RSA4680022 JA.917.88¢ wﬁ’mﬁua_-.

£\e\

TEMINsatusuInl

la39n13 : nqufunymasiidmivienialusesmsdeuny
 wententunuiv

Fixed point theorem for generalized of nonexpansive
mappings

Tay

o~ o
TOIAINATIVNTY AT.NULA WALINYY URTAME

15 RIN1AN 2548



Fuuanf RSA4680022

a e av 4
F1EITWID ﬂﬂ:ﬂﬂaﬁ?‘i’lim

Tas9n13 : ngefungaasidgusuienallduasnisdouu
HwanLaNTUNWEN

Fixed point theorem for generalized of nonexpansive

5 mappings
| Py, Qs ' Y A
; NI : 589A1FAIITE AT.ENLA WALLNLY UAzADL
} =, [=Y 4 =y 1
{' ANAIDTIATUAATIAAT ATUWESINUTIFEIAAT
( . HEIINLIRLWLTEIT
=
aﬁ.fumgufﬂﬂéi'lﬁnmunamuaﬁfumg%mﬁ%'ﬂ
@nuiinlwszswmiilupesdite and. lidnindeafindrsianatyl)
Do



B

Ananssudsznd

o’m’%é’uiﬂﬁ%’uquaﬁ'umg.umﬁﬁ'umnnuﬁmmﬁn’aé’ e 2546 20N
nasnuaivawnTite giipvereuwiznoushuaswinadiigenn m Temait

108U TEAMRIMIN AT TR TAMEGS LRLADAA NN R SURTINN S
WIAS ﬁ‘loﬂﬁ'mmﬁui-néuu.a:ﬁmwamuazmn‘lum‘ﬂ'ﬁ'ﬁaq ardasilwnidedued1ad
AnaalaTIANg Lmzqﬂﬁ'w'ﬂamauqmamtj"dmﬁ%’u%aﬂs:nauﬁm gnidssdon 63
21973¢0nd fley 1Bty Sudund pesdiauins Wuuws anisdeniied by
MT WAT WIBINBNEY 993AAsENA fr'mtﬂuﬁﬁmzé’uﬂ‘%mmﬂmtaxLanﬁsﬁ'{u’mﬂummsﬁﬁ
Wnwdneiinut A lesratuaioarwiseitldnunslumeswidud

o d
TMFATINTY AT.ENUA  WALINEN



i

#

-

Abstract

Project Code : RSA 4680022
Project Title : Fixed point theorems for generalized of nonexpansive mappings.
Investigator : Assoc. Dr. Somyot Plubtieng

Project Period : August 15, 2003-August 14, 2005

In this paper we present some results on fixed point theorems of mappings of
nonexpansive, asymptotically nonexpansive, asymptotically quasi-nonexpansive, and
asymptotically nonexpansive in the intermediate sense. Firstly, we proved weak and strong
convergence theorems of three step (multi-step) iterative scheme with errors to a fixed
point for generalized of nonexpansive mappings as above mension. Moreover, we also
prove strong convergence theorem of implicit iteration process for self (nonself) mappings
of nonexpansive and asymptotically nonexpansive, respectively. Finally, we proved the
rahdom fixed point theorems for nonexpansive random operators and multi-valued

nonexpansive random operators.

Keywords : Fixed point theorem, Three-step iteration, implicit iteration, Random operators,

Random fixed point.
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nquuwamﬂw (Fixed point theorem) mmu‘.lumqwuummmwﬁmmmn'lunﬁuﬂﬂ ﬂs"qnm’fa
unrinadamanioay 1ua1maw| msﬁmsmu'lmsamamqvquwav\mwuuﬂmummaL{Iu M
dowlilfiveneiasvinldtedin T Adennisatos K vans? 1pfivime X i K ua@m\m (m:.ﬂmzuaﬂ
a lu K il T(a) = o) noujunsansiuusipfunweiiddydudunntull as. 1922 Banach
TERgattndh (X, d) dwi3gfwednudysel wag T : X — X iu contraction (fufla asfi ¢ € (0,1)
Faitlll | T(z) - TW)|| < cllz—yl 19 z,y € X)ud %’asﬁaﬂmﬁl.ﬁmamﬁm fowludl a.a. 1930

-, Yt 1 J ] L] -
 Schauder gt K dwisadesiiliihuaaieds dufusaramnduassaneunndraalgiumia

X was T : K — K dwlafiudailaus T awiqanei uasdomlui) a.a. 1965 Browder Wfigatih
K ihwandositbidaaniedain ﬁ’qmmi‘lﬂﬁﬁﬂaummuamaunn'ﬁ'naq uniformly convex Banach
space X v.a" T : K — K \{lu nonexpansive (iuda [|T(z) ()} < flz—y| nn9 7,y € K)ud
T aziizeasit wilmnbududunlditnadamaniammunn 'nmm-iﬁm:n‘mtﬁamwm‘lﬂmﬂuﬂm

andidvnismadianai guuuin lﬂa‘lﬁﬁﬁauﬂqwqumaﬂﬂmam%’u nonexpansive mappings
4

aaisyaaneImsivy

L. ednmgauamAimasmadinreni giiviwe fisewafiasigml Fixed point theorems for
generalized nonexpansive mappings.

2. Wefnmguanifimasmadianaawigluwe filuswefiaviigad Fixed point theorems for
multivalued nonexpansive mappings

3. tﬂ'aﬁnmqmauﬁ’ﬁmmmﬂcﬁmaw‘%gﬁmma fufipawoTiaziigait Random fixed point theo-
rems for (multivalued) nonexpansive random operators

4. Wadnmmsgdhoosadufliionn Tterative contraction of Mann iteration, Ishikawa iteration,
Three-siep iteration and multi-step iteration

NansIAY

L. Three-step and multi-step iteration
L1 S. Plubtieng and R. Wangkeeree, Fixed point iteration for asymptotically quasi-
nonexpansive mappings in Banach spaces,
Theorem ! Let X be a real uniformly convex Banach space, C' a nonempty closed
convex subset of X. Let T be uniformly L-Lipschitzian, completely continuous
and asymptotically quasi-nonexpansive mapping with sequence {k,}n>; such

i
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that 3°%° | k, < oo and F(T) # 0. Let xp € C and for each n > 0,

za = QT @0+ frZn + Totn
Yn = a;;Tnzn + ﬁ:;a:n + ')’:zvﬂ
Tntl = anTnyn + BnZn + Ynln,

where {tn,}, {vn} and {w, } are three bounded sequences in C and {an }, {07, }, {ca },
{8}, (B4}, ALY, {va} {74} and (¥4} are real sequences in [0, 1] which sat-
isfies the same assumptions as Lemma ?? and the additional assumption that
0 < a < an,Bn, 0, 8, < 8 <1 forsome a, 8 in (0,1). Then {2}, {yn} and
{zn} converge strongly to a fixed point of T'.

S. Plubtieng and R. Wangkeeree, Noor Iterations with error for non-Lipschitzian
mappings in Banach spaces,

Theorem 1 Let X be a real uniformly convex Banach space, C' a nonempty
closed convex subset of X. Let T be a completely continucus asymptotically
nonexpansive in the intermediate sense. Put

Gp= sup{|T"z—T"y|| - lz—yll) vO,¥n > L.
z,yeC

Let g € C and for each n > 0,

zm = T %0+ Bpn + Yatn
Yo = T zp + BhTn +7hvn
Tyl = T Yn + BnZn + YalWn,

where {an}, {al}, (@}, {Ba}, (B}, {B2). {7}, {75} and {72} are real se-
quences in [0,1] and {u,}, {vs} and {w,} are three bounded sequences in C
such that

Dont+Pntm=0p+Brtm=ai+0fi+1=1

(i) 372 Tn < 00,3701 Ta < 90,3000 Ya < 00

(i) 0 < @ < ap, o), € B < 1. Then {z,}, {yn} and {2z} converges strongly to
a fixed point of T

S. Plubtieng and R. Wangkeeree, Strong convergence theorems for multi-step
Noor iterations with errors in Banach spaces,

Let C be a nonempty subset of normed space X and let T : C — C be a
mapping. For a given ;7 € C, and a fixed m € N (N denote the set of all
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positive integers), compute the jterative sequences {x )}, {x(m)} defined by

) = aWT s, + 80z, + i Duld),
2® = o7 4 g0z, + 7Dy 2)
o = T 4 fz 42O,
x%m-—l) = aslm—l)Tnxi(im—-Z) +18$1m-1)$n +'7,§Lm"3)u${"'l),

14

where, {ul},-. { )} are bounded sequences in C' and {a(‘) } {ﬁ(‘)} {’yg)}
are appropriate real sequences in [0, 1] such that o) 4 ﬁ(l) + 'yn) = 1 for each
i€ {1,2,...,m}.

Theorem 1 Let X be a uniformly convex Banach space, C a nonempty closed
bounded convex subset of X and T : C — C be a completely continuous
asymptotically nonexpansive in the intermediate sense. Put

Gr= sup (|T"z - Tyl -z -yl vO,¥n 2 1,
z,yeC

so that 372 | Gn < oo. Let the sequence {2} be defined by (0.2) whenever
{aPy, {ﬁ(’)} (7§71 satisfies the following restrictions:

(1)a£1 +Bn +'y,(,,) =1foralli€ {1,2,..,m} and forall n > 1;

i) 2, ) < oo forall i € {1,2, ..., m}. IfO <a<o™ N oM <p<t
for all n > np, for some ng € N. Then {:r:n } converges strongly to a fixed
point of T foreach £k = 1,2,3,...,m

Theorem 2 Let X be a real uniformly convex Banach space, C'a nonempty closed
convex subset of X and T : C — C be an uniformly L-Lipschitzian, completely
continuous asymptotically quasi-nonexpansive with the sequence {rp}n>1 such
that 52 | r,, < oo and F(T) # 0. Let the sequence {z,} be defined by (0.2)
whenever {a oy, {ﬁ(‘)} {+$)y satisfies the following restrictions:

5} am +Bn, +'yn =1foralli€ {1,2,..,m} and foralln > 1;
(u)zn_lfyﬂ < oo foralli € {1,2,..,m}. If0<a<a(‘)<{3<1forall
i € {m —1,m}. Then {mg‘)} converge strongly to a fixed point of T, for each
k=1,23,....m

S. Plubtieng and R. Wangkeeree, Strong convergence theorems for three-step
iterations with errors for non-Lipschitzian nonself-mappings in Banach spaces,
Algorithm Li(Three step iterative scheme for nonself maps with errors) Let C be
a nonempty subset of normed space X. Let P : X — C be the nonexpansive
retraction of X onto C and a mapping T : € — X. For a given x5 € C,
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" compute the iteration sequences {z,},{yn} and {z,} defined by

zn, = P (af’,iT(PT)“‘lxn + Bnzn + Youn) -
Yo = P(AT(PT)" ‘20 + BpZn + Yovn)
Tny1 = P (anT(PT)n_lyn + Buzn + 'Yn'wn) )

where {an}, {0}, {00}, {Ba}, {8}, {82}, {n}, {7} and {721} are appropri-
ate real sequences in [0, 1] and {u,}, {vn} and {w,} are three bounded sequences
inC.

Theorem 1 Let X be a real uniformly convex Banach space, C' a nonempty
closed convex subset of X. Let T be an asymptotically nonexpansive in the
intermediate sense nonself mapping with nonempty fixed point set F(T). Put

Gn = sup (|T(PT)" 'z — T(PT)" 'yl — ||lz - yll} vO,vn > L.

1.5

z,yel
Let the sequence {z,} be defined by (0.2} with the following restrictions
Don+Bntm=on+fo+m=0n+tB8+m=1
(i) Dopm; Tn < 00, Y mey Tn < 00, 2 nly Yo < OO
(ili) 0 € @ < an, B, af, B, < B < 1. Then {z,} converges strongly to a fixed
point of T'.
S. Plubtieng and R. Wangkeeree Ishikawa Iteration Sequences for Asymp-
totically Quasi-Nonexpansive Nonself -Mappings with Error Members,

Let C be a nonempty closed convex subset of a real uniformly convex Banach
space X. The following iteration process is studied:

Ty €C,Zppn = P (anmn + ﬁnT(PT)n_lyn + 'Yn'un) )
Yn P (a;mn +B.T(PTY Lz, + ’ﬁlvn)

where {un}, {5} are bounded sequences in C and {a, }, {Bn}, {1}, {al }{B,}
and {+,} are sequences in [0,1] and P is a nonexpansive retraction of X onto
C.
Theorem 1 Let X be a real uniformly convex Banach space, C' a nonempty closed
convex subset of X. Let T : C — X be an asymptotically quasi-nonexpansive
nonself-mapping with sequence {k,} in [0, c0) such that 3 >° | kn < oo and
F(T) # 0. Let @1 € C,{an}, {Ba} {1} (@}, {8} and {74} be sequences
in [0,1] such that an + Bn + 7 = 1 = ol + B, + ¥, Sooo | 7n < 00 and
o1 Yr < 00. Then the sequence {z,} defined by (0.3) strongly converges to
a fixed point of T if and only if lim infy oo d(zn, F(T)) = 0, where d(z, F(T))
denote the distance of x to the set F(T'), i.e., d(z, F(T)) = infyepr d(z, ).
Theorem 2 Let X be a real uniformly convex Banach space, C a nonempty
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closed convex subset of X. Let T : C — X be an uniformly L-Lipschitzian
completely continuous and asymptotically quasi-nonexpansive nonself-mapping
with sequence {k.} in [0,c0) such that 3.°° , k, < oo and F(T) # 0. Let
z1 € C,{an}, {Bn} {m}, {an}. {B,} and {4} be sequences in [0, 1] such that
0<a<anbnayb,<B<liantfbntm=1=a,+8,+7 YoM <
oo and 377 7, < oo Then the sequence {z,} defined by (0.3) strongly
converges to a fixed point of 7T

L Inchan and S. Plubtieng, Weak and strong convergence of scheme with errors
for a finite family of nonexpansive mappings,

Let ' be a nonempty subset of normed space X and let T3,7%,...,Tn be
nonexpansive mappings of C into itself. The sequence {x,} defined by

4

z1=x€C,
z} = olTiz, + Blan + ylul,
2 = alTox), + Blan + 12 un,
., zn-—a3T3a: +ﬁ3$n+'y (1.1}

zd = odTyzd + Biz, + ylud,

Topr =l =l Tnal 1 + Bl zn + v ull \n 2 1,

.

where {al}, .., {a}, {BL}, -, {BY}, {7}, - {%Y} are sequences in [0,1]
with o}, + 8% + 4% = 1 forall i = 1,2,3,...,N and {u}}, {u2},.., {ul} are
bounded sequences in C.

Theorem 1 Let X be a uniformly convex Banach space and C be a nonempty
closed convex subset of X. Let 71,75, ..., Tn be a nonexpansive mappings of
C into itself satisfying condition (A") and {z,} be a sequence as defined in
(11) with 22 72 < ccand0 < a<al, < f < 1foralln € N and for all
t=12...,N. If F = ﬂ?’;l F(T;) # @, then {z,} converges strongly to a
common fixed point in £

Theorem 2 Let X be a uniformly convex Banach space satisfying the Opial's
condition, C its nonempty closed convex subset of X. Let 77,73,...,Ty be
nonexpansive mappings of C into itself and {z,} be a sequence defined by
(1.1) with 300 v, < v and 0 < a < af, < 8 < 1 forall n € N and for all
i=1,2,...,N. If F = ﬂﬁilF(Ti) # &, then {z,} converges weakly to a
common fixed point in F.

Theorem 3 Let C be a nonempty closed convex subset of uniformly convex
Banach space X, and let T}, T, . .., Ty nonexpansive mappings of C into itself
suchthat F = (¥, F(T}) # @. If P is a metric projection of C onto F and {z}

T v o
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is a sequence defined by (1.1) with 302, i < v and 0 < < af < f <1
forsall n € N and for all i = 1,2,..., N, then {Pz,} converges strongly to a
common fixed point in F.

S. Plubtieng, R. Punpeang and R. Wangkeeree, Weak and strong convergence
of modified Noor iterations with errors for three asymptotically nonexpansive
mappings

Let X be a normed space, C be a nonempty convex subset of X, and 11,75, T3 :
C — C be three given mappings. Then for a given ¢; € C, compute the

sequence {xn}, {yn} and {z,} by

2 = Tz, + Bazn + Yotn
Yo = o TFazn + BpZn+ Yntn
In+l = anTPyn + BnTn + wn n 21,

where {an}, {0}, {odr}, {Ba}, {801 (B}, (), (74} and {42} are real se-
quences in [0,1] with ap + Bp + T =0, + B, + ¥, = oh + B+~ =1 and
{un}, {vn}, {wn} are bounded sequences in C.

Theorem 1 Let X be a real uniformly convex Banach space, C a nonempty closed
convex subset of X. Let 17,75 and T3 be asymptotically nonexpansive self-maps
of C with sequences {rm} {r(z)} {r } respectively such that 3 o2 , 7 ) < oo
forall i = 1,2, 3 and satisfying condition (A”). Let {z,} be sequence as defined
in (0.4) and some o, 3 € (0, 1) with the following restrictions:

N0 < a<aya,al <f<1,¥n > ng for some ng € N.

(”)E 1’7'n<002n—171’1<002n 17n<°o

If F{(T1) N F(T2) N F(Ty) # 0, then {zn}, {yn}. {2n} converges strongly to a
common fixed point of 77,75 and T3. A

Theorem 2 Let X be a real uniformly convex Banach space which satisfies Opial’
s condition, and C' a nonempty closed convex subset of X. Let 77,75 and T3 be
asymptotically nonexpansive self-maps of C with sequence {r(l)} {r(z)} (¥
respectively such that 372, 7 r# < oo foralii=1,2,3. Let {za} be sequence
as defined in (0.4} and some a, § € (0, 1) with the following restrictions:

()0 < a<anal, ol <B<1,Vn > ng for some ng € N,

(351 Yn < 00, 3001 Tn < 00,2050 Ya < 00,

If F(T1) N F(T2) N F(T3) # 0, then {zn}. {yn} {zn} converges weakly to a
common fixed point of 77,75 and T3.

2. Implicit iteration process
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2.2

S. Plubtieng and R. Punpaeng, Implicit iteration process of nonexpansive
nonself-mappings )

In this paper, we extend Xu and Yin's results to study the contractions Tj, Sr
and U, define by

The = (1 - on)u+asT((1— Bn)z+ BuTa]
Spz = (11— ap)u+anPT|(1 = Ba)x + 5o PTx]
Unz = P{(I—an)u+tanTP((1- Gn)z+ BT,

where {an} C (0,1),0 < B, € f < 1, and P is the nearest point projection of
H onto C.

Theorem 1 Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, and T : C — H be a nonexpansive nonself-mapping. Suppose
that for some v € C, {e,} € (0,1} and 0 < 8, < 8 < 1, the mapping T,
defined by (0.5) has a (unique) fixed point z, € C forallm > 1. Then T has a
fixed point if and only if {z,} remains bounded as a, — 1. In this case, {zn}
converges strongly as a, — 1 to a fixed point of T,

Theorem 2 Let A be a Hilbert space, C be a nonempty closed convex subset
of H, T': C — H be a nonexpansive nonself-mapping satisfying the weak
inwardness cendition, and P : H — C be the nearest point projection. Suppose
that for some v € C, each {a,} € (0,1) and 0 € B, < 8 < 1. Then, a
mapping S, defined by (0.20) has a unique fixed point ¥, € C. Further, T has
a fixed point if and only if {y,,} remains bounded as o, — 1. In this case, {y,}
converges strongly as o, — 1 to a fixed point of T'.

Theorem 3 Let H,C,T,P,u,{a,} and {f,} be as in Theorem 7. Then a
mapping Uy, defined by (0.7) has a unique fixed point 2, € C. Further, T has a
fixed point if and only if {2, } remains bounded as &, — 1 and 8, — 0. In this
case, {zn } converges strongly as a, — 1 and Brn — 0 1o a fixed point of T,

S. Plubtieng and R. Wangkeeree, Strong convergence theorems of viscosity
averaging iterations for asymptotically nonexpansive nonself_mappings

In this paper, we first show that, for an asymptotically nonexpansive nonself-
mapping T with a sequence {kn} C [1, 00), there exists two sequences {z, } and
{yn} which defined by

n

T = anf(Tn) + (1 — an)% Z(PT)jxn, Yn > 1

i=1



and

. 1 & ) .
©0.9) Un == 3 P(anf(ya) + (1 = @a)(TP)yn), Yn > 1
where
1 by — 1
bn== (1+11 —k;|+e),an=2—,¥n>1,
n;( 1 il ),@n -

0<a<fB<l, f:C — Cisa contraction mapping with coefficient o € (0, 1)
and P is the metric projection from H onto C. Theorem 1 Let C be a closed
convex subset of a real Hilbert space H, P the metric projection from H onto
C, T be an asymptotically nonexpansive nonself-mapping from C into H with
Lipschitz constant ky, and suppose that F(T) is nonempty. Let f: C — C be
a contraction mapping with coefficient & € (0, 1),

bn_l
bn—ﬁ’

1 < ;
—_ — k. =7 =
bn_n}:(1+|1 ki +e9) and a,
j=1
where 0 < @ < 8 < 1. If T satisfies (N NO) condition then the sequence {z,}

defined by (0.8) converges strongly to z where, z is the unique solution in F(T")
to the variation inequality

0.10) {(I—flz,z—2)>0, z€ F(T)

or equivalently z = G(f(z)), where G is the metric projection from H onto
F(T).

Theorem 2 Let C be a closed convex subset of a real Hilbert space H, P
the metric projection from H onto C, T be an asymptotically nonexpansive
nonself-mapping from C into H with Lipschitz constant k,, and suppose that
F(T) is nonempty. Let f : C — C be a contraction mapping with coefficient
a € (0,1),

by — 1
bn‘—ﬂ,

1 -
b, = EZ(1+|1_kj|+e 7} and an =
Jj=1
where 0 < o < § < 1. If T satisfies (NNO) condition then the sequence {y,}
defined by (0.13) converges strongly to z where, z is the unique solution in F'(T")
to the variation inequality

2.3 S. Plubtieng and R. Wangkeeree, Strong convergence theorems of vicosity
averaging iterations for nonexpansive nonself-mappings in Hilbert spaces,
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In this paper, we study the three type iterations process as follows: for yg, 29 € C
and

=t f(zn)+ {1 —t,)= Z(F‘T)-"‘:z:1r1

_',--1

Z(PT Y, 2 0

=0

yn+1 = anf(yn 1 - an — ]

and
Znt1 = %ﬂ ; Planf(z) + (1 — an)(TPY 20),n > 0

where {t,} C (0,1), {@,} is a sequence such that 0 < @, <1, f: C—Cisa
contraction mapping and P is the metric projection of H onto C.

