
Proof. First of all, we note again that, for imprimitivity bimodules ACB of morphisms in a
commutative full C*-category, there is an explicit description of the inner products:

〈x | y〉B := x∗y, A〈x | y〉 := yx∗ ∀x, y ∈ ACB.

Property (2.17) follows immediately from

φAA(a) =
∑

j

〈wj | azj〉A =
∑

j

w∗j azj = a
∑

j

〈wj | zj〉A = a ∀a ∈ ACA.

To prove property (2.19), let wj , zj be finite families of elements in ACB and xk, yk finite
families of elements in BCC such that

∑
j〈wj | zj〉B = 1B and

∑
k〈xk | yk〉C = 1C. By the

definition of the canonical isomorphism (2.10), we have:

φBA(a) :=
∑

j

〈wj | azj〉B ∀a ∈ A,

φCB(b) :=
∑

k

〈xk | byk〉C ∀b ∈ B.

By direct calculation we see that the composition is given by:

φCB ◦ φBA(a) =
∑

k

〈xk |
∑

j

〈wj | azj〉B yk〉C

=
∑

k

∑
j

x∗kw∗j azjyk =
∑

k

∑
j

(wjxk)∗a(zjyk).

We only need to prove that the expression above is of the form
∑

h〈uh | avh〉C for finite
families of elements uh, vh ∈ ACC, indexed by h, such that

∑
h〈uh | vh〉C = 1C.

Now, the families of elements wjxk and zjyk satisfy exactly this property
∑

k

∑
j

〈wjxk | zjyk〉C =
∑

k

∑
j

x∗kw∗j zjyk =
∑

k

〈xk |
∑

j

〈wj | zj〉Byk〉C

=
∑

k

〈xk | 1Byk〉C = 1C

and so we can define uj,k := wjxk ∈ ACC and vj,k := zjyk ∈ ACC.
Property (2.18) follows by direct application of equations (2.17) and (2.19).

Proposition 2.34. Let ω : C → C be a ∗-functor (i.e. a functor such that ω(x∗) = ω(x),
for all x ∈ C ) defined on the full commutative C*-category C . For every pair of objects
A, B ∈ ObC , we have

ω(φBA(a)) = ω(a), ∀a ∈ CAA.

Proof. Consider the imprimitivity bimodule ACB and the associated canonical isomorphism
φBA : CAA → CBB . For every a ∈ CAA, for any given finite families wj , zj ∈ CAB such that∑

j〈wj | zj〉B = 1B, we know that φBA(a) =
∑

j〈wj | azj〉B. Since ω : C → C is a ∗-functor,
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for all a ∈ CAA, we have:

ω(φBA(a)) : = ω(
∑

j

〈wj | azj〉B) =
∑

j

ω(〈wj | azj〉B)

=
∑

j

ω(w∗j azj) =
∑

j

ω(w∗j )ω(a)ω(zj)

= ω(a)
∑

j

ω(w∗j )ω(zj) = ω(a)
∑

j

ω(w∗j zj)

= ω(a)ω(
∑

j

〈wj | zj〉B) = ω(a)ω(1B) = ω(a).

3 Spectral Theorem for Imprimitivity Bimodules

Let XA and XB be two compact Hausdorff spaces and let RBA : XA → XB be a homeomor-
phism between them. To every complex bundle (E, π, RBA), over the graph of the home-
omorphism RBA ⊂ XA × XB , we can naturally associate the set Γ(RBA;E) of continuous
sections of the bundle E, that turns out to be a symmetric bimodule over the commutative
C*-algebra C(RBA;C) of continuous functions on the compact Hausdorff space RBA.
Considering now the pair of homeomorphisms

πA : RBA → XA, πA : (x, y) 
→ x,

πB : RBA → XB , πB : (x, y) 
→ y,

we see that the set Γ(RBA;E) becomes naturally a left module over C(XA;C) and a right
module over C(XB ;C) with the following left and right actions f · σ := (f ◦ πA) · σ and
σ · g := σ · (g ◦ πB) or, in a more explicit form, for all (x, y) ∈ RBA, f ∈ C(XA), g ∈ C(XB)
and σ ∈ Γ(RBA;E):

f · σ(x, y) := f(x)σ(x, y) = (f ◦ πA)(x, y) · σ(x, y),
σ · g(x, y) := σ(x, y)g(y) = σ(x, y) · (g ◦ πB)(x, y).

In the terminology of definition 2.10, this is the bimodule π•AΓ(RBA, E)π•B obtained by twist-
ing the symmetric C(RBA)-bimodule Γ(RBA, E) by the isomorphism π•A : C(XA)→ C(RBA)
on the left and by the isomorphism π•B : C(XB)→ C(RBA) on the right.
We say that π•AΓ(RBA;E)π•B is the C(XA)-C(XB)-bimodule associated to the bundle
(E, π, RBA) over the homeomorphism RBA : XA → XB . Note that if (E, π, RBA)
is a Hermitian bundle over the homeomorphism RBA : XA → XB , then the bimodule
C(RBA)Γ(RBA;E)C(RBA) is a full symmetric Hilbert C*-bimodule over C(RBA) and, as in
remark 2.11, the associated bimodule π•AΓ(RBA;E)π•B has a natural structure as a full Hilbert
C*-bimodule with inner products given by:

C(XA)〈σ | ρ〉 := (π•A)
−1(〈σ | ρ〉C(RBA)), ∀σ, ρ ∈ Γ(RBA;E),

〈σ | ρ〉C(XB) := (π•B)
−1(〈σ | ρ〉C(RBA)), ∀σ, ρ ∈ Γ(RBA;E).

Furthermore the associated bimodule π•AΓ(RBA;E)π•B is an imprimitivity bimodule if and
only if C(RBA)Γ(RBA;E)C(RBA) is an imprimitivity bimodule and this, by Serre-Swan theo-
rem (see e.g. [BCL1, Section 2.1.2] and references therein), happens if and only if (E, π, RBA)
is a Hermitian line bundle.

16

121



In this section, making use of the results in section 2.2, we prove, in the case of imprimitivity
bimodules, a converse to the previous construction i.e. that (up to isomorphism of bimodules)
every imprimitivity Hilbert C*-bimodule AMB over unital commutative C*-algebrasA andB

actually arises as the bimodule associated to a Hermitian line bundle over a homeomorphism
between the compact Hausdorff spaces Sp(A) and Sp(B).

