
รหัสโครงการ: RSA4780018

ชื่อโครงการ: บทบาทในการต้านอนุมูลอิสระของเมลาโทนินและผลของเมลาโทนินในการ

ป้องกันการเสื่อมสลายของเซลประสาท

ชื่อนักวิจัยและสถานที่ทำงาน: รองศาสตราจารย์บัณฑิต เจตน์สว่าง

โครงการวิจัยชีววิทยาระบบประสาทและพฤติกรรม สถาบันวิจัยและพัฒนาวิทยาศาสตร์ และเทคโนโลยี มหาวิทยาลัยมหิดล ศาลายา จ. นครปฐม 73170

E-mail Address: grbcs@mahidol.ac.th

ระยะเวลาโครงการ: 3 ปี (31 สิงหาคม 2547 - 30 สิงหาคม 2550)

การศึกษาวิจัยนี้ต้องการที่จะศึกษาหาสาเหตุและกลไกในระดับเซลและโมเลกุลที่อนุมูล อิสระก่อให้เกิดการเสื่อมสลายของเซลประสาทและเส้นเลือดสมอง รวมทั้งผลในการเป็นสารตั้าน อนุมูลอิสระของเมลาโทนินในการป้องกันการเสื่อมสลายดังกล่าว ผลจากการทดลองพบว่า hydrogen peroxide สามารถเหนี่ยวนำให้เกิดการเสื่อมสลายของเซลประสาทโดปามีน ชนิด SH-SY5Y มีการเพิ่มขึ้นของปริมาณ NF-kB phosphorylation (pNFkB) อย่างมีนัยสำคัญและเหนี่ยวนำให้มีการ translocation ของ pNF-kB จาก cytoplasm เข้าไปที่บริเวณรอบ ๆนิวเคลียสและในนิวเคลียสของเซลเพิ่มมากขึ้นอีกด้วยโดย ผลดังกล่าวสามารถยับยั้งได้ด้วยเมลาโทนิน นอกจากนี้ hydrogen peroxide ยังมีผลใน การเพิ่มปริมาณของโปรตีน Bax และ Bcl-2 โดยเซลที่ได้รับ hydrogen peroxide อย่างเดียวมีอัตราการเสื่อมสลายของเซลสงการเพิ่มขึ้นของ ${
m Bax}$ จะมากกว่า ${
m Bcl-2}$ แต่ ในทางตรงกันข้ามเซลที่ได้รับ hydrogen peroxide และเมลาโทนินด้วยเซลมีอัตราการ เสื่อมสลายของเซลลดลงมีการลดลงของปริมาณของ ${f Bax}$ แต่ยังคงมีการเพิ่มขึ้นของปริมาณ Bcl-2 และในการศึกษาวิจัยในครั้งนี้ก็ได้ทำการทดสอบและพบว่าสารที่ยับยั้งการทำงานของ caspase enzyme สามารถป้องกันการเสื่อมสลายของเซลประสาทโดย hydrogen peroxide ได้ เมื่อทำการศึกษาผลของสารพิษ MPP พบว่า MPP สามารถเหนี่ยวนำ ให้เกิดการเสื่อมสลายของเซลประสาทโดปามีนชนิด ${
m SK-N-SH}$ ได้และยังสามารถเหนี่ยวนำ ให้มีการเพิ่มขึ้นของปริมาณ c-Jun phosphorylation เพิ่มการทำงานของ caspase enzyme และมีการย่อยสลาย DNA fragmentation 45 เพิ่มมากขึ้นอีกด้วย ซึ่งผล ้ดังกล่าวข้างต้นของ MPP^+ สามารถยับยั้งได้ด้วยเมลาโทนิน เมื่อทำการศึกษาผลของเมลา โทนินในการป้องกันการเสื่อมสลายของเส้นเลือดสมองจากสภาวะ oxidative พบว่าเมลาโทนินสามารถลดการเพิ่มขึ้นของเอนไซม์ endothelial nitric synthase และลดการเพิ่มขึ้นของ calcium/calmodulin-dependent protein phosphorylation ในเส้นเลือดสมองวัวที่ถูกเหนื่วนนำให้เกิดสภาวะ oxidative stress จาก hydrogen peroxide ผลจากการศึกษาวิจัยแสดงให้เห็นถึง คุณสมบัติในการเป็นสารป้องกันการเสื่อมสลายของเซลประสาทและเส้นเลือดสมองจากสภาวะ oxidative stress ของเมลาโทนินซึ่งสภาวะดังกล่าวสามารถเหนี่ยวนำให้มีการกระตุ้นการ ทำงานของ NF-kB, c-Jun-N-terminal kinases, CaMKII และ caspasedependent signaling ข้อมูลและความรู้ที่ได้จากการศึกษาวิจัยในครั้งนี้สามารถนำไป ประยุกต์ใช้เพื่อการศึกษาวิจัยที่เกี่ยวข้องกับเมลาโทนินกับสภาวะ oxidative stress และ การตายของเซลประสาทได้ต่อไปในอนาคต

