

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การศึกษาจalonพลศาสตร์ของการอุบแห้งและ
คุณภาพของกล้วยแผ่นกรอบ

โดย

รศ.ดร. สมเกียรติ ปรัชญาวรากร

พฤษภาคม พ.ศ. 2554

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษา隼禽ศาสตร์ของการอบรมแห้งและ คุณภาพของกล่าวยแผ่นกรอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย
และมหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สาขาวิชา. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Project Code: RSA 5180014

Project Title: Study of drying kinetics and quality attributes of crisp bananas

Investigator: Somkiat Prachayawarakorn King Mongkut's University of Technology Thonburi

E-mail Address: somkiat.pra@kmutt.ac.th

Project period: 3 years

บทคัดย่อ

กล่าวโดยกรอบที่มาจากการทดลองมักมีอยู่ในการเก็บรักษาสั้นเนื่องจากมีกลิ่นหืนซึ่งเกิดจากปฏิกิริยาออกซิเดชันของไขมัน เพื่อเลี่ยงปัญหาดังกล่าววิธีการผลิตกลั่ยกรอบด้วยวิธีการให้ความร้อนสูงในระยะเวลาสั้น หรือการพัฟฟิ่ง และ วิธีการทำฟูมเป็นทางเลือกหนึ่ง ข้อดีของวิธีหลังนี้คือไม่ต้องใช้อุณหภูมิสูงในการอบแห้ง นอกจากนี้ในโครงงานนี้ยังมีการศึกษาแบบจำลองทางคณิตศาสตร์เพื่ออธิบายการแพร่ในกลั่ยกรอบ

ด้วยวิธีการพัฟฟิ่ง กลั่ยแผ่นซึ่งมีความหนา 3.5 mm มาจากด้วยน้ำร้อนและผ่านการอสโนมิติกด้วยสารละลายน้ำตาลซูโคส นำตัวอย่างที่ผ่านการอสโนมิติกมาอบแห้งด้วยอุ่นเครื่องที่ 90°C จนกระทั่งได้ความชื้นในระดับหนึ่งและนำตัวอย่างไปพัฟด้วยไอน้ำร้อนเยดยิ่งเป็นระยะเวลาสั้น ๆ จากนั้นนำมารอบแห้งด้วยอุ่นเครื่องต่อจนได้ความชื้นต่ำกว่าร้อยละ 4 ฐานแห้ง จากผลการทดลองที่ได้แสดงให้เห็นว่าการอสโนมิติกกลั่ยก่อนผ่านกระบวนการอบแห้งด่าง ๆ สามารถปรับปรุงสีของผลิตภัณฑ์ สีของกลั่ยที่ได้เป็นสีน้ำตาลอ่อนกว่ากลั่ยที่ไม่ได้ผ่านการอสโนมิติกดังสังเกตได้จากค่า L- and a-values ซึ่งมีค่าต่ำกว่าและ b-value สูงกว่ากลั่ยที่ไม่ได้ผ่านการอสโนมิติก อุณหภูมิพัฟฟิ่งที่สูงขึ้นและความเข้มข้นของสารละลายน้ำตาลซูโคสที่สูงขึ้นไม่ส่งผลให้กลั่ยมีสีน้ำตาลอ่อนขึ้นแต่ส่งผลต่อระยะเวลาในการอบแห้งและสมบัติทางด้านเนื้อสัมผัส และการหดตัว ระยะเวลาอบแห้งและการหดตัวของกลั่ยอสโนมิติกสูงกว่าในกรณีกลั่ยที่ไม่ผ่านการอสโนมิติก การหดตัวของกลั่ยอสโนมิติกสูงนี้ เป็นผลจากการเกิดพันธะของไฮโดรเจนระหว่างกลุ่มไฮดรอกซิล (OH-) ของกลูโคส และผนังเซลล์ของกลั่ย ส่งผลให้ผนังเซลล์มีความแข็งแรงและยากต่อการขยายตัวของวัสดุ นอกจากนี้ผลตั้งกล่าวยังส่งผลให้เนื้อสัมผัสแข็งและมีความกรอบน้อย

สำหรับวิธีผลิตกลั่ยกรอบโดยวิธีไฟฟอนั้น ผลของความหนาแน่นไฟฟ์และชนิดของสารก่อไฟฟ์มีผลต่อค่าสัมประสิทธิ์การแพร่ประสิทธิ์ผลและคุณภาพทางกายภาพของไฟฟ์กลั่ยหลังการอบแห้ง ไฟฟ์กลั่ยที่ใช้โปรตีนเรีย်ในการก่อไฟฟ์มีความเสียของฟองอากาศและมีความเป็นรูพรุนของผลิตภัณฑ์สูงกว่าไฟฟ์กลั่ยที่ใช้โปรตีนถั่วเหลืองและไข่ขาว ผลตั้งกล่าวนี้ส่งผลให้มีการหดตัวน้อยและค่าสัมประสิทธิ์การแพร่สูงสำหรับไฟฟ์กลั่ยโปรตีนเรีย် สำหรับคุณสมบัติของเนื้อสัมผัสพบว่าไฟฟ์กลั่ยจากโปรตีนเรีย်และไข่ขาวค่อนข้างนุ่มและไม่กรอบเมื่อเทียบกับโปรตีนถั่วเหลือง กลั่ยไฟฟ์ที่มีความหนาแน่นต่ำกว่าจะมีค่าสัมประสิทธิ์การแพร่สูงกว่าและแข็งน้อยกว่าองค์ประกอบของสารระเหยย่างที่มีในกลั่ยมีการสูญเสียเกิดขึ้นทั้งในขั้นตอนของการตีไฟฟ์กลั่ยและการอบแห้ง การสูญเสียกลิ่นส่วนใหญ่เกิดขึ้นในขั้นตอนของการตีไฟฟ์

จากการศึกษาการดูดความชื้นของไฟฟ์กลั่ยพบว่าความเป็นรูพรุนของไฟฟ์กลั่ยสูงทำให้มีการดูดความชื้นในอากาศเร็วส่งผลให้ไฟฟ์กลั่ยสูญเสียความกรอบ เพื่อชะลอการดูดความชื้นกลับ ไฟฟ์กลั่ยสองชั้นเป็นแนวทางหนึ่งในการแก้ปัญหาหนึ่ง จากการทดลองพบว่าเมื่อไฟฟ์กลั่ยที่มีความหนาแน่น 0.31 g/cm³ วางอยู่บนไฟฟ์กลั่ยที่มีความหนาแน่น 0.26 g/cm³ สามารถชะลอการดูดซับความชื้นได้ และ ผลิตภัณฑ์ที่ได้มีความกรอบดีกว่าในกรณีไฟฟ์กลั่ยชั้นเดียวที่ความหนาแน่น 0.26 g/cm³

จากผลงานวิจัยที่กล่าวมาทั้งหมดข้างต้นสามารถผลิตบันทึกในระดับดุษฎีบัณฑิตเป็นจำนวน 1 ท่าน และระดับบัณฑิตศึกษา 9 ท่าน พร้อมกับมีผลงานวิจัยที่ตีพิมพ์ในวารสารระดับนานาชาติเป็นจำนวน 4 เรื่อง ใน วารสารระดับชาติ 1 เรื่อง การประชุมวิชาการระดับนานาชาติ 5 เรื่อง 1 บทใน edited book และกำลังดำเนินการ แก้ไขบทความต่างๆ ตามคำแนะนำของผู้ทรงคุณวุฒิ 1 เรื่อง

คำหลัก: ขนมขบเคี้ยว, พัฟฟิ่ง, เนื้อสัมผัส, สัมประสิทธิ์การแพร่

ABSTRACT

Crispy bananas produced by frying method have a short shelf life due to lipid oxidation leading to rancidity. To alleviate the remaining vegetable oil inside the product, drying will be used instead. In this project, the high temperature short time or puffing method and foaming method were proposed to produce crispy bananas. The mathematical model has been developed to describe the moisture transfer in the porous banana.

In the puffing method, the banana slices were blanched and osmotic with sucrose solution. The samples were then dried with hot air at 90°C until their moisture content reached a certain level. After that, they were puffed with superheated steam for a very short period and dried again with hot air to 4% dry basis or lower. The experimental results have shown that the osmotic dehydration before processing could improve the color of banana. The puffed osmotic banana color was less brown than the puffed non osmotic banana as indicated by the lower values of L and a, and higher value of b. The puffing temperature and osmotic concentrations did not enhance the browning rate. The impregnation for banana with sucrose caused longer drying time than the non osmotic one and also limited the banana cell wall expansion, due to hydrogen bonding between hydroxyl group in sucrose and that in cell wall. This bonding resulted further in the less porous structure of the osmotic sample than those of the non osmotic. The texture of the osmotic sample was less crisp and harder as compared to that of the non osmotic sample.

For foaming method, the influences of foam densities and types of foaming agent on the moisture diffusivity and the qualities of the final products in terms of shrinkage, texture, microstructure and volatile loss were investigated. Three foaming agents, i.e., fresh egg albumen (EA), soy protein isolate (SPI) and whey protein concentrate (WPC) were used. The experimental results showed that the WPC banana foam after drying could retain more open structure, indicating high foam stability. This encouraged the lower shrinkage and higher value of effective diffusivity than that of dried SPI and EA banana foams. For the textural properties of banana foam mats, the WPC and EA banana foams were spongy and less crisp than SPI banana foam. The samples with lower foam densities for all foaming agents had higher effective diffusivity and smaller hardness than those with higher foam densities. However, the crispness was lower. The volatile substances lost during the foaming and drying steps, the main loss occurring during foaming.

Due to very high porosity of dry banana foam, it could rapidly adsorb water vapor, leading to the loss of crisp texture. The prevention of water vapor adsorption can be made by bi-layer banana foam where the high-density banana foam was laid down on the top of the low-density banana foam. The experimental results have been shown that the banana foam density of 0.31 g/cm^3 laid down on the top of banana foam density of 0.26 g/cm^3 can delay the water vapor adsorption as compared to the single-layer banana foam density of 0.26 g/cm^3 . The textural property of this bi-layer banana foam regarding to the number of peaks was higher than that the single density, but the initial slope was insignificantly different.

One PhD student and 9 undergraduate students were the output of this project, along with 4 papers published in the international journal, one paper in local journal, 5 papers in the international conferences one chapter in edited book and one article which is being revised according to reviewer's comment.

Keywords: snack, puffing, texture, diffusion coefficient

Rational and Motivation

Bananas are a favourite fruit widely grown in the areas of tropical and subtropical climates. After harvesting, the quality of bananas deteriorates rapidly. To reduce their losses and add value to them, the fresh bananas are processed to produce several products such as candy, banana starch and banana chips. Banana chips, one of the most favourite products, can be consumed as a snack or used as an ingredient in breakfast cereal. To produce banana chips, thin-sliced bananas are normally fried with vegetable oil. The product characteristics obtained from frying are crispy and puffed in particular when bananas are fried undergoing vacuum pressure. However, the obtained product generally contains high oil content, approximately 10-20%, and cannot be kept for an extended period of time due to possible lipid oxidation leading to rancidity. To alleviate this problem, drying can be employed instead to produce banana chips with desired texture (crispness). The crisp texture can be achieved when the moisture content of banana is lower than 4% dry basis (d.b.).

The crispness is also related to voids or pores that are produced inside product. The material containing a larger number of pores will be crispier. Creation of pores can be made by vacuum drying, high-temperature drying and foaming technique. The latter two techniques will be studied in this project since the vacuum drying has a high operating cost and also the vacuum pump cost is very high in particular when the very low pressure is required.

High-temperature drying results in moisture inside the product to be vaporized, yielding an increase of volume of water vapor and product to be puffed. From our previous work, however, it was found that the high-temperature drying at the early drying period resulted in banana slices to be puffed but the puffing was not stable; it collapsed or broke because the vapor pressure generated inside the material was very high and the skeleton of banana was very soft. These will subsequently affect the

product quality such as less crispiness, less rehydration capacity and slow rehydration rate. Improvement of the weaken structure of banana can be made by several methods. The first method involves making the existing banana starch to be gelatinized before contacting high-temperature drying. The gelatinized starch will connect among them in the network and this may result in the strong banana structure. Another method involves making the banana surface to be rigid before subjecting to high-temperature drying. To create the surface rigidity, the banana must be dried to a certain moisture content. The surface rigidity also limits the capability of moisture movement and this will cause a build up of vapor pressure when the high-temperature drying is used. Hence, a porous structure of banana can be produced and its volume increases as a consequent result. The increase of material volume also depends upon the heat transfer; high heat transfer rate will promote material volume to be largely expanded.

In addition to the high-temperature drying method, the formation of pores inside material is made by foaming technique. In foaming technique, the semi solid foods will be whipped to form foams by adding the food foaming and stabilizing agents. While the food foams are being dried, gas bubbles produced during whipping become porous. Such porous food foams provide the advantage to drying in that the drying time is shorter, compared to drying of non food foam, and hence the energy consumption is lesser. In addition, the temperature used for drying is remarkably lower when compared to the porous food produced by high-temperature drying. Drying temperature is important to the final food foam quality because the collapse of gas bubbles will occur if the drying temperature used is not suitable. This may result in longer drying time, less crispness and darkening of food. The crispness of food foams also depends on the foaming agent since different agents provide different foaming ability and different stabilities of foams.

The porous bananas obtained from the above-mentioned methods contain low moisture and when they expose to high relative humidity, they will adsorb water rapidly, leading to obtain undesirable texture. The study of moisture adsorption kinetics of products needs to see the effect of environmental conditions on the product quality.

This project will therefore be studied the drying kinetics and quality of crispy banana obtained by high-temperature drying and foaming technique. Also, the moisture adsorption kinetics of porous banana is subject to be investigated.

Objectives

1. Development of banana crisp using puffing and foaming techniques.
2. Study the effect of heating media and dryer types on quality of crispy bananas.
3. Study the effects of foaming agents and drying temperature on qualities of banana foam.

4. Study of the effect of osmotic pretreatments on the drying characteristics and quality attributes of puffed bananas.
5. Study of moisture adsorption of porous banana.
6. Development of mathematical models to describe the moisture inside porous banana.

Methodology

Osmotic Treatment

Fresh bananas were obtained from local market and their soluble solid contents were given in the range of 20-23°Brix. Before processing, the banana was sliced into 3.5 mm thickness and blanched by hot water at 95°C for 1 min. Osmotic solution was prepared by using commercial sucrose with concentrations of 30, 35 and 40°Brixes. The banana slices were immersed into various sucrose solution concentrations and the mass ratio of osmotic media to the sample was about 30:1 to avoid the dilution effect. The samples were immersed into the osmotic solution until the banana moisture content was not changed.

Process for producing crispy banana used in this study was consisted of 3 main steps. In the first step, the banana was dried by a hot air tray dryer to certain level, puffed by a superheated steam tray dryer and dried by the hot air tray dryer again. From the preliminary study, it was found that the banana moisture content before puffing and the puffing time were less affected on the volume expansion than the puffing temperature. In addition, the intermediate moisture content of sample of 30% dry basis (d.b.) and puffing time for 150 s were suitable for puffing banana. Before puffing, the banana was dried at 90°C to the recommended moisture content. Drying banana at this temperature did not form the brown color (Thuwapanichayanan et al. (2011 **see Annex A**)). After reducing moisture content to 30% d.b., the osmotic banana was puffed at temperatures of 180, 200 and 220°C for 150 s and dried by hot air again at the same temperature as the first stage drying. The final moisture content required at 4% d.b. At the end of each experiment, the moisture content of samples was determined by drying them in the oven at 103°C for 3 h. The moisture content determined by this method was closed to the vacuum oven method 934.06 (AOAC, 1995). The color and textural property of finished product were determined (**See Annex B**).

