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ABSTRACT

Crispy bananas produced by frying method have a short shelf life due to lipid oxidation leading
to ran acidity. To alleviate the remaining vegetable oil inside the product, drying will be used instead. In
this project, the high temperature short time or puffing method and foaming method were proposed to
produce crispy bananas. The mathematical model has been developed to describe the moisture transfer
in the porous banana.

In the puffing method, the banana slices were blanched and osmotic with sucrose solution. The

samples were then dried with hot air at 90°C until their moisture content reached a certain level. After
that, they were puffed with superheated steam for a very short period and dried again with hot air to 4%
dry basis or lower. The experimental results have shown that the osmotic dehydration before processing
could improve the color of banana. The puffed osmotic banana color was less brown than the puffed non
osmotic banana as indicated by the lower values of L and a, and higher value of b. The puffing
temperature and osmotic concentrations did not enhance the browning rate. The impregnation for
banana with sucrose caused longer drying time than r the non osmotic one and also limited the banana
cell wall expansion, due to hydrogen bonding between hydroxyl group in sucrose and that in cell wall.
This bonding resulted further in the less porous structure of the osmotic sample than those of the non
osmotic. The texture of the osmotic sample was less crisp and harder as compared to that of the non
osmotic sample.

For foaming method, the influences of foam densities and types of foaming agent on the
moisture diffusivity and the qualities of the final products in terms of shrinkage, texture, microstructure
and volatile loss were investigated. Three foaming agents, i.e., fresh egg albumen (EA), soy protein
isolate (SPI) and whey protein concentrate (WPC) were used. The experimental results showed that the
WPC banana foam after drying could retain more open structure, indicating high foam stability. This
encouraged the lower shrinkage and higher value of effective diffusivity than that of dried SPI and EA
banana foams. For the textural properties of banana foam mats, the WPC and EA banana foams were
spongy and less crisp than SPI banana foam. The samples with lower foam densities for all foaming
agents had higher effective diffusivity and smaller hardness than those with higher foam densities.
However, the crispness was lower. The volatile substances lost during the foaming and drying steps, the

main loss occurring during foaming.



Due to very high porosity of dry banana foam, it could rapidly adsorb water vapor, leading to
the loss of crisp texture. The prevention of water vapor adsorption can be made by bi-layer banana foam
where the high-density banana foam was laid down on the top of the low-density banana foam. The
experimental results have been shown that the banana foam density of 0.31 g/cm3 laid down on the top
of banana foam density of 0.26 g/cm3 can delay the water vapor adsorption as compared to the single-
layer banana foam density of 0.26 g/cms. The textural property of this bi-layer banana foam regarding to
the number of peaks was higher than that the single density, but the initial slope was insignificantly
different.

One PhD student and 9 undergraduate students were the output of this project, along with 4
papers published in the international journal, one paper in local journal, 5 papers in the international
conferences one chapter in edited book and one article which is being revised according to reviewer’s
comment.

Keywords: snack, puffing, texture, diffusion coefficient

Rational and Motivation

Bananas are a favourite fruit widely grown in the areas of tropical and subtropical climates.
After harvesting, the quality of bananas deteriorates rapidly. To reduce their losses and add value to
them, the fresh bananas are processed to produce several products such as candy, banana starch and
banana chips. Banana chips, one of the most favourite products, can be consumed as a snack or used
as an ingredient in breakfast cereal. To produce banana chips, thin-sliced bananas are normally fried
with vegetable oil. The product characteristics obtained from frying are crispy and puffed in particular
when bananas are fried undergoing vacuum pressure. However, the obtained product generally contains
high oil content, approximately 10-20%, and cannot be kept for an extended period of time due to
possible lipid oxidation leading to rancidity. To alleviate this problem, drying can be employed instead to
produce banana chips with desired texture (crispness). The crisp texture can be achieved when the
moisture content of banana is lower than 4% dry basis (d.b.).

The crispiness is also related to voids or pores that are produced inside product. The material
containing a larger number of pores will be crispier. Creation of pores can be made by vacuum drying,
high-temperature drying and foaming technique. The latter two techniques will be studied in this project
since the vacuum drying has a high operating cost and also the vacuum pump cost is very high in
particular when the very low pressure is required.

High-temperature drying results in moisture inside the product to be vaporized, yielding an
increase of volume of water vapor and product to be puffed. From our previous work, however, it was
found that the high-temperature drying at the early drying period resulted in banana slices to be puffed
but the puffing was not stable; it collapsed or broke because the vapor pressure generated inside the

material was very high and the skeleton of banana was very soft. These will subsequently affect the



product quality such as less crispiness, less rehydration capacity and slow rehydration rate.
Improvement of the weaken structure of banana can be made by several methods. The first method
involves making the existing banana starch to be gelatinized before contacting high-temperature drying.
The gelatinized starch will connect among them in the network and this may result in the strong banana
structure. Another method involves making the banana surface to be rigid before subjecting to high-
temperature drying. To create the surface rigidity, the banana must be dried to a certain moisture
content. The surface rigidity also limits the capability of moisture movement and this will cause a build
up of vapor pressure when the high-temperature drying is used. Hence, a porous structure of banana
can be produced and its volume increases as a consequent result. The increase of material volume also
depends upon the heat transfer; high heat transfer rate will promote material volume to be largely
expanded.

In addition to the high-temperature drying method, the formation of pores inside material is
made by foaming technique. In foaming technique, the semi solid foods will be whipped to form foams
by adding the food foaming and stabilizing agents. While the food foams are being dried, gas bubbles
produced during whipping become porous. Such porous food foams provide the advantage to drying in
that the drying time is shorter, compared to drying of non food foam, and hence the energy consumption
is lesser. In addition, the temperature used for drying is remarkably lower when compared to the porous
food produced by high-temperature drying. Drying temperature is important to the final food foam quality
because the collapse of gas bubbles will occur if the drying temperature used is not suitable. This may
result in longer drying time, less crispness and darkening of food. The crispness of food foams also
depends on the foaming agent since different agents provide different foaming ability and different
stabilities of foams.

The porous bananas obtained from the above-mentioned methods contain low moisture and
when they expose to high relative humidity, they will adsorb water rapidly, leading to obtain undesirable
texture. The study of moisture adsorption kinetics of products needs to see the effect of environmental
conditions on the product quality.

This project will therefore be studied the drying kinetics and quality of crispy banana obtained

by high-temperature drying and foaming technique. Also, the moisture adsorption kinetics of porous

banana is subject to be investigated.

Objectives

1. Development of banana crisp using puffing and foaming techniques.
2. Study the effect of heating media and dryer types on quality of crispy bananas.

3. Study the effects of foaming agents and drying temperature on qualities of banana foam.



4. Study of the effect of osmotic pretreatments on the drying characteristics and quality
attributes of puffed bananas.
5. Study of moisture adsorption of porous banana.

6. Development of mathematical models to describe the moisture inside porous banana.

Methodology

Osmotic Treatment

Fresh bananas were obtained from local market and their soluble solid contents were given in
the range of 20-23°Brix. Before processing, the banana was sliced into 3.5 mm thickness and
blanched by hot water at 95°C for 1 min. Osmotic solution was prepared by using commercial sucrose
with concentrations of 30, 35 and 40°Brixes. The banana slices were immersed into various sucrose
solution concentrations and the mass ratio of osmotic media to the sample was about 30:1 to avoid the
dilution effect. The samples were immersed into the osmotic solution until the banana moisture content
was not changed.

Process for producing crispy banana used in this study was consisted of 3 main steps. In the
first step, the banana was dried by a hot air tray dryer to certain level, puffed by a superheated steam
tray dryer and dried by the hot air tray dryer again. From the preliminary study, it was found that the
banana moisture content before puffing and the puffing time were less affected on the volume expansion
than the puffing temperature. In addition, the intermediate moisture content of sample of 30% dry basis

(d.b.) and puffing time for 150 s were suitable for puffing banana. Before puffing, the banana was dried

at 90°C to the recommended moisture content. Drying banana at this temperature did not form the
brown color (Thuwapanichayanan et al. (2011 see Annex A)). After reducing moisture content to 30%
d.b., the osmotic banana was puffed at temperatures of 180, 200 and 220°°C for 150 s and dried by hot
air again at the same temperature as the first stage drying. The final moisture content required at 4%
d.b. At the end of each experiment, the moisture content of samples was determined by drying them in
the oven at 103°C for 3 h. The moisture content determined by this method was closed to the vacuum
oven method 934.06 (AOAC, 1995). The color and textural property of finished product were determined
(See Annex B).

Drying of banana foam

Gros Michel bananas at a mature stage of 5, which contained total soluble solids of
approximately 23-25°Brix, were used. Soy protein isolate (SPI) and whey protein concentrate (WPC)
were used as foaming agents in this study. SPI (90.2% protein, dry basis) was supplied by Shandong

Sinoglory Health Food CO., LTD (Qingdao, China). WPC (80% protein, dry basis) was obtained from



Agri-Mark, Inc. (Lawrence, MA). Bananas were cut into slices with a slicing machine. To prevent
discoloration during foaming, the sliced bananas were pretreated by immersing them in 1% (w/w) sodium
metabisulphite solution for 2 min and then rinsed with distilled water for 30 s. The pretreated banana
slices were chopped into small pieces and then blended with a blender (Waring, model no. 8011 BU,
Torrington, CT) for 1 min. About 800 g of the banana puree was then poured into a mixing bowl and
then added with different foaming agents. SPI and WPC were added as a dry solid form at a
concentration of 5%. The concentration of SPI and WPC used in this study was the same of fresh egg
albumen (EA) used in the previous work. The protein content of the egg white was approximately 10%
(w/w). The banana puree with a foaming agent was whipped by a Kitchen Aid Mixer (model no. 5K5SS,
Strombeek-Bever, Belgium) at a maximum speed (220 rpm) to foam densities of 0.3, 0.5 and 0.7 g/cma.
Foam density was determined by measuring the mass of a fixed volume of the foam. The experiments
were done in duplicate.

Banana foam mats with a thickness of 5 mm were placed on a mesh tray, which was covered
with aluminum foil, and then placed in the drying chamber. The samples were dried to about 0.03 kg/kg
db using the drying air temperature of 80°C and a superficial air velocity of 0.5 m/s. Moisture loss from
the samples was determined by weighing the sample tray outside the drying chamber using an

electronic balance with an accuracy of +0.01 g.
Adsorption

Gros Michel bananas (Musa sapientum L.) with a maturity stage of 5 were purchased from a
local market. The banana contained total soluble solid content of 23-25° Brix. To prepare banana
foam, the bananas were sliced and pretreated by immersing them in 1% (w/w) sodium metabisulphite
solution for 2 min and rinsing them with distilled water for 30 s, in order to prevent discoloration during
foaming process. The banana puree with 5% of fresh egg albumen, used as foaming agent, were
foamed to densities of 0.3, 0.5 and 0.7 g/cma. The banana foam density was determined by measuring
the mass of a fixed volume of the foam. The banana foam was poured slowly into a steel block and
then placed on a mesh tray, which was covered with aluminium foil. After that, it was dried to about
3% kg/kg d.b. using tray dryer which was operated at 80°C and a 0.5 m/s superficial air velocity. The
banana foam prepared from the initial foam densities of 0.3, 0.5 and 0.7 g/(:m3 could produce the dried
banana densities of 0.21+0.02, 0.26+0.02 and 0.30%0.02 g/cm3, respectively. The product
thicknesses after drying were 2.8, 3.2 and 3.4 mm for the banana foam densities of 0.21, 0.26 and
0.30 g/cm3, respectively.

Moisture adsorption experiments were carried out using the static method. The dry samples

prepared from the above drying method were placed into the glass jars contained the saturated salt

solutions (MgCl, -6H,0, Mg(NO;), -:6H,0, Kl, NaCl and KCI) which provided the relative humidity (RH) in



range of 32-82% at the corresponding temperatures of 35, 40 and 45°C. All the jars were placed in the
temperature-controlled oven with a precision of +1°C (UFE500, Memmert, Germany). Samples were
weighed at different exposure times ranging from 1 to 120 h. At RH > 74%, a small amount of toluene
was held in a vial and fixed in the glass jars in order to prevent the sample spoilage by microbial.[“]
Moisture content of each sample after reaching the equilibrium condition was determined by drying it
with the hot air oven at a temperature of 103°C for 3 h. At this temperature, the percentage error was
approximately 0.4% when compared to the result obtained by the standard vacuum method. The
experiment at each adsorption condition was repeated three times and the mean value was reported.

The sample was taken out from the jars to examine quality of product.

Results and Discussions
Effect of osmotic treatment on Drying characteristics and quality of puffed banana slices

When the banana sample was immersed into the higher sucrose concentration, the osmotic
pressure difference increased, resulting in the larger loss of moisture content. Although the larger
amount of moisture lost, the solid gain also increased. The increase of solid gain is caused by the
diffusion of sucrose from the solution into the sample. From the experimental results, it was found that
the ratios of water loss to solid gain increased with the increased sucrose solution concentrations,
implying higher loss of moisture content than the solid gain. This is because the size of sucrose
molecule is larger than that of water molecules. Hence, the water molecule can move with a rate faster
than the sucrose molecule.

Osmotic treatment of banana slices with sucrose solution concentration, given in the range of
30 to 40°Brix, can retard the browning reactions and the subsequent product color was less brown than
that of product without osmotic treatment. This is because the monosaccharide, i.e. glucose and
fructose, serving as a main active component for non-enzymatic browning reactions leaches out during
the osmotic dehydration (details see Annex B). Consequently the browning rate is retarded during high
temperature puffing, resulting in less brown for the osmotic samples than the non osmotic sample. The
osmotic agent concentrations seemed to be not affect the osmotic product color, as indicated by L-, a-
and b- values and hue angle, whether it was puffed at 180 or 220°C. The product color had brownish-
yellow. In addition, the impregnation of banana with sucrose allowed more difficulty of moisture travelling
to the exterior surface, hence lengthening the drying time as compared to that of the non osmotic
banana. Also, the sucrose containing OH interact with OH in the banana tissue by hydrogen bonding
and the resulting tissue may relatively rigid. Their interaction leaded to more difficulty of expansion of
banana during puffing as indicated by shrinkage property which showed a larger shrinkage for the

osmotic banana slices than the non-osmotic ones. Microstructure of the osmotic banana after puffing



exhibited small pores or less porous structure whilst it showed very porous for the non osmotic sample.
The low porous structure of the osmotic sample made poor texture, very hard and less crisp. The range
of puffing temperature used in this study could not improve the aforementioned qualities. The details of

osmotic treatment can be seen in Annex B.
Effect of foaming agents on drying characteristics and quality of dried banana foam

EA and WPC at 5% by weight were found to be efficient foam inducer, decreasing banana foam
density to 0.3 g/cms, whilst the addition of SPI at this percent weight or higher could not produce at this
foam density. The minimum density of the SPI banana foam produced was at 0.5 g/cms. Banana foams
produced using WPC had more stability during whipping than another two foaming agents and this, in
turn, provided less shrinkage during drying. The shrinkage of EA, WPC and SPI banana foam mats at
the density of 0.5 g/cm3, as for example, were 50, 36 and 66%, respectively. Due to good foam stability,
the gas bubbles dispersed in the WPC banana could withstand the stresses occurring during drying and
less collapsed, thereby providing the higher void area fraction or, in other word, higher porosity than the
other two foaming agents. Furthermore, the value of effective moisture diffusivity was also higher for the
WPC banana foam (details see Annex C).

From the highest void area fraction, the WPC banana foam after drying provided
correspondingly the highest number of peak and it should have crisp texture. However, its texture was
not crisp since the initial slope of the first peak force from the force deformation curve was relatively
lower than that of the SPI banana foam. For example, the initial slopes for the banana foam density of
0.5 g/cm3 were 30, 12 and 16 N/mm for SPI, EA and WPC, respectively. From the texture results, it
indicated that using only number of peak was not a good indicator for characterizing the crisp food foam.
The initial slope of the first peak should be taken into account as well.

The volatile components present in the banana foam were also determined, besides textural
properties. The most significant volatile compounds in fresh banana were the isoamyl acetate, isobutyl
butanoate, butyl butyrate, isoamyl butyrate and isoamyl isovalerate. Among these five esters, only
isoamyl acetate, isoamyl butyrate and isoamyl isovalerate, are the key components of the banana’s fruity
odor. The volatile components in the banana foam samples before and after drying were analyzed using
GC-MS. It found the substantial loss of volatile substances during the foaming process (> 60%) although
the foaming was performed at room temperature. The isoamyl acetate, which is the lowest molecular
weight, exhibited the highest loss during the foaming process. At the drying end, the total loss of volatile

components was over 90% for all foaming agents used in this study.



Effect of adsorption conditions on diffusivity and textural property of dry banana foam mat

Diffusion coefficient of moisture during adsorption were determined by two approaches,
continuum and pore network. The moisture diffusion coefficient determined by the pore network referred
to pore diffusivity and the diffusion coefficient determined by the continuum referred to effective
diffusivity. The details can be seen in Annex D. The effective diffusivity, assuming the diffusivity
independent on the moisture content, was significantly higher than the pore diffusivity (see Annex C),
and the value of effective diffusivity was higher at lower density of banana foam mat. On the other hand,
the change of pore diffusivity with banana foam density was less sensitive to foam density. This
indicated that the determined pore diffusivity is rather universal and could possibly be applied to other
porous foods.

Since the banana foam mat is very porous, it can adsorb water vapor rapidly, which leads
subsequently to poor texture in particular crispiness. As measured from the experiments, the number of
peaks and initial slope for all foam densities significantly decreased with increasing moisture content
(See Annex E). In contrast to the number of peaks or the initial slope, the maximum forces for samples
with foam densities, except at foam density below 0.26 g/cma, increased with increasing moisture
content. At the lower foam density of 0.26 g/cm3, the insignificant change in the maximum force is
observed in the moisture range of 0.039-0.078 kg/kg d.b. From this study, it indicated that the number of
peaks were almost absent at the moisture content of 0.078 kg/kg d.b., and it may be expected that the
banana foam samples loss their crispy texture. This moisture content for the banana foam is given in
same range of other crisp products such as crispy breads, cereals, popcorn and puffed corns, and it
may be concluded that the moisture content of crisp products should not be higher than 0.07-0.08 kg/kg

d.b. in order to preserve their textures.

Designing porous structure of banana foam to resist moisture adsorption using a 2-D stochastic

pore network

Because of rapid moisture adsorption of the finished banana foam mat when exposed to
atmosphere, the restriction on water vapor diffusing into the product is important in order to preserve the
crisp characteristic of the product. The pore network was therefore used to design the porous structure
configurations of banana foam mat and the experiment were carried out in order to validate the results.
Two configurations of porous banana foam were proposed in this study. For each configuration, the
banana foam mat was divided into two layers. The lower layer of the network was assigned from a fixed
pore size distribution of the dried banana foam density of 0.26 g/cms. This is because the texture at this
density was rather crispy and not very hard. For the upper layer, where it was exposed to environment,

the pore size distribution from the banana foam density of 0.21 g/cm3 or from the density of 0.31 g/cm3



were assigned (see details in Annex F). The simulation results at the adsorption temperature of 35°C
and 67% relative humidity showed that the slowest adsorption rate was evident in the two-layer network
of which the pore sizes obtained from the foam density of 0.31 g/cm3 was laid at the upper half. On the
other hand, the fastest adsorption rate was found in the case that the pore sizes from the foam density
of 0.21 g/cm3 was laid on the upper half layer. This is because the dry banana foam at density 0.21
g/cm3 had a higher porosity as compared to that at 0.31 g/cma. The simulation results agreed well with
the experiments.

For the textural property, it was found that it is not crispy for the two-layer banana foam with
density of 0.21 g/cm3 laid on the upper layer. In contrast, the two-layer banana foam with high density of
0.31 g/cm3 laid on the upper layer was crisp and more crispness than the single density of banana foam
(0.26 g/cms) as indicated by the number of peaks which showed higher than 20 for the two-layer banana
foam while it was 12 for the single density. In contrast,. However, from the sensory test using trained
panelists, the textural properties i.e. hardness and crispness and overall acceptability between such both

samples were not different.
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ABSTRACT

The influence of drying temperatures on the moisture diffusivity and quality attributes of the dried
banana slices in terms of volatile compound, shrinkage, color, texture and microstructure were studied.
Bananas with peel color index of 5 corresponding to yellow color with green tip were sliced into 3 mm
thickness, dipped into ascorbic acid solution and dried at four temperatures of 70, 80, 90 and 100 °C.
Drying rate of banana slices can be divided into two sub-drying periods, first and second falling rate
periods. The effective diffusivity estimated by the optimization technique was found to decrease sharply
with moisture content in the first falling rate period and changed slightly in the second falling rate
period. High-temperature drying seems to provide lower loss of volatile compounds in the dried sample.
Moreover, the dried banana was very porous, resulting in remarkably lower hardness value than that
obtained from the low-temperature drying whilst the crispiness was not significantly different amongst
the samples obtained at various drying temperatures. Although the textural property could be improved
at high temperature, the product color was brown as manifested by the low L- and hue values in

particular at the drying temperature of 100 °C.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Banana, one of the most favorite fruits, is widely grown in many
countries. It is normally consumed as fresh, however, the qualities of
fresh banana deteriorate rapidly after harvesting. Drying is an
alternative method to preserve the food quality and to reduce losses.
During drying, moisture present in a food diffuses from the internal
to the food surface and evaporates into the air stream and at the
same time, the heat is transferred from the air to the food. When
moisture is removed, the volume of food decreases. Moisture
gradient occurring inside the food during drying generates stresses
in the cellular structure of the food resulting in the structure
collapse which responds to the physical changes of shape and
dimension or the volume change of material (Mayor & Sereno, 2004;
Pan, Shih, McHugh, & Hirschberg, 2008). Such cell wall disruption
subsequently affects the diffusing distance of moisture which moves
from inside to the outside. This factor must be included into the
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mathematical model in order to predict accurately the sample
moisture content during drying or to determine the correct effective
diffusion coefficient (Katekawa & Silva, 2006; Thuwapanichayanan,
Prachayawarakorn, & Soponronnarit, 2008). In drying of bananas,
empirical models and diffusion models have frequently been used to
describe the drying kinetics of bananas (Dandamrongrak, Young,
& Mason, 2002; Demirel & Turhan, 2003; Jannot, Talla, Nganhou, &
Puiggali, 2004). The shrinkage effect was not included into the
previously proposed models for drying of banana. Ignorance of
shrinkage may lead to inaccurate prediction of moisture content
when the industrial scale dryer is designed based on these data.
Drying temperature is an important parameter required for
dryer operation. High temperature is practically used in order to
accelerate the drying rate. However, the use of high-temperature
drying may cause degradation of banana quality regarding to the
changes in color, texture and size and the loss of volatiles (Baini &
Langrish, 2009; Boudhrioua, Giampaoli, & Bonazzi, 2003; Hofsetz,
Lopes, Hubinger, Mayor, & Sereno, 2007; Prachayawarakorn, Tia,
Plyto, & Soponronnarit, 2008). The evaluation of the quality
degradations at drying temperatures can help the selection of
drying temperature that optimizes the quality of dried banana.
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As mentioned above, the objectives of this work were therefore
to determine the moisture diffusivity and evaluate the qualities of
the dried banana in terms of volatile compound, shrinkage, color
and textual property.

2. Materials and methods
2.1. Experimental set-up

A thin-layer dryer as shown in Fig. 1 was used in this study; it
consists of a backward curved blade centrifugal fan (driven by
a 0.37 kW motor), an electrical heater and a drying chamber.
Ambient air heated by the electrical heater under Proportional-
Integral-Derivative (PID) control was passed through the samples
that were placed on a perforated tray within the drying chamber.
The air velocity was fixed at 1.3 m/s by setting a frequency inverter,
which controls the rotation speed of the motor.

2.2. Material preparation

Gros Michel bananas with peel color index of 5 corresponding to
yellow color with green tip, which contained total soluble solids of
approximately 23—25°Brix, were peeled and sliced into 3 mm thick-
ness with a slicing machine. The sliced bananas were pretreated by
dipping them in 0.1g/100 ml ascorbic acid solution for 1 min to
prevent enzymatic browning reaction (Krokida, Kiranoudis, Maroulis,
& Marinos, 2000).

2.3. Drying procedure

Banana slices were placed on a perforated tray, with a size of
square hole of 2 x 2 cm, and then put into the drying chamber.
Drying was performed in duplicate at the drying air temperatures of
70, 80,90 and 100 °C and at the superficial air velocity of 1.3 m/s. As
observed from the experiments, the deviation of moisture content
from the two experiments was very small. The samples were dried
to about 0.04 kg/kg db. In order to follow moisture evolution,
moisture loss from the samples was determined throughout the
drying period by weighing them every 5 min using an electronic
balance (+£0.01 g). At the end of drying, the moisture content of the
samples was determined by drying them at 103 °C for 3 hin a hot air
oven. Normally, the moisture content of banana was determined by
the vacuum oven method 934.06 (AOAC, 1995). However, drying of
banana in a hot air oven at 103 °C for 3 h was used instead of AOAC
method (AOAC, 1995). The moisture content determined by the hot
air oven was closed to that obtained by the vacuum oven method,
the percentage error from two methods approximately 0.4%.
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Fig. 1. A schematic diagram of thin-layer dryer.

2.4. Determination of effective moisture diffusivity

A diffusion model based on the Fick’s second law of diffusion
was used to describe the transport of moisture inside a banana slice
(Crank, 1975):

oM é] oM
o &(Da> M

where D is the effective moisture diffusivity (m?/s), M is the local
moisture content (kg/kg d.b.), x is the coordinate along the diffusion
path and t is the drying time (s).

The assumptions used in this model were that the product shape
was an infinite slab and the moisture distribution inside a banana
slice was uniform at the beginning of drying. In addition, the moisture
transfer occurred only in the thickness direction and the external
resistance to moisture transfer was negligible. The shrinkage effect
should be taken into account for determining the effective moisture
diffusivity, particularly when the material shrinkage is high. This is
because the mean diffusion path of moisture which travels from the
inside to outside is shorter. If this effect is not included into the
diffusion model, it subsequently results in the overestimation of
the effective coefficient (Ruiz-Lépez & Garcia-Alvarado, 2007; Mulet,
1994).

The diffusion model including shrinkage can be solved by the
moving or immobilizing boundary methods. However, the use
of latter method is rather limited with some applications.
Thuwapanichayanan et al. (2008) reported that the immobilizing
boundary can predict the average moisture content accurately when
applied to the high density foods of which their shrinkage equals to
the volume of evaporated water. On the other hand, the moving
boundary method can be used in a broader case, and this method is
therefore used in this study.

Several works have been reported about the drying rate of
banana and found that the drying rate, when plotted against the
moisture content, is mainly in the falling rate with two sub periods
(Mowlah, Takano, Kamoi, & Obara, 1983; Prachayawarakorn et al.,
2008). Furthermore, Jannot et al. (2004) found the third falling
rate period, characterized by the convexity of the drying rate curve,
when the sample was dried to moisture ratio lower than 0.2. The
development of such events inside the banana while being dried
indicated that the molecular mobility of moisture changes as the
moisture content inside the banana is altered. Such change can be
described by the relationship between the effective moisture
diffusivity and the moisture content of material.

To obtain moisture dependent diffusivity, Eq. (1) was first
transformed into differential elements using the variable grid
central finite difference method in its explicit and its expression is
shown below:
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where the subscript i and j represent node and time indexes,
respectively. The Eq. (2) describes the moisture content inside the
banana slice. For the moistures at the center and both surfaces, they
can be described by the following equations:
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At the top and bottom surfaces:
Ml_si = Meg (4)

Before calculating the moisture contents inside the banana
sample, it is necessary to identify the diffusivity equation that can
suitably describe the variation of effective diffusivity with moisture
content. An empirical form of Eq. (5) in which the effective diffu-
sivity decreases exponentially with decreasing moisture content
was tested and the calculated results showed this form adequately
describe the moisture diffusion in banana slice.

D(M) = Aexp(BM) (5)

where A and B are the constant parameters, which can be estimated
by the optimization technique using a modified Nelder-Mead
simplex method. If the initial guess values of A and B is not
appropriate, the solution can be diverged or the computation time
rather takes a long time. To alleviate such problems, the initial
guess of the above-mentioned constant parameters was deter-
mined by the method of slopes, where the values of effective
moisture diffusivity was estimated at moisture contents, and the
regression technique was then used to obtain the values of A and B
at a drying temperature.

After the moisture contents at inner side were determined, the
spacing between each grid points was then adjusted according to
the average moisture content of each section. The relationship
between spacing of each section and average moisture content in
that section was assume to be a linear function. It can be calculated
by the following equation:
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Fig. 3. Changes of drying rate of banana slice at different drying temperatures (3.5 mm
thickness): 70 °C (#), 80 °C (4 ), 90 °C (m), 100 °C (x). Values are means (n = 2).

AX,‘/AXO = C+d(MaV/M0) (6)

where c and d are the constant parameters that were obtained by
linear regression analysis of the experimental shrinkage data (both
values are shown in the shrinkage section), M,, is the average
moisture content of each section (kg/kg d.b.), My is the initial mois-
ture content (kg/kg d.b.), Ax; is the spacing between each grid point
(m), Axg is the spacing between grid point at the beginning (m).

After the moisture contents at positions inside the sample was
known, the average moisture content was then calculated by
integrating the moisture contents at all grid points, and then
compared to the experimental values. If the root mean square error
(RMSE) was not minimized, a new guess of the constant parameters
in Eq. (5) was searched and the same calculation procedure as
mentioned before was used.
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Fig. 2. Drying curves of banana slices at different diameters and drying temperatures (3.5 mm thickness): (a) 70 °C (O D = 25 mm; @ D = 35 mm), (b) 80 °C (A D = 25 mm;
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Fig. 4. Variation of effective diffusivity with moisture content at different drying
temperatures: 70 °C (), 80 °C (A ), 90 °C (M), 100 °C (x).

2.5. Analysis of volatiles

2.5.1. Sample preconcentration (SPME)

The volatile components of fresh and dried banana slices were
isolated by solid phase micro-extraction (SPME). Each sample was
done in duplicate. Each sample was homogenized, placed in a 20 ml
vial and then weighed by a balance with precision of + 0.01 g; 4 g
for fresh banana (including moisture) and 1 g for dried banana slice.
The sample with a mass of 4 g was filled up with 6 ml of distilled
water and the sample with a mass of 1 g was filled up with 9 ml of
distilled water. The internal standard, which consists of 0.2 ul of
caproic acid ethyl ester in 1 ml/l methanol solution, was added to
those samples. The vial was then covered with a silicone Teflon-
lined septum. A stainless steel needle covered with an 85 um length
carboxane/polydimethyl siloxane fiber penetrated the septum. The
fiber was then pushed into the headspace above the sample for
absorption at 30 °C for 30 min.

