

รายงานวิจัยฉบับสมบูรณ์

โครงสร้างซุปปร้าโมเลกุลของสารที่พัฒนาจากเบนซอกซาซีนไดเมอร์: จากการออกแบบโมเลกุลสู่สมบัติการตอบสนองของโมเลกุลด้วยช่องว่างระดับนาโน

Supramolecular Structured Benzoxazine Dimer-based Compounds:

A Challenge from Molecular Design to Nano-Channel Molecular Recognition

โดย รองศาสตราจารย์ ดร. สุวบุญ จิรชาญชัย

กิตติกรรมประกาศ

รายงานวิจัยฉบับนี้เป็นผลงานวิจัยส่วนหนึ่งที่คณะวิจัยได้นำเสนอความรู้พื้นฐานด้าน เคมีซุปปร้าโมเลกุลของสารเบนซอกซาซีนที่ยังไม่เคยมีรายงานมาก่อนและสามารถบรรลุ เป้าหมายเบื้องต้นที่ได้ตั้งไว้ ในโอกาสนี้ หัวหน้าคณะวิจัยใคร่ขอขอบพระคุณสำนักงานกองทุน สนับสนุนการวิจัยในการสนับสนุนทุนพัฒนานักวิจัย ประจำปี 2546 ที่เป็นโอกาสอันดีในการ ทำงานวิจัยเชิงรุกตลอดระยะเวลา 3 ปีที่ผ่านมา ทั้งนี้ คณะวิจัยยังมีเจตนารมณ์ที่จะนำเสนอ ผลงานวิจัยที่เกิดขึ้นจากการสนับสนุนทุนวิจัยครั้งนี้ให้เป็นผลงานวิจัยตีพิมพ์นานาชาติใน อนาคตอันใกล้ เพื่อให้ผลงานวิจัยเป็นที่ยอมรับและตอบรับกับนโยบายที่สำนักงานกองทุน สนับสนุนการวิจัยได้วางไว้

ในโอกาสเดียวกันนี้ คณะวิจัยใคร่ขอขอบพระคุณจุฬาลงกรณ์มหาวิทยาลัย ที่ได้เห็นถึง ความสำคัญของทุนพัฒนานักวิจัยโดยได้ให้ทุนสนับสนุนการวิจัยเพิ่มเติมด้วย คณะวิจัยใคร่ ขอขอบพระคุณวิทยาลัยปิโตรเลียมและปิโตรเคมีด้านสถานที่ เครื่องมือ อุปกรณ์การวิจัย รวมทั้ง โอกาสอันดีที่ให้หัวหน้าคณะวิจัยได้มีนิสิตผู้ทำงานวิจัยในคณะวิจัยด้วย

งานวิจัยนี้ได้รับความช่วยเหลือและการอนุเคราะห์จากศาสตราจารย์ ดร.สมศักดิ์ รุจิรวัฒน์ ห้องปฏิบัติเภสัชเคมี สถาบันวิจัยจุฬาภรณ์ รองศาสตราจารย์ ดร. บัญชา พูลโภคา ภาควิชาเคมี จุฬาลงกรณ์มหาวิทยาลัย ในการวิเคราะห์โครงสร้างด้วยเครื่อง NMR, MS นอกจากนี้ยังได้รับความช่วยเหลือด้านผู้ช่วยนักวิจัยจากรองศาสตราจารย์ ดร.วนิดา พวกุล ภาควิชาเคมี มหาวิทยาลัยพระจอมเกล้าธนบุรี

ในการทำงานวิจัยนี้ คณะวิจัยได้มีโอกาสอันดีที่ได้ทำวิจัยร่วมกับ Prof. Kohji TASHIRO, Toyota Technological Institute และ Prof. Mikiji MIYATA, Osaka University โดยได้เรียนรู้และฝึกฝนความเชี่ยวชาญการใช้เครื่องมือเพื่อวิเคราะห์ผลึกเดี่ยวรวมทั้งซอฟท์แวร์ การคำนวณโครงสร้างและพลังงานในระดับโมเลกุล ซึ่งหัวหน้าคณะวิจัยใคร่ขอแสดงความขอบคุณต่ออาจารย์ทั้งสองท่านมา ณ ที่นี้

ท้ายนี้ หัวหน้าคณะวิจัยใคร่กล่าวขอบคุณคณะทำงานวิจัย ผู้ช่วยศาสตราจารย์ ดร. อภิรัตน์ เลาห์บุตรี (ปัจจุบันเป็นอาจารย์ประจำภาควิชาวิศวกรรมวัสดุมหาวิทยาลัยเกษตร ศาสตร์) ดร. สุทธินันท์ พงษ์ธรรมรักษ์ (ปัจจุบันเป็นนักวิจัยหลังปริญญาเอกภายใต้การดูแลของ Prof. Kohji TASHIRO) นางสาวธิติพร รุ่งสิมานนท์ (นิสิตปริญญาเอกโครงการปริญญาเอก กาญจนาภิเษก ปัจจุบันทำงานวิจัยภายใต้ความดูแลของ Prof. Mikiji MIYATA, Osaka University) รวมทั้งนิสิตในความดูแลของหัวหน้าคณะวิจัยทุกคนที่ได้ช่วยงานในด้านต่างๆที่ เสริมให้งานวิจัยนี้เป็นไปอย่างราบรื่นตลอดเวลาที่ผ่านมา

หัวหน้าคณะวิจัย

สารบัญ

โครงสร้างซุปปร้าโมเลกุลของสารที่พัฒนาจากเบนซอกซาซีนไดเมอร์: จากการออกแบบโมเลกุลสู่สมบัติการตอบสนองของโมเลกุลด้วยช่องว่างระดับนาโน Supramolecular Structured Benzoxazine Dimer-based Compounds: A Challenge from Molecular Design to Nano-Channel Molecular Recognition

	หน้า
Abstract (บทคัดย่อ)	2
บทที่ 1	
1.1 เคมีของเบนซอกซาชีน	5
1.2 การพัฒนาเบนซอกซาซีน	8
1.3 ปฏิกิริยาการเปิดวงแหวนของเบนซอกซาซีน	9
1.4 บิสฟีนอลเอ พอลิเบนซอกซาซีน	11
1.5 งานวิจัยของคณะวิจัยเกี่ยวกับเบนซอกซาซีน : ปฏิกิริยาสิ้นสุดในตัวเอง	12
(Self Termination) และปฏิกิริยาไม่สมมาตรของเบนซอกซาซีนไดเมอร์	
(Asymmetric Reaction of Benzoxazine Dimers)	
1.6 ความสำเร็จของงานวิจัยเบื้องต้น การพิสูจน์ทราบว่าเบนซอกซาซีน	12
เป็นซุปปร้าโมเลกุลประเภทใหม่	
1.6.1 ซุปปร้าโมเลกุลเบนซอกซาซีนประเภทไม่เป็นวงแหวน	12
1.6.2 วงแหวนขนาดใหญ่จากเบนซอกซาซีน	15
1.7 ประเด็นหลักของงานวิจัย	15
เอกสารอ้างอิง	17
บทที่ 2	
2.1 การสังเคราะห์และพิสูจน์ทราบเบนซอกซาซีนมอนอเมอร์ชนิด	19
2,4-dihydro-3-alkyl-2H-naphthoxazine ((NTXM 1)-(NTXM 2))	
2.2 การสังเคราะห์และพิสูจน์ทราบเบนซอกซาซีนมอนอเมอร์ชนิด	21
O,O'-bis(3,4-dihydro -2H-1,3-benzoxazine)ethylene glycol	
((BZXM 1)-(BZXM 3))	
2.3 ศึกษาสภาวะที่เหมาะสมสำหรับเตรียมแนพทอกซาซีนไดเมอร์	25
((NTXD 1)-(NTXD 4)) จากแนพทอกซาซีนมอนอเมอร์	
((NTXM 1)-(NTXM 2)) และอนุพันธ์ของฟีนอล	
2.4 การเตรียมเบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3))	27
จากเบนซอกซาซีนมอนอเมอร์ ((BZXM 1)-(BZXM 3))	

และอนุพันธ์ของฟีนอล	
2.5 การสังเคราะห์และพิสูจน์ทราบเบนซอกซาซีนไดเมอร์ชนิด	29
N,N-bis-(2-hydroxybenzyl)alkylamine ((BZXD 4)-(BZXD 12))	
จากอนุพันธ์ของฟีนอลและอนุพันธ์ของเอมีน	
2.6 การสังเคราะห์และพิสูจน์ทราบโทซิลเลตเตดไดเมอร์	34
((TsD 1)-(TsD 2)) จากอนุพันธ์ของฟีนอลและโทซิลคลอไรด์	
2.7 สารประกอบอินคลูชันของเบนซอกซาซีนไดเมอร์ชนิด	
N,N-bis-(2-hydroxybenzyl)alkylamine Derivatives	
และโลหะทรานซิชันด้วยการรวมตัวของโมเลกุล	
2.7.1 การศึกษาปรากฏการณ์การรวมตัวของสารเบนซอกซาซีนไดเมอร์ชนิด	
N,N-bis-(2-hydroxybenzyl)alkylamine (((BZXD 4)-(BZXD 6)), (BZXD 8),	
และ(BZXD 11)) กับไอออนของโลหะทรานสิชัน ได้แก่ คอปเปอร์คลอไรด์	
2.7.1.1 การเกิดสารประกอบเชิงซ้อนระหว่าง <i>N,N</i> -bis-(2-hydroxybenzyl)	37
alkylamine (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11))	
กับไอออนของโลหะทรานสิชัน ได้แก่ คอปเปอร์คลอไรด์ ในสภาวะ	
ที่เป็นสารละลาย	
2.7.1.2 การเกิดสารประกอบเชิงซ้อนระหว่าง <i>N,N</i> -bis-(2-hydroxybenzyl)	39
alkylamine (((BZXD 5)-(BZXD 6)), และ (BZXD 11))	
กับไอออนของโลหะทรานสิชัน ได้แก่ คอปเปอร์คลอไรด์ ในสภาวะที่เป็นของแข็ง	
2.7.1.3 ความสามารถของสารเบนซอกซาซีนไดเมอร์ชนิด	43
N,N-bis-(2-hydroxybenzyl)alkylamine (((BZXD 4)-(BZXD 6)),	
(BZXD 8), และ (BZXD 11)) ในการสกัดไอออนของโลหะทรานซิชัน	
2.7.2 การศึกษาโครงสร้างผลึกเดี่ยวของ <i>N,N</i> -bis-(2-hydroxy-3,5-dimethylbenzyl)	45
methylamine (BZXD 4), และ <i>N,N</i> -bis-(2-hydroxy-5-methylbenzyl)	
cyclohexylamine (BZXD 11) ซึ่งสามารถเกิดสารประกอบอินคลูชั่นเป็น	
ลักษณะโมเลกุลกลุ่มก้อนเมื่อสารผลิต ภัณฑ์ที่ได้เกิดอันตรกิริยากับไอออน	
ของโลหะทองแดง	
2.8 การสร้างพันธะของ Cu-O และไฮโดรเจนพร้อมกันในระบบสารละลายของ	47
N,N-bis-(2-hydroxybenzyl)alkylamine	
บทสรุปและผลที่ได้รับจากการดำเนินงานวิจัย	52
ผลงานที่ได้และคาดว่าจะได้ (Output and Expected Output)	53
บทที่ 3	
3.1 การสังเคราะห์และพิสูจน์ทราบสารวงแหวน [2+2] Difunctional	55
28-membered macrocyclic ether ((MCE 1)-(MCM 3))	

3.2	การสังเคราะห์และพิสูจน์ทราบสารวงแหวน ไดเบนโซโมโนอาซา-12-คราวน์-3	60
	((DBMA 1)-(DBMA 3))	
3.3	การสังเคราะห์และพิสูจน์ทราบสารวงแหวนไดเบนโซโมโนอาซา-14-คราวน์-4	64
	(DBMA 4)	
3.4	การสังเคราะห์และพิสูจน์ทราบสารวงแหวน ไดเบนโซโมโนอาซา-17-คราวน์-5	68
	(DBMA 5)	
3.5	สารประกอบอินคลูชั้นของสารวงแหวนชนิดไดเบนโซโมโนอาซาคราวน์อีเทอร์	72
	((DBMA 1)-(DBMA 5)) กับเกลือของโลหะหมู่ที่1 ได้แก่ เกลือโซเดียมไพเครต,	
	เกลือโพแทสเซียมไพเครต และเกลือซีเซียมไพเครต	
3.6	การศึกษาโครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-12-คราวน์-3	
	(DBMA 2) และไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5) ด้วยรังสีเอกซ์เรย์	
;	3.6.1 โครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-12-คราวน์-3 (DBMA 2)	76
;	3.6.2 โครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5)	78
บทเ	สรุปและผลที่ได้รับจากการดำเนินงานวิจัย	80
	านที่ได้และคาดว่าจะได้ (Output and Expected Output)	81

สารบัญรูป

	หน้า
รูปที่ 2.1 ปฏิกิริยาการเตรียมเบนซอกซาซีนมอนอเมอร์จาก 1- แนฟทานอล และอนุพันธ์เอมีน.	19
รูปที่ 2.2 FTIR สเปคตรัมของ 2,4-dihydro-3-propyl-2H-naphthoxazine (NTXM 2).	20
รูปที่ 2.3 ¹ H-NMR สเปคตรัมของ 2,4-dihydro-3-propyl-2H-naphthoxazine (NTXM 2).	20
- รูปที่ 2.4 การสังเคราะห์สารเบนซอกซาซีนมอนอเมอร์ ((BZXM 1)-(BZXM 3)).	22
รูปที่ 2.5 FTIR สเปคตรัม ของ <i>O,O'</i> -bis(3,4-dihydro-3-ethyl-6-	23
methyl-2H-1,3-benzoxazine) ethylene glycol (BZXM 1).	
รูปที่ 2.6 ¹ H-NMR สเปคตรัม ของ <i>O,O'</i> -bis(3,4-dihydro-3-ethyl-6-methyl-	24
2H1,3benzoxazine) ethylene glycol (BZXM 1).	
รูปที่ 2.7 ปฏิกิริยาการเตรียมเบนซอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4))	25
- จากเบนซอกซาซีน มอนอเมอร์ และอนุพันธ์ฟินอล.	
รูปที่ 2.8 FTIR สเปคตราของเบนซอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4))	27
- ที่เตรียมจากมอนอเมอร์ ((NTXM 1)-(NTXM 2)) และอนุพันธ์ฟีนอล.	
รูปที่ 2.9 ปฏิกิริยาการเตรียมเบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3))	28
- จากเบนซอกซาซีนมอนอเมอร์ และอนุพันธ์ฟีนอล.	
รูปที่ 2.10 FTIR สเปคตราของเบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3))	29
- ที่เตรียมจากเบนซอกซาซีนมอนอเมอร์ ((BZXM 1)-(BZXM 3)) และอนุพันธ์ฟีนอล.	
รูปที่ 2.11 เบนซอกซาซีนไดเมอร์ ((BZXD 4)-(BZXD 12))	30
- รูปที่ 2.12 ปฏิกิริยาการเตรียมเบนซอกซาซีนไดเมอร์	30
รูปที่ 2.13 FTIR สเปคตรัมของ <i>N,N</i> -Bis(5-methyl-2-hydroxybenzyl)	31
methylamine (BZXD 5)	
ฐปที่ 2.14 ¹ H-NMR Spectrum ของ <i>N,N</i> -Bis(5-methyl-2-hydroxybenzyl)methylamine	32
(BZXD 5)	
รูปที่ 2.15 โทซิลเลตเตดไดเมอร์ที่เตรียมเพื่อใช้เป็นสารตั้งต้นที่ว่องไวต่อการ	35
ู้ เตรียมอนุพันธ์ต่อไป.	
รูปที่ 2.16 การเตรียมโทซิลเลตเตดไดเมอร์ชนิด <i>N,N</i> -bis(<i>5</i> -alkyl- <i>2</i> -p-toluene	35
sulfonylbenzyl) methylamine.	
รูปที่ 2.17 FTIR สเปคตรัมของ <i>N,N</i> -bis(2-p-toluenesulfonyl- <i>5</i> -methylbenzyl)	36
methylamine (TsD 1)	
รูปที่ 2.18 (A) UV-Vis สเปคตราของการรวมตัวของเบนซอกซาซีนไดเมอร์	38

BZXD 5 กับ คอปเปอร์คลอไรด์ในเมทานอลที่อัตราส่วนต่างๆ; a) 0:6, b) 1:5,	
c) 2:4, d) 3:3, e) 4:2 , f) 5:1, และ g) 6:0. (B) กราฟ mole fraction ของ (□) 1 ,	
(+) 2 , (•) 3 , (-) 4 ที่ 415 nm, และ (▲) 5 ที่ 435 nm	
รูปที่ 2.19 ¹ H -NMR spectra of (a) เบนซอกซาซีนไดเมอร์ BZXD 5 , และ	39
(b) การรวมตัวของเบนซอกซาซีนไดเมอร์ BZXD 5 กับคอปเปอร์คลอไรด์ในดิว	
เทอเรตเตดเมทานอลในอัตราส่วน (1:1 molar ratio).	
รูปที่ 2.20 FTIR สเปคตราของ a) Nujol, b) BZXD 5 , c) ((BZXD 5)-CuCl ₂),	40
d) BZXD 11, e) ((BZXD 11)-CuCl ₂), f) BZXD 6, และ g) ((BZXD 6)-CuCl ₂).	
รูปที่ 2.21 XRD patterns ของ a) เบนซอกซาซีนไดเมอร์ BZXD 5 ,	42
b) คอปเปอร์คลอไรด์ (CuCl ₂), c) ((BZXD 5)-CuCl ₂), d) เบนซอกซาซีน	
ใดเมอร์ BZXD 11, และ e) ((BZXD 11)-CuCl ₂).	
รูปที่ 2.22 DSC เทอร์โมแกรมของ a) เบนซอกซาซีนไดเมอร์ BZXD 5 ,	43
และ b) ((BZXD 5)-CuCl ₂).	
รูปที่ 2.23 เปอร์เซนต์ความสามารถในการสกัดไอออนของเบนซอกซาซีนไดเมอร์	44
(□) BZXD 5, (+)BZXD 8, ♦) BZXD 11, +) BZXD 6, ♦) BZXD 4 เป็นฟังก์ชั่น	
ของ Molar ratio ของคอปเปอร์คลอไรด์.	
รูปที่ 2.24 FTIR สเปคตราของ a) ผลึกเดี่ยวของ BZXD 11 , b) ผลึกเดี่ยวของ	46
((BZXD 11) -Cu), c) ผลึกเดี่ยวของ BZXD 4 , และ d) ผลึกเดี่ยวของ	
((BZXD 4)-Cu).	
รูปที่ 2.25 TG-DTA เทอร์โมแกรมของ a) ผลึกเดี่ยวของ BZXD 11 ,	47
b) ผลึกเดี่ยวของ ((BZXD 11) -Cu), c) ผลึกเดี่ยวของ BZXD 4 , และ	
d) ผลึกเดี่ยวของ ((BZXD 4)-Cu).	
รูปที่ 2.26 โครงสร้างผลึกของผลึกเดี่ยวของ ((BZXD 4)-Cu)	51
ชนิดที่ 1 และ ((BZXD 4)-Cu) ชนิดที่2	
รูปที่ 2.27 โครงสร้างผลึกของผลึกเดี่ยวของ ((BZXD 4)-Cu) ชนิดที่ 3	51
รูปที่ 3.1 การสังเคราะห์โมเลกุลวงแหวนเบนซอกซาซีนโดยปฏิกิริยาอีเทอร์ริฟิเคชั่น	55
รูปที่ 3.2. สารวงแหวน [2+2] Difunctional 28-membered macrocyclic ether	56
((MCE 1)-(MCM 3)).	
รูปที่ 3.3. FTIR สเปคตร้าของ (a) เบนซอกซาซีนไดเมอร์ BZXD 5 และ	57
(b) สารวงแหวน MCE 2	
รูปที่ 3.4. ¹ H-NMR สเปคตรัมของสารวงแหวน MCE 2	58
รูปที่ 3.5. MALDI-TOF สเปคตรัมของสารวงแหวน MCE 2	59
รูปที่ 3.6 ซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-12-คราวน์-3	60

รูปที่ 3.7 การเตรียมซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-12-คราวน์-3	61
รูปที่ 3.8. FTIR สเปคตร้าของ (a) สารไดเมอร์ BZXD 1 และ (b) สารผลิตภัณฑ์	62
DBMA 1	
รูปที่ 3.9. ¹ H-NMR สเปคตรัมของสารผลิตภัณฑ์ DBMA 1	63
รูปที่ 3.10. MALDI-TOF สเปคตรัมของสารผลิตภัณฑ์ DBMA 1	63
รูปที่ 3.11. ซุปปรัาโมเลกุลชนิดไดเบนโซโมโนอาซา-14-คราวน์-4 (DBMA 4)	65
รูปที่ 3.12. การเตรียมซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-14-คราวน์-4	65
(DBMA 4)	
รูปที่ 3.13. FTIR สเปคตร้าของ (a) สารไดเมอร์ BZXD 1 และ	66
(b) สารผลิตภัณฑ์ DBMA 4	
รูปที่ 3.14. ¹ H-NMR สเปคตรัมของสารผลิตภัณฑ์ DBMA 4	67
รูปที่ 3.15. MALDI-TOF สเปคตรัมของสารผลิตภัณฑ์ DBMA 4	67
รูปที่ 3.16. ซุปปรัาโมเลกุลชนิดไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5)	68
รูปที่ 3.17. การเตรียมซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-17-คราวน์-5	69
(DBMA 5)	
รูปที่ 3.18. FTIR สเปคตร้าของ (a) สารไดเมอร์ BZXD 1 และ (b) สารผลิตภัณฑ์	70
DBMA 5	
รูปที่ 3.19. ¹ H-NMR สเปคตรัมของสารผลิตภัณฑ์ DBMA 5	71
รูปที่ 3.20. MALDI-TOF สเปคตรัมของสารผลิตภัณฑ์ DBMA 5	71
รูปที่ 3.21. เปอร์เซ็นต์การสกัดโซเดียมไพเครต, โพแทสเซียมไพเครต,	73
และ ซีเซียมไพเครตที่มีความเข้มขันเป็น 7x10 ⁵ M โดยสารละลายวงแหวน	
(□) DBMA 1 , (■) DBMA 4 , และ (■) DBMA 5 ในคลอโรฟอร์มที่ 25 [°] C	
รูปที่ 3.22. ภาพ ORTEP view ของผลึกเดี่ยว DBMA 2	78
รูปที่ 3.23. ภาพ ORTEP view ของผลึกเดี่ยว DBMA 5	78

สารบัญแผนภาพ

	หน้า
Scheme 1	5
Scheme 2	6
Scheme 3	7
Scheme 4	8
Scheme 5	9
Scheme 6	10
Scheme 7	10
Scheme 8	11
Scheme 9	11
Scheme 10	13
Scheme 11	14

สารบัญตาราง

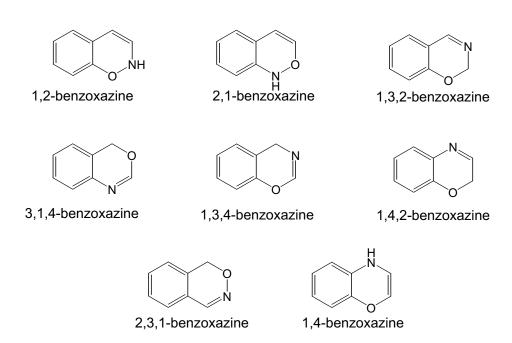
	หน้า
ตาราง 2.1 ข้อมูลทั่วไปของผลึกเดี่ยว (ชนิดที่ 1-3)	49
ตารางที่ 3.1. ¹ H NMR ของสารวงแหวน DBMA 1 และ DBMA 1	74
ที่มีการรับไอออนโซเดียม	
ตารางที่ 3.2. ¹ H NMR ของสารวงแหวน DBMA 4 และ DBMA 4	75
ที่มีการรับไอออนโซเดียม	
ตารางที่ 3.3. ¹ H NMR ของสารวงแหวน DBMA 5 และ DBMA 5	76
ที่มีการรับไอออนโซเดียม	
ตารางที่ 3.4 ข้อมูลทั่วไปของผลึกเดี่ยว (DBMA 2)	77
ตารางที่ 3.5 ข้อมูลทั่วไปของผลึกเดี่ยว (DBMA 5)	79

เอกสารปกปิด ห้ามเผยแพร่ก่อนได้รับอนุญาต รปกปิด ห้ามเผยแพร่ก่อนได้รับอนุญาต

งานวิจัยนี้ได้เน้นถึงการพัฒนาเคมีซปปร้าโมเลกล (supramolecular ประเภทใหม่จากสารหลักประเภทใหม่ที่เรียกว่าเบนซอกซาซีนไดเมอร์ งานวิจัยนี้จึงครอบคลุม ด้วยส่วนหลักต่างๆดังนี้ คือ (1) การสังเคราะห์สารเบนซอกซาซีนมอนอเมอร์ประเภทต่างๆ ได้แก่ เบนซอกซาซีนมอนอเมอร์ชนิด 2,4-dihydro-3-alkyl-2H-naphthlozaxine ((**NTXM 1**)-และสารเบนซอกซาซีนมอนอเมอร์ชนิด 2)) O, O'-bis(3,4-dihydro-2H-1,3-(NTXM benzoxazine)ethylene glycol ((BZXM 1)-(BZXM 3)) (2) การสังเคราะห์สารเบนซอกซาซีนได เมอร์ประเภทต่างๆ ได้แก่แนพทอกซาซีนไดเมอร์ที่ได้จากมอนอเมอร์ชนิด 2,4-dihydro-3-alkyl-2H-naphthoxazine ((NTXD 1)-(NTXD 4)), เบนซอกซาซีนไดเมอร์ที่ได้จากมอนอเมอร์ชนิด O,O'-bis(3,4-dihydro-2H-1,3-benzoxazine)ethylene glycol ((BZXD 1)-(BZXD 3)), สาร*N,N*bis-(2-hydroxybenzyl)alkylamine ((BZXD 4)-(BZXD 12)), และสารว่องไวต่อปฏิกิริยาคือโท ซิลเลตเตดไดเมอร์ชนิด N,N-bis(2-p-toluenesulfonyl-5-alkylbenzyl)methylamine ((**TsD 1**)-(TsD 2)) (3) ปรากฏการณ์ซุปปร้าโมเลกุลของสารเบนซอกซาซีนไดเมอร์ชนิด N,N-bis-(2hydroxybenzyl)alkylamine ((BZXD 4)-(BZXD 8)) กับไอออนของโลหะทรานสิชัน (4) การศึกษาโครงสร้างผลึกเดี่ยวด้วยรังสีเอกซ์เรย์ที่ชี้ให้เห็นถึงโครงสร้างซุปปราโมเลกุลแบบไดเม อริกของ*N,N*-bis-(2-hydroxybenzyl)alkylamine ((**BZXD 4**)-(**BZXD 8**)) ที่โครงสร้างเดียวกันนี้ สามารถรองรับทั้งโครงสร้างโคออดิเนตแบบส่งผ่านประจุกับสารรองของไอออนทองแดงและไม่ รับสารรองใด ๆโดยมีเครือข่ายพันธะไฮโดรเจนเป็นตัวตรึงโครงสร้าง (5) การสังเคราะห์สารวง แหวนชนิดต่างๆ ได้แก่ [2+2] Difunctional 28-membered macrocyclic ether ((MCE 1)-(MCM 3)), ไดเบนโซโมโนอาซา-12-คราวน์-3 ((DBMA 1)-(DBMA 3)), ไดเบนโซโมโนอาซา-14-คราวน์-4 (**DBMA 4**) และ ไดเบนโซโมโนอาซา-17-คราวน์-5 (**DBMA 5**) (6) การศึกษาซุป ปร้าโมเลกุลของสารวงแหวนชนิดไดเบนโซโมโนอาซาคราวน์อีเทอร์ ((**DBMA 1**)-(**DBMA 5**)) กับเกลือของโลหะหมู่ที่1 ได้แก่ เกลือโซเดียมไพเครต, เกลือโพแทสเซียมไพเครต และเกลือ ซีเซียมไพเครตและ (7) การศึกษาโครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-12-คราวน์-3 (DBMA 2), และไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5) ด้วยเทคนิควิเคราะห์โครงสร้าง ผลึกเดี่ยวด้วยรังสีเอกซ์เรย์

คำหลัก : เคมีซุปปร้าโมเลกุล, เบนซอกซาซีน, สารหลัก-สารรอง, สารวงแหวนขนาด ใหญ่

The present work focuses on the development of supramolecular chemistry for a novel type of host molecule, namely benzoxazine dimers. The work covers (1) synthesis of various benzoxazine monomers which are the basic compounds for the host compounds, for example, 2,4-dihydro-3-alkyl-2H-naphthlozaxine ((NTXM 1)-(NTXM 2)) and, O,O'-bis(3,4-dihydro-2H-1,3-benzoxazine)ethylene glycol ((BZXM 1)-(BZXM 3)), O,O'-bis(3,4-dihydro-2H-1,3-benzoxazine)ethylene glycol ((**BZXD 1**)-(**BZXD 3**)), (2) synthesis of benzoxazine dimers for example 2.4-dihydro-3-alkyl-2H-naphthoxazine ((NTXD 1)-(NTXD 4)) N,N-bis-(2-hydroxybenzyl)alkylamine ((BZXD 4)-(BZXD 12)), and the reactive species of N,N-bis(2-p-toluenesulfonyl-5-alkylbenzyl)methylamine ((TsD 1)-(TsD 2)), (3) host-guest phenomena of N,N-bis-(2-hydroxybenzyl)alkylamine ((BZXD 4)-(BZXD 8)) with transition metals, (4) X-ray single crystal analysis of N,N-bis-(2hydroxybenzyl)alkylamine ((BZXD 4)-(BZXD 8)) demonstrating that the dimeric system is a flexible assembly for host without guest via hydrogen bond network and host with guest via the coordinate network, (5) synthesis of macrocyclics, i.e., [2+2] Difunctional 28-membered macrocyclic ether ((MCE 1)-(MCM 3)), dibenzomonoaza-12-crown-3 (DBMA 1)-(DBMA 3), dibenzomonoaza-14-crown-4 (DBMA 4), and dibenzomonoaza-17-crown-5 (DBMA 5), (6) supramolecular chemistry of dibenzomonoazacrown ether based macrocyclic compounds as evidenced from the host-guest compound formation with alkaline metal picrates, such as sodium picrate, potassium picrate, and cesium picrate, and (7) X-ray single crystal analysis showing the macrocyclic structures of dibenzomonoaza-12-crown-3 (DBMA 2) and dibenzomonoaza-17-crown-5 (DBMA 5)


Keywords: Supramolecular chemistry, Benzoxazine, Host-guest compound, Macrocyclic compound

บทที่ 1 บทนำ

1.1 เคมีของเบนซอกซาซีน

เบนซอกซาซีน ¹เป็นสารเฮเทโรไซคลิกที่ประกอบด้วยวงแหวนเบนซีนและออกซาซีน เบนซอกซาซีนมีไอโซเมอร์ 8 ประเภทที่แตกต่างที่ตำแหน่งของเมทีลีนและตำแหน่งและการ แทนที่ของ H อะตอมดังแสดงใน Scheme 1.

Scheme 1

เบนซอกซาซีนสังเคราะห์ได้ภายใต้ปฏิกิริยาแมนนิชจากฟีนอล ฟอร์มาดีไฮด์ และเอมีน้ำการเกิดวงแหวนนั้นเป็นไปตามกลไกดังแสดงใน Scheme 2 และ 3 กลุ่มวิจัย Burke ได้ศึกษา ถึงการสังเคราะห์อนุพันธ์เบนซอกซาซีน 3,4-dihydro-1,3-2H-benzoxazines โดยชี้ให้เห็นถึง ปฏิกิริยาในขั้นตอนเดียวจาก p-ฟีนอล ฟอร์มาดีไฮด์ และเอมีนปฐมภูมิด้วยสัดส่วนโมล 1:2:1 (Scheme 2) อีกทางเลือกหนึ่งคือการใช้ปริมาณโมลเท่ากันในขั้นตอนแรกเพื่อที่จะได้สาร ตัวกลาง (intermediate) ของ o-alkylaminomethyl-p-substituted phenol ตามด้วยการทำ ปฏิกิริยากับฟอร์มาดีไฮด์ภายใต้ตัวเร่งปฏิกิริยาเพื่อที่จะเปลี่ยนเป็น 3,4-dihydro-3,6-disubstituted-1,3-2H-benzoxazines (Scheme 3).

Scheme 2

Scheme 3

Step I

$$\begin{array}{c} \overset{\downarrow}{\text{CH}_2} \\ \overset{\circ}{\text{CH}_2} \\ \overset{\circ}{\text{R''}} \end{array}$$

1.2 การพัฒนาเบนซอกซาซีน

ปัจจุบันมีการรายงานถึงการสังเคราะห์เบนซอกซาซีนหลายประเภท ได้แก่ ประเภท นาฟทอล (naphthol-based³) **1** ฟืนอลที่แทนที่ด้วยฮาโลเจน (halogen substituted phenolbased³) **2** บิสฟีนอลเอ²¹ bisphenol A-based **3** ไฮโดรควีโนน hydroquinone-based⁴ **4** เฟ นิลฟืนอล phenylphenol-based 5 ฯลฯ คณะวิจัย Burke *et al.* ได้รายงานถึงการเกิดปฏิกิริยา ควบ (condensation) ระหว่าง 2-naphthalformaldehyde และ p-toluidine ทำให้ได้สาร 2,3dihydro-2-p-totyl-1H-naphth-(1,2e)-m-oxazine **4**. แม้ว่าอนุพันธ์ต่าง ๆจะมีการายงานถึงแต่ก็ ไม่ได้กล่าวถึงการนำสารไปประยุกต์ใช้งาน อาจมีเพียงการกล่าวถึง naphthoxazines เท่านั้นว่า เชื้อรา เป็นสารที่สังเคราะห์ที่มีสมบัติในการป้องกันเชื้อแบคทีเรีย รวมถึงสมบัติการต้าน เซลล์มะเร็ง (antitumor, and antituberculosis³)

เบนซอกซาซีนเป็นที่รู้กันดีในการเป็นโมเลกุลสังเคราะห์ทางเคมีอินทรีย์เท่านั้นในช่วงปี ค.ศ 50 และ 60 จนกระทั่ง Kopf และ Wagner ใด้รายงานถึงฟืนอลลิกออกซาซีนซึ่งเป็น สารเติมแต่งในการผลิตโนโวแลกเรซิน อย่างไรก็ตามยังไม่เคยมีการรายงานถึงปภิกิริยาพอลิ เมอร์ไรเซชันของเบนซอกซาซีน Ishida และ Ning¹ได้เสนอวัสดุพอลิเบนซอกซาซีนจากสารบิส ฟื่นอลเอเบนซอกซาซีนมอนอเมอร์และแสดงถึงการเป็นฟื่นอลิกเรซินประเภทใหม่ที่มีสมบัติด้าน กายภาพและความร้อนเด่นกว่าฟืนอลิกทั่วไป

Scheme 4

1.3 ปฏิกิริยาการเปิดวงแหวนของเบนซอกซาซีน

เบนซอกซาซีนจะดำเนินปฏิกิริยาเปิดวงแหวนด้วยปฏิกิริยาย้อนกลับแมนนิช (reverse Mannich reaction) ดังแสดงใน Scheme 5. Burke และคณะ ⁵ ได้เสนอถึงกลไก การเปิดวงแหวนด้วยพันธะไฮโดรเจนที่เริ่มจากการเข้าใกล้ของฟีนอลมาที่โมเลกุลเบนซอก ซาซีนซึ่งทำให้สารประกอบตัวกลาง (intermediary complex) ที่พร้อมจะถ่ายโอนอีเลคตรอน จากในโตรเจนไปยังหมู่ไฮดรอกซิล

Scheme 5

แม้ว่า Kopf และ Wagner⁶ จะได้รายงานถึงความเป็นไปได้ในการเป็นฟืนอลิกเรซิ่น แต่ยังไม่ได้มีการศึกษาถึงเงื่อนไขการเกิดปฏิกิริยา Riess และคณะ⁷ ได้พยายามที่จะศึกษา ปฏิกิริยาการเกิดพอลิเมอร์ไรเซซันของเบนซอกซาซีนที่เป็นอนุพันธ์จากฟีนอลที่มีการแทนที่ หมู่เดียว (mono-substituted benzoxazines) โดยการศึกษาตัวแปรด้านประเภทของฟีนอล อุณหภูมิที่ทำปฏิกิริยา สัดส่วนโมล และความเข้มข้นของตัวเร่งปฏิกิริยาจำพวกฟีนอลและใช้ NMR และ GPC ในการศึกษาระดับการเกิดปฏิกิริยาพอลิเมอร์ไรเซซัน อย่างไรก็ตาม ระดับ การเกิดปฏิกิริยาพอลิเมอร์ไรเซซันอยู่ในช่วงเตตราเมอร์ ถึง เฮกซาเมอร์ (tetramer to hexamer) Reiss และคณะ⁷ ได้เสนอว่าการเกิดปฏิกิริยาเปิดวงแหวนน่าจะมีขั้นตอนการ โปรตอนเนชันที่ออกซิเจนอะตอมด้วย (Scheme 6).

Scheme 6

$$H_3$$
C H_3 H_3 C H_3 H_3 C H_3 H_4 C H_3 H_4 C H_3 H_4 C H_4 C H_4 C H_5 H_5 C H_5

Bruke และคณะ ⁵ ได้แสดงปฏิกิริยาการเปิดวงแหวนด้วยการเชื่อมฟืนอลสองวงเข้า ด้วยกันด้วยพันธะอาซาเมทีลีน ดังเช่น 2,3-dihydro-2-methyl-1H-naphth-(1,2-e)-1,3-oxazine และ N,N-bis(2-hydroxy-1-napthylmethyl)methyl amine (Scheme 7) ตัวอย่างนี้นับว่าเป็น ประโยชน์มากเนื่องจากเป็นกรณีที่ชี้ให้เห็นว่าการเกิดปฏิกิริยาเปิดวงแหวนนั้นทำให้ได้ โมเลกุลฟืนอลเชื่อมต่อที่ตำแหน่งออร์โทและทำให้เราสามารถออกแบบโมเลกุลที่หลากหลายได้ เมื่อใช้วงแหวนฟืนอลที่มีการแทนที่หมู่เดียวเป็นสารตั้งต้น

Scheme 7

แม้ว่าจะมีการศึกษาเรื่องพอลิเมอร์ไรเซชันของเบนซอกซาซีน แต่ก็ยังไม่มีการรายงาน ถึงเบนซอกซาซีนพอลิเมอร์ที่เป็นพอลิเมอร์เส้นตรงแม้ว่ากลไกการเกิดปฏิกิริยาจะยืนยันว่าจะได้ พอลิเมอร์เส้นตรง Ishida และ Krus⁸ (1998) ได้รายงานเป็นครั้งแรกถึงกรณีการเกิดปฏิกิริยา พอลเมอร์เส้นตรงแต่ต้องใช้โบรโมฟีนอล (bromophenol) เป็นสารตั้งต้นและปฏิกิริยานั้นดำเนิน ได้โดยสลับขั้นตอน (alternating step) ระหว่างการเปิดวงแหวนกับการกำจัดหมู่โบรมีน (debromination) (Scheme 8)

Scheme 8

1.4 บิสฟีนอลเอ พอลิเบนซอกซาซีน

พอลิเบนซอกซาซีน ใด้รับการยอมรับว่าเป็นฟืนอลลิกประเภทใหม่ที่มีสมบัติเด่นด้าน กายภาพและทางกล (Scheme 9) จุดสำคัญที่ทำให้เบนซอกซาซีนเกิดปฏิกิริยาพอลิเมอร์ไรเซ ชันได้สำเร็จคือการนำบิสฟีนอลเอมาทำปฏิกิริยาพอลิเมอร์ไรเซชันซึ่งทำให้เกิดโครงสร้างร่างแห จากโมเลกุลเบนซอกซาซีนสองวงที่เชื่อมอยู่ด้วยกันด้วยบิสฟีนอลเอ โดยการเลือกประเภทของ บิสฟีนอลหรือใบฟีนอล เราจะได้รูปแบบข้องพอลิเบนซอกซาซีนที่หลากหลาย พอลิเบนซอก ซาซีนที่ได้นั้นไม่ต้องอาศัยตัวเร่งปฏิกิริยาใดๆ มีการหดตัวเกือบเป็นศูนย์ มือุณหภูมิแสดง สถานภาพคล้ายแก้วที่สูง มีค่าโมดูลัสสูง มีการดูดซับน้ำน้อย มีสมบัติการนำไฟฟ้า และมีสมบัติ ทางกลที่เหนียวและแข็ง

Scheme 9

1. 5 งานวิจัยของคณะวิจัยเกี่ยวกับเบนซอกซาซีน : ปฏิกิริยาสิ้นสุดในตัวเอง (Self Termination) และปฏิกิริยาไม่สมมาตรของเบนซอกซาซีนไดเมอร์ (Asymmetric Reaction of Benzoxazine Dimers)

แม้ว่าพอลิเบนซอกซาซีนจะได้รับความสนใจในการเป็นฟืนอลิกประเภทใหม่และ เหมาะสมที่จะใช้เป็นวัสดุคอมพอสิท คณะวิจัยของเราให้ความสนใจในการพัฒนาเบนซอกซาซีน สำหรับการเป็นซุปปรัาโมเลกุล ทั้งนี้เนื่องจากโครงสร้างของเบนซอกซาซีนที่เปิดวงแหวนนั้นมี หน่วยย่อยที่เป็นโครงสร้างเดียวกับพอลิฟีนอลโดยมีอาซาเมทีลีนเป็นหมู่เชื่อม ในการที่จะพิสูจน์ ทราบถึงความเป็นไปได้ดังกล่าว คณะวิจัยของเราจึงได้เริ่มการสังเคราะห์เบนซอกซาซีน ประเภทต่างๆ และได้ออกแบบโมเลกุลรูปแบบต่างๆเพื่อที่จะศึกษาปรากฏการณ์ซุปปร้าโมเลกุล อย่างเป็นระบบ

คณะวิจัยของเราได้เรียนรู้เคมีของเบนซอกซาซีนที่สำคัญและยังไม่ได้รับการ รายงานมาก่อนสองประการเกี่ยวกับเบนซอกซาซีนที่วงแหวนฟินอลมีการแทนที่ที่ตำแหน่งพารา การสิ้นสุดปฏิกิริยาโดยตัวของมันเองทันทีที่วงแหวนมีการเปิดวงเป็น<mark>ไดเมอร์</mark> โครงสร้างผลึกที่ได้จากการศึกษาผลึกเดี่ยวยืนยันได้ว่าไดเมอร์มีโครงสร้างร่างแหของพันธะ ไฮโดรเจนทั้งแบบภายในโมเลกุลและแบบระหว่างโมเลกุลจึงทำให้ไม่เกิดการพอลิเมอร์ไรเซชัน ต่อไปอย่างต่อเนื่องตามทฤษฎี

ด้วยโครงสร้างพิเศษของเบนซอกซาซีนที่เปิดวงหนึ่งครั้ง ซึ่งคณะวิจัยเรียกว่าเบนซอก ชาซีนไดเมอร์นี้ ทำให้เบนซอกซาซีนไดเมอร์เกิดปฏิกิริยาที่ไม่สมมาตร กล่าวคือ หมู่ฟืนอลสอง หมู่ที่เชื่อมด้วยพันธะอาซาเมทีลีนจะมีการตอบรับปฏิกิริยาไม่เท่ากัน เป็นต้นว่า เมื่อนำเบนซอก ซาซีนไดเมอร์มาเป็นสารตั้งต้นและทำปฏิกิริยาแมนนิชอีกครั้งหนึ่ง เราจะได้วงแหวนเบนซอก ซาซีนด้านเดียวซึ่งเป็นโครงสร้างที่ไม่สมมาตร ทั้งนี้เนื่องจากสารที่ได้จากปฏิกิริยามีความเสถียร ด้วยพันธะไฮโดรเจนภายในโมเลกุลจนกระทั่งไม่เกิดปฏิกิริยาตามทฤษฎี

้ดังกล่าวข้างต้นนี้ ปรากฏการณ์ที่ไม่เป็นไปตามทฤษฎีนี้ ทำให้คณะวิจัยเห็นความสำคัญ ในการสร้างองค์ความรู้ใหม่เกี่ยวกับการออกแบบเบนซอกซาซีนในรูปแบบของสารซุปปร้า โมเลกุล

ความสำเร็จของงานวิจัยเบื้องต้น การพิสูจน์ทราบว่าเบนซอกซาซีนเป็นซุปปร้า โมเลกุลประเภทใหม่

คณะวิจัยได้ให้ความสำคัญในการพิสูจน์ทราบเพื่อรองรับสมมุติฐานที่ว่าด้วยเบนซอก ซาซีนเป็นซุปปร้าโมเลกุล

1.6.1 ซุปปร้าโมเลกุลเบนซอกซาซีนประเภทไม่เป็นวงแหวน

ในอดีต มีการรายงานถึงซุปปร้าโมเลกุลของออลิกอฟีนอลฟอร์มาดีไฮด์ซึ่งโครงสร้างนั้น คล้ายคลึงกับเบนซอกซาซีนแบบเส้นตรง ¹⁰⁻¹⁸ เมื่อวาดโครงสร้างบนกระดาษ (Scheme 10)

์ ตัวอย่างเช่น Sone และคณะ¹⁹ได้แสดงให้เห็นถึงออลิกอฟีนอลฟอร์มาดีไฮด์ที่สามารถ ตอบรับโมเลกุลสารอินทรีย์หลายประเภท เช่น อะซีไตน 1,1,1-ไตรโคลโรอีเทน เมทิลเอทิลคีโตน และคณะ²⁰ได้รายงานถึงเททราเมอร์ของโครงสร้าง 1-โบรโม-2-คลอโรอีเทน Ohba butylphenol-formaldehyde ที่ไม่เป็นวงแหวนว่าสามารถก่อตัวเป็นสารหลัก-สารรองกับเบนซีน ในอัตราส่วน 2:1 นอกจากนี้ยังมีรายงานที่แสดงถึงการตอบรับของออลิกอฟีนอลฟอร์มาดีไฮด์ ต่อโลหะอัลคาไลน์²¹

Scheme 10

ในปี 2000 คณะวิจัยของเราได้พบว่าออลิกอเมอร์ของบิสฟีนอล เอ เบนซอกซาซีนแสดงสมบัติ การตรึงไอออน โดยเฉพาะโลหะอัลคาไลน์และอัลคาไลน์เอริท์ การตรึงไอออนนี้ขึ้นอยู่กับ ค่าพารามิเตอร์ด้านการละลายของตัวทำละลาย (solubility parameter $\chi_{ ext{ab}}$) ซึ่งมีนัยสำคัญว่า การตรึงไอออนนั้นอยู่ภายใต้โครงสร้างการเป็นกลุ่มก้อนของโมเลกุล สมบัติการตรึงไอออนนั้น น่าจะมาจากโครงสร้างของออลิกอเมอร์ของบิสฟีนอล เอ เบนซอกซาซีนที่มีทั้งส่วนความเป็นขั้ว ความไม่เป็นขั้วจากวงแหวนเบนซีน เช่นเดียวกับอิเล็คตรอนคู่โดดเดี่ยวจากเฮเทโรอะตอม ซึ่ง หากพิจารณาจากโครงสร้างที่มีอะตอมในโตรเจนสองอะตอมแล้ว จะทำให้เราประมาณการได้ว่า ความหนาแน่นของอิเล็คตรอนคู่โดดเดี่ยวของออลิกอเมอร์ของบิสฟีนอล เอ เบนซอกซาซีนนี้ น่าจะสูงกว่าของคาริกซารีนด้วย ดังนั้นการควบคุมโครงสร้างด้วยหมู่มีขั้วและไม่มีขั้ว (จากหมู่ R และ R') จะทำให้เราได้โครงสร้างที่หลากหลายของเบนซอกซาซีนที่น่าจะแสดงสมบัติการเป็น ซุปปร้าโมเลกุล

ในการที่จะพิสูจน์ทราบถึงการรวมตัวเป็นกลุ่มก้อน (molecular assembly) คณะวิจัย ของเราจึงจำเป็นต้องมีการศึกษาโมเด็ลโมเลกุลที่มีความเป็นระเบียบเพื่อเชื่อมโยงไปสู่ระดับออลิ กอเมอร์หรือพอลิเมอร์ คณะวิจัยของเราจึงได้ออกแบบและวางแผนงานการสังเคราะห์ในรูปของ เบนซอกซาซีนไดเมอร์ประเภทต่างๆ (Scheme 11) เช่น สารเอสเทอร์ริฟิเคชัน **7** และอีเทอร์ริฟิ

เคชัน 8 ตลอดจนออลิกอเอสเทอร์ 9 และออลิกออีเทอร์ 10 จุดที่สำคัญที่สุดของงานวิจัยดัง กล่าวคือการเสนอโครงสร้างซุปปร้าโมเลกุลที่เตรียมได้จากเบนซอกซาซีน

1.6.2 วงแหวนขนาดใหญ่จากเบนซอกซาซีน

การเชื่อมเบนซอกซาซีนเข้าด้วยกันในขณะเปิดวงแหวน หรือ การนำเบนซอกซาซีนได เมอร์เข้าเชื่อมด้วยกันเป็นอีกประเด็นหนึ่งในการสร้างองค์ความรู้เบนซอกซาซีนสำหรับสารวง แหวน Gutshe และคณะ ¹⁵⁻¹⁶ ได้รายงานว่าคาริกซารีนเป็นสารหลักที่ตอบรับสารรองไม่ว่าจะเป็น โมเลกุลสารอินทรีย์หรือไอออนของโลหะ การประยุกต์คาริกซารีนเพื่อการใช้งานได้แก่ การใช้ เป็นเซ็นเซอร์ การเป็นสารสำหรับแยกสารอื่น การทำสะอาด และ การช่วยการละลาย Shinkai และคณะ²³ ได้พิสูจน์ทราบและเสนอการใช้ sulfonylcalix[n]arenes ซึ่งมีสมบัติการละลายน้ำได้ จะทำให้เราสามารถละลายไอออนของโลหะในน้ำได้เป็นอย่างดี

หากจะกล่าวตามโครงสร้างแล้ว เบนซอกซาซีนที่มีการเชื่อมต่อให้เป็นวงแหวนอาจจะ ได้โครงสร้างที่คล้ายคลึงกับคาริกซารีนดังแสดงในสาร 11 และ 12 เงื่อนไขหนึ่งในการเตรียม สารวงแหวนคือการใช้สารละลายที่เจือจางเพื่อให้เกิดการปิดวงแหวนจากพันธะภายในโมเลกุล เอง²⁴ อย่างไรก็ตาม เนื่องจากเบนซอกซาซีนมอนอเมอร์มีแนวโน้มจะสิ้นสุดปฏิกิริยาเมื่อมีการ การสังเคราะห์หรือเตรียมสารวงแหวนขนาดใหญ่จึง เปิดวงแหวนและได้เป็นไดเมอร์แล้ว จำเป็นต้องเริ่มการออกแบบโมเลกุลและวางแผนการสังเคราะห์จากเบนซอกซาซีนไดเมอร์

จากสมมุติฐานของงานวิจัยดังกล่าว ในช่วง 2-3 ปีที่ผ่านมาคณะวิจัยของเราได้ประสบ ความสำเร็จในการเตรียมวงแหวนจากเบนซอกซาซีนประเภท 30 ยูนิต โดยเป็นปฏิกิริยาที่ไม่ ซับซ้อน ได้ผลดี และมีประสิทธิผลในการได้ผลิตภัณฑ์ที่บริสุทธิ์สูง ไม่มีการปะปนสารข้างเคียง วงแหวนประเภทอื่น ด้วยการเชื่อมต่อด้วยไดเอซิดคลอไรด์ หรือ ไดทอซิเลตไกลคอล (13 และ งานวิจัยยังได้ดำเนินต่อเนื่องสู่การพิสูจน์ทราบการตรึงไอออนโดยเบื้องต้นได้ศึกษาใน สาระละลายเพื่อแสดงอัตราส่วนแบบสตอยคิโอเมตริก (stoichiometric ratio of host-guest) ระหว่างสาร **14** และไอออนของโลหะ⁹

1.7 ประเด็นหลักของงานวิจัย

จากการที่ได้พิสูจน์สมมุติฐานเบื้องต้นแล้วว่า สารเบนซอกซาซีนสามารถแสดงสมบัติ หรือเป็นซุปปร้าโมเลกุลได้แล้วนั้น เป็นสารหลักในการตอบรับสารรอง คณะวิจัยจึงได้มี แนวความคิดที่จะพัฒนางานวิจัยที่เกี่ยวกับสารซุปปร้าโมเลกุลที่มีเบนซอกซาซีนไดเมอร์เป็นยู นิตหลักและเชื่อมโยงโมเลกุลด้วยพันธะต่างๆให้เกิดเป็นซุปปร้าโมเลกุลทั้งแบบกลุ่ม (Molecular assembly) และแบบวงแหวน (Macrocyclic) ซึ่งจะให้ช่องว่างระดับโมเลกุลที่มีการตอบสนองต่อ สารรอง (Guest compound) อย่างเป็นระบบ คณะวิจัยจึงได้ยืนอยู่บนประเด็นการค้นคว้าวิจัย เพื่อองค์ความรู้ใหม่ ซึ่งเป็นงานวิจัยเกี่ยวกับสารหลักสารรองเบนซอกซาซีน ซึ่งยังไม่เคยมีการ รายงานใดๆมาก่อน

แนวทางการดำเนินงานวิจัยนี้ครอบคลุมตั้งแต่การสังเคราะห์สารตั้งต้นทุกประเภทได้แก่ การสังเคราะห์สารมอนอเมอร์ และ ไดเมอร์ชนิดต่างๆจากอนุพันธ์ฟีนอลจากอนุพันธ์มอนอเมอร์ ที่เตรียมได้ เพื่อใช้เป็นสารตั้งต้นในปฏิกิริยา การศึกษาความเป็นเคมีซุปปร้าโมเลกุลของสาร

เบนซอกซาซีนตั้งแต่ระดับไดเมอร์ผ่านกระบวนการรวมตัวของสารเป็นกลุ่มก้อน assembly) จากนั้น งานวิจัยได้ขยายไปสู่การออกแบบสารวงแหวนประเภทต่างๆตลอดจนการ หาเงื่อนไขที่เอื้อต่อการเกิดปฏิกิริยาให้สารวงแหวนที่ได้ออกแบบขึ้น รวมทั้งการพิสูจน์ทราบ โครงสร้างที่ได้จากปฏิกิริยานั้นๆ โดยเฉพาะการใช้เทคนิควิเคราะห์โครงสร้างผลึกเดี่ยวซึ่งเป็น วิธีการที่ได้ข้อมูลโครงสร้างของสารที่เตรียมขึ้นว่ามีความเป็นวงแหวนดังที่ได้ออกแบบและ ดำเนินปฏิกิริยาไว้หรือไม่ได้อย่างชัดเจนที่สุด เมื่อได้พิสูจน์ทราบถึงความเป็นสารวงแหวนแล้ว งานวิจัยก็ได้ขยายไปสู่การศึกษาความเป็นสารหลักหรือเคมีซุปปร้าโมเลกุลของสารวงแหวนที่ เตรียมขึ้นด้วย

จากแนวทางการดำเนินงานวิจัยดังกล่าว ผลงานวิจัยได้ประมวลเป็นสองส่วนหลักคือ

1. เคมีซุปปร้าโมเลกุลของเบนซอกซาซีนระดับไดเมอร์ (บทที่ 2) ซึ่งครอบคลุม ผลงานวิจัยตั้งแต่

การสังเคราะห์และพิสูจน์ทราบเบนซอกซาซีนมอนอเมอร์ชนิด 2,4-dihydro-3alkyl-2H-naphthoxazine ((NTXM 1)-(NTXM 2)) และชนิด O,O'-bis(3,4-dihydro-2H-1,3-benzoxazine)ethylene glycol ((BZXM 1)-(BZXM 3)) (หัวข้อ 2.1, 2.2)

การสังเคราะห์และพิสูจน์ทราบแนพทอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4)) จากแนพทอกซาซีนมอนอเมอร์ ((NTXM 1)-(NTXM 2)) เบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3)) เบนซอกซาซึนไดเมอร์ชนิด *N,N*-bis-(2-hydroxybenzyl) alkylamine ((BZXD 4)-(BZXD 12)) และโทซิลเลตเตดไดเมอร์ ((TsD 1)-(TsD 2)) (หัวข้อ 2.3 - 2.6)

การก่อตัวเป็นสารประกอบอินคลูชั้นของเบนซอกซาซีนไดเมอร์ชนิด N,N-bis-(2-hydroxybenzyl)alkylamine Derivatives (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)) และโลหะทรานซิชันด้วยการรวมกลุ่มของโมเลกุล (molecular assembly) ทั้งในรูปของสารละลายและสารประกอบ (หัวข้อ 2.7 และ 2.8) พร้อมทั้ง ผลการศึกษาที่ชี้ให้เห็นเป็นครั้งแรกว่าสารหลักสามารถปรับโครงสร้างจากพันธะ ไฮโดรเจนไปสู่พันธะโคออดิเนชันเมื่อมีสารรอง เช่นไอออนของโลหะเข้าร่วมอยู่ใน โครงสร้างดังกรณีของเบนซอกซาซีนไดเมอร์ชนิด *N,N*-bis-(2-hydroxy-3,5dimethylbenzyl)methylamine (BZXD 4)

2. เคมีซุปปร้าโมเลกุลของเบนซอกซาซีนระดับสารวงแหวนขนาดใหญ่ (บทที่ 3) ซึ่งได้ รายงานถึง

การสังเคราะห์และพิสูจน์ทราบสารวงแหวน [2+2] Difunctional 28-membered macrocyclic ether ((MCE 1)-(MCM 3)) (หัวข้อที่ 3.1)

การสังเคราะห์และพิสูจน์ทราบสารวงแหวน ใดเบนโซโมโนอาซา-12-คราวน์-3 ((**DBMA 1**)-(**DBMA 3**)) (ดังหัวข้อที่ 3.2)

การสังเคราะห์และพิสูจน์ทราบสารวงแหวน ไดเบนโซโมโนอาซา-14-คราวน์-4 (DBMA 4) ดังหัวข้อที่ 3.3

การสังเคราะห์และพิสูจน์ทราบสารวงแหวน ไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5) ดังหัวข้อที่ 3.4

การก่อตัวเป็นสารประกอบอินคลูชั้นของสารวงแหวนชนิดไดเบนโซโมโนอาซา คราวน์อีเทอร์ ((DBMA 1)-(DBMA 5)) กับเกลือของโลหะหมู่ที่1 ได้แก่ เกลือ โซเดียมไพเครต. เกลือโพแทสเซียมไพเครต และเกลือซีเซียมไพเครต ดังหัวข้อที่ 3.5

การศึกษาโครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-12-คราวน์-3 (DBMA 2) ไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5) ไดเบนโซโมโนอาซา-12-คราวน์-3 (DBMA 2) ไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5) ด้วยรังสีเอกซ์เรย์ ดัง หัวข้อที่ 3.6

เอกสารอ้างอิง

- 1. Elderfield, R. C., Todd, W. H., and Gerber, S. The Benzoxazines, In Elderfield, R. K. (Ed.), Heterocyclic Compound New York: Wiley, 1957.
- 2. Holly, F. W. and Cope, A. C. J. Am. Chem. Soc., 1944, 66, 1875.
- Burke, W. J., Mortenson, G. E. L., and Weatherbee, C. J. Org. Chem., 1964, 29, 909. 3.
- Burke, W. J., Hammer, C. R., and Weatherbee, C. J. Org. Chem., 1961, 26, 4403. 4.
- Burke, W. J., Bishop, J. L., Mortenson, G. E. L., and Bauer, Jr., W. N. J. Org. Chem., 5. **1965**, 30, 3423.
- Kopf, P. W. and Wagner, E. R. J. Polym. Sci. Part A; Chem. Ed., 1973, 11, 939. 6.
- 7. Reiss, G., Schwob, J. M., Guth, G., Roche, M., and Laude, B., In Culbertson, B. M. and McGrath, J. E. (Eds.), Advances in Polymer Synthesis, Polymer Science and Technology, New York: Plenum, 1985, pp. 27.
- Ishida, H. and Krus, C. M. Macromolecules, 1998, 31, 2409. 8.
- a) Laobuthee A.; Ishida H.; Chirachanchai, S.* "Metal Ion Guest Responsive 9. Benzoxazine Dimers and Inclusion Phenomena of Cyclic Derivatives", J. Incl. Phenom. Macro. 47, 179-185, 2003. b) Chirachanchai S.*; Phongtamrug S.; Laobuthee A. "A Simple, Effective, and Selective Synthesis Route without Template Effect (Part II) for

- [2+2] Difunctional 28-Membered Macrocyclic Ethers Based on Benzoxazine Dimers and Its Inclusion Phenomena with Metal Ions", Chem. Lett., 32(5), 432-433, 2003. c) Laobuthee A.; Chirachanchai S.* "A Simple, Effective, and Selective Synthesis Route for Difunctional 30-Membered Macrocyclic Ester and Linear Oligoester Derived from Benzoxazine Dimers ", Chem. Lett., 31(6), 613-614, 2002. d) Laobuthee A.; Chirachanchai S.*; Ishida H.; Tashiro K. "Asymmetric Mono-oxazine: An Inevitable Product from Mannich Reaction of Benzoxazine Dimers", J. Am. Chem. Soc., 123(41), 9947-9955, 2001.
- 10. Arduni, A., Pochini, A., Reverberi, S., and Ungaro, R. Tetrahedron, 1986, 42, 2089-2100.
- Böhmer, V. Angrew. Chem. Int. Ed. Engl., 1995, 34, 713-745.
- 12. Cram, D. J. and Ho., S. P. J. Am. Chem. Soc., 1986, 108, 2998-3005.
- F. Vögtle, Supramolecular Chemistry: An Introduction, John Wiley & Sons, New York, 13. USA, 1991.
- 14. Diemer, R. B., Jr., Ellis, T. D., Silcox, G. D., Lighty, J. S., and Pershing, D. W. (Eds.). Inclusion Compound Encyclopedia of Chemical Technology, New York: John Wiley & Sons, **1991**, pp. 122-154.
- Gutsche, C. D. Calixarenes Cambridge: Royal Society of Chemistry, 1989. 15.
- 16. Gutsche, C. D. Calixarenes 2 Cambridge: Royal Society of Chemistry, 1997.
- 17. Lehn, J. M. Supramolecular Chemistry, Weinheim: VCH, 1995.
- Murakami, H., Kikuchi, J., and Hisada, Y. (Eds.), Inclusion Compound, Oxford: Oxford University Press, 1991.
- 19. Sone, T., Ohba, Y., and Yamazaki, H. Bull. Chem. Soc. Jpn., 1989, 62, 1111.
- 20. Ohba, Y., Irie, K., Zhang, F. S., and Sone, T. Bull. Chem. Soc. Jpn., 1993, 66, 828.
- 21. Yamaqishi, T., Tani, K., Ishida, S., and Nakamoto, Y. Polym. Bull., 1994, 33, 281.
- 22. Diamond, D. and McKervey, M. A. Chemical Society Reviews, 1996, 15-24.
- 23. Shinkai, S. Tetrahedron, 1993, 49, 40, 8933-8968.
- 24. Steed, J. W. and Atwood, J. L. (Eds.), Supramolecular Chemistry, New York: John Wiley & Sons, Ltd, 2000.

บทที่ 2 เคมีซุปปร้าโมเลกุลของเบนซอกซาซีนระดับไดเมอร์

2.1 การสังเคราะห์และพิสูจน์ทราบเบนซอกซาซีนมอนอเมอร์ชนิด 2,4-dihydro-3- alkyl-2H-naphthoxazine ((NTXM 1)-(NTXM 2))

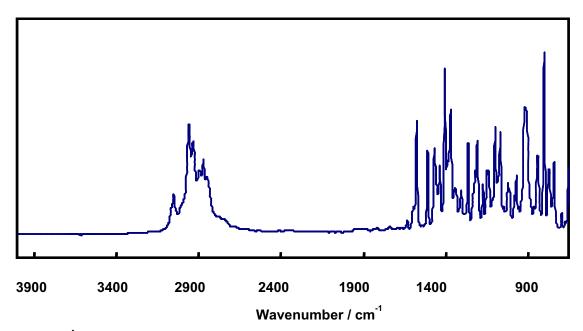
ฟอร์มัลดีไฮด์ อนุพันธ์เอมีน 1-แนฟทานอล

เบนซอกซาซีนมอนอเมอร์

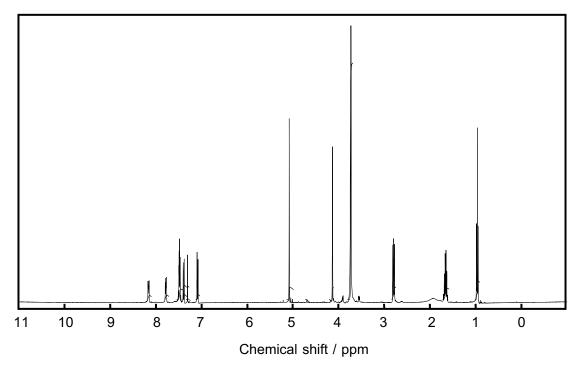
 $R = -C_2H_5 (NTXM 1)$ $R = -C_3H_7 (NTXM 2)$

รูปที่ 2.1 ปฏิกิริยาการเตรียมเบนซอกซาซีนมอนอเมอร์จาก 1- แนฟทานอลและอนุพันธ์เอมีน.

