บทคัดย่อ

รหัสโครงการ: RSA4780014

ชื่อโครงการ: เทคโนโลยีชีวภาพสำหรับการใช้เอนไซม์ในการสังเคราะห์สาร ดี-เฟนิลกลัยซีน

อีแนนทิโอเมอร์บริสุทธิ์

ชื่อนักวิจัย: นายสุเทพ ไวยครุฑธา

ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address: scsvy@mahidol.ac.th

ระยะเวลาโครงการ : กันยายน 2547 - มิถุนายน 2554

D-phenylglycine aminotransferase (D-PhgAT) จากแบคทีเรีย Pseudomonas stutzeri ST-201 เร่งปฏิกิริยา "stereo-inverting" transamination ที่สามารถใช้สำหรับสังเคราะห์ enantiopure D-phenylglycine หรือ D-4-hydroxyphenylglycine (ซึ่งเป็น side-chains สำคัญที่มี ความต้องการสูงในอุตสาหกรรมการผลิตยาปฏิชีวนะกลุ่ม eta-lactam) โดยใช้ปฏิกิริยาของเอนไซม์ ขั้นตอนเดียว และใช้ L-glutamate ซึ่งมีราคาถูก เป็นสารให้หมู่ amino โครงการวิจัยนี้ได้ใช้การ พัฒนาทางเทคโนโลยีชีวภาพหลายด้าน เพื่อให้กระบวนการสังเคราะห์สารด้วยเอนไซม์ D-PhgAT มี ประสิทธิภาพใช้งานได้ดี โดยได้ทำ directed mutagenesis ต่อยืน dpgA เพื่อเปลี่ยน serine ที่ปลาย สายด้าน C ของ D-PhgAT ทำให้สามารถตรึงเอนไซม์กับ thiol-containing matrix ได้อย่างรวดเร็ว ยังมี activity ดีและคงตัวมากขึ้น ได้ใช้เอนไซม์ที่ตรึงนี้ในปฏิกิริยาที่มี โดยที่ benzoylformate ดูดซับอยู่บน Amberlite (IRA400) และปลดปล่อยออกมาอย่างช้าๆ พบว่าได้สาร D-phenylglycine 20.25 กรัมต่อลิตร ได้พัฒนาระบบการแสดงออกของยืนเพื่อการผลิต D-PhgAT ในเซลล์เจ้าบ้าน 2 ชนิด ระบบแรกใช้ *Escherichia coli* โดยมี *E. coli* chaperones แสดงออกร่วม ์ ด้วย สามารถผลิต D-PhgAT ได้เพิ่มขึ้นจาก 0.44 เป็น 1,768 unit.L⁻¹.OD⁻¹ ระบบที่สองใช้ยีสต์ Pichia pastoris โดยมี E. coli chaperones แสดงออกร่วมด้วย สามารถผลิต D-PhgAT ได้ 14,717 ได้แก้ปัญหาของ D-PhgAT ที่มีค่าการละลายต่ำ ด้วยการทำ structure-guided mutagenesis ซึ่งทำให้เพิ่มการละลายของ D-PhgAT จาก 11.5 เป็น 51 มก/มล ในโครงการยังได้มี การพัฒนาวิธีการใหม่สำหรับการพิสูจน์ stereospecificity ของการถ่ายทอดโปรตอนบน C-4' ของ coenzyme โดย aminotransferase รวมทั้งการประยุกต์ใช้เอนไซม์ D-PhgAT ในการตรวจวัด ปริมาณ L-glutamate ด้วยวิธีหมุนเวียนสารตั้งต้น ซึ่งเป็นวิธีการวัดที่รวดเร็ว วัดได้ละเอียด และมีการ รบกวนน้อย การวิจัยต่อเนื่องที่ควรทำในอนาคต ได้แก่ การดัดแปลงโครงสร้างโมเลกุลของ D-PhgAT เพื่อลดการยับยั้งจาก substrate การพัฒนากระบวนการตรวจวัดและเติม substrate ที่เหมาะสม และ วิธีการดึง product ออกจากระบบ เพื่อให้ปฏิกิริยาการสังเคราะห์ด้วยเอนไซม์ D-PhgAT มีอัตราเร็ว เพิ่มขึ้น และทำได้ยาวนานมากขึ้นไปอีก

คำหลัก : อะมิโนทรานส์เฟอเรส, ดี-ฟีนิลกลัยซีน, การสังเคราะห์สารด้วยเอนไซม์

Abstract

Project code: RSA4780014

Project Title: Biotechnology for Enzymatic Synthesis of Enantiomerically Pure

D-Phenylglycine

Investigator: Dr Suthep Wiyakrutta

Department of Microbiology, Faculty of Science, Mahidol University

E-mail Address: scsvy@mahidol.ac.th

Project Period: September 2004 - June 2011

D-phenylglycine aminotransferase (D-PhgAT) from Pseudomonas stutzeri ST-201 catalyzes the "stereo-inverting" transamination that can be used to synthesize enantiopure D-phenylglycine or D-4-hydroxyphenylglycine, the two important side-chains in high demand for the β -lactam antibiotics industry, in a single enzymatic step using L-glutamate as a lowcost amino donor. Biotechnological development in various aspects were attempted to make this enzymatic synthesis process effective and viable. Directed mutagenesis of dpgA gene to replace the C-terminus serine with cysteine could facilitate rapid and site specific immobilization of the D-PhgAT(S453C) on thiol-containing matrix while maintaining enzyme activity and enhancing its stability. Biocatalysis using the immobilized D-PhgAT(S453C) in a controlled-release system of Amberlite (IRA400)-adsorbed benzoylformate yielded a final Dphenylglycine concentration of 10.25 g.L⁻¹. Two systems for D-PhgAT high-expression were developed. The first system was based on Escherichia coli host with chaperones coexpressions which improved the D-PhgAT yield from 0.44 to 1,768 unit.L-1.OD-1. In the second system, codon-optimized synthetic dpgA gene was expressed in Pichia pastoris with bacterial chaperones co-expressions which yielded D-PhgAT at 14,717 unit.L⁻¹.OD⁻¹. Problem of the inherently low solubility of the wild-type D-PhgAT was alleviated by structureguided mutagenesis which could increase the enzyme solubility from 11.5 to 51 mg/mL. During investigation of molecular and catalytic property of the D-PhgAT, a new method for determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme was developed. A spectrophotometric enzymatic cycling method using Lglutamate dehydrogenase and D-PhgAT for determination of L-glutamate in foods is another aspect of D-PhgAT application developed during this project. Genetically modification of the D-PhgAT to relief substrate inhibition, developing effective and logical systems for substrate addition and product removal are important research topics that should be done in the future.

Keywords: aminotransferase, D-phenylglycine, enzymatic synthesis