2.5.2. Gas chromatography-mass spectrometry analysis (GC-MS)

Sample analysis was carried out with a Hewlett—Packard 6890
gas chromatography (GC). An HP5 column, with a 30 m length,
0.25 mm diameter, 0.25 pm thickness was used. Helium used as the
carrier gas flowed at a rate of 1 ml/min. Thermal desorption of the
volatile components from the fiber was carried out in the GC split
injector (1:10) at 200 °C for 5 min. The oven temperature was
programmed by starting at 40 °C and holding at that temperature
for a 1 min. After that, the temperature was increased to 120 °C
with a rate of 3 °C/min. The volatile compounds were analyzed by
mass spectrometry with electronic impact (EI) 70 eV quadripolar
filter and identified by comparison with spectra stored in a data
bank.

2.6. Shrinkage measurement

Three banana slices were taken at different drying times to
measure their dimensions (diameter and thickness). The diameter
was measured using a vernier and the thickness was measured by
caliper. The mean values were reported. Diameter and thickness
shrinkage were defined as:

Diameter Shrinkage = D/Dyg (7)

Thickness Shrinkage = L/Lg (8)

where D is the sample diameter of dried sample (mm), Dy is the
sample diameter before drying (mm), L is the dried sample thick-
ness (mm), Ly is the sample thickness before drying (mm).

Table 1
Estimated values of constant parameters for moisture dependent diffusivities (A and
B in Eq. (5)) of banana slices dried at different drying temperatures.

Drying conditions Moisture dependent diffusivity (m?/s)

A B RMSE
70 8.500E-11 0.622 0.036
80 1.310E-10 0.484 0.037
90 1.853E-10 0.402 0.045
100 2.290E-10 0.381 0.043

2.7. Color measurement

The surface color of dried banana slices was measured using
a colorimeter (ColorFlex, HunterLab, USA). The colors were
expressed as L-value (lightness), a-value (redness/greenness) and
b-value (yellowness/blueness). The overall color of dried banana
slices was presented using hue angle (°h), which was calculated by
°h = tan~!(b/a). The colorimeter was calibrated with a standard
white plate (L* = 96.98, a* = 0.03 and b* = 1.84) before each color
measurement. The measurements were performed at different
positions for each sample. Ten samples were tested and the average
value was reported.

2.8. Texture analysis

Dried banana slices at moisture content of 0.04 kg/kg db were
taken to examine their textural properties. The texture of dried
banana slices was measured using a texture analyzer model
TAXT.plus (Stable Micro Systems, Surrey, UK). A cutting probe was
used to apply a direct force to the sample at a constant rate of
2 mm/s. The maximum force of the force-deformation curve is
defined as hardness and the initial slope of the first peak is repre-
sented as crispiness. Eight samples for each treatment were tested
and the average values of hardness and initial slope were reported.

2.9. Microstructure evaluation

A scanning electron microscope (JEOL JSM-5800LV, Tokyo,
Japan) was used to characterize the microstructure of dried banana
slices. Before scanning, the dried banana slices were dipped into
liquid N, for 5 s to prevent the morphology change during spec-
imen preparation. The samples were then placed on two-side
adhesive tape attached to metal stub and were coated with gold.

Moisture content (kg/kg db)

o o o o
& L8

150 200 250 300 350 400
Drying time (min)

Fig. 5. Predictions of moisture content of banana slices dried at different drying
temperatures: 70 °C (exp.) (#), 80 °C (exp.) (A ), 90 °C (exp.) (M), 100 °C (exp.) (x),
prediction (—).
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Fig. 6. Chromatograms profiles of fresh banana at ripeness stage of 5.

SEM micrographs were taken at an accelerating voltage of 15 kV
and a magnification of 200x.

2.10. Image analysis

Image analysis software (ImagePro + 5.0, MediaCybernetic, MD,
USA) was used to characterize the pore size. Each pixel of SEM
micrograph was assigned a gray-level value (0—255). The pores
were distinguished from the solid phase using threshold-based
segmentation method, and a binary image was obtained. The pixels
with gray-level values lower than the specified threshold were
assigned as pore, which appeared as black color in a binary image
whereas the pixels with gray-level values above the specified
threshold were set as solid phase, which appeared as white color in
a binary image. With an assumption of spherical shape, a pore
diameter was estimated from the known pore area.

2.11. Statistical analysis

The analysis of variance (ANOVA) was used to perform the effect
of drying temperatures on the quality attributes. Duncan’s test was
used to establish the multiple comparisons of mean values. Mean
values were considered at 95% significance level (p < 0.05).

3. Results and discussion
3.1. Drying characteristics of banana slices

Fig. 2 shows the influence of diameter of banana samples with
a 3 mm thickness dried at 70, 80, 90 and 100 °C. The banana slices
were prepared at two diameter sizes, 25 and 35 mm, and the cor-
responding % ratios of sample were 0.12 and 0.09. It was found that

Table 2
Volatile compounds identified in fresh bananas at ripeness stage of 5.

Retention time (min) Compounds Fraction®” (%)
1.96 Ethyl acetate 0.68
3.95 Isobutyl acetate 0.48
6.74 Isoamyl acetate 5.89
9.72 Isobutyl butanoate 527
11.46 Butyl butyrate 3.82
12.18 n-Amyl isobutyrate 7.14
13.72 n-Butyl isovalerate 0.63
14.17 Isoamyl butyrate 61.42
16.41 Isoamyl isovalerate 11.76
20.47 Hexyl butanoate 1.04
21 E-3-hexenyl butanoate 0.31
22.7 Hexyl valerate 0.67
23.19 trans-3-Hexen-1-ol 0.8

@ Fraction is calculated by the peak area of the volatile compound divided by the
total area of volatile compounds.
b Values are means (n = 2).

the changes of moisture content with time were not different
amongst two diameter sizes. These results justify the mobility of
moisture during drying taking place in direction of thickness, and
Eq.(1) describing the diffusion of moisture in one dimension was
reasonable to explain the moisture diffusion inside the banana slice
during drying.

Fig. 3 shows the variation of drying rate at different tempera-
tures (semi-log scale plot), indicating the falling rate being a main
drying mechanism in controlling the water evaporation rate. This
drying rate curve is a typical drying behavior for agricultural
materials that possess porous structures or cellular structures
i.e. paddy, carrot, apple and potato (Pakowski & Adamski, 2007;
Poomsa-ad, Soponronnarit, Prachayawarakorn, & Terdyothin,
2002; Simal, Dey4, Frau, & Rossello, 1997; Srikiatden & Roberts,
2006). From the drying rate change of banana as shown in Fig. 3,
it can be divided into two sub-drying periods; first and second
falling rate periods. In the first falling rate period, the drying rate
changed linearly with moisture content for all drying temperatures.
As the moisture content of banana was lower than the critical value
which was in the range of 0.75—1.0 d.b., the second falling rate
period started and its change was in a non-linear fashion. Some of
early works involved with the banana drying have also found two

Table 3
Peak areas of five major volatile compounds in fresh and dried bananas.
Lot Drying temperature Volatile compound Peak area® % loss
(x108/g dry
weight)
Fresh Dried
1 70 Isoamyl acetate 69.44 6.13 91.17
Isobutyl butanoate 6848 19.17 72.01
Butyl butyrate 4490 14.18 68.42
Isoamyl butyrate 666.78 278.80 58.19
Isoamyl isovalerate 235.18 91.61 61.05
Total of 13 compounds 1314.65 496.99 62.20
80 Isoamyl acetate 41.40 15.86 61.69
Isobutyl butanoate 36.68 1699 53.68
Butyl butyrate 39.73 2227 4395
Isoamyl butyrate 514.73 308.69 40.03
Isoamyl isovalerate 102.98 5440 47.17
Total of 13 compounds 83529 484.84 41.96
2 90 Isoamyl acetate 12.01 3.56 70.36
Isobutyl butanoate 9.58 1.79 81.32
Butyl butyrate 12.29 3.65 70.30
Isoamyl butyrate 111.24 3566 67.94
Isoamyl isovalerate 9.62 1.92 80.04
Total of 13 compounds ~ 183.13  47.21 74.22
100 Isoamyl acetate 18.77 9.61 48.80
Isobutyl butanoate 15.48 8.38 45.87
Butyl butyrate 17.54 1258 28.28
Isoamyl butyrate 177.27 13245 25.28
Isoamyl isovalerate 7.00 6.23 11.00
Total of 13 compounds ~ 292.33 182.79 37.47

2 Values are means (n = 2).
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falling rate periods (Mowlah et al., 1983; Prachayawarakorn et al.,
2008; Sankat, Castaigne, & Maharaj, 1996). In the first falling rate
period, the moisture evaporation takes place near the banana
surface. When the drying continues, the dry patch surface occurs
whilst the internal area is still wet. This results in moisture taking
a longer time to reach surface and hence provides a rapid drop in
the drying rate, implying that the drying enters into the second
falling rate period. For banana slice drying, the critical moisture
content found in this study was close to that reported by several
workers who studied the drying of osmotic or non osmotic bananas
(Prachayawarakorn et al., 2008; Sankat et al., 1996) although the
operating conditions in their studies were different from the
present investigation.

3.2. Effective diffusivity

Fig. 4 shows the changes of effective diffusion coefficients with
moisture contents and temperatures. The higher drying tempera-
ture can accelerate the water molecules present in the banana to
evaporate faster, thus providing a faster decrease of the material
moisture content and the corresponding higher value of effective
moisture diffusivity. During isothermal drying, the value of effec-
tive moisture diffusivity decreased with moisture content. As
shown in Fig. 4, the effective diffusivity declined sharply with
moisture content in the first falling rate period and when the
drying entered into the second period, the diffusivity changed
slightly with moisture content. From these results, it suggested that
the constant diffusivity can be assumed in the second falling rate
period.

The constant parameters of A and B in Eq. (5) for the drying
temperatures are shown in Table 1, along with the values of RMSE.
The values of RMSE ranged between 0.037 and 0.045. These values
were rather small, indicating that Eq. (5) was reasonable to explain
the relationship of moisture diffusivity with the banana moisture
content. The prediction of moisture contents as shown in Fig. 5
agreed well with the experimental results. The values of moisture
diffusivity found in this study was in the order of 101'—10= m?/s
which is typical value for drying of agricultural products (Dissa,
Desmorieux, Bathiebo, & Koulidiati, 2008; Ruiz-Lépez, LI. and
Garcia-Alvarado (2007); Ramesh, 2003), and these values also
indicated that the moisture movement inside the banana at the
drying temperatures was in the liquid form.

3.3. Volatile compounds

Fig. 6 shows the typical chromatogram profiles of fresh banana
at ripeness stage of 5; the stage of ripeness can be divided by the
color of the peel. The banana with a peel color index of 5, repre-
senting yellow with green tip, was used in this study. There were 13
volatile compounds found in banana at this ripeness stage and the
fraction of each volatile compound, determined by dividing an area
of the peak of a component by total areas of all volatile components,
is shown in Table 2. The major volatile compounds were isobutyl
butanoate, butyl butyrate, isoamyl acetate, isoamyl butyrate and
isoamyl isovalerat, three latter volatile compounds presenting the
banana odor (Salmon, Martin, Remaud, & Fourel, 1996). These 5
representative volatile compounds were determined quantitatively
for the final product obtained from drying temperatures.

Table 3 presents the remaining volatile compounds of banana
after drying. The banana used in the experiments came from
a different lot. The amounts of volatile compounds present in the
fresh banana had a remarkable difference between lot 1 and lot 2
although the ripeness stage of banana used in this study was iden-
tical. The differences in volatile contents were not clear. However,
one of the possible reasons is that the banana in each lot used in the
experiments might come from different cultivation areas. Brat et al.
(2004) showed that the banana at the ripeness stage of 5 had
a different volatile composition if it was cultivated in different areas;
the cultivation at the hills exhibited higher concentrations of
ketones, alcohols and esters than that at the plain.

When the banana was subject to be dried at different tempera-
tures, the total amount of 13 volatile compounds present in the dried
banana decreased from that of the fresh banana and the remaining
volatile compositions in the dried sample seem to be dependent on
the drying temperature. Drying at high temperature may lose the
total amounts of the volatile compounds in the dried sample lower
than the low-temperature drying. These results can possibly be
described by the exposure time that contacts the drying air. The
drying times were 400, 140, 100 and 75 min for the drying
temperatures of 70, 80, 90 and 100 °C, respectively. Several works
have been reported that the loss of volatile compounds depended on
the drying time and temperature (Boudhrioua et al., 2003; Krokida &
Philippoulos, 2006). Yousif, Scaman, Durance, and Girard (1999)

Table 4
Color of dried banana slices dried at different temperatures.

Temperature ('C) L-value a-value b-value Hue angle (°h)
70 64.34 + 1.49* 455+ 0.73* 24.11 + 0.58* 79.35 + 1.56%
80 63.16 + 0.72% 4.59 + 0.45* 24.81 + 0.58* 79.53 + 0.80?
90 63.11 + 1.44* 439 £ 0.48* 21.78 + 0.97° 78.59 + 1.27*
100 59.27 + 1.70° 7.06 + 0.95° 23.30 + 0.45° 73.16 + 2.19"

2 b ¢ means + SD (n = 10) with different superscripts in the same column are
significantly different at p < 0.05.
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c 90°C

performed the drying of sweet basil using the vacuum microwave at
temperature of 45 °C and the hot air at temperature of 48 °C and
found that the shorter drying time in the vacuum microwave could
retain more volatile compounds than in the hot air drying.

Some interesting observations could be made concerning the
changes of individual volatile compounds. The reduction in volatile
compounds at a given drying temperature is different, depending
on the characteristics of the compound. The isoamyl acetate and
isobutyl butanoate exhibited the higher losses than the other
volatile compounds. Factors such as boiling point, relative volatility
and molecular weight may play an important role to volatile
retention (Mui, Durance, & Scaman, 2002). The volatile with low
molecular weight would be expected to have high diffusion coef-
ficient and high loss as a result. The molecular weights of isoamyl
acetate and isobutyl butanoate are relatively lower than the other
volatile compounds.

3.4. Dimension

Fig. 7 () illustrates the changes of sample diameter and its
thickness at the drying temperature of 70 °C. During drying, the

d 100°C

Fig. 8. Morphologies of banana slices dried at different temperatures.

sample dimensions changed linearly with the moisture content and
the main change took place along the thickness. From this experi-
mental result, the diameter of banana changed only 10% whilst the
thickness change was approximately 60—70% at the drying end.
Such dimension change can be attributed to the removed moisture
and developing stresses during drying (Ketelaars, Jomaa, Puigalli, &
Coumans, 1992). From the dimension change results, it is reason-
able to assume that the shrinkage in the thickness direction was
taken into account when calculating the transfer of moisture inside
the banana sample during drying.

The effect of drying temperatures on the thickness change is
shown in Fig. 7 (b). It seemed insignificant difference of banana
shrinkage when the sample was dried within the temperature
range studied. The shrinkage of banana at drying temperatures was
described by Eq. (9).

L/Lp = a+bM/Mg (9)

The values of parameters a and b in Eq. (9) were constant and
obtained by linear regression analysis of the experimental data. The
constant parameters of a and b were 0.2543 and 0.6384,
respectively.
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Fig. 9. Pore diameter distribution of banana slices dried at different temperatures.

3.5. Color

Table 4 shows the color of dried banana slices in terms of L-, a- and
b-values. In addition, the overall color of dried banana slices was also
presented using hue angle. A larger value of hue angle indicates
a more shift from red to yellow. Color of banana slices was slightly
yellow before drying and became brownish after drying. The
discoloration decreased with decreasing drying temperature. Drying
at the temperature of 100 °C provided the browner product color
than the other drying temperatures as manifested by the lowest L-
and hue values. From statistical analysis using ANOVA, the dried
banana color obtained from the drying temperatures of 70—90 °C was
not different, indicating the insignificant effect of these drying
temperatures on the browning rate. This result corresponded to the
experimental result reported by Baini and Langrish (2009); they
found that the drying temperatures ranging from 50 to 80 °C did not
affect the browning rate in banana, but it was significant at the drying
temperature of 100 °C.

3.6. Microstructure and image analysis

Dried banana morphologies obtained at temperatures are
shown in Fig. 8 (a—d). The drying temperature strongly affected the
dried banana morphology. The shrinkage stresses occurring during
drying caused numerous breaks of banana tissue. The microstruc-
ture of dried banana was characterized by the small or large pores
depending on the drying temperature. As shown in Fig. 9, drying at
a temperature of 70 °C could create the pores with diameters

smaller than 100 pm. Moreover, the number of these pores was also
small. Smalls in number of pores and sizes led to the dense struc-
ture. The pore sizes and the number of pores increased with
increasing drying temperature. The banana tissue dried at the
drying temperatures of 90 and 100 °C were extensive structural
damage as characterized by larger number of pores and large pore
size. It can clearly be seen from the Fig. 9 (c) and (d) that the pores
with diameters larger than 100 pm was produced. Such a different
morphology of dried banana slices would be affected on the
textural property of finished product.

3.7. Texture

The texture property of dried banana slices was reported in
terms of hardness, which was defined as the maximum force in the
force-deformation curve. Table 5 shows the effect of drying

Table 5
Effect of drying temperatures on maximum force and initial slope of dried banana
slices.

Temperature ('C) Maximum force (N) Initial slope (N/mm)

70 N/A N/A

80 74.03 + 26.84° 9.24 + 457
90 4131 + 22.49° 9.39 + 9.87°
100 24.49 + 4.09° 923 + 535

Note: N/A is not available since the moisture content of banana can not be dried to
the desired value.

2b¢ means + SD (n = 8) with different superscripts in the same column are signif-
icantly different(p < 0.05).
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temperatures on hardness of dried banana slices. Banana slice dried
at 70 °C were not tested its textural property because its moisture
content could not be reduced to the desired value as compared to
the other cases. From Table 5, it was found that the structural
morphology strongly affected the maximum force. The samples
dried at temperature of 100 °C which possesses large porous
structure provided the lowest maximum force, and the sample,
with less porous structure, exhibited the highest maximum force.
The values of initial slope for samples were not significantly
different amongst the samples dried at temperatures.

4. Conclusions

This study has shown the effect of drying temperature on the
drying kinetics and quality attributes of banana. The falling rate
period was obviously evident from the drying characteristic curve
and it could be divided into two sub periods, implying the different
mass transfer mechanisms occurring during drying of banana. The
effective diffusion coefficient of moisture related to the moisture
content was proposed and used to describe such drying events. The
shrinkage of banana slice was also included into the diffusion model
for determining the effective diffusion coefficient. The shrinkage
mainly occurred in the axial direction of banana slices. Drying
temperatures slightly affected the degree of shrinkage but affected
the amount of volatile compounds. The loss of total volatile
compounds seems to be lower at high-temperature drying than at
low temperature. In addition, high-temperature drying produced
high porous structure of dried banana slices and, in turn, the value of
hardness decreased whilst the crispiness was not different for
samples dried at temperature range studied. Although the textural
properties of dried banana were improved at high-temperature
drying, the dried banana color became browner. To preserve the
color, it recommended to dry banana at lower temperature of 100 °C.

Acknowledgments

The authors express their appreciation to the Thailand Research
Fund (TRF), King Mongkut’s University of Technology Thonburi, the
National Science and Technology Development Agency (NSTDA) and
the Commission on Higher Education for the financial supports.

References

AOAC. (1995). Official methods of analysis (16th ed.). Washington, D.C.: Association
of Official Agricultural Chemists.

Baini, R., & Langrish, T. A. G. (2009). Assessment of colour development in dried
bananas — measurements and implications for modelling. Journal of Food
Engineering, 93, 177—182.

Boudhrioua, N., Giampaoli, P.,, & Bonazzi, C. (2003). Changes in aromatic compo-
nents of banana during ripening and air-drying. Lebensmittel-Wissenschaft und-
Technologie, 36, 633—642.

Brat, P, Yahia, A,, Chillet, M., Bugaud, C., Bakry, F,, Reynes, M., et al. (2004). Influence
of cultivar, growth altitude and maturity stage on banana volatile compound
composition. Fruits, 59, 75—82.

Crank, J. (1975). The Mathematics of diffusion. Oxford: Clarendon Press.

Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-
treatments for the dehydration of banana and selection of suitable drying
models. Journal of Food Engineering, 55, 139—146.

Demirel, D., & Turhan, M. (2003). Air-drying behavior of Dwarf Cavendish and Gros
Michel banana slices. Journal of Food Engineering, 59, 1-11.

Dissa, A. 0., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying
characteristics of Amelie mango (Mangifera Indica L. cv. ‘Amelie’) with
correction for shrinkage. Journal of Food Engineering, 88, 429—437.

Hofsetz, K., Lopes, C. C., Hubinger, M. D., Mayor, L., & Sereno, A. M. (2007). Changes
in the physical properties of bananas on applying HTST pulse during air-drying.
Journal of Food Engineering, 83, 531-540.

Jannot, Y., Talla, A, Nganhou, J., & Puiggali, ]J.-R. (2004). Modeling of banana
convective drying by the drying characteristic curve (DCC) method. Drying
Technology, 22, 1949—1968.

Katekawa, M. E., & Silva, M. A. (2006). A Review of drying models including
shrinkage effects. Drying Technology, 24, 5—20.

Ketelaars, A. A. J., Jomaa, W., Puigalli, . R, & Coumans, W. . (1992). Drying shrinkage
and stress. In A. S. Mujumdar (Ed.), Drying_92, Part A (pp. 293—303). Amster-
dam, The Netherlands: Elsevier.

Krokida, M. K., Kiranoudis, C. T., Maroulis, Z. B., & Marinos, D. (2000). Effect of
pretreatment on color of dehydrated products. Drying Technology, 18,1239—-1250.

Krokida, M. K., & Philippoulos, C. (2006). Volatility of apples during air and freeze
drying. Journal of Food Engineering, 73, 135—141.

Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of
food materials: a review. Journal of Food Engineering, 61, 373—386.

Mowlah, G., Takano, K., Kamoi, 1., & Obara, T. (1983). Water transport mechanism
and some aspects of quality changes during air dehydration of bananas. Leb-
ensmittel-Wissenschaft und-Technologie, 16, 103—107.

Mui, W. W. Y., Durance, T. D., & Scaman, C. H. (2002). Flavor and texture of banana
chips dried by combinations of hot air, vacuum and microwave processing.
Journal of Agricultural and Food Chemistry, 50, 1883—1889.

Mulet, A. (1994). Drying modelling and water diffusivity in carrots and potatoes.
Journal of Food Engineering, 22, 329—348.

Pakowski, Z., & Adamski, A. (2007). The comparison of two models of convective
drying of shrinking materials using apple tissue as an example. Drying Tech-
nology, 25, 1139—-1147.

Pan, Z., Shih, C., McHugh, T. H., & Hirschberg, E. (2008). Study of banana dehydration
using sequential radiation heating and freeze-drying. LWT-Food Science and
Technology, 41, 1944—1951.

Poomsa-ad, N., Soponronnarit, S., Prachayawarakorn, S., & Terdyothin, A. (2002).
Effect of tempering on subsequent drying of paddy using fluidisation technique.
Drying Technology, 20, 195—210.

Prachayawarakorn, S., Tia, W., Plyto, N., & Soponronnarit, S. (2008). Drying kinetics
and quality attributes of low-fat banana slices dried at high temperature.
Journal of Food Engineering, 85, 509—517.

Ramesh, M. N. (2003). Moisture transfer properties of cooked rice during drying.
Lebensmittel-Wissenschaft und-Technologie, 36, 245—255.

Ruiz-Lépez, I. I, & Garcia-Alvarado, M. A. (2007). Analytical solution for food-drying
kinetics considering shrinkage and variable diffusivity. Journal of Food Engi-
neering, 79, 208—216.

Salmon, B., Martin, G. J., Remaud, G., & Fourel, F. (1996). Compositional and isotopic
studies of fruit flavours. Part I. The banana aroma. Flavour and Fragrance Journal,
11, 353—359.

Sankat, C. K., Castaigne, F., & Maharaj, R. (1996). The air drying behaviour of fresh
and osmotically dehydrated banana slices. International Journal of Food Science
and Technology, 31, 123—135.

Simal, S., Dey4, E., Frau, M., & Rossello, C. (1997). Simple modelling of air drying
curves of fresh and osmotically pre-dehydrated apples cubes. Journal of Food
Engineering, 33, 139—150.

Srikiatden, J., & Roberts, J. S. (2006). Measuring moisture diffusivity of potato and
carrot (core and cortex) during convective hot air and isothermal drying. Journal
of Food Engineering, 74, 143—152.

Thuwapanichayanan, R., Prachayawarakorn, S. & Soponronnarit, S. (2008).
Modeling of diffusion with shrinkage and quality investigation of banana Foam
Mat drying. Drying Technology, 26, 1326—1333.

Yousif, A. N., Scaman, C. H., Durance, T. D., & Girard, B. (1999). Flavor volatiles
and physical properties of vacuum-microwave and air-dried sweet basil
(Ocimum  basilicum L.). Journal of Agricultural and Food Chemistry,
47, 4777-4781.



10

11

12

13

14

15

16

17

18

19

20

21

Accepted to be published in Drying Technology

Effect of Adsorption Conditions on Effective Diffusivity and Textural

Property of Dry Banana Foam Mat

Preeda Prakotmak,' Somchart Soponronnarit,'

Somkiat Prachayawarakorn2

'School of Energy, Environment and Materials, King Mongkut’s University of
Technology Thonburil 26 Pracha u-tid Road, Bangkok 10140, Thailand
*Faculty of Engineering, Department of Chemical Engineering King Mongkut’s

University of Technology Thonburil 26 Pracha u-tid Road, Bangkok 10140, Thailand

ABSTRACT

Foamed banana product serving as a crispy snack could quickly adsorb the
moisture from the moist air, leading to loss of textural property. The main purpose of this
research was therefore to study moisture adsorption kinetics of dry banana foam mat and
its texture quality change. The adsorption isotherm experiments were carried out with
standard static method using saturated salt solutions over a wide range of relative
humidities from 32 to 82%, and temperatures of 35, 40 and 45°C. Three dry banana foam
densities of 0.21, 0.26 and 0.30 g/cm’ were adsorbed water vapour under the controlled
conditions. A Fick's second law couple with the optimization technique was used to

estimate the effective moisture diffusivity at sorption conditions. Empirical equations
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with two and three constant parameters for describing the dependence of the effective
moisture diffusivity on moisture content were tested. The two constant parameters could
suitably describe the variation of the effective moisture diffusivity with moisture content.
The initial foam density, relative humidity and temperature significantly affected the
effective moisture diffusivity. The banana foam mats for all densities lost their crispy

texture at moisture content of 0.078 kg/kg d.b.

Keywords adsorption kinetics; capillary condensation; crispness; food foam; snack

INTRODUCTION

Foam mat drying is a process in which a semi liquid food is whipped to form
stable foams by incorporating large volume of air in the presence of a foaming agent,
which acts as a foam inducer. It is then spread as a thin mat and exposed to drying air
until the moisture content of product reduces to certain level.'*! The drying time required
for food foam is significantly shorter than that for the non foam because the development

of porous structure in the food foam reduces the mass transfer resistance.!'~! Foaming has

[41 ({61

successfully been applied to some fruits such as apple juice!*! mango™ star frui
blackcurrant pulp "* and banana!"®. To produce the crispy banana snack, the banana
foam is usually dried to the moisture content below 0.04 kg/kg d.b. At this moisture
content, the partial pressure of water vapor inside the product is lower than that in the
environment. Hence, the prolonged exposure of the product to ambient storage condition

can lead to the adsorption of moisture from the atmosphere into the product matrix. The

uptake of moisture is commonly associated with deleterious changes in quality. For
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crispy foods such as breakfast cereals, crispy breads and popcorn, their textures became
unacceptable at the moisture content of 0.042-0.07 kg/kg d.b.'"" Ready-to-eat snacks and
white bread loss their crispness at the moisture content about 0.1 kg/kg d.b.'"!!

Food products can adsorb moisture rapidly or slowly depending on a partial
pressure of water vapor in the exposed environment. The rate of flow of adsorbable gases
is known to be dependent on the adsorption condition. In a single capillary tube, the
amount of adsorption varies in a wide range starting from negligible adsorption at very
low relative humidity to complete liquid filling at 100% relative humidity. Between these
two extreme points, it can divided into three regimes i.e. monolayer, multilayer and
capillary condensation. In the whole range of relative humidity, it corresponds to each
regime which depends on the size and shape of pore. In real porous materials, however,
they contain distribution of pore sizes and may experience different types of adsorption.
At low relative humidity, monolayer adsorption is dominant. When the relative humidity
increases, the material surface becomes increasingly covered with adsorbed molecules
and, simultaneously, the filling of liquid into smaller pores. The amount of pores that are
filled with liquid increases with increasing relative humidity and eventually the entire
pore volume is covered with liquid. Hence, in the wide range of relative humidity, the
phases of both liquid and gas are present inside the porous materials.

As mentioned above, the coexistence of these two phases may affect the
movements of liquid and gas inside the porous material and subsequent transport
property. The gas relative permeability decreases and the liquid relative permeability
increases as number of liquid-filled pores in porous material increase.!"”! Upon a certain

number of liquid-filled pores, the gas relative permeability becomes zero but the liquid
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relative permeability still increases continually. To describe the transport of water vapor
inside the banana foam during adsorption, it is convenient to include the transport
mechanism for each phase into a single transport property, namely effective diffusivity.
The effective moisture diffusivity of food is known to be either independent or
dependent moisture content.!"*'® In case of independence of moisture content, Arrhenius
relation is often used to represent its variation with temperature. However, the
dependence of diffusion coefficient on moisture content is not clearly demonstrated. Up
until now, there is no general model for describing the relationship between effective

[

diffusivity and moisture content.'” Many empirical forms such as power-law,

polynomial and exponential forms have frequently been used to describe their

[15-17) Nevertheless, the model for relating the effective diffusivity to

relationships.
moisture content of porous banana foam has not existed and literature data concerning the
effect of relative humidity on moisture diffusivity have been limited. The objectives of
this study were therefore to select a suitable empirical equation of diffusivity, to
investigate the influences of relative humidity, temperature and foam density on the

effective moisture diffusivity, and also to explore the change of textural properties of the

banana foam mat during adsorption.

MATERIALS AND METHODS

Dried Banana Foam Preparation
Gros Michel bananas (Musa sapientum L.) with a maturity stage of 5 corresponding to

yellow peel and green tip were purchased from a local market. The total soluble solid of
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the banana was measured using an ATC-1E hand-held refractometer (ATAGO, Japan) at
a temperature of 23°C. The banana used in the experiments contained total soluble solid
content of 23-25°Brix. To prepare banana foam, the bananas were sliced and pretreated
by immersing them in 1 g/100 g sodium metabisulphite solution for 2 min and rinsing
them with distilled water for 30 s!'!, in order to prevent discoloration during foaming
process. 100 g banana puree with 5 g fresh egg albumen, used as foaming agent, was
whipped with a kitchen aid mixer (model no. SK5SS, Strombeek-Bever, Belgium) at the
maximum speed to produce the foam densities of 0.3, 0.5 and 0.7 g/cm’. The banana
foam density was determined by measuring the mass of a fixed volume of the foam. The
banana foam was poured slowly into a steel block with dimensions of 45x45x42 mm
(WxLxH) and then placed on a mesh tray, which was covered with aluminium foil.
After that, it was dried to about 0.03 kg/kg d.b. using tray dryer which was operated at
80°C and an air velocity of 0.5 m/s. The banana foam prepared from the initial foam
densities of 0.3, 0.5 and 0.7 g/cm’ could produce the dried banana foam densities of
0.21+0.02, 0.26+£0.02 and 0.30+0.02 g/cm’, respectively. The product thicknesses after
drying were 2.8+0.15, 3.2+0.1 and 3.4+ 0.1 mm for the banana foam densities of 0.21,
0.26 and 0.30 g/cm’, respectively. Five replications were performed for each banana

foam density.