Theorem 1 Let H be a Hilbert space, C' a nonempty closed convex subset
of H, P the metric projection of H onto C and T : C -+ H a nonexpansive
nonself-mapping with F(T) # 0. Let {¢,} be sequence in (0, 1) which satisfies
liMmy oo tn = 0. Then for a contraction mapping f : C — C with coefficient
a € (0,1), the sequence {z,,} defined by (0.11)converges strongly to z, where,
z is the unique solution in F(T'} to the variation inequality

{(I-flz,z—2)20, z€ F(T)

or equivalently z = G(f(z)), where G is a metric projection mapping from H
onto F(T).

Theorem 2 Let C be a nonempty closed convex subset of a Hilbert space
H, P be the metric projection of H onto C and T : C — H a nonexpansive
nonself-mapping with F(T") # 0. Let {an} be a sequence in [0, 1] which satisfies
limp oo, = 0 and 350 ) @y = 00. Then for a contraction mapping f : C —
C with coefficient & € (0,1), the sequence {y,} defined by (0.12)converges
strongly to z, where, 2 is the unique solution in F(T') to the variation inequality
Theorem 3 Let C be a nonempty closed convex subset of a Hilbert space H, P the
metric projection of H onto C and T' : C — H a nonexpansive nonself-mapping
with F(T) # 0. Let {a} be sequence in {0, 1) which satisfies limp_.co 0t = 0
and 300 | an = oo. Then for a contraction mapping f : C — C with coefficient
a € (0,1), the sequence {z,} defined by (0.13)converges strongly to z, where,
z is the unique solution in F(T') to the variation inequality

{((I-f)z,z—2)20, ze€ F(T)

or equivalentdy z = G(f(2)), where G is a metric projection mapping from H
onto F(T).
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2.4 S. Plubtieng and R. Punpeang, Implicit iteration process of nonexpansive

2.5

nonself-mappings in Banach spaces ‘
In this paper, we extend Xu and Yin's results [?] to study the contractions T, Sn
and Uy, define by

Tnx = (1 - a’n)u + anT[(I - ﬁn)x + ﬁnT:r]
Spz = (1 —an)u+aPT[(1 - Bn)z + BnPTx]
Unz P{(1 — ap)u+ oy TP[(1 — Br)x + BuTz]),

where {an} € (0,1),0 £ 8, < f < 1, and P is the nearest point projection of
H onto C. '

Theorem 1| Let E be a real reflexive Banach space with a uniformly Géateauz
differentiable norm. Let C be a nonempty closed convex subset of E which has
normmal structure, and T : € — C be a nonexpansive mapping. Suppose that
for some u € C, {on}i2; € (0,1) and 0 < B, < B < 1. Then, a mapping T,
defined by (0.19) has a unique fixed point z, € C. Futher, T has a fixed point
if and only if {z} remains bounded as o, — 1. In this case, {z,} converges
strongly as o, — 1 to a fixed point of T,

Theorem 2  Let E be a uniformly convex Banach space with a uniformly
Gateaur differentiable norm. Let C be a nonempty closed convex subset of
E,and T : C — E be a nonexpansive nonself-mapping satisfying the weak
inwardness condition. Suppose that C is a sunny nonexpansive retract of E
and that for some u € C, {an}5%; € (0,1) and 0 < 8, < 8 < 1. Then, a
mapping S, defined by (0.20) has a unique fixed point y, € C. Further, T has
a fixed point if and only if {y,} remains bounded as o, — 1. In this case, {yn}
converges strongly as o, — 1 to a fixed point of T'.

Theorem 3 Let E be a uniformly convex Banach space with a uniformly
Gateaur differentiable norm. Let C be a nonempty closed convex subset of
E, and T : C — E be 2 nonexpansive nonself-mapping satisfying the weak
inwardness condition. Suppose that C is a sunny nonexpansive retract of E,
that for some v € C, {an}?2; € (0,1),0 < 8, < 8 < 1. Then a mapping
U, defined by (0.21) has a unique fixed point 2z, € C. Further, then T has
a fixed point if and only if {2} remains bounded as &, — 1 and 8, — 0.
In this case, {z,} converges strongly as a, — 1 and G, — 0 to a fixed point of T".

A. Kangtunyakarn and S. Plubtieng, Strong convergence of an implicit iteration
process for asymptotically nonexpansive mappings,

Theorem 1 Let C be a closed convex subset of Hilbert space H and T be
asymptotically nonexpensive mapping on C into itself with Lipschitz condition
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(0.19)
(0.20)
0.21)

1l

k, and suppose that F'(T') is nonempty.
Let

bn = % E?:l(% + !% - kil +e77),
Then, a mapping T, on C given by

Toz = anzo + (1 — an)An[Baz + (1 = Bu) Ani] forall z € C

2.6

has a unique fixed point u, in C, when
_ b 6o |

T bp—14a T ba-i+44d

1=,
Bn and Ay = ; Z T,
Further {uy,} converges strongly to the element of F(T} which nearest to xp.

S. Plubtieng and R. Punpeang, Implicit iteration process with errors of nonex-
pansive nonself-mappings in Banach spaces,

In this paper, we extend Xu and Yin's results [?] to study the contractions Ty, Sn
and Uy, define by

Toz = anut+ b,Tldnz + 05T + Crtin] + cnvn
Spz = anpu+ anT[a,'.n;c + b_,,lPTw + c'nun] + cptn,
Upz = Plagt+ bpTPltng + 5T + Gutin] + crvn]

where {an}, {bn}, {cn}. {@n}, {bn}, and {c,} be real sequences on [0,1] such
that @ + by +Cy = dn +0n+ & =1, 0 < by < 8 < Lb, < 6 < 1,

20 16n €00, 300 &, < 00, and P is the nearest point projection of H onto
C.
Theorem1 Let E be a real reflexive Banach space with a uniformly Gateaus dif-
ferentiable norm. Let C be a nonempty closed convex subset of £ which has nor-
mal structure, and T' : €' — C be a nonexpansive mapping. Letu € C, {u,} and
{vn} be bounded sequences on C and let {a, }, {bn}, {cn}, {dn}, {bn}. and{cn}
be real sequences on [0,1] satisfying the conditions: '

() an+bnten=dn+bat =1,

(i 0Sbp<F<Lb <B<L, Y21,

(i) D502 en < 00, Do G < 00
Then the mapping T,, defined by (0.19) has a unique fixed point z,, € C. Futher,
T has a fixed point if and only if {z,} remains bounded as a, — 0. In this
case, {z,} converges strongly as a, — 0 to a fixed point of T

-Theorem 2 Let E be a uniformly convex Banach space with a uniformly

Gateauz differentiable norm. Let C be a nonempty closed convex subset of
E, and T : C — F be a nonexpansive nonself-mapping satisfying the weak

0<a<%,0gal<%andxgec.
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inwardness condition. Suppose that C is a sunny nonexpansive retract of E and
that for some u € C, let {u,} and {v,} be bounded sequences on C and let
{an}, {ba}: {cn}, {Gn}, {bn}, and{c,} be real sequences on [0,1] satisfying the
conditions:

(i) @+ b+ Cp = dn+ b + G =1,

() 0<ba < F<LBSB<, VR 21,

(i) Yo% Cn < 00, P onry En < 00
Then, a mapping S,, defined by (0.20) has a unique fixed point y,, € C. Further,
T has a fixed point if and only if {y,} remains bounded as a, — 0. In this
case, {yn} converges strongly as a, — 0 to a fixed point of T
Theorem 3 Let E be & uniformly convex Banach space with a uniformly
Géteaus differentiable norm. Let C be a nonempty closed convex subset of
E, and T : C — E be a nonexpansive nonself-mapping satisfying the weak
inwardness condition. Suppose that C' is a sunny nonexpansive retract of £ and
that for some u € C, let {u,} and {v,} be bounded sequences on C and let
{an}, {bn}, {en}, {dn}, {In}, and{c,} be real sequences on [0,1] satisfying the
conditions:

(i) @n +bn+Co=dn+bo+cn=1,

(i) 0<b, <P< b, <B<1, ¥n21,

(i) Yoot cn < 00, P oneyCn < 00
Then, a mapping U, defined by (0.21) has a unique fixed point z, € C. Further,
T has a fixed point if and only if {2,} remains bounded as a, — 0. In this
case, {z,} converges strongly as a, — 0 to a fixed point of 7.

A. Kangtunyakarn and S. Plubtieng, Strong convergence theorems of an implicit
iteration process with errors for asymptotically nonexpansive mappings,
Theorem 1 Let C be a closed convex subset of Hilbert space H and T be

-asymptotically nonexpensive mapping on C into itself with Lipschitz condition

kn and suppose that F(T) is nonempty.
Let :

bo=1 ;.‘=1(1+|1-kj|+e"j) 0O<a<l and zo € C,

and let T; : ¢ — C be a mapping given by
Thz = anZo + BrnAnZ + Ynvn Ve e Cv, € C,
where {an} {8n} and {yn} are sequences in [0,1) such that o + Bp + Y = 1,
2

b br—1
o = KEI_-:-a' and ¥y, < T foraln > 1, b, = %Z?:l(l + 11— ksl +

e),An =137 ,T9,0<a <1.0<a<1and{v,}is a bounded sequence in C.

Then T}, has a unique fixed point u,, in C. Further {un} converges strongly to
the element of F{T") which nearest to zy.



oy

B

e

13

3. Random fixed point theorems
3.1 P. Kumam and S. Plubtieng, The characteristic of noncompact convexity and
random fixed point theorem for set-valued operators,

Theorem 1 Let C be a nonempty closed bounded convex subset of a Banach
space X such that eg{X) < 1, and T : C — K(C(C) a nonexpansive mapping.
Then T has a fixed point.

Theorem 2 Let C be a nonempty closed bounded convex separable sub-
set of a Banach space X such that eg(X) < 1, and T : @ x C — KC(C)
be a set-valued nonexpansive random operator, Then T has a random fixed point.

3.2 P. Kumam and S. Plubtieng, Random fixed point theorems for multivalued
nonexpansive non-self random operators,

Theorem 1 let C be a nonempty ¢losed bounded convex separable subset of
a Banach spaces X such that ¢5(X) < 1, and T : @ x C — KC(X) be a
multivalued nonexpansive random operator and t-y-contractive mapping, such
that for each w € 2, T(w, C) is a bounded set, which satisfies the inwardness
condition, i.e., for eachw € Q, T(w,z) C Ig(z), Vz € C.

Then T has a random fixed point.

Theorem 2 Let C be a nonempty closed bounded convex separable subset
of a Banach spaces X such that &,(X) < 1, and T : Q@ x C — KC(X) be
a multivalued nonexpansive random operator and 1-y-contractive nonexpansive
mapping, such that for each w € Q, T(w,C) is a bounded set; which satisfies
the inwardness condition. i.e., for each w € , T(w,z) C I¢(z), Yz € C.
Then T has a random fixed point.

3.3 P. Kumam and S. Plubtieng, Random fixed point theorems for asymptotically
regular mappings, -
Theorem 1 Let C be a nonempty weakly compact convex separable subset
of a Banach space with WCS(X) > 1 and T : 2 x C — C be a random
uniformly Lipschitzian mapping such that o(T(w,")) < WCS(X) for all
w € §1. Suppose in addition that T" is asymptotically regular on C. Then T has
a random fixed point.
Theorem 2 Let X be a reflexive Banach space, C be a nonempty bounded
convex separable subset of X and T : {2 x ' — C be a random asymptotically
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regular operator. If there exist a constant ¢ € R such that

1+ /T+4WCS(X) (ko (X) -1
2
for all w € © then T has a random fixed point.

o(T(w,")) <c<
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FIXED POINT ITERATION FOR ASYMPTOTICALLY
QUASI-NONEXPANSIVE MAPPINGS
IN BANACH SPACES

SOMYOT PLUBTIENG AND RABIAN WANGKEEREE
Received 21 October 2004 and in revised form 20 April 2005

Suppose that C is a nonempty closed convex subset of a real uniformly convex Banach
space X. Let T : C — C be an asymptotically quasi-nonexpansive mapping. In this paper,
we introduce the three-step iterative scheme for such map with error members. More-
over, we prove that if 7' is uniformly L-Lipschitzian and completely continuous, then the
iterative scheme converges strongly to some fixed point of T,

1. Introduction

Let C be a subset of normed space X, and let T be a self-mapping on C. T is said to be
nonexpansive provided that ||[Tx — Ty|l < llx ~ yll for all x,y € G; T is called asymptoti-
cally nonexpansive if there exists a sequence {k,} in [0,0) with lim,_.k, = 0 such that
(TPx - Tryll = (1 +k,)llx — yll forallx,y € Cand a1 = 1. T is said to be an asymptotically
quasi-nonexpansive map if there exists a sequence {kx} in [0, ) with limp... ks = 0 such
that | T"x - pil < (1 +k,)llx - pli forall x € C and p € F(T), and n > 1 (F(T) denotes
the set of fixed points of T, that is, F(T) = {x € C: Tx = x}).

From the above definitions, if F(T) # ©, then asymptotically nonexpansive mapping
must be asymptotically quasi-nonexpansive mapping.

The concept of asymptotically nonexpansiveness was introduced by Goebel and Kirk
in 1972 [2]. In 2001, Noor [5, 6] introduced the three-step iterative scheme and he stud-
ied the approximate solutions of variational inclusions (inequalities) in Hilbert spaces.
The three-step iterative approximation problems were studied extensively by Noor [5, 6],
Glowinski and Le Tallec [1}], and Haubruge et al. [3].

Recently, Xu and Noor (8] introduced the three-step iterative scheme for asymptoti-
cally nonexpansive mappings and they proved the following strong convergence theorem
in Banach spaces.

Tueorem 1.1 (sce {8, Theorem 2.11). Let X be a real uniformly convex Banach space, let
C be a nonempty closed, bounded convex subset of X. Let T be a completely continuous
and asymptotically nonexpansive self-mapping with sequence {k,) satisfying k, = 0 and

Copyright © 2005 Hindawi Publishing Corporation
Internationsl Journal of Mathematics and Mathematical Sciences 2005:11 (2005} 1685-1692
DOI: 10.1155/1JMMS.2005.1685
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5% 1 kn < 0. Let {ay},{Bn}, and {y.} be real sequences in [0, 1] satisfying
(i) 0 <liminf,_ o & < limsup,_,on <1,
(ii) 0 < liminfy—c Bn < limsup,_,fB. < 1.
For a given xy € D, define

= Yu T %y + {1- Yﬂ)xm
= By T"2Zu+ (1 — Bn) %, (1.1)
Xnil = @ T"Yn+ (1 = Q) X

Then {x,}, {yn}. and {z,} converge strongly to a fixed point of T.

In this paper, we will extend the iterative scheme (1.1) to the iterative scheme of asymp-
totically quasi-nonexpansive mappings with error members. Moreover, we will prove the
strong convergence of iterative scheme to a fixed point of T (C need not to be a bounded
set), requiring T to be uniformly L-Lipschitzian and completely continuous. The results
presented in this paper generalize and extend the corresponding main results of Xu and
Noor [8].

2. Preliminaries
For the sake of convenience, we first recal] some definitions and conclusions.
Definition 2.1 (see [2]). A Banach space X is said to be uniformly convex if the modulus

of convexity of X

flx+ yll
2

6x(e)=inf{l— il = Nyl = 1, |[x—y||=e} >0 (2.1)

forall0 < e <2 (i.e., 8x(€) is a function {0,2) — (0,1)).
Definition 2.2, A mapping T : C — C is called uniformiy L- L:psch:tzmn if there exists a
constant L > 0 such that forall x,y € C,

IT'x-T"y|| s Lix~yll, Vaz=Ll (2.2)

In what follows, we will make use of the following lemmas.

LemMma 2.3 (see [4]). Let the nonnegative number sequences {a,},{b,}, and {d,} satisfy
that

ane) < (1 +byla,+dey Yn Zb < o0, Zd < o, (2.3)

n=1

Then,
(1) Him,,~ s g, exists;
(2) if liminf,_ewa, =0, then lim,_ o a, = 0.
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Lemma 2.4 ([7], . Schu’s Lemma). Let X be a real uniformly convex Banach space, 0 <
a <ty <<, xpyn € X limsup,_ Izl <a limsup,_, llynll <4, and lim,—o |[tzx0 +
(1 =t)yall = a, a= 0. Then, limy—co llxn — yull = 0.

3. Main results

In this section, we prove our main theorem. First of all, we will need the following lem-
mas.

Lemma 3.1. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X. Let T be an asymptotically quasi-nonexpansive mapping with sequence {kn}nz1
such that 3ok, < o and F(T) # @. Let xp € C and

Zn = oty T + B, X + ¥yt tns
Pu = &y T"Zy + BLXn + YV, (3.1)

Xn+l = ‘an"}’n +ﬁnxn + ¥YuWn,

where {an}, {a,}, {an ), {Bahs {Behs {Br }s {yn)s {yn), and {y, } are real sequences in [0,1]
and fu,}, {v,}, and {w,} are three bounded sequences in C such that

() antPutyn=an+tPptyn=ay+8 +y, =1,

(i) ZamiPn <00, o Pn <00, Ty ¥ < .
If p € F(T), then limy_ » ||xn — pll exists.

Proof. Let p € F(T). Since {uy},{va}, and {w,} are bounded sequences in C, put
M = sup||u, = pl| v sup|v. — pil v supliw, — pli. (3.2)
nz=l nzl nx1
Then M is a finite number. So for each n = 1, we note that

1xns1 = pll = llotnT" yie + But + yuwi — p|
< ul[T" v~ pll + Ballxtn = pll+ yullwa — plf (3.3)
< an(1+kn}l[yn = pll + Ballxa — plf + yullwa — pll,
yn = pll = ll&n T2 + Brxa + ¥ovn — |
< o[ 7724 — pll + Bullxa = pll + y3llva — (3.4)
=< a, (1 +kn)llzn — Pl + Brllxn — Pl + yallva = pll.
lizn = pll < @ (1 + k)l = pll + Byl = pll+ y5 lletw — I (3.5)
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Substituting (3.5) into (3.4),

llyn = pll < @y (14 kn} |l = pl| |
+a, By (14 ka)fhtn = pll + sy (14 k) lst = pl1+ Bollxn — pll + ¥ollve — P
< (1= B~y ey (1+ k) llxn — pll+ Brllxa — pll
+ (1 =B~ Y ) By lln — pll + 12
< B (14 k)|l — pll + (1 = By (1 + k)|l = p|
+ (L= BBy (1 +kn) l{n — pll + s
= B, (14 k) |l = Pl + (1 = B (o + BY) (14 k) [0 = pl| +
< B {1+ k) i — pll+ (1= ) (14 k)l — pl| + 14
= (1 +ka)’||%a = pli + 15,

(3.6)
where m,, == y;/ (I + k,)M + y,,M. Substituting (3.6) into (3.3) again, we have
(15601 = Pl < a1+ k) ((1 4 k) [0 = pll + 1120} + Bl = plI + yillwe = pl|
= aq(1 +k,,)3f|x., = pll+ an{L 4 kn) g+ Bl — pll + yullwa — pll
< (an ) (1+) [0 = pll+ (1 + ko)1 + 3l = pll 57)

={1 +kn)3”-’~’n — plt+ (1 +ka}omtn + puliwn - p|
< (1+kn) |l — pll + (14 ko) g + yuM
= (1+d,)||xn — p|| + ba:

where d, = 3k, + 3k + k3 and b, = (1 + kn)mu + y,M. Since 3, dy < o0 and 3, by <
o0, by Lemma 2.3, we have that lim,_ [lx, — pll exists. This completes the proof. O

Lemma 3.2, Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X. Let T be an asymiptotically quasi-nonexpansive mapping with sequence {k,} 521
such that > k, < 00 and F(T) # @. Let xo € C and for each n = 0,

Zn = ey T+ By X + Vi tins
Vn = @ T 20t BXn+ Yy Vns (3.8)
Xne1 = anTnyn +ﬁnxn + YnWns

witere {u,}, {v.}, and {w,} are three bounded sequences in C and {a,}, {a;,}, {a, }, {Bs},
{Boh 1B Y Aynds {yn), and Ly} are real sequences in [0,1) which satisfy the same as-
sumptions as Lemma 3.1 and the additional assumption that 0 < a < &, fn o, << 1
for some o, B in (0,1). Thent iMp—oo I T7 ¥ — Xpll = 0 = limpaeo | T2, — x4l
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i Proof. For any p € F(T), it follows from Lemma 3.1, that lim,_ llxx — pll exists. Let

limy— |l — pll = a for some a = 0. From (3.6), we have
[y = pll = (U+ka) llxn = pll 470 (3.9)
Taking limsup,,_ , in both sides, we obtain
liglsgpllyu -pll= lirp_sgpllxn = pll = fim ||xn ~ pl| = a. (3.10)
Note that
limsup||T"y, = plf < limsup (1 +kn)llyx = pl| = limsup|lys - plf < a,

= lim |22 = Il = lim |l&n T" y + Bxn + yaren — plf

(3.11)
= iim‘a,,[T Yu— P+2an( » p)]+ﬁn[xn P+2ﬁ (Wn ~ ]H
_hm‘an[T Yn— P+ ( n-"p)]‘f'(l—an)[ —p+ =5 (Wr; P)]H
n 25"
By J. Schu’s Lemma 2.4, we have
e (- -
tim 77 - 2+ (Za,, 25 ) (=) (3.12)
Since limy - {yn/ 2y — ¥n/2Bn){wn — p)il = 0, it follows that
Jim ||T" yn — || = 0. (3.13)
Finally, we will prove that lim,—« || T"z, = x,]| = 0. To this end, we note that for each

n=1,

llxe = Pl < 17" yn = all + Ty = Pl < NT"y = xall + (Lt ka)llyn = pll. (3.24)

