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Methods

{2) Simulation of Melting of Ice in a Porous Media under Multiple Constant Temperature
Heat Sources Using a Combined Transfinite interpofation and PDE Methods

(3) Simulation of Freezing of Water-Saturated Porous Media in a Rectangular Cavity
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(4) Simulation of Freezing Process Using a Combined Transfinite Interpolation and
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Abstract

Transient heat transfer problems involving melting or solidification are generally referred
to as “phase change” or “moving boundary” problems. They are an important topics
which spans a broad spectrum of scientific and engineering disciplines such as the
freezing or thawing of soil, ice formation, crystal growth, aerodynamic ablation, casting
of metal, food processing and numerous others. Generally, the solution of moving
boundary problem with phase transition has been of special interest due to the inherent
difficulties associated with the nonlinearity of the interface conditions and the unknown
Jocations of the arbitrary moving boundaries. In the past, a variety of conventional .
numeﬁ}i:ﬂéx‘l";i‘gﬁfgiﬁﬁéy have ‘been developed for solving thése problems; intliidifig the-, .-
enthalpy, apparent. heat capacity, isotherm migration, and coordinate transformation

methods. These methods have been introduced by researchers mainly to overcome the

difficulties in handling moving boundaries.

The present paper introduces the novel numerical approaches for thawing and

freezing problems which extend the range of initial condition and boundary conditions in
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many cases with a greater degree of boundary complexity and offers the highest overall

accuracies and smooth grid point distribution, including;

(1) Simulation of Melting Process Using a Combined Transfinite Interpolation and

PDE Methods

T

(2)-;-. qéi-n..luia.\‘tion of Melti"rig: of Ic.c.inrs{lgbrou;s Media under Multipie Cd&étaht.
Temperature Heat Sources Using a Combined Transfinite Interpolation and PDE
Methods

(3) Simuiation of Freezing of Water-Saturated Porous Media in a Rectangular Cavity
unde.r Multiple Heat Sources with Different Temperature Using a Combined

Transfinite Interpolation and PDE Methods”

(5) Simulation of Freezing Process Using a Combined Transfinite Interpolation and

L

PDE Methods
The basic idea behind this work is foilows:

(1) preliminary grids are first generated by an algebraic method, based on a

transfinite interpolation method,

(2) after that, it is s&bseq’{lent refinement using a PDE mapping‘ (farabo]ic gﬁd

‘generation) method. This technique offers advantages over purely algebraic

methods:

» good control over the skewness and spacing of the derived grid on
surface interiors, while simultaneously allowing complete contro] over .

the grid spacing (node distribution) on surface edges as well as moving

boundary
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'S&"*’ » an ability t6 produce unique; stablé, and smooth grid distributions free of

;ﬁl;rior maxima or minima (inflection points) in body-fitted coordinates

s
. Al preliminary case study indicates successful implementation of the novel numerncal -
‘_',J" .

K’//f tec]/mi'que. A two-dimensional thawing and freezing model is validated against available
Analytical-solutidn- and cxpéﬁmental rezuii. Finally, the theoretical and expeﬁméh;al

analysis of thawing process in unsaturated porous media is also performed.

- .d/

ave
1]

Keywords: Thawing, Freezing, Porous Media, Transfinite Interpolation, Moving

Boundary
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Simulation of Melting of Ice under a Constant Temperature Heat Sources Using

a Combined Transfinite Interpolation and PDE Methods

P. Rattanadecho

'Faculty of Engineering, Thammasat University (Rangsit Campus), Pathumthani,

12121, Thailand, E-mail: ratphadu@engr.tu.ac.th
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Abstract

Within the framework of the novel numerical method, this paper presents an efficient
algorithm for solving multidimensional nonlinear heat problem involving phase
change. A numerical study i1s made for melting of ice subjected to a constant
temperature heat source. The algorithmic design is based on two steps, preliminary
grids are first generated by an algebraic method i.¢., a transfinite interpolation method
with subsequent refinement using a PDE mapping (parabotic grid generation) method
in next step. Numerical examples are given for the two melting conditions, low and
very low initial temperatures of ice slab. The accuracy and flexibility of the presented
num_eg'ic_al'methods are verified by comparing the results with existing analytical
solutions. In order to verify the accuracy of the present nﬁmerical study, the simulated -

results are also compared with the experimental results.

Keywords: Melting, Transfinite Interpoiation, PDE Map-ping, Moving boundary
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Abstract

A numerica) study is made of the melting of ice in a rectangular cavity filled with a porous medium subjected to multiple constant temperature
heat sources. Focus is placed on establishing a computationally efficient approach for solving moving boundary heat wransfer problem in a
two-dimensional structured grids. Specific application to multidimensional melting problem with a complicated moving boundary cendition is
considered. Preliminary grids are first generated by an algebraic method, based on a transfinite interpolation method, with subsequent refinement
using a PDE mapping (parabolic grid gencration) method. A preliminary case study indicates successful implementation of the numerical

procedure. A two-dimensional melting model is then validated against available analytical solution and experimental results and subsequently

used as a too! for efficient computational prototyping.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Meliing; Porous media; Transfinite interpolation; Moving boundary

1. Introduction

Transient heat transfer problems involving melting or solidi-
fication are generaliy referred to as “phase change” or “moving
boundary” problems. They are important topics which span a
broad spectrum of scientific and engineering disciplines such
as the freezing or thawing of soil, ice formation, crystal growth,
aerodynamic ablation, casting of metal, food processing and
numerous others. Generally, the solution of moving bound-
ary problem with phase transition has been of special interest
due to the inherent difficulties associated with the nonlinearity
of the interface conditions and the unknown locations of the
arbitrary moving boundaries. Reviews of these problems are
available (Murray and Landis, 1959; Hashemi and Sliepcevich,
1973; Frivik and Comini, 1982; Sparrow and Broadbent, 1983;
Weaver and Viskanta, 1986; Chellaiah and Viskanta, 1988;
Hasan et al., 1991; Charn-Jung and Kaviany, 1992).

