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Fig. 4. Classifying process of the RADAG.

concerned with determining the factors that affect the accuracy of a pattern clas-
sifier [3]. Generalization performance of SVMs can be approximated by bounding
on the generalization error. Define the class F of real-valued functions on the ball
of radius R in B™ as F' = {w+ w-x: [lw|| € 1,||x|] £ R}. There is a constant
¢ such that, for all probability distributions, with probability at least 1 — § over
! independently generated examples 2, if a classifier & = sgn{f) € sgn(F) has
margin at least ¥ on all the examples in 2, then the error of & is no more than

c{R: 1
7 (—T—z-iog I+ log (3)) (1)

Furthermore, in case that the training data cannot be separated by the hyper-
plane without error, with probability at least 1 — & , every classifier k € sgn{F)
has error no more than

k c R 1 .
o s (Bt (3) ®

where k& is the number of labeled examples in z with margin less than . Below
we show an example of the generalization error of classifiers. The experiment
is based on the English letter image recognition data set from [4], which has
26 classes. Hence there are 325 classifiers. The classifiers are trained by using
the Polynomial kernel of degree 3. In Figure 5, the generalization errors of all
classifiers expressed by Equation 2 are depicted. The generalization errors of all
classifiers are varying. The average of all of them is 28.82.

5.4 Algorithm

For the reason described above, we consider the generalization errors in order
to choose the optimal order with less chance to predict the wrong class from
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Fig. 5. The generalization errors of 325 classifiers.

all possible W%W orders. Among N (N — 1)/2 classifiers, N/2 classifiers
which have small generalization errors will be considered to be used in data
classification.

Let G = (V,E) be a graph with node set V' and edge set £. Each node
in G denotes one class and each edge denotes one binary classifier which has
a generalization error from equation 2 (see Figure 6(a)). The output of the
reordering algorithm for graph (7 is a subset of edges with the minimum sum of
generalization errors of all edges and each node in G is met by exactly one edge
in the subset (see Figure 6(b)). Given a real weight ¢, being generalization error
for each edge e of G, the problem of reordering algorithm can be solved by the
minimum weight perfect matching that finds a perfect matching M of minimum
weight 3 (c. 1 e € M).

For U CV,let E(U) = {{1,7): (,j) € E,i € U,j € U}. E(U) is the set of
edges with both endpoints in U. The set of edges incident to node 1 in the node-
edge incidence matrix is denoted by 8(¢). The convex hull of perfect matchings
on a graph G = (V, E) with |V| even is given by
a)x € RT
b) Eeeﬁ(v) Te=1forveV
€) Pecr) Te < []%[J for all odd sets U C V with |U]| > 3
or by {a),(b) and
d) X.esr) *e > 1 for all odd sets U C V with |U| >3
where |E| = m and x, = 1 means that e is in the matching. So the minimum
weight of a perfect matching is at least as large as the value of

min Z Celp (3)

eck

where g satisfies ” (a),(b) and (¢)” or "{(a),(b) and (d)”. Therefore, the reordering
problem is to solve the linear program in Fquation 3.

8
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Fig. 6. (a) A graph for an 8-class problem (b) An example of the output of the re-
ordering algorithm.

5.5 Estimating the Difference between Means of Generalization
Errors

In this subsection we will explain test concerning means of generalization errors
of classifiers of interest (the binary classifier of the correct class and other classes
in the order of clagses), which are selected by the ADAG and the RADAG. For
the ADAG, we randomly selected the classifiers to be used in data classification,
whereas for the RADAG the classifiers are selected by using the minimum-weight
perfect matching algorithm. This may be analyzed using a method called the
one tailed paired t test.
To estimate the difference between two means, we wish to test

Ho:ps —p2 =0,

H,: H1 — pa > 0.
The point estimate of the difference p) — of two population means is given
by X1 — Xu. The form of the paired t test is

K-X
b= Sa/vn )

where Sy is the standard deviation of the sample of differences X; — X,.
Assume that the distribution of generalization errors is normal distribution.
The simulation is based on the dataset which has 26 classes, and hence there
are 325 binary classifiers. In the experiment, a generalization error is randomly
selected to each classifier with eqgual probability, uniformly distributed. We ex-
amine 5,200 orders of classifiers, where for the first 200 orders we assume that
the correct class is class 1, for the second 200 orders we assume that the correct
class is class 2 and so on. For the ADAG, we randomly selected 5,200 orders of
classifiers. For the RADAG, 5,200 orders are selected by using the minimum-
weight perfect matching algorithm so all orders are the same. Then we compute
sum of generalization errors of classifiers of interest that correspond to the binary
classifier of the correct class and other classes in the order. The experiments are
repeated 100 times. Then we calculate the sample mean X; (Xapag) and X,



(Xrapac). Using o = 0.001 with a one-tailed test. and degree of freedom = 99,
the null hypothesis is rejected. This means that the RADAG obtains classifiers
whose generalization errors are statistically significantly lower than the ADAG.

6 Experiments

In the experiments, we compared the accuracy of classification of four algorithms,
i.e., the Max Wins, the DDAG, the ADAG, and the RADAG. We also compared
the computational time between the ADAG, the RADAG and the Max Wins.

6.1 Data Set and Experimental Setting

The experiments are based on several data sets from the UCT Machine Learn-
ing Repository [4] including glass, satimage, segment, shuttle, vowel, soybean,
letter and isolet (see Table 1). For the soybean problem, we discarded the last
four classes because of missing values. In addition, we examined our methods
with Thai printed charafter recognition [20], which has 68 classes including 44
consonants, and 26 vowels and tonal masks. For the training set, the characters
were printed by laser printer with 600 dpi resolution. Then they were copied by
a copier machine with saturated ink. There are two test sets. For the test set of
Thai printed character 1 data set, the charecters were printed by laser printer
with 600 dpi resolution. For the test set of Thai printed character 2 data set,
the characters were printed by laser printer with 600 dpi resolution. Then they
were copied by a copier machine with pale ink. These data sets are different in
the number of classes, the number of dimensions, and sizes. 68 classes is the
most classes and 617 dimensions is the most dimensions which are used in the
experiment.

In these experiments we scaled both training data and test data to be in
[-1,1} and employed Polynomial and RBF kernels. In the training phase, the
N{N - 1)/2 binary classifiers were constructed by using the software package
called SV M9t version 5.0 [13, 14]. For the DDAG and the ADAG, we examined
all possible orders of classes for datasets having not more than 8 classes, whereas
we randomly selected 50,000 orders for datasets having more than 8 classes. We
then calculated the average of accuracy of these orders.

Table 1. Description of the datasets used in the experiments.

Dataset Training data]Test data]Classs[Dimension
Glass 214 - 6 9
Satimage 4,435 2,000 & 36
Segment 2,310 - K 18
Shuttle 43,500 14,500 7 9
Vowel 528 462 11 10
Soybean 290 340 15 35
Letter 15,963 4,037 26 16
zolet 6,238 1,559 26 617
‘ThaiPrintedCharacterl 3,264 3,264 68 128
‘ThaiPrintedCharacter2 3,264 3,264 68 128
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6.2 Experimental Results

Table 2 and Table 3 present the results of comparing four methods including
the Max Wins, the DDAG, and our methods, the ADAG and the RADAG. We
present the optimal parameters, d in the Polynomial kernel [(x -y + 1)|¢ and ¢
in the RBF kernel exp(—|x — y|3/¢). The best accuracy among these methods is
illustrated in bold-face. ****, *** ** and * in the tables mean 99.99%, 99%, 95%,
and 90% confidence interval for estimating the difference between accuracies of
the ADAG and other methods, using a one-tailed paired t-test. 444, 144,
++ and + mean 99.99%, 99%, 95%, and 90% confidence interval for estimating
the difference between accuracies of the RADAG and other methods using a
one-tailed paired t-test.

To estimate the difference between accuracies, we added up the training set
and test set into one set. Then we use a k-fold cross-validation method in which
the set is partitioned into k disjoint, equal-sized subsets. In this k-fold cross-
validation approach, each example from the set is used exactly once in a test
set, and k-1 times in a training set [19]. In our experiment, we use 5-fold crsss-
validation for the glass dataset and 10-fold crsss-validation for all others.

For estimating the difference between errors of two learning methods, the
mean difference ¥ in errors from all disjoint subsets is returned as an estimate
of the difference between the two learning algorithins [19]. The approximate N%
confidence interval for estimating the difference using Y is given by

(}_’ — tNg-15%: Y + tne-15%) (5)
where ¥ is the sample mean defined as
o k
Y = % Zi.‘:l K

¥; is the difference iu error between two learning methods from the i*? subset,
and Sy is the estimated standard deviation of the sample mean defined as

Sy = /iy T (% - V)%

As shown in the tables, our methods yield higher accuracy than the Max
Wins and the DDAG in almost all of datasets. The results show that the ADAG
performs statistically significantly better than the DDAG in satimage, shuttle,
vowel, soybean and letter problems. In case of the RBF kernel, the ADAG per-
forms statistically significantly better than the DDAG in shuttle, soybean, letter
and isolet problems. The results also show that the RADAG performs statisti-
cally significantly better than the other methods in the segment, shuttle, vowel
and letter problems in case of the Polynomial kernel. In case of the RBF kernel,
the RADAG performs statistically significantly better than the other methods
in the glass, shuttle, vowel, soybean and letter problems. These show the effec-
tiveness of the ADAG and the RADAG.

6.3 Computational Time

Table 4 and Table 5 present the comparison of the running time for classifying
test data between the ADAG, the RADAG and the Max Wins for Polynomial

11



Table 2. A comparison of the accuracy of classification using the Polynomial kernel.

Dataset d Max Wins] d DDAG d ADAG d RADAG
Glass 2 T1.078 2 71.069 2 TiLH.13K 2 T1.063
Satimage 6 89.615 6 BD.599™"* 6 89,522 8 89.681
Segment 8 97.36144 (B 97.360, 4 8 97.383, 8 ©7.533
Shuttle 8 99.923. |8 99.918%% |8 99.922,, |8 99.930
Vowel 3 93.001; |3 98.872% 3 98894, |2 98.990
Soybean 3 92.470 5 92.2027 5 92.281 3 92.698
Letter 3 96512, |3 95.9943%7,| 3 96.379.44| 4 968.074
Isolet 3 97.488 3 97.484 3 97.485 3 097.499
ThaiPrintedCharacterl| 2 99.246 2 99,239 2 99.242 2 99,234
ThaiPrintedCharacter2| 2 99677 2 U9.657 2 9Y.670 2 99.617

Table 3. A comparison of the accuracy of classification using the RBF kernel.

Dataset ¢ Max Wins[ ¢ DDAG [ ADAG [ RADAG
Glass 0.09 73.238; |0.08 T2.8504 Q.08 72759, 0.09 74.319
Satimage 3.0 92,148 3.0 92129 3.0 92.141 3.0 92,152
Segment 0.7 B7.658 |07 97.652 0.7 97.850 0.7 97.576
Shuttle 3.0 059,928 3.0 99.926_‘:; 3.0 999274 3.0 90.931
Vowel 0.2 .0B.9804 |02 98.9654 0.2 98.975, 0.2 99.091
Saybean 0.08 92.533; [0.07 91.739;_'_', 0.08 92.5704 0.07 93.016
Letter 3.0 96512, |3.0 95.994_;_;;_4_ 3.0 96,379 4 44.3.0 96.6834
Isolet 0.01 97.527 0.0l 97.517 0.01 97.523 0.003 97.589
ThaiPrintedCharacter (0.003 98.387  (0.003 89.387 0.003 99.387 0.003 99.387
ThaiPrintedCharacter2(0.004 99.663 (0,004 89.663 0.004 99.663 0.004 99.663

and RBF kernels by using a 400 MHz Pentium II processor. There is no running
time of the glass dataset because it has too few test examples to measure the
time. For the segment problem, there is no provided test data so we use 5-fold
crsss-validation. The results show that both the ADAG and the RADAG require
low running time in all data sets, especially when the number of classes and/or
the number of dimensions are relatively large. For an N-class problem, the Max
Wins requires N(N — 1)/2 classifiers for the classification whereas the ADAG
and the RADAG require only N — 1 classifiers. Hence the larger the number of
classes the more running time the Max Wins requires than the ADAG and the
RADAG. Moreover, the number of dimensions affects the running time of each
classifier. As the result, the larger the number of dimensions the more running
time the Max Wins requires than the ADAG and the RADAG. For the RADAG,
the number of classes affects the running time for reordering. However, it takes
a little time even when there are many classes.

The Max Wins needs O{N?) number of comparisons for the problem with
N classes. The DDAG reduces the number of comparisons down to O{N). By
reducing the depth of the path, the ADAG requires (V) comparisous of binary
clagsifiers with accuracy higher than that of the DDAG. The RADAG needs a
little time more than the ADAG for reordering the order of classes. Note that,
currently, the minimum-weight perfect matching algorithm, which is used in the
reordering algorithm, runs in time bounded by O(N{M + NlogN)) [6], where
N is the number of nodes (classes) in the graph and M = N(V — 1}/2 is the
number of edges (binary classifiers). The RADAG will reorder the order of classes
in every level, except for the last level. The order of classes in the top level is

12



Table 4. A comparison of the computational time using the Polynomial kernel.

HADAG

Dataset Test data|Class| Dimension| d [ ADAG TReordering] Total |Max Wins
{seconds)| (seconds) |(seconds)| (seconds)

Satimage 2,006 6 36| & 1.90 0.50 2.40 .47
Seygrnent 462 7 18( 8 0.11 0.08 0.19 0.41
Shuttle 14,500 7 9| 8 1.76 3.38 5.13 5.18
Vowel 462 11 10| 2 0.12 0.26 0.37 .61
Soybean 310 15 35] 3 0.30 0.25 0.55 1.86
Letter 4,037 26 16| 4 8.4 4.20 12.68 125.568
Isolet 1,559 26 B17| 3 116.02 1.48 117.50| 1,671.98
ThaiPrintedCharacter] 3,264 68 128( 3 94 .63 13.83 108.46| 2,996.64
ThaiPrintedCharacter2 3,264 68 128( 3 96.41 13.19( 109.60| 3,042.98

Table 5. A comparison of the computational time using the RBF kernel.

