RSA4680024 Tm.as.umiasy nefina
L 4

A\

i
R
Y

iwmu’iﬁ’uaﬁuamﬂmi

lasins danaffuEauiimivlawunanonguuazlauilfyyrmsuniu

Learning Algorithms for Multiclass and Noisy Domains

Tap ynyiain Aafina

FIMNaN 2549

FnynnLa17 RSA4680024

M uomﬁ‘é’uuﬂ'uaugmi

lassns daneffiudsuiinivlawunaonduusslawudaygusuni

Learning Algorithms for Multiclass and Noisy Domains

yuiFu Nadins
medriainTunaufuaes
anusIfInIINAERT
ANl INg 18t

ay mfﬂﬂuﬁﬂﬁfm'mn pINUANLARUNNTINY

; L] —“n A e = L = L 2
(enadulumsominduuesdids am ldduludesdudnanely)

Andnstadsznie

;ﬁé"wamauqmﬁ'\ﬁmmnamuaﬁum::umﬁé'uﬁ"lﬂ"lﬁqumamzu:nm 31 (15 @A. 2546 — 14 @.
2549) wiulasams -danaifuFuniimivlammonguuazlawulfy g miunaw uszsaveugm
mairimanswasuRaueed ansdaanTawmand ywiaanssiuwiinoisp Alalilanm anuf
anaaTunIwennIane g Aldlunuidy PoLAUNUNTILIT ULm:pﬁ%‘Ehm"m'luiﬂﬁmsﬁnnﬁw

ALY ﬁaﬁ"‘sqa
FanPu 2549

un@angda
svialasens: RSA4680024
dalasens: saneTnwouidmmivlawuwnaenguusslawnildyyimsuniu
Horwnivu: WIBUQLESY ARFINS
E-mail Address: boonserm k@chula.ac.th
szeziaalasanms: 15 an. 2546 — 14 an. 2549
o v oa a a o e [a [ar -
lurddufiniauadfansdmsu (1) Ufudpdunedannmeiusrdudmiviansiulyuidayanaty
naw uaz (2) hldmsldsunsassnadigdiy (lausad) Famsriudayaddyymsuniu eaidugn
o - | . ™ A ' L a a v a a
Wamdwdelgmnehuundszinndayandresnguldegraddssininmulumsldnucds 38ns
aadudmivuilywisasdeyanaenduvildlasmaivbiidudadulauuasnguansiuiu newlil
e 2 o w o dad dH. ® o Adwer w oa, o A = v o d o Aav A
upfifirndmivmsdaiula @aed) IwitnehHnduddmiuesiduuuunaonguddidedlu
| v A o v *“ . P v al “ aa A v e
Faswasmilfuinadualienugndaslunsiuuntszsinilndifoaiuisnsau g i lduiudy
da _a N A Aa v W ow 24 a 4 a v o4 e o ad A P
dailastiauanmW i dfenanuudsule gafied) SelllaseairondTuudurnnddeiuazi
. @ e o A w LIRS -] = o ° N
uruszdudadulanidonas tedeilinugndasgeni@delusnsidiasialuntsdiuand
& v . o o a dda ' v HAa a w o
uanmnuum‘lﬂmLauanaﬂuﬂmﬂ;waaaamaamiun'n new laliaiifiamiauazysulduvudasue
' ¢ a4 A o v a ada o ade o [ol ar e . e
Tnal (enfiafiied) islimiefiedfdgsaniedieindulyldninaaleslsaanethudaoslmituiy

a

n‘m"ugiaugsrﬁwﬁnﬁauqm namnasednugadeyanmoganaadliiiuiritnnsueanliany
gnﬁmﬁgen’iﬁ%mwﬁhau

lowoa dumallaffusinsmwdmumminuniiasdoyaiBeduiug Lwitﬁaﬂ?:qnm"lﬂauanﬁ
Tulowuddyanasuniu ngfldeinlauaamindszsudyniFasnisdsumnafivly (suhiauedsnns
gmiuminlenasfennsodamiuilgwail Funnnminaueitnmouiiisnuufiaduinid,
swisndansnudeyaldyyimsuniuldesniivsdniaw Lﬁaamnﬁuqulumsﬁﬂmmﬁgaa’w%’u
mtuinsamusiuiinilasase ﬁﬂﬁmﬂ%‘uﬁszuu‘lauaﬂﬁﬁ*wﬁ‘m‘l‘uL‘%'uuj'ﬂhumw.uétﬁaa%’w
TpuuAeunils IrumedaneifudsinworddyiResinunzidyimiong lanasfussld
snumuzidywmiiiulasshandnoesinruugsauiinds nenamasssuansliifsirdnoouud
drdufinilameuldanirszovleusafinod e ldhimueiinsunfuvunmuieriiases
WladfnaunmnsensiuTusunsuasmnziaviinilildlovess EneiGunifiseaiafnasin:
fdufinils nsilitaseniadindewludomhusuinesgmuasldanmunnioniideais
MnimetazaNunindsiwdas milaueitnsimniuimuanisunuedudsiounzaulunis
1‘%'uu§ﬁ’:saﬂLﬁmﬁi’nm‘m:ﬁwﬁuﬁnﬁﬂﬂu'l'fnm‘%'uufuuunmuﬁvaﬂ‘mﬂau usnImMaaaInuiywinis
L‘%'uujuuumﬁn:ﬁwﬁuﬁnﬁaﬁv’muﬂaaaﬂrgmuam'lﬁ'tﬁu’iﬁ%'miﬁﬂ’nauaﬁwm‘lﬁﬁniw PROGOL 1
uszuulovoaRiviuady

e L o & s 3] 1A aa B v
Anan: ‘HWWE]T@]WHI.@E]'SLLN'H%%. ﬂ’i'ii]’lltuﬂﬂ‘f:l.ﬂﬂLlUU‘HﬂﬂUﬂt}&l. ﬂ?‘lWIlLIEJ']d'JLLNﬂﬁYI’I\‘JLUJU‘.U‘)"JJVLG\,

1 A A ~ W 3 a m [o wod d a - a w oA
nﬂﬂ'lumnuuﬂﬂmaLm:ﬂw“lﬂmemmoluu. VILITULLUFIIAUNK U, UWITARIUALITNATINZRIAUN

o
“ud

Abstract
Project Code: RSA4680024
Project Title: Learning Algorithms for Multiclass and Noisy Domains
Investigator: Boonserm Kijsirikul
E-mail Address: boonserm.k@chula.ac.th
Project Period: August 15, 2003 — August 14, 2006

In this research, we propose methods for (1) extending Support Vector Machines
(SVMs) for dealing with multiclass problems, and (2) enabling Inductive Logic
Programming (ILP) for dealing with noisy data. SVMs were primarily designed for two-
class classification problems with their outstanding performance in real world
applications. Previous methods for solving the multiclass problem of SVMs are
typically to consider the problem as the combination of two-class decision functions.
The Decision Directed Acyclic Graph (DDAG) is a well-known method for multiclass
SVMs that has advantage of fast evaluation time and provides classification accuracy
comparable to other methods. Motivated by DDAG, we propose the Adaptive DAG
(ADAG): a modified structure of DDAG that has a lower number of decision levels.
ADAG improves the accuracy of DDAG while it maintains low computational
requirement. Next, we propose an enhancement version of ADAG, called Reordering
Adaptive Directed Acyclic Graph (RADAG), to find one best ADAG from all possible
ADAGs by using the reordering algorithm with minimum-weight perfect matching.
Experiment results on several datasets denote that our methods give higher accuracies
than those of the previous methods.

ILP is an efficient technique for relational data mining, but when ILP is applied in
noisy domains, the rules induced by ILP often struggle with the overfitting problem. We
propose methods for enabling ILP to deal with this problem. We first propose a method
for learning first-order Bayesian network (FOBN) which can handle noisy data
powerfully. Due to a high computation cost for directly learning FOBN, we adapt an
ILP system and a Bayesian network learner to construct FOBN. We propose a feature
extraction algorithm to generate features from ILP rules, and use these features as the
main structure of the FOBN. The experimental results show that FOBN performs better
than a traditional ILP system. We also propose a novel hybrid learning method to enable
neural networks to handle first-order logic programs directly. The proposed method,
called First-Order Logical Neural Network (FOLNN), employs the standard feed-
forward neural network and integrates inductive learning from examples and
background knowledge. We propose a method for determining the appropriate variable
substitution in FOLNN learning by using multiple-instance learning. The experimental
results on two first-order learning problems show that the proposed method performs
better than PROGOL, the state-of-the-art ILP system.

Keywords: Support Vector Machines, Multiclass Classification, Adaptive Directed
Acyclic Graphs, Reordering Adaptive Directed Acyclic Graphs, First-Order Bayesian
Networks, First-Order Logical Neural Networks.

; -
LWV NTWIRE

o - a) - . i s ' a - o v o
danaffiunsiduuiueanies (Machine Learning aigorithms) #ulngjgniamanunialgivdyuwind
Jayndating (training data) NNANADY 2 NGy (class) uaziinludarununiudedoyalidyy o
. , A a a o o . A v . ' a
TUNU (noisy data) udilaiTihdaneifunsiFoudueandacluldnueds sewuidymilulana’s (rean-
- = W A L] Lo - . e LT A A . b4
world problems) dnazildnwazfiiuuuunarsnguuasinddygrasunau ilddanaifuldnwlald
' a A a ' . a v SN va o d ., [
agwiidse@nBnm drethagu nudasees [Kisirkal et al., 2001] uaesliiwindionszuuFeuives
A a ar v a0 as a | 4 =
\AG84 Progol [Muggleton, 1995] anlfvudtdgmwinisiidrdnwsinuandoyanmizunu suiu
v] . ' ' r w A A ae
ywivesdayananangy (gu 'm, nda v, agu v, nga ‘e,) uasludayafddyarssuni @n
d 1 - v = A SJ L 3 L3
\ATBIUNULESURZNTIALNUATN) WU Progol Wemugndaading 72.00% Ssmungildnnugndes
' A Ay et ' A . a o
lWgafifiaannan ngitdannmadoudlidanguifinime uaziliadunafianimlszanmng [Kisirikul et
al., 2001] sSudynafld Adraldanugndpenlifuingetia 94.40%
w o a o~ o s da a a oo ' “ -
saneinumeSoufueansesrasriianflsintmwg warldiuausulaadrannludigiude
(1) SwwafeninmeTuysdu - Leadian (Support Vector Machines — SVMs) uaz (2) nsldsunsuassne
Boathiy — lauaadl (Inductive Logic Programming — ILP) dwwaiariniaesuurdmdunaiouivas
A o o A . i a o] 9 P =
wissnfamdulas vapnik [Vapnik, 1998] laafuurfananaginsedwsswunmolfudokeniya
A 1 A 1 1 L 13 3] 2
(optimal separating hyperplane) twaLLuamamaaauluaaanquTﬂu'lmma:na;uagﬂua:mmaﬁ:mu
- oo 1 = ol A L% A 1] 3
warwdd uazfiszusinanndeyaseuindessununaofi@nieige annsdnsmudiesidud
a oo e o el RN
Usinnmgannuaznuniudetay sy iasuniuled udlidedianieshiduaunsalldlovas
nudayaudgaangaurinti n”ﬂﬁmm‘:‘m‘lﬂﬂizqnﬂ“l'ﬁ’ﬁ'uﬂ'agwmﬂnéuﬁﬁaaﬁmmrﬂmﬂ%’uﬂ?a
= L) =4 A o s 1] I
mildsunsuasinzBagianialousad {Muggleton, 1991] dlgananeiaiuundratsaanidu
#9INRUAD NHUAIBLIIUIN (positive training data class) LANFNAIBENAL (negative training data
- &)] A L =l . A LY - L - L
dlass) launrsadrengiieaiuiongudradninan lausaRlyaiundraumusaldanuining
A a - & L3 A el = r) al - L
(background knowledge) fiuszuwioul MlimaSvuildssindamgonn uaznanaFuudarldng
[V VR | R A - v e vel Y ' L)
avsnzauaufinila (first-order logic rules) FafialainfluntsumianuinfidssanBawinn athalsidla
o " aa “ N a v 2 ' ~ ' o4 °
woaRuszaudgmn lunsdifmdesmaiingfadslalduunnguoesdistslua Fangezdiuun
ar oA a = f ' - o adw o o o = e ' . - d
dptwfiannungdudiadiuin dudedunliessnungazandwunidudraday hbiden
1Y - v a ' o ar ‘ ‘ Yy ¥ -
dosnmissuylauasldlsiwundredendudressununatondy wiansdindretianned
o . daw) Ay . e v e A &
TagawizdietneNAFygIasunu (noisy data) Nliasenungdaladanilslusauengrisnue srun
‘1auaaﬁ|.whﬁuaau"\al.ﬁm"lajmm‘smhu.unnq;umaaﬁqaﬂwoluﬁnum:ﬂﬁ
= ; G = v A » - A a e -3 [} L
ultpllazinnsanaifunmsFuufveanies lauaniufezidoesiiduuuunaunga wazidy
maflilausadiiamanunudadygyimsuniuusld ldlulawwnatsngulildadefilszininm
A o ' v '3 ' Y ad A wad o a & v a A '
FynafimadiiagldfassnanuiinlvesdanadinGouinlusinmwgldrmldludywist fanah
L - = a8 .~ A) v oo = LS A 0}
wiunnutrwihbudddrnsesmnmadosvanaieses uazdaldifaanuiimitluanih
o A A v f . & v oA € =
sane3nuToudlulEoug u maviawmilasdaya Fresmunamand udu

ngussaed

a < a Fa e &

Tanuszaedrasmiianiulasinafiddsdeluil
ﬂt ot R a8 a -~ A > & B 1 Ad L

(1) WReWanndanatunsSuufennsaslimumnldnulawuwnanonguusslaauiisygrusuniu
A hed - o L g 1} -

@) waNawuosiauifiluddundszsinmuuunaionga
4 e ad d . P - ' g , e

(3) Wawauitmsivililauaafilanudanguinniuussnumudadygrusunin aansaldldlu

T@uuwmumju

suflsudsivouncuania

[A [[
1. m'ﬁaﬂaana‘sﬁmaa‘ﬁ'tauuuunawnqu

b = fr A‘ A + L 1) A 1]) = d = 1 =
dwwafannwe funriuiawdwiedwundayasonguldededuzintmnlumsldnuas adwlsh
.. . . D e a .
audymimaiawdwneianniaafunriuldmurinduundeyalivaongudiasegluzuasuniaviy
aw a a [y | e e v g . oo .
330 Fmrduundayaunummsnguimiuduwedainiasfunsdn dndunmihWenduisusndays
| a~ ' o 4 . o . - ' '
LULRBINGUINTINAU 13U n1sdumnuuunilsdianily (one-against-one) TaumaFuuifivunguudaz
v A | ' - | . .
nguAungudnfiazngy uaznsiusnuuuniidafinie (one-against-the-rest) lasmsilFuuifsungy
’ 2 A o4 B o
usnznguindubunvae udu
o a e o i < o ad o a A & a - e '
sanaifiuuundiu (Max wins) \unilaludinsduuniuuwidaniaidizalumndoufisni
A al v oad A4 A a . v g ' o . | od)
dWeanluufiuiiiwibdafindae [Friedman, 1996] lavl¥@msuunudazdazniadingufiiudeay
' . e, o aa o ' a a o a
gunamsdwunfanguiddlniouniian Bnnwlifueuuidfensdmivndadule - #dod
. . P
(Decision Directed Acyclic Graph - DDAG) fiavalop Platt uaznme [Platt et al., 1999] a1 U1 TORALIRY
[° 9w > A ek = .
lumsBouduazimlumsiuunldluonzildamugndsafioulanuisuundiu (Hsu & Lin, 2002] M3
naseniounfivuAtihuundayauuunaionguisane g lu [Hsu & Lin, 2002) usasliiduiagansifiu
o oddd A P . w a
wuntinuarisaaefimanznasih st
= A J - =]) oo 4 oo 1] ar
luawdsslmurasldiiudnlanahanmnvesdideinaldiiadymluwsvesanugndoivas

a ad a o v r = o ;od [oA a
aﬁﬂﬂ‘fﬂ”auluﬂﬂu']'ﬂqﬂn'Tﬂ?f‘ﬂ']u'JuﬂT-ﬂ'lunq?LﬂTUULﬂﬂuﬂﬂ”ﬂgﬂﬂﬂinuﬂﬂquﬂu‘) Ll']ﬂlnu‘ll] Was

3
A = ' . w ° . v a ' . 4 v
diesnniealilnuuysasnguusazaillemassiuunngunesdaysfia inzius liswinfiszsdin
PR | cod o > = 1 v & L [A’A " va
adiBufauyraindenugndaslumsiuunngduaesdays 100 wafiudld dromaidsinliiwmau
z 1 L - [= L L
asaamnlSoufioulnadannugndsslassiuesfiaied imInhiauswnfnlunsailaseing
oA s & = o o o ™ Aa o
nsuunlnaifeaaditwiuatelunindSouifiou Tasnisdsuidasulaseasrsveinsinua1daiad
v i . & ' f PP - = . . .
lassadolniivuauabidenit nrWli @ dfemmauuulsule - 0o (Adaptive Directed Acyclic
r . & " ' o u o v
Graph - ADAG) Bssaiwinaiszasmadioufieuadld athelsinwanugndasuainsiuundoys
M a e & j o g e A & ' A v . o |
vasadieidinsiuagividunasiue geadduuvureingy) feglulassadonmd ddureslued
shaﬁ'ua:lﬁ'mwgnﬁaqLmnGi'\aﬁ'uua:uh'lﬂgjimwuﬂnh’mmmé’ana"‘sﬁu 19 Idiauadtdniuifan
o | d . o o . a o s o . A
fdufvanzaudasitbilomeiazduundsinndayafianmaioofigs Tasiiauanisdadosdiay
Inailuszwinszusumsiuundaysliiduwldeadeyanasevudaz @y uarlduzadldiduwindgmwims
e & A o [a Be by Q@ w o .
WenfrduimanzansiunavildlasdanaIinmsiugauysaliunimdnisuga (minimum-weight

perfect maiching)

1.1 ﬂ"l'ﬁ]"'luﬂﬂﬁaﬂaﬂﬂ\?iﬂ“a{ﬂlqnlma{llﬁﬁgu
- 4 a a 4 o aa s »
1%“']'1]aua:aﬁlﬂUﬁ\?LLu?ﬂ@quﬁ"l%’ﬂﬂ\?‘ﬂwwagﬂlqﬂlaﬂa%ll“’ﬂ%u“ﬂ:ﬁﬁﬁjiuﬁ’ﬂmﬂqﬂqsﬂﬁlkuﬂﬂaﬂalluu

WABNGN

1) TwwaiarmessuyrFudoudu (Linear support vector machine)

a w o - [o aaAl v | w
UUIAAWNAT luﬂﬂﬂ']l.l.un'ﬂ aHiw Qﬁ‘ﬁWWﬂ%ﬂLjan a%‘u”‘ﬁ%uﬁﬂ n‘\?ﬂﬂﬂi:u"u“ﬂ‘]ﬂuﬂﬂ'l'D'LLU\']'UE]HN

= ' as o o Y a ‘ 5 o A da '
aaﬂLﬂuﬂaﬁna‘” ﬁu”ﬂ“L'ﬁﬂmaﬂﬂaHﬂD ﬂﬂ?:na”ﬂ']ﬂﬂ'lﬂﬂﬁﬂﬂ‘!u']u) @]11“1’??]“5“@” n ﬂ&)ﬁmnq&l

(+1 unx -1)

D= {(xk’ ylke{llhx, eRty, e+ 1*"1}} ()

[
o

aa o & w4 o a a A A d a
ssnunaelidludinglidudu » gniwualas (wb) e w fanmesludiplisuay » Ansanniy
an ' o an e v o oA
seiunanofid uaz b Aafiash szuumanofid (wx)+b wuiievsldfidaiia
(w-x)+b>0 if y,=+1
(w-x)+b<0 if y=-1 @)

| »] A . L d‘ [l S aa P Y] - L4
Fundasmsin w waz b irldgafisglndiuswumarsfifainfigaiiszozing 1w uda 914
Wex)+b21 if y,=+
(w-x)+b<-1 if y,=-1 (3)
4 .
FiLninu
y;[(w-x;)+b]=1 Vi 4)

lumsAumswiunaoSfudsuuniiga (optimal separating hyperplane) 926 BIAUMITTUILAA

=

o ' ' v 9 v . and v d ' = ' " '
YIJJ‘S:U:ﬂﬁﬂ?:ﬂ’nﬁﬂGgﬂﬂl‘ﬂﬂﬂuﬂu‘izu'}ﬂﬂﬂ'!Uﬂﬂﬂ%aﬂﬂaﬂﬁﬂﬁﬁﬂﬂﬂQﬂ 7:6:5“'10?\%931’1%3]%?:“’]14
y

U

ie

. ' o i o T) | A
Y HE] ‘Jamdﬁadm’l'ﬂ'mﬂql.lﬂl.l.ﬂﬂﬂ%‘mullﬂﬂmﬁﬂu

d(w.b) = min wx)+b max (wx)+b
{xly;=1} |W| {zdy,=—1} ’Wl

{®)

A oA A | o A a w .- v A . -
Anaumf (@) dfidasigawsznnfigalivunzandia +1 amuezldimdesduntsziufivilg
faIWInTu
1 -1 2

R e R

{6)
gofian srindywiiEariaty
» aad1zas [w]%2 Wienfign
v Tapdutudenlydaluil
(1) y,[(w-x)+b121 Vi

. ar P Y Y aa A v a a & & s S W
ﬂ’]“ﬁnnsmﬂvluﬂ']u'ﬁ'nLLUGﬂaHaﬂ?ﬂi:u’]U“aqﬂ“ﬂiﬂiﬂ“u'ﬂaNﬂWﬂqﬂLn@]'ﬂuuu LTT’THIJ“G]B\'I
[| a 1 o Pl » o
ﬂﬁ‘uwau‘lﬂﬂmw&m'ﬂuﬂ’lﬂ‘m (penalty term) 'ﬁdﬁ'af:ﬂallWl’.lilNRTm'lmdﬂTmﬂﬂ’mmﬂau é INVAVLTH

1Y A w & .
Wl lwdanly asiudywineuida

. v’ : oy
" aqd1vas |T|+CZ§,. Wdiign

i=l
& w4 : &
» Tagiunudawludaluit
(1 ylw-x)+b]21-&,
(@) £20 Vi
N - e P Ry .4 &
hansanfownlsiudyniit sesumuisaudssynniy

1 L 1 [} Il: d
. amm‘uaaﬁaﬁwmumeiﬁwmwtgm

{ 1 1
L(w,b,a)=Za,.—EZa,.ajyiyj(xjvxj) @)
i=1 iJ=1
v Tegdududouludatydl
MO0<gsC, Vi
I
@ D> @, y,=0

i=l
a . a ' v \ w a 4 o e , o Ju .
Wa g Gondgmaintes Madwdayasenudaziinslfmguainteinia dadwdoyaseunien
q - = A A B =y =
o> 0 Funidwwosanaad (support vector) uazidudwuwesainiaasavinlieimernlevesaums
o) e . e P [e o P o O ' v
fi (4) vy 1 dmdatedeyameuddng Nl & = 0 swsndaganidnnueazasdisgndaysaou
' ' a and = aa 1
lolaglifnansinula g donsdwdszuumarnffifendusanusmelidulusniige
v 0 4d = o e e e | e 9 a o
W &’ sadunneailulipliaudy 7 unuddgasss L(w,b,a) 1 af > 0 uda x; Aadwwadn
o | 0 a '
e szuumesdfuiusniiga (w’, 5% murmndoulunadees @ usrdeyasen laslanizathe
a v ar < v o
Salunainostwwaiaianiaad eI
i
0_ 0. o _ 0
W= Zai yiX; = Zai YiX @®)
i=l supporl vectors

PP=1-wlx; for x; withy; = | and 0< < C (9)
ma o | A o o
‘i:W\‘]JHﬂ’IEJiJﬁLLUdLLEJﬂﬁEgﬂﬁ]:'ﬂ’]Ll.uﬂ’gﬂﬂ‘N‘} autesasnuLveInadwiuasWariT fx)

fx)y= sign(w0 -x+b°)

10
=sign Z a'? y; (x; x) +b° (10)

suport vec tors

2) TwwaianienTunsSu i Taudu (Non-linear support vector machine)
e ad dAW e 1Y) L) P W Ao & v v oy o £
sana3fufldndnuwdlldtudoyanmusuidssnusspifdaduldivini duwaia
I a o PRy ' My a W o o ' o A e
tnwafunsisuityuinsdindayauislilddosuudasulaswnddoyadamaludanlinlisuduge
. . . - v - A a ow ode a
(higher dimensional space) lapifonlsWortunmsundAlhdwdadu wufa sufanWedsulumisua
n a - A ae A 3 PR v am al
DR —>H mmﬁqwae H uaumugamwﬂ%@uauﬂn RATITRITOARPITZUIURATDAAULILINATA
a v e o . ae PR s ow
Tufplsudugstifinurihdunsusanlaidudaduly 1"
* | = P f a I | ¢ o &
FoyarauflslunisFouiluaunisf () aglugtuesmagouimnafsznhanniaad amulu
tiplidusvganamsndamanudeyaluguves Ox) O(x) tifipiives H ﬁé’u@i’ugwa:ﬁﬂﬁsjamn
A g - 1] = 1 73 =l L4 J 2 L
wisldmsmwinwan agralsnauiunididunefiusiemodiiwio k(x,x,)=0(x,)-O(x;) 11M

o o & = Pl . - T L a
awnlsianduiiunud xx ng Alumsdmon wsslididudasilaiduildungd @ 959
ol Aﬂ L L L)
Wardunasinanfionls laud

R d
ﬁanwwwgmu {Polynomial degree d): k(X,y) = |X -y +1| (11)

2
u ol —ix—- ¢
Werua$tian (Radial basis function): k(X,y) = e -sf/ (12)

1.2 @fad

Platt uaznm [Platt et al., 1999] léhaua3Fafia3 (Decision Directed Acyclic Graph - DDAG) Faviéa
:5’1LLummUﬁaamjwmm'hmﬂuﬁ‘uLfJuﬁ‘:ﬁmunLLuunmunq’uﬁﬁaﬁd smuilgwind & naw T
iv'uﬂaunm‘%uuja:a%’wﬁ'n‘imuﬂ WU EBINFUTINIU k(k—1)/2 Fndwmsanudimsduwnuumilade
wils drduunudazaldiwinguanduudiace agalsmwlutunaunisiauun axlsnsWlidauny
e wdszluassdWarduwuuninig Fedluanomua kEk-1)/2 Tnoused & lu (93U 1) usinzlua
ﬁaﬁ"aﬁ’nmn'ﬁay‘ﬂﬂmmjnﬁ iuaz j Lﬁae'faan’mi"n,mm?aga X ﬂ'aa&ﬂLﬂ’ﬂa:L'éuaﬁnTuﬂﬂﬂ udaariFU
LLUUﬂfimﬂﬁTum:gnmmﬁ'\mm rTn'lfTﬁwaoﬁaﬁi’uﬁauniwguﬁﬁaanﬁmauvf‘w fldannniinie
Lﬁwﬁuquﬁﬁaanﬂwaumw né’amnfuﬁqr{-i'uﬂ‘imﬂﬁiuwiama:g}nmmm audilualudeeztsvants

1} =~ Add o p
NYBaIVBYAINAALEIIUNY

1

2

3

4

not 1 not 4

2 1
3 2
4 3

4

not 2 not not 1 not 3
3 2 1
4 3 2
4 3 2 1

a4 9 « a '
U7 1 Taseaswvasddeidmiudym 4 ndu

L1} -

F‘ - o A =a = 1 A+ = a A e [a
Jymaimagresddieifelunmsfonfisomingugndesddiadiduunrolunmiioudiog

v L g '

r-3 &] v s . (] v 1 FI = v
ynfinly 'ﬁom'l.mnﬂmwHmwmma:augoLtﬂzmua'lnnquﬂgnmamnmﬁmaanammﬂwmﬂ‘lm

. . A _da 2 . o Ed . A'u v N w A
LEUNWAITEILUNYIaR N IINANLYINNY k-1 uuﬂa%qu')uﬂsaﬂn%Nﬂnnﬂﬂ\jnn"ﬂ']Llunﬂuﬂﬂ‘uﬂu'ﬁz

U L)

LLﬂim'rm'm'mnn"wmﬁaHa

- F‘ [
1.3 38t nane
v v X, ad ar P o o o [y a & =] o
dafbisueiEmaiudpdfieilaonmstivwisulasehaiaadmouarlunsddoudioniam
| [3 L% AW W i = o [. .
nduiignaas innonlaseadolnitldd nnwlidedAanouvnsuled - fdied (Adaptive Directed

']

] t Y 1] 9 L R * & a
Acyclic Graph — ADAG) daanuwaziianedtmanisuadaurasdindsiulasigianmndadoen
- A b2 a (] Ol = a I . . .
B len amwWludredfanvuasvsulduuuensoeln . a95iadiad (Reordering Adaptive Directed

X Py w [= ' v ¥
Acyclic Graph — RADAG) wananiumdsldwamiesiidnuuuwstongulimuisaldduuassluns
=t A s o v d a adad, s B
wWisuAnuwdoesdszonm log, & 16 #03on35ii1 nsuenaSeauasawne (Information-Based

. . . o = . &
Dichotomization) saiTuasbuada Ui

1.3.1 10603

P v - v [V S S - Aa = - v .
Eﬂﬂ 2 AW (RIUTE) LLE’G\\?I‘“L“uﬂﬂﬂ')ﬂ:ﬂﬂ“(ﬂ'ﬂﬁ'\ﬂ"ﬂaﬁﬂﬂLﬂ%luﬂﬂls‘i\"\Lkuﬂﬂﬂgﬁluﬂfyﬂ"l 8 ﬂ@l‘
= = ' ' ar v ' a a ,, oA
lagmunddnasdiduuvussinduudasdd (nudraluaudazlualuzy) fanufiawata 1% dingun
v ol & = d o . & ,od v e oA s o
gﬂﬂﬂﬁgﬂlﬂfUULﬂUUﬂIHﬂLliﬂﬁﬂﬁa@LBQ qujuﬂiﬁiuﬂqftﬂ%UULﬁUUﬂfﬁuﬂgﬂﬂﬂdﬂunﬂq“ﬂ“ﬂtlﬂ’]nﬁ 7

£ o4 o a = v o e
A mm’a:mmmmmmwa"mﬁ:ﬁu'lummﬁ‘lﬂLmn‘u 6.79%

=)

= = = ~ =
NItk adnAila NIthADILDALDI
\ /

a g
HNRaWDn

ANNRaWaIa = 1-0.999%5,® = 2 979

s &
NRAWD
AuAanes = 1-0.99° = 6.79%

U 2 WisuiAsuanagndestesdfiediunmwainuwifialusludywy 8 ndu

a v ad e o & =t a =] B d
wwiIfialunsaiadinasleyifoniseadiuiuasslumndSouiiny Searunsovinlelanidfon
v | o w o I o o e 1 o
Tassafvasnmpasdma’ Japduduantzauninvasnymnisznoudsadtuwintwiving [k2] &
] - . a i o . w ' a (a 1Y L o
s k fedwoungy Suwauluasansfiazediluusiazazay wdszluaszifonngufinudasnisdsdalyds
o v ad Py wa & a ot , v ar oA A '
saunn iy mmﬁmsuﬁuua:ﬂﬂmwmumﬁumﬂﬂwumUunquﬂgnﬂaanunguauamm FIVLHING
a a s s LA e A & [. o 4w
e ufenanaacaysana mmmmmmmmmuﬂwﬂlmﬁwmﬁUunquﬂgnmaanunquau"lmwrm'u
= ' [' e v g & H0 . P s 4 [| e
[10g, k | lunsdivosinm 8 nziaflumamazﬂﬂ 2 ﬂ:"lm‘nmmumm'lmﬂ‘%ﬂumuun@zmgnmmmﬂnu
L) da 1 s L F-1 1 A A w] d
3 aoninsmueshnainvany 7) wszazléirenufieanaascauminy 2.97% Salaundannda
Woununsdiues@aed (6.79%)
w P = aa 1Al a4, a .) i A
fvuwrfaisnIonisnmsinafiauaiiinedied (Adaptive Directed Acyclic Graph - ADAG) 1)
= o aa A e o . W o s a o . W e
dunnwiddruundfemindivld lesseiwaswanmdauni dmiudymad k ndy wxaden
. Ve s ' L= a a = ar o = o
DMUNUVUFAINGNUIN k(k-1)/2 @72 waasauduwlanduuuuniaa lagaciiios k-1 aafiedied

A o v & o a o o o & d . A
Renuldlunsiuundaya TuguaouniTsiuwn Tu@’uaawﬂLaa'ﬂ:gn%ﬂtsuomugﬂmumawma Tawd

1 P Py o duv P A . e
Iﬂﬁﬂ |_X—| LLN@Niﬂﬂ]ﬂﬁu?uw}uﬂuaU'ﬂqﬂﬂu'ﬁﬂﬂ'ﬂﬂ“?afﬂﬁﬂﬂ X

. & P o o E] 4 o o o o -
Tuaduan &2 Tua (Jadu) Arzduuuge uazimiulusazanseniiniledmivrzaunean awnmiolus
= [o A v o w a [' o e .
@enlussAudnga (9307 3) Wadaamsdwundeya x Surnsduuuge lueudazluaszidangy
A » oW A = i odoa ~ O 1) ') ' =
wionguaanluardsdannufidsionduifonuntiluessavdrs Tuudassaviwrunguniilenagn
a | . A % o F | o a5 ‘ ' e
Wenlunguiigndasezanaenionis mafendiduunuuusasngululuaudacluauosszdudamn a:
= A A 1 gt ; [=] ar
Wonndennufisininnluaszavusasdlun nszuumshazddivdalUswindoluadionluszdy
‘ o Y 4, ' o & o
§19ga wamsiuunazinIndennufdananluadege Bediadldluaninae k-1 Tualunsduun
s o o v s r f £ 4 (e A w
WAnInUIEaaeY naufigndsszgnituunnanenetinn logk 833 Ssdnddwiudidasmsly
v ad ad . }4 !

lasai19ffied Fesmmaseazudsanuen k

Adaptive Layer A

Bl vs B2 Adaptive Layer B

Qutput Class Output Layer

A o & o - »
3U1 3 TassaFveaiafieddnivdyw 8 ndu

[4 Y ° | | w 8 ~
PN AT RFILLL B RRBNASA Ihefilalaansnanituiuafinngungndasgnituunsiy

Ll A
hoA 1

. A A v ' o o aca v & . '
ngutu Seanaudewaaazauasld ama'linmummQmﬂawaa'J‘fumﬂwuagnummwaﬂum Tu
- e i A e a A o A A . o o 4 o
watada lezndniaituiudssteininineenadie? lasnindandreuvesluafinunzandsiilonia

FunAansatay

1.3.2 arftafiod
Y a v ad A o oA P a o v X aa -y A 5 ms
1um'uam:mLauam‘sﬂmﬂgafmamamwal.wuLfi:awﬁmw'lugm'uu rmisiasiRandauzedlualu
- o A] 1 ~- L L]
Tassatranfiednanzay lapRasunsna1rauieaussnnufianatavesiunasatiniaas In1sia
L‘%'uﬁi')ﬁwaoTuﬂ'lmJ‘lm:%'haﬂs:mumﬂhLtuﬂ'l'faga'lﬁ' Lﬂu'lﬂmuﬂagamaauuﬁiﬂ:ﬁ"a FEenStns
- ¢ A4 =
w1 fiafiad
Ys=Eninmleoden Wvestwwatarmes fuuriu
derinEnnlasiunaly (generalization performance) vesdwnatainiaadunsfuausatszunale
lauimuavatiataInuAanaaTpITHWTAINIasuNT T [Bartiett ot al., 1999] IinuaTia
- v A s a o ;e 1 a o = &
'uaaﬁoﬁ“ﬁmﬂummmmmmmwmu'lugnuaanﬁﬁﬁii Rer¥afiliinv R duWarnduasit
. o o o a . f > f v
F={xi> w-x:|w|<L[x| < R} 2:@nefi ¢ Admdunmsnsznonndszaan doanuhesiinegiatay
ar ' a A & " e W g - P . -
1-5 un@aetie z MlRenunag9daszeIniu m a1 iddmun A=sen(f)esen(F) TunfBuatadoy
fmiumedwynaalu z udd arwlawaiavssdadiuun i azlaiifin

chl 2, 1og] L
;1— y—zog m+ Ogg_' (13)

-l A’ v L] |] -~ s g =l] i
uenwiloniniiud dwanuhndlusdraloy 1-dnndrduun hesgn(F) azlanufianaalafiv

ic-+ £ £2—lo Tm+1 l
m \ml y? ¢ °8 y (14)

o a e e ' s Aa g .]
wa k ﬂﬂi]’\u?u@]'lﬂﬂ']d‘ﬁaﬁﬂlu Z NAJNTIUUDENTIT ¥

IpETEgT

Initiatizing the sequence Initialize phase
<
@ 2vs8 @ Svsé

Ad

Classifying a new example
Reordering the sequence

Classifying &
Reordering phase

«— Final classifier

Cutput phase

COutput class

4 a \J [= =5
31.]1'1 4 ﬂ"l‘i'i.l"lLluﬂwﬂldﬂ'ﬂﬂdﬂ'l‘ﬁﬂﬂli]'ﬂ

- Y. -« = -
ssnaTAuersiama’
- o o et ¢ A o d ar » . P I " R o |
dulabngdanaiiueniiefiniiadiuduanugndasesnsiuunvasifiadiadiay dmiudymwin
A ' & = - ¢ o a A a A d a v owe | a
ik ndu luguaaumsSourssonfiediedszmianiuiaiad Aasdrodmdruunuuuasngaituiu
k(k-1)72 ¢ usazanduiaituuounime lutussunmisduunazinszuiunisndruiunvveadied
Ll s o . a s W & YN ™ o o o
waldunuansanniefiiadfe mﬂuwumv.'ummmuun'luTuﬂ'lws:muuuqﬂua:mﬂwmmmuunlu
., A & o e ad v oa ' . . o, . a
Tualuszdudng (3 4) duseuusnisazlddanaifiuiacoaing (reordering algorithm) Aivhawiruriy
e - o 1 r -— ar = o B a o A =13 L L% 1
aanmﬁumﬁuqaup}srﬂuuumwunuauqm'lun'maanmmumaammuun JeazaTurnlunidosety
ve o Lo o W oA e . . - & e [
wazazlddduiidudauSuanlumsduundeyanasounndn tuseufisasazindouturasiafiied
' a . a A 3) v o] i B a & =
nimfeudazlunszirdandunivesnhiussdidarnuitiiinduiidenmndluassdusw tuaaufiany
uandnMnedied ofiefadesdnduedaurasdiswunluinalnisanesdszuasualuszdudaly
e = o va o i o a o, b4 o A . a -
Tﬂu'l'ﬁaanasﬁmm‘%'m'lﬁunmmwsmnuaanasﬁum‘mugﬂugmﬁmuﬂmunuauqﬂ TIFIAUBINI
N) “ g a ' - N N -~ & e ™ -
Fuunlundarszdudmivudazdapgramasouazuand iy wazduodiusnadwivaslualuszduun
& o Y d o N " oy
TuneuniansussmutzidaunTznamialuaifsilusaudige wamsiuunszanandannufisu

NNIUATWEA

4 6 { 4
(1) (2)

7 5 (1) nvwdmFutiym 8 nu

n9U14YaHRANTIINEANETANT RS Iny
2) 18UV HBANTIN Ui |CFH

sane3fnImiTeeina (Reordering algorithm)

- A A A 1 o =
npuravesanulenatntasTneTarmsefunsBufldnanluudr TesRasueuaaes
a w“ . ' ' | o o a .
aMufanaavasuRILLUEBINguudazds aRanddwunniivavaassianuianaiadt &2

a g lumsiuundoys
" oo v A . P '

W G = (V,E) wnunsmiilirazeslua V ussioavandugen E udazlualu G ununiengduaad
» ' v A oy . od s e ‘ -
ToyauszudaziduBanunudrduunuuusssnsudlidniminiudnavivasesnrufanaiaay

P = . a o a i g o ' v P
qun1sfl (14) (pIUf 5(1)) wedwTvesdanaifiudaduslnidmivnnn G fowwadanvandwFennd

. - v o5 od ' o v v oA d .

HaSWBIFVELITaTB R MUAaNRIaDBIMNFUA TR uazudazlusly G wrgniBandinidutianiiey

1 a4 . L = - ¥ a v oA 1 ae
lwradoniRpaniadurimu (@auUa 5@2) fmuedhminvasdubon ¢, whiumaesuwany
- g L] U d L h 7 A Lo L3 3 S 1
Aianmavssdrduunuuugaangudunudisdugen e 2ainTv G TymrvoidanaifudaGusing

L et = e Lo 1 14 v L o] g 1 L3

smwsauigwiidlaslddanainunmsivgauysnluumbhwindoogn MezwidinsiugauyToiuuy M
da ¥ a v o o
NUMUINUNTBARULTDN Z(C, : € € M) aNEA

s . I8 Lo P a“

dm3u U< VK EU) = {(i)):()eE, ieU, jeU} lav E(U) fagraesdsnuunfignifen i

. | d & - , A “ 4 da A ' a ' . v -~
&) wonrazsadwdoniidioutivlua i wIairnvasdiiuunidwibnguasiiungy i udmsivg
al '
sugstiunuventl G = (V,E) 7l [V] dhwaugwlelas

(1) xeR7 {15)

(2) er =1 fOI'VEV (16)
ecd(v)

@ Y x< ['-Z’JJ forall odd setst/ < V with|U] 2 3 (7
ecE(U)

wiolandouly (1), @) uas

@) > x, 21 foralloddsets U < V with|U] >3 (18)
eed (L))

o a4 w5 s 2w, a i
Ly IEI =m Tﬂﬂ m ﬂﬂmu’m@l’m‘lmemﬁﬁaanqu Wiz x, = 1 wunptaaduun e Qﬂlﬂaﬂﬂﬁﬂ’lﬂu

#éy
e B Rt o bl = 14 »~ - - el J
aniudgywiznsdanadfuiaGualnifamsudUywimesldsunsudafudsi

(19)

o A
Wa x iwldenudawly <), (2) uaz (3) w30 (1), (2) uaz (4)"
ﬂaqﬁua"ﬂna‘%ﬁumﬁuﬁaugirﬁuuuﬁwﬁnﬁ’angmmmmmﬁmauhﬂwaurmnm
A A o - \ w A v oo o
O(n(m+n log n)) Wa n fedwiwlualunmw @Ewmnguuoedoya) uas m Aeduddudon (Huam
i uunTayauuLaaIngL) [Cook & Rohe, 1997] dasudanasiuvaiduslnlmansadaiusiduya

Hunnldlwasmnuna (polynomial time)

HANTTNAREY

Twidatlazuaninanimanas lauldyadaysduan 8 5aan the UCI Repository of Machine Leamning
Databases [Bartlett et al,, 1998] ﬂs:nauﬁwqm'ﬂ’aga Glass, Satimage, Segment, Shuitle, Vowel,
Soybean, Letter WAz Isolet (qmﬁmﬁ 1) -qmﬁm&al,uﬂ”li{ﬁﬁmmna"uu.a:-ummlaaﬁaﬂmmndwﬁ‘u'lﬂ
& miugadoys Glass uaz Segment “l;\iﬁ'zTagamaau farius9199% 5-fold cross validation [Dietterich,
1897] lumsnaass dwmfugadays Soybean azdmngntoys 4 nsiuqﬂﬁ'ﬁﬂaan‘lﬂtﬁaamnﬁﬂ'agﬂ

veFmlainTy
5197 1 Twazd Uﬂ'ﬂaaﬂ;ﬂﬁ’agamﬂummmam
wadeyn | doysmew | doyamesau | ndw Fwug AT I
Glass 214 5-fold 6 9
Satimage 4,435 2,000 6 36
Segment 2,310 S-fold 7 18
Shuttie 43,500 14,500 7 9
Vowel 528 4862 11 10
Soybean 290 340 15 35
Letter 15,963 4,037 26 16
|solet 6,238 1,559 26 617

'lum'mmaaﬁa:ﬂ%’uﬁm&aﬁyﬁﬁagaaautLﬂ:ﬂ]’agﬂmaauWay;'lwu"n 1.1 uazlfinefiuauuy
WHWIY (Polynomial kernel) uazuuua1ifiiaW (RBF kemel) ufUSuuifisunanisnanaspadisaaias »
wwfied srfiefiafuazuundin dnivisadeduasiefiaesyinnimessaiunnarduvasdrduunuuy
aaansjuﬁtﬂu‘lﬂ‘lﬁﬁ’m%’uqﬂﬁagﬂﬁﬁﬁm’mmjuhjtﬁu 7 NEY WRzITTIMTENEIAUTEIA I UUNLLY
§94N5Y 50,000 mﬁua"’m%'u'qﬂﬂ'agaﬁﬁﬁ‘mmum‘iumnﬂiﬁ 7 ngy 997 2 uarenTaf 3 Wisuifiou
m‘mg}nﬁars:m‘wé'ana‘%ﬁuﬁu'amuﬁm%'umai‘maLLuuwv;muLLﬂ:LLuua‘u‘?ﬁLawﬂ'mﬁ‘xﬁu

nnuammasssnulasdulngitiedinilianugndsginiineisadies Hougmolitiui
Tﬂwa{wnﬂmaaLaﬁm%’z'ﬁ':ulﬁmwugnﬁaa'lunwé'umnﬁagaga"fu wazwuidtenfiededlianu
gﬂﬁﬂdl%ﬂ‘ﬁﬁ‘]LLuﬂﬁaﬂﬂgdﬂ'i‘l%ﬂﬁ'gu‘] vanuafbumasssdsuaasliiiudaUssansanendis
ofofed uanmmfumﬁawuiwluqﬂﬁay‘ﬂﬁm'lmgLﬁa'{'&'ma%’maLLuum'a‘ﬁLaNa:'lﬁmwp‘nm”ao'lu
mﬁmunﬁaﬂagmimﬁa'h‘fmas'mmmuw'ﬁmu

uammaaasmmianuTveddanaifiy (mwuititerfiedetuanlunisuszusnakasnin
wungiulszanm 63.75% losiads Iuﬁi{a:mannﬁmﬁwqm‘l’ay‘a Letter ﬁl-ﬁma{mmmuwwmuﬁn‘% 4

10

-] b2 A R B -y =) A g '}
'lum‘n‘mug WalszuaanadslUTisaaed Pentium 1 400 MHz dano3niuunndinlfioatluaissiuwn
a a) as - -1 o v a s e £ =
JToyanamay 125.58 Twn drudfariiedietlaimiumsiusnussdaiSeeidiriniinuaiios 12.68

= =
TUIN

= Lol 1 A u £
A199N 2 lﬂ%&lULﬂﬂUﬂ‘]’WﬁJgﬂﬂad Wsldinafiua HULNWRUIY

yatays fdLed odiad KUNT I fefied
Glass 71.069 71.135 71.078 71.063
Satimage 89.599 89.622 89.615 89.681
Segment 97.360 97.383 97.351 97.533
Shuttle 99.919 99.922 99923 99.930
Vowel 98.872 98.894 98.801 98.990
Soybean 92.202 92.281 92 470 92.698
Letter 05.994 96.379 96.512 96.674
Isolet B7.484 97.485 97.488 97.499

A A v ood 8 ¢ el
A1 IN 3 LLEUULY]UUQTINQHQENLN al’ﬁtﬂ afiuauuvotlew

Tadaym afed \afite? WNnBIU 815lofed
Glass 72.850 72.759 73.238 74.319
Satimage 92.129 92.141 92.148 92.152
Segment 97.652 97.650 97.656 97.576
Shuttle 90.926 99.927 99.928 99.931
Vowel 98.965 98.975 98.980 89.091
Soybean 91.739 82570 92.533 93.016
Letter 95.994 96.379 96.512 96.634
Isolet 97 517 97.523 97.527 a97.589

o A & <
1.33 mnl‘s:qnm“l‘z’fnquﬁm‘mumﬁnuﬁwwa‘mnmmaﬂmﬁ'ﬁu
P | . w o Xad] s " + . .
maflaftasviawa lwi e filiTedin msuenaSyaua1sauine (Information Based Dichotomization —

A a4 a P v e Iy 5 P 1 [a ' = g
1BD) ml‘ﬂnnﬁgmﬁumﬂLwMﬂd‘nwwaimnnl.ﬂmuu“ﬂ'ﬂmluu“munqu muﬂﬂa:mumma\lﬂu

nqyjmmumﬂ (Information Theory)
1 LY J 1 [{ > J s [l Y
mmmummawm&wuagnumwma:tﬂuﬂawaﬂﬂ '154Eﬂm‘smﬂagluzﬂmawmmngm

ArmauinAeIvaya = —log, P (20)

A A ' = a
Taof P fanmuhenduussdaya
L3 ™ = L g 1 A [b -] (] A -
dldgavasdoys M dsznavdrwiidulfléfe (my, mo...my) wazldpnuhandufiasfie
fivm FFurntu Pony) aeldienansawnanas M wisdeulnstoas M Jauunudan I(M)

ﬁ'lmm'lﬁ'mngws

11

I(M)= i:-—P(m,.)log1 P(m,) (21}

i=1
Ad o v e 4 w ¥ oo \ e ow a oA = .
nydifessswnaidwsufivzwanafdayslugauudonuuandrituian wiefovenidungu
= bl 5] N . » .~ g = [l Br L 3
Weriuninae udnsddmsawmagasziienidayslugauudanunandraiuunnnialsznaudan
el [} [} Ad o b gt e 1 et b g \d o] A
dadmaonguidiuulndifosiu dadulunslowdalouds sadoys M szdsznaudivend
dwldle (39, fawy erldrhdrsmsaumasemslouiataowindy

— P(97) logo(P(W1)) — P(Ray) log,(P(an)) (22)

d a - a v ' ' .