Theorem 3.1. Given an imprimitivity C*-bimodule AMB over two commutative unital
C*-algebras A,B, there exists a Hermitian line bundle (E, π, RBA), over the graph of a
homeomorphism RBA : XA → XB between the two compact Hausdorff spaces XA := Sp(A),
XB := Sp(B), whose associated C(XA)-C(XB)-bimodule π•AΓ(RBA;E)π•B , when twisted on
the left by the Gel’fand transform isomorphism GA : A → C(Sp(A)) and on the right by
the Gel’fand isomorphism GB : B → C(Sp(B)), becomes a bimodule π•A◦GA

Γ(RBA;E)π•B◦GB

that is isomorphic, as an A-B-bimodule, to the initial Hilbert C*-bimodule AMB.

Proof. By theorem 2.24, we have a canonical isomorphism φM : A → B. Using Gel’fand
theorem, applied to the isomorphism φ−1

M : B → A of unital C*-algebras, we recover a
homeomorphism RBA := (φ−1

M )• : XA → XB between the two compact Hausdorff spaces
XA := Sp(A) and XB := Sp(B). Furthermore we know that the Gel’fand transforms
GA : A → C(XA;C), GB : B → C(XB ;C) provide two isomorphisms of C*-algebras.
Consider now the set R ⊂ A × B defined by R := {(a, b) ∈ A × B | b = φM(a)} and note
that R has a natural structure of unital C*-algebra with componentwise multiplication and
norm defined by ‖(a, b)‖R := max{‖a‖, ‖b‖} = ‖a‖ = ‖b‖. There are natural isomorphisms
α : R → A and β : R → B given by

α : (a, b) 
→ a, β : (a, b) 
→ b, ∀(a, b) ∈ R,

and they satisfy φM = β ◦ α−1.
Note also that the topological space Sp(R) is canonically homeomorphic to RBA. In fact,
since RBA ◦ (α−1)• = (φ−1

M )• ◦ (α−1)• = (α ◦ β−1)• ◦ (α−1)• = (β−1)•, the function
S : ω 
→ ((α−1)•(ω), (β−1)•(ω)), for ω ∈ Sp(R), takes values in RBA and being bijective
continuous between compact Hausdorff spaces it is a homeomorphism.
We summarize the situation with the following commutative diagrams that might come
helpful to visualize the several isomorphisms and homeomorphisms involved:

A

GA

��

R
α�� β ��

GR

��

B

GB

��
C(XA)

π•A ������������
C(Sp(R))α••�� β•• �� C(XB)

π•B������������

C(RBA)

S•

��

XA

α•

����������
RBA �� XB

β•

		��������

Sp(R)

S

��
RBA

πA



����������������

πB

������������������

Twisting (see definition 2.10) the bimodule AMB by α on the left and β on the right, we
obtain a Hilbert C*-bimodule αMβ over R that is symmetric because

(a, b) · x = α(a, b)x = ax = xφM(a) = xβ(a, b) = x · (a, b),∀(a, b) ∈ R.

Twisting one more time αMβ with the isomorphism

γ := G−1
R ◦ S• : C(RBA)→ R,
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we get a symmetric Hilbert C*-bimodule α◦γMβ◦γ over the C*-algebra C(RBA). By a direct
application of Serre-Swan theorem (see e.g. [BCL1, Theorem 2.2]), we see that there exists
a Hermitian bundle (E, π, RBA) over the compact Hausdorff space RBA such that there
exists an isomorphism of C(RBA)-bimodules Φ : α◦γMβ◦γ → Γ(RBA;E). Since AMB is an
imprimitivity bimodule, so is α◦γMβ◦γ and hence (E, π, RBA) is a Hermitian line bundle.
Making use of proposition 2.12, we have that the map Φ also becomes an isomorphism
Φ : AMB → (α◦γ)−1Γ(RBA;E)(β◦γ)−1 of Hilbert C*-bimodules over A and B. Since, by the
diagram above, we have (α ◦ γ)−1 = π•A ◦GA and (β ◦ γ)−1 = π•B ◦GB , we finally obtain an
isomorphism of left A, right B Hilbert C*-bimodules

Φ : AMB → π•A◦GA
Γ(RBA;E)π•B◦GB

.

Note that the theorem says that for an imprimitivity bimodule AMB over commutative unital
C*-algebras, the triple (GA,Φ,GB) provides an isomorphism, in the category of Hilbert C*-
bimodules, from the bimodule AMB to the C(XA)-C(XB)-bimodule π•AΓ(RBA;E)π•B asso-
ciated to the Hermitian line bundle (E, π, RBA) over the homeomorphism RBA : XA → XB .
This means that Φ(axb) = GA(a)Φ(x)GB(b), for all x ∈ M, a ∈ A and b ∈ B. The map Φ
is essentially a “canonical extension” of the Gel’fand transform of the C*-algebras A and B

to the imprimitivity bimodule AMB over them.

The above theorem is just the starting point for the development of a “bivariant Serre-
Swan equivalence” and, more generally, a bivariant “Takahashi duality” (see e.g. [BCL1,
Section 2.1.2] and references therein) for the category of Hilbert C*-bimodules over commu-
tative C*-algebras. This will be done elsewhere.
Our spectral theorem, for imprimitivity bimodules over Abelian C*-algebras, is dealing
only with the representativity of a potential functor that, to every Hermitian line bun-
dle (E, π, RBA) over the graph of a homeomorphism RBA : XA → XB between compact
Hausdorff spaces, associates the imprimitivity bimodule π•AΓ(RBA;E)π•B over the commu-
tative C*-algebras C(XA) and C(XB). To proceed further we have to provide a suitable
notion of morphisms and define our functor on them.
The above result is for now stated in the case of imprimitivity bimodules and hence it does
not provide neither an answer to the problem of classifying, nor a geometric interpretation
of general C(X)-C(Y )-bimodules for given compact Hausdorff spaces X and Y . Warn-
ing the reader to take due care of some differences in notations and definitions, for some
related results on the “spectral theory” of Hilbert C*-bimodules, one may consult B. Abadie-
R. Exel [AE], H. Bursztyn-S. Waldmann [BW], A. Hopenwasser-J. Peters-J. Powers [HPP],
A. Hopenwasser [H], T. Kajiwara-C. Pinzari-Y. Watatani [KPW], P. Muhly-B.Solel [MS].
In particular, B. Abadie and R. Exel [AE, Proposition 1.9] proved that every imprimitivity
C*-bimodule over a commutative C*-algebra A is always obtained from its right symmetriza-
tion by twisting on one side with a given automorphism θ and, in a more algebraic setting,
a result of H. Burzstyn-S. Waldmann [BW, Proposition 2.3] assures that if two imprimitiv-
ity bimodules AMB and ANB over the same commutative algebras are isomorphic as right
modules, there is a unique isomorphism of the C*-algebra B such that the bimodule M is
isomorphic to the twisting of N .
Gathering together the above facts, in the special case of commutative full C*-categories,
we obtain the following result.

