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ABSTRACT

Project Code : RSA4780022

Project Title : Holomorphic Sobolev Spaces and Generalized Segal-Bargmann
Transform

Investigator : Associate Professor Dr. Wicharn Lewkeeratiyutkul

E-mail Address :  wicharn.I@chula.ac.th

Project Period : 31 August 2004 — 30 August 2007 extended until 30 August 2008

The main objectives of this project are two folds. In one direction, we study a
rotation-invariant form of the Segal-Bargmann transform. We consider the subspace of
Segal-Bargmann space which is invariant under the action of the special orthogonal
group. We establish a pointwise bound for a function in this space which is polynomially
better than the pointwise bound for a function in the Segal-Bargmann space.

In the other direction, we continue to develop the categorical non-commutative geometry
that was initiated in [BCL1]. More specifically:

1. we obtain a categorical version of Gel'fand duality theorem that generalizes the usual
Gel'fand’s duality theorem for the category of commutative unital C*-algebras and the
category of compact Hausdorff spaces;

2. as a first step toward a bivariant Serre-Swan equivalence theory, we develop a
spectral theorem for imprimitivity Hilbert C*-bimodules over commutative unital C*-
algebras, in terms of Hermitian line bundles over the graph of a homeomorphism
between the compact Hausdorff Gel'fand spectra of the two C*-algebras;

3. as the first effort in the direction of the construction of a full theory of morphisms of
spectral geometries, we introduce a notion of metric morphism for A. Connes’ spectral
triples; we prove a duality between the category of isometries of compact Riemannian
spin manifolds and the category of metric morphisms and we study the relationship
between the metric category and the category of spectral triples already introduced in

[BCL1].

Keywords :  spectral triples, morphisms, categorification, C*-category, Segal-

Bargmann transform
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(1) Research work on the Segal-Bargmann transform

The Segal-Bargmann transform is the map B, : I’(R", p,) — H(C") defined by
B.f(2) = (2mt) ™"/ fR f@)e Ty (zeCn)
where H(C") denotes the space of (entire) holomorphic functions on C",and ¢t is a
positive real number. The density p, is the Gaussian function given by
p.(w)=(2mt) /e

This transform is also known as coherent state transform in physics literature. There are
variants of the Segal-Bargmann transform, but the form above is the one we study in
this work. It is easy to verify that the image of a function f in I*(R",p,) under B, is a
holomorphic function. In general, we have the following characterization of the image of

B, as follows:

Theorem 1 (Segal[Sg]-Bargmann[B]). B, is an isometric isomorphism from L*(R",p,)
onto the space H L’ (C",v,) consisting of the space of all holomorphic functions on C"
which is square-integrable with respect to the measure du, = p,dz where

(=) = () e
This isomorphism is central in quantum field theory because it was used for describing
the wave-particle duality of light. For expository articles on the history and its relevance

in physics, see [Gr], [H1], [H2].

The space HI'(C",v,) is called the Segal-Bargmann space. Suppose that F is
invariant under the action of SO(d). By analytic continuation, it is also invariant under
the action of SO(d,C).

Theorem 2 [CL]. The Segal-Bargmann transform B, preserves rotation. In other words,

a function f € I*(R",p,) is SO(d)-invariant if and only if B,(f) is SO(d,C)-invariant.



It is well-known that for any function F' € HL'(C", u,), we have the pointwise bound
1) |F(Z)|2 <t ||F||2L‘~’(cd,p,,) (z € Cd)-
By minimizing (1) on each orbit, for any SO(d, C)-invariant function F' in the Segal-
Bargmann space, we obtain the preliminary estimate
2) F <V Py, (€T,
where (z,2) = 2] + -+ z, . Since |(z,2)| < |2, this is already an improvement over

the pointwise bound in (1).

The SO(d) invariance means that F' is determined by its values on
{(z,0,...,0)} ~ C'. (By holomorphicity, F' is determined by its values on R”, then
any point in R” can be rotated into R'.) Conversely, any even holomorphic function on
C' has an extension to an SO(d) -invariant function on C’. Then the space of SO(d)-
invariant functions in the Segal-Bargmann space over C" can be expressed as an r-
space of holomorphic functions on C', with some non-Gaussian measure. By
estimating the reproducing kernel for this space, we obtain a sharp bound for an
SO(d) -invariant function F' in HLZ(Cd,Mt) , which will be polynomially better than (2).

This bound is described in the following theorem.

Theorem 3 [KL]. There exists a constant ', depending only on d and ¢, such that for

each SO(d)-invariant function F' in HL*(C’,p,), we have

C@‘(z,z)‘/t
F(z) <
| (z)| = 1+|(Z,Z)|(d_l>/2

”FHZL")(C",;;,) (z€C).

(2) Research work on categorical non-commutative geometry

Non-commutative geometry, created by A. Connes, is a powerful extension of the ideas
of R. Descartes’ analytic geometry: to substitute “geometrical objects” with their Abelian
algebras of functions; to “translate” the geometrical properties of spaces into algebraic
properties of the associated algebras and to “reconstruct” the original geometric spaces

as derived entities (the spectra of the algebras).

Whenever such “codifications” of geometry in algebraic terms still make sense if the
Abelian condition is dropped, we can simply work with non-commutative algebras

considered as “duals” of “non-commutative spaces.”



The existence of dualities between categories of “geometrical spaces” and categories
“constructed from Abelian algebras” is the starting point of any generalization of

geometry to the non-commutative situation.
Typical examples of such (anti-) equivalences are:

- Gel'fand-Naimark duality between the category of continuous maps of compact
Hausdorff spaces and the category of unital involutive homomorphisms of unital

commutative C*-algebras ([G1], [G2]);

- Serre-Swan equivalence between the category of vector bundle maps of finite
dimensional locally trivial vector bundles over a compact Hausdorff space and
the category of homomorphisms of finite projective modules over a commutative

unital C*-algebra ([Sr], [Sw]);

- Takahashi duality between the category of Hilbert bundles on (different)
compact Hausdorff spaces and the category of Hilbert C*-modules over

(different) commutative unital C*-algebras ([T1], [T2]).

Gel'fand-Naimark duality allows us to consider the non-commutative C*-algebras as
non-commutative topological spaces, while Serre-Swan and Takahashi dualities allow

us to consider Hilbert C*-modules as non-commutative Hilbert bundles.

In order to define “non-commutative manifolds”, we need categorical dualities between
categories of manifolds and suitable categories constructed out of Abelian C*-algebras

of functions over the manifolds.

A complete answer to the characterization of non-commutative manifolds is not yet
known, but (at least in the case of compact finite-dimensional orientable Riemannian
spin manifolds) the notion of Connes’ spectral triples and Connes-Rennie-Varilly
reconstruction theorem ([C1], [C2], [R], [RV1], [RV2]) provide an appropriate starting
point, suggesting to identify the objects of our non-commutative category with Connes’
spectral triples.
A (compact) spectral triple (.4, H, D) is given by:

- a unital pre-C*-algebra A ;

- a (faithful) representation [D,7(a)] € B(H) of A on the Hilbert space H;

- a (generally unbounded) self-adjoint operator ) on H, called the Dirac operator,

such that:

a) the resolvent (D — \)' is a compact operator, YA € C\ R,



b) [D,m(a)]. € B(H), for every a € A, where [z,y] = zy — yz denotes
the commutator of z,y € B(H).

Spectral triples with Abelian algebra A are naturally constructed from spinorial compact
manifolds taking A = C*(T"), ‘H = L[}(S(M)), where S(M) is a spinor bundle and
Y the Atiyah-Singer Dirac operator. A theorem recently proved by A. Connes allows to
reconstruct compact spin manifolds from commutative spectral triples that satisfies a

number of additional technical requirements.

Since Connes’ reconstruction theorem ([C1], [C2]) justified the fact that spectral triples
are a possible definition for “non-commutative” compact finite-dimensional orientable
Riemannian spin manifolds, it is our purpose to try to define suitable notions of
morphisms and categories for these spectral triples in such a way that categorical

dualities for noncommutative manifolds can be accomplished.

There are actually several possible notions of morphism, according to the amount of

“background structure” of the manifold that we would like to see preserved:
- the metric, globally (isometries),

- the metric, locally (totally geodesic maps, in the differentiable case),

- the Riemannian structure,

- the differentiable structure.

In [BCL1] we proposed a notion of “totally-geodesic-spin” morphisms that (when applied
to the case of spectral triples arising from the Atiyah-Singer Dirac operator) manifest a

strong “spinorial rigidity”, namely a morphism between two spectral triples

(A, H,D,), j=12,is a pair (¢,®) with ¢: A — A, and ®:H, — H, such that
P(az) = ¢p(a)®(z) and Po D, =D, 0P for a € A and = € H,.

In [BCL5] we study a less rigid notion of metric morphisms preserving the Connes’

distance formula on the set of pure states of the C*-algebras of the spectral triples

In practice, a “metric’ morphism between two spectral triples (Aj,Hj,Dj), 7=L12,is
a map ¢: A — A, whose pull-back ¢* : P(A,) — P(A), between the set of pure
states of the C*-algebras 73(./4].), j =12, is an isometry for the Connes distance

defined by d(w,,w,) = sup{| w,(a) —w,(a) |: |[D,a]| < 1}.

In [BCL5] we also examine the relation between the notions of “metric’ and “totally

geodesic-spin” morphisms.



These notions of morphism of spectral triples are only tentative: as pointed out by
A. Rennie, it is likely that the “correct” definition of morphism will evolve, but it will

surely reflect the basic structure suggested here.

Actually, the several notions of morphism of spectral triples described above are not as
general as possible. In a wider perspective, a morphism of spectral triples (AJ,HJ.,DJ),
where j = 1,2 might be formalized as a “suitable” functor § : A‘./\/l — AQM between
the categories Aj/\/l of A;-modules, having “appropriate intertwining” properties with

the Dirac operators D]..

Under some “mild” hypothesis, by Eilenberg-Gabriel-Watt theorem, any such functor is
obtained by “tensorization” by a bimodule. These bimodules, suitably equipped with
spectral data (as in the case of spectral triples), in our opinion, provide a natural setting

for a general theory of morphisms of non-commutative spaces we are looking for.

In order to investigate more precisely the nature of bimodules as morphisms, we have
turned our attention to a topological form of “categorification” where such bimodules

appear naturally in a strict category (as non-diagonal blocks in a C*-category).

Categorification is the term, introduced by L. Crane-D. Yetter [CY], to denote the
generic process to substitute ordinary algebraic structures with categorical counterparts.
The term is now mostly used to denote a wide area of research (see J. Baez - J. Dolan
[BD]) whose purpose is to use higher order categories to define categorial analogs of
algebraic structures. This vertical categorification is usually done by promoting sets to
categories, functions to functors, hence replacing a category with a 2-category and so

on.

There are also more “trivial” forms of horizontal categorification in which ordinary
algebraic associative structures are interpreted as categories with only one object and

suitable analog categories with more than one object are defined.

In this case the passage is from endomorphisms of a single object to morphisms

between different objects:



Monoids Small Categories (Monoidoids)
Groups Groupoids

Associative unital Rings Ringoids

Associative unital Algebras Algebroids

Unital C*-algebras C*-categories (C*-algebroids)

It is an extremely interesting future topic of investigation to discuss the interplay

between ideas of categorification and non-commutative geometry.

As a first step in the development of a “categorical non-commutative geometry”, we

have been looking at a possible “horizontal categorification” of Gel'fand duality.

In the setting of C*-categories, we [BCL3] provide a definition of “spectrum” of a
commutative full C*-category (that we call spaceoid) as a one dimensional unital Fell-
bundle over a suitable groupoid (equivalence relation) and we prove a categorical
Gel'fand duality theorem generalizing the usual Gel'fand duality between the categories
of Abelian C*-algebras and compact Hausdorff spaces.

On one side of the extended duality we have a “horizontal categorification” of the notion
of commutative C*-algebra, namely that of “commutative full C*-category” whilst the
corresponding replacement of spaces, the “spaceoids”, are supposed to parametrize

their spectra.

As a byproduct, we [BCL4] also obtain the following spectral theorem for imprimitivity
bimodules over Abelian C*-algebras: every such bimodule is obtained by “twisting” (by
the 2 projection homeomorphisms) the symmetric bimodule of sections of a unique
Hermitian line bundle over the graph of a unique homeomorphism between the spectra
of the two C*-algebras.

Rather surprisingly, as far as we know, our findings have not been discussed before,
despite the fact that (mostly highly non-commutative) C*-categories have been
somehow intensively exploited over the last 30 years in several areas of research,
including Mackey induction, superselection structure in quantum field theory, abstract
group duality, subfactors and the Baum-Connes conjecture.

Once we have a running definition of “spaceoid”, it seems quite challenging in the next

step to look for some natural occurrence of the notion of spaceoid in other contexts. For




instance, we are not aware of any connection with the powerful concepts that have
been introduced in algebraic topology to date. Also, the appearance of bundles in the
structure of the spectrum suggests an intriguing connection to local gauge theory but we
have not developed these ideas yet.

More structure is expected to emerge when our C*-categories are equipped with a
differentiable/metric structure via Dirac operators. In particular one might be interested
to define spectral triples on C*-categories and use them to provide a horizontal
categorification of A. Connes non-commutative geometry as a first step before

addressing a full (vertical) categorification of non-commutative geometry.

For more details on this account, a reader is recommended to read the survey paper

[BCL2].
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Kaewthep, Areerak (THA-CHULS); Lewkeeratiyutkul, Wicharn (THA-CHULYS)

A pointwise bound for rotation-invariant holomorphic functions that are square integrable
with respect to a Gaussian measure. (English summary)

Taiwanese J. Math. 11 (2007), no. 5, 1443—-1455.

The objects of interest in this article are arbitrary functions ' € HL?(CY, p1;) (the Segal-Bargmann
space of holomorphic functions that are square integrable with respect to the Gaussian measure
p; on C? with density (wt)*de*|z‘2/ t with respect to Lebesgue measure where ¢ > 0 and z € CY)
which are invariant under the action of the special orthogonal group SO(d, C), namely F'(Az) =
F(z) for all z € C% and all A € SO(d,C). The authors establish two pointwise bounds for
such functions. For their first bound they take the well-known pointwise bound for any F' €
%LQ(Cdv ;ut)’

(1) |F(2)]? < /Y P2,

where || F|| denotes the norm in L2(C?, 11;), and then they minimize this bound over the orbits of
the SO(d, C) action. While this gives the improved bound

) |F(2)]? < el |2

for any SO(d, C) invariant F, it is not optimal. Here (z,2) =z} + - + 23 for 2 = (21,..., 24).
The straightforward inequality |(z, z)| < |z|? shows that (2) is a better bound than (1). In fact, the
authors show that (2) is not optimal by proving the major result of the paper, which is the following
pointwise bound for any SO(d, C) invariant F' in the Segal-Bargmann space:

) Clelz2)/t

3) |F(2)]" < 14 (2, 2)|@Dr2
where the constant C' depends only on the dimension d and the parameter ¢. This is done by
estimating the reproducing kernel function of the subspace of SO(d, C) invariant functions of the
Segal-Bargmann space. In a remark at the end of the paper, the authors indicate why the inequality
(3) is sharp. However, they do not identify the optimal constant C'. They do sketch a proof for
showing that the functional form of the right side of (3) is sharp.

Reviewed by Stephen Bruce Sontz
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The Segal-Bargmann space HL? ((Cd, p¢) is the space of holomorphic functions on C? that
are square-integrable with respect to the Gaussian measure p,(z)dz = (Wt)_de_|z|2/t dz.
Here ¢ is a fixed positive real number. In this paper, the authors consider the subspace
of the standard Segal-Bargmann space that is invariant under the special orthogonal
group SO(d). The goal of the paper is to compare two bounds for functions in this
space, a simple bound obtained by minimizing the standard bounds in the full Segal-
Bargmann space over the orbits of the group, and a sharp bound obtained by directly
estimating the reproducing kernel for the subspace. The authors show that the sharp
bounds are polynomially better than the simple bounds, with the difference between
the two growing larger and larger as the dimension d goes to infinity. It is well known
that for any function F € HLZ((Cd, ft), we have the pointwise bound

2
(1) FEP < PR, oo, (ECTY.
Now suppose that F' is invariant under the action of SO(d), and therefore, by analytic
continuation, under the action of SO(d,C). By minimizing (1) on each orbit, for any
SO(d)-invariant function F' in the Segal-Bargmann space, we obtain the preliminary
estimate

2

) PP < PR, 00 (e
Since |(z,2)| < |z|?, this is already an improvement over the pointwise bound in (1).
The SO(d) invariance means that F is determined by its values on {(z,0,...,0)} ~ C".
(By holomorphy, F' is determined by its values on R?, then any point in R? can be
rotated into Rl.) Conversely, any even holomorphic function on C' has an extension
to an SO(d)-invariant function on C%. Then the space of SO(d)-invariant functions in
the Segal-Bargmann space over C? can be expressed as an LZ-space of holomorphic
functions on C', with some non-Gaussian measure. By estimating the reproducing
kernel for this space, the authors obtain a sharp bound for an SO(d)-invariant function
F in HL2(CY, t), which is polynomially better than (2). This bound is described in
the following theorem: There exists a constant ', depending only on d and ¢, such that
for each SO(d)-invariant function F in HL?*(C%, 1),

Cel(z2)/t
[F(2)” <

2 d

L(C? )

This bound is sharp.
Vasily A. Chernecky (Odessa)
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A POINTWISE BOUND FOR ROTATION-INVARIANT
HOLOMORPHIC FUNCTIONS THAT ARE SQUARE
INTEGRABLE WITH RESPECT TO A GAUSSIAN MEASURE

Areerak Kaewthep and Wicharn Lewkeeratiyutkul

Abstract. We consider the subspace of Segal-Bargmann space which is invari-
ant under the action of the special orthogonal group. We establish a pointwise
bound for a function in this space which is polynomially better than the point-
wise bound for a function in the Segal-Bargmann space.

1. INTRODUCTION

The Segal-Bargmann space HL?(C?, p;) is the space of holomorphic functions
on C? that are square-integrable with respect to the Gaussian measure ji;(z) dz =
(wt)~de 12/t dz, where |2]2 = |21]2 + - - - + |2q|% Here t is a fixed positive real
number. See [1, 5, 7, 8, 10, 11, 15], for details about the importance of this space.

Various generalizations of the Segal-Bargmann space have been considered. An
important part of the study of such generalizations is to obtain sharp pointwise
bounds on the functions. (See, for example, [2, 4, 9, 12, 14]). Such bounds amount
to estimates for the reproducing kernel on the diagonal.

In this paper, we consider the subspace of the standard Segal-Bargmann space
that is invariant under the special orthogonal group. The goal of the paper is
to compare two bounds for functions in this space, a simple bound obtained by
minimizing the standard bounds in the full Segal-Bargmann space over the orbits of
the group, and a sharp bound obtained by directly estimating the reproducing kernel
for the subspace. We show that the sharp bounds are polynomially better than the
simple bounds, with the difference between the two growing larger and larger as
the dimension d goes to infinity.
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This analysis is motivated in part by a comparison of [3] and [9]. In [3], Driver
obtains (among other things) bounds for a generalized Segal-Bargmann space by
representing it as the subspace of a certain infinite-dimensional standard Segal-
Bargmann space that is invariant under a certain group action. (See also [7, 16,
13]). Meanwhile, in [9], Hall obtains sharp bounds for the relevant generalized
Segal-Bargmann space by directly estimating the reproducing kernel. The difference
between the two bounds is significant; the sharper bounds of [9] are essential, for
example, in the analysis in [14].

It is well-known that for any function F' € HL?(C?, 11;), we have the pointwise
bound

(1) [P < P o,  (2€CY).

Now suppose that F' is invariant under the action of SO(d), and therefore, by
analytic continuation, under the action of SO(d, C). By minimizing (1) on each
orbit, for any SO(d)-invariant function F' in the Segal-Bargmann space, we obtain
the preliminary estimate

@) PGP < GNP, (z € CY,

t)
where (z, z) = 2§ + -+ -+ 22. Since |(2, z)| < |2|%, this is already an improvement
over the pointwise bound in (1).

The SO(d) invariance means that F' is determined by its values on {(z, 0, ...,0)}
~ C!. (By holomorphicity, F' is determined by its values on R?, then any point in
R< can be rotated into R'.) Conversely, any even holomorphic function on C' has an
extension to an SO(d)-invariant function on C%. Then the space of SO(d)-invariant
functions in the Segal-Bargmann space over C? can be expressed as an L2-space of
holomorphic functions on C', with some non-Gaussian measure. By estimating the
reproducing kernel for this space, we obtain a sharp bound for an SO(d)-invariant
function F in HL?(C%, ), which will be polynomially better than (2). This bound
is described in the following theorem.

Theorem 1. There exists a constant C, depending only on d and t, such that
for each SO(d)-invariant function F in HL?(C%, ), we have

C ol oI/t
2
P < TG e e

(z € CY).

2. SO(d, C)-INVARIANT MEASURE ON A COMPLEX SPHERE

Denote by SO(d, C) the set of d xd complex orthogonal matrices with deter-
minant one. Elements of SO(d, C) preserve the bilinear form (-, -) on C%defined by
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(2,8) = 2181 + 2282 + - + 2aa
for any z,¢& € C?. For each w € C, we define

Sy ={2€C%| (2,2) =w?}.

In particular, So = {z € C? | (2,2) = 0}. Using the nondegeneracy of the form
(+,-), it is not hard to show that SO(d, C) acts transitively on .S,, for all w € C—{0}.
Moreover, let

S={zeC%|(z2) € (0,0}

By the Implicit Function Theorem, Sy — {0} and S — Sy are submanifolds of C?
with dimensions less than the dimension of C?. This implies that S has Lebesgue
measure zero.
Denote by H™ = {2z € C | R(z) > 0} the open right-half plane of C. Define
U:C%— S HT xS by
U(z) = (w, ?)

where w = |(z, z)\l/zeig, 0 is the principal value of arg(z, z), § € (—m,m), and
2/ = Z. 1t is easy to verify that ¥ is a continuous bijective map whose inverse
is U1 (w, 2) = wz’. We can think of this map as a “complex polar form” of an
element in C? that is not in S. Let m be Lebesgue measure on C? and m, the
Borel measure on HT x S; such that m,(E) = m(¥~(FE)). The next theorem
shows that the pushed-forward measure m. on H™ x S; can be written as a product
measure m, = p X a, where p is a measure on H™ defined by

p(A) = / o 2 dw
A

and « is an SO(d, C)-invariant Borel measure on S;.

Theorem 2. There is an SO(d, C)-invariant Borel measure « on S such that
m, = pxa. If f is a Borel function on C¢ such that f >0 or f € L'(C% m), then

3) f(z)dz= /(C g f(w2) da(2) [w]?? dw,

(Cd

where dw denotes the two-dimensional Lebesgue measure on C = R 2,

Proof. Since S has Lebesgue measure zero, (3) is equivalent to
4) / f(z)dz = / f(w2") do(2) |w]??~2 duw.
Cd-8 CJS

First, we need to construct . If E is a Borel set in Sy, let E; be the set in C?
given by
By = {w | weH", |w| <1, 7€ FE}.
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If (4) is to hold when f = xpg,, we must have

m(By) = %/Dl/Eda(z’) w2 dw = 7 a(B).

Hence, for any Borel set E in S;, we define

2d

T
Since the map E +— F; takes Borel sets to Borel sets and commutes with unions,
intersections and complements, « is a Borel measure on S7. If E is a Borel set in
S1 and A € SO(d, C) then

2d 2d 2d
a(AE) = — m((AE);) = ?m(A(E)l) = det(A)m(Ey) = o E),

where det(A) is the determinant of A over R, which is 1. Hence a is SO(d, C)-
invariant. Following a similar argument to the real polar coordinates formula (see,
e.g., [6, Theorem 2.49]) we can show that m, = p X « on all Borel sets. Hence
equation (4) holds when f is a characteristic function of a Borel set and it follows
for general f by the usual linearity and approximation argument. ]

The measure « in Theorem 2 is uniquely determined and can be given explicitly.
There is a diffeomorphism between the tangent bundle 7(S9~!) of the real unit
sphere S%~1 and the complex unit sphere S; given by

a(x,p) = cosh(p) x + % sinh(p)p forany x € S 'andx-p =0

where p = |p|. See [15] for more details. Using these coordinates, we can write
the measure « explicitly as follows:

Lemma 3. The measure o is given by

sinh 2p ) d—2

241 dp dx.
2p

a(z) = ao(
Here z = a(x,p), ag is a constant, dx is the surface area measure on S =1 and
dp is Lebesgue measure on R?,

Proof.  The measure o and the measure (%)&22‘[*1 dpdx are both
SO(d, C)-invariant(Lemma 3 of [15]) and finite on compact sets. Thus, by Theorem
8.36 of [17], these two measures must agree up to a constant. |
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3. PoINTWISE BOUND FOR A FuncTiON IN HL%(C?, 114)©

Denote by H(C%)© the space of SO(d, C)-invariant holomorphic functions on
C4, i.e., the space of holomorphic functions f for which f(Az) = f(z) for all
z€ C%and A € SO(d, C). In this section, we will establish a pointwise bound for
a function in the space HL?(C%, 1;)© := H(C?)O N L3(CY, ).

By minimizing over each orbit, we obtain the following pointwise bound:

Proposition 4. For any F € HL*(C%, 11;)® and for any z € C?

(5) |F(Z)|2 < e|(z’z)|/t||F||%2(Cd,m)'

Proof. Note that |(z,2)| = |(Az, Az)| < |Az|? for any z € C% and A €
SO(d,C). If z ¢ Sp, we have that (1/(z,2),0,...,0) € {4z| A€ SO(d,C)},
because SO(d, C) acts transitively on S,, where w = /(z, z), and thus

[(z,2)] = inf{|Az|2 : A€ S0(d,C)}.

But 5§ is dense in C4, so this equation is also true for all z € C?. This immediately
gives (5). ]

This simple technique yields an improvement from the Bargmann’s pointwise
bound (1). However, we will establish a polynomially-better bound than the bound
in (5). Our strategy is to construct a non-Gaussian measure A on C so that we
can express HL?(C?, 11;)© in terms of the space HL?(C, \)¢ of holomorphic even
functions on C that are square-integrable with respect to A and then estimate the
reproducing kernel of the latter space.

Proposition 5. Let H(C)€ be the set of all holomorphic even functions on C.
Then for any d > 2, the map ¢: H(CH© — H(C)¢ defined by

QS(f)(w) = f($a0a"'a0)a

for all f € H(C*)© and all x € C, is a linear isomorphism whose inverse is given
by
b(9)(x) =g (V(z2)

for all g € H(C)¢ and all z € C4.

Note that since g is even, the value of ¥ (g)(z) is independent of the choice of
square root of (z, z). Again because g is even, 1(g) will be given by a convergent
power series in integer powers of (z, z) = 27 + - - - + 23, and therefore (g) will be
holomorphic on C%.
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Proof. 1t is clear that ¢ is a linear map and ¢(f) is a holomorphic function
on C for any f € H(C)®. Moreover, ¢(f) is even since A(—w,0,...,0) =
(w,0,...,0) for any w € C, where A = diag(—1,—-1,1,1,...,1).

On the other hand, 1) is a linear map and ¢(g) is holomorphic on C? for each
g € H(C)®. Since the bilinear form is preserved under the action of the orthogonal
group, 1(g) is SO(d, C)-invariant. It is straightforward to verify that ¢ot) = Iy (c)e
and 1 o ¢ = Iyycayo, so the theorem is proved. [

Henceforth, we will choose an argument of w € C so that —7 < arg(w) < 7.
Denote by B, the Borel o-algebra in C¢ and by B the Borel g-algebra in C. Define
®;: (C4 By, p1s) — (C,B), i = 1,2 to be the branch of \/(z, z) with smaller and
larger argument, respectively, and for each E € B define

MN(E) = (27 1(E)).

Then define A = (A1 + A2)/2. It is easy to check that \ is a Borel measure on C
and for any measurable function g and any £ € B

1 1
/gdkz—/ go<1>1dut+—/ g o @ dyy.
E 2 Jo(m) 2 Jo;\(r)

It is now straightforward to verify that the restriction of ¢ to HL?(C?, 11;)®
unitary map onto HL?(C, \)®.

Proposition 6. The measure ) is absolutely continuous with respect to Lebesgue
measure on C with density given by

2d—2 ,
(6) A(w) = |12)7|rt)d /s e 1wt da(2).

Proof. 1f E is a Borel set in C, then by Theorem 2
1 e~ 12/t 1 e~ 1P/t
ANE) = —/ ——dz+ —/ dz
(&) Ly (mt)d 2 Jo;vm) (mt)d
wl2d-2
//XE || |wz|/td()d
S1
= / A(w) dw
E

where A is given by (6). ]
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Next, we will approximate the density A of A and show that on holomorphic
functions, the L2-norm with respect to \ is equivalent to the L2-norm with respect
to the measure 5(w)dw, where

e—lwl?/t

™ Blw) = —— !t (wec).

Proposition 7. There exist constants m, M > 0, depending on d and t, such
that the density function A of \ satisfies

m f(w) < Aw) < M B(w)
Sor all w € C with |w| > 1.

Proof. From Lemma 3, for any w € C

e v/t ga(2) = aq e~lwatep)l?/t sinh 2py @2 241 dp dx
51 Sd-1 Jx.p=0 2p

= ag /OO o~ (cosh2p)|w|?/t (Sin—h 2p>d_2 2d=1 pd=2 g,
0 2p

0

with ag = ago (S 1) (S92), where ¢ is the surface measure. The last equality
follows from the change of variables cosh2p = x + 1.

Now, let us consider the case d > 3. To approximate the above integral, we
expand (22 + 22)%3 using the binomial theorem, apply the inequalities

1
ﬁ(\/a-#-”-l-\/a) <vVar+--ta, <Var+ o+ Vag
to (22 + 2$)(d_3)/ 2 and then use the formula for the Gamma function in order to
obtain
1 5 (ﬁ) < / oW/t (42 4 90)([@-3)/2 gy < p (ﬁ) ’
d—2 |w| 0 |wl
where

d—3
1/2 d—].‘{‘k d—1+k d—3 d—3—k
Pr) =Y al F(T P and gy = (1) gt
k=0
This shows that

g (ﬁ) i/t / e da(2) < agP (%) Tl
S w

d—2 |w|
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It follows from (6) that

where

-1
1+k
<7+) LA-1-k Zbkxk-
k=2

From this (7) easily follows for the case d > 3.
Meanwhile in the d = 2 case we have

00 —z|w|2/t
/ e~ lwal*/t da(z) = age /t/ ————dx
S1 .',1?2 + 2.’,13

2 2
_ a2 /t/ |w| lw| t g
2w+ tu) Jw]?

—32‘@ (g [ )

k:

The function

o= [T =t 20)

is a strictly decreasing function. Hence, if we let =2/t and e =¢(0) —¢(0), then
$(0)—¢ (2|w[?/t) > ¢(0) — ¢(6) = & for any w with 2|w|?/t > §. It follows that

_ |w|2/ w2/t
Alw) = (1) Sle da(z)
£as e_|w|2/t

|wl

>
- 71'\/% 7t

for any w € C with |w| > 1.
On the other hand,

_ 2
o—alwf2/t

SR/t g () < gy o—lWP/ /°° e
e alz) <asge T
/. (=) [

_ asy/ tmw ei|w|2/t
V2lul

Hence
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as e_|w|2/t

Aw) < — wl. ]
WS w1
Corollary 8. The norms || - || L2(c,3) and || - ||12(c \) are equivalent, i.e., there

are constants k, K > 0, depending on d and t, such that

) Ellfllz2c,p) < 1flle2eny < Kllfll2c sy
for all f € HL?(C,\).

Proof. First, we will show that there is a constant D > 0, depending on d and
t, such that

11720 < DI fIZ2copay

for any f € HL?(C,\), where D = {w € C : |w| < 1}.
Let w € D. Denote by A(w) the annulus {z € C: 2 < |z —w| < 3}. If f isin
HL?(C, \) then a simple power series argument shows that

(v) dv = (97 — 47) f(w) = b f(w).