Adsorption Experiment
Moisture adsorption experiments were carried out using the static method.
Samples were placed into the glass jars contained the saturated salt solutions (MgCl,

-6H,0, Mg(NOs), -6H,0, KI, NaCl and KCIl) which provided the relative humidity (RH)
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in range of 32-82% at the corresponding temperatures of 35, 40 and 45°C. All the jars
were placed in the temperature-controlled oven with a precision of £1°C (UFES500,
Memmert, Germany). Samples were weighed at different exposure times ranging from 1
to 120 h. At RH > 74%, 1 mL of toluene was held in a vial and fixed in the glass jars in
order to prevent the sample spoilage by microbial.*) Moisture content of each sample
after reaching the equilibrium condition was determined by drying it with the hot air oven
at a temperature of 103°C for 3 h.*!! At this temperature, the percentage error of moisture
content determination was approximately 0.4% when compared to the result obtained by
the standard vacuum method.!! The experiment at each adsorption condition was

repeated three times and the mean value was reported.

SEM Photograph

The morphologies of dried banana foam mats were characterized using scanning
electron microscope (JSM-5600LV, JEOL Ltd., Tokyo, Japan) with an accelerating
voltage of 10 kV. Before photographing, the specimens were cut into a dimension of 5x 5
mm and then glued on the metal stub. The samples were coated with gold, scanned, and
photographed at 15 x magnification

Image J software was used to quantify the porous banana foam characteristics
such as pore diameter and pore area. SEM image is composed of 8-bit grayscale pixels.
Each pixel of the SEM micrograph was assigned a value of gray intensity between 0 and
255. The SEM images were then segmented into binary images based on a manual
threshold setting using their grey level histogram. The threshold setting consisted of

finding the grey level of the histogram which suitably separates the classes associated
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with solids and pores. From this threshold setting, it could create binary black and white
images. The pixels with gray levels lower than the selected threshold were assigned as
space, which appeared as black colour, and the pixels with gray levels above the selected
threshold were set as solid, which appeared as white colour in binary image. The pore
diameter was estimated from the known pore area by counting the number of pixels filled

in the specified space.

Texture Analysis

The effects of moisture content and storage temperature on product textures were
studied by a compressive test using a texture analyzer model TA.XT.plus (Stable Micro
System, Surrey, UK). The banana foam with moisture content of 0.038 kg/kg d.b. was
used to adsorb water vapour at the RH of 74% and temperature of 24°C. After the product
adsorbed water vapour for predetermined time, the sample was taken to examine its
textural properties. The sample was placed on the hollow planar base and the test applied
a direct force to the sample using a 5 mm spherical probe moving at a constant crosshead
speed of 2 mm/s. Before the penetration test, the samples were exposed to the
surrounding with RH of 35-45% for less than 20 s and it was expected that the textural
property of the samples did not change. From the force deformation curve, the hardness
was defined at the maximum force of the curve and the crispness was characterized by
the number of peaks and the slope of the first peak. The data were analyzed by ANOVA
using Duncan’s multiple range test at P < 0.05. Twelve samples were used to determine

the textural properties and the average values of hardness and crispness were presented.
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Determination of Effective Moisture Diffusivity

The banana foam mat used in the experiments had a dimension of 43 x 43 x4 mm.
This sample size provided the transport of moisture in direction of thickness since the
material thickness was 10 times shorter than the other two dimensions. The change in
product size due to swelling was considered negligible during adsorption. Unsteady state
mass transfer equation for moisture diffusion within an isotropic material with flat slab
geometry is given by:

ot Ox

M_ ‘ (Deff

,.(M)@j (1)

or

2 alpD,, (M
apM) _ D, () z(afy)ﬁ(gf)' (o ;,;( )) o

where pis the apparent density of dry banana foam (kg/m’) M the moisture content
(kg/kg d.b.), t the time (s), D.s(M) the effective moisture diffusion coefficient (m*/s) and
x the distance along the diffusion path (m). In this study, it was assumed that the moisture
distribution inside the sample at the beginning was spatially uniform and the migration of
water vapour from the surrounding air to the sample surface occurred at the top surface.
No moisture transferred at the bottom since the bottom surface was placed on an opaque
glass dish. From the above assumptions, the following initial and boundary conditions

can be setup:

M=M, 0<x<Latt=0 3)
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a pM hme])vsat
D, ( (ax )jz o (RH,(M)-RH,,) x=0att>0 (4)

o(pM)
Oox

=0 x=Latt>0 ®))

where M, is the initial moisture content (kg/kg d.b.), L thickness of material (m), M, the
molecular wight of water (18 kg/kmol), P, the saturated vapour pressure (Pa), T the
temperature of the solid (K), R the perfect gas constant (8314.3 J/kmol/K), RH(M) and
RH,; are the relative humidity of air at the top surface of product and in the surrounding
air, respectively. RHy(M) can be determined from the moisture adsorption isotherms and
the data were not reported in the present work. 4, is the convective mass transfer

coefficient (m/s) which can be determined from the correlation proposed by:!*

Sh=0.646 Re*’x Sc'" (6)

Because the density of dry banana foam did not change during adsorption, the density can
be cancelled out on the both sides of Eq. (2) and Eq. (2) can be written in a form of finite
difference using forward for the first term on the right hand side and central difference for
the second term:

M- M!
i A i =D€t/7,'
¢ >

M, —2M! +M! M M rin — Doy
( i+1 (Ax)l2+ llj+( z+12Ax i-1 j{ off i lex e i lJfor i=1 to N—1(7)

where At is the time increment (s) and Ax the distance between adjacent nodes (m). Eq.

(4) was discretized using the central difference and it can be expressed by

M, - M h,M P
t . i+l izl | Im77 w vsat RH Ml — RH . fOI' =N 8
eff i ( ZAX' J RT ( s( z) atr) ! ( )
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where M}, in Eq. (8) is the fictitious moisture content at a fictitious node and N the
number of layer, as illustrated in Fig. 1. From Eq. (8), the value of M, can be calculated
and this value was used to determine the moisture content at the top surface, M, , at t+1
using Eq. (7). The discretization of Eq. (5) with the backward difference formula
gives M, = M} . Substituting M/, in Eq. (7) with M/, it can then be written as

follows:

t+1 _ t o t
MA—;M —2D,, [%J for i=0 )

From Eq. (9), the value of M| can be determined. In the moisture calculation, the time

increment of 0.01 s was used and the sample thicknesses of 2.8, 3.2 and 3.4 mm for the
respective foam densities of 0.21, 0.26 and 0.30 g/cm’ were divided into 105, 120 and
128 layers.

After the moisture content at every node is known, the average moisture content

M(t), can be readily be calculated by integrating the calculated moisture profile

pre

throughout the sample thickness and the trapezoidal numerical integration was used:

(), = (10)

Because the dependence of diffusivity on moisture content cannot be described by any
specific equation, three possible empirical equations obtained from the literature!®**"!

were tested with the moisture adsorption data:

10
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Doy (M)=Dy expl—(e,M + e, M?)) (11)
Dy (M)=Dy - M" (12)

Dy (M)=Dy exp(-a- M) (13)

where Dy, Dy, e;, e2, and a are the constant parameters. The accuracy of the models was

evaluated by root mean square error (RMSE) and coefficient of determination (R”) value.

RMSE is defined as:
1 P o 1/2
RMSE =| ———>» (M(¢),,, - M(),,)’ 14
va_p;( (Do = M(0),,,) } (14)
where M (t)exp is the experimental average moisture content of material at time 7 and

M(t) e the predicted average moisture content, NP the number of data points and P the

number of parameters.

The lower the value of RMSE is the better the goodness of fit. In this work, a
modified Nelder-Mead simplex method was used to estimate the constant parameters in
Egs. (11), (12) and (13). The RMSE was set as the objective function with a tolerance of
10”°. To help speeding up the convergence of optimization, the initial guess was therefore
obtained from the least squares fits of the moisture diffusivity data calculated from the
method of slopes.®! The model with the lowest value of RMSE and highest value of R’

was considered the best model to correlate the experimental data.
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RESULTS AND DISCUSSION

Morphology of Dry Banana Foam

The microstructures of dry banana foam mats characterized by SEM are shown in
Fig. 2 and the pore size distributions determined by the binary image of SEM for three
banana foam densities are shown in Fig. 3. It is clear from both figures that the sample
with a foam density of 0.21 g/cm’ had a larger proportion of large pores than the higher
foam densities whilst the foam density of 0.30 g/cm’ exhibited larger proportion of
smaller pores. The proportions of the pore size larger than 300 um were about 24, 10 and
4% for the foam densities of 0.21, 0.26 and 0.30 g/cm’, respectively. From their pore size
distributions, the void area fractions for the banana foam densities of 0.21, 0.26 and 0.30
g/em’ were 31, 26 and 23%, respectively. The void area fraction of banana foam sample
at the density of 0.30 g/cm’ was relatively small because there are a small number of

large pores.

Identification of Effective Moisture Diffusivity Model

Three empirical effective diffusivity models describing the relationship between
the effective diffusivity and moisture content were proposed and validated against the
moisture adsorption data. Two experimental data sets for the dry banana foam density of
0.21 g/cm’ obtained at 40°C and 66% RH and at 35°C and 83% RH were used to validate
the effective diffusivity models. Fig. 4 shows the effective diffusivity-moisture
relationship estimated from Egs. (11)-(13) and their predictions of moisture uptake. As

shown in Figs. 4a and 4d, the effective diffusivity values obtained from the diffusion

12
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models decreased with moisture content, but their values were not identical. The
difference of D,y values amongst the three models was due to mathematics but not
physics. The constant parameters for each diffusion model are shown in Table 1. For all
cases studied, the models predicted the experimental data with a reasonable agreement;
the R”-values of the three models were above 0.99 and their values of RMSE were lower
than 0.008.

The predictions of moisture adsorption using three effective diffusivity models are
shown in Figs. 4b and 4e, indicating that the moisture contents calculated from the
diffusivity models were almost superimposed even though the effective diffusivity values
determined from the models were different. This implied that the extent of such
difference in the effective diffusivity values was insensitive to the moisture-content
calculation, and this seemed more difficult to identify the suitable model for predicting
the moisture content from the values of RMSE and R’. One more criterion was thus
needed to quantify the quality of estimated constant parameters. In this study, the local
relative error (£) was used to identify the suitable diffusivity model and it is defined as:

M., ()= M, ()
M, (1)

E(t)=100 (15)

where M..,(?) is the experimental moisture content at time 7 and M,,.(¢) the moisture
content from prediction. If the estimation of moisture content was perfect, the value of £
at time 7 was zero. The values of E for the three empirical diffusion models are shown in
Fig. 4c for the temperature of 40°C and 66% RH and Fig. 4f for the temperature of 35°C
and 83% RH, indicating that the values of E for Egs. (12) and (13) were less than 2%

throughout the exposure time whilst the error from prediction using Eq. (11) relatively

13



283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

varied during adsorption; the maximum error, with a significantly higher than 2%, was
found at the early adsorption.

The prediction of adsorbed moisture at the early adsorption period with high
accuracy is very important to crispy product since the product quickly loses its crispy
texture when the product adsorbs the water vapor up to certain moisture content. From
this study, the banana foam will lose its crispiness at moisture content about 0.078 kg/kg
d.b. as will be seen in the section of banana foam texture. From these results, it could be
deduced that Eq. (12) or (13) was reasonably used to describe the moisture adsorption of
banana foam. However, using Eq. (12) for predicting moisture content during adsorption
provided E values for all adsorption times slightly lower than that using Eq. (13). This
implied that Eq. (12) was a suitable empirical model for describing the relationship

between effective moisture diffusivity and moisture content for dry banana foam.

Effect of Relative Humidity on Effective Moisture Diffusivity

The empirical equation of Eq. (12) was selected to study the effect of relative
humidity on the effective moisture diffusivity. Fig. 5 shows the moisture adsorption at
35°C and RH range of 32 to 83% for the banana foam density of 0.21 g/cm’. As expected,
the faster adsorption rate was accomplished with higher relative humidity. The
predictions of moisture content using Eqs. (1) and (12) agreed well with the experimental
data over a wide range of relative humidity values.

Fig. 6 shows the changes of D.; with moisture content at different values of RH
and at adsorption temperatures of 35, 40 and 45°C for the dry banana foam densities of

0.21, 0.26 and 0.3 g/cm’. The D,y value for the dry banana foam densities was strongly
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increased with increasing moisture content at the range of RH of 31-48% and at all
adsorption temperatures. The equilibrium moisture content of samples at these relative
humidities was given in a range of 0.08 to 0.15 kg/kg d.b. At this RH range, the water
molecules were adsorbed on the pore surface with a small thickness. The adsorbed water
acts as a plasticizer which increases molecular mobility of water in the solid matrix. In
addition to plasticization effect, the flow of water vapor into the porous banana form was
not limited. Hence, the effective moisture diffusivity was remarkably increased as the
moisture content increased during adsorption.

When the RH was higher than 48%, the plasticization and vapor flow effects
became less important and the trend of changing D.; with moisture content had very
differences amongst dry foam densities and amongst adsorption conditions i.e.
temperature and RH. At the dry banana foam density of 0.21 g/cm’, the value of Dy
shown in Fig. 6a for the temperature of 35°C and values of RH of 67 and 75% increased
slightly with increasing moisture content. When the value of RH was 83%, on the other
hand, the value of D4 for this banana foam density decreased with increasing moisture
content. At higher temperatures of 35°C together with RH above 65%, the D,y decreased
with increasing moisture content as shown in Figs. 6b and 6c. For the other two dry
banana foam densities, the D.; shown in Figs. 6d and 6e for the dry banana foam density
of 0.26 g/cm’as well as 6f for the foam density of 0.3 g/cm’were almost independent of
adsorbed moisture content at higher temperatures of 35°C and at higher RH values of
66%. Such different moisture diffusivity trends may be related to the combined effects of

physical characteristics of pore size and formation of liquid in pores of sample, both
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factors affecting the flows of water vapor and liquid inside the porous food sample which
will be described below.

As the adsorption was carried out at 35°C and higher 50% RH, some amounts of
water vapor incorporated into the banana sample, and some formed a thicker liquid film
which results in smaller flux of water vapor flowing through the material and provided, in
turn, the slight increase of D,y with increasing moisture content. When the adsorption
temperature increased to 40 or 45°C, implying an increase of partial pressure, the rate of
water vapor adsorption by the porous banana foam sample became faster, allowing more
exterior pores to be filled with water as compared to the adsorption at 35°C.
Consequently, the water vapor is more difficult to transport through the sample, resulting
in the D,y decrease for the dry banana foam density of 0.21 g/em’ as the sample adsorbs
more water vapor. For the samples with higher foam densities i.e. 0.26 and 0.3 g/cm’, the
relationship between D, and adsorbed moisture content was independent, which was not
similar to the case of the dry foam density of 0.21 g/cm’. Such difference of the moisture
diffusivity curves is claimed to variation in porous structure between banana foam
densities as depicted in Fig. 3. With a larger proportion of small pores, corresponding to
the size in the range of 5-100 pum, for the banana foam densities of 0.26 or 0.3 g/cm’, it
might be possible that these small pores are occupied by the water with a number close to
the percolation threshold at which the vapor flow inside the pores is blocked. Hence, the
flow of water into the pores inside the banana foam is only governed by capillary flow
and the D,y value, in turn, changes slightly with moisture content. Roca et al.”*’”! was
carried out the adsorption experiment at the adsorption condition of 84% RH and 20°C

and found that the effective moisture diffusivity of sponge cake with porosity of 86%
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exponentially decreased with increasing moisture content and decreased slightly for the

sample of 52% porosity.

Effects of Temperature and Banana Foam Density on Effective Moisture Diffusivity

Fig. 7 shows the changes of D.r with moisture content at the adsorption
temperatures of 35, 40 and 45°C. As expected, the D,y values increased with increasing
temperature. Figs. 8a and 8b show the D,y value for three foam densities at an illustrated
temperature of 35°C and relative humidities of 32% and 50%, respectively. The Dy
values were relatively lower for the high banana foam density than for the low foam
density. The difference in the Dy values can be accounted for the morphological
difference between three samples as already explained in the SEM section. High porous
food provides less diffusional flux resistance and thus greatly facilitates the moisture

transport to the high porous foods, yielding high value of D,.

Effect of Moisture Content on Banana Foam Texture

Fig. 9 shows the force deformation curves of the banana foam at adsorption
temperature of 35°C and RH values of 48% and 74%. Eight banana foam mats at the
density of 0.26 g/cm’® were used to demonstrate how adsorption condition affects the
textural property. The adsorption time required to reach the moisture content about 0.05
kg/kg d.b. was approximately 32 and 5 min for the corresponding values of 48 and 74%
RH. The force deformation curves show irregular peaks that likely represent subsequent
fracture events of the pore structure. When the direct force was applied to the sample,

multiple fractures were occurred due to the force required for passing through the pore
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voids of the dry banana foam sample, leading to the irregular jaggedness of curve. The
jagged pattern of the force deformation curve reflects the crispy behavior of the banana
foam mats. As observed from this figure, the irregular jagged force-deformation curves
are noticeably different to the samples which were exposed to different values of RH and
their curves can be classified into two groups, namely A and B. In group B for the sample
exposed to 74% RH, it was less crispy and tough as indicated by low jagged force and
high maximum force. On the other hand, group A sample stored at 48% RH had a high
jagged force and low maximum force, implying sample with crispy texture. From the
force deformation curves, it is clear that the adsorption rate affected the textural property
although the product moisture content for testing was identical. This is because most
water vapor adsorbed at high relative humidity is present near the sample surface, and the
resulting surface is wetted, which provides further the less crisp product.

Fig. 10 shows the curves of the force versus displacement recorded by texture
analyzer at different moisture contents. The dry banana foam mat before adsorbed the
water vapor had moisture content of 0.039 kg/kg d.b. and it had multiple peaks of force
deformation curve. The original samples with a moisture content of 0.039 kg/kg d.b. at
the banana foam densities of 0.21, 0.26 and 0.30 g/cm’ had differences in number of
peaks, initial slope and maximum force as shown in Fig. 11. From this information, it
indicates that the microstructure of banana foams plays an important role in the textural
properties. When the sample adsorbs water vapor up to certain moisture content, the
fracture pattern as shown in Fig. 10 is absent, revealing that the sample is not expected to

have the crispness. In addition, its texture is tough.
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Fig. 11 shows the textural properties of banana foam at moisture contents and the
statistical analysis results are also shown in Figs. 11a-11c. The number of peaks was
counted when the force amplitude is more than the threshold value, which was set at 30 g
(0.294 N). The number of peaks and initial slope for all foam densities significantly
decreased with increasing moisture content. In contrast to the number of peaks or the
initial slope, the maximum forces for samples with foam densities respond differently to
the moisture content. At the foam density below 0.26 g/cm’, the insignificant change in
the maximum force is observed in the moisture range of 0.039-0.078 kg/kg d.b. but the
maximum force changes significantly with moisture content for the foam banana density
of 0.3 g/em’, showing higher maximum force as the moisture content of sample
increased.

From this study, it indicated that the number of peaks were almost absent at the
moisture content of 0.078 kg/kg d.b., and it may be expected that the banana foam
samples loss their crispy texture. This moisture content for the banana foam is given in
same range of other crisp products such as crispy breads, cereals, popcorn and puffed

[10]

corns" -, and it may be concluded that the moisture content of crisp products should not

be higher than 0.07-0.08 kg/kg d.b. in order to preserve their textures.

CONCLUSION

Three empirical equations describing the dependence of the effective moisture
diffusivity on moisture content were tested. The RMSE, R’-value and local relative error
were suitably used as criterion to identify the appropriate effective diffusivity model.

From these criterions, among the three empirical models tested, the relation between the
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D, and moisture content could be described adequately by Eq. (12). This proposed
equation was its simplicity and ability to estimate the D4 values over a whole adsorption
range of moisture content of banana foam mat. From the analysis of adsorption data, it
indicated that the banana foam density, adsorption temperature and relative humidity
affected the Dy value. The D,y value of every banana foam density rapidly increased
with increasing moisture content at low relative humidity and for all adsorption
temperatures. When the RH increased to above 50%, the D.ymay be constant, increase or
decrease with increasing moisture content. Such D, trends related to the capability of the
dry banana foam to adsorb water vapor. Faster adsorption rate let to the filling of liquid to
the pores, resulting in the decrease of D,y with moisture content for the low density of
banana foam. But, it was independent of moisture content for the high foam density. The
value of Dy was higher for adsorption at higher temperature and for lower foam density.
From the quality evaluation, it was found that the banana foam mat was very
hygroscopic and its crispness was very sensitive to moisture migration. The increase of
moisture content of banana foam mat during adsorption decreased the number of peaks
and initial slopes, implying less crispiness, but the maximum force increased, indicating
tough texture. The banana foam mats for all densities lost definitely their crispy texture at

the moisture content of 0.078 kg/kg d.b.
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Abstract

Foaming technique can apply for producing porous structure which is an important
requirement for crisp food. With this technique, foam density and foaming agent play a key
role in drying kinetics and textural property of food. The influences of foam densities and
foaming agents on the moisture diffusivity and the qualities of dried banana foam in terms of
shrinkage, texture, microstructure and volatile loss were therefore investigated. Three foaming
agents i.e. fresh egg albumen (EA), soy protein isolate (SPI) and whey protein concentrate
(WPC) were used. The experimental results showed that the WPC banana foam after drying
could retain more open structure during drying. This morphology encouraged the lower
shrinkage and higher value of effective diffusivity than that of dried SPI and EA banana
foams. For the textural properties of banana foam mats, the WPC and EA banana foams were

spongy and less crisp than the SPI banana foam. The samples with lower foam densities for

" Corresponding author. Tel.: +662 561 3482; fax +662 561 3482.
E-mail address: t_ratiya@yahoo.com, agrrty@ku.ac.th (Ratiya Thuwapanichayanan).
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all foaming agents had higher effective diffusivity and smaller hardness than those with
higher foam densities. However, the crispness was lower. The volatile substances lost during

the foaming and drying steps, the main loss occurring during foaming.

Keywords: crispness; drying; foaming agent; shrinkage; volatile loss

1. Introduction

Bananas are often consumed as fresh and sometimes processed to produce new
products, i.e., snacks, puree and powder, etc. Because of the increasing consumer demand for
snack foods, bananas have the potential to commercially produce a snack at a small scale
industry. Drying of banana may take a long time and thus consume a large amount of energy
sine the tissue structure of banana is very dense. Such dense structure may not present a good
quality for producing a banana snack for which the crisp texture is preferred. A crisp food is
characterized by a structure that consists of cellular assembly or a porous structure. Porous
structure can also improve the hardness of food. There are several techniques to create the
porous structure. Foaming technique, one of the methods, can be used to produce porous
structure in foods. This technique is practically applied for many foods including bread, cake,
cracker and confectionery products (Campbell and Mougeot, 1999). The combination of foam
formation and drying may be a good method for producing crisp banana chips.

Foam is a dispersion of gas bubbles within liquid or semi-solid continuous phase. It is
thermodynamically unstable. Two types of foaming agent are used in foods: low-molecular
weight emulsifiers (lipids, phospholipids, surfactants etc.) and high-molecular weight
biopolymers (proteins and polysaccharides). Proteins are widely used as an ingredient for
foam formation and stabilization. The primary function of proteins in foam is to decrease the

interfacial tension at the air/liquid interface which promotes the bubble formation (Davis and
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Foegeding, 2007). The protein-protein attractions at the interface can result in the network
formation which promotes the bubble stability, and contribute to texture of food foams.

One of the most difficult problems in the drying of foamed biological materials is the
instability of the foam during heating (Ratti and Kudra, 2006). If the foam is unstable, the
collapse of porous structure occurs resulting in the serious problem of drying operation and
the foamed product quality. There are many variables involving the foam density and
stability, and these variables include chemical nature of fruits, total soluble solids and
concentration and type of foaming agent (Hart et al., 1963). The selection of foaming agent is
thus the most important factors in preparation of the foam that can withstand processing, i.e.,
spreading and drying (Eduardo et al., 2001).

During drying of food foam, moisture gradient induces the material shrinkage. The
volume change is larger than the volume of removed water during early period of drying,
which corresponds to the semi-liquid state, and it closes to the volume change of removed
water when the food foam becomes rigid (Thuwapanichayanan et al., 2008a).
Thuwapanichayanan et al. (2008a), who investigated the drying of banana foam using egg
white as foaming agent, described such volume change by the collapse of gas bubbles. This
represents the bubble instability when using egg white.

The objectives of this work were therefore to study the effect of foaming agents, i.e.,
soy protein isolate, egg white and whey protein concentrate on the effective diffusivity of
moisture and the qualities of the final product regarding to shrinkage, texture, microstructure
and volatile compounds.

2. Materials and methods
2.1 Preparation of the banana puree and foam
Gros Michel bananas at a mature stage of 5, which contained total soluble solids of

approximately 23-25°Brix, were used. Soy protein isolate (SPI) and whey protein concentrate
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(WPC) were used as foaming agents in this study. The SPI contained 90.2% protein (dry
basis), 6% moisture content, 4.5% ash and 0.32% fat. The WPC contained 80% protein (dry
basis), 6.7% moisture content, 4.5% ash and 8.5% fat. Bananas were cut into slices with a
slicing machine. To prevent discoloration during foaming, the sliced bananas were pretreated
by immersing them in 1% (w/w) sodium metabisulphite solution for 2 min and then rinsed
with distilled water for 30 s. The pretreated banana slices were chopped into small pieces and
then blended with a blender (Waring, model no. 8011 BU, Torrington, CT) for 1 min. About
800 g of the banana puree was then poured into a mixing bowl and then added with different
foaming agents. SPI and WPC were added as a dry solid at a concentration of 5%. The
concentration of SPI and WPC used in this study was the same of fresh egg albumen (EA)
used in the previous work (Thuwapanichayanan et al., 2008a). The banana puree with a
foaming agent was whipped by a Kitchen Aid Mixer (model no. 5K5SS, Strombeek-Bever,
Belgium) at a maximum speed (220 rpm) to foam densities of 0.3, 0.5 and 0.7 g/cm’. Foam
density was determined by measuring the mass of a fixed volume of the foam. The
experiments were done in duplicate.
2.2 Drying of banana foam mats

Banana foam mats with a thickness of 5 mm were placed on a mesh tray, which was
covered with aluminum foil, and then placed in the drying chamber. The samples were dried
to about 0.03 kg/kg db using the drying air temperature of 80°C and a superficial air velocity
of 0.5 m/s. This drying temperature was a minimum temperature that could reduce the sample
moisture content to the desire value. Moisture loss from the samples was determined by
weighing the sample tray outside the drying chamber using an electronic balance with an

accuracy of £0.01 g.
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2.3 Determination of moisture diffusivity

The diffusion of moisture inside a single banana foam mat was described by Fick’s
second law and the shape of sample was assumed to be an infinite slab, implying that the
transfer of moisture is occurred in one dimension and it can be expressed by the following
equation:

M _ i(szf a—Mj, 0<x<L(t) ()
ot ox ox

where D, is the effective moisture diffusivity (m%s), L is the sample thickness (m), M is the

local moisture content (kg/kg d.b.), x is the coordinate along the diffusion path and t is the
drying time (s).

Since the effective moisture diffusivity of banana foam varied with moisture content

(Thuwapanichayanan et al., 2008a), the space derivative of the product of D,*" and %VI on

the right side of Eq. (1) can then be written as:

M s 0*M oM oD
—=D7 +
ot ox?  0x

, 0<x<L(t) 2

Eq.(2) was digitized using variable grid central finite difference method in its explicit form. In
order to know the moisture at positions inside the banana foam and at drying times, Eq.(2)
must be solved with initial and boundary conditions. The top surface of banana foam mat was
only exposed to hot air, and no evaporation took place at the bottom, thus the initial and

boundary conditions are:

initial: M =M,, 0 = x = L(t) att=0 3)

boundary: M = Meq, x =L(t) att>0 4)
M 0, x=0att>0 (5)
ox

Because of the couple effects of foam instability and stress formation, the size of

drying sample was shrunk and the shrinkage occurred only in the direction of thickness or x,
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thus providing a shorter distance for diffusion of moisture. This effect was included into the
diffusion model in order to determine the effective diffusivity. In the present study, the
moving boundary method was employed to solve the diffusion model including shrinkage
(Thuwapanichayanan et al., 2008b). From the experimental shrinkage data, it was found that a
decrease in the thickness of banana foam mat was in a linear relation with the moisture
content, and the shrinkage was expressed in finite difference form as given below

Ax, /Ax, =a+bM,, /M,) (6)
where a and b are the constant parameters, which were obtained from the experiments. Ax; is
the spacing between each grid point (m), Axo is the spacing between grid point at the
beginning (m), M,, is the average moisture content of each section (kg/kg d.b.), My is the
initial moisture content (kg/kg d.b.). The values of constant parameters a and b in Eq. (6)

obtained by linear regression analysis of the experimental data are given in Table 1. Both

constant parameters depended on the initial foam densities and types of foaming agent.

Table 1 Values of a and b in Eq. (6) for various foam densities and foaming agents

EA SPI WPC
03g/em’ 0.5g/em’ 0.7g/em’ 03g/em’ 0.5g/em’ 0.7g/em’ 0.3g/em’ 0.5g/em’®  0.7g/em’

A 0349 0.496 0.503 N/A 0.319 0.411 0.509 0.632 0.606
B 0.702 0.521 0.507 N/A 0.645 0.609 0.472 0.360 0.390
R*  0.977 0.983 0.984 N/A 0.982 0.994 0.991 0.997 0.999

N/A: not available since SPI could not form foams at density of 0.3 g/cm”.

To determine the effective diffusion coefficient, the modified Nelder-Mead simplex
optimization technique was used. By this technique, it is necessary to identify the equation

describing the relationship between the moisture content and effective moisture diffusivity
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and determine the constant parameters of that equation. An exponential form as given by Eq.

(7) was used to describe the diffusion in banana foams (Thuwapanichayanan et al., 2008a)

D (M) =aexp(z4: ociMl} (7)

i=l1
where a and o are the constant parameters. Initial guess values of such two constant
parameters were obtained by the method of slopes.

After assuming the initial guess for the constant parameters in Eq. (7), the
moisture contents of banana during drying were calculated and compared to the experimental
values. The root mean square error (RMSE) was set as an objective function and the
calculation was stopped when the value of RMSE was less than 10°°.

