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���/�'!01���'$����2 (inverse problem) #$�#'$�&� Magnetotelluric (MT) �� data space �+����'

��22#$�
������3�'$�/�'����)��������3��#��� M x M ��3�,��� model space �!"� N x N �� data 

space ��43$ M �4$),����5�������$��#$�/22),��$� /�� N �4$),����5�������$��#$�#'$�&� 673�
+��

��1+/�'� N )����+��'$���+� M  ���8 ���/�'!01���'$����2�� data space ���
����9�,���'���

/�'!01���'$����2#$�#'$�&� MT ��
������ (3-D) �!"�*!*�'2����43$��$�5����$��<����� 

(Siripunvaraporn et al., 2005) $�+��*������ ��<���������������),��!"���3�'$����2#'$�&� sensitivity 

matrix  (J) ��3��#��� N x M ������+������),�#$��$�5����$��673��,���'����#'$),����#$�����,�*!��'  

����3��� ���*�'!���A����$���<� conjugate gradient ����'�����/�'��22#$�
������ data space �'��

��<���������� J )�*�+9&�
�'��#7�����,���'*�+�'$����2#'$�&�������+������),� 
�3���3����,��4$���

�,���
��%��&
#$������� J ��2�����$����8 B�����/�'!01��*!#'����'� (forward problem) ��73�

�������+������$� �543$!������!��
��<���5#$�����,���
����+����<����+673����4$ data space conjugate 

gradient (DCG) 
,����2���� 
$����� (2-D) /�� 3-D #$�#'$�&� MT ��2��<�����673����4$ data space 

Occam’s method (DASOCC) �����'��<���2),���������#$����/�'!01��*!#'����'� )��������$���2

#'$�&�),��$� ���52�+�/�'�+� DCG )��+����!����
�����'��+������),�#$����43$��$�5����$����*�'

$�+����� /�+�����!"��+�����'$���'),���������#$����/�'!01��*!#'����'���3�����+� ��3�����97�

������3��'������,���
)������+���<�$�+�� DASOCC 673���'��+������),���� �������%�
�A! �4$ ����� 

trade-off ����+����+������),���2������3��'������,���
 /�����)���4$��+�)���'��<� DASOCC ��4$ 

DCG ��#7��$�&+��2%&'��'/��#'$�&���3�,�*!��'   
 

 
  



 4

Abstract 
 

 

A data space approach to magnetotelluric (MT) inversion reduces the size of the system of 

equations that must be solved from M × M , as required for a model space approach, to only N 
× N, where M is the number of model parameter and N is the number of data. This reduction 

makes 3-D MT inversion on a personal computer possible for modest values of M and N 

(Siripunvaraporn et al, 2005). However the need to store the N × M sensitivity matrix J remains 

a serious limitation.  Here, we consider application of conjugate gradient (CG) methods to solve 

the system of data space Gauss-Newton equations.  With this approach J is not explicitly 

formed and stored, but instead the product of J with an arbitrary vector is computed by solving 

one forward problem.  To assess the computational efficiency we test our data space conjugate 

gradient (DCG) algorithm for the 2-D and 3-D MT inverse problem, and compare the results 

with those from the data space Occam’s (DASOCC for 2-D; WSINV3DMT for 3-D ) inversion by 

counting the number of forward modeling calls. Experiments with synthetic data show that 

although DCG requires significantly less memory, it generally requires more forward problem 

solutions than a scheme such as DASOCC and WSINV3DMT, which is based on a full 

computation of J.  We therefore conclude that there is a trade-off between memory used and 

cpu run time, and the choice between DASOCC (WSINV3DMT) and DCG will depend on the 

application and users. 
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��������)0%��
��"
����-�����'����������&'��3 �������#$�0		��'��������������������&�"������� 

��������&�������	
��	�
%��� 
������2 0%(���*1�+����/�
��,�;<
��
2 
�(�����*�
&�2 

"�������%��"���%����'�� ���
��
��	
��������������������������	��%�!1��#=��"�������'��
"	5��2 

��������)0%�����"�������3 ���/�
��,�����3 ������� ��"��)��'��
�	��0%(��"��� 
�(�����*�
&�2 

"�������%��"���% ���
����(&���0%(
��	
�����������"�&%�� 

����%�'"��1��������������(�"'��	
���"'��� 
�� 	�
%������
��. >?����,��������#$�"�&������ 

0%(
��,'����%����������&'��3 �#$���'���� ����@��(
��	�B" ,%�/�   


��������) ��������&�������	
��	�

%���
���#$����%���� �����������
��������'�� 	�

%��%'���)


��
��0"'0%(
��	
�������������� ��	
��"��
��	 
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������C2���/��2 
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/�=>��������	
� 
 

��
�	 
 

���0��#F9�������%�	 (Inversion) �����C���;<
��
2 (Geophysics) 
����(	���������(���"�:1��

0		���%�� (model) ����%����
�"��!�C�	��!1����"5%������"���������-	���	�������)�4������%� 

���"5%�����C���;<
��
2��)��#$��#������%���5#0		 �"'�'��(�#$�
%���04'������� 
%���0"'��%-��;;=� 

0�����"!'������%� 
��"�����&���)���� �����'�
��"0"'��%-� ���"5%��%'���)"�#�(��,�2��'��"�������

	'�	���'��&���)��%���������)�#�(��	�#�����(��	��� 0%(���"�#�(��,�2��)����&��0%(������"&'�

�*�+J���0%(
���0��%��"���#�(��*  

 ���
�������)����������"5%���C���;<
��
2���������'� Magnetotelluric data :1���#$����"5%������"�

���������
��"0"'��%-�0%(
��"�;;=����	�������)�4������%���� ��&��
'�����
��"0"'��%-�0%(


��"�;;=�
�"��!���"��,��#$�&��	'�	��!1�
��"&�������;;=� (electrical resistivity) ���� 


��"
�"��!���������;;=� (electrical conductivity) /���&���)��%����
��"%1�&'��3 ��� ���
�"��!

������"5% electrical resistivity ��)�#�,�������C�	���
��
��������%�������C�	���������04'������� 

(Unsworth et al., 2000; Siripunvaraporn et al., 1998) ���*1�+���
����
�����)���� (Jones, 1992) 

�����,������
���������������C��",�&� (Tuncer et al., 2006; Orange, 1989; Vozoff, 1972 0%(

����3)   

���"5%������"�������
������(�#$����"5%��	���&������"�4'�� data processing ����������� 

apparent resistivity 0%( phase ���� impedance tensor :1���#$�;F��2,�����
��"!�������'�
�	 �����

����#�,������&�
��"�"��&'��# ���&�
��"�"��������"5%���&����)��#$��#������ ������������"5%

������"��"'����#$�;F��2,�����
��"%1� �����)� inversion 
����(	��������������
'� apparent resistivity 

0%( phase ����#$�;F��2,�����
��"!������
�	 �#0#%�����#$�
'� electrical resistivity ��	
��"%1� ���

4'����(	��������
��&*�
&�2���
%�	:�	:��� 

�����& ���&�
��"�"��"����������5'����1��"�&� ���������������������
�"����&��2��
���%��

0%(:�;�20��2 0%(
��"�'�������#�(���&2�,� ��)��\+]� 0%(��C����0��#F9�������%�	   &'�"��"���


�"����&��2��
���%������%'�������1)�"�� �����^�� 2-D 0%( 3-D inversion codes �����������

�1)�"���'�������-� (see Siripunvaraporn et al., 2004, 2005; Siripunvaraporn and Egbert, 2000) 

��� Siripunvaraporn et al. (2005) �#$�
�0����� release 3-D code ���������'� WSINV3DMT ���


�"��!���������	��
����� PC �����#
5'
�C���( ��������"��������#�,������&�
��"�"�����"5%�����

�#$�#�(��,�2&'��%���������*����5' :1��#F���	����)"�
"�,��"����'� 20 #�(��*����,��#�0��"��)��5' ���

���%(����� (http://mucc.mahidol.ac.th/~scwsp/wsinv3dmt/)  
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��'�����-&�" 0"��'� WSINV3DMT �(���������	��
����� PC �����# 0&'�-���"�#F9���%��3 ��5' 


�� ����,���'��
��"�������
�����
�"����&��2��#��"��"�� �����)������������	���"5%��9'3 ����

0		���%����9'3 �1��#$��#�"'��� ��C�0����
�����
�������#�0��"��������	�
�����
�"����&��2
"��!�(


5��������'���������'���)� :1���
�����
�"����&��2
"��!�(
5���%'���)"���
����0��"�� 

�����)����
�������) ���&������0�������	���'����) 
�� ���%�#��"����'��
��"�������,����

�������
�������������������	��
����� PC �����# 0"��'��(��������	���"5%���"�������9'�-&�" ��C���1�����

����
���-
�� ���0���(		
"���������C� conjugate gradient (CG) 0������(0��0		���&�� 
���,� 

Cholesky decomposition ��"����������� WSINV3DMT ����,���C� CG "�,'���������������"'&�����-	 

sensitivity matrix (J) :1��"�������9'����'��
��"������
�"����&��2:1���(���������%�#��"������,�

��'��
��"�������#$���'��"��  :1���#�0��"��"'��)����(������'� data space conjugate gradient 

method (DCG) ��)�&���������^���#�0��"��)#�(��	�#�����%����)�&�� ����(�C�	����)�&��

&'��3��%'���)��&��&'��# ��"��)�0
�������-�����#���	����	�����C���) (DCG) ��	 WSINV3DMT 

 

Overview of Inversion Method 

 

���#�(
�
2�������� inversion 
�������0		���%�� (m) ���
�"��!���
'� model responses F[m] ��� 

fit ���"5% d ���"���)��"� N 
'���� ����
�"��!�������������)  

 

X2
d = (d - F[m])

T 
Cd

-1 
(d - F[m])    (1) 

 

�"��� Cd 
�� data covariance 0%( 
T
 
�� transpose of matrix ��������� nonuniqueness of inverse 

problem �����)��1�"� models ������"�����
�"��! fit ���"5%�����'������3 ��� �����)������0��#F9����)

����1���������� search �� model ��������� inversion 
������� model ���"�%��+�(�#$� minimum 

possible structure 
�����	
'� misfit 
'���1�������������� �����������%��+�(��)������ inversion ��)� 

stable "���1)� ���
�"��!����� model structure �����
��&*�
&�2��������)  

 

X2
m = (m – m0)

T 
Cm

-1 
(m – m0)    (2) 

 

�"��� m 
�� model ���"���)��"� M 
'� 
'�� mo 
�� base model 0%( Cm 
�� model covariance ���


"��� (1) 0%( (2) ��) unconstrained functional U(m,�) �������(&��������� minimize 
�"��!�����

��������) 

 

U(m, �) =  (m – m0)
T 

Cm
-1 

(m – m0)  +   � -1{(d - F[m])
T 

Cd
-1 

(d - F[m]) - X2
*} (3)  
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�"��� �
-1
 
�� Lagrange multiplier �������#$�&���
������� stationary point ���
"�����)�"�������	��	 

� 0%( m :1��
����������� �����)���C���1��
�����0��
"��� penalty functional 0�� :1��"�%��+�(�����) 

 

W� (m) = (m – m0)
T 

Cm
-1 

(m – m0)  +   � -1{(d - F[m])
T 

Cd
-1 

(d - F[m])}  (4) 

 

����������"��� � ��)�
���� ���� fixed ��� ����(����'� �U/�m = �W�/�m  �����)����
�"��!0��
"��� (4) 

0�����
"������ (3) ���0&'&��� vary 
'�  � �#������3�����������
'� misfit ����������
��  

 

WSINV3DMT Overview 

 

��������� F[m] ��)��#$� non-unique problem �����)� iterative solutions �1�����#$� (Constable et al., 

1987) 

 

F[m k+1]  = F[m k] + Jk(m k+1 – m k),   (5)  

 

�"��� k 
�� iteration number 0%( Jk = [�F/�m] 
�� N x M sensitivity matrix calculated at mk :1���#$�

&���C�	������#%����0#%�������"5%�������������#%����0#%���� model 0����� (5) �� (4) ������ 

approximated penalty functional �"��� solve �� stationary points ��� approximated penalty 

functional �������'���0&'%( iteration �("� solution �����) 

 

  m k+1(�) = [�Cm
-1
 +  �k

m
] 

-1
 Jk

T
 Cd

-1 
dk + m0   (6) 

 

�"��� “model space cross-product” �k
m
 = Jk

T
 Cd

-1
Jk 
�� M x M positive semi-definite symmetric matrix.  

��C���)�#$����0��
"�������(		�� model space ����(���
�����
'����9'�1)���	
'� M �,'� ���


"������ (6) ����#$�&����� inverted matrix ���"����� M x M :1�����
�������)�(�,���%������
�������'��

"�� 0%(���&��������'��
��"���������"��������� ��)���)����(�'� M "��"�������9' ����@��(��'������!��

��������������������#$�
�""�&� ���0��
"�����)"���#$��#�"'���!��&������
����������
����� PC C��"�� 

&����'�����
'� M 
�����	
�""�&�����,��������
�	�#�0��" inversion ���������1)�
�� M = 21 x 28 x 18 = 

10584 ���
������'��3 ���&���%���)�	�'������0��
"������ (6) �������#$�&����,���'��
��"���!1�

#�("�� 450 Mbytes �"�����"��	��'��
��"������&���������&��0#�����3 �	�'����0��
"�����)	� PC ���"�

��'��
��"���!1� 1 Gbytes ��)��#$��#�"'��� 

���#�&�0%�� N (���������"5%) "��������'� M (������
'����0		���%��) ����������'���'� N << M 

����@��(!���������������������
�""�&� ����	�'� statement ��)"��!5�&��� �,'�����������&�� N = 
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1440 �����)�!�����
�"��!0#%��5#���
���������#%������� model space �#$� data space ����(
�"��!

