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ABSTRACT 
 

 

Project Code : RSA4780022 

Project Title : Holomorphic Sobolev Spaces and Generalized Segal-Bargmann 

Transform 

Investigator : Associate Professor Dr. Wicharn Lewkeeratiyutkul 

E-mail Address : wicharn.l@chula.ac.th 

Project Period : 31 August 2004 – 30 August 2007 extended until 30 August 2008 

 

The main objectives of this project are two folds. In one direction, we study a 

rotation-invariant form of the Segal-Bargmann transform. We consider the subspace of 

Segal-Bargmann space which is invariant under the action of the special orthogonal 

group. We establish a pointwise bound for a function in this space which is polynomially 

better than the pointwise bound for a function in the Segal-Bargmann space. 

In the other direction, we continue to develop the categorical non-commutative geometry 

that was initiated in [BCL1]. More specifically:   

1. we obtain a categorical version of Gel’fand duality theorem that generalizes the usual 

Gel’fand’s duality theorem for the category of commutative unital C*-algebras and the 

category of compact Hausdorff spaces;  

2. as a first step toward a bivariant Serre-Swan equivalence theory, we develop a 

spectral theorem for imprimitivity Hilbert C*-bimodules over commutative unital C*-

algebras, in terms of Hermitian line bundles over the graph of a homeomorphism 

between the compact Hausdorff Gel’fand spectra of the two C*-algebras;  

3. as the first effort in the direction of the construction of a full theory of morphisms of 

spectral geometries, we introduce a notion of metric morphism for A. Connes’ spectral 

triples; we prove a duality between the category of isometries of compact Riemannian 

spin manifolds and the category of metric morphisms and we study the relationship 

between the metric category and the category of spectral triples already introduced in 

[BCL1].  

 

Keywords :  spectral triples, morphisms, categorification, C*-category, Segal-

Bargmann transform 
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(1) Research work on the Segal-Bargmann transform 

 

The Segal-Bargmann transform is the map �2: ( , ) ( )n n
t tB L � �� � defined by 

2/2 ( ) /2( ) (2 ) ( ) ( )
n

n z x t n
t

R
B f z t f x e dx z� � � �� �� �  

where �( )n�  denotes the space of (entire) holomorphic functions on n� ,and t  is a 

positive real number. The density t� is the Gaussian function given by 
2/2 /2( ) (2 ) n x t

t x t e� � � ��  

This transform is also known as coherent state transform in physics literature. There are 

variants of the Segal-Bargmann transform, but the form above is the one we study in 

this work. It is easy to verify that the image of a function f  in 2( , )n
tL ��  under tB  is a 

holomorphic function. In general, we have the following characterization of the image of 

tB  as follows: 

 

Theorem 1 (Segal[Sg]-Bargmann[B]). tB  is an isometric isomorphism from 2( , )n
tL ��  

onto the space 2( , )n
tL �� �  consisting of the space of all holomorphic functions on n�  

which is square-integrable with respect to the measure t td dz� ��   where 
2/2 | | /( ) ( ) n z t

t z t e� � � ��  

This isomorphism is central in quantum field theory because it was used for describing 

the wave-particle duality of light. For expository articles on the history and its relevance 

in physics, see [Gr], [H1], [H2]. 

 

The space 2( , )n
tL �� �  is called the Segal-Bargmann space. Suppose that F  is 

invariant under the action of ( )SO d . By analytic continuation, it is also invariant under 

the action of ( , )SO d � . 

 

Theorem 2 [CL]. The Segal-Bargmann transform tB  preserves rotation. In other words, 

a function 2( , )n
tf L �� �  is ( )SO d -invariant if and only if ( )tB f  is ( , )SO d � -invariant. 
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It is well-known that for any function 2( , )d
tF L �� � � , we have the pointwise bound 

2

2

2 2/
( , )(1) ( ) ( ).d

t

z t d
LF z e F z�� �� �  

By minimizing (1) on each orbit, for any ( , )SO d � -invariant function F  in the Segal-

Bargmann space, we obtain the preliminary estimate 

2

2 2( , ) /
( , )(2) ( ) ( ),d

t

z z t d
LF z e F z�� �� �  

where 2 2
1( , ) dz z z z� � �� . Since 2( , )z z z� , this is already an improvement over 

the pointwise bound in (1). 

 

 The ( )SO d  invariance means that F  is determined by its values on 
1{( , 0, , 0)}z � � � . (By holomorphicity, F  is determined by its values on d� , then 

any point in d�  can be rotated into 1� .) Conversely, any even holomorphic function on 
1�  has an extension to an ( )SO d -invariant function on d� . Then the space of ( )SO d -

invariant functions in the Segal-Bargmann space over d�  can be expressed as an 2L -

space of holomorphic functions on 1� , with some non-Gaussian measure. By 

estimating the reproducing kernel for this space, we obtain a sharp bound for an 

( )SO d -invariant function F  in 2( , )d
tL �� � , which will be polynomially better than (2). 

This bound is described in the following theorem. 

 

Theorem 3 [KL]. There exists a constant C , depending only on d  and t , such that for 

each ( )SO d -invariant function F  in 2( , )d
tL �� � , we have 

2

( , ) /
2 2

( 1)/2 ( , )( ) ( ).
1 ( , )

d
t

z z t
d

d L

Ce
F z F z

z z
��� �

� � �

 

(2) Research work on categorical non-commutative geometry 

Non-commutative geometry, created by A. Connes, is a powerful extension of the ideas 

of R. Descartes’ analytic geometry: to substitute “geometrical objects” with their Abelian 

algebras of functions; to “translate” the geometrical properties of spaces into algebraic 

properties of the associated algebras and to “reconstruct” the original geometric spaces 

as derived entities (the spectra of the algebras). 

Whenever such “codifications” of geometry in algebraic terms still make sense if the 

Abelian condition is dropped, we can simply work with non-commutative algebras 

considered as “duals” of “non-commutative spaces.” 
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The existence of dualities between categories of “geometrical spaces” and categories 

“constructed from Abelian algebras” is the starting point of any generalization of 

geometry to the non-commutative situation.  

Typical examples of such (anti-) equivalences are: 

- Gel’fand-Naimark duality between the category of continuous maps of compact 

Hausdorff spaces and the category of unital involutive homomorphisms of unital 

commutative C*-algebras  ([G1], [G2]); 

- Serre-Swan equivalence between the category of vector bundle maps of finite 

dimensional locally trivial vector bundles over a compact Hausdorff space and 

the category of homomorphisms of finite projective modules over a commutative 

unital C*-algebra  ([Sr], [Sw]);  

- Takahashi duality between the category of Hilbert bundles on (different) 

compact Hausdorff spaces and the category of Hilbert C*-modules over 

(different) commutative unital C*-algebras  ([T1], [T2]).   

Gel’fand-Naimark duality allows us to consider the non-commutative C*-algebras as 

non-commutative topological spaces, while Serre-Swan and Takahashi dualities allow 

us to consider Hilbert C*-modules as non-commutative Hilbert bundles.  

In order to define “non-commutative manifolds”, we need categorical dualities between 

categories of manifolds and suitable categories constructed out of Abelian C*-algebras 

of functions over the manifolds. 

A complete answer to the characterization of non-commutative manifolds is not yet 

known, but (at least in the case of compact finite-dimensional orientable Riemannian 

spin manifolds) the notion of Connes’ spectral triples and Connes-Rennie-Varilly 

reconstruction theorem ([C1], [C2], [R], [RV1], [RV2]) provide an appropriate starting 

point, suggesting to identify the objects of our non-commutative category with Connes’ 

spectral triples. 

A (compact) spectral triple � �( , , )D  is given by: 

- a unital pre-C*-algebra � ; 

- a (faithful) representation � �� ��[ , ( )] ( )D a  of �  on the Hilbert space � ; 

- a (generally unbounded) self-adjoint operator D  on � , called the Dirac operator, 

such that: 

a) the resolvent ��� 1( )D  is a compact operator, � �	 �� \ ,  
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b) � �� ��[ , ( )] ( )D a , for every ��a , where � � �[ , ] :x y xy yx  denotes 

the commutator of � ��, ( )x y . 

Spectral triples with Abelian algebra � are naturally constructed from spinorial compact 

manifolds taking ( )C
� �� , 2( ( ))L S M�� , where ( )S M  is a spinor bundle and 

�  the Atiyah-Singer Dirac operator. A theorem recently proved by A. Connes allows to 

reconstruct compact spin manifolds from commutative spectral triples that satisfies a 

number of additional technical requirements.  

Since Connes’ reconstruction theorem ([C1], [C2]) justified the fact that spectral triples 

are a possible definition for “non-commutative” compact finite-dimensional orientable 

Riemannian spin manifolds, it is our purpose to try to define suitable notions of 

morphisms and categories for these spectral triples in such a way that categorical 

dualities for noncommutative manifolds can be accomplished.  

There are actually several possible notions of morphism, according to the amount of 

“background structure” of the manifold that we would like to see preserved: 

- the metric, globally (isometries), 

- the metric, locally (totally geodesic maps, in the differentiable case), 

- the Riemannian structure, 

- the differentiable structure. 

In [BCL1] we proposed a notion of “totally-geodesic-spin” morphisms that (when applied 

to the case of spectral triples arising from the Atiyah-Singer Dirac operator) manifest a 

strong “spinorial rigidity”, namely a morphism between two spectral triples  

( , , )j j jD� � , 1,2j � , is a pair ( , )� �  with 1 2:� �� �  and 1 2:� �� �  such that 

( ) ( ) ( )ax a x�� � �  and 1 2D D� � �� �  for 1a � �  and 1x � � .  

 In [BCL5] we study a less rigid notion of metric morphisms preserving the Connes’ 

distance formula on the set of pure states of the C*-algebras of the spectral triples  

In practice, a “metric” morphism between two spectral triples ( , , )j j jD� � , 1,2j � , is 

a map 1 2:� �� �  whose pull-back 2 1: ( ) ( )� 
 �� � � � , between the set of pure 

states of the C*-algebras ( )j� � , 1,2j � , is an isometry for the Connes distance 

defined by 1 2 1 2( , ) sup{| ( ) ( ) | : [ , ] 1}d a a D a� � � �� � � . 

In [BCL5] we also examine the relation between the notions of “metric” and “totally 

geodesic-spin” morphisms. 
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These notions of morphism of spectral triples are only tentative: as pointed out by       

A. Rennie, it is likely that the “correct” definition of morphism will evolve, but it will 

surely reflect the basic structure suggested here. 

Actually, the several notions of morphism of spectral triples described above are not as 

general as possible. In a wider perspective, a morphism of spectral triples ( , , )j j jD� � , 

where 1,2j �  might be formalized as a “suitable” functor : �
� �� �	 	F  between 

the categories 
j�
	  of j� -modules, having “appropriate intertwining” properties with 

the Dirac operators jD . 

Under some “mild” hypothesis, by Eilenberg-Gabriel-Watt theorem, any such functor is 

obtained by “tensorization” by a bimodule. These bimodules, suitably equipped with 

spectral data (as in the case of spectral triples), in our opinion, provide a natural setting 

for a general theory of morphisms of non-commutative spaces we are looking for.  

In order to investigate more precisely the nature of bimodules as morphisms, we have 

turned our attention to a topological form of “categorification” where such bimodules 

appear naturally in a strict category (as non-diagonal blocks in a C*-category). 

 

Categorification is the term, introduced by L. Crane-D. Yetter [CY], to denote the 

generic process to substitute ordinary algebraic structures with categorical counterparts. 

The term is now mostly used to denote a wide area of research (see J. Baez - J. Dolan 

[BD]) whose purpose is to use higher order categories to define categorial analogs of 

algebraic structures. This vertical categorification is usually done by promoting sets to 

categories, functions to functors, hence replacing a category with a 2-category and so 

on. 

There are also more “trivial” forms of horizontal categorification in which ordinary 

algebraic associative structures are interpreted as categories with only one object and 

suitable analog categories with more than one object are defined. 

In this case the passage is from endomorphisms of a single object to morphisms 

between different objects: 
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Monoids Small Categories (Monoidoids) 

Groups Groupoids 

Associative unital Rings Ringoids 

Associative unital Algebras Algebroids 

Unital C*-algebras C*-categories (C*-algebroids) 

 

It is an extremely interesting future topic of investigation to discuss the interplay 

between ideas of categorification and non-commutative geometry. 

As a first step in the development of a “categorical non-commutative geometry”, we 

have been looking at a possible “horizontal categorification” of Gel’fand duality. 

In the setting of C*-categories, we [BCL3] provide a definition of “spectrum” of a 

commutative full C*-category (that we call spaceoid) as a one dimensional unital Fell-

bundle over a suitable groupoid (equivalence relation) and we prove a categorical 

Gel’fand duality theorem generalizing the usual Gel’fand duality between the categories 

of Abelian C*-algebras and compact Hausdorff spaces. 

On one side of the extended duality we have a “horizontal categorification” of the notion 

of commutative C*-algebra, namely that of “commutative full C*-category” whilst the 

corresponding replacement of spaces, the “spaceoids”, are supposed to parametrize 

their spectra. 

As a byproduct, we [BCL4] also obtain the following spectral theorem for imprimitivity 

bimodules over Abelian C*-algebras: every such bimodule is obtained by “twisting” (by 

the 2 projection homeomorphisms) the symmetric bimodule of sections of a unique 

Hermitian line bundle over the graph of a unique homeomorphism between the spectra 

of the two C*-algebras. 

Rather surprisingly, as far as we know, our findings have not been discussed before, 

despite the fact that (mostly highly non-commutative) C*-categories have been 

somehow intensively exploited over the last 30 years in several areas of research, 

including Mackey induction, superselection structure in quantum field theory, abstract 

group duality, subfactors and the Baum-Connes conjecture.   

Once we have a running definition of “spaceoid”, it seems quite challenging in the next 

step to look for some natural occurrence of the notion of spaceoid in other contexts. For 



8 

instance, we are not aware of any connection with the powerful concepts that have 

been introduced in algebraic topology to date. Also, the appearance of bundles in the 

structure of the spectrum suggests an intriguing connection to local gauge theory but we 

have not developed these ideas yet.  

More structure is expected to emerge when our C*-categories are equipped with a 

differentiable/metric structure via Dirac operators. In particular one might be interested 

to define spectral triples on C*-categories and use them to provide a horizontal 

categorification of A. Connes non-commutative geometry as a first step before 

addressing a full (vertical) categorification of non-commutative geometry.  

 

For more details on this account, a reader is recommended to read the survey paper 

[BCL2]. 
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The objects of interest in this article are arbitrary functions F ∈HL2(Cd, μt) (the Segal-Bargmann
space of holomorphic functions that are square integrable with respect to the Gaussian measure
μt on Cd with density (πt)−de−|z|

2/t with respect to Lebesgue measure where t > 0 and z ∈Cd)
which are invariant under the action of the special orthogonal group SO(d,C), namely F (Az) =
F (z) for all z ∈ Cd and all A ∈ SO(d,C). The authors establish two pointwise bounds for
such functions. For their first bound they take the well-known pointwise bound for any F ∈
HL2(Cd, μt),

(1) |F (z)|2 ≤ e|z|
2/t‖F‖2,

where ‖F‖ denotes the norm in L2(Cd, μt), and then they minimize this bound over the orbits of
the SO(d,C) action. While this gives the improved bound

(2) |F (z)|2 ≤ e|(z,z)|/t‖F‖2

for any SO(d,C) invariant F , it is not optimal. Here (z, z) = z2
1 + · · ·+ z2

d for z = (z1, . . . , zd).
The straightforward inequality |(z, z)| ≤ |z|2 shows that (2) is a better bound than (1). In fact, the
authors show that (2) is not optimal by proving the major result of the paper, which is the following
pointwise bound for any SO(d,C) invariant F in the Segal-Bargmann space:

(3) |F (z)|2 ≤ Ce|(z,z)|/t

1 + |(z, z)|(d−1)/2‖F‖2,

where the constant C depends only on the dimension d and the parameter t. This is done by
estimating the reproducing kernel function of the subspace of SO(d,C) invariant functions of the
Segal-Bargmann space. In a remark at the end of the paper, the authors indicate why the inequality
(3) is sharp. However, they do not identify the optimal constant C. They do sketch a proof for
showing that the functional form of the right side of (3) is sharp.

Reviewed by Stephen Bruce Sontz

References

1. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform,
Part I, Comm. Pure Appl. Math., 14 (1961), 187–214. MR0157250 (28 #486)

2. K. Chailuek and W. Lewkeeratiyutkul, A pointwise bound for a holomorphic function which is
square-integrable with respect to an exponential density function, Soochow J. Math., 30 (2004),
75–83. MR2050912 (2004m:46060)
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The Segal-Bargmann spaceHL2(Cd, μt) is the space of holomorphic functions on C
d that

are square-integrable with respect to the Gaussian measure μt(z)dz = (πt)−de−|z|
2/t dz.

Here t is a fixed positive real number. In this paper, the authors consider the subspace
of the standard Segal-Bargmann space that is invariant under the special orthogonal
group SO(d). The goal of the paper is to compare two bounds for functions in this
space, a simple bound obtained by minimizing the standard bounds in the full Segal-
Bargmann space over the orbits of the group, and a sharp bound obtained by directly
estimating the reproducing kernel for the subspace. The authors show that the sharp
bounds are polynomially better than the simple bounds, with the difference between
the two growing larger and larger as the dimension d goes to infinity. It is well known
that for any function F ∈ HL2(Cd, μt), we have the pointwise bound

(1) |F (z)|2 ≤ e|z|
2/t‖F‖2

L2(C
d
,μt)

(z ∈ C
d).

Now suppose that F is invariant under the action of SO(d), and therefore, by analytic
continuation, under the action of SO(d, C). By minimizing (1) on each orbit, for any
SO(d)-invariant function F in the Segal-Bargmann space, we obtain the preliminary
estimate

(2) |F (z)|2 ≤ e|(z,z)|2/t‖F‖2
L2(C

d
,μt)

(z ∈ C
d).

Since |(z, z)| ≤ |z|2, this is already an improvement over the pointwise bound in (1).
The SO(d) invariance means that F is determined by its values on {(z, 0, . . . , 0)} � C

1.
(By holomorphy, F is determined by its values on R

d, then any point in R
d can be

rotated into R
1.) Conversely, any even holomorphic function on C

1 has an extension
to an SO(d)-invariant function on C

d. Then the space of SO(d)-invariant functions in
the Segal-Bargmann space over C

d can be expressed as an L2-space of holomorphic
functions on C

1, with some non-Gaussian measure. By estimating the reproducing
kernel for this space, the authors obtain a sharp bound for an SO(d)-invariant function
F in HL2(Cd, μt), which is polynomially better than (2). This bound is described in
the following theorem: There exists a constant C, depending only on d and t, such that
for each SO(d)-invariant function F in HL2(Cd, μt),

|F (z)|2 ≤ Ce|(z,z)|/t

1 + |(z, z)|(d−1)/2
‖F‖2

L(C
d
,μt)

(z ∈ C
d).

This bound is sharp.

Vasily A. Chernecky (Odessa)
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A POINTWISE BOUND FOR ROTATION-INVARIANT
HOLOMORPHIC FUNCTIONS THAT ARE SQUARE

INTEGRABLE WITH RESPECT TO A GAUSSIAN MEASURE

Areerak Kaewthep and Wicharn Lewkeeratiyutkul

Abstract. We consider the subspace of Segal-Bargmann space which is invari-
ant under the action of the special orthogonal group. We establish a pointwise
bound for a function in this space which is polynomially better than the point-
wise bound for a function in the Segal-Bargmann space.

1. INTRODUCTION

The Segal-Bargmann space HL2(Cd, μt) is the space of holomorphic functions
on Cd that are square-integrable with respect to the Gaussian measure μt(z) dz =
(πt)−de−|z|2/t dz, where |z|2 = |z1|2 + · · ·+ |zd|2. Here t is a fixed positive real
number. See [1, 5, 7, 8, 10, 11, 15], for details about the importance of this space.

Various generalizations of the Segal-Bargmann space have been considered. An
important part of the study of such generalizations is to obtain sharp pointwise
bounds on the functions. (See, for example, [2, 4, 9, 12, 14]). Such bounds amount
to estimates for the reproducing kernel on the diagonal.

In this paper, we consider the subspace of the standard Segal-Bargmann space
that is invariant under the special orthogonal group. The goal of the paper is
to compare two bounds for functions in this space, a simple bound obtained by
minimizing the standard bounds in the full Segal-Bargmann space over the orbits of
the group, and a sharp bound obtained by directly estimating the reproducing kernel
for the subspace. We show that the sharp bounds are polynomially better than the
simple bounds, with the difference between the two growing larger and larger as
the dimension d goes to infinity.
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2000 Mathematics Subject Classification: Primary 22E30, 81S30, 53D50, 60H30; Secondary 43A32,
46E20, 58J25.
Key words and phrases: Segal-Bargmann, Rotation-Invariant, Gaussian measure, Pointwise bound.
This work is partially supported by Thailand Research Fund no. RSA 4780022.

1443

19



1444 Areerak Kaewthep and Wicharn Lewkeeratiyutkul

This analysis is motivated in part by a comparison of [3] and [9]. In [3], Driver
obtains (among other things) bounds for a generalized Segal-Bargmann space by
representing it as the subspace of a certain infinite-dimensional standard Segal-
Bargmann space that is invariant under a certain group action. (See also [7, 16,
13]). Meanwhile, in [9], Hall obtains sharp bounds for the relevant generalized
Segal-Bargmann space by directly estimating the reproducing kernel. The difference
between the two bounds is significant; the sharper bounds of [9] are essential, for
example, in the analysis in [14].

It is well-known that for any function F ∈ HL2(Cd, μt), we have the pointwise
bound

(1) |F (z)|2 ≤ e|z|
2/t‖F‖2L2(Cd,μt)

(z ∈ C
d).

Now suppose that F is invariant under the action of SO(d), and therefore, by
analytic continuation, under the action of SO(d, C). By minimizing (1) on each
orbit, for any SO(d)-invariant function F in the Segal-Bargmann space, we obtain
the preliminary estimate

(2) |F (z)|2 ≤ e|(z,z)|/t‖F‖2L2(Cd,μt)
(z ∈ C

d),

where (z, z) = z2
1 + · · ·+ z2

d . Since |(z, z)| ≤ |z|2, this is already an improvement
over the pointwise bound in (1).

The SO(d) invariance means that F is determined by its values on {(z, 0, ..., 0)}
� C1. (By holomorphicity, F is determined by its values on Rd, then any point in
R

d can be rotated into R
1.) Conversely, any even holomorphic function on C

1 has an
extension to an SO(d)-invariant function on Cd. Then the space of SO(d)-invariant
functions in the Segal-Bargmann space over C

d can be expressed as an L2-space of
holomorphic functions on C1, with some non-Gaussian measure. By estimating the
reproducing kernel for this space, we obtain a sharp bound for an SO(d)-invariant
function F in HL2(Cd, μt), which will be polynomially better than (2). This bound
is described in the following theorem.

Theorem 1. There exists a constant C, depending only on d and t, such that
for each SO(d)-invariant function F in HL 2(Cd, μt), we have

|F (z)|2 ≤ C e|(z,z)|/t

1 + |(z, z)|(d−1)/2
‖F‖2L(Cd,μt)

(z ∈ C
d).

2. SO(d, C)-INVARIANT MEASURE ON A COMPLEX SPHERE

Denote by SO(d, C) the set of d×d complex orthogonal matrices with deter-
minant one. Elements of SO(d, C) preserve the bilinear form (·, ·) on C

d defined by

20
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(z, ξ) = z1ξ1 + z2ξ2 + · · ·+ zdξd

for any z, ξ ∈ C
d. For each w ∈ C, we define

Sw = {z ∈ C
d | (z, z) = w2}.

In particular, S0 = {z ∈ Cd | (z, z) = 0}. Using the nondegeneracy of the form
(·, ·), it is not hard to show that SO(d, C) acts transitively on Sw for all w ∈ C−{0}.
Moreover, let

S = {z ∈ C
d | (z, z) ∈ (−∞, 0]}.

By the Implicit Function Theorem, S0 − {0} and S − S0 are submanifolds of Cd

with dimensions less than the dimension of C
d. This implies that S has Lebesgue

measure zero.
Denote by H

+ = {z ∈ C | 	(z) > 0} the open right-half plane of C. Define
Ψ: Cd − S → H+ × S1 by

Ψ(z) = (w, z′)

where w = |(z, z)|1/2ei θ
2 , θ is the principal value of arg(z, z), θ ∈ (−π, π), and

z′ = z
w . It is easy to verify that Ψ is a continuous bijective map whose inverse

is Ψ−1(w, z′) = wz′. We can think of this map as a “complex polar form” of an
element in Cd that is not in S. Let m be Lebesgue measure on Cd and m∗ the
Borel measure on H+ × S1 such that m∗(E) = m(Ψ−1(E)). The next theorem
shows that the pushed-forward measure m∗ on H

+×S1 can be written as a product
measure m∗ = ρ× α, where ρ is a measure on H+ defined by

ρ(A) =
∫

A

|w|2d−2dw

and α is an SO(d, C)-invariant Borel measure on S1.

Theorem 2. There is an SO(d, C)-invariant Borel measure α on S1 such that
m∗ = ρ×α. If f is a Borel function on Cd such that f≥0 or f ∈L1(Cd, m), then

(3)
∫

Cd

f(z) dz =
∫

C

∫
S1

f(wz′) dα(z′) |w|2d−2 dw,

where dw denotes the two-dimensional Lebesgue measure on C = R
2.

Proof. Since S has Lebesgue measure zero, (3) is equivalent to

(4)
∫

Cd−S
f(z) dz =

∫
C

∫
S1

f(wz′) dα(z′) |w|2d−2 dw.

First, we need to construct α. If E is a Borel set in S1, let E1 be the set in Cd

given by
E1 = {wz′ | w ∈ H

+, |w| < 1, z′ ∈ E}.
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If (4) is to hold when f = χE1 , we must have

m(E1) =
1
2

∫
D1

∫
E

dα(z′) |w|2d−2 dw =
π

2d
α(E).

Hence, for any Borel set E in S1, we define

α(E) =
2d

π
m(E1).

Since the map E �→ E1 takes Borel sets to Borel sets and commutes with unions,
intersections and complements, α is a Borel measure on S1. If E is a Borel set in
S1 and A ∈ SO(d, C) then

α(AE) =
2d

π
m((AE)1) =

2d

π
m(A(E)1) =

2d

π
det(A)m(E1) = α(E),

where det(A) is the determinant of A over R, which is 1. Hence α is SO(d, C)-
invariant. Following a similar argument to the real polar coordinates formula (see,
e.g., [6, Theorem 2.49]) we can show that m∗ = ρ × α on all Borel sets. Hence
equation (4) holds when f is a characteristic function of a Borel set and it follows
for general f by the usual linearity and approximation argument.

The measure α in Theorem 2 is uniquely determined and can be given explicitly.
There is a diffeomorphism between the tangent bundle T (Sd−1) of the real unit
sphere Sd−1 and the complex unit sphere S1 given by

a(x, p) = cosh(p) x +
i

p
sinh(p) p for any x ∈ Sd−1 and x · p = 0

where p = |p|. See [15] for more details. Using these coordinates, we can write
the measure α explicitly as follows:

Lemma 3. The measure α is given by

α(z) = a0

(sinh 2p

2p

)d−22d−1 dp dx.

Here z = a(x, p), a0 is a constant, dx is the surface area measure on S d−1 and
dp is Lebesgue measure on Rd.

Proof. The measure α and the measure
( sinh 2p

2p

)d−22d−1 dp dx are both
SO(d, C)-invariant(Lemma 3 of [15]) and finite on compact sets. Thus, by Theorem
8.36 of [17], these two measures must agree up to a constant.
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3. POINTWISE BOUND FOR A FUNCTION IN HL2(Cd, μt)O

Denote by H(Cd)O the space of SO(d, C)-invariant holomorphic functions on
C

d, i.e., the space of holomorphic functions f for which f(Az) = f(z) for all
z ∈ Cd and A ∈ SO(d, C). In this section, we will establish a pointwise bound for
a function in the space HL2(Cd, μt)O := H(Cd)O ∩ L2(Cd, μt).

By minimizing over each orbit, we obtain the following pointwise bound:

Proposition 4. For any F ∈ HL2(Cd, μt)O and for any z ∈ Cd

(5) |F (z)|2 ≤ e|(z,z)|/t‖F‖2L2(Cd,μt)
.

Proof. Note that |(z, z)| = |(Az, Az)| ≤ |Az|2 for any z ∈ Cd and A ∈
SO(d, C). If z /∈ S0, we have that (

√
(z, z), 0, . . . , 0) ∈ {Az | A ∈ SO(d, C)},

because SO(d, C) acts transitively on Sw where w =
√

(z, z), and thus

|(z, z)| = inf
{|Az|2 : A ∈ SO(d, C)

}
.

But Sc
0 is dense in Cd, so this equation is also true for all z ∈ Cd. This immediately

gives (5).

This simple technique yields an improvement from the Bargmann’s pointwise
bound (1). However, we will establish a polynomially-better bound than the bound
in (5). Our strategy is to construct a non-Gaussian measure λ on C so that we
can express HL2(Cd, μt)O in terms of the space HL2(C, λ)e of holomorphic even
functions on C that are square-integrable with respect to λ and then estimate the
reproducing kernel of the latter space.

