P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

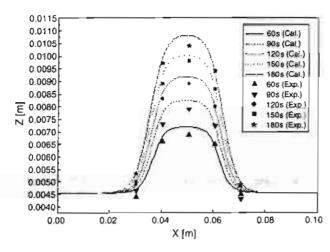


Fig. 5. Comparison of experimental data and simulated freezing front from present numerical study.

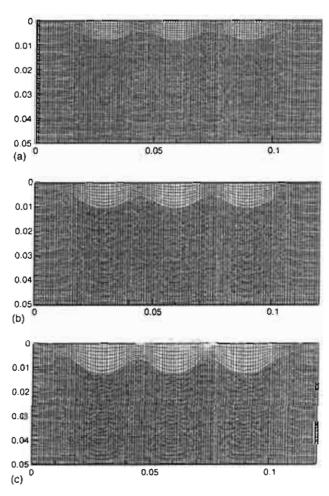


Fig. 6. Grid simulating the deformation of an interface (subjected to multiple constant temperature heat sources): freezing time of (a) 60 s, (b) 120 s, and (c) 180 s.

Transient heat equation for frozen layer:

$$T_{s}^{n+1}(k,i) = \left(\frac{1}{1 + (2a_{s}\Delta t/(J^{2}(k,i))((\alpha(k,i)/\Delta\zeta\Delta\zeta) + (\mathring{\gamma}(k,i)/\Delta\eta\Delta\eta)))}\right)$$

$$\times \left(T_{s}^{n}(k,i) + \frac{a_{s}\Delta t}{J^{2}(k,i)} \times \left(\alpha(k,i)\frac{T_{s}^{n+1}(k,i+1) + T_{s}^{n+1}(k,i-1)}{\Delta\zeta\Delta\zeta}\right)\right)$$
191

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-sit urac d porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/i.compchemeng.2006.07.036

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

$$-2\beta(k,i)\left(\left(\frac{T_{s}^{n+1}(k+1,i+1)-T_{s}^{n+1}(k-1,i+1)}{2\Delta\eta}\right)\right)$$

$$-\left(\frac{T_{s}^{n+1}(k+1,i-1)-T_{s}^{n+1}(k-1,i-1)}{2\Delta\zeta}\right)/2\Delta\zeta+\gamma(k,i)\left(\frac{T_{s}^{n+1}(k+1,i)+T_{s}^{n+1}(k-1,i)}{\Delta\eta\Delta\eta}\right)\right)$$

$$+\frac{a_{s}\Delta t}{J^{3}(k,i)}\left(\left(\alpha(k,i)\frac{X(k,i+1)-2X(k,i)+X(k,i-1)}{\Delta\zeta\Delta\zeta}\right)\times\left(\left(\frac{Z(k,i+1)-Z(k,i-1)}{2\Delta\zeta}\right)\right)$$

$$\times\left(\frac{T_{s}^{n+1}(k+1,i)-T_{s}^{n+1}(k-1,i)}{2\Delta\eta}\right)-\left(\frac{Z(k+1,i)-Z(k-1,i)}{2\Delta\eta}\right)$$

$$\times\left(\frac{T_{s}^{n+1}(k,i+1)-T_{s}^{n+1}(k,i-1)}{2\Delta\zeta}\right)+\alpha(k,i)\left(\frac{Z(k,i+1)-2Z(k,i)+Z(k,i-1)}{2\Delta\eta}\right)$$

$$-2\beta(k,i)\left(\left(\frac{Z(k+1,i+1)-Z(k-1,i+1)}{2\Delta\eta}\right)-\left(\frac{Z(k+1,i-1)-Z(k-1,i-1)}{2\Delta\zeta}\right)\right)/2\Delta\zeta$$

$$+\gamma(k,i)\left(\frac{Z(k+1,i)-2Z(k,i)+Z(k-1,i)}{\Delta\eta\Delta\eta}\right)\times\left(-\frac{(X(k,i+1)-X(k,i-1))}{2\Delta\zeta}\right)$$

$$\times\left(\frac{T_{s}^{n+1}(k+1,i)-T_{s}^{n+1}(k-1,i)}{2\Delta\eta}\right)+\frac{1}{J(k,i)}\left(\frac{X(k,i+1)-X(k,i-1)}{2\Delta\zeta}\right)$$

$$\times\left(\frac{T_{s}^{n+1}(k+1,i)-T_{s}^{n+1}(k-1,i)}{2\Delta\eta}\right)\times\mathrm{d}_{Z}(k,i)\right)$$

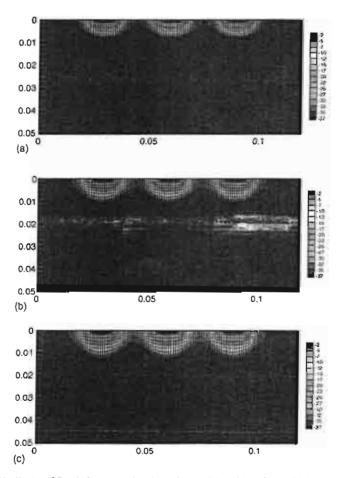


Fig. 7. The simulations of temperature distribution (°C) within rectangular phase change slab (subjected to multiple constant temperature heat sources): freezing time of (a) 60 s, (b) 120 s, and (c) 180 s.

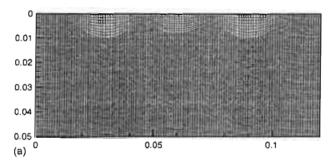
Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

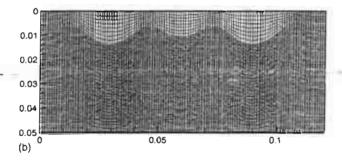
9

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

Stefan condition:

$$Z^{n+1}(k,i) = Z^{n}(k,i) + \frac{\Delta T}{\rho_{s}L_{s}} \times \left[\left(\frac{\lambda_{s}}{J(k-1,i)} \times \left(\frac{X(k-1,i+1) - X(k-1,i-1)}{2\Delta \zeta} \right) \right. \\ \left. \times \left(\frac{3T(k,i) - 4T(k-1,i) + T(k-2,i)}{2\Delta \eta} \right) - \frac{\lambda_{1}}{J(k+1,i)} \times \left(\frac{X(k+1,i+1) - X(k+1,i-1)}{2\Delta \zeta} \right) \right. \\ \left. \times \left(\frac{-3T(k,i) + 4T(k+1,i) - T(k+2,i)}{2\Delta \eta} \right) \right) \\ \left. \times \left(1 + \left(\left(\frac{Z(k+1,i) - Z(k-1,i)}{2\Delta \eta} \right) \times \left(\frac{Z^{n}(k+1,i) - Z^{n}(k-1,i)}{2\Delta \zeta} \right) \right) \right] \right.$$


$$\left. - \left(\frac{Z(k,i+1) - Z(k,i-1)}{2\Delta \zeta} \right) \times \left(\frac{Z^{n}(k,i+1) - Z^{n}(k,i-1)}{2\Delta \eta} \right) \right)^{2} \right) \right]$$


$$(15)$$

The details of computational schemes and strategy for solving the combined transfinite interpolation functions (Eqs. (6)–(9)) and PDE (Eqs. (13)–(15)) are illustrated in Fig. 3.

5. Experiment

The freezing experiments are performed in a rectangular test cell filled with a porous medium (porosity, $\phi = 0.38$) with inside dimensions of 10 cm in length (x), 5 cm in height (z) and 2.5 cm in depth (y). The partial horizontal top wall and bottom wall and

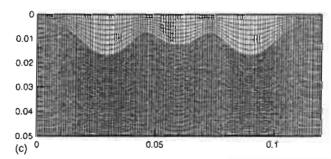


Fig. 8. Grid simulating the deformation of an interface (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s, (b) 120 s, and (c) 180 s.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

10

213

214

215

210

217

219

220

221

225

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

31

the vertical front and back walls are made of acrylic resin. The entire test cell is covered with 8 cm thick Styrofoam on all sides to minimize the effect of heat losses and condensation of moisture at the walls. The partial top wall, which serves as a constant temperature heat source, is multi-pass heat exchanger. Heat exchanger is connected through a valve system to constant temperature bath where the liquid nitrogen is used as the cooling medium. Thirty thermocouples with diameter of 0.15 mm are placed at interval of 10 mm throughout the axis of a sample (x and z planes). These thermocouples are connected to data-logger and computer through which the temperatures could be measured and store at preselected time intervals. The positions of freezing front in the sample are determined by interpolating the fusion temperature from the thermocouple reading.

The uncertainty in the results might come from the variations in humidity, room temperature and human error. The calculated uncertainty associated with temperature is less than 2.75%. The calculated uncertainties in all tests are less than 2.85%.

6. Results and discussion

Numerical results are obtained for phase change in a rectangular cavity filled with a porous medium. The calculation are performed under the following conditions:

frage William to

- (1) The time step of dt = 0.1 [s] is used for the computation of temperature field and location of freezing front.
- (2) The number of cells is N = 120 (width) $\times 100$ (depth).
- 226 (3) Iterations are carried out until relative error of 10⁻⁸ are reached.

In order to verify the accuracy of the present numerical algorithm, it is validated by performing simulations for a planar freezing front in a water-saturated porous media in a rectangular cavity with a dimension of $10 \text{ cm}(x) \times 5 \text{ cm}(z)$. Initially, the temperature of

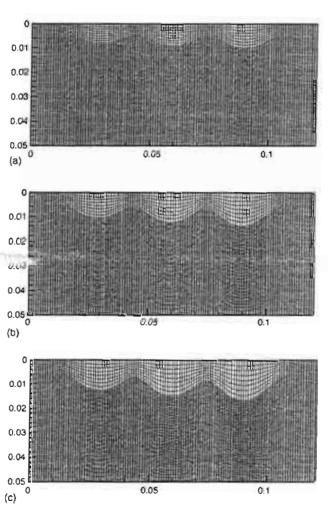


Fig. 9. Grid simulating the deformation of an interface (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s. (b) 120 s. and (c) 180 s.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10:1016/j.compchemeng.2006.07.016

12

227

939

248

249

250

0 °C is assigned throughout each layer. Thereafter, one constant temperature heat source ($T_L = -40$ °C) with strip length of 10 mm is imposed on the top wall. The calculated front location is based on the thermal properties of ice and water. The results are then compared with analytical solution for the freezing of water-saturated porous media in a rectangular cavity at the same condition. Fig. 4 clearly shows a good agreement between simulated and analytical solutions. Therefore, the present method can yield accurate solutions.

Fig. 5 shows the measured and simulated results of the freezing front during freezing of water-saturated porous media in a rectangular cavity with a dimension of $10 \,\mathrm{cm}(x) \times 5 \,\mathrm{cm}(z)$. In this comparison, one constant temperature heat source, $T_L = -40 \,^{\circ}\mathrm{C}$, is applied. The observation of the freezing front depicted from the figure reveals that the simulated results and experimental results are qualitatively consistent. However, the experimental data is significantly lower than that simulated results. Discrepancy may be attributed to heat loss and non-uniform heating effect along the surface of supplied load. Numerically, the discrepancy may be attributed to uncertainties in the thermal and physical properties data. In addition, the source of the discrepancy may be attributed to natural convection effect in liquid.

6.1. Freezing process with multiple constant temperature heat sources

The purpose of this subsection is to illustrate the efficiency of the grid generation system during the freezing of water-saturated porous media in a rectangular cavity with a dimension of $12 \text{ cm}(x) \times 5 \text{ cm}(z)$ (porosity, $\phi = 0.38$) subjected to multiple constant temperature heat sources (three heat sources with strip length of 10 mm in each region). Fig. 6(a) through (c) show grids that fit curves that are typical of shapes seen during deformation of an interface with respect to elapsed times. The grid generation corresponds to the initial temperature of 0° C and applied boundary condition ($T_{L} = -40^{\circ}$ C) given by Eq. (3). It can be seen how freezing fronts progress with respect to elapsed times. During the initial stages of freezing the shape of the interface in each region becomes flatter as the freezing front moves further away from the fixed boundaries indicating principally one-dimensional heat flow. As later times, the curve on the interface gradually flattens indicating the two-dimensional effect. In all figures, it is found that the grid is able to maintain a significant amount of orthogonality and smoothness both within the interior and along the boundary as the grid points

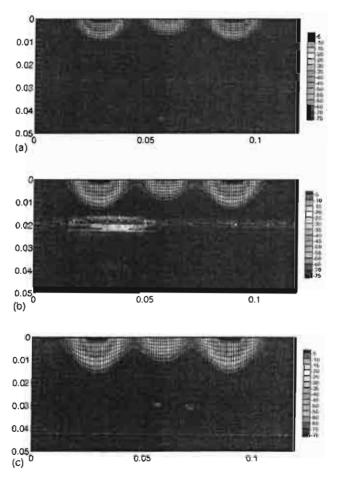


Fig. 10. The simulations of temperature distribution (°C) (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s, (b) 120 s, and (c) 180 s.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

A - Print Displace

261

282

redistribute themselves to follow the interface. These results show the efficiency of the present method for the moving boundary problem.

The simulations of temperature distribution within rectangular cavity filled with porous media in the vertical plane (x-z) corresponding to grid simulating the deformation of an interface (Fig. 6(a)–(c)), are shown in Fig. 7(a)–(c). Since the present work is to couple the grid generation algorithm with the transport equations, the thermal analysis during freezing process will be discussed as follows. When multiple constant temperature heat sources are applied during localized freezing process, heat is conducted from the hotter region in unfrozen layer to the cooler region in frozen layer. At the initial stages of freezing, the freezing fronts exhibit to be a small semi-circular shape indicating principally two-dimensional heat conduction as shown in Fig. (a). Later, the shape of interface becomes larger semi-circular shape as the freezing front moves further away from the fixed boundary as shown in Fig. (b) and (c). However, as the freezing process persists, the freezing rate progresses slowly. This is because most of heat conduction takes place the leading edge-of-frozen layer (freeze layer), which is located further from unfrozen layer. Consequently, small amount of heat can conduct to the frozen layer due to the freeze region acting as an insulator and causing a freezing front to slowly move with respect to elapsed times. Considering the shapes of the freezing front with respect to elapsed times, each freezing region of the rectangular cavity shows signs of freezing, while the outer edge displays no obvious sign of freezing indicating that the temperature does not fall below 0 °C. Nevertheless, at the long stages of freezing, the leading edge of applied boundary condition displays sign of freezing continuously and the spreading of the freeze in the both x-z directions (semi-circular shape) is clearly shown.

6.2. Freezing process with multiple heat sources with different temperature

The following discussion refers to case that the freezing of water-saturated porous media in a rectangular cavity with a dimension of $12 \text{ cm}(x) \times 5 \text{ cm}(z)$ (porosity, $\phi = 0.38$) subjected to multiple heat sources with different temperature. Fig. 6(a) through (c) show grids that fit curves that are typical of shapes seen during deformation of an interface with respect to elapsed times. The grid generation

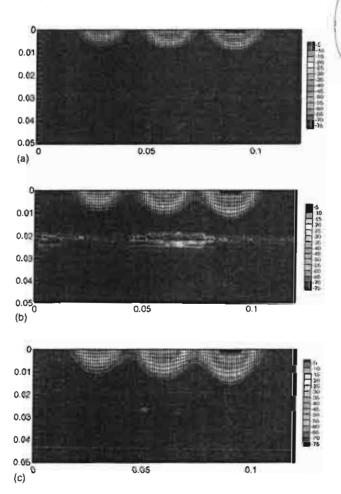


Fig. 11. The simulations of temperature distribution (°C) (subjected to multiple heat sources with different temperature): freezing time of (a) 60 s, (b) 120 s, and (c) 180 s.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

for the applied boundary condition with different temperature in two cases, namely, $T_{\rm L,l} = -80\,^{\circ}\text{C}$, $T_{\rm L,c} = -40\,^{\circ}\text{C}$, $T_{\rm L,r} = -80\,^{\circ}\text{C}$ and $T_{\rm L,l} = -40\,^{\circ}\text{C}$, $T_{\rm L,c} = -60\,^{\circ}\text{C}$, $T_{\rm L,r} = -80\,^{\circ}\text{C}$, are shown in Figs. 8 and 9-Figs. 8(a)-(c) and 9(a)-(c), respectively. The simulations of temperature distribution corresponding these grid generations (Figs. 8 and 9), are also shown in Figs. 10(a)-(c) and 11(a)-(c), respectively. As similarly mentioned in previous subsection, the simulated results show the reasonable trends of freezing phenomena at specified freezing conditions.

This study shows the capability of the present method to correctly handle the phase change problem with highly complex moving boundaries condition. With further quantitative validation of the present method, this method can be used as a tool for investigating in detail this particular freezing of phase change slab at a fundamental level.

7. Conclusions

282

201

Mesh quality has the largest impact on solution quality. A high quality mesh increases the accuracy of the computational flow solution and improves convergence. Therefore, it is important to provide tools for obtaining and improving a mesh.

In this study, the freezing of water-saturated porous media in a rectangular cavity subjected to multiple heat sources with different temperature has been investigated numerically. A generalized mathematical model and an effective calculation procedure is proposed. A preliminary case study indicates the successful implementation of the numerical procedure. A two-dimensional freezing model is then validated against available analytical solutions and experimental results and subsequently used as a tool for efficient computational prototyping. Simulated results are in good agreement with available analytical solution and experimental results. The successful comparison with analytical solution and experiments should give confidence in the proposed mathematical treatment, and encourage the acceptance of this method as useful tool for exploring practical problems.

The next phase, which has already begun, is to couple the grid generation algorithm with the completing transport equations that determine the moving boundary front and buoyancy-driven convection in the unfrozen layer (liquid). Moreover, some experimental studies will be performed to validate numerical results.

Acknowledgement

The authors are pleased to acknowledge Thailand Research Fund (TRF) for supporting this research work.

285 Appendix A

In this section, we will derive a transformation model of the governing differential equations for using in the numerical calculation.

The details are shown as below:

200 A.I. General transformation of the first and second derivatives

Considering the first derivative of any parameters can be written as:

$$\frac{\partial}{\partial z} = \frac{1}{J} \left(z_{\eta} \frac{\partial}{\partial \xi} - z_{\xi} \frac{\partial}{\partial \eta} \right), \qquad \frac{\partial}{\partial z} = \frac{1}{J} \left(x_{\xi} \frac{\partial}{\partial \eta} - x_{\eta} \frac{\partial}{\partial \xi} \right) \tag{A.1}$$

where J is Jacobian, it can be written as:

$$J = x_{\xi} z_n - x_n z_{\xi} \tag{A.2}$$

$$x_{\xi} = \frac{\partial x}{\partial \xi} \tag{A.3}$$

Considering the second derivative of any parameters, we will establish the second derivative of Laplace equation of parameter A where Eqs. (A.1)-(A.3) are related:

$$\nabla^{2} A = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right) A = \frac{1}{J^{2}} \left(\alpha \frac{\partial^{2} A}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} A}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} A}{\partial \eta^{2}}\right) + \frac{1}{J^{3}} \left[(\alpha x_{\xi\xi} - 2\beta x_{\xi\eta} + \gamma x_{\eta\eta}) \left(z_{\xi} \frac{\partial A}{\partial \eta} - z_{\eta} \frac{\partial A}{\partial \xi} \right) + (\alpha z_{\xi\xi} - 2\beta z_{\xi\eta} + \gamma z_{\eta\eta}) \left(x_{\eta} \frac{\partial A}{\partial \xi} - x_{\xi} \frac{\partial A}{\partial \eta} \right) \right]$$
(A.4)

oo where

$$\alpha = x_{\eta}^2 + z_{\eta}^2, \qquad \beta = x_{\xi}x_{\eta} + z_{\xi}z_{\eta}, \qquad \gamma = x_{\xi}^2 + z_{\xi}^2$$
(A.5)

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

1.