A(w)
This implies that
W) = = [ fwa
w)| = — v) dv
o A(w)
1 1
" br <XA(M)X’f>L2((C—]D>,>\)‘
1 1
< —_ * T
= XA A‘ LQ(C_D7>\)||f||L2(C—]D>,>\)a

where A* = {z € C: 1 < |z| < 4}, which contains each A(w), w € D. It follows
that there exists a constant ¢ such that for any w € D

[f(w)| < cllfll2c-pay:-

It now follows from Proposition 7 that

2 = w 2 w w w 2 w w
Lirtwrs) e = [ 7P dos [ 1)

IN

1
20 £112 L2
N Eac-ny [ Bw) du+ I o.x

IN

D[ flIZ2c—my
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for some constant D > 0 depending on d and ¢. This gives the first inequality in
(9). The second inequality in (9) can be proved in the same way. ]

Having established Corollary 8, it remains only to obtain pointwise bounds for
elements in HL?(C, \). We do this by reducing to the standard Segal-Bargmann
space (if d is odd) or to the space HL?(C, (tm) ' |w|e 1*I"/* dw) (if d is even).
We now establish pointwise bound in the latter space.

o
Lemma 9. The set w'_____ is an orthonormal basis for the
(e rerme ) S
w2 w2
Hilbert space HL?(C, |w|4 ltwl & dw). Hence for any g € HL?*(C, |w|* ‘m‘ & dw),

W/t
(Mg weo,

where the error function erf is defined by

lg(w)|? < £

x2n+1

L(n+3)

2

2 x
erf(z) = ﬁ/o eV dy=e" Z

n=0

Proof.  The proof of the orthonormal basis part uses the same technique as
in [1, 7] and [10], which we will omit. Then the pointwise bound for a function g
in this space is

oo 2n |w|?/t
2 |w] 2_ ¢ £ |w] 2
)" < 3 ey = Tor () lsl

for any w € C. ]

Theorem 10. There is a constant B, depending on d and t, such that for any
f € HL?*(C, \) and any w € C — {0},

B 0
(10) @) < g e I e

Proof.
Let f € HL?*(C, \). Then f € HL*(C, 3), and thus

—Juwl?/t
d—1 2 ¢
Lt

s

dw < oo.
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If d — 1 is an even number, then

(d—1)/2 2 e~ lvP/t
w@V/2f(w) € HL(C,

dw).

This is the one-dimensional Segal-Bargmann space. Using Bargmann’s pointwise
bound (1) for this space, we obtain

Wl f @) < 1122 €™ < B 12 €
(C.8) (

for all w € C, where k is the constant in Corollary 8.
On the other hand, if d — 1 is an odd number, then

o~ lwl?/t
w@2/2f () € HL2(C, |w|< dw).
Following Lemma 9, we have
lwl?/t lw|
e w
w2l @I < WEaes et ()
elwl?/t

= k,g”f”L?((C)\ |w|

for all w € C — {0}.
In either case we obtain the pointwise (10) with B = 1/k2. ]

Proof of Theorem 1. We will transform the pointwise bound (10) to a function
in HL?(C? 1), Let F € HL?(C?, 114)©. Then F(w,0,...,0) € HL?(C, \),
which implies

clwl?/t

‘F(Z)P = ‘F(wa Oa . 'a0)|2 S B W HFH%Q(Cd,m)

where w = +/(z, ) for any z € C? with (z, z) # 0. In particular,

B2/t
|F(2)]* < WHFHLQ(@ "

On the other hand, from Proposition 4,
|F(2)]* < &V P25 ca,,, forany z e C

Applying the inequality

) 1 2
mln{l,—} < for each x > 0,
T r+1
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we have (It
Cell®»*
2 2
<
&I = (2, 2)|@=D/2 4 1 112

for each z € C%, where C' is a constant depending on d and ¢. This completes the
proof of Theorem 1. n

Remark on the sharpness. The bound in Theorem 1 is indeed sharp. We
only outline the proof here since the argument relies heavily on properties of special
functions. We can show that the reproducing kernel of the Hilbert space HL?(C, \)¢
is given by

['(d/2) d—2 |w|? t \d/2-1
K(w,w):WBessell< 5 g ><|w|2>

where Bessell is the modified Bessel function of the first kind ([18, 19]). Asymp-

totically, Bessell(«, z) ~ 873; if x is large enough when « > 0 is fixed. Hence,

clwl/t

K ~(C———
(w,w) ~ Oy

for any w such that |w| is large enough, where C'is a constant depending on d and ¢.
The result follows by transforming this estimate back to the space HL?(C%, y;)°.
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Abstract

The Segal-Bargmann transform on R¢ maps a square-integrable func-
tion on R? with respect to a Gaussian measure into a holomorphic func-
tion on C¢ which is squre-integrable function with respect to a com-
plex Gaussian measure. In this paper we show that it preserves rotation
and hence the closed subspaces of rotation-invariant functions become
Hilbert spaces. The values of rotation-invariant functions will be de-
termined by a one-dimensional parameter and hence we can established
these Hilbert spaces as L2-spaces on R! and C! with respect to some
non-Gaussian measures. We find the densities of these measures with re-
spect to Lebesgue measure and establish unitarity among relevant Hilbert
spaces.

1 Introduction

The Segal-Bargmann transform is an integral transform B; which maps
L2(R?, p;), the set of all functions on R? that are square integrable with respect
to the real Gaussian measure p(z)dz = (2rt)~92e="/2dz, onto HL*(C?, 11,),
the set of all holomorphic functions on C? that are square integrable with

Key words: Segal-Bargmann transform, Segal-Bargmann space, rotation-invariance.
2000 AMS Mathematics Subject Classification: 46E20.
This work is partially support by Thailand Research Fund #RSA4780022.
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respect to the complex Gaussian measure pu(z)dz = (mt) =4 *"/tdz, for all
positive real numbers ¢. The transform B, is given by this formula

ef(zfm)z/Zt

(Bef)(2) = /}Rd f(I)W

for all f € L2(R9, p;) and z € C¢. Here we use notation 22 = 22 + 23 + --- +
22 for x = (z1,22,...,7,) € R". The space HL?(C%, 11¢) is also called the
Segal-Bargmann space. See [1], [4], [6], [7], [8], [9], [11] for details about the
importance of this space.

In this paper, we consider the Segal-Bargmann transform applied to rotation-
invariant functions. It turns out that if f is a rotation-invariant function in
L2(RY, p;), then F = By(f) is also invariant under complex rotation. The ro-
tation invariance of a real-valued function f means that it is determined by
its values on {(z,0,...,0)} ~ R! and the resulting function on R! will be an
even function. Similarly, a complex rotation-invariant function F' is determined
by its values on {(z,0,...,0)} =~ C! and it is a complex even function. Con-
versely, any even function on R! has an extension to a rotation-invariant on
R? and any even holomorphic function on C' has an extension to a complex
rotation-invariant holomorphic function on C¢. Thus the space of rotation-
invariant functions in L?(R%, p;) can be expressed as an L2-space of functions
on R! with respect to some non-Gaussian measure and also the space of com-
plex rotation-invariant functions in HL?(C?, ;) can be expressed as an L2-
space of holomorphic functions on C! with respect to some non-Gaussian mea-
sure. These non-Gaussian measures are absolutely continuous with respect to
Lebesgue measure on R and C respectively. We obtain the formulas for these
densities. Finally we establish unitarity among these Hilbert spaces

dr

2 Main Results

Denote by SO(d) the set of d x d real orthogonal matrices with determinant one
and by SO(d, C) the set of d x d complex orthogonal matrices with determinant
one. Define a bilinear form (-,-) on F¢ by

(x,y) = z1y1 + T2Y2 + - -+ + TqYa

for all 2,y € F?. Then the elements of SO(d) and SO(d, C) preserve the bilinear
form on R? and C? respectively.

Definition 1. Let F be a function on F¢ where F is C or R and let G be a
group of d X d matrices. We say that F is G-invariant if

F(Az) = F(z) forall Ae G and all x € F%.
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Notice that if F is an SO(d)-invariant holomorphic function on C%, then by
analytic continuation it is SO(d, C)-invariant.

Denote by H(C%)39(C) the set of all SO(d, C)-invariant holomorphic func-
tions on C?, and F(R%)%9(@ the set of all SO(d)-invariant functions on R%.

Denote by H(C)® the set of all holomorphic even functions on C, and F(R)®
the set of all even functions on R.

Theorem 1. For any d > 2, the map ®: F(R?)SOW) — F(R)® defined by
?(G)(s) = G(s,0,...,0)

for all G € f(Rd)So(d) and all s € R, is a linear isomorphism whose inverse

is given by
¥(g)(@) = g (V(@.2)) = g(le])
for all g € F(R)® and all x = (x1,29,...,74) € R™
Proof. 1t is clear that ® is a linear map. Moreover, ®(G) is even since
G(-s,0,...,0) = G(A(s,0,...,0)) = G(s,0,...,0)

where A = diag(—1,-1,1,1,...,1) € SO(d). On the other hand, ¥ is a linear
map and ¥(g) is SO(d)-invariant because (Az, Az) = (z,z) for all x € R? and
all A € SO(d). It is easy to see that ® o ¥ = idrg) and Vo ® = idzgajsow,
so the theorem is proved. O

Similarly, we have the following theorem for complex case.
Theorem 2. For any d > 2, the map ¢: H(CH)SO@C) — H(C)¢ defined by
P(f)(€) = f(£,0,...,0)

for any f € H(CHSCWC) and any € € C, is a linear isomorphism whose inverse

is given by
$(9)(2) = 9 (V1=2)
for any g € H(C)¢ and any z € C%.

Note that since g is even, the value of ¢(g)(z) is independent of the choice of
square root of (z, z).

Denote by By the Borel o-algebra in R? and by B the Borel o-algebra in R.
Define the maps ¥;: (R%, By, p;) — (R, B), i = 1,2 by

Uy(z) =lz| and Py(z) = —|z|
for all z € R?. For each E € B let

vi(E) = p(¥; 1(E)),
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and let v = (1 +72)/2. It is easy to check that v is a Borel measure on R and
for any measurable function g and any E € B

1 1
/Qd’Y:*/ go‘I’ldPt-ﬁ-*/ go Vs dp;.
B 2 Jur\(m) 2 Ju;\(m)

We write
LR, pr) %0 = FRY) 5D N LR, py)
L*(R,7)¢ = F(R)® N L*(R, ).
It is easy to see that L2(R% p;)%9(@ and L?(R,~)¢ are closed subspaces of
L23(RY, p;) and L?(R,~) respectively and hence are Hilbert spaces.

Theorem 3. The Hilbert spaces L?(R%, p,)%°@D and L*(R,~)¢ are unitarily
equivalent.

Proof. From Theorem 1 we have that the function
U: F(R)® — F(RY)SOW

is a linear isomorphism. We consider the restriction of ¥ to the space L%(R, v)e.
Let g € F(R) and G € F(R?)S9@ be such that G = ¥(g). Thus

1 1
[lokar=5 [ lgewm@Patdess [ lgo e oo
R 2 e m 2 Juy m)
— [ lotlaDF? () do
]Rd
~ [ W0 @F o) da
Rd
— [ 6@ pula) da.
R
So |2y = IIGllr2(ra - Hence, G € L2(R?, py)59@ if and only if
g € L?(R,~)¢. This shows that ¥ is a unitary map from L2(R,~)¢ onto
L2(RY, p,)50@. 0

We next show that the measure ~ is absolutely continuous with respect to
Lebesgue measure on R.

Theorem 4. The measure 7y is absolutely continuous with respect to Lebesgque
measure on R with density given by

o(84-1 2

where S 1 is a unit sphere on RY and o is the surface measure on ST,
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Proof. Let E be a Borel set in R. Then

1 o—lzl2/2t 1 o—lal2/2t
7(E):f/ 7dx+f/ ¢ e
2 Syt (2mt)1/2 2 Juyi(m) (2mt)d/2

_Lr 1 (mc’)L eI P2t qo (o) drr
2 Jy Jar X @V orpyar

L[> N Sy /

+§/0‘ /Sd—l Xq,;l(E)(Tx)We dO’([I]’)dr
1 [ rd—1 2

— o ert/2t d—1

- /O Xolr) g ¢ oS dr

L[ rit —r2/2t _(ad—1
+ 5 o XE(—T)WQ O'(S )d?"
|8|d—1

= AXE(S)W e ? /QtO'(Sdil) ds

= /E A(s)ds

where A is given by (1). O

In the same way denote by B(C?) the Borel o-algebra in C? and by B(C)
the Borel o-algebra in C and define ®;: (C¢, B(C%), u;) — (C,B(C)), i = 1,2
to be the branch of /(z,z) with a smaller and larger argument respectively
and for each E € B(C) define

N(E) = (27 1(E)),

and let A = (A + A2)/2.
Define
HL2(CY, 11,)5OWEC) = 4(CH)SOWC) A [2(C4, 1)

and

HL?(C,\)¢ = H(C)* N L*(C, \).

Then they are also Hilbert spaces. We now have the following theorem whose
proof is similar to that of Theorem 3.

Theorem 5. The Hilbert spaces HL*(C?, 11;)3°@C) and HL?(C,\)* are uni-
tarily equivalent.

Denote by H* = {z € C | Re(z) > 0}. Consider the map C%—5 — H* xSy,
z — (w,2'), where w = |(z,2)|"/2¢'%, 6 is the principal value of arg(z, z),
0 € (—m,7), and 2’ = Z. This map is a continuous bijection whose inverse is
given by (w,z’) — wz’. We can think of it as a “complex polar form” of an
element in C? whose bilinear form is nonzero.
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Let m be Lebesgue measure on C? and m,, the “push-forward” Borel mea-
sure of m on Ht x S;. Then m, can be written as a product measure m, = pXxa,
where p is a measure on H' defined by

o) = [ Pt 2au
A

and « is an SO(d, C)-invariant Borel measure on S;. There is an SO(d, C)-
invariant Borel measure o on Sy such that m, = pxa. If f is a Borel measurable
function on C? such that f > 0 or f € L'(C% m), then

2)dz = wz')da(2') |w** 2 dw
[praz= [ [ s )dot) -2, 2

where dw denotes the two-dimensional Lebesgue measure on C = R2. Details
can be found in [13].

Theorem 6. [13] The measure X\ is absolutely continuous with respect to
Lebesgue measure on C with density given by

|w|2d72

M) = B0 [ e ) )

Proof. See Proposition 6 in [13]. O

Unlike the real case, we do not have an explicit form of the formula for the
density of A with respect to Lebesgue measure. However, in [13], we established
that the density A is equivalent to the function |w|¢=1 e~1*I*/t for all w € C
bounded away from zero.

Theorem 7. Let B;: L*(RY, p;) — HL?(C?, 1) be the Segal-Bargmann trans-
form given by the formula:

1

—(z—x)? /2t
)i J, (x)e dx.

(Bif)(2) =

Then By preserves the rotation action. In other words, a function f € L*(R%, p;)
is SO(d)-invariant if and only if Bi(f) is SO(d, C)-invariant. Hence, we can
consider the Segal-Bargmannn transform By as a wunitary map from
LQ(Rd,pt)So(d) onto HLQ(Cd7Mt)SO(d’C).

Proof. Let f € L?(R% p;) and F = Bi(f). First assume that f is SO(d)-
invariant. Recall that the bilinear form (-, -) preserves the action of SO(d) and
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SO(d,C). If A € SO(d) and z € C%, then

1

W e f(z)

(2 ; e—(Az—x)2/2t dx
i

F(Az) =

1 (A 1p)2
:W/Wf(w)e( AR

1 2
- W/Rd F(Az)eC=07/2t g Ag)

1 2
- - —(z—x)%/2t d
(%mﬂéﬁwk !

= F(2).
Notice that we use the fact that det(A) = 1 in the change of variables above.
Hence, F'is SO(d)-invariant. By analytic continuation, it is SO(d, C)-invariant.
Conversely, assume that F' is SO(d, C)-invariant. Fix A € SO(d) and let

g(x) = f(Az) for any z € R%.

Then g € L*(R%, p;). Moreover, for any z € C?

1 ()2
Bua) = i [ o) o

1 2
- (27t)372 Jpa F(Az)e= =22t gy
= ml)«zm (z)e~=ATD%/2t g(A-1y)
T R
1 2
= gy o, J@e I
= F(Az) = F(2).

Hence, Byg = B.f. Since B, is 1-1, we must have g = f, i.e. f is SO(d)-
invariant. [

Theorem 8. L2(R,~)° and HL?*(C,\)° are unitarily equivalent. Moreover the
following diagram is commutative

L (R,7)* =5 LA(R?, )50

DT

HLZ((C, )\)e l) HLQ((Cd,,ut)SO(d’C)
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where 3: L*(R,~)¢ — HL?(C, \)¢ is given by

1 > —((w —ra’)? —
(27rt)d/2/0 f(?“) ‘/Sdile ((w,0,...,0) )2 /2t dO’(.Z'/) Td 1dr

for all f € L2(R,~)¢ and w € C.

B (w) =

Proof. We know that =%, B; and ¥ are unitary, so 9yt o B;o¥: L*(R,7)® —
HL?(C, )¢ is also unitary. For any f € L?(C,~)¢ and any w € C, we have

(¥~" 0 By o U)(f)(w) = (Bt o U)(f)(w,0,...,0)

1
_ (2 t)d/g/ \I!(f)(a:)e_((“”o ..... O)—x)2/2tdx
T R4

1 —((w —z 2
= W/Rd F(Ja])em (@ 00=2)?/2t g
1 [e%S) N
- W/ f(r)e—((w70,-..,0)—r$ ) /2t rd_ldo(x’) dr.
m 0 Sd—1

Hence 8 =49~ o B, 0V, so 3 is a unitary map. The theorem is proved. O
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1 Introduction.

The purpose of this review paper is to present the status of our research work
on categorical non-commutative geometry and to contextualize it providing
appropriate references.

The paper is organized as follows. In section 2, we first provide a review of
the basic dualities (Gelf’and, Serre-Swan and Takahashi) that constitute the
main categorical motivation for non-commutative geometry and then we pass
to introduce the definition of A. Connes spectral triple.

In the first part of section 3, we give an overview of our proposed definitions
of morphisms between spectral triples and categories of spectral triples. In the
second part of section 3 we show how to generalize Gel’fand duality to the
setting of commutative full C*-categories and we suggest how to apply this
insight to the purpose of defining “bivariant” spectral triples as a correct notion
of metric morphism.

The last section 4, is mainly intended for an audience of mathematicians and
tries to explain how categorical and non-commutative notions enter the context
of quantum mathematical physics and how we hope to see such notions emerge
in a non-perturbative treatment of quantum gravity.

The last part (section 4.4) is more speculative and contains a short overview
of our present research program in quantum gravity based on Tomita-Takesaki
modular theory and categorical non-commutative geometry.

We have tried to provide an extensive bibliography in order to help to place
our research in a broader landscape and to suggest as much as possible future
links with interesting ideas already developed. Of course missing references
are sole responsability of the ignorance of the authors, that are still trying to
learn their way through the material. We will be grateful for any suggestion to
improve the on-line version of the document.

Notes and acknowledgments The partial research support provided by
the Thai Research Fund (grant n. RSA4780022) is kindly acknowledged. The
paper originates from notes prepared in occasion of a talk at the “International
Conference on Analysis and its Applications” in Chulalongkorn University in
August 2006. Most of the results have been announced in the form of research
seminars in Norway (University of Oslo), in Australia (ANU in Canberra, Mac-
quarie University in Sydney, University of Queensland in Brisbane, La Trobe
University in Melbourne, University of Newcastle) and in Italy (SISSA Trieste,
Universita di Roma II, Universita di Bologna and Politecnico di Milano). One
of the authors (P.B.) thanks Chulalongkorn University for the weekly hospital-
ity during the last three years of research work.
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2 Non-commutative Geometry (Objects).

For an introduction to the subject we refer to the books by A. Connes [58],
G. Landi [157], H. Figueroa-J. Gracia-Bondia-J. Varilly [108] (see also [223])
and M. Khalkhali [142]. For the basic definitions on category theory we refer
to S. McLane [171] and M. Barr-C. Wells [9].

Non-commutative geometry, created by A. Connes, is a powerful extension
of the ideas of R. Decartes’ analytic geometry: to substitute “geometrical ob-
jects” with their Abelian algebras of functions; to “translate” the geometrical
properties of spaces into algebraic properties of the associated algebras! and to
“reconstruct” the original geometric spaces as a derived entities (the spectra
of the algebras), a technique that appeared for the first time in the work of
I. Gel'fand on Abelian C*-algebras in 1939.2

Whenever such “codifications” of geometry in algebraic terms still make
sense if the Abelian condition is dropped, we can simply work with non-
commutative algebras considered as “duals” of “non-commutative spaces”.

The existence of dualities between categories of “geometrical spaces” and
categories “constructed from Abelian algebras” is the starting point of any
generalization of geometry to the non-commutative situation. Here are some
examples.

2.1 Non-commutative Topology.
2.1.1 Gel’fand Theorem.

For the details on operator algebras, the reader may refer to R. Kadison-
J. Ringrose [137], M. Takesaki [219] and B. Blackadar [20]. A complex unital
algebra A is a vector space over C with an associative unital bilinear mul-
tiplication. A is Abelian (commutative) if ab = ba, for all a,b € A. An
involution on A is a conjugate linear map * : A — A such that (a*)* = a
and (ab)* = b*a*, for all a,b € A. An involutive complex unital algebra is A
called a C*-algebra if A is a Banach space with a norm a + ||a| such that
llab|| < lla|l - ||b|| and ||a*a| = ||a||?, for all a,b € A. Notable examples are the
algebras of continuous complex valued functions C(X;C) on a compact topo-
logical space with the “sup norm” and the algebras of linear bounded operators
B(H) on the Hilbert space H.

Theorem 2.1 (Gel’fand; see e.g. [165]). There exists a duality (T), (1)
between the category TV | of continuous maps between compact Hausdorff topo-
logical spaces, and the category o/ V) | of unital homomorphisms of commutative
unital C*-algebras.

LA line of thought already present in J.L. Koszul algebraization of differential geometry.
2 Although similar ideas, previously developed by D. Hilbert, are well known and used also
in P. Cartier-A. Grothendieck’s definition of schemes in algebraic geometry.
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I'M is the functor that associates to every compact Hausdorff topological
space X € Ob4a) the unital commutative C*-algebra C(X; C) of complex val-
ued continuous functions on X (with pointwise multiplication and conjugation
and supremum norm) and that to every continuous map f : X — Y associates
the unital *-homomorphism f* : C(Y;C) — C(X;C) given by the pull-back of
continuous functions by f.

»(1) is the functor that associates to every unital commutative C*-algebra
A its spectrum Sp(A) := {w | w : A — C is a unital *-homomorphism} (as
a topological space with the weak topology induced by the evaluation maps
w i w(z), for all © € A) and that to every unital *-homomorphism ¢ : A — B
of algebras associates the continuous map ¢* : Sp(B) — Sp(A) given by the
pull-back under ¢.

The natural isomorphism & : Z ) — I'™ o ©(M) is given by the Gel’fand
transforms &4 : A — C(Sp(A)) defined by &4 : a — @, where a : Sp(A) — C
is the Gel’fand transform of a i.e. G : w — w(a).

The natural isomorphism € : Z 5y — X oT'(M) is given by the evaluation
homeomorphisms €x : X — Sp(C(X)) defined by €x : p +— ev,, where
evp : C(X) — C is the p-evaluation i.e. evy, : f — f(p).

In view of this result, compact Hausdorfl spaces and Abelian unital C*-
algebras are essentially the same thing and we can freely translate properties of
the geometrical space in algebraic properties of its Abelian algebra of functions.

In the spirit of non-commutative geometry, we can simply consider non-
Abelian unital C*-algebras as “duals” of “non-commutative compact Hausdorff
topological spaces”.

2.1.2 Serre-Swan and Takahashi Theorems.

A left pre-Hilbert-C*-module 4M over the unital C*-algebra A (whose
positive part is denoted by Ay := {z*z | x € A}) is a unital left module
M over the unital ring A that is equipped with an A-valued inner product
M x M — A denoted by (x,y) — a(z | y) such that, for all z,y,z € M and
acA (xt+ylz)=(x|2)+{yl2), (ax|2)=a]z), (y|z)=(]y",
(x| z) € A, (& | 2) = 04 = = = 0p. A similar definition of a right pre-
Hilbert-C*-module is given with multiplication by elements of the algebra on
the right.

A left Hilbert C*-module 4 M is a left pre-Hilbert C*-module that is com-
plete in the norm defined by = +— +/||.a(z | z)||.> We say that a left pre-Hilbert
C*-module 4 M is full if span{(z | y) | x,y € M} = A, where the closure is in
the norm topology of the C*-algebra A. A pre-Hilbert-C*-bimodule 4 Mg
over the unital C*-algebras A, B, is a left pre-Hilbert module over A and a

3A similar definition applies for right modules.
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right pre-Hilbert C*-module over B such that:
(a-z)-b=a-(z-b), VYacA, zeM, be B.

A full Hilbert C*-bimodule is said to be an imprimitivity bimodule or an
equivalence bimodule if:

Az |ly)-z=z-(y|2)s, Va,y,z€ M.

A bimodule 4 My is called symmetric if az = za for all z € M and a € A.%
A module 4 M is free if it is isomorphic to a module of the form @ ;A for some
index set J. A module 4 M is projective if there exists another module 4 N
such that M @ N is a free module.

An “equivalence result” strictly related to Gel’fand theorem, is the follow-
ing “Hermitian” version of Serre-Swan theorem (see for example M. Frank [109,
Theorem 7.1], N. Weaver [226, Theorem 9.1.6] and also H. Figueroa-J. Gracia-
Bondia-J. Varilly [108, Theorem 2.10 and page 68]) that provides a “spectral
interpretation” of symmetric finite projective bimodules over a commutative
unital C*-algebra as Hermitian vector bundles over the spectrum of the alge-
bra.?

Theorem 2.2 (Serre-Swan; see e.g. [226, 108]). Let X be a compact Haus-
dorff topological space. Let Mc(xy be the category of symmetric projective finite
Hilbert C*-bimodules over the commutative C*-algebra C'(X;C) with C(X;C)-
bimodule morphisms. Let & be the category of Hermitian vector bundles over
X with bundle morphismsS.

The functor I' : x — Mc(x)y, that to every Hermitian vector bundle asso-
ciates its symmetric C(X)-bimodule of sections, is an equivalence of categories.

In practice, to every Hermitian vector bundle 7 : H — X over the compact
Hausdorft space X, we associate the symmetric Hilbert C*-bimodule I'(X; H),
the continuous sections of H, over the C*-algebra C'(X;C).

Since, in the light of Gel’fand theorem, non-Abelian unital C*-algebras are
to be interpreted as “non-commutative compact Hausdorff topological spaces”,
Serre-Swan theorem suggests that also finite projective Hilbert C*-bimodules
over unital C*-algebras should be considered as “Hermitian bundles over non-
commutative Hausdorff compact spaces”.

40f course this definition make sense only for bimodules over a commutative algebra A.

5 The result, as it is stated in the previously given references [109, 226] and [108, page 68],
is actually formulated without the finiteness and projectivity conditions on the modules
and with Hilbert bundles (see J. Fell-R. Doran [107, Section 13] or [108, Definition 2.9]
for a detailed definition) in place of Hermitian bundles. Note that Hilbert bundles are not
necessarily locally trivial, but they become so if they have finite constant rank (see for example
J. Fell-R. Doran [107, Remark 13.9]) and hence the more general equivalence between the
category of Hilbert bundles with the category of Hilbert C*-modules actually entails the
Hermitian version of Serre-Swan theorem presented here.

6Continuous, fiberwise linear maps, preserving the base points.
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% Problem: Serre-Swan theorem deals only with categories of bundles over
a fixed topological space (categories of modules over a fixed algebra, re-
spectively). In order to extend the theorem to categories of bundles over
different spaces, it is necessary to define generalized notions of morphism
between modules over different algebras. The easiest solution is to de-
fine a morphism from the A-module 4M to the B-module 3N as a pair
(¢, @), where ¢ : A — B is a homomorphism of algebras and ® : M — N
is a C-linear map of the bimodules such that ®(am) = ¢(a)®(m), for all
a € A and m € M. This is the notion that we have used in [15], and that
appeared also in [217, 218, 108, 129]. A more appropriate solution would
be to consider “congruences” of bimodules and reformulate Serre-Swan
theorem in terms of relators (as defined in [15]). Work on this topic is in
progress.

% Problem: note that Serre-Swan theorem gives an equivalence of categories
(and not a duality), this will create problems of “covariance” for any gen-
eralization of the well-known covariant functors between categories of
manifolds and categories of their associated vector (tensor, Clifford) bun-
dles, to the case of non-commutative spaces and their “bundles”. Again
a more appropriate approach using relators should deal with this issue.

A first immediate solution to both the above problems is provided by Taka-
hashi duality theorem below. Serre-Swan equivalence is actually a particular
case of the following general (and surprisingly almost unnoticed) Gel’fand du-
ality result that was obtained in 1971 by A. Takahashi [217, 218].7 In this for-
mulation, one actually considers much more general C*-modules and Hilbert
bundles at the price of losing contact with K-theory; anyway (as described
in the footonote 5 at page 217) the Hermitian version of Serre-Swan theorem
can be recovered considering bundles with constant finite rank (over a fixed
compact Hausdorff topological space).

Theorem 2.3 (Takahashi [217, 218]). There is a (weak *x-monoidal) cat-
egory oM of left Hilbert C*-modules 4 M,sN over unital commutative C*-
algebras, whose morphisms are given by pairs (¢, ®) where ¢ : A — B is a
unital x-homomorphism of C*-algebras and ® : M — N is a continuous map
such that ®(azx) = ¢p(a)®(x), for alla € A and x € M.

There is a (weak x-monoidal) category & of Hilbert bundles (€,m,X), over
compact Hausdorff topological spaces with morphisms given by pairs (f,F) with
f:X =Y a continuous map and F : f*(F) — & satisfying ™ o F = p!, where
(f*(F),p?,X) denotes the pull-back of the bundle (F,p,Y) under f.

There is an equivalence (of weak x-monoidal) categories given by the functor
T that associates to every Hilbert bundle (€,m,X) the set of sections T'(X; &)

"Note that our Gel’fand duality result for commutative full C*-categories (that we will
present later in section 3.2.1) can be seen as “strict”-*-monoidal version of Takahashi duality.
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and that to every section o € T'(Y; F) associates the section Fo f*(o) € T'(X;E).

2.2 Non-commutative (Spin) Differential Geometry.

What are “non-commutative manifolds”?

In order to define “non-commutative manifolds”, we have to find a categori-
cal duality between a category of manifolds and a suitable category constructed
out of Abelian C*-algebras of functions over the manifolds. The complete
answer to the question is not yet known, but (at least in the case of com-
pact finite-dimensional orientable Riemannian spin manifolds) the notion of
Connes’ spectral triples and Connes-Rennie-Varilly [60, 66], [198] reconstruc-
tion theorem provide an appropriate starting point, specifying the objects of
our non-commutative category®.

2.2.1 Connes Spectral Triples.

A. Connes (see [58, 108]) has proposed a set of axioms for “non-commutative
manifolds” (at least in the case of a compact finite-dimensional orientable Rie-
mannian spin manifolds), called a (compact) spectral triple or an (unbounded)
K-cycle.

e A (compact) spectral triple (A, H, D) is given by:

— a unital pre-C*-algebra® A;

— a (faithful) representation 7 : A — B(H) of A on the Hilbert space
H;

— a (generally unbounded) self-adjoint operator D on H, called the
Dirac operator, such that:

a) the resolvent (D — \)~! is a compact operator, VA € C \ R,!°
b) [D,w(a)]- € B(H), for every a € A,
where [z, y]— := zy—yz denotes the commutator of x,y € B(H).

e A spectral triple is called even if there exists a grading operator, i.e. a
bounded self-adjoint operator I' € B(H) such that:

I? =Idy; [[,7(a)]- =0,YaeA; [I,D]y =0,

where [z,y]+ := 2y + yx is the anticommutator of x, y.

A spectral triple that is not even is called odd.

8We will of course deal later with the morphisms in section 3.1.