F£-mail uddress: ratphadu@engr.tu.ac.th,

0009-2509/% - see front matter © 2006 Elsevier Lid. All rights reserved.
doi:10.1016fj.ce5.2006.02.018

In the past, a variety of conventional numerical technigues
have been developed for solving these problems, including the
enthalpy (Shamsundar and Sparrow, 1976; Crowley, 1978), ap-
parent heat capacity (Bonacina et al., 1973), isotherm..migra:,
tion (Crank and Gupta, 1975}, and coordinate transformation
methods (Hsu et al., 1981; Sparrow and Chuck, 1984; Spar-
row et al., 1978; Cheung et al., 1984, Rattanadecho, 2004a,b).
These methods have been introduced by researchers mainly to
overcome the difficulties in handling moving boundaries. Pre-
vious works on multidimensional moving boundary problems
include Duda et al. (1975), Saitoh (1978), Gong and Mujumdar
(1998), Cao et al. (1999), Khillarkar, et al. (2000), Chatterjee
and Prasad (2000) and Beckett et al. (2001).

Conventionally numerical methods have been widely used
due to easy to handle numerical algorithms for phase change
problem. However, in numerical approximations used in this
method with discontinuous coefficients, often the largest nu-
merical errors are introduced in a neighborhood of the discon-
tinuities particularly for phase change in geometry complexity
as well as boundary condition.
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The troublesome numerical errors in conventional method
are effectively reduced if the grid generation and solution pro-
cedure are separated with the discontinuities and special for-
mujas are used to incorporate the jump conditions directly into
the numerical model. This is the main idea behind this work
considering moving boundary as a parameter.

To create a computational grid in body-fitted coordinates,
two basic steps are required: (1) define an origin point, (2) spec-
ify the distribution (number and spacing) of grid nodes along
the edges of the geometric regions. The antomatic grid gener-

ator then takes over, and using an dlgebraic technique: known:~~

as transfinite interpolation, creates a grid that simultaneously
matches the edge node prescription and conforms to the irreg-
ular edges of the body-fitted geometry. Grid generation by al-
gebraic methods produces high-quality numerical grids and al-
lows for the very efficient integration of the thermal-flow field
physics. Considering grid optimization, the designed grid opti-
mization algorithm improves upon the wransfinite interpolation
method by carrying the grid generation process one step further.
It uses automatically generated grid as an initial approximation
to a higher quality grid system derived utilizing the technique
of PDE grid generation. This technique offers advantages over
purely algebraic methods:

o good control over the skewness and spacing of the derived
grid on surface interiors, while simultaneously allowing com-
plete control over the grid spacing (node distribution) on sur-
face edges as well as moving boundary,

o an ability to produce unique, stable, and smooth grid distri-
butions free of interior maxima or minima (inflection points)
in body-fitted coordinates.

Parabolic grid generation works well with irregularly shaped
geometries and can produce grids that are highly conformal
with the edges of individual computational surfaces. The means
for grid generation should not be dictated by the limitations
of a given specific field solution procedure and conversely the
method that determines the field should accept as input an ar-
bitrary set of coordinate pomts which consmutes the grid. In’
general, of course, these fWo Operations can never e iy
independent because the logistic structure of the information,
the location of outer boundaries, the nature of coordinate and
the types of grid singularities are items that have to be coor-
dinated closely between the field solver and the grid generator
(Eriksson, 1982).

Grid generation for multidimensional geometries using trans-
finite interpolation functions was studied by Coons (1967),
Cook (1974), Gordon and Hall (1973} and Ettouney and Brown
{1983) successfully modeled slightly nonplanar interfaces by
using an algebraic grid generation system where the interface
was described in terms of univariate function.

Although grid generation is the core of most numerical al-
gorithms for phase change problems or nonphase change prob-
lem, little effort has been reported on phase change problems,
particularly the problem which couples the grid generation al-
gorithm with the heat transport equations.

The present paper introduces the novel numerical approaches
for melting probiems which extend the range of initial condi-

P. Rattanadecho / Chemical Engineering Science 61 (2006) 4571 -4581

lion and boundary condition in case of multiple constant tem-
perature heat sources that can be covered. They will also per-
mit a continuous determination of the multidimensional melt-
ing front and indicate the internal temperature distribution with
a greater degree of boundary complexity and offers the highest
overall accuracies and smooth grid point distribution. Numeri-
cally, for generating a boundary/interface fitted coordinate sys-
tem, structured grids are initialized using transfinite interpola-

tion algebraic techniques and the quality of structured grids can |

be significantly improved by applying parabolic-PDE methods.