Drying of banana foam

Gros Michel bananas at a mature stage of 5, which contained total soluble solids of approximately 23-25°Brix, were used. Soy protein isolate (SPI) and whey protein concentrate (WPC) were used as foaming agents in this study. SPI (90.2% protein, dry basis) was supplied by Shandong Sinoglory Health Food CO., LTD (Qingdao, China). WPC (80% protein, dry basis) was obtained from

Agri-Mark, Inc. (Lawrence, MA). Bananas were cut into slices with a slicing machine. To prevent discoloration during foaming, the sliced bananas were pretreated by immersing them in 1% (w/w) sodium metabisulphite solution for 2 min and then rinsed with distilled water for 30 s. The pretreated banana slices were chopped into small pieces and then blended with a blender (Waring, model no. 8011 BU, Torrington, CT) for 1 min. About 800 g of the banana puree was then poured into a mixing bowl and then added with different foaming agents. SPI and WPC were added as a dry solid form at a concentration of 5%. The concentration of SPI and WPC used in this study was the same of fresh egg albumen (EA) used in the previous work. The protein content of the egg white was approximately 10% (w/w). The banana puree with a foaming agent was whipped by a Kitchen Aid Mixer (model no. 5K5SS, Strombeek-Bever, Belgium) at a maximum speed (220 rpm) to foam densities of 0.3, 0.5 and 0.7 g/cm³. Foam density was determined by measuring the mass of a fixed volume of the foam. The experiments were done in duplicate.

Banana foam mats with a thickness of 5 mm were placed on a mesh tray, which was covered with aluminum foil, and then placed in the drying chamber. The samples were dried to about 0.03 kg/kg db using the drying air temperature of 80°C and a superficial air velocity of 0.5 m/s. Moisture loss from the samples was determined by weighing the sample tray outside the drying chamber using an electronic balance with an accuracy of ± 0.01 g.

Adsorption

Gros Michel bananas (*Musa sapientum* L.) with a maturity stage of 5 were purchased from a local market. The banana contained total soluble solid content of 23-25° Brix. To prepare banana foam, the bananas were sliced and pretreated by immersing them in 1% (w/w) sodium metabisulphite solution for 2 min and rinsing them with distilled water for 30 s, in order to prevent discoloration during foaming process. The banana puree with 5% of fresh egg albumen, used as foaming agent, were foamed to densities of 0.3, 0.5 and 0.7 g/cm³. The banana foam density was determined by measuring the mass of a fixed volume of the foam. The banana foam was poured slowly into a steel block and then placed on a mesh tray, which was covered with aluminium foil. After that, it was dried to about 3% kg/kg d.b. using tray dryer which was operated at 80°C and a 0.5 m/s superficial air velocity. The banana foam prepared from the initial foam densities of 0.3, 0.5 and 0.7 g/cm³ could produce the dried banana densities of 0.21 ± 0.02 , 0.26 ± 0.02 and 0.30 ± 0.02 g/cm³, respectively. The product thicknesses after drying were 2.8, 3.2 and 3.4 mm for the banana foam densities of 0.21, 0.26 and 0.30 g/cm³, respectively.

Moisture adsorption experiments were carried out using the static method. The dry samples prepared from the above drying method were placed into the glass jars contained the saturated salt solutions ($\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$, $\text{Mg}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, KI, NaCl and KCl) which provided the relative humidity (RH) in

range of 32-82% at the corresponding temperatures of 35, 40 and 45°C. All the jars were placed in the temperature-controlled oven with a precision of $\pm 1^{\circ}\text{C}$ (UFE500, Memmert, Germany). Samples were weighed at different exposure times ranging from 1 to 120 h. At RH > 74%, a small amount of toluene was held in a vial and fixed in the glass jars in order to prevent the sample spoilage by microbial.^[11] Moisture content of each sample after reaching the equilibrium condition was determined by drying it with the hot air oven at a temperature of 103°C for 3 h. At this temperature, the percentage error was approximately 0.4% when compared to the result obtained by the standard vacuum method. The experiment at each adsorption condition was repeated three times and the mean value was reported. The sample was taken out from the jars to examine quality of product.

Results and Discussions

Effect of osmotic treatment on Drying characteristics and quality of puffed banana slices

When the banana sample was immersed into the higher sucrose concentration, the osmotic pressure difference increased, resulting in the larger loss of moisture content. Although the larger amount of moisture lost, the solid gain also increased. The increase of solid gain is caused by the diffusion of sucrose from the solution into the sample. From the experimental results, it was found that the ratios of water loss to solid gain increased with the increased sucrose solution concentrations, implying higher loss of moisture content than the solid gain. This is because the size of sucrose molecule is larger than that of water molecules. Hence, the water molecule can move with a rate faster than the sucrose molecule.

Osmotic treatment of banana slices with sucrose solution concentration, given in the range of 30 to 40°Brix, can retard the browning reactions and the subsequent product color was less brown than that of product without osmotic treatment. This is because the monosaccharide, i.e. glucose and fructose, serving as a main active component for non-enzymatic browning reactions leaches out during the osmotic dehydration (**details see Annex B**). Consequently the browning rate is retarded during high temperature puffing, resulting in less brown for the osmotic samples than the non osmotic sample. The osmotic agent concentrations seemed to be not affect the osmotic product color, as indicated by L-, a- and b- values and hue angle, whether it was puffed at 180 or 220°C. The product color had brownish-yellow. In addition, the impregnation of banana with sucrose allowed more difficulty of moisture travelling to the exterior surface, hence lengthening the drying time as compared to that of the non osmotic banana. Also, the sucrose containing OH interact with OH in the banana tissue by hydrogen bonding and the resulting tissue may relatively rigid. Their interaction leaded to more difficulty of expansion of banana during puffing as indicated by shrinkage property which showed a larger shrinkage for the osmotic banana slices than the non-osmotic ones. Microstructure of the osmotic banana after puffing

exhibited small pores or less porous structure whilst it showed very porous for the non osmotic sample. The low porous structure of the osmotic sample made poor texture, very hard and less crisp. The range of puffing temperature used in this study could not improve the aforementioned qualities. The details of osmotic treatment can be seen in **Annex B**.

Effect of foaming agents on drying characteristics and quality of dried banana foam

EA and WPC at 5% by weight were found to be efficient foam inducer, decreasing banana foam density to 0.3 g/cm^3 , whilst the addition of SPI at this percent weight or higher could not produce at this foam density. The minimum density of the SPI banana foam produced was at 0.5 g/cm^3 . Banana foams produced using WPC had more stability during whipping than another two foaming agents and this, in turn, provided less shrinkage during drying. The shrinkage of EA, WPC and SPI banana foam mats at the density of 0.5 g/cm^3 , as for example, were 50, 36 and 66%, respectively. Due to good foam stability, the gas bubbles dispersed in the WPC banana could withstand the stresses occurring during drying and less collapsed, thereby providing the higher void area fraction or, in other word, higher porosity than the other two foaming agents. Furthermore, the value of effective moisture diffusivity was also higher for the WPC banana foam (details see **Annex C**).

From the highest void area fraction, the WPC banana foam after drying provided correspondingly the highest number of peak and it should have crisp texture. However, its texture was not crisp since the initial slope of the first peak force from the force deformation curve was relatively lower than that of the SPI banana foam. For example, the initial slopes for the banana foam density of 0.5 g/cm^3 were 30, 12 and 16 N/mm for SPI, EA and WPC, respectively. From the texture results, it indicated that using only number of peak was not a good indicator for characterizing the crisp food foam. The initial slope of the first peak should be taken into account as well.

The volatile components present in the banana foam were also determined, besides textural properties. The most significant volatile compounds in fresh banana were the isoamyl acetate, isobutyl butanoate, butyl butyrate, isoamyl butyrate and isoamyl isovalerate. Among these five esters, only isoamyl acetate, isoamyl butyrate and isoamyl isovalerate, are the key components of the banana's fruity odor. The volatile components in the banana foam samples before and after drying were analyzed using GC-MS. It found the substantial loss of volatile substances during the foaming process ($> 60\%$) although the foaming was performed at room temperature. The isoamyl acetate, which is the lowest molecular weight, exhibited the highest loss during the foaming process. At the drying end, the total loss of volatile components was over 90% for all foaming agents used in this study.

Effect of adsorption conditions on diffusivity and textural property of dry banana foam mat

Diffusion coefficient of moisture during adsorption were determined by two approaches, continuum and pore network. The moisture diffusion coefficient determined by the pore network referred to pore diffusivity and the diffusion coefficient determined by the continuum referred to effective diffusivity. The details can be seen in **Annex D**. The effective diffusivity, assuming the diffusivity independent on the moisture content, was significantly higher than the pore diffusivity (see Annex C), and the value of effective diffusivity was higher at lower density of banana foam mat. On the other hand, the change of pore diffusivity with banana foam density was less sensitive to foam density. This indicated that the determined pore diffusivity is rather universal and could possibly be applied to other porous foods.

Since the banana foam mat is very porous, it can adsorb water vapor rapidly, which leads subsequently to poor texture in particular crispiness. As measured from the experiments, the number of peaks and initial slope for all foam densities significantly decreased with increasing moisture content (See **Annex E**). In contrast to the number of peaks or the initial slope, the maximum forces for samples with foam densities, except at foam density below 0.26 g/cm^3 , increased with increasing moisture content. At the lower foam density of 0.26 g/cm^3 , the insignificant change in the maximum force is observed in the moisture range of $0.039\text{-}0.078 \text{ kg/kg d.b.}$ From this study, it indicated that the number of peaks were almost absent at the moisture content of 0.078 kg/kg d.b. , and it may be expected that the banana foam samples loss their crispy texture. This moisture content for the banana foam is given in same range of other crisp products such as crispy breads, cereals, popcorn and puffed corns, and it may be concluded that the moisture content of crisp products should not be higher than $0.07\text{-}0.08 \text{ kg/kg d.b.}$ in order to preserve their textures.

Designing porous structure of banana foam to resist moisture adsorption using a 2-D stochastic pore network

Because of rapid moisture adsorption of the finished banana foam mat when exposed to atmosphere, the restriction on water vapor diffusing into the product is important in order to preserve the crisp characteristic of the product. The pore network was therefore used to design the porous structure configurations of banana foam mat and the experiment were carried out in order to validate the results. Two configurations of porous banana foam were proposed in this study. For each configuration, the banana foam mat was divided into two layers. The lower layer of the network was assigned from a fixed pore size distribution of the dried banana foam density of 0.26 g/cm^3 . This is because the texture at this density was rather crispy and not very hard. For the upper layer, where it was exposed to environment, the pore size distribution from the banana foam density of 0.21 g/cm^3 or from the density of 0.31 g/cm^3

were assigned (see details in **Annex F**). The simulation results at the adsorption temperature of 35°C and 67% relative humidity showed that the slowest adsorption rate was evident in the two-layer network of which the pore sizes obtained from the foam density of 0.31 g/cm³ was laid at the upper half. On the other hand, the fastest adsorption rate was found in the case that the pore sizes from the foam density of 0.21 g/cm³ was laid on the upper half layer. This is because the dry banana foam at density 0.21 g/cm³ had a higher porosity as compared to that at 0.31 g/cm³. The simulation results agreed well with the experiments.

For the textural property, it was found that it is not crispy for the two-layer banana foam with density of 0.21 g/cm³ laid on the upper layer. In contrast, the two-layer banana foam with high density of 0.31 g/cm³ laid on the upper layer was crisp and more crispness than the single density of banana foam (0.26 g/cm³) as indicated by the number of peaks which showed higher than 20 for the two-layer banana foam while it was 12 for the single density. In contrast,. However, from the sensory test using trained panelists, the textural properties i.e. hardness and crispness and overall acceptability between such both samples were not different.

Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

<http://www.elsevier.com/copyright>

Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying

Ratiya Thuwapanichayanan^a, Somkiat Prachayawarakorn^{b,*}, Jaruwan Kunwisawa^b, Somchart Soponronnarit^c

^a Department of Farm Mechanics, Faculty of Agriculture, Kasetsart University, 50 Phaholyothin Road, Bangkok 10900, Thailand

^b Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand

^c School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand

ARTICLE INFO

Article history:

Received 21 January 2010

Received in revised form

26 December 2010

Accepted 9 January 2011

Keywords:

Banana

Drying

Effective moisture diffusivity

Volatile compounds

Texture

ABSTRACT

The influence of drying temperatures on the moisture diffusivity and quality attributes of the dried banana slices in terms of volatile compound, shrinkage, color, texture and microstructure were studied. Bananas with peel color index of 5 corresponding to yellow color with green tip were sliced into 3 mm thickness, dipped into ascorbic acid solution and dried at four temperatures of 70, 80, 90 and 100 °C. Drying rate of banana slices can be divided into two sub-drying periods, first and second falling rate periods. The effective diffusivity estimated by the optimization technique was found to decrease sharply with moisture content in the first falling rate period and changed slightly in the second falling rate period. High-temperature drying seems to provide lower loss of volatile compounds in the dried sample. Moreover, the dried banana was very porous, resulting in remarkably lower hardness value than that obtained from the low-temperature drying whilst the crispiness was not significantly different amongst the samples obtained at various drying temperatures. Although the textural property could be improved at high temperature, the product color was brown as manifested by the low L- and hue values in particular at the drying temperature of 100 °C.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Banana, one of the most favorite fruits, is widely grown in many countries. It is normally consumed as fresh, however, the qualities of fresh banana deteriorate rapidly after harvesting. Drying is an alternative method to preserve the food quality and to reduce losses. During drying, moisture present in a food diffuses from the internal to the food surface and evaporates into the air stream and at the same time, the heat is transferred from the air to the food. When moisture is removed, the volume of food decreases. Moisture gradient occurring inside the food during drying generates stresses in the cellular structure of the food resulting in the structure collapse which responds to the physical changes of shape and dimension or the volume change of material (Mayor & Sereno, 2004; Pan, Shih, McHugh, & Hirschberg, 2008). Such cell wall disruption subsequently affects the diffusing distance of moisture which moves from inside to the outside. This factor must be included into the

mathematical model in order to predict accurately the sample moisture content during drying or to determine the correct effective diffusion coefficient (Katekawa & Silva, 2006; Thuwapanichayanan, Prachayawarakorn, & Soponronnarit, 2008). In drying of bananas, empirical models and diffusion models have frequently been used to describe the drying kinetics of bananas (Dandamrongrak, Young, & Mason, 2002; Demirel & Turhan, 2003; Jannat, Talla, Nganhou, & Puiggali, 2004). The shrinkage effect was not included into the previously proposed models for drying of banana. Ignorance of shrinkage may lead to inaccurate prediction of moisture content when the industrial scale dryer is designed based on these data.