RADAG

Dataset Test data|Class|Dimension| ¢ [ ADAG [Reordering] Total |Max Wins
(seconds)| (seconds) |(seconds)| (seconds)

Satimage 2,000 [3 36(3.0 11.75 .51 12.26 37.13
Segment 462 7 14]0.7 0.24 .10 0.34 .82
Shuttle 14,500 7 9]3.0 3.36 0.63 3.99 9.27
Vowel 4821 11 10(0.2 0.10 0.27 0.37 0.61
Soybean 340 15 350.07 0.32 0.45 0.77 2.20
Letter 4,037 26 1613.0 62,27 3.69 65.96 802.8%
Isolet 1,559 26 617)0.01 100.42 1.60 102.02| 1,369.11
ThaiPrintedCharacterl 3,264 68 128(0.002 86,25 16.46 102.7E| 2,772.18
ThaiFrintedCharacter2 3,264 48 128(0.001 55.75 14.37 70,12 1,877.77

reordered only one time and we use the order to evaluate every test example.
Hence for classifying each test data, we need loga N 2 times of reordering, where
each time the number of classes is reduced by half. Therefore, the running time
of the RADAG is bounded by O(¢; N} + O(caN3loga N}, where ¢, is much larger
than e;.

7 Conclusion

We have proposed a new approach, Adaptive Directed Acyclic Graph (ADAG),
that alleviates the problem of the DDAG caused by its structure which needs an
unnecessarily high number of evaluations for the correct class. Using the reversed
triangular structure, the ADAG reduces the number of times the correct class is
tested against other classes, and thus reduces the cumulative errors. We proved
that the expected accuracy of the ADAG is higher than that of the DDAG.

We also proposed an enhancement version of the ADAG, Reordering Adap-
tive Directed Acyclic Graph (RADAG), to choose an optimal order of classes in
the list in the ADAG method. By the use of minimum-weight perfect matching,
the RADAG can reorder the order of classes in polynomial time and only binary
clasgifiers which have small generalization errors will be considered to be used
in decision nodes.

Our experimental results are also evidence that the ADAG and the RADAG
vield higher accuracy of classification than the Max Wins and the DDAG, espe-
cially in such a case that the number of classes is relatively large. Moreover, the
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running time used by the ADAG and the RADAG is much less than that used
by the Max Wins, especially when the number of classes and/or the mumber of
dimensions are relatively large.

Since the DDAG reduces evaluation time while maintaining accuracy com-
pared to the Max Wins, which is one of the SVMs” fastest methods in multiclass
classification, this modification of the DDAG will help improve accuracy even
further. ln our ongoing work, we are studying how to reduce the number of
evaluations and how to enhance the performance in terms of both accuracy and
running time.

Appendix

In the following analyses of the DDAG and ADAG, we assume that the probability
of the correct class being in any position in the list is a uniform distribution. We also
assurne that the probability of the correct class being eliminated from the list is p, when
it is tested against another class, and that the probability of one of any two classes,
except for the correct class, being eliminated from the list is 0.5 when they are tested
against each other.

We first illustrate the expected accuracy of the DDAG by the following example.

Example: (Expected accuracy of the DDAG for a 4-class problem). Consider
a four-class problem. Figure 7 shows all probability calculation paths where the correct
class will be correctly classified by the DDAG. There are 8 calculation paths for this
problem. The correct class will be correctly classified if it is not eliminated from the
kist. This means that when it is at the edge (the first or the last elemnent) of the list in
each calculation path, all other classes have to be excluded from the list.

Fig. 7. An example of a four-class problem.

Under a uniform distribution, the probability is 1/4 that the correct class will be
at any position of the initia! list. In the case that the correct class (indicated by ‘X’
in the figure) is at the edge of the current list, it will be correctly classified if all other
classes are eliminated from the list. The probability of this is {1 — p)¥ 77, where N is
the number of elermnents in the current list. In the case that the correct class is not at
the edge, we have two possible choices, i.e. to remove the first slement and to remove
the last element from the list. This reduces the number of elements one by one. From
the above example, the probability that the correct class is correctly classified is:
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(/91 —p)® + (1/0(/2 @ — py* + (1/4)(1/2)*(1 - p)* + (1/9)(1/2)*(1 — p)* +
(L/0(1/2)° (1 ~p)* + (L/DQ/22 (1 ~p)t +(1/D(1/2)* (1 —p)* + (1/4)(1 — p)®
= (1/9[( - p)/p + (1 - g = (1~ p)*/p] o

We now give the theorem for expected accuracy of the DDAG as follows.

Proof of Theorem 1 {Expected accuracy of the DDAG). As shown in the above
example, the correct class will be correctly classified if when it is at the edge of the list,
all other classes have to be excluded from the list. Consider the cases when we first
obtain a list with ¢ elements where the correct class is at the left-most position, where
2 € i € N — 1. The list can be written as X(Q...0, where X and O represent the
correct class and a wrong class, respectively. This list is obtained from a list containing
i+ 1 elements with one wrong class preceding the correct class as shown by OXO ... 0.
Before the list OXO...O is obtained, N — i — 1 wrong classes must be excluded from
an initial list. Thus beginning from all possible different initial lists, the number of
possible calculation paths ending with a list of i elements where the correct class is at
the left-most position is 2% '~ (as there are two possible choices for one wrong class;
to remove the first element or to remove the last element of the list). Therefore the
number of possible calculatioh paths ending with a list of i elements where the correct
class is at the edge (the left-most and right-most positions) is 2¥ ~*. The probability
of obtaining the list of i elements where the correct class is at the edge is equal to
(1/N){0.5)¥ (1 — p)'~*, as N — i wrong classes must be eliminated from the list and
after that the correct class is at the edge and i — 1 wrong classes must be excluded.
The total probability that the correct class of this pattern will be correctly classified
is thus 2V =9(1/NY0.5)¥ (1 — py~! = (1/N)(1 - p)* L.

Next consider the cases when the correct class is at the edge of a list with NV
elements. For these cases, the total probability that the correct class will be correctly
classified is obviously 2(1/N)(1 —p)¥ !

Finally we sum up all above probabilities and we have the expected accuracy as:
(N /N -pY D) +20/NA-p)V T = (005 /N1 -p))) + (/N)(1 - p) ¥
= (1/N)(1-p) (1~ (1~p)" Y e+ (1-p)" '] = (/M) (1 —-p)/p+(1—p)" " ~(1-p)" /5]

O

Fig. 8. The positions of classes that can be bye-getting elements.

Proof of Theorem 2 (Expected accuracy of the ADAG). Given N classes of
examples, the height (the number of adaptive layers and the output layer) of the ADAG
is obviously [log2IN]. To be selected as the winner (as the output of the ADAG),
some elements have to be compared with others for [logaN] times, and there are
some elements, called bye-getting elements that are compared with others for less than
[log2 N7 times. As the architecture of the ADAG always puts a bye-getting element (the

15



middle element) of the current list at the edge of the list of the next layer, any element
can get at most one bye. Therefore, a bye-getting element will be compared with others
for [logaN} — 1 times. There will be bye-getting elements only when the number of
classes cannot be represented by 2%, where X is a positive integer. These bye-getting
elements will be at the middle of the initial list and of the current list representing each
adaptive layer; e.g. the 5% 3" and 2™ clements in the initial list, the list of the first
adaptive layer, and the list of the second adaptive layer in Figure 8(a), respectively.
A bye-getting element at the i** adaptive layer can come from two elements in the
(i — 1)** layer, as shown in Figure 8(b). Therefore, 7 elements of the initial list in
the figure can possibly be bye-getting ones. Let F(IV) be the number of all possible
bye-getting elements of the list with N elements. It is obvious that with F'(2) = 0, and

F(N} = (N mod 2) +2- F(JN/2]). {6)

Next we will prove by induction on X that F(N) = 271%™ _ & when N is an
integer between 2% +1 and 2%+ and X is a positive integer greater than or equal to 1.

First consider the base case of X = 1. In this case, N is equal to 3 or 4. It is
obvious that F%S) = 1 which satisfies FI(3) = 2/*9230 _ 3 and F(4) = 0 satisfying
F) = oflogz(4y] _ 4

Next we prove general cases of X > 2 by induction: suppose F(N) is equal to
2llosztM)] _ N when N is an integer between 2% 7! + 1 and 2%, and we will show that
F(M) is also equal to 2/%92(*)1 _ A7 when M is an integer between 2% + 1 and 2%¥+1,

In case of M = 2N (an even number) and 2¥ + 2 < M < 2X*!, it is clear that
F(M) = 2F(N) according to Equation 6 (in case that M is an even number, a bye-
getting elements of F(/V) can possibly come from two bye-getting elements of F{M)).
Therefore, we will have the following.

F(M) = 2F(N) = 2(2'092N1 . Ny = 2TtesaNi+1 _ gy o ollog22NT _gpy
— gilegaM1 _ ar
This proves the case of M is an even number.

Next in case of M = 2V — 1 {an odd number) and 2¥ +1 < M < 2¥+ 3 jt
is also clear that F(M) = 2F{N) + 1 according to Equation 1 (in case that M is an
odd number, a bye-getting elernents of F(¥) can possibly come from two bye-getting
elements of F(M), and there is one more bye-getting {the middle) elements of F(M)
that gets a bye of this round). Therefore, we will have the following.

F(M) = 2F(N) + 1 =2(2%92N¥ _ Ny 41 = offesaNT+1 _on 4
= pllegz2NT _ (2N ~ 1)
As 2% 41 € 2N -1 < 2N < 2% we have log2(2% + 1) € loga (2N = 1) < log: (2N} <
log2(2* "), which means [log2(2N — 1)] = [log2(2N)] = X + 1. The above formula
then becomes as follows.
F(M) = gllogz (2N -13] _ (2N — 1) = 2lles2M1 _ pr

This proves the case of M is an odd number. The above then proves that #(N) is equal
to 2M092M) _ N when N is an integer between 2% + 1 and 2%, where X > 1.

Having the value of F(N¥) as above, we then can calculate the expected accuracy
of the ADAG. As under a uniform distribution, the probability that the correct class is
at any position of the initial list is 1/N. Therefore, the expected accuracy is calculated
by weighting the bye-getting correct elements with F(N}/N, and the non-bye-getting
correct elements with (N — F(N))/N. Finally, we have the expected accuracy of the
ADAG as follows.

(N = F(N))/N - (1L = p)l**93"] + F(N)/N - (1 - pliosaN1-t
= ((2N — 22Ny Ny . (1 = pltosaNT (21921 _ NY/NY - (1 — p)ltesai-1,

This proves the theorem. ]
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Abstract The problem of extending binary support vector machines (SVMs) for multiclass
classification is still an ongoing research issue. Ussivakul and Kijsirikul proposed the Adaptive Directed
Acyclic Graph (ADAG) approach that provides accuracy comparable to that of Max Wins, which is
probably the currently most accurate method for multiclass SVMs, and requires low computation.
However, different sequences of binary classifiers in nodes in the ADAG may provide different accuracy.
In this paper we present a new method for multiclass classification, Reordering Adaptive Directed
Acyclic Graph (RADAG), which is the modification of the original ADAG method. We propose an
algorithm to choose an optimal sequence of binary classifiers in nodes in the ADAG by considering the
generalization error bounds of all classifiers. We apply minimum-weight perfect matching with the
reordering algorithm in order to select binary classifiers which have small generalization errors to be
used in data classification and in order to find the best sequence of binary classifiers in nodes in
polynomial time. We then compare the performance of our method with previous methods including the
ADAG and the Max Wins algorithm. Experiments denote that our method gives higher accuracy.
Moreover it runs faster than Max Wins, especially when the number of classes and/or the number of
dimensions are relatively large.
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1 Imtroduction

Support vector machines (SVMs) [8] were
primarily designed for two-class classification
problems with their outstanding performance in
real world applications. However, extending
SVMs for multiclass classification is still an
ongoing research issue. Previous methods for
solving the multiclass problem of SVMs are
typically to consider the problem as the
combination of two-class decision functions, e.g.
one-against-one and one-against-the-rest [5]. The
one-against-the-rest  approach  works by
constructing a set of & binary classifiers for a
k-class problem. The i* classifier is trained with
all of the examples in the i class with positive
labels, and all other examples with negative
labels. The final output is the class that
corresponds to the classifier with the highest
output value. Friedman [5] suggested the Max
Wins algorithm in which each one-against-one
classifier casts one vote for its preferred class,
and the final result is the class with the most
votes. The Max Wins algorithm offers faster
training time compared to the
one-against-the-rest method. The Decision
Directed Acyclic Graph (DDAG) method
proposed by Platt et al. reduces training and
evaluation time, while maintaining accuracy
compared to the Max Wins [6]. The comparison
experiments by several methods on large
problems in [5] show that the Max Wins
algorithm and the DDAG may be more suitable
for practical use. Ussivakul and Kijsirikul [7]
proposed the Adaptive Directed Acyclic Graph
(ADAG) method which is the modification of the
DDAG. This method reduces the dependency of
the sequence of binary classifiers in nodes in the
structure as well as lowers the number of tests
required to evaluate for the correct class. Their
approach yields higher accuracy and reliability of
classification, especially in such a case that the
number of classes is relatively large.

In this paper we revea! that the ADAG still
is dependent on the sequence of its nodes,
although it is less dependent on the order of
binary classes in the sequence than the DDAG;

there are still differences in accuracy between
different sequences. This led to the reliability of
the algorithm. Here we propose a novel method
that improves reliability by choosing an optimal
sequence, which has less chance to predict the
wrong class, and dynamically reordering the
sequence during classification process according
to each test data. We also reveal that the problem
of selecting the appropriate sequence can be
solved by minimum-weight perfect matching.

