

Fig. 4. Classifying process of the RADAG.

concerned with determining the factors that affect the accuracy of a pattern classifier [3]. Generalization performance of SVMs can be approximated by bounding on the generalization error. Define the class F of real-valued functions on the ball of radius R in \mathbb{R}^n as $F = \{\mathbf{w} \mapsto \mathbf{w} \cdot \mathbf{x} : ||\mathbf{w}|| \le 1, ||\mathbf{x}|| \le R\}$. There is a constant c such that, for all probability distributions, with probability at least $1 - \delta$ over l independently generated examples \mathbf{z} , if a classifier $h = sgn(f) \in sgn(F)$ has margin at least γ on all the examples in \mathbf{z} , then the error of h is no more than

$$\frac{c}{l} \left(\frac{R^2}{\gamma^2} log^2 l + log \left(\frac{1}{\delta} \right) \right) \tag{1}$$

Furthermore, in case that the training data cannot be separated by the hyperplane without error, with probability at least $1-\delta$, every classifier $h\in sgn(F)$ has error no more than

$$\frac{k}{l} + \sqrt{\frac{c}{l} \left(\frac{R^2}{\gamma^2} log^2 l + log\left(\frac{1}{\delta}\right)\right)}$$
 (2)

where k is the number of labeled examples in \mathbf{z} with margin less than γ . Below we show an example of the generalization error of classifiers. The experiment is based on the English letter image recognition data set from [4], which has 26 classes. Hence there are 325 classifiers. The classifiers are trained by using the Polynomial kernel of degree 3. In Figure 5, the generalization errors of all classifiers expressed by Equation 2 are depicted. The generalization errors of all classifiers are varying. The average of all of them is 28.82.

5.4 Algorithm

For the reason described above, we consider the generalization errors in order to choose the optimal order with less chance to predict the wrong class from

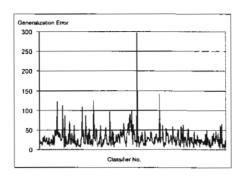


Fig. 5. The generalization errors of 325 classifiers.

all possible $\frac{N!}{2^{\lfloor N/2 \rfloor \lfloor \lfloor N/2 \rfloor \rfloor}}$ orders. Among N(N-1)/2 classifiers, N/2 classifiers which have small generalization errors will be considered to be used in data classification.

Let G = (V, E) be a graph with node set V and edge set E. Each node in G denotes one class and each edge denotes one binary classifier which has a generalization error from equation 2 (see Figure 6(a)). The output of the reordering algorithm for graph G is a subset of edges with the minimum sum of generalization errors of all edges and each node in G is met by exactly one edge in the subset (see Figure 6(b)). Given a real weight c_e being generalization error for each edge e of G, the problem of reordering algorithm can be solved by the minimum weight perfect matching that finds a perfect matching M of minimum weight $\sum (c_e : e \in M)$.

For $U \subseteq V$, let $E(U) = \{(i,j) : (i,j) \in E, i \in U, j \in U\}$. E(U) is the set of edges with both endpoints in U. The set of edges incident to node i in the node-edge incidence matrix is denoted by $\delta(i)$. The convex hull of perfect matchings on a graph G = (V, E) with |V| even is given by

- a) $x \in \mathbb{R}^m_+$
- b) $\sum_{e \in \delta(v)} x_e = 1$ for $v \in V$
- c) $\sum_{e \in E(U)} x_e \le \lfloor \frac{|U|}{2} \rfloor$ for all odd sets $U \subseteq V$ with $|U| \ge 3$
- or by (a),(b) and
- d) $\sum_{e \in \delta(U)} x_e \ge 1$ for all odd sets $U \subseteq V$ with $|U| \ge 3$

where $|\hat{E}| = m$ and $x_e = 1$ means that e is in the matching. So the minimum weight of a perfect matching is at least as large as the value of

$$\min \sum_{e \in E} c_e x_e \tag{3}$$

where x satisfies "(a),(b) and (c)" or "(a),(b) and (d)". Therefore, the reordering problem is to solve the linear program in Equation 3.

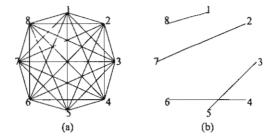


Fig. 6. (a) A graph for an 8-class problem (b) An example of the output of the reordering algorithm.

5.5 Estimating the Difference between Means of Generalization Errors

In this subsection we will explain test concerning means of generalization errors of classifiers of interest (the binary classifier of the correct class and other classes in the order of classes), which are selected by the ADAG and the RADAG. For the ADAG, we randomly selected the classifiers to be used in data classification, whereas for the RADAG the classifiers are selected by using the minimum-weight perfect matching algorithm. This may be analyzed using a method called the one tailed paired t test.

To estimate the difference between two means, we wish to test

$$H_0: \mu_1 - \mu_2 = 0,$$

 $H_1: \mu_1 - \mu_2 > 0.$

The point estimate of the difference $\mu_1 - \mu_2$ of two population means is given by $\bar{X}_1 - \bar{X}_2$. The form of the paired t test is

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_d / \sqrt{n}} \tag{4}$$

where S_d is the standard deviation of the sample of differences $\bar{X}_1 - \bar{X}_2$.

Assume that the distribution of generalization errors is normal distribution. The simulation is based on the dataset which has 26 classes, and hence there are 325 binary classifiers. In the experiment, a generalization error is randomly selected to each classifier with equal probability, uniformly distributed. We examine 5,200 orders of classifiers, where for the first 200 orders we assume that the correct class is class 1, for the second 200 orders we assume that the correct class is class 2 and so on. For the ADAG, we randomly selected 5,200 orders of classifiers. For the RADAG, 5,200 orders are selected by using the minimum-weight perfect matching algorithm so all orders are the same. Then we compute sum of generalization errors of classifiers of interest that correspond to the binary classifier of the correct class and other classes in the order. The experiments are repeated 100 times. Then we calculate the sample mean \bar{X}_1 (\bar{X}_{ADAG}) and \bar{X}_2

 (\bar{X}_{RADAG}) . Using $\alpha = 0.001$ with a one-tailed test and degree of freedom = 99, the null hypothesis is rejected. This means that the RADAG obtains classifiers whose generalization errors are statistically significantly lower than the ADAG.

6 Experiments

In the experiments, we compared the accuracy of classification of four algorithms, i.e., the Max Wins, the DDAG, the ADAG, and the RADAG. We also compared the computational time between the ADAG, the RADAG and the Max Wins.

6.1 Data Set and Experimental Setting

The experiments are based on several data sets from the UCI Machine Learning Repository [4] including glass, satimage, segment, shuttle, vowel, soybean, letter and isolet (see Table 1). For the soybean problem, we discarded the last four classes because of missing values. In addition, we examined our methods with Thai printed character recognition [20], which has 68 classes including 44 consonants, and 26 vowels and tonal masks. For the training set, the characters were printed by laser printer with 600 dpi resolution. Then they were copied by a copier machine with saturated ink. There are two test sets. For the test set of Thai printed character 1 data set, the characters were printed by laser printer with 600 dpi resolution. For the test set of Thai printed character 2 data set, the characters were printed by laser printer with 600 dpi resolution. Then they were copied by a copier machine with pale ink. These data sets are different in the number of classes, the number of dimensions, and sizes. 68 classes is the most classes and 617 dimensions is the most dimensions which are used in the experiment.

In these experiments we scaled both training data and test data to be in [-1,1] and employed Polynomial and RBF kernels. In the training phase, the N(N-1)/2 binary classifiers were constructed by using the software package called SVM^{light} version 5.0 [13,14]. For the DDAG and the ADAG, we examined all possible orders of classes for datasets having not more than 8 classes, whereas we randomly selected 50,000 orders for datasets having more than 8 classes. We then calculated the average of accuracy of these orders.

Table 1. Description of the datasets used in the experiments.

Dataset	Training data	Test data	Classs	Dimension
Glass	214		6	9
Satimage	4,435	2,000	6	36
Segment	2,310		7	18
Shuttle	43,500	14,500	7	9
Vowel	528	462	11	10
Soybean	290	340	15	35
Letter	15,963	4,037	26	16
Isolet	6,238	1,559	26	617
ThaiPrintedCharacter1	3,264	3,264	68	128
ThaiPrintedCharacter2	3,264	3,264	68	128

6.2 Experimental Results

Table 2 and Table 3 present the results of comparing four methods including the Max Wins, the DDAG, and our methods, the ADAG and the RADAG. We present the optimal parameters, d in the Polynomial kernel $|(\mathbf{x} \cdot \mathbf{y} + 1)|^d$ and c in the RBF kernel $exp(-|\mathbf{x} - \mathbf{y}|^2/c)$. The best accuracy among these methods is illustrated in bold-face. ****, ***, *** and * in the tables mean 99.99%, 99%, 95%, and 90% confidence interval for estimating the difference between accuracies of the ADAG and other methods, using a one-tailed paired t-test. ++++, +++, +++, and + mean 99.99%, 99%, 95%, and 90% confidence interval for estimating the difference between accuracies of the RADAG and other methods using a one-tailed paired t-test.

To estimate the difference between accuracies, we added up the training set and test set into one set. Then we use a k-fold cross-validation method in which the set is partitioned into k disjoint, equal-sized subsets. In this k-fold cross-validation approach, each example from the set is used exactly once in a test set, and k-1 times in a training set [19]. In our experiment, we use 5-fold crsss-validation for the glass dataset and 10-fold crsss-validation for all others.

For estimating the difference between errors of two learning methods, the mean difference \bar{Y} in errors from all disjoint subsets is returned as an estimate of the difference between the two learning algorithms [19]. The approximate N% confidence interval for estimating the difference using \bar{Y} is given by

$$(\bar{Y} - t_{N,k-1}S_{\bar{Y}}, \bar{Y} + t_{N,k-1}S_{\bar{Y}})$$
 (5)

where \bar{Y} is the sample mean defined as

$$\ddot{Y} = \frac{1}{k} \sum_{i=1}^{k} Y_i$$

 Y_i is the difference in error between two learning methods from the i^{th} subset, and $S_{\bar{Y}}$ is the estimated standard deviation of the sample mean defined as

$$S_{\bar{Y}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (Y_i - \bar{Y})^2}.$$

As shown in the tables, our methods yield higher accuracy than the Max Wins and the DDAG in almost all of datasets. The results show that the ADAG performs statistically significantly better than the DDAG in satimage, shuttle, vowel, soybean and letter problems. In case of the RBF kernel, the ADAG performs statistically significantly better than the DDAG in shuttle, soybean, letter and isolet problems. The results also show that the RADAG performs statistically significantly better than the other methods in the segment, shuttle, vowel and letter problems in case of the Polynomial kernel. In case of the RBF kernel, the RADAG performs statistically significantly better than the other methods in the glass, shuttle, vowel, soybean and letter problems. These show the effectiveness of the ADAG and the RADAG.

6.3 Computational Time

Table 4 and Table 5 present the comparison of the running time for classifying test data between the ADAG, the RADAG and the Max Wins for Polynomial

Table 2. A comparison of the accuracy of classification using the Polynomial kernel.

Dataset	d	Max Wins	d	DDAG	d	ADAG	d	RADAG
Glass	2	71.078	2	71.069	2	71.135	2	71.063
Satimage	6	89.615	6	89.599***	6	89.622	6	89.681
Segment	8	97.351_{++}	8	97.360_{++}	8	97.383_{\pm}	8	97.533
Shuttle	8	99.923_{+}	8	99.919**	8	99.922_{++}	8	99.930
Vowel	3	98.901_{+}	3	98.872	3	98.894+	2	98.990
Soybean	3	92.470	5	92.202*	5	92.281	3	92.698
Letter	3	96.512_{+}	3	95.994****	3	96.379_{+++}	4	96.674
Isolet	3	97.488	3	97.484	3	97.485	3	97.499
ThaiPrintedCharacter1	2	99.246	2	99.239	2	99.242	2	99.234
ThaiPrintedCharacter2	2	99.677	2	99.657	2	99.670	2	99.617

Table 3. A comparison of the accuracy of classification using the RBF kernel.

Dataset	c	Max Wins	С	DDAG	c	ADAG	С	RADAG
Glass	0.09	73.238_{+}	0.08	72.850+	0.08	72.759+	0.09	74.319
Satimage	3.0	92.148	3.0	92.129	3.0	92.141	3.0	92.152
Segment	0.7	97.656	0.7	97.652	0.7	97.650	0.7	97.576
Shuttle	3.0	99.928	3.0	99.926***	3.0	99.927_{+}	3.0	99.931
Vowel	0.2	98.980_{\pm}	0.2	98.965+	0.2	$98.975 \pm$	0.2	99.091
Soybean	0.08	92.533_{\pm}	0.07	91.739 **	0.08	92.570+	0.07	93.016
Letter	3.0	96.512_{\pm}	3.0	95.994	3.0	96.379_{++++}	3.0	96.634
Isolet	0.01	97.527	0.01	97.517*	0.01	97.523	0.003	97.589
ThaiPrintedCharacter1	0.003	99.387	0.003	99.387	0.003	99.387	0.003	99.387
ThaiPrintedCharacter2	0.004	99.663	0.004	99.663	0.004	99.663	0.004	99.663

and RBF kernels by using a 400 MHz Pentium II processor. There is no running time of the glass dataset because it has too few test examples to measure the time. For the segment problem, there is no provided test data so we use 5-fold crsss-validation. The results show that both the ADAG and the RADAG require low running time in all data sets, especially when the number of classes and/or the number of dimensions are relatively large. For an N-class problem, the Max Wins requires N(N-1)/2 classifiers for the classification whereas the ADAG and the RADAG require only N-1 classifiers. Hence the larger the number of classes the more running time the Max Wins requires than the ADAG and the RADAG. Moreover, the number of dimensions affects the running time of each classifier. As the result, the larger the number of dimensions the more running time the Max Wins requires than the ADAG and the RADAG. For the RADAG, the number of classes affects the running time for reordering. However, it takes a little time even when there are many classes.

The Max Wins needs $O(N^2)$ number of comparisons for the problem with N classes. The DDAG reduces the number of comparisons down to O(N). By reducing the depth of the path, the ADAG requires O(N) comparisons of binary classifiers with accuracy higher than that of the DDAG. The RADAG needs a little time more than the ADAG for reordering the order of classes. Note that, currently, the minimum-weight perfect matching algorithm, which is used in the reordering algorithm, runs in time bounded by O(N(M+NlogN)) [6], where N is the number of nodes (classes) in the graph and M=N(N-1)/2 is the number of edges (binary classifiers). The RADAG will reorder the order of classes in every level, except for the last level. The order of classes in the top level is

Table 4. A comparison of the computational time using the Polynomial kernel.

						RADAG		
Dataset	Test data	Class	Dimension	đ	ADAG	Reordering	Total	Max Wins
					(seconds)	(seconds)	(seconds)	(seconds)
Satimage	2,000	6	36	6	1.90	0.50	2.40	9.47
Segment	462	7	18	8	0.11	0.08	0.19	0.41
Shuttle	14,500	7	9	8	1.75	3.38	5.13	5.15
Vowel	462	11	10	2	0.12	0.25	0.37	0.61
Soybean	340	15	35	3	0.30	0.25	0.55	1.86
Letter	4,037	26	16	4	8.48	4.20	12.68	125.58
Isolet	1,559	26	617	3	116.02	1.48	117.50	1,671.98
ThaiPrintedCharacter1	3,264	68	128	3	94.63	13.83	108.46	2,996.64
ThaiPrintedCharacter2	3,264	68	128	3	96.41	13.19	109.60	3,042.98

Table 5. A comparison of the computational time using the RBF kernel.

						RADAG		
Dataset	Test data	Class	Dimension	c	ADAG	Reordering	Total	Max Wins
					(seconds)	(seconds)	(seconds)	(seconds)
Satimage	2,000	6	36	3.0	11.75	0.51	12.26	37.13
Segment	462	7	18	0.7	0.24	0.10	0.34	0.82
Shuttle	14,500		9	3.0	3.36	0.63	3.99	9.27
Vowel	462	11	10	0.2	0.10	0.27	0.37	0.61
Soybean	340	15	35	0.07	0.32	0.45	0.77	2.20
Letter	4,037	26	16	3.0	62.27	3.69	65.96	802.85
Isolet	1,559	26	617	0.01	100.42	1.60	102.02	1,369.11
ThaiPrintedCharacter1	3,264	68	128	0.002	86.25	16.46	102.71	2,772.18
ThaiPrintedCharacter2	3,264	68	128	0.001	55.75	14.37	70.12	1,877.77

reordered only one time and we use the order to evaluate every test example. Hence for classifying each test data, we need log_2N-2 times of reordering, where each time the number of classes is reduced by half. Therefore, the running time of the RADAG is bounded by $O(c_1N) + O(c_2N^3log_2N)$, where c_1 is much larger than c_2 .

7 Conclusion

We have proposed a new approach, Adaptive Directed Acyclic Graph (ADAG), that alleviates the problem of the DDAG caused by its structure which needs an unnecessarily high number of evaluations for the correct class. Using the reversed triangular structure, the ADAG reduces the number of times the correct class is tested against other classes, and thus reduces the cumulative errors. We proved that the expected accuracy of the ADAG is higher than that of the DDAG.

We also proposed an enhancement version of the ADAG, Reordering Adaptive Directed Acyclic Graph (RADAG), to choose an optimal order of classes in the list in the ADAG method. By the use of minimum-weight perfect matching, the RADAG can reorder the order of classes in polynomial time and only binary classifiers which have small generalization errors will be considered to be used in decision nodes.

Our experimental results are also evidence that the ADAG and the RADAG yield higher accuracy of classification than the Max Wins and the DDAG, especially in such a case that the number of classes is relatively large. Moreover, the

running time used by the ADAG and the RADAG is much less than that used by the Max Wins, especially when the number of classes and/or the number of dimensions are relatively large.

Since the DDAG reduces evaluation time while maintaining accuracy compared to the Max Wins, which is one of the SVMs' fastest methods in multiclass classification, this modification of the DDAG will help improve accuracy even further. In our ongoing work, we are studying how to reduce the number of evaluations and how to enhance the performance in terms of both accuracy and running time.

Appendix

In the following analyses of the DDAG and ADAG, we assume that the probability of the correct class being in any position in the list is a uniform distribution. We also assume that the probability of the correct class being eliminated from the list is p, when it is tested against another class, and that the probability of one of any two classes, except for the correct class, being eliminated from the list is 0.5 when they are tested against each other.

We first illustrate the expected accuracy of the DDAG by the following example.

Example: (Expected accuracy of the DDAG for a 4-class problem). Consider a four-class problem. Figure 7 shows all probability calculation paths where the correct class will be correctly classified by the DDAG. There are 8 calculation paths for this problem. The correct class will be correctly classified if it is not eliminated from the list. This means that when it is at the edge (the first or the last element) of the list in each calculation path, all other classes have to be excluded from the list.

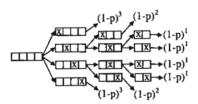


Fig. 7. An example of a four-class problem.

Under a uniform distribution, the probability is 1/4 that the correct class will be at any position of the *initial* list. In the case that the correct class (indicated by 'X' in the figure) is at the edge of the current list, it will be correctly classified if all other classes are eliminated from the list. The probability of this is $(1-p)^{N-1}$, where N is the number of elements in the current list. In the case that the correct class is not at the edge, we have two possible choices, i.e. to remove the first element and to remove the last element from the list. This reduces the number of elements one by one. From the above example, the probability that the correct class is correctly classified is:

$$\begin{array}{l} (1/4)(1-p)^3 + (1/4)(1/2)^1(1-p)^2 + (1/4)(1/2)^2(1-p)^1 + (1/4)(1/2)^2(1-p)^1 + \\ (1/4)(1/2)^2(1-p)^1 + (1/4)(1/2)^2(1-p)^1 + (1/4)(1/2)^1(1-p)^2 + (1/4)(1-p)^3 \\ = (1/4)[(1-p)/p + (1-p)^3 - (1-p)^4/p] \end{array} \quad \Box$$

We now give the theorem for expected accuracy of the DDAG as follows.

Proof of Theorem 1 (Expected accuracy of the DDAG). As shown in the above example, the correct class will be correctly classified if when it is at the edge of the list, all other classes have to be excluded from the list. Consider the cases when we first obtain a list with i elements where the correct class is at the left-most position, where $2 \le i \le N-1$. The list can be written as XO...O, where X and O represent the correct class and a wrong class, respectively. This list is obtained from a list containing i+1 elements with one wrong class preceding the correct class as shown by OXO...O.Before the list OXO...O is obtained, N-i-1 wrong classes must be excluded from an initial list. Thus beginning from all possible different initial lists, the number of possible calculation paths ending with a list of i elements where the correct class is at the left-most position is 2^{N-i-1} (as there are two possible choices for one wrong class; to remove the first element or to remove the last element of the list). Therefore the number of possible calculation paths ending with a list of i elements where the correct class is at the edge (the left-most and right-most positions) is 2^{N-1} . The probability of obtaining the list of i elements where the correct class is at the edge is equal to $(1/N)(0.5)^{N-i}(1-p)^{i-1}$, as N-i wrong classes must be eliminated from the list and after that the correct class is at the edge and i-1 wrong classes must be excluded. The total probability that the correct class of this pattern will be correctly classified is thus $2^{(N-i)}(1/N)(0.5)^{N-i}(1-p)^{i-1} = (1/N)(1-p)^{i-1}$.

Next consider the cases when the correct class is at the edge of a list with N elements. For these cases, the total probability that the correct class will be correctly classified is obviously $2(1/N)(1-p)^{N-1}$.

Finally we sum up all above probabilities and we have the expected accuracy as: $(\sum_{i=2}^{N-1} (1/N)(1-p)^{i-1}) + 2(1/N)(1-p)^{N-1} = (\sum_{j=1}^{N-1} (1/N)(1-p)^{j}) + (1/N)(1-p)^{N-1} = (1/N)[(1-p)(1-(1-p)^{N-1})/p + (1-p)^{N-1}] = (1/N)[(1-p)/p + (1-p)^{N-1} - (1-p)^{N}/p]$

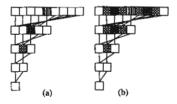


Fig. 8. The positions of classes that can be bye-getting elements.

Proof of Theorem 2 (Expected accuracy of the ADAG). Given N classes of examples, the height (the number of adaptive layers and the output layer) of the ADAG is obviously $\lceil log_2 N \rceil$. To be selected as the winner (as the output of the ADAG), some elements have to be compared with others for $\lceil log_2 N \rceil$ times, and there are some elements, called bye-getting elements that are compared with others for less than $\lceil log_2 N \rceil$ times. As the architecture of the ADAG always puts a bye-getting element (the

middle element) of the current list at the edge of the list of the next layer, any element can get at most one bye. Therefore, a bye-getting element will be compared with others for $\lceil log_2 N \rceil - 1$ times. There will be bye-getting elements only when the number of classes cannot be represented by 2X, where X is a positive integer. These bye-getting elements will be at the middle of the initial list and of the current list representing each adaptive layer; e.g. the 5th, 3rd and 2nd elements in the initial list, the list of the first adaptive layer, and the list of the second adaptive layer in Figure 8(a), respectively. A bye-getting element at the ith adaptive layer can come from two elements in the $(i-1)^{st}$ layer, as shown in Figure 8(b). Therefore, 7 elements of the initial list in the figure can possibly be bye-getting ones. Let F(N) be the number of all possible by e-getting elements of the list with N elements. It is obvious that with F(2) = 0, and

$$F(N) = (N \mod 2) + 2 \cdot F(\lceil N/2 \rceil). \tag{6}$$

Next we will prove by induction on X that $F(N) = 2^{\lceil \log_2(N) \rceil} - N$, when N is an integer between $2^X + 1$ and 2^{X+1} , and X is a positive integer greater than or equal to 1.

First consider the base case of X = 1. In this case, N is equal to 3 or 4. It is obvious that F(3) = 1 which satisfies $F(3) = 2^{\lceil \log_2(3) \rceil} - 3$, and F(4) = 0 satisfying $F(4) = 2^{\lceil \log_2(4) \rceil} - 4.$

Next we prove general cases of $X \geq 2$ by induction: suppose F(N) is equal to $2^{\lceil \log_2(N) \rceil} - N$ when N is an integer between $2^{X-1} + 1$ and 2^X , and we will show that F(M) is also equal to $2^{\lceil \log_2(M) \rceil} - M$ when M is an integer between $2^X + 1$ and 2^{X+1} . In case of M = 2N (an even number) and $2^X + 2 \leq M \leq 2^{X+1}$, it is clear that

F(M) = 2F(N) according to Equation 6 (in case that M is an even number, a byegetting elements of F(N) can possibly come from two bye-getting elements of F(M)). Therefore, we will have the following.

$$F(M) = 2F(N) = 2(2^{\lceil \log_2 N \rceil} - N) = 2^{\lceil \log_2 N \rceil + 1} - 2N = 2^{\lceil \log_2 2N \rceil} - 2N$$
$$= 2^{\lceil \log_2 M \rceil} - M$$

This proves the case of M is an even number.

Next in case of M = 2N - 1 (an odd number) and $2^{X} + 1 \le M \le 2^{X+1} - 1$, it is also clear that F(M) = 2F(N) + 1 according to Equation 1 (in case that M is an odd number, a bye-getting elements of F(N) can possibly come from two bye-getting elements of F(M), and there is one more by e-getting (the middle) elements of F(M)that gets a bye of this round). Therefore, we will have the following. $F(M)=2F(N)+1=2(2^{\lceil log_2N\rceil}-N)+1=2^{\lceil log_2N\rceil+1}-2N+1$

$$F(M) = 2F(N) + 1 = 2(2^{\lceil \log_2 N \rceil} - N) + 1 = 2^{\lceil \log_2 N \rceil + 1} - 2N + 1$$
$$= 2^{\lceil \log_2 2N \rceil} - (2N - 1)$$

As $2^X + 1 \le 2N - 1 < 2N \le 2^{X+1}$, we have $log_2(2^X + 1) \le log_2(2N - 1) < log_2(2N) \le log_2(2^{X+1})$, which means $\lceil log_2(2N - 1) \rceil = \lceil log_2(2N) \rceil = X + 1$. The above formula then becomes as follows.

$$F(M) = 2^{\lceil \log_2(2N-1) \rceil} - (2N-1) = 2^{\lceil \log_2 M \rceil} - M$$

This proves the case of M is an odd number. The above then proves that F(N) is equal to $2^{\lceil log_2(N) \rceil} - N$ when N is an integer between $2^X + 1$ and 2^{X+1} , where $X \ge 1$.

Having the value of F(N) as above, we then can calculate the expected accuracy of the ADAG. As under a uniform distribution, the probability that the correct class is at any position of the initial list is 1/N. Therefore, the expected accuracy is calculated by weighting the bye-getting correct elements with F(N)/N, and the non-bye-getting correct elements with (N - F(N))/N. Finally, we have the expected accuracy of the

$$\frac{(N - F(N))/N \cdot (1 - p)^{\lceil \log_2 N \rceil} + F(N)/N \cdot (1 - p)^{\lceil \log_2 N \rceil - 1}}{= ((2N - 2^{\lceil \log_2 N \rceil})/N) \cdot (1 - p)^{\lceil \log_2 N \rceil} + ((2^{\lceil \log_2 N \rceil} - N)/N) \cdot (1 - p)^{\lceil \log_2 N \rceil - 1}}.$$

This proves the theorem.

References

- Abe, S., and Inoue, T. (2002) Fuzzy support vector machines for multiclass problems, The European Symposium on Artificial Neural Networks, 113-118.
- 2. Allwein, E., Schapire, R., and Singer, Y. (2000) Reducing multiclass to binary: A unifying approach for margin classifiers, International Conference on Machine Learning.
- Bartlett, P. L., and Shawe-Taylor, J. (1999) Generalization performance of support vector machines and other pattern classifiers, Advances in Kernel Methods -Support Vector Learning, MIT Press, Cambridge, USA, 43-54.
- Blake, C., Keogh, E., and Merz, C. (1998) UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine.
- Burges, C. (1998) A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2(2):121-167.
- Cook, W., and Rohe, A. (1997) Computing minimum-weight perfect matchings, Technical Report 97863, Forschungsinstitut für Diskrete Mathematik, Universität Bonn.
- Crammer, K., and Singer, Y. (2001) On the algorithmic implementation of multiclass kernel-based vector machines, Journal of Machine Learning Research, 2:265-292.
- Cristianini N., and Shawe-Taylor, J. (2000) An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press.
- 9. Dietterich, T. G., and Bakiri, G. (1995) Solving multiclass learning problems via error-correcting output codes, Journal of Artificial Intelligence Research, 2:263-286.
- Dong, X., Zhaohui, W., and Yunhe, P. (2001) A new multi-class support vector machines, IEEE International Conference on System, Man, and Cybernatics, 3:1673-1676.
- Friedman, J. H. (1996) Another approach to polychotomous classification, Technical report, Stanford University, Department of Statistics.
- Hsu, C., and Lin, C. (2002) A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks, 13:415-425.
- Joachims. T. (1998) Making large-scale SVM learning practical, Advances in Kernel Methods - Support Vector Learning, MIT Press.
- 14. Joachims, T. (1999) SVM^{light}, http://ais.gmd.de/~thorsten/svm_light.
- Kindermann, J., Leopold, E., and Paass, G. (2000) Multi-class classification with error correcting codes, Treffen der GI-Fachgruppe 1.1.3, Maschinelles Lernen, GMD Re. 114.
- Knerr, S., Personnaz, L., and Dreyfus, G. (1990) Single-layer learning revisited: A stepwise procedure for building and training a neural network, In Fogelman-Soulie and Herault, editors, Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series. Springer.
- Li, K., Huang, H., and Tian, S. (2002) A novel multi-class SVM classifier based on DDAG, The 1st International Conference on Machine Learning and Cybernatics, 1203-1207.
- Mayoraz, E., and Alpaydm, E. (1998) Support vector machines for multi-class classification, IDIAP-RR 6, IDIAP.
- 19. Mitchell, T. (1997) Machine Learning, McGraw Hill.
- Pichitdej, S. (2001) Thai Printed Character Recognition Using a Neural Network Ensemble, Degree of Master Computer Engineering in Department of Computer Engineering Faculty of Engineering Chulalongkorn University.

- Platt, J., Cristianini, N., and Shawe-Taylor, J. (2000) Large margin DAGs for multiclass classification, Advance in Neural Information Processing System, 12, MIT Press.
- Roth, V., and Tsuda, K. (2001) Pairwise coupling for machine recognition of handprinted japanese characters, IEEE International Conference on Computer Society, 1:1120-1125.
- Schölkopf, B. (1997) Support vector learning, Ph.D. Thesis, R.Oldenbourg Verlag Publications, Munich, Germany.
- Schwenker, F. (2000) Hierarchical support vector machines for multi-class pattern recognition, The 4th International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 561-565.
- Sekhar, C., Takeda, K., and Itakura, F. (2002) Close-class-set discrimination method for large-class-set pattern recognition using support vector machines, IEEE International Joint Conference on Neural Networks, 577-582.
- Takahashi, F., and Abe, S. (2002) Decision-tree-based multiclass support vector machines, The 9th International Conference on Neural Information Processing, 3:1418-1422.
- Thubthong, N. and Kijsirikul, B. (2001) Support vector machines for Thai phoneme recognition, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(6):803-813.
- 28. Vapnik, V. (1998) Statistical Learning Theory, New York, Wiley.
- Vapnik, V. (1999) An overview of statistical learning theory, IEEE Transactions on Neural Networks, 10:988-999.
- Weston, J., and Watkins, C. (1998) Multi-class support vector machines, Technical Report CSD-TR-98-04, Department of Computer science, Royal Holloway, University of London.

Multiclass Classification of Support Vector Machines by Reordering Adaptive Directed Acyclic Graph*

Thimaporn Phetkaew¹, Boonserm Kijsirikul² and Wanchai Rivepiboon³

Department of Computer Engineering, Chulalongkorn University, Phayathai, Patumwan, Bangkok, 10330, Thailand

Thimaporn.P@student.chula.ac.th1 and Boonserm.K2, Wanchai.R3@chula.ac.th

Received 24 November 2003

Abstract The problem of extending binary support vector machines (SVMs) for multiclass classification is still an ongoing research issue. Ussivakul and Kijsirikul proposed the Adaptive Directed Acyclic Graph (ADAG) approach that provides accuracy comparable to that of Max Wins, which is probably the currently most accurate method for multiclass SVMs, and requires low computation. However, different sequences of binary classifiers in nodes in the ADAG may provide different accuracy. In this paper we present a new method for multiclass classification, Reordering Adaptive Directed Acyclic Graph (RADAG), which is the modification of the original ADAG method. We propose an algorithm to choose an optimal sequence of binary classifiers in nodes in the ADAG by considering the generalization error bounds of all classifiers. We apply minimum-weight perfect matching with the reordering algorithm in order to select binary classifiers which have small generalization errors to be used in data classification and in order to find the best sequence of binary classifiers in nodes in polynomial time. We then compare the performance of our method with previous methods including the ADAG and the Max Wins algorithm. Experiments denote that our method gives higher accuracy. Moreover it runs faster than Max Wins, especially when the number of classes and/or the number of dimensions are relatively large.