9Sometimes A is required to be closed under holomorphic functional calculus.

10As already noticed by Connes, this condition has to be weakened in the case of non-
compact manifolds, cf. [122, 114, 195, 196].
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e A spectral triple is regular if the function
E @t exp(it| D|)x exp(—it|D|)
is regular, i.e. 2, € C*(R,B(H)),!* for every x € Qp(A), where 2

Qp(A) :=span{n(ap)[D,7(a1)]- - - [D,7(an)]- | n €N, ag,...,a, € A}

e A spectral triple is n-dimensional iff there exists an integer n such that
the Dixmier trace of |D|~" is finite nonzero.

e A spectral triple is §-summable if exp(—tD?) is a trace-class operator
for all £ > 0.

e A spectral triple is real if there exists an antiunitary operator J : H — H
such that:
[7(a), Jr(b*)J '] =0, Va,bc A;
[[D,7(a)]_, Jr(b*)J Y- =0, Va,bc A, first order condition;
J? = +Idy; [J,D]+ =0; and, only in the even case, [J,T]+ =0,

where the choice of + in the last three formulas depends on the “dimen-
sion” n of the spectral triple modulo 8 in accordance to the following

table:
n 0O(1]2 |3 4|5 |67
S=Fldy [+ [+ |- |- -] -|+]|+
D]t =0 | —|+|—-|—-|—-|+|-]|-
[J, F]i =0 — + — +

e A spectral triple is finite if Ho, := N3 Dom D* is a finite projective
A-bimodule and absolutely continuous if, there exists an Hermitian
form (§,m) — (£ | n) on Heo such that, for all a € A, (£ | w(a)n) is the
Dixmier trace of w(a)(€ | n)|D|~™.

e An n-dimensional spectral triple is said to be orientable if there is a
Hochschild cycle ¢ = 77" | o) ®a’ @ ®a such that its “represen-
tation” on the Hilbert space H,

m

m(c) = Zﬂ(aéj))[D,w(agj))]_ ... [D,ﬂ-(aglj))]_

Jj=1

1 This condition is equivalent to m(a), [D,w(a)]— € N_;Dom §™, for all a € A, where §
is the derivation given by §(z) := [| D], z]—.
12We assume that for n = 0 € N the term in the formula simply reduces to 7(ao).
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is the grading operator in the even case or the identity operator in the
odd case'3.

e A real spectral triple is said to satisfy Poincaré duality if its funda-
mental class in the KR-homology of A ® A°P induces (via Kasparov in-
tersection product) an isomorphism between the K-theory Ko (A) and the
K-homology K*(A) of A.14

e A gspectral triple will be called Abelian or commutative whenever A is
Abelian.

e Finally a spectral triple is irreducible if there is no non-trivial closed
subspace in H that is invariant for w(A), D, J, T.

To every spectral triple (A, H, D) there is a naturally associated quasi-
metric!® on the set of pure states P(A), called Connes’ distance and given for
all pure states wi,ws by:

dp(wi,w2) := sup{|wi (z) —wa(2)| | z € A, [[D,7(2)]]| <1}

Theorem 2.4 (Connes; see e.g. [58, 108]). Given an orientable compact
Riemannian spin m-dimensional differentiable manifold M, with a given com-
plex spinor bundle S(M), a given spinorial charge conjugation Cas and a given
volume form ppr,'% define:

Apr = C®°(M;C) the algebra of complex valued regular functions on the
differentiable manifold M,

Har :=L*(M;S(M)) the Hilbert space of “square integrable” sections of
the given spinor bundle S(M) of the manifold M i.e. the completion of
the space T'°°(M; S(M)) of smooth sections of the spinor bundle S(M)
equipped with, the inner product given by (o | 7) := [,,(c(p) | 7(P))p dins,
where (| )p, with p € M, is the unique inner product on S,(M) compatible
with the Clifford action and the Clifford product.

131n the following, in order to simplify the discussion, we will always refer to a “grading
operator” I" that actually coincides with the grading operator in the even case and that is
by definition the identity operator in the odd case.

14In [198] some of the axioms are reformulated in a different form, in particular this con-
dition is replaced by the requirement that the C*-module completion of Ho is a Morita
equivalence bimodule between (the norm completions of) A and Qp(A).

15In general dp can take the value 400 unless the spectral triple is irreducible.

16Remember that an orientable manifolds admits two different orientations and that, on
a Riemannian manifold, the choice of an orientation canonically determines a volume form
uar- Recall also [210] that a spin manifold M admits several inequivalent spinor bundles
and for every choice of a complex spinor bundle S(M) (whose isomorphism class define the
spin€ structure of M) there are inequivalent choices of spinorial charge conjugations C'ys that
define, up to bundle isomorphisms, the spin structure of M.
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Dy the Atiyah-Singer Dirac operator i.e. the closure of the operator
that is obtained by “contracting” the unique spinorial covariant derivative
VM) (induced on T>(M; S(M)) by the Levi-Civita covariant derivative
of M, see [108, Theorem 9.8]) with the Clifford multiplication;

Ju the unique antilinear unitary extension Jyr : Har — Har of the oper-
ator determined by the spinorial charge conjugation Cyy, that is defined
as (Jyo)(p) := Cun(o(p)) for o € T°(M;S(M)) and p € M;

T'ps the unique unitary extension on Hyy of the operator given by fiberwise
grading on S,(M), with p € M.17

The data (Anr, Har, Dar) define a spectral triple that is Abelian regular finite
absolutely continuous m-dimensional real, with real structure Jyr, orientable,
with grading Ty, and that satisfies Poincaré duality.

Theorem 2.5 (Connes [60, 66]). Let (A, H, D) be an irreducible commuta-
tive real (with real structure J and grading T') strongly reqular'® m-dimensional
finite absolutely continuous orientable spectral triple, with totally antisymmet-
ric Hochschild cycle in the last m entries, and satisfying Poincaré duality. The
spectrum. of (the norm closure of ) A can be endowed, in a unique way, with the
structure of an m-dimensional connected compact spin Riemannian manifold
M with an irreducible complex spinor bundle S(M), a charge conjugation Jas
and o grading Ty such that: A ~ C*°(M;C), H ~ L*(M,S(M)), D ~ Dy,
J~Jy, I' =Ty

% A. Connes first proved the previous theorem under the additional con-
dition that A is already given as the algebra of smooth complex-valued
functions over a differentiable manifold M, namely A = C*°(M;C), and
conjectured [61, Theorem 6, Remark (a)] [60] the result for general com-
mutative pre-C*-algebras A.

A tentative proof of this last fact has been published by A. Rennie [194];
some gaps were pointed out in the original argument, a different revised,
but still incorrect, proof appears in [198] (see also [199]) under some
additional technical conditions. Recently A. Connes [66] finally provided
the missing steps in the proof of the result.

As a consequence, there exists a one-to-one correspondence between unitary
equivalence classes of spectral triples and connected compact oriented Rieman-
nian spin manifolds up to spin-preserving isometric diffeomorphisms.

Similar results should also be available for spin® manifolds [61, Theorem 6,

Remark (e)].

17The grading is actually the identity in odd dimension.
181n the sense of [66, Definition 6.1].
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2.3 Examples.

Of course, the most inspiring examples of spectral triples (starting from those
arising from Riemannian spin-manifolds) are contained in A. Connes’ book [58]
and an updated account of most of the available constructions is contained in
A. Connes-M. Marcolli’s lecture notes [74]. Here below we provide a short guide
to some of the relevant literature:

e Abelian spectral triples arising from the Atiyah-Singer Dirac Operator
on Riemannian spin manifolds, A. Connes [58], and classical compact
homogeneous spaces, M. Rieffel [203].

e Spectral triples for the non-commutative tori, A. Connes [58].
e Discrete spectral triples, T. Krajewski [152], M. Paschke-A. Sitarz [188].

e Spectral triples from Moyal planes (these are examples of “non-compact”
triples), V. Gayral-J.M. Gracia-Bondia-B. Iochum-T. Schiiker-J. Var-
illy [114].

e Examples of Non-commutative Lorentzian Spectral Triples (following the
definition given by A. Strohmaier [213]), W. D. Suijlekom [214].

e Spectral Triples related to the Kronecker foliation (following the general
construction by A. Connes-H. Moscovici [76] of spectral triples associated
to crossed product algebras related to foliations), R. Matthes-O. Richter-
G. Rudolph [180].

e Dirac operators as multiplication by length functions on finitely generated
discrete (amenable) groups, A. Connes [57], M. Rieffel [201].

e K-cycles and (twisted) spectral triples arising from supersymmetric quan-
tum field theory, A. Jaffe-A. Lesniewski-K. Osterwalder [133, 134],
D. Kastler [138], A. Connes [58], D. Goswami [120].

e Spectral triples associated to quantum groups (in some case it is necessary
to modify the first order condition involving the Dirac operator, requiring
it to hold only up to compact operators), P. Chakraborty-A. Pal [39, 40,
41,42, 43, 44, 45, 46, 47], D. Goswami [119], A. Connes [63], L.Dabrowski-
G.Landi-A.Sitarz-W.van Suijlekom-J. Varilly [92, 93], J. Kustermans-
G. Murphy-L. Tuset [156], S. Neshveyev-L. Tuset [184]; and also spec-
tral triples associated to homogeneus spaces of quantum groups, see
e.g. L. Dabrowski [88], L. Dabrowski-G. Landi-M. Paschke- A. Sitarz [91],
F. D’Andrea-L. Dabrowski [96], F. D’Andrea-L. Dabrowski-G. Landi [97],
[95] (the latter is “twisted” according to A. Connes-H. Moscovici [78]).
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Non-commutative manifolds and instantons, A. Connes-G. Landi [72],
L. Dabrowski G. Landi-T. Masuda [90], L. Dabrowski-G. Landi [89],
G. Landi [159, 160], G. Landi-W. van Suijlekom [163, 164].

Non-commutative spherical manifolds A. Connes-M. Dubois-Violette [68,

69, 70).

Spectral triples for some classes of fractal spaces, A. Connes [58],
D. Guido-T. Isola [124, 125, 126], C. Antonescu-E. Christensen [53],
E. Christensen C. Ivan-M. Lapidus [54].

Spectral Triples for AF C*-algebras, C. Antonescu-E. Christensen [53].

Spectral triples in number theory: A. Connes [58], A. Connes-M. Mar-
colli [74], R. Meyer [181]; spectral triples from Arakelov Geometry, from
Mumford curves and hyperbolic Riemann surfaces, C. Consani-M. Mar-
colli [79, 80, 81, 82], G. Cornelissen-M. Marcolli-K. Reihani-A. Vdov-
ina [84], G. Cornelissen-M. Marcolli [83].

Spectral triples of the standard model in particle physics, for instance
A. Connes-J. Lott [73], J. Gracia-Bondia-J.Varilly [123], D. Kastler [140,
141], A. Connes [59, 60, 65], J. Barrett [10], A. Chamseddine-A. Connes
[48, 49, 50], A. Chamseddine-A. Connes-M. Marcolli [51], A. Connes-
M. Marcolli [74, 75].

2.4 Other Spectral Geometries.

In the last few years several others variants and extensions of “spectral geome-
tries” have been considered or proposed:

e Lorentzian spectral triples (A. Strohmaier [213], M.Paschke-R.Verch [191]

and also M. Paschke-A. Sitarz [189]),
Riemannian non-spin (S. Lord [169]),

Laplacian, K&hler (J. Frohlich-O. Grandjean-A. Recknagel [110, 111, 112,
113)),

Following works by M. Breuer [23, 24] on Fredholm modules on von Neu-
mann algebras, M-T. Benameur-T. Fack [12] and more recently in a series
of papers [29, 35, 36, 31, 32, 33, 34, 37, 11, 192, 30], M-T. Benameur-
A. Carey-D. Pask-J. Phillips-A. Rennie-F. Sukochev-K. Wojciechowski
(see also J. Kaad-R. Nest-A. Rennie [135]), have been trying to general-
ize the formalism of Connes’ spectral triples when the algebra of bounded
operators on the Hilbert space of the triple is replaced by a more general
semifinite von Neumann algebra.
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% Although non-commutative differential geometry, following A. Connes,
has been mainly developed in the axiomatic framework of spectral triples,
that essentially generalize the structures available for the Atiyah-Singer
theory of first order differential elliptic operators of the Dirac type, it is
very likely that suitable “spectral geometries” might be developed using
operators of higher order (the Laplacian type being the first notable ex-
ample). Since “topological obstructions” (such us non-orientability, non-
spinoriality) are expected to survive essentially unaltered in the transition
from the commutative to the non commutative world, these “higher-order
non-commutative geometries” will deal with more general situations com-
pared to usual spectral triples.

% Apart from the “spectral approaches” to non-commutative geometry,
more or less directly inspired by A. Connes’ spectral triples, there are
other lines of development that are worth investigating and whose “rela-
tion” with spectral triples is not yet clear:

— J.-L. Sauvageot [209] and F. Cipriani [55] are developing a version
of non-commutative geometry described by Hilbert C*-bimodules
associated to a semigroup of completely positive contractions, an
approach that is directly related to the analysis of the properties
of the heat-kernel of the Laplacian on Riemannian manifolds (see
N. Berline-E. Getzler-M. Vergne [13]);

— M. Rieffel [202], and along similar lines N. Weaver [225, 226], have
developed a theory of non-commutative compact metric spaces based
on Lipschitz algebras.

— Following an idea of G. Parfionov-R. Zapatrin [186], V. Moretti [183]
has generalized Connes’ distance formula (using the D’Alembert op-
erator) to the case of Lorentzian globally hyperbolic manifolds and
has developed an approach to Lorentzian non-commutative geome-
try based on C*-algebras whose relations with Strohmaier’s spectral
triples is intriguing.

— In algebraic quantum field theory (see section 4.2), S. Doplicher-
K. Fredenhagen J. Roberts [104, 105] (and also S. Doplicher [101,
102, 103]) have developed a model of Poincaré covariant quantum
spacetime.

— O. Bratteli and collaborators [21, 22] and later M. Madore [170] have
been approaching the definition of non-commutative differential ge-
ometries through modules of derivations over the algebra of “smooth
functions”.

— Strictly related to the previous approach there is a formidable lit-
erature (see for example S. Majid [174, 175]) on non-commutative
geometry based on “quantum groups” structures (Hopf algebras).
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— Most of the physics literature use the term non-commutative ge-
ometry to indicate non-commutative spaces obtained by a quantum
“deformation” of a classical commutative space.

3 Categories in Non-Commutative Geometry.

After the discussion of “objects” in non-commutative geometry, we now shift
our attention to some tentative definitions of morphism of non-commutative
spaces and of categories of non-commutative spaces.

In the first subsection we present morphisms of “spectral geometries”. We
limit our discussion essentially to the case of morphisms of A. Connes’ spectral
triples, although we expect that similar notions might be developed also for
other spectral geometries.

In the second subsection we describe some other extremely important cate-
gories of “non-commutative spaces” that arise, at the “topological level”, from
“variations on the theme” of Morita equivalence.

Finally we indicate some direction of future research.

3.1 Morphisms of Spectral Triples.

Having described A. Connes spectral triples and somehow justified the fact
that spectral triples are a possible definition for “non-commutative” compact
finite-dimensional orientable Riemannian spin manifolds, our next goal here is
to discuss definitions of “morphisms” between spectral triples and to construct
categories of spectral triples.

Even for spectral triples, there are actually several possible notions of mor-
phism, according to the amount of “background structure” of the manifold that
we would like to see preserved:!?

e the metric, globally (isometries),
e the metric, locally (totally geodesic maps, in the differentiable case),
e the Riemannian structure,

e the differentiable structure,

3.1.1 Totally-Geodesic-Spin Morphisms.

This is the notion of morphism of spectral triples that we proposed in [15].

19 And also depending on the kind of topological properties that we would like to “attach”
to our morphisms: orientation, spinoriality, ...
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Given two spectral triples (Aj;,H;, D;), with j = 1,2, a morphism of
spectral triples is a pair

@
(A1, H1,Dy) @2, (A2, Ha, D3),

where ¢ : A3 — As is a *-morphism between the pre-C*-algebras A, Ay and
® : Hy — Hs is a bounded linear map in B(Hi, Hsz) that “intertwines” the
representations w1, T o ¢ and the Dirac operators Dy, D5 :

m(p(x)) 0o ® = Pom(x), Vre A,
D2O¢:®OD13 (31)

i.e. such that the following diagrams commute for every = € A; :

Hl l> Hz H1 i> Hz
D1i O iDz 771($)l O lﬂ'zf?d?(w)
H, L— Ho Hi i> Ho

Of course, the intertwining relation between the Dirac operators makes sense
only on the domain of D;.

It is possible (in the case of even and/or real spectral triples) to require also
commutations between ® and the grading operators and/or the real structures.
More specifically:

a morphism of real spectral triples (A;,H;, D;, J;), is a morphism of
spectral triples, as above, such that ® also “intertwines” the real structure
operators Ji,Jo: Joo® =P o Jy;

a morphism of even spectral triples (A;,H;,D;,T;), with j = 1,2,
is a morphism of spectral triples, as above, such that ® also “intertwines”
with the grading operators I'1,I'y: T's 0 ® = ® o T'y.

Clearly this definition of morphism contains as a special case the notion of
(unitary) equivalence of spectral triples [108, pp. 485-486] and implies quite
a strong relationship between the spectra of the Dirac operators of the two
spectral triples.

Loosely speaking, for ¢ epi and ® coisometric (respectively mono and iso-
metric), in the commutative case one expects such definition to become relevant
only for maps that “preserve the geodesic structures” (totally geodesic immer-
sions and respectively totally geodesic submersions). Note that (already in the
commutative case) these maps might not necessarily be metric isometries: to-
tally geodesic maps are local isometries but not always global isometries (but
we do not have a counterexample yet).
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Furthermore these morphisms depend, at least in some sense, on the spin
structures:2° this “spinorial rigidity” (at least in the case of morphisms of real
even spectral triples) requires that such morphisms between spectral triples of
different dimensions might be possible only when the difference in dimension
is a multiple of 8.

It might be interesting to examine alternative sets of conditions on the
pairs (¢, ®) that allow for example to formalize the notion of “immersion”
of a non-commutative manifold into another with arbitrary higher dimension,
avoiding the requirements coming from the spinorial structures. Some pre-
liminary considerations along similar lines have been independently proposed
by A. Sitarz [211] in his habilitation thesis. There it was suggested that the
appropriate morphisms satisfy some “graded intertwining relations” with the
relevant operators, indicating the possibility to formalize suitable sign rules
depending on the involved dimensions (modulo 8). We plan to elaborate on
this topic elsewhere.

3.1.2 Metric Morphisms.

In [16] we introduce the following notion of metric morphisms. Given two
spectral triples (A;,H;, D;), with j = 1,2, denote by P(A;) the sets of pure
states over (the norm closure of) A;. A metric morphism of spectral triples

(A1, H1, Dy) 2, (A2, Ha, D3)

is by definition a unital epimorphism?! ¢ : A; — Ay of pre-C*-algebras whose
pull-back ¢°® : P(A3) — P(A;) is an isometry, i.e.

dp, (¢*(w1),¢*(w2)) = dp, (w1, w2), Vwi,w2 € P(As).

This notion of morphism is “essentially blind” to the spin structures of
the non-commutative manifolds (that in this case appears only as a necessary
complication??).

3.1.3 Riemannian Morphisms.

A less rigid notion of morphism of spectral triples (a definition that, for unitary
maps, was introduced by R. Verch and M. Paschke [190]) consists of relaxing
the “intertwining” condition (3.1) between ® and the Dirac operators, imposing

20In the case of morphisms of even real spectral triples, the map should preserve in the
strongest possible sense the spin and orientation structures of the manifolds (whatever this
might mean).

21Note that if ¢ is an epimorphism, its pull-back ¢*® maps pure states into pure states.

22Since it is possible to define functional distances using also Laplacian operators, we expect
this notion to continue to make sense once a suitable notion of “Laplacian non-commutative
manifold” is developed.
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only “intertwining relations” with the commutators of Dirac operators with
elements of the algebras. In more detail: given two spectral triples (A;, H;, D;),
with j = 1,2, a Riemannian morphism of spectral triples is a pair
(¢,2)
(AlaHbDl) - (‘AQ’HZaDQ)a

where ¢ : A; — As is a *-morphism between the pre-C*-algebras Aq, Ay and
® : Hy — Hs is a bounded linear map in B(Hj, Hsz) that “intertwines” the
representations 7y, T o ¢ and the commutators of the Dirac operators D1, Do
with the elements xz € Ay, ¢(z) € Aa:

mo(p(z)) o ® = Pom(x), Vre Ay,
[Da,¢(z)] 0o ® = Po[Dy,z], VreA,

i.e. such that the following diagrams commute for every =z € Ajy:

H1 i> Hg Hl L H2
[D1,m]l ) i[szﬁ(ﬁ?)] Wl(ﬂﬁ)l O iMOd’(m)
Hy —=>H, Hy ——>H,

Again the intertwining relation containing the Dirac operators makes sense only
on the relevant domain.

In the commutative case, when ¢ is epi and ® is coisometric (respectively
mono and isometric), this definition is expected to correspond to the Rieman-
nian isometries (respectively coisometries) of compact finite-dimensional ori-
entable Riemannian spin manifolds.

% These notions of morphism of spectral triples are only tentative and more
examples need to be tested. As pointed out by A. Rennie, it is likely that
the “correct” definition of morphism will evolve, but it will surely reflect
the basic structure suggested here. At the “topological level” pair of
maps (¢, ®) that intertwine the actions of the algebras on the respective
Hilbert spaces (but not the Dirac operators or their commutators), have
recently been used by P. Ivankov-N. Ivankov [131] for the definition of
finite covering (and fundamental group) of a spectral triple.

% The several notions of morphism of spectral triples described above are
not as general as possible. In a wider perspective, a morphism of spectral
triples (A, H;, D;), where j = 1,2, might be formalized as a “suitable”
functor F : 4,.#4 — a,.#, between the categories 4,.# of Aj;-modules,
having “appropriate intertwining” properties with the Dirac operators
D;. Now, under some “mild” hypothesis, by Eilenberg-Gabriel-Watt the-
orem, any such functor is given by “tensorization” by a bimodule. These
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bimodules, suitably equipped with spectral data (as in the case of spectral
triples), provide the natural setting for a general theory of morphisms of
non-commutative spaces.

3.1.4 Morita Morphisms.

In the previous subsections we described in some detail some proposed notions
of morphism of “non-commutative spaces” (described as spectral triples) at
the “metric” level. A few other discussions of non-commutative geometry in
a suitable categorical framework, have already appeared in the literature in a
more or less explicit form. Most of them deal essentially with morphisms at
the “topological level” and are making use of the notion of Morita equivalence
that we are going to introduce.

Definition 3.1. Two unital C*-algebras A, B are said to be strongly Morita
equivalent if there exists an imprimitivity bimodule 4 X 5.

It is a standard procedure in algebraic geometry, to define “spaces” dually
by their “spectra” i.e. by the categories of (equivalence classes of) representa-
tions of their algebras. Hence, for a given unital C*-algebra A, we consider
its category 4.# of (isomorphism classes of) left C*-Hilbert A-modules with
morphisms given by (equivalence classes of) A-linear module maps.

Morphisms between these “non-commutative spectra” are given by covari-
ant functors between the categories of modules.??

The Eilenberg-Gabriel-Watt theorem assures that under suitable conditions
every functor § : 4.# — g.# coincides “up to a natural equivalence” with the
functor given by left tensorization with a C*-Hilbert B-A-bimodule 3 X 4 (with
X unique up to isomorphism of bimodules) i.e.:

S(uE)~ X4 @ 4FE.

Y. Manin [176] has been advocating the use of such “Morita morphisms”
(tensorizations with Hilbert C*-bimodules) as the natural notion of morphism
of non-commutative spaces. In [59, 60, 62] A. Connes already discussed how
to transfer a given Dirac operator using Morita equivalence bimodules and
compatible connections on them, thus leading to the concept of “inner defor-
mations” of a spectral geometry underlying the “transformation rule” D =
D+ A+ JAJ ! (where A denotes the “connection”). It is possible to define a
strictly related category of spectral triples, based on the notions of connection
on a Morita morphism, that contains “inner deformations” as isomorphisms.

More specifically, given two spectral triples (A;, H;, D;), with j = 1,2, by
a Morita-Connes morphism of spectral triples, we mean a pair (X, V) where

23This kind of “ideology” about categories of “non-commutative spectra” is very fashion-
able in “non-commutative algebraic geometry” (see for example M. Kontsevich and A. Rosen-
berg [145, 146, 205]).
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X is Morita morphism from A; to As i.e. an Ay-A;-bimodule that is a Hilbert
C*-module over As and V is a Riemannian connection on the bimodule X (the
Dirac operators are related to the connection V by the “inner deformation”
formula). The composition of two Morita-Connes morphisms (X!, V') and
(X2,V?) is defined by taking the tensor product X3 := X! @4, X? of the
bimodules and taking the connection V3 on X3 given by:

V36 ® &) (h) =& @ (V&) (h) + (V&) (& @ hy), hi € Ha, & € X7,

In a remarkable recent paper, A. Connes-C. Consani-M. Marcolli [67] have
been pushing even further the notion of “Morita morphism” defining morphisms
between two algebras A, B as “homotopy classes” of bimodules in G. Kasparov
K K-theory KK(A,B). In this way, every morphism is determined by a bi-
module that is further equipped with additional structure (Fredholm module).

In the same paper [67], A. Connes and collaborators provide ground for con-
sidering “cyclic cohomology” as an “absolute cohomology of non-commutative
motives” and the category of modules over the “cyclic category” (already de-
fined by A. Connes-H. Moscovici [77]) as a “non-commutative motivic coho-
mology” .

% All the notions of categories of non-commutative spaces developed from
the notion of Morita morphism, seem to be confined to the topological
setting. Morita equivalence in itself is a non-commutative “topological”
notion. It is widely believed that Morita equivalent algebras should be
considered as describing the “same” space. This comes from the fact that
most of the “geometric functors” for commutative spaces when suitably
extended to the non-commutative case are invariant under Morita equiva-
lences (because Morita equivalence reduces to isomorphism for commuta-
tive algebras). Anyway, most of the success of Connes’ non-commutative
geometry actually comes from the fact that some commutative algebras
are replaced with some other Morita equivalent non-commutative alge-
bras that are able to describe in a much better way the geometry of the
“singular space”. In a more direct way, it seems that the correct way to
associate a C*-algebra to a space, requires the direct input of the natural
symmetries of the space (hence Morita equivalence is broken).

Although the formalization of the notion of morphism as a bimodule
is probably here to stay, additional structures on the bimodule will be
required to account for different level of “rigidity” (metric, Riemannian,
differential, ...) and some of these, are probably going to break Morita
equivariance as long as non-topological properties are concerned.

% Finally we note that we have not been discussing here the role of quan-
tum groups as possible symmetries of spectral triples (see for example
the recent paper by D. Goswami [121] discussing quantum isometries of
spectral triples).
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3.2 Categorification (Topological Level).

Categorification is the term, introduced by L. Crane-D. Yetter [87], to denote
the generic process to substitute ordinary algebraic structures with categor-
ical counterparts. The term is now mostly used to denote a wide area of
research (see J. Baez - J. Dolan [7]) whose purpose is to use higher order
categories to define categorial analogs of algebraic structures. This vertical
categorification?? is usually done by promoting sets to categories, functions
to functors, ... hence replacing a category with a bi-category and so on. In non-
commutative geometry, where usually spaces are defined “dually” by “spectra”
i.e. categories of representations of their algebras of functions, this is a kind of
compulsory step: morphisms of non-commutative spaces are actually particu-
lar functors between “spectra”. In this sense, non-commutative geometry (and
also ordinary commutative algebraic geometry of schemes) is already a kind of
vertical categorification.

There are also more “trivial” forms of horizontal categorification in
which ordinary algebraic associative structures are interpreted as categories
with only one object and suitable analog categories with more than one object
are defined. In this case the passage is from endomorphisms of a single object
to morphisms between different objects??:

Monoids Small Categories (Monoidoids)
Groups Groupoids

Associative Unital Rings Ringoids

Associative Unital Algebras | Algebroids

Unital C*-algebras C*-categories (C*-algebroids)

It is an extremely interesting future topic of investigation to discuss the
interplay between ideas of categorification and non-commutative geometry ...
Here we are really only at the beginning of a long journey and we can present
only a few ideas.26

3.2.1 Horizontal Categorification of Gel’fand Duality.

As a first step in the development of a “categorical non-commutative ge-
ometry”, we have been looking at a possible “horizontal categorification” of
Gel'fand duality (theorem 2.1). In practice, the purpose is:

24In general a n-category get replaced with a n + l-category, increasing the “depth” of the
available morphisms, hence the terminology “vertical” adopted here.

25Hence the name “horizontal”, adopted here, that implies that no jump in the “depth” of
morphisms is required. J. Baez [21] prefers to use the term oidization for this case.

26ther approaches to the abstract concept of “categorification” have turned out to be
useful in the theory of knots and links, see [143, 144].
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e to find “suitable embedding functors” F : 70 — 7 and G : V) — o
of the categories .71 (of compact Hausdorff topological spaces) and o7 (1)
(of unital commutative C*-algebras) into two categories .7 and «7;

e to extend the categorical duality ('™, £()) between .7 () and &™) pro-
vided by Gel’fand theorem, to a categorical duality between .7 and & in
such a way that the following diagrams are commutative up to natural
isomorphisms 7, &:

(1)
) ;1) e Fox() 1 >%0G,
Fl lG
Vs o o, GoT) ——>ToF.

Since &7 (M is a full subcategory of the category of C*-algebras, we identify
the horizontal categorification of <7 (!) as a subcategory of the category of small
C*-categories.

In [17], in the setting of C*-categories, we provide a definition of “spec-
trum” of a commutative full C*-category as a one dimensional (saturated)
unital Fell-bundle over a suitable groupoid (equivalence relation) and we prove
a categorical Gel'fand duality theorem generalizing the usual Gel'fand duality
between the categories of Abelian C*-algebras and compact Hausdorfl spaces.

As a byproduct, we also obtain the following spectral theorem for imprim-
itivity bimodules over Abelian C*-algebras: every such bimodule is obtained
by “twisting” (by the 2 projection homeomorphisms) the symmetric bimod-
ule of sections of a unique Hermitian line bundle over the graph of a unique
homeomorphism between the spectra of the two C*-algebras.

Theorem 3.2 (P. Bertozzini-R. Conti-W. Lewkeeratiyutkul [18]). Given
an imprimitivity Hilbert C*-bimodule 4 My over the Abelian unital C*-algebras

A, B, there exists a canonical homeomorphism®” Rpa : Sp(A) — Sp(B) and

a Hermitian line bundle E over Rpa such that Mg is isomorphic to the

(left/right) “twisting™® of the symmetric bimodule T'(Rpa; E)c(ry45c) of sec-

tions of the bundle E by the “pull-back” isomorphisms % : A — C(Rpa;C),

% B — C(Rpa;C).

% This reconstruction theorem for imprimitivity bimodules is actually only
the starting point for the development of a complete “bivariant” version
of Serre-Swan and Takahashi’s dualities. In this case we will generalize

2"Rpa is a compact Hausdorff subspace of Sp(A) x Sp(B) homeomorphic to Sp(A)
(resp. Sp(B)) via the projections w4 : Rpa — Sp(A) (resp. 7p : Rpa — Sp(B)).

281f M is a left module over € and ¢ : A — € is an isomorphism, the left twisting of M by
¢ is the module over A defined by a -z := ¢(a)z for a € A and z € M.
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the previous spectral theorem to (classes of) bimodules over commutative
unital C*-algebras that are more general than imprimitivity bimodules;
furthermore the appropriate notion of morphism will be introduced in
order to get a categorical duality. We plan to return to this subject
elsewhere.

A C*-category [118, 182] is a category € such that the sets Cap :=
Home(B, A) are complex Banach spaces and the compositions are bilinear
maps, there is an involutive antilinear contravariant functor * : Home — Home
acting identically on the objects such that z*x is a positive element in the *-
algebra Caa for every & € Cpa (that is, z*z = y*y for some y € Caa),
oyl < ] - lyll, Yo € €ag, y € €se, lloa] = llz], ¥a € Cpa.