Proposition 5. Let H(C)e be the set of all holomorphic even functions on C.
Then for any d ≥ 2, the map φ : H(Cd)O →H(C)e defined by

φ(f)(x) = f(x, 0, . . . , 0),

for all f ∈ H(Cd)O and all x ∈ C, is a linear isomorphism whose inverse is given
by

ψ(g)(z) = g
(√

(z, z)
)

for all g ∈ H(C)e and all z ∈ Cd.

Note that since g is even, the value of ψ(g)(z) is independent of the choice of
square root of (z, z). Again because g is even, ψ(g) will be given by a convergent
power series in integer powers of (z, z) = z2

1 + · · ·+ z2
d , and therefore ψ(g) will be

holomorphic on C
d.
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Proof. It is clear that φ is a linear map and φ(f) is a holomorphic function
on C for any f ∈ H(Cd)O. Moreover, φ(f) is even since A(−w, 0, . . . , 0) =
(w, 0, . . . , 0) for any w ∈ C, where A = diag(−1,−1, 1, 1, . . . , 1).

On the other hand, ψ is a linear map and ψ(g) is holomorphic on C
d for each

g ∈ H(C)e. Since the bilinear form is preserved under the action of the orthogonal
group, ψ(g) is SO(d, C)-invariant. It is straightforward to verify that φ◦ψ = IH(C)e

and ψ ◦ φ = IH(Cd)O , so the theorem is proved.

Henceforth, we will choose an argument of w ∈ C so that −π < arg(w) ≤ π.
Denote by Bd the Borel σ-algebra in C

d and by B the Borel σ-algebra in C. Define
Φi : (Cd,Bd, μt) → (C,B), i = 1, 2 to be the branch of

√
(z, z) with smaller and

larger argument, respectively, and for each E ∈ B define

λi(E) = μt(Φ−1
i (E)).

Then define λ = (λ1 + λ2)/2. It is easy to check that λ is a Borel measure on C

and for any measurable function g and any E ∈ B∫
E

g dλ =
1
2

∫
Φ−1

1 (E)
g ◦ Φ1 dμt +

1
2

∫
Φ−1

2 (E)
g ◦ Φ2 dμt.

It is now straightforward to verify that the restriction of φ to HL2(Cd, μt)O is a
unitary map onto HL2(C, λ)e.

Proposition 6. The measure λ is absolutely continuous with respect to Lebesgue
measure on C with density given by

(6) Λ(w) =
|w|2d−2

(πt)d

∫
S1

e−|wz|2/tdα(z).

Proof. If E is a Borel set in C, then by Theorem 2

λ(E) =
1
2

∫
Φ−1

1 (E)

e−|z|2/t

(πt)d
dz +

1
2

∫
Φ−1

2 (E)

e−|z|2/t

(πt)d
dz

=
∫

C

∫
S1

χE(w)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

=
∫

E
Λ(w) dw

where Λ is given by (6).
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Next, we will approximate the density Λ of λ and show that on holomorphic
functions, the L2-norm with respect to λ is equivalent to the L2-norm with respect
to the measure β(w)dw, where

(7) β(w) =
e−|w|

2/t

tπ
|w|d−1 (w ∈ C).

Proposition 7. There exist constants m, M > 0, depending on d and t, such
that the density function Λ of λ satisfies

m β(w) ≤ Λ(w) ≤ M β(w)

for all w ∈ C with |w| ≥ 1.

Proof. From Lemma 3, for any w ∈ C

∫
S1

e−|wz|2/t dα(z) = a0

∫
Sd−1

∫
x·p=0

e−|w a(x,p)|2/t
(sinh 2p

2p

)d−2
2d−1 dp dx

= ad

∫ ∞

0
e−(cosh 2p)|w|2/t

(sinh2p

2p

)d−2
2d−1 pd−2 dp

= ad e−|w|
2/t

∫ ∞

0
e−x|w|2/t (x2 + 2x)(d−3)/2 dx,

with ad = a0σ(Sd−1)σ(Sd−2), where σ is the surface measure. The last equality
follows from the change of variables cosh2p = x + 1.

Now, let us consider the case d ≥ 3. To approximate the above integral, we
expand (x2 + 2x)d−3 using the binomial theorem, apply the inequalities

1√
n

(
√

a1 + · · ·+√an ) ≤ √a1 + · · ·+ an ≤ √a1 + · · ·+√an

to (x2 + 2x)(d−3)/2 and then use the formula for the Gamma function in order to
obtain

1√
d− 2

P

(√
t

|w|
)
≤

∫ ∞

0
e−x|w|2/t (x2 + 2x)(d−3)/2 dx ≤ P

(√
t

|w|
)

,

where

P (x) =
d−3∑
k=0

a
1/2
k Γ

(
d− 1 + k

2

)
xd−1+k and ak =

(
d− 3

k

)
2d−3−k.

This shows that

ad√
d− 2

P

(√
t

|w|
)

e−|w|
2/t ≤

∫
S1

e−|wz|2/t dα(z) ≤ adP

(√
t

|w|
)

e−|w|
2/t.
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It follows from (6) that

(8)
e−|w|

2/t

tπ
√

d− 2
Q

( |w|√
t

)
≤ Λ(w) ≤ e−|w|

2/t

tπ
Q

( |w|√
t

)

where

Q(x) =
ad

πd−1

d−3∑
k=0

a
1/2
k Γ

(
d− 1 + k

2

)
xd−1−k =

d−1∑
k=2

bkx
k.

From this (7) easily follows for the case d ≥ 3.
Meanwhile in the d = 2 case we have∫

S1

e−|wz|2/t dα(z) = a2 e−|w|
2/t

∫ ∞

0

e−x|w|2/t

√
x2 + 2x

dx

=
a2√
2

e−|w|
2/t

∫ ∞

0

e−u

√( |w|2
tu

− |w|2
2|w|2 + tu

)
t

|w|2 du

≥ a2

√
t√

2|w| e
−|w|2/t

(∫ ∞

0

e−u

√
u

du−
∫ ∞

0

e−u√
2|w|2/t + u

du

)
.

The function
φ(r) =

∫ ∞

0

e−u

√
r + u

du (r ≥ 0)

is a strictly decreasing function. Hence, if we let δ=2/t and ε=φ(0)−φ(δ), then
φ(0)−φ

(
2|w|2/t

)≥φ(0)− φ(δ) = ε for any w with 2|w|2/t ≥ δ. It follows that

Λ(w) =
|w|2
(πt)2

∫
S1

e−|wz|2/tdα(z)

≥ εa2

π
√

2t

e−|w|2/t

πt
|w|

for any w ∈ C with |w| ≥ 1.
On the other hand,∫

S1

e−|wz|2/t dα(z) ≤ a2 e−|w|
2/t

∫ ∞

0

e−x|w|2/t

√
2x

dx

=
a2

√
tπ√

2|w| e−|w|
2/t.

Hence
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Λ(w) ≤ a2√
2πt

e−|w|2/t

πt
|w|.

Corollary 8. The norms ‖ · ‖L2(C,β) and ‖ · ‖L2(C,λ) are equivalent, i.e., there
are constants k, K > 0, depending on d and t, such that

(9) k‖f‖L2(C,β) ≤ ‖f‖L2(C,λ) ≤ K‖f‖L2(C,β),

for all f ∈ HL2(C, λ).

Proof. First, we will show that there is a constant D > 0, depending on d and
t, such that

‖f‖2L2(C,β) ≤ D ‖f‖2L2(C−D,λ)

for any f ∈ HL2(C, λ), where D = {w ∈ C : |w| ≤ 1}.
Let w ∈ D. Denote by A(w) the annulus {z ∈ C : 2 ≤ |z−w| ≤ 3}. If f is in

HL2(C, λ) then a simple power series argument shows that∫
A(w)

f(v) dv = (9π − 4π)f(w) = 5πf(w).

This implies that

|f(w)| =
1
5π

∣∣∣ ∫
A(w)

f(v) dv
∣∣∣

=
1
5π

∣∣∣〈χA(w)
1
Λ

, f
〉

L2(C−D,λ)

∣∣∣
≤ 1

5π

∥∥∥χA∗
1
Λ

∥∥∥
L2(C−D,λ)

‖f‖L2(C−D,λ),

where A∗ = {z ∈ C : 1 < |z| < 4}, which contains each A(w), w ∈ D. It follows
that there exists a constant c such that for any w ∈ D

|f(w)| ≤ c‖f‖L2(C−D,λ).

It now follows from Proposition 7 that∫
C

|f(w)|2β(w) dw =
∫

D

|f(w)|2β(w) dw +
∫

C−D

|f(w)|2β(w) dw

≤ c2‖f‖2L2(C−D,λ)

∫
D

β(w) dw +
1
m
‖f‖2L2(C−D,λ)

≤ D ‖f‖2L2(C−D,λ)
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for some constant D > 0 depending on d and t. This gives the first inequality in
(9). The second inequality in (9) can be proved in the same way.

Having established Corollary 8, it remains only to obtain pointwise bounds for
elements in HL2(C, λ). We do this by reducing to the standard Segal-Bargmann
space (if d is odd) or to the space HL2

(
C, (tπ)−1|w|e−|w|2/t dw

)
(if d is even).

We now establish pointwise bound in the latter space.

Lemma 9. The set
{

wn

(t(2n+1)/2Γ(n+ 3
2
))1/2

}∞
n=0

is an orthonormal basis for the

Hilbert space HL2
(
C, |w| e−|w|

2/t

tπ dw
)
. Hence for any g ∈ HL2

(
C, |w| e−|w|

2/t

tπ dw
)
,

|g(w)|2 ≤ e|w|2/t

|w| erf
( |w|√

t

)
‖g‖2 (w ∈ C),

where the error function erf is defined by

erf(x) =
2√
π

∫ x

0
e−y2

dy = e−x2
∞∑

n=0

x2n+1

Γ(n + 3
2 )

.

Proof. The proof of the orthonormal basis part uses the same technique as
in [1, 7] and [10], which we will omit. Then the pointwise bound for a function g
in this space is

|g(w)|2 ≤
∞∑

n=0

|w|2n

t(2n+1)/2Γ(n + 3
2 )
‖g‖2 =

e|w|
2/t

|w| erf
( |w|√

t

)
‖g‖2

for any w ∈ C.

Theorem 10. There is a constant B, depending on d and t, such that for any
f ∈ HL2(C, λ) and any w ∈ C− {0},

(10) |f(w)|2 ≤ B

|w|d−1
e|w|

2/t ‖f‖2L2(C,λ).

Proof.
Let f ∈ HL2(C, λ). Then f ∈ HL2(C, β), and thus

∫
C

|w|d−1|f(w)|2 e−|w|2/t

πt
dw < ∞.

28



Pointwise Bound for Rotation-Invariant Holomorphic Functions 1453

If d− 1 is an even number, then

w(d−1)/2f(w) ∈ HL2(C,
e−|w|2/t

tπ
dw).

This is the one-dimensional Segal-Bargmann space. Using Bargmann’s pointwise
bound (1) for this space, we obtain

|w|d−1|f(w)|2 ≤ ‖f‖2
L2(C,β)

e|w|2/t ≤ 1
k2 ‖f‖2L2(C,λ)

e|w|2/t

for all w ∈ C, where k is the constant in Corollary 8.
On the other hand, if d− 1 is an odd number, then

w(d−2)/2f(w) ∈ HL2(C, |w|e
−|w|2/t

tπ
dw).

Following Lemma 9, we have

|w|d−2|f(w)|2 ≤ ‖f‖2L2(C,β)

e|w|2/t

|w| erf
( |w|√

t

)

≤ 1
k2
‖f‖2L2(C,λ)

e|w|2/t

|w|
for all w ∈ C− {0}.

In either case we obtain the pointwise (10) with B = 1/k2.

Proof of Theorem 1. We will transform the pointwise bound (10) to a function
in HL2(Cd, μt)O. Let F ∈ HL2(Cd, μt)O. Then F (w, 0, . . . , 0) ∈ HL2(C, λ)e,
which implies

|F (z)|2 = |F (w, 0, . . . , 0)|2 ≤ B
e|w|2/t

|w|d−1
‖F‖2L2(Cd,μt)

where w =
√

(z, z) for any z ∈ Cd with (z, z) �= 0. In particular,

|F (z)|2 ≤ B e|(z,z)|/t

|(z, z)|(d−1)/2
‖F‖2L2(Cd,μt)

.

On the other hand, from Proposition 4,

|F (z)|2 ≤ e|(z,z)|/t‖F‖2L2(Cd,μt)
for any z ∈ C

d.

Applying the inequality

min
{

1,
1
x

}
≤ 2

x + 1
for each x > 0,
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we have

|F (z)|2 ≤ C e|(z,z)|/t

|(z, z)|(d−1)/2 + 1
‖F‖2L2(Cd,μt)

for each z ∈ Cd, where C is a constant depending on d and t. This completes the
proof of Theorem 1.

Remark on the sharpness. The bound in Theorem 1 is indeed sharp. We
only outline the proof here since the argument relies heavily on properties of special
functions. We can show that the reproducing kernel of the Hilbert spaceHL2(C, λ)e

is given by

K(w, w) =
Γ(d/2)

a02d/2+1
BesselI

(d− 2
2

,
|w|2

t

)( t

|w|2
)d/2−1

where BesselI is the modified Bessel function of the first kind ([18, 19]). Asymp-
totically, BesselI(α, x) ∼ ex√

x
if x is large enough when α > 0 is fixed. Hence,

K(w, w) ∼ C
e|w|2/t

|w|d−1

for any w such that |w| is large enough, where C is a constant depending on d and t.
The result follows by transforming this estimate back to the space HL2(Cd, μt)O.
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In the present study the authors deal with the Segal-Bargmann transform applied to
rotation-invariant functions. They show that it preserves rotation and hence the closed
subspaces of rotation-invariant functions become Hilbert spaces. The authors show
that the values of rotation-invariant functions are determined by a one-dimensional
parameter and hence they establish these Hilbert spaces as L2-spaces on R

1 and C
1 with

respect to some non-Gaussian measures. These non-Gaussian measures are absolutely
continuous with respect to the Lebesgue measure on R and C, respectively. The authors
obtain formulas for these densities.
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Abstract

The Segal-Bargmann transform on Rd maps a square-integrable func-
tion on Rd with respect to a Gaussian measure into a holomorphic func-
tion on Cd which is squre-integrable function with respect to a com-
plex Gaussian measure. In this paper we show that it preserves rotation
and hence the closed subspaces of rotation-invariant functions become
Hilbert spaces. The values of rotation-invariant functions will be de-
termined by a one-dimensional parameter and hence we can established
these Hilbert spaces as L2-spaces on R1 and C1 with respect to some
non-Gaussian measures. We find the densities of these measures with re-
spect to Lebesgue measure and establish unitarity among relevant Hilbert
spaces.

1 Introduction

The Segal-Bargmann transform is an integral transform Bt which maps
L2(Rd, ρt), the set of all functions on R

d that are square integrable with respect
to the real Gaussian measure ρt(x)dx = (2πt)−d/2e−x2/2tdx, onto HL2(Cd, μt),
the set of all holomorphic functions on C

d that are square integrable with

Key words: Segal-Bargmann transform, Segal-Bargmann space, rotation-invariance.
2000 AMS Mathematics Subject Classification: 46E20.
This work is partially support by Thailand Research Fund #RSA4780022.
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160 Rotation-invariant Segal-Bargmann transform

respect to the complex Gaussian measure μt(z)dz = (πt)−de−z2/tdz, for all
positive real numbers t. The transform Bt is given by this formula

(Btf)(z) =
∫

Rd

f(x)
e−(z−x)2/2t

(2πt)d/2
dx

for all f ∈ L2(Rd, ρt) and z ∈ C
d. Here we use notation x2 = x2

1 + x2
2 + · · · +

x2
d for x = (x1, x2, . . . , xn) ∈ R

n. The space HL2(Cd, μt) is also called the
Segal-Bargmann space. See [1], [4], [6], [7], [8], [9], [11] for details about the
importance of this space.

In this paper, we consider the Segal-Bargmann transform applied to rotation-
invariant functions. It turns out that if f is a rotation-invariant function in
L2(Rd, ρt), then F = Bt(f) is also invariant under complex rotation. The ro-
tation invariance of a real-valued function f means that it is determined by
its values on {(x, 0, ..., 0)} � R

1 and the resulting function on R
1 will be an

even function. Similarly, a complex rotation-invariant function F is determined
by its values on {(z, 0, ..., 0)} � C

1 and it is a complex even function. Con-
versely, any even function on R

1 has an extension to a rotation-invariant on
R

d and any even holomorphic function on C
1 has an extension to a complex

rotation-invariant holomorphic function on C
d. Thus the space of rotation-

invariant functions in L2(Rd, ρt) can be expressed as an L2-space of functions
on R

1 with respect to some non-Gaussian measure and also the space of com-
plex rotation-invariant functions in HL2(Cd, μt) can be expressed as an L2-
space of holomorphic functions on C

1 with respect to some non-Gaussian mea-
sure. These non-Gaussian measures are absolutely continuous with respect to
Lebesgue measure on R and C respectively. We obtain the formulas for these
densities. Finally we establish unitarity among these Hilbert spaces

2 Main Results

Denote by SO(d) the set of d×d real orthogonal matrices with determinant one
and by SO(d, C) the set of d×d complex orthogonal matrices with determinant
one. Define a bilinear form (·, ·) on F

d by

(x, y) = x1y1 + x2y2 + · · ·+ xdyd

for all x, y ∈ F
d. Then the elements of SO(d) and SO(d, C) preserve the bilinear

form on R
d and C

d respectively.

Definition 1. Let F be a function on F
d where F is C or R and let G be a

group of d× d matrices. We say that F is G-invariant if

F (Ax) = F (x) for all A ∈ G and all x ∈ F
d.

34



A. K. Chaiworn and W. Lewkeeratiyutkul 161

Notice that if F is an SO(d)-invariant holomorphic function on C
d, then by

analytic continuation it is SO(d, C)-invariant.
Denote by H(Cd)SO(d,C) the set of all SO(d, C)-invariant holomorphic func-

tions on C
d, and F(Rd)SO(d) the set of all SO(d)-invariant functions on R

d.
Denote by H(C)e the set of all holomorphic even functions on C, and F(R)e

the set of all even functions on R.

Theorem 1. For any d ≥ 2, the map Φ: F(Rd)SO(d) → F(R)e defined by

Φ(G)(s) = G(s, 0, . . . , 0)

for all G ∈ F(Rd)SO(d) and all s ∈ R, is a linear isomorphism whose inverse

is given by

Ψ(g)(x) = g
(√

(x, x)
)

= g(|x|)
for all g ∈ F(R)e and all x = (x1, x2, . . . , xd) ∈ R

d.

Proof. It is clear that Φ is a linear map. Moreover, Φ(G) is even since

G(−s, 0, . . . , 0) = G(A(s, 0, . . . , 0)) = G(s, 0, . . . , 0)

where A = diag(−1,−1, 1, 1, . . . , 1) ∈ SO(d). On the other hand, Ψ is a linear
map and Ψ(g) is SO(d)-invariant because (Ax,Ax) = (x, x) for all x ∈ R

d and
all A ∈ SO(d). It is easy to see that Φ ◦Ψ = idF(R)e and Ψ ◦Φ = idF(Rd)SO(d) ,
so the theorem is proved.

Similarly, we have the following theorem for complex case.

Theorem 2. For any d ≥ 2, the map φ : H(Cd)SO(d,C) → H(C)e defined by

φ(f)(ξ) = f(ξ, 0, . . . , 0)

for any f ∈ H(Cd)SO(d,C) and any ξ ∈ C, is a linear isomorphism whose inverse

is given by

ψ(g)(z) = g
(√

(z, z)
)

for any g ∈ H(C)e and any z ∈ C
d.

Note that since g is even, the value of φ(g)(z) is independent of the choice of
square root of (z, z).

Denote by Bd the Borel σ-algebra in R
d and by B the Borel σ-algebra in R.

Define the maps Ψi : (Rd,Bd, ρt) → (R,B), i = 1, 2 by

Ψ1(x) = |x| and Ψ2(x) = −|x|
for all x ∈ R

d. For each E ∈ B let

γi(E) = ρt(Ψ−1
i (E)),
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162 Rotation-invariant Segal-Bargmann transform

and let γ = (γ1 + γ2)/2. It is easy to check that γ is a Borel measure on R and
for any measurable function g and any E ∈ B∫

E

g dγ =
1
2

∫
Ψ−1

1 (E)

g ◦Ψ1 dρt +
1
2

∫
Ψ−1

2 (E)

g ◦Ψ2 dρt.

We write

L2(Rd, ρt)SO(d) = F(Rd)SO(d) ∩ L2(Rd, ρt)

L2(R, γ)e = F(R)e ∩ L2(R, γ).

It is easy to see that L2(Rd, ρt)SO(d) and L2(R, γ)e are closed subspaces of
L2(Rd, ρt) and L2(R, γ) respectively and hence are Hilbert spaces.

Theorem 3. The Hilbert spaces L2(Rd, ρt)SO(d) and L2(R, γ)e are unitarily

equivalent.

Proof. From Theorem 1 we have that the function

Ψ: F(R)e → F(Rd)SO(d)

is a linear isomorphism. We consider the restriction of Ψ to the space L2(R, γ)e.
Let g ∈ F(R)e and G ∈ F(Rd)SO(d) be such that G = Ψ(g). Thus∫

R

|g|2dγ =
1
2

∫
Ψ−1

1 (R)

|g ◦Ψ1(x)|2 ρt(x) dx +
1
2

∫
Ψ−1

2 (R)

|g ◦Ψ2(x)|2 ρt(x) dx

=
∫

Rd

|g(|x|)|2 ρt(x) dx

=
∫

Rd

|Ψ(g) (x)|2 ρt(x) dx

=
∫

Rd

|G(x)|2 ρt(x) dx.

So ‖g‖L2(R,γ) = ‖G‖L2(Rd,ρt). Hence, G ∈ L2(Rd, ρt)SO(d) if and only if
g ∈ L2(R, γ)e. This shows that Ψ is a unitary map from L2(R, γ)e onto
L2(Rd, ρt)SO(d).

We next show that the measure γ is absolutely continuous with respect to
Lebesgue measure on R.

Theorem 4. The measure γ is absolutely continuous with respect to Lebesgue

measure on R with density given by

Δ(s) =
σ(Sd−1)
(2πt)d/2

|s|d−1e−s2/2t. (1)

where Sd−1 is a unit sphere on R
d and σ is the surface measure on Sd−1.
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Proof. Let E be a Borel set in R. Then

γ(E) =
1
2

∫
Ψ−1

1 (E)

e−|x|
2/2t

(2πt)d/2
dx +

1
2

∫
Ψ−1

2 (E)

e−|x|
2/2t

(2πt)d/2
dx

=
1
2

∫ ∞

0

∫
Sd−1

χΨ−1
1 (E)(rx

′)
rd−1

(2πt)d/2
e−|rx′|2/2t dσ(x′) dr

+
1
2

∫ ∞

0

∫
Sd−1

χΨ−1
2 (E)(rx

′)
rd−1

(2πt)d/2
e−|rx′|2/2t dσ(x′) dr

=
1
2

∫ ∞

0

χE(r)
rd−1

(2πt)d/2
e−r2/2t σ(Sd−1) dr

+
1
2

∫ ∞

0

χE(−r)
rd−1

(2πt)d/2
e−r2/2t σ(Sd−1) dr

=
∫

R

χE(s)
|s|d−1

(2πt)d/2
e−s2/2tσ(Sd−1) ds

=
∫

E

Δ(s) ds

where Δ is given by (1).

In the same way denote by B(Cd) the Borel σ-algebra in C
d and by B(C)

the Borel σ-algebra in C and define Φi : (Cd,B(Cd), μt) → (C,B(C)), i = 1, 2
to be the branch of

√
(z, z) with a smaller and larger argument respectively

and for each E ∈ B(C) define

λi(E) = μt(Φ−1
i (E)),

and let λ = (λ1 + λ2)/2.
Define

HL2(Cd, μt)SO(d,C) = H(Cd)SO(d,C) ∩ L2(Cd, μt)

and
HL2(C, λ)e = H(C)e ∩ L2(C, λ).

Then they are also Hilbert spaces. We now have the following theorem whose
proof is similar to that of Theorem 3.

Theorem 5. The Hilbert spaces HL2(Cd, μt)SO(d,C) and HL2(C, λ)e are uni-

tarily equivalent.

Denote by H
+ = {z ∈ C | Re(z) > 0}. Consider the map C

d−S → H
+×S1,

z �→ (w, z′), where w = |(z, z)|1/2ei θ
2 , θ is the principal value of arg(z, z),

θ ∈ (−π, π), and z′ = z
w . This map is a continuous bijection whose inverse is

given by (w, z′) �→ wz′. We can think of it as a “complex polar form” of an
element in C

d whose bilinear form is nonzero.
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164 Rotation-invariant Segal-Bargmann transform

Let m be Lebesgue measure on C
d and m∗ the “push-forward” Borel mea-

sure of m on H
+×S1. Then m∗ can be written as a product measure m∗ = ρ×α,

where ρ is a measure on H
+ defined by

ρ(A) =
∫

A

|w|2d−2dw

and α is an SO(d, C)-invariant Borel measure on S1. There is an SO(d, C)-
invariant Borel measure α on S1 such that m∗ = ρ×α. If f is a Borel measurable
function on C

d such that f ≥ 0 or f ∈ L1(Cd,m), then

∫
Cd

f(z) dz =
∫

C

∫
S1

f(wz′)dα(z′) |w|2d−2dw, (2)

where dw denotes the two-dimensional Lebesgue measure on C = R
2. Details

can be found in [13].

Theorem 6. [13] The measure λ is absolutely continuous with respect to

Lebesgue measure on C with density given by

Λ(w) =
|w|2d−2

(πt)d

∫
S1

e−(wz)2/tdα(z). (3)

Proof. See Proposition 6 in [13].

Unlike the real case, we do not have an explicit form of the formula for the
density of λ with respect to Lebesgue measure. However, in [13], we established
that the density Λ is equivalent to the function |w|d−1 e−|w|

2/t for all w ∈ C

bounded away from zero.

Theorem 7. Let Bt : L2(Rd, ρt) → HL2(Cd, μt) be the Segal-Bargmann trans-

form given by the formula:

(Btf)(z) =
1

(2πt)d/2

∫
Rd

f(x)e−(z−x)2/2t dx.

Then Bt preserves the rotation action. In other words, a function f ∈ L2(Rd, ρt)
is SO(d)-invariant if and only if Bt(f) is SO(d, C)-invariant. Hence, we can

consider the Segal-Bargmannn transform Bt as a unitary map from

L2(Rd, ρt)SO(d) onto HL2(Cd, μt)SO(d,C).

Proof. Let f ∈ L2(Rd, ρt) and F = Bt(f). First assume that f is SO(d)-
invariant. Recall that the bilinear form (·, ·) preserves the action of SO(d) and
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SO(d, C). If A ∈ SO(d) and z ∈ C
d, then

F (Az) =
1

(2πt)d/2

∫
Rd

f(x)e−(Az−x)2/2t dx

=
1

(2πt)d/2

∫
Rd

f(x)e−(z−A−1x)2/2t dx

=
1

(2πt)d/2

∫
Rd

f(Ax)e−(z−x)2/2t d(Ax)

=
1

(2πt)d/2

∫
Rd

f(x)e−(z−x)2/2t dx

= F (z).

Notice that we use the fact that det(A) = 1 in the change of variables above.
Hence, F is SO(d)-invariant. By analytic continuation, it is SO(d, C)-invariant.
Conversely, assume that F is SO(d, C)-invariant. Fix A ∈ SO(d) and let

g(x) = f(Ax) for any x ∈ R
d.

Then g ∈ L2(Rd, ρt). Moreover, for any z ∈ C
d

Btg(z) =
1

(2πt)d/2

∫
Rd

g(x)e−(z−x)2/2t dx

=
1

(2πt)d/2

∫
Rd

f(Ax)e−(z−x)2/2t dx

=
1

(2πt)d/2

∫
Rd

f(x)e−(z−A−1x)2/2t d(A−1x)

=
1

(2πt)d/2

∫
Rd

f(x)e−(Az−x)2/2t dx

= F (Az) = F (z).

Hence, Btg = Btf . Since Bt is 1-1, we must have g = f , i.e. f is SO(d)-
invariant.

Theorem 8. L2(R, γ)e and HL2(C, λ)e are unitarily equivalent. Moreover the

following diagram is commutative

L2(R, γ)e Ψ−→ L2(Rd, ρt)SO(d)

β
⏐⏐� ⏐⏐�Bt

HL2(C, λ)e ψ−→ HL2(Cd, μt)SO(d,C)
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166 Rotation-invariant Segal-Bargmann transform

where β : L2(R, γ)e → HL2(C, λ)e is given by

β(f)(w) =
1

(2πt)d/2

∫ ∞

0

f(r)
∫

Sd−1
e−((w,0,...,0)−rx′)2/2t dσ(x′) rd−1 dr

for all f ∈ L2(R, γ)e and w ∈ C.