This paper is organized as follows. In the
next section, we review SVMs and the
formulation to solve multiclass problems, i.e.,
the DDAG and the ADAG. In Section 3, we
introduce the modification of the ADAG to
improve the performance by using the reordering
algorithm  with  minimum-weigh  perfect
matching, The numerical experiments are
illustrated in Section 4. Finally, the conclusions
are given in Section 5.

2 SVM classification

This section describes the basic idea of
SVMs [7] and two previous works on multiclass
SVMs which are related to our proposed method,
i.e., the DDAG [5,6] and the ADAG [7].

2.1  Support vector machines

The main idea of support vector machine
classification is to construct a hyperplane to
separate the two classes,

2.1.1 Linear support vector machines

Suppose we have a data set D of [ samples in
an n-dimensional space belonging to two
different classes (+1 and —1):

D= {(xk,yk)| ke {1,..,1},xk €R",y, € {+ l,—l}}.

The hyperplane in the » dimensional space is
determined by the pair (w,b) where w is an
n-dimensional vector orthogonal to the
hyperplane and b is the offset constant. The

hyperplane (w-x) + b separates the data if and
only if
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(wx)+b>0 if y=+1
(W-x)+b<0 if y ==l i)

If we additionally require that w and & be
such that the point closest to the hyperplane has a
distance of 1/\w], then we have

(w-x)+b21 if y=+1
(w-x)+bs-1 if p=-1 .o 3

which is equivalent to
ylw-x)+8]21 Vi ... e (4)

To find the optimal separating hyperplane,
we have to find the hyperplane that maximizes
the minimum distance between the hyperplane
and any sample of training data. The distance
between two closest samples from different
classes is

(w-x,)+b_ ax
we) W ™

From (3), we can see that the appropriate
minimum and maximum values are =l.
Therefore, we need to maximize

1 -1 2
d(w’b)=m—_|;|=m' ................... (6)

Thus, the problem is equivalent to:
*  minimize |w/2
®  subject to the constraints

(D) ylw-x)+5121 Vi

For non-separable case, the training data
cannot be separated by a hyperplane without
error. The previous constraints then must be
modified. A penalty term consisting of the sum
of deviations & from the boundary is added to
the minimization problem. Now, the problem is
to

(w-x,.)+b'

2
=  minimize %_.Fczf:{;
i=1

= subject to the constraints
1) ylw-x)+bl21-¢,
(2) &20 Vi

The penalty term for misclassifying training
samples is weighted by a constant C. Sefecting a
large value of C puts a high price on deviations
and increases computation by effecting a more
exhaustive search for ways to minimize the
number of misclassified samples.

By forming the Lagrangian and solving the
dual problem, this problem can be translated
into:
=  minimize

! I
1
Lw,ba)=3 a, - 2 2 a3,y (% %))

i=] ij=l

=  subject to the constraints:
(1) 0=e=C,Vi

@ Ya -0

where ¢; are called Lagrange multipliers. There
is one Lagrange multiplier for each training
sample. [n the solution, those samples for which
a; > O are called support vectors, and are ones
such that the equality in {4) holds. All other
training samples having o; = 0 could be removed
from the training set without affecting the final
hyperplane.

Let ¢, an /-dimensional vector denote the
minimum of L({w,b,c). If a,—o> 0 then x; is a
support  vector. The optimal separating
hyperplane (w®, 5%} can be written in terms of &

and the training data, specifically in terms of the
support vectors:

W= iaioijf = Zafyixi. .......... ®
=1

suppoft vectors

B°=1-w’x; for x,with y;= | and 0<e<C.
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The optimal separating hyperplane classifies
points according to the sign of f{x),

f(x)= sign(w° X+ bo)

=sign[ Zaf‘yj(x.-x)+b°} .. {10)

SUpOrt vediors

Support vector x; with a,.O = C may or may not

be misclassified. All other x/’s are correctly
classified.

2.1.2 Non-linear support vector machines

The above algorithm is limited to linear
separating hyperplanes. SVMs get around this
problem by mapping the sample points into a
higher dimensional space using a non-linear
mapping chosen in advance. This is, we choose a
map &:m"— Hwhere the dimensionality of H
is greater than n. We then seek a separating
hyperplane in the higher dimensional space; this
is equivalent to a non-linear separating surface in
n"

The data only ever appears in our training
problem (7} in the form of dot products, so in the
higher dimensional space we are only dealing
with the data in the form ®(x;)®(x). If the
dimensionality of H is very large, then this could
be difficult, or very computationally expensive.
However, if we have a kernel function such that
k(x,x) = @(x,)P(x;), then we can use this in
place of x;x; everywhere in the optimization
problem, and never need to know explicitly what
@ is. Some widely used kernels are:

Polynomial degree d: fyx,y) = I" g+ I|d 11D
Radial basis function: k(x,y) = e*""r/ ..(12)

22 DDAG

Platt et al, [6] presented a learning
architecture, the Decision Directed Acyclic
Graph (DDAG), which is used to combine many
two-class classifiers into a multiclass classifier.
For a k-class problem, its training phase is the

same as the one-against-one method by solving
k(k-1)/2 binary SVMs, one for each pair of
classes. However, in the testing phase, it uses a
rooted binary directed acyclic graph which has
k(k-1)/2 internal nodes and k leaves (see Figure
1). Each node is a binary SVM of the i and j*
classes. Given a test sample x, starting at the root
node, the binary decision function is evaluated.
Then it moves to either left or right depending on
the output value. Therefore, we go through a path
before reaching a leaf node which indicates the
predicted class.

There are some issues on the DDAG as
pointed out by [7]. First, it gives outputs whose
probabilities are not uniformly distributed, and
thus its output depends on the sequence of binary
classifiers in nodes, affecting reliability of the
algorithm. In addition, the correct class placed in
a node near the root node is clearly at
disadvantage by comparison with the correct
class near leaf nodes since it is exposed to higher
risk of being incorrectly rejected. Second, the
number of node evaluations for the correct class
is unnecessary high. This results in higher
cumulative error and lower the accuracy. The
depth of the DDAG is k-1 and this means that the
number of times the correct class has to be tested

against other classes, on average, scales linearly
with k.

not 4

n not 4 not 1 not 3
2 1
3 2
3 2

™

3
4
ot 2
'} 1
Figure 1: The DDAG finding the best class out
of four classes
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2.3 ADAG

Ussivakul and Kijsirikul {7] proposed an
approach to alleviate the problem of the DDAG
structure described above. An Adaptive DAG
(ADAG) is a DAG with a reversed triangular
structure, For a #A-class problem, its training
phase is the same as the DDAG method by
solving k(k-1)/2 binary SVMs, one for each pair
of classes. However, in the testing phase, the
nodes are arranged in a reversed triangle with /2
nodes (rounded up) at the top, k/2* nodes in the
second layer and so on until the lowest layer of a
final node. It has k-1 internal nodes, each of
which is labeled with an element of Boolean
function (see Figure 2). Given a test example x,
starting at the top level, the binary decision
function is evaluated. The node is then exited via
the outgoing edge with a message of the
preferred class. In each round; the number of
candidate classes is reduced by half. Based on
the preferred classes from its parent nodes, the
binary function of the next-level node is chosen.
The reduction process continues until reaching
the final node at the lowest level, The value of
the decision function is the value associated with
the message from the final leaf node. Like the
DDAG, the ADAG requires only 41 decision
nodes to be evaluated in order to derive an
answer, Note that the correct class is evaluated
against other classes for log,k times or less,
considerably lower than the number of
evaluations required by the DDAG, which scales
linearly with £.

Using the reversed triangular structure, the
ADAG reduces the number of times the correct
class is tested against other classes, and thus
reduces the cumulative errors. However, therc
are still differences in accuracy between different
sequences of nodes. Next we will describe our
method that improves the ADAG by finding a
best sequence of nodes.

3 The proposed method

In this section, we introduce the
modification of the ADAG to improve the
performance of the original ADAG. This

approach determines a best sequence of nodes in
the ADAG by dynamically reordering the
sequence during classification process according
to each test data.

Blvs B2 Adaptive Layer B

Cutput Class Output Layer

Figure 2: The structure of an Adaptive DAG
for an 8-class problem

3.1  Generalization Performance of
Support Vector Machines

The ability of a hypothesis to correctly
classify data not in the training set is known as
its generalization. Generalization analysis of
pattern classifiers is concerned with determining
the factors that affect the accuracy of a pattern
classifier [1]. Generalization performance of
Support Vector Machines can be approximated
by bounding cn the generalization error.

Define the class F of real-valued functions
on the ball of radius R i R"
as F={X|—>va:||w||sl,“x||SR}. There is a
constant ¢ such that, for all probability
distributions, with probability at least 1-dover m
independently pgenerated examples z, if a
classifier h=sgn(f)esgn{F) has margin at
least y on all the examples in z, then the error of
A is no more than

2
i[R_z log? m + log{l]]. ............... (13)
mi y d

Furthermore, with probability at least 1-4, every
classifier hesgn(F) has error no more than

Adaptive Layer A



SANKEN International Workshop on intelligent Systems, 2003 6

k, JE[E;Dgz mHOg(LD ........ (14)
m \mly )

where £ is the number of labeled examples in z
with margin less than y.

Below we show an example of the
generalization error. The experiment is based on
the English letter image recognition dataset from
[2], which has 26 classes. Hence there are 325
classifiers. In this case, we construct classifiers
by using the Polynomial kemel of degree 3. In
Figure 3, the generalization errors of all
classifiers expressed by Equation (14) are
depicted. The generalization errors of all
classifiers are varying,

Generalization Error
400

300

Classifier No.

Figure 3: The generalization errors of 325
classifiers

3.2 Reordering ADAG

We propose a methed, called Reordering
Adaptive Directed Acyclic Graph (RADAG), to
improve the accuracy of the original ADAG. For
& k-class problem, the RADAG?’s training phase
is the same as the ADAG method by solving
k(k-1)/2 binary SVMs. However, the testing
phase is organized as follows. The differences
are the initialization of the binary classifiers in
the top level and the order of sequence in each
level (see Figure 4}, In the first step, we use a
reordering algorithm with minimum-weight
perfect matching described in the next subsection
to choose the optimal sequence to be the initial
sequence. We use the sequence to evaluate every

test example. In the second step, as in the ADAG,
test points of the RADAG are evaluated against
the decision nodes. In the third step, unlike the
ADAG, the RADAG will reorder the sequence
before processing in the next level by using the
reordering algorithm with minimum-weight
perfect matching. This sequence differs for each
test example, and it depends on the results of
nodes from the previous level. The second and

the third steps are repeated until there is only one
class remains.

PPERIT0;

| Initialize phase

Initializing the sequence

Al Al A3 A4

Classifying a new example
Reordering the sequence

Classifymng &
Alvi A3 A2vs Ad Reordering phase
B2
«+— Final classifier
Output phase

Figure 4: Classifying process of the RADAG

3.3 Reordering algorithm
For the reason described above, we consider
the generalization errors in order to choose the

optimal sequence from all possible ﬁ
2;

sequences with less chance to predict the wrong
class. Among classifiers, &2 classifiers which
have small generalization errors will be
considered to be used in data classification,

Let G = (V, E) be a graph with node set
and edge set E. Each node in G denotes one class
and each edge denotes one binary classifier
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which has a generalization error expressed by
Equation {14) (see Figure 5{a)). The output of
the reordering algorithm for graph & is a subset
of edges with the minimum sum of
generalization errors of all edges and each node
in G is met by exactly one edge in the subset (see
Figure 5(b)). Given a real weight ¢, being
generalization error for each edge e of G, the
preblem of reordering algorithm can be solved
by the minimum weight perfect matching that
finds a perfect matching M of minimum weight

Z(c, 1 e e M).

For U c F, let E(U) = {(i,):(ij)ekE, icU,
jeU}. E(U) is the set of chosen classifiers. Let
A&i) denote the set of edges incident to node /; the
set of classifiers with one class being i. The
perfect matchings on a graph G = (V, E) with [V]
even is given by

(a)xe Ry

) er =1 forveV

eed(v)

© ¥ x s{'-‘z”J for all odd sets U < ¥ with U|23
eek(LN)

or by (a),(b) and
(d) 3"x, 21 for all odd sets U < ¥ with|U|2 3

ecd(l)

where |E] = m, the number of classifiers, and
x. = 1 means that classifier e is chosen to be used
in the sequence. Therefore, the reordering
problem is to solve the following linear program:

where x satisfies “(a),(b) and (c)” or “(a),(b) and

(4.

Currently, the minimum-weight perfect
matching algorithm runs in time bounded by
O(n(m + n log n)) [3], where # is the number of
nodes (classes) in the graph and m is the number
of edges (binary classifiers). Hence the
reordering algorithm can reorder the sequence in
that polynomial time.

Figure 5: (a) A graph for an 8-class problem,
(b) An example of the output of the reordering
algorithm.

4 Numerical experiments

In this section, we present experimental
results on several datasets from the UCI
Repository of machine learning databases [2]
including glass, satimage, segment, shuttle,
vowel, soybean, letter and isolet (seec Table 1).
These datasets are different in the number of
classes, the number of dimensions, and sizes. For
the glass and segment problems, there is no
provided test data so we used 5-fold cross
validation. For the soybean problem, we
discarded the last four classes because of missing
values.

Table 1: Description of the datasets used in
the experiments

Dataset #tr;::;ng f;t:tsat #class | #dimension
Glass 214 | S5-fold 6 9
Satimage 4,435 2,000 6 36
Segment 2,310 | 5-fold 1 18
Shuttle 43,500 [ 14,500 7 9
Vowel 528 462 1l 10
Soybean 250 340 15 35
Letter 15,963 4,037 26 16
Isolet 6,238 1,559 26 617

In these experiments we scaled both training
data and test data to be in {-1,}] and employed
Polynomial and RBF kernels. In the experiments,
we compare three algorithms, i.e., the DDAG, the
original ADAG, the RADAG, and the Max Wins
algorithm. For the ADAG, we examined all
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possible sequences for datasets having not more
than 7 classes, whereas we randomly selected
50,000 sequences for datasets having more than
7 classes. Table 2 and 3 present the results of the
comparison of these methods for Polynomial and
RBF kernels, respectively. We present the
optimal parameters (¢ and ¢ in Equations (11)
and (12)) of the kernels and the corresponding
accuracies., The best accuracy among three
methods is illustrated in bold-face. ***, ** and *
in the tables means 99%, 95%, and 90%
confidence interval for estimating the difference
between accuracies of three algorithms and the
RADAG using a one-tailed paired t-test.