In a C*-category C, the sets €44 := Home(A, A) are unital C*-algebras for
all A € Obe. The sets Cap := Home(B, A) have a natural structure of unital
Hilbert C*-bimodule on the C*-algebras €44 on the right and €z on the left.

A C*-category is commutative if the C*-algebras €44 are Abelian for all
A € Obe. The C*-category C is full if all the bimodules C4p5 are full?®. A basic
example is the C*-category of linear bounded maps between Hilbert spaces.

A Banach bundle [107, Section 1.13] (E,p,X) is given by a continu-
ous open surjection p : F — X of Hausdorff topological spaces, whose to-
tal space E is equipped with a continuous partial operation of addition + :
{(e1,e2) | p(e1) = p(e2)} — E, a continuous operation of multiplication by
scalars - : C x E — FE and a continuous norm || - || : E — R, making all the
fibers E, := p~!(z) Banach spaces and such that, for all € X, the sets of the
form By :={e € E | p(e) € U, |le|| < €}, where € > 0 and U is a neighbour-
hood of © € X, constitute a base of neighbourhoods of 0, € E, in the topology
of .

If the topological space X is equipped with the algebraic structure of cate-
gory (let X° be the set of its units, r, s : X — X° its range and source maps and
X" = {(21,..,20) € X7 X | 8(x;) = r(xj41)} its set of n-composable mor-
phisms), we further require that the composition o : X? — X is a continuous
map.

If X is an involutive category i.e. there is a map * : X — X with the
properties (z*)* =z and (zoy)* = y* o z*, for all (x,y) € X2, we also require
* to be continuous.

A Fell bundle [107, 155, 17] over the involutive category X is a Banach
bundle (E,p, X) whose total space E is equipped with a continuous multi-
plication defined on the set E? := {(e, f) | (p(e),p(f)) € X?}, denoted by

29In this case C4p are imprimitivity bimodules.
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(e, f) — ef, and a continuous involution * : E — E, * : e — e* such that

e(fg) = (ef)g. Y(p(e),p(f).plg)) € X7,
plef) =ple)op(f), Ve, f e E?
Vr,y € X2, the restriction of (e, f) — ef to E, x E, is bilinear,
lefll < llell - IIfll, Ve, f € E?,
(e")" =e, VYe€ek,
p(e") =ple)”, VeekE,
Va € X, the restriction of e — e* to E, is conjugate linear,
(ef)" = f*e*, Ve, feE?
lle*ell = |le||?, Ve € E such that p(e*e) € X°,
e*e >0, Ve € E, such that p(e*e) € X°,

where in the last line we mean that e*e is a positive element in the C*-algebra
Epevey- It is in fact easy to see that for every x € X, E, is a C*-algebra.

A Fell bundle (E,p, X) is said to be unital if the C*-algebras E,, for z € X°,
are unital. Note that the fiber E, has a natural structure of Hilbert C*-
bimodule over the C*-algebras E,.(,y on the left and E(,) on the right. A Fell
bundle is said to be saturated if the above Hilbert C*-bimodules F, are full.
Note also that in a saturated Fell bundle, the Hilbert C*-bimodules E, are
imprimitivity bimodules.

Let O be a set and X a compact Hausdorff topological space. We denote
by Ro = {(A,B) | A,B € O} the “total” equivalence relation in O and by
Ax :={(p,p) | p € X} the “diagonal” equivalence relation in X.

Definition 3.3. A topological spaceoid (&€, 7,X) is a saturated unital rank-
one Fell bundle over the product involutive topological category X := Ax X Rp.
Definition 3.4. Let (&;,7;,X;), for j = 1,2, be two spaceoids.>® A morphism
of spaceoids (E1,71,X1) WA, (Ea,72,X2) is a pair (f,F) where

o f:=(fa,fxr) with fn : A1 — Ag a continuous map of topological spaces
and fg : R1 — Ry an isomorphism of equivalence relations;

o F: f*(E) — &1 is a continuous fiberwise linear *-functor such that
7 0F = (m)f, where (f'(82),7rg,x1) denotes a given choice of an f-
pull-back of (€2, ma, Xs).

30Where X; = AXj X Roj, with O; sets and X; compact Hausdorff topological spaces for
ji=1,2.
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Topological spaceoids constitute a category with composition defined by

(g:g)o(fvf) = (gof,]-'of’(g)o@)7

where O is the natural isomorphism from f*(g*(€3)) to (go f)*(€3), and with
identities

L, mx) = (LX7 LS)’

Note that we have chosen (€, 7, X) to be the tx-pull-back of itself.

The category .7 () of continuous maps between compact Hausdorff spaces
can be naturally identified with the full subcategory of the category 7 of
spaceoids with index set O containing a single element.

To every object X € Ob ) we associate the trivial C-line bundle Xx x C
over the involutive category Xx := Ax X Rg, with Ox := {X} the one point
set.

To every continuous map f : X — Y in .71 we associate the morphism

(gag) with gA(ij) = (f(p)af(p))7 gR : (X7X) e (Ya Y) and G := LXx xC-
Note that the trivial bundle over Xx is naturally a f-bull-back of the trivial
bundle over Xy hence G can be taken as the identity map.

Let € and D be two full commutative small C*-categories (with the same
cardinality of the set of objects). Denote by €, and D, their sets of identities.
A morphism @ : € — D is an object bijective x-functor, i.e.

b(x+y) =d(x) + ®(y), Vx,y € Casp,
P(a-x - ®(z), Yz € C, Ya € C,
D(xoy)=d(x) o P(y), YV € Cop, y € Cpa
d(z*) = P(x)*, Vo € Cap,
(1) € Dy, Vi€ Cy,
o, :=Ple, : €, — D, is bijective.

— =

To every spaceoid (€, 7,X), with X := Ax x Rp, we can associate a full
commutative C*-category I'(€) as follows:

e Obr(g) == 0;

e For all A, B € Obpg), Hompe) (B, A) := I'(Ax x {(A,B)}; ), where
we denote with T'(Ax x {(A, B)}; &) the set of continuous sections o :
Ax x{(A,B)} = &, 0 : pap — 0;,43 € &p,p of the restriction of € to
the base space Ax x {(4,B)} C X;
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e for all 0 € Homp(g)(A, B) and p € Homp g (B, C):

poopac (po0a), = pyPoa]C,
BA . _ AB
D T (Up )*7

o]l == sup oy P e,

PEAX

o* i ppa— (%)

with operations taken in the total space € of the Fell bundle.

We extend now the definition of I' to the morphism of .7 in order to obtain
a contravariant functor.

Let (f,F) be a morphism in 7 from (€1,71,X1) to (Ea,m2, Xa).

Given o € I'(€2), we consider the unique section f*(o) : X1 — f*(€2) such
that f™ o f*(0) = o o f and the composition F o f*(o).

In this way we get a map

F(f’]:) :F(EQ)—>1“(81), F(f_’]:) IO’I—>.7:Of.(O'), VO‘GF(EQ).

Proposition 3.5 ([17]). For any morphism (£1,m1,X1) YA, (E2,m2,X2) in
T, the map Ty 7y : T'(€2) — T'(E1) is a morphism in o7 .

The pair of maps T' : (€, m,X) +— T'(E) and T : (f,F) + L5 7) gives a
contravariant functor from the category 7 of spaceoids to the category </ of
small full commutative C*-categories.

We proceed to associate to every commutative full C*-category € its spectral
spaceoid ¥(C) := (€€, 7€, X®), see [17] for details.

e The set [C; C] of C-valued #-functors w : € — C, with the weakest topol-
ogy making all evaluations continuous, is a compact Hausdorff topological
space.

e By definition two *-functors wy,ws € [C;C] are unitarily equivalent
if there exists a “unitary” natural trasformation A — v4 € T between
them. This is true iff wi|e,, = wa|e,, for all A € Obe.

e Let Spy(C) := {[w] | w € [C; C]} denote the base spectrum of €, defined
as the set of unitary equivalence classes of x-functors in [C;C]. It is a
compact Hausdorff space with the quotient topology induced by the map
w i [w].

e Let X¢ := A® x R€ be the direct product topological *-category of the
compact Hausdorff x-category A® := Agp, (ey and the topologically dis-
crete *-category R® := €/C ~ Rop,-

e For w € [C;C], the set I, := {z € € | w(x) = 0} is an ideal in € and
jwl = j“,2 if [wl] = [(.UQ].
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e Denoting [w]ap the point ([w], (4, B)) € X¢, we define:

Can
Jwlap = Jw N Cas, (C’F = , &%= L‘H EEJ]AB'

wlaB j[u}]AB w]apEXE

Proposition 3.6 ([17]). The map 7€ : €° — XC©, that sends an element
e e 8[(;]/\13 to the point [w]ap € XC has a natural structure of unital rank one

Fell bundle over the topological involutive category XC.

Let @ : € — D be an object-bijective *-functor between two small commu-
tative full C*-categories with spaceoids 3(C), X(D) € 7.

@ 23
We define a morphism X% : 3(D) O7AT), ¥(€) in the category J:

o \2 . XD 2%, X€ where
A2 (A, B) := (@, 1(A), @, 1(B)), for all (A, B) € Rop,;
)\i([UJ]) = [w o (P] c ASpb(@)v for all [w] S ASpb(‘D)-

eﬂ’(AB) .
e The bundle W, . cxo» m with the maps
@

7% ([w]as, @ +3,\¢([w]AB))  [wlap € XP, ze GA‘;(AB)a
O™ ([wlas, @+ Txe(uiag)) = A (W]aB), @ + Ixe(u)ap)) € E
is a A®-pull-back (A®)*(€®) of the Fell bundle (£¢, 7€, X°).

o Since ®(Iyo((w]4p)) C Jjwjap for [wW]ap € XP, we can define a map
A% (A®)*(EC) — €T by

(lag, @+ Txo(oiam ) = (Wlan, ©(@)+ T )-

Proposition 3.7 ([17]). For any morphism C 2. D in o/, the mapping
P
(D) z, 3(@) is a morphism of spectral spaceoids. The pair of maps X :

€ X(C) and ¥ : ® — X% give a contravariant functor ¥ : o — T, from
the category o/ of object-bijective x-functors between small commutative full
C*-categories to the category F of spaceoids.

We can now state our main duality theorem for commutative full C*-
categories:

Theorem 3.8 (P. Bertozzini-R.Conti-W. Lewkeeratiyutkul [17]). There
exists a duality (I', X) between the category 7 of object-bijective morphisms be-
tween spaceoids and the category </ of object-bijective x-functors between small
commutative full C*-categories, where
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o I' is the functor that to every spaceoid (€,7m,X) € Obg associates the
small commutative full C*-category T'(E) and that to every morphism
between spaceoids (f,F) : (E1,m1,X1) — (E2,m2,X2) associates the *-
functor T'(y 7y;

e X is the functor that to every small commutative full C*-category C as-
sociates its spectral spaceoid X(C) and that to every object-bijective -
functor ® : € — D of C*-categories in & associates the morphism
2 %(D) — X(@) between spaceoids.

The natural isomorphism & : Z,, — I' o ¥ is provided by the horizontally
categorified Gel’fand transforms G¢ : ¢ — I'(3X(C)) defined by

Ge:C—T(EY), Ge:z— & where

i’ﬁ)]]g ::1’+j[w] Vo € Cup.

AB?

Proposition 3.9 ([17]). The functor T :  — o is representative i.e. given
a commutative full C*-category C, the Gel’fand transform Ge : C — I'(X(C))
is a full isometric (hence faithful) x-functor.

The natural isomorphism € : 75 — ¥ oI is provided by the horizontally

& &
categorified “evaluation” transforms €¢ : (&, 7,X) AN 3(I(€)), de-
fined as follows:

e n%(4,B):=(4,B), V(A,B)¢€Ro.

e 7% : Ax — Agp, (re))s P — [yoevy], where evy, : T'(8) — Wiap)eno Epan
is the evaluation map given by o — U;‘B that is a *-functor with values in
a one dimensional C*-category that actually determines®! a unique point

[’y o evp] S ASpb(F(S))~
* W,,pex T(€)neaB)/Ine (pan) when equipped with the natural projection
map (pap, 0+ Jye(p,,)) — Pap, and with the ET) _valued function
(paBs 0+ Jpepan)) > 0+ Jnepap), is a ne-pull-back (n®)*(ETE)) of
E(T(E))-
o Q8 (nf)*(eN®)) — & is defined by
0né :(pAB, U+jns(pAB))F—>U;‘B, Vo € T'(E)ap, pap € X.
In particular, with such definitions we can prove:
Proposition 3.10 ([17]). The functor ¥ : &/ — 7 is representative i.e. given
a spaceoid (€, m,X), the evaluation transform €¢ : (E,7,X) — X(T'(E)) is an
isomorphism in the category of spaceoids.

31There is always a C valued *-functor 7 : WaB)erp €pap — Cand any two compositions
of ev, with such s-functors are unitarily equivalent because they coincide on the diagonal
C*-algebras Ep , 4 -
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We are now working on a number of generalizations and extensions of our
horizontal categorified Gel’fand duality:

% The first immediate possibility is to extend Gel’fand duality to include
the case of categories of general x-functors between full commutative C*-
categories. This will necessarily require the consideration of categories of
x-relators (see [15]) between C*-categories.

% Our duality theorem is for now limited to the case of full commutative
C*-categories and further work is necessary in order to extend the result
to a Gel’fand duality for non-full C*-categories.

% Very interesting is the possibility to generalize our duality to a full spec-
tral theory for non-commutative C*-categories in term of endofunctors in
the category of Fell bundles. In particular we would like to explore if our
approach will allow to develope categorifications of Dauns-Hofmann [98]
and Cirelli-Mania-Pizzocchero [56] spectral theorems for general non-
commutative C*-algebras.

% In the same order of ideas, motivated by a general spectral theory for
C*-categories, it is worth investigating in the non-commutative case the
connection between C*-categories, spectral spaceoids and categorified
notions of (locale) quantale already developed for (commutative) C*-
algebras (see D. Kruml-J. Pelletier-P. Resende-J. Rosicky [153], L. Crane
[86], D. Kruml-P. Resende [154], P. Resende [200] and references therein
for details).

% The existence of a horizontal categorified Gel’fand transform might be rel-
evant for the study of harmonic analysis on commutative groupoids. In
this direction it is natural to investigate the implications for a Pontrjagin
duality for commutative groupoids and later, in a fully non-commutative
context, the relations with the theory of C*-pseudo-multiplicative uni-
taries that has been recently developed by T. Timmermann [221, 222].

% Extremely intriguing for its possible physical implications in algebraic
quantum field theory is the appearance of a natural “local gauge struc-
ture” on the spectra: the spectrum is no more just a (topological) space,
but a special fiber bundle. Possible relations with the work of E. Vas-
selli [224] on continous fields of C*-categories in the theory of superselec-
tion sectors and especially with the recent work on net bundles and gauge
theory by J. Roberts-G. Ruzzi-E. Vasselli [204] remain to be explored.

3.2.2 Higher C*-categories.

In our last forthcoming work, we proceed to further extend the categorification
process of Gel’fand duality theorem to a full “vertical categorification” [4].
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For this purpose we first provide, via globular sets (see T. Leinster [166]),
a suitable definition of “strict” n-C*-category.

In practice, without entering here in further technical details, a strict higher
C*-category C (or more generally a higher Fell bundle over a higher *-category
X), is provided by a strict higher -category € fibered over a strict higher x-
category X whose compositions and involutions satisfy, fiberwise at all levels,
“appropriate versions” of all the properties listed in the definition of a Fell
bundle.

In the special case of commutative full strict n-C*-categories, we develope a
spectral Gel’'fand theorem in term of n-spaceoids i.e. rank-one n-C*-Fell bundles
over a “particular” n-x-category (that is given by the direct product of the
diagonal equivalence relation of a compact Hausdorff space and the quotient
n--category C/C of an n-C*-category C).

% Unfortunately our definition is for now limited to the case of strict higher
C*-categories. Of course, as always the case in higher category theory,
an even more interesting problem will be the characterization of suitable
axioms for “weak higher C*-categories”. This is one of the main obstacles
in the development of a full categorification of the notion of spectral triple
and of A. Connes non-commutative geometry.

% Note that several examples and definitions of 2-C*-categories are already
available in the literature (see for example R. Longo-J. Roberts [168] and
P. Zito [228]). In general such cases will not exactly fit with the strict
version of our axioms for n-C*-categories. Actually we expect to have
a complete hierarchy of definitions of higher C*-categories depending on
the “depth” at which some axioms are required to be satisfied (i.e. some
properties can be required to hold only for p-arrows with p higher that a
certain depth).

% In our work, we define (Hilbert C*) modules over strict n-C*-categories
and in this way we can provide interesting definitions of n-Hilbert spaces
and start a development of “higher functional analysis”.

3.3 Categorical Non-commutative Geometry and
Non-commutative Topoi.

One of the main goals of our investigation is to discuss the interplay between
ideas of categorification and non-commutative geometry. Here there is still
much to be done and we can present only a few suggestions. Work is in progress.

% Every isomorphism class of a full commutative C*-category can be iden-
tified with an equivalence relation in the Picard-Morita 1-category of
Abelian unital C*-algebras. In practice a C*-category is just a “strict
implementation” of an equivalence relation subcategory of Picard-Morita.



242

72

Non-Commutative Geometry, Categories and Quantum Physics

Since morphism of spectral triples (more generally morphisms of non-
commutative spaces) are essentially “special cases” of Morita morphisms,
we started the study of “spectral triples over C*-categories” and we are
now trying to develop a notion of horizontal categorification of spectral
triples (and of other spectral geometries) in order to identify a correct
definition of morphism of spectral triples that supports a duality with a
suitable spectrum (in the commutative case).

The general picture that is emerging is that a correct notion of metric
morphism between spectral triples is given by a kind of “bivariant ver-
sion” of spectral triple i.e. a bimodule over two different algebras that is
equipped with a left/right action of “Dirac-like” operators.

As a very first step in the direction of a full “higher non-commutative
geometry”3? we plan to start the study of a strict version of “higher
spectral triples” i.e. spectral triples over strict higher C*-categories. As
in the case of horizontal categorification, this will provide some hints for
a correct definition of “higher spectral triples”.

Although at the moment it is only a speculative idea, it is very interest-
ing to explore the possible relation between such “higher spectra” (higher
spaceoids) and the notions of stacks and gerbes already used in higher
gauge theory. The recent work by C. Daenzer [94] in the context of T-
duality discuss a Pontryagin duality between commutative principal bun-
dles and gerbes that might be connected with our categorified Gel’fand
transform for commutative C*-categories.

Extremely intriguing is the possible connection between the notions of
(category of) spectral triples and A. Grothendieck topoi. Speculations
in this direction have been given by P. Cartier [38] and are also dis-
cussed by A. Connes [64]. A full (categorical) notion of non-commutative
space (non-commutative Klein program / non-commutative Grothendieck
topos) is still waiting to be defined.

Actually some interesting proposal for a definition of a “quantum topos” is

already available in the recent work by L. Crane [86] based on the notion of
“quantaloids”, a categorification of the notion of quantale (see P. Resende [200]
and references therein).

At this level of generality, it is important to emphasize that our discussion of

non-commutative geometry has been essentially confined to the consideration of
A. Connes’ approach. In the field of algebraic geometry (see V. Ginzburg [116],
M. Kontsevich-Y. Soibelman [147, 148] and S. Mahanta [172, 173] as recent

320n this topic the reader is strongly advised to read the interesting discussions on the
“n-category café” http://golem.ph.utexas.edu/category/ and in particular: U. Schreiber,
Connes Spectral Geometry and the Standard Model II, 06 September 2006.
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references), many other people have been trying to propose definitions of non-
commutative schemes and non-commutative spaces (see for example A. Rosen-
berg [205] and M. Kontsevich-A. Rosenberg [137]) as “spectra” of Abelian cat-
egories (or generalization of Abelian categories such as triangulated, dg, or A
categories). Since every Abelian category is essentially a category of modules,
it is in fact usually assumed that an Abelian category should be considered as
a topos of sheaves over a non-commutative space.

% It is worth noting that the categories naturally arising in the theory of self-
adjoint operator algebras and in A. Connes’ non-commutative geometry
are *-monoidal categories (see [17] for detailed definitions). The monoidal
property is perfectly in line with the recent proposal by T. Maszczyk [179]
to construct a theory of algebraic non-commutative geometry based on
Abelian categories equipped with a monoidal structure.

At this point it is actually tempting (in our opinion) to think that also
the involutive structures (and other properties strictly related to the exis-
tence of an involution including Tomita-Takesaki modular theory are go-
ing to play some vital role in the correct definition of a non-commutative
generalization of space. But this is still speculation in progress!

% Finally, there are strong indications (V. Dolgushev-D. Tamarkin-B. Tsy-
gan [99])3% coming again from “algebraic non-commutative geometry”
that a proper categorification of non-commutative geometry might actu-
ally be possible only considering oco-categories. The implications for a
program of categorification of A. Connes’ spectral triples is not yet clear
to us.

4 Applications to Physics.

In this final section we would like to spend some time to introduce (in a non-
technical way) the mathematical readers to the consideration of some extremely
important topics in quantum physics that are essentially motivating the con-
struction of non-commutative spaces, the use of categorical ideas and the even-
tual merging of these two lines of thought.

The two main subjects of our discussion, non-commutative geometry and
category theory, have been separately used and applied in theoretical physics
(although not as widely as we would have liked to see). Anyway, our feeling
is that the most important input to physics will come from a kind of “com-
bined” approach where non-commutative and categorical structures are applied
in a “synergic way” in an “algebraic theory of quantum gravity”. A concrete
proposal in this direction is presented in section 4.4.

33See also the very detailed discussion on the blog “n-category café”: J. Baez, Infinitely
Categorified Calculus, 09 February 2007.
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4.1 Categorical Covariance.

Covariance of physical theories has been always discussed in the limited do-
main of groups acting on spaces: the group of rotations in Aristotles’ physics;
Galilei’s and Poincaré groups and the diffeomorphism groups of Lorentzian
manifolds in Einstein’s general relativity. Different observers are “related”
through transformations in the given covariance group.

% There is no deep physical or operational reason to think that only groups
(or quantum groups) might be the right mathematical structure to cap-
ture the “translation” between different observers and actually, in our
opinion, categories provide a much more suitable environment in which
also the discussion of “partial translations” between observers can be
described. Work is in progress on these issues.

As an example of the relevance of categorical covariance, we mention the
works by R. Brunetti-K. Fredenhagen-R. Verch [27]. Similar ideas are used in
the non-commutative versions of the axioms recently proposed by M. Paschke
and R. Verch [190, 191].

4.2 Non-commutative and Spectral Space-Time.

There are three main reasons for the introduction of non-commutative space-
time structures in physics and for the deep interest developed by physicists for
“non-commutative geometry” (not only A. Connes’one):

e The awareness that quantum effects (Heisenberg uncertainty principle),
coupled to the general relativistic effect of the energy-momentum tensor
on the curvature of space-time (Einstein equation), entail that at very
small scales the space-time manifold structure might be “unphysical”.

e The belief that modification to the short scale structure of space-time
might help to resolve the problems of “ultraviolet divergences” in quan-
tum field theory (that arise, by Heisenberg uncertainty, from the arbi-
trary high momentum associated with arbitrary small length scales) and
of “singularities” in general relativity.

e The intuition that in order to include the remaining physical forces (nu-
clear and electromagnetic) in a “geometrization” program, going beyond
the one realized for gravity by A. Einstein’s general relativity, it might
be necessary to make use of geometrical environments more sophisticated
than those provided by usual Riemannian/Lorentzian geometry.

What we call here “spectral space-time” is the idea that space-time (commu-
tative or not) has to be “reconstructed a posteriori”, from other operationally
defined degrees of freedom, in a spectral way.
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Space-time as a “relational” a posteriori entity originate from ideas of
G.W. Leibnitz, G. Berkeley, E. Mach. Although pregeometrical speculations,
in western philosophy, probably date as far back as Pythagoras, their first mod-
ern incarnation probably starts with J. Wheeler’s “pregeometries” and “it from
bit” proposals.

R. Geroch [115], with his Einstein algebras, was the first to suggest a “tran-
sition” from spaces to algebras in order to solve the problem of “singularities”
in general relativity.

The fundamental idea that space-time can be recovered from the speci-
fication of suitable states of the system, has been the subject of scattered
speculations in algebraic quantum field theory in the past by A. Ocneanu 34,
S. Doplicher [100], U. Bannier [8] and, in the “modular localization program”
(see R. Brunetti-D. Guido-R. Longo [26] and references therein), have been

conjectured by N. Pinamonti [193].

Extremely important rigorous results including a complete reconstruction
of Minkowski space-time [216] have been achieved in the “geometric modu-
lar action” program developed by D. Buchholz-S. Summers (see [215] for an
excellent review and references).

% That non-commutative geometry provides a suitable environment for the
implementation of the spectral reconstruction of space-time from states
and observables in quantum physics has been the main motivating idea of
one us (P.B.) since 1990. The idea that space-time might be spectrally re-
constructed, via non-commutative geometry, from Tomita-Takesaki mod-
ular theory applied to the algebra of physical observables was first elab-
orated in 1995 by P.B. and independently (motivated by the possibility
to obtain cyclic cocycles in algebraic quantum field theory from modular
theory) by R. Longo [167]. Since then this conjecture is still the main
subject and motivation of our investigation [14].

Similar speculations on the interplay between modular theory and (some
aspects of) space-time geometry have been suggested by S. Lord [169,
Section VIIL.3] and by M. Paschke-R. Verch [190, Section 6].

% One of the authors (R.C.) has raised the somehow puzzling question
whether it is possible to reinterpret the one parameter group of mod-
ular automorphisms as a renormalization (semi-)group in physics. The
connection with P. Cartier’s idea of a “universal Galois group” [38], cur-
rently developed by A. Connes-M. Marcolli, is extremely intriguing.

34 As reported in A. Jadczyk [132].
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4.3 A. Connes’ Non-commutative Geometry and Gravity

It is often claimed that non-commutative geometry will be a key ingredient
(a kind of quantum version of Riemannian geometry) for the formulation of
a fundamental theory of quantum gravity (see for example L. Smolin [212]
and P. Martinetti [178]) and actually non-commutative geometry is often listed
among the current alternative approaches to quantum gravity.

In reality, with the only notable exceptions of the extremely interesting pro-
grams outlined in M. Paschke [187] and in A. Connes-M. Marcolli [75], a foun-
dational approach to quantum physics based on A. Connes’ non-commutative
geometry has never been proposed. So far, most of the current applications of
A. Connes’ non-commutative geometry to (quantum) gravity have been limited
to:

e the study of some “quantized” example: C. Rovelli [208], F, Besnard [19],

e the use of its mathematical framework for the reformulation of classi-
cal (Euclidean) general relativity: D. Kastler [139], A. Chamseddine-
G. Felder-J. Frohlich [52], W. Kalau-M. Walze [136], C. Rovelli-G. Landi
(161, 162, 158],

e attempts to use its mathematical framework “inside” some already estab-
lished theories such as strings (A. Connes-M. Douglas-A. Schwarz [71],
J. Frohlich, O. Grandjean, A. Recknagel [112], J. Brodzki, V. Mathai,
J. Rosenberg, R. Szabo [25]) and loop gravity (J. Aastrup-J. Grimstrup [1,
2], F. Girelli-E. Livine [117]),

e the formulation of Hamiltonian theories of gravity on globally hyperbolic
cases, where only the “spacial-slides” are described by non-commutative
geometries: E. Hawkins [128], T. Kopf-M. Paschke [150, 151, 149].

4.4 A Proposal for (Modular) Algebraic Quantum Grav-
ity.

Our ongoing research project is aiming at the construction of an algebraic
theory of quantum gravity in which “non-commutative” space-time is spec-
trally reconstructed from Tomita-Takesaki modular theory.

What we propose is to develop an approach to the foundations of quantum
physics technically based on algebraic quantum theory (operator algebras) and
A. Connes’ non-commutative geometry. The research is building on the ex-
perience already gained in our previous/current mathematics research plans
on “modular spectral triples in non-commutative geometry and physics” [14]
and on “categorical non-commutative geometry” and is conducted in the stan-
dard of mathematical rigour typical of the tradition of mathematical physics’
research in algebraic quantum field theory [3, 127].
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In the mathematical framework of A. Connes’ non-commutative geometry,
we are addressing the problem of the “spectral reconstruction” of “geometries”
from the underlying operational data defined by “states” over “observables’
C*-algebras” of physical systems. More specifically:

% Building on our previous research on “modular spectral-triples” and on re-
cent results on semi-finite spectral triples recently developed by A. Carey-
J. Phillips-A. Rennie-F. Sukhocev [30], we make use of Tomita-Takesaki
modular theory of operator algebras to associate non-commutative geo-
metrical objects (that are only formally similar to A. Connes’ spectral-
triples) to suitable states over involutive normed algebras.

% We are now developing an “event” interpretation of the formalism of
states and observables in algebraic quantum physics that is in line with
C. Isham’s “history projection operator theory” [130] and C. Rovelli’s
“relational/relativistic quantum mechanics” [207, 206].

3 Making contact with our current research project on “categorical non-
commutative geometry” and with other projects in categorical quantum
gravity (J. Baez [5, 6] and L. Crane [85, 86]), we plan to generalize the
diffeomorphism covariance group of general relativity in a categorical con-
text and use it to “identify” the degrees of freedom related to the spatio-
temporal structure of the physical system.

% Techniques from “decoherence/einselection” (H.Zeh [227], W.Zurek [229])
and/or “emergence/noiseless subsystems” (for example O. Dreyer [106],
F. Markopoulou [177]), superselection (I. Ojima [185]) and the “cooling”
procedure developed by A. Connes-M. Marcolli [75] are expected to be
relevant in order to extract from our spectrally defined non-commutative
geometries, a macroscopic space-time for the pair state/system and its
“classical residue”.

% Possible reproduction of quantum geometries already defined in the con-
text of loop quantum gravity (see T. Thiemann [220], J. Aastrup-J. Grim-
strup [1, 2]) and/or S. Doplicher-J. Roberts-K. Fredenhagen models [105]
will be investigated.

If partially successful, the project will have a significant fallout: a background-
independent powerful approach to “quantum relativity” that is suitable for the
purpose of unification of physics, geometry and information theory that lies
ahead.
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Abstract

In the setting of C*-categories, we provide a definition of “spectrum” of a commu-
tative full C*-category as a one-dimensional unital saturated Fell bundle over a suit-
able groupoid (equivalence relation) and prove a categorical Gel’fand duality theorem
generalizing the usual Gel’fand duality between the categories of commutative unital
C*-algebras and compact Hausdorff spaces. Although many of the individual ingredi-
ents that appear along the way are well-known, the somehow unconventional way we
“glue” them together seems to shed some new light on the subject.

MSC-2000: 46L87, 46M15, 46108, 46M20, 16D90, 18F99.

Keywords: C*-category, Fell Bundle, Duality, Non-commutative Geometry.

1 Introduction

There is no need to explain why the notions of “geometry” and “space” are fundamental
both in mathematics and in physics. Typically, a rigorous way to encode at least some basic
geometrical content into a mathematical framework makes use of the notion of a “topological
space”, i.e. a set equipped with a topological structure. Although being just a preliminary
step in the process of developing a more sophisticated apparatus, this way of thinking has
been very fruitful for both abstract and concrete purposes.

In a very important development, I. M. Gel’fand looked not at the topological space itself
but rather at the space of all continuous functions on it, and realized that these seem-
ingly different structures are in fact essentially the same. In slightly more precise terms,
he found a basic example of anti-equivalence between certain categories of spaces and al-
gebras (see for example [Bl, Theorems 11.2.2.4, 11.2.2.6] or [L, Section 6]). Since on the

*Partially supported by the Thai Research Fund: grant n. RSA4780022.
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analytic side C'(X;C) is a special type of a Banach algebra called a C*-algebra, the study
of possibly non-commutative C*-algebras has been often regarded as a good framework for
“non-commutative topology”.