Proof. We know that ψ−1, Bt and Ψ are unitary, so ψ−1 ◦Bt ◦Ψ: L2(R, γ)e →
HL2(C, λ)e is also unitary. For any f ∈ L2(C, γ)e and any w ∈ C, we have

(ψ−1 ◦Bt ◦Ψ)(f)(w) = (Bt ◦Ψ)(f)(w, 0, . . . , 0)

=
1

(2πt)d/2

∫
Rd

Ψ(f)(x)e−((w,0,...,0)−x)2/2t dx

=
1

(2πt)d/2

∫
Rd

f(|x|)e−((w,0,...,0)−x)2/2t dx

=
1

(2πt)d/2

∫ ∞

0

∫
Sd−1

f(r)e−((w,0,...,0)−rx′)2/2t rd−1dσ(x′) dr.

Hence β = ψ−1 ◦Bt ◦Ψ, so β is a unitary map. The theorem is proved.
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The article gives a quite nice and up-to-date overview of noncommutative geometry,
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Abstract

After an introduction to some basic issues in non-commutative geom-
etry (Gel’fand duality, spectral triples), we present a “panoramic view”
of the status of our current research program on the use of categorical
methods in the setting of A. Connes’ non-commutative geometry: mor-
phisms/categories of spectral triples, categorification of Gel’fand duality.
We conclude with a summary of the expected applications of “categor-
ical non-commutative geometry” to structural questions in relativistic
quantum physics: (hyper)covariance, quantum space-time, (algebraic)
quantum gravity.
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1 Introduction.

The purpose of this review paper is to present the status of our research work
on categorical non-commutative geometry and to contextualize it providing
appropriate references.

The paper is organized as follows. In section 2, we first provide a review of
the basic dualities (Gelf’and, Serre-Swan and Takahashi) that constitute the
main categorical motivation for non-commutative geometry and then we pass
to introduce the definition of A. Connes spectral triple.

In the first part of section 3, we give an overview of our proposed definitions
of morphisms between spectral triples and categories of spectral triples. In the
second part of section 3 we show how to generalize Gel’fand duality to the
setting of commutative full C*-categories and we suggest how to apply this
insight to the purpose of defining “bivariant” spectral triples as a correct notion
of metric morphism.

The last section 4, is mainly intended for an audience of mathematicians and
tries to explain how categorical and non-commutative notions enter the context
of quantum mathematical physics and how we hope to see such notions emerge
in a non-perturbative treatment of quantum gravity.

The last part (section 4.4) is more speculative and contains a short overview
of our present research program in quantum gravity based on Tomita-Takesaki
modular theory and categorical non-commutative geometry.

We have tried to provide an extensive bibliography in order to help to place
our research in a broader landscape and to suggest as much as possible future
links with interesting ideas already developed. Of course missing references
are sole responsability of the ignorance of the authors, that are still trying to
learn their way through the material. We will be grateful for any suggestion to
improve the on-line version of the document.
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2 Non-commutative Geometry (Objects).

For an introduction to the subject we refer to the books by A. Connes [58],
G. Landi [157], H. Figueroa-J. Gracia-Bondia-J. Varilly [108] (see also [223])
and M. Khalkhali [142]. For the basic definitions on category theory we refer
to S. McLane [171] and M. Barr-C. Wells [9].

Non-commutative geometry, created by A. Connes, is a powerful extension
of the ideas of R. Decartes’ analytic geometry: to substitute “geometrical ob-
jects” with their Abelian algebras of functions; to “translate” the geometrical
properties of spaces into algebraic properties of the associated algebras1 and to
“reconstruct” the original geometric spaces as a derived entities (the spectra
of the algebras), a technique that appeared for the first time in the work of
I. Gel’fand on Abelian C*-algebras in 1939.2

Whenever such “codifications” of geometry in algebraic terms still make
sense if the Abelian condition is dropped, we can simply work with non-
commutative algebras considered as “duals” of “non-commutative spaces”.

The existence of dualities between categories of “geometrical spaces” and
categories “constructed from Abelian algebras” is the starting point of any
generalization of geometry to the non-commutative situation. Here are some
examples.

2.1 Non-commutative Topology.

2.1.1 Gel’fand Theorem.

For the details on operator algebras, the reader may refer to R. Kadison-
J. Ringrose [137], M. Takesaki [219] and B. Blackadar [20]. A complex unital
algebra A is a vector space over C with an associative unital bilinear mul-
tiplication. A is Abelian (commutative) if ab = ba, for all a, b ∈ A. An
involution on A is a conjugate linear map ∗ : A → A such that (a∗)∗ = a
and (ab)∗ = b∗a∗, for all a, b ∈ A. An involutive complex unital algebra is A

called a C*-algebra if A is a Banach space with a norm a �→ ‖a‖ such that
‖ab‖ ≤ ‖a‖ · ‖b‖ and ‖a∗a‖ = ‖a‖2, for all a, b ∈ A. Notable examples are the
algebras of continuous complex valued functions C(X; C) on a compact topo-
logical space with the “sup norm” and the algebras of linear bounded operators
B(H) on the Hilbert space H.

Theorem 2.1 (Gel’fand; see e.g. [165]). There exists a duality (Γ(1), Σ(1))
between the category T (1), of continuous maps between compact Hausdorff topo-

logical spaces, and the category A (1), of unital homomorphisms of commutative

unital C*-algebras.

1A line of thought already present in J.L. Koszul algebraization of differential geometry.
2Although similar ideas, previously developed by D. Hilbert, are well known and used also

in P. Cartier-A. Grothendieck’s definition of schemes in algebraic geometry.
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Γ(1) is the functor that associates to every compact Hausdorff topological
space X ∈ ObT (1) the unital commutative C*-algebra C(X; C) of complex val-
ued continuous functions on X (with pointwise multiplication and conjugation
and supremum norm) and that to every continuous map f : X → Y associates
the unital ∗-homomorphism f• : C(Y ; C) → C(X; C) given by the pull-back of
continuous functions by f .

Σ(1) is the functor that associates to every unital commutative C*-algebra
A its spectrum Sp(A) := {ω | ω : A → C is a unital ∗-homomorphism} (as
a topological space with the weak topology induced by the evaluation maps
ω �→ ω(x), for all x ∈ A) and that to every unital ∗-homomorphism φ : A→ B

of algebras associates the continuous map φ• : Sp(B) → Sp(A) given by the
pull-back under φ.

The natural isomorphism G : IA (1) → Γ(1) ◦ Σ(1) is given by the Gel’fand
transforms GA : A→ C(Sp(A)) defined by GA : a �→ â, where â : Sp(A) → C

is the Gel’fand transform of a i.e. â : ω �→ ω(a).
The natural isomorphism E : IT (1) → Σ(1)◦Γ(1) is given by the evaluation

homeomorphisms EX : X → Sp(C(X)) defined by EX : p �→ evp, where
evp : C(X) → C is the p-evaluation i.e. evp : f �→ f(p).

In view of this result, compact Hausdorff spaces and Abelian unital C*-
algebras are essentially the same thing and we can freely translate properties of
the geometrical space in algebraic properties of its Abelian algebra of functions.

In the spirit of non-commutative geometry, we can simply consider non-
Abelian unital C*-algebras as “duals” of “non-commutative compact Hausdorff
topological spaces”.

2.1.2 Serre-Swan and Takahashi Theorems.

A left pre-Hilbert-C*-module AM over the unital C*-algebra A (whose
positive part is denoted by A+ := {x∗x | x ∈ A}) is a unital left module
M over the unital ring A that is equipped with an A-valued inner product
M ×M → A denoted by (x, y) �→ A〈x | y〉 such that, for all x, y, z ∈ M and
a ∈ A, 〈x + y | z〉 = 〈x | z〉 + 〈y | z〉, 〈a · x | z〉 = a〈x | z〉, 〈y | x〉 = 〈x | y〉∗,
〈x | x〉 ∈ A+, 〈x | x〉 = 0A ⇒ x = 0M . A similar definition of a right pre-
Hilbert-C*-module is given with multiplication by elements of the algebra on
the right.

A left Hilbert C*-module AM is a left pre-Hilbert C*-module that is com-
plete in the norm defined by x �→√‖A〈x | x〉‖.3 We say that a left pre-Hilbert
C*-module AM is full if span{〈x | y〉 | x, y ∈ M} = A, where the closure is in
the norm topology of the C*-algebra A. A pre-Hilbert-C*-bimodule AMB

over the unital C*-algebras A,B, is a left pre-Hilbert module over A and a

3A similar definition applies for right modules.
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right pre-Hilbert C*-module over B such that:

(a · x) · b = a · (x · b), ∀a ∈ A, x ∈M, b ∈ B.

A full Hilbert C*-bimodule is said to be an imprimitivity bimodule or an
equivalence bimodule if:

A〈x | y〉 · z = x · 〈y | z〉B, ∀x, y, z ∈ M.

A bimodule AMA is called symmetric if ax = xa for all x ∈ M and a ∈ A.4

A module AM is free if it is isomorphic to a module of the form ⊕JA for some
index set J . A module AM is projective if there exists another module AN
such that M ⊕N is a free module.

An “equivalence result” strictly related to Gel’fand theorem, is the follow-
ing “Hermitian” version of Serre-Swan theorem (see for example M. Frank [109,
Theorem 7.1], N. Weaver [226, Theorem 9.1.6] and also H. Figueroa-J. Gracia-
Bondia-J. Varilly [108, Theorem 2.10 and page 68]) that provides a “spectral
interpretation” of symmetric finite projective bimodules over a commutative
unital C*-algebra as Hermitian vector bundles over the spectrum of the alge-
bra.5

Theorem 2.2 (Serre-Swan; see e.g. [226, 108]). Let X be a compact Haus-

dorff topological space. Let MC(X) be the category of symmetric projective finite

Hilbert C*-bimodules over the commutative C*-algebra C(X; C) with C(X; C)-
bimodule morphisms. Let EX be the category of Hermitian vector bundles over

X with bundle morphisms6.

The functor Γ : EX → MC(X), that to every Hermitian vector bundle asso-

ciates its symmetric C(X)-bimodule of sections, is an equivalence of categories.

In practice, to every Hermitian vector bundle π : H → X over the compact
Hausdorff space X, we associate the symmetric Hilbert C*-bimodule Γ(X; H),
the continuous sections of H, over the C*-algebra C(X; C).

Since, in the light of Gel’fand theorem, non-Abelian unital C*-algebras are
to be interpreted as “non-commutative compact Hausdorff topological spaces”,
Serre-Swan theorem suggests that also finite projective Hilbert C*-bimodules
over unital C*-algebras should be considered as “Hermitian bundles over non-
commutative Hausdorff compact spaces”.

4Of course this definition make sense only for bimodules over a commutative algebra A.
5 The result, as it is stated in the previously given references [109, 226] and [108, page 68],

is actually formulated without the finiteness and projectivity conditions on the modules
and with Hilbert bundles (see J. Fell-R. Doran [107, Section 13] or [108, Definition 2.9]
for a detailed definition) in place of Hermitian bundles. Note that Hilbert bundles are not
necessarily locally trivial, but they become so if they have finite constant rank (see for example
J. Fell-R. Doran [107, Remark 13.9]) and hence the more general equivalence between the
category of Hilbert bundles with the category of Hilbert C*-modules actually entails the
Hermitian version of Serre-Swan theorem presented here.

6Continuous, fiberwise linear maps, preserving the base points.
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� Problem: Serre-Swan theorem deals only with categories of bundles over
a fixed topological space (categories of modules over a fixed algebra, re-
spectively). In order to extend the theorem to categories of bundles over
different spaces, it is necessary to define generalized notions of morphism
between modules over different algebras. The easiest solution is to de-
fine a morphism from the A-module AM to the B-module BN as a pair
(φ,Φ), where φ : A→ B is a homomorphism of algebras and Φ : M → N

is a C-linear map of the bimodules such that Φ(am) = φ(a)Φ(m), for all
a ∈ A and m ∈ M. This is the notion that we have used in [15], and that
appeared also in [217, 218, 108, 129]. A more appropriate solution would
be to consider “congruences” of bimodules and reformulate Serre-Swan
theorem in terms of relators (as defined in [15]). Work on this topic is in
progress.

� Problem: note that Serre-Swan theorem gives an equivalence of categories
(and not a duality), this will create problems of “covariance” for any gen-
eralization of the well-known covariant functors between categories of
manifolds and categories of their associated vector (tensor, Clifford) bun-
dles, to the case of non-commutative spaces and their “bundles”. Again
a more appropriate approach using relators should deal with this issue.

A first immediate solution to both the above problems is provided by Taka-
hashi duality theorem below. Serre-Swan equivalence is actually a particular
case of the following general (and surprisingly almost unnoticed) Gel’fand du-
ality result that was obtained in 1971 by A. Takahashi [217, 218].7 In this for-
mulation, one actually considers much more general C*-modules and Hilbert
bundles at the price of losing contact with K-theory; anyway (as described
in the footonote 5 at page 217) the Hermitian version of Serre-Swan theorem
can be recovered considering bundles with constant finite rank (over a fixed
compact Hausdorff topological space).

Theorem 2.3 (Takahashi [217, 218]). There is a (weak ∗-monoidal) cat-

egory •M of left Hilbert C*-modules AM, BN over unital commutative C*-

algebras, whose morphisms are given by pairs (φ,Φ) where φ : A → B is a

unital ∗-homomorphism of C*-algebras and Φ : M → N is a continuous map

such that Φ(ax) = φ(a)Φ(x), for all a ∈ A and x ∈ M .

There is a (weak ∗-monoidal) category E of Hilbert bundles (E, π, X), over

compact Hausdorff topological spaces with morphisms given by pairs (f,F) with

f : X → Y a continuous map and F : f•(F) → E satisfying π ◦ F = ρf , where

(f•(F), ρf ,X) denotes the pull-back of the bundle (F, ρ, Y) under f .

There is an equivalence (of weak ∗-monoidal) categories given by the functor

Γ that associates to every Hilbert bundle (E, π, X) the set of sections Γ(X; E)

7Note that our Gel’fand duality result for commutative full C*-categories (that we will
present later in section 3.2.1) can be seen as “strict”-∗-monoidal version of Takahashi duality.
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and that to every section σ ∈ Γ(Y;F) associates the section F◦f•(σ) ∈ Γ(X; E).

2.2 Non-commutative (Spin) Differential Geometry.

What are “non-commutative manifolds”?
In order to define “non-commutative manifolds”, we have to find a categori-

cal duality between a category of manifolds and a suitable category constructed
out of Abelian C*-algebras of functions over the manifolds. The complete
answer to the question is not yet known, but (at least in the case of com-
pact finite-dimensional orientable Riemannian spin manifolds) the notion of
Connes’ spectral triples and Connes-Rennie-Varilly [60, 66], [198] reconstruc-
tion theorem provide an appropriate starting point, specifying the objects of
our non-commutative category8.

2.2.1 Connes Spectral Triples.

A. Connes (see [58, 108]) has proposed a set of axioms for “non-commutative
manifolds” (at least in the case of a compact finite-dimensional orientable Rie-
mannian spin manifolds), called a (compact) spectral triple or an (unbounded)
K-cycle.

• A (compact) spectral triple (A,H, D) is given by:

– a unital pre-C*-algebra9 A;

– a (faithful) representation π : A → B(H) of A on the Hilbert space
H;

– a (generally unbounded) self-adjoint operator D on H, called the
Dirac operator, such that:

a) the resolvent (D − λ)−1 is a compact operator, ∀λ ∈ C \ R,10

b) [D, π(a)]− ∈ B(H), for every a ∈ A,
where [x, y]− := xy−yx denotes the commutator of x, y ∈ B(H).

• A spectral triple is called even if there exists a grading operator, i.e. a
bounded self-adjoint operator Γ ∈ B(H) such that:

Γ2 = IdH; [Γ, π(a)]− = 0,∀a ∈ A; [Γ, D]+ = 0,

where [x, y]+ := xy + yx is the anticommutator of x, y.

A spectral triple that is not even is called odd.

8We will of course deal later with the morphisms in section 3.1.
9Sometimes A is required to be closed under holomorphic functional calculus.

10As already noticed by Connes, this condition has to be weakened in the case of non-
compact manifolds, cf. [122, 114, 195, 196].
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• A spectral triple is regular if the function

Ξx : t �→ exp(it|D|)x exp(−it|D|)
is regular, i.e. Ξx ∈ C∞(R,B(H)),11 for every x ∈ ΩD(A), where 12

ΩD(A) := span{π(a0)[D,π(a1)]− · · · [D,π(an)]− | n ∈ N, a0, . . . , an ∈ A}

• A spectral triple is n-dimensional iff there exists an integer n such that
the Dixmier trace of |D|−n is finite nonzero.

• A spectral triple is θ-summable if exp(−tD2) is a trace-class operator
for all t > 0.

• A spectral triple is real if there exists an antiunitary operator J : H → H
such that:

[π(a), Jπ(b∗)J−1]− = 0, ∀a, b ∈ A;

[ [D, π(a)]−, Jπ(b∗)J−1]− = 0, ∀a, b ∈ A, first order condition;

J2 = ±IdH; [J,D]± = 0; and, only in the even case, [J,Γ]± = 0,

where the choice of ± in the last three formulas depends on the “dimen-
sion” n of the spectral triple modulo 8 in accordance to the following
table:

n 0 1 2 3 4 5 6 7
J2 = ±IdH + + − − − − + +
[J,D]± = 0 − + − − − + − −
[J,Γ]± = 0 − + − +

• A spectral triple is finite if H∞ := ∩∞k=1Dom Dk is a finite projective
A-bimodule and absolutely continuous if, there exists an Hermitian
form (ξ, η) �→ (ξ | η) on H∞ such that, for all a ∈ A, 〈ξ | π(a)η〉 is the
Dixmier trace of π(a)(ξ | η)|D|−n.

• An n-dimensional spectral triple is said to be orientable if there is a
Hochschild cycle c =

∑m
j=1 a

(j)
0 ⊗ a

(j)
1 ⊗ · · · ⊗ a

(j)
n such that its “represen-

tation” on the Hilbert space H,

π(c) =
m∑

j=1

π(a(j)
0 )[D, π(a(j)

1 )]− · · · [D,π(a(j)
n )]−

11 This condition is equivalent to π(a), [D, π(a)]− ∈ ∩∞m=1Dom δm, for all a ∈ A, where δ
is the derivation given by δ(x) := [|D|, x]−.

12We assume that for n = 0 ∈ N the term in the formula simply reduces to π(a0).
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is the grading operator in the even case or the identity operator in the
odd case13.

• A real spectral triple is said to satisfy Poincaré duality if its funda-
mental class in the KR-homology of A ⊗ Aop induces (via Kasparov in-
tersection product) an isomorphism between the K-theory K•(A) and the
K-homology K•(A) of A.14

• A spectral triple will be called Abelian or commutative whenever A is
Abelian.

• Finally a spectral triple is irreducible if there is no non-trivial closed
subspace in H that is invariant for π(A), D, J, Γ.

To every spectral triple (A,H, D) there is a naturally associated quasi-
metric15 on the set of pure states P(A), called Connes’ distance and given for
all pure states ω1, ω2 by:

dD(ω1, ω2) := sup{|ω1(x)− ω2(x)| | x ∈ A, ‖[D, π(x)]‖ ≤ 1}.

Theorem 2.4 (Connes; see e.g. [58, 108]). Given an orientable compact

Riemannian spin m-dimensional differentiable manifold M , with a given com-

plex spinor bundle S(M), a given spinorial charge conjugation CM and a given

volume form μM ,16 define:

AM := C∞(M ; C) the algebra of complex valued regular functions on the

differentiable manifold M ,

HM :=L2(M ; S(M)) the Hilbert space of “square integrable” sections of

the given spinor bundle S(M) of the manifold M i.e. the completion of

the space Γ∞(M ; S(M)) of smooth sections of the spinor bundle S(M)
equipped with the inner product given by 〈σ | τ〉 :=

∫
M
〈σ(p) | τ(p)〉p dμM ,

where 〈 | 〉p, with p ∈ M , is the unique inner product on Sp(M) compatible

with the Clifford action and the Clifford product.

13In the following, in order to simplify the discussion, we will always refer to a “grading
operator” Γ that actually coincides with the grading operator in the even case and that is
by definition the identity operator in the odd case.

14In [198] some of the axioms are reformulated in a different form, in particular this con-
dition is replaced by the requirement that the C*-module completion of H∞ is a Morita
equivalence bimodule between (the norm completions of) A and ΩD(A).

15In general dD can take the value +∞ unless the spectral triple is irreducible.
16Remember that an orientable manifolds admits two different orientations and that, on

a Riemannian manifold, the choice of an orientation canonically determines a volume form
μM . Recall also [210] that a spin manifold M admits several inequivalent spinor bundles
and for every choice of a complex spinor bundle S(M) (whose isomorphism class define the
spinc structure of M) there are inequivalent choices of spinorial charge conjugations CM that
define, up to bundle isomorphisms, the spin structure of M .
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DM the Atiyah-Singer Dirac operator i.e. the closure of the operator

that is obtained by “contracting” the unique spinorial covariant derivative

∇S(M) (induced on Γ∞(M ;S(M)) by the Levi-Civita covariant derivative

of M , see [108, Theorem 9.8]) with the Clifford multiplication;

JM the unique antilinear unitary extension JM : HM → HM of the oper-

ator determined by the spinorial charge conjugation CM , that is defined

as (JMσ)(p) := CM (σ(p)) for σ ∈ Γ∞(M ; S(M)) and p ∈ M ;

ΓM the unique unitary extension on HM of the operator given by fiberwise

grading on Sp(M), with p ∈M .17

The data (AM ,HM , DM ) define a spectral triple that is Abelian regular finite

absolutely continuous m-dimensional real, with real structure JM , orientable,

with grading ΓM , and that satisfies Poincaré duality.

Theorem 2.5 (Connes [60, 66]). Let (A,H, D) be an irreducible commuta-

tive real (with real structure J and grading Γ) strongly regular18 m-dimensional

finite absolutely continuous orientable spectral triple, with totally antisymmet-

ric Hochschild cycle in the last m entries, and satisfying Poincaré duality. The

spectrum of (the norm closure of) A can be endowed, in a unique way, with the

structure of an m-dimensional connected compact spin Riemannian manifold

M with an irreducible complex spinor bundle S(M), a charge conjugation JM

and a grading ΓM such that: A � C∞(M ; C), H � L2(M, S(M)), D � DM ,

J � JM , Γ � ΓM .

� A. Connes first proved the previous theorem under the additional con-
dition that A is already given as the algebra of smooth complex-valued
functions over a differentiable manifold M , namely A = C∞(M ; C), and
conjectured [61, Theorem 6, Remark (a)] [60] the result for general com-
mutative pre-C*-algebras A.

A tentative proof of this last fact has been published by A. Rennie [194];
some gaps were pointed out in the original argument, a different revised,
but still incorrect, proof appears in [198] (see also [199]) under some
additional technical conditions. Recently A. Connes [66] finally provided
the missing steps in the proof of the result.

As a consequence, there exists a one-to-one correspondence between unitary
equivalence classes of spectral triples and connected compact oriented Rieman-
nian spin manifolds up to spin-preserving isometric diffeomorphisms.

Similar results should also be available for spinc manifolds [61, Theorem 6,
Remark (e)].

17The grading is actually the identity in odd dimension.
18In the sense of [66, Definition 6.1].
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2.3 Examples.

Of course, the most inspiring examples of spectral triples (starting from those
arising from Riemannian spin-manifolds) are contained in A. Connes’ book [58]
and an updated account of most of the available constructions is contained in
A. Connes-M. Marcolli’s lecture notes [74]. Here below we provide a short guide
to some of the relevant literature:

• Abelian spectral triples arising from the Atiyah-Singer Dirac Operator
on Riemannian spin manifolds, A. Connes [58], and classical compact
homogeneous spaces, M. Rieffel [203].

• Spectral triples for the non-commutative tori, A. Connes [58].

• Discrete spectral triples, T. Krajewski [152], M. Paschke-A. Sitarz [188].

• Spectral triples from Moyal planes (these are examples of “non-compact”
triples), V. Gayral-J.M. Gracia-Bondia-B. Iochum-T. Schüker-J. Var-
illy [114].

• Examples of Non-commutative Lorentzian Spectral Triples (following the
definition given by A. Strohmaier [213]), W. D. Suijlekom [214].

• Spectral Triples related to the Kronecker foliation (following the general
construction by A. Connes-H. Moscovici [76] of spectral triples associated
to crossed product algebras related to foliations), R. Matthes-O. Richter-
G. Rudolph [180].

• Dirac operators as multiplication by length functions on finitely generated
discrete (amenable) groups, A. Connes [57], M. Rieffel [201].

• K-cycles and (twisted) spectral triples arising from supersymmetric quan-
tum field theory, A. Jaffe-A. Lesniewski-K. Osterwalder [133, 134],
D. Kastler [138], A. Connes [58], D. Goswami [120].

• Spectral triples associated to quantum groups (in some case it is necessary
to modify the first order condition involving the Dirac operator, requiring
it to hold only up to compact operators), P. Chakraborty-A. Pal [39, 40,
41, 42, 43, 44, 45, 46, 47], D. Goswami [119], A. Connes [63], L.Dabrowski-
G.Landi-A.Sitarz-W.van Suijlekom-J. Varilly [92, 93], J. Kustermans-
G. Murphy-L. Tuset [156], S. Neshveyev-L. Tuset [184]; and also spec-
tral triples associated to homogeneus spaces of quantum groups, see
e.g. L. Dabrowski [88], L. Dabrowski-G. Landi-M. Paschke- A. Sitarz [91],
F. D’Andrea-L. Dabrowski [96], F. D’Andrea-L. Dabrowski-G. Landi [97],
[95] (the latter is “twisted” according to A. Connes-H. Moscovici [78]).
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• Non-commutative manifolds and instantons, A. Connes-G. Landi [72],
L. Dabrowski G. Landi-T. Masuda [90], L. Dabrowski-G. Landi [89],
G. Landi [159, 160], G. Landi-W. van Suijlekom [163, 164].

• Non-commutative spherical manifolds A. Connes-M. Dubois-Violette [68,
69, 70].

• Spectral triples for some classes of fractal spaces, A. Connes [58],
D. Guido-T. Isola [124, 125, 126], C. Antonescu-E. Christensen [53],
E. Christensen C. Ivan-M. Lapidus [54].

• Spectral Triples for AF C*-algebras, C. Antonescu-E. Christensen [53].

• Spectral triples in number theory: A. Connes [58], A. Connes-M. Mar-
colli [74], R. Meyer [181]; spectral triples from Arakelov Geometry, from
Mumford curves and hyperbolic Riemann surfaces, C. Consani-M. Mar-
colli [79, 80, 81, 82], G. Cornelissen-M. Marcolli-K. Reihani-A. Vdov-
ina [84], G. Cornelissen-M. Marcolli [83].

• Spectral triples of the standard model in particle physics, for instance
A. Connes-J. Lott [73], J. Gracia-Bondia-J.Varilly [123], D. Kastler [140,
141], A. Connes [59, 60, 65], J. Barrett [10], A. Chamseddine-A. Connes
[48, 49, 50], A. Chamseddine-A. Connes-M. Marcolli [51], A. Connes-
M. Marcolli [74, 75].

2.4 Other Spectral Geometries.

In the last few years several others variants and extensions of “spectral geome-
tries” have been considered or proposed:

• Lorentzian spectral triples (A. Strohmaier [213], M.Paschke-R.Verch [191]
and also M. Paschke-A. Sitarz [189]),

• Riemannian non-spin (S. Lord [169]),

• Laplacian, Kähler (J. Fröhlich-O. Grandjean-A. Recknagel [110, 111, 112,
113]),

• Following works by M. Breuer [23, 24] on Fredholm modules on von Neu-
mann algebras, M-T. Benameur-T. Fack [12] and more recently in a series
of papers [29, 35, 36, 31, 32, 33, 34, 37, 11, 192, 30], M-T. Benameur-
A. Carey-D. Pask-J. Phillips-A. Rennie-F. Sukochev-K. Wojciechowski
(see also J. Kaad-R. Nest-A. Rennie [135]), have been trying to general-
ize the formalism of Connes’ spectral triples when the algebra of bounded
operators on the Hilbert space of the triple is replaced by a more general
semifinite von Neumann algebra.
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� Although non-commutative differential geometry, following A. Connes,
has been mainly developed in the axiomatic framework of spectral triples,
that essentially generalize the structures available for the Atiyah-Singer
theory of first order differential elliptic operators of the Dirac type, it is
very likely that suitable “spectral geometries” might be developed using
operators of higher order (the Laplacian type being the first notable ex-
ample). Since “topological obstructions” (such us non-orientability, non-
spinoriality) are expected to survive essentially unaltered in the transition
from the commutative to the non commutative world, these “higher-order
non-commutative geometries” will deal with more general situations com-
pared to usual spectral triples.

� Apart from the “spectral approaches” to non-commutative geometry,
more or less directly inspired by A. Connes’ spectral triples, there are
other lines of development that are worth investigating and whose “rela-
tion” with spectral triples is not yet clear:

– J.-L. Sauvageot [209] and F. Cipriani [55] are developing a version
of non-commutative geometry described by Hilbert C*-bimodules
associated to a semigroup of completely positive contractions, an
approach that is directly related to the analysis of the properties
of the heat-kernel of the Laplacian on Riemannian manifolds (see
N. Berline-E. Getzler-M. Vergne [13]);

– M. Rieffel [202], and along similar lines N. Weaver [225, 226], have
developed a theory of non-commutative compact metric spaces based
on Lipschitz algebras.