LHBW%’]‘S’&Hﬂ‘ifﬁﬂtﬂuﬂﬂﬂ“’lﬂﬂﬂﬂ%ﬂﬂElFJ'IMJG] frasauneoziiu 0 LRZATRITRUINATSADL €
o & - o ' = a_ wo o . = A e A
qu'uu.wgmqﬂ LNElﬂ'ﬂNu"l‘i:lﬂu'ﬂﬂdﬂ’]i’mﬂw}i'ﬂ'lﬂUFI"ﬂUuﬂﬂ:tﬂu'ﬂadﬂ’]‘imﬂﬂﬂﬂﬂdLlﬁﬂduﬁﬂﬂ 6

AT
1

0.5

Dy

aihesfhusinrdaiamiedey

3Uf 6 anufuiuiwianhandutasfassumna

a . w =
ATAMTI U HNTBYRULILILENATIMNTITTUNA
A d iy N o . w ' 35 a Y AV - I -
weallafiasiuaueiiaziidnsiuwndaysudazassmumdangudayan Wgndeseanldldunias lap
a f o w i ' - v [o .
fvananuhaniulumafedayaudacndudsznamialildinauasiaiusasmsiuunanad
nsdidmedvrnilgwmadinistaysvasdnps: 4 @3fe A, B, C usz D lavsuadlianaii:
~ - » t = 1 o L L) 9 s Fl &« A Qe i ; -
\Hupssmaiiatayausiazngduiliviniu stldhdwudamiasigalumsunudnasznaifie 2 Dalan

o w &
WYHUAISaNTYIZAIU

A UNUATY 00
B UNWAIY 01
C UL 10
D UNUAIL 11

=] [}

L - -~ 4 [k] = & L
ADLNLTU INABINTIIN TRARTBY Y8y ABACADAB 2:'d 0001001000110061 Frurudafils
a A A .~ a ' o FITRY & e o ar P . =
fid 16 WWalTTaYaInaIaLg ﬂaamwm&amﬂwnafmum'lﬂ'lms':mﬂs:m’ma:umwma:mu
- ow ' o v . a 4 = w
'lum'smﬂmaga'umtma:anms:‘lmmnu wuanutz A, E, I Ouas U muﬂum:'lummaanqm:ﬁ
' Py . e A
anuhaniiulumsifianinniianyszauyg

~ a4 =] [} H =3) had e ;
%’mmazmmuauum'm’numanﬂu’lumimﬂuma:amﬁztﬂumu

A fanuianiufie 12 unumiméndin 0
B fanutniufie 1/4 unusvadnds 10
C fanubeniluiia 1/8 unwvmbudy 110
D Januihaznilude 1/8 unumimduars 111

L3 » Br - ’ [5 o f) A v o
windnomadimiatayaradnia ABACADAB 916 01001100111010 Sruaufadls fe 14
& " A - 1 - - 1] ar (=) L3 3 o~ Y A
annuddaberudtaznivlunisifevesudasdnaszufiosmndale ey lddoudewiolunig

12

dhiiadayasnad TasorAumdnfugiuiiimnsnoslaldanAldunudoiwurudaton q sausnus:

loludauldfuerliunudrsiuaudafisnni
Lﬂaﬁm‘smw'luninil.ﬁnwlnmwuma:a.ﬂulun'rstﬁm'ﬁagﬂmauLwia:ﬁ'nm:ﬁﬁmﬁwﬁ‘uﬁmm:amLm"'a

ForunudnrzudasdaduriEluwidioum 2 O WelWhouinmdledsuresdimsunudnusznsdid

' = & w v e Vo v Pl o ™
ﬂ‘J‘]NuTﬂ:Lﬂuluﬂ'ﬁLﬂﬂ'ﬂaHﬂmad“@]ﬁ:ﬂﬂﬁ?:laﬂ'\nuuﬂt‘lu lﬂ’]nu@]']fJEﬂﬂ 7 (ﬂ) LWz (T]) AIHUFAAL

s - “ o -l A b . L3 L A
() maunusnuszaoauwliiunluwd nedin (@) mawnuaneszioduliionluwnd nsdia

auwaslulunisiinvesuaazsnassivinnu auiasidulunisifievasudazanas:lsivindu

| .~ voow M =
;ilh’l 7 MSNkanNYs=aL GIHVLIJ LLLI‘le.'U k]

31)“?"1 7 (n) uaz (1) wamansunudinuszaoawlduuyluwn? %:Lﬁu’h'lugﬂﬁ 7 () nadAaMY
virszulumsifenaudazdnussivianu cn"u‘lﬁuuu"lum%ﬁ'ﬂmlaa:lﬁﬁwmmﬁ'm%aw (edge) 3nTinly
faudazlutiurinin m’lugﬂﬁ 7 () n3difnnanhsndulumafavssudassnus: i dueslidunu
Wwdasannnliiluudsrluduiwwdudsnamisusrsfiud utuanuiiesiulunsifevas
Snussin LTu SnaTs A ﬁﬂ'numa:l,'ﬂuﬁqzgm:'lﬁi'nu’mu—x’m"ﬁ'am'mﬂﬂ"lﬂﬁa'lue%wﬁqa fuanye: C
uaz D a:ﬂﬁﬁmmﬁuvﬂaumnﬁn‘lﬂﬁq'lumﬂﬁqﬂLﬂaamnﬁn’:’]mi.wzl,ﬂu‘lun'mﬁm'hqm

mnﬁmsmﬂuudwaemsﬁumm’agn'uaagﬂ'ﬁ 7 (1) $n2s A \Ravaw Ssunudruimaudadiion
wiandlusdinisduniday afia smanaBlunisduniay #usnpe: C us: D Flamafiaday 59
tmuﬁwﬁwmuﬂﬂﬁmﬂﬂ"u%ai‘hmuﬂ%u'a'lumiﬁumgum‘lﬁ Weiarsonmsduwmlassndailiaams
ﬁum@guﬁwqm

nndudumirdulidmmiunmshusnuuuraoniudsyldiumsdhsiadayalasusiazlue
a:tﬂu@i’w“n,mnl.tuuaaang;uﬁLﬁanm efm"\muﬂ%ga'lum'sﬁﬂLLumTaailaLaﬁuu‘auﬁuﬁumwﬂwuﬂwm
n‘]‘iLﬁﬂ'lTaldﬂ'luLLGiﬁ:mj:JL'ﬁmﬁEJ’Jﬁ"Llﬂ'l"llJﬂ'li):lﬂu'ﬂﬂdﬂ’]‘il.ﬁﬂavn‘ﬂ?:
mﬂﬁﬂmsﬁmmniagamemnﬂ%‘amua‘ﬁmmﬁ %aﬁLtmﬁmlumﬁwLaunﬁagaﬁws:mwmu
ﬁaﬁuﬂoﬂa;&aaamﬂuamﬁm‘lﬁﬁﬁqmimuﬁmsmmnmw»m:u'flu'lun“mﬁm'ﬂ’agml.@iﬂ:mju il
A

I3 L™ s ;
runaulumsiunndoyansh

(1) nrsAuntuAyrayszutTLRa1§
mm%ﬂdﬁaﬁ'ﬁumaw:mwmgﬁﬁ'lum'ﬁ‘hLLu.nLLuuaaana::Jmuﬂnﬁﬁua:‘lﬁﬂ'mmﬁwms:muaz\j
A ' w oA . . . 9 - ' ' Y .
Aanawiznindeyasssngufivnldroulasfidunisasteyaisassnduazagauasiuyasswinudas

Voo

] oo ar o v 2 1 o Vw P P a ar
"lugmmemuununawm“mau ‘iﬂ]dﬁﬂﬁ?ﬂuﬁﬂﬂﬁuﬂudﬂad‘izu’]ﬂLﬁUUﬂUﬂE‘I‘N']JBH&BHLWNIG}U%MNGT‘I"HH

o da e a o 1 TR a “ a & vy N
vasTzwukuuADINgu AT agud? udunnmdumlsaangudaysauindufiarlddumiigeszuiy
d a [= I ar a A
Waipunudayananan L'zmtﬁmnulm%'umnﬂimuuauqﬂ

13

=
(2) MTAURITEUIVUANATIRTUETTHULNA
A, o e o s sa o ¥ L w o & ¥ v 1 s
Wavihmsdrwsuiedumdunibivesssnunaififivynungudaysduauuaaudrsduudiacriy
'Y | . w vl '’ ') Y A A9 v
mmums:mummmsmmwaga"[mmﬂzgﬂimuwmsm’mnmmﬂmﬂmawagmimﬂmans:muw‘iwm
o A P i = - v v 2 . .
Laulmﬂm@ 'ﬁw:Lﬂumuamwmnﬂﬁ:muuuvl,ﬂ’ﬂ"lunm%mnﬂ?’a;gﬂI.Lm 'uagaw"l.ﬁ’lulma:mwuaa
N A w Y P a 24 w o ' o
suasddwwngunluiusgdesngamuninvemauasaumanns1iinadu iloudazdud
0 ' 2 o Y =& u e dW M o el
Inwaunguaasteystuiuagipsismanindangud ladldaaniléfide
A . ‘ o
gasaldlunsimdieulnstifudai

AnaulnsDrasdrduun = zl_ﬂj(;,) (23)

||
13
1{t)=>_-P(m)log, P(m,) (24)
i=]
:‘ I a nl e AJ - &= & L3 1 QI AI (=4 s O L7
Taod 7 Judmrnfevesduldluiteedandu 2 9ldun Aswrnuazfisey, Wudruaunguuasvays
I a ' = a W 4 A, v & -
nIwue, P(m) ﬂamwmaztﬂu'lumsmmaga’ummgw my, | T| Aaswrutananisnua uss || fa
. o o | & 2
$nnudayafiaglusdazisnosdulal -
R 1 1 '3 L r A o 1 = [. I = s
ATDHIILT W n’muﬂ'twqmagawuoﬁmmunqmﬂu 4 mgmLLﬂ:ﬁmwma:mulumsmmasdwaa
' 1 ar :i o A 3] 5 Ly]) .
uma:na;mﬂumgﬂﬂ 8 (m) LLazﬁu‘lﬁmmunm‘ummmwmUnqwmwmnmmu‘[mﬂmawagaqm

o f ot a P
aINS1INSEAANgAUERIAIILN 8 (1)

B cimas 1
Colassz
Oclassa
Ocmss
Ciass 3 Class 4
. = A r > b IIA, 1 = A
(n) erwsinzulumsifadoyaudazndy () sulinadonnduaulnidilunsdanga

ar)

| - vd e ' S . o W A ' - Aa_ o
Eﬂﬂ 8 @nIDU']J@]u‘luﬂﬁﬂoqqﬂﬂqlauiﬂwﬁq'ﬁfumEIHﬂﬂmﬂ‘)’]uu’]ﬂzlﬂ“ﬂﬂztﬂﬂmjdnu’

S e & a o o . -
AYIAIRITUATIDTIVIUA sa'lum'a‘mLLunﬂmﬂmamm'mmm m‘lﬂmngm

k
> —P(m)log, P(m,) (25)

i=1
. o 5 ' - ' = A a | a
fwFuduninissiuun k NRN Wez Pmy) nasmuma:mu'l,umnnmagwaanaqam m; N3t
ar f o . I e x o A oY v &
aathsluzdh 8 AWIDAIWI AT IUA T LN TN A ants laa st

Fl

> ~P(m,)log, P(m,)

i=l

=[—(0.3) x logx(0.5)] + [-(0.25) x log,(0.25)] +

[-(0.125) x 10g2(0.125)] + [—(0.125) x log(0.125)]
=175 {26)

14

NaMTNaARES

mﬁ'\m'mﬂaaalml*ﬁ’ﬁagaﬂﬂﬂaumn UCI Machine Learning Reposiiory [Blake et al., 1998] 41474 4
PR FaenTN 4 Toyaunazgavzdiznoudiy Jaysmeulasdaysnazay TudunsurasnIsManeInzin
mausgadaysrousanily dayarentisursdayanazaunnugnaes (Validation data) dialdlunam
fwr e iTiwanzay (Kisiikul et al, 2004 FsUsznaudaudn P dadrfevaclunisdaiy
(0<P<10) uax R fa srvsuwanwlanae (x, SR<x,.. . 18 Xy 718 Fiw’i"nfg@maa
LOULEAAINIAANAIATBIRIEUUATINNS LaS Xmean+sd A0 Nﬂﬂ&l“ﬂﬂdﬁﬂmsﬂLL&:ﬁWLﬁUGLUHM’W\‘ig'}%
YAITOLLTAAMIAAWAIRYDINIIULANINRYR) WasI USRI P us: R Al oadrosasunnuyy
%munaﬁmwnfqﬂﬁagaaawﬁuLLa:'L‘ﬁ"'quaa‘},amaaurﬁammm'}ug}nﬁaﬁ wazAnduIuesaivluns
Fuundaya HAMINARBIURAIIUI TR 5 weza 7197l 6 luensonisaestin IBD Aa3Fmaiinaue
BD fia Balanced Dichotomization [Kijsirikul et al., 2004], ‘Expected Value' uaz ‘Output’ fo AduIu
afilumsinuunflananiinariwuasilamsiuuniildass dudadnes o, d dewisifimaiues

oo P e W g Y)
ﬁ\‘]ﬂ'ﬁulﬂa'ﬂuﬂ lL&:G\'JE)ﬂ'1;+‘5L’I.l&llﬂﬂﬁ‘i’]dLLEWNFHYIﬂ%q&llu‘gﬂﬂagmma:ﬂ;ﬂ

. . 4
M990 4 dnwuzvesdoyaiiamerey

gedoya | Swan | dwam v Fuaw
masdie | Aaethe Nl AT
O QN
Satimage 4,435 2,000 6 36
Shuttle 43,500 14,500 7 9
Vowel 528 462 11 10
Soybean 290 340 15 | 35

4 \ ¥ .
@159 5 WIHURDUS W UATITAIANTI WU

) Polynomial Kernel J
. Lxpected Output| Expected Output | RADAG | MaxWins
TR | vale of | Vale of | (kD) | (k(el)/2)
of IBD IBD of BD BD iy
_(log:k)
Satimage | 2474 4999 | 2585 4847 | 5 15
Shutle | 0965 5359 | 2807 5378 | 6 21
Vowel | 3459 5385 | 3459 5665 | 10 55
Soybean | 3.617 6971 | 3907 6.783 | 14 105
i RBF Kernel Al
‘Expected Output | Expected Output | RADAG | Max Wins.
TUBE | Walue of | Value of | k1) | (k(k-12)
of BB 18D | of BD BD
Satimage | 2474 4734 | 2585 4577 5 15
Shutle | 0965 4982 | 2807 5758 | 6 21
Vowel | 3459 5628 | 3459 5819 | 10 55
| Soybean | 3.617 5400 | 3.907 6591 14 105

15

i = ¢ = ¢ 5
@A1519N 6 lﬂ%UULﬂUULﬂaiL‘ﬂ%@m'ﬂuQﬂ@]@x‘i

1 Polynomiul Kernel '
RO 7§ D | @ BD | d RADAG| d Max |
- Wins

Satimage | 6 88.850 | 6 87.840| 6 83900 | 6 88.453
Shuttle 8§ 99924 | 8 99.924 & 99924 | 8 99.924
Vowel 364935 | 2 65.022| 3 64502 | 3 64.329
Soybean | 3 90.882 | 4 89520 3 9L176 | 3 90.471

RBF Kernel

Falnyg ¢ IBD ¢ BD | ¢ RADAG| ¢ Max
L Wins

Satimage |05 91950 | 1.0 91.350| 0.5 91950 | 0.5 91.984
Shuttle | 3.0 99.890 | 3.0 99.886| 3.0 99.897 | 3.0 99.897
Vowel |03 66450 | 02 62.900 | 02 67.100 | 0.2 65.340
Soybean |0.07 91.471 | 0.04 89.118|0.07 90.882 | 0.08 90.468

A w o a Lo R o & L 0 “:
PINHRNTNARBINTUANATIIR I TEInAlEA AL ndas IndifisaiuiTau daudimwauatolu
a d = o ¢ o A © N A v g A
mruundeSuuRsuniuotfiefaduasuundin WuIInITHANATIANEITEMAA AU IUATI LI
> 5 ' | - o A i e
mstuundindmansdl ussiifanfoufisuiunsuenasuuuangs WUTINTUANATIMAETRUNA
[& o o , ' P I o
T runasitunissruundindnts 5 lu 8 asd d2udn 3 Tu 8 n3dil wilnsuanaTiaum Taunan:
N & . E) ' V=9 e | Y
'I.ﬁ’mumﬂ‘nlumwmunﬂgan'nLmnlﬂmmmQﬂﬂam gani1faY
o [. F w g - v
AT lunRaiwReRTeIM I uUn UL T LIssE T uALULRaIRE RN |d
' Adad Y v o ' f w el e A . .~
e P uaz R Mingasmis laswinszwud daunsnudsnguoasdoyaldfuufa udszdusesmuy
' v g w & o i & s i & =
induresdoysuuiwlesviatmindulasunisvassswufidsangufisy dduuariadosesns
3 A B 2 RI oy b A 1 I3 “: = A el L r A L
wunit leaadslwaindifiaeiuasiuiuasolumsirunnfiarands lunsassnudauminszwionla
1} A 1} 1 L wal ﬂl;l 1 L fr & 1 A fred w Q‘:’ o
“Lmﬁs:mu'{mmmqngiwagﬂ'{ﬂmwanmﬁmwa'lv\mmuummwmunquﬂ'lmummuﬂia'lumsmuuﬂ

E 4 ‘e & . = o & ,
Lﬁaﬂqd LAZARALAND N nﬂ"lﬂ’m’luﬂidluﬂﬂ‘i‘ﬂ%mﬂﬂﬂﬁ AW TIUINY LA T

1.4 a7Una mﬁ%’yé'ana?ﬁmaaigmmuwmynéu

muﬁ‘a“umﬁwa%%hﬂém%’umﬁmumj"aﬂﬂLLUUﬂmnmﬁ'wﬂaasﬁ'wwa{mnnma?‘um%u Tattirusiod
Laﬁf‘fmLﬂuTﬂiaa%onswﬂﬂ%’uﬂymnﬁ%ﬁ&a%‘ uailevnlwaasnandmiuasimasmsisnfiouiie
mna}'wﬁgnﬁaaa@aﬂﬁadwmn LLa:dmﬂ'lﬁﬂ';mgnsnga'i’m azhﬂsﬁﬁl,aﬁta%ﬁam%uag’ﬁ'uéwﬁumaa
lua (@3uundaysuuvaasngy) ua]”iwzﬁmmﬁueiaﬁwadéwé’waaﬁaf{huunﬂaz‘;mmuaaan@uﬁau
n358a109 LLGitTam'lﬁmmgnﬁaaimn@haﬁmﬁaﬁa"wﬁmaa‘[umumn@mﬁ’u 112svimsUSudyaieied
B '[@1ﬂwmmum’"ﬂﬂ's'\wfudaﬁ'waaéwﬁwaaﬁ'ﬁ‘hLLun'iTaQauuuaaen@mlﬂua’tﬂmaa%’wwao
niedlaiBonddufimenay FeerfnsonaindasuunAdfivouizavosnufianaas wasldi
é’ana%ﬁumsa‘i’u@jauysniuuuimﬁ'nﬁ'auqcﬂml'ﬁ’ liITarieaieauntalacssdausasaiiuunle
ludarwnwy wamiesssuanstiifuilovdulngfiferfiefiailianugndesgoninatadied wie
LL&J"Lwiuunéﬁu%aLﬂffﬁﬁ‘lﬁmwgnﬁaagaﬂqaém%’uﬂmmmﬁ'\Ltunﬁaga!,tun%aﬁung:u-uaa‘ffwwa%'m

'y - a e v . oas © _d af v M ' o
L?ﬂLﬂﬂ?LLN'ﬁ'ﬂuluﬂﬁ]?Uu uﬂﬂ‘ﬂ"]ﬂuﬂduﬁﬂ\]lﬁLH%‘T]TEE!']?LE]@]lﬂ"ﬂlfﬁL'Jﬁ']luﬂ']'fﬂ?:u?ﬁﬂﬂﬂ'\ﬂ?'\uuﬂ'ﬁju

16

P W e, P = P a A o '
wenniud s ldhuassmeaiansuanaimuassownamunoiiydininmmsiuunngy
a ' N & o v & ' o e
71awwwa%m'mma%LLw%uLauwmunaﬁu‘[mﬂa@mmumwaamsw,l,unm'lcﬂmnmun'nmaaaﬁmmm
a ' N W = ey s & a ¥ o v w
T@UNamnmw:mﬂ'ﬁngmmw‘lunsmﬂmmﬂummunquLﬂummumn anmmmlwmmwgnmaa
v o e o , aad
lﬂaLﬁUanummuununwmungm%au

2. myivansdivdyelszAndnwuasloueafildnumudedgaiasunin

oA oA o v we a = A PLIRY a [a o &
18I,Laaw&l‘ilﬂmum‘]la‘aumlﬂ‘iniﬁﬂ’ﬂugﬁmﬂmmﬁ:U'iJL‘SLquL@ ﬂﬂﬂﬂ"&‘n‘mu‘?nﬂ‘izﬂﬂﬁﬂ’mgﬂ'llml,a::
u w w oo 4 Jd g wed A = = a o
1‘D‘ﬂ’]‘iimuﬂ‘)’m§[m3ng(ﬂ‘i"inzau@]Uﬂ'ﬁ%\‘l‘mtﬂuﬂ'ﬁtmuﬂ‘)’]&lgﬂuﬁ‘i:aﬂh‘ﬂﬁwuﬂﬂ DU’]ﬂvliﬂG]vl,al.Laﬂ'W
A A I Y e a o .o ' ' f
U‘S:ﬁuﬂ{y%ﬁlun‘imﬂﬁ’iﬂadﬂ'i’i‘ll‘lngﬂ1ﬂﬂ1ﬂﬂ1SL‘EU%?'.U‘NLL%HHQSJG\‘JaU’IGl‘ﬂ&JIﬂULQWW:BU’NUGlu
adw A o 2l dv e - o d . - o » o
ﬂ‘imﬂﬁagﬂuﬁmmﬁm‘mﬂ’)u Luﬂﬁ)‘mng‘ﬂiﬁ?ﬂﬂiaLLE]aWuLEJSJﬂ'J’mEIquuLWElwﬂ‘waﬂ"llﬁﬂﬁ‘i’ﬂ'muﬂ
LA ' e 1 w o4 X, v & = - a e P -
ﬂi:Lﬂ“ﬂ?aﬂqﬂlﬂuNWWﬂ‘]ﬂiﬂ H'J"J‘Jauu'lmuﬂﬂﬁ‘iﬂ‘i:qnﬁﬂ‘ﬁﬂ’w\ﬂumEﬂm:u’:‘a‘amum‘ﬁﬂLwa‘ﬁ‘ll“
=t a 4 o w o vaa &
ylE)I.LaﬂW&lﬂ‘]‘u.lFJ(-W\quwﬁﬂﬁuﬂ‘lmuﬂuma%ﬂﬂu&mwmuﬂm‘iun’au‘],ﬂﬂm"uu

1 o a o o
2.1 T UE A e U Wi
2.1.4 uw1@aa

\ o . Tio e a e ' a = - w o Y =
'meavsmuﬂﬂmumﬂmmmﬁaUamamam'l.umiwwmmmuunﬂs:mmaga'ﬂmmimawu:
YR oo ' A vy o o o A . .
FoIRANITDITBRING TV IAUA TrovmuFI 10 UARiY (First-Order Bayesian Network : FOBN)

. ' o w o o v = .
[Getoor et al., 2001; Kersting & De Raedt, 2002] lagangsnwmuddiauinildnudofuesaadiuwn
P o e o . . ' .
sz 2 wiie Aeesned1@unn iy (First-order Logic : FOL) waxtev s (Bayesian Network :
. T - ov A .
BN) [Mitchell, 1997; Pearl, 1991) T@wmsn:ﬂmumuwmwmm‘mwminqma;gawaa&mmaz

. 3 . e A, = o w© v ' '
wihoondmansznudeny lusnsfidisswoaisnuauisolumsdanmsdaysd ldaarsnsdingy
war w a a o = ' P . o P . co o o & o
lagasuldathefilszininwdiingueanuinaiy edrslsfieufiasnngrsnuuddaunning

v a w a ' s o o o w o 4 v a
ANUTUTEUHIIN ?:uumﬂ%uugi.wafﬁ'\amzmu.me?mmunmmmnwagaﬂuﬁawwm‘lﬂmnm
' P ' = ' s v oA 4 d & ' = '
naum:nm'zﬁa‘s:uuminuufmwm‘mmémmuw%ua‘nmLauauum:manmaﬁmmamawm
w . aa Aw a d a e <
deinndayriau auumm'ﬂagamun'lﬂumnwugmwmaw 7

2 o . . a
AVTIN T AIDLUNT agaﬂu

a. ﬂ')’]N"S’JU{Lﬂ:QmﬁUfJE\‘UE}d]{ﬂﬂG

fabs e omiuk |areist | difigent | savaponey
b + —0 & 0 —had 0 .
c + 1 0 1
d + 1 1 1
e + 0 0 0
f - 1 0 0
g ¢] 1 0

o
nevas
Y

17

=

g - - 1 3 o A -3 L B G —
‘ﬂﬂﬂ“ﬂBHE@UI%@‘]T"IGT'}GW%S:UU%WLLuﬂﬂi:Lﬂﬂ“ﬂaﬁﬂ’ﬂu@ﬂ%‘l,ajﬂﬂﬂurl‘ﬂ (Decision Tree)

[Mitchell, 1997] mansnasrsdwlalladozui o

A L A o 1]
5ufi 9 duldsafulostaine

- A o h R - Y L ¥ - .
weasnidoungaldnnawlddadulaliogluguassnaaauszwad (Propositional Logic)
“ v o A
larsatadaii
rich € genius, diligent.
rich € artist, save_money.
o \ Ay e E - ' A . aey & & 4 = a Y
ganadainngilan g ﬁuaa:sama*sa"lmwuagnuﬂmﬁuumaaﬂuE] Wurin FalupsiduaTeusn
. o= , & - - ' P by w 'Y | ' P P e
21 LT A e qﬂﬂa'lﬂa:s:;m&savluzm)mmmaonuﬂwm’mqﬂﬂaﬂwfm {dunarefine du
A v o L A] A\ = ki L =Y = & f;\l 1
dw odvlsfienunisldaduundszinndeayerfiedulddadulaniaasnmsafuzwaditlysmum
= [y o | 4 e - ' = .
stgng'l,uanwmzwﬂﬂa%uo"ﬂ'unuqﬂﬂaauim"amm:mmﬂﬁu #9150N7) ‘rich € rich’ 3NNy
A ' o ' . . PP v -
wnldenanuenlddaauianursvesyaasladinrdaynaala TwamidafsSendoyadu
= ')) ' A e W ~l a ar . e .
Usnanfdayslundssniismusndnansnudewicduldidaya idausuwusdany (relational
™ o 4§ O | @ a w a 5 v a & . a v we a .
data) msfianuduiuitssznindoyaiildmadouvirldoindiudu Tavdnfduldangulali
o 5 P SV y = e a4 A4 A a
M IREFNNIUNINDITU ANuTwBsantuigUnasas adrsisimuaTinsidufnileonakaun
Py [V da [P) e w o o ™ a
mnmﬁnmaﬁﬂs:waﬁmmsnLi‘jsungmmwagmfmﬂ'nuﬁuwuﬁ’ﬂanu"lﬂamwmm'ﬂﬂuumsﬂﬂm
[e B ..J.‘
wdvmsassamaatunlgaad
rich(X) € genius({X), diligent(X).
rich(X) € artist{X), save_money (X).

rich(X) € parent(Y,X), rich(Y), genius(Y).

o ' e o . o o w PR o
Taslunsilfidulsudacduaasfisyans du lungdenauszyiid viduwdunasasses x uaz v du
1] O = A = O an 1 L A A
ausuwasdudaniooud? X anduausio (¥ @390UwWIY b uaz X a39NUuwIL o) FIungTefiniiouas
v oA & a e A o o o, Y s o oo A a
dofimasnwiisuhivdulifadulalugun o aznduldimsldasmedraunnidumsduuntszinn
1 w vo o o & [s e A P a o o d
Foysunudulidniuledwsedadinavosngldogramn dFmiviTinaspulunsSouiasmedaun
o v a & aa o = . . .
wivandeyadunuifientslsunsuarinnzifsgiv - lousad (Inductive Logic Programming —
ILP) [Muggleton, 1991; Lavrac & Dzeroski, 1994] eti1s lsianuszuulauanidalimansnianisdaya
' ' ' L] o [A o & . W w a Av . a
Limaroudsnguidusiueunlaldyyrusuniuldann Wedndudaadvuinpandayadunlid

s o

g E) o v = A A d e s ar o
warineszuumndvuiaulddadulauazlovasfazimdy dudymfnFoniinmsdsumenziiuly

- , A v v e P T +,
(overfitting problem) [Mitchell, 1997] FaacrilidulidndulanisavinziraunviafiFouildd
st . e L -3 = a A LY =] z
ANHMIIRNIZIANEYY (specific) numagaauvmmmnum (ma’m‘lé’gnmaamwv:wagaauwmmuu}
o o wwod A & Y 2 o ‘ » A
#Fasanernriauinianimetaludradifduswei lussnsdinguaidanuianizienzauin

a e ar ' L, % a o ° waf w Ey
Wuliguiy fetratuiifivwy a aolluarnm 7 Tmﬂmwuﬂqmmmlﬂmu a feaolud
genius{a). save_money(a). parent(e,a).

wmuldFgurud@de g veawe a ldassiungdslawmurinldineslnnngldimwe a 1
An o . = a ' & = A A a a w d o
qﬂﬂﬂﬂ'lm'w aw"l.'snmummmwmia-gﬂuuumﬂunﬁagﬂﬂ‘lwﬂi:ﬁﬂﬁmwu,nLuam’mﬂmauuw
! ’ ' - T a . d o &
6199 18I & @NLNEIU (partially match) Aungassnzmauiinitaluaasgrsiugamiaung
A ' o o Y o = o A = Y M
QmauummimamamuumaLﬂuﬂmmmmﬂm}wumumﬁmmm%mtﬂummLLun'le:mwuaﬁa ey
- va e T I o o o
Warmuaguaudadeg zeawis a IWivdwmwudihduinioudy drwnwudiduinioe:
I3 1 o =4 . P A 1 A7 w
FEsaRwImMwIsaRanluaonas (posterior probability) five a azswnndasiioslade
wallanisayuy (inference) [Pearl, 2001] ldatnaiszingmn sufuwlddimalfionwoddey
d 4 g g Y a8 = ' & A B v '
mmmummLmnﬂ's:mﬂmagaummymﬁqmﬂuaahammuaamnsamumqmauummw‘lmmuau
'Y v Y a ' o Py ') A W d 5 aad e o
vosfayalddnmslinguioruieniy unufiezagdn Is wio Tld saduitadulidadulauas
e = o d P g o % o A a o LY o wr [] ™
assnz@aunnita i) uanmnmnmmmﬁ?mmummmmqmauumaasumwauwuﬁizmwwaga
o A o w od A4 a u A Co o d A Hdeoa ow
UL R INUATINZaUN LN B RITNAIY Eﬂ'ﬂ 10 LLam'JhumumammUﬂﬁum'lmmﬂngmmmnsﬂu
o -1
f10819%

O Y T T TP T S PrTs Prarepes .

i Person(Y)

PR P

e K

adaaN LRt

Nargedn

o . o o oo A4 d v e o o a oo o4
Ei_h’l 10 91 U\T\%LU'NE"\@]UY\%“J“LWNQ?'\Nmﬂﬁsuﬂqﬂﬂu‘lﬂﬂﬂﬁulﬂLLaZﬂﬁﬂzau@]Uﬂ%u\T

f LT Iy) o . o a o= w
gslFaanAnislTeneudisdrutrnnrossiwit v s vt o uudaR e laTeg e
4 - ' v oo S a . . £ A A .
(strucrure) Tavwpfaluaane g wezidwSauuuuifians (directed link) nevuaizauluaudnzlua
vitdoiu uaudazluaunuquandinsanminune (attribute) iwdisziudwlinaduly nafidu
e 2 E ' ' ' ' =l
waneinlua a ludelue B wunodislue a samansenulaessdalun B aaudszneudiunandued
o w oA A4 & , e o o o oo R r.
Jrprwudginuiniefeaswzesaruireaiuiuuiifouly — §47 (conditional probability table
5 s = w A, LY e g 4 = »~
— CPT) lammdwmanuasdumenduiaviwisquanifonddfiias Tagmlunmasou]
. o o oo A 2 v ' - & o . I3 o [
fprnmudiauiniisdsznevlddososdunanfodouilonedonnsdia sdhslsfonuninFond
o o o A ' o | o o ot o o ' o [y |
dhonwudsauanilimmvildlasiwindesnnldinsigulindsusnmsdoufassnsiraun
d A © o o e o= oe o a g o ag d o 2 o
wilsmSarunuudmRosdwendelianududouresanatinildlumaSoufiluuuy NP [Botta et al,
ae dr v s o od 4 d - I o & o w4
2000; Chickering, 1996] dtumsivuitwnumudhauinhidsdowdunsGouiniessnzdaun

A . ¢ v a . . = 4 [- av s Ve a '
“udua:ﬂquﬂ—\u&ua’?ﬂiamnuaﬂ".ﬁen@laﬂlLa:‘T’JﬂLT?QJﬂ'IVL@U"ﬂU\‘] 0’1%‘1%Uu%‘lmﬁummﬁﬂﬂlﬁwIﬂFJ

muhszuulewesfiunedfouftenyd (Bayesian Network Learner : BNL) [Chickering, 2002;
. . | - | -) a o ol A
Pearl, 2001] ¥a43rULAYIR UGB lBIRMNDRAA I TUFa U Tt LG DU LAWY
L |] d h K] 3 w o P & A v v
TumstdiGeufisruufidaifoufismuudhauiniom @doufinonuuddaims
L r.l o A 1 - Lok e o el 1 A -~
TayaduwmbzinmgmdaysamadsudwdoaiumaGouiaulidafuladugu a1 7 a. Buwa
1% O 1 a b 1] 1] ar bl 1 LY 1 B 1] é Qe
Viznaulddaudaeting n a1 dregoudazizneulddmssgmand® mer aradhaniladaunu
v A a)] ' [' v . am
dotayaniinmluamsdune sauiuieg unugusuifnibeds funaiundasimuaenuesusd
z “ 1 A A . "~ o 3 8 L2 -
wisluansmwavesdmadnidoansdsulddmidoufiwnund nuuluruaounisfoud dudoud
N . v oA P & B v £ W - e v
urudzaadudanfivnunzaumunedfifivesluamdriu - dovudundesamslddadoud
f € a ' o w0 o d [= a - . '3 2 0 & v Y
dpwuSTowaingsuFaiauini udnwanddunndsutisowud niledndudasats
v =] v a . [P e ' o -
Fwdayaarmidvinndoyadunalziandayaiianusuiusdeny (Ivarsaglugugiudoyaiss
" . A P (a . Y F
RUWUT (relational database) 1Tua1519% 7 a. uaza1™In 7b.) kdivmsaiegiud BYRAITRLALIIN
. - a 9 s o o o 4w 2 e al
Toyadnwuziddymassnlimuntndwmuandinnisqmaudandasnisliuidaldinmzouanidn
= le " ; b S 1] "
Duwlildnamualudunadszinnfiaansadidunineumiaa [Kramer et al., 2001] daotaitu a19
. w . . " s o ' w g e A ' v
rwualiaruTsyessudBugmauifnivain Wamumssesduiuvgusndfidnniaedn (fu
MsANTIUTEY parent (2,Y), parent (Y, X)waiuds z lutues x) enusisvasmaiu
A . 3 v add a e % d a TV)=
auaud@dnuiietw snfuldidfimnsofugueuifvaspudeyanmadsifdasmsidagalil
J: 1 -3 - L3 d‘d B as L) el g L
nsuge advlsiaumsudasnioangiifyniondayafdnrwvdunusdenu liflugudoysame
a g . . t4 q wvad o o a P
{@iv7 (propositionalization) vwawni ldlasmsiienawizauaudandAywisansuzddy
Y & Iy v P & sa_ H W [P v d
(feature) vovioysuniusaufvesgudayamnudgifiisme lduiludoshnaaui@nnadun
= L b & £ z [} [-3 & A [[} L] L]
dwlyldunsfadusaudniven adrelsfanuifamiffaislianansiudeaninindesdivun
- o a d¥ a v oy = A = [I |
anuiiutasinfisuiasldinyusfddyadens (Autuanuduiufuuuusinyseludiadnm
Y d & = o o a v T L o aw da
ugd) dadgwibiiudgnidurdumadoufasmzirduinilvasloueafitnes danuauiToiie
- w e s w g, v oa 2w o o woaA A dv e
wuadinsafhosnwaridyfsuiu Tessfuaneazdmdymamunnassnzsauinisnldanizuy
o e » o ' P W o a A »] e
lowsaf daguaindradrafidunumamuisnyanldhansmeidysestaysluuinnuaniuims
vy eazdria bidfiujuroud (npda 3)

- o w €2 w A A d o 4 a voe A =
T:UUW“LLUUIHT}'WLTUHE‘II"IUG’I‘AL'.IJKEI'IG]U‘HHH-J'HLN%QLLE‘TWGIMTJJT] 11 gdaTun LIVLG]GN'H. IH'JJ%I.L‘J'TI

U
L - Y

L7) [] ar A J - r-r:)
'l-m:uu‘lau,anﬁaﬂmﬁn:mmnmmmuﬂncﬂmuauwmﬁam‘mmwm (background knowledge)
» P v P ar & s o d d odv e v o s
uazdayafiuFinmnngudayadifudus nasnniwharsnsdduininldnafesnsusdday
. o . wr , v Y o [' av

uazhanpmzdagmiuaswusiauinielasldsaGouiinsawuddely Tapauide
J bt - : [} LA] G‘ A Qur I o]
anedanafusasiufie MCAFEE (aznaniluwiadade) ideldlunisdunidnsuzdaneisyg 9nn

« w o d d o & o o A o a a & a 4
avsnzidufinde WWahanduseuduasgwdaysmmadiidains wazdana3fuuiizasfiiane

o ood o A a a o - ‘ . 3

8 GRASP (\wiadiaf 2.1.3) \ludanaifiufiszadsunindodaatine (training examples) lugudaya

4 dw
TaALIAdeIns

" - a [€ oA L ;| ~ A v &

agnlsinwmadoufiunuudiatonuudiduininndGaufisnwudlasnilla:
L{ = - O - . . . a » A L
HunsiFeudlumdeeSunudnwusyesdoys (descriptive learning) anninadoufiNaldtnsuud
e v d d bom . v v oo
sduinialuldiBaviuwnodoya (predictive learning) [Mitchell, 1997; Pearl, 20011 (Taumsaitaen
» v - = - = =l v o * LY " Gt -1 ' 1 ol A
fwnndszinndeysvindayaduiundunaowiifsiunodoyaduiuy - mIonirsauwudsiaog

4 d = v . v ¢ o ' o w oo d

ﬂuongntﬁuugtwamuﬂwu’vvma:dﬂTﬂmaww:wmmuunﬂ*s:mﬂmyowmaa’mumaua {FOBN

. P P w
classifier) Bailfienuasdi

20

- P v o . o = d A ' o v o = ow e
WEMANY 1 (@l’N’]LLuﬂﬂ‘izmﬂ'}ﬂUGW%LUERWG\UY\‘AHG). ‘]J‘HJG’!HL‘]JE\’S!’]G]UTWMJ'LGIG} %ng‘iﬂﬂ'ﬂkﬂ%ﬁl‘d

- . s oo d A4 d a [V v a
duundszinn nwudaufimideiiouandisesdensdolld
1 £ o = 4d 4 4 2 B -l A v

(1) Tunyssthonuudirauinisiimaulazviruisgmandd (target wio class node) azdaalufilug

anlaq 18z

U

[l I A 3 L ,/ =) s o 84]] z

(2) Tuaviauy (parent node) maa‘[uwma:mmuqmﬁwm:manﬂuanum:mmymaq LU a

Gy 4 A 1 A Qur] A L [3

AUFILAUDY (D ﬁqﬂqmmumaﬂaanu‘lulﬂuﬂﬂmmaam‘sﬁmw‘lﬂmmuqmauﬂ‘&mmluﬂ
A 4 o a M v ' o o A A d o A o . e
augsash i llddduuntszinnsnuugiauinienasiwoluefideins srunmsuide
P P a & ' [Wy A v o = A v
71 (2) fyaduzmdluninhmafiansasinsdununganldvwneluafdasnis Fanadrfiewn 1 e
s P . o ' o v oA 4 da e 4 v d
fwuatieuly (constraint) maaTﬂsoaﬂmawwmmmﬁmmuwmﬂLsuug“l@i”hmuﬂml,m-mma:
= v ' A o ar . w ' o o o a [y a
Bunlenaisswiinlrrsairman (main structure) unzdonlasieisufindedug nEouldnnd

&t r P . P o 4 '
Guuienwudi lnsaeiinieo (remaining structure) U7 10 ugsduunUsmnninoawud
s v oA 4 4 P A 2 o) ' =2 Y
feuimianasmuiiowd 1 leslua £1-£6 wanofadnwasdayno 6 agw (grossiBoaiuiade
P
n21.72))
o ' . = @ A . o v o o
m‘smmmmmmwuw:mumumamammwayja isldaana3fis GRASP (E‘U‘ﬂ 19

' 4 . “ v
aauand) Teaznaazidualuiadedt 2.1.3

L L L LTI Ty

MCAFEE Standard
j o Bayesian
Firse-0nder e Neiwork
Ruks v Learner

GRASP
Prape: inslead Dace

- L S P

Py 5 a v 2 a o -
31}1’1 11 32U'1JG]ul.L‘]JUﬂ'I?LTUILELLﬂ:Y]"M']B'ﬂa&@!'ﬁ@ﬁlt%ﬂﬂinﬂﬂ’lﬁUO’]%L?JéﬂW@UY]“%d

2.1.2 MCAFEE

L J ar L3 - . . - A T R e o as

watofiauasana3fin MCAFEE (Minimal ChAin FEature Extraction) W alvamumanwm:mmymn

o a0 A A v = a4 - . E - T I a <« .
asmnzisufnilinldnnloweadt Twhmazdundrunisvssasmedrduanindnsnodywad (chain)

[o o du v i 4 ar g . . . Recs
anBunansusidyAdasmsiasnathemilsinaeaywediny (significant chain) layansuifiusn

- . o ae Oda e T a A . .

gasmdgwuiiaylunwidoifedes lWldaodywasdAlvdnamney (meaningless chain)
P o A o a o v A M ore ¢
mATvimedgwaiflifianususfianisiaul s lumodywalgnafsiusnlaslildfuius

[) o a b . a A ' a i
ﬂuﬂqllﬂiﬂulumﬂﬁty'w%ﬁuu (%\ [Kijsirikul et al., 2001] EWULW&J) LBU WRTTIUINY) ‘rich(X) R

21

dad(¥,X}, rich(Y), good(W).’ ®unaidwudlsy gnaﬁﬁfumfﬂuﬁ’uﬁuﬁ'ﬁuﬁmﬂi X vl
gnsaarangle rich(y) 16 vasfiduds w gna*ﬁa%’umadwa'lﬂé'uﬁ'uﬁ‘ﬁ'uﬁmﬂiﬂuﬁﬂﬁ”lﬂ
sanmnianunnelddaan dniunnngteimodywailaq 48l good (w) athzlionianldidu
dnwuzddy Afnsriumsfywaiiadganassnzinduiinilises MCAFEE 1duwafinsin
[Kiisirikul et al., 2001] Tmua:uaang@rﬁn:ﬁﬂﬁuﬁﬁﬁomﬁamﬂunﬁwﬁﬁﬂma (directed graph) 13ua7n
ng ‘r(a) :- a(h), b{a,B,C), c(B,D), d(D), e(C,E}, £(C,F).’ MWITAaIINTW
ﬁﬁﬂma"lﬁﬁagﬂﬁ 12

3t 12 nmvilfiema

a [oy) - ! o o e
Tuasn (root node) ﬁamuﬂsmmuﬂﬂaglumummmng (head of rule) drulundus fodwls
:1 A 3 J et < -) R v a . b " o
i Nonafreduludywad (literal) udazéy Wwben (edge) lukdazluaunudgwatlududivaing
av ga g o a oA " ar & [. .
(body of rule) NURBUILNMYIFYWIRNTANUNINLENTBR I NEWR Y WIHFNY TN (valid chain)
o L A‘
Tausienuleai

- e s [(£ A o & o P A &) A A » L2
feuf 2 (MaFywadanysod). Waussngasinzdauiviinis g elewdunmudfiamaudaidums
[a w « ca A w E 4 [P wa A
(path) nluennlydilualeq Aemudgwadauyaifidadaduniaiuiiguanidlonuauidnis
' & + b a A& - - & d = '
dolUft (1) Wumauudaeau (loop) Hadu wie (2) idumanuiiluafudulualy (leaf node) oglu

LRUN O

Tavlualuluanddeiwunotsluanbifidudonoonndriues dunislag Aaunsnaold
- A & o s ¢ a4 A X d v a Y =
winmnltdiluanils g andumsdywadsuysainiadanuninmase veliflasanndddunlsilid
L oY P P a & o, R | o 7 < o
aufviuiiuaudsdu Tuafiunuarudsuudenlufidundonludiluadug siwes Tasndeuly (1) uaz
o & oA - o £ | ¢ v o v e = d 4 a
(2) gneeduadasnsimodgnaludacamofauugcilidoyafiarudmanngarnzddufndedy
o 4 g .l g 4 a
Wnnfigauihdululdiues (g (Kisikul et al, 2001] tRulda)
| o A v | o W = | ' o o y
phelsimnluilenud 1 ldfmuedrdnsusdayrimuasniuluanawivasiuafidssnmminng
A (W ° ' ‘ o & of v u s &
Fawmnpamuhdssiinmisunianuihenismonimmsennduuuidulddvasdnsmzandy
“ " , Al A . N o o oA a 3 d ¥ &
wigluavsuiriivualudffivasluafidasmainng dsiudidenmedywainng mpfsuysaliu
e L) - d -~ 3 I > oo :’ g L) [
anpmrdrfguodluaiidasnisdiuisanaiildifiennusidou (redundant) lelanlsidniu
- ' o o o ' v
d1et1BuNgUN 12 'b(a,B,C), e(C,E), £(C,F) ¢ dumpdynainanysoluddrdau
A = o . . o el
ifipssnmansnifiaainn1smuAn (combination) 2asmudywainauynizesasfe ‘bia,B,C),
o o ¥ v e o Y
e{C,E)" iU ‘b(a,B,C), £(C,F)’ aaunlumsadodnsuzdiAty MCAFEE w:adsanizany
B « 4] :’ ») = g 5 & o L3 ¥ o
fywadanysoluazlidrdauviwulasaziSunmodgwaidszinnilihasdywadavysolidngs

;. . . °S o &
(minimal valid chain) uszlhsiuals

22

~] a — | , d = o
e 3 (mofywadsuysolldngs). sodgwalsuysal r lag @ndgeidealelddmufynad

q

O

e , da e,
ﬁl”dimﬂu‘] r Yl&li{}mﬁm'l_lﬂ rcocr

- e

“ o = o & Pl o v
dedrasnodywatauysaliinganiesnwuzdridyngln 12 isdulay MCAFEE uaneld

< @ od v d< :; ¥ o o od A4 & o ' w e A
1“31.]71 13 LLﬂ:f‘mﬂﬂqwauﬂgn@aﬂﬂtaﬂ“ﬂﬂﬂa“ﬁﬂ'ﬂad@]ﬁﬂ:ﬂqﬂuﬂ“uﬂﬂﬂm&lngiu@l?aﬂjﬂma-ﬂﬁjmaﬂ

2.1.1 LLﬂmaluglJﬁ 14

f1(a) :- a{a).

£2(A,B,C,D) :- b{A,B,C),c(B,D),d(D).
£3(a,B,C,E) :- b(A,B,C),e(C,E).
f4(A,B,C, %) :- b{A,B,C),f(C,F).

o ar s %
5# 13 dnuarddanglil 12 fsslay MCAFEE

£1(a) :- genius(a}.

£2(a} :- diligent{n).

£3 (A} :- artist{a}.

f4(a}) - save_money (A).

£5(A,B) :- parent(B,A).rich{(B).
£6(A,B) :- parent(B,A},genius(B).

X o s o o ' PR |
5UN 14 anpardmagndrataluiaden 2.1.1

2.1.3 GRASP

Wataililaua GRASP (GRound substitution AS example Propositionalization) #u1fludana3iy
~

o a ' A e o P E X 4 ERY ' Y
'Lumsﬁwme%amammmmvasgmmagamﬁrmﬂm mumaamﬂmansmmamwawa;‘{aﬂﬁ
L A] = . o ed o [o o
mwauwuﬁmanumauﬂaagﬂ"lmﬂugﬂwua:\‘J’nmﬁaLﬂmmmﬂunﬂmuummmmsnLﬁaﬂmﬂuum
' ' 4 v e ' | o a ' | o [ol w)
Tadsnnimfsuor e drethiatu Rasoneredraluwded 2.1.1 Bnese ﬁugmlwmn a lu
B ' A [= | [P v = a 4 a4 o
mammm'lwsgaau‘qmﬂﬁmmauwufmanuua:'lwmn a dWaynsswwaginuiean (wie hy Hedl
s, O- Er S 1 Y A L 1}
amauu@aslh parent(h,a). genius(h). mnmamaﬁmaﬂmmﬂaway}a‘lﬁ”maglugﬂ
d v o o . ' [V | o

gwdayasmudsnin:ldiadvintrasddsusadlunisei s (g £1-£6 lugf 6)

o LTl

anTeft 8 Tayavasing a (Aadeft 2.1.1) Weudlaslaglusgwdayammadiun
ety maewdh | 22 | e | sm | 3 | B | s
a A/a, Bl/e 1 0 0 1 1 0
A/a, B/h 1 0 0 1 0 1

= = A U = 4 - Pl C‘ Qs F=3 [3! '
lunsdlusnuin a dvensis (wn e) dnlunsdinaasun a Inafdeados (Wi n) wainlulden
‘e [Fensel et al., 1995] LawplWidnsunumdaussdaovoyasss (ground substitution : GS %39
. - . z o A & 1 5 :: s A 1 G
variable binding) nawwannnsdifludredralmivonsalugudoyammades (laofiadrdratialn
E A o o ' a o ' o o | e o an A o
navuafiRanndaiaduiulddanudeansideiuusciueg) FagumsunuaInizaInsiizosns
Pl a5 e ' ' v mddd v = v ow - o & . v a
a lumsish 8 fadudiedralwizesdy F50Adednesta Jausnfonsuasdayadszinnitinliiiia
t I v o d va o I + = XY b o & o oA o
deyslniiflugudayamnudoriuiafeildmunsoldszunSoufdulidaiulandadaGouiinanu
v oy oW ar | e a4 Y o a e | - ' & A a
wldviud lddasdiuudsdoyadndeansduivnuitousnuiauelidodnindnmsafifiann
[' ' o A as | o am
grogainfonuinnusunssaenuASunidafsunaaud (multi-instance propositionalization)
d o [a e~ o . R ' v o oy
[Kramer et al., 2001] Favhlddesianndrduuntszinndeyalwininue (imsnsaldddouiisau

23

(-] =l L Ve o Ha v oot A =] as we £] d u LY
windesruudouiiulidafulandogudqld) uardefdanaosfioanuduiuiazniroluanadsldann
add ' o A [y « =3
Fnesiianuanysaliduannniy (strong completeness) #15A1A1T197 9 dufafl

4 et 3 A I3
1IN 9 978 FJ‘N’IJENWT]ME(NHT&EL“IJNN"!T!HT]

wipthy | elass | misunnd | £1 | 227 3| £a
El " fgas | 0 0 1
OE12 0 1 0 0

E2 " B2 0 [0 0
Og22 1 0 0 1

E3 + B 0 0 1 1
Besz I 7% [| o

E4 N Bear 0 0] 0
80 1 0 0)

ES _ Oes; 1 0 1 0
Besz I | 0o o

A ' o ' | o %
Wosnnarwrezilunenas p(+[f2) usz p(+[f4) 61 1.0 Tuwamed p(+) drwnle 0.6
& a & - Cvoa ~ = ar '
aziulua class 340uny (depend on) Tua £2 uaz £4 wadufeniosnisurudios lusiatng
= =t -] ' a I’y v P - r , & o4 '
W umeglnissiliduinldinlug class Aunvlua £2 w3a £4 Tualaluandaviundsla
ATUOIU
[3 -3 U = o [l [l I3 - [l A
ptelsfienumniennisunudinng wwnbudedilndarailiifalymsasedis Jymide
N o ' vl = o o (Y - = A f
usnfedruandrednslminldensiiuummarlimbsarudilumsfopudeyammaao i

= v o & aad o v a a :a v A A
Wioswe dlywidefzesfeitiaramimifanrulenaralumaGouldidunsilluanmf 10

P o . a a a! o q . a
@151991 10 nTcleneEy 7 mgmﬂnmmi’iumamalw 10 69

ot | eiase | e | 6L [8 [&5 [£

El & e 1 e T W
E2 s Bea 1 0 0 1
E3 + Bey 0 0 i 1
E4 + Beq 0 0 0 1
ES _ Bgs, 1 0 1 g
E$ _ Dgal 1 0 1 0
E7 - Bg7 0 0 0 1

872 0 - 0 !

Bers 0 0 0 1

Bz24 0 0 0 1

< a v ‘ o 1 a =
PINMTIA 10 amAwlanauianduni ol p(+f4) frurmlid 0.5 luwmesh p(+)
v v 4 ' . P . v o 2 o q we o w4 & ,
dumuld 0.57 Luaamnmmmmﬁ]:mumﬁaamlnammnumnmlﬂm;snugmmmmaa;ﬂdﬂum
= o ' o4 ' » o o a 4o s = o ' P o
class \{udaszdalua £4 ma‘lugnmaammmnlumwl,ﬂuﬁmmamaamwmmamamm (ET) N
s Lol B] A Bt]
TauEITUAI8dILINE08N3 (WIE p(+f4) = 0.8)
w z L L L2 = 0 -l I~ s [l E) g
GRASP witlywinsrasdadrsdulasmsiianmsunusnisaunauvuiualadelwiviiuulas
oY . s
azifaniani: GS Aldh (non-duplicate) wazdinrsunueduwzanga (maximal specific binding -

1 -r-1 bt A’
MSB) Tﬂumﬂmuﬂ'ﬁi"nm:mnqwummm

24

a P ' o - ' e o ar

Agwd 4 (Maunudidimzannga). ek nue o fBanmsunusilag Mmuald f(w) Aoavessnsus

. & - a - ' . v ‘ a | i a

FAyanuaitdusdives © WTHINISUNLAT 8 dasusrzdiagiadn e 0 1HunisunustEane
T | = A = . d A

mnqmnmama‘luu o Failumsuvuaisuess e 9 f(8) c fla) O

™ o a = o ’ 9 Ay P ad -
WATTUWIATTINN 11 URzIINRLIUN 4 ﬁ]:'lm’lmitmummtww:mnagﬂﬂvlwmmnm'mquanirﬁﬂa

a 0 3 1 Fl 1 :' G 1 = a :J
Ben Oeiz Opzy BRT Bpp &HNA Og 4 mﬁumﬂmummLw‘azmnajmmmnu Og;) VTULALINY Ogyz T

¥ o & o ' o o o PR , &
TN By BzBUAIBgIRIARI 0 GRASP SiiRoamsunus Fnsdidssuyinnu

~t A e . ~ ar a o e . ' 2
®19191 11 ﬂimﬂ'lDUWJLQNEBG@]‘?LURUNL]JHFI'JE]U"I\‘ll‘ﬁ&l 8 en

i
fEx
ed

Araty ‘class | nmwwen| £1 | £2)0
El + Be1r
Beiz

B3

9E14
E2 - Ogn
Bz
9523

—lo|lo|—|—~|o|s|—
— ol =] =] =] —~]—
pc = JPn
O |- Qo OO|_w
= IE=1 =1 B =1 = ™

BEZA

A o e eo o A 4 A o A oo dw
Woannszuudsuiinunuudiauinisiiawe lumuddsldmawnudrdumzangaflaig
o . ' N o o o odw ' Y ' o o A A v
Judretrelnd lummiwsguanidvasdregnfldinunusnsusisissudiaufinis 3514
e Y 1 3 o ' £ ;e ' o
mMaunud i wzsngafligsesniedsiug lunahwsdioguiu - adislsfiaumisiiug
v da [T T woa a A e U
Usannvasdeysfdanuduiuidenulaslddti eraddywiiesnnisunudidnwizanngailaan
Py ' . & A o ' Py d e as [- coody o, o= o
nIadatislminmuafeiinndradiadunilidranagnialdegludeinmmianguiidmiisunn
And . " &F | o . .
lagdn@aEmadunsdszimassdeyalwilywiuudduagnu luses (bias) [Mitchel, 1997] vasilym
' a4 o . [B Y v 1Y) ' & w A = '
wanzdymdadnlimdeuiwdu dliendsanslihmanumiadumendsfinnfigavesnisunus
. Aw o, ¥ e a] A e oA w 1 - .
Fuwzingaihigandafudssiamwiangy wiedafulaomsldiFesduunn (majority vote) v
e = 5 a d . ' [e
msunudduwznngefl lddmsnee wiawiomanuhaniiunundivaanmsunudidiniziinga
dw .y E ' v v a ' ' = d dAyu a &4 a A
fllgnmuanenuddesdaiudssinmanndienuheniuaiofld duwiadicindawgagaly
v ez vl v | a o
srupdunuurasnuitaynalidldiwua lutesfimnzsuiulywldes

2.1.4 HANVINATNDY
mmmaaﬂ*ﬁ"qﬂﬁaga (dataset) D9 ﬂ7".';JmmmTum?n'anmuw"ufwadfmaqﬂ {mutagenesis)
. . I Y ar @ T]
[Srinivasan & King, 1999] mLﬂwgcﬂmagauuuﬁmwauwuﬁ'ﬂanumﬂummgmlumsﬂmaau
= woa W o Y
AnuEmUsnedTzuLlaueaR I@lufmugnﬁmaN'{umm@aadiﬂm’mawm'mrymamu‘[maqaimma
a ' ' a w a e a Ao
wazfradeudacdrlsznavlddnguantfdneg vaslusnaniriia afsmanpaasiygmtifans
. P ' ' ' [. ['
walsnnnaestuananllingwuinnawhmaniananaoiug (mutagenic) lanSala
J A L ar A)
lunmaansis i ldfanldszuy PROGOL (119544 CProgol4.2) [Muggleton, 1995] faiilw
pgs I e o . ' o [y o o o 4 . .
ssutlouaafftldsuntsvensunuesaunsrany (Nesfsassnzdauinisuazlflusunss WinMine
. R & o o g e A d a o [' | o ' 3
[Chickering, 2002} JuaiFouihsauudiafsnioudifuacinsieedufinfavastioamiud
e d L tha A . v,
feufinis lwiusanmaiiwiemmearasaTeitlfinadia 3-fold cross-validation uszlddinns

f = o Ve AW s da o L e v
mn:uﬂumLmawaamﬂmumm;m:mnqmﬂ‘lu'nmﬁﬂrgmqmlumsmmstmummmzmnqwn'lu

25

¥ a4 w e w ol a - . v v o
-n'mmumwammuﬂ‘::mn’uagamaamamamumﬂ’lmaﬁmu‘lﬂum'lumaumu'uaammaﬂ 213
o Ao qu e 1 Lo ¥ Ao o o
uanmnum‘sﬂﬂﬂaeuuﬂﬂquﬁm"ry'\m‘mmuamaqummu 10% uwaz 15% 'lu’qmsagauanmmwa
a - e ' o, o o d A
naFaUUIEENTAIWATIUNUNIUA R Y IMIUNINY BT L MIURAEIAuANTY Llesanszuy
vl g o | v . . o e “ o - L X
PROGOL mgrym'lﬂ u&lﬁnﬂmtﬂauumman (option) WNataMINURY AN MIUN UL lwn1manainiad
o e 1 g 1 » A - = @ 1
T9ldassdfudrdfondre g vas PROGOL udrhwadldunuSoufivuiunanmaasininiieau
- a4 w e
WwsduAnits (PROGOL+FOBN luamm4) samsnaassflauaasluansion 12

= © = & v ' s
AN 12 L'Ljﬂ"il'ﬁ%ﬂﬂ'l']“gn(ﬂaﬂ'luﬂfy“'lﬂ’ﬁﬂﬂnﬂ'\ﬂwuq

Teal PROGOL | PROGOL | PROGOL | PROGOL | PROGOL
- 0% noise 5% noise 10% noise 15% noise +FOBN
sgnIm setting setting setting setting
unulu
Tadoyn
0% 84.58 82.99 77.14 77.14 84.34
10% 64.23 65.42 69.72 71.29 78.67
15% 60.56 59.02 61.54 63.31 7433

@ . . . [a ar o o Y P a
x% noise setting” wapfimsdiudafenld PROGOL dsuszuuiRaeuingianansod

o L d ¥ A [R s e]
wymunuld x% wduldhde Widygnasumumalugedeys wamsihousestswud

v

d 4 a a w“ a ' a ' o v A o
vinits sz insawlndlfineiu PROGOL um'nmn'wn‘mwuawwmmtuémmuwum'lwqﬂ

2.