Since limy—o | T"yy — x|l = 0 = imp-. o0 ky, we obtain that

a = lim |jx, - p|| < liminf ||y, - pl}. (3.15)
It follows that
a < liminf||y, - pll limsup Iy, — plf < a. (3.16)
This implies that
lim ||y - pll = & ' (3.17)
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On the other hand, we note that

o= il =l T2+ B =
< oy (1+kq)|lxn = pil + 81 lbxa = pll + vy e = 2l (3.18)
< &y (1+ka)llxn — pll+ (1= o)) (14 ka)blxn — pll + y7 llea — '
< (2 +ka)llxa = pll + 77 l|un = Bl
By boundedness of the sequence {u,} and limy—w ky = 0 = limy- ¥, , we have
limsup||z, - p|| < limsup||x, — pll = a, (3.19)
H—0o0 n—os
and so
limsup||T"z, — pl| < limsup (1 +k,}{z. — pl| =@,
= lim ||y — plf = lim {la, 77z, + Bx0 + yivm = |
|y - n . Pr (3.20)
= i 77~ 2 0 )| 1 50 50
= lim [l [ 77 - p+ %:—:'(v,,-—p)] +—a) [z p e -]
By J. Schu’s Lemma 2.4, we have
lim || 772, - % +(”—:’-”—:')(v,,—p)H=o. (3.21)
f—oo O 2an 28
Since limp—w || (4720, ~ ¥a/2B84)(va — p)il = 0, it follows that
lim [| 772, — x| = 0. (3:22)
This completes the proof. a

THeorEM 3.3. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X. Let T be uniformly L-Lipschitzian, completely continuous, and an asymptotically
quasi-nonexpansive mapping with sequence {kn}tux1 such that Y o kn < 0o and F(T) # @.
Let xg € C and for each n = 0,

Zn = 0 T X0 4 B X + Vit iy
Y =0T 2y + Brxn + Y Vs (3.23)
xn+] =Qn Tﬂy" + ﬁan 4 }',,‘Wm

where {u,},{vs}, and {w,} are three bounded sequences in C and {ax}, {ap}, {a)/}, {Bn}.
(B} (B Y {yads {¥n}, and {y,} are real sequences in [0,1] which satisfy the same as-
sumptions as Lemma 3.1 and the additional assumption that 0 < a < @y, PP <f< 1
Jor somea, Bin{(0,1). Then {x,},{ya}, and {z;} converge strongly to a fixed point of T,
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Proof. It follows from Lemma 3.2 that
Ai_p;HT"y,,—x,,H = 0= lim || 7"z, — xall (3.24)
and this implies that
[1%ne1 = Xne|| < &a] T ¥ = Xnl| + YallWn = Xul| — 0 a5 52— o0, (3.25)
We note that
NT"xn — xnl| < | T"%n — T" yn|| + {|T7 yr — %all = Ll{xn — yul| + ”T"}‘n — Xl
< o Ll|xy — T2, + yaLl|lvie = xall + 1T yn — ]| — 0 as n — o0,
- (3.26)
B
A\ ”xn - Tx,,H Sllxrﬂ-l "'xn”"'“xrﬁl - T"Han”"'”T"quH - Tﬂﬂxr:“"'”Tonn - Tx,,[l
< |21 = Xnl|* [ %ns1 = T et ||+ (1 + Kot Y| Xma1 = ||+ L] | T — xa] |-
(3.27)
i
It follows from (3.25), (3.26), and the above inequality that
i,El_'n;”.vc,, - Txy|| = 0. (3.28)
By Lemma 3.1, {x.} is bounded. It follows from our assumption that T’ is completely
continuous and that there exists a subsequence {Txp, } of {Txa} such that Tx,, ~ pe C
as k — oo, Moreover, by (3.28), we have || Tx, — x5, | = 0 which implies that x,, — p as
k — oo, By (3.28) again, we have
llp—Tpll = !i_n;”xm - Txp| = 0. (3.29)
This shows that p € F(T). Furthermore, since limg.llxs — pll exists, we have
limp_ o llx, ~ pll = 0, that is, {x,} converges to some fixed point of T. It follows that
- - .
R ' : yn = xall < @]l T2 = xall + yallve — xull — 0, (3.30)
||2,,—x,,,|‘| _<_a:,’”T”x,,-—x,,||+y,','||u,,-—x,,||—-0. .
Therefore, lim,.o ¥4 = p = limy— e z4. This completes the proof. O
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ABSTRACT. Suppose C' is a nonempty closed convex subset of a real uniformly convex
Banach space X. Let T': C' — C be an asymptotically nonexpansive in the intermediate
sense mapping. In this paper we introduced the three-step iterative sequence for such map
with error members. Moreover, we prove that, if T is completely continuous then the cur
iterative sequence converges strongly to a fixed point of 7.

1. Introduction

Let C be a subset of real normed linear space X, and let T be a self-mapping on
C. T is said to be nonexpansive provided [Tz ~Ty|| < |z -yl foralz,y € C; Tis
called asymptotically nonexpansive if there exists a sequence {k,} of real numbers
with lim, . k, = 1 such that for each z,y € Cand n > 1,

IT*z — Tyl < knllz - yll-

T is called asymptotically nonexpansive in the intermediate sense [1] provided Tis
uniformly continuous and

limsup sup ([IT"z—T"yli - |z - yll) <

L= OO :r:,ye

From the above definitions, it follows that asymptotically nonexpansive mapping
must be asymptotically nonexpansive in the intermediate sense and asymptotically

quasi-nonexpansive mapping. But the converges dose not holds as the followmg
example:

Example 1.1 (see [6]). Let X =R, C = 1) and [k| < 1. For each z € C,

1r'1r

define
- -l- v
T(z) = kxsin 2, }fz#ﬂ,
0, ifx=0.

Received October 19, 2004, and, in revised form, December 16, 2004.
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Then T is an asymptotically nonexpansive in the intermediate sense but it is not
asymptotically nonexpansive mapping.

The concept of asymptotically nonexpansiveness was introduced by Goebel
and Kirk ([3)) in 1992. In 2001, Noor ([8], [9]) have introduced the three-step
iterative sequences and he studied the approximate solutions of variational inclu-
sions(inequalities) in Hilbert spaces. The three-step iterative approximation prob-
lems were studied extensively by Noor ([8], [9]), Glowinski and Le Tallec ({2]),
Haubruge et al ([4]).

In 2002, Xu and Noor ([14]) introduced the three-step iterative for asymptot-
ically nonexpansive mappings and they proved the following strong convergence
theorem in Banach spaces;

Theorem XN ({14], Theorem 2.1). Let X be e real uniformly conver Banach
space, C be a nonempty closed, bounded conver subset of X. Let T' be a completely
continuous asymptotically nonezpansive self-mapping with sequence {k,} satisfying
kn 21 and 3,7 (kn — 1) < co. Let {an}, {Bn} and {va} be real sequences in [0,1]
satisfying, :

(i} 0 <liminf, o0 @y < limsup,,_,, on < 1, and
(ii} 0 < liminf, e By < limsup,, .. Ge < 1.
For a give g € C, define

(1.1) zZn = T zn+ (1 - Y)zn
Yn = BT 2+ (1 - ﬁn)xn
Tnyr = nT yn+ (1 — an)zp.

Then {z.}, {yn} ond {z.} converges strongly to a fized point of T.

Algorithm 1.1{Noor iterations with errors). Let C be a nonempty subset of
normed space X and let T : C ~» C be a mapping. For a given x¢ € C, find the
‘sequence {Tp41} such that '

(1.2) : Zn = ohT zn+ fuza +70up
- Yn = a:.Tnzn + ﬂ:zzn + 7:11’!1
Tpyl = nT™Yn + Brnzn + TntWn,

where {an}, {o}, {an} {Bn}: {Bo}: {81 {7}, {7n} and {77} are real sequences
in [0,1] and {un}, {v.} and {w,} are three bounded sequences in C.

It is clear that the Mann and Ishikawa iterations processes are all special case
of the Noor iterations with error.

In this paper, we will extend the process (1.1) to Noor iteration with error (1.2)
for asymptotically nonexpansive in the intermediate sense and without boundedness
conditions on €. The results presented in this paper generalize and extend the
corresponding main results of Xu and Noor ([14]).
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2. Preliminaries

‘ For the sake of convenience, we first recall some definitions and conclusions.
Definition 2.1 (see |3]). A Banach space X is said to be uniformily eonvex if the
modulus of convexity of X

. +
sx(@) =me(1 = B oy =1 oyl = > 0

for ali 0 < € <2 (i.e, dx(€) is a function (0,2] — (0,1)).

Lemma 2.2 (see |7]). Let the nonnegative number sequences {a,},{b,} and {d,}
satisfy that

00 0
Gny1 £ (1+bn)an +dn,Vﬂ= 1:2y"' ,an<00,2dn<00.
n=1

n=1
Then
(1} limpeweo @n exists;
(2) If liminf, oo an =0, then limp_, 00 ap = 0.
Lemma 2.3 ([13], J. Schu’s Lemma). Let X be o real uniformly conver Banach

space, 0 <o S in S P <1, Tn, yn € X, limsup,,_,, [|znl < a, limsup,,_, ., [yl <
@, and liMp oo [taZn + (1 = ta)ynll = @, @ > 0. Then limp_.oo || 2n — a] = 0.

3. Main results

In this section, we prove our main theorem. First of all, we shall need the
following lammas.

Lemma 3.1. Let X be o real uniformly convez Banach space, C a nonempty closed

conver subset of X. Let T be an asymptotically nonezpansive in the intermediate
sense. Put

Gn = sup (|T"z - T"y|| - llz — yl[) V0,Vn > 1,
z,y€C

s0 that 307, Gn < 00. Let 2o € C and

Zn = a::zmxn -+ ﬁ:zn + 'Y::un
Yn = T2+ B %n +Vivn
Tntl = c-'nTnyn + Pntn + “Intin,

where {an}, {al,}, {an}: {Ba}, {Bo}: {6} {m} {7n} and {1} are real sequences in
(0,1] and {un}, {vn} and {wn} are threc bounded sequences in C such that

) et Bt =+ O v =l B+l =1,
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(ii) E?:: o < 00,
Then for each p € F(T),limp_o0 ||zn — p|| exists.

Proof. By the Schauder fixed-point theorem {12], we obtain that F(T) # 0. Let
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E?:l ‘YI"I < o0, E:o=1 7"’: <0

p € F(T), since {un},{vn} and {w,} are bounded sequences in C, so we put

K = sup [up — pfl V sup|lvn = pll V sup fwn — p|l.
n>1 n>1 n>1

For each n > 1, we note that

(3.1) s =Pl = llanZaT™yn + BnZn + Ynwn — |l
< anllTyn — Pl + Bullen — Pl + Wllwn — Bl
< anllyn — 2l + G + Ballza — pll + ullws — 2l
) and
(3.2) yn —2ll = "a:zT“Zn + ﬁ::xn + 7::1’" - P“
< Tz, — pll + Brllzn — pll + Yallva — 2l
< Q:t“zn - P” + Gy +16:1|I-Tn "'P" + 'Y;i]'un - P“
and
(3.3) llzn = pll = || < egtllzn — pll + Gn + Bpllzn — pll + ¥ ||un ~ 2]

Substituting (3.3) into (3.2},

(34)  llyn —pll

IA

!

anafflzn = pll + anGn + ofBnllzn — pll + oz llun — 2

+ Gr + BLllzn — pll + Yillve — pll

IA A

IA

where m, = 2G, + 7, |[va — pll + viillzn — pl|. Substituting (3.4) into (3.1) again,

we have

a1 — ol

A A A A

(1- ﬂ:: —Taenlza —pll + Bullze —pll + (1 — B, - WL)ﬂ::Hxn —pll +mn
Ballzn = pll + (1~ Br)anllza = pll + (1 = Bn)Byllzn — pll +ma
Bollzn = pll + (1 = Bu)(a + B)|zn ~ pll + ma

Ballzn — pll + (1 = Bu)llzn — pll +mn

za — )| + ma,

en(||zn = pll + mn) + Gn + Ballzn - pll + Yallwn — pll
(an + Br)llza — || + anmn + Gp + Yallwn ~ 7
Iza — Pll + M + G + nllwa — pl|

lza — pll + 3Gn + (¥ + 710 + Y2) M

lon — pll + ba,




Vil

NANKWIN 2/5

Noor Tterations for Non-Lipschitzian Mappings o

where b, = 3G + (¥a + 74 + Y )M. Since T77 by < co, by Lemma 2.2, we have
liMp oo ||Tn — pli exists. This completes the proof. O

Lemma 3.2. Let X be a real uniformly conver Banach space, C ¢ nonemply closed
convex subset of X. Let T be an asymploticatly nonexpansive in the intermediate
sense. Put

Gn= sup (JT"z— Ty -z -yl vO,¥n 21
zyeC

Let xg € C and jor eachn 2 0,

zn = AT "z, + Fn2n + Y itn
Un T2y + BZn + Yo¥n
Zntr = T Yn+ BnZn + YnWn,
where {an}, {o }, {e} (B} {Bh}: {Ba} {1} {7 } and {7} are real sequences in
[0,1] and {un}, {vn} and {wn} are three bounded sequences in C such that
(i) an+ﬁn+'¥n=ai|+ﬁ:;+7:1 =Qg+6:+’fnl =1
(ii) Zf;; In < 00,23;11 Yn < 00, 2?:1 Y < 0.
(iii) 0 < a < ap,a,, <8< 1. Then

It

A%,

(8) limp_oo [T Yn — Zall = 0;
(b) limp—so [1T"z, — zy| = 0.

Proof. (a). For any p € F(T), it follows from Lemma 3.1, we have limp_. ||z — p|
exists. Let limy oo ||Za — »|| = a for some a > 0. From (3.4), we have

Hyn = Pll < llza — Bl + mny Yo 2 1.

Taking limsup, _, ., in both sides, we obtain
limsup |lyn — pl| < limsup |z —pl = lim |lzn - p| = a.
n—o0 . n—oo n—oa
a Note that
limsup |7y, — plf < limsup([ly, — plf + Ga) = limsup ||y - p[| < a.
n—+00 Nn—0o0 n—oa
Next, consider

IT7Yn = p + oW — 20)]| S [T"Yn = Pl + nllwn — zaf-
Thus,

(3.5) imsup [T"gn ~ p+ Mn(ttn — Ta)|| S @
n—oo

K
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IMPLICIT ITERATION PROCESS OF NONE.XPANSIVE

NONSELF-MAPPINGS

SOMYOT PLUBTIENG AND RATTANAPORN PUNPAENG

Department of Mathematics, Faculty of Science, Naresuan University, Pitsanulok 65000,

Thailand

ABsTrACT. Suppose C is a nonempty closed convex subset of real Hilbert space
H. Let T : ¢ — H be a nonexpansive nonself-mapping and P is the nearest
point projection of H onto €. In this paper, we study the convergence of the

sequences {Tn}, {yn}, {2n} satisfying

In = (1 - Cfn)u + anT[(l - Bn)mn + 3-1T$n]
n = (1 —an)u+ &nPT[{L — Gn)yn + BnPTyn], and
zn = Pl =an)u+onTP[(1 - fr)zn + BnTznl|

where {an} € (0,1), 0 < Gn < 8 <! and an — 1l asn — co. The results
obtained in this paper extend and improve the recent ones announced by Xu and
Yin, and many others.

Keywords and phrases: Nonexpansive mapping, nearest point projection, fixed
points, weak inwardness condition, strong convergence theorems.

2000 Mathematics Subject Classification: 47H10, 4TH(09, 46B20.

1. INTRODUCTION

Let € be a nonempty closed convex subset of a Banach space E. Then a

nonself-mapping T from C into E is called nonezpansive if [Tz — Ty|| < |z ~ yll

" Corresponding author.
: Email eddresses: Somyotp@nu.ac.th{Somyot Plubtieng) and g46060088@nu.ac.th.
* (Rattanaporn Punpaeng).
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for all z,y € C. Given u € C and {a,} is a sequence such that 0 < a;, < 1. We can
define a contraction T, : C — FE by

Taz = (1~ ap)ut+a,Tz, z€C. (1.1)

If T is a self-mapping(i.e. T(C) C C), then T,, maps C into itself, and hence, by
Banach’s contraction principle, T}, has a unique fixed point z,, in C, that is, we have

Tn = (1 — ap)u+ 0Ty, Vn > 1. (1.2)

(Such a sequence {z,} is said to be an approximating fixed point of T since it
possesses the property that if {z,} is bounded, then lim, . ||Tzn — 24| = 0)
whenever lim,__,o, a, = 1. The strong convergence of {z,} as &, — 1 for a self-
mapping T of a bounded C was proved in a Hilbert space independently by Browder
[1] and Halpern [3] and in a uniformly smooth Banach space by Reich [7]. Thereafter,
Singh and Watson (8] extended the resuit of Browder and Halpern to nonexpansive
nonself-mapping T sa.tisff,fiug Rothe’s boundary condition: T(8C) C C (here 8C
denotes the boundary of C). Recently, Xu and Yin [11] proved that if C is a
nonempty closed convex(not necessarily bounded) subset of Hilbert space H, if
T : C — H is a nonexpansive nonself-mapping, and if {z,} is the sequence defined
by (1.2) which is bounded, then {z.} converges strongly as o, — 1 to a fixed point
of T. Marino and Trombetta [5] defined contractions S, and Uy, from C into itself
by
: Spz=(1-—ap)uta,PlzforallzeC (1.3)
and
Unz = P[(1 — an)u+ a,Tz] for all z € C, (1.4)
where P is the nearest point projection of H onto C. Then by the Banach contrac-
tion principle, there exists a unique fixed point yn(resp. z,) of Sp(resp. U,) in C
ie.
yn = (1 — op)u+ on PTyn (1.5)
and
zn = P[(1 — ap)u + anT'zy). (1.6)
Xu and Yin [11] also proved that if C is a nonempty closed convex subset of a
Hilbert space H, if T : C — H is a nonexpansive nonself-mapping satisfying the
weak inwardness condition, and {z,} is bounded, the {y} (resp. {zn}) defined by
(1.5) {resp.(1.6)) converges strongly as o, —+ 1 to a fixed point of T

Let C be a nonempty convex subset of Banach space E. Then for x € C we
define the inward set I.(x) as follows:

I(z)={ye€ E:y=z+a(z —z) for some z € C and a > 0}.
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A mapping T : C — E is said to be inward if Tz € I,(z) for all z € C. T is also
said to be weakly inward if for each = € C, Tz belongs to the closure of I.(x).

In this paper, we extend Xu and Yin's results {11] to study the contractions
Th, Sn and Uy, define by

Toz = (1—oap)u+o,T[(1— Bn)z+ BTx] (1.7)
Spx = (1-an)u+anPT[(1 - B)z + BnPTzx] (1.8)
Uz = Pl(1-an)u+anTP[(1 - )z + B,.Tz]], (1.9)

where {a,} € (0,1),0 < 8, < 8 < 1, and P is the nearest point projection of H
onto C. We also prove the strong convergence of the sequences {z,}, {yn} and {z,}
satisfying

Tn = (1—ap)u+aonT((1 — Bn)zn + BTy, (1.10)
Yn = (1—an)u+anPT{(1 - Bn)yn + B PTyy], (1.11)
z = Pl -ap)u+anTP{(1 = 0n)zn + BnT 2], (1.12)

where ¢, — 1 as n — o0.

We note that if 8, = 0, then (1.10), (1.11), (1.12) reduces to (1.2), (1.5), and (1.6)
respectively.

2. MAIN RESULTS

In this section, we prove the strong convergence theorems for nonexpansive
nonself-mappings. To prove our results, we use the following Theorem.

Theorem 2.1. Let H be ¢ real Hilbert space, C be a nonempty closed conver subset
of H, and T : ' — H be a nonezpansive nonself-mapping. Suppose that for some
u € C, {ap} C (0,1) and0 < B, < B < 1, the mapping T,, defined by (1.7) has
a (unique) fized point x, € C for alln > 1. Then T has a fized point if and only
if {xn} remains bounded as o, — 1. In this case, {xzn} converges strongly as
an —+ 1 to a fized point of T.
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Proof. We denote by F(T) the fixed point set of T'. Suppose that F(T') is nonempty.
Let w € F(T). Then for each n > 1, we have

lw—=2al| = |lw—{1-an)u—axT[(1— fn)zn+ BaTzn]l
< (1= an)llw—ull + anllw — TH1 - Br)zn + BaTza||
< (- an)lw—ull +anflw - (1 = Ba)an — BuTzall
< (1 -an)llw —ull + ona(l = Ba)llw — Zall + omBrllw — zn||

(1 = an)llw — u]| + anflw — 24

and hence (I — ap)ljlw — znfl € (1 — an)|lw — u|| for all n > 1. This implies
lw = zu|] € ||w—ul| for all n > 1. Then {z,} is a bounded sequence. Conversely,
suppose that {z,} is bounded, z is a weak cluster point of {#,}, and ap, — 1 as
n — o00. Then we show that F(T) # @ and {x.} converges strongly to a fixed
point of T. We choose a subsequence {z,,} of the sequence {z,} with a,, — 1

such that x,, — z weakly, we can define a real valued function g on H given by

g(z) = limsup ||z, — z]|* for every = € H.
i—o0

Observeing [|zn, — z/|* = |[2n; — 2I|2 + 2T, — 2,2~ ) + ||z — z|®. Since zn, — z
weakly, we immediately get

g(z) = g(2) + ||z — 2||® for all z € H,

- in particular,

9(T2) = g(2) + 1Tz — z|*. (2.1)

On the other hand, we have

fzn, — Tznll < (1= an)llu— Tonll + and|T{(1 = Bri)zn; + BniTzn] — Tanll
< (1- an)flu — Tn|l + anl|(X — Bn)Tn, + B Tn, — o, ||
< (1- ane)"" — Tzp, Il + Br; ||T:L‘m - mn.‘”s

for all ¢ > 1. This implies that (1 — Bn)||zn; — T2n ]l < (1 — ag,)|lu — Tzx, || and
hence

_ Q-an),
fon, = Tanll = (T3 u—Ten
(l_am‘) .
< Ty, — — 0.
) [l — Tz, Qasi 00



! '.'._,4?) i

1Y

s
-

i

7

ManuwIn 3/5
IMPLICIT ITERATION PROCESS 5

Note that,

|2, — Fz|l |%ne — Ty + Tn; — T2
(H#n, = Tz, |l + |1 T 20, ~ T2]|)?