คำหลัก: เมลาโทนิน, hydrogen peroxide, MPP⁺, เซลประสาท, เส้นเลือดสมอง

Project Code: RSA4780018

Project Title: The antioxidative role of melatonin: The protective effects of melatonin in the process of neurodegeneration

Investigator: Associate Professor Banthit Chetsawang

Neuro-Behavioural Biology Center, Institute of Science and Technology for Research and Development, Mahidol University, Salaya, Nakhonpathom 73170

E-mail Address: grbcs@mahidol.ac.th

Project Period: 3 years (31 August 2004 - 30 August 2007)

Neurodegenerative diseases are illnesses associated with high morbidity and mortality with few, or no effective, options available for their treatment. The direct cause of neuronal cell loss has not been clearly understood. In addition, the neuroprotective effect of melatonin has been observed both in vivo and in vitro. The objective of this research, therefore, was to better understand the cellular mechanisms of neuronal cell degeneration induced via oxidative stress and neurotoxin. Taken together, the protective roles of melatonin on this cell death have also been studied. In the present study, the effect of melatonin on hydrogen peroxide (H_2O_2) and 1-methyl, 4-phenyl, pyridinium ion (MPP⁺) induced neuronal cell degeneration in human dopaminergic neuroblastoma cultured cells were investigated. The results showed that H₂O₂ significantly decreased cell viability and melatonin reversed the toxic effects of H₂O₂. An inhibition of caspase enzyme activity by Ac-DEVD-CHO, a caspase-3 inhibitor, significantly increased cell viability in H₂O₂-treated cells. The phosphorylation of transcription factors, nuclear factor kappa B (NF-κB) was increased in H₂O₂-treated cells and this effect was abolished by melatonin. Translocation of phosphorylated NF-κB nuclear perinuclear and sites, estimated immunofluorescence, occurred to a greater extent in H₂O₂treated cells than in untreated control cells and again this effect was abolished by melatonin. In addition, induction of Bcl-2 and Bax proteins was demonstrated in SH-SY5Y cultured cells treated with H₂O₂, whereas the induction of Bax but not Bcl-2 was diminished by melatonin. Accordingly, MPP⁺ significantly decreased cell viability. By contrast, an induction phosphorylation of c-Jun, activation of caspase-3 enzyme activity, clevage of DNA fragmentation factors 45 and DNA fragmentation were observed in MPP⁺-treated SK-N-SH cultured cells. In order to elaborate the functional significance of melatonin in cerebral blood vessels, H₂O₂-induced induction in endothelial nitric oxide synthase (eNOS) protein level and phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) were demonstrated in the bovine isolated cerebral arteries with these effect being abolished by melatonin. These results demonstrate the cellular mechanisms of neuronal degeneration induced via NF-kB, c-Jun-N-terminal kinases, CaMKII and caspase-dependent signaling, and the potential role of melatonin on protection of neuronal cell death induced by oxidative stress and neurotoxin. Furthermore, the regulatory role of melatonin in physiology of the cerebral vessels was also demonstrated. In light of these finding, it is possible that the neuroprotective effect of melatonin, may offer a means of treating neuronal degeneration and disease.

Keywords: Melatonin, Hydrogen peroxide, MPP⁺, Neuronal

cells and Cerebral blood vessels