined
by
B(B) = sup {e : there exists a sequence {z,} in B such that sep({zn}) > €}.

Then a multivalued mapping T : C — 2% is called y-condensing (resp., 1-y-contractive)
where v = a('} or x(-} if, for each bounded subset B of C' with ¥(B) > 0, there holds the
inequality '

HT(B)) < ¥(B) (respy{(T(B)) < +(B)).
Here T(B) = | J,¢5 Tz The random operator T : © x C — 2% is said to be 1-y-contractive
if, for each w € Q the map T : (w, -} — 2% is 1-y-contractive.
Definition 2.6. Let X be a Banach space and ¢ = @, 8 or x. The modulus of noncompact
convezity associaled to ¢ is defined in the following way:
Ax g(e) =1inf {1 —d(0,A) : A C Bx is conves, ¢(A) > €},

where By is the unit ball of X.

The characteristic of noncompact convexity of X associated with the measure of non-
compactness ¢ is defined by

es(X)=sup{e > 0: Ax (e} =0}.
The following relationshops among the different moduli are easy to obtain
(2.1) Bx,ale) < Axple) < Axx(e),
and consequently
(2.2) EalX) 2 £5(X) 2 £x(X).

When X is a reflexive Banach space we have some alternative expressions for the moduli of
noncompact convexity associated 8 and x.

Axple) = inf {1 - ||z|| : {zn} C Bx,z = w ~ limz,, sep({z..}) = €},
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Axx(e) = inf{1 - ||z]| : {zn} C Bx,z = w - limzn, x{{zn}) 2 €} .

In order to study the fixed point theory for non-self mappings we must introduce some
terminology for boundary condition, The inward set of C at x € C defined by

Ic(z) = {z+AMy—=x): 2> 0,y C}.

Clearly C C Ig(z) and it is not hard to show that Jo(z)} is a convex set as C does. A
multivalued mapping T : C — 2% {@} is said to be inward on C if

Tz C Io(z) Yz € C.

Let Io(z) = z+ {AMz —2) : z € C,A > 1}. Note that for a convex C, we have
Ic(x) = Ic(x), and T is said to be weakly inward on C if

Tz C Ic(z) vz e C.

Let € be a nonempty bounded closed subset of Banach spaces X and {z,} bounded
sequence in X, we use r(C, {z,}) and A(C, {z,}) to denote the asymptotic radius and the
asymptotic center of {&,} in C, respectively, i.e.

r{(C,{zn}) =inf {lim sup||zn —z|| -z € C} )

A(C, {z,}) = {x eC: lim:‘.up flte — || = r{C, {mn})} .

If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

re(D) := inf {sup{|z ~ y|| :y € D} : x € C}.

Obviously, the convexity of C implies that A{C, {z.}) is convex. Notice that A(C, {zn})
is a nonempty weakly compact set if C is weakly compact, or C is a closed convex subset

of a reflexive Banach spaces X.

Let {x,} and C be a nonempty bounded closed subset of Banach spaces X. Then {z,}
is called regular with respect to C if r(C, {zn}) = r(C, {zn;}) for all subsequences {zn,}
of {z,}; while {z,} is called asymptotically uniform with respect to C if A(C, {z.}) =
A(C, {zn,}) for all subsequences {zn,} of {za}.

Lemma 2.7. (Goebel[6] and Lim[10]). Let {zn} and C be as above. Then we have
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(1) There always exists a subsequence of {x,} which is reqular with respect to C;
(it) if C is separable, then {z,} contains a subsequence which is asymptotically uniform
with respect to C.

Moreover, we also need the following Lemma.

Lemma 2.8. (Dominguez Benavides and Ramirez. Theorem 3.4 cf. [3]). Let C be e elosed
convex subset of a reflexive Banach spaces X, and let x,, be a bounded sequence in C which
is regular with respect to C. Then

(2.3) rc(A(C, zn)) < (1 — Ax s(1")r(C, {2n}).
Morcover, if X satisfies the nonstrict Opial condition then
(2.4) re(A(C,7n)) € (1 = Ax,x (17))r(C, {zn}).

Lemma 2.9. ( Dominguez Benavides and Ramirez. Theorem 3.2 cf. [4]). Let C be a closed
conver subset of a reflexive Banach space X, and let {zg : B € D} be a bounded ultranet.
Then '

(2.5) ro(A(C,zp)) £ (1 = Ax,a(17))r(C, {z6})-

The following result are now basic in the fixed point theorem for multivalued mappings.

Lemma 2.10. (Deimling 1992, cf. [2]). Let X be a Banach space and @ # D C X be closed
bounded convez. Let F : D — 2% be upper semicontinuous y—condensing with closed convex
values, where v(-) = a(-) or x(-). If FzNIp(z) # @ for allz € C, then F has o fized point.
{Here In(z) is called the inward set ot = defined by Ip(z) == {z+My—-x): A >0,y € D})

3. THE RESULT

In order to prove our first result, we need the following Lemma which is proved along
the proof of Kirk-Massa theorem as it appear in [16].

Lemma 3.1. Let C be o nonempty closed bounded conver separable subset of a Banach
space X. T : C — KC(X) is a nonezpansive such that T(C) 1s ¢ bounded set and which
satisfies Tx C Io(xz), Vx € C, {z,} is a sequence in C such that lim, d(2n,, Tz,) = 0. Then
there exist a subsequence {zn} of {zn} such that Tz N I4(x) # 0,Vz € A= A(C,{z.})

Lemma 3.1 is the part (more or less) of the proof of theorem 3.4 of [4].

The next result state the main result of this work.
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Theorem 3.2. Let C be ¢ nonempty closed bounded conver separable subset of @ Banach
spaces X such that eg{X) < 1, and T : ¥ x C — KC(X) be a multivalued nonezpansive
random operator and I-x-coniractive mapping, such that for each w € Q, T{w,C) is a
bounded set, which salisfies the inwardness condition, i.e., for each w € Q, T(w,z) C
Ic(z), Vo e C.

Then T has a random fized point.

Proof. Fix zq € C, and consider the measurable function zg{w) = z¢. For each n > 1, define
Tolw,): C — KC(X) by
To(w,z) = %xo(w) + (n—;—l)T(w, %), ¥z € C.

Then T, (w,-) is a multivalued contraction and T, (w,z) C Io(x), ¥z € C. Hence each T,
has a fixed point zn(w) € C. It is easily seen that d{z,(w), T{(w, ze(w))) £ LdiamC —
0 as n —+ 00. Thus the set

Folw)={z e C:d(z,T(w,z)) £ %diamc}
is nonempty closed and convex. Furthermore, by Lemma 2.4, each F}, is measurable. Then,

by Lemma 2.1, each F,, admits a measurable selector z,,(w) such that

Az (@), T(w, (@) < %diamc'; 0 as 1 — oo,

Defin a function f: Q x € — RY :=[0,c0) by
flw, z) = limsup ||za(w) — zl|, z€ C.

By Lemma 2.3, it is easily seen that f(-,z) is measurable and f(w,-) is continuous and
convex, therefore it is a weakly lower semicontinuous function. Note that, condition eg{X) <
1 implies reflexivity (see [1]) and so C is a weakly compact. Hence, by Lemma 2.5, the
marginal functions
r(w) = mlg;;,f(w,z)
and
Alw) :={z € C: flw,z) = r(w)}

are measurable. It is clearly that A(w) is a weakly compact convex subset of C. For any
w € 0, we may assume that the sequence {#,(w)} is regular with respect C. Note that

A(w) = A(C, {za(w)}), and r(w) = r(C, {zn(w)}). We can apply inequality (2.3) in Lemma
2.8 to obtain

(3.1) ro(A(w)} < Ar(C, {zn(w)}),

where A =1 - Ax g(17) < 1, since eg(X) < 1.
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For each w € R and n > 1, we define the multivalued contraction Tp{w, ) : A{w) —
KC(X) by

m )T w,a),

for each z € C. By Lemma 3.1 we note that T{w,z) N Tag,y(z) # &,V € A(w). Since
Lagu(z) is convex, it follow that T}k (w,-) satisfies the boundary condition i.e.,

Ta(w,z) = %xl(w) +(

(32) T (w, ) NIay(z) # 0,Vz € A(w).

Since T}{w,-) is 1-x-contractive mapping, it follows by [3, pp.382] that Thi(w,-) is x-
condensing. Hence, by Lemma 2.10, T2 (w,-} has a fixed point z}(w) € A(w),i.e.F{w) N
A(w) #£ 0. Also it is easily seen that

dist(zl (W), T(w, 21 (w))) < %dz'amC — 0 asn — co.

Thus Fl(w) := {z € A(w) : d(z,T(w,z)) £ 2diamC} is nonempty closed and convex for

eachn > 1. By Leng_rpa 2.4, each F! are measurable, Hence, by Lemma 2.1, we can choose

z} a measurable selector of 2. Thus we have z}(w) € A(w) and d(zl(w), T{w, zL(w))} —

0 as n — oo. Consider the function fa: @ x € — RY defined by
fo{w,z} = limsup Jal(w) — 2|, Ywe Q.
1i%

As above, f7 is a measurable function and weakly lower semicontunuous function. Then the
marginal function
ra(w) = _inf  folw,)
and
Alw) == {z € Alw) : folw, z) = r2(w)}
are measurable. Since A!(w) = A(A{w), {z}(w}}), it follows that A'(w) is a weakly compact
and convex. Moreover, we also note that m2(w) = r(A(w), {zL(w)}). Again reasoning as

above, for any w € 2, we can assume that the sequence {z1(w)} is regular with respect to
A¥(w). Moreover, we proceed as above using Lemma 3.1 and Lemma 2.8 to obtain that

T(w,2(w)) N La (z(w)) # 8 Vo(w) € A1 = A(A(w), {z(w)}),
and
(3.3) ro(4') € Ar(A), {ZA(W)}) < Arc(Aw)).

By induction, for each m > 1, we take a sequence {z™(w)}n C A™1 guch that re(A™) <
Are(A(w)) and lim, d(ei*{w), T (w, 20 (w})) = 0 for each fixed w € §2, where A™ =

A(C, {z™(w)}). Since diamRn{w) < 2ro(Rm(w)) and A < 1, it follows that limy, e diam Ry, (w) =

0. Note that {R,,(w)} is a descending sequence of weakly compact subset of C for each w € 2.
Thus we have Ny B (w) = {z(w)} for some z(w) € C. Furthermore, we see that

H(Rp(w), {2(w)}) < diamBRp(w) = 0 asn — +oo.
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STRONG CONVERGENCE THEOREMS OF VISCOSITY
AVERAGING ITERATIONS FOR ASYMPTOTICALLY

NONEXPANSIVE NONSELF-MAPPINGS

SOMYOT PLUBTIENG AND RABIAN WANGKEEREE

ABSTRACT. Let ' be a nonempty closed convex subset of a real Hilbert
space H, P be the metric projection of H onto C, T be an asymptoti-
cally nonexpansive nonself-mapping from C into H with a sequence {kn} C
[1,00) and f : ¢ — C be a contraction mapping with coefficient o € (0,1).
Tt proved that, for each n > 1, there exist two sequences {z,} and {y,}
which defined by

Tn = anf(Tn) + {1 - a,,)% Z(PT)j:cn, vn>1

F=1
and -
1 )
Yn = "T; Zp(anf('yn) + (1 - an)(TP)Jyﬂ)v Vn > 1,
i=1
where n
1 : b, —1
== -k =3 = = >
by n;u 11 ksl e an = 3 5zl

and 0 < a < § < 1. Then two sequences {z,} and {y,} converges strongly
to a fixed point of T.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H and

let Tbe a mapping of C into itself. Then T is said to be nonexpansive provided
| Tz ~ Tyl < |lz — y|| for all z,y € C; T is said to be asymptotically nonex-
pansive mapping if there exits a sequence {k,} C [1,00) with lim;, oo kn =1

-Key words and phrases. Fixed point; Metric projection; Asymptotically Nonexpansive
nonself-Mapping; Strong Convergence; Contraction mapping.

2000 Mathematics Subject Classification: 46C08, 47HG9, 47H10.
t Supported by The Thailand Research Fund.
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such that for each z,y € C,
(1.1) Tz — Tyl| < knliz — yl|,Vn =1,2,3, ...

Recall that a self-mapping f : C — C is a contraction on C if there exists a
constant « € (0, 1) such that

(=) — F@ < allz — yl| Vz,y € C.

We denote by F(T') the set of fixed points of T'; i.e. F(T)={z € C:Tz =z}.
It is well know that if T is nonexpansive, then F(T) is convex see [6]. In 1967,
Browder{3] proved the following strong convergence theorem for nonexpansive
mapping: let T" be a nonexpansive mapping of a bounded closed convex subset
C of H into itself. Let u € C and for each t € (0,1), let Goz = tu+ (1 —t)Tz.
Then, G; has a unique fixed point z; in C, and {z;} converges strongly to a
fixed point up of T as t — 0. The fixed point ug is uniquely specified as the
fixed point of T in C closest to u. In 1975, Baillon [1], prove the first nonlinear
egodic theorem as follows: let C be a bounded closed convex subset of H and
let T be a nonexpansive mapping of C into itself. Then for each z € C

1 11
Agz=—-> Tk
o n; T

converges weakly to fixed point of 7. In 1979, Hirano and Takahashif5] ex-
tended Baillon’s theorem to asymptotically nonexpansive mappings. By Using
an idea of Browder(3], Shimizu and Takahashi[13] proved the following theo-
rem for an asymptotically nonexpansive mapping in the framework of a Hilbert
space:

Theorem 1.1. {[13]). Let C be a closed convex subset of a real Hilbert space
H, let T be an asymptotically nonexpansive mapping of C into itself with
Lipschitz constants k,, and suppose that F(T) is nonempty. Let
1o : by, — 1
b, = — 1411 —k; ), = ————,
LSk e = T
where 0 < a < 1. Let o € C. Then, a mapping T,, on C given by
Tot = apzo + (1 — ap)Anz, forallz € C

has a unique fized point u, in C, when Ay = 1577 | TV, Further {u,} conver-

gence strongly to the element of F(T) which is nearest to xo.
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On the other hand, Xu[16] extended Browder’s result to studied two se-
quences {z;} and {z,} given by

zy = tf(z) + (1 - t) Tz,
and
ZTpt1 = Qnf(Zn) + (1 —an)Tza,n=1,2,..,,
where ¢ € {0,1), {an} C (0,1) and f is a contraction mapping from C into
itself. Xu[16] also proved the strong convergence of the sequences as t — 1
and a, — 1 to the unique solution z in F(T") to the variational inequality

((I-flz=2—2) 20,z € F(T) or equivalently to z = P({f(z)) where P is
the metric projection from H onto F(T).

In this paper, we first show that, for an asymptotically nonexpansive
nonself-mapping T with a sequence {k.} C [1, 00), there exists two sequences
{zn} and {y,} which defined by

1 n

1.2 = —a,)~ iz, ¥n>1
(1.2) Tp = G f(z,) + (1 an)n;(PT) Zn, VR 2>
and
1 < i
(1.3) Un = =D P(anf(yn) + (1 = au)(TPYyn), ¥ 2 1
i=1

where

b =—1-Zn:(1+|1—k-|+e'j) can=b"—-_l Yn2>1

n n j=1 ‘7 ? b“ _ ﬂ? - -

0<a< @<l f:C — Cisa contraction mapping with coefficient
a € (0,1) end P is the metric projection from H onto C. Finally we show
that {z,} and {y.} converges strongly to a fixed point of 7. Then the results
presented in this paper generalized and extend the corresponding main results
of Shimizu and Takahashi [13].

2. PRELIMINARIES

Let H be a real Hilbert space with norm || - || and inner product {-,-)
and let C be a closed convex subset of H. Recall the metric (nearest point)
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projection P from a Hilbert space H to a closed convex subset C of H is
defined as follows: Given z € H, Pcz is the only point in C with the property

|z — Poz|| = nf{|z — gy}l : y € C}.
Pcox is characterized as follows.

Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H.
Givenz € H andy € C. Theny = Pz if and only if there holds the inequality

(z—y,y—2)>20,¥VzeC.

Definition 2.2. A mapping T : C — H is said to satisfy. nowhere normal
outward condition ((NNO) for short) if and only if for each z € C, Tx € S¢,
where S, = {y € H : y # z, Py = z} and P is the metric projection from H
onto C.

Lemma 2.3. ([9, Proposition 1]). Let H be a Hilbert space, C o nonempty
closed convezr subset of H, P be the metric projection of H onto C and T :
C — H be o nonself-mapping. Suppose that T satisfies (NNO)} condition.
Then F(PT) = F(T).

Lemma 2.4. ([13, Lemma 4]). Let H be a Hilbert space, C a closed convex
subset of H, and T : C — C be an asymptotically nonezpansive mapping with
F(T) # 0. If {z.} is a sequence in C and there exists a subsequence {Tn,}

which converges weakly to z € C and {z,, — n_l, S
to 0. Then = is a fized point of T.

Definition 2.5. ([4, Definition 3.1]). Let X be a real normed linear space, C
a nonempty subset of X. Let P : X — C be the nonexpansive retraction of

Tiz,,} converges strongly

X onto C. A mapping T : C — X is said to be asymptotically nonezpansive
if there exists a sequence {kn}n>1 C [1,00), kn — 1 as n *— oo such that

for all z,y € C, the following inequality holds:
2.1) IT(PT)" 'z — T(PT)" 'y|| < knllz — yl|,for all n > 1.

Remark 2.6. If X is a Hilbert space then we can replace the mapping P by
the metric projection P.

Remark 2.7. If T is a self-map, then PT = T so that (2.1) coincide with (1.1).
Moreover, we note that TP |c= T. So if a contraction mapping f : C — C
defined by f(z} = x¢ € C,Vz € C and setting f = 1—a forsome0 <a <1l-o
then, (1.2) and (1.3) reduce to the sequence {u,} in Theorem 1.1.
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For a contraction mapping f : C — C with coefficient o € (0,1) and an

asymptotically nonexpansive mapping T with a sequence {k.} C [1,00), we
putting

n

1 . by — 1
bn —_— — —_— e —J n= n = 1,2, P
"’,-E=1(1+I1 kil +e) and a bn_ﬂforn 3

where 0 < @ < § < 1. Then, we get the following facts:

(1) by > 1,2 im Ky <bp0<a, <1,V 21,
(1) Tty —o0 by = 1, liMp o0 an = 0,
(iii) a, > g—:i} or equivalently to a,(a ~ b,) +b, < 1,¥n > 1.

Now, for each n > 1, we consider two mappings S,, U, : C — C given
by

(2.2) Sz = anf(z) + (1 - an)% Zn:(PT)ja:, forallz e C
and
(23) U= %;P(aﬂf(y) + (1= aa)(TPYy), forall y € C.

Then, we have the following three lemmas.

Lemma 2.8. For each n > 1, S, has a unique fized point =, in C.
Proof. Let z,y € C. Then for each n > 1, we have

1Saz = Sayll = llaa(F(z) = f@)) + (1 - an)~ E(PT)Jm— (PTYy)|

< amﬂm—yﬂ+(1—an)§_2||<PT)fz—(PT)fyn
< awolle— ) + (1 o) 2 Y IT(PTY 2~ T(PTY )

3.—1

. < anallz —yl| + (1~ an)= Zkllz—yll
31
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< apallz —yll+ (1 = an)ballz -yl
= (an{o = by) +bo)llz — yll-

Since a,(c—by) 4 b, < 1, we get S, is a contraction mapping on C. Therefore,
by the Banach Contraction principle, S, has a unique fixed point x, in C. O

Lemma 2.9. For eachn > 1, U, has a unique fixed point y, in C.
Proof. Let z,y € C. Since P is a nonexpansive mapping such that Pr = z
and Py =y, it follows as in the proof of Lemma 2.8 that

WUz — Unyll < (anle = ba) + ba)llz — |-

Thus U, is a contraction mapping and hence U,, has a unique fixed point yn
in C. O

Lemma 2.10. If F(T) is a nonempty, then {z,} and {y.} are bounded se-

quences.
Proof. Let ¢ € F(T). Then, we have

lan—al = lon(f(za) = 0) + (0~ aw)= S ((PTYzn ~ )

J=1

allf ) = gl + (1~ @) Y (PTP 5~ gl
j=1

A

IA

nllf ) = F@N +aall @) = all+ (1= a)= 3 Klzn ~ gl

j=1
< nalzn — gl + anl f(g) = all + (1 = an)ballza — 4l
= (o —bn) +bn)llzn — gl + anll f(g) ~qll.

‘We note that
Q, _ b, — 1 _ 1
1—-[an(a—by)+by] —B-buata+b8 f—a
It follows that [lzn — all < sy £(0) — all = 5511£() - gll. Hence

{z.} is a bounded sequence. Then as in the proof above, {y,} is also bounded.
This completely the proof. 0
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3. MAIN RESULTS

In this section, we shall prove two strong convergence theorems for as-
ymptotically nonexpansive nonself-mapping in a Hilbert space.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H, P

the metric projection from H onto C, T be an asymptotically nonezpansive

nonself-mapping from C into H with Lipschitz constant k,, and suppose lhat

F(T) is nonempty. Let [ : C — C be a contraction mapping with coefficient
a€(0,1),

1< = by — 1

by = ;Z(1+ll—kj|+e 7} and a, = E:_——ﬁ'

where 0 < a < B < 1. If T satisfies (NNQO) condition then the sequence {z,}

defined by (1.2) converges strongly to z where, z is the unigue solution in F(T)
to the varialion inequality

j=t

(3.1) ({(I - flz,z—2)=>20, z € F(T)

or equivalently 2 = G(f(z)), where G is the metric projection from H onto
F(T).

Proof. By Lemma 2.10, we have {2, } is bounded so are { f(z,)} and {2 Y= T PY zq||}-

Furthermore, we obtain

: 1 o . 1 .
- = J — —a )= PTYz, — = PTYz,
llen =~ J;(PT) Zall = flanf(2a) + (1 ~an)~ ;( TYzn -~ j;( Y|
1 ¢ ;
= a'n“f(mn) - T—l Z(PT) xﬂ“
=1
I :
< o [Ilf(:rn)l! - > WTPYzull| — 0asn —s co.
i=1
This implies that {z, — %37 (PT)’z,} converges strongly to 0. We next
show that
(3.2) limsup{z - z,, 2 — f(2)) < 0.
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Let {z,,;} be a subsequence of {z,} such that

j}i_l’nm(z — Tpyy 2 — f(Z)) = limsup(z —ZIn,2 - f(Z)),

and z,, = x € C. By Lemma 2.4 and Lemma 2.3, we get z € F(PT) = F(T).
Hence, by (3.3) we obtain

limsup(z —zp,2— f(2)) ={(z—z,2— f(2)) <0

=00

as required. Finally we shall show that z, — 2. For each n > 1, we note that
2 = 22 = |z — 2 + an(z = £(2)) = an(z = f())]”
< Nlzn — 2+ an(z — f)? + 20020 — 2, f(2) — 2)

= lon(J(za) = S + (1= an) = S (PTY 'm0 = 2P

+2a,{z, — 2, f(2) — 2)

n 2
< {anllf(-’ﬂn) ~ J@I+ (1= )= S (PTYzn - z)u}

+2an{zy — 2, f(2) — 2)
< {anaf|zn — 2l| + (1 = @a)ballza — 2[}*
+2an{xy — 2, f(2) — 2)
< (an(@ = ba) + ba)llzn = 2] + 2an(zn — 2, f(2) — 2).

It follows that

2a
T, —z|? < n
o =217 < ety v
— (=S = ).
Let € > 0 be arbitrary. Then by the fact (3.2) there exists a natural number
N such that

(Zn — 2, f(2) — 2)

(tn—2,f(2) = 2) S (B- )5, Vn 2 N.
This implies that
lzn — 2]|* < €,¥n > N.

Hence the sequence {z,} converges strongly to a fixed point z of T". This
completely the proof. 0
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Theorem 3.2. Let C be a closed convexr subset of a real Hilbert space H, P
the metric projection from H onto C, T be an asymptotically nonexpansive
nonself-mapping from C into H with Lipschitz constant ky,, and suppose that
F(T) is nonempty. Let f : C — C be a contraction mapping with coefficient
a€(0,1),
1« _; b — 1
by = aZ(1+(1—zcj|+e N and a, = T

where 0 < a < B < 1. If T satisfies (NNQ) condition then the sequence {yn}
defined by (1.8) converges strongly to z where, z is the unique solution in F(T)
to the variation ineguality

i=1

(3.3) ((I—-flz,z—2y>0, z € F(T)

or equivalently z = G{f(z)), where G is the metric projection from H onto
F(T).

Proof. By Lemma 2.10, we get {yx} is bounded so are { f(y.)} and {3 >°7_; {(TP)yxll}.

Furthermore, we also have

n

o= = S PTPuull = 113 3 Planf () + (1 = an)(TPYya) = = 3 (PTVal
i=1 j=1

=1

IA

% ; ”a'nf(yn) -+ (1 — an)(TP)jyn _'_T(PT)j—lyn“
= ;11-2 [anf @) + (1 = an)(TPYyn — (TPY g,

= anm 3 1) - TPV 3l

j=1
1 .
< o 1@l = = D T PYyall| — 0 as n — co.
n =
This implies that {y, — + 37, (PT)z,} converges strongly to 0. Then as in

the proof of Theorem 3.1, we obtain

(3.4) limsup(z — ¥,z — f(2)} < 0.

n—00
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Finally we shall show that y, — 2. For each n > 1, we have
[yn = 21" < flya — 2+ anlz = FENIP + 200 (yn — 2, F(2) — 2)

< {% > 1P(@nf(yn) + (1 = an)(TPYy,) — Planf(2) + (1 - an)z)ll}

i=1
+2an(yn -z f(Z) - Z)

< {i- 3 (@nllf @) = S + (1 = an)(TPYy - z)ll)}

i=1
+2¢n(yn — 2, f(2) — 2)

< {ananyn — 2l + (1= el 3 ITPYun zu}

j=1
+2an(yn -z f(Z) - z)

2
1 n
< {anallyn =2l + (1= an)= > " illyn — zll}

+20n (Y — z, f(2) — 2)
< {(@na+ (1 = a)ba)llyn — 2Il}?
+20{yn — 2, f(2) — 2)
< (an(e = ba) + ba)llyn = 2I* + 20a(yn ~ 2, f(2) — 2).

It follows that
20,
1- [an(a — b} + ba)

= G- f@) -2,

Let € > 0 be arbitrary. Then by the fact (3.4) there exists a natural number
N such that

¥ — z“2 <

(yﬂ —Z,f(Z) --Z)

(W = 2, f(2) — 2) S (B- )5, V0 2 N,
This implies that
lyn — z||* < e,Vn > N.

Hence the sequence {y,} converges strongly to a fixed point z of T". This
completely the proof. ‘ (|
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Strong Convergence Theorems of Viscosity
Averaging Iterations for Nonexpansive
Nonself-Mappings in Hilbert Spaces *

Somyot Plubtieng and Rabian Wangkeeree
Department of Mathematics, Faculty of Science, Naresuan University, Pitsanulok 65000,
Thailand

Abstract

Let C be a nonempty closed convex subset of Hilbert space , P
a metric projection of A onto C and let T be a nonexpansive nonself-
mapping from C into H. In this paper, we study the convergence of
three sequences generated by

2 = taf(Z0) + (L= tn) = Y (PTVan ,n 2 1
j=1

1 <« , '
Yn+1 = anf(yn) + (1 — an) Z(PT)J?JH ,n 20,
=0

n+14
i

and
1 « ;
Zntl1 = ‘n,—-i-l FZ(:) P(o:nf(zn) -+ (1 — an)(TP)Jztl)) I ._>.. 01

where yo,2p € C, {ta} C (0,1) , {an} is a real sequence in an interval
[0,1] and f is a contraction from C into itself.
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Strong Convergence.

2000 Mathematics Subject Classification: 46C05, 4TH09, 47H10,.

*Supported by The Thailand Research Fund.

tCorresponding author.
Email addresses: Somyotp@nu.ac.th, (Somyot Plubtieng) and Rabianw@mnu.ac.th. (Rabian
“Wangkeeree)




Co

e 3

h

ey

MANKIN 8/2

2 S. Plubtieng and R. Wangkeeree

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and let
T be a mapping of C into itself. Then T is said to be nonexpansive provided
Tz —Ty| < ||z —y| for all z,y € C. Recall that a self-mapping f : C — C
is a contraction on C if there exists a constant « € (0,1) such that

1£(=) = FW) < ez ~yll Vz,y € C.

We denote by F(T) the set of fixed points of T; i.e. F(T)={z € C: Tz ==z},
It is well know that if T is nonexpansive, then F(T") is convex see [4]. In 1967,
Browder(3] proved the following strong convergence theorem for nonexpansive
mapping: let T be a nonexpansive mapping of a bounded closed convex subset

~ C of H into itself. Let u € C and for each t € (0,1), let Giz = tu+(1 —t)T'z.

Then, G has a unique fixed point z; in C, and {z:} converges strongly to a
fixed point ug of T as ¢ — 0. The fixed point ug is uniquely specified as the

fixed point of T in C closest to u. In 1975, Baillon [1], prove the first nonlinear

egodic theorem as follows: let C be a bounded closed convex subset of H and
let T' be a nonexpansive mapping of C into itself. Then for each z € C

Apx = %ZT"&:
k=1

converges weakly to fixed point of T. By Using an idea of Browder[3|, Shimizu
and Takahashi[11] studied the convergence of the following approximated se-
quence for an asymptotically nonexpansive mapping in the framework of a

" Hilbert space:

1 n ] .
$n=anm+(1~—an)-ﬁ ZTJmn,n=1,2,..., (1.1)

j=1
where {a,} is a real sequence satisfying 0 < a, < 1 and a, — 0.
In 1997, Shimizu and Takahashi [10] also studied the convergence of it-

eration process for a family of nonexpansive mappings in the framework of a
Hilbert space as follows:

Theorem (Shimizu and Takahashi). Let C be a nonempty closed convex
subset of a Hilbert space H, let T a nonexpansive self-mapping of C such
that #(T'} is nonempty, and let P be the metric projection from C onto F(T').
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Let {a,} be a real sequence which satisfies 0 < a,, < 1, lim, ..o @, = 0 and
Yoo ptn = 00. Let z and yo be element of C and let {y,} be the sequence
defined by

. 1 n ) )
Ynt1 = anT + (1 = an)—— JZ:;TJy,,, > 1 (1.2)

Then {y.} converges strongly to Pxz.

Recently, Matsushita and Koroiwa[8] generalized the result of Shimizu and
Takahashi [10] and prove the following theorems:

Theorem (Matsushita and Koroiwa). Let H be a Hilbert space, C a closed
convex subset of H, P; the metric projection of H onto C and T be a non-
expansive nonself-mapping from C into H such that F(T') is nonempty, and
{an} a sequence of real numbers such that 0 < a, < 1, lim, . an, =0 and
3o o Qn = 00. Suppose that {z,} is given by z¢,z € C and

Intl = QpT + (1 - an)%_{_l Z(PlT)jfEn, n > 0. (13)
i=0

Then {z,} converges strongly to P,z € F(T), where P, is the metric projection
from C onto F(T).

Theorem (Matsushita and Koroiwa). Let H be a Hilbert space, C a closed
convex subset of H, P, the metric projection of H onto C and T be a non-
expansive nonself-mapping from C into H such that F(T) is nonempty, and
{an} a sequence of real numbers such that 0 < &, <1, lim, o o, = 0 and
Yoo @n = 00. Suppose that {y,} is given by yp,y € C and

1 Z" i
_ - > . .
Ynh1 n+1 g P(any + (1 an)(TPI) Yn, 0 2 0 ) (1 4)

Then {y,} converges strongly to Py € F(T'), where P, is the metric projection
from C onto F(T).