Keywords Support Vector Machines, Multiclass Classification, ADAG, RADAG

This work was supported by The Thailand Research Fund.

1 Introduction

Support vector machines (SVMs) [8] were primarily designed for two-class classification problems with their outstanding performance in real world applications. However, extending SVMs for multiclass classification is still an ongoing research issue. Previous methods for solving the multiclass problem of SVMs are typically to consider the problem as the combination of two-class decision functions, e.g. one-against-one and one-against-the-rest [5]. The one-against-the-rest approach works constructing a set of k binary classifiers for a k-class problem. The ith classifier is trained with all of the examples in the i^{th} class with positive labels, and all other examples with negative labels. The final output is the class that corresponds to the classifier with the highest output value. Friedman [5] suggested the Max Wins algorithm in which each one-against-one classifier casts one vote for its preferred class, and the final result is the class with the most votes. The Max Wins algorithm offers faster training time compared one-against-the-rest method. The Decision Directed Acyclic Graph (DDAG) method proposed by Platt et al. reduces training and evaluation time, while maintaining accuracy compared to the Max Wins [6]. The comparison experiments by several methods on large problems in [5] show that the Max Wins algorithm and the DDAG may be more suitable for practical use. Ussivakul and Kijsirikul [7] proposed the Adaptive Directed Acyclic Graph (ADAG) method which is the modification of the DDAG. This method reduces the dependency of the sequence of binary classifiers in nodes in the structure as well as lowers the number of tests required to evaluate for the correct class. Their approach yields higher accuracy and reliability of classification, especially in such a case that the number of classes is relatively large.

In this paper we reveal that the ADAG still is dependent on the sequence of its nodes, although it is less dependent on the order of binary classes in the sequence than the DDAG;

there are still differences in accuracy between different sequences. This led to the reliability of the algorithm. Here we propose a novel method that improves reliability by choosing an optimal sequence, which has less chance to predict the wrong class, and dynamically reordering the sequence during classification process according to each test data. We also reveal that the problem of selecting the appropriate sequence can be solved by minimum-weight perfect matching.

This paper is organized as follows. In the next section, we review SVMs and the formulation to solve multiclass problems, i.e., the DDAG and the ADAG. In Section 3, we introduce the modification of the ADAG to improve the performance by using the reordering algorithm with minimum-weigh perfect matching. The numerical experiments are illustrated in Section 4. Finally, the conclusions are given in Section 5.

2 SVM classification

This section describes the basic idea of SVMs [7] and two previous works on multiclass SVMs which are related to our proposed method, i.e., the DDAG [5,6] and the ADAG [7].

2.1 Support vector machines

The main idea of support vector machine classification is to construct a hyperplane to separate the two classes.

2.1.1 Linear support vector machines

Suppose we have a data set D of l samples in an n-dimensional space belonging to two different classes (+1 and -1):

$$D = \{(\mathbf{x}_k, y_k) | k \in \{1, ..., l\}, \mathbf{x}_k \in \Re^n, y_k \in \{+1, -1\}\}$$
.....(1)

The hyperplane in the n dimensional space is determined by the pair (\mathbf{w},b) where \mathbf{w} is an n-dimensional vector orthogonal to the hyperplane and b is the offset constant. The hyperplane $(\mathbf{w} \cdot \mathbf{x}) + b$ separates the data if and only if

$$(\mathbf{w} \cdot \mathbf{x}_i) + b > 0$$
 if $y_i = +1$
 $(\mathbf{w} \cdot \mathbf{x}_i) + b < 0$ if $y_i = -1$(2)

If we additionally require that w and b be such that the point closest to the hyperplane has a distance of $1/|\mathbf{w}|$, then we have

$$(\mathbf{w} \cdot \mathbf{x}_i) + b \ge 1$$
 if $y_i = +1$
 $(\mathbf{w} \cdot \mathbf{x}_i) + b \le -1$ if $y_i = -1$ (3)

which is equivalent to

$$y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \quad \forall i. \dots (4)$$

To find the optimal separating hyperplane, we have to find the hyperplane that maximizes the minimum distance between the hyperplane and any sample of training data. The distance between two closest samples from different classes is

$$d(\mathbf{w}, b) = \min_{\{\mathbf{x}, b, v_i = 1\}} \frac{(\mathbf{w} \cdot \mathbf{x}_i) + b}{|\mathbf{w}|} - \max_{\{\mathbf{x}, b, v_i = -1\}} \frac{(\mathbf{w} \cdot \mathbf{x}_i) + b}{|\mathbf{w}|}.$$
(5)

From (3), we can see that the appropriate minimum and maximum values are ± 1 . Therefore, we need to maximize

$$d(\mathbf{w},b) = \frac{1}{|\mathbf{w}|} - \frac{-1}{|\mathbf{w}|} = \frac{2}{|\mathbf{w}|}. \quad \cdots (6)$$

Thus, the problem is equivalent to:

- minimize $|\mathbf{w}|^2/2$
- subject to the constraints

(1)
$$y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \quad \forall i.$$

For non-separable case, the training data cannot be separated by a hyperplane without error. The previous constraints then must be modified. A penalty term consisting of the sum of deviations ξ_i from the boundary is added to the minimization problem. Now, the problem is to

- subject to the constraints
 - (1) $y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \xi_i$
 - (2) $\xi_i \geq 0 \quad \forall i$.

The penalty term for misclassifying training samples is weighted by a constant C. Selecting a large value of C puts a high price on deviations and increases computation by effecting a more exhaustive search for ways to minimize the number of misclassified samples.

By forming the Lagrangian and solving the dual problem, this problem can be translated into:

minimize

$$L(\mathbf{w}, b, \alpha) = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{l} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

- subject to the constraints:
 - (1) $0 \le \alpha_i \le C$, $\forall i$

$$(2) \sum_{i=1}^{I} \alpha_i y_i = 0$$

where α_i are called Lagrange multipliers. There is one Lagrange multiplier for each training sample. In the solution, those samples for which $\alpha_i > 0$ are called *support vectors*, and are ones such that the equality in (4) holds. All other training samples having $\alpha_i = 0$ could be removed from the training set without affecting the final hyperplane.

Let α^0 , an *l*-dimensional vector denote the minimum of $L(\mathbf{w},b,\alpha)$. If $\alpha_i^0 > 0$ then \mathbf{x}_i is a support vector. The optimal separating hyperplane (\mathbf{w}^0, b^0) can be written in terms of α^0 and the training data, specifically in terms of the support vectors:

$$\mathbf{w}^{0} = \sum_{i=1}^{l} \alpha_{i}^{0} y_{i} \mathbf{x}_{i} = \sum_{\text{support vectors}} \alpha_{i}^{0} y_{i} \mathbf{x}_{i}, \dots (8)$$

$$b^{0} = 1 - \mathbf{w}^{0} \cdot \mathbf{x}_{i} \quad \text{for } \mathbf{x}_{i} \text{ with } y_{i} = 1 \text{ and } 0 < \alpha_{i} < C.$$

The optimal separating hyperplane classifies points according to the sign of f(x),

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{0} \cdot \mathbf{x} + b^{0})$$

$$= \operatorname{sign}\left(\sum_{\text{suport vectors}} \alpha_{i}^{0} y_{i}(\mathbf{x}_{i} \cdot \mathbf{x}) + b^{0}\right) \dots (10)$$

Support vector \mathbf{x}_i with $\alpha_i^0 = C$ may or may not be misclassified. All other \mathbf{x}_i 's are correctly classified.

2.1.2 Non-linear support vector machines

The above algorithm is limited to linear separating hyperplanes. SVMs get around this problem by mapping the sample points into a higher dimensional space using a non-linear mapping chosen in advance. This is, we choose a map $\Phi: \mathfrak{R}^n \mapsto H$ where the dimensionality of H is greater than n. We then seek a separating hyperplane in the higher dimensional space; this is equivalent to a non-linear separating surface in \mathfrak{R}^n .

The data only ever appears in our training problem (7) in the form of dot products, so in the higher dimensional space we are only dealing with the data in the form $\Phi(\mathbf{x}_i)\cdot\Phi(\mathbf{x}_j)$. If the dimensionality of H is very large, then this could be difficult, or very computationally expensive. However, if we have a kernel function such that $k(\mathbf{x}_i,\mathbf{x}_j) = \Phi(\mathbf{x}_i)\cdot\Phi(\mathbf{x}_j)$, then we can use this in place of $\mathbf{x}_i\cdot\mathbf{x}_j$ everywhere in the optimization problem, and never need to know explicitly what Φ is. Some widely used kernels are:

Polynomial degree
$$d: k(\mathbf{x}, \mathbf{y}) = \left| \mathbf{x} \cdot \mathbf{y} + \mathbf{1} \right|^d \dots (11)$$

Radial basis function: $k(\mathbf{x}, \mathbf{y}) = e^{-\left| \mathbf{x} - \mathbf{y} \right|^2 / c} \dots (12)$

2.2 DDAG

Platt et al. [6] presented a learning architecture, the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifier. For a k-class problem, its training phase is the

same as the one-against-one method by solving k(k-1)/2 binary SVMs, one for each pair of classes. However, in the testing phase, it uses a rooted binary directed acyclic graph which has k(k-1)/2 internal nodes and k leaves (see Figure 1). Each node is a binary SVM of the i^{th} and j^{th} classes. Given a test sample x, starting at the root node, the binary decision function is evaluated. Then it moves to either left or right depending on the output value. Therefore, we go through a path before reaching a leaf node which indicates the predicted class.

There are some issues on the DDAG as pointed out by [7]. First, it gives outputs whose probabilities are not uniformly distributed, and thus its output depends on the sequence of binary classifiers in nodes, affecting reliability of the algorithm. In addition, the correct class placed in a node near the root node is clearly at disadvantage by comparison with the correct class near leaf nodes since it is exposed to higher risk of being incorrectly rejected. Second, the number of node evaluations for the correct class is unnecessary high. This results in higher cumulative error and lower the accuracy. The depth of the DDAG is k-1 and this means that the number of times the correct class has to be tested against other classes, on average, scales linearly with k.

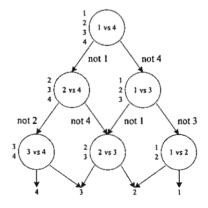


Figure 1: The DDAG finding the best class out of four classes

2.3 ADAG

Ussivakul and Kijsirikul [7] proposed an approach to alleviate the problem of the DDAG structure described above. An Adaptive DAG (ADAG) is a DAG with a reversed triangular structure. For a k-class problem, its training phase is the same as the DDAG method by solving k(k-1)/2 binary SVMs, one for each pair of classes. However, in the testing phase, the nodes are arranged in a reversed triangle with k/2nodes (rounded up) at the top, $k/2^2$ nodes in the second layer and so on until the lowest layer of a final node. It has k-1 internal nodes, each of which is labeled with an element of Boolean function (see Figure 2). Given a test example x, starting at the top level, the binary decision function is evaluated. The node is then exited via the outgoing edge with a message of the preferred class. In each round, the number of candidate classes is reduced by half. Based on the preferred classes from its parent nodes, the binary function of the next-level node is chosen. The reduction process continues until reaching the final node at the lowest level. The value of the decision function is the value associated with the message from the final leaf node. Like the DDAG, the ADAG requires only k-1 decision nodes to be evaluated in order to derive an answer. Note that the correct class is evaluated against other classes for log2k times or less, considerably lower than the number of evaluations required by the DDAG, which scales linearly with k.

Using the reversed triangular structure, the ADAG reduces the number of times the correct class is tested against other classes, and thus reduces the cumulative errors. However, there are still differences in accuracy between different sequences of nodes. Next we will describe our method that improves the ADAG by finding a best sequence of nodes.

3 The proposed method

In this section, we introduce the modification of the ADAG to improve the performance of the original ADAG. This

approach determines a best sequence of nodes in the ADAG by dynamically reordering the sequence during classification process according to each test data.

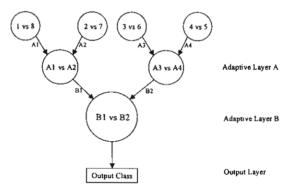


Figure 2: The structure of an Adaptive DAG for an 8-class problem

3.1 Generalization Performance of Support Vector Machines

The ability of a hypothesis to correctly classify data not in the training set is known as its generalization. Generalization analysis of pattern classifiers is concerned with determining the factors that affect the accuracy of a pattern classifier [1]. Generalization performance of Support Vector Machines can be approximated by bounding on the generalization error.

Define the class F of real-valued functions on the ball of radius R in \Re^n as $F = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} : \|\mathbf{w}\| \le 1, \|\mathbf{x}\| \le R\}$. There is a constant c such that, for all probability distributions, with probability at least $1 - \delta$ over m independently generated examples \mathbf{z} , if a classifier $h = \operatorname{sgn}(f) \in \operatorname{sgn}(F)$ has margin at least γ on all the examples in \mathbf{z} , then the error of h is no more than

$$\frac{c}{m} \left(\frac{R^2}{\gamma^2} \log^2 m + \log \left(\frac{1}{\delta} \right) \right). \quad \dots (13)$$

Furthermore, with probability at least 1- δ , every classifier $h \in \text{sgn}(F)$ has error no more than

$$\frac{k}{m} + \sqrt{\frac{c}{m} \left(\frac{R^2}{\gamma^2} \log^2 m + \log\left(\frac{1}{\delta}\right)\right)} \quad \dots \dots (14)$$

where k is the number of labeled examples in z with margin less than γ .

Below we show an example of the generalization error. The experiment is based on the English letter image recognition dataset from [2], which has 26 classes. Hence there are 325 classifiers. In this case, we construct classifiers by using the Polynomial kernel of degree 3. In Figure 3, the generalization errors of all classifiers expressed by Equation (14) are depicted. The generalization errors of all classifiers are varying.

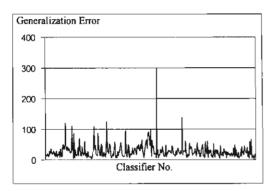


Figure 3: The generalization errors of 325 classifiers

3.2 Reordering ADAG

We propose a method, called Reordering Adaptive Directed Acyclic Graph (RADAG), to improve the accuracy of the original ADAG. For a k-class problem, the RADAG's training phase is the same as the ADAG method by solving k(k-1)/2 binary SVMs. However, the testing phase is organized as follows. The differences are the initialization of the binary classifiers in the top level and the order of sequence in each level (see Figure 4). In the first step, we use a reordering algorithm with minimum-weight perfect matching described in the next subsection to choose the optimal sequence to be the initial sequence. We use the sequence to evaluate every

test example. In the second step, as in the ADAG, test points of the RADAG are evaluated against the decision nodes. In the third step, unlike the ADAG, the RADAG will reorder the sequence before processing in the next level by using the reordering algorithm with minimum-weight perfect matching. This sequence differs for each test example, and it depends on the results of nodes from the previous level. The second and the third steps are repeated until there is only one class remains.

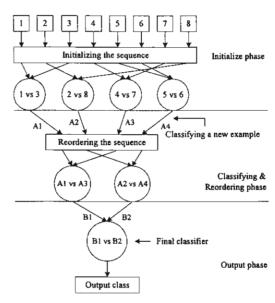


Figure 4: Classifying process of the RADAG

3.3 Reordering algorithm

For the reason described above, we consider the generalization errors in order to choose the optimal sequence from all possible $\frac{k!}{2^{\left\lfloor \frac{k}{2} \right\rfloor}}$

sequences with less chance to predict the wrong class. Among classifiers, k/2 classifiers which have small generalization errors will be considered to be used in data classification.

Let G = (V, E) be a graph with node set V and edge set E. Each node in G denotes one class and each edge denotes one binary classifier

which has a generalization error expressed by Equation (14) (see Figure 5(a)). The output of the reordering algorithm for graph G is a subset of edges with the minimum sum of generalization errors of all edges and each node in G is met by exactly one edge in the subset (see Figure 5(b)). Given a real weight c_e being generalization error for each edge e of G, the problem of reordering algorithm can be solved by the minimum weight perfect matching that finds a perfect matching M of minimum weight $\Sigma(c_e:e\in M)$.

For $U \subseteq V$, let $E(U) = \{(i,j): (i,j) \in E, i \in U, j \in U\}$. E(U) is the set of chosen classifiers. Let $\mathcal{S}(i)$ denote the set of edges incident to node i; the set of classifiers with one class being i. The perfect matchings on a graph G = (V, E) with |V| even is given by

(a)
$$x \in R_+^m$$

(b) $\sum_{e \in E(U)} x_e = 1$ for $v \in V$
(c) $\sum_{e \in E(U)} x_e \le \left\lfloor \frac{|U|}{2} \right\rfloor$ for all odd sets $U \subseteq V$ with $|U| \ge 3$
or by (a),(b) and
(d) $\sum_{e \in S(U)} x_e \ge 1$ for all odd sets $U \subseteq V$ with $|U| \ge 3$

where |E| = m, the number of classifiers, and $x_e = 1$ means that classifier e is chosen to be used in the sequence. Therefore, the reordering problem is to solve the following linear program:

$$\min \sum_{e \in E} c_e x_e \qquad \dots (16)$$

where x satisfies "(a),(b) and (c)" or "(a),(b) and (d)".

Currently, the minimum-weight perfect matching algorithm runs in time bounded by $O(n(m+n\log n))$ [3], where n is the number of nodes (classes) in the graph and m is the number of edges (binary classifiers). Hence the reordering algorithm can reorder the sequence in that polynomial time.

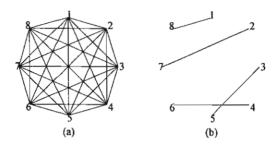


Figure 5: (a) A graph for an 8-class problem. (b) An example of the output of the reordering algorithm.

4 Numerical experiments

In this section, we present experimental results on several datasets from the UCI Repository of machine learning databases [2] including glass, satimage, segment, shuttle, vowel, soybean, letter and isolet (see Table 1). These datasets are different in the number of classes, the number of dimensions, and sizes. For the glass and segment problems, there is no provided test data so we used 5-fold cross validation. For the soybean problem, we discarded the last four classes because of missing values.

Table 1: Description of the datasets used in the experiments

Dataset	#training data	#test data	#class	#dimension
Glass	214	5-fold	6	9
Satimage	4,435	2,000	6	36
Segment	2,310	5-fold	7	18
Shuttle	43,500	14,500	7	9
Vowel	528	462	11	10
Soybean	290	340	15	35
Letter	15,963	4,037	26	16
Isolet	6,238	1,559	26	617

In these experiments we scaled both training data and test data to be in [-1,1] and employed Polynomial and RBF kernels. In the experiments, we compare three algorithms, i.e., the DDAG, the original ADAG, the RADAG, and the Max Wins algorithm. For the ADAG, we examined all

possible sequences for datasets having not more than 7 classes, whereas we randomly selected 50,000 sequences for datasets having more than 7 classes. Table 2 and 3 present the results of the comparison of these methods for Polynomial and RBF kernels, respectively. We present the optimal parameters (d and c in Equations (11) and (12)) of the kernels and the corresponding accuracies. The best accuracy among three methods is illustrated in bold-face. ***, ** and * in the tables means 99%, 95%, and 90% confidence interval for estimating the difference between accuracies of three algorithms and the RADAG using a one-tailed paired t-test.

The results show that our method yields highest accuracy in almost all of datasets. The results also show that our method performs statistically significantly better than the other methods in the glass problem in case of the RBF kernel and significantly better than the DDAG in the segment and letter problems in case of the Polynomial kernel. Another advantage of our method compared to the DDAG and the original ADAG is that our method always provides one best accuracy for each dataset using the reordering algorithm, whereas, depending on the sequence of classes, the DDAG and the original ADAG may give low accuracies. This shows the effectiveness of the RADAG.

Table 4 and 5 present the comparison of the computational time between the RADAG and the Max Wins for Polynomial and RBF kernels by using a 400 MHz Pentium II processor. There is no computational time of the glass dataset because it has too few test examples to measure the time. The results show that our method requires low computational time in all datasets,

especially when the number of classes and/or the number of dimensions are relatively large. For a k class problem, the Max Wins requires k(k-1)/2 classifiers for the classification whereas the RADAG requires only k-1 classifiers. Hence the larger the number of classes the more running time the Max Wins requires than the RADAG. Moreover, the number of dimensions affects the running time of each classifier. For the RADAG, the number of classes affects the running time for reordering. However, it takes little time even when there are many classes.

5 Conclusion

In this paper, we have presented a new approach for multiclass SVMs. Reordering Adaptive Directed Acyclic Graph (RADAG), which is the modification of the original ADAG. Our approach eliminates the dependency of the sequence of binary classifiers in nodes in the original ADAG by selecting an appropriate sequence from all possible sequences which consists of classifiers with small generalization error. By the use minimum-weight perfect matching, the RADAG can reorder the sequence in polynomial time. The experimental results show that our new approach yields higher accuracy than the original ADAG and even Max Wins which is probably the currently most accurate method for multiclass SVMs. Moreover the running time used by the RADAG is less than Max Wins, especially when the number of classes and/or the number of dimensions are relatively large. Our future work is to test the method on datasets with a very large number of classes and dimensions.

Table 2: A comparison of the accuracy	of classification using the Polynomial kernel
---------------------------------------	---

Dataset	d	DDAG	d	ADAĞ	d	Max Wins	d	RADAG
Glass	2	71.069	2	71.135	2	71.078	2	71.063
Satimage	6	88.408***	6	88.430	6	88.453	6	88.900
Segment	6	96.538	8	97.408	8	97.379	8	97.489
Shuttle	8	99.924	8	99,924	8	99.924	8	99.924
Vowel	3	64.237	3	64.293	3	64,329	2	64.502
Soybean	5	90.400	5	90.446	3	90.471	3	91.176
Letter	3	95.508*	3	95.984	3	96.125	4	96.111
Isolet	3	97.032	3	97.030	3	97.040	3	97.049

Table 3: A comparison of the accuracy of classification using the RBF kernel

Dataset	С	DDAG	С	ADAG	C	Max Wins	С	RADAG
Glass	0.08	72.850**	0.08	72.759**	0.09	73.238**	0.09	74.319
Satimage	3.0	91.971	3.0	91.968	3.0	91.984	3.0	91.950
Segment	0.7	97.276	0.7	97.282	0.7	97.298	0.7	97.273
Shuttle	3.0	99.897	3.0	99.897	3.0	99.897	3.0	99.897
Vowel	0.2	65.425	0.2	65.589	0.2	65.340	0.2	67.100
Soybean	0.07	90.353	0.08	90.412	0.08	90.468	0.07	90.882
Letter	3.0	97.901	3.0	97.909	3.0	97.918	3.0	97,969
Isolet	0.01	96.939	0.01	96.932	0.01	96.916	0.01	96.985

Table 4: A comparison of the computational time using the Polynomial kernel

	[Max Wins		
Dataset	d	Classifying (seconds)	Reordering (seconds)	Total (seconds)	Classifying (seconds)
Satimage	6	1.90	0.50	2.40	9.47
Segment	8	0.11	0.08	0.19	0.41
Shuttle	8	1.75	3.38	5.13	5.15
Vowel	2	0.12	0.25	0.37	0.61
Soybean	3	0.30	0.25	0.55	1.86
Letter	4	8.48	4.20	12.68	125.58
Isolet	3	116.02	1.48	117.50	1,671.98

Table 5: A comparison of the computational time using the RBF kernel

			RADAG		Max Wins
Dataset	C	Classifying	Reordering	Total	Classifying
		(seconds)	(seconds)	(seconds)	(seconds)
Satimage	3.0	11.75	0.51	12.26	37.13
Segment	0.7	0.24	0.10	0.34	0.82
Shuttle	3.0	3.36	0.63	3.99	9.27
Vowel	0.2	0.10	0.27	0.37	0.61
Soybean	0.07	0.32	0.45	0.77	2.20
Letter	3.0	62.27	3.69	65.96	802.85
Isolet	0.01	100.42	1.60	102.02	1,369.11

References

- [1] P. L. Bartlett, J. Shawe-Taylor, "Generalization performance of support vector machines and other pattern classifiers", in Advances in Kernel Methods - Support Vector Learning, B. Schoelkopf, C. J. C. Burges, A. J. Smola (eds), pp. 43-54, MIT Press, Cambridge, USA, 1999.
- [2] C. Blake, E. Keogh and C. Merz, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, 1998. http://www.ics.uci.edu/ ~mlearn/MLRepository.html
- [3] W. Cook, and A. Rohe, "Computing minimum-weight perfect matchings", Technical Report 97863, Forschungsinstitut für Diskrete Mathematik, Universität Bonn, 1997.
- [4] J. H. Friedman, "Another approach to Polychotomous classification", Technical report,

- Department of Statistics, Stanford University, 1996.
- [5] C.-W. Hsu, and C.-J. Lin, "A comparison of methods for multiclass Support Vector Machines", IEEE Trans.on Neural Networks, Vol. 13, pp. 415-425, March, 2002.
- [6] J. Platt, N. Cristianini, and J. Shawe-Taylor, "Large margin DAGs for multiclass classification", in Advances in Neural Information Processing Systems, MIT Press, Vol. 12, pp. 547-553, 2000.
- [7] N. Ussivakul, and B. Kijsirikul, "Multiclass support vector machines using adaptive directed acyclic graph," in IEEE/INNS' Int. Joint Conf. On Neural Networks (IJCNN-2002), 2002.
- [8] V. Vapnik, Statistical Learning Theory, New York, Wiley, 1998.

Learning Multiclass Support Vector Machines by Reordering Adaptive Directed Acyclic Graph

Thimaporn Phetkaew¹, Wanchai Rivepiboon² and Boonserm Kijsirikul³
Department of Computer Engineering
Chulalongkorn University
Phayathai, Patumwan, Bangkok, 10330, Thailand

E-mail: Thimaporn.P@student.chula.ac.th and Wanchai.R², Boonserm.K³@chula.ac.th

Abstract

The problem of extending binary support vector machines (SVMs) for multiclass classification is still an ongoing research issue. Ussivakul and Kijsirikul proposed the Adaptive Directed Acyclic Graph (ADAG) approach that provides accuracy comparable to that of the standard algorithm-Max Wins and requires low computation. Yowever, different sequences of nodes in the ADAG may provide different accuracy. In this paper we present a new nethod for multiclass classification, Reordering Adaptive Directed Acyclic Graph (RADAG), which is the nodification of the original ADAG method. We propose an algorithm to choose an optimal sequence of binary lassifiers in nodes in the ADAG by considering the eneralization error bounds of all classifiers. We apply unimum-weight perfect matching with the reordering lgorithm in order to select the best sequence of nodes in olynomial time. We then compare the performance of our tethod with previous methods including the ADAG and ie Max Wins algorithm. Experiments denote that our ethod gives higher accuracy. Moreover it runs faster ian Max Wins, especially when the number of classes nd/or the number of dimensions are relatively large.

ey words: Multiclass Support Vector Machines, ADAG

Introduction

Support vector machines (SVMs) were primarily signed for two-class classification problems with its itstanding performance in real world applications. owever, extending SVMs for multiclass classification is ll an ongoing research issue. Previous methods for lving the multiclass problem of SVMs are typically to nsider the problem as the combination of two-class cision functions, e.g. one-against-one and one-against-rest [5].

Friedman [4] suggested the Max Wins algorithm in itch each one-against-one classifier casts one vote for its ferred class, and the final result is the class with the ist votes. The Max Wins algorithm offers faster training the compared to the one-against-the-rest method. The cision Directed Acyclic Graph (DDAG) method

proposed by Platt et al. reduces training and evaluation time, while maintaining accuracy compared to the Max Wins [6]. The comparison experiments in several methods on large problems in [5] show that the Max Wins algorithm and the DDAG may be more suitable for practical use. Ussivakul and Kijsirikul [7] proposed the Adaptive Directed Acyclic Graph (ADAG) method which is the modification of the DDAG. This method reduces the dependency of the sequence of binary classifiers in nodes in the structure as well as lowers the number of tests required to evaluate for the correct class. Their approach yields higher accuracy and reliability of classification, especially in such a case that the number of classes is relatively large.

In this paper we reveal that the ADAG still has the dependency on the sequence of its nodes, although it is less dependent on the order of binary classes in the sequence than the DDAG; there are still differences in accuracy between different sequences. This led to the reliability of the algorithm. Here we propose a novel method that improves reliability by choosing an optimal sequence, which has less chance to predict the wrong class, and dynamically reordering the sequence during classification process according to each test data. We also reveal that the problem of selecting the appropriate sequence can be solved by minimum-weight perfect matching.

This paper is organized as follows. In the next section, we review SVMs and the formulation to solve multiclass problems, i.e., the DDAG and the ADAG. In Section 3, we introduce the modification of the ADAG to improve the performance by using the reordering algorithm with minimum-weigh perfect matching. The numerical experiments are illustrated in Section 4. Finally, the conclusions are given in Section 5.

2. SVM classification

This section describes the basic idea of SVMs [7] and the formulation to solve multiclass problems.

2.1. Support vector machines

The main idea of support vector machine classification is to construct a hyperplane to separate the two classes.

2.1.1. Linear support vector machines

Suppose we have a data set D of l samples in an n-dimensional space belonging to two different classes (+1 and -1):

$$D = \{(\mathbf{x}_{k}, y_{k}) | k \in \{1, ..., l\}, \mathbf{x}_{k} \in \Re^{n}, y_{k} \in \{+1, -1\}\} \}$$
(1)

The hyperplane in the n dimensional space is determined by the pair (\mathbf{w},b) where \mathbf{w} is an n-dimensional vector orthogonal to the hyperplane and b is the offset constant. The hyperplane $(\mathbf{w}\cdot\mathbf{x})+b$ separates the data if and only if

$$(\mathbf{w} \cdot \mathbf{x}_i) + b > 0$$
 if $y_i = +1$
 $(\mathbf{w} \cdot \mathbf{x}_i) + b < 0$ if $y_i = -1$. (2)

If we additionally require that \mathbf{w} and b be such that the point closest to the hyperplane has a distance of $1/|\mathbf{w}|$, then we have

$$(\mathbf{w} \cdot \mathbf{x}_i) + b \ge 1$$
 if $y_i = +1$
 $(\mathbf{w} \cdot \mathbf{x}_i) + b \le -1$ if $y_i = -1$ (3)

which is equivalent to

$$y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \quad \forall i. \tag{4}$$

To find the optimal separating hyperplane, we have to find the hyperplane that maximizes the minimum distance between the hyperplane and any sample of training data. The distance between two closest samples from different classes is

$$d(\mathbf{w}, b) = \min_{\{\mathbf{x}, |\mathbf{y}_i = 1\}} \frac{\left(\mathbf{w} \cdot \mathbf{x}_i\right) + b}{|\mathbf{w}|} - \max_{\{\mathbf{x}, |\mathbf{y}_i = 1\}} \frac{\left(\mathbf{w} \cdot \mathbf{x}_i\right) + b}{|\mathbf{w}|}. (5)$$

From (3), we can see that the appropriate minimum and maximum values are ± 1 . Therefore, we need to maximize

$$d(\mathbf{w}, b) = \frac{1}{|\mathbf{w}|} - \frac{1}{|\mathbf{w}|} = \frac{2}{|\mathbf{w}|}.$$
 (6)

Thus, the problem is equivalent to:

- = minimize $|\mathbf{w}|^2/2$
- subject to the constraints

(1)
$$y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \quad \forall i$$
.

For non-separable case, the training data cannot be separated by a hyperplane without error. The previous constraints then must be modified. A penalty term consisting of the sum of deviations ξ_i from the boundary is added to the minimization problem. Now, the problem is to

minimize
$$\frac{|\mathbf{w}|^2}{2} + C \sum_{i=1}^{l} \xi_i$$

- subject to the constraints
 - (1) $y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \xi_i$,
 - (2) $\xi_i \ge 0 \quad \forall i$.

The penalty term for misclassifying training samples is weighted by a constant C. Selecting a large value of C puts a high price on deviations and increases computation by effecting a more exhaustive search for ways to minimize the number of misclassified samples.

