

รายงานวิจัยฉบับสมบูรณ์

โครงการ การวิเคราะห์เชิงทฤษฎีและทดลองของกระบวนการ

การทำละลายในวัสดุพรุนที่ไม่อิ่มตัว

โดย รองศาสตราจารย์ ดร. ผดุงศักดิ์ รัตนเดโช

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การวิเคราะห์เชิงทฤษฎีและทดลองของกระบวนการ การทำละลายในวัสดุพรุนที่ไม่อิ่มตัว

โดยี รองคาลตราจารย์ ดร. ผดุงศักดิ์ รัตนเดโช

รายงานฉบับสมบูรณ์

โครงการ

การวิเคราะห์เชิงทฤษฎีและทดลองของกระบวนการการทำละลายในวัสดุพรุนไม่อิ่มตัว

โดย รองศาสตราจารย์ ดร. ผดุงศักดิ์ รัตนเดโช ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์

สนับสนุนโดยสำนักงานีกองทุนสนับสนุนการวิจัย

ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป

การวิเคราะห์เชิงทฤษฎีและทดลองของกระบวนการทำละลายในวัสดุพรุน (Theoretical and Experimental Analysis of Thawing Process in Porous Media)

บทคัดย่อ

ปัญหาการถ่ายเทความร้อนที่เกี่ยวข้องกับการละลายหรือแข็งตัวถือว่าเป็นส่วนหนึ่งของปัญหาการ
เปลี่ยนสถานะหรือปัญหาของการเคลื่อนตัวของขอบเขต (moving boundary problem) ปัญหา
ดังกล่าวนี้มีความสำคัญอย่างมากและประยุกต์ใช้ในงานทางวิทยาศาสตร์และวิศวกรรมศาสตร์ใน
แขนงต่างๆ เช่นการแข็งตัวและการละลายตัวของดิน การก่อตัวของน้ำแข็ง การก่อตัวของผลึก การ
ละลายของวัสดุเปลี่ยนเฟสที่ผิวอากาศยาน การหล่อขึ้นรูปโลหะ กระบวนการทางอาหาร และกรณี
อื่นๆอีกมากมาย โดยปกติการหาผลเฉลยของปัญหาการเคลื่อนตัวของขอบเขตขณะมีการเปลี่ยน
สถานะได้รับความสนใจเป็นพิเศษอันเนื่องจากความท้าทายในการการหาผลเฉลยในสิ่งที่ขับข้อน
และยุ่งยากที่คาบเกี่ยวกับปัญหาความไม่เชิงเส้นที่ตำแหน่งขอบเขตที่เคลื่อนตัวไปกับเวลาซึ่งเราไม่
ทราบตำแหน่งของมันมาดั้งแต่เดิม ในอดีตที่ผ่านมาได้มีเทคนิคการคำนวณเชิงตัวเลขแบบ
รรรมคามาหลายๆวิธีสำหรับแก้ปัญหานี้ ตัวอย่างเช่นวิธี Enthalpy, Apparent heat capacity,
Isotherm migration และวิธี coordinate transformation ซึ่งวิธีเหล่านี้ก็ได้มีนักวิจัยหลายท่าน
พยายามนำมาใช้ในการแก้ปัญหาที่ยุ่งยากอย่างปัญหาของการเกลื่อนตัวของขอบเขต

ในงานวิจัยนี้ได้นำเสนอเทคนิคการคำนวณเชิงตัวเลขแนวใหม่ของปัญหาการทำละลาย
และการทำแข็งที่มีเงื่อนไขขอบเขตต่างกันในกรณีต่างๆ โดยมุ่งเน้นความแม่นยำของผลเฉลยเป็น
สำคัญประกอบกับการสร้างระบบกริดที่มีประสิทธิภาพ สำหรับกรณีศึกษาต่างๆประกอบไปด้วย

(1) Simulation of Melting Process Using a Combined Transfinite Interpolation and PDE

Methods

- (2) Simulation of Melting of Ice in a Porous Media under Multiple Constant Temperature

 Heat Sources Using a Combined Transfinite Interpolation and PDE Methods
- (3) Simulation of Freezing of Water-Saturated Porous Media in a Rectangular Cavity under Multiple Heat Sources with Different Temperature Using a Combined Transfinite Interpolation and PDE Methods"
- (4) Simulation of Freezing Process Using a Combined Transfinite Interpolation and PDE Methods

สำหรับเบื้อหลังแนวคิดที่พัฒนาเทคนิคการคำนวณเชิงตัวเลขแนวใหม่นี้ประกอบไปด้วยขั้นตอน ต่อไปนี้

- (1) สร้างระบบกริดเริ่มต้นด้วยวิธีเชิงพืชคณิตที่อยู่บนพื้นฐานของวิธี Transfinite
 Interpolation
- - สามารถควบคุมการเกิดซ้อนทับและตำแหน่งระยะของกริดบนผิวหน้าภายใน
 โดเมน รวมถึงบริเวณขอบของโดเมนและที่ตำแหน่งขอบเขตที่เคลื่อนตัว
 - สามารถที่จะสร้างระบบกริดที่เกิดความเสถียรภาพและ smooth และ ปราศจากการเกิด inflection points ในระบบพิกัดของโดเมน

ผลที่ได้จากกรณีศึกษาต่างๆ แสดงถึงความสำเร็จที่ได้จากเทคนิคการคำนวณเชิงตัวเลขแนวใหม่ที่ ได้นำเสนอ โดยแบบจำลองที่นำเสนอเป็นกรณีการทำละลายและการทำแข็งในระนาบ 2 มิติ และ ยืนยันความถูกต้องของผลเฉลยที่ได้จากการคำนวณ โดยการตรวจสอบจากผลจากการทดลองจริง สุดท้ายของงานวิจัยนี้ได้ศึกษาและวิเคราะห์กระบวนการทำละลายในวัสดุพรุนชนิดไม่อิ่มตัว

Abstract

Transient heat transfer problems involving melting or solidification are generally referred to as "phase change" or "moving boundary" problems. They are an important topics which spans a broad spectrum of scientific and engineering disciplines such as the freezing or thawing of soil, ice formation, crystal growth, aerodynamic ablation, casting of metal, food processing and numerous others. Generally, the solution of moving boundary problem with phase transition has been of special interest due to the inherent difficulties associated with the nonlinearity of the interface conditions and the unknown locations of the arbitrary moving boundaries. In the past, a variety of conventional numerical techniques have been developed for solving these problems, including the enthalpy, apparent heat capacity, isotherm migration, and coordinate transformation methods. These methods have been introduced by researchers mainly to overcome the difficulties in handling moving boundaries.

The present paper introduces the novel numerical approaches for thawing and freezing problems which extend the range of initial condition and boundary conditions in

methee2547

··• o · ·

many cases with a greater degree of boundary complexity and offers the highest overall accuracies and smooth grid point distribution, including;

- (1) Simulation of Melting Process Using a Combined Transfinite Interpolation and PDE Methods
- (2) Simulation of Melting of Ice in a Porous Media under Multiple Constant

 Temperature Heat Sources Using a Combined Transfinite Interpolation and PDE

 Methods
- (3) Simulation of Freezing of Water-Saturated Porous Media in a Rectangular Cavity under Multiple Heat Sources with Different Temperature Using a Combined Transfinite Interpolation and PDE Methods"
- (5) Simulation of Freezing Process Using a Combined Transfinite Interpolation and PDE Methods

The basic idea behind this work is follows:

- (1) preliminary grids are first generated by an algebraic method, based on a transfinite interpolation method,
- (2) after that, it is subsequent refinement using a PDE mapping (parabolic grid generation) method. This technique offers advantages over purely algebraic methods:
 - good control over the skewness and spacing of the derived grid on surface interiors, while simultaneously allowing complete control over the grid spacing (node distribution) on surface edges as well as moving boundary

methee2547

an ability to produce unique, stable, and smooth grid distributions free of interior maxima or minima (inflection points) in body-fitted coordinates

A' preliminary case study indicates successful implementation of the novel numerical technique. A two-dimensional thawing and freezing model is validated against available analytical solution and experimental results. Finally, the theoretical and experimental analysis of thawing process in unsaturated porous media is also performed.

Keywords: Thawing, Freezing, Porous Media, Transfinite Interpolation, Moving Boundary

Executive Summary

1. ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

ในอดีตที่ผ่านมา รายงานการวิจัยในการศึกษาเกี่ยวกับการถ่ายเทความร้อนและมวลสารในวัสดุพรุน (porous media) ในระดับนานาชาติยังจำกัดอยู่มาก โดยเฉพาะในภาคทฤษฎีในโครงสร้างระดับ จุลภาค (microscopic level) ด้วยเหตุผลของความซับซ้อนในปรากฏการณ์ อันเนื่องมาจากการ เปลี่ยนสถานะของสสารหลายชนิด คุณสมบัติด้านความร้อนประสิทธิผล (effective thermal property) ของวัสดุพรุน คุณสมบัติด้านชลศาสตร์ (hydrodynamic property) รวมถึงปัญหาของการ เคลื่อนตัวของขอบเขต (moving boundary problem) ซึ่งที่ผ่านมายังไม่มีการศึกษาอย่างเป็นระบบ นอกจากนี้ศาสตร์ดังกล่าวนี้ต้องอาศัยองค์ความรู้ในหลายสาขาเข้าด้วยกัน กล่าวคือ ความรู้ทางด้าน การถ่ายเทความร้อนและมวลสาร, กลศาสตร์ของไหลในระบบที่มีความซับซ้อน และวัสดุศาสตร์ รวมจนถึงระเบียบวิธีเชิงคำนวณทางดัวเลขชั้นสูง เพื่อหาคำตอบของปัญหาที่มีความเป็นไม่เชิงเส้น สูง (strongly non-linear problem) และการประดิษฐ์โปรแกรมคอมพิวเตอร์ที่มีความแม่นยำและมี สมรรถนะสูง

ด้วยเหตุดังกล่าวนี้ทำให้การวิจัยในสาขาดังกล่าวข้างต้นนี้ยังไม่แพร่หลายในระดับ
นานาชาติและประเทศไทย ในความเป็นจริงแล้ว ประเทศที่พัฒนาแล้วจะให้ความสนใจในการวิจัย
และพัฒนาในสาขานี้เป็นอันมาก การวิจัยในสาขาการถ่ายเทความร้อนและมวลสารในวัสดุพรุนมี
ประโยชน์อย่างสูงในศาสตร์วิศวกรรมทุกสาขา ทั้งนี้เพราะวัสดุส่วนใหญ่ที่ใช้งานในทางวิศวกรรม
จัดเป็นวัสดุพรุน กล่าวคือตัววัสดุประกอบด้วย 3 สถานะ คือ สถานะของแข็งหรือ matrix และ
ของเหลว และก๊าชที่อยู่ในช่องว่างหรือรูพรุน (ในกรณีวัสดุพรุนไม่อิ่มตัว)

เป็นที่ทราบกันดีว่าในทางวิศวกรรมแล้ววัสดุส่วนใหญ่จะเป็นวัสดุพรุน ตัวอย่างวัสดุพรุนที่ ใช้งานในทาวิศวกรรม เช่น ดินและคอนกรีตในงานวิศวกรรมปฐพี, Ceramic ในงานวิศวกรรมโลหะ, catalyst ในงานวิศวกรรมเคมี, ฉนวนความร้อนในงานวิศวกรรมเครื่องกลและเคมี, เนื้อเยื่อต่างๆ ผิว หรือ membrane ในงานวิศวกรรมชีวภาพและการแพทย์ รวมจนถึงอาหารและผลิตภัณฑ์ ทางการเกษตรในงานวิศวกรรมการเกษตร จึงพูดได้ว่าความรู้ทางด้านการถ่ายเทความร้อนและ มวลสารในวัสดุพรุนมีความสำคัญต่องานวิศวกรรมทุกสาขา อย่างไรก็ตามประเทศไทยก็ยังขาด แคลนนักวิจัยในสาขาการถ่ายเทความร้อนและมวลสารในวัสดุพรุนชนิดอิ๋มตัวและชนิดไม่อิ๋มตัว รวมถึง เทคโนโลยี Porous Media ในด้านอื่นๆ