%���%�����,������
����������"��)�%���'��
��"������&�������������    

Parker (1994) 0
�������-��'�
�����	 iteration k, mk+1 
�"��!���������'��#$� linear combination 

of rows of the smoothed sensitivity matrix CmJk
T
, ���� 

 

mk+1 – m0   = Cm Jk
T
�k+1    (7) 

 

�"��� �k+1 
�� unknown expansion coefficient vector 0��
'� (7) %��� approximated penalty functional 

0%��0��
"���������� stationary point ����	��	 � �������'� 

 

�k+1 = [�Cd +  �k
n
] 

-1 
dk    (8) 

 

�"��� “data space cross-product” �k
n
 = Jk Cm Jk

T
 �#$� N x N positive semi-definite symmetric matrix ��

������)�(��-�����'���������0��
"������"���������� N x N ��'���)� �"'�,� M x M ��"������������ model 

space �����)�������&����'������&�� �"&������&��������� invert �("���������� 1440 x 1440 ��'���)� 0�����

�(�#$� 10584 x 10584 ��"��������� model space 0%(��'��
��"������&����,��-%���%������� 8 MByte 

��'���)��������-	 representer matrix  

 ���������0#%��5#���
������"'������ solution ������4�����)���# �����)�&��	���������,�
'� � 0%( 

Cm  ��������0%�� ��)����
������� model space 0%( data space ��)��(���4%�����"������ ���%(�����


�"��!�5������ Siripunvaraporn and Egbert (2000) 0%( Siripunvaraporn and Egbert (2004, 2005) 

pseudo code 
�����	 WSINV3DMT (���� DASOCC 
�����	 2-D) 0
�����5#��� 1 

 

 

 

 

 

 

 

 

 

 

������ 1 -  Pseudo-code 


�����	 WSINV3DMT 0%( 

DASOCC 
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Data Space Conjugate Gradient (DCG) method 

 

$�+��*������ 9'�/22),��$� m /�� #'$�&� d ��#�����1+#7�� data space method ���!"�*!*�+*�' 

�5����+��'$���'��+������),����#7�� B���K5����������2 sensitivity matrix ��3��#��� N x M )��

��
����$�+�� ��+������),���3�'$���'��������2 representer matrix �� data space �4$ 8 MByte /�+

�+��'$���'$�� 121 MByte ��������2 sensitivity matrix /��9'�����
���3�!"�#'$�&�)���673� N /�� M ��

#�����1+�������3��!"�*!*�+*�' ��4$�'$��,����2����43$��$�5����$��
���9��
&���+����� 

�������/����3���)�/�'
������3 (8) �'����<�B�����673��� WSINV3DMT ��'�4$ Cholesky 

Decomposition ����!��3����<����/�'
����B���������'��<� conjugate gradient (CG) 673��!"���<�

���$'$� ��<����)��,���'���*�+�'$����2 sensitivity matrix *�'����+������),� �5�����<�����'$����/�+%�

�&
#$� sensitivity matrix ��2 vector ��8 673�
����9�,�*�'B�����/�'
����*!#'����'��5�����73������

��+�����  

CG method �!"� relaxation method ��3��'
,����2/�'��22
���� Ax = b ��3������
����� 

B���,���� iteratively minimizing the quadratic form Q(x) = ½ xTAx – xTb 673� algorithm ���
����9

���&*�')��
�3���5��5�$43�8 (e.g., Press et al., 1992; Barret et al., 1994) )��
������3 (8) �#������+

)�*�'�!"� 

 

�k+1 = [�Cd +  Jk Cm Jk
T
] 

-1 
dk   (9) 

 

)��
�������)�����*�'�+� A = [�Cd +  Jk Cm Jk
T
]  /�� x �4$ �k+1 
+�� b �4$ dk ���0��
"������ (9) 

�'$�����5��� Jkx ��4$ Jk
Tx 673�
����9�,�*�'B�����/�'
����*!#'����'� (forward problem) ��73�

����� (Mackie and Madden, 1993) 673���
������3 (9) �'$��,��������
$������ ������$����&�5�3�����*�'

�� Siripunvaraporn and Egbert (2007) Pseudo code 
�����	 DCG3DMT (���� DCG2DMT 
�����	 

2-D) 0
�����5#��� 2 

 

 

 

 

 

 

 

������ 2 -  Pseudo-code 


�����	 DCG3DMT 0%( 

DCG2DMT 
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�����*/���&����������*&����1"
�� 

 

�����!������ ���)��!���2����2����,����#$�
$�B!�/����4$ WSINV3DMT ��2 DCG3DMT 


,����2#'$�&���
������ /�� DASOCC ��2 DCG2DMT 
,����2#'$�&�
$����� 673�%������
$2)������


$�����/��
������������'����7���� �����������3������)��,��
�$%��K5��)��
$�������+�����  

��<�����!���2����2����,���� �4$ �����2),�������/�'!01��*!#'����'� (forward problem) 

�5������/�'!01��*!#'����'���/�+�������������'������� B!�/���*����'),�������/�'!01��*!

#'����'���� ��/
���+���'����������,���
�����+���� �$�)����� �������!���2����2),����

��+������),���3/�+����<���'  B�����)��,��
�$�����
$2��2#'$�&�),��$���3���
�'��#7���� 

 

#'$�&�),��$�����!"�#'$�&�),��$���3
�'����)��/22),��$����/
�����&!��3 3(a) ��43$�,�#'$�&���3

*�'��*!%+�����2����� inversion )��B!�/��� DASOCC )�*�'%����/
�����&!��3 3(b) /����43$

%+��B!�/��� DCG2DMT )�*�'%����/
�����&!��3 3(c) %������
$2/
����'�����+�B!�/�������
$�

�,����*�'���'�������� 
����9 recover �����'$� resistance /�� �'$� conductance )��/22),��$�*�'

$�+��9&��'$�  

 

 
���1%4 3 – (a) /22),��$���3��'�����
�'��#'$�&�),��$���3 1 (b) /22),��$���3*�')������,�#'$�&�),��$���3

*�'*!%+��B!�/��� DASOCC (c) /22),��$���3*�')������,�#'$�&�),��$���3*�'*!%+��B!�/��� 

DCG2DMT 

 

 /22),��$���3*�')��B!�/�������
$�����������9&��'$�
&� /
���+�!��
��<���5������,� 

inversion #$�����
$�B!�/������'�������� �543$�&������3��'������,���
 ����,�����!���2����2

),�������/�'!01��*!#'����'�#$�����
$�B!�/��� �������3 1 /
��),�������/�'!01��*!#'����'�

#$�B!�/��� DASOCC 
+���������3 2 /
��),�������/�'!01��*!#'����'�#$�B!�/��� 

DCG2DMT  
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 �����
$2���/
����'�����+� ),�������/�'!01��*!#'����'�#$�B!�/��� DCG ����
+����1+

/�'�)������+�#$�B!�/��� DASOCC 673�/
���+�������3��'������,���
����)������+� �$�)��

#'$�&�),��$��A����/�'� ������*�'��
$2��2#'$�&�),��$��A�$43�8 673���'%���3
$���'$����  /�'�+�������3��'

������,���
#$� DCG2DMT )������+� /�+�!"���3/�+�$���3!����
��+������),���3��'���+��'$���+�

���8 �5��� DCG2DMT *�+�'$��,�������2 sensitivity matrix *�'����+������),� �,���'!������

��+������),�*!*�'���������� /�+���!��������+������),�������2�,���'��������,���
���+�
&����

#7�� 
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�;�&� 

 

���*�'5�\�� ���� 2-D /�� 3-D inversion programs 
,����2#'$�&� MT B����������3��'�!"����5�\��

��)����<��� data space �5���/�+�+���<����/�'��22#$�
�������������'��������3������+� conjugate 

gradient ����'/����3���/�'
����/22B����� B!�/�����35�\��#7�������+��������5��3
&�����2��+�

��2B!�/�����3���5�\����/�'���+� WSINV3DMT /�� DASOCC /�+��'��+������),���3�'$���+�

���8 673���#
�������������'����������,���
��3
&���+� ����������)���4$���'B!�/�������#7����2%&'��'

/��#'$�&���3)��,�*!*!��' 
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S U M M A R Y

A data space approach to magnetotelluric (MT) inversion reduces the size of the system of
equations that must be solved from M × M , as required for a model space approach, to only
N × N , where M is the number of model parameter and N is the number of data. This
reduction makes 3-D MT inversion on a personal computer possible for modest values of M
and N . However, the need to store the N ×M sensitivity matrix J remains a serious limitation.
Here, we consider application of conjugate gradient (CG) methods to solve the system of data
space Gauss–Newton equations. With this approach J is not explicitly formed and stored, but
instead the product of J with an arbitrary vector is computed by solving one forward problem.
As a test of this data space conjugate gradient (DCG) algorithm, we consider the 2-D MT
inverse problem. Computational efficiency is assessed and compared to the data space Occam’s
(DASOCC) inversion by counting the number of forward modelling calls. Experiments with
synthetic data show that although DCG requires significantly less memory, it generally requires
more forward problem solutions than a scheme such as DASOCC, which is based on a full
computation of J.

Key words: data space method, inversion, magnetotellurics.

I N T RO D U C T I O N

Three-dimensional (3-D) magnetotelluric (MT) inversion can re-
veal the 3-D resistivity structure beneath the Earth’s surface, and
can be applied to 3-D data sets (e.g. Tuncer et al. 2006), as well as
to 2-D profile data (Siripunvaraporn et al. 2005b). In recent years
a number of 3-D MT inversion algorithms have been developed
(e.g. Mackie & Madden 1993; Mackie, personal communication
2002; Newman & Alumbaugh 2000; Zhdanov et al. 2000; Sasaki
2001; Siripunvaraporn et al. 2004, 2005a). There are many sim-
ilarities in the formulation of the inverse problem used by all of
these authors—in all cases a data misfit/model roughness penalty
functional is minimized—but a number of different computational
approaches have been pursued. All approaches have pros and cons,
as discussed in Siripunvaraporn et al. (2005a).

Newman & Alumbaugh (2000) and Mackie (personal commu-
nication 2002) used the non-linear conjugate gradient method to
minimize a data misfit/model roughness penalty functional. Sasaki
(2001) and Mackie & Madden (1993) both used a Gauss–Newton
(GN) method, however in the latter case the system of normal equa-
tions was solved by the conjugate gradient method. Siripunvaraporn
et al. (2004, 2005a) developed a 3-D inversion algorithm based on
the Occam inversion of Constable et al. (1987), another variant of
the GN method. In this work, the data space approach previously
used for 2-D MT (Siripunvaraporn & Egbert 2000) was extended to
the 3-D case. This transformation to the data space significantly re-
duced memory requirements, and making it possible to run 3-D MT

inverse problems of modest size on a desktop PC. However, mem-
ory required to store the sensitivity matrix is still quite substantial,
and this limits the size of both data sets and model parametriza-
tion. Here, we consider another possible approach, the ‘data space
conjugate gradient’ (DCG) inversion. This is again a GN variant,
formulated in the data space as in Siripunvaraporn & Egbert (2000),
but without forming and storing the sensitivity matrix as in Mackie
& Madden (1993).

We begin the paper by reviewing the Occam inversion, compar-
ing model and data space approaches. We then introduce the DCG
method, and test this using synthetic 2-D MT data set. In these
tests we compare computational efficiency of DCG and previously
described, proven MT inverse methods (Siripunvaraporn & Egbert
2000).

R E V I E W O F O C C A M ’ S I N V E R S I O N

The data space Occam’s (DASOCC) inversion has been success-
fully applied to 2-D (Siripunvaraporn & Egbert 2000) and 3-D
(Siripunvaraporn et al. 2004, 2005a) magnetotelluric (MT) inver-
sion. DASOCC follows the general Occam approach of Constable
et al. (1987) to seek the ‘minimum structure’ model subject to an
appropriate fit to the data. Mathematically, an unconstrained func-
tional U(m, λ) is varied :

U(m, λ) = (m−m0)TC−1
m (m−m0)

+ λ−1
{
(d− F[m])TC−1

d (d− F[m])− X∗2
}
, (1)

986 C© 2007 The Authors

Journal compilation C© 2007 RAS



DCG inversion for 2-D MT data 987

to minimize the model norm subject to the condition that the nor-
malized squared total misfit is equal to X ∗2. Here m is the resistivity
model of dimension M , m0 the prior model, Cm the model covari-
ance matrix which defines the model norm, d the observed data with
dimension N , F[m] the forward model response, Cd the data covari-
ance matrix, X ∗ the target misfit, and λ−1 a Lagrange multiplier.

The Occam scheme of Constable et al. (1987) is based on lineariz-
ing the forward response to obtain the following iterative sequence
of linear equations (see Constable 1987; Siripunvaraporn & Egbert
2000),

mk+1 −m0 =
[
λC−1

m + JT
k C−1

d Jk

]−1
JT

k C−1
d dk, (2)

where the subscript k denotes iteration number, Jk = (∂F/∂m)k

is the N × M sensitivity matrix calculated at mk, and dk = d −
F[mk] + Jk(mk – m0). In (2) the dimension of the inverted matrix
is M × M , controlled by the size of the model space. For realistic
3-D problems M is usually very large, making application of this
model space approach impractical.