On the other hand, using the viscosity approximation method, Xuf14]
studied the convergence of the following approximation for nonexpansive nonself-
mapping in Hilbert space:

Iy = tf(.T-g) + (1 - t)TSL't (15)

and
Tnt1 = o f(z0) + (1 — 0n)Tzn,n = 1,2, ..., (1.6)
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where ¢ € (0,1), {a,} C (0,1) and f is a contraction mapping from C into
itself. Xu[14] also proved the strong convergence of the sequences as t — 1
and a, — 1 to the unique solution z in F(T") to the variational inequality
((I-fl)z=xz-2) 20,z € F(T) or equivalently to z = P({f(z)) where P is
the metric projection from H onto F(T).

In this paper, we study the three type iterations process which are mixed
iteration process of (1.1) - (1.6) as follows: for yp, 20 € C and

0 = b () + (1~ 42 S (T, )
j=1
- .
Yol = Oénf('yn) + (1 — an)n_—f—_l JEO(PT)JQ'“,TL >0 (18)

and

gy = n_lﬁ S P(onf(z) + (1 — an)(TPYz)n 20 (L9)
j=0

where {t,} C (0,1), {an} is a sequence such that 0 < o, <1, f: C — C'is
a contraction mapping and P is the metric projection of H onto C. We first
estabish the strong convergence of sequence {z,} defined by (1.7). In addition,
we also prove the strong convergence of the approximation sequences {y,} and
{zn} defined by (1.8) and (1.9) respectively. The results presented in this paper
generalized and extend the corresponding main results of Baillon [1], Shimizu
and Takahashi [10] and Matsushita and Koroiwal[8.

2 Preliminaries

Let H be a real Hilbert space with norm ||| and inner product {-,-) and let C
be a closed convex subset of H. Recall the metric (nearest point) projection
P; from a Hilbert space H to a closed convex subset C of H is defined as
follows: Given z € H, Pcz is the only point in C with the property

|z — Pez|| = inf{|lz — vli : ¥ € C}-

Pqx is characterized as follows.
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Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H.
Givenx € H andy € C. Theny = Pozx if and only if there holds the inequality

(x —y,y—2) 2 0,¥Vz € C.

Definition 2.2. A mapping T': C — H is said to satisfy nowhere normal
outward condition ((NNO) for short) if and only if for each z € C, Tz € 8¢,
where S; = {y € H : y # z, Py = z} and P is the metric projection from H
onto C.

The following results was proved by Matsushita and Koroiwa[7].

Lemma 2.3. ([T, Proposition 2, P. 208]). Let H be a Hilbert space, C a
nonempty closed convex subset of H, P the metric projection of H onto C and
T : C — H a nonezpansive nonself-mapping. If F(T) is nonempty then T
satisfies NNO condition.

Lemma 2.4. ([7, Proposition 1, P. 208]). Let H be a Hilbert space, C a
nonempty closed convex subset of H, P the metric projection of H onto C and

T : C — H a nonself-mapping. Suppose that T satisfies (NNO} condition.
Then F(PT) = F(T).

Further, we know the following lemmas actually hold for asymptotically
nonexpansive{11]. But we only need its for nonexpansive version.

Lemma 2.5. ([11]). Let H be a Hilbert space, C a closed conver subset of
H, and T : C — C a nonezpansive mapping with F(T) # 0. If {z,} is e
sequence in C and there exists a.subsequence {Zn;} which converges weakly to
z € C and {2, — r:_, Y2y Tizn,} converges strongly to 0. Then z is a fized
point of T'.

Finally, the following two lemma are useful for the proof of our main
theorems.

Lemma 2.6. ([14}). Let {on} be a sequence in [0, 1] that salisfies limp, o an =
0 end 307, oy, = 00. Let {a,} be a sequence of nonnegative real numbers that
satisfying:

For all e > 0, there exists an integer N > 1 such that for alin > N,

ans1 < (1 — ap)a, + ane.
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Then lim,__,,a, = 0.

Lemma 2.7. [14] Let H be a Hilbert space, C a nonempty closed convex subset
of H, and f : C — C a contraction with coefficient o < 1. Then

(IE - Y (I - f).'iC - (I - f)y) 2 (1 —O!)”.'L' —yllg,x,y eC.
Remark 2.8. As in Lemma, 2.7, if f is a nonexpansive mapping, then

-y, (U= flz— (I - fly) 20,Vz,y € C.

3 Main results

In this section, we study the strong convergence properties of the three se-
quences (1.7), (1.8) and (1.9).

Theorem 3.1. Let H be a Hilbert space, C a nonempty closed convez subset
of H, P the metric projection of H onto C and T : C — H a nonexpansive
nonself-mapping with F(T) # 0. Let {t,} be sequence in (0, 1) which satisfies
lim, ... t, =0. Then for a contraction mapping f : C — C with coefficient
o € (0,1), the sequence {z,} defined by (1.7)converges strongly to z, where, z
i3 the unique solution in F(T) to the variation inequality

((I-fz,z—-2)>0, € F(T) ' (3.1)

or equivalently z = G(f(z)), where G is ¢ metric projection mapping from H
onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies (NNO) condition
by Lemma 2.3. We first show that {z,} is bounded. Let ¢ € F(T). We note
‘that

lan—all = leaf(ea) + (1= ta)- S (PTY20— gl
3=1

n

< Nenlf(z) = 0) + (1~ ta)- S (PTYza — (PTYQ|

j=1
tall f(@n) — qll + (1 — tn)llzn — qlf , VR 2 1.

IA
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So we get
"xn —q £ |If(zn) -4l
‘ < f(zn) = f@Il + 1 £(2) — 4l
< ofzn—ql +11f(@) —al,Vn > 1.
Hence
zn — qll < ——“Uf( )—qli,Vrn 2L

This show that {z,} is bounded, so are {f(zn)}, {5 2;=1(PT) z,}. Further,
we note that

Jon = = S (PTVzull = lltaf(2a) + (1~ ta) Z(PT)-"mn—-—Z(PT)Jmnu

j=1 j""l

= tallf(za) -~ Z(PT)j:cnll

< talllf(=a)ll + ”" Z(PT Yza|) — 0 asn — co.
=1
Thus {zn— 5 371 (PT) z,} converges strongly to 0. Since {2} is a bounded
sequence, there is a subsequence {z,,} of {r,} which converges weakly to
z€ C. By Lemma 2.5 and Lemma 2.4, we have z € F(T"). Foreachn > 1,
since

Tp — 2= tn(f(xn) - z) + (1 - tn); Z((PT)jxn - z):

i=1
50 we get
low— 2l = (1~t) %g (PTY2n — 2, — 2) + talf (n) = 2Tn — 2)
< (1= ta)llon = 2|* + ta{f(20) — 2,70 — 2.
Hence
lzn —201* < (f(zn) — 2,20 — 2)

(f(zn) = f(2), 70 — 2) + (f(2) — 2,20 — 2)

< ellwn = 2|” + (f(2) — 2,20 — 2).
This implies that

lzn — 3"2

1= (:I:n—z,f(z)—Z)-

-
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In particular, we have

12, — 2[|* <

1
T (:cnj — 2, f(z) — 2).
Since z,; — z, it follows that

T,

; — zas j — oo.

Next we show that the inequality (3.1) is true. Indeed, from

1 — .
Tn = tnf(zn) + (1 —ta) ;(PT)J:cn,Vn > 1,
we have

(I = fon = -2 ‘t‘nt" (on = = S (PTY5,)

3—1
Thus for any ¢ € F(T'), we infer by Remark 2.8 that

(U ~ omtn—q) = ———tmqr-L Z(PT)’ Ty T — Q)
= g LS ey - (- LY P -0
< 0,vVrn2>1. J g

In particular
(I = f)zn; 2o, — ) <0,¥j > L
Taking 7 — o0, so we obtain

(U = f)z,z—q) <0,¥q € F(T), (3.2)

or equivalent to z = G(f(z)). Finally, we shall show that {z,} convergence
strongly to 2. Let another subsequence {z,, } of {z,} such that z,, — 2’ € C
as k — oo. Then 2’ € F(T}, it follows from the inequality (3.2) that

((I-fz,z—2) <0. (3.3)
Interchange 2 and 2’ to obtain
(I-1N,7—2) <0 (34)
Adding (3.3) and (3.4) and by Lemma 2.7 we get
A-allz=2IP<{z=2, (I~ flz—(I-f)Z) <0

This implies that z = 2’. Hence {z,} converges strongly to z. This completely
the proof. O
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Theorem 3.2. Let C be a nonempty closed convez subset of a Hilbert space
H, P be the metric projection of H onto C and T : C — H a nonezpan-
sive nonself-mapping with F(T) # 0. Let {a.} be a sequence in [0,1] which
satisfies limp_o0 0y = 0 and Y~ o, = 00. Then for a contraction mapping
[ : C — C with coefficient « € (0,1), the sequence {yn} defined by (1.8)con-
verges strongly to z, where, z is the unique solution in F(T) to the variation
inequality

{(I—-flz,z—2z) >0, z € F(T) (3.5)

or equivalently z = G(f(z)), where G is a metric projection mapping from H
onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies (NNO) condition
by Lemma 2.3. We first show that {y,} is bounded. Let g € F(T"). We note
that

1"‘

lyne1 —all = llomf(yn) + (1 - an)m Z(PT)jyn ~qlf
3=0
< alf(m) —all+ (1 - a) = > I(PTY 4o~
< anllf(gm) = F@I + anllf (@) = gl + (1 — an)llyn — 4|
< ey~ all + @l f(0) - ali + (1= an)llvn gl
= (1 a1~ a))la ~all + ol f(@ — al
< max{lvn — all, T 1£(6) ~ all} Vo > 1.

So by induction, we get

1
Iy — gl < max{llyo - all, 7= 1/(9) —all},n 2 0.

This show that {y,} is bounded, so are {f(ya)} and {35 3 7—o(PTYy.}. We
observe that

| ' 1 o ; 1§ j
N J = f1-— —_— PTYyn - ——= PTYyn
N1 p—— Ji;ﬂ(PT) Ynll llan f(yn) + (1 a“)n+ 1 JZ;( Yy n+1 Jgo( Yy
- - N (PTY
el @) = 7 D (PTPwl

< anllf )l + =g S (PTYwal).

=0
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Hence {yn+1— 37 2_7-0(PT)’ya} converges strongly to 0. We next show that

limsup(z — yn,2 — f(2)) <0. (3.6)

n—=:oo

Let {ys,} be a subsequence of {y,} such that

lim (2 — yn,;, 2 — f(2)) = limsup(z — yn, 2 — f(2)),
J——0 n—oo
and y,;, — g € C. It follows by Lemma 2.5 and Lemma 2.4 that ¢ € F(PT) =
F(T). By the inequality (3.5), we get
| limsup(z — g, 2 — f(2)) = (z — g,z = f(2)) 0.

n—o0
?Ience (3.6) is true. Finally we shall show that y, — 2. For each n > 0, we
have

Insr = 21* = llynrr — 2 + anlz = £(2)) — anlz — FE)I

< ”yn+1 — 2+ an(z - f(Z))”2 + Zan(yn-{—l -z, f(z) - Z)

= Jonf () + (- an) =z S (PTVy — (00 f(2) + (1 - )2
+2an(yn.+1 —Z, f( ) - Z)

= llen(f(yn) = S} + (1~ an) —— Z((PT - 2)|”
:ann(yn&l —Z, f(z) - Z) \

< Lanllf(yn) = fEl+A-an)— Z I(PTY "ZH]
s — 2, )~ ) 2

< ol =21+ 01 - o) >l - zu}
+200 (Y1 — 2, f(2) — 2)

= (1—on(l —a))*|yn — 2||* + 200 {Yns+1 — 2, f(z) —2)

< (1= an(l = a)llgn — 2lI* + 200 {yns1 — 2, f(2) - 2). (3.7)

Now, let € > 0 be arbitrary. Then, by the fact (3.6), there exists a natural
number N such that

(z —tyn,z— f(2) £ %,Vn > N.
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From (3.7), we get
"yn+1 - Z"2 S (1 - a’-n(l - a))”yn - z“2 + age.
By Lemma 2.6, the sequence {y,} converges strongly to a fixed point z of T.
This completely the proof. d

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space
H, P the metric projection of H onto C and T : C — H a nonezpansive
nonself-mapping with F(T) # 0. Let {a,} be sequence in {0,1] which satis-
fies lim,__an = 0 and 3 o) o, = co. Then for a contraction mapping
f:C — C with coefficient o« € (0,1), the sequence {z,} defined by (1.9}con-
verges strongly to z, where, z is the unique solution in F(T) to the variation
inequality

(I - flz,z—2)20, z€ F(T) (3.8)

or equivalently z = G(f(z)), where G is a metric projection mapping from H
onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies (NNO) condition
by Lemma 2.3. We first show that {z,} is bounded. Let ¢ € F(T). We note
that

]

[| 2n+1 — gff

I g D Planf(en) + (1= and(TPY20) — gl

3=0

< D IP(anf e+ (1= 0n)(TPY2e) = Pal
e 0l (e) = £ + a0 =l + (1 = el =
< anallzn gl + aall 7@) — all + (1 ~ an)lzn — al)

(1 - anfl = @)llen —gll + eallf () —
< max{llza - qll T2 1£(@) ~ all}, Vn 2 0.

So by induction, we obtain

1
I = qll < max{llzo - all, ;== 17(@) = all},n 2 0.

11
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This show that {2,} is bounded, so are {f(z,)} and = > 7=0 T PY 2,1}
Furthermore, we also have

o= Sy PVl S g DR+ 1 a(TPYi) ~ (PTV
< FT X lenf )+ 0~ (TPY - TPTY
= 1) leaf )+ 1~ a (TP~ (TP
= oy L W)~ (TPl

IA

o |17~ =5 S HTPYzl| — 0 a5 7 — co.
j=0

This implies that {zn+1 — ;35 2_;—o(PT) 2} converges strongly to 0. We next
show that

limsup(z — z,,z — f(2)) < 0. (3.9)

n—00

Let {2} be a subsequence of {2,} such that

lim (2 = z0,, 2 = f(2) = limsup(z = z0, 2 = f(2)),

and z,, = ¢ € C. By Lemma 2.5 and Lemma 2.4 we get ¢ € F(PT) = F(T).
From the inequality (3.8) we obtain

limsup{z — z,, 2 — f(2)) = {2 — q,.z - f(z)) <0.

n-—oo

This show that (3.9) is true. Finally we shall show that z; — z. For each
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71 > (0, we have

l|znt1 = 2”2 = |l#ny1 =2+ on(z ~ f(2)) — an(z — f(z)m?

< Nmir = 2+ anlz = (@) [ + 2ananer — 2, £(2) — 2)
=l 2 Planf(an) + (L aa)(TPYz) ~ (anf(2) + (1~ an)2) I
=0

+2an($n+1 —Z, f(Z) - 2.‘)

[A

Lis 2
{ni 7 2 IP(@nf(za) + (1 = an)(TPY z) = Plomf(2) + (1 - an)z)ll}
i=0

200 (Tn1 — 2, [(2) — 2)
n 2
< {ﬂ—}; 2 lan(7(z) = £(2)) + (1 = o) (T PY 2 z)ll}
i=0

+20n{Tny1 — 2, f(z) — 2)
< Aonallze — 2| + (1 = an)]zn = 2"}2
+200(Tns1 ~ 2, f(2) — 2)
= (1—an(l —a))|lzn — 2||* + 2an(2zns1 — 2, F(2) — 2). (3.10)

Now, let ¢ > 0 be arbitrary. Then, by the fact (3.9), there exists a natural
number N such that

(z—2Zn,2— f(z)) £ 2,V 2> N.
From (3.10), we have

lznt1 — 3”2 <A -ap(l—a)llz - 2”2 + Ome.

By Lemma 2.6, the sequence {z,} converges strongly to a fixed point z of 7.
This completely the proof. O
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Thailand

7

ABSTRACT. Suppose C is a nonempty bounded closed convex retract of a real
uniformly convex Banach space E with a uniformly Géateaux differentiable norm.
Let T : C — E be a nonexpansive nonself-mapping and P is a sunny nonex-
pansive retraction of E onto C. In this paper, we study the convergence of the
sequences {Zn}, {¥m}, {zn} which defined by

Tn = (1 - an)u + QnT[(l - ﬂn)ﬂin + ﬁnTa:nl
Yn (1 - an)u + O’n-PT[(l — Balyn + ﬁnP‘Tyn]- and
zZn = P[(1—an)u+oTP(l - Fn)zn + BnTznl]

where {an} C{0,1), 0 B <B<land o — las n — 00,

Keywords: Nonexpansive mapping, sunny retraction, fixed point, weak inward-
ness condition, strong convergence theorem.

)

2000 Mathematics Subject Classification: 47TH10, 47TH09,46B20.

1. INTRODUCTION

Let € be a noncmpty closed convex subset of a Banach space E. Then a
nonself-mapping T from C into E is called nonexpansive if ||Tz — Ty| < |z — y|
for all z,y € C. Given v € C and {ag} is a sequence such that 0 < a, < 1. We can

Corresponding author.
' Email addresses: Somyotp@nu.ac.th(Somyot Plubtieng) and g46060088@nu.ac.th.
(Rattanaporn Punpaeng).
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define a contraction 7, : C — F by
(1.1) Toz =(1—an)uta,Te, z€C.

If T is a self-mapping(i.e. T(C) C C}, then T, maps C into itself, and hence, by
Banach'’s contraction principle, T}, has a unique fixed point z,, in C, that is, we have

(1-2) ZTn = (1 —an)u+ anTze,Vn > 1.

(Such a sequence {z,} is said to be an approximating fixed point of T since it
possesses the property that if {z,} is bounded, then limy,. e ||TZn — 2| = 0).
'_i‘he strong convergence of {z,} as a, — 1 for a self-mapping T of a bounded C
was proved in a Hilbert space independently by Browder [2] and Halpern [5] and in
a uniformly smooth Banach space by Reich [11]. Thereafter, Singh and Watson [12]
extended the result of Browder and Halpern to nonexpansive nonself-mapping T
satisfying Rothe’s boundary condition: T(6C) C C (here 8C denotes the boundary
of C). Recently, Xu and Yin [16] proved that if C is a nonempty closed convex(not
necessarily bounded) subset of Hilbert space H, if T : C — H is a nonexpansive
nonself-mapping, and if {z,} is the sequence define by (1.2} which is bounded, then
{z,,} converges strongly as a, — 1 to a fixed point of T. Marino and Trombetta
[9] defined contractions S, and U, from C into itself by

(1.3) Snt=(l—ag)u+a,PTz forallz € C
and
(1.4) . Unz = P[(1 — an)u+ a,Tz] for all z € C,

where P is the nearest point projection of H onto C. Then by the Banach contrac-
tion principle, there exists a unique fixed point y,(resp. z,) of Sp{resp. Uy,) in C
ile.

(1.5) Yn = (1 — ag)tt + 0 PTyy,
and
- (1.6) zn = P[(1 — ap)u + an Tz}

Xu and Yin [16] also proved that if C is a nonempty closed convex subset of a
Hilbert space H, if T : C — H is a nonexpansive nonself-mapping satisfying the
weak inwardness condition, and {z,} is bounded, the {y,} (resp. {z,}) defined by
(1.5) (resp.(1.6)) converges strongly as o, — 1 to a fixed point of 7". Finally, Jung
and Kim [6] extended Xu and Yin's result to a uniformly convex Banach space with
a uniformly Géateaux differentiable norm.
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In this paper, we extend Xu and Yin's results [16] to study the contractions
Th, Sn and U,, define by

(1.7 Taz = (1—an)u+anT[(1~ Bn)z + BuTx]
(1'8) Snx = (1 - an)u + anPT{(l - ﬂn)x + ﬁnP’I‘xl
(1.9) Unz = P[(1—an)u+anTP[(1 - Bp)z+ BaTz]],

where {an} C (0,1),0 < 3, < § < 1, and P is the nearest point projection of H
onto C. We also prove the strong convergence of the sequences {zn}, {¥n} and {2,}
which defined by

(1.10) T = (1-an)u+ ﬂ’nT[(l = Bn)n + BrTTn),
(1-11) In = (1 - an)u + anPT[(l - ﬁu)yn + ﬁnPT'yn]:
(1.12) zn = P[(1=can)u+ anTP((1 ~ Bn)zn + BnT 2],

where &, — 1 as n — 0. The result presented in this paper generalized and
extend the coresponidng main results of Xu and Yin [16], and Jung and Kim {6].

2. PRELIMINARIES

Throughout this paper we denote by F and E* a real Banach space and the
dual space of E, respectively. The valucof z* € E* at = € E will be denote by {z, z*).
We also denote by R and R the sets of all real numbers and all nonnegative real
numbers, respectively. When {z,} is a sequence in E, then z, — z ( 2, — ) will
denote strong (weak) convergence of the seqﬂence {z,} to z. Let C be a nonempty
closed convex subset of E and let T" be a mapping of C into E. We denote to F(T)
the set of all fixed points of T, i.e. F(T)}) = {z € C: Tz = z}. For every ¢ with
0 < € £ 2, the modulus d{¢} of convexity of E is defined by
T+ y

2

E is said to be uniformly convez if §{¢) > 0 for every ¢ > 0. If E is uniformly
convex, then E is reflexive. Let S(E) = {z € E : ||z| = 1}. Then the norm of F is
said to be Gateaur differentiable (and E is said to be smooth ) if

Nz tyll = =]l
(2.1) th_n.lo 11

8(e) =inf{l —||

Izl € Lyl < L [lz - yll = €}

exists for each = and y in S{E). It is also said to be uniformly Gateaux differentiable
if for each y € S(E), the limit ( 2.1) attained uniformly for = in S{(E). With each
z € E, we associate the set

J(x) = {z* € E*: (z,2") = |l=|* = ||=*|*}.
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Then J : E — E* is said to be the duality mapping. It is well know if E is smooth,
‘then the duality mapping J is single-valued and strong-weak* continuous. It is
also know that if F has a uniformly Gateaux differentiable norm, J is uniformly
continuous on bounded sets when E has its strong topology while E* has its weak
star topology; see Day [3] or Diestel [4]. A closed convex subset C of a Banach space
/E is said to have normal structure, if for each bounded closed convex subset K of
C which contains at least two point, there exists an element of K which is not a
diametral point of K. It is well known that a closed convex subset of a uniformly
convex Banach space has normal structure and a compact convex subset of Banach
space has normal structure. Let D be a subset of C and let P be a mapping of C
into D. Then P is said to be sunny if -

P(Pz + t(x — Pz)) = Pz,

‘whenever Pz + t(x — Px) € C forz € C and t > 0. A subset K of E is said to
\be a retract of E if there exists a continuous map P : E — K such that Pz = z,
for all z € K. We note that every closed convex set of a uniformly convex Banach
‘space is a retract. A mapping P of E into E is said to be a retraction if P =pPIf
‘a mapping P of E is a retraction, then Pz = z for every z € R(P), where R(P) is
‘the range of P. A subset D is said to be a sunny nonezpansive retract of C if there
‘exists a sunny nonexpansive retraction of C onto D; for more details, see [8, 13].
ILet C be a nonempty convex subset of Banach space £. Then for £ € C we define
‘the inward set I.(z) as follows:

I{z)={ye E:y=z+a(z—z) for some 2z € C and a >.0}.

‘A mapping T : C — FE is said to be inward if Tz € I.(x) for all z € C. T is also
'said to be weakly inward if for each x € C, Tz belongs to the closure of I.(z).
The following result was proved by Kirk [7].

‘Lemma 2.1. [7] Let F be a reflezive Banach space and C be o nonempty bounded
iclosed conver subset of E which has normal structure. Let T' be a nonerpansive
mapping of C into itself. Then F(T) is nonempty.

Let x be a mean on positive integers N, i.e. a continuous linear functional on
1% satisfying ||¢]] = 1 = pu(1). Then we know that 4 is a mean on N if and only if
inf{a, : » € N} € u(e) <sup{e,:n € N}

for every a = (aj,4a2,...) € 1. According to time and circumstance, we use p,{ay)
‘instead of p(a). A mean p on N is called a Banach limit if

Bn(@n) = pin(@nt1)




e/

mMeanwIn 9/5
IMPLICIT ITERATION PROCESS 5

for every a = (a3, a2, ...) € . Using the Hahn-Banach theorem, or the Tychonoff
fixed point theorem, we can prove the existence of a Banach limit. We know that if
it is a Banach limit, then

’ l1m mf an < ppfen) < limsupa,
i—C0

for every @ = (a1,02,...) €1%. So, if a = (a1,02,...) € I*° and @, — ¢, a5 1~ 0
we have p,(an) = p{a) = c. Further, we will use the following Lemmas.

Lemma 2.2. [15] Let C be a nonempty closed convez subset of a Banach space E
with a uniformly Gateauz differentiable norm, let {zn} be a bounded sequence of E
and let 1 be ¢ mean on N. Let z € C. Then

T S a2
tnllzn — 2| gggunliwn vl

if and only if pnly — 2z, J(xn — 2)} <0 for all y € C, where J is the duality mapping
of E.

Lemma 2.3. [6] Let C be a closed convez subset of a smooth Banach space E and
let T: E — C be a retraction. Then the following are equivalent:

(a) z—Pz,J(y— Px)) <0 forallzc E dndy eC;
(b) ||Pz — Pu|? < {z — w, J(Pz — Pw)) for all z and w in E;
{c) P is both sunny and nonezpansive.

3. MAIN RESULTS

[ In this section, we give and prove our main thecrems. Using Lemma 2.1 and
Lemma 2.2, we have the following theorem.

_'I‘heorem 3.1. Let E be @ real reflerive Banach space with o uniformly Géteauz
L::li_ﬂ'e1**(311.152':1&1,\'3 norm. Let C be a nonemply closed conves subset of E which has
normal structure, and T : C — C be a nonexpansive mapping. Suppose that for
some v e C, {an}2, C€(0,1) and 0 < B, < 8 < 1. Then, a mapping T,, defined by
(1 7) has a unigue fized point z, € C. Futher, T has a fized point if and only if {z,}
remains bounded as o, — 1. In this ease, {z,} converges strongly as om — 1 to
¢ fized point of T'.

Proof. For every n > 1 and z,y € C, we have

“Tnm — Tny“ < an"T[(l - ﬁn)m + ,BnT$] - T[(l - 6n)'y + ﬁnTyl”
< an(l— Fa)llz — yll + anful Tz — Tyl|

= om|z -y
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Since 0 < oy, < 1, T}, is a contraction. Therefore by the Banach contraction princi-
ple, T, has a unique fixed point z, € C such that

Tn = {(1-aput onT(1 ~ Bn)Tn + BrTxy)].
Let w € F(T'). Then for each n > 1, we have

fw—znl| = llw~(1-an)u—anT[(1~ Ba)an + BTzl
< (1—ew)w—ull+ aallw = T[(1 ~ Ba)zn + SaTaal
. < (-on)llw—ul +anfw— (2 — Baen — BuTnl]
< (1-an)w = ull+en(l = Bu)llw = znll + onBallw — Tzall
< (1— aw)ljw =~ ull+ an(l = B)llw = 2oll + anfBallw ~ za

(1 - an)llw — ul| + anllw — 4|l

and hence (1 — ay)||lw — z,|| £ (1 — an)llw — u|| Vo = 1. This implies |lw ~ zn|| £
{lw —ulj Yo > 1. Then {z,} is a bounded sequence. Suppose that {z,} is bounded
and ¢, — 1 as n — oo. Then we show that F(T) # @ and {z,} converges
strongly to a fixed point of T. For any subsequence {z,,} of the sequence {z,} such
that a,, — 1, we can define a real valued function ¢ on C given by

(3.1) 9(2z) = pil|zn, — 2| for every z € C,

where p is a Banach limit. Define the set

(3.2} M ={v e C:g(v) = inf g(z)}.
zeC

Since E is reflexive it follows by Barbu ([1], P.79) that M is nonempty. Moreover,
M is closed and convex. Further, we note that

lZa; — Tzpll £ (1= an)llu = Ten |l + an 1T = Bri)Zn; + B TZn,] — T2l

(1 — ap)llu = Tan | + @nl(1 = Br)Tn; + BniTZa; = Tn
(1 = an)lle = Tan{| + Brsl| T2n; — Znll, Vi 21,

IA

1A

This implics that (1 — fn)|@s, — Ton]l < (1 — am,)[lt — Tn,|| and hence
(1 _ aﬂi)

"Im“‘T-’Em" = (1_ 1'h_)u'l't"'T-"n!'ta”
(1—an,) ,
< S—||lu—=Tzn,| — 0 as i —+ oo0.
< Oy Tan

Thus, we cbtain

pillzn, = Toll £ ptillEn, = Tanll + pill T2, — To||

IA

pillen, = oll, Vi 1.
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This implies that M is T-invariant. By Lemma 2.1, we have a fixed point 25 of T
in M. On the other hand, let us show that {z,} converges strongly as n — oo to
a fixed point of T. For any w € F(T'), we have

(Tn — T2n, J(Tn —w)) = (Zn—Tw+Tw— Tz, J(2q — w))
|zq — Twll? = (Tzn — Tw, J(zn — w))
l&n — Tw|? — [ T2n — Twl|l|2q — wl]

l|zn — w“2 ~ ||&n — w||2 =0

AV |

v

for all n. Since z, = (1 — ay)u + axT{(1 — Bn)zn + BnTx,), we get

0 < {(1-ean)u+tanT[(1 - Bn)tn + BnTzn] — Tn, J(zn — w))

(1 = an)(u —Tzp) + an[T((1 = Bn)zn + BuTzn) — Tn), J(2a — w))

(1 = en){u = Ton, J(2n — w)) + an{T((1 = Br)zn + fnT2n) — T'n, J(zn — w))
{(w—Tzn, J(zn ~ w)) + an||T((1 = Br)zn + fnTxn) — TZalll| J(zn — w)||

{u = Tz, J(2n — w)) + anll(L — Bn)on + BaTZn — Tnl|||2n — wl]

(u ~ Tz, J{zn — W)} + nBullTzn — Tullllzn — wll, for all n.

N IA

Since {x,} is bounded and p is a Banach limit, we have
pi{tt = TTnyy J(Zn; ~ w)) + phi{One B |[TZn; — Zngllll2n, — wl) 20,
and hence
pilTxpn, — u, J(Tp, —w)} <0, Vi1

This implies that
PilZn, — U, J(Zn, —w)) = pi(@n; — Tony, J(@n, — w)) + pi{TTp, — u, J(@n, — w))
(3.3) = wi{Tea, —u, J{zn, —w)) <0.
Further, since zgp is the minimizer of the function g on C, by Lemma 2.2 we have
(3.4) wi{z — 20, J(@n;, ~ 20)) €0, forall z¢€ C.
So, putting w = zp and z = u, from (3.3) and (3.4), we have

#i(Tny — %, J(Tn; — 20)) S0
and

pil{u — 20, J(zn, — 20)} £ 0.
Then we get

1T, — 20, J (Tn; — 20)} = pillzn; — 20]* < 0.
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Therefore, there is a subsequence {:t:nij} of {zn, } which converges strongly to z5. To
show that {x,} converges strongly as n — oo to & fixed point of T', let z,, — =z
and x;, — #'. Since

lz=Tz| < |z —zall + llzs, — T2aill + 1725, — Tz

IA

2|z = x5, || + |5, — Tzs |l — 0 83 k — o0,
We obtain z = T'z. Similarly, we have 2/ = T'%'. From (3.3), we have that

f—‘i(msk,- - u, J(mski - z’)) <0
and

,u.,'(zt,‘i -, J(xtki —-z)y <0.
Then, we have

(z—u,J(z — ) <O
and
-2, J(z-2)={-uJ(Z —2)) <0
Adding these two inequalities yields
02> (z—2,J(z=2)) = |z — I

and thus z = 2. Therefore {z,} converges strongly to a fixed point of T'. O
Theorem 3.2. Let E be ¢ uniformly convexr Banach space with a uniformly Gateaux
differentiable norm. Let C be a nonempty closed conver subset of E, and T :

C — FE be a nonezpansive nonself-mapping satisfying the weak inwardness con-
dition. Suppose that C is a sunny nonerpansive refract of E and that for some

w€C, {an}22, €(0,1) and 0 € B, < f < 1. Then, @ mapping Sy, defined by (1.8}

has a unique fired point y, € C. Further, T has a fized point if and only if {y,}
remains bounded as oy, — 1. In this case, {y,} converges strongly as an — 1 to
a fized point of T,

Proof. By the Banach contraction principle there exists a unique. fixed point ¥y, of
Sy, in € such that

¥n = (1= an)i+ anPT{(1 = Bn)yn + BnPTyn).