The “duality” aspect has been later enforced by the Serre-Swan equivalence [K, Theo-
rem 6.18] between vector bundles and suitable modules (see also [FGV] for a Hermitian
version of the theorem and [T1, T2, W] for generalizations involving Hilbert bundles). By
then, breakthrough results have continued to emerge both in geometry and functional anal-
ysis, based on Gel’fand’s original intuition, for about four decades.

In connection with physical ideas, L. Crane-D. Yetter [CY] and J. Baez-J. Dolan [BD] have
recently proposed a process of categorification of mathematical structures, in which sets and
functions are replaced by categories and functors.

From this perspective, in this paper, we wish to discuss a categorification of the notion of
space extending and merging together Gel’fand duality and Serre-Swan equivalence.

On one side of the extended duality we have a “horizontal categorification” of the no-
tion of commutative C*-algebra, namely a “commutative C*-category” (or commutative
C*-algebroid) whilst the corresponding replacement of spaces, the “spaceoids”, are sup-
posed to parametrize their spectra. Spaceoids could be described in several different albeit
equivalent ways. In this paper we have decided to focus on a characterization based on the
notion of Fell bundle. Originally Fell bundles were introduced in connection with the study
of representations of locally compact groups, but we argue that they come to life naturally
on the basis of purely “topological” principles.

Rather surprisingly, to the best of our knowledge, the notions of commutative C*-category
and its spectrum have not been discussed before, despite the fact that (mostly highly non-
commutative) C*-categories have been somehow intensively exploited over the last 30 years
in several areas of research, including Mackey induction, superselection structure in quantum
field theory, abstract group duality, subfactors and the Baum-Connes conjecture. At any
rate, we make frequent contact with the related notions that can be found in the literature,
hoping that our approach sheds new light on the subject by approaching the matter from a
kind of unconventional viewpoint.

Of course, once we have a running definition, it seems quite challenging in the next step to
look for some natural occurrence of the notion of spaceoid in other contexts. For instance,
we are not aware of any connection with the powerful concepts that have been introduced in
algebraic topology to date. Also, the appearence of bundles in the structure of the spectrum
suggests an intriguing connection to local gauge theory but we have not developed these
ideas yet. Some of our considerations have been motivated by a categorical approach to
non-commutative geometry [BCL2|, and it is rewarding that some of its relevant tools (e.g.,
Serre-Swan theorem, Morita equivalence) appear naturally in our context. More structure
is expected to emerge when our categories are equipped with a differentiable structure. In
the case of usual spaces, in the setting of A. Connes’ non-commutative geometry [C], this
has been achieved by means of a Dirac operator, and then axiomatized using the concept of
“spectral triple”.

Here below we present a short description of the content of the paper.

In section 2 we mention, mainly for the purpose of fixing our notation, some basic definitions
on C*-categories. Section 3 opens recalling the notion of a Fell bundle in the case of involutive
inverse base categories and then proceeds to introduce the definition of the category of
spaceoids that will eventually “subsume” that of compact Hausdorff spaces in our duality
theorem. The construction of a small commutative full C*-category starting from a spaceoid
is undertaken in section 4, while the spectral analysis of a commutative full C*-category is
the subject of the more technical section 5 where a “spectrum functor” from the category



92

of full commutative C*-categories to our category of spaceoids is defined.

Section 6 presents the main result of this paper in the form of a duality between a certain
category of commutative full C*-categories and the category of their spectra (spaceoids).
A “categorified version” of Gel’fand transform is introduced and used to prove a Gel’fand
spectral reconstruction theorem for full commutative C*-categories. Similarly a “categori-
fied evaluation transform” is defined for the purpose of proving the representativity of the
spectum functor.

While in the usual Gel’fand duality theory a spectrum is just a compact topological space,
in the situation under consideration it comes up equipped with a natural bundle structure.
In particular, the spectrum of a commutative full C*-category is identified with a kind of
“groupoid of Hermitian line bundles” that can be conveniently described using the language
of Fell bundles or equivalently as a continuous field of one-dimensional full C*-categories).
Along the way, we also discuss several categorical versions of well-known concepts like the
Gel’fand transform that we think are of independent interest. Notice that a notion of Fourier
transform in the setting of compact groupoids has been discussed by M. Amini [A].

Our duality is reminiscent of an interesting but widely ignored duality result of A. Taka-
hashi [T1, T2]. Takahashi’s duality can be essentially understood as a duality of weak
monoidal categories, although he does not explicitly examine the natural monoidal struc-
ture on the categories of Hilbert bundles and Hilbert C*-modules. The duality considered
in this paper is essentially a “strict *-monoidal” version of the former, where we consider
C*-categories (“strict” equivalence relations in the Picard groupoid) and Fell bundles (“strict
subcategories” of the monoidal category of Hilbert bundles) instead of C*-modules and fields
of Hilbert spaces (certain Banach bundles).

Most of the results presented here have been announced in our survey paper [BCL2] and
have been presented in several seminars in Thailand, Australia, Italy, UK since May 2006.

Note added in proof. When the present work was under preparation, we became aware
of some related results in T. Timmermann’s Ph.D. dissertation [Ti] where, in the context
of Hopf algebraic quantum groupoids, a very general non-commutative Pontryagin duality
theory is developed by means of pseudomultiplicative unitaries in C*-modules; and also in
V. Deaconu-A. Kumjian-B. Ramazan [DKR], where a notion of Abelian Fell bundle (which
contains our commutative C*-categories as a special case) is introduced and a structure
theorem for them (in terms of “twisted coverings of groupoids”) is proved. In the framework
of T-duality, a Pontryagin type duality between commutative principal bundles and gerbes
has been proposed by C. Daenzer [D]; while a generalization of Pontryagin duality for locally
compact Abelian group bundles has been provided by G. Goehle [G]

2 Category & of full commutative C*-categories

The notion of C*-category, introduced by J. Roberts (see P. Ghez-R. Lima-J. Roberts [GLR]
and also P. Mitchener [M]) has been extensively used in algebraic quantum field theory:

Definition 2.1. A C*-category is a category C such that: the sets Cop := Home(B, A)
are complex Banach spaces; the compositions are bilinear maps such that ||zy|| < ||z - ||yl
for all x € Cap, y € Cpc; there is an involutive antilinear contravariant functor * : € — C,
acting identically on the objects, such that ||z*z|| = ||z||?, Vo € Cpa and such that z*x
is a positive element in the C*-algebra Cxa, for every x € Cpa (i.e. x*x = y*y for some

RS GAA)-

In a C*-category C, the “diagonal blocks” Cs4 := Home(A, A) are unital C*-algebras
and the “off-diagonal blocks” C4p := Home(B, A) are unital Hilbert C*-bimodules on the
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C*-algebras C44 and Cgr. We say that C is full if all the bimodules C4p are imprimitiv-
ity bimodules. In practice, every full C*-category is a “strict-ification” of an equivalence
relation in the Picard-Morita groupoid of unital C*-algebras. It is also very useful to see a
C*-category as an involutive category fibered over the equivalence relation of its objects: in
this way, a (full) C*-category becomes a special case of a (saturated) unital Fell bundle over
an involutive (discrete) base category as described in definition 3.1 below. We say that € is
one-dimensional if all the bimodules C4p are one-dimensional and hence Hilbert spaces.
The first problem that we have to face is how to select a suitable full subcategory &7 of “com-
mutative” full C*-categories playing the role of horizontal categorification of the category
of commutative unital C*-algebras. Since we are working in a completely strict categorical
environment, our choice is to define a C*-category € to be commutative if all its diagonal
blocks C4 4 are commutative C*-algebras.

If €,D € & are two full commutative small C*-categories (with the same cardinality of the
set of objects), a morphism in the category & is an object bijective x-functor ® : ¢ — D.

For later usage, recall from [GLR, Definition 1.6] and [M, Section 4] that a closed two-
sided ideal J in a C*-category € is always a x-ideal and that the quotient €/J has a natural
structure as a C*-category with a natural quotient functor = : ¢ — €/J. We have this
“first isomorphism theorem”, whose proof is standard.

Theorem 2.2. Let ® : € — D be a *-functor between C*-categories. The kernel of ®
defined by ker ® := {x € C | ®(z) = 0} is a closed two-sided ideal in C and there exists a
unique *-functor ® : C/ker ® — D such that ® ow = ®. The functor & is faithful if and
only if the functor ® is injective on the objects and it is full if and only if ® is full.

Recall (see [GLR, Definition 1.8]) that a representation of a C*-category C is a *-functor
® : € — H with values in the C*-category H of bounded linear maps between Hilbert spaces.

Lemma 2.3. A one-dimensional C*-category C, admits at least a *-functor v : € — C.

Proof. Fix an object A € Obe and the representation ® : € — H given by “left composition”:
®p := Cpa, B € Obg, and for all x € Cep, Pp LR Oo given by @,(¢) := z¢, for
all £ € ®p. The Hilbert spaces g = Cpa are one-dimensional and choosing normalized
vectors £g € P, with £4 := 14, provides isomorphisms Tg : & — C.

The map v : x +— det(Tg o D, 0 TE,l) for all x € Ccp is the required x-functor. O

3 Category .7 of full topological spaceoids

‘We now proceed to the identification of a good category 7 of “spaceoids” playing the role of
horizontal categorification of the category of continuous maps between compact Hausdorff
topological spaces. Making use of Gel’fand duality (see e.g. [L, Section 6]) for the diagonal
blocks C44 and (Hermitian) Serre-Swan equivalence (see e.g. [BCL2, Section 2.1.2] and
references therein) for the off-diagonal blocks €4p of a commutative full C*-category C,
we see that the spectrum of € identifies an equivalence relation embedded in the Picard
groupoid of Hermitian line bundles over the Gel’fand spectra of the diagonal C*-algebras
Ca4. Finally, reassembling such block-data, we recognize that, globally, the spectrum of a
commutative full C*-category can be described as a very special kind of a Fell bundle that
we call a full topological spaceoid. Fell bundles over topological groups were first introduced
by J. Fell [FD, Section I1.16] and later generalized to the case of groupoids by S. Yamagami
(see A. Kumjian [Ku] and references therein) and to the case of inverse semigroups by
N. Sieben (see R. Exel [E, Section 2]). These notions admit a natural extension to that of a
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Fell bundle over an involutive inverse category' that we systematically adopt below,
see [BCL2, Section 4.2.1] for more details. For the definition of a Banach bundle we refer to
J. Fell-R. Doran [FD, Section 1.13].

Definition 3.1. A Fell bundle (&, 7,X) over an involutive inverse category X is a Banach
bundle that is also an involutive category & fibered over the involutive category X with con-
tinuous fiberwise bilinear compositions and fiberwise conjugate-linear involutions such that
llefll < llell - [I£]l for all composable e, f € &, |le*e| = |le||* for all e € € and e*e is a positive
element in the C*-algebra Ex(cxey :={f | 7(f) = m(e*e)}.

Definition 3.2. A topological spaceoid (or simply a spaceoid, for short) (€,m,X) is a
unital rank-one Fell bundle over the product involutive topological category X := Ax X Rp
where Ax = {(p,p) | p € X} is the minimal equivalence relation of a compact Hausdorff
space X and Ro := O x O is the mazrimal equivalence relation of a discrete space O.

With a slight abuse of notation, the points of the base involutive category X of a full spaceoid
will simply be denoted by pag := ((p,p), (4, B)) € Ax x Re.

Note that, since a constant finite-rank Banach bundle over a locally compact Hausdorff
space is locally trivial [FD, Remark 1.13.9] and hence a vector bundle, a topological spaceoid
is a Hermitian line bundle over X and is a disjoint union of the Hermitian line bundles
€aa =1 1(Ax x {AA}). Furthermore a topological spaceoid is always a one-dimensional
C*-category that is a disjoint union of the “continuous field” of the full one-dimensional
C*-categories &, := 7 1({(p,p)} x Rp) for all p € X.

A morphism of spaceoids? (f,F): (€1,71,X1) — (€, 72, Xs) is a pair (f, F) where:

o f:=(fa,fr) with fa : A; — As being a continuous map of topological spaces and
fr : Ry — Ro an isomorphism of equivalence relations;

o F: f*(€) — &1 is a fiberwise linear continuous #-functor such that 7 o F = 775,

where (f*(€2),7],X;) denotes the standard f-pull-back? of (£, w2, Xs).
Topological spaceoids constitute a category if compositions and identities are given by

(9.G) 0 (f,F):=(go [, Fof(G)o0s%) and  u&mX):= (ix, k),

where 65} :(go f)*(E3) — f*(g°(€3)) is the natural isomorphisms between standard pull-
backs given by 7% (x1,e3) := (w1, (f(21), €3)), for all (z1,e3) € (g0 f)*(E3).

4 The section functor I

Here we are going to define a section functor I' : 7 — & that to every spaceoid (&, 7, X),
with X := Ax x Rg, associates a commutative full C*-category T'(€) as follows:

L] Obp(g) = O;

1By involutive category we mean a category X equipped with an involution i.e. an object preserving
contravariant functor * : X — X such that (z*)* = z for all z € X. If X has a topology we also require
composition and involution to be continuous. X is an involutive inverse category if zz*x = «x for all z € X.

2Morphisms of spaceoids can be seen as examples of J. Baez notion of spans (in this case, a span of the
Fell bundles of the spaceoids).

3Recall that f*(&2) := {(pap,e) € X1 x & | f(pap) = m2(e)} with fo ﬂ'g = 7y o f™ where
ﬂg(pAB,e) :=pap and f2(pap,e) :=e. If € is a Fell bundle over Xz, f®(€2) is a Fell bundle over X;.
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e VA, B € Obpegy, Hompe)(B,A) :=T(Ax x{(4,B)}; &), where I'(Ax x {(A, B)}; €)
denotes the set of continuous sections o : Ax X {(4,B)} = &, 0 : pap — CT?B €t
of the restriction of € to the base space Ax x {(A,B)} C X.

PAB

e for all 0 € Homp(g)(A, B) and p € Hompg) (B, C):

)AC BC

poa:pac (po0a)) = pP oo,

o :pga+ (0" )5’4 = (0;043) ,
o]l = Sup o7l
pe

with operations taken in the total space € of the Fell bundle.

We extend now the definition of I' to the morphism of 7. Let (f, F) be a morphism
in 7 from (&1,m,X1) to (E2,m2,X3). Given o € T'(€3), we consider the unique section
fe(o) : X1 — f*(€2) such that f™ o f*(0) = o o f and the composition F o f*(¢). In this
way we have a map

Lig,r): D(E2) = T(E1), Tp7):0—Fof*(o), Voel(E).

Proposition 4.1. For any morphism (€1, m1,X1) WA, (E9,m2,X2) in the category T, the

map F(f 7y : I'(€2) — I'(€1) is a morphism in the category < .
The pair of maps I' : (€, 7,X) = T'(€) and I : (f, F) — Ty, 7) gives a contravariant functor
from the category 7 of spaceoids to the category & of small full commutative C*-categories.

Proof. Let (€1,m1,X;) —— L7,

posable morphisms in the category & and let (&, 7, X)
morphism of (&, 7,X). To complete the proof we must show that

(Eg,m2,X3) and (82,71'2,%2) (83,%3,9&,) be two com-
ﬁ’“—Ll—L (&,7,%) be the identity

L, 0)0r,7) =g 7 0lg,0)y Tw,ug) = trce),

and these are obtained by tedious but straightforward calculations. O

5 The spectrum functor X

This section is devoted to the construction of a spectrum functor X : &/ — 7 that to
every commutative full C*-category € associates its spectral spaceoid 3(C).

Let € be a C*-category, we denote by R¢ the topologically discrete *-category /€ ~ Rop,
and by CR® := p*(C) the one-dimensional C*-category pull-back of C (considered as a
C*-category with only one object ) under the constant map p : R® — {e}. Note that
from the defining property of pull-backs there is a bijective map w +— @ between the set of
C-valued *-functors [C; C] and the set of CR®-valued *-functors [C; CR®].

By definition two s-functors wi, we in [C;C] are unitarily equivalent if there exists a
“unitary” natural transformation A — v € T between them.

Note that the set J,, := {z € C | w(z) = 0}, which is also equal to {x € € | w(z*z) = 0}, is
an ideal in € and J,,, = J,, if (and only if) the equivalence classes [w1] and [ws] coincide.
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We also need the following lemmas whose routine proof are omitted:*

Lemma 5.1. If w,w’ € [€;C] are unitarily equivalent, there is a unique map ¢ : R® — T
such that W'y = Yap -wap for all AB € R® and the map 1 : AB v hap is a *-morphism:

VYappe =Yac, VYap=vg4 Yaa = lc. (5.1)

Conversely, given a x-morphism ¢ € [R®;T|, two *-functors w,w' such that W'y 5 = Yapwap
are unitarily equivalent.

Lemma 5.2. Every object preserving *-automorphism ~ of the C*-category CR® is given
by the multiplication by an element ¥ € [R®; T i.e. y(x) = Yap - = for all x € (CR®) 4.

Proposition 5.3. Two *-functors w, w' € [C;C] are unitarily equivalent if and only if
waa = wy, for all A € Obe.

Proof. By lemma 5.1, if [w] = [w'], then w4 4 = 44 -waa = waa, for all objects A.

Let w,w’ € [€; C] and suppose that was = w’y 4, for all A € Obe. Consider the corresponding
CRC-valued *-functors @, @’ € [€;CR®]. Note that Ker(@) = J,, = J,» = Ker(@') and
hence, wap,wap are nonzero if and only if w/y 5, &’ 5 are nonzero. If wap is nonzero for all

AB € R¢, by theorem 2.2 we have two *-isomorphisms €/ Ker(w) - CR® & C/ Ker(w').
From lemma 5.2 there is a ¢ € [R®; T] such that &’ = 1/ - & and hence also w’ = 1 - w so that
the proposition follows from lemma 5.1.

To eliminate the restriction w4p is nonzero for all AB € R®, note that by Zorn’s lemma,
every object of € is contained in family . C Obe, maximal under inclusion, such that wyp
is nonzero for every pair of A, B € .%/. Any pair .¥1,.% of such maximal subfamilies are
“disjoint” i.e. for any pair of objects A € .7 and B € .%, we have that w(Cap) = {0}.
Each maximal subfamily .# determines a full subcategory of € and from above we can choose
phases v4 for all A € . such that ¢ap = VAI/]§1 for all A, B € . Now for every pair
A e S, B € ¥ in disjoint maximal subfamilies, defining ¥ap = VAz/gl is a perfectly
compatible choice since w’'(2) = Yapw(z) for all z € Cyp. O

Proposition 5.4. The set [C; C] of C-valued x-functors w : € — C, with the weakest topology
making all evaluations continuous, is a compact Hausdorff topological space.

Proof. Note that for all w € [€;C] and for all x € Cap,

w(@)| = \Jw(z)w(@) = Vw(z*z) = Vwaalr*e) < Ve a] = V]2l = |z,

because wa4 is a state over the C*-algebra C44. Hence [C; C] is a subspace of the compact
Hausdorff space [],ce Djjz||, Where D, is the closed ball in C of radius [|z||. The rest of
the proof follows from the same argument for the Banach-Alaoglu theorem. O

Let Spy(€) := {[w] | w € [€;C]} denote the base spectrum of €, defined as the set of unitary
equivalence classes of x-functors in [C; C]. It is a compact space with the quotient topology
induced by the map w — [w]. To show that Sp,(C) is Hausdorff it is enough to note that,
by proposition 5.3, if [w] # [w'], there exists at least one object A such that waa # Wy 4 and
so there exists at least one evaluation ev, with € C44 such that ev,(w) # ev,(w’). Since,
for x € Caa, ev, is well-defined on the quotient space Sp,(C), the result follows.

4Note that, for w € [€;C] and A, B € Obg, we denote by wap the restriction of w to Cap.
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Proposition 5.5. Let C be a full commutative C*-category. For all A € Obe, there exists
a natural bijective map, between the base spectrum of C and the usual Gel’fand spectrum
Sp(Caa) of the C*-algebra Caa, given by the restriction |aa : w — wle, -

In particular, for all objects A € Obe, one has Spy(C)|aa = Sp(Caa) ~ Spy(Ca4).

Proof. By proposition 5.3, the correspondence [w] — w44 is functional.

We show that the map [w] — wa4 is injective. Given w,w’ € [C;C] with ways = Wy 4, we
know from [BCL3, Proposition 2.30], that wpp(r) = waa(dap(z)), for all z € Cpp, for
all B € Obe, where ¢pap : Cpp — Caa is the canonical isomorphism associated to the
imprimitivity bimodule € 4. It follows that wpp = waa 0 dap = w4 0 dap = Wy, for all
B € Obe and, by proposition 5.3, we see that [w] = [w].

We show that the function [w] — w44 is surjective.

Given w® € Sp(C4.4), consider the set J := Ugceredpe, with Jpp = ¢pa(Ker(w®)) and
dec = ICpc = {Zjvzl bjzj | b; € Igp, x; € Cpe, N € Ny} where, as defined
in [BCL3, Sections 2.2-2.3], ¢pa : €44 — Cpp is the canonical isomorphism induced by
the imprimitivity bimodule €4p5. Making use of [BCL3, Theorem 2.24] and [BCL3, Propo-
sition 2.29], we have ijﬂjj = ij¢CB(bj) = ij¢CA(¢AB(bj)) € Cpcdec and hence
dBBCBc = Cpcdcc, for all B,C € Obe. Clearly, it follows that, for all B,C, D € Obeg,
dscdcp =38BCBcCepdpp C dccCrpdIpD C 3BD) I3 = (3BBCBC)* = CorIBB =dCB
and hence J is an involutive ideal in € (actually the ideal generated by Ker(w?)).

The quotient C*-category €/J is one-dimensional. In fact, by [BCL3, Proposition 2.27],
Cpc/dpe is an imprimitivity bimodule over the one-dimensional C*-algebras Cpp/dpp =~
C ~ Ccc/dcc and hence it becomes a Hilbert space that is necessarily one-dimensional
because, if this is not the case, we can find two different orthonormal vectors x,z € H and
then the imprimitivity, with y := x4z, implies the contradiction z = (z | y)z = z(y | 2) = «.
By lemma 2.3 there exists at least one C-valued x-functor v : €/J — C whose restriction to
Caa/daa is the canonical isomorphism with C (since €4 :=t4).

Composing the quotient *-functor = : € — €/J with the chosen *-functor v : ¢/d — C, we
obtain a C-valued *-functor w := yomw : € — C. Clearly wa 4 coincides with w® because they
are two states on the unital C*-algebra €44, with the same kernel ideal J 4.

Since |44: [w] — w®, the surjectivity of the map |44 is proved. O

Theorem 5.6. Let C be a full commutative C*-category. For every A € Obe, the bijective
map |aa : Spp(C) — Sp(Caa) given by [w] — waa is a homeomorphism between Spy(C) and
the Gel’fand spectrum Sp(Caa) of the unital C*-algebra Ca4.

Proof. Since both Sp,(€) and Sp(€C44) are compact Hausdorff spaces, and the map |44 is
bijective, it is enough to show that |44: Spy(€) — Sp(Ca4) is continuous. Since Sp,(C) is
equipped with the quotient topology induced by the projection map 7 : [C;C] — Sp,(C),
the map |44 is continuous if and only if |44 om : [C;C] — Sp(Ca4) is continuous. The
spaces [C;C] and Sp(Ca4) are equipped with the weakest topology making the evaluation
maps continuous. It follows that the continuity of |44 o7 is equivalent to the continuity of
ev, = ev, 0 g4 om : [C;C] — C for all z € C44. Since ev, : [C;C] — C is continuous, the
result is established. O

Let X¢ := A€ x R® be the direct product equivalence relation of the compact Hausdorff
x-category A® := Agp, () and the topologically discrete x-category RE 1= €/C ~ Rope -
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With a slight abuse of notation, we write AB € R® for the point C45/Cap in R®. Denoting
by [w]ap the point ([w], AB) = ([w],Cap/Cap) € XC, we define:

¢

o e L AB e . e
j[w]AB = jwﬂeAB7 E[W]AB — 73 5 8 — + 8[UJ]AB'
[W]AB [w]ABEDCe

Proposition 5.7. The map 7%: €% — X, sending an element e € EEU]AB to the point

[wlap € X¢, has a natural structure of a unital rank-one Fell bundle over the topological
involutive inverse category X°.

Proof. The topology on ¢ whose fundamental system of neighbourhoods are the sets
ero’6 ={e€ &% Jz,m9 € C:2(n%(e)) = e,20(7%(e0)) = €0, ¥p € O,||2(p) — 20(p)| < &},
where ey € €°, O is open in X¢, € > 0 and & denotes the Gel’fand transform of = defined in
section 6.1, entails that a net (e,,) is convergent to the point e in €% if and only if the net
7€(e,,) converges to 7¢(e) in X¢ and there exists a net of Gel'fand transforms £,,, “passing”
in ey, that uniformly converges, on a neighbourhood of 7%(eo), to a Gel'fand transform &
“passing” in eg.

With such a topology the (partial) operations on € i.e. sum, scalar multiplication, product,
involution, inner product (and hence norm) become continuous and (€€, 7€, X®) becomes a
Banach bundle.

Since every equivalence relation in X¢ is a disjoint union of “grids” {[w]} x R® whose inverse
image under 7¢ is the one-dimensional C*-category €/ Ker(w), (€€, 7%, X®) is a rank-one
unital Fell bundle over the equivalence relation X¢ and hence a spaceoid. O

To a commutative full C*-category € we have associated a topological spectral spaceoid
Y(C) = (%,7%,X%). We extend now the definition of ¥ to the morphism of /. Let
® : € — D be an object-bijective x-functor between two small commutative full C*-categories

P @
with spaceoids X(€), X(D) €  and define a morphism %% : %(D) QA7) 2(C) in the
category .7 as follows.

D D
DR DN X€ where AP RP — RC is the isomorphism of equivalence relations given
by A2 (AB) := ®~1(A)®~1(B), for AB € R?, and where A% : AP — A€ (since w — wo® is
continuous and preserves equivalence by unitary natural transformations) is the well-defined
continuous map given by A% ([w]) := [w o ®] € A®, for all [w] € AP.

eAg;(AB)

The bundle |, , with the maps

D
BEXT I\ (wlsp)

7 (Wlag, 4D (wjap) = Wlas €XT, =€ Chaiap),

O™ (Wlas, T+ Dxa(ujan) — AT (W]an), @ + Ixe(w]ap)) € E

is the standard A?-pull-back (A®)®*(€®) of the Fell bundle (£¢,7¢,X°).
Since ®(Ixe ((wap)) C Jwlap for [W]ap € XP, we define A® : (A?)*(E€) — P by

Aé(MAB, x+ me]m) = ([W]AB, O(z) + JMAB).

Proposition 5.8. For any morphism C 2, Din <f , the map X(D) = (@) is a morphism
of spectral spaceoids. The pair of maps ¥ : € +— %(C) and ¥ : ® — %% give a contravari-
ant functor ¥ : of — 7, from the category < of object-bijective x-functors between small
commutative full C*-categories to the category 7 of spaceoids.
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Proof. We have to prove that ¥ is antimultiplicative and preserves the identities.
Ifd:C — Cy and ¥ : Cy — C3 are two #-functors in 7, by definition,

DY — (\Vod pVod) _ ()\{)O)\\I/ A¥o(AY) (Aé)o@)\q) /\\P) = (A%, A?)o(\Y,AY) = D%oxY.

Also, if 1 : € — C is the identity functor of the C*-category €, then the morphism
Yte = (A€ Ate) is the identity morphism of the spaceoid £(C). O

6 Horizontal Categorification of Gel’fand Duality

6.1 Gel’fand Transform

For a given C*-category C in &/, we define a horizontally categorified version of Gel’fand
transform as Ge : € — I'(X(C)) given by e : © — & where é‘:ﬁf =24+J,,,, VYV €Cpa.
Clearly &¢ : € — I'(2(C)) is an object bijective *-functor.

Proposition 6.1. The Gel’fand transform ®e : € — I'(E®) of a commutative full C*-cate-
gory € is an isometric (hence faithful) x-functor.

Proof. The maps © + Iy, — |2 4+ Jupsll and z + I, — |w(z)| coincide (because they
are two norms on the same one-dimensional Banach space that coincide on the element
tB+Jdwsp) lfx € Cap with A # B, then

2+ Jwas | = V(@ + Jwa)* (@ + Jua) | = Vlz*a +Tup, | = Viw(e2)| = |w(@)]. (6.1)

Furthermore, since C(Sp(Cpp);C) is canonically isomorphic to I'(2(Cpp)), by the usual
Gel’fand theorem applied to the commutative unital C*-algebra Cpp, we know that

lz*zllrsesn)) = 17*2lospess)) = 127 2lless = |27 7]le. (6.2)

The isometry of Ge is obtained from the following computation for all z € C4p:

[#lresey = sup 357 lee = Sup 7+ Juapllee = sup fw(z)]
wlea wlea wleas

1/2 . 1/2
= ( sup w(m*x)) = ( sup x*x(w)) by proposition 5.5

[wleA® w€eSp(CrR)
1/2
= @ zll ey = 1772l = [2]e.

O

Lemma 6.2. Let C and C° be full commutative C*-categories and suppose that C° is a
subcategory of C such that C% 4 = Caa for all A € Obe = Obeo. Then C%Yp = Cap for all
A, B € Obe.

Proof. By the fullness of the bimodule 4C% there is a sequence of pairs u;,v; € 4C4 such
that tp = EJ 1 jv] We have © = zi3 = sz LUy = Z; (wuf)v; € 4CG for all
z € A€, because zuj € 4Ca = 4€9 and so (xu Jv; € 4C% for all j. O

Theorem 6.3. The Gel’fand transform e : C — T'(X(C)) of a commutative full C*-category
C is a full isometric (hence faithful) x-functor.

10
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Proof. The isometry (and faithfulness) of the x-functor ¢ is proved in proposition 6.1. The
“image” &e(C) of Ge is a subcategory of the commutative full C*-category I'(€) that is
clearly a commutative full C*-category on its own. By lemma 6.2, the *-functor G is full
as long as Be(Ca4) =T'(E) a4, for all objects A € Obe. The last statement follows from the
fact that the Gel’fand transform &¢, when restricted to any “diagonal” commutative unital
C*-algebra C4 4 can be “naturally identified” with the usual Gel’fand transform of €44 via
the homeomorphism [w] — w|s4 (see proposition 5.5 and theorem 5.6). O

6.2 Evaluation Transform

For every topological spaceoid (€, m,X) we define a horizontal categorified version of eval-

& &
uation transform &g : (€, 7, X) e, Y(I'(€)) as follows:

o 1% : Ro — R'®) is the canonical isomorphism Ro = Roby. ., ~ T'(€)/T(€), explicitly:
n&%(AB) :=T(&)ap/T(€)ap, VAB € Rp that is, according to the running notation,
written as an identity map n%(AB) = AB € RU'(®),

e 7% 1 Ax — AT is given by n& :p— [ypoevy] Vp € Ax, where the evaluation map
evy 1 I'(€) = WaB)ery Epap given by evy, : g U;‘B is a #-functor with values in a
one-dimensional C*-category that determines® a unique point [, o ev,] € Agy,, (r(e))-

e W, ex L(€)ne (aB)/Tye (pap) With the natural projection (pas, 0+Jye(pap)) > PaB;
and with the ")-valued map (pap, o + Tne is the standard
n€-pull-back (n€)*(EX@) of X(T(€)).

pAB)) = o+ JWS(PAB)’

o Q% (n®)*(eF®) — & is defined by Q¢: (pap, o +7,
Vpap € X.

8(PAB)) — J;?B, Yo € F(S)AB,

In particular, with such definitions we can prove:

Theorem 6.4. The functor ¥ : &/ — T is representative i.e. given a spaceoid (&, 7,X),
the evaluation transform €g : (€, m,X) — X(T'()) is an isomorphism in the category of
spaceoids.