– Following an idea of G. Parfionov-R. Zapatrin [186], V. Moretti [183]
has generalized Connes’ distance formula (using the D’Alembert op-
erator) to the case of Lorentzian globally hyperbolic manifolds and
has developed an approach to Lorentzian non-commutative geome-
try based on C*-algebras whose relations with Strohmaier’s spectral
triples is intriguing.

– In algebraic quantum field theory (see section 4.2), S. Doplicher-
K. Fredenhagen J. Roberts [104, 105] (and also S. Doplicher [101,
102, 103]) have developed a model of Poincaré covariant quantum
spacetime.

– O. Bratteli and collaborators [21, 22] and later M. Madore [170] have
been approaching the definition of non-commutative differential ge-
ometries through modules of derivations over the algebra of “smooth
functions”.

– Strictly related to the previous approach there is a formidable lit-
erature (see for example S. Majid [174, 175]) on non-commutative
geometry based on “quantum groups” structures (Hopf algebras).
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– Most of the physics literature use the term non-commutative ge-
ometry to indicate non-commutative spaces obtained by a quantum
“deformation” of a classical commutative space.

3 Categories in Non-Commutative Geometry.

After the discussion of “objects” in non-commutative geometry, we now shift
our attention to some tentative definitions of morphism of non-commutative
spaces and of categories of non-commutative spaces.

In the first subsection we present morphisms of “spectral geometries”. We
limit our discussion essentially to the case of morphisms of A. Connes’ spectral
triples, although we expect that similar notions might be developed also for
other spectral geometries.

In the second subsection we describe some other extremely important cate-
gories of “non-commutative spaces” that arise, at the “topological level”, from
“variations on the theme” of Morita equivalence.

Finally we indicate some direction of future research.

3.1 Morphisms of Spectral Triples.

Having described A. Connes spectral triples and somehow justified the fact
that spectral triples are a possible definition for “non-commutative” compact
finite-dimensional orientable Riemannian spin manifolds, our next goal here is
to discuss definitions of “morphisms” between spectral triples and to construct
categories of spectral triples.

Even for spectral triples, there are actually several possible notions of mor-
phism, according to the amount of “background structure” of the manifold that
we would like to see preserved:19

• the metric, globally (isometries),

• the metric, locally (totally geodesic maps, in the differentiable case),

• the Riemannian structure,

• the differentiable structure,

3.1.1 Totally-Geodesic-Spin Morphisms.

This is the notion of morphism of spectral triples that we proposed in [15].

19And also depending on the kind of topological properties that we would like to “attach”
to our morphisms: orientation, spinoriality, . . .
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Given two spectral triples (Aj ,Hj , Dj), with j = 1, 2, a morphism of
spectral triples is a pair

(A1,H1, D1)
(φ,Φ)−−−→ (A2,H2, D2),

where φ : A1 → A2 is a ∗-morphism between the pre-C*-algebras A1,A2 and
Φ : H1 → H2 is a bounded linear map in B(H1,H2) that “intertwines” the
representations π1, π2 ◦ φ and the Dirac operators D1, D2 :

π2(φ(x)) ◦ Φ = Φ ◦ π1(x), ∀x ∈ A1,

D2 ◦ Φ = Φ ◦D1, (3.1)

i.e. such that the following diagrams commute for every x ∈ A1 :

H1

D1

��

Φ ��

�

H2

D2

��
H1

Φ �� H2

H1

π1(x)

��

Φ ��

�

H2

π2◦φ(x)

��
H1

Φ �� H2

Of course, the intertwining relation between the Dirac operators makes sense
only on the domain of D1.

It is possible (in the case of even and/or real spectral triples) to require also
commutations between Φ and the grading operators and/or the real structures.
More specifically:

a morphism of real spectral triples (Aj ,Hj , Dj , Jj), is a morphism of
spectral triples, as above, such that Φ also “intertwines” the real structure
operators J1, J2: J2 ◦ Φ = Φ ◦ J1;

a morphism of even spectral triples (Aj ,Hj , Dj ,Γj), with j = 1, 2,
is a morphism of spectral triples, as above, such that Φ also “intertwines”
with the grading operators Γ1, Γ2: Γ2 ◦ Φ = Φ ◦ Γ1.

Clearly this definition of morphism contains as a special case the notion of
(unitary) equivalence of spectral triples [108, pp. 485-486] and implies quite
a strong relationship between the spectra of the Dirac operators of the two
spectral triples.

Loosely speaking, for φ epi and Φ coisometric (respectively mono and iso-
metric), in the commutative case one expects such definition to become relevant
only for maps that “preserve the geodesic structures” (totally geodesic immer-
sions and respectively totally geodesic submersions). Note that (already in the
commutative case) these maps might not necessarily be metric isometries: to-
tally geodesic maps are local isometries but not always global isometries (but
we do not have a counterexample yet).

57



228 Non-Commutative Geometry, Categories and Quantum Physics

Furthermore these morphisms depend, at least in some sense, on the spin
structures:20 this “spinorial rigidity” (at least in the case of morphisms of real
even spectral triples) requires that such morphisms between spectral triples of
different dimensions might be possible only when the difference in dimension
is a multiple of 8.

It might be interesting to examine alternative sets of conditions on the
pairs (φ,Φ) that allow for example to formalize the notion of “immersion”
of a non-commutative manifold into another with arbitrary higher dimension,
avoiding the requirements coming from the spinorial structures. Some pre-
liminary considerations along similar lines have been independently proposed
by A. Sitarz [211] in his habilitation thesis. There it was suggested that the
appropriate morphisms satisfy some “graded intertwining relations” with the
relevant operators, indicating the possibility to formalize suitable sign rules
depending on the involved dimensions (modulo 8). We plan to elaborate on
this topic elsewhere.

3.1.2 Metric Morphisms.

In [16] we introduce the following notion of metric morphisms. Given two
spectral triples (Aj ,Hj , Dj), with j = 1, 2, denote by P(Aj) the sets of pure
states over (the norm closure of) Aj . A metric morphism of spectral triples

(A1,H1, D1)
φ−→ (A2,H2, D2)

is by definition a unital epimorphism21 φ : A1 → A2 of pre-C*-algebras whose
pull-back φ• : P(A2) → P(A1) is an isometry, i.e.

dD1(φ
•(ω1), φ•(ω2)) = dD2(ω1, ω2), ∀ω1, ω2 ∈ P(A2).

This notion of morphism is “essentially blind” to the spin structures of
the non-commutative manifolds (that in this case appears only as a necessary
complication22).

3.1.3 Riemannian Morphisms.

A less rigid notion of morphism of spectral triples (a definition that, for unitary
maps, was introduced by R. Verch and M. Paschke [190]) consists of relaxing
the “intertwining” condition (3.1) between Φ and the Dirac operators, imposing

20In the case of morphisms of even real spectral triples, the map should preserve in the
strongest possible sense the spin and orientation structures of the manifolds (whatever this
might mean).

21Note that if φ is an epimorphism, its pull-back φ• maps pure states into pure states.
22Since it is possible to define functional distances using also Laplacian operators, we expect

this notion to continue to make sense once a suitable notion of “Laplacian non-commutative
manifold” is developed.
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only “intertwining relations” with the commutators of Dirac operators with
elements of the algebras. In more detail: given two spectral triples (Aj ,Hj , Dj),
with j = 1, 2, a Riemannian morphism of spectral triples is a pair

(A1,H1, D1)
(φ,Φ)−−−→ (A2,H2, D2),

where φ : A1 → A2 is a ∗-morphism between the pre-C*-algebras A1,A2 and
Φ : H1 → H2 is a bounded linear map in B(H1,H2) that “intertwines” the
representations π1, π2 ◦ φ and the commutators of the Dirac operators D1, D2

with the elements x ∈ A1, φ(x) ∈ A2:

π2(φ(x)) ◦ Φ = Φ ◦ π1(x), ∀x ∈ A1,

[D2, φ(x)] ◦ Φ = Φ ◦ [D1, x], ∀x ∈ A1,

i.e. such that the following diagrams commute for every x ∈ A1:

H1

[D1,x]

��

Φ ��

�

H2

[D2,φ(x)]

��
H1

Φ �� H2

H1

π1(x)

��

Φ ��

�

H2

π2◦φ(x)

��
H1

Φ �� H2

Again the intertwining relation containing the Dirac operators makes sense only
on the relevant domain.

In the commutative case, when φ is epi and Φ is coisometric (respectively
mono and isometric), this definition is expected to correspond to the Rieman-
nian isometries (respectively coisometries) of compact finite-dimensional ori-
entable Riemannian spin manifolds.

� These notions of morphism of spectral triples are only tentative and more
examples need to be tested. As pointed out by A. Rennie, it is likely that
the “correct” definition of morphism will evolve, but it will surely reflect
the basic structure suggested here. At the “topological level” pair of
maps (φ,Φ) that intertwine the actions of the algebras on the respective
Hilbert spaces (but not the Dirac operators or their commutators), have
recently been used by P. Ivankov-N. Ivankov [131] for the definition of
finite covering (and fundamental group) of a spectral triple.

� The several notions of morphism of spectral triples described above are
not as general as possible. In a wider perspective, a morphism of spectral
triples (Aj ,Hj , Dj), where j = 1, 2, might be formalized as a “suitable”
functor F : A2M → A1M , between the categories Aj M of Aj-modules,
having “appropriate intertwining” properties with the Dirac operators
Dj . Now, under some “mild” hypothesis, by Eilenberg-Gabriel-Watt the-
orem, any such functor is given by “tensorization” by a bimodule. These
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bimodules, suitably equipped with spectral data (as in the case of spectral
triples), provide the natural setting for a general theory of morphisms of
non-commutative spaces.

3.1.4 Morita Morphisms.

In the previous subsections we described in some detail some proposed notions
of morphism of “non-commutative spaces” (described as spectral triples) at
the “metric” level. A few other discussions of non-commutative geometry in
a suitable categorical framework, have already appeared in the literature in a
more or less explicit form. Most of them deal essentially with morphisms at
the “topological level” and are making use of the notion of Morita equivalence
that we are going to introduce.

Definition 3.1. Two unital C*-algebras A, B are said to be strongly Morita
equivalent if there exists an imprimitivity bimodule AXB.

It is a standard procedure in algebraic geometry, to define “spaces” dually
by their “spectra” i.e. by the categories of (equivalence classes of) representa-
tions of their algebras. Hence, for a given unital C*-algebra A, we consider
its category AM of (isomorphism classes of) left C*-Hilbert A-modules with
morphisms given by (equivalence classes of) A-linear module maps.

Morphisms between these “non-commutative spectra” are given by covari-
ant functors between the categories of modules.23

The Eilenberg-Gabriel-Watt theorem assures that under suitable conditions
every functor F : AM → BM coincides “up to a natural equivalence” with the
functor given by left tensorization with a C*-Hilbert B-A-bimodule BXA (with
X unique up to isomorphism of bimodules) i.e.:

F(AE) � BXA ⊗ AE.

Y. Manin [176] has been advocating the use of such “Morita morphisms”
(tensorizations with Hilbert C*-bimodules) as the natural notion of morphism
of non-commutative spaces. In [59, 60, 62] A. Connes already discussed how
to transfer a given Dirac operator using Morita equivalence bimodules and
compatible connections on them, thus leading to the concept of “inner defor-
mations” of a spectral geometry underlying the “transformation rule” D̃ =
D + A + JAJ−1 (where A denotes the “connection”). It is possible to define a
strictly related category of spectral triples, based on the notions of connection
on a Morita morphism, that contains “inner deformations” as isomorphisms.

More specifically, given two spectral triples (Aj ,Hj , Dj), with j = 1, 2, by
a Morita-Connes morphism of spectral triples, we mean a pair (X,∇) where

23This kind of “ideology” about categories of “non-commutative spectra” is very fashion-
able in “non-commutative algebraic geometry” (see for example M. Kontsevich and A. Rosen-
berg [145, 146, 205]).
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X is Morita morphism from A1 to A2 i.e. an A2-A1-bimodule that is a Hilbert
C*-module over A2 and ∇ is a Riemannian connection on the bimodule X (the
Dirac operators are related to the connection ∇ by the “inner deformation”
formula). The composition of two Morita-Connes morphisms (X1,∇1) and
(X2,∇2) is defined by taking the tensor product X3 := X1 ⊗A2 X2 of the
bimodules and taking the connection ∇3 on X3 given by:

∇3(ξ1 ⊗ ξ2)(h1) := ξ1 ⊗ (∇2ξ2)(h1) + (∇1ξ1)(ξ2 ⊗ h1), h1 ∈ H1, ξj ∈ Xj .

In a remarkable recent paper, A. Connes-C. Consani-M. Marcolli [67] have
been pushing even further the notion of “Morita morphism” defining morphisms
between two algebras A, B as “homotopy classes” of bimodules in G. Kasparov
KK-theory KK(A, B). In this way, every morphism is determined by a bi-
module that is further equipped with additional structure (Fredholm module).

In the same paper [67], A. Connes and collaborators provide ground for con-
sidering “cyclic cohomology” as an “absolute cohomology of non-commutative
motives” and the category of modules over the “cyclic category” (already de-
fined by A. Connes-H. Moscovici [77]) as a “non-commutative motivic coho-
mology” .

� All the notions of categories of non-commutative spaces developed from
the notion of Morita morphism, seem to be confined to the topological
setting. Morita equivalence in itself is a non-commutative “topological”
notion. It is widely believed that Morita equivalent algebras should be
considered as describing the “same” space. This comes from the fact that
most of the “geometric functors” for commutative spaces when suitably
extended to the non-commutative case are invariant under Morita equiva-
lences (because Morita equivalence reduces to isomorphism for commuta-
tive algebras). Anyway, most of the success of Connes’ non-commutative
geometry actually comes from the fact that some commutative algebras
are replaced with some other Morita equivalent non-commutative alge-
bras that are able to describe in a much better way the geometry of the
“singular space”. In a more direct way, it seems that the correct way to
associate a C*-algebra to a space, requires the direct input of the natural
symmetries of the space (hence Morita equivalence is broken).
Although the formalization of the notion of morphism as a bimodule
is probably here to stay, additional structures on the bimodule will be
required to account for different level of “rigidity” (metric, Riemannian,
differential, . . . ) and some of these, are probably going to break Morita
equivariance as long as non-topological properties are concerned.

� Finally we note that we have not been discussing here the role of quan-
tum groups as possible symmetries of spectral triples (see for example
the recent paper by D. Goswami [121] discussing quantum isometries of
spectral triples).

61



232 Non-Commutative Geometry, Categories and Quantum Physics

3.2 Categorification (Topological Level).

Categorification is the term, introduced by L. Crane-D. Yetter [87], to denote
the generic process to substitute ordinary algebraic structures with categor-
ical counterparts. The term is now mostly used to denote a wide area of
research (see J. Baez - J. Dolan [7]) whose purpose is to use higher order
categories to define categorial analogs of algebraic structures. This vertical
categorification24 is usually done by promoting sets to categories, functions
to functors, . . . hence replacing a category with a bi-category and so on. In non-
commutative geometry, where usually spaces are defined “dually” by “spectra”
i.e. categories of representations of their algebras of functions, this is a kind of
compulsory step: morphisms of non-commutative spaces are actually particu-
lar functors between “spectra”. In this sense, non-commutative geometry (and
also ordinary commutative algebraic geometry of schemes) is already a kind of
vertical categorification.

There are also more “trivial” forms of horizontal categorification in
which ordinary algebraic associative structures are interpreted as categories
with only one object and suitable analog categories with more than one object
are defined. In this case the passage is from endomorphisms of a single object
to morphisms between different objects25:

Monoids Small Categories (Monoidoids)
Groups Groupoids
Associative Unital Rings Ringoids
Associative Unital Algebras Algebroids
Unital C*-algebras C*-categories (C*-algebroids)

It is an extremely interesting future topic of investigation to discuss the
interplay between ideas of categorification and non-commutative geometry . . .
Here we are really only at the beginning of a long journey and we can present
only a few ideas.26

3.2.1 Horizontal Categorification of Gel’fand Duality.

As a first step in the development of a “categorical non-commutative ge-
ometry”, we have been looking at a possible “horizontal categorification” of
Gel’fand duality (theorem 2.1). In practice, the purpose is:

24In general a n-category get replaced with a n +1-category, increasing the “depth” of the
available morphisms, hence the terminology “vertical” adopted here.

25Hence the name “horizontal”, adopted here, that implies that no jump in the “depth” of
morphisms is required. J. Baez [21] prefers to use the term oidization for this case.

26Other approaches to the abstract concept of “categorification” have turned out to be
useful in the theory of knots and links, see [143, 144].

62



P. Bertozzini, R. Conti and W. Lewkeeratiyutkul 233

• to find “suitable embedding functors” F : T (1) → T and G : A (1) → A
of the categories T (1) (of compact Hausdorff topological spaces) and A (1)

(of unital commutative C*-algebras) into two categories T and A ;

• to extend the categorical duality (Γ(1),Σ(1)) between T (1) and A (1) pro-
vided by Gel’fand theorem, to a categorical duality between T and A in
such a way that the following diagrams are commutative up to natural
isomorphisms η, ξ:

T (1)

F

��

Γ(1)
� A (1)

Σ(1)
�

G

��

F ◦ Σ(1)
η �� Σ ◦G,

T
Γ � A ,
Σ

� G ◦ Γ(1)
ξ

�� Γ ◦ F.

Since A (1) is a full subcategory of the category of C*-algebras, we identify
the horizontal categorification of A (1) as a subcategory of the category of small
C*-categories.

In [17], in the setting of C*-categories, we provide a definition of “spec-
trum” of a commutative full C*-category as a one dimensional (saturated)
unital Fell-bundle over a suitable groupoid (equivalence relation) and we prove
a categorical Gel’fand duality theorem generalizing the usual Gel’fand duality
between the categories of Abelian C*-algebras and compact Hausdorff spaces.

As a byproduct, we also obtain the following spectral theorem for imprim-
itivity bimodules over Abelian C*-algebras: every such bimodule is obtained
by “twisting” (by the 2 projection homeomorphisms) the symmetric bimod-
ule of sections of a unique Hermitian line bundle over the graph of a unique
homeomorphism between the spectra of the two C*-algebras.

Theorem 3.2 (P. Bertozzini-R. Conti-W. Lewkeeratiyutkul [18]). Given

an imprimitivity Hilbert C*-bimodule AMB over the Abelian unital C*-algebras

A,B, there exists a canonical homeomorphism27 RBA : Sp(A) → Sp(B) and

a Hermitian line bundle E over RBA such that AMB is isomorphic to the

(left/right) “twisting”28 of the symmetric bimodule Γ(RBA; E)C(RBA;C) of sec-

tions of the bundle E by the “pull-back” isomorphisms π•A : A → C(RBA; C),
π•B : B→ C(RBA; C).

� This reconstruction theorem for imprimitivity bimodules is actually only
the starting point for the development of a complete “bivariant” version
of Serre-Swan and Takahashi’s dualities. In this case we will generalize

27RBA is a compact Hausdorff subspace of Sp(A) × Sp(B) homeomorphic to Sp(A)
(resp. Sp(B)) via the projections πA : RBA → Sp(A) (resp. πB : RBA → Sp(B)).

28If M is a left module over C and φ : A→ C is an isomorphism, the left twisting of M by
φ is the module over A defined by a · x := φ(a)x for a ∈ A and x ∈ M .
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the previous spectral theorem to (classes of) bimodules over commutative
unital C*-algebras that are more general than imprimitivity bimodules;
furthermore the appropriate notion of morphism will be introduced in
order to get a categorical duality. We plan to return to this subject
elsewhere.

A C*-category [118, 182] is a category C such that the sets CAB :=
HomC(B, A) are complex Banach spaces and the compositions are bilinear
maps, there is an involutive antilinear contravariant functor ∗ : HomC → HomC

acting identically on the objects such that x∗x is a positive element in the ∗-
algebra CAA for every x ∈ CBA (that is, x∗x = y∗y for some y ∈ CAA),
‖xy‖ ≤ ‖x‖ · ‖y‖, ∀x ∈ CAB , y ∈ CBC , ‖x∗x‖ = ‖x‖2, ∀x ∈ CBA.

In a C*-category C, the sets CAA := HomC(A, A) are unital C*-algebras for
all A ∈ ObC. The sets CAB := HomC(B, A) have a natural structure of unital
Hilbert C*-bimodule on the C*-algebras CAA on the right and CBB on the left.

A C*-category is commutative if the C*-algebras CAA are Abelian for all
A ∈ ObC. The C*-category C is full if all the bimodules CAB are full29. A basic
example is the C*-category of linear bounded maps between Hilbert spaces.

A Banach bundle [107, Section I.13] (E, p, X) is given by a continu-
ous open surjection p : E → X of Hausdorff topological spaces, whose to-
tal space E is equipped with a continuous partial operation of addition + :
{(e1, e2) | p(e1) = p(e2)} → E, a continuous operation of multiplication by
scalars · : C × E → E and a continuous norm ‖ · ‖ : E → R, making all the
fibers Ex := p−1(x) Banach spaces and such that, for all x ∈ X, the sets of the
form BU,ε := {e ∈ E | p(e) ∈ U, ‖e‖ < ε}, where ε > 0 and U is a neighbour-
hood of x ∈ X, constitute a base of neighbourhoods of 0x ∈ Ex in the topology
of E.

If the topological space X is equipped with the algebraic structure of cate-
gory (let Xo be the set of its units, r, s : X → Xo its range and source maps and
Xn := {(x1, . . . , xn) ∈ ×n

j=1X | s(xj) = r(xj+1)} its set of n-composable mor-
phisms), we further require that the composition ◦ : X2 → X is a continuous
map.

If X is an involutive category i.e. there is a map ∗ : X → X with the
properties (x∗)∗ = x and (x ◦ y)∗ = y∗ ◦ x∗, for all (x, y) ∈ X2, we also require
∗ to be continuous.

A Fell bundle [107, 155, 17] over the involutive category X is a Banach
bundle (E, p, X) whose total space E is equipped with a continuous multi-
plication defined on the set E2 := {(e, f) | (p(e), p(f)) ∈ X2}, denoted by

29In this case CAB are imprimitivity bimodules.
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(e, f) �→ ef , and a continuous involution ∗ : E → E, ∗ : e �→ e∗ such that

e(fg) = (ef)g, ∀(p(e), p(f), p(g)) ∈ X3,

p(ef) = p(e) ◦ p(f), ∀e, f ∈ E2,

∀x, y ∈ X2, the restriction of (e, f) �→ ef to Ex × Ey is bilinear,

‖ef‖ ≤ ‖e‖ · ‖f‖, ∀e, f ∈ E2,

(e∗)∗ = e, ∀e ∈ E,

p(e∗) = p(e)∗, ∀e ∈ E,

∀x ∈ X, the restriction of e �→ e∗ to Ex is conjugate linear,

(ef)∗ = f∗e∗, ∀e, f ∈ E2,

‖e∗e‖ = ‖e‖2, ∀e ∈ E such that p(e∗e) ∈ Xo,

e∗e ≥ 0, ∀e ∈ E, such that p(e∗e) ∈ Xo,

where in the last line we mean that e∗e is a positive element in the C*-algebra
Ep(e∗e). It is in fact easy to see that for every x ∈ Xo, Ex is a C*-algebra.
A Fell bundle (E, p, X) is said to be unital if the C*-algebras Ex, for x ∈ Xo,
are unital. Note that the fiber Ex has a natural structure of Hilbert C*-
bimodule over the C*-algebras Er(x) on the left and Es(x) on the right. A Fell
bundle is said to be saturated if the above Hilbert C*-bimodules Ex are full.
Note also that in a saturated Fell bundle, the Hilbert C*-bimodules Ex are
imprimitivity bimodules.

Let O be a set and X a compact Hausdorff topological space. We denote
by RO := {(A,B) | A,B ∈ O} the “total” equivalence relation in O and by
ΔX := {(p, p) | p ∈ X} the “diagonal” equivalence relation in X.

Definition 3.3. A topological spaceoid (E, π, X) is a saturated unital rank-

one Fell bundle over the product involutive topological category X := ΔX ×RO.

Definition 3.4. Let (Ej , πj , Xj), for j = 1, 2, be two spaceoids.30 A morphism

of spaceoids (E1, π1, X1)
(f,F)−−−→ (E2, π2,X2) is a pair (f,F) where

• f := (fΔ, fR) with fΔ : Δ1 → Δ2 a continuous map of topological spaces

and fR : R1 → R2 an isomorphism of equivalence relations;

• F : f•(E2) → E1 is a continuous fiberwise linear ∗-functor such that

π1 ◦ F = (π2)f , where (f•(E2), π
f
2 ,X1) denotes a given choice of an f-

pull-back of (E2, π2, X2).

30Where Xj = ΔXj
×ROj

, with Oj sets and Xj compact Hausdorff topological spaces for
j = 1, 2.
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Topological spaceoids constitute a category with composition defined by

(g,G) ◦ (f,F) := (g ◦ f,F ◦ f•(G) ◦Θ),

where Θ is the natural isomorphism from f•(g•(E3)) to (g ◦ f)•(E3), and with
identities

ι(E,π,X) := (ιX, ιE).

Note that we have chosen (E, π, X) to be the ιX-pull-back of itself.

The category T (1) of continuous maps between compact Hausdorff spaces
can be naturally identified with the full subcategory of the category T of
spaceoids with index set O containing a single element.

To every object X ∈ ObT (1) we associate the trivial C-line bundle XX ×C

over the involutive category XX := ΔX × ROX
with OX := {X} the one point

set.
To every continuous map f : X → Y in T (1) we associate the morphism

(g,G) with gΔ(p, p) := (f(p), f(p)), gR : (X,X) �→ (Y, Y ) and G := ιXX×C.
Note that the trivial bundle over XX is naturally a f -bull-back of the trivial

bundle over XY hence G can be taken as the identity map.

Let C and D be two full commutative small C*-categories (with the same
cardinality of the set of objects). Denote by Co and Do their sets of identities.

A morphism Φ : C → D is an object bijective ∗-functor, i.e.

Φ(x + y) = Φ(x) + Φ(y), ∀x, y ∈ CAB ,

Φ(a · x) = a · Φ(x), ∀x ∈ C, ∀a ∈ C,

Φ(x ◦ y) = Φ(x) ◦ Φ(y), ∀x ∈ CCB , y ∈ CBA

Φ(x∗) = Φ(x)∗, ∀x ∈ CAB ,

Φ(ι) ∈ Do, ∀ι ∈ Co,

Φo := Φ|Co
: Co → Do is bijective.

To every spaceoid (E, π,X), with X := ΔX × RO, we can associate a full
commutative C*-category Γ(E) as follows:

• ObΓ(E) := O;

• For all A,B ∈ ObΓ(E), HomΓ(E)(B,A) := Γ(ΔX × {(A,B)}; E), where
we denote with Γ(ΔX × {(A,B)}; E) the set of continuous sections σ :
ΔX × {(A,B)} → E, σ : pAB �→ σAB

p ∈ EpAB
of the restriction of E to

the base space ΔX × {(A,B)} ⊂ X;
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• for all σ ∈ HomΓ(E)(A,B) and ρ ∈ HomΓ(E)(B,C):

ρ ◦ σ : pAC �→ (ρ ◦ σ)AC
p := ρAB

p ◦ σBC
p ,

σ∗ : pBA �→ (σ∗)BA
p := (σAB

p )∗,

‖σ‖ := sup
p∈ΔX

‖σAB
p ‖E,

with operations taken in the total space E of the Fell bundle.

We extend now the definition of Γ to the morphism of T in order to obtain
a contravariant functor.

Let (f,F) be a morphism in T from (E1, π1, X1) to (E2, π2,X2).
Given σ ∈ Γ(E2), we consider the unique section f•(σ) : X1 → f•(E2) such

that fπ2 ◦ f•(σ) = σ ◦ f and the composition F ◦ f•(σ).
In this way we get a map

Γ(f,F) : Γ(E2) → Γ(E1), Γ(f,F) : σ �→ F ◦ f•(σ), ∀σ ∈ Γ(E2).

Proposition 3.5 ([17]). For any morphism (E1, π1, X1)
(f,F)−−−→ (E2, π2, X2) in

T , the map Γ(f,F) : Γ(E2) → Γ(E1) is a morphism in A .

The pair of maps Γ : (E, π, X) �→ Γ(E) and Γ : (f,F) �→ Γ(f,F) gives a

contravariant functor from the category T of spaceoids to the category A of

small full commutative C*-categories.

We proceed to associate to every commutative full C*-category C its spectral
spaceoid Σ(C) := (EC, πC, XC), see [17] for details.

• The set [C; C] of C-valued ∗-functors ω : C → C, with the weakest topol-
ogy making all evaluations continuous, is a compact Hausdorff topological
space.

• By definition two ∗-functors ω1, ω2 ∈ [C; C] are unitarily equivalent
if there exists a “unitary” natural trasformation A �→ νA ∈ T between
them. This is true iff ω1|CAA = ω2|CAA for all A ∈ ObC.