Thése methods iteratively solve unsteady.conduction’s.equa-

tion together with moving boundary condition dunng the melt-
ing process considering conduction as the only mode of heat
transfer in both the unfrozen layer and the frozen layer.

2. Modeling formulation

The two-dimensional system illustrated schematically in
Fig. 1 is considered. Initiaily, the walls are all insulated and
the rectangular cavity is filled with a porous medium (PM)
consisting of the plass beads and phase change material (PCM)
in the solid state (ice), both at the fusion temperature 7'y. Mul-
tiple constant temperature (Ty) heat sources are located at the
bottom wall. At time ¢ = 0, the melting process upwardly be-
gins. The applicable differential equations for two-dimensional
heat flow with constant thermal properties for the unfrozen
and frozen layers are, respectively,

oh e’ 8’m 'an dz _
T (aﬂ 022 ) + ("aT) ar D
a7, o1, 9\ /0T dz

o (a—z* 2 ) + (‘a?) a @

where the last terms of Egs. {1) and (2) result from a coor-
dinate transformation attached to the moving boundary. In the
unfrozen layer, internal natural convection can be neglected be-
cause the presence of glass beads minimizes the effect of nat-

Eqs. (1) and (2) are based on the followmg assumpnons

(1) the temper'ature fieid can be assumed to be two-
dimensional,

(2) the thermal ethbnum exists between PCM and PM; this
is possible when the porous matrix has a little larger ther-
mal conductivity than the PCM, and the interphase heat
transfer can be properly neglected;

(3) properties of PM are isotropic.

The boundary conditions of Egs. (1) and (2) are:

{a) the localized heating condition at the bottom horizon-
tal wall, where the multiple constant temperature (7y) heat
sources are applied;

xpExsx: T=Ty,
X SX €x0 T=Tpg, .
A S K1t T =Ty, (3

FETI I IN

uraj convection current. . Lo P

V.

.

e
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Fig. 1. Physical model.

(b) adiabatic condition: the walls except the position of lo-
calized heating condition are all insulated;

or or -0 @

ox Oz

(¢) moving boundary condition;

the moving boundary condition (Stefan condition), which
is obtained from a consideration of the energy balance at the
interface between the unfrozen Jayer and frozen layer provides
the following equation:

T oT; Bzmov z BZmov
li=—~=l— ]I =pyls——, 5
(‘az "67.)[_'_(6& /' b, (%)

where Czmay /0t is the velocity of fusion front or meiting front,
and L; the Jatent heat of fusion. To avoid changes in the physical
dimensions as the melting front progresses, p, = p; will be
specified. In this study, the thermal conductivity, 4, and 4; are
bulk-average values for the glass beads and the water or ice,
respectively.

3. Grid generation technique

Generally, two types of structured grid generation are
currentiy in use. They are algebraic method or wansfinite
interpolation method and PDE method. Transfinite interpola-
tion provides a relatively easy way of obtaining an initial grid
that can be refined and smoothed by other techniques, whether
algebraic, PDE method. For more complex geometries, such as
in this wark, it is preferable to construct the grid by transfinite
interpolation initially, and to refine the grid filled in Carte-
sian coordinates in the interior of a domain by parabolic-PDE
method subsequently.

3.1, Transfinite interpolation (TFI)

The method of constructing a two-dimensional boundary-
conforming grid for a system is a direct algebraic approach
based on the concept of TFL In this method, no partial differen-
tial equations are solved 10 obtain the curvilinear coordinates,
and the same system 1s used for the entire domain. The alge-
braic technique can be easier to construct than PDE methods,

w:
u

—_ X

Fig. 2. The paramermic domain with fi, . specified on planes of constant
u.w.

and gives also easier control over grid characteristics such as
orthogonality and grid point spacing. However, this method is
sometimes criticized for allowing discontinuities on the bound-
ary lo propagate into the interior and for not generating grids
as smooth as those generated by PDE method.

The technique used for transfinite interpolation here is a sig-
nificant exiension of the original formulation by Gordon and
Hall (1973). It is possible to initially generate global gnd sys-
tem with geometry specificanons only on the outer boundaries
of the computation domain and yet 10 obtain a high degree of
local control.

Fig. 2 illustrates the present method of constructing a two-
dimensingal boundary-conforming grid for a system, which is
a direct algebraic approach based on the concept of transfinite
or multivariate interpolation. It is possible to initally generate
global single plane transformations with geometry specifica-
tions only on outer boundaries of the computational domain.

Let f(u, w) = (x(u, w), z{x, w)) denote a vector-valued
function of two parameters u,w defined on the region
Uy S HSUmax, W SWSHmax. This function is not known
throughout the region, only on certain planes (Fig. 2). The
transfinite interpolation procedure then gives the interpolation
function fu, . by the recursive algorithm:

(1
f(u,)'u.',l =A 1(u) f(l.w) + Az(ﬂ) ' f("m;«x.wﬁ

(1 a
Sonwy = f(,h)w} + Biw Uty — f(,,l]“]
)
+ Bg(w) : [f(!‘-“'nm} = f((u.)uu,\_.\}]‘ (6)

where Ay, Aaun. Brwy and Bagy,) are defined by the set
of univariate blending functions, which only have 10 satisfy
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the conditions:

Ay =1 Alun =0,
Axn=0. Axp=l.
Biiy=1. Bitum) =0
By =0, B =1. )]

Further, the general form in algebraic equations can be defined
a3
cu Mg EH-

Al(u) = f JL-‘;‘F.s.(u') =

Hmax — |

Wmax = W
Biw) = ————. - Bawy =1 = Byqu). (8)
Winax — 1 :

The grid motion defined from a moving boundary motion is
modeled using a Stefan condition (Eq. (§)) with a transfinite
mapping technigque.