Theorem 3.2. Let C be a full commutative C*-category. Then for every pair of objects A
and B, one has:
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- ACB is an imprimitivity ACA-BCB bimodule. That is, ACA and BCB are Morita
equivalent and thus there is a canonical ∗-isomorphism implemented by x∗y 
→ yx∗,
x, y ∈ ACB.

- ACB is the (non-symmetric) ACA-BCB-bimodule of continuous sections of a Hermitian
line bundle over the graph of the corresponding homeomorphism between the Gel’fand
spectra of ACA and BCB.
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Abstract

We present a duality between the category of compact Riemannian spin manifolds
(equipped with a given spin bundle and charge conjugation) with isometries as mor-
phisms and a suitable “metric” category of spectral triples over commutative pre-
C*-algebras. We also construct an embedding of a “quotient” of the category of
spectral triples introduced in [BCL1] into the latter metric category. Finally we dis-
cuss a further related duality in the case of orientation and spin-preserving maps
between manifolds of fixed dimension.

keywords: Spectral Triple, Spin Manifold, Category.

MSC-2000: 46L87, 46M15, 18F99, 15A66.

1 Introduction.

Although the main strength of non-commutative geometry is a full treatment of non-
commutative algebras as “duals of geometric spaces”, the foundation of the theory relies
on the construction of suitable categorical equivalences, resp. anti-equivalences (i.e. co-
variant, resp. contravariant functors that are isomorphisms of categories “up to natural
transformations”) between categories of “geometric spaces” and categories of commutative
algebras of functions over these spaces.1

Typical examples of such (anti-)equivalences are listed below, itemized by the name of the
people who worked them out:

• Hilbert: between algebraic sets and finitely generated algebras over an algebraically
closed field [H];

∗Partially supported by the Thai Research Fund: grant n. RSA4780022.
1For the elementary background in “category theory” the reader can refer to the on-line introduction

by J. Baez [B] and the classical books by S. McLane [M] and M. Barr-C. Wells [BW].

1

126



• Stone: between totally disconnected compact Hausdorff topological spaces and
Boolean algebras [St1, St2];

• Gel’fand-Năımark: between the category of continuous maps of compact Hausdorff
topological spaces and the category of unital involutive homomorphisms of unital
commutative C*-algebras2 [G, GN];

• Halmos-von Neumann: between the category of measurable maps of measure
spaces and the category of unital involutive homomorphisms of commutative von
Neumann algebras;3

• Serre-Swan: between the category of vector bundle maps of finite-dimensional lo-
cally trivial vector bundles over a compact Hausdorff topological space and the cat-
egory of homomorphisms of finite projective modules over a commutative unital
C*-algebra [Se, Sw];

• Cartier-Grothendieck: between the category of commutative schemes (ringed
spaces) in algebraic geometry and the category of topoi (sheaves over topological
spaces);4

• Takahashi: between the category of Hilbert bundles on (different) compact Haus-
dorff spaces and the category of Hilbert C*-modules over (different) commutative
unital C*-algebras [T1, T2];

Even more dualities arise when the spaces in question are equipped with additional struc-
ture, most notably a group structure or the like (see Pontryagin-Van Kampen [Po, VK],
Tannaka-Krĕın [Ta, Kr] and Doplicher-Roberts [DR]).
In this paper we will focus our attention on the Gel’fand-Năımark duality, to which the
other dualities are related in significant way. In short, the fundamental message that can
be read off from the celebrated Gel’fand-Năımark theorem on commutative C*-algebras is
that, at the “topological level”, the information on a “space” can be completely encoded
in (and recovered from) a suitable “algebraic structure”.
In applications to physics (at least for those branches that are dealing with “metric struc-
tures” such as general relativity), it would be important to “tune” Gel’fand-Năımark’s
correspondence in order to embrace classes of spaces with more detailed geometric struc-
tures (e.g. differential, metric, connection, curvature).
In recent times, Connes’ non-commutative geometry [C1, FGV] has emerged as the most
outstanding proposal in this direction, based on the notion of spectral triple.
In this short note we provide a simple further example of categorical anti-equivalence
between Riemannian spin manifolds and commutative Connes’ spectral triples (see theo-
rem 3.2). This line of thought is expected to play an important role in future developments
of the categorical structure of non-commutative geometry, and spectral triples in particular
(see [BCL2]), as well as in the study of (geometric) quantization, where the construction

2Or more generally between the category of proper continuous maps of locally compact Hausdorff spaces
and the category of involutive homomorphisms of commutative C*-algebras.

3The origin of a dual treatment of measure theory (at least for locally compact Hausdorff spaces) can
be traced back to F. Riesz-A. Makov-S. Kakutani-A. Weil theorem [Rie, Ma, K, W], but the proof that
a measure space can be recovered from a commutative von Neumann algebra is due to P. Halmos-J. von
Neumann [HvN].

4As reported by I. Dolgachev in his useful historical review [D, Section 1], the idea of P. Cartier (1957)
that affine schemes are in duality with ringed spaces of the form Sp(A) was developed by Grothendieck in
the full theory of schemes.
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of functorial relations between “commutative” and “quantum” spaces are central points of
investigation.
Although the idea of reconstructing a smooth manifold out of a commutative spectral triple
has been latent for some time, (see [C3, C4, R, RV1, C5, C6]) the point to promote it to
a categorical level seems to be new. Our main tool is the notion of metric morphisms of
spectral triples, namely those preserving Connes’ distance on the state space.
In the second part of the paper, we examine some connection between the category of
“metric spectral triples” (on which the equivalence result is based) and our previous work
on morphism of spectral triples [BCL1]. It should be possible to provide other equivalence
results in terms of categories of spectral triples based on different notions of morphism (at
least for some classes of Riemannian manifolds); some of these issues are presently under
investigation (see [BCL2, Section 4.1] for an overview).
It should be remarked that Connes’ distance formula has been systematically adopted by
M. Rieffel as the backbone of his notion of quantum compact metric space (see [Ri] and
references therein). Although we present our result in the framework of Connes’ spectral
triples, it is likely that our ideas might find some application also in Rieffel’s framework.
In order to keep the length of this note as short as possible, we will refer to the literature
for all the background material and only recall the basic definitions.

1.1 Spectral Triples.

Following A. Connes’ axiomatization (see [C1, FGV, C5] for all the details), a compact
spectral triple (A,H, D) consists of

a) a unital pre-C*-algebra A (that is sometimes required to be closed under holomorphic
functional calculus),

b) a (faithful) representation π : A → B(H) of the algebra A on a Hilbert space H and

c) a Dirac operator, i.e. a (generally unbounded) self-adjoint operator D, with com-
pact resolvent (D − λ)−1 for every λ ∈ C − R and such that5 [D,π(a)]− ∈ B(H),
∀a ∈ A.