To reach the ultimate goal of finding a stationary point of (1), in
each iteration (2) is solved with a series of trial values of λ. In early
iterations (Phase I), the Occam algorithm searches over λ for the
model that minimizes misfit. The process continues until the target
X ∗2 is attained. Once the misfit reaches the desired level, the next
stage (Phase II) begins by keeping the misfit at the desired level,
varying λ to seek the model of smallest norm achieving the target
misfit. One advantage of Occam’s inversion is that only a small
number of iterations are required to converge to the solution.

Siripunvaraporn & Egbert (2000) transformed the Occam scheme
for the 2-D MT problem from the model space to the data space,
developing a variant of Occam in which the size of the inversion
depends on the number of data N , instead of the number of model
parameters M . See Parker (1994), Bennett et al. (1996) and Egbert
(1997) for data space approaches to other inversion problems. In the
data space approach, the series of iterative approximate solutions is

obtained as

mk+1 −m0 = CmJk

[
λCd + JkCmJT

k

]−1
dT

k , (3)

see Siripunvaraporn & Egbert (2000) and Siripunvaraporn et al.
(2005) for details. The system of equation as given in (3) shows that
the system of equations that must be solved for the inversion is in the
data space, and thus of size N × N . As in the model space Occam
scheme, (3) is solved for a series of trial values of λ to search for
the minimal misfit (Phase I) and then to minimize the model norm
while keeping the misfit constant (Phase II). We refer to this ‘data
space’ variant on Occam as DASOCC. Provided N is much less than
M , DASOCC will be considerably more efficient than the original
model space Occam. In particular, DASOCC allows an Occam type
scheme to be used for 3-D inversion of MT data on a personal
computer or workstation, as shown in Siripunvaraporn et al. (2004;
2005a). Pseudo-code for the DASOCC algorithm is given in Fig. 1.

Though the size of the system of equations that must be solved
in the inversion can be significantly reduced with a data space ap-
proach, very significant computer memory is still required to store
the N × M sensitivity matrix Jk for realistic values of N and M ,
particularly for 3-D MT problems. Furthermore, computation of the
sensitivity matrix requires many forward model solutions. Here, we
present an alternative approach that avoids storing the large matrix
Jk . Instead of forming and factoring the matrix (λ Cd + JkCmJT

k )
as in Siripunvaraporn & Egbert (2000) and Siripunvaraporn et al.
(2004, 2005a), we apply a conjugate gradient (CG) technique to
solve (3). With the CG method, there is no need to explicitly form
the full N ×M sensitivity matrix. Rather, only multiplication of the
sensitivity matrix or its transpose with a given vector (p or q) to form
Jkp or JT

k q is required. Each of these matrix vector products in turn
requires one forward model solution per period. A very similar ap-
proach has been used before in the model space EM inversion algo-
rithms developed by Mackie & Madden (1993), Newman & Alum-
baugh (1996), Rodi & Mackie (2001) and Haber et al. (2000) among

Figure 1. Pseudo-code for DASOCC.
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others. Here, we describe and test DCG, a data space variant on this
algorithm. Although the primary rationale for developing this lim-
ited memory scheme is to increase practicality of 3-D inversion, we
report here initial tests and comparisons on synthetic 2-D MT. A
key goal here is to compare computational efficiency of DCG and
DASOCC, and these simpler tests are already instructive.

Note that an alternative approach to improving computational
efficiency is the Reduced Basis Occam (REBOCC) approach of
Siripunvaraporn & Egbert (2000). REBOCC is based on the ob-
servation that the updated inverse solution mk+1 of (3) is a linear
combination of the N columns of CmJk . In REBOCC sensitivites for
a subset of K data are calculated (e.g. skipping every other frequency
or every other site in a profile) and an approximate solution is sought
as a linear combination of the corresponding K columns of CmJk .
The full data set is still fit, using this reduced set of basis functions.
This scheme is more efficient than DASSOCC, particularly for MT
data sets that are highly redundant, either in spatial or frequency
sampling, To simplify our comparisons here we only consider the
DASOCC and DCG schemes, and we restrict our comparisons to
test data sets which are not heavily oversampled, for which only
modest gains in efficiency would be achieved with REBOCC. In-
deed, it is not obvious how, or even if, REBOCC might be usefully
extended to make use of a subset of sites for general 3-D problems.
Furthermore, as we shall see, DASOCC is generally already more
efficient in terms of computational time than DCG, so there is little
point to direct comparison of efficiency of DCG and REBOCC.

DATA S PA C E C O N J U G AT E G R A D I E N T

( D C G ) M E T H O D

With the DASOCC approach, eq. (3) is solved for a series of values
of λ using Cholesky decomposition. In the data space, each such
solution is very fast, compared to the time required for forming the
Jacobian. Such an Occam approach is not so well suited to using
CG as the solver, since in the latter case J is not explicitly calculated
and stored. To literally apply the Occam approach, the CG method
would have to be applied to solve (3) for each λ, requiring a very
large number of forward solutions.

We therefore, take a more traditional regularized optimization
approach, taking λ as a fixed damping parameter. Thus, instead of
solving the constrained optimization problem implied by (1), we
minimize the penalty functional Wλ(m),

Wλ(m) = (m−m0)TC−1
m (m−m0)

+ λ−1
{
(d− F[m])TC−1

d (d− F[m])
}
, (4)

with λ fixed. Linearizing F[m], we obtain the same system of data
space eq. (3). With the data normalized with diagonal matrix Cb

−1/2 ,
this can be written

mk+1 −m0 = CmJkC
−1/2
d

[
λI+ C

−1/2
d JkCmJT

k C
−1/2

d

]−1
C
−1/2
d dk,

(5)

where I is the identity matrix. This simple transformation results
in a better conditioned system, with the term λ I acting to stabilize
the inversion. This simple transformation is analogous to the pre-
conditioning of the model space equations by approximate solution
of Poisson’s equation, used by Haber & Ascher (2001) and Rodi &
Mackie (2001).

CG is a relaxation method for solving the symmetric system of
equations Rx = b by iteratively minimizing the quadratic form
Q(x) = 1

2 xT Rx − xT b. The CG algorithm and its details can be
found in various publications (e.g. Press et al. 1992; Barret et al.

1994). In our application R is [λ I+C−1/2
d JkCmJT

k C−1/2
d ], b is C−1/2

d dk

and x is the unknown, which must be multiplied with C−1/2
d to ob-

tain the model mk+1 as given in eq. (5). Implementation of CG
requires only code to form the matrix–vector product Rp for arbi-
trary data space vectors p, rather than actually forming the matrix
R. Thus we can also avoid forming and storing Jk , provided we have
routines for multiplication of model space vectors by Jk and data
space vectors by JT

k . Both of these matrix–vector products can be
computed by solving one forward problem, as shown in Mackie &
Madden (1993). Pseudo-code for the DCG algorithm is given in Fig.
2. Since Jk is never explicitly computed, one clear advantage of this
approach is that storage of the large dense matrix Jk is not needed,
as it is with DASOCC.

To compare the computational efficiency of DASOCC and DCG,
we consider the total number of forward modelling steps required.

Figure 2. Pseudo-code for DCG.
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In DASOCC, where the full sensitivity is formed, the number of
forward solver calls required to form all of J is N mN sN p using the
reciprocity technique (Rodi 1976), where N m is the number of modes
(1 or 2 for MT), N s is the number of sites and N p is the number of
periods. Then for each iteration, a further N p forward solutions per
mode are required for each λ in order to compute the actual data
misfit. Thus the total number of forward solutions required per outer
loop DASOCC iteration is about N mN sN p + NλN pN m where Nλ is
the typical number of values of λ tried in each iteration. Since Nλ

is typically 4–5, NλN pN m is negligible compared to N mN sN p, and
will thus be ignored in the following comparisons.

With the DCG approach, the number of forward problems to be
solved depends on the number of CG iterations in each step in the
outer loop. For each (inner loop) CG iteration the number of forward
solver calls required is 2N pN m: one for computing Jkp and a second
for computing JT

k q, for each mode and for each period. At the end
of one outer loop iteration of DCG, N mN p forward modelling calls
are required to form the background solution required for the next
iteration, and to determine the misfit. Thus, the number of forward
solver calls per outer loop DCG iteration is 2N pN mN cg + N mN p,
where N cg is number of CG iterations. Similar to the DASOCC case,
we ignore N mN p here because it is a small fraction of 2N pN mN cg.
Thus, we can see that the DCG method will be more efficient than
DASOCC only if the total number of CG iteration (N cg) is less
than N s/2, and if the number of outer loop iterations remains the
same

N U M E R I C A L E X A M P L E S

Two 2-D synthetic data examples are used to test the relative effi-
ciency of DCG and DASOCC. For this comparison we consider only
the numbers of forward modelling calls used in each method, ignor-
ing other computational overhead, such as solving the system of data
space eq. (5) with Cholesky decomposition, as these represent only
a small part of the total computational burden.

Synthetic Example I

First, we test DCG on the simple synthetic example illustrated in
Fig. 3(a). The model is discritized into 100 × 31 blocks. The
impedance Z xy (TM mode) and Zyx (TE mode) are generated from
this model with 36 stations distributed uniformly from−40 to 40 km
with a site spacing of 2.5 km. At each site, nine periods distributed
uniformly in logarithmic period in the range from 0.01 to 100 s were
computed. Random errors with a relative magnitude of 5 per cent
were added to the real and imaginary part of the impedance data be-
fore inversion. The initial model for all inversion tests is a 50 Ohm-m
half-space.

Data space Occam’s inversion (DASOCC)

Convergence statistics from using DASOCC to invert TM mode,
TE mode and TM + TE mode data are summarized in Table 1.
For these three cases the inversion required 2, 3 and 3 outer loop
iterations, respectively, to reach the desired target misfit of 1. This
corresponds to Phase I of the Occam algorithm. For comparison
with DCG we omit the additional 1–2 Phase II iterations, which
fine tune the regularization parameter, and generally modify the
solution only slightly. The result from joint inversion of the TM and
TE data, fitting to an RMS misfit of one, is shown in Fig. 3(b). For
DASOCC, the number of forward solver calls is fixed (=N s N p N m),
since the sensitivity matrix Jk is explicitly formed. Thus, in each
iteration of DASOCC, the number of forward solutions required for
this example is 324 (36× 9) for TM and TE single mode inversions,
and 648 (36 × 9 × 2) for the joint TM + TE inversion. The total
number of forward solutions required to reach the target misfit is
thus 648 (324× 2) for TM, 972 (324× 3) for TE and 1944 (648×
3) for TM + TE. These numbers provide a standard for evaluating
the computational efficiency of the DCG algorithm.

Data space conjugate gradient method (DCG)

When solving (5) with CG, some stopping criteria must be defined.
Rodi & Mackie (2001) terminate the CG process at three iterations
per GN step in their MM method. Here, instead of fixing the number
of iterations, we terminate when the relative error in the system of
equations ||Ax−b||/||b|| reaches a specified tolerance rstop. Initially
we fix λ = 1, and compare the overall computational efficiency of
the DCG scheme with different values of rstop, such as 10−6, 10−4,
10−2 and 10−1. The outer loop is terminated when the inversion
reaches (or drops below) the desired RMS misfit of 1. Results for
the TM mode are given in Table 2(a).

When rstop is small, the number of iterations required is high, but
when the actual data misfit is computed, the RMS is not reduced
relative to the case rstop = 10−2. Clearly it is not necessary (or
useful) to use a very stringent stopping criterion for inner loop DCG
iterations. When rstop is reduced further to 10−1, the number of inner
loop iterations is reduced, but the outer loop does not converge to the
desired misfit in this case. Furthermore, even when the outer loop
does converge, the number of outer loop iterations may be greater,
resulting in a larger total number of forward modelling calls with
this reduced value of rstop. This example suggests that terminating
the CG solver at a fixed small number of iterations, as in Rodi
& Mackie (2001), will not always allow convergence to the target
level. Indeed, in their tests examples Rodi & Mackie (2001) found
that the CG scheme stalled in the later iterations, unable to achieve
reduction in the objective function to levels achieved by GN, and
non-linear CG (NLCG) approaches. At the same time it is worth

Figure 3. (a) Model I used to generate synthetic data, Zxy and Zyx for TM and TE modes. (b) Inverse model recovered from joint inversion of TM and TE
modes using DASOCC inversion. (c) Same as (b) but using DCG with λ = 1. The 36 stations are distributed uniformly from −40 to 40 km.
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Table 1. Number of iteration for DASOCC inversion to reach desired level of misfit for TM, TE and joint TM + TE inversions for
synthetic test case I.

TM TE TM + TE
Outer
loop RMS # of RMS # of RMS # of
DASOCC FWD to FWD to FWD to
Iter no. form Jk form Jk form Jk

0 12.49 – 8.60 – 10.73 –
1 3.24 324 2.89 324 3.82 648
2 0.97 324 1.29 324 1.36 648
3 0.99 324 1.00 648
Total FWD 648 972 1944

Note: The number of forward modelling calls (FWD) required for each iteration, and the total over all iterations are also given.

Table 2. Number of iterations for the DCG inversion with different rstop levels for TM (a), TE (b) and TM + TE (c) inversions for test case I.