2.4 Shrinkage measurement

Four banana foam mats taken at different drying times were measured for their
volumes. The volume was determined by the volumetric displacement method using glass
beads with a diameter in the range of 0.106-0.212 mm as a replacement medium (Hwang and
Hayakawa, 1980). In each measurement, one sample piece was used and the mean value of
four samples was reported.

Shrinkage or volume change of sample at different drying times (AV) can be defined
as:

AV = V-V ®)

where V is the volume of the sample at different drying times (cm’) and Vj is the initial

volume of the sample before drying (cm”).

2.5 Texture measurement
The texture of dried banana foam mats was evaluated by a compressive test using a

texture analyzer model TA.XT.plus (Stable Micro Systems, Surrey, UK). The sample was
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placed on the hollow planar base. The test applied a direct force to the sample using a 5 mm
spherical probe at a constant crosshead speed of 2 mm/s. The hardness was defined as the
maximum force in the force-deformation curve while the crispness was characterized by the
number of peaks and the slope of the first peak. Eight samples were tested and the average

values of hardness and crispness were reported.

2.6 Microstructure evaluation

A scanning electron microscope (JEOL JSM-5600LV, Tokyo, Japan) was used to
study the microstructure of dried banana foam mats. The dried banana foam mats were placed
on two-side adhesive tape attached to metal stubs and were coated with gold. SEM

micrographs were taken at an accelerating voltage of 10 kV and a magnification of 35x.

2.7 Analysis of volatiles
2.7.1 Sample preconcentration

The volatile components of fresh banana, foamed banana and dried banana foam mat
were isolated by solid phase micro-extraction. Each sample was done in duplicate. Each
sample was homogenized, placed in a 20 ml vial and then weighed with precision of £ 0.01 g;
4 g for fresh and foamed bananas, and 1 g for dried banana foam mat. The sample with a mass
of 4 g was filled up with 6 mL of distilled water while the sample with a size of 1 g was filled
up with 9 ml of distilled water. The internal standard, which consists of 0.2 p1 of caproic acid
ethyl ester in 0.1% (v/v) methanol solution, was added to those samples. The vial was then

covered with a silicone Teflon-lined septum. A stainless steel needle covered with an 85 pm
length carboxane/polydimethyl siloxane fiber penetrated the septum. The fiber was then

pushed into the headspace above the sample for absorption at 30°C for 30 min.
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2.7.2 Gas chromatography-mass spectrometry analysis (GC-MS)
Sample analysis was carried out with a Hewlett-Packard 6890 gas chromatography

(GC). A HPS column (30 m, 0.25 mm diameter, 0.25 pm thickness) was used. Helium was
used as the carrier gas at a flow rate of 1 ml/min. Thermal desorption of the components from
the fiber was carried out in the GC split injector (1:10) at 200°C for 5 min. The oven
temperature was programmed from 40°C (1 min) to 120°C at 3°C/min. The volatile
compounds were analyzed by mass spectrometry with electronic impact (EI) 70 eV

quadripolar filter and identified by comparison with spectra stored in a data bank.

2.8 Statistical analysis

The data were analyzed using the analysis of variance (ANOVA). Duncan’s test was
used to establish the multiple comparisons of mean values. Mean values were considered at
95% significance level (p<0.05).
3. Results and discussion
3.1 Foam density

The foam ability can simply be measured by the foam density (Wilde and Clark, 1996).
Lower foam density indicates more air to be entrapped in the foam. Figure 1 shows the effect of
foaming agents on the foam ability, indicating that foaming agents took an effect on the foam
ability. The additions of EA and WPC at 5% could produce the minimum foam density of 0.3
g/cm’ whereas the addition of SPI at the same concentration could produce the minimum foam
density of 0.8 g/cm’ as shown in Fig. 1. The higher SPI foam density is probably because SPI
might not be adequate to decrease the interfacial tension at the air/liquid interface due to the

lower protein solubility. The protein solubilities of WPC and SPI at the present study were
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When SPI was added at 10%, banana puree could be foamed to the minimum density of
0.5 g/em’. The more addition of SPI could not reduce banana foam density to be lower than 0.5

g/em’ significantly (data not shown) and thus the 10% SPI was enough for foaming banana.

1.2

“= 1.0 * 5%EA
03 4 5%WPC
X 5%SPI

= 10%SPI

Foam density (g/cm”)
()
(@)

NN
(\S} ~
\

0 20 40 60 80

I
o

Whipping time (min)

Fig. 1 Effects of foaming agent and whipping time on the foam density

It is interesting to that although the WPC and EA at 5% can produce the foam density of
0.3 g/em’, but the whipping time used was different. The whipping time for EA was
significantly shorter than that of WPC; the whipping times were 20 and 50 min for EA and
WPC, respectively. From this result, it implies that the proteins in egg white can be more
rapidly absorbed at the air-liquid interface and more denatured than the WPC (Townsend and
Nakai, 1983). However, the foams produced from EA was less stable than that from WPC as
depicted in Fig.1, showing the increase of EA banana foam density at whipping time beyond 20
min whilst the WPC foam density did not change after it reached the minimum density even
though the whipping time was continued. The instability of SPI banana foam was also found.
These results corresponded to the experimental results reported by Mott et al. (1999). In their
work, the whey protein foams could maintain the overrun during the extended whipping

whereas the overrun of egg white foams decreased foam quickly. The increase in foam
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density when using EA was explained by a result of protein aggregation caused by
electrostatic interactions of the negatively charged lysozyme proteins (Phillips et al., 1990).
Whey protein does not have the basic protein lysozyme and thus does not exhibit the

electrostatic interactions. Hence, the foams are quite stable.

3.2 Drying characteristics of banana foams

Fig. 2 shows the drying curves of banana foam mats obtained from three foaming
agents. The initial moisture contents of foamed banana samples added with different foaming
agents were different; the initial moisture contents of EA, SPI and WPC banana samples were
in the range of 3.2-3.5, 2.0-2.2 and 2.6-2.9 kg/kg db, respectively. This is because the SPI and
WPC were added as a dry solid form while the EA was added as a liquid form. From their
drying kinetics shown in Fig. 2, it indicated that the moisture content decreased exponentially
with time, implying that the drying rate of banana foam mat is controlled by the internal
diffusion process. Similarly, drying of star fruit foam mat was also controlled by diffusion
(Karim & Wei, 1999). On the other hand, the drying rate of tomato foam was governed by
both convection and diffusion (Brygidyr et al., 1977). From these facts, it reveals that the
drying mechanisms depend on the product characteristic. Each fruit has differences in the

chemical composition and the solid content.
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Fig. 2 Drying curves of banana foam mats at different foaming agents

Table 2 shows the effects of foaming agents and foam densities on the drying times of
banana foam mat used for reducing moisture content to 3% d.b.at the drying temperature of
80°C. It was found that the drying of banana foam mats at lower initial foam densities took
shorter time for all foaming agents because of the larger void area fraction at lower initial
foam densities which facilitate the moisture moving from inside to the surface.

Considering the foaming agent effect, it can be seen that the drying time was different
amongst foaming agents as compared at the same foam density and the same dying
temperature. The difference in drying time is caused by differences in initial moisture content,
effective moisture diffusivity and material shrinkage. The drying time for the SPI banana
foam mat was shortest as compared to the WPI or EA banana foam mats. The lower initial
moisture content of sample and the larger shrinkage provides the shorter drying time. The

final thicknesses of EA, SPI and WPC banana foams are given in Table 2.
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Table 1 Drying time of banana foam mats at different foaming agents and foam

densities

Drying time (min)

Foam density (g/cm’)

EA SPI WPC
0.3 60 N/A 80
0.5 150 120 150
0.7 270 180 270

N/A : not available since SPI could not form foams of density of 0.3 g/cm’.

3.3 Shrinkage

Table 2 shows the thickness of EA SPI and WPC banana foams at the drying end. The
banana foam mats before drying were prepared at a 5 mm thickness and when the drying was
finished, the banana foam mat thickness was different amongst foam densities and amongst
foaming agents. In the case of foam density, it is clear that the banana foam mat produced
from the lower foam density had a thinner material or had a higher shrinkage. This can be
explained by the fact that as observed from the experiment, the gas bubbles created during the
preparation of banana foam at lower density had larger sizes and they were adjacent together.
When it was subject to be dried, these gas bubbles were rather unstable and collapsed easily,
resulting in the higher shrinkage of banana foam mat with the lower density.

As presented in Table 2, the thickness of the finished WPC banana foam mat had a
largest value as compared to the other two foaming agents i.e. EA and SPI. This result
indicated that the banana foams added with WPC had more stability than those with additions
of EA and SPI. This result is contrast to that reported by several researchers (Devilbiss et al.,
1974, Yang & Foegeding, 2010). From their works, the results have been shown that the egg
white protein was better foam stability than the WPC. Such contradict results might possibly
be due to the fact that the egg white protein used in this study was in the fresh form and thus,

it had lower amount of proteins than the WPC. For SPI foam, however, though the amount of
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protein for SPI was not very different from that of WPC as already reported in section 2.1, but
the SPI foam was less stable than the WPC. This could be attributed to compact tertiary
structure of the soy protein which provides the poor foaming properties i.e. foam formation
and foam drainage (Martinez et al., 2009).

Table 2 Final thickness of EA SPI and WPC banana foams

Foam density Sample thickness (mm)
(g/em’) EA SPI WPC
0.3 1.7 N/A 2.7
0.5 2.5 1.7 3.2
0.7 2.6 2.1 3.1

N/A: not available since SPI could not form foams at density of 0.3 g/cnm’.

3.3 Moisture diffusivity of banana foams

Fig. 3 illustrates the moisture diffusivities of EA, SPI and WPC banana foams at
various initial foam densities. It was found that at the early drying time of the first 25 min
drying time, corresponding to the higher moisture ratio of 0.5, the effective moisture
diffusivity was highest for the SPI banana foam, followed by EA and WPC banana foams,
respectively. The difference in the effective moisture diffusivity at this drying time range was
not caused by the foaming agent effect but it might be related to the product temperature. As
shown in Fig. 4, the product temperatures of SPI, EA and WPC at drying times were different.
The SPI banana foam temperature was highest during course of drying, followed by the EA
and WPC banana foam temperatures, respectively. The highest temperature for the SPI
banana foam is due to the fact that the SPI banana foam had lowest initial moisture content,
and when it was dried, the evaporation of moisture was not faster than the EA or WPC banana
foam. Hence, heat transferring from drying air to the sample was utilized for warming up the
sample, thereby providing the higher temperature of the SPI banana foam and, in turn, the

higher value of effective diffusivity of SPI banana foam than the other two banana foams.
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When the drying time was longer than 25 min, corresponding to lower moisture ratio
of 0.5, the banana foam mat changed the state from semi-liquid to solid. At this later drying
time, the SPI banana foam temperature was still relatively higher as compared to that of the
other two foaming agents, but the value of moisture diffusivity became lower. This result was
unexpected since the temperature is a main factor to the diffusion coefficient; the diffusion
coefficient is higher at higher temperature. The lower moisture diffusivity for the SPI banana
foam is possibly due to the different morphologies for the banana foam produced from SPI,
EPC and WPL Fig. 5 demonstrates the cross sectional views of morphology of dried banana
foam, showing different morphologies of dried banana foam samples produced from foaming
agents. The microstructure of dried SPI banana foam was more compact and the solid
matrices were more compacted than the EA and WPC banana foams. The compact structure
for the SPI banana foam resulted in the moisture present at inner area travelling to the sample
surface with more difficulty, hence the lower moisture diffusivity for the SPI banana foam. As
shown in Fig. 3, the moisture diffusion coefficient for the WPI banana foam at moisture ratio
lower than 0.5 was highest. This result corresponded to the WPC banana foam structure,
exhibiting very high porous structure.

It is also seen from Fig. 5 that the pore shape of dried EA and SPI banana foams was
more elongate than that of died WPC banana foam. This is probably due to the fact that the
stability of gas bubbles produced from EA and SPI is less which leads to more bubble
collapse and subsequent greater shrinkage, as compared to the shrinkage of the WPC banana
foam. The high shrinkage caused some distortion of material and, in turn, resulted in the

microstructural change such as elongation of pores.
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Fig. 3 Moisture diffusivity of banana foam mats at different banana foam densities

and drying temperature of 80°C
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Fig. 4 Change in temperature of banana foam mats at 80°C
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(c) WPC

Fig. 5 SEM micrographs of dried banana foam mats added with different foaming agents

(initial foam density of 0.5 g/cm’)
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3.5 Textural properties

Fig. 6 shows the results of textural properties of dried banana foam mats produced
from different foaming agents and foam densities. The hardness was defined as the maximum
force in the force-deformation curve and the crispness was characterized by the number of
peaks and the slope of the first peak from force curve. It was noted that the textural properties
were strongly affected by the porous structure. The samples with lower initial foam densities,
characterized by a number of large pores and more limited number of small pores, was very
porous. Hence, the hardness was smaller as compared with those samples with higher initial
foam densities. In terms of crispness as characterized by number of peaks and initial slope
shown in Figs. 6b and 6c, respectively, the samples with lower initial foam densities, for each
foaming agent, had smaller numbers of peaks and lower slopes of the first peak for all
foaming agents as shown in Fig. 6, both textural characteristics showing less crispy at the
lower banana foam density.

Considering the effect of foaming agent for a given banana foam density, it was found
that the foaming agents i.e. SPI, EA and WPC strongly affected the crispy characteristics of
dried banana foam, but they did not take an effect on the hardness. The SPI banana foam was
significantly larger initial slope than the EA and WPC banana foams, but it was lower fracture
points or number of peaks, both textural properties presenting rather crispier and less porous
material for the SPI banana foam. For the EA and WPC banana foams, in spite of the larger
number of peaks, their texture was not crisp but was relatively spongy. The different
crispiness amongst three foaming agents may be related to different morphological features.
Fig. 7 shows the pore size distributions of the dried banana foam mats with different foaming
agents. These pore sizes were determined by image analysis and the details could be seen
from Thuwapanichayanan, Prachayawarakorn and Soponronnait (2008a). As shown in Fig. 7,

the dried EA banana foam had a range of pore size of 10-160 um with a larger number than
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the SPI and WPC dried banana foams. At this pore size range, the number of pores was 594,
270 and 350 for the samples produced from EA, SPI and WPC, respectively. In addition, the
numbers of pores with diameters larger than 240 um were 17, 8 and 24 for EA, SPI and WPC
banana foams. Because of a greater number of large pore assemblies in the WPC sample, the
void area fraction of the samples added with WPC was higher than that of the samples added
with EA and SPI. The void area fractions of EA, SPI and WPC banana foam were 18%, 13%
and 20%, respectively. From theses pore size distribution, it clearly indicated that the SPI
banana foam possessed the smallest number of pores and consequently provided the smallest

number of fracture points.
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3.7 Volatile compounds

Fig. 8 (a-c) shows the chromatogram profiles obtained from fresh banana, foamed
banana and dried foamed banana. The dried foamed banana was prepared by drying at 80°C.
The volatile compounds extracted from the banana samples were identified by GC-MS. It was
found that the most significant volatile compounds in fresh banana were the isoamyl acetate,
isobutyl butanoate, butyl butyrate, isoamyl butyrate and isoamyl isovalerate. The retention
times of these compounds were 6.75+0.1, 9.72+0.1, 11.46+0.1, 14.15+0.1 and 16.4140.1 min,
respectively. Among these five esters, only isoamyl acetate, isoamyl butyrate and isoamyl
isovalerate, are the key components of the banana’s fruity odor (Salmon et al., 1996).

From Fig. 8 (a-c), it can be seen that the substantial loss of volatile substances
occurred during the foaming process although the foaming was performed at room
temperature. The volatile fractions of fresh banana, banana foam and dried banana foam are
shown in Table 4 for different foam densities and foaming agents. The whipping time
strongly affected the loss of volatile compounds during foaming process; the longer the
whipping time, the higher the evaporation of volatile compounds. This is because air was
brought into the liquid puree during the whipping process and thus the evaporation of volatile
compounds from the liquid phase to the air phase could occur easily. The isoamyl acetate,
which is the lowest molecular weight, exhibited the highest loss during the foaming process.

In addition to the loss during foaming, the volatiles also lost during drying. As shown
in Table 4, the losses of each volatile compound that was present in each banana foam sample
seemed to be not the same in quantity although the samples were dried at the same drying
temperature. At the initial foam density of 0.5 g/cm’, for example, the losses of isoamyl
acetate, isobutyl butanoate, butyl butyrate, isoamyl butyrate and isoamyl isovalerate were
respectively 10.97, 6.45, 10.95, 16.31, 25.67% for EA banana foam, and 10.85, 20.26, 26.93,

31.80, 35.47% for SPI banana foam. The lower volatile retention for the SPI banana foam is
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possibly due to the lower thickness of the SPI sample, as previously shown in Table 2; the
volatile compounds diffused through the sample surface in a shorter time for the sample with
lower thickness. In this case, the morphology of SPI banana foam, characterized by the dense
porous structure as previously shown in Fig. 5 (b), could not retard the diffusion of volatile
compounds. This is because the molecular sizes of such volatile compounds are very smaller

than the pore sizes of the SPI banana foam, causing them to transport through pores easily.
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4. Conclusions

EA and WPC at 5% by weight were found to be efficient foam inducer, decreasing
banana foam density to 0.3 g/cm’, whilst the addition of SPI at this percent weight or higher
could not produce at this foam density. Banana foams produced using WPC had more
stability during whipping than another two foaming agents and this, in turn, provided less
shrinkage during drying, higher void area fraction and higher value of effective moisture
diffusivity than the EA and SPI banana foam mats. However, banana foams produced by the
EA and WPC were less crisp than the SPI one. The foams produced at lower densities had
higher value of moisture diffusivity, and had lower values of hardness and crispness. The
substantial loss of volatile substances occurred during foaming process. The SPI banana foam,
which had high shrinkage value, provided a greater loss of volatile compounds during drying

than another two foaming agents.
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The purpose of this research was to determine the diffusion coefficient of moisture in the pores of banana
foam mat using stochastic pore network. A 2-D pore network was used to represent the pore voids inside
the banana foam sample and the moisture movement inside the individual pore segments was described
by Fick’s law. To determine the moisture diffusion coefficient, the adsorption experiments were carried
out with standard static method using saturated salt solutions. Two banana foam densities of 0.21 and
0.26 g/cm> were used to adsorb the water vapour. The interactions between moisture and pore structure
were illustrated using a 3-D pictorial representation of network concentration gradients in spaces with
colour representing the moisture content. The network model described the experimental results rela-
tively well. The diffusion coefficient of moisture in pores was in order of 10~° m?/s which was nine times
higher than the effective diffusion coefficient calculated from the continuum model. The value of mois-
ture diffusion coefficient was dependent on the temperature and independent of the foam densities and
the relative humidity, except for the diffusivity determined from the condition at higher relative humid-
ity of 70%.
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1. Introduction

Moisture migration during storage is of great importance to
food quality, in particular for dried crispy products such as biscuits,
ready-to-eat cereals and snacks. An increase in the product mois-
ture content, which in turn leads to the loss of crispness, generally
occurs by migration of water vapor from the ambient into the
product. The rate of moisture adsorption into porous food is gov-
erned by the environmental conditions, i.e., temperature and rela-
tive humidity. The rate also relies upon the porous structure of the
food (Guillard et al., 2003; Roca et al., 2006). Therefore, an ability to
model water migration in porous food is of great interest. To date,
two different approaches have been developed for studying mois-
ture movement in porous foods.

The first modeling is based on a continuum model. In this type
of model, porous spaces are considered as a continuum, consistent
with its appearance on the macroscopic scale. In this case, the
effective moisture diffusivity includes in itself all microscopic com-

* Corresponding author. Tel.: +662 470 8695; fax: +662 470 8663.
E-mail address: preeda_list@hotmail.com (P. Prakotmak).

0260-8774/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jfoodeng.2009.07.004

plexities of the porous structure (e.g., sizes of pores and their con-
nectedness) as well as mechanisms of mass transfer, which may
occur by molecular diffusion or capillary flow, etc. (Efremov and
Kudra, 2004; Roca et al., 2006). When a dried porous food is subject
to humid air, water vapor transports from the air to the sample
surface and is then assumed to diffuse into the internal area of
the sample via the pores by assuming that the solid act as an
impermeable surface. This adsorption phenomenon is described
by the Fick’s second law of diffusion. Under isothermal condition,
moisture transport in a porous food with an infinite slab geometry
(Chen, 2007) can be described by:

o — YDy M) (1)
where M is the moisture content (kg/kg d.b.), t the time (s), Dy the
effective moisture diffusivity (m?/s), which can be expressed by:
Dy = 20 @)

where ¢ is the porosity of the material (dimensionless), D, the ac-
tual diffusivity in the pore voids (m?/s) and 7 the tortuosity factor
(dimensionless). Tortuosity factor accounts for the fact that the pore
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spaces do not provide straight line paths through, thereby lengthen-
ing the diffusive path and reducing the internal diffusional fluxes.

The second approach is based on the discrete model or pore
network model. In this type of model, the pore sizes and topol-
ogy of a porous material are taken into account by mapping
them onto an equivalent network of the interconnected pores.
Network models represent void spaces of a porous medium by
a simple two- or more realistic three-dimensional lattice in
which large and small pores are randomly interconnected. Each
pore can be assumed to be cylindrical, slit, triangular and polyg-
onal shapes. Segura and Toledo (2005) found that pore shapes
used in the network model had an insignificant effect on the
drying characteristic curves, vapour relative diffusivity, and li-
quid relative permeability. The pore network model is more use-
ful and flexible than the first approach since the moisture
calculation using continuum model requires use of the effective
moisture diffusivity, which varies from material to material,
whilst the pore network model requires only the structural
parameters of the material such as total pore volume or pore
size distribution (providing that the actual moisture diffusivity
in the pore voids is known). However, at present, there is no
available information on the actual diffusion coefficient of mois-
ture in pore voids, D,. To be able to estimate the actual diffusion
coefficient, first the pore network model needs to be constructed,
where more or less simplified geometries, and pore size distribu-
tions are used to describe the topology of the pore structure of a
real material (Mann, 1993; Hollewand and Gladden, 1992; And-
routsopoulos and Mann, 1979). Diffusion equation is then ap-
plied to an individual pore of the network; the flow of
substances through pore segments can then be numerically pre-
dicted (Blunt, 2001; Yiotis et al., 2005; Prachayawarakorn et al.,
2008) and compared with the experimental results. Although,
theoretically, either experimental data on desorption (or drying)
or adsorption could be used to calculate the moisture diffusivity
in the pore voids, the adsorption experiment is preferred since
the transfer rate of heat is usually faster than the transport rate
of moisture and hence the temperature of the porous material
remains close to the temperature of the experiment. Also, the
morphology of porous food changes only slightly during adsorp-
tion experiment whilst it significantly changes during drying
(Saravacos and Maroulis, 2001).

As the data on the moisture diffusivity in the pore voids of any
porous food are not available, the aim of the present investigation
was to determine the pore diffusivity by using a two-dimensional
stochastic pore network. Banana foam mat was used as a represen-
tative porous medium. The Fick’s second law was used to describe
the moisture diffusion in individual pore segments and an optimi-
zation technique was implemented to determine the pore diffusiv-
ity under adsorption conditions. The actual moisture diffusion
coefficient in pore voids obtained in this work may be applied to
other porous foods as well.

2. Materials and methods
2.1. Dried banana foam preparation

The banana puree with 5% of fresh egg albumen used as foam-
ing agent was foamed to densities of 0.3 and 0.5 g/cm®. The se-
lected foam densities were suitable to produce the snack since
its texture provided the low hardness and crispiness as reported
by Thuwapanichayanan et al. (2008a,b).

The density was determined by measuring the mass of a fixed
volume of the prepared foam. The banana foam was poured slowly
into a steel block with a dimension of 43 x 43 x 4 mm> and then
placed on a mesh tray, which was covered with aluminium foil.
After that, it was dried to about 3% dry basis (d.b.) at a temperature

of 80 °C and a 0.5 m/s superficial air velocity. The banana foam pre-
pared from the initial foam densities of 0.3 and 0.5 g/cm? can pro-
duce the dried banana densities of 0.21 +0.02 and 0.26 £ 0.02 g/
cm’, respectively. The product thicknesses after drying were
2.8mm and 3.2 mm for the densities of 0.21 and 0.26 g/cm®,
respectively.

2.2. Adsorption experiment

Moisture adsorption experiments were carried out using the
static method. Samples were placed into the glass jars contained
the saturated salt solutions (MgCly-6H,0, Mg(NOs),-6H,0, KI,
NaCl and KCI) which provided the relative humidity (RH) in
range of 32-82% at the temperatures of 35, 40 and 45 °C. The
glass jars were kept in the hot air oven that controlled the tem-
perature with an accuracy of +1°C (UFE500, Memmert, Ger-
many). Samples were weighed at different exposure times
ranging from 1 to 120 h. At RH > 74%, a small amount of toluene
held in a vial was fixed in the glass jars in order to prevent
microbial spoilage of the samples (Kaya and Kahyaoglu, 2005).
Moisture content of each sample after reaching the equilibrium
condition was determined by drying it with the hot air oven
at a temperature of 103 °C for 3 h. Under this moisture content
determination condition, the percentage error was approximately
0.4% when compared to the result obtained by the standard vac-
uum method (AOAC, 1995) at a temperature of 70°C and at a
negative pressure of 13.3kPa for 24 h. This error might be
caused by the vaporization of volatile compounds. Thuwapanic-
hayanan (2007) reported that the loss of volatile compounds
after drying of banana foam was approximately 90%. The exper-
iment at each sorption condition was repeated three times and
the mean value was reported.

2.3. SEM photograph

The morphologies of dried banana foam mats were character-
ized using scanning electron microscope (SEM) with an accelerat-
ing voltage of 10 kV. Before photographing, the specimens were
cut into a dimension of 5 x 5 mm? and then glued on the metal
stub. The samples were coated with gold, scanned, and photo-
graphed at 15x magnification.

To quantify the porous banana foam characteristics such as pore
diameter and pore area, Image ] software was used. Each pixel of
the SEM micrograph was assigned a value of gray intensity be-
tween 0 and 255 and the binary images were generated. The pixels
with gray levels lower than the selected threshold were assigned
as pore, which appeared as black colour, and the pixels with gray
levels above the selected threshold were set as solid phase, which
appeared as white colour in binary image. The pore diameter was
estimated from the known pore area by counting the number of
pixels filled in the specified space.

2.4. Estimation of activation energy

The diffusion coefficient of moisture was related with the tem-
perature through the following Arrhenius equation:

—E
D, = Dy exp <RTa> 3)

where Dy is the constant value (m?/s), E, is the activation energy (k]/
mol), R is the universal gas constant and T is the temperature (K). In
this work, the pore diffusivity data obtained from the experimental
conditions at the relative humidity below 70% and at the tempera-
tures of 35-45 °C were used to determine the values of E, and D,.
Under the specified conditions, the moisture content of banana
foam ranged between 0.038 and 0.37 kg/kg d.b.
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3. Generation of the pore network

When the pore size distribution of material is known, these
pores are assigned according to its distribution and allocated ran-
domly onto a lattice. In this work, the pore was assumed to be of
cylindrical geometry and each pore in the network had the same
length. The pores with different sizes were randomly placed onto
the network and this approach provided pore at any positions
within the network independent to the neighboring pores. Such
random arrangement of pore assemblies was referred to stochastic
pore network. Fig. 1 illustrates an example of a 2-D stochastic pore
network with a small size of 23 x 50, defined by the number of
pore junctions in the vertical direction multiplied by the number
of pore junctions in the horizontal direction. This network size con-
sists of 2373 pores obeying a pore size distribution of dried banana
foam shown in Fig. 6 for the density of 0.21 g/cm®. The pores in this
figure were represented by black colour and solid by white colour.
In addition, each pore junction, where the pores are intersected,
had a connectivity of 4. However, for calculating the pore diffusiv-
ity, we used a larger network size, with a number of pores of the
network corresponding to those pores in the cross-sectional area
of sample.

In this work, the network size of 20 x 231 for the foam density
of 0.21 g/cm?, accounting for 9491pores, and the size of 23 x 264
for the density of 0.26 g/cm>, accounting for 12 431 pores, were
used. These numbers of pores were estimated from the known
number of pores in the unit area of sample that was obtained from
SEM. The length of each pore, L, was calculated by dividing the
thickness of banana foam sample by number of vertical pores in
each row; 21 for the network size of 20 x 231 and 24 for the net-
work size of 23 x 264. The average value of L was equal to 133 pm.

3.1. Single pore

In this work, moisture adsorption between surrounding air and
banana foam mat occurred under isothermal condition. The water
vapor from the air will be adsorbed at the sample surface and then
moves in the liquid form through interior area via the pores. The
moisture diffusing through each pore in the network, whether

<
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the pore is allocated in horizontal or vertical direction, can be de-
scribed by Fick’s second law:

oM M
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where M is the moisture content (kg/kg d.b.), t the adsorption time
(s), D, the water diffusivity in pore (m?/s), and x the distance along
the pore length (m). The migration of moisture from the surround-
ing air to the banana foam surface occurred specifically at the top
surface and no moisture transferred at the bottom surface of the
network since the banana foam mat was placed on an opaque glass
dish. The samples had the length and width about 11 times of its
thickness and thus, the banana foam mats were reasonably as-
sumed to be an infinite slab. Accordingly, moisture movement dur-
ing adsorption process occurred along the material thickness
direction. The constant diffusion coefficient at a given condition
was assumed and the moisture profile in the pores at the beginning
was uniform along the pore axis:

M=M; :t=0 0<x<L (5)

where M; is the initial moisture content (kg/kg d.b.). From the pre-
pared sample size, it indicated that the surface area at each sample
side was remarkably smaller than that at the top surface. Hence, the
moisture transferring from the surrounding to the pores allocated at
the two sides of sample was small. Accordingly, the boundary con-
dition for the pores allocated at both sides of the network (see
Fig. 1) is set as:

oM

ari.jzo t>0 (6)

where r is the pore radius (m) and subscripts i and j are the position
of the pores in the network as can be seen in Fig. 1. The positions of
pore, 1;; at the left edge of network are ry 5, 1 4, . .. I'1,v+, at the right
edge are ry2,TH, 4, - .- Tyy+1, and at the bottom edge are 157,743
, ... Tus1,1. Subscripts H and V are the number of columns and rows
of the pores on the network, respectively. For the periphery pores
positioned on the top of the network, such as ryv, rav, ... Therws
the moisture moving from the surrounding to those pores was oc-
curred by convection and the boundary condition is set by:
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Fig. 1. Illustration of a simple 2-D stochastic pore network and boundary conditions.
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t>0 ()

oM
D, (&) = hp(M, — M)

J

where h;, is the convective mass transfer coefficient (m/s), M, the
equilibrium moisture content (kg/kg d.b.) and M, the moisture con-
tent at the sample surface (kg/kg d.b.). To calculate the moisture
concentration of the pores, a finite difference method was used.
An individual pore in the network was divided into n intervals
(n=12 as shown in Fig. 1) and Eq. (4) was discretized using the ex-
plicit method as follows:

Mpil+ M (20— 1) — oMb, + M,

nrij n+1r; n—l,ru) =0 (8)
where o = D,At/Ax? is the Fourier number, p and n the respective
indexes of the present time and of nodal position along the pore
axis. Eq. (8) is used to calculate the moisture content for the inner
pores of network. The boundary conditions in Eqgs. (6) and (7) can
be written respectively as:

My + My, (20 —1) = 2a(M,, ) =0 9)
M (0 +1) =My, —yMe =0 (10)

nrj

Where y = h,,Ax/D,. The moisture adsorption rate Q;; (kg/s) for the
individual pores can be calculated by:

dM,. . (x,t
x=L

The finite difference approximation of Eq. (11) is

p+1 p+1
Mn - Mnl.ri_j>
x=L

Q,=p- nr?.j-Dp( = (12)

where p is the dried banana densities (kg/m*) and M’ ! is the mois-
ture contents at pore junctions.