Al
w A el o -) | [L A J
FoyanfiFyyruruniulianugndasuinndy PROGOL lunantdhduathenn anugndasfigani
A’A -3 173 -3] Qr o et “ L 1 L =
uma’:mﬁ:ﬁummﬂmnmmqhmuaa-:ﬂs:n‘n‘ﬁa (1) anwaddgflaan MCAFEE finldinada
. a a f P “ ' A
msassundwtasnglusziniawedrsnn lew Kijsirikul et al. [2001] ldusasinludlgnind
r I3 e A [l L] 1 + L
dygrasunsuasdgmimssuundsaandeyafuiwlylélisinnitasslszian (multiclass) @
a . & o G T o P | a A ' ' a
dnwnizirnginsfifiosdrie (laplddndudedlfinefieduRudugu aruidinziduniadionu
i L] - * L A A L
Unzamifinn) sansnlduanugndasnnniimslsasnziauiniieseg uaz (2) msldngul
v & [N y v v w~ . ' a A . [
anuiindurashsimudiauiinis $roldmslfnusnenzadyianuienguandsiuils

. v Ao vl
7!]']LLHHﬂT:Lﬂﬂ'ﬂﬂﬂﬂﬂuﬁmqumfﬂﬂqu‘iﬂﬂ

a " oo 0w oA 4
2.2 HITDABALITINATINZANALNVIHY

& ' & a - e a o o v ow . o . w

mam'lumum:aﬁmummﬂnmmnLumm‘nmﬂi:qnwmnumﬂﬂmn‘mﬂﬁn:vmqﬂuﬂﬂm'ﬂn
[[NV | . - . v P '

munsnivdunalugdunuresassnzduauimianiinisifouldlavass Wdadldsuvlousafianday
-] "~ o A a ; Bt “ L b e ﬂé 1 1] -

TumaFoud FEnsimiianaflaansndanmsnudediasassruulousafin linumudadygrmsuniu
vaa & v d . & o aa o e d ¥ oa & as [V VI |
Taatiruuaslvnafiududinniu lasFuniTnanauwauiiin fsesdiaifnastnzduduiinii

[a " om e o oo oA N I3
(First-Order Neural Networks: FONNs) mm’%’uuzmaau‘aiamum’ﬁnmﬁn:awm‘(mmumaamﬁu
Il [L - .3 gt s A “ L3 r=3 - =
dug fie miafulasnsfiesihrealaiinarnzduduinits misfoduwazesiiveadiaisn
[T ™ A A L 1 et [[] . .
arnzgudufniblasndnnisSuufuuunaraiiedwdes (Multiple-instance Leaming: MIL) [Chevaleyre
Ber 1 by L a - s R A J L 1
& Zucker, 2001; Huang et al., 2003] uaznisUsumtininassiiisesidadinduauinilensasnan

aeluil

26

4 w a oo
2.2.1 TassgSvasiirveaiaisnasyneduauivi

| S a o v ae oA 4 & [o a & o — O
Wiesnnibrasidaiinasanssuauintanuduszoumadouwinndawinandaseadiaidn dimu
e b2 = J o = = ¥ Ao O b 1 o Fy Q.
mlassefuiuzidugunnnlasainvesiseadadin wilszyndlisuisthaussanuininaslu
[v a a w we oA 4 ' =
suvvasaTin:lel (Garcez et al, 2002] loasseFrsvasfiisandaiindudufinilaazudseaniiv 3 u
. a & v £, & % . E4 a
fufu A Tl (input layer) Tusaw (hidden layer) UBTTUNRAWD (output layer) lundszguniazi
v od e &
anunsnsurzwii fnsda U
- v oo £ o = o o o o = v Loy, v ¢
1) Fuwasws iluduhurasfsnwfiefdasmsliszuumnmioud lapsultesdmiawiradng
. a e a b o & e g a & A . a
gavinppeanilaiin Suuibreulutunasniiziusgiudmuuwferiomuaidainiaiow
&, o & od A ' . & a & a 0 o P
2y tudau iusuiiFandassninrialidusstunsdng groRunnuaunsalunisiduungd
ol L L L2 -1 g: JD I} Rt L o A L3
fiarududould Swudseuluruidnizimualasgainenududousiumifaiaans
Foug
k4 ™ o £ d 8w I3) "] N v e [A a
3) swind duruiusasfefywail (predicate) snggRazhanlfilluarunuvasngriauuife
- = & Y 5 P a0 o o g
Tumsdou TasanduguusniumsSudayadouniazdmldvgude 9l druruiasouluzud
A P g a a oA
sriusgnuiwudgwaiinanuininds

au ' y = o d aa o o e e =
A88ITU TTTHULUIAAYEY poor (x) muam&‘mwlﬂumﬂmmﬂumgm 15

7U 15 GunadnTumsiSuuuulfia poor (x)

Swgﬂﬁ'l.ﬁ%'uﬂs:nauvl,ﬂﬁwé"aathemn 167 88 poor (John) @9 John luewiAvaniiu
{lazy (John))unzWuiiley (extravagant (Jobn)) H@10teay 2 61 fa poor (Peter) Wz
poor (Bob) lauf peter \Junwfoaniau (lazy (Peter)) wazliufiouss (weak (Peter))
Bob (Huauduilen (extravagant (Bob)) uazliudauss (weak (Bob)) Suvgs:ﬁ"i@?%’uﬁﬁwmu
é’rywmﬁﬁﬂﬂng'lummjgﬁ%é’aag 3 MA0AN fla lazy(x), extravagant{x) U8z weak (x)
@Tnfu?wﬁu’uml,{m:ﬁag; 3 daau ieunudnwozns 3 Fywniuu dudwuiasoulusunadniazi
Wipa 1 fasauiiiu Basnnngiidesmadouiiios 1 nguhiu 88 poor (x) Fsugmsluzulil 16

Iaxy(x) extravagant(x) weal(x)
U 16 anwazlasvewondadinlavimualdlurugond 1 fisou

u

27

= o, = o a A d‘ . = A 1) L)
2.2.2 BunmzasihiraaiaiifnasinzsuduinihlasudnmsSouwiuuunaindiethaden
a a Y -]
Buwavasihseauiaiinouduiini
lapunfuiidunavasiiseniaifnazeyluzyresiiniuads uddhdunavesszuvleveaitvzagiugy
w o . a ' o ¥ o2 . d a P & e =
19303302 (ANUFIndsusciaingg asuddanyisubunainbudnynzassesmsluiiudunan
o o & ae oA) a o . i a a
mmsm‘suuﬁl&v’”[muu’naaLumnsmaunau msiddsuazyinfaz 1 Mats sz 1 daseu lagdatha 1
[y = v ' Ad e a P % e ar < a2 a » . dd
dazgnidasuldiduen 1 iRaidudunavesiiiseu dunudrdrudsludywaidszdriseududnani
Uningludataudaiidaruedaduaisluanuiniings wddlddweslunnufplindafazimuals
- - al o &) A] a B 4 - A A A S]
Bunazesisaulandu 0 @stnagu anmadidunaluguf 15 iWaultoudiatn poor (Jonn)
Tdudunadeisnazlddrdunanasinzeu lazy (x), extravagant (x) uaz weak (x) 1w 1,
P = E [a ' ~ . 4 < ' =
1 uaz 0 Museu Wassndounuaiuds x lurgwaivssudscfiaisendin gohn Saludrnofivas
a8 poor (John) WA ‘ﬂ:‘l@‘ﬂ‘ﬂu lazy{John), extravagant (John) Wi weak{John)
14 = = L -1 B LI =Y =3 [
B9 lazy{Jonn) WAL extravagant (John) sWuss lumwggmaﬁolﬂmauvgmmmmmﬂu1
A "= a [v e o o A v
lusnue?t weak (John) lidusisluarufniings Jefidudu o dmiudraene poor (Peter) uaz
poor (Bob) a:'lﬁmﬁmgmmﬁusdmﬂu 1,0,1 uaz 0,1,1 a1xdau
' o 4 a Av e - ~ o o A a o o
st lshimuitzennuuwrdaflasnszuvlswasiionniinsefedrudslwddulugynadllannd
£ . ' ' o ar A e &4, v a o o ed d .
vusuuliymingeglugwiiveing sudslminafidutudaianlfeiuinaneduiuiniyides
a ' ar " ' o
(relation} nummuma:mywaﬁ DUNITY poor (x) € parentl{y,x), poorly), lazy(x) o3
W I3 Y P = = a Y Y =
RUWHIINIIDT v Lﬁuﬂﬂnmawaa x lapf v iduauaw uss x 1usmmfoendiu udy x azifuauau
P oA & o v o = d d o .:I . . a
lungiifimsaiedauds y - Buwuieldatursfyanadudsldlsyasafivsngagludiuwinvesny
.o @ a4 ar e ar ' . o
(poor(x)) Wwulfaywad parent (v, x) udnTouarudunusain x 1ds y uddinsasem
& . a & B . o . o o a e & o [
wstulwiludnuns oz ldmssunadmuivihewiadymensluuiveudu tiu danuind

o a P a =) 4 4
AERILATAT aﬂqﬁﬂmliﬁuqﬁaﬂHmLﬂuﬂdzﬂ'ﬂ 17

¥_oa

P a 2 a e ¢
Elh’l 17 amgﬂmwuamuwau parent (x,vy) 1“‘?]'3"11]31’\““30

u

'lun‘scﬁﬁﬁmaa%”msaotﬁmr"i*Ena:ﬁm'l;J'ﬁ'u%aumn%’mi‘iaqmnlummjﬁﬁﬁé’aﬁa“f'muwa]ﬁ
parent (x,y) taidhin Lmztﬁaamné'tymﬁﬁﬁaw%ﬁdmum'2 FuRs T waarsni ladneniinuud
2 dritansinmsdumisadnels Selevnnisadafiisaud wundwiuna 2 n3dl fa parent (x,yv)
URs parent (y, x) Alwimniseulutulidrfistuin 2 favau Swmisenrswualugusiiian

[- Qs A
Fuiilu 5 fasau dagfi 18

28

lazy{X} extravagant{x) wea (] parveni{x.¥} pareniy.x}

e ar 4 4 a & " af P
Eﬂ" 18 LUALITNYILNNUITOU parent (X, ¥) WRZ parent (y, x) mummmum‘ﬁnhgﬂn 16

witiruiiudwanidaauyslna agan MldldymilunisiwuadSunaldruiiasan isu
#128279 poor (John) Lﬁa%:ﬁmummﬁumlﬁ’ﬁuﬁwau parent {y,x) fezunufieauls x &
#1097 John dmaauds y asllinsivuadiuiaindaetiine i limannszylddidaunudauys
y saufineiila ua:mﬂmuﬂ"'nzJﬂ'1mﬁl.wia:t,l,umfuﬁa:'lﬁ'ﬁnﬁuqmmaaﬁ’nauwnﬁwﬁ'uﬁaLtam'lu
@797 13 funTiied parent (x, y) WiRalymifissnnidsunumiaants x @ John udaliid
AUl v dedineile Alidusdaluarudniings vildd8unavasiiseu parent (x, y)
lu 0 lunnnzdl

4 v a P o . . d .
ﬁ-‘ﬂ\iﬁ 13 ﬂ’]au"!ﬂ'ﬂﬂﬁu:ﬁau parent (y, x} Waunuaiuls Y AHARIVIANT G

parent (y,x) AduNATDIRITON
LN x @78 John Unw y @8 John 0
UN x @28 John UNu y @18 Peter 1
UMM % A28 John UNU vy §78 Bob 0

innv'hazj'm-u"mm’uuam‘lﬁtﬁu’hmsﬁ’mumm‘5wqﬂ'ln"ﬁ'uﬁwaulumrﬁﬁﬁ’tywaﬁﬂi:ﬁwﬁwamfu
Sl fusnsemudniusivagraiiu Tasdudniuliunngegludmmavaingds luuensd
sl mansarimuasifuineuldduiasenld Wassnlinmuiarsunusn ldiuaudsfugas
aruduiuiiodila SaldhndnniszesmsFouiuvumaiudiadnstan (Muttiple-Instance Leaming:
MIL) [Chevaleyre & Zucker, 2001; Huang et al., 2003) ;mh:qnﬁtﬁ'ammsaﬁa‘éuvgmlﬁﬁuﬁwaa

& ar & v d ' [&
Luﬂn*mauﬂummma:nmﬂuwwaﬂavlﬂu

Hé’nm‘n?uujuuuwmm’vazhaziaﬂ

Tuiligiumadouiznrroudsldidu 3 yszianlug gdaoiu fie nsidoufunuseu (supervised
learning) m‘iﬁﬂufuuu‘hi HOW (Unsupervised learning) WA TITUUULLLETNAIINUNS (reinforcement
. ‘4 O omv . P a T | o - v a wda &
leamning) ka1 luusdgwikufliiasnfiazdouldednddeiniawdioniniouinfegn 3
& o ' ar a o A o a a ' . '
Urzinnis dratvesdigmiluansazizidnyucAianunguiaioss (ambiguous example) lai
w1) et 1 5 - 1 o 1 o 1)] -~ 1 z
gusassy lddudazdretradmiudaotrininuisdletiaay venldudseilungudaenouud
ol " 1 1 = Qe [} '] g ') d - hd b b ;
dathaunagwiell nmafaufuuunmoiodndesldgnibianafasianlduiifymludnemci
a r [} 1 = L] el v 8 A
msﬁuuguuunmumauwuaU'-J:umnmau1a'lun’1ilsuu31ﬂuqa (bag) {By, Bs, ..., B,} lasfi n
. . % - ' f a ol
\Dudwrvaaans udazgs (By) sxuszneulddiadiatnigan (nstance) m; 67 (By, Ba, ... B} 10

29

4 s v o ' - oA Y oy 3 v ' Y A
panike g szgnrimualidugedredrauan (positive bag) fidailialuginuiifeinadavagraian 1 699
| v [s v & o A e ' ' o & o e .
Whuwan uszerimualiifugedaadrsay (negative bag) fisiasiladnatnatavynenlugauuiiudaoting

8 A e 1 '] ot 3 ' Ll [] Ao =
suvswae laafgedragrauinazimualifiduihmuny (abel) du 1 drugedsetnaavazdauiu o

. o - o w ' ' | a . o a v & Al

manhwanmIdoufusunauiedwbesinlfiReudasiadi luiuiunaliivifiaddn Ta

wlifeduun 1 42 unudasgedetiann 1 g9 uazuinudoineay 1 aasrunediadiey 1 99 (u
o g a o v | = a . ¥
nmrgfidumaiisumaduuuusmedssinnaziaimngadugediadravinvealsianiug) lugeas
b e 1 [A 1 et 1 g | » A 1 1 1 Gt L

densvlddrudetbsadandazannmnmamudriaulsmadinsfudasuuy adraguandlagie
a A a - e ' &
SuamuzUn 3 lumTFuuumidiaves poor (x) figediadiuanmonna 2 g9 fa poor (John)
usz poor (Peter) QINIBLNAL 1§ AiD poor (Bob) uarluudazgeszusznavlddinarsd ey
& -~ , v 3 “ o ' o
NIRUA 3 A7 NMTUNUAIGILYT v 62067 John, Peter Uaz Bob AILAAINI8DNIIMaTTIIN 14

J o [- A £ o - .~ L A é
A1 TN 14 N1TUURIA28H19989 poor (John) "lﬂl.ﬂuauvgm'lnnumiammn{nauﬂuwm

096179819 ¥BJ poor (John) | lezy(x) | extravagant(x) | weak(x) | parent(x,y) | parent(yx)

UMW x @98 John W% y | .1 0 0 0 0

#1 John

WU x 678 John WNM y 1 0 0 0 1

#7l Peter

Nk x @3 John WNU y 1 0 0 0 0
m"'zu Bob

r a o v a o a o a
nnuuishndetnldladuwiunaldruiiaidinuasiinsSouilassanaifuudawsan-
it (Backpropagation Algorithm) &L sduuiuumanadiatitan [Wattuya et al., 2003; Zhou &
Zhang, 2002]

2.2.3 midSudmiminussiiiraaniaifnsusuinis
mﬂ'%'uufmaaﬁ'naﬂLfmt"‘ﬁn*»futﬂunwﬂ%’udn‘fwﬁnmaaLﬁ’m%au'l.v?mmmﬁ'umnﬁ*:au'w"lﬂ“aﬂw
godiny s EuE su s st AU U ou LaETER I TUS AU LT RHAANT
msUSusmiminesimAnaTueIudnNIIW AT [Wattuya et al., 2003; Zhou & Zhang, 2002] 3114
vmé’nn'ﬁ'umuﬂnmaw*nLn-ﬁ‘mﬂumiﬂ%“umemﬁnTﬂuﬁqmjmm szl nufanaiemaniisnioy
ﬁqﬂ ArnufensaTI (Global Error: E) ftnusail

E= Zn: E, (27)
i=1

o &1 - e . oA = &) o ar . & a
Iﬂﬂﬂ Ej “.Iuﬂp]ﬂ'l'u..lNﬂwn’]ﬂmaﬁqaﬂqaﬂ‘]ﬂuﬂﬂ:qﬂ ']NumNTﬂU'UuBgﬂUﬂ‘S’:LnWquaﬂﬂ AU9UUE) fD

Q
min » E. .
= 151""*'; i B=+ 28)
' 2 if B;=—

30

' - A 1] [=] o J
LACATATINNAWRIATDINTIDL N HDH WD TINAIU

0 if (B, =+) and (0.5<0,).1, =1
ik 10 if (B, =—) and (o, <0.5), for all k (29)
3 (ljk - O,jk)2 otherwise

- = 1 Y a & e o 1] . -~ 1 .

We Ey wingfsianuiewaayasidisaulusunaawiaaf k vasdaedhagon j lugedaata i
B; = + vy uedetheuan

B;

P v 5 - & v o oo o . ' . a ' .

o Witlannaviua st TouTUNAIWERIA k vavdratnidan j lugedaeting i

- nanwily gadaataRy

=t 1 a & w oo d o 1 .
Li wangda ddmangasihiTousuneawsain k apageadntei i

= f . ' = v & af A o [' . t+
lunaSouudassoy mamaﬂ'l'ﬂunwaaua:gnﬂau'lﬁnumm'ﬁnm:qam:mamway AU
amhmamunmdanuianaiasesudazdiatudaslugonug ewaunts (20) Aedudadindruun
At 1 b - 3 = u L] - - o s 0 [: 1 :{
mama'lﬂgnmamm nezirua v uianatadniua st b ausiuliantiu 0 laglunsdings
[[A v R L3 a € = ar N . B [N al LT = 3 s
datefdeuldiudaiinidugedretuinuaznuihddradugesnliaianufianatedu o
I ' N A A e & u v & a8 . a SR ¢ T | A
aaedanfnde ldududasilonldnuiaiinuss lidasvinmsdiudnihminidusaula g inmete
1] - 1] 1] b z = 1 A 9 L Bt 1 -3 I w -~ L VW &5 A
'nmamwaumumﬂumamaﬂm'lwqamamatﬂumnLLa:tﬁm'J%'nmLmn'lﬂgﬂﬂaaum wAt e
. a _ . n O N I . .
wunAanatafiszvimanidianuiensadmivaiatiwdasuu et ldwdanuianainuasns
o . A & 4 e . . w & . a P
f1pE9mURNNITA (28) a’muumaﬂaummﬂnmamauau'luqaLLmna:mmmwuﬂwmmaoqq‘n‘lﬂ
. v .y w v o s o . . ar ' Y
lihmsdiudnihwineeddudeuaaitussuinnsawiundu udr3vimsdaugedaadnelnaidly
. . o = o o » - .
wazhaudeurueawdn lnsesnganssoumsidouiiliosanufianaasnluvaums (27) fisnaaas
A . o Y N AW v +
auﬁagmnmmﬂ'h‘.ﬁal?ﬂugwﬂmmmmauﬂ‘lﬂmnuﬂ‘h

2.2.4 NMTMARDILAZHANITNARDY

Tummasassnihgadoya (Dataset) M3nszh W lusiafuud (Finite Element Mesh Design: FEM)
[Dolsak & Muggleton, 1992] UazAnuEwITaluMIAaNAEWUTTEIlNIANS (Mutagenesis: MUTA) anld
Fmmanas Jym FEM Hagemnailaningflilunsiianziinludiofuudlulasadsdmiy
nundmdaanssy Inguanuindnindudnsucdns queslassaiioazysznoudindszinnues
#1989 12 Ysmmdaoniu lagazutalssinmanaswanesfysznau (Element) Ainanzauaslaseain
et fodudszargninatluzluyy mesh (Edge, Element) o BEdge daBalaseatioun:
Element #a 3nunasdsznaumululasiafiodu sudwaniataranaa 278 sathe ERN)
Taya MUTA wilauduluiTefud lunrmasaaiuld$3 3-fold cross validation lasurdaya

- = ' ' [» b4 A ' & . o
ranunganidu 3 dauri giu viimnmasesriinus 3 a3 luwdszasezifendunivlag (Huya
1] A) L]
nagauuazduiie 2 Huacldifugasen
4 & . g a¢ 4d9 v A ™ o, W & a
lugadaya FEM unlasssiuzaaiadinilfaziidiuuiisenlurulbidimnun 130 daveu
» v oa w dY wve ~ a X o = » - '
mmﬂmnm‘mmwmw’lmumm frvoulusunaans 12 veu fwuaanUszinnvaddlnd e uaz
. Frd & i) ¥ L L] ar
Vhuwawiiiseulutudon 80 frsan@Einmmaned) fiendanmaiFouiidu 0.0001 uazan luuaNw

£ A 13 o 1 - . 1
0.97 Imﬂnszmumﬂ%uuga:uqmuamu 6000 TaunIadaufawaraTiuladeynda 0.05 daulu

31

A t4 -~ e AN v s P L . ¥ o a
nTiies MUTA uu lassadezsntia s fnilds:dimmiinsaulusuindvimun 235 fiasau Sasouln
& L5 a Wy a &, a a . s = v &

FUNRANT 1 Trvau uasldsruiuiisonlududau 100 finseu fwuasmdannissuuiiu 0.0001 usz
dnluuuauiiy 0.97

J .3 A gl L
A1TI97 15 Natﬂ‘%’umﬁumﬂa{wuw’mmgnmao'lum‘mﬂaaunuqﬂmaa‘\;a FEM

Tavaya | PROGOL FOLNN
FEM 57.80 58.18
MUTA 84.58 88.27

- 2 P ' a '

A19199 15 WRAIHAMTNAADIN 1A Iun15iSouiRuuTznine FOLNN fu PROGOL dztdiutn
a o a ws od [y o L3 .
FOLNN mnsaifuuundfianngadayaassnzduauninitolduszliivafiiudanugndadlumsdiuun
§ani PROGOL
J L r v g L A [- > F{

uanyinfudundeldvinimesssivdeyadayyrasuniu lasldgadays Muta Aldlums

o . R ' v . . a oo f '
nasaaniud Wi 3 druuduien 3-old cross validation) swhmaidndygnasuniuaslilagogs
» o -~ | a . o - , & ial
MU 10% uaz 15% filszinnaasiiadie maududyginsuniwazyinonizgadayatiniitiu il
madudygruTunusdlugatoyanasey MafudygnIunIw x% agngunanoanui ludra

s ol » 1] gt A - 4 1} Sl A [8 -~ -
100 srezfidratniay x MAgmlenuiadgy ussvinlififresdszinnuesfandnavuy Aaldamnidy

o
NANTNASBILERILUATTIN 16

] o 1% [v gy
@179 16 mawTouifsuulefifudanugndsdlummasaunugadoys MUTA Alidganmsuniu

ERURYII™ PROGOL PROGOL PROGOL
sunwluzsadous 0% noise 10% noise 15% noise FOLNN
wRIEY setting setting setting
10% 64.23 69.72 71.29 84.01
15% 60.56 61.54 65.31 81.28

T 16 uam'lﬁLﬁu:i’ﬂunm’iﬁ'qﬂﬁa;‘J‘aﬁﬁmutyﬂmmmutﬂuéwmu 10% J2uu PROGOL 9zl
ﬁﬁﬂawugnﬁaegaﬁqmﬂu 71.29% uURzszuy FOLNN Wdaugndaaiu 84.01% wazlunsdifiiy
Wnadggrasunamdudwan 15% ssuu PROGOL azlﬁdﬂﬂuwugnﬁaqaﬁqmﬂu 65.31% U8IsUL
FOLNN T¥snannugndnaiiiu 81.28% Tasvissasnadiazuy PROGOL lﬁmﬂﬂugnﬁaagaﬁqwﬁaﬂ%’u
smssufladyanusunindiu 15% leslunsdifddyanmmunis 10% fsduanudoiugenii 99.0%

add a A 4L '
uaslunsdfflFygoaunIu 15% Ssrduanuiiaiuginii 99.5%

2.3 snlmRsnmsfulpledninmaaslausafilinunmdedygnsunin

ﬁ'q'ﬁ‘aﬁ"lﬁ‘mmumhuawutuﬁﬁwﬁuﬁ“ﬁaLm:ﬁﬁamﬁmLﬁ%ﬂﬂ?in:ﬁwﬁuﬁ%ﬁuﬁaﬂ%‘uﬂ*gaﬂ‘s:?m%mw
vosloueailliiinnaumuniudadggrosuncun msdsufienwudiduinioilasmsdszyndld
ﬁ:uu‘laLLaaﬁT"JaJﬁ‘m:um‘s'uuj'ﬂwnﬂmué‘uuuw&«ﬁu nantsnasatuand i i windsmindaned
UsAntnwdndrszuylousaflasldamugndasgeniuasnuniudedygrosuniuldinitszuy
Tausafinnay uanmmfum'lﬁ’mtauaﬁ'ﬁamﬁmﬁ%nu.tuulv.ajﬁﬂi:qnGTL'LTWﬁ'uumﬁwamﬁﬁ'uufrﬁa
assnzdonidroniladnsusudnils (aduuamenitslunniandisdamstodediiaeans

32

a - o a ® af & w d 4 gw aed v oo
Tﬂ'a‘LLﬂ‘:‘Nﬂﬁﬂ:L'ﬂdqﬂuu Iﬂ Uﬂu??aaluﬂl??ﬂauﬂuﬂ“ui“'ﬂaﬂﬂﬁ']”']‘fﬂfuﬂ“wﬂluzﬂ WHUTBIATING

v owod d PR a g ag A L w et o e v
auﬂuﬂ“uﬂimﬂﬂﬂ?ﬂ“ﬂ:uﬂaﬂmﬂduﬂ?ﬂﬂLuﬂquﬂ'ﬁﬁﬂuﬂqu@a'ﬂaNﬂﬂNamfy']m‘iUﬂju‘lﬂﬂﬂnﬂ'}U

U v

- =t [l o a a o a & af b o o e - "
2.4 ﬂ17l1‘1ﬂutﬂﬂuﬂ']ﬂﬂ"“luﬂ AAUNAUY WITEAIUALIINATINZAIAUNTHRWIALIDElaNuuy

natungal

Aoy o & d d a = af o v od 4 e dA = '

mawnFsufiouisrwudiduinis SeadledinamniauinieiuasiiBuwuunaongy
v a ¢ o ad & asx o . & [o = ¢ & oA o o oa A
lddsiife erdiefieduduiinsfiribiausludmivieadidauuunaonguuuiidadvesiidud

Y we o PR a . w s LY
nunudeRyanmTunInlaansivtoyadiduay uazemmsitnilwamasaduundayanate
) kol 1 a - (= o - A d o G B A:Id-
nguldadrmaiifiveininmivhliaansmb lildnulimsy fisudymindsmaudszaninng
~ 1 A |z = L = b L= L4 ol 1 4
ldadned windymifimaulseguuiudsyadsariafozmunziumslsarfiefied dudoomud
[P nl o = o A g W - A g o e v _ o o - W - e e
frauimibuaziiesiaiindauimibiideinisnnmniuanuiplindtlduasminsiudoyaaduiug
o s v d 4 4 ' YR & e o - - w
furaslugiarenzdrdufinied Wmaedudeymdadaan windymifinawlesguu mBanuiugiu
F [& . ' o & v a LM w « oA 4
Weatudywiiueguaznamsaldanuiiuluglamaindndslaud danuudidufinitouas
a ae o wod d ag a da 4 & agdd oy vt “ ' & '
frseailadindduniafidunaiendd assamasdiFlinldiilvlanndanguununi

z - 3 - 1 B bl ey bt g » L

wuvlausafiauduiinumudesygnsunwldduszmanmiansiudayanasngulddy

3. aylawivy
aw o " o » a a o o a4 ™ . .
lwrddsiinldhimeiinsimiy (1) Wudpesidudedanmsiviygmdeyanatungy ua: (2)
. . ar . PR . -~ 1 , &
vl lawesfmusonunudeteyadidygrasunie dmivimsdmivesi@uuuunatenguiinn
[y d a a A i A ¥ a 1 - & - o .
1dlnausarsiafiaIdidvssinsnmdnindtnsandundagiuidlsatuniludinauiiluvmsieg
Y q
L > A d &= A ld L] L] L

wazATINgnAssBamTiuwnUssiandays Suflunaunnlasaannwuuylndfimbiawe sy
nslfdszansnmlastom i lumsivgiesiiBuuuusaonga dwmiumeaililesosiianunumuda
-~ “: LR [} s - A 1] el vl
FygimsunIui im elsteduesthsruufuasihseaiaiinnllanunumudedg i asuninldd

] L4 L3 e Qe - - a - A a G A A L 0 o » 1
agumﬂwwmu'lmawunumm;]aL'Asaauwv.fﬂuamlu;ﬂmﬁn:mﬂumuﬂﬂ uazih i teangwud
o - & . e wod d 4 a A a a0 oA v oA
gaunnituasfrasiaifnasnzdrauinihdduninsnwdniszulawsafaady

TIHNITENEY

Bartlett, P. L. and Shawe-Taylor, J. (1999) Generalization performance of support vector machines and
other pattern classifiers. Advances in Kernel Methods - Support Vector Learning, Schoelkopf, B.,
Burges, C. J. and Smola, A. J. (eds), pp. 43-54. MIT Press.

Blake, C., Keogh, E. and Merz, C. (1998) UCI repository of machine learning databases. Department
of Information and Computer Science, University of California, [rvine. [Online]. Available:

http:/fiwww.ics.uci.edu/~miearn/MLRepository.html

Botta, M., Giordana, A., Saitta, L. and Sebag, M. (2000} Relational learning: Hard problems and phase
transition. Selected papers from AIIA'99, Springer-Veriag.

Chevaleyre, Y. and Zucker, J. D. (2001) A framework for learning rules from multiple instance data.

The 12th European Conference on Machine Leaming, Freiburg, Germany.

33

Chickering, D. M. (1996) Leaming Bayesian networks is NP-complete. In D. Fisher and H. J. Lenz,

editors, Learning from Data: Artificial Infelligence and Statistics V.
Chickering, D. M. (2002) The WinMine toolkit. Technical Report MSR-TR-2002-103, Microsoft.

Cook, W. and Rohe, A, (1997) Computing minimum-weight perfect matchings. Technical Report 97863,

Forschungsinstitut fir Diskrete Mathematik, Universitat Bonn.
Dietterich,T.G. (1997) Machine learning research: four current directions, Al Magazine, 4, 97-136.

Dolsak, B. and Muggleton, $. (1992) The application of inductive logic programming to finite element

mesh design. In Inductive Logic Programming, S. Muggleton, Ed.: Academic Press, pp. 453--472,

Fensel, D., Zickwolff, M. and Weise, M. (1995) Are substitutions the better examples? In L. De Raedt,

editor, The proceedings of the 5™ Internationat Workshop on Inductive Logic Programming.

Friedman, J. H. (1996) Ancther approach to Polychotomous classification. Technical report,

Department of Statistics, Stanford University.

Garcez, A. S, Broda, K. B. and Gabbay, D. M. (2002) Neural-Symbolic Learning Systems: Springer-
Verlag.

Getoor, L., Friedman, N., Koller, D. and Pfeffer, A. (2001) Leaming probabilistic relational modaels.

Relational Data Mining, S. Dzeroski and N. Lavrac, editors.

Hsu, C. W. and Lin, C. J. (2002) A comparison of methods for multiclass support vector machines.

IEEE Trans.on Neural Networks, Vol. 13, pp. 415-425.

Huang, X., Chen, S. C. and Shyu, M. L. {2003) An open multiple instance learning framework and its
application in drug activity prediction problems. The Proceedings of the Third IEEE Symposium on
Biolnformatics and BioEngineering (BIBE'03), Bethesda, Maryland.

Kersting, K. and De Raedt, L. (2000) Basic principles of learning Bayesian logic programs. Technical

Report No. 174, Institute for Computer Science, University of Freiburg, Germany.

Kijsirikul, B., Boonsirisumpun, N. and Limpiyakorn, Y. (2004) Multiclass support vector machines using
balanced dichotomization. The 8" Pacific Rim International Conference on Arlificial inteffigence
{PRICAI-2004).

Kijsirikul, B., Sinthupinyo, 3. and Chongkasemwongse, K. (2001) Approximate match of rules using

backpropagation neural networks. Machine Learning, 44(3), 273-299.

Kramer, S., Lavrac, N. and Flach, P. (2001) Propositionalization approaches to relational data mining,

in: Dzeroski S., Lavrac N, editors, Relational Data Mining.

Lavrac, N. and Dzeroski, 5. (1994) Inductive Logic Programming: Techniques and Applications. Ellis

Horwood, New York.
Mitchell, T. (1897) Machine Learning, McGraw-Hill. New York.
Muggleton, 8. {1991). Inductive logic programming, New Generation Computing, 8(4), 295-318.

Muggleton, S. {1995). Inverse entailment and PROGOL. New Generafion Computing, 13, 245-286.

34

Pearl, J. (1881} Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann,
2nd edition.

Pearl, J. (2001) Causalify. Addison Wesley.

Platt, J., Cristianini, N. and Shawe-Taylor, J. (1999) Large margin DAGs for multiclass classification.

Advances in Neural Information Processing Systems, MIT Press, Vol. 12, pp. 547-553.

Srinivasan, A. and King, R. D. (1999) Feature construction with inductive logic programming: A study of
quantitative predictions of biological activity aided by structural attributes. Data Mining and

Knowledge Discovery, 3(1):37-57.
Vapnik, V. (1998) Statistical Learning Theory. Wiley.

Wattuya, P, Rungsawang, A. and Kijsirikui, B. (2003) Multiple-instance neural network with strong
boundary criteria. The 7th National Computer Science and Engineering Conference, Chonburi,

Thailand.

Zhou, Z. H. and Zhang, M. L. (2002) Neural network for multi-instance learning. Proceedings of the

International Conference on Intelligent Information Technology, Beijing, China.

I, wafi @ nlasenns

Iwidsiafnlw s AT msssiuwIwsné

1. Thimaporn Phetkaew, Wanchai Rivepiboen and Boonserm Kijsirikul, “Reordering adaptive directed
acyclic graphs for multiclass support vector machine”, Joumal of Advanced Computational
intelligence and intelligent informatics, Vol. 7, No. 3, October 2003,

2. Boonserm Kijsirku! and Thanupol Lerdlumnouchai, “First-order logical neural network”,
International Journal of Hybrid Intelligent Systems, Vol. 2, No. 4, December, 2005.

3. Boonserm Kijsirikul and Thimaporn Phetkaew, “Adaptive directed acyclic graphs: Algorithms for

multiclass support vector machines”, Joumal of Machine Learning Research, 2006 (submitted).

n‘mi"nemauao'm'lun'rsﬂs:qu“‘rmn'n

4. Thimapom Phetkaew, Boonserm Kijsirikul and Wanchai Rivepiboon, “Multiclass classification of
support vector machines by reordering adaptive directed acyclic graph”, Proceedings of SANKEN
international Workshop on Infelligent Systerns, December 17, ICHO KAIKAN, Osaka University,
Japan. 2003.

5. Thimapomn Phetkaew, Wanchai Rivepiboon and Beoonserm Kijsirikul, “Learning multiclass support
vector machines by reordering adaptive directed acyclic graph”, The 7th National Computer
Science and Engineering Confersnce (NCSEC 2003), Cholburi, Thailand, 2003. October 28-30,
2003.

6. Thanupol Lerdlumnouchai and Boonserm Kijsirikul, “A new framework for learning first-order

representation”, Proceedings Of the 7th Annual National Symposium on Computational Science and

35

Enginesring (ANSCSE'04), Suranaree University of Technology, Nakhon Rachasima, July 21-23,
2004.

7. Boonserm Kijsirikul, Narong Boonsirisumpun and Yachai Limpiyakorn. “Multiclass support vector
machines using balanced dichotomization", The 8" Pacific Rim International Conference on
Artificial Inteiligence (PRICAI-2004), August 9-13, 2004,

8. Thanupol Lerdlumnouchai and Boonserm Kijsiriku!, “First-order logic neural networks®, The Fourth
international Conference on Hybrid Intelligent Systems (HIS04), Japan, December 5-8, 2004.

9. FpanT dnaWandd ua: ygiedy Aedine, ‘madoufiiaiinudidufinie, madseminme
nonmineniunefussdminssmaniaine iy asaf 7, 7813, 28-30 gAY 25486

10. SUWA WSRdUWITY waz Yyiady Aeding, “mn’%uug”[ﬁ‘nmsumﬁn:Tﬂuﬁ'ﬁamﬁmﬁﬁ‘né’uﬁuﬁ
wite", nw‘sﬂiz'qu’a'ﬁ'lnwﬁﬂmn'ﬁﬂauﬁuma'}'ua:?mnﬁunauﬁqmas‘uﬁamﬁq adal 8, 21-22
a8y 2547.

1. UNUAT 23 unz YoiaSy Aedins, wnaflamsuanafauasasnadmivsnnefaninas
LuBTURUUURABYsEINN, miﬂﬁ:quf‘:mm'ﬁnmmmauﬁ’:ma%‘tmﬁmnﬁmau-?nma*f
wismdy aiafl 9, 27-28 AaNnY 2548.

mMTHaaUmdia

voA e oa - PR “ a d.a a F] v e e e
Iﬂfﬁﬂ"ﬁmﬂ”ﬂWUm‘nﬂlu‘s:ﬂuﬁ‘lﬂgum"ﬂﬂLlﬂ:”“’lum‘”ﬂﬂﬂqqﬂu’luwuﬁ-nF.J'J'Ua\‘]ﬁll‘[ﬂfw}ﬂ—ﬁﬂﬁﬂﬂvlﬂu

1. WHFIFHIWT LNTIUAR SzaUqEfUndn
2. IR Yo REauRuS TEAUNWITUAIR
3. unanuAT sfd sTauunIue
4. WILEYNS LRAEWTY TEALUMIT AR

36

AMANKRIN

37

Paper:

LENFETIRANLLEY 1

Reordering Adaptive Directed Acyclic Graphs for
Multiclass Support Vector Machines

Reordering Adaptive Directed Acyclic Graphs for
Multiclass Support Vector Machines

Thimaporn Phetkaew, Wanchai Rivepiboon, and Boonserm Kijsirikul

Departrnent of Computer Engineering
Chulalongkorn University
Phayathai, Patumwan, Bangkok, 10330 Thailand
E-majl: Thimaporn.P@student.chula.ac.th
E-mail: {Wanchai.R, Boonserm K}@chula.ac.th
[Received June 20, 2003; accepted Aungust 26, 2003]

&

The problem of extending binary support vector ma-
chines (SVMs) for multiclass classification is still an on-
going research issue. Ussivakul and Kijsirikul proposed
the Adaptive Directed Acyclic Graph (ADAG) approach
that provides accuracy comparable to that of the stand-
ard algorithm-Max Wins and requires low computation,
Howevey, different sequences of nodes in the ADAG may
provide different accuracy In this paper we present a
new method for multiclass classification, Reordering
ADAG, which is the modification of the original ADAG
method. We show examples to exemplify that the margin
(or 2/]w] value) between two classes of each binary SVM
dassifier affects the accuracy of classification, and this
margin indicates the magnitude of confusion between
the two classes, In this paper; we propose an algorithm
to choose an optimal sequence of nodes in the ADAG by
_ considering the [w| values of all classifiers to be used in
data classification. We then compare our performance
with previous methods including the ADAG and the Max
Wins algorithm. Experimental resulis demonstrate that
our method gives higher accuracy. Moreover it runs
faster than Max Wins, especially when the mumber of
classes and/or the number of dimensions are relatively

large.

Keywords: support vector machines, multiclass classifi-
cation, ADAG, Reordering ADAG

1. Introduction

Support vector machines (SVMs) were primarily de-
signed for two-class classification problems with their
outstanding performance in real world applications. How-
ever, extending SVMs for multiclass classification is still
an ongoing research issue. Typically, previous methods
for solving the multiclass problem of SVMs are to con-
sider the problem as the combination of two-class deci-
sion functions, e.g. one-against-one and
one-against-the-rest. The one-against-the-rest approach
works by constructing a set of k binary classifiers for a
k~class problem. The i* classifier is trained with all of the
examples in the # class with positive labels, and all other

Vol7 No.3, 2003

examples with negative labels. The final output is the
class that corresponds to the classifier with the highest
output value. Friedman [5] suggested the Max Wins al-
gorithm in which each one-against-one classifier casts
one vote for its preferred class, and the final result is the
class with the most votes. The Max Wins algorithm offers
faster training time compared to the one-against-the-rest
method. The Decision Directed Acyclic Graph (DDAG)
method proposed by Platt et al. reduces training and
evaluation time, while maintaining the accuracy relative
to the Max Wins [10]. The comparison experiments by
several methods on large problems in [6] show that the
Max Wins algorithm and the DDAG may be more suitable
for practical use. Ussivakul and Kijsirikul proposed the
Adaptive Directed Acyclic Graph (ADAG) method which
is the modification of the DDAG. This method reduces
the dependency of the sequence of nodes in the structure
as well as lowering the number of tests required to evalu-
ate for the correct class. Their approach yields higher
accuracy and reliability of classification, especially in
such a case that the number of classes is relatively large
[13]. There are also other implementations for multiclass
SVMs, e.g., [1,3,4,8,9,11,15].

In this paper we reveal that the ADAG still is dependent
on the sequence of its nodes, although it is less Jependent
on the order of binary classes in the sequence than the
DDAG; there are still differences in accuracy between
different sequences. This led to the reliability of the al-
gorithm. Here we propose a novel method that improves
reliability by choosing an optimal sequence which has
less chance to predict the wrong class and dynamically
reordering the sequence during classification process ac-
cording to each test data.

This paper is organized as follows. In the next section,
we review the DDAG and the ADAG. In Section 3, we
introduce the modification of the ADAG to improve the
performance. The numerical experiments are illustrated
in Section 4. All experiments are based on datasets of the
Machine Learning Repository at Irvine [2]. The results
show that our method yields higher accuracy of classifi-
cation. Moreover the rmning time used by our method is
less than that of Max Wins. Finally, the conclusions are
given in Section 5.

Journal of Advanced Computational Intelligence 315

and Intelligent Informatics

*hetkaew, T., Rivepiboon, W., and Kijsirikul, B.

Fig. 1. The DDAG finding the best class out of four classes.

2. SVM C(lassification

This section describes two previous works on multi-
class SVMs, which are related to our proposed method,
ie., the DDAG [6,10] and the ADAG [13].

2.1. DDAG

Platt et al. [10] presented a learning architecture, the
Decision Directed Acyclic Graph (DDAG), which is used
to combine many two-class classifiers into a multiclass
classifier For a %-class problem, its training phase is the
same as the one-against-one method by solving &(k-1)/2
binary SVMs, one for each pair of classes. However, in
the testing phase, it uses a rooted binary directed acyclic
graph which has 4(k-1)/2 internal nodes and k leaves
(Fig.1). Each node is a binary SVM of the i* and j*
classes. Given a test sample x, starting at the root node,
the binary decision function is evaluated. Then it moves
to either the left or the right depending on the output
value. Therefore, we go through a path before reaching a
leaf node which indicates the predicted class.

There are some issues on the DDAG as pointed out by
[13]). First, it gives outputs whose probabilities are not
uniformly distributed, and thus its output depends on the
sequence of binary classifiers in nodes, affecting the re-
liability of the algorithm. In addition, the correct class
placed in a node near the root node is clearly at a disad-
vantage by comparison with the correct class near leaf
nodes since it is exposed to a higher risk of being incor-
rectly rejected. Second, the number of node evaluations
for the correct class is still unnecessarily high. This re-
sults in higher cumulative etror and lower accuracy. The
depth of the DDAG is k-1, which is the number of times
the correct class has to be tested against other classes, on
average, and scales linearly with k.

22, ADAG

U§sivaku1 and Kijsirikul [13] proposed an approach to
alleviate the problem of the DDAG structure described
above. An Adaptive DAG (ADAG) is a DAG with a re-

316 Journal of Advanced Computational Intelligence

Adaptive Layer A

Adsptive Layer B

Onutput Layer

Fig. 2. The structure of an Adaptive DAG for an 8-class
problem.

versed triangular structure. For a k-class problem, its
training phase is the same as the DDAG method by solv-
ing k(k-1)/2 binary SVMSs, one for each pair of classes,
However, in the testing phase, the nodes are arranged in
a reversed triangle with &/2 nodes (rounded up) at the top,
k/2* nodes in the second layer and so on until the lowest
layer of a final node. It has %1 internal nodes, each of
which is labeled with an element of Boolean function
(Fig.2). Given a test example x, starting at the top level,
the binary decision function is evaluated. The node is then
exited via the oufgoing edge with a message of the pre-
ferred class. In each round, the number of candidate
classes is reduced by half. Based on the preferred classes
from its parent nodes, the binary function of the next-level
pode is chosen. The reduction process continues until
reaching the final node at the lowest level. The value of
the decision function is the value associated with the mes-
sage from the final leaf node. Like the DDAG, the ADAG
requires only k-1 decision nodes to be evaluated in order
to derive an answer. Note that the correct class is evalu-
ated against other classes for logzk times or less, consid-
erably less than the number of evaluations required by the
DDAG, which scales linearly with &.

An ADAG can be implemented using a list, where each
node eliminates one class from the list (Fig.3). Thé list is
initialized with a list of all classes. A test point is evalu-
ated against the decision node that corresponds to the first
and last elements of the list. If the node prefers one of
the two classes, the class is kept in the left element’s
position while the other class will be discarded from the
list. Then, the ADAG proceeds to test the second and the
elements before the last of the list. The testing process of
each round ends when either one or no class remains
untested in the list. After each round, the list is reduced
to k/2 elements (rounded up). Then, the ADAG process
repeats until only one class remains in the list.

Using the reversed triangular structure, the ADAG re-
duces the number of times the correct class is tested
against other classes, and thus reduces the cumulative
errors. However, there are still differences in accuracy
between the different sequences of nodes. Next we will

Vol.7 No.3, 2003

and Intelligent Informatics

1123714 |5]|6[7]8 Level 1
Al A27A3 A4 Le;relz
B1|B2 Level 3
Cl ‘ , Level 4

Fig. 3. Implementation throﬁgh the list of the ADAG.

describe our method that improves the ADAG by finding
a best sequence of nodes.

3. Reordering Adaptive Directed Acyclic
Graphs

In this section, we introduce the modification of the
ADAG to improve the performance of the original ADAG.
‘This approach determines a best sequence of nodes in the
ADAG by dynamically reordering the sequence during
classification process according to each test data.

3.1. The Effect of jw|

The main idea of support vector machine classification
is to construct an optimal hyperplane to separate the data
of two classes. Suppose we have a data set D of I samples
in an n-dimensional space belonging to two different
classes (+1 and -1):

D= {(xh yk) l ke {1’"1I}s Xy S W, i € {+15'1}}‘

The hyperplane in the n dimensional space is deter-
mined by the pair (w,b) where w is an n-dimensional
vector orthogonal to the hyperplane and b is the offset
constant. The hyperplane (w - X)+b separates the data if
ind only if

(w-x)+b>0 if y=+1
(Ww-x)+b<0 if y=-1.

If we additionally rei]uire that w and b be such that
1¢ point closest to the hyperplane has a distance of 1/{w|,
1en we have

(w-x)+b=2l if y=+1
(w-x)+bs-1 if y=-1

ol.7 No.3, 2003

Reordering Adaptive Directed Acyclic Graphs for
Multiclass Support Vector Machines

Il

40
30 .
20
10 - i

0 v

Classifier No.
L |

Fig. 4. The |w| values of 325 classifiers.

which is equivalent to
viw x)+blzl Vi......... e 4

To find the optimal separating hyperplane, we have to
find the hyperplane that maximizes the minimum distance
between the hyperplane and any sample of training data.
The distance between two closest samples from different
classes is
d(w5) = min -+

bt} wl flye-1} w|

From (3), we can see that the appropriate minimum
and maximum values are +1. Therefore, we need to maxi-
mize

1 -1 2
e R RAARAEREERERLE 6)

As shown in Equations (5) and (6), the distance be-
tween the two closest samples from different classes is
2/lw]|. The greater the distance, the less confusion between
these two classes will be. Below we show some examples
to illustrate that the {w]| value affects the accuracy of data
classification. The experiment is based on the English
letter image recognition dataset from [2] which has 26
classes. Hence there are 325 classifiers. In this case, the
dataset is trained by using Polynomial kernel degree 3.
In Figd, |w| values of all classifiers are depicted. The
average of all of them is 4.87.

Figure 5 shows two test examples, which were evalu-
ated using the ADAG method. For the first example
(Fig.5(a)), the correct class was class 8 but the classifier
in the second level incorrectly eliminated the correct class
from the list. The [w] value of this classifier was 21.50,
which was much bigger than the average (4.87). For the
second example (Fig.5(b)), the correct class was class 9
but the classifier in the fifth level eliminated the correct
class from the list. The |w| value of this classifier was
36.03. Both test examples were misclassified because of
classifiers with high |w| values.

We evajuated 4,000 test examples in this experiment.
Table 1 shows the frequency of |w| values that caused

d(w, b) =

Journal of Advanced Computational Intelligence 317

and Intelligent Informatics

Phetkaew, T., Rivepiboon, W., and Kijsirikul, B.

Table 1. The frequency of |w} values that cause wrong

classification.
vl Frequency | No. of classifiers
<4.0 4 169
4.0-5.0 16 . 51
5.0-6.0 11 30
6.0-1.0 16 2
7.0-8.0 2 21
3.0-8.0 11 10
9,0-10.0 12 [
>100 82 16

Table 2. Description of the datasets used in the experi-

ments.
Dataset | #trainingdata | #testdata | #lass | #dimension
Glass 214 5-fold 6 9
. | Satimage 4,435 2,000 6 36
Segment 2,310 3-fold 7 18
Shuttle 43,500 14,500 7. 9
Vowel 528 462 11 10
Soybean 2% 340 15 - 35
Letter 15,963 4,037 26 16
solet 6,238 1,559 26 617

" incorrect classification. The distrbution of the |w]| values
of all classifiers is iflustrated in the third column. As

' shown in the table, classifiers with small fw| values caused
very few wrong classifications, whereas those with large
{w| values gave a high number of wrong classifications.

+ For instance, 169 classifiers with |w| less than 4.0 gave
wrong classifications only 4 times, but those with |w]|
greater than 10.0 created a great number of incorrect

. classifications (82 times).

B conclude this subsection, we compare [w| values to
the average of all jw| values. From the table, the classifiers
with high |w| values, e.g. those with |w| higher than the
average, caused more wrong classifications than those

- with low |w] values. In summary, the fw| value affects the
accuracy of classification, and moreover it indicates the

. magnitude of the confusion between two classes.

" 32. Reordering ADAG

We propose a method, called Reordering ADAG, to
improve the accuracy of the original ADAG. For a k-class
problem, the Reordering ADAG’s training phase is the

+ same as the ADAG method by solving A(k-1)/2 binary
. SVMs. However, the testing phase is organized as fol-
lows. Like the ADAG, a Reordering ADAG car be imple-
mented using a list, where each node eliminates one class
from the list. The differences are the initialization of the
list and the order of sequence in each level (Fig.6). In the
first step, we use a reordering algorithm described in the
| mext subsection to choose the optimal sequence to be the
initial list. We use the list to evaluate every test example.
In the second step, as in the ADAG, a test point of the
+ Reordering ADAG is evaluated against the decision node

318 Journal of Advanced Computational Intelligence

18121942916111 35783524410 362013151721 226
181221 171513161 113578 |wj of classifier $-18 =21 479
18751715116
1871517
187
7

(a)
18121942914111357825241410 2362013151721 226
25121943916611 105248

262419102916
%9210
ne t# of classifier 9-10 = 36.0281

10

®

Fig. 5. Examples of the ADAG method.

POPEIP0G

InitialiAng the list Initialize phase
iy
LTl sl
b=t 74 4_I
A3 Ad Classifying a new example
| 1 ..
Classifying &
Reordering phase

' . Output phase

Fig, 6. Implementation through the list of the Reordering
ADAG,

that corresponds to the first and last elements of the list.
If the pode prefers one of the two classes, the class is
kept in the left element’s position whereas the other class
will be discarded from the list. Then, the Reordering
ADAG proceeds to test the second and the elements be-
fore the last of the list and so on. The testing process
continues until either one or ne class remains untested in
the list. In the third step, unlike the ADAG, the Reordering
ADAG will reorder the list before processing in the next
level by using the reordering algorithm. This sequence
differs for each test example, and it depends on the results
of nodes from the previous level. The second and the third
steps are repeated until there is only ope class remains.

3.3. Reordering Algorithm

For the reason described above, we consider |w| values
in order to choose the optimal sequence, from all possible
k!
T sequences, with less chance to predict the wrong
2 1
class. A low |w] value means less confusion between two
classes. Each classifier has one |w| value. Among classi-
fiers, k/2 classifiers which have small fw| values will be
considered to be used in data classification.

Vol.7 No.3, 2003

and Intelligent Informatics

|

'

Thble 3, Comparison of accuracies using the Polynomial
kernel.

Datsset | d DDAG [4 ADAG | d MaxWins ¢ | Reorderin
Glaws T 7TIoeos=| 2 71.135° | 2 T1078% 2 | 71528
Satimage | 6 88.408 | 6 83430 | 6 88453 6 | 88800
Segment | 6 96.538% | 4 G6.620%| 4 96.631** 4 | 96840
Shuttle 8 99924 |3 99924 | B 99924 8 | 99.924
Vowel 3 64237 |3 64203 | 3 64329 3| 64719
Soyben | 5 90400 | 5 90446 | 3 90471 3 | 9LI76
Letter 3 95508" | 3 95984 | 3 96125 3| 96235
Isolet 397032 |3 97030 | 3 97040 3 | 97051

"Bable 4. Comparison of accuracies using the RBF kernel.

Dataset | ¢ DDAG | ¢ ADAG | ¢ Max Wins | ¢ Reordering
Glass 0.08 72.850%** 10.08 72.759*** [0.09 73238*** |009 74.536
Satimage (3.0 91.97} 30 91968 |30 91984 3.6 91950
Segment |07 97.276%s% {07 97288%** |0.7 97.302%* (0.7 97446
Shatle (3.0 99897 |30 99897 |30 99897 (3.0 99.897
Vowel |02 63425 |02 65589 02 65340 02 67532
Soybean [0.07 90353 1008 90.412 0,08 90.468 0.07 90.882
Letter 30 97.901 30 97909 |30 97918 30 97.969
Iaolet 001 96939 {0.01 96932 001 95916 " |0.0) 96987

The reordering algorithm is illustrated in Fig.7. k is
the number of classes, %/2 is the number of classifiers
which will be used in the sequence, and j is the current
classifier being added to the sequence. Set-of-tried-clas-
sifiers keeps classifiers which were tried to be selected
for using in data classification. Sequence-of-the-selected-
classes keeps classes that will be used in a form of list
described above. Threshold 6 is the highest [w] value that

‘can be used in the sequence. If it cannot find the optimal

sequence according to the threshold, the threshold is in-
creased by a small constant e.

Note that different thresholds provide different accu-
racy. The effective way to choose an appropriate threshold
is to select the value that can eliminate classifiers which
have high |w| values. However, very low threshold values
may cause long reordering time.

4. Numerical Experiments

In this section, we present experimental results on sev-
eral datasets from the UCI Repository of machine learn-
ing databases [2] including glass, satimage, segment,
shuttle, vowel, soybean, letter and isolet (Table 2). These
datasets are different in the number of classes, the number
of dimensions, and sizes. For glass and segment prob-
lems, there is no provided test data so we used 5-fold
woss validation and 3-fold cross validation respectively.
For the soybean problem, we discarded the last four
dasses because of missing values.

In these experiments we scaled both training data and
est data to be in [-1,1] and employed the following Poly-
tomial and RBF kernels.