The results show that our method yields
highest accuracy in almost all of datasets. The
results also show that our method performs
statistically significantly better than the other
methods in the glass problem in case of the RBF
kernel and significantly better than the DDAG in
the segment and letter problems in case of the
Polynomial kernel. Another advantage of our
method compared to the DDAG and the original
ADAG is that cur method always provides one
best accuracy for each dataset using the
reordering algorithm, whereas, depending on the
sequence of classes, the DDAG and the original
ADAG may give low accuracies. This shows the
effectiveness of the RADAG.

Table 4 and 5 present the comparison of the
computational time between the RADAG and the
Max Wins for Polynomial and RBF kernels by
using a 400 MHz Pentium 1 processor. There is
no computational time of the glass dataset
because it has too few test examples to measure
the time. The results show that our method
requires low computational time in all datasets,

especially when the number of classes and/or the
number of dimensions are relatively large. For a
k class problem, the Max Wins requires &(k-1)/2
classifiers for the classification whereas the
RADAG requires only k-1 classifiers. Hence the
larger the number of classes the more running
time the Max Wins requires than the RADAG.
Moreover, the number of dimensions affects the
running time of each classifier. For the RADAG,
the number of classes affects the running time for
reordering. However, it takes little time even
when there are many classes.

5 Conclusion

In this paper, we have presented a new
approach  for multiclass SVMs, called
Reordering Adaptive Directed Acyclic Graph
(RADAG), which is the modification of the
original ADAG. Our approach eliminates the
dependency of the sequence of binary classifiers
in nodes in the original ADAG by selecting an
appropriate sequence from all possible sequences
which consists of classifiers with small
generalization errorr By the wuse of
minimum-weight perfect matching, the RADAG
can reorder the sequence in polynomial time. The
experimental results show that our new approach
yields higher accuracy than the original ADAG
and even Max Wins which is probably the
currently most accurate method for multiclass
SVMs. Moreover the running time used by the
RADAG is less than Max Wins, especially when
the number of classes and/or the number of
dimensions are relatively large. Our future work
is to test the method on datasets with a very large
number of classes and dimensions.

Table 2: A comparison of the accuracy of classification using the Polynomial kernel

Dataset d DDAG d ADAG d Max Wins d RADAG
Glass 2 71.069 2 71.135 2 71.078 2 71.063
Satimage 6 88.408%**) ¢ 88.430 6 88.453 6 88.900
Segment 6 56.538 8 §7.408 8 97.379 8 97.489
Shuitle 8 99.924 8 99,924 8 99.924 8 99,924
Vowel 3 64.237 3 64293 3 64.329 2 64.502
Soybean 5 90.400 5 90.446 3 90471 3 91.176
Letter 3 95.508* 3 95984 3 96.125 4 96.111
Isolet 3 97.032 3 57.030 3 97.040 3 97.049
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RADAG Max Wins
Dataset c Classifying | Reordering Total Classifying
(seconds) | (seconds) (seconds) (seconds)
Satimage 3.0 11.75 0.51 12.26 37.13
Segment 0.7 0.24 0.10 0.34 0.82
Shuttle 3.0 3.36 0.63 399 9.27
Vowel 0.2 0.10 0.27 0.37 0.61
Soybean 0.07 0.32 0.45 0.77 2,20
Letter 3.0 62.27 3.69 63.96 802.85
Isolet 0.01 100.42 1.60 102.02 1,369.11
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Vowel 0.2 65.425 0.2 65.589 (0.2 65340 0.2 67.100
Soybean 007 90353 10.08 90.412 0.08 90.468 0.07 90.882
Letter 3.0 g7.901 30 97.909 3.0 97.918 3.0 97.969
Isolet 0.01 96.939 0.01 96.932 0.01 96.916  10.01 96.985

Table 4: A comparison of the computational time using the Polynomial kernel

RADAG Max Wins

Dataset d Classifying | Reordering Total Classifying
{seconds} (seconds) {seconds) (seconds)
Satimage 6 |- 190 0.50 2.40 9.47
Segment 8 0.1 0.08 .19 0.41
Shuttle 8 1.75 338 513 5.15
Vowel 2 0.12 0.25 0.37 0.61
Soybean 3 0.30 0.25 0.55 1.86
Letter 4 8.48 420 12.68 125.58
Isolet 3 116.02 1.48 117.50 1,671.98

Table 5: A comparison of the computational

time using the RBF kernel
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Abstract

The problem of extending binary support vector
machines (SVMs) for multiclass classification is still an
ongoing research issue. Ussivakul and Kijsirikul proposed
the Adaptive Directed Acyclic Graph (ADAG) approach
that provides accuracy comparable to that of the standard
Hgorithm—Meoax Wins and requires low computation.
However, different sequences of nodes in the ADAG may
wovide different aceuracy. In this paper we present a new
nethod for multiclass classification, Reordering Adaptive
directed Acyclic Graph (RADAG), which is the
nodification of the original ADAG method. We propose an
dgorithm to choose am optimal seguence of binary
lassifiers in nodes in the ADAG by considering the
eneralization ervor bounds of all classifiers. We apply
unimum-weight perfect matching with the reordering
Igorithm in order to select the best sequence of nodes in
olynomial time. We then compare the performance of our
tethod with previous methods including the ADAG and
16 Max Wins algorithm. Experiments denote that our
iethod gives higher accuracy. Moreover it runs faster
wan Max Wins, especially when the number of classes
ad/or the number of dimensions are relatively large.

ey words: Multiclass Support Vector Machines,
ADAG
Introduction

Support vector machines (SVMs) were primarily
signed for two-class classification problems with its
tstanding performance in real world applications.
ywever, extending SVMs for multiclass classification is
Il an ongoing research issue. Previous methods for
lving the multiclass problem of SVMs are typically to
usider the problem as the combination of two-class
cision functions, e.g. one-against-one and one-against-
-rest [5].

Friedman [4] suggested the Max Wins algorithm in
ich each one-against-one classifier casts one vote for its
ferred class, and the final result is the class with the
ist votes. The Max Wins algonthm offers faster training
le compared to the one-against-the-rest method. The
cision Directed Acyclic Graph (DDAG) method

proposed by Platt et al. reduces training and evaluation
time, while maintaining accuracy compared to the Max
Wins [6]. The comparison experiments in several methods
on large problems in [3] show that the Max Wing
algorithm and the DDAG may be more suitable for
practical use. Ussivakul and Kijsirikul (7] proposed the
Adaptive Directed Acyclic Graph (ADAG) method which
is the modification of the DDAG. This method reduces the
dependency of the sequence of binary classifiers in nodes
m the structure as well as lowers the number of tests
required to evaluate for the correct class. Their approach
yields higher accuracy and reliability of classification,
especially in such a case that the number of classes is
relatively large.

In this paper we reveal that the ADAG still has the
dependency on the sequence of s nodes, although it is
less dependent on the order of binary classes in the ~
sequence than the DDAG; there are still differences in
accuracy between different sequences. This led to the
reliability of the algorithm. Here we propose a novel
method that improves reliability by choosing an optimal
sequence, which has less chance to predict the wrong
class, and dynamically reordering the sequence during
classification process according to each test data. We also
reveal that the problem of selecting the appropriate

sequence can be solved by minimum-weight perfect
matching.

This paper is organized as follows. In the next section,
we review SVMs and the formulation to solve multiclass
problermss, i.e., the DDAG and the ADAG. In Section 3, we
introduce the modification of the ADAG to improve the
performance by using the reordering algorithm with
minmum-weigh  perfect matching. The numerical
experiments are illustrated in Section 4. Finally, the
conclusions are given in Section 5,

2. SVM classification

This section describes the basic idea of SVMs [7] and
the formulation to solve multiclass problems.

2.1. Support vector machines
The main idea of support wvector machine

classification is to construct a hyperplane to separate the
two classes.
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2.1.1. Lirear support vector machines

Suppose we have a data set D of / samples in an »-
dimensional space belonging to two different classes (+1
and -1):

D= {(x}c'yk)l kefl.,ilx, eR", y, el L_l}}'(“

The hyperplane in the » dimensional space is
determined by the pair (w,b) where w is an n-dimensional
vector orthogonal to the hyperplane and & is the coffset
constant. The hyperplane (w-x)+b separates the data if and
only if

(wx)+b>0 if yp=+1
(w-x)+b<0 i y=-1 3
If we additionally require that w and & be such that the

point closest to the hyperplane has a distance of 1/|w], then
we have

(w-x)+bz1 if p=+1

(w-x)+b<-1 if y=-1 (3)
which is equivalent to

pllw-x)+86]21 Vi (4)

To find the optimal separating hyperplane, we have to
find the hyperplane that maximizes the minimum distance
between the hyperplane and any sample of training data.
The distance between two closest samples from different
classes is

(w-x,.)+b_(5)

d(w,b)= min M" max
v W

byt |w]

From (3), we can see that the appropriate minimum and
maximum values are +1. Therefore, we need to maximize

d(w,b)=—‘;—$;=—. (6)

Thus, the problem is equivalent to:
*  minimize |[w*/2
=  subject to the constraints

() plw-x,)+b]21 Vi

For non-separable case, the training data cannot be
separated by a hyperplane without error. The previous
constraints then must be modified. A penalty term
consisting of the sum of deviations & from the boundary is
added to the minimization problem. Now, the problem is
1o

2
" minimize @. + ci 3
i=l

*  subject to the constraints
(1) yllw-x)+6]21-&,
(2) & 20 vi

The penalty term for misclassifying training sarnples is
weighted by a constant C. Selecting a large value of C puts
a high price on deviations and increases computation by
effecting a more exhaustive search for ways to minimize
the number of misclassified samples.

By forming the Lagrangian and solving the dua]
problem, this problem can be translated into:

] minimize
! i
I
L(w’b’a)=2ai_Ezaiajylyj(xi'xj) (7)
1=1 £j=1

= subject to the constraints:
(1} 05 a<C, Vi

'
@) Za, »=0
=

where ¢; are called Lagrange multipliers. There is one
Lagrange multiplier for each training sample. In the
solution, those samples for which ¢ > 0 are called support
vectors, and are ones such that the equality in {4) holds.
All other training samples having o, = 0 could be removed
from the training set without affecting the final
hyperplane.

Let o, ap /-dimensional vector denote the minimum
of L(w,b,0). If &’> 0 then x; is a support vector. The
optimal separating hyperplane (w°, 5% can be written in
terms of &° and the training data, specifically in terms of
the support vectors:

:

w' = Za:})ﬁxs = ZaPeri- ®)
i=l Suppott vectors

b= 1-w"x, forx; withy;=1 and 0 < & < C. {%)

Ths opttmal separating hyperplane classifies points
according to the sign of f{x),

fx)= sign(w° "X+ b°)

=sign[ Dalyx, x| (10
suport vedors

Support vector x; with 0:,-0= C may or may not be
misclassified. All other x;’s are correctly classified.
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2.1.2. Non-linear support vector machines

The above algorithm is limited to linear separating
hyperplanes. SVMs get around this problem by mapping
the sample points into a higher dimensional space using a
non-linear mapping chosen irt advance. This is, we choose
amap ¢ : %"+ H whers the dimensionality of H is greater
than . We then seek a separating hyperplane in the higher
dimensional space; this is equivalent to a non-linear
separating surface in "

The data only ever appears in our training problem (7)
in the form of dot products, so in the higher dimensional
space we are only dealing with the data in the form
O(x;}P(x;). If the dimensionality of H is very large, then
this could be difficult, or very computationally expensive.
However, if we have a kernel function such that 4(x;x;) =
O(x)®(x;), then we can use this in place of XxyX;
evérywhere in the optimization problem, and never need to
know explicitly what @ is. Some widely used kernels are:

Polynomial degree 4: kp,y) = |x i lld (1)
Radial basis function: kfx,y) = elel J (12)

2.2. DDAG

Platt et al. [6] presented a learning architecture, the
Decision Directed Acyclic Graph (DDAG), which is used
to combine many two-class classifiers into a multiclass
classifier. For a k-class problem, its training phase is the
same as the one-against-one method by solving k(k-1)/2
binary SVMs, one for each pair of classes. However, in the
testing phase, it uses a rooted binary directed acyclic graph
which has k(%-1)/2 internal nodes and k leaves (see Figure
1). Each node is a binary SVM of the # and j* classes.
Given a test sample x, starting at the root node, the binary
decision function is evaluated. Then it moves to either left
or right depending on the output value. Therefore, we go
through a path before reaching a leaf node which indicates
the predicted class.

not 3

Figure 1. The DDAG finding the best class out of
four classes

There are some issues on the DDAG as pointed out by
[7]. First, it gives outputs whose probabilities are not
unifermly distributed, and thus its output depends on the
sequence of binary classifiers in nodes, affecting reliability/
of the algorithm. In addition, the correct class placed in a
node near the root node is clearly at disadvantage by
comparison with the correct class near leaf nodes since it
is exposed to higher risk of being incorrectly rejected.
Second, the number of node evaluations for the correct
class is unnecessary high. This results in higher
cumulative error and lower the accuracy. The depth of the
DDAG is k-1 and this means that the number of times the
correct class has to be tested against other classes, on
average, scales linearly with £.