3.2. Mass balance in the network

To determine the moisture contents at the pore junctions for
the inner pores of the network, the mass balance of moisture con-
tent at the inner nodes of network was made, assuming no accu-
mulation of moisture at each pore junction within the network,
which is thus expressed by:

3 Q, =0 (13)

{u,v}

where sum is over all the pores, r;j, that connected to the pore junc-
tion (u,v), and u,v are the coordinate for a pore junction in the net-
work. Substituting Eq. (12) into Eq. (13) and solve it for the
moisture contents at the pore junctions. After the moisture contents
at nodes of the network were known, the average moisture content
Meowork Of network can then be calculated using the following
equation:

L
We), = S h o M (x )
twotk — Z
ne k 7. LG:] r,'ZJ

(14)

where Z is number of pores in the network. To estimate the pore dif-
fusion coefficient, D, the optimization technique using a golden-
search method was used. The root mean square error (RMSE) for
the residuals of the measured and predicted values of average mois-
ture content was set as the objective function with a tolerance of
107°. The RMSE is defined as:

1 & 1/2

RMSE = |- >~ (M(t)oy ~ M(0)neron)” (15)

n=1

where M(t).xp, is the experimental moisture content of material at
time t, M(t),non 1S the predicted moisture content, and K is the
number of the experimental data. The lower the value of RMSE,
the better the goodness of fit. All computations were implemented
using Intel C++ Compiler (Intel® Software Network, 2009) and run
on a PC compatible with 3.0 GHz dual-processor and 2 GB of RAM.

4. Results and discussion
4.1. Effects of temperature and relative humidity

Figs. 2 and 3 show the effects of temperature and relative
humidity on the adsorption rate, respectively. As observed from
the experimental results, the rate of moisture uptake was very fast
during the early period of time and gradually decreased as the
moisture content approached the moisture equilibrium. The higher
adsorption rate was clearly evident when the temperature and rel-
ative humidity increased.

At the equilibrium state, the equilibrium moisture content
tended to decrease with increasing temperature; these values were
0.1384, 0.1368 and 0.1308 kg/kg d.b. for the corresponding tem-
peratures of 35, 40 and 45 °C and respective humidities of 50%,
48% and 47% as shown in Fig. 2. The decrease of equilibrium mois-
ture content with temperature can be attributed to the excitation
states of water molecules. At elevated temperature, the water mol-
ecules are in higher states of excitation, thus increasing their dis-
tance apart and, in turn, decreasing the attractive forces between
them (Jamali et al., 2006). The experimental results found in this
study were similar to those reported by Kim and Okos (1999)
and Palou et al. (1997). In their works, the sorption capacity or
equilibrium moisture content of crackers and cookies decreased
with increasing temperature.

4.2. Effect of foam densities

Fig. 4 shows the moisture adsorption kinetics at temperature of
45 °C for the banana foam densities of 0.21 and 0.26 g/cm?>. It can
be seen that the foam density strongly affects the moisture adsorp-
tion rate; the lower the foam density, the faster the adsorption
rate. The different moisture adsorption rates are due to the fact
that the void area fractions of both banana foam samples were dif-
ferent; the void area fractions of the banana foam densities of 0.21
and 0.26 g/cm® were 31% and 26%, respectively.

e 35°C, RH=50%
40°C, RH=48%
45°C, RH=47%
Prediction

Moisture content (kg/kg d.b.)

N A -

Time (h)

Fig. 2. Kinetics data of moisture adsorption at different temperatures and relative
humidities for the foam density of 0.21 g/cm®.
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Fig. 3. Kinetics data of moisture adsorption at 40 °C and relative humidities of 31%,
48%, 66%, 74% and 82% for the foam density of 0.21 g/cm®.
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Fig. 4. Moisture adsorption kinetics at 45 °C and relative humidities of 31% and 47%
for the banana foam densities of 0.21 and 0.26 g/cm>.

High porosity in porous foods provides less diffusional flux
resistance and thus greatly facilitates the moisture transport to
those porous foods. In the porous banana foam studied, the higher
void area fraction for the banana foam density of 0.21 g/cm® was a
result of the assembly of the giant pores with sizes larger than
150 pm which had a larger number (38%) than that at the foam
density of 0.26 g/cm® as will be seen in Fig. 6. These huge pores,
serving as a massive transport of moisture through the interior
pores, may possibly be interconnected into almost all parts of the
whole network. Hence, the rapid moisture adsorption is obviously
evident in the foam density of 0.21 g/cm?>.

The efficient communication of large pores in the network pro-
vided not only faster adsorption, but also faster drying. Prachaya-
warakorn et al. (2008) studied the effect of pore assembly
architecture on the drying rate and found that different arrange-
ments of pores exhibited different drying rates. When the large
pores are positioned at the network exterior and the smaller pores
assigned to the interior, the drying rate is remarkably faster in such
a network archetype than in the network, with smaller pores allo-
cated on the network exterior.

As shown in Fig. 4, the moisture uptakes of the banana foams
after the elapsed time of 10 h vary slightly and this indicated
that the system reaches the equilibrium state. At the equilib-
rium, the moisture content of banana foam at density of
0.21 g/cm® was apparently higher than that at 0.26 g/cm® due
to higher porosity.

(d) 0.26 g/em’

Fig. 5. (a and c) SEM micrographs of dried banana foam mats at different initial
foam densities and binary images (b and d).

4.3. Pore size distribution

The microstructures of dried banana foam mats characterized
by SEM are shown in Figs. 5a and c for several foam densities.
The corresponding binary images are illustrated in Figs. 5b and d.
The reconstructed porous structures of the banana foams in binary
image reasonably represented their original images. The pores in
the banana foam were random in sizes, irregular in shape and
interconnected. This pore structure results in the movement of
moisture into the interior; some pores may have high or low mois-
ture content even though the pores are positioned at the same hor-
izontal plane. Such moisture transport behavior cannot be
formulated through a continuum model since the model did not
take the pore structure effect into account.

Fig. 6 shows the pore size distributions of the dried banana
foams at the densities of 0.21 and 0.26 g/cm?>, both distributions
obtained from the binary image of SEM. The sample with a foam
density of 0.21 g/cm> had small pore assembly in the range 6 to
150 pm accounting for 62% of the whole number of pores and for
38% with the pores larger than 150 pum. For the density of 0.26 g/
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Fig. 6. Pore size distributions of dried banana foam at different densities.
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Fig. 7. Pore diameter distributions at different cross-section areas of a banana foam
mat (foam density of 0.26 g/cm?).

cm?, it appears the proportion of small pores accounting for 71%
which was higher than that of the sample at the density of
0.21 g/cm®. However, the porosity of sample at the density of
0.26 g/cm® was relatively smaller because the large pores had a
smaller number.

Fig. 7 shows the pore size distributions at three cross-sectional
areas of a banana foam mat at the density of 0.26 g/cm>. A sample
was divided into three parts and each part was morphologically
characterized by SEM. It indicated that the characteristics of pore
size distribution were identical throughout the sample and this
may reasonably be assumed that the moisture distributions at
any cross-sectional area of sample were not different. Hence, the
average moisture content at any cross-sectional area of sample
can represent the moisture data of sample.

4.4. Moisture diffusivity in pores

The values of pore diffusivity for two banana foam densities at
different temperatures and relative humidities are shown in Table
1 and the results also show in Fig. 8. At a given temperature, most
values of moisture diffusion coefficient, except for the value at the
relative humidity higher than 70%, presented only a slight change
with the relative humidity. These values, when analyzed statisti-
cally using Duncan’s test, showed an insignificant difference. The
mean values of pore diffusivity were in the order of 107° m?/s. In
fact, the orders of magnitude of the diffusion coefficients depend
on the state of substance: for gases, approximately 10~°> m?fs; for
liquids, approximately 10-°m?/s (Aguilera and Stanley, 1999).
From this information, it might be indicated that the transport of

Table 1
Estimated pore diffusivity for two banana foam densities at different adsorption
conditions with R?-values above 0.96.

T(°C) Approximate RH (%) p (g/lcm?)
0.21 0.26
Pore diffusivity x 10-°(m?/s)
35 32 2.276 £0.231 2.072 £0.193
50 2304 +£0.211 2.149 +0.238
67 2.204 +0.185 1.990 £ 0.183
75 1.941 £0.219 1.686 £ 0.241
83 1.747 £ 0.166 1.544 £ 0.227
40 31 3.152+0.182 2.906 + 0.236
48 3.210+0.275 3.084 +£0.179
66 3.350+0.231 3.112£0.233
74 2.922 +0.191 2.678 +0.164
82 2.680+0.179 2.464 +0.166
45 31 4.602 £ 0.190 4.334+0.190
46 4961+0.214 4.538 +0.211
65 5.053 £0.188 4.623 +0.265
74 4.255 +£0.227 4.139+£0.191
81 4.015+0.162 3.794 £ 0.150
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Fig. 8. Effects of temperatures and relative humidities on the pore diffusivities for
the banana foam density of 0.21g/cm®: the same letter means insignificant
difference at P>0.05.
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Fig. 9. Effect of initial foam densities on the pore diffusivities at different relative
humidities and temperatures of 40 and 45 °C: the same letter means insignificant
difference at P>0.05.

moisture through the banana foam mat is similar to liquid. Roca
et al. (2006) also reported that the adsorption of water vapour in
sponge cake occurred mainly in the liquid form.
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Zggls‘:ait parameters in Eq. (3) for Deg of banana foam at two foam densities.

Foam density (g/cm>) Constant parameters R%-value
Do (m?[s) Eq (KJ/mol)

0.21 488.94 74.00 0.98

0.26 148.39 71.68 0.98

0

E

% 03 -

>

(=] 02 -
’ —e— Pore network model
B Ammnr e fusemmrnssigbss rapmasaronses 8- Continuum model

25 30 35 40 45 50 55 60 65 70 75 80 85

Relative humidity (%)

Fig. 10. Comparison between pore diffusivities and effective diffusivities of banana
foam mat at 40 °C and relative humidities for foam density of 0.26 g/cm?>.

Moreover, the pore diffusivity determined by stochastic pore
network is much closed to the water self-diffusion coefficient for
all temperature range studied. For example, the moisture diffusion
coefficient found in this study was (3.06 +0.27) x 10~° m?/s at
temperature of 40 °C and the water self-diffusion coefficient for
pure liquid water was 3.222 x 10~ m?/s (Holz et al., 2000). In their
work, they measured the water self-diffusion coefficient by using
pulsed gradient NMR spin-echo technique. These results implied
that transport of moisture during adsorption condition can reason-
ably be described by molecular diffusion equation.

Once the relative humidity was higher than 70%, however, the
pore diffusivity relatively decreased with increase in the relative
humidity. At this relative humidity range, the banana foam mat

could adsorb a large amount of moisture. Subsequently, the sample
was softened and shrunk due to the collapse of pores. This may
cause the decrease of moisture diffusion coefficient as shown in
Fig. 8. From the statistical analysis, it indicated that the moisture
diffusion coefficient at a given temperature was significantly dif-
ferent to those values determined from the relative humidity be-
low 70%.

Fig. 8 also presents the effect temperature on pore diffusivity.
As expected, the pore diffusivity significantly increased with in-
crease in temperature (P < 0.05).

4.5. Effect of foam densities on diffusion coefficient

Fig. 9 shows the diffusivity of moisture in pores for the samples
at the foam densities of 0.21 and 0.26 g/cm?®. The pore diffusivity
was slightly lower at the foam density of 0.26 g/cm? than at the
density of 0.21 g/cm® for all experimental conditions. However,
the statistical analysis of these pore diffusivity data showed the
insignificant difference among the two foam densities.

4.6. Comparison of pore diffusion coefficient and effective diffusion
coefficient

Fig. 10 shows the comparison of the pore diffusivity and the
effective diffusivity. The value of effective diffusion coefficient
was determined using Eq. (1) assuming that the moisture migra-
tion occurred in one dimension and the water vapour transported
from the air to the top surface by convection. It can be seen that the
effective moisture diffusivity was approximately 3.3 x 10~'° m?/s
at the temperature of 40 °C and relative humidity in the range of
30-70%. The calculated value was approximately 9 times lower
than the diffusivity of moisture in pores.

4.7. Activation energy of pore diffusivity

From the statistical fitting, the Arrhenius equation can suitably
describe the relationship between moisture diffusion coefficient in
pores and temperature as indicated by R? value of 0.97. The values
of E; and D, were 64.7 k]/mol and 193.91 m?/s, respectively. How-
ever, if the effective moisture diffusion coefficient was used to cor-
relate with temperature, the fitting results of E, and Dy for the
effective diffusivity of moisture are shown in Table 2 for two foam

Moisture content (kg/kg d.b.)

1 1
0.04 0.05 0.06 0.07 o.0e 0.09

04 0.11 0.12 013 0.14

() 1 h (M senvor =0.0803 kg/kg d.b.)

(b) 3 h (M nemork =0.1080 kg/kg d.b.)

(©) 5 h ( M emore =0.1364 kg/kg d.b.)

Pore diameter scale 0.35: 1

Fig. 11. Visualization of moisture contents in pores of banana foam at temperature of 35 °C, initial foam density of 0.21 g/cm® and relative humidity of 50%.
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densities. The value of the activation energy determined from the
pore diffusivity data was relatively lower than the case of using
the effective moisture diffusivity data.

4.8. Validation

As previously shown in Figs. 2 and 3, the pore network model
showed a good fit to the experimental data throughout the expo-
sure time, with R?-values above 0.98 at the relative humidity be-
low 67%. Beyond 67%, however, the accuracy of prediction was
slightly smaller (R?-values varying between 0.96 and 0.97); the
model predicted the change of moisture content of sample rela-
tively faster than the experiment at the early exposure time and
became relatively slower afterwards.

4.9. Graphical visualization

Fig. 11 shows the moisture distribution in 2-D pore network
during adsorption process. Each pore was colored according to
the moisture content. The representative colours with 8 shades
from red to blue were used for the corresponding range of moisture
from 0.038 to 0.138 kg/kg d.b.

At the beginning, every pore within the network presumably
contained the moisture content of 0.038 kg/kg d.b. When the sam-
ple was subject to adsorption condition, the capability of moisture
diffusing through the pores positioned at the same horizontal
plane was different, reflecting the pore shielding effect (Mann,
1993). This can be seen easily at the exposure time of 3 h; some
pores located near the bottom surface of the pore network have
moisture content of 0.08-0.09 kg/kg d.b. as indicated by yellow
colour whilst the other pores were coloured by green correspond-
ing to the moisture contents of 0.095-0.105 kg/kg d.b. The yellow-
coloured pore assembly had a size relatively larger than the sur-
rounding nearby pores. Hence, the moisture diffusing through
those large pores is restricted by the smaller ones since the
cross-sectional area available for moisture diffusion is reduced in
the surrounding nearby small pores.

5. Conclusions

A 2-D stochastic pore network has been developed to represent
the pore structure of banana foam and the transport of moisture in
the pores of the network was described by Fick’s second law. The
optimization technique with a golden-search method was used
to determine the diffusivity of moisture in the pores of banana
foam. The experimental results showed that the pore network
model could describe the moisture migration inside the banana
foam relatively well. The pore diffusivity was not changed with
the relative humidity, except for the case of relative humidity high-
er than 70% at which the value of moisture diffusion had a decreas-
ing trend. The actual moisture diffusion coefficient in pore voids
determined from this work may be applied to other porous foods.
Moisture in void spaces and interaction between layers of banana
foam mat was visualized using colour codes.
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ABSTRACT

Porous structure as an important characteristic of crisp food can be
produced alternatively by puffing process. However, the color of puffed product
may have intense brown. To limit the brown reaction, the banana slice needs to be
treated osmotically before puffing. This research was therefore to study on the
effect of osmotic treatment on quality of puffed banana. The banana with 20-
23°Brix total soluble solid was immersed into sucrose solution concentrations at
30, 35 and 40°Brix and dried at 90°C using hot air until the sample moisture
content reduced to 30% dry basis (d.b.). After that, the banana slices were puffed
by superheated steam at 180, 200 and 220°C for 150 s and dried again at 90°C
until the sample moisture content reached 4% d.b. From the experimental results,

it was found that the osmotic dehydration could improve the color of banana. The
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puffed osmotic banana was less brown than the puffed non osmotic banana as
indicated by the L-, a- and b- values and hue angle. The puffing temperature and
osmotic concentrations did not enhance the browning rate. The sucrose
impregnation for the osmotic banana caused longer drying time than for the non
osmotic one and limited the banana cell wall expansion, resulting in the
significantly higher shrinkage of osmotic sample and the less porous structure as
viewed by scanning electron microscope. Such morphology of osmotic banana
directly affected the texture properties in terms of hardness, initial slope and

number of peaks.

Keywords: Color, Drying, Osmotic dehydration, Snack, Texture
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INTRODUCTION

Bananas deteriorate rapidly after harvest. To reduce their losses, bananas
are processed to various kinds of product such as fried banana, osmotic banana
and puree banana. The fried banana chips, one of the most popular products,
possess crispy texture!'? and it can serve as a snack food.”) However, the fried
product contains high oil content and can not be kept for an extended period of
time due to possible lipid oxidation leading to rancidity. Hence the free oil crisp
banana is an alternative product. The free oil crisp banana may also be received
more attention to the conscious consumers. The free oil banana can be produced
by drying method. To obtain the crisp texture, the food material requires high
porosity. There are several drying techniques for producing high porous food
material such as high temperature and short time drying,"*! microwave drying,*"
and low pressure superheated steam drying."™*) In this work, the high temperature
and short time drying technique or puffing technique was interested. The

operating cost of this puffing technique is rather economics as compared to the

other methods.

During puffing process, food is subject to high temperature for a short
period of time, which allows some amounts of moisture inside the food vaporizing
suddenly. The internal vapor pressure can thus be increased and this forces the
food structure to be expanded, thereby producing the porous structure of food
products. Porous structure and thickness of solid between pores generated by
puffing process strongly affect the properties of puffed products such as bulk

density and texture.*'” In addition, the puffing process can save drying time!*'"
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and provide 40% energy saving as compared to the conventional hot air

dehydration.!'

The puffing or heating medium normally uses the hot air since it is
convenient in practice. Recently, several works have been reported that the
superheated steam provides more efficient heat transfer rate than the hot air.!'*"!
Also, during superheated steam drying steam condensation at the material surface
is taken place and this releases the latent heat from the phase change which results
in the rapid rise in material temperature to stay at the boiling point temperature of
water.!'¥ From such previous works, it is expected that using superheated steam
may increase rapidly vapor pressure inside the product and provides a high
expansion of product accordingly. However, up to now, the application of
superheated steam for puffing and its effect on the crispiness has not been fully
studied. Saca and Lozano'* studied the puffing of banana using superheated steam
at temperature of 152-175°C and steam pressure of 7.84x10*-27.45x10" Pa. It was
found that the superheated steam puffed banana had higher porosity than the
conventional air dried product, but the product color was browner and this might

not be favored by the consumers. Such browning in food is caused by the non-

enzymatic browning reactions and pigment degradations.

One way of improving color of product can be done by osmotic
pretreatment. During osmosis the natural solutes existing in food material such as
reducing sugar, acid and minerals flow out from food during osmotic

(1161 and those solutes are replaced by osmotic agent. Sucrose is

dehydration
frequently used as osmotic agent.!"”" The decrease of reducing sugars i.c.

glucose and fructose in the osmotic product can limit brown color development
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because these monosaccharide are more reactive for the brown reactions than the
20 . . .
sucrose.””! The food pretreated with sucrose solution before drying can also
reduce shrinkage during thermal processing. Many researchers have studied the
. . . . 21.22
effect of sugar on shrinkage properties of puffed products i.e. rice and corn,?"*

and found that the puffed osmotic products were lower shrinkage than non

osmotic ones.

As mentioned-above, the osmotic dehydration of banana before puffing
may help to improve the color of puffed product, but the information of effect of
osmotic pretreatment on chemical and physical qualities of puffed product has
been limited. The objective of this work was therefore to study the effects osmotic
solution concentrations and puffing conditions on the drying characteristics and
quality of puffed banana. The quality parameters were considered in terms of

color, shrinkage and texture properties.

MATERIALS AND METHODS
Material Preparation

Fresh bananas were obtained from local market and their soluble solid
contents were given in the range of 20-23°Brix. Before processing, the banana
was sliced into 3.5 mm thickness and blanched by hot water at 95°C for 1 min.
Blanching increased the plasticity of food material which allows the samples to
expand during puffing.””) Also, blanching decreased the permeability of water
vapor and this obstructed the transport of moisture inside the bananas when it

vaporized during puffing step. This resulted in the increasing vapor pressure
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inside the banana samples and the corresponding expansion of the walls of the

material.

Osmotic Treatment

Osmotic solution was prepared using commercial sucrose with
concentrations of 30, 35 and 40°Brix. The banana slices were immersed into
various sucrose solution concentrations and the mass ratio of osmotic media to the
sample was about 30:1 to avoid the dilution effect. The samples were immersed

into the osmotic solution until the banana moisture content was not changed.
Puffing Method

Process for producing crispy banana used in this study was consisted of 3
main steps. In the first step, the banana was dried by a hot air tray dryer to certain
level, puffed by a superheated steam tray dryer and dried by the hot air tray dryer
again. From the preliminary study, it was found that the banana moisture content
before puffing and the puffing time were less affected on the volume expansion
than the puffing temperature. In addition, the intermediate moisture content of
sample of 30% dry basis (d.b.) and puffing time for 150 s were suitable for
puffing banana. Before puffing, the banana was dried at 90°C to the recommended
moisture content. Drying banana at this temperature did not form the brown
color.”*! After reducing moisture content to 30% d.b., the osmotic banana was
puffed at temperatures of 180, 200 and 220°C for 150 s and dried by hot air again
at the same temperature as the first stage drying. The final moisture content

required at 4% d.b. At the end of each experiment, the moisture content of
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samples was determined by drying them in the oven at 103°C for 3 h. The
moisture content determined by this method was closed to the vacuum oven

method 934.06 (AOAC, 1995)1*! as reported by Thuwapanichayanan et al.l*®!

Texture Property Evaluation.

The puffed banana slices were kept in aluminium foil bag at room
temperature for 3 days before texture test. The banana samples were measured by
the texture analyzer (Stable Micro System, TA. XT. Plus, UK) with a 5 N load
cell. The samples were fractured by a cutting probe (HDP-BSK type) at a constant
crosshead speed of 2 mm/s. The maximum compressive force, the initial slope and
the number of peaks from force deformation curve were considered as hardness,
stiffness and crispness, respectively. The number of peak was counted when the

peak was higher than the threshold value which was set at 30 g.
Color Evaluation

The color of dried samples was measured using a colorimeter (Hunter Lab,
ColorFlex, UK). The color of a banana sample was measured on the banana
surface at six different positions and the average value was reported. Twenty
banana samples were used to represent the color of sample lot from an
experimental condition. The color was expressed as L-value (Brightness), a-value
(redness/greenness) and b-value (yellowness/blueness). The overall color of dried

banana sample was presented by hue angle (°h) which is calculated by

h® =tan"'(b/a) .The angle at 0°, 60°, 120°, 180° and 240° corresponds to red,
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yellow, green, cyan and blue colors, respectively. The color was calibrated with a

standard white plate (L*=96.98, a*=0.03 and b*=1.84).
Shrinkage Determination

Twenty samples were used to determine shrinkage. The volume of each
sample was determined by the volumetric displacement method using n-heptane
as the replacement medium."! The shrinkage was defined as the ratio of the dried
sample volume to the original sample volume

% shrinkage = ;x 100

1

where V; and V are the volume of the fresh sample and the volume of dried

sample.
Glucose, Fructose and Sucrose Determination

Determination of sugar content was performed according to AOAC
method 982.14 (1995)* with some modification. 5-10 g sample was pulverized
and mixed with 50 mL water in a 100 mL volumetric flask. 1 mL 15%
K4(Fe(CNg))#3H,0 and 1 mL 30% ZnSO4e7H,0 was added into the solution in
order to extract protein. After that, it was filtered through filter paper No. 42. The
filtered solution from the last step was filtered again through 0.45 pm nylon
syringe filter. The final volume of the filtered solution was kept in refrigerator
until chromatographic analysis. The 10 pL aliquots of the filtered solution were
injected into High Performanace Liquid Chromatography (HPLC). The HPLC

consists of a Prevail Carbohydrate ES column (4.6 mm, 25 cm; Sum) (Alltech,
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Derfield, USA), a pump and a controller (Agilent, 1100, USA), autosampler
(Agilent, 1100, USA) and a evaporative light scattering detector (ELSD detector)

(Alltech , 500 ELSD, USA).

The fructose and glucose present in the banana can clearly be separated by
gradient elution.”” Acetonitrile and water was used as mobile phase and flowed
through the column at 1 mL/min. The column temperature was kept at 30°C, the
detector was controlled at drift tube temperature of 50°C. Nitrogen flowed through
the column with a rate of 1.5 L/min. Peaks of samples were quantified with

standard.
Statistical Analysis

The experimental data of color, texture properties and shrinkage was
analyzed by an analysis of variance (ANOVA) to indicate how operating
conditions affected those qualities. Duncan’s test was used to establish the
multiple comparisons of the mean values. The mean values were considered

significantly different when p-value < 0.05
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RESULTS AND DISCUSSION
Effect of Osmotic Concentrations on Water Loss and Solid Gain

Table 1 shows the moisture loss, solid gain and the losses of native sugars
of banana slices immersed in sucrose solutions at 30, 35 and 40°Brix. The banana
slices immersed into the higher sucrose concentrations lost the larger amounts of
their moisture content. The possible explanation in this case related to the osmotic
pressure difference between intracellular fluid in banana and osmotic solution.
When the banana sample was immersed into the higher sucrose concentration, the
osmotic pressure difference increased, resulting in the larger loss of moisture
content. Although the larger amount of moisture lost, the solid gain also increased.
The increase of solid gain is caused by the diffusion of sucrose from the solution
into the sample. From the experimental results, it was found that the ratios of
water loss to solid gain increased with the increased sucrose solution
concentrations, implying loss of moisture content larger than the solid gain. This
is because the size of sucrose molecule is larger than that of water molecules.!'®*"

Hence, the water molecule can move with a rate faster than the sucrose molecule.
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Table 1 also shows that the native sugars i.e. glucose and fructose
disappeared during osmosis. The remaining amounts of glucose and fructose in
samples immersed into the sucrose solution concentrations were not rather
different; the percent looses were 84-86% for glucose and 83-85% for fructose.
From these results, it indicated that the losses of glucose and fructose were nearly
the same amount. This can be described by the fact that the glucose and fructose
have the same molecular weight and this would be expected to have the same

diffusion coefficient. Gekas et al.*”

reported that the diffusion coefficients of
glucose and fructose in water at 25°C were equal and had a value of 69x10™"'

2
m-/s.

Effect of Osmotic Solution Concentration and Puffing Temperature on

Drying Characteristics

Fig. 1 illustrates the changes of moisture contents of the osmotic banana
slices during the processing steps consisting of drying and puffing. The osmotic
samples obtained from the sucrose solution concentrations of 30, 35 and 40°Brixs
and puffing temperature of 200°C were demonstrated. It can be seen that the
changes of moisture content did not showed a smooth curve throughout the entire
process. The decrease of moisture content showed an exponential decay in the
first stage drying, followed a rapid decrease during puffing stage and stayed on the
exponential curve again at the last drying step. The abrupt change of moisture
content during puffing step is due to the fact that the sample was subject to high

temperature and this enhanced the diffusion of moisture through the banana tissue.
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From these drying curve results, it indicated that the drying time was spent
mostly in the last drying stage where the sample moisture content was rather low,
yielding the low rate of drying. Acceleration in drying rate for the last drying
stage using higher temperature of 90°C was not appropriate since the moisture
content of banana was rather low and this led to a rapid rise in sample

temperature, which induces the brown pigment formation.”*"

Fig 2 shows the drying rates of osmotic and non osmotic samples at the
last stage drying. The samples were puffed at the superheated steam temperature
of 200°C. The drying rate was relatively lower in osmotic sample than in the
sample without osmotic. This is because the solid gain in the osmotic sample

. . . . . 10.19
increases the internal resistance to water movement during drying.!'*""!

Fig. 3 shows the effects of sucrose solution concentrations and puffing
temperatures on total drying time. The lower puffing temperature and higher
concentration of sucrose solution provided the longer drying time. During puffing,
the moisture content of sample was decreased faster at higher puffing temperature
and this resulted further in the drying of banana at the final stage which took a
shorter drying time for the sample puffed at higher temperature. In addition, the
banana samples had a higher porosity when puffed at higher temperature, which

could facilitate the movement of moisture.

When comparing the total drying time between osmotic and non osmotic
bananas, it was found that the time required to reach the final moisture content for
the osmotic samples was taken longer. In addition, the required drying time

increased significantly as the sucrose solution concentration increased. The longer
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drying time for the osmotic banana can be explained by a couple of reasons. The
osmotic samples possess the lower porous structure as will be seen in Fig. 6. Also,
the sucrose diffusing into the banana slice is bounded with moisture present at
banana tissue and this binding resulted in the low drying rate as already seen in

Fig. 2.11%1

Color

Table 2 shows the effect of the puffing temperatures and sucrose solution
concentrations on the color of the bananas slices in terms of lightness (L), redness
(a) and yellowness (b) and overall color. The change of color parameters during
puffing is related to the browning reactions where a decrease in L value, an
increase in a value and a decrease in hue angle indicate more browning.[31’32] The
color of the non osmotic product was rather brown, in particular when it was

puffed at the temperature of 220°C which shows the intense brown as interpreted

by the °h value of 69° and L-value of 49.5.

When the banana was treated by sucrose solution before processing steps,
the product color was improved, with less brown. Both the L- and b-values were
higher and the a-value was lower as compared to the corresponding color
parameters for the non osmotic banana processed at the same puffing conditions
as that of the osmotic banana. The color improvement for the osmotic banana can
be explained by the fact that the monosaccharide serving as a main active

component for non-enzymatic browning reactions?”

leaches out during the
osmotic dehydration as previously shown in Table 1. Subsequently the browning

rate is retarded and results in less brown for the osmotic samples than the non

osmotic sample. As shown in Table 2, the osmotic agent concentrations seemed to
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be not affect the osmotic product color, as indicated by L-, a- and b- values and
hue angle, whether it was puffed at 180 or 220°C. The product color had

brownish-yellow.