Let w be a fixed point of T. Then as in the proof of Theorem 3.1, {y,} is bounded.
Conversely, suppose that {y.} is bounded. Apply Theorem 3.1, we obtain that {y,}
converges strongly to a fixed point z of PT. Next, let us show that z € F(T). Since
z = PTz and P is a sunny nonexpansive retraction of E onto C, it follows by [13]
that

Tz —2,J(z—-v))=20forallve C.
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On the other hand, Tz belongs to the closure of I.(z) by the weak inwardness
conditions. Hence for each integer n > 1, there exists z, € C and ay, > 0 such that
the sequence

Tn =2+ ap(zn —2) — Tz
Thus it follows that
0 £ an{Tz—2,J(z—2z))
= (Tz-zJ{an(z — z)})
(Tz—2,J(z—10)) — (Tz—2,J(z —T2))
= Tz~

Hence we have Tz = z. O

From Theorem 3.2, we are able to derive the following corollaries.

Corollary 3.3. Let H be e Hilbert space, C a nonempty closed convez subset of
H, T :C — H a nonezpansive nonself-mapping satisfying the weak inwardness
condition, P : H — C the nearest point projection. If {an}?2, € (0,1) and
0 < Bn < B < 1. Then a mapping S, defined by (1.8) has unique fizxed point y, € C
such that yp, = (1 — an)u + anPT[(1 — Bn)yn + BnPTyn|. Further, T has a fized
point if and only if {y.} remains bounded as @, — 1. In this case, {yn} converges
strong as a, — 1 to a fized point of T.

Proof. Note that the nearest point projection P of Hilbert space H onto a closed
convex subset C is a sunny and nonexpansive retraction. Thus the result follows
from Theorem 3.2. O

Corollary 3.4. ([6, Theorem 2]}. Let E be a uniformly convex Banach space with
a uniformly Géteauz differentiable norm, €' a nonempty closed convex subset of E,
and T' : ¢ — E a nonexpansive nonself-mapping satisfying the weak inwardness
condition. Suppose that C is a sunny nonexpansive retract of E and that for some
v € C, {a.}2, € (0,1). Then, a mapping S, given by Spz = (1 — ap)u + PTz
for all x € C has a unique fixed point y, € C such that y, = (1 — oz u+ anPTyn.
Further, T has a fixed point if and only if {y,} remains bounded as e, — 1. In

this case, {yn} converges strongly as an — 1 to a fixed point of T

Theorem 3.5. Let E be a uniformly conver Banach space with a uniformly Gateauz
differentiable norm. Let C be a nonemply closed convez subset of E, and T :
C — E be a nonexpansive nonself-mapping satisfying the weok inwardness con-

' dition. Suppose that C is a sunny nonezpansive retract of E, that for some v € C,
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{ea}32) € (0,1),0 < B, < B < 1. Then o mapping U, defined by (1.9) has a
unique fized point z, € C. Further, then T has a fized point if and only if {2,}
remains bounded as a, — 1 end B, — 0 . In this case, {zn} converges strongly
as an — 1 and G, — 0 to a fized point of T

Proof. 1t follows by the Banach contraction principle that there exists a unique fixed

‘point z, of R, such that

zn = P[(1 — on)t + anTPl(1 — Bn)zn + BT 2n]).
Let w € F(T). Then for each n > 1, we have

lw—za|l = JIPw~P[(Q~an)u+anTP((1— Br)zn + BTzl
lw — (1~ an)u — anTP{(1 — Bn)zn + BT 2|

IA

< (1= ag)|w—y| + anllw — TP[(1 — Bn)zn + BT 2|l
< (1 —an)llw =yl + an(l = Bo)llw — 2zl + enfnljw — Tz
< (I —an)llw — | + an(l = Bulllw — 2z0]| + @nBnllw — 2|l

(1 = an)liw = vl + an)w - 2|

and hence (1 — an)||w — 2,|| € (1 — ap)|lw — ul|, ¥n > 1. This implies ||w— 2z,] <
|l —ull, ¥ > 1. Then {z,} is bounded. Conversely, suppose that {,} is bounded
as o, — 1 and B, — 0. To show that F(T) # §. For any subsequence {z,,} of
the sequence {25} such that a,, — 1, we can define a real valued function g on C

given by

(3.5) 9(2) = pil|zn; — 2| for everyz € C,
where p is a Banach limit. Define the set

(3.6) M ={veC:g(v) = inf (=)}

Then M is nonempty, bounded and convex. As in the proof of Theorem 3.1, M is
PT-invariant. Hence, by Lemma 2.1, we have a fixed point ¥ of PT in M. Thus
y = PT'y. So from [13],

{(Ty—y,Jiy—v)) 20forall ve C.

Since T is weak inwardness condition, we get Ty belong to the closure of I(y). Then
for each integer n > 1, there exists wy, € C and a,, > 0 such that the sequence

o =y +an{wy, —y) — Ty
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As in the proof of theorem 3.2, we have Ty = y. For any w € F(T), we have
[TP(1-B)w+Brw)—tl+u = on(w—u)+u
= oaaw+(1-ay)u
= Planw+ (1 —aqu),

and hence

IP[(1 ~ an)u + onTP((1 — Bn)zn + BaT'zn)]
— Plamw + (1 — a,)u}lf?

(1 = an)u + &nTP{(1 — On)zn + Fnzn)

~ anw — (1 — an)ul®

o ITP((1 ~ Ba)zn + BaTzm) — wl?

@A [(1 = Bu)llzm — wll + BallTzn — wll}?

o llzn — w||?

[len(2zn — 1) — an(w —uw)j?, ¥n>1.

ll2n — © — an(w — u)||2

IA

A A

So, we have
0 2 lzn —u—an(w — W)’ — [lan(z - u) - an(w — )|

2 2z — - ap(w — u) — anfzn — u) + anlw — ), J(an(z, — w)))
2 2{(1 - on}(zn — u), J(an(zn — w)))
2> 2(1 — anjon{zn — U, J(2n —w))

and hence

(8.7 (zn — u,J (2 ~ w)) 0.

Then, putting w=y, we have

(3.8) (zn =, J(zm —y)) <O

and hence

(3.9) Hilzn; — Uy J (20, —¥)) < 0.

On the other hand, since
9(y) = ming(2),
it follows by Lemma 2.2, that
pilz—y,J(za, —y)) <0 forall zeC.

Putting z=u, we have

(3.10) pile =y, Iz, —y)) £ 0.
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As in the proof of Theorem 3.1, from (3.7), (3.8), (3.9) and (3.10), we have that
{2} converges strongly as-a, —+ 1 and B, — 0 to a fixed point of T. 0

Corollary 3.6. ([16,Theorem 3]). Let H be a Hilbert space, C a nonempty closed
-convex subset of H, T : C — H a nonexpansive nonself-mapping satisfying the
weak inwardncss contition, P : H — C the nearest projection. If {a,} € (0,1),
then a mapping U, defined by (1.4) has unique fixed point z, € C. Further, T has &
fixed point if and only if {2p} is bounded as &, — 1. In this case, {z,} converges
strongly as o, — 1 to a fixed point of T".

Acknowledgement. The authors would like to thanks The Thailand Research
Fund for financial support.
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Strong Convergence Theorems for Three step
Iterations with Errors for Non-Lipschitzian

Nonself-Mappings in Banach Spaces*

Somyot Plubtieng and Rabian Wangkeeree!
Department of Mathematics, Faculty of Science, Naresuan University,
Pitsanulok 65000, Thailand

Abstract

Suppose C is a nonempty closed convex subset of a real uniformly convex
Banach space X with P is a nonexpansive retraction of X onto C. Let T :
C — X be an asymptotically nonexpansive in the intermediate sense nonself-
mapping. In this paper we introduced the three step iterative sequence for such
map with errors. Moreover, we prove that, if T is completely continuous, then
the three step iterative sequences converges strongly to a fixed point of T

Keywords and phrases. Asymptotically nonexpansive in the intermediate sense
mappings; Asymptotically nonexpansive in the intermediate sense nonself-mappings;
completely continuous; uniformly convex.

1 Introduction

Let C be a subset of real normed linear space X, and let T be a self-mapping on
C. T is said to be nonezpansive provided ||Tz - Ty|| < |lz ~y| for all z,y € C; T is
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called asymptotically nonezpansive if there exists a sequence {k,} of real numbers
with limp_,oq kn = 1 such that for each z,y € C and n > 1,

Tz — Ty} < kallz - yli.

T is called asymptotically nonezpansive in the intermediate sense|l| provided T is
uniformly continuous and

limsup sup (|T"z — T"yjl - llz — yll) < 0. (1.1)

n—oo  z,ye

From the above definitions, it follows that asymptotically nonexpansive mapping
must be asymptotically nonexpansive mapping in the intermediate sense.

The concept of asymptotically nonexpansiveness was introduced by Goebel and
Kirk[4] in 1992. In 2001, Noor[8, 9] have introduced the three-step iterative se-
quences and he studied the approximate solutions of variational inclusions(inequalities}
in Hilbert spaces. The three-step iterative approximation problems were studied ex-
tensively by Noor[8, 9], Glowinski and Le Tallec[3], Haubruge et al[5].

In 2002, Xu and Noor[14] introduced the three-step iterative for asymptotically
nonexpansive mappings and they proved the following strong convergence theorem
in Banach spaces;

Theorem XN([14], Theorem 2.1). Let X be a real uniformly conver Banach space,
C be a nonemply closed, bounded convex subset of X. Let T be a completely contin-
uous asymptotically nonexpansive self-mapping with sequence {kyn} satisfying ky > 1
and Y oo (kn—1) < c0. Let {an}, {Bn} and {yn} be real sequences in [0, 1] satisfying;

(i} 0 < liminf,, . @, < limsup,_,., a, < 1, end
(ii) 0 < liminfy o0 B < limsup,_, On < 1.
For a given xg € C, define

Zn = 'Yn.'-rnxn + (1 - 711)3711
CYn = BT 2za+ (1 - Bp)zn (1.2)
Tny1 = nT"yn + (1 — agdzn.

Then {z.}, {yn} and {z,} converges strongly to a fized point of T.

Recently, Y. J. Cho, H. Zhou and G. Guol2| introduced and studied a three
step scheme to approximate fixed points of asymptotically nonexpansive mappings
as follows:
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Theorem CZG([2]). Let X be a real uniformly convez Banach space, C be a
nonempty closed conver subset of X. Let T : C — C be a completely continuous and
asymptotically nonerpansive mapping with the nonempty fized-point set F(T) and a
sequence {kn} of positive real numbers be such that kn > 1 and %0 (ky — 1) < 00.
Let ¢ € C, the sequence {z,} defined by

Zn = (=Y —1n)zn+mT Ty +vptiy,n > 1

Yn = (1 — fBn — #n)xﬂ + ﬁnimzn + pintvn,m 21 (1-3)

xn_’.]_ = (1 - an - An)mn + an:rlnyn + Anwn, n 2 1,

where {un}, {un}, {wn} are bounded sequences in C and {an}, {Ba}, (o} {2}, {tin)
and {v,} are real sequences in [0, 1] with the following restrictions:

(i)0<e<a,<b<l,
(1) limsup,_, ., knBn < 1,

(1) 3 omey An < 00,200 1 pin < 00 and P oo Un < 0o. Then the sequence {Tn}
converges strongly to a fired point p of T.

A subset C of X is called retract of X if there exists a continuous mapping
P : X — C such that Pr = z for all z € C. Every closed convex subset of a
uniformly convex Banach space is a retract. A mapping P : X — C is called
retraction if P? = P. It follows that if a mapping P is a traction, then Py = y for
all y in the range of P.

Algorithm 1.1(Three step iterative scheme for nonself maps with errors) Let C
be a nonempty subset of normed space X. Let P : X — C be the nonexpansive
retraction of X onto C and a mapping T : C — X. For a given zg € C, compute
the iteration sequences {Zn}, {yn} and {z.} defined by
2z, = P(oT(PTY " 'z, + Bnzn + Yotin)
Yo = P (a;T(PT)“_Izﬂ + BrZn + 'T::Un) (1.4)
Tpt1 = P (anT(PT)n_lyn + fnTn + 'ann) '

where {an}, {an}, {an}, {Be}, {Bn}. {82}, {mm}, {1} and {1} are appropriate real
sequences in [0,1] and {un}, {vn} and {w,} are three bounded sequences in C.

Algorithm 1.2 If a, = 4 = 0 and 8 = 1, then iteration(1.4) reduces to the
modified Ishikawa iterative scheme for nonself maps with errors
tn = P (aLT(PT)nml-Tn + ﬁ:r'rn + 'Y;{Un)

Zot1 = P{anT(PT)" 'yn + BnZn + Intn) , (1.5)

3
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where {an}, {er,},{Bn}, {8;}, {1n} and {4/} are appropriate real sequences in [0, 1]
and {u.},{vn} and {w,} are three bounded sequences in C.

Algorithm 1.3 If o = 4 = o, = 4}, = 0 and 8 = B!, =1, then iteration(1.4)
reduces to the modified Mann iterative scheme for nonself maps with errors

Tn+l = P (anT(PT)n_lzn + ﬁnmn + 'Yn'wn) s (16)

where {an},{fn} and {yn} are appropriate real sequences in [0,1] and {w,} is a
bounded sequence in C.

It is clear that the Modified Mann and Ishikawa iterations processes are ail
special case of the three step iterative scheme for nonself maps with errors(1.4).

In this paper, we will extend the iterations process(1.3) to the three step iter-
ative scheme for nonself maps with errors{(1.4) for asymptotically nonexpansive in
the intermediate sense nonself maps and without the condition } o ,{k, — 1) < co.
The results presented in this paper generalize and extend the corresponding main
results of Cho, Zhou and Guo[2] and Xu and Noor[14].

2 Preliminaries

For the sake of convenience, we first recall some definitions and conclusions.

Definition 2.1 (see [4]). A Banach space X is said to be uniformly conver if the
modulus of convexity of X

. T+
() = it = L2 o) <y = 1,2~ gl = ) > 0

for all 0 < € < 2 (i.e., 8x(€) is a function (0,2} — (0,1)).
Lemma 2.2 (see [7]). Let the nonnegative number sequences {an}, {bn} and {dn}

satisfy that

o0 oo
ne1 < (1 +bplay, +d,, ¥n = 1,2,...,an < oo,Zdn < 00.
n=1

n=1

Then
(1) limp_.o0 ar exists;

(2) If iminf, o0 @n =0, then limy, oo an = 0.
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Lemma 2.3 ([13], J. Schu’s Lemma ). Let X be a real uniformly conver Banach
space, 0 < & <tn < B < 1,20,y € X, imsup,,_, |Z.]| < a,limsup, ., |ly=|| < @,
and limy o0 [|taZn + (1 — ta)ynll = @,0 > 0. Then limp oo flzn — ynll = 0.

3 Main results

In this section, we give new definition and prove our main theorems.

Definition 3.1. Let C be a nonempty subset of a Banach space X. A mapping
T : ¢ — X is said to be asymptotically nonezpansive in the intermediate sense
nonself-mapping provided T is uniformly continuous and

limsup sup (|T(PT)* 'z ~ T(PT)" ly|| - = — yl) <0, (3.1)

n—oo rycC

where P is a nonexpansive retraction of X onto C.

Remark 3.2. If T is a self-map, then PT =T, so that (3.1) coincide with (1.1) and
the three step iterative scheme for nonself-maps with errors(1.4) coincide with the
three step iterative with errors(1.3).

The following lemma is crucial in proving the main Theorem.

Lemma 3.3. Let X be a real uniformly conver Banach space, C o nonempty closed
convex subset of X. Let T be an asymptotically nonerpansive in the intermediote
sense nonself mapping with the nonempty fired points set F(T). Put

Gr = sup (|T(PT)" 'z — T(PT)" 'y ~ lz — yll) VO,Vn > 1,

r,yeC

so that 307 | Ga < 00. Let the sequence {z,} be defined by (1.4) with the following
restrictions

(i)on+Bntm=cn+tBptm=an+fnt+rm=1
(#) o1 Y < 00,3001 T < 00, 1502 Yo < 00,
Then for each £* € F(T), lim, . ||Zn — =*|| exists.

Proof. Let «* € F(T), since {un}, {vn} and {w,} are bounded sequences in C, so
we put

K = sup |lup — pl| V sup|lun — pll V sup [lw. — p|l.
n>1 nzl n>1

5
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For each n > 1, we note that

lZnt1 —2%|| = |IP (anT(PT)n-‘lyn + Bnzpn + '}’nwn) - P(z*){l
an|T(PTY* yn — 2| + Brilzn — =*|| + Yallwn — =*||
an||T(PT)* tyn — T(PT)" 22" || + Ballzn — &*|| + Yallwn — z°|

IA

fi

(3.5)

< anllyn — i + Gn + Bullzn — =% + Ynllwn — =] (3.2)
and
lvn—2*ll = 1P (04T (PT) "2 + Bln + Yivn) = ="
a2 < opllen = 2*[| + G + Brllen — 2| + Vollva —2*] (3.3)
and
lzn = 2*[| = || < agllzn — "] + G + Bollan — 2° (| + Yallun — 7. (3.4)
Substituting (3.4) into (3.3), we have
lgm = z*ll < ananllza — 2" + G + apbnllzn — z*|| + apypltun — 2*
+ Gn + Bpllzn — 2| + Yallva — 27|
< (1=8r = m)epllzn = a*| + Brllze — 2| + (1 = B — Wm)Ballzn — 2*(| + man
< Bullen — ¥l + (1 = Bplegllen — 2™l + (1 = Br)Brlizn — 2™ + my
= Bullzn — 2"+ (1 = Bo)(of + Bo)lizn — 2| + mn
< Bullea — 2™l + (1 = Bo)lzn ~ z*[| + ma
= ||zn — z*|| + mp,
where m, = 2Gy + Yllun — 2*|| + ¥)|lun — z*||. Substituting (3.5} into (3.2) again,
we have
IZar1— 2™ < enlllzn — 2*|| +ma) + Go + Ballzn — 57| + Ynllwn - =7
< (an + ﬁn)“xn - :L'*" + QpMy + Gn + 'Yﬂ“'wn - :L‘*“
< lzn = 2*| + mn + Grn + Tallwn — z°||
< lon -2 + 3G+ (m+ 7+ 1M

l£n — "] + bn,

where bp, = 3Gn + (Yo + 75 + 72)M. Since Y o>, by < 00, by Lemma 2.2 , we have
limp—oo ||zn — *|| exists. This completes the proof. a
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‘Lemma 3.4. Let X be a real uniformly convexr Banach space, C a nonempty closed
convez subset of X. Let T be an asymptotically nonezpansive in the intermediate
sense nonself mapping with the nonempty fized points set F(T'). Put

Gn = SUEC(IIT(PT Ytz = T(PT)" 'yl — flz — yl) VO, vr 2 1.
Ty

Let the sequence {z,} be defined by (1.4) with the following restrictions

(i) an+ B+ T =y + B+, =0 + B+ = 1.

(1) 3oy Tn < 00, 2 0i1 Mn < 00,300 Va < 00

(iit) 0 < a < ap, Bn, 0, B, < B < 1. Then

(0) Yimn oo [T(PTY* 'yn — znll = 0;

(0) ity oo [|T(PT)* L2 — zp]| = 0.
Proof. (a). For any z* € F(TY, it follows from Lemma 3.4, we have limy o [|2n —2*||
exists. Let limy o0 |zn — 2*|] = a for some a > 0. From (3.5), we have

lym — 27 < ln = 21l + g, ¥ 2 1.
Taking limsup,,_,, in both sides, we obtain
limsup [|yn — &*|| < l1msup l£n — =*|| = nh_’ngo [zp ~ z*|| = a. (3.6)

=00
1t follows that
lim sup IIT(PT)“_lyn — z*|| < limsup(jlyn — z*|| + Gn) = limsup ]]'yn -z*|| <a,
—00 n—0od nN—O0

and

a= Hm [|[Zas1— 2| < lim [@nT(PT)" 'yn + Bntn + Yawn — z*|
n-—0o0 n—oc

— lim ol (TP g — %) 4 22 (1 = 2")]
n—oco ﬂ
* —
+ Bul(zn — 2*) + 2ﬁn( =)
< liminf on|T(PTY* yn — z*|| + liminf Bullzn — =]
n—oo n—oo
o o o .
< hgglg.}f anllyn — =¥ + lgf_l}ggf anGn + lﬂg.}fﬁnllmn —z*||
= ligr_l’i;f anllyn — *|| + linnl.io%f Brllzn — 2*||
< lign gf(an||wﬂ — 2*|| + apmn + Bnllzn — 2*()

liminf(on + Bo)llzn — z*|| € liminf ||z, —z*|| = a.
n—oo n-=+00
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Hence

a = Jim lanl(T(PT)™ g = =) + 715 (wn = )]+ Bul(n = %) + 5 (w0 ).

Zan 2ﬁﬂ

By J. Schu’s Lemma, 2.3, we have

R n—1 Tn Tn ® | _
lim | T(PT)" 'y, ~ 25 + (E - '2—5;)(1“11 —z*)|| =0.

Since limp oo [|(Zh — 55-)(wn — 2*)|| = 0, we obtain that

lim |T(PT)" 'y, — Tnll = 0.

n—oo

This completes the proof of (a).

Proof of (b). For each n > 1,
lzn ~ 2"l < llzn = TPTY" tyall + IT(PT)* 'y — =°||
< lzn = T(PT)" 'yull + llyn — z*[| + Gn.
Since limp .o [|Tn — T(PT)" yn|| = 0 = limp_.oc Gn, we obtain that
a= lim ||zn — z*|| <liminf ||y, — z*|.

n—0Q n—oo

It follows by (3.6),

a < liminf ||y, — z*|| < limsup ||yn ~ =*|| < a.
n—o0 n—0Q
This implies that
lim |y, - 2*| = a.
n—oo

On the other hand, we note that

lzn = 2"l < NapT(PT)* 2o + Buzn + Ynn — z*||
< opllza — 2|+ Ga + Bllzn — 2| + Fnllun — 2°|
< agllzn — 2l + Gn + (1 = af)llzn — 27| + Y5llua — 2|
< len =2+ Gn + 7llun — z°||.

By boundedness of {un} and limp_,oo Go = 0 = lim, o ¥, we have
limsup ||zn — z*|| < limsup |zr — z*|| = a,
n—00 n—0o0

80
limsup [|[T(PT)* 2, — 2*|| < limsup(]|z, — z*|+Gn) L a
1—00 . TI—+ (X3
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and
a=tm [lyn—pf < lim epT(PT)" 20 + Brzn + Yown — 2|

— lim alT(PTY e —a* +§§‘-(u; )
%

+Bpllzn — 2%) + 2 (vn — )]

Qﬁn
., 1 - L.
< liminf an[|T(PT)" 20 — 2*|| + liminf B [|zn — "]
< ILIIi,ic,Iéf oy l|zn — || + llg{l_:gf a,Gn + linrg'igf Brllzn — z*||

lim inf(ar[|zn — 2°[ + Bullzn — =)

lim inf (|2 — 27| + &G + a7 llun — 2°[| + Billzn — 2°)

il

= lif_l’io%f(a:; + B)llen — *| < l%gf |20 — 2| = a.

Hence
f I
: ' n—l * * -
Jm QT (PTY 20 =+ 5l (o = 20+ Bhl(on — =)+ 2 (0 = 2l =
By J. Schu’s Lemma 2.3, we have
y _

Jim ||T(PT) - Tn + (5’&,‘ - W)(‘Un -z )= (3.8)

Since limp o0 (- — 7 )(un — 2*)|| = 0, it follows that
Jim | T(PT)" 5 = ] = .

This completes the proof of (b). ' O

Theorem 3.5. Let X be a real uniformly convex Banach space, C a nonempty closed
convez subset of X. Let T be an asymptotically nonezpansive in the intermediate
sense nonself mapping with nonempty fived point set F(T'). Put

Gy, = sup (|T(PT)* 'z - T(PT)" 'yl - [l — y[l) VO,¥n > 1.
z,yeC

Let the sequence {z,} be defined by (1.4) with the following restrictions
(i) Gn + fn+ T =+ By +yp =+ B+ 7= 1.
(1) 3 ey Tn < 00, 25001 Y < 00,201, Y < 00

(i) 0 < @ < &, Bn, &y, B < B < 1. Then {zp} converges strongly to o fized
point of T'.

¢ —



A

S/

»/

NAa|wIn 10/10

10 S. Plubtieng and R. Wangkeeree
Proof. It follows from Lemma 3.4, that

lim | T(PT)* Yy — ol = 0 = lim [IT(PT)" 2, — 2|
and this implies that,

lzn41 — Znll < aﬂ“T(PT)“_lyn — Znll + mflwn — zall = 0 as n — co.

Thus
ITPTY™ 2 —2all < |T(PT)* a0 — T(PT)"yol| + T(PTY* g — 20l
< |l#n = yall + Gn + HT(PT)* Ly — zn|
< apllze — T(PT)* 'zl + Gr + Yallvn — 24|

+ |T(PT)* Yy, — || — O a5 7 — o0 (3.9)
Since
lon ~Tzall < llonsr = zall + Jons1 = TPT) s
+ | T(PT) znt1 — T(PT)an|| + | T(PT)*zn — Txnl|,
and by uniform continuity of T° and (3.9}, we have
n,il'ngo |zn — Tznl| = 0. | (3.10)

By Lemma 3.3, {z,} is 2 bounded. It follows by our assumption that T is completely
continuous, there exists a subsequence {Tz,,} of {T'z,} such that Tz, —z*€C
as k — o0. Moreover, by (3.10), we have ||Txzy,, — Zn,|| — 0 which implies that
Zn, — =" as k — co. By (3.10) again, we have

lz* = Tz*|| = lim [|zn, — T2n, || = 0.
k—o00

It show that z* € F(T). Furthermore, since limp_,o ||Tn — *|| exists. Therefore

limp oo ||Zn —z*|| =0, that is {z,} converges to a fixed point of T". This completes
the proof. O

Corollary 3.6. Let X be a real uniformly conver Banach space, C a nonemply
closed conver subset of X. Let T be an asymptotically nonexpansive in the inferme-
diate sense nonself mapping with nonempty fized point set F(T). Put

Gn = sup (|T(PT)" 'z~ T(PTY* ty|| — ||lz — y|l) VO,¥n > 1.
z,yeC

Let the sequence {yn} and {z,} be defined by (1.4) with the following restrictions
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(i) an+ Bn+n =a;+ﬁ;+‘ﬂ, = a;i‘i'ﬁg'l"ﬁ{: =1
(M) En—l Tn <00 Zn—l 711 < 00, Zn I'Yn < oo,
(1) 0 < & < an, Bn, 0, By, < B < 1. Then {yn} and {zn}. converges strongly to

a fized point of T.

Proof. By Theorem 3.5, we have the sequence {z,} converges to z* € F(T), so that
it is also bounded sequence. Thus by Lemma 3.4(b) and 3.9, we obtain that

flyn — znll < Q’n”T(PT)n_lzn - znll + ’7:«.””11 —zn] — 0,

and

lzn — znll < a:‘;HT(PT)"' — Znll + Yplltn — za]l — 0.
Therefore limp, oo ¥ = * = limg_ o 2. This completes the proof. O
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STRONG CONVERGENCE OF AN IMPLICIT ITERATION
PROCESS FOR ASYMPTOTICALLY NONEXPANSIVE
MAPPINGS

SOMYOT PLUBTIENG AND ATID KANGTUNYAKARN

Department of Mathematics, Naresuan University Pitsanulok 65000,
Thatland

" 21‘

ABSTRACT. Let C a nonempty closed convex subset of a real Hilbert space H, T
be an asymptotically nonexpansive self-mapping of C into itself. In this paper,
we study the convergence of a sequence {z.} generated by

Tn = OnZo + (1 - an)Anlﬂnmn + (1 - ,Bu)An:Bn],

where

_1 i 7 — bn_‘;' _ bn-
EOEC, An"‘nj;T: an—bn"—%-f'a, ﬁﬂ-—b“—%

I,1 .1 - 1 ¢ 1
O LT L = < =
b ",?:1(2”2‘ kil +e ),0<a<2 and 0<a <3

V)

Keywords: Fixed point, asymptotically nonexpansive mapping, strong conver-
gence.

2000 Mathematics Subject Classification: 4TH10, 47H09, 46C05.

1. INTRODUCTION

Let C be a closed convex subset of Hilbert space H and let T be a mapping of
C into itself. Then, T is said to be a Lipschitzian mapping if for each n > 1 there
exists a positive real number k, such that

Corresponding author.

Email addresses: Somyotp@nu.ac.th(Somyot Plubtieng) and g46060090@nu.ac.th.
(Atid kangtunyakarn).
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1Tz ~ T7y|| < kallz -yl
for all z,y € C. A Lipschitzian mapping is said to be nonexpensive if k, = 1 for
all n > 1 and asymptotically nonerpensive (3] if lim, o ky = 1, respectively. We
denote by F(T'} the set of fixed points of T'. It is well know that if 7" is asymptoti-
cally nonexpensive, then F{T') is convex: see [5]. In 1967, Browder [2] proved that

the following strong convergence theorem for nonexpensive mapping of a bounded

a closed convex subset of H into itself. Let g € C, and for each k with 0 < k < 1,
let Thz = kxzo + (1 — k)Tz. Then, Tk has a unique fixed point ug in C, and uy
converges as k — 0 strongly to a fixed point up of T in C. The fixed point ug is
uniquely specified as the fixed point of T in C closet to z5. After Browder's result,
such a problem has been investigated by several authors; see Singh and Watson [8],
Marino and Trombetta [6], and other

On the other hand, Baillon {1] proved the first nonlinear ergodic theorem: let
C be a bounded closed convex subset of H and let T be a nonexpansive mapping of
C into itself. Then for each z in C

Az =130 Tz

converges weakly to a fixed point of . Recently, Hirano and Takahashi [4] extended
Baillon's theorem to asymptotically nonexpensive mapping. Finally, Shimizu and
Takahashi {7] studied a sequence {z,} defined by

Tn = anZo + (1 — @n)Anzn

where

by —~1

= — >
b —i+a forn>1

by =

3=

n
Z(1+I1—kj|+e_j), Gn
i=1

and 0 < ¢ < 1. They also proved that the sequence {z,} converges strongly to
element of F(T) which is nearest to zp.