2.3. ADAG

Ussivakul and Kijsirikul [7] proposed an approach to
alleviate the problem of the DDAG structure described
above. An Adaptive DAG (ADAG) is a DAG with a
reversed triangular structure. For a k-class problem, its
training phase is the same as the DDAG method by
solving k(k-1)/2 binary SVMs, one for each pair of classes.
However, in the testing phase, the nodes are arranged in a
reversed triangle with &2 nodes (rounded up) at the top,
%/2* nodes in the second layer and so on until the lowest
layer of a final node. It has %-1 internal nodes, each of
which is labeled with an element of Boolean function (see
Figure 2). Given a test example x, starting at the top level,
the binary decision function is evaluated. The node is then
exited via the outgoing edge with a message of the
preferred class. In each round, the number of candidate
classes is reduced by half. Based on the preferred classes
from its parent nodes, the binary function of the next-level
node is chosen. The reduction process continues until
reaching the final node at the lowest level. The value of
the decision function is the value associated with the
message from the final leaf node. Like the DDAG, the
ADAG requires only k-1 decision nodes to be evaluated in
order to derive an answer. Note that the correct class is
evaluated against other classes for logyk times or less,
considerably lower than the number of evaluations
required by the DDAG, which scales linearly with k.

Adaptive Layer A

Blvs B2 Adsptive Layer B

Output Layer

Figure 2. The structure of an Adaptive DAG for
an 8-class problem
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2.1.2. Non-linear support vector machines

The above algorithm is limited to linear separating
hyperplanes. SVMs get around this problem by mapping
the sample points info a higher dimensional space using a
non-linear mapping chosen in advance. This is, we choose
a map &:%”— H where the dimensionality of H is greater
than #. We then seck a separating hyperplane in the higher
dimensional space; this is equivalent to a non-linear
separating surface in R”.

The data only ever appears in our training problem (7)
in the form of dot products, so in the higher dimensional
space we are only dealing with the data in the form
O{x;)-O(x). If the dimensionality of H is very large, then
this could be difficult, or very computationally expensive.
However, if we have a kernel function such that k(x,,x;) =
O(x)-D(x;), then we can use this in place of x;x;
everywhere in the optimization problem, and never need to
kmow explicitly what & is. Some widely used kernels are:

Polynomial degree d: k(x,y) = Ix g+ lld (11}

2
Radial basis function: k(x,y)= T e (12)

2,2. DDAG

Platt et al. [6] presented a learning architecture, the
Decision Directed Acyclic Graph {DDAG), which is used
to combine many two-class classifiers into a multiclass
classifier. For a k-class problem, its training phase is the
same as the one-against-one method by solving A(k-1)/2
binary SVMs, one for each pair of classes. However, in the
testing phase, it uses a rooted binary directed acyclic graph
which has A(k-1)/2 internal nodes and k leaves (see Figure
1). Each node is a binary SVM of the i and j* classes.
Given a test sample x, starting at the root node, the binary
decision function is evaluated. Then it moves to either left
or right depending on the output value. Therefore, we go
through a path before reaching a leaf node which indicates
the predicted class.

Figure 1. The DDAG finding the best class out of
four classes

There are some issues on the DDAG as pointed out by
[7]. First, it gives outputs whose probabilities are not
uniformly distributed, and thus its output depends on the
sequence of binary classifiers in nodes, affecting reliability’
of the algorithm. In addition, the correct class placed in a
node near the root node is clearly at disadvantage by
comparison with the correct class near leaf nodes since it
is exposed to higher risk of being incorrectly rejected.
Second, the number of node evaluations for the correct
class is unnecessary high. This results in higher
cumulative error and lower the accuracy. The depth of the
DDAG is k-1 and this means that the number of times the
correct class has to be tested against other classes, on
average, scales linearly with k.

2.3. ADAG

Ussivakul and Kijsirikul [7] proposed an approach to
alleviate the problem of the DDAG structure described
above. An Adaptive DAG (ADAG) is a DAG with a
reversed triangular structure. For a k-class problem, its
training phase is the same as the DDAG method by
solving k(k-1)/2 binary SVMs, one for each pair of classes.
However, in the testing phase, the nodes are arranged in a
reversed triangle with %/2 nodes (rounded up) at the top,
#/2* nodes in the second layer and so on until the lowest
layer of a final node. It has k-1 internal nodes, each of
which is labeled with an element of Boolean function (see
Figure 2). Given a test example x, starting at the top level,
the binary decision function is evaluated. The node is then
exited via the outgoing edge with a message of the
preferred class. In each round, the number of candidate
classes is reduced by half. Based on the preferred classes
from its parent nodes, the binary function of the next-level
node is chosen. The reduction process continues until
reaching the final node at the lowest level. The value of
the decision function is the value associated with the
message from the final leaf node. Like the DDAG, the
ADAG requires only k-1 decision nodes to be evaluated in
order to derive an answer. Note that the correct class is
evaluated against other classes for logyk times or less,
considerably lower than the number of evaluations
required by the DDAG, which scales linearly with k.

AE a2 A3 A4
@ @ Adaptive Layer A
BT B2
Bl vsB2 Adaptive Layer B
Output Layer

Figure 2. The structure of an Adaptive DAG for
an 8-class problem
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Using the reversed triangular structure, the ADAG
reduces the number of times the correct class is tested
against other classes, and thus reduces the cumulative
errors. However, there are still differences in accuracy
between different sequences of nodes. Next we will
describe our method that improves the ADAG by finding a
best sequence of nodes.

3. The proposed method

In this section, we introduce the modification of the
ADAG to improve the performance of the original ADAG.
This approach determines a best sequence of nodes in the
ADAG by dynamically reordering the sequence during
classification process according to each test data.

3.1. Generalization Performance
Vector Machines
. Generalization analysis of pattern classifiers is
concerned with determining the factors that affect the
accuracy of a pattern classifier [1]. Generalization
performance of Support Vector Machines can be
approximated by bounding on the generalization error.

of Support

Define the class F of real-valued functions on the ball .

of radius R in N" asF={x+—>w-x:||w||£1,||x||$R}. There

is a constant ¢ such that, for all probability distributions,
with probability at least 1-4 over m independently
generated examples z, if a classifier A =sgn( ! )e sgn(F )

has margin at least y on all the examples in z, then the
error of / is no more than

< R2 2 1
—| —lo +log| — ||
m{rz & 8[5]]

Furthermore, with probability at least 1-8, every classifier
hesgn(F) has error no more than

k le(RY I
=-}—| —log’ ™+ lag —
m ml y 'y

where & is the number of labeled examples im z with
margin less than y.

(13)

(14)

Below we show an example of the generalization error
of classifier. The experiment is based on the English letter
image recognition dataset from [2], which has 26 classes.
Hence there are 323 classifiers. In this case, the dataset is
trained by using the Polymomial kemel of degree 3. In
Figure 3, the generalization errors of all classifiers
expressed by Equation (14) are depicted. The
generaiization errors of all classifiers are varying.

!_Ucucrniizarion Error |
| 400

300 +————

200 —

100

Classifier No.

Figure 3. The generalization errors of 325 classifiers

ol ol e

Initializing the sequence

Initjalize phase

NS

‘ Reordering the sequcnce

A4

Classifyi.ng a new example

Classifying &
Al vs A3 A2 vs Ad Reordering phase
Bl B2
<«— Final classifier
Qutput phase

Output class

Figure 4. Classifying process of the RADAG

3.2, Reordering ADAG

We propose a method, called Reordering Adaptive
Directed Acyclic Graph (RADAG), improvg the
accuracy of the original ADAG. For a k-class problem, the
RADAG’s training phase is the same as the ADAG
method by solving k(k-1)/2 binary SVMs. However, the
testing phase is organized as follows. The differences are
the initialization of the binary classifiers in the top level
and the order of sequence in each level (see Figure 4). In
the first step, we use a reordering algorithm with
minimum-weight perfect matching described in the next
subsection to choose the optimal sequence to be the initial
sequence. We use the sequence to evaluate every test
example. In the second step, as in the ADAG, test points
of the RADAG are evaluated against the decision nodes.
In the third step, unlike the ADAG, the RADAG will
reorder the sequence before processing in the next level by
using the reordering algorithm with minimum-weight
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::previous level. The second and the third steps are repeated
¢ wntil there is only one class remains.

. Reordering algorithm

t  For the reason descrived above, we consider the
“generalization errors in order to choose the optimal
=:gequence from all possible sequences with less chance to
predict the wrong class. Among classifiers, &2 classifiers
‘'which have small generalization errors will be considered

90 be used in data classification.

_ Let G=(V, E) be a graph with node set ¥ and edge set
, E Each node in G denotes one class and each edge
i denotes one binary classifier which has a generalization
error expressed by Equation (14) (see Figure 5(a)). The
‘output of the reordering algonthm for graph G is a subset
edges with the minimum sum of generalization errors of
edges and each node in G is met by exactly one edge in

subset (see Figure 5(b)). Given a real weight ¢, being
generalization error for each edge e of G, the problem of
teordering algorithm can be solved by the minimum
- weight perfect matching that finds a perfect matching M of
¢ minimum weight Z(c, : ¢ € M).

For U g ¥, let E(U) = {(i,):(if)eE, ieU, jeU}. E(U)
B is the set of chosen classifiers. Let &i) denote the set of
fiedges incident to node #; the set of classifiers with one
‘elass being i. The perfect matchings on a graph G = (V, E)
: with }¥] even is given by

%,
x,

i"{a) xeRT

“* ®) Zx, =] forveV

L eed(y)

£ U] ;

v {©) Z x < [TJ foralloddsets U — ¥ with |U| 2 3

L esED)

= or by (a),(b) and

() ) x 21 foralloddsetsU c ¥ with |23 (16)
red(U)

whﬂe |E] = m, the number of classifiers, and x, = | means
¢ that classifier ¢ is chosen to be used in the sequence.
" Therefore, the reordering problem is to solve the following

% min Zcexe

ecE

(17}

ﬁ where x satisfies “(a),(b) and (¢)” or “(a),(b) and (d)".

£
il

7 Currently, the minimum-weight perfect matching
i algorithm runs in time bounded by O(n(m + n log n)) [3],
% where n is the number of nodes (classes) in the graph and
¥ m is the number of edges (binary classifiers). Hence the
- reordering algorithm can reorder the sequence in that
. polynomial time.

Figure 5. (a) A graph for an 8-class problem.
(b} An example of the output of the reordering algorithm.

4. Numerical experiments

In this section, we present experimental results on
several datasets from the UCI Repository of machine
learning databases [2] including glass, satimage, segment,
shuttle, vowel, soybean, letter and isolet (see Table 1).
These datasets are different in the number of classes, the
number of dimensions, and sizes. For the glass and
segment problems, there is no test data so we used 5-fold
cross validation. For the soybean problem, we discarded
the last four classes because of missing values.

Table 1. Description of the datasets used in the

experiments

Dataset #raining data | #test data #class | #dimension
Glass 214 5-foid 6 9
Satimage 4,435 2,000 6 36
Segment 2,310 5-fold 7 18
Shuttle 43,500 14,500 7 9
Vowel 528 462 11 10
Soybean 290 340 15 35
Letter 15,963 4,037 26 i6
Isolet 6,238 1,559 26 617

In these experiments we scaled both training data and
test data to be in [-1,1] and employed Polypomial and RBF
kernels. In the experiments, we compare three algorithms,
i.e., the original ADAG, the RADAG, and the Max Wins
algorithm. For the ADAG, we examined all possible
sequences for datasets having not more than 7 classes,
whereas we randomly selected 50,000 sequences for
datasets having more than 7 classes. Table 2 and 3 present
the results of comparing these methods for Polynomial and
RBF kemels, tespectively. We present the optimal °
parameters {4 and ¢ in Equations {11) and (12)) of the
kernels and the corresponding accuracies. The best
accuracy among three methods is illustrated in bold-face.

The results show that our method yields highest
accuracy in almost all of datasets. Another advantage of
our method compared to the DDAG and the original
ADAG is that our method always provides one best
accuracy for each dataset using the reordering algorithm,
whereas, depending on the sequence of classes, the DDAG
and the original ADAG may give low accuracies. This
shows the effectiveness of the RADAG.
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periect matching. This sequence differs for each test
example, and it depends on the results of nedes from the
previous level. The second and the third steps are repeated
iritil there is only one class remains.

3.3. Reordering algorithm

For the reasom descrived above, we consider the
generalization errors in order to choose the optimal
seguence from all possible sequences with less chance to
predict the wrong class. Among classifiers, 4/2 classifiers
which have small generalization errors will be considered
to be used in data classification.

Let G=(V, E) be a graph with node set  and edge set
E. Each node in G denotes one class and each edge
denotes one binary classifier which has a generalization
error expressed by Equation (14) (see Figure 5(a)). The
autput of the reordering algorithm for graph G is a subset
of edges with the minimum sum of generalization errors of
all edges and each node in G is et by exactly one edge in
the subset (see Figure 5(b)). Given a real wéight ¢, being
generalization error for each edge ¢ of G, the problem of
reordering algeorithm can be solved by the minimum
weight perfect matching that finds a perfect matching M of
minimum weight Z(c, : ¢ € M).

For U < V, let E(U) = {(i,)):(i)eE, ieU, jeU}. E(U)
1¢ the set of chosen classifiers. Let &i) denote the set of
edges incident to node 7 the set of classifiers with one
class being i. The perfect matchings on a graph G = (¥, E)
with [F] even s given by

(® xeR/
) ) 5, =1 forveV
ecd{v)

() Z x, s['%—'} foralloddsets U/ < ¥ with|U] 2 3

seEll)

ar by (a),(b) and

(@) er >1 for all odd sets U < V with [U] 2 3
ees (U}

where |£] = m, the number of classifiers, and x, = 1 means

that classifier e is chosen to be used in the sequence.

Therefore, the reordering problem is to solve the following

linear program:

min Zcexe

ecE

(16)

a7

where x satisfies “{a),(b) and (¢)” or *“(a),(b) and {d)”.

Currently, the minimum-weight perfect matching
algorithra runs in time bounded by O(a{m + n log n)) [3],
whiere n is the number of nodes (classes) in the graph and
m is the number of edges (binary classifiers). Hence the
teordering algorithm can reorder the sequence in that
potynomial time.

Figure 5. (a) A graph for an §-class problem.
(b) An example of the output of the reordering algorithm.