วิธีการสังเคราะห์


การเตรียม 2,4-dihydro-3-alkyl-2H-naphthoxazine ((NTXM 1)-(NTXM 2)) เป็นไปตาม ขั้นตอนดังนี้ (รูปที่ 2.1เติมอนุพันธ์เอมีน (10 มิลลิโมล) ลงไปในสารละลายของพาราฟอร์มัลดี ไฮด์ (20 มิลลิโมล, 0.63 กรัม) ในไดออกเซน (10 มิลลิลิตร) จากนั้นเติม 1-แนฟทานอล (10 มิลลิโมล, 1.44 กรัม) ในไดออกเซน(20 มิลลิลิตร) ลงไปในสารละลายที่เตรียมได้ในขั้นต้น ทำ การกลั่นใหลกลับ (Reflux) สารละลายที่ได้นั้นต่อเนื่อง 5 ชั่วโมง เก็บตะกอนที่ได้แล้วนำไป ละลายในไดเอทิลอีเทอร์ (50 มิลลิลิตร) และสกัดด้วย 3 N โซเดียมไฮดรอกไซด์ (10 มิลลิลิตร) นำส่วนของสารละลายไดเอทิลอีเทอร์ล้างด้วยน้ำ (10 มิลลิลิตร) จนกระทั่งสารละลายมีความเป็น เติมโซเดียมซัลเฟตและทิ้งไว้ข้ามคืน ตัวทำละลายถูกสกัดออก เพื่อให้ได้ผลิตภัณฑ์ที่ เป็นของเหลวสีเหลือง

ผลการทดลองและการวิจารณ์


เบนซอกซาซีนมอนอเมอร์ที่เตรียมได้นี้ใช้แนฟทานอลและอนุพันธ์ของเอมีนเป็นสารตั้งต้น โดยคาดหวังว่าสารที่เตรียมได้จะมีสมบัติของการเป็นฟลูออโรฟอร์ด้วยเนื่องมาจากการที่มีหมู่ ของแนฟทาลืนเป็นองค์ประกอบ

เนื่องจากอนุพันธ์เบนซอกซาซีนที่เริ่มจากแนฟทานอลยังไม่เคยมีการรายงานมาก่อน ดังนั้น เพื่อให้ง่ายต่อการเตรียมสารและพิสูจน์ทราบ ในเบื้องต้นนี้ คณะวิจัยจึงได้ศึกษาปฏิกิริยา อย่างง่ายเพื่อดูความเป็นไปได้ของปฏิกิริยาว่าสามารถจะเกิดขึ้นได้หรือไม่ โดยใช้อนุพันธ์ของเอ ้ มีนชนิดต่างๆ ตัวอย่างเช่น เอทิลเอมีน และเอ็น-โพพิลเอมีนเป็นสารในการทำปฏิกิริยา ซึ่งทำให้ เราได้สารผลิตภัณฑ์เป็นของเหลวใสสีเหลือง การพิสูจน์โครงสร้างสามารถทำได้อย่างง่ายโดยใช้ เทคนิค FTIR ทั้งนี้เนื่องจากวงแหวนออกซาซีนจะมีพีกที่ประมาณ 1500 cm⁻¹

รูปที่ 2.2 แสดงพีกของ FTIR ของ **NTXM 2** ซึ่งพบพีกสำคัญได้แก่ พีก 1509 cm⁻¹ ซึ่งเป็น ของวงออกซาซีน และ 1264 cm⁻¹ ซึ่งเป็นของการสั่นแบบยืดของ C-N ของวงออกซาซีน และ อีกทั้งการไม่มีพีกกว้าง (broad peak) ที่บริเวณช่วง 3400 cm⁻¹ ซึ่งเป็นพีกของหมู่ไฮดรอกซิล เป็นการระบุถึงการไม่มีสารตั้งต้นฟืนอลปะปนอยู่ในอนุพันธ์เบนซอกซาซีนมอนอเม[ื]อร์ที่เตรียม ขึ้น

รูปที่ 2.2 FTIR สเปคตรัมของ 2,4-dihydro-3-propyl-2H-naphthoxazine (NTXM 2).

ร**ูปที่ 2.3** ¹H-NMR สเปคตรัมของ 2,4-dihydro-3-propyl-2H-naphthoxazine (**NTXM 2**).

เทคนิค NMR เป็นอีกเทคนิคหนึ่งที่จะตรวจสอบโครงสร้างของเบนซอกซาซีนได้ รปที่ 2.3 แสดง NMR spectrum ของ 2,4-dihydro-3-propyl-2H-naphthoxazine ตัวอย่างของเบน ซอกซาซีนมอนอเมอร์ พีกที่เป็นเอกลักษณ์ของเบนซอกซาซีนได้แก่ที่ 4.13 และ 5.27 ppm ซึ่ง เป็นของหมู่เมทิลลืนที่อยู่ภายในวงออกซาซีน

ผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

2,4-Dihydro-3-ethyl-2H-naphthoxazine, (NTXM 1): ของเหลวหนืดสีเหลือง; FTIR (ZnSe,cm⁻¹): 1509 (s, oxazine), 1264 (s, C-O), 1091 (s, C-O), 1144 (m,C-N-C), 1058 (m,C-N-C), 802 (vs, C-N-C).

2,4-Dihydro-3-propyl-2H-naphthoxazine, (NTXM 2): ของเหลวหนึ่ดสีเหลือง; FTIR (ZnSe,cm⁻¹): 1509 (s, oxazine), 1264 (s, C-O), 1067 (s, C-O), 1140 (m,C-N-C), 1020 (m,C-N-C), 801 (vs, C-N-C). 1 H-NMR (400 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 0.961(3H, t, N-CH₂- CH_2 -**CH**₃, $J_1 = 7.2$ Hz), $1.655(2H, m, N-CH_2$ -**CH**₂-CH₃, $J_1 = 7.2$ Hz, $J_2 = 14.8$ Hz), $2.791(2H, t, N-CH_2-CH_3, J_1 = 7.2 Hz), 4.13(2H, s, N-CH_2-Ar), 5.07(2H, s, O-CH_2-N),$ $7.079(1H, d, Ar-H, J_3 = 8.4 Hz), 7.381(1H, d, Ar-H, J_3 = 8.4 Hz), 7.460(1H, m, Ar-H, J_4)$ = 2 Hz), 7.479(1H, m, Ar-H, J_4 = 2 Hz, J_5 = 4.4 Hz), 7.774(1H, d, Ar-H, J_4 = 2 Hz, J_6 = 1.2 Hz), 8.152(1H, d, Ar-H, $J_4 = 2$ Hz, $J_7 = 6.8$ Hz)

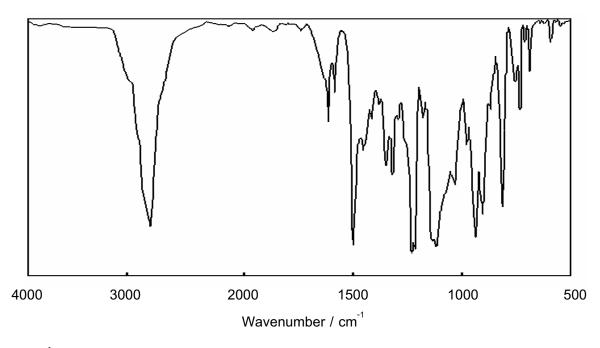
2.2 การสังเคราะห์และพิสูจน์ทราบเบนซอกซาซีนมอนอเมอร์ชนิด *O,O'*-bis(3,4-dihydro -2H-1,3-benzoxazine)ethylene glycol ((BZXM 1)-(BZXM 3))

เบนซอกซาซีนมอนอเมอร์ ((**BZXM 1**)-(**BZXM 3**)): O,O'-bis(3,4-dihydro-3-ethyl-6methyl-2H-1,3-benzoxazine)ethylene glycol (BZXM 1), O,O'-bis(3,4-dihydro-3-ethyl-6,8dimethyl-2H-1,3-benzoxazine)ethylene glycol (BZXM 2), และO,O'-bis(3,4-dihydro-3,6diethyl-2H-1,3-benzoxazine)ethylene glycol (BZXM 3) เตรียมโดยใช้อนุพันธ์ของฟีนอลและ ไดเอมีน ดังปฏิกิริยาที่แสดงในรูปที่ 2.4

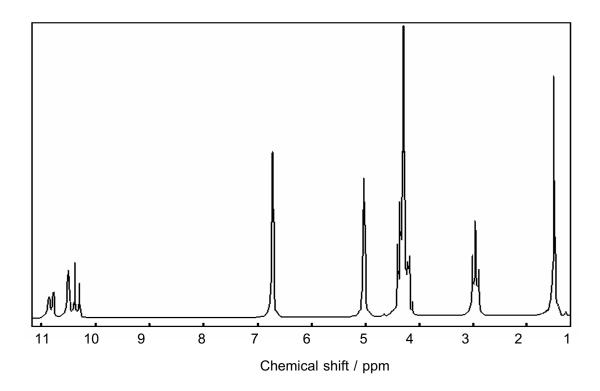
รูปที่ 2.4 การสังเคราะห์สารเบนซอกซาซีนมอนอเมอร์ ((BZXM 1)-(BZXM 3)).

วิธีการสังเคราะห์

พาราฟอร์มัลดีใฮด์ 6.15 กรัม (205 มิลลิโมล) ละลายใน 1,4-ไดออกเซน พร้อมกวนขณะ ให้ความร้อน เติม 2,2'-เอทิลีนไดออกซีไดเอทิลามีนจำนวน 7.3 มิลลิลิตร (50 มิลลิโมล) และ เพิ่มตัวทำละลาย 1.4-ไดออกเซน 20 มิลลิลิตร จากนั้นเติมพาราคลีซอลจำนวน 10.4 มิลลิลิตร (100 มิลลิโมล) เติมตัวทำละลาย 1.4-ไดออกเซนอีกจำนวน 100 มิลลิลิตร ทำการกลั่นไหลกลับ (Reflux) 6 ชั่วโมง ติดตามปฏิกิริยาด้วยเทคนิคทินเลเยอร์โครมาโตรกราฟีโดยใช้ 5% เมทานอล ในไดคลอโรมีเทน เป็นเฟสเคลื่อนที่ (Mobile phase)


เมื่อปฏิกิริยาสมบูรณ์แล้ว ระเหยตัวทำละลายออกด้วยเครื่องระเหยลดความดันจนได้ ของเหลวหนืดสีเหลืองใส จากนั้นนำของเหลวดังกล่าวมาสกัดแยกด้วยอีเทอร์และสารละลาย โซเดียมไฮดรอกไซด์ (0.5 นอร์มอล) ตามด้วยการล้างด้วยน้ำกลั่น 2-3 ครั้ง เก็บชั้นของอีเทอร์ และเติมโซเดียมซัลเฟต แอนไฮดรัส และทิ้งไว้ข้ามคืน นำส่วนสารละลายอีเทอร์ไประเหยเอาได เอทิลอีเทอร์ออกด้วยเครื่องระเหยลดความดันเพื่อได้สาร BZXM 1 ซึ่งเป็นของเหลวหนืดสี เหลืองใส

สำหรับสาร BZXM 2 และ BZXM 3 ได้ถูกเตรียมขึ้นด้วยวิธีการเดียวกันแต่ใช้ 2,4-ได เมทิลฟีนอล (12.0 มิลลิลิตร, 100 มิลลิโมล) และ 4-เอทิลฟีนอล (12.22 กรัม, 100 มิลลิโมล) เป็นสารตั้งต้น (รูปที่ 3)


ผลการทดลองและการวิจารณ์

เนื่องจากการเกิดสารประกอบอินคลูชั่น (Inclusion Compounds) สามารถเกิดได้โดยที่ สารหลัก (Host Compounds) เกิดการจัดเรียงตัวให้เกิดช่องว่างโดยอยู่ในรูปแบบที่เป็นโมเลกุล กลุ่มก้อน (Molecular Assembly) หรือในรูปแบบโครงสร้างที่เป็นโมเลกุลวงแหวนขนาดใหญ่ เช่น คราวน์อีเทอร์ (Crown ethers) เป็นต้น ดังนั้นในงานวิจัยชุดนี้จะเป็นการประยุกต์ใช้เบสเอ มีนที่มีหมู่ของเอทิลลีนออกไซด์มาทำปฏิกิริยาแมนนิสกับ อนุพันธ์ฟีนอล ซึ่งนอกจากจะทำให้ เกิดโครงสร้างที่เป็นเบนซอกซาซีนขึ้นแล้ว ยังส่งผลทำให้เกิดหมู่ที่เชื่อมต่อเป็นส่วนที่คล้ายคลึง กับคราวน์อีเทอร์ด้วย ซึ่งคาดว่าจะสามารถเกิดสารประกอบอินคลูชั่นเป็นลักษณะโมเลกุลกลุ่ม ก้อนเมื่อสารผลิตภัณฑ์ที่ได้เกิดอันตรกิริยากับไอออนของโลหะ

เบนซอกซาซีนมอนอเมอร์ ((BZXM 1)-(BZXM 3)) เตรียมโดยใช้ปฏิกิริยาแมนนิส การ พิสูจน์ทราบโครงสร้างนั้นโดยใช้เทคนิค FTIR จะพบวงแหวนออกซาซีนจะมีพีกที่ประมาณ 1500 cm⁻¹ รูปที่ 2.5 แสดง FTIR สเปคตรัมของ 3 ฟีกสำคัญได้แก่ ฟีก 1500 cm⁻¹ ซึ่งเป็นขอ ึ่งวงออกซาซีน และ 1231 cm ้ สำหรับการสั่นแบบยืดของ C-N ของวงออกซาซีน และ อีกทั้ง การไม่มีพีกกว้าง (broad peak) ที่บริเวณช่วง 3400 cm⁻¹ ซึ่งเป็นพีกของหมู่ไฮดรอกซิล เป็น การระบุถึงการไม่มีสารตั้งต้นฟืนอลปะปนอยู่ในอนุพันธ์เบนซอกซาซีนมอนอเมอร์ที่เตรียมขึ้น

รูปที่ 2.5 FTIR สเปคตรัม ของ O,O'-bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine) ethylene glycol (BZXM 1).

ฐปที่ ¹H-NMR สเปคตรัม 2.6 ของ O, O'-bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3benzoxazine) ethylene glycol (BZXM 1).

เทคนิค NMR เป็นอีกเทคนิคหนึ่งที่จะตรวจสอบโครงสร้างของเบนซอกซาซีนได้ รูปที่ 2.6 แสดงสาร **BZXM 1** ที่มีพีกที่เป็นเอกลักษณ์ของเบนซอกซาซีนได้แก่ที่ 4.05 และ 4.85 ppm สำหรับหมู่เมทิลลืนที่อยู่ภายในวงออกซาซีน

การตรวจวิเคราะห์หาธาตุที่เป็นองค์ประกอบโดยใช้เครื่อง Mass Spectrometer เป็นอีก วิธีหนึ่งที่ใช้ประกอบการตรวจสอบว่าการสังเคราะห์สำเร็จด้วยดีหรือไม่ โดยโหมด Fast Atom Bombardment (FAB + MS) จะบอกถึงน้ำหนักโมเลกุลของสาร ซึ่งค่านี้จะมากขึ้นอีก 1 หน่วยอัน เป็นผลมาจากน้ำหนักของไฮโดรเจนนั่นเอง เช่นสาร **BZXM 1** จะให้ค่า M+1 เป็น 413 สอดคล้องกับน้ำหนักของสารคือเป็น 412 นั่นเอง

สำหรับผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

O,O'-bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)ethylene glycol, (BZXM 1): 75% yield; $R_f = 0.66$ (5%MeOH in CHCl₃); FT-IR (KBr, cm⁻¹): 1121 (s, C-O-C), 1231 (vs, C-N stertching), 1500 cm⁻¹ (s, oxazine); 1 H-NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 2.25 (6H, s, Ar-CH₃), 2.95 (t, 4H, -N-CH₂-CH₂-O, J_1 = 5.86 Hz), 3.65 (s, 4H, -N-CH₂-CH₂-O- CH_2 -), 3.75 (t, 4H, -N-CH₂- CH_2 -O, J_1 = 5.86 Hz), 4.05 (s, 4H, Ar- CH_2 -N-), 4.85 (s, 4H, O- $\mathbf{CH_2}$ -N-), 6.65 (d, 2H, Ar-H, J_2 = 8.06 Hz), 6.75 (d, 2H, Ar-H, J_3 = 1.46 Hz), 6.95 (dd, 2H, Ar-H, J_2 = 8.06 and J_3 = 1.46 Hz); FAB⁺-MS (m/z): M+1 = 413; M = 412.

O, O'-bis(3,4-dihydro-3-ethyl-6,8-dimethyl-2H-1,3-benzoxazine)ethylene (BZXM 2): 80% yield; $R_f = 0.72$ (5%MeOH in CHCl₃); FT-IR (KBr, cm⁻¹): 1122 (s, C-O-C), 1217 (vs, C-N stertching), 1487 cm⁻¹ (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 2.15 (6H, s, Ar-CH₃), 2.25 (6H, s, Ar-CH₃), 2.97 (t, 4H, -N-CH₂-CH₂-O, J_1 = 5.86 Hz), 3.65 (s, 4H, -N-CH₂-CH₂-O-CH₂-), 3.75 (t, 4H, -N-CH₂-CH₂-O, J_1 = 5.86 Hz), 4.01 (s, 4H, $Ar-CH_2-N-$), 4.87 (s, 4H, O- CH_2-N-), 6.61 (s, 2H, Ar-H), 6.81 (s, 2H, Ar-H); FAB^+-MS (m/z): M+1 = 441; M = 440.

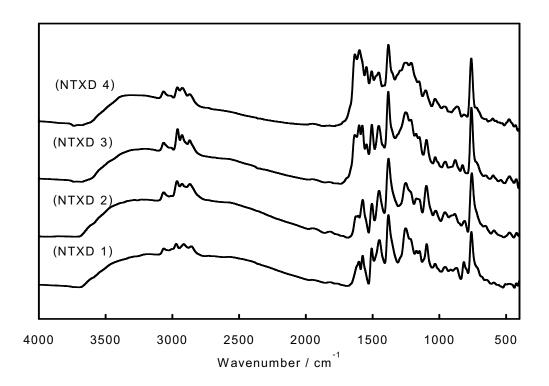
O, O'-bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)ethylene glycol, (BZXM 3): 80% yield; $R_f = 0.65$ (5%MeOH in CHCl₃); FT-IR (KBr, cm⁻¹): 1121 (s, C-O-C), 1230 (vs, C-N stertching), 1500 cm⁻¹ (s, oxazine); 1 H-NMR (200 MHz, CDCl₃, ppm): δ_{H} 1.31 (6H, s, Ar-CH₂-CH₃, J_1 = 7.32 Hz), 2.55 (4H, s, Ar-CH₂-CH₃, J_2 = 7.32 Hz), 2.95 (t, 4H, -N- CH_2 -CH₂-O, J_2 = 5.86 Hz), 3.65 (s, 4H, -N-CH₂-CH₂-O- CH_2 -), 3.75 (t, 4H, -N-CH₂- CH_2 -O, $J_2 = 5.86$ Hz), 4.05 (s, 4H, Ar-CH₂-N-), 4.85 (s, 4H, O-CH₂-N-), 6.65 (d, 2H, Ar-H, $J_3 =$ 8.06 Hz), 6.79 (d, 2H, Ar-H, J_4 = 1.46 Hz), 6.95 (dd, 2H, Ar-H, J_3 = 8.06 and J_4 = 1.46 Hz); FAB^{+} -MS (m/z): M+1 = 441; M = 440.

2.3 ศึกษาสภาวะที่เหมาะสมสำหรับเตรียมแนพทอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4)) จากแนพทอกซาซีนมอนอเมอร์ ((NTXM 1)-(NTXM 2)) และอนุพันธ์ของฟีนอล

$$R = C_2H_5$$
, $R' = CH_3$, $R'' = H$ (NTXD 1) $R = C_3H_7$, $R' = CH_3$, $R'' = H$ (NTXD 2) $R = C_3H_7$, $R' = C_2H_5$, $R'' = H$ (NTXD 3) $R = C_3H_7$, $R' = CH_3$, $R'' = CH_3$ (NTXD 4)

รูปที่ 2.7 ปฏิกิริยาการเตรียมเบนซอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4)) จากเบนซอกซาซีน มอนอเมอร์ และอนุพันธ์ฟีนอล.

วิธีการสังเคราะห์


การเตรียมเบนซอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4)) จากเบนซอกซาซีนมอนอเมอร์ และอนุพันธ์ของฟีนอล สามารถทำได้โดย (รูปที่ 2.7) การทำปฏิกิริยาระหว่างเบนซอกซาซีนมอ นอเมอร์และอนุพันธ์ฟีนอลในอัตราส่วน (โมล) 1:1 ภายใต้สุญญากาศ ที่อุณหภูมิ 60 °C ใน สภาวะที่ไม่ต้องเติมตัวทำละลายเป็นเวลา 3 ชั่วโมง จากนั้นนำตะกอนที่เกิดขึ้นไปล้างด้วยได เคทิลอีเทคร์ กรองและเก็บตะกอนสีดำที่ได้ นำไปทำให้แห้ง

ผลการทดลองและการวิจารณ์

เบนซอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4)) ที่เตรียมได้นี้ใช้เบนซอกซาซีนมอนอเมอร์ ((NTXM 1)-(NTXM 2)) และอนุพันธ์ฟีนอลเป็นสารตั้งต้น โดยคาดหวังว่าสารที่เตรียมได้จะมี สมบัติของการเป็นฟลูออโรฟอร์ด้วยเนื่องมาจากการที่มีหมู่ของแนฟทาลีนเป็นองค์ประกอบ

เนื่องจากอนุพันธ์เบนซอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4)) ที่เริ่มจากเบนซอกซาซีน มอนอเมอร์((NTXM 1)-(NTXM 2)) และอนุพันธ์ฟีนอลยังไม่เคยมีการรายงานมาก่อน ดังนั้น เพื่อให้ง่ายต่อการเตรียมสารและพิสูจน์ทราบ ในเบื้องต้นนี้ คณะวิจัยจึงได้ศึกษาปฏิกิริยาอย่าง ง่ายเพื่อดูความเป็นไปได้ของปฏิกิริยาว่าสามารถจะเกิดขึ้นได้หรือไม่ โดยใช้อนุพันธ์ฟีนอลชนิด ต่างๆ ตัวอย่างเช่น พาราครีซอล(p-cresol), 4-เอทิลฟีนอล(4-ethylphenol), 2,4-ไดเมทิลฟีนอล (2,4-dimethylphenol) เป็นสารในการทำปฏิกิริยา ซึ่งทำให้เราได้สารผลิตภัณฑ์เป็นของแข็งสีดำ และเนื่องมาจากโครงสร้างของการเปิดวงแหวนจะทำให้ได้วงแหวนแนฟทานอลกลับคืนมาใหม่ แต่อยู่ในรูปที่เชื่อมต่อด้วยหมู่อาซาเมทิลีน ดังนั้นเบนซอกซาซีนไดเมอร์สามารถตรวจวิเคราะห์ ได้อย่างง่ายโดยใช้เทคนิค FTIR โดยพิจารณาที่พีกกว้างของหมู่ไฮดรอกซิล(-OH) ในช่วง 3300-3500 cm⁻¹

รูปที่ 2.8 แสดงพีกของ FTIR ของเบนซอกซาซีนไดเมอร์ ((**NTXD 1**)-(**NTXD 4**)) ที่เตรียม จากเบนซอกซาซีนมอนอเมอร์ ((NTXM 1)-(NTXM 2)) และอนุพันธ์ฟีนอล ซึ่งพบพีกที่สำคัญ ได้แก่ พีก กว้าง 3300-3500 cm⁻¹ ซึ่งเป็นของหมู่ไฮดรอกซิล (-OH) ซึ่งเป็นการระบุถึง โครงสร้างของการเปิดวงแหวนจะทำให้ได้วงแหวนแนฟทานอลกลับคืนมาใหม่

รูปที่ 2.8 FTIR สเปคตราของเบนซอกซาซีนไดเมอร์ ((NTXD 1)-(NTXD 4)) ที่เตรียมจาก มอนอเมอร์ ((NTXM 1)-(NTXM 2)) และอนุพันธ์ฟีนอล.

ผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

เบนซอกซาซีนไดเมอร์ (**NTXD 1**): ของแข็งสีดำ; FTIR (KBr,cm⁻¹): 3336 (br, OH), 1449 (m, N-CH₂), 1252 (s, C-N-C).

เบนซอกซาซีนไดเมอร์ (**NTXD 2**): ของแข็งสีดำ; FTIR (KBr,cm⁻¹): 3334 (br, OH), 1452 (m, N-CH₂), 1254 (s, C-N-C).

เบนซอกซาซีนไดเมอร์ (**NTXD 3**): ของแข็งสีดำ; FTIR (KBr,cm⁻¹): 3324 (br, OH), 1454 (m, N-CH₂), 1251 (s, C-N-C).

เบนซอกซาซีนไดเมอร์ (**NTXD 4**): ของแข็งสีดำ; FTIR (KBr,cm⁻¹): 3316 (br, OH), 1454 (m, N-CH₂), 1244 (s, C-N-C).

2.4 การเตรียมเบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3)) จากเบนซอกซาซีนมอนอ เมอร์ ((BZXM 1)-(BZXM 3)) และอนุพันธ์ของฟินอล

วิธีการสังเคราะห์

การเตรียมเบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3)) จากเบนซอกซาซีนมอนอเมอร์ และอนุพันธ์ของฟีนอล สามารถทำได้จาก (รูปที่ 2.9) ปฏิกิริยาระหว่างเบนซอกซาซีนมอนอ

เมอร์และอนุพันธ์ฟีนอลในอัตราส่วน (โมล) 1:1 อบภายใต้สุญญากาศ ที่อุณหภูมิ 60 ⁰C ใน สภาวะที่ไม่ต้องเติมตัวทำละลายเป็นเวลา 3 วัน จากนั้นนำของแข็งสีเหลืองที่เกิดขึ้นไปล้างด้วย ไดเอทิลอีเทอร์ กรองและเก็บตะกอนสีขาวที่ได้ นำไปทำให้แห้งและตกผลึกซ้ำด้วยสารละลาย ผสมระหว่างไอโซโพรพานอลและคลอโรฟอร์ม จะได้ผลึกใสไม่มีสีเป็นสารผลิตภัณฑ์

เบนซอกซาซีนมอนอเมอร์

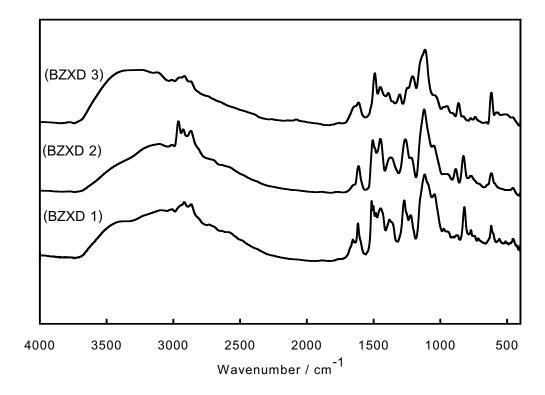
เบนซอกซาซีนไดเมอร์

 $R = CH_3$, R' = H (BZXD 1) $R = C_2H_5$, R' = H (BZXD 2) $R = CH_3$, $R' = CH_3 (BZXD 3)$

รูปที่ 2.9 ปฏิกิริยาการเตรียมเบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3)) จากเบนซอกซาซี นมอนอเมอร์ และอนุพันธ์ฟืนอล.

ผลการทดลองและการวิจารณ์

เบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3)) สามารถเตรียมได้จากเบนซอกซาซีนมอ นอเมอร์ ((BZXM 1)-(BZXM 3)) และอนุพันธ์ของฟีนอล เป็นสารตั้งต้น โดยใช้ปฏิกิริยาการเปิด โครงสร้างของการเปิดวงแหวนจะทำให้ได้วงแหวนฟีนอลกลับมาใหม่แต่อยู่ในรูปที่ วงแหวน เชื่อมต่อด้วยหมู่อาซาเมทีลีน ดังนั้นเบนซอกซาซีนไดเมอร์สามารถตรวจวิเคราะห์ได้อย่างง่าย ด้วย FTIR โดยพิจารณาที่พีก OH ในช่วง 3300-3500 cm⁻¹


ในอดีตคณะวิจัยของเราพบว่า การเปิดวงแหวนของเบนซอกซาซีนนั้นสิ้นสุดที่การเปิดครั้ง เดียว เป็นการสิ้นสุดปฏิกิริยาด้วยตัวเอง (Self-termination) และได้เป็นอนุพันธ์เบนซอกซาซีน ทั้งนี้เนื่องจากพันธะไฮโดรเจนที่เป็นร่างแหในรูปของ Intermolecular Hydrogen Bonding และ Intramolecular Hydrogen Bonding ในโครงสร้างของเบนซอกซาซีนไดเมอร์ ทำ ให้ไดเมอร์ กลายเป็นสารที่เสถียรมากจนกระทั่งตกผลึกหรือตะกอนออกในขณะทำปฏิกิริยา

รูปที่ 2.10 แสดงพีกของ FTIR ของเบนซอกซาซีนไดเมอร์ ((**BZXD 1**)-(**BZXD 3**)) ที่ เตรียมจากเบนซอกซาซีนมอนอเมอร์ ((BZXM 1)-(BZXM 3)) และอนุพันธ์ฟีนอล ซึ่งพบพีกที่ สำคัญได้แก่ พีก กว้าง 3300-3500 cm⁻¹ ซึ่งเป็นของหมู่ไฮดรอกซิล (-OH) ซึ่งเป็นการระบุถึง โครงสร้างของการเปิดวงแหวนจะทำให้ได้วงแหวนฟีนอลกลับคืนมาใหม่

ผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

เบนซอกซาซีนไดเมอร์ (**BZXD 1**): ของแข็งสีขาว; FTIR (KBr,cm⁻¹): 3401 (br, OH), 1510 (s, tri-substituted benzene), 1271 (s, C-N), 1223 (m, C-N-C), 820 (s, C-N-C).

เบนซอกซาซีนไดเมอร์ (**BZXD 2**): ของแข็งสีขาว; FTIR (KBr,cm⁻¹): 3250 (br, OH), 1507 (s, tri-substituted benzene), 1260 (s, C-N), 1212 (m, C-N-C), 827 (s, C-N-C). เบนซอกซาซีนไดเมอร์ (**BZXD 3**): ของแข็งสีขาว; FTIR (KBr,cm⁻¹): 3258 (br, OH), 1491 (s, tri-substituted benzene), 1207 (m, C-N-C), 864 (s, C-N-C).

รูปที่ 2.10 FTIR สเปคตราของเบนซอกซาซีนไดเมอร์ ((BZXD 1)-(BZXD 3)) ที่เตรียมจากเบน ชอกซาซีนมอนอเมอร์ ((BZXM 1)-(BZXM 3)) และอนุพันธ์ฟีนอล.

การสังเคราะห์และพิสูจน์ทราบเบนซอกซาซีนไดเมอร์ชนิด *N,N*-bis-(2hydroxybenzyl)alkylamine ((BZXD 4)-(BZXD 12)) จากอนุพันธ์ของฟืนอลและ อนพันธ์ของเอมีน

เบนซอกซาซีนไดเมอร์ *N,N*-Bis-2-hydroxybenzylalkylamine ทั้ง 9 ชนิด (รปที่ 2.11) ได้แก่ *N,N*-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine (**BZXD 4**), *N,N*-bis(5-methyl-2hydroxybenzyl)methylamine (BZXD 5), N,N-bis(5-ethyl-2-hydroxybenzyl) methylamine (BZXD 6), N,N-bis(3,5-dimethyl-2-hydroxybenzyl)propylamine (BZXD 7), N,N-bis(5methyl-2-hydroxybenzyl)propylamine (BZXD 8), *N,N*-bis(5-ethyl-2-hydroxybenzyl) propylamine (BZXD 9), N,N-bis(3,5-dimethyl-2-hydroxybenzyl)cyclohexylamine, (BZXD

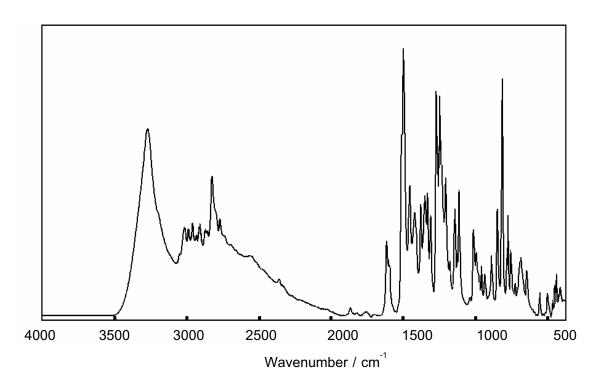
10), N,N-bis(5-methyl-2-hydroxybenzyl)cyclohexylamine (BZXD 11), และ N,N-bis(5-ethyl-2-hydroxy benzyl) cyclohexylamine (BZXD 12)

OH OH OH OH OH OH OH OH OH CH₃

$$CH_3$$
 CH_3
 CH

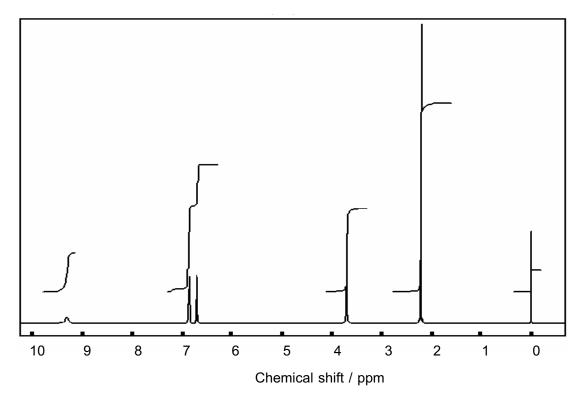
รูปที่ 2.11 เบนซอกซาซีนไดเมอร์ ((BZXD 4)-(BZXD 12))

วิธีการสังเคราะห์


การเตรียมสารเบนซอกซาซีนไดเมอร์ ((BZXD 4)-(BZXD 12)) ทำได้โดย (รูปที่ 11) การ ทำปฏิกิริยาระหว่างเบนซอกซาซีนมอนอเมอร์และอนุพันธ์ฟีนอลในอัตราส่วน (โมล) 1:1 ที่ 60°C ในสภาวะที่ไม่ต้องเติมตัวทำละลาย เป็นเวลา 3 ชั่วโมง นำตะกอนที่เกิดขึ้นไปล้างด้วยได เอทิลอีเทอร์ กรองและเก็บตะกอนสีขาวที่ได้ จากนั้นนำไปตกผลึกใหม่ด้วยไอโซโพรพานอล จะ ได้ผลึกใสไม่มีสีเป็นสารผลิตภัณฑ์ (ดังรูปที่ 2.12)

รูปที่ 2.12 ปฏิกิริยาการเตรียมเบนซอกซาซีนไดเมอร์.

ผลการทดลองและการวิจารณ์


เบนซอกซาซีนไดเมอร์สามารถเตรียมได้จากเบนซอกซาซีนมอนอเมอร์ โดยใช้ปฏิกิริยา การเปิดวงแหวน โครงสร้างของการเปิดวงแหวนจะทำให้ได้วงแหวนฟีนอลกลับมาใหม่แต่อยู่ ดังนั้นเบนซอกซาซีนไดเมอร์สามารถตรวจวิเคราะห์ได้ ในรูปที่เชื่อมต่อด้วยหมู่อาซาเมทีลีน อย่างง่ายด้วย FTIR โดยพิจารณาที่พีก OH ในช่วง 3280 cm⁻¹ (ดังรูปที่ 2.13)

รูปที**่ 2.13** FTIR สเปคตรัมของ *N,N*-Bis(5-methyl-2-hydroxybenzyl)methylamine (**BZXD 5**).

รูปที่ 2.14 แสดง NMR Spectrum ของสารเบนซอกซาซีนไดเมอร์ BZXD 5 ซึ่งตำแหน่ง พีกได้แก่พีกของเมทิลลีนซึ่งเป็นส่วนที่เกิดขึ้นภายหลังการเปิดวงแหวนออกซาซีน กล่าวคือพีก หลักสองพีกที่เป็นเอกลักษณ์ของเบนซอกซาซีนมอนอเมอร์ ได้แก่พีกของหมู่เมทิลลืนที่อยู่ ภายในวงออกซาซีน ที่ 3.93 และ 4.82 ppm จะกลายเป็นเป็นเพียงพีกเดียว ที่ 3.69 ppm อัน หมายถึงพีกของเมทิลลีนของหมู่อะซาที่เชื่อมวงฟีนอลทั้งสอง

เมื่อนำสารเบนซอกซาซีน^{ี้}ไดเมอร์ **BZXD 5** ไปวิเคราะห์หาชาตุที่เป็นองค์ประกอบโดยใช้ เครื่อง Elemental Analyser พบว่าเปอร์เซ็นต์ของคาร์บอน ไฮโดรเจน และในโตรเจนสำหรับ สาร เบนซอกซาซีนไดเมอร์ **BZXD 5** จะเป็นดังนี้คือ 75.31, 7.77 และ 5.19 ตามลำดับ ซึ่ง ใกล้เคียงกับค่าที่ได้จากที่คำนวณไว้คือ C = 75.28%, H = 7.75%, N = 5.17% ตามลำดับ

รูปที่ 2.14 ¹H-NMR Spectrum ของ *N,N*-Bis(5-methyl-2-hydroxybenzyl)methylamine (BZXD 5).

สำหรับผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

N,N-Bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, (BZXD 4): 80% yield; $R_f =$ 0.39 (5% MeOH in CHCl₃); clear and colorless solid; mp = 123° C; FTIR (KBr, cm⁻¹): 3399 (br, OH), 1484 (vs, C-C), 1427 (m, N-CH₃), 1243 (m, C-N), 1214 and 1201 (m, C-N-C), 847 (m, C-N-C); 1 H-NMR (200MHz, CDCl₃, ppm): δ_{H} 2.22 (12H, s, Ar-**CH**₂), 2.25 (3H, s, N-CH₂), 3.68 (4H, s, Ar-CH₂-N), 6.72 (2H, s, Ar-H), 6.81 (2H, s, Ar-H). Anal. calcd for C₁₉H₂₅NO₂: C, 76.26; H, 8.36; and N, 4.68. Found: C, 76.27; H, 8.34; and N, 4.69.

N,N-Bis(2-hydroxy-5-methylbenzyl)methylamine, (BZXD 5): 90% yield; $R_f =$ 0.24 (5% MeOH in CHCl₃); clear and colorless solid; mp = 163(C; FTIR (KBr, 3271 (br, OH), 1499 (vs, C-C), 1456 (m, N-CH3), 1249 (s, C-N), 1209 (m, C-N-C), 815 (vs, C-N-C); 1H-NMR (200 MHz, CDCl3, ppm): (H 2.23 (6H, s, Ar-CH3), 2.23 (3H, s, N-CH3), 3.69 (4H, s, Ar-CH2-N), 6.70 (2H, d, Ar-H), 6.83 (2H, s, Ar-H), 6.86 (2H, d, Ar-H). Anal. calcd for C17H21NO2: C, 75.28; H, 7.75; and N, 5.17. Found: C, 75.31; H, 7.77; and N, 5.19.

N,N-Bis(2-hydroxy-5-ethylbenzyl)methylamine, (BZXD 6): 90% yield; $R_f = 0.34$ (5% MeOH in CHCl₃); Clear and colorless solid; mp = 130°C; FTIR (KBr, cm⁻¹): 3301

(br, OH), 1499 (vs, C-C), 1460 (m, N-CH₃), 1251 (s, C-N), 1207 (m, C-N-C), 821 (s, C-N-C); 1 H-NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.17 (6H, t, Ar-CH₂-CH₃), 2.25 (3H, s, N-CH₃), 2.54 (4H, q, Ar-CH₂-CH₃), 3.72 (4H, s, Ar-CH₂-N), 6.73 (2H, d, Ar-H), 6.87 (2H, s, Ar-**H**), 6.94 (2H, d, Ar-**H**). Anal. calcd for $C_{19}H_{25}NO_2$: C, 76.26; H, 8.36; and N, 4.68. Found: C, 76.24; H, 8.35; and N, 4.65.

N,N-Bis(2-hydroxy-3,5-dimethylbenzyl)propylamine, (BZXD 7): 90% yield; $R_f =$ 0.43 (5% MeOH in CHCl₃); clear and colorless solid; mp = 116° C; FTIR (KBr, cm⁻¹): 3298 (br, OH), 1483 (vs, C-C), 1450 (m, N-CH₂), 1250 (m, C-N), 1199 (vs, C-N-C), 852 (m, C-N-C); 1 H-NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 0.85 (3H, t, **CH**₃-CH₂-CH₂-N), 1.65 (2H, m, CH₃-CH₂-CH₂-N), 2.20 (6H, s, CH₃-Ar), 2.22 (6H, s, CH₃-Ar), 2.50 (2H, t, CH₃-CH₂-CH₂-N), 3.65 (4H, s, Ar-CH₂-N), 6.70 (2H, s, Ar-H), 6.85 (2H, s, Ar-H). Anal. calcd for C₂₁H₂₉NO₂: C, 77.06; H, 8.87; and N, 4.28. Found: C, 77.05; H, 8.86; and N, 4.27.

N,N-Bis(2-hydroxy-5-methylbenzyl)propylamine, (BZXD 8): 80% yield; $R_f = 0.22$ (5% MeOH in CHCl₃): clear and colorless solid: mp = 149°C: FTIR (KBr. cm⁻¹): 3251 (br, OH), 1501 (vs, C-C), 1467 (m, N-CH₂), 1276 (s, C-N), 1210 (s, C-N-C), 819 (s, C-N-C); 1 H-NMR (200 MHz, CDCl₃, ppm): δ_{H} 0.87 (3H, t, **CH**₃-CH₂-CH₂-N), 1.65 (2H, m, CH₃-CH₂-CH₂-N), 2.22 (6H, s, CH₃-Ar), 2.50 (2H, t, CH₃-CH₂-CH₂-N), 3.70 (4H, s, Ar-CH₂-N), 6.68 (2H, d, Ar-H), 6.85 (2H, s, Ar-H), 6.90 (2H, d, Ar-H). Anal. calcd for C₁₉H₂₅NO₂: C, 76.25; H, 8.36; and N, 4.69. Found: C, 76.28; H, 8.31; and N, 4.70.

N,N-Bis(2-hydroxy-5-ethylbenzyl)propylamine, (BZXD 9): 80% yield; $R_f = 0.28$ (5% MeOH in CHCl₃); clear and colorless solid; mp = 132°C; FTIR (KBr, cm⁻¹): 3265 (br, OH), 1499 (vs, C-C), 1447 (m, N-CH₂), 1247 (s, C-N), 1205 (m, C-N-C), 819 (s, C-N-C); 1 H-NMR (200 MHz, CDCl₃, ppm): δ_{H} 0.87 (3H, t, **CH**₃-CH₂-CH₂-N), 1.18 (3H, t, CH₂-CH₂-Ar), 1.65 (2H, m, CH₃-CH₂-CH₂-N), 2.52 (2H, q, CH₃-CH₂-Ar), 2.52 (2H, t, CH₃-CH₂-CH₂-N), 3.70 (4H, s, Ar-CH₂-N), 6.72 (2H, d, Ar-H), 6.87 (2H, s, Ar-H), 6.94 (2H, d, Ar-H). Anal. calcd for C₂₁H₂₉NO₂: C, 77.06; H, 8.87; and N, 4.28. Found: C, 77.08; H, 8.89; and N, 4.31.

N,N-Bis(2-hydroxy-3,5-dimethylbenzyl)cyclohexylamine, (BZXD 10): 90% yield; $R_f = 0.38$ (5% MeOH in CHCl₂); clear and colorless solid; mp = 152° C; FTIR (KBr. cm⁻¹): 3384 (br, OH), 1484 (vs, C-C), 1451 (m, N-CH), 1245 (m, C-N), 1199 (m, C-N-C), 858 (m, C-N-C); H-NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.1 (2H, m, CH₂), 1.45 (4H, m, CH₂), 1.82 (4H, m, CH₂), 2.20 (6H, s, CH₃-Ar), 2.22 (6H, s, CH₃-Ar), 2.70 (1H, m, CH), 3.72 (4H, s, Ar-CH₂-N), 6.70 (2H, s, Ar-H), 6.85 (2H, s, Ar-H). Anal. calcd for C₂₄H₃₃NO₂: C, 78.47; H, 8.99; and N, 3.82. Found: C, 78.49; H, 8.97; and N, 3.85.

N,N-Bis(2-hydroxy-5-methylbenzyl)cyclohexylamine, (BZXD 11): 80% yield; R_f = 0.30 (5% MeOH in CHCl₃); clear and colorless solid; mp = 181°C; FTIR (KBr, ¹): 3226 (br, OH), 1500 (vs, C-C), 1449 (m, N-CH), 1249 (s, C-N), 1210 (m, C-N-C), 819 (s, C-N-C); 1 H-NMR (200 MHz, CDCI₃, ppm): $\delta_{\rm H}$ 1.1 (2H, m, **CH**₂), 1.45 (4H, m, **CH**₂), 1.82 (4H, m, CH₂), 2.22 (6H, s, CH₃-Ar), 2.70 (1H, m, CH), 3.72 (4H, s, Ar-CH₂-N), 6.68 (2H, d, Ar-H), 6.85 (2H, s, Ar-H), 6.90 (2H, d, Ar-H). Anal. calcd for C₂₂H₂₉NO₂: C, 77.88; H, 8.55; and N, 4.13. Found: C, 77.90; H, 8.56; and N, 4.16.

N,N-Bis(2-hydroxy-5-ethyl benzyl)cyclohexylamine, (BZXD 12): 80% yield; R_f = 0.21 (5% MeOH in CHCl₃); clear and colorless solid; mp = 170° C; FTIR (KBr. cm⁻¹); 3251 (br, OH), 1499 (vs, C-C), 1450 (m, N-CH), 1250 (s, C-N), 1207 (m, C-N-C), 818 (m, C-N-C); 1 H-NMR (200 MHz, CDCl₃, ppm): δ_{H} 1.15 (3H, t, **CH**₃-CH₂-CH₂-N), 1.15 (2H, m, CH₂), 1.45 (4H, m, CH₂), 1.82 (4H, m, CH₂), 2.52 (2H, q, CH₃-CH₂-Ar), 2.70 (1H, m, CH), 3.72 (4H, s, Ar-CH₂-N), 6.72 (2H, d, Ar-H), 6.87 (2H, s, Ar-H), 6.94 (2H, d, Ar-H). Anal. calcd for C₂₄H₃₃NO₂: C, 78.47; H, 8.99; and N, 3.82. Found: C, 78.51; H, 8.97; and N, 3.79.

2.6 การสังเคราะห์และพิสูจน์ทราบโทซิลเลตเตดไดเมอร์ ((TsD 1)-(TsD 2)) จากอนุพันธ์ ของฟีนอลและโทซิลคลอไรด์

โทซิลเลตเตดไดเมอร์ชนิด *N.N-*bis(5-alkyl-2-p-toluenesulfonylbenzyl)methylamine ทั้ง 3 ชนิด (ในที่นี้ใช้ตัวย่อว่า **TsD**) (รูปที่ 2.15) ได้แก่ *N,N*-bis(5-methyl-2-hydroxybenzyl) methylamine (TsD 1), และN,N-bis(5-ethyl-2-hydroxybenzyl)methylamine (TsD 2)

OTS OTS
$$R = CH_3 \quad (TsD 1)$$

$$R = C_2H_5 \quad (TsD 2)$$

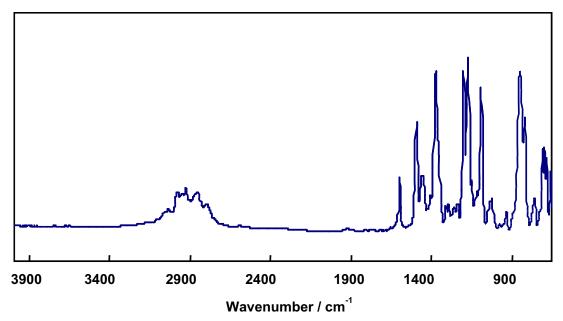
รูปที่ 2.15 โทซิลเลตเตดไดเมอร์ที่เตรียมเพื่อใช้เป็นสารตั้งต้นที่ว่องไว

วิธีการสังเคราะห์

การเตรียม **TsD 1** ทำได้ดังนี้ (รูปที่ 2.16): เตรียมสารละลายเบนซอกซาซีนไดเมอร์ชนิด BZXD 5 (5 มิลลิโมล, 1.35 กรัม)ในใดเอทิลอีเทอร์ (20 มิลลิลิตร) จากนั้นเติมสารละลาย โพแทสเซียมไฮดรอกไซด์ (20.5 มิลลิโมล, 1.15 กรัม)ในน้ำ 5 มิลลิลิตร และไดเอทิลอีเทอร์ 20 มิลลิลิตร) และกวนให้เข้ากัน เติมโทซิลคลอไรด์ (10 มิลลิโมล, 1.91 กรัม) ลงไปในสารละลายนี้ กวนสารละลายที่อุณหภูมิห้อง 6 ชั่วโมง กรองสารละลายที่ได้ และล้างด้วยน้ำ 20 มิลลิลิตร โซเดียมซัลเฟตลงในสารละลายที่ได้ทิ้งไว้ข้ามคืน นำสารละลายที่ได้ไปทำการระเหยตัวทำ ละลายออก จะได้ของแข็งสีเหลืองอ่อน นำสารที่ได้มาตกผลึกใหม่ด้วยไอโซโพรพานอลเพื่อได้ สารผลิตภัณฑ์ TsD 1 (รูปที่ 14)

เบนซอกซาซีนไดเมอร์ BZXD 6 (1 มิลลิโมล, กรัม) ถูกใช้เป็นสารตั้งต้นเช่นเดียวกัน และ ทำการสังเคราะห์เช่นเดียวกับวิธีการที่ได้สาร **TsD 1** เพื่อที่จะได้สาร **TsD 2** (รูปที่ 14)

$$OH$$
 OH OH OH OH OTS OT


รูปที่ 2.16 การเตรียมโทซิลเลตเตดไดเมอร์ชนิด *N,N*-bis(5-alkyl-2-p-toluenesulfonylbenzyl) methylamine.

ผลการทดลองและการวิจารณ์

การตรวจสอบในเบื้องต้นของการเข้าทำปฏิกิริยาระหว่างเบนซอกซาซีนไดเมอร์และพา ราโทลูอีนซัลโฟนิลคลอไรด์ทำได้โดยตรวจสอบจาก FTIR

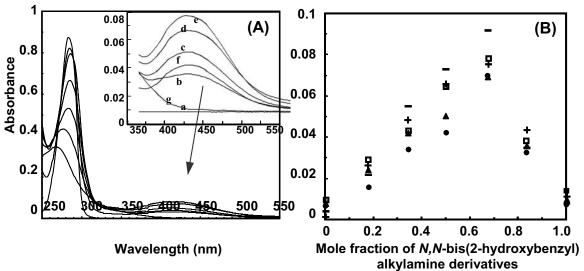
เมื่อพิจารณาจากโครงสร้างของใดเมอร์จะพบว่า ใดเมอร์จะมีหมู่ฟืนอลสองหมู่เชื่อมต่อ ด้วยหมู่อะซาเมลีน ซึ่งจากงานวิจัยที่ผ่านมาพบว่าหมู่ใฮดรอกซิลหมู่หนึ่งจะสร้างพันธะ ไฮโดรเจนภายในโมเลกุล กับในโตรเจนอะตอมของหมู่อะซาเป็นลักษณะหกเหลี่ยม ซึ่งมีความ เสถียรสูงมาก ทำให้การเข้าทำปฏิกิริยาที่หมู่ใฮดรอกซิลหมู่นี้เกิดขึ้นได้ยาก ดังเช่นการทำ ปฏิกิริยาแมนนิสซึ่งทำให้เกิดสารผลผลิตที่เป็นแบบอสมมาตรของมอนออกซาซีนขึ้น^[1]

ดังนั้นเมื่อไดเมอร์ทำปฏิกิริยากับพาราโทลูอีนซัลโฟนิลคลอไรด์ ในสภาวะที่ไม่เหมาะสม การเกิดปฏิกิริยาก็เกิดได้ไม่สมบูรณ์ ทำให้การเกิดปฏิกิริยาของโทซิลคลอไรด์บนหมู่ไฮดรอกซิล ทั้งสองเกิดขึ้นได้เพียงข้างเดียว ในการศึกษานี้พบสิ่งที่สำคัญคือ หากใช้เบสเป็นไตรเอทิลเอมีน เราจะสามารถสังเกตพีกกว้าง ๆของหมู่ไฮดรอกซิลที่ 3350 cm⁻¹ แต่ในขณะที่เราได้ปรับสภาวะ ที่เหมาะสมเป็น Heterogeneous condition และใช้เบสแก่ที่เป็นโพแทสเซียมไฮดรอกไซด์จะ พบว่า ไม่มีพีกใดที่แสดงถึงหมู่ไฮดรอกซิลที่ 3350 cm⁻¹ ปรากฏอีกต่อไป ดังรูปที่ 2.17 ทั้งนี้ น่าจะมาจากเหตุผลว่าโพแทสเซียมไฮดรอกไซด์เป็นเบสที่แรงและทำลายพันธะไฮโดรเจน ภายในโมเลกุลที่เกิดขึ้นในไดเมอร์ได้ นอกจากนี้การเตรียมในสภาวะนี้สารผลิตภัณฑ์ที่ได้จะมี ความบริสุทธิ์สูง เนื่องจากเบสที่ใช้สามารถละลายน้ำได้ดี เมื่อทำการล้างสารผลิตภัณฑ์ที่ได้โดย ใช้น้ำสามารถกำจัดเบสออกไปโดยง่าย ซึ่งแตกต่างจากการใช้เบสอินทรีย์เช่น ไตรเอทิลเอมีน หรือไพรีดีน เป็นต้น

รูปที่ **2.17** FTIR สเปคตรัมของ *N,N*-bis(2-p-toluenesulfonyl-5-methylbenzyl)methylamine (TsD 1).

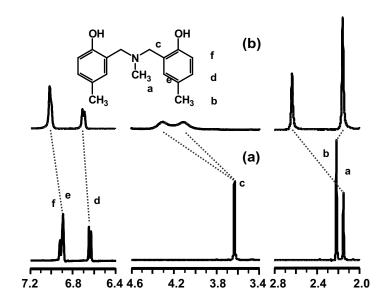
สำหรับผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

N,N-bis(5-methyl-2-hydroxybenzyl)methylamine, **TsD 1**: ของแข็งใสไม่มีสี; FTIR (ZnSe,cm⁻¹): 1492 (s, C-C), 1456 (m, N-CH₃), 1249 (s, C-N), 1207 (m, C-N-C), 1171 (vs, -S=O₂), 849 (vs, C-N-C).


N,N-bis(5-ethyl-2-hydroxybenzyl)methylamine, **TsD 2**: ของแข็งใสไม่มีสี; FTIR (ZnSe,cm⁻¹): 1492 (s, C-C), 1456 (m, N-CH₃), 1249 (s, C-N), 1207 (m, C-N-C), 1171 (vs, -S=O₂), 849 (vs, C-N-C).

- สารประกอบอินคลูชันของเบนซอกซาซีนไดเมอร์ชนิด N,N-bis-(2-2.7 และโลหะทรานซิชันด้วยการรวมตัวของ **Derivatives** hydroxybenzyl)alkylamine โมเลกุล
 - 2.7.1 การศึกษาปรากฏการณ์การรวมตัวของสารเบนซอกซาซีนไดเมอร์ ชนิด*N,N*bis-(2-hydroxybenzyl)alkylamine (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)) กับไอออนของโลหะทรานสิชัน ได้แก่ คอปเปอร์คลอไรด์
 - 2.7.1.1 การเกิดสารประกอบเชิงซ้อนระหว่าง *N,N*-bis-(2-hydroxybenzyl) alkylamine (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)) กับไอออน ของโลหะทรานสิชัน ได้แก่ คอปเปอร์คลอไรด์ ในสภาวะที่เป็นสารละลาย วิธีการเตรียมสาร

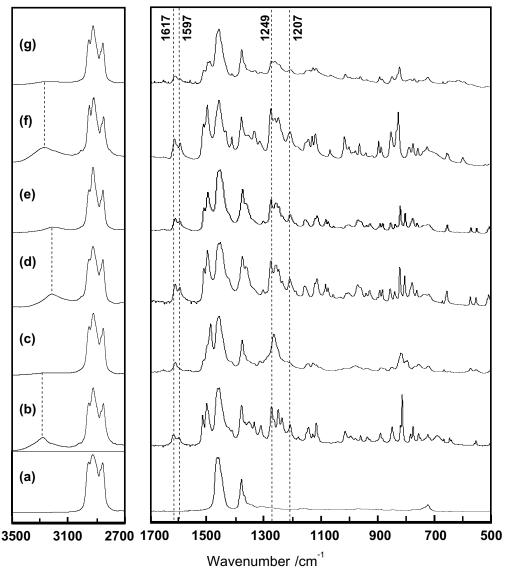
เบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)) ถูกนำมาละลายในสารละลายเมทานอล (1.65x10 ื M) เช่นเดียวกัน คอปเปอร์คลอไรด์ถูกนำมา ละลายในสารละลายเมทานอล (1.65x10 $^{-4}$ M) จากนั้นนำสารละลายทั้งสองนี้มาผสมกันใน อัตราส่วน (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)): คอปเปอร์คลอไรด์ เท่ากับ 1:5, 2:4, 3:3, 4:2, และ 5:1 ตามลำดับ แล้วเขย่าอย่างแรงเป็นเวลา 1 นาที ตั้งทิ้งไว้ 12 ชั่วโมง หลังจากนั้น เก็บสารละลายที่ได้ไปทำการวัดความดูดซับของแสงยูวีที่ตำแหน่งที่ให้พีกสูงที่สุด และนำค่าที่ได้ไปทำการพล็อตกราฟ เพื่อหาอัตราส่วนที่เหมาะสมที่สุดในการเกิดการรวมตัวของ เบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)) กับคอปเปอร์คลอ ไรด์ นอกจากนี้ ของผสมของเบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ (BZXD 11)) และ คอปเปอร์คลอไรด์ในอัตราส่วน (1:1 molar ratio) ถูกนำมาละลายในดิวเทอเร ตเตดเมทานอล เพื่อศึกษาแรงกระทำระหว่างเบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)) กับคอปเปอร์คลอไรด์ ด้วยเทคนิค ¹H NMR


<u>ผลการทดลองและการวิจารณ์</u>

สารละลายของเบนซอกซาซีนไดเมอร์ BZXD 5 ในเมทานอลให้ตำแหน่งพีกสูงที่สุดที่ ความยาวคลื่น 284 นาโนเมตร ในขณะที่สารละลายคอปเปอร์คลอไรด์ในเมทานอลให้ตำแหน่ง พีกสูงที่สุดที่ความยาวคลื่น 267 นาโนเมตร แต่หลังจากการผสมสารละลายของเบนซอกซาซีน ไดเมอร์ BZXD 5 กับคอปเปอร์คลอไรด์ในเมทานอลที่อัตราส่วนต่างๆ พบว่ามีพีกใหม่เกิดขึ้นที่ ตำแหน่งพีกสูงที่สุดที่ความยาวคลื่น 415 นาโนเมตร ซึ่งแสดงให้เห็นว่าเบนซอกซาซีนไดเมอร์ BZXD 5 เกิดปฏิกิริยาการรวมตัวกับคอปเปอร์คลอไรด์ (ดังรูปที่ 17 (A)) ในทำนองเดียวกัน สารละลายของเบนซอกซาซีนไดเมอร์ ((BZXD 6), (BZXD 8), และ(BZXD 11)) กับคอปเปอร์ คลอไรด์ในเมทานอลที่อัตราส่วนต่างๆ ให้ตำแหน่งพีกสูงที่สุดที่ความยาวคลื่น 415 นาโนเมตร ในขณะที่สารละลายของเบนซอกซาซีนไดเมอร์ BZXD 4 กับคอปเปอร์คลอไรด์ในเมทานอลที่ อัตราส่วนต่างๆ ให้ตำแหน่งพีกสูงที่สุดที่ความยาวคลื่น 435 นาโนเมตรและเมื่อนำค่าความดูด ซับของแสงยูวีที่ตำแหน่งพีกสูงที่สุดที่ความยาวคลื่น 415 และ 435 นาโนเมตรที่ได้จากรูปที่ 12 (A) ไปทำการพล็อตกราฟ จะทำให้เราสามารถบอกได้ว่าอัตราส่วนที่เหมาะสมที่สุดในการเกิด การรวมตัวของเบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ(BZXD 11)) กับคอปเปอร์คลอไรด์ คือ อัตราส่วนของเบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD (BZXD 8), และ(BZXD 11)) :คอปเปอร์คลอไรด์ เท่ากับ 2:1 (ดังรูปที่ 2.18 (B))

รูปที่ 2.18 (A) UV-Vis สเปคตราของการรวมตัวของเบนซอกซาซีนไดเมอร์ BZXD 5 กับ คอป เปอร์คลอไรด์ในเมทานอลที่อัตราส่วนต่าง ๆ; a) 0:6, b) 1:5, c) 2:4, d) 3:3, e) 4:2 , f) 5:1, และ g) 6:0. **(B)** กราฟ mole fraction ของ (**□**) **1**, (**+**) **2**, (•) **3**, (**-**) **4** ที่ 415 nm, และ (▲) **5** ที่ 435 nm.

รูปที่ 2.19 a) แสดง¹H -NMR สเปคตรัมของเบนซอกซาซีนไดเมอร์ **BZXD 5** และ b) เมื่อเบนซอกซาซีนไดเมอร์ **BZXD 5** ถูกเติมด้วยคอปเปอร์คลอไรด์ จะมีการเลื่อนตำแหน่ง พีกที่ 3.636 ppm ซึ่งเป็นของ (-CH₂-N)และมีการแยกของพีกออกเป็นพีกกว้าง 2 พีกที่ตำแหน่ง พีกที่ 4.118 และ 4.310 ppm และพีกของ (CH₃-N) ถูกทำให้เกิดการเลื่อนดำแหน่งไปด้วย โดย เลื่อนไปถึง 0.481 ppm การเลื่อนตำแหน่งและการแยกออกของพีกทำให้เราสรุปได้ว่าโปรตรอน ที่หมู่อาซาและหมู่เมทิลลีนมีการเปลี่ยนแปลงเกิดขึ้น นั่นคือไอออนของโลหะทองแดงไป ดึงอิเลคตรอนจากหมู่อาซาและหมู่เมทิลลีน ส่งผลให้ความหนาแน่นของอิเลคตรอนของ โปรตรอนเหล่านี้ลดลง ในทำนองเดียวกัน เบนซอกซาซีนไดเมอร์ ((BZXD 4), (BZXD 6), (BZXD 8), และ(BZXD 11))สามารถรวมตัวกับคอปเปอร์คลอไรด์เกิดเป็นสารประกอบเชิงซ้อน ได้โดยอาศัยแรงกระทำผ่านไอออนของโลหะทองแดงไปดึงอิเลคตรอนจากหมู่อาซาและหมู่เมที ลืน

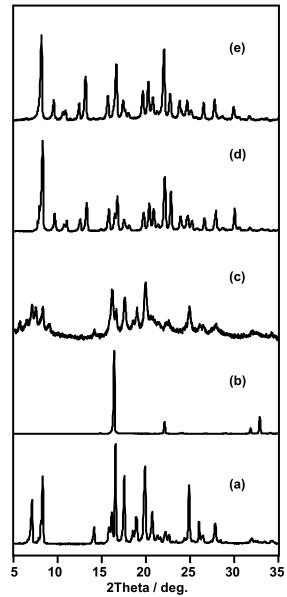


รูปที่ 2.19 ¹H -NMR spectra of (a) เบนซอกซาซีนไดเมอร์ **BZXD 5**, และ (b) การรวมตัวของ เบนซอกซาซีนไดเมอร์ BZXD 5 กับคอปเปอร์คลอไรด์ในดิวเทอเรตเตดเมทานอลในอัตราส่วน (1:1 molar ratio).

2.7.1.2 การเกิดสารประกอบเชิงซ้อนระหว่าง *N,N*-bis-(2-hydroxybenzyl) alkylamine (((BZXD 5)-(BZXD 6)), และ (BZXD 11)) กับไอออนของโลหะ ทรานสิชัน ได้แก่ คอปเปอร์คลอไรด์ ในสภาวะที่เป็นของแข็ง วิธีการเตรียมสาร

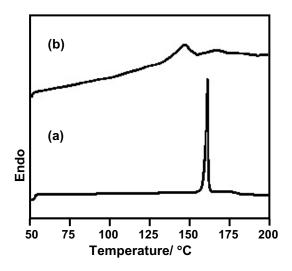
นำเบนซอกซาซีนไดเมอร์ (((BZXD 5)-(BZXD 6)), และ (BZXD 11)) มาละลาย ในคลอโรฟอร์ม (7x10⁻³ M) และนำคอปเปอร์คลอไรด์มาละลายในน้ำที่ปราศจากไอออน (0.7 M) ผสมสารละลายทั้ง 2 ชนิดเข้าด้วยกัน เขย่าอย่างแรง และ ตั้งทิ้งไว้เป็นเวลา 3 วัน จากนั้นเก็บ สารละลายชั้นสารละลายอินทรีย์ นำไปทำให้แห้งด้วยโซเดียมซัลเฟต และ ระเหยตัวทำละลาย ออก จนได้ผงสีเขียว นำผงสีเขียวที่ได้ไปทำการวิเคราะห์ ด้วยเทคนิค FTIR. DSC. และ XRD

ผลการทดลองและวิจารณ์



รูปที่ 2.20 FTIR สเปคตราของ a) Nujol, b) BZXD 5, c) ((BZXD 5)-CuCl₂), d) BZXD 11, e) ((BZXD 11)-CuCl₂), f) BZXD 6, และ g) ((BZXD 6)-CuCl₂).

ฐปที่ 2.20a) แสดง FTIR สเปคตรัมของ Nujol (สเปคตรัมอ้างอิง) และ b) BZXD 5และ c) ((BZXD 5)-CuCl₂) และ d) BZXD 11 และ e) ((BZXD 11)-CuCl₂) และ f) BZXD 6 และ g) ((BZXD 6)-CuCl₂) จาก FTIR สเปคตราของเบนซอกซาซึนไดเมอร์ (BZXD 5), (BZXD 11),และ (BZXD 6) เราพบว่ามีพีก 2 พีกของหมู่ไฮดรอกซิลซึ่งแสดงถึงการมีพันธะ ไฮโดรเจนระหว่างโมเลกุลอย่างอ่อนๆของเบนซอกซาซีนไดเมอร์ที่ตำแหน่งพีกที่ 1617 cm⁻¹ และ 1597 cm⁻¹ อันเนื่องมาจากการดึงยืดของ C=C ของวงแหวนเบนซีน (ดังแสดงในรปที่ 19b), d), f)ตามลำดับ) สำหรับFTIR สเปคตรัมของปฏิกิริยาการรวมตัวของเบนซอกซาซีนได เมอร์กับคอปเปอร์คลอไรด์ ((BZXD 5)-CuCl₂), และ ((BZXD 6)-CuCl₂) เราพบว่าพีก 2 พีกของ

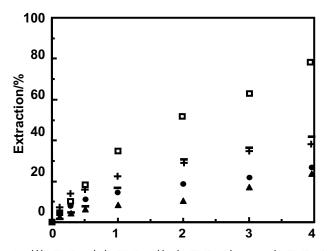

หมู่ไฮดรอกซิลซึ่งแสดงถึงการมีพันธะไฮโดรเจนระหว่างโมเลกุลอย่างอ่อนๆของเบนซอกซาซีน ไดเมอร์ เริ่มเกิดการเปลี่ยนแปลงโดยแสดงให้เห็นเพียง 1 พีก อันเป็นผลมาจากไอออนของ โลหะทองแดง นอกจากนี้เราจะสังเกตเห็นการเปลี่ยนแปลงของหมู่อาซาที่พีกของ(C-N)ที่ ตำแหน่ง 1249 cm⁻¹ และพีกของ(C-N-C)ที่ตำแหน่ง 1207 cm⁻¹ อันเนื่องมาจากการสั่นของหมู่ ฟังก์ชันถูกขัดขวางด้วยการเกิดอันตรกิริยากับไอออนของโลหะทองแดง(ดังแสดงในรูปที่ 2.20c), g)) อย่างไรก็ตาม ในกรณีของ((**BZXD 11**)-CuCl₂) เราพบว่ามีการเปลี่ยนแปลงของ FTIR สเปคตรัมเพียงเล็กน้อย(ดังแสดงในรูปที่ 2.20e)) ซึ่งแสดงให้เห็นว่าโครงสร้างของเบน ซอกซาซีนไดเมอร์ BZXD 11 มีข้อจำกัดในการจัดเรียงตัวกับไอออนของโลหะทองแดง

รูปที่ 2.21a) แสดง x-ray diffraction patterns patterns ของ เบนซอกซาซีนได เมอร์ **BZXD 5** และ b) คอปเปอร์คลอไรด์ (CuCl₂) และ c) ((**BZXD 5**)-CuCl₂) และ d) เบนซอก ซาซึนใดเมอร์ **BZXD 11** และ e) ((**BZXD 11**)-CuCl₂) จาก XRD patterns ของ((**BZXD 5**)-CuCl₂) (ดังแสดงในรูปที่ 2.21c)) เราพบว่ามีการเปลี่ยนแปลงอย่างเห็นได้ชัดโดยมีกลุ่มของพีก ใหม่เกิดขึ้นที่ตำแหน่ง 5-8 $^{\circ}$ 2heta โดยเฉพาะอย่างยิ่งที่ตำแหน่ง 5.58 $^{\circ}$ 2heta, 6.36 $^{\circ}$ 2heta, 6.98 $^{\circ}$ 2hetaและมีการเปลี่ยนแปลงเพียงเล็กน้อยที่ตำแหน่ง 11-30 $^{\circ}$ 2heta เมื่อเปรียบเทียบกับ เบนซอกซาซีน ไดเมอร์ BZXD 5 (ดังแสดงในรูปที่ 2.21a)) ดังนั้นเราจึงกล่าวได้ว่าไอออนของโลหะทองแดง สามารถจัดเรียงตัวอยู่ในโครงสร้างผลึกของเบนซอกซาซีนไดเมอร์ BZXD 5 ในขณะที่ XRD patterns ของ((**BZXD 11**)-CuCl₂) (ดังแสดงในรูปที่ 2.21e)) มีลักษณะคล้ายคลึงกับเบนซอก ซาซีนไดเมอร์ **BZXD 11** (ดังแสดงในรูปที่ 2.21d)) และเมื่อนำผลของFTIR สเปคตรัมมา ประกอบกับผลของ XRD patterns เหล่านี้ เรากล่าวได้ว่าโครงสร้างผลึกของ((**BZXD 11**)-CuCl₂) ไม่มีลักษณะแตกต่างจากโครงสร้างผลึกของเบนซอกซาซีนไดเมอร์ **BZXD 11**

รูปที่ 2.21 XRD patterns ของ a) เบนซอกซาซีนไดเมอร์ BZXD 5, b) คอปเปอร์คลอไรด์ (CuCl₂), c) ((BZXD 5)-CuCl₂), d) เบนซอกซาซีนไดเมอร์ BZXD 11, และ e) ((BZXD 11)-CuCl₂).