Shrinkage

Fig. 4 shows the shrinkages of non osmotic and osmotic samples, both
puffed at temperatures of 180, 200 and 220°C. The volume ratio of osmotic
banana samples was significantly lower than that of the non-osmotic ones for all
puffing temperatures, indicating larger shrinkage for the osmotic product. These
results can be explained by the fact that the OH group of n-C¢H;2O¢ in the
solution may interact with OH group in the banana tissue by hydrogen bonding."**
Their interactions resulted in stronger tissue of the osmotic banana and the
resulting tissue may relatively rigid, which leads to more difficulty of expansion
of banana during puffing and subsequently provides larger shrinkage. To confirm
the explanation of the osmotic banana tissue rigidity, both osmotic and non
osmotic samples after the first stage drying were taken to examine their
microstructure and their microstructures were shown in Fig. 5, exhibiting the
different morphological features of the osmotic and non osmotic samples. The cell
walls of the osmotic banana, especially at 35 and 40°Brix, less disrupted, showing
very porous structure, whilst most their cell walls were shrunk or disrupted for the

non osmotic one.

From the microstructure result of osmotic banana, it might be expected
that the osmotic banana should have a high volume expansion or a small
shrinkage at the process end. The experimental result, however, shows that the

degrees of volume ratio for the osmotic bananas at the puffing temperatures of
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180-220°C were significantly lower than those of the sample without osmotic. The
shrinkage of the osmotic banana was in between 54.9 and 67.5%, depending on
puffing temperature and sucrose solution concentration. The explanation of the
higher shrinkage of the osmotic sample is due to the fact that the tissue of banana
after osmotic is strong and rigid, both factors limiting the expansion of cellular

structure during puffing.

Considering the puffing temperature effect, the degrees of shrinkage for
both osmotic and non osmotic banana samples were lesser at higher puffing
temperature. However, the degree of shrinkage, when the puffing temperature
increased, was noticeably smaller for the non osmotic sample than for the osmotic
sample. As shown in Fig. 6, for example, the volume ratio of non osmotic samples
was 82.6% at puffing temperature of 180°C and increased to 103.6% at the

puffing of 220°C. In the case of osmotic samples with 40°Brix, the volume ratio

was 62.6% at 180°C and 67.5% at 220°C.

Fig. 6 demonstrates morphologies of non osmotic banana and osmotic
banana samples prepared from sucrose solution concentrations of 30, 35 and
40°Brix and puffed at temperature of 200°C. The morphologies of osmotic and
non osmotic banana samples were noticeably different. The structure of osmotic
banana samples was dense and exhibited less porous, but it was very porous for
the non osmotic sample. As shown in Fig. 6 (a), the non osmotic banana had a
huge pore with size larger than 1 mm. at the internal area of the sample. The
formation of huge pore implies that there was a rapid vaporization of moisture
inside the non osmotic samples during puffing, resulting in increasing vapor

pressure inside the banana sample and the subsequent cell wall expansion.
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However, the cell wall expansion was occurred rarely in the osmotic banana
samples. From their morphologies, it confirmed the shrinkage results, showing the
high shrinkage for the osmotic bananas and the small shrinkage for the non

osmotic ones.

Texture

The force deformation curve presents the texture characteristics of product.
The product that has many fracture points indicates a crispy characteristic™” and
the number of jags on the force deformation curves indicate the porosity in
sample. Fig. 7 shows the force deformation curves of osmotic and non osmotic
samples at the puffing temperatures of 180, 200 and 220°C. The force deformation
curves of the osmotic samples were clearly different from those of the non
osmotic ones. While the cutting probe was acted on the osmotic samples, the force
reached the maximum point of 250-270 N. after which it was dropped sharply to
zero, without any jag appearance. For the non osmotic samples, on the other hand,
the force acting on the samples after reaching the maximum point did not drop
rapidly to zero: it still appeared the several smaller peaks. From these force
behavior, it can be explained by the fact that the sucrose solution causes banana
tissue loosing the elasticity which in turn provides a sharp drop of force after the
maximum point. These force characteristics indicated that the osmotic banana

after puffing was brittle.

Fig. 8 shows the fracture works of osmotic samples and non osmotic
samples at puffing temperatures of 180 200 and 220°C. It was found that the

fracture works of osmotic samples had significantly higher than the non osmotic
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ones. The increase of sucrose solution concentration let to increase of fracture

work whilst the puffing temperature did not affect the work.

Fig. 9 shows the effects of sucrose concentrations and puffing
temperatures on the textural properties of non osmotic and osmotic banana
samples. Considering at each sucrose solution, the puffing temperature given in a
range of 180-220°C insignificantly affect the textural properties such as hardness,
number of peaks and initial slope. The insignificant effect of puffing temperature
on the textural characteristics for the non osmotic banana samples was also
observed. On the other hand, the sucrose concentration strongly affected such
textural characteristics. Increase in both of hardness and initial slope and decrease
in number of peaks were found with increasing sucrose solution concentration. As
shown in Fig. 9, the banana slices pretreated with 40°Brix sucrose solution had the
highest values of hardness and initial slope but the smallest number of peaks. Such
textural characteristics revealed that the osmotic banana product after puffing had
a harder texture, less crispy and rather brittle than the non osmotic one. The harder
texture in the osmotic banana is related to the interaction between the OH-groups
of banana tissue and sucrose solution®*! which will improve the cellulose strength.

These results corresponded to the morphological features as already mentioned.

From the experimental results, it indicated that although the osmotic
dehydration with sucrose could retard the browning of banana after puffing, but
the texture of banana at the process end might not be favored by the consumers

because of very hard and less crispy of the osmotic banana.

CONCLUSION
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Osmotic pretreatment of banana slices with sucrose can retard the
browning reactions and the subsequent product color was less brown than that of
product without osmotic treatment. The color of osmotic products obtained at
sucrose solution concentrations and puffing temperatures were not notably
different. The color improvement of the osmotic banana was due to the fact that
the monosaccharide existing in the banana and serving as reactive component to
browning was leached out during osmotic whilst the gain in sucrose during
osmotic did not enhance the browning rates. The sucrose diffusing into the banana
allowed more difficulty of moisture travelling to the exterior surface, hence
lengthening the drying time as compared to that of the non osmotic banana. In
addition, the impregnation of sucrose caused the stronger tissue of banana. This
caused the less expansion of banana during puffing, resulting in low porous
structure of osmotic banana after puffing and corresponding poor texture of
product i.e. high hardness and less crisp. The shrinkage was also higher for the
osmotic banana than the banana without osmotic. The increase of sucrose solution
yielded the harder texture and lesser extent of shrinkage. The range of puffing

temperature used in this study could not improve the aforementioned qualities.
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Abstract. High porosity of dried banana foam could quickly adsorb the moisture from the
air during storage, leading to the lost of quality and textural property. The purpose of this
research was to design banana foam porous structure that can resist moisture adsorption
using a stochastic pore network. The textural quality of the structured banana foams
regarding to hardness and initial slope was also determined. A 2-D network of cylindrical
pores was used to represent the voids inside the banana foam and the moisture movement
inside the individual pore segments was described by Fick’s law. A network size of
23x 264 accounting for 12431 pores was used. The pore size distributions of dried banana
foam for the foam densities of 0.21, 0.26 and 0.31 g/cm® were characterized by binary
image of SEM. The result shows that the stochastic pore network could qualitatively
describe the adsorption experimental results. The rate of moisture adsorption depends on

both pore size distribution and the arrangement of pores within network.

Keywords: adsorption, pore structure, snack, texture property

INTRODUCTION

Moisture migration plays a part in almost all of the
chemical and physical changes that occur in the
production of dried crispy products e.g. ready to eat
cereals, biscuits and snack foods. (Cauvain and
Young, 2000). Quality change is, for example,
texture and color. The rate of moisture migration into
porous food is governed by the environmental
conditions, i.e. relative humidity and temperature.
Also, it depends on the porous food structure. The
dried crispy products try to achieve moisture
equilibrium with their surroundings so that the
moisture may be lost or gained with time. If moisture
adsorption occurred from any exposed surfaces, the
relative humidity would not be uniform throughout
the product. This RH gradient means that moisture
will gradually migrate from the outside to the centre
of the product through the porous structure in order
to restore equilibrium atmosphere.

The moisture transport in porous foods can be
governed by different mechanisms. Diffusion of
moisture may be divided into molecular diffusion,
capillary diffusion, Knudsen diffusion, etc. Among
these, molecular diffusion is the most important
phenomenon that has a major influence. In molecular
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diffusion, gases or liquid molecules transferred from
a region of high concentration to a region of low
concentration due to the random motion of the
substance. In general, the Fick’ s law can describe the
diffusing molecular within pores and other
interconnected voids in the porous solid. The
molecular diffusion is defined as the net transport of
gases and liquids on a molecular scale due to a
concentration or partial pressure gradient throughout
a medium (Saravacos and Maroulis, 2001). Each of
these diffusion mechanisms is difficult to study
independently and the effect of porous microstructure
is lumped into effective parameters. However, more
recent works studied the discrete model (or pore
network model) to overcome the limitations of
continuum model by mapping pore sizes and
topology of porous food onto the network model
(Yiotis et al., 2005; Prat and Bray, 1999; Blunt, 2001;
Segura and Toledo, 2005).

Pore network models represent porous media as
simplified randomly connected sets of large and
small pores with fluid flow. The network models
have been applied mostly in theoretical study and
used to describe the experimental observations.
Banana foam mat in this study is considered to be a
high porous and this product could quickly adsorb
the moisture from the air when exposed to the



surrounding, leading to the loss of crispness. A better
understanding relation of moisture transfer and its
microstructure can therefore reduce or prevent the
quality change in the banana foam. The effect of
porous structures on moisture migration is of great
interest. The study of the effect of porous structure
on the moisture migration in porous foods during
adsorption has limited in the literature. Prakotmak et
al. (2010) studied the effect of densities of banana
foam mats, characterizing different porous structures,
on the moisture adsorption rate.

In addition to the porous structure, the arrangement
of pores within network is also important to transport
of moisture. Prachayawarakorn et al. (2008)
theoretically studied the effect of pore architecture
assembly on moisture evaporation rate and found that
the minimum shielding network, large pore assembly
exposed to the exterior surface, enhanced greatly the
drying rate. On the other hand, the maximum
shielding network, which is small pores allocated
onto the network exterior, exhibits the slowest drying
rate. Similarly, Pillai et al. (2009) studied moisture
evaporation in dual-porosity porous medium using
square network model and found that when the lower
porosity material (smaller pore) covered the material
containing large pore can limit the evaporation rate
and the result became converse when the high
porosity material (larger pore) exposed to the drying
air.

Limited information concerning the effect of two-
layer products on moisture transport is available in
the literature. The objective of the present study was
to design the banana foams structure to resist
moisture migration using a two dimensional
stochastic pore network. The network model results
were then compared with the adsorption experiments.
The textural property of dried banana foam was also
characterized by initial slope, number of peaks and
maximum force.

DRIED BANANA FOAM PREPARATION

The banana puree with 5% fresh egg albumen, used
as foaming agent, were foamed to densities of 0.3,
0.5 and 0.7 g/cm’. The density was determined by
measuring the mass of a fixed volume of the foam.
The banana foams was poured slowly into a steel
block and then placed on a mesh tray, which was
covered with aluminium foil. After that, it was dried
to about 3% kg/kg d.b. using 80°C and a 0.5 m/s
superficial air velocity. The banana foam prepared
from the initial foam densities of 0.3, 0.5 and 0.7
g/lem® can produce the dried banana densities of
0.21+0.02, 026%0.02 and 0311001 g/em’,
respectively. The product thicknesses after drying
were 2.8, 3.2 mm and 3.5 mm for the densities of
0.21, 0.26 and 0.31 g/em’, respectively. For dual
density preparation, the first density of banana foams
was poured into a steel block with a thickness of 2
mm and dried by hot air for 1 h. After that, the
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second density of banana foam was poured on it and
dried again by the hot air for 2 h.

ADSORPTION EXPERIMENT

Moisture adsorption experiments were carried out
using the static method. Samples were placed into the
glass jars contained a saturated potassium iodine
solution (KI) which provided the relative humidity
(RH) in a range of 66-68% at the temperatures of
35°C. The jars were placed in the temperature-
controlled oven with a precision of +1°C (UFE500,
Memmert, Germany). Samples were weighed at
different exposure times ranging from 1 to 80 h. A
small amount of toluene held in a vial was fixed in
the glass jars in order to prevent microbial spoilage
of the samples. Moisture content of each sample after
reaching the equilibrium condition was determined
by drying it with the hot air oven at a temperature of
103°C for 3 h. As compared to the AOAC procedure
(AOAC, 1995), the error from this method was
approximately 0.4% as reported by
Thuwapanichayanan et al. (2008). The experiment at
each sorption condition was repeated three times and
the mean value was reported.

SEM PHOTOGRAPH

The morphologies of dried banana foam mats were
characterized using scanning electron microscope
(SEM) with an accelerating voltage of 10 kV. Before
photographing, the specimens were cut into a
dimension of 5x 5 mm and then glued on the metal
stub. The samples were coated with gold, scanned,
and photographed at 15X magnification.

TEXTURE ANALYSIS

The effects of moisture content and porous foam
configuration on the product texture were determined
quantitatively. The initial moisture content of the
banana foam was about 0.038 kg/kg db. A
compressive force was applied to the sample using a
5 mm spherical probe moving down at a constant
crosshead speed of 2 mm/s. The hardness was
defined as the maximum force of the force-
deformation curve and the crispness was
characterized by the number of peaks and the slope
of the first peak. Eight samples were tested and the
average values of hardness and crispness were
presented. All experiments were performed at 24°C.

GENERATION OF THE PORE NETWORK

In this study, the microstructure of single banana
foam mat can be represented by a two dimensional
network of randomly connected pores. Each pore in
the network had a constant connectivity of 4. In this
work, pores are assumed to be cylindrical shape with
their diameter assigned according to the experimental
pore size distribution, and each pore in the network
had the same pore length and was denoted as L. The
pore diameters determined from this study was



characterized by SEM. Fig. 1 illustrates an example
of a 2-D stochastic pore network with a small size of
16x 40, defined as the number of pore junctions in
the wvertical direction multiplied by those pore
junctions in the horizontal direction. This network
size consists of 1336 pores. The pores in this figure
were presented by black color and solid by white
color.
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Fig. 1. An Illustration of 2- D stochastic pore
network with a size of 16x40

However, for calculating the pore diffusivity, we
used a large network size, with a number of pores of
the network corresponding to number of pores in the
real sample. The single foam densities of 0.31, 0.26
and 0.21 g/em’ had the network sizes of 26x 291,
23% 264 and 20x 231, respectively, and their sizes
were accounted for 15449, 12431 and 9491 pores,
respectively. These numbers of pores were estimated
from the number of pores in the unit area of sample
that was obtained from SEM. The length of each
pore, L, was calculated by dividing the thickness of
banana foam sample by number of vertical pores in
each row. The average value of L was equal to 133

pm.

DIFFUSION IN A SINGLE PORE

In this work, moisture adsorption between
surrounding air and banana foam mat occurred under
isothermal condition. The water vapor from the air
will be adsorbed at the sample surface and then
moves in the liquid form through interior area via the
pores. The moisture diffusing through each pore in
the network, whether the pore is allocated in
horizontal or vertical direction of the network, can be
described by Fick’s second law:
2
M _, (a_M] o
ot Pl oox?
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where M is the moisture content (kg/kg d.b.), ¢ the
adsorption time (s), D, the water diffusivity in pore
(m?*/s), and x the distance along the pore length (m).
The migration of moisture from the surrounding air
to the banana foam surface occurred specifically at
the top surface and no moisture transferred at the
bottom surface of the network since the banana foam
mat was placed on an opaque glass dish. The
constant diffusion coefficient at a given adsorption
condition was assumed and the moisture profile in
the pore at the beginning was uniform along the pore
axis:

M=M, :t=00<x<L

2
where M is the initial moisture content (kg/kg d.b.).
Boundary condition for pores at edges of network

From the prepared sample size, it indicated that the
surface area at each sample side was remarkably
smaller than that at the top surface. Hence, the
moisture transferring from the surrounding to the
pores allocated at the three sides of sample was
small, as can be seen in Fig. 1, and the three sides of
the pore network are reasonably presented as
impermeable surface. Accordingly, the boundary
condition for the pores allocated at these three sides
of the network is set as:

o
ox dr,

=0 :>0

3)

where d is the pore diameter (m) and subscripts i and
j are the positions of the pore in the network. The
positions of outer pores are represented as d,,
d; 4 ..., d; g for the pores at the left edge of network,
Ay, di g ..., dyy+, for the pore at the right edge and
dy 1, dyp ..., dysp g for the pores at the bottom edge.
Subscripts H and V" are the number of columns and
rows of the pores on the network, respectively.

Boundary condition for the pores at top surface of
network

For the periphery pores positioned on the top of the
network, such as d,y, dyy, ..., dy+;y, the moisture
moving from the surrounding to those pores was
occurred by convection and the boundary condition is
set by:

DP(B—MJ b (M,~M,) 10 (&)
ox d,)

where 4, is the convective mass transfer coefficient
(m/s), M, the equilibrium moisture content (kg/kg
d.b.) and M, the moisture content at the sample
surface (kg/kg d.b.). To calculate the moisture
concentration of the pores inside the network, a finite
difference method was used. An individual pore in
the network was divided into »=I2 intervals as
shown in Fig 1 and Eq. (1) was discretized using the
explicit method as follows:
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where v = D At / Ax? is the Fourier number, pandn

p+l P _1)— ( r
M'l,d,',j + M,,,d,.’j (20{ 1) o Mn+1,d,-,j

the respective indexes of the present time and of
nodal position along the pore axis. The Eq. (5) is
used to calculate the moisture content for the inner
pores of network. The boundary conditions in Egs.
(3) and (4) can be written respectively as:

1
M}f’;l_d_ +MP 0 2a-1)- 2a(MnP+L 0 ): 0 (6)
M;j;jd_(y+ H-mp i~ =0 (7)

where ¥ =hmAx/Dp. The moisture adsorption rate

0;; (kg/s) for the individual pores can be calculated
by:

dM ;. (x,t)

_p. g2 p |
Qd,.,j =p 4di,j Dp x ®)

x=L
The finite difference approximation of Eq. (8) is
Mp+1 _ Mp+1
_p Egpp | Ty

Ou, =P 4 dij-D, Ax ©)

x=L

where p is the dried banana densities (kg/m®) and

MP *! is the moisture contents at pore junctions.

Mass balance for the network

To determine the moisture contents at the pore
junctions for the inner pores of the network, the mass
balance of moisture content at the inner nodes of
network was made, assuming no accumulation of
moisture at each pore junction within the network,
which is thus expressed by:

Z Qdi,j =0

{u.v}

(10)

where X is over all the pores, dj;, that connected to
the pore junction (#,v), and u,v are the coordinate for
a pore junction in the network. Substituting Eq. (9)
into Eq. (10) and solve it for the moisture contents at
the pore junctions. After the moisture contents at
nodes of the network were known, the average

moisture content M envork of network can then be
calculated using the following equation:

d?.
_ Py 2/ LLM%(x,z)dx
M(t)nerwork = dz (11)
z 4
Z-LY "

where Z is number of pores in the network. All
computations were implemented using Intel C++
Compiler (Intel® Software Network, 2009).
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RESULT AND DISCUSSION
Pore size distribution

The pore size distributions of the dried banana foam
at densities were shown in Fig. 2. These pore size
distributions were determined from the cross-
sectional view of samples from SEM using image
analysis. The sample with a foam density of 0.31
g/em’ had small pores in the range of 7-120 pm
accounting for 63% of the whole number of pores
and for 37 % with the pores larger than 120 pm. For
the densities of 0.26 and 0.21 g/em’, it had the
proportions of small pores accounting for 57% and
43% respectively, which was lower than that of
sample at the density of 0.31 g/cm’. The porosity of
sample at the density of 0.31 g/em® was relatively
higher due to higher number of large pores. The void
area fractions for the banana foam densities of 0.21,
0.26 and 0.31 g/cm’ obtained by counting the pore
area of binary images, were 31, 26 and 22%,
respectively. From these characterizations of porous
banana foam, it indicated that the high void area
fraction for the low banana foam density resulted
from the large pore size assembly although the
number of pores in the sample was smaller.

80
= = -0.21g/cm?
meslieze (), 26 g/CM?®
= (.31 g/cm?®

70 1
60 -
sof [ F
40| *
30+
20}

Pore size distributions (%)

10

0 T T T = ™
0 100 200 300 400 500
Pore diameter (micron)

600
Fig. 2. Pore size distributions of single banana foam

Diffusion in single foam density

The pore diffusion coefficients for three banana foam
densities at 35°C and different relative humidities are
shown in Table. 1. The diffusion coefficients were
obtained by using the optimization technique with the
golden search.

Table 1. Estimated pore diffusivity for three banana
foam densities at 35°C and relative humidities with
R’-values above 0.96

RH D,x10” (m%/s)

(%) 021 g/em’ 0.26 g/cm’ 031 g/em’

32 2276%0230° 2.0721£0.193®  0.903 £ 0.295°
50 2304%0210° 2.149 + 0.238% 1.024 £ 0.480¢
67  2204%0.185" 1.990+0.183% 1.102 % 0.280°
75 1.941+0.219® 1.686+0.241° 0.876 & 0.405°

Values in the table with different superscripts mean that the values
are significantly different (p < 0.05).



The root mean square error RMSE was set as the
objective function. The calculation will be stop when
the value of RMSE was lower than 10® The RMSE is
defined as:

1/2
1 K J—
RMSE=|:EZ(M(t)exp _M(t)nerwork)z:| (12)
n=l
where M(?).,, is the experimental moisture content of
material at time ¢ M(?)

moisture content, and K is the number of the
experimental data.

is the predicted

network

The effects of relative humidity and banana foam
density as well as their interactions on the values of
moisture diffusion coefficient were examined by the
univariate full factorial analysis of variance
(ANOVA). Duncan’s multiple range test was used to
indicate the difference of means at a confidence level
of 95%. The results from the statistical analysis
shows that the relative humidity did not affect the
moisture diffusion coefficient, but the banana foam
density significantly affect the diffusion coefficient.

(c) 0.31 g/em’

Fig. 3. SEM micrographs of dried banana foam mats
at different foam densities

The later result is rather interesting that even though
the pore size distribution was included into the
network model, the diffusion coefficient still varied
amongst foam densities. The strong influence of
banana foam density on the diffusivity may be
caused by the different morphologies amongst
banana foam densities. As shown in Fig. 3, shape of
pores for the dried banana foam at density of 0.31
and 0.26 g/cm’is rather circle. However, when the
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foam density was lower particularly at 0.21 g/cm’,
pore shape was elongate. Different pore shapes may
affect the transport property. This is because the
difference of pore shapes can result in the different
arrangements of solid matrix in the porous material
and provides further the different length scales of
travelling path of fluid and the resulting mass
transport property (Segular and Toledo, 2005;
Stewart et al., 2006). Stewart et al. (2006)
theoretically studied the pore geometry effect on
intrinsic hydraulic permeability of porous material
using lattice-Boltzmann method and found that
porous material, with the same porosity but different
pore geometries, provided different values of
hydraulic permeability.

Fig. 3 shows typical scanning electron micrographs
of cross-sectional views of three banana foam
densities, 0.21, 0.26 and 0.31 g/cm’. The pore shape
was rather more circular at the foam density of 0.31
g/lem’than at the other two foam densities, which
exhibited more elliptical. The higher gas bubbles
were produced at lower foam density and these
bubbles were presented near together which can then
be coalesced simply. The large gas bubble size is
thus not quite stable and collapse easily. In addition,
its shape can be changed, due to the stress formation
during drying.

Adsorption kinetics and validation

Fig. 4 shows the moisture adsorption kinetics at
temperature of 35°C and 67% RH for the banana
foam densities of 0.21, 0.26 and 0.31 g/cm’. The
adsorption rate was high at the beginning of
adsorption, and gradually decreased as the moisture
content increased.

0.24
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Fig. 4. Moisture adsorption kinetics at 35°C and
relative humidity of 67% for banana foam densities
0f0.21,0.26 and 0.31 g/cm’

The rate of moisture adsorption was highest for the
foam density of 0.21 g/cm’ and became slower with
the higher banana foam density. The low adsorption
rate for the high banana foam density can be
attributed to the low porosity. When the moisture
content of product was changed with the exposure
time or in the equilibrium with the exposed
condition, the moisture content at the equilibrium
were not identical amongst the banana foam
densities, presenting the strong influence of porous



structure on the equilibrium moisture content. As
shown in Fig. 4, the lower equilibrium moisture
content was observed at the higher banana foam
density, which corresponded to the lower porosity.
The moisture diffusion coefficients shown in Table 1
were used to calculate the moisture content of banana
foams and found that the stochastic pore network can
predict the moisture content in agreement with the
experiments.

Porous structure design

From the results in the previous section, it indicated
that the porosity or the porous structure play an
important role in moisture migration in food. If the
pore assembly taking from the different pore size
distributions was arranged onto the 2-D network in
order to produce the two-layer network, it is
interesting to see how such a porous structure
affected the adsorption rate. To achieve this, we
proposed two types of two-layer network, small pore
assembly or large pore assembly at the upper layer
network. For the lower layer, the pore assembly was
assigned from a particular pore size distribution, and
the pore size distribution from the dried banana foam
density of 0.26 g/cm® was chosen because the texture
at this density was rather crispy and not very hard,
which was suitable for the snack as reported by
Thuwapanichayanan et al. (2008). For the upper
layer, the pores were assigned from the pore size
distributions at foam densities of 0.21 and 0.31
g/lem’. The pore size distribution from the foam
density of 0.31 g/em® was allocated randomly onto
the upper half layer of the pore network with a size of
23%264, and this porous structure appeared the dense
layer at the upper part of pore network as illustrated
in Fig. 7b. On the other hand, if pores at the upper
half layer of the pore network were allocated with the
distributive size from the density of 0.21 g/cm’, the
structure exhibited very porous at the outer network
as depicted in Fig. 7c.

0.27
gﬁ 0244
2GS
2 o021 3% 3.2 % é%
2 o018 @’%%g -3 -%
£ 2ET N
g 0.15 - ' A
E %l K} i
S 0124 %%
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3 0.097g° e Dual-density with 0.31g/cm?Upper layer)
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g 0.06 -+, - - = Simulation
003 %
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Time (h)

Fig .5. Moisture adsorption kinetics at 35°C and
relative humidity of 67% of the single and dual-
density of the banana foams and its simulation curve

Fig. 5 shows the simulation results of moisture
uptake of banana foam samples exposed to the static
air at temperature of 35°C and 67% RH. The
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moisture diffusion coefficients from Table 1 were
used for calculating the moisture uptake in the two-
layer networks. The slowest adsorption rate was
evident in the two-layer network of which the pore
sizes obtained from the foam density of 0.31 g/cm’
was laid at the upper half. On the other hand, the
fastest adsorption rate was found in the case that the
pore sizes from the foam density of 0.21 g/cm® was
laid on the upper half layer.

Upper half
p=0.31 g/cm’

Lower half
p=0.26 g/cm’

Upper half
p=0.21 g/em’

Lower half
p=0.26 g/cm’

s

(¢) Dual density, 0.21 g/cm® and 0.26 g/cm®

Fig. 6. SEM micrographs of single and dual-density
of dried banana foam mats

To validate the simulation results, the two layer
banana foams were produced and their morphologies
are shown in Figs. 6b and 6c, showing low porosity
and high porosity at the upper layer respectively.
From the experiments, it indicated that the 2-D
stochastic pore network can predict the moisture
uptake throughout the exposure time in agreement
with experiments, with the R’-value of 0.95. The
results from both simulation and experiments
revealed that as the small pore assembly was
positioned near the surface which is exposed to the
humid air, it can limit the water vapor diffusing into
the porous material, thus delaying the moisture
uptake in the porous food. On the other, when small
pore assembly in a porous food is covered with layers
of porous material with large pores, such a porous
structure provides less diffusional flux resistance and
thus greatly facilitates the moisture transport to the
porous foods. As shown in Fig. 5, the moisture
uptake of the two-layer banana foam in the case of
foam density of 0.21 g/cm’® laid on the upper layer
was faster than that in the single foam density of 0.26



g/em’ and this porous structure is not preferred for
the crispy food, which is sensitive to moisture.

Graphical visualization

The visualization using colour represented the
moisture content helped understanding of the
interactions between moisture and pore structure. For
calculating the moisture content, we used a large
network size with 23 x 264. However, middle part of
the large network was selected to represent the
moisture movement in the idealised porous food and
the visualization is shown in Fig. 7.
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(c) Banana foam mats with dual density of
0.21 g/em’ on top (0.127 kg/kg d.b.)

Fig. 7. Visualization of moisture contents in pores of
banana foam mats at 3h of adsorption time

Each pore was colored according to its moisture
content. The representative colours with 8 shades
from dark red to blue were used for the

corresponding range of moisture from 0.038 to 0.210
kg/kg d.b. At the beginning of adsorption, every pore
within the network contained the moisture content of
0.038 kg/kg d.b. When the moisture migrated to the
porous food, the concentration of moisture diffusing
through pores positioned at the same horizontal plane
was different, implying the different fluxes of
moisture into pores due to the random assembly of
pore sizes.

The moisture diffusing through the pores positioned
at the same horizontal plane in Fig. 7a was different.
When moisture migration to the network, moisture
diffusing through the pores positioned at the same
horizontal plane was different, reflecting the random
assembly of pore sizes. With the two-layer networks,
transport of moisture through pores was noticeably
different from the single layer network. The moisture
is difficult to reach the pores allocated at the lower
part of network as shown in Fig. 7b, pores at the
bottom half network coloured by dark brown
corresponding to the moisture contents of 0.04-0.06
kg/kg d.b. On the other hand, it can arrive easily as
the large pore assembly was dominant at upper part:
moisture content in the pores at the lower part as
shown in Fig. 7c was given in the range of 0.06-0.13
kg/kg.d.b.

Texture of dried banana foams

From Fig. 8a shows the curves of the force versus
displacement recorded by texture analyzer of single
and dual foam density. The direct force was applied
until the sample has completely cracked. The jagged
pattern of the force-deformation curve reflects the
crispy behavior of the banana foam mats.
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Fig. 8. Variation in force-deformation curve during
compression test (a) and the textural parameters (b-d)
at initial moisture content of dried banana foams
(0.038 kg/kg d.b.)

As shown in Fig. 8a, the force curves were different
the banana foam samples, presenting the strong effect
of porous structure on textural property. The initial
slope, maximum forces and number of peaks of
single foam density and dual density were
significantly different.

The dual density with high density of 0.31 g/cm’ laid
on the upper layer was crispier than the single density
of banana foam as indicated by the number of peaks
which showed higher than 20 for the dual density
while it was 12 for the single density. In contrast, it is
not crispy for the dual density with density of 0.21
g/cm’ laid on the upper layer.