Polynomial degree d: k(x,y) =x -y + 1{*... ... (7)
Radial basis function: k(x,y) = e ™17 ®)
Tol.7 No.3, 2003

Journal of Advanced Computational Intelligence

Reordering Adaptive Directed Acyclic Graphs for
Multiclass Support Vector Machines

Let set-of-tried-classifiers{f] be the set of classifiers which has been tried
te be selected as classifier f in the output sequsnce. Let €F, iwl and 8 be
classifier i, the jw| value of classifier i, end the threshold, respectively.
Let TCi{1] and TC2] be the two classes corresponding to classifier £,
1. Tnitializing phase:
J=0
Fori=1to kf2 do set-of-tried-classifiers{i] = {};
Fori=1to k2 se of-the-selected-classes[i] = nil,
Sort all k(%-1)/2 classifiers by ascending the |w| values;
2. Selecting phase: ;
For =1 to k{(k-1)¥2 do
If (f<k/2)
I (w<8)
IE(E{ TCI], TCII2]) < sequence-of-the-selected-classesy md
(Ci & set-gf-tried-classifiers[f+1D)
Fan
sequence-af-the-selected-classes[j] = TCi{1};
sequence-of the-selected-closses(k-f+1]=TCi{2];
set-qf-tried-classifiers(f) = set-qf-tried-classifiers{j]lw { Ci},
IE (== k/2)
Goto End,
Else Goto Selecting phase;
Else
If V1, Cf € set-gf-tried-classifiers[/D
set-gftried-classifters(j]= {};
Goto Backiracking phase;
3. Backiracking phase:
sequence-cf-the-selected-classes(f} =nil;
sequence-of-the-selected-classes[k-j+1] = nil;
J
I (<0) /* This means that all classifiers were already tested
and it eannot find the oplimal sequence. %/
9=0+¢,

Goto Selecting phase;
End

Fig. 7. Reordering algorithm.

In the experiments, we compare four algorithms, i.e.,
the DDAG, the original ADAG, the Reordering ADAG,
and.the Max Wins algorithm. For the DDAG and the
ADAG, we examined all possible sequences for datasets
having not more than 7 classes, whereas we randomly
selected 50,000 sequences for datasets having more than
7 classes. Table 3 and 4 present the results of comparing
these methods for Polynomial and RBF kernels, respec-
tively. We present the optimal parameters (d and c in
Equations (7) and (8)) of the kernels and the correspond-
ing accuracies for each method. The best accuracy among
these methods is illustrated in bold-face. ***, ** and *
in the tables mean 99%, 95%, and 90% confidence inter-
val for estimating the difference between accuracies of
three algorithms and the Reordering ADAG using a one-
tailed paired t-test.

The results show that our method yields higher accu-
1acy than the DDAG, the original ADAG and Max Wins
in all datasets, except for the shuttle problem where the
accuracies of four methods are the same, and for the
satimage problem where Max Wins gives the best acco-
racy in the RBF kernel. The results also show that our
method performs statistically significantly better than the
other methods in the glass and segment problems, and
significantly better than the DDAG in the letter problem
in case of the polynomial kernel. Another advantage of
our method compared to the DDAG and the original
ADAG is that our method always provides one best ac-
curacy for each dataset using the reordering algorithm,
whereas, depending on the sequence of binary classifiers,

319

and Intelligent Informatics

n
‘hetkkaew, T., Rivepiboon, W., and Kijsirikul, B.

-

Table 5. Comparison of the computational time using the
" Polynomial kernel.

Reordering ADAG Max Wins

Dataset d Classifying | Reordering Total Classifying
L {seconds) {seconds) (seconds seconds’
Satimage 6 2.61 022 2.83 9.47
. _Segment 4 0.18 0.56 0.74 0.41
Shuttle 8 1.75 1.47 3 5.15
Vowel 3 0.12 0.19 0.31 0.61
_Soybean 3 0.27 4.28 4.55 1.86
Letter 3 8.58 2.56 11.14 125,58
«_Isolet 3 i30.73 - . 1.08 131.81 1671.98

W

7 Table 6. Comparison of the computational time using the
RBF kemel.

e Reordenng ADAG Max Wins
+ Dataset ¢ Classifying | Reordering Total * | Classifying
seconds {seconds) | (seconds) (seconds)
Satimage | 3.0 11.75 0.20 11.95 37.13
4 Segment | 0.7 0.39 0.18 0.57 0.83
Shuttle 3.0 323 1.49 4.72 5.27
Vowel 0.2 0.10 0.28 0.38 0.61
Soybean [0.07 0.32 0.84 1.16 2.20
Lener 3.0 61.90 2.67 64.57 802.85 |
1 Isolet 001 | 12432 122 125.54 1369.11]

‘the DDAG and the original ADAG may give low accura-
cies. This shows the effectiveness of the Reordering
ADAG.

Table 5 and 6 present the comparison of the computa-
tional time between the Reordering ADAG and the Max

'Wins for Polynomial and RBF kemels by using a 400

MHz Pentium II processor There is no computational
time of the glass dataset because it has too few test ex-
amples to measure the time. The results show that our
method requires low computational time in almost all of

‘the datasets, especially when the number of classes

and/or the number of dimensions are relatively large. For
a k class problem, the Max Wins requires k(k-1)/2 classi-

| fiers for the classification whereas the Reordering ADAG

requires only &-1 classifiers. Hence the larger the number

i of classes, the more running time the Max Wins requires
! than the Reordering ADAG. Moreover, the number of di-

mensions affects the munning time of each classifier For
the Reordering ADAG, the number of classes and the
threshold 8 affect the running time for reordering. How-
ever, it takes some time even when there are many classes.

5. Conclusions

In this paper, we have presented a new approach for
multiclass SVMs, which is the modification of the origi-
nal ADAG. The experiments denote that |w| affects the
accuracy of classification. A low |w| value creates less
confusion between two classes. Our approach eliminates
the dependency of the sequence of nodes in the original
ADAG by selecting an appropriate sequence, from all
possible sequences, which consists of classifiers with
small [w| values. The experimental results show that our

320 Journal of Advanced Computational Intelligence

new approach yields a higher accuracy than the DDAG,
the original ADAG and the Max Wins, which was prob-
ably the most accurate method for multiclass SVMs.
Moreover the running time used by the Reordering ADAG
is less than Max Wins, especially when the number of
classes and/or the number of dimensions are relatively

large.

Acknowledgments
W are grateful to the anonymous referees for useful comments and sug-

gestions. This work was supported by the Thailand Researck Fund. The
views and conclusions contained in this paper are these of the authors
and the Thailand Research Fond is not necessarily of the same opinion.

References:

[1) E. Allwein, R. Schapire and Y Singer, "Reducing Multiclass to Bi-
nary: A Unifying Approach for Margin Classifiers", Int. Conf. on

Machine Leamning, 2000
[2] C. Blake, E. Keogh and C. Merz, "UCI Repository of Machine

Learning Databases”, Department of Information and Computer
Science, University of California, Irvine, 1998.
http:/fwww.ics, nei.edu/~miearn/MLSummary. html

[3] K. Crammzer and ¥ Singer, "On the Algorithmic Implementation of

Multiclass Kernel-based Vector Machines”, I. of Machine Learning

Research, 2, pp. 265-292, December, 2001,
{4] X Doog, W. Zhaohni and P Yinhe, "A New Multi-class Support

Mector Machines”, IEEE Int. Conf. on System, Man, and Cyber-

natics, 3, pp. 1673-1676, 2001.
[5] J. Friedman, "Another Approach to Polychotomous Classification”,

Technjcal report, Department of Statistics, Stanford Ugiversity,

1996.
[6] C. Hsu and C. Lin, "A Comparison of Methods for Multiclass

Support Vector Machines", IEEE Trans. on Neural Networks, 13, pp.

415-425, March, 2002.
[7] T Joachims., "Making large-scale SVM learning practical”, Ad-

vances in Kemel Methods - Support Vector Learning, MIT Press,

1998.
{8} 1. Kindermann, E. Leopold and G. Paass, "Multi-class Classification

with Ermror Correcting Codes", Treffender GI-Fachgruppe 1.1.3,

Maschinelles Lermen, GMD Re. 114, 2000.
[9] B. Mayoraz, and E. Alpaydm, "Support Vector Machines for Mult-

class Classification”, IDIAP-RR 6, [DIAR 1998. '
[10] 3. Platt, N. Cristianini and J. Shawe-Taylor, "Large Margin DAGs
for Multiclass Classification”, Advances in Neural Information

Processing Systems, MIT Press, 12, pp. 547-553, 2000.
[11] C. Sekhar, K Takeda and E Itakura, "Close-class-set Discrimination

Method for Large-class-set Pattern Recogrition using Support Vec-
tor Machines", [EEE Int. Joint Conf. on Neural Networks, pp. 577-

582, 2002.
[12] N. Thubthoag and B. Kijsirikul, "Support Wector Machines for Thai

Phoneme Recognition”, Int. Conf. on Intelligent Technologies, pp.

229-234, 2000.
[13} N. Ussivakul and B. Kijsirikul, "Adaptive DAG: Another Approach

for Multiclass Classification”, Int. Conf. on Intellipeat Technologies,

2001,
[14] V! Vapnik, "Statistical Learning Theory", New York, Wiley, 1998,
[15] J. Weston and C. Watkins, "Multi-Class Support Mector Machines”,
Technical Report CSD-TR-98-04, Department of Computer science,
Royal Holloway, University of London, May, 1998.

Vol.7 No.3, 2003

and Intelligent Informatics

Reordering Adaptive Directed Acyclic Graphs for
Multiclass Support Vector Machines

Name:
Thimaporn Phetkaew

Affiliation:

Ph.D. Student, Department of Computer Bagi-
neering, Faculty of Engineering, Chulalongkorn
University, Bangkok 10330, Thailand

Address:

Departmen! of Computer Engineering, Faculty of Engineering, Chulalongk-

om University, Bangkok 10330, Thailand

Brief Biographical History:

2000-present Ph.D. Student, Department of Computer Engineering, Faculty

of Engineering, Chulalongkorn Universify, Bangkok 10330 Thailaxd

Main Works:

* "Reordering Adaptive Directed Acyclic Graphs for Multiclass Support
Vector Machines”, Proceedings of the Third International Conference on
Intelligence Technologies and Third Vietnam-Japan Symposium op
Fuzzy Systems and Applications, pp. 276-284, 2002.

Name:
‘Wanchai Rivepiboon

Affiliation:

Associate Professor, Department of Computer
Engineering, Faculty of Engineering, Chu-
lalongkorn University, Bangkok 10330 Thailand

Address;

Department of Computer Engineering, Faculty of Engineering, Chutalongk-
un UniversityBangkok 10330, Thailand Tel: (66-02)2186988, (66-
71)9883897 Fax: (66-02)2186955
Brief Biographical History:
\985-1987 Chair, Department of Computer Engineering, Faculty of Eogi-
weering, Chulalongkorn Univessity, Bangkok 10330 Thailand
998-present Head, Software Engineering Laboratory, Department of Com-
witer Engincering, Faculty of Engineering, Chulalongkorn University, Bang-
ok 10330 Thailand
000-2003 Dean, Faculty of Informatics, Mabasarakham University, Ma-
asarakham 44150, Thailand
000-present Deputy Director, Office of Information Technology Adminj-
Tation for Educational Development, Ministry of University Affairs, Bang-
ok 10330 Thailand

Tain Woiks:

"Branch Index: An Access Method of Aggregation Hierarchy as a Tree

in O0ODB", International Journal of Informadon Technology, Wol. 7, 2002.

"Farmat Specification Scheme for Database Applications Using Require-

ments Particle Networks", International Journal for Compiter-Aided En-

gineering and Software, Vol. 19,.No. 8, pp. 932-952, 2002.

[embership in Learned Societies:

The Computer Association of Thailand

IEEE Computer Society

1.7 No.3, 2003

Name:
Boonserm Kijsirikul

Affiliation:

Assistant Professor, Department of Computer
Engineering, Faculty of Engineering, Chu-
lalongkom University, Bangkok 10330 Thailand

Address:

Department of Computer Engineering, Faculty of Engincering, Chulalongk-

orn University, Bangkok 10330 Thailand

Brief Biographical History:

1993-2000 Lecturer, Department of Computer Engineering, Facuity of En-

gineering, Chulalongkorm University, Bangkok 10330 Thailand

1998-present Head, Machine Intelligence and Knowledge Discovery Labo-
ratory, Department of Computer Engineering, Faculty of Engineering, Chu-
talongkorn University, Bangkok 10330 Thailand

2000-2403 Assistant Professor, Department of Computer Engineering, Fac-

ulty of Engineering, Chulalongkorn University, Bangkok 10330 Thailand

Main Works:

* "Approximate Match of Rules Using Backpropagation Neural Net-
works”, Machine Learning Joumnal, ‘oL 44, Issve 3, pp. 273-299, Sep-
tember, 2001.

¢ "A Method for Isolated Thai Tone Recognition Using Combining Neural
Networks", Computational JnteHigence Journal, V1. 18, No. 3, pp. 313-
335, August, 2002. Blackwell Publishers Inc, Boston, USA and Oxford,
UK, 2002.

Membership in Learned Societies:

* AAAT Member

Journal of Advanced Computational Intelligence 321

and Intelligent Informatics

l_! LENRTTRUIBLED 2

‘,'- .mationat Journal of Hybrid Intelligent Systems 2 (2005) 253~267 . 253
N 108 Press

]

Hirst-Order Logical Neural Networks

-

‘qunserm Kijsirikul* and Thanupol Lerdlamnaochai

Yepartment of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai
=, Pathumwan, Bangkok 10330, Thailand

-

-hstract. Inductive Logic Programming (ILLP) is a well-known machine learning technique for learning concepts from relational
déts -Nevertheless, ILP systems are not robust enough to noisy or unseen data in real world domains. Furthermore, in multi-class
~oblems, if the example is not matched with any learned miles, it cannot be classified. This paper presents a novel hybrid learning

sthod to alleviate this restriction by enabling Neural Networks to handle first-order logic programs directly. The proposed
“method, called First-Order Logical Neural Network (FOLNN), employs the standard feedforward neural network and integrates
{inductive learning from examples and background knowledge. We also propose a method for determining the appropriate
“Hable substitution in FOLNN learning by using Multiple—lnstance Learning (MIL). In the experiments, the proposed method
s been evaluated on two first-order learning problems, i.e., the Finite Element Mesh Design and Mutagenesis and compared
waﬂ: the state-of-the-art, the PROGOL system. The expenmenta.l results show that the proposed method performs better than
“ilﬂGOL

;&}words Hybrid system, first-order Ioglc inductive logic programming, neural networks

& ‘
.*.introduction

MMe Learning [19] is concerned with the development of procedures to make computers learn and
ug:rrove with experience like humans. Specifically, 2 machine learning technique learns a concept by
'&lmamo hypotheses fitting the given training examples. The learned hypothesis is then employed
ssify unseen data. There are several successful well-known techniques in machine learning such
B"[nductlve Logic Programming (ILP) [17,20], Artificial Neural Networks (ANNs) [3], Decision Tree
Siming [23], Bayesian Networks [22], etc.
Jnducuve Logic Programming (ILP) is only one of machine learning techniques which adapts the
l?st-order logical concepts for hypothesis learning. The advantages of ILP are the ability to employ
'f:ﬁground knowledge that allows the trainer to give useful knowledge to the learner more easily and the
dility to induce the human readable representations in form of a set of first-order rules (if-then rules).
addition, the first-order rules are more expressive than propositional rules. Consider the advantage of
%-order rule over a propositional one for representing concept Daughter as shown in Fig. 1.
33’3 shown in Fig. 1, the propositional rule which cannot use variables is specific only for the first and
se::

ond persons being Janmfer and Andrew, respectlvely Therefore it is rarely useful for unseen

only, most ILP systems have been used in two-class classification problems. The systems :
"__.-_{ posmve and negative examples and background knowledge as inputs and produce a set of rules.

254 B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks

Fig. 1. The propositional and first-order logic rules.

All of the inputs and the learmned rules are described by first-order logic. The learned rules should
cover many positive examples and few negative examples. If we want to learn concepts for multi-class
problems by using these two-class systems, we will begin by constructing a set of rules for the first class
by using its examples as positive and the other examples as negative. Then we follow this process to
create a set of rules for the other classes. The learned rules are then used to classify test examples. If
a test example is perfectly covered by a rule of some class, the corresponding class is the classification
result. However, these first-order rules learned by ILP systems have the restriction to handle imperfect
data in real world domains such as noisy unseen data. This problem noticeably occurs especially in
multi-class classification. In the case of two-class problems, any test example not covered by the induced
rules is classified as negative. However, in multi-class classification, if an example is not covered by any
learned rule, the method could not determine the correct class for the example. The simple solution is to
assign the majority class recorded from training examples to the unable labeled test data [9]. Also, there
is more efficient method to solve this problem by using the concept of intelligent hybrid systems [30].

Differently from (symbolic) ILP systems, (numerical) artificial neural networks perform the statistical
learning to encode natures of data in a set of weights. Neural networks contain the ability to process
inconsistent and noisy data. Moreover, they compute the most reasonable output for each input. Neural
networks, because of their potential in noise tolerance and multi-class classification, offer attractiveness
for combining with symbolic components to avoid the restrictions of symbolic rule-based systems
described above. Although the ability of neural networks could alleviate the problem in symbolic rule-
based systems, a learned hypothesis from neural networks is not available in a form that is legible for
humans. Therefore neural networks require an interpretation by rule-based systems [30]. Several works
show that the integration between robust neural networks and symbolic knowledge representation can
improve classification accuracy such as Towell and Shavlik’s KBANN [29], Mahoney and Mooney’s
RAPTURE [18], the works proposed by Parekh and Honavar {21] and Garcez et al. [10]. Nevertheless,
these researches have been restricted to propositional theory refinement. Some models have been
proposed for first-order theory. SHRUTI [26] employed a model making a restricted form of unification;
actually this system only propagates bindings. The work proposed by Botta et al. [4] created a network
consisting of restricted form of first-order logic. Kijsirikul et al. [16] proposed a feature generation
method and a partial matching technique for first-order logic but their method still uses an ILP system in
its first-step learning and does not select the appropriate values for variable substitution. FOCA, which
is a hybrid first-order knowledge-based neural network, demonstrates better performance over standard
ILP systems on some benchmark problems [2] The approximation of semantics of logic programs and
neural networks can be found in [11,12].

In this paper, we are interested in solving the problem by using the concept of hybrid systems.. A
* more flexible learning system that directly learns first-order logic programs by neural networks, called
. First-Order Logical Neural Network (FOLNN) has been proposed. FOLNN is a neural-symbolic learn-
. ing system based on the feedforward neural network that integrates inductive learning from examples
and background knowledge. We also propose the method that makes use of Multiple-Instance Learning

B. Kijsirilad and T. Lerdlamnaochai / First-Order Logical Neural Networks 255

Examples,
background
- Inowledge

Fig. 2. FOLNN processes.

L) [6,14] for determining the variable substitution in our model. A modified version of Backprop-
ion (BP) algorithm (see Section 2.3) is then applied to train the network within the framework of
. The proposed method has been evaluated on two standard first-order learning datasets i.e., the
te Element Mesh Design [8] and Mutagenesis [27]. We also test FOLNN on the noisy data to see
robustness of the system. The results show that the proposed method effectively learns first-order
esentation and provides more accurate results than an ILP system.

he rest of this paper is organized as follows. Section 2 describes the processes of first-order learning
FOLNN. The experimental results on first-order problems are shown in Section 3. Finally the
clusions are given in Section 4.

first-Order Logical Neural Network (FOLNN) .

he main reason for integrating robust neural networks and symbolic components is to improve the
wacy of classification by taking the advantages of neural networks which are noise tolerance and
ability of multi-class classification. Combining these two techniques together is normally known
gurai-symbolic learning systems {10]. Our proposed method, FOLNN is also this type of leamning
ems. The overview of FOLNN processes is shown in Fig. 2.

irst, FOLNN receives positive and negative examples and background knowledge as inputs. Remark
all inputs are in form of first-order logic. The background knowledge is used to determine the
cture of the neural network. Before training the network, a process of transforming examples is
tired. The process transforms examples represented in form of first-order logic into real value
it vectors that can be used by the network. The transformed input vectors are then fed to train the
vork. The training process will adapt the connection weights of the network so that it correctly
sifies training examples. The Backpropagation (BP) algorithm [25] with sigmoid activation function

256 B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Newral Networks

Fig. 3. The expanded literals.

is selected to perform the training process. In the testing process, a test data is also converted to an input
vector before it is fed to the network as same as the training process.

The following subsections explain the detail of the FOLNN learning processes that are (1) creating an
initial network, (2) transforming the examples, and (3) training the network.

. Creating an initial network

In this subsection, we present the first step of the FOLNN algorithm, creating an initial network |
from examples and background knowledge. The FOLNN structure is based on the feedforward neural
network, but FOLNN receives examples and background knowledge in form of first-order logic programs

as the inputs and directly learns from these inputs. Nevertheless, creating networks from first-order logic
inputs is quite different from propositional logic inputs because in propositional logic there 1s no variable
describing relations between literals. Therefore, we cannot directly employ the method of constructing
neural networks for proposmonal logic inputs, such as the method of C-IL2P proposed by d’ Avila Garcez ¢
et al. [10]. ;

First, we restrict the number of variables to be used in the learning process, and then construct all -
possible input neurons each of which corresponds to a literal with different variables. In fact, not all
possible combinations of variables will be useful, and some of them can be pruned. An input neuron
corresponding to a literal will be pruned if the truth value of the literal is false according to background
knowledge in all situations. For example, if we restrict the number of variables to 3, predicate father is
expanded as shown in Fig. 3.

In all nine expanded literals, the truth values of three literals, i.e., father(x,x), father(y,y) and father(z,z),
always are false according to background knowledge (there is no person who can be his own father).
Therefore, these literals can be pruned and the six remaining literals will be used for creating the network.

FOLNN is a three-layer feedforward network, composed of one input layer, one output layer and one
hidden layer [13]. The functionality of each layer is defined as follows. \

- The input layer is the first layer that receives and computes input data, and then transmits the
processed data to the hidden layer. This layer represents the literals for describing the target rule.
The number of units in this Jayer depends on the number of predicates in background knowledge.
The number of units for a predicate equals to the number of all possible permutations of variables
of the predicate.

— The hidden layer connects between the input layer and the output layer. The hidden layer helps
the network to learn the complex class1ﬁc&ﬁon The number of units in this layer depends on the
complication of the learning concept, and i$ determined by the experiments.

— The output layer is the last layer of the network which produces the output for the classification.
The target concept is represented in this layer so that the number of units in the output layer equals
to the number of classes.

B T v T

An initial network is created by using the above definition. To illustrate the construction of the network,
consider the task of finite element mesh design (see Section 3.1.1 and [8] for details). The goal of finite

B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks 257

short(x)

not_loaded(x) .
fixed(x)

long(x)

4 input 80 hidden 13 output
units units umits

Y

Fig. 5. The constructed network created from the inputs in Fig. 4.

ment mesh design is to learn rules for describing how many elements should be used to model each
ge of a structure. Each example is of the form mesh(Edge, Number of elements), where Edge 18 an
ge label and Number of .elements indicates the number of partitions. Number of elements is a number
iween 1 and 13 and in our case is the class label. Figure 4 shows an example of background knowledge
1 training data. ' '

As shown in the figure, there are two examples of class 1, i.e., mesh(Al,I)! and mesh(A2,1), and one
ample of class 2, i.e., mesh(A3,2). Background knowledge contains four predicates, which are short,
tloaded, fixed and long, all of which have arity one. We apply the above definition to create.an tnitial
work. If we restrict only one variable for being used in the network construction, each predicate of
ty one will be represented by one unit in the input layer. Therefore, four input units are created. The
mber of nodes in the hidden layer in this case is set to 80 (determined by the experiment). Moreover,
i output layer contains 13 nodes each of which is for the corresponding class (class 1 to class 13). To
nmarize, the constructed network will have 4 input units, 80 hidden units and 13 output units. The
tained network is shown in Fig. 5. In addition, all network weights are initialized to small random
mbers. The completely constructed network then receives examples for refining the network, The
wcess for feeding examples to the network is described in the next subsection. ' '

Now consider background knowledge containing predicates having arity two for learning the concept
sh as shown in Fig. 6. -

Sorde L, oot At e

Throughout the paper, symbols starting with uppercase letters designate constants, whereas those starting. with lowercase . -

ignate variables.

258 B. Kijsirtkul and T Lerdlamnaochai / First-Order Logical Neural Networks

short(x)
not_loaded(x)
Sixed(x)
long(5)
Jree(x)
short(y)
na:_)oaded@)
Sixed(y)
long(y)
free()

S, -
)

’u”‘: St . i
g 3 A

=3
=1

g, Vi
/’.‘:#‘;JIMI{/!’.

,r/r

opposite(x,y)

opposite(y,x)
equal(x.y)
equal(y.x))
14 input 80 hidden 13 outpurt ’
units units units

Fig. 7. The network constructed from the inputs in Fig. 6.

In these inputs, background knowledge contains the same predicates as in Fig. 4, which are short,
notloaded, fixed and long, and three new predicates free, opposite and equal. Among these new
predicates, opposite and equal have arity two. If we set the number of restricted variables to 2, then each
predicate of arity one is represented by two units and the predicate opposite is expanded to four literals
which are opposite(x,x), opposite(x,y), opposite(y,x) and opposite(y,y). Nevertheless, we can definitely
prune opposite(x,x) and opposite(y,y) and the other two units remain. In the same way, we will also have
two literals for predicate equal. Therefore, in this case, the constructed network will have 14 input units
in total. The hidden and output units are the same as the network in Fig. 5. The obtained network is
shown in Fig. 7.

B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks 259

Table 1
Input and target values for the examples in Fig. 4 and the network in Fig. 5

short(x) notloaded(x) fixed(x) Iong(x) mesh(x,I) mesh(z,2)

mesh(Al I 1 1 1 0 1 0

mesh(A2, 1} 1 0 1 0 1 0

mesh{A3,2) 0 1 0 1 0 1
. Transforming inputs

.1. Feeding examples to the network

n general, neural networks receive inputs in real value form while inputs of the ILP system (background

owledge and examples) are in logical form. Therefore, we transform the logical inputs to the form that

1 be processed by the neural network. Each training example of the network is composed of inputs for
neurons in the input layer and the target values for output neurons.

The training examples are fed into the network one by one and independently transformed to the

iwork inputs as follows. The value for each input unit is defined as:

1 if L;6, is true in background knowledge
Xy = (1)

0 otherwise

lere Xj;, L;, and @ are input value for input unit ¢+ when feeding example j, literal represented by
yut unit 7, and variable substitution for example j, respectively. The input value for an input unit will
1 if there exists substitution that makes the truth value of the literal true in background knowledge.
herwise the input value for that unit is 0. In addition, the target value for an output unit is defined as:

_J 1 if Ly is a positive example ‘
= {0 otherwise @

iere Ty; and Ly, are target value for output unit £ when feeding example 7, and literal represented by
tput unit k, respectively.
For instance, with the same inputs in Fig. 4, if we feed positive example mesh(Al,1) to the network
Fig. 5, units short(x), not.loaded(x), fixed(x) and long(x) will receive 1, 1, 1 and O as their inputs
ipectively, because when variable z is substituted by Al, the literals short(Al), not loaded(Al) and
ed(AI) are true in background knowledge, while the literal long(AI) is false. The target vakue for the
tput unit of class 1 (mesh(x, 1)) is 1 because mesh(A1,1) is a positive example of class 1. In addition,
» other example of class 1, mesh(A2,1), gives 1, 0, 1, O for the input units and 1 for the output unit of
185 1. The example of class 2, mesh(A3,2) gives 0, 1, 0, 1 for the input units and 1 for the output unit
Lt:lass 2. The input and the target values of each example are summarized in Table 1. In the table, we
i not show the value of the other output units of class 3 to class 13 as they are all 0.
ed hypotheses from symbolic rule-based systems may contain new variables not occurring in the

of the rule. The new variables are used to defifie relations between target concept arguments. For
ample, rule “mother(x,y) « father(z,y), husband(z,x)” means that if z is father of y and z is husband
iz then =z will be mother of y. Here x,y and z are variables and can be substituted by any person.
iw variable z is created to define another person who does not appear in the head of the rule, and |
used in predicates father and husband to define relation between z and y. This causes the problem
\determining the correct substitutions for new variables for constructing certain input values of the

kwork,

}

260 B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks

Table 2
Input value for each substitution for mesh(A3,2)

Input value opposite(x,y) opposite(yx) equal(xy) equal(y,x)
Substitute z by A3, and 7 by Al
Substitute z by A3, and y by A2
Substitute £ by A3, and y by A3
Substitute ¢ by A3, and y by A4
Substitute z by A3, and y by A5

O= OO0
(= R N
— QO OoOw
— OO0 0

To illustrate the problem, consider again the inputs and the network in Figs 6 and 7. The input valuyes
can be simply determined for the neurons of literals having no new variables, i.e., short(x), not Joaded(x), §
fixed(x), long(x) and free(x). However, it is not easy to determine the input values for the last nine neurons,
containing variable y since the definite substitutions are only made for the variables in the head of the
rule while no certain substitutions are made for the other variables (relational variables) which are not
defined in examples. In this case, we know only which constant must be substituted into variable ¢ %
but not to variable y because there are many possible constants that can be substituted into y. Actually,
correct substitutions are unknown which makes definite inputs cannot be created.

For example, if example mesh{A3,2) is fed into the network, variable z in unit opposite(x,y) is certainly 3
substituted by A3. However, it is quite ambiguous by which term (A7, A2, A3, A4 or A5) variable y should 3
be replaced. If we select A4 for the substitution, this literal will become opposite(A3,A4) which is true 1§
in background knowledge and the truth value for this input unit will be 1. However, if we select A for §
the substitution, the literal will be false. Table 2 shows all possible substitutions and the truth values of
the input nodes. From the above example, the input value for unit opposite(x,y) is not certain and cannot
be simply resolved for network training. This problem occurs when background knowledge contains
relational data and the learner cannot determine the appropriate value for the variable substitution.

To solve this problem, we apply the power of Multiple-Instance Learning (MIL) to provide input data
for our network. The detail of MIL is described in the following subsection.

2.2.2. Multiple-instance learning

At present, the majority of work in machine learning falls into three learning frameworks i.e., supervised
learning, unsupervised leaming and reinforcement learning. In supervised learning, the algorithm
aftempts to learn a concept that correctly classifies the labels of the training examples and generalizes
to predict cotrect labels of examples outside of the training set. Note that the labels of training data are
already defined by the external teacher. In unsupervised learning, on the other hand, training examples are
not labeled. Unsupervised learning tries to learn the structure of the underlying source of the examples.
Some examples of unsupervised learning are clustering and Principal Component Analysis (PCA) [5].
In the last learning style, reinforcement learning [15], the agent adapts his decision process based on
environmental feedback result to learn a policy, which can map states to actions potentially, Examples
are not labeled with the correct action; instead an occasional reinforcement signal denoting the utility of
some state is received. '

Although these three frameworks have many’efficient algorithms and theoretical tools to analyze them,
there are many learning problems that do not fall into any of these established frameworks. Specifically,
situations in which the examples are ambiguously labeled tend to be difficult for these frameworks.
These situations are called learning from ambiguous examples.

Multiple-Instance Learning, which is a form of semi-supervised learning, is a new framework for
learning from ambiguity. In the MIL framework {6,14], the training set is composed of a set of bags,
each of which is a collection of different numbers of instances. Each instance is described by a vector

B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks 261

£, Table 3

L Transformation of example mesh(A3,2) into input data of FOLNN

F bag of example Substitute Substitute Substitute Substitute Substitute

v mesh(A3,2) zbyA3,and zByA3,and xbyA3,and zbyA3,and zbyA3, and

g y by Al y by A2 y by A3 y.by A4 y by A5

E short(x) 0 0 0 0 0
not_loaded(x) 1 1 1 1 1
Jixed(x) 0 0 0 0 0

] long(x) 1 1 1 1 1

B free(x) 0 0 0 0 0

| short(y) 1 1 0 1 0
not_loaded(y) 1 0 i 1. 0

5 Jixed(y) 1 1 0 0 0

- long(y) 0 0 1 0 1
free(y) 0 0 0 1 1
opposite(x,y) 0 0 0 1 0
apposite(y,x) 0 0 0 1 0
equal(x,y) 0 0 0 0 1
equal(v,x) 0 0 0 0 1

,atures Like supervised learning, each example is labeled. Unlike supervised learning, an example
ot a simple feature vector, but it is a set of instances. A bag (an example) is labeled as a negative
if all the instances in it are negative. On the other hand, if a bag contains at least one positive
ince then it is labeled as a positive bag. With this concept, we define FOLNN ftraining data as a
)f training examples {By, Ba, ... By}, where n is the number of examples including positive and
itive ones. A bag is labeled as a positive bag if an example is positive, and negative otherwise (in
i-class classification, all bags are labeled as positive of their classes). The positive bag is given
its target value and the negative bag is assigned O, as defined in Eq. (2). Each bag contains m ;
nces {Bi1, Big, . . . , Bimi } where B;; is an instance with one possible binding (substitution). This is
7y important key because now we can use all cases of variable substitutions as one bag for learning;
ifore the appropriate value selection would not be a problem. Consider an example of positive bag
i(A3,2) as input data (see Table 3).

i shown in Table 3, the bag mesh(A3,2) has five instances each of which is one case of substitution
stitute y by AI, A2, A3, A4 or A5). Also, the bags mesh(Al,1) and mesh(A2,I) have five instances as
» as the positive bag mesh(A3,2). Note that the size of input vector of each instance is 14, equal to
umber of units in the input layer. For training, these bags are fed to the network one by one and the
ork weights are adapted by a modified version of the Backpropagation (BP) algorithm as described
€ next subsection. Note that if there is no new variable in the input neurons, then each bag example
iins only one instance and this problem can be reduced to supervised learning.

Training the rietwork

s is the last step of the FOLNN algorithm for adapting network weights to correctly classify training
iples. To train the network, the constructed training bags are fed to the network. Weight adaptation
8&d on a verion of the BP algorithm modified for MIL [31], which we will refer to as MIL.-BP.
-BP employs gradient descent to attempt to minimize the squared error between the network output -
'8 and the target values. Moreover, the activation function we use is sigmoid function, based on a
ithed and differentiable threshold function. Suppose the network has p input units, ¢ output units,
me hidden Jayer. Given this specification, the global error function (£) of the network is defined as

262 B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks

follows.

where Ej; is the error on bag i. E; is defined according to the type of bag 7 as:

(o
1&1‘}”& By ifB;=+
E; =< k=1
max By i B;y=-—
L 1<5<my i iik %
0 if (Bi = +) and (05 < oijk)a lir=1
Egjk =<0 if'(Bi = ——) and (Oijk < 0.5), forall &
l(l. — 0.2 therwi
5 bik Ozjk) otherwise

where

- Eij1 is error of output unit & on instance j in bag example ¢,

- B; = + is a positive bag example,

- B; = — is a negative bag example, N

- 0455 18 actual output of output unit k£ from bag example i, instance j, and
~ Ly, is target output of output unit k¥ from bag example <.

With the defined error function above, the MIL-BP algorithm is adapted for training FOLNN. In each
training epoch, the training bags created from the previous process are fed to the network one by one.
Then the error Ey;x is computed according to Eq. (5). If the network classifies an instance correctly, the
error for that instance is 0; otherwise, the error is half the squared differences between the target output
lix and the unit output o;;;. For a positive bag B;, if Ej;x, is O then all the rest of instances of this bag are
disregarded, and the weights are not changed for this epoch because we assume that the correct positive
instance is found. Otherwise the process continues and when all instances of B; are fed, the error of bag
E; is computed by using Eq. (4) and the weights in the network are changed'according to the weight
update rule of the standard BP [25]. Then the next bag is fed to the network and the training process is
repeated until one of the following two stopping criteria is satisfied: (1) the number of training iterations
increases to some predefined threshold; (2) the global error F in Eq. (3) decreases to some predefined
_ threshold. After having been trained, the refined network can be employed to classify unseen data,

+

3. Results

In the previous section, the three steps of the FOLNN algorithm were described. In this section, we

-evaluate FOLNN by performing experiments on the ILP problems and also compare the results obtained

by FOLNN with those obtained by an ILP system. The experiments are divided into two subsections,
testing with original data and noisy data.

T —

B. Kijsirikvd and T. Lerdlamnaochai / First-Order Logical Neural Networks 263

ﬁ‘ Datasets
Be
}}]‘o evaluate the proposed method, FOLNN, two standard datasets for testing ILP systems are used in

gxperiments, i.e., the finite element mesh design and the mutagenesis datasets. The detail of each
jataset is described as follows.

M.1. Finite element mesh design

“The finite element method, widely used by engineers and other modelers, is a way of analyzing stresses
Jphysical structures which are represented quantitatively as finite collections of elements. The goal
f finite element mesh design [8] is to learn general rules describing how many elements should be
=4 to model each edge of a structure. The dataset for the finite element mesh design consists of 5
Jg_ctures and has 13 classes (13 possible number of partitions for an edge in a structure). Additionally,
iere are 278 examples each of which is of the form mesh(Edge, Number of elements) where Edge is
Tﬁdge label (unique for each edge) and Number of elements indicates the number of partitions. The
ickground knowledge defines some of-the factors that influence the resolution of a finite element design.
}b'rantains relations describing the types of an edge (e.g. circuit, short), boundary conditions (e.g. free,

,gd) loadings (e.g. not _loaded, one side loaded) and the relations describing the structure of the object
g. neighbour, opposite).

}2 Mutagenesis
This problem is a two-class learning problem for predicting the mutagenicity of the molecules,
ether a molecule is active or inactive in terms of mutagenicity. It is important as it is relevant to
: understanding and prediction of carcinogenesis. The dataset for the mutagenesis [27] consists of
& molecules, of which 125 are mutagenic (active) and 63 are non-mutagenic (inactive). A molecule
fgscribed by listing its atoms as atom(AtomID, Element, Type, Charge) and the bonds between atoms as
nd{Atoml, Atom2, BondType). Furthermore, there are also four attributes provided for analysis of the
ounds 1.e., hydrophobicity (logP), energy level of the lowest unoccupied molecular orbit (LUMO)
two boolean attribute identifying compounds with three or more benzyl rings and compounds termed
senthryls (/1 and la). Note that LogP and LUMO are real-valued attributes, and these real values are
ctly used as inputs to FOLNN without being transformed to boolean values as the neural network
Eabi]ity to process real value data. The users have to specify which attributes are the real-valued ones.

. PROGOL

‘e ILP system used to compare with our method is PROGOL, a state-of-the-art ILP system [24].
F_ing positive examples, negative examples, background knowledge and mode declarations as inputs,
JGOL produces a most specific rule for a random seed example. The mode declarations specify, for
bargument of each predicate, the type of the argufnent and whether it should be a constant, a variable
nd before the predicate is called, or a variable bound by the predicate. PROGOL performs a complete
th of the hypothesis space bounded below by the most specific rule, using A*-like search. Because
1¢ ability of its complete search, PROGOL requires more time and memory than many ILP systems.
ertheless, PROGOL usually works well with two-class problems, positive and negative classes. For

ti-class problems, we train PROGOL to induce a set of rules for each class. Positive examples of one
s are freated as negative examples of the other class.

264 B. Kijsirikul and T Lerdlamnaochai / First-Order Logical Neural Networks

Table 4
The percent accuracies of FOLNN and
PROGOL on first-order datasets; FEM —
Finite Element Mesh Design, MUTA — Mu-

tagenesis
Dataset FOLNN PROGOL
FEM 59.18 57.80
MUTA 88.27 84.58*

Table 5
Performance comparison on the roisy mutagenesis dataset

Noise level PROGOL 0% PROGOL 10% PROGOL 15% FOLNN
in dataset noise setting noise setting noise setting

10% 64.23% 69.72° 71.29% 84.01
15% 60.56% 61,543 65.31° 81.28

3.3. Experiments

We performed three-fold cross validation [19] on each dataset. The dataset is randomly partitioned
into three roughly equal-sized subsets with roughly same proportion of classes as that of the original
dataset. Each subset is used as a test set once, and the remaining subsets are used as the training set.
The training set is employed to train the network as described in Section 2, and then the trained network
is used to classify test data. The output class corresponds to the output unit that gives the maximum
value. The final result is the average result over three-fold data. For each fold, the momentum of the
BP algorithm is set to 0.97, and the learning rate is 0.0001. The accuracies of PROGOL are computed
by assigning the majority class and negative class to uncovered examples in the case of multi-class and
two-class problems, respectively. Also we calculate confidence levels for the difference in accuracy
between FOLNN and PROGOL by using a one-tailed paired t test. Superscripts in Tables 4 and 5
denote the calculated results: ! is 98.0%, 2 is 99.0%, 2 is 99.5%, ¢ is 99.75% and no superscripts denote
confidence levels below 90.0%.

3.3.1. Results on first-order datasets

For the finite element mesh design dataset, the constructed network contains 130 units in the input
layer (determined by predicates in background knowledge), 13 output units (as the number of classes)
and one hidden layer with 80 hidden units (determined by the experiment). For the mutagenesis dataset,
the constructed network has 235 input units, 100 hidden units and 2 output units. Note that the network
is fully connected in both cases. The weights of the networks are randomly initialized and then adapted
by using MIL-BP. '

Our proposed method, FOLNN, has been compared with PROGOL [24], the state-of-the-art ILP
system. The average results over three-fold data on FEM and MUTA datasets are summarized in Table 4.
The experimental results show that the accuracies of our proposed method, FOLNN, are better than
PROGOL in both datasets. These results are aécording to nature of learned rules generated by PROGOL.
The induced rules are represented in the form “H « (L1 A La A ... A Ly,)”. If any one of preconditions
of the rule, e.g. L;, is false, the whole rule is then false; this is the weakness of the rule. On the other
hand, FOLNN does not have this problem as it is able to learn the importance of each literal L ; in terms
of the network weights.

We also did experiments by using the standard backpropagation algorithm to adjust weights of the
network; we consider each instance as one bag. The accuracies of the neural network using the standard

B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks 265

sre 74.33% and 39.74% for the datasets MUTA and FEM, respectively. This shows that MIL-BP is
gective algorithm for training our FOLNN.,

V&2 Results on a noisy dataset
"ﬁs.mentioned before, ILP systems have the restriction to handle noisy data. To see how well our

gmer handles noisy data, we evaluate FOLNN on noisy datasets, in addition to the results on the
ﬁ'g}na] dataset. The mutagenesis dataset is selected for this task. Using the three-fold data of the
{utagenesis dataset in the last experiment, 10% and 15% class noise is randomly added into the training
“hut no noise 1s added into the test set. In our case, adding x% of noise means that the target class
e is replaced with the wrong value in z out of 100 data by random selection. Suppose that if the
Bss value is 1 then it will be changed to 0 and vice versa. The accuracies of PROGOL and FOLNN on
jisy datasets are shown in Table 5.
Since PROGOL has an ability to handle noise in data as its option, “z% noise setting” in the table
\cifies that noise option of PROGOL is set to z%. This parameter sets an upper bound on the
‘reentage of negative examples allowed to be covered by an acceptable clause. As can be seen in the
ible 5, our proposed algorithm still provides average accuracies higher than PROGOL. Although, we
a set the configuration for PROGOL to handle noisy data, its accuracy drops fast, compared to that of
)LNN. When 10% noise is added into the dataset, PROGOL provides the highest accuracy of 71.29%
jile FOLNN provides 84.01%. Furthermore, PROGOL gives 65.31% as its maximum accuracy in the
% noise dataset, while FOLNN gives 81.28%. The PROGOL performance significantly drops due to
sensitivity to noise which is the main disadvantage of first-order rules directly induced by the ILP
stem. When noise is added, the learned rule is overfitting to the noise, and thus the rule contains
er-specific literals that are not true in general. The over-specific literals decrease the performance of
: learned rules. However, the accuracy of our method decreases much slower and is much higher than
it of PROGOL. FOLNN, because of the ability of noise tolerance by combining with neural networks,
nore robust against noise than the original first-order rules. FOLNN prevents overfitting noisy data

‘employing neural networks to give higher weights to important features and give less attention to
mportant ones.

Conclusions ' ‘ '
£arning first-order logic programs by using neural networks is still an open problem. In this paper,
present a novel hybrid connectionist symbolic system based on the standard feedforward neural
work that incorporates inductive learning from examples and background knowledge, called FOLNN
st-Order Logical Neural Network). The contribution of this paper is twofold. Firstly, for research
eural networks, the paper shows the successful application of the neural network to the learning of
~order logic programs. Secondly, for ILP reseafch, the paper demonstrates a new type of learning
ems which is based on the robust neural networks. We believe that by integrating the neural network
1 inductive learning from examples and background knowledge, the combined system contains the
ity of noise tolerance from connectionist systems and the ability of using background knowledge
1ILP systems. Therefore FOLNN competently alleviates the problem of first-order rules induced
he ILP system which are not robust enough to noisy or unseen data. The prominent advantage of
NN is that it can learn from inputs provided in form of first-order logic programs directly. Except
LP systems, other learners cannot directly learn from this kind of programs as they cannot select the

266 B. Kijsirikul and T. Lerdlamnaochai / First-Order Logical Neural Networks

appropriate values for variable substitution, but our method can solve this problem by applying MIL ta§
learn from ambiguous variable substitutions.

In the experiments, FOLNN shows its efﬁc1ency in comparison with the well-known ILP system
PROGOL. FOLNN presents the ablhty of noise tolerance and produces the better performance tha
PROGOL. This is because of the ability of the neural network that outperforms PROGOL in the presence 4
of noisy data by giving higher weights to important attributes and less attention to unimportant ones; :
Although our main objective is to learn the first-order logic, FOLNN can be applied to other tasks such,§
as learning from proposmonal datasets containing missing values in some attributes. 4

One interesting issue in the field of intelligent hybrid system is knowledge extraction. Knowledge_'=
extraction from a trained network is one phase of the neural-symbolic learning system. It is the phase, §
that is to translate the refined concepts which are in form of neural networks into human readable rules,
Knowledge extraction is of significant interest in data mining and knowledge discovery applications such 1
as medical diagnosis. However, in this work we do not attentively focus on this step and have not yet }
explored rule extraction from trained networks. Nevertheless, we surmise that many researches [1,7,10,
28], can be adapted to extract rules from our networks. 1

Acknowledgement

This work was supported by the Thailand Research Fund. We would like to thank the anonymous
referees for their valuable comments.

References

{11 R.Andrew, J. Diederich and A.B. Tickle, Survey and Critique of Techniques for Extracting Rules from Trained Artificial
Neural Networks, Knowledge-Based Systems 8 (1995), 373-389.

[2] R.Basilio, G. Zaverucha and V.C. Barbosa, Learning Logic Programs with Neural Networks, in: Proceedings of the 11th
International Conference on Inductive Logic Programming, number 2157 in Lecture Notes in Artificial Intelligence, C.
Rouveirol and M. Sebag, eds, Springer, 2001, pp. 15-26.

[31 C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[4] M. Botta, A. Giordana and R, Piola, FONN: Combining First Order Logic with Connectionist Learning, Proceedings of
the 14th International Conference on Machine Learning, Nashville, TN, 1997, 48-56.

[5] C.Chatfield and A.J. Collins, Introduction to Multivariate Analysis, London: Chapman and Hall, 1980.

[6] Y. Chevaleyre and I.D. Zucker, A Framework for Learning Rules from Muluple Instance Data, Proceedings of the 12th
European Conference ot Machine Learning, number 2167 in Lecture Notes in Computer Science, Freibutg, Germany,
2001, 49-60.

[71 M.W. Craven, Extracting Comprehensible Models from Trained Neural Networks, Department of Computer Science:
University of Wisconsin-Madison, 1996.

[8] B. Dolsak and S. Muggleton, The Application of Inductive Logic Programming to Finite Element Mesh Design, in:
Inductive Logic Programming, S. Muggleton, ed., Academic Press, 1992, pp. 453472,

[9] S. Dzeroski, S. Schulze-Kremer, K.R, Heidtke, K. Siems and D. Wettschereck, Applying ILP to Diterpene Structure
Elucidation fmm 13C NMR Spectra, Proceedings of the 6th International Workshop on Inductive Logic Programming,
number 1314 in Lecture Notes in Artificial Intelligence, Berlin: Springer-Verlag, 1996, 14-27.

[10] A.S.d.A. Garcez, K.B. Broda and D.M. Gabbay, QfeuraI-Symbohc Learning Systems, London: Springer-Verlag, 2002.

[11) P Hitzler and A.K. Seda, Continuity of Semantic Operators in Logic Programming and Their Approximation by Artificial
Neural Networks, in: K7 2003: Advances in Artificial Intelligence, 26th Annual German Conference on Al, A. Guenter,
R. Kruse and B. Neumann, eds, Berlin: Springer-Verlag, 2003, pp. 355-369.

[12] S.Holldobler, Y. Kalinke and H.P. Stérr, Approximating the Semantics of Logic Programs by Recurrent Neural Networks,
Applied Intelligence 11 (1999), 45-58.

[13]) S.Holldobler and Y. Kalinke, Towards a Massively Parallel Computational Model for Logic Programming, Proceedings
of the ECA194 Workshop on Combining Symbolic and Connectionist Processing (ECCAT), Amsterdam, The Netherlands,
1994, 68-77.

B. Kijsirikul and T. Lerdlamnaochat / First-Order Logical Neural Networks 267

Iix_ Huang, S.C. Chen and M.L. Shyu, An Open Multiple Instance Learning Framework and Its Application in Drug
“Activity Prediction Problems, Proceedings of the 3rd IEEE Symposium on Biolnformatics and BioEngineering (BIBE'03),
B*thesda Maryland, 2003, 53-59.
, Kaelbling, M.L. Littman and A.W. Moore, Reinforcement Learning: A Survey, Journal of Artificial Intelligence
march 4 (1996), 237-285.
£ B. Kijsirikul, S. Sinthupinyo and K. Chongkasemwongse, Approximate Match of Rules Using Backpropagation Neural
| Networks, Machine Learning 44 (2001), 273-299.
- Lavrac and S. Dzeroski, Inductive Logic Programming Technigues and Applications, New York: Ellis Horwood, 1994.
B J_I Mahoney and R.J. Mooney, Combining Connectionist and Symbolic Learning to Refine Certainty-Factor Rule-Bases,
J[Connection Science 5 (1993), 339-364.

[:rM Mitchell, Machine Learning, New York: The McGraw-Hill Companies Inc., 1997,

S H. Nienhuys-Cheng and R.d. Wolf, Foundarion of Inductive Logic Programmmg, New York: Springer-Verlag, 1997.

| R, Parekh and V. Honavar, Constructive Theory Refinement in Knowledge Based Neural Networks, Proceedings of the
{ International Joint Conference on Neural Networks, Anchorage, Alaska, 1998, 2318-2323,

I. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Francisco: Morgan
ﬁKaufmann Publishers Inc., 1988.

" JR. Quinlan, C4.5:Programs for Machine Learning, San Francisco: Morgan Kaufmann Publishers Inc., 1993.
¥§. Roberts, An Introduction to Progol, Technical Manual: University of York, 1997.

D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning Internal Representations by Error Propagation, in: Paraillel

Distributed Processing, (Vol. 1), D.E. Rumelhart and J.L. McClelland, eds, Cambridge, MA: The MIT Press, 1986,
lvpp. 318-362.
{+L. Shastri and V. Ajjanagadde, From Simple Associations to Systematic Reasoning: A Connectionist Representation of
| Rules, Variables, and Dynamic Bindings Using Temporal Synchrony, Behavioral and Brain Sciences 16 (1993}, 417494,
F A, Srinivasan, S.H. Muggleton, M.J.E. Sternberg and R.D. King, Theories for Mutagenicity: A Study in First-Order and
| Feature-Based Induction, Artificial Intelligence 85 (1996), Elsevier Science Publishers, 277-299.
\ 5.G. Towell and J.W. Shavlik, The Extraction of Refined Rules from Knowledge-Based Neural Networks, Machine
v Learning 13 (1993), 71-101.
+G.G. Towell and J.W. Shavlik, Knowledge-Based Artificial Neural Networks, Amﬁcml Intelligence 70(1-2) (1954),
=119-165.

¢ 8. Wermter and R. Sun, An Overview of Hybrid Neural Systems, in: Hybrid Neural Systems, number 1778 in Lecture
\ Notes in Artificial Intelligence, S. Wermter and R. Sun, eds, Springer, 2000, pp. 1-13.

ZH. Zhou and M.L. Zhang, Neural Network for Mult-Instance Learning, Proceedings of the International Conference
. oo Intelligent Information Technology, Beijing, China, 2002, 455-459,

BNANTRNIBLAT 3

Adaptive Directed Acyclic Graphs: Algorithms
for Multiclass Support Vector Machines

Boonserm Kijsirikul and Thimaporn Phetkaew

Department of Computer Engineering, Chulalongkorn University, Thailand.
email: boonserm.k@chula.ac.th, thimaporn.p@student.chula.ac.th

Abstract. Constructing multiclass Support Vector Machines {SVMs)
is a challenging research probiem. The Decision Directed Acyclic Graph
{DDAG) method reduces evaluation time, while maintaining accuracy
compared to the Max Wins, which is probably the currently most accu-
rate method for multiclass SVMs. We proposed a method, called Adap-
tive Directed Acyclic Graph {ADAG), which is based on the previous
approach, the DDAG, and is designed to remedy some weakness of the
DDAG caused by its structure, We proved that the expected accuracy
of the ADAG is higher than that of the DDAG. We also proposed an en-
hancement version of the ADAG, called Reordering Adaptive Directed
Agyclic Graph (RADAG), to find one best accuracy from all possible
ADAG. The RADAG choose the optimal order of binary classifiers in
nodes in the graph of the ADAG by using the reordering algorithm
with minimum-weight perfect matching. We empirically evaluated our
approachs by comparing the ADAG and the RADAG with the DDAG
and the Max Wins on several data sets.

1 Introduction

Support Vector Machines (SVMs) have been well developed for binary classifi-
cation [28]. However, many real world problems involve multiclass classification,
such as optical character recognition, phoneme classification, text classification,
etc. Several approaches of extending SVMs for solving the problem of multiclass
classification have been proposed {28,10,7,15,18,16,9, 30,22,1, 17, 26).

The standard approaches for constructing N-class SVMs are to consider the
problem as a collection of binary SVMs, such as One-Against-the-Rest [28] and
One-Against-One [16]. The One-Against-the-Rest (1-v-R) approach works by
constructing a set of N binary classifiers. The i** classifier is trained with all of
the examples in the i** class with positive labels, and all other examples with
negative labels. The final output is the class that corresponds to the classifier .
with the highest output value. On the other hand, the One-Against-One (1-v-1)
approach simply constructs all possible binary classifiers from a training set of
N classes. Each classifier is trained on only two out of N classes. Thus, there
will be N(N — 1)/2 classifiers. In the Max Wins algorithm [11] which is one of
1-v-1 approaches, a test example is classified by all of classifiers. Each classifier
provides one vote for its preferred class and the majority vote is used to make
the final output. Although Max Wins offers faster training time compared to
the 1-v-R method, it is very inefficient in term of evaluation time. Using a new

learning architecture, DDAG, Platt et al. [21] proposed an algorithin that reduces
evaluation time, while maintaining accuracy compared to the Max Wins. The
comnparison experiments in several methods on large problems in [12] show that
the Max Wins and the DDAG may be more suitable for practical use.

In this paper we point out some limitations of the DDAG caused by its
structure which needs an unnecessarily high numnber of node evaluations for the
correct class and results in high cumulative error. Our two modified versions of
the DDAG, the ADAG and the RADAG, will increase accuracy by minimizing
the number of node evaluations for the correct class. This advantage is due to
the tournament-based architecture that is structurally flatter than the DDAG.
We prove that the expected accuracy of the ADAG is higher than that of the
DDAG, and also empirically evaluate our approaches by comparing the ADAG
and the RADAG with the algorithm of the DDAG and the Max Wins on several
data sets from UCI Machine Learning Repository [4] and Thai printed character
data set [20].

2 Decision Directed Acyclic Graphs

A disadvantage of the 1-v-1 SVMs is their inefficiency of classifying data as the
number of SVMs grows superlinearly with the mamber of classes. Platt et al.
introduced a new learning architecture, DDAG, and an algorithm, DAGSVM,
to remedy this disadvantage [21].