รูปที่ 2.22a) แสดง DSC เทอร์โมแกรมของ เบนซอกซาซีนไดเมอร์ **BZXD 5** และ b) ((BZXD 5)-CuCl₂) จาก DSC เทอร์โมแกรมของ เบนซอกซาซีนไดเมอร์ BZXD 5 เรา พบว่าการหลอมเหลวของสารเกิดที่อุณหภูมิ 161°C (ดังแสดงในรูปที่ 21a)) อุณหภูมิการ หลอมเหลวนี้แสดงให้เห็นถึงความมีเสถียรภาพทางโครงสร้างเนื่องมาจากเครือข่ายของพันธะ ไฮโดรเจน อย่างไรก็ตาม ในกรณีของ ((**BZXD 5**)-CuCl₂) เราพบพีกกว้างของการหลอมเหลว ของสารเกิดอยู่ในช่วงอุณหภูมิ $130-150^{\circ}$ C (ดังแสดงในรูปที่ 2.22b)) แสดงว่าเครือข่ายของ พันธะไฮโดรเจนของของ เบนซอกซาซีนไดเมอร์ BZXD 5 ถูกขัดขวางหลังจากมีปฏิกิริยาอินคลู ชันเกิดขึ้น

รูปที่ 2.22 DSC เทอร์โมแกรมของ a) เบนซอกซาซีนไดเมอร์ BZXD 5, และ b) ((BZXD 5)-CuCl₂).


2.7.1.3 ความสามารถของสารเบนซอกซาซีนไดเมอร์ชนิด *N,N*-bis-(2hydroxybenzyl)alkylamine (((BZXD 4)-(BZXD 6)), (BZXD 8), และ (BZXD 11)) ในการ สกัดไอออนของโลหะทรานซิชัน

วิธีการเตรียมสาร

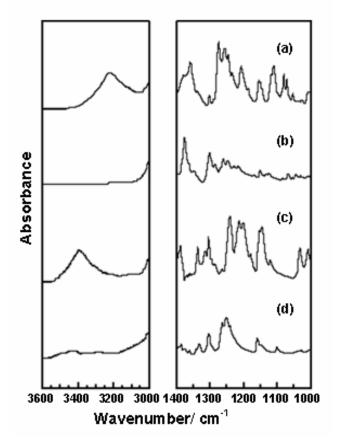
นำเบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ (BZXD 11)) มาละลายในคลอโรฟอร์ม (0.1, 7.5x10⁻², 5.0x10⁻², 2.5x10⁻², 1.25x10⁻², 6.25x10⁻³, และ $2.5 \times 10^{-4} \text{ M}$) และนำคอปเปอร์คลอไรด์มาละลายในน้ำที่ปราศจากไอออน ($2.5 \times 10^{-2} \text{ M}$) ผสม 5 มิลลิลิตรของสารละลายทั้ง 2 ชนิดเข้าด้วยกัน เขย่าอย่างแรงประมาณ 1 นาที และตั้งทิ้งไว้ ข้ามคืน จากนั้นวัดความดูดซับของแสงยูวีที่ความยาวคลื่น 815 นาโนเมตร และทำการ คำนวณหาเปอร์เซนต์ความสามารถในการสกัดไอออนของโลหะทรานซิชันจากสมการ [(A₀-A) / $A_0]$ x100 โดยที่ A_0 คือ ความดูดซับของแสงยูวีที่เริ่มต้น และ A คือ ความดูดซับของแสงยูวี หลังจากการสกัดด้วยเบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ (BZXD 11))

ผลการทดลองและวิจารณ์

การสกัดใอออนเป็นสมบัติพิเศษของสารหลัก สารรอง สำหรับเบนซอกซาซีนใด เมอร์ **BZXD 5** มีความสามารถในการสกัดไอออนของโลหะ ทองแดงสูงที่สุด (สูงถึง 80%) ในขณะที่เบนซอกซาซีนไดเมอร์ **BZXD 4** มีความสามารถในการสกัดไอออนของโลหะทองแดง ด่ำที่สุด (เพียงแค่ 24%) (ดังแสดงในรูปที่ 2.23) สำหรับเบนซอกซาซีนไดเมอร์ ((**BZXD 4**), (BZXD 6), (BZXD 8), และ (BZXD 11)) มีความสามารถในการสกัดไอออนของโลหะทองแดง น้อยกว่าเบนซอกซาซีนไดเมอร์ BZXD 5 นั่นคือมีค่าอยู่ระหว่าง 50%-70% ในทุกๆอัตราส่วน ความแตกต่างในเปอร์เซนต์ความสามารถในการสกัดไอออนของเบนซอกซาซีนไดเมอร์ (((BZXD 4)-(BZXD 6)), (BZXD 8), และ (BZXD 11)) ต่อโลหะทองแดงอาจเป็นผลมาจากผล ทางไฟฟ้าหรือผลของหมู่แทนที่ที่วงแหวนฟีนอลที่มีขนาดใหญ่ แม้ว่าหมู่แทนที่ที่วงแหวนฟีนอล จะเป็นหมู่เอทิลซึ่งเป็นหมู่ให้อิเลคตรอนกับวงแหวนฟีนอล ความสามารถในการสกัดไอออนของ โลหะทองแดงของเบนซอกซาซีนไดเมอร์ BZXD 6 ก็ยังมีค่าต่ำกว่าเบนซอกซาซีนไดเมอร์ BZXD 5 นอกจากนี้ เมื่อหมู่แทนที่ที่ติดกับอะตอมของในโตรเจนเป็นหมู่โพรพิลและหมู่ใชโคลเฮ กซิล ((BZXD 8) และ (BZXD 11)) ตามลำดับ ความสามารถในการสกัดไอออนของ โลหะทองแดงของเบนซอกซาซีนไดเมอร์ BZXD 8 และ BZXD 11 เหล่านี้ ก็ยังมีค่าต่ำกว่าเบน ซอกซาซีนไดเมอร์ BZXD 5 ด้วยเหตุนี้จึงกล่าวได้ว่าขนาดของหมู่แทนที่มีผลต่อความเหมาะสม ในการสกัดไอออนของโลหะทองแดงของเบนซอกซาซีนไดเมอร์ (((**BZXD 4**)-(**BZXD** (BZXD 8), และ (BZXD 11)) โดยขนาดที่เพิ่มขึ้นของหมู่แทนที่ที่ติดกับหมู่อาซาของเบนซอก น่าจะส่งผลหลักในการลดความสามารถในการสกัดไอออนของโลหะทองแดง ซาซีนไดเมอร์ เนื่องมาจากหมู่แทนที่ที่มีขนาดใหญ่จะสามารถขัดขวางการรวมตัวของเบนซอกซาซีนที่จะทำให้ เกิดพันธะทางความเป็นลบของอาซาเอที่ลืนบนไดเมอร์และโลหะทองแดง

Molar ratio (((BZXD 4)-(BZXD 6)), (BZXD 8), และ (BZXD 11)): CuCl₂

ฐปที่ 2.23 เปอร์เซนต์ความสามารถในการสกัดไอออนของเบนซอกซาซีนไดเมอร์ ♠) BZXD 5, (▲)BZXD 8, (๑) BZXD 11, (¬) BZXD 6, (▲) BZXD 4 เป็นฟังก์ชั่นของ Molar ratio ของคอป เปอร์คลอไรด์.

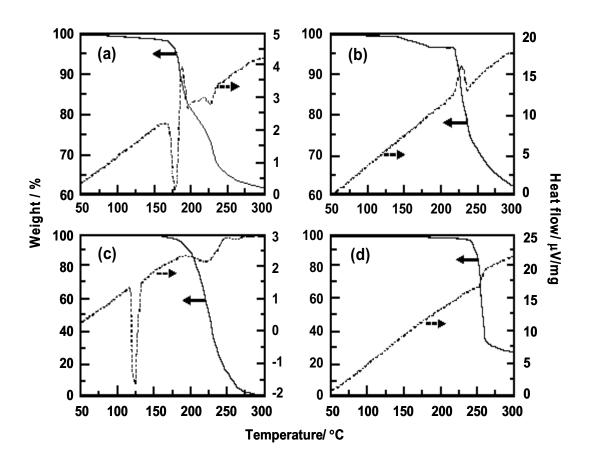

2.7.2 การศึกษาโครงสร้างผลึกเดี่ยวของ *N,N*-bis-(2-hydroxy-3,5-dimethylbenzyl) methylamine (BZXD 4), และ *N,N*-bis-(2-hydroxy-5-methylbenzyl)cyclohexylamine (BZXD 11) ซึ่งสามารถเกิดสารประกอบอินคลูชั่นเป็นลักษณะโมเลกุลกลุ่มก้อนเมื่อสาร ผลิต ภัณฑ์ที่ได้เกิดอันตรกิริยากับไอออนของโลหะทองแดง

วิธีการเตรียมสาร

ผลึกเดี่ยวของ *N,N*-bis-(2-hydroxy-3,5-dimethylbenzyl) methylamine (**BZXD 4**) และ N,N-bis-(2-hydroxy-5-methylbenzyl)cyclohexylamine (BZXD 11) ซึ่งเกิดการรวมตัวกับ ไอออนของโลหะทองแดง ((BZXD 4)-Cu), ((BZXD 11)-Cu) ตามลำดับ สามารถเตรียมได้โดย การหยดสารละลายคอปเปอร์อะซิเตดในเมทานอลลงไปใน ((BZXD 4), (BZXD 11)) และตั้งทิ้ง ไว้จนสารละลายตกผลึกเดี่ยว โดยผลึกเดี่ยวของ ((BZXD 4), (BZXD 11)) จะใส ไม่มีสี ในขณะ ที่ผลึกเดี่ยวของ ((**BZXD 4**)-Cu), ((**BZXD 11**)-Cu) จะมีสีเขียวเข้ม หลังจากนั้นนำผลึกเดี่ยวที่ได้ ไปวัดด้วยเทคนิค FTIR , และ TG-DTA

ผลการทดลองและวิจารณ์

แสดง FTIR สเปคตราของผลึกเดี่ยวของ *N.N*-bis-(2-hydroxy-5-2.24a) methylbenzyl)cyclohexylamine (BZXD 11) และ b) ผลึกเดี่ยวของ ((BZXD 11)-Cu) และ c) ผลึกเดี่ยวของ *N,N*-bis-(2-hydroxy-3,5-dimethylbenzyl)methylamine (**BZXD 4**) และ d) ผลึก เดี๋ยวของ ((BZXD 4)-Cu) จาก FTIR สเปคตรัมของผลึกเดี๋ยวของ (BZXD 11) และ (BZXD 4) เราพบว่ามีพีกกว้างของหมู่ใฮดรอกซิลปรากฏให้เห็นอย่างเด่นชัด(ดังแสดงในรูปที่ 2.24a), c)) ในขณะที่ผลึกเดี่ยวของ ((BZXD 11)-Cu) จะไม่สามารถสังเกตเห็นพีกกว้างข้องหมู่ไฮดรอกซิล เกิดขึ้น และพบว่ามีพีกใหม่เกิดขึ้นซึ่งเป็นพีกของ (C-N) ที่ตำแหน่งพีกที่ 1305 cm⁻¹ และ 1289 cm⁻¹ (ดังแสดงในรูปที่ 2.24b))แต่สำหรับผลึกเดี่ยวของ ((**BZXD 4**)-Cu) เราสามารถเห็นพีกก ้ว้างของหมู่ไฮดรอกซิลเกิดขึ้นบ้างเล็กน้อย และพบว่ามีพีกใหม่เกิดขึ้นซึ่งเป็นพีกของ (C-N) ที่ ตำแหน่งพื้กที่ 1267 cm⁻¹ และ 1255 cm⁻¹(ดังแสดงในรูปที่ 2.24d)) นี่แสดงให้เห็นว่าโครงสร้าง ของไดเมอร์หลังเกิดอันตรกิริยากับไอออนของโลหะทองแดงจะไม่ปรากฏว่ามีพันธะไฮโดรเจน ทั้งที่เป็นแบบ Inter- และ Intra molecular hydrogen bonding เกิดขึ้น และมีการเปลี่ยนแปลง ต่อการสั่นของหมู่อาซาเกิดขึ้น ดังนั้นเราจึงกล่าวได้ว่าโครงสร้างของไดเมอร์ (BZXD 4) และ (BZXD 11) สามารถเกิดสารประ กอบอินคลูชั่นเป็นลักษณะโมเลกุลกลุ่มก้อนกับไอออนของ โลหะทองแดงได้



รูปที่ 2.24 FTIR สเปคตราของ a) ผลึกเดี่ยวของ BZXD 11, b) ผลึกเดี่ยวของ ((BZXD 11)-Cu), c) ผลึกเดี่ยวของ **BZXD 4**, และ d) ผลึกเดี่ยวของ ((**BZXD 4**)-Cu).

รูปที่ 2.25a) แสดง TG-DTA เทอร์โมแกรมของผลึกเดี่ยวของ **BZXD 11** และ b) ผลึก เดี่ยวของ ((BZXD 11)-Cu) และ c) ผลึกเดี่ยวของ BZXD 4 และ d) ผลึกเดี่ยวของ ((BZXD 4)-Cu) จากTG-DTAเทอร์โมแกรมของผลึกเดี่ยวของ BZXD 11 เราพบพีกต่างๆดังนี้ พีกที่เด่นชัด ของการหลอมเหลวที่อุณหภูมิ 177° C, พีกที่เด่นชัดของการคายความร้อนที่อุณหภูมิ 185° C, พีกของการดูดความร้อนที่อุณหภูมิ 225-240°C นอกจากนี้ยังมีการสูญเสียของน้ำหนักโมเลกุล เนื่องมาจากปฏิกิริยาออกซิเดชันและการสลายตัวด้วยความร้อนของสาร (ดังแสดงในรูปที่ 2.25a)) อย่างไรก็ตาม ในกรณีของผลึกเดี่ยวของ ((**BZXD 11**)-Cu) เราจะพบเพียงแค่พีกที่ เด่นชัดของการคายความร้อนเนื่องมาจากมีปฏิกิริยาออกซิเดชันเกิดขึ้น (ดังแสดงในรูปที่ 2.25b)) จากความแตกต่างในด้านเสถียรภาพทางความร้อนนี้ ทำให้เราบอกได้ว่าไอออนของ โลหะทองแดงช่วยทำให้โครงสร้างของไดเมอร์มีความเสถียรมากขึ้น ดังจะเห็นได้จากพีกที่ เด่นชัดของการหลอมเหลวจะถูกพบได้ยากขึ้น

เมื่อทำการเปรียบเทียบผลึกเดี่ยวของ BZXD 4 กับผลึกเดี่ยวของ BZXD 11 เราจะพบว่า พีกที่เด่นชัดของการหลอมเหลวของผลึกเดี่ยวของ BZXD 4 จะเกิดที่อุณหภูมิต่ำลง โดยเกิดที่ อุณหภูมิ 125 $^{\circ}$ C (ดังแสดงในรูปที่ 2.25c)) ทั้งนี้เนื่องมาจากการแพ็คตัวของโครงสร้าง **BZXD 4** มีความเสถียรน้อยกว่าการแพ็คตัวของโครงสร้าง BZXD 11 และเมื่อ BZXD 4 เกิดเป็น

สารประกอบเชิงซ้อนกับไอออนของโลหะทองแดง เราจะพบเพียงแค่พีกของการสลายตัวด้วย ความร้อนที่อุณห ภูมิ 250°C (ดังแสดงในรูปที่ 2.25d)) ซึ่งเป็นการแสดงให้เห็นว่าสารประกอบ เชิงซ้อนมีความเสถียรต่อความร้อนสูงขึ้น

รูปที่ 2.25 TG-DTA เทอร์โมแกรมของ a) ผลึกเดี่ยวของ BZXD 11, b) ผลึกเดี่ยวของ ((BZXD 11)-Cu), c) ผลึกเดี่ยวของ BZXD 4, และ d) ผลึกเดี่ยวของ ((BZXD 4)-Cu).

2.8 การสร้างพันธะของ Cu-O และไฮโดรเจนพร้อมกันในระบบสารละลายของ *N,N*-bis-(2-hydroxybenzyl)alkylamine

การศึกษาการเกิดพันธะโคออดิเนชันและพันธะไฮโดรเจนควบคู่กันของผลึกเดี่ยวของสารเบน ซอกซาซีนไดเมอร์ชนิด N,N-bis-(2-hydroxy-3,5-dimethylbenzyl)methyl amine (BZXD 4) ซึ่ง เป็นโครงสร้างเฉพาะในการรองรับไอออนและโมเลกุลที่เป็นกลางในขณะเดียวกัน

วิธีการเตรียมสาร

เนื่องจากการเตรียมผลึกที่สมบูรณ์และเหมาะสมต่อการวิเคราะห์ผลึกเดี่ยวจำเป็นต้องให้ แน่ใจว่าเงื่อนไขการเตรียมผลึกนั้นทำให้ได้ผลึกเดี่ยวที่สมบูรณ์จริง การศึกษานี้จึงได้ทดลองการ เตรียมผลึกด้วยเงื่อนไขต่างๆดังต่อไปนี้

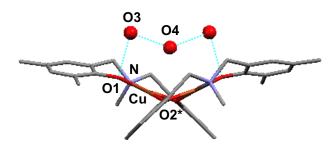
ผลึกเดี่ยวชนิดที่ 1 ของเบนซอกซาซีนไดเมอร์ BZXD 4 สามารถเตรียมได้โดย การหยด สารละลายคอปเปอร์อะซิเตดมอนอไฮเดรตในเมทานอลลงไปในเบนซอกซาซีนไดเมอร์ **BZXD 4** ผลึกเดี่ยว (ชนิดที่ 2) สามารถเตรียมได้โดยนำผลึกเดี่ยวชนิดที่ 1 มาทำให้เย็นตัวลงที่อุณหภูมิ ต่ำกว่า 0 องศาเซลเซียส เป็นเวลา 1 วัน และผลึกเดี่ยวชนิดที่ 3 สามารถเตรียมได้โดยวิธีที่ คล้ายคลึงกันแต่เปลี่ยนจากสารละลายคอปเปอร์อะซิเตดมอนอไฮเดรตในเมทานอลเป็นในเอทา นอลแทน หลังจากนั้นนำผลึกทั้ง 3 ชนิดมาทำการวิเคราะห์ด้วยเทคนิค X-ray Diffraction โดย ระบบ X-ray Diffraction ที่ใช้คือ Rigaku RAXIS-RAPID จำลองภาพโดยอาศัยซอฟท์แวร์ TEXSAN เป็นตัวประมวลผล

ผลการทดลอง

ตาราง 2.1 ข้อมูลทั่วไปของผลึกเดี่ยว (ชนิดที่ 1-3)

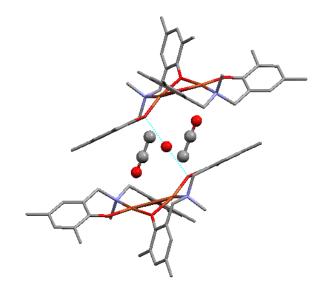
	Type I	Type II	Type III
สูตร	C ₂₀ H ₂₇ CuNO _{3.5}	C ₁₉ H ₂₆ CuNO _{3.5}	C ₄₀ H ₅₄ Cu ₂ N ₂ O ₆
มวลโมเลกุล	400.98	387.96	785.97
Crystal system	monoclinic	monoclinic	triclinic
Space group	C2/c (no.15)	C2/c (no.15)	P1 (no.2)
a/Å	19.495(2)	18.972(1)	11.9528(2)
b/Å	14.145(2)	14.075(1)	12.9382(5)
c/Å	16.379(3)	15.806(1)	13.8307(8)
αl°	90	90	79.439(1)
eta_{l}°	115.483(5)	114.051(2)	75.505(2)
η°	90	90	67.517(3)
V/Å ³	4077.0(9)	3854.2(5)	1904.2(1)
Z, calculated density	8, 1.306	8, 1.337	2, 1.371
R_1 , wR_2	0.0540, 0.1617	0.0508, 0.1289	0.0591, 0.1511
GOF	0.841	1.074	1.258
μ /mm $^{ ext{-}1}$	1.09	1.15	1.371
No. of total, unique			40000 0000
reflections measured (R_{int})	22905, 3715	14047, 3478	13638, 6803
CCDC	261408	258999	261409

ผลการวิเคราะห์ผลึกเดี่ยวที่เตรียมได้เป็นดังต่อไปนี้


ผลึกเดี่ยว(ชนิดที่ 1) แสดงโครงสร้างลักษณะคล้ายชามซึ่งประกอบไปด้วย 2 โมเลกุล ของเบนซอกซาซีนไดเมอร์ **BZXD 4** กับ 2 ไอออนของโลหะทองแดง ซึ่งยึดกันด้วย double oxygen bridges (ดังรูปที่ 2.26) นอกจากนี้ยังมี 2 โมเลกุลของเมทานอลกับ 1 โมเลกุลของน้ำ แทรกอยู่ในระหว่างไดเมอริกของสารประกอบเชิงซ้อน ((BZXD 4)-Cu) โดยจากการพิจารณามุม และระยะห่างระหว่างพันธะ เราพบว่า พันธะไฮโดรเจนถูกสร้างขึ้นระหว่าง O1...O3 และ 03...04

ผลึกเดี่ยว(Type II) แสดงโครงสร้างใดเมอริกของสารประกอบเชิงซ้อน ((**BZXD 4**)-Cu) คล้ายคลึงกับผลึกเดี่ยว(Type I) แต่ต่างกันตรงที่ 2 โมเลกุลของเมทานอลถูกแทนที่ด้วยโมเลกุล ของน้ำ (ดังรูปที่ 2.26) และถึงแม้ว่า Space group ของผลึกเดี่ยว(Type I) และผลึกเดี่ยว(Type II)จะเหมือนกันก็ตาม แต่ dimensions ทั้งหมดของผลึกเดี่ยว(Type II) (a, b, c) มีค่าต่ำกว่า dimensions ทั้งหมดของผลึกเดี่ยว(Type I) ดังนั้นเป็นการแสดงให้เห็นว่าเมื่อโมเลกุลของน้ำเข้า มาแทนที่โมเลกุลของเมทานอล ภายหลังจากการทำให้ผลึกเย็นตัวลงแล้ว จะส่งผลให้เกิดการหด ตัวของโครงสร้างของผลึกเกิดขึ้น

แสดงถึงผลกระทบที่เกิดจากโมเลกุลของตัวทำละลายที่ ผลึกเดี่ยว(Type เปลี่ยนแปลงไปจากเมทานอลเป็นเอทานอล เราพบว่า Crystal system เปลี่ยนแปลงไปจาก monoclinic กลายเป็น triclinic ซึ่งเป็นโครงสร้างที่ยึดกันด้วย double oxygen bridges นอกจากนี้ผลึกเดี่ยว(Type III) ยังมีการรวมตัวของ 1 โมเลกุลของเอทานอลกับ 1 โมเลกุลของ น้ำ โดยที่โมเลกุลของน้ำถูกเชื่อมกับ 2 ไดเมอริกของสารประกอบเชิงซ้อน ((**BZXD 4**)-Cu) ด้วย พันธะไฮโดรเจน (ดังรูปที่ 2.27) ดังนั้นเป็นการแสดงให้เห็นว่าโมเลกุลของน้ำทำหน้าที่เป็น ตัวเชื่อมระหว่าง 2 ไดเมอริกของสารประกอบเชิงซ้อน ((BZXD **4**)-Cu) เกิดปรากฏการณ์การรวมตัวของ 4 โมเลกุลของเบนซอกซาซีนไดเมอร์ **BZXD 4** ซึ่งถูก โคออร์ดิเนตด้วย 4 ใอออนของโลหะทองแดงและยึดกับ 1 โมเลกุลของน้ำและ 2 โมเลกุลของเอ ทานอล



ผลึกเดี่ยวของ((**BZXD 5**)-(Cu)) Type I

ผลึกเดี่ยวของ((**BZXD 5**)-(Cu)) Type II

รูปที่ 2.26 โครงสร้างผลึกของผลึกเดี่ยวของ ((BZXD 4)-Cu) Type I และ ((BZXD 4)-Cu) Type II.

รูปที่ 2.27 โครงสร้างผลึกของผลึกเดี่ยวของ ((BZXD 4)-Cu) Type III.

บทสรุปและผลที่ได้รับจากการดำเนินงานวิจัย

บนพื้นฐานขององค์ความรู้ใหม่ที่คณะวิจัยได้พบเกี่ยวกับการที่เบนซอกซาซีนมอนอเมอร์ สามารถเปิดวงแหวนได้จากฟืนอล และทันทีที่ปฏิกิริยาเปิดวงแหวนเกิดขึ้นพร้อมกับการ ต่อเชื่อมวงแหวน เบนซอกซาซีนจะสิ้นสุดปฏิกิริยาด้วยตัวของมันเองได้เป็นเบนซอกซาซีนได เมอร์ ทำให้งานวิจัยในบทนี้ประสบความสำเร็จในการเตรียมอนุพันธ์เบนซอกซาซีนมอนอเมอร์ และใดเมอร์ประเภทต่างๆ ซึ่งยังไม่เคยมีรายงานมาก่อน เช่น อนุพันธ์เบนซอกซาซีนมอนอเมอร์ ที่ได้จากการใช้เอทีลีนไดออกซิไดเอทิลามีน (BZXM) ที่ขยายผลสู่เบนซอกซาซีนไดเมอร์แบบ เชื่อมด้วยหมู่ไดออกซีเอทีลีน (BZXD) รวมทั้งเบนซอกซาซีนไดเมอร์แบบอสมมาตร (NTXM) ซึ่งโครงสร้างของสารที่เตรียมได้พิสูจน์ทราบด้วยเทคนิค FTIR, NMR, EA, และ MS โดย ปริมาณของสารที่เตรียมได้ทั้งหมดด้วยปฏิกิริยานี้อยู่ในระดับสูงกว่า 80 เปอร์เซนต์ งานวิจัยในบทนี้ได้ขยายไปสู่การศึกษาปรากฏการณ์ซุปปร้าโมเลกุลในรูปแบบกลุ่มก้อน (Molecular Assembly) ทั้งในระบบสารละลายซึ่งติดตามด้วยเทคนิค UV และ NMR และระบบ ของแข็งที่ติดตามด้วยเทคนิค FTIR. DSC และการวิเคราะห์ผลึกเดี่ยว ซึ่งทำให้สามารถสร้าง องค์ความรู้ใหม่ด้านเคมีซุปปร้าโมเลกุลเบนซอกซาซีนได้

ในการตอบรับสารรองของเบนซอกซาซีนไดเมอร์นั้น อะตอมที่สำคัญคือในโตรเจนและ ออกซิเจน อย่างไรก็ดี เนื่องจากโครงสร้างเบนซอกซีนไดเมอร์นั้น ออกซิเจนอยู่ในหมู่ไฮดรอก ชิลทำให้เกิดพันธะไฮโดรเจนระหว่างอะตอมของในโตรเจนและหมู่ไฮดรอกซิล ส่งผลให้โมเลกุล เบนซอกซาซีนไดเมอร์อยู่ภายใต้โครงสร้างพันธะไฮโดรเจนและปรับโครงสร้างจากพันธะ ไฮโดรเจนเล็กน้อยไปสู่พันธะโคออร์ดิเนตในการตอบรับไอออนของโลหะ ดังกรณีศึกษาของ โลหะคอปเปอร์

สำหรับผลงานวิจัยนั้น เนื่องจากสารที่เตรียมได้มีหลายประเภท และการศึกษาสมบัติการ ตอบรับสารรองทั้งที่เป็นใอออน หรือโมเลกุลเล็กยังมีอีกหลายประเภท จึงยังมีงานวิจัยที่ยัง ดำเนินอยู่ในการตรวจสอบซุปปรัาโมเลกุล ซึ่งอยู่ในระหว่างการเขียนบทความ 2 ฉบับ และ งานวิจัยที่กำลังดำเนินอยู่เป็นส่วนที่จำเป็นต้องใช้เครื่องมือวิเคราะห์โครงสร้างผลึก ดำเนินอยู่กับอาจารย์ผู้ร่วมงานต่างประเทศ โดยคาดว่าบทความดังกล่าวจะรวบรวมผลด้าน โครงสร้างผลึกนี้ด้วยและเร่งให้ผลงานตีพิมพ์นี้แล้วเสร็จได้ในปี 2550

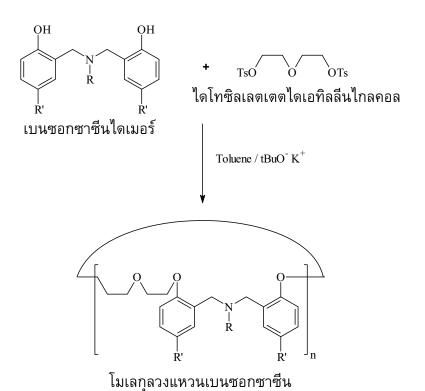
ผลงานที่ได้และที่คาดว่าจะได้ (Output and Expected Output)

1. Publications

No.	Authors (* : Corresponding Author), Article Name	Status/Project
1.	Phongtamrug, S., Chirachanchai, S.*, and Tashiro, K., "Supramolecular Structure of N,N-Bis (2-hydroxybenzyl) alkylamine: From Hydrogen Bond Assembly to Coordination Network in Guest Acceptance", <i>Macromol. Symp.</i> , 242, 40-48, 2006.	Published/RSA
2.	Phongtamrug, S., Tashiro, K., Miyata, M., and Chirachanchai, S.*, "Supramolecular Structure of N,N-Bis (2-hydroxybenzyl) alkylamine: Flexible Molecular Assembly Framework for Host without Guest and Host with Guest", <i>J. Phys. Chem. B.</i> , 110, 21365-21370, 2006.	Published/RSA
3.	Phongtamrug S.; Miyata M.; Chirachanchai, S.* "Concerted Contribution of Cu-O Coordination and Hydrogen Bonds in N,N-Bis(2-hydroxybenzyl)alkylamine-copper-solvent System", <i>Chem. Lett.</i> , 34(5), 634-635, 2005.	Published/ RGJ
4.	Phongtamrug S.; Pulpoka, B.; Chirachanchai, S.* "Inclusion Compounds Formed from N,N-Bis(2-hydroxybenzyl)alkylamine Derivatives and Transition Metal Ions via Molecular Assembly", <i>Supramol. Chem.</i> , 16, 269-278, 2004.	Published/ RGJ
5.	Rungsimanon T., Laobuthee A., Chirachanchai S.* "Novel Supramolecular Assembly Structures of Acyclic Benzoxazines"	In preparation
6.	Rungsimanon T., Laobuthee A., Chirachanchai S.* "Structural Effect of Acyclic Benzoxazine in Building Nanochannel for Ion Guest"	In preparation

2. Research Presentation

2.1 International Conferences and Meetings


No.	Authors (underline: Presenter, *:Corresponding Author), Topics	Status/Type
1.	Chirachanchai, S., "Nanoscaled Polymer: An Approach from the Supramolecular Chemistry", Osaka University Bangkok Center for Education and Research, Bangkok, Thailand October 16-17, 2006.	Oral/Invited
2.	Rungsimanon, T., Laobuthee, A., and Chirachanchai, S. "Nanochannel based Supramolecules from N,N'-bis(2-hydroxybenzyl)alkylamine", 232nd American Chemical Society National Meeting & Exposition, San Francisco, USA., September 10-14, 2006.	Oral/General
3.	Phongtumrug, S., Chirachanchai, S., and Tashiro, K., "Supramolecular Structure of N,N-Bis (2-hydroxybenzyl) alkylamine: From Hydrogen Bond Assembly to Coordination Network in Guest Acceptance", POLYCHAR: World Forum on Advanced Materials, Nara Women's University, Nara, Japan, April 17-22, 2006.	Oral/Invited
4.	Phongtamrug, S., Pulpoka, B., Chirachanchai, S.*, "Molecular Assembly and Inclusion Phenomena of N,N-Bis(2-hydroxybenzyl)alkylamine Derivatives", World Polymer Congress MACRO2004 (40th IUPAC International Symposium on Macromolecules), Paris, France, 4-9 July,2004.	Oral/General

2.2 Locall Meeting

1.	Laobuthee, A., Phongtamrug, S., and Chirachanchai, S*.,	Poster
	"Supramolecular Structured Bemzoxazine Dimer-based	
	Compounds: A Challenge from Molecular Design to Nano-	
	Channel Molecular Recognition, Part I: Supramolecular	
	Structure of N,N-Bis(2-hydroxybenzyl)alkylamine Derivatives",	
	Thailand Research Fund Annual Meeting 2005, Sha-um,	
	Petchaburi, Thailand, October 13-15, 2005	

บทที่ 3 เคมีซุปปร้าโมเลกุลของเบนซอกซาซีนระดับสารวงแหวนขนาดใหญ่

การสังเคราะห์และพิสูจน์ทราบสารวงแหวน [2+2] Difunctional 28-membered 3.1 macrocyclic ether ((MCE 1)-(MCM 3))

รูปที่ 3.1. การสังเคราะห์โมเลกุลวงแหวนเบนซอกซาซีนโดยปฏิกิริยาอีเทอร์ริฟิเคชั่น.

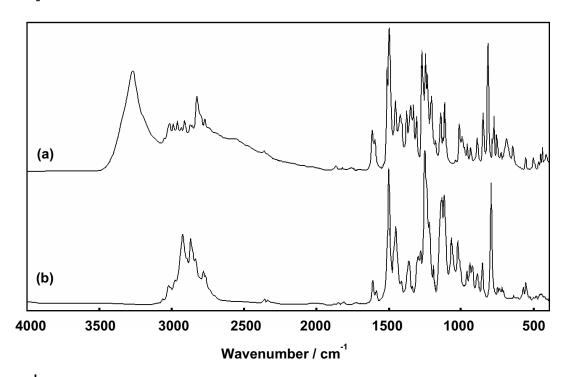
วิธีการสังเคราะห์

เบนซอกซาซีนไดเมอร์ (ดังในรูปที่ 2.11) *N,N*-Bis(2-hydroxy-3,5-dimethylbenzyl) methylamine (BZXD 4), N,N-Bis(2-hydroxy-5-methylbenzyl)methylamine (BZXD 5), และ N,N-Bis(2-hydroxy-5-ethylbenzyl)methylamine (BZXD 6) ได้นำมาใช้เป็นสารตั้งต้นในการ สังเคราะห์สารเบนซอกซาซีนไดเมอร์ที่เชื่อมด้วยพันธะอีเทอร์ ((MCE 1)-(MCM 3))

เบนซอกซาซีนไดเมอร์ BZXD 5 (1 มิลลิโมล, 0.271 กรัม) ถูกนำมาละลายในโทลูอีน จำนวน 150 มิลลิลิตร เติมโพแทสเซียมเทอร์เชียลลี่บิลทอกไซด์ (2.1 มิลลิโมล 0.236 กรัม) จากนั้นทำการรีฟลักซ์เป็นเวลา 30 นาที นำไดโทซิลเลตเตตไดเอทิลลีนไกลคอล (1 มิลลิโมล, 0.434 กรัม) มาละลายในโทลูอื่นจำนวน 50 มิลลิลิตรแล้วนำไปหยดอย่างซ้า ๆลงในสารละลาย ของ BZXD 5 ที่กำลังรีฟลักซ์ ทำการรีฟลักซ์ต่อไปเป็นเวลา 4 วัน สารละลายจะถูกนำมาล้าง ด้วยน้ำจำนวน 50 มิลลิลิตรเป็นเวลา 3 ครั้ง และทำให้แห้งด้วยการเติมโซเดียมซัลเฟตอันไฮ

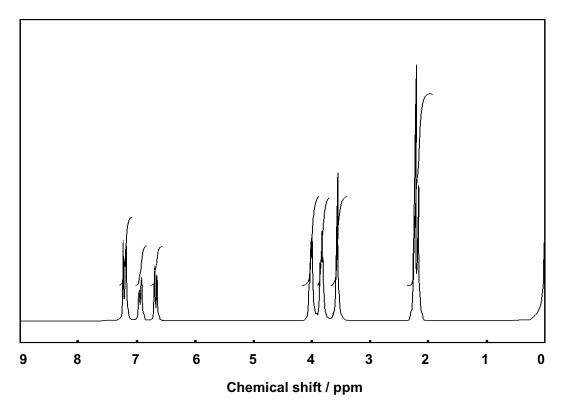
ดรัส และทิ้งไว้ข้ามคืน ตัวทำละลายถูกแยกออกจะได้ของแข็งสีเหลืองอ่อน นำสารที่ได้ถูกตก ผลึกใหม่ด้วยไอโซโพรพานอลเพื่อได้สาร ผลิตภัณฑ์ (MCE 2) (รูปที่ 3.2)

เบนซอกซาซีนไดเมอร์ BZXD 4 (1 มิลลิโมล, 0.299 กรัม) และ BZXD 6 (1 มิลลิโมล, 0.299 กรัม) ถูกใช้เป็นสารตั้งต้นเช่นเดียวกัน และทำการสังเคราะห์เช่นเดียวกับวิธีการที่ได้สาร (MCE 2) เพื่อที่จะได้สาร (MCE 1) และ (MCE 3) ตามลำดับ (รูปที่ 3.2)


ฐปที่ 3.2. สารวงแหวน [2+2] Difunctional 28-membered macrocyclic ether ((MCE 1)-(MCM 3)).

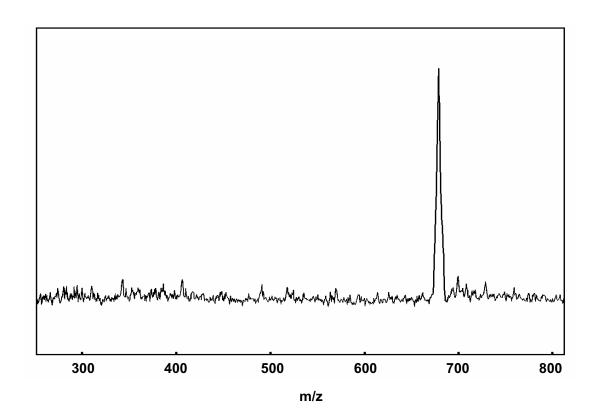
ผลการทดลองและวิจารณ์

ปฏิกิริยาการเตรียมโมเลกุลวงแหวนเบนซอกซาซีนโดยปฏิกิริยาอีเทอร์ริฟิเคชั่นนั้น เป็น การเกิดปฏิกิริยาอีเทอร์ริฟิเคชั่นได้กับโทซิลเลตเตทแอลกอฮอล์ (Tosylated alcohol) เมื่อนำ เบนซอกซาซีนไดเมอร์เป็นสารตั้งต้นทำปฏิกิริยากับไดโทซิลเลตเตตไดเอทิลลีนไกลคอล (Ditosylated Diethylene glycol)


ในการสร้างวงแหวนจำเป็นต้องคำนึงถึงโอกาสที่โมเลกุลจะเข้าทำปฏิกิริยา อย่างไรก็ดี ดังนั้นความเข้มข้นจึงเป็นเรื่องสำคัญมากที่จะต้องคอยติดตามว่าปฏิกิริยานั้น ระหว่างโมเลกล ต้องการความเข้มข้นที่เหมาะสมประมาณใด นอกจากนี้เรื่องเงื่อนไขที่เอื้อต่อการเกิดปภิกิริยา เช่น ความเป็นเบส ฯลฯ ในการศึกษานี้ได้เริ่มใช้ปฏิกิริยาด้วยอัตราส่วนโมลที่เท่ากัน ในสภาวะ ของสารละลายที่เจือจาง เพื่อจะทำให้ได้โมเลกุลวงแหวนเบนซอกซาซีนที่มีการเชื่อมโยงจากหมู่ ฟังก์ชั่นอีเทอร์ดังแสดงในรูปที่ 3.2

สารไดเมอร์ BZXD 5 ได้ถูกนำมาใช้เป็นสารตั้งต้นในการเตรียมสารประกอบวงแหวน อีเทอร์ขนาดใหญ่ โดยปฏิกิริยาอีเทอร์ริฟิเคชั่นกับไดโทซิลเลตเตตไดเอทิลลีนไกลคอล ปฏิกิริยา ให้ผลิตภัณฑ์เป็นของแข็งสีขาว เมื่อนำไปตรวจสอบด้วยเทคนิค FTIR ทำให้เราพบว่าเป็นสาร ไดเมอร์ **BZXD 5** ซึ่งมีพีกหลักดังนี้ พีกที่ 3251 cm⁻¹ ซึ่งเป็นพีกของพันธะไฮโดรเจนแบบ Intermolecular Hydrogen Bonding พีกที่ 3000-2800 cm⁻¹ ซึ่งเป็นพีกของพันธะไฮโดรเจน แบบ Intramolecular Hydrogen Bonding รวมถึงพีกที่ 1599 cm⁻¹ ซึ่งเป็นพีกที่แสดงถึงพันธะ ระหว่างในโตรเจนกับไฮโดรเจนของหมู่ไฮดรอกซิลที่บ่งบอกถึงการเกิด Hydrogen Bonding นอกจากนี้ยังมีพีกหลักอีกหนึ่งพีกที่ 1499 cm⁻¹ ซึ่งแสดงถึงหมู่แทนที่ที่ เกิดขึ้นบนวงเบนซีนชนิด Tri-substituted Benzene (รูปที่ 3.3(a)) เมื่อเปรียบเทียบกับพีกของ สารผลิตภัณฑ์ MCE 2 ซึ่งไม่ปรากฏพีกของหมู่ไฮดรอกซิลและพันธะระหว่างในโตรเจนกับ ไฮโดรเจนที่มาจากหมู่ไฮดรอกซิลที่มาจากไดเมอร์ ชี้ให้เห็นว่าโครงสร้างของไดเมอร์หลัง เกิดปฏิกิริยาไม่ปรากฏว่าพันธะไฮโดรเจนทั้งที่เป็นแบบ Inter- และ Intramolecular Hydrogen Bonding หรืออีกความหมายหนึ่งแสดงว่าหมู่ไฮดรอกซิลของไดเมอร์ถูกใช้ในการทำปฏิกิริยาจน หมด (รูปที่ 3.3(b))

รูปที่ 3.3. FTIR สเปคตร้าของ (a) เบนซอกซาซีนไดเมอร์ BZXD 5 และ (b) สารวงแหวน MCE 2.


การวิเคราะห์ด้วยเทคนิค ¹H-NMR (ดังรูปที่ 3.4) แสดงให้เห็นว่า **MCE 2** มีพีกหลักของ เมทิลลีนปรากฏขึ้นเป็นสามกลุ่ม โดยสองพีกแรกเกิดขึ้นที่ $\delta_{ extsf{H}}$ เท่ากับ 3.85 และ 4.02 ppm ซึ่ง เป็นหมู่เมทิลลีนของไดเอทิลลีนออกไซด์ และอีกพีกหนึ่งที่ $\delta_{ extsf{H}}$ เท่ากับ 3.59 ppm ซึ่งเป็นพีกของ หมู่เมทิลลีนของหมู่อาซาเมทิลลีนในไดเมอร์ ซึ่งจากข้อมูลนี้ชี้ให้เห็นว่าสารที่ได้น่าจะมีโครงสร้าง นั่นหมายถึงโครงสร้างที่เป็นสารประกอบอีเทอร์วงแหวน นอกจากนี้เมื่อคำนวณ อัตราส่วนของอินทิเกรชั่นของหมู่เมทิลลีนทั้งสามหมู่จะได้เป็น 1:1:1 ซึ่งแสดงให้เห็นว่าปฏิกิริยา อีเทอร์ริฟิเคชั่นเกิดขึ้นที่หมู่ไฮดรอกซิลทั้งสองหมู่

รูปที่ 3.4. ¹H-NMR สเปคตรัมของสารวงแหวน **MCE 2**.

เมื่อนำสาร MCE 2 ไปวิเคราะห์ด้วยเทคนิค MALDI-TOF MS เราพบว่าได้พีกเพียงพีก เดียว (ดังรูปที่ 3.5) และเป็นของ molecular ion ที่มีค่ามวลต่อประจุเป็น 682 ซึ่งเป็นโครงสร้าง ของวงแหวนอีเทอร์ชนิด [2+2] นอกจากนี้โครงสร้างของสาร MCE 2 ได้รับการยืนยันจากข้อมูล การวิเคราะห์หาชาตุอินทรีย์ว่าเป็นโครงสร้างวงแหวนอีเทอร์ชนิด [2+2] ด้วย

ข้อมูลการวิเคราะห์โครงสร้างยังได้บ่งบอกสิ่งที่สำคัญสำหรับงานวิจัยนี้อีกด้วย ในการเตรียมสารประกอบวงแหวนอีเทอร์โดยปฏิกิริยาอีเทอร์ริฟิเคชั่นในสภาวะที่มีเบสแก่เป็น ตัวเร่งปฏิกิริยานั้น สารผลิตภัณฑ์ที่ได้จะมีเพียงชนิดเดียวและเป็นวงแหวนขนาดใหญ่ชนิด [2+2] แม้ว่าจะมีการเปลี่ยนเบสจาก t-BuOK ซึ่งเป็นเบสอินทรีย์มาเป็นโซเดียมไฮดรอกไซด์ซึ่งเป็น เบสอนินทรีย์ก็ตาม นอกจากนี้ เมื่อเปลี่ยนสารตั้งต้นจากไดเมอร์ **BZXD 5** มาเป็นไดเมอร์ BZXD 4 และ BZXD 6 จะทำให้เราได้สาร MCE 1 และ MCE 3 ตามลำดับ ซึ่งเป็นผลิตภัณฑ์ซึ่ง เป็นสารประกอบอีเทอร์วงแหวนขนาดใหญ่ชนิด [2+2] เช่นเดียวกัน

รูปที่ 3.5. MALDI-TOF สเปคตรัมของสารวงแหวน MCE 2.

สำหรับผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

สาร MCE 1: $R_f = 0.03$ (5% MeOH in CHCl₃); FTIR (KBr, cm⁻¹): 1481 (vs, trisubstituted benzene), 1221 (vs, C-N stretching), 1139(s, C-O-C). ¹H-NMR (200 MHz, CDCl₃, ppm): δ_{H} 1.99 (6H, s, N-CH₃), 2.19 (24H, s, Ar- CH₃), 3.68 (8H, s, N-CH₂), 3.85 (8H, t, CH₂-O), 3.97(8H, t, CH₂-O), 6.73(4H, s, Ar-H), 6.83 (4H, s, Ar-H). Anal. calcd. for $C_{46}H_{62}N_2O_6$: C, 74.80; H, 8.40; N, 3.79.

สาร MCE 2: 80% yield; $R_f = 0.0$ (5% MeOH in CHCl₃); mp = 185° C; FTIR (KBr, cm⁻¹): 1504 (vs, trisubstituted benzene), 1253 (vs, C-N stretching), 1140 (s, C-O-C). ¹H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 2.20 (6H, s, N-CH₃), 2.27 (12 H, s, Ar-CH₃), 3.59 (8H, s, N-CH₂), 3.85 (8H, t, CH₂-O), 4.02 (8H, t, CH₂-O), 6.69 (4H, d, Ar-H), 6.95 (4H, d, Ar-H), 7.20 (4H, s, Ar-H). MALDI-TOF MS: m/z = 682. Anal. calcd. for $C_{42}H_{54}N_2O_6$: C, 73.90; H, 7.91; N, 4.11. Found: C, 73.86; H, 7.93; N, 4.07.

สาร **MCE 3**: 75% yield; $R_f = 0.0$ (5% MeOH in $CHCl_3$); mp = 186 $^{\circ}C$; FTIR (KBr, cm⁻¹): 1503 (vs, trisubstituted benzene), 1248(vs, C-N stretching), 1133 (s, C-O-C). ¹H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.20 (12H, t, Ar-CH₂-CH₃), 2.22 (6H, s, N-CH₃), 2.58 (8 H, q, Ar-CH₂-CH₃), 3.65 (8H, s, N-CH₂), 3.89 (8H, t, CH₂-O), 4.05 (8H, t, CH₂-O), 6.72 (4H, d, Ar-H), 6.98 (4H, d, Ar-H), 7.25 (4H, s, Ar-H). MALDI-TOF MS: m/z = 738. Anal. calcd. for $C_{46}H_{62}N_2O_6$: C, 74.80; H, 8.40; N, 3.79. Found: C, 74.78; H, 8.39; N, 3.81.

การสังเคราะห์และพิสูจน์ทราบสารวงแหวน ไดเบนโซโมโนอาซา-12-คราวน์-3 3.2 ((DBMA 1)-(DBMA 3))

วิธีการสังเคราะห์

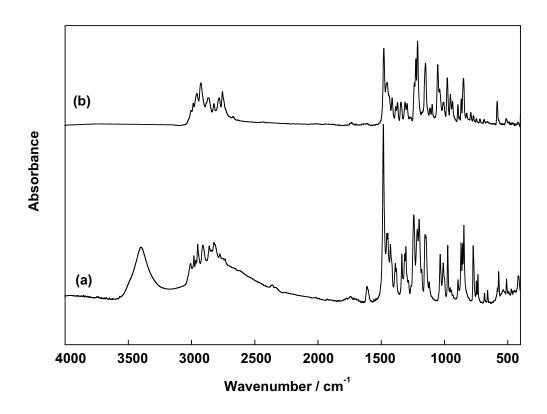
ชุปปร้าโมเลกุลชนิดสารวงแหวนที่เชื่อมสารเบนซอกซาซีนไดเมอร์ด้วย 1,3–บิส(โทซิล ออกซี)โพรเพนทั้ง 4 ชนิด (ในที่นี้ใช้ตัวย่อว่า **DBMA**) (รูปที่ 3.6) ได้แก่ Dibenzo-monoaza-12crown-3 based on N,N-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine (DBMA 1), Dibenzo-monoaza-12-crown-3 based on N,N-bis(5-methyl-2-hydroxybenzyl)methylamine (DBMA 2), และ Dibenzo-monoaza-12-crown-3 based on N,N-bis(5-ethyl-2-hydroxybenzyl) methylamine (DBMA 3)

R =
$$CH_3$$
, R' = CH_3 , R" = CH_3 (DBMA 1)
R = CH_3 , R' = CH_3 (DBMA 2)
R = C_2H_5 , R' = H, R" = CH_3 (DBMA 3)

รูปที่ 3.6. ซุปปร้าโมเลกุลชนิดใดเบนโซโมโนอาซา-12-คราวน์-3.

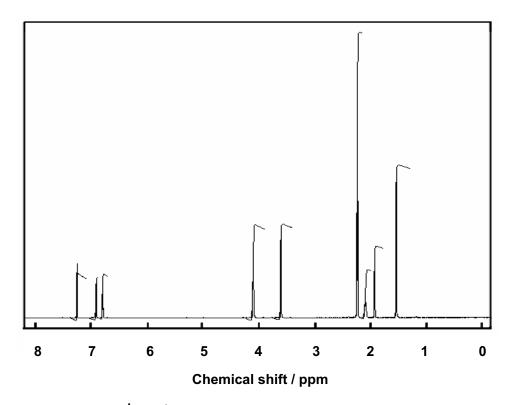
การเตรียมซุปปรัาโมเลกุลชนิดไดเบนโซโมโนอาซา-12-คราวน์-3 สามารถทำได้ดังนี้ (รูปที่ 33): เตรียมสารละลายเบนซอกซาซีนไดเมอร์ **BZXD 1** (1 มิลลิโมล, 0.30 กรัม) ในอะซิโต . ในไตรด์ (150 มิลลิลิตร) จากนั้นเติมโพแทสเซียมไฮดรอกไซด์ (2.1 มิลลิโมล, 0.12 กรัม) จากนั้นทำการกลั่นใหลกลับเป็นเวลา 1 ชั่วโมง นำสารละลาย1,3–บิส(โทซิลออกซี)โพรเพน (1 มิลลิโมล, 0.38 กรัม) ในอะซิโตในไตรด์ (50 มิลลิลิตร) ไปหยดอย่างช้าๆ ลงในสารละลายที่ กำลังกลั่นไหลกลับ ทำการกลั่นไหลกลับต่อไปเป็นเวลา 3 วัน หลังจากนั้นระเหยเอาตัวทำ ละลายอะซิโตในไตรด์ออก และละลายสารที่ได้ด้วยไดคลอโรมีเทนและล้างด้วยน้ำจำนวน 50 มิลลิลิตรเป็นเวลา 3 ครั้ง ทำให้แห้งด้วยการเติมโซเดียมซัลเฟตอันไฮดรัส และทิ้งไว้ข้ามคืน นำ สารละลายที่ได้ไปทำการระเหยตัวทำละลายออก จะได้ของแข็งสีเหลืองอ่อน นำสารที่ได้มาตก ผลึกใหม่ด้วยไอโซโพรพานอลเพื่อได้สารผลิตภัณฑ์ **DBMA 1** (รูปที่ 3.6)

เบนซอกซาซีนไดเมอร์ BZXD 2 (1 มิลลิโมล, 0.27 กรัม) และ BZXD 3 (1 มิลลิโมล, กรัม) ถูกใช้เป็นสารตั้งต้นเช่นเดียวกัน และทำการสังเคราะห์เช่นเดียวกับวิธีการที่ได้สาร **DBMA** 1 เพื่อที่จะได้สาร DBMA 2 และ DBMA 3 ตามลำดับ (รูปที่ 3.6)

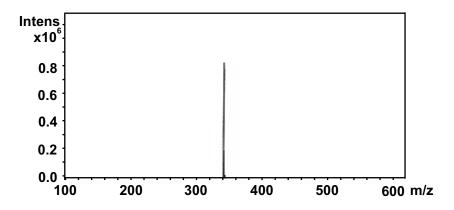

รูปที่ 3.7. การเตรียมซุปปร้าโมเลกุลชนิดใดเบนโซโมโนอาซา-12-คราวน์-3.

ผลการทดลองและวิจารณ์

การเตรียมซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-12-คราวน์-3 สามารถทำได้โดยอาศัย หลักการการเกิดปฏิกิริยาอีเทอร์ริฟิเคชั่น (Etherification) ซึ่งในที่นี้ซุปปรัาโมเลกุลชนิดไดเบน สามารถเตรียมได้จากการเชื่อมเบนซอกซาซีนไดเมอร์กับ1,3–บิส โซโมโนอาซา-12-คราวน์-3 (โทซิลออกซี)โพรเพน ด้วยพันธะอีเทอร์


อย่างไรก็ดี ในการสร้างสารวงแหวนจำเป็นต้องคำนึงถึงโอกาสที่โมเลกุลจะเข้าทำปฏิกิริยา ระหว่างโมเลกุล ดังนั้นความเข้มข้นและความเป็นเบสจึงเป็นเรื่องสำคัญมากที่จะต้องคำนึงถึง ใน การศึกษานี้จะเริ่มปฏิกิริยาด้วยสารตั้งต้นในอัตราส่วนโมลที่เท่ากัน และอยู่ในสภาวะของ สารละลายเจือจางที่เป็นเบส เพื่อจะทำให้ได้สารผลิตภัณฑ์ที่เป็นโมเลกุลวงแหวนเบนซอกซาซีน ที่มีการเชื่อมโยงจากหมู่ฟังก์ชั่นอีเทอร์ดังแสดงในรูปที่ 3.7

สารไดเมอร์ BZXD 1 ได้นำมาใช้เป็นสารตั้งต้นในการเตรียมสารประกอบวงแหวนซุปปร้า โมเลกุลชนิดไดเบนโซโมโนอาซา-12-คราวน์-3 โดยปฏิกิริยาอีเทอร์ริฟิเคชั่นกับ1,3–บิส(โทซิ ลออกซี)โพรเพน จะได้สารผลิตภัณฑ์เป็นของแข็งสีขาว เมื่อนำไปตรวจสอบด้วยเทคนิค FTIR จะพบว่าสารไดเมอร์ **BZXD 1** จะให้พีกหลักๆดังนี้ พีกที่ 3399 cm⁻¹ ซึ่งเป็นพีกของพันธะ ไฮโดรเจนแบบ Intermolecular Hydrogen Bonding พีกที่ 3000-2800 cm⁻¹ ซึ่งเป็นพีกของ พันธะไฮโดรเจนแบบ Intramolecular Hydrogen Bonding รวมถึงพีกที่ 1613 cm ⁻¹ ซึ่งเป็นพีกที่ แสดงถึงพันธะระหว่างในโตรเจนกับไฮโดรเจนของหมู่ไฮดรอกซิลที่บ่งบอกถึงการเกิด Intramolecular Hydrogen Bonding นอกจากนี้ยังมีพีกหลักอีกหนึ่งพีกที่ 1484 cm⁻¹ ซึ่งแสดง ถึงหมู่แทนที่ที่เกิดขึ้นบนวงเบนซีนชนิด Tri-substituted Benzene (รูปที่ 3.8 (a)) เมื่อ เปรียบเทียบกับพีกของสารผลิตภัณฑ์ **DBMA 1** ซึ่งไม่ปรากฏพีกของหมู่ไฮดรอกซิลและพันธะ ระหว่างในโตรเจนกับไฮโดรเจนที่มาจากหมู่ไฮดรอกซิลที่มาจากไดเมอร์ ชี้ให้เห็นว่าโครงสร้าง ของไดเมอร์หลังเกิดปฏิกิริยาจะไม่ปรากฏว่ามีพันธะไฮโดรเจนทั้งที่เป็นแบบ Intramolecular Hydrogen Bonding หรืออีกความหมายหนึ่งแสดงว่าหมู่ไฮดรอกซิลของไดเมอร์ ถูกใช้ในการทำปฏิกิริยาจนหมด (รูปที่ 3.8 (b))


รูปที่ 3.8. FTIR สเปคตร้าของ (a) สารไดเมอร์ BZXD 1 และ (b) สารผลิตภัณฑ์ DBMA 1.

เมื่อนำสาร **DBMA 1** ไปทำการวิเคราะห์ด้วยเทคนิค ¹H-NMR (ดังรูปที่ 3.9) พบว่า มีพีก หลักของเมทิลลีนปรากฏขึ้นเป็นสามกลุ่มดังนี้ โดยสองพีกแรกเกิดขึ้นที่ $\delta_{\scriptscriptstyle H}$ เท่ากับ 2.11 และ 4.11 ppm ซึ่งเป็นหมู่เมทิลลีนและเมทิลีนออกไซด์ใน1,3-บิส(โทซิลออกซึ)โพรเพน และอีกพีก หนึ่งที่ $\delta_{ ext{H}}$ เท่ากับ 3.62 ppm ซึ่งเป็นพีกของหมู่เมทิลลีนของหมู่อาซาเมทิลลีนในไดเมอร์ ซึ่ง จากข้อมูลนี้ชี้ให้เห็นว่าสารที่ได้น่าจะมีโครงสร้างที่สมมาตร นั่นห[ุ]มายถึง โครงสร้างที่เกิดขึ้นก็ น่าจะเป็นสารประกอบอีเทอร์วงแหวน นอกจากนี้เมื่อคำนวณอัตราส่วนของอินทิเกรชั่นของหมู่ เมทิลลีนทั้งสามหมู่จะได้เป็น 1:2:2 ซึ่งแสดงให้เห็นว่าปฏิกิริยาอีเทอร์ริฟิเคชั่นเกิดขึ้นที่หมู่ไฮดร อกซิลทั้งสองหมู่

รูปที่ 3.9. ¹H-NMR สเปคตรัมของสารผลิตภัณฑ์ **DBMA 1**.

เมื่อนำสาร **DBMA 1** ไปวิเคราะห์ด้วยเทคนิค MALDI-TOF MS เราพบว่าได้พีกเพียงพีก เดียว (ดังรูปที่ 3.10) และเป็นของ molecular ion ที่มีค่ามวลต่อประจุเป็น 339.23 ซึ่งเป็น โครงสร้างของวงแหวนอีเทอร์ชนิด [1+1] นอกจากนี้ เมื่อเปลี่ยนสารตั้งต้นจากไดเมอร์ **BZXD 1** มาเป็นไดเมอร์ BZXD 2 และ BZXD 3 พบว่าได้สาร DBMA 2 และ DBMA 3 ตามลำดับ ซึ่งเป็น ผลิตภัณฑ์ ซึ่งเป็นสารประกอบอีเทอร์วงแหวนขนาดใหญ่ชนิด [1+1] เช่นเดียวกัน

รูปที่ 3.10. MALDI-TOF สเปคตรัมของสารผลิตภัณฑ์ **DBMA** 1.

สำหรับผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

Dibenzo-monoaza-12-crown-3 based on N,N-bis(3,5-dimethyl-2-hydroxybenzyl) methylamine (**DBMA 1**): $C_{22}H_{29}NO_2$: $R_f = 0.08$ (5% methanol in chloroform); white crystal; FTIR (KBr,cm⁻¹): 1480 (vs, tri-substituted benzene), 1213 (vs, C-N stretching), 1053 (s, Ar-O-CH₂); 1 H-NMR (400 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.94 (3H, s, N-**CH**₃), 2.11 (2H, s, CH₂-CH₂-CH₂), 2.55 (12H, s, Ar-CH₃), 3.62 (4H, s, Ar-CH₂-N), 4.11 (4H, s, O-CH₂-CH₂), 6.79 (2H, s, Ar-H), 6.91 (2H, s, Ar-H). MALDI-TOF MS (m/z): 339.23.

Dibenzo-monoaza-12-crown-3 based on N,N-bis(5-methyl-2-hydroxybenzyl) methylamine (**DBMA 2**): $C_{20}H_{25}NO_2$: mp = 203°C; FTIR (KBr, cm⁻¹): 1504 (vs, trisubstituted benzene), 1327 (vs, C-N-C stretching), 1250 (vs, C-N stretching), 1065 (s, Ar-O-CH₂); ¹H NMR (600 MHz, CDCl₃): δ 2.137 (s, 3H, N-CH₃), 2.217 (gu, 2H, C-CH₂-C, $J_1 = 4.86$ Hz), 2.259 (s, 6H, Ar-CH₃), 3.614 (s, 4H, N-CH₂-Ar), 4.204 (t, 4H, CH₂-O, $J_2 = 5.02$ Hz), 6.736 (d, 2H, Ar-H, $J_3 = 7.90$ Hz), 6.977 (s, 2H, Ar-H), 6.984 (d, 2H, Ar-H, J_4 = 8.56 Hz); ¹³C NMR (600 MHz, CDCl₃): δ 20.495, 28.524, 40.959, 58.224, 67.789, 111.638, 128.125, 128.379, 128.802, 131.901, 155.586; MALDI-TOF MS: m/z 312.6 (M+H $^{^{+}}$); Anal. Calc. for $C_{20}H_{25}O_{2}N$: C: 77.14, H: 8.09, N: 4.50, O: 10.28. Found: C: 76.38, H: 7.69, N: 4.46.

Dibenzo-monoaza-12-crown-3 N,N-bis(5-ethyl-2-hydroxybenzyl) based on methylamine (**DBMA 3**): C₂₂H₂₉NO₂: FTIR (KBr, cm⁻¹): 1503 (vs, trisubstituted benzene), 1248 (vs, C-N stretching), 1057 (s, Ar-O-CH₂); 1 H NMR (400 MHz, CDCl₃): δ 1.106 (6H, t, Ar-C-CH₃, J_1 = 7.622 Hz), 2.069 (3H, s, N-CH₃), 2.170 (2H, qu, C-CH₂-C, J_2 = 4.837 Hz), 2.484 (4H, q, Ar-CH₂-C, J_3 = 7.622 Hz), 3.571 (s, 4H, N-CH₂-Ar), 4.141 (t, 4H, CH₂-O, J_4 = 4.984 Hz), 6.679 (d, 2H, Ar-H, J_5 = 8.209 Hz), 6.911 (s, 2H, Ar-H), 6.936 (d, 2H, Ar-H, J_6 = 8.208 Hz); MALDI-TOF MS: m/z 338.85.

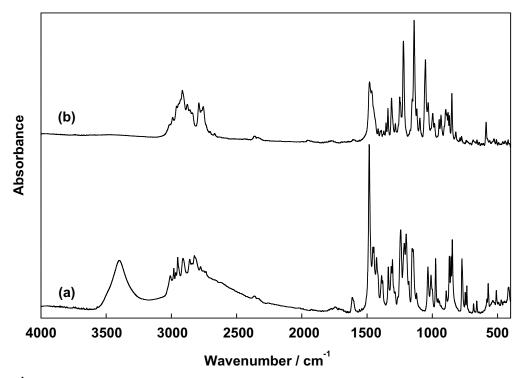
3.3 การสังเคราะห์และพิสูจน์ทราบสารวงแหวนไดเบนโซโมโนอาซา-14-คราวน์-4 (DBMA 4)

วิธีการสังเคราะห์

ซุปปร้าโมเลกุลชนิดสารวงแหวนที่เชื่อมสารเบนซอกซาซีนไดเมอร์ด้วยไดโทซิลเลตเตด ไดเอทิลีนไกลคอล (ในที่นี้ใช้ตัวย่อว่า **DBMA**) (รูปที่ 3.11) ได้แก่ Dibenzo-monoaza-14crown-4 based on N,N-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine (DBMA 4)

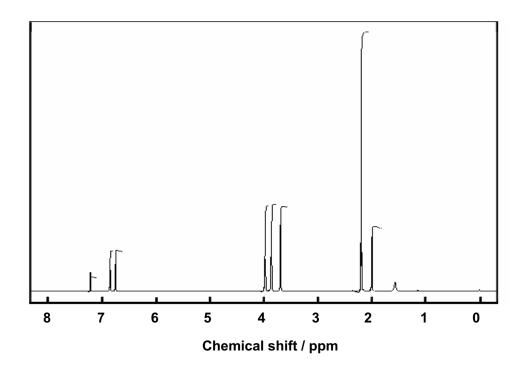
$$\mathsf{H_3C} \xrightarrow{\mathsf{O}} \mathsf{O} \xrightarrow{\mathsf{O}} \mathsf{CH_3}$$

รูปที่ 3.11. ซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-14-คราวน์-4 (DBMA 4).