CONCLUSIONS

e The 2-D pore networks comprised of the

cylindrical pore segments have been developed to
determine the diffusion coefficient of moisture in
pore and found that the diffusion coefficient
determined from the moisture adsorption kinetics
did not vary with the relative humidity but varied
with the banana foam density, due to different
pore shapes at the dried banana foam densities.

The transport of moisture, from the humid air,
through the 2-D stochastic pore network is highly
complex. The diffusion rate of moisture moving
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through the individual pores within network was
very different, indicating that the inherently
random assembly of pores with different sizes
governs the moisture migration. Such complex
can be demonstrated through the visualization
with the color code.

The stochastic pore network can be applied
successfully to design the porous structure and is
able to predict the results in agreement with the
experiment.

The characteristic of porous structure was
important to textural property of food besides the
moisture migration. The two-layer porous
structure of banana foam mats with the high foam
density having most small pores laid on the upper
layer of sample could resist the moisture
adsorption and provided the crispy texture. On the
other hand, the low crispness and rapid moisture
migration was found in the banana foam mat with
the low foam density characterizing most large
pores laid on the upper layer of sample.
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Optimization of the superheated steam puffing of banana
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Khamphanh Boualaphanh"” Somkiat Prachayawarakorn” Somchart Soponronnarit” Warunee Tia"

Abstract

The purpose of this research was to investigate the effects of superheated steam temperature and puffing time
and moisture content of banana before puffing on physical properties of banana slice i.e. shrinkage, texture and color.
The banana was dried with three drying steps, hot air drying at a temperature of 90°C and a velocity of 2 m/s in order to
reduce moisture contents to the range of 20-30% d.b. followed by puffing it with superheated steam at temperatures of
160, 170 and 180°C and puffing time of 1, 2 and 3 minutes. After puffing step the samples were dried by hot air at the same
conditions at the first step until its final moisture content reduced to 3% d.b. The results showed that the high puffing
temperature and long puffing time caused high values of redness (a) and low values of both lightness (L) and yellowness
{b). In addition, high puffing temperature resulted in low shrinkage, low bardness and high crispiness. The optimal
puffing conditions were at the superheated steam temperatures of 180°C, puffing time of 1.4 min and moisture content
of banana before puffing 26.16. %d.b.

Keyword: Banana/ Color/ Puffing/ Shrinkage / Superheated steam/ Texture
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Coefficient Texture shrinkage Color
Hardness Number of Peaks  Initial slope L-value avalue  b-value
Intercept
[30 4208.59* -1027.46* - 774 44% 1834.90%  517.61% -17368%  57.799%
Linear
51 -52.166% 13.478* 10.458* -17.981% 572 0.431 -0467
]32 92.081 9.083 -38.625 -12.698* 3.648%  -6.614%  -0206
B3 17.614 -10.211 -6.293 -16.933% 1.893*  -0.714 0.206
Quadratic
B4 0.166*% -0.046 -0.035 0.049* 0.017 -0.0014  0.0014
B, -1718 -4278 -3.888 4007  -1209 0212 -0611*
B6 0.208 -0.131 -0.037 0.261* -0.049 0.0244  -0.0014
Interaction
B, -0.468* 0.058 0.304 -0139  -0039  0.060*  0.011
Bs -0.165% 0.100* 0.048 0.023 -00016  -00016  -0.0013
ﬁg -0.211- -0.1 0.075 0.54]1 0.249 -0.135* 0.025
R’ 0.8 0.59 0.53 0.87 0.6 0.69 0.52

* Significant at 95% level
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Porous structure in food, a very important characteristic to crisp product, can be
produced by intensive heating technique. However, the color of puffed product
may have intense brown. To limit the brown reaction, the banana slice needed to
be treated before puffing. This research was therefore to study on the effect of
osmotic treatment on quality of puffed banana. The banana with 20-23°Brix total
soluble solid was immersed into sucrose solution concentrations at 30, 35 and
40°Brix and dried at 90°C using hot air until the sample moisture content
reduced to 30% dry basis (d.b.). After that, the banana slices were puffed by
superheated steam at 180, 200 and 220°C for 150 s and dried again at 90°C until
the sample moisture content reached 4% d.b. From the experimental results, it
was found that the osmotic dehydration can improve the color of banana. The
puffed osmotic banana was less brown than the puffed none osmotic banana as
indicated by the L-, a- and b- values. The puffing temperature and osmotic
concentrations did not enhance the browning rate. The osmotic dehydration
limited the banana cell wall expansion, and resulted in the significantly larger
shrinkage of osmotic sample than the none osmotic one. . In addition, the
osmotic product had less porous as visually observed by scanning electron
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microscope. Such morphology of osmotic banana directly affected the textural
properties in terms of hardness, initial slope and number of peaks.

Keywords: Puffing, Banana, Drying, Osmotic dehydration, Texture, Color

Introduction

Bananas, one of the most popular fruits in tropical climate country, deteriorate
rapidly after harvest. To reduce their losses, bananas are processed to various
types of product such as fried banana, osmotic banana and puree banana. The
fried banana is the one of those products which is more favourite because it
attain crispy texture (Ali, 2008). However, the obtained product contains high oil
content and can not be kept for an extended period of time due to possible lipid
oxidation leading to rancidity. Thus, the free oil crisp banana is an alternative
product. To obtain the crisp texture, the food material needs high porosity.

There are several drying techniques to produce high porous food material such
as high temperature and short time drying (Saca and Lozano, 1992; Hofsetz et
al., 2007; Varnalis et al., 2001), microwave drying (Maskan 2000; Erle and
Schubert, 2001) and low pressure superheated steam drying (Devahastin et al.,
2004; Elustondo et al., 2001). In this work, the high temperature and short time
drying technique was chosen.

During puffing process, some amounts of moisture or gas inside the food
suddenly vaporize or expand. It can build up pressure and force the food
structure to be expanded, thereby producing the porous structure of food
products. The product characteristics after puffing has low bulk density (Kim
and Toledo, 1987; Saca and Lozano, 1992). Moreover, the puffing process can
save drying time (Sullivan et al, 1980; Saca and Lozano, 1992) and provide 40%
energy saving as compared to the conventional hot air dehydration (Sullivan, et
al , 1980).

The puffing medium normally uses the hot air since it is convenient in practice.
For this research, the superheated steam will be used because the steam
condensation at the material surface during the initial drying period can release
the latent heat which results in the rapid rise in temperature of food material to
stay at boiling point temperature of water. (Taechapairoj et al., 2003; Rordprapat
et al., 2005) This may increase rapidly vapor pressure inside the product and
thus provides a high expansion of product. However, the study of puffing with
superheated steam has been limited in literature. Saca and Lozano, (1992)
studied the puffing of banana using superheated steam at temperature of 152-
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175°C and steam pressure at 0.8-2.8 kg/cm. It was found that the puffed banana
had higher porosity than the conventional air dried product. Although, the
product contained very porous structure, the product color was brown. Such
browning in food is caused by the none enzymatic browning reaction and
pigment degradation.

The way to improve the color of product can be done by osmotic pretreatment.
Sucrose is frequency used as osmotic agent (Krokida et al., 2000; Mandala et al.,
2005; Antonio et al., 2008). During osmotic dehydration, the natural solutes
existing in food material such as reducing sugar, acid and minerals flow out from
food (Islam and Flink, 1982; Shi and Xue, 2009; Sagar and Kumar, 2009) and
they are replaced by osmotic agent. Marquez and Anon (1986) found that
monosaccharide, glucose and fructose, had more influent on brown color
development than sucrose.

Moreover, the sugar pretreatment before puffing process can improve shrinkage
properties. Many researchers studied the effect of sugar on shrinkage properties
of puffed products such as rice (Hsieh et at., 1990; Orts et al., 2000). They
found that the osmotically puffed products had lower shrinkage or higher
expansion volume than the none osmotically puffed products.

As mentioned-above, the objective of this work therefore was to study the effects
osmotic solution concentrations and puffing conditions on the drying
characteristics and quality of puffed banana. The quality parameter were
considered in terms of color, shrinkage and textural properties.

2. Materials and methods

2.1 Material preparation

Fresh bananas were obtained from local market and their soluble solid contents
were given in the range of 20-23°Brix. Before processing, the banana was sliced
into 3.5 mm thickness and blanched by hot water at 95°C for 1 min.

2.2 Osmotic pretreatment

Osmotic solution was prepared by using commercial sucrose with concentrations
of 30 35 and 40°Brix. The banana slices were immersed into various sucrose
solution concentrations and the mass ratio of osmotic media to the sample was
30:1 to avoid the dilution effect. The samples were immersed into the osmotic
solution until the moisture content of banana was not changed.

2.3 Puffing method
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Puffing process used in this studies was consisted of 3 step; drying, puffing and
drying. In the first step, the banana was dried by hot air at temperature of 90°C
and air velocity of 2 m/s. When the moisture content reached to 30% d.b., the
sample was puffed by superheated steam at temperatures of 180, 200 and 220°°C
for 150 s. In the last drying stage, the banana was dried with hot air at the same
temperature as the first stage drying. The final moisture content required at 4%
d.b. At the end of each experiment, the moisture content of samples was
determined by drying them in the oven at 103°C for 3 hr.

2.5 Textural property evaluation.

The puffed banana slices were kept in aluminium foil bag at room temperature
for 3 day before texture test. The banana sample were measured by using the
texture analyzer (Stable Micro System, TA. XT. Plus, UK) with a 5 N load cell.
The samples were fractured with a cutting probe (HDP-BSK type) using blade
speed of 2 mm/s. The probe move down to the banana sample with a speed of 2
mm/s. The maximum compressive force, the initial slope and the number of
peaks (over 50 g force threshold) from force deformation curve were considered
as an hardness, stiffness and crispness, respectively.

2.6 Color measurement

The color of dried samples were measured using a colorimeter (HunterLab,
ColorFlex, UK). In each sample, the measurement were performed at different
six positions and the measurement value was reported as the average value. The
color were expressed as L-value (Brightness), a-value (redness/greenness) and b-
value (yellowness/blueness).

2.6 Shrinkage determination

Ten samples were used to determine shrinkage. The volume of each sample was
determined by the volumetric displacement method using n-heptane as the
replacement medium (Saca and Lozano, 1992). The shrinkage was defined as the
ratio of the dried sample volume to the original sample volume

% shrinkage = ;x 100

where V, and V are the volume of the fresh sample and the volume of dried

sample.

2.7 Glucose, fructose and sucrose determination

Determination of sugar content was performed according to AOAC method
982.14 with some modification. The sample of 5-10 g was pulverised and mixed
with 50 mL water in a 100 mL volumetric flask. 1 mL 15% K4(Fe(CNg))3H,O
and 1 mL 30% ZnSO, 7H,O was added into the solution in order to extract
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protein. After that, it was filtered through filter paper No. 42. The filtered
solution from the last step was filtered through 0.45 pum nylon syringe filter. The
final volume of solution kept at refrigerator until its chromatographic analysis.
The 10 pL aliquots of the filtered solution were injected into HPLC.

The High Performanace Liquid Chromatography consist of a Prevail
Carbohydrate ES column (4.6 mm, 25 cm; Sum)(Alltech, Derfield, USA), a
pump and a controller (Agilent, 1100, USA), autosampler (Agilent, 1100, USA)
and a evaporative light scattering detector (ELSD detector) (Alltech , 500 ELSD,
USA).

The fructose and glucose which are sugar isomers can clearly separate peaks by
gradiant elution in column at 1 mL/min flow rate. The gradient elution was
varied the portion of mobile phase. The mobile phase used contained
acetonitrile and water. The column temperature was kept 30°C and the detector
was carried out at drift tube temperature at 50°C and nitrogen flow rate 1.5
L/min. Peaks of samples were quantified with standard.

2.8 Statistical analysis

The experimental data of color, textural and shrinkage properties was analyzed
by using an analysis of variance (ANOVA) and presented as mean value with
standard deviations. Duncan’s test was used to establish the multiple
comparisons of the mean values. The mean values were considered significantly
different when p <0.05

Results and discussion
1. Effect of Osmotic Concentrations on Water loss and Solid Gain

Table 1 shows the moisture loss, solid gain and the losses of native sugars of
banana slices immersed into sucrose solutions at 30, 35 and 40°Brix. The banana
slices immersed into the higher sucrose concentrations lost the larger amounts of
their moisture content. The possible explanation was related to the osmotic
pressure difference between intracellular fluid in banana and osmotic solution.
When the sample was immersed into the higher sucrose concentration, the
osmotic pressure difference was higher, resulting in the larger loss of moisture
content. At the same time, the solid gain increased, due to the diffusion of
sucrose from the solution into the sample. As shown in Table 1, the solid gain
increased from 24.8% to 32.6% when the osmotic concentration increased from
30°Brix to 40°Brix. From these results, the ratios of water loss to solid gain
increased with the increased sucrose solution concentrations, implying loss of
moisture content larger than the solid gain. This is because the size of sucrose
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molecule is larger than that of water molecules. Hence, the water molecule can
move with a rate faster than the sucrose molecule.

Table | also shows that the native sugars i.e. glucose and fructose disappeared
during osmosis. The remaining amounts of glucose and fructose in the samples
immersed into the sucrose solution concentrations were not rather different; the
percent looses were 84-86% for glucose and 83-85% for fructose. From these
results, it can be observed that the losses of glucose and fructose were nearly the
same amount. This can be described by the fact that the glucose and fructose
have the same molecular weight and this would be expected to have the same
diffusion coefficient. Gekas ef al. (1993) reported that the diffusion coefficients
of2 glucose and fructose in water at 25°C were equal and had a value of 69x10™"!
m°/s.
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2. Shrinkage
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The different scripts presented over the bar mean the significant difference at p< 0.05.

Figure 1 Effects of puffing temperatures and osmotic solution concentrations on
volume ratio.

Fig. 1 shows the shrinkages of none osmotic and osmotic samples both puffed at
180 200 and 220°C. The volume ratio of osmotic banana samples was
significantly lower than that of the none osmotic ones for all puffing
temperature. These results can be explained by the fact that the OH group of n-
Ce¢H 1,06 may bound with OH group in the cellulose of banana by hydrogen
bonding (Allan et al, 2001). Consequently, the banana cell wall become stronger,
allowing the small expansion of cellular structure during puffing and
subsequently providing higher degree of banana shrinkage. The sucrose solution
concentration affect on degree of banana shrinkage.

Considering the puffing temperature effect, it affected significantly the degree of
shrinkage for both osmotic and none osmotic banana samples. The high puffing
temperature provided lower degree of shrinkage. As showing in Fig 1, the
volume ratio of none osmotic sample was 82% at puffing temperature of 180°C
and increased to 103% at the puffing of 220°C.
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Fig. 2 demonstrates morphologies of osmotic banana samples prepared from
sucrose solution concentrations of 30, 35 and 40°Brix and puffed at temperature
of 200°C. The morphologies of osmotic and non osmotic banana samples were
noticeably different. The structure of osmotic banana samples was dense and
exhibited less porous, but it was very porous for the none osmotic sample. As
shown in Fig. 2 (a), the none osmotic banana had a huge pore with size larger
than 1 mm. at the internal area of the sample. The formation of huge pore
implies that there was a rapid vaporization of moisture inside the none osmotic
samples during puffing, resulting in increasing vapor pressure inside the banana
sample and the subsequent cell wall expansion. However, the cell wall expansion
was occurred rarely in the osmotic banana samples. From their morphologies, it
confirmed the shrinkage results, showing the higher shrinkage for the osmotic
banana.

Figure 2 SEM photographs showing cross section of banana slices puffed at
200°C; (a) none osmotic; (b) 30°Brix; (¢) 35°Brix; and (d) 40°Brix.
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3. Texture

The force deformation curves represents the characteristics of crisp product. The
product that was many fracture points indicate a crispy characteristic (Hofsetz
and Lopes, 2005) and the number of jags on the force deformation curves
indicate the porosity in samples. Fig. 3 shows the force deformation curve of
osmotic and none osmotic samples at puffing temperatures of 180, 200 and
220°C. The force deformation curves of the osmotic samples were clearly
different from those of the none osmotic ones. While the cutting probe was
acted on the osmotic samples, the force reached the maximum point about 250-
270 N. after which it was dropped sharply to zero, without any jag appearance.
For the none osmotic samples, on the other hand, the force acting on the samples
after reaching the maximum point did not drop rapidly to zero: it still appeared
the several peaks. This can be explain by the fact that the sucrose solution causes
banana tissue loosing the elasticity which in turn provides a sharp drop of force
after the maximum point. This force characteristic indicated that the osmotic
banana after puffing was brittle.
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Figure 3 Force deformation curves: (a) the none osmotic banana and (b)
the osmotic banana.
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Figure 4 Texture properties of the osmotic banana and the none osmotic
banana.

Fig. 4 shows the effects of sucrose concentrations and puffing temperatures on
the textural properties of none osmotic and osmotic banana samples. Considering
at each sucrose solution, the puffing temperature given in a range of 180-220°C
insignificantly affect the textural properties such as hardness, number of peaks
and initial slope. The insignificant effect of puffing temperature on the textural
characteristics for the none osmotic banana samples was also observed. On the
other hand, the sucrose concentration strongly affected such textural
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characteristics. Increase in both of hardness and initial slope and decrease in
number of peaks were found with increasing in sucrose solution concentration.

As shown in Fig. 4, the banana slices pretreated with 40°Brix sucrose solution
had the highest values for the of hardness initial slope but the smallest number of
peaks. Such textural characteristics revealed that the osmotic banana product
after puffing had a harder texture, less crispy and rather brittle than the
osmotically untreated banana. The harder texture in the osmotic banana is related
to the interaction between the OH groups of cellulose and sucrose solutions
(Allan et al, 2001) which will improve the cellulose strength. These results
corresponded to the morphological features as already mentioned.

4. Color

Table 2 shows the effect of the puffing temperatures and sucrose solution
concentrations on the color of the bananas slices in terms of lightness (L),
redness (a) and yellowness (b).

It was found that osmotic pretreatment can improve the color of banana samples
compared with the color of samples without osmotic pretreatment. The color of
osmotic samples had brownish-yellow but it had yellowish-brown for the banana
without osmotic dehydration. It can indicated by the osmotic sample had higher
of L- and b- values and lower of a-value than the none osmotic samples.

The color improvement of osmotic banana can be explain by the fact that the
monosaccharide which is the main active component for none-enzymatic
browning reaction (Pulis, 2010), leak out during the osmotic dehydration. Thus
the browning rate is retarded and resulted in less brown for osmotic samples than
the none osmotic sample. The osmotic concentration had not affect on the color
of the osmotic samples indicated by L-, a- and b- values which shows
insignificant difference among the samples at various sucrose concentrations.

Considering the effect of puffing temperature, it was found that the puffing
temperature affect on the color of none osmotic samples. The color of none
osmotic samples trend to intensive brown when the puffing temperature was
increased as indicated by higher a value. In contrast, the puffing temperature did
not affect on the product color of osmotic samples.
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Table 2 color of dried osmotic banana slices and puffed none osmotic banana

Puffing 220°C (35 5636+  5.06™%+ 1839+
°Brix) 2.45 0.3 0.54

Puffing 180°C (40 5743+ 502+  18.68™ +

slices.
Product
Drying Condition L a b color
520 5309+ 1681°+ .
Puffing 180°C +1.02 0.3 0.83
51.3% + 5.66+ 16.85" +
Puffing 200°C 1.66 0.25 0.85
6.11°+ 16.3"+ Y
Puffing 220°C 49.5%+1.5 0.21 0.83
Puffing 180°C (30 59.29" 4.87%¢ 19.97%
°Brix) +1.51 +0.26 +0.74 .
Puffing 200°C (30 59.1°7+ 4,93+ 18.89™+ ;
°Brix) 2.73 0.21 1.11
Puffing 220°C (30 57.22%+  541%+ 18.68™ +
°Brix) 2.1 0.33 0.5 |
Puffing 180°C (35 57.01° 502" + 16.65" +
°Brix) +3.02 0.32 0.9
Puffing 200°C (35 5835+  5.40%+ 18.15% +
°Brix) 1.7 0.51 0.50

°Brix) 1.28 0.28 0.97
Puffing 200°C (40 57.31"+ 1871+ (S
°Brix) 1.3 524413 0.83

Puffing 220°C (40  54.19*%+ 5274+ 17.7° +
°Brix) 422 0.32 1.14

Different superscripts values are significantly different at 95+ confidence level.
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Conclusions

Osmotic pretreatment of banana slices can limit the browning reaction so the
color of final osmotic product can improve. The color of osmotic product
obtained at sucrose solution concentrations and puffing temperatures were not
different. In spite of color in product, the osmotic pretreatment provided the
texture of product to be harder and less crispy than the none osmotic banana.
This is because the osmotic product had less porous as revealed by scanning
electron microscope. The shrinkage was also high for the osmotic banana.
Increase of sucrose solution concentration provided lesser extent of shrinkage
whilst increase of puffing temperature did not affect on the textural properties of
product.
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Abstract: Moisture diffusivity is an important parameter to predict the shelf life of food
products. The main purpose of this research was therefore to determine the apparent
diffusivity of moisture in pores of banana foam mat. 2-D stochastic pore network was
used to represent the pore voids inside the banana foam sample and the moisture
movements inside the individual pore segments were described by Fick’s law. To obtain
the moisture diffusivity, the experiments were carried out with standard static method
using saturated salt solutions over a wide range of relative humidities and a temperature
range of 35 to 45°C. Two banana foam densities of 0.3 and 0.5 g/cm’, both having
different porosities, were used to adsorb water vapor under the controlled condition. The
interactions of transport processes within the pore network were illustrated using a 3-D
pictorial representation of network concentration gradients in spaces with colour
representing the moisture content. The network model could describe the experimental
results relatively well. The diffusivity of water in pores was in order of 10~ m?s which
was 9 times higher than the apparent effective diffusivity. For a given temperature, the
pore diffusivities were independent of the foam densities and relative humidity, except for
the case of higher relative humidity of 70%. Moreover, the diffusivity depended strongly

on the temperature.

Keywords: adsorption kinetics, banana foam mat, pore diffusivity, pore network

INTRODUCTION

Moisture migration during food storage is greatly
important to many dry crispy products, such as
biscuits, ready to eat cereals and snack foods,
because the loss of their crispness strongly correlated
to the moisture content. Rate of moisture adsorption
in porous foods depends not only on the
environmental conditions but also on their pore
structures. Hence, understanding and capability to
predict the moisture migration through their void
spaces at different conditions are the main aspects
that cannot be avoided in order to preserve their
quality and to extend their shelf life as long as
possible. To achieve this, model of porous food
material is required and equation of moisture transfer
is needed.

The moisture transport in porous foods can be
mathematically by either a continuum or a discrete
approach. In a continuum model, the porous spaces
are considered as a continuum consistent with its
appearance on macroscopic scale and effective
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macroscopic properties lump all the microscopic
complexities of real pore network, including
mechanisms of mass transfer which may be occurred
by molecular diffusion and capillary flow etc. For
adsorption under isothermal condition, moisture
adsorption occurring in an infinite slab geometry can
be described by

oM

o V(D VM) (D
By using eq.(1), the effective diffusivity, Dy, can
simply be determined from the adsorption
experiments. The effective diffusivity can be

expressed as

€D,
T

Dy = (2)
Tortuosity factor, t, accounts for the fact that the
pore spaces do not provide straight line paths through
the particle, thereby lengthening the diffusive path
and reducing the internal diffusional fluxes. At the
present, however, there is no reference of the actual



diffusivity of water in pore voids, D,. To estimate the
water diffusivity in the pores, the model must include
the information details about the interactions between
internal diffusional fluxes and pores, which
determine the pathways of moisture movement. The
diffusivity of water can be estimated by first
constructing the discrete network models, where
more or less simplified geometry and pore size
distribution are used to describe topology of pore
structure of real material (Mann, 1993; Hollewand
and Gladden, 1992; Androutsopoulos and Mann,
1979). Diffusion equation is then applied to
individual pores of these simulated structures and the
flow of substances through pore segments can be
numerically predicted (Blunt, 2001; Yiotis et al,
2005; Prachayawarakorn, Prakotmak and
Soponronnarit, 2008).

Network models represent the void spaces of a
porous medium by a simple two-or more realistic
three-dimensional lattice in which the large and small
pores are randomly interconnected. Each pore can be
assumed to be cylindrical, slit, triangular and
polygonal shapes. Segura and Toledo (2005) found
that pore shapes used in the network model had an
insignificant effect on the drying characteristic
curves, vapor relative diffusivity and liquid relative
permeability.

As mentioned above, diffusivity data of water in the
pores of the porous foods have not been available in
the literature. The aim of the present investigation
was therefore to determine the pore diffusivity by
using a two dimensional stochastic pore network. The
banana foam mat was used as a representative porous
medium. The Fick’s second law was used to describe
the moisture diffusion in individual pore segments
and an optimization technique was implemented to
determine the pore diffusivity under adsorption
conditions.

DRIED BANANA FOAM PREPARATION

The banana puree with 5% of fresh egg albumen used
as foaming agent was foamed to densities of 0.3 and
0.5 g/cm’. The banana foams was poured slowly into
a steel block with a dimension of 43 x 43 x 4 mm and
then placed on a mesh tray, which was covered with
aluminium foil. After that, it was dried to about 3%
dry basis (d.b.) using 80°C and a 0.5 m/s superficial
air velocity. The sample thicknesses after drying
were 2.8mm and 3.2mm for the banana foam
densities of 0.3 and 0.5 g/cm’, respectively.

ADSORPTION EXPERIMENT

Moisture adsorption experiments were carried out
using the static method. Samples were placed into the
glass jars contained the saturated salt solutions which
(MgCl, 6-H,0, Mg(NOs), 6-H,0, KI, NaCl and KCl)
give the relative humidity (RH) in range of 32-82%
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for the temperatures of 35, 40 and 45°C. The glass
jars were kept in the hot air oven with an accuracy of
+1°C (UFE500, Memmert, Germany). Samples were
weighed at different exposure times until the
moisture content of samples did not change. At high
relative humidity (RH > 74%), a small amount of
toluene was added into a small tube which was fixed
in the glass jars in order to prevent microbial spoilage
of the samples (Kaya and Kahyaoglu, 2005).
Moisture content of each sample after reaching the
equilibrium condition was determined by drying it
with an oven at a temperature of 103°C for 3 h. The
experiment at each sorption condition was repeated
three times and the mean value was reported.

SEM PHOTOGRAPH

The morphologies of dried banana foam mats were
characterized using scanning electron microscope
(SEM) with an accelerating voltage of 10 kV. Before
photographing, the specimens were cut into a
dimension of 5x 5 mm and then glued on the metal
stub. The samples were coated with gold, scanned,
and photographed at 15 x magnification.

To quantify the porous banana foam characteristics
such as pore diameter and pore area, Image J
software was used. Each pixel of the SEM
micrograph was assigned a value of gray intensity
between 0 and 255 and the binary images were
generated. The pixels with gray levels lower than the
selected threshold were assigned as pore, which
appeared as black colour, and the pixels with gray
levels above the selected threshold were set as solid
phase, which appeared as white colour in binary
image. The pore diameter was estimated by the
known pore area by assuming a spherical shape.

PORE NETWORK MODEL

When the pore size distribution of material is known,
these pores are assigned according to their
distribution and allocated randomly onto a lattice. In
this work, the pore was assumed to be cylindrical
geometry and each pore in the network had the same
length. The pores with different sizes were randomly
placed onto the network and this approach provided
pore at any positions within the network independent
to the neighbouring pores. Such random arrangement
of pore assemblies was referred to as stochastic pore
network. Figure 1 shows an illustrative 2-D
stochastic pore network with a size of 23x50
consisting of 2373 pores obeying a pore size
distribution of dried banana foam shown in Figure 6
for the initial density of 0.3 g/cm’, but in calculating
the pore diffusivity, we used a larger network size. In
this work, we considered the 2-D parallelogram pore
networks with a size of 20x 231 consisting of 9491
pores for the sample at the initial foam density of 0.3
g/em® and a size of 23x 264 consisting of 12431



pores for the density of 0.5 g/em’. The distance

between two pore bodies (L) was equal to 128 pm .
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Fig. 1. Illustration of a simple 2-D stochastic pore
network and boundary conditions.

Single Pore

In this work, moisture adsorption between
surrounding air and banana foam mat occurred under
isothermal condition. The moisture moved along the
pore axis and it can be described by Fick’s second
law for the individual pores in the network:

2
=D, ‘ 1\2/[
Ox

The migration of moisture from the surrounding air
to the banana foam surface occurred specifically at
the top surface and no moisture transferred at the
bottom surface of the network since the banana foam
mat was placed on an opaque glass dish. The samples
had the length and width about 11 times of its
thickness and thus, the banana foam mats were
reasonably assumed to be an infinite slab.
Accordingly, moisture movement during adsorption
occurred along the material thickness direction. The
constant diffusion coefficient at a given condition
was assumed and the moisture profile in the pores at
the beginning was uniform along the pore axis,

LY
ot

®)

M=M,; :t=0,0<x<L 4
The length of each pore, L, was calculated by
dividing width of material by NV+1 where NV is the
number of pores in each row of the network; 264 for
the network size of 23 x 264 and 231 for the network
size of 20x 231 were used. Because the surface area
at each sample side was remarkably smaller than that
at the top surface, the moisture transferring from the
surrounding to the pores allocated at the two sides of
sample was small. Hence, the boundary condition for
the pores allocated at both sides of the network is set
as

oM

—=0 :t>0
Ox

)
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For the periphery pores allocated on the top of the
network, the moisture moving from the surrounding
to those pores was occurred by convection and the
boundary condition is set as

Dp[%\/lj:hm(Me—Ms) >0 (6)

To calculate the moisture concentration of the pores,
a finite difference method was used. An individual
pore in the network was divided into n intervals
(N=12) and Eq. (3) was discretized using the explicit
method as follows:

+MP

n-Lr j

MPH e MP _(2(1—1)—@(Mp ):0 @)

1 j o8, L j

where oo = D At / Ax? is the Fourier number, p and n

the respective indexes of the present time and of
nodal position along the pore axis. The boundary
conditions in Egs. (5) and (6) can be written as:

p+l P _1)_ p _
Mn,rljj+Mn’rljj(2a 1) 2oc(Mn+1,ri,j) 0 (8)
MYy -MP —yMPT =0 (9)

i n-ls,

wherey =h  Ax / D, . The moisture adsorption rate

Qi; for the pore with radius of r;;, can be calculated
by

dM. . (x,t)

i

Q dx

(10)

_ 2
i =nr;;D,
x=L

Mass balance in the network

To determine the moisture contents at the pore
junctions, the mass balance of moisture content at the
inner nodes of network was made, assuming no
accumulation at the pore junctions within the
network, which is thus expressed by

> Q
jeli}

where {i} refers to the set of i-adjacent nodes which
are connected to node (i) in the network. After the
moisture contents at every nodes of the network were

=0

fi,j

(11

known, the average moisture content M petwork  of
network can then be calculated using the following
equation

Z 2
ZUZI I.i,j LLM 5, (X: t)dX
7. Lzz 2

n=11i,j

M(t) (12)

network —

To estimate the apparent pore diffusion, D,, the
optimization technique using a golden-search method
was used. The root mean square error (RMSE) for the
residuals of the measured and predicted values of
average moisture content was set as the objective



function with a tolerance of 107, The RMSE is

defined as
| K o 1/2
RMSE = {E > (M(1) o — M(t)network)z} (13)
n=1

where M(t).y, is the experimental moisture content of
material at time t, M(t) wor 1S the predicted

moisture content, and K is the number of the
experimental data. The lower the value of RMSE is
the better the goodness of fit. All computations were
implemented  using Intel C++  Compiler
(http://www.intel.com) to run on a PC compatible
with 3.0 GHz dual-processor and 2 GB of RAM.