Drying temperature is an important parameter required for dryer operation. High temperature is practically used in order to accelerate the drying rate. However, the use of high-temperature drying may cause degradation of banana quality regarding to the changes in color, texture and size and the loss of volatiles (Baini & Langrish, 2009; Boudhrioua, Giampaoli, & Bonazzi, 2003; Hofsetz, Lopes, Hubinger, Mayor, & Sereno, 2007; Prachayawarakorn, Tia, Plyto, & Soponronnarit, 2008). The evaluation of the quality degradations at drying temperatures can help the selection of drying temperature that optimizes the quality of dried banana.

* Corresponding author. Tel.: +662 470 9221 30; fax: +662 428 3534.
E-mail address: somkiat.pra@kmutt.ac.th (S. Prachayawarakorn).

As mentioned above, the objectives of this work were therefore to determine the moisture diffusivity and evaluate the qualities of the dried banana in terms of volatile compound, shrinkage, color and textual property.

2. Materials and methods

2.1. Experimental set-up

A thin-layer dryer as shown in Fig. 1 was used in this study; it consists of a backward curved blade centrifugal fan (driven by a 0.37 kW motor), an electrical heater and a drying chamber. Ambient air heated by the electrical heater under Proportional-Integral-Derivative (PID) control was passed through the samples that were placed on a perforated tray within the drying chamber. The air velocity was fixed at 1.3 m/s by setting a frequency inverter, which controls the rotation speed of the motor.

2.2. Material preparation

Gros Michel bananas with peel color index of 5 corresponding to yellow color with green tip, which contained total soluble solids of approximately 23–25°Brix, were peeled and sliced into 3 mm thickness with a slicing machine. The sliced bananas were pretreated by dipping them in 0.1g/100 ml ascorbic acid solution for 1 min to prevent enzymatic browning reaction (Krokida, Kiranoudis, Maroulis, & Marinos, 2000).

2.3. Drying procedure

Banana slices were placed on a perforated tray, with a size of square hole of 2 × 2 cm, and then put into the drying chamber. Drying was performed in duplicate at the drying air temperatures of 70, 80, 90 and 100 °C and at the superficial air velocity of 1.3 m/s. As observed from the experiments, the deviation of moisture content from the two experiments was very small. The samples were dried to about 0.04 kg/kg db. In order to follow moisture evolution, moisture loss from the samples was determined throughout the drying period by weighing them every 5 min using an electronic balance (± 0.01 g). At the end of drying, the moisture content of the samples was determined by drying them at 103 °C for 3 h in a hot air oven. Normally, the moisture content of banana was determined by the vacuum oven method 934.06 (AOAC, 1995). However, drying of banana in a hot air oven at 103 °C for 3 h was used instead of AOAC method (AOAC, 1995). The moisture content determined by the hot air oven was closed to that obtained by the vacuum oven method, the percentage error from two methods approximately 0.4%.

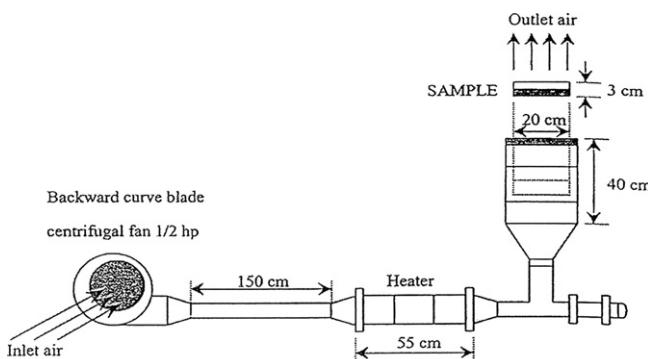


Fig. 1. A schematic diagram of thin-layer dryer.

2.4. Determination of effective moisture diffusivity

A diffusion model based on the Fick's second law of diffusion was used to describe the transport of moisture inside a banana slice (Crank, 1975):

$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial M}{\partial x} \right) \quad (1)$$

where D is the effective moisture diffusivity (m^2/s), M is the local moisture content ($\text{kg}/\text{kg d.b.}$), x is the coordinate along the diffusion path and t is the drying time (s).

The assumptions used in this model were that the product shape was an infinite slab and the moisture distribution inside a banana slice was uniform at the beginning of drying. In addition, the moisture transfer occurred only in the thickness direction and the external resistance to moisture transfer was negligible. The shrinkage effect should be taken into account for determining the effective moisture diffusivity, particularly when the material shrinkage is high. This is because the mean diffusion path of moisture which travels from the inside to outside is shorter. If this effect is not included into the diffusion model, it subsequently results in the overestimation of the effective coefficient (Ruiz-López & García-Alvarado, 2007; Mulet, 1994).

The diffusion model including shrinkage can be solved by the moving or immobilizing boundary methods. However, the use of latter method is rather limited with some applications. Thuwapanichayanan et al. (2008) reported that the immobilizing boundary can predict the average moisture content accurately when applied to the high density foods of which their shrinkage equals to the volume of evaporated water. On the other hand, the moving boundary method can be used in a broader case, and this method is therefore used in this study.

Several works have been reported about the drying rate of banana and found that the drying rate, when plotted against the moisture content, is mainly in the falling rate with two sub periods (Mowlah, Takano, Kamoi, & Obara, 1983; Prachayawarakorn et al., 2008). Furthermore, Jannet et al. (2004) found the third falling rate period, characterized by the convexity of the drying rate curve, when the sample was dried to moisture ratio lower than 0.2. The development of such events inside the banana while being dried indicated that the molecular mobility of moisture changes as the moisture content inside the banana is altered. Such change can be described by the relationship between the effective moisture diffusivity and the moisture content of material.

To obtain moisture dependent diffusivity, Eq. (1) was first transformed into differential elements using the variable grid central finite difference method in its explicit and its expression is shown below:

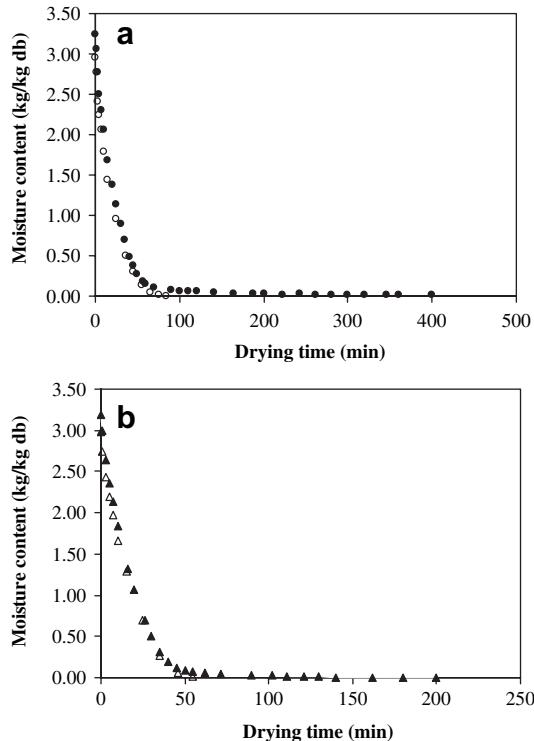
$$\frac{M_i^{j+1} - M_i^j}{\Delta t} = D_i^j \frac{\frac{M_{i+1}^j - M_i^j}{\Delta x_{i+1}^j} - \frac{M_i^j - M_{i-1}^j}{\Delta x_i^j}}{\frac{\Delta x_{i+1}^j + \Delta x_i^j}{2}} + \frac{M_{i+1}^j - M_{i-1}^j}{\Delta x_{i+1}^j + \Delta x_i^j} \cdot \frac{D_{i+1}^j - D_{i-1}^j}{\Delta x_{i+1}^j + \Delta x_i^j} \quad (2)$$

where the subscript i and j represent node and time indexes, respectively. The Eq. (2) describes the moisture content inside the banana slice. For the moistures at the center and both surfaces, they can be described by the following equations:

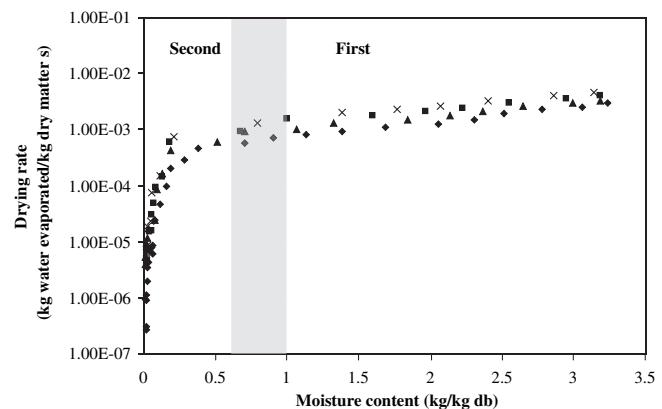
At the center:

$$\frac{M_0^{i+1} - M_0^i}{\Delta t} = 2D_0^i \left(\frac{M_1^i - M_0^i}{(\Delta x_1^i)^2} \right) \quad (3)$$

At the top and bottom surfaces:


$$M|_{x=\pm\frac{L}{2}} = M_{eq} \quad (4)$$

Before calculating the moisture contents inside the banana sample, it is necessary to identify the diffusivity equation that can suitably describe the variation of effective diffusivity with moisture content. An empirical form of Eq. (5) in which the effective diffusivity decreases exponentially with decreasing moisture content was tested and the calculated results showed this form adequately describe the moisture diffusion in banana slice.


$$D(M) = A \exp(BM) \quad (5)$$

where A and B are the constant parameters, which can be estimated by the optimization technique using a modified Nelder-Mead simplex method. If the initial guess values of A and B is not appropriate, the solution can be diverged or the computation time rather takes a long time. To alleviate such problems, the initial guess of the above-mentioned constant parameters was determined by the method of slopes, where the values of effective moisture diffusivity was estimated at moisture contents, and the regression technique was then used to obtain the values of A and B at a drying temperature.

After the moisture contents at inner side were determined, the spacing between each grid points was then adjusted according to the average moisture content of each section. The relationship between spacing of each section and average moisture content in that section was assumed to be a linear function. It can be calculated by the following equation:

Fig. 2. Drying curves of banana slices at different diameters and drying temperatures (3.5 mm thickness): (a) 70 °C (○ D = 25 mm; ● D = 35 mm), (b) 80 °C (△ D = 25 mm; ▲ D = 35 mm), (c) 90 °C (□ D = 25 mm; ■ D = 35 mm), (d) 100 °C (◊ D = 25 mm; ◆ D = 35 mm). Values are means (n = 2).

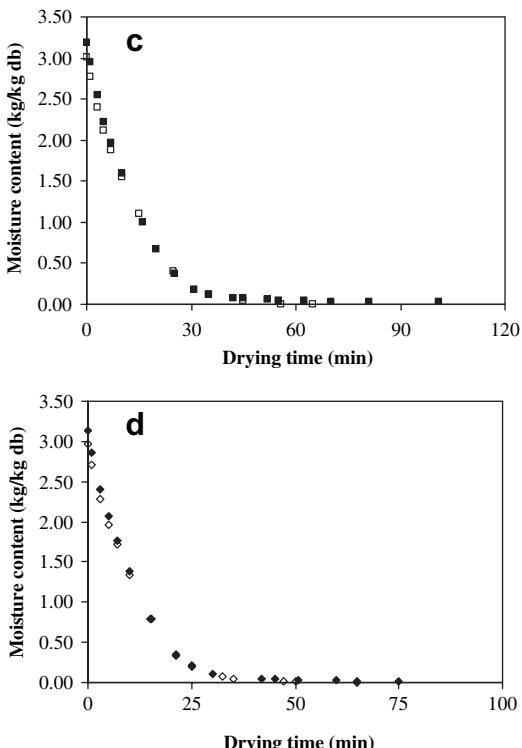


Fig. 3. Changes of drying rate of banana slice at different drying temperatures (3.5 mm thickness): 70 °C (◆), 80 °C (▲), 90 °C (■), 100 °C (×). Values are means (n = 2).

$$\Delta x_i / \Delta x_0 = c + d(M_{av}/M_0) \quad (6)$$

where c and d are the constant parameters that were obtained by linear regression analysis of the experimental shrinkage data (both values are shown in the shrinkage section), M_{av} is the average moisture content of each section (kg/kg d.b.), M_0 is the initial moisture content (kg/kg d.b.), Δx_i is the spacing between each grid point (m), Δx_0 is the spacing between grid point at the beginning (m).

After the moisture contents at positions inside the sample was known, the average moisture content was then calculated by integrating the moisture contents at all grid points, and then compared to the experimental values. If the root mean square error (RMSE) was not minimized, a new guess of the constant parameters in Eq. (5) was searched and the same calculation procedure as mentioned before was used.

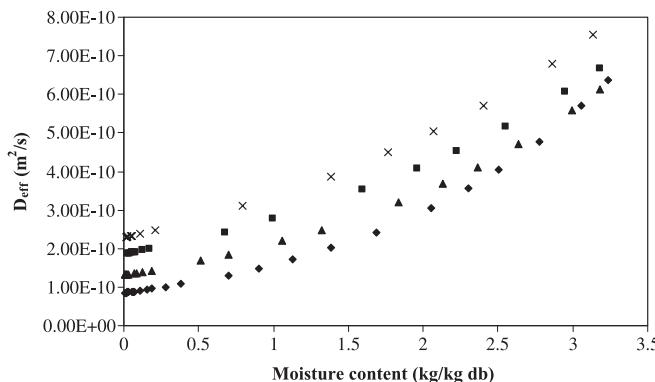


Fig. 4. Variation of effective diffusivity with moisture content at different drying temperatures: 70 °C (◆), 80 °C (▲), 90 °C (■), 100 °C (×).

2.5. Analysis of volatiles

2.5.1. Sample preconcentration (SPME)

The volatile components of fresh and dried banana slices were isolated by solid phase micro-extraction (SPME). Each sample was done in duplicate. Each sample was homogenized, placed in a 20 ml vial and then weighed by a balance with precision of ± 0.01 g; 4 g for fresh banana (including moisture) and 1 g for dried banana slice. The sample with a mass of 4 g was filled up with 6 ml of distilled water and the sample with a mass of 1 g was filled up with 9 ml of distilled water. The internal standard, which consists of 0.2 μ l of caproic acid ethyl ester in 1 ml/l methanol solution, was added to those samples. The vial was then covered with a silicone Teflon-lined septum. A stainless steel needle covered with an 85 μ m length carboxane/polydimethyl siloxane fiber penetrated the septum. The fiber was then pushed into the headspace above the sample for absorption at 30 °C for 30 min.

2.5.2. Gas chromatography-mass spectrometry analysis (GC-MS)

Sample analysis was carried out with a Hewlett-Packard 6890 gas chromatography (GC). An HP5 column, with a 30 m length, 0.25 mm diameter, 0.25 μ m thickness was used. Helium used as the carrier gas flowed at a rate of 1 ml/min. Thermal desorption of the volatile components from the fiber was carried out in the GC split injector (1:10) at 200 °C for 5 min. The oven temperature was programmed by starting at 40 °C and holding at that temperature for a 1 min. After that, the temperature was increased to 120 °C with a rate of 3 °C/min. The volatile compounds were analyzed by mass spectrometry with electronic impact (EI) 70 eV quadripolar filter and identified by comparison with spectra stored in a data bank.