ในงานวิจัย ครั้งนี้ได้เน้นศึกษาทั้งในรูปแบบการวิเคราะห์เชิงทฤษฏีและทดลองของปัญหาของการเคลื่อนตัวของขอบเขต (moving boundary problem) นั่นคือ กระบวนการทำละลาย (Thawing process) และกระบวนทำแข็ง (Freezing process) สำหรับวัสดุพรุนในโครงสร้างระดับ จุลภาค แบบจำลองทางคณิตศาสตร์และNumerical Schemes (และ Computer code) รูปแบบใหม่ กล่าวคือ ใช้เทคนิควิธี Transfinite Interpolation ร่วมกับวิธี PDE Mapping มาแก้ปัญหาดังกล่าว เทคนิควิธีที่พัฒนาขึ้นจากการโครงการวิจัยครั้งนี้จะเป็นประโยชน์อย่างสูงในการทำนาย ปรากฏการณ์การถ่ายเทความร้อนและและมวลสารในวัสดุพรุนในลักษณะต่างๆ ทำให้สามารถ นำไปใช้ช่วยในการปรับปรุงคุณภาพผลิตภัณฑ์จากภาคการผลิต และช่วยในการการออกแบบสร้าง อุปกรณ์ในทางปฏิบัติ

2. วัตถุประสงค์ของโครงการ

ในเชิงวิชาการ

เสนอเทคนิควิธี Transfinite Interpolation ร่วมกับวิธี PDE Mapping มาแก้ปัญหาของการเคลื่อนตัว ของขอบเขต (moving boundary problem) ซึ่งสามารถทำความเข้าใจในปรากฏการณ์การถ่ายเท ความร้อนของของกระบวนการทำละลายและกระบวนการทำแข็งในวัสดุพรุนในระดับจุลภาค ซึ่งเป็น ปรากฏการณ์ที่สำคัญในงานทางวิศวกรรม และสามารนำองค์ความรู้ที่ได้นี้ไปประยุกด์ใช้งานในทาง ปฏิบัติหลายสาขา อาทิเช่น การวิเคราะห์เกี่ยวกับการถ่ายความร้อนเละมวลสารในกระบวนการ

ถนอมอาหาร การวิเคราะห์การถ่ายเทความร้อนและมวลสารใน Packed Bed ในงานวิศวกรรมเคมี รวมถึงเทคโนโลยีการการเก็บรักษาเนื้อเยื่อในงานด้านการแพทย์ องค์ความรู้ที่ได้โดยเฉพาะใน ภาคทฤษฎี รวมถึงแบบจำลองทางคณิตศาสตร์กับโปรแกรมคำนวณที่ประดิษฐ์ขึ้นในโครงการวิจัย ครั้งนี้จะเป็นส่วนหนึ่งของโครงการวิจัยที่ครบวงจรในศาสตร์ด้านการถ่ายเทความร้อนและมวลสาร ในวัสดุพรุนที่ไม่อิ่มดัว ที่ผู้วิจัยมุ่งหวังให้เกิดขึ้นภายในประเทศไทย ตัวอย่างหัวข้อวิจัยที่ผู้วิจัยกำลัง ้ดำเนินการอยู่ทั้งที่อยู่ภายใต้ทุนสนับสนุนจากองค์กรภายนอก และงานวิจัยอิสระ เช่น จลนศาสตร์ ของกระบวนการอบแห้งในวัสดุที่มีหลายชั้น (Drying of multi-layered sample),กระบวนการเย็น กระบวนการอบแห้งด้วยพลังงานจากคลื่นไมโครเวฟร่วมกับสุญญากาศ เยือก (combined microwave and vacuum drying) รวมถึงปัญหาการไหลที่มีหลายสถานะ (multi-phase และหัวข้ออื่นๆ ปัจจุบันผู้วิจัยได้สร้างสร้างห้องปฏิบัติการที่ทันสมัยภายใต้งบ สนับสนุนจากคณะวิศวกรรมสาสตร์ มหาวิทยาลัยธรรมศาสตร์และองค์กร JICA จากประเทศญี่ปุ่น ซึ่งโครงการวิจัยนี้ จะเป็นประโยชน์อย่างสูงโปรแกรมการพัฒนาการเรียนการสอน ปริญญาตรี โท และเอกต่อไปในอนาคต รวมจนถึงการถ่ายทอดเทคโนโลยีสู่ภาคอุตสาหกรรม ในเชิงนโยบาย

สร้างองค์ความรู้ใหม่ที่เป็นพื้นฐานต่อการพัฒนาประเทศ และเพื่อขยายผลงานวิจัยของกลุ่ม
นักวิจัยไทยให้ครอบคลุมถึงสาขาอื่น ๆที่เกี่ยวข้องกับการพัฒนาประเทศและเพื่อเสริมสร้าง
สมรรถนะขีดความสามารถในการแข่งขัน และสร้างเทคโนโลยีเป็นของตัวเองในอนาคต
ยกระดับงานวิจัยไทยทางด้านเทคโนโลยีวัสดุพรุน (Porous media) ให้เข้าสู่มาตรฐานสากล
ผลของงานวิจัยที่ได้ทำขึ้นจะนำไปลงดีพิมพ์ในวารสารการวิจัยในระดับนานาชาติที่มี
Impact Factor สูง อาทิ เช่น ASME J. Heat Transfer, J. Chemical Eng. Sci., etc. ซึ่ง
เป็นการเผยแพร่ชื่อเสียงให้ประเทศในระดับนานาชาติและยกระดับมาตรฐานงานวิจัยของ
ประเทศให้เข้าสู่ระดับสากล

- สร้างเสริมความร่วมมือและความสัมพันธ์กับองค์กรวิจัยที่มีคุณภาพสูงในต่างประเทศ ซึ่งจะ เป็นประโยชน์อย่างสูงในการแลกเปลี่ยนข้อมูลการวิจัย และเครื่องมือวิจัยและการเชื่อม ความสัมพันธ์ระหว่างประเทศไทยกับประทศนั้น ๆในโครงการอื่น ๆ
- เสริมสร้างสมรรถนะการแข่งขันของประเทศในเชิงเทคโนโลยี โดยผู้วิจัยมีเป้าหมายที่จะทำ การวิจัยเชิงลึกที่ครอบคลุมในต้านต่างๆดังต่อไปนี้ (หัวข้องานวิจัยครั้งนี้เป็นส่วนหนึ่งของ

เทคโนโลยีเป้าหมาย:

- เทคโนโลยีอาหารและวิศวกรรมเคมี ; กระบวนการถนอมอาหารแบบพิเศษและ
- เทคโนโลยีกระบวนการอบแห้งชั้นสูงสำหรับผลิตภัณฑ์ทางการเกษตร
- เทคโนโลยีกระบวนการอบแห้งสาหรับไม้เศรษฐกิจชนิดต่างๆ เช่นไม้ยางเป็นดัน และ กระบวนการ vulcanization แผ่นยางพารา
- กระบวนการ Sintering ในงานวัสดุ
- เทคโนโลยีพลังงาน ; Energy storage , ฉนวนความร้อน,
- วัสดุที่ใช้ประกอบเป็นโครงสร้างอาคาร เช่น ฉนวน ผนังอาคาร และวัสดุคอนกรีต เป็นดัน
- วิศวกรรมปฐพี ; การซึมของน้ำในชั้นดินและหิน
- วิศวีกรรมเนื้อเยื่อในด้านการแพทย์
- เทคโนโลยีเมมเบรน

<u>กล่มอตสาหกรรมเป้าหมาย:</u>

- อุดสาหกรรมการแปรรูปอาหาร
- อุตสาหกรรมอบแห้งในผลิตภัณฑ์ทางการเกษตร
- อุตสาหกรรมการแปรรูปไม้

ระเบียบวิธีวิจัย

งานวิจัยครั้งนี้เป็นงานวิจัยเชิงลึกและเป็นพื้นฐาน (basic research) โดยเน้นศึกษาทั้งเชิงทฤษฏีโดย อาศัยระเบียบวิธีการคำนวณเชิงตัวเลขชั้นสูง และการทดลอง โดยเริ่มต้นจากการพัฒนาแบบจำลอง ทางคณิตศาสตร์และเทคนิคการคำนวณรูปแบใหม่ (วิธี Transfinite Interpolation ร่วมกับวิธี PDE ที่สามารถครื่อบคลุมและอธิบายปรากัฏการณ์ในปัญหาของของกระบวนการทำละลาย Mapping) และกระบวนการทำแข็งในวัสดุพรุน และยืนยันความถูกต้องโดยตรวจสอบจากผลจากการทดลอง จริง งานวิจัยนี้จะทำการศึกษาแหล่งความร้อนที่ป้อนที่ขอบเขตในลักษณะต่างๆ ที่มีผลต่ออัตราการ ละลายตัวของน้ำแข็งและรูปร่างและลักษณะการเคลื่อนตัวของขอบเขตผิวละลาย (Thawing front) และขอบเขตผิวแช่แข็ง (Freezing front) ความรู้ที่ได้ก่อให้เกิดความเข้าใจถึงองค์ความรู้พื้นฐานใน กระบวนการถ่ายเทความร้อนและมวลสารในวัสดุพรุนชนิดต่างๆของกระบวนการทำละลายและ ในส่วนของแบบจำลองทางคณิตศาสตร์ที่พัฒนาขึ้นจากการวิจัยครั้งนี้จะเป็น กระบวนการทำแข็ง ประโยชน์อย่างสูงในการทำนายปรากฏการณ์การถ่ายเทความร้อนและมวลสารในวัสดุพรุน . รวมถึง ทำให้สามารถลดค่าใช้จ่ายในการออกแบบสร้าง ปัญหาที่มีลักษณะการเคลื่อนด้วของขอบเขต นอกจากนี้ความรู้และความเข้าใจจากการศึกษาครั้งนี้สามารถ อุปกรณ์ทดลองจริงในทางปฏิบัติ นำไปใช้ประยุกต์ออกแบบและสร้างอุปกรณ์ที่เกี่ยวข้องให้มีประสิทธิภาพสูง

เนื้อหา

งานวิจัยครั้งนี้ในภาพรวมจะเน้นศึกษาทั้งเชิงทฤษฎีโดยอาศัยระเบียบวิธีการคำนวณเชิงตัวเลข ชั้นสง และการทดลองของกระบวนการทำละลายและทำแข็งในเพคเบดวัสดุพรุน องค์ประกอบของอนุภาคของแข็ง (glass beds) น้ำแข็ง หรือน้ำโพรง จะมีการให้โหลดความร้อนที่ ้ผิวด้านบนของระนาบของเพคเบดในลักษณะต่างๆโดยที่ผิวด้านอื่นๆทำการหุ้มฉีนวนไว้ โดยในการ วิเคราะห์จะถือว่าองค์ประกอบของทุกสถานะในเพคเบดมีความสมดุลย์ทางเทอร์โมไดนามิคส์ใน ทุกๆจุดที่พิจารณา และสมมุติให้ค่า porosity กระจายเท่ากันในทุกๆจุด การขยายตัวหรือการหดตัว ในการศึกษาโดยเริ่มต้นจากการพัฒนาแบบจำลองทาง ของเพคเบดจะไม่นำมาพิจารณา คณิตศาสตร์และเทคนิคการคำนวณรูปแบบใหม่ (วิธี Transfinite Interpolation ร่วมกับวิธี PDE ที่สามารถครอบคลุมและอธิบายปรากฏการณ์ในปัญหาของของกระบวนการทำละลาย Mapping) และกระบวนการทำแข็งในวัสดูพรุน และยืนยันความถูกต้องโดยตรวจสอบจากผลจากการทดลอง จริง งานวิจัยนี้จะทำการศึกษาแหล่งความร้อนที่ป้อนที่ขอบเขตในลักษณะต่างๆ ที่มีผลต่ออัตราการ ละลายตัวของน้ำแข็งและรูปร่างและลักษณะการเคลื่อนตัวของขอบเขตผิวละลาย (Thawing front) และขอบเขตผิวแช่แข็ง (Freezing front) ความรู้ที่ได้ก่อให้เกิดความเข้าใจถึงองค์ความรู้พื้นฐานใน กระบวนการถ่ายเทความร้อนและมวลสารในวัสดุพรุนชนิดต่างๆของกระบวนการทำละลายและ กระบวนการทำแข็ง

สำหรับการวิเคราะห์กระบวนการทำละลายในวัสดุพรุนชนิดไม่อิ่มนั้น ตัวกลไกที่สำคัญของ
การเคลื่อนย้ายมวลสารที่เป็นของเหลวหรือน้ำอยู่ภายใต้อิทธิพลของแรงตันแคปปิลารี่ (capillary
force) และสมการหลักที่ใช้คำนวณลักซ์การเคลื่อนตัวของน้ำและก๊าซในวัสดุพรุนเรียกว่าสมการดาร์
ซึ่ (Darcy's equation) ซึ่งสมการเหล่านี้ derive มาจากหลักการของ volume averaging technique
โดยเริ่มต้นจากการพัฒนาแบบจำลองทางคณิตศาสตร์ ที่สามารถครอบคลุมและอธิบาย
ปรากฏการณ์ในปัญหาของของกระบวนการทำละลายในวัสดุพรุนที่ไม่อิ่มตัวในระบบที่พิจารณา และ