RESULT AND DISCUSSION
Effect of temperature and relative humidity

Generally, if the partial vapor pressure or vapor
concentration is greater in the surrounding
atmosphere than in the porous materials, the moisture
is then transferred from the air to the materials. The
adsorption rate is extremely rapid when there is a
great vapor pressure difference between the water in
the air and the water in the adsorbent. The process of
adsorption continues until the adsorbed layer is in
thermodynamical equilibrium with gas or vapour.
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Fig. 2. Kinetics data of moisture adsorption at
different temperatures and relative humidities for the
initial banana foam density of 0.3 g/cm’

The effect of partial vapour pressure on the
adsorption rate can be studied by changing the
temperature or relative humidity and the
experimental results are shown in Figure 2 for the
temperature effect and Figure 3 for the relative
humidity effect.

As shown in Figure 2, the rate of moisture uptake
was very fast during the early period of time and
gradually decreased as the moisture content
approached the moisture equilibrium. The higher
adsorption rate was evident in elevated temperature
and relative humidity. From the preliminary test, the
banana foam mat lost its textures at the moisture
content of 0.07 d.b. From this result, it indicated that
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the banana foam will lost the crispiness when it
exposed to air about 40 minutes under the operating
conditions at the relative humidity and temperature
lower than 75% and 40°C, respectively.
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Fig. 3. Kinetics data of moisture adsorption at 40°C
and relative humidities of 31, 48, 66, 74 and 82% for
the initial banana foam density of 0.3 g/cm®

At the equilibrium state, the equilibrium moisture
content tended to decrease with increasing
temperature; these values were 0.1384, 0.1368 and
0.1308 d.b. for the temperatures of 35, 40 and 45°C,
respectively. This may attribute to the excitation
states of water molecules. At elevated temperature,
the molecules are in higher states of excitation, thus
increasing their distance apart and, in turn,
decreasing the attractive forces between them (Jamali
et al., 2006). Similarly, Kim et al. (1999) and Palou
et al. (1997) found that the sorption capacity or
equilibrium moisture content of crackers and cookies
decreased with increasing temperature.

Effect of initial foam density

Figure 4 shows the moisture adsorption kinetics at
temperature of 45°C for the initial foam densities of
0.3 and 0.5 g/cm’. It can be seen that the initial foam
density strongly affects the moisture adsorption rate;
the lower the initial foam density, the faster the
adsorption rate. This is because the porosities of both
banana foams were different; the void area fractions
for the banana foam densities of 0.3 and 0.5 g/cm’
were 31 and 26 %, respectively.

High porosity in porous foods provides less
diffusional flux resistance and thus greatly facilitates
the moisture transport to those porous foods. In the
porous banana foam studied, the higher void area
fraction for the banana foam density of 0.3 g/cm’ is a
result of the assembly of the giant pores with sizes
larger than 150 um which had a larger number (38%)
than that at the foam density of 0.5 g/cm’ as will be
seen in Figure 6. These huge pores, serving as a
massive transport of moisture through the interior
pores, may be interconnected into almost all parts of
the whole network. Hence, the rapid adsorption is



obviously evident for the foam density of 0.3 g/cm’.
Prachayawarakorn, Prakotmak and Soponronnarit
(2008), who studied the effect of pore assembly
architecture on the drying rate, found that full set of
pores which were assembled in a different way
exhibited different drying rates. As the network
archetype with the large pore assembly allocated onto
the network exterior and the smaller pores to the
interior, the drying rate is very fast as compared to
the other pore architectures.
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Fig. 4. Moisture adsorption kinetics at 45°C and
relative humidities of 31 and 47% for the initial
banana foam densities of 0.3 and 0.5 g/cm’

As shown in Figure 4, the uptakes of moisture
content into the banana foams after the elapsed time
of 10 hours are very slightly and this indicated the
system reaching the equilibrium state. At the
equilibrium, the moisture content of banana foam at
density of 0.3 g/cm® was apparently higher than that
at 0.5 gm/cm’ due to different porosities.

Pore size distribution

The microstructures of dried banana foam mats
characterized by SEM are shown in Figures 5a and
5b for wvarious initial foam densities. The
corresponding binary images are illustrated in
Figures 5b and 5d. The reconstructed porous
structures of the banana foams in binary image
reasonably represented their original images. As
shown in Figures 5a and 5c, the pores were random
in sizes and irregular in shape. Moreover, the
porosity appears to form a mass of interconnecting
pores in the banana foam sample. This would be clear
that it is very task to understand the interactions
between pore structure and diffusional fluxes of
moisture by using a simple mathematical model.

Figure 6 shows the pore size distributions of the dried
banana foams at the densities of 0.3 and 0.5 g/cn?’,
both distributions obtained from the reconstructed
pore structures. The characteristic of distributive pore
sizes was reasonably described by grammar
distribution. The sample with an initial foam density
of 0.3 g/cm’ had small pore assembly in the range 6
to 150 um accounting for 62% of the whole number
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of pores and for 38% with the pores larger than 150
um. For the density of 0.5 g/em’, it appears the
proportion of small pores accounting for 71% which
was higher than the sample at the density of 0.3
g/em’® for the same pore size range. However, the
porosity of sample at the density of 0.5 g/em® was
relatively smaller as mentioned before because the
large pores had a smaller number.

;

(d) 0.5 g/em’

Fig. 5. (a,c) SEM micrographs of dried banana foam
mats at different initial foam densities and binary
images (b,d)

Apparent pore diffusivity

Figure 7 shows the values of pore diffusivity in
banana foam at different temperatures and relative
humidities. Considering at a given temperature, for
example at 40°C, most moisture diffusivity data had
a slight change for the humidity range below 70%,
corresponding to the lower equilibrium moisture



contents than 0.2214 d.b. for all adsorption
conditions used in this study. These results, when
analyzed statistically with Duncan’s test, showed an
insignificant difference. The mean values of apparent
pore diffusivity were in the order of 10 m?/s. In fact,
the orders of magnitude of the diffusion coefficients
depend on the state of substance: for gases,
approximately 107; for liquids, approximately 107
(Aguilera and Stanley, 1999). From this information,
it might be indicated that the transport of moisture
through the banana foam mat mainly occurred in
form of liquid. Similarly, Roca et al. (2006) reported
that the adsorption of water vapor by sponge cake
occurred mainly in liquid phase.
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Fig. 7. Effects of temperatures and relative
humidities on the pore diffusivities for the initial
banana foam density of 0.3 g/cm’: the same letter

means insignificant difference (P>0.05)

Once the relative humidity was higher than 70%
however, the pore diffusivity decreased relatively
with increase in the relative humidity. In this case,
the water vapor adsorption rate was very fast and the
texture of banana foam was subsequently very soften
as observed from the experiments, which leads to
collapse of the pores and decrease of diffusivity as a
consequent result. Figure 7 also presents the effect
temperature on apparent pore diffusivity. As
expected, the apparent pore diffusivity significantly
increased with increase in temperature (P<0.05).
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Figure 8 shows the apparent pore diffusivity of water
for the samples at the initial foam densities of 0.3 and
0.5 g/cm’®. The pore diffusivity was slightly lower at
the foam density of 0.5 g/cm’ than at the density of
0.3 g/cm’ for all experimental conditions. However,
the statistical analysis of these pore diffusivity data
showed the insignificant difference among the two
initial foam densities.
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Fig. 8. Effect of initial foam densities on the apparent
pore diffusivities at different relative humidities and
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Fig. 9. Comparison between pore diffusivities and

effective diffusivities of banana foam mat at 40 °C

and relative humidities for the initial banana foam
density of 0.5 g/cm’

Figure 9 shows the comparison of the apparent pore
diffusivity and the effective diffusivity. The value
effective diffusivity was determined using Eq. (1)
assuming that the moisture migration occurred in one
dimension and the water vapour transported from the
air to the top surface by convection. It can be seen
that the effective diffusivity is approximately 9 times
lower than the pore diffusivity. If the fraction void
area for the banana foam density of 0.5 g/cm’ was
0.26 as previously mentioned, the tortuosity factor
calculated by Eq. (2) was 2.3.
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Fig. 10. Visualization of moisture contents in pores of banana foam at temperature of 35°C, initial foam density
of 0.3 g/em’ and relative humidity of 50%

moisture content near the bottom was approximately
0.05-0.06 d.b., indicating that the liquid water only
forms a thin liquid film near the pore walls and
moisture transfer processes at this time may be
dominated by molecular vapour diffusion.

This value was in a normal range of porous materials
(adsorbents and catalysts) for which the tortuosity
factor varies between 2 and 6, corresponding to the
porosity between 0.3 and 0.8 (Aguilera and Stanley,

1999)
Validation In gdditiog, it is glear from Figure 10 that the Pattem
of increasing moisture content at the same horizontal
As previously shown in Figures 2 and 3, the pore plane for a given time was irregular, reflecting the
network model showed a good fit to the experimental pore structure effect. As a result, the moisture
data throughout the exposure time, with R*-values contents were quite different and this can be seen
above 0.98 at the relative humidity below 67%. clearly at the bottom surface of the pore network for
Beyond 67%, however, the lower accuracy of the exposure time of 3 hours as an example, showing
prediction was found (R values varying between the moisture content of approximately 0.08-0.09 d.b
0.96-0.97); the model predicted the change of in a small area as indicated by yellow colour (see
moisture content of sample relatively faster than the Figure. 10b) whilst the other areas at the bottom
experiment at the early exposure time and became surface were coloured by green corresponding to the
relatively slower at the later time. moisture contents of 0.095-0.105 d.b. For the region

of lower moisture content, the pores positioned at
that region were relatively larger in sizes than the
surrounding nearby pores. Hence, the moisture
diffusing through those large pores was restricted by
the smaller ones since the cross sectional area
available for moisture diffusion is reduced in the
surrounding nearby small pores.

Graphic visualization

Figure 10 shows the moisture distribution in 2-D pore
network during adsorption process. Each pore was
colored according its moisture content. The
representative colours with 8 shades from red to blue
were used for corresponding range of moisture from
0.038 t0 0.138 d.b.

At the beginning, every pore within the network CONCLUSIONS
presumably contained the moisture content of 0.038
d.b. After 1 hour of adsorption, it can be seen in
Figure 10a that the adsorption front moved from the
top to the bottom and this confirmed the assumption
used in the model. Moisture content near the surface
reached the equilibrium value of 0.138 d.b. whilst the

e A 2-D stochastic pore network has been
developed to represent the pore structure of
banana foam and the transport of water vapour in
the pores of the network was described by Fick’s
second law. The optimization technique with a
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golden-search method was used to determine the
diffusivity of pores. The experimental results
showed that the pore network model could
describe the moisture migration inside banana
foam relatively well.

e The interactions between pore structure and
moisture movement were relatively complicated
and the visualization using colour coded moisture
content helped understanding of their interactions.

e The pore diffusivity at a given temperature
insignificantly changed with the relative
humidities, except for the higher relative
humidities of 70% at which the diffusivity had a
decreasing trend. Moreover, the pore diffusivity
depended strongly on the temperature, but was
independent of the initial banana foam densities.

NOMENCLATURE

a, water activities -
Dy effective diffusivity m*/s
D, actual diffusivity in the pore voids m?s
D, apparent pore diffusivity m*/s
hy, convective mass transfer coefficient m/s
L pore length m
M moisture content (dry basis) kg/kg!
N number of interval -
Tij pore radius m
RH  relative humidity %
RMSE root mean square error -
t adsorption time s
T temperature °C
X distance along the pore length m
Z number of pores in the network -
Greek letters
€ porosity -
T tortuosity factor -
p initial foam density g/em’
Subscripts
i initial
m mass
e equilibrium
exp experimental
s surface
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ABSTRACT

Foam-mat drying technique can improve the mass
transfer rate. However, the high porous of dried product
could quickly adsorb the moisture from the air during
storage, leading to the lost of textural property. The main
purpose of this research was therefore to study moisture
adsorption kinetics of banana foam mat and its quality.
The adsorption isotherms experiments were carried out
with standard static method using saturated salt solutions
over a wide range of relative humidities from 31 to 82%,
and a temperature range of 35 to 45°C. Two different
banana foam densities of 0.21 and 0.26 g/cm® were used to
adsorb water vapor under the controlled conditions. A
Fick's second law and the optimization technique were
used to estimate the effective moisture diffusivity (D,g) at
adsorption conditions. Three empirical equations i.e. a
power-law, and two exponential forms for describing the
dependence of the effective moisture diffusivity on
moisture content were tested. The power-law function was
suitably described the variation of the effective moisture
diffusivity with moisture content. The force deformation
curve obtained from a penetration test of the samples
showed that an increase of moisture content of sample
decreased number of peaks and initial slope.

INTRODUCTION

The foam mat drying can enhance the drying rate of
banana since its structure is very porous. The textural
properties in particular hardness and crispiness are better
in the dried foamed banana than the non foamed banana;
the foamed banana provides less hardness and more
crispy. However, the product is very hygroscopic and its
texture could be lost quickly if it keeps undergoing
undesirable condition. To circumvent the undesirable
property, the understanding of moisture adsorption for the
banana foam at conditions is necessary. Application of
food texture analysis and moisture diffusivity will help to
improve food product quality adsorption conditions and
understand the movement of moisture.

Many dry crispy products are sensitive to moisture
migration. Moisture transport in porous foods is very
complicated since the pore system is very complex and
irregular. Generally, the diffusion of gases or liquids
through the complex structure can be simply described by
classical Fick’s second law in which the overall mass
transports are lumped into an effective diffusivity. The
wide ranges of effective moisture diffusivity in different
physical structure of food materials have been reported in

the literature [1] and it has been known to be either
independent or function of moisture content. Nevertheless,
general model for evaluating the effective diffusivity of
food materials have not existed [2]. Many empirical such
as power-law, polynomial and exponential forms were
frequently used to describe the relation of effective
moisture diffusivity with moisture content in the
foodstuffs [3, 4 and 5]. The different result in effective
moisture diffusivity values would be attributed to the
difference in food structure.

The objectives of this study were to select a suitable
empirical equation of effective moisture diffusivity, to
investigate the influence of relative humidity, temperature
and initial foam density on the effective moisture
diffusivity. The effect of moisture content on product
textures was also determined. The textural property was
characterized by initial slope, number of peaks and
maximum force.

DRIED BANANA FOAM PREPARATION

The banana puree with 5% of fresh egg albumen used
as foaming agent were foamed to density of 0.3 and 0.5
g/em’. The density was determined by measuring the mass
of a fixed volume of the foam. The banana foams was
poured slowly into a steel block and then placed on a mesh
tray, which was covered with aluminium foil. After that, it
was dried to about 3% kg/kg d.b. using 80°C and a 0.5 m/s
superficial air velocity. The banana foam prepared from
the initial foam densities of 0.3 and 0.5 g/cm® can produce
the dried banana densities of 0.21 £ 0.02 and 0.26 £ 0.02
g/em’, respectively. The product thicknesses after drying
were 2.8 mm and 3.2 mm for the densities of 0.21 and
0.26 g/cm’, respectively. Five replicates were performed.

ADSORPTION EXPERIMENT

Moisture adsorption experiments were carried out
using the static method. Samples were placed into the
glass jars contained the saturated salt solutions (MgCl,
6-H,0, Mg(NOs), 6-H,0, KI, NaCl and KCIl) which
provided the relative humidity (RH) in range of 32-82% at
the temperatures of 35, 40 and 45°C. All the jars were
placed in the temperature-controlled oven at the operating
temperature with a precision of £1°C (UFE500, Memmert,
Germany). Samples were weighed at different exposure



times ranging from 1 to 120 h. At RH > 74%, a small
amount of toluene held in a vial was fixed in the glass jars
in order to prevent microbial spoilage of the samples [6].
Moisture content of each sample after reaching the
equilibrium condition was determined by drying it with
the hot air oven at a temperature of 103°C for 3 h. The
moisture content determined by the hot air oven was used
instead of the AOAC method [7], the percentage error
from two methods approximately 0.4% [8]. The
experiment at each sorption condition was repeated three
times and the mean value was reported.

SEM PHOTOGRAPH

The morphologies of dried banana foam mats were
characterized using scanning electron microscope (SEM)
with an accelerating voltage of 10 kV. Before
photographing, the specimens were cut into a dimension of
5x 5 mm and then glued on the metal stub. The samples
were coated with gold, scanned, and photographed at 15X
magnification

TEXTURE ANALYSIS

The effects of moisture content on product textures
were studied. The initial moisture content of the banana
foam was about 0.038 kg/kg d.b. The dried banana foam
mats adsorbed water vapour in the glass jars which
controlled relative humidity about 75% by using saturated
NaCl solutions at temperature of 24°C. After moisture
adsorbed for determined time, the test applied a direct
force to the sample using a 5 mm spherical probe at a
constant crosshead speed of 2 mm/s. The hardness was
defined as the maximum force of the force-deformation
curve and the crispness was characterized by the number
of peaks and the slope of the first peak. The data were
analyzed by ANOVA using Duncan’s multiple range test
at p<0.05. Eight samples were tested and the average
values of hardness and crispness were presented. Moisture
content of each sample after the texture analysis was
determined. All experiments were performed at 24°C.

DETERMINATION OF EFFECTIVE MOISTURE
DIFFUSIVITY

The banana foam mats used in the experiments has a
dimension of 43X43X4 mm. This sample size may
provide the transport of moisture in direction of thickness.
The transport of moisture can be described by Fick’s
equation:

OM(x,1) _ 0 ( D, (M) 6M(x,t)) (1)
ot ox ox
or
OM (x,1) 0> M (x,1) L OM(x.0) Dy (M) (2)

=D, (M)

ot Ox ox ox

where D.(M) is the effective moisture diffusion
coefficient (m%s), M the moisture content (kg/kg d.b.), ¢
the time (s) and x the distance along the diffusion path
(m). In this study, it was assumed that the initial moisture
distribution inside the sample was spatially uniform and
the migration of water vapor from the surrounding air to

the foam mat surface occurred at the top surface and no
moisture transferred at the bottom since the sample surface
was placed on an opaque glass dish. Initial moisture
distribution in the sample was assumed to be uniform.
From the above assumptions, the following initial and
boundary conditions can be setup:

M(x,0y=M, 0<x<L att=0 3)

OM(L,t _
DW(M{%)=}ZH,(ME—MS) x=0art>0 (4)

Mzo x=Latt>0 ®)
ox

where M,, is the initial moisture content (kg/kg d.b.), M
and M, the moisture content at the surface and at the
equilibrium (kg/kg d.b.), respectively, L thickness of
material (m), A4, the convective mass transfer coefficient
(m/s). Egs. (2), (4) and (5) can be, respectively written in a
finite difference form as follows:
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In the calculation of moisture content, the sample
thicknesses of 2.8 and 3.2 mm for the respective foam
densities of 0.21 and 0.26 g/cm® were divided in 105 and
120 layers and the time step of 0.01 sec was chosen.

After the moisture content at every node is known, the

average moisture content 37() = can be readily be

e
calculated by integrating the predicted moisture profile
though out the sample thickness and the trapezoidal
numerical integration was used:

N-1
[M{) + My + ZZijAx
(t)pre = =

2L

©

where N is number of layer. The dependence of diffusivity
on moisture content can not be described by any specific
equation. To find the suitable form of equation, three
possible empirical equations obtained from the literature
[9, 10, and 11] were tested with the moisture adsorption
data.

D, (M)= Dy exp(-(e, M + e, 7)) (10)

D, (M)=D,-M" (11)



D,;(M)=D,exp(-a-M) (12)
where Dy, D,, e, e,, and a are the constant parameters.

The accuracy of the models was evaluated by root mean
square error (RMSE) and coefficient of determination (R?)
value. The RMSE is defined as

pre

1 P o 1/2
RMSE{;Z(M«)W—M@) )2} (13)
n=1

where M(t)ﬂp is the experimental average moisture content
of material at time ¢, ﬁ(t)pr) the predicted average

moisture content and P the number of experimental data.

The lower the value of RMSE is the better the goodness of
fit. In this work, a modified Nelder-Mead simplex method
was used to estimate the constant parameters in Eqs. (10),
(11) and (12). The RMSE was set as the objective function
with a tolerance of 10°. The initial guesses obtained by
least squares fits of the data calculated from the method of
slopes [12]. The model with the lowest value of RMSE

and highest value of R? was considered the best model to
correlate the experimental data. The code for numerical
solution was written in Microsoft Visual C++ 6.0
programming language. All computations were
implemented using Intel C++ Compiler [13] and run on a
PC with 3.0 GHz.

RESULTS AND DISCUSSION

Identification of effective moisture diffusivity model

To find the appropriate diffusion equation, two sets of
the moisture adsorption data at 40°C and 66% RH as well
as at 35°C and 83% RH were demonstrated. The estimated
constant parameters for Eqs (10), (11) and (12) along with
their values of RMSE and R? are presented in Table. 1.
The R2-value for all diffusion models is above 0.99 and
the values of RMSE were lower than 0.007. When using
these constant parameters for calculating the moisture
content, it was found that all diffusion models can predict
moisture content in agreement with the experiment as can
be seen in Figs. 1a and 1d.

Table 1 Estimated parameters of empirical models for selected conditions

Experimental conditions

Estimated
parameters 40 oC, 66% RH 35 OC, 83% RH
Eq.(10) Eq.(11) Eq.(12) Eq.(10) Eq.(11) Eq.(12)
Dy 5.947x 107 8908x 10T 3.962x 1070 1.709x 10T 6.326x 10T 1.236x107°
e 11.108 - 4.604 - -
e -27.508 - -7.172 - -
D, - -0.463 - -0.244 -
a - - -3.914 - - -1.210
R 0.996 0.999 0.998 0.995 0.999 0.998
RMSE 0.0035 0.00101 0.00114 0.0065 0.00306 0.00336

However, when considering moisture diffusivity
obtained from the models, it can be seen from Figs 1c¢ and
1f that the diffusivity values of all diffusion models
decrease with increasing moisture content. According to
theses results, it implied that difference in the values of
effective moisture diffusivity determined from the models
was insensitive to the calculation of moisture content; the
moisture contents calculated using the diffusion models
were almost superimposed. Hence, it is very difficult to
identify the suitable model for predicting the moisture
content based on the values of RMSE and R?, and one
more criterion was used to quantify the quality of
estimated constant parameters.

The local relative error (E) was used to identify the
suitable diffusion model and it is defined as

E(t):loow (14)
M., ()

exp

where M,,,(1) is the experimental moisture content at time
t and M_,. (¢) is the moisture content from prediction. If
the estimation of moisture content is perfect, the value of
E at time ¢ is zero. The values of E for the three empirical

diffusion models are shown in Figs. 1b and le, indicating
that the value of E was less than 1% throughout the
exposure time when the relationship between effective
moisture diffusivity and moisture content was described
by Eq. (11) whilst the error from prediction by using other
equations were higher than 1 %.

The prediction of adsorbed moisture content at the
early period with high accuracy is very important to crispy
product since the product quickly loses its crispy texture
when the product adsorbs the water vapor up to certain
moisture content. From this study, the banana foam will
lose crispiness at moisture content about 5% d.b. as can be
seen in section of texture banana foam. From these results,
it can be deduced that Eq. (11) is reasonably used to
describe the moisture adsorption of banana foam. This
power-law model is also used to describe moisture
adsorption in the snack foods such as sponge cake [14],
showing the similar tend of moisture diffusivity with
moisture content.
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Fig. 1. Validation of the moisture uptake estimated and the variation of effective diffusion coefficient with moisture content
of two selected cases

Effect of relative humidity on effective moisture
diffusivity

Fig. 2 shows the moisture adsorption at 35°C and
relative humidity of 32 to 83% for the banana foam
density of 0.21 g/em®. As expected, the faster adsorption
rate was accomplished with higher relative humidity. The
predictions of moisture content using Eqgs. (1) and (11)
agreed well with experimental data over a wide range of
relative humidities.

0.46 £
s A
0.42 IRTE
5 038 -z
= g ¥ z B M ¢
o 0.34 - 'i""i
< R X
2 0304 X .I"'I
£ 0261 gx§’
£ 022 LT
s - ¥ ;-"I"""I' e 35°C,RH=32%
S (181 X Kk . _
o 0 S Y = 35°C, RH=50%
‘2 0.147??1 I‘ .!»—i"!""i”"'i Ao 35°C,RH=67%
S lizr T et e  35°C,RH=75%
0.10 {27 & Fewe%
= 0.06 7;,?;::!,; L X 35°C,RH=83%
: |,’: ------- Prediction
0.02 T T T T T T T T T T T T
0 3 6 9 12 15 18 21 24 27 30 33 36 39

Time (h)

Fig. 2. Effect of relative humidities on moisture adsorption
kinetics at 35°C for the foam density of 0.21 g/ cm®
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Fig. 3. Variation of effective diffusion coefficient with
moisture content at various relative humidities for the
dried banana foam density of 0.21 g/cm’

Fig. 3 shows the changes of Deﬂ with moisture
content at 35°C and at different relative humidities. The
trend of changing D.; with moisture content was very
different amongst relative humidities. The values of D,y
remarkably increased with increasing moisture content at
relative humidity of 32% and when the relative humidity
increased continually, the change of D,; with moisture
content became smaller, as indicated by a lower slope,



until at relative humidity of 83% the D.; trend was
reversed, showing a decrease in D, when the sample
adsorbed water vapor. The D, trends at other
temperatures such as 40 and 45°C were similar to Fig.3,
but the tendency for D4 to decrease with moisture content
occurred at lower relative humidity (66% RH at 40-45°C).

Such different trends of D, can be explained by the
fact that at the relative humidity of 32% the water vapour
can diffuse rapidly through the voids of the banana foam
mats and is then adsorbed onto the pore wall. Since the
equilibrium moisture content at this relative humidity is
very low (< 0.13 kg/kg d.b.), the moisture content at this
level is called bound water. The molecular mobility of
bound water increases with the level of moisture content.
Hence, the increase of D,; with increasing moisture
content could be attributed to contributions from diffusion
in the solid matrix of food and vapour diffusion in pores.

When the relative humidity increased, the water vapor
molecules frequently collide amongst themselves in the
pore space and the condensation of water vapor may occur
inside the pore spaces in particular small pores. The
occurrence of condensation is due to the increasing van
der Waals interactions between vapor molecules inside
pore space. When the pores inside the porous food are
filled with the condensed water, the water vapour cannot
diffuse through these pores and this, in turn, provides the
smaller flux of water vapor diffusing through the porous
food. Hence, the D, decreased. As shown in Fig. 3, for
example, when compared at the same moisture content,
the value of D,y was significantly lower at relative
humidity of 50% than at 75%. From the condensation
effect, the change of moisture diffusivity with moisture
content became smaller at higher relative humidity.

At the relative humidity of 83% at which the banana
foam surface of banana foam started getting wet at
moisture content of approximately 0.12 kg/kg d.b. This
may cause a sharp decrease of D, for the moisture range
of 0.04 kg/kg d.b. to 0.12-0.16 kg/kg d.b. Beyond this
range, the D,ychanged slightly, implying that the transport
of moisture is contributed from the liquid diffusion.

Effect of temperature and initial foam density on
effective moisture diffusivity

Fig. 4 shows the changes of D,y at 35 and 40°C. As
expected, the D yincreased with increase in temperature.
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Fig. 4. Effect of temperatures on the D4 at the foam
density of 0.21 g/em’

Fig. 5 shows the D,y value for both foam densities at
an illustrated temperature of 35°C for the relative
humidities approximately 32 and 50%. As shown in this

figure, at the same relative humidity, the D,y was slightly
lower at the foam density of 0.26 g/cm’ than at the density
of 0.21 g/em’. The difference in the D, can be accounted
for the morphology difference among both samples as can
be seen in the SEM.
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Fig. 5. Effect of initial foam densities on D, at the
temperature of 35°C

(b) 0.26 g/cm’
Fig. 6. SEM micrographs of dried banana foam mats at
different initial foam densities

The microstructures of dried banana foam mats
characterized by SEM are shown in Figs. 6a and 6b for
two initial foam densities. It is clear from these figures that
the sample with an initial foam density of 0.21 g/em® had
larger pore than higher foam density. In the porous banana
foam studied, the void area fractions for the banana foam
densities of 0.21 and 0.26 g/em® were 31 and 26 %,
respectively. High porosity in porous foods provides less
diffusional flux resistance and thus greatly facilitates the
moisture transport to those porous foods.

Texture of banana foams

Fig. 7 shows the curves of the force measured versus
displacement recorded by texture analyzer at different
moisture content levels. As observed from this figure, the
maximum force decreased with increasing the moisture
content levels. The jagged pattern of the force-deformation




curve reflects the higher crispy behavior of the banana
foam mats. When the sample was adsorbed more moisture,
this fracture pattern was absent, revealing the sample is
not expected to have the crisp and hard eating character.
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Fig. 7. Variation in force-deformation curve during

compression test at various moisture content levels for
foam density of 0.21 g/cm’
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The textural parameters such as maximum force, initial
slope and number of peaks are determined from force-
deformation curve and the results are shown in Fig. 8. The
number of peaks was counted when the force amplitude is
more than the threshold values, which was set at 30 g. The
statistical analysis results were also shown in Figs. 8b and
8c. The number of peaks and initial slope for both foam
densities significantly decreased with increasing moisture
content, but the maximum forces of each initial foam
densities were insignificantly different when the moisture
content increased. The number of peaks for both foam
densities approaches zero at moisture content of about
0.078 kg/kg d.b., which indicate that the product lost all its
characteristic crispness.

In the tropical countries such as Thailand, the relative
humidity was around 65-73%. At this range of relative
humidity, the equilibrium moisture content of the banana
foam was approximately 0.24-0.36 kg/kg d.b. Hence, the
banana foam mat can lose its textures. To maintain the
crispy texture of product, the banana foam should be kept
at low relative humidity or kept with a good packing
system.

CONCLUSION

An optimization technique using Nelder-simplex
method was applied to estimate the effective moisture
diffusivity. Three empirical equations describing the
dependence of the effective moisture diffusivity on
moisture content were tested. The statistical analysis
shows that a power law function suitably described the
relationship of the effective moisture diffusivity with
moisture content in banana foam mat. The relative
humidity strongly affected the moisture diffusion
mechanisms as indicated by the subtle changes of effective
moisture diffusivity at conditions. In addition to the
moisture content and relative humidity, the effective
moisture diffusivity depended on the temperature and
foam density. As the banana foam adsorbed water vapor,
the number of peaks and initial slope decreased, but the
maximum force did not change.
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