The boundary fitted grid generation mapping discussed in
this section forms the basis for the interface tracking mapping.
However, the mapping now must match the interface curve on
the interior of physical domain in addition to fitting the outer
physical boundary. In addition, the system must be adaptive
since the grid lines must change to follow the deforming inter-
face while maintaining as much smoothness and orthogonality

as possible.

3.2. PDE method

In the proposed grid generation mapping, all grids discussed
and displayed have been couched in terms of finite difference
formulation, with the understanding that whatever nonuniform
grid exists in the physical space, there exists a transformation
which will recast it as a uniform rectangular grid in the compu-
tational space. The finite difference calculations are then made
over this uniform grid in the computational space, after which
the field resuits are ransferred directly back to the correspond-

ing. paints.in.the physical space. The purpose of generating a

~smooth grid that conforms to physical boundaries of problem -

is, of course, 10 solve the partial differential equations specified
in the problem by finite difference scheme, capable of handling
general nonorthogonal curvilinear coordinates.

Fig. 1 shows that, as melting proceeds, the melting front de-
noted by zmov 15 formed. Due to the existence of this melting

front, the frozen and unfrozen domains are irregular and time

dependent. To avoid this difficuity, a curvilinear system of co-
ordinates is used to transform the physical domain into rectan-
gular region for the computational domain.

It is convenient to introduce a general corvilinear coordinate
system as follows (Anderson Jr., 1995);

n=mnix2).

9

x=x(E ), z=z{lm) or {=&(x,2)

The moving boundaries are immobilized in the dimension-
less (&, 57} coordinate for all times. With the details omitted,
the transformation of Eqgs. (1), (2) and (5) can be written

i,
i

1 - A, S

. P | sty P AL
- y:x?-&-zg and-x x,,, z
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X { -+ (J [Zq aq, Z‘f B);

' aZmov (1 2)

where J = ¢ -z,,-—x,, z a-*x,, +z,,, B=x¢ xy+ze 2

oy 21 25 denote partial derivatives, J
is the Jacobian, 8. %, y are the geometric factors; and #, ¢ are
the transformed coordinates. .

4..Solution method

It is known that the inherent difficulties in the conventional
numerical methods (pure parabolic grid generators) for melting
or freezing problems suggest the use of combined transfinite in-
terpolation and PDE methods in most instances. Although con-
ventional numerical methods can be used to obtain satisfactory -
results, there are problems of large time consumption and con-
trol functions that are often difficult to determine, Therefore,
the new method presented in this paper is generally preferable
because it offers the highest overal) accuracies and smooth grid
point distribution. In addition, the boundary point discontinu-
ities are smoothed out in the interior domain and orthogonality
at boundaries can be maintained.
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solution in the melt and a linear temperature distribution in the VX it Xk i1
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be neglected as zmovyy Was sufficiently small. The transient Sk, i} 240

heat equations (Eqgs. (10) and (11)) and the Stefan condition TRk 4 1,0) —~ Trn+] k—1,0
(Eq. (12)) are solved by using finite difference methed using x [ 4 A ) xdz(k, i) ],
parameter values obtained from Table 1. A system of nonlinear ! (13)

equations results whereby each equation for the internal nodes
can be c‘ast into a numgncal discretization. Transient heat equation for frozen layer:
Transient heat eguation for unfrozen layer:
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The detzils of computational schemes and strategy for
solving the combined transfinite interpolation functions (Egs.
{6)—(8)) and PDE (Eqs. (13)~(15)) are illustrated in Fig, 3.

(15)

5. Results and discussion

* Nuomerical results are obtained for phase change in a rectan-
gular cavity filled with a porous medium. The calculations are
performed under the following conditions:

{1) The time step of df = 0.1 (s) is used for the computation
of temperature field and location of melting front.
(2) The number of cells is N = 120 (width) x 100 (depth).

P Ratianadeche / Chenical Engireering Science 61 (2006) 4571 -4581

Initial input

Melting front
conditions

Fig. 3. Strategy for calculation.

(3) Iterations are carried out until relative error of 1078 are

reached.

In order to verify the accuracy of the present numerical al-
gorithm, it is validated by performing simulations for a planar
melting front in a pure ice slab. Initially, the temperature of
0°C is assigned throughout each layer. Thereafter, the constant

tom wall. The calculated front location is based on the thermal
properties of ice and water. The results are then compared with
analytical solution for the melting of a pure ice slab at the same
condition. Fig. 4 clearly shows a good agreement between sim-
uiated and analytical solutions. Therefore, the present method
can yield accurate solutions.