ยืนยันความถูกต้องโดยตรวจสอบจากผลจากการทดลองจริง งานวิจัยนี้จะทำการศึกษาอิทธิพล ของฟลักซ์ความร้อนที่ป้อน ดีกรีความอิ่มตัวเริ่มต้น (initial saturation) ขนาดของอนุภาค (particle size) ที่มีผลต่ออัตราการละลายตัวของน้ำแข็งและรูปร่างและลักษณะการเคลื่อนตัวของขอบเขตผิว ละลาย

็กล่าวโดยสรุปเนื้อหาของโครงการวิจัยสามารถแบ่งออกเป็น 7 เรื่องย่อย ๆดังข้างล่างนี้ → 🦈 – -โดย 4 เรื่องแรก เป็นพัฒนาแบบจำลองทางคณิตศาสตร์และเทคนิคการคำนวณรูปแบบใหม่ (วิธี Transfinite Interpolation ร่วมกับวิธี PDE Mapping) โดยอาศัยแนวคิดที่สำคัญคือสร้างอัลกอริทึมที่ สามารถสร้างกริดเริ่มต้นที่อยู่บนพื้นฐานของ วิธี Transfinite Interpolation แล้วตามด้วยวิธี PDE Mapping เพื่อเพิ่มคุณภาพของระบบกริดขณะมีการเคลื่อนตัวตามขอบเขตผิวละลาย อัลกอริทึมที่ ประดิษฐ์ขึ้นมานี้มีสามารถอธิบายปรากฏการณ์ในปัญหาของของกระบวนการทำละลายและ กระบวนการทำแข็งในวัสดุพรุนได้อย่างถูกต้องและแม่นยำ และยืนยันความถูกต้องโดยตรวจสอบ งานวิจัยนี้จะทำการศึกษาถึงอิทธิพลของแหล่งความร้อนที่ป้อน จากผลจากการทดลองจริง (Supplied heat source) ที่ขอบเขตในลักษณะต่างๆ เช่นกรณี Single heat source (เรื่องที่ 1 และ 4) กรณี Multiple heat source with constant temperature (เรื่องที่ 2) และกรณี Multiple heat source with different temperature (เรื่องที่ 3) ที่มีผลด่ออัตราการละลายดัวของน้ำแข็งและรูปร่าง ้และลักษณะการเคลื่อนตัวของขอบเขดผิวละลาย (Thawing front) และขอบเขตผิวแช่แข็ง (Freezing front) ผลงานวิจัยใน 4 เรื่องนี้ถือเป็นต้นแบบที่สำคัญในรายงานวิจัยในระดับ นานาชาติสำหรับปัญหาการเคลื่อนตัวของขอบเขตขณะมีการเปลี่ยนสถานะ รวมถึงศาสตร์ ของการคำนวณเชิงตัวเลขรูปแบบใหม่สำหรับปัญหาการเปลี่ยนสถานะ

สำหรับการวิเคราะห์กระบวนการทำละลายในวัสดุพรุนชนิดไม่อื่มนั้น (เรื่องที่ 5) ตัวกลไกที่ สำคัญของการเคลื่อนย้ายมวลสารที่เป็นของเหลวหรือน้ำอยู่ภายใต้อิทธิพลของแรงดันแคปปิลารี่ (capillary force) โดยเริ่มต้นจากการพัฒนาแบบจำลองทางคณิตศาสตร์ ที่สามารถครอบคลุมและ

methee2547

อธิบายปรากฏการณ์ในปัญหาของของกระบวนการทำละลายในวัสดุพรุนที่ไม่อิ่มดัวในระบบที่ พิจารณา และยืนยันความถูกต้องโดยตรวจสอบจากผลจากการทดลองจริง งานวิจัยนี้จะ ทำการศึกษาอิทธิพลของฟลักซ์ความร้อนที่ป้อน ดีกรีความอิ่มดัวเริ่มต้น (initial saturation) ขนาด ของอนุภาค (particle size) ที่มีผลต่ออัตราการละลายตัวของน้ำแข็งและรูปร่างและลักษณะการ เคลื่อนตัวของขอบเขตผิวละลาย

องค์ความรู้ที่ได้ก่อให้เกิดความเข้าใจถึงองค์ความรู้พื้นฐานในกระบวนการถ่ายเทความร้อนและมวล สารในวัสดุพรุนชนิดต่าง ๆของกระบวนการทำละลายและกระบวนการทำแข็ง

โครงการวิจัยนี้ยังสามารถขยายผลการวิจัยเพิ่มเติม นอกเหนือจากขอบเขตที่เสนอไว้ในข้อเสนอ โครงการ 2 เรื่อง นั่นคือได้ผลการวิจัยเพิ่มเติมในเรื่อง Analysis of Natural Convective Heat Transfer through Porous Media in Cavity (เรื่องที่ 6) ซึ่งเสนอแนวคิดใหม่และค้นพบ ปรากฏการณ์ใหม่ที่น่าสนใจของการพาความร้อนแบบธรรมชาดิขณะมีการให้ความร้อนที่ผิวด้านบน ของเพคเบดวัสดุพรุนที่อิ่มตัวด้วยน้ำซึ่งเป็นเนื้อหาที่เป็นพื้นฐานที่สำคัญสำหรับการวิเคราะห์ กระบวนการทำละลายและทำแข็งในวัสดุพรุนในกรณีที่คิดผลของการพาธรรมชาติ หรือกรณี วิเคราะห์กระบวนการการทำความร้อนด้วยพลังงานไมโครเวฟในวัสดุพรุนกรณีที่คิดผลของการพา ี้ธรรมชาติ ซึ่งในอนาคตจะได้ทำการวิจัยเพิ่มเดิม (ภายใต้ทุนวุฒิเมธีวิจัย) อีกเรื่องเป็นกรณี • วิเคราะห์กระบวนการการทำความร้อนในวัสดุพรุน (พิจารณาแท่งไม้เป็นกรณีศึกษา) ด้วยพลังงาน ไมโครเวฟ โดยผลงานชิ้นนี้ได้อธิบายผลของการดูดซับคลื่น และการกระจายด้วของอุณหภูมิภายใน วัสดุที่สภาวะด่าง ๆอย่างละเอียดเป็นครั้งแรก ซึ่งเป็นเนื้อหาที่เป็นพื้นฐานที่สำคัญสำหรับการ วิเคราะห์กระบวนการ Microwave freeze dry หรือกระบวนการ Microwave drying ซึ่งเป็นปัญหา แขนงหนึ่งของปัญหาของการเคลื่อนตัวของขอบเขต (moving boundary problem) ที่ผู้วิจัยเองมี บทบาทสำคัญในการเสนอทฤษฎีและเทคนิคการคำนวณรูปแบบใหม่ในเวทีวิจัยระดับนานาชาติ

- Simulation of Melting Process Using a Combined Transfinite Interpolation and PDE
 Methods
- (2) Simulation of Melting of Ice in a Porous Media under Multiple Constant Temperature Heat Sources Using a Combined Transfinite Interpolation and PDE Methods
- (3) Simulation of Freezing of Water-Saturated Porous Media in a Rectangular Cavity

 under Multiple Heat Sources with Different Temperature Using a Combined

 Transfinite Interpolation and PDE Methods"
- (6) Simulation of Freezing Process Using a Combined Transfinite Interpolation and PDE Methods
- (5) Theoretical and Experimental Analysis of Thawing Process in Unsaturated Porous media
- (6) Analysis of Natural Convective Heat Transfer through Porous Media in Cavity due to Top Surface Convection
- (7) The simulation of microwave heating of wood using a rectangular wave guide (Influence of frequency and sample size)

้ (รายละเอียดของเนื้อหาดูในบทความวิจัยฉบับเต็มในเอกสารแนบ)

ผลลัพธ์งานวิจัย

รายงานวิจัยชิ้นนี้เป็นงานวิจัยที่สำคัญในวงการวิจัยระดับนานาชาติทางด้าน Transport phenomena in porous media และ Multi-phase flow problem in phase change material และ Numerical technique for moving boundary problem และสามารถตีพิมพ์ในวารสารวิจัยนานาชาติ ชั้นนำที่มีค่า Impact factor สูง 5 รายการและอยู่ระหว่างการ Review อีก 1 รายการ กล่าวคือ

- Rattanadecho, P, "Simulation of Melting of Ice Using a Combined Transfinite
 Interpolation and PDE Methods" J. Porous Media, (Accept): Impact factor 1.2
- (2) Rattanadecho, P, "Simulation of Melting of Ice in a Porous Media under Multiple Constant Temperature Heat Sources Using a Combined Transfinite Interpolation and PDE Methods" Chemical Engineering Science, volume 61, issue 14, 2006, pages 4794 – 4810: Impact factor 1.655
- (3) Ratanadecho, P. And S. Wongwises, "Simulation of Freezing of Water-Saturated

 Porous Media in a Rectangular Cavity under Multiple Heat Sources with Different

 Temperature Using a Combined Transfinite Interpolation and PDE Methods"

 Computers&Chemical Engineering. (In Press): Impact factor 1.678
- (4) Rattanadecho, P and Wongwises, S., "Simulation of Freezing Process Using a Combined Transfinite Interpolation and PDE Methods" ASME J. Heat Transfer, (Review): Impact factor 1.059
- (5) Rattanadecho, P, and Pakdee, W. "Analysis of Natural Convective Heat Transfer through Porous Media in Cavity due to Top Surface Convection" Applied Thermal Engineering, Volume 26, Issues 17-18, December 2006, Pages 2316-2326: Impact factor 0.596

15

methee2547

(6) Rattanadecho, P, "The simulation of microwave heating of wood using a rectangular wave guide (Influence of frequency and sample size)" Chemical Engineering
Science, volume 61, issue 14, 2006, pages 4571 -4581: Impact factor 1.655

methee2547

16

ภาคผนวก

เอกสารแนบ: ผลงานตีพิมพ์

ภาคผนวก

เอกสารแนบ: ผลงานตีพิมพ์

JOURNAL OF POROUS MEDIA

EDITOR-IN-CHIEF KAMBIZ VAFAI

Department of Mechanical Engineering University of California, Riverside A 363 Bourns Hall Riverside, CA 92521-0425

EDITORIAL ADVISORY BOARD

A. BEJAN

Department of Mechanical Engineering,

Duke University

Durham, NC 27706

P. CHENG

School of Mechanical and Power Engineering

Shanghai Jiaotong University

1954 Hua Shan Road, Shanghai 200030, P.R. China

FARUK CIVAN

Mewbourne School of Petroleum and Geological Eng.

University of Oklahoma

Norman, OK

M. J. S. DE LEMOS

Department of Energy

IEME/ITA/CTA

San Jose dos Campos, Sao Paulo 12228-900, Brazil

F. A. L. DULLIEN

Porous Media Research Institute, Dept. of Chemical Engineering

University of Waterloo

Ontario N2L 3GI, Canada

J. GEORGIADIS

Department of Mechanical Engineering

University of Illinois

Urbana, IL 61801

W. G. GRAY

Department of Environmental Sciences and Engineering University of North Carolina, Rosenau Hall, CB #7431

Chapel Hill, NC 27599-7431

C. E. HICKOX, JR.

Engineering Sciences Center

Sandia National Labs

Albuquerque, NM 87185

M. KAVIANY

Dept. of Mechanical Engineering and Applied Mechanics

University of Michigan

Ann Arbor, MI 48109

S. J. KIM

Department of Mechanical Engineering

Korea Advanced Institute of Science and Technology

Teajon 305-701, South Korea

H. KUBOTA

Dept. of Aeronautics and Astronautics, Faculty of Eng.

University of Tokyo

7-3-1 Hongo, Bunkyo, Tokyo 113, Japan

J. H. MASLIYAH

Department of Chemical Engineering

University of Alberta

Edmonton, Alberta T6G 206, Canada

R. MC KIBBIN

Institute of Information and Mathematical Sciences

Massey University at Albany

Auckland, New Zealand

W. J. MINKOWYCZ

Department of Mechanical Engineering (M/C251)

University of Illinois at Chicago

Chicago, IL 60607

V. E. NAKORYAKOV

Institute of Thermal Physics

Siberian Branch of the Academy of Sciences of Russia,

Novosibirsk, 630090, Russia

D. A. NIELD

Department of Engineering Science

University of Auckland

Auckland, New Zealand

V. Parkhutik

Materials Science R&D Centre MTM,

Ciudad Politecnica de Innovacion, Edificio 8G, Seccion C

Cami de Vera s/n 46022 Valencia, Spain

I. Pop

Faculty of Mathematics

University of Cluj

R-3400 Cluj, CP 253, Romania

D. POULIKAKOS

Dept. of Mechanical and Process Engineering, Inst. of Energy Tech.