Outer loop DCG Iter. no. Relative error (rstop) for stopping CG iterative process (λ = 1.0)

rstop = 1.E-06 rstop = 1.E-04 rstop = 1.E-02 rstop = 1.E-01

RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter

(a) TM: Initial RMS = 12.49
1 3.24 58 3.24 39 3.22 23 3.70 11
2 1.44 45 1.44 32 1.44 16 1.57 7
3 1.01 43 1.01 29 1.01 14 1.37 6
4 1.37 6
5 1.33 6
6 1.33 6
Total CG Iter. 146 100 53 –
Total FWD 2628 1800 954 –

(b) TE: Initial RMS = 8.60
1 2.89 46 2.89 31 2.89 17 2.96 10
2 1.94 37 1.94 26 1.94 15 2.04 8
3 1.19 34 1.19 24 1.20 13 1.30 7
4 1.04 34 1.04 24 1.04 12 1.25 6
5 1.21 6
6 1.21 6
Total CG Iter. 151 105 57 –
Total FWD 2718 1890 1026 –

(c) TM + TE: Initial RMS = 10.73
1 4.38 77 4.38 49 4.38 28 4.38 16
2 2.60 61 2.60 41 2.61 22 2.98 12
3 1.17 50 1.17 36 1.19 20 1.75 10
4 0.95 50 0.95 36 0.96 19 1.18 9
5 1.08 7
6 1.08 7
Total CG Iter. 238 162 89 –
Total FWD 8568 5832 3204 –

Note: For rstop = 1.E-01, the inversion cannot reach the desired level of misfit. Essentially the same RMS misfit is attained for all values of rstop = 1.E-02 or
less. Note that for each CG iteration 2 forward model solutions are required for each period.

noting that in the early outer loop steps similar misfit values are
achieved with many fewer iterations when a larger value of rstop is
used. A more complex stopping criteria, with rstop becoming smaller
as the inversion converges may be worth considering.

Similar results are obtained for the TE and joint TM + TE in-
versions, as shown in Table 2(b) and (c), respectively. The inverse
model obtained from the TM + TE inversion is shown in Fig. 3(c).
Another general observation from these tables is that as the outer
loop converges the number of CG iterations is reduced, even though
it becomes necessary to use a more stringent stopping criteria to
continue to make progress.

Next, we apply DCG using various values of λ, but with rstop

now fixed at 10−2. Results for these experiments are given in

Table 3(a) for TM, Table 3(b) for TE and Table 3(c) for joint
TM + TE inversions. From these tables, we conclude that with
smaller values of λ a larger number of CG iterations is required. This
is because the system of equations becomes much stiffer. Higher val-
ues of λ on the other hand result in a well-conditioned system which
converges in a smaller number of iterations. However, in this case,
it may be impossible to reach the target misfit.

In all three inversion tests (TE, TM and TE + TM), optimal
convergence occurs when λ = 1, and rstop is 10−2. For each of
the outer loop iterations, the number of CG steps is roughly half
the number of stations. However, the total number of outer loop
iterations is slightly greater than what is required by DASOCC, that
is, three for TM, four for TE and four for TM+ TE inversions. The
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Table 3. Number of iterations for the DCG inversion with different values of λ for TM (a), TE (b) and TM + TE (c) inversions of synthetic test case I.

Outer loop DCG Iter. no. Different values of λ (rstop = 1.0E-02)

λ = 0.1 λ = 1 λ = 10

RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter

(a) TM: Initial RMS = 12.49
1 4.98 48 3.22 23 4.83 11
2 3.03 44 1.44 16 3.64 7
3 1.81 45 1.01 14 3.54 6
4 0.76 37 3.47 6
5 3.46 6
Total CG Iter. 174 53 –
Total FWD 3132 954 –

(b) TE: Initial RMS = 8.60
1 3.33 40 2.89 17 3.80 8
2 3.65 40 1.94 15 3.33 6
3 4.36 35 1.20 13 3.23 6
4 4.14 38 1.04 12 3.22 6
5 2.95 38 3.21 6
6 4.23 38 3.21 6
Total CG Iter. 57 –
Total FWD – 1026 –

(c) TM + TE: Initial RMS = 10.73
1 5.48 69 4.38 28 4.06 13
2 4.49 64 2.61 22 2.69 8
3 3.40 60 1.19 20 2.50 7
4 2.00 50 0.96 19 2.45 7
5 1.43 50 2.44 7
6 0.64 45 2.43 7
Total CG Iter. 338 89 –
Total FWD 12 168 3204 –

Note: For λ = 10, the inversion cannot reach the desired level of misfit, and for λ less than 0.1, the inversion diverges. For this test case λ = 1 is at least
approximately optimal.

total number of CG steps required to reach the target misfit are thus
53, 57 and 89 for TM, TE and joint TM+TE inversions, respectively
(Table 3). Each CG step requires two forward solutions for TM and
TE, and four forward solutions for joint TM + TE inversions, per
period. Thus, the total number of forward solver calls required are
954 (53 × 2 × 9), 1026 (57 × 2 × 9) and 3204 (89 × 4 × 9) for
TM, TE and TM + TE inversions, respectively.

These numbers are higher than were required by the DASOCC
method, by factors of roughly 1–1.6 times: 954 to 648 for TM, 1026
to 972 for TE and 3204–1944 for TM + TE inversions. Thus, for
this example the computational efficiency of the DCG method is not
superior to DASOCC in terms of CPU time. Numerous experiments
with other synthetic examples support the general validity of this
conclusion. Another issue for DCG is that we may need to try several
different values of λ, particularly for real data sets. Values of λ that

are too large may result in failure of the inversion to converge,
while values that are too small will require a high number of CG
iterations to converge, or may not result in convergence. However,
DCG does have a very significant advantage with regard to memory,
since storage of the sensitivity matrix is not required. Thus, there is a
trade-off between computational efficiency and memory.

Synthetic Example: Case II

We next compare DCG and DASOCC on the more complicated
structure shown in Fig. 4(a). This synthetic model may not look
geologically realistic, but it provides a more challenging test of the
inversions, and demonstrates that the relative performance of DCG
and DASOCC will depend on the data set. As in the first example
impedances Zxy (TM mode) and Zyx (TE mode) are generated for

Figure 4. (a) Model II used to generate synthetic data, Zxy and Zyx for TM and TE modes. (b) Inverse model recovered from joint inversion of TM and TE
modes using DASOCC inversion. (c) Same as (b) but using DCG with λ = 0.1. The 36 stations are distributed uniformly from −40 to 40 km.
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Table 4. Number of iteration for DASOCC inversion to reach desired level of misfit for TM, TE and joint
TM + TE inversions for synthetic test case II.

TM TE TM + TE
Outer
loop RMS # of RMS # of RMS # of
DASOCC FWD to FWD to FWD to
Iter no. form Jk form Jk form Jk

0 26.34 – 23.19 24.82
1 8.38 324 6.71 324 9.27 648
2 3.96 324 2.82 324 3.76 648
3 3.93 324 1.54 324 2.13 648
4 4.35 324 1.11 324 1.35 648
5 3.62 324 0.97 324 1.24 648
6 1.53 324 1.00 648
7 0.97 324
Total FWD 2268 1620 3888

Note: The number of forward modelling calls (FWD) required for each iteration, and the total over all
iterations are also given.

36 stations and nine periods from 0.01 to 100 s with 5 per cent
random errors. The model discretization is again 100 × 31 blocks,
and the initial model for all inversion tests is a 50 Ohm-m half-space.

Data space occam’s inversion (DASOCC)

Convergence of the DASOCC inversion for the TM, TE and TM +
TE modes are shown in Table 4. The result from the joint TM +
TE inversion at RMS misfit one is shown in Fig. 4(b) along with
results from the comparable DCG inversion. Because the model
is more complicated than the first case, the number of main loop
iterations is higher: seven, five and six iterations are required to
reach the desired target misfit of 1.0 for TM, TE and joint TM +
TE inversion, respectively. This results in 2268 (324 × 7), 1620
(324× 5) and 3888 (648× 6) forward solutions for the three cases,
as listed in Table 4.

Data space conjugate gradient method (DCG)

Next, we apply the DCG method to the same synthetic data sets.
Results are summarized in Tables 5(a)–(c). Here, in all case rstop

was set at 10−2. For the TE mode, with λ = 0.1, the inversion
converges to below the target misfit in three iterations. Although
this is less than what was required by DASOCC, the number of
CG steps per outer loop iteration is about 1.5 times the number
of stations, and the total number of CG iterations is 119. Thus the
total number of forward solutions (2142 = 119 × 2 × 9) still ex-
ceeds that required by DASOCC (1620). The joint inversion re-
quires 14 outer loop iterations, for a total of 806 CG steps, or 29 016
(806 × 4 × 9) forward solver calls. These numbers are huge com-
pared to those required for DASOCC (Table 4). Tests with other
values for λ did not yield better results; for λ lower than 0.1 there
was generally no convergence. For the TM mode case no value of
λ resulted in convergence of the DCG inversion. This example thus
illustrates two potential shortcomings of the DCG approach. First,
convergence can sometimes be very slow, and DCG may even fail to
converge, even in cases where a DASOCC scheme works perfectly
well. Second, DCG can be sensitive to the choice of regularization
parameter λ, and the optimal choice is seldom known a priori. In
the first synthetic example λ = 1 was optimal, but in the second
example DCG worked considerably better with λ = 0.1. With real

data sets one should plan on running the inversion for a range of
values of this damping parameter.

D I S C U S S I O N A N D C O N C L U S I O N

We have developed and tested a data space variant on the CG scheme
(DCG) for 2-D MT data. The proposed scheme is essentially a GN
scheme reformulated in the data space. Solution of the data space
equivalent of the standard GN equations is then accomplished with
CG, instead of computing the sensitivity matrix, forming the dense
data space cross-product matrix, and solving the normal equations
using Cholesky decomposition.

A widely perceived advantage of such CG approaches is that be-
cause they avoid explicit calculation of the sensitivity matrix, they
are faster and computationally more efficient. However, in our nu-
merical tests for 2-D MT data we find that a CG approach generally
requires as many or more forward solver calls than an algorithm
(DASOCC) which computes the full sensitivity. This is similar to
results reported by Rodi & Mackie (2001). In their computational
experiments, the numbers of forward solutions used in both their CG
based MM and preconditioned NLCG methods were greater than
those required for a more conventional GN method. However, they
used a model space formulation, and the additional computational
time required to form and solve the very large M × M system of
normal eqs (2), made the GN approach slow, especially for large
problems. This additional computational time is very significantly
reduced when the problem is formulated in the data space, as with
the DASOCC approach used here.

One disadvantage of a data space formulation is that there is no
analogue of NLCG, which Rodi & Mackie (2001) found to be some-
what more efficient than CG in the late stages of convergence. How-
ever, these authors did not find substantial overall performance dif-
ferences (in terms of forward solver calls required) between NLCG
and the model space CG scheme they tested. Thus, it is far from clear
that NLCG would require fewer forward calls than a GN approach
such as DASOCC. It is possible that as the number of sites N s is
increases DCG may achieve convergence in many fewer than N s/2
iterations, and hence be faster than DASSOC, although this remains
to be demonstrated. Furthermore, as the number of sites increases
a reduced basis approach such as REBOCC (Siripunvaraporn &
Egbert 2000) will also become more favourable.

One advantage of Occam in general, and DASOCC in particular,
is that once Jk is computed and stored, this system of equations can
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Table 5. Number of iterations for the DCG inversion with different values of λ for TM (a), TE (b) and TM + TE (c) inversions, synthetic test case II.

Different values of λ (rstop = 1.0E-02)

λ = 0.1 λ = 1 λ = 10

Outer loop DCG Iter. No. RMS No. of CG Iter RMS No. of CG Iter RMS No. of CG Iter

(a) TM: Initial RMS = 26.34
1 8.39 80 8.96 35 9.47 13
2 4.40 55 3.88 20 5.74 9
3 3.02 52 2.88 17 5.34 7
4 3.51 46 2.53 17 5.38 7
5 2.84 49 2.30 17 5.34 7
6 3.69 48 2.24 17 5.35 7
7 2.81 50 2.32 17 5.34 7
8 3.70 45 2.96 17 5.34 7
9 2.92 48 3.59 18 5.34 7
10 3.59 45 5.65 20 5.34 7
Total CG Iter. – – –
Total FWD – – –

(b) TE: Initial RMS = 23.19
1 6.92 48 7.12 23 7.84 11
2 2.50 39 2.53 15 4.08 7
3 0.99 32 1.50 13 3.77 6
4 1.44 13 3.75 6
5 1.42 13 3.73 6
6 1.42 13 3.73 6
Total CG Iter. 119 – –
Total FWD 2142 – –

(c) TM + TE: Initial RMS = 24.80
1 9.53 99 9.32 39 9.31 16
2 4.08 70 3.88 25 4.86 10
3 2.55 59 2.56 20 4.23 8
4 2.10 58 2.23 20 4.21 8
5 2.13 54 2.05 20 4.19 8
6 2.83 53 1.97 20 4.19 8
7 2.18 57 1.94 20 4.19 8
8 1.83 53 1.94 20 4.19 8
9 1.47 52 1.94 21 4.19 8
10 1.42 52 1.94 21 4.19 8
11 1.19 52 1.94 21 4.19 8
12 1.18 49 1.94 21 4.19 8
13 1.08 49 1.94 21 4.19 8
14 1.01 49 1.94 21 4.19 8
Total CG Iter. 806 – –
Total FWD 29 016 – –

Note: For TM, none of the values of λ tested allow the target level of misfit to be reached.

be solved repeatedly for different values of λ. Thus, the Lagrange
multiplier λ−1 can be used both for damping and for step length
control (Parker 1994). This guarantees, at least in theory, conver-
gence to a local minimum of the model norm, subject to the data
misfit achieved (Parker 1994). This property cannot be guaranteed
for more standard GN-CG or NLCG methods, where λ is indepen-
dently chosen and left fixed during penalty functional optimization.
Because Jk is not explicitly formed and stored in the DCG scheme,
we also cannot directly use an Occam style approach. The optimal
prior choice of λ is not obvious, and, as shown in our numerical
tests, performance of the CG inversion can be greatly influenced by
this parameter. Possible approaches to picking λ are given, for ex-
ample, in Haber et al. (2000). Another idea, which deserves further
exploration but is beyond the scope of this paper, would be to use
Lanczos tridiagonalization (the basis for CG; Gloub & Van Loan
1989). At the cost of increased memory (required to store all search

directions) the system (3) could then be efficiently solved for a range
of values of λ.