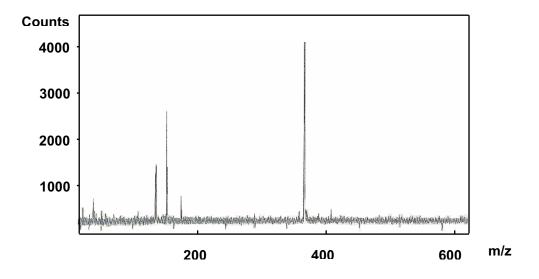

การเตรียมซุปปรัาโมเลกุลชนิดไดเบนโซโมโนอาซา-14-คราวน์-4 ทำได้ดังนี้ (รูปที่ 3.12): เตรียมสารละลายเบนซอกซาซีนไดเมอร์ชนิด BZXD 1 (1 มิลลิโมล, 0.30 กรัม) ในอะซิโตไน ไตรด์ (150 มิลลิลิตร) จากนั้นเติมโพแทสเซียมไฮดรอกไซด์ (2.1 มิลลิโมล, 0.12 กรัม) จากนั้น ทำการกลั่นย้อนกลับเป็นเวลา 1 ชั่วโมง นำสารละลายไดโทซิลเลตเตดไดเอทิลีนไกลคอล (1 มิลลิโมล, 0.41 กรัม) ในอะซิโตในไตรด์ (50 มิลลิลิตร) แล้วนำไปหยดอย่างช้า ๆลงใน สารละลายที่กำลังกลั่นย้อนกลับ ทำการกลั่นย้อนกลับต่อไปเป็นเวลา 3 วัน หลังจากนั้นระเหย และละลายสารที่ได้ด้วยไดคลอโรมีเทนและล้างด้วยน้ำ เอาตัวทำละลายอะติโตในไตรด์ออก จำนวน 50 มิลลิลิตร เป็นเวลา 3 ครั้ง ทำให้แห้งด้วยการเติมโซเดียมซัลเฟตคันไฮดรัส และทิ้งไว้ ข้ามคืน นำสารละลายที่ได้ไปทำการระเหยตัวทำละลายออก จะได้ของแข็งสีเหลืองอ่อน นำสาร ที่ได้มาตกผลึกใหม่ด้วยไอโซโพรพานอลเพื่อได้สารผลิตภัณฑ์ **DBMA 4** (รูปที่ 3.11)

รูปที่ 3.12. การเตรียมซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-14-คราวน์-4 (DBMA 4).

ผลการทดลองและวิจารณ์


ซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-14-คราวน์-4 สามารถเตรียมได้โดยปฏิกิริยา อีเทอร์ริฟิเคชั่น (Etherification) ระหว่างอัตราส่วนโมลที่เท่ากันของไดโทซิลเลตเตดไดเอทิลีน ใกลคอลและเบนซอกซาซีนไดเมอร์ชนิดN,N-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine ในสภาวะที่เป็นเบสด้วยโพแทสเซียมไฮดรอกไซด์ในสารละลายเจือจางของอะซิโตในไตรด์ เพื่อ จะทำให้ได้โมเลกุลวงแหวนเบนซอกซาซีนที่มีการเชื่อมโยงจากหมู่ฟังก์ชั่นอีเทอร์ดังแสดงในรูป ที่ 3.12

สารผลิตภัณฑ์ **DBMA 4** ที่ได้เป็นของแข็งสีขาว เมื่อนำไปตรวจสอบด้วยเทคนิค FTIR พบว่าเมื่อนำสาร DBMA 4 มาทำการเปรียบเทียบกับสารเบนซอกซาซีนไดเมอร์ BZXD 1 สาร ผลิตภัณฑ์ **DBMA 4** ที่ได้จะไม่ปรากฏพีกของหมู่ไฮดรอกซิลที่ 3399 cm⁻¹ เป็นพีกของพันธะ ไฮโดรเจนแบบ Intermolecular Hydrogen Bonding และพีกที่ 3000-2800 cm⁻¹ เป็นพีกของ พันธะไฮโดรเจนแบบ Intramolecular Hydrogen Bonding รวมถึงพีกที่ 1613 cm ื เป็นพีกที่ แสดงถึงพันธะที่เกิดขึ้นระหว่างในโตรเจนกับไฮโดรเจนของหมู่ไฮดรอกซิล ซึ่งสามารถบอกถึง การเกิด Intramolecular Hydrogen Bonding แสดงว่าหมู่ไฮดรอกซิลของสารตั้งต้นเบนซอก ซาซีนไดเมอร์ถูกใช้ในการทำปฏิกิริยาจนหมด (รูปที่ 3.13 (a), (b))


รูปที่ 3.13. FTIR สเปคตร้าของ (a) สารไดเมอร์ BZXD 1 และ (b) สารผลิตภัณฑ์ DBMA 4.

เมื่อนำสาร **DBMA 4** ไปทำการวิเคราะห์ด้วยเทคนิค ¹H-NMR (ดังรูปที่ 3.14) พบว่า มีพีก หลักของเมทิลลีนปรากฏขึ้นเป็นสามกลุ่มดังนี้ โดยสองพีกแรกเกิดขึ้นที่ $\delta_{ extsf{H}}$ เท่ากับ 3.95 และ 4.07 ppm ซึ่งเป็นหมู่เมทิลลีนของไดเอทิลีนออกไซด์ในไดโทซิลเลตเตดไดเอทิลีนไกลคอล และ อีกพีกหนึ่งที่ $\delta_{ extsf{H}}$ เท่ากับ 3.79 ppm ซึ่งเป็นพีกของหมู่เมทิลลีนของหมู่อาซาเมทิลลีนในไดเมอร์ ซึ่งจากข้อมูลนี้ชี้ให้เห็นว่าสารที่ได้น่าจะมีโครงสร้างที่สมมาตร นั่นหมายถึงโครงสร้างที่เป็น สารประกอบอีเทอร์วงแหวน นอกจากนี้เมื่อคำนวณอัตราส่วนของอินทิเกรชั่นของหมู่เมทิลลีนทั้ง สามหมู่จะได้เป็น 1:1:1 ซึ่งแสดงให้เห็นว่าปฏิกิริยาอีเทอร์ริฟิเคชั่นเกิดขึ้นที่หมู่ไฮดรอกซิลทั้ง สองหมู่

รูปที่ 3.14. 1 H-NMR สเปคตรัมของสารผลิตภัณฑ์ **DBMA** 4.

เมื่อนำสาร DBMA 4 ใปวิเคราะห์ด้วยเทคนิค MALDI-TOF MS พบว่าได้พีกเพียงพีก เดียว ที่มีค่ามวลต่อประจุ (m/z) เป็น 339.23 (ดังรูปที่ 3.15) ซึ่งเป็นโครงสร้างของวงแหวน อีเทอร์ชนิด [1+1] นอกจากนี้โครงสร้างของสาร **DBMA 4** ได้รับการยืนยันจากข้อมูลจากการ วิเคราะห์หาธาตุที่เป็นองค์ประกอบว่าเป็นโครงสร้างวงแหวนอีเทอร์ชนิด [1+1] ด้วย

รูปที่ 3.15. MALDI-TOF สเปคตรัมของสารผลิตภัณฑ์ **DBMA 4**.

สำหรับผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

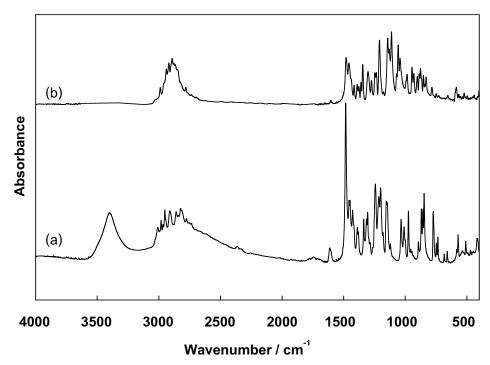
Dibenzo-monoaza-14-crown-4 based on N,N-bis(3,5-dimethyl-2-hydroxybenzyl) methylamine (DBMA 4): R_f = 0.03 (5% methanol in chloroform); white crystal; FTIR (KBr, cm⁻¹): 1481 (vs, tri-substituted benzene), 1221 (vs, C-N stretching), 1053 (s, Ar-O-CH₂); ¹H-NMR (400 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 2.10 (3H, s, N-CH₃), 2.30 (12H, s, Ar-CH₃), 3.79 (4H, s, Ar-CH₂-N), 3.95 (4H, t, CH₂-O), 4.07 (4H, t, CH₂-O), 6.84 (2H, s, Ar-H), 6.93 (2H, s, Ar-H). MALDI-TOF MS (m/z): 369.32. Anal.calcd. for C₂₃H₃₁NO₃: C, 74.469; H, 8.401; and N, 3.794%. Found: C, 74.469; H, 8.408; and N, 3.873%.

3.4 การสังเคราะห์และพิสูจน์ทราบสารวงแหวน ไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5)

วิธีการสังเคราะห์

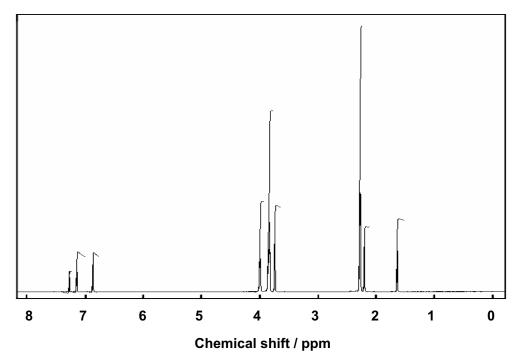
ชุปปร้าโมเลกุลชนิดสารวงแหวนที่เชื่อมสารเบนซอกซาซีนไดเมอร์ด้วยไดโทซิลเลตเตด ไตรเอทิ่ลีนไกลคอล (ในที่นี้ใช้ตัวย่อว่า **DBMA**) (รูปที่ 3.16) ได้แก่ Dibenzo-monoaza-17crown-5 based on N,N-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine (DBMA 5)

รูปที่ 3.16. ซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5).

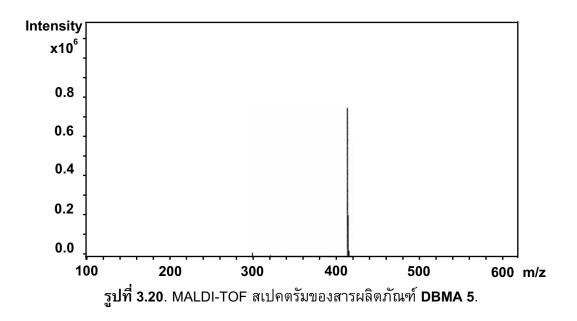

การเตรียมซุปปรัาโมเลกุลชนิดไดเบนโซโมโนอาซา-17-คราวน์-5 ทำได้ดังนี้ 3.17): เตรียมสารละลายเบนซอกซาซีนไดเมอร์ชนิด BZXD 1 (1 มิลลิโมล, 0.30 กรัม) ในอะซิ โตในไตรด์ (150 มิลลิลิตร) จากนั้นเติมโพแทสเซียมไฮดรอกไซด์ (2.1 มิลลิโมล, 0.12 กรัม) จากนั้นทำการกลั่นย้อนกลับเป็นเวลา 1 ชั่วโมง นำสารละลายไดโทซิลเลตเตดไตรเอทิลีนไกล คอล (1 มิลลิโมล, กรัม)ในอะซิโตในไตรด์ (50 มิลลิลิตร) แล้วนำไปหยดอย่างช้าๆลงใน สารละลายที่กำลังกลั่นย้อนกลับ ทำการกลั่นย้อนกลับต่อไปเป็นเวลา 3 วัน หลังจากนั้นระเหย และละลายสารที่ได้ด้วยไดคลอโรมีเทนและล้างด้วยน้ำ เอาตัวทำละลายอะซิโตในไตรด์ออก จำนวน 50 มิลลิลิตรเป็นเวลา 3 ครั้ง ทำให้แห้งด้วยการเติมโซเดียมซัลเฟตอันไฮดรัส และทิ้งไว้ ข้ามคืน นำสารละลายที่ได้ไปทำการระเหยตัวทำละลายออก จะได้ของแข็งสีเหลืองอ่อน นำสาร ที่ได้มาตกผลึกใหม่ด้วยไอโซโพรพานอลเพื่อได้สารผลิตภัณฑ์ **DBMA 5** (รูปที่ 3.16)

ร**ูปที่ 3.17.** การเตรียมซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-17-คราวน์-5 (**DBMA 5**).

ผลการทดลองและวิจารณ์


ซุปปร้าโมเลกุลชนิดไดเบนโซโมโนอาซา-17-คราวน์-5 สามารถเตรียมได้โดยปฏิกิริยา อีเทอร์ริฟิเคชั่น (Etherification) ระหว่างอัตราส่วนโมลที่เท่ากันของไดโทซิลเลตเตดไตรเอทิลีน และเบนซอกซาซีนไดเมอร์ชนิด N,N-bis(3,5-dimethyl-2-hydroxybenzyl)methyl ในสภาวะที่เป็นเบสด้วยโพแทสเซียมไฮดรอกไซด์ในสารละลายเจือจางของอะซิโตไน amine ไตรด์ เพื่อจะทำให้ได้โมเลกุลวงแหวนเบนซอกซาซีนที่มีการเชื่อมโยงจากหมู่ฟังก์ชั่นอีเทอร์ดัง แสดงในรปที่ 3.17

สารผลิตภัณฑ์ **DBMA 5** ที่ได้เป็นของแข็งสีขาว เมื่อนำไปตรวจสอบด้วยเทคนิค FTIR จะพบว่าเมื่อนำสาร DBMA 5 มาทำการเปรียบเทียบกับสารเบนซอกซาซีนไดเมอร์ BZXD 1 สารผลิตภัณฑ์ **DBMA 5** ที่ได้จะไม่ปรากฏพีกของหมู่ไฮดรอกซิลที่ 3399 cm⁻¹ เป็นพีกของ พันธะไฮโดรเจนแบบ Intermolecular Hydrogen Bonding และพีกที่ 3000-2800 cm⁻¹ เป็นพีก ของพันธะไฮโดรเจนแบบ Intramolecular Hydrogen Bonding รวมถึงพีกที่ 1613 cm⁻¹ เป็นพีก ของพันธะที่เกิดขึ้นระหว่างในโตรเจนกับไฮโดรเจนของหมู่ไฮดรอกซิลแสดงถึงการเกิด Intramolecular Hydrogen Bonding และชี้ให้เห็นว่าหมู่ไฮดรอกซิลของสารตั้งต้นเบนซอกซาซีน ไดเมอร์ถูกใช้ในการทำปฏิกิริยาจนหมด (รูปที่ 3.18 (a), (b))


รูปที่ 3.18. FTIR สเปคตร้าของ (a) สารไดเมอร์ BZXD 1 และ (b) สารผลิตภัณฑ์ DBMA 5.

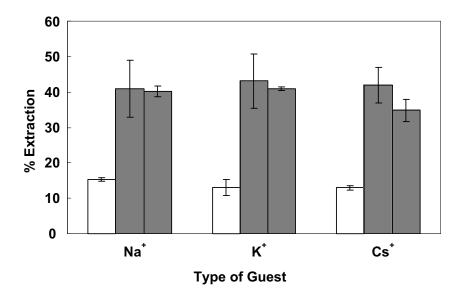
เมื่อนำสาร **DBMA 5** ไปทำการวิเคราะห์ด้วยเทคนิค ¹H-NMR (ดังรูปที่ 3.19) พบว่า มีพีก หลักของเมทิลลีนปรากฏขึ้นเป็น 4 กลุ่มดังนี้ โดยสามพีกแรกเกิดขึ้นที่ $\delta_{ extsf{H}}$ เท่ากับ 3.80, 3.82 และ 3.97 ppm ซึ่งเป็นหมู่เมทิลลีนของไดเอทิลีนออกไซด์ในไดโทซิลเลตเตดไตรเอทิลีนไกล คอล และอีกพีกหนึ่งที่ $\delta_{ extsf{H}}$ เท่ากับ 3.71 ppm ซึ่งเป็นพีกของหมู่เมทิลลีนของหมู่อาซาเมทิลลีน ในไดเมอร์ นอกจากนี้เมื่อคำนวณอัตราส่วนของอินทิเกรชั่นของหมู่เมทิลลีนทั้งสามหมู่จะได้เป็น 1:1:1:1 ซึ่งแสดงให้เห็นว่าปฏิกิริยาอีเทอร์ริฟิเคชั่นเกิดขึ้นที่หมู่ไฮดรอกซิลทั้งสองหมู่ ซึ่งจาก ข้อมูลนี้ชี้ให้เห็นว่าสารที่ได้น่าจะมีโครงสร้างที่สมมาตร และเป็นสารประกอบอีเทอร์วงแหวน

รูปที่ 3.19. ¹H-NMR สเปคตรัมของสารผลิตภัณฑ์ **DBMA** 5.

เมื่อนำสาร DBMA 5 ไปวิเคราะห์ด้วยเทคนิค MALDI-TOF MS พบว่า มีพีกเพียงพีก เดียวที่มีค่ามวลต่อประจุเป็น 414.26 (ดังรูปที่ 3.20) ซึ่งเป็นโครงสร้างของวงแหวนอีเทอร์ชนิด [1+1]

สำหรับผลการวิเคราะห์สารที่เตรียมได้เป็นดังต่อไปนี้

Dibenzo-monoaza-17-crown-5 based on N,N-bis(3,5-dimethyl-2-hydroxybenzyl) methylamine (DBMA 5): $C_{25}H_{35}NO_4$: $R_f = 0.02$ (5% methanol in chloroform); white crystal; FTIR (KBr,cm⁻¹): 1480 (vs, tri-substituted benzene), 1209 (vs, C-N stretching), 1057 (s, C-O-C); 1 H-NMR (400 MHz, CDCl₃, ppm): δ_{H} 2.17 (3H, s, N-**CH**₃), 2.24 (12H, s, Ar-CH₃), 3.71 (4H, s, Ar-CH₂-N), 3.80 (4H, t, O-CH₂-CH₂), 3.82 (4H, t, CH₂-CH₂-O),3.97 (4H, t, O-CH₂-CH₂), 6.85 (2H, s, Ar-H), 7.12 (2H, s, Ar-H). MALDI-TOF MS (m/z): 414.26.


3.5 สารประกอบอินคลูชันของสารวงแหวนชนิดไดเบนโซโมโนอาซาคราวน์อีเทอร์ ((DBMA 1)-(DBMA 5)) กับเกลือของโลหะหมู่ที่1 ได้แก่ เกลือโซเดียมไพเครต, เกลือ โพแทสเซียมไพเครต และเกลือซีเซียมไพเครต

วิธีการเตรียมสาร

นำสารวงแหวน ((DBMA 1)-(DBMA 5)) มาละลายด้วยคลอโรฟอร์มให้มีความเข้มข้นเป็น 7x10⁻⁵ โมลาร์ นำโซเดียมไพเครต โพแทสเซียมไพเครต และซีเซียมไพเครต มาละลายน้ำให้มี ความเข้มข้นเป็น 7x10⁻⁵ โมลาร์ ผสม 5 มิลลิลิตรของสารละลายทั้ง 2 ชนิดเข้าด้วยกัน เขย่า อย่างแรงประมาณ 1 นาที และตั้งทิ้งไว้ข้ามคืน จากนั้นนำสารละลายในชั้นน้ำไปวัดค่าการ ดูดกลืนด้วยเทคนิคยูวีวิสิเบิลสเปคโตรสโครปีที่ความยาวคลื่น นาโนเมตรและทำการ 354 คำนวณหาเปอร์เซนต์ความสามารถในการสกัดไอออนของโลหะหมู่ที่ 1 จากสมการ [(A₀- $A)/A_0]$ x100 โดยที่ A_0 คือ ความดูดซับของแสงยูวีที่เริ่มต้น และ A คือ ความดูดซับของแสงยูวี หลังจากการสกัดด้วยสารวงแหวน ((DBMA 1)-(DBMA 5)) ส่วนสารละลายในชั้นอินทรีย์จะถูก นำไประเหยเอาตัวทำละลายออกจากนั้นนำไปศึกษาอัตราส่วนระหว่างสารหลักสารรองด้วย เทคนิคโปรตอนเอ็นเอ็มอาร์ต่อไป

ผลการทดลองและวิจารณ์

ผลการสกัดไอออนชี้ให้เห็นว่า สารวงแหวน (DBMA 1) สามารถสกัดไอออนทุกประเภท ได้ในระดับประมาณ 15% ในขณะที่สารวงแหวน (DBMA 4) และ (DBMA 5) สามารถสกัด ไอออนทุกประเภทได้ในระดับประมาณ 42 และ 40% ตามลำดับ (ดังรูปที่ 3.21) ผลการสกัด ไอออนเหล่านี้เป็นการระบุถึงการที่สารหลักสามารถรับสารรองไว้ในช่องว่าง โดยที่สารวงแหวน (DBMA 1) มีความสามารถในการตอบรับสารรองได้น้อยเมื่อเทียบกับสารวงแหวน ((DBMA 4)-(DBMA 5)) ทั้งนี้อาจเนื่องมาจากการที่โครงสร้างของสารวงแหวน (DBMA 1) นั้นไม่มีความ เหมาะสม ทั้งในเชิงของความเป็นขั้วลบ ขนาด และรูปร่าง ทำให้ไม่สามารถตรึงไอออนบวกได้ ในขณะที่โครงสร้างของสารวงแหวน ((DBMA 4)-(DBMA 5)) มีความเหมาะสมมากกว่า ทั้งใน เชิงของความเป็นขั้วลบ ขนาด และรูปร่าง ทำให้สามารถตรึงไอออนบวกได้ในรูปแบบของสาร หลัก-สารรอง

รูปที่ 3.21. เปอร์เซ็นต์การสกัดโซเดียมไพเครต, โพแทสเซียมไพเครต, และ ซีเซียมไพ เครตที่มีความเข้มข้นเป็น 7x10 ⁵ M โดยสารละลายวงแหวน (□) **DBMA 1, (■) DBMA 4,** และ (**■) DBMA 5** ในคลอโรฟอร์มที่ 25°C.

การวิเคราะห์อัตราส่วนสารหลักสารรองนี้ ยังได้นำเอาวิธีการ ¹H NMR มาประยุกต์ใช้ ด้วย การสกัดไอออนนี้ได้ใช้ระบบของเหลว-ของเหลวโดยไอออนอยู่ในรูปของเกลือไพเครต ซึ่ง ไอออนไพคริกนี้จะให้สัญญาณใน ¹H NMR ที่ 8.8 ppm ดังนั้น ในกรณีที่ สารหลักมีการรับ ไอออนไว้เป็นสารรองสามารถสังเกตเห็นพืกนี้ได้ นอกจากนี้ เมื่อสารหลักรับสารรองแล้ว สัญญาณของสารหลักจะมีการเคลื่อนที่ ทั้งนี้ เนื่องจากความหนาแน่นของอิเล็กตรอนมีการ เปลี่ยนแปลงไป ซึ่งเป็นข้อมูลอีกด้านหนึ่งที่จะบ่งชี้ได้ว่ามีการรับไอออนโลหะเข้าในสารหลักจริง ตาราง 3.1 ชี้ให้เห็นว่า ค่าเคมีคอลชิฟท์ของสารวงแหวน DBMA 1 มีการเปลี่ยนแปลงน้อยมาก อีกทั้งไม่พบพีกของไอออนไพเครตที่ 8.8 ppm สิ่งเหล่านี้ชี้ให้เห็นว่าโมเลกุลสารหลักแทบจะไม่มี ปฏิสัมพันธ์กับไอออนของโลหะในลักษณะที่ไอออนของโลหะเป็นสารรอง ในขณะที่ กรณีของ สารวงแหวน DBMA 4 และ DBMA 5 พบว่าสารหลักมีการจับไอออนไว้เป็นสารรองโดยสามารถ สังเกตเห็นได้จากมีพีกของไอออนไพเครตเกิดขึ้นที่ 8.8 ppm นอกจากนี้ เมื่อสารหลักจับสารรอง สัญญาณของสารหลักจะมีการเปลี่ยนแปลงตำแหน่งไป เนื่องจากความหนาแน่นของ อิเล็กตรอนเกิดการเปลี่ยนแปลง โดยเฉพาะพีกที่เป็นของหมู่เมทีลีนที่เชื่อมฟีนอลทั้งสองวงและ พีกของส่วนเมทีลีนในไดเอทีลีนออกไซด์ และไตรเอทีลีนออกไซด์ (ดังตาราง 3.2 และ 3.3) ซึ่ง ชี้ให้เห็นว่าโมเลกุลสารหลักมีปฏิสัมพันธ์กับไอออนของโลหะในลักษณะที่ไอออนของโลหะเป็น สารรองโดยผ่านอิเล็กตรอนคู่โดดเดี่ยวของในโตรเจน และออกซิเจน ผลการศึกษาการวิเคราะห์ เชิงคุณภาพด้วย ¹H NMR ชี้ให้เห็นอีกด้วยว่า แม้ว่าไอออนของโลหะต่างชนิดกัน สัญญาณหรือ พีกของสารหลักจะมีการเคลื่อนที่ไปสู่ตำแหน่งใกล้เคียงกัน สิ่งนี้ระบุว่า การจับไอออนของสาร หลักนั้นไม่ขึ้นกับประเภทของสารหลัก

ตารางที่ 3.1. ¹H NMR ของสารวงแหวน **DBMA 1** และ **DBMA 1** ที่มีการรับไอออนโซเดียม

$$\begin{array}{c|c}
 & b & e \\
 & d & c \\
 & C & H_3 & f & g \\
 & C & C & C & G \\
 & C & C & C & G \\
 & C & C & C & G \\
 & C & C & C & G \\
 & C & C & C & C & G \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 & C & C & C & C \\
 &$$

DBMA 1

Position	Chemical Shift / ppm		
	DBMA 1	((DBMA 1)- Na ⁺) Complex	
а	1.94	1.95	
b	2.11	2.12	
С	2.25	2.25	
d	3.62	3.62	
е	4.11	4.12	
f	6.79	6.80	
g	6.91	6.92	

ตารางที่ 3.2. ¹H NMR ของสารวงแหวน **DBMA 4** และ **DBMA 4** ที่มีการรับไอออนโซเดียม

DBMA 4

Position	Chemical Shift / ppm		
	DBMA 4	((DBMA 4)-Na ⁺) Complex	
а	2.10	2.01	
b	2.30	2.20	
С	3.79	3.57	
d	3.95	3.83	
е	4.07	3.96	
f	6.84	6.78	
g	6.93	6.99	

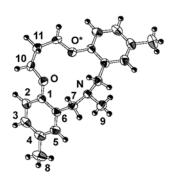
ตารางที่ 3.3. ¹H NMR ของสารวงแหวน **DBMA 5** และ **DBMA 5** ที่มีการรับไอออนโซเดียม

Position	Chemical Shift / ppm		
	DBMA 5	((DBMA 5)-Na ⁺) Complex	
а	2.18	2.17	
b	2.24	2.26	
С	3.71	3.72	
d	3.80	3.81	
е	3.83	3.83	
f	3.97	3.98	
g	6.85	6.86	
h	7.12	7.12	

3.6 การศึกษาโครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-12-คราวน์-3 (DBMA 2) และ ไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5) ด้วยรังสีเอกซ์เรย์

3.6.1 โครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-12-คราวน์-3 (DBMA 2) วิธีการเตรียมสาร

นำผลึก DBMA 2 มาตกผลึกใหม่ด้วยเมทานอลเพื่อให้ได้ผลึกเดี่ยวของ DBMA 2 ที่ มีลักษณะใส ไม่มีสี หลังจากนั้นนำผลึกเดี่ยวของ DBMA 2 มาทำการวิเคราะห์ด้วยเทคนิค Xray Diffraction โดยระบบ X-ray Diffraction ที่ใช้คือ Rigaku RAXIS-RAPID จำลองภาพโดย อาศัยซอฟท์แวร์ TEXSAN เป็นตัวประมวลผล

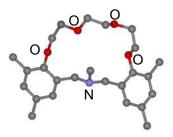

<u>ผลการทดลอง</u>

ตารางที่ 3.4 ข้อมูลทั่วไปของผลึกเดี่ยว (DBMA 2)

	DBMA 2
สูตร	C ₁₀ H _{12.5} ON _{0.5}
มวลโมเลกุล	155.71
Crystal system	orthorhombic
Space group	<i>Pnma</i> (no.62)
a/Å	9.3556(7)
b/Å	15.341(1)
c/Å	11.8139(8)
V/Å ³	1695.6(4)
z	8
R1, Rw	0.047, 0.121
μ (M ₀ -K _{$lpha$})/cm ⁻¹	0.78
No. of total, unique reflections measured (Rint)	12579, 1616 (0.032)
CCDC	258583

ผลการวิเคราะห์ผลึกเดี่ยวที่เตรียมได้เป็นดังต่อไปนี้

ภาพ ORTEP view (รูปที่ 3.22) ได้จากการวิเคราะห์ด้วยเทคนิค X-ray Diffraction โดย อาศัยซอฟท์แวร์ TEXSAN เป็นตัวประมวลผล พบว่าผลึกเดี่ยวมีลักษณะเป็นสารวงแหวนที่ สมมาตรชนิด (1+1) ซึ่งประกอบไปด้วยอะตอม 12 อะตอมเรียงตัวกันเป็นวงแหวน ปฏิกิริยาใน การเกิดสารวงแหวนชนิด (1+1) นี้อาจถูกควบคุมให้เสถียรภาพอยู่ภายใต้ความแข็งของวงแหวน เบนซีน และ พันธะไฮโดเจนทั้งภายในและภายนอกโมเลกุลของไดเมอร์ชนิด N,N-bis(3,5-dimethyl-2-hydroxy benzyl)methylamine



รูปที่ 3.22. ภาพ ORTEP view ของผลึกเดี่ยว DBMA 2.

3.6.2 โครงสร้างผลึกเดี่ยวของไดเบนโซโมโนอาซา-17-คราวน์-5 (DBMA 5)

วิธีการเตรียมสาร

นำผลึก DBMA 5 มาตกผลึกใหม่ด้วยไอโซโพรพานอลเพื่อให้ได้ผลึกเดี่ยวของ DBMA 5 ที่มีลักษณะใส ไม่มีสี หลังจากนั้นนำผลึกเดี่ยวของ DBMA 5 มาทำการวิเคราะห์ด้วย เทคนิค X-ray Diffraction โดยระบบ X-ray Diffraction ที่ใช้คือ Rigaku RAXIS-RAPID จำลอง ภาพโดยอาศัยซอฟท์แวร์ TEXSAN เป็นตัวประมวลผล

รูปที่ 3.23. ภาพ ORTEP view ของผลึกเดี่ยว DBMA 5.

ผลการทดลองและวิจารณ์ ตารางที่ 3.5 ข้อมูลทั่วไปของผลึกเดี่ยว (DBMA 5)

	DBMA 5
สูตร	$C_{25}H_{35}NO_4$
มวลโมเลกุล	413.56
Crystal system	orthorhombic
Space group	Pna2 ₁ (no. 33)
a/Å	18.0895(4)
b/Å	8.9394(2)
c/Å	14.4691(3)
$lpha$! $^{\circ}$	90
etao	90
\mathcal{N}°	90
V/Å ³	2339.79(9)
Z	4
R1, Rw	0.0290, 0.0804
μ /mm $^{-1}$	0.078
No. of total, unique reflections measured (Rint)	53806, 5327 (0.019)

ผลการวิเคราะห์ผลึกเดี่ยวที่เตรียมได้เป็นดังต่อไปนี้

ภาพ ORTEP view (รูปที่ 3.23) ได้จากการวิเคราะห์ด้วยเทคนิค X-ray Diffraction โดย อาศัยซอฟท์แวร์ TEXSAN เป็นตัวประมวลผล พบว่า ผลึกเดี่ยวมีลักษณะเป็นสารวงแหวนที่ สมมาตรชนิด (1+1) ซึ่งประกอบไปด้วยอะตอม 17 อะตอมเรียงตัวกันเป็นวงแหวน ปฏิกิริยาใน การเกิดสารวงแหวนชนิด (1+1) นี้อาจถูกควบคุมให้เสถียรภาพอยู่ภายใต้ความแข็งของวงแหวน เบนซีน และ พันธะไฮโดเจนทั้งภายในและภายนอกโมเลกุลของไดเมอร์ชนิด N,N-bis(3,5dimethyl-2-hydroxy benzyl)methylamine

บทสรุปและผลที่ได้รับจากการดำเนินงานวิจัย

จุดสำคัญของการพัฒนาเบนซอกซาซีนในรูปแบบของโมเลกุลวงแหวนขนาดใหญ่ในบทนี้ คือ การวิจัยเพื่อการเสนอการออกแบบและนำไปสู่การสังเคราะห์โมเลกุลวงแหวนได้หลากหลาย ภายใต้การสังเคราะห์ด้วยปฏิกิริยาที่ไม่ชับซ้อน ผลิตภัณฑ์ที่ได้มีความบริสุทธิ์สูงและมีปริมาณ สูง ทั้งนี้ เนื่องจากเบนซอกซาซีนไดเมอร์เป็นโมเลกุลที่สามารถเตรียมได้อย่างมีประสิทธิภาพสูง การออกแบบและสังเคราะห์ การสังเคราะห์โมเลกุลวงแหวนจึงเน้นไปที่วิธีการเตรียมจาก โมเลกุลเบนซอกซาซีนไดเมอร์ โดยให้โมเลกุลวงแหวนที่ได้เชื่อมด้วยหมู่ออกซีเอทีลีนเพื่อเป็น วงแหวนคราวน์อีเทอร์ประเภทหนึ่ง ผลงานวิจัยในส่วนนี้ทำให้พบว่าเงื่อนไขที่สำคัญคือการทำ ให้ฟืนอลเป็นฟืนอกไซด์ในสภาวะเบสที่เหมาะสม และใช้ไดทอซิลเลตเตทไดเอทีลีนไกลคอลทำ ปฏิกิริยากับไดเมอร์ในความเข้มข้นต่ำ เพื่อให้เกิดการปิดวงแหวน การตรวจสอบโมเลกลใน เบื้องต้นทำได้โดยง่าย โดยใช้ FTIR เพื่อตรวจสอบที่หมู่ไฮดรอกซิลว่ายังเหลืออยู่หรือไม่ แม้ว่า NMR จะทำให้ทราบหมู่ฟังก์ชันก็ตาม EA และ MS จะช่วยให้สามารถพิสูจน์ทราบโครงสร้างได้ อย่างละเอียด จุดเด่นของปฏิกิริยานี้คือ ปริมาณสารที่เตรียมได้มีเปอร์เซ็นต์สูง (high yield) และ มีความบริสุทธิ์ โดยได้เฉพาะวงแหวน [2+2]

ทั้งนี้คณะวิจัยได้ตั้งข้อสังเกตว่า (ขณะนี้กำลังศึกษาเพิ่มเติมต่อ) วงแหวน [2+2] อาจ เป็นกรณีที่เหมาะสมกับโมเลกุลของไดโทซิลเลตเตทไดเอทีลีนไกลคอล เท่านั้น คณะวิจัยพบว่าในกรณีอื่น ผลที่ได้จากการเตรียมวงแหวนจะได้เป็นประเภท [1+1] ซึ่งจากการ เตรียมสารต่างๆอย่างเป็นระบบ ทำให้สรุปในเบื้องต้นว่า น่าจะมาจากปัจจัยด้านโครงสร้างของ โมเลกุลของไดทอซิล กล่าวคือในกรณีที่เป็นโมเลกุลไดทอซิลเลตที่มีสายโซ่สั้นกว่ายาวกว่าไดเอ ที่ลื่นใกลคอล จะทำให้สารวงแหวนที่เตรียมได้เป็นรูปแบบ [1+1] ดังเห็นได้จากกรณีของสาร จำพวก DBMA ที่เตรียมขึ้น ประเด็นนี้ กำลังอยู่ระหว่างรวบรวมข้อมูลเชิงวิเคราะห์เพื่อเขียน พร้อมพิสูจน์ทราบจากผลวิเคราะห์ผลึกเดี่ยวที่ได้รับความร่วมมือจาก บทความตีพิมพ์ มหาวิทยาลัยโอซากา ประเทศญี่ปุ่น

ผลงานที่ได้และที่คาดว่าจะได้ (Output and Expected Output)

1. Publications

No.	Authors (* : Corresponding Author), Article	Status/Project
	Name	
1.	Chirachanchai S. *; Phongtamrug S. "Role of H-bond	In preparation
	in Controlling the Macrocyclization: A Model Case of	
	Dibenzomonoazacrown Ethers from N,N-Bis(2-	
	hydroxybenzyl)alkylamine Derivatives".	
2.	Rungsimanon T.; Laobuthee A.; Chirachanchai S. *;	In preparation
	"A Simple, Effective, and Selective Synthesis Route	
	for [1+1] Dibenzo-Monoaza-Crown Ethers Based on	
	<i>N,N</i> -Bis (2-hydroxy-3,5-dimethylbenzyl)methylamine	
	and Their Inclusion Phenomena with Metal Ions".	
3.	Rungsimanon T.; Laobuthee A.; Tohnai M.; Miyata,	In preparation
	M.; Chirachanchai S. *; "Controlled Structure	
	Dibenzomonoazacrown Ethers from A Simple,	
	Effective, and Efficient Reaction Using N,N-Bis(2-	
	hydroxybenzyl)alkylamine Derivatives".	
4.	Rungsimanon T.; Laobuthee A.; Phongtumrung S.;	In preparation
	Tashiro, K.; Chirachanchai S. *; "Synthesis,	
	characterization, and single crystal of the novel	
	dibenzomonoaza-17-crown-5 based on N,N-bis(2-	
	hydroxy-3,5-dimethylbenzyl)methylamine".	

A Novel Ion Extraction Material Using Host-Guest Properties of Oligobenzoxazine Local Structure and Benzoxazine Monomer Molecular Assembly

SUWABUN CHIRACHANCHAI, APIRAT LAOBUTHEE, SUTTINUN PHONGTAMRUG, WANIDA SIRIPATANASARAKIT, HATSUO ISHIDA

Received 1 April 1999; accepted 3 June 1999

ABSTRACT: Bisphenol-A based benzoxazine monomer (BA-m) and its oligomer are applied as an ionophore to study by Pedersen's technique, the ion interaction with alkali and alkaline earth ions. Ion extraction efficiencies are significant when the solubility parameter of the organic phase is close to that of BA-m or the χ -parameter is 0.34. Ionophore concentration controls the amount of metal ion extraction. Both BA-m and its oligomer show high entrapment efficiency over 70% extraction, for all types of ions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2561–2568, 2000

Key words: benzoxazine; oligobenzoxazine; ionophore; host-guest compound; molecular assembly; solubility parameter; c-parameter

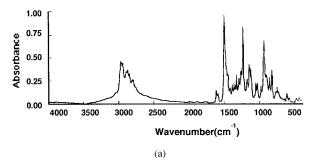
INTRODUCTION

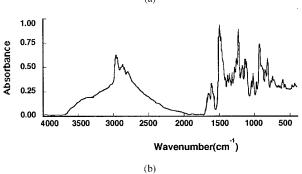
Fine separation is essential in technologies such as separation of isotopes, isomers, and ions, decontamination of waste water, and other concentration processes. Although ion exchange membranes are primarily required to separate selectively cations from anions and vice versa, separating different ions with the same electrical sign and same charge is also important. At present, there are some difficulties in excluding various ions from the system to obtain ultra high purity substances. To achieve high efficiency of an ion exclusion system, an ion exchange resin has been widely used.

the molecular level via the interaction between host and guest compound. Over the past decade, inclusion compounds have received much attention because the understanding on the molecular recognition of the inclusion phenomenon has grown rapidly. Thus, the inclusion phenomenon is widely studied in many applications, such as in the drug delivery system for the pharmaceutical industry, increasing compound solubility for the food and cosmetic industries, and in synthetic enzyme mimicry, including the separation of chemical and ion species.

Host-guest or inclusion compound is a novel approach to control the ion extraction process on

Polybenzoxazine is a class of phenolic material that undergoes ring-opening polymerization. Ning and Ishida⁷ reported that benzoxazine resin has a great deal of molecular design flexibility compared with ordinary phenolics. Benzoxazine is synthesized by the Mannich reaction from phenol, formaldehyde, and amine. Polyfunctional


Correspondence to: H. Ishida.


Contract grant sponsors: Royal Thai Government Research Fund and The NSF Center for Molecular and Microstructure of Composites.

Journal of Applied Polymer Science, Vol. 77, 2561–2568 (2000) © 2000 John Wiley & Sons, Inc.

¹ The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

² The NSF Center for Molecular and Microstructure of Composites (CMMC), Department of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA

Figure 1 FTIR of (a) BA-m monomer and (b) BA-m monomer after heat under vacuum at 100°C for 4 h.

benzoxazines show an excellent balance of mechanical and physical properties,^{8,9} including high glass transition temperatures, high moduli, low water absorption, and good dielectric properties.^{10,11}

However, the structure of the polybenzoxazine repeat unit is similar to that of calixarenes which are well known host compounds. The benzoxazine local structure (Scheme 1) has a hydrophilic hydroxyl group and a tertiary nitrogen on one side with a hydrophobic benzene ring on the other. Moreover, there are lone pair electrons at the oxygen in the hydroxyl group and the nitrogen in the tertiary amine linkage of the Mannich base in each repeat unit. By varying the functional groups, the hydrophobicity of the monomer unit can be controlled. Thus, the benzoxazine chains will possibly act as a host compound because of the specific structure combined with the possible conformation of a cyclic phenolic, as seen in the case of calixarenes, 12 or pseudo-cyclic phenolic as seen in the case of all linear ortho-phenolic resins.¹³

Hence, it is our interest to originally propose the inclusion property of a benzoxazine compound derived from the unique structure of a benzoxazine monomer and its oligomer. The present work concentrates on the ion interaction ability, especially with alkali and alkaline earth metal ions, to clarify the host-guest phenomenon of the benzoxazine owing to its specific local structure.

EXPERIMENTAL

Polycarbonate-grade bisphenol-A was supplied by Siam Chemical Industry, Co., Ltd. (Thailand). Analytical grade 1,4-dioxane, sodium hydroxide, potassium nitrate, chloroform, and picric acid (Ajax Chemicals, Australia), formaldehyde and anhydrous diethyl ether (J. T. Baker, Inc., Phillipsburg, NJ), methylamine (40% in water) and anisole (Fluka Chemicals, Buchs, Switzerland), toluene (99.5%), trichloroethylene, 1,2-dichloropropene, and methylene chloride (Farmitalia Carlo Erba, Spain) were used without purification. Anhydrous sodium sulfate, nickel (II) nimagnesium sulfate, sodium chloride (Farmitalia Carlo Erba, Spain), lithium chloride (Riedel-de Haen, Germany), and calcium chloride (E. Merck, Darmstadt, Germany) were applied as metal salts. All solvents were stocked with a 4-Å molecular sieve to eliminate the majority of water impurity before use.

The benzoxazine monomer and oligomer structures were studied by Fourier transform infrared spectroscopy (FTIR) (FT-45A, BioRad) at a resolution of 8 cm⁻¹. The concentration of picrate metal ions in the aqueous phase was measured by ultraviolet-visible spectroscopy (UV-Vis, Lambda-16, Perkin-Elmer) with a scan speed of 240 mm/min at room temperature. A Vortex mixer (Genie-2, Scientific Industries) was used to vigorously shake the mixture of organic and aqueous solution for 1 min. A centrifuge (Z 230 A, Hermle) was used for clear separation of a mixture to organic and aqueous phases at 3000 rpm for 3 min.

Purified bis(3,4-dihydro-2H-3-methyl-1,3-ben-zoxazinyl) isopropane (hereafter abbreviated as BA-m) was prepared from bisphenol-A, formal-dehyde, and methylamine according to the method reported by Ning and Ishida⁷ as shown in Scheme 2.

Benzoxazine oligomers were obtained by heating the monomer powder under vacuum at 100°C for 4 h to obtain a pale yellow rigid sheet. The polymerization was confirmed by FTIR. The sheet was then ground to a powder and stored at low temperature until use. The local structure of the oligomer is shown in Scheme 1.

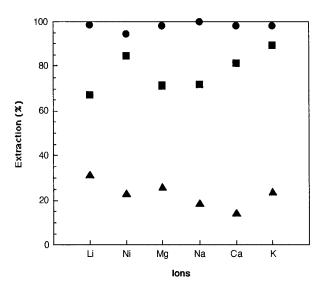
Alkali, alkaline earth, and other metal ion solutions were prepared by dissolving the corre-

Scheme 1 Benzoxazine local structure.

sponding salts in water. Picric acid at a concentration of $10^{-2}M$ and an additional $2\times10^{-2}M$ of an ion salt were dissolved in deionized water. The concentration of each ion stock solution was diluted to obtain 1 absorbance unit at the wavelength of 354 nm as observed by UV spectroscopy, which is equal to 6.89×10^{-5} mol/L. The monomer and oligomers were dissolved in methylene chloride, chloroform, and toluene at the concentration of 0.200, 2.00, and 20.0 g/L, respectively. To study the effect of the organic phase on the ion extraction property of the BA-m monomer, in the liquid-liquid separation system, other solvents, i.e., anisole, trichloroethylene, and 1,2-dichloropropene, were also used.

The ion extraction phenomenon was observed using the Pedersen's technique in liquid-liquid systems. ¹⁴ Five milliliters of ionophore in organic solution and 5 mL of ion solution were mixed vigorously for 3 min, followed by centrifuge for 1 min. The ion concentration of the aqueous phase was determined by a UV-Vis spectrophotometer at 354 nm. Ion extraction was accomplished at room temperature by varying the organic phase.

RESULTS AND DISCUSSION

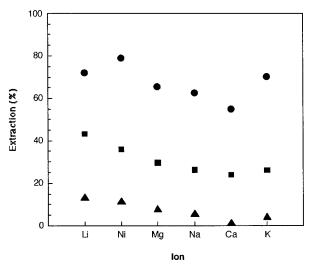

Figure 1 shows the FTIR spectra of BA-m before and after polymerization. The hydrogen bonded

Bisphenol-A

Formaldehyde Methylamine

Bis(3,4-dihydro-2H-3-methyl-1,3-benzoxazinyl) isopropane (BA-m)

Scheme 2 Preparation of BA-m.


Figure 2 Extraction efficiency of various metal picrates by the BA-m oligomers. Ionophore concentration in CH_2Cl_2 as the organic solvent: \bullet , 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

hydroxyl peaks are observed while the characteristic oxazine ring band is changed (1499 $\rm cm^{-1}$) as reported elsewhere.

To identify oligobenzoxazine as an ionophore and explore the inclusion phenomenon, it is necessary to study some structural factors of host-guest compounds. In the present work, the following factors are investigated: type of organic phase in liquid-liquid systems, variation of metal ions, and the concentration of both BA-m monomer and ion.

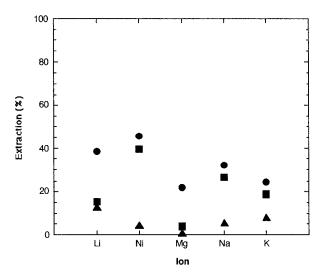

According to Pedersen's¹⁴ technique, the picrate ion will be shifted from the aqueous phase to the organic phase where the ionophore is present and act as an ionophore to entrap the metal ion. Here, when the oligobenzoxazine provides a structure as a host molecule and acts as an ionophore, the metal ion will transfer to the organic phase as soon as the oligobenzoxazine is added to the system and an ion complex is formed. Thus, ion extraction can be investigated by determining the change of picrate concentration in the aqueous phase and its concentration can be quantitatively determined by UV spectroscopy at the absorption wavelength of the picrate. Ion extraction was studied by varying the organic phase in the liquid-liquid system to observe the ion interaction with BA-m.

Figure 2 indicates that when the concentration of BA-m oligomers is higher, the ion extraction is more significant. When the oligomer concentra-

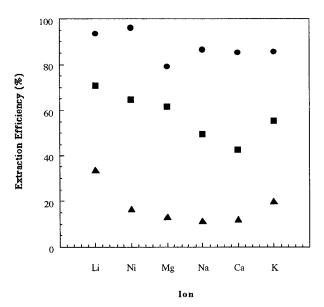


Figure 3 Extraction efficiency of various metal picrates by the BA-m oligomers. Ionophore concentration in CHCl₃ as the organic solvent: \bullet , 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

tion is 20 g/L in $\mathrm{CH_2Cl_2}$, the ion extraction is nearly 100% of which the ion concentration is 6.89 \times 10⁻⁵ mol/L. The BA-m oligomers show ion sensitivity to all types of metal ions. Figures 2–4 show the ion entrapment efficiency of the BA-m oligomers when the organic phase is varied from $\mathrm{CH_2Cl_2}$, $\mathrm{CHCl_3}$, and toluene. At the same oligomer concentration, the efficiency of ion extraction is highest in $\mathrm{CH_2Cl_2}$, followed by $\mathrm{CHCl_3}$, and

Figure 4 Extraction efficiency of various metal picrates by the BA-m oligomers. Ionophore concentration in toluene as the organic solvent: ●, 20 g/L; ■, 2 g/L; and \blacktriangle , 0.2 g/L.

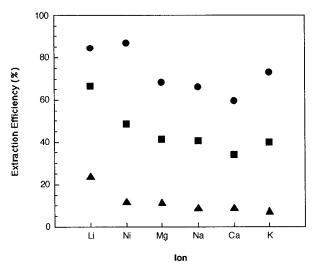
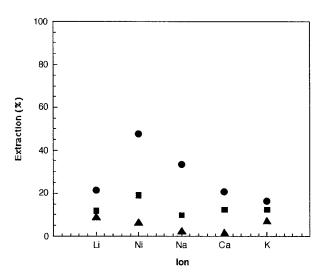


Figure 5 Extraction efficiency of various metal picrates by the BA-m monomer. Ionophore concentration in CH_2Cl_2 as the organic solvent: \bullet , 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

finally toluene. When the oligomer concentration is increased, the percentage of ion extraction increases for all types of metallic ions. This suggests that the BA-m oligomers interact with ion species and act as ionophores. Similar to Figure 2, both Figures 3 and 4 show little selectivity toward any specific ions but high ion sensitivity to all types of metal ions.


To clarify the ion interaction mechanism, the BA-m monomer was studied as an ionophore because of its well defined structural unit. The results from the H₂O-CH₂Cl₂ system are shown in Figure 5. Here, it is clear that the monomer also performs as an ionophore. Ion extraction in a liquid-liquid phase system is significant in CH₂Cl₂ but is low for a toluene organic phase (Figures 5–7). In the case of the BA-m monomer, it is found that the percentage of ion extraction is nearly as high as that of the BA-m oligomers. Figure 5 shows that the BA-m oligomers can trap almost 100% of the sodium ion whereas the BA-m monomer shows a slightly lower (90%) extraction affinity when the BA-m concentration is 2.00 g/L in CH₂Cl₂. It suggests that the lone pair electrons of the oxygen and/or nitrogen might be involved because there are no hydroxyl groups in the BA-m monomer.

The amount of ion entrapped increases nonlinearly as a function of the monomer concentration

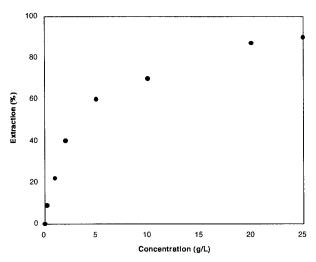


Figure 6 Extraction efficiency of various metal picrates by the BA-m monomer. Ionophore concentration in CHCl₃ as the organic solvent: ●, 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

as shown in Figure 8 where the percent entrapment of the calcium ion is plotted as a function of the BA-m monomer concentration in $\mathrm{CH_2Cl_2}$. As the ion entrapment efficiency increases, the efficiency approaches an asymptotic value. It should be noted that the ion extraction property of benzoxazine is accomplished through various sizes of benzoxazines, oligomers, and even the monomer whereas the ion extraction percentage of metal

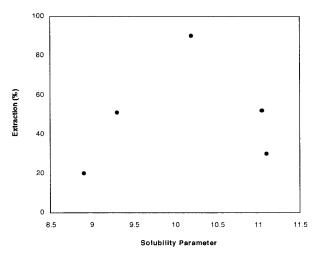

Figure 7 Extraction efficiency of various metal picrates by the BA-m monomer. Ionophore concentration in toluene as the organic solvent: ●, 20 g/L; ■, 2 g/L; and \blacktriangle , 0.2 g/L.

Figure 8 Extraction efficiency of the Ca^{2+} ion as a function of the BA-m monomer concentration in CH_2Cl_2 .

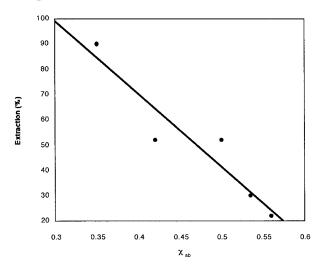
ions studied shows little variation as a function of the ion size. Thus, we propose that the ion extraction mechanism for the ionophore is due to a molecular assembly of host and guest compounds, rather than specific sizes of cage-like structures of cyclic compounds, such as calixarene and cyclodextrin. Yamagishi et al. ¹³ proposed that the ionic affinity of the cavity which is present in the molecular assembly can be based on the pseudocyclic conformation. In this study, it is presumed that the assemblies of the benzoxazine oligomers may be flexible, thus the ion extraction can be performed efficiently with various metal ions but the selectivity is not obvious.

Generally, host compounds will provide a specific cavity for guest molecules depending on its molecular assembly structure. In this study, the ionophore was varied to investigate the guest responsive structure due to the assembly formation of the BA-m monomer and oligomers. Alkali, alkaline earth, and transition metal ion (Ni) are used for the observation of ion extraction. Six kinds of metallic ions were used to observe the ion extraction ability of the BA-m monomer. It is expected that there will be an appropriate ion size that fits the cavity of the ionophore if the configuration of the ionophore is fixed. As shown in Figures 5–7, among alkali and alkali earth ions, lithium and potassium ions tend to show slightly higher ion extraction efficiencies than other ions. It should be noted that the size of the potassium ion is twice the size of the lithium ion, whereas the ion extraction percentages are similar. This is

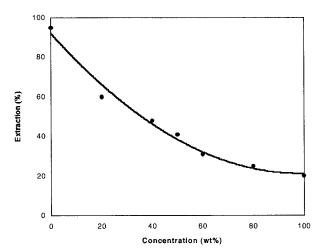
Figure 9 Percent extraction of Ca²⁺ ion by varying solubility parameter of the organic phase when BA-m monomer concentration is 2 g/L.

yet another indication of ion entrapment by the molecular assembly rather than the cavity of fixed size and shape. Miyata et al.¹⁷ reported that when the host molecule acts as a flexible structure for the guest, various types of guest molecules will be allowed in the cavity, as seen in the case of the cholic acid molecular assembly system. Accordingly, the various observations stated above indicate that the BA-m monomer and oligomers provide the guest responsive structure, while the inclusion phenomenon with the low size selectivity takes place.

It is well known that the inclusion phenomenon is related to the interaction of the host and guest molecules. When the host concentration is in excess of the guest molecules, a greater amount of guests will be included in the host compound. It is found that in the case of CHCl₃ and CH₂Cl₂, when the ionophore (both the BA-m oligomers shown in Figures 2-4, and the BA-m monomer shown in Figures 5-7) concentrations are increased by 100 times from 0.200 to 20.0 g/L, the ion extraction efficiencies are increased only by 60%. In the case of a toluene organic phase, in which the ion extraction percentages are relatively low, the relationship of the ionophore concentration and ion extraction ability is not significant, ranging from 10 to 30%.


The organic phase in a liquid-liquid system plays an important role in the ion extraction step. Tsurubou et al.¹⁵ reported that the host guest assembly can be controlled by the surrounding organic solvent molecules in the liquid-liquid

phase system. Thomas et al.¹⁶ reported that size of the solvent affects the ion transfer across the liquid-liquid phase because of the hydrodynamic continuum effect. The ion extraction selectivity can be established when the appropriate solvent is applied under a certain hydrodynamic continuum atmosphere. In the present work, methylene chloride, chloroform and toluene, which differ in molecular size, clarify the factor of organic phase in the interaction between ionophore and metal ions.


It can be concluded that benzoxazines act as an ionophore to form the ion complexes whereas the organic solvent molecules provide the preferable assembly in the host-guest formation. 16 The solubility parameter of the BA-m monomer, δ = 9.99, is much closer to that of CH₂Cl₂ than to that of toluene. Therefore, the ion entrapment efficiency was suspected to be influenced by the benzoxazine monomer-solvent interaction. This can be examined by varying the solubility parameter of organic phase. As shown in Figure 9, when BA-m monomer is used as an ionophore, the percent extraction is high when the solubility parameter of the organic phase is close to that of the BA-m monomer. To quantitatively evaluate the effect of the interaction, the Flory-Huggins χ_{ab} parameter as defined below was calculated.

$$\chi_{ab} = 0.34 + V_r (\delta_a - \delta_b)^2 / RT$$

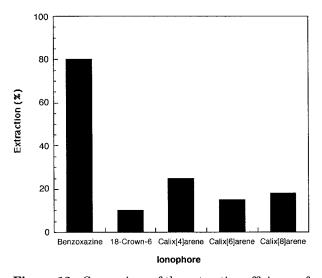
where V is the molar volume of the solvent; δ , the solubility parameter; R, gas constant; and T, temperature.

Figure 10 Extraction efficiency of the Ca^{2+} ion in various solvents. The extraction efficiency is plotted against the Flory-Huggins χ_{ab} parameter of the BA-m monomer/solvent system.

Figure 11 Extraction efficiency of the Ca^{2+} ion in CH_2Cl_2 /toluene mixtures. The extraction efficiency is plotted against the concentration of toluene in the mixtures

The observed ion entrapment efficiency was plotted as a function of the χ_{ab} parameter of the system as shown in Figure 10. An excellent correlation is observed in which the smaller the χ_{ab} parameter, the greater the ion entrapment. It indicates that the solvation of the benzoxazine monomer is related to the ion entrapment efficiency. This supports that the molecular assembly enhancement by organic solvent molecules plays an important role in ion entrapment.

To study the relationship of the solubility parameter and the ion interaction with the ionophore, the solubility parameter was changed by systematically varying the composition of CH₂Cl₂ and toluene mixtures. Assuming that the Flory-Huggins χ_{ab} parameter can be averaged for the mixture system, the ion entrapment efficiency is again plotted as a function of the toluene concentration as shown in Figure 11. Here, it is found that the ion extraction efficiency is decreased when the solubility parameter is varied by the composition of toluene. Similar to Figure 10, where various solvents are used to vary the χ_{ab} parameter, it is observed that the smaller the χ_{ab} parameter (the lower the concentration of toluene), the higher the ion entrapment efficiency. Accordingly, the solubility of the benzoxazine systems is an important parameter for influencing the ion entrapment efficiency.


Calixarenes, crown-ether, and cyclodextrin are well known inclusion compounds and some practical applications are established. The ion extraction ability of 18-crown-6, calix[4]arene,

calix[6]arene, and calix[8]arene for the calcium, lithium, and sodium ions¹⁸ is compared with that of benzoxazine monomer as shown in Figure 12. To compare the ion extraction ability to the mentioned ionophores, experiments were performed under the same conditions as those reported in the literature. The concentration of the benzoxazine monomer was $2.7 \times 10^{-3} M$, which is also the same as the ionophore concentration reported in the cited reference.

The preliminary study shows that, in the case of lithium and calcium, the ion extraction is in the range of 20–50% for the calixarenes and crownether, whereas the extraction efficiency of the benzoxazine is quite high at nearly 80%. The high ion extraction ability of benzoxazines suggests that the benzoxazine can be an effective ionophore based on each phenolic-like repeat unit structure combined with the local structure of the assembly under the preferable condition of the organic phase.

CONCLUSIONS

Benzoxazine, BA-m monomer, and its oligomer perform as an ionophore to show a significant ion interaction among alkali and alkaline earth ions in the liquid-liquid phase. The ion extraction

Figure 12 Comparison of the extraction efficiency of lithium picrate of the BA-m monomer with the published results on calix[4]arenes, calix[6]arenes, calix[8]arenes, and 18-crown-6 ether. The ionophore concentration of all the systems was $2.7 \times 10^{-3} M$ in $\mathrm{CH_2Cl_2}$ as the organic solvent.

study clarifies that benzoxazines entrap all types of ions studied but shows little selectivity for ion size. The ion entrapment is found to proceed via molecular assembly formation under the preferable structure provided by the organic phase molecule in the liquid-liquid system. The ion entrapment efficiency shows a good correlation with the Flory-Huggins c_{ab} parameter of the benzoxazine/organic solvent system studied.

The authors gratefully acknowledge the partial financial support from the Royal Thai Government Research Fund. One of the authors (S. C.) is indebted to the generous contribution of the Hitachi Scholarship Foundation to the continuation of his research activities. The partial financial support of The NSF Center for Molecular and Microstructure of Composites (CMMC) is also gratefully acknowledged.

REFERENCES

- Diemer, R. B., Jr.; Ellis, T. D.; Silcox, G. D.; Lighty, J. S.; Pershing, D. W., Eds. Encyclopedia of Chemical Technology, Volume 14: Inclusion Compound, 4th ed.; John Wiley: New York, 1991.
- Iwamoto, T.; Kiyoki, M.; Murphy, A. Bull Chem Soc Jpn 1978, 51, 390.
- 3. Green, B. S.; Ashani, Y.; Chapman, D., Eds., Chemical Approaches to Understanding Enzymer Catal-

- ysis: Biomimetic Chemistry and Transition State Analogs; Elsevier: Amsterdam, 1982.
- 4. Diederich, F. Chem Uns Zeit 1983, 17, 105.
- Stoddart, J. F.; Page, M. I.; Williams, A., Eds. Enzyme Mechanisms; Elsevier: Amsterdam, 1982.
- 6. Pedersen, C. J. J Am Chem Soc 1967, 89, 7017.
- Ning, X.; Ishida, H. J Polym Sci, Part A 1994, 32, 1121.
- 8. Shen, S. B.; Ishida, H. Polym Comp 1996, 17, 710.
- 9. Ishida, H.; Rodriguez, Y. Polymer 1995, 36, 3151.
- 10. Ishida, H.; Allen, D. J. Polymer 1996, 37, 4487.
- Ishida, H.; Allen, D. J. J Polym Sci, Phys Ed 1996, 34, 1019
- Abduini, A.; Pochini, A.; Reverberi, S.; Ungaro, R.; Andreetti, G. D.; Ugozzoli, F. Tetrahedron 1986, 42, 2089.
- Yamagishi, T.; Tani, K.; Shirano, K.; Ishida, S.;
 Nakamoto, Y. J Polym Sci, Part A 1996, 34, 687.
- Pedersen, C. J. Fed Proc Fed Am Soc Expl Biol 1968, 27, 1305.
- Tsurubou, S.; Mizutani, M.; Kadota, Y.; Yamamoto, T.; Umetani, S.; Sasaki, T.; Le, Q. T. H.; Masui, M. Anal Chem 1995, 67, 1465.
- Wandlowski, T.; Marecek, V.; Holub, K.; Samec, Z. J Phys Chem 1989, 93, 8201.
- Miyata, M.; Shibakami, M.; Chirachanchai, S.; Takamoto, K.; Kasai, N.; Miki, K. Nature 1990, 343, 446.
- Yamagishi, T.; Tani, K.; Ishida, S.; Nakamoto, Y. Polym Bull 1994, 33, 281.

A Novel Ion Extraction Material Using Host-Guest Properties of Oligobenzoxazine Local Structure and Benzoxazine Monomer Molecular Assembly

SUWABUN CHIRACHANCHAI, APIRAT LAOBUTHEE, SUTTINUN PHONGTAMRUG, WANIDA SIRIPATANASARAKIT, HATSUO ISHIDA

Received 1 April 1999; accepted 3 June 1999

ABSTRACT: Bisphenol-A based benzoxazine monomer (BA-m) and its oligomer are applied as an ionophore to study by Pedersen's technique, the ion interaction with alkali and alkaline earth ions. Ion extraction efficiencies are significant when the solubility parameter of the organic phase is close to that of BA-m or the χ -parameter is 0.34. Ionophore concentration controls the amount of metal ion extraction. Both BA-m and its oligomer show high entrapment efficiency over 70% extraction, for all types of ions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2561–2568, 2000

Key words: benzoxazine; oligobenzoxazine; ionophore; host-guest compound; molecular assembly; solubility parameter; c-parameter

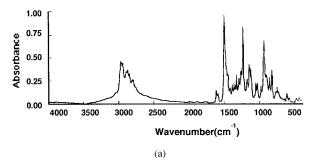
INTRODUCTION

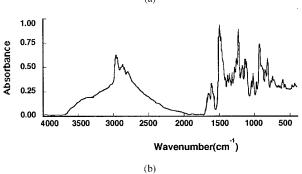
Fine separation is essential in technologies such as separation of isotopes, isomers, and ions, decontamination of waste water, and other concentration processes. Although ion exchange membranes are primarily required to separate selectively cations from anions and vice versa, separating different ions with the same electrical sign and same charge is also important. At present, there are some difficulties in excluding various ions from the system to obtain ultra high purity substances. To achieve high efficiency of an ion exclusion system, an ion exchange resin has been widely used.

the molecular level via the interaction between host and guest compound. Over the past decade, inclusion compounds have received much attention because the understanding on the molecular recognition of the inclusion phenomenon has grown rapidly. Thus, the inclusion phenomenon is widely studied in many applications, such as in the drug delivery system for the pharmaceutical industry, increasing compound solubility for the food and cosmetic industries, and in synthetic enzyme mimicry, including the separation of chemical and ion species.

Host-guest or inclusion compound is a novel approach to control the ion extraction process on

Polybenzoxazine is a class of phenolic material that undergoes ring-opening polymerization. Ning and Ishida⁷ reported that benzoxazine resin has a great deal of molecular design flexibility compared with ordinary phenolics. Benzoxazine is synthesized by the Mannich reaction from phenol, formaldehyde, and amine. Polyfunctional


Correspondence to: H. Ishida.


Contract grant sponsors: Royal Thai Government Research Fund and The NSF Center for Molecular and Microstructure of Composites.

Journal of Applied Polymer Science, Vol. 77, 2561–2568 (2000) © 2000 John Wiley & Sons, Inc.

¹ The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

² The NSF Center for Molecular and Microstructure of Composites (CMMC), Department of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA

Figure 1 FTIR of (a) BA-m monomer and (b) BA-m monomer after heat under vacuum at 100°C for 4 h.

benzoxazines show an excellent balance of mechanical and physical properties,^{8,9} including high glass transition temperatures, high moduli, low water absorption, and good dielectric properties.^{10,11}

However, the structure of the polybenzoxazine repeat unit is similar to that of calixarenes which are well known host compounds. The benzoxazine local structure (Scheme 1) has a hydrophilic hydroxyl group and a tertiary nitrogen on one side with a hydrophobic benzene ring on the other. Moreover, there are lone pair electrons at the oxygen in the hydroxyl group and the nitrogen in the tertiary amine linkage of the Mannich base in each repeat unit. By varying the functional groups, the hydrophobicity of the monomer unit can be controlled. Thus, the benzoxazine chains will possibly act as a host compound because of the specific structure combined with the possible conformation of a cyclic phenolic, as seen in the case of calixarenes, 12 or pseudo-cyclic phenolic as seen in the case of all linear ortho-phenolic resins.¹³

Hence, it is our interest to originally propose the inclusion property of a benzoxazine compound derived from the unique structure of a benzoxazine monomer and its oligomer. The present work concentrates on the ion interaction ability, especially with alkali and alkaline earth metal ions, to clarify the host-guest phenomenon of the benzoxazine owing to its specific local structure.