By forming the Lagrangian and solving the dual problem, this problem can be translated into:

minimize

$$L(\mathbf{w}, b, \alpha) = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{l, i=1}^{l} \alpha_i \alpha_j y_l y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$
 (7)

- subject to the constraints:
 - (1) $0 \le \alpha_i \le C$, $\forall i$

$$(2) \sum_{i=1}^{l} \alpha_i y_i = 0$$

where α_i are called Lagrange multipliers. There is one Lagrange multiplier for each training sample. In the solution, those samples for which $\alpha_i > 0$ are called *support* vectors, and are ones such that the equality in (4) holds. All other training samples having $\alpha_i = 0$ could be removed from the training set without affecting the final hyperplane.

Let α^0 , an *l*-dimensional vector denote the minimum of $L(\mathbf{w},b,\alpha)$. If $\alpha_i^0 > 0$ then \mathbf{x}_i is a *support vector*. The optimal separating hyperplane (\mathbf{w}^0, b^0) can be written in terms of α^0 and the training data, specifically in terms of the support vectors:

$$\mathbf{w}^0 = \sum_{i=1}^I \alpha_i^0 y_i \mathbf{x}_i = \sum_{\text{support vectors}} \alpha_i^0 y_i \mathbf{x}_i.$$
 (8)

$$b^0 = 1 - \mathbf{w}^0 \cdot \mathbf{x}_i$$
 for \mathbf{x}_i with $y_i = 1$ and $0 < \alpha_i < C$. (9)

The optimal separating hyperplane classifies points according to the sign of f(x),

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{0} \cdot \mathbf{x} + b^{0})$$

$$= \operatorname{sign}\left(\sum_{\text{suport vectors}} \alpha_{i}^{0} y_{i}(\mathbf{x}_{i} \cdot \mathbf{x}) + b^{0}\right). \tag{10}$$

Support vector \mathbf{x}_i with $\alpha_i^0 = C$ may or may not be misclassified. All other \mathbf{x}_i 's are correctly classified.

2.1.2. Non-linear support vector machines

The above algorithm is limited to linear separating hyperplanes. SVMs get around this problem by mapping the sample points into a higher dimensional space using a non-linear mapping chosen in advance. This is, we choose a map $\Phi: \Re^n \mapsto H$ where the dimensionality of H is greater than n. We then seek a separating hyperplane in the higher dimensional space; this is equivalent to a non-linear separating surface in \Re^n .

The data only ever appears in our training problem (7) in the form of dot products, so in the higher dimensional space we are only dealing with the data in the form $\Phi(\mathbf{x}_i)\cdot\Phi(\mathbf{x}_j)$. If the dimensionality of H is very large, then this could be difficult, or very computationally expensive. However, if we have a kernel function such that $k(\mathbf{x}_i,\mathbf{x}_j) = \Phi(\mathbf{x}_i)\cdot\Phi(\mathbf{x}_j)$, then we can use this in place of $\mathbf{x}_i\cdot\mathbf{x}_j$ everywhere in the optimization problem, and never need to know explicitly what Φ is. Some widely used kernels are:

Polynomial degree
$$d: k(\mathbf{x}, \mathbf{y}) = |_{\mathbf{x} \cdot \mathbf{y} + 1}|^d$$
 (11)

Radial basis function:
$$k(\mathbf{x}, \mathbf{y}) = e^{-|\mathbf{x} - \mathbf{y}|^2/c}$$
 (12)

2.2. **DDAG**

Platt et al. [6] presented a learning architecture, the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifier. For a k-class problem, its training phase is the same as the one-against-one method by solving k(k-1)/2 binary SVMs, one for each pair of classes. However, in the testing phase, it uses a rooted binary directed acyclic graph which has k(k-1)/2 internal nodes and k leaves (see Figure 1). Each node is a binary SVM of the i^{th} and j^{th} classes. Given a test sample x, starting at the root node, the binary decision function is evaluated. Then it moves to either left or right depending on the output value. Therefore, we go through a path before reaching a leaf node which indicates the predicted class.

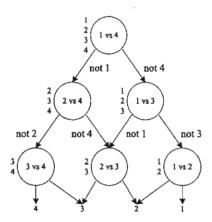


Figure 1. The DDAG finding the best class out of four classes

There are some issues on the DDAG as pointed out by [7]. First, it gives outputs whose probabilities are not uniformly distributed, and thus its output depends on the sequence of binary classifiers in nodes, affecting reliability of the algorithm. In addition, the correct class placed in a node near the root node is clearly at disadvantage by comparison with the correct class near leaf nodes since it is exposed to higher risk of being incorrectly rejected. Second, the number of node evaluations for the correct class is unnecessary high. This results in higher cumulative error and lower the accuracy. The depth of the DDAG is k-1 and this means that the number of times the correct class has to be tested against other classes, on average, scales linearly with k.

2.3. ADAG

Ussivakul and Kijsirikul [7] proposed an approach to alleviate the problem of the DDAG structure described above. An Adaptive DAG (ADAG) is a DAG with a reversed triangular structure. For a k-class problem, its training phase is the same as the DDAG method by solving k(k-1)/2 binary SVMs, one for each pair of classes. However, in the testing phase, the nodes are arranged in a reversed triangle with k/2 nodes (rounded up) at the top, $k/2^2$ nodes in the second layer and so on until the lowest layer of a final node. It has k-1 internal nodes, each of which is labeled with an element of Boolean function (see Figure 2). Given a test example x, starting at the top level, the binary decision function is evaluated. The node is then exited via the outgoing edge with a message of the preferred class. In each round, the number of candidate classes is reduced by half. Based on the preferred classes from its parent nodes, the binary function of the next-level node is chosen. The reduction process continues until reaching the final node at the lowest level. The value of the decision function is the value associated with the message from the final leaf node. Like the DDAG, the ADAG requires only k-1 decision nodes to be evaluated in order to derive an answer. Note that the correct class is evaluated against other classes for log2k times or less, considerably lower than the number of evaluations required by the DDAG, which scales linearly with k.

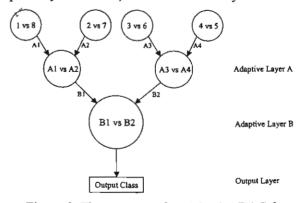


Figure 2. The structure of an Adaptive DAG for an 8-class problem

2.1.2. Non-linear support vector machines

The above algorithm is limited to linear separating hyperplanes. SVMs get around this problem by mapping the sample points into a higher dimensional space using a non-linear mapping chosen in advance. This is, we choose a map $\Phi: \Re^n \mapsto H$ where the dimensionality of H is greater than n. We then seek a separating hyperplane in the higher dimensional space; this is equivalent to a non-linear separating surface in \Re^n .

The data only ever appears in our training problem (7) in the form of dot products, so in the higher dimensional space we are only dealing with the data in the form $\Phi(\mathbf{x}_i)\cdot\Phi(\mathbf{x}_j)$. If the dimensionality of H is very large, then this could be difficult, or very computationally expensive. However, if we have a kernel function such that $k(\mathbf{x}_i,\mathbf{x}_j) = \Phi(\mathbf{x}_i)\cdot\Phi(\mathbf{x}_j)$, then we can use this in place of $\mathbf{x}_i\cdot\mathbf{x}_j$ everywhere in the optimization problem, and never need to know explicitly what Φ is. Some widely used kernels are:

Polynomial degree d:
$$k(\mathbf{x}, \mathbf{y}) = |\mathbf{x} \cdot \mathbf{y} + \mathbf{1}|^d$$
 (11)

Radial basis function:
$$k(\mathbf{x}, \mathbf{y}) = e^{-|\mathbf{x}-\mathbf{y}|^2/c}$$
 (12)

2.2. DDAG

Platt et al. [6] presented a learning architecture, the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifier. For a k-class problem, its training phase is the same as the one-against-one method by solving k(k-1)/2 binary SVMs, one for each pair of classes. However, in the testing phase, it uses a rooted binary directed acyclic graph which has k(k-1)/2 internal nodes and k leaves (see Figure 1). Each node is a binary SVM of the i^{th} and j^{th} classes. Given a test sample x, starting at the root node, the binary decision function is evaluated. Then it moves to either left or right depending on the output value. Therefore, we go through a path before reaching a leaf node which indicates the predicted class.

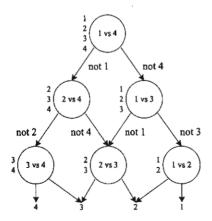


Figure 1. The DDAG finding the best class out of four classes

There are some issues on the DDAG as pointed out by [7]. First, it gives outputs whose probabilities are not uniformly distributed, and thus its output depends on the sequence of binary classifiers in nodes, affecting reliability of the algorithm. In addition, the correct class placed in a node near the root node is clearly at disadvantage by comparison with the correct class near leaf nodes since it is exposed to higher risk of being incorrectly rejected. Second, the number of node evaluations for the correct class is unnecessary high. This results in higher cumulative error and lower the accuracy. The depth of the DDAG is k-1 and this means that the number of times the correct class has to be tested against other classes, on average, scales linearly with k.

2.3. ADAG

Ussivakul and Kijsirikul [7] proposed an approach to alleviate the problem of the DDAG structure described above. An Adaptive DAG (ADAG) is a DAG with a reversed triangular structure. For a k-class problem, its training phase is the same as the DDAG method by solving k(k-1)/2 binary SVMs, one for each pair of classes. However, in the testing phase, the nodes are arranged in a reversed triangle with k/2 nodes (rounded up) at the top, $k/2^2$ nodes in the second layer and so on until the lowest layer of a final node. It has k-1 internal nodes, each of which is labeled with an element of Boolean function (see Figure 2). Given a test example x, starting at the top level, the binary decision function is evaluated. The node is then exited via the outgoing edge with a message of the preferred class. In each round, the number of candidate classes is reduced by half. Based on the preferred classes from its parent nodes, the binary function of the next-level node is chosen. The reduction process continues until reaching the final node at the lowest level. The value of the decision function is the value associated with the message from the final leaf node. Like the DDAG, the ADAG requires only k-1 decision nodes to be evaluated in order to derive an answer. Note that the correct class is evaluated against other classes for log₂k times or less, considerably lower than the number of evaluations required by the DDAG, which scales linearly with k.

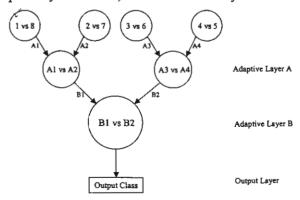


Figure 2. The structure of an Adaptive DAG for an 8-class problem

Using the reversed triangular structure, the ADAG reduces the number of times the correct class is tested against other classes, and thus reduces the cumulative errors. However, there are still differences in accuracy between different sequences of nodes. Next we will describe our method that improves the ADAG by finding a best sequence of nodes.

3. The proposed method

In this section, we introduce the modification of the ADAG to improve the performance of the original ADAG. This approach determines a best sequence of nodes in the ADAG by dynamically reordering the sequence during classification process according to each test data.

3.1. Generalization Performance of Support Vector Machines

Generalization analysis of pattern classifiers is concerned with determining the factors that affect the accuracy of a pattern classifier [1]. Generalization performance of Support Vector Machines can be approximated by bounding on the generalization error.

Define the class F of real-valued functions on the ball of radius R in \Re^n as $F = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} : \|\mathbf{w}\| \le 1, \|\mathbf{x}\| \le R\}$. There is a constant c such that, for all probability distributions, with probability at least $1-\delta$ over m independently generated examples \mathbf{z} , if a classifier $h = \operatorname{sgn}(f) \in \operatorname{sgn}(F)$ has margin at least γ on all the examples in \mathbf{z} , then the error of h is no more than

$$\frac{c}{m} \left(\frac{R^2}{\gamma^2} \log^2 m + \log \left(\frac{1}{\delta} \right) \right). \tag{13}$$

Furthermore, with probability at least $1-\delta$, every classifier $h \in \operatorname{sgn}(F)$ has error no more than

$$\frac{k}{m} + \sqrt{\frac{c}{m} \left(\frac{R^2}{\gamma^2} \log^2 m + \log \left(\frac{1}{\delta} \right) \right)}$$
 (14)

where k is the number of labeled examples in z with margin less than γ .

Below we show an example of the generalization error of classifier. The experiment is based on the English letter image recognition dataset from [2], which has 26 classes. Hence there are 325 classifiers. In this case, the dataset is trained by using the Polynomial kernel of degree 3. In Figure 3, the generalization errors of all classifiers expressed by Equation (14) are depicted. The generalization errors of all classifiers are varying.

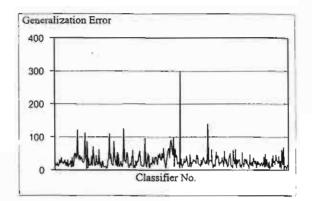


Figure 3. The generalization errors of 325 classifiers

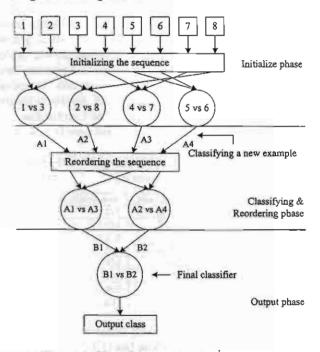


Figure 4. Classifying process of the RADAG

3.2. Reordering ADAG

We propose a method, called Reordering Adaptive Directed Acyclic Graph (RADAG), to improve the accuracy of the original ADAG. For a k-class problem, the RADAG's training phase is the same as the ADAG method by solving k(k-1)/2 binary SVMs. However, the testing phase is organized as follows. The differences are the initialization of the binary classifiers in the top level and the order of sequence in each level (see Figure 4). In the first step, we use a reordering algorithm with minimum-weight perfect matching described in the next subsection to choose the optimal sequence to be the initial sequence. We use the sequence to evaluate every test example. In the second step, as in the ADAG, test points of the RADAG are evaluated against the decision nodes. In the third step, unlike the ADAG, the RADAG will reorder the sequence before processing in the next level by using the reordering algorithm with minimum-weight perfect matching. This sequence differs for each test example, and it depends on the results of nodes from the previous level. The second and the third steps are repeated until there is only one class remains.

3.3. Reordering algorithm

For the reason described above, we consider the generalization errors in order to choose the optimal sequence from all possible sequences with less chance to predict the wrong class. Among classifiers, k/2 classifiers which have small generalization errors will be considered to be used in data classification.

Let G = (V, E) be a graph with node set V and edge set E. Each node in G denotes one class and each edge denotes one binary classifier which has a generalization error expressed by Equation (14) (see Figure 5(a)). The subput of the reordering algorithm for graph G is a subset of edges with the minimum sum of generalization errors of all edges and each node in G is met by exactly one edge in the subset (see Figure 5(b)). Given a real weight c_e being generalization error for each edge e of G, the problem of reordering algorithm can be solved by the minimum weight perfect matching that finds a perfect matching M of minimum weight $\Sigma(c_e : e \in M)$.

For $U \subseteq V$, let $E(U) = \{(i,j): (i,j) \in E, i \in U, j \in U\}$. E(U) is the set of chosen classifiers. Let $\delta(i)$ denote the set of edges incident to node i; the set of classifiers with one class being i. The perfect matchings on a graph G = (V, E) with |V| even is given by

(a)
$$x \in R_{\perp}^{m}$$

(b)
$$\sum_{e \in \delta(v)} x_e = 1$$
 for $v \in V$

(c)
$$\sum_{e \in E(U)} x_e \le \left\lfloor \frac{|U|}{2} \right\rfloor$$
 for all odd sets $U \subseteq V$ with $|U| \ge 3$

or by (a) (b) and

(d)
$$\sum_{e \in \delta(U)} x_e \ge 1$$
 for all odd sets $U \subseteq V$ with $|U| \ge 3$ (16)

where |E| = m, the number of classifiers, and $x_e = 1$ means that classifier e is chosen to be used in the sequence. Therefore, the reordering problem is to solve the following linear program:

$$\min \sum_{e \in F} c_e x_e \tag{17}$$

where x satisfies "(a),(b) and (c)" or "(a),(b) and (d)".

Currently, the minimum-weight perfect matching algorithm runs in time bounded by $O(n(m + n \log n))$ [3], where n is the number of nodes (classes) in the graph and m is the number of edges (binary classifiers). Hence the reordering algorithm can reorder the sequence in that polynomial time.

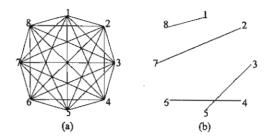


Figure 5. (a) A graph for an 8-class problem. (b) An example of the output of the reordering algorithm.

4. Numerical experiments

In this section, we present experimental results on several datasets from the UCI Repository of machine learning databases [2] including glass, satimage, segment, shuttle, vowel, soybean, letter and isolet (see Table 1). These datasets are different in the number of classes, the number of dimensions, and sizes. For the glass and segment problems, there is no test data so we used 5-fold cross validation. For the soybean problem, we discarded the last four classes because of missing values.

Table 1. Description of the datasets used in the experiments

Dataset	#training data	#test data	#class	#dimension
Glass	214	5-fold	6	9
Satimage	4,435	2,000	6	36
Segment	2,310	5-fold	7	18
Shuttle	43,500	14,500	7	9
Vowel	528	462	11	10
Soybean	290	340	15	35
Letter	15,963	4,037	26	16
Isolet	6,238	1,559	26	617

In these experiments we scaled both training data and test data to be in [-1,1] and employed Polynomial and RBF kernels. In the experiments, we compare three algorithms, i.e., the original ADAG, the RADAG, and the Max Wins algorithm. For the ADAG, we examined all possible sequences for datasets having not more than 7 classes, whereas we randomly selected 50,000 sequences for datasets having more than 7 classes. Table 2 and 3 present the results of comparing these methods for Polynomial and RBF kernels, respectively. We present the optimal parameters (d and c in Equations (11) and (12)) of the kernels and the corresponding accuracies. The best accuracy among three methods is illustrated in bold-face.

The results show that our method yields highest accuracy in almost all of datasets. Another advantage of our method compared to the DDAG and the original ADAG is that our method always provides one best accuracy for each dataset using the reordering algorithm, whereas, depending on the sequence of classes, the DDAG and the original ADAG may give low accuracies. This shows the effectiveness of the RADAG.

perfect matching. This sequence differs for each test example, and it depends on the results of nodes from the previous level. The second and the third steps are repeated until there is only one class remains.

3.3. Reordering algorithm

For the reason described above, we consider the generalization errors in order to choose the optimal sequence from all possible sequences with less chance to predict the wrong class. Among classifiers, k/2 classifiers which have small generalization errors will be considered to be used in data classification.

Let G = (V, E) be a graph with node set V and edge set E. Each node in G denotes one class and each edge denotes one binary classifier which has a generalization error expressed by Equation (14) (see Figure 5(a)). The output of the reordering algorithm for graph G is a subset of edges with the minimum sum of generalization errors of all edges and each node in G is met by exactly one edge in the subset (see Figure 5(b)). Given a real weight c_e being generalization error for each edge e of G, the problem of reordering algorithm can be solved by the minimum weight perfect matching that finds a perfect matching M of minimum weight $\Sigma(c_e : e \in M)$.

For $U \subseteq V$, let $E(U) = \{(i,j): (i,j) \in E, i \in U, j \in U\}$. E(U)is the set of chosen classifiers. Let $\delta(i)$ denote the set of edges incident to node i; the set of classifiers with one class being i. The perfect matchings on a graph G = (V, E)with | I | even is given by

(a)
$$r \in \mathbb{R}^m$$

(b)
$$\sum_{e \in \delta(v)} x_e = 1$$
 for $v \in V$

(c)
$$\sum_{e \in E(U)} x_e \le \left\lfloor \frac{|U|}{2} \right\rfloor$$
 for all odd sets $U \subseteq V$ with $|U| \ge 3$

or by (a),(b) and
(d)
$$\sum_{e \in \delta(U)} x_e \ge 1$$
 for all odd sets $U \subseteq V$ with $|U| \ge 3$ (16)

where |E| = m, the number of classifiers, and $x_e = 1$ means that classifier e is chosen to be used in the sequence. Therefore, the reordering problem is to solve the following linear program:

$$\min \sum_{e \in E} c_e x_e \tag{17}$$

where x satisfies "(a),(b) and (c)" or "(a),(b) and (d)".

Currently, the minimum-weight perfect matching algorithm runs in time bounded by $O(n(m + n \log n))$ [3], where n is the number of nodes (classes) in the graph and m is the number of edges (binary classifiers). Hence the reordering algorithm can reorder the sequence in that polynomial time.

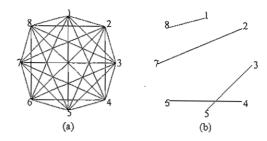


Figure 5. (a) A graph for an 8-class problem. (b) An example of the output of the reordering algorithm.

4. Numerical experiments

In this section, we present experimental results on several datasets from the UCI Repository of machine learning databases [2] including glass, satirnage, segment, shuttle, vowel, soybean, letter and isolet (see Table 1). These datasets are different in the number of classes, the number of dimensions, and sizes. For the glass and segment problems, there is no test data so we used 5-fold cross validation. For the soybean problem, we discarded the last four classes because of missing values.

Table 1. Description of the datasets used in the experiments

Dataset	#training data	#test data	#class	#dimension
Glass	214	5-fold	6	9
Satimage	4,435	2,000	6	36
Segment	2,310	5-fold	7	18
Shuttle	43,500	14,500	7	9
Vowel	528	462	11	10
Soybean	290	340	15	35
Letter	15,963	4,037	26	16
Isolet	6,238	1,559	26	617

In these experiments we scaled both training data and test data to be in [-1,1] and employed Polynomial and RBF kernels. In the experiments, we compare three algorithms. i.e., the original ADAG, the RADAG, and the Max Wins algorithm. For the ADAG, we examined all possible sequences for datasets having not more than 7 classes, whereas we randomly selected 50,000 sequences for datasets having more than 7 classes. Table 2 and 3 present the results of comparing these methods for Polynomial and RBF kernels, respectively. We present the optimal parameters (d and c in Equations (11) and (12)) of the kernels and the corresponding accuracies. The best accuracy among three methods is illustrated in bold-face.

The results show that our method yields highest accuracy in almost all of datasets. Another advantage of our method compared to the DDAG and the original ADAG is that our method always provides one best accuracy for each dataset using the reordering algorithm, whereas, depending on the sequence of classes, the DDAG and the original ADAG may give low accuracies. This shows the effectiveness of the RADAG.

Table 2. A comparison of the accuracy of classification using the Polynomial kernel

Dataset	đ	ADAG	d	Max Wins	d	RADAG
Glass	2	71.135	2	71.078	2	71.063
Satimage	6	88.430	6	88.453	6	88.900
Segment	8	97.408	8	97.379	8	97.489
Shuttle	8	99.924	8	99.924	8	99.924
Vowel	3	64.293	3	64.329	2	64.502
Soybean	5	90.446	3	90.471	3	91.176
Letter	3	95.984	3	96.125	4	96.111
Isolet	3	97.030	3	97.040	3	97.049

Table 3. A comparison of the accuracy of classification using the RBF kernel

Dataset	С	ADAG	c	Max Wins	С	RADAG
Glass	0.08	72.759	0.09	73.238	0.09	74.319
Satimage	3.0	91.968	3.0	91.984	3.0	91.950
Segment	0.7	97.282	0.7	97.298	0.7	97.273
Shuttle	3.0	99.897	3.0	99.897	3.0	99.897
Vowel	0.2	65.589	0.2	65.340	0.2	67.100
Soybean	0.08	90.412	0.08	90.468	0.07	90.882
Letter	3.0	97.909	3.0	97.918	3.0	97.969
Isolet	0.01	96.932	0.01	96.916	0.01	96.985

Table 4. A comparison of the computational time using the Polynomial kernel

_			Max Wins		
Dataset	d	Classifying	Reordering	Total	Classifying
		(seconds)	(seconds)	(seconds)	(seconds)
Satimage	6	1.90	0.50	2.40	9.47
Segment	8	0.11	0.08	0.19	0.41
Shuttle	8	1.75	3.38	5.13	5.15
Vowel	2	0.12	0.25	0.37	0.61
Soybean	3	0.30	0.25	0.55	1.86
Letter	4	8.48	4.20	12.68	125.58
Isolet	3	116.02	1.48	117.50	1671.98

Table 5. A comparison of the computational time using the RBF kernel

			Max Wins		
Dataset	c	Classifying	Reordering	Total	Classifying
		(seconds)	(seconds)	(seconds)	(seconds)
Satimage	3.0	11.75	0.51	12.26	37.13
Segment	0.7	0.24	0.10	0.34	0.82
Shuttle	3.0	3.36	0.63	3.99	9.27
Vowel	0.2	0.10	0.27	0.37	0.61
Soybean	0.07	0.32	0.45	0.77	2.20
Letter	3.0	62.27	3.69	65.96	802.85
Isolet	0.01	100.42	1.60	102.02	1369.11

Table 4 and 5 present the comparison of the computational time between the RADAG and the Max Wins for Polynomial and RBF kernels by using a 400 MHz Pentium II processor. There is no computational time of the glass dataset because it has too little test examples to measure the time. The results show that our method requires low computational time in all datasets, especially when the number of classes and/or the number of dimensions are relatively large. For a k class problem, the Max Wins requires k(k-1)/2 classifiers for the classification whereas the RADAG requires only k-1 classifiers. Hence the larger the number of classes the

more running time the Max Wins requires than the RADAG. Moreover, the number of dimensions affects the running time of each classifier. For the RADAG, the number of classes affects the running time for reordering. However, it takes a little time even when there are many classes.

5. Conclusions

In this paper, we have presented a new approach for multiclass SVMs, called Reordering Adaptive Directed Acyclic Graph (RADAG), which is the modification of the original ADAG. Our approach eliminates the dependency of the sequence of binary classifiers in nodes in the original ADAG by selecting an appropriate sequence from all possible sequences which consists of classifiers with small generalization error. By the use of minimum-weight perfect matching, the RADAG can reorder the sequence in polynomial time. The experimental results show that our new approach yields higher accuracy than the original ADAG and even Max Wins which is probably the currently most accurate method for multiclass SVMs. Moreover the running time used by the RADAG is less than Max Wins, especially when the number of classes and/or the number of dimensions are relatively large. Our future work is to test the method on datasets with a very large number of classes and dimensions.

6. Acknowledgment

This work was supported by The Thailand Research Fund

7. References

- P. L. Bartlett, J. Shawe-Taylor, "Generalization performance of support vector machines and other pattern classifiers", in Advances in Kernel Methods - Support Vector Learning, B. Schoelkopf, C. J. C. Burges, A. J. Smola (eds), pp. 43-54, MIT Press, Cambridge, USA, 1999.
- [2] C. Blake, E. Keogh and C. Merz, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, 1998. http://www.ics.uci.edu/~mlearn/MLRepository. html
- [3] W. Cook, and A. Rohe, "Computing minimum-weight perfect matchings", Technical Report 97863, Forschungsinstitut für Diskrete Mathematik, Universität Bonn, 1997.
- [4] J. H. Friedman, "Another approach to Polychotomous classification", Technical report, Department of Statistics, Stanford University, 1996.
- [5] C.-W. Hsu, and C.-J. Lin, "A comparison of methods for multiclass Support Vector Machines", IEEE Trans.on Neural Networks, Vol. 13, pp. 415-425, March, 2002.
- [6] J. Platt, N. Cristianini, and J. Shawe-Taylor, "Large margin DAGs for multiclass classification", in Advances in Neural Information Processing Systems, MIT Press, Vol. 12, pp. 547-553, 2000.
- [7] N. Ussivakul, and B. Kijsirikul, "Multiclass support vector machines using adaptive directed acyclic graph," in IEEE/INNS' Int. Joint Conf. On Neural Networks (IJCNN-2002), 2002.

A NEW FRAMEWORK FOR LEARNING FIRST-ORDER REPRESENTATION

Thanupol Leardlumnouchai¹ and Boonserm Kijsirikul¹

ABSTRACT: First-order logic rules are one of the most expressive and human readable representations for learning a hypothesis in form of a set of production rules (if-then rules). However, the first-order rules can be learned only by Inductive Logic Programming (ILP) systems, such as PROGOL, FOIL. Other machine learning techniques, such as Neural Networks, Bayesian Networks and Decision Tree Learning, cannot directly learn this kind of rules because these techniques could not select the appropriate values to substitute in variables of the first-order rules. In this paper, we propose the method that makes use of Multiple-Instance Learning (MIL) as a new framework for learning first-order representation. MIL is employed for determining the appropriate values for the substitution. Experimental results show that the proposed method effectively learns first-order representation and is comparable to ILP systems.

KEYWORDS: Inductive Logic Programming, First-Order Logic, Multiple-Instance Learning

1. INTRODUCTION

Knowledge based learning is one technique of machine learning (Mitchell 1997). Informally knowledge is a set of sentences that describe known logical facts. In learning, the knowledge is generally called background knowledge. Knowledge-based learning method receives background knowledge and positive and negative examples as inputs and outputs a learned hypothesis represented in form of a set of production rules (if-then rules). A prominent advantage of this representation is human readable. Also, there are two types of logic for representing learned rules. The first one is propositional logic which is simpler than the other one, first-order logic. Propositional rules have no variable in their rules. In contrast, first-order rules contain variables so they are more expressive than the propositional rules. Consider the difference between these two logical rules in **Figure 1**.

Propositional logic: IF (Name1=Jannifer)Λ(Name2=Andrew)Λ(Father1 = Andrew)Λ(Female1=True)

THEN Daughter1,2 = True
First-order logic: IF Father(y,x) Female(y)
THEN Daughter(x,y)

Figure 1. The propositional logic and first-order logic rule.

The propositional rule is specific only for the first and the second persons being Jannifer and Andrew, respectively. So it is rarely useful for unseen pairs of people. While first-order rules have variables that make the rule much more expressive and general. However, only Inductive Logic Programming (!LP) systems such as PROGOL (Mitchell 1997), FOIL (Mitchell 1997) can learn the first-order rules. These first-order rule learners have ability to select the appropriate values to substitute in variables, while other machine learning method cannot, such as Neural Networks, Bayesian Networks and Decision Tree Learning. Therefore the advantages of these methods, such as robustness to noise, could not be applied in first-order rule learning to increase the efficiency in real world usage.

Department of Computer Engineering, Chalalongkorn University, Pathanwan, Bangkok, Thailand

In this paper, we are interested in solving this challenge. We propose the method that can use other techniques to learn first-order rules by using a framework called Multiple-Instance Learning (MIL) (Huang, Chen et al. 2003). MIL is employed for determining the appropriate values for the variable substitutions. We evaluate the proposed method by learning first-order concept mother(x,y) with Backpropagation Neural Network (BNN) on MIL framework. The results show that our technique competently learns first-order representation.

2. FRAMEWORK

ILP is only one of machine learning which adapts the logical concept for hypothesis learning and represents the learned rules in first-order logic form. Other learning techniques cannot directly learn this kind of rules because of difficulty in selecting the appropriate values to substitute in variables of first-order rules. To illustrate this problem, consider the task of learning rules for classifying the rich person (rich(x)). Background knowledge, the positive and negative examples are given as follow.

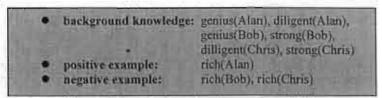


Figure 2. Input for learning the concept rich(x).

From these inputs, the ILP system could provide the learned rule as: rich(x):- genius(x), diligent(x). The meaning of the above rule is if x is genius and diligent, then x will be a rich person. For comparing to ILP, we use the BNN as the representative of indirectly learning methods. BNN also learns the rich concept with the same inputs as ILP. First, we create the initial network that is equivalent to the background knowledge. The network has 3 input nodes, in this case. We then assign some small random value to initialize each weight. The network constructed from the background knowledge is shown in Figure 3.

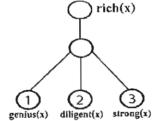


Figure 3. The constructed network.

Next, we feed an example to the network one by one. The input value for an input unit will be 1 if the literal of that unit is true in background knowledge when variables of the literal are substituted to some constants. Otherwise the input value for that unit is 0. For instance, if the fed example is rich(Alan), then the value for each unit is 1, 1 and 0, respectively. Because literals genius(Alan) and diligent(Alan) are true in background knowledge, while strong(Alan) is not true. The target value for the output unit is 1 because rich(Alan) is a positive example. The target output is 0 in case of negative examples. Then we apply the Backpropagation algorithm to adjust the network weights to fit training examples. After training, the weight values of genius(x) and diligent(x) units are higher than the strong(x) unit. This is because the two previous literals are more significant than literal strong(x) and this is comparable to the induced rule from ILP.