For realistic 3-D problems, both model and data sizes become
significantly larger. Therefore, DASOCC for 3-D MT inversion
(Siripunvaraporn et al. 2004; 2005a) requires huge amounts of
RAM. For example, in the EXTECH data set (Tuncer et al. 2006), N
= 16× 131× 4= 8,384 and M = 56× 56× 33= 103 488, requiring
about 8NM ≈ 7 Gbyte to store just the sensitivity matrix. This data
set thus requires running the 3-D inversion on a workstation or even
a supercomputer. Applying DCG to 3-D MT inversion is straight-
forward, and would allow running large problems such as this on
a common desktop PC. However, our 2-D numerical tests suggest
that the number of forward modelling calls are actually likely to be
larger for DCG, resulting in even longer run times. Clearly there is
a trade-off between memory used and CPU run time, and the choice
between DASOCC and DCG will depend on the application.
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Exploration for unconformity-type uranium deposits with
audiomagnetotelluric data: A case study from the
McArthur River mine, Saskatchewan, Canada

Volkan Tuncer1, Martyn J. Unsworth1, Weerachai Siripunvaraporn2, and James A. Craven3

ABSTRACT

Unconformity-type deposits supply a significant amount
of theworld’s uranium and consist of uranium that is general-
ly codeposited with graphite in a fault zone. The low resistiv-
ity of the graphite produces a significant contrast in electrical
resistivity, which can be located with electromagnetic �EM�

methods. TheAthabasca Basin inWestern Canada hosts sig-
nificant uranium deposits, and exploration in deeper parts of
the basin has required the application of new EM methods.
This paper presents an evaluation of the audiomagnetotellu-
ric �AMT� exploration method at the McArthur River mine
in theAthabasca Basin. AMT data were collected at 132 sta-
tions on a grid, and two-dimensional �2D� and three-dimen-
sional �3D� inversions were used to generate resistivity mod-
els. These models showed twomajor results: �1� a significant
conductor coincident with a major basement fault �P2� and
the uranium deposits �this conductor begins at the unconfor-
mity at a depth of 550 m and extends to a depth of at least
three km� and �2� a resistive halo which might be caused by
the silicification associated with mineralization. However,
synthetic inversions showed that this halo could be an artifact
of smoothing function in the inversion scheme.The 2D inver-
sions were validated by synthetic inversions, comparison
with the 3D inversion models, and correlation with well-log
information. 3DAMT forward modeling showed that strong
3D effects are not present in theAMT impedance data. Induc-
tion vectors showedmore evidence of complexity, but the in-
clusion of these data in the inversion improved subsurface
resolution.

INTRODUCTION

Unconformity-type deposits are a major source of uranium. The
Athabasca Basin, located in northwest Saskatchewan and northeast
Alberta, produces one-third of theWestern world’s uranium �Jeffer-
son et al., 2003�.As exploration has proceeded,many of the shallow-
est deposits have been mined out, and exploration has moved into
deeper parts of the basin. This is challenging existing exploration
methods, and government and industrial partners initiated the
EXTECH-IV �EXploration science and TECHnology initiative�
project to develop new techniques for locating unconformity-type
uranium deposits. The EXTECH-IV project has included a range of
geophysical and geological studies �Jefferson et al., 2003�. Most of
the geophysical studies took place at the McArthur River mine,
which hosts the largest known high-grade uranium deposit in the
world.
Electrical and electromagnetic �EM� methods are widely used in

mineral exploration and have played an important role in uranium
exploration in the Athabasca Basin �McMullan et al., 1987; Crone,
1991�. The uranium deposits are found where basement faults inter-
sect the unconformity �Figure 1�. Because graphite is commonly
found in the faults, the resulting low electrical resistivity often al-
lows detection with EM methods. However, not all unconformity-
type uranium deposits occur above or within graphitic faults.As part
of the EXTECH-IV project, alternative EM methods were evaluat-
ed to determine if they could map basement conductors at depth in
the Athabasca Basin. One such method is the audiomagnetotelluric
�AMT� method, which uses natural EM signals to image the upper
1–2 km of the subsurface. In contrast to loop-loop EMmethods and
the controlled-source audiomagnetotelluric �CSAMT� method,
AMT is logistically simple because no transmitter is required. In
this paper, a pilot AMT survey over a known uranium deposit is
described.
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GEOLOGIC SETTING AND MINERALIZATION

At theMcArthur River mine, the near-surface structure is charac-
terized by overburden that is up to 100 m thick. The underlying
Athabasca Group rocks �Figure 1� are sandstones and conglomer-
ates of late paleo- to Meso-Proterozoic age �Ruzicka, 1996�. Be-
neath the unconformity, the crystalline �gneissic�basement compris-
es the 2.5–2.6-Ga �billion years ago�WollastonGroup �McMullan et
al., 1987�. Uranium deposits in theAthabasca Basin are structurally
controlled by the Paleo-Proterozoic �sub-Athabasca� unconformity
and faults that exhibit a northeastern or eastern strike �Ruzicka,
1996�. The uranium orebodies range in shape frommassive subhori-
zontal lenses at the unconformity to veins and veinlets in the fault
zones �Ruzicka, 1996�. The deposits formed where oxidizing basi-
nal fluids carried uranium from the sandstone and reducing fluids
carried otherminerals �such as silica� from the basement rocks to the
unconformity through the fault �Figure 1�. This deposited uraniumat
the top of the fault near the unconformity; silicification occurs above
the unconformity because of the fluid flow. Prior to uraniumore dep-
osition, intense silicification developed where ascending fluids
flooded the sandstone with quartz. Significant silicification sur-
rounds the ore deposit at the McArthur River, although most other
Athabasca Basin deposits are surrounded by extensive zones of
quartz dissolution �Ruzicka, 1996�. In addition, a thin alteration halo
of quartz dissolution and illite clay alteration was formed around the
uranium deposit �Ruzicka, 1996�. Mwenifumbo et al. �2004� sug-
gested that at McArthur River, silicification is localized between the
unconformity and a depth of 375 m. Limited alteration has occurred
in the basement gneisses �Ruzicka, 1996�, and hydrothermal clay al-
teration is spatially limited at McArthur River �Mwenifumbo et al.,
2004�.
Polymetallic deposits �U-Ni-Co-As� occur more often within the

unconformity, although monometallic deposits occur either below
or rarely above the unconformity. Themonometallic-typeMcArthur
River P2 North deposit is the only known exception from this rule

�Ruzicka, 1996�. Pods of the McArthur River P2 North deposit ex-
tend 60 m downdip along the P2 fault zone from immediately be-
neath the unconformity in the footwall and just above the P2 reverse
fault in the nose of the uplifted hanging wall basement wedge. This
southeast-dipping reverse fault offsets the basement by 60–80 m.
The approximate size of the orebody is 100 m long, 10 m wide, and
60 m high, and is located between depths of 500 and 600 m �Ruzic-
ka, 1996�.

PREVIOUS GEOPHYSICAL STUDIES

Asignificant amount of geophysical data has been acquired at the
McArthur River deposit, both before and during the EXTECH-IV
project. Gravity studies were used to map the depth of the unconfor-
mity and to locate zones of alteration �Wood and Thomas, 2002�.
However, nonuniqueness restricts the ability of gravity data to dis-
tinguish between silicified and desilicified zones that might be asso-
ciated with underlying ore deposits. Seismic reflection data were
able to image the unconformity and faults that offset it but did not de-
tect the uranium orebody or graphite directly �Hajnal et al., 2002;
White et al., 2002; White et al., 2003�. The faults that underlie the
uranium deposits are often graphitic. Electrical and EM methods
have been used to locate them in the Athabasca Basin. In shallow
parts of the basin, basement conductors have been located with di-
rect current �dc� resistivity, transient electromagneticmethods, hori-
zontal-loop EM method �HLEM�, and very-low-frequency �VLF�
data �Craven et al., 2003�. Thesemethods are convenient for shallow
exploration but less effectivewhere the target depth exceeds 500 m.
To explore deeper parts of the Athabasca Basin, other EM meth-

ods must be used. The pulse EMmethod �DEEPEM�was used over
the Cigar Lake deposit and defined a conductor at a depth of 450 m,
but exploration was complicated by the low-resistivity regolith
�Crone, 1991�. Controlled-source EM exploration at greater depth
requires larger loops to be used and thus increases the logistical
effort and cost. As exploration expands into the deeper part of the
Athabasca Basin, alternative EM methods are needed for effective
and economical exploration. The audiomagnetotelluric �AMT�
method uses natural EM signals to image near-surface structures.
With improved magnetic sensors, it is no longer necessary to use a
controlled source, and this has reduced the cost and increased the use
of this technique in recent years. Recent applications ofAMTinmin-
eral exploration include studies byLivelybrooks et al. �1996�, Chou-
teau et al. �1997�, and Jones and Garcia �2003�. The EXTECH-IV
study described in this paper evaluated the role thatAMT could play
in uranium exploration in the Athabasca Basin. It was anticipated
that AMT could locate basement conductors and determine their
depth.

AMT DATA ACQUISITON

AMT data were recorded in 2002 by Geosystem SRL at 132 sta-
tions on 11 profiles that crossed the P2 fault �Figure 2�. Data collec-
tion usedMetronixAMTsystems, and themagnetic fieldsweremea-
sured with BF-6 and BF-10 induction coils produced by Electro-
Magnetic Instruments. The distance between profiles was approxi-
mately 800 m, and the station spacing was approximately 300 m.
Electric-field dipoles were 50 m in length, and time series were re-
corded with sampling rates of 40,960, 4096, and 256 Hz. Usable
AMT data were obtained over the frequency range 10,200–3 Hz.
Coherent time-series segments from each sampling rate were select-

Figure 1.Genericmodel of an unconformity-type uraniumdeposit in
the Athabasca Basin �after McMullan et al., 1987; Mwenifumbo et
al., 2004�. The Athabasca Group consists of four major units from
bottom to top. The Read Formation �RD, formerly MFa� comprises
discontinuous basal conglomerate, intercalated coarse sandstone,
conglomerate and redmudstone.TheManitou Falls Formation com-
prises MFb: interbedded conglomerate and pebbly sandstone; MFc:
granule sandstone; andMFd:medium-fine sandstonewithmudstone
intraclasts.WG is theWollastonGroup.
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ed automatically for robust analysis to reduce the effects of bias be-
cause of noise.An iterative reweighting schemewas used to provide
a robust estimate of the apparent resistivities and phases �Larsen et
al., 1996�.

AMT DATA ANALYSIS

The dimensionality of the AMT data was investigated using ten-
sor decomposition �McNeice and Jones, 2001�. In the frequency
range of 1000–1 Hz, the geoelectric strike direction is well defined
as 45° and parallel to the P2 fault direction �Figure 3�. Figure 3
shows the spatial distribution of the rms misfit obtained by the de-
composition, and the relatively low values �less than one� suggest
that a 2D interpretation was valid.All data then were rotated to a co-
ordinate systemwith the x-axis in the N45°E direction.Apparent re-
sistivities can be computed from the along-strike electric currents
�TE mode� and also from the across-strike electric currents �TM
mode�. Over a 2D earth, these twomodes give different apparent re-
sistivity values and are sensitive to different aspects of the subsur-
face structure. The TE mode is the most sensitive to along-strike
conductors, whereas the TM mode is the most sensitive to resistors
and shallow structure �Berdichevsky et al., 1998�. AMT data for
these twomodes are illustrated in pseudosections for line 224 in Fig-
ure 4,which shows limited site-to-site variation in apparent resistivi-
ty in TE mode because the electric field is parallel to the geoelectric
strike. The TM-mode pseudosection shows more site-to-site varia-
tion because near-surface bodies strongly affect the apparent resis-
tivity. In the TE-mode pseudosection, the location of the conductor
is indicated by generally lower apparent resistivities in the center of
the profile. Sample data curves of apparent resistivity and phase
from different locations are shown in Figure 5. Note that the TM-

mode data are less sensitive to the presence of the basement conduc-
tors than the TE-mode data. The TE-mode electric currents generate
a vertical magnetic field �Hz�, that is related to the horizontal mag-
netic fields by

Hz = TzxHx + TzyHy , �1�

where Tzx and Tzy are components of themagnetic field transfer func-
tion �tipper�. This real transfer function changes sign above a con-
ductor, as observed in Figure 4, with positive values on the left of the
conductor and negative signs on the right. This sign reversal at
1.5 km indicates the horizontal location of the conductor. These
transfer functions can also be displayed as induction vectors at a giv-
en frequency. In the convention of Parkinson �1959�, the real part of
the induction arrow points toward a conductor. Figure 6 shows the
real induction vectors at a frequency of 100 Hz, which sample the
subsurface to a depth of approximately 2 km. The direction of the
vectors on most profiles shows a reversal, marking the location of a
basement conductor. Induction vectors parallel to the profile are an
indication of a 2D resistivity structure and are observed on lines
224–248. The situation is more complex to the north, and the induc-
tion vectors are at a significant angle to the strike direction. Note that
induction vectors show more evidence of 3D behavior than the ten-
sor decomposition.This can be explained becauseAMT impedances
are primarily sensitive to structure below the station, whereas verti-
cal magnetic fields are most sensitive to structures located to one
side.

Figure 2. AMT station locations used in the McArthur River AMT
survey. Black diamonds on the P2North Faultline between lines 271
and 276 show the uranium ore pods. �MAR: McArthur River CS:
Carswell structure; PR: Phanerozoic rocks, P2: P2North fault�.