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

- The -- lets of

15

 x_{ξ} , x_{ξ} , z_{ξ} and z_{η} denote partial derivatives, β , α , γ are the geometric factors and η , ξ are the transformed coordinates. The related parameter can be defined as:

$$x = x(\xi, \eta), \ z = z(\xi, \eta) \quad \text{or} \quad \xi = \xi(x, z), \ \eta = \eta(x, z)$$

$$\downarrow \downarrow$$

$$x = x(\xi), \ z = z(\xi, \eta) \quad \text{or} \quad \xi = \xi(x), \ \eta = \eta(x, z)$$

$$\therefore x_{\eta} = \frac{\partial x}{\partial \eta} = 0 \quad \text{or} \quad \xi_{x} = \frac{\partial \xi}{\partial x} = 0$$
(A.6)

Corresponding to the Eq. (A.6), the first derivative of any parameters (Eq. (A.1)) can be rewritten as:

$$\frac{\partial}{\partial x} = \frac{1}{J} \left(z_{\eta} \frac{\partial}{\partial \xi} - z_{\xi} \frac{\partial}{\partial \eta} \right), \qquad \frac{\partial}{\partial z} = \frac{1}{J} \left(x_{\xi} \frac{\partial}{\partial \eta} - x_{\eta} \frac{\partial}{\partial \xi} \right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{\partial}{\partial x} = \frac{1}{J} \left(z_{\eta} \frac{\partial}{\partial \xi} - z_{\xi} \frac{\partial}{\partial \eta} \right), \qquad \frac{\partial}{\partial z} = \frac{1}{J} \left(x_{\xi} \frac{\partial}{\partial \eta} \right)$$
(A.7)

ats where

$$J = x_{\xi} z_{\eta} - x_{\eta} z_{\xi}$$
and
$$J = x_{\xi} z_{\eta}$$

$$(A.8)$$

The second derivative of any parameters (Eqs. (A.4)-(A.6)) can be also rewritten as:

319 where

221 A.2. The transformation of thermal model

After some mathematical manipulations (Eq. (A.7), (A.9), (1), (2) and (5)), a transformation model of the governing differential equations become:

$$\frac{\partial T_{1}}{\partial t} = \frac{a_{1}}{J^{2}} \left(\alpha \frac{\partial^{2} T_{1}}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} T_{j}}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} T_{1}}{\partial \eta^{2}} \right) + \frac{a_{1}}{J^{3}} \left[\left(\alpha \frac{\partial^{2} x}{\partial \xi^{2}} \right) \left(z_{\xi} \frac{\partial T_{1}}{\partial \eta} - z_{\eta} \frac{\partial T_{1}}{\partial \xi} \right) + \alpha \frac{\partial^{2} z}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} z}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} z}{\partial \eta^{2}} \left(-x_{\xi} \frac{\partial T_{1}}{\partial \eta} \right) \right] + \frac{1}{J} \left(x_{\xi} \frac{\partial T_{1}}{\partial \eta} \right) \frac{dz}{dt} \tag{10}$$

$$\frac{\partial T_{s}}{\partial t} = \frac{a_{s}}{J^{2}} \left(\alpha \frac{\partial^{2} T_{s}}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} T_{s}}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} T_{s}}{\partial \eta^{2}} \right) + \frac{a_{s}}{J^{3}} \left[\left(\alpha \frac{\partial^{2} x}{\partial \xi^{2}} \right) \left(z_{\xi} \frac{\partial T_{s}}{\partial \eta} - z_{\eta} \frac{\partial T_{s}}{\partial \xi} \right) + \alpha \frac{\partial^{2} z}{\partial \xi^{2}} - 2\beta \frac{\partial^{2} z}{\partial \xi \partial \eta} + \gamma \frac{\partial^{2} z}{\partial \eta^{2}} \left(-x_{\xi} \frac{\partial T_{s}}{\partial \eta} \right) \right]$$

$$+ \frac{1}{J} \left(x_{\xi} \frac{\partial T_{s}}{\partial \eta} \right) \frac{dz}{dt}$$
(11)

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/i.comochemeng.2006.07.016

ARTICLE IN PRESS

P. Rattanadecho, S. Wongwises / Computers and Chemical Engineering xxx (2006) xxx-xxx

320

334

3337

330

344

351

353

367

362

165

167

KB I/O

72

16

$$\left\{\lambda_{s} \frac{1}{J} \left(x_{\xi} \frac{\partial T_{s}}{\partial \eta} \right) - \lambda_{l} \frac{1}{J} \left(x_{\xi} \frac{\partial T_{l}}{\partial \eta} \right) \right\} \left\{ 1 + \left(\frac{1}{J} \left[z_{\eta} \frac{\partial z_{\text{mov}}}{\partial \xi} - z_{\xi} \frac{\partial z_{\text{mov}}}{\partial \eta} \right] \right)^{2} \right\} = \rho_{s} L_{s} \frac{\partial z_{\text{mov}}}{\partial t}$$
(12)

References

Beckett, G., MacKenzie, J. A., & Robertson, M. L. (2001). A moving mesh finite element method for the solution of two-dimensional Stefan problems. *Journal of Computational Physics*, 168(2), 500-518.

Bonacina, C., Comini, G., Fasano, A., & Primicerio, M. (1973). Numerical solution of phase-change problems. International Journal of Heat and Mass Transfer, 16, 1825

Cao, W., Huang, W., & Russell, R. D. (1999). An r-adaptive finite element method based upon moving mesh f DEs. Journal of Computational Physics, 149, 221.

Charn-Jung, K., & Kaviany, M. (1992). Numerical method for phase-change problems with convection and diffusion. *International Journal of Heat and Mass Transfer*, 35(2), 457-467.

Chatterjee, A., & Prasad, V. (2000). A full three-dimensional adaptive finite volume scheme for transport and phase-change processes, Part I: Formulation and validation, Numerical Heat Transfer; Part A: Applications, 37(8), 801-821.

Chellinah, S., & Viskanta, R. (1988). Freezing of saturated and superheated liquid in porous media. *International Journal of Heat and Mass Transfer*, 31, 321–330.

Cheung, F. B., Chawla, T. C., & Pedersen, D. R. (1984). The effect of heat generation and wall interaction on freezing and melting in a finite slab. *International Journal of Heat and Mass Transfer*, 27, 29.

Cook, W. A. (1974). Body oriented coordinates for generating three-dimensional meshes. International Journal for Numerical Methods in Engineering, 8, 27-43.

Coons, S.A. (1967). Surfaces for computer-aided design of space forms, Project MAC. Technical Rep. MAC-TR 44 MIT, MA, USA, Design Div., Dept. Mech. Eng., Available from: Clearing-house for Federal Scientific-Technical Information, National Bureau of Standards, Springfield, VA, USA.

Crank, J., & Gupta, R. S. (1975). Isotherm migration method in two dimensions. International Journal of Heat and Mass Transfer, 18, 1101.

Crowley, A. B. (1978). Numerical solution of Stefan problems. International Journal of Heat and Mass Transfer, 21, 215.

Duda, J. L., Malone, M. F., Notter, R. H., & Vrentas, J. S. (1975). Analysis of two-dimensional diffusion controlled moving boundary problems. *International Journal of Heat and Mass Transfer*, 18, 901.

Eriksson, L. E. (1982). Generation of boundary-conforming grid around wing-body configurations using transfinite interpolation. AIAA Journal, 20, 1313-1320.

Ettourey, H. M., & Brown, R. A. (1983). Finite-element methods for steady solidification problems. Journal of Computational Physics, 49, 118.

Frivik, P. E., & Comini, G. (1982). Seepage and heat flow in soil freezing. ASME Journal of Heat Transfer, 104, 323-328.

Gong, Z. X., & Mujumdar, A. S. (1998). Flow and heat transfer in convection-dominated melting in a rectangular cavity heated from below. *International Journal of Heat and Mass Transfer*, 41(17), 2573-2580.

Gordon, W. J., & Hall, C. A. (1973). Construction of curvilinear coordinate systems and applications to mesh generation. *International Journal for Numerical Methods in Engineering*, 7, 461–477.

Hasan, M., Mujumdar, A. S., & Weber, M. E. (1991). Cyclic melting and freezing. Chemical Engineering Science, 46(7), 1573-1587.

Hashemi, H. T., & Sliepcevich. C. M. (1973). Effect of seepage stream and artificial soil freezing. ASCE Journal of Mechanics Foundry Division, 99, 267-289.

Hsu, C. F. Sparrow, E. M., & Patankar, S. V. (1981). Numerical solution of moving boundary problems by boundary immobilization and a control-volume-based finite difference scheme. *International Journal of Heat and Mass Transfer*, 24, 1335.

John, D., & Anderson, Jr. (1995). Computational fluid dynamics. McGraw-Hill International Editions [Chapter 5].

Khillarkar, D. B., Gong, Z. X., & Mujumdar, A. S. (2000). Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Applied Thermal Engineering, 20(10), 893-912.

Murray, W. D., & Landis, F. (1959). Numerical and machine solutions of transient heat conduction problem involving melting or freezing. ASME Journal of Heat Transfer, 81, 106-112.

Rattanadecho, P. (2004a). Experimental and numerical study of solidification process in unsaturated granular packed bed. AIAA Journal of Thermophysics and Heat Transfer, 18(1), 87-93.

Rattanadecho, P. (2004b). The theoretical and experimental investigation of Microwave thawing of frozen layer using microwave oven (effects of layered configurations and layered thickness). International Journal of Meet and Mass Transfer, 47(5), 937-945.

Saitoh, T. (1978). Numerical method for multi-dimensional freezing problems in arbitrary domains. Journal of Heat Transfer, 100, 294.

Shainsundar, N., & Sparrow, E. M. (1976). Effect of density change on multi-dimensional conduction phase change. Journal of Heat Transfer, 97, 550.

Sparrow, E. M., & Broadbent, J. A. (1983). Freezing in a vertical tube. ASME Journal of Heat Transfer, 105, 217-225.

74 Sparrow, E. M., & Chuck, W. (1984). An implicit/explicit numerical solution scheme for phase-change problems. Numerical Heat Transfer, 7, 1.

Sparrow, E. M., Ramadhyani, S., & Patankar, S. V. (1978). Effect of subcooling on cylindrical melting. ASME Journal of Heat Transfer, 100, 395.

Weaver, J. A., & Viskanta, R. (1986). Freezing of liquid-saturated porous media. ASME Journal of Heat Transfer, 108, 654-659.

Please cite this article as: P. Rattanadecho, S. Wongwises, Simulation of freezing of water-saturated porous media in a rectangular cavity under multiple heat sources with different temperature using a combined transfinite interpolation and PDE methods, Computers and Chemical Engineering (2006), doi:10.1016/j.compchemeng.2006.07.016

Available online at www.sciencedirect.com

BCIENCE DIRECT.

Applied Thermal Engineering 26 (2006) 2316-2326

APPLIED THERMAL ENGINEERING

www.elsevier.com/locate/apthermeng

Unsteady effects on natural convective heat transfer through porous media in cavity due to top surface partial convection

W. Pakdee, P. Rattanadecho *

Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12120, Thailand

Received 2 December 2005; accepted 10 March 2006 Available online 24 April 2006

Abstract

Numerical investigations of transient natural convection flow through a fluid-saturated porous medium in a rectangular cavity with a convection surface condition were conducted. Physical problem consists of a rectangular cavity filled with porous medium. The cavity is insulated except the top wall that is partially exposed to an outside ambient. The exposed surface allows convective transport through the porous medium, generating a thermal stratification and flow circulations. The formulation of differential equations is non-dimensionalized and then solved numerically under appropriate initial and boundary conditions using the finite difference method. The finite different equation handling the boundary condition of the open top surface is derived. The two-dimensional flow is characterized mainly by two symmetrical vortices driven by the effect of buoyancy. A lateral temperature gradient in the region close to the top wall induces the buoyancy force under an unstable condition. Unsteady effects of associated parameters were examined. It was found that the heat transfer coefficient, Rayleigh number and Darcy number considerably influenced characteristics of flow and heat transfer mechanisms. Furthermore, the flow pattern is found to have a local effect on the heat convection rate.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Natural convection; Saturated porous media; Convection boundary condition

1. Introduction

The heat and fluid flows in cavity that experiences convective heating or cooling at the surface are found in a wide variety of applications including lakes and geothermal reservoirs, underground water flow, solar collector etc. [1]. Associated industrial applications include secondary and tertiary oil recovery, growth of crystals [2], heating and drying process [3–5], solidification of casting, sterilization etc.

Natural or free convection in a porous medium has been studied extensively. Cheng [6] provides a comprehensive review of the literature on free convection in fluidsaturated porous media with a focus on geothermal systems. Oosthuizen and Patrick [7] performed numerical studies of natural convection in an inclined square enclosure with part of one wall heated to a uniform temperature and with the opposite wall uniformly cooled to a lower temperature and with the remaining wall portions. The enclosure is partially filled with a fluid and partly filled with a porous medium, which is saturated with the same fluid. The main results considered were the mean heat transfer rate across the enclosure.

Nithiarasu et al. [8] examined effects of variable porosity on convective flow patterns inside a porous cavity. The flow is triggered by sustaining a temperature gradient between isothermal lateral walls. The variation in porosity significantly affects natural flow convective pattern. Khanafer and Chankha [9] performed numerical study of mixed convection flow in a lid-driven cavity filled with a fluid-saturated porous media. In this study, the influences of the Richardson number, Darcy number and the

E-mail address: ratphadu@engr.tu.ac.th (P. Rattanadecho).

Corresponding author.

Nomenclature β specific heat capacity (J/kg K) coefficient of thermal expansion (1/K) Da Darcy number (-) porosity (-) 3 gravitational constant (m/s2) dynamic viscosity (Pa/s) g Ц H cavity length (m) kinematics viscosity (m²/s) convective heat transfer coefficient (W/m² K) h fluid density (kg/m³) $\rho_{\rm f}$ k effective thermal conductivity of the porous dimensionless time medium (W/m K) θ dimensionless temperature vorticity (m²/s) pressure (Pa) ω PrPrandtl number (-) ψ stream function Ra Rayleigh number (-) dimensionless vorticity Ψ Ttemperature (°C) dimensionless stream function ſ time (s) velocity component (m/s) Subscripts u. v Cartesian coordinates ambient condition *x*, *y* ∞ X, Ydimensionless Cartesian coordinates initial condition and index for a number of W cavity width (m) points in x direction index for a number of points y-direction Greek letters permeability of porous medium (m²) к thermal diffusivity (m²/s) α

Rayleigh number play an important role on mixed convection flow inside a square cavity filled with a fluid-saturated porous media. Nithiarasu et al. [10] examined effects of applied heat transfer coefficient on the cold wall of the cavity upon flow and heat transfer inside a porous medium. The differences between the Darcy and non-Darcy flow regime are clearly investigated for different Darcy, Rayleigh and Biot numbers and aspect ratio. Variations in Darcy, Rayleigh and Biot numbers and aspect ratio significantly affect natural flow convective pattern. Recently, Al-Amiri [11] performed numerical studies of momentum and energy transfer in a lid-driven cavity filled with a saturated porous medium. In this study, the force convection is induced by sliding the top constant-temperature wall. It was found that the increase in Darcy number induces flow activities causing an increase in the fraction of energy transport by means of convection. With similar description of the domain configuration, Khanafer and Vafai [12] extended the investigation to mass transport in the medium. The buoyancy effects that create the flow are induced by both temperature and concentration gradients. It was concluded that the influences of the Darcy number, Lewis number and buoyancy ratio on thermal and flow behaviors were significant. Furthermore, the state of art regarding porous medium models has been summarized in the recently published books [13-15].

施設者 十千 二元·

Previous investigations have merely focused on momentum and energy transfer in cavity filled with a saturated porous medium subjected to prescribed temperature and prescribed wall heat flux conditions. However, only a very limited amount of numerical and experimental work on momentum and energy transfer in a cavity filled with a sat-

urated porous medium subjected to heat transfer coefficient boundary condition at the exposed portion of the top wall has been reported. The case, in which the top wall is partially exposed, is considered in our study. In this case, the heating pattern is similar to the heating phenomenon occurring in a microwave heating of water layer in which the microwave energy transfers only partially through the top surface for a particular mode of microwave field [16]. It is found in the present study that the two symmetrical vortices are developed during the early stages of heating process. This suggests the presence of heat convection mechanism due to fluid motion in the transient condition. This distinct phenomenon is different from the case of fully heated top wall to which constant temperature was prescribed in that in this case the heat transfer from the top to bottom surface is exclusively by conduction.

In the present study, the detailed parametric study has been carried out for transient natural convective flow in a fluid-saturated porous medium filled in a square cavity. The top surface is partially open to the ambient, allowing the surface temperature to vary, depending on the influence of convection heat transfer mechanism. The influences of associated parameters such as heat transfer coefficient, Rayleigh number and Darcy number on the flow and thermal configurations were examined.

2. Problem description

The computational domain, depicted in Fig. 1 is a rectangular cavity of size $W \times H$ filled with a fluid-saturated porous medium. Aspect ratio of unity (A = 1) is used in the present study. The domain boundary is insulated except

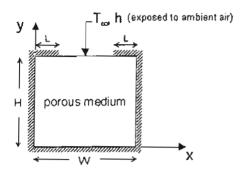


Fig. 1. 3chematic representation of the computational domain.

the top wall, which is partially exposed to an ambient air. The initial and boundary conditions corresponding to the problem are of the following forms:

$$u = v = 0, \quad T = T; \quad \text{for } t = 0,$$
 (1)

$$u = v = 0 \quad \text{at } x = 0, W \quad 0 \le y \le H,$$

$$u = v = 0 \quad \text{at } y = 0, H \quad 0 \le x \le W,$$
(2)

$$\frac{\partial T}{\partial x} = 0 \quad \text{at } x = 0, W \quad 0 \leqslant y \leqslant H,$$

$$\frac{\partial T}{\partial y} = 0$$
 at $y = 0$ $0 \le x \le W$

$$\begin{split} \frac{\partial T}{\partial x} &= 0 \quad \text{at } x = 0, W \quad 0 \leqslant y \leqslant H, \\ \frac{\partial T}{\partial y} &= 0 \quad \text{at } y = 0 \quad 0 \leqslant x \leqslant W, \\ \frac{\partial T}{\partial y} &= 0 \quad \text{at } y = H \quad 0 \leqslant x \leqslant L \quad \text{and} \quad W - L \leqslant x \leqslant W. \end{split}$$

The boundary condition at the exposed portion of the top wall is defined as

$$-k\frac{\partial T}{\partial y} = h[T - T_{\infty}] \quad \text{at } y = H \quad L \leqslant x \leqslant W - L, \tag{4}$$

where k and h are effective thermal conductivity and convection heat transfer coefficient. ε and ν denotes porosity of porous medium and fluid viscosity, respectively. This type of condition corresponds to the existence of convective heat transfer at the surface and is obtained from the surface energy balance.

The porous medium is assumed to be homogeneous and thermally isotropic and saturated with a fluid that is local thermodynamic equilibrium with the solid matrix. The fluid flow is unsteady, laminar and incompressible. The pressure work and viscous dissipation are all assumed negligible. The thermophysical properties of the porous medium are taken to be constant. However, the Boussinesq approximation takes into account of the effect of density variation on the buoyancy force. Furthermore, the solid matrix is made of spherical particles, while the porosity and permeability of the medium are assumed to be uniform throughout the rectangular cavity. Using standard symbols, the governing equations describing the heat transfer phenomenon are given by

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,\tag{5}$$

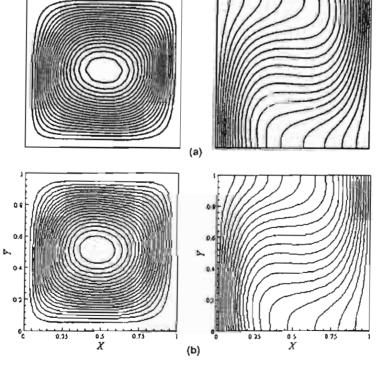


Fig. 2. Test results for validation purpose: (a) previously published results [19] and (b) present numerical simulation.

Marian.

$$\frac{1}{\varepsilon} \frac{\partial u}{\partial t} + \frac{u}{\varepsilon^2} \frac{\partial u}{\partial x} + \frac{v}{\varepsilon^2} \frac{\partial u}{\partial y}$$

$$= -\frac{1}{\rho_f} \frac{\partial P}{\partial x} + \frac{v}{\varepsilon} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\mu u}{\rho_f \kappa}, \tag{6}$$

$$\frac{1}{\varepsilon}\frac{\partial v}{\partial t} + \frac{u}{\varepsilon^2}\frac{\partial v}{\partial x} + \frac{v}{\varepsilon^2}\frac{\partial v}{\partial y} = -\frac{1}{\rho_f}\frac{\partial P}{\partial y} + \frac{v}{\varepsilon}\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

$$+g\beta(T-T_{\infty})-\frac{\mu v}{\rho_{c}\kappa},$$
 (7)

$$\sigma \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right), \tag{8}$$

$$\sigma = \frac{\left[\varepsilon(\rho c_p)_f + (1 - \varepsilon)(\rho c_p)_s\right]}{(\rho c_p)_c},\tag{9}$$

where κ is medium permeability, β is thermal expansion coefficient, α is effective thermal diffusivity of the porous

medium, μ and v are viscosity and kinematic viscosity of the fluid respectively. In the present study, the heat capacity ratio σ is taken to be unity since the thermal properties of the solid matrix and the fluid are assumed identical. The momentum equation consists of the Brinkmann term, which accounts for viscous effects due to the presence of solid body [17]. This form of momentum equation is known as Brinkmann-extended Darcy model. Lauriat and Prasad [18] employed the Brinkmann-extended Darcy formulation to investigate the buoyancy effects on natural convection in a vertical enclosure. Although the viscous boundary layer in the porous medium is very thin for most engineering applications, inclusion of this term is essential for heat transfer calculations [11]. However, the inertial effect was neglected, as the flow was relatively low.