2.1 The DDAG Architecture & the DAGSVM Algorithm

A Directed Acyclic Graph (DAG) is a graph whose edge has an orientation and
no cycles. Platt et al. used a rooted binary DAG, which has a unique node with
no arcs pointing into it, and other nodes which have either 0 or 2 arcs leaving
them, to be a class of functions used in classification tasks. In a problem with N
classes, a rooted binary DAG has N leaves labeled by the classes where each of
the N(N — 1)/2 internal nodes is labeled with an element of Boolean function.
The nodes are arranged in a triangular shape with the single root node at the
top, two nodes in the second layer and so on until the final layer of N leaves,

To evaluate a DDAG, starting at the root node, the binary function at a node
is evaluated. The node is then exited via the left edge, if the binary function is
--1; or the right edge, if the binary function is 1. The next node’s binary function
is then evaluated. The value of the decision function is the value associated with
the final leaf node (see Figure 1). Only ¥ —1 decision nodes will be evaluated in
order to derive an answer. The DDAG can be implemented using a list, where
each node eliminates one class from the list. The implementation list is initialized
with a list of all classes. A test point is evaluated against the decision node that
corresponds to the first and last elements of the list. If the node prefers one of the
two classes, the other class is eliminated from the list, and the DDAG proceeds
to test the first and last elements of the new list. The DDAG terminates when
only one class remains in the list.

Fig. 1. The DDAG finding the best class out of four classes.

The DAGSVM algorithm creates a DDAG whose nodes are maximum margin
classifiers over a kernel-induced feature space. Such a DDAG is obtained by
training each ‘4 vs 7' node only on the subset of training points labeled by ¢ or
j. The final class decision is derived by using the DDAG architecture. For the
DAGSVM, the choice of the clags order in the list {or DDAG) is arbitrary.

2.2 Issues on DDAG

Systernatically innovated, the DDAG has outperformed the standard algorithm
in terms of speed. However, the DDAG has the main weakness that the number
of node evaluations for the correct class is unnecessarily high. This results in
high cumulative error and, hence, the accuracy. The depth of the DDAG is
N —1 and this means that the number of times the correct class has to be tested
against other classes, on average, scales linearly with V. Let consider a case of
20-class problem. If the correct class is evaluated at the root node, it is tested
against other classes for 19 times before it is correctly classified as the output.
Despite large margin, there exists probability of misclassification, let say 1%,
and this will cause 1 — 0.99'® = 17.38% of cumulative error in this situation.
This shortcoming becomes more severe if the number of classes increases. The
issue raised here motivates us to modify the DDAG.

3 Adaptive Directed Acyclic Graphs

In this section we introduce a new approach to alleviate the problem of the
DDAG structure. The new structure, the Adaptive DAG, lowers the depth of
the DAG, and consequently the number of node evaluations for the correct class.

3.1 The ADAG Architecture

An Adaptive DAG (ADAG) is a DAG with a reversed triangular structure. In
an N-class problem, the system comprises N(N — 1)/2 binary classifiers. The
ADAG has &V — 1 internal nodes, each of which is labeled with an element of

Boolean function. The nodes are arranged in a reversed triangle with N/2 nodes
(rounded up) at the top, N/2? nodes in the second layer and so on until the
lowest layer of a final node, as shown in Figure 2(a}.

@) @
A2 A3 Ad |112i3|4l
-

Al
@ Adaptive Layer 1
B (7]
Adaptive Layer 2

(a) [b)

5167] 8] mitalLis

Adaptive Layer 1

Adaptive Layer 2

Output Layer

Output Layer

Fig. 2. (a) The structure of an adaptive DAG for an 8-class problem, and {b) the
corresponding implementation through the list.

To classify using the ADAG, starting at the top level, the binary function
at each node is evaluated. The node is then exited via the outgoing edge with a
message of the preferred class. In each round, the number of candidate classes is
reduced by half. Based on the preferred classes from its parent nodes, the binary
function of the next-layer node is chosen. The reduction process continues until
reaching the final node at the lowest level. The value of the decision function is
the value associated with the message from the final leaf node (see Figure 2(a)).
Like the DDAG, the ADAG requires only N — 1 decision nodes to be evaluated
in order to derive an answer. Note that the correct clags is evaluated against
other classes for log: IV times (rounded up) or less, considerably lower than the
number of evaluations required by the DDAG, which scales linearly with .

3.2 Implementation

An ADAG can be implemented using a list, where each node eliminates one class
from the list (see Figure 2(b)). The implementation list is initialized with a list of
all classes. A test point is evaluated against the decision node that corresponds
to the first and last elements of the list. If the node prefers one of the two
classes, the class is kept in the left element's position while the other class will
be eliminated from the list. Then, the ADAG proceeds to test the second and
the elements before the last of the list. The testing process of each round ends
when either one or no class remains untested in the list. In case that there is
one class remaining untested, the class will be put at the right-most position of
the next round list. After each round, a list with NV elements is reduced to a list
with N/2 elements (rounded up). Then, the ADAG process repeats until only
one class remains in the list.

4 Analyses of DDAG & ADAG

The following theoroins give the expected accuracy of the DDAG and ADAG.
The proofs of the theorems will be given in Appendix.

Theorem 1. Let p be the probability that the correct class will be eliminated
from the implementation list, when it is tested against another class, and let the
probability of one of eny two classes, except for the corvect cluss, being eliminated
from the list be 0.5. Then under a uniform distribution of the position of the true
closs in the list, the expected accurucy of the DDAG is (1/N)[(1—p)/p+ (1 —
p)V=1 — (1~ p)¥ /p|, where N is the number of classes.

Proof. See Appendix.

Theorem 2. Let p be the probability thot the correct class will be eliminated
from the implementation list, when it is tested against another class, and let the
probability of one of any two classes, except for the correct class, being eliminated
from the list be 0.5. Then under a uniform distribution of the position of the true
cluss in the list, the expected accurucy of the ADAG is (2N — 2[lee2N1y N)(1 -
piltes=NT 4 ((2fleeNT _ Ny INY(1 —p)[t092N1=) | phere N is the number of classes,
and fx] is the leust integer greater than or equal to z.

Proof. See Appendix.

The above theorems show that the accuracy of the ADAG decreases much
slower than that of the DDAG, with the increase of the number of classes. For
example, in case of p = 0.01 and N = 20, according to the above theorems, the
expected accuracy of the ADAG and DDAG are 95.68% and 90.18%, respectively.

According to the theorems mentioned above, the ADAG should have much
advantage over the DDAG when the number of classes increases. We evaluated
the performance of the ADAG. Figure 3 shows the trends of the accuracy of
classification of the DDAG and the ADAG when the number of classes is varying,.
The experiment is based on the English letter image recognition which has 26
classes [4]. The dataset is trained by using Polynomial kernel degree 4. For the
DDAG, the number of evaluations for the correct class is unnecessary high, This
results in higher cumulative error and lower the accuracy. Using the reversed
triangular structure, the ADAG reduces the number of times the correct class is
tested against other classes, and thus reduces the cumulative errors. This greatly
improves the performance of the DDAG. The improvement comes in the form of
higher accuracy with higher confidence of achieving the accuracy. Our approach
is empirically proved to increase accuracy and confidence, especially in problems
with the higher nurnber of classes.

5 Reordering Adaptive Directed Acyclic Graphs

The accuracy of a binary classifier depends heavily on its generalization per-
formance. In this section we introduce a method to select an optimal order of

—#—DDAG ~a— ADAG —‘

10064

99.00 {l\.\

93.00

97.00 \.:‘

96.00 kf:\

95.00

Accuracy

94.00

1 3 5 7 9 11 13 15 17 19 21 23 25
#Class

Fig. 3. The trends of the classification accuracy when the number of classes is varying.

classes in the list (binary classifiers) by dynamically reordering the order of
classes during classification process according to each test data. Only binary
classifiers which have small generalization errors will be used in data classifica-
tion. We called this method the Reordering Adaptive Directed Acyclic Graph
(RADAG).

5.1 The RADAG Architecture

The structure of the ADAG and the RADAG are the same. But the differences
are the initialization of the binary classifiers in the top level and the order of
classes in lower levels (see Figure 4). In the first step, we use a reordering algo-
rithm with minimum-weight perfect matching described in the next subsection
to choose the optimal order of classes to be the initial order. We use the order to
evaluate every test example. In the second step, as in the ADAG, test points of
the RADAG are evaluated against the decision nodes. In the third step, unlike
the ADAG, the RADAG will reorder the order of classes before processing in
the next level by using the reordering algorithm with minimum-weight perfect
matching. This order differs for each test example, and it depends on the results
of nodes from the previous level. The second and the third steps are repeated
until there is only one class remains.

5.2 The Reordering Algorithm

In this subsection we describe the reordering algorithim with minimum-weight
perfect matching.

5.3 Generalization Error of Classifiers

The ability of a hypothesis to correctly classify data not in the training set is
known as its generalization [8]. Generalization analysis of pattern classifiers is

i L A

Initlalizing the order of classes

Initial phase

1vs3 2vs8 dvs7 Svs6 ivsj

al A2 A3 A An #—— Classifylng
4 new example
Reordering the order
=T
Classifying &
AZviAd - Reordering phase
@ «+— Fiaal elassifier Qutput phase

Fig. 4. Classifying process of the RADAG.

concerned with determining the factors that affect the accuracy of a pattern clas-
sifier [3]. Generalization performance of SVMs can be approximated by bounding
on the generalization error. Define the class F of real-valued functions on the ball
of radius R in B™ as F' = {w+ w-x: [lw|| € 1,||x|] £ R}. There is a constant
¢ such that, for all probability distributions, with probability at least 1 — § over
! independently generated examples 2, if a classifier & = sgn{f) € sgn(F) has
margin at least ¥ on all the examples in 2, then the error of & is no more than

c{R: 1
7 (—T—z-iog I+ log (3)) (1)

Furthermore, in case that the training data cannot be separated by the hyper-
plane without error, with probability at least 1 — & , every classifier k € sgn{F)
has error no more than

k c R 1 .
o s (Bt (3) ®

where k& is the number of labeled examples in z with margin less than . Below
we show an example of the generalization error of classifiers. The experiment
is based on the English letter image recognition data set from [4], which has
26 classes. Hence there are 325 classifiers. The classifiers are trained by using
the Polynomial kernel of degree 3. In Figure 5, the generalization errors of all
classifiers expressed by Equation 2 are depicted. The generalization errors of all
classifiers are varying. The average of all of them is 28.82.

5.4 Algorithm

For the reason described above, we consider the generalization errors in order
to choose the optimal order with less chance to predict the wrong class from

Genershization Error
300

250 —_—

200

150

100 |

s iy L L i

/]

Classifisr No,

Fig. 5. The generalization errors of 325 classifiers.

all possible W%W orders. Among N (N — 1)/2 classifiers, N/2 classifiers
which have small generalization errors will be considered to be used in data
classification.

Let G = (V,E) be a graph with node set V' and edge set £. Each node
in G denotes one class and each edge denotes one binary classifier which has
a generalization error from equation 2 (see Figure 6(a)). The output of the
reordering algorithm for graph (7 is a subset of edges with the minimum sum of
generalization errors of all edges and each node in G is met by exactly one edge
in the subset (see Figure 6(b)). Given a real weight ¢, being generalization error
for each edge e of G, the problem of reordering algorithm can be solved by the
minimum weight perfect matching that finds a perfect matching M of minimum
weight 3 (c. 1 e € M).

For U CV,let E(U) = {{1,7): (,j) € E,i € U,j € U}. E(U) is the set of
edges with both endpoints in U. The set of edges incident to node 1 in the node-
edge incidence matrix is denoted by 8(¢). The convex hull of perfect matchings
on a graph G = (V, E) with |V| even is given by
a)x € RT
b) Eeeﬁ(v) Te=1forveV
€) Pecr) Te < []%[J for all odd sets U C V with |U]| > 3
or by {a),(b) and
d) X.esr) *e > 1 for all odd sets U C V with |U| >3
where |E| = m and x, = 1 means that e is in the matching. So the minimum
weight of a perfect matching is at least as large as the value of

min Z Celp (3)

eck

where g satisfies ” (a),(b) and (¢)” or "{(a),(b) and (d)”. Therefore, the reordering
problem is to solve the linear program in Fquation 3.

8

th 6 4

Y ®

Fig. 6. (a) A graph for an 8-class problem (b) An example of the output of the re-
ordering algorithm.

5.5 Estimating the Difference between Means of Generalization
Errors

In this subsection we will explain test concerning means of generalization errors
of classifiers of interest (the binary classifier of the correct class and other classes
in the order of clagses), which are selected by the ADAG and the RADAG. For
the ADAG, we randomly selected the classifiers to be used in data classification,
whereas for the RADAG the classifiers are selected by using the minimum-weight
perfect matching algorithm. This may be analyzed using a method called the
one tailed paired t test.
To estimate the difference between two means, we wish to test

Ho:ps —p2 =0,

H,: H1 — pa > 0.
The point estimate of the difference p) — of two population means is given
by X1 — Xu. The form of the paired t test is

K-X
b= Sa/vn)

where Sy is the standard deviation of the sample of differences X; — X,.
Assume that the distribution of generalization errors is normal distribution.
The simulation is based on the dataset which has 26 classes, and hence there
are 325 binary classifiers. In the experiment, a generalization error is randomly
selected to each classifier with eqgual probability, uniformly distributed. We ex-
amine 5,200 orders of classifiers, where for the first 200 orders we assume that
the correct class is class 1, for the second 200 orders we assume that the correct
class is class 2 and so on. For the ADAG, we randomly selected 5,200 orders of
classifiers. For the RADAG, 5,200 orders are selected by using the minimum-
weight perfect matching algorithm so all orders are the same. Then we compute
sum of generalization errors of classifiers of interest that correspond to the binary
classifier of the correct class and other classes in the order. The experiments are
repeated 100 times. Then we calculate the sample mean X; (Xapag) and X,

(Xrapac). Using o = 0.001 with a one-tailed test. and degree of freedom = 99,
the null hypothesis is rejected. This means that the RADAG obtains classifiers
whose generalization errors are statistically significantly lower than the ADAG.

6 Experiments

In the experiments, we compared the accuracy of classification of four algorithms,
i.e., the Max Wins, the DDAG, the ADAG, and the RADAG. We also compared
the computational time between the ADAG, the RADAG and the Max Wins.

6.1 Data Set and Experimental Setting

The experiments are based on several data sets from the UCT Machine Learn-
ing Repository [4] including glass, satimage, segment, shuttle, vowel, soybean,
letter and isolet (see Table 1). For the soybean problem, we discarded the last
four classes because of missing values. In addition, we examined our methods
with Thai printed charafter recognition [20], which has 68 classes including 44
consonants, and 26 vowels and tonal masks. For the training set, the characters
were printed by laser printer with 600 dpi resolution. Then they were copied by
a copier machine with saturated ink. There are two test sets. For the test set of
Thai printed character 1 data set, the charecters were printed by laser printer
with 600 dpi resolution. For the test set of Thai printed character 2 data set,
the characters were printed by laser printer with 600 dpi resolution. Then they
were copied by a copier machine with pale ink. These data sets are different in
the number of classes, the number of dimensions, and sizes. 68 classes is the
most classes and 617 dimensions is the most dimensions which are used in the
experiment.

In these experiments we scaled both training data and test data to be in
[-1,1} and employed Polynomial and RBF kernels. In the training phase, the
N{N - 1)/2 binary classifiers were constructed by using the software package
called SV M9t version 5.0 [13, 14]. For the DDAG and the ADAG, we examined
all possible orders of classes for datasets having not more than 8 classes, whereas
we randomly selected 50,000 orders for datasets having more than 8 classes. We
then calculated the average of accuracy of these orders.

Table 1. Description of the datasets used in the experiments.

Dataset Training data]Test data]Classs[Dimension
Glass 214 - 6 9
Satimage 4,435 2,000 & 36
Segment 2,310 - K 18
Shuttle 43,500 14,500 7 9
Vowel 528 462 11 10
Soybean 290 340 15 35
Letter 15,963 4,037 26 16
zolet 6,238 1,559 26 617
‘ThaiPrintedCharacterl 3,264 3,264 68 128
‘ThaiPrintedCharacter2 3,264 3,264 68 128

10

6.2 Experimental Results

Table 2 and Table 3 present the results of comparing four methods including
the Max Wins, the DDAG, and our methods, the ADAG and the RADAG. We
present the optimal parameters, d in the Polynomial kernel [(x -y + 1)|¢ and ¢
in the RBF kernel exp(—|x — y|3/¢). The best accuracy among these methods is
illustrated in bold-face. ****, *** ** and * in the tables mean 99.99%, 99%, 95%,
and 90% confidence interval for estimating the difference between accuracies of
the ADAG and other methods, using a one-tailed paired t-test. 444, 144,
++ and + mean 99.99%, 99%, 95%, and 90% confidence interval for estimating
the difference between accuracies of the RADAG and other methods using a
one-tailed paired t-test.

To estimate the difference between accuracies, we added up the training set
and test set into one set. Then we use a k-fold cross-validation method in which
the set is partitioned into k disjoint, equal-sized subsets. In this k-fold cross-
validation approach, each example from the set is used exactly once in a test
set, and k-1 times in a training set [19]. In our experiment, we use 5-fold crsss-
validation for the glass dataset and 10-fold crsss-validation for all others.

For estimating the difference between errors of two learning methods, the
mean difference ¥ in errors from all disjoint subsets is returned as an estimate
of the difference between the two learning algorithins [19]. The approximate N%
confidence interval for estimating the difference using Y is given by

(}_’ — tNg-15%: Y + tne-15%) (5)
where ¥ is the sample mean defined as
o k
Y = % Zi.‘:l K

¥; is the difference iu error between two learning methods from the i*? subset,
and Sy is the estimated standard deviation of the sample mean defined as

Sy = /iy T (% - V)%

As shown in the tables, our methods yield higher accuracy than the Max
Wins and the DDAG in almost all of datasets. The results show that the ADAG
performs statistically significantly better than the DDAG in satimage, shuttle,
vowel, soybean and letter problems. In case of the RBF kernel, the ADAG per-
forms statistically significantly better than the DDAG in shuttle, soybean, letter
and isolet problems. The results also show that the RADAG performs statisti-
cally significantly better than the other methods in the segment, shuttle, vowel
and letter problems in case of the Polynomial kernel. In case of the RBF kernel,
the RADAG performs statistically significantly better than the other methods
in the glass, shuttle, vowel, soybean and letter problems. These show the effec-
tiveness of the ADAG and the RADAG.

6.3 Computational Time

Table 4 and Table 5 present the comparison of the running time for classifying
test data between the ADAG, the RADAG and the Max Wins for Polynomial

11

Table 2. A comparison of the accuracy of classification using the Polynomial kernel.

Dataset d Max Wins] d DDAG d ADAG d RADAG
Glass 2 T1.078 2 71.069 2 TiLH.13K 2 T1.063
Satimage 6 89.615 6 BD.599™"* 6 89,522 8 89.681
Segment 8 97.36144 (B 97.360, 4 8 97.383, 8 ©7.533
Shuttle 8 99.923. |8 99.918%% |8 99.922,, |8 99.930
Vowel 3 93.001; |3 98.872% 3 98894, |2 98.990
Soybean 3 92.470 5 92.2027 5 92.281 3 92.698
Letter 3 96512, |3 95.9943%7,| 3 96.379.44| 4 968.074
Isolet 3 97.488 3 97.484 3 97.485 3 097.499
ThaiPrintedCharacterl| 2 99.246 2 99,239 2 99.242 2 99,234
ThaiPrintedCharacter2| 2 99677 2 U9.657 2 9Y.670 2 99.617

Table 3. A comparison of the accuracy of classification using the RBF kernel.

Dataset ¢ Max Wins[¢ DDAG [ADAG [RADAG
Glass 0.09 73.238; |0.08 T2.8504 Q.08 72759, 0.09 74.319
Satimage 3.0 92,148 3.0 92129 3.0 92.141 3.0 92,152
Segment 0.7 B7.658 |07 97.652 0.7 97.850 0.7 97.576
Shuttle 3.0 059,928 3.0 99.926_‘:; 3.0 999274 3.0 90.931
Vowel 0.2 .0B.9804 |02 98.9654 0.2 98.975, 0.2 99.091
Saybean 0.08 92.533; [0.07 91.739;_'_', 0.08 92.5704 0.07 93.016
Letter 3.0 96512, |3.0 95.994_;_;;_4_ 3.0 96,379 4 44.3.0 96.6834
Isolet 0.01 97.527 0.0l 97.517 0.01 97.523 0.003 97.589
ThaiPrintedCharacter (0.003 98.387 (0.003 89.387 0.003 99.387 0.003 99.387
ThaiPrintedCharacter2(0.004 99.663 (0,004 89.663 0.004 99.663 0.004 99.663

and RBF kernels by using a 400 MHz Pentium II processor. There is no running
time of the glass dataset because it has too few test examples to measure the
time. For the segment problem, there is no provided test data so we use 5-fold
crsss-validation. The results show that both the ADAG and the RADAG require
low running time in all data sets, especially when the number of classes and/or
the number of dimensions are relatively large. For an N-class problem, the Max
Wins requires N(N — 1)/2 classifiers for the classification whereas the ADAG
and the RADAG require only N — 1 classifiers. Hence the larger the number of
classes the more running time the Max Wins requires than the ADAG and the
RADAG. Moreover, the number of dimensions affects the running time of each
classifier. As the result, the larger the number of dimensions the more running
time the Max Wins requires than the ADAG and the RADAG. For the RADAG,
the number of classes affects the running time for reordering. However, it takes
a little time even when there are many classes.

The Max Wins needs O{N?) number of comparisons for the problem with
N classes. The DDAG reduces the number of comparisons down to O{N). By
reducing the depth of the path, the ADAG requires (V) comparisous of binary
clagsifiers with accuracy higher than that of the DDAG. The RADAG needs a
little time more than the ADAG for reordering the order of classes. Note that,
currently, the minimum-weight perfect matching algorithm, which is used in the
reordering algorithm, runs in time bounded by O(N{M + NlogN)) [6], where
N is the number of nodes (classes) in the graph and M = N(V — 1}/2 is the
number of edges (binary classifiers). The RADAG will reorder the order of classes
in every level, except for the last level. The order of classes in the top level is

12

Table 4. A comparison of the computational time using the Polynomial kernel.

HADAG

Dataset Test data|Class| Dimension| d [ADAG TReordering] Total |Max Wins
{seconds)| (seconds) |(seconds)| (seconds)

Satimage 2,006 6 36| & 1.90 0.50 2.40 .47
Seygrnent 462 7 18(8 0.11 0.08 0.19 0.41
Shuttle 14,500 7 9| 8 1.76 3.38 5.13 5.18
Vowel 462 11 10| 2 0.12 0.26 0.37 .61
Soybean 310 15 35] 3 0.30 0.25 0.55 1.86
Letter 4,037 26 16| 4 8.4 4.20 12.68 125.568
Isolet 1,559 26 B17| 3 116.02 1.48 117.50| 1,671.98
ThaiPrintedCharacter] 3,264 68 128(3 94 .63 13.83 108.46| 2,996.64
ThaiPrintedCharacter2 3,264 68 128(3 96.41 13.19(109.60| 3,042.98

Table 5. A comparison of the computational time using the RBF kernel.

RADAG

Dataset Test data|Class|Dimension| ¢ [ADAG [Reordering] Total |Max Wins
(seconds)| (seconds) |(seconds)| (seconds)

Satimage 2,000 [3 36(3.0 11.75 .51 12.26 37.13
Segment 462 7 14]0.7 0.24 .10 0.34 .82
Shuttle 14,500 7 9]3.0 3.36 0.63 3.99 9.27
Vowel 4821 11 10(0.2 0.10 0.27 0.37 0.61
Soybean 340 15 350.07 0.32 0.45 0.77 2.20
Letter 4,037 26 1613.0 62,27 3.69 65.96 802.8%
Isolet 1,559 26 617)0.01 100.42 1.60 102.02| 1,369.11
ThaiPrintedCharacterl 3,264 68 128(0.002 86,25 16.46 102.7E| 2,772.18
ThaiFrintedCharacter2 3,264 48 128(0.001 55.75 14.37 70,12 1,877.77

reordered only one time and we use the order to evaluate every test example.
Hence for classifying each test data, we need loga N 2 times of reordering, where
each time the number of classes is reduced by half. Therefore, the running time
of the RADAG is bounded by O(¢; N} + O(caN3loga N}, where ¢, is much larger
than e;.

7 Conclusion

We have proposed a new approach, Adaptive Directed Acyclic Graph (ADAG),
that alleviates the problem of the DDAG caused by its structure which needs an
unnecessarily high number of evaluations for the correct class. Using the reversed
triangular structure, the ADAG reduces the number of times the correct class is
tested against other classes, and thus reduces the cumulative errors. We proved
that the expected accuracy of the ADAG is higher than that of the DDAG.

We also proposed an enhancement version of the ADAG, Reordering Adap-
tive Directed Acyclic Graph (RADAG), to choose an optimal order of classes in
the list in the ADAG method. By the use of minimum-weight perfect matching,
the RADAG can reorder the order of classes in polynomial time and only binary
clasgifiers which have small generalization errors will be considered to be used
in decision nodes.

Our experimental results are also evidence that the ADAG and the RADAG
vield higher accuracy of classification than the Max Wins and the DDAG, espe-
cially in such a case that the number of classes is relatively large. Moreover, the

13

running time used by the ADAG and the RADAG is much less than that used
by the Max Wins, especially when the number of classes and/or the mumber of
dimensions are relatively large.

Since the DDAG reduces evaluation time while maintaining accuracy com-
pared to the Max Wins, which is one of the SVMs” fastest methods in multiclass
classification, this modification of the DDAG will help improve accuracy even
further. ln our ongoing work, we are studying how to reduce the number of
evaluations and how to enhance the performance in terms of both accuracy and
running time.

Appendix

In the following analyses of the DDAG and ADAG, we assume that the probability
of the correct class being in any position in the list is a uniform distribution. We also
assurne that the probability of the correct class being eliminated from the list is p, when
it is tested against another class, and that the probability of one of any two classes,
except for the correct class, being eliminated from the list is 0.5 when they are tested
against each other.

We first illustrate the expected accuracy of the DDAG by the following example.

Example: (Expected accuracy of the DDAG for a 4-class problem). Consider
a four-class problem. Figure 7 shows all probability calculation paths where the correct
class will be correctly classified by the DDAG. There are 8 calculation paths for this
problem. The correct class will be correctly classified if it is not eliminated from the
kist. This means that when it is at the edge (the first or the last elemnent) of the list in
each calculation path, all other classes have to be excluded from the list.

Fig. 7. An example of a four-class problem.

Under a uniform distribution, the probability is 1/4 that the correct class will be
at any position of the initia! list. In the case that the correct class (indicated by ‘X’
in the figure) is at the edge of the current list, it will be correctly classified if all other
classes are eliminated from the list. The probability of this is {1 — p)¥ 77, where N is
the number of elermnents in the current list. In the case that the correct class is not at
the edge, we have two possible choices, i.e. to remove the first slement and to remove
the last element from the list. This reduces the number of elements one by one. From
the above example, the probability that the correct class is correctly classified is:

14

(/91 —p)® + (1/0(/2 @ — py* + (1/4)(1/2)*(1 - p)* + (1/9)(1/2)*(1 — p)* +
(L/0(1/2)° (1 ~p)* + (L/DQ/22 (1 ~p)t +(1/D(1/2)* (1 —p)* + (1/4)(1 — p)®
= (1/9[(- p)/p + (1 - g = (1~ p)*/p] o

We now give the theorem for expected accuracy of the DDAG as follows.

Proof of Theorem 1 {Expected accuracy of the DDAG). As shown in the above
example, the correct class will be correctly classified if when it is at the edge of the list,
all other classes have to be excluded from the list. Consider the cases when we first
obtain a list with ¢ elements where the correct class is at the left-most position, where
2 € i € N — 1. The list can be written as X(Q...0, where X and O represent the
correct class and a wrong class, respectively. This list is obtained from a list containing
i+ 1 elements with one wrong class preceding the correct class as shown by OXO ... 0.
Before the list OXO...O is obtained, N — i — 1 wrong classes must be excluded from
an initial list. Thus beginning from all possible different initial lists, the number of
possible calculation paths ending with a list of i elements where the correct class is at
the left-most position is 2% '~ (as there are two possible choices for one wrong class;
to remove the first element or to remove the last element of the list). Therefore the
number of possible calculatioh paths ending with a list of i elements where the correct
class is at the edge (the left-most and right-most positions) is 2¥ ~*. The probability
of obtaining the list of i elements where the correct class is at the edge is equal to
(1/N){0.5)¥ (1 — p)'~*, as N — i wrong classes must be eliminated from the list and
after that the correct class is at the edge and i — 1 wrong classes must be excluded.
The total probability that the correct class of this pattern will be correctly classified
is thus 2V =9(1/NY0.5)¥ (1 — py~! = (1/N)(1 - p)* L.

Next consider the cases when the correct class is at the edge of a list with NV
elements. For these cases, the total probability that the correct class will be correctly
classified is obviously 2(1/N)(1 —p)¥ !

Finally we sum up all above probabilities and we have the expected accuracy as:
(N /N -pY D) +20/NA-p)V T = (005 /N1 -p))) + (/N)(1 - p) ¥
= (1/N)(1-p) (1~ (1~p)" Y e+ (1-p)" '] = (/M) (1 —-p)/p+(1—p)" " ~(1-p)" /5]

O

Fig. 8. The positions of classes that can be bye-getting elements.

Proof of Theorem 2 (Expected accuracy of the ADAG). Given N classes of
examples, the height (the number of adaptive layers and the output layer) of the ADAG
is obviously [log2IN]. To be selected as the winner (as the output of the ADAG),
some elements have to be compared with others for [logaN] times, and there are
some elements, called bye-getting elements that are compared with others for less than
[log2 N7 times. As the architecture of the ADAG always puts a bye-getting element (the

15

middle element) of the current list at the edge of the list of the next layer, any element
can get at most one bye. Therefore, a bye-getting element will be compared with others
for [logaN} — 1 times. There will be bye-getting elements only when the number of
classes cannot be represented by 2%, where X is a positive integer. These bye-getting
elements will be at the middle of the initial list and of the current list representing each
adaptive layer; e.g. the 5% 3" and 2™ clements in the initial list, the list of the first
adaptive layer, and the list of the second adaptive layer in Figure 8(a), respectively.
A bye-getting element at the i** adaptive layer can come from two elements in the
(i — 1)** layer, as shown in Figure 8(b). Therefore, 7 elements of the initial list in
the figure can possibly be bye-getting ones. Let F(IV) be the number of all possible
bye-getting elements of the list with N elements. It is obvious that with F'(2) = 0, and

F(N} = (N mod 2) +2- F(JN/2]). {6)

Next we will prove by induction on X that F(N) = 271%™ _ & when N is an
integer between 2% +1 and 2%+ and X is a positive integer greater than or equal to 1.

First consider the base case of X = 1. In this case, N is equal to 3 or 4. It is
obvious that F%S) = 1 which satisfies FI(3) = 2/*9230 _ 3 and F(4) = 0 satisfying
F) = oflogz(4y] _ 4

Next we prove general cases of X > 2 by induction: suppose F(N) is equal to
2llosztM)] _ N when N is an integer between 2% 7! + 1 and 2%, and we will show that
F(M) is also equal to 2/%92(*)1 _ A7 when M is an integer between 2% + 1 and 2%¥+1,

In case of M = 2N (an even number) and 2¥ + 2 < M < 2X*!, it is clear that
F(M) = 2F(N) according to Equation 6 (in case that M is an even number, a bye-
getting elements of F(/V) can possibly come from two bye-getting elements of F{M)).
Therefore, we will have the following.

F(M) = 2F(N) = 2(2'092N1 . Ny = 2TtesaNi+1 _ gy o ollog22NT _gpy
— gilegaM1 _ ar
This proves the case of M is an even number.

Next in case of M = 2V — 1 {an odd number) and 2¥ +1 < M < 2¥+ 3 jt
is also clear that F(M) = 2F{N) + 1 according to Equation 1 (in case that M is an
odd number, a bye-getting elernents of F(¥) can possibly come from two bye-getting
elements of F(M), and there is one more bye-getting {the middle) elements of F(M)
that gets a bye of this round). Therefore, we will have the following.

F(M) = 2F(N) + 1 =2(2%92N¥ _ Ny 41 = offesaNT+1 _on 4
= pllegz2NT _ (2N ~ 1)
As 2% 41 € 2N -1 < 2N < 2% we have log2(2% + 1) € loga (2N = 1) < log: (2N} <
log2(2* "), which means [log2(2N — 1)] = [log2(2N)] = X + 1. The above formula
then becomes as follows.
F(M) = gllogz (2N -13] _ (2N — 1) = 2lles2M1 _ pr

This proves the case of M is an odd number. The above then proves that #(N) is equal
to 2M092M) _ N when N is an integer between 2% + 1 and 2%, where X > 1.

Having the value of F(N¥) as above, we then can calculate the expected accuracy
of the ADAG. As under a uniform distribution, the probability that the correct class is
at any position of the initial list is 1/N. Therefore, the expected accuracy is calculated
by weighting the bye-getting correct elements with F(N}/N, and the non-bye-getting
correct elements with (N — F(N))/N. Finally, we have the expected accuracy of the
ADAG as follows.

(N = F(N))/N - (1L = p)l**93"] + F(N)/N - (1 - pliosaN1-t
= ((2N — 22Ny Ny . (1 = pltosaNT (21921 _ NY/NY - (1 — p)ltesai-1,

This proves the theorem.]

16

References

L.

10.

1.
12.
13.
14.
15.

16.

17.

18.

19.
20.

Abe, S., and Inoue, T, (2002) Fuzzy support vector machines for multiclass prob-
lems, The European Symposium on Artificial Neural Networks, 113-118.

. Allwein, E., Schapire, R., and Singer, Y. (2000) Reducing multiclass to binary:

A unifying approach for margin classifiers, International Conference on Machine
Learning.

. Bartlett, P. L., and Shawe-Taylor, J. (1999) Generalization performance of sup-

port vector machines and other pattern classifiers, Advances in Kernel Methods -
Support Vector Learning, MIT Press, Cambridge, USA, 43-54.

. Blake, C., Keogh, E., and Merz, C. (1998) UCI repository of machine learning

databases, Department of Information and Computer Science, University of Cali-
fornia, Irvine.

. Burges, C. (1998) A tutorial on support vector machines for pattern recognition,

Data Mining and Knowledge Discovery, 2(2):121-167.

. Cook, W., and Rohe, A. (1997) Computing minimum-weight perfect matchings,

Technical Report 97863, Forschungsinstitut fiir Diskrete Mathematik, Universitiit
Bonn. .

. Crammer, K., and Singer, Y. (2001) On the slgorithmic implementation of multi-

class kernel-based vector machines, Journal of Machine Learning Research, 2:265-
292.

. Cristianini N., and Shawe-Taylor, J. (2000) An introduction to support vector ma-

chines and other kernel-based learining methods, Cambridge University Press,

. Dietterich, T. G., and Bakiri, G. (1995) Solving multicloss learning problems via

error-correcting output codes, Journal of Artificial Intelligence Research, 2:263-286,
Dong, X., Zhaohui, W., and Yunhe, P. (2001} A new multi-class support vector ma-
chines, IEEE International Conference on System, Man, and Cybernatics, 3:1673-
1676.

Friedman, J. H. (1996} Another approach to polychotomous classification, Technical
report, Stanford University, Departinent of Statistics.

Hsu, C., and Lin, C. (2002) A comparison of methods for multiclass support vector
machines, IEEE Transactions on Neural Networks, 13:415-425.

Joachims. T. {1998) Making large-scale SVM learning practical, Advances in Kernel
Methods - Support Vector Learning, MIT Press.

Joachims, T (1939) SVAM"9"t http://ais.gmd.de/ thorsten/svm light.
Kindermann, J., Leopold, E., and Paass, G. (2000) Multi-class classification with
error correcting codes, Treffen der GI-Fachgruppe 1.1.3, Maschinelles Lernen, GMD
Re. 114,

Knerr, S., Personnaz, L., and Dreyfus, G. (1990) Single-layer learning revisited: A
stepwise procedure for building ond training a neursl network, In Fogelman-Soulie
and Herault, editors, Neurocomputing: Algorithms, Architectures and Applica-
tions, NATO ASI Series. Springer.

Li, K., Huang, H., and Tian, S. (2002) A novel multi-cluss SVM classifier bused on
DDAG, The 1st International Conference on Machiue Learning and Cybernatics,
1203-1207.

Mayoraz, E., and Alpaydm, E. (1998) Support vector machines for mulli-class
classification, IDIAP-RR 6, IDIAP.

Mitchell, T. (1997) Machine Learning, McGraw Hill.

Pichitdej, S. (2001} Thai Printed Character Recognition Using o Neural Network
Ensernble, Degree of Master Computer Engineering in Department of Computer
Engineering Faculty of Engineering Chulalongkorn University.

17

21

22.

23.

24.

2b.

26.

27.

28.

28.

30.

Platt, J., Cristianini, N., and Shawe-Taylor, J. (2000) Large margin DAGs for
multiclass classification, Advance in Neuval Information Processing System, 12,
MIT Press.

Roth, V., and Tsuda, K. (2001) Pairwise coupling for machine recognition of hand-
printed japanese characters, IEEE International Conference on Computer Society,
1:1120-1125.

Scholkopf, B. (1997) Support vector learning, Ph.D). Thesis, R.Oldenbourg Verlag
Publications, Munich, Germany.

Schwenker, F. (2000) Hierarchical support vector machines for multi-class pattern
recognition, The 4th International Conference on Knowledge-Based Intelligent En-
gineering Systems and Allied Technologies, 561-565.

Sekhar, C., Takeda, K., and Tiakura, F. (2002) Close-class-set discrimination
method for large-vlass-set pattern recognition using support vector machines, IEEE
International Joiut Conference on Neural Networks, 577-582.

Takahashi, F., and Abe, S, (2002) Decision-tree-based multiclass support vector
machines, The 9th International Conference on Neural Information Processing,
3:1418-1422,

Thubthong, N. and Kijsirikul, B. (2001) Support vector machines for That phoneme
recognition, International Journal of Uncertainty, I'uzziness and Knowledge-Based
Systems, 9(6):803-813.

Vapnik, V. (1998) Statistical Learning Theory, New York, Wiley.

Vapnik, V. (1999} An overview of statistical learning theory, [EEE Transactions
on Neural Networks, 10:988-899.

Weston, J., and Watkins, C. (1998) Multi-class support vector machines, Tech-
nical Report CSD-TR-98-04, Department of Computer science, Royal Holloway,
University of London.

18

LANENIAUNBLRT 4

SANKEN International Werkshop on Intelligent Systems, 2003 1

Multiclass Classification of Support Vector Machines by
Reordering Adaptive Directed Acyclic Graph®

Thimaporn Phetkaew', Boonserm Kijsirikul> and Wanchai Rivepiboon®

Department of Computer Engineering, Chulalongkorn University, Phayathai, Patumwan, Bangkok,
10330, Thailand

Thimaporn.P@student.chula.ac.th' and Boonserm.K? Wanchai.R?*@chula.ac.th

Received 24 November 2003

Abstract The problem of extending binary support vector machines (SVMs) for multiclass
classification is still an ongoing research issue. Ussivakul and Kijsirikul proposed the Adaptive Directed
Acyclic Graph (ADAG) approach that provides accuracy comparable to that of Max Wins, which is
probably the currently most accurate method for multiclass SVMs, and requires low computation.
However, different sequences of binary classifiers in nodes in the ADAG may provide different accuracy.
In this paper we present a new method for multiclass classification, Reordering Adaptive Directed
Acyclic Graph (RADAG), which is the modification of the original ADAG method. We propose an
algorithm to choose an optimal sequence of binary classifiers in nodes in the ADAG by considering the
generalization error bounds of all classifiers. We apply minimum-weight perfect matching with the
reordering algorithm in order to select binary classifiers which have small generalization errors to be
used in data classification and in order to find the best sequence of binary classifiers in nodes in
polynomial time. We then compare the performance of our method with previous methods including the
ADAG and the Max Wins algorithm. Experiments denote that our method gives higher accuracy.
Moreover it runs faster than Max Wins, especially when the number of classes and/or the number of
dimensions are relatively large.

Keywords Support Vector Machines, Multiclass Classification, ADAG RADAG

%*
This work was supported by The Thailand Research Fund.

SANKEN International Workshop on Intelligent Systems, 2003 2

1 Imtroduction

Support vector machines (SVMs) [8] were
primarily designed for two-class classification
problems with their outstanding performance in
real world applications. However, extending
SVMs for multiclass classification is still an
ongoing research issue. Previous methods for
solving the multiclass problem of SVMs are
typically to consider the problem as the
combination of two-class decision functions, e.g.
one-against-one and one-against-the-rest [5]. The
one-against-the-rest approach works by
constructing a set of & binary classifiers for a
k-class problem. The i* classifier is trained with
all of the examples in the i class with positive
labels, and all other examples with negative
labels. The final output is the class that
corresponds to the classifier with the highest
output value. Friedman [5] suggested the Max
Wins algorithm in which each one-against-one
classifier casts one vote for its preferred class,
and the final result is the class with the most
votes. The Max Wins algorithm offers faster
training time compared to the
one-against-the-rest method. The Decision
Directed Acyclic Graph (DDAG) method
proposed by Platt et al. reduces training and
evaluation time, while maintaining accuracy
compared to the Max Wins [6]. The comparison
experiments by several methods on large
problems in [5] show that the Max Wins
algorithm and the DDAG may be more suitable
for practical use. Ussivakul and Kijsirikul [7]
proposed the Adaptive Directed Acyclic Graph
(ADAG) method which is the modification of the
DDAG. This method reduces the dependency of
the sequence of binary classifiers in nodes in the
structure as well as lowers the number of tests
required to evaluate for the correct class. Their
approach yields higher accuracy and reliability of
classification, especially in such a case that the
number of classes is relatively large.

In this paper we revea! that the ADAG still
is dependent on the sequence of its nodes,
although it is less dependent on the order of
binary classes in the sequence than the DDAG;

there are still differences in accuracy between
different sequences. This led to the reliability of
the algorithm. Here we propose a novel method
that improves reliability by choosing an optimal
sequence, which has less chance to predict the
wrong class, and dynamically reordering the
sequence during classification process according
to each test data. We also reveal that the problem
of selecting the appropriate sequence can be
solved by minimum-weight perfect matching.

This paper is organized as follows. In the
next section, we review SVMs and the
formulation to solve multiclass problems, i.e.,
the DDAG and the ADAG. In Section 3, we
introduce the modification of the ADAG to
improve the performance by using the reordering
algorithm with minimum-weigh perfect
matching, The numerical experiments are
illustrated in Section 4. Finally, the conclusions
are given in Section 5.

2 SVM classification

This section describes the basic idea of
SVMs [7] and two previous works on multiclass
SVMs which are related to our proposed method,
i.e., the DDAG [5,6] and the ADAG [7].

2.1 Support vector machines

The main idea of support vector machine
classification is to construct a hyperplane to
separate the two classes,

2.1.1 Linear support vector machines

Suppose we have a data set D of [samples in
an n-dimensional space belonging to two
different classes (+1 and —1):

D= {(xk,yk)| ke {1,..,1},xk €R",y, € {+ l,—l}}.

The hyperplane in the » dimensional space is
determined by the pair (w,b) where w is an
n-dimensional vector orthogonal to the
hyperplane and b is the offset constant. The

hyperplane (w-x) + b separates the data if and
only if

SANKEN International Workshop on Intelligent Systems, 2003 3

(wx)+b>0 if y=+1
(W-x)+b<0 if y ==l i)

If we additionally require that w and & be
such that the point closest to the hyperplane has a
distance of 1/\w], then we have

(w-x)+b21 if y=+1
(w-x)+bs-1 if p=-1 .o 3

which is equivalent to
ylw-x)+8]21 Vi ... e (4)

To find the optimal separating hyperplane,
we have to find the hyperplane that maximizes
the minimum distance between the hyperplane
and any sample of training data. The distance
between two closest samples from different
classes is

(w-x,)+b_ ax
we) W ™

From (3), we can see that the appropriate
minimum and maximum values are =l.
Therefore, we need to maximize

1 -1 2
d(w’b)=m—_|;|=m' (6)

Thus, the problem is equivalent to:
* minimize |w/2
® subject to the constraints

(D) ylw-x)+5121 Vi

For non-separable case, the training data
cannot be separated by a hyperplane without
error. The previous constraints then must be
modified. A penalty term consisting of the sum
of deviations & from the boundary is added to
the minimization problem. Now, the problem is
to

(w-x,.)+b'

2
= minimize %_.Fczf:{;
i=1

= subject to the constraints
1) ylw-x)+bl21-¢,
(2) &20 Vi

The penalty term for misclassifying training
samples is weighted by a constant C. Sefecting a
large value of C puts a high price on deviations
and increases computation by effecting a more
exhaustive search for ways to minimize the
number of misclassified samples.

By forming the Lagrangian and solving the
dual problem, this problem can be translated
into:
= minimize

! I
1
Lw,ba)=3 a, - 2 2 a3,y (% %))

i=] ij=l

= subject to the constraints:
(1) 0=e=C,Vi

@ Ya -0

where ¢; are called Lagrange multipliers. There
is one Lagrange multiplier for each training
sample. [n the solution, those samples for which
a; > O are called support vectors, and are ones
such that the equality in {4) holds. All other
training samples having o; = 0 could be removed
from the training set without affecting the final
hyperplane.

Let ¢, an /-dimensional vector denote the
minimum of L({w,b,c). If a,—o> 0 then x; is a
support vector. The optimal separating
hyperplane (w®, 5%} can be written in terms of &

and the training data, specifically in terms of the
support vectors:

W= iaioijf = Zafyixi. ®
=1

suppoft vectors

B°=1-w’x; for x,with y;= | and 0<e<C.

SANKEN International Workshop on Intelligent Systems, 2003 4

The optimal separating hyperplane classifies
points according to the sign of f{x),

f(x)= sign(w° X+ bo)

=sign[Zaf‘yj(x.-x)+b°} .. {10)

SUpOrt vediors

Support vector x; with a,.O = C may or may not

be misclassified. All other x/’s are correctly
classified.

2.1.2 Non-linear support vector machines

The above algorithm is limited to linear
separating hyperplanes. SVMs get around this
problem by mapping the sample points into a
higher dimensional space using a non-linear
mapping chosen in advance. This is, we choose a
map &:m"— Hwhere the dimensionality of H
is greater than n. We then seek a separating
hyperplane in the higher dimensional space; this
is equivalent to a non-linear separating surface in
n"

The data only ever appears in our training
problem (7} in the form of dot products, so in the
higher dimensional space we are only dealing
with the data in the form ®(x;)®(x). If the
dimensionality of H is very large, then this could
be difficult, or very computationally expensive.
However, if we have a kernel function such that
k(x,x) = @(x,)P(x;), then we can use this in
place of x;x; everywhere in the optimization
problem, and never need to know explicitly what
@ is. Some widely used kernels are:

Polynomial degree d: fyx,y) = I" g+ I|d 11D
Radial basis function: k(x,y) = e*""r/ ..(12)

22 DDAG

Platt et al, [6] presented a learning
architecture, the Decision Directed Acyclic
Graph (DDAG), which is used to combine many
two-class classifiers into a multiclass classifier.
For a k-class problem, its training phase is the

same as the one-against-one method by solving
k(k-1)/2 binary SVMs, one for each pair of
classes. However, in the testing phase, it uses a
rooted binary directed acyclic graph which has
k(k-1)/2 internal nodes and k leaves (see Figure
1). Each node is a binary SVM of the i and j*
classes. Given a test sample x, starting at the root
node, the binary decision function is evaluated.
Then it moves to either left or right depending on
the output value. Therefore, we go through a path
before reaching a leaf node which indicates the
predicted class.

There are some issues on the DDAG as
pointed out by [7]. First, it gives outputs whose
probabilities are not uniformly distributed, and
thus its output depends on the sequence of binary
classifiers in nodes, affecting reliability of the
algorithm. In addition, the correct class placed in
a node near the root node is clearly at
disadvantage by comparison with the correct
class near leaf nodes since it is exposed to higher
risk of being incorrectly rejected. Second, the
number of node evaluations for the correct class
is unnecessary high. This results in higher
cumulative error and lower the accuracy. The
depth of the DDAG is k-1 and this means that the
number of times the correct class has to be tested

against other classes, on average, scales linearly
with k.

not 4

n not 4 not 1 not 3
2 1
3 2
3 2

™

3
4
ot 2
'} 1
Figure 1: The DDAG finding the best class out
of four classes

SANKEN International Workshop on Intelligent Systems, 2003 S

2.3 ADAG

Ussivakul and Kijsirikul {7] proposed an
approach to alleviate the problem of the DDAG
structure described above. An Adaptive DAG
(ADAG) is a DAG with a reversed triangular
structure, For a #A-class problem, its training
phase is the same as the DDAG method by
solving k(k-1)/2 binary SVMs, one for each pair
of classes. However, in the testing phase, the
nodes are arranged in a reversed triangle with /2
nodes (rounded up) at the top, k/2* nodes in the
second layer and so on until the lowest layer of a
final node. It has k-1 internal nodes, each of
which is labeled with an element of Boolean
function (see Figure 2). Given a test example x,
starting at the top level, the binary decision
function is evaluated. The node is then exited via
the outgoing edge with a message of the
preferred class. In each round; the number of
candidate classes is reduced by half. Based on
the preferred classes from its parent nodes, the
binary function of the next-level node is chosen.
The reduction process continues until reaching
the final node at the lowest level, The value of
the decision function is the value associated with
the message from the final leaf node. Like the
DDAG, the ADAG requires only 41 decision
nodes to be evaluated in order to derive an
answer, Note that the correct class is evaluated
against other classes for log,k times or less,
considerably lower than the number of
evaluations required by the DDAG, which scales
linearly with £.

Using the reversed triangular structure, the
ADAG reduces the number of times the correct
class is tested against other classes, and thus
reduces the cumulative errors. However, therc
are still differences in accuracy between different
sequences of nodes. Next we will describe our
method that improves the ADAG by finding a
best sequence of nodes.

3 The proposed method

In this section, we introduce the
modification of the ADAG to improve the
performance of the original ADAG. This

approach determines a best sequence of nodes in
the ADAG by dynamically reordering the
sequence during classification process according
to each test data.

Blvs B2 Adaptive Layer B

Cutput Class Output Layer

Figure 2: The structure of an Adaptive DAG
for an 8-class problem

3.1 Generalization Performance of
Support Vector Machines

The ability of a hypothesis to correctly
classify data not in the training set is known as
its generalization. Generalization analysis of
pattern classifiers is concerned with determining
the factors that affect the accuracy of a pattern
classifier [1]. Generalization performance of
Support Vector Machines can be approximated
by bounding cn the generalization error.

Define the class F of real-valued functions
on the ball of radius R i R"
as F={X|—>va:||w||sl,“x||SR}. There is a
constant ¢ such that, for all probability
distributions, with probability at least 1-dover m
independently pgenerated examples z, if a
classifier h=sgn(f)esgn{F) has margin at
least y on all the examples in z, then the error of
A is no more than

2
i[R_z log? m + log{l]]. (13)
mi y d

Furthermore, with probability at least 1-4, every
classifier hesgn(F) has error no more than

Adaptive Layer A

SANKEN International Workshop on intelligent Systems, 2003 6

k, JE[E;Dgz mHOg(LD (14)
m \mly)

where £ is the number of labeled examples in z
with margin less than y.

Below we show an example of the
generalization error. The experiment is based on
the English letter image recognition dataset from
[2], which has 26 classes. Hence there are 325
classifiers. In this case, we construct classifiers
by using the Polynomial kemel of degree 3. In
Figure 3, the generalization errors of all
classifiers expressed by Equation (14) are
depicted. The generalization errors of all
classifiers are varying,

Generalization Error
400

300

Classifier No.

Figure 3: The generalization errors of 325
classifiers

3.2 Reordering ADAG

We propose a methed, called Reordering
Adaptive Directed Acyclic Graph (RADAG), to
improve the accuracy of the original ADAG. For
& k-class problem, the RADAG?’s training phase
is the same as the ADAG method by solving
k(k-1)/2 binary SVMs. However, the testing
phase is organized as follows. The differences
are the initialization of the binary classifiers in
the top level and the order of sequence in each
level (see Figure 4}, In the first step, we use a
reordering algorithm with minimum-weight
perfect matching described in the next subsection
to choose the optimal sequence to be the initial
sequence. We use the sequence to evaluate every

test example. In the second step, as in the ADAG,
test points of the RADAG are evaluated against
the decision nodes. In the third step, unlike the
ADAG, the RADAG will reorder the sequence
before processing in the next level by using the
reordering algorithm with minimum-weight
perfect matching. This sequence differs for each
test example, and it depends on the results of
nodes from the previous level. The second and

the third steps are repeated until there is only one
class remains.

PPERIT0;

| Initialize phase

Initializing the sequence

Al Al A3 A4

Classifying a new example
Reordering the sequence

Classifymng &
Alvi A3 A2vs Ad Reordering phase
B2
«+— Final classifier
Output phase

Figure 4: Classifying process of the RADAG

3.3 Reordering algorithm
For the reason described above, we consider
the generalization errors in order to choose the

optimal sequence from all possible ﬁ
2;

sequences with less chance to predict the wrong
class. Among classifiers, &2 classifiers which
have small generalization errors will be
considered to be used in data classification,

Let G = (V, E) be a graph with node set
and edge set E. Each node in G denotes one class
and each edge denotes one binary classifier

SANKEN International Workshop on Intelligent Systems, 2003 7

which has a generalization error expressed by
Equation {14) (see Figure 5{a)). The output of
the reordering algorithm for graph & is a subset
of edges with the minimum sum of
generalization errors of all edges and each node
in G is met by exactly one edge in the subset (see
Figure 5(b)). Given a real weight ¢, being
generalization error for each edge e of G, the
preblem of reordering algorithm can be solved
by the minimum weight perfect matching that
finds a perfect matching M of minimum weight

Z(c, 1 e e M).

For U c F, let E(U) = {(i,):(ij)ekE, icU,
jeU}. E(U) is the set of chosen classifiers. Let
A&i) denote the set of edges incident to node /; the
set of classifiers with one class being i. The
perfect matchings on a graph G = (V, E) with [V]
even is given by

(a)xe Ry

) er =1 forveV

eed(v)

© ¥ x s{'-‘z”J for all odd sets U < ¥ with U|23
eek(LN)

or by (a),(b) and
(d) 3"x, 21 for all odd sets U < ¥ with|U|2 3

ecd(l)

where |E] = m, the number of classifiers, and
x. = 1 means that classifier e is chosen to be used
in the sequence. Therefore, the reordering
problem is to solve the following linear program:

where x satisfies “(a),(b) and (c)” or “(a),(b) and

(4.

Currently, the minimum-weight perfect
matching algorithm runs in time bounded by
O(n(m + n log n)) [3], where # is the number of
nodes (classes) in the graph and m is the number
of edges (binary classifiers). Hence the
reordering algorithm can reorder the sequence in
that polynomial time.

Figure 5: (a) A graph for an 8-class problem,
(b) An example of the output of the reordering
algorithm.

4 Numerical experiments

In this section, we present experimental
results on several datasets from the UCI
Repository of machine learning databases [2]
including glass, satimage, segment, shuttle,
vowel, soybean, letter and isolet (seec Table 1).
These datasets are different in the number of
classes, the number of dimensions, and sizes. For
the glass and segment problems, there is no
provided test data so we used 5-fold cross
validation. For the soybean problem, we
discarded the last four classes because of missing
values.

Table 1: Description of the datasets used in
the experiments

Dataset #tr;::;ng f;t:tsat #class | #dimension
Glass 214 | S5-fold 6 9
Satimage 4,435 2,000 6 36
Segment 2,310 | 5-fold 1 18
Shuttle 43,500 [14,500 7 9
Vowel 528 462 1l 10
Soybean 250 340 15 35
Letter 15,963 4,037 26 16
Isolet 6,238 1,559 26 617

In these experiments we scaled both training
data and test data to be in {-1,}] and employed
Polynomial and RBF kernels. In the experiments,
we compare three algorithms, i.e., the DDAG, the
original ADAG, the RADAG, and the Max Wins
algorithm. For the ADAG, we examined all

SANKEN International Workshop on Intelligent Systems, 2003 8

possible sequences for datasets having not more
than 7 classes, whereas we randomly selected
50,000 sequences for datasets having more than
7 classes. Table 2 and 3 present the results of the
comparison of these methods for Polynomial and
RBF kernels, respectively. We present the
optimal parameters (¢ and ¢ in Equations (11)
and (12)) of the kernels and the corresponding
accuracies., The best accuracy among three
methods is illustrated in bold-face. ***, ** and *
in the tables means 99%, 95%, and 90%
confidence interval for estimating the difference
between accuracies of three algorithms and the
RADAG using a one-tailed paired t-test.