A spectral triple is called even if it is equipped with a grading operator, i.e. a bounded
self-adjoint operator Γ ∈ B(H) such that:

Γ2 = IdH; [Γ, π(a)]− = 0 ∀a ∈ A; [Γ, D]+ = 0.

A spectral triple without grading is called odd.

A spectral triple is regular if the functions Ξx : t 
→ exp(it|D|)x exp(−it|D|) are “smooth”
i.e. Ξx ∈ C∞(R,B(H)) for every x ∈ ΩD(A), where we define 6

ΩD(A) := span{π(a0)[D,π(a1)]− · · · [D,π(an)]− | n ∈ N, a0, . . . , an ∈ A}.
This regularity condition can be equivalently expressed requiring that, for all a ∈ A,
π(a) and [D,π(a)]− are contained in ∩∞m=1Dom δm, where δ is the derivation given by
δ(x) := [|D|, x]−.
The spectral triple is n-dimensional iff there exists an integer n such that the Dixmier
trace of |D|−n is finite non-zero. A spectral triple is θ-summable if exp(−tD2) is a
trace-class operator for every t > 0.

5Here [x, y]± := xy ± yx denote respectively the anticommutator and the commutator of x, y ∈ B(H).
6We assume that for n = 0 ∈ N the term in the formula simply reduces to π(a0).
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A spectral triple is real if it is equipped with a real structure i.e. an antiunitary operator
J : H → H such that:

[π(a), Jπ(b∗)J−1]− = 0 ∀a, b ∈ A;

[[D,π(a)]−, Jπ(b∗)J−1]− = 0 ∀a, b ∈ A, first-order condition;

J2 = ±IdH; [J, D]± = 0;
and, only in the even case, [J,Γ]± = 0,

where the choice of ± in the last three formulas depends on the “dimension” n of the
spectral triple modulo 8 according to the following table:

n 0 1 2 3 4 5 6 7
J2 = ±IdH + + − − − − + +
[J, D]± = 0 − + − − − + − −
[J,Γ]± = 0 − + − +

A spectral triple is finite if H∞ := ∩∞k=1DomDk is a finite projective A-bimodule and
absolutely continuous if, there exists a Hermitian form (ξ, η) 
→ (ξ | η) on H∞ such
that, for all a ∈ A, 〈ξ | π(a)η〉 is the Dixmier trace of π(a)(ξ | η)|D|−n.

An n-dimensional spectral triple is said to be orientable if there is a Hochschild cycle
c =

∑m
j=1 a

(j)
0 ⊗ a

(j)
1 ⊗ · · · ⊗ a

(j)
n such that its “representation” on the Hilbert space H,

π(c) =
∑m

j=1 π(a(j)
0 )[D,π(a(j)

1 )]− · · · [D,π(a(j)
n )]− is the grading operator in the even case

or the identity operator in the odd case7.

A real spectral triple is said to satisfy Poincaré duality if its fundamental class in the
KR-homology of A ⊗ Aop induces (via Kasparov intersection product) an isomorphism
between the K-theory K•(A) and the K-homology K•(A) of A.8

A spectral triple will be called commutative whenever A is commutative.

Finally a spectral triple is irreducible if there is no non-trivial closed subspace in H that
is invariant for π(A), D, J, Γ.

1.2 Reconstruction Theorem (Commutative Case).

Let M be a real compact orientable Riemannian m-dimensional spin C∞ manifold with
a given volume form μM . Let us denote (see [S] for details) by S(M) a given irre-
ducible complex spinor bundle over M i.e. a bundle over M equipped with a left action
c : Cl(+)(T (M))⊗S(M)→ S(M) of the “Clifford” bundle9 Cl(+)(T (M)) inducing a bundle
isomorphism between Cl(+)(T (M)) and End(S(M)). Let [S(M)] be the spinc structure10

of M determined by S(M).
7In the following, in order to simplify the discussion, we will always refer to a “grading operator” Γ

that actually coincides with the grading operator in the even case and that is by definition the identity
operator in the odd case.

8In [RV1] some of the axioms are reformulated in a different form, in particular this condition is replaced
by the requirement that the C*-module completion of H∞ is a Morita equivalence bimodule between (the
norm completions of) A and ΩD(A).

9Following [FGV, Page 373], we denote by Cl(+)(T (M)) the complexified Clifford bundle of M if dim M
is even and respectively its even subalgebra bundle Cl+(T (M)) if dim M is odd.

10An orientable Riemannian manifold is spinc if it admits a complex irreducible spinor bundle [S, Defi-
nition 7]. Recall that a spinc manifold usually admits several inequivalent spinc structures and that for a
given spinc structure, a complex irreducible spinor bundle over M is determined only up to (Hermitian)
bundle isomorphism.
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Let CM be a given “spinorial” charge conjugation11 on S(M) i.e. an antilinear Hermitian
bundle morphism such that CM ◦ CM = ± IdS(M) (signs depending on dimM modulo
8 as in the table in section 1.1) that is “compatible” with the charge conjugation12 κ in
Cl(+)(T (M)) i.e. CM (β(p)·σ(p)) = κ(β(p))·CM (σ(p)), for any section β ∈ Γ(Cl(+)(T (M)))
of the Clifford bundle and any section σ ∈ Γ(S(M)) of the spinor bundle. We denote by
[(S(M), CM )] the spin structure on M determined by CM .

Let AM :=C∞(M ;C) be the commutative pre-C*-algebra of smooth complex valued func-
tions on M . We denote by πM its representation by pointwise multiplication on the space
HM := L2(M,S(M)), the completion of the space Γ∞(M, S(M)) of smooth sections of the
spinor bundle S(M) equipped with the inner product 〈σ | τ〉 := ∫

M
〈σ(p) | τ(p)〉p dμM ,

where 〈· | ·〉p is the unique inner product on Sp(M) compatible with the Clifford action
and the Clifford product. Note that the spinorial charge conjugation CM (being unitary
on the fibers) has a unique antilinear unitary extension JM : HM → HM determined by
(JMσ)(p) := CM (σ(p)) for σ ∈ Γ∞(S(M)) and p ∈ M .

Let ΓM be the unique unitary extension on HM of the operator ΛM on Γ(S(M)) acting
by left action of the chirality element γ ∈ Γ(Cl(+)(T (M))), that implements the grading χ

of Γ(Cl(+)(T (M))) as inner automorphism.13

Denote by DM the Atiyah-Singer Dirac operator on the Hilbert space HM , i.e. the closure
of the operator that on Γ∞(S(M)) is obtained by “contracting” the unique spin covari-
ant derivative ∇S (induced on Γ∞(S(M)) by the Levi-Civita covariant derivative of M ,
see [FGV, Theorem 9.8]) with the Clifford multiplication. For a detailed discussion on
Atiyah-Singer Dirac operators we refer to [BGV, LM, S].