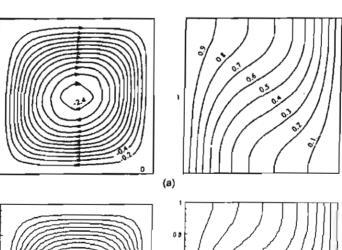

The variables are transformed into the dimensionless quantities defined as,

Table 1
Comparison of the results obtained in the present study with those of Aydin [14]

	Present work	Published work [14]	Difference (%)
ψ_{mis}	5.070	5.087	0.33
Umas	16.300	16.225	0.46
$V_{\rm max}$	19.730	19.645	0.43

Table 2
Comparison of the results obtained in the present study with those of Nithiarasu et al. [8]

	Present work	Published work [8]	Difference (%)
Ψmax	2.53	2.56	1,17
V_{max}	9.49	9.34	1.60

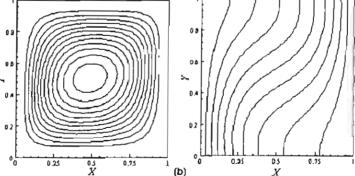


Fig. 3. Test results for validation purpose: (a) Nithiarasu et al. [8]: Non-Darcian model (including inertial and boundary effect) and (b) present simulation: Brinkman-extended Darcy model, which accounts for viscous effects due to the solid boundary.

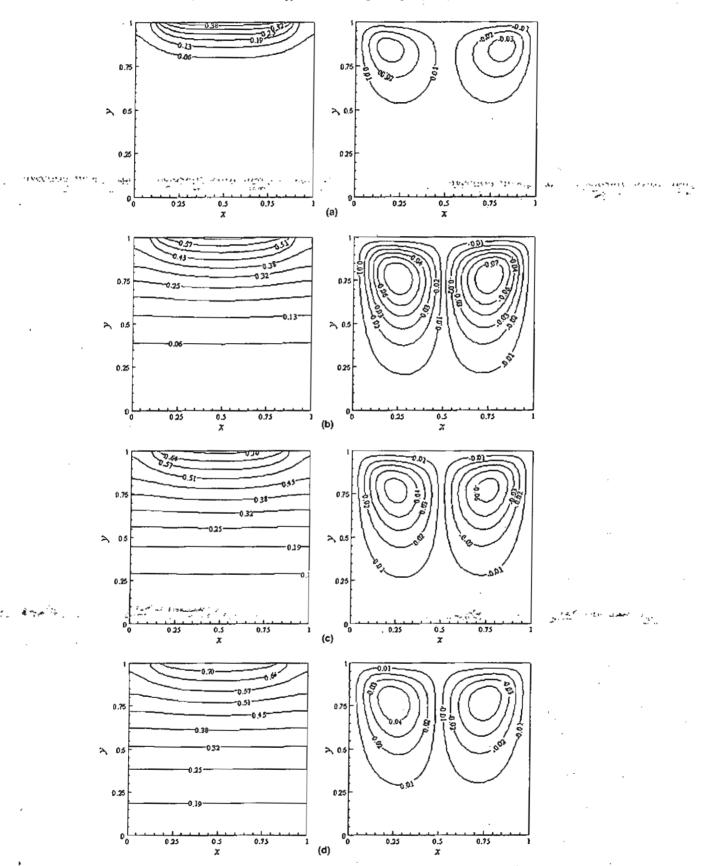


Fig. 4. Sequential files for contours of temperature and streamlines at times $\tau = 0.0125$, 0.09, 0.1675, and 0.2475. ($Ra = 10^4$, Da = 0.01, Pr = 1.0, $\varepsilon = 0.8$, and h = 100 W/m² K).

$$X = \frac{x}{H} , Y = \frac{y}{H}, \quad \tau = \frac{t\alpha}{H^2}, \quad U = \frac{uH}{\alpha},$$

$$V = \frac{vH}{\alpha}, \quad \varsigma = \frac{\omega H^2}{\alpha}, \quad \Psi = \frac{\psi}{\alpha}, \quad \theta = \frac{T - T_i}{T_{\infty} - T_i}, \quad (10)$$

where ω and ψ represent dimensional vorticity and stream function, respectively. Symbol α denotes thermal diffusivity. The initial temperature and ambient temperature are given by T_i and T_{∞} . Thus the dimensionless form of the governing equations can be written as

$$\frac{\partial^{2} \psi}{\partial X^{2}} + \frac{\partial^{2} \psi}{\partial Y^{2}} = -\varsigma,$$

$$\epsilon \frac{\partial \varsigma}{\partial \tau} + U \frac{\partial \varsigma}{\partial X} + V \frac{\partial \varsigma}{\partial Y} = \epsilon Pr \left(\frac{\partial^{2} \varsigma}{\partial X^{2}} + \frac{\partial^{2} \varsigma}{\partial Y^{2}} \right)$$

$$+ \epsilon^{2} Ra Pr \left(\frac{\partial \theta}{\partial X} \right) - \frac{\epsilon^{2} Pr}{Da} \varsigma,$$
(12)

$$\sigma \frac{\partial \theta}{\partial \tau} + U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial Y} = \alpha \left(\frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2} \right), \tag{13}$$

where the Darcy number, Da is defined as κ/H^2 , and $Pr = v/\alpha$ is a prandtl number. The Rayleigh number Ra, which gives the relative magnitude of buoyancy and viscous forces is defined as $Ra = g\beta(T_i - T_\infty)H^3/(v\alpha)$.

 $Pr = v/\alpha$ is the Prantl number, where $\alpha = k_e/(\rho c_p)_f$ is the thermal diffusivity.

3. Numerical procedure

The thermal properties of the porous medium are taken to be constant. Specific heat ratio of unity is assumed. The effective thermal conductivity of the porous medium considered is 10 W/m K.

In the present study, the iterative finite difference impethod is used to solve the transient dimensionless governing equations (Eqs. (11)–(13)) subject to their corresponding initial and boundary conditions given in Eqs. (1)–(4). Approximation of convective terms is based on an upwind finite differencing scheme, which correctly represent the directional influence of a disturbance. A uniform grid resolution of 61×61 was found to be sufficient for all smooth computations and computational time required in achieving steady-state conditions. Finer grids did not provide a noticeable change in the computed results. The finite difference form of boundary condition at the open part of the top surface is systematically derived, based on energy conservation principle. The boundary values of dimensionless temperature of a node i, j $\theta_{i,j}$ are expressed as

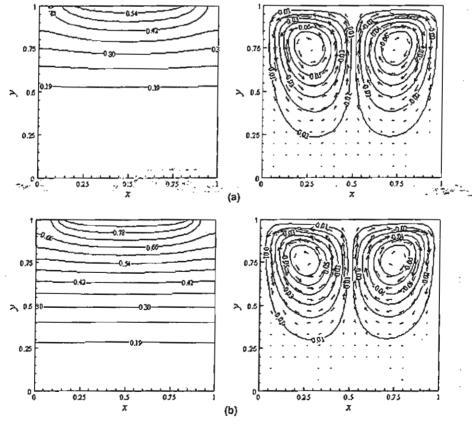


Fig. 5. Contours of temperature and streamlines: (a) $h = 60 \text{ W/m}^2 \text{ K}$ and (b) $h = 300 \text{ W/m}^2 \text{ K}$. ($Ra = 10^4$, Da = 0.1, Pr = 1.0, and $\epsilon = 0.8$).

$$\theta_{ij} = \frac{2\theta_{ij-1} + \theta_{i-1j} + \theta_{i+1j} + 2\frac{h\Delta y}{k}}{2(\frac{h}{k}\Delta Y + 2)}$$
(14)

It can be noticed that Eq. (14) is independent of T_{∞} as it has been eliminated during the derivation. Thus the solutions can be obtained regardless of a value of T_{∞} .

4. Results and discussion

In order to verify the accuracy of the present numerical study, the present numerical model was validated against the results obtained by Aydin [19] for a free convection flow in a cavity, with side-heated isothermal wall, filled with pure air (Pr = 0.7) for Rayleigh number of 10^4 . It was found that the solutions have good agreement with the previously published work. The results of the selected test case are illustrated in Fig. 2 for streamlines and temperature contour lines. Table 1 clearly shows a good agreement of the maximum value of the stream function and the maximum values of the horizontal and vertical velocity components between the present solution and that of Aydin. Also, the results from the present numerical model were compared with the solution of Nithiarasu et al. [8] in the presence of porous medium for additional source of confidence, as shown in Fig. 3. The values of $Ra = 10^4$, Da = 0.01 and $\varepsilon = 0.6$ were chosen. Table 2 clearly shows a good agreement of the

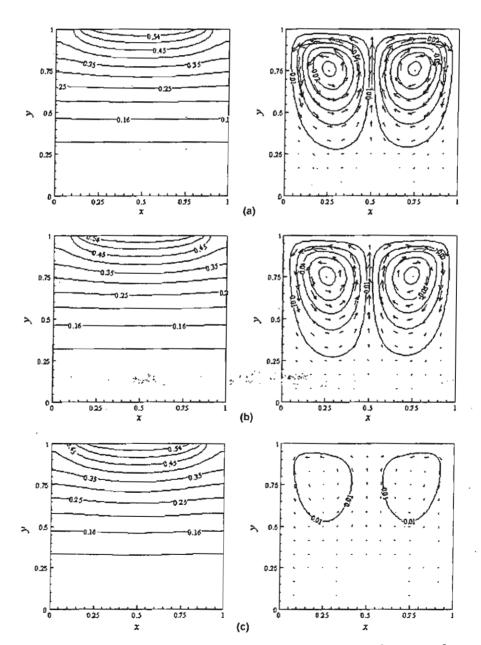


Fig. 6. Contours of temperature and streamlines: (a) Da = infinity, (b) Da = 0.1, (c) Da = 0.001. ($Ra = 10^4$, $h = 60 \text{ W/m}^2 \text{ K}$, Pr = 1.0, and $\epsilon = 0.8$).

maximum values of the stream function and vertical velocity component between the present solution and that of Nithiarasu et al [8]. All of these favorable comparisons lend confidence in the accuracy of the present numerical model.

The following discussions include the numerical results from the present study. Initial values of θ for an entire domain are set 1, based on Eq. (14) since the ambient temperature is higher than temperature of the medium in cavity. The investigations were conducted for a range of controlling parameters, which are Darcy number (Da) Rayleigh number: (Ra) and convective heat transfer coefficience all decreases toward the bottom of the domain. In the cient (h). The porosity ε of 0.8 and unity aspect ratio (A = 1) were considered throughout in the present study. In order to assess global effects of these parameters, the streamlines and isotherm distributions inside the entire cavity are presented. All the figures have the same range of contour levels to facilitate direct comparisons.

The resulting computational fields were extracted at the time adequately long to ensure sufficient energy transferred throughout the domain. Fig. 4 displays instantaneous images of the contour plots during the thermal and flow evolution. The Darcy number of 0.01, Pr = 1.0, h =60 W/m² K, and $\varepsilon = 0.8$ are considered. The two columns represent temperature and stream function. With the same contour levels, comparisons can be observed directly. The four snapshots from top to bottom in each column are results taken at the dimensionless times $\tau = 0.0125, 0.09,$ 0.1675, and 0.2475 with the time interval. The vertical temperature stratification is observed. The streamline contours exhibit circulation patterns, which are characterized by the two symmetrical vortices. The fluid flows as it is driven by the effect of buoyancy. This effect is distributed from the top wall of cavity where the fluid is heated through the partially open area. This indicates the non-uniform temperature at the top surface, leading to an unstable condition. Thus the buoyancy effect is associated with the lateral temperature gradient at locations near the top surface. Heated portions of the fluid become lighter than the rest of fluid, are expanded laterally away from the center to the sides. then flow down along the two vertical walls, leading to the clockwise and counter-clockwise flow circulations. These results suggest that the buoyancy forces are able to overcome the retarding influence of viscous forces. An increase in strength of the vortices develops fast during early simulation times, and its maximum magnitude reaches 0.1 at $\tau = 0.0475$. After this time, the vortices are slowly weakened. Similarly, temperature distribution progressively evolves relatively fast in the early times. After the time $\tau = 0.07$, slow evolution is observed. This result corresponds to the decrease in strength of flow circulations. In the remaining area, the fluid is nearly stagnant suggesting that conduction is dominant due to minimal flow activities. This is because the viscous effects are large.

This distinct phenomenon is different from the case of fully heated top wall to which constant temperature was prescribed in that in this case the heat transfer from the top to bottom surface is exclusively by pure conduction.

Fig. 5 illustrates how the convective heat transfer coefficient influences thermal and flow behaviors, while other parameters Da = 0.1, Pr = 1.0, and $\varepsilon = 0.8$ are fixed. The variable values of h chosen are 60 and 300 W/m 2 K, which may represent a typical free and forced convection, respectively. In all the figures henceforth, directions and magnitudes of the arrows indicate the direction as well as strength of the flows respectively. It is seen on the left column in Fig. 5 that the temperature gradients are steep at the top area near the exposed convective surface and gradremaining area of the cavity, the temperature gradients are small and this implies that the temperature differences are very small in the bottom region of the cavity where viscous effects are strong. It can be observed on the rightcolumn plots, which presents streamline contours that the chance in h does not contribute a significant modification to the temperature contours. However, an increase in h expands temperature distribution area due to the more energy that is carried away from the location of convection surface condition toward the bottom. Moreover, higher value of h increases maximum temperature resulting in wider temperature range in the domain.

Effects of the Darcy number on the fluid flow and temperature inside the rectangular cavity are depicted in Fig. 6. The contour of isotherms and streamlines are plotted for different Darcy numbers while ε , Pr and h are kept at 0.8, 1.0 and 60 W/m² K respectively. The Darcy number, which is directly proportional to the permeability of the porous medium, was set to 0.001 and 0.1. The case in which the porous medium is absent corresponds to infinite Darcy number. The presence of a porous medium within rectangular enclosure results in a force opposite to the flow direction which tends to resist the flow which corresponds to suppress in the thermal currents of the flow as compared to a medium with no porous (infinite Darcy number). It is evident that the increase in Da enhances the streamline

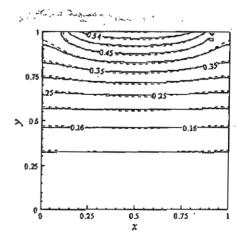


Fig. 7. Temperature distribution contours within a medium in the absent of porous (solid line) overlaid by the temperature distribution contours in a porous medium with Da of 0.001 (dash line). Data is taken from that of

intensities thereby assisting downward flow penetration, which causes the streamline lines, i.e., two symmetrical vortices to stretch further away from the top surface. This results in expanding the region for which the convection significantly influences an overall heat transfer process. On the other hand, as the Darcy number decreases, the flow circulations as well as thermal penetration are progressively inhibited due to the reduced permeability of the medium except at the region close to the location of convection surface condition where the flow motions are relatively strong. Furthermore, Fig. 6c indicates that as Darcy number approaches zero, the convective heat transfer mechanism is almost suppressed, while the heat transfer by means of conduction plays an important role in heat

transfer. The left column of Fig. 6 shows comparison of temperature in which the contours of different Darcy numbers appear roughly similar.

To gain further insight into the effects of the Darcy number on the thermally stratified layer, temperature contours for pure fluid are overlaid with that for porous fluid with Da of 0.001. The results are given in Fig. 7. It is noticed that temperature stratification layers, near the vertical symmetry line in the case of Da 0.001, move further downward relative to those for pure fluid. This observed incident results from a stronger flow in the upward direction in the central region for the pure medium. The upward flows inhibit the thermal propagation. In contrast, in the areas away from the vertical center line, the downward flows

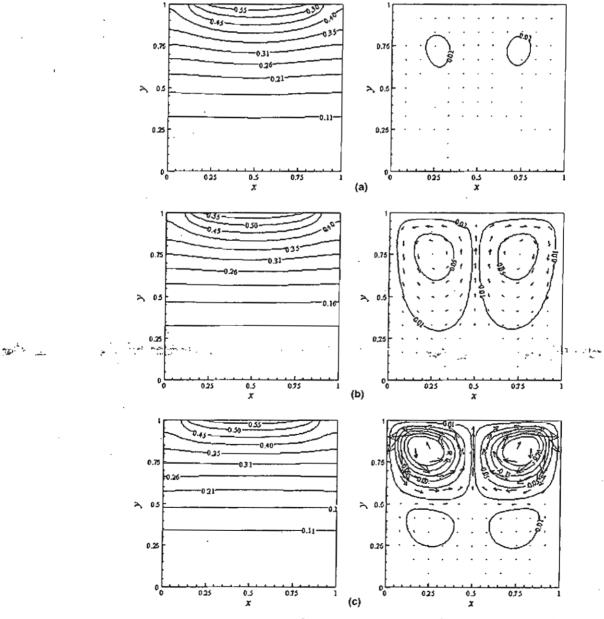


Fig. 8. Contours of temperature and streamlines: (a) $Ra = 10^3$, (b) $Ra = 10^4$ and (c) $Ra = 10^5$. (Da = 0.1, $h = 60 \text{ W/m}^2 \text{ K}$, Pr = 1.0, and $\epsilon = 0.8$).

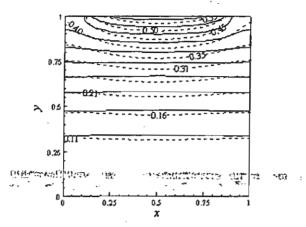


Fig. 9. Temperature distribution contours within a porous medium with $Ra = 10^3$ (dash line) overlaid by the temperature distribution contours in a porous medium with $Ra = 10^5$ (solid line). Data is taken from that of Fig. 8.

assist heat to be transferred towards the bottom of the enclosure.

Fig. 8 shows the isotherms and streamlines obtained for various Rayleigh numbers ($Ra = 10^3$, 10^4 and 10^5) whereas the Darcy number of 0.1, porosity of 0.8, and h of 60 W/m² K are fixed. The Rayleigh number provides the ratio of buoyancy forces to change in viscous forces. As Rayleigh number increases, the buoyancy-driven circulations inside the enclosure become stronger as seen from greater magnitudes of stream function. For the large value of Ra ($Ra = 10^5$), there appears a pair of secondary weak circulations in the bottom region of the enclosure. The two vigorous vortices are confined to the upper domain, where convection is a dominant mode of heat transfer.

Although the profiles of temperature contour are qualitative similar, Fig. 9 displays overlaid contours for the two cases which are of $Ra = 10^3$ and $Ra = 10^5$. It is evident in the case of $Ra = 10^3$ that temperature contour lines penetrates faster relative to the low Ra case at the central locations around vertical symmetric line; but they move slower in the regions near the vertical walls. The results are consistent with the thermal behaviors observed in Fig. 7 for the same reasoning, which confirm how a flow direction impacts the convection heat transfer. Therefore it can be concluded to an interesting note that not only an intensity of a flow, but also the direction of the fluid flow locally affects the heat convection process.

5. Conclusions

Numerical simulations of natural convection flow through a fluid-saturated porous medium in a rectangular cavity due to top surface convection were performed. Transient effects of associated controlling parameters were examined. The two-dimensional flow is characterized mainly by two symmetrical eddies that are initiated by the presence of buoyancy effect. The buoyancy effect is associated with the lateral temperature gradient at loca-

tions near the top surface. As the convection heat transfer coefficient increases, the temperature stratification penetrates deeper toward the bottom wall, and temperature range within the domain is extended. Small values of Darcy number hinder the flow circulations. Therefore the heat transfer by convection is considerably suppressed. Large values of Rayleigh number increase streamline intensities, thus enhancing the downward flow penetration. Therefore enlarges the region where convection mode is significant. Moreover, the flow in the direction of heat transfer is found to enhance the rate of convection whereas the flow in the opposed direction retards the heat rate. In our future study, effects of internal heat generation due to microwave energy on heat transfer processes in fluid-saturated porous medium will be considered.

Acknowledgement

This research was financially supported by the Thailand Research Fund (TRF).