The results show that our method yields
highest accuracy in almost all of datasets. The
results also show that our method performs
statistically significantly better than the other
methods in the glass problem in case of the RBF
kernel and significantly better than the DDAG in
the segment and letter problems in case of the
Polynomial kernel. Another advantage of our
method compared to the DDAG and the original
ADAG is that cur method always provides one
best accuracy for each dataset using the
reordering algorithm, whereas, depending on the
sequence of classes, the DDAG and the original
ADAG may give low accuracies. This shows the
effectiveness of the RADAG.

Table 4 and 5 present the comparison of the
computational time between the RADAG and the
Max Wins for Polynomial and RBF kernels by
using a 400 MHz Pentium 1 processor. There is
no computational time of the glass dataset
because it has too few test examples to measure
the time. The results show that our method
requires low computational time in all datasets,

especially when the number of classes and/or the
number of dimensions are relatively large. For a
k class problem, the Max Wins requires &(k-1)/2
classifiers for the classification whereas the
RADAG requires only k-1 classifiers. Hence the
larger the number of classes the more running
time the Max Wins requires than the RADAG.
Moreover, the number of dimensions affects the
running time of each classifier. For the RADAG,
the number of classes affects the running time for
reordering. However, it takes little time even
when there are many classes.

5 Conclusion

In this paper, we have presented a new
approach for multiclass SVMs, called
Reordering Adaptive Directed Acyclic Graph
(RADAG), which is the modification of the
original ADAG. Our approach eliminates the
dependency of the sequence of binary classifiers
in nodes in the original ADAG by selecting an
appropriate sequence from all possible sequences
which consists of classifiers with small
generalization errorr By the wuse of
minimum-weight perfect matching, the RADAG
can reorder the sequence in polynomial time. The
experimental results show that our new approach
yields higher accuracy than the original ADAG
and even Max Wins which is probably the
currently most accurate method for multiclass
SVMs. Moreover the running time used by the
RADAG is less than Max Wins, especially when
the number of classes and/or the number of
dimensions are relatively large. Our future work
is to test the method on datasets with a very large
number of classes and dimensions.

Table 2: A comparison of the accuracy of classification using the Polynomial kernel

Dataset d DDAG d ADAG d Max Wins d RADAG
Glass 2 71.069 2 71.135 2 71.078 2 71.063
Satimage 6 88.408%**) ¢ 88.430 6 88.453 6 88.900
Segment 6 56.538 8 §7.408 8 97.379 8 97.489
Shuitle 8 99.924 8 99,924 8 99.924 8 99,924
Vowel 3 64.237 3 64293 3 64.329 2 64.502
Soybean 5 90.400 5 90.446 3 90471 3 91.176
Letter 3 95.508* 3 95984 3 96.125 4 96.111
Isolet 3 97.032 3 57.030 3 97.040 3 97.049

SANKEN International Workshop on Intelligent Systems, 2003

RADAG Max Wins
Dataset c Classifying | Reordering Total Classifying
(seconds) | (seconds) (seconds) (seconds)
Satimage 3.0 11.75 0.51 12.26 37.13
Segment 0.7 0.24 0.10 0.34 0.82
Shuttle 3.0 3.36 0.63 399 9.27
Vowel 0.2 0.10 0.27 0.37 0.61
Soybean 0.07 0.32 0.45 0.77 2,20
Letter 3.0 62.27 3.69 63.96 802.85
Isolet 0.01 100.42 1.60 102.02 1,369.11
References ll)geggrtmcm of Statistics, Stanford University,
. L. . - * izati : - .
ap e rli.‘on?‘::‘l:in’o':_ Shﬂ\:‘:tTiy::(:gr g:n;'i'zgsza;ﬁg {51 C-W. Hsuy, and C.-J. Lin, “A comparison of
pe support ve ch methods for multiclass Support Vector Machines”,
other pattern classifiers”, in Advances in Kernel IEEE Trans.on Neural Networks. Vol. 13
Methods - Support Vector Learning, B. 415-425 Me;rch 2002 * - PP
Schoelkopf, C. J. C. Burges, A. J. Smola (eds), (6] 1. Plat, N. Cristianini, and J. Shawe-Taylor,
pp. 43-54, MIT Press, Cambridge, USA, 199?. “Large margin DAGs for multiclass
@ c Blake,- E. ng.h and C. Merz, UCI repository classification®, in Advances in Neural
of mach'me leaming databas_cs, Depa'rtme{:t of Information Processing Systems, MIT Press, Vol.
Information and Computer Science, University of 12, pp. 547-553, 2000
California, [rvine, 1998, hitpd/wwwics.uctedu/ [7] N. Ussivakul, and B. Kijsirikul, “Multiclass
3 “r’n @ Cook epo;x ory;\. Roh “c . support vector machines using adaptive directed
[31 W. = Cock, an - Rone, Lomputing acyclic graph,” in IEEE/INNS’ Int. Joint Conf.
minimum-weight perfect matchings”, Technical On Neural Networks (ICNN-2002), 2002
Report 9?863’ _Forsg:ljungsmsutut fur Diskrete [8] V. Vapnik, Statistical Learning Theory, New York,
Mathematik, Universitit Bonn, 1997. Wiley, 1998
[4]). H. Friedman, “Another approach to ’ ’

Table 3: A comparison of the accuracy of classification using the RBF kernel

Dataset c DDAG [ADAG c Max Wins ¢ RADAG
Glass 0.08 72.850** 10.08 F2.759** 10.09 73.238%* |0.09 74.319
Satitmage (3.0 91971 3.0 91.968 30 91.984 30 91.950
Segment 0.7 97.276 0.7 97282 |07 97.29% 0.7 97.273
Shuttle 30 99,897 3.0 99.897 3.0 929.897 3.0 99,897
Vowel 0.2 65.425 0.2 65.589 (0.2 65340 0.2 67.100
Soybean 007 90353 10.08 90.412 0.08 90.468 0.07 90.882
Letter 3.0 g7.901 30 97.909 3.0 97.918 3.0 97.969
Isolet 0.01 96.939 0.01 96.932 0.01 96.916 10.01 96.985

Table 4: A comparison of the computational time using the Polynomial kernel

RADAG Max Wins

Dataset d Classifying | Reordering Total Classifying
{seconds} (seconds) {seconds) (seconds)
Satimage 6 |- 190 0.50 2.40 9.47
Segment 8 0.1 0.08 .19 0.41
Shuttle 8 1.75 338 513 5.15
Vowel 2 0.12 0.25 0.37 0.61
Soybean 3 0.30 0.25 0.55 1.86
Letter 4 8.48 420 12.68 125.58
Isolet 3 116.02 1.48 117.50 1,671.98

Table 5: A comparison of the computational

time using the RBF kernel

Polychotomous classification”, Technical report,

DNFVTVUNBLAY §

Learning Multiclass Support Vector Machines by
Reordering Adaptive Directed Acyclic Graph

Thimapomn Phetkaew', Wanchai Rivepiboon® and Boonserm Kijsirikul®
Department of Computer Engineering
Chulalongkorn University
Phayathai, Patumwan, Bangkok, 10330, Thailand
E-mail: Thimaporn.P@student.chula.ac.th' and Wanchai.R?, Boonserm.K*@chula.ac.th

Abstract

The problem of extending binary support vector
machines (SVMs) for multiclass classification is still an
ongoing research issue. Ussivakul and Kijsirikul proposed
the Adaptive Directed Acyclic Graph (ADAG) approach
that provides accuracy comparable to that of the standard
Hgorithm—Meoax Wins and requires low computation.
However, different sequences of nodes in the ADAG may
wovide different aceuracy. In this paper we present a new
nethod for multiclass classification, Reordering Adaptive
directed Acyclic Graph (RADAG), which is the
nodification of the original ADAG method. We propose an
dgorithm to choose am optimal seguence of binary
lassifiers in nodes in the ADAG by considering the
eneralization ervor bounds of all classifiers. We apply
unimum-weight perfect matching with the reordering
Igorithm in order to select the best sequence of nodes in
olynomial time. We then compare the performance of our
tethod with previous methods including the ADAG and
16 Max Wins algorithm. Experiments denote that our
iethod gives higher accuracy. Moreover it runs faster
wan Max Wins, especially when the number of classes
ad/or the number of dimensions are relatively large.

ey words: Multiclass Support Vector Machines,
ADAG
Introduction

Support vector machines (SVMs) were primarily
signed for two-class classification problems with its
tstanding performance in real world applications.
ywever, extending SVMs for multiclass classification is
Il an ongoing research issue. Previous methods for
lving the multiclass problem of SVMs are typically to
usider the problem as the combination of two-class
cision functions, e.g. one-against-one and one-against-
-rest [5].

Friedman [4] suggested the Max Wins algorithm in
ich each one-against-one classifier casts one vote for its
ferred class, and the final result is the class with the
ist votes. The Max Wins algonthm offers faster training
le compared to the one-against-the-rest method. The
cision Directed Acyclic Graph (DDAG) method

proposed by Platt et al. reduces training and evaluation
time, while maintaining accuracy compared to the Max
Wins [6]. The comparison experiments in several methods
on large problems in [3] show that the Max Wing
algorithm and the DDAG may be more suitable for
practical use. Ussivakul and Kijsirikul (7] proposed the
Adaptive Directed Acyclic Graph (ADAG) method which
is the modification of the DDAG. This method reduces the
dependency of the sequence of binary classifiers in nodes
m the structure as well as lowers the number of tests
required to evaluate for the correct class. Their approach
yields higher accuracy and reliability of classification,
especially in such a case that the number of classes is
relatively large.

In this paper we reveal that the ADAG still has the
dependency on the sequence of s nodes, although it is
less dependent on the order of binary classes in the ~
sequence than the DDAG; there are still differences in
accuracy between different sequences. This led to the
reliability of the algorithm. Here we propose a novel
method that improves reliability by choosing an optimal
sequence, which has less chance to predict the wrong
class, and dynamically reordering the sequence during
classification process according to each test data. We also
reveal that the problem of selecting the appropriate

sequence can be solved by minimum-weight perfect
matching.

This paper is organized as follows. In the next section,
we review SVMs and the formulation to solve multiclass
problermss, i.e., the DDAG and the ADAG. In Section 3, we
introduce the modification of the ADAG to improve the
performance by using the reordering algorithm with
minmum-weigh perfect matching. The numerical
experiments are illustrated in Section 4. Finally, the
conclusions are given in Section 5,

2. SVM classification

This section describes the basic idea of SVMs [7] and
the formulation to solve multiclass problems.

2.1. Support vector machines
The main idea of support wvector machine

classification is to construct a hyperplane to separate the
two classes.

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

450

2.1.1. Lirear support vector machines

Suppose we have a data set D of / samples in an »-
dimensional space belonging to two different classes (+1
and -1):

D= {(x}c'yk)l kefl.,ilx, eR", y, el L_l}}'(“

The hyperplane in the » dimensional space is
determined by the pair (w,b) where w is an n-dimensional
vector orthogonal to the hyperplane and & is the coffset
constant. The hyperplane (w-x)+b separates the data if and
only if

(wx)+b>0 if yp=+1
(w-x)+b<0 i y=-1 3
If we additionally require that w and & be such that the

point closest to the hyperplane has a distance of 1/|w], then
we have

(w-x)+bz1 if p=+1

(w-x)+b<-1 if y=-1 (3)
which is equivalent to

pllw-x)+86]21 Vi (4)

To find the optimal separating hyperplane, we have to
find the hyperplane that maximizes the minimum distance
between the hyperplane and any sample of training data.
The distance between two closest samples from different
classes is

(w-x,.)+b_(5)

d(w,b)= min M" max
v W

byt |w]

From (3), we can see that the appropriate minimum and
maximum values are +1. Therefore, we need to maximize

d(w,b)=—‘;—$;=—. (6)

Thus, the problem is equivalent to:
* minimize |[w*/2
= subject to the constraints

() plw-x,)+b]21 Vi

For non-separable case, the training data cannot be
separated by a hyperplane without error. The previous
constraints then must be modified. A penalty term
consisting of the sum of deviations & from the boundary is
added to the minimization problem. Now, the problem is
1o

2
" minimize @. + ci 3
i=l

* subject to the constraints
(1) yllw-x)+6]21-&,
(2) & 20 vi

The penalty term for misclassifying training sarnples is
weighted by a constant C. Selecting a large value of C puts
a high price on deviations and increases computation by
effecting a more exhaustive search for ways to minimize
the number of misclassified samples.

By forming the Lagrangian and solving the dua]
problem, this problem can be translated into:

] minimize
! i
I
L(w’b’a)=2ai_Ezaiajylyj(xi'xj) (7)
1=1 £j=1

= subject to the constraints:
(1} 05 a<C, Vi

'
@) Za, »=0
=

where ¢; are called Lagrange multipliers. There is one
Lagrange multiplier for each training sample. In the
solution, those samples for which ¢ > 0 are called support
vectors, and are ones such that the equality in {4) holds.
All other training samples having o, = 0 could be removed
from the training set without affecting the final
hyperplane.

Let o, ap /-dimensional vector denote the minimum
of L(w,b,0). If &’> 0 then x; is a support vector. The
optimal separating hyperplane (w°, 5% can be written in
terms of &° and the training data, specifically in terms of
the support vectors:

:

w' = Za:})ﬁxs = ZaPeri- ®)
i=l Suppott vectors

b= 1-w"x, forx; withy;=1 and 0 < & < C. {%)

Ths opttmal separating hyperplane classifies points
according to the sign of f{x),

fx)= sign(w° "X+ b°)

=sign[Dalyx, x| (10
suport vedors

Support vector x; with 0:,-0= C may or may not be
misclassified. All other x;’s are correctly classified.

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

2.1.2. Non-linear support vector machines

The above algorithm is limited to linear separating
hyperplanes. SVMs get around this problem by mapping
the sample points into a higher dimensional space using a
non-linear mapping chosen irt advance. This is, we choose
amap ¢ : %"+ H whers the dimensionality of H is greater
than . We then seek a separating hyperplane in the higher
dimensional space; this is equivalent to a non-linear
separating surface in "

The data only ever appears in our training problem (7)
in the form of dot products, so in the higher dimensional
space we are only dealing with the data in the form
O(x;}P(x;). If the dimensionality of H is very large, then
this could be difficult, or very computationally expensive.
However, if we have a kernel function such that 4(x;x;) =
O(x)®(x;), then we can use this in place of XxyX;
evérywhere in the optimization problem, and never need to
know explicitly what @ is. Some widely used kernels are:

Polynomial degree 4: kp,y) = |x i lld (1)
Radial basis function: kfx,y) = elel J (12)

2.2. DDAG

Platt et al. [6] presented a learning architecture, the
Decision Directed Acyclic Graph (DDAG), which is used
to combine many two-class classifiers into a multiclass
classifier. For a k-class problem, its training phase is the
same as the one-against-one method by solving k(k-1)/2
binary SVMs, one for each pair of classes. However, in the
testing phase, it uses a rooted binary directed acyclic graph
which has k(%-1)/2 internal nodes and k leaves (see Figure
1). Each node is a binary SVM of the # and j* classes.
Given a test sample x, starting at the root node, the binary
decision function is evaluated. Then it moves to either left
or right depending on the output value. Therefore, we go
through a path before reaching a leaf node which indicates
the predicted class.

not 3

Figure 1. The DDAG finding the best class out of
four classes

There are some issues on the DDAG as pointed out by
[7]. First, it gives outputs whose probabilities are not
unifermly distributed, and thus its output depends on the
sequence of binary classifiers in nodes, affecting reliability/
of the algorithm. In addition, the correct class placed in a
node near the root node is clearly at disadvantage by
comparison with the correct class near leaf nodes since it
is exposed to higher risk of being incorrectly rejected.
Second, the number of node evaluations for the correct
class is unnecessary high. This results in higher
cumulative error and lower the accuracy. The depth of the
DDAG is k-1 and this means that the number of times the
correct class has to be tested against other classes, on
average, scales linearly with £.

2.3. ADAG

Ussivakul and Kijsirikul [7] proposed an approach to
alleviate the problem of the DDAG structure described
above. An Adaptive DAG (ADAG) is a DAG with a
reversed triangular structure. For a k-class problem, its
training phase is the same as the DDAG method by
solving k(k-1)/2 binary SVMs, one for each pair of classes.
However, in the testing phase, the nodes are arranged in a
reversed triangle with &2 nodes (rounded up) at the top,
%/2* nodes in the second layer and so on until the lowest
layer of a final node. It has %-1 internal nodes, each of
which is labeled with an element of Boolean function (see
Figure 2). Given a test example x, starting at the top level,
the binary decision function is evaluated. The node is then
exited via the outgoing edge with a message of the
preferred class. In each round, the number of candidate
classes is reduced by half. Based on the preferred classes
from its parent nodes, the binary function of the next-level
node is chosen. The reduction process continues until
reaching the final node at the lowest level. The value of
the decision function is the value associated with the
message from the final leaf node. Like the DDAG, the
ADAG requires only k-1 decision nodes to be evaluated in
order to derive an answer. Note that the correct class is
evaluated against other classes for logyk times or less,
considerably lower than the number of evaluations
required by the DDAG, which scales linearly with k.

Adaptive Layer A

Blvs B2 Adsptive Layer B

Output Layer

Figure 2. The structure of an Adaptive DAG for
an 8-class problem

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

452

P et ok TR

2.1.2. Non-linear support vector machines

The above algorithm is limited to linear separating
hyperplanes. SVMs get around this problem by mapping
the sample points info a higher dimensional space using a
non-linear mapping chosen in advance. This is, we choose
a map &:%”— H where the dimensionality of H is greater
than #. We then seck a separating hyperplane in the higher
dimensional space; this is equivalent to a non-linear
separating surface in R”.

The data only ever appears in our training problem (7)
in the form of dot products, so in the higher dimensional
space we are only dealing with the data in the form
O{x;)-O(x). If the dimensionality of H is very large, then
this could be difficult, or very computationally expensive.
However, if we have a kernel function such that k(x,,x;) =
O(x)-D(x;), then we can use this in place of x;x;
everywhere in the optimization problem, and never need to
kmow explicitly what & is. Some widely used kernels are:

Polynomial degree d: k(x,y) = Ix g+ lld (11}

2
Radial basis function: k(x,y)= T e (12)

2,2. DDAG

Platt et al. [6] presented a learning architecture, the
Decision Directed Acyclic Graph {DDAG), which is used
to combine many two-class classifiers into a multiclass
classifier. For a k-class problem, its training phase is the
same as the one-against-one method by solving A(k-1)/2
binary SVMs, one for each pair of classes. However, in the
testing phase, it uses a rooted binary directed acyclic graph
which has A(k-1)/2 internal nodes and k leaves (see Figure
1). Each node is a binary SVM of the i and j* classes.
Given a test sample x, starting at the root node, the binary
decision function is evaluated. Then it moves to either left
or right depending on the output value. Therefore, we go
through a path before reaching a leaf node which indicates
the predicted class.

Figure 1. The DDAG finding the best class out of
four classes

There are some issues on the DDAG as pointed out by
[7]. First, it gives outputs whose probabilities are not
uniformly distributed, and thus its output depends on the
sequence of binary classifiers in nodes, affecting reliability’
of the algorithm. In addition, the correct class placed in a
node near the root node is clearly at disadvantage by
comparison with the correct class near leaf nodes since it
is exposed to higher risk of being incorrectly rejected.
Second, the number of node evaluations for the correct
class is unnecessary high. This results in higher
cumulative error and lower the accuracy. The depth of the
DDAG is k-1 and this means that the number of times the
correct class has to be tested against other classes, on
average, scales linearly with k.

2.3. ADAG

Ussivakul and Kijsirikul [7] proposed an approach to
alleviate the problem of the DDAG structure described
above. An Adaptive DAG (ADAG) is a DAG with a
reversed triangular structure. For a k-class problem, its
training phase is the same as the DDAG method by
solving k(k-1)/2 binary SVMs, one for each pair of classes.
However, in the testing phase, the nodes are arranged in a
reversed triangle with %/2 nodes (rounded up) at the top,
#/2* nodes in the second layer and so on until the lowest
layer of a final node. It has k-1 internal nodes, each of
which is labeled with an element of Boolean function (see
Figure 2). Given a test example x, starting at the top level,
the binary decision function is evaluated. The node is then
exited via the outgoing edge with a message of the
preferred class. In each round, the number of candidate
classes is reduced by half. Based on the preferred classes
from its parent nodes, the binary function of the next-level
node is chosen. The reduction process continues until
reaching the final node at the lowest level. The value of
the decision function is the value associated with the
message from the final leaf node. Like the DDAG, the
ADAG requires only k-1 decision nodes to be evaluated in
order to derive an answer. Note that the correct class is
evaluated against other classes for logyk times or less,
considerably lower than the number of evaluations
required by the DDAG, which scales linearly with k.

AE a2 A3 A4
@ @ Adaptive Layer A
BT B2
Bl vsB2 Adaptive Layer B
Output Layer

Figure 2. The structure of an Adaptive DAG for
an 8-class problem

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

Using the reversed triangular structure, the ADAG
reduces the number of times the correct class is tested
against other classes, and thus reduces the cumulative
errors. However, there are still differences in accuracy
between different sequences of nodes. Next we will
describe our method that improves the ADAG by finding a
best sequence of nodes.

3. The proposed method

In this section, we introduce the modification of the
ADAG to improve the performance of the original ADAG.
This approach determines a best sequence of nodes in the
ADAG by dynamically reordering the sequence during
classification process according to each test data.

3.1. Generalization Performance
Vector Machines
. Generalization analysis of pattern classifiers is
concerned with determining the factors that affect the
accuracy of a pattern classifier [1]. Generalization
performance of Support Vector Machines can be
approximated by bounding on the generalization error.

of Support

Define the class F of real-valued functions on the ball .

of radius R in N" asF={x+—>w-x:||w||£1,||x||$R}. There

is a constant ¢ such that, for all probability distributions,
with probability at least 1-4 over m independently
generated examples z, if a classifier A =sgn(!)e sgn(F)

has margin at least y on all the examples in z, then the
error of / is no more than

< R2 2 1
—| —lo +log| — ||
m{rz & 8[5]]

Furthermore, with probability at least 1-8, every classifier
hesgn(F) has error no more than

k le(RY I
=-}—| —log’ ™+ lag —
m ml y 'y

where & is the number of labeled examples im z with
margin less than y.

(13)

(14)

Below we show an example of the generalization error
of classifier. The experiment is based on the English letter
image recognition dataset from [2], which has 26 classes.
Hence there are 323 classifiers. In this case, the dataset is
trained by using the Polymomial kemel of degree 3. In
Figure 3, the generalization errors of all classifiers
expressed by Equation (14) are depicted. The
generaiization errors of all classifiers are varying.

!_Ucucrniizarion Error |
| 400

300 +————

200 —

100

Classifier No.

Figure 3. The generalization errors of 325 classifiers

ol ol e

Initializing the sequence

Initjalize phase

NS

‘ Reordering the sequcnce

A4

Classifyi.ng a new example

Classifying &
Al vs A3 A2 vs Ad Reordering phase
Bl B2
<«— Final classifier
Qutput phase

Output class

Figure 4. Classifying process of the RADAG

3.2, Reordering ADAG

We propose a method, called Reordering Adaptive
Directed Acyclic Graph (RADAG), improvg the
accuracy of the original ADAG. For a k-class problem, the
RADAG’s training phase is the same as the ADAG
method by solving k(k-1)/2 binary SVMs. However, the
testing phase is organized as follows. The differences are
the initialization of the binary classifiers in the top level
and the order of sequence in each level (see Figure 4). In
the first step, we use a reordering algorithm with
minimum-weight perfect matching described in the next
subsection to choose the optimal sequence to be the initial
sequence. We use the sequence to evaluate every test
example. In the second step, as in the ADAG, test points
of the RADAG are evaluated against the decision nodes.
In the third step, unlike the ADAG, the RADAG will
reorder the sequence before processing in the next level by
using the reordering algorithm with minimum-weight

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

453

::previous level. The second and the third steps are repeated
¢ wntil there is only one class remains.

. Reordering algorithm

t For the reason descrived above, we consider the
“generalization errors in order to choose the optimal
=:gequence from all possible sequences with less chance to
predict the wrong class. Among classifiers, &2 classifiers
‘'which have small generalization errors will be considered

90 be used in data classification.

_ Let G=(V, E) be a graph with node set ¥ and edge set
, E Each node in G denotes one class and each edge
i denotes one binary classifier which has a generalization
error expressed by Equation (14) (see Figure 5(a)). The
‘output of the reordering algonthm for graph G is a subset
edges with the minimum sum of generalization errors of
edges and each node in G is met by exactly one edge in

subset (see Figure 5(b)). Given a real weight ¢, being
generalization error for each edge e of G, the problem of
teordering algorithm can be solved by the minimum
- weight perfect matching that finds a perfect matching M of
¢ minimum weight Z(c, : ¢ € M).

For U g ¥, let E(U) = {(i,):(if)eE, ieU, jeU}. E(U)
B is the set of chosen classifiers. Let &i) denote the set of
fiedges incident to node #; the set of classifiers with one
‘elass being i. The perfect matchings on a graph G = (V, E)
: with }¥] even is given by

%,
x,

i"{a) xeRT

“* ®) Zx, =] forveV

L eed(y)

£ U] ;

v {©) Z x < [TJ foralloddsets U — ¥ with |U| 2 3

L esED)

= or by (a),(b) and

()) x 21 foralloddsetsU c ¥ with |23 (16)
red(U)

whﬂe |E] = m, the number of classifiers, and x, = | means
¢ that classifier ¢ is chosen to be used in the sequence.
" Therefore, the reordering problem is to solve the following

% min Zcexe

ecE

(17}

ﬁ where x satisfies “(a),(b) and (¢)” or “(a),(b) and (d)".

£
il

7 Currently, the minimum-weight perfect matching
i algorithm runs in time bounded by O(n(m + n log n)) [3],
% where n is the number of nodes (classes) in the graph and
¥ m is the number of edges (binary classifiers). Hence the
- reordering algorithm can reorder the sequence in that
. polynomial time.

Figure 5. (a) A graph for an 8-class problem.
(b} An example of the output of the reordering algorithm.

4. Numerical experiments

In this section, we present experimental results on
several datasets from the UCI Repository of machine
learning databases [2] including glass, satimage, segment,
shuttle, vowel, soybean, letter and isolet (see Table 1).
These datasets are different in the number of classes, the
number of dimensions, and sizes. For the glass and
segment problems, there is no test data so we used 5-fold
cross validation. For the soybean problem, we discarded
the last four classes because of missing values.

Table 1. Description of the datasets used in the

experiments

Dataset #raining data | #test data #class | #dimension
Glass 214 5-foid 6 9
Satimage 4,435 2,000 6 36
Segment 2,310 5-fold 7 18
Shuttle 43,500 14,500 7 9
Vowel 528 462 11 10
Soybean 290 340 15 35
Letter 15,963 4,037 26 i6
Isolet 6,238 1,559 26 617

In these experiments we scaled both training data and
test data to be in [-1,1] and employed Polypomial and RBF
kernels. In the experiments, we compare three algorithms,
i.e., the original ADAG, the RADAG, and the Max Wins
algorithm. For the ADAG, we examined all possible
sequences for datasets having not more than 7 classes,
whereas we randomly selected 50,000 sequences for
datasets having more than 7 classes. Table 2 and 3 present
the results of comparing these methods for Polynomial and
RBF kemels, tespectively. We present the optimal °
parameters {4 and ¢ in Equations {11) and (12)) of the
kernels and the corresponding accuracies. The best
accuracy among three methods is illustrated in bold-face.

The results show that our method yields highest
accuracy in almost all of datasets. Another advantage of
our method compared to the DDAG and the original
ADAG is that our method always provides one best
accuracy for each dataset using the reordering algorithm,
whereas, depending on the sequence of classes, the DDAG
and the original ADAG may give low accuracies. This
shows the effectiveness of the RADAG.

The 7~ National Computer Science and Engineering Conference, October 28-30, 2003

454

periect matching. This sequence differs for each test
example, and it depends on the results of nedes from the
previous level. The second and the third steps are repeated
iritil there is only one class remains.

3.3. Reordering algorithm

For the reasom descrived above, we consider the
generalization errors in order to choose the optimal
seguence from all possible sequences with less chance to
predict the wrong class. Among classifiers, 4/2 classifiers
which have small generalization errors will be considered
to be used in data classification.

Let G=(V, E) be a graph with node set and edge set
E. Each node in G denotes one class and each edge
denotes one binary classifier which has a generalization
error expressed by Equation (14) (see Figure 5(a)). The
autput of the reordering algorithm for graph G is a subset
of edges with the minimum sum of generalization errors of
all edges and each node in G is et by exactly one edge in
the subset (see Figure 5(b)). Given a real wéight ¢, being
generalization error for each edge ¢ of G, the problem of
reordering algeorithm can be solved by the minimum
weight perfect matching that finds a perfect matching M of
minimum weight Z(c, : ¢ € M).

For U < V, let E(U) = {(i,)):(i)eE, ieU, jeU}. E(U)
1¢ the set of chosen classifiers. Let &i) denote the set of
edges incident to node 7 the set of classifiers with one
class being i. The perfect matchings on a graph G = (¥, E)
with [F] even s given by

(® xeR/
)) 5, =1 forveV
ecd{v)

() Z x, s['%—'} foralloddsets U/ < ¥ with|U] 2 3

seEll)

ar by (a),(b) and

(@) er >1 for all odd sets U < V with [U] 2 3
ees (U}

where |£] = m, the number of classifiers, and x, = 1 means

that classifier e is chosen to be used in the sequence.

Therefore, the reordering problem is to solve the following

linear program:

min Zcexe

ecE

(16)

a7

where x satisfies “{a),(b) and (¢)” or *“(a),(b) and {d)”.

Currently, the minimum-weight perfect matching
algorithra runs in time bounded by O(a{m + n log n)) [3],
whiere n is the number of nodes (classes) in the graph and
m is the number of edges (binary classifiers). Hence the
teordering algorithm can reorder the sequence in that
potynomial time.

Figure 5. (a) A graph for an §-class problem.
(b) An example of the output of the reordering algorithm.

4. Numerical experiments

In this section, we present experimental results on
several datasets from the UCI Repository of machine
learning databases [2] including glass, satimage, segment,
shuttle, vowel, soybean, letter and isolet (see Table 1).
These datasets are different in the number of classes, the
number of dimensions, and sizes. For the glass and
segment problems, there is no test data so we used 5-fold
cross validation. For the soybean problem, we discarded
the last four classes because of missing values.

Table 1. Description of the datasets used in the

experiments

Dataset #oaining data | #iess data #class | #dumension
Glass 214 5-fold 6 9
Satimage 4,435 2,000 6 36
Segment 2,310 5-foid 7 18
Shuttle 43,500 14,500 7 9
Vowel 528 462 11 19
Soybean 290 340 15 35
Letier 15,963 4,037 26 16
| Isolet 6,238 1,559 26 617

In these experiments we scaled both training data and
test data to be in [-1,1] and employed Polypomial and RBF
kernels. In the experiments, we compare three algorithms,
i.e., the original ADAG, the RADAG, and the Max Wins
algorithm. For the ADAG, we examined all possible
sequences for datasets having not more than 7 classes,
whereas we randomly selected 50,000 sequences for
datasets having more than 7 classes. Table 2 and 3 present
the results of comparing these methods for Polynomial and
RBF kemnels, respectively. We present the optimal -
parameters (d and ¢ in Equations (11) and (12)) of the
kernels and the corresponding accuracies. The best
accutacy among three methods is illustrated in bold-face.

The results show that our method yields highest
accuracy in almost all of datasets. Another advantage of
ow method compared to the DDAG and the original
ADAG is that our method always provides one best
accuracy for each dataset using the reordering algorithm,
whereas, depending on the sequence of classes, the DDAG
and the original ADAG may give low accuracies. This
shows the effectiveness of the RADAG.

The 7° National Computer Science and Engineering Conference, October 28-30, 2003

454

Table 2. A comparison of the accuracy of classification
using the Polynomial kernel

Damset | & ADAG | 4 MamxWim| 4 RADAG
Glass 2 71135 | 2 71078 | 2 71.063
Satimage | 6 88430 | 6 88453 | 6 88.900
Segment | 8 97408 | 8 97379 | 8 97.489
Shuttle 8 99924 | 8 99924 | 8 99.924
Vowel 3 64293 | 3 64329 | 2 64.502
Soybean 5 90.446 3 90.471 3 91.176
Letter 3 95984 | 3 96125 | 4 96111
Tsolet 397030 | 3 97040 | 3 97.049

Table 3. A comparison of the accuracy of classification

using the RBF kermnel
Dataset | ¢ ADAG | ¢ MaxWins| ¢ RADAG |
Glass 0.08 72,759 |0.09 73.238 |0.09 74.319
Satimage (3.0 91.968 (3.0 91.984 (3.0 91.950
Segment 0.7 971282 (0.7 97.298 |0.7 97.273
Shuttle 3.0 99.897 (3.0 99.897 |3.0 99.897
Vowel 02 65.589 0.2 65.340 (0.2 67.100
Soybean 0.08 90.412 |0.08 90.468 |0.07 90.882
Letter 3.0 97909 3.0 97918 (3.0 97.969
Isolet .01 $6.932 (0.0 96916 |0.01 * 96.985

Table 4. A comparison of the computational time using

the Polynomial kernel

RADAG Max Wins

Dataset | d | Classifying | Reordering Total Classifying
_(seconds) | (seconds) | (seconds) | (seconds
Satimage | 6 1.90 0.50 2.40 9.47
Segment . [8§ 0.11 0.08 0.19 0.41
Shuttle 8 1.75 3.38 5.13 5.15
Vowel 2 0.12 0.25 0.37 0.61
| Soybean | 3 0.30 0.25 0.55 1.86
Letter 4 B.48 4.20 12.68 125.58
Isolet 3 116.02 1.48 117.50 1671.98

Table 5. A comparison of the computational time using

the RBF kernel
[RADAG Max Wins
Dataset c Classifying | Reordering Total Classifying
_(seconds) (seconds) (seconds) (seconds)
Sati e | 3.0 11.75 0.51 12.26 37.13
Se; t | 0.7 0.24 0.10 0.34 0.82
Shuttle 3.0 3.36 0.63 3.99 9.27
Vowel 0.2 0.10 0.27 0.37 0.61
‘Soybean | 047 0.32 0.45 0.77 2.20
Letter 3.0 62.27 3.69 65.96 802.85
Isolet o0l 100.42 1.60 102.02 1365.11

Table 4 and 5 present the comparison of the
computational time between the RADAG and the Max
Wins for Polynomial and RBF kernels by using a 400
MHz Pentium H processor. There is no computational time
of the glass dataset because it has too little test examples
to measure the time. The results show that our method
requires low computational time in all datasets, especially
when the number of classes and/or the number of
dimensions are relatively large. For a & class problem, the
Max Wins requires Kk(k-1)2 classifiers for the
classification whereas the RADAG requires only #-1
classifiers. Hence the larger the number of classes the

moere running time the Max Wins requires than the
RADAG. Moreover, the number of dimensions affects the
running time of each classifier. For the RADAG, the
number of classes affects the ninning time for reordering,
However, it takes a little time even when there are many
classes.

5. Conclusions

In this paper, we have presented a new approach for
multiclass SVMs, called Reordering Adaptive Directed
Acyclic Graph (RADAG), which is the modification of the
original ADAG. Our approach eliminates the dependency
of the sequence of binary classifiers in nodes in the
original ADAG by selecting an appropriate sequence from
all possible sequences which consists of classifiers with
small generalization error. By the use of minimum-weight
perfect matching, the RADAG can reorder the sequence in
polynomial time. The experimental results show that our
new approach yields higher accuracy than the original
ADAG and even Max Wins which is probably the
currently most accurate method for multiclass SVMs.
Moreover the running time used by the RADAG is less
than Max Wins, especially when the number of classes
and/or the number of dimensions are relatively large. Our
future work is to test the method on datasets with a very
large number of classes and dimensions.

6. Acknowledgment

This work was supported by The Thailand Research
Fund.

7. References

{I] P. L. Bartlet, J Shawe-Taylor, “Generalization
performance of support vector machines and other pattern
clagsifiers”, in Advances in Kernel Methods - Support
Vector Learning, B. Schoelkopf, C. J. C. Burges, A. L
Smola (eds), pp. 43-54, MIT Press, Cambridge, USA, 1999,

[2] C.Blake, E. Keogh and C. Merz, UCI repository of machine
learming databases, Department of Information and
Computer Science, University of California, Irvine, 1998.
http:/iwww.ics.uci.eduw/~mlearn/MLRepository. html

3] W. Cook, and A. Rohe, “Computing minimum-weight

perfect matchings”, Technical Report 97863,

- Forschungsinstitat fiir Diskrete Mathernatik, Universitit

Bonn, 1997,

(4] J. H. Friedman, “Another approach to Polychotomous
classification”, Technical report, Department of Statistics,
Stanford University, 1996,

[} C—W. Hsu, and C.-J. Lin, “A comparison of methods for
multiclass Support Vector Machines”, TEEE Trans.on
Neural Networks, Vol. 13, pp. 415-425, March, 2002,

(6] J. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin
DAGs for multiclass classification”, in Advances in Neural
Information Processing Systems, MIT Press, Vol. 12, pp.
547-553, 2000.

{71 N. Ussivakul, and B. Kijsirikul, “Multiclass support vector
machines using adaptive directed acyclic graph,” in
TEEE/INNS’ Int, Joint Conf. On Neural Networks (ITCNN-
2002), 2002.

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

455

WNFRITRUBLEY 6

A NEW FRAMEWORK FOR LEARNING FIRST-ORDER REPRESENTATION

Thanupol Leardlumnouchai' and Boonserm Kijsirikul‘

ABSTRACT: First-order logic rules are one of the most expressive and human readable
representations for learning a hypothesis in form of a set of production rules (if-then rules). However,
the first-order rules can be learned only by Inductive Logic Programming (ILP) systems, such as
PROGOL, FOIL. Other machine learning techniques, such as Neural Networks, Bayesian Networks
and Decision Tree Leamning, cannot directly learn this kind of rules because these techniques could
not select the appropriate values to substitute in variables of the first-order rules. In this paper, we
propose the method that makes use of Multiple-Instance Learning (MIL) as a new framework for
learning first-order representation. MIL is employed for determining the appropriate values for the
substitution. Experimental results show that the proposed method effectively learns first-order
representation and is comparable to ILP systems.

KEYWORDS: Inductive Logic Programming, First-Order Logic, Multiple-Instance Learning
1. INTRODUCTION

Knowledge based learning is one technique of machine learning (Mitchell 1997). Informally
knowledge is a set of sentences that describe known logical facts. In learning, the knowledge is
generally called background knowledge. Knowledge-based learning method receives background
knowledge and positive and negative examples as inputs and outputs a learned hypothesis represented
in form of a set of production rules (if-then rules). A prominent advantage of this representation is
human readable. Also, there are two types of logic for representing learned rules. The first one is
propositional logic which is simpler than the other one, first-order logic. Propositional rules have no
variable in their rules. o contrast, first-order rules contain variables so they are more expressive than
the propositional rules. Consider the difference between these two logical rules in Figure 1.

'ropusitional lowsic:

The propositional rule is specific enly for the first and the second persons being Jannifer and Andrew,
respectively. So it is rarely useful for unseen pairs of people. While first-order rules have variables
that make the rule much more expressive and general. However, only Inductive Logic Programming
(ILP) systems such as PROGOL (Mitchell 1997), FOIL (Mitchell 1997) can learn the first-order rules.
These first-order rule leamers have ability to select the appropriate values to substitute in variables,
while other machine learning method cannot, such as Neural Networks, Bayesian Networks and
Decision Tree Learning. Therefore the advantages of these methods, such as robustness to noise,
could not be applied in first-order rule learning to increase the efficiency in real world usage.

i Department of Computer Engineering, Chidalongkorn University, Pathwnwan, Banghkok, Thailand

In this paper, we are interested in solving this challenge. We propose the method that can use other
techniques to learn first-order rules by using a framework called Multiple-Instance Learning (MIL)
(Huang, Chen et al. 2003). MIL is employed for determining the appropriate values for the variable
substitutions. We evaluate the proposed method by learning first-order concept mother(x,y) with
Backpropagation Neural Network (BNN) on MIL framework. The results show that our technique
competently learns first-order representation.

2. FRAMEWORK

ILP is only one of machine leamning which adapts the logical concept for hypothesis learning and
represents the learned rules in first-order logic form. Other learning techniques cannot directly learn
this kind of rules because of difficulty in selecting the appropriate values to substitute in variables of
first-order rules. To illustrate this problem, consider the task of learning rules for classifying the rich
person (rich(x)). Background knowledge, the positive and negative examples are given as follow.

Fig re 2.

From these inputs, the ILP system could provide the learned rule as: rich(x):- genius(x), diligent(x).
The meaning of the above rule is if x is genius and diligent, then x will be a rich person. For
comparing to ILP, we use the BNN as the representative of indirectly learning methods. BNN also
learns the rich concept with the same inputs as [LP. First, we create the initial network that is
equivalent to the background knowledge, The network has 3 input nodes, in this case. We then assign
some small random value to initialize each weight. The network constructed from the background
knowledge is shown in Figure 3.

rich(x)

genius(x) diligent(x) strong(x)
Figure 3. The constructed network.

Next, we feed an example to the network one by one. The input value for an input unit will be 1 if the
literal of that unit is true in background knowledge when variables of the literal are substituted to
some constants. Otherwise the input value for that unit is 0. For instance, if the fed example is
rich(Alan), then the value for each unit is 1, 1 and 0, respectively. Because literals genius{dlan) and
diligentfAlan) are true in background knowledge, while strong(Alan) is not true. The target value for
the output unit is 1 because rich{Alan) is a positive example. The target output is O in case of negative
examples. Then we apply the Backpropagation algorithm to adjust the network weights to fit training
examples. After training, the weight values of gemius(x) and diligent(x) units are higher than the
strong(x) unit. This is because the two previous literals are more significant than literal strong(x) and
this is comparable to the induced rule from ILP.

However, when inputs are relational examples and background knowledge, neural network cannot
easily learn as the previous example. As there are many constants that can be mapped to relational
variables, the correct inputs for the neural network cannot be easily determined. Consider the
following example.

Flgure 4, Inputs that contain relational predlcate

In this example, an additional relational literal parent(Bob,Alan) is given. This literal means Bob is
Alan’s parent. The construction of the network also adds nodes parentx,)) and parent(y,x) in the
input layer, so there are 5 input nodes in this case. When we feed positive example rich(4lan) to the
network, the first three nodes which are genius(x), diligent(x) and strong(x) receive 0,1 and 0 as its
input respectively. For node pareni(y,x), the variable x is replaced by Alan. But we have to determine
to which term (Alan, Bob or Chris) variable y should be replaced. If we select Bob for substitution,
the truth value for this input unit will be 1. The other substitutions will give 0 for this unit. While the
truth value for paremt(x,y) is 0 for any substitution. This learning problem may occur when
background knowledge contains relational data and the learner cannot determine the appropriate value
for the variable substitution.

To solve this problem, we use the power of Multipte-Instance Learning (MIL} to provide input data
for relational first-order rule learning. In MIL framework, the training set is composed of a set of
bags, each of which is a collection of different number of instances. A bag is labeled as a negative bag
if all the instances in it are negative. On the other hand, if a bag contains at least one positive instance
then it is labeled as a positive bag, With this concept, we define a set of training examples as {B,
B, , ... By}, where » is a number of examples including positive and negative ones. A bag is labeled
as a positive bag if an example is positive, and negative otherwise. Each bag contains m, instances
{Bii, Bia, ..., Bim} where cach is one possible binding (substitution). Therefore the appropriate value
selection would not be a problem because in one bag there are all cases of variable substitutions and
the learning algorithm are designed for this kind of MIL problem. We can use these transformed data
for learning a hypothesis. Consider an example of positive bag rich(4lan) as input data (see Table 1).

Table 1. Input data of the network for bag rich{Adlan).

Bag of example rich(Alan) genius(x) | diligent(x) ! strong(x) | parent(x,y) | parent(y.x)
Replace x by Alan, and y by Alan 0 1 0 0 0
Replace x by Alan, and y by Bob 0 1 0 0 i
Replace x by Alan, and y by Chris 0 | 0 0 0

As shown in Table 1, the bag rich(4lan) has 3 instances. Positive bag rich(Bob) and negative bag
rich(Chris) also have 3 instances as same as bag rich(Alan). For training, these 3 bags are fed to the
network one by one. The network weights are adapted by the backpropagation algorithm for MIL
(Zhou and Zhang 2002).

3. EXPERIMENT

In this section, we evaluate our proposed technique on learning first-order rules by BNN. The target
cencept that we try to learn is mother(x,y). A family relationship as shown in Figure 5 describes a set
of training examples. Additionally, four predicates which are father(x,y) husband(x,y),
grandmother(x,y) and sister(x,y} are given as background knowledge.

Christophér = Pénclope Andrew = Christine
Arthur Victoriz = James Junnifer
Ci}rlin Churljgmt

Figure 5. A family relationship where A=B means A marries B.

With these input data, we get 6 positive bags that are mother(Penelope Arthur),
mother(Penelope, Victoria), mother(Christine,James), mother(Christine,Jannifer),
mother(Victoria, Colin), and mother(Victoria,Charlotte). Each positive bag is composed of 10
instances each of which is one case of relational variable z replacement. For negative bag, we take one
person as one bag so there are 10 negative bags. Each bag has 10 cases of persons for substitution in
variable y such as mother{Christopher, Christopher). mother(Christopher, Penclope), ... and each case
contains 10 bindings. So each negative bag contains 90 instances, except for the 3 bags for Penelope,
Christine and Victoria which contain only 70 instances as some of them are already used as positive
bags. Moreover, each predicate from background knowledge is expanded to 6 literals which are for
fx.), (x.z), (v.x), (»z), (zx), and (z,y). Variable z is used for making a connection between literals. The
network must be consistent with background knowledge, so we create a network with 24 input nodes
and 1 output node. We set the number of hidden nodes to 1 node and 4 nodes for the first and second
experiments, respectively. Then we train the network for 2000 epochs by using the backpropagation
algorithm. The obtained networks are shown in Figure 6, with dark solid lines indicating the largest
positive weights, and light lines indicating negligible weights. Both networks perfectly classified all
of the training examples and the networks are almost equivalent. Furthermore from learned network
weights, the network can be mapped to a rule mother(x,y) < father(z,y), husband(z,x) (Towell and
Shavlik 1993), which is the same as the rule learned by ILP.

B

Q&\
\\
\«\\t'-"

o
’
g

/

o - K‘ 3 B \‘\:)‘\A, “]}aji.} et B S ‘.:’?:..
seesdetonns. ve e o oo
55 35 55 ai
RN 3--V-3- 1 T 5] g 22222 &%
TTTTTELRRES EaeRs
(a) (b)

Figure 6. The complete trained networks with 1 hidden node (a) and 4 hidden nodes (b).

4. CONCLUSION

This paper presents a new framework for learning first-order rules. The objective is to solve the
problem that other machine learning techniques except for ILP cannot select the appropriate values
for variable substitution. So we applied MIL to provide certain input data from first-order logic input.
The experimental results show that our proposed method is able to learn first-order representation.
The refined network can be mapped to the rule which is comparable to one obtained by ILP.
Consequently, as we can employ other techniques for learning first-order logic, the advantage of these
methods can alleviate the weakness of ILP such as sensitivity to noise.

5. REFERENCES

Huang, X, §.-C. Chen, et al. (2003). An Open Multiple Instance {.eaming Framework and Its
Application in Drug Activity Prediction Problems. Proceedings of the Third I[EEE
Symposium on Biolnformatics and BiocEngineering (BIBE'03), Bethesda, Maryland.

Mitchell, T. M. (1997). Machine Learning, The McGraw-Hill Companies Inc.

Towell, G. G. and J. W. Shavlik (1993). "The Extraction of Refined Rules from Knowledge-Based
Neural Networks."” Machine Learning Journal 13(1): 71-101.

Zhou, Z.-H. and M.-L. Zhang (2002). Neural Network for Multi-Instance Learning. Proceedings of
the International Conference on Intelligent Information Technology, Beijing, China.

Multiclass Support Vector Machines
Using Balanced Dichotomization

Boonserm Kijsirikul, Narong Boonsirisumpun, and Yachai Limpiyakorn

Department of Computer Engineering, Chulalongkorn University, Thailand
{Boonserm.K, Yachai.L}@chula.ac.th
Narong.Bo@student.chula.ac.th

The Support Vector Machine (SVM) has been introduced as a technique for solving a
variety of learning and function estimation problems. The technique was originally
designed for binary classification learning with its outstanding performance. How-
ever, many real world applications involve multiclass classification. Typical SVM
solutions to N-class problems are to construct and combine several two-class classifi-
ers into an N-class classifier such as the one-against-the-rest approach (1-v-r) and the
one-against-one approach (1-v-1). The one-against-one methods solve N(N-1)/2
binary classifiers where each one is trained on data from two classes, There are differ-
ent methods for the evaluation of the correct class after all N(N-1)/2 classifiers have
been constructed. The Max Wins method takes the majority vote of a certain class as
the final output [3]. A drawback of the 1-v-1 SVMs is their inefficiency of classifying
data as the number of SVMs grows superlinearly with the number of classes. To im-
prove the efficiency in classifying data, Platt et al. [5] proposed the Decision Directed
Acyclic Graph (DDAG) with N(N-1)/2 internal nodes and N leaves. Only N-1 deci-
sion nodes will be evaluated in order to derive an answer, that is lower than N(N-1)/2
decisions required by Max Wins. To reduce the unnecessarily high number of node
evaluations for the correct class, Kijsirikul, et al. [4] proposed the Adaptive Directed
Acyclic Graph (ADAG) method, which is a modification of the DDAG. Like the
DDAG, the ADAG requires N—1 decisions in order to derive an answer. However,
using the reversed triangular structure reduces the number of evaluations the correct
class is tested against other classes to [log,N| times or less, which is considerably
lower than that of N-1 times required by the DDAG.

In this paper, we introduce a new method for constructing multiclass SVMs using
binary classifiers, called Balanced Dichotomization. For an N-class problem, the sys-
tem constructs N(N-1)/2 binary classifiers during its training phase like other one-
against-one methods. Among those binary hyperplanes having been constructed, the
system searches for the hyperplane at the most balanced position among all candidate
classes, called balanced dichotomization classifier that separates the data classes into
bhalf-and-half on each side. Using a balanced dichotomization classifier can thus re-
move half of the candidate classes during each evaluation for the correct class, that is
a higher number of elimination compared to other methods, such as the DDAG, the
ADAG, which eliminate only one class using an ordinary binary classifier. As a re-
sult, the technique can optimally reduce the number of decisions in order to derive an
answer to | log, V| times, rather than N-1 times in the DDAG and the ADAG.

The basic idea of the primary SVM classification is to find the optimal hyperplane
separating the two classes of data as illustrated in Figure 2 (a). The hyperplane maxi-
mizes the margin between the data in class 1 and class 2. However, the hyperplane in
¢ Figure 2 (a) is not a balanced dichotomization classifier because when considering the
i positions of all candidate classes, it is not at the most balanced position as depicted in

C. Zhang, H.W. Guesgen, W.K. Yeap (Eds.): PRICAI 2004, LNAI 3157, pp. 973-974, 2004
|- © Springer-Verlag Berlin Heidelberg 2004

ANV ELED 7

974 Boonserm Kijsirikul, Narong Boonsirisumpun, and Yachai Limpiyakorn

(©)

Fig. 2. (a) The optimal hyperplane for classes 1 and 2, (b) the hyperplane is not a balanced
dichotomization classifier when considering other classes, and (c) an optimal balanced hyper-

plane.

Figure 2 (b). The hyperplane shown in Figure 2 (¢) is an example of the balanced
dichotomization hyperplane. It is posed at the optimal balanced position that separates
candidate classes into half-and-half on each side.

Since Balanced Dichotomization requires considering positions of all candidate
classes to arrive at a balanced.hyperplane, there may be cases where a hyperplane in
consideration is posed in between data of certain classes. To deal with these cases,
two parameters are introduced in our approach, i.e. the optimal range of generaliza-
tion error and the optimal pruning percentage. Pruning percentage is used as the
threshold for the removal of data on either side of the hyperplane in consideration.
The strategy of pruning is to achieve the balanced dichotomization that provides the
minimum number of evaluations for the correct class while maintaining the accuracy
within the range of generalization performance [1]. If the ratio between data of a class
on one side and all data of the class is less than pruning percentage, the data on that
side will be ignored. Moreover, using the optimal range of generalization error, only
hyperplanes with the generalization error within the range will be considered.

We evaluate the performance of our method on séveral datasets from the UCI Re-
pository of machine learning databases [2]: Glass, Satimage, Segment, Shuttle,
Vowel, Soybean, Letter, and Isolet. The experimental results show that Balanced
Dichotomization runs faster and maintains accuracy comparable to Max Wins and 7
better than the ADAG and the DDAG methods. 1

References

1. Bartlett, P. L. and Shawe-Taylor, J. (1999) Generalization performance of support vector v
machines and other pattern classifiers, In B.Schélkopf, C. Burges, & A. Smola (Eds.), Ad-
vances in Kernel Methods — Support Vector Learning, pp. 43-54, MIT Press, USA.

2. Blake, C., Keogh, E., and Merz, C. (1998) UCI Repository of Machine Learning Databases,
Department of Information and Computer Science, University of California, Irvine.
http:/fwww ics.uci.edu/~mlearn/MLSummary.html

3. Friedman, J. H. (1996) Another Approach to Polychotomous classg‘icatzon Technical report,
Department of Statistics, Stanford University.

4. Kijsirikul, B., Ussivakul, N., and Meknavin, S. (2002) Adaptive Directed Acyclic Graphs for
Multiclass Classification, The Seventh Pacific Rim International Conference on Artificial
Intelligence.

5. Platt, J., Cristianini, N. and Shawe-Taylor, J. (2000) Large Margin DAGs for Multiclass
Classification, Advances in Neural Information Processing Systems, MIT Press, 12, 547-
553.

.

NI SR 8

First-Order Logical Neural Networks

Thanupol Lerdlamnaochai and Boonserm Kijsirikul
Department of Computer, Engineering, Chulalongkorn University,
Pathumwan, Bangkok, 10330, Thailand
g461ll@cp.eng.chula.ac.th, boonserm.k@chula.ac.th

Abstract

Inductive Logic Programming (ILP) is a well
known machine learning rechnigue in learning
concepls from relational data. Nevertheless, ILP
systems are not robust enough lo noisy or unseen data
in real world domains. Furthermore, in multi-class
problems, if the example is not malched with any
learned rules, it cannol be classified. This paper
presents a novel hybrid learning method to alleviate
this restriction by enabling Neural Networks 1o handle
Jirst-order logic programs directly. The proposed
method, called First-Order Logical Newral Network
(FOLNN), is based on feedforward neural networks
and integrates inductive learning from examples and
background knowledge. We also propose a method for
determining the appropriate variable substitution in
FOLNN learning by using Multiple-Instance Learning
(MIL). In the experiments, the proposed method has
been evafuated on two first-order learning problems,
i.e., the Finite Element Mesh Design and Mutagenesis
and compared with the state-of-the-art, the PROGOL
system. The experimental results show that ihe
proposed method performs better than PROGOL.

1. Introduction

Inductive Logic Programming (ILP) {1, 2] is only
one of machine learning techniques which adapts the
first-order logical concepts for hypothesis learning.
The advantages of ILP are the ability of employing
background knowledge and the expressive
representation of first-order logic. However, first-order

rules Ieamed by ILP have the restriction to bandle -

imperfect data in real-world domains such as noisy
unseen data. This problem noticeably occurs especially
in multi-class classification. In multi-class
classification, if an example is not covered any learned
rule, it could not be classified. The simple solution is
assigning the majority class recorded from training

0-7695-2291-2/05 $20.00 © 2005 IEEE

192

examples to the unable labeled test data {3]. Also. there
is more efficient method to solve this problem by using
the concept of intelligent hybrid systems [4].