Fig. 5 shows the measured and simulated results of the melt-
ing front during melting of ice in a rectangular cavity filled with
a porous medium. In this comparison, the single constant tem-
perature heat source, Ty = 100°C, is applied. The observation
of the melting front depicted from the figure reveals that the
simulated resuits and experimental results are qualitatively con-
sistent. However, the experimental data are significantly lower
than the simulated results. The spreading of the melt in the
x-direction from experimental results is clearly shown. Dis-
crepancy may be attributed to heat loss and nonuniform heating
effect along the surface of supplied load. Numerically, the dis-
crepancy may be attributed to uncertainties in the thermal and

. temperature heat source {7y = 100°C) is imposed cn the bot= ...
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Fig.' 5. Comparison of experimental data and simulated melting front from
present numerical study.

Ly

physical properties data. In addition, the source of the discrép-
ancy may be attributed to natural convection effect in liquid.

5.1. A melting front tracking grid generation system

The purpose of this subsection is to illustrate the efficiency
of the grid generation system during the melting of ice in a
rectangular cavity filied with a porous medium (porosity, ¢ =
0.38) subjected to multiple constant temperature heat sources.
Fig. 6(a) shows the initial reference gnd for the domain gen-
erated by pure transfinite interpolation method. Figs. 6(b)<g}
show grids that fit curves that are typical of shapes seen during
deformation of an interface with respect to elapsed times. The
calculated front locations correspond the initial temperature of
0°C and applied boundary condition (Tx = 90°C) given by
Eq. (3). Tt can be seen how melting fronts progress with re-
spect to elapsed times. During the initial stages of melting the
shape of the interface in each region becomes flatter as the

< PR VIR EY SR R TS PR

" _shows signs of melting, while the outer edgés display no ob- !

4577

melting front moves further away from the fixed boundaries in-
dicating principally one-dimenisional heat flow. At Tater times,
the curve on the interface gradually flattens indicating the two-
dimenisonal effect.

In all figures, it is found that the grid is able to maintain a sig-
nificant amount of orthogonality and smoothness both within
the interior and along the boundary as the grid points redis-
tribute themselves to follow the interface. These results show
the efficiency of the present method for the moving boundary
pmblem

g ’_ -
. __.....nu e

W

5.2, Me!rmg process .

The present work is to couple the grid generation algorithm
with the transport equations. The thermal analysis during melt-
ing process will be discussed in this subsection. The simulations
of temperature distribution within rectangular cavity filled with
porous media in the vertical plane (x —z) corresponding to grid
simulating the deformation of an interface (Figs., 6(a)}-(g)) are
shown in Figs. 7(a){g). When multiple constant temperature
heat sources are applied, heat is conducted from the hotter re-
gion in unfrozen layer to the cooler region in frozen layer. At
the initial stages of melting, the melting fronts remain square
in shape indicating principally one-dimensional heat fiow as
explained in the previous subsection. Later, the melting fronts
gradually exhibit a shape typical for two-dimenisonal heat con-
duction dominated melting. As the melting process persists, the
melting rate progresses slowly. This is because most of heat
conduction takes place the Jeading edge of unfrozen layer (melt
layer) which is located further from frozen layer. Consequently,
small amount of heat can conduct to the frozen layer due to
the melt layer acting as an insulator and causing a slowly melt-
ing fronts to move with respect to elapsed times. It is observed
that as the melting progresses, the melt layers at the leading
edge expand wider but it expands less at the position further
away from the applied boundary condition surface due to the
phenomenon of heat transport as explained above.

It is observed that each hot region of the rectangular cavity

vious sign of melting indicating that the temperature does not
exceed 0°C. Nevertheless, the leading edge of applied bound-
ary condition surface displays sign of melting continuously.

This study shows the capability of the present method 1o cor-
rectly handle the phase change problem. With further quantita-
tive validation of the present method, this method can be used
as a tool for investigating in detail this particular melting of
phase change slab at a fundamental level.

6. Conclusions

Mesh quality has the largest impact on solution quality.
A high-quality mesh increases the accuracy of the compu-
tational thermal flow solution and improves convergence.
Therefore, it is important to provide tools for cbtaining and
improving a mesh.

In this study, melting of ice in a rectangular cavny filled with
a porous medium sub_]eclcd o multiple constant temperamre

B IR T
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Fig. 6. Grid simulating the deformation of an interfuce: (a) the imtial reference grid for the domain (generuated by pure transfinile interpolation methad), (b)
melting nme of 685, (¢) meiting time of 1205, (¢) melting time of 1805, (e} mehing lime of 2405, (f) meliing time of 300s, wnd (g) meking time of 360s.
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Abstract

A numerical study is made of the freezing of water-saturated porous media in a rectangular cavity subjected 19 multiple heat sources with different
temperature. Focus is placed on establishing a computationally efficient approach for solving multi-dimensional moving boundary problem in a
two-dimensional structured grids. Preliminary grids are first generated by an algebraic method, based on a transfinite interpolation method, with
subsequent refinement using a PDE mapping (parabolic grid generation) method. A preliminary case study indicates successful implementation
of the numerical procedure. A two-dimensional freezing model is validaled against available analytical solution and experimental results.

@ 2006 Elsevier Ltd. All rights reserved.