References

- [1] T.L. Bergman, F.P. Incropera, R. Viskanta, Correlation of mixed layers growth in double-diffusive, salt-stratified system heated from below, J. Heat Transfer 108 (1986) 206-211.
- [2] J. Imberger, P.F. Hamblin, Dynamics of lakes, reservoirs, and cooling ponds, A. Rev. Fluid Mech. 14 (1982) 153-187.
- [3] M.A. Stanish, G.S. Schager, F. Kayihan, A mathematical model of drying for hygroscopic porous media, AIChE J. 32 (1986) 1301-1311.
- [4] P. Ratanadecho, K. Aoki, M. Akahori, A numerical and experimental-investigation of the modeling of microwave drying using a rectangular wave guide, J. Drying Technol. 19 (9) (2001) 2209-2234.
- [5] P. Ratanadecho, K. Aoki, M. Akahori, Influence of irradiation time, particle sizes and initial moisture content during microwave drying of multi-layered capillary porous materials, ASME J. Heat Transfer 124 (I) (2002) 151-161.
- [6] P. Cheng, Heat transfer in geothermal systems, Adv. Heat Transfer 4 (1978) 1-105.
- [7] P.H. Oosthuizen, H. PatrickNatural Convection in an Inclined Square Enclosure Partly Filled with a Porous Medium and with a -Partially Heated Wall, HTD 302, American Society of Mechanical Engineers, Heat Transfer Division, (Publication), 1995, pp. 29-42.
- P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, Int. J. Heat Mass Transfer 40 (16) (1997) 3955-3967.
- [9] K.M. Khanafer, A.J. Chamkha, Mixed convection flow in a liddriven enclosure filled with a fluid-saturated porous medium, Int. J. Heat Mass Transfer: 42 (13) (1998) 2465-2481.
- [10] P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Numerical investigation of buoyancy driven flow in a fluid saturated non-Darcian porous medium, Int. J. Heat Mass Transfer 42 (7) (1998) 1205-1215.
- [11] A.M. Al-Amiri, Analysis of momentum and energy transfer in a liddriven cavity filled with a porous medium, Int. J. Heat Mass Transfer 43 (2000) 3513-3527.
- [12] K. Khanafer, K. Vafai, Double-diffusive mixed convection in a liddriven enclosure filled with a fluid-saturated porous medium, Numer. Heat Transfer, Part A 42 (2002) 465-486.
- [13] D.A. Nield, A. Bejan, Convection in Porous Media, Springer, New York, 1999.
- [14] K. Vafai, Handbook of Porous Media, Marcel Dekker, New York, 2000.

- [15] I. Pop, D.B. Ingham, Convective Heat Transfer, Mathematical and Computational Modeling of Viscous Fluids and Porous Media, Pergamon, Oxford, 2001.
- [16] P. Ratanadecho, K. Aoki, M. Akahori, A numerical and experimental investigation of the modeling of microwave heating for liquid layers using a rectangular wave guide (effects of natural convection and dielectric properties), Appl. Math. Modelling 26 (2002) 449-472.
- [17] H.C. Brinkmann, On the permeability of media consisting of closely packed porous particles, Appl. Sci. Res. 1 (1947) 81-86.
- [18] G. Lauriat, V. Prasad, Natural convection in a vertical porous cavity: a numerical study for Brinkmann-extended Darcy formulation, Trans. ASME J. Heat Transfer 109 (1987) 295-320.
- [19] O. Aydin, Determination of optimum air-layer thickness in doublepane windows, Energy Buildings 32 (2000) 303-308.

en

Alderstand of Character of the contract of the state of t

The section of the same of

Chemical Engineering Science 61 (2006) 4798-4811

Chemical Engineering Science

www.elsevier.com/locate/ces

The simulation of microwave heating of wood using a rectangular wave guide: Influence of frequency and sample size

P. Rattanadecho

Faculty of Engineering, Thammasat University, Rangsit Campus, Pathumthani 12121. Thailand

Received 21 September 2005; received in revised form 27 February 2006; accepted 1 March 2006 Available online 7 March 2006

Abstract

Microwave heating—drying of wood using a wave guide is a relatively new area of research. In order to gain insight into the phenomena that occur within the wave guide together with the temperature distribution in the wood, a detailed knowledge of absorbed power distribution is necessary. In this paper, a two dimensional numerical model is developed to predicted the distribution of electromagnetic fields (TE10-mode), power and temperatures distributions within wood located in rectangular wave guide. A three dimensional finite difference time domain (FDTD) scheme is used to determine electromagnetic fields and absorbed power by solving the transient Maxwell's equations, and finite difference method is used to obtain unsteady temperature profiles. Temperature dependence of wood dielectric properties is simulated through an iterative process. The simulations are performed illustrating the influence of irradiation times, working frequencies and sample size. The presented modeling is used to identify the fundamental parameters and provides guidance for microwave drying of wood.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Microwave heating; Rectangular wave guide; Numerical; Wood

1. Introduction

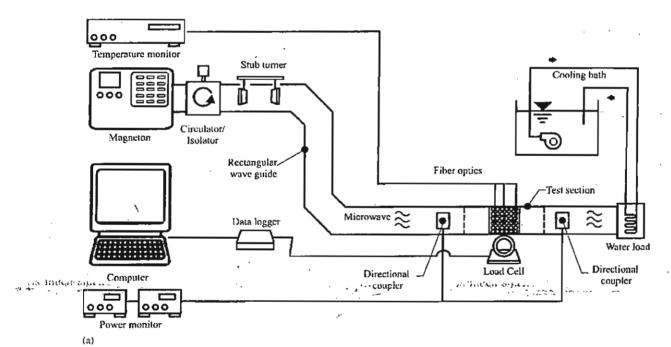
In the past decade, there are many successful examples of microwave application including; the heating and drying of foods, heating and drying of ceramics, heating and drying of woods and vulcanizations of rubber. A number of other analyses of the microwave heating process have appeared in the recent literature (Ayappa et al., 1991, 1992; Saltiel and Datta, 1997; Tada et al., 1998; Ratanadecho et al., 2001, 2002; Rattanadecho, 2004; Basak, 2003, 2004).

Although most of previous investigations considered simulations of microwave heating in solid sample, a little effort has been reported on study of microwave heating of wood in a rectangular wave guide particularly full comparison between mathematical simulations and experimental data.

Generally, the microwave power absorbed was assumed to decay exponentially into the sample following the Lambert's law. However, this assumption is valid for the large dimension

samples where the depth of sample is much larger than the penetration depth (all microwave energy, except the reflected wave from the upper surface of the sample, is dissipated within the sample). For the thin samples where the depth of sample is much smaller than the penetration depth, heat transfer rate by microwave is faster. The reason is that the reflection and transmission components at each interface will contribute to the resonance of standing wave configuration inside the sample whereas resonance is completely absent for greater length scales (Ayappa et al., 1991).

In perspective, Lambert's exponential decay law cannot predict resonance. Therefore, the spatial variations of the electromagnetic field within thin samples must be obtained by solution of the Maxwell's equations. The two-dimensional models of the interactions between electromagnetic field and dielectric materials have been used previously to study numerous heating processes of wood in a variety of microwave applicator configurations such as rectangular wave guide and cavities (Perre and Turner, 1997; Zhao and Turner, 2000). Readers may refer to Metaxas and Meridith (1983) and Mujumdar (1995) for an introduction to heat and mass transfer in microwave processing.


E-mail address: ratphadu@engr.tu.ac.th.

Due to the limited amount of theoretical and experimental work on microwave heating of hygroscopic porous media such as wood reported to date, the various effects are not fully understood and numbers of critical issues remain unresolved. These effects of the irradiation time, working frequencies and sample size on heating pattern have not been systematically studied. This work, the formulation of mathematical model for the microwave heating of wood inside a rectangular wave guide, in which the microwave of TE_{10} mode operating at the specified frequencies, is employed. The mathematical models are solved numerically and compared with experimental data. In the present analysis, the effects of the irradiation time, working frequencies and sample size on heating pattern are investigated in details.

The result presented here provides a basis for fundamental understanding of microwave drying of wood.

2. Experimental configuration

Fig. 1 shows the experimental apparatus for microwave heating system. It was developed for the heating tests to validate the model simulation. This system (Fig. 1(a)) consisted of a microwave supply system and a hot air system. In the microwave supply system a magnetron generated the monochromatic wave of TE_{10} mode operating at a frequency of 2.45 GHz, a wave-guide transmitted the wave to the heating cavity, a directional coupler with power meters measured power components. A circulator with a air cooling-load was installed in the system to absorb the reflected wave, a three-stub tuner was used to adjust the matching impedance into the heating cavity. In experiments, the microwave was transmitted along the z-direction of the rectangular wave guide with inside dimensions of 11 cm \times 5.461 cm toward a water load that was situated at the end of the wave

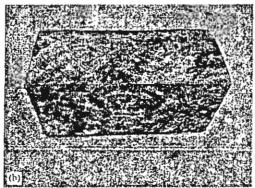


Fig. 1. Experimental apparatus: (a) microwave heating system; (b) wood sample.

Table 1 Dielectric properties of wood $(T = 25 \,^{\circ}\text{C})$

Frequency	2.45 GHz	5 GHz
Dielectric constant, &	1.591	1.591
Loss factor, &"	0.033	0.033
Penetration depth (m)	0.0357	0.0175

guide. The water load ensured that only a minimal amount of microwave was reflected back to the sample. A cooling tower with an air cooled load was installed in the system to reduce the temperature in the water load system.

The wood sample with dimensions of $11 \text{ cm} \times 5 \text{ cm} \times 5.5 \text{ cm}$ (Fig. 1(b)) filled in container is arranged in perpendicular to direction of irradiation via a rectangular wave guide. A sample container was made from polypropylene with a thickness of 0.075 cm, it did not absorb microwave energy.

During the experiment, output of magnetron was adjusted at the specified power (1000 W). The temperature distributions within the wood sample were measured using fiberoptic (LUXTRON Fluroptic Thermometer, Model 790, accurate to $\pm 0.5\,^{\circ}$ C). An infrared camera was used to detect the temperature distribution in the sample. All dielectric properties of wood are measured by using network analyzer which performs all of the necessary control functions, treatment of microwave signals, calculation, data processing and the results presentations. The dielectric properties of wood are listed in Table 1.

3. Analysis of microwave heating using a rectangular wave guide physical model

Fig. 2 shows the physical model of the microwave heating of wood using rectangular wave guide. Since the microwave field in the TE_{10} mode has no variation of field in the direction between the broad faces of rectangular wave guide, this means that the microwave is uniform in the y-direction. Consequently, it is assumed that two dimensional heat transfer model in the x and z directions would be sufficient to identify the microwave heating phenomena in a rectangular wave guide (Ratanadecho et al., 2001, 2002). The wood samples are assumed to be homogeneous and isotropic. Since the average moisture content of wood sample is low and the overall heating time is fast, the moisture loss is neglected. The other assumptions are as follows:

- The absorption of microwave by air in rectangular wave guide is negligible.
- 2. The walls of rectangular wave guide are perfect conductors.
- 3. All materials are non-magnetic.
- The effect of the sample container (made of poly propylene) on the electromagnetic and temperature fields can be neglected.

3.1. Maxwell's equation

Assuming the microwave is TE_{10} mode, the governing equations for the electromagnetic field can be written in term of the

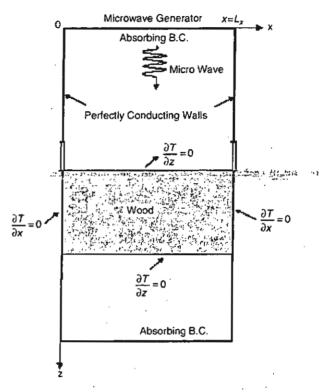


Fig. 2. Physical model.

component notations of electric and magnetic field intensities (Ratanadecho et al., 2002)

$$\frac{\partial E_y}{\partial z} = \mu \frac{\partial H_x}{\partial t},\tag{1}$$

$$\frac{\partial E_y}{\partial x} = -\mu \frac{\partial H_z}{\partial t},\tag{2}$$

$$-\left(\frac{\partial H_z}{\partial x} - \frac{\partial H_x}{\partial z}\right) = \sigma E_y + \varepsilon \frac{\partial E_y}{\partial t},\tag{3}$$

where E and H denote electric field intensity and magnetic field intensity, respectively. Subscripts x, y and z represent x, y and z components of vectors, respectively. Further, permittivity or dielectric constant ε , magnetic permeability μ and electric conductivity σ are given by

$$\varepsilon = \varepsilon_0 \varepsilon_r$$
, $\mu = \mu_0$, $\sigma = 2\pi f \varepsilon \tan \delta$. (4)

In addition, if magnetic effects are negligible, which is proven to be a valid assumption for most dielectric materials used in microwave heating applications, the magnetic permeability (μ) is well approximated by its value μ_0 in the free space.

Corresponding to the physical model shown in Fig. 2, boundary conditions are given as follows:

(a) Perfectly conducting boundaries; boundary conditions on the inner wall surface of a rectangular waveguide are given by using Faraday's law and Gauss' theorem:

$$E_t = 0, \quad H_n = 0. \tag{5}$$

The subscripts t and n denote the components of tangential and normal directions, respectively. (b) Continuity boundary condition; boundary conditions along the interface between different materials, for example between air and dielectric material surfaces, are given by using Ampere's law and Gauss theorem:

$$E_t = E'_t, \quad H_t = H'_t, \quad D_n = D'_n, \quad B_n = B'_n.$$
 (6)

The superscript ' denotes one of the different materials.

(c) Absorbing boundary condition; at both ends of the rectangular wave guide the first order absorbing conditions are applied:

$$\frac{\partial E_y}{\partial t} = \pm v \frac{\partial E_y}{\partial z}. (7)$$

Here, the symbol \pm represents forward or backward waves and υ is phase velocity of the microwave.

(d) Oscillation of the electric and magnetic flied intensities by magnetron; incident wave due to magnetron is given by the following equations:

$$E_{y} = E_{yin} \sin\left(\frac{\pi x}{L_{x}}\right) \sin(2\pi f t),$$

$$H_{x} = \frac{E_{yin}}{Z_{H}} \sin\left(\frac{\pi x}{L_{x}}\right) \sin(2\pi f t),$$
(8)

where E_{yin} is the input value of electric field intensity, L_x is the length of rectangular wave guide in x-direction. Z_H is the wave impedance defined as

$$Z_H = \frac{\lambda_g Z_I}{\lambda_0} = \frac{\lambda_g}{\lambda_0} \sqrt{\frac{\mu_0}{c_0}}.$$
 (9)

3.2. Heat transport equation

The temperature of wood exposed to incident wave is obtained by solving the heat conduction equation with the microwave power absorbed included as a local electromagnetic heat generation term:

$$\frac{\partial T}{\partial t} = a \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{Q}{\rho \cdot C_p},\tag{10}$$

where, T is temperature, a is thermal diffusivity, ρ is density and c_p is heat capacity at constant pressure. The local electromagnetic heat generation term Q is directly depended upon the electric field distribution defined as:

$$Q = 2\pi \cdot f \cdot \varepsilon_0 \cdot \varepsilon_r(\tan \delta) E_v^2. \tag{11}$$

The initial condition of wood sample defined as: $T = T_0$ at t = 0. The boundary conditions for solving heat transport equation are shown in Fig. 2.

4. Numerical technique

In order to predict the electromagnetic field, a finite difference time domain (FDTD) method is applied. In this study, the leapfrog scheme is applied to the set of Maxwell's

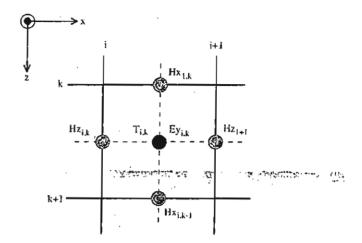


Fig. 3. Grid system configuration.

equations. The electric field vector components are offset one half cell in the direction of their corresponding components, while the magnetic field vector components are offset one half cell in each direction orthogonal to their corresponding components. The electric field and magnetic field are evaluated at alternative half time steps. For TE mode, the electric and magnetic field components are expressed by the total field FDTD equations as

$$= \frac{1 - (\sigma(i, k)\Delta t)/(2\varepsilon(i, k))}{1 + (\sigma(i, k)\Delta t)/(2\varepsilon(i, k))} E_y^{n-1}(i, k)$$

$$+ \frac{1}{1 + (\sigma(i, k)\Delta t)/(2\varepsilon(i, k))} \frac{\Delta t}{\varepsilon(i, k)}$$

$$\times \left\{ \frac{-(H_z^{n-1/2}(i + 1/2, k) - H_z^{n-1/2}(i - 1/2, k))}{\Delta x} + \frac{(H_x^{n-1/2}(i, k + 1/2) - H_x^{n-1/2}(i, k - 1/2))}{\Delta z} \right\}, \quad (12)$$

$$+ \frac{\Delta t}{\mu(i, k + 1/2)} + \frac{\Delta t}{\mu(i, k + 1/2)}$$

$$\times \left\{ \frac{E_y^n(i, k + 1) - E_y^n(i, k)}{\Delta z} \right\}, \quad (13)$$

$$+ \frac{\Delta t}{\mu(i + 1/2, k)} + \frac{\Delta t}{\mu(i + 1/2, k)}$$

$$\times \left\{ \frac{E_y^n(i, k + 1) - E_y^n(i, k)}{\Delta x} \right\}, \quad (14)$$

Furthermore, the heat transport equation (Eq. (10)) is solved by the method of finite differences. The spatial and the temporal terms are approximated spatially using finite difference equations for electromagnetic field and temperature field, as shown in Fig. 3. Eqs. (12)–(14) and discretized heat transport equation are solved on this grid system. The choice of spatial and temporal resolution is motivated by reasons of stability and accuracy.

To insure stability of the time-stepping algorithm, Δt must be chosen to satisfy the courant stability condition:

$$\Delta t \leqslant \frac{\sqrt{(\Delta x)^2 + (\Delta z)^2}}{v} \tag{15}$$

and the spatial resolution of each cell is defined as:

$$\Delta x, \Delta z \leqslant \frac{\lambda_g}{10\sqrt{c_r}}.$$
 (16)

Corresponding to Eqs. (15) and (16), the calculation conditions are as follows [4]:

- (1) To ensure that each wavelength of the microwave in the computational domain for each frequency has more than 10 subdivisions in the numerical calculation, thus, the computational domain is conservatively set such that the spatial resolution of each cell is $\Delta x = \Delta z \le \lambda_{mg}/10\sqrt{\epsilon_r} \approx 1.0 \text{ mm}$.
- (2) It should be noted that the time step length for the heat transfer Δt is of the order of one second, which is very large compared with the time step required for the FDTD scheme, which is of order of several picoseconds (Ratanadecho et al., 2002). Consequently, the different time steps of $\Delta t = 1[s]$ and $\Delta t = 1[ps]$ are used for the computation of temperature field and the electromagnetic field, respectively,
- (3) Relative errors in the iteration procedure of 10⁻⁸ were chosen.

5. The iterative computational schemes

Since the dielectric properties of wood are temperature dependent, to understand the influence of electromagnetic field on microwave heating realistically, it is necessary to consider the coupling between electric field and temperature field. For this reason, the iterative computational schemes are required to resolve the coupled non-linear Mexwell's equations and heat transport equations.

The computational scheme is to compute a local heat generation term by running an electromagnetic calculation with uniform properties, determined from initial temperature data. The electromagnetic calculation is performed until a sufficient period is reached in which a representative average rms (root-mean-square) of the electric field at each spatial point is obtained, typically 30 000 time steps. The microwave power absorption at each point is computed and used to solve the time dependent temperature field. Using these temperatures new values of the dielectric properties are calculated and used to re-calculate the electromagnetic fields and then microwave power absorption. The all steps are repeated until the required heating time is reached. The details of computational schemes and strategy are illustrated in Fig. 4.

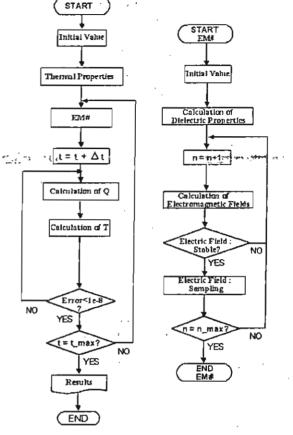


Fig. 4. Computational schemes.

6. Results and discussion

The experimental results for the microwave heating of wood were compared with predictions from mathematical model. The wood sample with a dry basis density of 721 kg/m³, moisture content of 12.5% and initial temperature of 25 °C are used for the present analysis. Since the average moisture content of wood sample is very low and the overall heating time is fast, the moisture content was treated to be constant throughout the numerical calculation of microwave heating process. In the microwave industries, only a few frequencies are available. Currently, two frequencies, 2.45 and 5 GHz are utilized for testing the model.

The dielectric properties of wood were directly taken from present experiment. Some numerical values for dielectric constant and loss factor are listed in Table 1. The penetration depth D_p of wood at 25 °C is approximately $D_p = 0.0357 \,\mathrm{m}$ (frequency of 2.45 GHz) and $D_p = 0.0175 \,\mathrm{m}$ (frequency of 5 GHz) according to the theoretical value

$$D_{p} = \frac{1}{2\pi f/v\sqrt{\frac{c_{r}^{\prime}\sqrt{1 + (c_{r}^{\prime\prime}/c_{r}^{\prime})^{2} - 1}}{2}}} = \frac{1}{\frac{2\pi f}{v}\sqrt{\frac{c_{r}^{\prime}\sqrt{1 + (\tan\delta)^{2} - 1}}{2}}}, \quad (17)$$

the penetration depth values are listed in Table 1.

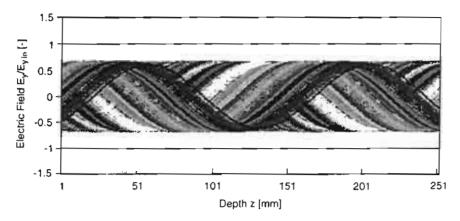


Fig. 5. The electric field distribution (Case 1).