EXPERIMENTAL

Polycarbonate-grade bisphenol-A was supplied by Siam Chemical Industry, Co., Ltd. (Thailand). Analytical grade 1,4-dioxane, sodium hydroxide, potassium nitrate, chloroform, and picric acid (Ajax Chemicals, Australia), formaldehyde and anhydrous diethyl ether (J. T. Baker, Inc., Phillipsburg, NJ), methylamine (40% in water) and anisole (Fluka Chemicals, Buchs, Switzerland), toluene (99.5%), trichloroethylene, 1,2-dichloropropene, and methylene chloride (Farmitalia Carlo Erba, Spain) were used without purification. Anhydrous sodium sulfate, nickel (II) nimagnesium sulfate, sodium chloride (Farmitalia Carlo Erba, Spain), lithium chloride (Riedel-de Haen, Germany), and calcium chloride (E. Merck, Darmstadt, Germany) were applied as metal salts. All solvents were stocked with a 4-Å molecular sieve to eliminate the majority of water impurity before use.

The benzoxazine monomer and oligomer structures were studied by Fourier transform infrared spectroscopy (FTIR) (FT-45A, BioRad) at a resolution of 8 cm⁻¹. The concentration of picrate metal ions in the aqueous phase was measured by ultraviolet-visible spectroscopy (UV-Vis, Lambda-16, Perkin-Elmer) with a scan speed of 240 mm/min at room temperature. A Vortex mixer (Genie-2, Scientific Industries) was used to vigorously shake the mixture of organic and aqueous solution for 1 min. A centrifuge (Z 230 A, Hermle) was used for clear separation of a mixture to organic and aqueous phases at 3000 rpm for 3 min.

Purified bis(3,4-dihydro-2H-3-methyl-1,3-ben-zoxazinyl) isopropane (hereafter abbreviated as BA-m) was prepared from bisphenol-A, formal-dehyde, and methylamine according to the method reported by Ning and Ishida⁷ as shown in Scheme 2.

Benzoxazine oligomers were obtained by heating the monomer powder under vacuum at 100°C for 4 h to obtain a pale yellow rigid sheet. The polymerization was confirmed by FTIR. The sheet was then ground to a powder and stored at low temperature until use. The local structure of the oligomer is shown in Scheme 1.

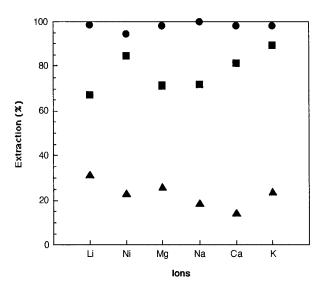
Alkali, alkaline earth, and other metal ion solutions were prepared by dissolving the corre-

Scheme 1 Benzoxazine local structure.

sponding salts in water. Picric acid at a concentration of $10^{-2}M$ and an additional $2\times10^{-2}M$ of an ion salt were dissolved in deionized water. The concentration of each ion stock solution was diluted to obtain 1 absorbance unit at the wavelength of 354 nm as observed by UV spectroscopy, which is equal to 6.89×10^{-5} mol/L. The monomer and oligomers were dissolved in methylene chloride, chloroform, and toluene at the concentration of 0.200, 2.00, and 20.0 g/L, respectively. To study the effect of the organic phase on the ion extraction property of the BA-m monomer, in the liquid-liquid separation system, other solvents, i.e., anisole, trichloroethylene, and 1,2-dichloropropene, were also used.

The ion extraction phenomenon was observed using the Pedersen's technique in liquid-liquid systems. ¹⁴ Five milliliters of ionophore in organic solution and 5 mL of ion solution were mixed vigorously for 3 min, followed by centrifuge for 1 min. The ion concentration of the aqueous phase was determined by a UV-Vis spectrophotometer at 354 nm. Ion extraction was accomplished at room temperature by varying the organic phase.

RESULTS AND DISCUSSION

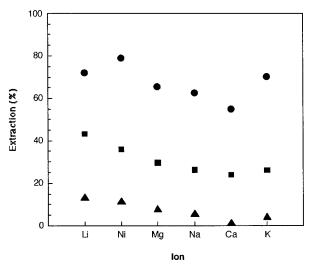

Figure 1 shows the FTIR spectra of BA-m before and after polymerization. The hydrogen bonded

Bisphenol-A

Formaldehyde Methylamine

Bis(3,4-dihydro-2H-3-methyl-1,3-benzoxazinyl) isopropane (BA-m)

Scheme 2 Preparation of BA-m.


Figure 2 Extraction efficiency of various metal picrates by the BA-m oligomers. Ionophore concentration in CH_2Cl_2 as the organic solvent: \bullet , 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

hydroxyl peaks are observed while the characteristic oxazine ring band is changed (1499 $\rm cm^{-1}$) as reported elsewhere.

To identify oligobenzoxazine as an ionophore and explore the inclusion phenomenon, it is necessary to study some structural factors of host-guest compounds. In the present work, the following factors are investigated: type of organic phase in liquid-liquid systems, variation of metal ions, and the concentration of both BA-m monomer and ion.

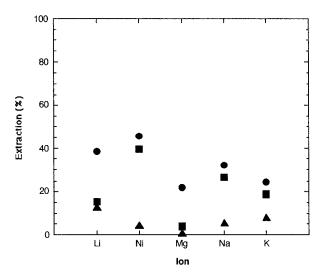

According to Pedersen's¹⁴ technique, the picrate ion will be shifted from the aqueous phase to the organic phase where the ionophore is present and act as an ionophore to entrap the metal ion. Here, when the oligobenzoxazine provides a structure as a host molecule and acts as an ionophore, the metal ion will transfer to the organic phase as soon as the oligobenzoxazine is added to the system and an ion complex is formed. Thus, ion extraction can be investigated by determining the change of picrate concentration in the aqueous phase and its concentration can be quantitatively determined by UV spectroscopy at the absorption wavelength of the picrate. Ion extraction was studied by varying the organic phase in the liquid-liquid system to observe the ion interaction with BA-m.

Figure 2 indicates that when the concentration of BA-m oligomers is higher, the ion extraction is more significant. When the oligomer concentra-

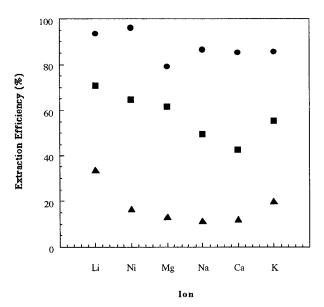


Figure 3 Extraction efficiency of various metal picrates by the BA-m oligomers. Ionophore concentration in CHCl₃ as the organic solvent: \bullet , 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

tion is 20 g/L in $\mathrm{CH_2Cl_2}$, the ion extraction is nearly 100% of which the ion concentration is 6.89 \times 10⁻⁵ mol/L. The BA-m oligomers show ion sensitivity to all types of metal ions. Figures 2–4 show the ion entrapment efficiency of the BA-m oligomers when the organic phase is varied from $\mathrm{CH_2Cl_2}$, $\mathrm{CHCl_3}$, and toluene. At the same oligomer concentration, the efficiency of ion extraction is highest in $\mathrm{CH_2Cl_2}$, followed by $\mathrm{CHCl_3}$, and

Figure 4 Extraction efficiency of various metal picrates by the BA-m oligomers. Ionophore concentration in toluene as the organic solvent: ●, 20 g/L; ■, 2 g/L; and \blacktriangle , 0.2 g/L.

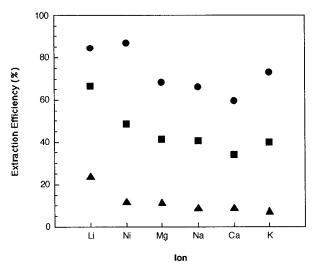
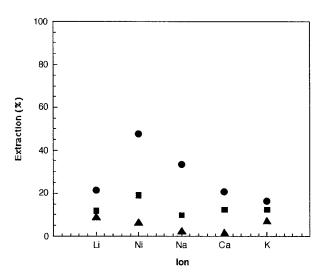


Figure 5 Extraction efficiency of various metal picrates by the BA-m monomer. Ionophore concentration in CH_2Cl_2 as the organic solvent: \bullet , 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

finally toluene. When the oligomer concentration is increased, the percentage of ion extraction increases for all types of metallic ions. This suggests that the BA-m oligomers interact with ion species and act as ionophores. Similar to Figure 2, both Figures 3 and 4 show little selectivity toward any specific ions but high ion sensitivity to all types of metal ions.


To clarify the ion interaction mechanism, the BA-m monomer was studied as an ionophore because of its well defined structural unit. The results from the H₂O-CH₂Cl₂ system are shown in Figure 5. Here, it is clear that the monomer also performs as an ionophore. Ion extraction in a liquid-liquid phase system is significant in CH₂Cl₂ but is low for a toluene organic phase (Figures 5–7). In the case of the BA-m monomer, it is found that the percentage of ion extraction is nearly as high as that of the BA-m oligomers. Figure 5 shows that the BA-m oligomers can trap almost 100% of the sodium ion whereas the BA-m monomer shows a slightly lower (90%) extraction affinity when the BA-m concentration is 2.00 g/L in CH₂Cl₂. It suggests that the lone pair electrons of the oxygen and/or nitrogen might be involved because there are no hydroxyl groups in the BA-m monomer.

The amount of ion entrapped increases nonlinearly as a function of the monomer concentration

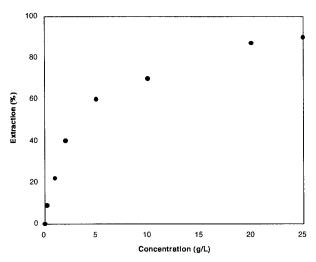


Figure 6 Extraction efficiency of various metal picrates by the BA-m monomer. Ionophore concentration in CHCl₃ as the organic solvent: ●, 20 g/L; \blacksquare , 2 g/L; and \blacktriangle , 0.2 g/L.

as shown in Figure 8 where the percent entrapment of the calcium ion is plotted as a function of the BA-m monomer concentration in $\mathrm{CH_2Cl_2}$. As the ion entrapment efficiency increases, the efficiency approaches an asymptotic value. It should be noted that the ion extraction property of benzoxazine is accomplished through various sizes of benzoxazines, oligomers, and even the monomer whereas the ion extraction percentage of metal

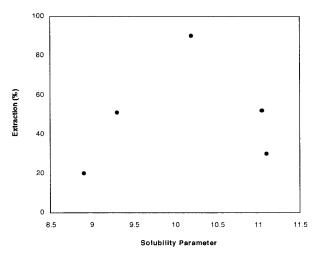

Figure 7 Extraction efficiency of various metal picrates by the BA-m monomer. Ionophore concentration in toluene as the organic solvent: ●, 20 g/L; ■, 2 g/L; and \blacktriangle , 0.2 g/L.

Figure 8 Extraction efficiency of the Ca^{2+} ion as a function of the BA-m monomer concentration in CH_2Cl_2 .

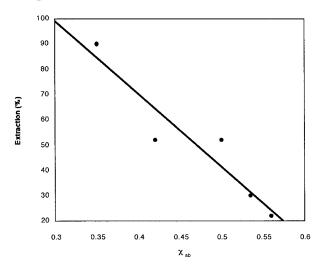
ions studied shows little variation as a function of the ion size. Thus, we propose that the ion extraction mechanism for the ionophore is due to a molecular assembly of host and guest compounds, rather than specific sizes of cage-like structures of cyclic compounds, such as calixarene and cyclodextrin. Yamagishi et al. ¹³ proposed that the ionic affinity of the cavity which is present in the molecular assembly can be based on the pseudocyclic conformation. In this study, it is presumed that the assemblies of the benzoxazine oligomers may be flexible, thus the ion extraction can be performed efficiently with various metal ions but the selectivity is not obvious.

Generally, host compounds will provide a specific cavity for guest molecules depending on its molecular assembly structure. In this study, the ionophore was varied to investigate the guest responsive structure due to the assembly formation of the BA-m monomer and oligomers. Alkali, alkaline earth, and transition metal ion (Ni) are used for the observation of ion extraction. Six kinds of metallic ions were used to observe the ion extraction ability of the BA-m monomer. It is expected that there will be an appropriate ion size that fits the cavity of the ionophore if the configuration of the ionophore is fixed. As shown in Figures 5–7, among alkali and alkali earth ions, lithium and potassium ions tend to show slightly higher ion extraction efficiencies than other ions. It should be noted that the size of the potassium ion is twice the size of the lithium ion, whereas the ion extraction percentages are similar. This is

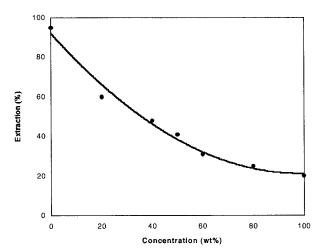
Figure 9 Percent extraction of Ca²⁺ ion by varying solubility parameter of the organic phase when BA-m monomer concentration is 2 g/L.

yet another indication of ion entrapment by the molecular assembly rather than the cavity of fixed size and shape. Miyata et al.¹⁷ reported that when the host molecule acts as a flexible structure for the guest, various types of guest molecules will be allowed in the cavity, as seen in the case of the cholic acid molecular assembly system. Accordingly, the various observations stated above indicate that the BA-m monomer and oligomers provide the guest responsive structure, while the inclusion phenomenon with the low size selectivity takes place.

It is well known that the inclusion phenomenon is related to the interaction of the host and guest molecules. When the host concentration is in excess of the guest molecules, a greater amount of guests will be included in the host compound. It is found that in the case of CHCl₃ and CH₂Cl₂, when the ionophore (both the BA-m oligomers shown in Figures 2-4, and the BA-m monomer shown in Figures 5-7) concentrations are increased by 100 times from 0.200 to 20.0 g/L, the ion extraction efficiencies are increased only by 60%. In the case of a toluene organic phase, in which the ion extraction percentages are relatively low, the relationship of the ionophore concentration and ion extraction ability is not significant, ranging from 10 to 30%.


The organic phase in a liquid-liquid system plays an important role in the ion extraction step. Tsurubou et al.¹⁵ reported that the host guest assembly can be controlled by the surrounding organic solvent molecules in the liquid-liquid

phase system. Thomas et al.¹⁶ reported that size of the solvent affects the ion transfer across the liquid-liquid phase because of the hydrodynamic continuum effect. The ion extraction selectivity can be established when the appropriate solvent is applied under a certain hydrodynamic continuum atmosphere. In the present work, methylene chloride, chloroform and toluene, which differ in molecular size, clarify the factor of organic phase in the interaction between ionophore and metal ions.


It can be concluded that benzoxazines act as an ionophore to form the ion complexes whereas the organic solvent molecules provide the preferable assembly in the host-guest formation.¹⁶ The solubility parameter of the BA-m monomer, δ = 9.99, is much closer to that of CH₂Cl₂ than to that of toluene. Therefore, the ion entrapment efficiency was suspected to be influenced by the benzoxazine monomer-solvent interaction. This can be examined by varying the solubility parameter of organic phase. As shown in Figure 9, when BA-m monomer is used as an ionophore, the percent extraction is high when the solubility parameter of the organic phase is close to that of the BA-m monomer. To quantitatively evaluate the effect of the interaction, the Flory-Huggins χ_{ab} parameter as defined below was calculated.

$$\chi_{ab} = 0.34 + V_r (\delta_a - \delta_b)^2 / RT$$

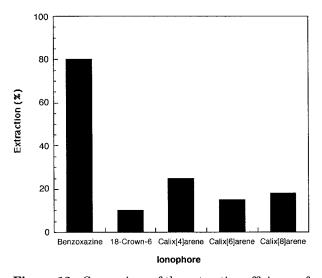
where V is the molar volume of the solvent; δ , the solubility parameter; R, gas constant; and T, temperature.

Figure 10 Extraction efficiency of the Ca^{2+} ion in various solvents. The extraction efficiency is plotted against the Flory-Huggins χ_{ab} parameter of the BA-m monomer/solvent system.

Figure 11 Extraction efficiency of the Ca^{2+} ion in CH_2Cl_2 /toluene mixtures. The extraction efficiency is plotted against the concentration of toluene in the mixtures

The observed ion entrapment efficiency was plotted as a function of the χ_{ab} parameter of the system as shown in Figure 10. An excellent correlation is observed in which the smaller the χ_{ab} parameter, the greater the ion entrapment. It indicates that the solvation of the benzoxazine monomer is related to the ion entrapment efficiency. This supports that the molecular assembly enhancement by organic solvent molecules plays an important role in ion entrapment.

To study the relationship of the solubility parameter and the ion interaction with the ionophore, the solubility parameter was changed by systematically varying the composition of CH₂Cl₂ and toluene mixtures. Assuming that the Flory-Huggins χ_{ab} parameter can be averaged for the mixture system, the ion entrapment efficiency is again plotted as a function of the toluene concentration as shown in Figure 11. Here, it is found that the ion extraction efficiency is decreased when the solubility parameter is varied by the composition of toluene. Similar to Figure 10, where various solvents are used to vary the χ_{ab} parameter, it is observed that the smaller the χ_{ab} parameter (the lower the concentration of toluene), the higher the ion entrapment efficiency. Accordingly, the solubility of the benzoxazine systems is an important parameter for influencing the ion entrapment efficiency.


Calixarenes, crown-ether, and cyclodextrin are well known inclusion compounds and some practical applications are established. The ion extraction ability of 18-crown-6, calix[4]arene,

calix[6]arene, and calix[8]arene for the calcium, lithium, and sodium ions¹⁸ is compared with that of benzoxazine monomer as shown in Figure 12. To compare the ion extraction ability to the mentioned ionophores, experiments were performed under the same conditions as those reported in the literature. The concentration of the benzoxazine monomer was $2.7 \times 10^{-3} M$, which is also the same as the ionophore concentration reported in the cited reference.

The preliminary study shows that, in the case of lithium and calcium, the ion extraction is in the range of 20–50% for the calixarenes and crownether, whereas the extraction efficiency of the benzoxazine is quite high at nearly 80%. The high ion extraction ability of benzoxazines suggests that the benzoxazine can be an effective ionophore based on each phenolic-like repeat unit structure combined with the local structure of the assembly under the preferable condition of the organic phase.

CONCLUSIONS

Benzoxazine, BA-m monomer, and its oligomer perform as an ionophore to show a significant ion interaction among alkali and alkaline earth ions in the liquid-liquid phase. The ion extraction

Figure 12 Comparison of the extraction efficiency of lithium picrate of the BA-m monomer with the published results on calix[4]arenes, calix[6]arenes, calix[8]arenes, and 18-crown-6 ether. The ionophore concentration of all the systems was $2.7 \times 10^{-3} M$ in $\mathrm{CH_2Cl_2}$ as the organic solvent.

study clarifies that benzoxazines entrap all types of ions studied but shows little selectivity for ion size. The ion entrapment is found to proceed via molecular assembly formation under the preferable structure provided by the organic phase molecule in the liquid-liquid system. The ion entrapment efficiency shows a good correlation with the Flory-Huggins c_{ab} parameter of the benzoxazine/organic solvent system studied.

The authors gratefully acknowledge the partial financial support from the Royal Thai Government Research Fund. One of the authors (S. C.) is indebted to the generous contribution of the Hitachi Scholarship Foundation to the continuation of his research activities. The partial financial support of The NSF Center for Molecular and Microstructure of Composites (CMMC) is also gratefully acknowledged.

REFERENCES

- Diemer, R. B., Jr.; Ellis, T. D.; Silcox, G. D.; Lighty, J. S.; Pershing, D. W., Eds. Encyclopedia of Chemical Technology, Volume 14: Inclusion Compound, 4th ed.; John Wiley: New York, 1991.
- Iwamoto, T.; Kiyoki, M.; Murphy, A. Bull Chem Soc Jpn 1978, 51, 390.
- 3. Green, B. S.; Ashani, Y.; Chapman, D., Eds., Chemical Approaches to Understanding Enzymer Catal-

- ysis: Biomimetic Chemistry and Transition State Analogs; Elsevier: Amsterdam, 1982.
- 4. Diederich, F. Chem Uns Zeit 1983, 17, 105.
- Stoddart, J. F.; Page, M. I.; Williams, A., Eds. Enzyme Mechanisms; Elsevier: Amsterdam, 1982.
- 6. Pedersen, C. J. J Am Chem Soc 1967, 89, 7017.
- Ning, X.; Ishida, H. J Polym Sci, Part A 1994, 32, 1121.
- 8. Shen, S. B.; Ishida, H. Polym Comp 1996, 17, 710.
- 9. Ishida, H.; Rodriguez, Y. Polymer 1995, 36, 3151.
- 10. Ishida, H.; Allen, D. J. Polymer 1996, 37, 4487.
- Ishida, H.; Allen, D. J. J Polym Sci, Phys Ed 1996, 34, 1019
- Abduini, A.; Pochini, A.; Reverberi, S.; Ungaro, R.; Andreetti, G. D.; Ugozzoli, F. Tetrahedron 1986, 42, 2089.
- Yamagishi, T.; Tani, K.; Shirano, K.; Ishida, S.;
 Nakamoto, Y. J Polym Sci, Part A 1996, 34, 687.
- Pedersen, C. J. Fed Proc Fed Am Soc Expl Biol 1968, 27, 1305.
- Tsurubou, S.; Mizutani, M.; Kadota, Y.; Yamamoto, T.; Umetani, S.; Sasaki, T.; Le, Q. T. H.; Masui, M. Anal Chem 1995, 67, 1465.
- Wandlowski, T.; Marecek, V.; Holub, K.; Samec, Z. J Phys Chem 1989, 93, 8201.
- Miyata, M.; Shibakami, M.; Chirachanchai, S.; Takamoto, K.; Kasai, N.; Miki, K. Nature 1990, 343, 446.
- Yamagishi, T.; Tani, K.; Ishida, S.; Nakamoto, Y. Polym Bull 1994, 33, 281.

Asymmetric Mono-oxazine: An Inevitable Product from Mannich Reaction of Benzoxazine Dimers

Apirat Laobuthee, Suwabun Chirachanchai,* Hatsuo Ishida,† and Kohji Tashiro‡

Contribution from the The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phyathai, Bangkok 10330, Thailand, Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, and Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received November 21, 2000. Revised Manuscript Received April 7, 2001

Abstract: The Mannich reaction is detailed, which was carried out on benzoxazine dimers under various conditions, that is, temperature, reaction time, and solvents. Against our expectation, in any condition, instead of generating a disubstitution oxazine compound, the reaction gives a product with only a single oxazine ring, a mono-oxazine benzoxazine dimer, as characterized by FT-IR, ¹H NMR, ¹³C NMR, 2D-NMR (¹H-¹H COSY, ¹H-¹³C HMQC, and ¹H-¹³C HMBC), and EA. The asymmetrical reaction is found to be based on the original structure of the benzoxazine dimer which has two phenol rings in a different stability as clarified by X-ray structure analysis of the single crystal. All types of benzoxazine dimers indicate the specific structure with a pair of inter- and intramolecular hydrogen bonds. The bond distance indicates that the intramolecular hydrogen bonding is very strong, while the packing structure emphasizes the high stability of the dimer unit and implies the deactivation of one phenol ring in the benzoxazine dimer. In this contribution, we demonstrate one of the quite rare examples, showing how the stereostructure of the reactant molecule is an important factor to control the reaction and give an asymmetric product which we never expected when considering only the chemical formula.

Introduction

Polybenzoxazine is known as a polymer with a chemical structure of aza-methylene phenol repeating unit (Scheme 1, eq 1) obtained from the ring-opening polymerization of benzoxazine monomers. 1-5 Benzoxazine monomers, thus, can provide linear or cross-linked polymers, depending on the reaction occurring at ortho and additional para positions. In the cases of some unique monomers, that is, bisphenol-based benzoxazines (Scheme 1, eq 2), Ishida et al. showed a successful polymerization to obtain a series of thermosetting polymers and proposed a novel phenolic resin.^{2–3} When it comes to the simple phenol-based benzoxazine monomers, it is interesting to find that few studies have been done. For example, in the case of para-substituted phenol based benzoxazines (Scheme 1, eq 3), it can be expected to obtain linear polymers. However, on the basis of the kinetic studies, Riess et al. found that the polymerization of p-cresol proceeded with a limit of four to six repeating units.⁵ In addition, this number of repeating units might not be quantitatively exactly determined. Until now, the involved factors and the mechanisms controlling this polymerization have not been clarified.

Recently, to propose a novel supramolecular structured benzoxazine our group focused on the unique structures of polybenzoxazines which resemble those of calixarenes. Here, to achieve our molecules as calixarenes, we came to the point of preparing a well-defined structured benzoxazine, such as a linear or cyclic oligobenzoxazine, based on the ring-opening polymerization of benzoxazine monomers. In such cases, the work can be simplified if we start from the para-substituted phenol in the preparation of benzoxazine monomer followed by the polymerization. However, to our surprise, the parasubstituted phenol-based benzoxazine monomers gave us neither the linear oligomer nor the polymer but mainly the dimer in the polymerization process even though the reaction conditions were varied.⁷ It is important to clarify the reasons why benzoxazine dimers show the self-termination in the polymerization process, which will be reported elsewhere.⁷ To achieve our designed molecules as mentioned above, we must overcome the problems of self-termination at the dimer level. In other words, the preparation of linear oligobenzoxazines (n > 2) needs other unique strategies to process the reaction to obtain a linear oligobenzoxazine. Previously, Ishida et al. reported multistep reactions to obtain a linear chain using bromo-substituted phenols.⁸ Although the linear benzoxazines were achieved, the reaction was rather complicated, and the final product yield was low while the costs of the synthesis are high. Thus, the method does not seem to be practical to obtain our required product.

Since we can obtain the benzoxazine dimers in a high yield (80-90%), it is one of the approaches to apply these dimers

^{*} To whom correspondence should be addressed.

[†] Case Western Reserve University.

[‡] Osaka University.

⁽¹⁾ Burke, W. J.; Bishop, J. L.; Mortenson, E. L.; Bauer, W. N. J. Org. Chem. 1965, 30, 3423.

⁽²⁾ Ning, X.; Ishida, H. J. Polym. Sci., Part A: Polym. Chem. 1994, 32,

⁽³⁾ Ning, X.; Ishida, H. J. Polym. Sci., Part A: Polym. Chem. 1994, 32,

⁽⁴⁾ Dunkers, J.; Ishida, H. Spectrochim. Acta 1995, 51A, 855.

⁽⁵⁾ Riess, G.; Schwob, J. M.; Guth, G.; Roche, M.; Laude, B. Advances in Polymer Synthesis, Polymer Science and Technology; Culbertson, B. M., McGrath, J. E., Eds.; Plenum: New York; 1985; Vol. 31, pp 27-49.

⁽⁶⁾ Chirachanchai, S.; Laobuthee, A.; Phontamrag, S.; Siripattanasarakit, W.; Ishida, H. J. Appl. Polym. Sci. 2000, 77, 2561-2568.

⁽⁷⁾ Laobuthee, A.; Chirachanchai, S.; Ishida, H. In preparation.

⁽⁸⁾ Ishida, H.; Krus, C. M. Macromolecules 1998, 31, 2409.

Scheme 1

OH
$$H_{3}C-C-CH_{3} + 2R-NH_{2} + 4H-C-H$$

$$H_{3}C-C-CH_{3} + 2R-NH_{2} + 4H-C-H$$

$$H_{3}C-C-CH_{3} + 2H-C-H$$

Scheme 2

as a starting material. We propose alternative steps of an oxazine cyclization and a ring-opening reaction of benzoxazine dimers to obtain a well-defined cyclic compound. As will be described in the present work, to our surprise again, a Mannich reaction of benzoxazine dimer does not proceed to give dioxazine compounds as expected in Scheme 2 (compound 4) but gives

an asymmetric product with the single oxazine ring at an alternative phenol (Scheme 2, compound 5). Even when the reaction conditions are varied, we obtain only an asymmetric mono-oxazine dimer as a product. At this point, without clarification of the reaction of dimers and the key factors involved, we cannot continue our strategies to obtain a well-

Scheme 3

Table 1. NMR Data for Mono-oxazine Benzoxazine Dimer 5

position	$^{1}\mathrm{H}~\delta_{\mathrm{H}},\mathrm{multi.}\left[J\left(\mathrm{Hz}\right)\right]$	$^{13}\mathrm{C}~\delta_\mathrm{C}$	¹ H- ¹ H COSY	¹ H- ¹³ C HMBC
1	2.21, 3H, s	20.47	H26, H23	C23, C24, C26
2	2.20, 3H, s	20.59	H17, H19	C17, C18, C19
3	3.78, 2H, s	52.89	_	C1, C4, C11, C15, C21, C22, C23
4	3.57, 2H, s	47.87	_	_
5	4.98, 2H, s	80.19	_	C2, C6, C7, C15, C21
6	4.03, 2H, s	47.38	_	C2, C5, C7, C15, C16, C17, C18, C21
7	2.68, 1H, m	58.47	H8, H8'	C8, C8'
8	1.25, 2H, m	31.59	H7, H8, H9, H9', H10	C7
8'	1.98,2H, d, br	31.59	H7, H8′, H9, H9′	C7
9	1.58, 2H, m	26.30	H8, H8', H9', H10	C8, C8'
9′	1.74, 2H, m	25.94	H8, H8', H9, H10	<u> </u>
10	1.12, 2H, m	25.50	H8, H9, H9'	C9'
11	2.62, 1H, tt (11.81, 3.30)	57.99	H12, H12'	C12, C12'
12	1.40, 2H, qd (12.09, 2.75)	27.64	H11, H12', H13, H14	C11
12'	1.92, 2H, d, br	27.64	H11, H12, H13, H13', H14	C11, C13
13	1.60, 2H, m	26.30	H12', H13', H14	C12, C12'
13'	1.76, 2H, m	26.01	H12, H12', H13, H14	C11, C13
14	1.16, 2H, m	25.50	H12, H12', H13, H13'	C13'
15	_ ` `	151.58	_ ` ` ` `	_
16	_	121.91	_	_
17	6.66, 1H, d (1.51)	126.76	H19	C2, C6, C15, C16, C19
18		128.71	_	
19	6.83, 1H, d (1.51)	130.18	H17	C2, C6, C15, C17
20		124.91	_	
21	_	155.94	_	_
22	_	122.44	_	_
23	6.74, 1H, d (1.94)	129.04	H26	C1, C3, C21, C26
24		127.48	_	- ´ ´ ´ ´
25	6.64, 1H, d (8.24)	115.63	H26	C1, C21, C24
26	6.89, 1H, dd (8.24 and 1.94)	128.52	H23, H25	C1, C21, C23

defined benzoxazine structure. We have to clarify the reason the imbalance-structured compound is obtained inevitably. In another words, it is important to note that this asymmetric monooxazine product is always produced without any specific condition or catalyst.

Thus, in the present contribution, we (i) maintain that our basic studies on the Mannich reaction of benzoxazine dimer clarifying the structure of the compound obtained based on various aspects of analyses, especially the 2D-NMR, (ii) identify the factor that originates the asymmetric reaction, and (iii) show how the factor studied can be applied in the mechanism to

explain the inevitable generation of mono-oxazine compounds. The clarification of the specific reaction occurring in benzoxazine dimers will be a useful guideline for a reasonable molecular design to obtain a well-defined supramolecular benzoxazine in the future.

Results and Discussion

Mannich Reaction of the Benzoxazine Dimer. Compound 1 (Scheme 3) was used as a model dimer to react with formaldehyde and cyclohexylamine via the Mannich reaction. From FT-IR data, the compound obtained gives rise to a broad

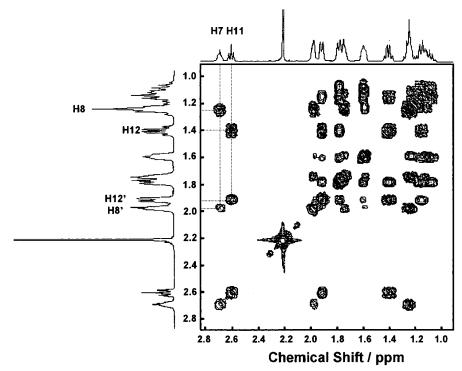


Figure 1. ¹H-¹H COSY correlation spectra of mono-oxazine benzoxazine dimer 5.

band at 3000–2800 cm⁻¹, similar to **1**, implying the existence of strong hydrogen bonds. In fact, Daimay et al. ⁹ reported that the cyanuric acid shows an infrared band corresponding to the strong OH- - -N hydrogen bond in the frequency region of 3200–2600 cm⁻¹. The band at 3215 cm⁻¹ due to the intermolecular hydrogen bond is observed for compound **1** but cannot be observed in the compound obtained. The bands at 1514 and 1500 cm⁻¹, which are intrinsic to the dimer, were changed to a singlet at 1498 cm⁻¹ which is attributed to the vibration mode of the oxazine.

From the Mannich reaction, the structure of the product obtained from 1 can be proposed as either 4 or 5 (Scheme 2). It should be noted that compound 4 consists of three different methylene groups and three cyclohexyl groups, while compound 5 consists of four different methylene groups and two different cyclohexyl groups. $^{1}\mathrm{H}$ NMR spectra of the product obtained from 1 shows four types of methylene groups at $\delta_{\mathrm{H}}=3.57, 3.78, 4.03,$ and 4.98 ppm as singlet resonances, while the corresponding $^{13}\mathrm{C}$ NMR spectra show carbon resonances at δ_{C} 47.38, 47.87, 52.89, and 80.19 ppm. These data suggest the preferability of 5 for the compound in question. Four different methylene groups correlate to two sets at 4.03 and 4.98 ppm and at 3.57 and 3.78 ppm, suggesting the existence of the methylene groups of the aza linkage and of the oxazine ring (Table 1).

In another step, the structure of **5** can be identified by confirming cyclohexyl protons presented in the structure. The number and the position of the cyclohexyl groups on each nitrogen atom were studied by the ¹H-¹H COSY. Figure 1 shows the two cyclohexyl groups appearing in different position. The cyclohexyl groups can be distinguished clearly into two groups by resonances of methine protons of H7 and H11. However, the protons remaining (H8 to H10, H8' and H9', H12 to H14, H12' and H13') cannot be identified for the exact

position in the structure because of the possibility of being vicinal and geminal protons, including axial and equatorial protons in the cyclohexyl structure. In addition, $^1H^{-13}C$ HMBC (Figure 2) shows the interaction between methylene protons, that is, between H5, H6, and C7 of cyclohexyl group, and that between H3 and C11, implying the asymmetric structure of compound 5.

On the assumption of an asymmetric structure such as 5, the protons of each aromatic ring can be distinguished into two and three species, which should be observed from the correlation shift and the different coupling constants (*J*). As shown in Table 1, the values of J for H17, H19, H23, H25, and H26 indicate the different species of protons. This supports the asymmetric structure of 5. Here, the two equivalent aromatic protons (C17 and C19) are difficult to distinguish. The interaction between methylene groups with aromatic carbons in the HMBC mode helps us clarify. As shown in Table 1 and Figure 3, the methylene protons, H6, show the interaction only with aromatic carbon of C17, while aromatic protons, H17 and H19, interact with aromatic carbon C6 (Table 1). Another set of methylene protons H3 interacts with the aromatic carbon C23, while a set of aromatic protons H23 interacts with C3 of methylene group. This suggests that there is one oxazine ring unit linked by an aza-methylene bridge to the phenyl ring, as shown in structure

The phenol ring is also confirmed from the presence of the hydroxyl resonance at 11.16 ppm. In addition, the methyl group of the phenol ring appears in the ¹³C NMR spectrum at 20.47 ppm, while the other of the benzoxazine ring is found at 20.59 ppm. Methyl protons H1 interact with aromatic carbons, C22, C23, C24, and C26, while other methyl protons H2 interact with aromatic carbons, C17 and C19. In this way, all of the data of the NMR spectra support the chemical formula of **5** in Scheme 3 as the compound obtained from the Mannich reaction of **1**.

Another important experimental result to support this conclusion is the data of EA. On the assumption of the dioxazine unit, the EA should give C 77.95, H 9.40, and N 7.18, respectively.

⁽⁹⁾ Lin-Vien, D.; Colthup, N. B.; Fateley, G. W.; Grassel, G. J. *Infrared and Raman Characteristic Frequencies of Organic Molecules*; Academic Press: 1991; p 296.

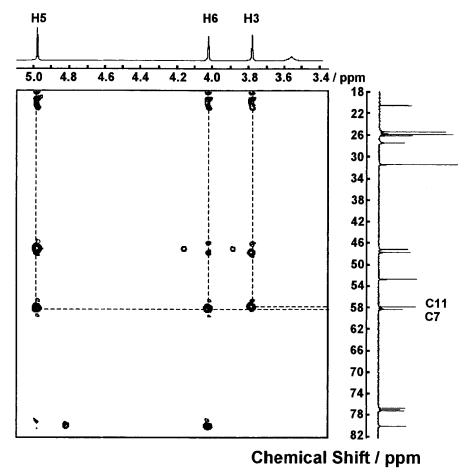


Figure 2. ¹H-¹³C HMBC correlation spectra of mono-oxazine benzoxazine dimer 5.

However, the analyzed result gives C 77.79, H 9.17, and N 6.09, which are quite close to the calculated data for the dimer with a single oxazine unit: C 77.92, H 9.10, and N 6.06. This excellent agreement indicates also that dimer 1 yields only compound 5 and does not give any product such as compound 4.

Solvent Polarity Effect. In each reaction, dimer 1, 2, or 3, was found to dissolve well in dioxane, resulting in an homogeneous system for benzoxazine preparation. After 6 h at the reflux temperature of dioxane, the reaction was completed to give mono-oxazine with the yield of 75–80%. In contrast to the case of dioxane, the dimer was rather difficult to dissolve in cyclohexane. The reaction started as an heterogeneous system but turned into an homogeneous after the completion of the reaction. The yield obtained in cyclohexane was the same as that obtained from dioxane.

A polar solvent such as methanol was also used. The system gave low yields (20-30%), and the product was a yellowish viscous solution. This implies that the high polarity of the solvent affects the mono-oxazine formation. After recrystallization, the product was identified to be the mono-oxazine one.

To exclude the solvent effect, we attempted the reaction in a neat liquid state. The dimer 1 was heated to a temperature higher than the melting point (135 $^{\circ}$ C), and formaldehyde and cyclohexylamine were added. The reaction was completed within 15 min. After recrystallization, the yield of the product 5 was found to be 75–80%.

In all the cases, the compounds obtained were mono-oxazine derivatives as characterized by FT-IR and NMR. It should be noted that the mono-oxazine benzoxazine dimer was formed in

high yield even at the diversified reaction conditions, that is, polarity (dioxane, cyclohexane, methanol) and temperature (60 °C for methanol, 80 °C for cyclohexane, 100 °C for dioxane, and 135 °C for molten state systems). This indicates that the mono-oxazine benzoxazine dimer is a stable compound and the reaction is terminated almost always at the stage of the formation of only one oxazine unit, against our earlier prediction.

Molar Ratio of Reactants. It is important to clarify whether the mono-oxazine benzoxazine dimer comes from incomplete reaction or is a product of the inevitable pathway. Judging from the equation of chemical reaction shown in Scheme 2, the production of the compound 5 might be a result of incomplete reaction. The ratio of formaldehyde and amine was increased further to get the dioxazine product.

However, even when the ratio was increased to 1:8:4, the compound 5 was obtained in a similar yield. In contrast, the decrement of the ratio to half, that is, dimer:formaldehyde:amine = 1:2:1 also gave the compound 5 with the yield of 75–85%. In this way, only the mono-oxazine product was obtained irrespective of the molar ratio of reactants. In other words, the benzoxazine with a single oxazine unit is a reaction product of the "inevitable pathway".

It is also necessary to show that not only dimer 1 but also other benzoxazine dimers give mono-oxazine derivatives. Here, we studied the Mannich reaction on dimers 2 and 3. The structural studies by FT-IR, NMR, and EA indicate that 2 and 3 give the mono-oxazine compounds of 6 and 7, respectively.

Crystal Structure and the Stability of Benzoxazine Dimer. We speculated that the asymmetric product might come from the different circumstances of the two phenol groups in a

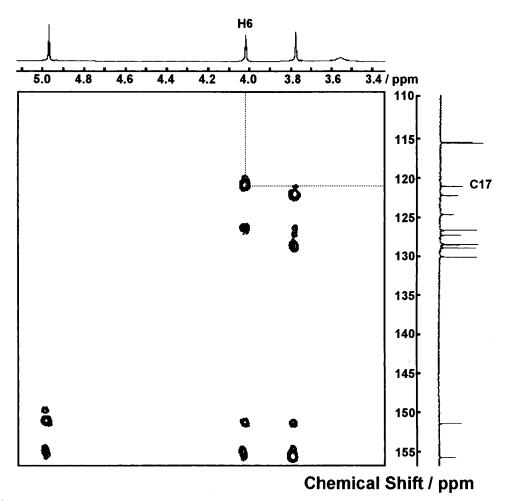


Figure 3. ¹H-¹³C HMBC correlation spectra of mono-oxazine benzoxazine dimer 5.

molecule which induced the different activity. For example, Dunkers et al.¹⁰ and Schnell et al.¹¹ applied N,N-bis(3,5dimethyl-2-hydroxybenzyl)methylamine as a benzoxazine model compound to study the conformation of polybenzoxazine resins and reported the existence of inter- and intramolecular hydrogen bondings between the nitrogen atom of the aza group and the hydroxy group of phenol by using FT-IR data and the X-ray structure analysis. However, the detailed information concerning the bond length and bond angle of the intramolecular hydrogen bond was not clarified at all. Moreover, they did not notice at all an intimate relationship of this intramolecular hydrogen bonding with the reaction of the dimer. As will be mentioned below, we speculated the possibility that the asymmetric reaction might originate from the imbalance reactivity of the phenol group; one phenol group is constrained by an intramolecular hydrogen bond while the other phenol is not.

The X-ray structural analyses of dimers were successfully done for the compounds 1, 2, and 3. The difference synthesis $F_0 - F_c$ gave definitely the position of the hydrogen atom participating in the intramolecular hydrogen bond. Figure 4 shows an example of 1 having a strong intramolecular hydrogen bond between the aza group and the phenol with the distance of O-H---N 1.80 Å, O--N 2.62 Å, and O-H--O 2.41 Å. The intermolecular hydrogen bond is formed between the two adjacent dimers with the distance of O-H--O 1.77 Å and

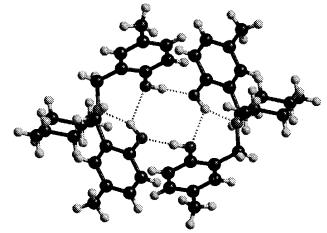


Figure 4. Dimer 1 packing structure.

O---O 3.04 Å. In this way, for all of the dimers investigated here, the strong inter- and intramolecular hydrogen bonds are observed. Table 2 summarizes some of the molecular parameters revealed for compound 1. Crystallographic data including fractional coordinates of atoms are given in Table 3. The structural analyses for the other compounds will be reported elsewhere.¹²

As mentioned above, the two phenol groups are subjected to quite different circumstances. Although this observation can be

⁽¹⁰⁾ Dunker, J.; Zarate, E. A.; Ishida, H. J. Phys. Chem. 1996, 32, 13514–13520.

⁽¹¹⁾ Schnell, I.; Brown, S. P.; Low, H. Y.; Ishida, H.; Spiess, H. W. J. Am. Chem. Soc. 1998, 120, 11784.

⁽¹²⁾ Chirachanchai, S.; Laobuthee, A.; Tashiro, K. In preparation.

 Table 2.
 Intramolecular Bond Lengths and Angles of Dimer 1

selected geometry parameters							
O(1)-C(10)	(A) Intramolecula 1.369(2)	O(3)-H(3)	0.93(2)				
C(5)-C(10)	1.394(2)	O(1)-H(1)	0.94(2)				
C(5)-C(6)	1.510(5)	N(2)-H(1)	1.798(6)				
N(2)-C(6)	1.477(2)	O(3)-H(1)	2.405(9)				
N(2)-C(9)	1.482(2)	N(2)-O(1)	2.624(1)				
C(7)-C(9)	1.506(1)	O(3)-H(1)	3.013(1)				
C(7)-C(8) O(3)-C(8)	1.394(2) 1.366(2)	O(1)-O(3)	3.040(1)				
	B.1) Intramolecu						
N(2)-H(1			.6(1)				
H(1)-O(1			.6(1)				
O(1)-C(1			.9(1)				
C(10)-C(.1(1)				
C(5)-C(6 C(6)-N(2			.3(4) .5(1)				
N(2)-C(9	/ /		.7(1)				
C(9)-C(7)			.2(2)				
C(7)-C(8)			117.3(1)				
C(8) - O(3)		112.9(1)					
C(8) - O(3)			90.9(1)				
O(3) - H(1)	(-N(2))	90	.4(1)				
H(1)-N(2)			.7(1)				
H(1)-N(2)	2)-C(9)	115	.7(1)				
O(3)-H(1)	.)-O(1)	124	.5(1)				
(B.2) Intermolecular Non-Bond Angles							
O(1)-H(3)	-O'(3)	176.	.3(1)				
(C) Intramolecular	Torsional Angles					
H(1) - O(1)	-C(10)-C(5)	1	2.2(1)				
	O)-C(5)-C(6)		5.6(1)				
	5)-C(6)-N(2)	-38.5(2)					
	-N(2)-C(9)	158.1(1)					
	-C(9)-C(7)	-73.3(3)					
	-C(7)-C(8)	-67.1(1)					
	-C(8)-O(3)		-1.2(1)				
C(7)-C(8)-O(3)-H(3) 174.6(4)							
(D) Intermolecular Interatomic Bond Length							
O(1)-H'(3)	1.773(3)	O(1)-O'(1)	4.210(4)				
O(1) - O'(3)	2.702(1)	N(2)-N'(2)	7.441(1)				

^a The atomic numbering is referred to in Table 3.

made for the solid-state samples, a similar situation may be expected to occur even in the solution where our reaction was proceeded. In fact, Dunker et al. 10 reported the existence of intramolecular hydrogen bonding in the solution of chloroform. The intramolecular hydrogen bonding can be maintained even in the molten state, as reported by Dunker et al. 10 for bisphenol A-based benzoxazine. In this way, the intramolecular hydrogen bonds can be formed stably in the various states of the benzoxazine molecule. Thus, we propose here that the reactive sites of the dimer are reduced to one by stabilization through an intramolecular hydrogen bond. In other words, one of the phenol rings becomes inactive owing to the intramolecular hydrogen bond of O—H---N, giving an asymmetrically structured product. This can be seen for most of the dimers investigated thus far.

Speculated Mechanism. The mechanism proposed by Burke et al.¹³ can be applied to explain the reaction. Owing to the intramolecular hydrogen bonding, a single phenol group in the dimer is stabilized. As a result, the oxazine formation can be achieved only at the other phenol group where the intermolecular hydrogen bond is formed. When one of the phenol rings is deactivated in this way by the intramolecular hydrogen bond, the electrophilic substitution of the iminium ion will occur only

on the alternate phenol ring at its ortho position. The cyclization to form the oxazine ring then occurs after the loss of a water molecule.

Experimental Section

Chemicals. Paraformaldehyde was purchased from Sigma (U.S.A.). 4-Ethylphenol, *p*-cresol, cyclohexylamine, and propylamine were obtained from Fluka Chemicals (Buchs, Switzerland). 1,4-Dioxane, methanol, cyclohexane, sodium hydroxide, sodium sulfate anhydrous, and diethyl ether were products from Ajax chemicals (Australia). All chemicals were AR grade and used without further purification.

Instruments. Fourier transform infrared spectra were measured at a resolution of 4 cm⁻¹ by using a Bruker Equinox55/S spectrophotometer equipped with deuterated triglycine (DTGS) detector under the constant purge with dry air. The ¹H- and ¹³C nuclear magnetic resonance (NMR) spectrometers were a Varian UNITYplus 600 with proton frequency of 600 MHz. The coaddition of 64 transients for ¹H NMR spectra and 960 transients for ¹³C NMR spectra gave sufficient signalto-noise ratio. The repeating time for ¹H experiments was 6 s for obtaining the proper integration value. The repeating time for ¹³C experiments was 3 s. ¹H-¹H correlated spectroscopy (COSY), ¹H-¹³C heteronuclear multiple quantum coherence (HMQC) and ¹H-¹³C heteronuclear multiple-bond coherence (HMBC) were performed. The samples were prepared as solutions using deuterated chloroform solvent with tetramethylsilane (0.1%, w/w) as an internal reference. Elemental analysis (EA) was performed by using a Perkin-Elmer 2400 Series II CHNS/O analyzer with the combustion temperature of 975 °C and a reduction temperature of 500 °C. For single crystals of benzoxazine dimers, that is, compounds 1, 2, and 3, an X-ray imaging plate system DIP3000 (MAC Science Co. Ltd., Japan) was used. The graphitemonochromatized Mo K α line ($\lambda = 0.71073$ Å), which was generated from the SRA-M18XHF rotating anode X-ray generator (50 kV and 200 mA), was used as an incident X-ray source. The data collection was performed by the XDIP software (MAC Science). The sample was oscillated in a range of 3° over a total rotation angle of 0-180° around the ω axis. The exposure time was 30 min for one image. It took about 12 h to collect the 24 images in total. The data were analyzed by using the software DENZO and SCALEPACK. 14-15 The crystal structure was solved by using a software maXus (NoniusBV, Delft). The direct method was used to find out the initial models, where the software SIR92 developed by Altmare et al. was used. 16 Least-squares refinement was made on the basis of the full matrix method by using the quantity $\sum \omega (|F_0|^2 - |F_c|^2)^2$ as a minimized function with the weight $\omega = \exp$ [FA $\sin^2 \theta/\lambda^2$]/[$\sigma^2(F_0)$ + FB F_0^2], where $\sigma^2(F_0)$ was the squared standard deviation of the observed structure factor F_0 and the coefficients FA and FB were set to the values 0.0 and 0.03, respectively. The reflections satisfying the cutoff condition of $|F_0| \ge 3\sigma(|F_0|)$ were used in the leastsquares refinement. Because no detectable effect was found, the absorption correction for the observed intensity was not included in the structural refinement. As the measure of the reasonableness of the structural analysis, the reliability factors, R and $R_{\rm w}$, were defined by the following equations; $R = \sum ||F_0| - |F_c||/\sum |F_0|$ and $R_w = [\sum \omega(|F_0|)]$ $|F_{\rm c}|^{2/2}\omega|F_{\rm o}|^{2}$ ^{1/2}.

Syntheses. Symmetric benzoxazine dimers (Scheme 3), *N*,*N*-bis(2-hydroxy-5-methylbenzyl)cyclohexylamine 1, *N*,*N*-bis(2-hydroxy-5-ethylbenzyl)cyclohexylamine 2, and *N*,*N*-bis(2-hydroxy-5-methylbenzyl)propylamine 3, were prepared as reported elsewhere⁷ and used as starting materials.

Preparation of 3,4-Dihydro-3-cyclohexyl-6-methyl-8-((2'-hydroxy-5'-methylbenzyl)cyclohexylaminomethyl)-2H-1,3-benzoxazine, 5. Cyclohexylamine (1.15 mL, 10 mmol) was added dropwise into the solution of paraformaldehyde (0.63 g, 20 mmol) in dioxane (10 mL). Benzoxazine dimer 1 (1.70 g, 5 mmol) in 20 mL of dioxane was further added, and the solution was refluxed for 6 h. The dioxane was removed

⁽¹³⁾ Burke, W. J. J. Am. Chem. Soc. 1949, 71, 609.

⁽¹⁴⁾ Otowinowski, Z.; Minor, W. Methods Enzymol. 1997, 276.

⁽¹⁵⁾ Otowinowski, Z.; Minor, W. *Macromolecular Crystallography: Part A*; Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: London, 1997;

⁽¹⁶⁾ Altmare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.

Table 3.

	X	Y	Z	$U_{ m eq}$ (Å ²) a		X	Y	\mathbf{Z}	$U_{ m eq}({ m \AA}^2)^a$
O1	0.54290(3)	0.49860(7)	0.61750(4)	0.0653(4)	H9A	0.5349(4)	0.0088(9)	0.6419(5)	0.047(2)
N2	0.57080(3)	0.21790(7)	0.65030(4)	0.0415(3)	H9B	0.5509(4)	0.057(1)	0.5724(5)	0.049(2)
O3	0.49630(3)	0.28420(8)	0.48650(4)	0.0627(4)	H11	0.4306(5)	0.004(1)	0.6167(6)	0.063(3)
C4	0.59230(4)	0.4425(1)	0.81620(5)	0.0492(5)	H13	0.5628(5)	0.750(1)	0.6801(6)	0.067(3)
C5	0.57300(4)	0.40840(9)	0.74190(4)	0.0413(4)	H14	0.3783(5)	0.345(1)	0.4170(6)	0.068(3)
C6	0.55680(5)	0.25140(9)	0.71330(5)	0.0470(5)	H15	0.6557(4)	0.2960(9)	0.7040(5)	0.049(2)
C7	0.46650(4)	0.13210(9)	0.56060(5)	0.0461(5)	H18	0.5951(5)	0.799(1)	0.8100(6)	0.072(3)
C8	0.44990(5)	0.2309(1)	0.50120(5)	0.0505(5)	H19A	0.3136(9)	-0.055(3)	0.571(1)	0.20(1)
C9	0.53340(4)	0.09020(9)	0.60670(5)	0.0483(5)	H19B	0.273(1)	0.034(2)	0.510(1)	0.150(7)
C10	0.56270(4)	0.52510(9)	0.69200(5)	0.0487(5)	H19C	0.3002(9)	0.112(2)	0.584(1)	0.191(9)
C11	0.42000(5)	0.0734(1)	0.57560(6)	0.0557(5)	H20A	0.6238(7)	0.535(2)	0.9558(9)	0.136(6)
C12	0.60040(4)	0.5868(1)	0.84280(5)	0.0564(5)	H20B	0.5988(8)	0.698(2)	0.9286(9)	0.136(7)
C13	0.57160(5)	0.6705(1)	0.71740(6)	0.0636(6)	H20C	0.6542(9)	0.671(2)	0.9442(9)	0.149(7)
C14	0.38830(5)	0.2701(1)	0.45890(6)	0.0630(6)	H23A	0.6533(6)	-0.018(1)	0.6865(8)	0.110(5)
C15	0.63820(4)	0.2055(1)	0.67330(5)	0.0475(5)	H23B	0.6606(6)	0.065(1)	0.7627(7)	0.094(4)
C16	0.35790(5)	0.1111(1)	0.53430(6)	0.0669(6)	H24A	0.7414(6)	0.305(1)	0.6542(7)	0.106(5)
C18	0.58950(5)	0.6995(1)	0.79160(6)	0.0651(6)	H24B	0.7288(7)	0.213(1)	0.5845(8)	0.115(5)
C19	0.61930(9)	0.6187(2)	0.92390(7)	0.090(1)	H25	0.3019(6)	0.239(1)	0.4463(6)	0.074(3)
C23	0.72100(7)	0.2128(2)	0.62890(9)	0.095(1)	H26A	0.6300(6)	0.313(1)	0.5781(7)	0.094(4)
C25	0.34330(6)	0.2104(1)	0.47600(7)	0.0691(7)	H26B	0.6316(6)	0.132(1)	0.5744(7)	0.099(4)
C26	0.65200(6)	0.2164(2)	0.60630(6)	0.0756(8)	H27A	0.7609(7)	-0.001(2)	0.7775(9)	0.132(5)
C27	0.74000(6)	0.0801(2)	0.7445(1)	0.101(1)	H27B	0.7562(7)	0.179(2)	0.7752(9)	0.138(6)
C28	0.75250(8)	0.0812(2)	0.6773(1)	0.105(1)	H28A	0.7976(8)	0.090(2)	0.6967(8)	0.134(6)
H4	0.5997(3)	0.3613(9)	0.8514(4)	0.041(2)	H28B	0.7344(7)	-0.017(2)	0.6446(8)	0.126(5)
H6A	0.5759(4)	0.179(1)	0.7546(5)	0.055(3)	H3	0.4827(6)	0.356(2)	0.4492(7)	0.108(5)
H6B	0.5109(5)	0.2403(9)	0.6948(5)	0.055(3)	H1	0.5460(6)	0.397(2)	0.6080(7)	0.115(5)

 $^aT = \exp[2\pi^2 U]; U = U_{iso} = U_{eq}; U_{eq} = \frac{1}{3} \sum_{i=1}^3 \sum_{j=1}^3 U_{ij} a_i a_j a_i a_j$. The numbering of atom is shown below.

in vacuo to obtain a yellowish viscous product. The solution obtained was dissolved in 50 mL of diethyl ether and extracted with 3 N NaOH 10 mL for three times, followed by 10 mL of water washing until the solution became neutral. The product was dried over sodium sulfate, and the solvent was removed. The crude viscous product was left overnight at room temperature, producing a white precipitate. The precipitate was collected and recrystallized by 2-propanol.

To study the solvent effect, the similar reactions were carried out using cyclohexane and methanol as solvents. The reaction in a neat liquid state at 135 °C for 15 min was also performed for comparison. The molar ratios of reactants were also varied, that is, paraformaldehyde (0.32 g, 10 mmol), cyclohexylamine (0.56 mL, 5 mmol) and benzoxazine dimer 1 (1.70 g, 5 mmol).

Compound 5: 80% yield; $R_f = 0.29$ (5% MeOH in CHCl₃); mp = 130 °C; FT-IR (KBr, cm⁻¹): 3300-3100 (br, OH), 1498 (s, oxazine), 1223 (br s, C-O); ¹H NMR (600 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.12 (2H, m, CH₂), 1.16 (2H, m, CH₂), 1.25 and 1.98 (4H, m, CH₂), 1.40 and 1.92 (4H, m, CH₂), 1.58 and 1.74 (4H, m, CH₂), 1.60 and 1.76 (4H, m, CH₂), 2.21 (3H, s, Ar-CH₃), 2.20 (3H, s, Ar-CH₃), 2.62 (1H, tt, CH, $J_1 = 11.81$ Hz and $J_2 = 3.30$ Hz), 2.68 (1H, m, CH), 3.57 (2H, s, Ar-CH₂-N), 3.78 (2H, s, Ar-CH₂-N), 4.03 (2H, s, Ar-CH₂-N), 4.98 (2H, s, O-CH₂-N), 6.64 (1H, d, Ar-H, $J_3 = 8.24$ Hz), 6.66 $(1H, d, Ar-H, J_4 = 1.51 Hz), 6.74 (1H, d, Ar-H, J_5 = 1.94 Hz), 6.83$ (1H, d, Ar-H, J_4 = 1.51 Hz), 6.89 (1H, dd, Ar-H, J_3 = 8.24 Hz and $J_5 = 1.94 \text{ Hz}$), 11.16 (1H, br, Ar–OH); ¹³C NMR (150 MHz, CDCl₃, ppm): δ_C 20.47, 20.55, 25.48, 25.94, 26.01, 26.30, 27.64, 31.60, 47.38, 47.87, 52.89, 57.99, 58.47, 80.19, 115.63, 121.19, 122.45, 124.91, 126.76, 127.48, 128.52, 128.71, 129.04, 130.18, 151.58, 155.94. Anal. calcd for C₃₀H₄₂N₂O₂: C, 77.92; H, 9.10; and N, 6.06. Found: C, 77.79; H, 9.17; and N, 6.09.

Preparation of 3,4-Dihydro-3-cyclohexyl-6-ethyl-8-((2'-hydroxy-5'-methylbenzyl)cyclohexylaminomethyl)-2H-1,3-benzoxazine, 6 and

3,4-Dihydro-3-cyclohexyl-6-methyl-8-((2'-hydroxy-5'-methylbenzyl)-propylaminomethyl)-2H-1,3-benzoxazine, 7. Benzoxazine dimer **2** (1.84 g, 5 mmol), paraformaldehyde (0.32 g, 10 mmol), and cyclohexylamine (0.56 mL, 5 mmol) were used to prepare compound **6**, while benzoxazine dimer **3** (1.50 g, 5 mmol), paraformaldehyde (0.32 g, 10 mmol), and propylamine (0.42 mL, 5 mmol) were used to prepare compound **7**. Similarly, the reactions proceeded in a neat liquid state at 135 °C for 15 min. The obtained products were characterized using FT-IR, ¹H NMR, ¹³C NMR, and EA.

Compound 6: 80% yield; $R_f = 0.27$ (5% MeOH in CHCl₃); mp =143 °C; FT-IR (KBr, cm⁻¹): 3300-3100 (br, OH), 1498 (s, oxazine), 1198 (br s, C-O). ¹H NMR (600 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.08 (2H, m, CH₂), 1.15 (2H, m, CH₂), 1.19 (6H, t, CH₃-CH₂-Ar, $J_1 = 7.69$ Hz), 1.25 and 1.98 (4H, m, CH₂), 1.40 and 1.91 (4H, m, CH₂), 1.58 and 1.75 (4H, m, CH₂), 1.60 and 1.79 (4H, m, CH₂), 2.52 (4H, q, CH₃- CH_2 -Ar, $J_1 = 7.69$ Hz), 2.63 (1H, tt, CH, $J_2 = 11.97$ Hz and $J_3 =$ 3.42 Hz), 2.71 (1H, m, CH), 3.59 (2H, s, Ar-CH₂-N), 3.81 (2H, s, $Ar-CH_2-N$), 4.05 (2H, s, $Ar-CH_2-N$), 4.99 (2H, s, $O-CH_2-N$), 6.67 (1H, d, Ar-H, J_4 = 8.12 Hz), 6.68 (1H, d, Ar-H, J_5 = 2.14 Hz), 6.77 (1H, d, Ar-H, J_6 = 1.71 Hz), 6.86 (1H, d, Ar-H, J_5 = 2.14 Hz), 6.93 (1H, dd, Ar–H, $J_4 = 8.12$ Hz, $J_6 = 1.71$ Hz), 11.22 (1H, br, Ar–OH); 13 C NMR (150 MHz, CDCl₃, ppm): $\delta_{\rm C}$ 15.67, 15.92, 25.47, 25.94, 26.02, 26.31, 27.68, 27.99, 28.02, 31.59, 47.48, 47.96, 52.95, 58.05, 58.39, 80.15, 115.65, 121.16, 122.43, 124.93, 125.49, 127.30, 127.82, 128.98, 134.14, 135.24, 151.73, 156.16. Anal. calcd for C₃₂H₄₆N₂O₂: C, 78.36; H, 9.39; and N, 5.71. Found: C, 78.19; H, 9.44; and N, 5.73.

Compound 7: 75% yield; $R_f = 0.31$ (5% MeOH in CHCl₃); mp =125 °C; FT-IR (KBr, cm⁻¹): 3350-3100 (br, OH), 1498 (s, oxazine), 1228 (br s, C-O); ¹H NMR (600 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 0.83 (3H, t, N-CH₂-CH₂-CH₃, J_1 = 7.33 Hz), 1.13 (2H, m, CH₂), 1.24 and 1.97 (4H, m, CH₂), 1.61 and 1.74 (4H, m, CH₂), 1.65 (2H, qt, N-CH₂-

CH₂–CH₃, J_1 = 7.33 Hz and J_2 = 2.06 Hz), 2.21 (3H, s, CH₂), 2.22 (3H, s, Ar–CH₃), 2.42 (2H, t, N–CH₂–CH₂–CH₃, J_2 = 2.06 Hz), 2.68 (1H, m, CH), 3.57 (2H, s, Ar–CH₂–N), 3.68 (2H, s, Ar–CH₂–N), 4.04 (2H, s, Ar–CH₂–N), 4.98 (2H, s, O–CH₂–N), 6.66 (1H, d, Ar–H, J_3 = 8.01 Hz), 6.68 (1H, d, Ar–H, J_4 = 1.49 Hz), 6.74 (1H, d, Ar–H, J_5 = 1.60 Hz), 6.83 (1H, d, Ar–H, J_4 = 1.49 Hz), 6.92 (1H, dd, Ar–H, J_3 = 8.01 Hz and J_5 = 1.60 Hz), 10.83 (1H, br, Ar–OH); ¹³C NMR (150 MHz, CDCl₃, ppm): $\delta_{\rm C}$ 11.83, 19.33, 20.55, 20.66, 25.56, 26.02, 31.65, 47.55, 52.46, 55.32, 57.59, 58.59, 80.30, 115.75, 121.40, 122.48, 124.16, 127.01, 127.72, 128.72, 128.79, 129.16, 130.22, 151.69, 155.89. Anal. calcd for C₂₇H₃₈N₂O₂: C, 76.78; H, 9.00; and N, 6.64. Found: C, 76.83; H, 9.07; and N, 6.57.

Conclusions

Although we expected the dioxazine compound as a product from the Mannich reaction onto benzoxazine dimer, we got only mono-oxazine as characterized by FT-IR, ¹H NMR, ¹³C NMR, and 2D-NMR. X-ray structure analysis revealed the existence of intramolecular hydrogen bonds with a distance of ca. 1.8 Å. Here, we want to propose the reaction mode of our benzoxazine dimer as a "self-selective reaction" since the reaction occurs at only the single site of phenol, owing to the intramolecular hydrogen bond of the dimer itself. In other words, the monooxazine is produced *inevitably* because of this "self-selective reaction" under the various conditions.

In this way, judging from the chemical formula, it is unexpected to achieve the asymmetric molecule. However, as we clarified here, another key factor is involved in the reaction, that is, the unique stereo structure of the reactant molecule by intramolecular hydrogen bonding has to be taken into consideration. We ought to note that the present work gives us a hint to achieve the asymmetrical product by designing the molecule with a strong intramolecular hydrogen bond to deactivate the reactive site. Hence, with this approach we may obtain the desired product in a high yield without multisteps of protecting and deprotecting procedures, and the use of catalysts, and special condition. We are achieving a series of well-defined polybenzoxazines by making mono-oxazine benzoxazine dimer compounds be a useful pathway.

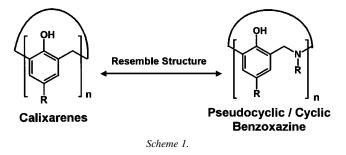
Acknowledgment. We thank Professor Mikiji Miyata (Department of Material and Life Science, Faculty of Engineering, Osaka University, Japan) and Dr. Keonil Lee (Graduate School of Science, Osaka University, Japan) for NMR measurements. A deep gratitude is expressed to Mr. Seishi Saragai and Mr. Hisakatsu Hama (Department of Macromolecular Science, Graduate School of Science, Osaka University, Japan) for the help in single-crystal analyses. S.C. gratefully acknowledges the financial support of the Hitachi Scholarship Foundation and Japan Society for the Promotion of Science (JSPS). Appreciation is also extended to Dr. Sathorn Suwan (The Center Laboratory Instrument of Chulalongkorn University, Thailand) for the fruitful discussions on ¹³C-NMR and 2D-NMR interpretation.

Supporting Information Available: Additional spectra (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA004048O

Metal Ion Guest Responsive Benzoxazine Dimers and Inclusion Phenomena of Cyclic Derivatives *

APIRAT LAOBUTHEE, HATSUO ISHIDA¹ and SUWABUN CHIRACHANCHAI**


The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; ¹Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA

(Received: 9 May 2003; in final form: 26 September 2003)

Key words: benzoxazine dimer, benzoxazine dimer based macrocyclic, metal ion guest responsive properties, Pedersen's technique, stoichiometric host–guest ratio

Abstract

A series of benzoxazine dimers (1–9), esterified benzoxazine dimers (10–18), and benzoxazine dimer based macrocyclic derivatives (19–22) are prepared. The metal ion guest responsive properties of the benzoxazine dimers obtained are clarified by using Pedersen's technique. The ion extractions of the benzoxazine dimers are controlled by the bulkiness of the functional group at the aza position. The ones with cyclohexyl bulky groups at the aza position, 7–9, are two times higher than those with methyl groups, 1–3. The extractions are close to 100% for esterified dimers (10–18). For the macrocyclic derived dimers, the ether cyclic derivatives, 21-22, interact with sodium, potassium and cesium ions at stoichiometric ratios 2:1 and 1:1 depending on the metal species, as evidenced from ¹H-NMR.