Proof. Note that (€ 44,7, X) is naturally isomorphic to the trivial C-bundle over X and thus
there is an isomorphism of the C*-algebras I'(€) 44 and C(X) that “preserves” evaluations.
The map 7 is injective. In fact, if p # ¢, by Urysohn’s lemma, there is a section o € I'(€) a4
such that Wp(az‘f‘A) # Yy (0{14‘4) for some (and thus for all) A € O, which implies n& (p) # n& (q)
by proposition 5.3. To see that n§ is surjective, let [w] € Spy(I'(€)). Then its restriction
waa: T'(E)aa — C does not depend on the choice of the representative w € [w]. Any pure
state on C(X) coincides with an evaluation at a point p € X, so that waa(o) =v,(c(p)) =
7, 0 ev, (o), which implies 7§ (p) = [w].

Since 7]2 : Ax — AT(®) is a bijective map between compact Hausdorff spaces, to prove that

7}2 is a homeomorphism, it is enough to show that 772 is continuous.

For this purpose, consider the set [['(€)44;Ea4] of fiberwise linear x-functors from the
C*-algebra I'(£) 44 to the total space €44 of the block AA of the spaceoid and consider on
it the weakest topology making the evaluation maps ev, : [['(€) 44;E44] — €44 continuous,

5By lemma 2.3, there is always a C-valued *-functor 7, : & — C and by proposition 5.3 any two
compositions of ev, with such x-functors are unitarily equivalent because they coincide on the diagonal
C*-algebras Ep , 4 -

11
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for all o € T'(§)aa. With this topology, the map evaa : Ax — [['(€)aa;Ea4], given
by evaa : p — evp,,, is continuous. Let y44 : €44 — C be the disjoint union of the
canonical isomorphisms of one-dimensional C*-algebras v,,, : £€,,, — C and note that
it is continuous. The map L.,, : [I'(€)aa;€aua] — T(€)aa;Cl, Ly, : ® — yaa0®
is continuous because, for all 0 € I'(E)aa and all ® € [I'(€)aa;Ea4], evyoL,, ,(P) =
vaa © P(0) = yaa 0 evy(P) and y44 0 ev, is a continuous function of ®. Clearly the map
Ca: Ax — Sp(T(€)aa) given by Ca(p) == a4 0 n&(P) = Vpas ©Vpaa = Loysn 0 evaa(p) is
continuous and so is n§ = |34 0 Ca.

For every element e € £, we have 7(e) € Ax x Re and, since a spaceoid is actually a vector
bundle, it is always possible to find a section o € I'(€) such that o) = e. For any such
section we consider the element o + J,& (o)) € T'(€)/Tpe (n(e)) = 85&8(;(6)) (note that the
element does not depend on the choice of o € I'(€) such that o) = e) and in this way
we have a map © : & — €' by © : e = 0 + J,¢ (n(c))- The map © uniquely induces a
morphism of Fell bundles Z€ : & — (n®)*(EV(®)) with the standard n€-pull-back of E'(®)
given by Z¢(e) := (7(e),O(e)). By direct computation the map Z¢ is an isomorphism of
Fell bundles whose inverse is Q¢ and hence the evaluation transform ¢¢ := (n¢ Q¢) is an
isomorphism of spaceoids. The continuity of 0€ is equivalent to that of Q¢ : M€ — ¢,
Q% (0 + T (pap)) = 03B, with o € ['(€)ap. Given a net j — o’ + Jyeqp ) in ere)
ABJ

converging to the point o +J,¢,, ) in the topology defined in proposition 5.7, without loss
of generality we can assume that j — o7 is uniformly convergent to ¢ in a neighbourhood
U of n¢(pap). This means that, for all € > 0, eventually in 7, |07 ([w]ap) — o([w]aB)| < €
for [w]ap € U. Since RF (€) is discrete, the net AB’ is eventually equal to AB and since 7

i~s a hpmeomorphism, P’y B eventually lies in any neighbourhood of psp and hence the net
Q¢ (07 + J,e (pi‘Bj)) = (J]);‘jBJ converges to (o + ¢ (,,,)) = 058 in the Banach bundle

pPAB

topology of €. Since Q¢ is an isometry, it follows from [FD, Proposition 13.17] that its
inverse is continuous too. O

6.3 Duality

Theorem 6.5. The pair of functors (I',X) provides a duality between the category T of
object-bijective morphisms between spaceoids and the category <7 of object-bijective x-functors
between small commutative full C*-categories.

Proof. To see that the map & : C — &e (that to every € € Ob,, associates the Gel’fand
transform of €) is a natural isomorphism between the identity endofunctor Z., : & — &7
and the functor I'o ¥ : & — & we have to show that, given an object-bijective *-functor

®: € — €y, the identity I'ye (B¢, (7)) = Be,(®(z)) holds for any = € Cy.

Se,

€ ——=T(X(C))

‘Dl \Ll—‘z@
Be,

[w2]

= AP ([walauBas 7+ In0 alaysy) ) = ([W2)aa8a @(@) + T, ) = Bea(@@)){2.

T (e, (0)277 = A% ((X")*(@)277) = A% ([wal aa e 3O (2] 125)) )

12



102

To see that the map € : € — €¢ (that to every spaceoid (&, m,X) associates its evaluation
transform €¢) is a natural isomorphism between the identity endofunctor Z5 : 7 — 7 and
the functor X oT' : J — J we must provide, for any given morphism of spaceoids (f, F)
from (€1, m1,X1) to (2,7, Xs), the commutativity of the diagram:

€e,=(n1,0%1)
(&1, 1, X1) — S(0(E1))

(ff)l J{zﬁfﬂ:(fu,ﬂ ATGEF))
€e,=(n°2,0%2)
(E2,m2, X2) 2 B(L(E2)).

The proof amounts to showing the equalities

ANumon® =pf2o f, Q% o (n®)*(A'¢P) 0 O1 = Fo f(2°2) 0 Oy, (6.3)
L aelE) el
where ©1 := @/\F(f;) e Oy = @7752’; .

Since for every point pap € X1, we have Al ¢® on®1(pap) = ([ypoevy, ol (4 7)), fr(AB)) and
né2of(pap) = ([v¢myoevmls fr(AB)), the first equation is a consequence of proposition 5.3.
The second equation is then proved by a lengthy but elementary calculation. O

The usual Gel’fand theorem is easily recovered identifying a compact Hausdorff topological
space X with the trivial spaceoid (Ax x {(e,)}) x C.

7 Outlook

We have introduced commutative C*-categories and started a program for their “topological
description” in terms of their spectra, here called spaceoids.

In particular, we have obtained a Gel’fand-type theorem for full commutative C*-categories.
Although the statement of the main result (theorem 6.5) looks extremely natural, our proofs
mostly rely on a “brute force” exploitation of the underlying structure and more streamlined
arguments are likely to be found. Also, the result by itself is not as general as possible and
certainly it leaves room for extensions in several directions, still hopefully we have provided
some insight about how to achieve them.

For instance, we have only considered the case of #-functors between (full, commutative)
C*-categories that are bijective on the objects. (Of course, this trivially includes morphisms
between C*-algebras). In the next step, one would like to treat the case of *-functors that
are not bijective on the objects. We believe this should not require significant modifications
of our treatment and possibly it could be dealt with using relators (that we introduced
in [BCL1]).

Perhaps a more important point would be to remove the condition of fullness. At present
we have not discussed the issue in detail, but certainly the information that we have already
acquired should significantly simplify the task.

Also, along the way, we have somehow taken advantage of our prior knowledge of the Gel’fand
and Serre-Swan theorems. Eventually one would like to provide more intrinsic proofs directly
in the framework of C*-categories (possibly unifying and extending both Gel’fand and Serre-
Swan theorems in a “strict *-monoidal” version of Takahashi theorem [T1, T2]). In this
respect, it looks promising to work directly with module categories. Besides, it is somehow
disappointing that to date, for X and Y compact Hausdorff spaces, there seems to be no
available general classification result for C(X)-C(Y")-bimodules.

13
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The case of non-imprimitivity C*-bimodules should definitely play a role when discussing a
classification result for generally non-commutative C*-categories, possibly along the lines of
a generalization to C*-categories of the Dauns-Hofmann theorem for C*-algebras [DH]. One
might also explore possible connections with the non-commutative Gel’fand spectral theorem
of R. Cirelli-A. Mania-L. Pizzocchero [CMP] and the subsequent non-commutative Serre-
Swan duality by E. Elliott-K. Kawamura [Ka, EK]. Similarly, it might be very interesting to
investigate the connections between our spectral spaceoids and other spectral notions such
as locales and topoi already used in the spectral theorems by B. Banachewki-C. Mulvey [BM]
and C. Heunen-K. Landsmann-B. Spitters [HLS].

In the long run, one would like to (define and) classify commutative Fell bundles over suitable
involutive categories. The notion of a Fell bundle could be even generalized to that of a
fibered category enriched over another (x-monoidal) category.

Needless to say, one should analyze more closely the mathematical structure of spaceoids,
introduce suitable topological invariants, study their symmetries, ..., and investigate re-
lations to other concepts that are widely used in other branches of mathematics, e.g. in
algebraic topology/geometry as well as in gauge theories. Some geometric structures could
become apparent when considering the representation of spaceoids as continuous fields of
(one-dimensional commutative) C*-categories as discussed by E. Vasselli in [V].

The Gel’fand transform for general commutative C*-categories raises several questions (un-
doubtedly it could be defined for more general Banach categories, leading to a wide range
of possibilities for further studies).

In particular, an immediate application would yield a Fourier transform and accordingly a
reasonable concrete duality theory for “commutative” discrete groupoids (see M. Amini [A]
for another approach that applies to compact but-not-necessarily-commutative-groupoids
and T. Timmermann [Ti] for a more abstract setup).

As far as we are concerned, our main motivation to work with C*-categories came from
analysing the categorical structure of non-commutative geometry (where morphisms of “non-
commutative spaces” are given by bimodules) and one is naturally led to speculate about the
possible evolution of the notion of spectra and morphism in A. Connes’ non-commutative
geometry (cf. [BCL1, BCL2, CCM)). In this direction, some of the first questions that come
to mind are:

Is there a suitable notion of spectral triple over a C*-category?
Is it possible to consider a horizontal categorification of a spectral triple?

Of course this represents only the starting point for a much more ambitious program aiming
at a “vertical categorification” of the notion of spectral triple® and from several fronts (see
for example [DTT] and also the very detailed discussion by J. Baez [B] on the weblog “The
n-category café”) it is mounting the evidence that a suitable notion of non-commutative
calculus necessarily require a higher (actually oo) categorical setting.

In this respect, it seems reasonable to look for a Gel’fand theorem that applies to (strict) com-
mutative higher categories (cf. [Ko]). A suitable definition of strict n-C*-categories (cf. [Z]
for the case n = 2) and the proof of a categorical Gel’fand duality (at least for “commutative”
full strict n-C*-categories) are topics that have recently attracted our attention [BCLS].

Finally, in this line of thoughts, one could envisage potential applications of a notion of
Gromov-Hausdorff distance (cf. [R]) for C*-categories.

6The need for a notion of “higher spectral triple” has been already advocated by U. Schreiber [S].
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Abstract
After recalling in detail some basic definitions on Hilbert C*-bimodules, Morita equiva-
lence and imprimitivity, we discuss a spectral reconstruction theorem for imprimitivity
Hilbert C*-bimodules over commutative unital C*-algebras and consider some of its
applications in the theory of commutative full C*-categories.
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1 Introduction

A. Connes’ non-commutative geometry [C] is the most powerful incarnation of R. Descartes’
idea of trading “geometrical spaces” with commutative “algebras of coordinates” and it is
based on the existence of suitable dualities between categories constructed from commutative
algebras and categories of their “spectra”. The most celebrated example is I. Gel’fand-
M. Naimark theorem (see e.g. [B, Theorem I1.2.2.4]) asserting that, via Gel’fand transform,
a unital commutative C*-algebra A is isomorphic to the algebra of continuous complex-
valued functions on a compact Hausdorff topological space, namely the spectrum of A. In
this way a commutative unital C*-algebra can be reconstructed (up to isomorphism) from
its spectrum.

The equally famous Serre-Swan theorem (see e.g. [K, Theorem 6.18]) permits the reconstruc-
tion, up to isomorphism, of a finite projective module over a commutative unital C*-algebra
from a spectrum that turns out to be a finite-rank complex vector bundle over the Gel’fand
spectrum of the C*-algebra. When we restrict to the case of Hilbert C*-modules over com-
mutative unital C*-algebras, Serre-Swan theorem admits a more powerful formulation, Taka-
hashi theorem [T'1, T2, W], with spectra given by Hilbert bundles over compact Hausdorff
spaces.

*Partially supported by the Thai Research Fund: grant n. RSA4780022.
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The purpose of this paper is to start the development of a spectral reconstruction theorem
for suitable bimodules over commutative unital C*-algebras, i.e. a “bivariant version” of
Takahashi and Serre-Swan results, considering for now the case of imprimitivity Hilbert
C*-bimodules.

In order to make the result almost completely self-contained, we precede the discussion of
our spectral theorem with a detailed treatment of basic facts on imprimitivity C*-bimodules
and Morita equivalence including an explicit construction of a natural isomorphism between
a pair of C*-algebras associated to a given imprimitivity Hilbert C*-bimodule over them.
Our main result is that the spectrum of an imprimitivity Hilbert C*-bimodule over two
commutative unital C*-algebras is described by a Hermitian line bundle over a compact
Hausdorff space that is the graph of a canonical homeomorphism between the Gel’fand spec-
tra of the two unital C*-algebras i.e. every imprimitivity Hilbert C*-bimodule is isomorphic
to a suitably twisted bimodule of sections of this “spectral” Hermitian line bundle.

We will also collect together some facts about imprimitivity C*-bimodules in the setting
of C*-categories that provide a useful background for our study of a categorical Gel’fand
duality [BCL2] and that cannot be easily found in the literature.

The content of the paper is as follows.

In section 2, for the benefit of the readers, we recall the basic definitions and properties of
Hilbert C*-modules. In subsection 2.3 we explore some specific properties of imprimitivity
bimodules arising from C*-categories that will be crucial in the study of the categorification
of Gel'fand duality that will be undergone in [BCL2]. Section 3 contains the proof of the
spectral reconstruction theorem for imprimitivity Hilbert C*-bimodules as well as some
relevant bibliographical references to other available spectral results for C*-modules.

The complete construction of a bivariant duality, between categories of “bivariant Hermi-
tian (line) bundles” and categories of (imprimitivity) Hilbert C*-bimodules over commuta-
tive unital C*-algebras, will not be completed here (in particular there is no discussion of
the appropriate classes of morphisms and no construction of the section/spectrum functors
supporting such a duality), but it is our intention to return later to this topic.

Part of the results presented here have been announced in our survey paper [BCL1] and have
been presented in several seminars in Thailand, Australia, Italy, UK since May 2006.

2 Preliminaries on Hilbert C*-Modules

For convenience of the reader and in order to establish notation and terminology, we provide
here some background material on the theory of Hilbert C*-modules. General references are
the books by N. Wegge-Olsen [WO], C. Lance [L] and B. Blackadar [B, Section I1.7].

In the following, A, B,... denote unital C*-algebras and A, := {a*a € A | a € A} is the
positive part of the C*-algebra A.

Definition 2.1. a right pre-Hilbert C*-module Mg over a unital C*-algebra B is a
unital right module over the unital ring B that is equipped with a B-valued inner product
(x,y) — (x| y)» such that:

(zlety)s=(z|a)s +(z|y)s Vo,y,2€ M,
(z|lz-b)yg=(z]|x)sgb Vr,ye M, VbeB,
(ylays =(z|yp VYao,ye M,

(x| x)p € By VreM,

(

x| z)yg =05 =z =0y.
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Analogously, a left pre-Hilbert C*-module 4 M over a unital C*-algebra A is a unital left
module M over the unital ring A, that is equipped with an A-valued inner product M xM — A
denoted by (z,y) — alx | y). Here the A-linearity in on the first variable.

Remark 2.2. A right (respectively left) pre-Hilbert C*-module Mg over the C*-algebra B
is naturally equipped with a norm (for a proof see for example [FGV, Lemma 2.14 and
Corollary 2.15]):

[ellar := VI{z [ 2)sl, Ve M.

Definition 2.3. A right (resp. left) Hilbert C*-module is a right (resp. left) pre-Hilbert
C*-module over a C*-algebra B that is a Banach space with respect to the previous morm

|- llar (resp. all - II)-
Definition 2.4. A right Hilbert C*-module Mg is said to be full if

(Mg | M3)g :=span{(z | y)s | 2,y € M3} = B,

where the closure is in the norm topology of the C*-algebra B. A similar definition holds for
a left Hilbert C*-module.

We recall the following well-known result (see [FGV, p. 65]), whose proof is included here:

Lemma 2.5. Let Mg be a right Hilbert C*-module over a unital C*-algebra B. Then Mg
is full if and only if span{{x | y)s | z,y € Mg} = B.

Proof. If Mg is full, for any € > 0, we can find a natural number n € Ny and elements
x5,9y; € M, with j =1,...,n, such that

n

1Y (@ | yj)s — Lslls < e

Jj=1

Taking € < 1, we see that Z?:1<37j | y;)® is invertible i.e. there exists an element b, in B
such that (327 (z; | y;)s)be = 1. Hence >0 (z; | yjb)s = ls, i.e. 1g is in the ideal
span{(z | y)s | z,y € Mg} that therefore coincides with B. O

We note that the notion of Hilbert C*-modules behaves naturally under quotients:

Proposition 2.6. Let M, be a right Hilbert C*-module over a unital C*-algebra A and
J C A an involutive ideal in A. Then the set MJ := {E;\f:1 zja; |x; € M, aj €J, N € No}
is a submodule of M. The quotient module M /(M3J) has a natural structure as a right Hilbert
C*-module over the quotient C*-algebra A/J. If M is full over A, also M /(M3) is full over
AJT. A similar statement holds for a left Hilbert C*-module.

Proof. Clearly M7 is a submodule of the right A-module M. It is immediately checked that
the operation of right multiplication by elements of A/J and the A/J-valued inner product
given by:

(x+M3J)-(a+7):=za+ MI, Ve+MIe M/(MI)Va+Ie A/,
(x+MI|y+ Mg :=(x|y)a+I, Ve+MI, y+MIec M/(MJI),

are well-defined so that M/(MJ) becomes a right Hilbert C*-module over A/J. Of course if
(M| M)=A, also (M/(M7J)| M/(M3J)) =A/J. O
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Definition 2.7. A morphism of right Hilbert C*-modules, from (Mgp,{- | -)g) into
(Ng, (- | )5) is an adjointable map i.e. a function T : Mg — N3 such that

35N — M, (S(@)|y)s = (| TW)s, VaeN, Vye .

Remark 2.8. It is well-known, see e.g. N. Landsman [La, Theorem 8.2.5], that an adjoint-
able map T: My — Ng between Hilbert C*-modules is necessarily continuous and B-linear:

T(xa+yb) =T(x)a+T(y)b, Vz,y€ M, Va,be B.

Furthermore, the family End(Ms) of morphisms on Mg has a natural structure of a unital
C*-algebra.

Given z,y € Mg, an operator 8, , : Mgz — Mgz of the form
Oy 2z (y|2)s (2.1)
is clearly a morphism of the right Hilbert C*-module M3 with adjoint given by 6, ,.

Definition 2.9. A finite-rank operator of the Hilbert C*-module Mg is a finite linear
combination of operators of the form 6, ,, x,y € Mg, as described in (2.1).

The family X(Ms) of compact operators of the right Hilbert C*-module Mg is by definition
the C*-subalgebra of End(Ms) generated by the finite-rank operators.

Definition 2.10. Let Mg be a right unital module over a unital ring B and let o : A — B be
a unital homomorphism of rings. The right twisted module of Mg by the homomorphism
« 1s the right unital module M, over the unital ring A with the right action defined by:

z-a:=z-ala), YreM, VaeA.
The left twisted module of 3 M by the homomorphism « : A — B is analogously defined.

Remark 2.11. If Mg is a right (pre-)Hilbert C*-module and o : A — B is an isomorphism
of unital C*-algebras, then the right A-module M, obtained by right twisting Mg by the
isomorphism « has a natural structure as a (pre-)Hilbert C*-module over A with the inner
product given by (x | y)a = a (x| y)s).

Proposition 2.12. Let a: A — B be a unital isomorphism of unital rings. Let My and
Ny be unital right modules over A and respectively B. Then ®: M4 — N, is a morphism
of right modules over A if and only if ®: M,-1 — Ng is a morphism of right B-modules.
The result holds true also when M4 and Ng are (pre-)Hilbert C*-modules and ® : My — N,
is a morphism of (pre-)Hilbert C*-modules over A.

Proof. Clearly ®(z-a) = ®(z)-a(a) if and only if ®(z-a~1(b)) = ®(x)-b. Also ® : My — N,
is adjointable, with adjoint W, if and only ® : M,-1 — Ng is adjointable with the same
adjoint: o 1({x | ®(y))n) = (¥(z) | y)a if and only if (x | ®(y))s = a({(¥(z) | y)a), for all
reN,ye M. O

2.1 Hilbert C*-bimodules and Morita Equivalence

Recall that a unital bimodule 4 Mg over two unital rings A and B is a left unital A-module
and a right unital B-module such that (a-z)-b=a-(z-b), foralla € A, b€ B and x € M.
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Definition 2.13. A pre-Hilbert C*-bimodule oMy over a pair of unital C*-algebras
A, B is a left pre-Hilbert C*-module over A and a right pre-Hilbert C*-module over B such
that:

(a-z)-b=a-(x-b) YacA, x€ M, be B, (2.2)
(x| ayys = (a"x | y)s Yo,y € M, Ya € A, (2.3)
alzb|y) = a(x | yb*) Va,ye M, Vbe B. (2.4)

A correspondence from A to B is an A-B-bimodule that is also a right Hilbert C*-module
over B whose B-valued inner product satisfies property (2.3).

A Hilbert C*-bimodule 4 Mg is a pre-Hilbert C*-bimodule over A and B that is simulta-
neously a left Hilbert C*-module over A and a right Hilbert C*-module over B.

A Hilbert C*-bimodule is full if it is full as a right and also as a left module.

A full Hilbert C*-bimodule over the C*-algebras A-B is said to be an imprimitivity bi-
module or an equivalence bimodule if:

alwly)-z=x-(y|2)s, Va,y,2€ M. (2.5)

Remark 2.14. Note that our definitions of pre-Hilbert and Hilbert C*-bimodule are not
necessarily in line with often conflicting similar definitions available in the literature: for
example, H. Figueroa-J. Gracia-Bondia-J. Varilly [FGV, Definition 4.7] and B. Abadie-
R. Ezel [AE] require pre-Hilbert C*-bimodules to satisfy condition (2.5); A. Connes [C,
Page 159] calls Hilbert C*-bimodules what we call here correspondences (in this case, only
one inner product is assumed). In an A-B pre-Hilbert C*-bimodule there are two, usually
different, norms:

mllzll = Vilale [o)lla; el = VIz [ 2)sls, Vee M.

The two norms coincide for an imprimitivity bimodule or, more generally, for a pre-Hilbert
C*-bimodule 4 Mg such that 4{x | x)x = (x| x)p, for allx € M. In fact

mllzl* = llale [ 2)1% = llalz | 2)alz | 2)]la = lalz(z | 2)s | 2)]a

<z | 2)slls - late [ 2)lla = 2l - arlll®.

Definition 2.15. A morphism of correspondences from A to B is a morphism of right
Hilbert C*-modules over B that further satisfies:

T(ax) = aT(x), Yx € M, Ya e A. (2.6)

A morphism of (pre-)Hilbert C*-bimodules is just a morphism of right and left (pre-)
Hilbert C*-bimodules.

Remark 2.16. Morphisms of correspondences are just morphisms of bimodules that are
adjointable for the right C*-module structure.

Note that in a (pre-)Hilbert C*-bimodule there are in general two different notions of left
and of right adjoint of a morphism. The left and right adjoints of a morphism coincide if
and only if a(x |y) =04 < (x| y)s = 03, for all z,y € M. This condition is true for all
full (pre)-Hilbert C*-bimodules such that

alz|y)z =y |z)s, Vr,y€ aMs. (2.7)



111

Proposition 2.17. If 4 Mg is an imprimitivity bimodule over the unital C*-algebras A
and B, the map T : A — K(M3p) given by a — Ty, where we define To(z) = a - x, is
an isomorphism of C*-algebras. Furthermore the C*-algebra of compact operators K(Ms)
coincides with the family of finite-rank operators.

Proof. Clearly T, is a morphism of the Hilbert C*-module My with adjoint given by Ti-.
The map o — T, is a unital involutive homomorphism from A to End(Mg) and so its
image is a unital C*-subalgebra of the C*-algebra End(Mg). Furthermore, from the fullness
of Mg, we see that a — T, is injective so that A is isomorphic to its image under T in
End(MB).

The image of T contains all the finite-rank operators, for if S = 3", 0,, .., with a2,y € M3,
then for all z € Mg,

S(2) =D Oup(2) = D _wlyn | 2)8 = D alwn | yr)z = Ta(2),
k k k

where o := Y, a(zk | yx). Since, by lemma 2.5, every o € A can always be written as a
finite combination o = >, a(xk | yr), we see that T, is always a finite-rank operator, and
hence the image of T' coincides with the family of finite-rank operators.

Since the closure of the finite-rank operators is the C*-algebra of compact operators K(Ms),
we see that T is an isomorphism of C*-algebras from A onto X(Mz) and that K(Msz)
coincides with the family of finite-rank operators. O

There is a natural notion of Rieffel interior tensor product between Hilbert C*-modules
and correspondences [R2]:

Proposition 2.18. Given two unital C*-algebras A, B, let M4 be a right Hilbert C*-module
over A and let 4 Ny be a correspondence from A to B. The algebraic tensor product M ® 4 N
of the right A-module M with the A-B-bimodule N is naturally a right Hilbert C*-module
over B with the unique B-valued inner product such that:

(x1@uy1 | 22 Quy2)s = (Y1 | (®1 | ®2)a - Y2)B, Ya1,22 € M, Vy1,y2 € N.

Similarly, the algebraic tensor product M @5 N, of a pair of (pre-)Hilbert C*-bimodules
AMz, 3 Ne has a natural structure of (pre-)Hilbert C*-bimodule on the unital C*-algebras
A-C where the “left-action” of A satisfies:

alz®y) = (ax)®y, VYa€A, Yxe M, ye N.

There is also a natural notion of Rieffel dual of a (pre-)Hilbert C*-bimodule [R2] that is
uniquely defined (up to isomorphism) via the following proposition:

Proposition 2.19. Let s M4 be a (pre-)Hilbert C*-bimodule. Then there exist a (pre-)
Hilbert C*-bimodule 4 M3, and an anti-homomorphism of bimodules ¢ : g My — 4 M3, i.e. a
map such that t(bxa) = a*1(x)b* Yo € M Ya € A Vb € B, satisfying the following universal
property: for every (pre-)Hilbert C*-bimodule 4 N5 and any anti-homomorphism of bimod-
ules ® : g My — 4 Ng there exists a unique homomorphism of bimodules ®' : 4 M} — 4 Ng
such that ® = ® o .

Proof. We take M* := M as sets, but we define on M* the following bimodule structure:

=xa*, Yre M =M, VYa€eA,
x-b:=b'x, YeeM" =M, VbeB.
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It is easily checked that 4 M is a bimodule and that it becomes a (pre-)Hilbert C*-bimodule
if the inner products on M* are defined as follows:

(x|y)p =slz|y)*, Vo,ye M,
alz|y) = (x|yn, VYr,yeM,

where 4(z | y)’ and (z | y)% denote the inner products on 4 M.

Clearly the identity map ¢ : M — M™ is an anti-homomorphism of bimodules and for any
anti-homomorphism of bimodules ® : g M4 — 4Ng, @' := ® is the unique homomorphism
of bimodules ®' : 4 M} — 4 Ng such that ® = &’ o . O

The pair (¢, 4M3) is unique up to isomorphism (as for any concept defined through a uni-
versal property) and is called the dual of the (pre-)Hilbert C*-bimodule 5 M4.

Definition 2.20. The Morita category is the involutive category' with objects the unital
associative rings, with morphisms the isomorphism classes of bimodules, with composition
the isomorphism classes of the tensor product of bimodules, and with involution given by
isomorphism classes of the dual bimodules. The (algebraic) Picard groupoid is the nerve
of the Morita category®. Two unital associative rings are Morita equivalent if they are in
the same orbit of the Picard groupoid.

Here we are interested only in the full subcategory of the Morita category whose objects are
unital C*-algebras. In this case, it is usually better to “restrict” also the family of allowed
arrows as long as the new category preserves the notion of Morita equivalence i.e. its nerve
has the same orbits of the Picard groupoid.?

The category described in the following definition is the Morita-Rieffel category of unital
C*-algebras and it plays a key role in the discussion of the horizontal categorification of
Gel'fand Theorem [BCL2].

Definition 2.21. The Morita-Rieffel category is the subcategory of the Morita category
whose objects are unital C*-algebras, whose arrows are the isomorphism classes of correspon-
dences and whose composition is the Rieffel tensor product of correspondences. The nerve of
this category is the (algebraic) Picard-Rieffel groupoid. Two C*-algebras in the the same
orbit of the Picard-Rieffel groupoid are said to be strongly Morita equivalent [R1].

Remark 2.22. Note that the Morita-Rieffel category is not an involutive category (the
substitution of bimodules with correspondences “breaks the symmetry” between left and right
module structures). It is possible to eliminate this problem considering other subcategories of
the Morita category. Two possible natural choices are the involutive subcategory of the Morita
category consisting of isomorphism classes of (pre-)Hilbert C*-bimodules or (whenever it is
necessary to have a unique Banach norm and a unique notion of adjoint of a morphism
of the bimodules involved) the subcategory consisting of full Hilbert C*-bimodules such that
property (2.7) is satisfied. In these cases the involution is given by the Rieffel dual of the
bimodules.

The following proposition is a well-known result (see e.g. [GMS, Section 8.8] for a review).

1By an involutive category we mean a category € equipped with an involutive contravariant endofunc-
tor acting identically on the objects of € i.e. a map * : € — % such that (z*)* =z and (zoy)* = y* oz*
for all z,y € .

2The nerve of a category is its class of invertible arrows.

3There are also interesting versions of Morita theory for involutive unital algebras (see P. Ara [A] and
H. Bursztyn-S. Waldmann [BW]).
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Proposition 2.23. Two unital C*-algebras A and B are Morita equivalent if and only if
there exists an imprimitivity bimodule 4 Mp. The Picard-Rieffel groupoid consists of iso-
morphism classes of imprimitivity Hilbert C*-bimodules. Moreover, the notions of Morita
equivalence and strong Morita equivalence coincide.

Proof. If A and B are Morita equivalent, there exists bimodules 4 M5 and 3N4 such that
M®ps N ~Aand N®4 M ~ B. Any bimodule 4Mgp with the previous properties is
necessarily finite projective [GMS, Theorem 10.4.3]. Any finite projective right module can
be equipped with an inner product that makes it a correspondence from A to B and hence
AMp must be an imprimitivity bimodule. O

2.2 Imprimitivity Bimodules on Abelian C*-algebras.

It is well-known that in some cases imprimitivity bimodules can be used to construct ex-
plicit isomorphisms between the associated C*-algebras, see e.g. [Bo, Lemma 10.19]. In this
subsection we follow a similar route, recovering and further elaborating on a “classical” re-
sult [R3, Theorem 3.1 and Corollary 3.3] that is certainly folklore among specialists. For the
sake of self-containment we present a full account of the situation at hand.

The following theorem is motivated by P. Ara [A, Theorem 4.2].