2.6. Shrinkage measurement

Three banana slices were taken at different drying times to measure their dimensions (diameter and thickness). The diameter was measured using a vernier and the thickness was measured by caliper. The mean values were reported. Diameter and thickness shrinkage were defined as:

$$\text{Diameter Shrinkage} = D/D_0 \quad (7)$$

$$\text{Thickness Shrinkage} = L/L_0 \quad (8)$$

where D is the sample diameter of dried sample (mm), D_0 is the sample diameter before drying (mm), L is the dried sample thickness (mm), L_0 is the sample thickness before drying (mm).

Table 1

Estimated values of constant parameters for moisture dependent diffusivities (A and B in Eq. (5)) of banana slices dried at different drying temperatures.

Drying conditions	Moisture dependent diffusivity (m ² /s)		
	A	B	RMSE
70	8.500E-11	0.622	0.036
80	1.310E-10	0.484	0.037
90	1.853E-10	0.402	0.045
100	2.290E-10	0.381	0.043

2.7. Color measurement

The surface color of dried banana slices was measured using a colorimeter (ColorFlex, HunterLab, USA). The colors were expressed as L-value (lightness), a-value (redness/greenness) and b-value (yellowness/blueness). The overall color of dried banana slices was presented using hue angle (°h), which was calculated by $^{\circ}h = \tan^{-1}(b/a)$. The colorimeter was calibrated with a standard white plate ($L^* = 96.98$, $a^* = 0.03$ and $b^* = 1.84$) before each color measurement. The measurements were performed at different positions for each sample. Ten samples were tested and the average value was reported.

2.8. Texture analysis

Dried banana slices at moisture content of 0.04 kg/kg db were taken to examine their textural properties. The texture of dried banana slices was measured using a texture analyzer model TA.XT.plus (Stable Micro Systems, Surrey, UK). A cutting probe was used to apply a direct force to the sample at a constant rate of 2 mm/s. The maximum force of the force-deformation curve is defined as hardness and the initial slope of the first peak is represented as crispiness. Eight samples for each treatment were tested and the average values of hardness and initial slope were reported.

2.9. Microstructure evaluation

A scanning electron microscope (JEOL JSM-5800LV, Tokyo, Japan) was used to characterize the microstructure of dried banana slices. Before scanning, the dried banana slices were dipped into liquid N₂ for 5 s to prevent the morphology change during specimen preparation. The samples were then placed on two-side adhesive tape attached to metal stub and were coated with gold.

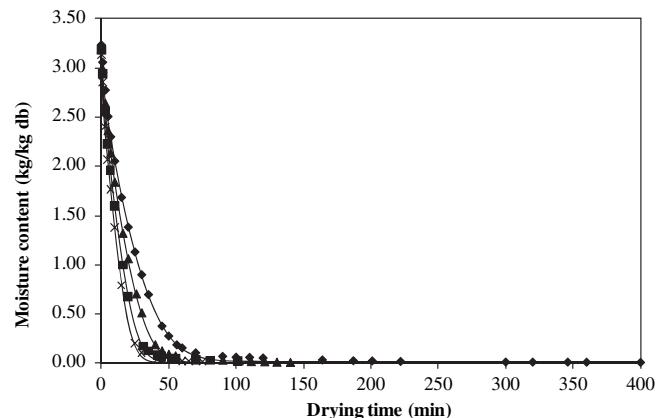


Fig. 5. Predictions of moisture content of banana slices dried at different drying temperatures: 70 °C (exp.) (◆), 80 °C (exp.) (▲), 90 °C (exp.) (■), 100 °C (exp.) (×), prediction (—).

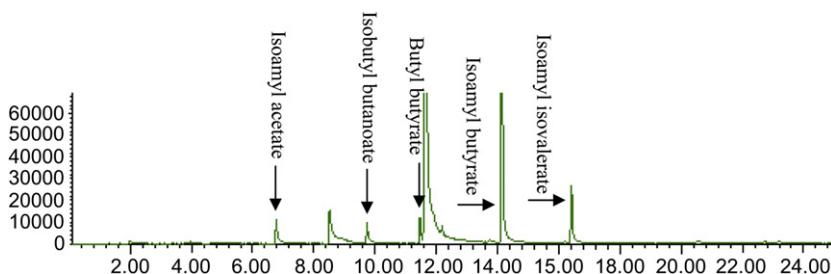


Fig. 6. Chromatograms profiles of fresh banana at ripeness stage of 5.

SEM micrographs were taken at an accelerating voltage of 15 kV and a magnification of 200 \times .

2.10. Image analysis

Image analysis software (ImagePro + 5.0, MediaCybernetic, MD, USA) was used to characterize the pore size. Each pixel of SEM micrograph was assigned a gray-level value (0–255). The pores were distinguished from the solid phase using threshold-based segmentation method, and a binary image was obtained. The pixels with gray-level values lower than the specified threshold were assigned as pore, which appeared as black color in a binary image whereas the pixels with gray-level values above the specified threshold were set as solid phase, which appeared as white color in a binary image. With an assumption of spherical shape, a pore diameter was estimated from the known pore area.

2.11. Statistical analysis

The analysis of variance (ANOVA) was used to perform the effect of drying temperatures on the quality attributes. Duncan's test was used to establish the multiple comparisons of mean values. Mean values were considered at 95% significance level ($p < 0.05$).

3. Results and discussion

3.1. Drying characteristics of banana slices

Fig. 2 shows the influence of diameter of banana samples with a 3 mm thickness dried at 70, 80, 90 and 100 °C. The banana slices were prepared at two diameter sizes, 25 and 35 mm, and the corresponding $\frac{L}{D}$ ratios of sample were 0.12 and 0.09. It was found that

Table 2
Volatile compounds identified in fresh bananas at ripeness stage of 5.

Retention time (min)	Compounds	Fraction ^{a,b} (%)
1.96	Ethyl acetate	0.68
3.95	Isobutyl acetate	0.48
6.74	Isoamyl acetate	5.89
9.72	Isobutyl butanoate	5.27
11.46	Butyl butyrate	3.82
12.18	n-Amyl isobutyrate	7.14
13.72	n-Butyl isovalerate	0.63
14.17	Isoamyl butyrate	61.42
16.41	Isoamyl isovalerate	11.76
20.47	Hexyl butanoate	1.04
21	E-3-hexenyl butanoate	0.31
22.7	Hexyl valerate	0.67
23.19	trans-3-Hexen-1-ol	0.8

^a Fraction is calculated by the peak area of the volatile compound divided by the total area of volatile compounds.

^b Values are means ($n = 2$).

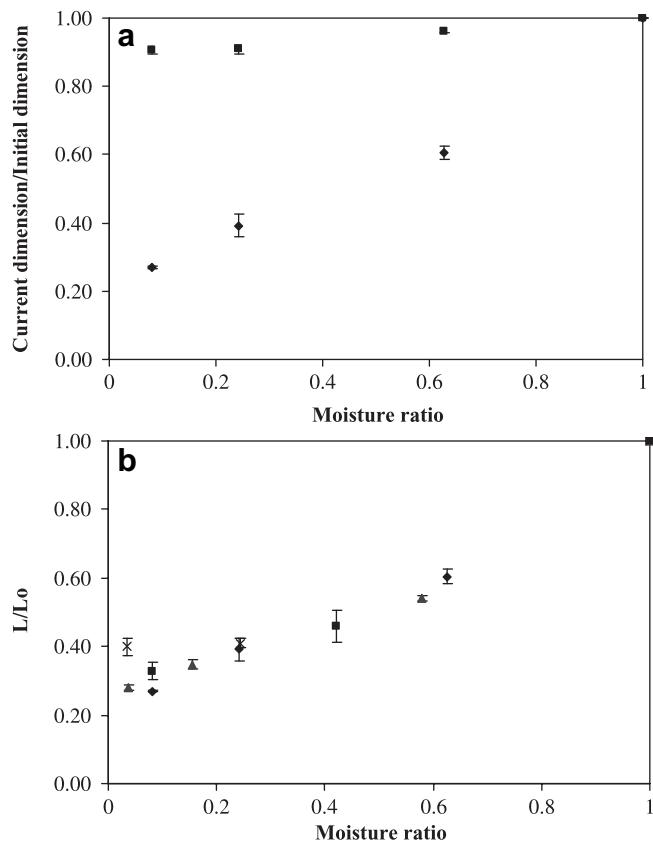

the changes of moisture content with time were not different amongst two diameter sizes. These results justify the mobility of moisture during drying taking place in direction of thickness, and Eq.(1) describing the diffusion of moisture in one dimension was reasonable to explain the moisture diffusion inside the banana slice during drying.

Fig. 3 shows the variation of drying rate at different temperatures (semi-log scale plot), indicating the falling rate being a main drying mechanism in controlling the water evaporation rate. This drying rate curve is a typical drying behavior for agricultural materials that possess porous structures or cellular structures i.e. paddy, carrot, apple and potato (Pakowski & Adamski, 2007; Poomsa-ad, Soponronnarit, Prachayawarakorn, & Terdyothin, 2002; Simal, Deyá, Frau, & Rossello, 1997; Srikiatden & Roberts, 2006). From the drying rate change of banana as shown in Fig. 3, it can be divided into two sub-drying periods; first and second falling rate periods. In the first falling rate period, the drying rate changed linearly with moisture content for all drying temperatures. As the moisture content of banana was lower than the critical value which was in the range of 0.75–1.0 d.b., the second falling rate period started and its change was in a non-linear fashion. Some of early works involved with the banana drying have also found two

Table 3
Peak areas of five major volatile compounds in fresh and dried bananas.

Lot	Drying temperature	Volatile compound	Peak area ^a	% loss
			($\times 10^6$ /g dry weight)	
		Fresh	Dried	
1	70	Isoamyl acetate	69.44	6.13
		Isobutyl butanoate	68.48	19.17
		Butyl butyrate	44.90	14.18
		Isoamyl butyrate	666.78	278.80
		Isoamyl isovalerate	235.18	91.61
	Total of 13 compounds	1314.65	496.99	62.20
2	80	Isoamyl acetate	41.40	15.86
		Isobutyl butanoate	36.68	16.99
		Butyl butyrate	39.73	22.27
		Isoamyl butyrate	514.73	308.69
		Isoamyl isovalerate	102.98	54.40
	Total of 13 compounds	835.29	484.84	41.96
100	90	Isoamyl acetate	12.01	3.56
		Isobutyl butanoate	9.58	1.79
		Butyl butyrate	12.29	3.65
		Isoamyl butyrate	111.24	35.66
		Isoamyl isovalerate	9.62	1.92
	Total of 13 compounds	183.13	47.21	74.22
	100	Isoamyl acetate	18.77	9.61
		Isobutyl butanoate	15.48	8.38
		Butyl butyrate	17.54	12.58
		Isoamyl butyrate	177.27	132.45
		Isoamyl isovalerate	7.00	6.23
	Total of 13 compounds	292.33	182.79	37.47

^a Values are means ($n = 2$).

Fig. 7. (a) Diameter and thickness changes (D/D_0 and L/L_0) of banana slices dried at temperature of $70\text{ }^\circ\text{C}$: D/D_0 (■), L/L_0 (◆). Values are means \pm SD ($n = 3$). (b) Thickness changes of banana slices dried at different temperatures ($L_0 = 3\text{ mm}$, $D_0 = 35\text{ mm}$): $70\text{ }^\circ\text{C}$ (◆), $80\text{ }^\circ\text{C}$ (▲), $90\text{ }^\circ\text{C}$ (■), $100\text{ }^\circ\text{C}$ (×). Values are means \pm SD ($n = 3$).

falling rate periods (Mowlah et al., 1983; Prachayawarakorn et al., 2008; Sankat, Castaigne, & Maharaj, 1996). In the first falling rate period, the moisture evaporation takes place near the banana surface. When the drying continues, the dry patch surface occurs whilst the internal area is still wet. This results in moisture taking a longer time to reach surface and hence provides a rapid drop in the drying rate, implying that the drying enters into the second falling rate period. For banana slice drying, the critical moisture content found in this study was close to that reported by several workers who studied the drying of osmotic or non osmotic bananas (Prachayawarakorn et al., 2008; Sankat et al., 1996) although the operating conditions in their studies were different from the present investigation.

3.2. Effective diffusivity

Fig. 4 shows the changes of effective diffusion coefficients with moisture contents and temperatures. The higher drying temperature can accelerate the water molecules present in the banana to evaporate faster, thus providing a faster decrease of the material moisture content and the corresponding higher value of effective moisture diffusivity. During isothermal drying, the value of effective moisture diffusivity decreased with moisture content. As shown in Fig. 4, the effective diffusivity declined sharply with moisture content in the first falling rate period and when the drying entered into the second period, the diffusivity changed slightly with moisture content. From these results, it suggested that the constant diffusivity can be assumed in the second falling rate period.

The constant parameters of A and B in Eq. (5) for the drying temperatures are shown in Table 1, along with the values of RMSE. The values of RMSE ranged between 0.037 and 0.045. These values were rather small, indicating that Eq. (5) was reasonable to explain the relationship of moisture diffusivity with the banana moisture content. The prediction of moisture contents as shown in Fig. 5 agreed well with the experimental results. The values of moisture diffusivity found in this study was in the order of 10^{-11} – $10^{-9}\text{ m}^2/\text{s}$ which is typical value for drying of agricultural products (Dissa, Desmorieux, Bathiebo, & Koulidiati, 2008; Ruiz-López, I.I. and García-Alvarado (2007); Ramesh, 2003), and these values also indicated that the moisture movement inside the banana at the drying temperatures was in the liquid form.

3.3. Volatile compounds

Fig. 6 shows the typical chromatogram profiles of fresh banana at ripeness stage of 5; the stage of ripeness can be divided by the color of the peel. The banana with a peel color index of 5, representing yellow with green tip, was used in this study. There were 13 volatile compounds found in banana at this ripeness stage and the fraction of each volatile compound, determined by dividing an area of the peak of a component by total areas of all volatile components, is shown in Table 2. The major volatile compounds were isobutyl butanoate, butyl butyrate, isoamyl acetate, isoamyl butyrate and isoamyl isovalerat, three latter volatile compounds presenting the banana odor (Salmon, Martin, Remaud, & Fourel, 1996). These 5 representative volatile compounds were determined quantitatively for the final product obtained from drying temperatures.

Table 3 presents the remaining volatile compounds of banana after drying. The banana used in the experiments came from a different lot. The amounts of volatile compounds present in the fresh banana had a remarkable difference between lot 1 and lot 2 although the ripeness stage of banana used in this study was identical. The differences in volatile contents were not clear. However, one of the possible reasons is that the banana in each lot used in the experiments might come from different cultivation areas. Brat et al. (2004) showed that the banana at the ripeness stage of 5 had a different volatile composition if it was cultivated in different areas; the cultivation at the hills exhibited higher concentrations of ketones, alcohols and esters than that at the plain.