Keywaords: Freezing: Porous media; Transfinite interpolation; Moving boundary

1. Introduction

Transient heat transfer problems involving melting or solidification are generally referred to as “phase change” or “moving
boundary” problems. They are an imporiant topics which spans a broad spectrum of scientific and engineering disciplines such as
the freezing or thawing of soil, ice formation, crystal growth, aerodynamic ablation, casting of metal, food processing and numerous
others. Generally, the solution of moving boundary problem with phase transition has been of special interest due to the inherent
difficulties associated with the non-linearity of the interface conditions and the unknown locations of the arbitrary moving boundanes.
The some up to date ieviews of these problems are available (Cham-Jung & Kaviany, 1992; Chellaiah & Viskanta, 1988; Frivik &
Comini, 1982; Hasan, Mujumdar, & Weber, 1991; Hashemi & Stiepcevich, 1973; Murray & Landis, 195 Spurrow & Broadbent,
1983; Weaver & Viskanta, 1986).

In the past, a variety of conventional numerical techniques have been developed for solving these problems, including the enthaipy
(Crowley, 1978; Shamsundar & Sparrow, 1976), apparent heat capacity (Bonacina, Comini, Fasano, & Primicerio, 1973), isotherm
migration (Crank & Gupta, 1975), and coordinate transformaton methods (Cheung, Chawla, & Pedersen, 1984; Hsu, Sparrow,
& Patankar, 198); Sparrow & Chuck, 1984, Sparrow, Ramadhyani, & Patankar, 1978; Rattanadecho, 2004a, b). These methods
have been introduced by researchers mainly to overcome the difficulties in handling moving boundaries. Previous works on mult-
dimensional moving boundary problems include Duda, Malone, Notter, and Vrentas (1975), Saitoh (1978), Gong and Mujumdar
(1998), Cao, Huang, and Russell (1999), Khillarkar, Gong, and Mujumdar (2000), Chartterjee and Prasad (2000), and Beckett,
MacKenzie, and Robertson (2001).

Conventionally numencal methods have been widely used due te 2asy to handle numerical algorithms for phase change problem.
However, in numerical approximations used in this method with discontinuous coefficients, often the largest numerical errors are

* Corresponding author.
E-mmail address: ratphadu®engr.tu.ac th (P. Rattanadecha),

0098-1354/S — see fronl marter @ 2006 Elsevier Ltd. All rights reserved.
doi. 10, 3016/j.compehemeng.2006.07.016

Please cite this article as: P Rattanadecho, §. Wongwises, Sinuiation of freezing of water-saturated porous media in a rectangular cavity
under muluple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical
Engineering (2006). doi:10.1016/}.compchemeng.2006.07.016
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Nomenclature
a thermal diffusivity (m?/s)
Cy specific heat capacity (J/kg K}
L latent heat (J/kg)
T temperature (°C)
! time (s)
X,z Cartesian coordinates
Greek symbols
A effective thermal conductivity (W/m X)) - il
¢ porosity '
Subscripts
f fusion
i initial
i layer number
} unfrozen
mov moving boundary '
3 frozen |

introduced in a neighborhood of the discontinuities particularly for phase change in geometry complexity as well as boundary
condition.

The troublesome numerical errors in conventional method are effectively reduced if the grid generation and solution procedure
are separated with the discontinuites and special formulas are used to incorporate the jump conditions directly into the numerical
model. This is the main idea behind this work considering moving boundary as a parameter.

To create a computational grid in body-fitted coordinates, two basic steps required: (1) define an origin point and (2) specify the
distribotion (number and spacing) of grid nodes along the edges of the geometric regions. The automatic gnd generator then takes
over, and using an algebraic technique known as transfinite interpolation, creates a grid that simultaneously matches the edge node
prescription and conforms to the irregular edges of the body-fitted geometry. Grid generation by algebraic methods produces high-
quality numenical grids and allow for the very efficient integration of the thermal-flow field physics. Considering grid optimization,
the designed grid optimization-algorithm improves upon the transfinite interpolation method by carrying the grid generation process
one step further. It uses automatically generated grid as an inital approximation to a higher quality grid system derived utlizing the
technique of PDE grid generation. This technique offers advantages over purely algebraic methods:

e Good contro] over the skewness and spacing of the derived grid on surface interiors, while simultaneously allowing complete
control over the grid spacing (node distribution) on surface edges as well as moving boundary.
e An ability to produce unique, stable, »nd emncids grid distributions free of interior maxima or minima (inflection points) in

body-fitted coordinates.

Parabolic grid generation works well with irregularly shaped geometries and can produce grids that are highly conformal with the
edges of individual computational surfaces. The means for grid generation should not be dictated by the limitations of a given specific
field solution procedure and conversely the method that determines the field should accept as input an arbitrary set of coordinate
points which constitutes the grid. In general, of course, these two operations can never be totally independent because the logistic
structure of the information, the location of outer boundaries, the nature of coordinate and the types of grid singularities are items
that have to be coordinated closely between the field solver and the grid generator (Eriksson, 1982).

Grid generation for multi-dimensional geometries using transfinite interpolation functions was studied by Coons (1967}, Cook
(1974}, Gordon and Hall (1973}, and Ettouney and Brown {1983) successfully modeled slighty non-planar interfaces by using an
algebraic grid generation system where the interface was described in terms of univariate function.