However, when inputs are relational examples and background knowledge, neural network cannot easily learn as the previous example. As there are many constants that can be mapped to relational variables, the correct inputs for the neural network cannot be easily determined. Consider the following example.

background knowledge: diligent(Alan), parent(Bob, Alan), genius(Bob), diligent(Bob), diligent(Chris), strong(Chris)
 positive example: rich(Alan), rich(Bob)
 negative example: rich(Chris)

Figure 4. Inputs that contain relational predicate.

In this example, an additional relational literal parent(Bob,Alan) is given. This literal means Bob is Alan's parent. The construction of the network also adds nodes parent(x,y) and parent(y,x) in the input layer, so there are 5 input nodes in this case. When we feed positive example rich(Alan) to the network, the first three nodes which are genius(x), diligent(x) and strong(x) receive 0,1 and 0 as its input respectively. For node parent(y,x), the variable x is replaced by Alan. But we have to determine to which term (Alan, Bob or Chris) variable y should be replaced. If we select Bob for substitution, the truth value for this input unit will be 1. The other substitutions will give 0 for this unit. While the truth value for parent(x,y) is 0 for any substitution. This learning problem may occur when background knowledge contains relational data and the learner cannot determine the appropriate value for the variable substitution.

To solve this problem, we use the power of Multiple-Instance Learning (MIL) to provide input data for relational first-order rule learning. In MIL framework, the training set is composed of a set of bags, each of which is a collection of different number of instances. A bag is labeled as a negative bag if all the instances in it are negative. On the other hand, if a bag contains at least one positive instance then it is labeled as a positive bag. With this concept, we define a set of training examples as $\{B_1, B_2, ..., B_n\}$, where n is a number of examples including positive and negative ones. A bag is labeled as a positive bag if an example is positive, and negative otherwise. Each bag contains m_i instances $\{B_{i1}, B_{i2}, ..., B_{imi}\}$ where each is one possible binding (substitution). Therefore the appropriate value selection would not be a problem because in one bag there are all cases of variable substitutions and the learning algorithm are designed for this kind of MIL problem. We can use these transformed data for learning a hypothesis. Consider an example of positive bag rich(Alan) as input data (see Table 1).

Table 1. Input data of the network for bag rich(Alan).

Bag of example rich(Alan)	genius(x)	diligent(x)	strong(x)	parent(x,y)	parent(y,x)
Replace x by Alan, and y by Alan	0	1	0	0	0
Replace x by Alan, and y by Bob	0	1	0	0	1
Replace x by Alan, and y by Chris	0	I	0	0	0

As shown in **Table 1**, the bag rich(Alan) has 3 instances. Positive bag rich(Bob) and negative bag rich(Chris) also have 3 instances as same as bag rich(Alan). For training, these 3 bags are fed to the network one by one. The network weights are adapted by the backpropagation algorithm for MIL (Zhou and Zhang 2002).

3. EXPERIMENT

In this section, we evaluate our proposed technique on learning first-order rules by BNN. The target concept that we try to learn is mother(x,y). A family relationship as shown in Figure 5 describes a set of training examples. Additionally, four predicates which are father(x,y), husband(x,y), grandmother(x,y) and sister(x,y) are given as background knowledge.

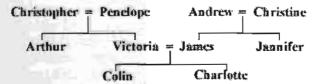


Figure 5. A family relationship where A=B means A marries B.

With these input data, we get 6 positive bags that are mother(Penelope, Arthur), mother(Penelope, Victoria). mother(Christine, James), mother(Christine, Jannifer), mother(Victoria, Colin), and mother(Victoria, Charlotte). Each positive bag is composed of 10 instances each of which is one case of relational variable z replacement. For negative bag, we take one person as one bag so there are 10 negative bags. Each bag has 10 cases of persons for substitution in variable y such as mother(Christopher, Christopher), mother(Christopher, Penelope), ... and each case contains 10 bindings. So each negative bag contains 90 instances, except for the 3 bags for Penelope, Christine and Victoria which contain only 70 instances as some of them are already used as positive bags. Moreover, each predicate from background knowledge is expanded to 6 literals which are for (x,y), (x,z), (y,x), (y,z), (z,x), and (z,y). Variable z is used for making a connection between literals. The network must be consistent with background knowledge, so we create a network with 24 input nodes and 1 output node. We set the number of hidden nodes to 1 node and 4 nodes for the first and second experiments, respectively. Then we train the network for 2000 epochs by using the backpropagation algorithm. The obtained networks are shown in Figure 6, with dark solid lines indicating the largest positive weights, and light lines indicating negligible weights. Both networks perfectly classified all of the training examples and the networks are almost equivalent. Furthermore from learned network weights, the network can be mapped to a rule mother(x,y) \leftarrow father(z,y), husband(z,x) (Towell and Shavlik 1993), which is the same as the rule learned by ILP.

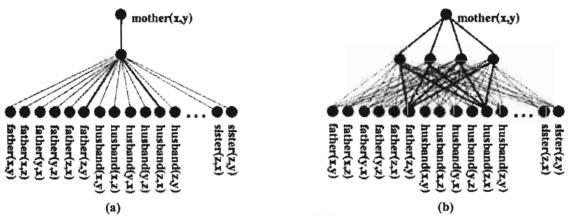


Figure 6. The complete trained networks with 1 hidden node (a) and 4 hidden nodes (b).

4. CONCLUSION

This paper presents a new framework for learning first-order rules. The objective is to solve the problem that other machine learning techniques except for ILP cannot select the appropriate values for variable substitution. So we applied MIL to provide certain input data from first-order logic input. The experimental results show that our proposed method is able to learn first-order representation. The refined network can be mapped to the rule which is comparable to one obtained by ILP. Consequently, as we can employ other techniques for learning first-order logic, the advantage of these methods can alleviate the weakness of ILP such as sensitivity to noise.

5. REFERENCES

Huang, X., S.-C. Chen, et al. (2003). An Open Multiple Instance Learning Framework and Its Application in Drug Activity Prediction Problems. Proceedings of the Third IEEE Symposium on BioInformatics and BioEngineering (BIBE'03), Bethesda, Maryland. Mitchell, T. M. (1997). Machine Learning, The McGraw-Hill Companies Inc.

Towell, G. G. and J. W. Shavlik (1993). "The Extraction of Refined Rules from Knowledge-Based Neural Networks." Machine Learning Journal 13(1): 71-101.

Zhou, Z.-H. and M.-L. Zhang (2002). Neural Network for Multi-Instance Learning. Proceedings of the International Conference on Intelligent Information Technology, Beijing, China.

Multiclass Support Vector Machines Using Balanced Dichotomization

Boonserm Kijsirikul, Narong Boonsirisumpun, and Yachai Limpiyakorn

Department of Computer Engineering, Chulalongkorn University, Thailand {Boonserm.K, Yachai.L}@chula.ac.th
Narong.Bo@student.chula.ac.th

The Support Vector Machine (SVM) has been introduced as a technique for solving a variety of learning and function estimation problems. The technique was originally designed for binary classification learning with its outstanding performance. However, many real world applications involve multiclass classification. Typical SVM solutions to N-class problems are to construct and combine several two-class classifiers into an N-class classifier such as the one-against-the-rest approach (1-v-r) and the one-against-one approach (1-v-1). The one-against-one methods solve N(N-1)/2binary classifiers where each one is trained on data from two classes. There are different methods for the evaluation of the correct class after all N(N-1)/2 classifiers have been constructed. The Max Wins method takes the majority vote of a certain class as the final output [3]. A drawback of the 1-v-1 SVMs is their inefficiency of classifying data as the number of SVMs grows superlinearly with the number of classes. To improve the efficiency in classifying data, Platt et al. [5] proposed the Decision Directed Acyclic Graph (DDAG) with N(N-1)/2 internal nodes and N leaves. Only N-1 decision nodes will be evaluated in order to derive an answer, that is lower than N(N-1)/2decisions required by Max Wins. To reduce the unnecessarily high number of node evaluations for the correct class, Kijsirikul, et al. [4] proposed the Adaptive Directed Acyclic Graph (ADAG) method, which is a modification of the DDAG. Like the DDAG, the ADAG requires N-1 decisions in order to derive an answer. However, using the reversed triangular structure reduces the number of evaluations the correct class is tested against other classes to $\lceil \log N \rceil$ times or less, which is considerably lower than that of N-1 times required by the DDAG.

In this paper, we introduce a new method for constructing multiclass SVMs using binary classifiers, called *Balanced Dichotomization*. For an N-class problem, the system constructs N(N-1)/2 binary classifiers during its training phase like other oneagainst-one methods. Among those binary hyperplanes having been constructed, the system searches for the hyperplane at the most balanced position among all candidate classes, called *balanced dichotomization classifier* that separates the data classes into half-and-half on each side. Using a balanced dichotomization classifier can thus remove half of the candidate classes during each evaluation for the correct class, that is a higher number of elimination compared to other methods, such as the DDAG, the ADAG, which eliminate only one class using an ordinary binary classifier. As a result, the technique can optimally reduce the number of decisions in order to derive an answer to $\lceil \log_2 N \rceil$ times, rather than N-1 times in the DDAG and the ADAG.

The basic idea of the primary SVM classification is to find the optimal hyperplane separating the two classes of data as illustrated in Figure 2 (a). The hyperplane maximizes the margin between the data in class 1 and class 2. However, the hyperplane in Figure 2 (a) is not a balanced dichotomization classifier because when considering the positions of all candidate classes, it is not at the most balanced position as depicted in

C. Zhang, H.W. Guesgen, W.K. Yeap (Eds.): PRICAI 2004, LNAI 3157, pp. 973-974, 2004.

[©] Springer-Verlag Berlin Heidelberg 2004

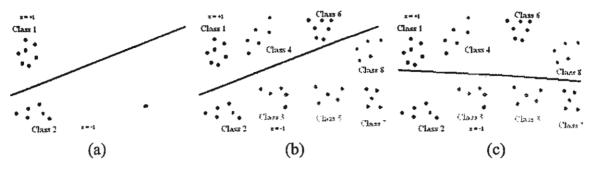


Fig. 2. (a) The optimal hyperplane for classes 1 and 2, (b) the hyperplane is not a balanced dichotomization classifier when considering other classes, and (c) an optimal balanced hyperplane.

Figure 2 (b). The hyperplane shown in Figure 2 (c) is an example of the balanced dichotomization hyperplane. It is posed at the optimal balanced position that separates candidate classes into half-and-half on each side.

Since Balanced Dichotomization requires considering positions of all candidate classes to arrive at a balanced hyperplane, there may be cases where a hyperplane in consideration is posed in between data of certain classes. To deal with these cases, two parameters are introduced in our approach, i.e. the optimal range of generalization error and the optimal pruning percentage. *Pruning percentage* is used as the threshold for the removal of data on either side of the hyperplane in consideration. The strategy of pruning is to achieve the balanced dichotomization that provides the minimum number of evaluations for the correct class while maintaining the accuracy within the range of generalization performance [1]. If the ratio between data of a class on one side and all data of the class is less than pruning percentage, the data on that side will be ignored. Moreover, using the optimal range of generalization error, only hyperplanes with the generalization error within the range will be considered.

We evaluate the performance of our method on several datasets from the UCI Repository of machine learning databases [2]: Glass, Satimage, Segment, Shuttle, Vowel, Soybean, Letter, and Isolet. The experimental results show that Balanced Dichotomization runs faster and maintains accuracy comparable to Max Wins and better than the ADAG and the DDAG methods.

References

- 1. Bartlett, P. L. and Shawe-Taylor, J. (1999) Generalization performance of support vector machines and other pattern classifiers, In B.Schölkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel Methods Support Vector Learning, pp. 43-54, MIT Press, USA.
- 2. Blake, C., Keogh, E., and Merz, C. (1998) *UCI Repository of Machine Learning Databases*, Department of Information and Computer Science, University of California, Irvine. http://www.ics.uci.edu/~mlearn/MLSummary.html
- Friedman, J. H. (1996) Another Approach to Polychotomous classification, Technical report, Department of Statistics, Stanford University.
- 4. Kijsirikul, B., Ussivakul, N., and Meknavin, S. (2002) Adaptive Directed Acyclic Graphs for Multiclass Classification, The Seventh Pacific Rim International Conference on Artificial Intelligence.
- Platt, J., Cristianini, N. and Shawe-Taylor, J. (2000) Large Margin DAGs for Multiclass Classification, Advances in Neural Information Processing Systems, MIT Press, 12, 547-553.

۳,

First-Order Logical Neural Networks

Thanupol Lerdlamnaochai and Boonserm Kijsirikul
Department of Computer Engineering, Chulalongkorn University,
Pathumwan, Bangkok, 10330, Thailand
g46tll@cp.eng.chula.ac.th, boonserm.k@chula.ac.th

Abstract

Inductive Logic Programming (ILP) is a well known machine learning technique in learning concepts from relational data. Nevertheless, ILP systems are not robust enough to noisy or unseen data in real world domains. Furthermore, in multi-class problems, if the example is not matched with any learned rules, it cannot be classified. This paper presents a novel hybrid learning method to alleviate this restriction by enabling Neural Networks to handle first-order logic programs directly. The proposed method, called First-Order Logical Neural Network (FOLNN), is based on feedforward neural networks and integrates inductive learning from examples and background knowledge. We also propose a method for determining the appropriate variable substitution in FOLNN learning by using Multiple-Instance Learning (MIL). In the experiments, the proposed method has been evaluated on two first-order learning problems, i.e., the Finite Element Mesh Design and Mutagenesis and compared with the state-of-the-art, the PROGOL system. The experimental results show that the proposed method performs better than PROGOL.

1. Introduction

Inductive Logic Programming (ILP) [1, 2] is only one of machine learning techniques which adapts the first-order logical concepts for hypothesis learning. The advantages of ILP are the ability of employing background knowledge and the expressive representation of first-order logic. However, first-order rules learned by ILP have the restriction to handle imperfect data in real-world domains such as noisy unseen data. This problem noticeably occurs especially in multi-class classification. In multi-class classification, if an example is not covered any learned rule, it could not be classified. The simple solution is assigning the majority class recorded from training

examples to the unable labeled test data [3]. Also, there is more efficient method to solve this problem by using the concept of intelligent hybrid systems [4].

Artificial Neural Networks (ANNs) [5] claim to avoid the restrictions of symbolic rule-based systems described above. Neural networks contain the ability of processing inconsistent and noisy data. Moreover, they compute the most reasonable output for each input. Neural networks, because of their potential for noise tolerance and multi-class classification, offer an attractiveness combining for with components. Although the ability of neural networks could alleviate the problem in symbolic rule-based systems, learned hypothesis from neural networks is not available in a form that is legible for humans. Therefore neural networks significantly require an interpretation by rule-based systems [4]. Several works show that the integration between robust neural networks and symbolic knowledge representation can improve classification accuracy such as Towell and Shavlik's KBANN [6], Mahoney and Mooney's RAPTURE [7], the works proposed by Rajesh Parekh and Vasant Honavar [8] and d'Avila Garcez et al. [9]. Nevertheless, these researches have been restricted to propositional theory refinement. Some models have been proposed for first-order theory. SHRUTI [10] employed a model making a restricted form of unification-actually this system only propagates bindings-. The work proposed by Botta et al. [11] created a network consisting of restricted form of learning first-order logic. Kijsirikul et al. [12] proposed a feature generation method and a partial matching technique for first-order logic but their method still uses an ILP system in its first-step learning and cannot select the appropriate values to substitute in variables.

In this paper, we are interested in direct learning of first-order logic programs by neural networks, called First-Order Logical Neural Network (FOLNN). FOLNN is a neural-symbolic learning system based on the feedforward neural network that integrates

inductive learning from examples and background knowledge. We also propose the method that makes use of Multiple-Instance Learning (MIL) [13, 14] for determining the variable substitution in our model. Our proposed method has been evaluated on two standard first-order learning datasets i.e., the Finite Element Mesh Design [15] and Mutagenesis [16]. The results show that the proposed method provides more accurate result than the original ILP system.

The rest of this paper is organized as follows. Section 2 outlines the processes of first-order learning by FOLNN, splitting into three subsections. The experimental results on first-order problems are shown in Section 3. Finally the conclusions are given in Section 4.

2. First-Order Logical Neural Network (FOLNN)

Commonly the main reason for integrating robust neural networks and symbolic components is to reduce the weakness of the rule-based system. Combining these two techniques together is normally known as neural-symbolic learning system [9]. Our proposed method, FOLNN is also this type of learning system. FOLNN structure is based on the feedforward neural network and can receive examples and background knowledge in form of first-order logic programs as the inputs. FOLNN weight adaptation is based on the Backpropagation (BP) algorithm [17].

The following subsections explain the FOLNN algorithm composed of creating an initial network, feeding examples to the network and training the network.

2.1. Creating an initial network

In this subsection, we present the first step of the FOLNN algorithm, creating an initial network from background knowledge. A three layers feedforward network, composed of one input layer, one output layer and one hidden layer [18], is employed for FOLNN structure. We define the functionality of each layer as follows.

• Input layer: Input layer is the first layer that receives input data, computes received data, and then transmits processed data to the hidden layer. This layer represents the literals for describing the target rule. The number of units in this layer depends on the number of predicates in background knowledge. One predicate is represented by one unit in the input layer if that predicate contains only arity one. Otherwise, the

- number of units for a predicate equals to the number of all possible combinations of variables of that predicate.
- Hidden layer: This layer connects between the input layer and the output layer. The hidden layer helps the network to learn the complex classification. The number of units in this layer depends on the complication of the learning concept. The number of units in the hidden layer is determined from the experiments.
- Output layer: This layer is the last layer of the network producing the output for the classification. The target concept is represented in this layer so that the number of units in the output layer equals to the number of concepts to be learned or the number of classes.

An initial network is created by using the above definition. To illustrate the construction of the network, consider the task of learning rules for classifying the rich person (rich(x)). Background knowledge, the positive and negative examples are given as follows.

Figure 1. Inputs for learning the concept rich(x).

As shown in Figure 1, background knowledge contains three predicates with arity one which are genius(x), diligent(x) and strong(x) and one predicate having arity two which is parent(x,y). Each predicate of arity one is represented by one unit in the input layer, so three units are created. Predicate parent is represented by two input units for literals parent(x,y) and parent(y,x). Furthermore, the output layer, because of only one target concept (rich(x)), has only one unit. Therefore in this case, the constructed network will have five input units and one output unit. The created network from the inputs in Figure 1 is shown in Figure 2. In addition, all network weights are initialized to small random numbers.

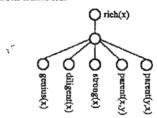


Figure 2. The created network with one hidden unit.

The completely constructed network then receives examples for refining the network. The process for feeding examples to the network is described in the next subsection.

2.2. Feeding examples to the network

In general, neural networks receive inputs in real value form. However, inputs of the ILP system (background knowledge and examples) are in logical form. So we change the logical inputs to the form that can be learned by neural networks. The examples are fed to the network one by one and independently transformed to the network input for each unit. The value for each unit is defined as follows.

$$X_{ij} = \begin{cases} 1 & \text{if } L_i \theta_j \text{ is true in background knowledge} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

where X_{ij} , L_i , and θ_j are input value for input unit i when feeding example j, literal represented by input unit i, and variable binding with constants in example j, respectively.

The input value for an input unit will be 1 if there exists substitution that makes the truth value of the literal true in background knowledge. Otherwise the input value for that unit is 0. In addition, the target value for output unit is defined as follows.

$$T_{k_j} = \begin{cases} 1 & \text{if } L_k \theta_j \text{ is positive example} \\ 0 & \text{otherwise} \end{cases}$$
 (2)

where T_{ij} and L_k are target value for output unit k when feeding example j, and literal represented by output unit k, respectively.

For instance, with the same inputs in Figure 1, if the fed example is rich(Alan) then the first three units i.e., genius(x), diligent(x) and strong(x), receive 0,1 and 0 as their inputs respectively, because literal diligent(Alan) is true in background knowledge, while literals genius(Alan) and strong(Alan) are false. The target value for the output unit is 1 because rich(Alan) is a positive example. However, the input value for literals parent(x,y) and parent(y,x) cannot be easily determined since there are many possible constants that can be mapped to relational variables. For unit parent(y,x), the variable x is certainly replaced by

Alan. However, it is quite ambiguous by which term (Alan, Bob or Chris) variable y should be replaced. If we select Bob for substitution, the truth value for this input unit will be 1. The other substitutions will give 0 for this unit (see Table 1). The truth value for parent(x,y) is 0 for any substitution. From the above example, the input value for unit parent(y,x) is not certain and cannot be easily determined for network training. This problem may occur when background knowledge contains relational data and the learner cannot determine the appropriate value for the variable substitution.

Table 1. Input value of unit parent(y,x) for each constant replacement.

Unit parent (y,x)	Input value
Replace x by Alan, and y by Alan	0
Replace x by $Alan$, and y by Bob	l
Replace x by Alan, and y by Chris	0

To solve this problem, we use the power of Multiple-Instance Learning (MIL) to provide input data for our network. In MIL framework [13, 14], the training set is composed of a set of bags, each of which is a collection of different number of instances. A bag is labeled as a negative bag if all the instances in it are negative. On the other hand, if a bag contains at least one positive instance then it is labeled as a positive bag. With this concept, we define FOLNN training data as a set of training examples $\{B_1, B_2, \dots B_n\}$, where n is the number of examples including positive and negative ones. A bag is labeled as a positive bag if an example is positive, and negative otherwise (in multi-class classification, all bags are labeled as positive of their classes). The positive bag is given 1 as its target value and the negative bag is assigned 0, as defined in Equation (2). Each bag contains m_i instances $\{B_{il}, B_{i2}, ..., B_{imi}\}$ where B_{ij} is one possible binding (substitution). This is a very important key because now we can use all cases of variable substitutions as one bag for learning; therefore the appropriate value selection would not be a problem. Consider an example of positive bag rich(Alan) as input data (see Table 2).

Table 2. Transformation of example rich(Alan) into input data of FOLNN

Positive bag of example rich(Alan)	genius(x)	diligent(x)	strong(x)	parent(x,y)	parent(y,x)
Replace x by Alan, and y by Alan	0	1	0	0	0
Replace x by Alan, and y by Bob	0	1	0	. 0	1
Replace x by Alan, and y by Chris	0	1	. 0	0	0

As shown in Table 2, the bag rich(Alan), has 3 instances each of which is one case of substitution. Also, positive bag rich(Bob) and negative bag rich(Chris) have 3 instances as same as positive bag rich(Alan). For training, these 3 bags are fed to the network one by one and the network weights are adapted by the Backpropagation (BP) algorithm for MIL [19] as described in the next subsection.

2.3. Training the network

To train the network, training bags are fed to the network for adapting network weights. Weight adaptation is based on the BP algorithm and the activation function is Sigmoid function. Suppose the network has p input units, o output units, and one hidden layer. The global error function (E) of the network is defined as follows.

$$E = \sum_{i=1}^{n} E_i \tag{3}$$

where E_i is the error on bag i. E_i is defined according to the type of the bag i as:

$$E_{i} = \begin{cases} \min_{1 \le j \le m_{i}} \sum_{k=1}^{a} E_{ijk} & \text{if } B_{i} = +\\ \max_{1 \le j \le m_{i}} \sum_{k=1}^{a} E_{ijk} & \text{if } B_{i} = - \end{cases}$$

$$(4)$$

$$E_{ijk} = \begin{cases} 0 & if(B_i = +) \text{ and } (0.5 \le o_{ijk}), l_{ik} = 1\\ 0 & if(B_i = -) \text{ and } (o_{ijk} < 0.5), \text{ for all } k \end{cases}$$

$$\frac{1}{2} (l_{ik} - o_{ijk})^2 & \text{otherwise}$$
(5)

where

- E_{ijk} is error of output unit k on instance j in bag example i
- B_i=+ is positive bag example
- B= is negative bag example
- o_{ijk} is actual output of output unit k from bag example
 i, instance j, and
- la is target output of output unit k from bag example i

With the defined error function above, the error BP algorithm is simply adapted for training FOLNN. In each training epoch, the training bags are fed to the aetwork one by one. Then the error E_{ijk} is computed according to Equation (5). For a positive bag B_i , if E_{ijk} is 0 then all the rest of instances of this bag are disregarded, and the weights are not changed for this epoch. Otherwise the process continues and when all the instance of B_i are fed, E_i is computed by using

Equation (4) and the weights in the network are changed according to the weight update rule of BP [17]. Then the next bag for training is fed to the network and the training process is repeated until the number of training iterations increases to some predefined threshold or the global error E in Equation (3) is decreased to some predefined threshold. After having been trained, the network can be used to classify unseen data.

3. Results

In the previous section, the three steps of learning FOLNN algorithm were described. In this section, we evaluate FOLNN by performing experiments on the finite element mesh design and the mutagenesis datasets, the well-known ILP problems. We also compare the results obtained by FOLNN with those obtained by an ILP system.

3.1. Datasets

3.1.1. Finite Element Mesh Design. The dataset for the finite element mesh design [15] consists of 5 structures and has 13 classes (13 possible number of partitions for an edge in a structure). Additionally, there are 278 examples each of which has the form mesh(Edge, Number_of_elements) where Edge is an edge label (unique for each edge) and Number_of elements indicates the number of partitions. The background knowledge contains relations describing the types of an edge (e.g. circuit, short), boundary conditions (e.g. free, fixed), loadings (e.g. not_loaded, one_side_loaded) and the relations describing the structure of the object (e.g. neighbour, opposite). The goal of finite element mesh design is to learn general rules describing how many elements should be used to model each edge of a structure.

3.1.2. Mutagenesis. The dataset for the mutagenesis [16] consists of 188 molecules, of which 125 are mutagenic (active) and 63 are non-mutagenic (inactive). A molecule is described by listing its atoms as atom(AtomID, Element, Type, Charge) and the bonds between atoms as bond(AtomI_Atom2_BondType). This problem is a two-class learning problem for predicting the mutagenicity of the molecules, whether a molecule is active or inactive in terms of mutagenicity.

3.2. Experiments

For the finite element mesh design dataset, we create the network containing 130 units in the input

layer (determined by predicates in background knowledge), 13 output units (as the number of classes) and one hidden layer with 80 hidden units (determined by the experiment). For the mutagenesis dataset, the constructed network has 235 input units, 100 hidden units and 2 output units. The weights of two networks are randomly initialized and then adapted by using the BP algorithm with sigmoid activation function. We performed three-fold cross validation [20] on each dataset. The dataset is partitioned into three roughly equal-sized subsets with roughly same proportion of each class as that of the original dataset. Each subset is used as a test set once, and the remaining subsets are used as the training set. The final result is the average result over three-fold data. For each fold, of both datasets, we trained FOLNN with learning rate 0.0001 and momentum 0.97.

Table 3. The percent accuracies of FOLNN and PROGOL on first-order datasets; FEM – Finite Element Mesh Design, MUTA – Mutagenesis.

Dataset	FOLNN	PROGOL
FEM	59.18	57.80
MUTA	88.27	84.58

The average results over three-fold data on FEM and MUTA datasets are summarized in Table 3. PROGOL [21], the state-of-the-art ILP system, has been used to compare the performance with our proposed method, FOLNN. The experimental results show that the accuracies of our proposed method, FOLNN are better than PROGOL in both datasets. The better results are according to the weakness of learned rules generated by PROGOL.

In addition to the results on the original dataset, to see how well our learner handles noisy data, we also evaluate FOLNN on noisy domain. The mutagenesis dataset is selected for this task. Using the three-fold data of the mutagenesis dataset in the last experiment, 10% and 15% class noise is randomly added into the training set, and no noise is added into the test set. In our case, adding x% of noise means that the class value is replaced with the wrong value in x out of 100 data by random selection. The accuracies of PROGOL and FOLNN on noisy data are shown in Table 4.

Table 4. Performance comparison on the noisy mutagenesis dataset.

Noise level in dataset	PROGOL 0% noise setting	PROGOL 10% noise setting	PROGOL 15% noise setting	FOLNN
10%	64.23	69.72	71.29	84.01
15%	60.56	61.54	65.31	81.28

Since PROGOL has an ability to handle noise in data as its option, "x% noise setting" in the table specifies that noise option of PROGOL is set to x%. As can be seen in the Table 4, our proposed algorithm still provides average accuracies higher than PROGOL. When 10% and 15% noise is added into the dataset, the PROGOL performance significantly drops due to its sensitivity to noise which is the main disadvantage of first-order rules directly induced by the ILP system. However, accuracy of our method decreased much slower and is much higher than that of PROGOL. FOLNN, because of the ability of noise tolerance by combining with neural networks, is more robust against noise than the original first-order rules. FOLNN prevents overfitting noisy data by employing neural networks to give higher weights to important features and give less attention to unimportant ones.

4. Conclusions

Learning first-order logic programs by using neural networks is still an open problem. This paper presents a novel hybrid connectionist symbolic system based on the feedforward neural network that incorporates inductive learning from examples and background knowledge, called FOLNN (First-Order Logical Neural Network). FOLNN alleviates the problem of first-order rules induced by the ILP system which are not robust enough to noisy or unseen data. The prominent advantage of FOLNN is that it can learn from inputs provided in form of first-order logic programs directly. Other learners cannot directly learn this kind of programs because they cannot select the appropriate values for variable substitution, but our method can solve this problem by applying the MIL concept to provide certain input data from first-order logic input.

The experimental results show that FOLNN presents the ability of noise tolerance and produces the better performance than PROGOL. This is because of the ability of neural networks that can select important attributes and then gives higher weights to these attributes and vice versa.

Although our main objective is to learn the firstneer logic, FOLNN can be applied to other tasks such learning from propositional datasets containing missing values in some attributes.

One interesting issue is knowledge extraction. Knowledge extraction from a trained network is one phase of the neural-symbolic learning system [9] and is of significant interest in data mining and knowledge inscovery applications such as medical diagnosis. However, this phase is not included in this work and we have not yet explored rule extraction from trained networks. Nevertheless, we surmise that many researches [9, 22-24] can be adapted to extract rules from our networks.

5. Acknowledgement

This work was supported by the Thailand Research

6. References

- N. Lavrac and S. Dzeroski, Inductive Logic Programming Techniques and Applications, Ellis Horwood, New York, 1994.
- S.-H. Nienhuys-Cheng and R. d. Wolf, Foundation of Inductive Logic Programming, Springer-Verlag, New York, 1997.
- [3] S. Dzeroski, S. Schulze-Kremer, K. R. Heidtke, K. Siems, and D. Wettschereck, "Applying ILP to Diterpene Structure Elucidation from 13C NMR Spectra", Proceedings of the Sixth International Workshop on Inductive Logic Programming, 1996.
- [4] S. Wermter and R. Sun, "An Overview of Hybrid Neural Systems," Hybrid Neural Systems, number 1778 in Lecture Notes in Artificial Intelligence, S. Wermter and R. Sun, Eds., Springer, 2000, pp. 1-13.
- [5] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
- [6] G. G. Towell and J. W. Shavlik, "Knowledge-based artificial neural networks", Artificial Intelligence, vol. 70(1-2), 1994, pp. 119-165.
- [7] J. J. Mahoney and R. J. Mooney, "Combining connectionist and symbolic learning to refine certaintyfactor rule-bases", Connection Science, vol. 5, 1993, pp. 339-364
- [8] R. Parekh and V. Honavar, "Constructive Theory Refinement in Knowledge Based Neural Networks", Proceedings of the International Joint Conference on Neural Networks, Anchorage, Alaska, 1998.
- [9] A. S. d. A. Garcez, K. B. Broda, and D. M. Gabbay, Neural-Symbolic Learning Systems, Springer-Verlag, 2002
- [10] L. Shastri and V. Ajjanagadde, "From simple associations to systematic reasoning", Behavioral and Brain Sciences, vol. 16, 1993, pp. 417-494.