4. Numerical experiments

In this section, we present experimental results on
several datasets from the UCI Repository of machine
learning databases [2] including glass, satimage, segment,
shuttle, vowel, soybean, letter and isolet (see Table 1).
These datasets are different in the number of classes, the
number of dimensions, and sizes. For the glass and
segment problems, there is no test data so we used 5-fold
cross validation. For the soybean problem, we discarded
the last four classes because of missing values.

Table 1. Description of the datasets used in the

experiments

Dataset #oaining data | #iess data #class | #dumension
Glass 214 5-fold 6 9
Satimage 4,435 2,000 6 36
Segment 2,310 5-foid 7 18
Shuttle 43,500 14,500 7 9
Vowel 528 462 11 19
Soybean 290 340 15 35
Letier 15,963 4,037 26 16
| Isolet 6,238 1,559 26 617

In these experiments we scaled both training data and
test data to be in [-1,1] and employed Polypomial and RBF
kernels. In the experiments, we compare three algorithms,
i.e., the original ADAG, the RADAG, and the Max Wins
algorithm. For the ADAG, we examined all possible
sequences for datasets having not more than 7 classes,
whereas we randomly selected 50,000 sequences for
datasets having more than 7 classes. Table 2 and 3 present
the results of comparing these methods for Polynomial and
RBF kemnels, respectively. We present the optimal -
parameters (d and ¢ in Equations (11) and (12)) of the
kernels and the corresponding accuracies. The best
accutacy among three methods is illustrated in bold-face.

The results show that our method yields highest
accuracy in almost all of datasets. Another advantage of
ow method compared to the DDAG and the original
ADAG is that our method always provides one best
accuracy for each dataset using the reordering algorithm,
whereas, depending on the sequence of classes, the DDAG
and the original ADAG may give low accuracies. This
shows the effectiveness of the RADAG.
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Table 2. A comparison of the accuracy of classification
using the Polynomial kernel

Damset | & ADAG | 4 MamxWim| 4 RADAG
Glass 2 71135 | 2 71078 | 2 71.063
Satimage | 6 88430 | 6 88453 | 6  88.900
Segment | 8 97408 | 8 97379 | 8  97.489
Shuttle 8 99924 | 8 99924 | 8  99.924
Vowel 3 64293 | 3 64329 | 2 64.502
Soybean 5 90.446 3 90.471 3 91.176
Letter 3 95984 | 3 96125 | 4 96111
Tsolet 397030 | 3 97040 | 3 97.049

Table 3. A comparison of the accuracy of classification

using the RBF kermnel
Dataset | ¢  ADAG | ¢ MaxWins| ¢ RADAG |
Glass 0.08 72,759 |0.09 73.238 |0.09 74.319
Satimage (3.0 91.968 (3.0 91.984 (3.0 91.950
Segment 0.7 971282 (0.7 97.298 |0.7 97.273
Shuttle 3.0 99.897 (3.0 99.897 |3.0 99.897
Vowel 02 65.589 0.2 65.340 (0.2 67.100
Soybean 0.08 90.412 |0.08 90.468 |0.07 90.882
Letter 3.0 97909 3.0 97918 (3.0 97.969
Isolet .01 $6.932 (0.0 96916 |0.01 * 96.985

Table 4. A comparison of the computational time using

the Polynomial kernel

RADAG Max Wins

Dataset | d | Classifying | Reordering Total Classifying
_(seconds) | (seconds) | (seconds) | (seconds
Satimage | 6 1.90 0.50 2.40 9.47
Segment . [ 8§ 0.11 0.08 0.19 0.41
Shuttle 8 1.75 3.38 5.13 5.15
Vowel 2 0.12 0.25 0.37 0.61
| Soybean | 3 0.30 0.25 0.55 1.86
Letter 4 B.48 4.20 12.68 125.58
Isolet 3 116.02 1.48 117.50 1671.98

Table 5. A comparison of the computational time using

the RBF kernel
[ RADAG Max Wins
Dataset c Classifying | Reordering Total Classifying
_(seconds) (seconds) (seconds) (seconds)
Sati e | 3.0 11.75 0.51 12.26 37.13
Se; t | 0.7 0.24 0.10 0.34 0.82
Shuttle 3.0 3.36 0.63 3.99 9.27
Vowel 0.2 0.10 0.27 0.37 0.61
‘Soybean | 047 0.32 0.45 0.77 2.20
Letter 3.0 62.27 3.69 65.96 802.85
Isolet o0l 100.42 1.60 102.02 1365.11

Table 4 and 5 present the comparison of the
computational time between the RADAG and the Max
Wins for Polynomial and RBF kernels by using a 400
MHz Pentium H processor. There is no computational time
of the glass dataset because it has too little test examples
to measure the time. The results show that our method
requires low computational time in all datasets, especially
when the number of classes and/or the number of
dimensions are relatively large. For a & class problem, the
Max Wins requires Kk(k-1)2 classifiers for the
classification whereas the RADAG requires only #-1
classifiers. Hence the larger the number of classes the

moere running time the Max Wins requires than the
RADAG. Moreover, the number of dimensions affects the
running time of each classifier. For the RADAG, the
number of classes affects the ninning time for reordering,
However, it takes a little time even when there are many
classes.

5. Conclusions

In this paper, we have presented a new approach for
multiclass SVMs, called Reordering Adaptive Directed
Acyclic Graph (RADAG), which is the modification of the
original ADAG. Our approach eliminates the dependency
of the sequence of binary classifiers in nodes in the
original ADAG by selecting an appropriate sequence from
all possible sequences which consists of classifiers with
small generalization error. By the use of minimum-weight
perfect matching, the RADAG can reorder the sequence in
polynomial time. The experimental results show that our
new approach yields higher accuracy than the original
ADAG and even Max Wins which is probably the
currently most accurate method for multiclass SVMs.
Moreover the running time used by the RADAG is less
than Max Wins, especially when the number of classes
and/or the number of dimensions are relatively large. Our
future work is to test the method on datasets with a very
large number of classes and dimensions.
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A NEW FRAMEWORK FOR LEARNING FIRST-ORDER REPRESENTATION

Thanupol Leardlumnouchai' and Boonserm Kijsirikul‘

ABSTRACT: First-order logic rules are one of the most expressive and human readable
representations for learning a hypothesis in form of a set of production rules (if-then rules). However,
the first-order rules can be learned only by Inductive Logic Programming (ILP) systems, such as
PROGOL, FOIL. Other machine learning techniques, such as Neural Networks, Bayesian Networks
and Decision Tree Leamning, cannot directly learn this kind of rules because these techniques could
not select the appropriate values to substitute in variables of the first-order rules. In this paper, we
propose the method that makes use of Multiple-Instance Learning (MIL) as a new framework for
learning first-order representation. MIL is employed for determining the appropriate values for the
substitution. Experimental results show that the proposed method effectively learns first-order
representation and is comparable to ILP systems.

KEYWORDS: Inductive Logic Programming, First-Order Logic, Multiple-Instance Learning
1. INTRODUCTION

Knowledge based learning is one technique of machine learning (Mitchell 1997). Informally
knowledge is a set of sentences that describe known logical facts. In learning, the knowledge is
generally called background knowledge. Knowledge-based learning method receives background
knowledge and positive and negative examples as inputs and outputs a learned hypothesis represented
in form of a set of production rules (if-then rules). A prominent advantage of this representation is
human readable. Also, there are two types of logic for representing learned rules. The first one is
propositional logic which is simpler than the other one, first-order logic. Propositional rules have no
variable in their rules. o contrast, first-order rules contain variables so they are more expressive than
the propositional rules. Consider the difference between these two logical rules in Figure 1.

'ropusitional lowsic:

The propositional rule is specific enly for the first and the second persons being Jannifer and Andrew,
respectively. So it is rarely useful for unseen pairs of people. While first-order rules have variables
that make the rule much more expressive and general. However, only Inductive Logic Programming
(ILP) systems such as PROGOL (Mitchell 1997), FOIL (Mitchell 1997) can learn the first-order rules.
These first-order rule leamers have ability to select the appropriate values to substitute in variables,
while other machine learning method cannot, such as Neural Networks, Bayesian Networks and
Decision Tree Learning. Therefore the advantages of these methods, such as robustness to noise,
could not be applied in first-order rule learning to increase the efficiency in real world usage.

i Department of Computer Engineering, Chidalongkorn University, Pathwnwan, Banghkok, Thailand



In this paper, we are interested in solving this challenge. We propose the method that can use other
techniques to learn first-order rules by using a framework called Multiple-Instance Learning (MIL)
(Huang, Chen et al. 2003). MIL is employed for determining the appropriate values for the variable
substitutions. We evaluate the proposed method by learning first-order concept mother(x,y) with
Backpropagation Neural Network (BNN) on MIL framework. The results show that our technique
competently learns first-order representation.

2. FRAMEWORK

ILP is only one of machine leamning which adapts the logical concept for hypothesis learning and
represents the learned rules in first-order logic form. Other learning techniques cannot directly learn
this kind of rules because of difficulty in selecting the appropriate values to substitute in variables of
first-order rules. To illustrate this problem, consider the task of learning rules for classifying the rich
person (rich(x)). Background knowledge, the positive and negative examples are given as follow.

Fig re 2.

From these inputs, the ILP system could provide the learned rule as: rich(x):- genius(x), diligent(x).
The meaning of the above rule is if x is genius and diligent, then x will be a rich person. For
comparing to ILP, we use the BNN as the representative of indirectly learning methods. BNN also
learns the rich concept with the same inputs as [LP. First, we create the initial network that is
equivalent to the background knowledge, The network has 3 input nodes, in this case. We then assign
some small random value to initialize each weight. The network constructed from the background
knowledge is shown in Figure 3.

rich(x)

genius(x)  diligent(x) strong(x)
Figure 3. The constructed network.

Next, we feed an example to the network one by one. The input value for an input unit will be 1 if the
literal of that unit is true in background knowledge when variables of the literal are substituted to
some constants. Otherwise the input value for that unit is 0. For instance, if the fed example is
rich(Alan), then the value for each unit is 1, 1 and 0, respectively. Because literals genius{dlan) and
diligentfAlan) are true in background knowledge, while strong(Alan) is not true. The target value for
the output unit is 1 because rich{Alan) is a positive example. The target output is O in case of negative
examples. Then we apply the Backpropagation algorithm to adjust the network weights to fit training
examples. After training, the weight values of gemius(x) and diligent(x) units are higher than the
strong(x) unit. This is because the two previous literals are more significant than literal strong(x) and
this is comparable to the induced rule from ILP.

However, when inputs are relational examples and background knowledge, neural network cannot
easily learn as the previous example. As there are many constants that can be mapped to relational
variables, the correct inputs for the neural network cannot be easily determined. Consider the
following example.



Flgure 4, Inputs that contain relational predlcate

In this example, an additional relational literal parent(Bob,Alan) is given. This literal means Bob is
Alan’s parent. The construction of the network also adds nodes parentx,)) and parent(y,x) in the
input layer, so there are 5 input nodes in this case. When we feed positive example rich(4lan) to the
network, the first three nodes which are genius(x), diligent(x) and strong(x) receive 0,1 and 0 as its
input respectively. For node pareni(y,x), the variable x is replaced by Alan. But we have to determine
to which term (Alan, Bob or Chris) variable y should be replaced. If we select Bob for substitution,
the truth value for this input unit will be 1. The other substitutions will give 0 for this unit. While the
truth value for paremt(x,y) is 0 for any substitution. This learning problem may occur when
background knowledge contains relational data and the learner cannot determine the appropriate value
for the variable substitution.

To solve this problem, we use the power of Multipte-Instance Learning (MIL} to provide input data
for relational first-order rule learning. In MIL framework, the training set is composed of a set of
bags, each of which is a collection of different number of instances. A bag is labeled as a negative bag
if all the instances in it are negative. On the other hand, if a bag contains at least one positive instance
then it is labeled as a positive bag, With this concept, we define a set of training examples as {B,
B, , ... By}, where » is a number of examples including positive and negative ones. A bag is labeled
as a positive bag if an example is positive, and negative otherwise. Each bag contains m, instances
{Bii, Bia, ..., Bim} where cach is one possible binding (substitution). Therefore the appropriate value
selection would not be a problem because in one bag there are all cases of variable substitutions and
the learning algorithm are designed for this kind of MIL problem. We can use these transformed data
for learning a hypothesis. Consider an example of positive bag rich(4lan) as input data (see Table 1).

Table 1. Input data of the network for bag rich{Adlan).

Bag of example rich(Alan) genius(x) | diligent(x) ! strong(x) | parent(x,y) | parent(y.x)
Replace x by Alan, and y by Alan 0 1 0 0 0
Replace x by Alan, and y by Bob 0 1 0 0 i
Replace x by Alan, and y by Chris 0 | 0 0 0

As shown in Table 1, the bag rich(4lan) has 3 instances. Positive bag rich(Bob) and negative bag
rich(Chris) also have 3 instances as same as bag rich(Alan). For training, these 3 bags are fed to the
network one by one. The network weights are adapted by the backpropagation algorithm for MIL
(Zhou and Zhang 2002).

3. EXPERIMENT

In this section, we evaluate our proposed technique on learning first-order rules by BNN. The target
cencept that we try to learn is mother(x,y). A family relationship as shown in Figure 5 describes a set
of training examples. Additionally, four predicates which are father(x,y) husband(x,y),
grandmother(x,y) and sister(x,y} are given as background knowledge.

Christophér = Pénclope Andrew = Christine
Arthur Victoriz = James Junnifer
Ci}rlin Churljgmt

Figure 5. A family relationship where A=B means A marries B.