• Let Spb(C) := {[ω] | ω ∈ [C; C]} denote the base spectrum of C, defined
as the set of unitary equivalence classes of ∗-functors in [C; C]. It is a
compact Hausdorff space with the quotient topology induced by the map
ω �→ [ω].

• Let XC := ΔC × RC be the direct product topological ∗-category of the
compact Hausdorff ∗-category ΔC := ΔSpb(C) and the topologically dis-
crete ∗-category RC := C/C � RObC

.

• For ω ∈ [C; C], the set Iω := {x ∈ C | ω(x) = 0} is an ideal in C and
Iω1 = Iω2 if [ω1] = [ω2].
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• Denoting [ω]AB the point ([ω], (A,B)) ∈ XC, we define:

I[ω]AB
:= Iω ∩ CAB , EC

[ω]AB
:=

CAB

I[ω]AB

, EC :=
⊎

[ω]AB∈XC

EC
[ω]AB

.

Proposition 3.6 ([17]). The map πC : EC → XC, that sends an element

e ∈ EC
[ω]AB

to the point [ω]AB ∈ XC has a natural structure of unital rank one

Fell bundle over the topological involutive category XC.

Let Φ : C → D be an object-bijective ∗-functor between two small commu-
tative full C*-categories with spaceoids Σ(C),Σ(D) ∈ T .

We define a morphism ΣΦ : Σ(D)
(λΦ,ΛΦ)−−−−−→ Σ(C) in the category T :

• λΦ : XD (λΦ
Δ,λΦ

R)−−−−−→ XC where
λΦ

R(A,B) := (Φ−1
o (A), Φ−1

o (B)), for all (A, B) ∈ RObD
;

λΦ
Δ([ω]) := [ω ◦ Φ] ∈ ΔSpb(C), for all [ω] ∈ ΔSpb(D).

• The bundle
⊎

[ω]AB∈XD

C
λΦ

R
(AB)

IλΦ([ω]AB)
with the maps

πΦ : ([ω]AB , x + IλΦ([ω]AB)) �→ [ω]AB ∈ XD, x ∈ CλΦ
R(AB),

Φπ : ([ω]AB , x + IλΦ([ω]AB)) �→ (λΦ([ω]AB), x + IλΦ([ω]AB)) ∈ EC

is a λΦ-pull-back (λΦ)•(EC) of the Fell bundle (EC, πC, XC).

• Since Φ(IλΦ([ω]AB)) ⊂ I[ω]AB
for [ω]AB ∈ XD, we can define a map

ΛΦ : (λΦ)•(EC) → ED by(
[ω]AB , x + IλΦ([ω]AB)

)
�→

(
[ω]AB , Φ(x) + I[ω]AB

)
.

Proposition 3.7 ([17]). For any morphism C
Φ−→ D in A , the mapping

Σ(D) ΣΦ

−−→ Σ(C) is a morphism of spectral spaceoids. The pair of maps Σ :
C �→ Σ(C) and Σ : Φ �→ ΣΦ give a contravariant functor Σ : A → T , from

the category A of object-bijective ∗-functors between small commutative full

C*-categories to the category T of spaceoids.

We can now state our main duality theorem for commutative full C*-
categories:

Theorem 3.8 (P. Bertozzini-R.Conti-W. Lewkeeratiyutkul [17]). There

exists a duality (Γ,Σ) between the category T of object-bijective morphisms be-

tween spaceoids and the category A of object-bijective ∗-functors between small

commutative full C*-categories, where
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• Γ is the functor that to every spaceoid (E, π,X) ∈ ObT associates the

small commutative full C*-category Γ(E) and that to every morphism

between spaceoids (f,F) : (E1, π1,X1) → (E2, π2, X2) associates the ∗-
functor Γ(f,F);

• Σ is the functor that to every small commutative full C*-category C as-

sociates its spectral spaceoid Σ(C) and that to every object-bijective ∗-
functor Φ : C → D of C*-categories in A associates the morphism

ΣΦ : Σ(D) → Σ(C) between spaceoids.

The natural isomorphism G : IA → Γ ◦Σ is provided by the horizontally
categorified Gel’fand transforms GC : C → Γ(Σ(C)) defined by

GC : C→ Γ(EC), GC : x �→ x̂ where

x̂AB
[ω] := x + I[ω]AB

, ∀x ∈ CAB .

Proposition 3.9 ([17]). The functor Γ : T → A is representative i.e. given

a commutative full C*-category C, the Gel’fand transform GC : C → Γ(Σ(C))
is a full isometric (hence faithful) ∗-functor.

The natural isomorphism E : IT → Σ ◦ Γ is provided by the horizontally

categorified “evaluation” transforms EE : (E, π, X)
(ηE,ΩE)−−−−−→ Σ(Γ(E)), de-

fined as follows:

• ηE
R(A,B) := (A,B), ∀(A,B) ∈ RO.

• ηE
Δ : ΔX → ΔSpb(Γ(E)), p �→ [γ ◦evp], where evp : Γ(E) → �(AB)∈RO EpAB

is the evaluation map given by σ �→ σAB
p that is a ∗-functor with values in

a one dimensional C*-category that actually determines31 a unique point
[γ ◦ evp] ∈ ΔSpb(Γ(E)).

• ⊎
pAB∈X Γ(E)ηE

R(AB)/IηE(pAB) when equipped with the natural projection
map (pAB , σ + IηE(pAB)) �→ pAB , and with the EΓ(E)-valued function
(pAB , σ + IηE(pAB)) �→ σ + IηE(pAB), is a ηE-pull-back (ηE)•(EΓ(E)) of
Σ(Γ(E)).

• ΩE : (ηE)•(EΓ(E)) → E is defined by
ΩE : (pAB , σ + IηE(pAB)) �→ σAB

p , ∀σ ∈ Γ(E)AB , pAB ∈ X.

In particular, with such definitions we can prove:

Proposition 3.10 ([17]). The functor Σ : A → T is representative i.e. given

a spaceoid (E, π,X), the evaluation transform EE : (E, π, X) → Σ(Γ(E)) is an

isomorphism in the category of spaceoids.

31There is always a C valued ∗-functor γ : �(AB)∈RO EpAB → C and any two compositions
of evp with such ∗-functors are unitarily equivalent because they coincide on the diagonal
C*-algebras EpAA .
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We are now working on a number of generalizations and extensions of our
horizontal categorified Gel’fand duality:

� The first immediate possibility is to extend Gel’fand duality to include
the case of categories of general ∗-functors between full commutative C*-
categories. This will necessarily require the consideration of categories of
∗-relators (see [15]) between C*-categories.

� Our duality theorem is for now limited to the case of full commutative
C*-categories and further work is necessary in order to extend the result
to a Gel’fand duality for non-full C*-categories.

� Very interesting is the possibility to generalize our duality to a full spec-
tral theory for non-commutative C*-categories in term of endofunctors in
the category of Fell bundles. In particular we would like to explore if our
approach will allow to develope categorifications of Dauns-Hofmann [98]
and Cirelli-Manià-Pizzocchero [56] spectral theorems for general non-
commutative C*-algebras.

� In the same order of ideas, motivated by a general spectral theory for
C*-categories, it is worth investigating in the non-commutative case the
connection between C*-categories, spectral spaceoids and categorified
notions of (locale) quantale already developed for (commutative) C*-
algebras (see D. Kruml-J. Pelletier-P. Resende-J. Rosicky [153], L. Crane
[86], D. Kruml-P. Resende [154], P. Resende [200] and references therein
for details).

� The existence of a horizontal categorified Gel’fand transform might be rel-
evant for the study of harmonic analysis on commutative groupoids. In
this direction it is natural to investigate the implications for a Pontrjagin
duality for commutative groupoids and later, in a fully non-commutative
context, the relations with the theory of C*-pseudo-multiplicative uni-
taries that has been recently developed by T. Timmermann [221, 222].

� Extremely intriguing for its possible physical implications in algebraic
quantum field theory is the appearance of a natural “local gauge struc-
ture” on the spectra: the spectrum is no more just a (topological) space,
but a special fiber bundle. Possible relations with the work of E. Vas-
selli [224] on continous fields of C*-categories in the theory of superselec-
tion sectors and especially with the recent work on net bundles and gauge
theory by J. Roberts-G. Ruzzi-E. Vasselli [204] remain to be explored.

3.2.2 Higher C*-categories.

In our last forthcoming work, we proceed to further extend the categorification
process of Gel’fand duality theorem to a full “vertical categorification” [4].
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For this purpose we first provide, via globular sets (see T. Leinster [166]),
a suitable definition of “strict” n-C*-category.

In practice, without entering here in further technical details, a strict higher
C*-category C (or more generally a higher Fell bundle over a higher ∗-category
X), is provided by a strict higher ∗-category C fibered over a strict higher ∗-
category X whose compositions and involutions satisfy, fiberwise at all levels,
“appropriate versions” of all the properties listed in the definition of a Fell
bundle.

In the special case of commutative full strict n-C*-categories, we develope a
spectral Gel’fand theorem in term of n-spaceoids i.e. rank-one n-C*-Fell bundles
over a “particular” n-∗-category (that is given by the direct product of the
diagonal equivalence relation of a compact Hausdorff space and the quotient
n-∗-category C/C of an n-C*-category C).

� Unfortunately our definition is for now limited to the case of strict higher
C*-categories. Of course, as always the case in higher category theory,
an even more interesting problem will be the characterization of suitable
axioms for “weak higher C*-categories”. This is one of the main obstacles
in the development of a full categorification of the notion of spectral triple
and of A. Connes non-commutative geometry.

� Note that several examples and definitions of 2-C*-categories are already
available in the literature (see for example R. Longo-J. Roberts [168] and
P. Zito [228]). In general such cases will not exactly fit with the strict
version of our axioms for n-C*-categories. Actually we expect to have
a complete hierarchy of definitions of higher C*-categories depending on
the “depth” at which some axioms are required to be satisfied (i.e. some
properties can be required to hold only for p-arrows with p higher that a
certain depth).

� In our work, we define (Hilbert C*) modules over strict n-C*-categories
and in this way we can provide interesting definitions of n-Hilbert spaces
and start a development of “higher functional analysis”.

3.3 Categorical Non-commutative Geometry and
Non-commutative Topoi.

One of the main goals of our investigation is to discuss the interplay between
ideas of categorification and non-commutative geometry. Here there is still
much to be done and we can present only a few suggestions. Work is in progress.

� Every isomorphism class of a full commutative C*-category can be iden-
tified with an equivalence relation in the Picard-Morita 1-category of
Abelian unital C*-algebras. In practice a C*-category is just a “strict
implementation” of an equivalence relation subcategory of Picard-Morita.
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Since morphism of spectral triples (more generally morphisms of non-
commutative spaces) are essentially “special cases” of Morita morphisms,
we started the study of “spectral triples over C*-categories” and we are
now trying to develop a notion of horizontal categorification of spectral
triples (and of other spectral geometries) in order to identify a correct
definition of morphism of spectral triples that supports a duality with a
suitable spectrum (in the commutative case).

The general picture that is emerging is that a correct notion of metric
morphism between spectral triples is given by a kind of “bivariant ver-
sion” of spectral triple i.e. a bimodule over two different algebras that is
equipped with a left/right action of “Dirac-like” operators.

� As a very first step in the direction of a full “higher non-commutative
geometry”32 we plan to start the study of a strict version of “higher
spectral triples” i.e. spectral triples over strict higher C*-categories. As
in the case of horizontal categorification, this will provide some hints for
a correct definition of “higher spectral triples”.

� Although at the moment it is only a speculative idea, it is very interest-
ing to explore the possible relation between such “higher spectra” (higher
spaceoids) and the notions of stacks and gerbes already used in higher
gauge theory. The recent work by C. Daenzer [94] in the context of T-
duality discuss a Pontryagin duality between commutative principal bun-
dles and gerbes that might be connected with our categorified Gel’fand
transform for commutative C*-categories.

� Extremely intriguing is the possible connection between the notions of
(category of) spectral triples and A. Grothendieck topoi. Speculations
in this direction have been given by P. Cartier [38] and are also dis-
cussed by A. Connes [64]. A full (categorical) notion of non-commutative
space (non-commutative Klein program / non-commutative Grothendieck
topos) is still waiting to be defined.

Actually some interesting proposal for a definition of a “quantum topos” is
already available in the recent work by L. Crane [86] based on the notion of
“quantaloids”, a categorification of the notion of quantale (see P. Resende [200]
and references therein).

At this level of generality, it is important to emphasize that our discussion of
non-commutative geometry has been essentially confined to the consideration of
A. Connes’ approach. In the field of algebraic geometry (see V. Ginzburg [116],
M. Kontsevich-Y. Soibelman [147, 148] and S. Mahanta [172, 173] as recent

32On this topic the reader is strongly advised to read the interesting discussions on the
“n-category café” http://golem.ph.utexas.edu/category/ and in particular: U. Schreiber,
Connes Spectral Geometry and the Standard Model II, 06 September 2006.
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references), many other people have been trying to propose definitions of non-
commutative schemes and non-commutative spaces (see for example A. Rosen-
berg [205] and M. Kontsevich-A. Rosenberg [137]) as “spectra” of Abelian cat-
egories (or generalization of Abelian categories such as triangulated, dg, or A∞
categories). Since every Abelian category is essentially a category of modules,
it is in fact usually assumed that an Abelian category should be considered as
a topos of sheaves over a non-commutative space.

� It is worth noting that the categories naturally arising in the theory of self-
adjoint operator algebras and in A. Connes’ non-commutative geometry
are ∗-monoidal categories (see [17] for detailed definitions). The monoidal
property is perfectly in line with the recent proposal by T. Maszczyk [179]
to construct a theory of algebraic non-commutative geometry based on
Abelian categories equipped with a monoidal structure.

At this point it is actually tempting (in our opinion) to think that also
the involutive structures (and other properties strictly related to the exis-
tence of an involution including Tomita-Takesaki modular theory are go-
ing to play some vital role in the correct definition of a non-commutative
generalization of space. But this is still speculation in progress!

� Finally, there are strong indications (V. Dolgushev-D. Tamarkin-B. Tsy-
gan [99])33 coming again from “algebraic non-commutative geometry”
that a proper categorification of non-commutative geometry might actu-
ally be possible only considering ∞-categories. The implications for a
program of categorification of A. Connes’ spectral triples is not yet clear
to us.

4 Applications to Physics.

In this final section we would like to spend some time to introduce (in a non-
technical way) the mathematical readers to the consideration of some extremely
important topics in quantum physics that are essentially motivating the con-
struction of non-commutative spaces, the use of categorical ideas and the even-
tual merging of these two lines of thought.

The two main subjects of our discussion, non-commutative geometry and
category theory, have been separately used and applied in theoretical physics
(although not as widely as we would have liked to see). Anyway, our feeling
is that the most important input to physics will come from a kind of “com-
bined” approach where non-commutative and categorical structures are applied
in a “synergic way” in an “algebraic theory of quantum gravity”. A concrete
proposal in this direction is presented in section 4.4.

33See also the very detailed discussion on the blog “n-category café”: J. Baez, Infinitely
Categorified Calculus, 09 February 2007.
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4.1 Categorical Covariance.

Covariance of physical theories has been always discussed in the limited do-
main of groups acting on spaces: the group of rotations in Aristotles’ physics;
Galilei’s and Poincaré groups and the diffeomorphism groups of Lorentzian
manifolds in Einstein’s general relativity. Different observers are “related”
through transformations in the given covariance group.

� There is no deep physical or operational reason to think that only groups
(or quantum groups) might be the right mathematical structure to cap-
ture the “translation” between different observers and actually, in our
opinion, categories provide a much more suitable environment in which
also the discussion of “partial translations” between observers can be
described. Work is in progress on these issues.

As an example of the relevance of categorical covariance, we mention the
works by R. Brunetti-K. Fredenhagen-R. Verch [27]. Similar ideas are used in
the non-commutative versions of the axioms recently proposed by M. Paschke
and R. Verch [190, 191].

4.2 Non-commutative and Spectral Space-Time.

There are three main reasons for the introduction of non-commutative space-
time structures in physics and for the deep interest developed by physicists for
“non-commutative geometry” (not only A. Connes’one):

• The awareness that quantum effects (Heisenberg uncertainty principle),
coupled to the general relativistic effect of the energy-momentum tensor
on the curvature of space-time (Einstein equation), entail that at very
small scales the space-time manifold structure might be “unphysical”.

• The belief that modification to the short scale structure of space-time
might help to resolve the problems of “ultraviolet divergences” in quan-
tum field theory (that arise, by Heisenberg uncertainty, from the arbi-
trary high momentum associated with arbitrary small length scales) and
of “singularities” in general relativity.

• The intuition that in order to include the remaining physical forces (nu-
clear and electromagnetic) in a “geometrization” program, going beyond
the one realized for gravity by A. Einstein’s general relativity, it might
be necessary to make use of geometrical environments more sophisticated
than those provided by usual Riemannian/Lorentzian geometry.

What we call here “spectral space-time” is the idea that space-time (commu-
tative or not) has to be “reconstructed a posteriori”, from other operationally
defined degrees of freedom, in a spectral way.
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Space-time as a “relational” a posteriori entity originate from ideas of
G.W. Leibnitz, G. Berkeley, E. Mach. Although pregeometrical speculations,
in western philosophy, probably date as far back as Pythagoras, their first mod-
ern incarnation probably starts with J. Wheeler’s “pregeometries” and “it from
bit” proposals.

R. Geroch [115], with his Einstein algebras, was the first to suggest a “tran-
sition” from spaces to algebras in order to solve the problem of “singularities”
in general relativity.

The fundamental idea that space-time can be recovered from the speci-
fication of suitable states of the system, has been the subject of scattered
speculations in algebraic quantum field theory in the past by A. Ocneanu 34,
S. Doplicher [100], U. Bannier [8] and, in the “modular localization program”
(see R. Brunetti-D. Guido-R. Longo [26] and references therein), have been
conjectured by N. Pinamonti [193].

Extremely important rigorous results including a complete reconstruction
of Minkowski space-time [216] have been achieved in the “geometric modu-
lar action” program developed by D. Buchholz-S. Summers (see [215] for an
excellent review and references).

� That non-commutative geometry provides a suitable environment for the
implementation of the spectral reconstruction of space-time from states
and observables in quantum physics has been the main motivating idea of
one us (P.B.) since 1990. The idea that space-time might be spectrally re-
constructed, via non-commutative geometry, from Tomita-Takesaki mod-
ular theory applied to the algebra of physical observables was first elab-
orated in 1995 by P.B. and independently (motivated by the possibility
to obtain cyclic cocycles in algebraic quantum field theory from modular
theory) by R. Longo [167]. Since then this conjecture is still the main
subject and motivation of our investigation [14].

Similar speculations on the interplay between modular theory and (some
aspects of) space-time geometry have been suggested by S. Lord [169,
Section VII.3] and by M. Paschke-R. Verch [190, Section 6].

� One of the authors (R.C.) has raised the somehow puzzling question
whether it is possible to reinterpret the one parameter group of mod-
ular automorphisms as a renormalization (semi-)group in physics. The
connection with P. Cartier’s idea of a “universal Galois group” [38], cur-
rently developed by A. Connes-M. Marcolli, is extremely intriguing.

34As reported in A. Jadczyk [132].
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4.3 A. Connes’ Non-commutative Geometry and Gravity

It is often claimed that non-commutative geometry will be a key ingredient
(a kind of quantum version of Riemannian geometry) for the formulation of
a fundamental theory of quantum gravity (see for example L. Smolin [212]
and P. Martinetti [178]) and actually non-commutative geometry is often listed
among the current alternative approaches to quantum gravity.

In reality, with the only notable exceptions of the extremely interesting pro-
grams outlined in M. Paschke [187] and in A. Connes-M. Marcolli [75], a foun-
dational approach to quantum physics based on A. Connes’ non-commutative
geometry has never been proposed. So far, most of the current applications of
A. Connes’ non-commutative geometry to (quantum) gravity have been limited
to:

• the study of some “quantized” example: C. Rovelli [208], F, Besnard [19],

• the use of its mathematical framework for the reformulation of classi-
cal (Euclidean) general relativity: D. Kastler [139], A. Chamseddine-
G. Felder-J. Fröhlich [52], W. Kalau-M. Walze [136], C. Rovelli-G. Landi
[161, 162, 158],

• attempts to use its mathematical framework “inside” some already estab-
lished theories such as strings (A. Connes-M. Douglas-A. Schwarz [71],
J. Fröhlich, O. Grandjean, A. Recknagel [112], J. Brodzki, V. Mathai,
J. Rosenberg, R. Szabo [25]) and loop gravity (J. Aastrup-J. Grimstrup [1,
2], F. Girelli-E. Livine [117]),

• the formulation of Hamiltonian theories of gravity on globally hyperbolic
cases, where only the “spacial-slides” are described by non-commutative
geometries: E. Hawkins [128], T. Kopf-M. Paschke [150, 151, 149].

4.4 A Proposal for (Modular) Algebraic Quantum Grav-
ity.

Our ongoing research project is aiming at the construction of an algebraic
theory of quantum gravity in which “non-commutative” space-time is spec-
trally reconstructed from Tomita-Takesaki modular theory.

What we propose is to develop an approach to the foundations of quantum
physics technically based on algebraic quantum theory (operator algebras) and
A. Connes’ non-commutative geometry. The research is building on the ex-
perience already gained in our previous/current mathematics research plans
on “modular spectral triples in non-commutative geometry and physics” [14]
and on “categorical non-commutative geometry” and is conducted in the stan-
dard of mathematical rigour typical of the tradition of mathematical physics’
research in algebraic quantum field theory [3, 127].
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In the mathematical framework of A. Connes’ non-commutative geometry,
we are addressing the problem of the “spectral reconstruction” of “geometries”
from the underlying operational data defined by “states” over “observables’
C*-algebras” of physical systems. More specifically:

� Building on our previous research on “modular spectral-triples” and on re-
cent results on semi-finite spectral triples recently developed by A. Carey-
J. Phillips-A. Rennie-F. Sukhocev [30], we make use of Tomita-Takesaki
modular theory of operator algebras to associate non-commutative geo-
metrical objects (that are only formally similar to A. Connes’ spectral-
triples) to suitable states over involutive normed algebras.

� We are now developing an “event” interpretation of the formalism of
states and observables in algebraic quantum physics that is in line with
C. Isham’s “history projection operator theory” [130] and C. Rovelli’s
“relational/relativistic quantum mechanics” [207, 206].

� Making contact with our current research project on “categorical non-
commutative geometry” and with other projects in categorical quantum
gravity (J. Baez [5, 6] and L. Crane [85, 86]), we plan to generalize the
diffeomorphism covariance group of general relativity in a categorical con-
text and use it to “identify” the degrees of freedom related to the spatio-
temporal structure of the physical system.

� Techniques from “decoherence/einselection” (H.Zeh [227], W.Zurek [229])
and/or “emergence/noiseless subsystems” (for example O. Dreyer [106],
F. Markopoulou [177]), superselection (I. Ojima [185]) and the “cooling”
procedure developed by A. Connes-M. Marcolli [75] are expected to be
relevant in order to extract from our spectrally defined non-commutative
geometries, a macroscopic space-time for the pair state/system and its
“classical residue”.

� Possible reproduction of quantum geometries already defined in the con-
text of loop quantum gravity (see T. Thiemann [220], J. Aastrup-J. Grim-
strup [1, 2]) and/or S. Doplicher-J. Roberts-K. Fredenhagen models [105]
will be investigated.

If partially successful, the project will have a significant fallout: a background-
independent powerful approach to “quantum relativity” that is suitable for the
purpose of unification of physics, geometry and information theory that lies
ahead.
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Abstract

In the setting of C*-categories, we provide a definition of “spectrum” of a commu-
tative full C*-category as a one-dimensional unital saturated Fell bundle over a suit-
able groupoid (equivalence relation) and prove a categorical Gel’fand duality theorem
generalizing the usual Gel’fand duality between the categories of commutative unital
C*-algebras and compact Hausdorff spaces. Although many of the individual ingredi-
ents that appear along the way are well-known, the somehow unconventional way we
“glue” them together seems to shed some new light on the subject.
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1 Introduction

There is no need to explain why the notions of “geometry” and “space” are fundamental
both in mathematics and in physics. Typically, a rigorous way to encode at least some basic
geometrical content into a mathematical framework makes use of the notion of a “topological
space”, i.e. a set equipped with a topological structure. Although being just a preliminary
step in the process of developing a more sophisticated apparatus, this way of thinking has
been very fruitful for both abstract and concrete purposes.
In a very important development, I. M. Gel’fand looked not at the topological space itself
but rather at the space of all continuous functions on it, and realized that these seem-
ingly different structures are in fact essentially the same. In slightly more precise terms,
he found a basic example of anti-equivalence between certain categories of spaces and al-
gebras (see for example [Bl, Theorems II.2.2.4, II.2.2.6] or [L, Section 6]). Since on the
∗Partially supported by the Thai Research Fund: grant n. RSA4780022.
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analytic side C(X; C) is a special type of a Banach algebra called a C*-algebra, the study
of possibly non-commutative C*-algebras has been often regarded as a good framework for
“non-commutative topology”.
The “duality” aspect has been later enforced by the Serre-Swan equivalence [K, Theo-
rem 6.18] between vector bundles and suitable modules (see also [FGV] for a Hermitian
version of the theorem and [T1, T2, W] for generalizations involving Hilbert bundles). By
then, breakthrough results have continued to emerge both in geometry and functional anal-
ysis, based on Gel’fand’s original intuition, for about four decades.
In connection with physical ideas, L. Crane-D. Yetter [CY] and J. Baez-J. Dolan [BD] have
recently proposed a process of categorification of mathematical structures, in which sets and
functions are replaced by categories and functors.
From this perspective, in this paper, we wish to discuss a categorification of the notion of
space extending and merging together Gel’fand duality and Serre-Swan equivalence.
On one side of the extended duality we have a “horizontal categorification” of the no-
tion of commutative C*-algebra, namely a “commutative C*-category” (or commutative
C*-algebroid) whilst the corresponding replacement of spaces, the “spaceoids”, are sup-
posed to parametrize their spectra. Spaceoids could be described in several different albeit
equivalent ways. In this paper we have decided to focus on a characterization based on the
notion of Fell bundle. Originally Fell bundles were introduced in connection with the study
of representations of locally compact groups, but we argue that they come to life naturally
on the basis of purely “topological” principles.
Rather surprisingly, to the best of our knowledge, the notions of commutative C*-category
and its spectrum have not been discussed before, despite the fact that (mostly highly non-
commutative) C*-categories have been somehow intensively exploited over the last 30 years
in several areas of research, including Mackey induction, superselection structure in quantum
field theory, abstract group duality, subfactors and the Baum-Connes conjecture. At any
rate, we make frequent contact with the related notions that can be found in the literature,
hoping that our approach sheds new light on the subject by approaching the matter from a
kind of unconventional viewpoint.
Of course, once we have a running definition, it seems quite challenging in the next step to
look for some natural occurrence of the notion of spaceoid in other contexts. For instance,
we are not aware of any connection with the powerful concepts that have been introduced in
algebraic topology to date. Also, the appearence of bundles in the structure of the spectrum
suggests an intriguing connection to local gauge theory but we have not developed these
ideas yet. Some of our considerations have been motivated by a categorical approach to
non-commutative geometry [BCL2], and it is rewarding that some of its relevant tools (e.g.,
Serre-Swan theorem, Morita equivalence) appear naturally in our context. More structure
is expected to emerge when our categories are equipped with a differentiable structure. In
the case of usual spaces, in the setting of A. Connes’ non-commutative geometry [C], this
has been achieved by means of a Dirac operator, and then axiomatized using the concept of
“spectral triple”.

Here below we present a short description of the content of the paper.
In section 2 we mention, mainly for the purpose of fixing our notation, some basic definitions
on C*-categories. Section 3 opens recalling the notion of a Fell bundle in the case of involutive
inverse base categories and then proceeds to introduce the definition of the category of
spaceoids that will eventually “subsume” that of compact Hausdorff spaces in our duality
theorem. The construction of a small commutative full C*-category starting from a spaceoid
is undertaken in section 4, while the spectral analysis of a commutative full C*-category is
the subject of the more technical section 5 where a “spectrum functor” from the category
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of full commutative C*-categories to our category of spaceoids is defined.
Section 6 presents the main result of this paper in the form of a duality between a certain
category of commutative full C*-categories and the category of their spectra (spaceoids).
A “categorified version” of Gel’fand transform is introduced and used to prove a Gel’fand
spectral reconstruction theorem for full commutative C*-categories. Similarly a “categori-
fied evaluation transform” is defined for the purpose of proving the representativity of the
spectum functor.
While in the usual Gel’fand duality theory a spectrum is just a compact topological space,
in the situation under consideration it comes up equipped with a natural bundle structure.
In particular, the spectrum of a commutative full C*-category is identified with a kind of
“groupoid of Hermitian line bundles” that can be conveniently described using the language
of Fell bundles or equivalently as a continuous field of one-dimensional full C*-categories).
Along the way, we also discuss several categorical versions of well-known concepts like the
Gel’fand transform that we think are of independent interest. Notice that a notion of Fourier
transform in the setting of compact groupoids has been discussed by M. Amini [A].
Our duality is reminiscent of an interesting but widely ignored duality result of A. Taka-
hashi [T1, T2]. Takahashi’s duality can be essentially understood as a duality of weak
monoidal categories, although he does not explicitly examine the natural monoidal struc-
ture on the categories of Hilbert bundles and Hilbert C*-modules. The duality considered
in this paper is essentially a “strict ∗-monoidal” version of the former, where we consider
C*-categories (“strict” equivalence relations in the Picard groupoid) and Fell bundles (“strict
subcategories” of the monoidal category of Hilbert bundles) instead of C*-modules and fields
of Hilbert spaces (certain Banach bundles).
Most of the results presented here have been announced in our survey paper [BCL2] and
have been presented in several seminars in Thailand, Australia, Italy, UK since May 2006.