Swiss Federal Institute of Technology (ETH)

ETH Center, Zurich, Switzerland

D. A. S. REES

Department of Mechanical Engineering

University of Bath

Claverton Down, Bath, BA2 7A Y, UK

N. Rudrajah

Dept. of Mathematics, UGC-DSA Center in Fluid Mechanics

Natl. Research Inst. for Applied Mathematics

Bangalore University, Bangalore-560 001, India

M. Sahimi

Department of Chemical Engineering

University of Southern California

Los Angeles, CA 90089

D. VORTMEYER

Thermodynamics Division

Technical University of Munich

80001 Munich 2, Germany

S.-WHITAKER

Department of Chemical Engineering

University of California, Davis

Davis, CA 95616

nomiká

Rev A: 06-JPM-853

Thank you for the letter. I have read the article.

The work is good. I have only one remark. A comparison of numerical results with the analytical solution is presented (Fig.4), however the analytical solution is not presented in the text of article, and there is no reference where it is.

Rattanadecho, P.

pp. 1/44

Simulation of Melting of Ice under a Constant Temperature Heat Sources Using

a Combined Transfinite Interpolation and PDE Methods

P. Rattanadecho

¹Faculty of Engineering, Thammasat University (Rangsit Campus), Pathumthani,

12121, Thailand, E-mail: ratphadu@engr.tu.ac.th

Abstract

Within the framework of the novel numerical method, this paper presents an efficient

algorithm for solving multidimensional nonlinear heat problem involving phase

change. A numerical study is made for melting of ice subjected to a constant

temperature heat source. The algorithmic design is based on two steps, preliminary

grids are first generated by an algebraic method i.e., a transfinite interpolation method

with subsequent refinement using a PDE mapping (parabolic grid generation) method

in next step. Numerical examples are given for the two melting conditions, low and

very low initial temperatures of ice slab. The accuracy and flexibility of the presented

numerical methods are verified by comparing the results with existing analytical

solutions. In order to verify the accuracy of the present numerical study, the simulated

results are also compared with the experimental results.

Keywords: Melting, Transfinite Interpolation, PDE Mapping, Moving boundary

Chemical Engineering Science 61 (2006) 4571-4581

Chemical Engineering Science

www.elsevier.com/locate/ces

Simulation of melting of ice in a porous media under multiple constant temperature heat sources using a combined transfinite interpolation and PDE methods

P. Rattanadecho -

Faculty of Engineering, Thammasat University (Rangsit Campus), Klong Luang Pathumthani 12121, Thailand

Received 17 December 2005; received in revised form 7 February 2006; accepted 10 February 2006.

Available online 6 March 2006

Abstract

A numerical study is made of the melting of ice in a rectangular cavity filled with a porous medium subjected to multiple constant temperature heat sources. Focus is placed on establishing a computationally efficient approach for solving moving boundary heat transfer problem in a two-dimensional structured grids. Specific application to multidimensional melting problem with a complicated moving boundary condition is considered. Preliminary grids are first generated by an algebraic method, based on a transfinite interpolation method, with subsequent refinement using a PDE mapping (parabolic grid generation) method. A preliminary case study indicates successful implementation of the numerical procedure. A two-dimensional melting model is then validated against available analytical solution and experimental results and subsequently used as a tool for efficient computational prototyping.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Melting; Porous media; Transfinite interpolation; Moving boundary

1. Introduction

Transient heat transfer problems involving melting or solidification are generally referred to as "phase change" or "moving boundary" problems. They are important topics which span a broad spectrum of scientific and engineering disciplines such as the freezing or thawing of soil, ice formation, crystal growth, aerodynamic ablation, casting of metal, food processing and numerous others. Generally, the solution of moving boundary problem with phase transition has been of special interest due to the inherent difficulties associated with the nonlinearity of the interface conditions and the unknown locations of the arbitrary moving boundaries. Reviews of these problems are available (Murray and Landis, 1959; Hashemi and Sliepcevich, 1973; Frivik and Comini, 1982; Sparrow and Broadbent, 1983; Weaver and Viskanta, 1986; Chellaiah and Viskanta, 1988; Hasan et al., 1991; Charn-Jung and Kaviany, 1992).

In the past, a variety of conventional numerical techniques have been developed for solving these problems, including the enthalpy (Shamsundar and Sparrow, 1976; Crowley, 1978), apparent heat capacity (Bonacina et al., 1973), isotherm migration (Crank and Gupta, 1975), and coordinate transformation methods (Hsu et al., 1981; Sparrow and Chuck, 1984; Sparrow et al., 1978; Cheung et al., 1984, Rattanadecho, 2004a,b). These methods have been introduced by researchers mainly to overcome the difficulties in handling moving boundaries. Previous works on multidimensional moving boundary problems include Duda et al. (1975), Saitoh (1978), Gong and Mujumdar (1998), Cao et al. (1999), Khillarkar et al. (2000), Chatterjee and Prasad (2000) and Beckett et al. (2001).

Conventionally numerical methods have been widely used due to easy to handle numerical algorithms for phase change problem. However, in numerical approximations used in this method with discontinuous coefficients, often the largest numerical errors are introduced in a neighborhood of the discontinuities particularly for phase change in geometry complexity as well as boundary condition. The troublesome numerical errors in conventional method are effectively reduced if the grid generation and solution procedure are separated with the discontinuities and special formulas are used to incorporate the jump conditions directly into the numerical model. This is the main idea behind this work considering moving boundary as a parameter.

To create a computational grid in body-fitted coordinates, two basic steps are required: (1) define an origin point, (2) specify the distribution (number and spacing) of grid nodes along the edges of the geometric regions. The automatic grid generator then takes over, and using an algebraic technique knownas transfinite interpolation, creates a grid that simultaneously matches the edge node prescription and conforms to the irregular edges of the body-fitted geometry. Grid generation by algebraic methods produces high-quality numerical grids and allows for the very efficient integration of the thermal-flow field physics. Considering grid optimization, the designed grid optimization algorithm improves upon the transfinite interpolation method by carrying the grid generation process one step further. It uses automatically generated grid as an initial approximation to a higher quality grid system derived utilizing the technique of PDE grid generation. This technique offers advantages over purely algebraic methods:

- good control over the skewness and spacing of the derived grid on surface interiors, while simultaneously allowing complete control over the grid spacing (node distribution) on surface edges as well as moving boundary,
- an ability to produce unique, stable, and smooth grid distributions free of interior maxima or minima (inflection points) in body-fitted coordinates.

Parabolic grid generation works well with irregularly shaped geometries and can produce grids that are highly conformal with the edges of individual computational surfaces. The means for grid generation should not be dictated by the limitations of a given specific field solution procedure and conversely the method that determines the field should accept as input an arbitrary set of coordinate points which constitutes the grid. In general, of course, these two operations can never be considered independent because the logistic structure of the information, the location of outer boundaries, the nature of coordinate and the types of grid singularities are items that have to be coordinated closely between the field solver and the grid generator (Eriksson, 1982).

Grid generation for multidimensional geometries using transfinite interpolation functions was studied by Coons (1967), Cook (1974), Gordon and Hall (1973) and Ettouney and Brown (1983) successfully modeled slightly nonplanar interfaces by using an algebraic grid generation system where the interface was described in terms of univariate function.

Although grid generation is the core of most numerical algorithms for phase change problems or nonphase change problem, little effort has been reported on phase change problems, particularly the problem which couples the grid generation algorithm with the heat transport equations.

The present paper introduces the novel numerical approaches for melting problems which extend the range of initial condition and boundary condition in case of multiple constant temperature heat sources that can be covered. They will also permit a continuous determination of the multidimensional melting front and indicate the internal temperature distribution with a greater degree of boundary complexity and offers the highest overall accuracies and smooth grid point distribution. Numerically, for generating a boundary/interface fitted coordinate system, structured grids are initialized using transfinite interpolation algebraic techniques and the quality of structured grids can be significantly improved by applying parabolic-PDE methods. These methods iteratively solve unsteady conduction's equation together with moving boundary condition during the melting process considering conduction as the only mode of heat transfer in both the unfrozen layer and the frozen layer.

2. Modeling formulation

The two-dimensional system illustrated schematically in Fig. 1 is considered. Initially, the walls are all insulated and the rectangular cavity is filled with a porous medium (PM) consisting of the glass beads and phase change material (PCM) in the solid state (ice), both at the fusion temperature T_f . Multiple constant temperature T_f heat sources are located at the bottom wall. At time t=0, the melting process upwardly begins. The applicable differential equations for two-dimensional heat flow with constant thermal properties for the unfrozen and frozen layers are, respectively,

$$\frac{\partial T_l}{\partial t} = a_l \left(\frac{\partial^2 T_l}{\partial x^2} + \frac{\partial^2 T_l}{\partial z^2} \right) + \left(\frac{\partial T_l}{\partial z} \right) \frac{\mathrm{d}z}{\mathrm{d}t},\tag{1}$$

$$\frac{\partial T_s}{\partial t} = a_s \left(\frac{\partial^2 T_s}{\partial x^2} + \frac{\partial^2 T_s}{\partial z^2} \right) + \left(\frac{\partial T_s}{\partial z} \right) \frac{\mathrm{d}z}{\mathrm{d}t},\tag{2}$$

where the last terms of Eqs. (1) and (2) result from a coordinate transformation attached to the moving boundary. In the unfrozen layer, internal natural convection can be neglected because the presence of glass beads minimizes the effect of natural convection current.

Eqs. (1) and (2) are based on the following assumptions:

- the temperature field can be assumed to be twodimensional;
- (2) the thermal equilibrium exists between PCM and PM; this is possible when the porous matrix has a little larger thermal conductivity than the PCM, and the interphase heat transfer can be properly neglected;
- (3) properties of PM are isotropic.

The boundary conditions of Eqs. (1) and (2) are:

(a) the localized heating condition at the bottom horizontal wall, where the multiple constant temperature (T_H) heat sources are applied;

$$x_{Il} \leq x_{I} \leq x_{Ir}; \quad T = T_{H},$$

$$x_{cl} \leq x_{c} \leq x_{cr}; \quad T = T_{H},$$

$$x_{rl} \leq x_{r} \leq x_{rr}; \quad T = T_{H};$$
(3)

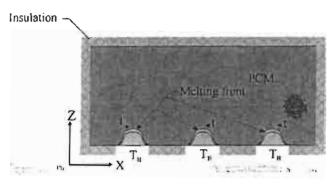


Fig. 1. Physical model.

 (b) adiabatic condition: the walls except the position of localized heating condition are all insulated;

$$\frac{\partial T}{\partial x} = \frac{\partial T}{\partial z} = 0; (4)$$

(c) moving boundary condition;

the moving boundary condition (Stefan condition), which is obtained from a consideration of the energy balance at the interface between the unfrozen layer and frozen layer provides the following equation:

$$\left(\lambda_s \frac{\partial T_s}{\partial z} - \lambda_l \frac{\partial T_l}{\partial z}\right) \left[1 + \left(\frac{\partial z_{\text{mov}}}{\partial x}\right)^2\right] = \rho_s L_s \frac{\partial z_{\text{mov}}}{\partial t},\tag{5}$$

where $\partial z_{\text{mov}}/\partial t$ is the velocity of fusion front or melting front, and L_s the latent heat of fusion. To avoid changes in the physical dimensions as the melting front progresses, $\rho_s = \rho_l$ will be specified. In this study, the thermal conductivity, λ_l and λ_s are bulk-average values for the glass beads and the water or ice, respectively.

3. Grid generation technique

Generally, two types of structured grid generation are currently in use. They are algebraic method or transfinite interpolation method and PDE method. Transfinite interpolation provides a relatively easy way of obtaining an initial grid that can be refined and smoothed by other techniques, whether algebraic, PDE method. For more complex geometries, such as in this work, it is preferable to construct the grid by transfinite interpolation initially, and to refine the grid filled in Cartesian coordinates in the interior of a domain by parabolic-PDE method subsequently.