Introduction

For the past three decades, host–guest compounds or inclusion compounds have received much attention mainly due to the information obtained from interactions at the molecular level [1–2] observed by a variety of characterization techniques. The induced molecular recognition properties are known to be based on non-covalent interactions, or secondary forces, such as van der Waals, dipole–dipole interaction, $\pi-\pi$ stacking, and hydrogen bonding between host and guest [1–3]. Many of the host molecules were designed either with specific functional groups to form molecular assemblies or definite macrocyclic structures, in order to achieve novel functional supramolecules.

Polybenzoxazine is a new type of phenolic resin with superb mechanical and thermal properties [4]. Most of the studies on these materials have concentrated on difunctional benzoxazines with the objective of improving the processing conditions of thermosetting materials. In our studies of open-ring benzoxazines [5], we originally proposed that the basic unit is close to that of calixarenes but with an aza methylene linkage in between (Scheme I). Hence, the open-ring benzoxazines can be expected to have properties similar to that of calixarenes. In order to clarify whether the open-ring benzoxazines show inclusion properties and to understand the phenomena related to the structure, a series of the controlled structure benzoxazines dimers were prepared [6–7]. High yield (80%) was obtained from a single step ring opening reaction of benzoxazine monomer. We also extended the work to the [2+2] macrocyclic dimers via esterification and etherification [7–10].

The benzoxazine dimer is an appropriate model to use since there is no complication due to the chain length. Moreover, a series of derivatives can be prepared which enables systematic studies to be done on the inclusion properties related to the chemical structure. The present article is aimed at exploring host–guest interactions of benzoxazine on the basis of the interaction between aza methylenephenol unit and metal ions.

Experimental

Materials

Barium chloride, lithium hydroxide and deuterated chloroform (CDCl₃) were purchased from Fluka Chemicals (Buchs, Switzerland). Sodium hydroxide, cesium carbonate, potassium hydroxide, chloroform, magnesium chloride, calcium chloride, and picric acid were the products of Ajax

^{*} Supplementary data relating to this article are deposited with the British Library as Supplementary Publication No. 82305 (1 page).

^{**} Author for correspondence. E-mail: csuwabun@chula.ac.th.

chemicals (Australia). All chemicals were analytical grade and used without further purification.

Syntheses

A series of benzoxazine dimers; *N*,*N*-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine **1**, *N*,*N*-bis(5-methyl-2-hydroxybenzyl)methylamine **2**, *N*,*N*-bis(5-ethyl-2-hydroxybenzyl)methylamine **3**, *N*,*N*-bis(3,5-dimethyl-2-hydroxybenzyl)propylamine **4**, *N*,*N*-bis(5-methyl-2-hydroxybenzyl)propylamine **5**, *N*,*N*-bis(5-ethyl-2-hydroxybenzyl)propylamine **6**, *N*,*N*-bis(3,5-dimethyl-2-hydroxybenzyl)cyclohexylamine **7**, *N*,*N*-bis(5-methyl-2-hydroxybenzyl)cyclohexylamine **8**, *N*,*N*-bis(5-ethyl-2-hydroxybenzyl)cyclohexylamine **9**, were prepared as reported elsewhere [6–7] and used as starting materials (Scheme II).

Preparation of

N,N-bis(2-benzoyl-3,5-dimethylbenzyl)methylamine 10, N,N-bis(2-benzoyl-5-methylbenzyl)methylamine 11, N,N-bis(2-benzoyl-5-ethylbenzyl) methylamine 12, N,N-bis(2-benzoyl-3,5-dimethylbenzyl)propylamine 13, N,N-bis(2-benzoyl-5-dimethylbenzyl)propylamine 14, N,N-bis(2-benzoyl-5-ethylbenzyl) propylamine 15, N,N-bis(2-benzoyl-3,5-dimethylbenzyl)cyclohexylamine 16, N,N-bis(2-benzoyl-5-ethylbenzyl)cyclohexylamine 17, N,N-bis(2-benzoyl-5-ethylbenzyl) cyclohexylamine 18

Benzoxazine dimer 1 (5 mmol) was dissolved in dichloromethane (50 mL) followed by the addition of NaOH (20 mmol) in water (50 mL). The mixture was stirred vigorously at room temperature for 30 min and a solution of benzoyl chloride (10 mmol) in dichloromethane (CH₂Cl₂, 50 mL) was added dropwise for 1 h. The reaction was allowed to proceed at room temperature for 6 h. The CH₂Cl₂ phase was collected and extracted with water several times. The product was dried over sodium sulfate and the solvent removed to obtain a white product of 10. Similarly, 11–18 were prepared as for 10 with the starting materials 2–9, respectively. The products obtained were characterized by FTIR, ¹H NMR, and EA.

Compound **10**: 95% yield; clear and colorless crystal; mp. 158–159 °C; FTIR (KBr, cm⁻¹): 1737 (vs, C=O), 1484 (s, tetrasubstituted benzene), 1265 (vs, C–N stretching). ¹H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 2.05 (3H, s, N–CH₃), 2.15 (6H, s, Ar–CH₃), 2.30 (6H, s, Ar–CH₃), 3.35 (4H, s, Ar–CH₂–N), 6.98 (2H, s, Ar–H), 7.05 (2H, s, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₃H₃₃NO₄: C, 78.11; H, 6.51; and N, 2.76. Found: C, 77.99; H, 6.54; and N, 2.78.

Compound **11**: 95% yield; clear and colorless crystal; mp.151–152 °C; FTIR (KBr, cm $^{-1}$): 1738 (vs, C=O), 1499 (s, trisubsubstited benzene), 1266 (vs, C–N stretching). 1 H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 2.05 (3H, s, N–CH₃), 2.30 (6H, s, Ar–CH₃), 3.45 (4H, s, Ar–CH₂–N), 6.98 (2H, d, Ar–H), 7.05 (2H, s, Ar–H), 7.10 (2H, d, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₁H₂₉NO₄: C, 77.66; H, 6.05; and N, 2.92. Found: C, 77.71; H, 6.12; and N, 2.89.

Compound **12**: 95% yield; clear and colorless crystal; mp. 153–154 °C; FTIR (KBr, cm⁻¹): 1738 (vs, C=O), 1498 (s, trisubsubstited benzene), 1264 (vs, C–N stretching). ¹H NMR (200 MHz, CDCl₃, ppm): δ_H 1.25 (6H, t, Ar–CH₂–CH₃), 2.05 (3H, s, N–CH₃), 2.65 (4H, q, Ar–CH₂–CH₃), 3.45 (4H, s, Ar–CH₂–N), 6.98 (2H, d, Ar–H), 7.05 (2H, s, Ar–H), 7.10 (2H, d, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₃H₃₃NO₄: C, 78.11; H, 6.51; and N, 2.76. Found: C, 78.12; H, 6.48; and N, 2.73.

Compound **13**: 95% yield; clear and colorless crystal; mp. 161–162 °C; FTIR (KBr, cm⁻¹): 1734 (vs, C=O), 1498 (m, tetrasubstituted benzene), 1264 (s, C–N stretching). ¹H NMR (200 MHz, CDCl₃, ppm): δ_H 0.75 (3H, t, N–CH₂–CH₂–CH₃), 1.45 (2H, m, N–CH₂–CH₂-CH₃), 2.10 (6H, s, Ar–CH₃), 2.22 (6H, s, Ar–CH₃), 2.35 (2H, t, N–CH₂–CH₂–CH₃), 3.45 (4H, s, Ar–CH₂–N), 6.98 (2H, d, Ar–H), 7.05 (2H, s, Ar–H), 7.10 (2H, d, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₅H₃₇NO₄: C, 78.50; H, 6.92; and N, 2.62. Found: C, 78.48; H, 6.87; and N, 2.65.

Compound **14**: 95% yield; clear and colorless crystal; mp. 154–155 °C; FTIR (KBr, cm⁻¹): 1737 (vs, C=O of ester), 1497 (m, trisubstituted benzene), 1268 (vs, C–N stretching). 1 H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 0.75 (3H, t, N–CH₂–CH₂–CH₃), 1.45 (2H, m, N–CH₂–CH₂–CH₃), 2.18 (6H, s, Ar–CH₃), 2.35 (2H, t, N–CH₂–CH₂–CH₃), 3.45 (4H, s, Ar–CH₂–N), 6.98 (2H, d, Ar–H), 7.05 (2H, s, Ar–H), 7.10 (2H, d, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₃H₃₃NO₄: C, 78.11; H, 6.51; and N, 2.76. Found: C, 78.07; H, 6.46; and N, 2.78.

Compound **15**: 95% yield; clear and colorless crystal; mp. 158–159 °C; FTIR (KBr, cm⁻¹): 1734 (vs, C=O), 1497 (m, trisubstituted benzene), 1267 (vs, C–N stretching). ¹H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 0.75 (3H, t, N–CH₂–CH₂–CH₃), 1.25 (6H, t, Ar–CH₂–CH₃), 1.45 (2H, m, N–CH₂–CH₂–CH₃), 2.35 (2H, t, N–CH₂–CH₂–CH₃), 2.65 (4H, q, Ar–CH₂–CH₃), 3.45 (4H, s, Ar–CH₂–N), 6.98 (2H, d, Ar–H), 7.05 (2H, s, Ar–H), 7.10 (2H, d, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₅H₃₇NO₄: C, 78.50; H, 6.92; and N, 2.62. Found: C, 78.53; H, 6.90; and N, 2.59.

Compound **16**: 95% yield; clear and colorless crystal; mp. 171–172 °C; FTIR (KBr, cm $^{-1}$): 1731 (vs, C=O), 1482 (s, tetrasubstituted benzene), 1265 (vs, C–N stretching). 1 H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.1 (4H, m, CH2), 1.60 (2H, m, CH₂), 1.82 (4H, dt, CH₂), 2.05 (3H, s, N–CH₃), 2.15 (6H, s, Ar–CH₃), 2.60 (1H, t, CH), 3.35 (4H, s, Ar–CH₂–N), 6.98 (2H, s, Ar–H), 7.05 (2H, s, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₈H₄₁NO₄: C, 79.30; H, 7.13; and N, 2.43. Found: C, 79.28; H, 7.11; and N, 2.47.

Compound **17**: 95% yield; clear and colorless crystal; mp. 163–164 °C; FTIR (KBr, cm $^{-1}$): 1738 (vs, C=O), 1497 (m, trisubstituted benzene), 1267 (vs, C–N stretching). 1 H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.1 (4H, m, CH₂), 1.60 (2H, m, CH₂), 1.82 (4H, dt, CH₂), 2.40 (6H, s, Ar–**CH₃**), 2.50 (1H, t, CH), 3.55 (4H, s, Ar–**CH₂**–N), 6.98 (2H, d, Ar–

Scheme 2.

H), 7.05 (2H, s, Ar–H), 7.10 (2H, d, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃₆H₃₇NO₄: C, 78.98; H, 6.76; and N, 2.56. Found: C, 78.88; H, 6.78; and N, 2.55.

Compound **18**: 95% yield; clear and colorless crystal; mp. 166–167 °C; FTIR (KBr, cm $^{-1}$): 1737 (vs, C=O), 1498 (m, trisubstituted benzene), 1267 (vs, C–N stretching). 1 H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.1 (4H, m, CH₂), 1.25 (6H, t, Ar–CH₂–CH₃), 1.45 (2H, m, N–CH₂–CH₂–CH₃), 1.60 (2H, m, CH₂), 1.82 (4H, dt, CH₂), 2.35 (2H, t, N–CH₂–CH₂–CH₃), 2.50 (1H, t, CH), 2.65 (4H, q, Ar–CH₂–CH₃), 3.55 (4H, s, Ar–CH₂–N), 6.98 (2H, d, Ar–H), 7.05 (2H, s, Ar–H), 7.10 (2H, d, Ar–H), 7.45 (4H, t, Ar–H), 7.62 (2H, t, Ar–H), 8.20 (4H, d, Ar–H). Anal. calcd for C₃H₄₁NO₄: C, 79.30; H, 7.13; and N, 2.43. Found: C, 79.27; H, 7.15; and N, 2.44.

Preparation of cyclic benzoxazines

Benzoxazine dimers based cyclic esters, **19–20**, were prepared as reported elsewhere [7–9] while benzoxazine dimers based cyclic ethers, **21–22** were reported previously [9–10].

Ion extraction property of benzoate benzoxazine dimers

Ion extraction was qualitatively and quantitatively analyzed by Pedersen's technique [1]. Benzoxazine derivatives (1-22) were dissolved in chloroform at 7×10^{-3} , 7×10^{-2} , 3.8×10^{-2} , 7×10^{-1} , and 3.8×10^{-1} M. Alkali and alkaline earth metal picrate aqueous solutions were prepared at 7×10^{-5} M. Both solutions were mixed and left for 10 min before determining the concentration of metal picrates. The concentration was determined using a UV-Vis Perkin-Elmer Lambda-16 Spectrophotometer at λ_{max} 354 nm (ϵ =

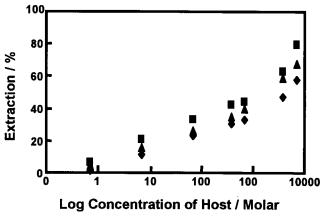


Figure 1. Extraction percentage of potassium picrate at a concentration of 7.5×10^{-5} M by (\blacksquare) 1, (\spadesuit) 2, and (\blacktriangle) 3 with various concentrations in CHCl₃ at 25 °.

 $1.45 \times 10^4~{\rm M}^{-1}~{\rm cm}^{-1}$). For cyclic derivatives, the organic phase was collected and further studied for the host–guest ratio by a $^1{\rm H}$ NMR ACF 200 MHz of Bruker, Switzerland, using deuterated chloroform as a solvent with a trace amount of tetramethylsilane (TMS).

Results and discussion

Ion extraction

Figure 1 summarizes the ion extraction of 1-3. The host molecules have different substituents at the ortho and para positions, while the substituted groups at the nitrogen is the methyl group. When the concentration of 1-3 increases, the extraction of potassium ion increases gradually. At equimolar concentration of host and guest $(7 \times 10^{-5} \text{ M})$, the extraction is \sim 10%. When the concentration of host is increased to 7×10^{-2} M, the extraction accomplished for \sim 40–50%. Hampton et al. [11] reported that a series of hexahomotriazacalix[3]arenes gave ion extraction percentages of less than 0.2% at host and metal picrate concentrations of 5×10^{-3} M, owing to strong intramolecular hydrogen bonding. Recently, our group [7, 12–13] reported a unique inter and intramolecular hydrogen bonded network with the dimers using X-ray structural analysis. The intramolecular hydrogen bond generates a six-membered ring [13–14] via O–H–N and is found to be one of the key factors that provides the asymmetric reaction inevitably [13].

Thus, it is conceivable that intramolecular hydrogen bonding might play an important role for **1–9**. Figure 1 also demonstrates that the ion extraction ability of dimers is achieved for only 20–40% even the host concentration was 1000 times (7×10^{-2} M) higher than that of picrate (7×10^{-5} M). Here, we speculate that the host–guest formation might form a molecular assembly controlled by hydrogen bonding. Here, **1** with two methyl substituted groups at both ortho and para positions might form a loosely assembled structure owing to the steric effect, and consequently, there may be more available space to include the guests.

Sone et al. [15] reported that inclusion compounds of phenol-formaldehyde oligomers is enhanced when the

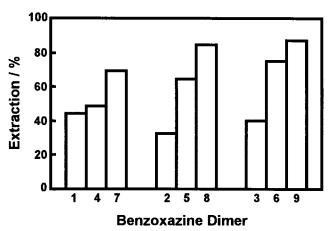


Figure 2. Extraction percentage of potassium picrate at a concentration of 7×10^{-5} M by **1–9** at the concentration of 7×10^{-2} M in CHCl₃ at 25 °C.

phenol unit has a bulky group at the para position as observed that the guest was separated from water phase via the function of oligomers. It is, therefore, reasonable to expect that $\bf 3$, which has more bulky group than $\bf 2$, shows a higher ion extraction percentage (Figure 1). The electron density of host molecules is another important factor to be considered except the bulkiness of side groups. In terms of the electron donating ability, the order is $\bf 1 > 3 > 2$. This directly correlates with the ion extraction percentage. Similarly, it was found that other alkali and alkaline earth metal ions (lithium, sodium, magnesium, calcium, and barium) gave an increase in ion extraction percentage with increasing concentration of $\bf 1-3$.

Effect of substituent groups on the aza methylene linkage

Chirachanchai *et al.* [12–13] determined the crystal structures of a series of benzoxazine dimers and found that the hydrogen bonding network and the variation of unit cell are both dependent on the substituted group at the aza linkage. Solid-state NMR studies using dimer crystals by Schnell et al. [16] supported the idea of hydrogen bonded network formation of dimers.

In order to identify the effect of substituent groups on the aza linkage in ion interaction, a series of dimers (4–9) were studied. As shown in Figure 2, the ion extraction percentage increased gradually when the functional groups changed from methyl to propyl and cyclohexyl groups. Compounds 4–6 (propyl group on aza linkage) show higher extraction ability than those of 1–3. In addition, the dimers 7–9, with cyclohexyl group, show significant extraction percentages up to 70–80%. This suggests that the bulky groups on the aza linkage enhance the ion extraction ability. Comparing 4 with 5 and 7 with 8, it can be concluded that the substituent group on the aza linkage is more important than any other substituent group in benzoxazine dimers. The extraction ability becomes most significant when both para-substituted groups in phenol and aza units are bulky (9).

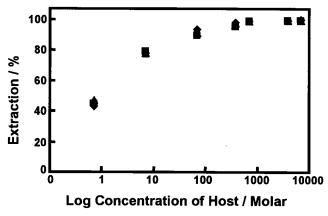


Figure 3. Extraction percentage of potassium picrate at a concentration of 7.5×10^{-5} M by (\blacksquare), 10, \spadesuit) 11, and (\blacktriangle) 12 with various concentrations in CHCl₃ at 25 °C.

Symmetrical products of benzoxazine dimers by esterification

In a previous study, it was reported that the intramolecular hydrogen bond between –OH and –N– generated in each dimer is so strong that asymmetric products were formed due to the Mannich reaction [13]. In the present study, an attempt to obtain symmetric esters was carried out by using a strong base to deprotonate the hydroxyl group and eliminate the intramolecular hydrogen bond between the aza group and the OH of the phenol ring. Compounds **10–18** (Scheme II) were successfully obtained and confirmed by FTIR, ¹H-NMR and elemental analysis.

Effect of ester group on phenol unit

A series of compounds, **10–18**, should provide us information on how the ion extraction ability changes when the hydrogen bonded network of the dimer is eliminated. Figure 3 clearly shows that the esterified dimers **10–12** give a two-fold increase in extraction percentage over those of **1–3**. Almost all of the potassium picrate (\sim 100%) is extracted by **10–12** at a concentration of 7×10^{-2} M. The results suggest that the elimination of hydrogen bonds together with an increase in lone pair electrons produces a strong interaction with metal ions.

Figure 4 shows that the extraction ability of each esterified dimer **10–18** is \sim 100%. In other words, the effect of esterification is strong and overcomes that of substituent groups at either the aza or phenol positions.

Speculated ion interaction system

Figures 1–4 show that the ion extraction percentages are in the 30–95% range. In other words, the nearly quantitative extraction proceeds when the concentrations of dimers are higher than those of the metal ions by a factor of 1000. Although the ion extraction ability is clarified, selectivity is rarely observed.

Yamagishi *et al.* [17–18] reported that the metal ion extraction accomplished by acyclic all-ortho *p-tert*-butylphenol-formaldehyde was \sim 10–80% when the concen-

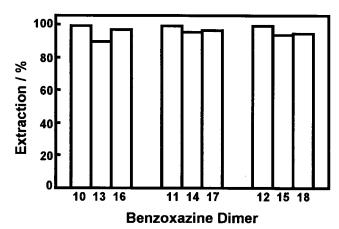


Figure 4. Extraction percentage of potassium picrate at a concentration of 7×10^{-5} M by 10–18 at the concentration of 7×10^{-2} M in CHCl₃ at 25 °C.

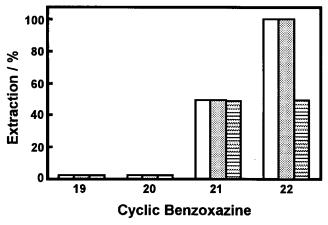


Figure 5. Extraction percentage of (\square) sodium picrate, (\square) potassium picrate, and (\square) cesium picrate at a concentration of 7×10^{-5} M by **19-22** in CHCl₃ at 25 °C.

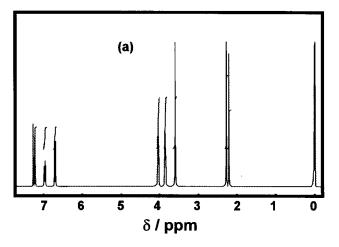
tration of host was 1000 times higher than that of the guest. The proposed host–guest formation was expected to be a pseudo-cyclic molecular assembly. In our case, we speculated that the molecular assembly between metal ions and benzoxazine dimers may form and be influenced by (i) the bulky group at nitrogen, (ii) the hydrogen bonding network, and (iii) the lone electron pairs.

Stoichiometry of ion interaction of benzoxazine dimer based cyclic compounds

Figure 5 shows the extraction percentages of sodium, potassium, and cesium ions using benzoxazine dimer based macrocyclic esters (19–20) and macrocyclic ethers (21–22) determined by Pedersen's technique [1] at equimolar concentration of host and metal species. The metal ion extraction percentages for 19–20 are difficult to observe while those for 21–22 are significant (Figure 5).

Here, the important information is that the extraction percentage for each of **21–22** is either 50 or 100%, which implies a molar ratio basis in integral numbers are 2:1 and 1:1. Thus, the host–guest formations are in stoichiometric ratio.

Table 1. ¹H NMR data of **21** and **21**-metal ion complexes


Position	Chemical Shift/ppm					
	21	21-Na ⁺	21-K ⁺	21-Cs ⁺		
		complex	complex	complex		
a	2.27	2.32	2.32	2.30		
b	2.21	2.25	2.25	2.25		
c	3.60	3.78	3.78	3.78		
d	3.87	3.85	3.78	3.78		
e	4.05	3.98	3.98	4.01		
f	6.95	7.02	7.02	7.01		
g	6.70	6.68	6.68	6.68		
h	7.21	7.15	7.18	7.18		

Further, ¹H NMR was applied to qualitatively and quantitatively study the host-guest ratio [19]. Since our studies were achieved using a liquid-liquid extraction system with picrate salt, the picrate peak at 8.8 ppm would be observed if host-metal complexes formed. In addition, the peak shifts indicate the changes of electron density in the host structure. Tables 1 and 2 clarify that δ_H values of **21–22** are shifted after extraction with picrate salts, especially the ones belonging to the methylene linkage and diethylene oxide unit. This implies that the host interacts with the metal guest via the lone pair electrons of nitrogen and oxygen atoms. It is important to note that even the type of metal ion changed; the chemical shifts for hosts (either 21 or 22) appear at nearly the same position. This implies that the inclusion structure does not depend on the type of metal ion for both hosts (21 and 22).

To evaluate the molar ratio of host–guest, the peaks of picrate and aromatic protons were investigated. Compound 21 showed host–guest ratio of 2:1 for all studied ions while 22 has a ratio of 1:1 for Na⁺ and K⁺, and 2:1 for Cs⁺ (Figures 6–7). This indicates that the macrocyclic structure affects the host-metal formation significantly. In other words, 22 with more bulky group in the para position might preferentially form 1:1 type. It was unexpected that 19 and 20 did not show any ion extraction ability. It is speculated that the unpreferable cavity in the host compound could be the reason for the lack of extraction ability; future studies are being carried out to investigate this hypothesis.

Table 2. ¹H NMR data of **22** and **22**-metal ion complexes

Position	Chemical Shift/ppm			
	22	22-Na ⁺ complex	22-K ⁺ complex	22-Cs ⁺
a	1.21	1.15	1.15	1.16
b	2.58	2.52	2.52	2.52
c	2.22	2.44	2.42	2.37
d	3.65	4.15	4.18	3.92
e	3.89	3.69	3.69	3.75
f	4.05	3.91	3.91	3.92
g	6.72	6.68	6.68	6.69
h	6.98	7.11	7.11	7.08
i	7.25	7.21	7.21	7.21

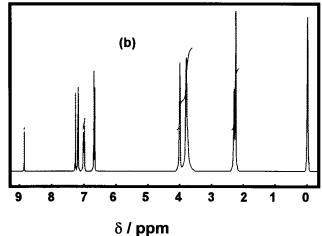
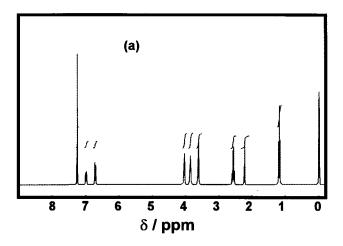
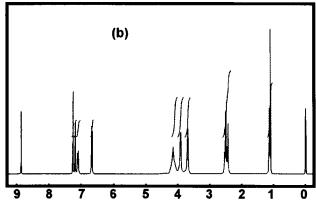




Figure 6. ¹H NMR spectra of (a) **21** and (b) complex of **21** and cesium ion.

δ/ppm

Figure 7. ¹H NMR spectra of (a) **22** and (b) complex of **22** and potassium ion

Conclusions

Ion extraction studies using a series of benzoxazine dimers (1–9) and their esterified derivatives (10–18) verified that the ion interaction ability was related to (i) the inter and intramolecular hydrogen bond network (ii) the bulky group at the aza position and (iii) the number of electron lone pairs. A stoichiometric ratio between host-metal ions was observed when benzoxazine dimers were modified to be cyclic compounds. Studies on macrocyclic types (19–22) showed that ion interactions were involved with (i) the preferable structure of cyclic molecules, and (ii) the size of metal ions.

Acknowledgements

The authors thank Dr. Buncha Pulpoka (Chulalongkorn University) for his valuable comments. We also acknowledge Prof. Yoshihisa Inoue (Osaka University) for his constructive advice. One of the authors (S.C.) extends his thanks to the Hitachi Scholarship Foundation, Japan. Appreciation is to Mr. John Ellis, The Petroleum and Petrochemical College, Chulalongkorn University, for his linguistic advice. The work was granted by Ratchadaphisek Somphot Endowment, Chulalongkorn University.

References

- 1. C.J. Pedersen: J. Am. Chem. Soc. 89, 1009-1020 (1967).
- C.J. Pedersen and H.K. Frensdorff: Angew. Chem. Int. Ed. Engl. 11, 16 (1972).
- B. Tummler, G. Maass, E. Weber, W. Wehner, and F. Vögtle: *J. Am. Chem. Soc.* 99, 4683 (1977).
- 4. X. Ning and H. Ishida: J. Polym. Sci. Chem. Ed. 32, 1121 (1994).
- S. Chirachanchai, A. Laobuthee, S. Phongtamrug, W. Siripattanasarakit, and H. Ishida: *J. Appl. Polym. Sci.* 77, 2561 (2000).
- S. Chirachanchai, A. Laobuthee, H. Ishida, and K. Tashiro: 26th Congress on Science and Technology of Thailand, Thailand, (2000), p. 737.
- A. Laobuthee, Ph.D. Thesis in Polymer Science, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand (2002).
- 8. A. Laobuthee and S. Chirachanchai: Chem. Lett. 6, 613–614 (2002).
- S. Chirachanchai, S. Phongtamrug, and A. Laobuthee: Chem. Lett. 5, 432–433 (2003).
- 10. A. Laobuthee, B. Pulpoka, and S. Chirachanchai: 27th Congress on Science and Technology of Thailand, Thailand, (2001), p. 920.
- P.D. Hampton, W. Tong, S. Wu, E.N. Duesler: *J. Chem. Soc.*, *Perkin Trans.* 2, 1127–1130 (1996).
- 12. S. Chirachanchai, A. Laobuthee, and K. Tashiro: (in preparation).
- 13. A. Laobuthee, S. Chirachanchai, H. Ishida, and K. Tashiro: J. Am. Chem. Soc. 123, 9947 (2001).
- J. Dunkers, E.A. Zarate, and H. Ishida: J. Phys. Chem. 100(32), 13514 (1996).
- T. Sone, Y. Ohaba, and H. Yamazaki: Bull. Chem. Soc. Jpn. 62, 1111 (1989).
- I. Schnell, S.P. Brown, H.Y. Low, H. Ishida, and H.W. Spiess: *J. Am. Chem. Soc.* 120, 11784 (1998).
- T. Yamagishi, K. Tani, S. Ishida, and Y. Nakamoto: Polym. Bull. 33, 281 (1994)
- T. Yamagishi, K. Tani, K. Shirano, S. Ishida, and Y. Nakamoto: J. Polym. Sci., Part A: Polym. Chem. 34, 687 (1996).
- J.W. Steed and J.L. Atwood (eds.): Supramolecular Chemistry, John Wiley & Sons, Ltd., Chichester: England (2000), p. 116.

Inclusion Compounds Formed from *N,N*-bis(2-hydroxybenzyl)alkylamine Derivatives and Transition Metal Ions via Molecular Assembly

SUTTINUN PHONGTAMRUG^a, BUNCHA PULPOKA^b and SUWABUN CHIRACHANCHAI^a,*

^aThe Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; ^bDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Received (in Southampton, UK) 2 October 2003; Accepted 26 January 2004

A series of N,N-bis(2-hydroxybenzyl)alkylamine derivatives (1-5) have been found to form hostguest compounds with transition metal ions. The inclusion phenomena in solution are confirmed from the new peak at 415 nm observed by UV-Vis (ultraviolet-visible) spectroscopy and the aromatic and methylene peak shifts observed by ¹H NMR (proton nuclear magnetic resonance) spectroscopy. Comparative studies on 1-5 by liquid-liquid extraction studies suggest that the bulky group at the aza position of the derivatives obstructs the ion interaction resulting in the decrease in ion extraction ability. Inclusion depends on the interaction of the transition metal ions with the compounds 1-5 at the aza and hydroxyl groups as identified by the twodimensional nuclear Overhauser enhancement technique (1H-1H NOESY). The results from Job's plot and electrospray ionization mass spectroscopy (ESIMS) imply molecular assembly of the hostguest system in a 2:1 ratio. Comparative studies among different ions, i.e., Cu^{2+} , Zn^{2+} and Cd^{2+} suggest that the host-guest formation is effective when electron sharing is possible through the outer orbital of the transition metal ions. In the case of inclusion in the solid state, the FTIR (Fourier transform infrared) spectra show the changes in vibrational mode of the functional groups in host molecules whereas the X-ray diffraction (XRD) patterns suggest a change in the packing structure of the host molecules. After host-guest formation, the thermal stability of the host molecules decreases as a result of the change in the packing structure from a hydrogen-bonded network to one of ionic interaction with the guest.

Keywords: Inclusion; Molecular assembly; *N,N'*-bis(2-hydroxybenzyl)alkylamine derivatives; Transition metal ions; Hydrogen bond network; Ionic interaction

INTRODUCTION

For the past few decades, supramolecular chemistry has received much attention with regard to molecular recognition and inclusion [1–5]. With the advance of instrumentation technology, not only cyclic but also acyclic compounds can be involved in host–guest relationships based on non-covalent interactions such as van der Waals [6], dipole–dipole [7], π – π stacking [8] and hydrogen bonding [9]. Many strategies for obtaining supramolecular compounds are challenging from the fundamental molecular designs to synthesis pathways.

Polybenzoxazines are reported as a novel type of phenolic resin with superb mechanical and thermal properties, which make them suitable composite materials [10]. The structure of the repeat unit of polybenzoxazines, the aza-methylene-phenol group, resembles the aza-methylene linkage in azacalixarenes (Scheme 1) [11]. Previously, we reported the conditions for a one-step ring opening reaction of benzoxazine to quantitatively (~90% yield) obtain *N,N*-bis(2-hydroxybenzyl)alkylamine derivatives (Scheme 2) [12]. The structural characterization of the derivatives by single crystal X-ray analysis, NMR, and FTIR proved that the compounds are stabilized by an intra- and intermolecular hydrogen bond network [13]. Considering the uniqueness of N,N-bis(2-hydroxybenzyl)alkylamine derivatives, it is important to note that the molecule can be a basic unit for a series of macrocyclic compounds. For example, we succeeded in using this compound

^{*}Corresponding author. Tel.: +66-2218-4134. Fax: +66-2215-4459. E-mail: csuwabun@chula.ac.th

in the synthesis of a variety of macrocycles and established their inclusion phenomena with alkali and alkaline earth metal ions [14–16].

In order to extend their use to organometallic catalysis, the metal ions in the host-metal compounds need to be transition metals. Thus, another practical application for the *N*,*N*-bis(2-hydroxybenzyl) alkylamine derivatives would be in the generation of inclusion compounds with transition metal ions, and we expected that the electron rich phenol and aza groups might interact with transition metals. The present work thus aims to clarify (i) whether the N,N-bis(2-hydroxybenzyl)alkylamine derivatives exhibit inclusion phenomena with the transition metal ions, and what the host-guest ratio is, (ii) how the functional group of the derivatives plays a role in the interaction with transition metal ions, (iii) the effect of inclusion on the thermal stability of the derivatives, and (iv) the effect of solvent molecules in the host-guest system.

RESULTS AND DISCUSSION

Inclusion Phenomena of *N,N*-bis-(2-hydroxybenzyl)alkylamine Derivatives and Transition Metal Ions

In order to identify whether a host–guest compound between *N,N*-bis(2-hydroxybenzyl)alkylamine

derivatives and various transition metal ions is formed, UV-Vis spectra were obtained to check for peak shift or the new peak generation. Makarska et al. reported that porphyrins with copper ions show inclusion phenomena as identified from the peak shifts in UV-Vis spectra [17]. Fig. 1(A) shows UV-Vis spectra of the solution 1 with CuCl₂ in methanol for various ratios. Compound 1 gives a peak maximum at 284 nm whereas CuCl₂ gives a peak at 267 nm. After mixing, a new peak at 415 nm is observed implying that 1 forms an inclusion compound with CuCl₂. Similarly, **2**–**4** with CuCl₂ gave a new peak at 415 nm, whereas 5 gave a new peak at 435 nm, confirming that N,N-bis(2-hydroxybenzyl)alkylamine derivatives act as hosts. Fig. 1(B) was re-plotted from Fig. 1(A) to represent the optimal host-guest ratio for 1 with CuCl₂. The Job's plot obtained from the new peak at 415 or 435 nm indicates that the N,N-bis(2-hydroxybenzyl)alkylamine derivatives (1-5) incorporate the Cu^{2+} guest in the host–guest ratio of 2:1.

¹H NMR was applied to study the interaction between host-metal ion and the effect of the metal ion. In order to avoid complicated conditions, methanol was selected as a good solvent for both *N,N*-bis(2-hydroxybenzyl)alkylamine derivatives and transition metal chloride salts. As shown in Fig. 2, in the case of 1, when CuCl₂ was added into the system, the peak at 3.636 (-CH₂-N) ppm is significantly shifted and splits into two broad peaks at 4.118 and 4.310 ppm. The peak of CH₃-N is also substantially deshielded by 0.481 ppm. The shifting and splitting of these specific peaks imply that the proton environment at the aza and methylene groups has changed. It can be speculated that the metal ion withdraws electrons from the aza and methylene groups resulting in a decrease in electron density of these protons in the host-guest system. It was found that the other derivatives (2-5) gave the similar results suggesting host-guest formation via interaction through the aza and methylene groups.

Up to now, most reports on inclusion phenomena are for macrocyclic host compounds.

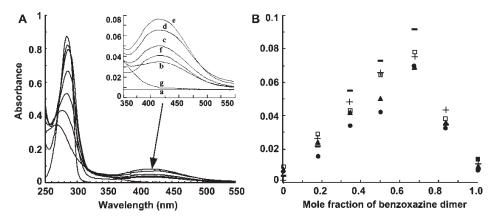


FIGURE 1 (A) UV-Vis spectra of $\mathbf{1}$ -CuCl₂ in methanol at various volumetric ratios; a) 0:6, b) 1:5, c) 2:4, d) 3:3, e) 4:2, f) 5:1, and g) 6:0. (B) Job's Plot as a function of mole fraction of (\square) 1, (+) 2, (\bullet) 3, (-) 4 at 415 nm, and (\blacktriangle) 5 at 435 nm.

However, there are cases where oligomers and small molecules can also form inclusion compounds by molecular assembly as seen in pseudocalixarenes [18], oligobenzoxazine [11] and cholic acid [19]. Ganem *et al.* demonstrated that ESIMS provide important information on the host–guest complexation of macrolides [20]. A number of host–guest molecular assembly compounds, either cyclic or noncyclic, especially calixarenes and β -cyclodextrins, were also elucidated by ESIMS [21–23]. Here, we applied ESIMS to determine how N_iN_i -bis(2-hydroxybenzyl)alky-lamine derivatives accept transition metal ions.

Compound 4 gives the peak (M + H) at $m/z \sim 300$ which is equal to its molecular weight (Fig. 3(a)). Moreover, a series of peaks appear at the m/z = 300, 600, and 899 implying that 4 tends to form an assembly structure of two and three molecules. This might be related to the inter- and intramolecular hydrogen-bond network in the solution state.

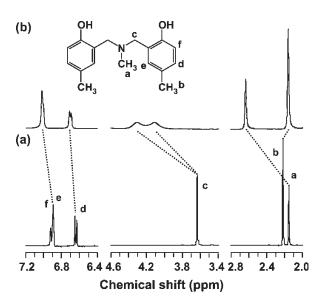


FIGURE 2 $\,^{1}$ H NMR spectra of (a) 1 and (b) 1–CuCl₂ in methanol- d_4 with a 1:1 host–guest ratio.

The hydrogen bonding of the host structure in solution might resemble that in the solid state [13]. After complexation, the spectrum shows m/z peaks in the range of 300-370, 590-670, 890-970, 1180-1260, and 1490-1560 (Fig. 3(b)). It is important to point out that these values are close to the total of m/z of 4 and Cu^{2+} . This implies that in solution, 4 interacts with $CuCl_2$ as clusters in the host–guest ratios of $1:1\sim5:1$, which is significantly different from the results in Fig. 1 where the host–guest ratio for each compound in solution observed by UV-Vis was 2:1. The difference might arise from the rapid solvent evaporation *in vacuo* during ESIMS characterization.

Ion Extraction Ability of *N,N*-bis-(2-hydroxybenzyl)alkylamine Derivatives

To evaluate the efficiency of metal ion interaction, liquid–liquid extraction containing aqueous metal ions and *N*,*N*-bis(2-hydroxybenzyl)alkylamine derivatives dissolved in chloroform was studied. In general, the extraction percentages refer to the equilibrium between host and metal in the form of complex and free molecules existing in the solution.

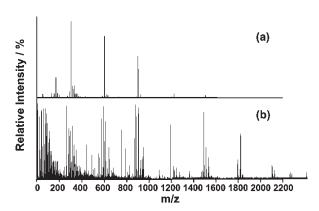


FIGURE 3 ESIMS spectra of (a) 4 and (b) 4–CuCl₂ with an orifice of 35 V.

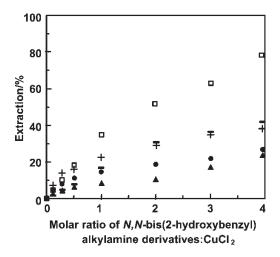


FIGURE 4 Extraction percentages of (\square) 1, (+) 2, (\bullet) 3, (-) 4, and (\blacktriangle) 5 as a function of molar ratio to CuCl₂.

Among 1–5, 1 gives the highest extraction percentage (up to 80%) whereas 5 gives the lowest (24%) (Fig. 4). In addition, the extractions of 2-5 are less than that of 1(between 50% and 70% at all ratios). Here, the differences in extraction percentage might be due either to the electrical effect or the bulkiness of substituted groups. Considering the substituent group at the phenol ring, although the ethyl group donates electrons to the phenol ring, the ion extraction of 4 was not higher than that of 1 as would be expected. It should be noted that when substituent group adjacent to the nitrogen atom is a propyl or cyclohexyl group as in 2 and 3, the extraction percentages decreased remarkably compared to 1. Here, the bulkiness must be affecting the suitability of the N,N-bis(2-hydroxybenzyl)alkylamine derivatives for ion extraction. As seen in 1–5, an increase in bulkiness at the aza group leads to a decrease in ion extraction. We speculate that the bulky group might occupy the space and obstruct the metal in interacting with the host molecule. At present, we are studying the crystal structure to confirm our speculation.

Inclusion Compounds Formed between *N*,*N*-bis-(2-hydroxybenzyl)alkylamine Derivatives and Transition Metals in the Solid State

It is important to clarify the solid state of inclusion compounds as this leads to the understanding of host–guest interactions without the solvent effect. Here, the solid state of the host–guest complex was prepared and the host–guest ratio was confirmed to be 2:1. The FTIR and XRD techniques were used to identify the changes in vibrational mode of the functional group in the host molecule and the packing structure. Spectra were recorded in Nujol in order to observe the host–guest formation with the least disturbance by moisture and water molecules.

Fig. 5 shows the FTIR spectra of 1, 3, and 4 before and after inclusion with CuCl₂ compared to the Nujol reference spectrum. In all inclusions with CuCl₂, a trace amount of OH is observed suggesting a weak intermolecular hydrogen bond among the host molecules. The doublet peaks at 1617 and 1597 cm⁻¹ resulting from the stretching mode of C=C in the aromatic ring become a singlet implying an effect from the metal ion. The other peaks, especially, 1249 (C-N) and 1207 cm⁻¹ (C-N-C) due to the aza-methylene group, become insignificant reflecting that the vibration of the functional group might be obstructed by interaction with the metal ion.

To our surprise, in the case of 3, there was little change in FTIR spectra after complexation. This suggests that the structure of 3 might have some limitations in rearranging to accept metal guests. We speculate that there might be two types of the structure when compounds 1-5 encounter the metal ion, i.e., one in which metal ion interaction occurs through the hydroxyl group of the phenol unit and the aza-methylene group (the cases of 1, 2 and 4) and one with very weak interaction (the case of 3 and 5). This is also relevant to the liquid-liquid extraction studies, where 3 and 5 gave lower extraction percentages than the others (Fig. 4). It is important to note that Fig. 1 shows 2:1 complex formation for 3 or 5 whereas Fig. 4 demonstrates their low extraction ability. This implies a solvent effect, which favors the complexation of 3 and 5 in methanol (Fig. 1). In other words, when the solvent is evaporated, it is difficult to maintain the host-guest interaction in solid state (Fig. 4).

The X-ray diffraction patterns indicate the packing structures and support the FTIR results. For example, the XRD pattern of 1--CuCl_2 (Fig. 6(c)) is drastically changed compared to that of 1 (Fig. 6(a)), whereas the pattern of 3--CuCl_2 (Fig. 6(e)) is similar to that of 3 (Fig. 6(d)). In the case of 1--CuCl_2 , the compound gives a series of new peaks around $2\theta = 5\text{--}8^\circ$, especially at 5.58, 6.36 and 6.98° with little changes at $11\text{--}30^\circ$. This suggests that copper ions are aligned in the packing structure of 1. For 3--CuCl_2 , the results from extraction percentages and the FTIR, all suggest an unchanged packing structure of the host (Fig. 6(d) and (e)).

Stability of *N,N*-bis(2-hydroxybenzyl)alkylamine Derivatives in the Host–metal Compound

The thermal properties of inclusion compounds are studied to assess the effect of the guest on the thermal stability of the host molecule. Rossel *et al.* reported on studies of cyclodextrin and acyclovir inclusion compounds by TGA and DSC [24]. Here, we applied DSC to assess the stability of the *N*,*N*-bis(2-hydroxybenzyl)alkylamine derivatives

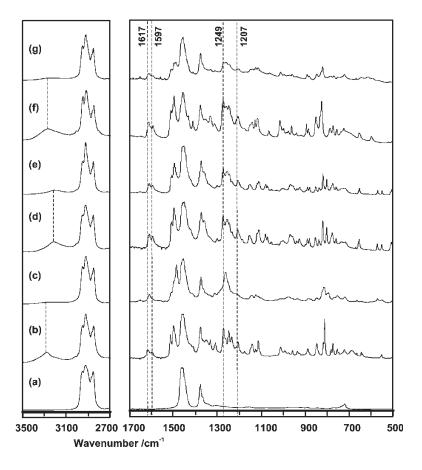


FIGURE 5 FTIR spectra of (a) Nujol, (b) 1, (c) 1-CuCl₂, (d) 3, (e) 3-CuCl₂, (f) 4 and (g) 4-CuCl₂.

upon changing the hydrogen bond network after inclusion of the metal ion.

Fig. 7(a) shows that in the case of 1 with no metal guest, the melting temperature is 161°C. Here, the melting of the *N*,*N*-bis(2-hydroxybenzyl)alkylamine derivative reflects the stability afforded by the hydrogen-bond network as shown by the single crystal analysis [13]. However, 1–CuCl₂ (2:1) shows a broad melting temperature at 130–150°C (Fig. 7(b)). This implies that the hydrogen-bond network of 1 might be obstructed after inclusion. The host–guest interactions in the solid state as evidenced from FTIR, XRD and DSC (Figs. 5–7) are relevant to those in solution shown by ¹H NMR (Fig. 2). We speculate that the hydrogen-bond network of 1 changes to ionic interactions with metal ions both in solution and in the solid state.

Effect of Solvent on Inclusion of *N*,*N*-bis-(2-hydroxybenzyl)alkylamine Derivatives

In solution, the interaction of solvent molecules may either enhance or reduce the stability and possibility of host–guest formation. In the present work, the effects of protic solvent (methanol) and aprotic solvent (DMSO and chloroform) on the inclusion compounds were observed by 1H NMR. Since the host–guest ratio is 2:1 (Fig. 1), here, an excess of guest was added to the host solution in order to provide the condition that most hosts interact with guests. The $CuCl_2$ was added in deuterated solvent in an equimolar amount to the host compound.

Comparing Fig. 2 with Fig. 8, it is important to note that 1 shows an OH peak in DMSO. This implies that there are free hydroxyl groups of 1 in DMSO since the interactions in DMSO might be based on polar-polar interactions. However, after inclusion, the hydroxyl peak splits into one broad peak and one sharp peak. This suggests two structures in equilibrium, i.e., one with a hydrogen-bond network (broad peak) and one with a free hydroxyl group (sharp peak). Furthermore, the -CH₂-N peak becomes broader with splitting and shifts to low field. This suggests a decrease in electron density as a result of metal ion interaction. Another significant change in the ¹H NMR is that two species of methyl protons appear at the same chemical shift suggesting an identical environment.

The chloroform system was also studied. After formation of the inclusion compound of 1 with $CuCl_2$ (Fig. 9(b)), the methylene protons (3.71 ppm) were slightly deshielded by 0.03 ppm. The hydroxyl

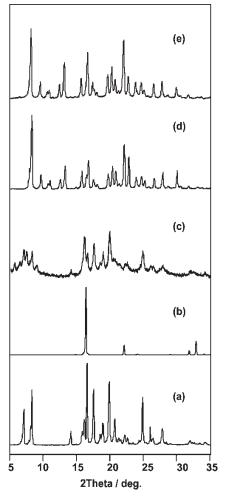


FIGURE 6 Diffraction patterns of (a) 1, (b) CuCl $_2$, (c) 1–CuCl $_2$, (d) 3 and (e) 3–CuCl $_2$.

protons of 1 appearing at 9.4 ppm (Fig. 9(a)) reflect the inter and intramolecular hydrogen-bond network of 1 in CDCl₃. The upfield shifting of these hydroxyl protons from 9.4 to 8.2 ppm (Figure 9(b)) suggests that

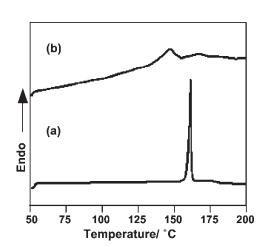


FIGURE 7 DSC thermograms of (a) 1 and (b) 1–CuCl₂.

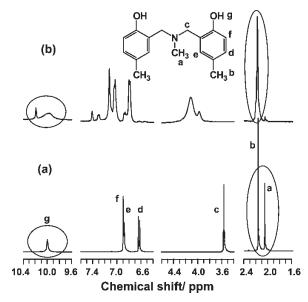


FIGURE 8 $\,^{1}$ H NMR spectra of (a) 1 and (b) 1–CuCl₂ in DMSO- d_{6} .

when complexation occurs, the hydrogen bonding (O–H···N) might be changed to H–O···metal···N. The changes in the peaks due to the aromatic protons also support formation of an inclusion compound since those due to the phenol group are broader after complexation (Fig. 9(b)).

Here, ${}^{1}\text{H}-{}^{1}\text{H}$ NOESY was also carried out to obtain more information on the inclusion process [25]. Compound 1 shows the peaks involved in the interaction between protons of the hydroxyl group (H1, H2) and protons of methylene group (H7, H9) (Fig. 10(a)). In the case of 1–CuCl₂ (Fig. 10(b)), the disappearance of those peaks supports our speculation about the interaction of 1 with the metal ion via the lone pair of electrons on the oxygen and nitrogen atoms. Upon inclusion, the intramolecular interaction (H1, H2 to H7, H9) decreased

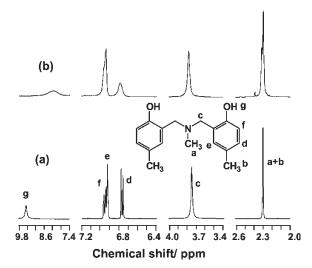


FIGURE 9 ¹H NMR spectra of (a) 1 and (b) 1-CuCl₂ in CDCl₃.

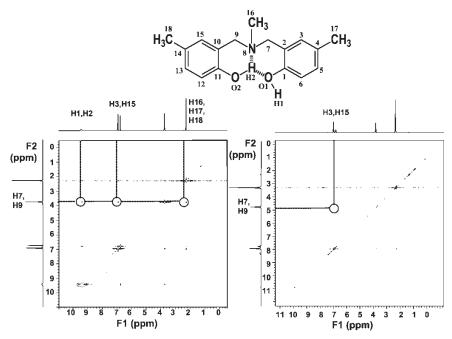


FIGURE 10 ¹H-¹H NOESY spectra of (a) 1 and (b) 1-CuCl₂ in CDCl₃.

while the interaction with metal ions was dominant. The peak resulting from the interaction of the methylene protons (H7, H9) with the methyl protons (H16) disappeared whereas that of the methylene protons (H7, H9) with the aromatic protons (H3, H15) became weaker, implying the effect of the metal ion on 1 during host–guest formation.

Inclusion Compounds of *N,N*-bis-(2-hydroxybenzyl)alkylamine Derivatives with other Transition Metal Ions

Another question of interest was to what extent a different transition metal *d*-orbital system would

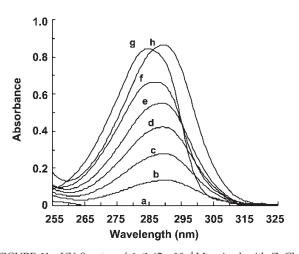


FIGURE 11 UV Spectra of 1 $(1.65\times10^{-4}\,\mathrm{M})$ mixed with ZnCl₂ $(1.65\times10^{-4}\,\mathrm{M})$ in methanol at the volumetric ratios of a) 0:6, b) 1:5, c) 2:4, d) 3:3, e) 4:2, f) 5:1 and g) 6:0, and h) $1.65\times10^{-4}\,\mathrm{M}$ solution of 1 mixed with ZnCl₂ at the molar ratio of 1:8.

affect the inclusion phenomena. For example, the successful inclusion phenomena of Cu^{2+} (3d⁹) might be due to an empty 4s orbital being available to accept electrons from N,N-bis(2-hydroxybenzyl) alkylamine derivatives. A study of the formation of complexes of 1 with other transition metal ions was therefore carried out.

Figure 11 shows UV-Vis spectra of solutions of 1 with zinc ions in methanol with ratios of 1:5 to 5:1. In methanol, 1 gives a peak maximum at 284 nm (Fig. 11(g)) whereas ZnCl₂ does not show any peak (Fig. 11(a)) over the range 255-325 nm. This is different from the CuCl₂ system since there is no new peak from the solution of ZnCl₂ and 1 but a bathochromic effect. For example, in the case of 1–ZnCl₂ for 1:5, the peak is shifted from 284 to 290 nm, implying a host-guest system. A saturated system of ZnCl₂-1 shows a significant peak at 290 nm (Fig. 11(h)). This implies that the high concentration of ZnCl₂ increases the metal ion interaction with the host molecules resulting in a hyperchromic effect. Considering the peaks b-f, the apparent peak shift might come from the overlap of the two peaks, i.e. 284 nm (due to the host) and 290 nm (due to the host-guest complex).

 1 H NMR measurements were also undertaken to confirm inclusion of Zn^{2+} with **1.** Considering the electronic orbital of Zn^{2+} , we speculate that the fully filled $3d^{10}$ orbital with no available *s*-orbital might prevent electron sharing with **1.** A series of spectra of $1-ZnCl_{2}$ show all protons deshielded similar to $1-CuCl_{2}$ (Figs. 2 and 12(c)-(e)). The methylene peak shows only

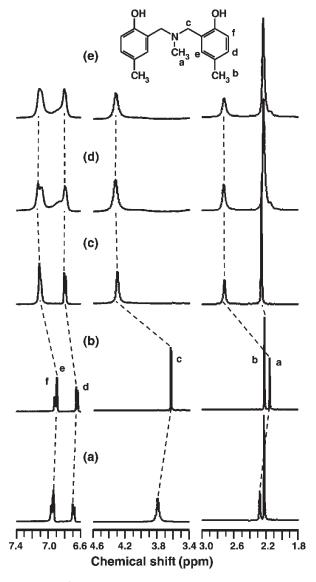


FIGURE 12 1 H NMR spectra of (a) 1–CdCl₂, (b) 1 and 1–ZnCl₂ at the ratios of (c) 1:1, (d) 1:8 and (e) 1:15 in methanol- d_4 .

peak shifting without splitting. This implies that the Zn^{2+} maintains the equivalent structure of the two $-CH_2-$ groups (adjacent to the N atom) even upon host–guest formation. In other words, the fully filled d-orbital in Zn^{2+} might obstruct the sharing of the lone pair electrons of OH and N in the host–guest compound. When the ratio of $1-ZnCl_2$ was as high as 1:8 or 1:15, the aromatic peaks were significantly broad. This suggests that there are various averaging aromatic proton environments in the inclusion complex formed between 1 and $ZnCl_2$.

In order to confirm the electronic orbital involved in the inclusion process, CdCl₂ was also studied. We expected that CdCl₂ with the outer orbital 5s² would show similar results to ZnCl₂.

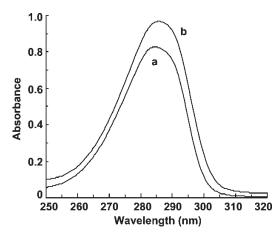


FIGURE 13 UV Spectra of (a) 1.65×10^{-4} M solution of 1 and (b) $1-\text{CdCl}_2$ (1:8).

The mixing of a solution of 1 with $CdCl_2$ was observed by UV (Fig. 13) and gave a peak with a hyperchromic shift similar to that of $ZnCl_2$, implying that inclusion had occurred. The 1H NMR spectrum of $1-CdCl_2$ shows a shift in the methylene protons but the change is small compared to that of $1-ZnCl_2$ (Fig. 12(a)). This implies a difficulty in interaction with the host. The small changes in 1H NMR and UV also imply that the size of the metal ions also has an effect on complexation.

CONCLUSION

The present work clarifies the inclusion compound of N,N-bis(2-hydroxybenzyl)alkylamines with transition metals by using copper, cadmium and zinc as model ions. In solution, the host–guest ratios of N,Nbis(2-hydroxybenzyl)alkylamine derivatives with CuCl₂ were found to be 2:1. Although the hostguest formation is dependent on the structure of the host, the interaction might form at the hydroxyl and aza-methylene group as suggested from UV-Vis, ¹H NMR and ¹H-¹H NOESY. The ESIMS showed cluster patterns indicating inclusion phenomena by the molecular assembly of N,N-bis(2-hydroxybenzyl)alkylamines. The studies on the interaction with metal ions in various solvents suggested that the inclusion might be enhanced by either hydrogen bonding or polar-polar interaction. For the solidstate host-guest compound, the DSC clarified that the *N*,*N*-bis(2-hydroxybenzyl)alkylamine derivatives lost some thermal stability after forming inclusion compounds with metal ions. Overall, we found that with respect to the nature of *N*,*N*-bis-(2-hydroxybenzyl)alkylamine derivatives, the larger the bulky group at the aza position is, the lower the metal ion acceptance of the host will be, whereas with regard to the transition metals, the vacant electron orbital was an important factor for inclusion.

EXPERIMENTAL

Chemicals

Paraformaldehyde, methylamine, 4-ethylphenol, 2,4-dimethylphenol, and anhydrous sodium sulfate were purchased from Fluka, Switzerland. p-Cresol, propylamine, cyclohexylamine, and methanol- d_4 were obtained from Merck, Germany. Sodium hydroxide and isopropanol were provided from Carlo Erba, Italy. Copper(II) chloride and zinc(II) chloride were purchased from Shimakyu's Pure Chemicals, Japan, and Ajax Finechem, Australia, respectively. 1,4-Dioxane, diethyl ether, isopropanol, dichloromethane, and N,N-dimethylsulfoxide (DMSO) were from Labscan, Ireland. Chloroform-d, and methyl sulfoxide- d_6 (DMSO- d_6) were purchased from Aldrich, Germany. All chemicals were used without further purification.

Instruments

Fourier transform infrared spectra (FTIR) were recorded in Nujol in the range 4000–400 cm⁻¹ with 64 scans at a resolution of 2 cm⁻¹ on a Bruker Equinox55/S spectrophotometer using a deuterated triglycinesulfate detector (DTGS) with a specific detectivity, D^* , of 1×10^9 cm Hz^{1/2} w⁻¹. Differential scanning calorimetry analysis (DSC) was carried out by a Perkin Elmer DSC7 from 50°C to 200°C at a heating rate of 10°C/min. X-ray diffraction (XRD) patterns were obtained from a Rigaku RINT 2000, using CuK_{α} ($\lambda = 0.154$ nm) as an X-ray source with 2θ of 5–50° operating at 40 kV and 30 mA with Ni filter. Proton nuclear magnetic resonance (¹H NMR) spectra and two-dimensional nuclear Overhauser enhancement (¹H-¹H NOESY) spectra were obtained using a Varian Mercury-400BB spectrometer. The host-guest ratio was studied by electrospray ionization mass spectrometry (ESIMS), using a PE SCIEX API III Biomolecular Mass Analyzer. UV-Vis absorbance data were obtained on a Perkin Elmer UV-VIS spectrometer Lambda 16.

Synthesis

A series of the derivatives, i.e., *N*,*N*-bis-(2-hydroxy-5-methylbenzyl)methylamine, **1**, *N*,*N*-bis(2-hydroxy-5-methylbenzyl)propylamine, **2**, *N*,*N*-bis(2-hydroxy-5-methylbenzyl)cyclohexylamine, **3**, *N*,*N*-bis(2-hydroxy-5-ethylbenzyl)methylamine, **4**, and *N*,*N*-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **5**, were prepared from a ring-opening reaction of the relevant benzoxazine and phenol derivatives. Mixtures of 3,4-dihydro-3,6-dimethyl-2H-1,3-benzoxazine and *p*-cresol (1:1) were prepared and stirred at 60°C. The mixtures were allowed to react until viscous and left for

precipitation. The precipitates obtained were collected, and washed with diethyl ether before vacuum drying. The compounds were recrystallized in chloroform before use. Similarly, 3,4-dihydro-6-methyl-3-propyl-2H-1,3-benzoxazine, 3,4-dihydro-6-methyl-3-cyclohexyl-2H-1,3-benzoxazine, 3,4-dihydro-6-ethyl-3-methyl-2H-1,3-benzoxazine, and 3,4-dihydro-3,6,8-trimethyl-2H-1,3-benzoxazine were reacted with *p*-cresol, *p*-cresol, 4-ethylphenol, and 2,4-dimethylphenol, respectively. The compounds obtained were qualitatively analyzed by FTIR, ¹H NMR and EA.

N,N-bis(2-hydroxy-5-methylbenzyl)methylamine (1): 90% yield; $R_{\rm f}=0.24$ (5% MeOH in CHCl₃); clear and colorless solid; mp = 163°C; FTIR (KBr, cm⁻¹): 3271 (br, OH), 1499 (vs, C–C), 1456 (m, N–CH₃), 1249 (s, C–N), 1209 (m, C–N–C), 815 (vs, C–N–C); ¹H NMR (200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 2.23 (6H, s, Ar–CH₃), 2.23 (3H, s, N–CH₃), 3.69 (4H, s, Ar–CH₂–N), 6.70 (2H, d, Ar–H), 6.83 (2H, s, Ar–H), 6.86 (2H, d, Ar–H). Anal.calcd. for C₁₇H₂₁NO₂: C, 75.28; H, 7.75; and N, 5.17. Found: C, 75.31; H, 7.77; and N, 5.19%.

N,N-bis(2-hydroxy-5-methylbenzyl)propylamine (2): 80% yield; $R_f = 0.22$ (5% MeOH in CHCl₃); clear and colorless solid; mp = 149°C; FTIR (KBr, cm⁻¹): 3251 (br, OH), 1501 (vs, C–C), 1467 (m, N–CH₃), 1276 (s, C–N), 1210 (s, C–N–C), 819 (s, C–N–C); ¹H NMR (200 MHz, CDCl₃, ppm): δ_H 0.87 (3H, t, CH₃–CH₂–CH₂–N), 1.65 (2H, m, CH₃–CH₂–CH₂–N), 2.22 (6H, s, Ar–CH₃), 2.50 (2H, t, CH₃–CH₂–CH₂–N), 3.70 (4H, s, Ar–CH₂–N), 6.68 (2H, d, Ar–H), 6.85 (2H, s, Ar–H), 6.90 (2H, d, Ar–H). Anal.calcd. for C₁₉H₂₅NO₂: C, 76.25; H, 8.36; and N, 4.69. Found: C, 76.28; H, 8.31; and N, 4.70%.

N,N-bis(2-hydroxy-5-methylbenzyl)cyclohexylamine (3): 80% yield; $R_{\rm f}=0.30$ (5% MeOH in CHCl₃); clear and colorless solid; mp = 181°C; FTIR (KBr, cm⁻¹): 3226 (br, OH), 1500 (vs, C–C), 1449 (m, N–CH), 1249 (s, C–N), 1210 (m, C–N–C), 819 (s, C–N–C); ¹H NMR (200 MHz, CDCl₃, ppm): δ_H 1.1 (2H, m, CH₂), 1.45 (4H, m, CH₂), 1.82 (4H, m, CH₂), 2.22 (6H, s, CH₃–Ar), 2.70 (1H, m, CH), 3.72 (4H, s, Ar–CH₂–N), 6.68 (2H, d, Ar–H), 6.85 (2H, s, Ar–H), 6.90 (2H, d, Ar–H). Anal.calcd. for C₂₂H₂₉NO₂: C, 77.88; H, 8.55; and N, 4.13. Found: C, 77.90; H, 8.56; and N, 4.16%.

N,N-bis(2-hydroxy-5-ethylbenzyl)methylamine (4): 90% yield; $R_f = 0.34$ (5% MeOH in CHCl₃); clear and colorless solid; mp = 130°C; FTIR (KBr, cm⁻¹): 3301 (br, OH), 1499 (vs, C–C), 1460 (m, N–CH₃), 1251 (s, C–N), 1207 (m, C–N–C), 821 (s, C–N–C); ¹H NMR (200 MHz, CDCl₃, ppm): δ_H 1.17 (6H, t, Ar–CH₂–CH₃), 2.25 (3H, s, N–CH₃), 2.54 (4H, q, Ar–CH₂–CH₃), 3.72 (4H, s, Ar–CH₂–N), 6.73 (2H, d, Ar–H), 6.87 (2H, s, Ar–H), 6.94 (2H, d, Ar–H). Anal.calcd. for

C₁₉H₂₅NO₂: C, 76.26; H, 8.36; and N, 4.68. Found: C, 76.24; H, 8.35; and N, 4.65%.

N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methyl**amine** (5): 80% yield; $R_f = 0.39$ (5% MeOH in CHCl₃); clear and colorless solid; mp = 123°C; FTIR (KBr, cm⁻¹): 3399 (br, OH), 1484 (vs, C-C), 1427 (m, N-CH₃), 1243 (m, C-N), 1214 and 1201 (m, C-N-C), 847 (m, C-N-C); ¹H NMR (200 MHz, CDCl₃, ppm): δ_{H} 2.22 (12H, s, Ar-CH₃), 2.25 (3H, s, N-CH₃), 3.68 (4H, s, Ar-CH₂-N), 6.72 (2H, s, Ar-H), 6.81 (2H, s, Ar-H). Anal.calcd. for C₁₉H₂₅NO₂: C, 76.26; H, 8.36; and N, 4.68. Found: C, 76.27; H, 8.34; and N, 4.69%.

Complexation in Solution

Methanolic solutions of each derivative and copper chloride $(1.65 \times 10^{-4} \text{ M})$ were made up and the two solutions were mixed in the following ratios: (1-5)copper chloride, 1:5, 2:4, 3:3, 4:2, and 5:1, respectively. The mixtures were shaken vigorously for 1 min and left for 12h, UV-Vis absorbance at the maximum peak position was measured and plotted as Job's plot. Zinc chloride was also used instead of copper chloride. Each chloride salt of copper, zinc, and cadmium was mixed with the N,N-bis(2-hydroxybenzyl)alkylamine derivatives to give a 1:1 molar ratio, and dissolved in methanol- d_4 for analysis by 1H NMR. Similarly, DMSO- d_6 and CDCl₃ were used as solvents to study the solvent effect.

Solid State of Host-metal Ion Complex

Solutions of N,N-bis(2-hydroxybenzyl)alkylamine derivatives in chloroform $(7 \times 10^{-3} \text{M})$ and copper chloride in deionized water (0.7 M) were prepared, vigorously mixed and left for 3d. The organic phase was collected, dried by anhydrous Na₂SO₄, and evaporated to obtain a green powder, which was characterized by FTIR, DSC, and XRD. The concentration of copper chloride in the aqueous phase was determined (to establish the host-guest ratio) by UV-Vis spectroscopy. The powder was dissolved in CDCl₃ for analysis by ¹H-¹H NOESY NMR.

Percentage Metal Ion Extraction

Solutions of copper chloride in deionized water $(2.5 \times$ 10^{-2} M) and the N,N-bis(2-hydroxybenzyl)alkylamine derivatives in chloroform $(0.1, 7.5 \times 10^{-2}, 5.0 \times 10^{-2})$ 10^{-2} , 2.5×10^{-2} , 1.25×10^{-2} , 6.25×10^{-3} , and 2.5×10^{-4} M) were prepared; 5 ml of each solution were mixed together, vigorously shaken for 1 min, and left overnight. The absorbance at 815 nm was measured and calculated for percentage extraction by the equation $[(A_0 - A)/A_0] \times 100$ where A_0 is the initial absorbance, and A is the absorbance after

extraction with the N,N-bis(2-hydroxybenzyl)alkylamine derivative.

Acknowledgements

The authors (S.P., S.C.) acknowledge the financial support from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0189/2544). The authors would like to thank Prof. Mikiji Miyata, Department of Material and Life Science, Graduate School of Engineering, Osaka University, for arranging the scholarship from Academic Frontiers Student Exchange Promotion Program. The appreciation is extended to Prof. Kohji Tashiro, Department of Macromolecular Science, Graduate School of Science, Osaka University, for valuable suggestions throughout the work.