Note added in proof. When the present work was under preparation, we became aware
of some related results in T. Timmermann’s Ph.D. dissertation [Ti] where, in the context
of Hopf algebraic quantum groupoids, a very general non-commutative Pontryagin duality
theory is developed by means of pseudomultiplicative unitaries in C*-modules; and also in
V. Deaconu-A. Kumjian-B. Ramazan [DKR], where a notion of Abelian Fell bundle (which
contains our commutative C*-categories as a special case) is introduced and a structure
theorem for them (in terms of “twisted coverings of groupoids”) is proved. In the framework
of T -duality, a Pontryagin type duality between commutative principal bundles and gerbes
has been proposed by C. Daenzer [D]; while a generalization of Pontryagin duality for locally
compact Abelian group bundles has been provided by G. Goehle [G]

2 Category A of full commutative C*-categories

The notion of C*-category, introduced by J. Roberts (see P. Ghez-R. Lima-J. Roberts [GLR]
and also P. Mitchener [M]) has been extensively used in algebraic quantum field theory:

Definition 2.1. A C*-category is a category C such that: the sets CAB := HomC(B, A)
are complex Banach spaces; the compositions are bilinear maps such that ‖xy‖ ≤ ‖x‖ · ‖y‖,
for all x ∈ CAB, y ∈ CBC ; there is an involutive antilinear contravariant functor ∗ : C → C,

acting identically on the objects, such that ‖x∗x‖ = ‖x‖2, ∀x ∈ CBA and such that x∗x
is a positive element in the C*-algebra CAA, for every x ∈ CBA (i.e. x∗x = y∗y for some

y ∈ CAA).

In a C*-category C, the “diagonal blocks” CAA := HomC(A, A) are unital C*-algebras
and the “off-diagonal blocks” CAB := HomC(B, A) are unital Hilbert C*-bimodules on the

3

92



C*-algebras CAA and CBB . We say that C is full if all the bimodules CAB are imprimitiv-
ity bimodules. In practice, every full C*-category is a “strict-ification” of an equivalence
relation in the Picard-Morita groupoid of unital C*-algebras. It is also very useful to see a
C*-category as an involutive category fibered over the equivalence relation of its objects: in
this way, a (full) C*-category becomes a special case of a (saturated) unital Fell bundle over
an involutive (discrete) base category as described in definition 3.1 below. We say that C is
one-dimensional if all the bimodules CAB are one-dimensional and hence Hilbert spaces.
The first problem that we have to face is how to select a suitable full subcategory A of “com-
mutative” full C*-categories playing the role of horizontal categorification of the category
of commutative unital C*-algebras. Since we are working in a completely strict categorical
environment, our choice is to define a C*-category C to be commutative if all its diagonal
blocks CAA are commutative C*-algebras.
If C,D ∈ A are two full commutative small C*-categories (with the same cardinality of the
set of objects), a morphism in the category A is an object bijective ∗-functor Φ : C→ D.

For later usage, recall from [GLR, Definition 1.6] and [M, Section 4] that a closed two-
sided ideal I in a C*-category C is always a ∗-ideal and that the quotient C/I has a natural
structure as a C*-category with a natural quotient functor π : C → C/I. We have this
“first isomorphism theorem”, whose proof is standard.

Theorem 2.2. Let Φ : C → D be a ∗-functor between C*-categories. The kernel of Φ
defined by ker Φ := {x ∈ C | Φ(x) = 0} is a closed two-sided ideal in C and there exists a

unique ∗-functor Φ̌ : C/ ker Φ → D such that Φ̌ ◦ π = Φ. The functor Φ̌ is faithful if and

only if the functor Φ is injective on the objects and it is full if and only if Φ is full.

Recall (see [GLR, Definition 1.8]) that a representation of a C*-category C is a ∗-functor
Φ : C→ H with values in the C*-category H of bounded linear maps between Hilbert spaces.

Lemma 2.3. A one-dimensional C*-category C, admits at least a ∗-functor γ : C→ C.

Proof. Fix an object A ∈ ObC and the representation Φ : C→ H given by “left composition”:
ΦB := CBA, B ∈ ObC, and for all x ∈ CCD, ΦD

Φx−−→ ΦC given by Φx(ξ) := xξ, for
all ξ ∈ ΦD. The Hilbert spaces ΦB = CBA are one-dimensional and choosing normalized
vectors ξB ∈ ΦB , with ξA := ιA, provides isomorphisms TB : ΦB → C.
The map γ : x �→ det(TC ◦ Φx ◦ T−1

D ) for all x ∈ CCD is the required ∗-functor.

3 Category T of full topological spaceoids

We now proceed to the identification of a good category T of “spaceoids” playing the role of
horizontal categorification of the category of continuous maps between compact Hausdorff
topological spaces. Making use of Gel’fand duality (see e.g. [L, Section 6]) for the diagonal
blocks CAA and (Hermitian) Serre-Swan equivalence (see e.g. [BCL2, Section 2.1.2] and
references therein) for the off-diagonal blocks CAB of a commutative full C*-category C,
we see that the spectrum of C identifies an equivalence relation embedded in the Picard
groupoid of Hermitian line bundles over the Gel’fand spectra of the diagonal C*-algebras
CAA. Finally, reassembling such block-data, we recognize that, globally, the spectrum of a
commutative full C*-category can be described as a very special kind of a Fell bundle that
we call a full topological spaceoid. Fell bundles over topological groups were first introduced
by J. Fell [FD, Section II.16] and later generalized to the case of groupoids by S. Yamagami
(see A. Kumjian [Ku] and references therein) and to the case of inverse semigroups by
N. Sieben (see R. Exel [E, Section 2]). These notions admit a natural extension to that of a
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Fell bundle over an involutive inverse category1 that we systematically adopt below,
see [BCL2, Section 4.2.1] for more details. For the definition of a Banach bundle we refer to
J. Fell-R. Doran [FD, Section I.13].

Definition 3.1. A Fell bundle (E, π,X) over an involutive inverse category X is a Banach

bundle that is also an involutive category E fibered over the involutive category X with con-

tinuous fiberwise bilinear compositions and fiberwise conjugate-linear involutions such that

‖ef‖ ≤ ‖e‖ · ‖f‖ for all composable e, f ∈ E, ‖e∗e‖ = ‖e‖2 for all e ∈ E and e∗e is a positive

element in the C*-algebra Eπ(e∗e) := {f | π(f) = π(e∗e)}.
Definition 3.2. A topological spaceoid (or simply a spaceoid, for short) (E, π,X) is a

unital rank-one Fell bundle over the product involutive topological category X := ΔX × RO

where ΔX := {(p, p) | p ∈ X} is the minimal equivalence relation of a compact Hausdorff

space X and RO := O× O is the maximal equivalence relation of a discrete space O.

With a slight abuse of notation, the points of the base involutive category X of a full spaceoid
will simply be denoted by pAB := ((p, p), (A, B)) ∈ ΔX × RO.
Note that, since a constant finite-rank Banach bundle over a locally compact Hausdorff
space is locally trivial [FD, Remark I.13.9] and hence a vector bundle, a topological spaceoid
is a Hermitian line bundle over X and is a disjoint union of the Hermitian line bundles
EAA := π−1(ΔX × {AA}). Furthermore a topological spaceoid is always a one-dimensional
C*-category that is a disjoint union of the “continuous field” of the full one-dimensional
C*-categories Ep := π−1({(p, p)} × RO) for all p ∈ X.

A morphism of spaceoids2 (f,F) : (E1, π1,X1) → (E2, π2,X2) is a pair (f,F) where:

• f := (fΔ, fR) with fΔ : Δ1 → Δ2 being a continuous map of topological spaces and
fR : R1 → R2 an isomorphism of equivalence relations;

• F : f•(E2) → E1 is a fiberwise linear continuous ∗-functor such that π1 ◦ F = πf
2 ,

where (f•(E2), π
f
2 ,X1) denotes the standard f -pull-back3 of (E2, π2,X2).

Topological spaceoids constitute a category if compositions and identities are given by

(g,G) ◦ (f,F) := (g ◦ f,F ◦ f•(G) ◦ΘE3
g,f ) and ι(E, π,X) := (ιX, ιπX),

where ΘE3
g,f : (g ◦ f)•(E3) → f•(g•(E3)) is the natural isomorphisms between standard pull-

backs given by ΘE3
g,f (x1, e3) := (x1, (f(x1), e3)), for all (x1, e3) ∈ (g ◦ f)•(E3).

4 The section functor Γ

Here we are going to define a section functor Γ : T → A that to every spaceoid (E, π,X),
with X := ΔX × RO, associates a commutative full C*-category Γ(E) as follows:

• ObΓ(E) := O;

1By involutive category we mean a category X equipped with an involution i.e. an object preserving
contravariant functor ∗ : X → X such that (x∗)∗ = x for all x ∈ X. If X has a topology we also require
composition and involution to be continuous. X is an involutive inverse category if xx∗x = x for all x ∈ X.

2Morphisms of spaceoids can be seen as examples of J. Baez notion of spans (in this case, a span of the
Fell bundles of the spaceoids).

3Recall that f•(E2) := {(pAB , e) ∈ X1 × E2 | f(pAB) = π2(e)} with f ◦ πf
2 = π2 ◦ fπ2 where

πf
2 (pAB , e) := pAB and fπ2 (pAB , e) := e. If E2 is a Fell bundle over X2, f•(E2) is a Fell bundle over X1.
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• ∀A, B ∈ ObΓ(E), HomΓ(E)(B, A) := Γ(ΔX×{(A, B)}; E), where Γ(ΔX×{(A, B)}; E)
denotes the set of continuous sections σ : ΔX ×{(A, B)} → E, σ : pAB �→ σAB

p ∈ EpAB

of the restriction of E to the base space ΔX × {(A, B)} ⊂ X.

• for all σ ∈ HomΓ(E)(A, B) and ρ ∈ HomΓ(E)(B, C):

ρ ◦ σ : pAC �→ (ρ ◦ σ)AC
p := ρAB

p ◦ σBC
p ,

σ∗ : pBA �→ (σ∗)BA
p := (σAB

p )∗,

‖σ‖ := sup
p∈ΔX

‖σAB
p ‖E,

with operations taken in the total space E of the Fell bundle.

We extend now the definition of Γ to the morphism of T . Let (f, F) be a morphism
in T from (E1, π1,X1) to (E2, π2,X2). Given σ ∈ Γ(E2), we consider the unique section
f•(σ) : X1 → f•(E2) such that fπ2 ◦ f•(σ) = σ ◦ f and the composition F ◦ f•(σ). In this
way we have a map

Γ(f,F) : Γ(E2) → Γ(E1), Γ(f,F) : σ �→ F ◦ f•(σ), ∀σ ∈ Γ(E2).

Proposition 4.1. For any morphism (E1, π1,X1)
(f,F)−−−−→ (E2, π2,X2) in the category T , the

map Γ(f,F) : Γ(E2) → Γ(E1) is a morphism in the category A .

The pair of maps Γ : (E, π,X) �→ Γ(E) and Γ : (f, F) �→ Γ(f,F) gives a contravariant functor

from the category T of spaceoids to the category A of small full commutative C*-categories.

Proof. Let (E1, π1,X1)
(f,F)−−−−→ (E2, π2,X2) and (E2, π2,X2)

(g,G)−−−→ (E3, π3,X3) be two com-

posable morphisms in the category T and let (E, π,X)
(ιX, ιπ

X)−−−−−→ (E, π,X) be the identity
morphism of (E, π,X). To complete the proof we must show that

Γ(g,G)◦(f,F) = Γ(f,F) ◦ Γ(g,G), Γ(ιX, ιπ
X) = ιΓ(E),

and these are obtained by tedious but straightforward calculations.

5 The spectrum functor Σ

This section is devoted to the construction of a spectrum functor Σ : A → T that to
every commutative full C*-category C associates its spectral spaceoid Σ(C).

Let C be a C*-category, we denote by RC the topologically discrete ∗-category C/C � RObC

and by CRC := ρ•(C) the one-dimensional C*-category pull-back of C (considered as a
C*-category with only one object •) under the constant map ρ : RC → {•}. Note that
from the defining property of pull-backs there is a bijective map ω �→ ω̃ between the set of
C-valued ∗-functors [C; C] and the set of CRC-valued ∗-functors [C; CRC].
By definition two ∗-functors ω1, ω2 in [C; C] are unitarily equivalent if there exists a
“unitary” natural transformation A �→ νA ∈ T between them.
Note that the set Iω := {x ∈ C | ω(x) = 0}, which is also equal to {x ∈ C | ω(x∗x) = 0}, is
an ideal in C and Iω1 = Iω2 if (and only if) the equivalence classes [ω1] and [ω2] coincide.
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We also need the following lemmas whose routine proof are omitted:4

Lemma 5.1. If ω, ω′ ∈ [C; C] are unitarily equivalent, there is a unique map ψ : RC → T

such that ω′AB = ψAB · ωAB for all AB ∈ RC and the map ψ : AB �→ ψAB is a ∗-morphism:

ψABψBC = ψAC , ψAB = ψ−1
BA, ψAA = 1C. (5.1)

Conversely, given a ∗-morphism ψ ∈ [RC; T], two ∗-functors ω, ω′ such that ω′AB = ψABωAB

are unitarily equivalent.

Lemma 5.2. Every object preserving ∗-automorphism γ of the C*-category CRC is given

by the multiplication by an element ψ ∈ [RC; T] i.e. γ(x) = ψAB · x for all x ∈ (CRC)AB.

Proposition 5.3. Two ∗-functors ω, ω′ ∈ [C; C] are unitarily equivalent if and only if

ωAA = ω′AA for all A ∈ ObC.

Proof. By lemma 5.1, if [ω] = [ω′], then ω′AA = ψAA · ωAA = ωAA, for all objects A.
Let ω, ω′ ∈ [C; C] and suppose that ωAA = ω′AA, for all A ∈ ObC. Consider the corresponding
CRC-valued ∗-functors ω̃, ω̃′ ∈ [C; CRC]. Note that Ker(ω̃) = Iω = Iω′ = Ker(ω̃′) and
hence, ωAB , ω̃AB are nonzero if and only if ω′AB , ω̃′AB are nonzero. If ωAB is nonzero for all

AB ∈ RC, by theorem 2.2 we have two ∗-isomorphisms C/ Ker(ω) ω̂−→ CRC ω̂′
←−− C/ Ker(ω′).

From lemma 5.2 there is a ψ ∈ [RC; T] such that ω̂′ = ψ · ω̂ and hence also ω′ = ψ ·ω so that
the proposition follows from lemma 5.1.
To eliminate the restriction ωAB is nonzero for all AB ∈ RC, note that by Zorn’s lemma,
every object of C is contained in family S ⊂ ObC, maximal under inclusion, such that ωAB

is nonzero for every pair of A, B ∈ S . Any pair S1,S2 of such maximal subfamilies are
“disjoint” i.e. for any pair of objects A ∈ S1 and B ∈ S2, we have that ω(CAB) = {0}.
Each maximal subfamily S determines a full subcategory of C and from above we can choose
phases νA for all A ∈ S such that ψAB = νAν−1

B for all A, B ∈ S . Now for every pair
A ∈ S1, B ∈ S2 in disjoint maximal subfamilies, defining ψAB = νAν−1

B is a perfectly
compatible choice since ω′(x) = ψABω(x) for all x ∈ CAB .

Proposition 5.4. The set [C; C] of C-valued ∗-functors ω : C→ C, with the weakest topology

making all evaluations continuous, is a compact Hausdorff topological space.

Proof. Note that for all ω ∈ [C; C] and for all x ∈ CAB ,

|ω(x)| =
√

ω(x)ω(x) =
√

ω(x∗x) =
√

ωAA(x∗x) ≤
√
‖x∗x‖ =

√
‖x‖2 = ‖x‖,

because ωAA is a state over the C*-algebra CAA. Hence [C; C] is a subspace of the compact
Hausdorff space

∏
x∈C D‖x‖, where D‖x‖ is the closed ball in C of radius ‖x‖. The rest of

the proof follows from the same argument for the Banach-Alaoglu theorem.

Let Spb(C) := {[ω] | ω ∈ [C; C]} denote the base spectrum of C, defined as the set of unitary
equivalence classes of ∗-functors in [C; C]. It is a compact space with the quotient topology
induced by the map ω �→ [ω]. To show that Spb(C) is Hausdorff it is enough to note that,
by proposition 5.3, if [ω] �= [ω′], there exists at least one object A such that ωAA �= ω′AA and
so there exists at least one evaluation evx with x ∈ CAA such that evx(ω) �= evx(ω′). Since,
for x ∈ CAA, evx is well-defined on the quotient space Spb(C), the result follows.

4Note that, for ω ∈ [C; C] and A, B ∈ ObC , we denote by ωAB the restriction of ω to CAB .
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Proposition 5.5. Let C be a full commutative C*-category. For all A ∈ ObC, there exists

a natural bijective map, between the base spectrum of C and the usual Gel’fand spectrum

Sp(CAA) of the C*-algebra CAA, given by the restriction |AA : ω �→ ω|CAA
.

In particular, for all objects A ∈ ObC, one has Spb(C)|AA = Sp(CAA) � Spb(CAA).

Proof. By proposition 5.3, the correspondence [ω] �→ ωAA is functional.
We show that the map [ω] �→ ωAA is injective. Given ω, ω′ ∈ [C; C] with ωAA = ω′AA, we
know from [BCL3, Proposition 2.30], that ωBB(x) = ωAA(φAB(x)), for all x ∈ CBB , for
all B ∈ ObC, where φAB : CBB → CAA is the canonical isomorphism associated to the
imprimitivity bimodule CBA. It follows that ωBB = ωAA ◦ φAB = ω′AA ◦ φAB = ω′BB , for all
B ∈ ObC and, by proposition 5.3, we see that [ω] = [ω′].

We show that the function [ω] �→ ωAA is surjective.
Given ωo ∈ Sp(CAA), consider the set J := ∪BC∈RCJBC , with JBB := φBA(Ker(ωo)) and
JBC := JBBCBC := {∑N

j=1 bjxj | bj ∈ IBB , xj ∈ CBC , N ∈ N0} where, as defined
in [BCL3, Sections 2.2-2.3], φBA : CAA → CBB is the canonical isomorphism induced by
the imprimitivity bimodule CAB . Making use of [BCL3, Theorem 2.24] and [BCL3, Propo-
sition 2.29], we have

∑
bjxj =

∑
xjφCB(bj) =

∑
xjφCA(φAB(bj)) ∈ CBCJCC and hence

JBBCBC = CBCJCC , for all B, C ∈ ObC. Clearly, it follows that, for all B, C,D ∈ ObC,
JBCJCD = JBBCBCCCDJDD ⊂ JCCCBDJDD ⊂ JBD, J∗BC = (JBBCBC)∗ = CCBJBB = JCB

and hence J is an involutive ideal in C (actually the ideal generated by Ker(ωo)).
The quotient C*-category C/J is one-dimensional. In fact, by [BCL3, Proposition 2.27],
CBC/JBC is an imprimitivity bimodule over the one-dimensional C*-algebras CBB/JBB �
C � CCC/JCC and hence it becomes a Hilbert space that is necessarily one-dimensional
because, if this is not the case, we can find two different orthonormal vectors x, z ∈ H and
then the imprimitivity, with y := x+z, implies the contradiction z = 〈x | y〉z = x〈y | z〉 = x.
By lemma 2.3 there exists at least one C-valued ∗-functor γ : C/J → C whose restriction to
CAA/JAA is the canonical isomorphism with C (since ξA := ιA).
Composing the quotient ∗-functor π : C → C/J with the chosen ∗-functor γ : C/J → C, we
obtain a C-valued ∗-functor ω := γ ◦π : C→ C. Clearly ωAA coincides with ωo because they
are two states on the unital C*-algebra CAA, with the same kernel ideal JAA.
Since |AA: [ω] �→ ωo, the surjectivity of the map |AA is proved.

Theorem 5.6. Let C be a full commutative C*-category. For every A ∈ ObC, the bijective

map |AA : Spb(C) → Sp(CAA) given by [ω] �→ ωAA is a homeomorphism between Spb(C) and

the Gel’fand spectrum Sp(CAA) of the unital C*-algebra CAA.

Proof. Since both Spb(C) and Sp(CAA) are compact Hausdorff spaces, and the map |AA is
bijective, it is enough to show that |AA: Spb(C) → Sp(CAA) is continuous. Since Spb(C) is
equipped with the quotient topology induced by the projection map π : [C; C] → Spb(C),
the map |AA is continuous if and only if |AA ◦π : [C; C] → Sp(CAA) is continuous. The
spaces [C; C] and Sp(CAA) are equipped with the weakest topology making the evaluation
maps continuous. It follows that the continuity of |AA ◦π is equivalent to the continuity of
evx = evx ◦ |AA ◦π : [C; C] → C for all x ∈ CAA. Since evx : [C; C] → C is continuous, the
result is established.

Let XC := ΔC × RC be the direct product equivalence relation of the compact Hausdorff
∗-category ΔC := ΔSpb(C) and the topologically discrete ∗-category RC := C/C � RObC

.
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With a slight abuse of notation, we write AB ∈ RC for the point CAB/CAB in RC. Denoting
by [ω]AB the point ([ω], AB) = ([ω],CAB/CAB) ∈ XC, we define:

I[ω]AB
:= Iω ∩ CAB , EC

[ω]AB
:=

CAB

I[ω]AB

, EC :=
⊎

[ω]AB∈XC

EC
[ω]AB

.

Proposition 5.7. The map πC : EC → XC, sending an element e ∈ EC
[ω]AB

to the point

[ω]AB ∈ XC, has a natural structure of a unital rank-one Fell bundle over the topological

involutive inverse category XC.

Proof. The topology on EC whose fundamental system of neighbourhoods are the sets
UO,ε

e0
:= {e ∈ EC | ∃x, x0 ∈ C : x̂(πC(e)) = e, x̂0(πC(e0)) = e0, ∀p ∈ O, ‖x̂(p)− x̂0(p)‖ < ε},

where e0 ∈ EC, O is open in XC, ε > 0 and x̂ denotes the Gel’fand transform of x defined in
section 6.1, entails that a net (eμ) is convergent to the point e in EC if and only if the net
πC(eμ) converges to πC(e) in XC and there exists a net of Gel’fand transforms x̂μ, “passing”
in eμ, that uniformly converges, on a neighbourhood of πC(e0), to a Gel’fand transform x̂
“passing” in e0.
With such a topology the (partial) operations on E i.e. sum, scalar multiplication, product,
involution, inner product (and hence norm) become continuous and (EC, πC,XC) becomes a
Banach bundle.
Since every equivalence relation in XC is a disjoint union of “grids” {[ω]}×RC whose inverse
image under πC is the one-dimensional C*-category C/ Ker(ω), (EC, πC,XC) is a rank-one
unital Fell bundle over the equivalence relation XC and hence a spaceoid.

To a commutative full C*-category C we have associated a topological spectral spaceoid
Σ(C) := (EC, πC,XC). We extend now the definition of Σ to the morphism of A . Let
Φ : C→ D be an object-bijective ∗-functor between two small commutative full C*-categories

with spaceoids Σ(C), Σ(D) ∈ T and define a morphism ΣΦ : Σ(D)
(λΦ,ΛΦ)−−−−−→ Σ(C) in the

category T as follows.

λΦ : XD (λΦ
Δ,λΦ

R)−−−−−→ XC where λΦ
R : RD → RC is the isomorphism of equivalence relations given

by λΦ
R(AB) := Φ−1(A)Φ−1(B), for AB ∈ RD, and where λΦ

Δ : ΔD → ΔC (since ω �→ ω ◦Φ is
continuous and preserves equivalence by unitary natural transformations) is the well-defined
continuous map given by λΦ

Δ([ω]) := [ω ◦ Φ] ∈ ΔC, for all [ω] ∈ ΔD.

The bundle
⊎

[ω]AB∈XD

C
λΦ

R
(AB)

IλΦ([ω]AB)
with the maps

πΦ : ([ω]AB , x + IλΦ([ω]AB)) �→ [ω]AB ∈ XD, x ∈ CλΦ
R(AB),

Φπ : ([ω]AB , x + IλΦ([ω]AB)) �→ (λΦ([ω]AB), x + IλΦ([ω]AB)) ∈ EC

is the standard λΦ-pull-back (λΦ)•(EC) of the Fell bundle (EC, πC,XC).
Since Φ(IλΦ([ω]AB)) ⊂ I[ω]AB

for [ω]AB ∈ XD, we define ΛΦ : (λΦ)•(EC) → ED by

ΛΦ
(
[ω]AB , x + IλΦ([ω]AB)

)
:=

(
[ω]AB , Φ(x) + I[ω]AB

)
.

Proposition 5.8. For any morphism C
Φ−→ D in A , the map Σ(D) ΣΦ

−−→ Σ(C) is a morphism

of spectral spaceoids. The pair of maps Σ : C �→ Σ(C) and Σ : Φ �→ ΣΦ give a contravari-

ant functor Σ : A → T , from the category A of object-bijective ∗-functors between small

commutative full C*-categories to the category T of spaceoids.
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Proof. We have to prove that Σ is antimultiplicative and preserves the identities.
If Φ : C1 → C2 and Ψ : C2 → C3 are two ∗-functors in A , by definition,

ΣΨ◦Φ = (λΨ◦Φ, ΛΨ◦Φ) =
(
λΦ◦λΨ, ΛΨ◦(λΨ)•(ΛΦ)◦ΘEC1

λΦ,λΨ

)
= (λΦ, ΛΦ)◦(λΨ, ΛΨ) = ΣΦ◦ΣΨ.

Also, if ιC : C → C is the identity functor of the C*-category C, then the morphism
ΣιC = (λιC , ΛιC) is the identity morphism of the spaceoid Σ(C).

6 Horizontal Categorification of Gel’fand Duality

6.1 Gel’fand Transform

For a given C*-category C in A , we define a horizontally categorified version of Gel’fand
transform as GC : C→ Γ(Σ(C)) given by GC : x �→ x̂ where x̂AB

[ω] := x+IωAB
, ∀x ∈ CBA.

Clearly GC : C→ Γ(Σ(C)) is an object bijective ∗-functor.

Proposition 6.1. The Gel’fand transform GC : C → Γ(EC) of a commutative full C*-cate-

gory C is an isometric (hence faithful) ∗-functor.

Proof. The maps x + IωBB
�→ ‖x + IωBB

‖ and x + IωBB
�→ |ω(x)| coincide (because they

are two norms on the same one-dimensional Banach space that coincide on the element
ιB + IωBB

). If x ∈ CAB with A �= B, then

‖x + IωAB
‖ =

√
‖(x + IωAB

)∗(x + IωAB
)‖ =

√
‖x∗x + IωBB

‖ =
√
|ω(x∗x)| = |ω(x)|. (6.1)

Furthermore, since C(Sp(CBB); C) is canonically isomorphic to Γ(Σ(CBB)), by the usual
Gel’fand theorem applied to the commutative unital C*-algebra CBB , we know that

‖x̂∗x‖Γ(Σ(CBB)) = ‖x̂∗x‖C(Sp(CBB)) = ‖x∗x‖CBB
= ‖x∗x‖C. (6.2)

The isometry of GC is obtained from the following computation for all x ∈ CAB :

‖x̂‖Γ(Σ(C)) = sup
[ω]∈ΔC

‖x̂AB
[ω] ‖EC = sup

[ω]∈ΔC

‖x + IωAB
‖EC = sup

[ω]∈ΔC

|ω(x)|

=
(

sup
[ω]∈ΔC

ω(x∗x)
)1/2

=
(

sup
ω∈Sp(CBB)

x̂∗x(ω)
)1/2

by proposition 5.5

= ‖x̂∗x‖1/2
C(Sp(CBB)) = ‖x∗x‖1/2

C = ‖x‖C.

Lemma 6.2. Let C and Co be full commutative C*-categories and suppose that Co is a

subcategory of C such that Co
AA = CAA for all A ∈ ObC = ObCo . Then Co

AB = CAB for all

A, B ∈ ObC.

Proof. By the fullness of the bimodule ACo
B there is a sequence of pairs uj , vj ∈ ACo

B such
that ιB =

∑∞
j=1 u∗jvj . We have x = xιB = x

∑∞
j=1 u∗jvj =

∑∞
j=1(xu∗j )vj ∈ ACo

B for all
x ∈ ACB, because xu∗j ∈ ACA = ACo

A and so (xu∗j )vj ∈ ACo
B for all j.