Theorem 2.24. Let 4 M3 be an A-B imprimitivity bimodule, where A and B are commu-
tative unital C*-algebras. Then there exists a unique canonical isomorphism ¢y : A — B
such that:

¢u(alz|y) =(yl)s, Vo,ye M (2.8)

Moreover the canonical isomorphism ¢ satisfies the following property:
a-v=ux-¢p(a), VYre M, VacA. (2.9)

Proof. The uniqueness of the map follows from the fullness of the left Hilbert C*-module
aM. By the fullness of the right Hilbert C*-module Mg we can write 14 as a finite sum
lg = Z;.l:l(wj | zj)®, where wj, z; € M, j=1,...,n. For any a € A, define

n

dar(a) =Y (w; | az))s, (2.10)

j=1

where w;, z; € M are such that Y77 (w; | zj)s = 1.
To show that ¢as is well-defined, let wj, z; and xy, yx be two pairs of finite sequences such
that >° (w; | zj)s = 1s and 37, (k[ yk)s = 1. Write b =3 (w; | az;j)s. Then

(o | yeks b= (o | ye)s D _(w; | az)s
= Sk e = S o |
S )50 = e el |5
= <;k | ayr)s. ]

It follows that b =), (x) | ayx)s, which shows that ¢/ (a) is well-defined.
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We now show that ¢,; is a homomorphism of algebras. Clearly ¢, is additive and C-linear.
The multiplicativity follows from:

oum(a) - om(a’) = Z<wj laz)s Y (wy, | a'z;)s

k

= (wj | az;(wy | d'2)s)s =Y (w; | aalz | wh)a'z)s
ik

gk

= (wj | a(z | wi)aad'z)s =Y (w; | 2w}, | ad'z;)s) s
ik

Jsk

=D (w; | z)s(wh | ad'z)s =) (w) | ad'z)s = ¢ (ad).
j k

k

Of course ¢ is unital: dnr(la) = D> (wj | lazj)s = D> ;(w; | z)s = 1z. To prove
the involutivity of ¢, note that if Zj (w; | zj)8 = 1s, taking the adjoints, we also have
>-i{zj |wj)s = 1z. Hence

dar(a’) = (wj|a*z)s =Y (aw; | z)s =Y (2 | aw;)s = dur(a)”.
J J J
Similarly, there is a canonical homomorphism ¥, : B — A defined by:

= ZA(tib | ui) VbeB,

where t;,u; € M is a pair of finite sequences such that >, 4(t; | u;) = 14. Then

m(Pnm(a ZAt¢M ) | i)
—ZA (wj | azj)s | us) ZA (ti | wj)az; | us)
—ZaA (wj | zj)s | wi) = Zaﬂt|uz—

By the same argument, we can show that ¢ (1¥ar(0)) = b for all b € B. Hence vy, is the
inverse of ¢, which implies that ¢ is an isomorphism.

To establish (2.8), let wj, z; € M be finite sequences such that »_ . (w; | z;)s = 1s. Define
o =3, a(zj | wj) and note that

ou(a(@|y) ={y|av)s, Ve,yeM, (2.11)

which follows from this computation:
Sa(ale | 9)) = D (w; | ale | 9)z)n = > (w; | aly | 2)n)s

= im |@aly| )s = i@ | 2)mlw; | )

- i@/ | 25wy | 2)n)s = Z<y | ale | w)a)

y‘Z\AZ]“vUJ )e = (y|azr)s.
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The element o € A is independent from the choice of the finite sequences wj, z; € M such
that > (w; | ;)3 = 13. In fact, given another pair of finite sequences wy, z; € M such that

2w | z))s = 1s, we see that ¢rr(alz | y)) = (y | o/z)p, where o := 37, (2 | wj) so
that (y | ax)s = (y | &/x) for all z,y € M that implies immediately (o — o)z = 0p that
(by the fulless of the module 4 M) implies o = a.

We see that a is Hermitian because for all z,y € M:

(x| ay)s = dm(aly | 2) = dmlalz [ y)")
=omlalz|y) =y | o)y = {(az |y)s = (z | a"y)s,

which implies that o = o*.

We can actually prove that o € A is positive. Since ¢p; : A — B is an isomorphism,
the map (x,y) — onm(afz | v)) = (y | ax)p is a B-valued inner product on M. Hence
dm(alz | x)) = (x| ax)s is a positive element in B for all z € M. Considering the positive
and negative parts of the Hermitian element «, i.e. the unique pair of positive elements
at,a_ € Ay such that o = a4 — a_ with aya_ = 04, we see that

(x| ayx)yp —(z|a_x)p € By, Vre M.
From the calculation below,

(@ | ayasis | a_ahs = (@ | ayale | a_z)s)s
— (| ayals | B)az)s = (o] asa_als | 2)zs
= (& [0aa(z | z)x)s = 03,
it follows that the positive terms (x | arx)p = <o¢1i/ %z | ozj[/ ®2)p are the positive and negative
parts of the positive element (x | ax)s. Therefore (x | a_xz)pg = 03 for all x € M, and thus

a_ =04, and so « is positive.
Next we prove that ||a|l4 < 1. Consider the operator T, : My — Mg given by

To(z) =a-z, YreM
and note that ||T,|| < 1 because, for all x € M,

ITa(@)1? = [(Ta(@) | Ta(@)z]l = {Ta(2) | c)sll = l|¢ar(a(Talz) | 2))ll
= [la({Ta() [ 2)|| < [|Ta(2)] - [l2[]-

By proposition 2.17, the map T: A — X(Ms), a — T, is an isomorphism from A onto the
C*-algebra of compact operators K(Mg). Thus

lall = |Tall €1, Va € A.

In a completely similar way, we can find a positive Hermitian element 5 € B such that
18] <1 and that

Yu((z | y)s) =ayB|z), Vo,ye M. (2.12)

The two elements a and [ are related by ¢ (o) = 1g and ¥p(8)a = 1 4. In order to prove
this, we first note that

x-opm(a)=a- -z, Yexe M, VacA. (2.13)

10
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In fact, if w;,z; € M is a pair of sequences such that Zj<wj | zj)8 = 1, equation (2.13)
follows from this direct computation:

l’Z(%‘ | azj)p = ZA(?U | w;) az;
ZGA<.T | wj)z; = Zax(wj | zj)s =a-x.

x - opr(a)

Next we see that
oa-x-B=x Vrel. (2.14)
To see this, we apply (2.11) and (2.12) to the following calculation:

(a-z-0Bly)ys=(z-Bla-y)s=ou(aly|z-0)) =om(aly-8|x))
=ou(Wu((z|y)s) = (z|y)s.

From (2.13) and (2.14), we obtain z¢as(«)8 = x for all x € M, which implies ¢ ()3 = 13,
by the fullness of the module Mg. Similarly, we have ¥y (8)a = 14.

It follows that o and 3 are invertible and |[a~!|| = ||[¥a(B)| = ||8]| < 1. Since a and a~*
are positive elements with norm no larger than one in the commutative C*-algebra A, we
have a = 14. O

Definition 2.25. Let 4 M be a left module over an algebra A and denote by A° the opposite
algebra® of A. The right symmetrized bimodule of 4 M is the A-A° bimodule 4 M., with
right multiplication defined by:

r-a:=ax, Vre M, VacA.

In a similar way, given a right module My, we define its left symmetrized bimodule
A° Mg via the left multiplication given by a - x := za for allx € M and a € A.

In the case of a commutative algebra A, the opposite algebra A° coincides with A and the
left (respectively right) symmetrized of a module is clearly a symmetric bimodule over A.

Proposition 2.26. Suppose that 4 Mgp is an imprimitivity A-B-bimodule over two unital
commutative C*-algebras A and B. Let ¢py : A — B be the canonical isomorphism defined
in theorem 2.24.

The bimodule 4 My,, coincides with the right symmetrized bimodule 4 M?,.

The bimodule oot Mg coincides with the left symmetrized bimodule °Mp .

Proof. Take x € M and a € A. We already proved in (2.13) that x - ¢pr(a) = a - z, for all
x € M and for all a € A.

The second part of the proposition x - b = ¢X41(b) - x is completed with an exactly similar
argument.

In order to complete the proof, we have to show that the inner products on the right ¢,-
twisted bimodule 4 My,, coincides with the inner products of the right symmetrized bimodule
AM?% and this is precisely equation (2.8).

A similar argument applies to the case of the left symmetrized bimodule °Mg and the left
@ p-twisted bimodule ,, Mz. O

4Recall that the opposite algebra A° of an algebra A is just the vector space A equipped with the
multiplication a - 40 b:=b-4 a.
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The imprimitivity condition also behaves naturally under quotients.

Proposition 2.27. Let 4 Mg be an imprimitivity bimodule over the unital C*-algebras A
and B. Let J be an involutive ideal in the C*-algebra A. Then M/(IM) is an imprimitivity
bimodule over A/ and B /o (7).

Proof. Since ¢p; : A — B is an isomorphism of C*-algebras, if J is an involutive ideal in
A, also ¢pr(J) C B is an involutive ideal in B. Note that property (2.14) implies that
IM = M (9) and so, by proposition 2.6, M/(IM) = M/(Mop(9)) is a full left Hilbert
C*-module over A/J and a full right Hilbert C*-module over B/¢y(J). Finally, by direct
computation, we have:

Ayl +IM |y +IM)(x +IM) = (alz | y) +I) (2 + IM)
=a(z |y)z+IM
=x(y| 2)g +IM
(z+IM)({y | z)s +79)
= (x+IM)(y +IM | 2 +IM)p /4, ()

2.3 Imprimitivity Bimodules in Commutative C*-categories.

Following P. Ghez-R. Lima-J. Roberts [GLR] and P. Mitchener [M] we recall the following
basic definition.

Definition 2.28. A C*-category is a category € such that: for all A, B € Obg, the sets
%ap := Homeg (B, A) are complex Banach spaces; the compositions are bilinear maps such
that ||lzy|| < ||z|| - |yl V& € €ap Yy € €pc; there is an involutive antilinear contravariant
functor * : Hom¢ — Home, acting identically on the objects, such that ||x*x|| = ||z||*> Va €
“pa and such that x*x is a positive element in the C*-algebra €aa, for every x € €pa
(i.e. x*x = y*y for some y € €an).

Every C*-algebra can be seen as a C*-category with only one object.

In a C*-category %, the “diagonal blocks” @44 are unital C*-algebras and the “off-diagonal
blocks” €45 are unital Hilbert C*-bimodules on the C*-algebras A := €44 and B := €gp.
For short, we often write 4¢3 := «,, €aB%,, When we want to consider ¥4 as a bimodule.
We say that € is full if all the bimodules €45 are imprimitivity bimodules. Clearly [GLR,
Remark 7.10] in a full C*-category, for all A,B € Obg, A := €aa and B := €pp are
always Morita-Rieffel equivalent C*-algebras with the imprimitivity bimodule 4%3 as an
equivalence bimodule.

Lemma 2.29. A C*-category € is full if and only if it satisfies the following property
CapobCpc =%ac, VA B,C € Obg. (2.15)

Proof. Clearly property (2.15) is stronger than fullness.
The fullness of % tells us that €44 = Fap 0 €a. The continuity of composition implies
CaB 0 CBA O CAac C Cap o Erao Cac. From the following computation

Cac = Caa0Cac = CaBoEBa O Cac

C a0 6BA©Cac C CapobBc C Cac = Cac

we obtain €ac = €aB © €BC.- O

12
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We use the previous lemma to show that in a full C*-category the maps
ACE ® 5Ce — aCe, givenby z®yr—zoy
are isomorphisms of A-C-bimodules, for all A, B,C € Ob¢.

Proposition 2.30. If € is a full C*-category, for all A, B,C € Obs, (4%e,0) is a Rieffel
interior tensor product for the pair of bimodules 465 and 3%6e.

Proof. We show that there exists an isomorphism T : %5 ® 36c — 4% of Hilbert
C*-bimodules such that T(x ® y) =z oy for all x € 4% and for all y € 3%e.

Consider the composition map o : 463 X s6e — 4%e and note that it is a bilinear map of
Hilbert C*-bimodules and hence (by the universal factorization property for tensor products
of Hilbert C*-bimodules) there exists one and only one Hilbert C*-bimodule morphism
T: 468 Q@ 36 — a%e such that T($ & y) =xTovy.

Now we show that, under the fullness condition, the map 7' is an isomorphism.

First of all we note that 7' is an isometric map on the dense sub-bimodule generated by
simple tensors:

(T 2 @y) ITO wx@ye))e = Y (500, | 2 oyk)e
i p ik
= Z(%‘ oy;)* o (zkoyk) = Zyj* 0 T} 0Ty O Yy
ik ik
= (i | (@5 | zr)suk)e = Y (2, @ y; | 2, @ yr)e

gk gk
=0 zey | Y ke
j k

By continuity T" extends to an isometry on all of 465 ® 6. Finally T is surjective because
it is an isometry that, from lemma 2.29, has a dense image in 4%¢. O

Apart from a strictly associative (tensor) product (with partial identities given by 4%4),
the family of imprimitivity bimodules of a full C*-category % is naturally equipped with a
strictly antimultiplicative notion of involution given by Rieffel duality (see definition 2.19).

Proposition 2.31. If € is a full C*-category, (386a,*) is a Rieffel dual of the bimodule
ACs, for all A, B € Obg.

Proof. Note that the map * : 4,3 — %4 is conjugate-linear, it is an anti-isomorphism
of Hilbert C*-bimodules® and it is isometric. We need to prove that (%4, *) satisfies the
universal factorization property for conjugate-linear anti-homomorphisms of bimodules.

Clearly every conjugate-linear map ® : 443 — M, with values in a Hilbert C*-bimodule
3 My, such that ®(axd) = b*®(z)a* for allx € M, a € A, b € B, factorizes as & = (Pox)ox
via a unique morphism ® o x : 364 — M4 of B-A-bimodules. O

Every full C*-category % determines a subgroupoid, actually a total equivalence relation,
in the (algebraic) Picard-Rieffel groupoid, with objects given by the diagonal C*-algebras
@aa, for all A € Obyg, and morphisms given by the equivalence classes, under isomorphism
of bimodules, of 4%5. Such an association is functorial as specified by the following result,
whose proof is now elementary.

5Recall that by an anti-homomorphism ® : 4 Mg — M, between unital Hilbert C*-bimodules M, N,
we mean a conjugate-linear map that satisfies ®(azb) = b*P(z)a* for all z € M, a € A, b € B.
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Theorem 2.32. Let € be a full C*-category. Denote by [€ap]| the equivalence class of Hilbert
C*-bimodules that are isomorphic to the imprimitivity bimodule 46 5. Consider [€ap]|, for
all A, B € Oby, as arrows in the (algebraic) Picard-Rieffel groupoid. The family

Picy := {[€as] | A,B € Oby},

is a total equivalence relation (i.e. a subgroupoid with one and only one arrow for every pair
of objects) contained in the algebraic Picard-Rieffel groupoid.

A s-functor® ® : € — 2 between full C*-categories that is bijective on objects uniquely
determines an isomorphism Pic(®) : Picy — Picy of equivalence relations given by:

Pic(q)) : [%AB] — [.@@A@B], VA, B € Obg,

where ® : A — ®4 € Obg denotes the bijective action of the functor on the objects of €.
The map Pic is a functor from the category of object-bijective x-functors between small full
C*-categories into the category of (object bijective) groupoid homomorphisms between total
equivalence relations contained in the algebraic Picard-Rieffel groupoid.

An important tool related to these considerations is the “linking algebra” [Bﬁ; Ag'B } of an

imprimitivity bimodule 4 Mg as defined in L. Brown-P. Green-M. Rieffel [BGR], that could
be seen as the enveloping C*-algebra (see [GLR]) of a C*-category with two objects.

Since by [BGR, Theorem 1.1] two unital C*-algebras A, B are Morita equivalent if and only
if there exists another unital C*-algebra € and two projections p,q € € such that:

p+qg=1, pCp~A, ¢Cq~B, CpC=C, C¢C=_¢,

and in this case there is a natural C*-category with two objects with linking algebra

[zgs ggfl’ }, it is likely that every full C*-category can be seen as a “strictification” of a
total equivalence relation in the “weak” Picard-Rieffel groupoid and hence that the functor

Pic in theorem 2.32 is surjective on objects. We will return to these considerations elsewhere.

Following now [BCL1, BCL2|, we say that a C*-category ¥ is commutative if all its
diagonal blocks €44 are commutative C*-algebras.

When an imprimitivity bimodule is actually the bimodule 4%5 of morphisms Home (B, A)
in a full commutative C*-category %, much more can be said about the properties of the
canonical isomorphisms of theorem 2.24

Ppa =@,y A — B. (2.16)

Proposition 2.33. Let € be a full commutative C*-category, the family of canonical isomor-
phisms (A, B) — ¢pa associated to the imprimitivity bimodules 4€p salisfies the following
compatibility conditions:

$paa =ta, VAEObg, (2.17)
¢pA = b5 VA, B e Oby, (2.18)
¢cp o ¢pa = pca, YA, B,C € Obg. (2.19)

S A s-functor ® : € — 2 between C*-categories is just a functor (linear on each block ¥4, A, B € Ob)
such that ®(z*) = ®(z)* for all x € Home.

14
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Proof. First of all, we note again that, for imprimitivity bimodules 4%3 of morphisms in a
commutative full C*-category, there is an explicit description of the inner products:

(zly)s =2"y, alz|y):=yz" Vr,yecaCs.
Property (2.17) follows immediately from
dan(a) = Z(wj | azj)a = Zw;azj = aZ(wj | zj)a=a Ya€ 46u.
J J J

To prove property (2.19), let wj, z; be finite families of elements in 443 and xy,yy finite
families of elements in 5% such that > (w; [ zj)s = 13 and >, (zx | yk)e = le. By the
definition of the canonical isomorphism (2.10), we have:

dpala) = Z(wj |azj)s Va €A,
J

¢cp(b) == (zx |byr)e Vbe B.

k

By direct calculation we see that the composition is given by:

pcpodpala) = Z T | Z w; | azj)s yk)e
- Zkaw azjYr = ZZ wizy) a(zyk).

We only need to prove that the expression above is of the form ), (us | avp)e for finite
families of elements up, vy, € 46, indexed by h, such that ), (up | vn)e = le.
Now, the families of elements w;xj, and z;y;, satisfy exactly this property

ZZ (wjzk | Zjyr)e = szkw Zjyk = Z o | Y (wi | 2)syk)e
i
= Z zy | lpyr)e = le
k

and so we can define u; j, := wjzy € 46 and v; := 2;yi € 4%e.
Property (2.18) follows by direct application of equations (2.17) and (2.19). O

Proposition 2.34. Let w : € — C be a x-functor (i.e. a functor such that w(z*) = w(x),
for all x € €) defined on the full commutative C*-category €. For every pair of objects
A, B € Obyg, we have

w(dpala)) =w(a), VYa & Caa.
Proof. Consider the imprimitivity bimodule 4 %3 and the associated canonical isomorphism

$BA : Caa — €pp. For every a € €44, for any given finite families w;, z; € €ap such that
> j(w;j | zj)3 = 13, we know that ¢pa(a) = >, (w; | az;)s. Sincew : ¢ — C is a x-functor,
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for all a € €44, we have:

w(ppala)): = w(Z(wj | azj)s Zw w; | az;)s)
= Z wjaz;) Zw w(z;)
w(a) Y ww)w(z) = w(a) Zw(w;zj)

J

w@w(Y_(w; | zj)s) = wla)w(ls) = wa).

J

3 Spectral Theorem for Imprimitivity Bimodules

Let X4 and X g be two compact Hausdorff spaces and let Rg4 : X4 — X be a homeomor-
phism between them. To every complex bundle (E, 7, Rga), over the graph of the home-
omorphism R4 C X4 X Xp, we can naturally associate the set I'(Rpa; E) of continuous
sections of the bundle F, that turns out to be a symmetric bimodule over the commutative
C*-algebra C(Rpa;C) of continuous functions on the compact Hausdorff space Rp 4.
Considering now the pair of homeomorphisms

ma:Rpa— Xa, ma:(z,y) —z,

g Rpa — X, 7p:(v,y) vy,

we see that the set I'(Rpa; E) becomes naturally a left module over C(X 4;C) and a right
module over C(Xp;C) with the following left and right actions f - o := (f om4) - o0 and
o-g:=0-(gomp) or, in a more explicit form, for all (z,y) € Rpa, f € C(Xa4), g € C(Xp)
and o € I'(Rpa; E):

f U( ) = f(l')O'(I’,y) = (f OWA)(‘Tay) : O—(I7y)a
o-g(z,y) = o(z,y)g(y) = o(z,y) - (9o 7B)(7,y).

In the terminology of definition 2.10, this is the bimodule « T'(Rpa, E)re obtained by twist-
ing the symmetric C(Rp4)-bimodule I'(Rp 4, F) by the isomorphism 7% : C(X4) — C(Rpa)
on the left and by the isomorphism 7§, : C(Xp) — C(Rpa) on the right.

We say that o I'(Rpa; E)ﬁ]-B is the C(X 4)-C(Xp)-bimodule associated to the bundle
(E,m,Rpa) over the homeomorphism Rgp, : X4 — Xpg. Note that if (E, 7, Rga)
is a Hermitian bundle over the homeomorphism Rps : X4 — Xp, then the bimodule
c(Re) T (RBA E)c(Rp .,y is a full symmetric Hilbert C*-bimodule over C(Rp4) and, as in
remark 2.11, the associated bimodule ™ I'(Rpa; E)ﬂ'].a has a natural structure as a full Hilbert
C*-bimodule with inner products given by:

cixalo | p) =@ (o | P)crpa))s Vo,p ET(Rpa; E),
(0 Pexs) = @8) (o] porsa): Vo.p € T(Rpa; E).

Furthermore the associated bimodule ™ I'(Rpa; E)W;B is an imprimitivity bimodule if and
only if o(ry ) ['(RBA; E)c(Rrp,) is an imprimitivity bimodule and this, by Serre-Swan theo-
rem (see e.g. [BCL1, Section 2.1.2] and references therein), happens if and only if (F, 7, Rpa)
is a Hermitian line bundle.
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In this section, making use of the results in section 2.2, we prove, in the case of imprimitivity
bimodules, a converse to the previous construction i.e. that (up to isomorphism of bimodules)
every imprimitivity Hilbert C*-bimodule 4 Mg over unital commutative C*-algebras A and B
actually arises as the bimodule associated to a Hermitian line bundle over a homeomorphism
between the compact Hausdorff spaces Sp(A) and Sp(B).

Theorem 3.1. Given an imprimitivity C*-bimodule 4 Mg over two commutative unital
C*-algebras A, B, there exists a Hermitian line bundle (E, 7, Rpa), over the graph of a
homeomorphism Rpa : X4 — Xp between the two compact Hausdorff spaces X 4 := Sp(A),
Xp = Sp(B), whose associated C(X4)-C(Xp)-bimodule s I'(Rpa; E)xs,, when twisted on
the left by the Gel’fand transform isomorphism &4 : A — C(Sp(A)) and on the right by
the Gel’fand isomorphism &g : B — C(Sp(B)), becomes a bimodule s 06, T (RBa; E)rs o6,
that is isomorphic, as an A-B-bimodule, to the initial Hilbert C*-bimodule 4 Mp.

Proof. By theorem 2.24, we have a canonical isomorphism ¢y : A — B. Using Gel’fand
theorem, applied to the isomorphism gbj;tl : B — A of unital C*-algebras, we recover a
homeomorphism Rpy4 := (dfMl)‘ : X4 — Xp between the two compact Hausdorff spaces
Xa = Sp(A) and Xp := Sp(B). Furthermore we know that the Gel'fand transforms
B4:A— C(X4;C), 85 :B — C(Xp;C) provide two isomorphisms of C*-algebras.
Consider now the set R C A x B defined by R := {(a,b) € A x B | b = ¢n(a)} and note
that R has a natural structure of unital C*-algebra with componentwise multiplication and
norm defined by ||(a,b)||x := max{||a|, ||b]|]} = |la]| = ||b||. There are natural isomorphisms
a:R—Aand f:R— B given by

a:(a,b)—a, p:(a,b)—b, V(a,b)eR,

and they satisfy ¢y = Soa™ "t

Note also that the topological space Sp(R) is canonically homeomorphic to Rg4. In fact,
since Rpa o (a™1)* = (¢31)* o (@™h)* = (a0 B 1) 0o (ah)* = (B71)*, the function
S:w ((a™h)*(w), (B71)*(w)), for w € Sp(R), takes values in R4 and being bijective
continuous between compact Hausdorff spaces it is a homeomorphism.

We summarize the situation with the following commutative diagrams that might come
helpful to visualize the several isomorphisms and homeomorphisms involved:

A - R ’ B Xa foa ] XpB
o T TR BN N7
C(Xa) =— C(Sp(R)) —= C(Xp) ma\ SP(R) /g
I TS’ - Sl
’ C(Rpa) B Rpa

Twisting (see definition 2.10) the bimodule 4Ms by « on the left and 8 on the right, we
obtain a Hilbert C*-bimodule Mg over R that is symmetric because

(a,b) -z = a(a,b)z = ax = z¢n(a) = zB(a,b) = x - (a,b),V(a,b) € R.
Twisting one more time Mg with the isomorphism

v:i=85"085%:C(Rga) — R,
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we get a symmetric Hilbert C*-bimodule 40,Mgo~ over the C*-algebra C(Rp4). By a direct
application of Serre-Swan theorem (see e.g. [BCL1, Theorem 2.2]), we see that there exists
a Hermitian bundle (E,m, Rg4) over the compact Hausdorff space Rp4 such that there
exists an isomorphism of C'(Rp4)-bimodules @ : 4o,Mgoy — I'(Rpa; E). Since 4 Mg is an
imprimitivity bimodule, s0 is aoyMgoy and hence (E, 7, Rpa) is a Hermitian line bundle.
Making use of proposition 2.12, we have that the map ® also becomes an isomorphism
Q4 Mp — (qoy)-1I'(RBa; E)(gory)—1 of Hilbert C*-bimodules over A and B. Since, by the
diagram above, we have (aovy)™! =74 06,4 and (Bov)~! = 7% 0 &, we finally obtain an
isomorphism of left A, right B Hilbert C*-bimodules

P aMp — re0,(RBA; E)rt o6 -
O

Note that the theorem says that for an imprimitivity bimodule 4 Mg over commutative unital
C*-algebras, the triple (&4, ®, ®3) provides an isomorphism, in the category of Hilbert C*-
bimodules, from the bimodule 4 Mg to the C(X4)-C(Xp)-bimodule 7T;\l"(RBA; E)“?s asso-
ciated to the Hermitian line bundle (E, m, Rp4) over the homeomorphism Rp4 : X4 — Xp.
This means that ®(azb) = G 4(a)P(x)&5(b), for all z € M, a € A and b € B. The map ¢
is essentially a “canonical extension” of the Gel’fand transform of the C*-algebras A and B
to the imprimitivity bimodule 4 Mp over them.

The above theorem is just the starting point for the development of a “bivariant Serre-
Swan equivalence” and, more generally, a bivariant “Takahashi duality” (see e.g. [BCLI,
Section 2.1.2] and references therein) for the category of Hilbert C*-bimodules over commu-
tative C*-algebras. This will be done elsewhere.

Our spectral theorem, for imprimitivity bimodules over Abelian C*-algebras, is dealing
only with the representativity of a potential functor that, to every Hermitian line bun-
dle (E, 7, Rpa) over the graph of a homeomorphism Rp4 : X4 — Xp between compact
Hausdorff spaces, associates the imprimitivity bimodule ¢ I'(Rpa; E)re, over the commu-
tative C*-algebras C(X4) and C(Xpg). To proceed further we have to provide a suitable
notion of morphisms and define our functor on them.

The above result is for now stated in the case of imprimitivity bimodules and hence it does
not provide neither an answer to the problem of classifying, nor a geometric interpretation
of general C(X)-C(Y)-bimodules for given compact Hausdorff spaces X and Y. Warn-
ing the reader to take due care of some differences in notations and definitions, for some
related results on the “spectral theory” of Hilbert C*-bimodules, one may consult B. Abadie-
R. Exel [AE], H. Bursztyn-S. Waldmann [BW], A. Hopenwasser-J. Peters-J. Powers [HPP],
A. Hopenwasser [H], T. Kajiwara-C. Pinzari-Y. Watatani [KPW], P. Muhly-B.Solel [MS].
In particular, B. Abadie and R. Exel [AE, Proposition 1.9] proved that every imprimitivity
C*-bimodule over a commutative C*-algebra A is always obtained from its right symmetriza-
tion by twisting on one side with a given automorphism 6 and, in a more algebraic setting,
a result of H. Burzstyn-S. Waldmann [BW, Proposition 2.3] assures that if two imprimitiv-
ity bimodules 4 Mg and 4 Ng over the same commutative algebras are isomorphic as right
modules, there is a unique isomorphism of the C*-algebra B such that the bimodule M is
isomorphic to the twisting of N.

Gathering together the above facts, in the special case of commutative full C*-categories,
we obtain the following result.

Theorem 3.2. Let € be a full commutative C*-category. Then for every pair of objects A
and B, one has:
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- ACs is an imprimitivity a€a-gEs bimodule. That is, €4 and 365 are Morita

equivalent and thus there is a canonical x-isomorphism implemented by z*y — yx*,

T,y € 463.

- A€y is the (non-symmetric) € a-5C5-bimodule of continuous sections of a Hermitian

line bundle over the graph of the corresponding homeomorphism between the Gel’fand
spectra of 464 and s€5.
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Abstract

We present a duality between the category of compact Riemannian spin manifolds
(equipped with a given spin bundle and charge conjugation) with isometries as mor-
phisms and a suitable “metric” category of spectral triples over commutative pre-
C*-algebras. We also construct an embedding of a “quotient” of the category of
spectral triples introduced in [BCL1] into the latter metric category. Finally we dis-
cuss a further related duality in the case of orientation and spin-preserving maps
between manifolds of fixed dimension.

keywords: Spectral Triple, Spin Manifold, Category.

MSC-2000: 46L87, 46M15, 18F99, 15A66.

1 Introduction.

Although the main strength of non-commutative geometry is a full treatment of non-
commutative algebras as “duals of geometric spaces”, the foundation of the theory relies
on the construction of suitable categorical equivalences, resp. anti-equivalences (i.e. co-
variant, resp. contravariant functors that are isomorphisms of categories “up to natural
transformations”) between categories of “geometric spaces” and categories of commutative
algebras of functions over these spaces.!

Typical examples of such (anti-)equivalences are listed below, itemized by the name of the
people who worked them out:

e Hilbert: between algebraic sets and finitely generated algebras over an algebraically
closed field [H];

*Partially supported by the Thai Research Fund: grant n. RSA4780022.
1For the elementary background in “category theory” the reader can refer to the on-line introduction
by J. Baez [B] and the classical books by S. McLane [M] and M. Barr-C. Wells [BW].



127

e Stone: between totally disconnected compact Hausdorff topological spaces and
Boolean algebras [St1, St2];

e Gel’fand-Naimark: between the category of continuous maps of compact Hausdorff
topological spaces and the category of unital involutive homomorphisms of unital
commutative C*-algebras? [G, GNJ;

e Halmos-von Neumann: between the category of measurable maps of measure
spaces and the category of unital involutive homomorphisms of commutative von
Neumann algebras;>

e Serre-Swan: between the category of vector bundle maps of finite-dimensional lo-
cally trivial vector bundles over a compact Hausdorff topological space and the cat-
egory of homomorphisms of finite projective modules over a commutative unital
C*-algebra [Se, Sw];

e Cartier-Grothendieck: between the category of commutative schemes (ringed
spaces) in algebraic geometry and the category of topoi (sheaves over topological
spaces);?

e Takahashi: between the category of Hilbert bundles on (different) compact Haus-
dorff spaces and the category of Hilbert C*-modules over (different) commutative
unital C*-algebras [T1, T2];

Even more dualities arise when the spaces in question are equipped with additional struc-
ture, most notably a group structure or the like (see Pontryagin-Van Kampen [Po, VK],
Tannaka-Krein [Ta, Kr| and Doplicher-Roberts [DR]).

In this paper we will focus our attention on the Gel’fand-Naimark duality, to which the
other dualities are related in significant way. In short, the fundamental message that can
be read off from the celebrated Gel’fand-Naimark theorem on commutative C*-algebras is
that, at the “topological level”, the information on a “space” can be completely encoded
in (and recovered from) a suitable “algebraic structure”.

In applications to physics (at least for those branches that are dealing with “metric struc-
tures” such as general relativity), it would be important to “tune” Gel'fand-Naimark’s
correspondence in order to embrace classes of spaces with more detailed geometric struc-
tures (e.g. differential, metric, connection, curvature).

In recent times, Connes’ non-commutative geometry [C1, FGV] has emerged as the most
outstanding proposal in this direction, based on the notion of spectral triple.