”xﬂi - T.’l:n‘.”2 + 2”2:"{ - Tx“i ””Ta:“i - Tz” + "T*Tﬂ.' - Tz"2

IA

for all n € N. Hence

o(T2) = limsup|an, — T2

P00

< limsup ||Tzn, — Tz|?

t—t00
< limsup||zn, — 2||* = g(2).

1t
This, together with (2.1) implies that Tz = zand z is a fixed point of T'. Now since
F(T) is nonempty, closed and convex, there exists a unique v € F(T') that is closest
to u; namely, v is the nearest point projection of v onto F(T'). For any y € F(T),
we have

(zn — u) + nlu ~ 9)?

A2|IT[(1 = Bn)an + BuTxn] — yl>

< ar?z"(l — Bp)on + BnTxy — y||2
| = Q{1 - Ba){an — 1) + Bu(Tan — )|
' < @2((1 - Bo)lzn — yll + Ballzn — yll)?

2
olz, -y

oz —u+u—yl?

and so
2n ~ wll? + e2]lu — gl + 20n(zn — v, u—y) < ei(len —ull® + flu—y?
+ 2{zn —uyu—y))
< opllzn - “"2 + an|u — 9’”2

+ 20n{%n — u,u— ¥
for all n > 1. It follows that
|lzn—ull?® < anlly—u||? < ||y—ul? for all y € F(T) and {an} € (0,1) for all n € N.
Since the norm of H is weakly lower semicontinuous(w-ls.c.), we get

|z — u|| < lminf ||z, — | < ||y —u| for all y € F(T).
1—00

(1 = an)u+ anT((1 — Bn)an + BuTTn] — u) 4+ anfu — y)l|2
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rIfherefore, we must have z = v for v is the unique element in F(T') that is closest
to u. This shows that v is the only weak cluster point of {z,} with an ~— 1. It
remains to verify that the convergence is strong. In fact, it follows

lzn = vl = llzn = ul? - llu—2l* = 2(zs = v,v - )
< —2zp—v,v—u) —0asn— oo.
This completes the proof. a

Corollary 2.2, Let H,C,T be as in Theorem 2.1. Suppose in addition that C 1is
bounded and that the weak inwardness condition is satisfied. Then for eachu € C,
the sequence {z,} satisfying (1.10) converges strongly as an — 1 to e fized point
of T.

Theorem 2.3. Let H be a Hilbert space, C be a nonempty closed convez subset of
H, T:C — H be a nonezpansive nonself-mapping satisfying the weak inwardness
condition, and P : H — C be the nearest point projection. Suppose that for some
u € C, each {an} € (0,1) and 0 < B, € B8 < 1. Then, a mapping S, defined by
(1.8) has a unique fired point y, € C. Further, T has a fized point if and only if {yn}
remains bounded as an — 1. In this case, {yn} converges strongly as o — 1 to
a fized point of T.

Proof. 1t is straightforward that S, : ¢ — C is a contraction for every n > 1.
Therefore by the Banach contraction principle there exists a unique fixed point y,
of Sy in C satisfying (1.11). Let w be a fixed point of T. Then as in the proof of
Theorem 2.1, {y,} is bounded. Conversely, suppose that {y,.} is bounded. Apply
Theorem 2.1, we obtain that {y,} converges strongly to a fixed point z of PT. Next,
let us show that z € F(T'). Since z = PTz and P is the nearest point projection of
H onto C, it follows by (9] that

(Tz—2z,J(z—v)) 20forallveC.

On the other hand, Tz belongs to the closure of I.(z) by the weak inwardness
conditions. Hence for each integer n > 1, there exists z, € C and a,, > 0 such that
the sequence

Tn = 2+ 0p{2, —2) — Tz
Thus it follows that

0 < an{Tz—22—2)

(Tz — z,a,(z — 2,))
(Tz—2zz—1q) — (T2—2,2—T2)

= Tz -
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Hence we have Tz = z. g

Corollary 2.4. ([11, Theorem 2]). Let H,C,T, P,u, and {a,} be as in Theorem
2.3. Then, a mapping S, given by (1.3) has a unique fixed point y, € C such that
Yn = (1 — an)u + an PTy,. Further, T has a fixed point if and only if {y,} remains
bounded as a, — 1. In this case, {y,} converges strongly as o, — 1 to a fixed
point of T'.

Theorem 2.5. Let H,C,T, P,u, {a,} and {Bp} be as in Theorem 2.9. Then a
mapping U, defined by (1.9) has a unique fired point z,, € C. Further, T has a fized
point if and only if {z,} remains bounded as a, — 1 and B, — 0. In this case,
{zn} converges strongly as a, — 1 and B, — 0 to ¢ fized point of T

Proof. It follows by the Banach contraction principle that there exists a unique fixed
pojnt 2z, of U, such that
zn = P{(1 — an)u + anTP|(1 = Bn)zn + BrT 2]

Let w € F(T). Then for each n > 1, we have

lw—2zall = [IPw~P[(1~o0m)+0onTP((1=Br)zm+ LTzl
< lw— (1 —an)u—anTP(1 - Bn)zn + BuTzn]|l
< (I —an)lw—ul+anlw—TP[(1 - Ba)zn + BTzl
< (I-ap)llw —uf + an(l = Ba)llw — 2l + enfniiw — Tzl
< (1—an)llw - ull + an(l = Ba)llw — znl| + anBallw — 2l

(1 — an)llw — ul| + anllw — z||

and hence (1 — an)llw — 2»| < (1 — ap}ljw — ul|, ¥n > 1. This implies ||w — z,|| <
|lw—wu||, ¥n > 1. Then {z,} is bounded. Conversely, suppose that {z,} is bounded,
onp — 1 and B, — 0. To show that F(T) # 0. For any subsequence {z} of
thef sequence {2} converging weakly to Z such that a,, — 1, we can define a real
valued function g on H given by

9(z) = limsup ||z, — 2||? for every z € H. (2.2)

T— 03

Observing ||zn; — 2| = 120, — 2I1® + 2{2n; — 2,2 — 2) + ||z — z||%. Since z,, — Z
weakly, we get

g9(z) =g(z) + |z - z||? for all z € H,
in particular,
g(PTz) = g(3) + |PTz — 2| (2.3)
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For instance, that the straightforward verification gives

Nzn; — PTzn,|| = ||P[(1— an)u+ an,TP{(1 ~ Bn;)zn; + Bn,T2n;)] — PTzy,||
(1 - aﬂi)”u’ - Tzﬂi” + aﬂiﬁﬂi“Tzﬂi - zﬂi”: for all ¢ 21

FaN

and this implies that ||2n, ~ PT 2y, || € (1—an u—Tzn, ||+ B0 | T2n, — 2, ]| — O
as 1 — co. Moreover, we note that

lza; — PTZ|2 = |2n; ~ PT2n, + PTz,, — PTZ|?
oy < (lzn; — PTan|| + [|PT2n, — PT2[})?
= [le; — PT2o,|> + 2l|7n, = PT || PT 20, — PTz|| + ||PT2n, — PT2|*
for all 7 € N. It follows that
g(PTz) = limsup|jz,, — PTz|?
i—00
< limsup ||PTzn, — PTZ||
femetOO
< limsup ||z, — Z|* = g(2)
i—co
which in turn, together with (2.3), implies that PT(z) = Z. Since T satisfies the
weak inwardness condition, by the same argument as in the proof of Theorem 2.3,
we-see that Z is a fixed point of T. For any w € F(T), we have
an[TP((1 - Br)w+ Bow) —ul+u = an(w—u)+u
= aaw+(1—an)u
= Plogw+ (1 — ap)u)
=i
& for all n € N. By follows as in the proof of Theorem 2.1, we have

lza—u|® < anllw—ull? < ||w—u|? for all w € F(T) and {on} € (0,1) foralln € N.
(2.4)
From (2.4) and the w-l.s.c. of the norm of H, it follows that

I = ull < liminf 1z~ ] < lw — uj

for all w € F(T'). Hence Z is the nearest point projection z in F (T) of v onto F(T)
which exists uniquely since F(T') is nonempty, closed and convex. Moreover,

flzn — 2I2 = flzn —uf? = lu - 2{* - 2(z — 2,2 — w)
< —-2zp—2z,z2—u) — 0 as n — oo.

This complete in the proof. O

o
,;"Al
ey
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Corollary 2.6. ([11,Theorem 3]). Let H,C,T, P,u, and {ay,} be as in Theorem
2.3. Then a mapping Uy, defined by (1.4) has a unique fixed point z, € C. Further,
T has a fixed point if and only if {z,} remains bounded as o, — 1. In this case,
{zn} converges strongly as a, — 1 to a fixed point of T",

Acknowledgement. The authors would like to thanks The Thailand Research
Fund for financial support.
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Abstract

In this paper, we established two strong convergence theorems for a multi-
step Noor iterative scheme with errors for mappings of asymptotically nonex-
pansive in the intermediate sense{asymptotically quasi-nonexpansive, respec-
tively) in Banach spaces, Qur results extend and improve the recent ones
announced by Xu and Noor [20], Che, Zhou and Guo (2], and many others.

keywords: Asymptotically nonexpansive in the intermediate sense; Asymp-
totically quasi-nonexpansive mappings; Completely continuous; Uniformly con-
vex; Uniformly L-Lipschitzian.

1 Introduction

Let C be a subset of real normed linear space X. A mapping T : C — C
is said to be asymptotically nonexpansive on C if there exists a sequence {r,} in
[0, 00} with Hmyp oo T = 0 such that for each z,y € C,

IT"2 — T"y|| < (1 +ra)liz —yl,Vn 2 1.
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If rp, =0, then T is known as a nonezpansive mapping. T is called asymptotically
nonerpansive in the intermediate sense[l] provided T is uniformly continuous and

limsup sup (|72 — T"y|| — ||z - yl) < 0.

n—o0 x,pc

T is said to be asymptotically quasi-nonezpansive mapping, if there exists a sequence
{rs} in [0, 00) with lim,—,00Tn = 0 such that for all z € C, p € F(T),

1T7z - pll < (1 + ra)llz — o,

for all n > 1, where F(T") denotes the set of fixed points of T i.e. F{(T)={zx € C:
Tz = z}. T is said to be uniformly L-Lipschitzian if there exists a constant L > 0
such that

Tz — Tyl < Lz - yll,

foralln>land z,y € C.

From the above definitions, it follows that asymptotically nonexpansive map-
ping must be asymptotically nonexpansive in the intermediate sense, asymptotically
quasi-nonexpansive mapping and L-Lipschitzian mapping. But the converges dose
not holds such as the following example:

Example 1.1 (see [9]). Let X =R, C = ["?1,;1;] and |k| < 1. For each z € C,
define
T(z) = { kmsin:—c, fifx-,é 0,
0, ifz=0.
Then T is an esymptoticelly nonerpansive in the intermediate sense. It is well
known in (8] that T2 — 0 uniformly, but is not a Lipschitzian mapping so that it
is not asymptotically nonexpansive mapping.

Fixed-point iterations process for asymptotically nonexpansive mappings in Ba-
nach spaces including Mann and Ishikawa iterations process have been studied ex-
tensively by many authors to solve the nonlinear operator equations as well as
variational inequations; see[6-14,16-18]. In 2000, Noor {13] introduced a three-step
iterative scheme and studied the approximate solution of variational inclusion in
Hilbert spaces by using the techniques of updating the solution and the auxiliary
priciple. Glowinski and Le Tallec [3] used three-step iterative schemes to find the
approximate solutions of the elastoviscoplasticity problem, liquid crystal theory,
and eigenvalue computation. It has been shown in [3] that the three-step iterative
scheme give better numerical results then the two-step and one step approximal iter-
ations. In 1998, Haubruge, Nguyen and Strodiot|5] studied the convergence analysis
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of three-step schemes of Glowinski and Le Tallec[3] and applied these schemes to
obtain new splitting-type algorithms for solving variation inequalities. They also
proved that three-step iterations lead to highly parallelized algorithms under cer-
tain conditions. '

Recently, Xu and Noor {20] introduced and studied a three-step scheme to ap-
proximate fixed points of asymptotically nonexpansive mappings in Banach space.
In 2004, Cho, Zhou and Guo[2] extended the work of Xu and Noor to the three-step
iterative scheme with errors and gave weak and strong convergence theorems for
asymptotically nonexpansive mappings in a Banach space. Moreover, Suantai {18]
gave weak and strong convergence theorems for a new three-step iterative scheme
of asymptotically nonexpansive mappings. Inspired and motivated by these facts,
we introduce and study a multi-step scheme with errors for asymptotically non-
expansive mappings in the intermediate sense mapping and asymptotically quasi-
nonexpansive mappings, respectively. Qur results include the Ishikawa, Mann and
Noor iterative schemes for solving variational inclusions (inequalities} and related
problems as special case. The scheme is defined as follows.

Let C be a nonempty subset of normed space X and let T : C — C be a
mapping. For a given z; € C, and a fixed m € N {N denote the set of ail positive

integers), compute the iterative sequences {mg)}, vy {xf{")} defined by
2 = o7z, + M2, + 4 DulD,
2@ = o@7me) 4 gDz, 4 4@y @),
N Y CH CH )
(1.1)
S = oI g B, 4 A,
Top =20 = oM7) 4 8, + U™, n>1

where, {u&}, ....,{u,(lm)} are bounded sequences in C and {ag)},{ﬂ,(f)},{'y,(f)} are
appropriate real sequences in [0,1] such that a,(:) + 6,(:) + 'y,(:) =1 for each i €
{1,2,..,m}.

The iterative schemes (1.1) is called the multi-step Noor iterations with errors.
This iterations include the Mann-Ishikawa-Noor iterations as special case. If m = 3
and ﬁ,(:) =1- as,' ) -—'y,(,') for all 1 = 1,2,3 then (1.1} reduces to Noor iterations with
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errors defined by Cho, Zhou and Guo [2]:

) = o7z, + (1 - &V — Nz, + 4 PuD),

2l = @772 4 (1~ o — D)z, + 42O, (1.2)
Tner =2 = @7 + (1 - o —4P)zn + 1P,

where {a,(rf)}, {'y,(: )} are appropriate real sequences in {0, 1] for all i € {1,2,3}.
For m = 3 and 'y,(,l) = ,(12) = 'y,?) = 0, then (1.1} reduces to Noor iterations

defined by Xu and Noor [20]:

g = oIz, + (1 — D)z,
= T4 (1 o, 13
Tpel = :r:,(f) = aﬁf”T":rSf} +(1 - a,(f)).‘cn, n>1,

where {asll)}, {a,{f)}, {a.(na)} are appropriate real sequences in [0, 1].

The purpose of this paper is to establish several strong convergence theorems
of the multi-step Noor iterative scheme with errors for mappings of asymptotically
nonexpansive in the intermediate sense (asymptotically quasi-nonexpansive map-
pings, respectively) in a uniformly convex Banach space. This results presented in
this paper extend and improve the corresponding ones announced by Xu and Noor
[20], Cho, Zhou and Guo [2], and many others.

2 Preliminaries

In this section, we recall the well-known concepts and results.

Definition 2.1 (see [4]). A Banach space X is said to be uniformly convez if the
modulus of convexity of X

. z+
x(e) = inf(1 - XU o =y = 1, o -yl = >0

for all 0 < € < 2(i.e., &x(€) is a function (0,2] — (0,1)).

It is known [12] that if X is a uniformly convex Banach space and T is a
self-mapping of bounded closed convex subset C of X which is an asymptotically
nonexpansive in the intermediate sense, then F(T') # 0.
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Lemma 2.2 (see [10]). Let {an},{bn} and {ym} be sequences of nonnegative real
numbers satisfying the inequality

an41 & (14 mlen+bn,Vrn=1,2,..
If 320 < 0o and Yoo, by < 00, then
(i) limy,—, o an exists;
(ii) limp—o0 2, = 0, whenever liminf,_ca, =0.

Lemma 2.3 ([17], J. Schu’s Lemma }, Let X be a uniformly convez Banach space,
O<asty €0 <1,zp,yn € X,limsup,__ ||znl £ a,limsup,,_ ., l|ynll £ a, and
limy— o [[trzn + (1 — t2)ynll = @, for some a = 0. Then limg—o ||2n — ] = 0.

3 Non-Lipschitzian mappings

Our first result is the strong convergence theorem for asymptotically nonexpan-
sive in the intermediate sense mappings. Note the proof given below is different
from that proof of Xu and Noor. In order to prove our main result, the following
lemmas are needed.

Lemma 3.1. Let X be a uniformly conver Banach space with z,,y, € X, real
numbers a > 0,a,8 € (0,1) and {e} be a real sequence number which satisfying

(i) O<a<a, <8 <1,Vn>ng and for some ng € N;
(i) 1imsupy .o lmnll < @ ond limsup, _.q, luall < o
(iii) limp—.o0 [|@nTn + (1 — an)yn| = a.

Then limp—0 |2n ~ ynl = 0.

Proof. The proof is clear by Lemma 2.3. 8

Lemma 3.2. Let X be a uniformly convezr Banach space, C a nonempty closed
bounded convez subset of X and T' : C — C be an asymptotically nonezpansive in
the intermediate sense. Put

Gn = sup (|[T7z - Tyl — |z —yl) VO, ¥Vn = 1,
z,yeC

s0 that 302 Gn < 00. Let the sequence {zn} be defined by (1.1) with the following
restrictions:
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(i) aﬁf) + ﬁg) + 7,(:" =1 forallic{l,2,..,m} and for alln > 1;
(i1) Z?;l'y,(f) < oo forallice {1,2,..,m}.

If pe F(T), then imp— oo [lzn — pl| exists.

Proof. By [12], we have F(T) # 0 . Let p € F(T"). For each n > 1, we note that

Iz —pl = (a8 zq + BN en + ¥ ulD — p|
< o Tz — plf + B lzn — pll + 1V |ul? - pf
< allen = pll + G + AP l|zn — pll + 1P - pl|
= (i) + B zn — pll + &G + 4P [l - p|
< |l —pll +dP (3.1)

where dg) = aﬁ,l)G'n +’71(11)Hu9) —p|l. Since 3_p>; Gn < 00, we see that 3 o0, dg) <
oo. It follows from {3.1) that

le® —pl < a2l - pll +afDCn + Bl ~ pl + ¥ ul? — ]
< o (flzn — pll + 4 + PG + Bz — plf + 1P — p
= (o + BOllzn — pll + 2Pdl) + oG + PP -]
< lzn = plf 4 d? (3:2)

where d¥) = af)d#)+a$;2)Gn+'y,(,2)||u$3)—p||. Since 307, G, < oo and § .00, D <

n=1
o0 it follows that 2:;1 dg‘)) < 0o0. Moreover, we see that

Iz —pl < @)@ — pil + PG + B 2w - pll + ¥ [ - ol
< of(|zn — pl + d) + afIGr, + 8P|z — plf + 1l - pl|
= (& + )z — pll + 2PdP + PG + 1P| ~ p
< lzn—pll +dP (3.3)

where dﬁ;) = an")dQ’ + af’)Gn + 7,‘13)”%,(,,3) ~pll. So that 377, d&s) < o00. By con-
tinuiting the above method, there are nonnegative real sequences {d,g’)} such that
oo (k)
dr’ < o0 and

n=1
|',:z:,(1k) -2l € |lzn — 2|l + ds,"), forall k=1,2,...,m.

This together with Lemma 2.2, we have lim,__, o ||zn — p|| exists. This completes
the proof, (]
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Lemma 3.3. Let X be a real uniformly convez Banach space, C a nonempty closed
conver subset of X and T : C — C be an asymptotically nonerpansive in the
intermediate sense. Put

Gn = sup (|77 ~ Tyl - = — ) vO.¥n 2 1,
z,yeC

s that 1% | G < 00. Let the sequence {zn} be defined by (1.1) whenever {al}, 881, (¥

satisfies the same assumptions as Lemma 3.2 for each i € {1,2,...,m} and the ad-

ditional assumption that 0 < a £ a(m 1) (m) < 3 <1 for all n > ng, for some

ng € N. Then

(m-1)

(a): limpeco [T"2Zn" " — 2ol = 0;

(b). limp o [| T2 — 24 = 0.

Proof. (a). For any p € F(T), it follows from Lemma 3.2 that limp 0 l|2n — 2l
exists. Let limp,_. ||z — pl| = o for some a > 0. We note that

|z{m= = p|| < [l&n — pl| +df™ NV, ¥n 2 1

o0 d(m Ve It

where {d&m-l)} is a nonnegative real sequence such that 3 07,

follows that
limsup ||z~ ~ p|| < limsup [|lzn —pll = _lim ||z, — pl| = a,
n—00 n—od n—oo

from which we have

limsup [Tz — p|| < 11msup([|sc(’““1) pll + Gp) = limsup |20V - p| < a.
n— 00

n=—00

Next, we observe that
17250 — p 4+ ™ (™ — o)) < T2 = pll + 4™ |ul™ ~ 2al.
Thus we have

lim sup |77z — p + A (™) — )| < a. (3.4)

n—_Cco
Also, [|zn — p + 1™ (@™ — za)| < llen — pll + W™ ul™ — zall,

gives that
limsup || — p + 7™ (@{™ — z,)|| € q, (3.5)

i—O0
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and note that

a = lim_|z{™ - p|
= dim [T + Bz, + 1Ml - ol
= lim [a{™7"2{™ Y + (1 - afM)zq - WM + A ul
— (1= af™)p ~ afMp
= lim llefT2{*D — ofPp + oM rMul — oMWz, + (1 - o)
= (1= af™)p — M + 1wl - ol Mu + MMz
= lim_Jaf™(T72{" Y — p+ M (™ - zn))

+{1— o™ (2 — p+ 1 (W™ — za))l.
This together with (3.4), (3.5) and Lemma 3.1, we have

lim 7™z — 2, = 0. (3.6)

n

This completes the proof of (a).