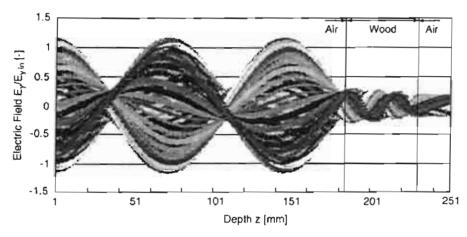


Fig. 6. The electric field distribution (Case 2).

From the definition of the penetration depth D_p the electric field intensity is the dielectric falls to approximately 1/e of its strength with distance D_p from the dielectric surface.

In this study, the effects of microwave frequencies and sample sizes on heating process are discussed in details.

6.1. The electric field distribution

To understand the electrical field distribution inside the rectangular wave guide and wood sample during microwave heating, the simulation analysis is required. The simulations of the typical electric field of TE_{10} mode along the center axis (x=55) of rectangular wave guide for specified heating conditions; $P=1000 \, \text{W}$, $t=30 \, \text{s}$ and size = 11 cm (x: width) $\times 5 \, \text{cm}$ (z: depth) are presented as follows:

- (1) Rectangular wave guide is empty, its dielectric constant is unity (which corresponds to that of air).
- (2) Rectangular wave guide is filled with wood sample, operating at the microwave frequency of 2.45 GHz (30 s).
- (3) Rectangular wave guide is filled with wood sample, operating at the microwave frequency of 5 GHz (30s).

Fig. 5 shows the stationary wave inside the rectangular wave guide with completely absorbed power at the end of the wave guide (Case 1). It is observed that the electric field distribution displays a wavy behavior with an almost uniform amplitude along a rectangular wave guide without the sample. Fig. 6 shows the electric field distribution inside a rectangular wave guide when a sample of wood is inserted in the rectangular wave guide during microwave heating with the frequency of 2.45 GHz (Case 2). Since the typical depth of wood is close to the penetration depth of microwave (see Table 1), thus a large part of microwaves are able to penetrate through the sample. The reflected wave will occur on each interface, from air (cavity) to upper surface and from lower surface of sample to air (cavity). The reflection and transmission components at each interface will contribute to the resonance of standing wave configuration inside the sample and give rise to a microwave absorption peak further from the surface exposed to incident microwaves. Furthermore, focusing attention of electric field pattern inside the cavity (left hand side), a stronger standing wave with a large amplitude is formed by interference between the incident and reflected wave from the surface of sample due to the difference of dielectric properties of materials (air and sample) at this interface. Owing to energy absorption, it is

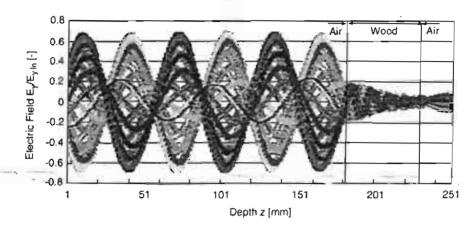


Fig. 7. The electric field distribution (Case 3).

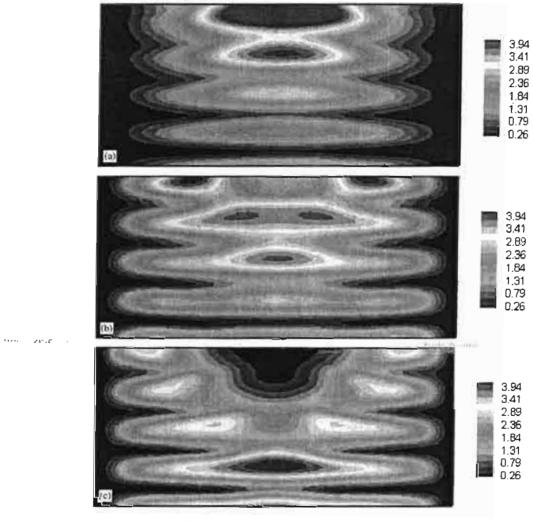


Fig. 8. Microwave power absorbed (MW/m^3) at various heating times: (a) 10 s; (b) 20 s; (c) 30 s $(f = 2.45\,\mathrm{GHz}, \mathrm{size} = 11\,\mathrm{cm}\,(x) \times 5\,\mathrm{cm}\,(z))$.

evident from the results that the electric field within the sample attenuates, and thereafter the absorbed energy is converted to the thermal energy, which increases the sample temperature.

Fig. 7 shows the electric field distribution when a sample of wood is inserted in the rectangular wave guide during microwave heating with a frequency of 5 GHz (Case 3). In contrast

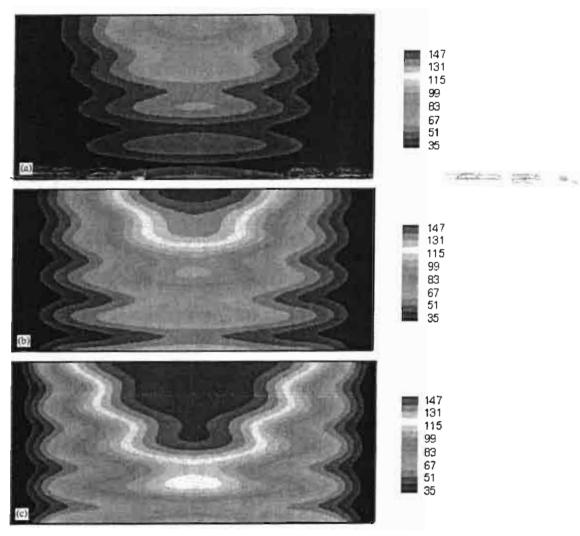


Fig. 9. Temperature distribution (°C) at various heating times: (a) 10s; (b) 20s; (c) 30s ($f = 2.45 \,\text{GHz}$. size = 11 cm (x) × 5 cm (z)).

to the electric field configuration in case 2, which is a result of a transmitted wave at the incident face and a reflected wave from the lower surface of the sample. This is due to the fact that microwave operates at a high frequency has a short wavelength which corresponds to a smaller penetration depth of microwave (see Table 1) when compared with the depth of sample. Consequently, all microwaves, except the reflected wave from the upper surface of the sample, is absorbed by the sample. It is found that the wave amplitude diminishes after $z=2\,\mathrm{cm}$, which results in a low microwave power absorbed. This phenomenon explains why the electric field and therefore the microwave power absorbed are the greatest at the surface exposed to incident microwaves and decay exponentially along the along the propagating direction with a very small wavelength.

6.2. Effect of frequency on temperature distribution

The predictions of temperature distribution for microwave heating of wood are shown in Figs. 8 and 9, which corresponds

to the initial temperature of 25 °C and microwave power level of 1000 W. Here, microwaves are transmitted along the z-direction of the rectangular wave guide toward the top surface of a wood sample with a dimension of 11 cm $(x : width) \times 5$ cm (z : depth) in the xz-plane. Most importantly, the effects of the variation of frequency on temperature distribution are discussed by considering the two microwave frequencies (f = 2.45 GHz) and 5 GHz.

For microwave heating of wood with the microwave frequency of 2.45 GHz, the temperature profile within the sample (Fig. 9) displays a wavy behavior corresponding to the resonance of electric field (Fig. 6). This is because the electric field within the sample attenuates owing to energy absorption, and thereafter the absorbed energy is converted to the thermal energy, which increases the sample temperature. It is found that the temperatures decay slowly along the propagation direction following the absorption of microwave (Fig. 8). The temperature distributions are shown for t=10, 20 and 30 s, respectively. The maximum temperature within the sample is around 147 °C at t=30 s.

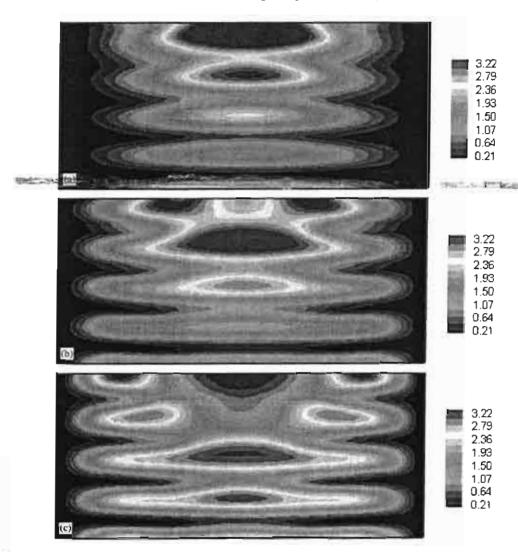


Fig. 10. Microwave power absorbed (MW/m^3) at various heating times: (a) 10 s; (b) 20 s: (c) 30 s $(f = 5 \text{ GHz}, \text{size} = 11 \text{ cm} (x) \times 5 \text{ cm} (z))$.

For microwave heating of wood, with the microwave frequency of 5 GHz, the predictions of microwave power absorbed and temperature distributions are shown in Figs. 10 and 11, respectively. Since the higher microwave frequency leads to a much smaller penetration depth, and the electric field decays much faster as compared to that in the case of microwave frequency of 2.45 GHz. In contrast to that case of microwave frequency of 2.45 GHz, which results in a transmitted wave at the incident face and a reflected wave from the lower surface of the sample. In this case, the microwave that operates at a high frequency has a short wavelength which corresponds to a smaller penetration depth of microwave (see Table 1) compared with the depth of sample. Consequently, all microwaves, except the reflected wave from the upper surface of the sample, is absorbed by the sample. It is found that the wave amplitude diminishes after $z = 2 \, \text{cm}$, which results in a low microwave power absorbed. This phenomenon explains why the electric field (Fig. 7) and therefore the microwave power absorbed are the greatest at the surface exposed to the incident microwaves,

and decay exponentially along the propagating direction with a very small wavelength, resulting in a thinner thermally smallified layer (Fig. 11). It is observed that the wavy behavior of the temperature distribution within the sample disappears and it is totally different from the previous case (as referred to Fig. 9). This is because the penetration depth of microwave drops dramatically and the wavelength is very small for this case. Since the reflected wave from the lower surface of the sample is almost negligible, no standing wave or resonance is formed within the sample (Fig. 7). Therefore, the microwave power absorbed decreases sharply to small value along the propagating direction (z > 2 cm). Similar to the microwave power absorbed (Fig. 10), the temperature distribution significantly varies from the maximum temperature to the minimum temperature in a short distance and decays quickly. It is evident from the Fig. 11 that, in this case, there is only one peak appearing on the temperature distribution. The temperature distributions are shown for t = 10, 20 and 30 s, respectively. The maximum temperature within the sample is around 145 °C at t = 30 s.

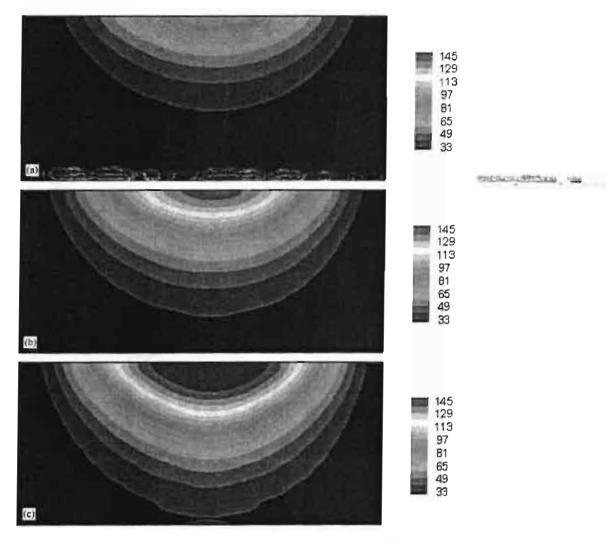


Fig. 11. Temperature distribution (°C) at various heating times: (a) 10s; (b) 20s; (c) 30s (f = 5 GHz, size = 11 cm $(x) \times 5$ cm (z)).

Considering the region along the propagation direction, the remperature distribution drops dramatically, and after z > 2 cm, the temperature distribution is almost unchanged within the heating time of 10 s.

6.3. Effect of sample size on temperature distribution

The predictions of temperature distribution for microwave heating of wood are discussed, which corresponds to the initial temperature of 25 °C and microwave power level of 1000 W. The effects of the variation of sample sizes on temperature distribution are discussed by considering the two sample sizes (thin sample; size = 11 cm (width) \times 5 cm (depth) and thicker sample; size = 11 cm (width) \times 8 cm (depth)).

In Fig. 13, which corresponds to the microwave heating of thicker sample (size = 11 cm (width) \times 8 cm (depth)) in the xz-plane, it can be seen that the temperature distributions along the propagating wave does not show a clear evidence of wavy

behavior, which is inconsistent with what was exhibited in Fig. 9 for the thin sample. This figure highlights that the thicker sample has a different heating characteristics compared with the thin sample. This is because the standing wave or resonance has a substantial effect on the shape of the transient microwave power absorbed.

Furthermore, the maximum power absorbed (Fig. 12) and maximum temperature (Fig. 13) are lower for this case compared with those shown in Figs. 8 and 9. The temperature distributions are shown for t = 10, 20 and 30 s. The maximum temperature within the sample is around 146 °C at t = 30 s.

Fig. 14 shows the predicted and experimental results of temperature distribution within the wood sample along with the horizontal axis of rectangular wave guide ($z = 0.5 \,\mathrm{cm}$), which corresponds to the initial temperature of 25 °C, microwave power level of 1000 W and frequency of 2.45 GHz. The result shows the greatest temperature displays in the center of wood sample with the temperature decreasing towards the side walls

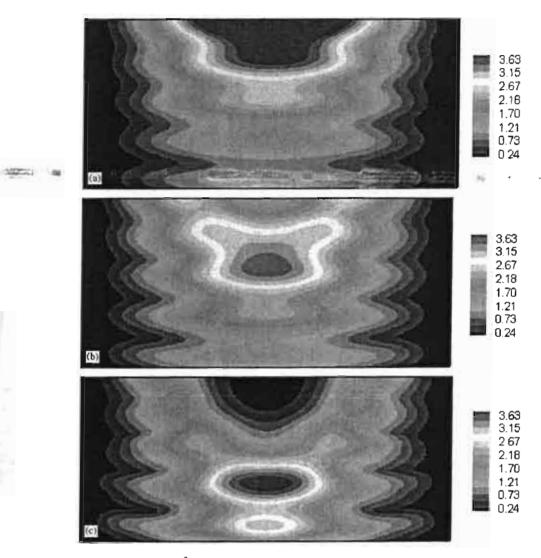


Fig. 12. Microwave power absorbed (MW/m^3) at various heating times: (a) 10 s; (b) 20 s; (c) 30 s $(f = 2.45 \, \text{GHz}, \text{size} = 11 \, \text{cm} \, (x) \times 8 \, \text{cm} \, (z))$.

of sample. This phenomenon occurs because the TE_{10} field pattern displays a maximum E-field at the center of wave guide. It is shown that the predicted results agree well with the experimental result for the microwave heating of wood. The prediction of temperature from the mathematical model is also compared with the experimental data measured by infrared camera for microwave heating of wood as shown in Fig. 15 ($t=30\,\mathrm{s}$). It can be seen that the agreement between two heating patterns is qualitatively consistent, particularly in the hot spot region.

Therefore, the capability of the mathematical model to correctly handle the field variations is shown. With further quantitative validation of the mathematical model, it is clear that the model can be used as a real tool for the detail investigation in this particular microwave heating of wood samples at a fundamental level.

7. Conclusion

The numerical analysis presented in this paper describes many important interactions within wood samples during microwave heating using a rectangular wave guide. The following paragraph summarizes the conclusions of this study:

- (1) A generalized mathematical model for microwave heating of wood is proposed. It is used successfully to describe the heating phenomena under various conditions.
- (2) The influence of irradiation times, working frequencies and sample size on the microwave power absorbed and heating pattern that develop within wood samples is clarified in details. The simulated results for the temperature distribution within the wood samples rate are in agreement with experimental results. The main finding of the simulations are summarized again in Table 2. At a microwave frequency of 2.45 GHz the power

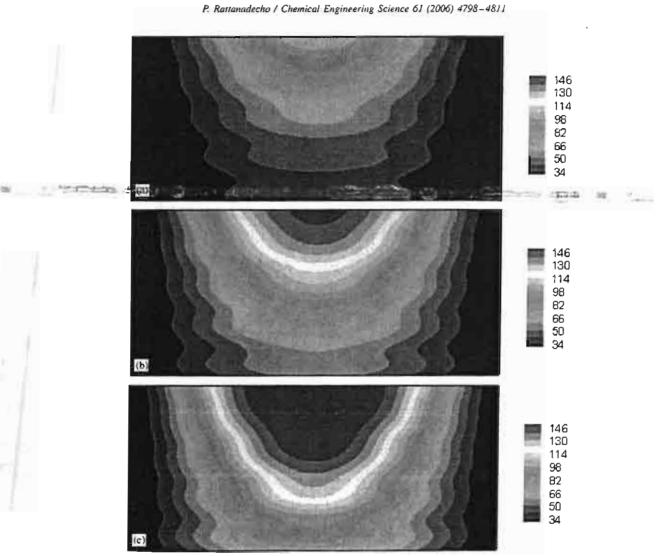


Fig. 13. Temperature distribution (°C) at various heating times: (a) 10s; (b) 20s; (c) 30 (f = 2.45 GHz, size = 11 cm (x) × 8 cm (z)).

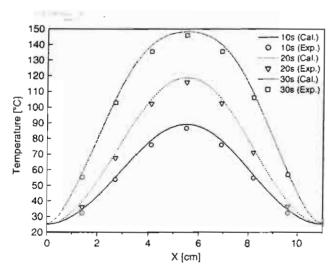


Fig. 14. Temperature distribution in wood sample along horizontal axis (z = 0.5 cm) $(f = 2.45 \text{ GHz}, \text{size} = 11 \text{ cm} (x) \times 5 \text{ cm} (z))$.

distribution as well as temperature distribution within the sample display a wavy behavior due to the thickness of sample is close to the penetration depth. This causes a resultant of a transmitted wave at the incident face and a reflected wave from the end surface. Most of heating occurs at the center of the test sample where the electric field is maximum for this standing wave configuration. The thicker sample leads to lower intensity of the reflected wave, the contribution from reflected wave is weak and the power distribution as well as temperature distribution display a weak wavy behavior similar to that an attenuated transmitted wave. For the higher frequency (frequency of 5 GHz) the power absorbed at the surface increases and the decay in to the sample is more rapid. In this case, the contribution from reflected wave is negligible and power distribution behaves similar to that an attenuated transmitted wave, as in the case of the Lambert law solution.

The presented modeling is used to identify the fundamental parameters, and provides guidance for the study of microwave drying of wood in the future.

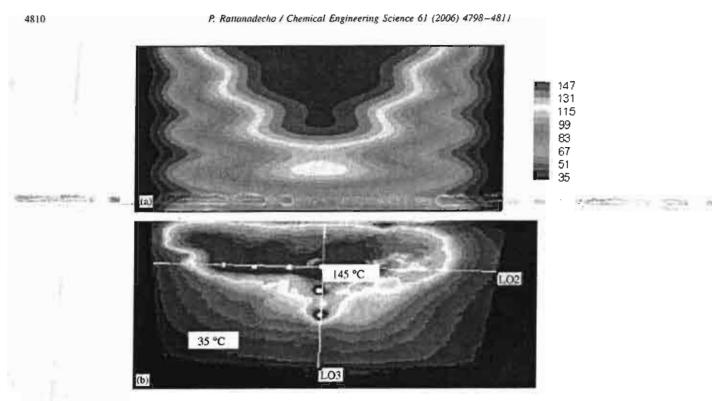


Fig. 15. The comparison of temperature distribution (°C) in wood sample: (a) simulated result; (b) experimental result ($f = 2.45 \, \text{GHz}$, size=11 cm (x) × 5 cm (z)).

Table 2

The heating characteristics for various heating conditions due to microwave energy. The darker shaded region represents the hot spot

	f = 2.45 GHz size = 11 cm $(x) \times 5 \text{cm}(z)$	f = 5 GHz size = 11 cm (x) × 5 cm (z)	f = 2.45 GHz size = 11 cm (x) × 8 cm (z)
Temperature Distribution			
Microwave Power Absorbed			
Conclusions	Most of heating occurs at the center of the test sample. Heating pattern is influenced by resonance. The strong wavy behavior within the sample is formed.	Most of heating occurs at the center of the test sample. Heating pattern is not influenced by resonance. The wavy behavior within the sample is totally absent.	Most of heating occurs at the center of the test sample Heating pattern is influenced by resonance. A weak wavy behavior within the sample is formed.