In this paper, we extend Shimizu and Takahashi's result [7] to study a sequence
{zn} defined by

T = anZo + (1 = @n) An[Baa + (1 — Bn) Anzn), (L1)
where
T € C, b _‘{Zn:(l+|l~k-|+e‘j)a_ bn—% B, = bn_%
T et P b —14+a " bp—s4a”

O<ax< %, and0<a < % Moreover, we prove the strong convergence of a sequence
{zn} given by (1.1}.
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STRONG CONVERGE THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPING 3

2. LEMMAS
To prove the main theorem we need the following lemmas.

Lemma 2.1 For each n > 1, T}, has unique fixed point u, in C.
-‘Proof. Let z,y € C, we have

“Tnm - Tny" = (1 - a’n)"AnLBn-r + (1 - ﬁn)Anz] - An[ﬂny + (1 - ﬁn)Any]"
< (=)t ST B+ (1~ Ba) Az~ [y + (1 = Bo)dnsl
i=1
< (1 - an)% E kj”ﬂn-'ﬂ +(1— .Bn)Anx - Bny — (1 - ﬁn)Any”
i=1
< (= anlbalfalle =yl + (1 = B) D |1T92 — T4y

j=1

< (= calbulBullz =l + (L= B D Killz = ]
i=1

< (1= anlbalBalls = yll + (1 — Bulbullz — .

Since (1-8,)b, < -% and (1—am )b, < %, it follows that T}, is a contraction mappings.
Hence, by the Banach contraction principle, T;, has a unique fixed point u, in C.H

Lemma 2.2 If F(T) is nonempty, uy is bounded.
Proof. Let v € F(T') and {u,} is fixed point of T;,. Thus we have

flun = vl = [[Toun — vl

= Jan(zo =) + (1= @n) = 3 T [fatin + (1 = FudAntin] = (1 = )= 3T
i=1 i=1

IA

nllzo — vl + (1 = @) 3 T (Bt + (1 = ) Antin] — T
=1

anllzo = ol + (1= @a) = " ksllBatin + (1 = Bo) Antn = vl

i=1
anllzo — vl + (1 — an)ballBrun + (1 — Bn) Anun — vl

1A

FA

1
= apllze~ vl + (1 - an)ballBattn + (1 — ﬁn); Z Tu, — o
i=1

anllzo = vl] + (1~ an)bulBn(um — €] + (1 = a) = 3 [TFun — Tl

Jj=1

A

1A

an"-’ﬂn v+ {1 - an)bn[".Bﬂ(“n - o)+ (1 - ﬁn)% zkj“un — vl
j=1
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< anfo = oll + (1 = an)ballla(un = O + (1= Ba) 2 3 Kyllum = o]
i=t

< anlo = vll + (1 — n)onlliBalotn ~ 9)1 + (1 ~ Ba)ballun — i

< anlm = vl + (1= aw)ballun = vl + (1 = an)bulua — o]

I

anllzo — ¥|| + 2(1 ~ an}or|tn — v||.

This implies that

anllzo ~ vl _ flzo— ol
[-(-an2]  (-2a)

llun =l <

Therefore, {u,} is bounded. n
Lemma 2.3 [7] Let B be a nonempty bounded subset of C and let F(T') be
nonempty. Then, for a positive number ¢, There exist a positive integer I such
that for any integer ! > I, there is a positive integer n; satisfying

|Anz — T*Apz|| < e for all z € B and n > ny.

Lemma 2.4 Let {2} be a sequence in C and let {z,,} be a subsequence of {z,}

“such that {zn,} converges weakly to z € C and {@n, — (3;) X34 T7 An,2n,} con-

=1
verges strong to (. Then, z is a fixed point of T

Proof We first show that T'z converges strongly to z. Assume that T%z does
not converges strongly to . Thus, there exist a positive number ¢ and a subse-
quence {T%z} of {T*x} such that ||T%z — z|| > € for every k. Since {z,,} converges
weakly to z, for each y € C with y # z, we have

liminf ||zn, — z|| < liminf ||zn, — ¥||- (2.1)
1— 00 11— o

Let r = liminf; .o ||zn, — z|| and choose § > 0 such that

d < r2+6—2——r.
4
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STRONG CONVERGE THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPING 5

Thus, there exist a subsequence {Zm,} of {,,} such that ||zm, — 2| < r+§ for every

1. On the other hand, we note that

1 o4, AN e, .
”xm; - Tix“ < ”Imi - ; Z 7 [Amixm(}” + ”-THTL_“ ZTJ [Amlzmi] - TI[;’; ZTJ [Am‘mm:l“l
=1 ti=1 Pjml
1 o5,
+“TI[;E' Z [ [Ami:cmi]] - TII”
- : j:l
1 Ty . 1 ™y . 1 mi .
S lome = == D T Am@mlll + | = > T [Am@m] = T'[=— 3 T/ [Am,2m, [l
et ™ i3 e g
1 <X,
|~ ST Amam )] - 2
i Gl
1 oy 1 5, il oosy
< Ilmme I ET [Amixml]“ + “"‘“ ZT [Amimml] =T [_"' ZT {Amlxmi”l!
Mo ™ mi 501
1,
+k:||[;‘, > T Amam ]l - Tmill + kilizm, — z|.
i=1

Since 2y, is bounded, it follow that Ap,Zm, = o= 3 7o) T/, is bounded. Hence,
by Lemma 2.3, there exist a positive integer Lg such that for every | > Ly there is

a positive integer ¢; satisfying

W | O

”;];,: ZTj(Am:zmi) - T‘[;n];: ZTj (Am,zm | <

=1 P i=1

for all 1 > 4.

Since limy_,o &t = 1, there exist a positive integer L; such that
killm, — 3 <r+§ for all [ > Ly.

Moreover, since

. 1y
1'-‘.120 l|2n, = (n_) ZTJAstn.-” =0

4 i=1

and {k;} is bounded, it follow that there exist a positive integer ip such that

1 <~ ]
klilxmi - r_n_ ZTJ[Amixmi]“ < Z

o1
and
1 &K, 8
”zmi - -TE ZTJ[Am.-Im,-]" < E
¥=1
for all l and ¢ > 4y. So, for any { > max{Lg, L} and i > max{i;, i}, we have
& &

] )
lZme = T2l < g+ 3+ g+r+ 3 =r+8
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Choose I > max{Lo, Ly and ¢ > max{3;,,%p}, we have

Thz +x T, — Tiex T, — T Tz — 1
H-’L”rm——2"“|[2 = 2| 5 2 + 21l m‘2 2= 2 12
< (r+4)? + (r+$? €&

2 2 4
2
< (rt6?-=
4
< 72

This contradicts (2.1) . Therefore, {T%x} converges strongly to = and hence z is a
fixed point of T'. . ]

3. MAIN RESULT

Nows, we have a strong convergence theorerm for asymptotically nonexpansive
mapping in Hilbert space.

Theorem 3.1. Let C be a closed convex subset of Hilbert space H and T be
asymptotically nonexpensive mapping on C into itself with Lipschitz condition kn,
and suppose that F(T) is nonempty.
Let

be = 200103 + 15 — kil +e7), D<a<i 0<a <landmeC.
Then, & mapping T}, on C given by

Tnz = anzg + (1 — en)An[Buz + (1 — Bn)Anz] forallz e C

has a unique fixed point u, in C, when

1

1

2 w3
’ = ; and A, =

v P byn—3+a "

=

n
S
i=1

Further {u,} converges strongly to the element of F(T) which nearest to zp.
.Proof. By Lemma 2.1, T}, has a unique fixed point u, in C so, we show that
{un} converges strongly to element of F(T') which nearest to zg. Let {un,} be a
subsequence of {u,}. It is sufficient to find a subsequence {um,} of {un;} converges
strongly to element of F(T") which nearest to zg.

Suppose a subsequence {wm, } of {un;} converges weakly to v in C. Since F(T)
is nonempty closed convex, there exists the element ug € F(T) which nearest to zg.
By Lemma 2.2, {tm,} is bounded so is m% el T Am tm,) -

We now show that

1 oA
Uy, = E;T’(Am‘um‘.) =0 as i— 00,
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We note that

Ioh oy
"umi - ;;1_ ZTJ (Anu'“m‘)u
T J-=1

It

1T 2ty — = ZT (Amtim,) |
V=1

= ”am‘$0 + (1 - am )— Z T [ﬁmiumi + (1 ﬁml)AmlumI]
t=1

- ZT (Amttm,)|

J—l

1 &
= [lam,{zo — — ZT’ (Am,ttm,))
my =

+(1~ ami)_ ZTJ Bmitim, + (1 — ﬂm.)Am-"mi]
J =1

my

(1= am) = 3 T (A, )|

i j—l

< Q’m;"mo - ZTJ(Amiumt)”
J =1
+(1 - am,)— Z "Tj{ﬁm;umi +(1- JBmi)Am.umi] - Armum«)“
< amllzo— — ZT (Am, e )|
_1--1
+H(1 - om,) — Z kj[{Bmtim; + (1= Bing }Am ttm, = Amytim, |
J 1
< omlee ~ — ZTJ (Am )| + B lltim, — — Emm,u

oyl il

Since o — 0, Bm;, — 0asi — o0, mi T T9 (A Um, ), ond - i T/, are bounded,
we get

1 o, _
e = == 3 T (At )| = 0 25 = 00.
13 J=1

Hence, by Lemma 2.4, v is a fixed point in T. On the other hand, since Ty, v, =
Uy, and Tupg = up, we have

my
Um, = am;To + (1 = am,) ZTj{JBm.-”m.- + (1= B} Amium,],
=1

and

QO ; T = Uy — ( ami)_ ZT [Bmtumi + (1 - lel)Amiuml]
_1—-1



——

o
Fa!

B

)

Thus, we have

o 200 (zo = Ugy U — UD)

aManwIn 11/8

8. PLUBTIENG AND A. KANGTUNYAKARN

v

IV

v

v

v

IV

Il

(O.'m‘.‘Eo = Qm; o,y um; - U'O)

1 o,
(U, ~ (1~ am;)n‘; ZTJ (B tm, + (1~ By ) Am Um,] — o

=1

1 o5
+(1— amﬁ);n“_ Z T 119, U, — up)
£ J-=]

1 &K
{tm, — uo, tm; ~ug} — (1~ ami)"n'; Z(leﬁmiume + (1= Bm ) Am, tm]
T j=1
_TJIU"D: um,- - HQ)
1 o5 .
s = w0 ]1? ~ (1 = @my) — 3 1T Byt + (1 = Bin ) Armstime} ~ T

i
lftom, — uol|
1
“um( - u()”2 - (1 - am‘)g Z kj”ﬁm‘umi + (1 - JBMi)Am.'um: - uﬂ”
10
[lm, — uoll
PR
[, = 201 = (1 = o ot + (1~ B S TPt —
e
llem, — uol|
PR
“umi - UOHZ - (1 - ami)bmi "ﬂm((umi - uo) + (1 - ﬁm‘){a— ZTJ”'TH; - uU]”
st
fem, — uol
“umi - 'U'U”z - (1 - ams)bm\‘ [”-Bﬂn (umi - uﬂ)“
1 :
+(1 - ﬁma)n':f Z 77 ttm, — T uol|]l|m, — uoll
0

“umi - uoﬂz - (1 - am()bmiﬂmi Hum( - u0”2 - (1 - ami)bl’?’-i“uml - uo“
1 iy .
(1= Bm)— D kslltm; — o
e

lltem, = woll® ~ (1 = e Yo B [, = woll® = (1 = @m, Yo, (1 = Bim, Yo,
llm, — woll®

e, = uoli® = (1 = ey Yo litm, — uolf* — (1 = oty Ybim, [[t6m, — vl
l[em, = wall® = (1 = ctm, ) 2bm, || um, — vol®

[1— (1 = am)2bm, 1 em; — uol®.
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It follow that

Oy (mo — Up, Um; — uO)
i1 = (1= am,)2bm,]

O, (To = Uo, Um; — Ug)

1A

fatm, — wol|®

&m, (1 — 2a)
2 _Eim_u;;‘)— uo) for every ¢ > 1. (3.1)

Since ug is the element of F(T') with is nearest to zg, it follow by {9, Lemma 3.1.3)
that

(IO = UY, Umy — uO) = (IO — Up, ¥V — uo) + (xﬂ — Up, Um; — 'U)
< {xo — up, tm, — V).

{To—thostim  ~

So, we have ||um, —up||?< _(m)‘_ for every ¢. Since um,, converges weakly to v,
we get {Tg — ug, Um; — V) — 0 as ¢ — oo. Hence {um,} is converges strongly to ug.
This complete the prove. |

The following corollary follows from theorem 3.1 .

Corollary 3.2 Let C be a closed convex subset of Hilbert space H and T he
asymptotically nonexpensive mapping on C into itself with LlpSChltZ condition k,
and suppose that F(T") is nonempty.
Let

b= 2 X0+ 15— kil +e79), 0<a<iandzeC.
Then, a mapping T, on C given by

Tz = onxo+ {1 —ag)Anz NxeC

has unique fixed point u, in C, when

bn — 2 1<
Gy = m and A“=;ZT"

‘"Further {u,} converges strongly to the element of F(T") which nearest to xzg.

Acknowledgement, The authors would like to thanks the Thailand Research fund
for financial support.
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IMPLICIT ITERATION PROCESS WITH ERROR OF
NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

SOMYOT PLUBTIENG AND RATTANAPORN PUNPAENG

Department of Mathematics, Faculty of Science, Naresuan University Pitsanulok 65000,
Thailand

ih

ABSTRACT. Suppose C is a nonempty bounded closed convex retract of a real
uniformly convex Banach space E with a uniformly Géteaux differentiable norm.
Let T : C — E be a nonexpansive nonself-mapping and P is & sunny nonex-
pansive retraction of F onto C. Let u € C, {un} and {vn} be bounded sequence
on C, and let {an}, {bn}, {ea}, {dn}, {tn}, and {c.} be real sequences on [0,1].
In this paper, we study the convergence of the sequences {za}, {yn}. {zn} which
defined by

T Antt + b T[dn Ty + 6aT T + éntn] + Catn

@nt + bn PT[dnTn + ba PTZa + catin] + ata,
P[a-nu + bnTP[a-—nIn + b_nT«Tn + C_n'un] + cn"u]

Yn

Zn

where @n+bn+6n = Gntba+G =1L0€0 <A< b € <1, 000, €n < 00,
Y ne1tn <00, and an — 0 as n —+ oo0.

87

Keywords: Nonexpansive mapping, sunny retraction, fixed point, weak inward-
ness condition, strong convergence theorem.

2000 Mathematics Subject Clussification: 4TH10, 47HO09, 46B20.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a Banach space E. Then a
nonself-mapping T from C into E is called nonezpansive if [Tz — Ty|| < iz — 3|

Corresponding author.
Email addresses: Somyotp@nu.ac.th{Somyot Plubtieng) and g46060088@nu.ac.th.
{Rattanaporn Punpaeng).
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for all z,y € C. Given u € C and {oy} is a sequence such that 0< oy < 1. We can
define a contraction T,, : C — E by

The = (1 —op)u+ Tz, z€C. (L.1)

If T' is & self-mapping(i.e. T(C) C C), then T, maps C into itself, and hence, by
Banach's contraction principle, T, has a unique fixed point z, in C, that is, we have

Zn=(1—-ap)u+ anTza, Vo > 1. (1.2)

(Such a sequence {z,} is said to be an approximating fixed point of T since it
possesses the property that if {z,} is bounded, then lim,— |7z, — za|| = 0).
The strong convergence of {zn} as &, — 1 for a self-mapping T of a bounded C
was proved in a Hilbert space independently by Browder [2] and Halpern {5] and in
a uniformly smooth Banach space by Reich [11]. Thereafter, Singh and Watson [12]
extended the result of Browder and Halpern to nonexpansive nonself-mapping 7'
satisfying Rothe’s boundary condition: T(8C) C C (here 8C denotes the boundary
of C). Recently, Xu and Yin [16] proved that if C' is a nonempty closed convex{not
necessarily bounded) subset of Hilbert space H, if T': C —— H is a nonexpansive
nonself-mapping, and if {z,.} is the sequence define by (1.2) which is bounded, then
{zn} converges strongly as @, — 1 to a fixed point of T. Marino and Trombetta
[9] defined contractions Sy, and U, from C into itself by

Snz={(l—apyu+a,PTxforallzeC (1.3)

and
Unz = P[(1 — an)u + a,Tz] for all z € C, (1.4)

where P is the nearest point projection of H onto C. Then by the Banach contrac-
tion principle, there exists a unique fixed point yn{resp. 2z) of Sp(resp. Uyp) in C
ie.
Yn = (1 = an)u+ an PTy, (1.5)
and
zn = P[(1 — an)u + anTz,). (1.6)

Xu and Yin [16] also proved that if C is a nonempty closed convex subset of a
Hilbert space H, if T : C — H is a nonexpansive nonself-mapping satisfying the
weak inwardness condition, and {z,} is bounded, the {y,} (resp. {25}) defined by
(1.5) (resp.(1.6)) converges strongly as a,, —+ 1 to a fixed point of 7. Finally, Jung
and Kim [6] extended Xu and Yin’s result to a uniformly convex Banach space with
a uniformly Gateaux differentiable norm.
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In this paper, we extend Xu and Yin’s results [16] to stﬁdy the contractions
Tn, S, and U, define by

Taz = anu+ 0, T[T + b,TT + Gattn) + cavn . (L7
SaZ = apt+ bpPT[Gnz + 5o PTT + Gattn] + Catn, (1.8)
Unt = Planu+baTPdnz + 6.7z + Gattn] + catn] (1.9)

where {an},{bn},{cn}, {dn}, {bn}, and {¢&} be real sequences on [0,1} such that
an+bnten =G+l + =1,0<b <A< 1b, €A <1, T2 cn < 00,

:;1 ¢ < 00, and P is the nearest point projection of H onto C. We also prove
the strong convergence of the sequences {z,},{yn} and {z,} which defined by

Tn = @nt+ baT[dnTn + bn Tz, + Cntin] + Crln (1.10)
Yn = apt+ bnPTGnn + by PTZn + Catn] + Cntn, (1.11)
Zn = Plapt + bpnTP{dnTn + T 2o + Giitn] + cnn] (1.12)

where a, — 0 asn — 00. To results presented in this paper generalized and
extend the coresponding mains results of Xu and Yin [16], and Jung and Kim [6].

2. PRELIMINARIES

Throughout this paper we denote by F and E* a real Banach space and the
dual space of E, respectively. The value of z* € E* at z € E will be denote by {z,z*).
We also denote by R and R* the sets of all real numbers and all nonnegative real
numbers, respectively. When {z,} is a sequence in E, then z, — z ( , = z) will
denote strong (weak) convergence of the sequence {z,} to z. Let C be a nonempty
closed convex subset of E and let T be a mapping of C into E. We denote to F(T')
the set of all fixed points of T, i.e. F(T) = {z € C: Tz = z}. For every € with
0 < € < 2, the modulus §(¢) of convexity of E is defined by

. T+y
dfe) = inf{1 = l—=I: llzll < L, llyll < L, llz —yl| > €}

I is said to be uniformly convez if &(e} > 0 for every ¢ > 0. I EF is uniformly
convex, then E is reflexive. Let S(E) = {z € E : ||z|| = 1}. Then the norm of E is
said to be Gateaux differentiable (and F is said to be smooth ) if

iy JZ Yl ~ Izl

Hm : (2.1)

exists for each z and y in S(FE). It is also said to be uniformly Géateaux differentiable
if for each y € S(E), the limit { 2.1) attained uniformly for z in S(E). With each
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xz € E, we associate the set
J(z) = {z* € E* : (g, ") = ||z|” = [|=*]%}.

Then J : E — E* is said to be the duality mepping. It is well know if E is smooth,
then the duality mapping J is single-valued and strong-weak* continuous. It is
also know that if E has a uniformly Gédteaux differentiable norm, J is uniformly
continuous on bounded sets when E has its strong topology while E* has its weak
star topology; see Day [3] or Diestel [4]. A closed convex subset C of a Banach space
E is said to have normal structure, if for each bounded closed convex subset K of
C, which contains at least two point, there exists an element of K which is not a
diametral point of K. It is well known that a closed convex subset of a uniformly
convex Banach space has normal structure and a compact convex subset of Banach
space has normal structure. Let D be a subset of C and let P be a mapping of C
into D. Then P is said to be sunny if

P(Pz + t(z — Pz)) = Pz,

whenever Pz +t(z — Pzr) € Cforz € Candt > 0. A subset K of E is said to
be a retract of E if there exists a continuous map P : E —+ K such that Pz = g,
for all x € K. We note that every closed convex set of a uniformly convex Banach
space is a retract. A mapping P of E into E is said to be a retraction if P? = P. If
a mapping P of E is a retraction, then Pz = z for every z € R(P), where R(P) is
the range of P. A subset D is said to be a sunny nonexzpansive retract of C if there
exists a sunny nonexpansive retraction of C onto D; for more details, see [8, 13].
Let C be a nonempty convex subset of Banach space E. Then for z € C we define
the inward set I.(z) as follows:

I(x)={ye F:y=z+a(z - z) for some z € C and a > 0}.
A mapping T : C — E is said to be tnward if Tz € I.(z) for all x € C. T is also
said to be weakly inward if for each z € C, Tz belongs to the closure of I (x).
Let 1 be a mean on positive integers N, i.e. a continuous linear functional on
[ satisfying ||| = 1 = #(1). Then we know that y is & mean on N if and only if
inf{an : n € N} € p(a) £ sup{a, : n € N}

for every a = (a3, as,...) € [*®. According to time and circumstance, we use pn{en)
instead of u(a). A mean u on N is called a Banach limit if

tr(@n) = pin(@ns1)

for every a = (a3,as,...) € {*°. Using the Hahn-Banach theorem, or the Tychonoff
fixed point theorem, we can prove the existence of a Banach limit. We know that if
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4 is a Banach limit, then

liminfan < pinfan) < limsup ay,

-0

for every a = (a1, a3, ...) € I*®. So, if ¢ = (@1,09,...} €I and a, — ¢, 85 1 — x©
we have pn{an) = p(a) = ¢. Further, we will use the following Lemmas.

Lemma 2.1, [15] Let C be o nonempty closed conver subset of a Banach space E
with a uniformly Gateauz differenticble norm, let {z,} be a bounded sequence of E
and let y& be a mean on N. Let z € C. Then

2 : 2
tallzn — 2|[F = min ga ||z
n" n " yEIC F—n" n y”

if and only if pn{y — 2, J(xq — 2)) <0 for all y € C, where J is the duality mapping
of E.

Lemma 2.2. [6] Let C be a closed convez subset of a smooth Banach space E and
let T : E — C be a retraction. Then the following are equivalent:

() {x— Pz, J(y—Pz)) <0 forallzc Eandy € C;
(b) |Pz— Pw|? < {z —w,J(Pz — Pw)) for all z and w in E;
(c) P is both sunny and nonexpansive.

3. MAIN RESULTS

In this section, we prove our main theorems. Using Lemma 2.1, we have the
following theorem.

Theorem 3.1. Let E be a real reflexive Banach space with a uniformly Gateauz
differentiable norm. Let € be a nonempty closed convex subset of E which has
normal structure, and T': C — C be a nonexpansive mapping. Let u € C, {un}
and {v,} be bounded sequences on C and let {an}, {bn}, {cn}, {an}, {bn}, and{c}
be real sequences on [0,1] satisfying the conditions:

() an+bn+en=dn+ba+ 6 =1,
(i) 0<b. <B<Lba<8<], ¥n21,
(i) 3°°0, 0 < 00, 20, &, < 00

Then the mapping T, defined by (1.7) has a unique fixed point z,, € C. Futher,
T has a fixed point if and only if {z,} remains bounded as a, — 0. In this case,
{z.} converges strongly as a; — 0 to a fixed point of T'.
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Proof. For every n > 1 and z,y € C, we have

|Taz = Tayll < allTldnz + 8Tz + Guttn) — Tldny + 6aTy + Cuuun |
< badnllz ~ yl| + boba[Tz — Ty||
< baldn +ba)llz —
< (@t bt Pzl

Since 0 < dy+bn + %’1 < 1, T, is a contraction. Therefore by the Banach contraction
principle, T;, has a unique fixed point =, € C such that

Tn = o+ b T[@nZn + 5. 2 + Cnttn) + crim.

Let w € F(T) and M = max{|lw — u||,sup |lw — un||,sup |lw — vn||}. Then for each
n > 1, we have

|l —Zal] = |lw=antt — baT[dnZn + by T Ty + Gttn] — Cntnl|
< anllw = ull +bnllw — Tldnzn + BnTzn + Gtn]l| + enllw — val|
< anlw — ulf + bodallw — zp| + bpbalw — Tz,
+ bnéallw — tnl| + enjlw ~ va||
< anflw —ull + ba(dn + bo)llw — zall + bnéallw = unl| + cullw — vall
< anllw — vl + ballw — @l + bncrllw — unll + callw — nl
< @M + by)lw — || + b M + e M.

This implics ||w — zg|| < T_l_—ﬁM for alln > 1. Then {z,} is a bounded sequence.
Conversely, we suppose that {z,} is bounded as a, — 0. Then we show that
F(T) # 0 and {z,} converges strongly as a, — 0 to a fixed point of T. For any
subsequence {x,,} of the sequence {z,} such that a,, — 0, we can define a real
valued function ¢ on C given by

9(z) = pil|Tn, — | for every z € C, (3.1)
where p is a Banach limit. Define the set

N={veC:glv)= :lelgg(z)} (3.2)
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Since E is reflexive, it follows by Barbu ([1], P.79) that N is nonempty. We note
that NN is closed and convex. Further, we note that

i, = Txnl € |l@nt + ba;Tan T, + bnTon; + Coytin] + nyn, — Tl

< angllu — Tan, || + ba | Tldn, Tn, + b0, TTa, + aytin,] — Tn,|
+ cng|vn; = Tl

< anllu — Too, || + br, || an @, + 00, T%n; + Cryting — Zngll
+ engllvn, — Tzl

< anllt = T || + bnibn|TZn; — T || + b€ || 2ng = Zngl
+ en;[[vn; — Tzn,]|

< anglle = Tanll + BT, = Tacll + bny o lltim; =z

+ Cngllvn, — Tm‘ﬂe”'

iI'his implies that (1—8)||n, = T2n.l| < an;[u—TZn |4+ ltin, —Tn, | +en; o, ~
Tz,,| and hence
1 -
|Zn; = TEnl| < m[am”u = TTn.|j + bn; i ||tn; — Tl

+ en;||vn, — Tzp,||] — 0 as i — oo.

Thus, we obtain

IA

: pillZn, — Tl Bil Trg — T2, || + || Tn; ~ Tl

; < Fti"wﬂi - U”’ Vi> 1.

This implies that N is T-invariant. It follows by Kirk’s theorem (7} that 7' has a
fixed point zp in N. On the other hand, let us show that {z} converges strongly as
an — 0 to a fixed point of 7. For any w € F(T) and for all n > 1, we have

{(n = Txn, J(zn —w)) = {2n—Tw+Tw— T2y, J(zn —w))
llzn — Twl* — (Tey — Tw, J(zn — w))
”mﬂ - Tw”2 - ”T-'Eﬂ - Tw“"mn - w“

2~ w]|? — llen —w|? = 0.

v ol

v
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From (1.10), we get

0 < (anu+bnT[GnZn + b, TTn + Gattn)] + caty = T, J (2 — w))
= (an{tt — T2a) + bn[T{dnzn + b TZn + Gutin) — T

+ en{tn — Tzp), J(2n — w))
= an{t— TZq, J(Tn — W) + b (T(@nZn + bnT2n + Grtip)

= Tzp, J(zn — w)) + cn{{vy — Tzy), J(zn — w))

< (u—Txp, J(Tn — ) + b || T(dnn + bnT s + Gittn) — Tnll
W (zn — w)|| + enllvn — Tzall| I (zn — w)l|
< (u~Tan, J(@n — w)) + belldatn + 6aTon + Grtin — Talllzn — wl|

+ enllvn — Txalfizn — w||

= {u—Tzn, J(@n — w)) + bnba|| Tzn = ZallllTn — wl| + bacafitn — znll|lzn — wi]

+ callvn — Tan|fllzn — w|l, VR 21
Since {z.} is bounded and p is a Banach limit, we have
[11('"- = Tz, J("‘Em —w)) + "l"-(bﬂib;i “Txﬂm' — Ty ““xm - w")
+ﬂ'i(bn.‘cv_u“um - xﬂi”“mﬂi —wlf) + F'i(cns“'”ﬂi - Tmﬂi”“mni - w“) 20,
and hence
pi{Tan, — v, J(zp, —w)} €0, Vi 1.
This implies that

pilTn, —u, J(x"i - w)) = pi{zn — Tzq,, J(mni —w)} + pilTen; — t, J(Tn, — w))

= pi{T%n, — u, J(2q, —w)) <0.

(3.3)

Further, since 2 is the minimizer of the function g on C, by Lemma 2.1 we have

pilz — 20, J(zn, — 20)) <0, for all z € C.
So, putting w = zp and z = u, from (3.3) and (3.4), we have
(i (T, — u, J(Tn, — 20)) <0
and
pi{u — 20, J (@n; — 20)) < 0.
Then we get
pilan; — 20, J(Tng = 20)) = pillzn; ~ 2% < 0.

(3.4)
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Therefore, there is a subsequence {:c,.‘.j} of {xn,} which convergés strongly to z5. To
show that {z,} converges strongly as a, — 0 to a fixed point of T, let z,, — 2
and 1y, — 2'. Since
lz—Tz| < |z — T || + |!-’Bs;= ~Tzg | + ”Tmsk - Tz
< 2|z —zs, || + |25, — Ts, || — 0 as k — oo,

We obtain z = T'z. Similarly, we have 2’ = T%'. From (3.3), we get

Ni(mski — U, J(xak,- -2Z) <0
and

BilTe, — u, J(a:.gh_ —z)} <0.
Thus, we obtain
. {(z—u,J(z—2")) <0
and

{u — 2, J(z— Ny ={—-u,J(Z - 2)) <0.

Adding these two inequalities yields

0> {z~2,J(z—2)) = |z — 2|

and thus z = 2’. Therefore {z,} converges strongly as a, — 0 to a fixed point of
T. d

Theorem 3.2. Let E be a uniformly convex Banach space with a uniformly Géteauz
differentiable norm. Let C be a nonempty closed convex subset of F, and T : C —
E be a nonexpansive nonself-mapping satisfying the weak inwardness condition.
Suppose that C is a sunny nonexpansive retract of E and that for some u € C, let
{1} and {v,} be bounded sequences on C and let {a,}, {bn}, {cn}, {Gn}, {Bn}, and{c}
be real sequences on [0,1] satisfying the conditions:

(i) Gn+tbotcn=dn+bp+cn=1,
(i) 0< b <B<1,B, <B <1, Vn 21,
T (i) :°=Icn<oo, E;“;lc'n<oo.

Then, a mapping S, defined by (1.8) has a unique fixed point ¥, € C. Further, T
has a fixed point if and only if {yn} remains bounded as a, — 0. In this case, {yn}
converges strongly as ¢, — 0 to a fixed point of T'.

Proof. By the Banach contraction principle there exists a unique fixed point yn of
Sn in € such that :

o = nt+ b PT{dnyn + b PTYn + Gttn] + Cntn.
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Let w be a fixed point of T. Then a3 in the proof of Theorem 3.1, {yn} is bounded.
Conversely, suppose that {y,} is bounded. Apply Theorem 3.1, we obtain that {yn}
converges strongly to a fixed point z of PT. Next, let us show that z € F(T). Since
z = PTz and P is a sunny nonexpansive retraction of E onto C, it follows by [13]
that
. (Tz—2z,J(z—v)) 2z 0forallveC.
On the other hand, Tz belongs to the closure of I(z) by the weak inwardness
‘conditions. Hence for each integer n > 1, there exists z, € C and a, > 0 such that
the sequence
To =2+ an(zn — 2) — Tz.
Thus it follows that
0 £ an{Tz—2,J(z— z))

= (T2 2, J{an(z - m)})

= Tz—z,J(z—rn)) — (Tz—z,J(z — T=z))

= —|Tz— 2|

-
Hence we have Tz = z. 0

From Theorem 3.2, we are able to derive the following corollaries.