When the banana was subject to be dried at different temperatures, the total amount of 13 volatile compounds present in the dried banana decreased from that of the fresh banana and the remaining volatile compositions in the dried sample seem to be dependent on the drying temperature. Drying at high temperature may lose the total amounts of the volatile compounds in the dried sample lower than the low-temperature drying. These results can possibly be described by the exposure time that contacts the drying air. The drying times were 400, 140, 100 and 75 min for the drying temperatures of 70, 80, 90 and 100 °C, respectively. Several works have been reported that the loss of volatile compounds depended on the drying time and temperature (Boudhrioua et al., 2003; Krokida & Philippoulos, 2006). Yousif, Scaman, Durance, and Girard (1999)

Table 4
Color of dried banana slices dried at different temperatures.

Temperature (°C)	L-value	a-value	b-value	Hue angle (°h)
70	64.34 ± 1.49^a	4.55 ± 0.73^a	24.11 ± 0.58^a	79.35 ± 1.56^a
80	63.16 ± 0.72^a	4.59 ± 0.45^a	24.81 ± 0.58^a	79.53 ± 0.80^a
90	63.11 ± 1.44^a	4.39 ± 0.48^a	21.78 ± 0.97^b	78.59 ± 1.27^a
100	59.27 ± 1.70^b	7.06 ± 0.95^b	23.30 ± 0.45^c	73.16 ± 2.19^b

a, b, c means \pm SD ($n = 10$) with different superscripts in the same column are significantly different at $p < 0.05$.

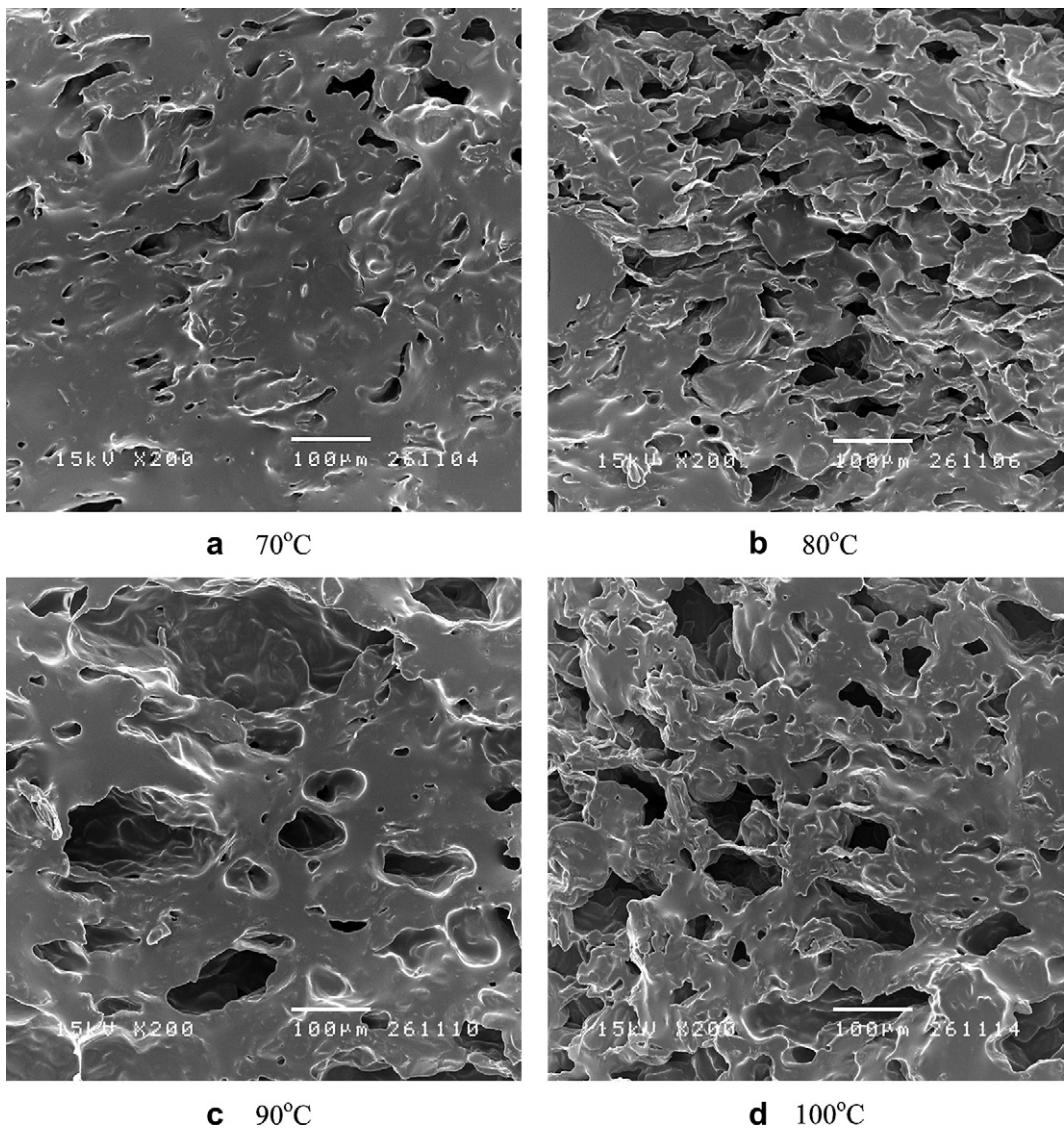
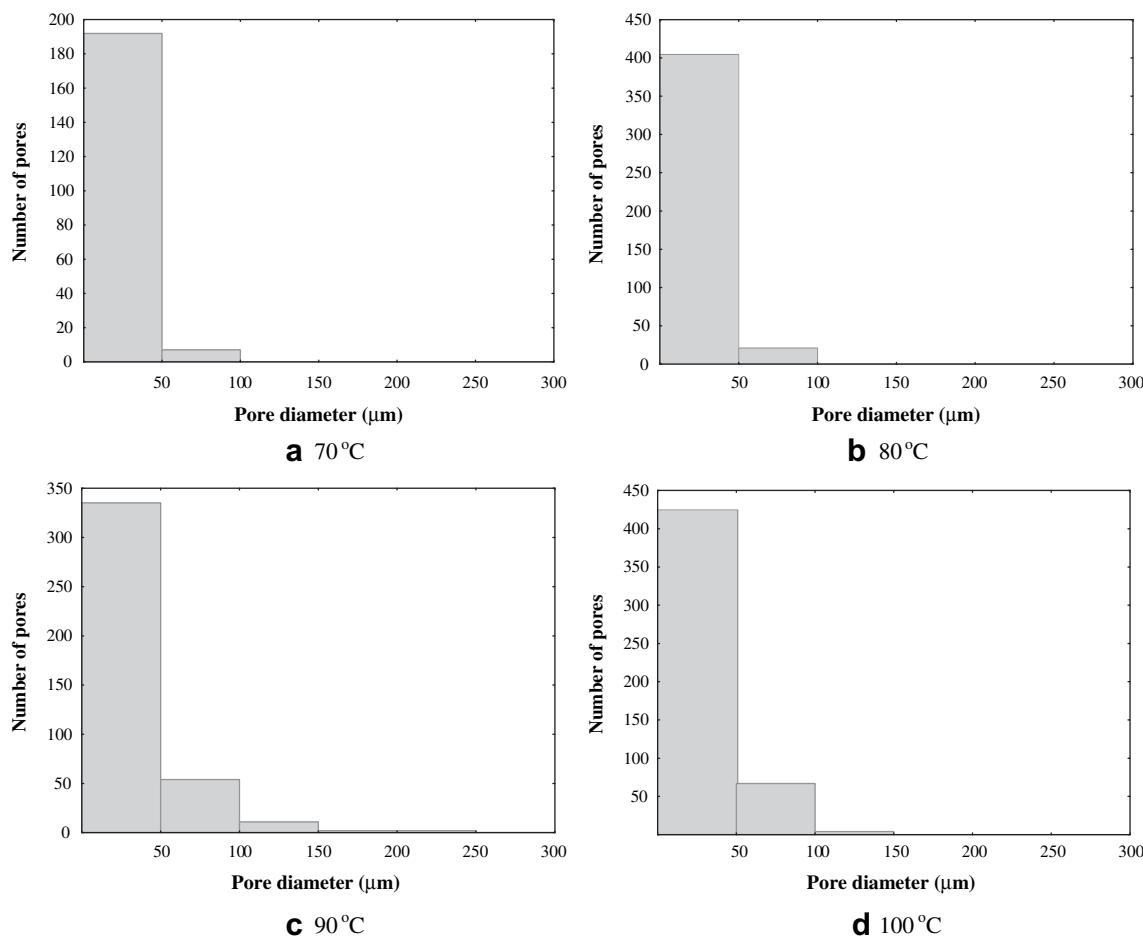


Fig. 8. Morphologies of banana slices dried at different temperatures.

performed the drying of sweet basil using the vacuum microwave at temperature of 45 °C and the hot air at temperature of 48 °C and found that the shorter drying time in the vacuum microwave could retain more volatile compounds than in the hot air drying.

Some interesting observations could be made concerning the changes of individual volatile compounds. The reduction in volatile compounds at a given drying temperature is different, depending on the characteristics of the compound. The isoamyl acetate and isobutyl butanoate exhibited the higher losses than the other volatile compounds. Factors such as boiling point, relative volatility and molecular weight may play an important role to volatile retention (Mui, Durance, & Scaman, 2002). The volatile with low molecular weight would be expected to have high diffusion coefficient and high loss as a result. The molecular weights of isoamyl acetate and isobutyl butanoate are relatively lower than the other volatile compounds.

3.4. Dimension


Fig. 7 (a) illustrates the changes of sample diameter and its thickness at the drying temperature of 70 °C. During drying, the

sample dimensions changed linearly with the moisture content and the main change took place along the thickness. From this experimental result, the diameter of banana changed only 10% whilst the thickness change was approximately 60–70% at the drying end. Such dimension change can be attributed to the removed moisture and developing stresses during drying (Ketelaars, Jomaa, Puigalli, & Coumans, 1992). From the dimension change results, it is reasonable to assume that the shrinkage in the thickness direction was taken into account when calculating the transfer of moisture inside the banana sample during drying.

The effect of drying temperatures on the thickness change is shown in Fig. 7 (b). It seemed insignificant difference of banana shrinkage when the sample was dried within the temperature range studied. The shrinkage of banana at drying temperatures was described by Eq. (9).

$$L/L_0 = a + bM/M_0 \quad (9)$$

The values of parameters *a* and *b* in Eq. (9) were constant and obtained by linear regression analysis of the experimental data. The constant parameters of *a* and *b* were 0.2543 and 0.6384, respectively.

Fig. 9. Pore diameter distribution of banana slices dried at different temperatures.

3.5. Color

Table 4 shows the color of dried banana slices in terms of L-, a- and b-values. In addition, the overall color of dried banana slices was also presented using hue angle. A larger value of hue angle indicates a more shift from red to yellow. Color of banana slices was slightly yellow before drying and became brownish after drying. The discoloration decreased with decreasing drying temperature. Drying at the temperature of 100 °C provided the browner product color than the other drying temperatures as manifested by the lowest L- and hue values. From statistical analysis using ANOVA, the dried banana color obtained from the drying temperatures of 70–90 °C was not different, indicating the insignificant effect of these drying temperatures on the browning rate. This result corresponded to the experimental result reported by Baini and Langrish (2009); they found that the drying temperatures ranging from 50 to 80 °C did not affect the browning rate in banana, but it was significant at the drying temperature of 100 °C.

3.6. Microstructure and image analysis

Dried banana morphologies obtained at temperatures are shown in Fig. 8 (a–d). The drying temperature strongly affected the dried banana morphology. The shrinkage stresses occurring during drying caused numerous breaks of banana tissue. The microstructure of dried banana was characterized by the small or large pores depending on the drying temperature. As shown in Fig. 9, drying at a temperature of 70 °C could create the pores with diameters

smaller than 100 μm. Moreover, the number of these pores was also small. Smalls in number of pores and sizes led to the dense structure. The pore sizes and the number of pores increased with increasing drying temperature. The banana tissue dried at the drying temperatures of 90 and 100 °C were extensive structural damage as characterized by larger number of pores and large pore size. It can clearly be seen from the Fig. 9 (c) and (d) that the pores with diameters larger than 100 μm was produced. Such a different morphology of dried banana slices would be affected on the textural property of finished product.

3.7. Texture

The texture property of dried banana slices was reported in terms of hardness, which was defined as the maximum force in the force-deformation curve. Table 5 shows the effect of drying

Table 5
Effect of drying temperatures on maximum force and initial slope of dried banana slices.

Temperature (°C)	Maximum force (N)	Initial slope (N/mm)
70	N/A	N/A
80	74.03 ± 26.84 ^b	9.24 ± 4.57 ^a
90	41.31 ± 22.49 ^c	9.39 ± 9.87 ^a
100	24.49 ± 4.09 ^c	9.23 ± 5.35 ^a

Note: N/A is not available since the moisture content of banana can not be dried to the desired value.

^{a,b,c} means ± SD ($n = 8$) with different superscripts in the same column are significantly different ($p < 0.05$).

temperatures on hardness of dried banana slices. Banana slice dried at 70 °C were not tested its textural property because its moisture content could not be reduced to the desired value as compared to the other cases. From Table 5, it was found that the structural morphology strongly affected the maximum force. The samples dried at temperature of 100 °C which possesses large porous structure provided the lowest maximum force, and the sample, with less porous structure, exhibited the highest maximum force. The values of initial slope for samples were not significantly different amongst the samples dried at temperatures.

4. Conclusions

This study has shown the effect of drying temperature on the drying kinetics and quality attributes of banana. The falling rate period was obviously evident from the drying characteristic curve and it could be divided into two sub periods, implying the different mass transfer mechanisms occurring during drying of banana. The effective diffusion coefficient of moisture related to the moisture content was proposed and used to describe such drying events. The shrinkage of banana slice was also included into the diffusion model for determining the effective diffusion coefficient. The shrinkage mainly occurred in the axial direction of banana slices. Drying temperatures slightly affected the degree of shrinkage but affected the amount of volatile compounds. The loss of total volatile compounds seems to be lower at high-temperature drying than at low temperature. In addition, high-temperature drying produced high porous structure of dried banana slices and, in turn, the value of hardness decreased whilst the crispiness was not different for samples dried at temperature range studied. Although the textural properties of dried banana were improved at high-temperature drying, the dried banana color became browner. To preserve the color, it recommended to dry banana at lower temperature of 100 °C.

Acknowledgments

The authors express their appreciation to the Thailand Research Fund (TRF), King Mongkut's University of Technology Thonburi, the National Science and Technology Development Agency (NSTDA) and the Commission on Higher Education for the financial supports.

References

AOAC. (1995). *Official methods of analysis* (16th ed.). Washington, D.C.: Association of Official Agricultural Chemists.

Baini, R., & Langrish, T. A. G. (2009). Assessment of colour development in dried bananas – measurements and implications for modelling. *Journal of Food Engineering*, 93, 177–182.

Boudhrioua, N., Giampaoli, P., & Bonazzi, C. (2003). Changes in aromatic components of banana during ripening and air-drying. *Lebensmittel-Wissenschaft und-Technologie*, 36, 633–642.

Brat, P., Yahia, A., Chillet, M., Bugaud, C., Bakry, F., Reynes, M., et al. (2004). Influence of cultivar, growth altitude and maturity stage on banana volatile compound composition. *Fruits*, 59, 75–82.

