

บทคัดย่อ

เชื้อ *Burkholderia pseudomallei* เป็นเชื้อแบคทีเรียแగerm ที่ทำให้เกิดโรคเมลิโออยด์ซิส เมื่อติดเชื้อเฉียบพลัน ก็มีความรุนแรง และยังแสดงการติดเชื้อเรื้อรัง เมื่อ่อนชื้อวันโรค โดยเชื้อสามารถมีชีวิตรอดภายใต้เซลล์ phagocyte งานวิจัยนี้ศึกษากลไกที่ควบคุมการแสดงของเชื้อ เช่น virulence factors และกลไกที่ทำให้เชื้ออยู่รอด ในเซลล์ได้ โดยศึกษาระบบควบคุมการแสดงออกของยีน โดยการรับรู้ความหนาแน่นของหมู่คุณะตัน (quorum sensing) ด้วยการสร้างสารโมเลกุลขนาดเล็ก (autoinducer) โดยศึกษาระบบ Acyl Homoserine Lactone (AHL) ที่ยืน *bpsI* และ *bpsR* และระบบ Alkyl Hydro Quinolone (AHQ) ที่ยืน *hhqA* ได้พิสูจน์ชนิดของ AHL ที่สร้างด้วย โปรตีน *BpsI* คือ C8-HL พิสูจน์ว่าการแสดงออกของโปรตีน *DpsA* ซึ่งทำให้เชื้อสามารถทนต่อ oxidative stress ได้นั้น ถูกควบคุมโดยระบบ *bpsR* และแสดงให้เห็นว่า *bpsR* มีส่วนสำคัญในการทำให้แบคทีเรียมีชีวิตรอยู่รอด ภายใต้การสร้างสารโมเลกุลขนาดเล็ก (autoinducer) โดยศึกษาระบบ AHQ พบว่าเชื้อ *B. pseudomallei* มียืน *pqsABCDE* homologue แต่ไม่มียืน *pqsH* homologue เลย ทำให้ไม่สามารถสร้าง PQS ได้ สร้างได้แต่สาร HHQ จึงตั้งชื่อยืน ที่พบในเชื้อ *B. pseudomallei* ว่า *hhqABCDE* พิสูจน์ว่า *hhqA* ทำหน้าที่กดแทน *pqsA* ได้ โคลนีของเชื้อ ที่ถูก knockout ยืน *hhqA* เที่ยวย่นมากกว่าโคลนีของ wild type และสาร HHQ เป็น negative regulation ของ elastase แต่การขาดยืน *hhqA* ไม่มีผลต่อการแสดงออกของ hemolysin, exoproteases, และ siderophores การเข้าใจกลไกของตัวเชื้อ *B. pseudomallei* ทำให้เข้าใจถึงกลไกพยาธิสภาพของโรคเมลิโออยด์ซิสมากขึ้น ซึ่งจะมีประโยชน์อย่างมากในการพัฒนาการป้องกันและรักษาผู้ป่วยโรคนี้

Abstract

Gram negative bacteria *Burkholderia pseudomallei* is causative agent of melioidosis. Acute infection is very virulent and chronic infection can be dormant as in tuberculosis. The bacteria can survive in phagocyte. This research investigated quorum sensing mechanisms for regulating the expression of virulence factors and intracellular survival. The Acyl Homoserine Lactone (AHL) with *bpsI* and *bpsR* genes and the Alkyl Hydro Quinolone (AHQ) with *hhqA* were studied. *BpsI* was shown to synthesized C8-HL. *DpsA*, a protein that protect bacteria from oxidative stress was also shown to be under *bpsR* control. We also showed that *bpsR* was essential for bacterial survival inside epithelial and macrophage. In AHQ system, *B. pseudomallei* has *pqsABCDE* homologue lacks *pqsH* homologue which is the reason that it was unable to produced PQS but only HHQ. The *pqsABCDE* homologue thus named *hhqABCDE*. Gene *hhqA* had shown to be functional homologue of *pqsA*. Colonies of *hhqA*-knockout strain is more wrinkle than those of the wildtype. HHQ was also shown to be negative regulation of elastase but lacking *hhqA* had no effect on expression hemolysin, exoproteases, and siderophores. Understanding of *B. pseudomallei* machinery will shed more insight into melioidosis pathogenesis and could be useful in development of prevention and treatment of the patients affected by this disease.