We have the following fundamental results:

Theorem 1.1 (Connes, see e.g. [C1, C2] and Section 11.1 in [FGV]). Given an orientable
compact spin Riemannian m-dimensional differentiable manifold M , with a given complex
spinor bundle S(M), a given spinorial charge conjugation CM and a given volume form
μM ,14 the data (AM ,HM , DM ) defines a commutative regular finite absolutely continuous
m-dimensional spectral triple that is real, with real structure JM , orientable, with grading
ΓM , and satisfies Poincaré duality.

Theorem 1.2 (Connes [C3, C5]). Let (A,H, D) be an irreducible commutative real (with
real structure J and grading Γ) strongly regular15 m-dimensional finite absolutely continu-
ous orientable spectral triple, with totally antisymmetric (in the last m entries) Hochschild
cycle, and satisfying Poincaré duality. The spectrum of (the norm closure of) A can be
endowed, in a unique way, with the structure of an m-dimensional connected compact ori-
entable spin Riemannian manifold M with an irreducible complex spinor bundle S(M), a
charge conjugation JM and a grading ΓM such that:

A � C∞(M ;C), H � L2(M,S(M)), D � DM , J � JM , Γ � ΓM .

11A spinc manifold is spin if and only if it admits a complex spinor bundle with a charge conjugation [S,
Definition 8]. Recall that a spin manifold usually admits several inequivalent spin structures even for the
same spinc structure and that for a given spin structure a conjugation operator is determined only up to
intertwining with (Hermitian) bundle isomorphisms.

12κ is the composition of the natural grading operator and the canonical conjugation.
13The grading is actually the identity in odd dimension.
14Remember that an orientable manifolds admits two different orientations and that, on a Riemannian

manifold, the choice of an orientation canonically determines a volume form μM .
15In the sense of [C5, Definition 6.1].
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A. Connes first proved the previous theorem 1.2 under the additional condition that A

is already given as the algebra of smooth complex-valued functions over a differentiable
manifold M , namely A = C∞(M ;C) (for a detailed proof see e.g. [FGV, Theorem 11.2]),
and conjectured [C3], [C4, Theorem 6, Remark (a)] the result for general commutative
pre-C*-algebras A.
A tentative proof of this last fact has been published by A. Rennie [R]; some gaps were
pointed out in the original argument, a different revised, but still incorrect, proof ap-
pears in [RV1] (see also [RV2]) under some additional technical conditions. Recently
A. Connes [C5] finally provided the missing steps in the proof of the result.
As a consequence, there exists a one-to-one correspondence between unitary equivalence
classes of spectral triples and connected compact oriented Riemannian spin manifolds up
to spin-preserving isometric diffeomorphisms.
Similar results should also be available for spinc manifolds [C4, Theorem 6, Remark (e)].

1.3 Connes’ Distance Formula.

Given a spectral triple (A,H, D), let us denote by S(A) and P(A) the sets of states and
pure states of the pre-C*-algebra A, respectively. If A := C∞(M ;C), for all p ∈ M we
denote by evp : x 
→ x(p) the “evaluation functional” in p of the functions x ∈ A and
note that evp ∈ P(A). Actually in this case P(A) coincides with the set of all evaluation
functionals.
Going back to the general case, the Connes’ distance dD on P(A) is the function on
P(A)× P(A) given by

dD(ω1, ω2) := sup{|ω1(x)− ω2(x)| | x ∈ A, ‖[D,π(x)]‖ ≤ 1}.
Strictly speaking, without imposing other conditions, dD could also take the value +∞ as
in the case of non-connected manifolds. In turn, one can use the same formula to define a
“distance” on the set of all the states of A.

Theorem 1.3 (Connes’s distance formula). [FGV, Proposition 9.12] If the spectral triple
(A,H, D) is obtained as in theorem 1.1 from a compact finite-dimensional oriented Rie-
mannian spin manifold M equipped with a spinor bundle S(M) and a spinorial charge
conjugation CM , then for every p, q ∈ M , dD(evp, evq) coincides with the geodesic distance

dM (p, q) := inf
{∫ b

a

‖γ′(t)‖ dt | γ is a geodesic with γ(a) = p, γ(b) = q
}

.

Of course, given a unital ∗-morphism φ : A1 → A2 there is a pull-back φ• : S(A2)→ S(A1)
defined by φ•(ω) := ω ◦ φ for all ω ∈ S(A2).

2 A Metric Category of Spectral Triples.

The objects of all of our categories will be compact spectral triples (A,H, D).
Given two spectral triples (Aj ,Hj , Dj), with j = 1, 2, a metric morphism of spectral

triples (A1,H1, D1)
φ−→ (A2,H2, D2) is by definition a unital epimorphism16 φ : A1 → A2

of pre-C*-algebras whose pull-back φ• : P(A2)→ P(A1) is an isometry, i.e.

dD1(φ
•(ω1), φ•(ω2)) = dD2(ω1, ω2), ∀ω1, ω2 ∈ P(A2).

Spectral triples with metric morphisms form a category S m.
16Note that if φ is an epimorphism, its pull-back φ• maps pure states into pure states.
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Remark 2.1. A unitary equivalence of spectral triples gives an isomorphism in the category
S m.

2.1 A Local Metric Category of Spectral Triples.

For convenience of the reader, we recall here the definitions of morphisms of spectral triples
proposed in our previous work [BCL1, Sections 2.2-2.3].
A morphism in the category S , between spectral triples (Aj ,Hj , Dj), j = 1, 2 of the
same dimension, is a pair (φ,Φ), where φ : A1 → A2 is a ∗-morphism between the pre-
C*-algebras A1,A2 and Φ : H1 → H2 is a bounded linear map in B(H1,H2) such that
π2(φ(x)) ◦ Φ = Φ ◦ π1(x), ∀x ∈ A1 and D2 ◦ Φ(ξ) = Φ ◦ D1(ξ) ∀ξ ∈ DomD1.
In a similar way, a morphism of real spectral triples (Aj ,Hj , Dj , Jj) with j = 1, 2,
in the category of real spectral triples Sr, is a morphism in S such that Φ also satisfies
J2 ◦ Φ = Φ ◦ J1. Finally a morphism of even spectral triples (Aj ,Hj , Dj ,Γj) with
j = 1, 2, in the category of even spectral triples Se, is a morphism in S such that
Γ2 ◦ Φ = Φ ◦ Γ1. We will denote by SI (respectively SIr,SIre) the subcategory of S
(respectively Sr,Sre) consisting of “isometric” morphisms of spectral triples, i.e. pairs
(φ,Φ) with φ surjective and Φ co-isometric. We have the following inclusion of non-full
subcategories: Sre := Sr ∩ Se ⊂ S .