With these input data, we get 6 positive bags that are mother(Penelope Arthur),
mother(Penelope, Victoria), mother(Christine,James), mother(Christine,Jannifer),
mother(Victoria, Colin), and mother(Victoria,Charlotte). Each positive bag is composed of 10
instances each of which is one case of relational variable z replacement. For negative bag, we take one
person as one bag so there are 10 negative bags. Each bag has 10 cases of persons for substitution in
variable y such as mother{Christopher, Christopher). mother(Christopher, Penclope), ... and each case
contains 10 bindings. So each negative bag contains 90 instances, except for the 3 bags for Penelope,
Christine and Victoria which contain only 70 instances as some of them are already used as positive
bags. Moreover, each predicate from background knowledge is expanded to 6 literals which are for
fx.), (x.z), (v.x), (»z), (zx), and (z,y). Variable z is used for making a connection between literals. The
network must be consistent with background knowledge, so we create a network with 24 input nodes
and 1 output node. We set the number of hidden nodes to 1 node and 4 nodes for the first and second
experiments, respectively. Then we train the network for 2000 epochs by using the backpropagation
algorithm. The obtained networks are shown in Figure 6, with dark solid lines indicating the largest
positive weights, and light lines indicating negligible weights. Both networks perfectly classified all
of the training examples and the networks are almost equivalent. Furthermore from learned network
weights, the network can be mapped to a rule mother(x,y) < father(z,y), husband(z,x) (Towell and
Shavlik 1993), which is the same as the rule learned by ILP.
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Figure 6. The complete trained networks with 1 hidden node (a) and 4 hidden nodes (b).

4. CONCLUSION

This paper presents a new framework for learning first-order rules. The objective is to solve the
problem that other machine learning techniques except for ILP cannot select the appropriate values
for variable substitution. So we applied MIL to provide certain input data from first-order logic input.
The experimental results show that our proposed method is able to learn first-order representation.
The refined network can be mapped to the rule which is comparable to one obtained by ILP.
Consequently, as we can employ other techniques for learning first-order logic, the advantage of these
methods can alleviate the weakness of ILP such as sensitivity to noise.
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The Support Vector Machine (SVM) has been introduced as a technique for solving a
variety of learning and function estimation problems. The technique was originally
designed for binary classification learning with its outstanding performance. How-
ever, many real world applications involve multiclass classification. Typical SVM
solutions to N-class problems are to construct and combine several two-class classifi-
ers into an N-class classifier such as the one-against-the-rest approach (1-v-r) and the
one-against-one approach (1-v-1). The one-against-one methods solve N(N-1)/2
binary classifiers where each one is trained on data from two classes, There are differ-
ent methods for the evaluation of the correct class after all N(N-1)/2 classifiers have
been constructed. The Max Wins method takes the majority vote of a certain class as
the final output [3]. A drawback of the 1-v-1 SVMs is their inefficiency of classifying
data as the number of SVMs grows superlinearly with the number of classes. To im-
prove the efficiency in classifying data, Platt et al. [5] proposed the Decision Directed
Acyclic Graph (DDAG) with N(N-1)/2 internal nodes and N leaves. Only N-1 deci-
sion nodes will be evaluated in order to derive an answer, that is lower than N(N-1)/2
decisions required by Max Wins. To reduce the unnecessarily high number of node
evaluations for the correct class, Kijsirikul, et al. [4] proposed the Adaptive Directed
Acyclic Graph (ADAG) method, which is a modification of the DDAG. Like the
DDAG, the ADAG requires N—1 decisions in order to derive an answer. However,
using the reversed triangular structure reduces the number of evaluations the correct
class is tested against other classes to [log,N| times or less, which is considerably
lower than that of N-1 times required by the DDAG.

In this paper, we introduce a new method for constructing multiclass SVMs using
binary classifiers, called Balanced Dichotomization. For an N-class problem, the sys-
tem constructs N(N-1)/2 binary classifiers during its training phase like other one-
against-one methods. Among those binary hyperplanes having been constructed, the
system searches for the hyperplane at the most balanced position among all candidate
classes, called balanced dichotomization classifier that separates the data classes into
bhalf-and-half on each side. Using a balanced dichotomization classifier can thus re-
move half of the candidate classes during each evaluation for the correct class, that is
a higher number of elimination compared to other methods, such as the DDAG, the
ADAG, which eliminate only one class using an ordinary binary classifier. As a re-
sult, the technique can optimally reduce the number of decisions in order to derive an
answer to | log, V| times, rather than N-1 times in the DDAG and the ADAG.

The basic idea of the primary SVM classification is to find the optimal hyperplane
separating the two classes of data as illustrated in Figure 2 (a). The hyperplane maxi-
mizes the margin between the data in class 1 and class 2. However, the hyperplane in
¢ Figure 2 (a) is not a balanced dichotomization classifier because when considering the
i positions of all candidate classes, it is not at the most balanced position as depicted in

C. Zhang, H.W. Guesgen, W.K. Yeap (Eds.): PRICAI 2004, LNAI 3157, pp. 973-974, 2004
|- © Springer-Verlag Berlin Heidelberg 2004

ANV ELED 7




974  Boonserm Kijsirikul, Narong Boonsirisumpun, and Yachai Limpiyakorn

(©)

Fig. 2. (a) The optimal hyperplane for classes 1 and 2, (b) the hyperplane is not a balanced
dichotomization classifier when considering other classes, and (c) an optimal balanced hyper-

plane.

Figure 2 (b). The hyperplane shown in Figure 2 (¢) is an example of the balanced
dichotomization hyperplane. It is posed at the optimal balanced position that separates
candidate classes into half-and-half on each side.

Since Balanced Dichotomization requires considering positions of all candidate
classes to arrive at a balanced.hyperplane, there may be cases where a hyperplane in
consideration is posed in between data of certain classes. To deal with these cases,
two parameters are introduced in our approach, i.e. the optimal range of generaliza-
tion error and the optimal pruning percentage. Pruning percentage is used as the
threshold for the removal of data on either side of the hyperplane in consideration.
The strategy of pruning is to achieve the balanced dichotomization that provides the
minimum number of evaluations for the correct class while maintaining the accuracy
within the range of generalization performance [1]. If the ratio between data of a class
on one side and all data of the class is less than pruning percentage, the data on that
side will be ignored. Moreover, using the optimal range of generalization error, only
hyperplanes with the generalization error within the range will be considered.

We evaluate the performance of our method on séveral datasets from the UCI Re-
pository of machine learning databases [2]: Glass, Satimage, Segment, Shuttle,
Vowel, Soybean, Letter, and Isolet. The experimental results show that Balanced
Dichotomization runs faster and maintains accuracy comparable to Max Wins and 7
better than the ADAG and the DDAG methods. 1
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Abstract

Inductive Logic Programming (ILP) is a well
known  machine learning rechnigue in learning
concepls from relational data. Nevertheless, ILP
systems are not robust enough lo noisy or unseen data
in real world domains. Furthermore, in multi-class
problems, if the example is not malched with any
learned rules, it cannol be classified. This paper
presents a novel hybrid learning method to alleviate
this restriction by enabling Neural Networks 1o handle
Jirst-order logic programs directly. The proposed
method, called First-Order Logical Newral Network
(FOLNN), is based on feedforward neural networks
and integrates inductive learning from examples and
background knowledge. We also propose a method for
determining the appropriate variable substitution in
FOLNN learning by using Multiple-Instance Learning
(MIL). In the experiments, the proposed method has
been evafuated on two first-order learning problems,
i.e., the Finite Element Mesh Design and Mutagenesis
and compared with the state-of-the-art, the PROGOL
system. The experimental results show that ihe
proposed method performs better than PROGOL.

1. Introduction

Inductive Logic Programming (ILP) {1, 2] is only
one of machine learning techniques which adapts the
first-order logical concepts for hypothesis learning.
The advantages of ILP are the ability of employing
background knowledge and the  expressive
representation of first-order logic. However, first-order

rules Ieamed by ILP have the restriction to bandle -

imperfect data in real-world domains such as noisy
unseen data. This problem noticeably occurs especially
in  multi-class  classification. In  multi-class
classification, if an example is not covered any learned
rule, it could not be classified. The simple solution is
assigning the majority class recorded from training

0-7695-2291-2/05 $20.00 © 2005 IEEE
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examples to the unable labeled test data {3]. Also. there
is more efficient method to solve this problem by using
the concept of intelligent hybrid systems [4].

Artificial Neural Networks (ANNs) {3] claim to
avoid the restrictions of symbolic rule-based svstems
described above. Neural networks contain the ability of
processing inconsistent and noisy data. Moreover, they
compute the most reasonable output for each input.
Neural networks, because of their potential for noise
tolerance and multi-class classification. offer an
attractiveness  for  combining with  symbolic
components. Although the ability of neural networks
could alleviate the problem in symbolic rule-based
systems, ledmed hypothesis from neural networks is
not available in a form that is legible for humans.
Therefore neural networks significantly require an
interpretation by rule-based systems [4). Several works
show that the integration between robust neural
networks and symbolic knowledge representation can
improve classification accuracy such as Towell and
Shaviik’s KBANN [6], Mahoney and Mooney's
RAPTURE [7], the works proposed by Rajesh Parckh
and Vasant Honavar [8] and d’Avila Garcez et al. {9].
Nevertheless, these researches have been restricted 1o
propositional theory refinement. Some models have
been proposed for first-order theory, SHRUTI [10]
employed a model making a restricted form of
unification—actually this system only propagates
bindings—. The work proposed by Botta et al. [11]
created a network consisting of restricted form of
leaming first-order logic. Kijsirkul et al. [12]
proposed a feature generation method and a partia
maiching technique for first-order fogic but thei
method still uses an ILP system in its first-step
leaming and cannot select the appropriate values to
substitute in variables.

In this paper, we are interested in direct leaming of
first-order logic programs by neural networks, called
First-Order Logical Neural Network (FOLNN).
FOLNN is 2 neural-symbolic learning system based on
the feedforward neural network that integrates




inductive learning from examples and backgrouad
knowiedge. We also propose the method that makes
use of Multiple-instance Leaming (MIL) [13, 14} for
determining the variable substitution in our model. Qur
pmpused method has been evaluated on two standard
first-order learning datasets i.e., the Finite Element
Mesh Design [15] and Mutagenesis [16]. The results
show that the proposed method provides more accurate
result than the original ILP system.

The rest of this paper is organized as follows.
Section 2 outlines the processes of first-order learning
by FOLNN, splitting into ihree subsections. The
experimental results on firsl-order problems are shown
in Section 3. Finally the conclusions are given in
Section 4.

2. First-Order Logical Neural Network
(FOLNN)

Commonly the main reason for integrating robust
neural networks and symbaolic components is to reduce
the weakness of the rule-based system. Combining
these two lechniques together is normally known as
neural-symbolic leamning system (9], Our proposed
method, FOLNN is also this type of learning system.
FOLNN structure is based on the feedforward neural
network and can receive examples and background
knowledge in form of first-order logic programs as the
inpuis. FOLNN weight adaptation is based on the
Backpropagation (BP) algorithm [17].

The following subsections explain the FOLNN
algorithm composed of creating an initial network,
feeding examples to the network and taining the
network.

2.1. Creating an initial network

In this subsection, we present the first step of the
FOLNN algorithm, creating an initial network from
background knowledge. A three layers feedforward
network, composed of one input layer, one output layer
and one hidden layer [18], is employed for FOLNN
structure. We define the functionality of each layer as
follows.

* Input layer: Input layer is the first layer that
receives input data, computes received data, and
then transmits processed data to the hidder layer.
This layer represents the literals for describing
the target rule. The number of units in this layer
depends on the number of predicates in
background knowledge. One predicate is
represented by one uait in the input layer if that
predicate contains only arity one. Otherwise, the

number of units for a predicate equals to the
number of all possible combinaticns of variables
of that predicate.

« Hidden {ayer: This layer connecis between the
input laycr and the output layer. The hidden layer
helps thc network to leamn the complex
classification. The number of units in this layer
depends on the complication of the leamning
concept, The number of units in the hidden layer
1s determined from the experiments.

e Output layer: This layer is the last layer of the
network  producing the output  for the
classification. The target concept is represenled in
this Jayer so that the number of units in the output
layer equals 10 the number of concepls lo be
learned or the number of classes.

An initial network is created by using the above
definition. To illusirate the construction of the
network, consider the task of leaming rules for
classifying the rich person {rich(x})). Background
knowledge, the positive and negative examples are
given as follows.

As shown in Figure 1, background knowiledge
contains three predicates with arity one which are
genius(x), diligent{x) and strong(x) and one predicate
having arity two which is parent(x.y). Each predicate
of arity one is represented by one unit in the input
layer, so three units are created. Predicate parent is
represented by two input units for literals parent(x,y)
and parent(y,x). Furthermore, the cutput layer, because
of only one target concept (rich(x)), has only one unit,
Therefore in this case, the constructed network will
have five input units and one output unit. The created
network from the inputs in Figure 1 is shown in Figure
2. In addition, all network weights are mitialized to
small random numbers.

rich(x)
T8 E Y
EE & & &
2% 2 ¢ 3

Figure 2. The created network with one hidden
unit.




The completely constructed network then receives
examples for refining the network. The process for
feeding examples to the network is described in the
next subsection.

2.2. Feeding examples to the network

In general, neural networks receive inputs jn redl
value form. However, inputs of the ILP system
{background knowledge and examples) are in logical
form. So we change the logical inputs to the form that
can be learned by neural networks. The examples are
fed to the network one by one and independently
transformed to the network input for each unit. The
vzlue for each unit is defined as follows.

1

where Xj;, L;, and & are input value for input unit /
when feeding example j, literal represented by input
unit i, and variable binding with constants in example
J. respectively.

The input value for an input unit will be 1 if there
exists substitution that makes the truth value of the
literal true in background knowledge. Otherwise the
input value for that unit is ¢. In addition, the target
value for output unit is defined as follows.

1
|

where 7y; and L; are target value for output unit k£ when
feeding example j, and literal represented by output
unit k, respectively.