Notation		P	power, W
B C _p D E f	magnetic flux density, Wb/m ² specific heat capacity, J/kgK electric flux density, C/m ² electric field intensity, V/m frequency of incident wave, Hz magnetic field intensity, A/m	Q T t t t z H z	local electromagnetic heat generation term, W/m^3 temperature, C time, s loss tangent, dimensionless wave impedance, Ω intrinsic impedance, Ω

Greek letters

3	permittivity, F/m
λ	wavelength, m
,,	magnetic nermeab

μ magnetic permeability, H/mυ velocity of propagation, m/s

ρ density, kg/m³

 σ electric conductivity, S/m ω angular frequency, rad/s

Subscripts

8	wave	guide
---	------	-------

n component of normal direction

r relative

component of tangent direction

x, y, z coordinates

0 free space, initial condition

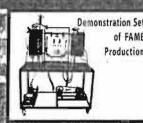
Acknowledgments

The author is pleased to acknowledge Thailand Research Fund (TRF) and National Metal and Materials Technology Center (MTEC) for supporting this research work. Prof. K. Aoki of the Nagaoka University of Technology has valuable recommendation in this research area the author is also grateful.

References

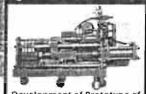
Ayappa, K.G., Davis, H.T., Crapiste, G., Davis, E.A., Gordon, J., 1991.
Microwave heating: an evaluation of power. Chemical Engineering Science Journal 46, 1005-1016.

- Ayappa, K.G., Davis, H.T., Davis, E.A., Gordon, J., 1992. Two-dimensional finite element analysis of microwave heating. A.I.Ch.E. Journal 38, 1577-1592.
- Basak, T., 2003. Analysis of resonances during microwave thawing of slabs. International Journal of Heat and Mass Transfer 46, 4279-4301.
- Basak, T., 2004. Role of resonances on microwave heating of oil-water emulsions. A.I.Ch.E. Journal 50, 2659-2675.
- Metaxas, A.C., Meridith, R.J., 1983. Industrial Microwave Heating. Peter Peregrinus Ltd., London.
- Mujumdar, A.S. (Ed.), 1995. Handbook of Industrial Drying. second ed., Marcel Dekker, New York.
- Perre, P., Turner, W., 1997. Microwave drying of softwood in an oversized waveguide. A.I.Ch.E. Journal 43, 2579-2595.
- Rattanadecho, P., 2004. The theoretical and experimental investigation of microwave thawing of frozen layer using microwave oven (Effects of layered configurations and layered thickness). International Journal of Heat and Mass Transfer 47, 937-945.
- Ratanadecho, P., Aoki, K., Akahori, M., 2001. A numerical and experimental study of microwave drying using a rectangular wave guide. Drying Technology International Journal 19, 2209-2234.
- Ratanadecho, P., Aoki, K., Akahori, M., 2002. Influence of irradiation time, particle sizes and initial moisture content during microwave drying of multi-layered capillary porous materials. ASME Journal of Heat Transfer 124, 151-161.
- Saltiel, C., Datta, A., 1997. Heat and mass transfer in microwave processing. Advances in Heat Transfer 30, 1-94.
- Tada, S., Echigo, R., Kuno, Y., Yoshida, H., 1998. Numerical analysis of electromagnetic wave in partially loaded microwave applicator. International Journal of Heat and Mass Transfer 41, 709-718.
- Zhao, H., Tumer, I.W., 2000. The use of a coupled computational model for studying the microwave heating of wood. Applied Mathematical Modeling 24, 183-197.



WENETT

The 19th Conference of Mechanical Engineering Network of Thailand,


รวมนักครกับ กรประสูบวิจาการเครือสายวิศวกรรมเครื่องคือ เหตุประเทิศไทย ครั้งก็ไลย

> วันที่ 19 - 21 ตุลาคม 🛂 548 ณ โรงแรม เดอะ รอบัล พาราไดส์ จ.กูเก็ต

Development of Prototype of Wood Dust Solid Fuel Press

าชาวิชา

Energy Technology and Management

Thermal Systems and Fluid Mechanics

Applied Mechanics, Materials and Manufacturing

Dynamic Systems, Robotics and Control

Aerospace and Marine Engineering

Computational and Simulation Techniques

การวิเคราะห์เชิงทฤษฎีและทดลองสำหรับปัญหาการทำละลายในวัสดุพรุนที่ไม่ถิ่มตัวขณะ มีการถ่ายเทความร้อนและมวลสารข้ามขอบเขตที่เคลื่อนที่

Theoretical and Experimental Analysis of Melting Process in Unsaturated Porous Media considered Heat and Mass Transport across Moving Boundaries

และค้าส์ วิชณเอโร

มาควิชาวิชากรรมเครื่องกล คุณเจ้องกรรมสาเลดร์ มหาวิทยาลัยธรรมสาเลงร์ ภาควิชาวิชากรรมเครื่องกล คุณเจ้องกรรมเสาเลตร์ เหมาวิทยาลัยธรรมชาเพรี คุณองหลวง ปัฐมุชานี 12120 "E-mail retabledu@enco.tu.ec.th

Phadungsak Rattanageong

Department of Mechanical Engineering, Faculty of Engineering, Thammas at University (Rangell Campus), Pathumthani, 12126 *E-mail: ratphadu@engritu.ac.th

บทคัดม่อ

งานวิจัยฉบับนี้จะทำการวิเคราะที่เข็งพฤษฏิและพดลองสำหรับปัญหา การทำละลายในวัลดูพรุนไม่อื่นตัว ขณะมีการถ่ายเทความร้อนและมาต สารข้ามขอบเขตที่เคลื่อนที่ โดยวัสผุพรนไม่อื่มตัวที่นำมาศึกษาจะ ประกอบไปด้วยเม็ดแก้ว น้ำ โพรงอากาค และน้ำแข็ง งานวิจัยเริ่มค้น จากการสร้างแบบจำแบงทางคณิตศาสตร์ในรูปสมภารธนุพันธ์บ่อยซึ่ง ประกอบไปด้วยสมการตาร์ปี สมการอนุรักษ์มวล และสมการอนุรักษ์ พลังงาน และสมการสเตพ่านสำหรับกระบวนการทำละลายที่มีขอบเขต เคลื่อนที่ 2 ตำแหน่ง โดยที่การหาคำตอบของกลุ่มสมการตั้งกล่าวใช้วิธี ไฟในท้ายอลูมร่วมกับวิธีแปลงพิกัลแกน ผลลัพธ์ที่ได้จากภารทำนายคว ความยิ่มตัว และการกระจายของอุณหภูมิในวัตลุ และคำแหน่งของ ขอบเขตที่เคลื่อนที่ จะถูกตรวจสอบกับผลที่ได้จากการทดลองจริงใน ห้องปฏิบัติการ อิทธิพลของคำความอื่มตัวเริ่มต้น และ อุณหภูมิของการ ฟาละธาย ที่มีผลต่อจลน์ศาสตร์ของภารทำละลวยจะทำการศึกษาอย่าง ดะเอียด องค์ดวามรู้ที่ได้จากงานวิธีวิเคราะท์จะเป็นประโยชน์ต่องาน ทางวิศวกรรมที่หลากหลาย เช่น กรรหลอมละลายโลหะ อุลลาหกรรม อาหาร การถนอมเนื้อเยื่อทางการแพทย์ การหลอมละลายของแมกมา ในขั้นใต้พิภพและการออกแบบอากาศยาน

คำหลัก ปัญหาการทำละตาย วัสคุพรูนไม่ยืมตัว สมการคาร์ซี

Abstract

In this paper, the melting process in unsaturated porous media during heat and mass transport across moving boundary. has been investigated theoretically and experimentally. The unsaturated porcus media are composed of glass beads, water, air pocket and ice. The governing partial-differential equations are Darcy, conservation of mass, conservation of energy and Stefan equations for melling process having two locations of moving boundary. The simulated results are obtained via finite. volume method together with coordinate transformation technique. The predicted water saturation and temperature distributions in the material and the location of moving boundary are compared with experimental results. The influences of the initial water saturation and melting temperature on the melting kirietics are clarified in detaks. Further quantitative validation of results could be very useful for various kinds of engineering work such as melting of alloy, food. preservation of tissue, magma m-Imp and perospace designed.

Keywords: Metting Problem, Unsaturated Porous Media, Darcy Equation

1.10000

ในอดีตที่เทาแบบ รวยงานการวิจัยในการจักษาเกี่ยวกับการท่ายกา ความรัยนและมวลลารในวัสดุพวน (potous media) luceus นานาชาติยังจำกัดอยู่กับวัลดุ พรุนชนิตอิบด้ว (saturated porous media) ในชณะที่ การวิจับเกี่ยรสับการท่ายเทศวามร้อนและมวลลารใน วัพยพรนชนิดในอื่นตัว (unsaturated porous media) บังมีการวิจับกัน น้อย โดยเฉพาะในภาคทฤษฎีในโครงสร้างระดับจุลภาค (microscopic level) ชีวแพดแลนองความข้าเข้อนในปรากฏลารณ์ ยันเนื่องมาจาก การเปลี่ยนคภาพะของคลารหลายชนิด อนสมบัติต้านความร้อน ประสิทธิบุล (effective thermal property) ของวัสดุพาน คุณสมบัติด้าน รายาการ (hydrodynamic property) และกรมลักษณะการเครื่องเกีย มวลสาร (ของเทศวและภักษ) ในวัสดุพรุน รวมถึงปัญหวของการเคลื่อน ตัวของขอบบรด (moving boundary problem) ซึ่งที่ผิวแมวบังไม่นั ภารศึกษาอย่างเป็นระบบ นอกจากนี้ยาลอร์ดังกล่าวนี้ต้องอาศัยองก์ ดวามรู้ในหมายดาขาเข้าตัวมกิน กล่าวคือ ความรู้ทางด้านการกายเรา ความร้อนและมวลสาร, กลสาสครับสงใหลในระบบที่มีความขับข้อน และวัดดูศาสตร์ รวมจนถึงระเบียบวิชีเริงคำนวณทางด้วเครชั้นละ เพื่อ หาคำตอบของปัญหาที่มีความเป็นไม่เรื่อเต้นสุง (strongly non-inear problem) และการประดิษฐ์โปรแกรมคอมพิวเตอร์ที่มีความแม่นบำและ บีตมรรถนะสง

ด้วยเหตุดังกล่าวนี้ทำให้การวิจัยในสาขาดังกล่าวข้างดันนี้ถึงไม่
แพร่หลายในระดับนานาชาติและประเทศไทย ในความเป็นจริงแล้ว
ประเทศที่พัฒนาแล้วจะให้ความสนใจในการวิจัยและพัฒนาในลาขานี้
เป็นสันมาก การวิจัยในสาขาการถ่วยเหความร้อนและมวลสารในวัสดุ
พรุนมีประโยชน์อย่างสูงในศาลศรีวิศวกรรมทุกสาขา ทั้งนี้เพราะวัสดุ
ส่วนใหญ่ที่ใช้งานในทางวิศวกรรมจัดเป็นวัสดุพรุน กล่าวลิลตัววัสดุ
ประกอบด้วย 3 สถานะ ถือ สถานะของแข็งทริจ matrix และของเทลว
และกำจะ ที่อยู่ในช่องว่างหรือวูพรน (void)

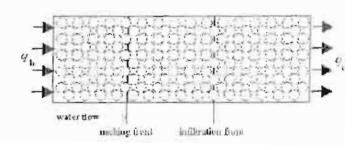
เป็นที่ทราบกันดีว่าในทางวิควกรรมแล้ววัสตุส่วนใหญ่จะเป็น
วัสดุพรุน ด้วยบ่างวัสดุพรุนที่ใช้งานในทารีควกรรม เช่น ดินและ
คอนบริศในงานวิศวกรรมปฐพี Ceramic ในงานวิศวกรรมไสทะ
catalyst ในงานวิศวกรรมเคมี ฉนวนความร้อนในงาน
วิศวกรรมเครื่องกลและเคมี, เนื้อเบื้อต่างๆ ผิว หรือ membrane ใน
งานวิศวกรรมที่วภาพและการแพทย์ รวมจนถึงอาหารและผลิตภัณฑ์
ทวงการเกษตรในงานวิศวกรรมการเกษตร จึงพูดได้ว่าความรู้ทางด้าน
การกำบเทความร้อนและมวลสารในวัสดุพรุนบิกวามสำคัญต่องาน
วิศวกรรมทุกสาขา อย่างไรก็ตามประเทศไทยก็ยังชาดแคลนนักวิจัยใน
สาขาการกำบเทความร้อนและมวลสารในวัสดุพรุนขนิดอื่มตัวและชนิด
ไม่อิมตัว รวมถึง เทคในโลยีวัสดุพรุน ในด้านอื่น ๆ

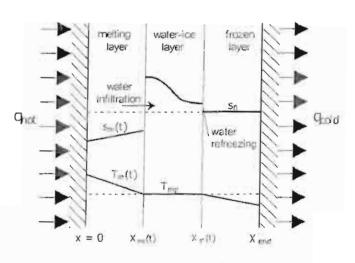
ลำหรับรายงานุวิจัยที่ผ่านมาเกี่ยวกับกระบวนการทำละหาย มักระพิจารณาให้วัสตุตัวอย่างทดลอบเป็นก้อนน้ำแข็ง (ice block) หรือ เพศเบครองวัสตุพรุนชนิดอื่นตัว (packed bed of saturated porous media: ซึ่งเป็นองค์ประกอบของน้ำแข็งที่อิ่มตัวในข่องรูพรุนและอนุภาค ของแข็ง) โดยระแบ่งลักษณะการให้ใหล่คอวามร้อนหลายรูปแบบอาทิ เช่น การให้ไทยคที่ผิวด้ำนข้างของระนาบแนวดิงของเพณบคโดยที่ผิว ต้านอื่นๆทำการทุ้มฉนานใว้และจะทำการปีเคราะห์อัดราการตะลายตัว

ของน้ำแล้วรูปร่างและลักษณะการเคลื่อนด้วยลงของเขตฝึวแรดาอ (melling front หรือ moving boundary) ที่วิจยามสามวิธีแดงสารีโดยมาก มาเก็บวกับกระบวนการทำละสายในสัตษและก็กลาวข้างสันใส้แห่งาน รอง Murray and Lands (1) ซึ่งได้นำแลนอร์ชีกรรคามรถใหมอาคับ เทคนิคการเปลี่ยนพีกัดของแกน (coordinate technique based on boundary fixing method) luffinyanns กระบวนการทาดะลายในก่อนน้ำแจ็ง ซึ่งเป็นวิธีตั้งกาลัก ที่ นักวิจัย ลำมาประยุกดีใช้ในกระบวนการต่าง ๆที่เก็บปรักงกับปัญหาที่ลังสบบคน เครื่อนที่ (moving boundary problem) เหมากเริ่มกรรมที่เก็บรกับ กระบานการถอนทั้ง (orging process) กระบานการอยู่แล้ง (Feezing process) หรือกระบวนการทำละกาย (melling process) เป็นต้น Viskants et al [2] ใต้ค้าษาพื้นร้องกระกับสะการพลลเอ แล การศึกษาพบว่าอิทธิพลของพลักซ์ความร้อนที่ป้อนและอักษณะใหม่จ ของการท่ายเทความรัสน (การนำและการพา) มีผลต่อสังสารการละสาย สังของน้ำแข็งและรูปร่างและลักษณะการเกลือนลักของขอบเขตลิว ละสาย Goog and Mujumdar (3) ใต้ตัดแปลงลักษณะการให้โหมด ความร้อนจากกรณีแรก โดยทำการให้โหลดที่มิวด้านล่างของระนาบ ยนวระดับแทนโดยที่ผิวด้านอื่น ๆทำการหุ้มฉนานใร้ พบว่าอีทริพหบอง Rayleigh number และอัตราฟลักซ์ความร้อนที่ บ็อนเข้าใปมีผมต่อรูปร่างและลักษณะการเคลื่อนตัวของขอบเขตผิว ละลาบรวมถึงความไม่เลธียรภาพของ การพาครามร้อนแบบเดียระ อย่างไรก็ตรมงานวิจัยฉรบรับนี้เน้นเฉพาะการทำฉายใดยสาดัยระเบียบ IF Finite element โดยไม่มีการทดลองเปรียบเทียบ

ลักษณะการให้โหลดความร้อนในรูปแบบอื่นเช่น การละสายตัว ของบล็อกน้ำแข็งทรงกระบอกที่อยู่ที่วางชวางที่คทางการใหล่ (forced ของของใหญากปลักษาตารานร้อนที่เป็นลักษณะการพาแบบ บรรมชาติ (natural convection) และการพายบบบังกับ (force convection) ตัวอย่างงานก็ศึกษาเช่น Carrey and Gebhart [4] และ Hopped and Tumer [5] ใต้ทำการศึกษาการละลายคัวของบล็อก น้ำแข็งพรงกระบอกที่อยู่ที่วางขวางทิศทางการใหล่โดยการหาแบบ รรรมชาติ Fukusako et.ai [6] ได้ศึกษาถึงผลกระทบของ การให้โทยต ความร้อนที่มีลักษณะการการพาแบบธรรมชาติ งนาตรูปทรงของบล็อก น้ำแข็งทรงกระบอก และอัตราความเข้มของสารละอาเท็นำมาเป็นของ ใหล่ในระบบ ที่มีต่อรูปช่วงของผิวละสาย (melting shape) และ ผลงานวิจัยลำดูตบองผู้วิจัยเอง Ratunadecho et al. [7] ได้ก็กษาการ การสะสายด้วของหลือกน้ำแข็งทรงกระหอกที่อยู่ที่วางขวางที่คทางการ ไหล โดยให้โหลดความร้อนที่มีลักษณะการการพาแบบบังกับ ในก็นี้จะ ด็กษานึ่งอิทธิพลของความเร็วของการไหล อุณหภูมิของของไหล และ ชนิดของวัสดุตัวอย่าง บล็อกน้ำแข็งทรงกระบอก (ทำจากน้ำธรรมตา) และบล็อกน้ำแจ้งที่ทำจาก sodium carbonate aqueous solution of eulectic concentration ที่มีต่อที่มีต่อรูปร่างของผิวละตาบของวัสดู ด้วยขาง

นอกเหนือจากนี้ รายงานวิจัยเกี่ยวกับกระบวนการกำละดายโดย อาดัยพลังงานจากคลั้นในโครเวฟก็มีการนำเลนอ เช่น Pangrie and Ayappa (8) ใช้ทำการศึกษากระบวนการทำละสายโดยอาศัยพลังงาน จากคลั้นในโครเวฟบนวัดดูด้วอยวงรูปทรงกระบอก โดยพารามีเตอร์ที่


สำคัญที่วิเยวาะห์คือ อัตรวการดูดกลิ่นหลังงานไมโครเรพ รูปร่างการ กระจายอุดทหภูมิใหวัสจุด้วยน่าง และอัตราการสะสายตัว สบยา Basak and Ayappa [9] ก็ปมาแผนการวิจัยจากงานก็ผ่านมา [8] โฟม ทาการที่กษาในวัสดุตัวอย่างที่เป็นแผ่น (stab) รายงานวิจัยสาสุดของ เพื่อแบง (Ratanadecho et al [10] และ (Ratanadecho [11]) 18. พำการศึกษากระบวนการทำละลาบเร็จทฤษฎีและพลลองโดยลาคับ พลังงานจากคลื่นไม่โครเวฟในวัลธุด้วยปรงที่มีโครงสร้างเป็นขั้นๆ (multi-layered material) ในท่อนิวคลื้นรูปพรงที่เหมือน (rectangular wave guide) โดยพวรามีเตอร์ที่ลำคัญที่วิเคราะห์คือ อัยราการจุดกดิน พลังงานในโทรเวฟ รูปรางการกระชายอุณหภูมิในวัสดุด้วยบ้าง อัตรา การละลายตัว ลักษณะใจวงสว้างของชั้นวัสดุตัวอย่าง และการเคลื่อนตัว ของขอบเขตผิวละอาย (melling front) งานวิจัยขั้นนี้ก็อวาเป็นต้นแบบ ที่ต่าคัญในรายงานวิจัยระดับนานกชาติที่มีการนำเทศนิตการกระบบ วปแบบใหม่มาแก้ปัญหาลักษณะโคณนที่มีการเคลื่อนด้วของขอบเรศ เป็นมักษณะรูปร่างที่ไม่เฉพาะ (arbitrary moving front) นานราสิน ด้วยข่างอยู่ภายใต้พลังงานจากคลื่นไมโดรเวฟ


อย่างไรก็ตามที่ผ่านมางานวิจัยทั้งหมดอยู่บางพันฐานที่ว่าวัสดุ
พดสอบด้วยย่างเป็นก้อนน้ำแข็งธรรมตา หรือเป็นวัสดุพรุนขนิดอื่มตัว
สำหรับรายงานการวิจัยเกี่ยวกับการถ่ายเทศวามร้อนและมวลสารใน
วัสดุพรุนขนิดไม่อื่มตัว (unsaturated porous media) ในกระบวนการ
ทำละสายหรือกระบวนการทำแข็ง (solonication process) ผู้มีการ
วิจัยกันน้อเผาก โดยเฉพาะในภาคทฤษฏิในโดรงสร้างระดับจุลภาค
(microscopic level) ด้วยเหตุผลของความขับข้อนในปรากฏการณ์
ยณวันในตัวนของรายงานวิจัยเกี่ยวกับกระบวนการทำแข็งในวัสดุพรุน
ขนิดไม่อิมตัวได้มีการนำเสนอครั้งแรกในปีที่ผ่านมาโดยผู้วิจัยเลง
(Ratanadecho [12]) ลำหรับรายงานงานวิจัยเกี่ยวกับปัญหาการทำ
ละสายที่ได้รวบรวมเอกสารอ้างอิงไว้เป็นอย่างดี ผู้สานสามารถดูใต้จาก
รายงานของ Yac and Prisa [13]