Corollary 3.3. [6, Theorem 2] Let E be & uniformly convex Banach space with a
ﬁniformly Gateaur differentiable norm, C a nonempty closed convex subset of E,
and T : C — E a nonexpansive nonself-mapping satisfving the weak inwardness
condition. Suppose that C is a sunny nonexpansive retract of £ and that for some
u € C, {an}32; € (0,1). Then, a mapping S, given by Spz = (1 — an)u + PTz
for all z € C has a unique fixed point ¥, € C such that y, = (1 — an)u + n PTyn.
':Further, T has a fixed point if and only if {y,} remains bounded as &, — 1. In
this case, {y,} converges strongly as o, — 1 to a fixed point of T,

Theorem 3.4. Let E be a uniformly convex Banach space with a uniformly Géteauz
differentiable norm. Let C be a nonempty closed convex subset of B, and T : C —»
E be a nonexpansive nonself-mapping satisfying the weak inwardness condition.
Suppose that C is a sunny nonexpansive retract of E and that for some u € C, let
{un} and {1, } be bounded sequences on C and let {an}, {bn}, {en}, {dn}, {bn}, and{c}
be real sequences on [0,1] satisfying the conditions:

(i) an+bnt+on=dn+bat+cn=1,
(i) 0<b < B<L,ba < B <1, V21,
(iff) 202y cn <00, 3200 G < 00
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Then, a mapping U, defined by (1.9) has a unique fixed point z, € C. Further, T
has a fixed point if and only if {z,} remains bounded as a, — 0. In this case, {2,}
converges strongly as a, — 0 to a fixed point of T,

Praof. 1t follows by the Banach contraction principle that there exists a unique fixed
point z, of U, such that
2n = Plapu + b TPdnzn + by Tz + Gatty) + cntyp).

Let w € F(T), M = max{sup ||w ~ un|,sup|w — vn|| + ||w ~ u||}. Then for each
n > 1, we have

Il

I1Pw — Plant + b TPldnzn + 00T 2n + Gatin] + cntnl||
fw — ant — baTPldnzn + 8nT'2n + Gatin] = catnll
anllw — ]| + bnllw — TPdnzn + BaT2n + Gatin]l] + cnllw — vall

“w ~ Znl}

IA A A A

anM + bp(dn + o) fw — 2| + b M + cn M
M + by||lw — zn||
M + Bllw — z].

IAIA

This implies ||w — z,]| < T‘E’%, ¥n 2> 1. Then {2} is bounded. Conversely, suppose
that {2} is bounded as a, —+ 0. To show that F(T) # @. For any subsequence
{zn,} of the sequence {2} such that a,;, — 0, we can define a real valued function
g on C given by

9(2) = pillzn; — 2|| for every z € C, (3.5)
where 1 is a Banach limit. Define the set

N={veC:gv)= Eéigg(z)}. (3.6)

Then N is nonempty, closed and convex. As in the proof of Theorem 3.1, N is
PT-invariant. Hence, by Kirk’s theorem [7], we have a fixed point y of PT in N.
Thus y = PTy. So from [13],

(Ty—y,JJ{y—v)) 20forallveC.

Since T is weak inwardness condition, we get Ty belong to the closurc of I.(y). Then
for each integer n > 1, there exists w, € C and d,, > 0 such that the sequence

T =y +dp{w, —y) — Ty.

anllw — ull + badnllw = zal| + babullw — Tzall + bncrllw ~ tnll + eallw ~ val
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As in the proof of Theorem 3.2, we have Ty = y. For any w € F(T) and for all
fz > 1, we have
(ba+ca){w—u)+u = apu+ (bn+en)w
= Planpu + (bn + cn)w).

'F:Fhis implies that

Nz = u— (b + ea)(w —w)> = ||Planu+ baTPlonzn + baTzn + Catin] + cnvi]
R — P(anu+ (bn + ca)w)|?

(@t + b T P(tnzn + bnT2n + Grtin)

+ eatin = ant — (bn + cn)w||?

(bell TP (dnzn + bnT'2n + Grum) — |

+ callun — wl)?

(bnfldnzn + b T2y + Guttn — w|| + caljvn — "“")2
(badllzn — wl| + brbal| T2 — wl|

+ bnéallun = w| + enllve ~ wf])?
(bn(d + Bl 2n — wl| + Bucallun — wl|

+ cnllvn —w]))?
(ball2n — w]| + bacallum — wll + eallvn — w]|)?
= Billzn — wl® + 282Gl 20 — wi||un — w]|

1A

IA

In A

IA

1A

- + 2bncal|vn = wlll|zn — wll + 622 |un — w]|?
+ 2bacnéallun — wllllvn — wl| + ¢ llve — w]%.
Hence for all n > 1, we have
2{(1 — bp)(2n — u) — calw — u), J(bn(2n — w)))
llzn — 4 = (bn + ca)(w — ‘"-)"2 = [|ba(zn — u) — bu(w — “)”2
llzn = = (b + €a)(w — W)|I* = B3 ||z — w|?
< 288Gz — wllllun — wl + 2bacnllvn — wllllzn — wii + 2bacncnllun — wiilivn — wl|
+ W& un ~ wl® + ilvn ~ w]®

IA

Since

2((0 = b}z ~ 1) = cu(w = ), Tbuln — ) = 2L = oYz — 1 T — )
i — 2epbp{w — u, J(2n — w))
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it follow that
b _ Cn
(zn =, J(z—w)) < ——Glza —wliun —wl| + flve — wlfl|zn — wl|
1 bﬂ 1 - bn
Cnén bni® 2
R llun — willlva ~ wl]| + 2(—1:—33,,_)"0'“ wl)
c2

n _ 2 Cn _ _

and hence

Hilzn, — U, (2, — w)) < 0. (3.7
Then, putting w=y, we have

Hilzn; —u, J(zn, —y)) S O (3.8)
On the other hand, since

9(y) = ming(2),
it follows by Lemma 2.1, that
wilz —y, J{zp, ~y)) €0 forall z € C.

Putting z=u, we have

pi{u — 4, J(zn; —y)) < 0. (3.9)
As in the proof of Theorem 3.1, from (3.7), (3.8), and (3.9), we have that {z,}
converges strongly as a, — 0 to a fixed point of T. 0

Corollary 3.5. [16, Theorem 2] Let H be a Hilbert space, C' a nonempty closed
convex subset of H, T : C — H a nonexpansive nonself-mapping satisfying the
weak inwardness condition, P : H — C the nearest projection. If {a,} C (0,1),
then a mapping U, defined by (1.4) has unique fixed point z,, € C. Further, T hasa
fixed point if and only if {5} is bounded as &, — 1. In this case, {2,} converges
strongly as o, — 1 to a fixed point of T '

Acknowledgement. The authors would like to thanks The Thailand Research
Fund for financial support.

REFERENCES

1. V. Barbu and T, Precupanu, Convexity and Optimization in Banach Space, Editura. Acadimiei.
R.S.R., Bucharest, (1978).

2. F. E. Browder, Convergence of approzimants to fied points of nonexpansive nonlinear mappings
in Benach spaces, Archs. Ratio. Mech. Anal., 24 (1967), 80-90.

3. M. M. Day, Normed Linear Spaces, 3rd ed. Springer-Verlag, Berlin, (1973).




A R

i e

[ S NPT .

b -

FN

Hame

9/

NAaRwIN 12/14

14 5. PLUBTIENG AND R. PUNPAENG

4. J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math., Vol 485.
Springer-Verlag, Berlin, (1975).

§. B. Halpern, Fized points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967}, 957-961.

6. 1.8. Jung and S.S. Kim, Strong convergence theorems for nonezpansive nonself-mappings in
Banach spaces, Nonlinear Anal., 33(3) (1998}, 321-329.

7. W. A. Kirk, A fized point theorem for mappings which do not increase distances, Amer. Math.
Monthly, 72 (1965), 1004-1006.

8. 8. Kitahara and W. Takahashi, Image recovery by convexr combinations of sunny nonezpansive

retractions, Nonlinear Anal., 2 (1993), 333-342.

9. G. Marino and G. Trombetta, On approzimating fired points for nonezpansive maps, Indian J.

| Math., 34 (1992), 91-98.

:10. S. Reich, Product formula, nonlinear semigroups, and aceretive operators, J. Funct. Anal., 36
{1980}, 147-168.

11."S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach space, J.
Math. Anal. Appl., 75 (1980), 287-292.

12 S. P. Singh and B. Watson, On epprozimating fized points, Proc. Symp. Pure Math., 45 {1986),

~ 393-395.

13 W. Takahashi, Nonlinear Functional Analysis. Yokohama Publishers, Japan, {2000).

14. W. Takahashi and G. E. Kim, Strong convergence of approzimants to fized points of nonexzpan-

" sive nonself-mappings, Nonlinear Anal., 32 (1998), 447-454.

15. W, Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive

‘ operators, J. Math, Anal. Appl., 104 (1984), 546-553.

16. H.K. Xu and X. M. Yin, Strong convergence theorems for nonezpansive nonself-mappings, Non-

" linezr Anal., 24 (1995), 223-228.

i




i

)

*

F
.

Page 1 of 3

AedwIn 12/15

Somyot Plubtieng S T
From;: "Prof Yugun Chen" <yqchen@scnu.edu.cn>
To: "Somyot Plubtieng” <somyotp@nu.ac.th>

Ce: “kpshum” <kpshum@scnu.edu.cn>

Sent: Monday, January 31, 2005 5:57 PM

Subject: Re: submit paper(change to generalized results)

That is ok.

Original Message
Fronm: i
To: yachen@scnu. edu, cn

Sent: Monday, January 31, 2005 2:42 PM

Subject: Fw: submit paper(change to generalized results)

— Original Message —-

From: Somyot Plubtieng

To: seams

Sent: Monday, January 31, 2005 10:31 AM

Subject: Re: submit paper(change to generalized results)

Dear Professor Yuqun Chen,

in Banach spaces”
the generalized result

the pdf.file of our paper

entitled "Implicit iteration process with error of nonexpansive nonself-mappings in
Banach spaces”. | hope that

you will be consider it.

Thank you very much for your kind arrangement,

—- Originhal Message -—

From: seams

To: Somyot Plubtieng

Cc: Yuqun Chen

Sent; Tuesday, January 25, 2005 3:57 PM
Subject: Re: submit paper

Dear Professor Somyot Plubtieng,
This is to acknowledge that I have received your paper “Implicit

for possible publication in the Southeast Asian Bulletin of

take 12 weeks to get an answer from the referees.
Thanks for your attention to our journal.

With My Best wishes,

According my paper entitled "Implicit iteration process of nonexpansive nonself-mappings
which submitted for publication in the Southeast Asian Bulletin of Mathematlcs Now, | get

of that paper and | thing that it is a good way |f change the manuscript. So, | was send

- . 4 - . ”
iteration process of nonexpansive nonself-mappings in Banach spaces

Mathematics. I have forwarded your paper to referees.I will inform
you the outcome when I receive the referee report. Usually, it will



]

-

b mipe e W e

fe R e aEm ot =

s rm——

¢ 0 Page 2 of 3
;} AMANWIN 12116

Prof Yuqun Chen ( FR#Ef)
Managing Editor of SEA Bull Math
Department of Mathematics

South China Normal University
Guangzhou 510631

China .

Tel: 86—20-85216957

Fax: 86-20-85216705

Email:: yachen@scnu. edu. cn

Website of SEA Bull Math: http://www. scnu. edu. cn/seam-bulletin/

Original Message ——

From: Som i

To: seams@scnu, edu, cn

Sent: Monday, January 10, 2005 9:44 AM
Subject: Fw: submit paper

o

——- Qriginal Message —--

From: Somyot Plubtieng

To: seams@scnu.edu.ch

Sent: Thursday, January 06, 2005 8:52 AM
Subjecgz submit paper

The Edi_tor,

Southeést Asian Bulletin of Mathematics,

Departfnent of Mathematics,

South éhina Normal University,

Guang%hou 510631,

CHINA . January 6, 2004

~

Dear the editor;
Enclosed please find the files (pdf.file) of my paper with Miss. Rattanaporn Punpaeng entitled,
Implicit iteration process of nonexpansive nonself-mappings in Banach spaces

which | would like to submit for publication in the Southeast Asian Bulletin of Mathematics.

I would like to thank you in advance for your cansideration.
E]

3
2

Lo

&



-;')‘,n
Y

%

.

ANANWIN 13

Strong convergence theorems of an implicit
iteration process with errors for asymptotically

nonexpansive mappings

A. Kangtunyakarn and S. Plubtieng

Acta. Scient. Math. (submitted).



Ly

)

4.

AapwIn 131

STRONG CONVERGE THEOREM FOR ASYMPTOTICALLY
NONEXPANSIVE MAPPING WITH ERROR TERM
SOMYQOT PLUBTIENG AND ATID KANGTUNYAKARN

Department of Mathematics, Naresuan University Pitsanulok 65000,
Thailand

ABSTRACT. Let C a nonempty closed convex subset of a Hilbert space H, T be
an asymptotically nonexpansive self-mapping of C into itself. In this paper, we
study the convergence of a sequence {,} generated by
Ty = @nTo + FnAnZn + Yntn

where {#n} and {yn} are sequence in [0,1) such that an + fn + ¥ = 1, on =
b—:g}—_}_‘; and 1, < (é‘% for alln > 1, v, is bounded sequence in C, and A, =
Ayr  7T9,0<a' <1l,and0<a<l.

Keywords: Fixed point, asymptotically nonexpansive mapping, strong conver-
gence.

2000 Mathematics Subject Classification: 47TH10, 47HO09, 46C05.

1. INTRODUCTION

Let C be a closed convex subset of Hilbert space H and let T be a mapping of
C into itself. Then, T is said to be a Lipchitzian mapping if for each n > 1 there
exist a positive real number &k, such that

1772 — T™y|| < kallz — vl
for all z,y € C. A Lipchitzian mapping is said to be nonezpensive if k, = 1 for
all n > 1 and asympiotically nonezpensive [3] if lim,_. &k, = 1, respectively. We
denote by F(T') the set of fixed points of T. It is well know that if T" is asymptoti-
cally nonexpensive, then F(T') is convex: see [5]. In 1967, Browder [2] proved that
Corresponding author.

Email addresses: Somyotp@nu.ac.th(Somyot Plubtieng) and g46060090@nu.ac.th.
{Atid kangtunyakarn).
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the following strong convergence theorem for nonexpensive mapping of a bounded
a closed convex subset of H into itself. Let 2o € C, and for each k with 0 < k < 1,
let Tyx = kzg + (1 — k)Tz. Then, T; has a unique fixed point ux in C, and uy
converges as k — 0 strongly to a fixed point ug of T in C. The fixed point uy is
uniquely specified as the fixed point of T' in C closet to zp. After Browders result,
such a problem has been investigated by several authors; see Singh and Watson (8],
Marino and Trombetta [6] and other

On the other hand, Baillon [1) proved the first nonlinear ergodic theorem: let
C be a bounded closed convex subset of H and let T" be a nonexpansive mapping of
C into itself. Then for each z in C :
: Ang =150 Ty
converges weakly to a fixed point of T. Recently, Hirano and Takahashi {4] extended
Baillon 's theorem to asymptotically nonexpensive mapping. Finally, Shimizu and
Takahashi [7] studied a sequence {z,} define by

Tn = apZo+ (1 - an)An:rn

where

bp — 1

_ fi >1
bn~1+4+a orn=

1< »
bn:;Z(1+|l—kj|+eJ), On =

and 0 < a < 1. They also proved that the sequence {x,} converges strongly to
element of F{T") which is nearest to z.

In this paper, we extend Shimizu and Tekahashi's result [7] to study the se-
quence {z,} defined by

Tn = cnZo + BnAnZn + Yntn (1.1)

where {f,} and {y,} are sequence in [0,1) such that an + Bn + W = 1, an =
seards and 7, < —(""T)LLr for all n > 1, v is bounded sequence in C, and A, =
, T4, 0< a < 1, and 0 < a < 1. Moreover, we prove the strong converges
theorem of a sequence {z,} given by (1.1) .

1 ﬂ.

2. LEMMAS
To prove the main theorem we need the following lemmas.

Lemma 2.1 For each n > 1, T, has unique fixed point u, in C.
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Proof. Let z,y € C, we have

(1 Thz = Tyl

1A

1A

B

<

Since 0 < (1 — an)by

1 e 1o .
llenzo + .Bn(; ZTJI) + Yntn — Qo — ﬂn(; ZT’y) + Yatnl|
i=1 =1

1 ) .
o~ Tigp -9
g 2 T2 =T

1 n
ﬁn; Z killz — yll
i=1

Babnliz — vl
(1~ an — Ta)bnllz — 9l
(1 — an)ballz -yl ¥n > 1.

< 1,it follows that T, is contraction mapping on C. Hence by

Banach contraction principle, T, has unique fixed point u,. O

Lemma 2.2 If F(T} is nonempty , un is bounded.

Proof. Let v € F(T)

llun — ol

IA

1A

A

This implies that

and {u,} is fixed point of T,. Thus, we have
[[Thun — vl

1 Cn s
”ann +ﬁn(; ZTJ'U,“) + Yntin — U”
i=1

) R
||0tn'£o + Bn(; ETJ%) + Faln — (an +Bn+ 'Yn)'U"
i=1

a0 = 0) + (= D" TPu) = 0 + (o = 9]
i=1

lan(@o — ) + Bals D" Tt — = 3" T94] + vl — 0)]

je=1 j=1
1S, :
loa (20 = v) + fn= D _(THtn — TP0) + (v — )l
=1

1 .
anllzo = vil + fn— > I T7%n = TH0l| + nllvn — ]l

=1
1 n
anllzo — vl + fn— D killun — vl + Yallvn = vll
=1
apflzo — vl + Babrllun — vl + Yallva —vl|.

(1 = Babn)litn = vl < anllzo = vl + ynllva — vll.
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Since (1 = Bnba) = [1 = (1 — @t — T )bn] 2 [1 = (1 — an)bn] > 0.
Thus
an||zo — v Fallva — vl
(1 - (1 - a’n)bn) (1 - (1 - an)bn) )
Since [l — (1 - an)bu}l = an(l —a), and (1 - an)bp = 520
It follow that

llun — ol <

”‘7"0 - ‘U" Inllva — vl
len —oll <€ = [l‘bn_ffr&]
[lzo — vl + Inllva — vlbn
(1-a) (b —1){1-a)
Since
b, — 1)
Tn < __-—(bn( 1)z la;
This implies that
Lo — U by~ 1)%|juy, ~ vllby
e =l < "(10~ a)" * n —( 1) +)a'|]i(b,, - 1“)(1 —a
_ llza — v {bn — 1}lvn — vilbn
(1-a)  [bn—-1)2+a|(1-a) "
Since b, — 1 as n — ©0, {ua} is bounded. O

Lemma 2.3. [7] Let B be a nonempty bounded subset of C' and let F(T) be
nonempty.Then, for a positive number ¢, There exist a positive integer [, such that
for any integer [ > [, there is a positive integer n; satisfying

|Anz — T'Anzl| <€ for all z € B and n > n.

Lemma 2.4. {7] Let {z,} be a sequence in C and let {z,;} be a subsequence
of {zn} such that {z,} converges weakly to z € C and {z,, — (%) T7%, T9xa,}
converges strong to 0. Then, z is a fived point of T

3. MAIN RESULTS

Now, we have a strong convergence theorem for asymptotically nonexpansive
mappings in Hilbert space.

Theorem 3.1 Let C be a closed convex subset of Hilbert space H and T be asymp-
totically nonexpensive mapping on C into itself with Lipschitz condition k, and
suppose that F(T) is nonempty.
Let

b= 525+ |1 — k] +e77) 0<a<landzge€C,
and let T, : C — C be 2 mapping given by
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ToZ = anxo + PnAnT + Tavn Y e C,u, € C,

where {8} and {v.} are sequence in {0,1) such that ap + B + Y = 1, an =
arh- and v, < —(—1)5)_'_—r for all n > 1, v, is bounded sequence in C, and A, =
L =1 Ti,0 <a <1,and 0 < @ < 1. Further {u,} converges strongly to the
element of F(T') which nearest to zg.
Proof. By Lemma 2.1, T;, has a unique fixed point u, in C so we show that {u,}
converges strongly to element of F(T') which nearest to zj3. Let {un;} be a sub-
sequence of {un}. it is sufficient to find a subsequence {um,} of {un,} converges
strongly to element of F(T') which nearest to xy.

Suppose a subsequence {upm,, } of {un,} converges weakly to v in C. Since F(T)
is nonempty closed convex, there exists the element g € F(T') which nearest to zg.
By Lemma 2.2, {um,} is bounded so is Z L My,

We now show that

U ——E Ty, = 0 as i— co.
J"‘]

We note that

1 1 o,
- EETJ”W = Tmtm, — EZTJU’“‘

i j—l

= am;To -+ ﬁmi ZT Um; +'Ym“Umi - -r-r;— ZTJUmi
J-l =1
mi

1
= amTo+(l—am — '7,.,,‘)— ET’um‘ + P Umy — = ZT U,
b=l t=1

= a‘m‘.’ru-i-RE T’umi—am‘—g Tum‘
=1 =1

— X:’I‘J'm,,,i + YmiVm; — — ZT’um‘
J-l J 1

mg °
= am, (20— -——-ZTJum.) + Y (U, — ;—3"' ZTJH’“‘) —+0asf— 00
t =1 =1

since am, ~+ 0 and vy, — 0 as { — oo. We get
Uy — 1 ) Tiug,, — 0.
Hence, by Lemma 2.4, v is a fixed pomt of T. On the other hand, since Ty um; =
U, and Tup = ug, we have
Um = Gm, @0 + By 2oy TV %y + Y Vs
and so

;T = Um; — B Logey Tty — Y Urm;-
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Thus, we have

Cmy, <:l':g = Ug, Um, — uo) = (Clm,Io - ﬂm;ﬂo,‘um‘ - ua)
1
= (tm; ~ B — ZTJum — Yy ¥m; — wp + (1 — ami)r—n-_zmu,um. — u)
b=t j=1
1
= {um —~(1- ami)_ ZT Um, +'Ym¢— ETJ“mi = ¥miVm, — Uo
_1'-1
= +(1"C¥m‘)—ZT UD, U, — Up)
] b=l
. 1 & :
= (um; = Uo,Um, —ug) — {1 — ami)(; Z(Tjumz — T ug), tm, — ug)
] j=1
¥y ('Ume _— ZT umuum¢ - )
J“l
> M, —uol> - (1- ami)— Z IT7ttm, — TP g [[tm, — woll
j—"l
~ i l[vm, = = Z T trn, 2, — o]
_1-'1
' 1
> tm, — ol - (1 - am‘)— Z Ky [t — w0ll® = Y lm, — == ZT tim |
=] =1
llttm, — uoll
R
2 “umi - uo]lz - (1 - am()bm.‘“umi - u0“2 - 7m; "'umt - ;'n— szum:"
: ti=
N e, = ol

. 1 e .
= [1 - (1 - amt)bmil"umi - "-‘0"2 = Tmy "Umi - me § :T’um‘.””um‘ - uO"
it -

Since  [1— (1 — &m; )}bm;] = am,(1 — a). It follow that

”u —y Hz < arm(ml] = Uy, Um; = uo> + 7’“‘””"‘“ "_ _":.ll_‘ _'3'1:1 Tjum‘"”um‘ - u(.'!”
me ROl = am (1 —a) am, (1 —a)
- {To — U0, Um,; — Uo) . T "'Um‘ - mL. ;_r:l TJum;“HUM: — uol|
B (1-a) (1-(1— om,)bm,]
Since (1 — G, Yom, = oo - It implies that

(.7:0 = U0, Uy = o) | Ymlltm — 77 2oget Dot um, — uoll

Wtrm, — UDHZ <

- (1_0‘) l—rm%‘ﬁ

{To — o, Um, — o) . VmullVm, — mL‘ J-1 T, Wit — uD”bmz

= 1—a) brm; — 1+ G — Gbyn,
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Since ug is the element of F/(T') with is nearest to zg, it follow by [9, Lemma 3.1.3] that

(o — uo, Um, — uo} (zo — uo,v — uo} + (zo — o, um, — v}
S (ID - Ug, um‘ - f.’).

It implies that

1 m :
"um( - uo“2 S (.'Eo = Y0y ¥my 7 v) Yma "Um' T m .f=‘1 TJUTW ””umi - 'U'O"bm‘
(1—a) (bm, — 1){1 —a)
< {@o — to, m, — v} (bm, — l)zllumi - EII E_’Tzl T % ||[em; ~ uol[bm,
- G-e [ — 12 + @) (brme — D1 - 0)
- lmomtoum =) | B = Dlivme = 7 3y Tty — ol
(1-a) [, — D)2 + @](1 = a)

Since um, converges weakly to v, we get {Tg — up,Um, — v} — 0 and b,,, — 1 as i — co.
Hence {u,} is converges strongly to ug. This complete the proof.

Corollary 3.2 [7] Let € be a closed convex subset of Hiltbert space H and T be asymptot-
ically nonexpensive mapping on C into itself with Lipschitz condition k&, and suppose that
F(T) is nonempty.

Let

bn=%2?=1(1+|1—kj|+ﬂ_j) O<a<land zg €C.

Then a mapping T, on C given by
Toz = anzo + (1 — an)Anz Ve C

has unique fixed point u, in C, when
an = giaie and A, =330, T,
Further {u,} converges strongly to the element of F(T) which nearest to o.

Acknowledgement, The authors would like to thanks the Thailand Research fund for
financial support.
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ABSTRACT. Suppose C is a nonempty closed convex retract of a real uniformly
convex Banach space X with P as a nonexpansive retraction of X onto C. Let
T : ¢ — X be an asymptotically quasi-nonexpansive nonself-mapping with
sequence {kn}np1 C 10,00),limk,. = 0,F(T) = {x € C': Tz = =z} # B. Suppose
{Zn}n>1 is generated iteratively by
T € Cy Int1r = P((anxn + ﬁnT(PT)n_xyn +'Tnun)-
Yn = P(Q:;mn + .B;T(PT)n_lmn + 'Y::‘Un): nz1

where {un},{v.} are bounded sequences in C' and {an}, {Bn}, {¥n}, {eh}{Gn}
and {v;} are sequences in [0,1] such that an + B+ =1 = af, + 85 + 7
and 0 < & < @, fBn, o, Bh < f < 1. Tt is prove that if 300, kn < 0o and T
is completely continuous and uniformly L—Lipschitzian, {z,} strongly converges
to some fixed point 2* € F(T). ‘

~ keywords: Asymptotically quasi-nonexpansive nonself-maps; Completely con-

tinuous; nonexpansive retraction; uniformly convex

1. INTRODUCTION

Let C be a subset of normed space X, and let T be a self-mapping on C.

T is said to be nonezpansive provided |[Tz — Ty|| < ||z — y|| for all z,y € C;

T is called asymptotically nonezpansive if there exists a sequence {k,} in [0, 00)

with limp_ .00 kn = 0 such that for each z,y € C and n > 1, ||T"z — T"y|| <
A Corresponding author.

" Email addresses: Somyotp@nu.ac.th(Somyot Plubtieng) and Rabian@nu.ac.th.
. (Rabian Wangkeeree).
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2 S. PLUBTIENG AND R. WANGKEEREE

(1 +kn)|lz — yll. T is said to be an asymptotically quasi-nonexpansive, if there exists
a sequence {kn} in [0, 00) with lim,_ .0 kn, = 0 such that

(1.1) |T"z — z*|} < (1 + kn)||lz — z*||,Vz € C,z* € F(T),

for all n > 1, (F(I') denotes the set of fixed points of T ie. F(T)={z € C: Tz =
z}). T is said to be an uniformly L-Lipschitzian, if there exists a constant L > 0
such that for each z,y € C, ||[T"z - T"y|| < L|lz - y||, Yn > 1.

From the above definitions, it follows that if F(T') is nonempty then, nonex-
pansive mapping must be quasi-nonexpansive and an asymptotically nonexpansive

mapping must be asymptotically quasi-nonexpansive. But the converse does not
hold.

The concept of asymptotically nonexpansiveness was introduced by Goebel and
Kirk [6] in 1972. The iterative approximation problems for nonexpansive mapping
asymptotically nonexpansive mapping and asymptotically quasi-nonexpansive map-
ping were studied extensively by Browder [1, 2], Goebel and Kirk {6},Ghosh and
Debnath[7] and Liuf9, 10, 11].

In 1991 J. Schu introduced a modified Mann iteration process to approxi-
mate fixed point of asymptotically nonexpansive self-mappings defined on nonempty
closed convex and bounded subsets of Hilbert space H. More precisely, he proved
the following theorem: '

Theorem JS[12]. Let H be a Hilbert spaces, C closed convez bounded nonempty
subset of H. LetT : C — C be completely continuous asymptotically nonexpansive
mapping with sequence {kn} C [0,00) such that 3 oo, (k2 + 2ks) < co. Let {an} be
a sequence in [0, 1] satisfying the condition e < an £ 1 —¢,Vn 2 1 and for some

€ > 0. Then the sequence {z,} generated form arbitrary =, € C, by
(1.2) Tne1 = (1 —ap)on + 0T a,,n 2 1,
converges strongly to some fixed point of T.

Recently, Chidume, Ofoedu and Zegeyel4] have introduced the class of asymp-
totically nonexpansive nonself-maps and proved demiclosed principle for such maps.
Moreover, they proved the strong and weak convergence theorems of a Mann itera-
tion process for asymptotically nonexpansive nonself-mappings.

It is our purpose in this paper first to introduce the class of asymptotically
quasi-nonexpansive nonself-mappings. Moreover, we prove the strong convergence
theorem of an Ishikawa iteration sequence with error members for such maps. Our
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theorem improve and generalized important related results of Chidume, Ofoedu,
and Zegeye[4], and Liu[9)].

2. PRELIMINARIES

For the sake of convenience, we first recall some definitions and conclusions.

Definition 2.1 (see [6]). A Banach space X is said to be uniformly convez if the
modulus of convexity of X
. T4y
x(9) =inf{1 - XU oy =y = 1z gl = ) >0
for all 0 < € < 2(i.e., dx(¢) is a function (0,2] — (0, 1)).

A subset C of X is called retract of X if there exists a continuous mapping
P : X — C such that Pz = z for all ¢ € C. Every closed convex subset of a
uniformly convex Banach space is a retract. A mapping P : X — C is called
retraction if P2 = P. It follows that if a mapping P is a traction, then Py = y for 7
all ¥ in the range of P.

Definition 2.2 (see [4]). Let X be a real normed linear space, C' a nonempty
subset of X. Let P : X — C be the nonexpansive retraction of X onto C. A map
T : C — X is said to be asymplotically nonezpansive if there exists a sequence
{kn} in [0, 00) with lim,—, kn = 0 such that the following inequality holds:

(2.1) |T(PT)" "tz — T(PTY* 'y|| £ (1 +kn)llz ~ yll;Vz,y € C,n > 1.

T is called uniformly L-Lipschitzian if there exists a constant L > 0 such that:

(2.2) |IT(PTY* 'z — T(PT)*'y|| < L)z — y{;Vz,y € C,n > 1.