References

- Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.
 Pedersen, C. J.; Frensdroff, H. K. Angew. Chem. Int. Ed. Engl. **1972**, 11, 16.
- Lehn, J.-M. In Nobel Lectures in Chemistry (1981-1990); Frangsmyr, T. and Malmstrom, B. G., Eds.; World Scientific: Singapore, 1992; p 444.
- [4] Tummler, B.; Maass, G.; Weber, E.; Wehner, W.; Vogtle, F. J. Am. Chem. Soc. 1977, 99, 4683.
- [5] Ardini, A.; Pochini, A.; Reverberi, S.; Ungaro, R. Tetrahedron 1986, 42, 2089.
- [6] Knight, D. A.; Kim, V.; Butcher, R. J.; Harper, B. A.; Schull, T. L. J. Chem. Soc., Dalton Trans. 2002, 824.
- Yasuda, S.; Miyake, K.; Sumaoka, J.; Komiyama, M.; Shigekawa, H. Jpn. J. Appl. Phys. 1999, 38, 3888.
- Min, K. S.; Suh, M. P. Eur. J. Inorg. Chem. 2001, 2, 449.
- [9] Raymo, F. M.; Bartberger, M. D.; Houk, K. N.; Stoddart, J. F. J. Åm. Chem. Soc. **2001**, 123, 9264.
- [10] Ning, X.; Ishida, H. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1121.
- [11] Chirachanchai, S.; Laobuthee, A.; Phongtamrug, S.; Siripatanasarakit, W.; Ishida, H. J. Appl. Polym. Sci. 2000, 77, 2561.
- [12] Laobuthee, A., Dissertation, Chulalongkorn University, Bangkok, Thailand.
- [13] Laobuthee, A.; Chirachanchai, S.; Ishida, H.; Tashiro, K. J. Am. Chem. Soc. 2001, 123, 9947.
- Laobuthee, A.; Chirachanchai, S. Chem. Lett. 2002, 31, 614.
- [15] Chirachanchai, S.; Phongtamrug, S.; Laobuthee, A. Chem. Lett. 2003, 32, 432.
- [16] Laobuthee, A.; Ishida, H.; Chirachanchai, S. J. Incl. Phenom. Macro. 2003, 47, 179
- [17] Makarska, M.; Radzki, St.; Legendziewicz, J. J. Alloy. Compd. 2002, 341, 233.
- [18] Yamagishi, T.; Tani, K.; Ishida, S.; Nakamoto, Y. Polym. Bull. **1994**, 33, 281.
- [19] Miyata, M.; Shibakami, M.; Chirachanchai, S.; Takemoto, K.; Kasai, N.; Miki, K. Nature 1990, 343, 446.
- [20] Ganem, B.; Li, Y.-T.; Henion, J. D. J. Am. Chem. Soc. 1991, 113,
- Lippmann, T.; Wilde, H.; Pink, M.; Schafer, A.; Hesse, M.; Mann, G. Angew. Chem. Int. Ed. Engl. **1993**, 32, 1195.
- Selva, A.; Redenti, E.; Zanol, M.; Ventura, P.; Casetta, B. Org. Mass Spectrom. 1993, 28, 983.
- [23] Haskins, N. J.; Saunders, M. R.; Camilleri, P. Rapid Commun. Mass Spectrom. 1994, 8, 423.
- [24] Rossel, C. P.; Carreno, J. S.; Rodriguez-Baeza, M.; Alderete, J. B. Quim. Nova 2000, 23, 749.
- Sanders, J. K. M.; Hunter, B. K. Modern NMR Spectroscopy: A Guide for Chemists; Oxford University Press: New York, 1987; pp 163-172.

Supramolecular Structure of N,N-Bis(2-hydroxybenzyl)alkylamine: Flexible Molecular Assembly Framework for Host without Guest and Host with Guest

Suttinun Phongtamrug,† Kohji Tashiro,‡ Mikiji Miyata,§ and Suwabun Chirachanchai*,†

The Petroleum and Petrochemical College, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand, Department of Future Industry-Oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan, and Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan

Received: March 22, 2006; In Final Form: July 3, 2006

N,*N*-Bis(2-hydroxybenzyl)alkylamine derivatives form a cage-like assembly consisting of two molecules via inter- and intramolecular hydrogen bonds. The derivatives exhibit themselves as host to accept copper-ion guests under the double-oxygen-bridged dimeric system. Quantum chemical calculation suggested that the host—guest interaction is based on a charge-transfer coordination. Comparison of the crystal structures before and after complexation clarifies a rare example of a host—guest compound where the hosts maintain their cage framework through the change of hydrogen bonds to coordination bonds.

Introduction

Benzoxazine is a unique heterocyclic compound obtained from cyclization between phenol, formaldehyde, and amine.1 As shown in Scheme 1, theoretically the ring-opening reaction of p-substituted phenol-based benzoxazine with phenol derivatives gives a linear aza-methylene-linked phenol-based polymer. We found, however, that the actual reaction tends to terminate at the dimer formation stage, which might be due to the fact that reactive hydroxyl groups are stabilized by inter- and intramolecular hydrogen bonds as reported previously.² The thus-created dimer, N,N-bis(2-hydroxybenzyl)alkylamine, hereinafter referred to as HBA, takes a cage structure to induce a supramolecular assembly by accepting other molecules or ionic species (Figure 1). As host-guest complexes are known as organometallic catalysts,3 biomimetic metalloproteins,4 and enzymatic complex systems,5 establishment of HBA for supramolecular chemistry might bring useful applications.

In previous papers,^{6,7} we clarified the inclusion phenomena of **HBA** with various guests in either solution or the solid state. It is important to note that parallel to our work there are some reports on **HBA** derivatives with metal ions. For example, Tshuva et al. reported on the zirconium complex of amine-bis-(phenolate) as a candidate catalyst for 1-hexene polymerization.⁸ Malathy Sony et al. showed a biominetic model complex of *N*-[(2-hydroxylato-5-methyl)benzyl-(2'-hydroxylato-3',5'-dimethylbenzyl)]ethylamine dicopper(II).⁹ Although those complexes demonstrated the precise crystal structures of the **HBA** derivative and metal ions, the role of **HBA** self-assembly and its development to form a complex were not clarified. As we succeeded in preparing a series of **HBA** derivatives via a simple, effective, and selective ring-opening reaction of benzoxazines², it is possible to carry out systematic work on the supramolecular

In the present article, we focus on two types of benzoxazine dimer derivatives (N,N-bis(2-hydroxy-5-methylbenzyl)cyclohexylamine, **HBA1**, and *N,N*-bis(2-hydroxy-3,5-dimethylbenzyl) methylamine, HBA2) and on their copper-ion complexation (Scheme 1). On the basis of the information obtained from crystal structure analysis, thermal analysis, vibrational spectroscopy, and quantum chemical calculation, the derivatives have been found for the first time to show their uniqueness in accepting guests without destroying the host framework. This is a rare example among many already revealed hosts. In the present paper, we describe various unique behaviors concerning the specific supramolecular structure of HBA on the basis of the following significant experimental findings: (i) the doubleoxygen-bridged charge-transfer host-metal complex, (ii) the well-superimposition structure of the hydrogen-bond network of HBA and coordination systems of HBA with metal guest, and (iii) the existence of multiguest species, i.e., ion and neutral molecules, in a single host-guest framework.

Experimental Section

Preparation of HBA Derivatives. p-Cresol, 2,4-dimethylphenol, formaldehyde, methylamine, and cyclohexylamine were obtained from Merck, Germany. Copper(II) acetate monohydrate and sodium hydroxide were purchased from Fluka, Switzerland. 1,4-Dioxane, diethyl ether, 2-propanol, and methanol were from Labscan, Ireland. All chemicals and solvents used for synthesis were of reagent grade and used without purifica-*N*,*N*-Bis(2-hydroxy-5-methylbenzyl)cyclohexylamine tion (HBA1) and N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine (HBA2) were prepared from a ring-opening reaction of the relevant benzoxazine and phenol derivatives as reported previously. Mixtures of 3,4-dihydro-6-methyl-3-cyclohexyl-2*H*-1,3-benzoxazine and p-cresol (1:1) were prepared and stirred at 60 °C. The mixtures were allowed to react until the solution became viscous, and they were left for precipitation. The precipitates obtained were collected and washed with diethyl

complex structure under variations of host molecules to establish the supramolecular chemistry of the **HBA**.

In the present article, we focus on two types of benzoxazine

^{*} To whom correspondence should be addressed. E-mail: csuwabun@chula.ac.th.

[†] Chulalongkorn University.

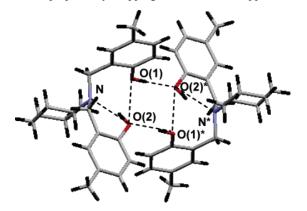
[†] Toyota Technological Institute.

[§] Osaka University.

SCHEME 1

$$\begin{array}{c} OH \\ R' \\ \end{array} + \\ "R-NH_2 + 2H-C-H \\ \end{array} \begin{array}{c} OH \\ R' \\ \end{array} \begin{array}{c} OH \\ R'$$

HBA1: $R = CH_3$, R' = H, $R'' = C_6H_{11}$ **HBA2**: $R = CH_3$, $R' = CH_3$, $R'' = CH_3$


ether before vacuum drying. **HBA1** was recrystallized in chloroform to prepare single crystals. Similarly, 3,4-dihydro-3,6,8-trimethyl-2*H*-1,3-benzoxazine was reacted with 2,4-dimethylphenol to obtain **HBA2**.

N,*N*-Bis(2-hydroxy-5-methylbenzyl)cyclohexylamine (**HBA1**): 80% yield; R_f = 0.30 (5% MeOH in CHCl₃); clear and colorless solid; mp = 181 °C; FTIR (KBr, cm⁻¹) 3226 (br, OH), 1500 (vs, C−C), 1449 (m, N−CH), 1249 (s, C−N), 1210 (m, C−N−C), 819 (s, C−N−C); ¹H NMR (200 MHz, CDCl₃, ppm) $\delta_{\rm H}$ 1.1 (2H, m, **CH**₂), 1.45 (4H, m, **CH**₂), 1.82 (4H, m, **CH**₂), 2.22 (6H, s, **CH**₃−Ar), 2.70 (1H, m, **CH**), 3.72 (4H, s, Ar−**CH**₂−N), 6.68 (2H, d, Ar−**H**), 6.85 (2H, s, Ar−**H**), 6.90 (2H, d, Ar−**H**). Anal. Calcd for C₂₂H₂₉NO₂: C, 77.88; H, 8.55; N, 4.13. Found: C, 77.90; H, 8.56; N, 4.16.

N,*N*-Bis(2-hydroxy-3,5-dimethylbenzyl)methylamine (**HBA2**): 80% yield; R_f = 0.39 (5% MeOH in CHCl₃); clear and colorless solid; mp = 123 °C; FTIR (KBr, cm⁻¹) 3399 (br, OH), 1484 (vs, C−C), 1427 (m, N−CH₃), 1243 (m, C−N), 1214 and 1201 (m, C−N−C), 847 (m, C−N−C); ¹H NMR (200 MHz, CDCl₃, ppm) $\delta_{\rm H}$ 2.22 (12H, s, Ar−CH₃), 2.25 (3H, s, **N−CH**₃), 3.68 (4H, s, Ar−CH₂−N), 6.72 (2H, s, Ar−H), 6.81 (2H, s, Ar−H). Anal. Calcd for C₁₉H₂₅NO₂: C, 76.26; H, 8.36; N, 4.68. Found: C, 76.27; H, 8.34; N, 4.69.

Instrumentation. Fourier transform infrared spectra (FTIR) were recorded by the Nujol mull method in the range 4000—400 cm⁻¹ at a resolution of 2 cm⁻¹ using a HORIBA FT-720 infrared spectrometer. Thermogravimetric-differential thermal analysis (TG-DTA) was performed with a Rigaku Thermoplus TG8120 from 50 to 300 °C at a heating rate of 5 °C/min under a nitrogen atmosphere.

Structural Analysis. Single crystals of HBA with copper ions were prepared by dropping the methanolic copper acetate

Figure 1. Cage structure of **HBA1** consisting of two **HBA1** molecules (the broken line represents the hydrogen bonds).

solution into methanol solutions of HBA1 and HBA2 and leaving them for several days. The single crystals of HBA derivatives are colorless, whereas those of the copper inclusions are dark green. X-ray diffraction measurement of HBA1 and HBA2 was carried out using an X-ray imaging plate system DIP3000 (MAC Science Co., Ltd., Japan). The graphite monochromatized Mo K α line ($\lambda = 0.71073$ Å), which was generated from the SRA-M18XHF rotating anode X-ray generator (50 kV and 200 mA), was used as an incident X-ray source. Data correction was performed with XDIP software (MAC Science). The sample was oscillated in a range of 3° over a total rotation angle of $0-180^{\circ}$ around the ω axis. The exposure time was 30 min for one image. It took about 12 h to collect the 24 images in total. Data were analyzed using DENZO and SCALEPACK software. 10,11 The crystal structure was solved using maXus (NoniusBV, Delft) software. The direct method was used to find out the initial models, where the SIR92 software developed by Altomare et al. was used. 12 Least-squares refinement was made on the basis of the full-matrix method using the quantity $\sum \omega (|F_0|^2 - |F_c|^2)^2$ as a minimized function with weight $\omega =$ $\exp[FA \sin^2 \theta/\lambda^2]/[\sigma^2(F_0) + FBF_0^2]$, where $\sigma^2(F_0)$ is the squared standard deviation of the observed structure factor F_0 and coefficients FA and FB were set to 0.0 and 0.03, respectively. The reflections satisfying the cutoff condition of $|F_0| \ge 3\sigma(|F_0|)$ were used in the least-squares refinement. Because no detectable

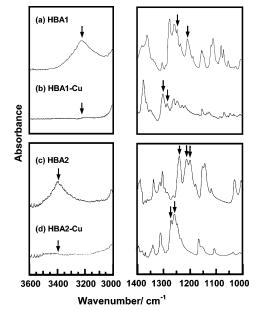


Figure 2. FTIR spectra of (a) HBA1, (b) HBA1-Cu, (c) HBA2, and (d) HBA2-Cu after Nujol peaks were subtracted.

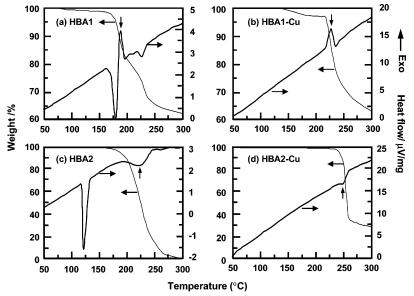


Figure 3. TG and DTA thermograms of (a) HBA1, (b) HBA1-Cu, (c) HBA2, and (d) HBA2-Cu.

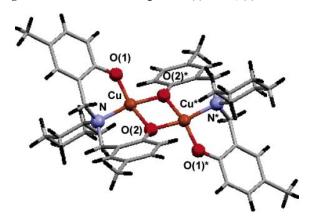


Figure 4. Coordination compound of HBA1-Cu.

effect was found, the absorption correction for the observed intensity was not included in the structural refinement. As a measure of the reasonableness of the structural analysis, the reliability factors, R and $R_{\rm w}$, were defined by the following equations: $R = \sum ||F_0| - |F_c||/\sum |F_0|$ and $R_w = [\sum \omega(|F_0| |F_c|^2/\sum \omega |F_o|^2$. X-ray diffraction measurement of **HBA1**– Cu and HBA2-Cu was performed using a Rigaku R-AXIS RAPID/FS diffractometer with graphite-monochromated Mo $K\alpha$ radiation at 296 K. The structure was solved by direct methods (SIR92)¹² and refined by the full-matrix least-squares procedure on $|F|^2$. All non-hydrogen atoms were refined for anisotropic thermal parameters as well as the coordinates. Hydrogen atoms were detected from the different Fourier map, and positions were refined assuming isotropic thermal parameters. All calculations were performed using the TEXSAN crystallographic software package.13

Molecular Modeling. The electron density distribution was calculated for the original cage structure and the complex with Cu ions utilizing DMol³ software (Material Studio, version 3.0, Accelrys) on the basis of density function theory. The atomic orbital basis set was DND (double numerical plus d-functions), and the type of exchange-correlation potential was a local LDA. The molecular structures were transferred directly from the X-ray analysis results, and electron densities were calculated for the isolated molecules without energy optimization.

Results and Discussion

Infrared Spectral Change by Cu Complexation. Green crystals of HBA1 and HBA2 including copper ions, abbreviated as **HBA1**—Cu and **HBA2**—Cu, were characterized by FTIR to observe the vibrational spectral changes caused by copper inclusion. Since metal-ion exchange might occur relatively easily when KBr powder is mixed with **HBA1**-Cu and **HBA2**-Cu complexes, samples for IR measurements were prepared by the Nujol mull method. Figure 2 shows the FTIR spectra of the single crystals of HBA1, HBA2, and their copper inclusions where the contribution of Nujol bands was already subtracted. Although **HBA1** and **HBA2** give the peak positions and width of the bands differently, due to the strength and environment of the hydrogen bonds, the OH peaks are clearly observed before complex formation for both compounds (Figure 2a and 2c). After entrapping copper ions, the significant decrease of the OH band intensity was observed, as shown in Figure 2b and 2d, corresponding to loss of inter- and intramolecular hydrogen bonds. This implies that HBA1 and HBA2 form a complex with copper ions. The newly observed peaks for HBA1-Cu (Figure 2b) are at 1305 and 1289 cm⁻¹, whereas for **HBA2**-Cu (Figure 2d) they are at 1267 and 1255 cm⁻¹. These bands may be assigned to the C-N vibrational modes. However, these are different from the usual ones at 1249 and 1210 cm⁻¹ for HBA1 and at 1243, 1214, and 1201 for HBA2. This result indicates the change of the vibrational mode of the aza group after copperion inclusion. In this way, the OH and C-N groups of HBA were affected remarkably by introducing copper ions.

Thermal Stability of Complex. Thermal stabilities of the compounds before and after inclusion of the copper ion were investigated. As shown in Figure 3a, HBA1 gives a sharp melting at 177 °C followed by an exothermic peak at 185 °C and an endothermic peak at 225–240 °C with a remarkable weight loss. As the measurement was done in a nitrogen atmosphere, the endothermic peak reflects the continuous thermal degradation in nonoxidative conditions. However, in the case of HBA1–Cu, the melting peak was difficult to detect and only an exothermic peak due to thermal degradation was observed (Figure 3b). For HBA2, the melting peak was located at 125 °C and it disappeared after complexation (Figure 3c and 3d). Thermal degradation of HBA2 was observed at 225 °C, whereas that of HBA2–Cu was identified at 250 °C. The

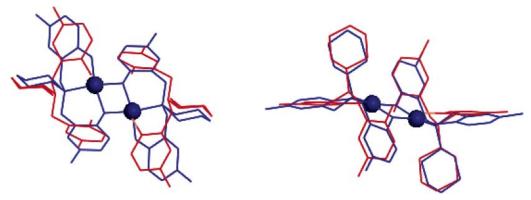


Figure 5. Comparison of cage structure between HBA1 (red color) and HBA1-Cu complex (blue color) viewed from different directions.

SCHEME 2

increase in thermal degradation indicates a remarkable thermal stability of the **HBA1** and **HBA2** complexes.

Crystal Structures. To clarify the crystal structures of the HBA-copper complexes, single-crystal X-ray analysis was performed. Figure 4 shows the inclusion structure of HBA1-Cu with doubly bridged Cu-oxygen linkages. Each copper is bridged by three phenoxy oxygens and an amine donor. The bond lengths of Cu-O(1), Cu-O(2), Cu-O(2)*, and Cu-N are almost identical (1.85-2.05 Å). These distances are in the range suitable for stable Cu-O and Cu-N coordination bonds. 15 The bond angles of O(1)-Cu-N, O(2)-Cu-N, O(1)-Cu-O(2)*, and O(2)-Cu-O(2)* are nearly 90°, as illustrated in Scheme 2, and therefore, the inclusion structure appears in a distorted square-planar geometry. Similar coordination is also identified for other types of asymmetric hydroxybenzylalkylamine with different substituted groups (R, R', and R" in Scheme 1) including the derivatives reported previously. ⁹ This type of molecular geometry was reported also by Malathy Sony et al.⁹ It is important to note that the square-planar geometry is a unique characteristic of the HBA derivatives, which form coordination bonds with metals.

Although, in general, it is difficult to determine the proton positions by single-crystal X-ray analysis, we succeeded in extracting the protons of OH groups for **HBA1** and **HBA2** with reasonable bond distances. In the case of **HBA1**—Cu, however, the hydrogen atoms could not be detected but the oxygen atoms were found to be directly linked to Cu atoms, as shown in Figure 4. Here, we could not identify the acetate counteranions, although there were reports that inclusion complexes occasionally show their counterions. ¹⁶ This causes us to speculate that the hydrogen atoms of the hydroxyl groups might perform as proton donors for acetate anions, resulting in formation of acetic acid molecules after complexation (Scheme 2). This speculation is consistent with the infrared spectrum (Figure 2) in which

O-H stretching at 3200-3400 cm⁻¹ is hardly observed for the **HBA1**-Cu complex.

As shown in Figure 1, the HBA derivatives form the interand intramolecular hydrogen bonds between N atoms and OH groups (O(1)-H···O(2)* and N···H-O(2)), resulting in an assembly of two HBA molecules.2 As for the HBA with and without guest ions, the point to be raised here is that the cage is formed between the two HBA molecules either before or after complex formation (Scheme 2). As described later, the electron density distribution was calculated for the original cage structure and the complex with Cu ions on the basis of density function theory utilizing DMol³ software. As demonstrated in Figure 5, the size and shape of the cage structure composed of two HBA molecules are maintained even after complexation with Cu ions, although the O-H···O and O-H···N inter- and intramolecular hydrogen bonds, respectively, are replaced with coordination linkages of Cu-O and Cu-N types. This geometrical relation between the HBA and HBA-Cu complex may allow us to speculate on the mechanism of benzoxazine-copper complex formation (as discussed later).

Stabilization of Supramolecular Structure by Solvent Molecules. Such a reservation of cage structure can also be seen for **HBA2**—Cu complexation (Figure 6). However, it is important to note that complexation of **HBA2** is a little different from that of **HBA1**.¹⁷ As shown in Figure 7, three water molecules are coexistent with the dimeric **HBA2**—Cu molecules in the crystal lattice. The distances between the phenoxy oxygens (O(3)—H···O(1)) and water oxygens (O(4)—H···O(3)) are 2.70 and 2.82 Å, respectively. The positions of the hydrogen atom belonging to the water molecules were extracted successfully from the difference Fourier synthesis map. The O(1)···H distance is 1.78 Å, which is acceptable for the interatomic distance of the hydrogen bond, as found for cases of phenol and water (1.80 Å).¹⁸ The structure reveals that **HBA2**—Cu

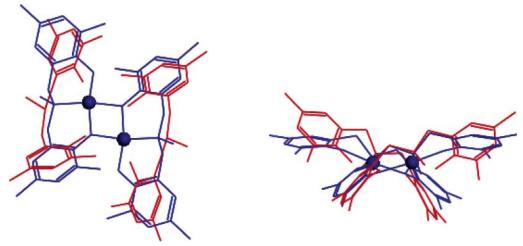


Figure 6. Comparison of cage structure between HBA2 and HBA2-Cu viewed from different directions.

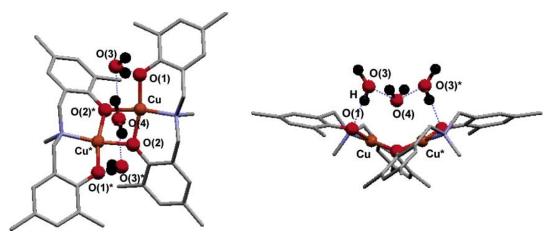


Figure 7. Structure of HBA2-Cu complex coordinated by water molecules. (Hydrogen atoms are omitted for clarity.)

complex takes a unique bowl-shaped network structure and accepts those small solvent molecules to stabilize the whole structure.

Comparison of crystal volumes also supports this concept about the role of the water molecules in formation of HBA2-Cu complex. For HBA2-Cu, one complex framework composed of the two HBA2 molecules has a volume of 963.6 Å³ whereas a single **HBA2** framework has a volume of 859.1 Å³. This volume increment after Cu-complex formation is different from that of HBA1, showing a decrease in volume after complexation from 974.1 to 959.9 Å³.

Essential Features of Benzoxazine-Copper Complexes. The characteristic features of these copper complexes of HBA are seen in the formation of the double square planes connected by common oxygen atoms. To reveal the characteristic features, the atomic charge distribution was calculated on the basis of density function theory with DMol³ (Material Studio Version 3.0, Accelrys). The atomic orbital basis set was DND (double numerical plus d-functions), and the type of exchange-correlation potential was a local LDA. In the calculation the X-ray-analyzed structure was used without any further optimization. Of course, it is more ideal to take the intermolecular interactions into account in the geometrical calculation, but the DFT calculation of the whole crystal lattice is quite a hard task for such a complicated structure, as in the present case. The calculation was made for a rough estimation of the atomic charge distribution in this characteristic complex structure. More detailed and accurate calculation will be made in the future to clarify the essence of the charge distribution change in the formation process of the complex crystal, and it is also expected that the infrared frequencies and intensities obtained from the calculation will support the results in Figure 2.

Figure 8 shows the calculated electrostatic potential (ESP) charges. In the case of HBA1, the typical charge distribution is observed for the O-H···O hydrogen bond. After complexation (Figure 8b), the charges of oxygen atoms connected directly to the Cu atom change from -0.47 and -0.58 to -0.53 and -0.78eV. At the same time the charges of nitrogen atoms decrease from -0.34 to -0.55 eV. The phenol carbon atoms connected to oxygen also change their charges. As for the Cu atom, the charge decreases from +2 (Cu²⁺ of Cu(CH₃COO)₂) to +1.02 is shown in Figure 8b. The changes in the atomic charge distribution suggest that the electrons flow from carbon (or aromatic rings) to oxygen and nitrogen and to copper atoms. Referring to the case of π -conjugated oligo(phenylene ethynylene), 19 we speculate that our complex might be formed by the charge-transfer mechanism. Considering the assembly networks of HBA1 and HBA2, it is natural to emphasize that the charge-transfer coordination networks of HBA1-Cu and **HBA2**—Cu are formed with only a minor destruction of the original packing structure. In other words, the charge-transfer complex is initiated smoothly by substituting the hydrogen atoms with Cu atoms. This type of dimeric charge-transfer complexation is, to our knowledge, quite rare to find in general complexation.

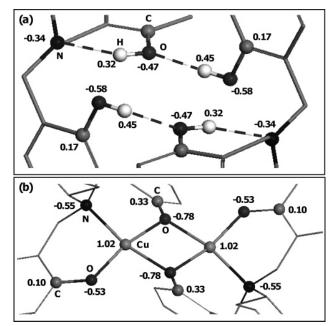


Figure 8. Calculated atomic charges of (a) HBA1 and (b) HBA1-Cu.

Conclusions

In general, a host molecule accepts a guest species under the interaction induced by favorable conditions, e.g., solvent dissolution, melting, and irradiation. To date, it is known that the host likely dissolves its original framework and establishes its new channel to incorporate the guest. The present work clarified a unique type of complex formation in that the host retains its framework even after accepting guests: HBA1 and HBA2 form complexes with copper ions without losing the cage-like structure through modification from a hydrogen-bonded selfassembly to a coordination-bonded host-guest system, as illustrated in Scheme 2. The energy calculation suggested formation of an HBA-copper complex through the atomic charge transfer among the phenoxy oxygen atom, aromatic ring, and aza methylene group, leading to a double-oxygen-bridged network.

Acknowledgment. One of the authors, S.C., acknowledges financial support from The Thailand Research Fund (grant no. RSA4680025) and extends his appreciation for the support from the Hitachi Scholarship Foundation. The authors gratefully thank Mr. Katsunari Inoue (Graduate School of Engineering, Osaka University, Japan) for help in single-crystal analysis.

Supporting Information Available: Crystallographic information files (CIF); HBA1, HBA2, HBA1-Cu; CCDC 258998, and HBA2-Cu; CCDC 258999. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) (a) Sainsbury, M. Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, Part 2B: Six-membered Rings with Oxygen, Sulfur, or Two or More Nitrogen Atoms; Boulton, A. J., Mckillap, A., Eds., Pergamon Press: United Kingdom, 1984. (b) Holly, F. W.; Cope, A. C. J. Am. Chem. Soc. 1944, 66, 1875–1879. (c) Burke, W. J.; Hammer, C. R.; Weatherbee, C. J. Org. Chem. 1961, 26, 4403-4407.
- (2) Laobuthee, A.; Chirachanchai, S.; Ishida, H.; Tashiro, K. J. Am.
- Chem. Soc. 2001, 123, 9947–9955.
 (3) (a) Stibrany, R. T.; Schulz, D. N.; Kacker, S.; Patil, A. O.; Baugh, L. S.; Rucker, S. P.; Zushma, S.; Berluche, E.; Sissano, J. A. Macromolecules 2003, 36, 8584–8586. (b) Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692–12693. (c) Takacs, J. M.; Reddy, S.; Moteki, S. A.; Wu, D.; Palencia, H. J. Am. Chem. Soc. 2004, 126, 4494-4495.
- (4) Itoh, S.; Taki, M.; Kumei, H.; Takayama, S.; Nagatomo, S.; Kitagawa, T.; Sakurada, N.; Arakawa, R.; Fukuzumi, S. Inorg. Chem. 2000,
- (5) Lubben, M.; Hage, R.; Meetsma, A.; Byma, K.; Feringa, B. L. Inorg. Chem. 1995, 34, 2217-2224.
- (6) Laobuthee, A.; Ishida, H.; Chirachanchai, S. J. Incl. Phenom. Macrocyclic Chem. 2003, 47, 179-185.
- (7) Phongtamrug, S.; Pulpoka, B.; Chirachanchai, S. Supramol. Chem. **2004**, 16, 269-278.
- (8) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Organometallics 2001, 20, 3017-3028.
- (9) Malathy Sony, S. M.; Kuppayee, M.; Ponnuswamy, M. N.; Manonmani, J.; Kandasamy, M.; Fun, H.-K. Cryst. Res. Technol. 2002, *37*, 1360–1367
- (10) Otowinowski, Z.; Minor, W. Methods Enzymol. 1997, 276.(11) Otowinowski, Z.; Minor, W. Macromolecular Crystallography: Part A; Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: London,
- (12) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
- (13) TEXSAN, X-ray Structure Analysis Package; Molecular Structure Corp.: The Woodlands, TX, 1985.
- (14) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds; John Wiley & Son, Inc.: New York,
 - (15) Murphy, B. P. Coord. Chem. Rev. 1993, 124, 63-105.
- (16) (a) Özbey, S.; Kendi, E.; Hosgoren, H.; Togrul, M. J. Inclusion Phenom. Mol. Recognit. Chem. 1998, 30, 79–87. (b) Amani Komaei, S.; van Albada, G. A.; Haasnoot, J. G.; Kooijman, H.; Spek, A. L.; Reedijk, *J. Inorg. Chim. Acta* **1999**, *286*, 24–29. (e) Helm, M. L.; Loveday, K. D.; Combs, C. M.; Bentzen, E. L.; VanDerveer, D. G.; Rogers, R. D.; Grant, G. J. J. Chem. Crystallogr. 2003, 33, 447-455. (d) Knaust, J. M.; Knight, D. A.; Keller, S. W. J. Chem. Crystallogr. 2003, 33, 813-823.
- (17) Phongtamrug, S.; Miyata, M.; Chirachanchai, S. Chem. Lett. 2005, *34*, 634–635.
- (18) Guedes, R. C.; Coutinho, K.; Cabral, B. J. C.; Canuto, S. J. Phys. Chem. B 2003, 107, 4304-4310.
- (19) Majumder, C.; Briere, T.; Mizuseki, H.; Kawazoe, Y.J. Chem. Phys. **2002**, *117*, 7669–7675.

Supramolecular Structure of N,N-Bis(2-hydroxybenzyl)alkylamine: From Hydrogen Bond Assembly to Coordination Network in Guest Acceptance

Suttinun Phongtamrug, Suwabun Chirachanchai, *1 Kohji Tashiro²

Summary: *N,N-*Bis(2-hydroxybenzyl)alkylamine (**HBA**) was described as a model to simplify the supramolecular system of polybenzoxazines. The single crystal X-ray analysis revealed that **HBA** forms a dimeric assembly based on its simultaneous interand intramolecular hydrogen bond network. When the **HBA** accepted the copper ion, the dimeric assembly **HBA** changed its primary hydrogen bond network to charge transfer coordination as clarified by the single crystal analysis as well as the superimposed structure based on DMol³ calculation. The supramolecular structure of **HBA** and copper also exhibited the role of solvent molecules in the packing structure which is a rare example showing the host accepts not only the metal ions but also the neutral molecules in the same time. The cyclization of **HBA** with esters or ethers to macrocyclic compounds was also an important model reaction to show how the backbone molecules self-stabilized with the hydrogen bond network initiate the simple, effective and efficient macrocyclic reaction.

Keywords: benzoxazine; coordination; crystal structure; host-guest system; hydrogen bonding; supramolecule

Introduction

Supramolecular chemistry has received much attention for the unique molecular recognition and the related inclusion phenomena for decades. Various kinds of molecules, not only cyclics but also acyclics, are clarified for supramolecular structure to accept guest species based on either noncovalent interactions such as van der Waals, dipole-dipole, π - π stacking, or hydrogen bonding. Up to now, various host molecules such as urea, cholic acid, cyclodextrin, crown ether, calixarene, and their derivatives have been developed and clarified for the molecular recognition.

Polybenzoxazine is known as one of thermosetting polymer which has similar structure to phenolic resin. It can be obtained from the ring opening reaction of difunctional benzoxazine monomer which was synthesized from bisphenol, formaldehyde, and amine (Scheme 1). For decades, it has been proposed as composite material with the good physical and mechanical properties.^[1] As the structure of this polymer consists of the hydroxyl groups and nitrogen atoms, it can be expected for an effective electron donating system which might be developed as a host compound similar to the cases of phenolic resins and calixarenes.

For the past few years, we have focused on the supramolecular structure and its interaction with various metal ions. Although the metal ion entrapment has been identified, the question about how benzoxazines and metal ions interact at the molecular level is still left unanswered. Recently, we succeeded in preparing a

¹ The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand Tel: (66)2-218-4134; Fax: (66)2-215-4459 E-mail: csuwabun@chula.ac.th

Department of Future Industry-oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan

$$H_3C-C-CH_3$$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$
 $H_3C-C-CH_3$

Scheme 1.

series of model compound consisting of two phenols linked with azamethylene linkage, N,N-bis(2-hydroxybenzyl)alkylamine (HBA), which can be easily obtained from the ring opening reaction of p-phenol based benzoxazines (Scheme 2). Our basic investigation on HBA using the single crystal analysis proves to us that the HBA forms the dimeric network with inter- and intramolecular hydrogen bonds (Figure 1).[2] The present work is, thus, focused on the investigation of supramolecular structure of **HBA** derivatives with copper ion based on the single crystal analysis as it will be a good model to explain how polybenzoxazines perform the host-guest phenomena. The work is also extended to the reaction of HBA as it is quite rare example that the macrocyclization can be achieved in very simple steps without complicated purification steps.

Host-Guest Phenomena of HBA in Solution

As the structure of **HBA** is similar to the repeat unit of azacalixarenes, the inclusion phenomena with various types of metal ions might be the good information to relate to those of polybenzoxazines and oligobenzoxazines.^[3,4] By using Pedersen's technique or, in other words, the liquid-liquid extraction between copper in aqueous solution and **HBA** in chloroform solution, the color of chloroform phase was changed to dark green implying the copper ion was entrapped by the host. The chloroform phase was collected and dried in vacuum to obtain dark green precipitates. Here, the

Scheme 2.

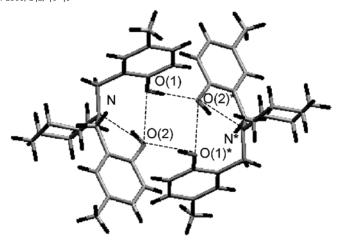
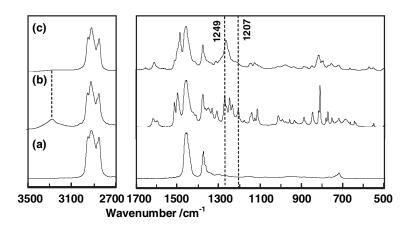



Figure 1.
Crystal structure of N,N-bis(2-hydroxy-5-methylbenzyl)cyclohexylamine (HBA1).

host-guest formation was identified by Fourier transform infrared spectroscopy (FTIR) using Nujol mull method to avoid the disturbance of water peaks. Figure 2 shows that after the copper ions were entrapped in **HBA2** (**HBA2**-Cu), the OH peak is hardly observed implying the hydrogen bonds were eliminated after the interaction with metal ions. The change of C–N peak (1249 and 1207 cm⁻¹) is the information suggesting that the aza group might take part in the metal interaction. To confirm the structure of host-metal,

¹H NMR and ¹H-¹H NOESY techniques were applied (Figure 3 and 4). In the case of **HBA2**-Cu, the significant shift of methyl protons adjacent to the nitrogen atoms including peak shift of methylene protons (-CH₂-N) suggests that the nitrogen atoms play an important role in interacting with copper ions. ¹H-¹H NOESY is useful for determining the interaction of the nearby ¹H-¹H species. As seen in the case of **HBA2**-Cu (Figure 4), the disappearance of the hydroxyl proton peak (H1, H2) and the decrease in intensity of the peak belonging

FIR spectra of (a) Nujol, (b) HBA2, (c) HBA2-Cu.

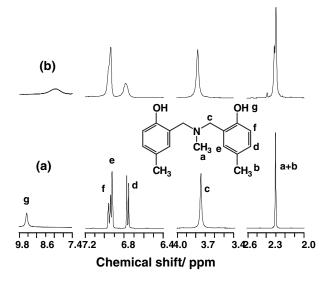


Figure 3. $^{1}\mathrm{H}$ NMR spectra of (a) HBA2 and (b) HBA2-Cu in CDCl $_{3}$.

to the interaction between aromatic protons and methylene protons suggested that the metal ion might be in between the hydroxyl group and azamethylene unit.^[4]

$\begin{array}{l} \mbox{Host-Guest Phenomena of Macrocyclic} \\ \mbox{Compounds Based on } HBA \end{array}$

Considering the structure of **HBA**, we shift our viewpoint to the reaction of hydroxyl

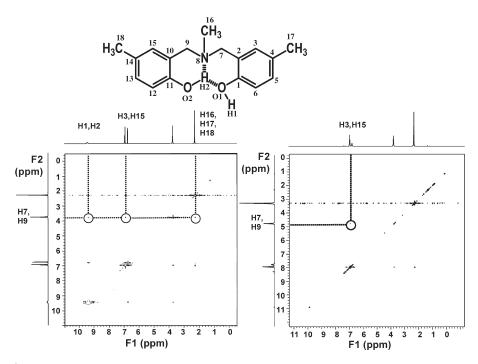


Figure 4. 1 H- 1 H NOESY spectra of (a) HBA2 and (b) HBA2-Cu in CDCl $_{3}$.

Scheme 3.

group and investigate the interaction with guest species. It should be noted that some reactions such as etherification and esterification might proceed at two hydroxyl groups. Macrocyclic compounds were synthesized by using the simple, effective, and selective synthesis routes as shown in Schemes 3^[5] and 4^[6] to obtain **ETH-HBA** and EST-HBA, respectively. The FTIR showed the disappearance of OH peak implying the successful reaction of hydroxyl group with the acid chloride. ¹H NMR spectrum shows the peaks at 3.8 and 4.2 ppm for $-C\mathbf{H}_2-C\mathbf{H}_2-O$ in the product. This confirms the HBA reaction with benzoyl chloride. The result from mass spectra suggested the 2+2 cyclization with the molecular weight of 682.^[5] For EST-HBA, the 2+2 macrocyclization was accomplished as clarified by FTIR, NMR and MALDI-TOF MS.[6]

The ion extraction studies of **ETH-HBA** and **EST-HBA** were investigated by using

UV-Vis and ¹H NMR spectrometers. **ETH-HBA** shows the significant ion extraction ability with alkali metal ions (Figure 5) and the host guest ratio was 2:1. In addition, **EST-HBA** showed very little ion extraction percentage. This implied that the size and the lone pair electrons of oxygen atom might play an important role in ion recognition.

Supramolecular Structure of HBA

As demonstrated in Figure 1, the dimeric packing of **HBA1** is stabilized by inter- and intramolecular hydrogen bonds. Here, **HBA1** and **HBA3** with different bulky substitution group were used as model compounds to observe the supramolecular structure with metal ions formed. Although it is difficult to determine the proton positions by single crystal X-ray analysis, we could extract the protons of hydroxyl groups for **HBA1** and **HBA3** with reasonable bond distances. However, in the case

Scheme 4.

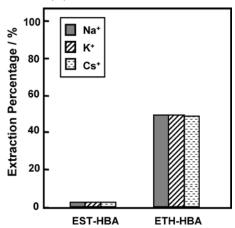


Figure 5. Extraction percentages of EST-HBA and ETH-HBA.

of **HBA1**-Cu and **HBA3**-Cu, the hydrogen atoms could not be detected whereas the oxygen atoms were found to be directly linked to Cu atoms as seen in Figure 6. In addition, we could not observe those acetate counter anions. This leads us to a speculation that the hydrogen atoms of hydroxyl groups might perform as proton donors for acetate anions, resulting in the formation of acetic acid molecules after complexation (Scheme 5). FTIR spectra also supported this speculation

since there was no O–H stretching band $(3200\sim3400~{\rm cm}^{-1})$ in the case of the **HBA-**Cu complex.

The atomic charge distribution was calculated on the basis of density function theory with DMol³ (Material Studio Version 3.0, Accelrys) in order to reveal the characteristic features of these copper complexes of **HBA**. The atomic orbital basis set was DND (Double Numerical plus d-functions), and the type of exchange-correlation potential was a local LDA. In the calculation, the structure obtained from X-ray analysis was used without any further optimization. The calculation was made for the rough estimation of the atomic charge distribution in this characteristic complex structure.

Figure 7 shows the calculated electrostatic potential (ESP) charges. After complexation, the charges of oxygen atoms were bound over Cu atom obviously; resulting in the changes of the charges of nitrogen atoms and carbon atoms in aromatic rings. The charge of Cu atom was decreased from +2 (Cu(CH₃COO)₂) to +1.02. The changes in atomic charge distribution suggested that the electrons migrated from carbon (or aromatic rings) to oxygen and nitrogen and to copper atoms. This indicated the charge transfer system.

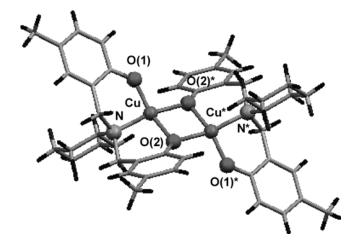


Figure 6.
Coordination compound of HBA1-Cu.

Scheme 5.

Superimposition of HBA and HBA-Cu

Considering the assembly networks of **HBA1** and **HBA3**, it is important to clarify how the charge-transfer coordination networks of **HBA1**-Cu and **HBA3**-Cu affect the original packing structure. It was found that the two **HBA** molecules either before or after the complex formation gave the similar dimeric assembly. As shown in Scheme 5, the size and shape of the cage structure composed of two **HBA** molecules are maintained even after the complexation with Cu ions. At that time, the O–H···O and O–H···N for the inter- and intramolecular hydrogen bonds, respectively, are replaced with the coordination linkages of Cu–O and

Cu-N types as demonstrated in Figures 8 and 9.

Simultaneous Inclusion of Guest Species

It is important to point out that **HBA3**-Cu complex showed the simultaneous inclusion of two guest species in a single host frame. ^[7] The framework of **HBA** under the hydrogen bonded structure was so strong that the **HBA** with Cu remained the same host framework by changing its hydrogen bonds to coordination bonds as clarified from the superimposition structure. As seen in Figure 10, the **HBA3**-Cu complex also entraps neutral molecules such as water, methanol, and ethanol in the unit cell. A

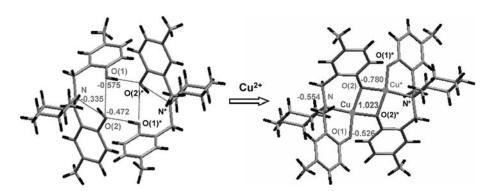


Figure 7.
Calculated atomic charges of HBA1 and HBA1-Cu.

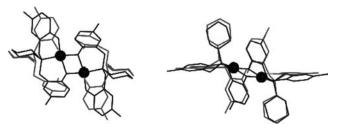


Figure 8.

Comparison of cage structure between HBA1 (red color) and HBA1-Cu complex (blue color) viewed from different directions.

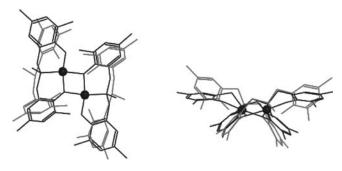


Figure 9.

Comparison of cage structure between HBA3 (red color) and HBA3-Cu (blue color) viewed from the different directions.

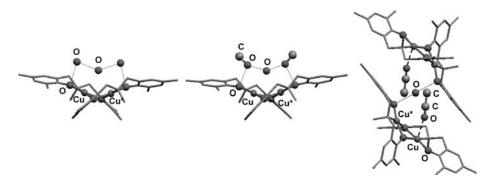


Figure 10.
Structure of HBA3-Cu complex coordinated by solvent molecules. (Hydrogen atoms are omitted for clarity.)

unique bowl shape network structure of **HBA3**-Cu favors the acceptance of those small solvent molecules to stabilize the whole structure. This symmetrical structure and the availability of hydrogen bonds including the lone pair electron system might be key factors to allow simultaneous coordinated and hydrogen bonded molecular assembly.

Conclusion

In previous, our group proposed polybenzoxazines as host system for metal ions, especially alkali and alkaline earth ones. Due to the complicated structure of the polymer chain, it was hard to identify the host-guest structure. The present work focused on a model compound of polybenzoxazine which is HBA derivatives to clarify the host-guest phenomena at molecular level. In solution, the compound showed the host-guest phenomena with various types of metal ions. The single crystal of HBA with Cu ion clarified us that the **HBA** in solid state shared its lone pair electrons of nitrogen atom and oxygen atom in accepting the Cu ion. The framework of HBA was so strong that the **HBA**-Cu was in the same host framework but changed from the hydrogen bonds to coordination bonds as clarified from the superimposition structure. The extension studies on **HBA** proved that the hydrogen bonded structure of HBA favored the macrocyclization to accomplish a series of ether- or ester-typed macrocyclic compounds by the simple, effective, and selective reactions. The **HBA**-based macrocyclic compounds also showed the host-metal interaction.

Acknowledgements: The authors acknowledge The Thailand Research Fund (RSA4680025) for the support on the project. The appreciation is extended to Prof. Mikiji Miyata (Osaka University, Japan) for single crystal analysis.

- [1] X. Ning and H. Ishida, J.Polym. Sci., Part A: Polym. Chem. 1994, 32, 1121.
- [2] A. Laobuthee, S. Chirachanchai, S., H. Ishida, and K. Tashiro, J. Am. Chem. Soc. 2001, 123, 9947.
- [3] A. Laobuthee, H. Ishida, and S. Chirachanchai, J. Incl. Phenom. Macro. **2003**, 47, 179.
- [4] S. Phongtamrug, B. Pulpoka, and S. Chirachanchai, Supra. Chem. **2004**, *16*, 269.
- [5] S. Chirachanchai, S. Phongtamrug, A. Laobuthee, *Chem. Lett.* **2003**, 32, 432.
- [6] A. Laobuthee and S. Chirachanchai, *Chem. Lett.* **2002**, *3*1, 614.
- [7] S. Phongtamrug, M. Miyata, and S. Chirachanchai, Chem. Lett. 2005, 34, 634.

Structural Effects of Acyclic Benzoxazine in Building Nanochannel for Ion Guest

Thitiporn Rungsimanon, Apirat Laobuthee*, and Suwabun Chirachanchai†

The Petroleum and Petrochemical College, Chulalongkorn University, Chula Soi 12,
Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
*Department of Materials Engineering, Faculty of Engineering, Kasetsart University,
Jatujak, Bangkok, 10900, Thailand

Abstract

A series of benzoxazine monomer derivatives, i.e., 3,4-dihydro-2H-1,3-benzoxazines, *O,O'*-Bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine)ethylene glycol, and *N,N*-bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine)tetramethylene diamine, with different functional groups at ortho and/or para positions on the phenol ring and amine groups were prepared. Ion interaction properties of the monomer derivatives for alkali metal were studied by using Pedersen's technique and characterized by UV/Vis. Ion extraction percentage depended on main factors; concentrations, the substituent group at ortho and para position of benzene ring, and the substituent group at aza group of benzoxazine monomers. Benzoxazine monomer derivatives increased ion extraction ability when (i) the concentration of benzoxazines was increased. (ii) the benzene ring has the bulky group but the aza group of benzoxazines have less steric effect. Moreover, they were proved that only their own benzoxazine structures performed the inclusion phenomena by interacting with alkali ions. The chain attached at aza group of the oxazine ring hardly affected to the inclusion properties.

Keywords: benzoxazine structure, benzoxazine monomer, host molecule, guest species, alkali metal ion, 3,4-dihydro-2H-1,3-benzoxazines, *O,O'*-Bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine) ethylene glycol, *N,N*-bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine) tetramethylene diamine, Pedersen's technique, inclusion properties, aza group.

[†]Corresponding author: E-mail address: <u>csuwabun@chula.ac.th</u>; Phone: +66-2-218-4134; Fax: (+66) 2-215-4459.

Introduction

Chemistry of inclusion compounds have received much attention owing to their unique molecular assembly between host and guest species stabilized by the secondary forces, i.e., van der Waals, hydrophilic and/or hydrophobic interaction, ionic interaction, dipole-dipole interaction, etc.¹ Structural characterization in liquid and solid states proved that host compounds provide the concave structure for guests of which can either be neutral molecules or ion species.²⁻⁴ It has been known that crown ethers⁵, cyclodextrins⁶, and calixarenes⁷, the related compounds exhibit inclusion properties for decades. The practical applications can be raised as the improvement of solubility of particular organic species, the exclusion of impurity from the mixtures, the ionic catalyst, the inclusion polymerization, etc.⁸

In previous, our group focused on benzoxazines and the open ring oligobenzoxazine derivatives and proposed them as a novel type of host compound via the resemble structure to calixarenes and/or pseudocyclic calixarenes. ⁹⁻¹¹ In the preliminary studies, it was found that benzoxazine monomers and their derivatives perform inclusion phenomena by interacting with alkali and alkaline earth metal ions. Due to the unique structure of benzoxazines, electron rich position N and O atoms are the attracted position to occur interaction with metal ion. Therefore, from this main reason it is interesting to study the host-guest chemistry of benzoxazines. However, the inclusion phenomena induced by the benzoxazine structures are still unknown.

Thus, the present work was designed to clarify the effect of benzoxazine structure itself to the inclusion phenomena with ion species in host-guest system. A series of monomers were prepared and studied by varying the structure of starting materials, phenol derivatives and amine types, systematically. The host-metal interactions were characterized by means of Pedersen's technique.

Experimental

Chemicals

Paraformaldehyde, *p*-cresol, 2,4-dimethyl phenol (99%), methylamine (w/w 40%), propyl amine, cyclohexylamine, sodium sulfate anhydrous, *2,2*′-(ethyldioxy)diethylamine, and 1,6-diaminohexane were the product of Fluka, Switzerland. 4-Ethylphenol and picric acid were purchased from Merck, Germany. 1,4-Diaminobutane was provided from Acros, Belgium. Sodium hydroxide, isopropanol were obtained from Carlo Erba, Italy. Diethyl ether, 1,4-dioxane, dichloromethane, methanol, chloroform, potassium hydroxide and dichloromethane were provided from Labscan, Ireland. Chloroform-d was purchased from Aldrich, Germany. All chemicals were analytical grade and used without purification.

Instruments and equipment

Fourier transform infared spectra (FTIR) were recorded on a Bruker Equinox55/S spectrometer with 64 scans at a resolution 4 cm⁻¹ in the frequency range of 4,000-400 cm⁻¹. Proton nuclear magnetic resonance spectra (¹H NMR) were analyzed from a Bruker ACF 200 MHz Fourier transform NMR spectrometer in deuterated chloroform (CDCl₃) with tetramethylsilane (TMS) as an internal standard. Mass spectroscopy was obtained by Electrospray Mass Spectrometer PE SCIEX API III Biomolecular Mass Analyzer. Vigorous shaking of the mixture between organic and aqueous solution was performed using GENIE-2 Scientific Industries Vortex mixer. UV-Vis absorbance data were recorded by a Perkin Elmer UV-Vis spectrophotometer Lambda 16.

1. Preparation of Benzoxazine Monomer Derivatives (1-15).

A series of 3,4-dihydro-2H-1,3-benzoxazines;(3,4-dihydro-3,6,8-trimethyl-2H-1,3-benzoxazines, **1**, 3,4-dihydro-3,6-dimethyl-2H-1,3-benzoxazines, **2**, 3,4-dihydro-6-ethyl-3-methyl-2H-1,3-benzoxazines, **3**, 3,4-dihydro-6-*t*-butyl-3-methyl-2H-1,3-benzoxazines, **5**, 3,4-dihydro-6,8-dimethyl-3-propyl-2H-1,3-benzoxazines, **6**, 3,4-dihydro-6-methyl-3-propyl-2H-1,3-benzoxazines, **7**, 3,4-dihydro-6-ethyl-3-propyl-2H-1,3-benzoxazines, **8**, 3,4-dihydro-6-*t*-butyl-3-propyl-2H-1,3-benzoxazines, **9**, 3,4-dihydro-3-propyl-2H-1,3-benzoxazines, **10**, 3,4-dihydro-6,8-dimethyl-3-cyclohexyl-2H-1,3-benzoxazines, **11**,

3,4-dihydro-6-methyl-3-cyclohexyl-2H-1,3-benzoxazines, **12**, 3,4-dihydro-6-ethyl-3-cyclohexyl-2H-1,3-benzoxazines, **13**, 3,4-dihydro-6-*t*-butyl-3-cyclohexyl-2H-1,3-benzoxazines, **14**, 3,4-dihydro-3-cyclohexyl-2H-1,3-benzoxazines, **15**)

Benzoxazine monomers **1-15** were synthesized (Scheme 1) as referred to Ishida *et al.*¹²⁻¹³ The structures of the obtained monomers were studied by FTIR, ¹H NMR, and MS.

A series of *O,O'*-Bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine)ethylene glycol; (*O,O'*-Bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)ethylene glycol, **16**, *O,O'*-Bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)ethylene glycol, **17**)

Benzoxazine monomers 16-17 were synthesized (Scheme 2) as follows.

O,O'-Bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)ethylene glycol, 16

2,2'-(ethyldioxy)diethylamine (1.46 mL, 10 mmol) was added dropwise into the solution of paraformaldehyde (1.23 g, 41 mmol) in 1,4-dioxane (10 mL), followed by adding *p*-cresol (2.1 mL, 21 mmol) in 1,4-dioxane (20 mL). The solution was refluxed for 6 h. The solution obtained was dissolved in 50 mL of diethyl ether and extracted with 3 N sodium hydroxide (10 mL) for 3 times, followed by washing with water. The product was dried over sodium sulfate anhydrous. The solvent was evaporated out. The product was collected and recrystallized with isopropanol. The product obtained was characterized by FTIR, ¹H NMR, and MS.

Compound **16**: 75% yield; $R_f = 0.66$ (5% methanol in chloroform); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1231 (vs, C-N stretching), 1500 (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): δ_H 2.25 (6H, s, Ar-CH₃), 2.95 (4H, t, N-CH₂- CH₂-O, $J_I = 5.86$ Hz), 3.65 (4H, s, N-CH₂-CH₂-O-CH₂-), 3.75 (4H, t, -N-CH₂-CH₂-O, $J_I = 5.86$ Hz), 4.05 (4H, s, Ar-CH₂-N-), 4.85 (4H, s, O-CH₂-N-), 6.65 (2H, d, Ar-H, $J_2 = 8.06$ Hz), 6.75 (2H, d, Ar-H, $J_3 = 1.46$ Hz), 6.95 (2H, dd, Ar-H, $J_2 = 8.06$ and $J_3 = 1.46$ Hz). MS (m/z): 412.

O,O'-Bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)ethylene glycol, 17

4-Ethylphenol (2.44 g, 21 mmol), paraformaldehyde (1.23 g, 41 mmol), and 2,2'-(ethyldioxy)diethylamine (1.46 mL, 10 mmol) were used for preparing compound 17. Similarly, the reactions were proceeded as compound 16. The product obtained was then qualitatively analyzed by using FTIR, ¹H NMR, and MS.

Compound 17: 80% yield; $R_f = 0.65$ (5% methanol in chloroform); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1230 (vs, C-N stretching), 1500 (s, oxazine); ¹H-NMR

(200 MHz, CDCl₃, ppm): $\delta_{\rm H}$ 1.31 (6H, t, Ar-CH₂-CH₃, J_I = 7.32 Hz), 2.55 (4H, s, Ar-CH₂-CH₃, J_I = 7.32 Hz), 2.95 (4H, t, N-CH₂- CH₂-O, J_2 = 5.86 Hz), 3.65 (4H, s, N-CH₂-CH₂-O-CH₂-), 3.75 (4H, t, -N-CH₂-CH₂-O, J_2 = 5.86 Hz), 4.05 (4H, s, Ar-CH₂-N-), 4.85 (4H, s, O-CH₂-N-), 6.65 (2H, d, Ar-H, J_3 = 8.06 Hz), 6.79 (2H, d, Ar-H, J_4 = 1.46 Hz), 6.95 (2H, dd, Ar-H, J_3 = 8.06 and J_4 = 1.46 Hz). MS (m/z): 440.

A series of *N,N*-bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine)tetramethylene diamine; (*N,N*-bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine) tetramethylene diamine, **18**, *N,N*-bis(3,4-dihydro-3,6-diethyl -2H-1,3-benzoxazine)tetramethylene diamine, **19**)

Benzoxazine monomers 18-19 were synthesized (Scheme 3) as follows.

N,N-bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)tetramethylene diamine, 18

Similarly, compound **18** was prepared as procedure of **16** by replacing 2,2'-(ethyldioxy)diethylamine with 1,4-diaminobutane (1 mL, 10 mmol).

Compound 3: $R_f = 0.81$ (5:95 methanol:dichloromethane); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1225 (vs, C-N stretching), 1501 (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): δ_H 1.60 (6H, s, Ar-CH₃), 2.24 (4H, t, N-CH₂- CH₂), 2.72 (4H, t, -CH₂ - CH₂), 3.96 (4H, s, =C-CH₂-N-), 4.96 (4H, s, -O-CH₂-N-), 6.68 (2H, d, Ar-H), 6.76 (2H, s, Ar-H), 6.92 (2H, d, Ar-H). MS (m/z): 352.

N,N-bis(3,4-dihydro-3,6-diethyl -2H-1,3-benzoxazine)tetramethylene diamine, 19

Similarly, compound **19** was prepared as procedure of **18** by using 4-ethylphenol (2.44 g, 21 mmol) instead of *p*-cresol.

Compound **4**: $R_f = 0.77$ (5:95 methanol:dichloromethane); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1225 (vs, C-N stretching), 1500 (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): δ_H 1.12 (6H, t, -CH₂-CH₃), 1.56 (4H, t, N-CH₂-CH₂), 2.48 (4H, q, -CH₂-CH₃), 2.72 (4H, t, -CH₂-CH₂), 3.92 (4H, s, =C-CH₂-N-), 4.80 (4H, s, -O-CH₂-N-), 6.68 (2H, d, Ar-H), 6.76 (2H, s, Ar-H), 6.92 (2H, d, Ar-H). MS (m/z): 380.

2. Ion Interaction Properties.

2.1 Preparation of Metal Picrate Solution.

Sodium and potassium picrate were prepared by recrystallization of picric acid with NaOH and KOH, respectively, in methanol. The metal picrate was dissolved in water at concentration $7x10^{-5}$ M and used as a metal picrate solution.

2.2 Ion Extraction Studies.

Five mL of picrate (concentration $7x10^{-5}$ M) and benzoxazine solution (concentration $7x10^{-5}$, $7x10^{-4}$, and $7x10^{-3}$ M) were taken and mixed vigorously for 1 min. The mixture was left at room temperature till the aqueous and organic phases were completely separated. The decrease of picrate salt concentration in aqueous phase was determined by UV-Vis spectrophotometer at 354 nm.

Results and Discussion

1. Preparation of Benzoxazine Monomer Derivatives (1-15).

Synthesis and structural characterization of monomers **1-15** were previously reported elsewhere. ^{10, 14}

The synthesis of monomers **16-19** was carried out via Mannich reaction shown in (Scheme 2) and (Scheme 3), respectively.

Structural characterization of monomer **16**. The characteristic peaks found in FT-IR spectra were at 1121 and 1500cm⁻¹ that belonged to C-O-C bond and oxazine ring, respectively. The important peak of **16** found in ¹H-NMR spectra was at 4.85 that referred to O-**CH₂**-N bond. The parent peak of product found in MS at m/z 412.

Monomers 17-19 were characterized as follows.

2. Ion Interaction Properties of Benzoxazine Monomer Derivatives (1-19).

Benzoxazine monomers (1-19) are expected to give a specific conformation as a host compound to form complexes with ion guests. The effects of their own benzoxazine structures to ion extraction abilities were studied by variation of concentrations, the substituent group at ortho and para positions in the benzene ring, the substituent group at aza position, and the chain attached at aza group of the oxazine ring of these benzoxazine monomers.

2.1 Effect of Benzoxazine Monomers Concentration.

Figure 1 shows that when the concentration of 1-5, 16, 18 increases, the sodium picrate extraction percentage are also increased. In the case of 1 and 4, the extraction percentage is nearly 100% while in the case of 5 the extraction percentage is only 10%. It could be mentioned that the monomers with side groups on benzene ring such as methyl, ethyl, or *t*-butyl gave the higher ion extraction percentage than the monomers without those groups. The result implied that the structure of benzoxazine monomers should play an important role in the ion extraction. Since benzoxazine monomers could not provide the specific cavity by their own monomer units, the ion entrapment ability might come from the unique molecular assembly.

Considering benzoxazine monomers, the molecular assembly should be formed by stacking conformation between benzene ring. However, the oxygen and nitrogen atoms would make the oxazine ring repulsion owing to the electronegativity. It suggested that the bulky group in oxazine gave the loose packing to provide more space than guests.

2.2 Effect of the Substituent Group at Ortho and Para Positions in the Benzene Ring and the Substituent Group at Aza Position of Benzoxazine Monomers.

In order to clarify the effects of the structure of benzoxazine monomers to metal ion interaction, a series of monomers were prepared. The ion interaction properties were studied by variation host-guest ratio.

As shown in Figure 2, monomers **5**, **10**, and **15**, which are based on phenol, show ion extraction percentage, either Na^+ or K^+ , less than 20% even the host concentration is higher than guest for 100 times. The results suggested that the benzene ring has no side group, the ion extraction percentage is insignificant.

In contrast, Figure 3 suggests that 3, 8, and 13 having the same basic unit of ethyl phenol, extract high percent of ion when the amine group is methyl group, 3. The results implied the effect of aza group that when aza group has no bulky group, the ion extraction percentage is significant.

Figure 4 demonstrates that benzoxazine monomers with a series of 2,4 dimethylphenol have also nearly 100% of ion extraction. Similarly as monomer 3, the one with methyl group at N (monomer 1) show higher percent extraction than the one with propyl or cyclohexyl group at N (monomer 6, and 11). The results suggested that the ion interaction ability is increased when the nitrogen atom at oxazine ring has less steric group. In the case of benzoxazine monomers with a series of methyl phenol (monomer 2, 7, and 12) and *t*-butyl phenol (monomer 4, 9, and 14), the results showed the same trend as monomer 3 and monomer 1. Therefore, the results informed that benzoxazine monomers increased ion interaction ability when the benzene ring has the bulky group but the nitrogen and oxygen at oxazine ring has less steric effect.

2.3 Effect of the Chain Attached at Aza Group of the Oxazine Ring.

Monomer **3** can extract sodium ion approximately 70% whereas monomer **16-17**, and **18-19**, are 40, and 20%, respectively, at the concentration 7 x 10^{-3} M of host molecules (Figure 5). Although, monomer **16** and **17** consist of more O atom at the chain attached at aza group that should be electron rich position to improve host-guest formations, the ion extraction percentage was similar to the monomers which have bulky group at the aza group. What's a more, the long chain of methylene group attached at aza group of monomer **18** and **19** were insignificant for increasing the ion extraction ability. The results found that not only short and long

chain of methylene group, but also ether chain attached at aza group of the oxazine ring are hardly affect to the inclusion properties with alkali metal ion guest species. It proved that only their own benzoxazine structures performed the inclusion phenomena by interacting with alkali ions. The chain attached at aza group of the oxazine ring hardly affected to the inclusion properties.

Conclusion

Benzoxazine monomers exhibited the host-guest properties controlled only their own benzoxazines. The high concentration, the bulky group at ortho and para position in benzene ring, and the less steric aza group of benzoxazine monomers were the factors to enhance ion interaction ability. Not only short and long chain of methylene group, but also ether chain attached at aza group of the oxazine ring hardly affected to the inclusion properties with alkali metal ion guest species.

Acknowledgements

S.C. acknowledges financial support from The Thailand Research Fund (grant no. RSA4680025).

References

- 1. Kroschiwitz, J.I. and Howe-Grant, M. (Ed.) (1998). *Encyclopedia of Chemical Technology: Supplement*. 4th ed. New York: John Wiley & Sons., 352-395.
- 2. Tummler, B., Maass, G., Weber, E., Wehner, W., and Vögtle, F. (1977). *J. Am. Chem. Soc.*, 99, 4683.
- 3. Gutche, C.D., Iqbal, M., and Alam, I. (1987). *J. Am. Chem. Soc.*, 109, 4314-4320.
- 4. Bhmer, V. (1995). Angrew. Chem. Int. Ed. Engl., 34, 713-745.
- 5. Pedersen, C.J. (1967). Cyclic polyethers and their complexes with metal salts. *J. Am. Chem. Soc.*, 89, 7017-7036.
- 6. Breslow, R. and Campbell, P. (1969). J. Am. Chem. Soc., 91, 3085.
- 7. Roundhill, D.M. (1995). Metal complexes of calixarenes. In Karlin, K.D. (Ed.), Progress in inorganic chemistry (Vol. 43, pp. 533-592). Chichester, England; John Wiley.
- 8. Atwood, J.L., and Steed, J.W. (Ed.) (2000). *Supramolecular Chemistry*, Chichester, England; John Wiley, 116.
- 9. Chirachanchai, S., Laobuthee, A., Phongtamrag, S., Siripatanasarakit, W., and Ishida, H. (2000). A novel ion extraction material using host-guest properties of oligobenzoxazine local structure and benzoxazine monomer molecular assembly. *J. Appl. Polym. Sci.*, 77, 2561-2568.
- Phongtamrug, S. (1988). Study on the benzoxazine monomers and their application for ion extraction material., Master's Thesis, Chulalongkorn University.
- 11. Techakamolsuk, P. (1999). Synthesis and application of structurally controlled benzoxazine as a host-guest compound. Master's Thesis, Chulalongkorn University.
- 12. Ishida, H., and Dunkers, J. (1995). Vibrational assignments of 3-alkyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazines in the finger print region. *Spectrochimica Acta*, 51A, 1061-1074.
- 13. Ishida, H., and Low, H.Y. (1997). A study on the volumetric expansion of benzoxazine-based phenolic resin. *Macromolecules*, 30, 1099-1106.

14. Takolpuckdee, P. (2000). The origin of host-guest interaction in metal/benzoxazine systems, Master's Thesis, Chulalongkorn University.