Figure 3. Results of tensor decomposition for real data and synthetic
3D model over frequency range 1000–1 Hz. �a� Shows best-fitting
strike direction in map format and the misfit obtained by the tensor
decomposition. Low misfit values indicate the 2D assumption is
well satisfied. �b� Same quantities for synthetic data generated for a
3D resistivity model. Gray rectangular bars show the locations of
conductors in the 3D syntheticmodels.
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INVERSION OF AMT DATA

Two-dimensional inversion

The dimensionality analysis and the similarity
of the pseudosections for adjacent profiles sug-
gest that a 2D analysis is valid for these AMT
data. For each profile, AMT data were inverted
using the nonlinear conjugate gradients �NLCG�
algorithm of Rodi andMackie �2001�. This inver-
sion seeks a resistivity model that fits the ob-
servedAMTdata andwhich also satisfies a speci-
fied regularization function. This generally re-
quires a spatially smooth model but can also in-
clude other requirements. AMT data for each
profile were inverted with the NLCG6 algorithm.
Separate inversions of the TE mode, TM mode,
and Tzywere used to check the internal consisten-
cy of the AMT data �Figure 7�. The TE mode is
most sensitive to along-strike conductors and
clearly images a conductor in the center of profile
224, although the TM mode does not image the
conductor at all. The Tzy data locate the horizontal
position of the conductor but do not determine its
depth.To obtain a reliable image of subsurface re-
sistivity, joint inversion of all data is required and
gives a sharper image of the basement conductor
�Figure 7�. The fit of the model response to the
measured data is shown at selected stations in
Figure 5, and the fit at other stations is of similar
quality. Static shifts encountered in the data were
small, and it was not necessary to correct for them
explicitly. The error floors used in these inver-
sions for apparent resistivity, phase, and tipper
are 20%, 5%, and 0.025, respectively. Lower er-
ror floors were also applied to the apparent resis-
tivity, but models were rougher with low error
floors �e.g., 10%�. Simultaneous inversion of all
data gave very similar models to those obtained
by a sequential approach �TEorTE-TMfirst, then
TE-TM-Tzy�. Resistivity models and misfits for
all profiles are shown in Figures 8 and 9. Around
themine area, the rmsmisfit values are higher but
still acceptable. The TE-TM and TE-TM-Tzy in-
versions appear to be similar except for line 276
�Figure 9�. TheTE-TM inversion gives a better fit
to the data �Figure 8�, but the model differs from
the other TE-TM models. This might be because
of the gap on line 276 or because themine is locat-
ed on this profile and cultural noise may have de-
graded the quality of the AMT data. However,
this is not seen on the chosen time series data
around themine.
As noted earlier, the induction vectors for the

northern profiles �lines 266-304� suggest a depar-
ture from a simple 2D geometry. Thus, tipper data
from the northern profiles must be used with cau-
tion. Although the TE-TM-Tzy results give low
rms misfits for profiles 224–254, the TE-TM in-
version is more reliable for the other profiles. The
rms misfits shown in Figure 8 also support this

Figure 4. Pseudosections for TE, TM, andmagnetic field transfer function data from line
224.

Figure 5. Sample data curves of TE andTM-mode for stations on lines 224, 248, and 304.
Continuous lines show the response of the inversionmodels in Figure 9.

Figure 6. �a� Induction vectors at 100 Hz frequency. Note the real induction vectors point
at a conductor. �b� Synthetic induction vectors for a simple 3Dmodel. Gray-shaded rect-
angular bars show the locations of basement conductors.
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idea because the TE-TM-Tzy inversions have smaller rms misfits for
line 224, possibly because of the two-dimensionality indicated by
the profile parallel induction vectors. The rms misfits are higher for
the TE-TM-Tzy inversions where the induction vectors are not paral-
lel to the profile, perhaps indicating 3D or anisotropic effects in the
data.
To examine the robustness of the inversion models, a range of in-

versions was performed with different control parameters � and � .
The smoothing parameter � controls the trade-off betweenfitting the
AMTdata and producing a spatially smoothmodel. The parameter�
controls the ratio of horizontal and vertical smoothness.The resistiv-
ity models in Figure 9 were obtained with default parameters
�� = 10 and � = 1� that gave results typical of a range of � and �
values.
The conductor imaged in the inversions is located in the basement

with the top at a depth of 500 m and extending to a depth of at least

2 km. In the southwestern part of the survey area, the conductor ap-
pears to dip to the southeast. Around the mine, the conductor is
weaker, but the AMT data from these profiles are lower in quality
than data from other profiles. In the northeastern part of the survey
area, two basement conductors are imaged. The second stronger
conductor could be another graphitic fault northwest of the main
conductor �P2 reverse fault�. The inversion results suggest that this
second conductor may extend to the southwest, because the same
feature can be seen just beyond theNWendof themodels for profiles
224-248 �this part of the models is not shown in Figure 9�. The in-
duction vectors �Figure 6� also indicate the presence of these con-
ductors. This is clear at 100 Hz, where induction vectors at the NW

Figure 7. Resistivity models derived for profile 224 with 2D AMT
inversions. The inversions for line 224 give the following root mean
square �rms�misfits: Tzy only 1.125, TE only 2.152, TM only 0.833,
TE-TM1.703, andTE-TM-Tzy 1.687.An idealmisfit would be in the
range of 1.0–1.5, but these values are certainly acceptable.

Figure 8. Root-mean-square �rms� misfit values for the TE-TM
�dashed� andTE-TM-Tzy �solid� inversions for each profile.

Figure 9. Resistivity models for all profiles derived with 2D inver-
sion.
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end of lines 240, 248, 254, 266, and 271 may indicate another con-
ductor.
The other feature that is obvious in Figure 9 is a resistive halo

�5000–10,000 �.m� that appears above and on the sides of the base-
ment conductor. This feature is clearest on lines 224-254. This fea-
ture could be caused by the silicification or alteration associatedwith
uranium ore formation. However, it could be an artifact of the regu-
larization used in the inversion, because of the high resistivity con-
trast between the graphite conductor and the host rock.

3D inversion

The validity of the 2D inversions was investigated by performing
a 3D inversion of the wholeAMTdata set using the algorithm of Sir-
ipunvaraporn et al. �2005a�. The off-diagonal components of the im-
pedance tensor at 16 frequencies and 131 sites were inverted using
an impedance error floor of 5%. The inversion started from a
1000 �.m half-space and the vertical-to-horizontal smoothing ratio
was set to unity. The initial and final rms misfits of the 3D inversion
were 5.56 and 1.38, respectively. Figure 10 shows a comparison of
the 2Dand 3D inversionmodelswith borehole log data.Note that the

3D inversion did not include theTzy data. Resistivity values in the 2D
and 3Dmodels agree well in the center of the array �line 248�, where
both the 2D and 3Dmodels are compatiblewith borehole log results.
Significant differences are observed between the 2D and 3Dmodels
for line 304. These differences may be a consequence of profile 304
being on the edge of the grid ofAMTdata.
The 3D and 2D inversion models can also be compared as hori-

zontal slices for different depths �Figure 11�. Both inversions show
that the basement conductor, the surrounding resistive halo, and all
other significant model features are similar below 500 m. The con-
ductor appears stronger in theTE-TM-Tzy inversion than in the other
two results, probably because the Tzy data are primarily sensitive to
the basement conductor.

VALIDATION OF INVERSION MODELS

Comparison of resistivity model with borehole logs

Extensive borehole data were acquired at the McArthur River
Mine �Mwenifumbo et al., 2004�. Five resistivity logs are compared

with the 2D and 3D AMT inversion models in
Figure 12. A 7-point moving average filter was
applied to the borehole log data to allow a more
objective comparison of the twomeasures of sub-
surface resistivity. The agreement between well
logs and the 2D and 3D resistivity models is ac-
ceptable in the shallow wells �MC197, MC218,
and RL088�. However, at depths below 300 m,
there are significant differences between the 2D
and 3Dmodels thatmay be a consequence of how
deeper structure is smoothed into shallower struc-
ture. MC265 and MC266 extend deeper and ter-
minate in a zone of lower resistivity �100 �.m�
that is well resolved in the 2D inversion model.
The 3D model agrees with the well log and 2D
inversion at MC266, but agreement is poorer
at MC265, perhaps because of the location of
this well at the edge of the survey grid. Over-
all, acceptable agreement is observed between
well logs and 2D inversion models. However,
the basement conductor is not sampled by the
well logs, and this feature dominates the spatial
smoothness of the whole resistivity model. As a
consequence, the different regularization used in
the 2D and 3D inversion is likely the result of the
differences between the 2D and 3Dmodels.

Synthetic 2D AMT inversions

The sensitivity of the inversion models to the
measured AMT data was investigated through
synthetic inversions. This procedure can reveal
whether features in the resistivity models are re-
quired by the AMT data or are artifacts of the in-
version. Generic resistivity models were created
that contain the basic resistivity features of the
ore deposit. Forward modeling was then used to
compute the predicted AMT data, and 5%–10%
Gaussian noise was added. Then, the synthetic
AMTdata were inverted, using the same parame-
ters as in the inversions of fieldAMT data. Many

Figure 10. Comparison of 2D and 3D inversion results for lines 248 and 304. Comparison
with resistivity in adjacent borehole logs is also shown.

Figure 11. Comparison of the horizontal slices of the 2D and 3D inversion models. The
white rectangles show the locations of the uranium pods.
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models were considered; two representative models are shown in
Figure 13. The first synthetic model represents a basement conduc-
tor, with a modest resistivity contrast across the unconformity. Fig-
ure 13 show the results of different values of �, the factor that con-
trols the ratio of horizontal and vertical smoothness. Larger� values
generate horizontal structures, and smaller values of � yield vertical
structures. Because the target body in this study is a vertical, or
steeply dipping, conductor,� less than one is clearly appropriate. In-
creasing � gives higher rms misfit values because a horizontally
smoothmodel is incompatible with the original model. Note that the
AMT inversion does not recover the correct width of the conductor.
The smoothing reflects the diffusive physics of AMT exploration,
and small features cannot be recovered properly. The parameter �
controls the trade-off between fitting the data and producing a spa-
tially smooth model. Increasing � results in a smoother model �Fig-
ure 13�, and very small � values produce a rough
model with a second conductor above the base-
ment conductor. This second conductor is clearly
an artifact.
The synthetic inversion studies suggest that the

values � = 1 and � = 10 are most suitable for in-
version of the field AMT data. They also show
that themeasuredAMTdata can image structures
up to a depth of 2 km. Other synthetic inversions
showed that the AMT data are relatively insensi-
tive to the dip of the basement conductor. Syn-
thetic inversions were also used to study whether
theAMT data could image the structure of the al-
teration chimney suggested by McMullan et al.
�1987�. The synthetic inversion study shows that
a chimney could be resolved by the AMT data.
The absence of such a feature in Figure 9 suggests
a low-resistivity chimney is absent at McArthur
River.
Finally, synthetic inversions were used to de-

termine if a halo of silicification could be imaged
withAMTdata.Themodel in Figure 13b includes
a simple basement conductor. The synthetic in-
version produces a high-resistivity halo around
the basement conductor.As previously described,
this is a consequence of the regularization im-
posed on themodel during inversion.Observing a
resistive halo in an inversion model does not im-
ply that one is present in the subsurface. Howev-
er, AMT data are sensitive to a resistive zone
above the unconformity �Craven et al., 2003�.

3D forward modeling

Three-dimensional forward modeling was
used to determine if the 2D inversion results are
valid in a 3D geoelectric environment. The algo-
rithm ofMackie et al. �1994�was used and the pa-
rameterization tested by comparison with 2D
modeling. The basic question to be addressed is
the 3D effect of the end of the conductors on 2D
inversions. A suite of models similar to that
shown in Figure 14 was generated; it represents
the geoelectric structure typical of the McArthur
River area. An overburden layer �2000 �m�

overlies sandstones �4000 �m� with 10,000 �m basement below
the unconformity. Graphitic conductors �0.1 �m� are present in the
basement and denotedwith gray shading.
Figure 14 shows the apparent resistivity and phase curves at se-

lected locations. The end effect is very strong on the TE mode at the
north end of the conductor at siteAand weaker at site B on line 224.
Note that because electric charges develop on the end of the conduc-
tor in the 3D model, the TE apparent resistivity is increased at low
frequency, even exceeding the TM-mode apparent resistivity. Thus,
TE-mode datamust be usedwith caution in a 3D environment �Wan-
namaker et al., 1984; Siripunvaraporn et al., 2005b�. However, the
TE mode must be used in this example because the conductor is es-
sentially invisible to the TM-mode AMT data. However, the mea-
suredAMTdata do not show the effect described above, and the TE-
mode apparent resistivity is always less than the TMmode at all sta-

Figure 12. Comparison of borehole-log resistivity data �fromMwenifumbo et al., 2004�
and inversion of 2D and 3Dmodels.

Figure 13. Synthetic inversion study showing the effect of different smoothing parame-
ters. �a� The first model represents the alteration chimney �500 �m� beneath the 25-m-
thick 2000-�m resistive overburden and shows resistivity contrast across the fault with
different smoothing parameters. �b� The second model on the bottom row shows a basic
two-layer model with a graphitic conductor that has an artificial resistive halo around the
conductor.