Proof of (b). For each n > 1,

lza =PIl < o — T2 D + [T — o]
ke = T2 V| + |28 — pll + G

IA

Since limp— .00 ||Zn ~ T"a:,(nm_l)[! =0 = limp—c0 Gn, we obtain that
a= lim [z, - p| < limin =™ - p|).
Ti———r 0 Nn—*oo

It follows that

m-1)

* a < liminf ﬂa:s“—l) - p|| £ limsup Iz& -7 £ a.
N==mo0o L=t OO

This implies that

s {m—1) _ =
Jim_jja{m? - pl = a.

On the other hand, we note that
28" — plf < fjza — pll + a2, Vr 2 1
where {d(nm_z)} is a nonnegative real sequence such that 3 2 d™ ¥ < 00. So that

limsup ||z0™2 — p|| < I:IH_I_S";? lzn - 2l = a,

n——00
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and hence

limsup |[T"z{™=2 - p|| < limsg;("zgm—z) —pll+Gn) < a.
wn—

n=—

Next we observe that

IT =" —p 4 WP D (WP - )| < 17725 = pf| + 4D |ufm D ~ 2.

Thus,
limsup [Tz — p+ 1™ V(™™ - 2ol < a. (3.7)
n—00 .
Also, flzn — p+ 4™ P @™V — 2)|| < llon - pll + WVl — 2,
gives that
: limsup ||z, — p + v D™D - z)|| < a (3.8)
TL=—tr OO
and note that
- 1 {m-1) _
o = lim [0 —p

e B e B WS
= lim_ el (T - p oD 5,))
+ (1= oY) zn ~ p+ AP D@ — )l (3.9)
It follows from (3.7), (3.8), (3.9) and Lemma 3.1 that
i [T — 2| = 0.

This completes the proof of (b). O
‘We now state and prove the first main result of this paper and this is the main

motivation of our next result.

Theorem 3.4. Let X be a uniformly convexr Banach space, C a nonempty closed
bounded conver subset of X and T : C — C be a completely continuous asymptot-
ically nonexpansive in the intermediate sense. Put

Gn = *a‘upc(ll’f'“ﬂE —T%ll = ll= - #il) v0,¥n > 1,
z,ye

s0 that 300 | Gy, < oo. Let the sequence {z,} be defined by (1.1) whenever {an)}, {ﬁf.i)}, {75,")}
satisfies the same assumptions as Lemma 3.2 for each i € {1,2,...,m} and the
additional assumption that 0 < a < aslm_l),aﬁ,m) < B <1 for all n > ng,
for some ng € N. Then {:cﬁlk) } conuerges strongly to a fized point of T for each

k=1,23,..,m.
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Proof. 1t follows from Lemma. 3.3 that
Jim [T — ) = 0= lim [T - g

and this implies that,

I2ns1 = 2all = 25 ~ @all < YT 2 = zn] + 9Tl - 2
— 0 asn— oo, (3.10)

it follows from (3.10) that

170 = zall < (1T @0 — T2 DN + T2 - 24|

< lzn =270+ Ga + T2 - 24
< ol Djzn = T2 + G+ 2" Dl — 2,

+ |72 ~ g, ]| — 0 as n — oo. (3.11)
Since

I&n = Tzall £ |2+t — 2ol + 1Tt = T zppl)
+ (T s — T an|| + 1T 20 — Tzal,

it follows from (3.10), (3.11) and uniformly continuity of T that
lim |zp — Tzg|| = 0. (3.12)
n—=oo

Since {zn} is a bounded and T is completely continuous, there exists a subsequence
(T2} of {Tz,} such that Txz,, — p € C as k.— oo. Moreover, by (3.12), we
have ||T'zy, — Tn, || — O which implies that =5, — p as kK — oo. By (3.12) again,
we have
lp—Tpll = klim [#n, — Txn,[| = 0.
— OO

It show that p € F(T). Since limp .o | 2n—p|| exists, we have limy, —. || T2 —p|| = 0;

that is limgy.—.o a:,(,f“) = limp—.q Zn, = p. Moreover, we observe that ”ng) -l <
Iz — p|l + 5 for all k= 1,2,3,...,m — 1 and each limp—.co dS) = 0. Therefore
lim;—eo :c,(lk) =pforall k=1,23,..,m— 1. The proof is completed. |

4 Asymptotically quasi-nonexpansive mappings

In the next result, we prove strong convergence theorem for the multi-step Noor it-
erations {1.1) for asymptotically quasi-nonexpansive mapping in a uniformly convex
Banach space. To do this, we need the following lemmas.
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Lemma 4.1, Let X be ¢ uniformly convex Banach space, C a nonempty closed
convez subset of X and T be an esymptotically quesi-nonezpansive with the sequence
{rnlnz1 such that 3 o2 rp < 00 and F(T) # 0. Let the sequence {zn} be defined
by (1.1) with the followmg restrictions:

(i) @ 3 +ﬁ(i) =1 forallie {1,2,...,m} and for alln > 1;
(11) p sl 1’Yn < oo forallie{1,2,..,m}.

If p € F(T), then lim,, o ||2n — p|| exists.

Proof. Let p € F(T). For each n 2 1, we note that

Iz —pl| = [aPT %z, + Bz, + v Pull — ||
< afIT e~ pll + B llzn — pll + 20 ull) g
< P +ra)lzn - pll + ALz - ol + 1D — 5l
< (4 ra)lza —pl +d (4.1)

where d{ (1)||u(1) —p|l- Since {u,(,l)} is bounded and 3 >, 'y,(,l) < 00 we see that
o d < co. It follows from (4.1) that
12 = pll < o@(1+ra)llz) — pll + BPNzn — pll + ¥ u? - pl
< (1 4 ) (1 r)llzn = pll + d) + BP (A + rn)?||za — pl|
+ 72 ul® - p|
@ + B2 (1 + ra)llzn — pll + &P dS (1 + 7a) + 1P|l - pl|
(1 +ro)l|zn — pfl + PdD (1 + ) + 7PN u@ - p|
(1 + 70)?|za — p|) +dP, (4.2)

il

IA

]

where d{2 = a(z)dnl)(1+rn)+'y(2) ||u(2) —p|. Since {ug)} isbounded and } 27 dP <
o0, it follows that 3 02, d?) < co. Moreover, we see that

Iz -2l < a1 +r)lz? - pll + B Nea — pll + 7O - o

S o +ra)(1+ ) lzn = pll + d) + 6P (1 + ) llzn — pl

+73u - o
(@ + A)(1 + rn)*lzm — 2l + DD (1 + 70) + 9D
< (L4 ra)len — pll + ofPdP (1 +73) + 4P u — o)
= (1 +7n)llzn - pll +d, (4.3)

IA

where d) = )d(z)(1+ n)+'y(3)||u(3) ~p||. Sothat ) oo, d¥ < co. By continuiting
the above method, there are nonnegative real sequence {dsl )} such that 3 > ; dP <

11
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oo and
=% = pl < (1 + rn)tllzn — pll + dP, for all k = 1,2,...,m.

By Lemma 2.2, we have lim,. o || zn — p|| exists. This completes the proof. O

Lemma 4.2. Let X be a uniformly convex Banach space, C a nonempty closed
convex subset of X and T : C — C be an asymptotically quasi-nonexpansive with
the sequence {ro}nz1 such that ) oo rn < 00 and F(T) # . Let the sequence {x,}
be defined by (1.1) whenever {a,(f)},{ﬁ,(f) s {’yy(f)} satisfies the same assumptions as
Lemma 4.1 for each i € {1,2,...,m} and the additional assumption that 0 < a <
AV M <pet for all n > ng, for some ng € N. Then

(m—1)
i

(a)- limn—oo ”Tﬂx - mn” _ 0;

(b). limp oo [ T2 — 2| = 0.

Proof. (a). For any p € F(T), it follows from Lemma 4.1 that lim, . ||z, — pi|
exists. Let lim, oo ||Zn — pl| = @ for some a > 0. We note that

|25 — pll < (1 + )™ Hlon — pl| +d{™ Y, ¥ > 1

1)

where {dﬁ{"“’ } is a nonnegative real sequence such that 3 52, ™ < oo It

follows that

limsup ™Y — p|| < limsup((1+ 7)™ |za —pll + " V) = lim iz, —pl=a
00 n—oo N—r 0

and so

tim sup [[T"2{™~) = p|| < limsup(1 + ry)[|z§" ™ — pf = limsup 2"~ — p| < .
=00 n—oo 00

Next, consider

17725 — p+ A (™ — o)l < 1T = plf + 1™ lul™ — zall.

- Thus,
limsup [Tz — p + 4™ (uf™ — z,)| < a. (44)
— 00
Algo, flzn — p + ¥ (@™ — o)l < llzn — pll + W™ — 2,
gives that
limsup [z — p+ 1™ (W™ - z,)[| < o, (4.5)
n—oo

5
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and we observe that
- K (m) _
a JimJlzy™ — pl]

= lim o T 2D 4 Bz, + A ul™
= lim T2 4 (1= o) - 2
+ AU — (1 - of™)p - oMy
= Jim_[lefMT{" Y — afPp + oMy Mul ~ ofmy M,
+(1- ez — (1 - o)y
2 AP — QP 4 0|
= im (T2 — pot ol — 20) + (- o)z — p+ D@ ~ ).
It follows from (4.4), (4.5) and Lemma 3.1 that
Jim [T — 2| = 0.
This completes the proof of (a).

Proof of (b). For each n > 1, we have

len—pll < l&n—T 2 V| + |21 - p))
< g = T2V + (L4 1) |20 - p|l.

Since limp—.oo ||Tn — Tz V|| = 0 = limp o0 7, we obtain that

a= lim_[an - p| < liminf {1 - p|.
n—o =00
It follows that
a < Liminf ||z{™ Y - p| < limsup ||z™ —p|| < q,
n—:as0 0

which implies that

i (12D — pll = a.
UL B pll=a
On the other hand, we note that
2§~ — pll < (1 + 7)™ zn - pll +di™ Vo > 1

where {dﬁ,’"_z)} is & nonnegative real sequence such that 3 ;> d™? < oo. Thus

lim sup [|a{™~? — p|| < limsup(1 + )™ 2lzn — pl| =,

n—0oc
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and hence
lim sup [ 723" ~ pi| < lim sup(1 + 1) [l2{™2 - p|| < a.
Tfl—Cx)
Next, consider |
-2 - - -
1772 = p 4 AP Dl — 2| S T2 — o] + AL D =D — ]

Thus,
limsup |77z — p+ 7" D(uf"V - z,)[| < a. (4.6)
i—o0

Also, flzg — p + 1 VW™ ~ 2] < lzn — pfl + %™ V)™ — 2,

gives that
limsup fjzn — p + %" D™ — 2,)] < q, (4.7)
nN—o0
and noth that
= i (m-1) _
a = lim |z{" g

= lim jlaf® VT + pim D, 4 AmDufm —
lim [l Tz D — p 4 AV - 2,))
n—ece

+(1 = o™ D)z —p + A"V - za)).
It follows from (4.6}, (4.7) and Lemma 3.1 that
Jim [T 2] =0
This completes the proof of (b). O

Theorem 4.3. Let X be a real uniformly convexr Banach space, C' o nonempty closed
convex subset of X and T : C — C be an uniformly L-Lipschitzian, completely
continuous asymptotically quasi-nonezpansive with the sequence {rn}n>1 such that
YomeiTa < 00 and F(T) # 9. Let the sequence {zn} be defined by (1.1) when-
ever {ag)},{ﬁr(f)},{”fﬁi)} satisfies the same assumptions as Lemma {.1 for each
i € {1,2,..,m} and the additional assumption thet 0 < a < a,(f) < g8 <1 for
alli € {m —1,m}. Then {:L',(,k)} converge strongly to a fixed point of T, for each
k=1,2,3,..,m.

Proaf. 1t follows from Lemma 4.2 that

Jim 1T = gl =0 = fim [772{"" - 2.
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This implies that,
l#nt1 = znll = 20 — 2| < (|7 20—z | + Y ) — 2|
— 0asn — oo. ' (4.8)

Thus, we have

IT"2n — 2ol < NT"%p — T2 D) + [T 2™ — 2|
< Lljgn — 2| + | T2 — 2|
< " Ljon = T2 + DL - 2
+ ||T"z$l“‘_1) —zp|| —0asn —co (4.9)
and we note that
lzn =Tzl < "xn-l-l = Tnl| + flZnt1 — Tn+1mn+1|E

+ T aney = T za|| + | T 20 — Tza|
<

[Za41 = @nll + |Znt1 — T 2oy

-+

(1 + a1 fllZnt1 = Zall + LI T 2n — x|
This together with (4.8) and (4.9) we cbtain
"I_i__rpno |zn — Tz, = 0. (4.10)

By the boundedness of {z,} and our assumption that T is completely continuous,
there exists a subsequence {Tz,, } of {Tzn} such that Tx,, — p€ C as k — co.
Moreover, by (4.10), we have |TZn, — Zn, || — 0 which implies that z,, — p as
k — co. By (4.10) again, we have .

lp—Tpll = lim [z, = Ton, || =0.

It show that p € F(T). Furthermore, since lim, o [|zn — p| exist we obtain
limp—oo llzn — pl| = 0, that is lima_.e0 ms.m) = liMp—eo Zn = p. Moreover we
observe that |25 — pl| < lzn — pl| +d$¥ for all k = 1,2,3,...,m — 1 and each
limp 00 ¥ = 0. Therefore limy—.co 24 = p for all k = 1,2,3,...,m — 1. The

proof is completed. o

For m = 3 and ﬂ,(f) =1 —a,(f) —753) forall {1 =1, 2,3 in Theorem 3.4 or Theorem
4.3, we obtain the following result.
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Theorem 4.4. (see [2]) Let X be uniformly convex Banach space and C be a non-
empty closed conver subset of X. Let T : C — C be an completely continuous
asymptotically nonezpansive mapping with the nonempty fized-point set F(T) and o
sequence {ra} in [0,00) and 352, r < 00. Let a sequence {z,,} be defined by (1.2)
with the following restrictions:

Ho<a<a®P <be1
(i1) limsup,,_, (1 + rn)ag) <1
(iii) > opey 'y,(f) <eo foralli=1,2,3.

Then the sequence {zn,} converges strongly to a fized point p of T.

When m = 3 and 'y,(f) = ,(,2) = 7&3) = 0 in Theorem 3.4 or Theorem 4.3, we
obtain strong convergence theorem for Noor iteration as follows:

Theorem 4.5. [20, Theorem 2.1]. Let X be a real uniformly convex Banach space,
C be ¢ nonempty closed, bounded convex subset of X. Let T : C — C be a
completely continuous esymptotically nonezpansive self-mapping with sequence {ry}
satisfying rn, > 0 and 3 ooy 1 < 00. Let {ag)}, {a,(?)}, {a,(f')} be real sequences in
[0,1] satisfying;

{i) 0 < liminf, .. a,(us) < limsup,, - oo asls) <1, and

(ii) 0 < lim infp—co &% < limsup, o0& < 1.

For a given =1 € C, the sequence {z,}, {29)}, {3:512)} defined by (1.3} converges

strongly to a fived point of T.

Proof. 1t follows from the condition (i) and (ii) that there are o, 8 € (0,1) and
ng € N such that

0<a<a® ol <p<t
for all n > ng. So that the conclusion of Theorem follows from the Theorem 3.4 or

Theorem 4.3. O

Acknowledgment: The author thanks the Thailand Research Fund for their fi-
nancial support.
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THE CHARACTERISTIC OF NONCOMPACT CONVEXITY AND
"RANDOM FIXED POINT THEOREM FOR SET-VALUED OPERATORS

POOM KUMAM AND SOMYOT PLUBTIENG

=2
T
e Abstract. Let (£, %) be a measurable space, X a Banach space whose char-
acteristic of noncompact convexity is less than 1, C a bounded closed convex
subset of X, KC(C) the family of all compact convex subsets of C. We prove
that a set-valued nonexpansive mapping T : C — KC(C) has a fixed point.
Furthermore, if X is separable then we also prove that a set-valued nonex-
pansive operator T : §} x C — K'C(C) has a random fixed point.
Keywords : random fixed point, set-valued random operator, measure of noncompacness.
Meathematics Subject Classification 2000 : 47H10, 4TH09, 4THO4.

1. INTRODUCTION

The study of random fixed points has been a very active area of research in probabilistic
.operator theory in the last decade. In this direction, there have appeared various papers
concerning random fixed point theorems for single-valued and set-valued random operators;
see, for example, {6},(8],(10],[11],[12]{15],[21) and the references therein.

In 2002, P. Lorenzo Ramirez [10] proved the existence of a random fixed point theorems
for a random nonexpansive operator in the framework of Banach spaces with the characteristic
of noncompact convexity £4{X) less than 1. On the other hand, Dominguez Benavides and
Ramirez {4} proved a fixed point theorem for a set-valued nonexpansive and 1-y-contractive

- mapping in the framework of Banach spaces whose characteristic of noncompact convexity
associated to the separation measure of noncompaciness £g(X) less than 1. -

1
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The purpose of the present paper is to prove a fixed point theorem for set-valued random
nonexpansive operators in the framework of Banach spaces with characteristic of noncompact
convexity associated to the separation measure of noncompactness ég(X ) less than 1. More-
over, we also prove a fixed point theorem for set-valued nonexpansive mappings in Banach
spaces with characteristic of noncompact convexity associated to the separation measure of
noncompactness £4(X) less than 1. Our results can also be viewed as an extension of Theorem
6 in [10] and Theorem 4.2 in [4], respectively.

2. PRELIMINARIES

Through out this paper we will consider a measurable space (€1, Z) (where ¥ is a c—algebra
of subsets of ) and (X, d) will be 2 metric space. We denote by CL{X)(resp. CB(X), KC(X))
the family of all nonempty closed (resp. closed bounded, compact convex} subsets of X, and
by H the Hausdorff metric on CB(X) induced by 4, i.e.,

H(A, B) = max {sup d(a, B),sup d(b, A)}
aEA beB

for A, B € CB(X), where d{z, E) = inf{d(z,y)|y € E} is the distance from z to £ C X.

Let C be a nonempty closed subset of a Banach space X. Recall now that a set-valued
mapping T : C — 2% is said to be upper semicontinuous on C if {zx € C' : T C V} is open
in C whenever V C X is open; T is said to be lower semicontinuous if T-}(V) := {z € C :
TzNV s# @} is open in C whenever V C X is open; and T is said to be continuous if it is
both upper and lower semicontinuous (¢f.[2] and [3] for details). There is another different
kind of continuity for multivalued operators: T : ¢ — CB(X) is said to be continuous on C
(with respect to the Hausdorff metric H) if H{(Tz,,Tz} — 0 whenever z, — z. It is not hard

to see (see Deimling [3]) that both definitions of continuity are equivalent if Tz is compact

for every z € C.

A set-valued operator T :  — 2% is called (£)— measurable if, for any open subset B
of X,
T-YB):={weN: T(w)NB # 0}
belongs to £. A mapping = : 2 — X is said to be a measurable selector of a measurable
set-valued operator T : Q — 2% if z(-) is measurable and z{w) € T(w) for all w € Q. An
operator T : © x C — 2% is called a random operator if, for each fixed z € C, the operator
T(-,z) : 2 ~ 2% is measurable. We will denote by F(w) the fixed point set of T'(w, ), i.e.,

Flw):={z € C:ze T(w,z}}.
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Note that if we do not assume the existence of a fixed point for the deterministic mapping
T(w,-) : ¢ — 2%, F(w) may be empty. A measurable operator z : £ — € is said to be a
random fized point of an operator T : §) x C — 2X.if z(w) € T(w,z(w)) for all w € . Recall
that 7" : Q x C' — 2% is continuous if, for each fixed w € §, the operator T : (w,-) — 2% is
continuous.

If C is a closed convex subset of 2 Banach space X, then a set-valued mapping T : C —
CB(X) is said to be a contraction if there exists a constant k € [0, 1) such that

H(TI:Ty) < k”ﬂ: - yl[s T,y € Ca
and T is said to be nonexpansive if

H(Tz,Ty) < |z —yl, =z,yeCl.

A random operator T : £ x C — 2% is said to be nonezpansive if, for each fixed w € Q,
the map T : (w, ) — C is nonexpansive.

For later convenience, we list the following results related to the concept of measurability.

Lemma 2.1. (Wagner cf.[14]) Let (X,d) be a complete separable metric space and F: Q —
CL(X) a measurable map. Then F has a measurable selector.

Lemma 2.2. (Itoh 1977, cf.|8]) Suppose {T,} is a sequence of measurable set-valued operator
fromQ to CB(X) and T : Q@ — CB(X) is an operators. If, for eachw € §t, H(T,(w),T(w)) =
0, then T is measurable.

Lemma 2.3. (Tan and Yuan cf.[13]) Let X be a separable metric space and Y a metric space.
Iff:QxX =Y is measurable inw €  and continuous inzx € X, and if x : Q — X is
measureble, then f(,z(-)) : @ = Y is measurable.

As an easy application of Proposition 3 of Itoh[8| we have the following result.

Lemma 2.4. Let C be 2 closed separable subset of a Banach space X, T : @ xC = C a
random continuous operator and F : @ — 2€ a measurable closed-valued operator. Then for
any s > 0, the operator G : & — 2 given by

Gw)={re Flw):|z—-T{w,z)|| <s}, we
is measurable and so is the operator cl{G(w)} of the closure of G(w).

Lemma 2.5. (Dominguez Benavidel, Lopez Acedo and Xu cf.[6]) Suppose C is ¢ weakly closed

nonempty seperable subset of a Banach space X, F : Q — 2% a measurable map with weakly
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compact velues and f : @ x C — R a measurable, continuous and weakly lower semicontinuous
function. Then the marginal function v : ! — R defined by

r(w) = Ieigfz) flw,z)
and the marginel mag R : 2 — X defined by
R(w) := {z € F(z) : f(w,z) =r(w}}

are measurable.

Recall that the Kuratowski and Hausdorff measures of noncompactness of & nonempty
bounded subset B of X are respectively defined as the number

a(B) =inf {r > 0: B can be covered by finitely many sets of diameter < r},
x(B) =inf{r > 0: B can be covered by finitely many balls of radius < r}.