Theorem 6.3. The Gel’fand transform GC : C→ Γ(Σ(C)) of a commutative full C*-category

C is a full isometric (hence faithful) ∗-functor.
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Proof. The isometry (and faithfulness) of the ∗-functor GC is proved in proposition 6.1. The
“image” GC(C) of GC is a subcategory of the commutative full C*-category Γ(E) that is
clearly a commutative full C*-category on its own. By lemma 6.2, the ∗-functor GC is full
as long as GC(CAA) = Γ(E)AA, for all objects A ∈ ObC. The last statement follows from the
fact that the Gel’fand transform GC, when restricted to any “diagonal” commutative unital
C*-algebra CAA can be “naturally identified” with the usual Gel’fand transform of CAA via
the homeomorphism [ω] �→ ω|AA (see proposition 5.5 and theorem 5.6).

6.2 Evaluation Transform

For every topological spaceoid (E, π,X) we define a horizontal categorified version of eval-

uation transform EE : (E, π,X)
(ηE,ΩE)−−−−−→ Σ(Γ(E)) as follows:

• ηE
R : RO → RΓ(E) is the canonical isomorphism RO = RObΓ(E) � Γ(E)/Γ(E), explicitly:

ηE
R(AB) := Γ(E)AB/Γ(E)AB , ∀AB ∈ RO that is, according to the running notation,

written as an identity map ηE
R(AB) = AB ∈ RΓ(E).

• ηE
Δ : ΔX → ΔΓ(E) is given by ηE

Δ : p �→ [γp ◦ evp] ∀p ∈ ΔX , where the evaluation map
evp : Γ(E) → �(AB)∈RO EpAB

given by evp : σ �→ σAB
p is a ∗-functor with values in a

one-dimensional C*-category that determines5 a unique point [γp ◦ evp] ∈ ΔSpb(Γ(E)).

• ⊎
pAB∈X Γ(E)ηE

R(AB)/IηE(pAB) with the natural projection (pAB , σ+IηE(pAB)) �→ pAB ,
and with the EΓ(E)-valued map (pAB , σ + IηE(pAB)) �→ σ + IηE(pAB), is the standard
ηE-pull-back (ηE)•(EΓ(E)) of Σ(Γ(E)).

• ΩE : (ηE)•(EΓ(E)) → E is defined by ΩE : (pAB , σ + IηE(pAB)) �→ σAB
p , ∀σ ∈ Γ(E)AB ,

∀pAB ∈ X.

In particular, with such definitions we can prove:

Theorem 6.4. The functor Σ : A → T is representative i.e. given a spaceoid (E, π,X),
the evaluation transform EE : (E, π,X) → Σ(Γ(E)) is an isomorphism in the category of

spaceoids.

Proof. Note that (EAA, π,X) is naturally isomorphic to the trivial C-bundle over X and thus
there is an isomorphism of the C*-algebras Γ(E)AA and C(X) that “preserves” evaluations.
The map ηE

Δ is injective. In fact, if p �= q, by Urysohn’s lemma, there is a section σ ∈ Γ(E)AA

such that γp(σAA
p ) �= γ′q(σ

AA
q ) for some (and thus for all) A ∈ O, which implies ηE

Δ(p) �= ηE
Δ(q)

by proposition 5.3. To see that ηE
Δ is surjective, let [ω] ∈ Spb(Γ(E)). Then its restriction

ωAA : Γ(E)AA → C does not depend on the choice of the representative ω ∈ [ω]. Any pure
state on C(X) coincides with an evaluation at a point p ∈ X, so that ωAA(σ) = γp(σ(p)) =
γp ◦ evp(σ), which implies ηE

Δ(p) = [ω].

Since ηE
Δ : ΔX → ΔΓ(E) is a bijective map between compact Hausdorff spaces, to prove that

ηE
Δ is a homeomorphism, it is enough to show that ηE

Δ is continuous.

For this purpose, consider the set [Γ(E)AA; EAA] of fiberwise linear ∗-functors from the
C*-algebra Γ(E)AA to the total space EAA of the block AA of the spaceoid and consider on
it the weakest topology making the evaluation maps evσ : [Γ(E)AA; EAA] → EAA continuous,

5By lemma 2.3, there is always a C-valued ∗-functor γp : Ep → C and by proposition 5.3 any two
compositions of evp with such ∗-functors are unitarily equivalent because they coincide on the diagonal
C*-algebras EpAA .
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for all σ ∈ Γ(E)AA. With this topology, the map evAA : ΔX → [Γ(E)AA; EAA], given
by evAA : p �→ evpAA

, is continuous. Let γAA : EAA → C be the disjoint union of the
canonical isomorphisms of one-dimensional C*-algebras γpAA

: EpAA
→ C and note that

it is continuous. The map LγAA
: [Γ(E)AA; EAA] → [Γ(E)AA; C], LγAA

: Φ �→ γAA ◦ Φ
is continuous because, for all σ ∈ Γ(E)AA and all Φ ∈ [Γ(E)AA; EAA], evσ ◦LγAA

(Φ) =
γAA ◦ Φ(σ) = γAA ◦ evσ(Φ) and γAA ◦ evσ is a continuous function of Φ. Clearly the map
ζA : ΔX → Sp(Γ(E)AA) given by ζA(p) := |AA ◦ ηE

Δ(p) = γpAA
◦ evpAA

= LγAA
◦ evAA(p) is

continuous and so is ηE
Δ = |−1

AA ◦ ζA.

For every element e ∈ E, we have π(e) ∈ ΔX ×RO and, since a spaceoid is actually a vector
bundle, it is always possible to find a section σ ∈ Γ(E) such that σπ(e) = e. For any such
section we consider the element σ + IηE(π(e)) ∈ Γ(E)/IηE(π(e)) =: E

Γ(E)

ηE(π(e))
(note that the

element does not depend on the choice of σ ∈ Γ(E) such that σπ(e) = e) and in this way
we have a map Θ : E → EΓ(E) by Θ : e �→ σ + IηE(π(e)). The map Θ uniquely induces a
morphism of Fell bundles ΞE : E → (ηE)•(EΓ(E)) with the standard ηE-pull-back of EΓ(E)

given by ΞE(e) := (π(e), Θ(e)). By direct computation the map ΞE is an isomorphism of
Fell bundles whose inverse is ΩE and hence the evaluation transform EE := (ηE, ΩE) is an
isomorphism of spaceoids. The continuity of ΩE is equivalent to that of Ω̃E : EΓ(E) → E,
Ω̃E(σ + IηE(pAB)) := σAB

p , with σ ∈ Γ(E)AB . Given a net j → σj + IηE(pj

ABj ) in EΓ(E)

converging to the point σ + IηE(pAB) in the topology defined in proposition 5.7, without loss
of generality we can assume that j → σj is uniformly convergent to σ in a neighbourhood
U of ηE(pAB). This means that, for all ε > 0, eventually in j, ‖σj([ω]AB) − σ([ω]AB)‖ < ε
for [ω]AB ∈ U . Since RΓ(E) is discrete, the net ABj is eventually equal to AB and since ηE

is a homeomorphism, pj
AB eventually lies in any neighbourhood of pAB and hence the net

Ω̃E(σj + IηE(pj

ABj )) = (σj)ABj

pj converges to Ω̃(σ + IηE(pAB)) = σAB
p in the Banach bundle

topology of E. Since ΩE is an isometry, it follows from [FD, Proposition 13.17] that its
inverse is continuous too.

6.3 Duality

Theorem 6.5. The pair of functors (Γ, Σ) provides a duality between the category T of

object-bijective morphisms between spaceoids and the category A of object-bijective ∗-functors

between small commutative full C*-categories.

Proof. To see that the map G : C �→ GC (that to every C ∈ ObA associates the Gel’fand
transform of C) is a natural isomorphism between the identity endofunctor IA : A → A
and the functor Γ ◦ Σ : A → A we have to show that, given an object-bijective ∗-functor
Φ : C1 → C2, the identity ΓΣΦ(GC1(x)) = GC2(Φ(x)) holds for any x ∈ C1.

C1

GC1 ��

Φ

��

Γ(Σ(C1))

ΓΣΦ

��
C2

GC2 �� Γ(Σ(C2)).

ΓΣΦ(GC1(x))A2B2
[ω2]

= ΛΦ
(
(λΦ)•(x̂)A2B2

[ω2]

)
= ΛΦ

(
[ω2]A2B2 , x̂(λΦ([ω2]A2B2))

)
= ΛΦ

(
[ω2]A2B2 , x + IλΦ([ω2]A2B2 )

)
=

(
[ω2]A2B2 , Φ(x) + I[ω2]A2B2

)
= GC2(Φ(x))A2B2

[ω2]
.
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To see that the map E : E �→ EE (that to every spaceoid (E, π,X) associates its evaluation
transform EE) is a natural isomorphism between the identity endofunctor IT : T → T and
the functor Σ ◦ Γ : T → T we must provide, for any given morphism of spaceoids (f,F)
from (E1, π1,X1) to (E2, π2,X2), the commutativity of the diagram:

(E1, π1,X1)
EE1=(ηE1 ,ΩE1 )

��

(f,F)

��

Σ(Γ(E1))

Σ
Γ(f,F)=(λ

Γ(f,F) ,Λ
Γ(f,F) )

��
(E2, π2,X2)

EE2=(ηE2 ,ΩE2 )
�� Σ(Γ(E2)).

The proof amounts to showing the equalities

λΓ(f,F) ◦ ηE1 = ηE2 ◦ f, ΩE1 ◦ (ηE1)•(ΛΓ(f,F)) ◦Θ1 = F ◦ f•(ΩE2) ◦Θ2, (6.3)

where Θ1 := ΘEΓ(E2)

λ
Γ(f,F) ,ηE1

, Θ2 := ΘEΓ(E2)

ηE2 ,f
.

Since for every point pAB ∈ X1, we have λΓ(f,F) ◦ηE1(pAB) = ([γp◦evp ◦Γ(f,F)], fR(AB)) and
ηE2◦f(pAB) = ([γf(p)◦evf(p)], fR(AB)), the first equation is a consequence of proposition 5.3.
The second equation is then proved by a lengthy but elementary calculation.

The usual Gel’fand theorem is easily recovered identifying a compact Hausdorff topological
space X with the trivial spaceoid (ΔX × {(•, •)})× C.

7 Outlook

We have introduced commutative C*-categories and started a program for their “topological
description” in terms of their spectra, here called spaceoids.
In particular, we have obtained a Gel’fand-type theorem for full commutative C*-categories.
Although the statement of the main result (theorem 6.5) looks extremely natural, our proofs
mostly rely on a “brute force” exploitation of the underlying structure and more streamlined
arguments are likely to be found. Also, the result by itself is not as general as possible and
certainly it leaves room for extensions in several directions, still hopefully we have provided
some insight about how to achieve them.
For instance, we have only considered the case of ∗-functors between (full, commutative)
C*-categories that are bijective on the objects. (Of course, this trivially includes morphisms
between C*-algebras). In the next step, one would like to treat the case of ∗-functors that
are not bijective on the objects. We believe this should not require significant modifications
of our treatment and possibly it could be dealt with using relators (that we introduced
in [BCL1]).
Perhaps a more important point would be to remove the condition of fullness. At present
we have not discussed the issue in detail, but certainly the information that we have already
acquired should significantly simplify the task.
Also, along the way, we have somehow taken advantage of our prior knowledge of the Gel’fand
and Serre-Swan theorems. Eventually one would like to provide more intrinsic proofs directly
in the framework of C*-categories (possibly unifying and extending both Gel’fand and Serre-
Swan theorems in a “strict ∗-monoidal” version of Takahashi theorem [T1, T2]). In this
respect, it looks promising to work directly with module categories. Besides, it is somehow
disappointing that to date, for X and Y compact Hausdorff spaces, there seems to be no
available general classification result for C(X)-C(Y )-bimodules.
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The case of non-imprimitivity C*-bimodules should definitely play a role when discussing a
classification result for generally non-commutative C*-categories, possibly along the lines of
a generalization to C*-categories of the Dauns-Hofmann theorem for C*-algebras [DH]. One
might also explore possible connections with the non-commutative Gel’fand spectral theorem
of R. Cirelli-A. Manià-L. Pizzocchero [CMP] and the subsequent non-commutative Serre-
Swan duality by E. Elliott-K. Kawamura [Ka, EK]. Similarly, it might be very interesting to
investigate the connections between our spectral spaceoids and other spectral notions such
as locales and topoi already used in the spectral theorems by B. Banachewki-C. Mulvey [BM]
and C. Heunen-K. Landsmann-B. Spitters [HLS].

In the long run, one would like to (define and) classify commutative Fell bundles over suitable
involutive categories. The notion of a Fell bundle could be even generalized to that of a
fibered category enriched over another (∗-monoidal) category.

Needless to say, one should analyze more closely the mathematical structure of spaceoids,
introduce suitable topological invariants, study their symmetries, . . . , and investigate re-
lations to other concepts that are widely used in other branches of mathematics, e.g. in
algebraic topology/geometry as well as in gauge theories. Some geometric structures could
become apparent when considering the representation of spaceoids as continuous fields of
(one-dimensional commutative) C*-categories as discussed by E. Vasselli in [V].

The Gel’fand transform for general commutative C*-categories raises several questions (un-
doubtedly it could be defined for more general Banach categories, leading to a wide range
of possibilities for further studies).
In particular, an immediate application would yield a Fourier transform and accordingly a
reasonable concrete duality theory for “commutative” discrete groupoids (see M. Amini [A]
for another approach that applies to compact but-not-necessarily-commutative-groupoids
and T. Timmermann [Ti] for a more abstract setup).

As far as we are concerned, our main motivation to work with C*-categories came from
analysing the categorical structure of non-commutative geometry (where morphisms of “non-
commutative spaces” are given by bimodules) and one is naturally led to speculate about the
possible evolution of the notion of spectra and morphism in A. Connes’ non-commutative
geometry (cf. [BCL1, BCL2, CCM]). In this direction, some of the first questions that come
to mind are:

Is there a suitable notion of spectral triple over a C*-category?

Is it possible to consider a horizontal categorification of a spectral triple?

Of course this represents only the starting point for a much more ambitious program aiming
at a “vertical categorification” of the notion of spectral triple6 and from several fronts (see
for example [DTT] and also the very detailed discussion by J. Baez [B] on the weblog “The
n-category café”) it is mounting the evidence that a suitable notion of non-commutative
calculus necessarily require a higher (actually ∞) categorical setting.
In this respect, it seems reasonable to look for a Gel’fand theorem that applies to (strict) com-
mutative higher categories (cf. [Ko]). A suitable definition of strict n-C*-categories (cf. [Z]
for the case n = 2) and the proof of a categorical Gel’fand duality (at least for “commutative”
full strict n-C*-categories) are topics that have recently attracted our attention [BCLS].

Finally, in this line of thoughts, one could envisage potential applications of a notion of
Gromov-Hausdorff distance (cf. [R]) for C*-categories.

6The need for a notion of “higher spectral triple” has been already advocated by U. Schreiber [S].
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Différentielle Catégoriques 39, n. 1, 3-25.

15

104



[D] Daenzer C., A groupoid approach to noncommutative T -duality, arXiv:0704.2592v2.

[DH] Dauns J., Hofmann K.-H. (1968). Representations of Rings by Sections, Mem. Amer. Math. Soc.,
AMS.

[DKR] Deaconu V., Kumjian A., Ramazan B. (2008). Fell Bundles Associated to Groupoid Morphisms,
Math. Scand. 102, n. 2, 305-319, arXiv:math/0612746v2.

[DTT] Dolgushev V., Tamarkin D., Tsygan B. (2007). The Homotopy Gerstenhaber Algebra of
Hochschild Cochains of a Regular Algebra is Formal, J. Noncommut. Geom. 1, n. 1, 1-25,
arXiv:math/0605141v1.

[EK] Elliott E., Kawamura K. (2008). A Hilbert Bundle Characterization of Hilbert C*-modules,
Trans. Amer. Math. Soc. 360, n. 9, 4841-4862.

[E] Exel R., Noncommutative Cartan Sub-algebras of C*-algebras, arXiv:0806.4143.

[FD] Fell J., Doran R. (1998). Representations of C*-algebras, Locally Compact Groups and Banach
∗-algebraic Bundles, Vol. 1, 2, Academic Press.

[FGV] Figueroa H., Gracia-Bondia J.-M., Varilly J.-C. (2000). Elements of Noncommutative Geometry,
Birkhäuser.
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Abstract

After recalling in detail some basic definitions on Hilbert C*-bimodules, Morita equiva-
lence and imprimitivity, we discuss a spectral reconstruction theorem for imprimitivity
Hilbert C*-bimodules over commutative unital C*-algebras and consider some of its
applications in the theory of commutative full C*-categories.
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1 Introduction

A. Connes’ non-commutative geometry [C] is the most powerful incarnation of R. Descartes’
idea of trading “geometrical spaces” with commutative “algebras of coordinates” and it is
based on the existence of suitable dualities between categories constructed from commutative
algebras and categories of their “spectra”. The most celebrated example is I. Gel’fand-
M. Năımark theorem (see e.g. [B, Theorem II.2.2.4]) asserting that, via Gel’fand transform,
a unital commutative C*-algebra A is isomorphic to the algebra of continuous complex-
valued functions on a compact Hausdorff topological space, namely the spectrum of A. In
this way a commutative unital C*-algebra can be reconstructed (up to isomorphism) from
its spectrum.
The equally famous Serre-Swan theorem (see e.g. [K, Theorem 6.18]) permits the reconstruc-
tion, up to isomorphism, of a finite projective module over a commutative unital C*-algebra
from a spectrum that turns out to be a finite-rank complex vector bundle over the Gel’fand
spectrum of the C*-algebra. When we restrict to the case of Hilbert C*-modules over com-
mutative unital C*-algebras, Serre-Swan theorem admits a more powerful formulation, Taka-
hashi theorem [T1, T2, W], with spectra given by Hilbert bundles over compact Hausdorff
spaces.
∗Partially supported by the Thai Research Fund: grant n. RSA4780022.
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The purpose of this paper is to start the development of a spectral reconstruction theorem
for suitable bimodules over commutative unital C*-algebras, i.e. a “bivariant version” of
Takahashi and Serre-Swan results, considering for now the case of imprimitivity Hilbert
C*-bimodules.
In order to make the result almost completely self-contained, we precede the discussion of
our spectral theorem with a detailed treatment of basic facts on imprimitivity C*-bimodules
and Morita equivalence including an explicit construction of a natural isomorphism between
a pair of C*-algebras associated to a given imprimitivity Hilbert C*-bimodule over them.
Our main result is that the spectrum of an imprimitivity Hilbert C*-bimodule over two
commutative unital C*-algebras is described by a Hermitian line bundle over a compact
Hausdorff space that is the graph of a canonical homeomorphism between the Gel’fand spec-
tra of the two unital C*-algebras i.e. every imprimitivity Hilbert C*-bimodule is isomorphic
to a suitably twisted bimodule of sections of this “spectral” Hermitian line bundle.
We will also collect together some facts about imprimitivity C*-bimodules in the setting
of C*-categories that provide a useful background for our study of a categorical Gel’fand
duality [BCL2] and that cannot be easily found in the literature.

The content of the paper is as follows.
In section 2, for the benefit of the readers, we recall the basic definitions and properties of
Hilbert C*-modules. In subsection 2.3 we explore some specific properties of imprimitivity
bimodules arising from C*-categories that will be crucial in the study of the categorification
of Gel’fand duality that will be undergone in [BCL2]. Section 3 contains the proof of the
spectral reconstruction theorem for imprimitivity Hilbert C*-bimodules as well as some
relevant bibliographical references to other available spectral results for C*-modules.
The complete construction of a bivariant duality, between categories of “bivariant Hermi-
tian (line) bundles” and categories of (imprimitivity) Hilbert C*-bimodules over commuta-
tive unital C*-algebras, will not be completed here (in particular there is no discussion of
the appropriate classes of morphisms and no construction of the section/spectrum functors
supporting such a duality), but it is our intention to return later to this topic.
Part of the results presented here have been announced in our survey paper [BCL1] and have
been presented in several seminars in Thailand, Australia, Italy, UK since May 2006.

2 Preliminaries on Hilbert C*-Modules

For convenience of the reader and in order to establish notation and terminology, we provide
here some background material on the theory of Hilbert C*-modules. General references are
the books by N. Wegge-Olsen [WO], C. Lance [L] and B. Blackadar [B, Section II.7].
In the following, A,B, . . . denote unital C*-algebras and A+ := {a∗a ∈ A | a ∈ A} is the
positive part of the C*-algebra A.

Definition 2.1. a right pre-Hilbert C*-module MB over a unital C*-algebra B is a

unital right module over the unital ring B that is equipped with a B-valued inner product

(x, y) �→ 〈x | y〉B such that:

〈z | x + y〉B = 〈z | x〉B + 〈z | y〉B ∀x, y, z ∈M,

〈z | x · b〉B = 〈z | x〉Bb ∀x, y ∈M, ∀b ∈ B,

〈y | x〉B = 〈x | y〉∗B ∀x, y ∈M,

〈x | x〉B ∈ B+ ∀x ∈M,

〈x | x〉B = 0B ⇒ x = 0M .
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Analogously, a left pre-Hilbert C*-module AM over a unital C*-algebra A is a unital left

module M over the unital ring A, that is equipped with an A-valued inner product M×M → A

denoted by (x, y) �→ A〈x | y〉. Here the A-linearity in on the first variable.

Remark 2.2. A right (respectively left) pre-Hilbert C*-module MB over the C*-algebra B

is naturally equipped with a norm (for a proof see for example [FGV, Lemma 2.14 and

Corollary 2.15]):

‖x‖M :=
√
‖〈x | x〉B‖B, ∀x ∈M.

Definition 2.3. A right (resp. left) Hilbert C*-module is a right (resp. left) pre-Hilbert

C*-module over a C*-algebra B that is a Banach space with respect to the previous norm

‖ · ‖M (resp. M‖ · ‖).
Definition 2.4. A right Hilbert C*-module MB is said to be full if

〈MB |MB〉B := span{〈x | y〉B | x, y ∈MB} = B,

where the closure is in the norm topology of the C*-algebra B. A similar definition holds for

a left Hilbert C*-module.

We recall the following well-known result (see [FGV, p. 65]), whose proof is included here:

Lemma 2.5. Let MB be a right Hilbert C*-module over a unital C*-algebra B. Then MB

is full if and only if span{〈x | y〉B | x, y ∈MB} = B.

Proof. If MB is full, for any ε > 0, we can find a natural number n ∈ N0 and elements
xj , yj ∈M , with j = 1, . . . , n, such that

‖
n∑

j=1

〈xj | yj〉B − 1B‖B < ε.

Taking ε ≤ 1, we see that
∑n

j=1〈xj | yj〉B is invertible i.e. there exists an element bε in B

such that (
∑n

j=1〈xj | yj〉B)bε = 1B. Hence
∑n

j=1〈xj | yjbε〉B = 1B, i.e. 1B is in the ideal
span{〈x | y〉B | x, y ∈MB} that therefore coincides with B.

We note that the notion of Hilbert C*-modules behaves naturally under quotients:

Proposition 2.6. Let MA be a right Hilbert C*-module over a unital C*-algebra A and

I ⊂ A an involutive ideal in A. Then the set MI := {∑N
j=1 xjaj | xj ∈M, aj ∈ I, N ∈ N0}

is a submodule of M . The quotient module M/(MI) has a natural structure as a right Hilbert

C*-module over the quotient C*-algebra A/I. If M is full over A, also M/(MI) is full over

A/I. A similar statement holds for a left Hilbert C*-module.

Proof. Clearly MI is a submodule of the right A-module M . It is immediately checked that
the operation of right multiplication by elements of A/I and the A/I-valued inner product
given by:

(x + MI) · (a + I) := xa + MI, ∀x + MI ∈M/(MI) ∀a + I ∈ A/I,

〈x + MI | y + MI〉A/I := 〈x | y〉A + I, ∀x + MI, y + MI ∈M/(MI),

are well-defined so that M/(MI) becomes a right Hilbert C*-module over A/I. Of course if
〈M | M〉 = A, also 〈M/(MI) | M/(MI)〉 = A/I.
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Definition 2.7. A morphism of right Hilbert C*-modules, from (MB, 〈· | ·〉B) into

(NB, 〈· | ·〉′B) is an adjointable map i.e. a function T : MB → NB such that

∃S : N → M, 〈S(x) | y〉B = 〈x | T (y)〉′B, ∀x ∈ N, ∀y ∈M.

Remark 2.8. It is well-known, see e.g. N. Landsman [La, Theorem 3.2.5], that an adjoint-

able map T : MB → NB between Hilbert C*-modules is necessarily continuous and B-linear:

T (xa + yb) = T (x)a + T (y)b, ∀x, y ∈M, ∀a, b ∈ B.

Furthermore, the family End(MB) of morphisms on MB has a natural structure of a unital

C*-algebra.

Given x, y ∈MB, an operator θx,y : MB → MB of the form

θx,y : z �→ x · 〈y | z〉B (2.1)

is clearly a morphism of the right Hilbert C*-module MB with adjoint given by θy,x.

Definition 2.9. A finite-rank operator of the Hilbert C*-module MB is a finite linear

combination of operators of the form θx,y, x, y ∈MB, as described in (2.1).
The family K(MB) of compact operators of the right Hilbert C*-module MB is by definition

the C*-subalgebra of End(MB) generated by the finite-rank operators.

Definition 2.10. Let MB be a right unital module over a unital ring B and let α : A→ B be

a unital homomorphism of rings. The right twisted module of MB by the homomorphism

α is the right unital module Mα over the unital ring A with the right action defined by:

x · a := x · α(a), ∀x ∈M, ∀a ∈ A.

The left twisted module of BM by the homomorphism α : A→ B is analogously defined.

Remark 2.11. If MB is a right (pre-)Hilbert C*-module and α : A→ B is an isomorphism

of unital C*-algebras, then the right A-module Mα obtained by right twisting MB by the

isomorphism α has a natural structure as a (pre-)Hilbert C*-module over A with the inner

product given by 〈x | y〉A := α−1(〈x | y〉B).

Proposition 2.12. Let α : A → B be a unital isomorphism of unital rings. Let MA and

NB be unital right modules over A and respectively B. Then Φ: MA → Nα is a morphism

of right modules over A if and only if Φ: Mα−1 → NB is a morphism of right B-modules.

The result holds true also when MA and NB are (pre-)Hilbert C*-modules and Φ : MA → Nα

is a morphism of (pre-)Hilbert C*-modules over A.

Proof. Clearly Φ(x·a) = Φ(x)·α(a) if and only if Φ(x·α−1(b)) = Φ(x)·b. Also Φ : MA → Nα

is adjointable, with adjoint Ψ, if and only Φ : Mα−1 → NB is adjointable with the same
adjoint: α−1(〈x | Φ(y)〉B) = 〈Ψ(x) | y〉A if and only if 〈x | Φ(y)〉B = α(〈Ψ(x) | y〉A), for all
x ∈ N , y ∈M .

2.1 Hilbert C*-bimodules and Morita Equivalence

Recall that a unital bimodule AMB over two unital rings A and B is a left unital A-module
and a right unital B-module such that (a · x) · b = a · (x · b), for all a ∈ A, b ∈ B and x ∈M .
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Definition 2.13. A pre-Hilbert C*-bimodule AMB over a pair of unital C*-algebras

A,B is a left pre-Hilbert C*-module over A and a right pre-Hilbert C*-module over B such

that:

(a · x) · b = a · (x · b) ∀a ∈ A, x ∈M, b ∈ B, (2.2)
〈x | ay〉B = 〈a∗x | y〉B ∀x, y ∈M, ∀a ∈ A, (2.3)

A〈xb | y〉 = A〈x | yb∗〉 ∀x, y ∈M, ∀b ∈ B. (2.4)

A correspondence from A to B is an A-B-bimodule that is also a right Hilbert C*-module

over B whose B-valued inner product satisfies property (2.3).
A Hilbert C*-bimodule AMB is a pre-Hilbert C*-bimodule over A and B that is simulta-

neously a left Hilbert C*-module over A and a right Hilbert C*-module over B.

A Hilbert C*-bimodule is full if it is full as a right and also as a left module.

A full Hilbert C*-bimodule over the C*-algebras A-B is said to be an imprimitivity bi-
module or an equivalence bimodule if:

A〈x | y〉 · z = x · 〈y | z〉B, ∀x, y, z ∈M. (2.5)

Remark 2.14. Note that our definitions of pre-Hilbert and Hilbert C*-bimodule are not

necessarily in line with often conflicting similar definitions available in the literature: for

example, H. Figueroa-J. Gracia-Bondia-J. Varilly [FGV, Definition 4.7] and B. Abadie-

R. Exel [AE] require pre-Hilbert C*-bimodules to satisfy condition (2.5); A. Connes [C,

Page 159] calls Hilbert C*-bimodules what we call here correspondences (in this case, only

one inner product is assumed). In an A-B pre-Hilbert C*-bimodule there are two, usually

different, norms:

M‖x‖ :=
√
‖A〈x | x〉‖A, ‖x‖M :=

√
‖〈x | x〉B‖B, ∀x ∈M.