Theorem 2.3 ([4, Theorem 3.7]). Let X be a real uniformly convex Banach space, C
closed conver nonempty subset of X. Let T : C — X be completely continuous and
asymptotically nonezpansive map with sequence {kn} C [0, 00) such that 3 oo, (k2 +
2kn) < 00 and F(T) # 0. Let {an} C (0,1) be the such thate < 1—ay, < 1—¢,Vn > 1
and some € > 0. From arbitrary x; € C, define the sequence {z,} by

(2.3) Tnt1 = P((1 — ap)zn + anT(PT)* z,),n > 1.
Then {z,} converges strongly to some fized point of T.
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We shall make use of the following lemmas.

Lemma 2.4 ([9. Lemma 2]). Let the nonnegative real number sequences {an}, {bn}
and {c,} satisfy that

o0 o0
tns1 < (1 +bn)ay +cp,Vn = 1,2,---,257. < oo,zcn < co.
n=1 n=1

Then
(1) imp o an exists;

(2) If liminf, oo an = 0, then lim, ., a, =0.

Lemma 2.5 ([12], J. Schu’s Lemma ). Let X be a real uniformly conver Benach
space, 0 < @ < tn £ B < 1,2n,yn € X, limsup,__ ||zo| < a,limsup, o |[yn]l <
a, and liMy o [[tnZn + (1 — tn)yn|| = 6,0 2 0. Then limp—o0 ||z — ya|| = 0.

3. MAIN RESULTS

In this section, we give new definitions and prove our main theorems.

Definition 3.1. Let C be a nonempty subset of a Banach space X. A mapping
T : C — X is said to be asymptotically quasi-nonerpansive nonself-map if there
exists a sequence {ky} in [0, 00) with imp.,o kn = 0 such that:

(3.1) IT(PTY" 'z — z*|| < (1 + kn)l|z — =*||; Yz € C,2* € F(T),n > 1,
where P i3 a nonexpansive retraction of X onto C.

Remark 3.2. If T is a self-map, then PT =T, so that (3.1) coincide with (1.1).

Let C be a nonempty closed convex subset of a real uniformly convex Banach
space X. The following iteration process is studied:

1 €Czpy1 = P (a’nxn + ﬁnT(PT)“—lyn + ’}’nun) s
(3.2) Yo = P(&@n+B,T(PT)" 'z, + v,vn)

where {un},{va} are bounded sequences in C and {a,}, {Bn}, {W}, {cL}{G,} and
{7,.} are sequences in {0, 1] and P is a nonexpansive retraction of X onto C.

The following lemma is crucial in proving the main Theorem.

Lemma 3.3. Let X be a real uniformly conver Banach space, C a nonempty closed
conver subset of X. Let T : C — X be an asymptotically guasi-nonerpansive
nonself-mapping of C with sequence {kn} in [0,00) such that > o>, kn < o0 and
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F(T)# 0. Letz, € C and {an}, {Bn}: {1}, {ch}. {8} and {7,} are sequences in
[0,1] such that ap + Bn+ T =1 =ap, + B + 70, Dgey Yo < 00 and 372 4 < 0.
Then the sequence {z,} defined by (3.2) satisfies the following:

(1) For eachz* € F(T} and for eachn > 1, we have | Tps1—2*| < (14kn)?|zn—
z*|| + dn, where {dn} is a nonnegative sequence with 3 o> | dn < oo.

(2) For each m > 1, there exists a constant K > 0 such that ||Zpm — z¥|| <
Klzn —z*| + K 3252, dj;Va* € F(T),n > 1.

Proof. Let z* € F(T) and M = supp>1{llun — &*[| V [lvn — z*[|}. Then, for each
n > 1, we have

lznsr = z*|| = HP (anzn + BaT(PT)" 'yn + Ynun) — Pz
< Nanza + BaT(PT)" 'yn + Yattn — 2|
< agllzn — &l + Ball T(PT)*yn — 2*|| + mllun — 2|
(3.3) < anllzn — 27| 4 Ball + ka)llyn — 2*| + M
and
lyn —z*l = (P (hzn + BrT(PTY ‘2o + vpva) — Pz”||
< lanmn + BrT(PT)" 20 + Ypvn — z*|
< apllzn — 2%\ + BRI T(PTY "y — z*|| + Yy lva — 27|
(3.4) < apllzn = 2 + Bp(l + ka)llzn — 2| + 4, M.

Substituting (3.4) into (3.3), it can be t;btained that

IA

anllzn — 2| + Brcy (1 + kn)llzn — 2|

BBl + kn)?llzn — °| + Ball + kn) ¥ M + My,

anllzn — 2*|| + (1 = an)al, (1 4 ka)?||2n — 27|

(1 — an)B(1 + kn)?[lzn — =*|| + dn

onllzn — 2*|| + (1 — an)(1 + kn)* (o, + Bp) |70 — 2*|| + dn
|z — 2°(| + (1 = an)(1 + kn)?llzn — 2*|| + dn

Qn||zn — || + (1 — an + 2kn + K2)||zp — Z°| + dn

(14 2k, + k2)||zn — z*|| + dn

(1 + kn)?flzn — 2*(| 4+ dn

||$n+1 ~z*|

A+

oA A I+

i

where d, = (1 + kn)¥,M + M~,. Since 302 kn < oo and 300 | 7, < 0o, we have
o2 1dn < 0.
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We now to prove (2). Notice that when z > 0,1 + = < €®. For any z* € F(T),
it follows from (1) that
IZn4m —2* | < (14 kntm-1)?[[Zntm-1 — 2°[| + dnym-1
e2knm-1 |Zn4+m—1 — Z*[| + dagm-1

ez(kn+m—1+kn+m—2)"mn_[_m_z__ ﬂ;*" + ean+m—1dn+m_2 + dn-{-m—l

IN

n+4m-1

ST K g, — o]+ SRR Y g
j=n

1A

oo
b oy — ot + TN Y4
=1

IA

oo
< Kl|zp—2*| + KZdJ—,Vn >1,
i=1

where K = e2&i=1% 5 @, Thus,

oo
|Zntm — 2*|| € Kllzn ~ 2| + K> dj,¥n,m > 1,z* € F(T).
j=1

This completes the proof of (2). 0

We now to prove the following theorems.

Theorem 3.4. Let X be a real uniformly convéz Banach space, C' a nonempty closed
convez subset of X. Let T : C — X be an asymptotically quasi-nonezpansive
nonself-mapping of C' with sequence {kn} in [0,00) such that 3 o>, kn < oo and
F(T)#0. Let z; € C, {an}, {Bn} {1}, {0L}, {8} and {7} be sequences in [0,1]
such that On + B+ =1 =0 + 8, + T 2ope T <00 and oo, 15 < 00. Then
the sequence {x,} defined by (3.2) strongly converges to a fized point of T if and
only if liminf, . d(zn, F(T)) = 0, where d(z, F(T)) denote the distance of z to

the set F(T), i.e., d(z, F(T)) = infyc p(ry d(z, ).
Proof. The necessity of the conditions is obvicus. Thus we will only prove the
sufficiency. For any z* € F(T), from (3.2), it follows by Lemma 3.3 that

[Zn1 — 2| € (1 + kn)?l|lzn — 2*| + dn, ¥n > 1.

This implies that d(zni1, F(T)) < (1 + kn)?d(zq, F(T)) + dn. From Lemma 2.4,
we have limp__,o0 d(n, F(T)) = 0. Hereafter, we will prove that {z,} is a Cauchy

- oo o e e e am w
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sequence. From Lemma 3.3, there exists a constant K > 0 such that

o0
(3.5) |Zntm — z*|| € K||l2n —*|| + K Zdj,Vn,m > 1.
i=1

Let ¢ > 0. Since limp—co d(zn, F(T)) = 0, there exists a natural number N; such
that for each n > N;

oo
€ €
d(ﬂ,‘ﬂ,F(T)) < ﬁ and kiﬂdk < G_K

In particular, we have d(zn,, ) < 5%. This implies that there exists a point 3’ €
F(T) such that

€
lzan, — ¥l < K

It follows, from (3.5), that when n,m = Ny,

o0
[Zntm—Zall < lemin—~¥ | +Iza =¥ < Kllow, -y |+ Klzm, - ¢ | +2K Y d; <e.
Jj=1
This implies that {z,} is a Cauchy sequence. Because the space is complete, the
sequence {z,} is convergent. Let lim, ., z, = y. Moreover, we note that

dly, F(T)) < d(zs, F(T)) + "wn —yll,¥n > 1.

Since limp .o d(zn, F(T)) = 0 and the set F(T") is closed, we have y € F(T), i.e.
y is a fixed point of T. This complete the proof. a

Corollary 3.5. Suppose that condition are as same as in Theorem 3.4. Then the
sequence {T,} generated by (3.2) converges to a fized point of T if and only if there
erists o subsequence {zn, } of {zn} which converges to y.

Theorem 3.6. Let X be a real uniformly convex Banach space, C a nonempty closed
conver subset of X. Let T : C — X be an uniformly L-Lipschitzian completely con-
tinuous and asymplotically quasi-nonezpansive nonself-mapping of C with sequence
{kn} in |0,00) such that 3 .2 kn < o0 and F(T) # 0. Let ;3 € C,{an},{fn}
{}, {al}, {8} and {~,} be sequences in {0,1] such that 0 < & < &y, Bn, 05, By <
B<lLtn+Bntrm=1=0L+08+7 YaeiTn <00 and > oo vh < 0o Then the
sequence {z,} defined by (3.2) strongly converges to a fixed point in of T.

Proof. Let z* € F(T). From Lemma 3.3, we have

|zne: —2*| £ (1 + kn)2”xn —2*|| +dp,Vn > 1.
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Since 3 ro, kn < ocand 3 .2 ; dy, < 00, it follows by Lemma 2.4 that lim,, 0 || 2, —
z*|| exists. Let lim, oo fjn — p|| = c for some ¢ > 0. From the proof of Lemma
3.3, we have that

lgn ~ 2"l < (14 En)llzn = 2" + Vpllvn — 27|

Taking limsup,,_,, in both sides, we obtain

limsup (lyn — 2*|| < limsup ||z, — z*| = lim [z, —z*|| =c.
n—o0 n——00 n—+oo

Note that

limsup | T(PT)" 'yn — 2*|| < limsup |y —&*|| < lim [fz, —a*|| =c.
n-—oo n-—0oo

T =emb OO

and, by (3.4), we have

c= lim |zpp —2*|| € lm |eqz+ ﬁnT(PT)"_lyn + Yntp — ¥
n—0od N O

Hence

= lm_llonl(@n — %) + 57 (un — 2]

+ Bal(T(PT)" y, — z*) + -2%—( — )|

< lim apllzy — 2]+ lim G.||T(PT)"* 1y, — |

N300 n—+00
< lm opflen —2*+ lim G,(1+ kn)llyn — 2¥|

n—oea n——00
= tim (anlzn - "1+ Ball + ka)lvm — 2°I)
< lm (onllzn — 2] + Ball + kn)*2n — 27|

+ YaBn(1 + kn)lvn — 2*[)

< lim (oa(l+kn)flon — 2 + (1 = an)(1 + kn)?|lza ~ 2" )
< lim (14 ko)), — 2% = c.

N——00

e=lim Jlanfen — 2* + o (un — 2)] + BulT(PT)" yo — 5" + - (un — 2|

2&11 Zﬁﬂ

By J. Schu’s Lemma, we have

i (2 — TPTY =t 4 (T2 oy oy
nl—H-{loo "xn T(PT) Yn + (2(111 Qﬁn)(un T )“ 0.

Since limn o0 {75 — 55-)(un — 2*)|| = 0. Then

(3.6)

2aen

lim ||zn — T(PT)" 1y, = 0.
n—oo

It@ follows that

(3.7)

Zn+1 — Zall € anllzn — T(PT)* yn|| — 0 as n — oo.
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On the other hand, we obtain that

”mn+1 —z|

IA

IA

+ Bn(1 + knllyn — [} + wllun — z*(|

1A

an||Zn — T(PT)n_lyn" +an(l + kn)||ya — z*||

+Ba(1 + kn)llyn — ¥ + allun — 27

IA

+ Ba(l + kn)||lyn — =*|| + wallun — z*||
< anllzn = TPT)" Yyull + (1 + k) llvn — || + Yallun — |-

Since limy, o0 |72 — T(PT)* Lyl = 0 = limp —.o0 Y, it follows that

c= lim ||z, —z"| < liminf |lyn — z*||.
—0o0 i—00

Hence

¢ < liminf iy, — 2*|| < limsup fjyn — 2*|| < ¢,
n—c0 n—soo

and so

lim |lyn — 2" =c.
n—0o0

This implies that

c= lim |yo—z*|| <
—00

lim
n Tt 0

= lim e (zn — * +

n

!
2ax,

(vn — 7))

+ B [T(PTY 'z — 2" + T (vn —z*)]

IN A IA

IA

Then
Tn

20,

c=_lim |oj[zn—2"+
By J. Schu’s Lemma, we have

lim ||lzn — T(PTY* 'z, + (
n—o0

n_

!
2af,

(tn — )] + BLT(PTY "2 — z* + T2

Tn
264,

26,

26,

)(wn — ") = 0.

lan(@n = ) + Ba(T(PT)" 'y — 2*) + Yn(un — *))|
onf[Tn = || + Br(l + kaMllyn — 2" + nllun — 2*||
o || Tn — T(PT)H—lyn” + an”T(PT)n_lyn —z*|l

anl|zn — T(PT)™ 'yal + (1~ Ba) (1 + kn)llyn — =°||

log@n + BpT(PT)™  zn + ypon — z*||

im o lza ||+ lim B T(PT)" "z, — a*|
Jim ofllen -2l + lim B(1+ kn)lzn - o'

tim_(@hllzn — 2"l + (1 — ep)(1+ ka)llzn ~ ")
lim (14 k)llan — 27| = c.

(va — z)li-
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Since Hmp—g0 II(%‘%‘- - 2—};2\-)(1),, — z*)|| = 0, it follows that
(3.8) lim ||zg — T(PT)" 'z,|| = 0.
=00
We now to show that limy .0 [|Zn — T'2n|| = 0. First, we note that
on = T(PTY %all < llzn ~ Zasll + fonos = T(PT)" 2
+ || T(PTY* 2zy-q - T(PT)" 2z,
l&n = Zn—1ll + &1 — T(PT)" " 2zp_1}j + Ll|zn—y — 24|

— 0 as n— 0o

IA

Thus from above inequality, we have
len = Taall < flon = T(PT)*zall + [ T(PT) n — Tanl|
lzn = T(PT)* 2]} + |T(PT) " (PT)"zn — T(PT)'n]
llzn = T(PTY*'aa|| + LIIPT(PT)* n — z,||
[2n ~ T(PT)* 1z, + LIT(PTY* 22, — 2} — 0 85 n — 00,

N

IA

It implies that
(3.9) ﬂlﬂanm |Zn — Tzq| = 0.

We note from Lemma 3.3 that {z,} is bounded. Since T is completely continuous,
it follows that there exists a subsequence {T'z,,} of {T'z,} such that Tz, — z*
as k — co. Moreover, by (3.9), we have ||Tz,, — Z,, ] — 0 which implies that
Tp, — =* a5 k — 00. By (3.9} again, we have

lz* — T=*|| = klim Zn, — Tn, || = 0.
—00

It show that z* € F(T). Furthermore, since limn_.o ||2n — *| exists. Therefore
limy oo f|#n — z*|| = 0. This complete the proof. O

Acknowledgement, The authors would like to thanks The Thailand Research
Fund for financial support. '
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Abstract. Let (12, Z) be a measurable space, X a Banach space, C' a weakly compact
convex subset of X and T : @ x C — C a random operator. We prove the random
version of a deterministic fixed point theorem when T is uniformly Lipschitzian mapping
such that ¢(T(w, )} < VWCS(X) for ail w € f? and T is asymptotically regular on C.
Let WCS(X) be the wakly convergent sequence coefficient of X and k,,(X) its Lifschitz
characteristic. If T" is asymptotically regular and there exists a constant ¢ such that

14 1+ 4WCS(X)(k, (X) -1

G(T(w" )) Le< 9 1

we prove that T has a random fixed point.
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1 Introduction

The study of random fixed point theorems was initiated by the Prague school of probability in the
1950s. Random operator theory is needed for the study of various classes of random equations (see
'[8] and references therein). Random fixed point theory has received much attention for the last two
decades becanse of its importance in probabilistic functional analysis; the reader is referred to Beg
fand Shahzad |2], Shahzad and Latif [10] end Tan and Yaun [I1]. Generalizations of the random
ifixed point theorems for continuous selfmaps to the case of non-selfmaps have been considered by
‘many authors (see e.g. Beget al. [2], and Shahzad and Latif [10}). On the other hand, the first fixed
Eipcr'mt theorem for uniformly Lipschitzian mapping in Banach spaces was given by Goebel and Kirk
1[7] who state a relationship between the existence of fixed point for uniformly Lipschitzian mappings
and clarkson modulus of convexity. Recently, Benavides and Xu [6] link the coefficients w,(X) and
WCS(X) to fixed points of uniformly Lipschitzian mappings. Letter, Benavides [3] was improved a
result in [6] and given a class of spaces X whose &, {(X) < WCS(X).

‘ The main goal of this paper is {o establish some randomn fixed point theorems for Uniformly
Lipschitzian and asymptotically regular operator. Firstly, we will prove the random fixed point
[thecarems for nonlinear uniformly Lipschitzian mappings in Banach spaces. Moreover, we also stat
.,the random version of a fixed point of a fixed point result based on the Lifshitz’s constant of a
Banach space due to Dominguez Benavides [3].

2 Preliminaries and notations

‘Through this paper we will consider a measurable spaces (£, Z) (where ¥ is a o —algebra of subset !
of ) and (X, d) will be a metric spaces. We denote by CL{X)(resp.CB(X), KC(X}) the family of
jia]l nonempiy closed (resp. closed bounded, compact) subset of X, and by H the Hausdorff metric
on CB(X) induced by d, i.e.,

H{A, B) = max {d(a, Blac4.d{b, A)pecp}

for A, B € CB(X), where d(z, E) = inf{d(z,y)]y € E} iz the distance from z to E C X

A sct-valued operator T ; 2 — 2% is call (T)— measurable if, for any open subset B of X,
T YBY:={we: Tw)NB # 8}

belongs to L. A mapping = : & — X is said to be a measurable selector of a measurable set-valued
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operator T : @ — 2% if z(-) is measurable and z(w) € T(w) for all w € Q. Let M be & nonempty

closed subset of X. An operator T : 2 x M — 2% is call a random operator if, for each fixed z € M,

the operator T{-,z) : ¢ — 2% is measurable. We will denote by F(w) the fixed point set of T(w, -,

Le., )
Flw):={reM:zeT(wz)}.

Note that if we do not assume the existence of fixed point for the deterministic mapping 7'(w, ) :
M — 2% F(w) may be empty. A measurable operator £: Q — M is said to be a random fized point
of a operator T : Q1 x M — 2% if £(w) € T{w, x{w)) for all w € . Recall that T: ¥ x M — 2X is
continuous if, for each fixed w € €, the operator T': (Q2,.) — 2% is continuous.

Let C be a closed bounded convex subset of a Banach spaces X. A random operator T : 2 xC —
C is said to be nonezpansive if, for fixed w € Q the map T : (w.:) — C is nonexpansive. We will
say that T is uniformly Lipschitzian if there exists a function & : §8 — [1, 4+oc) such that

17" {w, ) — TH(w, p)l| < KwHlx -yl

for all z,y € C and for each integer n > 1. Here T™(w, z) is the valued at z of the nth iterate of the
map T{w, -). We will say that T is asymptotically nonezpansive if there exists a sequence of function
ky : €1 = [1, +o00) such that for each fixed w € 9, lim, o, kn{w) =1 and

177w, ®) = T™(w, p)l| < Kn(w)llz = ol

for all 2,y € C' and integer n = 1. The nonexpansive random map T is called asymptotically regular
if for each i € K,

Jim T e, ) = T (w, @)l = 0
for each w € 2.

Now recall the weakly convergent sequence coefficient WCS(X) [6] of X is defined by

A{{zn .
WCS(X) = inf { , ({2a}) : {za} is & weakly convergent sequence
mfyec'o{a:n} hmsuPn-—-w HE“ - y”

which is not norm—convergent}.

where A{{z,}) = limsup,_,{|lzi — ;|| : £.J = n} is the asymptotic diameter of {x,}. We will
use next relationship between the asymptotically center of a sequence and the characteristic of
convexity of the space. Let C be s nonempty bounded closed subset of Banach spaces X and {z,)
bounded sequence in X, we use r(C, {£,}) and A(C, {r.}) to denote the asymptotic radius and the
asymptotic center of {x,} in C, respectively, i.e.

r(C{x.)) =inf{r(z {z.}):z€C}, where{r(z, {zn})} = limsup |z, — z||,
e
ACAza}) ={z € C:{r(z,{za})} =r(C,{za ]}
If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

(D) = inf {sup{flzc -yl :y€ D}:x € C}.
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Definition 2.1. Let {z,} and C be a nonempty bounded closed subset of Banach spaces X. Then
{xn} is called regular with respect to C if r(C,{zn}) = r(C, {z4,}) for all subsequences {za.} of
{zn}-

We are going to list several result related to the concept of measurability which will be used
repeatedly in next section.

Theorem 2.2. { ¢f. Wagner [12]). Let {X,d) te a complete separable metric spaces and F : Q —
CL(X) a measurable map. Then F has a measurable selector.

Theorem 2.3. { cf Tan and Yuan [11}). Let X be a separable metric spaces and Y a metric
spaces. If f: Q2 x X =Y is a measurable in w € §} and continwous inz € X, endifz: - X s
measurable, then f(-,£(-)}: @ > Y is measurable.

Theorem 2.4, (Benavidel, Lopez and Xu cf.[H}. Suppose C is a weakly closed nonempty separable
subset of « Banach space X, F : @ — 2% o measurable with weakly compact values, f : {1 x C — Ris
a measurable, continuous and weakly lower semicontinuous function. Then the marginal function
r: 1 = R defined by
= inf '
rw) = nf I (w,z}

and the marginal map. R: Q@ — X defined by

R{w) == {z € F(x) : flw,2) = r{w)}
are measurable.

Proposition 2.5. ( Xu cf[13]) Let M be a separahle meiric space and f : O x C — R be a
Carathéodory map, i.e., for every x € M, then the map f(.,x) : @ = R is measurable and for every
w € Q, the map f(w,): M — R is continuous. Then for any s € R, the map F; : 2 — M defined

by
Flwy={zeM: flu,r)<s, we}

ts measurable.

Let M be a bounded convex sunset of a Banach space X. We recall that the Lifschitz charac-
teristic for asymptotically regular mappings, is defined;

(i) A number & > 0 is said to have property (P,) with respect to M if there exists some a > 1
such that for all z,3 € M and r > 0 with ||z — y|| > r and each weakly convergent sequence
{€.} C M for which limsup || — z|| € ar and limsup ||, ~ y|| < br, there exists some z € M
such that liminf ||, — z|| < =

(11} (M) =sup{b > 0:b has property (F.,} w.rt. M},

(iil) #w(X) = inf{xu(m): M as above}.
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If § is a mapping from & set C into itself, then we use the symbol |S] to denote the Lipscitz
constant of S, i.e.

§Sz - &
= { It oy oo ).

For & mapping T on C, we set
o(T") = liminf |[T7}.
n—oo

Theorem 2.6. ( Dominguez Benavidel and Xu [6])Let X be a Banach spaces. Suppose also € is
o closed convex bounded subset of X and T : C — C is an esymptotically regular and uniformily
Lipschitzian mapping. Then, if 6(T) < #,(C), T has a fized point.

3 The results

The following is the random version of theorem 3.2 of Dominguez Benavides and Xu [t7].

Theorem 3.1. Let C be a nonempty weckly compect conver separable subset of ¢ Banach space
with WCS(X) > 1 and T : Q x C — C lbe o random uniformly Lipschitzian mapping such that
o(T(w,")) < VWCS(X) for ali w € Q. Suppose in addition that T is esymptotically regular on C.
Then T has a random fixed point.

Proof. Tt is easy to see that (cf. [5]),
WCS(X) =sup {M >0: M -limsup [, — Teol] < D{zn}} s
n—oo

where the supremum is taken over all weakly (not strongly) convergent sequence {z,} in X and 5
is the weak limit of {xn} and D{xa} = limsup,, ., limsup,_, . [|€n = Zm|. The separability of C
makes it possible to select a subsequence {n;} of positive integer such that

a(T{w,-)) < VyWOCS(X),

and {T™ (w, £}} converges weakly for every x € C. Choose an arbitrary zo € C end set zo(w) = =g,
this zo is obvious measurable. Now we can construct a sequence {2} of measurable function
2 - £ — C such that for each w € €2 and integer m > 1,

Zmw) =w — lim T™(w, zm-1(w))-
J—oo
Note that the asymptotic regular of T(w.-} we have

Tm{w) = w - lim 7™ (w, 2y, 1(w)), Vp >0,
-
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We now show that {zm(w)} converges strongly to foxed point of . Set for each integer m > 1,
B(w) = “mjsup IT™ (W, Zm (W) — Zmaa (W),

and
o _ Lo
WCS(X)
Then @ < 1 and by the above definition of WCS(X), for each w € £, we have

Brl®) < s PUT™ w0 o))

However, from the w-lower semicontinuous of the norm of X, it follows that

DT (w, zrmlw)}})

lim sup; limsup; [T (w, Tm (w}) = T™ (w, L (w)}|

lim sup; limsup, {|[77*™ (w, €m{w)) — T™ (w, Tm (W))]

lim sup; [77] lim sup; || T™ (w, Tm (W)} — Zem (w) |

o{T'(w, ) limsup; [T {w, Tm{w)} = Zm{w)l|

a(T{w, ) limsup; (liminf; || T (w, Zm{w)) — T™ (W, Zm-1(w))])
o(T(w, )} limsup; [T™| limsup; [£m(w) = T (W, £ -1 {w))]
fo(T(w, N)*Bra-1(w}.

HoIA A IA A

‘We, therefore conclude that

[ D g (w) < aBmos ).

Bm(w) £ WES(X)

Now using the w-lower semicontinuous of the norm of X again, we deduce that

limsup; |[#m(w) = T {w, 2 (w)}] + limsup; [T (w, T (W) — T (W)
limsup; limsup; [T {(w, Zm—1(w)) — T"*(w, Lm (W))i| + Bm(w)

limsup; |T™| limsup; |77 (W, Trm-1(w)) — T ()] + Bmlw)

o(T(w, ))Bm—1(w) + Bm(w).

|z {w) — xm-’rl(w)"

A A A

This implies that {zm(w)} is Cauchy sequence for each w € . For any w € £, let z(w) = limzy, (w).
We will that z(w) is a random fixed point of T. Indeed, for each § > 1 we have

ho@w) — T {w, 2wl £ |l#(w) - Tmpr @ + |Fmr1{w) = T (w, 2m (W)
+”Tn, (wa xm(w)) -T™ (w’ x(w))]]
N=(w) — zmtr (@)l + |2ms1(w) — T™ (@, Em (@) + |T7][|2m (W) — (W)l

1A

Taking the upper limit as 7 — oo yields

1imJ§:‘UP ll{w) = T {w. 2@ < fz(w) = Bmpr{@)ll + Bm(w) + o(Tw, - P£m (w) — z(w)ll

which implies T (w, z(w))} — z(w) — & as m — oo0. Since T(w,*) is continuous and asymptotic
regular, it follows that z{w} = T(w, z{w)). Observe that z(w) is the limit of measurable mappings,
so it is measurable. Hence z{w) is a random fixed point of T. This completes the proof. (W
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Theorem 3.2. Let X be a reflezive Banach space, C be a nonempty bounded convez separable subset

of X end T : Q2 x C — C be a random asymptotically regular operator. If there exist ¢ constant

c € R such that

o(T(w,)) < e < 1+ /1 +4WC‘.§(X)(KW(X) ~1)

Jor allw € Q2 then T has a random fixed point.

Proof. Denote W = WCS(X) and r, = k,{X). According to the stochastic version of Banach’s
A contraction principle [1], we only need to prove the result if (1+ /1 + dWCS(X)(kw(X) — 1))/2 > 1.
- Then we can assume that ¢ > 1. Furthermore, since k, < W (see Lemma 2 [3]) we have

14 /T+4W (s, = 1) <w
2

Hence ¢ < W. On the other hand, the condition ¢ < I + /1 + 4W(k, —1)/2 is equivalent to

e(c—1) < W{(ko —1). choose b < x, such that ¢{c~1) < W(b—1). We shall consider a fixed element

g € C, and for every w € Q define

R{w,zg) = inf{lin":_‘ianT"(w,y) —xzo| : v € C}.

We start by proving that R(-, zo) is a measurable function. Set for eachw € , flw, y) = limin{, |T{w,y)-

agl]. We can apply Theerem 2.3 ta deduce that f(-.y) is measurable for each v € C. Since C is a

separable subset of X, it follows that there exists & countable dens subset {y,} of C. Therefore for

each w € §2 we have

R(w,zo) = inf flw,yn),
n>l

which implies that R(-,y) is measurable. Take £ > 0 such that (1 +¢)/a 1= a < 1. Set Glw) =
o {y e C: [(w,y) < R(w,ro)(1 +£)}. It is clear that G{w) is a nonempty subset C and since f(w,)
is continuous in C, it follows from Proposition 2.5 that G{-) is measurable. Hence, by Theorem 2.2,

we can find & measurable selector y(w) of G(w), which verifies
]imninf N7 (w, y(w)) ~ woll < Rlw,xa)(1 + €).