The separation measure of noncompacness of a nonempty bounded subset B of X defined by
f(B) = sup {e : there exists a sequence {z,} in B such that sep({zn}) > €}.

Let X be a Banach space and ¢ = ¢, 8 or x. The modulus of noncompact convexity associated
to ¢ is defined in the following way:

Ax (e} = inf {1 — d(0, A) : A C By is convex, ¢(A) 2 €},

where By is the unit ball of X.

The characteristic of noncompact convexity of X associated with the measure of noncom-
pactness ¢ is defined by

ea(X)=sup{e 2 0:Ax () =0}.
The following relationships among the different moduli are easy to obtain
(2.1) Axole) < Axple} < Dxxle),
and consequently
(2.2) £a(X) 2 £p(X) 2 ex(X}.

When X is a reflexive Banach space we have some alternative expressions for the moduli of
noncompact convexity associated to 8 and x.

Axple) = inf {1 — ||z : {za} C Bx,x = w — limy, Tn,sep({Zn}) = £},

Axx(e) =inf {1 - ||z|| : {#n} C Bx,z = w — limp zn, x({zn}) = €} .
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Let C be a nonempty bounded closed subset of a Banach space X and {z,} a bounded
sequence in X. We use 7(C, {zx}) and A(C,{z,}) to denote the asymptotic radius and the
asymptotic center of {z,} in C, respectively, i.e.

r(C,{z,}) =inf {lim sup||zn —xl 1z € C} )

AlC {z,}) = {:c € C: limsup ||z, — z|| = r(C, {xn})} .
n
If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

re(D) :=inf {sup{|lz — y|| : ¥y € D} : z € C}.

~ Let {z.} and C be nonempty bounded closed subsets of a Banach space X. Then {z,}
is called regular with respect to C if r(C,{zn}) = r(C, {zn,}) for all subsequences {zn,} of

{zn).

Moreover, we also need the following Lemmas.

Lemma 2.6. (Dominguez Benavides and Lorenzo Ramirez Theorem 4.3 cf. [4]) Let C be a
closed convex subset of a reflerive Banach spece X, and let z,, be a bounded sequence in C
which is regular with respect to C. Then

(2.3) ro(A(C, zn)) < (1 = Ax,(17))r(C, {za})-

Moreover, if X satisfies the nonstrict Opial condition then

(24) ro(A(C, 2a)) € (1 - Ax (17)7(C, {z2}).

The following result are now basic in the fixed point theorem for multivalued mappings.

Lemma 2.7. (Xu cf. Theorem 1.6 of [19]) Let E be a nonempty bounded closed closed convex
s'c;bset of a Banach space and T : E — KC(X) a contraction. Assume Tz N Ig(z) # 0
for all z € E. Then T has a fived point. (Here Ip(x) is call the inward set at = defined by
Ip={z+My—2z): 2>0,yc E})

Proposition 2.8. (Kirk-Massa Theorem ¢f.[16]) Let C be a nonempty weskly compact sep-
arable subset of o Banach space X, T : C — K(C) a nonezpansive mapping, and {z,} o
sequence in C such that limy, d(z, — Tz,.) = 0. Then, there exists a subsequence {zn} of {zn}
such that

TxNA#0,Vz € A= A(C,{zn})
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3. THE RESULTS

We begin this section by showing that in Benavides-Ramirez’s result, the 1-y-contractive
condition on T can be removed.

Theorem 3.1. Let C be a nonempty closed bounded convex subset of a Banach space X such
that eg(X) <1, and T : C — KC(C) a nonexpansive mapping. Then T has a fired point.

Proof The condition gg(X) < 1 implies reflexivity [2], so C is weakly compact. Let zo € C
be fixed and, for each n > 1, define T, : C — KC(C) by

1 1
Tz =—xo+ (1- =Tz, Yz C.
n n

Then T,, is a set-valued contraction and hence has a fixed point z,. It is easily seen that
dist(zn,Tzn) < 2diamC — 0 as n ~ co. By Goebel and Kirk {7], we may assume that {z,}
is regular with respect to C' and using Proposition 2.8 we can also assume that

TzNA#0D, Vze A:=A(C, {z.}).
We apply Lemma 2.6 to obtain
(31) Tc(A) < AT(C: {mn}):
where A := (1~ Axg(17)) < 1.
It is clear that A is a weakly compact convex subset of C. Now fix #; € A and for each
n > 1, define the contraction T} : A — KC(C) by
1 1
T':(:L') = ;.‘1’21 + (1 - E)TI, Vo€ A
Since 4 is convex, each T} satisfies the same boundary condition as T does, that is, we have
TizNTa(z)#0, Vz € A,

Hence by Lemma 2.7, T has a fixed point z,, € A. Consequently, we can get a sequence {z}
in A satisfying d{z}, T(zl)) — 0 as n — oco. Again, applying Lemma. 2.6, we obtain

(3-2) re(AY) < Ar(C {z3)),

where A := A(C, {z1}). Since {xl(w)} C 4, we have

(3.3) #(C, {z3}) < ro(A),
and then
(3.4) re(A') € Mre(4).
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By induction, for each m > 1, we construct A™, and {2} }n where A™ = A(C, {z}),z] C
A™~1 such that d(zI®, Tz") — 0 as n — co and

(3.5) ro(A™) < Arg(A) € A™r(C, {za)).

By assumption gg{X) < 1 and diamA™ < 2rg(A™) leads to lim,_..o diamA™ = 0. Since
{A™} is a descending sequence of weakly compact subsets of C, we have N, A™ = {z} for
sq'_me z € C. Finally, we will show that z is a fixed point of T. Indeed, for each m > 1, we

have

d(z, Tz) lz =z + d(z}}, TaP) + H(Tz3, Tz)

<
< 2z =27 + d(zr, T2y
<  2diamA™ + d{z7*, Txl).

Taking the upper limit as n — oo,
d(z,Tz) < 2diamA™.

Now taking the limit in m on both sides we obtain z € T'z. 2

Corollary 3.2. (Dominguez Benavides and Lorenzo Ramirez. Theorem 4.2 in [4]) Let C be
a nonempty closed bounded convexr subset of a Banach space X such that eg(X) < 1, and
T:C — KC(C) a nonezpansive and I-x-contractive mapping. Then T has a fized point.

Now we are ready to prove the main result of this paper.

Theorem 3.3. Let C be a nonempty closed bounded convexr separable subset of a Banach
space X such that epg(X) <1, and T : Q@ x C — KC(C) be a set-valued nonerpansive random
operator. Then T has a random fized point.

Proof For each w € 2, and for every n > 1, we set
Flwy={zeC:z e T(w,z)},

and
Fow) = {z € C: d(z, T(w,z) < %diamc.}

1t follows from Theorem 3.1 that F{w) is nonempty. Clearly F(w) € F,(w), and F,(w)
is closed and convex. Furthermore, by [8, Proposition 3], each F,, is measurable. Then, by

Lemma 2.1, each F,, admits a measurable selector z,{w) and
d{an (W), T{w, zp(w))) < %diamC - 0 as n — o0,
Define a function f; : Q@ x € — R by

fi(w,z) = limsup ||z,(w) — 2|, Yw e
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By Lemma 2.3, it is easily seen that for each z € C, fi(-,z) : 2 — R* is measurable and for
eachw € Q, fi(w,) : C — Rt is continuous and convex {and hence weakly lower semicontin-
uous (w-ls.c.)). Note that the condition £4(X) < 1 implies reflexivity (see [2]) and so C is
weakly compact. Hence, by Lemma 2.5 the marginal functions

rl(w) = ;gé fl(wr :B),
and
Bi(w) :={z € C: filw,z)} = r1{w)}
are measurable. By Goebel [7], for any w € £ we may assume that the sequence {z,(w)} is

regular with respect to C. Observe that Ri(w) = A(C, {zn(w)}) and ri{w) = r(C, {zn(w)}),
thus we can apply Lemma 2.6 to obtain

(3.6) re(Ra(w)) < Ar(w),

where A := 1 - Axg(17) < 1, since €g(X) < 1. It is clear that R;(w) is a weakly compact
and convex subset of C. By Lemma 2.1 we can take z;(w) as a measurable selector of R; (w).
For each w € { and n > 1, we define the contraction T2 (w,-) : Ri{w) — KC(C) by

Thw,2) = ~m() + (1 = 2)T(w,2), Vo & Ry(w).
Since Ry (w) is convex, each T}, satisfies the same boundary condition as T does, that is, we
have
THw, )N TR, (W) (z) £#0, Vr € Ry(w).

Hence by Lemma 2.7, T} (w, ) has a fixed point z,(w) € Ry (w),i.e.F(w) N By (w) # 0. Also it
is easily seen that

dist(zn (), T(w, za(w))) < %diamC —08sn— oo

Thus Fl(w) = {z € Ry(w) : d(z,T{(w, z)) < 2diamC} # @ for each n > 1, is closed and, by
Lemma. 2.4, measurable. Hence, by Lemma 2.1, we can choose z a measurable selector of
F}, and from its definition we have z (w) € Ri(w) and d(z}(w), T(w,zL{w)}) — 0 as n — co.

Consider the function f; : @ x C — R* defined by
f2(w, ) = limsup ||z} (w) — z|, Yw e

n
As above, fs is a measurable function and weakly lower semicontinuous function. Thus the
marginal functions

= inf s

ra(w) m€1Rnl » felw, x)

and

Ry(w) = {z € By{w) : fé(w,z) = ro(w)}

are measurable. Since R(w) = A(Ry(w), {zL(w)}), it follows that Ra(w) is weakly compact
and convex. Also ro(w) = r(Ra(w), {x}(w)}). Again reasoning as above, for any w € (2, we can
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assume that the sequence {zl(w)} is regular with respect to R;(w). Again, applying Lemma
2.6, we obtain

3.7 re(Ra(w)) < Arg(w).

Furthermore, {z}(w}} C Ri(w). Hence

(3.8) r2(w) < re(Ra(w)),
and thus
(3.9) ro(Ra(w) € Ari(w).

By induction, for each m > 1, we construct Ry, (w), 7 (w) and {2 (w)}, where 27 (w) &
R (w) such that d{zw), T'(w, 27 (w))} — 0 as n — oo and

(3.10) re(Rm(w)) € Arp{w) < A (w).

Since diamRm(w) < 2rc(Rm(w)) and A < 1, it follows that limm— o diamRm(w) = 0. Since
{Rm(w)} is a descending sequence of weakly compact subsets of C for each w € £2, we have
N B (w) = {z(w)} for some z(w)} € C. Furthermore, we see that

H(Rp(w), {z(w}}) < diamRp,(w) — 0 as n — +o00.

Therefore, by Lemma 2.2, z{w) is measurable. Finally, we will show that z(w) is a fixed point
of T Indeed, for each m > 1, we have

d(z(w), T(w, 2(w) < [z(w) —z7{(w)|| + d(z7' (W), T(w, 27 (w)))
' + H(T(w,z7(w)), T(w, z(w)})
< 2f|z(w) — 2 (w)l| + d(zT{w), T(w, z7' (w)))
< 2diamR,,(w) + d{z(w), T{w, 27 (w))).

Taking the upper limit as n — oo,
d(z(w), T(w,2(w)) < 2diamR,,(w).
Finally, taking limit in m in both sides we obtain z{w) € T(w, z{w)). O

Corollary 3.4. Let C be a nonempty closed bounded convex separable subset of a Banach

space X such that eg(X) < 1, and T :  x C — C a random nonexpansive operator. Then T
has a random fized point.

Corollary 3.5. (Lorenzo Ramirez, Theorem 6 in [10]} Let C be ¢ nonempty closed bounded
convex separeble subset of a Banach space X such that £o(X) < 1, and T : QO xC = C a
random nonecpansive operator. Then T has a random fized point.

Proof By (2.2) we see that £,(X) < 1 implies £54(X) < 1.
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RANDOM FIXED POINT THEOREMS FOR MULTIVALUED
NONEXPANSIVE NON-SELF RANDOM OPERATORS

S. PLUBTIENG AND P. KUMAM

Abstract. Let (©2, ) be a measurable space, with }, a sigma-algebra of subset of {2, and
let C be & nonempty bounded closed convex separable subset of a Banach space X, whose
characteristic of noncompact convexity is less than 1, KC(X) the family of all compact
convex subsets of X. We prove that a multivalued nonexpansive non-gelf random operator
T:0x C — KC({X), 1-x-contractive map;ﬂﬁg, satisfying a inwardness condition has a
random fixed point.

1. INTRODUCTION

In recent years there have appeared various random fixed point theorems for single-
valued and set-valued random operator; see for example, Itoh |7], Ramirez [11], Tan and
Yuan [12], Xu [14], and [15] Yuan and Yu [17] and references therein.

In 2002, P. L. Ramirez [11] proved the existence of random fixed point theorems for a
random nonexpansive operator in the framework of a Banach spaces with a characteristic
of ‘noncompact convexity €4 (X} is less than 1. On the other hand, Dominguez Benavides
and Ramirez [3] proved a fixed point theorem for a set-valued nonexpansive self-mapping
and 1-x-contractive mapping in the framework of a Banach spaces whose characteristic of
noncompact convexity associated to the separation measure of noncompactness eg(X) is less
than 1. In 2004, Dominguez Benavides and Ramirez [4] proved a fixed point theorem for
a multivalued nonexpansive non-self mapping and 1-y-contractive mapping in the frame-
work of a Banach spaces whose characteristic of noncompact convexity associated to the
Kuratowski measure of noncompactness £4(X) is less than 1.

0

Key words and phrases: random fized point, multivalued random operator, inwardness condition.
2000 Mathematics Subject Classification: 4TH10, 47HO09, 47H40.
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The purpose of the present paper is to prove.a random fixed. point theorem for mul-
tivalued nonexpansive non-self random operators which is 1-y-contractive mapping, in the
framework of a Banach spaces with characteristic of noncompact convexity associated to
the separation measure of noncompactness eg{X) less than 1. and satisfying a inwardness
condition. Our result can also be seen as an extension of Theorem 3.4 in [4]

2. PRELIMINARIES AND NOTATIONS

We begin with establishing sotne preliminaries. By (2,Z) we denote a measurable
space with I a sigma-algebra of subset of Q0. Let (X,d) be a metric space. \We dencte
by CL{X)(resp CB(X)},KC(X)) the family of all nonempty closed (resp. closed bounded,
compact convex) subset of X, and by H the Hausdorff metric on CB(X) induced by d, i.e.,

H(A, B) = max {sup d{a, B),sup d(b, A)}
acA beB

for A, B € CB(X), where d{z, E) = inf{d(z,y)|ly € E} is the distance from z to £ C X,

Let C be a nonempty closed subset of a Banach space X. Recall now that a Multivalued
mapping T : C — 2% is said to be upper semicontinuous on C if {x € C: Tz C V} is open
in C whenever V C X is open; T is said to be lower semicontinuous if 7=-'(V):= {zr € C:
TNV # @}s open in C whenever V C X is open; and T is said to be continuous if it is
both upper and lower semicontinuous (cf.[1] and [2] for details). There is another different
kind of continuity for multivalued operator: T : € — CB(X) is said to be continuous on
C (with respect to the Hausdorff metric H) if H(Tx,,Tz) — 0 whenever z, — z. It is
not hard to see (see Deimling [2])that both definitions of continuity are equivalent if T'z is
compact for every z € C.

If C is a closed convex subset of a Banach spaces X, then a multivalued mapping
T : C — CB(X) is said to be a contraction if there exists a constant & € [0, 1) such that

H(T&L‘, Ty) < k”I - y”a T,y € C:
and T is said to be nonczpansive if

H(Tz,Ty) < |z—vyl, =zy€C,

A multivalued operator T : @ — 2% is called (£)— measurable if, for any open subset
Bof X,

T-YB)={we Q: T(w)N B #0}
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belongs to L. A mapping = : @ — X is said to be a measurable selector of a measurable
Multivalued operator T : €2 — 2% if z(.) is measurable and z(w) € T(w) for all w € . An
operator T : @ x C — 2% is calied a random operator if, for each fixed z € C, the operator
T(-,x) : @ — 2% is measurable. We will denote by F(w) the fixed point set of T'(w, -), i.e.,

Flw):={zeC:z e T{w,)}.

Note that if we do not assume the existence of fixed point for the deterministic mapping
T(w,) : C — 2%, F{w) may be empty. A measurable operator z : 8 — C is said to be a
random fized point of e operator T : § x C — 2X if z{w) € T(w, z(w)) for all w € . Recall
that T : @ x C = 2% is continuous if, for each fixed w € Q the operator T : (w,-) — 2% is
continuous.

A random operator T :  x C — 2% is said to be nonezpansive if, for each fixed w € Q

the map T : (w,-) — C is nonexpansive.

For later convenience, we list the following results related to the concept of measurability.

Lemma 2.1. { Wagner ¢[.[13]). Let (X,d) be a complete separable metric space and F :
2 — CL{X) a measurable map. Then F has a measurable selector.

Lemma 2.2. ( Itoh 1977, cf.[7]). Suppose {T,.} is a sequence of measurable Muliival-
ued operator from § to CB(X) and T : Q@ — CB(X) is an operator. If, for each w €
Q, H{To(w), T(w)) = 0, then T is measurable.

Lemma 2.3. { Tan and Yuan cf.[12]). Let X be a separabie metric space and Y a metric
space. If f: Q% X — Y is a measurable in w € §1 and continuous in z € X, and if
% : Q — X is measurable, then f(-,2(-)): @ =Y is measurnble.

As an easy application of Proposition 3 of Itoh[7] we have the following result.

Lemma 2.4, Let C be ¢ closed separable subset of a Banach space X, T : QO xC - C a
random continuous operator and F : ©2 — 2€ o measurable closed-valued operator. Then for
any 8 > 0, the operator G : 2 — 2C given by

Glw)={ze Flw): |l —T(w,z}|| <s}, we
is measureble and so is the operator cl{G(w)} of the closure of G{w).

Lemma 2.5. ( Dominguez Benavidel and Lopez Acedo c¢f.(5]). Suppose C is ¢ weakly
closed nonempty separable subset of a Banach space X, F : § — 2% a measurable with

-weakly compact values, f : 1 x C — R is a measurable, continuous and weakly lower

semicontinuous function. Then the marginal function r : @ — R defined by

r(w) = Ieig{w)f(w,x)
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and the marginal map R : Q — X defined by
R(w) :={r€ Fw): flw,z) = r(w)}

are measurable.

Recall that the Kuratowski and Hausdorff measures of noncompactness of a nonempty
bounded subset B of X are respectively defined as the number

a(B)=inf{r > 0: B can be covered by finitely many sets of diameter < r},

x(B)=inf{r > 0: B can be covered by finitely many ball of radius < r}.

The separation measure of noncompacness of a nonempty bounded subset B of X defined
by
B(B) = sup {e : there exists a sequence {z,} in B such that sep({zn}) > €}.

Then a multivalued mapping T : C — 2% is called y-condensing (resp., 1-y-contractive)
where v = a('} or x(-} if, for each bounded subset B of C' with ¥(B) > 0, there holds the
inequality '

HT(B)) < ¥(B) (respy{(T(B)) < +(B)).
Here T(B) = | J,¢5 Tz The random operator T : © x C — 2% is said to be 1-y-contractive
if, for each w € Q the map T : (w, -} — 2% is 1-y-contractive.
Definition 2.6. Let X be a Banach space and ¢ = @, 8 or x. The modulus of noncompact
convezity associaled to ¢ is defined in the following way:
Ax g(e) =1inf {1 —d(0,A) : A C Bx is conves, ¢(A) > €},

where By is the unit ball of X.

The characteristic of noncompact convexity of X associated with the measure of non-
compactness ¢ is defined by

es(X)=sup{e > 0: Ax (e} =0}.
The following relationshops among the different moduli are easy to obtain
(2.1) Bx,ale) < Axple) < Axx(e),
and consequently
(2.2) EalX) 2 £5(X) 2 £x(X).

When X is a reflexive Banach space we have some alternative expressions for the moduli of
noncompact convexity associated 8 and x.

Axple) = inf {1 - ||z|| : {zn} C Bx,z = w ~ limz,, sep({z..}) = €},
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Axx(e) = inf{1 - ||z]| : {zn} C Bx,z = w - limzn, x{{zn}) 2 €} .

In order to study the fixed point theory for non-self mappings we must introduce some
terminology for boundary condition, The inward set of C at x € C defined by

Ic(z) = {z+AMy—=x): 2> 0,y C}.

Clearly C C Ig(z) and it is not hard to show that Jo(z)} is a convex set as C does. A
multivalued mapping T : C — 2% {@} is said to be inward on C if

Tz C Io(z) Yz € C.

Let Io(z) = z+ {AMz —2) : z € C,A > 1}. Note that for a convex C, we have
Ic(x) = Ic(x), and T is said to be weakly inward on C if

Tz C Ic(z) vz e C.

Let € be a nonempty bounded closed subset of Banach spaces X and {z,} bounded
sequence in X, we use r(C, {z,}) and A(C, {z,}) to denote the asymptotic radius and the
asymptotic center of {&,} in C, respectively, i.e.

r{(C,{zn}) =inf {lim sup||zn —z|| -z € C} )

A(C, {z,}) = {x eC: lim:‘.up flte — || = r{C, {mn})} .

If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

re(D) := inf {sup{|z ~ y|| :y € D} : x € C}.

Obviously, the convexity of C implies that A{C, {z.}) is convex. Notice that A(C, {zn})
is a nonempty weakly compact set if C is weakly compact, or C is a closed convex subset

of a reflexive Banach spaces X.

Let {x,} and C be a nonempty bounded closed subset of Banach spaces X. Then {z,}
is called regular with respect to C if r(C, {zn}) = r(C, {zn;}) for all subsequences {zn,}
of {z,}; while {z,} is called asymptotically uniform with respect to C if A(C, {z.}) =
A(C, {zn,}) for all subsequences {zn,} of {za}.

Lemma 2.7. (Goebel[6] and Lim[10]). Let {zn} and C be as above. Then we have
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(1) There always exists a subsequence of {x,} which is reqular with respect to C;
(it) if C is separable, then {z,} contains a subsequence which is asymptotically uniform
with respect to C.

Moreover, we also need the following Lemma.