The two norms coincide for an imprimitivity bimodule or, more generally, for a pre-Hilbert

C*-bimodule AMB such that A〈x | x〉x = x〈x | x〉B, for all x ∈M . In fact

M‖x‖4 = ‖A〈x | x〉‖2A = ‖A〈x | x〉A〈x | x〉‖A = ‖A〈x〈x | x〉B | x〉‖A

≤ ‖〈x | x〉B‖B · ‖A〈x | x〉‖A = ‖x‖2M ·M‖x‖2.

Definition 2.15. A morphism of correspondences from A to B is a morphism of right

Hilbert C*-modules over B that further satisfies:

T (ax) = aT (x), ∀x ∈M, ∀a ∈ A. (2.6)

A morphism of (pre-)Hilbert C*-bimodules is just a morphism of right and left (pre-)

Hilbert C*-bimodules.

Remark 2.16. Morphisms of correspondences are just morphisms of bimodules that are

adjointable for the right C*-module structure.

Note that in a (pre-)Hilbert C*-bimodule there are in general two different notions of left

and of right adjoint of a morphism. The left and right adjoints of a morphism coincide if

and only if A〈x | y〉 = 0A ⇔ 〈x | y〉B = 0B, for all x, y ∈ M . This condition is true for all

full (pre)-Hilbert C*-bimodules such that

A〈x | y〉x = x〈y | x〉B, ∀x, y ∈ AMB. (2.7)
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Proposition 2.17. If AMB is an imprimitivity bimodule over the unital C*-algebras A

and B, the map T : A → K(MB) given by α �→ Tα, where we define Tα(x) := α · x, is

an isomorphism of C*-algebras. Furthermore the C*-algebra of compact operators K(MB)
coincides with the family of finite-rank operators.

Proof. Clearly Tα is a morphism of the Hilbert C*-module MB with adjoint given by Tα∗ .
The map α �→ Tα is a unital involutive homomorphism from A to End(MB) and so its
image is a unital C*-subalgebra of the C*-algebra End(MB). Furthermore, from the fullness
of MB, we see that α �→ Tα is injective so that A is isomorphic to its image under T in
End(MB).
The image of T contains all the finite-rank operators, for if S =

∑
k θxk,yk

, with xk, yk ∈MB,
then for all z ∈MB,

S(z) =
∑

k

θxk,yk
(z) =

∑
k

xk〈yk | z〉B =
∑

k

A〈xk | yk〉z = Tα(z),

where α :=
∑

k A〈xk | yk〉. Since, by lemma 2.5, every α ∈ A can always be written as a
finite combination α =

∑
k A〈xk | yk〉, we see that Tα is always a finite-rank operator, and

hence the image of T coincides with the family of finite-rank operators.
Since the closure of the finite-rank operators is the C*-algebra of compact operators K(MB),
we see that T is an isomorphism of C*-algebras from A onto K(MB) and that K(MB)
coincides with the family of finite-rank operators.

There is a natural notion of Rieffel interior tensor product between Hilbert C*-modules
and correspondences [R2]:

Proposition 2.18. Given two unital C*-algebras A,B, let MA be a right Hilbert C*-module

over A and let ANB be a correspondence from A to B. The algebraic tensor product M⊗AN
of the right A-module M with the A-B-bimodule N is naturally a right Hilbert C*-module

over B with the unique B-valued inner product such that:

〈x1 ⊗ y1 | x2 ⊗ y2〉B = 〈y1 | 〈x1 | x2〉A · y2〉B, ∀x1, x2 ∈M, ∀y1, y2 ∈ N.

Similarly, the algebraic tensor product M ⊗B N , of a pair of (pre-)Hilbert C*-bimodules

AMB, BNC has a natural structure of (pre-)Hilbert C*-bimodule on the unital C*-algebras

A-C where the “left-action” of A satisfies:

a(x⊗ y) := (ax)⊗ y, ∀a ∈ A, ∀x ∈M, y ∈ N.

There is also a natural notion of Rieffel dual of a (pre-)Hilbert C*-bimodule [R2] that is
uniquely defined (up to isomorphism) via the following proposition:

Proposition 2.19. Let BMA be a (pre-)Hilbert C*-bimodule. Then there exist a (pre-)

Hilbert C*-bimodule AM∗
B and an anti-homomorphism of bimodules ι : BMA → AM∗

B, i.e. a

map such that ι(bxa) = a∗ι(x)b∗ ∀x ∈ M ∀a ∈ A ∀b ∈ B, satisfying the following universal

property: for every (pre-)Hilbert C*-bimodule ANB and any anti-homomorphism of bimod-

ules Φ : BMA → ANB there exists a unique homomorphism of bimodules Φ′ : AM∗
B → ANB

such that Φ = Φ′ ◦ ι.

Proof. We take M∗ := M as sets, but we define on M∗ the following bimodule structure:

a · x := xa∗, ∀x ∈M∗ = M, ∀a ∈ A,

x · b := b∗x, ∀x ∈M∗ = M, ∀b ∈ B.
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It is easily checked that AM∗
B is a bimodule and that it becomes a (pre-)Hilbert C*-bimodule

if the inner products on M∗ are defined as follows:

〈x | y〉′B := B〈x | y〉∗, ∀x, y ∈M∗,

A〈x | y〉′ := 〈x | y〉∗A, ∀x, y ∈M∗,

where A〈x | y〉′ and 〈x | y〉′B denote the inner products on AM∗
B.

Clearly the identity map ι : M → M∗ is an anti-homomorphism of bimodules and for any
anti-homomorphism of bimodules Φ : BMA → ANB, Φ′ := Φ is the unique homomorphism
of bimodules Φ′ : AM∗

B → ANB such that Φ = Φ′ ◦ ι.

The pair (ι, AM∗
B) is unique up to isomorphism (as for any concept defined through a uni-

versal property) and is called the dual of the (pre-)Hilbert C*-bimodule BMA.

Definition 2.20. The Morita category is the involutive category1 with objects the unital

associative rings, with morphisms the isomorphism classes of bimodules, with composition

the isomorphism classes of the tensor product of bimodules, and with involution given by

isomorphism classes of the dual bimodules. The (algebraic) Picard groupoid is the nerve

of the Morita category2. Two unital associative rings are Morita equivalent if they are in

the same orbit of the Picard groupoid.

Here we are interested only in the full subcategory of the Morita category whose objects are
unital C*-algebras. In this case, it is usually better to “restrict” also the family of allowed
arrows as long as the new category preserves the notion of Morita equivalence i.e. its nerve
has the same orbits of the Picard groupoid.3

The category described in the following definition is the Morita-Rieffel category of unital
C*-algebras and it plays a key role in the discussion of the horizontal categorification of
Gel’fand Theorem [BCL2].

Definition 2.21. The Morita-Rieffel category is the subcategory of the Morita category

whose objects are unital C*-algebras, whose arrows are the isomorphism classes of correspon-

dences and whose composition is the Rieffel tensor product of correspondences. The nerve of

this category is the (algebraic) Picard-Rieffel groupoid. Two C*-algebras in the the same

orbit of the Picard-Rieffel groupoid are said to be strongly Morita equivalent [R1].

Remark 2.22. Note that the Morita-Rieffel category is not an involutive category (the

substitution of bimodules with correspondences “breaks the symmetry” between left and right

module structures). It is possible to eliminate this problem considering other subcategories of

the Morita category. Two possible natural choices are the involutive subcategory of the Morita

category consisting of isomorphism classes of (pre-)Hilbert C*-bimodules or (whenever it is

necessary to have a unique Banach norm and a unique notion of adjoint of a morphism

of the bimodules involved) the subcategory consisting of full Hilbert C*-bimodules such that

property (2.7) is satisfied. In these cases the involution is given by the Rieffel dual of the

bimodules.

The following proposition is a well-known result (see e.g. [GMS, Section 8.8] for a review).

1By an involutive category we mean a category C equipped with an involutive contravariant endofunc-
tor acting identically on the objects of C i.e. a map ∗ : C → C such that (x∗)∗ = x and (x ◦ y)∗ = y∗ ◦ x∗
for all x, y ∈ C .

2The nerve of a category is its class of invertible arrows.
3There are also interesting versions of Morita theory for involutive unital algebras (see P. Ara [A] and

H. Bursztyn-S. Waldmann [BW]).
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Proposition 2.23. Two unital C*-algebras A and B are Morita equivalent if and only if

there exists an imprimitivity bimodule AMB. The Picard-Rieffel groupoid consists of iso-

morphism classes of imprimitivity Hilbert C*-bimodules. Moreover, the notions of Morita

equivalence and strong Morita equivalence coincide.

Proof. If A and B are Morita equivalent, there exists bimodules AMB and BNA such that
M ⊗B N � A and N ⊗A M � B. Any bimodule AMB with the previous properties is
necessarily finite projective [GMS, Theorem 10.4.3]. Any finite projective right module can
be equipped with an inner product that makes it a correspondence from A to B and hence
AMB must be an imprimitivity bimodule.

2.2 Imprimitivity Bimodules on Abelian C*-algebras.

It is well-known that in some cases imprimitivity bimodules can be used to construct ex-
plicit isomorphisms between the associated C*-algebras, see e.g. [Bo, Lemma 10.19]. In this
subsection we follow a similar route, recovering and further elaborating on a “classical” re-
sult [R3, Theorem 3.1 and Corollary 3.3] that is certainly folklore among specialists. For the
sake of self-containment we present a full account of the situation at hand.

The following theorem is motivated by P. Ara [A, Theorem 4.2].

Theorem 2.24. Let AMB be an A-B imprimitivity bimodule, where A and B are commu-

tative unital C*-algebras. Then there exists a unique canonical isomorphism φM : A → B

such that:

φM (A〈x | y〉) = 〈y | x〉B, ∀x, y ∈M. (2.8)

Moreover the canonical isomorphism φM satisfies the following property:

a · x = x · φM (a), ∀x ∈M, ∀a ∈ A. (2.9)

Proof. The uniqueness of the map follows from the fullness of the left Hilbert C*-module
AM . By the fullness of the right Hilbert C*-module MB we can write 1B as a finite sum
1B =

∑n
j=1〈wj | zj〉B, where wj , zj ∈M , j = 1, . . . , n. For any a ∈ A, define

φM (a) =
n∑

j=1

〈wj | azj〉B, (2.10)

where wj , zj ∈M are such that
∑n

j=1〈wj | zj〉B = 1B.
To show that φM is well-defined, let wj , zj and xk, yk be two pairs of finite sequences such
that

∑
j〈wj | zj〉B = 1B and

∑
k〈xk | yk〉B = 1B. Write b =

∑
j〈wj | azj〉B. Then

〈xk | yk〉B b = 〈xk | yk〉B
∑

j

〈wj | azj〉B

=
∑

j

〈xk | yk〈wj | azj〉B〉B =
∑

j

〈xk | A〈yk | wj〉 azj〉B

=
∑

j

〈xk | a A〈yk | wj〉zj〉B =
∑

j

〈xk | ayk〈wj | zj〉B〉B

= 〈xk | ayk〉B.

It follows that b =
∑

k〈xk | ayk〉B, which shows that φM (a) is well-defined.
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We now show that φM is a homomorphism of algebras. Clearly φM is additive and C-linear.
The multiplicativity follows from:

φM (a) · φM (a′) =
∑

j

〈wj | azj〉B
∑

k

〈w′k | a′z′k〉B

=
∑
j,k

〈wj | azj〈w′k | a′z′k〉B〉B =
∑
j,k

〈wj | aA〈zj | w′k〉a′z′k〉B

=
∑
j,k

〈wj | A〈zj | w′k〉aa′z′k〉B =
∑
j,k

〈wj | zj〈w′k | aa′z′k〉B〉B

=
∑
j,k

〈wj | zj〉B〈w′k | aa′z′k〉B =
∑

k

〈w′k | aa′z′k〉B = φM (aa′).

Of course φM is unital: φM (1A) =
∑

j〈wj | 1Azj〉B =
∑

j〈wj | zj〉B = 1B. To prove
the involutivity of φM , note that if

∑
j〈wj | zj〉B = 1B, taking the adjoints, we also have∑

j〈zj | wj〉B = 1B. Hence

φM (a∗) =
∑

j

〈wj | a∗zj〉B =
∑

j

〈awj | zj〉B =
∑

j

〈zj | awj〉∗B = φM (a)∗.

Similarly, there is a canonical homomorphism ψM : B → A defined by:

ψM (b) :=
∑

i

A〈tib | ui〉 ∀b ∈ B,

where ti, ui ∈M is a pair of finite sequences such that
∑

i A〈ti | ui〉 = 1A. Then

ψM (φM (a)) =
∑

i

A〈tiφM (a) | ui〉

=
∑
i,j

A〈ti〈wj | azj〉B | ui〉 =
∑
i,j

A〈A〈ti | wj〉azj | ui〉

=
∑
i,j

aA〈ti〈wj | zj〉B | ui〉 =
∑

i

aA〈ti | ui〉 = a.

By the same argument, we can show that φM (ψM (b)) = b for all b ∈ B. Hence ψM is the
inverse of φM , which implies that φM is an isomorphism.
To establish (2.8), let wj , zj ∈ M be finite sequences such that

∑
j〈wj | zj〉B = 1B. Define

α :=
∑

j A〈zj | wj〉 and note that

φM (A〈x | y〉) = 〈y | αx〉B, ∀x, y ∈M, (2.11)

which follows from this computation:

φM (A〈x | y〉) =
∑

j

〈wj | A〈x | y〉zj〉B =
∑

j

〈wj | x〈y | zj〉B〉B

=
∑

j

〈wj | x〉B〈y | zj〉B =
∑

j

〈y | zj〉B〈wj | x〉B

=
∑

j

〈y | zj〈wj | x〉B〉B =
∑

j

〈y | A〈zj | wj〉x〉B

= 〈y |
∑

j

A〈zj | wj〉x〉B = 〈y | αx〉B.
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The element α ∈ A is independent from the choice of the finite sequences wj , zj ∈ M such
that

∑
j〈wj | zj〉B = 1B. In fact, given another pair of finite sequences w′i, z

′
i ∈M such that∑

i〈w′i | z′i〉B = 1B, we see that φM (A〈x | y〉) = 〈y | α′x〉B, where α′ :=
∑

i A〈z′i | w′i〉 so
that 〈y | αx〉B = 〈y | α′x〉B for all x, y ∈ M that implies immediately (α − α′)x = 0M that
(by the fulless of the module AM) implies α′ = α.
We see that α is Hermitian because for all x, y ∈M :

〈x | αy〉B = φM (A〈y | x〉) = φM (A〈x | y〉∗)
= φM (A〈x | y〉)∗ = 〈y | αx〉∗B = 〈αx | y〉B = 〈x | α∗y〉B,

which implies that α = α∗.
We can actually prove that α ∈ A is positive. Since φM : A → B is an isomorphism,
the map (x, y) �→ φM (A〈x | y〉) = 〈y | αx〉B is a B-valued inner product on M . Hence
φM (A〈x | x〉) = 〈x | αx〉B is a positive element in B for all x ∈M . Considering the positive
and negative parts of the Hermitian element α, i.e. the unique pair of positive elements
α+, α− ∈ A+ such that α = α+ − α− with α+α− = 0A, we see that

〈x | α+x〉B − 〈x | α−x〉B ∈ B+, ∀x ∈M.

From the calculation below,

〈x | α+x〉B〈x | α−x〉B = 〈x | α+x〈x | α−x〉B〉B
= 〈x | α+A〈x | x〉α−x〉B = 〈x | α+α−A〈x | x〉x〉B
= 〈x | 0AA〈x | x〉x〉B = 0B,

it follows that the positive terms 〈x | α±x〉B = 〈α1/2
± x | α1/2

± x〉B are the positive and negative
parts of the positive element 〈x | αx〉B. Therefore 〈x | α−x〉B = 0B for all x ∈M , and thus
α− = 0A, and so α is positive.
Next we prove that ‖α‖A ≤ 1. Consider the operator Tα : MB → MB given by

Tα(x) := α · x, ∀x ∈M

and note that ‖Tα‖ ≤ 1 because, for all x ∈M ,

‖Tα(x)‖2 = ‖〈Tα(x) | Tα(x)〉B‖ = ‖〈Tα(x) | αx〉B‖ = ‖φM (A〈Tα(x) | x〉)‖
= ‖A〈Tα(x) | x〉‖ ≤ ‖Tα(x)‖ · ‖x‖.

By proposition 2.17, the map T : A→ K(MB), α �→ Tα, is an isomorphism from A onto the
C*-algebra of compact operators K(MB). Thus

‖α‖ = ‖Tα‖ ≤ 1, ∀α ∈ A.

In a completely similar way, we can find a positive Hermitian element β ∈ B such that
‖β‖ ≤ 1 and that

ψM (〈x | y〉B) = A〈yβ | x〉, ∀x, y ∈M. (2.12)

The two elements α and β are related by φM (α)β = 1B and ψM (β)α = 1A. In order to prove
this, we first note that

x · φM (a) = a · x, ∀x ∈M, ∀a ∈ A. (2.13)
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In fact, if wj , zj ∈ M is a pair of sequences such that
∑

j〈wj | zj〉B = 1B, equation (2.13)
follows from this direct computation:

x · φM (a) = x
∑

j

〈wj | azj〉B =
∑

j

A〈x | wj〉 azj

=
∑

j

a A〈x | wj〉zj =
∑

j

ax〈wj | zj〉B = a · x.

Next we see that

α · x · β = x, ∀x ∈M. (2.14)

To see this, we apply (2.11) and (2.12) to the following calculation:

〈α · x · β | y〉B = 〈x · β | α · y〉B = φM (A〈y | x · β〉) = φM (A〈y · β | x〉)
= φM (ψM (〈x | y〉B) = 〈x | y〉B.

From (2.13) and (2.14), we obtain xφM (α)β = x for all x ∈M , which implies φM (α)β = 1B,
by the fullness of the module MB. Similarly, we have ψM (β)α = 1A.
It follows that α and β are invertible and ‖α−1‖ = ‖ψM (β)‖ = ‖β‖ ≤ 1. Since α and α−1

are positive elements with norm no larger than one in the commutative C*-algebra A, we
have α = 1A.

Definition 2.25. Let AM be a left module over an algebra A and denote by A◦ the opposite

algebra4 of A. The right symmetrized bimodule of AM is the A-A◦ bimodule AMs
A◦ with

right multiplication defined by:

x · a := ax, ∀x ∈M, ∀a ∈ A.

In a similar way, given a right module MA, we define its left symmetrized bimodule

A◦sMA via the left multiplication given by a · x := xa for all x ∈M and a ∈ A.

In the case of a commutative algebra A, the opposite algebra A◦ coincides with A and the
left (respectively right) symmetrized of a module is clearly a symmetric bimodule over A.

Proposition 2.26. Suppose that AMB is an imprimitivity A-B-bimodule over two unital

commutative C*-algebras A and B. Let φM : A → B be the canonical isomorphism defined

in theorem 2.24.

The bimodule AMφM
coincides with the right symmetrized bimodule AMs

A.

The bimodule φ−1
M

MB coincides with the left symmetrized bimodule B
sMB.

Proof. Take x ∈ M and a ∈ A. We already proved in (2.13) that x · φM (a) = a · x, for all
x ∈M and for all a ∈ A.
The second part of the proposition x · b = φ−1

M (b) · x is completed with an exactly similar
argument.
In order to complete the proof, we have to show that the inner products on the right φM -
twisted bimodule AMφM

coincides with the inner products of the right symmetrized bimodule
AMs

A and this is precisely equation (2.8).
A similar argument applies to the case of the left symmetrized bimodule B

sMB and the left
φM -twisted bimodule ψM

MB.

4Recall that the opposite algebra A◦ of an algebra A is just the vector space A equipped with the
multiplication a ·A◦ b := b ·A a.
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The imprimitivity condition also behaves naturally under quotients.

Proposition 2.27. Let AMB be an imprimitivity bimodule over the unital C*-algebras A

and B. Let I be an involutive ideal in the C*-algebra A. Then M/(IM) is an imprimitivity

bimodule over A/I and B/φM (I).

Proof. Since φM : A → B is an isomorphism of C*-algebras, if I is an involutive ideal in
A, also φM (I) ⊂ B is an involutive ideal in B. Note that property (2.14) implies that
IM = MφM (I) and so, by proposition 2.6, M/(IM) = M/(MφM (I)) is a full left Hilbert
C*-module over A/I and a full right Hilbert C*-module over B/φM (I). Finally, by direct
computation, we have:

A/I〈x + IM | y + IM〉(x + IM) = (A〈x | y〉+ I)(z + IM)
= A〈x | y〉z + IM

= x〈y | z〉B + IM

= (x + IM)(〈y | z〉B + I)
= (x + IM)〈y + IM | z + IM〉B/φM (I).

2.3 Imprimitivity Bimodules in Commutative C*-categories.

Following P. Ghez-R. Lima-J. Roberts [GLR] and P. Mitchener [M] we recall the following
basic definition.

Definition 2.28. A C*-category is a category C such that: for all A, B ∈ ObC , the sets

CAB := HomC (B, A) are complex Banach spaces; the compositions are bilinear maps such

that ‖xy‖ ≤ ‖x‖ · ‖y‖ ∀x ∈ CAB ∀y ∈ CBC ; there is an involutive antilinear contravariant

functor ∗ : HomC → HomC , acting identically on the objects, such that ‖x∗x‖ = ‖x‖2 ∀x ∈
CBA and such that x∗x is a positive element in the C*-algebra CAA, for every x ∈ CBA

(i.e. x∗x = y∗y for some y ∈ CAA).

Every C*-algebra can be seen as a C*-category with only one object.

In a C*-category C , the “diagonal blocks” CAA are unital C*-algebras and the “off-diagonal
blocks” CAB are unital Hilbert C*-bimodules on the C*-algebras A := CAA and B := CBB .
For short, we often write ACB := CAA

CABCBB
when we want to consider CAB as a bimodule.

We say that C is full if all the bimodules CAB are imprimitivity bimodules. Clearly [GLR,
Remark 7.10] in a full C*-category, for all A, B ∈ ObC , A := CAA and B := CBB are
always Morita-Rieffel equivalent C*-algebras with the imprimitivity bimodule ACB as an
equivalence bimodule.

Lemma 2.29. A C*-category C is full if and only if it satisfies the following property

CAB ◦ CBC = CAC , ∀A, B,C ∈ ObC . (2.15)

Proof. Clearly property (2.15) is stronger than fullness.
The fullness of C tells us that CAA = CAB ◦ CBA. The continuity of composition implies
CAB ◦ CBA ◦ CAC ⊂ CAB ◦ CBA ◦ CAC . From the following computation

CAC = CAA ◦ CAC = CAB ◦ CBA ◦ CAC

⊂ CAB ◦ CBA ◦ CAC ⊂ CAB ◦ CBC ⊂ CAC = CAC

we obtain CAC = CAB ◦ CBC .
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We use the previous lemma to show that in a full C*-category the maps

ACB ⊗ BCC → ACC, given by x⊗ y �→ x ◦ y

are isomorphisms of A-C-bimodules, for all A, B,C ∈ ObC .

Proposition 2.30. If C is a full C*-category, for all A, B,C ∈ ObC , (ACC, ◦) is a Rieffel

interior tensor product for the pair of bimodules ACB and BCC.

Proof. We show that there exists an isomorphism T : ACB ⊗ BCC → ACC of Hilbert
C*-bimodules such that T (x⊗ y) = x ◦ y for all x ∈ ACB and for all y ∈ BCC.
Consider the composition map ◦ : ACB × BCC → ACC and note that it is a bilinear map of
Hilbert C*-bimodules and hence (by the universal factorization property for tensor products
of Hilbert C*-bimodules) there exists one and only one Hilbert C*-bimodule morphism
T : ACB ⊗ BCC → ACC such that T (x⊗ y) = x ◦ y.
Now we show that, under the fullness condition, the map T is an isomorphism.
First of all we note that T is an isometric map on the dense sub-bimodule generated by
simple tensors:

〈T (
∑

j

xj ⊗ yj) |T (
∑

k

xk ⊗ yk)〉C =
∑
j,k

〈xj ◦ yj | xk ◦ yk〉C

=
∑
j,k

(xj ◦ yj)∗ ◦ (xk ◦ yk) =
∑
j,k

y∗j ◦ x∗j ◦ xk ◦ yk

=
∑
j,k

〈yj | 〈xj | xk〉Byk〉C =
∑
j,k

〈xj ⊗ yj | xk ⊗ yk〉C

= 〈
∑

j

xj ⊗ yj |
∑

k

xk ⊗ yk〉C.

By continuity T extends to an isometry on all of ACB⊗BCC. Finally T is surjective because
it is an isometry that, from lemma 2.29, has a dense image in ACC.

Apart from a strictly associative (tensor) product (with partial identities given by ACA),
the family of imprimitivity bimodules of a full C*-category C is naturally equipped with a
strictly antimultiplicative notion of involution given by Rieffel duality (see definition 2.19).

Proposition 2.31. If C is a full C*-category, (BCA, ∗) is a Rieffel dual of the bimodule

ACB, for all A, B ∈ ObC .

Proof. Note that the map ∗ : ACB → BCA is conjugate-linear, it is an anti-isomorphism
of Hilbert C*-bimodules5 and it is isometric. We need to prove that (BCA, ∗) satisfies the
universal factorization property for conjugate-linear anti-homomorphisms of bimodules.
Clearly every conjugate-linear map Φ : ACB → BMA, with values in a Hilbert C*-bimodule
BMA, such that Φ(axb) = b∗Φ(x)a∗ for all x ∈M , a ∈ A, b ∈ B, factorizes as Φ = (Φ◦∗)◦∗
via a unique morphism Φ ◦ ∗ : BCA → BMA of B-A-bimodules.

Every full C*-category C determines a subgroupoid, actually a total equivalence relation,
in the (algebraic) Picard-Rieffel groupoid, with objects given by the diagonal C*-algebras
CAA, for all A ∈ ObC , and morphisms given by the equivalence classes, under isomorphism
of bimodules, of ACB. Such an association is functorial as specified by the following result,
whose proof is now elementary.

5Recall that by an anti-homomorphism Φ : AMB → BMA between unital Hilbert C*-bimodules M, N ,
we mean a conjugate-linear map that satisfies Φ(axb) = b∗Φ(x)a∗ for all x ∈ M , a ∈ A, b ∈ B.
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Theorem 2.32. Let C be a full C*-category. Denote by [CAB ] the equivalence class of Hilbert

C*-bimodules that are isomorphic to the imprimitivity bimodule ACB. Consider [CAB ], for

all A, B ∈ ObC , as arrows in the (algebraic) Picard-Rieffel groupoid. The family

PicC := {[CAB ] | A, B ∈ ObC },

is a total equivalence relation (i.e. a subgroupoid with one and only one arrow for every pair

of objects) contained in the algebraic Picard-Rieffel groupoid.

A ∗-functor6 Φ : C → D between full C*-categories that is bijective on objects uniquely

determines an isomorphism Pic(Φ) : PicC → PicD of equivalence relations given by:

Pic(Φ) : [CAB ] �→ [DΦAΦB
], ∀A, B ∈ ObC ,

where Φ : A �→ ΦA ∈ ObD denotes the bijective action of the functor on the objects of C .

The map Pic is a functor from the category of object-bijective ∗-functors between small full

C*-categories into the category of (object bijective) groupoid homomorphisms between total

equivalence relations contained in the algebraic Picard-Rieffel groupoid.

An important tool related to these considerations is the “linking algebra”
[

A AMB

BM∗
A B

]
of an

imprimitivity bimodule AMB as defined in L. Brown-P. Green-M. Rieffel [BGR], that could
be seen as the enveloping C*-algebra (see [GLR]) of a C*-category with two objects.
Since by [BGR, Theorem 1.1] two unital C*-algebras A,B are Morita equivalent if and only
if there exists another unital C*-algebra C and two projections p, q ∈ C such that:

p + q = 1, pCp � A, qCq � B, CpC = C, CqC = C,

and in this case there is a natural C*-category with two objects with linking algebra[
pCp qCp
pCq qCq

]
, it is likely that every full C*-category can be seen as a “strictification” of a

total equivalence relation in the “weak” Picard-Rieffel groupoid and hence that the functor
Pic in theorem 2.32 is surjective on objects. We will return to these considerations elsewhere.

Following now [BCL1, BCL2], we say that a C*-category C is commutative if all its
diagonal blocks CAA are commutative C*-algebras.

When an imprimitivity bimodule is actually the bimodule ACB of morphisms HomC (B, A)
in a full commutative C*-category C , much more can be said about the properties of the
canonical isomorphisms of theorem 2.24

φBA := φ
ACB

: A→ B. (2.16)

Proposition 2.33. Let C be a full commutative C*-category, the family of canonical isomor-

phisms (A, B) �→ φBA associated to the imprimitivity bimodules ACB satisfies the following

compatibility conditions:

φAA = ιA, ∀A ∈ ObC , (2.17)

φBA = φ−1
AB , ∀A, B ∈ ObC , (2.18)

φCB ◦ φBA = φCA, ∀A, B,C ∈ ObC . (2.19)

6A ∗-functor Φ : C → D between C*-categories is just a functor (linear on each block CAB , A, B ∈ ObC )
such that Φ(x∗) = Φ(x)∗ for all x ∈ HomC .
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