3 The Metric Connes-Rennie-Varilly Functor.

Let us consider the class M of C∞ metric isometries17 of compact finite-dimensional C∞

orientable Riemannian spin manifolds M equipped with a fixed spinor bundle S(M), a
given spinorial charge conjugation CM and a volume form μM . The class M with the
usual composition of functions forms a category.

Proposition 3.1. There is a contravariant functor C from the category M to the category
S m that to every triple (M,S(M), CM ) ∈ M associates the spectral triple (A,H, D) ∈ S m

given as in theorem 1.1 and that to every smooth metric isometry f : M1 → M2 associates
its pull-back f• : A2 → A1.

Proof. Every smooth metric isometry f : M1 → M2 in M is a Riemannian isometry of
M1 onto a closed embedded submanifold f(M1) of M2. Since every smooth function on a
closed embedded submanifold is the restriction of a smooth function on M2, the pull-back
φ := f• is a unital epimorphism of the pre-C*-algebras φ : A2 → A1 and, by theorem 1.3,
φ• : P(A1)→ P(A2) is metric-preserving:

dD2(φ
•(ω1), φ•(ω2)) = dD2(φ

•(evp), φ•(evq)) = dD2(evf(p), evf(q))
= dM2(f(p), f(q)) = dM1(p, q) = dD1(evp, evq)
= dD1(ω1, ω2),

where p, q ∈ M1 are the unique points such that ω1 = evp and ω2 = evq.
Of course C(g ◦ f) = (g ◦ f)• = f• ◦ g• = Cf ◦ Cg and CιM

= ιC(M).

We will call the functor C the metric Connes-Rennie-Varilly functor.

Here we present the main result of this paper. We denote by ab-S m the full subcategory
of S m of direct sums of irreducible Abelian spectral triples18.

17Note that in general a Riemannian isometry is not necessarily a metric isometry.
18In a completely similar way we will denote by ab-S the full subcategory of direct sums of irreducible

Abelian spectral triples in S .
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Theorem 3.2. The metric Connes-Rennie-Varilly functor is an anti-equivalence between
the categories M and ab-S m.

Proof. The functor C is faithful: if Cf = Cg for two smooth isometries f, g : M1 → M2,
then f• = g• as morphisms of pre-C*-algebras and hence they coincide also when uniquely
extend to morphisms of C*-algebras of continuous functions and the result f = g follows
from Gel’fand duality theorem.
The functor C is full: if φ : C(M2) → C(M1) is a metric morphism in S m, as a homo-
morphisms of pre-C* algebras of smooth functions, φ extends uniquely to a morphism of
C*-algebras of continuous functions and, from Gel’fand duality theorem, there exists a
unique continuous function f : M1 → M2 such that f• = φ. From the fact that f• maps
smooth functions on M2 to smooth functions on M1 it follows that f is a smooth function
between manifolds. Since φ also preserves the spectral distances, it follows that f is a
smooth metric isometry hence a Riemannian isometry.
The functor C is representative: for when restricted to the subcategory of connected man-
ifolds with target the subcategory of irreducible spectral triples, this is actually a restate-
ment of the reconstruction theorem 1.2 and remark 2.1. Since the Connes-Rennie-Varilly
functor C maps disjoint unions of connected components into direct sums of spectral triples,
the result follows.

Unfortunately, at this stage, we cannot present a statement involving the category of
all Abelian spectral triples. The above result raises naturally the issue of decomposing
(Abelian) spectral triples in terms of irreducible components.

Remark 3.3. In restriction to the subcategory Md of dimension-preserving smooth
isometries (i.e. isometric immersions with fiberwise isomorphic tangent maps), the metric
Connes-Rennie-Varilly functor C is an anti-equivalence between Md and the subcategory
ab-S m

d of metric morphisms of direct sums of irreducible Abelian spectral triples with
the same dimension. In a similar way, denoting by N(C ) the nerve of the category C ,
i.e. the groupoid of isomorphisms of C , we have that C|N(M ) is an anti-equivalence between
N(M )19 and the nerve N(ab-S m).

4 Metric and Spin Categories.

We now proceed to establish a connection between the category S m of metric spectral
triples and the categories of spectral triples S (respectively real spectral triples Sr) in-
troduced in [BCL1, Section 2.2-2.3] and briefly recalled in section 2.1.
Denote by S 0 (respectively S 0

Ired) the category of spectral triples whose morphisms are
those homomorphisms of algebras φ for which there exists at least one Φ such that the
pair (φ,Φ) is a morphism in S (respectively SIred). We have a “forgetful” full functor
F : S → S 0 that to every morphism (φ,Φ) in S associates φ as a morphism in S 0.

Lemma 4.1. A metric isometry of Riemannian manifolds with the same dimension is a
smooth Riemannian isometry onto a union of connected components.

Proof. Let f : M → N be a metric isometry. Since dimM = dimN , by Brouwer’s theorem,
we see that f is open and maps each connected component of M onto a unique connected

19The nerve of M (always a subcategory of Md) is actually the “disjoint union” of denuberable “con-
nected components” consisting of the categories of smooth bijective isometries of n-dimensional spin man-
ifolds.
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component of N . By the Myers-Steenrod theorem (see for example [P, Section 5.9, Theo-
rem 9.1]), any such bijective map between connected components is a smooth Riemannian
surjective isometry; hence f : M → N is a smooth Riemannian isometry onto f(M), a
union of connected components of N .

Let f : (M, S(M), CM )→ (N, S(N), CN ) be a morphism inMd. Thanks to the last lemma,
we can consider the differential Df : T (M) → T (N). It is a monomorphism of Euclidean
bundles and induces a unique Bogoljubov morphism ClDf : Cl(+)(T (M)) → Cl(+)(T (N))
of the Clifford bundles that is actually an isomorphism of Cl(+)(T (M)) with subbundle
Cl(+)(T (f(M))), the Clifford bundle of the submanifold f(M).20 This isomorphism can
be used to “transfer” the irreducible Clifford action of Cl(+)(T (f(M))) on the bundle
S(f(M)) := S(N)|f(M) to an irreducible action of Cl(+)(T (M)) and, since the bundle
f•(S(N)) = f•(S(f(M))) is naturally isomorphic to S(f(M)), the bundle f•(S(N)) be-
comes an irreducible complex spinor bundle on M . By a similar argument, f•(S(N))
comes equipped with a spinorial charge conjugation f•(CN ) obtained by “pull-back” of
(the restriction to S(f(M)) of) CN through the isomorphism f•(S(N)) � S(f(M)).