Uranium exploration withAMT B207



tions �Figure 5�. This strongly suggests that major 3D effects are not
present in the field data and theMcArthur RiverAMTdata are large-
ly two dimensional. Thus, if the basement conductor terminates
close to a profile, a two dimensional inversion is not valid because
the difference between the 2D and 3D forward responses is signifi-
cant �Figure 14�. This suggests that the resulting inversion model
�Figure 15�, with a graphitic conductor which terminates at the un-
conformity and dips to the east, is valid.
Tensor decomposition is widely used to determine if a 2D inter-

pretation of an AMT data set is valid. Figure 3 shows the results of
tensor decomposition for the synthetic data generated for the model
in Figure 14.As expected, a strike direction parallel to the basement
conductors is determined far from the ends, although a more com-
plex pattern is observed close to the ends. Note that the degree of
scatter in the synthetic strike directions is quite similar to that ob-
served in the realAMT data �Figure 3�. Figure 3 also shows the rms
misfits, and they are significantly higher than values obtained for the
field data. The rms misfit may represent a more reliable test than the

strike diagrams to determine if field AMT data can be considered
two dimensional.
Induction vectors were also used to assess the dimensionality of

the real and syntheticAMTdata. In a 2D scenario, induction vectors
are orthogonal to the geoelectric strike �i.e., parallel to the profiles�.
Figure 6 shows that 3D effects are only observed in the induction
vectors close to the ends of the conductors. The scatter of induction
vectors is much less in the syntheticAMT data than in the measured
AMT data. A range of other models with different geometries of
basement conductors were also analyzed, and none could reproduce
the observed pattern with some vectors parallel to the basement con-
ductors. The non-2D pattern in the measured induction vectors is
likely because of surficial resistivity structures outside the survey
area or another conductor northeast of the survey area.Alternatively,
the pattern of orthogonal induction vectors might be caused by elec-
trical anisotropy in the basement rocks �Heise and Pous, 2001�.

CONCLUSIONS

This study has shown that AMT exploration is
an effective tool for mapping basement conduc-
tors to a depth of 2–3 km in a setting such as the
Athabasca Basin. The P2 basement conductor
imaged with AMT in this study terminates at the
unconformity and may dip to the east. The resis-
tivitymodel is also consistent with a zone of silic-
ification above the orebody, but it is possible that
this feature may be an artifact of the inversion al-
gorithm. The uranium orebodies are not imaged
directly because of their small size and the low-
resistivity contrast between the uranium ore and
graphite in the fault zone. In the type of geometry
encountered in this region, the 2D inversion ap-
pears to recover subsurface resistivity with confi-
dence, and a full 3D inversion may not always be
needed. In locations where the induction vectors
indicate a 2D structure, the verticalmagnetic field
data add useful information to the inversion and
enhance its resolution. However, the vertical
magnetic field datamust be usedwith caution. Se-
vere 3D effects can be expected in the AMT ap-
parent-resistivity and phase data at the ends of
basement conductors.
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S U M M A R Y

Traditional methods for interpretation of magnetotelluric (MT) profile data are based on 2-D
inversion, under the assumption that 3-D complications in the data can be treated as ‘geological
noise’. We show with synthetic models that fitting 3-D data with a 2-D inversion can result
in spurious features, especially if transverse electric (TE) data are used. Inversion of a single
profile of MT data with a 3-D algorithm results in significantly more realistic images of structure
beneath the data profile, and also allows some resolution of nearby off-profile structure. We
also consider the importance of including the on-diagonal impedance tensor terms, Zxx and
Z yy , in the inversion. In synthetic test cases, fitting these diagonals improves the accuracy of
images of off-profile structure, particularly near the edge of a conductive feature.

Key words: 3-D effects, 3-D inversion, electromagnetic induction, magnetotellurics.

1 I N T RO D U C T I O N

In most cases, magnetotelluric (MT) data are still collected on 2-D
profiles across an assumed geoelectrical strike. The strike is typ-
ically chosen prior to data acquisition, based on the trend of a
coastline, known faults (e.g. Unsworth et al. 2000) or other re-
gional structures (e.g. Sakkas et al. 2002; Wu et al. 2002; Brasse
et al. 2002). After data collection and processing, various techniques
such as the Groom–Bailey (Groom & Bailey 1989) or other tensor
decomposition (e.g. Chave & Smith 1994; Caldwell et al. 2004),
induction arrow plots (Parkinson 1959,) and skews (Swift 1967;
Vozoff 1972) are used to check (and sometimes refine) assumptions
about dimensionality or geoelectrical strike (e.g. Ogawa et al. 2001;
Mitsuhata et al. 2001; Sakkas et al. 2002; Pous et al. 2002; Bai &
Meju 2003; Bielinski et al. 2003). Once the geoelectrical strike has
been determined, impedances are rotated into the strike direction,
and the off-diagonal impedances (or transverse electric (TE) and
transverse magnetic (TM) apparent resistivities and phases) are fit-
ted with a 2-D inversion (e.g. deGroot-Hedlin & Constable 1990;
Smith & Booker 1991; Ogawa & Uchida 1996; Siripunvaraporn &
Egbert 2000; Rodi & Mackie 2001) to generate cross-sections of
electrical resistivity.

In reality, the assumption that the data are purely, or even
almost, 2-D seldom holds over the full range of periods used.
Off-profile (i.e. 3-D) structures affect most data sets to at least
some degree (e.g. Brasse et al. 2002). In trying to fit such data
with a 2-D inversion, there is a significant danger of introduc-
ing spurious structure or unrealistic resistivity values beneath the
profile, especially as data misfits are reduced. Most researchers
are well aware of these potential pitfalls to 2-D interpretation,

and are careful to state their conclusions with due caution. But
deciding how well to fit a given data set with a 2-D model, and
which of the features in the resulting conductivity images are
robust, remains a serious challenge in the interpretation of MT
data.

Many previous publications (e.g. Wanamaker et al. 1984;
Berdichevsky et al. 1998; Ledo et al. 2002) have considered some
of the limitations of 2-D interpretation of 3-D MT data using the
techniques outlined above. Although we touch on this issue briefly
here, our primary goal in this paper is to demonstrate the value
of applying a 3-D inversion algorithm to interpretation of individ-
ual MT profiles. Using synthetic data generated from a simple 3-D
model, we show that inverting MT profile data with a 3-D inversion
helps avoid contamination by off-plane structures. Cross-sections
of resistivity beneath and near the profile reflect more closely the
model used to generate the synthetic data than those obtained with
2-D inversions. In addition, we also consider the importance of in-
cluding the diagonal impedance elements Z xx and Z yy in the 3-D
inversion. These terms are strongly affected by off-profiles struc-
tures, so including these leads to a more reasonable model near the
data transect, especially if there are significant off-profile structures
nearby.

2 T E S T M O D E L A N D S Y N T H E T I C

DATA

The test model (Fig. 1) consists of a 1 � m conductive block of
dimension 4 km × 2 km × 1 km inside a 100 � m host. Here we
consider two cases, with the conductor buried from 800 m to 1.8 km
depth (model BC; buried conductor) and with the conductor

804 C© 2005 RAS



Interpretation of MT profile data 805

Figure 1. Plan view of the synthetic model used to generate MT data on four profiles, labelled A, B, C and D. The solid dots indicate the data sites. The
dominant geoelectric strike is in the x direction. Two models are considered: one with a 1 km thick conductor exposed at the surface (model SC), and one with
the conductor buried from 800 m to 1.8 km depth (model BC).

exposed at the surface (model SC; surface conductor). Both
models are discretized on a 38 × 36 × 30-layer (+7 air layers)
grid. Four profiles (A, B, C and D), shown as solid dots in Fig. 1,
are considered. Profile A cuts nearly across the middle of the con-
ductive block, while profile B is located midway between the cen-
tre and the southern edge of the conductive block. Profiles C and
D are located 100 m on either side of the southern Edge of the
block. Complex impedance tensors (Z xx, Z xy , Z yx and Z yy) were
generated for all profiles at 18 sites and 12 periods (0.001, 0.003,
0.010, 0.031, 0.100, 0.316, 1.000, 3.160, 10.000, 31.600, 100.000
and 316.000 s) using a 3-D forward modelling code of Siripunvara-
porn et al. (2002). Gaussian noise, with an amplitude of 5 per cent
of |Z xy Z yx|1/2 was added to the synthetic data. In addition, to sim-
ulate the 2-D case, we consider profile O computed for a conduc-
tive block of infinite north–south extent. Profile O will be used
as a control data set for comparison with other profiles. For 2-D
inversion tests the off-diagonal impedance components for all pro-
files were converted into apparent resistivities and phases in the
usual way.

The noise-free apparent resistivities and phases are shown in
Figs 2 and 3, and pseudo-sections of the diagonal impedance com-
ponents, Z xx and Z yy , are shown in Figs 4 and 5. Edge effects due
to truncation of the conductor can be clearly seen at most periods
in the diagonal terms, Z xx and Z yy , especially for profiles B, C and
D in both models (Figs 4 and 5). Even though profile A is located
almost in the middle of the conductor, these edge effects can also
be observed (Figs 4 and 5), but magnitudes are much lower than
those of other profiles. The edge of the conductor is more clearly
evident for case SC where the conductor extends to the surface than

for case BC where the conductor is buried. Thus, we may antici-
pate that edge effects will be less important for the case of a buried
conductor.

Figs 2 and 3 show apparent resistivities and phases for the yx
polarization (i.e. the TM mode for the 2-D case; third and fourth
rows of Figs 2 and 3). These are quite similar for profiles O, A, B and
even C at almost all periods. However, for the xy polarization (the TE
mode for the 2-D case; first and second rows of Figs 2 and 3), results
are similar only for shorter periods. This shows that truncation of the
conductor in our simple models affects the xy polarization strongly,
but has minimal effects on the yx polarization, consistent with the
observations of Wanamaker et al. (1984) and many others since (but
see Berdichevsky et al. 1998 for further discussion).

3 N U M E R I C A L I N V E R S I O N

E X P E R I M E N T S A N D D I S C U S S I O N S

Our goal in this paper is to demonstrate the application of a
3-D inversion algorithm to a single MT profile crossing an elon-
gated structure of finite length. We do not consider issues of di-
mensionality or strike analysis, topics which have been discussed
in numerous previous publications (e.g. Ledo et al. 2002; Brasse
et al. 2002, among others). In this paper, we first apply a 2-D in-
version to all profiles of both models BC and SC assuming that
we know a priori that the geoelectric strike is north–south, so Z xy

and Z yx are the nominal TE and TM mode impedances respec-
tively. We then apply a 3-D inversion to all profiles of both mod-
els using all complex impedance tensor terms. Finally we consider

C© 2005 RAS, GJI, 160, 804–814
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Figure 2. Apparent resistivities and phase pseudo-sections computed from Z xy and Zyx for each profile of model BC. From left to right data are plotted for
profiles O, A, B, C and D, respectively. From top to bottom are log10 ρxy , φxy , log10 ρyx, φyx, respectively. The horizontal axis indicates the station number
from west to east (y direction), and the vertical axis indicates period.

Figure 3. Apparent resistivities and phase pseudo-sections for each profile of model SC, with plotting conventions as in Fig. 2. Note that the colour scales for
apparent resistivity differ from Fig. 2.

C© 2005 RAS, GJI, 160, 804–814
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Figure 4. Diagonal impedance tensor terms, Zxx and Z yy , generated from model BC. Left to right are results for profiles A, B, C and D, respectively. The
upper row is log10 |Zxx| and the lower row is log10 |Z yy |. The horizontal axis indicates station number from west to east (y direction), and the vertical axis
period.

Figure 5. As in Fig. 4, but from model SC.

3-D inversion using only the off-diagonal terms used for the 2-D
inversion.

3.1 2-D inversion results

For the 2-D inversion we used the REBOCC code described in
Siripunvaraporn & Egbert (2000). This inversion is essentially a
data space variant of the OCCAM scheme of Constable et al. (1987)
and deGroot-Hedlin & Constable (1990), which finds a minimum
norm solution subject to fitting data to within a specified tolerance.
All inversions were started from a 50 � m homogeneous half-space.
Data errors are assumed to be 5 per cent, as used for generating the

synthetic data. Results of the 2-D inversions of models BC and SC
are shown in Figs 6 and 7, respectively, for profiles O, A, B, C and
D from top to bottom. Columns from left to right give results of
inverting only the TE data (amplitude and phase), only the TM data,
and jointly inverting both TM and TE data, respectively.

For the purely 2-D data set (profile O) the 2-D inversion scheme
performs well for TE, TM and joint inversion for both models (first
row of Figs 6 and 7). In all cases the inversion has no difficulty in
retrieving the structure and fitting the data to within a normalized
RMS of 1. For data generated from model BC, TM inversions can
reduce the normalized RMS misfit to below 2 for profiles A and
B, and to 1 for profiles C and D near the conductor’s edge. For

C© 2005 RAS, GJI, 160, 804–814
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Figure 6. Resistivity cross-sections from 2-D inversion of data generated from model BC on profiles O, A, B, C and D, from top to bottom respectively. The
first column gives results for inversion of only TE data, the middle column for only TM data and the last column for joint inversion of TM and TE data. The
rectangle outlines the conductor in the synthetic model.

model SC where the conductor is exposed, an RMS misfit of 1 can
be achieved for all profiles. Inverting only the TM mode generates
a reasonable resistivity structure for most profiles (middle column
of Fig. 7). This confirms results from a number of previous studies
which have shown that TM mode data are least affected by 3-D
effects (Wanamaker et al. 1984; Ledo et al. 2002). However, the
true resistivity contrast is underestimated somewhat, especially for
profiles near the edge. When the conductor is buried (model BC),
models obtained by inverting only TM mode data show a conductor
in the right area but with a resistivity about 10 times too high,
approaching the host resistivity. This tendency to underestimate the
resistivity contrast becomes more severe as the profile is moved
closer to the end of the conductive feature.