Crank, J. (1975). *The Mathematics of diffusion*. Oxford: Clarendon Press.

Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. *Journal of Food Engineering*, 55, 139–146.

Demirel, D., & Turhan, M. (2003). Air-drying behavior of Dwarf Cavendish and Gros Michel banana slices. *Journal of Food Engineering*, 59, 1–11.

Dissa, A. O., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying characteristics of Amelie mango (*Mangifera Indica* L. cv. 'Amelie') with correction for shrinkage. *Journal of Food Engineering*, 88, 429–437.

Hofsetz, K., Lopes, C. C., Hubinger, M. D., Mayor, L., & Sereno, A. M. (2007). Changes in the physical properties of bananas on applying HTST pulse during air-drying. *Journal of Food Engineering*, 83, 531–540.

Jannot, Y., Talla, A., Nganhou, J., & Puiggali, J.-R. (2004). Modeling of banana convective drying by the drying characteristic curve (DCC) method. *Drying Technology*, 22, 1949–1968.

Katekawa, M. E., & Silva, M. A. (2006). A Review of drying models including shrinkage effects. *Drying Technology*, 24, 5–20.

Ketelaars, A. A. J., Jomaa, W., Puigall, J. R., & Coumans, W. J. (1992). Drying shrinkage and stress. In A. S. Mujumdar (Ed.), *Drying_92, Part A* (pp. 293–303). Amsterdam, The Netherlands: Elsevier.

Krokida, M. K., Kiranoudis, C. T., Maroulis, Z. B., & Marinou, D. (2000). Effect of pretreatment on color of dehydrated products. *Drying Technology*, 18, 1239–1250.

Krokida, M. K., & Philippopoulos, C. (2006). Volatility of apples during air and freeze drying. *Journal of Food Engineering*, 73, 135–141.

Mayor, L., & Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. *Journal of Food Engineering*, 61, 373–386.

Mowlah, G., Takano, K., Kamoi, I., & Obara, T. (1983). Water transport mechanism and some aspects of quality changes during air dehydration of bananas. *Lebensmittel-Wissenschaft und-Technologie*, 16, 103–107.

Mui, W. W. Y., Durance, T. D., & Scaman, C. H. (2002). Flavor and texture of banana chips dried by combinations of hot air, vacuum and microwave processing. *Journal of Agricultural and Food Chemistry*, 50, 1883–1889.

Mulet, A. (1994). Drying modelling and water diffusivity in carrots and potatoes. *Journal of Food Engineering*, 22, 329–348.

Pakowski, Z., & Adamski, A. (2007). The comparison of two models of convective drying of shrinking materials using apple tissue as an example. *Drying Technology*, 25, 1139–1147.

Pan, Z., Shih, C., McHugh, T. H., & Hirschberg, E. (2008). Study of banana dehydration using sequential radiation heating and freeze-drying. *LWT-Food Science and Technology*, 41, 1944–1951.

Poomsa-ad, N., Soponronnarit, S., Prachayawarakorn, S., & Terdyothin, A. (2002). Effect of tempering on subsequent drying of paddy using fluidisation technique. *Drying Technology*, 20, 195–210.

Prachayawarakorn, S., Tia, W., Plyto, N., & Soponronnarit, S. (2008). Drying kinetics and quality attributes of low-fat banana slices dried at high temperature. *Journal of Food Engineering*, 85, 509–517.

Ramesh, M. N. (2003). Moisture transfer properties of cooked rice during drying. *Lebensmittel-Wissenschaft und-Technologie*, 36, 245–255.

Ruiz-López, I. I., & García-Alvarado, M. A. (2007). Analytical solution for food-drying kinetics considering shrinkage and variable diffusivity. *Journal of Food Engineering*, 79, 208–216.

Salmon, B., Martin, G. J., Remaud, G., & Fourel, F. (1996). Compositional and isotopic studies of fruit flavours. Part I. The banana aroma. *Flavour and Fragrance Journal*, 11, 353–359.

Sankat, C. K., Castaigne, F., & Maharaj, R. (1996). The air drying behaviour of fresh and osmotically dehydrated banana slices. *International Journal of Food Science and Technology*, 31, 123–135.

Simal, S., Deyá, E., Frau, M., & Rossello, C. (1997). Simple modelling of air drying curves of fresh and osmotically pre-dehydrated apples cubes. *Journal of Food Engineering*, 33, 139–150.

Srikiatden, J., & Roberts, J. S. (2006). Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. *Journal of Food Engineering*, 74, 143–152.

Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit, S. (2008). Modeling of diffusion with shrinkage and quality investigation of banana foam Mat drying. *Drying Technology*, 26, 1326–1333.

Yousif, A. N., Scaman, C. H., Durance, T. D., & Girard, B. (1999). Flavor volatiles and physical properties of vacuum-microwave and air-dried sweet basil (*Ocimum basilicum* L.). *Journal of Agricultural and Food Chemistry*, 47, 4777–4781.

Accepted to be published in Drying Technology

1 Effect of Adsorption Conditions on Effective Diffusivity and Textural

2 Property of Dry Banana Foam Mat

⁷ *¹School of Energy, Environment and Materials, King Mongkut's University of*
⁸ *Technology Thonburi 126 Pracha u-tid Road, Bangkok 10140, Thailand*

²*Faculty of Engineering, Department of Chemical Engineering King Mongkut's University of Technology Thonburi 126 Pracha u-tid Road, Bangkok 10140, Thailand*

12 ABSTRACT

¹ Correspondence: P. Prakotmak, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi 126 Pracha u-tid Road, Bangkok 10140, Thailand; E-mail: preeda_list@hotmail.com

22 with two and three constant parameters for describing the dependence of the effective
23 moisture diffusivity on moisture content were tested. The two constant parameters could
24 suitably describe the variation of the effective moisture diffusivity with moisture content.
25 The initial foam density, relative humidity and temperature significantly affected the
26 effective moisture diffusivity. The banana foam mats for all densities lost their crispy
27 texture at moisture content of 0.078 kg/kg d.b.

28

29 **Keywords** adsorption kinetics; capillary condensation; crispness; food foam; snack

30

31 **INTRODUCTION**

32 Foam mat drying is a process in which a semi liquid food is whipped to form
33 stable foams by incorporating large volume of air in the presence of a foaming agent,
34 which acts as a foam inducer. It is then spread as a thin mat and exposed to drying air
35 until the moisture content of product reduces to certain level.^[1,2] The drying time required
36 for food foam is significantly shorter than that for the non foam because the development
37 of porous structure in the food foam reduces the mass transfer resistance.^[1,3] Foaming has
38 successfully been applied to some fruits such as apple juice^[4] mango^[5] star fruit^[6]
39 blackcurrant pulp^[7,8] and banana^[1,9]. To produce the crispy banana snack, the banana
40 foam is usually dried to the moisture content below 0.04 kg/kg d.b. At this moisture
41 content, the partial pressure of water vapor inside the product is lower than that in the
42 environment. Hence, the prolonged exposure of the product to ambient storage condition
43 can lead to the adsorption of moisture from the atmosphere into the product matrix. The
44 uptake of moisture is commonly associated with deleterious changes in quality. For

45 crispy foods such as breakfast cereals, crispy breads and popcorn, their textures became
46 unacceptable at the moisture content of 0.042-0.07 kg/kg d.b.^[10] Ready-to-eat snacks and
47 white bread loss their crispness at the moisture content about 0.1 kg/kg d.b.^[11,12]

48 Food products can adsorb moisture rapidly or slowly depending on a partial
49 pressure of water vapor in the exposed environment. The rate of flow of adsorbable gases
50 is known to be dependent on the adsorption condition. In a single capillary tube, the
51 amount of adsorption varies in a wide range starting from negligible adsorption at very
52 low relative humidity to complete liquid filling at 100% relative humidity. Between these
53 two extreme points, it can divided into three regimes i.e. monolayer, multilayer and
54 capillary condensation. In the whole range of relative humidity, it corresponds to each
55 regime which depends on the size and shape of pore. In real porous materials, however,
56 they contain distribution of pore sizes and may experience different types of adsorption.
57 At low relative humidity, monolayer adsorption is dominant. When the relative humidity
58 increases, the material surface becomes increasingly covered with adsorbed molecules
59 and, simultaneously, the filling of liquid into smaller pores. The amount of pores that are
60 filled with liquid increases with increasing relative humidity and eventually the entire
61 pore volume is covered with liquid. Hence, in the wide range of relative humidity, the
62 phases of both liquid and gas are present inside the porous materials.

63 As mentioned above, the coexistence of these two phases may affect the
64 movements of liquid and gas inside the porous material and subsequent transport
65 property. The gas relative permeability decreases and the liquid relative permeability
66 increases as number of liquid-filled pores in porous material increase.^[13] Upon a certain
67 number of liquid-filled pores, the gas relative permeability becomes zero but the liquid

68 relative permeability still increases continually. To describe the transport of water vapor
69 inside the banana foam during adsorption, it is convenient to include the transport
70 mechanism for each phase into a single transport property, namely effective diffusivity.

71 The effective moisture diffusivity of food is known to be either independent or
72 dependent moisture content.^[14-18] In case of independence of moisture content, Arrhenius
73 relation is often used to represent its variation with temperature. However, the
74 dependence of diffusion coefficient on moisture content is not clearly demonstrated. Up
75 until now, there is no general model for describing the relationship between effective
76 diffusivity and moisture content.^[19] Many empirical forms such as power-law,
77 polynomial and exponential forms have frequently been used to describe their
78 relationships.^[15-17] Nevertheless, the model for relating the effective diffusivity to
79 moisture content of porous banana foam has not existed and literature data concerning the
80 effect of relative humidity on moisture diffusivity have been limited. The objectives of
81 this study were therefore to select a suitable empirical equation of diffusivity, to
82 investigate the influences of relative humidity, temperature and foam density on the
83 effective moisture diffusivity, and also to explore the change of textural properties of the
84 banana foam mat during adsorption.

85

86 MATERIALS AND METHODS

87

88 Dried Banana Foam Preparation

89 Gros Michel bananas (*Musa sapientum* L.) with a maturity stage of 5 corresponding to
90 yellow peel and green tip were purchased from a local market. The total soluble solid of

91 the banana was measured using an ATC-1E hand-held refractometer (ATAGO, Japan) at
92 a temperature of 23°C. The banana used in the experiments contained total soluble solid
93 content of 23-25°Brix. To prepare banana foam, the bananas were sliced and pretreated
94 by immersing them in 1 g/100 g sodium metabisulphite solution for 2 min and rinsing
95 them with distilled water for 30 s^[1], in order to prevent discolouration during foaming
96 process. 100 g banana puree with 5 g fresh egg albumen, used as foaming agent, was
97 whipped with a kitchen aid mixer (model no. 5K5SS, Strombeek-Bever, Belgium) at the
98 maximum speed to produce the foam densities of 0.3, 0.5 and 0.7 g/cm³. The banana
99 foam density was determined by measuring the mass of a fixed volume of the foam. The
100 banana foam was poured slowly into a steel block with dimensions of 45×45×42 mm
101 (W×L×H) and then placed on a mesh tray, which was covered with aluminium foil.
102 After that, it was dried to about 0.03 kg/kg d.b. using tray dryer which was operated at
103 80°C and an air velocity of 0.5 m/s. The banana foam prepared from the initial foam
104 densities of 0.3, 0.5 and 0.7 g/cm³ could produce the dried banana foam densities of
105 0.21±0.02, 0.26±0.02 and 0.30±0.02 g/cm³, respectively. The product thicknesses after
106 drying were 2.8±0.15, 3.2±0.1 and 3.4±0.1 mm for the banana foam densities of 0.21,
107 0.26 and 0.30 g/cm³, respectively. Five replications were performed for each banana
108 foam density.

109

110 **Adsorption Experiment**

111 Moisture adsorption experiments were carried out using the static method.
112 Samples were placed into the glass jars contained the saturated salt solutions (MgCl₂
113 ·6H₂O, Mg(NO₃)₂ ·6H₂O, KI, NaCl and KCl) which provided the relative humidity (RH)

114 in range of 32-82% at the corresponding temperatures of 35, 40 and 45°C. All the jars
115 were placed in the temperature-controlled oven with a precision of $\pm 1^\circ\text{C}$ (UFE500,
116 Memmert, Germany). Samples were weighed at different exposure times ranging from 1
117 to 120 h. At $RH > 74\%$, 1 mL of toluene was held in a vial and fixed in the glass jars in
118 order to prevent the sample spoilage by microbial.^[20] Moisture content of each sample
119 after reaching the equilibrium condition was determined by drying it with the hot air oven
120 at a temperature of 103°C for 3 h.^[21] At this temperature, the percentage error of moisture
121 content determination was approximately 0.4% when compared to the result obtained by
122 the standard vacuum method.^[1] The experiment at each adsorption condition was
123 repeated three times and the mean value was reported.

124

125 **SEM Photograph**

126 The morphologies of dried banana foam mats were characterized using scanning
127 electron microscope (JSM-5600LV, JEOL Ltd., Tokyo, Japan) with an accelerating
128 voltage of 10 kV. Before photographing, the specimens were cut into a dimension of 5×5
129 mm and then glued on the metal stub. The samples were coated with gold, scanned, and
130 photographed at $15 \times$ magnification

131 Image J software was used to quantify the porous banana foam characteristics
132 such as pore diameter and pore area. SEM image is composed of 8-bit grayscale pixels.
133 Each pixel of the SEM micrograph was assigned a value of gray intensity between 0 and
134 255. The SEM images were then segmented into binary images based on a manual
135 threshold setting using their grey level histogram. The threshold setting consisted of
136 finding the grey level of the histogram which suitably separates the classes associated

137 with solids and pores. From this threshold setting, it could create binary black and white
138 images. The pixels with gray levels lower than the selected threshold were assigned as
139 space, which appeared as black colour, and the pixels with gray levels above the selected
140 threshold were set as solid, which appeared as white colour in binary image. The pore
141 diameter was estimated from the known pore area by counting the number of pixels filled
142 in the specified space.

143

144 **Texture Analysis**

145 The effects of moisture content and storage temperature on product textures were
146 studied by a compressive test using a texture analyzer model TA.XT.plus (Stable Micro
147 System, Surrey, UK). The banana foam with moisture content of 0.038 kg/kg d.b. was
148 used to adsorb water vapour at the *RH* of 74% and temperature of 24°C. After the product
149 adsorbed water vapour for predetermined time, the sample was taken to examine its
150 textural properties. The sample was placed on the hollow planar base and the test applied
151 a direct force to the sample using a 5 mm spherical probe moving at a constant crosshead
152 speed of 2 mm/s. Before the penetration test, the samples were exposed to the
153 surrounding with *RH* of 35-45% for less than 20 s and it was expected that the textural
154 property of the samples did not change. From the force deformation curve, the hardness
155 was defined at the maximum force of the curve and the crispness was characterized by
156 the number of peaks and the slope of the first peak. The data were analyzed by ANOVA
157 using Duncan's multiple range test at $P < 0.05$. Twelve samples were used to determine
158 the textural properties and the average values of hardness and crispness were presented.