- [11] M. Botta, A. Giordana, and R. Piola, "FONN: Combining First Order Logic with Connectionist Learning", Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, 1997.
- [12] B. Kijsirikul, S. Sinthupinyo, and K. Chongkasemwongse, "Approximate Match of Rules Using Backpropagation Neural Networks", Machine Learning Journal, vol. 44, pp. 273-299, 2001.
- [13] Y. Chevaleyre and J.-D. Zucker, "A Framework for Learning Rules from Multiple Instance Data", 12th European Conference on Machine Learning, Freiburg, Germany, 2001.
- [14] X. Huang, S.-C. Chen, and M.-L. Shyu, "An Open Multiple Instance Learning Framework and Its Application in Drug Activity Prediction Problems", Proceedings of the Third IEEE Symposium on BioInformatics and BioEngineering (BIBE'03). Bethesda, Maryland, 2003.
- [15] B. Dolsak and S. Muggleton, "The Application of Inductive Logic Programming to Finite Element Mesh Design", *Inductive Logic Programming*, S. Muggleton. Ed., Academic Press, 1992, pp. 453-472.
- [16] A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and R. D. King, "Theories for mutagenicity: a study in firstorder and feature-based induction", Artificial Intelligence, vol. 85, Elsevier Science Publishers Ltd., 1996, pp. 277-299.
- [17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation", Parallel Distributed Processing, vol. 1, D. E. Rumelhart and J. L. McClelland, Eds., The MIT Press, Cambridge, MA, 1986.
- [18] S. Holldobler and Y. Kalinke, "Towards a massively parallel computational model for logic programming", Proceedings of the ECA194 Workshop on Combining Symbolic and Connectionist Processing, ECA194, 1994, pp. 68-77.
- [19] Z.-H. Zhou and M.-L. Zhang, "Neural Network for Multi-Instance Learning", Proceedings of the International Conference on Intelligent Information Technology, Beijing, China, 2002.
- [20] T. M. Mitchell, Machine Learning, The McGraw-Hill Companies Inc, New York, 1997.
- [21] S. Roberts, An Introduction to Progol. Technical Manual, University of York, 1997.
- [22] R. Andrew, J. Diederich, and A. B. Tickle, "Survey and Critique of Techniques for Extracting Rules from Trained Artificial Neural Networks", Knowledge-Based Systems, vol. 8, 1995, pp. 373-389.
- [23] M. W. Craven, "Extracting Comprehensible Models from Trained Neural Networks", Department of Computer Science: University of Wisconsin-Madison, 1996.
- [24] G. G. Towell and J. W. Shavlik, "The Extraction of Refined Rules from Knowledge-Based Neural Networks", Machine Learning Journal, vol. 13, pp. 71-101, 1993.

การเรียนรู้เน็ตเวิร์กเบย์ลำดับที่หนึ่ง Learning First-order Bayesian Networks

รัฐฉัทร ฉัทรพัฒนศิริ บุญเสริม กิจศิริกุล

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ถ.พญาไท ปทุมวัน กรุงเทพ 10330 Email:Ratthachat.C@Student.chula.ac.th, Boonserm.K@Chula.ac.th

บทคัดย่อ

ตัวจำแนกประเภทส่วนใหญ่มักมีข้อจำกัดที่สำคัญมากสองข้อคือ ตัวจำแนกประเภทมักแบ่งข้อมูลชนิดที่ข้อมูลแต่ละหน่วยขึ้นต่อกัน ได้ไม่ดี และข้อจำกัดข้อที่สองคือตัวจำแนกประเภทมักไม่สามารถ แบ่งข้อมูลที่มีสัญญาณรบกวนได้อย่างมีประสิทธิภาพ "เน็ตเวิร์ก เบย์ลำดับที่หนึ่ง" เป็นตัวจำแนกประเภทข้อมูลที่สามารถแก้ไขข้อ จำกัดสองประการนี้ได้ อย่างไรก็ตามเนื่องจากเน็ตเวิร์กเบย์ลำดับที่ หนึ่งมีความซับซ้อนมาก ระบบการเรียนรู้เพื่อสร้างเน็ตเวิร์กเบย์ลำดับที่ หนึ่งจากข้อมูลดิบจึงพัฒนาได้ชากยิ่ง งานวิจัยขึ้นนี้เสนอ ระบบค้นแบบในการเรียนรู้เน็ตเวิร์กเบย์ลำดับที่หนึ่งจากข้อมูลดิบ โดยการประยุกต์นำการโปรแกรมตรรกกะเชิงอุปนัย และระบบเรียน ร์เน็ตเวิร์กเบย์เข้าไว้ค้วยกัน

Abstract

Most classifiers often struggle with two main problems when (1) there are some relations among the input data and, (2) the input data is imperfect or has some noise. A first-order bayesian network (FOBN) is a powerful classifier that can cope with those two problems. Because of its complication, however, it is very difficult to develop an efficient algorithm for constructing FOBNs. This paper proposes a new framework for constructing FOBNs by combining two algorithms, namely, inductive logic programming and a bayesian network learning algorithm.

1. บทนำ

คัวจำแนกประเภท (classifier) ส่วนใหญ่มักมีข้อจำกัดที่สำคัญ มากสองข้อ ข้อจำกัดแรกคือตัวจำแนกประเภทมักแบ่งข้อมูล ชนิดที่ข้อมูลแต่ละหน่วยขึ้นต่อกันได้ไม่ดี และข้อจำกัดข้อที่ สองคือตัวจำแนกประเภทมักไม่สามารถแบ่งข้อมูลที่มีสัญญาณ รบกวนใด้อย่างมีประสิทธิภาพ ในช่วงสิบปีที่ผ่านมานี้ใค้มีการ วิจัยอย่างจริงจังในการพัฒนาตัวจำแนกประเภทข้อมูลที่สามารถ เอาชนะข้อจำกัดทั้งสองประเภทดังกล่าวซึ่งได้แก่เน็ตเวิร์กเบย์ สำดับที่หนึ่ง (First-order Bayesian Network: FOBN) [6,7] โดย FOBN ได้รวมข้อคืของตัวจำแนกประเภทข้อมูล 2 ชนิด คือ*ตรรกสาสตร์ลำดับที่หนึ่ง (First-order Logic: FOL)* [11] และตัวจำแนกประเภทข้อมูลชนิด*เน็ตเวิร์กเบย์ (Bayesian Network: BN)* [11,13] เพื่อความเข้าใจในขีด จำกัดของตัวจำแนกประเภท พิจารณาข้อมูลในตารางที่ 1

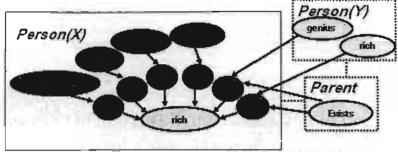
ตารางที่ 1 a. ฐานข้อมูลความรวยและคุณสมบัติของบุคคล

CASE	rich	gedius	drust	dillgent	maye miney
b	+	1	0	0	0
С	+	0	1	0	1
d	+	1	1		1
е	+	0	0	0	0
f	_	0	1	0	0
g	-	0	.0	1	0

b. ฐานข้อมูลพ่อแม่และลูก (สัมพันธ์กับตาราง a.)

parent	ehild
b	е
е	f
f	g

เราสามารถสร้างตัวจำแนกประเภทในรูปกฎตรรกศาสุตร์
ประพจน์(Propositional Logic) [11] ได้สองข้อคือ "rich
← génius." และ "rich ← artist, save_money."
ซึ่งกฎสองข้อนื้อธิบายกรณีของนาย e ไม่ได้ (ในความเป็นจริง
e รวยเพราะพ่อหรือแม่คือ b รวย) เนื่องจากตรรกสาสตร์
ประพจน์มีความกำกวมในการแสดงกฎที่มีความสัมพันธ์
ระหว่างข้อมูล เช่นกฎ "rich ← rich." ไม่สามารถบอก
ได้ว่าความรวยของบุลคลใดส่งผลต่อบุลคลใด ในงานวิจัยนี้เรา
เรียกข้อมูลดิบประเภทที่ข้อมูลในแต่ละหน่วยสามารถมีผล
กระทบต่อหน่วยอื่นได้ว่าข้อมูลเชิงสัมพันธ์ (relational data)
การมีความสัมพันธ์กันระหว่างข้อมูลทำให้การเรียนรู้ทำได้ยาก



รูปที่ 1. FOBN ที่เพิ่มความสามารถจากต้นไม้ตัดสินใจและ FOL

ยิ่งขึ้นดังกรณีนาย e อย่างไรก็ตาม FOL ซึ่งถูกพัฒนาจาก ตรรกศาสตร์ประพจน์สามารถเขียนกฎสำหรับข้อมูลที่มีความ สัมพันธ์ต่อกันได้อย่างชัดเจนโดยมีการนำตัวแปรทางตรรก-ศาสตร์มาใช้ดังนี้ "rich(X) \leftarrow artist(X). save_money(X).", "rich(X) ← genius(X)." และ "rich(X)

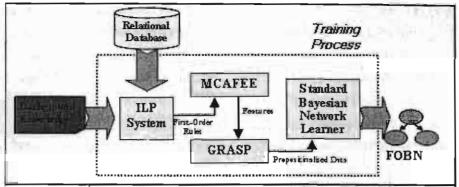
parent(Y,X),rich(Y),genius(Y)." โดยในกรณีนี้ตัวแปรแต่ละตัวแสคงถึงบุคคลและกฎข้อสาม ครอบคลุมกรณีนาย e เนื่องจากเราสามารถสร้างกฎตรรก-ศาสตร์ประพจน์ด้วย FOL ได้เสมอทำให้การใช้ FOL เป็น ระบบแบ่งประเภทข้อมลช่วยลดขีดจำกัดของตัวจำแนกประเภท ได้อย่างมาก สำหรับวิธีมาตรฐานในการเรียนรู้ FOL จากข้อ มลดิบนั้นถูกเรียกว่าการโปรแกรมตรรกกะเชิงอุปนัย (Inductive Logic Programming : ILP) [10,11,12] อย่างไรก็ ตามระบบ ILP ยังไม่สามารถจัคการข้อมูลที่ไม่สามารถแบ่ง กลุ่มได้แน่นอนได้ดีนัก เมื่อจำเป็นต้องเรียนรู้กฎจากข้อมูลดิบ ที่ไม่คีเหล่านี้ ระบบ ILP จะเผชิญกับปัญหาโอเวอร์ฟิต (overfitting problem) [10,11] ซึ่งจะทำให้ FOL ที่เรียนรู้ ได้มีลักษณะเฉพาะเจาะจง (specific) กับข้อมูลอินพุตมากเกิน ไป (ทำงานได้ถูกต้องเฉพาะข้อมูลอินพูดเท่านั้น) พิจารณา FOL ทั้งสามข้อในตัวอย่างที่ผ่านมาพบว่าในบางกรณีกฎเหล่า นี้มีความเฉพาะเจาะจงมากเกินไปเช่นกัน ตัวอย่างเช่นถ้าเพิ่ม นาย a ลงไปในตารางที่ 1 โดยกำหนดกุณสมบัติให้นาย a คัง ต่อไปนี้

genius(a). save_money(a). parent(e,a).

จะเห็นได้ว่าคุณสมบัติต่าง ๆ ของนาย a ไม่ตรงกับกฎข้อใดเลย ทำให้เราสรุปจากกฎได้ว่านาย a เป็นบุคคลที่ไม่รวย อย่างไรก็ ตามสังเกตว่าการสรุปแบบนี้เป็นการสรุปที่ไม่มีประสิทธิภาพ นักเนื่องจากคุณสมบัติต่าง ๆ ของนาย a ตรงบางส่วน (partially match) กับกฎ FOL ในตัวอย่างที่แล้วทั้งสามข้อ คุณ สมบัติการตรงบางส่วนของกฎนี้เองเป็นที่มาของการใช้ FOBN เป็นระบบจำแนกประเภทข้อมูล โดยเมื่อกำหนดคุณสมบัติต่าง ๆ ของนาย a ให้กับ FOBN แล้ว FOBN จะสามารถคำนวณ หาค่าความจะเป็นภายหลัง (posterior probability) ที่นาย a

จะรวยว่ามากน้อยเพียงใคค้วยเทคนิคการอนุมาน (inference) [13] ได้อย่างมีประสิทธิภาพ ทำให้การใช้ FOBN เป็นระบบ จำแนกประเภทข้อมูลมีความยืดหยุ่นเป็นอย่างมากเนื่องจากรอง รับทั้งคุณสมบัติความไม่แน่นอนของข้อมูลได้ด้วยการใช้ทฤษฎี ความน่าจะเป็น (แทนที่จะสรุปว่า ใช่ หรือ ไม่ใช่ ซึ่งเป็นวิธีที่ ระบบจำแนกข้อมูลทั่วไปใช้) นอกจากนี้ FOBN ยังมีคุณ สมบัติรองรับความสัมพันธ์ระหว่างข้อมูลเช่นเดียวกับ FOL อีก ด้วย รูปที่ 1 แสดง FOBN ที่ใช้แก้ปัญหาความรวยในตัวอย่าง นี้

FOBN ประกอบไปค้วยสองส่วนหลักเช่นเคียวกับ BN [6,7,13] คือส่วนโครงสร้าง (structure) โดยหมายถึงโนคต่าง ๆ และเส้นเชื่อมแบบมีทิศทาง (directed link) ทั้งหมคที่ เชื่อมโนคแต่ละโนคเข้าไว้ด้วยกัน โดยโนคแต่ละโนคแทนคุณ สมบัติหรือคุณลักษณะ (attribute) การมีเส้นเชื่อมจากโนค A ไปยังโนค B หมายถึงโนค A ส่งผลกระทบโดยตรงต่อโนค B ส่วนประกอบส่วนที่สองของ FOBN คือตารางความน่าจะเป็น มีเงื่อนไข (conditional probability table : CPT) โดยใช้ เพื่อคำนวณความน่าจะเป็นภายหลังเพื่อทำนายคุณสมบัติที่ ค้องการ โดยทั่วไปการเรียนรู้ FOBN จึงประกอบไปค้วยสอง ส่วนหลักคือเรียนรู้โครงสร้างและ CPT อย่างไรก็ตามการ เรียนรู้ FOBN ไม่สามารถทำได้โดยง่ายนักเนื่องจาก [1] และ [2] ได้พิสูจน์ว่าเพียงแค่การเรียนรู้ FOL หรือ BN เพียงลำพังก็ ยังมีความซับซ้อนของอัลกอริทึมที่ใช้ในการเรียนรู้เป็นแบบ NP งานวิจัยนี้จึงได้เสนอแนวคิดใหม่โดยการนำระบบ ILP และระบบเรียนรั BN (Bayesian Network Learner : BNL) [3,13] สองระบบมาทำงานต่อเนื่องกันเพื่อลคความซับ ซ้อนของระบบเรียนรู้ FOBN ในการใช้ BNL เพื่อเรียนรู้ FOBN นั้น BNL ต้องการข้อมูลอินพุตประเภทฐานข้อมูล ตารางเดี๋ยวดังเช่น ตารางที่ 1 a. (ไม่รวมตารางที่ 1 b.) นั่นคือ อินพุตประกอบไปด้วยตัวอย่าง n ตัวโดยตัวอย่างแต่ละตัว ประกอบไปด้วยค่าของคุณสมบัติ m ค่า โดยตัวอย่างหนึ่งตัว แทนด้วยแถวนอนหนึ่งแถวในตารางอินพต และหนึ่งหลักหรือ แถวตั้ง (column) แทนคณสมบัติหนึ่งตัว จากนั้นในขั้นตอน



รูปที่ 2. ระบบต้นแบบการเรียนรู้และทำนายของตัวจำแนก FOBN

การเรียนรู้ BNL จะสร้างเส้นเชื่อมที่เหมาะสมรวมทั้ง CPT ของโนคเหล่านั้นให้ ดังนั้นถ้าเราต้องการใช้ BNL เรียน FOBN ในลักษณะเคียวกับการเรียน BN เราจึงจำเป็นต้อง สร้าง ฐานข้อมูลตารางเคี่ยวจากข้อมูลอินพุตประเภทข้อมูลเชิง สัมพันธ์ แต่ทว่าการสร้างฐานข้อมูลตารางเคี่ยวจากข้อมูล ลักษณะนี้มีปัญหาครงที่ไม่สามารถกำหนดกุณสมบัติที่ด้องการ ให้แน่ชัดได้เพราะคุณสมบัติที่เป็นไปได้ทั้งหมดในอินพต ประเภทนี้สามารถมีได้มากมายมหาศาล [4,9] ตัวอย่างเช่น อาจ กำหนดให้ความรวยของพ่อแม่เป็นคณสมบัติหนึ่ง ให้ความ รวยของปู่ย่าเป็นคุณสมบัติหนึ่ง (ด้วยการเพิ่มตัวแปรเช่น parent(Z,Y), parent(Y,X)หมายถึงzเป็นปุ่งอง X) เห็น ได้ว่าวิธีนี้สามารถเพิ่มคุณสมบัติของฐานข้อมูลตารางเคี่ยวที่ ต้องการได้อย่างไม่มีที่สิ้นสุด อย่างไรก็ตาม*การแปลงหรื*อลด รูปปัญหาจากข้อมูลเชิงสัมพันธ์ไปเป็นฐานข้อมูลตารางเคี่ยว (propositionalization) นั้นสามารถทำใค้โคยการเลือก เฉพาะคุณสมบัติที่สำคัญหรือลักษณะสำคัญ (feature) ของข้อ มูลมาเป็นแถวตั้งของฐานข้อมูลตารางเคี่ยวก็เพียงพอไม่จำเป็น ต้องนำทุก ๆ คุณสมบัติที่เป็นไปได้มาสร้างเป็นแถวตั้งทั้งหมด อย่างไรก็ตามปัญหาก็คือเราไม่อาจทราบล่วงหน้าว่าต้องกำหนด ความสัมพันธ์ลงไปลึกกี่ขั้นถึงจะได้ลักษณะสำคัญที่ด้องการ (คังเช่นความสัมพันธ์แบบบรรพบุรุษในตัวอย่างที่แล้ว) ซึ่ง ปัญหานี้เป็นปัญหาเคียวกับการเรียนรู้ FOL ของ ILP นั่นเอง ดังนั้นงานวิจัยขึ้นนี้จึงเสนอการสร้างลักษณะสำคัญจำนวนหนึ่ง ที่สำคัญจริง โคยสร้างลักษณะสำคัญเหล่านั้นจาก FOL ที่ได้ จาก ILP ดังเช่นจากตัวอย่างที่ผ่านมาเราสามารถบอกได้ว่า ลักษณะสำคัญของข้อมูลในแง่ความสัมพันธ์ทางบรรพบุรุษจะ จำกัดไม่เกินรุ่นพ่อแม่ (กฎข้อที่สาม)

ระบบต้นแบบในการเรียนรู้ FOBN ที่งานวิจัยนี้เสนอคูได้ที่ วูปที่ 2 จากรูปที่ 2 อธิบายได้ดังนี้ ในขั้นแรกใช้ระบบ ILP สร้าง FOL ตามปกติ หลังจากนั้นนำ FOL ที่ได้มาสร้าง ลักษณะสำคัญ และนำลักษณะสำคัญเหล่านั้นมาสร้าง FOBN โดยใช้ BNL ต่อไป โดยงานวิจัยนี้เสนออัลกอริทึมสองชิ้นคือ

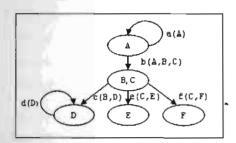
MCAFEE เพื่อใช้ในการค้นหาลักษณะสำคัญต่าง ๆ จาก FOL เพื่อนำมาเป็นคุณสมบัติ (แถวตั้ง) ของฐานข้อมูลตารางเคี่ยวที่ ต้องการ และอัลกอริทึมชิ้นที่สองที่เสนอ คือ GRASP เป็น อัลกอริทึมที่จะสร้างแถวนอนหรือตัวอย่าง (training examples) ในฐานข้อมูลตารางเคี่ยวที่ด้องการ ในงานวิจัยนี้จะเรียก FOBN ที่ถูกเรียนรู้เพื่องานทำนายข้อมูล โดยเฉพาะว่าดัว จำแนก FOBN (FOBN classifier) ซึ่งมีนิยามดังนี้ นิยามที่ 1 (FOBN Classifier). FOBN ใค ๆ จะถูกเรียกว่า เป็น ตัวจำแนก FOBN เมื่อมีคุณสมบัติสองข้อดังค่อไปนี้

- (1) โนคของ FOBN ที่เราสนใจจะทำนายคุณสมบัติ (target node หรือ class node) จะต้องไม่มีโนคลูก (children node) ใดๆ เลย
- (2) โนคพ่อแม่ (parent node) ของโนคที่เราจะทำนายกุณ สมบัติจะต้องเป็นลักษณะสำคัญต่าง ๆ เท่านั้น

จุดมุ่งหมายของ (1) คือการป้องกันไม่ให้โนคที่เราต้องการ ทำนายไปทำนายกุณสมบัติของโนคอื่นซึ่งจะทำให้เราไม่ได้ตัว จำแนก FOBN ที่จะทำนายโนคที่ต้องการ ส่วน (2) มีจุด ประสงค์ในการนำเทคนิกการตรงบางส่วนของกฎมาใช้ทำนาย โนคที่ต้องการ (ดังได้แสคงข้อคีของวิธีนี้ไปแล้ว) รูปที่ 1 เป็น ตัวจำแนก FOBN ที่ตรงตามนิยามที่ 1 โดยโนค £1-£6 หมายถึงลักษณะสำคัญทั้ง 6 ตัว (คูรายละเอียคในหัวข้อถัดไป)

2. อัลกอริทึมในการเรียนรู้ FOBN

MCAFEE (Minimal ChAin FEature Extraction) เป็น อัลกอริทึมที่ใช้ค้นหาลักษณะสำคัญจาก FOL ที่ได้จาก ILP โดยในที่นี้จะเรียกส่วนของ FOL ว่าเชน (chain) เราอาจเรียก ลักษณะสำคัญที่งานวิจัยนี้ด้องการได้อีกอย่างว่า เชนที่สำคัญ (significant chain) โดยคุณสมบัติแรกของเชนที่สำคัญใน งานวิจัยนี้คือต้องไม่ใช่ เชนที่ไม่มีความหมาย (meaningless chain) ในงานวิจัยนี้เชนที่ไม่มีความหมายคือการมีตัวแปร บางตัวในเชนถูกสร้างขึ้นมาโดยไม่ได้สัมพันธ์กับตัวแปรอื่นใน เชน (คู [8,9] เพิ่มเติม) เช่น พิจารณากฎ "rich(x) :-dad(Y, X), rich(Y), good(W)." สังเกตว่าตัวแปร Y ถูกสร้างขึ้นมาโดยสัมพันธ์กับตัวแปร X ทำให้สามารถทำความ เข้าใจ rich(Y) ได้ ขณะที่ตัวแปร พ ถูกสร้างขึ้นมาอย่างไม่ สัมพันธ์กับตัวแปรอื่นทำให้ไม่สามารถตีความหมายได้ชัดเจน นะนั้นจากกฎข้อนี้เชนใด ๆ ที่มี good(W) อยู่จะไม่ถูกเลือกให้ เป็นลักษณะสำคัญ วิธีในการสร้างเชนที่สำคัญจาก FOL ของ MCAFEE ได้แนวคิดจาก [8] โดยจะมองกฎ FOL เสมือน เป็นกราฟแบบระบุทิศทาง (directed graph) เช่นจากกฎ "r(A) :-a(A),b(A,B,C),c(B,D),d(,D),e(C,E), f(C,F)." สามารถสร้างกราฟแบบระบุทิศทางได้ดังรูปที่ 3



รูปที่ 3. กราฟแบบระบุทิศทาง

งานวิจัยนี้เรียกเชนที่มีความหมายอีกชื่อหนึ่งว่า เชนที่ถูก ต้อง (valid chain) โดยนิยามได้คังนี้

นิยามที่ 2 (valid chain). เมื่อมองกฎ FOL หนึ่ง ๆ เสมือน เป็นกราฟแบบระบุทิศทางแล้ว เส้นทาง (path) จากโนคราก ไปยังโนคใด ๆ คือเชนที่ถูกต้องก็ต่อเมื่อเส้นทางนั้นมีคุณสมบัติ ใดคุณสมบัติหนึ่งต่อไปนี้ (1) เส้นทางนั้นมีวงวน (loop) เกิด ขึ้น หรือ (2) เส้นทางนั้นมีโนคที่เป็นโนคใบ (leaf node) อยู่ ในเส้นทาง

โดย โนดใบในงานวิจัยนี้หมายถึง โนคที่ไม่มีเส้นเชื่อมออก จากตัวมันเอง เงื่อนไข (I) และ (2) ถูกสร้างขึ้นเพื่อต้องการ ให้แต่ละเชนที่ถูกต้องมีข้อมูลที่ครบถ้วนจากกฎ FOL เดิมให้ มากที่สุดเท่าที่เป็นไปได้นั่นเอง ทั้งนี้เพื่อต้องการสร้างลักษณะ ที่สำคัญจริง ๆ จากกฎของ FOL (ดู [8] เพิ่มเติม) อย่างไรก็ ตามในนิยามที่ I ได้กำหนดว่าลักษณะสำคัญทั้งหมดจะเป็น โนคพ่อแม่ของโนคที่ต้องการทำนาย ซึ่งหมายความว่าต้องมี การคำนวณค่าความน่าจะเป็นภายหลังทั้งหมดทุกรูปแบบที่เป็น ไปได้ของลักษณะสำคัญหรือโนคพ่อแม่ทั้งหมดใน CPT ของ โนคที่ต้องการทำนาย ดังนั้นถ้าเลือกทุก ๆ เชนที่ถูกต้องเป็น ลักษณะสำคัญของโนคที่ค้องการทำนายอาจทำให้เกิดความช้ำ ซ้อน (redundant) ได้โดยไม่จำเป็น ตัวอย่างเช่นจากรูปที่ 3 "b(A,B,C), e(C,E), f(C,F)" เป็นเชนที่ถูกต้องแต่ซ้ำ

ซ้อนเนื่องจากสามารถเกิดจากการรวมกัน (combination) ของเชนที่ถูกต้องสองเชนคือ "b(A,B,C), e(C,E)" กับ "b(A,B,C),f(C,F)" คังนั้นในการสร้างลักษณะสำคัญ MCAFEE จะสร้างเฉพาะเชนที่ถูกต้องและไม่ซ้ำซ้อนเท่านั้น โคยจะเรียกเชนประเภทนี้ว่า เชนที่ถูกต้องเล็กสุด (minimal valid chain) และนิยามดังนี้

นิยามที่ 3 (minimal valid chain). เชนที่ถูกต้อง r ใด q เล็ก ที่สุดก็ต่อเมื่อ ไม่มีเชนที่ถูกต้องอื่น q r' ที่มีคุณสมบัติ $r' \subseteq r$

ตัวอย่างของเชนที่ถูกต้องเล็กสุดหรือลักษณะสำคัญจากรูปพื่ 3 ที่สร้างโดย MCAFEE แสดงได้ในรูปที่ 4 และเชนที่ถูก ต้องเล็กสุดทั้งหมดของ FOL สามกฎในตัวอย่างของหัวข้อที่ 1 แสดงในรูปที่ 5

```
f1(A) :- a(A).

f2(A,B,C,D) :- b(A,B,C),c(B,D),d(D).

f3(A,B,C,E) :- b(A,B,C),e(C,E).

f4(A,B,C,F) :- b(A,B,C),f(C,F).
```

รูปที่ 4. ลักษณะสำคัญจากรูปที่ 4 ที่สร้างโดย MCAFEE

```
f1(A) :- genius(A).
f2(A) :- diligent(A).
f3(A) :- artist(A).
f4(A) :- save_money(A).
f5(A,B) :- parent(B,A),rich(B).
f6(A,B) :- parent(B,A),genius(B).
```

รูปที่ 5. ลักษณะสำคัญจากตัวอย่างในหัวข้อที่ 1

อัลกอริทึม GRASP (GRound substitution AS example Propositionalization) เป็นอัลกอริทึมในการสร้าง แถวนอนหรือคัวอย่างของข้อมูลที่มีความสัมพันธ์ต่อกันเมื่อแปลงรูป บางกรณีตัวอย่างของข้อมูลที่มีความสัมพันธ์ต่อกันเมื่อแปลงรูป ไปเป็นฐานข้อมูลตารางเดี๋ยวตามแถวตั้งที่กำหนดแล้ว สามารถ เปลี่ยนเป็นแถวใหม่มากกว่าหนึ่งได้เช่น พิจารณาตัวอย่างใน หัวข้อที่ 1 อีกครั้ง สมมุติให้นาย a เป็นตัวอย่างหนึ่งในข้อมูล อิน์พุตเชิงสัมพันธ์และให้นาย a มีพ่อบุญธรรมอยู่อีกหนึ่งคน (นาย h) ซึ่งมีคุณสมบัติดังนี้ parent (h, a). genius (h). จากตัวอย่างนี้ เมื่อมีการแปลงข้อมูลให้ไปอยู่ในรูปฐานข้อมูล ตารางเดี๋ยวแล้วจะเปลี่ยนเป็นสองตัวอย่างใหม่ดังแสดงในตาราง ที่ 2 (ดู f1-f6 ในรูปที่ 5)

ตารางที่ 2. ข้อมูลของนาย a (หัวข้อที่ 1) เมื่อแปลงให้อยู่ในรูป ฐานข้อมูลตารางเดี่ยว

case	honding.	EX	12	t)	£4	£5	16
a	A/a,B/e	1	0	0	1	1	0
~	A/a,B/h	1	0	0	1	0	1

โดยกรณีแรกนาย a มีพ่อที่รวย (นาย e) ส่วนในกรณีที่สอง นาย a มีพ่อที่ฉลาด (นาย h) แต่ว่าไม่ใช่คนเดียวกัน โดย [5] เสนอให้ใช้ การแทนค่าพื้นฐาน (ground substitution: GS หรือ variable binding) ทั้งหมดทุกกรณีเป็นตัวอย่างใหม่ทั้ง หมดในฐานข้อมูลตารางเดี่ยว (โดยถือว่าตัวอย่างใหม่ทั้งหมดที่ เกิดจากตัวอย่างเดิมนั้นไม่มีความข้องเกี่ยวต่อกันและกันเลย) ดัง เช่น GS สองกรณีของนาย a ในตารางที่ 2 เกิดเป็นตัวอย่างใหม่ สองตัว โดยวิธีนี้มีข้อดีสองข้อคือ ข้อแรกการแปลงข้อมูล ประเภทนี้ทำให้เกิดข้อมูลใหม่เป็นฐานข้อมูลตารางเดี๋ยวที่แท้ จริงทำให้สามารถใช้ BNL เรียนรู้ได้ทันทีไม่ต้องปรับแต่งข้อ มูลอีก และข้อดีข้อที่สองคือความสัมพันธ์ระหว่างโนคที่สร้าง ได้จากวิธีนี้จะมีความสมบูรณ์สูงกว่า (strong completeness) บางงานวิจัยเช่น [8,9] ที่เสนอให้นำเฉพาะ GS เดียวที่กิดว่าดีที่ สุดมาเป็นตัวอย่างใหม่ (เนื่องจากวิธีเหล่านั้นไม่ใช้ข้อมูลทั้ง หมดที่มีให้เกิดประโยชน์สูงสค) พิจารณาตารางที่ 3

ตารางที่ 3. ตัวอย่างของความสมบูรณ์สูงกว่าใน GS

		Ministra.		TEAL TEAL	藍	ZA.
E1	+	θ_{E11}	1	0	0	1
		θ_{E12}	0	1	0	0
E2	+	θ_{E21}	0	1	0	0
		θ_{E22}	1	0	0	1
E3	+	θ_{E31}	0	0	1	1
1		θ_{E32}	1	0	1	0
E4	-	θ_{E41}	0	0	1	0
		θ _{E42}	1	0	0	0
E5	-	θ_{E51}	1	0	1	0
		θ_{E52}	1	0	0	0

จากตารางที่ 3 เห็นได้ว่าเนื่องจากความน่าจะเป็นภายหลัง p(+|f2) และ p(+|f4) มีค่า 1.0 ในขณะที่ p(+) คำนวณได้ 0.6 ฉะนั้น โนค class จึงขึ้นกับ (depend on) โนค f2 และ f4 แต่ถ้าเลือกเพียงหนึ่ง GS ในตัวอย่างเคิมเป็นตัวอย่าง ใหม่จะทำให้คำนวณได้ว่าโนค class ขึ้นกับโนค f2 หรือ f4 โนคใดโนคหนึ่งเท่านั้นซึ่งไม่ครบถ้วน

อย่างไรก็ตามการเลือกทุก ๆ GS เป็นตัวอย่างใหม่อาจทำให้ เกิดปัญหาสองอย่างคือ ปัญหาข้อแรกคือจำนวนตัวอย่างใหม่ที่ ได้อาจมีมหาศาลทำให้หน่วยความจำในการเก็บ ฐานข้อมูล ตารางเดี่ยวไม่เพียงพอ ปัญหาข้อที่สองคือวิธีนี้อาจทำให้เกิด ความผิดพลาดในการเรียนรู้ได้เช่น กรณีในตารางที่ 4

จากตารางที่ 4 เห็นได้ว่าความน่าจะเป็นภายหลังของ p(+|f4) คำนวณได้ 0.5 ในขณะที่ p(+) คำนวณได้ 0.4 เนื่อง จากค่าความน่าจะเป็นทั้งสองค่าใกล้เคียงกันอาจทำให้ BNL สรุปว่าโนค class เป็นอิสระต่อโนค f4 ซึ่งไม่ถูกต้องเนื่อง

ตารางที่ 4. กรณีตัวอย่างเจ็ดตัวเดิมถูกเปลี่ยนเป็นสิบตัว

case	cluss	Linding	11	f2	E3	14
El	+	θ_{E11}	1	0	0	1
E2	+	θ_{E21}	1	0	0	1
E3	+	θ_{E31}	0	0	1	1
E4	+	θ_{E41}	0	0	0	1
E5	-	θ_{ES1}	1	0	1	0
E6	-	$\theta_{\rm E61}$	1	0	1	0
E7	-	θ_{E71}	0	0	0	1
		θ_{E72}	0	0	0	1
		θ_{E73}	Ō	0	0	1
		θ _{E74}	0	0	0	1

จากในความเป็นจริงมีตัวอย่างลบเพียงตัวอย่างเคียว (E7) ที่ ขัด แย้งกับตัวอย่างบวกสี่ตัวอย่าง (หรือ p(+ | £4) = 0.8)

GRASP แก้ปัญหาทั้งสองข้อข้างค้นโดยการเลือกเพียงบาง GS เป็นตัวอย่างใหม่เท่านั้นโดยจะเลือกเฉพาะ GS ที่ไม่ช้ำ (non-duplicate) และมีความเฉพาะเจาะจงมากที่สุด (maximal specific binding: MSB) โดย MSB มีนิยามดังนี้

นิยามที่ 4 (maximal specific binding). เมื่อกำหนค ω คือ GS ใค ๆ กำหนดให้ $f(\omega)$ คือเซตของลักษณะสำคัญทั้งหมคที่ เป็นจริงของ ω พิจารณา GS θ ของแต่ละตัวอย่างเคิม e θ เป็น MSB ก็ต่อเมื่อไม่มื α ซึ่งเป็น GS อื่นของ e ที่ $f(\theta)$ \subseteq $f(\alpha)$

จากนิยามที่ 4 พิจารณาตารางที่ 5 MSB ที่ไม่ซ้ำ (non-duplicate MSB) จากตารางมีสี่กรณีคือ θ_{E11} θ_{E13} θ_{E21} และ θ_{E22} สังเกตว่า θ_{E14} ก็เป็น MSB แต่ซ้ำกับ θ_{E11} เช่นเคียวกับ θ_{E23} ซึ่งซ้ำกับ θ_{E22} ฉะนั้นตัวอย่างใหม่ที่สร้างโดย GRASP มีเพียง GS สี่กรณีข้างต้นเท่านั้น .