Artificial Neural Networks (ANNs) {3] claim to
avoid the restrictions of symbolic rule-based svstems
described above. Neural networks contain the ability of
processing inconsistent and noisy data. Moreover, they
compute the most reasonable output for each input.
Neural networks, because of their potential for noise
tolerance and multi-class classification. offer an
attractiveness for combining with symbolic
components. Although the ability of neural networks
could alleviate the problem in symbolic rule-based
systems, ledmed hypothesis from neural networks is
not available in a form that is legible for humans.
Therefore neural networks significantly require an
interpretation by rule-based systems [4). Several works
show that the integration between robust neural
networks and symbolic knowledge representation can
improve classification accuracy such as Towell and
Shaviik’s KBANN [6], Mahoney and Mooney's
RAPTURE [7], the works proposed by Rajesh Parckh
and Vasant Honavar [8] and d’Avila Garcez et al. {9].
Nevertheless, these researches have been restricted 1o
propositional theory refinement. Some models have
been proposed for first-order theory, SHRUTI [10]
employed a model making a restricted form of
unification—actually this system only propagates
bindings—. The work proposed by Botta et al. [11]
created a network consisting of restricted form of
leaming first-order logic. Kijsirkul et al. [12]
proposed a feature generation method and a partia
maiching technique for first-order fogic but thei
method still uses an ILP system in its first-step
leaming and cannot select the appropriate values to
substitute in variables.

In this paper, we are interested in direct leaming of
first-order logic programs by neural networks, called
First-Order Logical Neural Network (FOLNN).
FOLNN is 2 neural-symbolic learning system based on
the feedforward neural network that integrates

inductive learning from examples and backgrouad
knowiedge. We also propose the method that makes
use of Multiple-instance Leaming (MIL) [13, 14} for
determining the variable substitution in our model. Qur
pmpused method has been evaluated on two standard
first-order learning datasets i.e., the Finite Element
Mesh Design [15] and Mutagenesis [16]. The results
show that the proposed method provides more accurate
result than the original ILP system.

The rest of this paper is organized as follows.
Section 2 outlines the processes of first-order learning
by FOLNN, splitting into ihree subsections. The
experimental results on firsl-order problems are shown
in Section 3. Finally the conclusions are given in
Section 4.

2. First-Order Logical Neural Network
(FOLNN)

Commonly the main reason for integrating robust
neural networks and symbaolic components is to reduce
the weakness of the rule-based system. Combining
these two lechniques together is normally known as
neural-symbolic leamning system (9], Our proposed
method, FOLNN is also this type of learning system.
FOLNN structure is based on the feedforward neural
network and can receive examples and background
knowledge in form of first-order logic programs as the
inpuis. FOLNN weight adaptation is based on the
Backpropagation (BP) algorithm [17].

The following subsections explain the FOLNN
algorithm composed of creating an initial network,
feeding examples to the network and taining the
network.

2.1. Creating an initial network

In this subsection, we present the first step of the
FOLNN algorithm, creating an initial network from
background knowledge. A three layers feedforward
network, composed of one input layer, one output layer
and one hidden layer [18], is employed for FOLNN
structure. We define the functionality of each layer as
follows.

* Input layer: Input layer is the first layer that
receives input data, computes received data, and
then transmits processed data to the hidder layer.
This layer represents the literals for describing
the target rule. The number of units in this layer
depends on the number of predicates in
background knowledge. One predicate is
represented by one uait in the input layer if that
predicate contains only arity one. Otherwise, the

number of units for a predicate equals to the
number of all possible combinaticns of variables
of that predicate.

« Hidden {ayer: This layer connecis between the
input laycr and the output layer. The hidden layer
helps thc network to leamn the complex
classification. The number of units in this layer
depends on the complication of the leamning
concept, The number of units in the hidden layer
1s determined from the experiments.

e Output layer: This layer is the last layer of the
network producing the output for the
classification. The target concept is represenled in
this Jayer so that the number of units in the output
layer equals 10 the number of concepls lo be
learned or the number of classes.

An initial network is created by using the above
definition. To illusirate the construction of the
network, consider the task of leaming rules for
classifying the rich person {rich(x})). Background
knowledge, the positive and negative examples are
given as follows.

As shown in Figure 1, background knowiledge
contains three predicates with arity one which are
genius(x), diligent{x) and strong(x) and one predicate
having arity two which is parent(x.y). Each predicate
of arity one is represented by one unit in the input
layer, so three units are created. Predicate parent is
represented by two input units for literals parent(x,y)
and parent(y,x). Furthermore, the cutput layer, because
of only one target concept (rich(x)), has only one unit,
Therefore in this case, the constructed network will
have five input units and one output unit. The created
network from the inputs in Figure 1 is shown in Figure
2. In addition, all network weights are mitialized to
small random numbers.

rich(x)
T8 E Y
EE & & &
2% 2 ¢ 3

Figure 2. The created network with one hidden
unit.

The completely constructed network then receives
examples for refining the network. The process for
feeding examples to the network is described in the
next subsection.

2.2. Feeding examples to the network

In general, neural networks receive inputs jn redl
value form. However, inputs of the ILP system
{background knowledge and examples) are in logical
form. So we change the logical inputs to the form that
can be learned by neural networks. The examples are
fed to the network one by one and independently
transformed to the network input for each unit. The
vzlue for each unit is defined as follows.

1

where Xj;, L;, and & are input value for input unit /
when feeding example j, literal represented by input
unit i, and variable binding with constants in example
J. respectively.

The input value for an input unit will be 1 if there
exists substitution that makes the truth value of the
literal true in background knowledge. Otherwise the
input value for that unit is ¢. In addition, the target
value for output unit is defined as follows.

1
|

where 7y; and L; are target value for output unit k£ when
feeding example j, and literal represented by output
unit k, respectively.

For instance, with the same inputs in Figure I, if the
fed example is rich{Alan) then the first three units i.e.,
genius(x), diligent(x) and strong(x), receive 0,1 and 0
as their inputs respectively, because literal
diligent{Alan) is ttue in background knowledge, while
literals genius(dlan) and strong(Alan) are false. The
target value for the output unit is 1 because richfdlan)
is a positive example. However, the input value for
literals parent(x,y) and parent(y.x) cannot be easily
determined since there are many possible constants
that can be mapped to relational variables. For unit
parent(y,x), the variable x is certainly replaced by

if L8, is true in background knowledge (1}

othenvise

if L8, is positive example
otherwise’

@)

Alan. However, it is quite ambiguous by which term
{Alan, Bob or Chris) variabie y should be replaced. If
we select Bob for substitution, the truth value for this
input unit will be 1. The other substitutions will give o
for this unit (see Table 1). The truth value for
parent(x.y) is O for any substitution. From the above
example, the input value for unit pareni(y.x) is not
certain and cannot be easily determined for network
training. This problem may occur when background
knowledge contains relational data and the leamer
cannot determine the appropriate value for the variable
substitution.

Table 1. input value of unit parent(y,x) for each
constant replacement.

Unit parent (y,x) Input value
Replace x by Alan, and y by Alan 0
Replace x by Alan, and y by Bob i
Replace x by Alan, and y by Chris 0

To solve this problem, we use the power of
Multiple-Instance Learning {MIL) to provide input
dala for our network. In MIL framework [13, 14], the
training set is composed of a set of bags, each of which
is a collection of different number of instances. A bag
is labeled as a negative bag if all the instances in it are
negative. On the other hand, if a bag contains at least
one positive instance then it is labeled as a positive
bag. With this concept, we define FOLNN iraining
data as a set of training examples {B, B:, .. B},
where 7 is the number of examples including positive
and negative ones. A bag is labeled as a positive bag if
an example is positive, and negative otherwise {in
multi-class classification, all bags are labeled as
positive of their classes). The positive bag is given 1 as
its target value and the negative bag is assigned 0, as
defined in Equation (2). Each bag contains m; instances
{Bii. By ... By where By is one possible binding
(substitution). This is a very important key because
now we can use all cases of vaniable substitutions as
one bag for learning; thercfore the appropriate value
selection would not be a problem. Consider an
example of positive bag rich(Alan) as input data (see
Table 2). :

Table 2, Transformation of examnple, rich(Alan) into input data of FOLNN

Positive bag of example rich(dlan) genmius(x) diligent(x}) strong(x) pareni(x,y) parent(vx)
Replace x by Alan, and y by Alan 0 1 0 0 .. 0

_Replace x by Alan, and y by Bob 0 I 0 . 0 1
Replace x by Alan, and y by Chris 0 1 "0 0 0

194

]

~ As shown in Table 2, the bag rich{dlan), has 3
Cpstances each of which is one case of substitution.
iso, positive bag rich(Bob) and negative bag
\rich(Chris) have 3 instances as same as positive bag
ich(Alan). For training, these 3 bags are fed to the
“setwork one by one and the network weights are
pted by the Backpropagation (BP) algorithm for
[19] as described in the next subsection.

" 2.3. Training the network

" To train the network. training bags are fed to the
metwork for adapling netwark weights. Weight
adaptation is based on the BP algorithm and the
Jctivation function is Sigmoid function. Suppose the
‘ietwork has p input units, o output units, and one
ljidden layer. The global error function (£) of the
network is defined as follows.

E=i5,- . &)

mthe type of the bag i as:

E= o ZE" if B=+ @)
4 3 if B;=—

max » £,
15 j5m, £

1

0 (B, =+) and (0.55 0,)1, =1
By = 0 if(B; =-)and (o, <0.5), for all k
(& O ¥ otherwise

- where

» Ey is error of output unit & on instance j in bag

- examople §

= B~+ is positive bag example

* B~- is negative bag example

* o is actual output of output unit & from bag example
i, instance j, and

® Iy is target output of output unit k from bag example /

With the defined error function above, the error BP
algorithm is simply adapted for training FOLNN. In
each training epoch, the training bags are fed to the
network one by one. Then the error £y is computed
accordmg to Equation (5). For a positive bag B, if £y
i5 0 then all the rest of instances of this bag are
: disregarded, and the weights are not changed for this
epoch. Otherwise the process continues and when all
the instance of B, are fed, £; is computed by using

Eguation (4) and the weights in the network are
changed according to the weight update rule of BP
[17]. Then the next bag for training is fed to the
network and the training process is repeated until the
number of training iterations increases to some
predefined threshold or the global error £ in Equation
{3) is decreased to some predefined threshold. After
having been trained, the network can be used to
classify unseen data.

3. Results

In the previous section, the three steps of tearning
FOLNN algorithm were described. In this section, we
evaluate FOLNN by performing experiments on the
finite element mesh design and the mutagenesis
datasets, the well-known ILP problems. We also
compare the results obtained by FOLNN with those
cbtained by an ILP system.

3.1. Datasets

3.1.1. Finite Element Mesh Design. The dataset for
the finite element mesh design {15) consists of 5
structures and has 13 classes (13 possible number of
partitions for an edge in a structure). Additionally,
there are 278 examples each of which has the form
mesh(Edge, Number_of elements) where Edge is an
edge label (unique for each edge) and
Number_of elements indicates the number of
partitions. The background knowledge contains
relations describing the types of an edge (e.g. circuir,
short), boundary conditions (e.g. free, fixed), loadings
(e.g. not_loaded, one_side loaded) and the relations
describing the structure of the object (e.g. neighbour,
opposite). The goal of finite element mesh design is to
learn general rules describing how many elements
should be used to model each edge of a structure,

3.1.2. Mutagenesis. The dataset for the mutagenesis
[16] consists of 188 molecules, of which 125 are
mutagenic (active} and 63 are non-mutagenic
(inactive). A molecule is described by listing its atoms
as atom{AfomID, Element, Type, Charge} and the bonds
between atoms as bond(Atom I Afom2, BondType). This
wproblem is a two-class learning problem for predicting
the mutagenicity of the molecules, whether a molecule
is active or inactive in terms of mutagenicity.

3.2. Experiments

For the finite element mesh design dataset, we
create the network containing 130 units in the input

layer (determined by predicates in background
knowledge), 13 output units (as the numbex of classes)
and one hidden layer with 80 hidden units (determined
by the experiment). For the mutagenesis dataset, the
constructed network has 235 input units, 100 hidden
units and 2 output units. The weights of two networks
are randomly initialized and then adapted by using the
BP algorithm with sigmoid activation function. We
performed three-fold cross validation [20] on each
datasel. The dataset is partitioned into three roughly
equal-sized subsets with roughly same proportion of
each class as that of the original dataset. Each subset is
used as a test set once, and the remaining subsets are
used as the training set. The final result is the average
result over three-fold data. For each fold, of both
datasets, we trained FOLNN with leaming rate 0.0001
and momentum 0.97,

Table 3. The percent accuracies of FOLNN and
PROGOL on first-order datasets; FEM ~ Finite
Elernent Mesh Design, MUTA — Mutagenesis.

Dataset FOLNN PROGOL
FEM 59.18 57.80
MUTA 88.27 84.58

The average results over three-fold data on FEM
and MUTA datasets are summarized in Table 3.
PROGOL [21], the state-of-the-art ILP system, has
been used to compare the performance with our
proposed method, FOLNN. The experimental results
show that the accuracies of our proposed method,
FOLNN are better than PROGOL in both datasets. The
better results are according to the weakness of learned
rules generated by PROGOL.

In addition to the results on the ocriginal dataset, to
see how well our learner handles noisy data, we also
evaluate FOLNN on noisy domain. The mutagenesis
dataset is selected for this task. Using the three-fold
data of the mutagenesis dataset in the last experiment,
10% and 15% class noise is randomly added into the
training set, and no noise is added into the test set. In
our case, adding x% of noise means that the class value
is replaced with the wrong value in x out of 100 data
by random selection. The accuracies of PROGOL and
FOLNN on noisy data are shown in Table 4.

Table 4. Performance comparison on the noisy
mutagenesis dataset.

Neoise PROGOL PROGOL PROGOL
levelin 9% noise 10% 15% FOLNN
dataset cotting noise noise
setting setting
10% 64.23 69.72 71.29° 84.01
15% 60.56 61.54 65.31 81.28

196

Since PROGOL has an ability to handle noise in
data as its option, “x% noise selling” in the table
specifics that noise option of PROGOL is set to x%.
As can be scen in the Table 4, our proposcd algorithm
stifl provides average accuracies higher than
PROGOL. When 10% and 15% noise is added into the
dataset, the PROGOL performance significantly drops
due to its sensitivity to noise which is the main
disadvantage of first-order rules directly induced by
the ILP sysiem. However, accuracy of our method
decreased 1nuch slower and is much higher than that of
PROGOL. FOLNN, because of the ability of noise
tolerance by combining with neural nctworks, is more
robust against noise than the original first-order rules,
FOLNN prevents overfitting noisy data by employing
neural networks (o give higher weights to important
features and give less attention to unimportant ones.

4. Conclusions

Leaming first-order logic programs by using neural
networks is still an open problem. This paper presents
a novel hybrid connectionist symbolic system based on
the feedforward neural network that incorporates
inductive leaming from examples and background
knowledge, called FOLNN (First-Order Logical
Neural Network). FOLNN alleviates the problem of
first-order rules induced by the ILP system which are
not robust enough to noisy or unseen data. The
prominent advantage of FOLNN is that it can leam
from inputs provided in form of first-order logic
programs directly. Other leamers cannot directly learn
this kind of programs because they cannot select the
appropriate values for variable substitution, but our
method can solve this problem by applying the MIL
concept to provide certain input data from first-order
logic input.

The experimental results show that FOLNN
presents the ability of noise tolerance and produces the
better performance than PROGOL. This is because of
the ability of neural networks that can select important
attributes and then gives higher weights to these
attributes and vice versa.

<

‘r;. lthough our main objective is to learn the first-
er logic, FOLNN can be applied to other tasks such
eamming from propositional datasets containing
Tiesing values in some attributes.

(e interesting issue is knowledge extraction.
S owledge extraction from a trained network is one
A ase of the neural-symbotic learning system [9] and is
[significant interest in data mining and knowledge
iscovery applications such as medical diagnosis.
Huwever, this phase is not included in this work and
e have niot yet explored rule extraction from trained
hetworks. Nevertheless, we surmise that many
ipsearches [9, 22-24] can be adapted to extract rules
:il 4t our networks.

_-' Acknowledgement

" This work was supported by the Thailand Research
Fond.
X

‘6. References

-

111] N. Lavrac and S. Dzeroski, Inductive Logic
Programming Techniques and Applications, Ellis
Horwood, New York, 1994,

S.-H. Nienhuys-Cheng and R. d. Wolf, Foundation of

Inductive Logic Programming, Springer-Verlag, New

York, 1997.

S. Dzeroski, S. Schulze-Kremer, K. R. Heidtke, K.

Siems, and D. Wetschereck, "Applying ILP to

Diterpene Stwucture Elucidation from 13C NMR

Spectra”’, Proceedings of the Sixth International

Workshap on Inductive Logic Programming, 1996.

& [4] 5. Wenmnter and R. Sun, "An Overview of Hybrid

' Neural Systems," Hybrid Neural Sysiems, number 1778
in Lecture Notes in Artificial Intelfigence, S. Wermter

{ and R. Sun, Eds., Springer, 2000, pp. 1-13.

3] C. M. Bishop, Newral Networks jfor Pattern

-4 Recognition, Oxford University Press, 1995,

1[6] G. G. Towell and J. W. Shavlik, "Knowledge-based
aftificial newral networks", Arvificial Inteiligence, vol.

i 70¢1-2}), 1994, pp. 119-165.

171 I). Mahoney and R). Mooney, "Combining
connectionist and symbolic learning to refine certainty-
factor rule-bases", Connection Science, vol. 5, 1993, pp.

- 339384

[B] R. Parekh and V. Honavar, "Constructive Theory

Refinement in Knowledge Based Neural Networks",

Proceedings of the International Joint Conference on

Neural Networks, Anchorage, Alaska, 1998.

-|9] A. 8. d. A. Garcez, K. B. Broda, and D. M. Gabbay,
Neural-Symbolic Learning Systems, Springer-Verlag,
2002.

[10] L. Shastri and V. Ajjanagadde, "From simple
asseeiations to systematic reasoning”, Behavieral and
Brain Sciences, vol. 16, 1993, pp. 417-494.

’

{11] M. Botta, A. Giordana, and R. Piola, “FONN:
Combining First Order Logic with Connectionist
Leaming", Proceedings of the HMth International
Conference on Machine Learning, Nashville, TN, 1997

{12] B. Kifsirikul, S. Sinthupinyo, and K.
Chongkasemwongse, "Approximate Match of Rules
Using Backpropagation Newral Nerworks", Machine
Learning Journal, vol. 44, pp. 273-299, 2001.

[13] Y. Chevaleyre and J.-D. Zucker, "A Framework for

" Leaming Rules from Multiple Instance Data”, !2th
European Conference on Machine Learning, Freiburg,
Germany, 2001.

[14] X. Huang, 5.-C. Chen, and M.-L. Shyu, "An Open
Multiple Instance Leaming Framework and Iis
Application in Drug Activity Prediction Problems”,
Froceedings of the Third [EEE Swvmposium wun
Bioinformatics and BigEngineering (BIBE'03).
Bethesda, Maryland, 2003.

[13] B. Dolsak and S. Muggleton, "The Application of
Inductive Logic Programming to Finite Elemeni Mesh
Destgn", Inductive Logic Programming, S. Muggleton,
Ed.. Academic Press, 1992, pp. 453--472.

[16] A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and
R. D. King, "Theories for mutagenicity: a study in first-
order and feature-based induction”, Arfificial
Inrefligence, vol. 85, Elsevier Science Publishers Ltd,,
1996, pp. 277-295.

{17) D. E. Rumethart, G. E. Hinton, and R. J. Williams,
"Learning internal representations by error
propagation”, Parallel Distributed Processing, val. 1,
D. E. Rumelhart and J. L. McClelland, Eds., The MIT
Press, Cambridge, MA, 1986.

(18} S. Holldobler and Y, Kalinke, "Towards a massively
parallel computational model for logic programming”,
Proceedings of the ECAI94 Workshop on Combining
Symbolic and Connectionist Processing, ECAI94, 1994,
pp. 68-77.

[191 Z-H. Zhou and M.-L. Zhang, "Neural Network for
Multi-Instance Leaming", Proceedings of the
Internarional Conference on Intelligent Information
Technology, Beijing, China, 2002.

{20] T. M. Mitchell, Machine Learning, The McGraw-Hill
Companies Inc, New York, 1997.

[21) S. Roberts, An Intreduction to Progol Technical
Manual, University of York, 1997,

{22] R. Andrew, J. Diederich, and A. B. Tickle, "Survey and
Critique of Technigues for Extracting Rules from
Trained Artiftcial Neural Networks”, Krowledge-Based
Svstems, vol. 8, 1995, pp. 373-389.

[23] M. W. Craven, "Extracting Comprehensible Models
_r from Trained Neural Networks", Deportment of
¥ Computer Seience: University of Wisconsin-Madison,

1996.

{24] G. G. Towell and J. W, Shavlik, “The Extraction of
Refined Rules from Knowledge-Based Neural
Networks", Machine Learning Journal, vol. 13, pp. 71-
101, 1993,

NRVIVUNLLRY 9

oy og & do o o &
MISITUUIIUANISNVEAUN TS
Learning First-order Bayesian Networks
Fgdas AATWAIUAT YaulaTy Aedsna

MAIIFINTIUABURAADS ABEIAINTTUFART

I's o [N ar
PWIAINT WU IINGRY a.wmuﬂ‘n ‘ﬂnmu NIUNW 10330
Email:Ratthachat.C@Student.chula.ac.th, Boonserm.K@Chula.ac.th

a f
UNFALD

@ o [VS Y e w o e 3 A
s wundszndiulugldnidediafdiAyuindesdens
fdwunlszinninuideyaziaideyausazmiisiudeiu
18hiE wazdedifadefasfodrsuundsenninliaunse
" A a P = ‘:q ads
uiedeyafilidgyiasuniuldedndlse@niam “wadin
et B B M ‘i‘_l v o ¥ P wl 5
BEga1aUnHud |1 uﬁ']‘ﬂ']lluﬂﬂSSLﬂ“'ﬂﬂua'ﬂﬁ’lﬁ’l'ﬁﬂllﬂ VYD
o oy ‘ o A 2 as sa o o
ffeanalsensil]ld sdwlshmudisanndaisnddwuh
& o o W - ¥ A W 2 a o
niadimywdudounin syuumsSoudmeadiuiaiinmg

o w & FY a2 o = as 4 o
drduiinianndeyafuiofaunldonts uideiulioue
¥ a yad ad Fo w o o ¥ =
izﬂﬁﬂuwﬂ'ﬂiuﬂ'ﬁﬁUuEluﬂnﬁ‘ﬂluﬂﬁ']ﬂll‘ﬂﬂuwﬁnﬂ'ﬂﬂuuﬁﬂu
Tasmatlszgnariims Tsunsuassnnadsgiie nasszuuiou

Yl fnmdid 1idhofu
Abstract

Most classifiers often struggle with two main problems
when (1) there are some relations among the input data
and, (2) the input data is imperfect or has some noise. A
first-order bayesian network (FOBN) is a powerful classi-
fier that can cope with those two problems. Because of its
complication, however, it is very difficult to develop an
efficient algorithm for constructing FOBNs. This paper
proposes 2 new framework for constructing FOBNs by
combining two algorithms, namely, inductive logic pro-
gramming and a bayesian network learning algorithm.

1. Un

oo

A wuniszion (classifier) druinadniidesiand iy
¥

'

wingesde detifiausnnediiuundssinndnuiadey

fa1]

a Ay r r " T - ra Y o o ¥ o
gilaitoyaudazviuisiusenu a6 uazdesiaded

gosfemdmuntszmntin luausoutdeyanl dyga
g [L4

sunuidedraditsz@niam Tugre@uilfirmuunildiing
oo 1 = a o’ a a A

HoadnTedalumsiannd$wundszandeyaimuns

Y o w & v A ww 1 a ag¢ P

wiruzdeiitanigeslsanndina iy launmadsnud

Syl (First-order Bayesian Network : FOBN)

[6,7] Tas FOBN asaudefussdasuundszinndaya 2

wia AOATTARITRTHIAY A NI (First-order Logic -

FOL) [11] nazddwuniszinndoyaviaindsniud

(Bayesian Network : BN) [11,13] maanudrlalude
Sifmvosiiumndszan Aemandeyalunii 1

MR 1 a. gudeamuTouazamaifvatwans

musaadediwundsannlugdngassnmaad
Ysznal(Propositional Logic) [11] ldaoadefie “rich
& genius.” Uay “rich € artist,save money.’
éangﬁm{faﬁaﬁmumﬁmaamﬂ e 18 (Quanuiluai
e TmMIIERENS BUIAD b 320) B InAsTNRIEAT
Uszwad@anudininlumsuaaengfianuduiud
sEvINdBYD 1WUAY “rich € rich.” lasauen
Tdimnussvesynnaladanadoyanale luam3siin
Sondayaduszinniideyalundaswitamuisofisag
nsznureviiedy 8N eyadidunud (relational data)

=) @ v of] [o Y < Y o k4
ﬂ’lillﬂ’l'll]?fllwu‘ﬁﬂuizﬂ’l'ld‘llﬂllu‘ﬁﬂﬂﬁﬂ"lﬂiUuz‘i’l'lblﬂtﬂﬂ

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

444

wrrRappere

T LTI TIT PR T 2T Y

Persen(X)

......

Tfl 1. FOBN fifinanusininaindu bidadulauas FOL

=

defudansdiui e od1alsiiaw FOL Fagnsiannain
arsnmanslsznafannsa@oungdmiudeyafidan
duriuisiofndedradann lavlinisiwoulsninssn-
araaduilddad

1 &L

, rich(X)

r:.ch(x) < artist(X),

save_money (X) . € genius(X}." Ung

“rich(x} & parent(Y, X),rich(Y),genius(¥) 7
Taolunsdlidulsuaazduassdayanauazngdeay
ATPUAGUATEUIY e HIBDIDINISIEINITORE 19NgATIN-
o o
mandlszwald1o FOL 1mueiilinig 14 FOL i
ryunlszandeynswaniadfavesdafwuntszian
Taadnwn dwmduitumsgutumaioul FOL »inde
uaﬂuuuamsun’nmﬂdmnmmiﬂﬂ z¥3g1hie (Induc-
tive Logic Programming - ILP)} [10,11,12] ae1alsft
awszuy ILP 9 lumusadanisdeyad luansouia
' ¥ et ar A 5 "ﬂ Y = Y v a
agu lduiueulddin WedududouSeuingnindeyady
ag e oo P s
flufimarsl szuu ILP sswigyduilgnileneida
.) o ¥ { o 9
(overfitting problem) [10,11] @49z+11¥ FOL fi5ouj
Wlidnvuzmniziniza (specific) fiudoyadunauinfiu
s ¥ 9 » a o o =
1 (hrawlagndousnizdeyadunamiidu) Werswn
v 1
FOL wammde lusmairefichuumunluiensdagmar
ianuawzmizvanniulilwudu Sesrasuduny
uw a a3l luasiedi 1 Taosdmuaguautialiuie a A
Ao il

genijus{a). save_money(a). parent{e,a).

win 1A hmuaudaa 9 veaie 2 lissatungdelaes

inlfisagnnng 1inme a Wuyanefitisse o1elsf
F)

amdunatimseguuudidiumsagd i liddssdniam
ﬁmﬁmmnﬂmﬂuﬂ’ﬁﬁ'm 9 ¥DIUIY a mamm’au (par-
tially match) fung FOL ?umamqummmwa 1
autians m41mmwaqﬂgummﬂuwuwaamﬂm FOBN
dhuszvudwumisziandeya Iﬂﬂxuaﬂmuﬂﬂmﬂwmma
9 9991710 a 1y FOBN ud2 FOBN sramisofvam
mimauezidiuniends (posterior probability) Au1e a

wiwhunndesifiesladrumaiinmseyuiy (inference)
[13] 1@otadilsz@ngam i ldmsld FOBN Wuszuy
funmlszndeyadanufanguiuetranniioninsog
'i"uﬁgqﬂmanﬁﬁmmiﬁuﬂuawm%ga"Lﬁ’ss’humﬂ%mmj‘]
adsiy nuftazagls 19 use 10ld Failusid
szvvimundoyanalUl$) wensinil FOBN fafqu
duiAsessuauduiutszuindeyauieatu FOL 3n
& 718 1 uaas FOBN #1duddamanusieludaedn
i

FOBN 1sznovlddwansdundnsuideriu BN
[6,7,13] fodu Tasea i (structure) Tamvmnoda s
quasdudounyuifienie (directed link) R uad
wouTuausaz Tuadh 1380/ TaoTuausaz Tuaumugu
autidnSonudnvus (attribute) msfidudonnnlua A
TldsTua B wunafelue A dawansznulasasdeTua B
drutlsznoudaufiaeauss FOBN foarsniuntesdly
tdou'ly (conditional probability table : CPT) Tavl¥
a,ﬁ'aﬁwmmmmﬁmm'flumwﬁuﬁaﬁqumﬂuﬁﬁﬁ
doams Tavialmsidoud FOBN Salsznenléasaes
drundnieFoudinsaafruas CPT ednlshaiunis
Foui FOBN hiznnsasit1dlasdwinidlesain (1] waz
[2] TAguiduRvaudnisiSoud FOL w3 BN figed s
fadinnududouresdaneifuilFlumsFondifuuwn
NP awifuiiselfausuuifalng Tnumstiszuy ILP
wazssuuisou§ BN (Bayesian Network Learner
BNL) [3,13] apeszUDINadeiisafuieanaudy
Fouvosszuvioul FOBN lunisld BNL ie5oud
FOBN #fu BNL Asanisdeyadunailsziangudeoya
MIRTIRaTY 15197 1 . (lswesed 1b) dude
sunalsznauildladiodis n a1 lasd 86 13ud 0287
Uszneuhidrorwosnuantid m i Tnadetimiled
imudaouoaneuniianalumsedune waznilimdnnio

2 wa 4 o L

103919 (column) ununmauianiegs 1nEuluduasu

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

445

Poztures

GRASP

I

FaaNaaaNa bR NmALAd SPA VRS RS Ra AR aaE

T P I A T P T P 4

| Brapustinalised Drea FOBN

i 2. szuususuumassuiuazihuinuass 15 wun FOBN

a1siSoud BNL srataduidoufimunzausania CPT
v Tuamdnfuld sofudusidoanis14 BNL oy
FOBN ludnsuz@oadumaiFou BN i513sduliudes
a3 grudoyamsidsanindeyadunmlsznndeyaie
duitut wandinsafugmdeyaninadsinndeya
5nymzﬁyﬁﬂmﬂmsaﬁ1ﬁmmmﬁmuﬂqmauﬁﬁﬁﬁmms
Wnidaldnsquantandu) ddanualudumya
dsznniiannsai @ nmennma [4,9] Fodrusn 919
smualianws e sieudidunuautanits Wanw
savveatjinilunaeuianils (Feorsfudu siwu par-
ent(z,Y), parent(v,x)nuwiaz fuilvesx) wiu
“lﬁ".iﬁ“ﬁi?rﬁwnwmﬁ'uﬂmanﬁ'ﬁwagm%’ayamsmﬁmﬁ
Fasmsldetahiifdugn e619lsinumsuamnionn
sflgmmindeyaFedunis Tifugudoyamsade,
(propositionalization) Fugmisaildlasn1siden
mwzgurutaRdfaSednsusd Ry (feature) vosde
gamxﬂuumﬁ,’waajma’:’agamﬁmﬁmﬁxﬁqua”lﬁﬂ"ui‘lu
Aouimn 4 guaniandul e faduueidnianm
pon4 Isfmuilymades Tewns wa i ihdesdmua
Ay duiusadludnddudos WWanvasddaidenis
(ﬁm&ummﬁuﬁuﬂmumswuzyiuﬁmdwﬁué’a) 4
i']ﬁyﬁ1§L§\uﬂiywuﬁmﬁumsﬁau§FOL 994 ILP 1194
ﬁéﬁ”'uam%ﬁﬂ%uﬁy‘%ammmsrf%"naﬁnymzﬁwé’ﬂuﬁ‘hmwﬁq
fadyiis Tavadndnvuzdfoymaniuem FOL 713
M ILP fusunindreisiimunusiamisaven’di
anvazdirgvestoyaluudinnuduiuiniussnyyes
§ria lidusurens (ngdofiaw)
ssuvduulumsFoud FOBN fanidselianeg 147
1 2 vngUit 2 o3 v 18R Tuduusnidszun Lp

@ a
4

L '
#5149 FOL auilnd wdasinwuiiy FOL #18duradn
¥
anwuzdidy uanhdnvazddgymaniuuade FOBN
v Ed
Toeled BNL saldl Tasswidviliguesansiiumeirude

MCAFEE Lﬁa“l%%nﬁﬁumﬁ'ﬂumﬁwﬁ'mﬁn 9 910 FOL
w‘ﬁ'aﬁmuﬂuﬂmﬂuﬁ'ﬁ (unae’{;\i) mmgmi’fmummimﬁ'mﬁ
doams wazSaneifinFufiasaiiaue Ao GRASP Hu
Sane3fufszadrauniuouniosiedi (training exam-
ples) lugnidoyansueiiasins Tuadiedezdon
FOBN fignifoufifleauniuiedeyalavmnizing
$uiun FOBN (FOBN classifier) Safilemsiaii

fiswfl 1 (FOBN Classifier). FOBN 1a 9 vzgadonia
i §29umn FOBN ilefiquanianesdosade Ui

(1) Tunwas FOBN ﬁm\auhﬁmﬁqumauﬁ'ﬁ (target
node # 38 class node) v:do4luii Tuagn (children
node) 1a 9 1au

(2 Tumvousl (parent node) ¥o1 Tuafiis 19z 1u1e9a
suiiRezdeadiudnuazd e o iy O

yagavieyes (1) femstleatn Tl Tuafisdoams
deliinsnuauidvesTuadudezir i 16184
§1uun FOBN flazfiuioTuafideanas dau (2) iigm
dszasd lumshmaidansassedimveanguldinng
Tuafideams (felduansdoduasizi lluda) 51U 1 15
&187uun FOBN finsanwiiowdi 1 TavTua e1cts
minefadnuuzdhdyis 6 7 (aoszdealuidese)

-
¥

ar o -1 ¥
2. ane3nulumsSeui FOBN
MCAFEE (Minimal ChAin FEature Extraction) i u
danesunldfumidnyuzdrAgein FOL 911490 ILP
» ¥
TaelufitlasFondiuves FOL w1 (chain) 151010560
1 » r
dnvurdfgfauitelidens 1aBnedin rufidiy
(significant chain) Tagnuauiausnusnguidifglu
b 1]
amddeiifedec ity mus Tufawnue (meaningless
. - ; d., [E-1 r-| = oar
chain) Tuauidsihyud hilnnunuwAsnisidals
¥ 1
v lmrugnaiiatuin Tae T I8 duRus fudulseuly

The 7" National Computer Science and Engincering Conference, October 28-30, 2003

446

U (@[89 uIAN) 15U N9 1TuInY “rich(x) -

»

dad(Y,X), rich(Y), good (). dunadus v
ﬂm"lwumiﬁﬂﬁnwuﬁnumuﬂﬁ x ¥z asiina
wWile richiy) 18 ﬂumx‘ﬂmuﬂswgnaﬁwumaan‘lu
w o dw ow FEEE-E LN = ¥ o
duAndnudmlsauin v hisunsadnawsung lddaan
= y 2 o \ oA ¥
nziunangdeiivule q 7ifl good w) ogozlignidenls
Audnumzd vy 33 umsadasufiddyen FOL ves
MCAFEE 1&uuafinnin [8] Tngazuseng FOL wilou

Wunsuunszy e (directed graph) 15us1nng
“r(a) :- alA),b(A,B,C),c(B,D),d(,D),e(C,E),
£(c,F).” gwmoniuns nuuszy e tadagi 3

U7 3. nriuuazuiea

A aa = o A &k ot
JTUHIRBUTINTUNUANIN VWU NEHH LI .ﬂfu‘ngﬂ

¥

d84 (valid chain) TaotiolAeatl
a a . ‘. A < &
He 1N 2 (valid chain). iWousang FOL wu4 9 lauau
WussuuuszyRemauds une (path) vinluasin

P & 4 v 2. A w o o aa
TilfiaTualn 7 Aowuiigndssnaaieiduniniulguauia

= . J 3 - o

Taguaudduiisde 14 (1) @unaiuiiaau (loop) ifie
¥ ¥y 1
Fu wie (2) WumaiuiiluaiuiiuTualy (leaf node) oy

g

Tuduni

oo H 3 1 A
TaoTualylusmdteiivurda Tuan Liliduidensen
% o ; 44
vindawes Feu'ly (1) uaz (2) gnadradiwfedeants

ludasisufigndesildeyainsudiusinng FOL uld

nnfiganiditu) 8iues iilifedeinsatininvas
fid1finase 9 1inngues FOL (g [8] iudin) od'lsh
awlufiowd | WWamuaidnsazdidgtomarady
TuaendvesTuafidosnisimty Famureawidesd
miﬁm’;mﬂ'mumﬂwztﬂumwﬁqﬁ’mmnngﬂxmuﬁv’ﬂu
T “lﬁ’l’ajaaﬁﬂymzﬁﬁmﬂ?aiuﬂﬂmmv{wuﬂiu CPT w84
Tuafidesnsig muumxaannﬂ 9 wuﬂgﬂﬂaag‘flu
Fnpusdiguesiuaidsantsinnuesiiidfanu
Fou (redundant) 18 lanlaidniu mamawumniﬂﬂ 3
“b(a,B,C), e(C.E), £(C,F)” WuiwuFigndeuddn

Fouiil 01910 a W17 8HAIINAITI I (combination)
vourufigndecaonyufio “b(a,e,0), e(c,2)” 1
“b(a,B,C},.E(C,F)” ﬁ’qfﬂumsa%’wﬁ’ﬂymzﬁwﬁ’q
MCAFEE szarfruamziarufignieauss luddaumniy
Tavazonmudszaniih wuiigndeudnge (minimal

¥
=1

valid chain) uagytuaad
#igudi 3 (minimal valid chain). wufigndss = la qi@n
o g & ra =) et ara

figensaie luflwufigndodu ¢ Miquai@ - ¢ »

FetusasuiigndeudnganiednumzdidyaingU s
3 fiad19lno MCAFEE uanaldlugif 4 uazsuiign
feudnganianusues FOL munglusethavssiaded |
wenslugdit 5

£f1(a)Y - a{a).
f2(A,B,C.,D) :- b{A,B,C),c(B,D).4d(D)
£f3(A,B,C,E) :- b{a,B,C),e(C,E).
£4(A,B,C,F) :~ b{A,B.C),f(C,F)}
U 4. Enwardwinaniuil 4 fAndnley MCAFEE
£f1(A) :- genius(ia).
£2(A) - diligent(a) .
£3(A) - artist (&) .
£4(A) :- save_money(A).
£5(A,B) :- parent(B,A),rich(B).
f6 (A,B) :- parent(B,A),genius{B}.

U 5. Fnwasidgandieielusited 1

dane3 iy GRASP (GRound substitution AS ex-
ample Propositionalization) iWudanssAulunisada
sonvouniodetvesgideyani@en Hainiewn
isnsfidaetwedeyaiidanuduiuiasiuienlasy
g udoyamsdmamiassdsmuauds aunso
waswduuealndunndmialdigu Rerandiesnlu
ﬁaﬁ'a’ﬁ' 1 8nafs muyiliu a dhidedmilsludeys
Sunaidsduiusuarlduie a Sneyysssuegdnuinu
(U8 h) %’aﬁqmﬁnﬁﬁﬁaﬁ parent (h,a) . genius(h).
sndaetiail deiimsulaeyalileglugypudeya
msReudnndsufureiedulmiduaasluaa
72 (g £1-£6 ‘lugﬂﬁ 5)

aTRfl 2. desamenun a (Phdeft 1) iWaudadlierlugy

1 [0

‘ gwumauam '5'1~3LG]’E.I']

A/la,Ble 1 0 0
A/a,B/h 1 0

e | —t

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

447

Tasnsdiusnuie 2 Ineisie (Wie &) diulunsdiiaos
U a SiWefinata (uw n) uai lulsawderdiu Tag [5]
¥

erus 1V 14 msunuafiug i (ground substitution : GS

¥ Ld

w3'® variable binding) Wavuayanssidudiostalnuia

' ¥ -

wua lugdoyamisauds (Tavdehaedaluunavuah

» '
ifinnndes Ay lillaudeufoire fuaz fuie) 9
U GS fonTdivanig a Tumsdl 2 Aentiudedielm
o aa awcl Y ot § A ¥ o

geafty laedFlldefmestons veusnnisulnsdoyn

; 3 Yo g 1 4/ = &Y

Yszanishlfiiadeyaluiilugmdeyamsa@orfiug

asamildaansald BNL SoufldiudilidslSuusade

yadn wazdeAdeficesfonnuduiuiseninluahiad

o S hed LB o]

lannastlazdinnuanyssigeandt (strong completeness)

NIty [8,9] Miruehiunwiz GS Buafiiahdh

3 ¥ »

gaundudiednlmi (Teamndtmdniulytddeyais

- 4 - <3 A

vuafll Idifas: Tenigage) Worswimnsied 3

-

MR 3. fenvemNany N lu GS

EY + Be1 Lol g d
Bg12 0|1 {0 |0

E2 + Or2 0 [1 |0 10
Bg22 1 10 |0 |1

E3 # Bg3 0 |0 |1 |1

‘ O3 1 {0 |1 |0
E4 - B 0 |0 |1 |0
) 1 |0 |0 |0

E5 - Os) P Jo |1 |0
Oes2 1 [0 |0 |0

@ o ¥ oA ' a
R399 3 wiuldTutis e panuszlumends
p(+]£2) nag pl+| £4) A1 1.0 Tuwmzd pl+) o ld
E
& 4 o
0.6 azuulug class 199uAy (depend on) Tuw £2
1Y A =1 A a " = ar t
uaz £4 updudonioanile GS ludrsorudmiludeda
1 o Yo ¥ 5 o =
Iz ld a8 Tun class Yudulua £2 wio £4
& 1 e dow Y
Tuala Tusnilanniugliasudu

kY

atn lsfimumndennn q GS Wudedlmiorvhld

]
=

o 1 - (=3 a ar 1 1
wailymaeseduds Jgmideusefioduudaedisim
g 1 o -] ¥
1aenviiumimani l¥nsireaud luninny grudeya
a " a Y o 4 aod o q Y a
A liifivane dgmidefiaecneiTdenniildiia
avtsianaa lumsiSoud 1Ay nsdiluasieh 4
= o ¥ \ o
1A 4 Wi lddmnieziiuniondses
o | o 4
p(+] £4) Auanla 0.5 Tunmed p(+) Auruld 0.4 1ilos
¥
anamnuizdunige s lndifvaiueinii i BNL
) a] < ' 4
agu i Tun class Wudaszae Tua £4 Fahigndoailes

P o ar & _ ar oo = & a
MyHA 4. nstldedradedinduamifowuius

L

t BE1) 1 19 190 |1

E2 + B 1 [0 [0 |1
E3 + B3 0 J0 |1 11
E4 |+ Beay 0 [0 |0 |1
E5 |- B, 1]0 1 |0
E6 - BEs1 1 10 |1 10
E7 - Bey) 0 10 [0 |1
B 0 |0 [0 |1

B3 0 [0 [0 |1

6574 0 0 4] 1

nnluruilue difiedvauiiissdiodiufen (z7) A
udafudpiauIndfedis (30 p(+| £4) = 0.8)
GRASP uflgmiisassdotnadu lnsnisioniiseus
GS Sludrednlmimniulasszidenmwiz GS #1451
(non-duplicate) uaziinnum NII97 990N T qa (maxi-
mal specific binding : MSB) Tau MSB filenwdsi

a g . e e A,

e 4 (maximal specific binding). e nua o fie
» v

GS la q fivuald £ (o) Aommepadnuuzdrignanuai

DuIT9U89 0 13w GS 8 vowAazAI081udue o

] 4 1=y A 3 ﬁ.
11 MSB fidewiiolill « Fuilu GS Suvese 7 £(0)

c
£ () n]

1 [® ¥
911U 4 Ha15Im1519% 5 MSB # luid1 (non-

* duplicate MSB) 910@151951 305870 Bz1, Opiz Oy 10T

ar r & on o 1 a @
Ogar TAUNAI B4 fiifly MSB uadfiu By WHIRLIND
é Oy o 3 ot L] 1 i
B2y FIHINY Bz BE¥HUFIDGIIMURTT 19108 GRASP
' i
fifes GS nsdidedunniu .

oA 5. nadisatuassiudmd o uudada T

El

Og11
Be12
v O3
eE]4
BE2)
Op2z
O3
Op2q

E2 |-

— | O o= =S -
fe R Fod Rem]] B o (e flae

| O O e =] S =] —

— ol e =[] = =] —

Xy
3. Han1inaavdtLeIaY

L ¥
msneaduiosdnilldyadoya (dataset) vosnnwawiso
’ o o -
Tumsnenarnugves luena (mutagenesis) [8] luns
naasiszuuAuuuyveus1adenldizuu ILP Ae

The 7~ National Computer Science and Engineering Conference, October 28-30, 2003

443

PROGOL (178354 CProgol4.2) [12] Tunisa$rs FOL
waz 14 Tusunsu WinMine [3] ilu BNL fuduasunis
Ynnevesminaasensil ldmaia 3CV (3-fold cross-
Ld 4 +
validation) [11] wusnnnilnisnaasaildelamudyyia
¥
sunueigui 10% uaz 15% luyadeyaiidnas
wenerevtlszansamlumssufovesdugasuniuves
FOBN iils191n533y PROGOL oygin #1915y
- oA . A v A4 o oW v
wasuanien (option) treduileiudygrusuninldey
¥ ¥
a1 mIinsasindeiideldanlSuamdudends o voa
PROGOL (#auaaly “x% noise setting”) udniwah
TaumiFouifisuiunanisnanssnin FOBN wams
Hy o 5 ¥ oA ‘e w
naaed lAuaniluaiied 6 mulauile hitdyaasy
nunslugadoya wamsdinuves FOBN fidszdni
amindifsaiy PROGOL uswaniifiauves FOBN
Tugadoyaniidyyrusunuidanugndesgenin
v ¥
PROGOL sdrannlugnnsd anugnadesfigandiihile
a v = r & ar
Smswvudafianinaunangaonlsemsie 1) dnvme
A i 18910 MCAFEE %t 1in s 1dmadanisasan
dauvesng TaedniiszAngam (quniinswvmiulu [8])
2) mslimguiaruieaiiuues FOBN fwlimsldiu
g a ’ L 4
Anwazdrnlinnmdanguinntiu

4. aql

»
5 oar = at o =y A
nuFSeiausnisSouiddmundoynsiia FOBN &4
w o 3 o &
fludrswunlszinndeyafiiinnuannsags 1lesnin
sWATWENTeYea FOL uaz BN dwmiihiaunse
o 3 S . .4 9 = '] v 9
Feudvindeyamsduiutuozdoyai launsoudangula
wineu'lAf

s s

indAnssulszma

3 aa A Sw ¥ = a

Aisuveveunuas.gn3 Fugia Tah lduann/Gounnusa
¥ »

piuluau3ieduil vevounw Dr. David Maxwell

Chickering ua2 Daniel Lowd dmfunis¥iomde Ty

b d LA
Hgymiang 94 voaTusunsy WinMine s u3io5uit 18T uns
arvayu Tasdninnunsaquadiuayunside (am.)

Reference

1. M. Botta and A. Giordana and L. Saitta and M. Sebag. Rela-
tional learning: Hard Problems and Phase transition. Se-
lected papers from AIIA'99, Springer-Verlag, 2000.

2. D. M. Chickering. Learning Bayesian Networks is NP-
Complete. In D. Fisher and H. J. Lenz, editors, Learning
Jrom Data: Artificial Intelligence and Statistics V, 1996.

D. M. Chickering. The WinMine Toolkit. Technical Report
MSR-TR-2002-103, Microsoft, 2002

4. L. De Raedt. Attribute value learning versus inductive logic
programming: The missing links (extended abstract). In D.
Page, editor, Proc. of the 8th Int. Conference on Inductive
Logic Programming, pages 1-8. Springer-Verlag, 1998.

5. D. Fensel, M.Zickwolff, and M. Weise. Are substitutions the
better examples ? In L. De Raedt, editor, Proc. of the 5" In-
ternational Workshop on ILP, 1995.

6. L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Leaming
Probabilistic Relational Models. Relational Data Mining,
S. Dzeroski and N. Lavrac, editors, 2001

7. K. Kersting, L. De Raedt. Basic Principles of Leaming
Bayestan Logic Programs. Technical Report No. 174, Uni-
versity of Freiburg, Germany, June 2002

8. B. Kijsirikul, S. Sinthupinyo, and K. Chongkasemwongse.
Approximate Match of Rules Using Backpropagation Neu-
ral Networks. Machine Learning Journal, 2001

9. 8. Kramer, N. Lavrac and P. Flach. Propositionalization
Approaches to Relational Data Mining, in: Dzeroski S.,
Lavrac N, editors, Relational Data Mining, 2001.