Although grid generation is the core of most numerical algorithms for phase change problems or non-phase change problem,
Iittle effort has been reported on phase change problems, particularly the problem which couples the grid generation algonthm with
the heat transport equations.

The present paper introduces the novel numerical approaches for freezing problems, which extend the range of initial condition
and boundary conditions in case of multiple heat sources with different temperature that can be covered. They will also permit a
continuous determination of the mulg-dimensional freezing front and indicate the internal temperature distribution with a greater
degree of boundary complexity and offers the highest overall accuracies and smooth grid point disuwibution. Numerically, for

Please cite this article as: P. Rattanadecho, §. Wongwises, Simulaton of freezing of water-saturated porous media in a rectangular cavity
under muliipie heat sources with different temperature using a combined transfinite interpotation and PDE methods, Computers and Chemical

Engineering (2006), doi: 10.1016/j.compchemeng.2006.07.016
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generating a boundary/interface fitted coordinate system, structured grids are initialized using transfinite interpolation algebraic
techniques and the quality of structured grids can be significantly improved by applying parabolic-PDE methods. These methods
iteratively solve unsteady conduction’s equation together with moving boundary condition during the freezing process considering
conduction as the only mode of heat transfer in both the unfrozen layer and the frozen layer.

2. Modeling formulation

The two-dimensional system ilustrated schematically inFig. 1 is considered. Initially, the walls are all insulated and the rectangular
cavity is filled with a porous medjum (PM) consisting of the glass beads and phase change material (PCM) in the liguid state (water),
both at the fusion temperature 77 (0 °C). Multple heat sources with specified temperature (7)) are located at the lop wall. At time
r=10, the freezing process downwardly begins, The applicable differential egnations for two-dimensional heat flow with constant
thermal properties for the unfrozen and frozen layers are, respectively: o

a7 a1 N al‘n) . (3?‘1 dz W
— =0 _ —_— i —
ar N\ T a2 3z / dr
aT, a1, T T\ d
e} = g _—-'25 25 + — _Z (2)
or ax az daz J dt

where the last terms of Eqgs. (1) and (2) result from a coordinate transformaton attached 10 the moving boundary. In the unfrozen
layer, if internal natural convection can be neglected because the presence of glass beads minimizes the effect of natura) convection

current.
Eqgs. (1} and (2) are based on the following assumptions.

(1) the temperature field can be assumed to be two-dimensional,
(2) the thermal equilibrium exists between PCM and PM; this is possible when the porous matrix has a little larger thermal

conductvity than the PCM, and the interphase heat transfer can be properly neglected,
(3) properties of PM are isotropic.

The boundary conditions of Eqs. (1) and (2) are:

(a) the localized freezing condition at the top horizontal wall, the multiple heat sources with specified temperature (1) are applied:
2 T=T1, X X 2xe: T=T1, mEx<Lin: T=T1L (3)

where various subseripts of x denote the regions for applying heat sources with strip length of 10 num in each region. In addition,
for the case of the freezing of water-saturated porous media in a rectangular cavity subjected to multiple heat sources with
different temperature, the temperatures (71) in each region are different.

(b) adiabatic condition: the walls are all insulated

o 9T _ @
ax 8z

(c) moving boundary condition:

L R AR RGO N N '_=-.'.-

Ingulaton

Fig. 1. Physical model.
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The moving boundary condition (Stefan condition), which is obtained from a consideration of the energy balance at the
interface between the frozen layer and unfrozen layer provides following equation:

a7 a7 9Zmav 2 OZmov
As— —A— | |1 = psL .
(saz IHZ)[+(BX) LsLig a &)

where 8zmqy/0; 15 the velocity of fusion front or freezing front, and Ly is the latent heat of fusion. To avoid changes in the physical
dimensions as the freezing front progresses, p; =2 will be specified. In this study, the thermal conductivity, A is bulk-average
value for the glass beads and water and A, 1s bulk-average value for the glass beads and ice.

3. Grid generation technique

Generally, two types of structured grid generation are currently in use. They are algebraic methed, i.e., transfinite interpolation

method and PDE methods. Transfinile interpolation provides a relatively easy way of obtaining an initial grid that can be refined

and smoothed by other techniques, whether algebraic, PDE method.

The main idea behind this work, prior to generation of grids by PDE methods, it is preferable 1o obtain first preliminary grids
using the algebraic methed, i.e., transfinite interpolation technique. The combined transfinite interpolation and PDE method is used
to achieve a smoother grids point distribution and boundary point discontinuities are smoothed out in the interior domain.

3.1, Transfiniie interpolation (TF1}

The method of constructing a two-dimensional boundary-conforming grid for a system is a direct algebraic approach based on the
concept of TFI. In this method, no partial differential equations are solved to obtain the curvilinear coordinates, and the same system
is used for the entire domain. The algebraic technique can be easier to construct than PDE methods, and gives also easier control
over grid characteristics such as orthogonality and grid point spacing. However, this method is sometime criticized for allowing
discontinuities on the boundary 10 propagate into the interior and for not generating grids as smooth as those generated by PDE

method.

The technique used for transfinite interpolation here is a significant extension of the orginal formulation by Gerdon and Hall
(1973). It possible to initially the generate global prid system with geometry specifications only on the outer boundaries of the

computation domain and yet to obtain a high degree of local control.