In this short note we provide a simple further example of categorical anti-equivalence
between Riemannian spin manifolds and commutative Connes’ spectral triples (see theo-
rem 3.2). This line of thought is expected to play an important role in future developments
of the categorical structure of non-commutative geometry, and spectral triples in particular
(see [BCL2]), as well as in the study of (geometric) quantization, where the construction

20r more generally between the category of proper continuous maps of locally compact Hausdorff spaces
and the category of involutive homomorphisms of commutative C*-algebras.

3The origin of a dual treatment of measure theory (at least for locally compact Hausdorff spaces) can
be traced back to F. Riesz-A. Makov-S. Kakutani-A. Weil theorem [Rie, Ma, K, W], but the proof that
a measure space can be recovered from a commutative von Neumann algebra is due to P. Halmos-J. von
Neumann [HvN].

4As reported by I. Dolgachev in his useful historical review [D, Section 1], the idea of P. Cartier (1957)
that affine schemes are in duality with ringed spaces of the form Sp(A) was developed by Grothendieck in
the full theory of schemes.
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of functorial relations between “commutative” and “quantum” spaces are central points of
investigation.

Although the idea of reconstructing a smooth manifold out of a commutative spectral triple
has been latent for some time, (see [C3, C4, R, RV1, C5, C6]) the point to promote it to
a categorical level seems to be new. Our main tool is the notion of metric morphisms of
spectral triples, namely those preserving Connes’ distance on the state space.

In the second part of the paper, we examine some connection between the category of
“metric spectral triples” (on which the equivalence result is based) and our previous work
on morphism of spectral triples [BCL1]. It should be possible to provide other equivalence
results in terms of categories of spectral triples based on different notions of morphism (at
least for some classes of Riemannian manifolds); some of these issues are presently under
investigation (see [BCL2, Section 4.1] for an overview).

It should be remarked that Connes’ distance formula has been systematically adopted by
M. Rieffel as the backbone of his notion of quantum compact metric space (see [Ri] and
references therein). Although we present our result in the framework of Connes’ spectral
triples, it is likely that our ideas might find some application also in Rieffel’s framework.

In order to keep the length of this note as short as possible, we will refer to the literature
for all the background material and only recall the basic definitions.

1.1 Spectral Triples.

Following A. Connes’ axiomatization (see [C1, FGV, C5] for all the details), a compact
spectral triple (A, H, D) consists of

a) a unital pre-C*-algebra A (that is sometimes required to be closed under holomorphic
functional calculus),

b) a (faithful) representation 7 : A — B(H) of the algebra A on a Hilbert space H and

¢) a Dirac operator, i.e. a (generally unbounded) self-adjoint operator D, with com-
pact resolvent (D — A)~! for every A € C — R and such that® [D,7(a)]- € B(H),
Va € A.

A spectral triple is called even if it is equipped with a grading operator, i.e. a bounded
self-adjoint operator I' € B(H) such that:

? =Idy; [[,7(a)].=0 VacA; [I,D],=0.
A spectral triple without grading is called odd.

A spectral triple is regular if the functions E, : ¢t — exp(it|D|)x exp(—it|D|) are “smooth”
ie. 2, € C*(R,B(H)) for every x € Qp(A), where we define ©

Qp(A) := span{r(ag)[D,7(a1)]— --- [D,7(an)]- | n €N, aqg,...,a, € A}.

This regularity condition can be equivalently expressed requiring that, for all a € A,
m(a) and [D,7(a)]- are contained in NY°_;Dom 6™, where ¢ is the derivation given by
6(x) == [|D], x] .

The spectral triple is n-dimensional iff there exists an integer n such that the Dixmier
trace of |D|™" is finite non-zero. A spectral triple is f-summable if exp(—tD?) is a
trace-class operator for every t > 0.

5Here [z,y]+ := 2y + yx denote respectively the anticommutator and the commutator of z,y € B(H).
6We assume that for n = 0 € N the term in the formula simply reduces to m(ao).
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A spectral triple is real if it is equipped with a real structure i.e. an antiunitary operator
J : ' H — H such that:

[7(a), Jr(b*)J']_ =0 Va,bc A;

[D,7(a)]_, Jr(b*)J '] =0 Va,bc A, first-order condition;
J? = +Idy; [J, D]+ = 0;

and, only in the even case, [J,T]+ =0,

where the choice of & in the last three formulas depends on the “dimension” n of the
spectral triple modulo 8 according to the following table:

n 01 [2[3[4]5]6]7
JP=xldy [+ [+ -[-]-|-[+]+
L Dls=0 |- |+ ||| -[+][—-|~—
[J, F]i =0 — + — +

A spectral triple is finite if Ho, := N, Dom D* is a finite projective A-bimodule and
absolutely continuous if, there exists a Hermitian form (£,7) — (£ | ) on H such
that, for all a € A, (£ | m(a)n) is the Dixmier trace of w(a)(§ | n)|D|~™.

An n-dimensional spectral triple is said to be orientable if there is a Hochschild cycle
c= Z;’;l agj) ® agj) R ® agf) such that its “representation” on the Hilbert space H,

m(c) = Z;”:l W(aéj))[D,w(a(lj))]_ e [D,W(ag))]_ is the grading operator in the even case

or the identity operator in the odd case’.

A real spectral triple is said to satisfy Poincaré duality if its fundamental class in the
KR-homology of A ® A°P induces (via Kasparov intersection product) an isomorphism
between the K-theory K,(A) and the K-homology K*®(A) of A.8

A spectral triple will be called commutative whenever A is commutative.

Finally a spectral triple is irreducible if there is no non-trivial closed subspace in H that
is invariant for 7(A), D, J, T".

1.2 Reconstruction Theorem (Commutative Case).

Let M be a real compact orientable Riemannian m-dimensional spin C*° manifold with
a given volume form pps. Let us denote (see [S] for details) by S(M) a given irre-
ducible complex spinor bundle over M i.e. a bundle over M equipped with a left action
¢: CIY(T(M))®S(M) — S(M) of the “Clifford” bundle? C1'™) (T'(M)) inducing a bundle
isomorphism between CIH) (T'(M)) and End(S(M)). Let [S(M)] be the spin® structure®
of M determined by S(M).

"In the following, in order to simplify the discussion, we will always refer to a “grading operator” I'
that actually coincides with the grading operator in the even case and that is by definition the identity
operator in the odd case.

8n [RV1] some of the axioms are reformulated in a different form, in particular this condition is replaced
by the requirement that the C*-module completion of H is a Morita equivalence bimodule between (the
norm completions of) A and Qp(A).

9Following [FGV, Page 373], we denote by CI(t) (T (M)) the complexified Clifford bundle of M if dim M
is even and respectively its even subalgebra bundle C1T(T(M)) if dim M is odd.

10An orientable Riemannian manifold is spin® if it admits a complex irreducible spinor bundle [S, Defi-
nition 7]. Recall that a spin® manifold usually admits several inequivalent spin® structures and that for a
given spin® structure, a complex irreducible spinor bundle over M is determined only up to (Hermitian)
bundle isomorphism.
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Let Cys be a given “spinorial” charge conjugation!! on S(M) i.e. an antilinear Hermitian
bundle morphism such that Cpr o Cpy = +1dg(as) (signs depending on dim M modulo
8 as in the table in section 1.1) that is “compatible” with the charge conjugation!? x in
CID(T(M)) ie. Crr(B(p)-0(p)) = k(B(p))-Car(c(p)), for any section 8 € T(CIH (T(M)))
of the Clifford bundle and any section o € T'(S(M)) of the spinor bundle. We denote by
[(S(M),Chr)] the spin structure on M determined by Cjy.

Let Apr :=C>(M;C) be the commutative pre-C*-algebra of smooth complex valued func-
tions on M. We denote by mj its representation by pointwise multiplication on the space
Has = L2(M, S(M)), the completion of the space I'™°(M, S(M)) of smooth sections of the
spinor bundle S(M) equipped with the inner product (o | 7) := [,,(o(p) | 7(p))p dpiar,
where (- | -), is the unique inner product on S,(M) compatible with the Clifford action
and the Clifford product. Note that the spinorial charge conjugation Cj; (being unitary
on the fibers) has a unique antilinear unitary extension Jys : Hys — Hys determined by
(Jpo)(p) := Cur(o(p)) for 0 € T°(S(M)) and p € M.

Let T'ps be the unique unitary extension on Hjs of the operator Ay on I'(S(M)) acting
by left action of the chirality element € T'(C1") (T(M))), that implements the grading x
of T(C1)(T(M))) as inner automorphism.'3

Denote by Djs the Atiyah-Singer Dirac operator on the Hilbert space Hy, i.e. the closure
of the operator that on I'*°(S(M)) is obtained by “contracting” the unique spin covari-
ant derivative V* (induced on I'*(S(M)) by the Levi-Civita covariant derivative of M,
see [FGV, Theorem 9.8]) with the Clifford multiplication. For a detailed discussion on
Atiyah-Singer Dirac operators we refer to [BGV, LM, S].

We have the following fundamental results:

Theorem 1.1 (Connes, see e.g. [C1, C2] and Section 11.1 in [FGV]). Given an orientable
compact spin Riemannian m-dimensional differentiable manifold M, with a given complex
spinor bundle S(M), a given spinorial charge conjugation Cypr and a given volume form
par,tt the data (Anr, Har, Do) defines a commutative regular finite absolutely continuous
m-dimensional spectral triple that is real, with real structure Jas, orientable, with grading
Ty, and satisfies Poincaré duality.

Theorem 1.2 (Connes [C3, C5]). Let (A, H, D) be an irreducible commutative real (with
real structure J and grading T') strongly reqular'® m-dimensional finite absolutely continu-
ous orientable spectral triple, with totally antisymmetric (in the last m entries) Hochschild
cycle, and satisfying Poincaré duality. The spectrum of (the norm closure of) A can be
endowed, in a unique way, with the structure of an m-dimensional connected compact ori-
entable spin Riemannian manifold M with an irreducible complex spinor bundle S(M), a
charge conjugation Jyr and a grading Uy; such that:

A~ C®(M;C), H~IL*(M,S(M)), D~Dy, J~Jy, TI~Ty.

A spin® manifold is spin if and only if it admits a complex spinor bundle with a charge conjugation [S,
Definition 8]. Recall that a spin manifold usually admits several inequivalent spin structures even for the
same spin® structure and that for a given spin structure a conjugation operator is determined only up to
intertwining with (Hermitian) bundle isomorphisms.

12 is the composition of the natural grading operator and the canonical conjugation.

13The grading is actually the identity in odd dimension.

14Remember that an orientable manifolds admits two different orientations and that, on a Riemannian
manifold, the choice of an orientation canonically determines a volume form pip.

15In the sense of [C5, Definition 6.1].



131

A. Connes first proved the previous theorem 1.2 under the additional condition that A
is already given as the algebra of smooth complex-valued functions over a differentiable
manifold M, namely A = C*°(M;C) (for a detailed proof see e.g. [FGV, Theorem 11.2]),
and conjectured [C3], [C4, Theorem 6, Remark (a)] the result for general commutative
pre-C*-algebras A.

A tentative proof of this last fact has been published by A. Rennie [R]; some gaps were
pointed out in the original argument, a different revised, but still incorrect, proof ap-
pears in [RV1] (see also [RV2]) under some additional technical conditions. Recently
A. Connes [C5] finally provided the missing steps in the proof of the result.

As a consequence, there exists a one-to-one correspondence between unitary equivalence
classes of spectral triples and connected compact oriented Riemannian spin manifolds up
to spin-preserving isometric diffeomorphisms.

Similar results should also be available for spin® manifolds [C4, Theorem 6, Remark (e)].

1.3 Connes’ Distance Formula.

Given a spectral triple (A, H, D), let us denote by 8(A) and P(A) the sets of states and
pure states of the pre-C*-algebra A, respectively. If A := C*>(M;C), for all p € M we
denote by ev, : x — x(p) the “evaluation functional” in p of the functions z € A and
note that ev, € P(A). Actually in this case P(A) coincides with the set of all evaluation
functionals.

Going back to the general case, the Connes’ distance dp on P(A) is the function on
P(A) x P(A) given by

dp (w1, ws) := sup{|wi (z) —wa(2)| [ z € A, [|[D,m(z)]|| <1}
Strictly speaking, without imposing other conditions, dp could also take the value +oo as

in the case of non-connected manifolds. In turn, one can use the same formula to define a
“distance” on the set of all the states of A.

Theorem 1.3 (Connes’s distance formula). [FGV, Proposition 9.12] If the spectral triple
(A, H, D) is obtained as in theorem 1.1 from a compact finite-dimensional oriented Rie-
mannian spin manifold M equipped with a spinor bundle S(M) and a spinorial charge
conjugation Cyr, then for every p,q € M, dp(ev,,evy) coincides with the geodesic distance

b
dpr(p, q) = inf {/ 17 ()|l dt | v is a geodesic with vy(a) = p, v(b) = q}.

Of course, given a unital s-morphism ¢ : A; — Ay there is a pull-back ¢* : $(As) — S(A;)
defined by ¢*(w) :=w o ¢ for all w € §(As).

2 A Metric Category of Spectral Triples.
The objects of all of our categories will be compact spectral triples (A, H, D).
Given two spectral triples (A;, H;, D;), with j = 1,2, a metric morphism of spectral
triples (A1, H1,D1) LA (Az,Ha, Ds) is by definition a unital epimorphism!® ¢ : A; — A,
of pre-C*-algebras whose pull-back ¢* : P(Asz) — P(A1) is an isometry, i.e.

dp, (¢*(w1), ¢*(w2)) = dp, (w1, w2), Ywi,wz € P(A2).

Spectral triples with metric morphisms form a category ..

16Note that if ¢ is an epimorphism, its pull-back ¢® maps pure states into pure states.
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Remark 2.1. A unitary equivalence of spectral triples gives an isomorphism in the category
S

2.1 A Local Metric Category of Spectral Triples.

For convenience of the reader, we recall here the definitions of morphisms of spectral triples
proposed in our previous work [BCL1, Sections 2.2-2.3].

A morphism in the category ., between spectral triples (A;, H;, D;), j = 1,2 of the
same dimension, is a pair (¢, @), where ¢ : Ay — As is a *-morphism between the pre-
C*-algebras Ay, Ay and ® : H; — Hsy is a bounded linear map in B(H1, Hz) such that
ma(p(x)) 0o ® = P om(z), Vo € Ay and Dy o (&) = ® o Dy(€) V€ € Dom D;.

In a similar way, a morphism of real spectral triples (A;, H;, D;,J;) with j = 1,2,
in the category of real spectral triples .7}, is a morphism in . such that ® also satisfies
Jy0® = ® o J;. Finally a morphism of even spectral triples (A;,H;, D;,T';) with
j = 1,2, in the category of even spectral triples %, is a morphism in . such that
Io0® = ®ol'y;. We will denote by . (respectively .1, -%1re) the subcategory of %
(respectively .7, . %) consisting of “isometric” morphisms of spectral triples, i.e. pairs
(¢, @) with ¢ surjective and ® co-isometric. We have the following inclusion of non-full
subcategories: % := . NS C Z.

3 The Metric Connes-Rennie-Varilly Functor.

Let us consider the class .# of C* metric isometries'” of compact finite-dimensional C>
orientable Riemannian spin manifolds M equipped with a fixed spinor bundle S(M), a
given spinorial charge conjugation Cj; and a volume form pp;. The class .# with the
usual composition of functions forms a category.

Proposition 3.1. There is a contravariant functor € from the category . to the category
™ that to every triple (M, S(M),Chr) € A associates the spectral triple (A, H, D) € /™
given as in theorem 1.1 and that to every smooth metric isometry f : My, — Moy associates
its pull-back f® : Ay — Aq.

Proof. Every smooth metric isometry f : My — My in .4 is a Riemannian isometry of
M; onto a closed embedded submanifold f(M;) of Ms. Since every smooth function on a
closed embedded submanifold is the restriction of a smooth function on Ms, the pull-back
¢ := f* is a unital epimorphism of the pre-C*-algebras ¢ : As — A; and, by theorem 1.3,
¢* : P(A1) — P(Az) is metric-preserving:

dp,(9°(w1), ¢*(w2)) = dp, (¢°(evp), 8% (evq)) = dp,(eVy(p), eV s(q))
= dJsz (f(p)v f((])) = dM1 (p7 C]) = le (eVP7 qu)
=dp, (w1,w2),
where p,q € M, are the unique points such that w; = ev, and wy = ev,.
Of course €(go f) = (go f)* = f*og®* =& o0& and €, = Lenr)- O
We will call the functor € the metric Connes-Rennie-Varilly functor.

Here we present the main result of this paper. We denote by ab-#"" the full subcategory
of .#™ of direct sums of irreducible Abelian spectral triples'®.

I7Note that in general a Riemannian isometry is not necessarily a metric isometry.
181n a completely similar way we will denote by ab-.% the full subcategory of direct sums of irreducible
Abelian spectral triples in ..
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Theorem 3.2. The metric Connes-Rennie-Varilly functor is an anti-equivalence between
the categories # and ab-™.

Proof. The functor € is faithful: if €; = &, for two smooth isometries f,g : My — My,
then f® = ¢g*® as morphisms of pre-C*-algebras and hence they coincide also when uniquely
extend to morphisms of C*-algebras of continuous functions and the result f = g follows
from Gel’fand duality theorem.

The functor € is full: if ¢ : €(M) — €(My) is a metric morphism in ., as a homo-
morphisms of pre-C* algebras of smooth functions, ¢ extends uniquely to a morphism of
C*-algebras of continuous functions and, from Gel'fand duality theorem, there exists a
unique continuous function f : M; — Ms such that f® = ¢. From the fact that f® maps
smooth functions on Ms to smooth functions on M; it follows that f is a smooth function
between manifolds. Since ¢ also preserves the spectral distances, it follows that f is a
smooth metric isometry hence a Riemannian isometry.

The functor € is representative: for when restricted to the subcategory of connected man-
ifolds with target the subcategory of irreducible spectral triples, this is actually a restate-
ment of the reconstruction theorem 1.2 and remark 2.1. Since the Connes-Rennie-Varilly
functor € maps disjoint unions of connected components into direct sums of spectral triples,
the result follows. O

Unfortunately, at this stage, we cannot present a statement involving the category of
all Abelian spectral triples. The above result raises naturally the issue of decomposing
(Abelian) spectral triples in terms of irreducible components.

Remark 3.3. In restriction to the subcategory .#; of dimension-preserving smooth
isometries (i.e. isometric immersions with fiberwise isomorphic tangent maps), the metric
Connes-Rennie-Varilly functor € is an anti-equivalence between My and the subcategory
ab-Z" of metric morphisms of direct sums of irreducible Abelian spectral triples with
the same dimension. In a similar way, denoting by N(%) the nerve of the category €,
i.e. the groupoid of isomorphisms of €, we have that €| 4y is an anti-equivalence between

N(#)*° and the nerve N(ab-™).

4 Metric and Spin Categories.

We now proceed to establish a connection between the category ™ of metric spectral
triples and the categories of spectral triples . (respectively real spectral triples .#,.) in-
troduced in [BCL1, Section 2.2-2.3] and briefly recalled in section 2.1.

Denote by .9 (respectively ylored) the category of spectral triples whose morphisms are
those homomorphisms of algebras ¢ for which there exists at least one ® such that the
pair (¢, ®) is a morphism in % (respectively 7,eq). We have a “forgetful” full functor
T . — Y that to every morphism (¢, ®) in . associates ¢ as a morphism in ..

Lemma 4.1. A metric isometry of Riemannian manifolds with the same dimension is a
smooth Riemannian isometry onto a union of connected components.

Proof. Let f: M — N be a metric isometry. Since dim M = dim N, by Brouwer’s theorem,
we see that f is open and maps each connected component of M onto a unique connected

9The nerve of .# (always a subcategory of .#) is actually the “disjoint union” of denuberable “con-
nected components” consisting of the categories of smooth bijective isometries of n-dimensional spin man-
ifolds.
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component of N. By the Myers-Steenrod theorem (see for example [P, Section 5.9, Theo-
rem 9.1]), any such bijective map between connected components is a smooth Riemannian
surjective isometry; hence f : M — N is a smooth Riemannian isometry onto f(M), a
union of connected components of N. O

Let f: (M,S(M),Cy) — (N, S(N),Cy) be a morphism in .#;. Thanks to the last lemma,
we can consider the differential Df : T(M) — T(N). It is a monomorphism of Euclidean
bundles and induces a unique Bogoljubov morphism Clp : C17(T(M)) — CI)(T(N))
of the Clifford bundles that is actually an isomorphism of C1‘*)(T'(M)) with subbundle
C1)(T(f(M))), the Clifford bundle of the submanifold f(M).2° This isomorphism can
be used to “transfer” the irreducible Clifford action of CIV(T(f(M))) on the bundle
S(f(M)) := S(N)|fam) to an irreducible action of C1I)(T(M)) and, since the bundle
fE(S(N)) = f*(S(f(M))) is naturally isomorphic to S(f(M)), the bundle f*(S(N)) be-
comes an irreducible complex spinor bundle on M. By a similar argument, f*(S(N))

comes equipped with a spinorial charge conjugation f®(Cpy) obtained by “pull-back” of
(the restriction to S(f(M)) of) Cy through the isomorphism f*(S(N)) ~ S(f(M)).

We say that f is spin-preserving if the spin structure [(f*(S(N)), f*(Cn))] determined
by f*(S(N)) with spinorial charge conjugation f®(Cx) coincides with the spin structure
of M i.e. if there exists an isomorphism of Hermitian bundles U : f*(S(N)) — S(M)
that intertwines the charge conjugations: U o f*(Cn) = Cpy o U and the Clifford actions.
Note that if f is orientation-preserving, the isomorphism U also intertwines the grading
operators of the spinor bundles.

Let us denote by .#4-spin the subcategory of spin and orientation-preserving maps in ..
The following result, that we report for completeness, is certainly well-known although we
could not find any suitable reference. Note that ab-.#7,..q denotes the full subcategory of
Y1red Whose objects are direct sums of irreducible Abelian spectral triples.

Proposition 4.2. Let M, N be two compact orientable Riemannian spin manifolds in the
category A . If f : M — N is a spin-preserving isomorphism of Riemannian manifolds,
the spectral triples (Anr, Har, Dar) and (An, Hn, Dn) are isomorphic in the category ab-
y]red-

Proof. The pull-back ¢ := f* is a *-isomorphism ¢ : Ay — Aps of pre-C*-algebras.

Consider the “pull-back of spinor fields” given by the invertible map ¥ := o +— oo f, for
all o € Hy. Since f is an orientation-preserving Riemannian isometry, it leaves invariant
the volume forms f*(un) = par and so we obtain

/ (B(0) (@) | U(r)(@)) dpns () = / (o(9) | 7)) din(v)
M N

that implies that the map ¥ : Hy — L*(M, f*(S(N))) =: H* is a unitary operator.

Since f*(S(N)) is a Hermitian bundle over M, H® carries a natural representation 7°
of the algebra Aj,; given by pointwise multiplication. W intertwines mny and 7° o ¢,
ie. U(ry(a)o) =7 (d(a))¥ (o) for a € Ay and o € Hy.

20 From this we see that the subalgebra CIH) (f(M)) € CIH) (N) of sections of the Clifford bundle of
N with support in f(M) is naturally isomorphic with the algebra C1(*) (M) of sections of the Clifford
bundle of M. Since the restriction to f(M) is a natural epimorphism p : CI()(N) — CI(H) (f(M)), (p
acts on Clifford fields by multiplication with the characteristic function of f(M)), there is a natural unital
epimorphism of algebras i : C1(+)(N) — ((:1(+)(M) that becomes an isomorphism when restricted to
CIH(f(M)).
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Let U : f*(S(N)) — S(M) be a (noncanonical) isomorphism of Hermitian bundles in-
duced by the spin-preserving condition on f. Since we know that U is unitary on the
fibers, we have [, (Uc(p) | U7(p))s,m) duni(p) = [y, (0 (p) | 7(P)) g2 (s(ny) dpear(p), for all
o,7 € I'®°(f*(S(N))). Hence U uniquely extends to a unitary map Oy : H* — Hjs. Note
that Oy is Aps-linear: Op(a-0) =a-Oy(o), for a € Ay and o € H®.

Now it is not difficult to check that the pair (¢, ©y o ¥) is an isomorphism in the category
ZIreq from the spectral triple (Anx, Hy, Dn) to (Anr, Har, Dar).- O

Proposition 4.3. The Connes-Rennie-Varilly functor is an embedding of the category
My-spin into ab-}

red*

Proof. Let f: M — N be a spin-preserving metric isometry in .#y-spin. By Lemma 4.1
f: M — N is a smooth Riemannian isometry onto the closed submanifold f(M), a union
of connected components of N.

We denote by p: Axy — Ajgny the restriction epimorphism.

The Hilbert space Hx = L?(N, S(N)) decomposes as the direct sum @ jero(n)H; of Hilbert
spaces (one for each connected component j € 7°(N) of N) and the multiplication oper-
ator P by the characteristic function x () is the projection operator onto the subspace
Hyry = P(HN) = @jeqoranyH; (cf. [FGV, Page 491]). Note that, since the Dirac
operator Dy is “local” (i.e. it preserves the support of the spinor fields), the subspace
Hyary is invariant for Dy. In the same way, since Jy and I'y acts fiberwise, Har) is
invariant for the charge conjugation and grading of N.

Defining Dy := Po Dy o P, Jyy := PoJyo P and Ty := Polyo P, it is
immediate that (Azary, Hyar), Dyary) is a real (even) spectral triple and it follows that
the “restriction” map P : Hy — Hy) satisfies Va € An, 0 € Hy, P(ao) = p(a)P(0),
PoDy = Diayo P, Pody = Jpanyo P, Pol'y = I'y) o P. This means that
the pair (p, P) is a morphism in the category .#Iycq from (An,Hny,Dn) to the triple
(Agarys Hyarys Dycary), which is nothing but the spectral triple obtained from the manifold
f(M). By Proposition 4.2, there exists an isomorphism from (A, Hyary, Dycary) to
(An,HnN, Dp) in the category #I,cq, and the conclusion follows by composition with the
previous (p, P). O

Lemma 4.4. If M and N are two orientable compact Riemannian spin manifolds in
the category M and (u,U) is an isomorphism from (An,Hn,Dn) to (A, Har, Dar) in
the category ab-Ir., then there is a spin-preserving orientation-preserving Riemannian
isometry (metric isometry) f: M — N such that f* = u.

Proof. The map u : Ay — Ay naturally extends to a *-isomorphisms of C*-algebras and
by Gel’fand theorem there exists a homeomorphism f : M — N such that f® = u. Since
f*® maps smooth functions onto smooth functions, f is a diffeomorphism.

The filtered algebra Qps(Anr) (respectively Qn(An)) coincides with the filtered algebra
of smooth sections of the Clifford bundle C1H) (T'(M)) (respectively C1F)(T(N))) and the
map Ady : Qpy (An) — Qp,, (Anr) is a filtered isomorphisms (extending f*). Therefore
its restricition Ady : Qp (An) — Qp, (An) is an isomorphism between the Hermitian
modules of sections of the complexification of the tangent bundles T'(M) and T(N).
From Serre-Swan theorem, Df : T(M) — T(N) is an isomorphism of Euclidean bundles
which implies that f is a Riemannian isometry.

Since Ady(Jn) = Jyr and Ady(T'y) = Ty, f is orientation and spin-preserving. O

10
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Proposition 4.5. The identity functor is an inclusion of the category ab-7..
category ab-".

Proof. Let ¢ : (A1, H1, D1) — (Az, Ha, D2) be an isomorphism in the category ab-% .
By the reconstruction theorem 1.2, there are two manifolds M and N in the category .#
such that (Ax,Hy, Dy) is isomorphic to (A1, H1, D1) and (A, Har, Das) is isomorphic
to (As, Ha, Do) with isomorphisms (¢n,Un) and (¢ar, Ups), Tespectively, in the category
y]rem

By lemma 4.4, ¢ppro¢po qﬁ&l € Yﬁ_ed is the image under € of a spin-preserving Riemannian
isometry f that (for manifolds of the same dimension) is a metric isometry in .#.

Since ¢pr, ¢n are isomorphisms in ab-.#7._,; and hence, by remark 2.1, isomorphisms also
in ab-.#7", it follows that ¢ = ¢} o €(f) 0 pn € ab-L". O

4 into the

We can now state the promised equivalence result.

Theorem 4.6. The Connes-Rennie-Varilly functor is an equivalence between the category
0

Mq-spin and the category ab-7, -

Proof. The Connes-Rennie-Varilly functor is already faithful because of proposition 4.3
and representative because of proposition 4.5. We need only to show its fullness.

Let M and N be manifolds in the category .#y-spin and let ¢ : €(N) — €(M) be a
morphism in the category YIOTG 4- By proposition 4.5 ¢ is a morphism in the category .7
and from remark 3.3 there exists a metric isometry f : M — N in the category .#; such
that €(f) = ¢. Since ¢ defines an isomorphism between €(f(M)) and €(M) in .7, then,
by lemma 4.4, f : M — f(M) is (orientation and) spin-preserving and we are done. O

Let us summarize the categorical “relations” now available with the commutative diagram
of functors

ab- 77 iC ab- s ah. ™
~. 7
. o
¢ ab-."-spi ¢ ¢
T
M g-spinC MC M,
where ab-#"-spin := €(.#4-spin). The left and right vertical inclusion functors corre-

spond respectively to the embedding in theorem 4.3 and to the Connes-Rennie-Varilly
anti-equivalence in theorem 3.2; the horizontal top-left arrow is the inclusion functor de-
scribed in proposition 4.5.

Loosely speaking, one would expect a similar structure to carry over to the general non-
commutative setting, relating subcategories of “spin-preserving” morphisms in ™ and
“metric-preserving” morphisms in .#}.,. However, in general things might be more com-
plicated. For the time being, we just mention the following result, omitting the (easy)
details of the proof.

Proposition 4.7. Let (A1, Hi,D1) &2, (A2, Ha, D) be a morphism of the spectral
triples in the category &, where ® is a coisometry. Then

dp, (w1 0 ¢, ws 0 @) < dp,(w1,w2), Ywi,wz € $(As).

11
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We have discussed only the case of spin manifolds. We also expect analogous statements
to hold true for spin® manifolds.

5 Final comments

The main result presented in this paper is nothing more than a simple observation on
how Gel’fand-Naimark duality can be reformulated in the light of Connes’ reconstruction
theorem for spin Riemannian manifolds. However, it seems to us that the functoriality of
the Connes-Rennie-Varilly correspondence has some intriguing appeal and one could ask
to which extent it is possible to “lift” it to some of the other main objects entering the
scene, notably the Dirac operators. This issue is presently under investigation.

From the perspective of this work, the use of the spin structure has been only instrumental
in recasting Gel’fand-Naimark theorem in the light of the Connes’ reconstruction theorem,
and actually it might appear as an unnecessary complication: it introduces some redun-
dancy in the main result and, when incorporated tout-court in the setup, it does not lead
to a genuine categorical anti-equivalence.

This might suggest that in a successive step one could try to get rid of such a structure, thus
obtaining a different kind of categorical duality between a metric category of (isometries
of) Riemannian manifolds and suitable categories of spectral data (for example considering
spectral triples arising from the signature Dirac operator in place of those arising from
the usual Atiyah-Singer Dirac operator). Although several variants of morphisms can be
introduced between spectral triples (see [BCL2, Section 4.1] for details), corresponding
to the “rigidity” imposed on the maps between manifolds (totally geodesic isometries,
Riemannian isometries, ... ), this line of thought does not require significant structural
modifications in the definitions of morphisms for the categories of spectral geometries
involved (as a pair of maps at the algebra and the Hilbert space level) and will be pursued
elsewhere (see [Be] for more details).

The actual construction of functors (and dualities) from categories of spin Riemannian
manifolds (with different dimensions) to “suitable” categories of spectral triples (of the
Atiyah-Singer “type”) is a more interesting goal whose main obstruction is the lack of
a sufficiently general notion of pull-back of spinor fields. In order to solve this problem
it will be necessary to construct “relational categories” of spectral triples, via “spectral
conguences” and/or “spectral spans” following the lines already announced in the seminar
slides [Be]. We will return to these topics in forthcoming papers.
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