159

160

161 **Determination of Effective Moisture Diffusivity**

162 The banana foam mat used in the experiments had a dimension of $43 \times 43 \times 4$ mm.
163 This sample size provided the transport of moisture in direction of thickness since the
164 material thickness was 10 times shorter than the other two dimensions. The change in
165 product size due to swelling was considered negligible during adsorption. Unsteady state
166 mass transfer equation for moisture diffusion within an isotropic material with flat slab
167 geometry is given by:

168

$$169 \frac{\partial(\rho M)}{\partial t} = \frac{\partial}{\partial x} \left(D_{eff}(M) \frac{\partial(\rho M)}{\partial x} \right) \quad (1)$$

170 or

$$171 \frac{\partial(\rho M)}{\partial t} = D_{eff}(M) \frac{\partial^2(\rho M)}{\partial x^2} + \frac{\partial(\rho M)}{\partial x} \cdot \frac{\partial(\rho D_{eff}(M))}{\partial x} \quad (2)$$

172

173 where ρ is the apparent density of dry banana foam (kg/m^3) M the moisture content
174 (kg/kg d.b.), t the time (s), $D_{eff}(M)$ the effective moisture diffusion coefficient (m^2/s) and
175 x the distance along the diffusion path (m). In this study, it was assumed that the moisture
176 distribution inside the sample at the beginning was spatially uniform and the migration of
177 water vapour from the surrounding air to the sample surface occurred at the top surface.
178 No moisture transferred at the bottom since the bottom surface was placed on an opaque
179 glass dish. From the above assumptions, the following initial and boundary conditions
180 can be setup:

$$181 M = M_{in} \quad 0 \leq x \leq L \text{ at } t = 0 \quad (3)$$

182
$$D_{eff} \cdot \left(\frac{\partial(\rho M)}{\partial x} \right) = \frac{h_m M_w P_{vsat}}{RT} (RH_s(M) - RH_{air}) \quad x = 0 \text{ at } t > 0 \quad (4)$$

183
$$\frac{\partial(\rho M)}{\partial x} = 0 \quad x = L \text{ at } t > 0 \quad (5)$$

184 where M_{in} is the initial moisture content (kg/kg d.b.), L thickness of material (m), M_w the
 185 molecular wight of water (18 kg/kmol), P_{vsat} the saturated vapour pressure (Pa), T the
 186 temperature of the solid (K), R the perfect gas constant (8314.3 J/kmol/K), $RH_s(M)$ and
 187 RH_{air} are the relative humidity of air at the top surface of product and in the surrounding
 188 air, respectively. $RH_s(M)$ can be determined from the moisture adsorption isotherms and
 189 the data were not reported in the present work. h_m is the convective mass transfer
 190 coefficient (m/s) which can be determined from the correlation proposed by:^[22]

191
$$Sh = 0.646 Re^{0.5} \times Sc^{1/3} \quad (6)$$

192 Because the density of dry banana foam did not change during adsorption, the density can
 193 be cancelled out on the both sides of Eq. (2) and Eq. (2) can be written in a form of finite
 194 difference using forward for the first term on the right hand side and central difference for
 195 the second term:

196
$$\frac{M_i^{t+1} - M_i^t}{\Delta t} = D_{eff,i}^t \left(\frac{M_{i+1}^t - 2M_i^t + M_{i-1}^t}{(\Delta x)^2} \right) + \left(\frac{M_{i+1}^t - M_{i-1}^t}{2\Delta x} \right) \left(\frac{D_{eff,i+1}^t - D_{eff,i-1}^t}{2\Delta x} \right) \text{ for } i=1 \text{ to } N-1 \quad (7)$$

197 where Δt is the time increment (s) and Δx the distance between adjacent nodes (m). Eq.
 198 (4) was discretized using the central difference and it can be expressed by

199
$$D_{eff,i}^t \cdot \rho \left(\frac{M_{i+1}^t - M_{i-1}^t}{2\Delta x} \right) = \frac{h_m M_w P_{vsat}}{RT} (RH_s(M_i^t) - RH_{air}) \text{ for } i=N \quad (8)$$

200 where M_{N+1}^t in Eq. (8) is the fictitious moisture content at a fictitious node and N the
 201 number of layer, as illustrated in Fig. 1. From Eq. (8), the value of M_{N+1}^t can be calculated
 202 and this value was used to determine the moisture content at the top surface, M_N , at $t+1$
 203 using Eq. (7). The discretization of Eq. (5) with the backward difference formula
 204 gives $M_{i+1}^t = M_{i-1}^t$. Substituting M_{i-1}^t in Eq. (7) with M_{i+1}^t it can then be written as
 205 follows:

$$206 \quad \frac{M_i^{t+1} - M_i^t}{\Delta t} = 2D_{eff,0}^t \left(\frac{M_{i+1}^t - M_i^t}{(\Delta x)^2} \right) \text{ for } i=0 \quad (9)$$

207 From Eq. (9), the value of M_0^{t+1} can be determined. In the moisture calculation, the time
 208 increment of 0.01 s was used and the sample thicknesses of 2.8, 3.2 and 3.4 mm for the
 209 respective foam densities of 0.21, 0.26 and 0.30 g/cm³ were divided into 105, 120 and
 210 128 layers.

211 After the moisture content at every node is known, the average moisture content
 212 $\bar{M}(t)_{pre}$ can be readily be calculated by integrating the calculated moisture profile
 213 throughout the sample thickness and the trapezoidal numerical integration was used:

$$214 \quad \bar{M}(t)_{pre} = \frac{\int_0^L M(t) dx}{\int_0^L dx} \quad (10)$$

215 Because the dependence of diffusivity on moisture content cannot be described by any
 216 specific equation, three possible empirical equations obtained from the literature^[23-25]
 217 were tested with the moisture adsorption data:

218
$$D_{eff}(M) = D_0 \exp(- (e_1 M + e_2 M^2)) \quad (11)$$

219
$$D_{eff}(M) = D_0 \cdot M^{D_x} \quad (12)$$

220
$$D_{eff}(M) = D_0 \exp(-a \cdot M) \quad (13)$$

221 where D_0 , D_x , e_1 , e_2 , and a are the constant parameters. The accuracy of the models was
 222 evaluated by root mean square error ($RMSE$) and coefficient of determination (R^2) value.
 223 $RMSE$ is defined as:

224
$$RMSE = \left[\frac{1}{NP - P} \sum_{n=1}^P (M(t)_{exp} - \bar{M}(t)_{pre})^2 \right]^{1/2} \quad (14)$$

225 where $M(t)_{exp}$ is the experimental average moisture content of material at time t and
 226 $\bar{M}(t)_{pre}$ the predicted average moisture content, NP the number of data points and P the
 227 number of parameters.

228 The lower the value of $RMSE$ is the better the goodness of fit. In this work, a
 229 modified Nelder-Mead simplex method was used to estimate the constant parameters in
 230 Eqs. (11), (12) and (13). The $RMSE$ was set as the objective function with a tolerance of
 231 10^{-9} . To help speeding up the convergence of optimization, the initial guess was therefore
 232 obtained from the least squares fits of the moisture diffusivity data calculated from the
 233 method of slopes.^[26] The model with the lowest value of $RMSE$ and highest value of R^2
 234 was considered the best model to correlate the experimental data.

235

236

237

238 **RESULTS AND DISCUSSION**

239

240 **Morphology of Dry Banana Foam**

241 The microstructures of dry banana foam mats characterized by SEM are shown in
242 Fig. 2 and the pore size distributions determined by the binary image of SEM for three
243 banana foam densities are shown in Fig. 3. It is clear from both figures that the sample
244 with a foam density of 0.21 g/cm^3 had a larger proportion of large pores than the higher
245 foam densities whilst the foam density of 0.30 g/cm^3 exhibited larger proportion of
246 smaller pores. The proportions of the pore size larger than $300 \mu\text{m}$ were about 24, 10 and
247 4% for the foam densities of 0.21 , 0.26 and 0.30 g/cm^3 , respectively. From their pore size
248 distributions, the void area fractions for the banana foam densities of 0.21 , 0.26 and 0.30
249 g/cm^3 were 31, 26 and 23%, respectively. The void area fraction of banana foam sample
250 at the density of 0.30 g/cm^3 was relatively small because there are a small number of
251 large pores.

252

253 **Identification of Effective Moisture Diffusivity Model**

254 Three empirical effective diffusivity models describing the relationship between
255 the effective diffusivity and moisture content were proposed and validated against the
256 moisture adsorption data. Two experimental data sets for the dry banana foam density of
257 0.21 g/cm^3 obtained at 40°C and $66\% \text{ RH}$ and at 35°C and $83\% \text{ RH}$ were used to validate
258 the effective diffusivity models. Fig. 4 shows the effective diffusivity-moisture
259 relationship estimated from Eqs. (11)-(13) and their predictions of moisture uptake. As
260 shown in Figs. 4a and 4d, the effective diffusivity values obtained from the diffusion

261 models decreased with moisture content, but their values were not identical. The
262 difference of D_{eff} values amongst the three models was due to mathematics but not
263 physics. The constant parameters for each diffusion model are shown in Table 1. For all
264 cases studied, the models predicted the experimental data with a reasonable agreement;
265 the R^2 -values of the three models were above 0.99 and their values of $RMSE$ were lower
266 than 0.008.

267 The predictions of moisture adsorption using three effective diffusivity models are
268 shown in Figs. 4b and 4e, indicating that the moisture contents calculated from the
269 diffusivity models were almost superimposed even though the effective diffusivity values
270 determined from the models were different. This implied that the extent of such
271 difference in the effective diffusivity values was insensitive to the moisture-content
272 calculation, and this seemed more difficult to identify the suitable model for predicting
273 the moisture content from the values of $RMSE$ and R^2 . One more criterion was thus
274 needed to quantify the quality of estimated constant parameters. In this study, the local
275 relative error (E) was used to identify the suitable diffusivity model and it is defined as:

$$276 E(t) = 100 \frac{|M_{exp}(t) - M_{pre}(t)|}{M_{exp}(t)} \quad (15)$$

277 where $M_{exp}(t)$ is the experimental moisture content at time t and $M_{pre}(t)$ the moisture
278 content from prediction. If the estimation of moisture content was perfect, the value of E
279 at time t was zero. The values of E for the three empirical diffusion models are shown in
280 Fig. 4c for the temperature of 40°C and 66% RH and Fig. 4f for the temperature of 35°C
281 and 83% RH , indicating that the values of E for Eqs. (12) and (13) were less than 2%
282 throughout the exposure time whilst the error from prediction using Eq. (11) relatively

283 varied during adsorption; the maximum error, with a significantly higher than 2%, was
284 found at the early adsorption.

285 The prediction of adsorbed moisture at the early adsorption period with high
286 accuracy is very important to crispy product since the product quickly loses its crispy
287 texture when the product adsorbs the water vapor up to certain moisture content. From
288 this study, the banana foam will lose its crispiness at moisture content about 0.078 kg/kg
289 d.b. as will be seen in the section of banana foam texture. From these results, it could be
290 deduced that Eq. (12) or (13) was reasonably used to describe the moisture adsorption of
291 banana foam. However, using Eq. (12) for predicting moisture content during adsorption
292 provided E values for all adsorption times slightly lower than that using Eq. (13). This
293 implied that Eq. (12) was a suitable empirical model for describing the relationship
294 between effective moisture diffusivity and moisture content for dry banana foam.

295

296 **Effect of Relative Humidity on Effective Moisture Diffusivity**

297 The empirical equation of Eq. (12) was selected to study the effect of relative
298 humidity on the effective moisture diffusivity. Fig. 5 shows the moisture adsorption at
299 35°C and RH range of 32 to 83% for the banana foam density of 0.21 g/cm³. As expected,
300 the faster adsorption rate was accomplished with higher relative humidity. The
301 predictions of moisture content using Eqs. (1) and (12) agreed well with the experimental
302 data over a wide range of relative humidity values.

303 Fig. 6 shows the changes of D_{eff} with moisture content at different values of RH
304 and at adsorption temperatures of 35, 40 and 45°C for the dry banana foam densities of
305 0.21, 0.26 and 0.3 g/cm³. The D_{eff} value for the dry banana foam densities was strongly

306 increased with increasing moisture content at the range of RH of 31-48% and at all
307 adsorption temperatures. The equilibrium moisture content of samples at these relative
308 humidities was given in a range of 0.08 to 0.15 kg/kg d.b. At this RH range, the water
309 molecules were adsorbed on the pore surface with a small thickness. The adsorbed water
310 acts as a plasticizer which increases molecular mobility of water in the solid matrix. In
311 addition to plasticization effect, the flow of water vapor into the porous banana form was
312 not limited. Hence, the effective moisture diffusivity was remarkably increased as the
313 moisture content increased during adsorption.

314 When the RH was higher than 48%, the plasticization and vapor flow effects
315 became less important and the trend of changing D_{eff} with moisture content had very
316 differences amongst dry foam densities and amongst adsorption conditions i.e.
317 temperature and RH . At the dry banana foam density of 0.21 g/cm³, the value of D_{eff}
318 shown in Fig. 6a for the temperature of 35°C and values of RH of 67 and 75% increased
319 slightly with increasing moisture content. When the value of RH was 83%, on the other
320 hand, the value of D_{eff} for this banana foam density decreased with increasing moisture
321 content. At higher temperatures of 35°C together with RH above 65%, the D_{eff} decreased
322 with increasing moisture content as shown in Figs. 6b and 6c. For the other two dry
323 banana foam densities, the D_{eff} shown in Figs. 6d and 6e for the dry banana foam density
324 of 0.26 g/cm³ as well as 6f for the foam density of 0.3 g/cm³ were almost independent of
325 adsorbed moisture content at higher temperatures of 35°C and at higher RH values of
326 66%. Such different moisture diffusivity trends may be related to the combined effects of
327 physical characteristics of pore size and formation of liquid in pores of sample, both

328 factors affecting the flows of water vapor and liquid inside the porous food sample which
329 will be described below.

330 As the adsorption was carried out at 35°C and higher 50% *RH*, some amounts of
331 water vapor incorporated into the banana sample, and some formed a thicker liquid film
332 which results in smaller flux of water vapor flowing through the material and provided, in
333 turn, the slight increase of D_{eff} with increasing moisture content. When the adsorption
334 temperature increased to 40 or 45°C, implying an increase of partial pressure, the rate of
335 water vapor adsorption by the porous banana foam sample became faster, allowing more
336 exterior pores to be filled with water as compared to the adsorption at 35°C.
337 Consequently, the water vapor is more difficult to transport through the sample, resulting
338 in the D_{eff} decrease for the dry banana foam density of 0.21 g/cm³ as the sample adsorbs
339 more water vapor. For the samples with higher foam densities i.e. 0.26 and 0.3 g/cm³, the
340 relationship between D_{eff} and adsorbed moisture content was independent, which was not
341 similar to the case of the dry foam density of 0.21 g/cm³. Such difference of the moisture
342 diffusivity curves is claimed to variation in porous structure between banana foam
343 densities as depicted in Fig. 3. With a larger proportion of small pores, corresponding to
344 the size in the range of 5-100 μ m, for the banana foam densities of 0.26 or 0.3 g/cm³, it
345 might be possible that these small pores are occupied by the water with a number close to
346 the percolation threshold at which the vapor flow inside the pores is blocked. Hence, the
347 flow of water into the pores inside the banana foam is only governed by capillary flow
348 and the D_{eff} value, in turn, changes slightly with moisture content. Roca et al.^[27] was
349 carried out the adsorption experiment at the adsorption condition of 84% *RH* and 20°C
350 and found that the effective moisture diffusivity of sponge cake with porosity of 86%

351 exponentially decreased with increasing moisture content and decreased slightly for the
352 sample of 52% porosity.