3.1. Transfinite interpolation (TFI)

The method of constructing a two-dimensional boundary-conforming grid for a system is a direct algebraic approach based on the concept of TFI. In this method, no partial differential equations are solved to obtain the curvilinear coordinates, and the same system is used for the entire domain. The algebraic technique can be easier to construct than PDE methods,

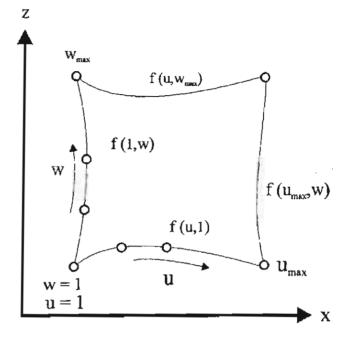


Fig. 2. The parametric domain with $f_{(u,w)}$ specified on planes of constant u,w.

and gives also easier control over grid characteristics such as orthogonality and grid point spacing. However, this method is sometimes criticized for allowing discontinuities on the boundary to propagate into the interior and for not generating grids as smooth as those generated by PDE method.

The technique used for transfinite interpolation here is a significant extension of the original formulation by Gordon and Hall (1973). It is possible to initially generate global grid system with geometry specifications only on the outer boundaries of the computation domain and yet to obtain a high degree of local control.

Fig. 2 illustrates the present method of constructing a twodimensional boundary-conforming grid for a system, which is a direct algebraic approach based on the concept of transfinite or multivariate interpolation. It is possible to initially generate global single plane transformations with geometry specifications only on outer boundaries of the computational domain.

Let f(u, w) = (x(u, w), z(u, w)) denote a vector-valued function of two parameters u, w defined on the region $u_1 \le u \le u_{\text{max}}$, $w_1 \le w \le u_{\text{max}}$. This function is not known throughout the region, only on certain planes (Fig. 2). The transfinite interpolation procedure then gives the interpolation function f(u, w) by the recursive algorithm:

$$f_{(u,w)}^{(1)} = A_{1(u)} \cdot f_{(1,w)} + A_{2(u)} \cdot f_{(u_{\max},w)},$$

$$f_{(u,w)} = f_{(u,w)}^{(1)} + B_{1(w)} \cdot [f_{(u,1)} - f_{(u,1)}^{(1)}] + B_{2(w)} \cdot [f_{(u,w_{\max})} - f_{(u,w_{\max})}^{(1)}],$$
(6)

where $A_{1(u)}$, $A_{2(u)}$, $B_{1(w)}$ and $B_{2(w)}$ are defined by the set of univariate blending functions, which only have to satisfy

the conditions:

$$A_{1(1)} = 1,$$
 $A_{1(u_{max})} = 0,$
 $A_{2(1)} = 0,$ $A_{2(u_{max})} = 1,$
 $B_{1(1)} = 1,$ $B_{1(w_{max})} = 0,$
 $B_{2(1)} = 0,$ $B_{2(w_{max})} = 1.$ (7)

Further, the general form in algebraic equations can be defined as

$$A_{1(u)} = \frac{u_{\max} + u}{u_{\max} - 1}, \quad A_{2(u)} = 1 - A_{1(u)},$$

$$B_{1(w)} = \frac{w_{\max} - w}{w_{\max} - 1}, \quad B_{2(w)} = 1 - B_{1(w)}.$$
(8)

The grid motion defined from a moving boundary motion is modeled using a Stefan condition (Eq. (5)) with a transfinite mapping technique.

The boundary fitted grid generation mapping discussed in this section forms the basis for the interface tracking mapping. However, the mapping now must match the interface curve on the interior of physical domain in addition to fitting the outer physical boundary. In addition, the system must be adaptive since the grid lines must change to follow the deforming interface while maintaining as much smoothness and orthogonality as possible.

3.2. PDE method

In the proposed grid generation mapping, all grids discussed and displayed have been couched in terms of finite difference formulation, with the understanding that whatever nonuniform grid exists in the physical space, there exists a transformation which will recast it as a uniform rectangular grid in the computational space. The finite difference calculations are then made over this uniform grid in the computational space, after which the field results are transferred directly back to the corresponding points, in, the physical space. The purpose of generating a smooth grid that conforms to physical boundaries of problem is, of course, to solve the partial differential equations specified in the problem by finite difference scheme, capable of handling general nonorthogonal curvilinear coordinates.

Fig. 1 shows that, as melting proceeds, the melting front denoted by z_{mov} is formed. Due to the existence of this melting front, the frozen and unfrozen domains are irregular and time dependent. To avoid this difficulty, a curvilinear system of coordinates is used to transform the physical domain into rectangular region for the computational domain.

It is convenient to introduce a general curvilinear coordinate system as follows (Anderson Jr., 1995):

$$x = x(\xi, \eta), \quad z = z(\xi, \eta) \quad \text{or} \quad \xi = \xi(x, z), \quad \eta = \eta(x, z).$$
 (9)

The moving boundaries are immobilized in the dimensionless (ξ, η) coordinate for all times. With the details omitted, the transformation of Eqs. (1), (2) and (5) can be written

respectively as

$$\begin{split} \frac{\partial T_{l}}{\partial t} &= \frac{a_{l}}{J^{2}} \left(\alpha \frac{\partial^{2} T_{l}}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} T_{j}}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} T_{l}}{\partial \eta^{2}} \right) \\ &+ \frac{a_{l}}{J^{3}} \left[\left(\alpha \frac{\partial^{2} x}{\partial \xi^{2}} \right) \left(z_{\xi} \frac{\partial T_{l}}{\partial \eta} - z_{\eta} \frac{\partial T_{l}}{\partial \xi} \right) + \alpha \frac{\partial^{2} z}{\partial \xi^{2}} \right] \end{split}$$

$$\frac{-2\beta \frac{\partial^2 z}{\partial \xi \partial \eta} + \gamma \frac{\partial^2 z}{\partial \eta^2} \left(-x_{\xi} \frac{\partial T_l}{\partial \eta} \right)}{+ \frac{1}{J} \left(x_{\xi} \frac{\partial T_l}{\partial \eta} \right) \frac{dz}{dt}, \tag{10}$$

$$\frac{\partial T_s}{\partial t} = \frac{a_s}{J^2} \left(\alpha \frac{\partial^2 T_s}{\partial \xi^2} - 2\beta \frac{\partial^2 T_s}{\partial \xi \partial \eta} + \gamma \frac{\partial^2 T_s}{\partial \eta^2} \right)
+ \frac{a_s}{J^3} \left[\left(\alpha \frac{\partial^2 x}{\partial \xi^2} \right) \left(z_{\xi} \frac{\partial T_s}{\partial \eta} - z_{\eta} \frac{\partial T_s}{\partial \xi} \right) \right]
+ \alpha \frac{\partial^2 z}{\partial \xi^2} - 2\beta \frac{\partial^2 z}{\partial \xi \partial \eta} + \gamma \frac{\partial^2 z}{\partial \eta^2} \left(-x_{\xi} \frac{\partial T_s}{\partial \eta} \right) \right]
+ \frac{1}{J} \left(x_{\xi} \frac{\partial T_s}{\partial \eta} \right) \frac{dz}{dt},$$
(11)

$$\left\{ \lambda_{s} \frac{1}{J} \left(x_{\xi} \frac{\partial T_{s}}{\partial \eta} \right) - \lambda_{l} \frac{1}{J} \left(x_{\xi} \frac{\partial T_{l}}{\partial \eta} \right) \right\} \\
\times \left\{ 1 + \left(\frac{1}{J} \left[z_{\eta} \frac{\partial z_{\text{mov}}}{\partial \xi} - z_{\xi} \frac{\partial z_{\text{mov}}}{\partial \eta} \right] \right)^{2} \right\} \\
= \rho_{s} L_{s} \frac{\partial z_{\text{mov}}}{\partial t}, \tag{12}$$

where $J = x_{\xi} \cdot z_{\eta} - x_{\eta} \cdot z_{\xi}$, $\alpha = x_{\eta}^2 + z_{\eta}^2$, $\beta = x_{\xi} \cdot x_{\eta} + z_{\xi} \cdot z_{\eta}$, $\beta = x_{\xi}^2 + z_{\xi}^2$ and x_{ξ}^2 , x_{η}^2 , z_{ξ}^2 and z_{η}^2 denote partial derivatives, J is the Jacobian, β , α , γ are the geometric factors; and η , ξ are the transformed coordinates.

4. Solution method

It is known that the inherent difficulties in the conventional numerical methods (pure parabolic grid generators) for melting or freezing problems suggest the use of combined transfinite interpolation and PDE methods in most instances. Although conventional numerical methods can be used to obtain satisfactory results, there are problems of large time consumption and control functions that are often difficult to determine. Therefore, the new method presented in this paper is generally preferable because it offers the highest overall accuracies and smooth grid point distribution. In addition, the boundary point discontinuities are smoothed out in the interior domain and orthogonality at boundaries can be maintained.

Table 1
Thermal property of the unfrozen layer and frozen layer

Properties	Unfrozen layer	Frozen layer
ρ (kg/m ³)	1942.0	1910.0
ρ (kg/m ³) a (m ² /s)	0.210×10^{-6}	0.605×10^{-6}
λ (W/mK)	0.855	1.480
Cp (J/kg K)	2.099×10^{3}	1.281×10^{3}

In this study, in order to initiate numerical simulation, a very thin layer of melt with a constant thickness $z_{mov(0)}$ was assumed to be present. This initial condition is obtained from the Stefan solution in the melt and a linear temperature distribution in the frozen layer. Tests revealed that the influence of $z_{mov(0)}$ could be neglected as $z_{mov(0)}$ was sufficiently small. The transient heat equations (Eqs. (10) and (11)) and the Stefan condition (Eq. (12)) are solved by using finite difference method using parameter values obtained from Table 1. A system of nonlinear equations results whereby each equation for the internal nodes can be cast into a numerical discretization.

Transient heat equation for unfrozen layer:

$$T_{l}^{n+1}(k,i) = \left(\frac{1}{1+(2a_{l}\Delta t/J^{2}(k,i))((\alpha(k,i)/\Delta\zeta\Delta\zeta)+(\gamma(k,i)/\Delta\eta\Delta\eta))}\right) \times \left(T_{l}^{n}(k,i) + \frac{a_{l}\Delta t}{J^{2}(k,i)}\right) \times \left(\alpha(k,i) + \frac{a_{l}\Delta t}{J^{2}(k,i)}\right) \times \left(\alpha(k,i) + \frac{a_{l}\Delta t}{J^{2}(k,i)}\right) \times \left(\alpha(k,i) + \frac{T_{l}^{n+1}(k,i+1) + T_{l}^{n+1}(k,i-1)}{\Delta\zeta\Delta\zeta}\right) - 2\beta(k,i) \left(\left(\frac{T_{l}^{n+1}(k+1,i-1) - T_{l}^{n+1}(k-1,i-1)}{2\Delta\zeta}\right)\right) / 2\Delta\zeta + \gamma(k,i) \left(\frac{T_{l}^{n+1}(k+1,i) + T_{l}^{n+1}(k-1,i)}{\Delta\eta\Delta\eta}\right) + \frac{a_{l}\Delta t}{J^{3}(k,i)} \times \left(\left(\frac{\alpha(k,i) + \frac{X(k,i+1) - 2X(k,i) + X(k,i-1)}{\Delta\zeta\Delta\zeta}\right)}{\Delta\zeta\Delta\zeta}\right) \times \left(\frac{T_{l}^{n+1}(k+1,i) - T_{l}^{n+1}(k-1,i)}{2\Delta\eta}\right) \times \left(\frac{T_{l}^{n+1}(k+1,i) - T_{l}^{n+1}(k-1,i)}{2\Delta\eta}\right) \times \left(\frac{T_{l}^{n+1}(k,i+1) - T_{l}^{n+1}(k,i-1)}{2\Delta\zeta}\right) + \alpha(k,i) \left(\frac{Z(k,i+1) - Z(k,i) + Z(k,i-1)}{\Delta\zeta\Delta\zeta}\right)$$

$$-2\beta(k,i) \left(\left(\frac{Z(k+1,i+1) - Z(k-1,i+1)}{2\Delta\eta} \right) - \left(\frac{Z(k+1,i-1) - Z(k-1,i-1)}{2\Delta\eta} \right) \right) / 2\Delta\zeta$$

$$+ \gamma(k,i) \left(\frac{Z(k+1,i) - 2Z(k,i) + Z(k-1,i)}{\Delta\eta\Delta\eta} \right)$$

$$\times \left(\frac{(X(k,i+1) - X(k,i-1))}{2\Delta\zeta} \right)$$

$$\times \left(\frac{T_{i}^{n+1}(k^{\frac{n}{2}+1},i) - T_{i}^{n+1}(k^{\frac{n+2}{2}+1},i)}{2\Delta\eta} \right)^{\ln(1+n+1)}$$

$$+ \frac{1}{J(k,i)} \left(\frac{X(k,i+1) - X(k,i-1)}{2\Delta\zeta} \right)$$

$$\times \left(\frac{T_{i}^{n+1}(k+1,i) - T_{i}^{n+1}(k-1,i)}{2\Delta\eta} \right) \times dz(k,i) \right).$$
(13)