We say that f is spin-preserving if the spin structure [(f•(S(N)), f•(CN ))] determined
by f•(S(N)) with spinorial charge conjugation f•(CN ) coincides with the spin structure
of M i.e. if there exists an isomorphism of Hermitian bundles U : f•(S(N)) → S(M)
that intertwines the charge conjugations: U ◦ f•(CN ) = CM ◦ U and the Clifford actions.
Note that if f is orientation-preserving, the isomorphism U also intertwines the grading
operators of the spinor bundles.
Let us denote by Md-spin the subcategory of spin and orientation-preserving maps in Md.
The following result, that we report for completeness, is certainly well-known although we
could not find any suitable reference. Note that ab-SIred denotes the full subcategory of
SIred whose objects are direct sums of irreducible Abelian spectral triples.

Proposition 4.2. Let M, N be two compact orientable Riemannian spin manifolds in the
category M . If f : M → N is a spin-preserving isomorphism of Riemannian manifolds,
the spectral triples (AM ,HM , DM ) and (AN ,HN , DN ) are isomorphic in the category ab-
SIred.

Proof. The pull-back φ := f• is a ∗-isomorphism φ : AN → AM of pre-C*-algebras.

Consider the “pull-back of spinor fields” given by the invertible map Ψ := σ 
→ σ ◦ f , for
all σ ∈ HN . Since f is an orientation-preserving Riemannian isometry, it leaves invariant
the volume forms f•(μN ) = μM and so we obtain

∫
M

〈Ψ(σ)(x) | Ψ(τ)(x)〉 dμM (x) =
∫

N

〈σ(y) | τ(y)〉 dμN (y)

that implies that the map Ψ : HN → L2(M,f•(S(N))) =: H• is a unitary operator.
Since f•(S(N)) is a Hermitian bundle over M , H• carries a natural representation π•

of the algebra AM given by pointwise multiplication. Ψ intertwines πN and π• ◦ φ,
i.e. Ψ(πN (a)σ) = π•(φ(a))Ψ(σ) for a ∈ AN and σ ∈ HN .

20 From this we see that the subalgebra Cl(+)(f(M)) ⊂ Cl(+)(N) of sections of the Clifford bundle of

N with support in f(M) is naturally isomorphic with the algebra Cl(+)(M) of sections of the Clifford

bundle of M . Since the restriction to f(M) is a natural epimorphism ρ : Cl(+)(N) → Cl(+)(f(M)), (ρ
acts on Clifford fields by multiplication with the characteristic function of f(M)), there is a natural unital

epimorphism of algebras ψ : Cl(+)(N) → Cl(+)(M) that becomes an isomorphism when restricted to

Cl(+)(f(M)).
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Let U : f•(S(N)) → S(M) be a (noncanonical) isomorphism of Hermitian bundles in-
duced by the spin-preserving condition on f . Since we know that U is unitary on the
fibers, we have

∫
M
〈Uσ(p) | Uτ(p)〉Sp(M) dμM (p) =

∫
M
〈σ(p) | τ(p)〉f•p (S(N)) dμM (p), for all

σ, τ ∈ Γ∞(f•(S(N))). Hence U uniquely extends to a unitary map ΘU : H• → HM . Note
that ΘU is AM -linear: ΘU (a · σ) = a ·ΘU (σ), for a ∈ AM and σ ∈ H•.
Now it is not difficult to check that the pair (φ,ΘU ◦Ψ) is an isomorphism in the category
SIred from the spectral triple (AN ,HN , DN ) to (AM ,HM , DM ).

Proposition 4.3. The Connes-Rennie-Varilly functor is an embedding of the category
Md-spin into ab-S 0

Ired.

Proof. Let f : M → N be a spin-preserving metric isometry in Md-spin. By Lemma 4.1
f : M → N is a smooth Riemannian isometry onto the closed submanifold f(M), a union
of connected components of N .

We denote by ρ : AN → Af(M) the restriction epimorphism.

The Hilbert spaceHN = L2(N, S(N)) decomposes as the direct sum ⊕j∈π0(N)Hj of Hilbert
spaces (one for each connected component j ∈ π0(N) of N) and the multiplication oper-
ator P by the characteristic function χf(M) is the projection operator onto the subspace
Hf(M) := P (HN ) = ⊕j∈π0(f(M))Hj (cf. [FGV, Page 491]). Note that, since the Dirac
operator DN is “local” (i.e. it preserves the support of the spinor fields), the subspace
Hf(M) is invariant for DN . In the same way, since JN and ΓN acts fiberwise, Hf(M) is
invariant for the charge conjugation and grading of N .

Defining Df(M) := P ◦ DN ◦ P , Jf(M) := P ◦ JN ◦ P and Γf(M) := P ◦ ΓN ◦ P , it is
immediate that (Af(M),Hf(M), Df(M)) is a real (even) spectral triple and it follows that
the “restriction” map P : HN → Hf(M) satisfies ∀a ∈ AN , σ ∈ HN , P (aσ) = ρ(a)P (σ),
P ◦ DN = Df(M) ◦ P , P ◦ JN = Jf(M) ◦ P , P ◦ ΓN = Γf(M) ◦ P . This means that
the pair (ρ, P ) is a morphism in the category SIred from (AN ,HN , DN ) to the triple
(Af(M),Hf(M), Df(M)), which is nothing but the spectral triple obtained from the manifold
f(M). By Proposition 4.2, there exists an isomorphism from (Af(M),Hf(M), Df(M)) to
(AN ,HN , DN ) in the category SIred, and the conclusion follows by composition with the
previous (ρ, P ).

Lemma 4.4. If M and N are two orientable compact Riemannian spin manifolds in
the category M and (u, U) is an isomorphism from (AN ,HN , DN ) to (AM ,HM , DM ) in
the category ab-SIre, then there is a spin-preserving orientation-preserving Riemannian
isometry (metric isometry) f : M → N such that f• = u.

Proof. The map u : AN → AM naturally extends to a ∗-isomorphisms of C*-algebras and
by Gel’fand theorem there exists a homeomorphism f : M → N such that f• = u. Since
f• maps smooth functions onto smooth functions, f is a diffeomorphism.
The filtered algebra ΩM (AM ) (respectively ΩN (AN )) coincides with the filtered algebra
of smooth sections of the Clifford bundle Cl(+)(T (M)) (respectively Cl(+)(T (N))) and the
map AdU : ΩDN

(AN ) → ΩDM
(AM ) is a filtered isomorphisms (extending f•). Therefore

its restricition AdU : Ω1
DN

(AN ) → Ω1
DM

(AM ) is an isomorphism between the Hermitian
modules of sections of the complexification of the tangent bundles T (M) and T (N).
From Serre-Swan theorem, Df : T (M) → T (N) is an isomorphism of Euclidean bundles
which implies that f is a Riemannian isometry.
Since AdU (JN ) = JM and AdU (ΓN ) = ΓM , f is orientation and spin-preserving.
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Proposition 4.5. The identity functor is an inclusion of the category ab-S 0
Ired into the

category ab-S m
d .