ในงานวิจัยครั้งนี้จะเน้นดีกษาทั้งในรูปแบบการวิเคราะห์เช็ง
ทฤษฎีโดยธาตับระเบียบวิธีการคำนวณเร็งตัวเลขขั้นสูง และทดลอง
ของกระบวนการทำละลายในวัสดุพรุนที่ไม่อื่มตัวในโครงสร้างระจับ
จุลภาค โดยเริ่มต้นจากการพัฒนาแบบจำลองทางคณิตศาลคร์ ที่
สามารถครอบคลุมและอธิบายปรากฏการณ์ในปัญหาของของ
กระบวนการทำละลายในวัสดุพรุนที่ไม่อื่มตัว และยืนยันความถูกต้อง
โดยตรวจสอบจากผลจากการทดลองจริง งานวิจัยนั้งะทำการศึกษา
อิทธิพลของฟลักซ์ครามร้อนที่ป้อน ดีกรีครามอิมตัวเริ่มต้น (Initial
รอเผลป่อก) ขนาดรองอนุภาค (particle size) ที่มีผลต่ออัตราการ
ละลายตัวของน้ำแข็งในวัสดุพรุน และลักษณะการเคลื่อนตัวของ
ของเหลวที่ขอบเขตผิวละลาย (melting tront) และขอบเขตของการใหล

แบบจำลองทางกณีคศาสตร์และ Numerical Schemes (และ Computer code) รูปแบบใหม่ที่จะพัฒนาขึ้นจากการโครงการวิจัยครั้ง นี้จะเป็นประโยชน์อย่างสูงในการทำนายปรากฏการณ์การท่ายเท ความร้อนและและมวลสารในวัสดุพรุนที่ไม่อื่มตัวในงานต่างๆ ตั้งที่ กล่าวมาข้างตัน รวมถึงปัญหาที่มีดักษณะกาวเคลื่อนตัวของขอบแรด

 การวิเคราะทั่งขึ้งทฤษฎีและแบบจำลองทางองนิตสาสตร์ งานได้แค่นั้งนี้ นั่นดับชาทั้งเรื่อหยชมิโดยอาทัยละเป็นบริษัทระดำนาด เข็งตัวเกษขึ้นลง และการทดสมอบภูเกระบบนทารละสายในเพศเบศวัสด โดยเรียดในเพลเบอร์สดพรนที่ในสิมจังข้อมานการ treeze จะเป็นองก์ประกอบของน้ำแข็ง โพรงอากาศและอนกากของแข็ง เมื่อนำไปผ่านกระบวนการทำละสาย (melting) จะมีการให้โหลดความ ร้อนที่มีวด้านข้างของระนาบแนวดั้งของเพศเบตโดยที่มีวด้านอื่นๆทำ การประชาหาร โดยในการวิเคราะที่ จะถือว่าสังค์ประกอบรองทุก สภาพปน เพศเบลโดราเมลเคลย์ทางเทอร์โมโดน วักต์ในทุกๆรูสรั พิจารณา และสมเด็จได้สา porolly กระจากท่างไม่ในทุกกรุด การ ของปลัวบริยากรพลตัวของเพคเบอระโมนำมาพิจารณา กลไทที่สำคัญ ของการเคลื่อนถ้ายมวลสารที่เป็นพอสหลวฯ รือน้ำอยู่ภายให้จึงเริ่พล าเองแรงดังและที่ปลารี (capillary force) และสมการหลักที่ใช้สานราน ฟลักข์การเคลื่อนถังของน้ำในรัสสพรนเรียกร่าสมการตาร์ซี (Dareva equation) ซึ่งสมการเหม่านี้ derive มารากพลักการรอง volume averaging technique (Ratanadecho (12))

รูปที่ 1 แบบจำลองทางทายภาพของกระบวนการทำละลายในวัตถุพรุน ชนิลให้อับตัว

จากรูปที่ 1 การวิเคราะห์เกี่ยวกับการถายเทความร้อนและมวสสาร ใหระหว่างกระบวนการทำละสายในวัสดุพรูนชนิดไม่อื่นด้วยะต้องทำ พิจารณาโดเมนออกเป็น 3 โดนที่เวียงอนุกรมกัน กล่าวคือ โดนแรกคือ โดนสะลาย (meting layor: ประกอบด้วยของเหลวและอนุกาศของเชิง) ซึ่งมีเวอิกต้านหนึ่งสัมผิดกับแหล่งใหลดความรักน กัดออกไปจะเป็นโดน

หลายสถานะ (mushy layer หรือ water-ice layer: ประกอบด้วย ของเหลว อนุภากของแข็ง น้ำแข็งและโพรงอากาศ) ในโซนนี้จะเกิด ปรากฏการณ์ refreezing เกิดขึ้นหากที่ด้านปลายของเพคเบตมีการ กัดออกไปสุดท้ายจะเป็นโชนของแข็ง ประกอบด้วยน้ำแข็ง อนภาคของแข็งและโพวงอากาค) ซึ่งวัลดูด้วอย่าง ยังกงรูปเป็นของแข็งเหมือนสถานะก่อนรับโหลดกวามร้อน รอบต่อระหว่างโซนแรกและโซนที่ลอง (melting front) และรอยต่อ ระหว่างโซนสองและโซนที่ลาม (infiltration front) จะเกลื่อนตัวไปกับ ดาบเวลาของการทำละลาย ซึ่งจะต้องพิจารณาเป็นปัญหาที่มีขอบเขต เกลื่อนที่ห์ร้อมกันสองค่าแหน่ง (simultaneous moving boundary problem) พร้อมทับมีการถ่ายเทมวลของเหลวผ่านขอบเขตที่เคลื่อนที่ ภายใต้อิทธิพลของแรงดันแดปปิลารี่ ซึ่งรายงานวิจัยในหัวข้อวิจัยที่ กล่าวมานี้ยังไม่เกยมีการวิจัยในระดับนานาชาติ อันเนื่องมาจากกวาม ชับซ้อนของปรากฏการณ์และความย่งยากในการคำนวณ คำนวณปรากฏการณ์ทางกายภาพดังกล่าวนี้จะต้องอากัยองค์ความรู้ใน หลายลาขาเข้าด้วยกันมาแก้ปัญหา กล่าวคือ ความรู้ทางค้านการถ่ายเท ความร้อนและมวดสาร, การเปลี่ยนสถานะ รวมจนถึงระเบียบวิธีเชิง คำนวณทางดัวเลขชั้นสูง เพื่อหาคำตอบของปัญหาที่มีความเป็นไม่เชิง เล้นลูง (strongly non-linear problem) และการประดิษฐ์โปรแกรม กอมพิวเตอร์ที่มีความแม่นยาและมีสมรรถนะลูง

สมการพื้นฐานในโซนละลวย

พิจารณาโซนละลาย จากที่กล่าวมาข้างตัน สมการหลักที่ใช้กำนวณ พ่ลักซ์การเกลื่อนดัวของน้ำจะอยู่บนพื้นฐานของสมการดาร์ซึ่

$$\rho_{w} \frac{\partial s_{m}}{\partial t} = -\frac{\partial f_{m}}{\partial x} = -\frac{\partial}{\partial x} \left[\rho_{w} \frac{K_{m} K_{rm}}{\mu_{w}} \frac{\partial \rho_{em}}{\partial x} \right]$$
 [1]

อุณหภูมิภายในโซนละลายสามารถหาโค้จากสมการส่งถ่ายความร้อน คือ

$$\frac{\partial}{\partial t} \left[\left(\rho c_p \right)_{T_m} T_m \right] = \frac{\partial}{\partial x} \left[\lambda_m \frac{\partial T_m}{\partial x} \right] - \frac{\partial \left(c_{pw} f_m T_m \right)}{\partial x}$$
 [2]

ในที่นี้กำความจุความร้อนประสิทธิผลของน้ำและอนุภาคของแข็งที่อยู่ ในโซนละลาย

$$(\rho c_p)_{Tm} = \rho_w c_{pw} s_m + \rho_p c_{pp} (1 - \varepsilon)$$
 [3]

สมการพื้นฐานในโชนหลายสถานะ

พิจารณาโซนหลายสถานะซึ่งประกอบไปด้วยของเหลว อนุภากของแข็ง น้ำแข็งและโพรงอากาค ในที่นี้ลมการหลักที่ใช้คำนวณ

ฟลักซ์การเคลื่อนตัวของน้ำจะอยู่บนพื้นฐานของสมการดาร์ซึ เช่นกัน

$$\rho_{w} \frac{\partial s_{wr}}{\partial t} = -\frac{\partial f_{wr}}{\partial x} = -\frac{\partial}{\partial x} \left[\rho_{w} \frac{K_{wr} K_{r,wr}}{\mu_{wr}} \frac{\partial p_{cr}}{\partial x} \right]$$
(4)

สำหรับอุณหภูมิภายในโชนหลายสถานะถือว่าคงที่เพราะไม่มีการ ก่วยเทความร้อนเกิดขึ้น

$$T = T_{mv}, [5]$$

สมการพื้นฐานในโชนของแข็ง

พิจารณาโชนของแข็งซึ่งประกอบไปด้วย อนุภาคของแข็ง น้ำแข็งและ โพรงอากาศ ซึ่งจะไม่มีการเคลื่อนด้วของน้ำเกิดขึ้น จะมีเฉพาะการ เปลี่ยนแปลงของอุณหภูมิภายในโชน และสามารถหาโด้จากสมการส่ง ถ่ายความร้อนคือ

$$\frac{\partial}{\partial r} \left[\left(\rho c_r \right)_{yy} T_f \right] = \frac{\partial}{\partial x} \left[\lambda_f \frac{\partial T_f}{\partial x} \right]$$
 [6]

ในที่นี้ถ่าถวามจุดวามร้อนประสิทธิผลของน้ำแข็งและอนุภาคของแข็งที่ อยู่ในโซนละลาย

$$\left(\rho c_{p}\right)_{p} = \rho_{i} c_{pi} s_{i} + \rho_{p} c_{pp} \left(1 - \varepsilon\right)$$
 [7]

โดยที่กำกวามอื่มตัวของน้ำแข็งก็จะยังกงสภาพเต็ม $s_i = s_b$ สำหรับสมการสัมพันธ์อื่นๆที่เกี่ยวข้องกับสมการที่ข้างต้น อาทิเช่น ความดันแดยปีสารี่, p_c และกำการใหลชึม, K เป็นต้น ผู้ถ่านสามารถ กันคว้าเพิ่มเต็มได้ในงานวิจัยของผู้วิจัยที่ผ่านมา(Ratanadecho [12]) เรื่อนไขขอบเขต

พิจารณาจากแบบจำลองทางกายภาพของกระบวนการทำละลายในวัสดุ พรุนชนิลไม่อื่มดัวในรูปที่ 1 เงื่อนใชขอบเขตจะประกอบไปด้วย เงื่อนใขขอบเขตเคลื่อนที่ (moving boundary)

ทำการผมดุลพลังงานและมวลที่ขอบเขตผิวละลาย(melting front), $\chi=\chi_{_{M}}$ ก็จะได้สมการที่ [8] และ [9] ตามลำดับ

$$\frac{dX_{mi}}{dt} = -\frac{\lambda_m}{L\rho_w s_n} \frac{\partial T_m}{\partial x} \bigg|_{x = X_{min}}$$
[8]

$$\rho_w (s_{wt} + s_{it}) \frac{dX_{mt}}{dt} = f_{m} \Big|_{x = X_{mc}} + f_{t} \Big|_{x = X_{mc}}$$
 [9]

ท่าการสมดุลพลังงานที่ขอบเขตการใหลซึม (infiltration tront), $\chi=\chi_{,,}$ ก็จะได้

$$\frac{dX_{tf}}{dt} = \frac{1}{\rho_w s_{xc}} \left((f_t)_{t, s = X_{tf}} + \frac{\lambda_f}{L} \frac{\partial T_f}{\partial x} \right)_{t = X_{tf}}$$
[10]

เงื่อนใชขอบเขตที่ดำแหน่งอื่น ๆ

$$t = 0, x \ge 0$$
 ; $s_x = s_0, T_- = T_{--}$

$$t > 0, x = 0$$
: $f_m = 0, q_{hm} = h_h (T_{ch} - T_{hh})$

$$t>0, x=X_{_{emt}}: s_{t}=s_{0}, q_{_{coult}}=h_{_{c}}\big(T_{_{sc}}-T_{_{bc}}\big)$$

$$t > 0, x = X_{emt} : s_i = s_0, \frac{\partial q}{\partial x} = 0$$

[11

3 เทคนิคภารแปลงพิกัดแกนและระเบียบวิธีเชิงตัวเลข

เนื่องจากปัญหาที่ทำการคึกษาครั้งนี้ จะเกี่ยวข้องกับปัญหาที่มีขอบเขต เกลื่อนตัวไปกับคาบเวลาของการทำละลายลองดำแหน่งพร้อมกับมีการ เปลี่ยนแปลงลถานะ ซึ่งการหาคำดอบโดยวิธีแม่นครงจึงเป็นโปไม่ได้

ในที่นี้การหากำลอบจะใช้เทคนิกการแปลงพิกัดแกนซึ่งอยู่บน พื้นฐานของวิธี boundary fixing method ร่วมกับระเบียบวิธีเชิงตัวเลข โดยผ่านวิธีไฟในด์วอลลุม (finite volume method) ตั้งนั้นสมการที่ [1], [2], [4] และ [6] หลังจากใช้เทคนิคการแปลงพิกัดแกนแล้วจะเป็น

$$\rho_{w} \frac{\partial s_{m}}{\partial t} = \rho_{w} \frac{\eta X_{mt}}{X_{ter}} \frac{\partial s_{m}}{\partial \eta} - \frac{1}{X_{ter}^{2}} \frac{\partial}{\partial \eta} \left[\rho_{w} \frac{K_{m} K_{rot}}{\mu_{w}} \frac{\partial \rho_{em}}{\partial \eta} \right] [12]$$

$$\frac{\partial}{\partial t} \left[(\rho c_{p})_{\eta_{m}} T_{m} \right] = \frac{\eta X_{mt}}{X_{mt}} \frac{\partial}{\partial \eta} \left[(\rho c_{p})_{\eta_{m}} T_{m} \right] + \frac{1}{X_{mt}^{2}} \frac{\partial}{\partial \eta} \left[\lambda_{m} \frac{\partial T_{m}}{\partial \eta} \right] - \frac{1}{X_{mt}} \frac{\partial (c_{pm} f_{m} T_{m})}{\partial \eta}$$

$$[13]$$

$$P_{w} \frac{\partial x_{wt}}{\partial t} = \frac{1}{\rho_{v}} \frac{\left\{ (1 - \xi) X_{rr}^{T} + \xi X_{g}^{T} \right\} \frac{\partial x_{wt}}{\partial \xi} - \frac{1}{\left(X_{g} - X_{mt}^{T} \right)^{2}} \frac{\partial}{\partial \xi} \left[\rho_{v} \frac{E_{r} K_{g}}{\mu_{v}} \frac{\partial \rho_{tt}}{\partial \xi} \right]}{\left[14 \right]}$$

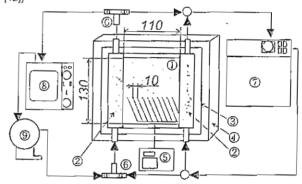
$$= \frac{\partial}{\partial t} \left[\left(\rho c_{t}^{T} \right)_{tf}^{T} T_{f}^{T} \right] = \frac{\left(1 - \xi \right) X_{g}}{\left(X_{end} - X_{g}^{T} \right)} \frac{\partial}{\partial \xi} \left[\left(\rho c_{t}^{T} \right)_{tf}^{T} T_{f}^{T} \right] + \frac{1}{\left(X_{end} - X_{g}^{T} \right)^{2}} \frac{\partial}{\partial \xi} \left[\lambda_{f} \frac{\partial T_{f}}{\partial \xi} \right]$$

$$= \frac{1}{2} \left[\left(\rho c_{t}^{T} \right)_{tf}^{T} T_{f}^{T} \right] + \frac{1}{2} \left[\left(\rho c_{t}^{T} \right)_{tf}^{T} T_{f}^{T} \right] + \frac{1}{2} \left[\left(\rho c_{t}^{T} \right)_{tf}^{T} T_{f}^{T} \right]$$

$$= \frac{1}{2} \left[\left(\rho c_{t}^{T} \right)_{tf}^{T} T_{f}^{T} T$$

หลังจากนั้นสมการที่ [12]-[15] สามารถ discretize โดยวิธีไฟในต์ วอลลุมก็จะได้

$$\rho_{ii} \frac{s_{m,i}^{i+1} - s_{m,i}^{n}}{\Delta t} = \frac{\eta \dot{X}_{mi}}{s_{m,i+1/2}} \frac{s_{m,i+1/2}^{i+1} - s_{m,i-1/2}^{i+1}}{\Delta \eta} - \frac{1}{\lambda_{mi}} \frac{1}{\Delta \eta} \left[\frac{K_{m} K_{im,i+1/2}^{n+1}}{\mu_{w}} \left(\frac{p_{cm,i+1}^{i+1} - p_{cm,i}^{n+1}}{X_{mi} \Delta \eta} \right) - \frac{K_{c} K_{im,i+1/2}^{n+1}}{\mu_{w}} \left(\frac{p_{cm,j}^{i+1} - p_{cm,j-1}^{n+1}}{X_{mi} \Delta \eta} \right) \right]$$

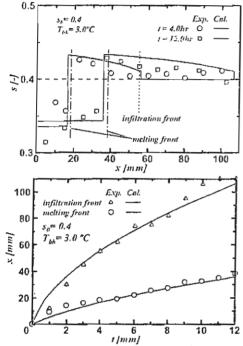

$$= \frac{(\rho c_{p})_{fm,i}^{n+1} T_{m,i}^{n+1} - (\rho c_{p})_{fm,j}^{n} T_{m,i}^{n}}{\Delta t} = \frac{\eta \dot{X}_{mi}}{\lambda_{mi}} \frac{(\rho c_{p})_{fm,j+1/2}^{n+1} T_{m,i+1/2}^{n+1} - (\rho c_{p})_{fm,j+1/2}^{n+1}}{\Delta \eta} + \frac{1}{\lambda_{mi}} \frac{1}{\Delta \eta} \left[\lambda_{m,j+1/2}^{n+1} \left(\frac{T_{m,j+1}^{n+1} - T_{m,i}^{n+1}}{X_{mi} \Delta \eta} \right) - \lambda_{m,j+1/2}^{n+1} \left(\frac{T_{m,j}^{n+1} - T_{m,j-1}^{n+1}}{X_{mi} \Delta \eta} \right) \right] - \frac{1}{\lambda_{mi}} \frac{\left[(c_{pm} f_{m})_{j} T_{m,j}^{n+1} - (c_{pm} f_{m})_{i-1} T_{m,i-1}^{n+1}}{\Delta \eta} - c_{pm} f_{m,j-1/2} \left(\frac{T_{m,j+1}^{n+1} - T_{m,j-1}^{n+1}}{X_{mi} \Delta \eta} \right) \right] - \frac{1}{\lambda_{mi}} \frac{\left[(c_{pm} f_{m})_{j} T_{m,j}^{n+1} - (c_{pm} f_{m})_{i-1} T_{m,i-1}^{n+1}}{\Delta \eta} \right]}{\Delta \eta} - \frac{1}{\lambda_{mi}} \frac{\left[(c_{pm} f_{m})_{j} T_{m,j}^{n+1} - (c_{pm} f_{m})_{i-1} T_{m,i-1}^{n+1}}{\Delta \eta} \right]}{\lambda \eta} \frac{s_{m,j+1}^{n+1} - s_{m,j-1/2}^{n+1}}{\Delta \zeta} - s_{m,j-1/2}^{n+1} \frac{s_{m,j-1/2}^{n+1}}{\Delta \zeta} - \frac{s_{m,j-1/2}^{n+1}}{\lambda_{m,j-1/2}} \frac{s_{m,j-1/2}^{n+1/2}}{\lambda_{m,j-1/2}} \frac{s_{m,j-1/2}^{n+1}}{\lambda_{m,j-1/2}} \frac{s_{m,j-1$$