ตารางที่ 5. กรณีตัวอย่างสองตัวเดิมเปลี่ยนเป็นแปดตัวใหม่

cane	CAMBE	U.				140
E1	+	0 _{E11}	1	1	0	1 .
		θ _{E12}	0	1	0	1
		θ_{E13}	0	1	1	0
		θ_{E14}	1	1	0	1
E2	-	θ_{E21}	1	1	0	1
		θ_{E22}	0	0	1	0
		θ_{E23}	0	0	1	0
		θ_{E24}	1	1	0	0

3. ผลการทดลองเบื้องต้น

การทคลองเบื้องค้นนี้ใช้ชุดข้อมูล (dataset) ของความสามารถ ในการก่อกลายพันธุ์ของโมเลกุล (mutagenesis) [8] ในการ ทคลองนี้ระบบต้นแบบของเราได้เลือกใช้ระบบ ILP คือ

PROGOL (เวอร์ชัน CProgol4.2) [12] ในการสร้าง FOL และใช้โปรแกรม WinMine [3] เป็น BNL ในขั้นตอนการ ทำนายของการทคลองครั้งนี้ใช้เทคนิค 3CV (3-fold crossvalidation) [11] นอกจากนี้การทดลองนี้ยังได้เพิ่มสัญญาณ รบกวนอย่างสุ่มจำนวน 10% และ 15% ในชุดข้อมูลนี้อีกด้วย เพื่อทคสอบประสิทธิภาพในการรับมือของสัญญาณรบกวนของ FOBN เนื่องจากระบบ PROGOL อนุญาคให้ผู้ใช้ปรับ เปลี่ยนตัวเลือก (option) เพื่อรับมือกับสัญญาณรบกวนได้อยู่ แล้ว การทดลองครั้งนี้จึงได้ลองปรับค่าตัวเลือกต่าง ๆ ของ PROGOL (คังแสคงใน "x% noise setting") แล้วนำผลที่ ได้มาเปรียบเทียบกับผลการทดลองจาก FOBN ผลการ ทคลองที่ได้แสดงในตารางที่ 6 เห็นได้ว่าเมื่อไม่มีสัญญาณรบ กวนภายในชคข้อมล ผลการทำงานของ FOBN มีประสิทธิ ภาพใกล้เคียงกับ PROGOL แต่ว่าผลการทำงานของ FOBN ในชุดข้อมูลที่มีสัญญาณรบกวนให้ความถูกต้องสูงกว่า PROGOL อย่างมากในทุกกรณี ความถูกต้องที่สูงกว่านี้เมื่อ วิเคราะห์แล้วเกิดจากสาเหตุใหญ่สองประการคือ 1) ลักษณะ สำคัญที่ได้จาก MCAFEE ช่วยให้การใช้เทคนิคการตรงบาง ส่วนของกฎได้อย่างมีประสิทธิภาพ (คูบทวิเคราะห์เพิ่มใน [8]) 2) การใช้ทฤษฎีความน่าจะเป็นของ FOBN ช่วยให้การใช้งาน ลักษณะสำคัญมีความยืคหย่นมากยิ่งขึ้น

4. สรุป

งานวิจัยนี้เสนอการเรียนรู้ตัวจำแนกข้อมูลชนิค FOBN ซึ่ง เป็นตัวจำแนกประเภทข้อมูลที่มีความสามารถสูง เนื่องจาก รวมความสามารถของ FOL และ BN ไว้คัวยกันทำให้สามารถ เรียนรู้จากข้อมูลเชิงสัมพันธ์และข้อมูลที่ไม่สามารถแบ่งกลุ่มได้ แบ่นอนได้ดี

กิตติกรรมประกาศ

ผู้เขียนขอขอบคุณคร.สุกรี สินธุภิญโญที่ได้แลกเปลี่ยนความ คิด เห็นในงานวิจัยชิ้นนี้ ขอขอบคุณ Dr. David Maxwell Chickering และ Daniel Lowd สำหรับการช่วยเหลือใน ปัญหาต่าง ๆ ของโปรแกรม WinMine งานวิจัยชิ้นนี้ได้รับการ สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

Reference

- M. Botta and A. Giordana and L. Saitta and M. Sebag. Relational learning: Hard Problems and Phase transition. Selected papers from AIIA'99, Springer-Verlag, 2000.
- D. M. Chickering. Learning Bayesian Networks is NP-Complete. In D. Fisher and H. J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V, 1996.
- D. M. Chickering. The WinMine Toolkit. Technical Report MSR-TR-2002-103, Microsoft, 2002
- L. De Raedt. Attribute value learning versus inductive logic programming: The missing links (extended abstract). In D. Page, editor, Proc. of the 8th Int. Conference on Inductive Logic Programming, pages 1-8. Springer-Verlag, 1998.
- D. Fensel, M.Zickwolff, and M. Weise. Are substitutions the better examples? In L. De Raedt, editor, Proc. of the 5th International Workshop on ILP, 1995.
- L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning Probabilistic Relational Models. *Relational Data Mining*, S. Dzeroski and N. Lavrac, editors, 2001
- K. Kersting, L. De Raedt. Basic Principles of Learning Bayesian Logic Programs. *Technical Report No. 174*, University of Freiburg, Germany, June 2002
- B. Kijsirikul, S. Sinthupinyo, and K. Chongkasemwongse. Approximate Match of Rules Using Backpropagation Neural Networks. *Machine Learning Journal*, 2001
- S. Kramer, N. Lavrac and P. Flach. Propositionalization Approaches to Relational Data Mining, in: Dzeroski S., Lavrac N, editors, Relational Data Mining, 2001.
- N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. Ellis Horwood, 1994
- 11. T. Mitchel. Machine Learning. McGraw-Hill, 1997.
- S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming, 13(3-4):245-286, 1995.
- 13. J. Pearl. Causality. Addison Wesley, 2001.

ตารางที่ 6. เปอร์เซ็นต์ความถูกต้องในปัญหาความสามารถในการก่อกลายพันธุ์ของโมเลกุล

Noise Level in Dataset	PROGOL 0% noise setting	PROGOL 5% noise setting	PROGOL 10% noise setting	PROGOL 15% noise setting	PROGOL +FOBN
0%	84.58	82.99	77.14	77.14	84.34
10%	64.23	65.42	69.72	71.29	78.67
15%	60.56	59.02	61.54	65.31	74.33

การเรียนรู้โปรแกรมตรรคะโดยนิวรอลเน็ตเวิร์กอันดับที่หนึ่ง Learning Logic Programs by First-Order Neural Networks

ธนุพล เลิศลำเนาชัย และ บุญเสริม กิจศิริกุล ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ถนนพญาไท ปทุมวัน กรุงเทพฯ 10500 Email: g46tll@cp.eng.chula.ac.th, boonserm.k@chula.ac.th

Abstract

The advantages of Inductive Logic Programming The are the ability of employing background knowledge m form of first-order logic and its highly expressive refresentation. Nevertheless, an ILP system is not robust enough to noisy or unseen data. Moreover in multi-class constitution, if the noisy example is not matched with learned rules, it cannot be classified. In this paper we present a new learning method that alleviates this mobilem by enabling Neural Networks to handle firstorder logic programs directly. The proposed method is called the First-Order Neural Network (FONN). FONNs can receive First-Order Logic programs as the input of the networks. Our proposed method has been evaluated on the Finite Element Mesh Design, a first-order learning dataset. The experimental results show that the proposed method provides more accurate result than the ILP

บทคัดย่อ

การโปรแกรมครรกะเชิงอุปนัยหรือระบบใอแอลพี ขึ้นการเรียนรู้ของเครื่องรูปแบบหนึ่งซึ่งมีข้อดีที่สามารถนำ ขึ้นรู้ภูมิหลังมาใช้ในการเรียนรู้ได้และกฎที่ได้สามารถอธิบาย ขึ้นได้อย่างกว้างขวาง อย่างไรก็ตามระบบไอแอลพีเป็น ขึ้นผลพื้มาจำแนกข้อมูลลี่กับสัญญาณรบกวน เมื่อนำระบบ ใช้แลลพื้มาจำแนกข้อมูลลักษณะนี้อาจทำให้การจำแนก หลักผลได้ เนื่องจากไม่มีกฎที่ตรงกับตัวอย่างนั้น นอกจากนี้ใน ขึ้น้ำจักฎไปใช้จำแนกตัวอย่างแบบหลายประเภทและไม่มี ให้ งานวิจัยนี้นำเสนอระบบการเรียนรู้วิธีใหม่ที่นำนิวรอล เน็คเวิร์กมาประยุกด์เข้ากับระบบ ไอแอลพี ทำให้ระบบยืดหยุ่น
ขึ้น และสามารถรับอินพุคในรูปแบบของตรรกะอันคับที่หนึ่ง
มาทำการเรียนรู้ได้โคยตรง โดยเรียกระบบนี้ว่า นิวรอลเน็ตเวิร์ก
อันคับที่หนึ่ง และจากการทคสอบกับข้อมูลการวิเคราะห์ไฟ
ในต์เอลิเมนต์ พบว่าผลการทคลองที่ได้จากนิวรอลเน็ตเวิร์ก
อันคับที่หนึ่งมีเปอร์เซ็นต์ความถูกต้องสูงกว่าระบบ ไอแอลพี

Key-words: Inductive Logic Programming, First-Order Logic, Neural Networks

1. บทน้ำ

การเรียนรู้ของเครื่อง (Machine learning)[1] เป็น แนวคิดที่ต้องการสร้างโปรแกรมคอมพิวเตอร์ให้สามารถเรียนรู้ จากตัวอย่างที่ผู้สอนได้จัดเตรียมไว้ให้ โดยโปรแกรมที่สร้างขึ้น นั้นต้องสามารถสร้างแนวคิด (concept)ที่สอดกล้องกับตัวอย่าง ที่ได้รับจากผู้สอนและสามารถนำแนวคิดที่ได้นั้นไปใช้ในการ จำแนกตัวอย่างใหม่ในอนาคตได้อย่างถูกต้อง การเรียนรู้ของ เครื่องมีหลายประเภทด้วยกัน เช่น การโปรแกรมตรรกะเชิง อุปนัย (Inductive Logic Programming: ILP)[1-3] นิวรอล เน็ตเวิร์ก (Neural Networks)[1, 4] เน็ตเวิร์กเบย์ (Bayesian Networks)[1] ต้นไม้ตัดสินใจ (Decision Tree)[1] เป็นต้น การเรียนรู้ของเครื่องแต่ละประเภทก็เหมาะที่จะนำไปใช้กับงาน ในลักษณะต่างๆกัน

การ โปรแกรมตรรกะเชิงอุปนัยหรือใอแอลพีเป็น วิธีการเรียนรู้ของเครื่องประเภทหนึ่งซึ่งนำหลักการทางตรรกะ

มาประยุกค์ใช้ ทำให้มีข้อคีที่แตกต่างจากการเรียนรับอง เครื่องแบบอื่นๆ เนื่องจากแนวคิคที่ใค้จากการเรียนจะอยู่ใน รูปแบบของตรรกะอันดับที่หนึ่ง (First-Order Logic) ซึ่งเป็น ลักษณะของการอธิบายความรู้ของมนุษย์ ทำให้เข้าใจได้ง่ายกว่า แนวคิดที่ใค้จากวิธีอื่น นอกจากนี้ตรรกะอันดับที่หนึ่ง ยังใช้ อธิบายแนวคิดที่สับส้อนได้ดีกว่าตรรถศาสตร์ประพจน์ (Propositional Logic) อีกด้วย ปกติแล้วระบบไอแอลพี่มักจะ ถูกนำมาใช้ในการจำแนกตัวอย่างที่มี 2 ประเภท (class) โคยไอ แอลพีจะรับอินพุดเป็นความรู้ภูมิหลัง (Background Knowledge) ตัวอย่างบวก (positive example) และตัวอย่าง ลบ (negative example) แล้วจะพยายามสร้างกฎหรือแนวคิดที่ ครอบคลุมตัวอย่างบวกแต่ไม่ครอบคลุมตัวอย่างลบ โดยเมื่อนำ กฎที่ได้ใปใช้จำแนกตัวอย่างทคสอบ ตัวอย่างนั้นจะถูกจำแนก ว่าเป็นตัวอย่างบวกถ้าตรงกับกฎ แต่ถ้าไม่คร[ึ]งก็จะจำแนก พัวอย่างนั้นเป็นตัวอย่างลบ อย่างไรก็ตาบถ้าตัวอย่างที่นำมา จำแนกมีความผิดพลาด เช่น ถูกสัญญาพรบกวนทำให้ข้อมูล บางส่วนหายไป ก็จะทำให้การจำแนกข้อมูลมีความผิดพลาดไป ด้วย นอกจากนี้ถ้าเรานำระบบไอแคลพีไปใช้ในการจำแนก ตัวอย่างแบบหลายประเภท (Multiclass Classification) คัวอย่างที่ทำการจำแนกค้องสอคคล้องกับกฎจึงจะสามารถ จำแนกได้ว่าตัวอย่างนั้นอยู่ประเภทใจ ซึ่งการที่ข้อมูลมีสัญญาณ รบกวนอาจทำให้ตัวอย่างนั้นไม่สามารถถกจำแนกได้ว่าอย่ ประเภทใดและทำให้ความแม่นยำในการจำแนกตัวอย่างลดลง

เนื่องด้วยข้อจำกัดที่ไม่สามารถจำแนกตัวอย่างใน ลักษณะนี้ได้ จึงมีงานวิจัยที่นำเสนอแนวทางเพื่อเพิ่มความ แม่นยำของการจำแนกตัวอย่าง โดยParekhitaะHonavar[5] ได้ ประชุกต์การเรียนรู้ทางตรรกะเข้ากับนิวรอลเน็ตเวิร์กทำให้ ทนทานต่อข้อมูลที่มีสัญญาณรบกวนได้ดีขึ้น แต่ว่าตรรกะที่ใช้ ยังเป็นลักษณะของตรรกศาสตร์ประพจน์อยู่ Kijsirikulและ คณะ[6]ได้เสนอวิธีที่สามารถใช้ตรรกะอันดับที่หนึ่งร่วมกับ นิวรอลเน็ตเวิร์กได้ ทำให้มีความยืดหยุ่นมากกว่าระบบไอแอลพี และทำให้ค่าความแม่นยำสูงขึ้น แต่ว่าวิธีที่ใช้นั้นในขั้นตอนแรก จำเป็นต้องใช้ระบบไอแอลพีมาทำการสร้างกฎขึ้นมาก่อน แล้ว จึงนำลักษณะสำคัญของกฎที่ได้มาเรียนรู้ด้วยนิวรอลเน็ตเวิร์ก อีกครั้งหนึ่ง วิธีนี้แม้ว่าจะทำให้ผลในการจำแนกตัว_{อย่างส} แค่ว่ายังจำเป็นต้องพึ่งระบบไอแอลพีอยู่

ในงานวิจัยนี้จะนำเสนอการเรียนรู้แบบใหม่ที่อีกหู ขึ้น โดยนำนิวรอลเน็ตเวิร์กมาประยุกต์เข้ากับการโปรแล ตรรกะเชิงอุปนัย แต่ว่าสามารถรับอินพุตในรูปแบบของครส อันดับที่หนึ่งมาทำการเรียนรู้ได้โดยตรง ไม่ต้องใช้ระบบไข พีมาช่วยในการเรียนรู้ วิธีการที่นำเสนอนี้สามารถจัดกรล่ ข้อจำกัดของระบบไอแอลพีได้และให้ผลที่แม่นยำมากขึ้นโ เรียกวิธีการที่พัฒนาขึ้นนี้ว่า นิวรอลเน็ตเวิร์กอันดับที่ผู้ (First-Order Neural Networks: FONNs)

2. นิวรอลเน็ตเวิร์กอันดับที่หนึ่ง

เนื้อหาในส่วนนี้จะอธิบายถึงการเรียนรู้ของนิว เน็คเวิร์กอันคับที่หนึ่ง โคยจะแบ่งอธิบายออกเป็นส่วนๆ โครงสร้างของนิวรอลเน็คเวิร์กอันคับที่หนึ่ง อินพุคของนิท เน็คเวิร์กอันคับที่หนึ่งโคยหลักการเรียนรู้แบบหลายตัวอย่าง (Multiple-Instance Learning: MIL)[7, 8] และในส์ สุดท้ายเป็นวิธีการปรับค่าน้ำหนักของนิวรอลเน็ตเวิร์กอันท์

2.1 โครงสร้างของนิวรอณน์ดเวิร์กอันดับที่หนึ่ง

เนื่องจากนิวรอลเน็ตเวิร์กอันคับที่หนึ่งนั้นเป็นระ การเรียนรู้ที่เราพัฒนามาจากนิวรอลเน็ตเวิร์ก คังนั้น โครงสร้างก็จะมีพื้นฐานมาจากโครงสร้างของนิวรอลเน็ตเรี แต่ประยุกต์ให้รับตัวอย่างและความรู้ภูมิหลังในรูปแบบ ครรถะใต้ โครงสร้างของนิวรอลเน็ตเวิร์กอันคับที่หนึ่งจะผ ออกเป็น 3 ชั้นค้วยกัน คือ ชั้นนำเข้า (input layer) เช้นต่ (hidden layer) และชั้นผลลัพธ์ (output layer) ในแต่ละที่ จะมีความหมายและหน้าที่คังต่อไปนี้

> 1) ชั้นนำเข้า เป็นชั้นที่แสคงถึงสัญพจน์ (predication) ค่างๆที่จะนำมาใช้ เป็นคัวแทนของกฎ^{หรื} แนวคิดในการเรียน โดยจะเป็นชั้นแรกในก^{หรื} ข้อมูลก่อนที่จะผ่านไปยังชั้นค่อๆไป จำ^{มาใ} นิวรอนในชั้นนี้จะขึ้นอยู่กับจำนวนสัญพจน์ที่ ความรู้ภูมิหลัง

ตัวอย่างเ การเรียน

poor(Jol พุ่มเพื่อะ poor(Pe และไม่เเ แบ็งแรง พลังอยู่: weak(x)

รูปที่ 2.

ชั้นช่อน เป็นชั้นที่เชื่อมต่อระหว่างชั้นนำเข้าและ ชั้นผลลัพธ์ ช่วยเพิ่มความสามารถในการเรียนกฎ ที่มีความซับซ้อนได้ จำนวนนิวรอนในชั้นนี้ มักจะกำหนดโดยดูจากความซับซ้อนของแนวคิด ที่ต้องการเรียนร้

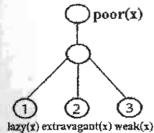
Sim.

3) ชั้นผลลัพธ์ เป็นชั้นที่แสดงถึงแนวคิดที่ต้องการ ให้ระบบทำการเรียนรู้ โดยชั้นนี้จะคำนวณหา ผลลัพธ์สุดท้ายของเน็ตเวิร์ก จำนวนนิวรอนใน ชั้นผลลัพธ์จะขึ้นอยู่กับจำนวนแนวคิดทั้งหมดที่ ต้องการเรียน

รู แบบ การเรียนแนวกิคของ poor(x) ซึ่งมีอินพุตที่ใช้ใน

ปที่ 1. อินพุตสำหรับการเรียนแนวคิค poor(x)

และ ได้กับประกอบไปค้วยตัวอย่างบวก เ ตัว คือ โดย ได้กับ ซึ่ง John เป็นคนเกียงคร้าน (lazy(John))และ เป็นคน (extravagant(John)) มีตัวอย่างลบ 2 ตัว คือ เป็นคนเกียงคร้าน (ar poor(Bob) โดยที่ Peter เป็นคนเกียงคร้าน เมื่งแรง (weak(Peter)) Bob เป็นคนฟุ่มเพื่อยและไม่ เป็นคนตั้ได้รับมีจำนวนสัญพจน์ที่ปรากฏในความรู้ภูมิ เละ 3 ตัวด้วยกัน คือ lazy(x), extravagant(x) และ



มระชุ(x) extravagant(x) weak(x) มีที่ 2 ลักษณะโครงสร้างของเน็ตเวิร์กโดยกำหนดให้ในชั้น ช่อนมี 1 นิวรอน

คังนั้นในชั้นนำเข้าจะมีอยู่ 3 นิวรอน เพื่อแทนลักษณะทั้ง 3 สัญ พจน์นั้น ส่วนจำนวนนิวรอนในชั้นผลลัพธ์จะมีเพียง 1 นิวรอน เท่านั้น เนื่องจากแนวคิดที่ต้องการเรียนมีเพียง 1 แนวคิดเท่านั้น คือ poor(x) คังแสดงในรูปที่ 2

2.2 อินพุดของนิวรอลเน็ตเวิร์กอันดับที่หนึ่งโดยหลักการเรียนรู้ แบบหลายตัวอย่างย่อย

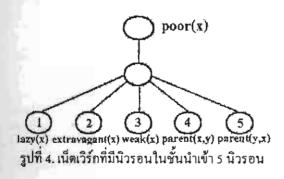
2.2.1 อินพุตของนิวรอลเน็ตเวิร์กอันดับที่หนึ่ง

โดยปกติแล้วอินพุดของนิวรอลเน็ตเวิร์กจะอยู่ในรูป ของจำนวนจริง แต่ว่าอินพุดของระบบไอแอลพีจะอยู่ในรูปของ ตรรกะ (ความรู้ภูมิหลังและด้วอย่าง) คังนั้นจึงต้องเปลี่ยนอินพุด ที่เป็นลักษณะของตรรกะไปเป็นอินพตที่สามารถเรียนร้ไค้โดย นิวรอลเน็ตเวิร์กเสียก่อน การเปลี่ยนจะทำทีละ 1 ตัวอย่าง ทีละ 1 นิวรอน โดยตัวอย่าง 1 ตัวจะถูกเปลี่ยนให้เป็นค่า 1 เพื่อเป็น อินพุคของนิวรอน ถ้าแทนค่าตัวแปรในสัญพจน์ประจำนิวรอน ค้วยค่าคงที่ที่ปรากฏในตัวอย่างแล้วมีค่าความจริงเป็นจริงใน ความรู้ภูมิหลัง แต่ถ้าไม่เป็นจริงในความรู้ภูมิหลังก็จะ กำหนดให้อินพุตของนิวรอนมีค่าเป็น 0 ตัวอย่างเช่น จาก ตัวอย่างอินพุศในรูปที่ 1 เมื่อเปลี่ยนตัวอย่าง poor(John) ไป เป็นอินพุตของเน็ตเวิร์กแล้ว จะได้ค่าอินพุตของนิวรอน lazy(x), extravagant(x) และ weak(x) เป็น i, i และ 0 ตามลำคับ เนื่องจากเมื่อแทนตัวแปร x ในสัญพจน์ของแต่ละ นิวรอนด้วย John ซึ่งเป็นค่าคงที่ของตัวอย่าง poor(John) แล้ว จะใค้เป็น lazy(John), extravagant(John) และ weak(John) ซึ่ง lazy(John) และ extravagant(John) เป็นจริง ในความรู้ภูมิ หลังจึงให้ค่าอินพุคของนิวรอนเป็น 1 ในขณะที่ weak(John) ู้ใม่เป็นจริงในความรู้ภูมิหลัง จึงมีค่าเป็น 0 สำหรับตัวอย่าง ้poor(Peter) และ poor(Bob) จะได้ค่าอินพุดของนิวรอนเป็น 1.0.1 และ 0.1.1 คามลำคับ

อย่างไรก็ตามเนื่องจากแนวกิดที่ได้จากระบบไอแอลพื้ อาจมีการสร้างตัวแปรใหม่ขึ้นในสัญพจน์โดยที่ตัวแปรนั้นไม่ ปรากฏอยู่ในส่วนหัวของกฎ ตัวแปรใหม่ที่สร้างขึ้นนั้นเพื่อ นำมาใช้อธิบายความสัมพันธ์ที่เกี่ยวข้อง (relation) กันของแต่ ละสัญพจน์ อย่างเช่น poor(x) parent(y,x), poor(y), lazy(x) ซึ่งมีการสร้างตัวแปร y ขึ้นมาเพื่อแสดงความสัมพันธ์ ระหว่างสัญพจน์ parent(y,x) และ poor(y) แต่ว่าการสร้างตัว แปรขึ้นใหม่ในลักษณะนี้จะทำให้การสร้างอินพุคสำหรับ นิวรอนเกิดปัญหาความไม่แน่นอนขึ้น เช่น ถ้าความรู้ภูมิหลัง และตัวอย่างที่รับเข้ามามิลักษณะเป็นคังรปที่ 3

รูปที่ 3. อินพุศที่เพิ่มสัญพจน์ parent(x,y) ในความรู้ภูมิหลัง

ใบกรณีนี้โครงสร้างของเน็ตเวิร์กจะมีความซับซ้อน มากขึ้นเนื่องจากในความรู้ภูมิหลังมีสัญพจน์ parent(x,y) เพิ่ม เข้ามา และเนื่องจากสัญพจน์นี้มีอาร์กิวเมนต์ 2 ตัวและเราไม่ สามารถรู้ใค้ว่าอาร์กิวเมนต์ 2 ตัวนี้ควรมีการวางตำแหน่ง อย่างไร จึงได้ทำการสร้างนิวรอนขึ้นมาสำหรับทั้ง 2 กรณี คือ parent(x,y) และ parent(y,x) ทำให้จำนวนนิวรอนในชั้นนำเข้า เพิ่มขึ้นอีก 2 นิวรอน คังรูปที่ 4 แต่ว่านิวรอนที่เพิ่มขึ้นมานี้มีตัว แปรใหม่อยู่ด้วย ทำให้มีปัญหาในการกำหนดต่าอินพุตให้กับ นิวรอน เช่น ตัวอย่าง poor(John) เมื่อจะกำหนดค่าอินพดให้กับ นิวรอน parent(y,x) ก็จะแทนที่ตัวแปร x ด้วยค่าคงที่ John ส่วนตัวแปร y ซึ่งไม่มีการกำหนดค่ามาจากด้วอย่าง ทำให้ไม่ สามารถระบุได้ว่าต้องแทนตัวแปร y ด้วยค่าคงที่ใด และการ แทนด้วยค่าคงที่แต่ละแบบนั้นก็จะให้ค่าอินพดของนิวรอน แตกต่างกันคั้งแสดงในตารางที่ I



ส่วนกรณีของ parent(x,y) ไม่เกิดปัญหาเนื่องจากเมื่อแทนค่าตัว แปร x ด้วย John แล้วไม่ว่าจะแทนค่าตัวแปร y ด้วยค่าคงที่ใด ถึ ไม่เป็นจริงในความรู้ภูมิหลัง ทำให้ก่าอินพุตขอ_{งนิวม} parent(x,y) เป็น 0 ในทุกกรณี

ตารางที่ 1. ค่าอินพุตของนิวรอน parent(y,x) เมื่อแทนคัวแ ด้วยค่าคงที่ต่างๆ

parent(y,x)	ก่าอินพุดของนิวรณ
แทน x ค้วย John แทน y ค้วย John	0
แทน x ด้วย John แทน y ด้วย Peter	1
แทน x ด้วย John แทน y ด้วย Bob	0

จากตัวอย่างข้างต้นแสคงให้เห็นว่าการกำหน อินพุตให้กับนิวรอนในกรณีที่สัญพจน์ประจำนิวรอนนั้น แปรที่ใช้แสคงความสัมพันธ์กับสัญพจน์อื่น โคยตัวแปรน์เ ปรากฏอยู่ในส่วนหัวของกฎด้วย ในบางกรณีจะทำให้ สามารถกำหนดค่าที่แน่นอนให้กับนิวรอนได้ เนื่องจากไม่พล้ ถ่าหรับเ ว่าควรแทนค่าให้กับตัวแปรที่แสดงความสัมพับธ์ด้วยค่าใช่ ได้นำหลักการของการเรียนรู้แบบหลายตัวอย่างย่อย (Mulin Instance Learning: MIL)[7, 8]มาประยุกต์เพื่อทำการสร อินพุศให้กับนิวรอลเน็คเวิร์กอันคับที่หนึ่ง คังกล่าวในช้ท 2.2.2 ด้านล่างนี้

2.2.2 หลักการเรียนรู้แบบหลายตัวอย่างย่อย

การเรียนรู้แบบหลายตัวอย่างย่อยจะนิยามตัวอย่า การเรียนรู้เป็นถุง (bag) {B₁, B₂, ..., B_n} โคยที่ n เป็นจำห จะประกอบไปด้วยตัวอย่างต่ ของถุง แต่ละถุง (B_i) (instance) m, ตัว {B_{il}, B_{i2}, ..., B_{imi}} โดยที่ถุงหนึ่งๆ กำหนดให้เป็นถุงตัวอย่างบวก (positive bag) ก็ค่อเมื่อให นั้นมีตัวอย่างย่อยอย่างน้อย เ ตัวที่เป็นบวก และจะกำหนด่ เป็นถุงตัวอย่างลบ (negative bag) ก็ต่อเมื่อตัวอย่างย่อยพูป ในถุงนั้นเป็นตัวอย่างลบทั้งหมด โดยที่ถุงตัวอย่าง^{บาก} กำหนดให้มีค่าเป้าหมาย (label) เป็น 1 ส่วนถุงตัวอย่างลิปตี ค่าเป็น 0

การแปลงตัวอย่างไปเป็นอินพุดให้กับเน็ตเวิร์ก^มี ตัวอย่างบวก 1 ตัว แทนค้วยถูงตัวอย่างบวก 1 ถุง และแ^น้ ตัวอย่างลบ เ ตัวค้วยถุงตัวอย่างลบ เ ถุง (ในกรฉีที่เป็นที่