Proof. Let φ : (A1,H1, D1) → (A2,H2, D2) be an isomorphism in the category ab-S 0
Ired.

By the reconstruction theorem 1.2, there are two manifolds M and N in the category M
such that (AN ,HN , DN ) is isomorphic to (A1,H1, D1) and (AM ,HM , DM ) is isomorphic
to (A2,H2, D2) with isomorphisms (φN , UN ) and (φM , UM ), respectively, in the category
SIred.
By lemma 4.4, φM ◦φ◦φ−1

N ∈ S 0
Ired is the image under C of a spin-preserving Riemannian

isometry f that (for manifolds of the same dimension) is a metric isometry in Md.
Since φM , φN are isomorphisms in ab-S 0

Ired and hence, by remark 2.1, isomorphisms also
in ab-S m

d , it follows that φ = φ−1
M ◦ C(f) ◦ φN ∈ ab-S m

d .

We can now state the promised equivalence result.

Theorem 4.6. The Connes-Rennie-Varilly functor is an equivalence between the category
Md-spin and the category ab-S 0

Ired.

Proof. The Connes-Rennie-Varilly functor is already faithful because of proposition 4.3
and representative because of proposition 4.5. We need only to show its fullness.
Let M and N be manifolds in the category Md-spin and let φ : C(N) → C(M) be a
morphism in the category S 0

Ired. By proposition 4.5 φ is a morphism in the category S m
d

and from remark 3.3 there exists a metric isometry f : M → N in the category Md such
that C(f) = φ. Since φ defines an isomorphism between C(f(M)) and C(M) in S 0

Ired then,
by lemma 4.4, f : M → f(M) is (orientation and) spin-preserving and we are done.

Let us summarize the categorical “relations” now available with the commutative diagram
of functors

ab-S 0
Ired

� � �� ab-S m
d

� � �� ab-S m

ab-S m
d -spin

� �

��

� �





Md-spin
C

�� ��

� � ��

C

��

Md
� � ��

C

��

M ,

C

��

where ab-S m
d -spin := C(Md-spin). The left and right vertical inclusion functors corre-

spond respectively to the embedding in theorem 4.3 and to the Connes-Rennie-Varilly
anti-equivalence in theorem 3.2; the horizontal top-left arrow is the inclusion functor de-
scribed in proposition 4.5.

Loosely speaking, one would expect a similar structure to carry over to the general non-
commutative setting, relating subcategories of “spin-preserving” morphisms in S m and
“metric-preserving” morphisms in S 0

Ire. However, in general things might be more com-
plicated. For the time being, we just mention the following result, omitting the (easy)
details of the proof.

Proposition 4.7. Let (A1,H1, D1)
(φ,Φ)−−−→ (A2,H2, D2) be a morphism of the spectral

triples in the category S , where Φ is a coisometry. Then

dD1(ω1 ◦ φ, ω2 ◦ φ) ≤ dD2(ω1, ω2), ∀ω1, ω2 ∈ S(A2).
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We have discussed only the case of spin manifolds. We also expect analogous statements
to hold true for spinc manifolds.

5 Final comments

The main result presented in this paper is nothing more than a simple observation on
how Gel’fand-Năımark duality can be reformulated in the light of Connes’ reconstruction
theorem for spin Riemannian manifolds. However, it seems to us that the functoriality of
the Connes-Rennie-Varilly correspondence has some intriguing appeal and one could ask
to which extent it is possible to “lift” it to some of the other main objects entering the
scene, notably the Dirac operators. This issue is presently under investigation.
From the perspective of this work, the use of the spin structure has been only instrumental
in recasting Gel’fand-Năımark theorem in the light of the Connes’ reconstruction theorem,
and actually it might appear as an unnecessary complication: it introduces some redun-
dancy in the main result and, when incorporated tout-court in the setup, it does not lead
to a genuine categorical anti-equivalence.
This might suggest that in a successive step one could try to get rid of such a structure, thus
obtaining a different kind of categorical duality between a metric category of (isometries
of) Riemannian manifolds and suitable categories of spectral data (for example considering
spectral triples arising from the signature Dirac operator in place of those arising from
the usual Atiyah-Singer Dirac operator). Although several variants of morphisms can be
introduced between spectral triples (see [BCL2, Section 4.1] for details), corresponding
to the “rigidity” imposed on the maps between manifolds (totally geodesic isometries,
Riemannian isometries, . . . ), this line of thought does not require significant structural
modifications in the definitions of morphisms for the categories of spectral geometries
involved (as a pair of maps at the algebra and the Hilbert space level) and will be pursued
elsewhere (see [Be] for more details).
The actual construction of functors (and dualities) from categories of spin Riemannian
manifolds (with different dimensions) to “suitable” categories of spectral triples (of the
Atiyah-Singer “type”) is a more interesting goal whose main obstruction is the lack of
a sufficiently general notion of pull-back of spinor fields. In order to solve this problem
it will be necessary to construct “relational categories” of spectral triples, via “spectral
conguences” and/or “spectral spans” following the lines already announced in the seminar
slides [Be]. We will return to these topics in forthcoming papers.
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[Kr] Krĕın M. (1949). A Principle of Duality for Bicompact Groups and Quadratic Block Algebras,
Doklady Acad. Nauk SSSR (N. S.) 69, 725-728.

[LM] Lawson H.-B., Michelsohn M.-L. (1989). Spin Geometry, Princeton University Press.

[M] MacLane S. (1998). Categories for the Working Mathematician, Springer.

[Ma] Markov A. (1938). On Mean Values and Exterior Densities, Mat. Sbornik 4 (46), 165-191.

[P] Petersen (1998). Riemannian Geometry, Springer (1998).

[Po] Pontryagin L. (1934). The Theory of Topological Commutative Groups, Ann. Math. (2) 35,
361-388.

[R] Rennie A. (2001). Commutative Geometries are Spin Manifolds, Rev. Math. Phys. 13, 409,
arXiv:math-ph/9903021.

13

138



[RV1] Rennie A., Varilly J., Reconstruction of Manifolds in Noncommutative Geometry,
arXiv:math/0610418.

[RV2] Rennie A., Varilly J. (2008). Orbifolds are not Commutative Geometries, J. Aust. Math. Soc.
84, n. 01, 109-116, arXiv:math/0703719.

[Ri] Rieffel M.-A., Compact Quantum Metric Spaces, in: Operator Algebras, Quantization, and
Noncommutative Geometry, Contemp. Math. 365, 315-330, American Mathematical Society,
arXiv:math.OA/0308207.

[Rie] Riesz F. (1909). Sur les Opérations Fonctionelles Linéaires, C. R. Acad. Sci. Paris 149, 974-977.
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