Transient heat equation for frozen layer:

$$\begin{split} T_s^{n+1}(k,i) &= \left(\frac{1}{1 + (2a_s \Delta t i / J^2(k,i))(((\alpha(k,i) / \Delta \zeta \Delta \zeta)) + ((\gamma(k,i) / \Delta \eta \Delta \eta))))} \right) \\ &\times \left(T_s^n(k,i) + \frac{a_s \Delta t}{J^2(k,i)} \right) \\ &\times \left(\alpha(k,i) \frac{T_s^{n+1}(k,i+1) + T_s^{n+1}(k,i-1)}{\Delta \zeta \Delta \zeta}\right) \\ &- 2\beta(k,i) \left(\left(\frac{T_s^{n+1}(k+1,i+1) - T_s^{n+1}(k-1,i+1)}{2\Delta \eta}\right)\right) / 2\Delta \zeta \right) \\ &+ \gamma(k,i) \left(\frac{T_s^{n+1}(k+1,i) - T_s^{n+1}(k-1,i-1)}{\Delta \eta \Delta \eta}\right) + \frac{a_s \Delta t}{J^3(k,i)} \\ &\times \left(\left(\alpha(k,i) \frac{X(k,i+1) - 2X(k,i) + X(k,i-1)}{\Delta \zeta \Delta \zeta}\right)\right) \\ &\times \left(\left(\frac{Z(k,i+1) - Z(k,i-1)}{2\Delta \eta}\right)\right) \\ &\times \left(\frac{T_s^{n+1}(k+1,i) - T_s^{n+1}(k-1,i)}{2\Delta \eta}\right) \\ &\times \left(\frac{T_s^{n+1}(k,i+1,i) - T_s^{n+1}(k-1,i)}{2\Delta \eta}\right) \\ &+ \alpha(k,i) \left(\frac{Z(k,i+1) - 2Z(k,i) + Z(k,i-1)}{\Delta \zeta \Delta \zeta}\right) \\ &- 2\beta(k,i) \left(\left(\frac{Z(k+1,i+1) - Z(k-1,i+1)}{2\Delta \eta}\right)\right) \end{split}$$

$$-\left(\frac{Z(k+1,i-1)-Z(k-1,i-1)}{2\Delta\eta}\right) / 2\Delta\zeta + \gamma(k,i) \left(\frac{Z(k+1,i)-2Z(k,i)+Z(k-1,i)}{\Delta\eta\Delta\eta}\right) \times \left(-\frac{(X(k,i+1)-X(k,i-1))}{2\Delta\zeta}\right) \times \left(\frac{T_s^{n+1}(k+1,i)-T_s^{n+1}(k-1,i)}{2\Delta\eta}\right) + \frac{1}{J(k,i)} \left(\frac{X(k,i+1)-X(k,i-1))}{2\Delta\zeta}\right) \times \left(\frac{T_s^{n+1}(k+1,i)-T_s^{n+1}(k-1,i)}{2\Delta\zeta}\right) \times \left(\frac{T_s^{n+1}(k+1,i)-T_s^{n+1}(k-1,i)}{2\Delta\eta}\right) \times dz(k,i) \right).$$
(14)

Stefan condition:

$$Z^{n+1}(k,i) = Z^{n}(k,i) + \frac{\Delta t}{\rho_{s}L_{s}} \times \left(-\frac{\lambda_{1}}{J(k-1,i)}\right) \times \left(\frac{X(k-1,i+1) - X(k-1,i-1)}{2\Delta\zeta}\right) \times \left(\frac{3T_{l}(k,i) - 4T_{l}(k-1,i) + T_{l}(k-2,i)}{2\Delta\eta}\right) + \frac{\lambda_{s}}{J(k+1,i)} \times \left(\frac{X(k+1,i+1) - X(k+1,i-1)}{2\Delta\zeta}\right) \times \left(\frac{-3T_{s}(k,i) + 4T_{s}(k+1,i) - T_{s}(k+2,i)}{2\Delta\eta}\right) \times \left(1 + pow\left(\left(\frac{Z(k+1,i) - Z(k-1,i)}{2\Delta\eta}\right)\right) \times \left(\frac{Z^{n}(k+1,i) - Z^{n}(k-1,i)}{2\Delta\zeta}\right) - \left(\frac{Z(k,i+1) - Z(k,i-1)}{2\Delta\zeta}\right) \times \left(\frac{Z^{n}(k,i+1) - Z^{n}(k,i-1)}{2\Delta\zeta}\right) \times \left(\frac{Z^{n}(k,i+1) - Z^{n}(k,i-1)}{2\Delta\zeta}\right).$$
(15)

The details of computational schemes and strategy for solving the combined transfinite interpolation functions (Eqs. (6)–(8)) and PDE (Eqs. (13)–(15)) are illustrated in Fig. 3.

5. Results and discussion

Numerical results are obtained for phase change in a rectangular cavity filled with a porous medium. The calculations are performed under the following conditions:

- (1) The time step of dt = 0.1 (s) is used for the computation of temperature field and location of melting front.
- (2) The number of cells is N = 120 (width) $\times 100$ (depth).

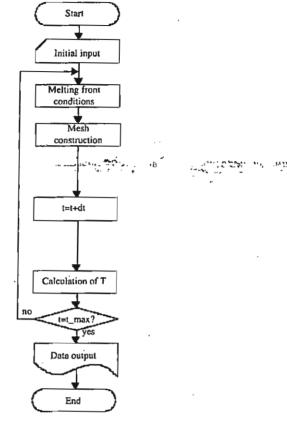


Fig. 3. Strategy for calculation.

(3) Iterations are carried out until relative error of 10⁻⁸ are reached.

In order to verify the accuracy of the present numerical algorithm, it is validated by performing simulations for a planar melting front in a pure ice slab. Initially, the temperature of $0\,^{\circ}$ C is assigned throughout each layer. Thereafter, the constant temperature heat source ($T_H = 100\,^{\circ}$ C) is imposed on the bottom wall. The calculated front location is based on the thermal properties of ice and water. The results are then compared with analytical solution for the melting of a pure ice slab at the same condition. Fig. 4 clearly shows a good agreement between simulated and analytical solutions. Therefore, the present method can yield accurate solutions.

Fig. 5 shows the measured and simulated results of the melting front during melting of ice in a rectangular cavity filled with a porous medium. In this comparison, the single constant temperature heat source, $T_H = 100$ °C, is applied. The observation of the melting front depicted from the figure reveals that the simulated results and experimental results are qualitatively consistent. However, the experimental data are significantly lower than the simulated results. The spreading of the melt in the x-direction from experimental results is clearly shown. Discrepancy may be attributed to heat loss and nonuniform heating effect along the surface of supplied load. Numerically, the discrepancy may be attributed to uncertainties in the thermal and

- - miles of frames () the

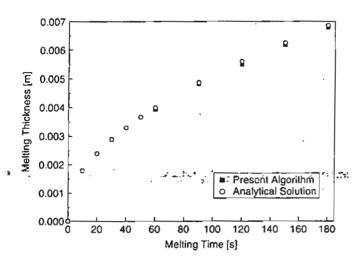


Fig. 4. Validation tests for a planar melting front in a rectangular phase-change

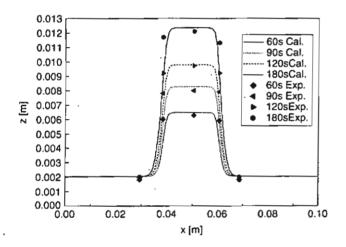


Fig. 5. Comparison of experimental data and simulated melting front from present numerical study.

physical properties data. In addition, the source of the discrepancy may be attributed to natural convection effect in liquid.

5.1. A melting front tracking grid generation system

The purpose of this subsection is to illustrate the efficiency of the grid generation system during the melting of ice in a rectangular cavity filled with a porous medium (porosity, $\phi = 0.38$) subjected to multiple constant temperature heat sources. Fig. 6(a) shows the initial reference grid for the domain generated by pure transfinite interpolation method. Figs. 6(b)–(g) show grids that fit curves that are typical of shapes seen during deformation of an interface with respect to elapsed times. The calculated front locations correspond the initial temperature of 0 °C and applied boundary condition ($T_H = 90$ °C) given by Eq. (3). It can be seen how melting fronts progress with respect to elapsed times. During the initial stages of melting the shape of the interface in each region becomes flatter as the

melting front moves further away from the fixed boundaries indicating principally one-dimensional heat flow. At later times, the curve on the interface gradually flattens indicating the twodimensional effect.

In all figures, it is found that the grid is able to maintain a significant amount of orthogonality and smoothness both within the interior and along the boundary as the grid points redistribute themselves to follow the interface. These results show the efficiency of the present method for the moving boundary problem.

5.2. Melting process

.

The present work is to couple the grid generation algorithm with the transport equations. The thermal analysis during melting process will be discussed in this subsection. The simulations of temperature distribution within rectangular cavity filled with porous media in the vertical plane (x-z) corresponding to grid simulating the deformation of an interface (Figs. 6(a)-(g)) are shown in Figs. 7(a)-(g). When multiple constant temperature heat sources are applied, heat is conducted from the hotter region in unfrozen layer to the cooler region in frozen layer. At the initial stages of melting, the melting fronts remain square in shape indicating principally one-dimensional heat flow as explained in the previous subsection. Later, the melting fronts gradually exhibit a shape typical for two-dimenisonal heat conduction dominated melting. As the melting process persists, the melting rate progresses slowly. This is because most of heat conduction takes place the leading edge of unfrozen layer (melt layer) which is located further from frozen layer. Consequently, small amount of heat can conduct to the frozen layer due to the melt layer acting as an insulator and causing a slowly melting fronts to move with respect to elapsed times. It is observed that as the melting progresses, the melt layers at the leading edge expand wider but it expands less at the position further away from the applied boundary condition surface due to the phenomenon of heat transport as explained above.

It is observed that each hot region of the rectangular cavity shows signs of melting, while the outer edges display no obvious sign of melting indicating that the temperature does not exceed 0 °C. Nevertheless, the leading edge of applied boundary condition surface displays sign of melting continuously.

This study shows the capability of the present method to correctly handle the phase change problem. With further quantitative validation of the present method, this method can be used as a tool for investigating in detail this particular melting of phase change slab at a fundamental level.

6. Conclusions

Mesh quality has the largest impact on solution quality. A high-quality mesh increases the accuracy of the computational thermal flow solution and improves convergence. Therefore, it is important to provide tools for obtaining and improving a mesh.

In this study, melting of ice in a rectangular cavity filled with a porous medium subjected to multiple constant temperature

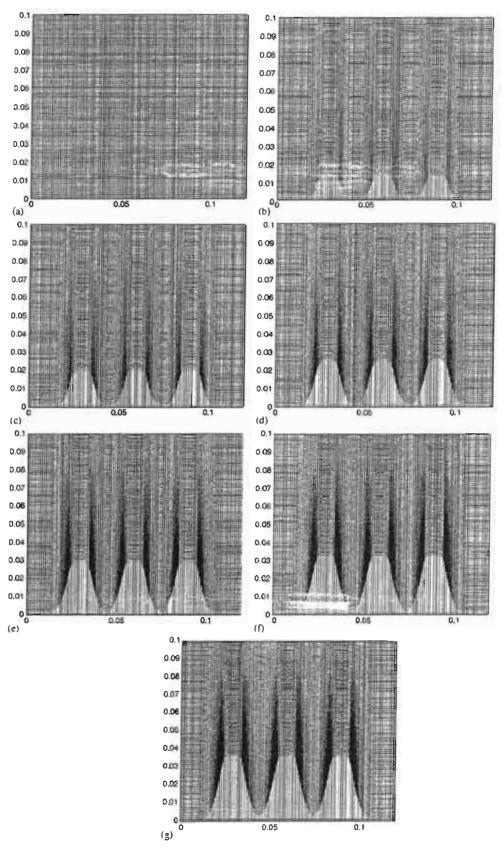


Fig. 6. Grid simulating the deformation of an interface: (a) the initial reference grid for the domain (generated by pure transfinite interpolation method), (b) melting time of 60s. (c) melting time of 120s, (d) melting time of 180s. (e) melting time of 240s, (f) melting time of 300s, and (g) melting time of 360s.