10. N. Lavrac and S. Dzeroski. Inductive Logic Programming :
Technigques and Applications. Ellis Horwood, 1994

11. T. Mitchel. Machine Learning. McGraw-Hill, 1997,

12. S. Muggleton. Inverse entailment and Progol. New Genera-
tion Computing, Special issue on Inductive Logic Pro-
gramming, 13(3-4):245-286, 1995,

13. J. Pearl. Causality. Addison Wesley, 2001,

(P8

mfl 6. Weidudanugndadlulgmanusrnialumsnanaoiiusveduana

Noise PROGOL | PROGOL | PROGOL | PROGOL | PROGOL

level in| 0% noise | 5% poise | 10% noise | 15% noise | +FOBN

Dataset setting setting setting setting

0% 84.58 82.99 77.14 77.14 84.34

10% 64.23 65.42 69.72 71.29 78.67
"15% 60.56 59.02 61.54 65.31 74.33

The 7" National Computer Science and Engineering Conference, October 28-30, 2003

449

NCSEC2004

Abstract

The advantages of Inductive Logic Programming
are the ability of employing background knowledge
mm of first-order logic and its highly expressive
atation. Nevertheless, an ILP system is not robust
to noisy or unseen data. Moreover in multi-class
cation, if the noisy example is not maiched with
rned rules, it cannot be classified. In this paper we
a new learning method that alleviates this
by enabling Neural Networks to handle first-
logic programs directly. The proposed method is
the First-Order Neural Network (FONN). FONNs
eive First-Order Logic programs as the input of
works. Our proposed method has been evaluated
inite Element Mesh Design, a first-order learning.
The experimental results show that the proposed

unfineo

n1s IsunsuassnziFegionioszuy lousan
ST P & 4 oy o !
ssuugveunivagYuyyninFaiveanausol
¥ o a = P <
imaauniglunsiFoug Iauagag laaunsoatuie
{ 1!’]] o ' V =
Fidagnravae eg19 1sAmmssvn lensamdu
=y . oy s 4

H inumuAsdoyaniidyyasunin ifehissyy
A 8 £ ar 4='v o b a
aWunduuaveyadnyasiorniilvnisduun
4 o ret o o a r : ay
18 tleenin Wiingiinsefudzetaiu uenenil

»
nAvArag ez Iia e 10l Imnsogasuun

»
ar

WAteidnaneszyumMsSou gt Ivifidiiisea

imhng WisSuundaedauyumasssinnuas Wi

35

= = s oad o o ::; =§
malsau3lilsunsunssazlagiiisealinisnduaunnilg
Learning Logic Programs by First-Order Neural Networks

DYWD FHEWUITY 1Az YauaTu Nadsna
= = =) o =
A InTsuABURNUASS AN INISNAmIART

JHIRNTTIUMIINGTAE auuwe1 In Yrudu ngaimnag 10500
Email: g46tll@cp.eng.chula.ac.th, boonserm k@chula ac.th

o

& = £ 3) » = ¥
mndsnusegnaiddussuy TeusaR hldssvvdangu
y . = o o b 4
$u uazowsosudunalugluvyrenssneduAuinils
o =t < dyl o o oo
whmsiSouglalpeasey IneiSonseyuiin wiseauingsn
] o W a
SuAUTNY uazvInnIsnATeUAuToyanIs AT IEH 1N

L) I ' P P 2 o
TudipBuud WU IRANITNABENH 1AVIATISORIIRITR

@ @ e

4 a o £y ' o
au ‘ﬂ'HLNJ.HT]Sﬂ‘]J’lJ‘ﬁﬂ’J?L’QﬂWBJQ’\Jﬂ’J??&’UU781155%’

Key-words: Inductive Logic Programming, First-Order
Logic, Neural Networks

1. Uni
m3Fouduounise (Machine learning)[1] 1u
upfafideimsadelisunsuneufiunes dmunsad oug

[v »
nnfotsifasulddaniou I TaeTusunsufadain

S v

NudparunsaadRunIfie (concepiiTanndnafiudiosa

1

r »
flasunndaeunazannsodumanai laduld 145 unms
B a]] L3 [l =1 ¥
fwundedlnitueuinalaedigndes maSouives
A a [y o ' a
JsaTsadivatsdszianaiediu iy ns ldsunsuassnziia
g1y (lnductive Logic Programming: ILP)[1-3] #2794
2 ad - i
U5 N (Neural Networks)[l, 4] weisnud (Bayesian
Networks)[1] #nlidaduls (Decision Tree)[1] 1Hudu
o oy 4 ' od a o Y
msiFoujvsunieaazdsaandmuizieniillsfuam
Iudnyuzang iy
n1s WsunsuassnziFagiionsetousafisiu

=g = v 4 4 & o o
'J'ﬁﬂ'l‘iLSUuzﬂJﬂdlﬂiENﬂi'zlﬂT]HNQ‘HQH'I‘HﬁﬂﬂT:'T]Nﬂ'i?ﬂS

WNENTRUIY LAY 10

NCSEC2004

wnlszynd 1 MilRidedfuandaeinninsoufves
4 4 A o o w = A
wFeauudue tisavinuuafad tdvnnisSeuareylu
o g A .
suunYeIAsInzSuAAN First-Order Logic) Fudlu
- - -3 ¢ o ¥V ¥ 3 !
Anwmizvesmseiuronnuiueangud vinliid e ladenn
- aa ; o ow e 4 as L]
unrfiafi 1AnInitou uenainilassnzouduiinile a4
a o de v Y « v
afvisuurfafidudenlddniiassnmanidszwand
(Propositional Logic) 8ndt Unfudrszyyleusafisines
g1 lunssuundeenafiil 2 Yszan (class) Tav'le
usaerFudunyaiilunaiuigiinde (Background
Knowledge) #28Y910 (positive example) 4aAI8611
. ¥ -~ a o
au (pegative example) ué’".!ﬂzﬂtntl‘!mﬁ"lmf‘]ﬂimmdﬂﬂﬂ
- L] r L] d) A a
AIBLAQUAIBEIINUA TuRTeUAqUAInt Ay Taadiela
3 ¥
ngf 18 W 1F5uundIndunarey Medinfuszgniuun
ufludresuindiasafung uad liasefezduun
» i
fnsnindudieday ed1elsfaudridredrainiun
fuunlanuAanaia iru gndygrausunauiiddoya
wedume Tl AszirlimssuundoyaiinswAanainly
»
A wenviniidusnhissuyleusad 1y 14 unsdwun
Classification)

Aregamiinsdmunfessreandesfungieszainisa

Aregnuruvalslssian (Multiclass

- Y1 oW ¥ : ' P) o 3 o os
fuunlhdreioniusgszinnla Fan1siideyaiidynu

r

»
sunustiidresainiansogriwunlditeyg

sz lauazi e uaiud lunssuundedeanas

]
o w A

A ¥ » 1 - w []
mmmwnmna‘n1uﬂ1u1sm1smnmamﬂu

1
< a

- w2 a o 4 A
dnuwsil1é Tadlmditeituausuuiniuisiruniy
windweamsituuniied s TnoParekhiasHonavar(5] 18

W o o as o
UszgnamsiSoudnassondiiuiaseamiaiiniiii

row A w rea o] da ¥
“u“'luﬂﬂ”aya“nﬁﬁ‘!m.lmsun']“‘laﬂﬂ]u uﬁ'.l']ﬂiiﬂ:fﬂﬁf

fududnuazvewssnmandUsznaieg Kijsirkuluas
auzf6] Mauaitiawsaldassnzdusufiniiasufy
- od ad - oy =] 4 =t
veanimdin 14 i llinnwBanguannninszun teused
« Q¥ 1 1 1 e ¥ o i
sazinlAfA NN Y uATITH 1 Iudunsuusn

iuiudesldszuyleusafumimsadungiuuidou uds

~

4 o w- Sy = Yy a 4 av
inu‘mm;m:ﬁmﬂguaangﬂ'lﬂmﬁngmamsaamﬁnsn

¥
oo W

» . g
dnATanila 'Jﬁmm'Jm::ﬁﬂﬁ'wa1un116111uﬂﬂ“md1 3

11 e s ¥4 st v
uandduiudesisszunlousaiey

a 3 ¥

» .
TunuHellinruensFoujuuulnmifg,

L

d’ & - o)
YU Tﬂumm5fJamwninmﬂszumwmumi'[t]s;
y

assndagiils uahmnsafudunaluglinyye g

€

urufiniandimsioud1dlasnse lides ey, d

=£p

1 »
wigwluntsFoud Fmsiduausiisinisedang

Yedriavesszuuleusafi luaz Tmaiiudiudnnng,

ol ﬂ. at 3 d’ L o] < H
Fondinisfineuituild drsealladindudydy
(First-Order Neural Networks: FONNSs)

= 4 ad o w oA o
2. HspaHAGIndUAUNHIS -

d’ ¥ ; - =2 <t ¥ a
luﬂﬂ1111?7’]111]%58‘51]1011\1!’1"!7[‘3Uu:i.'llﬂi U

msiTou

d od v ow o A 1 = [
ITHALITADUALN YU Tﬂuazuumﬁmuoamﬂumuq
o = d ad o & a8 4 = a 3
Tﬂimﬂwmmiaamnmnauﬁ'u'nﬂuq BUNAVBIUN
4 ad & w oo & a e v o] 4
Luﬁl’l‘.fﬂﬂuﬂUTlﬂuiTﬂUHﬁﬂﬂ'liI.‘i YUTHULNDIYAID 0
(Multiple-Instance Learning: MIL)[7, 8] uazlu

,]
gatnduitnsdfuaniminvesilrseaitinisndu

n
Wil

2.1 Tassafavestizseariani indusutiniia BUNAY
b poor(Jol
| Auide:
peor{(Pe

wazhaiy

&4 = d ad o wod A -
tiesviniiareaiialdindudufiniariudse
=3 ¥ ar o o = ¢ - -’
M suniauinniaseaimidn dam
Yy o - 4 » - o
InsaafufivzinugunnnTasaaiwessiirseamm
] o [' [} o o
uslszgnd IR Tudednuaza e plindalugduuy

o
-y ot - - e i 5 u"
assneld Inseadsvesiinsoaniaifndudufinisg T

LEALTR

weak(x)

¥ » Ed

samilu 3 Fudiefu Ao Futluds (input layer) Fw
>

(hidden layer) UasFuUMRANS (output layer) luusa
= L q'u 3 é" [
sxdinnuvanouartiifidade Til
» » N E
D st dudufinaadadynnd (prediof
anqivninfhiiusmnuveangr

»
wuraatunss oy Tasazduduus a

1 » &
foyanoufiszdiuTfivudoq 1 sw

-

- 3 ﬂ” ﬂ, 1 @ a L) v
rvouluduileztusgivimudgnew® i

= a

AN ginal

NCSEC2004

= o k4 . e e
Fuaou IWUTHAFOURADTEHI1ITUL UL LA

»
ar

FUNAAWT FrouATIE I TumsiSoung
y o .: o
fnaududonld S1urutiiseuluguil
fnezdmualasgoinanusudouvoiiuifa
fdeamsFoud

- 5 ar 3 = = a Ay
Funadng Wusufinaastaunifafidownts

» »
Wszvwimnisud lassuiiszdiuiam
- f 3 2 a o =

nadnigaMiguentaiin $1uautaseulu
¥ » » 1
Funadntsziiusgiudiuiuuuifanmuad
o -3
Avamisisou

] - - 4 aa a @
| MATEUUUIRAVEL poor(x) mmauvgﬂﬂ‘lﬁﬂu

185 ulsenoulUfrod10d1909n 1 @1 fe
Bibin) 39 John (Whuandfewndiu (lazy(John)uaz
u{exh’avagant(.]ohn)) fife019ay 2 A2 Ao
'{-'f) uaz poor(Bob) Taeh Peter Hnaudsonu
il s (weak(Peter)) Bob iumnjuiosuar i
1 Sune it 185t neoudynaffidang luaamgd

a (=)

AIR30f U Ao lazy(x), extravagant(x) WAaT

(Hpoor(x)
()

lazy(x) extravagant(x) weak(x}
invaz InssadnveatingsnTasdvua i ludy

¥aull | HI50U

37

¥
& s o

¥ k] »
Aanuluguindesdog 3 Taseu iounudnymezya 3 &y
» - 4
wollu i ruiiasenlutrunadni sz Hifes | Hsou
e A o = o a &
MU flesnmafafdeamss ouilifios 1 uudamniy

#B poor(x) AaerasTugd 2

o Y ¢ ad v w & & a =4 b
2.2 BunevesiliseanimdinduduiiniislasndnnisiSon]
uuLHaIad g eEBY

o a = ad v owvoa A
2.2.1 Buvavsstiz eaniad sndududinils
o = <5 =] o r
Tasdnaudsunavesiaseamisisnazoylugy
yo3§1uImMITI uAIBunnveszuy TousaReroy uglves
¥ a o w v & oa w a &
50z (ATuigindwazdredi) Auiuiidoutlfoud uya
fuffudnyuzvenssns Wi uduneiimmnsaSouildlag
o o e v i o & a t <
Tseatiadindonou manldoussiiiias 1 daetn fas
11seu Tavded1a [AnvzgnilBeutiifue [iesdiu
o - 9 1o ar o o_&
Bunnveviiseu dumusidws ludgrailsziniiseu
3 1 qu' N o () Y = o, <
faemneiindsingTudredrauddnnnuetaduadalu
¥ a o W ' a ¥ e ow o
auiginds uadladduedalunnufgiindanes

o "

fimuabidunavestrseulidsuiluo #redruwu 1in
aretndunaluglfi 1 disn)deudasin poor(John) T
- of ad ¥ Y 1 a o
iWudunavsudadsnuds v ldd18unaveciasou
lazy{x), extravagant(x) oz weak(x) Ju i, tuazo
andey eanndisunudunls x ludgwerivewdas
fia50uAq8 John Fadlumafiveid1061a poor(John) uda
wldilu lazy(John), extravagant(John) e weak(John)
%4 lazy(John) uaz extravagant(John) Aiua3e luanufnd
g Idiaunaunaiavouidiu 1 luvazd weak(John)
itfuadatunnuiginds Safisudu o Snfudiod
.
r
poor(Peter) 1az poor(Bob) ﬂ:'l.ﬁmauvgmmua'samﬁu
1,0,1 48z 0,1,1 @&y
[l o & a awy a
st lsfansiiesninunafai sy lsuoaf
¥ v »
arednrsaddwlsImidu ludgnanilasiidaedsdu b
' ' a w .
dsingegludiudivesny s lmifasnyutuine
°) @ a fd o 1Y . a 3
dinldefugn 1 duRuniiie19s) (relation) v

or o

azdywid pUIUYU poor(x) € parent(v,x), poor(y),

4 = 3 ar 2 A o ¢
lazy(x) FmMIarsawls y Yununouaanuduius

NCSEC2004

' wr [L3 o
szﬂ'mﬁtgmﬁ parent(y,x}) U&a¥ poor(y} UAIINITAINA

» ¥
plsFulntludavusfissirilimsadndunadiviy

=

= - "N ¥ o
isswdailgmaim lusiueutiu i d1andigings

wazdreiuiTudwddnyuzdudagli 3

‘nJ'n 3. Bunmiiindaywerl pa.rent(x ¥) "lummi’ i

14384

qa’ o = o
Tunsdilnssadnueutadisnrzlianududon
r; A ¥ A w oo o« -
windwioannlunnuipindalidyna parent(xy) Ay
L4
W saznifiosnndynniiiierdfinuud 2 dwess
»
a11307 18318715 ANud 2 Arla15TA15 1198 N LS
1 = ¥ o 3 o dy a - ar o A
o1ls Saldvmsaiiarouindmiuia 2 n3dl de
b 4
parcnt(x,y) uag parent(y,x) ﬁﬂﬁﬁmmﬁﬁaﬂuﬁuﬁwﬁw
dindusn 2 Fasou Faguldt 4 ummumuwmuwmunm
s ImingAae M iy lumsdmuanouna iy
HII0U 19U #9891 poor(John) Wavzimuaaiduna iy
1730U parent(y,x) huzununaunils x A2umned John
r ar & rey a 1 ar T] v
dmduls y Faldinsdmuasinisindiedia valdl
annsaszy IR Iweumuiuls y Areminaila uazans
[l »
wnus eRIA LA aznuiufee 11 unAvoeiiaTou

sAnFRMUAULEAL TUATT 1A |

Iszv{x} extravagant(x) wex (49] partnt(:,y) parenty.x)
TTJTI 4. luﬁn'ﬁﬂﬂnu'ﬁﬂuiuwuu’uﬂ_\ 5 u'J:TE)u

1 (-] LY l& ﬂ‘. L o
AUATEUVB parent(x,y) Mifiailyrnuiletnindoununidi

u1ls x #498 John uda ldnzunusmduds y faedinsila f

33

TifueFaluanwiginds i I Bunaue of,, § oud
parent(x,y) i ¢ Tunnnssl i yon9d
uﬂ'ﬁ”

Fumnaiinneg ok
£ P

parent(y,x) ABUNVD 3Tl

UNU x #70 John UMY v #3¢ John 0
UNU x A28 John My y A90 Peter l
¥ 1 0

UM x %738 Joho UnK vy #78 Bob
—
¥

ar 1 =1 1 o
21208 d A uuERdIH I UIIA 1T R 1y

"
=

auna Iidutiasoulunsdd

guuilszdaiiasews

Sor o

wilshlfumasnnuduiusdudaymaldu Taodunlni way

Usingegludiudiveangdae Tunans ez il wony
o A] Yo o ¥ A I 3
ansofivuadfniusubituiaseu 1A tiesnnhing smiur
' Vg Ve o & o W "
i i fudulsiuaninnuduiusf ol
ThimdnmsvesnisSouduuunatodradages Mugg =00
Instance Learning: MIL)[7, 8)nulszynsliieviimsag

Yo a d o A o ' v i
ﬂu‘f!ﬂﬁlﬂﬂUu?iﬂaluﬂliiﬂﬂuﬂUﬂH‘uQ ﬂQﬂﬁ'l'ﬂ'u‘H k2

N »
2.2.2 Aaail

2.2.2 ndnnsiauduuuvaiediagiagen
nsSoudunuvaiined s vt o ud e

., B} Taudi o dluig .
B i E,

1zdsenoulUddean0nm

n135ouifiuga (ag) (B, By, ..
YB3ge uaazgd (B)

P
Bim) lagfiqanilelsy

(instance) m; @3 {By, By, ...,
a yﬂ o ' . 2. 4 1 g
fivualdi UQIAIBHWUIN (positive bag) NABILDNE
Ld . -
tuiidledndesediadise | aiiuuan uazezimig
o 1 . g1 & u oo $ mvﬂ]ﬂ]
ilugadied1aan (negative bag) Aavidledlotiagemm
b > 1)
Tugaiuidudrediauianua Taofigadiedraung
AvualdTnudmuy Qabel) @y 1 daugadaedied
anilu o
Y 3 & o o ad o4
msutasdiedn lifusunaldiuiadine
A29013090 1 A2 unudIgaR10g19uan 1 ga uas

#06190u [Fad0qafaeday 1 ga (upsdd

NCSEC2004

fuuvairdszianesis g uilugadietia
o I
siaming) lugeezdszneulldrednadndend

nnIsunuaIRIulsfrenInsRudarsuy

o

peastRauwAn L IR 3 lumsiSowmndaues

o v

9918019 INRIMLA 2 93 7D poor(John) HAz

poor(Peter) {4A1861381 1 93 Av poor(Bob) uazhuitdaz
guezdszooulddsdlndndeeianug 3 67 11amMsunNU

A5 y @201 John, Peter uaz Bob daugpsdiettalu

@17 97 2

i ar T I3 W a 4 a @ e I
M1 2. mailaad 19819901 poor(John) Tiudunw Idiuiseaiiaiisndudufinils

§ee19 184 poor(John) [lazy(x) extravagant(x) | weak(x) | parent(xy) | parent(y,x)
% x A28 John UM y A8 John o | 0 0 0 0

1% x #20 John 4 y #20 Peter I 0 0 0 1

i x 720 John unu y #38 Bob 1 0 0 | 0 | 0 j

o ar

Ed 1
amfuiniigadled e 1d Tdldidusunyn
ad [] a 4 LYY o o5
GinuaziinisiSouilasefodanaiiuudin
udana$iiu (Backpropagation Algorithm)

SouduuunmeRInseae[d, 10}

.. : L7} o g ad v oW 3 1
B v mihveaiizseardmdsndudvinils

B . o . ;2,2 4
CnsdSus niminre udwdenuuiz i n g ud

»
oo

» » »
Q‘i‘iluﬁ'llﬁ'l NUTUTDU URTTEH I TUFBUNUTU

w1 o’ ar [y LY 1 B
qsﬂsvmmwunﬂzmuaﬂmwmuu ANIDHUNTU

12014 Tautiour1aswAaNna1As 11 (Global Error:

E=iE(L)

i=l
i dlufianuRana1nvednIRIBnILARZEY Fallu

LAy a 1 2
iBonnlszinnyeagaiesiiug fe

g (SmE, B 2
! N __
g}gﬂx‘Eg lJfBl_

o @ 1 oA o o
S TIAANRIRYDIRIDENDEUSTNAIY

¥ 0 if (B, =+) and {0520, 3)
-5, =40 if (B, =-}and (0, < 0.5)
; (0~ l‘)z otherwise

+ MuTeil Qadeg1aLan

LB = - manedd gaRlsday

39

0; MUWHI AN N 1A INgaRIee R i AIed1
UaU“j(Bij)
L vnada authwuioveegadioeiaf i
lun@euudazsou Megnhldlumsaouszgn
[o & =t =4 [y [' - [
Houldfudindiofiazqeiiaziesdes samiuszsiing
»
MU IATINHARA AU WABYA 0819808 Tugalug
amauns (3) Minsdifigadeduiifeuirudadindu
R0t ININLAE N Ild e 1atsef I AeuHAN DA
Fuouds dedudssiinde iduiiudesdlonudiiia
ad vy e o 38w oy A A
Asnuaz hidsvhmsdfusnimmindwsoulag mswie
HdresngesRnTuiludedieiiniigededraiuuan
2 ad g ¥ ¥ ¥ r 3 ad '
uaziaddniwunlgadewd uaduiunsdiduqsini
= a .| oy g
Rewaraveagasiesnfvzidiulawanms 2) viniwie
founsuyndrstndesluguidfestinuianainves
a a A @ v oA ot o
fan 14 lihihmsdFusniminve aduideuamisvoudn

LY Y A o LY 1 [o
wsonundu udrloihnmsfengedrednlmidiliuassin

o L] o z - - = g r
mrudinudunsudn TassgnganszuiunsiFouiidon

anufawaasauluauns (1) Siasassudgaismuall

wiasouivunsusmauseud Iasmualy

3. MmIanaasWazHanInaaed

Tumsneasusninadoya Dataset) msinsiz
I lusiofiund (Finite Element Mesh Design: FEM)[11]

wldihmsneae: Jgm FEM figajamuiaiiomingi 14

NCSEC2004

Limsasied I ludsdnud lulasadadimsuay
vidwimnssy nquaruigivduiudnvazdiagaea
- ¥ Ld LY 3 & 1

Lisaad e Yrenoudodnyazvoududion v long waz
crcuit “a4 (30U IVIDLIR 19U free uaz fixed “a4 lan

1°ni not_loaded uag one_side loaded “a< uaz@I8t1a 12

Uziandaeiu lavezininssinnainduavesndszney

(Element) fimunzauveslassairaiu A19gNLAREAIYN
940 g’hﬂgﬂlmu mesh(Edge, Element) l.‘j ® Edge ﬁﬂ‘f’a
Taseerd oy Element Ao $1un0sfUsznaunislu
Trsardaotu Mudnaudaetharianua 278 dae61e Tuns
19080171433 4-fold cross validation [1] M Taoudadoya
_vfmuﬂaamﬂu 4 iy YN 4 A
'l'uun'azﬂszw:Lﬁanﬁ'mwﬁ"q'lnqtﬂuqﬂmﬁammzduuﬁ
wide 3 dausz1didugaaeu)

Taserfraveatindfnfi i inoudireuludu
sudianan 130 Tasou Avuasinaudgindai 145y
W fvseulusunadng 12 faveu Auuasinlssian
vesdet1s naz I iiroulusuden 8o 158U
nnaaed) IadrnimaiFoudithy 0.0001 uazd1lumudy
w097 TawnszurumsiFoudszngaiiensy 6000 sou

HIof IR uAANRIRT A DO T 0.05

L s &
maah 3. sanfToufeunlefidudniugndealums

nagoufiuyadeya FEM
fane3fin | nlefidudanugades
FONN 59.18
PROGOL 57.80 [6]

RIS 3 uaAsRamInARDLH 18 NI nATB UL
yrdoya FEM uffoudisusznin FONN Gimsiduaue)
fiu PROGOL Suifuszuylousafifiss@nsmwuinga
szuumileluilegiu saiudl FONN musadeuiuaia
sinyadoyanssnzsuduiinis1duaz Ifledifudna

gndeslumsswungnil PROGOL[12]

4. o

»
= oa oo

PudTeil 1S inaueidsoafiainuyy

o ar = o - = v
UszgnadifuuutfeveanisSoudiBanssne Sondq

P SV R S 4
luﬂnsmmﬁu'n'ﬂmmmﬂuuuﬁmmuﬂumiﬁm 1

ﬂﬁﬂ‘:

famsiudosrtaveanisTilsunsurssnnifgiy

a f of o w A A4 AN aa .,.,
N'liﬂﬁluﬂli‘iﬂﬂ‘lﬂuﬂﬂu‘lﬁﬂmﬂﬂﬁ'lll'l‘)'ﬂillﬂun .

-

v v od 4
jUnyuveanssnsdudvinitnldTasas wazfify

o

L .4 . L -
fssamadindmundedeyaitdug usunnyg Utiliz

Y
ALY

Y a
5. 18N9149849

(11
[2]

(3]

(4]
(5]

t6]

(7]

8]

7]

[10]

(1]

(12]

N#AS
T. M. Mitchell, Machine Learning: The M

Companies Inc., 1997.

N. Lavrac and 8. Dzeroski, JInductive

Programming Techniques and Applications g i
Horwood, New York, 1994. i kitt
S.-H. Nienhuys-Cheng and R. & Wolf, Foundaigh

Inductive Logic Programming: Springer-Verlag .

York, Inc., 1997.

C. M. Bishop, Neural Networks for Ful
Recognition: Oxford University Press, 1995.

R. Parekh and V. Honavar, "Constructive Tl
Refinement in Knowledge Based Neural Netwil§
Proceedings of the International Joint Conferenz|§-

Neural Networks, Anchorage, Alaska, 1998, ' Contr
B. Kijsirkal, 8. Sinthupinyo, and [
Chongkasemwongse, "Approximate Match of i
Using Backpropagation Neural Networks,” Maifl-
Learning Journal, vol. 44, pp. 273-299, 2001.

Y. Chevaleyre and J.-D. Zucker, "A Framewoi -
Learning Rules from Muitiple Instance Data," B
European Conference on Machine Learning, Freisl
Germany, 2001.)
X. Huang, S.-C. Chen, and ‘M.-L. Shyu, "An 0" a7/
Multiple Instance Leamning Framework aoi f: -
Application in Drug Activity Prediction Problsfl’ una
Proceedings of the Third IEEE Symposium i
Biolnformatics and BioEngineering (BIBE:
Bethesda, Maryland, 2003, 3
P. Wattuya, A. Rungsawang, and B. Kijidff
"Multiple-Instance Neural Network with SFEE
Boundary Criteriz," The 7th National Compie:
Science and Engineering Conference, ChogF
Thailand, 2003. |
Z-H. Zhou and M.-L. Zhang, "Neural Networt i
Multi-Instance Learning,” Proceedings of !
International Conference on Intelligent Informd!
Technology, Beijing, China, 2002.

B. Dolsak and S. Muggleton, "The Applicatiot§
Inductive Logic Programming to Finite Element L
Design," in Inductive Logic Progreamming
Muggleton, Ed.: Academic Press, 1992, pp. 453§
S. Roberts, An Introduction to Progol Tect®
Manual: University of York, 1997. Chart

-

ATTRT I
P]

3 Neur
o 3
FUHAY

mylF N

M uN
AN
mALn
Rudny
Chart P
Standar
Pearsor
s

W

qﬁi A9AT LAz Yoy ﬂ%ﬁma
ﬁwnmﬂssnﬂﬂumms ‘
pssuenaRs Ynasnstiuninende

Hivan In Unaiu ngamwa 10330
siri(@hotmeil. com and beonsermn k@ chuta.ac.th

UNFRGB

e iﬂamz.r?my azwwmuﬁ uilgnivey
Fupnyyaeszinnya e 211850y

Abstract

pproaches for solving a2 multiclass
ication problem by Support Vector Machines
are typically to copsider the problem as
atfon of fwo-class classification problems.
OUs approaches have some [lmitations in
fcation accuracy and evaluation time. This

LENETTRUTLED 1

- P
INAUAMNSUANATIATUTITTUINS

@ o =
ﬁ'lﬁi‘lJ“liWWB';ﬂl’)ﬂlﬂﬂillﬂ‘lﬂmlmﬂﬁﬁ'lUﬂi%lﬂ'ﬂ

An Information-Based Dichotomization Technique
for Multiclass Support Vector Machines

TN BIUNY
dnindanansaumnsmens
unTingduadeanyel v 222 a.lnsy3

.98 2. UATATTITUTIY 80160
Email: pthimapo@wu.ac.th

paper proposes a novel method that employs
Information-based dichotomization for copstructing a
binary classification tree. Each node of the tree Is 2
binary SVM with the minimum entropy. Our method
can reduce the number of binary SVMs vsed in the
classification to the logarithm of the pumber of
classes which Is lower than previous methods. The
experimental resufts show that the proposed method
takes lower evaiuation time while it maintains
accuracy compared fo other methods.

Key Words: Information-Based Dichotomization,
Multclass Support Vector Machines, Entropy

1. Unii

[L4 < = = = wda ¥
FrnednnawefusruilumaidanisSouinltd

aaudaigusnadalumsdwiamszuiunaisia

(Hyperplane)

[l .
s

fangalumsnendeyasonsnfiu lap .

o _ o

1 » »]
- ludrasnasuiumaiiaiiiidodwasgiamunsaduun

{oyalAiRssrastssinnm niv udluilgwinisd uun
1 " oa] & a9 oo
dngimiunuunarolszian dounSadlgwann
¥
matiail IfeunsalF Iddunts S wunuumaedseinn
FEmsdaungdnenflumaiWadFundwunuuees
¢ ar 8t Y ' o]

UsziamuairAanguu s i g myswunuuumia
o d . a

Ao (One-against-the-rest) iupmI vudomlsziom

&4 o 4 4 a4 o
ﬁﬂHf\“u@ﬂUﬂizmﬂﬂ HNHADNIMUA LUDENMTVUNLIDY

Algorithms and Al [> 721

W.utcc.ac.wncseczoosj

- R | .]
WIAONIN (Oneagainstone) SuilumsnSoudioy
& w 4 o
tssnmioyaniiiinlssinmdeynduiioziszim (]

o ‘o F aa P ¢ &
Uﬂﬂﬂi'ﬂuuuﬂ‘r?ulﬂuﬂuq.iu?'ﬁ MIVWUNIUBVUL

1) 3 ¢ a &
denindydimrugndssganimssuuniuuniive

fnde ud 1gamlunissuunuiundt [s] deu
Phetkaew, et al AIU03501510M0% (Reordering
Adaptive Directed Acyclic Graph (RADAG)) [8] éﬁ% ‘ch‘%z
fmadondwuvosTuafimueanddi Tomefezduun
Anmatadoo Taol98anos Ainveamdugauysaluun
ﬁ'wﬁ'nﬁ'ouqn (Minimun-Weight Perfect Matching) [4]
unelimsdas uduﬂmﬂunni‘?wmnm’muﬂ YR
fimTuAsnaTAannInInIBIoReT (9] edwlsinmludi
findndrdudmiumsiwndoyn cifsmanlag 33
mi’mﬁm‘i’lﬁ’mh’fﬁm‘mﬂ‘s:wmmsimunﬁ'agaﬁ‘lu 3l
afr dlosmnlumsiuundeyaudazafimmsoda
Joyai LigndeseenTu1Aifes 1 Uszamdondariniu
#BY1 Kijsirikul & Boonsirisumpun iusmseriedu 'ty
AmSunsSuunumaTeysHand 2635 nURNAS w
tru7 0 (Balanced Dichotorization Classification) {7] fivins
§uundoyalasdumszuniiuidoyalusumied
augi grnsioyamuaturazsovini nun Mol
nsdwundoyausozadruedayszamd higndes
eonlUumnnin 1 dssan et lumsfunazumnty
swifonszunfuvsdoyaufa s ununlszamiaan
sfhadordvossuiisledforfunniiqe mold

aupAguidinnhedulumsiiadoynuidos

»
sznmvesdoyaaeuilfiindfisiudoyanamey 354

- =1 4‘ 1 al r B
azun’nummzt’funsmm‘fnqmmnzﬂs:mnummu1%:

dulunmfafioif Taeds demoenadistu 1
geshaiinmmumaii e Fadewaldirinoundluns
fuundoyausnzilisiameziiaind@oety uaunily
vidoyoiituduunenbildiamaheaiulumsda
st ndmsT b AW e waunflumsdun

Joyaudarilsuanit IndifsatuTashiRvsanaimnie

Wwlumsindoyoudasisaamisy snovoetyige W
rmﬁ'umuunn"lmm’mmﬂumswmﬂmmmqq ;2
L-‘L‘Iuﬂ‘ﬁﬁ-’ﬂuﬂ'rmﬂnwmn'ﬁunmnmﬂm‘l o :

nwmmuv"uuﬂumﬁmﬂnuhmﬂmun%'uqﬂm
tf%’unu‘lur‘hmufnﬂ'umnuuvﬂmuﬂsumnﬁmmauﬂ
msunnﬂsqmurmﬁumﬂ'[numsmmmu1v sluhuny
mn'ffnnmmn"ﬂivmﬂnﬂﬂumsﬁumi"umnum
fioya 'lumam;umﬁmmwmmnammumdumx
$wunavdodssmailog & A%y -mﬁummnnmm
nsdwunndons1dlasnnz ouwuqnsmi]tgmms

] d
WUy 1um1J5.mmﬂmmmmn

[4
2. Smmefannmeiiuyiuiasngufaaums

(Support Vector Machines & Information Theory)

MAUAMTUARR TR INTITTUINAA IS U‘l’ﬂ'ﬂﬂfﬂ

I3 o d a B
nAmeisTuIUnawsuamimgu idvo

2.1 tRaRugTITesE e AnIAD LY

woAsndnlunsiuundoyn vewmeinnaned
g4 Yy [
wirdunfe aeduszunveeian i umsnidoge

oontuapalsznn

2.1.1 FrnodannmesuusdunymBudy (Cines
support vector machine)

musAiiwavesdioyn o fidsenoudieaognimm

S giisudy » 7l 21bzan +luos D

D={x,. y) ke L. B x, e, ype 11O |

sunmawiahalfgidudy o godvunlee A
o w AonnmeshnRglsusy » sndusmMIEE
fiAuns b Aofmeiszummoa Gra)+ b sl
aredle

(w-x)}+b>0 if y=+1

(w-x)+b<0 if jy=-lL

(Ncssc 2005

Algorithms and Al D 722

www.utec.ac th/nes

1 a0 ¥ 4 g w ™
pamsA1 w ez 6 Himldaefisglndszuw

infigatiszeen 1w udaos1d

yebzl i y=+l
_".)+b$—l it y=-l 3)
I-'i. '
w.x,)‘l'b].zi Yi (4)

Sumssvansiian Wiy aaiiqazdes
e szt wssvideyad Waoufy
siinntouiigals wnfige sEEsinTIHIN
asead Uiz iuand Sty

(w-x,)+b

9= min 4 ex)ed 9

T oy v -

A A o =
ﬂ‘]‘nuﬂuﬂqﬁuazn’]ﬂﬂqﬂﬂ

nuaTh (3)
& il ,
mifto +1 duniudnfiudeadinawe ety
L dw b= ©
i o & de o
ga AnTuilgmitivaviiy
] ks a = d o 4
anfued w72 Wdifiga lasiufudeouly
s il
) pHwex) b2l Vi
- = 3 1 1 A
Funsdif Wannsoiiweyald lnadouludwiu

o ' a T A]
oy lulmi Taaumar sl usalsenoud o

y 3 f : 4 .
AAATVDL |_‘f.|_+ cZgi‘lﬁ’mnqﬂ Tautufy
2 =l

- Souluso il
(D plw-x)+b21-£,
(2) 20 vi

2 o o 1 s
Aumimuni fiavaadwaudiedrsdoyasouiiue
= a J o =t @ dy
Hawaamudn Yiawnseuns vanldfuilgwil muise

wasdapriiiu

L
=

o aamwesHanuii ifiga

b i/
= ar x; x;) (D
2',}:1 vy (X x50

!

L(wfbf C!)= Ean'
=r

3 @ 4 ! ;

Tasiudugouluse Uil
moLa<c,Vi

2) 2a,y,=0
i=1

A = 1 3 s J r o
(IR OLl BN MR UAINTY ﬂ'}'f)ﬂ'lﬁﬁﬂytﬂﬁﬂ LHATEA

- o/

A o a] .ﬂ 1 <1 1
wilfguannseaniieda dedniiiaic, > 0 o
w o o a 'l S g ¥
Fwnoininiaes uazifudnwesarnme s niilda,
NNYNHBUBIRUMSA (4) MRy 1 duAIeiduaii
0L =0 amsoAReon lnnmavsseddoyamould

=3 ' w oo
Tarhifimansznule 4 dosadwsvowzumaneiia

W o FudhwomsesuSgisudy | i ege
191 Lw,500 0 a¥> 0 ud1 x, Hhudwmesannwefvea
sTunmAEATwenAge o, &) cunadeulumey
w00 @ unzdoyeou Tasmwizodesshunanves

»
FHWDI MINIADT 1AsaT

Za?_y,.x,.. (8)

I
o _ 0 _
w —E &YX =
=l support veciors

F=1-w"x forx, withy,=1and0< (< C (9)
] f ! [

Aaad b o '
FEUNAI AN LN AT UUNYAR 19 AU

A o o < o
Lﬂ‘iﬂdﬂﬂ'lﬂ'llﬂﬂﬂﬁ'c’!ﬂﬁilﬂﬂﬁQﬂﬁﬂl Ax)

Ax) =sigu(w° X+ b“)

=Sign[5

af ylx, - x}+b" |.
Support vectors

a v o da]
Fuwoiannaed x, Wil o= ¢ owszgriuun

@

s A =L A P y
Ravaianio iR 1A udx, fduq wrdwunldess

gnADa

Algorithms and Al D 723

www, utee. ac.thlncseczoa

2.1.2 snofannaouuyduuuy hitdadu (Noo-
linear Support vector machine)

fane3fini 1dna s 118 Mdeyafiamso
nidsssunumaeiiduuudaduniiiu udfudeya
J []] = o 'd o =
filuoeutauuiFuduld Snnesainaesunedu

o

uAtepmil Tnsuifeyamedn TsniSaiisusug
Tasdon 1 sd Funtsuatit Bidwidaudu dufe
mudenilafsulumsian o e u ior§give
Seusuganinigitudy 2 amnsodumssuni
uiweniiee lulf pRdusugeifouriiumsuoniili

dhusuduly R”

Fesndoyamouiildluaumsi (0 oglugilves
wogauFeanaiszn hanmed ﬁufu'luﬂ?qﬁé’uﬁn
gunannsaiamstudoyalugives Ox) D).
fiSpiives H fidudugaasiiivgaen nieldms
frrauin oan lsiandunifaddune fiund
munoine kxx) = OxyDa) uwbunmunie
W edsudunud xx, yaqiilumsdmon wosli
SuiludosdHerduildunl @ 954 Reddunnsiuai
Tiow19Aun

Polynomial degree d: k&,y)= lx ¥+ lr

(11) Radial basis function: kg, y)= ! /
(12)

A Jr
. * -
- \
G
L]
. ° ° °
— =

‘ -y r o oy &
UL wnfamaunifeya higudu T §uigh

SUAU

2.1.3 AszdnEamTaviom I lvosdwneds Dfumeg
A

lﬂmuwnﬁmuﬁmauwamwﬁﬂwmmq
o o] =Y
mwwaiﬂnﬂmai"lﬁ"inunmumummﬂqﬁqmﬂuﬁ ;
fuavinwusianislugnueadifited & M3l Ly

R* Wuitadsudad F={XHW'XIMSLHSR}
awilfined ¢ ﬁr?m%’umsnszmunnﬂs:mn fvay
inzilusdadon 1-6 uudedn z ﬁlﬁnﬂmmjw
dasziafiu m a1 ddrdwun lz:sgn(f)esgn(p)
fidrssrirseninssumoeda fudeyodldune
athalios ¥ (71 2) dmiudrotungndily 2 uf

mRanaIAvesdITwun 4 e lsifurm

c[R 1
;(}?logz m+ log{g]} {13)

»
usnnilenniiudrdeauinedvedwios 1-8

noddumn Aesen(F) sriinrw@anan iy
—!£+ < -{e—lo * m+lo (—l—]
pal o ol 8|5 (14)

A o L 1) d. L]
wio & fednnudredetoyaly z Rilvzesn

sevieszunuvaneliatuswesannmessnaios ¥

L
b TS MY |
FHE AR

o, IH

- A
S A= I

il

J L] i o3 5 W ‘.
W 2. szozvneseninssumatedadydoyal

¥rou

ﬁlcssc 2005

Algorithms and Al D 724

: E .
fumeavaadeyatusgiuninninzduyes

aeutrndanglugdvesinningas

Aaummveadoyn- —log, P (15)

oIy} ua,,‘lﬂmmuw.,,ﬁ‘]um.,mﬂmm il
W pm) 1 ADAmTUNATeY A VDAY

o M Fviumudin 1) fouldenges

L =
)=y - m)log, Pm) (16)
=1
% r Y- =
UANIBUBIRTITS ﬁ'UW\ﬂﬂi‘Nhﬂ'\ﬁ’fJU HUIUDY
1 nl: -] as v - =)
m;ﬂuunmmuﬂﬂmanuuaﬂ ﬁiﬂlﬂﬂﬂﬂzlﬂu

mﬁmnu UANSHAITIT AN AT UIVIN T

L4
w 1

"\
i iy iusinuuandafuinniodsznoudae
waolszaniiinaulodifeaty fre61e
ol :
guialoudos yadoyn M wwisynoudae

B8 (i, fou) szl heasaumamaams

1 'l"lfjﬂ I'Liﬂﬂ’J"ilJ‘LI']ilwlﬂu‘lmdﬂ“lilﬂﬂﬂ'lm'lﬂﬂﬂ‘]'m

U‘U?Nﬂ’l‘ilﬂﬂ fin Uﬂiﬂ'ﬁ"m‘tiﬂlll’fﬂﬁ‘h ﬂ\ﬁﬂ'ﬂ 3

Arensenane

1
0.5

G g 0.5 1
amminziluvsamsfeinseto

’ 2 LY 1 1 o
3. AndNRus ST estulay

AT AU

3. i3feilinades
3.1 T3unndiu (Max Wins)
é“aﬂa?ﬁmmﬂﬂﬁunzﬁmuimmﬁ'&ﬂqﬁ%’uﬁyuﬁm
YoIMISWUnLUUH aronils afeddnundeyo
Rawn $109u K& & Taoh k Aesuulszian
ﬁaga#«wnﬂ ArwunuAazdzgRaeuTasdoyanin

2dsunn 7 uee / laq adeu tedatl

B, W g
WY)+ 21~ .7, i y=s
WwWH DR+ <-1+&7, iy =720 (U7
uB AT sjen((w?) D) + &) Swunld
Amsudiien x 1aq eghinlssian 7 wle / ndeen
Wi mounamuauds STuundiuaziiinouitldan
Frduunie a2 % nTmasudulaelssand
Waalmingeiigqa Aenifludraouvesuundiu
dmlunsdififinnTvongegaunati 1 Ussian Az

»
MIguARDLINUITZIMIIMATIY

3253087510109 (Reordering Adaptive Directed
Acyclic Graph (RADAG))

Output class

[}

A k3 =
1 4. Tassafumsiunndoyavosersiofiod

Algorithms and Al [> 725

WWW. utcc.ac.thlncsecZDOQ

Phetkaew, et al [8] Mnausdins vy (Tean
¢ o =] o w acl g s,
e1fiofied (¥eUSuYganugnAovnsitioAnlA

>
191 Taslulnseadnvesmaduuninaniuglade
o H A ad a4 i A e w o d
mumBouniunilouifioded udsslins@endwun
Mififranudanaiateshgavesnisiwunly
1 : E] -] Vo =g o 1)
wiazduTavitmsdens19danesiuvenisiug
»

muyselinniimimioogn (Minimum-Weight ~Perfect

, A v oy
Matching) [4] tRedugiimvovvmnImifianainsa

-

TuudazFuiinnfosfiga Taefveuiwanuianaia

soafadFunuvansdssinnudasdm1deind
Ussniamlnniom Tdvesdnmedanmesuuyiu
(Generalization Performance of Support Vector Machine)
[2] un:uﬁuﬁmsé'luumhu‘lﬂq'a';u"lﬂgiﬁﬂ:ﬁﬂw
Soadrdumsdunlyi (Reordering) ~ Davuuniie

»
o= - 4
s lusugahesduilusnsuvosnisiofe’

<

33 FéuundoyaunuuanaTaunuga
" (Balanced Dichotomization Classification)

Kijsirikul & Boonsirisumpun [7] t@¥u®3IFdmUA

e . L.

YoynuuianaATuu e uge (Batanced Dichotomization)
Tneluurfalunsdnundoyadasssunuvasiaiog

. , 4 4 . 4
Tudwmitinanfigavesdoyaniduun inoan

» »

suaTiveantsiwunnslasivuseulussduun
Joyndail

33.1 madumdudsvesssunuvaieiia

Tunadiiaiduvsssummenelia luns s uuninn
sostszamaaAtiy mer 18 AT WBITIUIUBY
Ranenswinmonlsunmdoyaiio oy Tarfiduomnia
'una'ﬁmgnﬁ"qﬂaqﬂmﬂmzag’ﬂun::é'mmuaszmu

#7 ey e nssnussnin dszem 1 Audszen 2

aa 14 J L g
fezldsrummooidegianaesznin 1Ay 2 ueld

Fumivonlszion 1 ogludtu x=+1 unzdumiswe

Yz 2 o x=-1 dudu @3UR 5) uresi}

; z
emmanivieyaluduonicumafigavedioyaionait

fumiaRuinlsznmdeyady m'tnmmuun{mn
af saUsmf higndosoenhdifis: Ustinn g .
Dafinmdumdumisesssuiouiuse “‘“‘ﬁm;nou
wuTamilsdFunoss umuuuﬂmﬂ's.mmungué‘u‘lﬂ
mmtummnmuwmJs”mn-ﬁ'aganumumum"'lﬁ' E

Fumsvessznudled sufeyaamu ((RgHfi s)

X= 4

=1 * ¢ .“" x=4]
”» . .
wgu 2 . . *
o ° wgut L
-
- -
i s -
wWae L s @

o - A a 2 ' A -
s deyadouddieindmdumishiouty

4 4
Usunmdoynduiy

332 MafumsELmARnAT KA

A o ° & o I o0
WONINTGTATUIBUN BF’{H'H'IH UHEVOITEUTINROUA

o 4 -
moufudsziantoyasunwduaoudduud uns

. & o d
wmn*\'l'ogmmmmﬂﬂs Qllﬂﬂﬁuﬂnﬂzﬂ'lﬂﬁﬁumﬁﬂmm

FunndazdonszunfniWoyalusssd nvorzim
fiénmalszmiIndFesiu delilumiuundogus
asﬂigqmmms'faﬂsxmninqnﬁ'lu't_mc’l'mnan'lﬂ'lﬁ'ujﬂ
figa ﬁ’uﬁnﬂ?m-ﬂwaaﬂszmwﬁ’x'n:gnvfamn‘lusauﬁu y

@
DS

(NCSEC 2005

Algorithms and Al [> 726

www.utce. ac e

=+l

1
Bt
E,.J ¢x=—1 x:—tl¢ xo-l

i o 4 P
. T UUNLUUIANAS VT UR AN ATIR

dmfuilem 8 sz

w N o Y d d
e wun lavldssunuuanas iauga
; a 1w a & &
SmumsomsziniiuideyamdeaTanile 1]
Tinuaswemsdwuniigraraanie
. =
il & Ysson dwioeontug i 7
4 a o &
VBIMSATURNATIVARAWETA 35 MIUANAT ALLIL
] a] 3
mfevBLRAIIIRAKRE AR S LUAd DYya
: and -
mualfszunmatelan sz uunuga

BT YD VURANTUAANGIAYDIT 19 1WIZTNENIN

¥
w3 A

i ° a do ° P
“H TWaUITHUTUDUUIA ﬂhﬂﬂﬁ’miﬂ'\lm 1l EJl'J.f\

Te

ar

Enivemnsosndszmdeyah higndeseanififn

nydided wanigmmadiadeyavednuss 4 @
Ao A, B, C uee D lavmmdldarnuinsdiuvennsiia
Jeyauraslsenniiviiu w i wuisnderfigelu

» »
ASLUNUS PUTHHATH Ae 2 Tin laeumuus asd nuses sl

A UPUAW 0
B unufw 0l
c umidw 10
D umudw 1

A1e0 1 mnAesnd 1 adoyavel ABACADAB ax
12 0001001000110001 S uiinfi 1Y Ao 16 WeReran
Joyaendiosn moossudoyafidudenrunialuly
Fialsziuesliamninudiulunsfedoyavswsiay
st him Ty o Snvsz A, E, L Ouay U FuTuaszlu
s anguagirmmaimadulumsiiannnid rusgdun

nfetdumnd e radulumsfausas
Sruszdlude

farmninzihde unusWa@ude 0

B Hamninztiuds 4umusiedudas 10
¢ uamminziivie vBunusimAndls 110
D famnieiude IRumsYaRude 11

minnsmsd siadeyoyaruio ABACADAB 918
a9 = EI Tt 4 1]
01001100111010 31uniinh 14 Ao 14 sy udioiwmim
s lumsifiareadasdnusy uasendae wiild
$nnufiamdsiunimdswadoyaanas Tavedovdn
&) ar] o o
wugnifidmndnvszlaldiso Alunudsswauda
Yoo dudnvszla reeldReouimudwd i dan
aparaiil
& < =1 1} o
gronnsanlunsdusnmaniuninzduiumsiia
1] ¥ - 1 L d
Joyavewanrdnvselinuitufminyenud W uzuny
O r o o o - A 1 L]
SnuTzuA AR eI lUuiT § 0 2 Be el heunms
y @ aa a o '

il umadasumusavrzassinaa diendy lums
= [} @ 1 A r t s d
ifind DYAVBAAY D NI Wasiaz lum muﬁ”:ugﬂﬂ 8(m)
uaz (W) AId R

Algorithms and Al [> 727

www.utcc.ac.thlncsec2005)

=

d . o _ad
(Ui 8 (n) msunudavsedroduliuuulins avdlf

mmasitulumsiiavemsazsnusy

oW

mnu

‘ L H
§1 8 (9) msunudnvszdodu sl nedif
sty lunniavowdazsnuse i

MmNy

YA 8 (M) oz () Fuwammsunusnuizda
fulfuvu i seiuinlugali s (o) msdifiaonniaee
dulumsifavowradnysaindu Su s
augnez Winuduidon (edge) 913 TG oz 1y
i uAugd 8 (v mvdifisuninsdiutunda
voadnednuse imidus i noududewsinsinl
falundazludaes noududomnnteedetuiiuiy
muninsthdumsfavosdnussiy g frvsz A 5
smniwsiugagaeWinududounasnludsy
f';ﬁiqﬂ dmsnuss C une D sEliinmuduideunnsin
Wislmnnigaitessmiinniseiunsiiadge

mnﬂa1w1'luu~1'1|uqm‘iﬁ’um-l’l’ngmm;ﬂﬁ 8 (1)
fnus A Pavos Sumubss nudied nisnanluds
msfundeyede snourdilumsdiond: damsnuse
c unzp dlomadavios Sumifreinoudniiond
wioiwaunditumsfumgald dofssaanisdon

4
Taeynid e ldansfunindedge

»
mmﬁmums %’Nﬁ'ﬂﬁﬁm?umﬁmumm'u
3 ul- 1]

o = L Mo w ,
vrzinmdisv 1A umsidss adoynlaoug 2z Tupgy

tihy

Ariusuuuresuamiidenn émmuﬁs’m
Ay

é’mum’fﬂqamﬁiudauﬁuﬁumm\iwzrﬂqumi.. :
a’:’ngn‘tuudn:ﬂmnmimﬁmﬁuﬂnuﬁhglﬂuﬂm:'ﬂ !
HEUGIE "

ymawil o3 ams tvsiBonds MATRMT§
{oyauuuirnaT s aume %qﬁumﬁa'ﬁum,
i‘iuluﬁ‘ﬁnynﬁ'w‘ssmwnwﬁﬁﬁuﬂqﬁngnnamﬂum
rhu'Hﬁ"r’iannuﬁwm‘mnmwu’mnﬂulumnﬁn
doyaunnzilszan éqﬁfunau'lumsimun'i’l'agnﬁq{f

4.1 MIAUMAWMUYBITS IR A

msaduiduvessummaedidlunsiwunay
rrmﬂszlﬂmwﬂnﬁtfuﬂz'lﬁﬁwmiwaﬁ:umuq‘ﬁqmu |
szwindeyaaoslszmiis g monTasf dumie
1’(0:4n'ﬁ’mmﬂmnm:ag'ﬂun::ﬁ'*lwm‘szmumiw'l:.ii'
fumiafioviulszndoyadudimmfumdunine
s:mmﬁuuﬁ'uﬂszmm’r'agnémﬁ'ulaumﬂqrﬁum
ssumuuuueenlsznmitioguds Wi noudumioe 8
YsznndeyatuRuiuior 8% umiwesmsum dadioy -

»
W b 1 ar é
fudeyavianun suResuhATusnes wnnsmugn

"
42 nrfuMITsLTUUANAS AT TN

diemsdnsiefumdumissesszymmmeda
Wovfulszandeyns uadumoudwduud i
Aunszumifiewmonioyo Wi qelashnamed:
wuInsTvoedoynlaodenszumni Wesou Il #
sufiudanid smmimzanilg msi oy
ué -i’faynﬁ'lﬁ"lumin:ﬁ’1uw~ﬁmmﬂzﬁi’immﬂmﬂﬂ#

v _aw o o Son
tufuegiosfiganmundnvemquimsmunennat)

4 ae . o o
hafu dlousarAmidi$ mousuanvesd aymunuog .
tosisernnsodatszand hilyoontu 18ake

NCSEC 2005

Algorithms and Al [> 728

umadnnusuey InsTiduded

= - pe u ! [l
Nawewintwun =y —=f(f)
o 2971

g

!
N —P(m)log,) (18)
]

D noufwewu ilun e tisuiu 2
= 3413un Aswanuaznsay

S unalszamvesdoymvisvus

s : . 4 ao

s aua yadoyanildd wongsuan(Class)
b

muagiiarmninsdiulumafadeyaveud

{m izl lumsidadoyn
uAnzilszian

dmu Jamimsiwun & Yszeam uaz myAsn 1
r o A
thenifulunmfadeyevenlssani o
o Qs r A o 1 g J
ATBIA286199IAFUN § mnsad U INILAT

Jumssumnfinianielfged
4
> ~Pm)log, P(m)
=1

=[-{0.5)*l0g,(0.5))+[-(0.25)*l0g,(0.25)]+
[-(0.125)*1og,(0. 125)1+{(0.125)*l0g,(0.125)]
=1{.75

5. HaMINAae

dmfuniinaaneldlddeyanadouain
UCI Machine Learning Repository [3]4T107U 494A
Famsait 1 deynunneymusiliznoudae Soyaaeunas
foyanamoy ludunouvsamemassaziimsuta
gadoyansusandu Toyameusiuazdoyanasey
ATINQARDI(Validation data) e 1 lumswir s iiiaos
fumzay (7 Sedsznsudqed1 2 Aer1doway
lunsAmdn (0< <10) uaz R Ao Av0UINARIIN
Aawana(x, < R< x__, Wo x_ fis A1digavog
pLARTIAATIRVE S LN Uaz X ___ A8
HASTHYBIANRA BuALA T B AVLIINTF LB IVBLIA

. . z v 2 g e

ATIUAANAIYEIR IS NN mua) ndsnmiuialde P
waz R 1A eds wunuurmeyssiamen
yadoyanouAuuarldyadoyanaaouiomdnny
gnApetazA R undolumsduundoyn wans
NARBALEAY FaA1ad 2-3 (IBD fin Information-Baesd
dichotomization, BD flo Balanced Dichotomization,
Expected Value Ao s maundalumsiuunfimant,

ar W

-] o v o o L4
FI00NT ¢ d ABWITIADIVRININFUIAD T IUA LAY

fdnusduhmsnuamnfangaluedazyadoyn)

d . a d q
AMTHEN 1. ﬁﬂymwm%’aqanuwmaﬁau

Dataset | #treining set | #testset | #class | #feature
Satimage 4435 2,000 6 36
Shuttle 43,500 14,500 7 9
Vowel ' 528 462 11 10
Soybean 250 340 15 35

Algorithms and Al D 729

www.utoc.ac.WncsecZO@

o a4, 4 o
AN 2: 1S ouflous LA TI0INIT I WUD

Polynomial Kernel
Expected Output|Expected Output| RADAG] Maxwins

Dataset| vae of | Vaiwe of | (1) |G&-1¥2)
of BD IBD | of BD BD
ogzk)
Satimage (2.474 499912585 4.847) § 15

Shuttle 10.965
Vowel |3.459
Soybeas |3.617

5.35972.807 5378) 6 21
3.385(3.45% 5.665| 10 55

6.971(3.907 6783 14 105

RBF Kemel
Expected Output|Expected Output| RADAG | Maxwins

Dataset| vame of | Value of | &1) |G&G&12
of BD IBD | of BD BD
- (ogk)
Satimage [2.474 4.734(2.585 4577 5 15

Shuitle (0.965 4.982(12.807 5758 6 21
Vowel |3.459 5.628|3459 5819 10 35
Soybean |3.617 5.400(3.907 6.591 14 105 J
asedt 3: WS ufsumanugades
Polynomial Kemel 2
rDﬂtﬂs&t d IBD ngD d RADAG| d M=ax
Wins
Satimage |6 88.850| 6 87.840[6 88900 |6 88.453
Shuale (8 99924| B 995248 99524 (8 99.924
Vowel |3 64935| 2 65.022|3 64502 |3 64.329
Soybean |3 90.882| 4 B9.529|3 9L176 |3 90.471
RBFKemcl
Dataset [z mD | < ¢ RADAG| ¢ Max
Wins
Satimage [0.5 91950|10 91.350|0.5 91950 (05 91984
Shumle (3.0 99.890/3.0 99.8%6 (3.0 99.897 30 99.897
Vowel |03 66.450{0.2 62.900 [02 67.100 |02 65.340
Soybean J0.0? 91.471|0.04 89.118 |0.07 90.882 |0.08 90468

DINHBNIINARDINMSUARAS S IETEIMA BT A 1917
grdeeindifoefu3s fu d s wuafalumss umndle
NS pu s vens ieR T asmnd 33 WU ImMIUAnRT W
emmumAliA s nmed shimsdandnimonsd uasdie
WS s suf unuAnaT wUTIgE WU INTSURNAS ATy
asmun b s e s humss undnd das g nsdi
dni8n 3 s nedl 1 msumned ez WS e
afshuns 11mnnqammn‘1nmmmmnmmmm‘m

armemnse lunmard ouafeansd wunweudiy

sPuTuveat a8 wununurolsziani ad1q14
' dad = 1
wrAtP ez R TiaTigedan Taoonszumm Wennsenia
Usznvwead oy alaminfo uidnsdnvesszunididszion
3 w W s v ¥] a
vorteymuiuioonSed ming mled munil wesssunuil
o = 1o a.:‘ d % < ¥ od
msnlszanfe A mmes andrusamss uunh R i3

$] o ¥ I o u‘: ') P a
W lndfziuad nuns shimsdwunfimem Ssngns

k
Z_P(’mf) log, P(m) “1mfmmaﬁ'w’f ,
=l
mmilafin seavd ey ald ﬁmﬁéqﬁm‘l
wawdssand 185§ wonad ¥ alunmsd MuAIRE,

ﬂamamﬁrmﬁmmqhﬂmlmmmmmm

6. a1
= é 1

TP TSLANTTS A IS TN FEeTT T 3y

s umlsavRe wios Aonmes| arfun

3/ & ﬂ’:) a] A
AT THMAS SVIMSS LN Taerion s Tees

ﬂmgfﬁmha"ﬁmﬁuﬁﬁ1Mﬂmnm‘mhwwﬁ§§u |

7.1900139 1409

(1] yoyerSy BedSqa. @nambereunmssmsyiig
MATFIINNTTURBUANADY Az TN sumINR]
pasnsaiumInenay, 2546

{2] Bartlett, P. L. and Shawe-Taylor, J., General
performance of support vector machines and other patiery
classifiers, in Advances in Kemel Methods Support Vel
Leaming, pp. 43-54, MIT Press, Cambridge, USA, I

[3] Blake, C., Keogh, E., and Merz, C, UCT Reposita
Machine Leaming Databases, Department of Info
and Computter Science, University of California,
1998, http://www ics ucl edu/~mleam/MLSuramary.

[4] Cook, W. and Rohe, A_, Computing Minimua- Weigh |
Matehings, Technical Report 97863, Forschungsinstifu
Diskrete Mathematil, — Universitat Boon, 1997.

[5] Friedman, J. H., Anether Approach to Polychotom
classification, Technical report, Department of S
Stanford University, 1996.

[6] Hsu , C. and Lin, C, 4 Comparsan of Methods
Mufticlass Support Vector Machines IEEE Transachoe
on Neural Networks, 13, 415-425, March, 2002

[7] Kijsirikul, B., Boonsirisumpun, N. and Limpiyak
Y. Multiclass Support Vector Machines Usin
.Balanced Dichotomization, The §® Pacific
'International Conference on Artificial Intellig
(PRICAI-2004), 2004.

(8] Phetkaew, T. Kijsicikul, B. and Rivepiboon, Was
Reordering Adsptive Directed Acyclic CTEP%
An Improved Algorithm for Maulticlsss SupP
Vector Machies, The 2003 [EEE/INNS Intermatt
Joint Conference on Neural Networks, Portland
Oregon, July 20-24, 2003. :

[9] Ussivakul, N. and Kijsiriknl, B., Adsptive DAG: 4
Approach for Multiclass Classificatios, Inteoah
Conference on Intelligent Technologies, 2001

NCSEC 2005

Algorithims and Al D 730

EC 2005

	RSA4680024_s01
	RSA4680024_s02