Choose a sequence {n;.} of positive integer such that ¢(T'(w, )} = lmg g {T™*{w. )| and set Ly (w) =
[T™ (w.-}| for all w € §2. Consider in § the partition given by the set:

W R(w, 1
Q, = {w € 0 sup o ~ T (w,zo)| < W T 2)( “)}
k

and

WR(w,:
fa = {“’ € 022 supllzo — T (w, z0)} > M_)} .
k

ca

It is easy to prove that both set are measurable. Assume that ©; # @, and fix w € §;. We can
choose a subsequence {n} of ni such that

lim |lz0 ~ T (w, o)} = limsup flzo — T (w, %)l
v k
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and T (w, z(w))}} converges weakly to a point, say z(w). Since " is asymptotically regula, it follows
that

lin |77 *™ (w20} = T (w, 2, )| = 0
for any fixed m. Thus, we have

limsup,, limsupy, |77 (w, 20} — T7¢ (w,xp)ll < limsup, limsupy, Ly (w)||T™ {w, £o) — zol|
W R{w,zo)(1 + &)

fA

lim sup Ly (w)

W R(w, )1 +e)
a

i

Since € is weakly compact set. Define a function E : £, — 2€ by
E(w) := {z € C : limsup |[T™ (w, z0) ~ z|| < D({T“k'})/W}
K

is measurable in 2;, where P{{T™}} = limsup, limsup,, || T"(w, zg) — T™(w,zp)i- It follows from
Proposition 2.5 that E{w) is measurable in ;. It follow from Theorem 2.2 that there exists a
measurable selector. Take 2y : £ — € a measurable selector of E(}. By Theorem 1 in [3] we know
that

W = inf { lims%p" limsup,, [|Tn — Tml| } ‘
limsup,, [[£r — #eoll

where the infimum is taken over all weakly {not strong) converging sequences {xn} and zo =
w — limz,. Then, the above form of W gives

R(w, 1
limsup ||z1(w) — T™ (w, xo)|| < ______(w Ioz( +€)
kl‘

which implies
Blw, zg)(1 +£)

@ .
and so R{w, z;(w)) < i‘—*'ﬂ%f—’-'ﬂ’l = aR(w, z¢). Furthermore from the weakly-lower semicontinuous
of the norm we have ||z1{w) ~ zal| < llza(w) - 2(w)]l + llz(w) — zoll. This implies that

limk'mf 21 (w) = T™*{w,wo)]| <

llzi{w) ~ zoll < liminfe f|z;(w) — T (w,z(w))| + liminfe |T™ (w, 2(w)) — Zoll
< Rlwmw)+ LR re) |
S o) + @ I = (1 + )R )

Now, assurne that 22 # @, In this case, for w € §2, there exists ¢ € N such that |lzg — T™{w, zo)|| >
W R{w, g)(1 +£)fea and e(Li{w)—1) < W(%—l). [fo(T(w, )} > 1, then we can assurme that Li(w) >
1. Choose y € C such that lim infy, | zo—T™*(w, ¥} < R(w,Te)(1+¢) and a subsequence{T™* (w, y}}
of {T™(w,y)} such that liminfk fjoo — T™(w,y)ll = limg: flzog — T™ (w, ¥)|| and {T™ (w,y)} is
converges weakly to a point, say v(w). Using again the asymptotic regularity of T we obtain

limsupy [ T7(w, z0) = T (w, gl < Li(w) lmsupy [T (w,3) = zoll
Lif{w) im inf |7 (w, v) — 2ol
Li{w)R{w, zp)(1 + €)

Al
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Choose A € [0,1] such that ¢ < A < (% =~ 1)/(Lilw) = 1) if Li{w) > 1 or A =1 otherwise. Then

limsup,, [T (w,y) — AT (w, %) — (1 = A)zo|| < limsupg A||T7 (w,y) — T™¢(w, o)
+(1 — X) limsup,, [T (w,y) — zol|

IA

BR(w, 2o)(1 + )
—

IA

Furthermore,
|0 — AT™ (w,2g) — (1 — A)zol| AlT™(w, o) — zol|

AW R(w,zo)(1 + &)

R(w,xo)?f-i- €) '

a

A\

By the condition which & satisfies there exist z(w) € C such that

lim inf [|T™ (w,y) = 2(w)] < R{w,z0)(1 +¢)
! 1

= o R{w, za).

Singe
limyinf |77 (w, ) — 2(w)|| < liminf [IT™ (w,y) - 2(w)]

we obtain R{w, z) € aR(w, 20). Therefore, from Proposition 2.5 the mapping F : 32 — 2€ given by

Flw) = {z eC: 1im:,up 1T (w, y(w)) — z(w)| < aR{w, :Eg)}

is measurable. Thus it admit a measurable selector 29 : 2z — € which satisfies R{w, z3(w)) <
aR(w, zg). Hence by the weakly lower semicontinuous of the function norm, we have ||zg — z2(w)| =
lzo — v{w)|| + Jlv{w} — z2{w)||. This implies that

lzo — z2(w)|| < liminfe flzg — 77 {w, plw))]] + lrilﬁ.i‘nfka |]T’"=‘ (w, y(w)) — za{w)||
lim nf |70 — T (w, y(w)) | + limsupy, | 7™ (w, y()) - 22()
(1 +€)R{w,z0) + aR(w,xp) = (1 + £ + a}R{w, zq).

IA 1A

consider z : § — C given by z{w) = z1{w) f w € O and 2(w) = z{w) if w € Q. Clearly z()is a
messurable function. Choose an arbitrary zg € C and set zp{w) = zo. We defined z1{w) = z(w) as
above and then we can inductively construct a sequence {z,(w)} of measurable functions &, : 2 —
C such that for each w € ) we have

Blw, tm(w)) € aR(w, tm_1(w)) £ ... £ o™ R{w, sp(w)).

We shall prove that {Zm(w)} is a Cauchy sequence. Indeed, if M = max{l + ¢ + o, a(1 + & }} we
have )
vl — Ema1 (W)l € ME{w, £n(w)) < Ma™R(w, £o(w)).

Thus {im(w)} converges to some z{w) € C. It is readily see that R{w,x(w)) = 0 for every w € 2
which implies that z(w) is a random fixed point of 7. Indeed, if R{w,z{w)) =0 forany e > O,we
there exist y(w) € C such that

lirnkinf Hx(w) — T (w, y(w))|| € £.

AL (w)R{w, <o)(L + ) + (1 = A)R{w, o)1 + &)
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Take a subsequence {T"* (w, y(w))} of {T™(w, y(w))} such that

liminf [lo(w) — T (w, y(@)I = tim lz(w) - T (w, (@)l
By assumption there exists a positive integer m such that |[T™{w,-)| < oc. Then

limsup lz(w) — T4 (w, y(W))|| = limsup lz(w) — T (w, y(W)I| < e.

Thus

lle(w) = T (w, z(w)) |l

(14 Ln{w)) liminfg {z(w) ~ T™* {w, ylw)]
{1+ Lypf{w)le =0, asse — 0,

IA I IA BA

vielding for each w € , T™(w,z{w)) — x{w) and thus z(w) = T(w,z(w)) by the continuity and
asymptotic regularity of T(w, -}. This completes the proof. ]

Acknowledgement. The second anthor would like to thanks The Thailand Research Fund for
financial support.
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Abstract

In this paper, we are concerned with the study of an iterative scheme
with error for a finite family of nonexpansive mappings. Weak and strong
convergence theorems are established for a multi-step iterative scheme for
a finite family of nonexpansive mappings in Banach spaces. The results
obtained in this paper extend and improve the recent ones announced by
Khan and Fukhar-ud-din, Takahashi and Tamura, and many others.

1. Introduction

Let C be a subset of real normed linear space X, and let T be a self-
napping on C. T is said to be nonezpansive provided ||Tz — Ty|| < ||z — y||
for all z,y € C.

Fixed-point iteration processes for nonexpansive mapping in Banach
spaces including Mann and Ishikawa iteration processes have been studied

2000 Mathematics Subject Classification : 47H10, 47H09, 46B20
Keywords : Fixed point ; nonexpansive mappings; Uniformly convex; Opial condition.
*Supported by Thailand Research Fund
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2 Weak and strong convergence of a scheme for a finite fé.mﬂy of mappings

extensively by many others; see [5, 8, 10, 11, 15, 16]. In 1998, Xu [18] intro-
duced and studied the Mann iterative scheme with errors and Ishikawa iter-
ative scheme with errors. On the other hand, Das and Debata [4] and Taka-
hashi and Tamura [14] introduced and studied a generalization of Ishikawa
itertive schemes for a pair of nonexpansive mappings. Recently, Khan and
Fukhar-ud-din [6] extended their scheme to a modified Ishikawa iterative
schemes with errors for two mappings and gave weak and strong convergence
theorems. Inspired and motivated by these facts, a new cless of multi-step
iterative scheme for a finite family of mappings is introduced and studied in
this paper. This scheme can be viewed as an extension for a scheme with er-
rors for two mappings of Khan and Fukhar-ud-din [6]. The scheme is defined
as follows.

Let C be a nonempty subset of normed space X and let 73,75, ...,Tn be
nonexpansive mappings of C into itself. The sequence {z,} defined by

4

) =ITE O,

zl = aliz, + Bizn + Tiul,

22 = 2Tz} + PRz, + Miu,

% = o3 Tz}, + Bz + Hus, (1.1)
| 28 = 0 Tiad + iz, + Ao,

Tnyr =z = N Tzl 1+ Bz, + 4V ull \n > 1,

.

where {al}, ..., {&®}, {BL}, -, {BY} {2}, ., {727} are sequences in [0, 1] with
of +Bi+~i =1foralli=1,2,3,..,N and {ul}, {u2},..., {u]} are bounded
sequences in C.

Ty =Ty =Ty = ..=Ty:=T, then (1.1) reduces to the modified
multi-step iterative scheme with errors defined by:

( =z €(,

1t = ol Tz, + Blan + Yiuy,

2 = 3Tal + fizy + i,

25 = 03T + iy + i, (12)
| 8 = odTad + fiz, + viud,

' N N N, N
| Tn41 = Tp = T + Bl an + v un ,n 2 1,

where {al}, ..., {a¥}, {82}, - {(BY Y {i}, -, {75} are sequences in [0, 1] with
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o+ 0+, =1foralli =1,2,3,..,N and {ul}, {u2},.., {u'} are bounded
sequences in C.

For N = 2, then (1.1) reduces to the scheme with errors for two mappings
defined by Khan and Fukhar-ud-din [6]:

=z €C,
Yn = zp = 0t T1Zy + BiTn + yiul, (1.3)
Tny1 = ATzl + Bz, + v, n > 1,

where {ar}, {ol}, {8}, {67}, {m}, {73} are sequences in [0, 1] with o}, +41 +
Yo =1=02 + 32+ 72 and {ul}, {u?} are bounded sequences in C.

For N =2 and 4} = 42 =0, then (1.1) reduces to the modified Ishikawa
iterative scheme for two nonexpansive mappings defined by Das and Debata,
|[4] and Takahashi and Tamura [14]:

T =z € C,
Y 1=z} = &l T2, + (1 — al)z,, (1.4)
Top1 = aTorl +(1-al)z,, n 2> 1,

where {al},{a?} are sequences in [0,1] and {ul},{u2} are bounded se-
quences in C. :

For N=2and T} = T, = T, then (1.1) reduces to the modified Ishikawa
iterative scheme with errors defined by

ry=zx€C ‘
Y =Tt = 0hT Ty + Brzn + yhul, (1.5)
Tppr = 2Tz}l + Bz, + y2ul,n > 1,

where {o7.}, {a2}, {83}, {82}, {m}, {73} are sequences in [0, 1] with o}, + 6+
v =1=a?+ 3+ 42 and {ul},{ul} are bounded sequences in C.

The purpose of this paper is to establish several weak and strong con-
vergence results of the multi-step iterative scheme given in (1.1) for a finite
family of nonexpansive mappings. Our results extend and improve the cor-
responding ones announced by Khan and Fukhar-ud-din [6], and others.

Now, we recall the well-known concepts and results.

A Banach space X is said to satisfy Opial’s condition [ 9] if for any se-
quence {z,}in X, z, — z implies that limsup,,_,, [|zn—2| < limsup,_ ||zn—
y|l for all y € X with y # <.
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4 Weak and strong convergence of a scheme for a finite family of mappings

A mapping T : C — X is called demiclosed with repect to y € X if for
each sequence {xn} in C and each z € X, z,, — z and Tz, — y implies that
z€ X and Tz =

Lemma 1.1 (Schu [12]). Suppose that X is a uniformly convex Banach
space and 0 < p < £, < ¢ < 1 for all positive integers n. Also suppose
that {z,} and {y.} are two sequence of X such that limsup,_, [|Z.| <
7, limsup,,_ . ¥l £ 7 and lim, e ||EaZn + (1 — t3)yn|| = r hold for some
r 2> 0. Then lim,_ ||z, — ya]l = 0.

Lemma 1.2 ([15, Lemmall). Let {a,}, {bn} and {4,} be nonnegative se-
quences of real numbers satisfying the inequality

anp1 S (1 +68,)an+ by, foralln> 1.
If 82,4, < oo and ¥52,b, < o0, then
(1). limp—oo ay, exists.
(2). limp—eo @ = 0 whenever liminf,_ o a, = 0.

Lemma 1.3 (Browder (1]). Let X be a uniformly convex Banach space
and C be a nonempty closed convex subset of X. Let T be a nonexpansive
mapping of C into itself. Then I — T is demiclosed with respect to zero.

The mapping T : C — C with F(T) s ¢ , is said to satisfy condition
(A) if there exists a nondecreasing function f : [0, 00) — [0, c0) with f(0) =
0, f(r) > 0 for all r € (0, 00) such that

lz —Tz|| 2 fld(=z, F(T)))

for all z € C where d(z, F(T)) = infer(r) iz — pll- Recently, Khan and
Fukkar-ud-din {6] modified the condition (A ) for two mappings as follows:
Two mappings S,T : C — X where C a subset of X, are said to satisfy
condition {A") if there exists a nondecreasing function f : [0,00) — [0, 00)
with f(0) =0, f(r) > 0 for all r € (0, 00) such that

5 (lz = Tall + |}z = Sal)) 2 f(d(z, F)

for all z € C where d(z, F(T)) = inf{||lz — p|| : p € F(S) N F(T)}. Note
that condition (A") reduces to condition (A) when T = S. We now modify
condition for N mappings 71,75, ...,Tny : C — C as follows.

Mappings 11,75, ...,2n : C — C where C a subset of X, is said to
satisfy condition (A™) if there exists a nondecreasing function f : {0, 00) —
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[0,00) with f(0) = 0,f(r) > 0 for all r € (0,00) such that AE¥ |z —

3

Tiz|| > f(d(z,F)) for all z € C where d(z,F) = inf{ljz — z*| : z* €
F =niL,F(T;)}. Note that condition (AM) reduces to condition (A") when
N = 2, and condition (A") reduces to condition (A) when T} = T = Ty =
RS TN =T.

2. Main Theorems.

In this section, we prove and strong convergence theorems of the iterative
scheme given in (1.1) for a finite family of nonexpansive mappings in a Banach
space. In order to prove our main results, the following lemmas are needed.

Lemma 2.1. Let X be a normed space and C its nonempty bounded
convex subset of X. Let 71,75, ...,Tn be nonexpansive mappings of C into
itself. Let {z,} be the sequence defined by (1.1) with £ 7 < co for all
i€ {1,2,3,.,N}. If F=n},F(T)) # ¢, then lim, .o, ||z — p|| exists for
allp e F.

Proof. Let p € F for each n > 1, we note that
Izt — pll = lloLTizn + Baza + Yarh — ol

< apllTizn — pl| + Ballzn — Pl + wllus — 2ll

< olllzn = pll + BLllzn — 2l + Vi|luk - pll
and

=% = pll < afllz; ~ pll + B2llza — pll + 7allur — pIl. (2)

Put & = 4}|jul — p|} for all n € N. Thus ||z} — p|| < ||zn — 2|l + d° and
22, d8 < oo.

Substituting (1) and (2), we have
lz? ~ pll < diegliza — 2ll + Ballzn = pll + allur, — pl] + Ballzs — 2|
+allu’ — pl
= ajopliz. — pll + oiBl1za — pll + oivzllun — plf + Bllza — Pl
+7i Nl — ol
= (1= 8% —v)eqllzn — pll + (1 = 87 — 72)Ballzn — ol
+Billen — pll +dy,
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< Blzn — pll + (1= B2)ok1zm — pll + (1 = B2)B Il — pl +
= fallze — pll + (1 — Ba) e + Bi)l|zn — Pl + dy

< Bz —pll+ (1 - BD)lza—pll +db

= ||lzn —pll + d},

where d, = a2} |lul —p|| +~2]|u2 —p||. Since B2 4% < o0, we get £2.,dL <
0o. Similarly, we have

23 = pll < llza — pll + aidy + s — 2|
='||zn —pll + daz,
where d2 = o3d! + 3||ud — p||. So that 32,d% < oo.

By continuiting the above method, for any & = 1,2,..., N there exists a
nonnegative real sequence {d*~'} such that X2 d*- { < oo and

llzs ~ pll < llzn — pll +dp

Thus we have ||z, — p| = |z —p|| < ||z — p|| +dY-1. for all n € N.
Hence, by Lemma 1.2, limp—e0 [|Zn — p|l exists. This complete the proof. O

Lemma 2.2. Let C be a subset of uniformly convex Banach space X.
Let Ty, T3, ..., Tw be nonexpansive mappings of C into itself and {z,} be a
sequence as in (1.1) with 22,7 < co and 0 < a < o}, < B < 1 for all
n € Nand for all i = 1,2,...,N. Then lim, . ||Zizn — z4|| = 0 for all
i=1,2,.,N. .

Proof. By Lemma 2.1, we have lim,, ., ||z, — p|| exists and

lon ™! = pll < llza — pll +d3~?

n

where 52 ,dY -2 < co. Let limgoo [|[#n — pl| = ¢ > 0. This implies that

lim sup [|zn —p+a (1) —zn)l| < lim sup |2 —pl| +lim sup || (u) —za)]| < ¢
=0 N—0o

and so

lim sup ||Tsz'1—p+'yf(uf—$n)|| < limsup [|zF~ —p||+11msup ||')rn (W —z,)|| < e
n—od n—c
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We note that
¢ = liMp oo |Zns1 = Pl = limnp oo [laf Tzl ! + BY 20 + ¥Yulf — pl|
= limy oo [l Tl ! + (1 — ol )zn — ¥Y s
+ynuy = (1 —af)p — enpl|
= limpoo [ Tvzf ™ — o p— ol oy 2o+ v
+H{1—of )zn— (1= ) p—AN Tty ul) —al Y ul)
o TN 2|
= limp oo o (Twvzh = — p+ 4 (ul) ~ zn))
+(1 — o Wzn — p+ ¥ (ull — z.))]
By Lemma 1.1, we have

lim || Tz ™! — z,]| = 0.
n—00

Note that
”xﬂ- - p“ < ”xﬂ - TN$£71I| + ”TN:Bf'"l —_ p”

< | zn — Tnvzd Y| + |lzN¥ - — p]|, for all n € N.

Then
c¢= lim ||z, — p|| < liminf ”3:11:,—1 -,
B n—00 n=—o0Q
and hence
¢ < liminf ||z}~ — p|| < limsup ||z}~ - p| < c.
n—o0

This implies that lim, e [z~ —plf = ¢
Again, by the proof of Lemma 2.1, we have

28~ — pll < |lzn — pll +dn~ for alln > 1.
Hence limsup,,_,, [|z¥~2 — p|| < ¢, and so
Hmsup, e | Tn-12% "2 — pl| < limsup,_, lz8 % —pll < c.

Thus, we have limy, .co ||zn —p+ 7Yl — z,)|| € c and

limsup, _o |Tn-12¥ 2 —p+ i (ul — )| < c



%

¥

8 Weak and strong convergence of a scheme for a finite family of mappings

Moreover, we note that

¢ = im0 |2V — Pl = limpoos flof Tv—1zl =2 + BN 1z, 4+ 2
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-1 N 1 p"

= limp oo || TNz 2 + (1 — ¥ Dz, — vV 2,
+ya ™ = (1= o )p — o 7p||
= liMp oo o) 1 Tnzh 2 — o 1p — oV 14N-1g,

T el T+ (I—eg g — (10 T p— 7 2
+,},N -1 N— N—l,YN-—]. N— 1+O.’N l,YN“—lmn“
= limp .00 “aN l(TN xN 2 P+ N l(uful - :Cﬂ))

+(1 = af ")z —p+ 1T - z))|

Hence, by Lemma 1.1, we have

lim || Tw_1zh~
n—od

2 _z,|l=0.
Thus, we have
(20 ~ TnEnll < l|lzn — Tzl + | Tval =" — Tnaa|
< o=t = aall + llzn — Tnal =l
< o™ + B + )20 = (0T Tz~ + B
"y O+ [lze — Tz 7

< o Mz =Thvaazy I+ el ‘1—~In||+,||$n—TNmN“H-

Since liMyco || TNZY 1~z || = 0, liMp—eo || Tv-12] ~2—z,| = 0 and B2, +2~
00, it follows that
lim |z, — Tnzn| = 0.

Similarly, by using as argument in the proof above, we obtain limy, e || Txzk~1—
x| = 0 for all k = 2,3,..., N, and hence lim, .o ||Tkzn — Znl} = 0 for all
k=2,3,...,N. We now show that lim, .o |T12, — z.| = 0.
Since ||z}, — pll < afl|zn — 2l + Bllzs — pll + Yallur — o

< ||lzn — 2l +malluz, — pll forallneN,

it follows that ,
limsup ||z} —p|| < e

n—00
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Note that
llzn = 2li < (|20 — Tozp |l + | Toz} — pli
< |lzn — Tozl| + ||z} — p|f, for all n € N.
Thus, we have

— i _ < lim3 1 <1 1 _
¢= lim |z, — p|| < liminf |z, — p|| < limsup flz, —pll < c.

Hence, limy, e0 |Zn — p + ri(uh — 2,)|| < c and

limsup ||Ty-12N 2 —p+ Y Ml ! — z,)|| < limsup ||z~ —p| < e
n—oo

n—oo

Moreover, we observe that

¢ = limy, oo || 2L — 2|l = limp—oo {02 TiZn + Bhzn + Yiul — p|
i o [ T + (1 — ) — 7
+raun — (1—a)p — appl|
= limp o |02 T Tn — lp — alylz, + alyiul
+(1=0p)zn— (1= ) P— Yo Zn+VnUn = VaUn+on YaZall
= limn-so0 l0n(T1Zn — P + 75 (up — Zn))
+(1 - on)(zn — p+Ya(us, — z2))|

By Lemma 1.1, we have

lim |Tiz, — z,|| = 0.
n—00

Therefore lim,_,o [|TZ, — x| = 0. 0

Theorem 2.3. Let X be a uniformly convex Banach space and C be a
nonempty closed convex subset of X. Let T71,T5,...,Ty be a nonexpansive
mappings of C into itself satisfying condition (AY) and {z,} be a sequence-
as defined in (1.1) with 3°%° i <ccandO<a<of <G <1lforalineN
and for all ¢ = 1,2,...,N. If F = N, F(T)) # @, then {z,} converges

strongly to a common fixed point in F'.

Proof. By Lemma 2.1, limp—.o0 ||Zn—p|| exists for all p € F. Let limy—co ||Zn—
pll = ¢ for some ¢ > 0. If ¢ = 0, there is nothing to prove. Suppose ¢ > 0.
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By Lemma, 2.2, we obtain
nlﬁgo IThTn — zol| =0 = nﬁ_{lgo [TN-1Zn — zp |-
Again by the proof of Lemma 2.1 we have
”xn+l - p” = ”mg —p” < ”Iﬂ _p” + dr!:r—lv

where 3 o> | d¥=! < 0o. It implies that

n=1"'n

. _ - _ N-1
;gﬁ, |Zas1 — 2l < ;g;. lzn — pll +d7 %,
and hence d{ny1, F) < d(Ty, F) +dY ! for all n € N.

Hence, by Lemma 1.2, we note that lim,,_,., d(z,, F) exists. Next by condi-
tion (AM), f(d(@n, F)) < %(EX | Tjzn — z4|) for all n € N. Taking n — oo,
we obtain lim, . f(d(z,, F)) = 0. Since f is a decreasing function and
f(0) = 0, it follows that limp—.o, d{Zn, F) = 0. Now we can choose a subse-
quence {z,,} of {z,} and a sequence {y;} C F such that ||z., — y;}| < 277.
By the following method of proof of Tan and Xu [15], we get that {y;}
is a Cauchy sequence in F' and so it converges. Let y; — y. Since F is
closed, therefore ¥ € F and then z,; — y. As lim, . ||z — pl| exists,

T, =y € F =L, F(T). =
ForT, =T, = ... =Ty := T in Theorem 2.3, we can obtain the following
result.

Corollary 2.4 Let X be a uniformly convex Banach space and C be a
nonempty closed convex subset of X. Let T : € — C be a nonexpansive
mapping satisfying condition (4), and {z,} be a sequence defined by (1.2)
with Y0 vi <ocoand 0 < a < af, < B < 1foralln € N and for all
i=1,2,...,N. If F = F(T) # &, then {z,} converges strongly to a fixed
point of T.

When N = 2 in Theorem 2.3, we can obtain Ishikawa-type convergence
result for two mappings.

Corollary 2.5 [6, Theorem 2] Let X be a uniformly convex Banach space
and C its nonempty closed convex subset of X. Let T3, T2 be nonexpansive
mappings of C into itself satisfying condition (A'), and {z,} be a sequence
defined by (1.3) with } o> 7 <o and 0 < a <ol <fB<lforallneN
and for all i = 1,2. If F = F(T1)NF(T3) # &, then {z,} converges strongly
to a common fixed point of 77 and Ts.
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The following is a weak convergence theorem for a finite family of non-
expansive mappings in a Banach space.

Theorem 2.6 Let X be a uniformly convex Banach space satisfying the
Opial’s condition, C its nonempty closed convex subset of X. Let 73,73, ..., T
be nonexpansive mappings of C into itself and {z,} be a sequence defined
by (1.1) with 37 17 <owand0<a <al << 1forall n € N and for
alli=1,2,...,N. If F =Y, F(T;) # @, then {z,} converges weakly to a
common fixed point in F.

Proof. Let p € F. Then, by Lemma 2.1, lim,_, ||z, — p|| exists. Now we
prove that {z,} has a unique weak subsequential limit in F. To prove this,
let 21, 23 be weak limits of the subsequence {z,},{Zn;} of {Z.}, respactively.
By Lemma 2.2, limp .o ||Zn — Tzl = 0 for all ¢ = 1,2, ..., N. Moreover,
we note by Lemma 2.2 that I — T; are demiclosed with respect zero for
all i = 1,2,...,N. Therefore we obtain T;z; = z; and Tizp = 2z, for all
i=1,2,...,N. Then z,2 € F = NN, F(T;). Next, we prove the uniqueness.
Suppose that z; # z3, then by the Opial’s condition

limy, oo || Zn — 21| = liMineo ||Zn, — 21]|
< limyoo [|Za, — 22|l
= limp oo ||Zn — 22|
= limy o0 [|Zn; — 22|
< limjeo ||Zn; — 21|
= limy oo [|lZn — 21l

This is a contradiction. Hence {z,} converges weakly to a point in F. [

For Ty =75 = ... = Ty := T in Theorem 2.6, we can obtain the following
result.

Corollary 2.7 Let X be a uniformly convex Banach space satisfying the
Opial’s condition and C' be a nonempty closed convex subset of X. Let
T : C — C be nonexpansive mapping and {z.} be a sequence as in (1.2)
with 3% 74 < ocand 0 < a < a} < 8 < 1 forall n € N and for all

i=1,2,...,N. If F = F(T) # 9, then {z,} converges weakly to a fixed
point of T,
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When N = 2 in Theorem 2.6, we can obtain Ishikawa-type convergence
result for two mappings.

Corollary 2.8 [6, Theorem 1] Let X be a uniformly convex Banach space
satisfying the Opial’s condition and C be a nonempty closed convex subset
of X. Let T} and T be nonexpansive mappings of C into itself, and {z,} be
a sequence defined by (1.3) with Y27 | 7 <occand 0< a <ol < B <1 for

aln € Nand for all i = 1,2,...,N. If F = F(T1) N F(T3) # @, then {z,}
converges weakly to a common fixed point of 7y and T.

Finally, we prove a strong convergence theorem which is connected with
result of [14].

Theorem 2.9 Let C be a nonempty closed convex subset of uniformly
convex Banach space X, and let T1,T5,. .., Tn nonexpansive mappings of C
into itself such that F' = ﬂf__l F(T}) # @. If P is a metric projection of
C onto F and {z,} is a sequence defined by (1.1) with > 77, 7}, < oo and
0<a<a,<f<lforallne€Nandforalli=12,...,N, then {Pz,}

converges strongly to a common fixed point in F.
Proof. By the proof of Lemma 2.1, we have

|Znt1 — pll = [z — pl| < |lzn — pll'+ di~" for every p € F and for all
n € N. Since Pz, € F, we get

|PTns1 — Zagall < [|P2n — Tnsa|l < Jl2a — Py +dy~

where £ d¥1 < oo. It follows by Lemma 1.2 that lim, .o || PZn — Za

exists. We denote the limit of {||Pz, — z4||} by 7. Next, we show that for
each n,k € N, :

n+k—1
"PSB,-,, - -T'n+k” S l|P$n - mn" + Z d;‘v_ls

Jj=n
by mathematical induction. For k = 1, we have
| Pzn '--'Bn+1" < ||Pz, — 22"" + dful'

We assume that for k& = {,

n4i—1
HPSL‘,; —In+!" < “P-Tn —9:7;" + Z d?r-l

j=n

Then, we get
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| Pzy — mnN-q-l” = |Pzp = Znyina|| S §P2n ~ Trptll + dﬁﬁl
< ||Pn — zafl + 521 d

Hence {[Pzn — Zpyk|| < |[Pzn — znl| + _?::-1 d;'v—l < || Pzn — znll + Z;o:n d;
for all n,k € N. Now, we show that {Pz,} is a Cauchy sequence. Put
b = Y iendir I r = limy o [|PZs — Zu|| = 0, for any arbitrary positive
number ¢, there exists integer ng such that ||Pz, — z,| < § and b, < £ for

all n > ng. Then, we have for m,n € N with m > n > ny,
[Pz — Pxm|| < ||Pzn — Py, + | Pzng — Pzl
S ||PEn = Zall + |20 = PZng|l 41| Png — Tl + || 2m — PZm||
< P2a ™ Zall + 10 — Pngll + brg + [1PTrg = Tngll + brg
+|Zm — PZml|
<g+sgt+tititets
=

Since € > 0 is arbitrary, we have that {Pz,} is a Cauchy sequence. Next we
assume that r > 0 and {Pz,} is not a Cauchy sequence. Then there exists a
positive number ¢ and two subsequence {Pz,,}, {Pzn,} of {Pz,} such that
|Pzn, — Pm,| = € for all ¢ € N. Also, there exists a positive integer d such
that (r 4 d)(1 — §(:%5)) < r. By the definition of 7 and b,, there exists a
positive integer ng such that r < |Pzn — za|| < v+ £ and b, < ¢ for all
n > ng. Let n;,m; > ng and ! > n;, m;. Thus, we have

d d -
| +by, <r+-+-—=r+d

1P, = @il < 1P, = 2n 5+

and

d d
||P93m.-—'~'"t||SIIPSBm;—Em,-ll-I-bma<?‘+§+§=T+d-

By uniformly convex of X, we get

P Pz,,.
r<|Poy—ail < R - < (L - 6(—) <
It is a contradiction. This complete the proof. Ci

For N = 2 and 72 = 42 = 0 in Theorems 2.9, we can obtain Ishikawa
iteration convergence result for two mappings.
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Corollary 2.10 (14, Theorem 4.4] Let C be a nonempty closed convex
subset of a uniformly convex Banach space X, and let 77,75 be nonexpansive
mappings of C into itself such that F' :== F(T}) N F(T3) # @. If Pis a
metric projection of C onto F(T1) N F(T2) and {z,} is a sequence defined
by (1.3) with 32 7 < ocand 0 < a <ol <f < lforalln €N and
for all ¢ = 1,2,...,N. Then {Pz,} converges strongly to an element of
F(N) N F(13).

References

[1] F. E. Browder; Nonlinear operators and nonlinear equations of evolution
in Banach spaces, Proceedings of the Symposium on Pure Mathematics, vol.
18, Proc. Amer. Math. Soc., Providence, RI, 1976.

[2] C.E. Chidume, Chika Moore, Fixed points iteration for pseudocontractive
maps, Proc. Amer. Math. Soc. 127(4)(1999) 1163-1170.

[3] Y. J.Cho, H. Y. Zhou, G. Guo, Weak and strong convergence theorems for
three-step iterations with errors for asymptotically nonexpansive mappings,
Comput. Math. Appl. 47(2004) 707-717.

[4} G. Das, J. P. Debata, Fixed points of quasi-nonexpansive mappings,
Indian J. Pure Appl. Math. 17(1986) 1263-1269.

[5] S. Ishikawa, Fixed point by a new iteration, Proc. Amer. Math. Soc.
4(1974)147-150.

[6] S. H. Khan, H. Fukhar-ud-din, Weak and strong convergénce of a scheme
with errors for two nonexpansive mappings, Nonlinear Anal. 61 (2005) 1295-
1301.

[7] M. Maiti, M. K. Ghosh, Approximating fixed points by Ishikawa iterates,
Bull. Austral. Math. Soc. 40(1989) 113-117.