+ Model CACE 3306 1-16

ARTICLE IN PRESS

Computers & Chemical Engineering

SEVIER Computers and Chemical Engineering xxx (2006) xxx-xxx

www.elsevier.com/locate/compchemeng

Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods

P. Rattanadecho a,*, S. Wongwises b

^a Faculty of Engineering, Thannasat University (Rangsit Campus), Pathumthani 12121, Thailand
^b King Mongkut University of Technology Thonburi, 91 Suksawas 48, Rasburana, Bangkok 10140, Thailand
Received 11 January 2006; received in revised form 17 July 2006; accepted 21 July 2006

Abstract

A numerical study is made of the freezing of water-saturated porous media in a rectangular cavity subjected to multiple heat sources with different temperature. Focus is placed on establishing a computationally efficient approach for solving multi-dimensional moving boundary problem in a two-dimensional structured grids. Preliminary grids are first generated by an algebraic method, based on a transfinite interpolation method, with subsequent refinement using a PDE mapping (parabolic grid generation) method. A preliminary case study indicates successful implementation of the numerical procedure. A two-dimensional freezing model is validated against available analytical solution and experimental results.

© 2006 Elsevier Ltd. All rights reserved.

6 Keywords: Freezing: Porous media; Transfinite interpolation; Moving boundary

1. Introduction

27

Transient heat transfer problems involving melting or solidification are generally referred to as "phase change" or "moving boundary" problems. They are an important topics which spans a broad spectrum of scientific and engineering disciplines such as the freezing or thawing of soil, ice formation, crystal growth, aerodynamic ablation, casting of metal, food processing and numerous others. Generally, the solution of moving boundary problem with phase transition has been of special interest due to the inherent difficulties associated with the non-linearity of the interface conditions and the unknown locations of the arbitrary moving boundaries. The some up to date reviews of these problems are available (Charn-Jung & Kaviany, 1992; Chellaiah & Viskanta, 1988; Frivik & Comini, 1982; Hasan, Mujundar, & Weber, 1991; Hashemi & Sliepcevich, 1973; Murray & Landis, 1950; Spanrow & Broadbent, 1983; Weaver & Viskanta, 1986).

In the past, a variety of conventional numerical techniques have been developed for solving these problems, including the enthalpy (Crowley, 1978; Shamsundar & Sparrow, 1976), apparent heat capacity (Bonacina, Comini, Fasano, & Primicerio, 1973), isotherm migration (Crank & Gupta, 1975), and coordinate transformation methods (Cheung, Chawla, & Pedersen, 1984; Hsu, Sparrow, & Patankar, 1981; Sparrow & Chuck, 1984; Sparrow, Ramadhyani, & Patankar, 1978; Rattanadecho, 2004a, b). These methods have been introduced by researchers mainly to overcome the difficulties in handling moving boundaries. Previous works on multi-dimensional moving boundary problems include Duda, Malone, Notter, and Vrentas (1975), Saitoh (1978), Gong and Mujumdar (1998), Cao, Huang, and Russell (1999), Khillarkar, Gong, and Mujumdar (2000), Chatterjee and Prasad (2000), and Beckett, MacKenzie, and Robertson (2001).

Conventionally numerical methods have been widely used due to easy to handle numerical algorithms for phase change problem. However, in numerical approximations used in this method with discontinuous coefficients, often the largest numerical errors are

^{*} Corresponding author.

E-mail address: ratphadu@engr.tu.ac.th (P. Rattanadecho).

^{0098-1354/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved.

² doi.10.1016/j.compchemeng.2006.07.016

ARTICLE IN BRIESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

Nomenclature

- a thermal diffusivity (m²/s)
- C_p specific heat capacity (J/kg K)
- L latent heat (J/kg)
- T temperature (°C)
- time (s)
- x, z Cartesian coordinates

Greek symbols

- λ effective thermal conductivity (W/m K)
- ϕ porosity

Subscripts

- f fusion
- i initial
- j layer number
- l unfrozen

mov moving boundary

s frozen

63

introduced in a neighborhood of the discontinuities particularly for phase change in geometry complexity as well as boundary condition.

The troublesome numerical errors in conventional method are effectively reduced if the grid generation and solution procedure are separated with the discontinuities and special formulas are used to incorporate the jump conditions directly into the numerical model. This is the main idea behind this work considering moving boundary as a parameter.

To create a computational grid in body-fitted coordinates, two basic steps required: (1) define an origin point and (2) specify the distribution (number and spacing) of grid nodes along the edges of the geometric regions. The automatic grid generator then takes over, and using an algebraic technique known as transfinite interpolation, creates a grid that simultaneously matches the edge node prescription and conforms to the irregular edges of the body-fitted geometry. Grid generation by algebraic methods produces high-quality numerical grids and allow for the very efficient integration of the thermal-flow field physics. Considering grid optimization, the designed grid optimization-algorithm improves upon the transfinite interpolation method by carrying the grid generation process one step further. It uses automatically generated grid as an initial approximation to a higher quality grid system derived utilizing the technique of PDE grid generation. This technique offers advantages over purely algebraic methods:

- Good control over the skewness and spacing of the derived grid on surface interiors, while simultaneously allowing complete
 control over the grid spacing (node distribution) on surface edges as well as moving boundary.
- An ability to produce unique, stable, and smooth grid distributions free of interior maxima or minima (inflection points) in body-fitted coordinates.

Parabolic grid generation works well with irregularly shaped geometries and can produce grids that are highly conformal with the edges of individual computational surfaces. The means for grid generation should not be dictated by the limitations of a given specific field solution procedure and conversely the method that determines the field should accept as input an arbitrary set of coordinate points which constitutes the grid. In general, of course, these two operations can never be totally independent because the logistic structure of the information, the location of outer boundaries, the nature of coordinate and the types of grid singularities are items that have to be coordinated closely between the field solver and the grid generator (Eriksson, 1982).

Grid generation for multi-dimensional geometries using transfinite interpolation functions was studied by Coons (1967), Cook (1974), Gordon and Hall (1973), and Ettouney and Brown (1983) successfully modeled slightly non-planar interfaces by using an algebraic grid generation system where the interface was described in terms of univariate function.

Although grid generation is the core of most numerical algorithms for phase change problems or non-phase change problem, little effort has been reported on phase change problems, particularly the problem which couples the grid generation algorithm with the heat transport equations.

The present paper introduces the novel numerical approaches for freezing problems, which extend the range of initial condition and boundary conditions in case of multiple heat sources with different temperature that can be covered. They will also permit a continuous determination of the multi-dimensional freezing front and indicate the internal temperature distribution with a greater degree of boundary complexity and offers the highest overall accuracies and smooth grid point distribution. Numerically, for

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

,

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

generating a boundary/interface fitted coordinate system, structured grids are initialized using transfinite interpolation algebraic techniques and the quality of structured grids can be significantly improved by applying parabolic-PDE methods. These methods iteratively solve unsteady conduction's equation together with moving boundary condition during the freezing process considering conduction as the only mode of heat transfer in both the unfrozen layer and the frozen layer.

2. Modeling formulation

The two-dimensional system illustrated schematically in Fig. 1 is considered. Initially, the walls are all insulated and the rectangular cavity is filled with a porous medium (PM) consisting of the glass beads and phase change material (PCM) in the liquid state (water), both at the fusion temperature T_f (0 °C). Multiple heat sources with specified temperature (T_L) are located at the top wall. At time t = 0, the freezing process downwardly begins. The applicable differential equations for two-dimensional heat flow with constant thermal properties for the unfrozen and frozen layers are, respectively:

$$\frac{\partial T_1}{\partial t} = a_1 \left(\frac{\partial^2 T_1}{\partial x^2} + \frac{\partial^2 T_1}{\partial z^2} \right) + \left(\frac{\partial T_1}{\partial z} \right) \frac{\mathrm{d}z}{\mathrm{d}t} \tag{1}$$

$$\frac{\partial T_s}{\partial t} = a_s \left(\frac{\partial^2 T_s}{\partial x^2} + \frac{\partial^2 T_s}{\partial z^2} \right) + \left(\frac{\partial T_s}{\partial z} \right) \frac{dz}{dt}$$
 (2)

where the last terms of Eqs. (1) and (2) result from a coordinate transformation attached to the moving boundary. In the unfrozen layer, if internal natural convection can be neglected because the presence of glass beads minimizes the effect of natural convection current.

- Eqs. (1) and (2) are based on the following assumptions.
- 86 (1) the temperature field can be assumed to be two-dimensional,
- the thermal equilibrium exists between PCM and PM; this is possible when the porous matrix has a little larger thermal conductivity than the PCM, and the interphase heat transfer can be properly neglected,
- (3) properties of PM are isotropic.
- The boundary conditions of Eqs. (1) and (2) are:
- (a) the localized freezing condition at the top horizontal wall, the multiple heat sources with specified temperature (T_L) are applied:

$$x_{||} \le x_{||} \le x_{||} : T = T_{L}, \quad x_{c|} \le x_{c} \le x_{cr} : T = T_{L}, \quad x_{r|} \le x_{r} \le x_{rr} : T = T_{L}$$
 (3)

where various subscripts of x denote the regions for applying heat sources with strip length of 10 mm in each region. In addition, for the case of the freezing of water-saturated porous media in a rectangular cavity subjected to multiple heat sources with different temperature, the temperatures (T_L) in each region are different.

(b) adiabatic condition: the walls are all insulated

$$\frac{\partial T}{\partial x} = \frac{\partial T}{\partial z} = 0 \tag{4}$$

e (c) moving boundary condition:

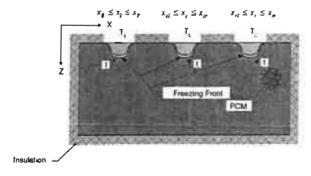


Fig. 1. Physical model.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods. Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

3

102

107

109

110

113

118

120

121

122

123

125

126

127

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

The moving boundary condition (Stefan condition), which is obtained from a consideration of the energy balance at the interface between the frozen layer and unfrozen layer provides following equation:

$$\left(\lambda_{s} \frac{\partial T_{s}}{\partial z} - \lambda_{1} \frac{\partial T_{1}}{\partial z}\right) \left[1 + \left(\frac{\partial z_{\text{mov}}}{\partial x}\right)^{2}\right] = \rho_{s} L_{s} \frac{\partial z_{\text{mov}}}{\partial t}$$
(5)

where $\partial z_{mov}/\partial_1$ is the velocity of fusion front or freezing front, and L_s is the latent heat of fusion. To avoid changes in the physical dimensions as the freezing front progresses, $\rho_s = \rho_1$ will be specified. In this study, the thermal conductivity, λ_1 is bulk-average value for the glass beads and water and λ_s is bulk-average value for the glass beads and ice.

3. Grid generation technique

Generally, two types of structured grid generation are currently in use. They are algebraic method, i.e., transfinite interpolation method and PDE methods. Transfinite interpolation provides a relatively easy way of obtaining an initial grid that can be refined and smoothed by other techniques, whether algebraic, PDE method.

The main idea behind this work, prior to generation of grids by PDE methods, it is preferable to obtain first preliminary grids using the algebraic method, i.e., transfinite interpolation technique. The combined transfinite interpolation and PDE method is used to achieve a smoother grids point distribution and boundary point discontinuities are smoothed out in the interior domain.

3.1. Transfinite interpolation (TFI)

The method of constructing a two-dimensional boundary-conforming grid for a system is a direct algebraic approach based on the concept of TFI. In this method, no partial differential equations are solved to obtain the curvilinear coordinates, and the same system is used for the entire domain. The algebraic technique can be easier to construct than PDE methods, and gives also easier control over grid characteristics such as orthogonality and grid point spacing. However, this method is sometime criticized for allowing discontinuities on the boundary to propagate into the interior and for not generating grids as smooth as those generated by PDE method.

The technique used for transfinite interpolation here is a significant extension of the original formulation by Gordon and Hall (1973). It possible to initially the generate global grid system with geometry specifications only on the outer boundaries of the computation domain and yet to obtain a high degree of local control.

Fig. 2 illustrates the present method of constructing a two-dimensional boundary-conforming grid for a system, which is a direct algebraic approach based on the concept of transfinite or multivariate interpolation. It is possible to initially generate global single plane transformations with geometry specifications only on outer boundaries of the computational domain.