เรียนศั ปรูปสอ แค่ถะง

กย่างเช่ poor(x

ให้กับเร่

23 การา

เชื่อมระ: ผลลัพธ์เ

[9, 10]: E) ดังนี้

> โลยที่ E. โดยขึ้นถะ

และค่าดา

กางแบบหลายประเภทจะถือว่าทุกถุงเป็นถุงตัวอย่าง เกาบประเภทนั้นๆ) ในถุงจะประกอบไปด้วยตัวอย่างย่อยซึ่ง เกาจากการแทนค่าตัวแปรค้วยค่าคงที่แต่ละนบบ เกาตัวอย่างอินพุศตามรูปที่ 3 ในการเรียนแนวคิดของ เมื่อหลัวอย่างบวกทั้งหมด 2 ถุง คือ poor(John) และ

poor(Peter) ถุงตัวอย่างลบ เ ถุง คือ poor(Bob) และในแต่ละ ถุงจะประกอบไปด้วยตัวอย่างย่อยทั้งหมด 3 ตัว จากการแทน ค่าตัวแปร y ด้วยค่า John, Peter และ Bob ดังแสดงตัวอย่างใน ตารางที่ 2

ตารางที่ 2. การแปลงตัวอย่างของ poor(John) ไปเป็นอินพุศให้กับนิวรอลเน็ตเวิร์กอันคับที่หนึ่ง

กเด้วอย่าง ของ poor(John)	lazy(x)	extravagant(x)	weak(x)	parent(x,y)	parent(y,x)
mu x ด้วย John แทน y ด้วย John	1	0	0	0	0
แทน x ด้วย John แทน y ด้วย Peter	1	0	0	0	1
แทน x ด้วย John แทน y ด้วย Bob	1	0	0	0	0

จากนั้นจึงนำถุงตัวอย่างที่ได้ไปใส่เป็นอินพุต เคเวิร์กและทำการเรียนรู้โดยอาศัยอัลกอริทึมแบ็ค พแกซันอัลกอริทึม (Backpropagation Algorithm)

แบ่งรับค่าน้ำหนักของนิวรอลเน็ตเวิร์กอันดับที่หนึ่ง การปรับค่าน้ำหนักของเส้นเชื่อมนั้นจะทำทั้งส่วนที่ การปรับค่าน้ำกับชั้นช่อน และระหว่างชั้นช่อนกับชั้น และระหว่างชั้นนำเข้ากับชั้นช่อน และระหว่างชั้นช่อนกับชั้น แมวใช้ โดยนิยามค่าความผิดพลาดรวม (Global Exror:

$$E = \sum_{i=1}^{n} E_{i} \tag{1}$$

พาก เป็นค่าความผิดพลาคของถุงตัวอย่างแต่ละถุง ซึ่งนิยาม ของเก้บประเภทของถุงตัวอย่างนั้นๆ คือ

$$E_{i} = \begin{cases} \min_{1 \le j \le m_{i}} E_{ij} & \text{if } B_{i} = +\\ \max_{1 \le j \le m_{i}} E_{ij} & \text{if } B_{i} = - \end{cases}$$
 (2)

เกม ทามผิดพลาคของตัวอย่างย่อยนิยามคังนี้

$$E_{y} = \begin{cases} 0 & if(B_{i} = +) \text{ and } (0.5 \le o_{y}) \\ 0 & if(B_{i} = -) \text{ and } (o_{y} < 0.5) \\ \frac{1}{2}(o_{y} - l_{i})^{2} & otherwise \end{cases}$$
 (3)

B = + หมายถึง ถุงตัวอย่างบวก

B_i = - หมายถึง ถูงตัวอย่างลบ

 o_{ij} หมายถึง ผลลัพธ์ที่ใค้จากถุงตัวอย่างที่ i ตัวอย่าง ย่อยที่ j (B_{ii})

l_i หมายถึง ค่าเป้าหมายของถุงตัวอย่างที่ i

ในการเรียนแต่ละรอบ ตัวอย่างที่ใช้ในการสอนจะถก ป้อนให้กับเน็ตเวิร์กที่ละถุงที่ละตัวอย่างย่อย จากนั้นจะทำการ คำนวณหาคำความผิดพลาดของแค่ละตัวอย่างย่อยในถงนั้นจ ตามสมการ (3) ถ้ากรณีที่ถุงตัวอย่างที่ป้อนให้กับเน็ตเวิร์กเป็น ลุงตัวอย่างบวกและพบว่ามีตัวอย่างย่อยที่ให้ค่าความผิดพลาด เป็น 0 แล้ว ตัวอย่างย่อยที่เหลือไม่จำเป็นต้องป้อนให้กับเน็ต เวิร์กและ ไม่ต้องทำการปรับค่าน้ำหนักเส้นเชื่อมใคๆ เพราะถือ ว่าตัวอย่างย่อยตัวนั้นเป็นตัวอย่างที่ทำให้ถุงตัวอย่างเป็นบวก และเน็คเวิร์กจำแนกใค้ถูกต้องแล้ว แต่ถ้าเป็นกรณีอื่นๆค่าความ ผิดพลาศของถุงตัวอย่างก็จะเป็นไปตามสมการ (2) จากนั้นเมื่อ ป้อนครบทุกตัวอย่างย่อยในถุงแล้วก็จะนำค่าความผิดพลาดของ ถุงที่ใค้ไปทำการปรับค่าน้ำหนักของเส้นเชื่อมคามวิธีของเบ็ก พรอพาเกชัน แล้วจึงทำการป้อนถงตัวอย่างใหม่เข้าไปและทำ ้ตามลำคับขั้นตอนเดิม โดยจะหยุคกระบวนการเรียนรู้เมื่อค่า ความผิดพลาดรวมในสมการ (!) มีค่าลดลงจนถึงจุดที่กำหนดไว้ หรือเรียนรู้จนครบจำนวนรอบที่ได้กำหนดไว้

3. การทดลองและผลการทดลอง

ในการทคลองเรานำชุดข้อมูล (Dataset) การวิเคราะห์ ไฟในต์เอลิเมนต์ (Finite Element Mesh Design: FEM)[11] มาใช้ทำการทคลอง ปัญหา FEM มีจุดมุ่งหมายเพื่อหากฎที่ใช้ ในการวิเคราะห์ไฟในด์เอลิเมนต์ในโครงสร้างสำหรับงาน ทางค้านวิศวกรรม มีกลุ่มความรู้ภูมิหลังเป็นลักษณะต่างๆของ โารงสร้าง ประกอบด้วยลักษณะของเส้นเชื่อม เช่น long และ creuit ฯลฯ เงื่อนใขขอบเขต เช่น free และ fixed ฯลฯ โลด เรน not_loaded และ one_side_loaded ฯลฯ และตัวอย่าง 12 ประเภทด้วยกัน โดยจะแบ่งประเภทตามจำนวนองค์ประกอบ (Element) ที่เหมาะสมของโครงสร้างนั้น ตัวอย่างแต่ละตัวถูก จัจอยู่ในรูปแบบ mesh(Edge, Element) เมื่อ Edge คือชื่อ โครงสร้างนั้น รวมจำนวนตัวอย่างทั้งหมด 278 ตัวอย่าง ในการ ทจลองนั้นใช้วิธี 4-fold cross validation [1] ทำโดยแบ่งข้อมูล ทั้งหมดออกเป็น 4 ส่วนเท่าๆกัน ทำการทดลองทั้งหมด 4 ครั้ง ในแต่ละครั้งจะเลือกส่วนหนึ่งใดๆเป็นชุดทดสอบและส่วนที่ เหลือ 3 ส่วนจะใช้เป็นชุดสอน

โครงสร้างของเน็ตเวิร์กที่ใช้จะมีจำนวนนิวรอนในชั้น นำเข้าทั้งหมด 130 นิวรอน กำหนดจากความรู้ภูมิหลังที่ได้รับ เข้ามา นิวรอนในชั้นผลลัพธ์ 12 นิวรอน กำหนดจากประเภท ของตัวอย่าง และใช้จำนวนนิวรอนในชั้นช่อน 80 นิวรอน(จาก การทดลอง) มีค่าอัตราการเรียนรู้เป็น 0.0001 และค่าโมเมนตัม เป็น 0.97 โดยกระบวนการเรียนรู้จะหยุดเมื่อครบ 6000 รอบ หรือค่ากวามผิดพลาดรวมมีค่าน้อยกว่า 0.05

ตารางที่ 3. ผลเปรียบเทียบเปอร์เซ็นต์ความถูกต้องในการ ทคสอบกับชุดข้อมูล FEM

อัลกอริทึม	เปอร์เซ็นต์ความถูกต้อง
FONN	59.18
PROGOL	57.80 [6]

คารางที่ 3 แสคงผลการทคลองที่ได้ในการทคสอบกับ ชุดข้อมูล FEM เปรียบเทียบระหว่าง FONN (วิธีการที่นำเสนอ) กับ PROGOL ซึ่งเป็นระบบไอแอลพีที่มีประสิทธิภาพมากสุด ระบบหนึ่งในปัจจุบัน จะเห็นว่า FONN สามารถเรียนแนวคิด จากชุดข้อมูลครรกะอันคับที่หนึ่งได้และให้เปอร์เซ็นต์ความ ถูกต้องในการจำแนกสูงกว่า PROGOL[12]

4. สรุป

งานวิจัยนี้ได้นำเสนอนิวรอลเน็ตเวิร์กแบบใ ประยุกต์เข้ากับแนวคิดของการเรียนรู้เชิงตรรกะ เรียกว่าน้ำ เน็ตเวิร์กอันดับที่หนึ่ง เพื่อเป็นแนวทางหนึ่งในการนำก่ จัดการกับข้อจำกัดของการโปรแกรมตรรกะเชิงอุปนัย นิวรอลเน็ตเวิร์กอับดับที่หนึ่งมีข้อดีที่สามารถรับอินห รูปแบบของตรรกะอันดับที่หนึ่งได้โดยตรงและมีข้อนี้ นิวรอลเน็ตเวิร์กซึ่งทนทานต่อข้อมูลที่มีสัญญาณรบกวนใช้

5. รายการอ้างอิง

[1] T. M. Mitchell, Machine Learning: The McGraw Companies Inc., 1997.

[2] N. Lavrac and S. Dzeroski, Inductive Programming Techniques and Applications. Horwood, New York, 1994.

[3] S.-H. Nienhuys-Cheng and R. d. Wolf, Foundation Inductive Logic Programming: Springer-Verlag I York, Inc., 1997.

[4] C. M. Bishop, Neural Networks for Pa Recognition: Oxford University Press, 1995.

[5] R. Parekh and V. Honavar, "Constructive The Refinement in Knowledge Based Neural Network Proceedings of the International Joint Conference Neural Networks, Anchorage, Alaska, 1998.

[6] B. Kijsirikul, S. Sinthupinyo, and Chongkasemwongse, "Approximate Match of h Using Backpropagation Neural Networks," Madi Learning Journal, vol. 44, pp. 273-299, 2001.

[7] Y. Chevaleyre and J.-D. Zucker, "A Framework Learning Rules from Multiple Instance Data," European Conference on Machine Learning, Frem Germany, 2001.

[8] X. Huang, S.-C. Chen, and M.-L. Shyu, "An Office Multiple Instance Learning Framework and Application in Drug Activity Prediction Problem Proceedings of the Third IEEE Symposium BioInformatics and BioEngineering (BIBER Bethesda, Maryland, 2003.

[9] P. Wattıya, A. Rungsawang, and B. Kijsin "Multiple-Instance Neural Network with So Boundary Criteria," The 7th National Compaction Science and Engineering Conference, Choose Thailand, 2003.

[10] Z.-H. Zhou and M.-L. Zhang, "Neural Network Multi-Instance Learning," Proceedings of International Conference on Intelligent Informational Technology, Beijing, China, 2002.

[11] B. Dolsak and S. Muggleton, "The Application Inductive Logic Programming to Finite Element Me Design," in *Inductive Logic Programming*. Muggleton, Ed.: Academic Press, 1992, pp. 453-413.

[12] S. Roberts, An Introduction to Progol. Technic Manual: University of York, 1997. การปร

Utili2

กิตเ

kitt(

Contr การครวง ซึ่ง Neuro

จำแนกข้ การใช้ № ความแป

บ**ท**ค การจำแเ

ความแบ เทคนิด

คุณลักษ Chart P

Standar

Pearsor

การเปรี เห็นถึงเ

Chart

เทคนิคการแตกครึ่งตามสารสนเทศ สำหรับซัพพอร์ตเวกเตอร์แมชชื่นแบบหลายประเภท An Information-Based Dichotomization Technique for Multiclass Support Vector Machines

ทุ่มศิริ สงศิริ และ บุญเสริม กิจศิริกุล ภาควิชาวิศวกรรมคอมพิวเคอร์ กากรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กาเพญาไท ปทุมวัน กรุงเทพฯ 10330 msiri@hotmail.com and boonserm.k@chula.ac.th ฐิมาพร เพชรแก้ว สำนักวิชาสารสนเทศศาสตร์ มหาวิทยาลัยวลัยลักษณ์ เลขที่ 222 ต.ไทรบุรี อ.ท่าศาลา จ.นครศรีธรรมราช 80160 Email: pthimapo@wu.ac.th

บทกัดย่อ

กระเก็ปญหาการจำแนกแบบหลายประเภทค้วยชัพพอร์ต กระเกษชีน โดยส่วนใหญ่จะพิจารณาเป็นปัญหาของ กระเกษจำแนกแบบสองประเภทหลายคัวมาใช้ร่ามกัน กระเกษจำแนกแบบสองประเภทหลายคัวมาใช้ร่ามกัน กระเกษจำแนก บทความนี้นำเสนอวิธีการใหม่ใน กระเกษจับลูลค้ายเทคนิคการแตกครึ่งตามสารสนเทศโดย กระเกษ ซึ่งแต่ละ โนดของค้น ไม้จะเป็นคัวจำแนก แบบองประเภทที่มีค่าเอน โทรปีต่ำที่สุด วิธีนี้สามารถลด กระเกษจำแนกแบบสองประเภทที่ใช้ในการจำแนกลงได้ โปรอการที่มของจำนวนประเภทซึ่งต่ำกว่าวิธีอื่น จากผลการ กระเกษจให้เห็นว่าวิธีนี้สามารถลดจำนวนครั้งของการ

ที่ ซ้ำคัญ: การแตกครึ่งตามสารสนเทศ, ซัพพอร์ดเวกเตอร์ เพษชีบแบบหลายประเภท, เอนโทรปี

Abstract

Approaches for solving a multiclass description problem by Support Vector Machines (SVMs) are typically to consider the problem as symbilation of two-class classification problems. Previous approaches have some limitations in classification accuracy and evaluation time. This

paper proposes a novel method that employs information-based dichotomization for constructing a binary classification tree. Each node of the tree is a binary SVM with the minimum entropy. Our method can reduce the number of binary SVMs used in the classification to the logarithm of the number of classes which is lower than previous methods. The experimental results show that the proposed method takes lower evaluation time while it maintains accuracy compared to other methods.

Key Words: Information-Based Dichotomization, Multiclass Support Vector Machines, Entropy

1. บทน้ำ

ชัพพอร์ตเวกเตอร์แมชชีนเป็นเทคนิคการเรียนรู้ที่ใช้
กุณสมบัติเชิงเรขาคณิตในการคำนวณหาระนาบหลายมิติ
(Hyperplane) ที่ดีที่สุดในการแยกข้อมูลออกจากกัน โดย .
ในช่วงแรกเริ่มนั้นเทคนิคนี้มีข้อจำกัดอยู่ที่สามารถจำแนก ข้อมูลได้เพียงสองประเภทเท่านั้น แต่ในปัญหาการจำแนก ส่วนใหญ่มักเป็นแบบหลายประเภท ต่อมาจึงมีผู้พัฒนา เทคนิคนี้ให้สามารถใช้ได้กับการจำแนกแบบหลายประเภท วิธีการส่วนใหญ่มักจะเป็นการนำฟังก์ชันที่จำแนกแบบหนึ่ง ต่อที่เหลือ (One-against-the-rest) เป็นการเปรียบเทียบประเภท ข้อมูลหนึ่งกับประเภทอื่นที่เหลือทั้งหมด และการจำแนกแบบ ข้อมูลหนึ่งกับประเภทอื่นที่เหลือทั้งหมด และการจำแนกแบบ

หนึ่งค่อหนึ่ง (One-against-one) ซึ่งเป็นการเปรียบเทียบ ประเภทข้อมูลหนึ่งกับประเภทข้อมูลอื่นทีละประเภท [6]

อัลกอริทีมแมกซ์วินเป็นหนึ่งในวิธีการจำแนกแบบหนึ่ง **ต่อหนึ่งซึ่งให้**ค่าความถูกค้องสูงกว่าการจำแนกแบบหนึ่งต่อ ที่เหลือ แต่ใช้เวลาในการจำแนกนานกว่า [5] ต่อมา al ได้เสนอวิธีอาร์เอดีเอจี (Reordering Adaptive Directed Acyclic Graph (RADAG)) [8] ซึ่งวิธีนี้จะ บีการเลือกลำดับของในคที่เหมาะสมซึ่งมีโอกาสที่จะจำแนก ผิดพลาดน้อย โดยใช้อัลกอริทึมของการจับค่สมบรณ์แบบ น้ำหนักน้อยสุด (Minimum-Weight Perfect Matching) [4] และมีการจัดเรียงในดใหม่ในทุกชั้นของการจำแนก ทำให้มี ค่าความผิดพลาดลดลงจากวิธีเถดีเอจี [9] อย่างไรก็ตามในวิธี ที่กล่าวมาข้างค้นสำหรับการจำแนกข้อมูล k ปุระเภทใคๆ วิธี อาร์เอคีเอจีต้องใช้จำนวนครั้งของการจำแนกข้อมูลเป็น 4-1 ครั้ง เนื่องจากในการจำแนกข้อมูลแต่ละครั้งสามารถตัด ข้อมูลที่ไม่ถูกต้องออกไปได้เพียง 1 ประเภทต่อครั้งเท่านั้น ค่อมา Kijsirikul & Boonsirisumpun ได้เสนอการสร้างค้นไม้ สำหรับการจำแบกแบบหลายประเภทด้วยวิธีการแตกครึ่งแบบ สมคุล (Balanced Dichotomization Classification) [7] ที่ทำการ จำแนกข้อมูลโดยค้นหาระนาบที่แบ่งข้อมูลในคำแหน่งที่ สมคุลที่สุดของข้อมูลทั้งหมดในแค่ละรอบมาจำแนก เพื่อให้ การจำแนกข้อมูลแค่ละครั้งสามารถคัดประเภทที่ไม่ถูกค้อง ออกไปได้มากกว่า 1 ประเภท ทั้งนี้ในการค้นหาระนาบนั้น จะเลือกระนาบที่แบ่งข้อมูลแล้วให้ค่าจำนวนประเภทซึ่งตก อยู่ในแค่ละค้านของระนาบมีค่าใกล้เพียงกันมากที่สุด ภายใค้ สมมติฐานที่ว่าความน่าจะเป็นในการเกิดข้อมูลในแต่ละ ประเภทของข้อมูลสอนมีค่าใกล้เคียงกับข้อมูลทคสอบ วิธีนี้ จะมีความเหมาะสมกรณีที่ข้อมูลแค่ละประเภทมีความน่าจะ เป็นในการเกิดที่เท่ากัน โดยวิธีนี้จะพยายามสร้างต้นไม้ให้ทั้ง สองกิ่งมีความสมคุลที่สุด ซึ่งส่งผลให้ค่าจำนวนครั้งในการ จำแนกข้อมูลแต่ละประเภทจะมีค่าใกล้เคียงกัน ในความเป็น จริงข้อมูลที่นำมาจำแนกอาจไม่ได้มีความน่าจะเป็นในการเกิด เท่ากัน หากชื่ดวิชีสร้างต้นไม้ที่ให้จำนวนครั้งในการจำแนก ข้อมูลแค่ละประเภทที่ใกล้เคียงกัน โดยไม่พิจารณาความน่าจะ เป็นในการเกิดข้อมูลแต่ละประเภทประกอบอาจไม่ได้ดันได้ สำหรับจำแนกที่ให้จำนวนครั้งในการจำแนกเฉลี่ยต่ำที่สุด รั้ง เป็นการสะสมความผิดพลาดในการจำแนกโดยไม่จำเป็น

บทความนี้จะนำเสนอวิธีการใหม่ในการจำแนกข้อมูลโดย สร้างคัน ไม้สำหรับการจำแนกแบบหลายประเภทค้วยเทคนิด การแคกครึ่งตามสารสนเทศโดยการนำความม่าจะเป็นในกษ เกิดข้อมูลแต่ละประเภทมาใช้ในการค้นหาระนาบที่แบ่ง ข้อมูล ในทางทฤษฎีวิธีนี้จะสามารถลดจำนวนครั้งในการ จำแนกลงเหลือประมาณ log k ครั้ง ซึ่งเป็นการลดเวลาของ การจำแนกเฉลี่ยลงได้ โดยเฉพาะอย่างยิ่งกรณีปัญหาการ จำแนกที่มีจำนวนประเภทเป็นจำนวนมาก

2. ชัพพอร์ดเวกเดอร์แมชชีนและทฤษฎีสารสนเทส (Support Vector Machines & Information Theory)

เทคนิคการแคกครึ่งคามสารสนเทศสำหรับชัพพอร์ค เวกเคอร์แมชชื่นแบบหลายประเภทมีทฤษฎีที่เกี่ยวข้องคังนี้

2.1 แนวคิดพื้นฐานของชัพพอร์คเวกเตอร์แมชรีน

แนวคิดหลักในการจำแนกข้อมูล ของชัพพอร์ตเวณตร์ แมชซีนก็คือ การสร้างระบาบหลายมิติที่ใช้ในการแบ่งข้อมูล ออกเป็นสองประเภท

2.1.1 ชัพพอร์ดเวกเดอร์แมชชีนแบบเชิงเส้น (Linear support vector machine)

สมมติมีเซตของข้อมูล D ที่ประกอบด้วยตัวอย่างจำนวน ! ตัวในปริภูมิอันดับ π ที่มี 2 ประเภท (+1 และ -1)

 $D = \{(\mathbf{x}_k, y_k) | k \in \{1,..,l\}, \mathbf{x}_k \in \Re^n, y_k \in \{+1,-1\}\}$ (1) ระนาบหลายมิติในปริภูมิอันดับ π ถูกกำหนดโดย (พ.ติ เมื่อ พ คือเวณตอร์ในปริภูมิอันดับ π ที่ตั้งฉากกับระนาบหลาย มิติและ b คือก่าคงที่ระนาบหลายมิติ (พ.ส.) + b จะแบ่งข้อมูล ได้ก็ต่องนี้อ

$$(\mathbf{w} \cdot \mathbf{x}_i) + b > 0 \quad \text{if} \quad y_i = +1$$

$$(\mathbf{w} \cdot \mathbf{x}_i) + b < 0 \quad \text{if} \quad y_i = -1.$$

พากที่สุดมีระยะห่าง 1/w/ แล้วจะได้

$$(x \times_i) + b \ge 1$$
 if $y_i = +1$
 $(x \times_i) + b \le -1$ if $y_i = -1$ (3)

1001011

$$y[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \quad \forall i. \tag{4}$$

กันหาระนาบหลายมิติที่ใช้แบ่งข้อมูลดีที่สุดจะต้อง ของ บาบหลายมิติที่มีระยะห่างระหว่างข้อมูลที่ใช้สอนกับ ของ บาบหายมิติที่น้อยที่สุดมีค่ามากที่สุด ระยะห่างระหว่าง ของของพลองตัวจากประเภทที่แตกต่างกันมีค่าเท่ากับ

$$f(\mathbf{w}, b) = \min_{(\mathbf{x}, \mathbf{y}, \mathbf{y} + \mathbf{b})} \frac{(\mathbf{w} \cdot \mathbf{x}_i) + b}{|\mathbf{w}|} - \max_{(\mathbf{x}, \mathbf{y}, \mathbf{y} + \mathbf{b})} \frac{(\mathbf{w} \cdot \mathbf{x}_i) + b}{|\mathbf{w}|}.$$
 (5)

งากสมการที่ (3) ค่าที่น้อยที่สุดและมากที่สุดที่ พาะกมคือ ± 1 คังนั้นจำเป็นต้องเพิ่มค่าของฟังก์ชัน

$$d(\mathbf{w}, b) = \frac{1}{|\mathbf{w}|} - \frac{-1}{|\mathbf{w}|} = \frac{2}{|\mathbf{w}|}.$$
 (6)

ให้สูงที่สุด คังนั้นปัญหานี้จึงเท่ากับ

ลดค่าของ |พ|²/2 ให้ต่ำที่สุดโดยขึ้นกับเงื่อนไข
 ต่อไปนี้

(1)
$$y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \quad \forall i$$
.

ทหรับกรณีที่ ไม่สามารถแบ่งข้อมูลได้ โดยเงื่อนใจข้างต้น ระกองบรับเงื้อนใจใหม่ โดยเพิ่มพจน์ค่าปรับซึ้งประกอบด้วย ของมของความคลาดเคลื่อน ξ , จากขอบเขตเข้าไปในเงื่อนไข จังนี้เป็ญหาตอนนี้คือ

- ลคค่าของ $\frac{\left|\mathbf{w}\right|^{2}}{2}+C\sum_{i=1}^{\prime}\xi_{i}$ ให้ค่ำที่สุค โดยขึ้นกับ เงื่อนไขต่อไปนี้
 - (1) $y_i[(\mathbf{w} \cdot \mathbf{x}_i) + b] \ge 1 \xi_i$,
 - (2) $\xi_i \ge 0 \quad \forall i$.

พอน์ค่าปรับสำหรับตัวอย่างข้อมูลสอนที่ทำนายผิดพลาด พาทัมน้ำหนักโดยค่าคงที่ C การเลือกค่า C สูงจะมีผลให้เพิ่ม เลืองหวามคลาดเคลื่อน 5, และเพิ่มการคำนวณโดยทำให้การ ค้นหาหนทาง ที่จะลดจำนวนตัวอย่างข้อมูลสอนที่ทำนาย ผิดพลาดเพิ่มขึ้น นำลากรองเกรียนมาใช้กับปัญหานี้ สามารถ แปลงปัญหาเป็น

• ลดค่าของฟังก์ชันนี้ให้ต่ำที่สุด

$$L(\boldsymbol{w}, b, \alpha) = \sum_{i=1}^{f} a_i \frac{1}{2} \sum_{i,j=1}^{f} \alpha_i \alpha_j y_i y_j (\boldsymbol{x}_i \ \boldsymbol{x}_j)$$
(7)

$$\left[\text{Nev} \tilde{\mathbf{u}} \right]$$

(1) $0 \le \alpha_i \le C, \forall i$

$$(2) \sum_{i=1}^{J} \alpha_i y_i = 0$$

เมื่อ α_i เรียกว่าตัวคูณลากรอง ตัวอย่างข้อมูลสอนแต่ละตัว จะมีตัวคูณลากรองหนึ่งตัว ตัวอย่างที่มีค่า $\alpha_i > 0$ เรียกว่า ซัพพอร์ ตเวกเตอร์ และเป็นซัพพอร์ ตเวกเตอร์ ที่ ทำให้ ค่า ทางขวามือของสมการที่ (4) เท่ากับ 1 ส่วนตัวอย่างอื่นๆที่มี $\alpha_i = 0$ สามารถตัดออกไปจากเซตของตัวอย่างข้อมูลสอนได้ โดยไม่มีผลกระทบใด ๆ ต่อผลลัพธ์ของระนาบหลายมิติ

ให้ α ° ซึ่งเป็นเวกเคอร์ในปริภูมิอันคับ ! แทนค่าต่ำสุด ของ $L(\mathbf{w},b,\alpha)$ ถ้า $\alpha_i^0>0$ แล้ว \mathbf{x}_i เป็นซัพพอร์ตเวกเคอร์ของ ระนาบหลายมิติที่แบ่งแยกคีสุด (\mathbf{w}^0,b^0) สามารถเขียนในเทอมของ ชัพพอร์ตเวกเคอร์ได้คังนี้

$$\mathbf{w}^{0} = \sum_{i=1}^{I} \alpha_{i}^{0} y_{i} \mathbf{x}_{i} = \sum_{i \text{proof vectors}} \alpha_{i}^{0} y_{i} \mathbf{x}_{i}. \tag{8}$$

$$\boldsymbol{b}^{0} = 1 - \mathbf{w}^{0} \cdot \mathbf{x}_{i}$$
 for \mathbf{x}_{i} with $y_{i} = 1$ and $0 < \alpha_{i} < C$ (9)

ระนาบหลายมิติที่แบ่งแยกดีสุดจะจำแนกจุดต่างๆ ตาม เครื่องหมายของผลลัพธ์ของฟังก์ชัน £(x)

$$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}^{0} \cdot \mathbf{x} + b^{0}\right)$$
$$= \operatorname{sign}\left(\sum_{\text{support vectors}} \alpha_{i}^{0} y_{i}(\mathbf{x}_{i} \cdot \mathbf{x}) + b^{0}\right).$$

ชัพพอร์ตเวกเตอร์ \mathbf{x}_i ที่มี $\boldsymbol{\alpha}_i^0 = C$ อาจจะถูกจำแนก ผิดพลาดหรือไม่ก็ได้ แต่ \mathbf{x}_i ตัวอื่นๆ จะจำแนกได้อย่าง ถูกต้อง

2.1.2 ชัพพอร์ตเวกเตอร์แมชชีบแบบ ไม่เชิงเส้น (Nonlinear Support vector machine)

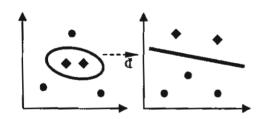
อัลกอริทึมที่ได้กล่าวมาแล้วใช้ได้กับข้อมูล์ที่สามารถ แบ่งคั่วขระนาบหลายมิติแบบเชิงเส้นเท่านั้น แค่กับข้อมล ที่ไม่อาจแบ่งแบบเชิงเส้นไค้ ซัพพอร์คเวกเตอร์แมชชีน แก้ปัญหานี้โดยแมปข้อมูลตัวอย่าง ไปยังปริภูมิอันดับสูง ใดยเลือกใช้ฟังก์ชันการแมปที่ไม่เป็นเชิงเส้น นั่นคือ เราเลือกฟังก์ชันในการแมป φ:x"→ H เมื่อปริภูมิของ H มือันคับสูงกว่าปริภูมิอันคับ ก เราสามารถค้นหาระนาบที่ แบ่งแยกคีสุดในปริภูมิอันคับสูงที่เทียบเท่ากับการแยกที่ไม่ เป็นเชิงเส้นใน 98"

ตัวอย่างข้อมลสอนที่ใช้ในสมการที่ (7) อย่ในรูปของ ผลดูณเชิงสเกลาร์ระหว่างเวกเตอร์ ดังนั้นในปริภูมิอันดับ สูงเราสามารถจัดการกับข้อมูลในรูปของ $\Phi(\mathbf{x})\cdot\Phi(\mathbf{x})$. ถ้าปริภูมิของ H มีอันคับสูงจะทำให้ยุ่งยาก หรือใช้การ คำนวญมาก อย่างไรก็ตามถ้าเรามีฟังก์ชันเคอร์เนลที่ สามารถคำนวณ $k(\mathbf{x}_{\mathbf{x}}\mathbf{x}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{x})$ แล้วเราสามารถ ใช้ฟังก์ชันนี้แทนที่ x,x, ทุกๆที่ในการคำนวณ และไม่ จำเป็นค้องรู้ฟังก์ชันที่ใช้แมป Ф จริงๆ ฟังก์ชันเคอร์เนลที่ นิยมใช้ได้แก่

Polynomial degree d: $k(x,y) = |x \cdot y + 1|^{\alpha}$

Radial basis function: $k(x, y) = e^{-|x-y|^2/c}$

(12)



รูปที่1. แนวคิดการแมปข้อมูลไม่เชิงเส้นไปสู่ปริภูมิ อันคับสูง

2.1.3 ประสิทธิภาพโดยนัยทั่วไปของชัพพอร์ต เวกเตอร์ แมชชื่น

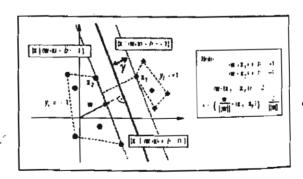
เราสามารถกำหนดขอบเขตความผิดพลาดของ ชัพพอร์ตเวกเตอร์ได้โดยกำหนดชนิดของฟังก์ชันเป็นค่า ตัวเลขจำนวนจริงภายในลูกบอลที่มีรัศมี R ค่ารัศมีไม่เกิบ \mathfrak{R}^u เป็นฟังก์ชันดังนี้ $F = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} : \|\mathbf{w}\| \le 1, \|\mathbf{x}\| \le R\}$ จะมีค่าคงที่ c ที่สำหรับการกระจายทุกประเภท ด้วยความ น่าจะเป็นอย่างน้อย 1- δ บนตัวอย่าง z ที่เลือกมาอย่าง อิสระจากกัน m ตัว ถ้าตัวจำแนก $h = \mathrm{sgn}(f) \in \mathrm{sgn}(F)$ มีค่าระยะห่างระหว่างระนาบหลายมิติ กับข้อมูลที่ใช้_{สอน} อย่างน้อย 🏏 (คูรูปที่ 2) สำหรับตัวอย่างทุกตัวใน z แล้ว กวามผิดพลาดของตัวจำแบก *h* จะไม่เกิบค่า

$$\frac{c}{m} \left(\frac{R^2}{\gamma^2} \log^2 m + \log \left(\frac{1}{\delta} \right) \right). \tag{13}$$