The TE and joint TM + TE 2-D inversions do not perform well
for either of the 3-D test cases (first and third columns of Figs 6 and
7). In no case is the desired normalized RMS misfit of 1 achieved.
The inverse solutions from TE and joint TE and TM inversions of
profiles A and B do contain conductive features in the general area
of the conductor for both test cases. However, the size and shape
of this structure is poorly resolved. For model BC the imaged con-
ductive root extends to greater depth, and in model SC resistivities
are unreasonably low (less than 0.1 � m). Similar extremely low
resistivities are often encountered in 2-D inversion results with real
data, and are clearly an artefact of over-fitting the data.

For profiles C and D of model BC, the effects from the conductor
are weak, as seen in the similarity of TE responses from these two

profiles (Fig. 2). The solutions resulting from TE and joint TM +
TE 2-D inversions are therefore almost the same (Fig. 6) and data
fits are reasonable. In contrast, for model SC, where the responses
for the two profiles differ significantly, the inverse solutions show
conductive features in profile C and resistive features in profile D,
as they should. However, spurious high- and low-resistivity regions
can be seen in the inversion results for both profiles, and the data
fits are now poor.

The biggest misfits in the TE and joint 2-D inversions are due
to 3-D effects at longer periods. To fit the long-period data bet-
ter, the inversion extends the conductive root deeper for model BC
and reduces resistivities for model SC to an extremely low level.
This failure is not specific to REBOCC, or any other 2-D inversion
scheme. Almost certainly no 2-D model exists which can fit these 3-
D data sets to a target RMS of 1. In this circumstance, deciding how
well data should in fact be fitted in a 2-D inversion is problematic,
especially since over-fitting the data even a little can result in spu-
rious and poorly resolved structures in the inverse solutions. Most
seriously these spurious features may appear to be at least physically
sensible in some cases, and thus be erroneously interpreted as real
geological structures.

3.2 3-D inversion results: all complex tensor terms

We will now show that by inverting single profile data with a 3-D
inversion program, many of the problems encountered with a 2-D

C© 2005 RAS, GJI, 160, 804–814
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Figure 7. As in Fig. 6, but for model SC.

approach can be significantly reduced, and the data can be fitted with
a reasonable model. We first invert the synthetic data from each
profile with the 3-D inversion program of Siripunvaraporn et al.
(2005), using all complex tensor terms, i.e. Z xx, Z xy , Z yx and Z yy .
The 3-D inversion code is similar to the 2-D code in that it is a data
space variant on the OCCAM minimum structure approach. Results
of applying this inversion to the synthetic data discussed above are
shown in Fig. 8 for model BC and Fig. 9 for model SC. Inverse
solution cross-sections directly beneath each profile are shown in
the middle (fourth) column, with solution cross-sections for profiles
1 km, 0.6 km and 0.2 km south, and 0.2 km, 0.6 km and 1 km north
of the data transect shown in the first, second, third, fifth, sixth and
seventh columns, respectively. In most cases data are readily fitted to
a normalized RMS of 1. One exception is for profile C of model SC,
where the inversion was only able to reduce the normalized RMS
misfit to about 1.8.

For the 3-D inversions cross-sections directly beneath the data
profile are always reasonably consistent with the true model used to
generate the synthetic data, although the shape and resistivity are
distorted to varying degrees. The most serious deficiency is in the
inverse solutions for the buried conductor (model BC) where the
conductivity contrast is systematically reduced. This bias almost
certainly results primarily from the minimum norm formulation of
the inverse problem, which trades off between minimizing conduc-
tivity variations and data misfit. When the effect of a structure on the
data is weak, as for the buried conductor, conductivity contrasts that
are systematically too small are favoured because these keep the
model norm small, with little increase in data misfit. Improved data
coverage (i.e. additional profiles) may improve accurate resolution

of the conductive anomaly (Siripunvaraporn et al. 2005). Different
approaches to regularization of the inverse problem may possibly
also improve results.

The bias toward low resistivity contrasts for buried structures is
even more severe when only TM mode data are inverted with a 2-D
approach (Fig. 6). Inclusion of data for both source polarizations
in the 3-D inversion evidently improves accuracy of the estimated
contrast. As we have seen, trying to include data from this sec-
ond polarization in a 2-D inversion can lead to very poor results.
These problems are not seen in the 3-D inversion results (Figs 8
and 9). The 2-D inversion inserts spurious structures such as deep-
ened conductive roots (Fig. 6) or unrealistic resistivities (Fig. 7)
beneath the profile in an effort to account for 3-D features in the
long-period data. For the 3-D inversion these 3-D effects can be
accounted for more reasonably with actual off-profile structure. In
the simple case of model SC where the conductor is exposed to
the surface, inverting only TM mode data generates a reasonable
model, and one might argue that a 3-D inversion is unnecessary.
However, real data sets are generally affected by both deep and
shallow structures, and some of these are likely to be very poorly
resolved using only TM mode data. As a consequence most inter-
pretations of MT field surveys incorporate TE mode data to some
degree. By reducing the weight given to fitting these data some
of the spurious effects seen in our examples can probably be re-
duced, but one can never be certain that they have been completely
eliminated.

Using a 3-D inversion allows use of all of the data to image the
structure beneath the data profile, with much less risk of introduc-
ing spurious structure, but how good are the images of off-profile
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Figure 8. Resistivity cross-sections from 3-D inversion of all complex impedance tensor elements generated from model BC. From top to bottom are sections
of the 3-D inverse solutions of data from profiles A, B, C and D, respectively. The centre column (fourth) shows the cross-section directly beneath each profile,
PA, PB, PC and PD. The left (first, second, third) and right (fifth, sixth, seventh) columns show the models from 1 km, 600 m and 200 m south (SA, SB, SC and
SD) and 200 m, 600 m and 1 km north (NA, NB, NC and ND) of the profile. The rectangle outlines the conductor.

structure? For 3-D inversion of data from profile A (first row of
Figs 8 and 9), the imaged conductor continues for almost 1 km to
the north and south. For the profile B inversion the conductor ex-
tends a similar distance to the north, and somewhat less to the south.
In all cases for profiles A and B, the imaged conductor is shorter
than the true structure. This again can be explained in terms of bi-
ases in a minimum norm solution. Structures more than about 1 km
from the profile have limited effect on, and are thus not required by,
the data.

For profiles C and D which are closer to the edge of the conductor
the value of 3-D inversion of profile data is demonstrated even more
clearly. For profile C, which is 100 m inside the southern edge of the
conductor, the 3-D inversion shows a conductor beneath, and to the
north of, the profile, but conductivity diminishes rapidly to the south
for both models (third row of Figs 8 and 9). For profile D, which is
located 100 m outside the southern edge of the conductor, the 3-D
inversion shows little increase in conductivity beneath, and south
of, the profile. However, the conductor is clearly displayed north of
the profile, in roughly the correct location (fourth row of Figs 8 and
9). Thus, the edge of the conductor is reasonably recovered using
profile data from either side, especially for the case of near-surface
structure (Fig. 9, last two rows).

As discussed above, for the buried conductor responses on pro-
files C and D are quite similar. Not surprisingly, results of 3-D
inversion for these profiles are also similar (third and fourth rows

of Fig. 8), and the edge of the conductor is less clearly seen. Also,
because the data on these edge profiles are only weakly affected by
the conductor, resistivity contrasts resulting from these inversions
are especially weak. Nevertheless, the 3-D inversion using all com-
plex tensor elements still produces a qualitatively correct picture of
a buried conductor extending northward (but not southward) from
near profiles C and D.

Obviously information about off-profile structure that can be re-
covered from a single profile of MT data is limited. The results of
3-D inversion should clearly be interpreted cautiously, particularly
with regard to the along-strike extent of structures. However, rea-
sonable images can be obtained for structures beneath, and near, a
single MT profile, while even this type of information cannot be
obtained reliably with 2-D inversion.

3.3 3-D inversion results: inverting only Zxy and Zyx

In the examples considered above we inverted all four impedance
tensor components, Z xx, Z xy , Z yx and Z yy . Now we consider in-
version of only the off-diagonal terms Z xy and Z yx, comparable to
a joint TE + TM 2-D inversion. Results are shown in Figs 10 and
11 for models BC and SC, respectively. The first point to note is
that even though fewer data are used the inversion algorithm more
frequently fails to reach the desired RMS of 1, especially for model
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Figure 9. Resistivity cross-sections as in Fig. 8, but for data from model SC.

SC. The inverse solutions shown in Figs 10 and 11 achieved the
minimum RMS misfit, which were for profiles A, B, C and D re-
spectively, 1.25, 1.00, 1.00 and 1.00 for model BC, and 1.38, 1.10,
2.60 and 1.40, for model SC.

Similar to the inverse solutions in Figs 8 and 9, obtained using all
tensor components, cross-sections directly beneath the MT profiles
are in fair agreement with the true model, though the conductor’s
shape and size are slightly distorted (Figs 10 and 11). The extremely
low resistivity values or deep conductor roots, seen when the same
data were fitted with a 2-D inversion, are not seen here. This again
clearly demonstrates the benefit of 3-D inversion of single-profile
MT data. For profiles A and B, and for both models, the conductor
in the inverse solutions continues to both north and south (first and
second rows of Figs 10 and 11), as in the full impedance inversion
results.

Greater differences between the full tensor and off-diagonal cases
are seen for profiles C and D. Without Z xx and Z yy , the conduc-
tor is barely seen in model BC (third and fourth rows of Fig. 10),
but appears continuously both north and south of the profiles in
model SC (third and fourth rows of Fig. 11), though in this case
the conductor is significantly reduced and shallower for profile D.
The edge of the conductor is also lost in both models. This indicates
that significant information about the conductor’s edge is clearly
present in the on-diagonal tensor elements, Z xx and Z yy . Without
this information, the data do not distinguish between directions off
profile.

Indeed, consider a profile the same distance to the north of the
conductor as D is to the south. The off-diagonal tensor components,

Z xy and Z yx would be the same as on D, but the diagonal tensor
components Z xx and Z yy would have the opposite sign. Hence from
off-diagonal components alone one could not determine on which
side of the profile the conductive layer is; this information is only
in the sign of the diagonal components.

Symmetry considerations also show that for any 3-D conductivity
that is symmetric about the profile (in particular for the uniform
conductivity Earth used as the starting model in our inversion) data
sensitivities for the off-diagonal impedances will also be symmetric
about the profile. This symmetry in sensitivities for the reduced
data set may help explain why the inversion search algorithm fails
to find a model which fits the data at the target misfit. Starting from a
symmetric conductivity distribution, all data sensitivities (and for an
Occam-style inversion approach, all model updates) should remain
symmetric about the profile if only off-diagonal impedances are
used. Models which fit the off-diagonal data adequately exist, but
these are presumably all asymmetric, in contrast to the symmetric
models that should result from a linearized search of the sort we
use. It is interesting to note that this provides a simple example of
a situation in which a linearized search may fail to converge to the
global minimum of the penalty functional.

In fact, the models from inversion of only off-diagonal
impedances from profiles C and D are nearly, but not exactly, sym-
metric (Figs 10 and 11). The symmetry in the sensitivity calculation
is broken, both by numerical truncation error and due to some techni-
cal details in the approximate way in which we have implemented the
model covariances (Siripunvaraporn & Egbert 2000). This breaking
in symmetry could help the inversion find models that fit the data
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Figure 10. Resistivity cross-sections obtained by 3-D inversion of the off-diagonal tensor elements Z xy and Zyx generated for model BC. Plotting conventions
are as in Fig. 8. Note that the model fit to the profile A data does not fit to the target level of 1 RMS.

better in some cases, as we have found it is possible to obtain a more
reasonable (asymmetric) model similar to the full tensor inverse
solutions for some starting models. But the off-diagonal terms by
themselves cannot define the ‘true’ direction, so even if an asym-
metric model fitting the data is found, off-profile structure will just
as likely as not be imaged on the wrong side of the data profile. We
conclude that interpretation of off-profile structure can be enhanced
significantly by using all elements of the impedance tensor in the
inversion.

4 C O N C L U S I O N S

Prior to 2-D inversion, it is necessary to identify a preferred geoelec-
trical strike. This is accomplished based on known local or regional
geology or by performing some sort of dimensionality analysis on
the data. Usually, the inferred geoelectrical strike varies over fre-
quency, and over position on the profile. A compromise must usually
be struck, and some data discarded or down-weighted so that 2-D
inversion and interpretation can be justified. In some cases, e.g. for
a single conductor exposed at the surface, inverting only TM mode
data may yield a reasonable interpretation with minimal 3-D effects.
However, not all structures are well resolved using only TM data,
and in general the temptation is great to incorporate TE data in the
interpretation. This data can easily be contaminated by 3-D effects,
which are fitted by inserting spurious and misleading structure into
the model.

By applying 3-D inversions to 2-D profile data, these potential
problems can be minimized. In our examples the inversion pro-
duces reasonable results beneath the data. Although constraining
the full 3-D structure would certainly require additional profiles,
a single profile can provide at least a qualitatively reasonable pic-
ture of nearby off-profile structure. Much of the information about
off-profile structure is contained in the diagonal elements Z xx and
Z yy , so 3-D inversion should include all tensor components if
possible.

In this paper we have considered explicitly the case of a conductor
buried in a more resistive host. Additional tests with a resistive body
buried in a more conductive host were also conducted, with similar
results, though the periods used in the inversion must be adjusted to
cope with the shorter diffusion length scales of the electromagnetic
fields in the host. We have not yet done tests with significantly
more complex 3-D models. It is possible that if the local response
is strongly affected by complex regional scale 3-D structure (e.g.
near a complicated coastline) 3-D inversion of a single profile may
conceivably still be misleading. Further research on this question is
warranted.
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