Let f(u, w) = (x(u, w), z(u, w)) denote a vector-valued function of two parameters u, w defined on the region $u_1 \le u \le u_{\text{max}}$, $w_1 \le w \le u_{\text{max}}$. This function is not known throughout the region, only on certain planes (Fig. 2). The transfinite interpolation procedure then gives the interpolation function f(u, w) by the recursive algorithm:

$$f_{(u,w)}^{(1)} = A_{1(u)}f_{(1,w)} + A_{2(u)}f_{(u_{\max},w)}, \qquad f_{(u,w)} = f_{(u,w)}^{(1)} + B_{1(w)}[f_{(u,v)} + \frac{c^{(1)}}{(u,1)}] + B_{2(w)}[f_{(u,w_{\max})} - f_{(u,w_{\max})}^{(1)}]$$
(6)

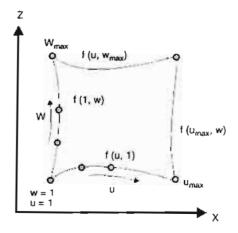


Fig. 2. The parametric domain with $f_{(u,w)}$ specified on planes of constant u, w.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

where $A_{1(u)}$, $A_{2(u)}$, $B_{1(w)}$ and $B_{2(w)}$ are defined by the set of univariate blending functions, which only have to satisfy the conditions:

$$A_{1(1)} = 1, \quad A_{1(u_{\text{max}})} = 0; \qquad A_{2(1)} = 0, \quad A_{2(u_{\text{max}})} = 1; \qquad B_{1(1)} = 1, \quad B_{1(w_{\text{max}})} = 0; \qquad B_{2(1)} = 0, \quad B_{2(w_{\text{max}})} = 1$$

Further, the general form in algebraic equations can be defined as:

$$A_{1(u)} = \frac{u_{\max} - u}{u_{\max} - 1}, \quad A_{2(u)} = 1 - A_{1(u)}; \qquad B_{1(w)} = \frac{w_{\max} - w}{w_{\max} - 1}, \quad B_{2(w)} = 1 - B_{1(w)}$$
 (8)

The grid motion defined from a moving boundary motion is modeled using a Stefan condition (Eq. (5)), with a transfinite mapping technique.

The boundary fitted grid generation mapping discussed in this section forms the basis for the interface-tracking mapping. However, the mapping now must match the interface curve on the interior of physical domain in addition to fitting the outer physical boundary. In addition, the system must be adaptive since the grid lines must change to follow the deforming interface while maintaining as much smoothness and orthogonality as possible.

140 3.2. PDE method

136

137

141

144

145

546

147

145

149

150

157

In the proposed grid generation mapping, all grids discussed and displayed have been couched in terms of finite difference formulation, with the understanding that whatever non-uniform grid exists in the physical space, there exists a transformation, which will recast it as a uniform rectangular grid in the computational space. The finite difference calculations are then made over this uniform grid in the computational space, after which the field results are transferred directly back to the corresponding points in the physical space. The purpose of generating a smooth grid that conforms to physical boundaries of problem is, of course, to solve the partial differential equations specified in the problem by finite difference scheme, capable of handling general non-orthogonal curvilinear coordinates.

Fig. 1 show that, as freezing proceeds, the freezing front denoted by z_{mov} is formed. Due to the existence of this freezing front, the frozen and unfrozen domains are irregular and time dependent. To avoid this difficulty, a curvilinear system of coordinates is used to transform the physical domain into rectangular region for the computational domain.

It is convenient to introduce a general curvilinear coordinate system as follows (John & Anderson, 1995):

$$x = x(\xi, \eta), \ z = z(\xi, \eta) \quad \text{or} \quad \xi = \xi(x, z), \ \eta = \eta(x, z)$$

$$\tag{9}$$

The moving boundaries are immobilized in the dimensionless (ξ, η) coordinate for all times. With the details omitted, the transformation of Eqs. (1), (2) and (5) can be written respectively as:

$$\frac{\partial T_{1}}{\partial t} = \frac{a_{1}}{J^{2}} \left(\alpha \frac{\partial^{2} T_{1}}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} T_{2}}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} T_{1}}{\partial \eta^{2}} \right) + \frac{a_{1}}{J^{3}} \left[\left(\alpha \frac{\partial^{2} x}{\partial \xi^{2}} \right) \left(z_{\xi} \frac{\partial T_{1}}{\partial \eta} - z_{\eta} \frac{\partial T_{1}}{\partial \xi} \right) + \alpha \frac{\partial^{2} z}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} z}{\partial \xi^{2} \partial \eta} + \gamma \frac{\partial^{2} z}{\partial \eta^{2}} \left(-x_{\xi} \frac{\partial T_{1}}{\partial \eta} \right) \right] + \frac{1}{J} \left(x_{\xi} \frac{\partial T_{1}}{\partial \eta} \right) \frac{dz}{dt}$$

$$(10)$$

$$\frac{\partial T_{s}}{\partial t} = \frac{a_{s}}{J^{2}} \left(\alpha \frac{\partial^{2} T_{s}}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} T_{s}}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} T_{s}}{\partial \eta^{2}} \right) + \frac{a_{s}}{J^{3}} \left[\left(\alpha \frac{\partial^{2} x}{\partial \xi^{2}} \right) \left(z_{\xi} \frac{\partial T_{s}}{\partial \eta} - z_{\eta} \frac{\partial T_{s}}{\partial \xi} \right) + \alpha \frac{\partial^{2} z}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} z}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} z}{\partial \eta^{2}} \left(-x_{\xi} \frac{\partial T_{s}}{\partial \eta} \right) \right] + \frac{1}{J} \left(x_{\xi} \frac{\partial T_{s}}{\partial \eta} \right) \frac{dz}{dt} \tag{11}$$

$$\left\{\lambda_{s} \frac{1}{J} \left(x_{\xi} \frac{\partial T_{s}}{\partial \eta} \right) - \lambda_{l} \frac{1}{J} \left(x_{\xi} \frac{\partial T_{l}}{\partial \eta} \right) \right\} \left\{ 1 + \left(\frac{1}{J} \left[z_{\eta} \frac{\partial z_{\text{mov}}}{\partial \xi} - z_{\xi} \frac{\partial z_{\text{mov}}}{\partial \eta} \right] \right)^{2} \right\} = \rho_{s} L_{s} \frac{\partial z_{\text{mov}}}{\partial t}$$
(12)

where $J = x_{\xi}z_{\eta} - x_{\eta}z_{\xi}$, $\alpha = x_{\eta}^2 + z_{\eta}^2$, $\beta = x_{\xi}x_{\eta} + z_{\xi}z_{\eta}$, $\gamma = x_{\xi}^2 + z_{\xi}^2$, and x_{ξ} , x_{η} , z_{ξ} and z_{η} denote partial derivatives, J the Jacobian, β , α , γ the geometric factors and η , ξ are the transformed coordinates.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

5

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

4. Solution method

165

166

167

It is known that the inherent difficulties in the conventional numerical methods (pure parabolic grid generators) for freezing problems suggest the use of combined transfinite interpolation and PDE methods is most instances. Although conventional numerical methods can be used to obtain satisfactory results, problems of large time consumption and control functions that are often difficult to determine, are involved. Therefore, the new method presented in this paper is generally applicable, and offers the highest overall accuracies and smooth grid point distribution. In addition, the boundary point discontinuities are smoothed out in the interior domain and orthogonality at boundaries can be maintained.

In this study, in order to initiate numerical simulation, a very thin layer of freeze with a constant thickness $z_{mov(0)}$ was assumed to be present. This initial condition is obtained from the Stefan solution in the frozen layer and a linear temperature distribution in the unflozen layer. Tests revealed that the influence of $z_{mov(0)}$ could be neglected as $z_{mov(0)}$ was sufficiently small. The transient heat equations (Eqs. (10) and (11)) and the Stefan condition (Eq. (12)) are solved by using finite difference method using parameter values obtained from Table 1. A system of non-linear equations results whereby each equation for the internal nodes can be cast into a numerical discretization:

Transient heat equation for unfrozen layer:

$$T_{1}^{n+1}(k,i) = \left(\frac{1}{1 + (2a_{1}\Delta t)(J^{2}(k,i))((\alpha(k,i)/\Delta\zeta\Delta\zeta) + (\gamma(k,i)/\Delta\eta\Delta\eta)))}\right) \times \left(T_{1}^{n}(k,i) + \frac{a_{1}\Delta t}{J^{2}(k,i)}\left(\alpha(k,i)\frac{T_{1}^{n+1}(k,i+1) + T_{1}^{n+1}(k,i-1)}{\Delta\zeta\Delta\zeta}\right) - 2\beta(k,i)\left(\left(\frac{T_{1}^{n+1}(k+1,i+1) - T_{1}^{n+1}(k-1,i+1)}{2\Delta\eta}\right) - \left(\frac{T_{1}^{n+1}(k+1,i-1) - T_{1}^{n+1}(k-1,i-1)}{2\Delta\zeta}\right)\right)/2\Delta\zeta + \gamma(k,i)\left(\frac{T_{1}^{n+1}(k+1,i) + T_{1}^{n+1}(k-1,i)}{\Delta\eta\Delta\eta}\right)\right) + \frac{a_{1}\Delta t}{J^{3}(k,i)}\left(\left(\alpha(k,i)\frac{X(k,i+1) - 2X(k,i) + X(k,i-1)}{\Delta\zeta\Delta\zeta}\right) \times \left(\left(\frac{Z(k,i+1) - Z(k,i-1)}{2\Delta\eta}\right)\right) \times \left(\frac{T_{1}^{n+1}(k+1,i) - T_{1}^{n+1}(k-1,i)}{2\Delta\eta}\right) - \left(\frac{Z(k+1,i) - Z(k-1,i)}{2\Delta\eta}\right) \times \left(\frac{T_{1}^{n+1}(k,i+1) - T_{1}^{n+1}(k,i-1)}{2\Delta\zeta}\right) + \alpha(k,i)\left(\frac{Z(k,i+1) - 2Z(k,i) + Z(k,i-1)}{\Delta\zeta\Delta\zeta}\right) + 2\beta(k,i)\left(\left(\frac{Z(k+1,i+1) - Z(k-1,i+1)}{2\Delta\eta}\right) - \left(\frac{Z(k+1,i-1) - Z(k-1,i-1)}{2\Delta\eta}\right)\right)/2\Delta\zeta + \gamma(k,i)\left(\frac{Z(k+1,i) - 2Z(k,i) + Z(k-1,i)}{\Delta\eta\Delta\eta}\right) \times \left(\frac{T_{1}^{n+1}(k+1,i) - T_{1}^{n+1}(k-1,i)}{2\Delta\eta}\right) + \frac{1}{J(k,i)}\left(\frac{X(k,i+1) - X(k,i-1)}{2\Delta\zeta}\right) \times \left(\frac{T_{1}^{n+1}(k+1,i) - T_{1}^{n+1}(k-1,i)}{2\Delta\eta}\right) + \frac{1}{J(k,i)}\left(\frac{X(k,i+1) - X(k,i-1)}{2\Delta\zeta}\right) \times \left(\frac{T_{1}^{n+1}(k+1,i) - T_{1}^{n+1}(k-1,i)}{2\Delta\eta}\right) \times dz(k,i)\right)$$
(13)

Table 1
Thermal property of the unfrozen layer and frozen layer

Properties	Unfrozen layer	Frozen layer
ρ (kg/m³)	1942.0	1910.0
$a \text{ (m}^2/\text{s)}$	0.210×10^{-6}	0.605×10^{-6}
λ (W/m K)	0.855	1.480
C_{ρ} (J/kg K)	2.099×10^{3}	1.281×10^{3}

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

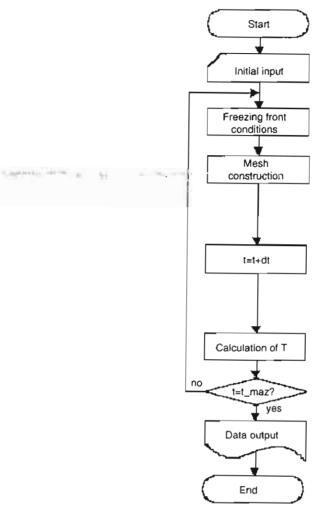


Fig. 3. Strategy for calculation.

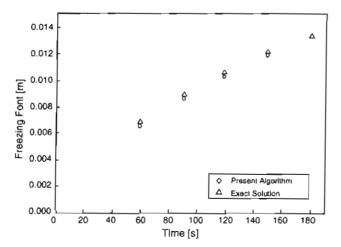


Fig. 4. Validation testes for a planar freezing front in a rectangular phase-change Slab.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016