For instance, with the same inputs in Figure I, if the
fed example is rich{Alan) then the first three units i.e.,
genius(x), diligent(x) and strong(x), receive 0,1 and 0
as their inputs respectively, because literal
diligent{Alan) is ttue in background knowledge, while
literals genius(dlan) and strong(Alan) are false. The
target value for the output unit is 1 because richfdlan)
is a positive example. However, the input value for
literals parent(x,y) and parent(y.x) cannot be easily
determined since there are many possible constants
that can be mapped to relational variables. For unit
parent(y,x), the variable x is certainly replaced by

if L8, is true in background knowledge (1}

othenvise

if L8, is positive example
otherwise’

@)

Alan. However, it is quite ambiguous by which term
{Alan, Bob or Chris) variabie y should be replaced. If
we select Bob for substitution, the truth value for this
input unit will be 1. The other substitutions will give o
for this unit (see Table 1). The truth value for
parent(x.y) is O for any substitution. From the above
example, the input value for unit pareni(y.x) is not
certain and cannot be easily determined for network
training. This problem may occur when background
knowledge contains relational data and the leamer
cannot determine the appropriate value for the variable
substitution.

Table 1. input value of unit parent(y,x) for each
constant replacement.

Unit parent (y,x) Input value
Replace x by Alan, and y by Alan 0
Replace x by Alan, and y by Bob i
Replace x by Alan, and y by Chris 0

To solve this problem, we use the power of
Multiple-Instance Learning {MIL) to provide input
dala for our network. In MIL framework [13, 14], the
training set is composed of a set of bags, each of which
is a collection of different number of instances. A bag
is labeled as a negative bag if all the instances in it are
negative. On the other hand, if a bag contains at least
one positive instance then it is labeled as a positive
bag. With this concept, we define FOLNN iraining
data as a set of training examples {B, B:, .. B},
where 7 is the number of examples including positive
and negative ones. A bag is labeled as a positive bag if
an example is positive, and negative otherwise {in
multi-class classification, all bags are labeled as
positive of their classes). The positive bag is given 1 as
its target value and the negative bag is assigned 0, as
defined in Equation (2). Each bag contains m; instances
{Bii. By ... By where By is one possible binding
(substitution). This is a very important key because
now we can use all cases of vaniable substitutions as
one bag for learning; thercfore the appropriate value
selection would not be a problem. Consider an
example of positive bag rich(Alan) as input data (see
Table 2). :

Table 2, Transformation of examnple, rich(Alan) into input data of FOLNN

Positive bag of example rich(dlan)  genmius(x)  diligent(x})  strong(x)  pareni(x,y)  parent(vx)
Replace x by Alan, and y by Alan 0 1 0 0 .. 0

_Replace x by Alan, and y by Bob 0 I 0 . 0 1
Replace x by Alan, and y by Chris 0 1 "0 0 0
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~ As shown in Table 2, the bag rich{dlan), has 3
Cpstances each of which is one case of substitution.
iso, positive bag rich(Bob) and negative bag
\rich(Chris) have 3 instances as same as positive bag
ich(Alan). For training, these 3 bags are fed to the
“setwork one by one and the network weights are
pted by the Backpropagation (BP) algorithm for
[19] as described in the next subsection.

" 2.3. Training the network

" To train the network. training bags are fed to the
metwork for adapling netwark  weights. Weight
adaptation is based on the BP algorithm and the
Jctivation function is Sigmoid function. Suppose the
‘ietwork has p input units, o output units, and one
ljidden layer. The global error function (£) of the
network is defined as follows.

E=i5,- . &)

mthe type of the bag i as:

E= o ZE" if B=+ @)
4 3 if B;=—

max » £,
15 j5m, £

1

0 (B, =+) and (0.55 0, )1, =1
By = 0 if(B; =-)and (o, <0.5), for all k
( & O ¥ otherwise

- where

» Ey is error of output unit & on instance j in bag

- examople §

= B~+ is positive bag example

* B~- is negative bag example

* o is actual output of output unit & from bag example
i, instance j, and

® Iy is target output of output unit k from bag example /

With the defined error function above, the error BP
algorithm is simply adapted for training FOLNN. In
each training epoch, the training bags are fed to the
network one by one. Then the error £y is computed
accordmg to Equation (5). For a positive bag B, if £y
i5 0 then all the rest of instances of this bag are
: disregarded, and the weights are not changed for this
epoch. Otherwise the process continues and when all
the instance of B, are fed, £; is computed by using

Eguation (4) and the weights in the network are
changed according to the weight update rule of BP
[17]. Then the next bag for training is fed to the
network and the training process is repeated until the
number  of training iterations increases to some
predefined threshold or the global error £ in Equation
{3) is decreased to some predefined threshold. After
having been trained, the network can be used to
classify unseen data.

3. Results

In the previous section, the three steps of tearning
FOLNN algorithm were described. In this section, we
evaluate FOLNN by performing experiments on the
finite element mesh design and the mutagenesis
datasets, the well-known ILP problems. We also
compare the results obtained by FOLNN with those
cbtained by an ILP system.

3.1. Datasets

3.1.1. Finite Element Mesh Design. The dataset for
the finite element mesh design {15) consists of 5
structures and has 13 classes (13 possible number of
partitions for an edge in a structure). Additionally,
there are 278 examples each of which has the form
mesh(Edge, Number_of elements) where Edge is an
edge label (unique for each edge) and
Number_of elements indicates the number of
partitions. The background knowledge contains
relations describing the types of an edge (e.g. circuir,
short), boundary conditions (e.g. free, fixed), loadings
(e.g. not_loaded, one_side loaded) and the relations
describing the structure of the object (e.g. neighbour,
opposite). The goal of finite element mesh design is to
learn general rules describing how many elements
should be used to model each edge of a structure,

3.1.2. Mutagenesis. The dataset for the mutagenesis
[16] consists of 188 molecules, of which 125 are
mutagenic (active} and 63 are non-mutagenic
(inactive). A molecule is described by listing its atoms
as atom{AfomID, Element, Type, Charge} and the bonds
between atoms as bond(Atom I Afom2, BondType). This
wproblem is a two-class learning problem for predicting
the mutagenicity of the molecules, whether a molecule
is active or inactive in terms of mutagenicity.

3.2. Experiments

For the finite element mesh design dataset, we
create the network containing 130 units in the input




layer (determined by predicates in background
knowledge), 13 output units (as the numbex of classes)
and one hidden layer with 80 hidden units (determined
by the experiment). For the mutagenesis dataset, the
constructed network has 235 input units, 100 hidden
units and 2 output units. The weights of two networks
are randomly initialized and then adapted by using the
BP algorithm with sigmoid activation function. We
performed three-fold cross validation [20] on each
datasel. The dataset is partitioned into three roughly
equal-sized subsets with roughly same proportion of
each class as that of the original dataset. Each subset is
used as a test set once, and the remaining subsets are
used as the training set. The final result is the average
result over three-fold data. For each fold, of both
datasets, we trained FOLNN with leaming rate 0.0001
and momentum 0.97,

Table 3. The percent accuracies of FOLNN and
PROGOL on first-order datasets; FEM ~ Finite
Elernent Mesh Design, MUTA — Mutagenesis.

Dataset FOLNN PROGOL
FEM 59.18 57.80
MUTA 88.27 84.58

The average results over three-fold data on FEM
and MUTA datasets are summarized in Table 3.
PROGOL [21], the state-of-the-art ILP system, has
been used to compare the performance with our
proposed method, FOLNN. The experimental results
show that the accuracies of our proposed method,
FOLNN are better than PROGOL in both datasets. The
better results are according to the weakness of learned
rules generated by PROGOL.

In addition to the results on the ocriginal dataset, to
see how well our learner handles noisy data, we also
evaluate FOLNN on noisy domain. The mutagenesis
dataset is selected for this task. Using the three-fold
data of the mutagenesis dataset in the last experiment,
10% and 15% class noise is randomly added into the
training set, and no noise is added into the test set. In
our case, adding x% of noise means that the class value
is replaced with the wrong value in x out of 100 data
by random selection. The accuracies of PROGOL and
FOLNN on noisy data are shown in Table 4.

Table 4. Performance comparison on the noisy
mutagenesis dataset.

Neoise PROGOL PROGOL PROGOL
levelin 9% noise 10% 15% FOLNN
dataset  cotting noise noise
setting setting
10% 64.23 69.72 71.29° 84.01
15% 60.56 61.54 65.31 81.28
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Since PROGOL has an ability to handle noise in
data as its option, “x% noise selling” in the table
specifics that noise option of PROGOL is set to x%.
As can be scen in the Table 4, our proposcd algorithm
stifl provides average accuracies higher than
PROGOL. When 10% and 15% noise is added into the
dataset, the PROGOL performance significantly drops
due to its sensitivity to noise which is the main
disadvantage of first-order rules directly induced by
the ILP sysiem. However, accuracy of our method
decreased 1nuch slower and is much higher than that of
PROGOL. FOLNN, because of the ability of noise
tolerance by combining with neural nctworks, is more
robust against noise than the original first-order rules,
FOLNN prevents overfitting noisy data by employing
neural networks (o give higher weights to important
features and give less attention to unimportant ones.

4. Conclusions

Leaming first-order logic programs by using neural
networks is still an open problem. This paper presents
a novel hybrid connectionist symbolic system based on
the feedforward neural network that incorporates
inductive leaming from examples and background
knowledge, called FOLNN (First-Order Logical
Neural Network). FOLNN alleviates the problem of
first-order rules induced by the ILP system which are
not robust enough to noisy or unseen data. The
prominent advantage of FOLNN is that it can leam
from inputs provided in form of first-order logic
programs directly. Other leamers cannot directly learn
this kind of programs because they cannot select the
appropriate values for variable substitution, but our
method can solve this problem by applying the MIL
concept to provide certain input data from first-order
logic input.

The experimental results show that FOLNN
presents the ability of noise tolerance and produces the
better performance than PROGOL. This is because of
the ability of neural networks that can select important
attributes and then gives higher weights to these
attributes and vice versa.
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‘r;. lthough our main objective is to learn the first-
er logic, FOLNN can be applied to other tasks such
eamming from propositional datasets containing
Tiesing values in some attributes.

(e interesting issue is knowledge extraction.
S owledge extraction from a trained network is one
A ase of the neural-symbotic learning system [9] and is
[ significant interest in data mining and knowledge
iscovery applications such as medical diagnosis.
Huwever, this phase is not included in this work and
e have niot yet explored rule extraction from trained
hetworks. Nevertheless, we surmise that many
ipsearches [9, 22-24] can be adapted to extract rules
:il 4t our networks.
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Abstract

Most classifiers often struggle with two main problems
when (1) there are some relations among the input data
and, (2) the input data is imperfect or has some noise. A
first-order bayesian network (FOBN) is a powerful classi-
fier that can cope with those two problems. Because of its
complication, however, it is very difficult to develop an
efficient algorithm for constructing FOBNs. This paper
proposes 2 new framework for constructing FOBNs by
combining two algorithms, namely, inductive logic pro-
gramming and a bayesian network learning algorithm.
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Noise PROGOL | PROGOL | PROGOL | PROGOL | PROGOL

level in| 0% noise | 5%  poise | 10% noise | 15%  noise | +FOBN

Dataset setting setting setting setting

0% 84.58 82.99 77.14 77.14 84.34

10% 64.23 65.42 69.72 71.29 78.67
"15% 60.56 59.02 61.54 65.31 74.33
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Abstract

The advantages of Inductive Logic Programming
are the ability of employing background knowledge
mm of first-order logic and its highly expressive
atation. Nevertheless, an ILP system is not robust
to noisy or unseen data. Moreover in multi-class
cation, if the noisy example is not maiched with
rned rules, it cannot be classified. In this paper we
a new learning method that alleviates this
by enabling Neural Networks to handle first-
logic programs directly. The proposed method is
the First-Order Neural Network (FONN). FONNs
eive First-Order Logic programs as the input of
works. Our proposed method has been evaluated
inite Element Mesh Design, a first-order learning.
The experimental results show that the proposed
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(Support Vector Machines & Information Theory)
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linear Support vector machine)
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foyanamoy ludunouvsamemassaziimsuta
gadoyansusandu Toyameusiuazdoyanasey
ATINQARDI(Validation data) e 1 lumswir s iiiaos
fumzay (7 Sedsznsudqed1 2 Aer1doway
lunsAmdn (0< <10 ) uaz R Ao Av0UINARIIN
Aawana(x, < R< x__, Wo x_ fis A1digavog
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d . a d q
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Dataset | #treining set | #testset | #class | #feature
Satimage 4435 2,000 6 36
Shuttle 43,500 14,500 7 9
Vowel ' 528 462 11 10
Soybean 250 340 15 35
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Polynomial Kernel
Expected Output|Expected Output| RADAG] Maxwins

Dataset| vae of | Vaiwe of | (1) |G&-1¥2)
of BD IBD | of BD BD
ogzk)
Satimage (2.474 499912585 4.847) § 15

Shuttle  10.965
Vowel |3.459
Soybeas |3.617

5.35972.807 5378) 6 21
3.385(3.45% 5.665| 10 55

6.971(3.907 6783 14 105

RBF Kemel
Expected Output|Expected Output| RADAG | Maxwins

Dataset| vame of | Value of | &1) |G&G&12
of BD IBD | of BD BD
- (ogk)
Satimage [2.474  4.734(2.585 4577 5 15

Shuitle (0.965 4.982(12.807 5758 6 21
Vowel |3.459 5.628|3459 5819 10 35
Soybean |3.617 5.400(3.907 6.591 14 105 J
asedt 3: WS ufsumanugades
Polynomial Kemel 2
rDﬂtﬂs&t d IBD ngD d RADAG| d M=ax
Wins
Satimage |6  88.850| 6 87.840[6 88900 |6 88.453
Shuale (8 99924| B 995248 99524 (8  99.924
Vowel |3 64935| 2 65.022|3 64502 |3 64.329
Soybean |3  90.882| 4 B9.529|3  9L176 |3 90.471
RBFKemcl
Dataset [z mD | < ¢ RADAG| ¢ Max
Wins
Satimage [0.5 91950|10 91.350|0.5 91950 (05 91984
Shumle (3.0 99.890/3.0 99.8%6 (3.0 99.897 30 99.897
Vowel |03 66.450{0.2 62.900 [02 67.100 |02 65.340
Soybean J0.0? 91.471|0.04 89.118 |0.07 90.882 |0.08 90468
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