Lemma 2.8. (Dominguez Benavides and Ramirez. Theorem 3.4 cf. [3]). Let C be e elosed
convex subset of a reflexive Banach spaces X, and let x,, be a bounded sequence in C which
is regular with respect to C. Then

(2.3) rc(A(C, zn)) < (1 — Ax s(1")r(C, {2n}).
Morcover, if X satisfies the nonstrict Opial condition then
(2.4) re(A(C,7n)) € (1 = Ax,x (17))r(C, {zn}).

Lemma 2.9. ( Dominguez Benavides and Ramirez. Theorem 3.2 cf. [4]). Let C be a closed
conver subset of a reflexive Banach space X, and let {zg : B € D} be a bounded ultranet.
Then '

(2.5) ro(A(C,zp)) £ (1 = Ax,a(17))r(C, {z6})-

The following result are now basic in the fixed point theorem for multivalued mappings.

Lemma 2.10. (Deimling 1992, cf. [2]). Let X be a Banach space and @ # D C X be closed
bounded convez. Let F : D — 2% be upper semicontinuous y—condensing with closed convex
values, where v(-) = a(-) or x(-). If FzNIp(z) # @ for allz € C, then F has o fized point.
{Here In(z) is called the inward set ot = defined by Ip(z) == {z+My—-x): A >0,y € D})

3. THE RESULT

In order to prove our first result, we need the following Lemma which is proved along
the proof of Kirk-Massa theorem as it appear in [16].

Lemma 3.1. Let C be o nonempty closed bounded conver separable subset of a Banach
space X. T : C — KC(X) is a nonezpansive such that T(C) 1s ¢ bounded set and which
satisfies Tx C Io(xz), Vx € C, {z,} is a sequence in C such that lim, d(2n,, Tz,) = 0. Then
there exist a subsequence {zn} of {zn} such that Tz N I4(x) # 0,Vz € A= A(C,{z.})

Lemma 3.1 is the part (more or less) of the proof of theorem 3.4 of [4].

The next result state the main result of this work.
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Theorem 3.2. Let C be ¢ nonempty closed bounded conver separable subset of @ Banach
spaces X such that eg{X) < 1, and T : ¥ x C — KC(X) be a multivalued nonezpansive
random operator and I-x-coniractive mapping, such that for each w € Q, T{w,C) is a
bounded set, which salisfies the inwardness condition, i.e., for each w € Q, T(w,z) C
Ic(z), Vo e C.

Then T has a random fized point.

Proof. Fix zq € C, and consider the measurable function zg{w) = z¢. For each n > 1, define
Tolw,): C — KC(X) by
To(w,z) = %xo(w) + (n—;—l)T(w, %), ¥z € C.

Then T, (w,-) is a multivalued contraction and T, (w,z) C Io(x), ¥z € C. Hence each T,
has a fixed point zn(w) € C. It is easily seen that d{z,(w), T{(w, ze(w))) £ LdiamC —
0 as n —+ 00. Thus the set

Folw)={z e C:d(z,T(w,z)) £ %diamc}
is nonempty closed and convex. Furthermore, by Lemma 2.4, each F}, is measurable. Then,

by Lemma 2.1, each F,, admits a measurable selector z,,(w) such that

Az (@), T(w, (@) < %diamc'; 0 as 1 — oo,

Defin a function f: Q x € — RY :=[0,c0) by
flw, z) = limsup ||za(w) — zl|, z€ C.

By Lemma 2.3, it is easily seen that f(-,z) is measurable and f(w,-) is continuous and
convex, therefore it is a weakly lower semicontinuous function. Note that, condition eg{X) <
1 implies reflexivity (see [1]) and so C is a weakly compact. Hence, by Lemma 2.5, the
marginal functions
r(w) = mlg;;,f(w,z)
and
Alw) :={z € C: flw,z) = r(w)}

are measurable. It is clearly that A(w) is a weakly compact convex subset of C. For any
w € 0, we may assume that the sequence {#,(w)} is regular with respect C. Note that

A(w) = A(C, {za(w)}), and r(w) = r(C, {zn(w)}). We can apply inequality (2.3) in Lemma
2.8 to obtain

(3.1) ro(A(w)} < Ar(C, {zn(w)}),

where A =1 - Ax g(17) < 1, since eg(X) < 1.
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For each w € R and n > 1, we define the multivalued contraction Tp{w, ) : A{w) —
KC(X) by

m )T w,a),

for each z € C. By Lemma 3.1 we note that T{w,z) N Tag,y(z) # &,V € A(w). Since
Lagu(z) is convex, it follow that T}k (w,-) satisfies the boundary condition i.e.,

Ta(w,z) = %xl(w) +(

(32) T (w, ) NIay(z) # 0,Vz € A(w).

Since T}{w,-) is 1-x-contractive mapping, it follows by [3, pp.382] that Thi(w,-) is x-
condensing. Hence, by Lemma 2.10, T2 (w,-} has a fixed point z}(w) € A(w),i.e.F{w) N
A(w) #£ 0. Also it is easily seen that

dist(zl (W), T(w, 21 (w))) < %dz'amC — 0 asn — co.

Thus Fl(w) := {z € A(w) : d(z,T(w,z)) £ 2diamC} is nonempty closed and convex for

eachn > 1. By Leng_rpa 2.4, each F! are measurable, Hence, by Lemma 2.1, we can choose

z} a measurable selector of 2. Thus we have z}(w) € A(w) and d(zl(w), T{w, zL(w))} —

0 as n — oo. Consider the function fa: @ x € — RY defined by
fo{w,z} = limsup Jal(w) — 2|, Ywe Q.
1i%

As above, f7 is a measurable function and weakly lower semicontunuous function. Then the
marginal function
ra(w) = _inf  folw,)
and
Alw) == {z € Alw) : folw, z) = r2(w)}
are measurable. Since A!(w) = A(A{w), {z}(w}}), it follows that A'(w) is a weakly compact
and convex. Moreover, we also note that m2(w) = r(A(w), {zL(w)}). Again reasoning as

above, for any w € 2, we can assume that the sequence {z1(w)} is regular with respect to
A¥(w). Moreover, we proceed as above using Lemma 3.1 and Lemma 2.8 to obtain that

T(w,2(w)) N La (z(w)) # 8 Vo(w) € A1 = A(A(w), {z(w)}),
and
(3.3) ro(4') € Ar(A), {ZA(W)}) < Arc(Aw)).

By induction, for each m > 1, we take a sequence {z™(w)}n C A™1 guch that re(A™) <
Are(A(w)) and lim, d(ei*{w), T (w, 20 (w})) = 0 for each fixed w € §2, where A™ =

A(C, {z™(w)}). Since diamRn{w) < 2ro(Rm(w)) and A < 1, it follows that limy, e diam Ry, (w) =

0. Note that {R,,(w)} is a descending sequence of weakly compact subset of C for each w € 2.
Thus we have Ny B (w) = {z(w)} for some z(w) € C. Furthermore, we see that

H(Rp(w), {2(w)}) < diamBRp(w) = 0 asn — +oo.
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STRONG CONVERGENCE THEOREMS OF VISCOSITY
AVERAGING ITERATIONS FOR ASYMPTOTICALLY

NONEXPANSIVE NONSELF-MAPPINGS

SOMYOT PLUBTIENG AND RABIAN WANGKEEREE

ABSTRACT. Let ' be a nonempty closed convex subset of a real Hilbert
space H, P be the metric projection of H onto C, T be an asymptoti-
cally nonexpansive nonself-mapping from C into H with a sequence {kn} C
[1,00) and f : ¢ — C be a contraction mapping with coefficient o € (0,1).
Tt proved that, for each n > 1, there exist two sequences {z,} and {y,}
which defined by

Tn = anf(Tn) + {1 - a,,)% Z(PT)j:cn, vn>1

F=1
and -
1 )
Yn = "T; Zp(anf('yn) + (1 - an)(TP)Jyﬂ)v Vn > 1,
i=1
where n
1 : b, —1
== -k =3 = = >
by n;u 11 ksl e an = 3 5zl

and 0 < a < § < 1. Then two sequences {z,} and {y,} converges strongly
to a fixed point of T.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H and

let Tbe a mapping of C into itself. Then T is said to be nonexpansive provided
| Tz ~ Tyl < |lz — y|| for all z,y € C; T is said to be asymptotically nonex-
pansive mapping if there exits a sequence {k,} C [1,00) with lim;, oo kn =1

-Key words and phrases. Fixed point; Metric projection; Asymptotically Nonexpansive
nonself-Mapping; Strong Convergence; Contraction mapping.

2000 Mathematics Subject Classification: 46C08, 47HG9, 47H10.
t Supported by The Thailand Research Fund.
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such that for each z,y € C,
(1.1) Tz — Tyl| < knliz — yl|,Vn =1,2,3, ...

Recall that a self-mapping f : C — C is a contraction on C if there exists a
constant « € (0, 1) such that

(=) — F@ < allz — yl| Vz,y € C.

We denote by F(T') the set of fixed points of T'; i.e. F(T)={z € C:Tz =z}.
It is well know that if T is nonexpansive, then F(T) is convex see [6]. In 1967,
Browder{3] proved the following strong convergence theorem for nonexpansive
mapping: let T" be a nonexpansive mapping of a bounded closed convex subset
C of H into itself. Let u € C and for each t € (0,1), let Goz = tu+ (1 —t)Tz.
Then, G; has a unique fixed point z; in C, and {z;} converges strongly to a
fixed point up of T as t — 0. The fixed point ug is uniquely specified as the
fixed point of T in C closest to u. In 1975, Baillon [1], prove the first nonlinear
egodic theorem as follows: let C be a bounded closed convex subset of H and
let T be a nonexpansive mapping of C into itself. Then for each z € C

1 11
Agz=—-> Tk
o n; T

converges weakly to fixed point of 7. In 1979, Hirano and Takahashif5] ex-
tended Baillon’s theorem to asymptotically nonexpansive mappings. By Using
an idea of Browder(3], Shimizu and Takahashi[13] proved the following theo-
rem for an asymptotically nonexpansive mapping in the framework of a Hilbert
space:

Theorem 1.1. {[13]). Let C be a closed convex subset of a real Hilbert space
H, let T be an asymptotically nonexpansive mapping of C into itself with
Lipschitz constants k,, and suppose that F(T) is nonempty. Let
1o : by, — 1
b, = — 1411 —k; ), = ————,
LSk e = T
where 0 < a < 1. Let o € C. Then, a mapping T,, on C given by
Tot = apzo + (1 — ap)Anz, forallz € C

has a unique fized point u, in C, when Ay = 1577 | TV, Further {u,} conver-

gence strongly to the element of F(T) which is nearest to xo.
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On the other hand, Xu[16] extended Browder’s result to studied two se-
quences {z;} and {z,} given by

zy = tf(z) + (1 - t) Tz,
and
ZTpt1 = Qnf(Zn) + (1 —an)Tza,n=1,2,..,,
where ¢ € {0,1), {an} C (0,1) and f is a contraction mapping from C into
itself. Xu[16] also proved the strong convergence of the sequences as t — 1
and a, — 1 to the unique solution z in F(T") to the variational inequality

((I-flz=2—2) 20,z € F(T) or equivalently to z = P({f(z)) where P is
the metric projection from H onto F(T).

In this paper, we first show that, for an asymptotically nonexpansive
nonself-mapping T with a sequence {k.} C [1, 00), there exists two sequences
{zn} and {y,} which defined by

1 n

1.2 = —a,)~ iz, ¥n>1
(1.2) Tp = G f(z,) + (1 an)n;(PT) Zn, VR 2>
and
1 < i
(1.3) Un = =D P(anf(yn) + (1 = au)(TPYyn), ¥ 2 1
i=1

where

b =—1-Zn:(1+|1—k-|+e'j) can=b"—-_l Yn2>1

n n j=1 ‘7 ? b“ _ ﬂ? - -

0<a< @<l f:C — Cisa contraction mapping with coefficient
a € (0,1) end P is the metric projection from H onto C. Finally we show
that {z,} and {y.} converges strongly to a fixed point of 7. Then the results
presented in this paper generalized and extend the corresponding main results
of Shimizu and Takahashi [13].

2. PRELIMINARIES

Let H be a real Hilbert space with norm || - || and inner product {-,-)
and let C be a closed convex subset of H. Recall the metric (nearest point)
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projection P from a Hilbert space H to a closed convex subset C of H is
defined as follows: Given z € H, Pcz is the only point in C with the property

|z — Poz|| = nf{|z — gy}l : y € C}.
Pcox is characterized as follows.

Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H.
Givenz € H andy € C. Theny = Pz if and only if there holds the inequality

(z—y,y—2)>20,¥VzeC.

Definition 2.2. A mapping T : C — H is said to satisfy. nowhere normal
outward condition ((NNO) for short) if and only if for each z € C, Tx € S¢,
where S, = {y € H : y # z, Py = z} and P is the metric projection from H
onto C.

Lemma 2.3. ([9, Proposition 1]). Let H be a Hilbert space, C o nonempty
closed convezr subset of H, P be the metric projection of H onto C and T :
C — H be o nonself-mapping. Suppose that T satisfies (NNO)} condition.
Then F(PT) = F(T).

Lemma 2.4. ([13, Lemma 4]). Let H be a Hilbert space, C a closed convex
subset of H, and T : C — C be an asymptotically nonezpansive mapping with
F(T) # 0. If {z.} is a sequence in C and there exists a subsequence {Tn,}

which converges weakly to z € C and {z,, — n_l, S
to 0. Then = is a fized point of T.

Definition 2.5. ([4, Definition 3.1]). Let X be a real normed linear space, C
a nonempty subset of X. Let P : X — C be the nonexpansive retraction of

Tiz,,} converges strongly

X onto C. A mapping T : C — X is said to be asymptotically nonezpansive
if there exists a sequence {kn}n>1 C [1,00), kn — 1 as n *— oo such that

for all z,y € C, the following inequality holds:
2.1) IT(PT)" 'z — T(PT)" 'y|| < knllz — yl|,for all n > 1.

Remark 2.6. If X is a Hilbert space then we can replace the mapping P by
the metric projection P.

Remark 2.7. If T is a self-map, then PT = T so that (2.1) coincide with (1.1).
Moreover, we note that TP |c= T. So if a contraction mapping f : C — C
defined by f(z} = x¢ € C,Vz € C and setting f = 1—a forsome0 <a <1l-o
then, (1.2) and (1.3) reduce to the sequence {u,} in Theorem 1.1.
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For a contraction mapping f : C — C with coefficient o € (0,1) and an

asymptotically nonexpansive mapping T with a sequence {k.} C [1,00), we
putting

n

1 . by — 1
bn —_— — —_— e —J n= n = 1,2, P
"’,-E=1(1+I1 kil +e) and a bn_ﬂforn 3

where 0 < @ < § < 1. Then, we get the following facts:

(1) by > 1,2 im Ky <bp0<a, <1,V 21,
(1) Tty —o0 by = 1, liMp o0 an = 0,
(iii) a, > g—:i} or equivalently to a,(a ~ b,) +b, < 1,¥n > 1.

Now, for each n > 1, we consider two mappings S,, U, : C — C given
by

(2.2) Sz = anf(z) + (1 - an)% Zn:(PT)ja:, forallz e C
and
(23) U= %;P(aﬂf(y) + (1= aa)(TPYy), forall y € C.

Then, we have the following three lemmas.

Lemma 2.8. For each n > 1, S, has a unique fized point =, in C.
Proof. Let z,y € C. Then for each n > 1, we have

1Saz = Sayll = llaa(F(z) = f@)) + (1 - an)~ E(PT)Jm— (PTYy)|

< amﬂm—yﬂ+(1—an)§_2||<PT)fz—(PT)fyn
< awolle— ) + (1 o) 2 Y IT(PTY 2~ T(PTY )

3.—1

. < anallz —yl| + (1~ an)= Zkllz—yll
31
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< apallz —yll+ (1 = an)ballz -yl
= (an{o = by) +bo)llz — yll-

Since a,(c—by) 4 b, < 1, we get S, is a contraction mapping on C. Therefore,
by the Banach Contraction principle, S, has a unique fixed point x, in C. O

Lemma 2.9. For eachn > 1, U, has a unique fixed point y, in C.
Proof. Let z,y € C. Since P is a nonexpansive mapping such that Pr = z
and Py =y, it follows as in the proof of Lemma 2.8 that

WUz — Unyll < (anle = ba) + ba)llz — |-

Thus U, is a contraction mapping and hence U,, has a unique fixed point yn
in C. O

Lemma 2.10. If F(T) is a nonempty, then {z,} and {y.} are bounded se-

quences.
Proof. Let ¢ € F(T). Then, we have

lan—al = lon(f(za) = 0) + (0~ aw)= S ((PTYzn ~ )

J=1

allf ) = gl + (1~ @) Y (PTP 5~ gl
j=1

A

IA

nllf ) = F@N +aall @) = all+ (1= a)= 3 Klzn ~ gl

j=1
< nalzn — gl + anl f(g) = all + (1 = an)ballza — 4l
= (o —bn) +bn)llzn — gl + anll f(g) ~qll.

‘We note that
Q, _ b, — 1 _ 1
1—-[an(a—by)+by] —B-buata+b8 f—a
It follows that [lzn — all < sy £(0) — all = 5511£() - gll. Hence

{z.} is a bounded sequence. Then as in the proof above, {y,} is also bounded.
This completely the proof. 0
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3. MAIN RESULTS

In this section, we shall prove two strong convergence theorems for as-
ymptotically nonexpansive nonself-mapping in a Hilbert space.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H, P

the metric projection from H onto C, T be an asymptotically nonezpansive

nonself-mapping from C into H with Lipschitz constant k,, and suppose lhat

F(T) is nonempty. Let [ : C — C be a contraction mapping with coefficient
a€(0,1),

1< = by — 1

by = ;Z(1+ll—kj|+e 7} and a, = E:_——ﬁ'

where 0 < a < B < 1. If T satisfies (NNQO) condition then the sequence {z,}

defined by (1.2) converges strongly to z where, z is the unigue solution in F(T)
to the varialion inequality

j=t

(3.1) ({(I - flz,z—2)=>20, z € F(T)

or equivalently 2 = G(f(z)), where G is the metric projection from H onto
F(T).

Proof. By Lemma 2.10, we have {2, } is bounded so are { f(z,)} and {2 Y= T PY zq||}-

Furthermore, we obtain

: 1 o . 1 .
- = J — —a )= PTYz, — = PTYz,
llen =~ J;(PT) Zall = flanf(2a) + (1 ~an)~ ;( TYzn -~ j;( Y|
1 ¢ ;
= a'n“f(mn) - T—l Z(PT) xﬂ“
=1
I :
< o [Ilf(:rn)l! - > WTPYzull| — 0asn —s co.
i=1
This implies that {z, — %37 (PT)’z,} converges strongly to 0. We next
show that
(3.2) limsup{z - z,, 2 — f(2)) < 0.
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Let {z,,;} be a subsequence of {z,} such that

j}i_l’nm(z — Tpyy 2 — f(Z)) = limsup(z —ZIn,2 - f(Z)),

and z,, = x € C. By Lemma 2.4 and Lemma 2.3, we get z € F(PT) = F(T).
Hence, by (3.3) we obtain

limsup(z —zp,2— f(2)) ={(z—z,2— f(2)) <0

=00

as required. Finally we shall show that z, — 2. For each n > 1, we note that
2 = 22 = |z — 2 + an(z = £(2)) = an(z = f())]”
< Nlzn — 2+ an(z — f)? + 20020 — 2, f(2) — 2)

= lon(J(za) = S + (1= an) = S (PTY 'm0 = 2P

+2a,{z, — 2, f(2) — 2)

n 2
< {anllf(-’ﬂn) ~ J@I+ (1= )= S (PTYzn - z)u}

+2an{zy — 2, f(2) — 2)
< {anaf|zn — 2l| + (1 = @a)ballza — 2[}*
+2an{xy — 2, f(2) — 2)
< (an(@ = ba) + ba)llzn = 2] + 2an(zn — 2, f(2) — 2).

It follows that

2a
T, —z|? < n
o =217 < ety v
— (=S = ).
Let € > 0 be arbitrary. Then by the fact (3.2) there exists a natural number
N such that

(Zn — 2, f(2) — 2)

(tn—2,f(2) = 2) S (B- )5, Vn 2 N.
This implies that
lzn — 2]|* < €,¥n > N.

Hence the sequence {z,} converges strongly to a fixed point z of T". This
completely the proof. 0
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Theorem 3.2. Let C be a closed convexr subset of a real Hilbert space H, P
the metric projection from H onto C, T be an asymptotically nonexpansive
nonself-mapping from C into H with Lipschitz constant ky,, and suppose that
F(T) is nonempty. Let f : C — C be a contraction mapping with coefficient
a€(0,1),
1« _; b — 1
by = aZ(1+(1—zcj|+e N and a, = T

where 0 < a < B < 1. If T satisfies (NNQ) condition then the sequence {yn}
defined by (1.8) converges strongly to z where, z is the unique solution in F(T)
to the variation ineguality

i=1

(3.3) ((I—-flz,z—2y>0, z € F(T)

or equivalently z = G{f(z)), where G is the metric projection from H onto
F(T).

Proof. By Lemma 2.10, we get {yx} is bounded so are { f(y.)} and {3 >°7_; {(TP)yxll}.

Furthermore, we also have

n

o= = S PTPuull = 113 3 Planf () + (1 = an)(TPYya) = = 3 (PTVal
i=1 j=1

=1

IA

% ; ”a'nf(yn) -+ (1 — an)(TP)jyn _'_T(PT)j—lyn“
= ;11-2 [anf @) + (1 = an)(TPYyn — (TPY g,

= anm 3 1) - TPV 3l

j=1
1 .
< o 1@l = = D T PYyall| — 0 as n — co.
n =
This implies that {y, — + 37, (PT)z,} converges strongly to 0. Then as in

the proof of Theorem 3.1, we obtain

(3.4) limsup(z — ¥,z — f(2)} < 0.

n—00
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Finally we shall show that y, — 2. For each n > 1, we have
[yn = 21" < flya — 2+ anlz = FENIP + 200 (yn — 2, F(2) — 2)

< {% > 1P(@nf(yn) + (1 = an)(TPYy,) — Planf(2) + (1 - an)z)ll}

i=1
+2an(yn -z f(Z) - Z)

< {i- 3 (@nllf @) = S + (1 = an)(TPYy - z)ll)}

i=1
+2¢n(yn — 2, f(2) — 2)

< {ananyn — 2l + (1= el 3 ITPYun zu}

j=1
+2an(yn -z f(Z) - z)

2
1 n
< {anallyn =2l + (1= an)= > " illyn — zll}

+20n (Y — z, f(2) — 2)
< {(@na+ (1 = a)ba)llyn — 2Il}?
+20{yn — 2, f(2) — 2)
< (an(e = ba) + ba)llyn = 2I* + 20a(yn ~ 2, f(2) — 2).