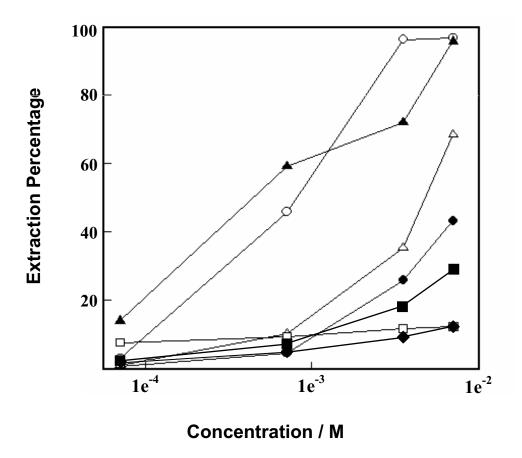
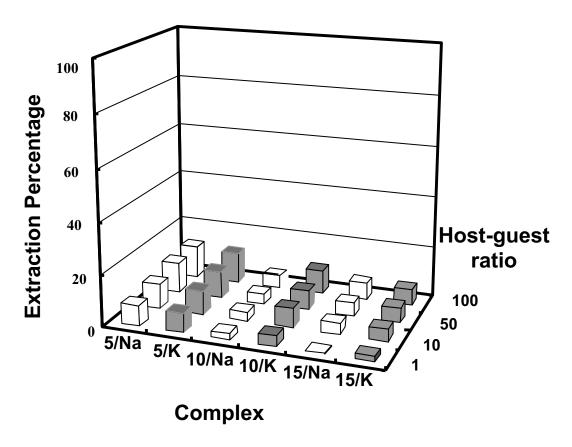
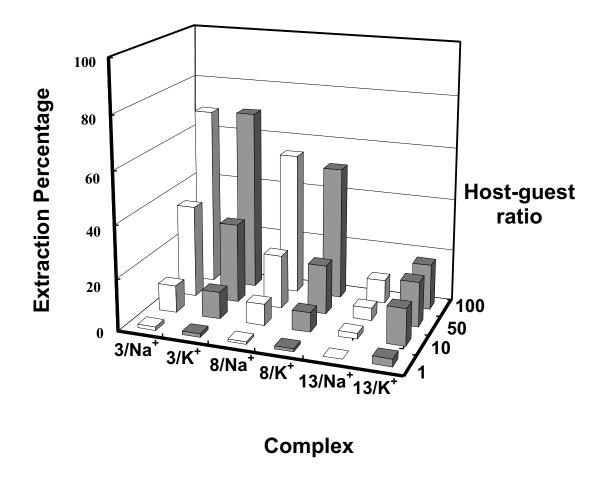
$$R = CH_3 (1)$$
 $= CH_2CH_2CH_3 (6)$
 $= CH_3 (1)$
 $= CH_2CH_2CH_3 (6)$
 $= CH_3 (1)$
 $= CH_2CH_2CH_3 (7)$
 $= CH_3 (1)$
 $= CH_3 (1)$

$$R = CH_3 (3)$$
 $= CH_2CH_2CH_3 (8)$
 $= CH_2CH_3 (13)$
 $= CH_2CH_3 (13)$
 $= CH_2CH_3 (13)$
 $= CH_3CH_3 (13)$
 $= CH_3CH_3$

$$R = CH_3 (5)$$

= $CH_2CH_2CH_3 (10)$
= $C_6H_{11} (15)$

$$R'$$
 R
 R

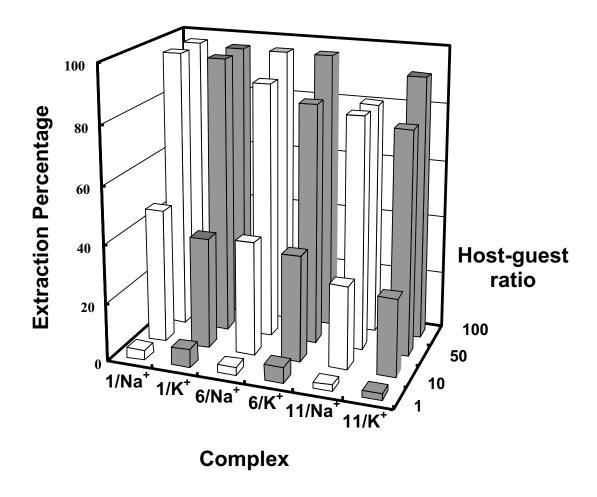

Figure 1. Ion extraction of benzoxazine monomers of \bigcirc) 1; \bigcirc) 2; \triangle) 3; \triangle) 4; \square) 5; \square) 16; and \blacklozenge) 18 at monomer concentration of $7x10^{-5}$, $7x10^{-4}$, 3.5×10^{-3} , and $7x10^{-3}$ M sodium picrate salt at concentration $7x10^{-5}$ M.

Figure 2. Ion extraction percentage of benzoxazine monomers 5, 10, and 15 by varying host guest ratio using picrate salt of Na^+ and K^+ at the concentration $7x10^{-5}M$.

Figure 3. Ion extraction percentage of benzoxazine monomers 3, 8, and 13 by varying host guest ratio using picrate salt of Na^+ and K^+ at the concentration $7x10^{-5}M$.

Figure 4. Ion extraction percentage of benzoxazine monomers 1, 6, and 11 by varying host guest ratio using picrate salt of Na^+ and K^+ at the concentration $7x10^{-5}M$.

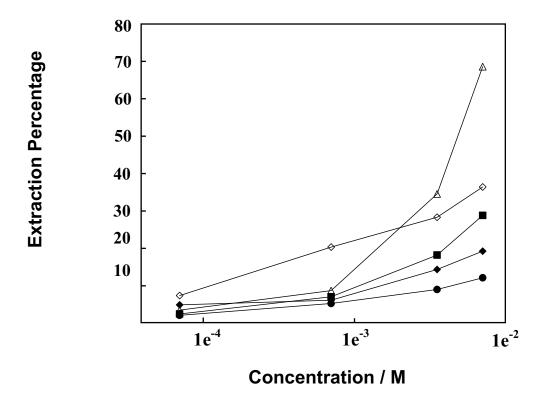


Figure 5. Ion extraction of benzoxazine monomers of \triangle) 3; \blacksquare) 16; \diamondsuit) 17; \spadesuit) 18; and \bullet) 19 at monomer concentration of $7x10^{-5}$, $7x10^{-4}$, 3.5×10^{-3} , and $7x10^{-3}$ M sodium picrate salt at concentration $7x10^{-5}$ M.

Novel Supramolecular Assembly Structures of Acyclic Benzoxazines

Thitiporn Rungsimanon, Apirat Laobuthee*, and Suwabun Chirachanchai†

The Petroleum and Petrochemical College, Chulalongkorn University, Chula Soi 12, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand

*Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Jatujak, Bangkok, 10900, Thailand

Abstract

Novel supramolecular assembly containing acyclic benzoxazines (1-6) are prepared and characterized with FTIR, NMR and MS. The alkaline metal ion guest responsive properties of the acyclic benzoxazines are studied by using Pedersen's technique. The ion extraction ability of the acyclic benzoxazines are affected by their structures.

Keywords: Novel Supramolecular Assembly Structures, Acyclic Benzoxazines, Nanomaterials, Metal Ion Guest Responsive Properties, Pedersen's Technique, Ion Extraction Ability

[†]Corresponding author: E-mail address: <u>csuwabun@chula.ac.th</u>; Phone: +66-2-218-4134; Fax: (+66) 2-215-4459.

Introduction

Nowadays, nanomaterials have received much interest owing to the ability of functionalization in molecular level, and the significant mechanical performances. (1) The development and molecular design at molecular level from the small molecules of angstrom size to be the macromolecules of nanometer size are focused to achieve nanomaterials such as macrocyclic compounds (2), molecular assembly (3), etc.. Most of these nanomaterials show the unique properties that have never found in the small molecules. For example, *N*-adamantylaza-crown ethers can form complexation with K⁺ and Rb⁺ higher than the parent aza 18-crown-6 and *N*-benzylaza-18-crown-6. (4)

Inclusion or host-guest have been also received much interest according to their unique properties on the molecular recognition. (5) Various types of host compounds, such as crown ether (6) , calixarene (7) , cyclodextrin (8) , etc., are well-known to be model showing inclusion property. The induced molecular interactions between host-guest compounds are known as non-covalent interactions or secondary forces, for examples, ionic interaction (9) , dipole-dipole interaction (10) , hydrogen bonding (11) , and etc.. Hence, many host compounds have been focused on molecular design to carry out the novel supramolecules which have specific functional groups can form either molecular assemblies or macrocyclic structure. (12)

Polybenzoxazine, a new type of phenolic resin with superb mechanical and thermal properties has been proposed and mainly studied on the processing conditions to improve their properties for using as composite materials. In our studies, novel supramolecular assembly structures of acyclic benzoxazines are objected to obtain the material for the advanced applications such as molecular ionic devices, photoelectronic molecules, and etc. by means of host-guest structured benzoxazines. We therefore focused on the unique structure of the open ring polybenzoxazine resembled to a unit of azamethylene linked calixarenes (Scheme 1) for applications as ion extraction materials. By using molecular design and synthesis pathway, the novel supramolecular assembly structures of acyclic benzoxazines have been proposed. For the past few years, our group has succeeded the fruitful results to declare benzoxazines as supramolecules either macrocyclics or molecular assemblies with specific properties via molecular recognition. (15-17)

Apparently, acyclic host compounds are interesting in their induced property to form metal ion complex as well as cyclic host compounds. (18-19) In this present article, we aim to propose the possibility to develop novel supramolecular assembly structures

of acyclic benzoxazines for preference structure to form complexation with metal ion especially alkaline metal ions. Besides, the effects of the structure to metal ion extraction ability of these host compounds have been also studied in order to understand clearly about the appropriate structure to form inclusion phenomena with metal ion species. Moreover, the preliminary study of ion interaction property via Pedersen's technique has been done to declare the supramolecular structured benzoxazines.

Experimental

Chemicals

Paraformaldehyde, *p*-cresol methylamine, sodium sulfate anhydrous, *2,2*'-(ethyldioxy)diethylamine, 1,6-diaminohexane and cesium carbonate were purchased from Fluka, Switzerland. 4-Ethylphenol and picric acid were provided from Merck, Germany. 1,4-Diaminobutane was purchased from Acros, Belgium. Sodium hydroxide, isopropanol were obtained from Carlo Erba, Italy. Diethyl ether, 1,4-dioxane, dichloromethane, ethanol, potassium hydroxide and dichloromethane were provided from Labscan, Ireland. Chloroform-d was purchased from Aldrich, Germany. All chemicals were analytical grade and used as received.

Instruments and equipment

Fourier transform infared spectra (FTIR) were recorded on a Bruker Equinox55/S spectrometer with 64 scans at a resolution 4 cm⁻¹. Proton nuclear magnetic resonance spectra (¹H NMR) were obtained from a Fourier transform NMR spectrometer ACF 200 MHz in deuterated chloroform (CDCl₃) with tetramethylsilane (TMS) as an internal standard. Mass spectroscopy was analyzed by FAB⁺-MS 707 VG Autospec-ultima mass spectrometer employing a direct probe inlet and using Cs gun to ionize sample. UV-Vis absorbance data were recorded by a Perkin Elmer UV-Vis spectrophotometer Lambda 16.

1. Preparation of Supramolecular Assembly Structures of Acyclic Benzoxazines (1-6).

A series of *O,O'*-Bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine)ethylene glycol (Scheme 2), *N,N*-bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine)tetramethylene diamine (Scheme 3), and *N,N*-bis(3,4-dihydro-alkyl-2H-1,3-benzoxazine) hexamethylene diamine (Scheme 4), i.e., *O,O'*-Bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)ethylene glycol (1), *O,O'*-Bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)ethylene glycol (2), *N,N*-bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)tetramethylene diamine (3), *N,N*-bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)tetramethylene diamine (4), *N,N*-bis(3,4-dihydro-3-ethyl-2H-1,3-benzoxazine)hexamethylene diamine (5), and *N,N*-bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)hexamethylene diamine, 6 were prepared as follows.

O,O'-Bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)ethylene glycol, 1

2,2'-(ethyldioxy)diethylamine (1.46 mL, 10 mmol) was added dropwise into the solution of paraformaldehyde (1.23 g, 41 mmol) in 1,4-dioxane (10 mL), followed by adding *p*-cresol (2.1 mL, 21 mmol) in 1,4-dioxane (20 mL). The solution was refluxed for 6 h. The solution obtained was dissolved in 50 mL of diethyl ether and extracted with 3 N sodium hydroxide (10 mL) for 3 times, followed by washing with water. The product was dried over sodium sulfate anhydrous. The solvent was evaporated out. The product was collected and recrystallized with isopropanol. The product obtained was characterized by FTIR, ¹H NMR, and FAB⁺-MS.

Compound 1: 75% yield; $R_f = 0.66$ (5% methanol in chloroform); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1231 (vs, C-N stretching), 1500 (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): δ_H 2.25 (6H, s, Ar-CH₃), 2.95 (4H, t, N-CH₂- CH₂-O, $J_I = 5.86$ Hz), 3.65 (4H, s, N-CH₂-CH₂-O-CH₂-), 3.75 (4H, t, -N-CH₂-CH₂-O, $J_I = 5.86$ Hz), 4.05 (4H, s, Ar-CH₂-N-), 4.85 (4H, s, O-CH₂-N-), 6.65 (2H, d, Ar-H, $J_2 = 8.06$ Hz), 6.75 (2H, d, Ar-H, $J_3 = 1.46$ Hz), 6.95 (2H, dd, Ar-H, $J_2 = 8.06$ and $J_3 = 1.46$ Hz). FAB⁺-MS (m/z): M+1 = 413; M = 412.

O,O'-Bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)ethylene glycol, 2

4-Ethylphenol (2.44 g, 21 mmol), paraformaldehyde (1.23 g, 41 mmol), and 2,2'-(ethyldioxy)diethylamine (1.46 mL, 10 mmol) were used for preparing compound **2**. Similarly, the reactions were proceeded as compound **1**. The product obtained was then qualitatively analyzed by using FTIR, ¹H NMR, and FAB⁺-MS.

Compound **2**: 80% yield; $R_f = 0.65$ (5% methanol in chloroform); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1230 (vs, C-N stretching), 1500 (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): δ_H 1.31 (6H, t, Ar-CH₂-CH₃, $J_I = 7.32$ Hz), 2.55 (4H, s, Ar-CH₂-CH₃, $J_I = 7.32$ Hz), 2.95 (4H, t, N-CH₂- CH₂-O, $J_2 = 5.86$ Hz), 3.65 (4H, s, N-CH₂-CH₂-O-CH₂-), 3.75 (4H, t, -N-CH₂-CH₂-O, $J_2 = 5.86$ Hz), 4.05 (4H, s, Ar-CH₂-N-), 4.85 (4H, s, O-CH₂-N-), 6.65 (2H, d, Ar-H, $J_3 = 8.06$ Hz), 6.79 (2H, d, Ar-H, $J_4 = 1.46$ Hz), 6.95 (2H, dd, Ar-H, $J_3 = 8.06$ and $J_4 = 1.46$ Hz). FAB⁺-MS (m/z): M+1 = 441; M = 440.

N,*N*-bis(3,4-dihydro-3-ethyl-6-methyl-2H-1,3-benzoxazine)tetramethylene diamine, 3

Similarly, compound **3** was prepared as procedure of **1** by replacing 2,2'-(ethyldioxy)diethylamine with 1,4-diaminobutane (1 mL, 10 mmol).

Compound 3: $R_f = 0.81$ (5:95 methanol:dichloromethane); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1225 (vs, C-N stretching), 1501 (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): δ_H 1.60 (6H, s, Ar-CH₃), 2.24 (4H, t, N-CH₂- CH₂), 2.72 (4H, t, -CH₂- CH₂), 3.96 (4H, s, =C-CH₂-N-), 4.96 (4H, s, -O-CH₂-N-), 6.68 (2H, d, Ar-H), 6.76 (2H, s, Ar-H), 6.92 (2H, d, Ar-H). FAB⁺-MS (m/z): M+1 = 353; M = 352.

N,N-bis(3,4-dihydro-3,6-diethyl -2H-1,3-benzoxazine)tetramethylene diamine, 4

Similarly, compound 4 was prepared as procedure of 3 by using 4-ethylphenol (2.44 g, 21 mmol) instead of *p*-cresol.

Compound 4: $R_f = 0.77$ (5:95 methanol:dichloromethane); FTIR (KBr,cm⁻¹): 1121 (s, C-O-C), 1225 (vs, C-N stretching), 1500 (s, oxazine); ¹H-NMR (200 MHz, CDCl₃, ppm): δ_H 1.12 (6H, t, -CH₂-CH₃),1.56 (4H, t, N-CH₂-CH₂), 2.48 (4H, q, -CH₂-CH₃), 2.72 (4H, t, -CH₂-CH₂), 3.92 (4H, s, =C-CH₂-N-), 4.80 (4H, s, -O-CH₂-N-), 6.68 (2H, d, Ar-H), 6.76 (2H, s, Ar-H), 6.92 (2H, d, Ar-H). FAB⁺-MS (m/z): M+1 = 381; M = 380.

N,N-bis(3,4-dihydro-3-ethyl-2H-1,3-benzoxazine)hexamethylene diamine, 5

Similarly, compound **5** was prepared as procedure of **1** by replacing 2,2'-(ethyldioxy)diethylamine with 1,6-diaminohexane (1 mL, 10 mmol).

N,N-bis(3,4-dihydro-3,6-diethyl-2H-1,3-benzoxazine)hexamethylene diamine, 6

Similarly, compound $\bf 6$ was prepared as procedure of $\bf 5$ by using 4-ethylphenol (2.44 g, 21 mmol) instead of p-cresol.

2. Ion Extraction Property of Supramolecular Assembly Structures of Acyclic Benzoxazines (1-6).

The metal ion extraction of compound **1-6** was qualitative and quantitative analyzed by Pedersen's technique. Compound **1, 2** were dissolved in chloroform whereas compound **3, 4** were dissolved in dichloromethane at $7x10^{-3}$, $7x10^{-4}$, and $7x10^{-5}$ M. Metal picrate aqueous solutions (sodium picrate, potassium picrate, and

cesium picrate) were prepared at concentration of $7x10^{-5}$ M. Five milliliters of each solution were mixed together, followed by vigorously shaken for 1 min and left at room temperature until each phase was separated completely. The aqueous phase was collected to determine the concentration of metal picrate solution by using a Perkin Elmer UV-Vis spectrophotometer Lambda 16 at λ_{max} 354 nm. Extraction percentage was calculated as eq. 1.

Extraction percentage =
$$\frac{A_0 - A}{A_0} \times 100$$
 (eq. 1)

The organic phase was collected. The solvent was removed out to obtain the complex salts of benzoxazine monomer derivatives and metal picrate. The salts obtained were analyzed by ¹H NMR spectroscopy using deuterated chloroform as a solvent with a trace amount of tetramethylsilane (TMS).

Results and Discussion

1. Preparation of Supramolecular Assembly Structures of Acyclic Benzoxazines (1-6).

The synthetic route to prepare supramolecular assembly structures of acyclic benzoxazines, i.e., (Compound 1, 2), (Compound 3, 4), and (Compound 5, 6) by Mannich reaction are shown in (Scheme 2), (Scheme 3), and (Scheme 4), respectively. The FT-IR spectra of compound (1, 2), (3, 4), and (5, 6) are shown in Figure 1, Figure 2, and Figure 3, respectively. Figure 1 shows the characteristic peaks of benzoxazine monomers at 1500 cm⁻¹ whereas Figure 2, and Figure 3 show at 1501, and 1501, respectively.

The parent peak of products (M+1) found in the mass fragmentation spectra were at m/z 413, and 441, respectively. The characterization results were confirmed the structures of products as **1-2** shown in Scheme IV.

2. Ion Extraction Property of Supramolecular Assembly Structures of Acyclic Benzoxazines (1-6).

Acknowledgements

 $S.C.\ acknowledges\ financial\ support\ from\ The\ Thailand\ Research\ Fund\ (grant\ no.\ RSA4680025).$

References

- 1. Huang, Z.M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223-2253.
- 2. Huszthy, P., Köntös, Z., Vermes, B., and Pintér, A. (2001). Synthesis of novel fluorescent acridono and thioacridono-18-crown-6 ligands. <u>Tetrahedron</u>, 57, 4967-4975.
- 3. Phongtamrag, S., Pulpoka, B., and Chirachanchai, S. (2004). Inclusion Compounds Formed from *N*,*N*-bis(2-hydroxybenzyl)alkylamine Derivatives and Transition Metal Ions via Molecular Assembly. Supramolecular Chemistry, 16(4), 269-278.
- 4. Majerski, K.M. and Ramljak, T.S. (2002). Synthesis and alkali metal binding properties of novel *N*-adamantylaza-crown ethers. <u>Tetrahedron</u>, 58, 4893-4898.
- 5. Cram, D.J. (1992). Molecular container compounds. Nature, 356, 29-36.
- 6. Pedersen, C.J. (1967). Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc., 89, 7017-7036.
- Roundhill, D.M. (1995). Metal complexes of calixarenes. In Karlin, K.D. (Ed.), Progress in inorganic chemistry (Vol. 43, pp. 533-592). Chichester, England; John Wiley.
- 8. Breslow, R. and Campbell, P. (1969). J. Am. Chem. Soc., 91, 3085.
- 9. Choi, H.S., Ooya, T., Sasaki, S., and Yui, N. (2003). Macromolecules, 36, 5342.
- 10. Dutta, S.K. and Perkovic, M.W. (2002). Inorg. Chem., 41, 6938.
- 11. Desiraju, G.R. (2004). In Atwood, J.L., and Steed, J.W. (Ed.), Encyclopedia of Supramolecular Chemistry (Vol. 1, pp. 658-665). Marcel Dekker, New York.
- 12. a(2000). In Atwood, J.L., and Steed, J.W. (Ed.), Supramolecular Chemistry (pp. 116). Chichester, England; John Wiley.
- Ning, X., and Ishida, H. (1994). Phenolic materials via ring opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymer. <u>J. Polym. Sci., Part A: Polym. Chem.</u>, 32, 1121-1129.

- 14. Chirachanchai, S., Laobuthee, A., Phongtamrag, S., Siripatanasarakit, W., and Ishida, H. (2000). A novel ion extraction material using host-guest properties of oligobenzoxazine local structure and benzoxazine monomer molecular assembly. <u>J. Appl. Polym. Sci.</u>, 77, 2561-2568.
- 15. Laobuthee, A., and Chirachanchai, S. (2002). A simple, effective, and selective synthesis route for difunctional 30-membered macrocyclic ester and linear oligoester derived from benzoxazine dimers. Chem. Lett., 31, 614.
- 16. Chirachanchai, S., Phongtamrag, S., and Laobuthee, A. (2003). A simple, effective, and selective synthesis route without template effect (Part II) for [2+2] difunctional 28-membered macrocyclic ethers based on benzoxazine dimers and its inclusion phenomena with metal ions. Chem. Lett., 32, 432.
- 17. Laobuthee, A., Ishida, H., and Chirachanchai, S. (2003). Metal ion guest responsive benzoxazine dimers and inclusion phenomena of cyclic derivatives. J. Incl. Phenom. Macro., 47, 179-185.
- 18. Vögtle, F. and Weber, E. (1979). Angrew. Chem. Int. Ed. Engl., 18, 753-776.
- Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M., and Stoddart J. F. (2002). <u>Angrew. Chem. Int. Ed. Engl.</u>, 41, 898-952.

$$R = CH_3$$
, $R' = H(1)$ $R = C_2H_5$, $R' = H(2)$

$$R = CH_3$$
, $R' = H(3)$ $R = C_2H_5$, $R' = H(4)$

Scheme 4

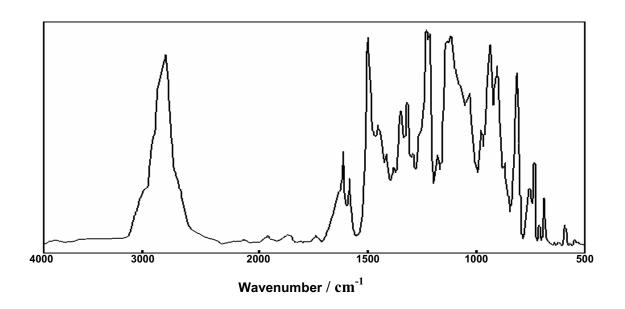


Figure 1. FTIR spectra of 1.

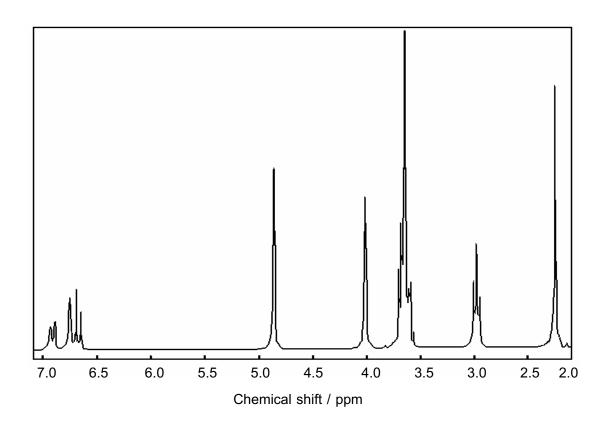


Figure 2. ¹H NMR spectra of 1.

Role of H-bond in Controlling the Macrocyclization: A Model Case of Dibenzomonoazacrown Ethers from N,N-Bis(2-hydroxybenzyl)alkylamine Derivatives

Suwabun Chirachanchai*,†, Suttinun Phongtamrug†

†The Petroleum and Petrochemical College, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.

RECEIVED DATE (automatically inserted by publisher); E-mail: csuwabun@chula.ac.th

In principle, supramolecular phenomena¹ are achieved from either self-assemblies or macrocyclic compounds. In the case of self-assemblies, the key points deal with a molecular design with significant non-covalent bonded host framework and favorable conditions to initiate host-guest interaction.² For macrocyclics, the specific ring size with functional group brings the inclusion properties as seen in crown ethers, calixarenes, etc.³ As macrocyclization is a random reaction between two backbone molecules, the dilute system⁴ is known as the basic requirement to initiate the reaction between these two different molecules. At final, steps of purification (i.e., by chromatography and/or recrystallization) are always needed, which consume time and initiate loss of the yield. Although the use of metal template is a good way for selective cyclization⁴, in most cases, the vield is limited at about 30-40%. Thus, it is a challenging theme to develop an ideal macrocyclization of which the reaction is not only simple but gives the as-designed macrocyclic molecules with the high yield and the high purity. Here, we demonstrate for the first time that the structure of the backbone molecule itself, especially the H-bond network, plays an important role in controlling the selective, effective and efficient macrocyclization.

N,*N*-bis(2-hydroxybenzyl)alkylamine derivative is the good model compound as it has a unique simultaneous inter- and intramolecular hydrogen bonds in a dimeric system as clarified by the single crystal analysis (Figure 1).⁵ Considering the reaction between *N*,*N*-bis(2-hydroxybenzyl)alkylamines and 1,3-bis(tosyloxy)propane⁶, one may recognize the feasible reactions of linear polymerization and macrocyclization, either the [1+1] and/or [2+2], as shown in Scheme 1.

To answer the question about which compound in Scheme 1 was obtained; the structural characterizations were carried out as follows. From FTIR, compound 1 gave the peaks at 3240 cm⁻¹ (intermolecular H-bond), 3200-2600 cm⁻¹ (intramolecular Hbond), 1612 cm⁻¹ (trisubstituted benzene), 1350 cm⁻¹ (C-N-C stretching), and 1242 cm⁻¹ (C-N stretching). After the reaction with 1,3-bis(tosyloxy)propane, a new peak at 1065 cm⁻¹ due to Ar-O-CH₂ stretching was clarified while the broad OH peak was disappeared implying the successful etherification. The peak shifts, especially the 1350 to 1327 and 1242 to 1250 cm⁻¹, referring to the changes in vibrational mode of C-N-C and C-N stretching were also observed. The results implied that the cyclization of 1 might be 4a, 4b, or 4c as detailed in Scheme 1. The ¹H NMR of 4 declares the proton positions of 2, 3, 5, 7, 8, and 9 (as indicated in Scheme 1) in 4 and of propyl chain (the positions of 10 and 11). In addition, H-13C HMBC allows us to confirm the significant interaction between C1 and H10. ¹H-¹H NOESY demonstrates the strong interaction of H7 with H10 and H11.8 Taking the results in our consideration, the most possibility of cyclization was the [1+1].

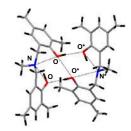


Figure 1. Crystal structure of 1.

The matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF MS) gives a single peak at m/z = 312.6 which precisely equals to the [1+1] type or 4b.⁷

Further analysis was done by recrystallizing the compound in methanol and the colorless cubic crystals were obtained. The single crystal analysis using a Rigaku RAXIS-RAPID imaging plate with a TEXSAN software was carried out. The orthorhombic space group *Pnma* with the *R*1 value of 4.7% clearly identifies that the product from the reaction was **4b** with a [1+1] symmetrical structure. Figure 2 shows an ORTEP view declaring a 12-membered ring macrocyclic of **4b** from the TEXSAN. As there might be the possibility of the mixtures of [1+1] and [2+2] macrocycles, we, then, repeated our single crystal X-ray analysis using various crystals to find that all of the crystals showed the structure of **4b** without any by-products of **4a** and **4c**.

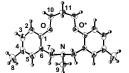


Figure 2. ORTEP view of 4b

Figure 3. Chemical structure of 2,2'-dihydroxydiphenylamine

Agai et al. 10 using 2,2'-The similar work by dihydroxydiphenylamine (Figure 3) as a backbone molecule leads us to the following discussion. In their work, the reaction was succeeded in the specific conditions such as the high temperature (120°C) with alkylating agent, K₂CO₃ and KI to obtain [1+1] monoaza-12-crown-4 with the yield range of 7-40%, depending on the concrete condition details. As the only difference between 2,2'-dihydroxydiphenylamine and 1 is a unit of methylene in azamethylene linkage (Scheme 1), we suspect that a six-membered ring of the intramolecular hydrogen bond formed by the methylene unit and the OH of phenol together with the consequence intermolecular hydrogen bond network of dimeric of 1 might play an important role in the macrocyclization. In other words, our simple condition to obtain only 4b with as high as 75% yield might relate to the H-bonds. Acetonitrile was the good solvent to give 4b in the good yield as compared to other solvents such as methanol, dioxane, toluene, etc. This implied that acetonitrile might maintain the H-bonded dimeric system as in the crystal state to favor the selective macrocyclization. The use of KOH base was also important since we found that the reaction with other bases such as sodium hydroxide, triethylamine hardly gave any of 4 (either 4a, 4b, or 4c). Taking all into our consideration, we speculated the mechanism in macrocyclization as follows (Figure 4); (i) the weakening of intermolecular hydrogen bond of the dimeric system of 1 by KOH to initiate a phenoxide ion at a single phenol group (at this time the other phenol group is maintained its intramolecular hydrogen bond with aza-methylene unit in acetonitrile), (ii) the nucleophilic substitution of a single tosyl group from the ditosylated compound at this phenoxide position, and (iii) the nucleophilic addition between the terminal tosylated group and the other phenol group (which is remained by the intramolecular H-bond) resulting in the controlled macrocyclization to obtain a single type of [1+1]. In the case of 2,2'-dihydroxydiphenylamine with no Hbond network, the step of nucleophilic addition of ditosylated compound might occur randomly on the two phenoxide groups and lead to various by-products and the low yield.

To confirm the role of hydrogen bond of 1 and the mechanism mentioned above, a series of N, N-bis(2hydroxybenzyl)alkylamine derivatives, i.e., N,N-bis(2-hydroxy-5ethylbenzyl)methylamine, 2, and N,N-bis(2-hydroxy-5methylbenzyl)propylamine, 3, were also applied in the similar reaction condition. The compounds obtained were $5b^{11}$ and $6b^{12}$ in the yields above 75%. We found that the concentration of 1 to give the highest yield was 5 mM.

As shown in this work, we conclude that it is possible to obtain a single type of macrocyclic in high yield if only the backbone macromolecule has its favorable structure in controlling the macrocyclization, for example the H-bond network. At present, we are studying more conditions involved with the role of hydrogen bond in 1 and its derivatives by varying the solvents, the substituent groups, etc., to achieve the various types of macrocyclics.

ACKNOWLEDGMENT The present work was supported by the Thailand Research Fund (Grant No. RSA4680025). Thanks to Prof. Mikiji Miyata, Graduate school of engineering, Osaka University, for the helps in single crystal structure analysis.

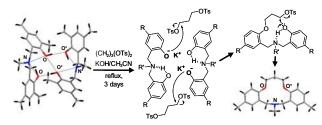


Figure 4. Proposed mechanism of 4b.

REFERENCES

- Lehn, J.-M. In Supramolecular Chemistry: Concepts and Perspectives; VCH: Weinheim, 1995, pp. 11-30.
 Steed, J. W. In Encyclopedia of Supramolecular Chemistry; Vol. 2; Atwood, J. L.; Steed, J. W., Eds.; Marcel Dekker: New York, 2004, pp.
- (a) Laidler, D. A.; Stoddart, J. F. In *Crown Ethers and Analogs*, Patai, S.; Rappoport, Z., Eds.; John Wiley & Sons: New York, 1989, pp. 1-57. (b) Hiraoka, M. In Studies in Organic Chemistry 12: Crown Compounds: their characteristics and applications, Kodensha: Tokyo, 1982, pp. 17-150. (c) Gutsche, C. D. In Calixarenes: A Versatile Class of Macrocyclic Compounds, Vicens, J.; Bohmer, V., Eds.; Kluwer Academic Publishers:
- Compounds, Vicens, J.; Bohmer, V., Eds.; Kluwer Academic Publishers: Netherlands, 1991, pp. 12-37.

 (a) Dietrich, B. In Encyclopedia of Supramolecular Chemistry, Vol. 1; Atwood, J. L.; Steed, J. W., Eds.; Marcel Dekker: New York, 2004, pp. 830-844. (b) Dietrich, B.; Viout, P.; Lehn, J.-M. In Macrocyclic Chemistry: Aspects of Organic and Inorganic Supramolecular Chemistry, VCH: New York, 1992, 4, pp. 65-71.

 Laobuthee, A.; Chirachanchai, S.; Ishida, H.; Tashiro, K. J. Am. Chem. Soc. 2001, 123, 9947-9955.
- N,N-bis(2-hydroxy-5-methylbenzyl)methylamine¹³, 1, (0.27 g, 1 mmol) was refluxed in acetonitrile (150 mL) with potassium hydroxide (0.11 g, 2 mmol) for 1 h. A solution of 1,3-bis(tosyloxy)propane (0.38 g, 1 mmol) in acetonitrile (70 mL) was added dropwisely and refluxed continuously for 3 days before removing solvent. The crude product was dissolved in dichloromethane, washed several times with water, before drying over anhydrous sodium sulfate. obtain the white product in 75 % yield. The solvent was removed to
- obtain the white product in 75 % yield. The characterization for 4b: $C_{20}H_{25}NO_2$: 75% yield; mp = 203°C; FTIR (KBr, cm⁻¹): 1504 (vs, trisubstituted benzene), 1327 (vs, C-N-C stretching), 1250 (vs, C-N stretching), 1065 (s, Ar-O-CH₂); ¹H NMR (600 MHz, CDCl₃): δ 2.137 (s, 3H, N-CH₃), 2.217 (qu, 2H, C-CH₂-C, J_I = 4.86 Hz), 2.259 (s, 6H, Ar-CH₃), 3.614 (s, 4H, N-CH₂-Ar), 4.204 (t, 4H, CH₂-O, J_2 = 5.02 Hz), 6.736 (d, 2H, Ar-H, J_3 = 7.90 Hz), 6.977 (s, 2H, Ar-H), 6.984 (d, 2H, Ar-H, J_4 = 8.56 Hz); ¹³C NMR (600 MHz, CDCl₃): δ 20.495, 28.524, 40.959, 58.224, 67.789, 111.638, 128.125, 128.379, 128.802, 131.901, 155.586; MALDI-TOF MS: m/z 312.6 (M+H⁺); Anal. Calc. for $C_{20}H_{25}O_2N$: C: 77.14, H: 8.09, N: 4.50, O: 10.28. Found: C: 76.38, H: 7.69, N: 4.46. ¹H₋¹³C HMBC for 4b (600 MHz, CDCl₃); H2:C1,C3,C4,C5,C6; H3:C1,C2,C4,C5,C6; H5:C1,C2,C3,C4,C5,C6; H7:C1,C5,C6,C9; H8:C1,C2,C3,C4,C5,C6; H9:C7; H10:C1,C11; H11:C10. ¹H-¹H
- H7:C1,C5,C6,C9; H8:C1,C2,C3,C4,C5,C6; H9:C7; H10:C1,C11; H11:C10. H-H NOESY; H2:H3,H10; H3:H2,H8; H5:H7,H8,H9; H7:H5,H9,H10; H8:H3,H5; H9:H5,H7; H10:H2,H7,H11; H11:H10.
- Crystal data for 4b: $C_{10}H_{12.5}N_{0.5}O$, M=155.71, orthorhombic, a=9.3556(7), b=15.341(1), c=11.8139(8) Å, V=1695.6(4) Å3, T=296 K, space group Pnma (no.62), Z=8, μ (Mo-K α) = 0.78 cm-1, 12579 reflections measured, 1616 unique (Rint = 0.032) which were used in all calculations. The final R1 = 0.047 and Rw = 0.121. X-ray data for compound 4b has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 258583. Copies of the data may be obtained free of charge from CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336-033. e-mail:
- deposit@ccdc.cam.ac.uk).
 (10) Agai, B.; Nemeth, V.; Bocskei, Z.; Simon, K.; Bitter, I.; Toke, L. Tetrahedron **1996**, 52, 6713-6724.
- Tetrahedron **1996**, 52, 6713-6724.

 (11) The characterization for **5b**: C₂₂H₂₉NO₂: 76% yield; FTIR (KBr, cm⁻¹): 1503 (vs, trisubstituted benzene), 1248 (vs, C-N stretching), 1057 (s, Ar-O-CH₂); ¹H NMR (400 MHz, CDCl₃): δ 1.106 (6H, t, Ar-C-CH₃, J₁ = 7.622 Hz), 2.069 (3H, s, N-CH₃), 2.170 (2H, qu, C-CH₂-C, J₂ = 4.837 Hz), 2.484 (4H, q, Ar-CH₂-C, J₃ = 7.622 Hz), 3.571 (s, 4H, N-CH₂-Ar), 4.141 (t, 4H, CH₂-O, J₄ = 4.984 Hz), 6.679 (d, 2H, Ar-H, J₅ = 8.209 Hz), 6.911 (s, 2H, Ar-H), 6.936 (d, 2H, Ar-H, J₆ = 8.208 Hz); MALDI-TOF MS: wf 230° BT MS: m/z 338.85.
- (12) The characterization for **6b**: C₂₂H₂₉NO₂: 78% yield; FTIR (KBr, cm⁻¹): (12) The characterization for 6b: C₂₂H₂₉NO₂: 78% yield; FTIR (KBr, cm⁻¹): 1505 (vs, trisubstituted benzene), 1253 (vs, C-N stretching), 1054 (s, Ar-O-CH₂); ¹H NMR (400 MHz, CDCI₃): δ0.804 (3H, t, CH₂-C-C-N, J₁ = 7.329 Hz), 1.440 (2H, m, C-CH₂-C-N, J₂ = 7.622 Hz), 2.028 (qu, 2H, C-CH₂-C, J₃ = 4.984 Hz), 2.220 (6H, s, Ar-CH₃), 2.345 (2H, t, C-C-CH₂-N, J₄ = 7.327 Hz), 3.557 (s, 4H, N-CH₂-Ar), 4.166 (t, 4H, CH₂-O, J₅ = 4.984 Hz), 6.718 (d, 2H, Ar-H, J₆ = 8.209 Hz), 6.926 (d, 2H, Ar-H, J₇ = 8.208 Hz), 7.076 (s, 2H, Ar-H); MALDI-TOF MS: m/z 340.75.
 (13) Phongtamrug, S.; Pulpoka, B.; Chirachanchai, S. Supra. Chem. 2004, 16, 269-278.

Table of Contents (TOC)

ABSTRACT FOR WEB PUBLICATION The possible compounds obtained from the macrocyclization of dihydroxy backbone molecules and ditosylated compounds are linear, [1+1], and [2+2] cyclics. Herein, we demonstrate that if the backbone molecules have a favorable hydrogen bond network, the macrocyclization results in a single type of macrocyclic in high yield.

A Simple, Effective, and Selective Synthesis Route for [1+1] Dibenzo-Monoaza-Crown Ethers Based on N,N-Bis (2-hydroxy-3,5dimethylbenzyl)methylamine and Their Inclusion Phenomena with Metal Ions

Thitiporn Rungsimanon, Apirat Laobuthee*, and Suwabun Chirachanchai†

The Petroleum and Petrochemical College, Chulalongkorn University, Chula Soi 12,
Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
*Department of Materials Engineering, Faculty of Engineering, Kasetsart University,
Jatujak, Bangkok, 10900, Thailand

Abstract

Synthetic route for dibenzo-monoaza-crown ethers is carried out by a simple etherification of a *N*,*N*-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine and ditosylated derivatives. A selective [1+1] pathway without using catalysts for multistep reactions in specific conditions and purification with column chromatography gives dibenzo-monoaza-14-crown-4 and dibenzo-monoaza-12-crown-3 in high yield. These macrocyclic ligands show the inclusion phenomena with metal ions as clarified by UV-Vis Spectroscopy and ¹H-NMR Measurement. The inclusion phenomena between these ligands and metal ions declare the novel supramolecular structured compounds.

Keywords: Dibenzo-monoaza-crown ether, Etherification, *N*,*N*-Bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, Inclusion phenomena, Macrocyclic ligand, Metal ion

[†]Corresponding author: E-mail address: <u>csuwabun@chula.ac.th</u>; Phone: +66-2-218-4134; Fax: (+66) 2-215-4459.

Introduction

For the past decades, crown ethers¹, cyclodextrins², and calixarenes³ are well known macrocyclics exhibiting the inclusion properties. The practical applications can be used as the building blocks to induce a metal-ion-selective function in supramolecular systems⁴, the exclusion of impurity from the mixtures, the improvement of solubility of particular organic species, the ionic catalyst, the inclusion polymerization, etc.⁵ Crown ethers were first recognized for their molecular recognition with cations by Pedersen¹. Various crown ethers have been prepared and their cation binding properties have been studied continuously. For example, the synthesis of novel dibenzo-monoaza-crown ethers based on phenol-aza-phenol derivatives was proposed.⁶ In this case, dibenzo-monoaza-12-crown-4 was the small crown ether obtained in 30% yield from [1+1] cyclization of tosylated derivatives under the basic condition. Besides, a series of bis(12-crown-3) derivatives with malonate spacers⁷ and several benzocrown amino ethers⁸ were also prepared. According to the compounds consist of 12-crown-3 macrocyclic ring, we may term these compounds as the smallest macrocyclic compounds. However, these compounds were obtained in low yield by using expensive catalysts for multistep reactions in severe conditions, and by the need for chromatographic separation. Similarly, monoazatrithia-12-crown-4 was also obtained in low yield (only 10 to 39%) from cyclization of diethanolamine derivatives with 3-thiapentane-1,5-dithiol.⁹ Diazacrown ethers, which were used as intermediates for the synthesis of nitrogenpivot lariat crown ether and cryptands¹⁰, i.e N,N'-bis(4-substituted phenyl)-1,7-diaza-12-crown-4, and N,N'-bis(4-substituted phenyl.,)-1,10-diaza-18-crown-6 were obtained in low yield (only 11 to 18%), isolated by column chromatography by cyclization of a ditosylate with the appropriately substituted diol.

Previously, we succeeded to synthesize [2+2] 28-membered macrocyclic ethers based on benzoxazine dimers via a simple, effective, and selective synthesis route. Besides, we reported *N,N*-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine was obtained from a ring opening reaction of benzoxazine with 2,4 dimethylphenol. Considering the basic structure of *N,N*-bis(2-hydroxy-3,5-dimethylbenzyl) methylamine, there are also many possibilities to proceed the reaction through the hydroxyl group such as etherification. Herein, we aim to present the synthesis of the small [1+1] dibenzo-monoaza-crown ethers via a simple etherification reaction of a

N,*N*-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine and ditosylated derivatives in high yield without column chromatography purification. Furthermore, we clarified the inclusion phenomena of these macrocyclic ligands with metal ions to propose novel supramolecular structured compounds.

Experimental

Chemicals

Paraformaldehyde, methylamine, 2,4-dimethylphenol, sodium sulfate anhydrous, diethylene glycol, *p*-toluenesulfonyl chloride and cesium carbonate were purchased from Fluka, Switzerland. 1,3-Bis(tosyloxy)propane was the product of TCI, Japan. Picric acid was provided from Merck, Germany. Sodium hydroxide, isopropanol were obtained from Carlo Erba, Italy. Diethyl ether, 1,4-dioxane, acetonitrile, ethanol, potassium hydroxide and dichloromethane were provided from Labscan, Ireland. Chloroform-d was purchased from Aldrich, Germany. All chemicals were used without further purification.

Instruments and equipment

Fourier transform infared spectra (FTIR) were recorded on a Nicolet NEXUS 670 with 32 scans at a resolution 4 cm⁻¹. Proton nuclear magnetic resonance spectra (¹H NMR) were obtained by using a Varian Mercury-4400BB spectrometer. Elemental analysis (EA) was carried out by a Perkin Elmer 2400 CHN. UV-Vis absorbance data were recorded by a Perkin Elmer UV-Vis spectrophotometer Lambda 16. Mass spectroscopy was analyzed by a PerSeptive Biosystems/Vestec matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF MS).

Synthesis

N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **1**

N,*N*-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **1** was prepared from a ring-opening reaction of 3,4-dihydro-3,6,8-trimethyl-2H-1,3-benzoxazine and 2,4-dimethylphenol¹³ (**Scheme 1**). In brief, the mixtures of 3,4-dihydro-3,6,8-trimethyl-2H-1,3-benzoxazine and 2,4-dimethylphenol (1:1) were stirred at 60°C to obtain white precipitates. The precipitates obtained were washed with diethyl ether before drying

in vacuo. The compound was recrystallized with isopropanol to obtain white crystal of 1. The compound obtained was determined with FTIR, ¹H NMR, and EA.

Scheme 1

3,4-dihydro-3,6,8trimethyl-2H-1,3benzoxazine 2,4-dimethyl phenol

N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine

N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **1**: 80% yield; $R_f = 0.40$ (5% methanol in chloroform); white solid; FTIR (KBr,cm⁻¹): 3399 (br, OH), 1484 (vs, C-C), 1427 (m, N-CH₃), 1243 (m, C-N), 1215 and 1200 (m, C-N-C), 847 (m, C-N-C); ¹H NMR (400 MHz, CDCl₃, ppm): δ_H 2.22 (12H, s, Ar-**CH**₃), 2.24 (3H, s, N-**CH**₃), 3.68 (4H, s, Ar-**CH**₂-N), 6.73 (2H, s, Ar-**H**), 6.83 (2H, s, Ar-**H**). Anal.calcd. for C₁₉H₂₅NO₂: C, 76.26; H, 8.36; and N, 4.68%. Found: C, 76.27; H, 8.34; and N, 4.69%.

Dibenzo-monoaza-14-crown-4 based on N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **2**

N,*N*-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **1** (0.299 g, 1 mmol) and sodium hydroxide (0.084 g, 2.1 mmol) were mixed in acetonitrile (150 mL), followed by adding ditosylated diethyleneglycol (0.414 g, 1 mmol) in acetonitrile (50 mL) dropwisely and refluxed for 3 days (**Scheme 2**). The solution obtained was washed 5 times with water and dried with sodium sulfate anhydrous. The solvent was evaporated out. The product was collected and recrystallized with isopropanol to obtain white crystal of **2**. The product obtained was qualitatively analyzed by FTIR, ¹H NMR, EA, and MALDI-TOF.

Scheme 2

Dibenzo-monoaza-14-crown-4 based on N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **2**: $R_f = 0.03$ (5% methanol in chloroform); white crystal; FTIR (KBr,cm⁻¹): 1481 (vs, tri-substituted benzene), 1221 (vs, C-N stretching), 1139 (s, C-O-C); ¹H-NMR (400 MHz, CDCl₃, ppm): δ_H 2.10 (3H, s, N-CH₃), 2.30 (12H, s, Ar-CH₃), 3.79 (4H, s, Ar-CH₂-N), 3.95 (4H, t, CH₂-O), 4.07 (4H, t, CH₂-O), 6.84 (2H, s, Ar-H), 6.93 (2H, s, Ar-H). MALDI-TOF MS (m/z): 369.32. Anal.calcd. for $C_{23}H_{31}NO_3$: C, 74.469; H, 8.401; and N, 3.794%. Found: C, 74.469; H, 8.408; and N, 3.873%.

Dibenzo-monoaza-12-crown-3 based on N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **3**

Similarly, compound **3** was prepared as procedure of **2** by replacing ditosylated diethyleneglycol (0.414 g, 1 mmol) with 1,3-Bis(tosyloxy)propane (0.385 g, 1 mmol) (**Scheme 3**).

Scheme 3

Dibenzo-monoaza-12-crown-3 based on N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine, **3**: $R_f = 0.08$ (5% methanol in chloroform); white crystal; FTIR (KBr,cm⁻¹): 1480 (vs, tri-substituted benzene), 1213 (vs, C-N stretching), 1150 (s, C-O-C); ¹H-NMR (400 MHz, CDCl₃, ppm): δ_H 1.94 (3H, s, N-CH₃), 2.10 (2H, m, CH₂-CH₂-CH₂), 2.25 (12H, s, Ar-CH₃), 3.61 (4H, s, Ar-CH₂-N),

4.11 (4H, t, O-CH₂-CH₂), 6.79 (2H, s, Ar-H), 6.91 (2H, s, Ar-H). MALDI-TOF MS (m/z): 339.23.

Metal ions-Dibenzo-monoaza-crown ethers Interaction

Metal ion extraction was studied by Pedersen's technique. Alkali metal picrate aqueous solutions (sodium picrate, potassium picrate, and cesium picrate) were prepared at concentration of $7x10^{-5}$ M. Equimolar concentration of dibenzomonoaza-crown ethers in chloroform was prepared and mixed with 5 ml of picrate salt aqueous solution. The solution was vigorously shaken for 1 min and left for 30 min. The absorbance at 356 nm was measured by a Perkin Elmer UV-Vis spectrophotometer Lambda 16. Extraction percentage was calculated. The organic phase was collected and analyzed by UV-Vis and ¹H-NMR spectroscopy.

Results and Discussion

Synthesis

The benzoxazine dimer, **1**, for dibenzo-monoaza-crown ethers synthesis was prepared as shown in Scheme 1. A single step reaction of tosyl derivatives with **1** in the basic condition gave **2** and **3** in high yield via a selective [1+1] pathway. The products obtained were white crystal. The structure of **2** was confirmed as follows. The FTIR spectrum showed the disappearance of the hydroxyl group and the new ether peak at 1139 cm⁻¹ as compared to **1** (Figure 1). The ¹H-NMR showed the protons of **CH₂-O** linkage at 3.95 and 4.07 ppm (Figure 2). The parent peak of **2** in MALDI-TOF was at 369.32 (Figure 3). Similarly, the structure of **3** showed the new ether peak at 1150 cm⁻¹. The ¹H-NMR showed the protons of **CH₂-O** linkage at 3.95 and 4.07 ppm. The parent peak of **3** was at 339.23.

Metal ions-Dibenzo-monoaza-crown ethers Interaction

The metal ion extraction percentage of dibenzo-monoaza-crown ethers was determined by UV measurement. The initial absorbance of sodium picrate, potassium picrate, cesium picrate aqueous solutions at 25°C concentration (7x10⁻⁵ M) at 356 nm was 0.96, 1.00, and 0.99, respectively. The alkali ion extraction property of 2, 3 were determined from the decrease in the picrate aqueous solution concentration as calculated. as eq. 1.

Extraction percentage =
$$\frac{A_0 - A}{A_0} \times 100$$
 (eq. 1)

Compound 2 shows approximately 40% whereas compound 3 shows 15% extraction (Figure 4). So, it is important to note that 2, 3 perform as the small macrocyclic host molecules in accepting alkali metal ions.

In order to clarify the interaction between dibenzo-monoaza-crown ethers and metal ions, the organic phase was collected and analyzed by UV-Vis and ¹H-NMR. When the small macrocyclic host molecule(or dibenzo-monoaza-crown ether) absorbs light at different wavelengths in free and complexed states, the peak shift or the new peak generation may suffice for estimation of molecular recognition. In free state, the host molecule absorbs light atnm and nm. After complexation, we observed the peak shift from nm to 284 nm and the new peak at 356 nm that belongs to alkali metal ion (Figure 5). It seems that the interaction between the host molecule and the guest species are occurred. This might be due to the host molecules can form complex with alkali ions. We can also confirmed the interaction between the host molecules and the guest species by using ¹H-NMR spectroscopic measurement. A series of picrate salts (i.e., sodium, potassium, and cesium) were dissolved in the solution of 2 in CDCl₃. Table 1 shows the chemical shift of 2 before and after complexation with Na⁺, K⁺, and Cs⁺. Figure 6 shows ¹H-NMR spectra of **2** before and after potassium ion complexation. The chemical shift of 2 before and after complexation with K⁺ is observed. This indicates that the interaction between 2 and potassium picrate were occurred. The picrate salt peak at 8.82 is also focused to confirm the existence of picrate salt in the solution of 2 in CDCl₃. This implies that the inclusion phenomena were succeeded.

From UV and ¹H-NMR, we declares **2**, **3** perform as the novel supramolecular structured compounds.

Conclusions

The present work showed the [1+1] selective and effective macrocyclization of N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine with tosyl derivatives via the etherification. The studies on alkali metal ions extraction by UV technique suggested that the alkali ions extraction property of dibenzo-monoaza-14-crown-4 based on N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine is higher than dibenzo-monoaza-12-crown-3 based on N,N-bis(2-hydroxy-3,5-dimethylbenzyl)methylamine. The

inclusion phenomena as clarified by UV-Vis and ¹H-NMR suggested that these compounds performed as a host in accepting metal ion guests.

Acknowledgements

S.C. acknowledges financial support from The Thailand Research Fund (grant no. RSA4680025).

References

- 1. Pedersen, C.J. (1967). Cyclic polyethers and their complexes with metal salts. *J. Am. Chem. Soc.*, 89, 7017-7036.
- 2. Breslow, R. and Campbell, P. (1969). J. Am. Chem. Soc., 91, 3085.
- 3. Roundhill, D.M. (1995). Metal complexes of calixarenes. In Karlin, K.D. (Ed.), Progress in inorganic chemistry (Vol. 43, pp. 533-592). Chichester, England; John Wiley.
- Gokel, G.W. (1999). Advances in Supramolecular Chemistry, JAI Press (Vol. 5). Inc.; Stamford, CT.
- 5. Atwood, J.L., and Steed, J.W. (Ed.) (2000). *Supramolecular Chemistry*, Chichester, England; John Wiley, 116.
- 6. Agai, B., Nemeth, V., Bocskei, Z., Simon, K., Bitter, I., and Toke, L. (1996). *Tetrahedron*, 52, 6713.
- 7. Kawakami, T.M., Aoki, R., Morita, K., Tsujioka, H., Fujimori, K., Shibutani, Y., and Shono, T. (2003). *Analytica Chimica Acta*, 480, 291-298.
- 8. Högberg, S.A.G., and Cram, D.J. (1975). *J. Org. Chem.*, Commun., Vol. 40, No.1.
- 9. Tanaka, M., Nakamura, M., Ikeda, T., Ikeda, K., Ando, H., Shibutani, Y., Yajima, S., and Kimura, K. (2001). *J. Org. Chem.*, 66, 7008-7012.
- 10. Zhang, L.J., Lin, H.K., Bu, X.H., Chen, Y.T., Liu, X.L., and Miao, F.M. (1995). *Inorganica Chimica Acta*, 240, 257-262.
- 11. Chirachanchai, S., Phongtamrag, S., and Laobuthee, A. (2003). *Chem. Lett.*, Vol. 32, No. 5, 432-433.
- 12. Laobuthee, A. Ph. D. Dissertation, Chulalongkorn University, Bangkok, Thailand, 2002.
- 13. Kim, H.D., and Ishida, H. (2002). J. Phy. Chem. A., 106, 3271.

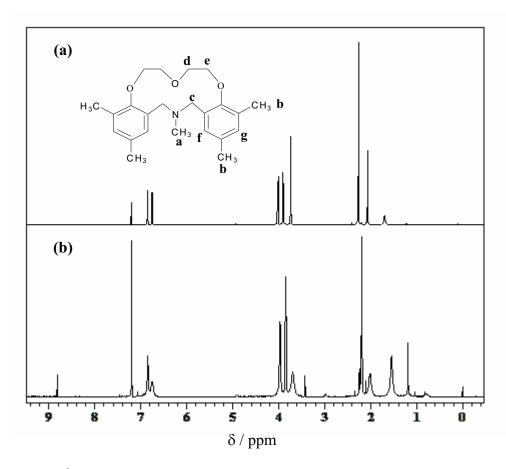


Figure 2. ¹H-NMR spectra of (a) 2, and (b) complex of 2 and potassium picrate

Synthesis, characterization, and single crystal of the novel dibenzomonoaza-17-crown-5 based on N,N-bis(2-hydroxy-3,5-dimethylbenzyl) methylamine

Thitioporn Rungsimanon, Apirat Laobuthee, Suttinun Phongtamrug, Kohji Tashiro, and Suwabun 5 Chirachanchai*

Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT] Publication data [DO NOT ALTER/DELETE THIS TEXT] DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

The etherification between N,N-bis(2-hydroxy-3,5-dimethyl) 10 methylamine and ditosylated triethylene glycol give the single crystal exhibiting the insertion of methyl group at aza position into the cavity of the ring of dibenzo-monoaza-17-crown-5 with the high yield without column chromatography purification.

For the past decades, macrocyclic compounds, e.g., calixarenes¹, 15 crown ethers², and their analogous compounds have been received much attention for their inclusion properties. However, the synthesis of macrocyclic compounds related to the multi-steps reaction and complicated condition such as dilute condition³, metal template⁴, and column chromatography purification. For example, 20 the synthesis of cage-functionalized diaza(17-crown-5) lariat crown ethers were obtained from the multi-steps reaction that related to catalytic hydrogenolysis.⁵

This, we have focused on the molecular design to obtain the high yield macrocyclic compound from the simple reaction. In previous, 25 we succeeded to propose the synthesis route without template effect for [2+2] difunctional 28-membered macrocyclic ether based on benzoxazine dimers. ⁶ These compounds were obtained from the reaction between benzoxazine dimers and ditosylated diethylene glycol under basic condition.

According to the successful in the past about the synthesis route for the high yield macrocyclic ethers via the simple condition⁶, at present, we aim to synthesize the novel macrocyclic ether from the one pot reaction between benzoxazine dimer and ditosylated triethylene glycol. Moreover, we demonstrate the single crystal 35 structure of the macrocyclic ether.

A white powder of N,N-bis(2-hydroxy-3,5-dimethylbenzyl) methylamine⁷, 1, (0.299g, 1 mmol) and sodium hydroxide (0.084g, 2.1 mmol) were mixed in acetonitrile (150 mL), followed by adding ditosylate triethylene glycol (0.458g, 1 mmol) 40 in acetronitrile (50 mL) dropwisely and refluxed for 3 days (Scheme 1). The solution obtained was washed 5 times with

^a The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phya Thai, Bangkok 10330, Thailand. Fax: 66 2215 4459; Tel: 66 2218 4134; E-mail: csuwabun@chula.ac.th

water and dried with sodium sulfate anhydrous. The solvent was evaporated out. The product was collected and recrystallized with isopropanol to obtain white crystal of 2.

When the reaction between 1 and ditosylated triethylene glycol were proceeded, the product obtained should be possible the one of all compounds as shown in Scheme 1. To answer the question about what type of product we obtained, the characterizations were done as follows.

Compound 1 gave the peaks at 3399 cm⁻¹ (intermolecular Hbond), 3200-3600 cm⁻¹ (intramolecular H- bond), 1484 cm⁻¹ (trisubstituted benzene), 1214 cm⁻¹ and 1201 cm⁻¹(C-N-C stretching). After 1 reacted with ditosylated triethylene glycol, the broad peak of OH group was disappeared together with a peak of Ar-O-CH₃ was occurred. This implies the compound 1 should be changed to the compound 2. Besides, the peak shifts (1484 to 1480 and 1214 to 1209 cm⁻¹) that belong to the vibrational mode of trisubstituted benzene and C-N stretching suggested the change in the structure. From these data, we 60 conclude the reaction is proceeded completely. However, there are many possibilities of the product obtained, 2a-2d.

The ¹H NMR spectra of 2 show the characteristic peaks of 2b and 2c at the range of chemical shift from 2.719 to 7.124. This implies that the reaction between N,N-bis(2-hydroxy-3,5-65 dimethyl benzyl)methylamine and ditosylated triethylene glycol should give only macrocyclic compound. Nevertheless, there are two possibilities of the product obtained, 2b or 2c.

The matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF MS) shows a single peak at $_{70}$ m/z = 414.26 that equalizes to the molecular weight of the [1+1] type of macrocyclic compound. So, we conclude that our compound is [1+1] macrocyclic compound that is called dibenzomonoaza-17-crown-5, 2b.

The colorless crystal of 2b after recrystallization with 75 isopropanol was clarified the structure by single crystal analysis. The results give us the orthorhombic space group Pna2₁ belonging to the dibenzo-monoaza-17-crown-5. The R₁ value is 2.9% that suggests the accuracy of [1+1] symmetrical macrocyclic compound. Surprisingly, the TEXSAN software 80 demonstrates an ORTEP view (Fig. 1) declaring the insertion of methyl group at aza group of macrocyclic ring inside the cavity of the ring. This phenomenon shows clearly different structure from tradition macrocyclic crown ethers that have alkyl group stay on the outside of the cavity of the ring.8 According to the 85 single crystal structure, it brings us to the question about its inclusion properties with metal ions. We imply that this structure

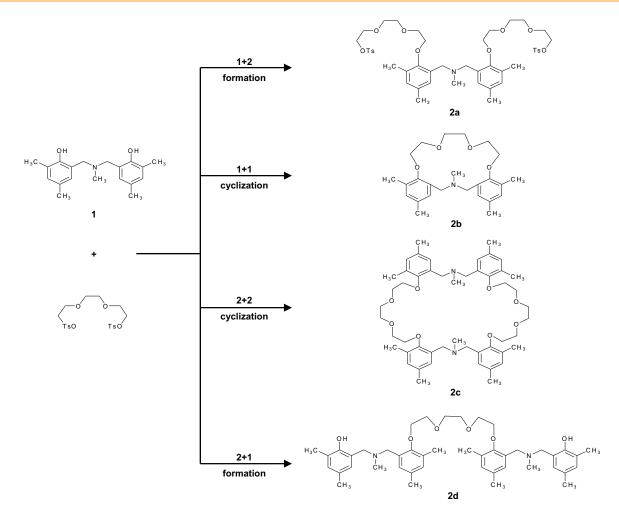
^b Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Jatujuk, Bangkok 10900, Thailand. Fax: 66 2942 8555; Tel: 66 2942 8555; E-mail: fengapl@ku.ac.th

^c Department of Future Industry-Oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan. Fax: 815 2809 1721; Tel: 815 2809 1790; E-mail: ktashiro@toyota-ti.ac.jp

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See http://dx.doi.org/10.1039/b000000x/

maybe obstuct the entrance of the metal ion guest species into the macrocyclic ring of **2b** host molecule. The alkaline metal ions extraction ability of **2b**, the interaction of complexation, and the single crystal of host-guest molecules are now in progress.

In conclusion, we have developed the novel supramolecule 2b by combining N,N-bis(2-hydroxy-3,5-dimethyl)methylamine 1 and ditosylated triethylene glycol exhibiting high yield without column chromatography purification. The single crystal of 2b shows the insertion of methyl group at aza group of macrocyclic ring inside the cavity of the ring. We believe that this structure might affect to its metal ion extraction abilities. At present, we are studying its inclusion properties together with the molecular design to produce the novel supramolecules for using in many applications in the future.


Acknowledgements. This work was carried out under the financial support from Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Ph.D.Grant No. PHD/0068/2548). The authors acknowledge the Ratchadaphisek Somphot Endowment, Chulalongkorn University for the partially grant. The appreciation is extended to Dr. Buncha Pulpoka, Department of Chemistry, Chulalongkorn University, Thailand for NMR measurements and fruitful discussion.

110 Notes and references

- † The characterization for **2** (0.331 g, 80%): FTIR (KBr, cm⁻¹): 1489 (s, trisubstituted benzene), 1209 (vs, C-N stretching), 1112 (vs, Ar-O-CH₂);
 ¹H NMR (400 MHz, CDCl₃): δ 2.179 (s, 3H, N-CH₃), 2.245 (s, 12H, Ar-CH₃), 3.714 (s, 4H, C-CH₂-N), 3.801-3.833 (t, 8H, C-CH₂-O-CH₂), 3.970 (t, 4H, O-CH₂-CH₂), 6.848 (s, 2H, Ar-H), 7.124 (s, 2H, Ar-H); MALDITOF MS: m/z 414.26 (M+H⁺).
- ‡Crystal data for **2**: $C_{25}H_{35}NO_4$, orthorhombic, a = 18.0895(4), b = 8.9394(2), c = 14.4691(3) Å, V = 2339.79(9) ų, space group $Pna2_1$ (no.33), Z = 4, $\mu(M_o\text{-}K_\infty)$ = $0.078~\text{mm}^{\text{-}1}$, 53806 reflections measured, 5327 unique (R_{int} = 0.019) which were used in all calculations. The final R_1 = 0.029 and R_w = 0.080.
 - D. M. Roundhill, Metal Complexes of Calixarene, K.D. Karlin, Ed., Progress in Inorganic Chemistry, John Wiley, Chichester, England 1995, 43, 533.
 - 2 C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017.
 - 3 B. Dietrich, Encyclopedia of Supramolecular Chemistry, J.L. Atwood and J.W. Steed, Ed., Marcel Dekker, New York, 2004, 1, 830.
- 4 B. Dietrich, P. Viout and J.-M. Lehn, *Macrocyclic Chemistry*, Aspects of Organic and Inorganic Supramolecular Chemistry, VCH, New York, 1992, p.4, 65-71.
 - 5 A. P. Marchand and H.-S. Chong, *Tetrahedron*, 1999, **55**, 9697.
- 6 S. Chirachanchai, S. Phongtamrug and A. Laobuthee, *Chem. Lett.*, 2003, 32, 432.
- 7 A. Laobuthee, H. Ishida and S. Chirachanchai, J. Incl. Phenom. Macro., 2003, 47, 179; S. Phongtamrug, B. Pulpoka and S. Chirachanchai, Supra. Chem., 2004, 16, 269; S. Phongtamrug, M. Miyata and S. Chirachanchai, Chem. Lett., 2005, 34, 634; T. Rungsimanon, A. Laobuthee and S. Chirachanchai, Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), 2006, 47, 561.
 - 8 R. D. Roger, R. F. Henry and A. N. Rollins, J. Inclusion. Phenom. Mol. Recognit. Chem., 1992, 13, 219

145

Double column figure/scheme (below)

Scheme 1

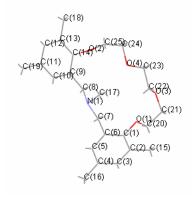


Fig. 1 ORTEP view of 2b with the atomic numbering scheme.