นอกเหนือจากนี้แล้วค้วยความน่าจะเป็นอย่างน้อย 1-8 ทกตัวจำแนก $b \in \operatorname{sgn}(F)$ จะมีความผิดพลาดไม่เกิน

$$\frac{k}{m} + \sqrt{\frac{c}{m}} \left(\frac{R^2}{\gamma^2} \log^2 m + \log \left(\frac{1}{\delta} \right) \right)$$
 (14)

เมื่อ k คือจำนวนตัวอย่างข้อมูลใน z ที่มีระยะห่าง ระหว่างระนาบหลายมิติกับซัพพอร์ตเวกเตอร์อย่างน้อย 17



รูปที่ 2. ระยะห่างระหว่างระนาษหลายมิติกับข้อมูลที่ ใช้สอน

www.utcc.ac.th/ncsec200

โลการสนเทศ (Information Theory)

นเทศของข้อมูล =
$$-\log_2 P$$
 (15)

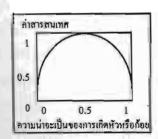
 P คือความน่าจะเป็นของข้อมูล ที่หลุของข้อมูล M ประกอบค้วยค่าที่เป็นไปได้คือ m,...,m, และให้ความน่าจะเป็นที่จะเกิดค่า m, มี P(m) จะได้ว่าค่าสารสนเทศของ M หรือค่า พระบุ๋งอง M เขียนแทนค้วย I(M) คำนวณใค้จากสคร

$$I(M) = \sum_{i=1}^{n} -P(m_i) \log_2 P(m_i)$$
 (16)

อามหมายของค่าสาร สนเทศกรณีมีค่าน้อย หมายถึง รณลในชุดนั้นมีความแฅกต่างกันน้อย หรือเกือบจะเป็น ระทักเคียวกัน แต่กรณีค่าสารสนเทศสูงจะบ่งบอกว่า ในชคนั้นมีความแตกต่างกันมากหรือประกอบด้วย องกางหลายประเภทที่มีจำนวนใกล้เคียงกัน ตัวอย่าง **ที่ เยนหัวโยนก้อย ชุดข้อมูล M** จะประกอบค้วย พิธีนใปได้ {หัว. ก้อย} จะได้ว่าค่าสารสนเทศของการ เมารักกับแท่วกับ

P(พัว) log (P(หัว)) - P(ก้อย) log (P(ก้อย))

ข้อพิจารณากรณีที่โยนออกหัวหมดหรือก้อยหมด อี้จักน์เทศจะเป็น 0 และค่าสารสนเทศจะค่อยๆ เพิ่มขึ้น องที่สุด เมื่อความน่าจะเป็นของการเกิดหัวเท่ากับความ ประเป็นของการเกิดก้อยหรือสามารถแสคงใค้คังรูปที่ 3



🕅 3. ความสัมพันธ์ระหว่างความน่าจะเป็นและ ค่าสารสนเทศ

3. งานวิจัยที่เกี่ยวข้อง

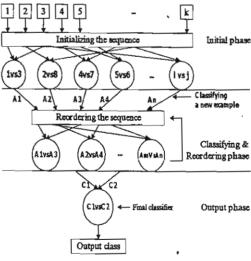
3.1 วิธีแมกซ์วิน (Max Wins)

อัลกอริทึมแมกซ์วินจะทำงานโดยอาศัยฟังก์ชันพื้นฐาน ของการจำแนกแบบหนึ่งต่อหนึ่ง สร้างตัวจำแนกข้อมล ทั้งหมด จำนวน k(k-1)/2 ตัว โดยที่ k คือจำนวนประเภท ข้อมูลทั้งหมด ตัวจำแนกแต่ละตัวจะถูกสอนโคยข้อมูลจาก 2 ประเภท *i* และ / ใคๆ ตามเงื่อนใงคังนี้

$$\min_{\mathbf{p}^{ij},b^{ij},\xi^{ij}} \frac{1}{2} (\mathbf{w}^{ij})^{T} \mathbf{w}^{ij} + C \sum_{i} \xi_{i}^{ij} (\mathbf{w}^{ij})^{T}
(\mathbf{w}^{ij})^{T} \Phi(\mathbf{x}_{i}) + b^{ij} \geq 1 - \sum_{i}^{i}, \text{ if } y_{i} = i
(\mathbf{w}^{ij})^{T} \Phi(\mathbf{x}_{i}) + b^{ij} \leq -1 + \xi_{i}^{ij}, \text{ if } y_{i} = j \xi_{i}^{ij} \geq 0.$$
(17)

แล้วใช้ฟังก์ชัน $\underline{sign}((\mathbf{w}^{\bar{y}})^T\Phi(\mathbf{x}) + b^{\bar{y}})$ จำแนกให้ คำตอบว่าตัวอย่าง x ใคๆ อยู่ในประเภท / หรือ / หลังจาก ได้คำตอบทั้งหมดแล้ว วิธีแมกซ์วินจะบำคำตอบที่ได้จาก ตัวจำแนกทั้ง k(k-1)/2 `ตัว มาโหวตรวมกันโดยประเภทที่ ได้ผลโหวคสูงที่สุด ก็จะเป็นคำตอบของแมกซ์วิน ส่วนในกรณีที่มีผลโหวตสูงสุดมากกว่า 1 ประเภท ก็จะทำ การสุ่มคำตอบจากประเภทเหล่านั้น

3.2 วิธีอาร์เอลีเอจี (Reordering Adaptive Directed Acyclic Graph (RADAG))



รูปที่ 4. โครงสร้างการจำแนกข้อมูลของอาร์เอคีเอจี

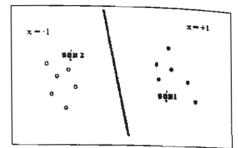
Phetkaew, et al. [8] นำเสนอวิธีการใหม่ เรียกว่า อาร์เอคีเอจี เพื่อปรับปรุงความถูกต้องของวิธีเอคีเอจีเคิม [9] โดยในโครงสร้างของการจำแนกนั้นจะเป็นรูปคล้าย สามเหลี่ยมคว่ำเหมือนวิธีเอดีเอจี แค่จะมีการเลือกถำคับที่ ทำให้เกิดความผิดพลาดน้อยที่สุดของการจำแนกใน แต่ละชั้นโดยวิธีการเลือกจะใช้อัลกอริทึมของการจับกู่ สมบูรณ์แบบน้ำหนักน้อยสุด (Minimum-Weight Perfect Matching) [4] เพื่อจับคู่ให้ค่าขอบเขตความผิดพลาครวม ในแต่ละชั้นมีค่าน้อยที่สุด โดยค่าขอบเขตความผิดพลาด ของฟังก์ชันแบบสองประเภทแต่ละตัวหาได้จากค่า ประสิทธิภาพโดยบัททั่วไปของพัพพอร์ตเวกเตอร์แบลซีบ (Generalization Performance of Support Vector Machine) และเมื่อมีการจำแนกผ่านไปสู่ขั้นใหม่ก็จะมีการ เรียงลำดับการจำแนกใหม่ (Reordering) อีกจนเหลือ ประเภทเคียวในชั้นสุดท้ายซึ่งเป็นคำตอบของอาร์เอดีเอจี

3.3 วิชีจำแนกข้อมูลแบบแตกครึ่งแบบสมคุล (Balanced Dichotomization Classification)

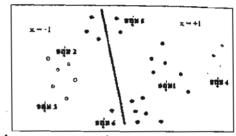
Kijsirikul & Boonsirisumpun [7] เสนอวิธีจำแนก ข้อมูลแบบแคกครึ่งแบบสมคุล (Balanced Dichotomization) โดยมีแนวคิดในการจำแนกข้อมูลด้วยระนาบหลายมิติที่อยู่ ในตำแหน่งกึ่งกลางที่สุดของข้อมูลมาจำแนก เพื่อลด จำนวนครั้งของการจำแนกลงโดยมีขั้นตอนในการจำแนก ข้อมูลดังนี้

3.3.1 การค้นหาดำแหน่งของระนาบหลายมิติ

ในการสร้างฟังก์ชันของระนาบหลายมิติในการจำแนกแบบ สองประเภทตามปกตินั้น เราจะได้ตำแหน่งของระนาบอยู่ ถึงกลางระหว่างสองประเภทข้อมูลที่เราใช้สอน โดยที่ตำแหน่ง ของข้อมูลทั้งสองประเภทจะอยู่คนละด้านของระนาบ ด้ว อย่างเช่น ถ้าสร้างระนาบระหว่าง ประเภท 1 กับ ประเภท 2 ถึงะได้ระนาบหลายมิติอยู่กึ่งกลางระหว่าง 1 กับ 2 และได้ ตำแหน่งของประเภท 1 อยู่ในด้าน x = +1 และตำแหน่งของ ประเภท 2 อยู่ในด้าน x=-1 เป็นตัน (ดูรูปที่ 5 (ก)) แต่จะไม่รู้ ตำแหน่งเทียบกับประเภทข้อมูลอื่น ทำให้การจำแนกซ้อมูล 1 ครั้งตัดประเภทที่ไม่ถูกต้องออกไปได้เพียง 1 ประเภท ในวิธีนี้ จึงมีการค้นหาคำแหน่งของระนาบเทียบกับประเภทข้อมูลอื่น เพิ่มโดยนำฟังก์ชันของระนาบแบบสองประเภทที่มีอยู่แล้วไป คำนวณหาคำแหน่งของประเภทข้อมูลอื่นเพิ่มเติมก็จะได้ ตำแหน่งของระนาบเมื่อเทียบกับข้อมูลทั้งหมด (ดูรูปที่ 5 (ช))



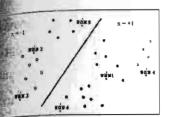
รูปที่ 5 (ก) ข้อมูลเรียนรู้ของระนาบคามปกติ



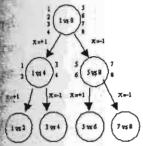
รูปที่ 5 (ข) ข้อมูลเรียนรู้เมื่อมีการค้นหาตำแหน่งเทียบกับ ประเภทข้อมูลอื่นเพิ่ม

3.3.2 การค้นหาระนาบแตกครึ่งแบบสมคุณ

เมื่อทำการคำนวณเพื่อค้นหาคำแหน่งของระนาบหลายมิติ เทียบกับประเภทข้อมูลอื่นตามขั้นตอนข้างต้นแล้ว ในการ จำแนกข้อมูลแบบแตกครึ่งแบบสมคุลจะทำการค้นหาระนาบที่ สามารณเบ่งข้อมูลในตำแหน่งสมคุลที่สุดของข้อมูลทั้งหมคมา จำแนกซึ่งจะเลือกระนาบที่แบ่งข้อมูลในแต่ละค้านของระนาย มีจำนวนประเภทที่ใกล้เคียงกัน เพื่อให้ในการจำแนกข้อมูลเต่ ละครั้งสามารถตัดประเภทข้อมูลที่ไม่ถูกต้องออกไปได้มาก ที่สุด นั่นคือครึ่งหนึ่งของประเภทข้อมูลทั้งหมคในรอบนั้น นั้นเอง



ส่วอย่างระนาบแคกครึ่งที่สมคุลที่สุด



าที่ 7. การจำแนกแบบแตกครึ่งแบบสมคุลที่ดีที่สุด สำหรับปัญหา 8 ประเภท

โลรงสร้างของการจำแนกโคยใช้ระนาบแตกครึ่งที่สมคุล เพลงนั้น ถ้าสามารถหาระนาบที่แบ่งข้อมูลเหลือครึ่งหนึ่งได้ การแลทำให้จำนวนครั้งของการจำแนกที่คีที่สุคลคลงเหลือ เรางในปัญหา & ประเภท ดังตัวอย่างในรูปที่ 7

แล้ว มของการควบคุมความผิดพลาด วิธีการแตกครึ่งแบบ อนหมีการถำหนดขอบเขตความผิดพลาดของการจำแนกข้อมูล เมื่อเมล้าหนดให้ระนาบหลายมิติที่จะนำมาหาระนาบสมคุล อนหลังมีขอบเขตความผิดพลาดของช่วงค่าประสิทธิภาพ เขามนกล้อง

ทกนิกการจำแนกข้อมูลแบบแตกครึ่งตาม สารสนเทศ

นหัวข้อนี้จะนำเสนอแนวคิคที่ทำให้การจำแนกข้อมูล ชาวกรั้งสามารถตัดประเภทข้อมูลที่ไม่ถูกต้องออกไปได้มาก สิค โดยพิจารณาความน่าจะเป็นในการเกิดข้อมูลแต่ละ มีมหาประกอบเพื่อให้ได้จำนวนครั้งเฉลี่ยของการ ในเกตคลง กรณีตัวอย่างจากปัญหาการเข้ารหัสข้อมูลของอักขระ 4 ตัว คือ A, B, C และ D โดยสมมติให้ความน่าจะเป็นของการเกิด ข้อมูลแต่ละประเภทมีเท่ากัน จะได้ว่าจำนวนบิตที่น้อยที่สุดใน การแทนอักขระเหล่านี้คือ 2 บิตโดยแทนแต่ละอักขระดังนี้

A	แทนค้วย	00
В	แทนค้วข	01
С	แทนค้วย	10
D	แทนด้วย	11

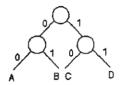
ตัวอย่าง หากต้องการเข้ารหัสข้อมูลของ ABACADAB จะ ได้ 0001001000110001 จำนวนบิตที่ใช้ คือ 16 เมื่อพิจารณา ข้อมูลจากตัวอย่าง ตลอดจนข้อมูลที่เป็นข้อความทั่วไปใน ชีวิตประจำวันจะมีความน่าจะเป็นในการเกิดข้อมูลของแต่ละ อักขระไม่เท่ากัน อาทิ อักขระ A, E, I, O และ U ซึ่งเป็นสระใน ภาษาอังกฤษจะมีความน่าจะเป็นในการเกิดมากกว่าอักขระอื่นๆ

จากตัวอย่างเคิมสมมติว่าความน่าจะเป็นในการเกิดแต่ละ อักษระเป็นดังนี้

	`	
Α	มีความน่าจะเป็นคือ 1/2 แทนรหัสเคิมด้วย	0
В	มีความน่าจะเป็นคือ 1/4 แทนรหัสเดิมด้วย	10
С	มีความน่าจะเป็นคือ 1/8 แทนรหัสเดิมค้วย	110
D	มีความน่าจะเป็นคือ 1/8 แทนรหัสเดิมด้วย	111

หากต้องการเข้ารหัสข้อมูลชุดเดิมคือ ABACADAB จะได้ 01001100111010 จำนวนบิตที่ใช้ คือ 14 จะเห็นว่าเมื่อนำความ น่าจะเป็นในการเกิดของแต่ละอักขระ มาพิจารณาค้วย จะทำให้ จำนวนบิตเฉลี่ยในการเข้ารหัสข้อมูลลคลง โดยอาศัยหลัก พื้นฐานที่ว่าหากอักขระใดใช้บ่อย ก็ให้แทนด้วยจำนวนบิต น้อยๆ ส่วนอักขระใดไม่ค่อยใช้ก็ยอมให้แทนด้วยจำนวนบิตที่ ยาวกว่าได้

เมื่อพิจารณาในกรณีแรกหากความน่าจะเป็นในการเกิด ข้อมูลของแต่ละอักขระมีค่าเท่ากันก็เหมาะสมแล้วที่จะแทน อักขระแต่ละตัวค้วยรหัสไบนารีจำนวน 2 บิต เพื่อให้ง่ายแก่การ เข้าใจจึงแสดงวิธีการแทนอักขระกรณีที่ความ น่าจะเป็น ในการ เกิดข้อมูลของแต่ละอักขระเท่ากันและ ไม่เท่ากันด้วยรูปที่ 8 (ก) และ (ข) ตามลำดับ



รูปที่ 8 (ก) การแทนอักขระด้วยดัน ไม้แบบ ใบนารี กรณีที่ ความน่าจะเป็นในการเกิดของแต่ละอักขระ เท่ากัน

รูปที่ 8 (ข) การแทนอักขระค้วยค้นไม้แบบไบนารี กรณีที่ ความน่าจะเป็นในการเกิดของแต่ละอักขระไม่ เท่ากัน

จากรูปที่ 8 (ก) และ (ข) ซึ่งแสดงการแทนอักขระด้วย
กันไม้แบบใบนารีจะเห็นว่าในรูปที่ 8 (ก) กรณีที่ความน่าจะ
เป็นในการเกิดของแต่ละอักขระเท่ากัน ต้นไม้แบบใบนารีที่
สมคุลจะให้จำนวนเส้นเชื่อม (edge) จากรากไปถึงแต่ละใบ
นั้นเท่ากัน แต่ในรูปที่ 8 (ข) กรณีที่ความน่าจะเป็นในการเกิด
ของแต่ละอักขระไม่เท่ากันจะให้จำนวนเส้นเชื่อมจากรากไป
ถึงใบแต่ละใบค้วยจำนวนเส้นเชื่อมมากน้อยต่างกันขึ้นกับ
ความน่าจะเป็นในการเกิดของอักขระนั้น เช่น อักขระ A มี
ความน่าจะเป็นสูงสุดจะให้จำนวนเส้นเชื่อมจากรากไปถึงใบ
ค่ำที่สุด ส่วนอักขระ C และ D จะมีจำนวนเส้นเชื่อมจากราก
ไปถึงใบมากที่สุดเนื่องจากมีความน่าจะเป็นในการเกิดต่ำสด

หากพิจารณาในแง่ของการค้นหาข้อมูลของรูปที่ 8 (ข) อักขระ A เกิคบ่อย จึงแทนด้วยจำนวนบิดต่ำ หรือกล่าวในเชิง การค้นหาข้อมูลคือ จำนวนครั้งในการค้นหาต่ำ ส่วนอักขระ C และ D มีโอกาสเกิดน้อย จึงแทนด้วยจำนวนบิตที่ยาวได้ หรือจำนวนครั้งในการค้นหาสูงได้ เมื่อพิจารณาการค้นหา โดยรวมจึงทำให้เวลาการค้นหาเฉลี่ยค่ำสุด จากข้างค้นการสร้างค้น ไม้สำหรับการจำแนกแบบหลาย ประเภทเทียบได้กับการเข้ารหัสข้อมูล โดยแต่ละ โนคจะเป็น คัวจำแนกแบบสองประเภทที่เลือกมา ซึ่งจำนวนครั้งในการ จำแนกข้อมูลเฉลี่ยย่อมขึ้นกับความน่าจะเป็นของการเกิด ข้อมูล ในแต่ละประเภทเช่นเคียวกับความน่าจะเป็นของการ เกิดอักขระ

บทความนี้ ได้เสนอวิธีการใหม่เรียกว่า เทคนิคการจำแนก ข้อมูลแบบแตกครึ่งตามสารสนเทศ ซึ่งมีแนวคิดในการ จำแนกข้อมูลด้วยระนาบหลายมิติที่แบ่งข้อมูลออกเป็นสอง ส่วน ได้ดีที่สุด โดยพิจารณาจากความน่าจะเป็นในการเกิด ข้อมูลแต่ละประเภท ซึ่งมีขั้นตอนในการจำแนกข้อมูลดังนี้

4.1 การค้นหาตำแหน่งของระนาบหลายมิติ

การสร้างฟังก์ชันของระนาบหลายมิติในการจำแนกแบบ สองประเภทตามปกตินั้นจะได้ตำแหน่งของระนาบอยู่กึ่งกลพ ระหว่างข้อมูลสองประเภทที่เราใช้สอนโดยที่ตำแหน่งของ ข้อมูลทั้งสองประเภทจะอยู่คนละด้านของระนาบแต่จะไม่รู้ ตำแหน่งเทียบกับประเภทข้อมูลอื่นจึงมีการค้นหาตำแหน่งของ ระนาบเทียบกับประเภทข้อมูลอื่นเพิ่มโดยนำฟังก์ชันของ ระนาบแบบสองประเภทที่มีอยู่แล้วไปคำนวณหาตำแหน่งของ ประเภทข้อมูลอื่นเพิ่มเติมก็จะได้ตำแหน่งของระนาบ เมื่อเทียบ กับข้อมูลทั้งหมด เช่นเดียวกับในวิธีแตกครึ่งแบบสมคุล

4.2 การค้นหาระนาบแคกครึ่งตามสารสนเทส

เมื่อทำการคำนวณเพื่อค้นหาตำแหน่งของระนาบหลาณิติ เทียบกับประเภทข้อมูลอื่นตามขั้นตอนข้างค้นแล้วจะทำการ ค้นหาระนาบที่สามารถแบ่งข้อมูลได้ดีที่สุดโดยพิจารณาจากค่า เอนโทรปีของข้อมูลโดยเลือกระนาบที่ให้ค่าเอนโทรปีต่ำสุดซึ่ง จะเป็นตัวบ่งชี้ว่าหากนำระนาบนั้นไปใช้ในการจำแนกข้อมูล แล้ว ข้อมูลที่ได้ในแต่ละค้านของระนาบจะมีจำนวนประเภทที่ ปนกันอยู่น้อยที่สุดตามหลักของทฤษฎีสารสนเทศที่กล่าว ข้างค้น เมื่อแต่ละค้านมีจำนวนประเภทของข้อมูลปนกันอยู่ น้อยจึงสามารถตัดประเภทที่ไม่ใช่กลกไปได้ดีด้วย สูตร

ค่าเอา

 $I(t_i)$

โดย

ด้วย เป็น 4 1 ใ ละประเ แบบหา ดังกล่า:

1

รูปร

ก สามา แบบการคำนวณค่าเอน โทรปีเป็นคังนี้ กรบของด้วจำแนก $=\sum_{i=1}^n rac{\mid t_i \mid}{\mid T \mid} I(t_i)$

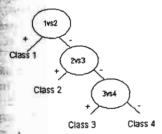
$$\sum -P(m_i)\log_2 P(m_i) \tag{18}$$

ซึ่งใด้แก่ กิ่งบวกและกิ่งลบ เป็นจำนวนประเภทของข้อมูลทั้งหมด

อาเมาาหนดให้ชุดข้อมูลหนึ่งมีจำนวนประเภท(Class) ขึ้นคังรูปที่ 9 (ก) และค้นไม้สำหรับการจำแนก ขางเปที่ดีที่สุดแสดงคังรูปที่ 9 (ข)



กที่ 9 (ก) ความน่าจะเป็นในการเกิดข้อมูล แต่ละประเภท



🗐 🖰 (ข) ต้น ไม้สำหรับการจำแนกแบบหลาย

ร สำนวณค่าจำนวนครั้งในการจำแนกที่คาคหวัง **ชาวีลีกำนวณได้จากสูตร**

$$P(m_i)\log_2 P(m_i) \tag{19}$$

สำหรับ ปัญหาการจำแนก k ประเภท และ m_i คือความ น่าจะเป็นในการเกิดข้อมูลของประเภทที่ m_i

กรณีตัวอย่างจากรูปที่ 9 สามารถคำนวณค่าจำนวนครั้ง ใบการจำแบกที่คาดหวังใต้ดังนี้

$$\sum_{i=1}^{4} -P(m_i) \log_2 P(m_i)$$
=[-(0.5)*\log_2(0.5)]+[-(0.25)*\log_2(0.25)]+
[-(0.125)*\log_2(0.125)]+[-(0.125)*\log_2(0.125)]
= 1.75

5. ผลการทดลอง

สำหรับการทคลองได้ใช้ข้อมูลทคสอบจาก UCI Machine Learning Repository [3] จำนวน 4 ชุด คังคารางที่ 1 ข้อมูลแต่ละชุดจะประกอบด้วย ข้อมูลสอนและ ข้อมูลทคสอบ ในขั้นตอนของการทคลองจะทำการแบ่ง ชุดข้อมูลสอนออกเป็น ข้อมูลสอนจริงและข้อมูลทคสอบ ความถูกค้อง(Validation data) เพื่อใช้ในการหาค่าพารามิเตอร์ ที่เหมาะสม [7] ซึ่งประกอบค้วยค่า P คือค่าร้อยละ ในการตัดเล็ม ($0 \le P \le 10$) และ R คือ ค่าขอบเขตความ ผิคพลาค($\chi_{\min} \leq R \leq \chi_{\max,sd}$ เมื่อ χ_{\min} กื่อ ก่าค่ำสุดของ ขอบเขคกวามผิดพลาดของตัวจำแนกทั้งหมด และ $x_{\max d}$ ก็อ ผลรวมของค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของขอบเขต ความผิดพลาดของตัวจำแนกทั้งหมด) หลังจากนั้นจึงใช้ค่า Pที่ได้เพื่อสร้างตัวจำแนกแบบหลายประเภทจาก ชุดข้อมูลสอนเดิมและใช้ชุดข้อมูลทดสอบเพื่อหาค่าความ ถูกต้อง และค่าจำนวนครั้งเฉลี่ยในการจำแนกข้อมูล ผลการ ทคลองแสดง ดังตารางที่ 2-3 (IBD คือ Information-Baesd dichotomization, BD คือ Balanced Dichotomization, Expected Value คือ ค่าจำนวนครั้งในการจำแนกที่คาคหวัง. ตัวอักษร c, d คือพารามิเคอร์ของฟังก์ชันเคอร์เนล และ ตัวอักษรเข้มในคารางแสคงค่าที่คีที่สุดในแค่ละชุคข้อมูล)

คารางที่ 1: ลักษณะของข้อมูลที่นำมาทคสอบ

Dataset	#training set	#test set	#class	#feature
Satimage	4,435	2,000	6	36
Shuttle	43,500	14,500	7	9
Vowel	528	462	11	10
Soybean	290	340	15	35

ดารางที่ 2: เปรียบเทียบจำนวนครั้งของการจำแนก

Dataset	Polynomial Kernel							
	Expected Value of IBD	Output of IBD	Expected Value of BD (log ₂ k)	Output of BD	RADAG (k-1)	Maxwins (k(k-1)/2)		
Satimage	2.474	4.999	2.585	4.847	5	15		
Shuttle	0.965	5.359	2.807	5.378	6	21		
Vowel	3.459	5.385	3.459	5.665	10	55		
Soybean	3.617	6.971	3.907	6.783	14	105		
	RBF Kernel							
Dataset .	Expected Value of IBD	Output of IBD	Expected Value of BD (log ₂ k)	Output of BD	RADAG (k-1)	Maxwins (k(k-1)/2)		
Satimage	2.474	4.734	2.585	4.577	5	15		
Shuttle	0.965	4.982	2.807	5.758	6	21		
Vowel	3.459	5.628	3.459	5.819	10	55		
Soybean	3.617	5.400	3.907	6.591	14	105		

คารางที่ 3: เปรียบเทียบค่าความถูกต้อง

Dataset	Polynomial Kernel							
	ď	IBD	d	BD	đ	RADAG	đ	Max Wins
Satimage	6	88.850	6	87.840	6	88.900	6	88.453
Shuttle	8	99.924	8	99.924	8	99.924	8	99.924
Vowel	3	64.935	2	65.022	3	64.502	3	64,329
Soybean	3	90.882	4	89.529	3	91.176	3	90.471
	RBF Kernel							
Dataset	c	IBD	C	BD	c	RADAG	c	Max Wins
Satimage	0.5	91.950	1.0	91.350	0.5	91.950	0.5	91.984
Shuttle	3.0	99.890	3.0	99.886	3.0	99.897	3.0	99.897
Vowel	0.3	66.450	0.2	62.900	0.2	67.100	0.2	65.340
Soybean	0.07	91.471	0.04	89.118	0.07	90.882	0.08	90.468

จากผลการทดลองการแตกครึ่งตามสารสนเทศให้ค่าความ ถูกต้องใกล้เคียงกับวิธีอื่น ส่วนจำนวนครั้งในการจำแนกเมื่อ เปรียบเทียบกับอาร์เอดีเอจีและแมกซ์วิน พบว่าการแตกครึ่งตาม สารสาแทคให้ค่าจำนวนครั้งในการจำแนกค่ำกว่าทุกกรณี และเมื่อ เปรียบเทียบกับการแตกครึ่งแบบสมคุล พบว่าการแตกครึ่งตาม สารสนเทศให้คำจำนวนครั้งในการจำแนกค่ำกว่าถึง 5 ใน 8 กรณี ส่วนอีก 3 ใน 8 กรณี เม้ากรแตกครึ่งตามสารสนเทศจะให้จำนวน ครั้งในการจำแนกที่สูงกว่าแต่ก็ให้ค่าความลูกค้องที่สูงกว่าด้วย

ความสามารถในการลดจำนวนครั้งของการจำแนกจะขึ้นกับ ระนาบของตัวจำแนกแบบสองประเภทที่สร้างได้ จากล่า P และ R ที่ดีที่สุดด้วย โดยหากระบาบที่ได้สามารณเบ่ง ประเภทของข้อมูลได้ดีนั่นดือ แต่ละด้านของระนาบมีประเภท ของข้อมูลปนกันน้อยหรือถ้าหากค้านใคค้านหนึ่งของระมาบมี เพียงประเภทเดียว ค่าจำนวนครั้งเฉลี่ยของการจำแนกที่ได้จริงยิ่ง ให้ค่าใกล้เคียงกับค่าจำนวนครั้งในการจำแนกที่คาคหวังจากสูตร

 $\sum_{i=1}^k -P(m_i)\log_2 P(m_i)$ ในพางพรงกันข้ามหากระนานที่ ระนาบใดที่เกบ่งประเภทข้อมูลได้ดีพอก็ยิ่งส่งผลให้คัวรับแก หลายประเภทที่ ได้ มีจำนวนครั้งในการจำแนกเฉลื่อสุงเล คลาดคลื่อนจากค่าจำนวนครั้งในการจำเนกที่ศาดหวังมากับกา

6. สรุป

เทคนิคการแตกครึ่งตามสารสนเทศสามารถเพิ่มประสิทธิภา การจำแนกประเภทของซัพพอร์ตเวณตอร์แมชนีนแบบหลาย ค้านจำนวนครั้งของการจำแนก โดยผลดังกล่าวจะซึ่งปรากฏจัด กรณีปัญหาที่มีจำนวนประเภทเป็นจำนวนมาก อีกทั้งขังคง ความถูกต้องใกล้เคียงกับตัวจำเนกเบบหลายประเภทวิธีชื่น

7 เกกสารก้างถึง

- [1] บุญเสริม กิจศีริกุล.. เอกสารประกอบการเรียนวิชาปัญญาประการ ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2546
- [2] Bartlett, P. L. and Shawe-Taylor, J., Generalization performance of support vector machines and other pattern classifiers, in Advances in Kernel Methods Support Vector Learning, pp. 43-54, MIT Press, Cambridge, USA, 1999
- [3] Blake, C., Keogh, E., and Merz, C. UCI Repositor at Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine 1998. http://www.ics.uci.edu/~mleam/MLSummary. html
- [4] Cook, W. and Rohe, A., Computing Minimum-Weight Parist Matchings, Technical Report 97863, Forschungsinsting für Diskrete Mathematik, Universität Bonn, 1997.
- [5] Friedman, J. H., Another Approach to Polychotomous classification, Technical report, Department of Statistics Stanford University, 1996.
- [6] Hsu, C. and Lin, C., A Comparison of Methods for Multiclass Support Vector Machines, IEEE on Neural Networks, 13, 415-425, March, 2002.
- [7] Kijsirikul, B., Boonsirisumpun, N. and Limpiyakom, Y., Multiclass Support Vector Machines United Balanced Dichotomization, The 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI-2004), 2004.
- [8] Phetkaew, T., Kijsirikul, B. and Rivepiboon, W. Reordering Adaptive Directed Acyclic Graphs An Improved Algorithm for Multiclass Support Vector Machines, The 2003 IEEE/INNS International Joint Conference on Neural Networks, Portland Oregon, July 20-24, 2003.
- [9] Ussivakul, N. and Kijsirikul, B., Adaptive DAG: Another Approach for Multiclass Classification, International Conference on Intelligent Technologies, 2001.

> 730

C 2005