4 การทดลอง

ส่วนประกอบของอุปกรณ์ทคลองดังแสดงในรูปที่ 2 วัสดุทดสอบเริ่มดัน ก็อเพคเบควัสดุพรุนที่ไม่อื่มคัวซึ่งเป็นองค์ประกอบของน้ำแข็ง โพรง อากาศ และอนุภาคของแข็งซึ่งฟอร์มตัวจากเม็ดแก้ว (glass beads) ขนาดเส้นผ่าศูนย์กลาง 0.15 mm ที่บรรจุไว้ใน test cell ที่ทำจาก แผ่นอะครีลิคที่มีมิติขนาด 110×130×50 มม. ในระหว่างกระบวนการ ทดลองจะมีการให้ใหลดความร้อนที่อุณหภูมิคงที่ที่ผิวด้านข้างของ ระนาบแนวดิ่งของเพคเบด สำหรับแหล่งกำเนิดความร้อนจะใช้อ่างน้ำ ร้อน (hot water bath) ที่ควบคุมอุณหภูมิใต้ โดยที่ผิวที่ปลายเพคเบด อีกตัวนจะทำการหุ้มฉนานไว้ หรือควบคุมอุณหภูมิไว้ให้ดำกว่าอุณหภูมิ เยือกแข็ง (freezing temperature) ในกรณ์ที่พิจารณาการเกิด refreezing ที่บริเวณดังกล่าวดังรูป สำหรับแหล่งกำเนิดความเย็นจะใช้

อำจน้ำเป็น (cooling water bath) ที่กวบคุมอุณหภูมิได้ดำสุด -20 °C

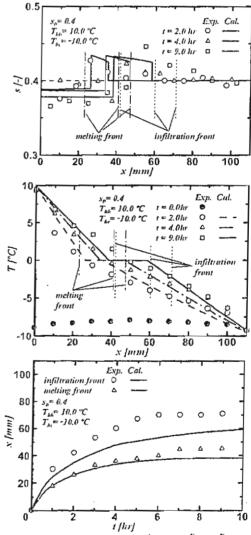
ลำหรับอุกเพภูมิในเพณบดระหว่างกระบวนการทดลอง จะวัดโดยใช้ เทอร์โมดัปเปิ้สชนิด Co-Co ที่มีขนาดเส้นผ่าสูนย์กลางเท่ากับ 0.2 มม ซึ่งติดตั้งห่างกันในแต่ละตำแหน่งเท่ากับ 10 มม ในแนวระดับ การหา ตำแหน่งของขอบเขดที่เคลื่อนที่ (moving boundary) ทำได้โดยการ interpolation ของอุณหภูมิที่วัดได้นี้ สำหรับการหากำการอิ่มตัวในแต่ ละตำแหน่ง สามารถทำได้โดยการดัดชั้นของเพคเบดที่ปริมาตรกำหนึ่ง ในแต่ละคาบเวลา แล้วนำไปชั่งกับตาชั่งเพื่อหาน้ำหนักมวลเปียก และ แห้ง (หลังจากผ่านการอบในเตาอบควบคุม) แล้วค่อยนำคำมวลทั้งสอง มาใส่ในสมการสหสัมพันธ์ เพื่อคำนวณหาคำการอิ่มตัว (Ratanadecho [12])


(1) packed beds (2) heat exchanger (3) container (4) insulator
 (5) recorder (6) valve (7) cooling temperature tank
 (8) hot temperature tank (9) pump
 รูปที่ 2 องค์ประกอบของอุปกรณ์ทดลอง

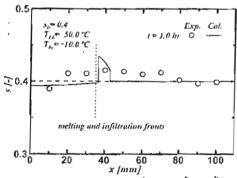
5 ผลลัพธ์และการวิเตราะห์

พิจารณารูปที่ 3 แลดงการกระจายตัวของค่าความอื่มตัวของน้ำและ น้ำแบ็งดลอดช่วงความยาวเพคเบต และการเคลื่อนตัวของขอบเขตที่ เคลื่อนที่กรณีไม่มีการหล่อเย็นที่ด้านปลาย (ไม่เกิด refreezing) และอยู่ ภายใต้สภาวะทดลอบที่อุณหภูมิเริ่มดัน To เท่ากับ -4°C สัดส่วนความ อิมด้วเริ่มต้น ร_ถ เท่ากับ 0.4 และอุณหภูมิของการทำละลาย T_{ะค} คือ 3°C เมื่อพิจารณาการกระจายตัวของค่าความอื่มตัว ในขอบเขตของ การละลายตัว พบว่าค่าความอิ่มตัวก็จะมีค่าลดลง (ด้ำกว่าค่าความ อิ่มตัวเริ่มต้น) และจะมีค่าเพิ่มขึ้นทันทีทันใดที่ตำแหน่งหนึ่งซึ่ง ลังเกตุ ได้จากการที่เกิดความไม่ต่อเนื่องของค่าความอื่มดัวที่บริเวณรอยค่อ ระหว่างโซนละลายและโซนหลายสถานะ ซึ่งก็ถือดำแหน่ง melting front นั้นเอง ที่เป็นเช่นนี้เพราะน้ำที่เกิดจากการละลายของน้ำแข็งจาก โซนการละลายได้เคลื่อนตัวซ็มผ่าน melting front ภายใต้อิทชิพลของ แรงดันแคปปิลารี่ ผ่านไปยังโซนโซนหลายสถานะ ผลทำให้ปริมาณ น้ำแข็งที่อยู่ในชั้นโชนหลายสถานะเกิดการละลายดัวทำให้ค่าความ อิ่มตัวของน้ำเพิ่มขึ้นในโซนนี้ เมื่อกระบวนการทำละลายดำเนินต่อไป จะเห็นว่าขอบเขตของโซนหลายสถานะจะเคลื่อนตัวไปทางขวามือโดยมี melling front และ infiltration front เป็นตัวกำหนดขอบเขตของโซน ดังกล่าว อย่างไรก็ตามพบว่าภายใต้สภาวะทดสอบดังกล่าว เนื่องจาก เกรเดียนของอุณหภูมิภายในโซนของแข็ง (frozen layer) มีน้อยมาก

ทำให้ไม่เกิดปรากฏการณ์ refreezing ของน้ำที่บริเวณตอนปลายของ โชนพลายสถานะ

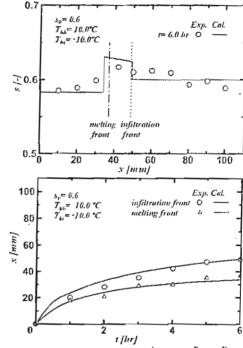

ในส่วนของความสัมพันธ์ระหว่าง melling front และ infiltration front เมื่อเทียบกับเวลา จะเห็นได้ชัดเจนว่าเมื่อเวลาผ่านไประยะท่าง ของขอบเขตของใชนหลายสถานะจะเพิ่มขึ้น จึงเป็นกลไกเฉพาะตัว ของกระบวนการทำละลายในวัสดุพรุนชนิดไม่อื่มตัว จากรูปที่แลดง พบว่าผลที่ได้จากการกำนวณจะสอดกล้องกับผลที่ได้จากการทดลอง เป็นอย่างดี

รูปที่ 3 แสดงการกระจายตัวของคำความอึ่มตัวของน้ำและน้ำแข็งตลอด ช่วงความยาวเพคเบด และการเคลื่อนตัวของขอบเขตที่เคลื่อนที่ (กรณี ไม่มีการหล่อเย็นที่ด้านปลาย)


รูปที่ 4 แสดงการกระจายตัวของค่าความอื่มตัวของน้ำและน้ำแข็ง ตลอดช่วงกวามยาวเพคเบด และการเคลื่อนตัวของขอบเขตที่เคลื่อนที่ กรณีมีการหล่อเย็นที่ด้านปลาย (เกิด refreezing) และอยู่ภายใต้สภาวะ ทดสอบที่อุณหภูมิเริ่มต้น T₂ เท่ากับ -4⁰C สัดส่วนความอิ่มตัวเริ่มต้น s, เท่ากับ 0.4 และอุณหภูมิของการทำละลาย Tы ก็อ 10°C ในกรณีนี้ จะต่างจากกรณีที่แล้ว คือ มีปรากฏการณ์ refreezing เกิดขึ้นที่โชน หลายสถานะ จากรูปที่ 4 พบว่า การกระจายของกำความอิ่มตัวใน ขอบเขตของโซนหลายสถานะจะเพิ่มขึ้นเมื่อเวลาของการทำละลายผ่าน ไป โดยที่กระบวนการทำละลายในช่วงแรก อัตราเร็วของการละลายสูง กว่าอัดราเร็วของการเกลื่อนตัวของน้ำในโซนละลายที่ซึมไปยังโซน หลายสถานะโดยผ่าน melting front ทำให้ค่าความอื่มตัวในโซนหลาย สถานะมีกำเริ่มสูงขึ้นเมื่อเทียบกับค่ากวามอื่มตัวเริ่มตัน ผ่านไประยะหนึ่งอัตราเร็วของการละลายมีคำลดลง เคลื่อนด้วของน้ำในโซนละลายที่ซึมไปยังโชนหลายสถานะมีค่าเพิ่มขึ้น มากขึ้นเมื่อเทียบกับช่วงเวลาแรกๆ พร้อมทั้งขอบเขตของโชนหลาย สถานะจะขยายด้วมากขึ้นด้วย นอกจากนี้พบว่าอีทธิพลของ refreezing มีผลต่อการขยายตัวขอบเขตโซนหลายลถานะอย่างชัดเจน

กล่าวถือมันเป็นศาเหตุทำให้ขอบเขคของโซนหลายสถานะลดลงเมื่อ เทียบกับกรณีไม่เกิดปรากฏการณ์ refreezing เหมือนกรณีก้อนหน้านี้ ที่เป็นเช่นนี้เพราะการซึมผ่านของน้ำถูกควบคุมโดยการเกิด refreezing นอกเหนือจากนี้เมื่อ infiltration front เกลื่อนตัวไปที่ดำแหน่งประมาณ 70 mm ปรากฏการณ์การซึมผ่านก็จะหยุด ทั้งนี้เพราะเกรเดียนทอง อุณหภูมิภาในโซนของแข็งที่เปลี่ยนไปกับเวลามีคำน้อยมาก การเปรียบเทียบผลที่ได้จากการคำนวณกับผลที่ได้จากการทดลอง พบว่า ผลที่ได้จากการกำนวณใกล้เคียงกับผลที่ได้จากการทดลอง แต่ ี่คำการคำนวณของชั้นความหนาของขอบเขตโชนหลายสถานะจะแกบ กว่าค่าจากการทดลอง สาเหตุอาจเป็นเพราะที่อุณหภูมิ 0°C ลามวรถทำให้น้ำเกิดการแข็งตัวให้ทั้งหมดในระหว่างกระบวนการ freezino ของแพคเบดในตอนเริ่มแรก น้ำในส่วนที่ไม่เกิดการแข็งตัวนี้ จะมีอีทธิพลต่อการกระจายด้วของค่าความอื่มด้วและอุณหภูมิ จึงเป็น สาเหตุสำกัญที่ทำให้เกิดความแตกต่างระหว่างผลที่ได้จากการคำนวณ และผลจากการทดลอง

รูปที่ 4 แสดงการกระจายด้วของกำกวามอิ่มตัวของน้ำและน้ำแข็ง และ อุณหภูมิตลอดช่วงกวามยาวเพกเบด และการเกลื่อนด้วของขอบเขตที่ เคลื่อนที่ (กรณีมีการหล่อเย็นที่ด้านปลาย)


รูปที่ 5 แสดงถึงกระบวนการทำละตายในกรณีมีการหล่อเย็นที่ ปลายอีกด้านหนึ่งและอยู่ภายได้สภาวะทดสอบที่ถ่าถวามอิ่มตัวเริ่มต้น s_ก เท่ากับ 0.4 อุณหภูมิของการหล่อเย็น Tы เท่ากับ 10⁰C และ อุณหภูมิของการทำละลาย Tы เท่ากับ 50°C ที่ผภาวะตังกล่าวนี้ การ เกลื่อนตัวของน้ำในโซนละลายจะมีน้อยมาก ที่เป็นเช่นนี้เพราะใน กระบวนการ อุณพภูมิของการทำละลายสูงมาก ทำให้อัดราเร็วของการ ละลายลูงที่ว่าอัตราเร็วของการเคลื่อนตัวของน้ำในโซนละลายที่ซึมไป ยังโชนหลายสถานะโดยผ่าน metino front มากๆ ดังนั้นในกรณีนี้การ ฟอร์มตัวของขอบเขตโชนหลายสถานะจึงไม่เกิดขึ้น ปรากฏการท์ refreezing ไม่ส่งผลใดๆ ต่อกระบวนการทำละลายใน อย่างไรก็ตามผลที่ได้จากการกำนวณจะมีการพ่อร์มตัวของ ขอบเขตโซนหลายสถานะอย่างซัดแจ้ง ทั้งนี้เป็นเพราะในแบบจำลอง ทางคณิตศาสตร์ใต้กำหนดให้มีผลของการเกิดโซนหลายสถานะไว้ ขั้งแค่ดัน จากรูปที่แสดงพบว่าผลที่ได้จากการกำนวณจะสอดกล้องกับ ผลที่โด้จากการทดลอง

รูปที่ 5 แสดงการกระจายตัวของคำความอิ่มตัวของน้ำและน้ำแข็ง (กรณี มีอุณหภูมิการทำละลายสูงและมีการหล่อเย็นที่ด้านปลาย)

รูปที่ 6 แสดงถึงกระบวนการทำละลายในกรณีมีการหล่อเย็นที่ บ่ลายอีกด้านหนึ่งและอยู่ภายโต้สภาวะทดสอบที่ค่าความอิ่มตัวเริ่มต้น s_ก เท่ากับ 0.6 อุณหภูมิของการหล่อเย็น T_{bc} เท่ากับ 10⁰C และ อุณหภูมิของการทำละลาย T_{bh} เท่ากับ 10°C ในกรณีนี้การเคลื่อนตัว ของน้ำจากโซนละลายไปยังโซนหลายสถานะมีไม่มากนัก ทั้งนี้อาจเป็น เพราะค่ากวามอื่มตัวเริ่มตันของน้ำแข็งมีค่าถูงทำให้ช่องว่าง (air gap) ภายในโซนหลายสถานะมีลักษณะแคบลง (narrow) ทำให้การเคลื่อนตัว ของน้ำไปยังโชนหลายสถานะมีน้อยลงตั้งที่กล่าวข้างตัน เมื่อพิจารณา ในส่วนของความสัมพันธ์ระหว่าง melting front และ infiltration front เทียบกับเวลา จะเห็นได้ชัดเจนว่าเมื่อเวลาผ่านไประยะห่างของขอบเขต ของโชนหลายลถานะจะไม่เพิ่มขึ้นมากนัก ด้วยเหตุผลของคำการใหล ซึม (absolute permeability) ภายในโชนหลายสถานะมีกำน้อยซึ่งส่งผล ต่อการเคลื่อนด้วของน้ำในโชนดังกล่าว เมื่อเปรียบเทียบผลที่ได้จาก การคำนวณและการทดลอง พบว่ามีความแตกต่างกันบ้างโดยเฉพาะผล ของการกระจายตัวของคำความอื่มตัว สาเหตุที่สำคัญอาจเป็นเพราะที่ อุณหภูมิ 0°C ไม่สามารถทำให้น้ำเกิดการแข็งตัวได้ทั้งหมดในระหว่าง กระบวนการ freezing ของแพคเบตในตอนเริ่มแรก น้ำในส่วนที่ไม่เก็ด การแข็งตัวนี้จะมีอิทธิพลต่อการกระจายตัวของค่าความอิ่มตัวและ อุณหภูมิ จึงเป็นสาเหตุลำคัญที่ทำให้เกิดความแคกต่างระหว่างผลที่ได้

จากการคำนวณและผลจากการทดลอง แต่สำหรับตำแหน่งของ melting front และ infiltration front เมื่อเทียบกับเวลาให้ผลที่ลอดคล้องกัน

รูปที่ 6 แสดงการกระจายตัวของค่าความอิ่มตัวของน้ำและน้ำแข็งคลอด ช่วงกวามยาวเพคเบต และการเคลื่อนตัวของขอบเขตที่เคลื่อนที่ (กรณี มีค่วความอื่มตัวเริ่มต้นลูงและมีการหล่อเย็นที่ด้านปลาย)

5. สรุป

งานวิจัยฉบับนี้ได้ศึกษาถึงปรากฏการณ์พื้นฐานของกระบวนการ ทำละลายในวัสดุพรุนที่ไม่อิ่มดัว ทั้งในภาคทฤษฎีและการทดลอง ผล จากการศึกษาทำให้เราทราบปรากฏการณ์พื้นฐานของกระบวน ดังกล่าว โดยพารามิเตอร์สำคัญที่ศึกษาคือ ค่าความอิ่มตัวของน้ำและ ลักษณะการเคลื่อนตัวของน้ำที่ผ่าน melting front และ iinfiltration front รวมจนถึงอุณหภูมิที่เปลี่ยนแปลงภายในวัสดุทดลอบ

สัญลักษณ์

กวามจุความร้อน(J/kgK)

ฟลักซ์การไหลของน้ำ (kg/m²s)

h คำการถ่ายเหความร้อน(W/ m²K)

ค่าการใหลชืม (m²)

ความร้อนแฝง (J/kg)

ความดัน (Pa)

พ่ลักซ์ความร้อน (W/m²) a

กำความอื่มตัว (-)

เวลว (min)

อุณหภูมิ (°C)

พิกัดในแกน x (m)

X : 5tUt (m)

λ : กำการนำกวามร้อน (W/mK)

ะ : คำความพรุน (-)

ρ : ความหนาแห่น (kg/m²)

μ : คำกวามหนืดจดน์ (Pas)

າງ . ໒ ໍ ະ การแปลงพ็กัด

ตัวห้อย '

end : ปลายเพคเบด

เ : โซนบองแข็ง

i ู่: น้ำแข็ง

พ : น้ำ

m , : โซนละลาย

mp : จุดหลอมละลาย

mt : ขอบเขตผิวละลาย

o : เริ่มต้น

ช : ขอบเขตผิวการไหลขึ้ม

wc : เกิด refreezing

โซนหลวยสถานะ

ก็ดดิกรรมประกาศ

wi

งานวิจับนี้ได้รับการสนับสนุนจาก สำนักงานกองทุนสนับสนุน การวิจับ (สกว) ภายใต้ทุนเมชีวิจับ สัญญาหมายเลข 123456789

เอกสารอ้างอิง

- [1] Murray, W.D and Landis, F., "Numerical and machine solutions of transient heat conduction problem involving melting or freezing," ASME J. Heat Transfer, 81, 1959, pp. 106-112.
- [2] Viskanta, R., "Heat transfer during melting and solidification of metals," ASME J. Heat Transfer 110, 1998, pp. 1205-1219.
- [3] Gong, Z.F. and Mujumdar, A.S.. "Flow and heat transfer in convection-dominated melting in a rectangular cavity heated from below," Int. J. Heat and Mass Transfer, Vol. 41(17), 1998, pp. 2573-2580.
- [4] Carrey, V.P. and Gebhart, B., "Transport near a vertical ice surface melting in saline water: experiments at low salintities," J. of Fluid Mechanics 117, 1982, pp. 403-423.
- [5] Huppert, H.E. and Turner, J.S., "Ice blocks melting into a salinity gradient," J. Fluid Mechanics, 100, 1980, pp. 367-384.
- [6] Fukusako, S., Tago, M., Yamada, M., Kitayama, K. and Watanabe, C., "Melting heat transfer from horizontal ice cylinder immersed in quiescent saline water," ASME J. Heat Transfer. 114, 1992, pp. 34-40.

- [7] Ratanadecho, P, "The analysis of force-convection melting on phase change cylinder," Int. J. Thermal Sciences (Review).
- [8] Pangrie, B.J. and Ayappa, K.G., "Microwave melting of cylinders," AIChE J., 37, 1991, pp. 1789-1800.
- [9] Easak, T. and Ayappa, K.G., "Analysis of microwave melting of slab with the effective heat capacity method," AIChE J., 43, 1997, pp. 1662-1674.
- [10] Ratanadecho, P., Aoki, K. and Akahori, M., "Characteristics of microwave melting of frozen packed bed using a rectangular wave guide, IEEE Trans. of Microwave Theory and Techniques," 50 (6), 2002, pp. 1487-1494.
- [11] Ratanadecho, P. "The Theoretical and experimental Investigation of microwave melting of frozen layer using microwave oven (Effects of layered configurations and layered thickness)" Int. J. Heat Mass Transfer, 47 (5), , 2004,bpp. 937-945.
- [12] Ratanadecho, P. "Experimental and numerical study of melling process in unsaturated granular packed bed." AIAA J. Thermophysics and Heat Transfer, 18 (1), 2004, pp. 87-93.
- [13] Yao, L.S and Prusa, J. Melting and freezing, Advances in Heat Transfer 19 (1990) 1- 95.