[8] W. R. Mann, Mean value method in iteration, Proc. Amer. Math. Soc.
4(1953) 506-510.

[9] Z. Opial, Weak convergence of the sequence of successive approximations
for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967) 591-597.

(10] B. E. Rhoades, Fixed point iterations for certain nonlinear mappings,
J. Math. Anal. Appl. 183(1994) 118-120.



¥

£

ANANKIN 16/15

S. PLUBTIENG AND I. INCHAN o 15

[11] J. Schu, Iterative construction of fixed point of asymptotically nonex-
pansive mappings, J. Math. Anal. Appl. 158(1991) 407-413.

[12] J. Schu, Weak and strong convergence to fixed poiﬁts of asymptotically
nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991) 153-159.

(13] H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpan-
sivemappings, Proc. Amer. Math. Soc. 44(2)(1974) 375-380.

(14] W. Takahashi, T. Tamura, Convergence theorems for a pair of nonex-
pansive mappings, J. Convex Analysis 5(1)(1998) 45-58.

[15] K.K. Tan, H. K. Xu, Approximating fixed point of nonexpansive map-
pings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993)
301-308.

[16] K. K. Tan, H. K. Xu, Fixed point iteration processes for asympotitcally
nonexpansive mappings, Proc. Amer. Math. Soc. 122(1994) 733-739.

[17] B. L. Xu, M. Aslam Noor, Fixed point iterations for asymptotically
nonexpansive mappings in Banach space, J. Math. Anal. Appl. 267(2002)
444-453.

[18] Y. Xu, Ishikawa and Mann Iteration process with errors for nonlinear
strongly accretive equation, J. Math. Anal. 224 (1998) 91-101.



——

¥y

o

ManwIn 16/16

Somzot Plubtieng

Page 1 of 1

From: "Journal of Nonlinear Analysis - A: Theory and Me" <lakshmik@fit.edu>
To: <somyotp@nu.ac.th>
Sent: Wednesday, June 01, 2005 12:33 AM

Subject: A manuscript number has been assigned: NA-D-05-00253

Ms. Ref. No.: NA-D-05-00253

Title: Weak and strong convergence of a scheme with errors for a finite
family of nonexpansive mappings

Nonlinear Analysis Series A: Theory, Methods & Applications

Dear Yos,

Your submission entitled "Weak and strong convergence of a scheme with errors for a finite
family of nonexpansive mappings" has been been assigned the following manuscript number: NA-D-05-

00253.

You may check on the progress of your paper by logging on to the Elsevier Editorial System as an

‘Thank you for submitting your work to this journal.

Kind regards,

V. Lakshmikantham
Editor-in-Chief
Nonlinear Analysis Series A: Theory, Methods & Applications

8/16/2005



v 33

AMANHKIN 17

Weak and strong convergence of modified Noor
iterations with errors for three asymptotically

nonexpansive mappings

S. Plubtieng, R. Punpeang and R. Wangkeeree,

J. Math. Anali. (submitted).

b



v

. *},

nManwIn 17/1

WEAK AND STRONG CONVERGENCE OF MODIFIED NOOR
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NONEXPANSIVE MAPPINGS
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Pitsanulok 65000 Thailand

AngTRACT. In this paper, several weak and strong convergence theorems are es-
tablished for a Modified Noor iterative scheme with errors for three asymptotically
nonexpansive mappings in Banach spaces. Mann-type, Ishikawa-type, and Noor-
type iterations are included by the new iteration scheme. Qur results extend and
improve the recent ones announed by Xu and Noor [16], and many others.

1. INTRODUCTION

In recent years, one-step and two-step iterative schemes(including Mann and
Ishikawa iteration processes) have been studied extensively by many authors: see[2,
4, 11, 13]. In [16], Xu and Noor introduced and studied a three-step scheme to

‘approximate fixed points of asymptotically nonexpansive mappings. Recently, Cho,
Zhou and Guo (3] extended their schemes to the three-step iterative scheme with

errors and gave weak and strong convergence theorems for asymptotically nonex-
pansive mappings.
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On the other hand, Xu [15] introduced and studied the Mann iterative scheme
with errors. A generalization of Ishikawa iterative schemes for two mappings was
given by Das and Debata [4] and Takahashi and Tamura [13]. Finally, Khan and
Fukhar-un-din [5] extended their scheme to a modified Ishikawa iterative scheme
with errors for two mappings and gave weak and strong convergence theorems.

Inspired and motivated by these facts, a new class of three-step iterative scheme,
for three nonexpansive mappings, is introduced and studied in this paper. This
scheme can be viewed as an extension for three-step iterative schemes of Xu and
Noor [16], and Cho, Zhou and Guo [3]. This scheme defined as follows.

Let X be a normed space, C be a nonempty convex subset of X, and T}, 75, T3 :
C — C be three given mappings. Then for a given z; € C, compute the sequence

{zn}, {yn} and {2.} by

Zn = 0nI3Tn+ Brtn + ntn
yn = pT7 2 + BrZn + Yntn (1.1)
Intl = CinTln'yn + BnTn + Tnwn n > 1,

where {an}, {ah}, {af}, {Ba}, {81}, (A1}, {7}, {0} and {]} are real sequences in
[0,1] with oy + Bn +9m =y + B 4+ 7, = & + B + 42 = 1 and {u,}, {vn}, {wn}
are bounded sequences in C.

The iteration schemes (1.1) are called the modified Noor iterations with errors
for three mappings. Noor iteration include the Mann-Ishikawa iteration as special
case. If T1 = T» = Ty := T, then (1.1) reduces to three-step iterative scheme define
by Cho, Zhou and Guo [3]: '

Zn = a;;Tnmn + (1 - O::; A ::)wn + 'Y:.:'u",
Yn = a:T,Tnzn + (1 - 0‘:1. - ’T:;)xn + 7:;1111 (1'2)
Tnt1 = T Yn + (1 —an — Wn)Tn + TnwWa n 2> 1,

where {an}, {oh}, {c”}, {}, {7.} and {v,} are appropriate real sequences in [0, 1]
and {un}, {vn}, {wn} are bounded sequences in C.

For Ty =Ty =Ty :=T and ,7a =7}, = 7/, = 0, then (1.1) reduced to the Noor
iterations defined by Xu and Noor|[16]

2Zn = Tz, + (1 — o)z,
Yo = apT"z,+{1—al)z, (1.3)
Tn41 = onT"yn+ (1 —an)zn, n2>1,
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where {a,}, {0}, }, {a} are appropriate sequences in [0, 1].

Asymptotically nonexpansive mappings since their introduction have been ex-
tensively studied by many authors in different frames of work. One is the conver-
gence of iteration schemes constructed through asymptotically nonexpansive map-
pings. It is our purpose in this paper to establish several weak and strong conver-
gence results presented in this paper extend and improve the corresponding ones
announced by Xu and Noor [16], Cho, Zhon and Guo [3], and others. Now, we
recall the well-known concepts and results.

Let C' be a nonempty subset of normed space X. A mappingT : C — C
is said to be asymptotically nonezpansive on C if there exists a sequence {r,} in
[0, 00), with limp o 7 = 0 such that

17 — Tyl < (1 + ro)llz — yll,
for all z,y € C and each n > 1.

If r, =0, then T is well know as a nonexpansive mapping. A mapping T with
domain D(T") and range R(T') in F is said to be demiclosed at p if whenever {z,}
is a sequence in D(T') such that {z,} converges weakly to z* € D(T) and {Tz,}
converges strongly to p, then Tz* = p.

A Banach space X is said to satisfy Opial’s condition [5] if any sequence
{zn} in C, 2z, — z weakly as n — oo implies that limsup,_ .. [zn — z| <
limsup,__, llzn — y| for all y € C with y # =.

The mapping T : C — X with F(T) # @ is said to satisfy condiiion (A)[11] if
there exists a nondecreasing function f : [0,00) — [0, 00) with f(0) =0, f(r) > 0
for all r € (0, c0) such that

lz — Tzl = f{d(z, F(T)))

for all z € C where d(z, F(T)) = inf{|lz — z*|| : * € F(T)}. Recently, Khan and
Un-din[3] modified the condition (4) for two mappings as follows: Two mappings
T1,T2 : C — X where C a subset of X, are said to satisfy condition (A') if there
exists a nondecreasing function f : [0,00) — [0, 00) with f(0) =0, f(r) > 0 for all
r € (0, 00) such that

2z — Tzl + Iz - Szll) 2 £(d(z, F))

for all z € C where F := F(T1) N F(T2) and d(z, F) = inf{||z — z*|| : 2* € F}. Note
that condition (A’) reduces to condition (A) when T' = §. We modify this condition
for three mappings 71,7%,T3 : C — C as follows:
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Three mappings 71,732,753 : C — C where C a subset of X, are said to satisfy
condition (A”) if there exists a nondecreasing function f : [0,00) —— [0,00) with
f(@) =0, f(r) > 0 for all r € (0, 00) such that

iz — Tozll + llz — Tozll + llz — Tyal) > f(d(z, F))

for all z € C where F := F(T1) N F(T3) N F(T3) Note that condition (A"} reduces
to condition (A) when T} = T> = T3. It is well known that every continuous and
demicompact mapping must satisfy condition (A)(see [11]). Since every completely
continuous T : & — ' is continuous and demicompsct so that it satisfies Condition
(A). Thus we shall use condition (A) instead the completely continuity of the
mapping T' to study the strong convergence of {z,} defined in (1.1).

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.1 (see (14]). Let the nonnegative number sequences {an}, {bn} and {d,}
satisfy that

tnt1 L (14 brlap +dp,Vn =1,2, ...
If 3pey bn < 00, 3 oo dn < 00, then

(i) limy__voo an exists.
(i) imy, o0 an = 0 whenever liminf,__.oo an = 0.

Lemma 1.2 (see [10])). Let X be o uniformly convexr Banach space, 0 < a < t, <
B < 1 for all positive integers n. Suppose that {z,} and {y.} are two sequences of
X such that imsup, . [lzal] < a,limsup,_ . |lynll < a, and llmn—»m Iftnzn +
(1—=t))ynll = @,a > 0. Then limp__o0 [|Zn — ynll = 0.

Lemma 1.3 (see [3]). Let X be a uniformly convex Banach space, C a nonempty
closed convexr subset of X, and T : C — C be an asymptotically nonezpaensive
mapping. Then I — T is demiclosed at 0.

2. MAIN RESULTS

In this section, we prove weak and strong convergence theorem of the modified
Noor iteration with errors for three mappings in a Banach space. In order to prove
our main results, the following lemmas are needed.

Lemma 2.1. Let X be a uniformly conver Banach space with z,,y, € X, real

number a > 0,¢, 8 € (0,1) and {an} be @ real sequence number which satisfying

(i) 0<a<a, <f<1,Vn2=ng and for some ng € N.
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(il) limsup, e l|Znll < @ and limsup, o [[ynl| < a,
(iii) limn—sco [@n@n + (1 ~ an)ynll = a.

Then limp— o0 ||Zn — yall = 0.

Proof. This is clear by Lemma 1.2. a

Lemma 2.2. Let X be a real uniformly conver Banach space, C' a nonempty closed
conver subset of X. Let T}, Ty and T3 be asymptotically nonezpansive self-maps of
C' with sequences {1'9)}, {r&z)},{r,(la)} respectively such that 37, r# < 00 for all
t=1,2,3 and F(T))NF(T2)NF(T3) # 0. Let {zn} be the sequence as defined by (1.1)
with 37071 Tn < 00, 2on21 Y < 00,20y Tn < 00. If F(T1) N F(T2) N F(T3) # 0,
then limy, .o ||zn — plf exists for all p € F(T).

Proof. Let p € F(TY) N F(T2) N F(T3). Since {un},{va} and {wy} are bounded
sequences in C, we can put

M = sup |[un — p|l V sup [lvn — p| V sup |lw. — p|-.
n>1 n>1 n>1

Then M is a finite number. Foreachn > 1, let r, = ma.x{r,(,l),rf(,z),r,(?)}. Then

Tn 2 0, and lim,__, o 7n = 0. Moreover, we note that

||$n+1 - P” = ”anTlnyn + BpnTn + Yaln — Pll
an||TTyn — pll + Bullzn — 2l 4 1allwn — 2l
< a1+ rma)llyn — 2l + Ballze — 2l + Yollwn = 211, (2.1}

IA

and
kv —pll = l0nT5 20 + Brzn + Yavn — pll
< a:l”:l?zn - P” + ﬂ:;"xn —plf + 'T:;"Un - P”
< ai:(l + 7a)|[2n — Pl + ﬁ:'zllxﬂ -pll + 'Y:;”'Un -7, (2.2)
and
2 — pll € an(1 + ro)llen — pll + Brllzn — 2l + 4, llun — pil- (23)
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Substituting (2.3) into (2.2), we obtain
lyn ~pll < chan(l+7n)2lIen — 2l + @nBr (1 + rn)llen — pll + ofya(1 + o) lua — pil
+ Bullzn — pll +vollvn — pll
< (1= Bn — Yh)an(l+ 1) llzs — ol + Brllzn — p
+(1 = B — W)Ba(1 + 7a)llzn — Pl + man
< Br(l+m)%lzn — pll + (1 - Bl + rn)?l|zn — pl
+(1 = B)Ba(L + 70)*|%a = pll + mn
Pu(l+ o)z — pll + (1 = B)(en + Br) (1 +10)?[|2n — pll + mn
Ba(l 4 1n)*|zn = pll + (1 = BL)(1 + 70)?(|Zn — pl| + mn
(14 rn)?lzn — pll + mn. (2.4)

where iy, = Y/(1+ r,) M + 4, M. So that 3 o0 | m, < oo. Substituting (2.4) into
(2.1) , we have

IA

]

lZner =2l < @a(l+ra)((1+70)2 20 = Pl + M) + Ballzn — pll + Yallwn — 2
an(l+72)%[|zn = pll + @n(1 + 7a)mn + Balizn — pll + yallwn — 2l

i

< (on+ ﬁn)(‘l + "'n)a"mn =l + (1 + ra)mn + Yallwn — 2|l
< (1 + Tn)anmn - pl[ + (1 + Tn)mn + 'Yn”wn —P”
< (1+7)llza —pll + (1 + ra)mn + 1M

(1 + dn)llzn — pll + br (2.5)

where d, = 37, + 372 + 73 and b, = (1 + ra)my + YM. Since Y o0 ™ < 00,
Yoo Tn < 00, we get 3 o0 d, < oo and )0 by < co. It follows from Lemma
1.1 that limp_ e ||xn — p|| exists. This completes the proof. O

Lemma 2.3. Let X be a real uniformly convex Banach space, C' a nonempty closed
convez subset of X. Let Ty, Ty and T3 be asymptotically nonexpansive self-maps of
C with sequence {rs,l)}, {ng)}’{rgs)} respectively such that 3 oo | P < oo for all
i=1,2,3 and F)NF(T)NF(T3) # 0. Let {x,} be the sequence as defined by
{1.1) and some a, B in (0,1) with the following restrictions:

(i) 0<a<ayd,a <f<1,V¥n 2> ng for someng € N.
()00 | n < 00, 300 1 Vo < 00, D oy T < 0O

Then limﬂ-—-—oco "wn - T]_mn" = limn-——ooo “mn - T2$n” = Iimn_poo len - Ta:En” = 0.

Proof. For any p € F(Ty) N F(Tp) N F(T3), it follows from Lemma 2.2, we have
liMp—oo || Tn — p|| exists. Let limp— o0 [|[Zn — || = @ for some @ > 0. Foreachn > 1
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let ry, = ma.x{r,g) ,'r-f;z) ,r,(?) }. Then rp, 2 0 and lim, 1, = 0. It follows from
(2.4) that
lyn —pll < (1 + r")zﬂzn ~pll +ma.

Taking limsup,,.._,,, in both sides, we obtain
limsup ||yn — p|| < imsup ||z, — pll = lim {lz, —p| = a.
n—>00 n—oo 00
So that
limsup [|T7'yn — p|| < limsup(l + rn)llys — pll = limsup [lyn — p|| < a.
n—oo n—oo

n—=o0

= Next, consider

w

1TTyn — 2+ Wlwn — )|l < |1 TT 40 — 2l + nllwn — zn||.

Thus, we have
limsup |T7yn — p+ Ynl{wn — z4)|| < q, (2.6)
n—od

and [z, — p+ Yn(wn — )|l < |Zn = 2l + Wnllwn = 24l

This implies that

limsup (|20 —p + Tn(wn — Za)|| <, (2.7)
and
a = nliinoo Zn+1 — 2l
= lim [lonTTyn + BuZn + mwa — pll
= lim JlenT{'yn + (1 = an)n = YaZn + Yawn — (1 — @n)p — anp|
A = lim {lanT{yn — anp + anTatWn — Gn¥nTn + (1 — @n)zn — (1 — an)p

— Tn%n + TnWn — CnTnWn + an'Yn:rn"
= nE_IPOO letn (T79n — P+ Ynl{wn — Za)) + (1 — an)(@n = p+ Tn(wn — zn))|l-
By J. Schu’s Lemma 2.1, we have
lim ||T{yn — za|| = 0. (2.8)
n—oo
Next, we shall prove that limy o || TH2n — znll = 0. For each n > 1,

lzn — 2l < 17T 4n — 2nll + 177 ¥ — 2l
”T{‘yn - mn” + (1 + Tn)"yn -*PHA

IA

Since limp o0 [|T7%n — Zn|| = 0 = limp_—.o 7, We obtain

a= lim |z, —p| < liminf ||y, — p||-
n—00 n—oo

o) ¢
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It follows that
a < liminf ||y, — p|| £ limsup |y — 2| < a.
=00 n—sco ;
This implies that
im [lyn —2ll = a.
n—00

On the other hand from (2.3), we have

llzn — pll < (1 +7u)llzn -pll + 'Y:r:”un -l

By boundedness of the sequence {u,} and limp—,00 7n = 0 = im0 7)1, we have

limsup ||z, — p|| < limsup {lz, ~ p|| = a,
. 1m—0o0

n—od

and so
limsup ||73'z, — p| < limsup(1 + ra)||zs — p| < a.
i—00 L— 00

Next, consider

1T 20 — o+ Y (vn — 2o)ll S WT3 20 — Il + W llvn — 24l
Thus we have _
' limsup |75 2n — p + ¥ (Ve — 22)|| < @,
and

lzn — 2+ Yn(va = 2)ll < ll2n = Pl + Wllvn — zal|.
It follows that
limsup [|zn — p+ Yp(vn — Za)[ < a
and
a= lim [ygo—pl = lim [lapT5zn + Bnn + Yovn —pl|
n—ood n=——s00
= nli_r'nm lan[T3 20 — n + Yp(vn — 24)]
+ (1~ ap)[zn = p+ W (va — 22)]ll.
By J. Schu’s Lemma 2.1, we have
lim |73z, — znl = 0.
n—o0
Similarly, by using the same argument as in the proof above, we have
lim ||73zn — zs|| = 0.
n—00

Hence

tim [|Tfyn — all =0, lim [T§ 20— zall =0, lim [ T5z — 2]l = 0

and this implies that

(2.9)

l2n+1 = zoll £ @ulTT¥n — 2all + nllwn — Tp|| — 0 as n — co. (2.10)
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We note that
1T7zn —zall < |TTZ0 — T 0all + 17T yn — 24l
(14 ra)l|lzn — yall + 1 T7 90 — znll
< (14 ra)lizn — T3 2nll + Y2 (1 + n)llvn — =4
+ 27 — 2all — 0 a3 n — o0, (2.11)

IA

and

A

Iz = Tiznll < |@nt1 = all + | Ens1 = T 2
+ |1 T7H 21 — TTH o] + | T7 20 —~ Tiznl|
< (Zn41 = znll + 2011 = T7  zpp|
+ (1 4 ks )l Znt1 — zall + U+ BN TP T — 20| (2.12)
It follows from (2.10), (2.11) and the above inequality that
ﬂ'li_r'noo llzn — Thzn| = 0. (2.13)
Next, consider
1T 2n —zall < 1T52n ~ T3 zall + (|75 20 — zn||
(1 +ra)llzn — 2nll + [|T5"20 — |
< ap(l+mm)lzn = T3zl + v (1 + rn)llun — zal|

IN

+ || T3 2 — zal| — 0 as n — oo, (2.14)
and
& — Dozl < @nt1 = Zall + Zns1 ~ T3 20t ]
+ T34 ng1 — ToHan | + T3 2 — Toza|
< |lzntr = znll + [Fns1 — T3 zngall

+ (L knn)llzner = Tall + (1 + k)| TP 20 — 2l
It follows from (2.10), (2.14) and the above inequality that
nli_r’noo |£n — Tzl = 0.

We have

zn — T3zall £ lont1 — Zall + [Tns1 — T3+ T
+ (T3 g — T || + | T3 o0 — Taal|
(Zas1 = Zall + Ins1 = T3 Tnsa]
+ (1 knga)l[@nsr = Zall + (14 k)| TEan — 2a.

IA
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It follows from (2.10), lim, ., | TP — Zx|| = 0, and the above inequality that

lim |jzn — Thza|| =0.
n—00

Therefore
lim ||z, — Tizn|| = lim [zn — ToZal| = lm |z, — Tszy| = 0.
n—00 n—=>o0 n—0d
This completes the proof. a

Theorem 2.4. Let X be o real uniformly conver Banach space, C o nonempty
closed conver subset of X. Let T1,T2 and T3 be asymptotically nonezpansive self-
maps of C with sequences {r,(,l)}, {r,(f)}, {r,(?)} respectively such that 3 oo , ) < o0
Jor all i = 1,2,3 and satisfying condition (A"). Let {z,} be sequence as defined in
(1.1} and some a, 8 € (0,1) with the following restrictions:

(i) 0<a<agd,ol <8<1,¥n>ng for some ng € N.

(ii)z;?=l 7"1 < 00, Z:ozl ‘ﬂi < 00, E:?:I Ff:’: < 0.

IfFM)NF(T)NF(T3) # 0, then {zn}, {yn}, {zn} converges strongly to a common
fized point of T\, T2 and T3.

Proof. By Lemma 2.2, we readily see that limp,_. ||zn — p|| exists for all p €
F(Ty) N F(T2) N F(T3). Let limy— ||©n — p}| = a for some a > 0. Without loss of
generality, we may assume a > 0. As proved in Lemma 2.2, we have

[£n+1 = pll < (14 dn)ll€a — pll + bn

which gives that
d‘(xﬂ--l-l:F) < (1 + dﬂ)d(mﬂ’F) + bn

where F := F(T1) N F(T;) N F(T3). Applying Lemma 1.1 to the above inequality,
we obtain that lim, o d(Tp, F) exists. Now by the combined effect condition (A”)
and Lemma 2.3, we get that

1
im f(d(zn, F)) < lim (5(||lzn = Tiznll + |20 — T2%a] + ||z — Taza|l)) = 0.
n—oe n—+ o0 3

It show that limp, e f(d(zs, F)) = 0. Since f is a nondecreasing function and
f(0) = 0, therefore lim;, .o d(zn, F) = 0. Then there exists a subsequence {xy, }
of {z,} and a sequence {yx} in F' such that [jz,, — yxll < 51,; It follows from the
proof of Tan and Xu{14], we get that {y} is Cauchy sequence in F', and s0 y, — ¥
for some y € F. It follows that z,, — ¥. Since limp—.e ||Zn — pl| exists, z, — y.




5

i A

%

C T e —n L L — s — T T e —, T = T —n e s T A m T s -

mManwIn 17/11

MODIFIED NOCR ITERATIONS WITH ERRORS 11

Since

lyn — zall < a;l”T“zn — znfl + 'Y:;”'Un —Zp|| — O0asn — oo

yand||z, — ol < Off;HT"Zn ~Zpf — 0 as n — o0,

it follows that lim,—, o yn = ¥ and lim,_,o 2o = y. This completely the proof. O

If Ty = Tp = T3 := T',then (1.1) reduces to modified Noor iteration scheme with
errors and 50 we obtain the following result:

Corollary 2.5. Let X be a real uniformly convez Benach space, C a nonempty
closed convexr subset of X. Let T : C — C be an asymptotically nonezpansive
mapping the nonempty fired point set F{T) and a sequence {rn} in [0,00) with
Y rn < 00. Let {z,} be a sequence defined by

Zn = apT™Ta+ (1 —af —708)Tn + Yotn
yn = Tz + (1—al, —7)Tn +Ypvn
Zntl = T Y+ (1 —an — M)Zn + Yatn n 2> 1,

where {u,}, {vn}, {wn} are bounded sequences in C and {an}, {cl}, {an} {wm}. {vo}. {72}
are real sequences in [0,1)] satisfying

() 0< a < an,of, < B <1 (al need not in [a, 8] ), Vn > ng for some ng € N.

()Y ope1 Y < 00,2 i Tn < 00,3 0t Y < 00

If T satisfies Condition (A) with respect to the sequence {zn}, then {z,} converges
strongly to e fized point of T'.

Proof. Setting Ty = T» = T3 = T in Lemma 2.3. It follows from (2.8), (2.9) and
(2.12) that limp—uoo || T2n — za|| = 0. Since T satisfies condition (A) with respect
to the sequence {x,}, and so the conclusion of the corollary follows from Theorem
2.4. This completes the proof. 0

Corollary 2.6. Let X be a real uniformly conver Banach space, C a nonempty
closed convez subset of X. Let T : C — C be completely continuous asymptotically
nonezpansive mapping with F(T) # @ and a sequence {rp} in [0,00) with }_ r, < co.
Let {zn} be a sequence defined by

2z = 0Tz, + Bz, + Yiu,
Yn = T 2+ BrZn + Yovn
Tpy1 = anTnyn + BnTn + Wn, 21
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where {u,}, {vn}, {wn} are bounded sequence in C and {an}, {ak}, {c”} . {Gn} , {4.},
{Bah {m} {m} {1} are real sequences in [0, 1] satisfying

() on+Brtm=cp+fp+m=0cn+8;+v =1
(i) 0< a < ap,af, £ B <1 (0! need not in [a, B]), Yn > ng for some ng € N.
(i) 22021 e < 00,3001 e < 00,2500 Tn < 00
Then {z.}, {yn}, {2n} converges strongly to a fired point of T.
Proof. Setting T} = T = T3 = T in Lemma 2.3. 1t follows from (2.8), (2.9) and
(2.12) that limp, e [[T'zn~2zn|| = 0. Since T" is completely continuous, so it satisfies
condition {A) on C, and so the conclusion of the corollary follows from Theorem
2.4. This completes the proof. d
For ,v, =+, =/ =0, in Corollary (2.6), we can obtain the following result.

-KCorollary 2.7. [16, Theorem 2.1]. Let X be a real uniformly conver Banach space,
C be a nonempty closed, bounded convex subset of X. Let T be a completely con-
tinuous and asymptotically nonezpansive self-mapping with sequence {r,} satisfying
Tn >0 and ) oo 7n < 00. Let {an}, {an}, {ai} be real sequences in [0,1] satisfying;

(i) 0<liminf, o an < limsup, . on <1, and

(i) 0 < liminf, o o} < limsup, . af < 1.
For a give ) € C, the sequence {x,}, {yn}, {zn} defined by

Zn = orTuze+ (1—al)z,
Yo = o Tnzn+(1—al)z,
Tn4l = opTpin+ (1 - aﬂ)xm n =1

Then {zn}, {yn}, {zn} converges strongly to a fized point of T.

Proof. 1t follows from the condition (i) and (ii) that there exists a, 8 € (0,1) and
ng € N such that ‘
0<a<aya,<8<1

for all n > ng. So that the conclusion of the Corollary follows from Corollary 2.6, [

In the next result, we prove weak convergence for the modified Noor iterations
'lwith errors for three asymptotically nonexpansive mappings in a Banach space sat-
isfying Opaial’ s condition.

!
il
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Lemma 2.8. Let X be a Banach space which satisfies Opial’s condition and let {z,}
be a sequence in X. Letu,v € X be such that im,; o ||%n — 2| and lim,— oo ||z —
vlj ezist. If {xn,} and {zm,} are subsequence of x, which converge weakly to u and
v, respectively, then u = v.

Proof. See [12] O

Theorem 2.9. Let X be a real uniformly convex Banach space which satisfies Opial’
s condition, and C a nonempty closed convex subset of X. Let T\, Ty and T3 be
asymplotically nonerpansive self-maps of C with sequence {r,g)},{rs.z)}, {rs,a)} re-
spectively such that 352, r,(f) < oo for ell ¢ = 1,2,3. Let {z,} be sequence as

defined in (1.1} and some «, B € (0,1) with the following restrictions:
(i) 0 < a < aq,al, 0l < B <1,¥n > ng for some ng €N,

(22001 T < 00, 20021 Ya < 001 2only T < 00

IfFMNF(T)NF(T3) # 0, then {xn}, {yn}, {zn} converges weakly to a common
fized point of T1,T5 and T3. ‘

Proof. Tt follows from Lemma 2.3 that
lim |[Tizn —zp]| =0, lim |[T2z, — z4|| =0, lim [|T3zn — za| = 0.
n—0o0 n—30 n—o0

Since X is uniformly convex and {x} is bounded, we may assume that z, — ¢
weakly as n —+ co, without loss of generality. By Lemma 1.3, we have g € F(T}) N
F(TL)NF(T3). Suppose that subsequence {zn, } and {zm, } of {z, }.converge weakly
to u and v respectively. From Lemma 1.3, »,v € F(T1)NF(T2)NF(T3). By Lemma
2.2, limp—o0 ||2n — u|| and limg o [[n — v|| exdst. It follows from Lemma 2.8 that
u = v. Therefore {z,} converges weakly to a point in F(T}) N F(Ty) N F(T3). O

For T} = Ty = T3 := T then we obtain the following results:

Corollary 2.10. Let X be a real uniformly convez Banach space which satisfies
Opial’ s condition, C a nonemply closed convez subset of X. LetT : C — C be
asymptotically nonezpansive mapping with F(T') # 0 and a sequence {ry} in {0, 00)
with 3 rp < 00. Let {z,} be a sequence defined by

Zn = T %, + Bz + Ytn
Yn = 0Tz + Brn + Ve
Tnyl = nT"Yn + PnZn + mwn n 21
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where {un}, {vn}, {ws]} are bounded sequence in C and {an}, {c}}, {2}, {6}, (5L},
{1BeY {m}s {}, {75} are real sequences in [0,1] satisfying

(an+brtm=on+fotm=an+F+m =L
(i) 0 < & £ ap,af, < B <1 {(a] need not in [a, B]), ¥n > ng for some ng €N,
() FnZ1 T < 00, 35001 Ty < 00,2202, Tn < 0.

Then {zn}, {¥n}, {2n} converges weakly to a fizred point of T.

For ,vn, = %), = 7}, = 0, in the Corollary (2.10), we can obtain the following
result.

Corollary 2.11. Let X be a real uniformly conver Banach space which satisfies
Opial’ s condition, C be a nonempty closed, bounded convex subset of X. Let T be
an asymptotically nonexpansive celf-mapping with sequence {r,} saetisfying rn, > 0
and Y oo  Tn < co. Let {an}, {o}}, {a/n} be real sequences in [0,1] satisfying;

(i) 0 <liminf,, o 0on <limsup,_,,, o, <1, and

(i) 0 < liminf,__ 0 @), < limsup, o, of < 1.
For a give z; € C, the sequence {Zn}, {yn}, {zn} defined by

Zn = opInTn+ (1 —oh)zn
Y = Tnzn+(1—al)zn

Tngel = apTayn + (1 - an)mm n2>1

Then {zn}, {yn}, {zn} converges weakly to o fized point of T.

Acknowledgment: The author thanks the Thailand Research Fund for their fi-
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