Fig. 2 illustrates the present method of constructing a two-dimensional boundary-conforming grid for a system, which is a direct
algebraic approach based on the concept of transfinite or multivariate interpolation. It is possible to initially generate global single

plane transformations with geometry specifications only on outer boundaries of the computational domain.

Let f(u,w)= (x(u, w), z(u, w)) denote a vector-valued functon of two parameters », w defined on the region 1) < 4 < umax,
w] £ W < Wma. This function is not known throughout the region, only on certain planes (Fig. 2). The transfinite interpolation

procedure then gives the interpolation function fi, 4 by the recursive algorithm:

(1 1 . - 1
f(u.;tu) = A filw) + AZ(:r)f(um,.w)s f(u,w) £ f((u‘)w) + Byl 1 - ‘{_,._}l)j + BZ(W)[ﬁlt.wm) - f((u_)wmm)] (6)
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Fig. 2. The parametnic domain with [, u) Specified on planes of constant u, w.
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where A1, A20, Bigw) and Bagyy are defined by the set of univariate blending functions, which only have Lo salisfy the conditions:

Ay =1 Alpe =0 Az =0 Axup =15 By =1, Bi(waw =0
Further, the general form in algebraic equations can be defined as:
u — U w - w
Ay = —= v Ay =1 — Ay, Biw) = ————. By = | — Biw)
U max l max — 1

Bxny =0, Baum) =1

M

&

'The grid moticn defined from a moving boundary motion is modeled using a Siefan condition (Eg. {5)) with a transfinite mapping

technique.

The boundary firted grid generation mapping discussed in this section forms the basis for the interface-tracking mapping. However,
the mapping now must match the interface curve on the interior of physical domain in addition to fitting the cuter physical boundary.
In addition, the system must be adaptive since the grid lines must change to follow the deforming interface while maintaining as

much smoothness and orthogonality as possible.

3.2. PDE method

In the proposed grid generation mapping, all grids discussed and displayed have been couched in terms of finite difference
formulation, with the understanding that whatever non-uniform grid exists in the physical space, there exists a transformatian, which
will recast it as a uniform rectangular grid in the compuiatonal space. The finite difference calculations are then made over this
wniform grid in the compuiational space, after which the field results are transferred directly back to the corresponding points in the
physical space. The purpose of generating a smooth grid that conforms to physical boundaries of problem is, of course, to solve
the partial differential equations specified in the problem by finite difference scheme, capable of handling general non-orthogonal

curvilinear coordinates.

Fig. ] show that, as freezing proceeds, the freezing front denoted by zmoy is formed. Due 1o the existence of this freezing front,
the frozen and unfrozen domains are irregular and time dependent. To avoid this difficulty, a curvilinear system of coordinates is

used to transform the physical domain into rectangular region for the computational domain.

It is convenient to introduce a general curvilinear coordinate system as follows (John & Anderson, 1995):

X = “‘(&! 77): &= Z(E’ ,?) or ‘E = g(xv Z)v 17 = ﬂ(xt Z)

&)

The moving boundaries are immobilized in the dimensionless (£, n) coordinate for all imes. With the details omitted, the transfor-

mation of Egs. (1), (2) and (5) can be written respectively as:
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where J=xpzy — Xp2p, @ = x% + z%, B=xxy+zitn, ¥ = xg + zg, and x¢, x5, zx and z; denote partial derivatives, J the Jacobian, §,

«, y the geometric factors and 7, £ are the transformed coordinates.
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4, Solution method

It is known that the inherent difficulties in the conventional numerical methods (pure parabolic grid generators) for freezing
problems suggest the use of combined transfinite interpolation and PDE methods is most instances. Although conventional numerical
methods can be used to obtain satisfactory results, problems of large time consumption and control functions that are often difficult
to determine, are involved. Therefore, the new method presented in this paper is generally applicable, and offers the highest overall
accuracies and smooth grid point distribution. In addition, the boundary point discontinuities are smoothed out in the interior domain
and erthogonality at boundaries can be maintained.

In this study, in order 10 initiate numerical simulation, a very thin layer of freeze with a constant thickness zmoewg) Was assumed
to be present. This initial condition is obtained from the Stefan sclution in the frozen layer and a linear ternperature distribution in
the uniivzen layer. Tasts revealed that.the influence of zmevioy could be neglected as z,,,voy was sufficiently smalf The rransient
heat equations (Eqgs. (10) and (11)) and the Stefan condition (Eq. (12)) are solved by using finite difference method using parameter
values obtained from Table 1. A system of non-linear equations results whereby each equation for the intermnal nodes can be cast into
a numerical discrefization:

Transient heat equation for unfrozen layer:

a4+ 1 N 1
7‘] (kl l) - 2 ' ; 1
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Table } .
Thermal property of the unfrozen layer and frozen layer
Propertics Unfirozen layer Frozen Jayer
p (kginy') 1942.0 1910.0
a (m3fs) 0.210 x 107% , ' 0.605 x 107
A (WimK) 0.855 1.480
Cp (Jg K) 2.099 x 10° 1.281 % 10°
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Fig. 4. Validation testes for a planar freezing front in a reclangular phase-change Slab.
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