It follows that
20,
1- [an(a — b} + ba)

= G- f@) -2,

Let € > 0 be arbitrary. Then by the fact (3.4) there exists a natural number
N such that

¥ — z“2 <

(yﬂ —Z,f(Z) --Z)

(W = 2, f(2) — 2) S (B- )5, V0 2 N,
This implies that
lyn — z||* < e,Vn > N.

Hence the sequence {y,} converges strongly to a fixed point z of T". This
completely the proof. ‘ (|
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Strong Convergence Theorems of Viscosity
Averaging Iterations for Nonexpansive
Nonself-Mappings in Hilbert Spaces *

Somyot Plubtieng and Rabian Wangkeeree
Department of Mathematics, Faculty of Science, Naresuan University, Pitsanulok 65000,
Thailand

Abstract

Let C be a nonempty closed convex subset of Hilbert space , P
a metric projection of A onto C and let T be a nonexpansive nonself-
mapping from C into H. In this paper, we study the convergence of
three sequences generated by

2 = taf(Z0) + (L= tn) = Y (PTVan ,n 2 1
j=1

1 <« , '
Yn+1 = anf(yn) + (1 — an) Z(PT)J?JH ,n 20,
=0

n+14
i

and
1 « ;
Zntl1 = ‘n,—-i-l FZ(:) P(o:nf(zn) -+ (1 — an)(TP)Jztl)) I ._>.. 01

where yo,2p € C, {ta} C (0,1) , {an} is a real sequence in an interval
[0,1] and f is a contraction from C into itself.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and let
T be a mapping of C into itself. Then T is said to be nonexpansive provided
Tz —Ty| < ||z —y| for all z,y € C. Recall that a self-mapping f : C — C
is a contraction on C if there exists a constant « € (0,1) such that

1£(=) = FW) < ez ~yll Vz,y € C.

We denote by F(T) the set of fixed points of T; i.e. F(T)={z € C: Tz ==z},
It is well know that if T is nonexpansive, then F(T") is convex see [4]. In 1967,
Browder(3] proved the following strong convergence theorem for nonexpansive
mapping: let T be a nonexpansive mapping of a bounded closed convex subset

~ C of H into itself. Let u € C and for each t € (0,1), let Giz = tu+(1 —t)T'z.

Then, G has a unique fixed point z; in C, and {z:} converges strongly to a
fixed point ug of T as ¢ — 0. The fixed point ug is uniquely specified as the

fixed point of T in C closest to u. In 1975, Baillon [1], prove the first nonlinear

egodic theorem as follows: let C be a bounded closed convex subset of H and
let T' be a nonexpansive mapping of C into itself. Then for each z € C

Apx = %ZT"&:
k=1

converges weakly to fixed point of T. By Using an idea of Browder[3|, Shimizu
and Takahashi[11] studied the convergence of the following approximated se-
quence for an asymptotically nonexpansive mapping in the framework of a

" Hilbert space:

1 n ] .
$n=anm+(1~—an)-ﬁ ZTJmn,n=1,2,..., (1.1)

j=1
where {a,} is a real sequence satisfying 0 < a, < 1 and a, — 0.
In 1997, Shimizu and Takahashi [10] also studied the convergence of it-

eration process for a family of nonexpansive mappings in the framework of a
Hilbert space as follows:

Theorem (Shimizu and Takahashi). Let C be a nonempty closed convex
subset of a Hilbert space H, let T a nonexpansive self-mapping of C such
that #(T'} is nonempty, and let P be the metric projection from C onto F(T').
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Let {a,} be a real sequence which satisfies 0 < a,, < 1, lim, ..o @, = 0 and
Yoo ptn = 00. Let z and yo be element of C and let {y,} be the sequence
defined by

. 1 n ) )
Ynt1 = anT + (1 = an)—— JZ:;TJy,,, > 1 (1.2)

Then {y.} converges strongly to Pxz.

Recently, Matsushita and Koroiwa[8] generalized the result of Shimizu and
Takahashi [10] and prove the following theorems:

Theorem (Matsushita and Koroiwa). Let H be a Hilbert space, C a closed
convex subset of H, P; the metric projection of H onto C and T be a non-
expansive nonself-mapping from C into H such that F(T') is nonempty, and
{an} a sequence of real numbers such that 0 < a, < 1, lim, . an, =0 and
3o o Qn = 00. Suppose that {z,} is given by z¢,z € C and

Intl = QpT + (1 - an)%_{_l Z(PlT)jfEn, n > 0. (13)
i=0

Then {z,} converges strongly to P,z € F(T), where P, is the metric projection
from C onto F(T).

Theorem (Matsushita and Koroiwa). Let H be a Hilbert space, C a closed
convex subset of H, P, the metric projection of H onto C and T be a non-
expansive nonself-mapping from C into H such that F(T) is nonempty, and
{an} a sequence of real numbers such that 0 < &, <1, lim, o o, = 0 and
Yoo @n = 00. Suppose that {y,} is given by yp,y € C and

1 Z" i
_ - > . .
Ynh1 n+1 g P(any + (1 an)(TPI) Yn, 0 2 0 ) (1 4)

Then {y,} converges strongly to Py € F(T'), where P, is the metric projection
from C onto F(T).

On the other hand, using the viscosity approximation method, Xuf14]
studied the convergence of the following approximation for nonexpansive nonself-
mapping in Hilbert space:

Iy = tf(.T-g) + (1 - t)TSL't (15)

and
Tnt1 = o f(z0) + (1 — 0n)Tzn,n = 1,2, ..., (1.6)
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where ¢ € (0,1), {a,} C (0,1) and f is a contraction mapping from C into
itself. Xu[14] also proved the strong convergence of the sequences as t — 1
and a, — 1 to the unique solution z in F(T") to the variational inequality
((I-fl)z=xz-2) 20,z € F(T) or equivalently to z = P({f(z)) where P is
the metric projection from H onto F(T).

In this paper, we study the three type iterations process which are mixed
iteration process of (1.1) - (1.6) as follows: for yp, 20 € C and

0 = b () + (1~ 42 S (T, )
j=1
- .
Yol = Oénf('yn) + (1 — an)n_—f—_l JEO(PT)JQ'“,TL >0 (18)

and

gy = n_lﬁ S P(onf(z) + (1 — an)(TPYz)n 20 (L9)
j=0

where {t,} C (0,1), {an} is a sequence such that 0 < o, <1, f: C — C'is
a contraction mapping and P is the metric projection of H onto C. We first
estabish the strong convergence of sequence {z,} defined by (1.7). In addition,
we also prove the strong convergence of the approximation sequences {y,} and
{zn} defined by (1.8) and (1.9) respectively. The results presented in this paper
generalized and extend the corresponding main results of Baillon [1], Shimizu
and Takahashi [10] and Matsushita and Koroiwal[8.

2 Preliminaries

Let H be a real Hilbert space with norm ||| and inner product {-,-) and let C
be a closed convex subset of H. Recall the metric (nearest point) projection
P; from a Hilbert space H to a closed convex subset C of H is defined as
follows: Given z € H, Pcz is the only point in C with the property

|z — Pez|| = inf{|lz — vli : ¥ € C}-

Pqx is characterized as follows.
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Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H.
Givenx € H andy € C. Theny = Pozx if and only if there holds the inequality

(x —y,y—2) 2 0,¥Vz € C.

Definition 2.2. A mapping T': C — H is said to satisfy nowhere normal
outward condition ((NNO) for short) if and only if for each z € C, Tz € 8¢,
where S; = {y € H : y # z, Py = z} and P is the metric projection from H
onto C.

The following results was proved by Matsushita and Koroiwa[7].

Lemma 2.3. ([T, Proposition 2, P. 208]). Let H be a Hilbert space, C a
nonempty closed convex subset of H, P the metric projection of H onto C and
T : C — H a nonezpansive nonself-mapping. If F(T) is nonempty then T
satisfies NNO condition.

Lemma 2.4. ([7, Proposition 1, P. 208]). Let H be a Hilbert space, C a
nonempty closed convex subset of H, P the metric projection of H onto C and

T : C — H a nonself-mapping. Suppose that T satisfies (NNO} condition.
Then F(PT) = F(T).

Further, we know the following lemmas actually hold for asymptotically
nonexpansive{11]. But we only need its for nonexpansive version.

Lemma 2.5. ([11]). Let H be a Hilbert space, C a closed conver subset of
H, and T : C — C a nonezpansive mapping with F(T) # 0. If {z,} is e
sequence in C and there exists a.subsequence {Zn;} which converges weakly to
z € C and {2, — r:_, Y2y Tizn,} converges strongly to 0. Then z is a fized
point of T'.

Finally, the following two lemma are useful for the proof of our main
theorems.

Lemma 2.6. ([14}). Let {on} be a sequence in [0, 1] that salisfies limp, o an =
0 end 307, oy, = 00. Let {a,} be a sequence of nonnegative real numbers that
satisfying:

For all e > 0, there exists an integer N > 1 such that for alin > N,

ans1 < (1 — ap)a, + ane.
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Then lim,__,,a, = 0.

Lemma 2.7. [14] Let H be a Hilbert space, C a nonempty closed convex subset
of H, and f : C — C a contraction with coefficient o < 1. Then

(IE - Y (I - f).'iC - (I - f)y) 2 (1 —O!)”.'L' —yllg,x,y eC.
Remark 2.8. As in Lemma, 2.7, if f is a nonexpansive mapping, then

-y, (U= flz— (I - fly) 20,Vz,y € C.

3 Main results

In this section, we study the strong convergence properties of the three se-
quences (1.7), (1.8) and (1.9).

Theorem 3.1. Let H be a Hilbert space, C a nonempty closed convez subset
of H, P the metric projection of H onto C and T : C — H a nonexpansive
nonself-mapping with F(T) # 0. Let {t,} be sequence in (0, 1) which satisfies
lim, ... t, =0. Then for a contraction mapping f : C — C with coefficient
o € (0,1), the sequence {z,} defined by (1.7)converges strongly to z, where, z
i3 the unique solution in F(T) to the variation inequality

((I-fz,z—-2)>0, € F(T) ' (3.1)

or equivalently z = G(f(z)), where G is ¢ metric projection mapping from H
onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies (NNO) condition
by Lemma 2.3. We first show that {z,} is bounded. Let ¢ € F(T). We note
‘that

lan—all = leaf(ea) + (1= ta)- S (PTY20— gl
3=1

n

< Nenlf(z) = 0) + (1~ ta)- S (PTYza — (PTYQ|

j=1
tall f(@n) — qll + (1 — tn)llzn — qlf , VR 2 1.

IA
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So we get
"xn —q £ |If(zn) -4l
‘ < f(zn) = f@Il + 1 £(2) — 4l
< ofzn—ql +11f(@) —al,Vn > 1.
Hence
zn — qll < ——“Uf( )—qli,Vrn 2L

This show that {z,} is bounded, so are {f(zn)}, {5 2;=1(PT) z,}. Further,
we note that

Jon = = S (PTVzull = lltaf(2a) + (1~ ta) Z(PT)-"mn—-—Z(PT)Jmnu

j=1 j""l

= tallf(za) -~ Z(PT)j:cnll

< talllf(=a)ll + ”" Z(PT Yza|) — 0 asn — co.
=1
Thus {zn— 5 371 (PT) z,} converges strongly to 0. Since {2} is a bounded
sequence, there is a subsequence {z,,} of {r,} which converges weakly to
z€ C. By Lemma 2.5 and Lemma 2.4, we have z € F(T"). Foreachn > 1,
since

Tp — 2= tn(f(xn) - z) + (1 - tn); Z((PT)jxn - z):

i=1
50 we get
low— 2l = (1~t) %g (PTY2n — 2, — 2) + talf (n) = 2Tn — 2)
< (1= ta)llon = 2|* + ta{f(20) — 2,70 — 2.
Hence
lzn —201* < (f(zn) — 2,20 — 2)

(f(zn) = f(2), 70 — 2) + (f(2) — 2,20 — 2)

< ellwn = 2|” + (f(2) — 2,20 — 2).
This implies that

lzn — 3"2

1= (:I:n—z,f(z)—Z)-

-
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In particular, we have

12, — 2[|* <

1
T (:cnj — 2, f(z) — 2).
Since z,; — z, it follows that

T,

; — zas j — oo.

Next we show that the inequality (3.1) is true. Indeed, from

1 — .
Tn = tnf(zn) + (1 —ta) ;(PT)J:cn,Vn > 1,
we have

(I = fon = -2 ‘t‘nt" (on = = S (PTY5,)

3—1
Thus for any ¢ € F(T'), we infer by Remark 2.8 that

(U ~ omtn—q) = ———tmqr-L Z(PT)’ Ty T — Q)
= g LS ey - (- LY P -0
< 0,vVrn2>1. J g

In particular
(I = f)zn; 2o, — ) <0,¥j > L
Taking 7 — o0, so we obtain

(U = f)z,z—q) <0,¥q € F(T), (3.2)

or equivalent to z = G(f(z)). Finally, we shall show that {z,} convergence
strongly to 2. Let another subsequence {z,, } of {z,} such that z,, — 2’ € C
as k — oo. Then 2’ € F(T}, it follows from the inequality (3.2) that

((I-fz,z—2) <0. (3.3)
Interchange 2 and 2’ to obtain
(I-1N,7—2) <0 (34)
Adding (3.3) and (3.4) and by Lemma 2.7 we get
A-allz=2IP<{z=2, (I~ flz—(I-f)Z) <0

This implies that z = 2’. Hence {z,} converges strongly to z. This completely
the proof. O
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Theorem 3.2. Let C be a nonempty closed convez subset of a Hilbert space
H, P be the metric projection of H onto C and T : C — H a nonezpan-
sive nonself-mapping with F(T) # 0. Let {a.} be a sequence in [0,1] which
satisfies limp_o0 0y = 0 and Y~ o, = 00. Then for a contraction mapping
[ : C — C with coefficient « € (0,1), the sequence {yn} defined by (1.8)con-
verges strongly to z, where, z is the unique solution in F(T) to the variation
inequality

{(I—-flz,z—2z) >0, z € F(T) (3.5)

or equivalently z = G(f(z)), where G is a metric projection mapping from H
onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies (NNO) condition
by Lemma 2.3. We first show that {y,} is bounded. Let g € F(T"). We note
that

1"‘

lyne1 —all = llomf(yn) + (1 - an)m Z(PT)jyn ~qlf
3=0
< alf(m) —all+ (1 - a) = > I(PTY 4o~
< anllf(gm) = F@I + anllf (@) = gl + (1 — an)llyn — 4|
< ey~ all + @l f(0) - ali + (1= an)llvn gl
= (1 a1~ a))la ~all + ol f(@ — al
< max{lvn — all, T 1£(6) ~ all} Vo > 1.

So by induction, we get

1
Iy — gl < max{llyo - all, 7= 1/(9) —all},n 2 0.

This show that {y,} is bounded, so are {f(ya)} and {35 3 7—o(PTYy.}. We
observe that

| ' 1 o ; 1§ j
N J = f1-— —_— PTYyn - ——= PTYyn
N1 p—— Ji;ﬂ(PT) Ynll llan f(yn) + (1 a“)n+ 1 JZ;( Yy n+1 Jgo( Yy
- - N (PTY
el @) = 7 D (PTPwl

< anllf )l + =g S (PTYwal).

=0
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Hence {yn+1— 37 2_7-0(PT)’ya} converges strongly to 0. We next show that

limsup(z — yn,2 — f(2)) <0. (3.6)

n—=:oo

Let {ys,} be a subsequence of {y,} such that

lim (2 — yn,;, 2 — f(2)) = limsup(z — yn, 2 — f(2)),
J——0 n—oo
and y,;, — g € C. It follows by Lemma 2.5 and Lemma 2.4 that ¢ € F(PT) =
F(T). By the inequality (3.5), we get
| limsup(z — g, 2 — f(2)) = (z — g,z = f(2)) 0.

n—o0
?Ience (3.6) is true. Finally we shall show that y, — 2. For each n > 0, we
have

Insr = 21* = llynrr — 2 + anlz = £(2)) — anlz — FE)I

< ”yn+1 — 2+ an(z - f(Z))”2 + Zan(yn-{—l -z, f(z) - Z)

= Jonf () + (- an) =z S (PTVy — (00 f(2) + (1 - )2
+2an(yn.+1 —Z, f( ) - Z)

= llen(f(yn) = S} + (1~ an) —— Z((PT - 2)|”
:ann(yn&l —Z, f(z) - Z) \

< Lanllf(yn) = fEl+A-an)— Z I(PTY "ZH]
s — 2, )~ ) 2

< ol =21+ 01 - o) >l - zu}
+200 (Y1 — 2, f(2) — 2)

= (1—on(l —a))*|yn — 2||* + 200 {Yns+1 — 2, f(z) —2)

< (1= an(l = a)llgn — 2lI* + 200 {yns1 — 2, f(2) - 2). (3.7)

Now, let € > 0 be arbitrary. Then, by the fact (3.6), there exists a natural
number N such that

(z —tyn,z— f(2) £ %,Vn > N.
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From (3.7), we get
"yn+1 - Z"2 S (1 - a’-n(l - a))”yn - z“2 + age.
By Lemma 2.6, the sequence {y,} converges strongly to a fixed point z of T.
This completely the proof. d

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space
H, P the metric projection of H onto C and T : C — H a nonezpansive
nonself-mapping with F(T) # 0. Let {a,} be sequence in {0,1] which satis-
fies lim,__an = 0 and 3 o) o, = co. Then for a contraction mapping
f:C — C with coefficient o« € (0,1), the sequence {z,} defined by (1.9}con-
verges strongly to z, where, z is the unique solution in F(T) to the variation
inequality

(I - flz,z—2)20, z€ F(T) (3.8)

or equivalently z = G(f(z)), where G is a metric projection mapping from H
onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies (NNO) condition
by Lemma 2.3. We first show that {z,} is bounded. Let ¢ € F(T). We note
that

]

[| 2n+1 — gff

I g D Planf(en) + (1= and(TPY20) — gl

3=0

< D IP(anf e+ (1= 0n)(TPY2e) = Pal
e 0l (e) = £ + a0 =l + (1 = el =
< anallzn gl + aall 7@) — all + (1 ~ an)lzn — al)

(1 - anfl = @)llen —gll + eallf () —
< max{llza - qll T2 1£(@) ~ all}, Vn 2 0.

So by induction, we obtain

1
I = qll < max{llzo - all, ;== 17(@) = all},n 2 0.

11
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This show that {2,} is bounded, so are {f(z,)} and = > 7=0 T PY 2,1}
Furthermore, we also have

o= Sy PVl S g DR+ 1 a(TPYi) ~ (PTV
< FT X lenf )+ 0~ (TPY - TPTY
= 1) leaf )+ 1~ a (TP~ (TP
= oy L W)~ (TPl

IA

o |17~ =5 S HTPYzl| — 0 a5 7 — co.
j=0

This implies that {zn+1 — ;35 2_;—o(PT) 2} converges strongly to 0. We next
show that

limsup(z — z,,z — f(2)) < 0. (3.9)

n—00

Let {2} be a subsequence of {2,} such that

lim (2 = z0,, 2 = f(2) = limsup(z = z0, 2 = f(2)),

and z,, = ¢ € C. By Lemma 2.5 and Lemma 2.4 we get ¢ € F(PT) = F(T).
From the inequality (3.8) we obtain

limsup{z — z,, 2 — f(2)) = {2 — q,.z - f(z)) <0.

n-—oo

This show that (3.9) is true. Finally we shall show that z; — z. For each
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71 > (0, we have

l|znt1 = 2”2 = |l#ny1 =2+ on(z ~ f(2)) — an(z — f(z)m?

< Nmir = 2+ anlz = (@) [ + 2ananer — 2, £(2) — 2)
=l 2 Planf(an) + (L aa)(TPYz) ~ (anf(2) + (1~ an)2) I
=0

+2an($n+1 —Z, f(Z) - 2.‘)

[A

Lis 2
{ni 7 2 IP(@nf(za) + (1 = an)(TPY z) = Plomf(2) + (1 - an)z)ll}
i=0

200 (Tn1 — 2, [(2) — 2)
n 2
< {ﬂ—}; 2 lan(7(z) = £(2)) + (1 = o) (T PY 2 z)ll}
i=0

+20n{Tny1 — 2, f(z) — 2)
< Aonallze — 2| + (1 = an)]zn = 2"}2
+200(Tns1 ~ 2, f(2) — 2)
= (1—an(l —a))|lzn — 2||* + 2an(2zns1 — 2, F(2) — 2). (3.10)

Now, let ¢ > 0 be arbitrary. Then, by the fact (3.9), there exists a natural
number N such that

(z—2Zn,2— f(z)) £ 2,V 2> N.
From (3.10), we have

lznt1 — 3”2 <A -ap(l—a)llz - 2”2 + Ome.

By Lemma 2.6, the sequence {z,} converges strongly to a fixed point z of 7.
This completely the proof. O
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To the Editor,
Editorial Office,
Journal of the Korean Mathematical Society,

The Korean Mathematic Society

The KoreaEI Science and Technology Center 214
635-4 Yeoksam-dong, Kangnam-ku

Seoul. 135-703, Korea

February 21, 2005
Dear Sir,
Enclosed f;lease find the pdf.file of my paper with Dr. Somyot Plubtieng entitled;

"Strong Convergence Theorems of Viscosity Averaging iterations for Nonexpansive
;
Nonself-Mappings in Hilbert Spaces" which | would like to submit for publication in the

Journal of the Korean Mathematical Society.
I would like to thank you in advance for your consideration.

Your sincerely,

Mr. Rabian Wangkeeree ,

Department of Mathematics