353

354 **Effects of Temperature and Banana Foam Density on Effective Moisture Diffusivity**

355 Fig. 7 shows the changes of D_{eff} with moisture content at the adsorption
356 temperatures of 35, 40 and 45°C. As expected, the D_{eff} values increased with increasing
357 temperature. Figs. 8a and 8b show the D_{eff} value for three foam densities at an illustrated
358 temperature of 35°C and relative humidities of 32% and 50%, respectively. The D_{eff}
359 values were relatively lower for the high banana foam density than for the low foam
360 density. The difference in the D_{eff} values can be accounted for the morphological
361 difference between three samples as already explained in the SEM section. High porous
362 food provides less diffusional flux resistance and thus greatly facilitates the moisture
363 transport to the high porous foods, yielding high value of D_{eff} .

364

365 **Effect of Moisture Content on Banana Foam Texture**

366 Fig. 9 shows the force deformation curves of the banana foam at adsorption
367 temperature of 35°C and RH values of 48% and 74%. Eight banana foam mats at the
368 density of 0.26 g/cm³ were used to demonstrate how adsorption condition affects the
369 textural property. The adsorption time required to reach the moisture content about 0.05
370 kg/kg d.b. was approximately 32 and 5 min for the corresponding values of 48 and 74%
371 RH. The force deformation curves show irregular peaks that likely represent subsequent
372 fracture events of the pore structure. When the direct force was applied to the sample,
373 multiple fractures were occurred due to the force required for passing through the pore

374 voids of the dry banana foam sample, leading to the irregular jaggedness of curve. The
375 jagged pattern of the force deformation curve reflects the crispy behavior of the banana
376 foam mats. As observed from this figure, the irregular jagged force-deformation curves
377 are noticeably different to the samples which were exposed to different values of *RH* and
378 their curves can be classified into two groups, namely A and B. In group B for the sample
379 exposed to 74% *RH*, it was less crispy and tough as indicated by low jagged force and
380 high maximum force. On the other hand, group A sample stored at 48% *RH* had a high
381 jagged force and low maximum force, implying sample with crispy texture. From the
382 force deformation curves, it is clear that the adsorption rate affected the textural property
383 although the product moisture content for testing was identical. This is because most
384 water vapor adsorbed at high relative humidity is present near the sample surface, and the
385 resulting surface is wetted, which provides further the less crisp product.

386 Fig. 10 shows the curves of the force versus displacement recorded by texture
387 analyzer at different moisture contents. The dry banana foam mat before adsorbed the
388 water vapor had moisture content of 0.039 kg/kg d.b. and it had multiple peaks of force
389 deformation curve. The original samples with a moisture content of 0.039 kg/kg d.b. at
390 the banana foam densities of 0.21, 0.26 and 0.30 g/cm³ had differences in number of
391 peaks, initial slope and maximum force as shown in Fig. 11. From this information, it
392 indicates that the microstructure of banana foams plays an important role in the textural
393 properties. When the sample adsorbs water vapor up to certain moisture content, the
394 fracture pattern as shown in Fig. 10 is absent, revealing that the sample is not expected to
395 have the crispness. In addition, its texture is tough.

396 Fig. 11 shows the textural properties of banana foam at moisture contents and the
397 statistical analysis results are also shown in Figs. 11a-11c. The number of peaks was
398 counted when the force amplitude is more than the threshold value, which was set at 30 g
399 (0.294 N). The number of peaks and initial slope for all foam densities significantly
400 decreased with increasing moisture content. In contrast to the number of peaks or the
401 initial slope, the maximum forces for samples with foam densities respond differently to
402 the moisture content. At the foam density below 0.26 g/cm³, the insignificant change in
403 the maximum force is observed in the moisture range of 0.039-0.078 kg/kg d.b. but the
404 maximum force changes significantly with moisture content for the foam banana density
405 of 0.3 g/cm³, showing higher maximum force as the moisture content of sample
406 increased.

407 From this study, it indicated that the number of peaks were almost absent at the
408 moisture content of 0.078 kg/kg d.b., and it may be expected that the banana foam
409 samples loss their crispy texture. This moisture content for the banana foam is given in
410 same range of other crisp products such as crispy breads, cereals, popcorn and puffed
411 corns^[10], and it may be concluded that the moisture content of crisp products should not
412 be higher than 0.07-0.08 kg/kg d.b. in order to preserve their textures.

413

414 CONCLUSION

415 Three empirical equations describing the dependence of the effective moisture
416 diffusivity on moisture content were tested. The *RMSE*, R^2 -value and local relative error
417 were suitably used as criterion to identify the appropriate effective diffusivity model.
418 From these criterions, among the three empirical models tested, the relation between the

419 D_{eff} and moisture content could be described adequately by Eq. (12). This proposed
420 equation was its simplicity and ability to estimate the D_{eff} values over a whole adsorption
421 range of moisture content of banana foam mat. From the analysis of adsorption data, it
422 indicated that the banana foam density, adsorption temperature and relative humidity
423 affected the D_{eff} value. The D_{eff} value of every banana foam density rapidly increased
424 with increasing moisture content at low relative humidity and for all adsorption
425 temperatures. When the RH increased to above 50%, the D_{eff} may be constant, increase or
426 decrease with increasing moisture content. Such D_{eff} trends related to the capability of the
427 dry banana foam to adsorb water vapor. Faster adsorption rate let to the filling of liquid to
428 the pores, resulting in the decrease of D_{eff} with moisture content for the low density of
429 banana foam. But, it was independent of moisture content for the high foam density. The
430 value of D_{eff} was higher for adsorption at higher temperature and for lower foam density.

431 From the quality evaluation, it was found that the banana foam mat was very
432 hygroscopic and its crispness was very sensitive to moisture migration. The increase of
433 moisture content of banana foam mat during adsorption decreased the number of peaks
434 and initial slopes, implying less crispiness, but the maximum force increased, indicating
435 tough texture. The banana foam mats for all densities lost definitely their crispy texture at
436 the moisture content of 0.078 kg/kg d.b.

437

438 **ACKNOWLEDGMENTS**

439 The authors would like to express their appreciation to the Commission on Higher
440 Education, Thailand for supporting by grant fund under the program Strategic
441 Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree

442 for this research. This work was also supported in part by Thailand Research Fund and
443 King Mongkut's University of Technology Thonburi and also the National Science and
444 Technology Development Agency.

445

446 **REFERENCES**

447

448 1. Thuwapanichayanan, R.; Prachayawarakorn, S.; Sopornronnarit, S. Modeling of
449 diffusion with shrinkage and quality investigation of banana foam mat drying. Drying
450 Technology **2008**, 26(11), 1326-1333.

451 2. Muthukumaran, A.; Ratti, C.; Raghavan, V.G.S. Foam-mat freeze drying of egg white
452 and mathematical modeling part I optimization of egg white foam stability, Drying
453 Technology **2008a**, 26(4), 508-512.

454 3. Muthukumaran, A.; Ratti, C.; Raghavan, V.G.S. Foam-mat freeze drying of Egg
455 White-Mathematical Modeling Part II: Freeze Drying and Modeling, Drying
456 Technology **2008b**, 26(4), 513-518.

457 4. Raharitsifa, N.; Genovese, D.B.; Ratti, C. Characterization of apple juice foams for
458 foam-mat drying prepared with egg white protein and methylcellulose, Journal of
459 Food Science **2006**, 71 (3), 142–151.

460 5. Rajkumar, P.; Kailappan, R.; Viswanathan, R.; Raghavan, G.S.V.; Ratti, C. Foam
461 mat drying of alphonso mango pulp, Drying Technology **2007**, 25(2), 357-365.

462 6. Karim, A.A.; Wai, C.C. Foam-mat drying of starfruit (*Averrhoa carambola* L.) puree.
463 Stability and air drying characteristics. Food Chemistry **1999**, 64 (3), 337-343.

464 7. Zheng, X.Z.; Liu, C.H.; Zhou, H. Optimization of parameters for microwave-assisted
465 foam mat drying of blackcurrant pulp, *Drying Technology* **2011**, *29*(2), 230-238.

466 8. Zheng, X.Z.; Liu, C.H.; Zhou, H. Drying characteristics of blackcurrant pulp by
467 microwave-assisted foam mat drying, *Transactions of the CSAE* **2009**, *25*(8), 288-
468 293.

469 9. Thuwapanichayanan, R.; Prachayawarakorn, S.; Soponronnarit, S. Drying
470 characteristics and quality of banana foam mat, *Journal of Food Engineering* **2008**, *86*
471 (4), 573-583.

472 10. van Nieuwenhuijzen, N.H.; Primo-Martín, C.; Meinders M.B.J.; Tromp, R.H.; Hamer,
473 R.J.; van Vliet, T. Water content or water activity: What rules crispy behavior in
474 bread crust, *Journal of Agricultural and Food Chemistry* **2008**, *56*(15), 6432-6438.

475 11. Mazumder, P.; Roopa, B.S.; Bhattachrya, S. Textural attributes of a model snack food
476 at different moisture contents, *Journal of Food Engineering* **2007**, *79*(2), 511-516.

477 12. Roudaut, G.; Dacremont, C.; Le Meste, M. Influence of water on the crispness of
478 cereal based foods-acoustic, mechanical, and sensory studies, *Journal of Texture*
479 *Studies* **1998**, *29*(2), 199-213.

480 13. Bustos, C.I.; Toledo, P. Pore-level modelling of gas and condensate flow in two- and
481 three-dimensional pore network: Pore size distribution effects on the relative
482 permeability of gas and condensate, *Transport in Porous Media* **2003**, *53*(3), 281-315.

483 14. Tong, C.H.; Lund, D.B. Effective moisture diffusivity in porous materials as a
484 function of temperature and moisture content. *Biotechnol. Prog.* **1990**, *6*(1), 67-75.

485 15. Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Moisture Diffusivity Data
486 Compilation in Foodstuffs. *Drying Technology* **1996**, *14*(10), 2225-2253.

487 16. Loulou, T.; Adhikari, B.; Lecomte, D. Estimate of concentration-dependent diffusion
488 coefficient in drying process from the space-average concentration versus time with
489 experimental data. *Chemical Engineering Science* **2006**, *61*(22), 7185-7198.

490 17. Bourlieu, C.; Guillard, V.; Powell, H.; Vallès-Pàmies, B.; Guilbert, S.; Gontard, N.
491 Modelling and control of moisture transfers in high, intermediate and low a_w
492 composite food. *Food Chemistry* **2008**, *106*(4), 1350-1358.

493 18. Chen, X.D. Moisture diffusivity in food and biological materials, *Drying Technology*
494 **2007**, *25*(7), 1203-1213.

495 19. Saravacos, G.D.; Maroulis, Z.B. *Transport properties of foods*; Marcel Dekker: New
496 York, 2001.

497 20. Kaya, S.; Kahyaoglu, T. Thermodynamic properties and sorption equilibrium of pestil
498 (grape leather). *Journal of Food Engineering* **2005**, *71*(2), 200-207.

499 21. AOAC. *Official Methods of Analysis*, 16th Ed; Association of Official Agricultural
500 Chemists: Washington, D.C., 1995.

501 22. Incropera, F.P.; Dewitt, D.P. *Fundamentals of Heat and Mass Transfer 5th Ed*; John
502 Wiley & Sons: New York, 2002.

503 23. Olek, W.; Weres, J. Effects of the method of identification of the diffusion coefficient
504 on accuracy of modeling bound water transfer in wood. *Transport Porous Media*
505 **2006**, *66*(1-2), 135-144.

506 24. Guillard, V.; Broyart, B.; Bonazzi, C.; Guilbert, S.; Gontard, N. Moisture diffusivity
507 in sponge-cake as related to porous structure evaluation and moisture content. *Journal*
508 of Food Science **2003**, *68*(2), 555-562.

509 25. Sakin, M.; Kaymak-Ertekin, F.; Ilicali, C. Modeling the moisture transfer during
510 baking of white cake. *Journal of Food Engineering* **2007**, *80*(3), 822-831.

511 26. Karathanos, V. T.; Villalobos, G.; Saravacos, G. D. Comparison of two methods of
512 estimation of the effective moisture diffusivity from drying data. *Journal of Food*
513 *Science* **1990**, *55*(1), 218-233.

514 27. Roca, E.; Guillard, V.; Guilbert, S.; Gontard, N. Moisture migration in a cereal
515 composite food at high water activity: Effects of initial porosity and fat content,
516 *Journal of Cereal Science* **2006**, *43*(2), 144-151.

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

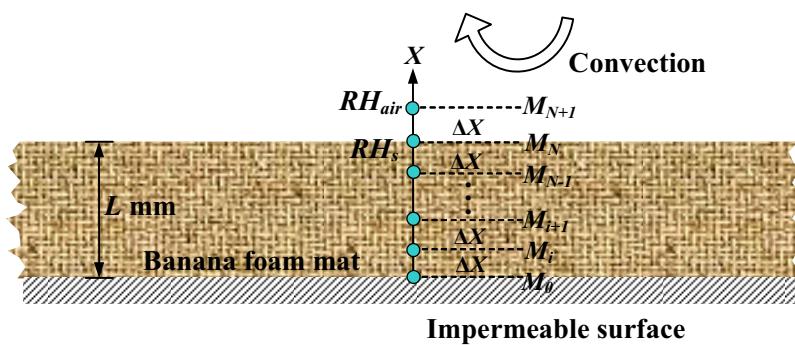
532

533

534

535

536


537

538

539

540

541

542

543 FIG. 1. Illustration for node positions in a banana foam mat

544

545

546

547

548

549

550

551

552

553

554

555

556

557

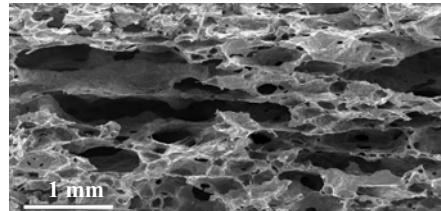
558

559

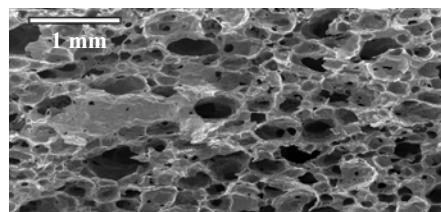
560

561

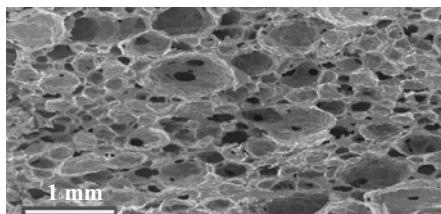
562


563

564


565

566


567

(a) 0.21 g/cm^3

(b) 0.26 g/cm^3

(c) 0.30 g/cm^3

568 FIG. 2. SEM micrographs of dry banana foam mats at different initial foam densities

569 (Baseline is 1 mm)

570

571

572

573

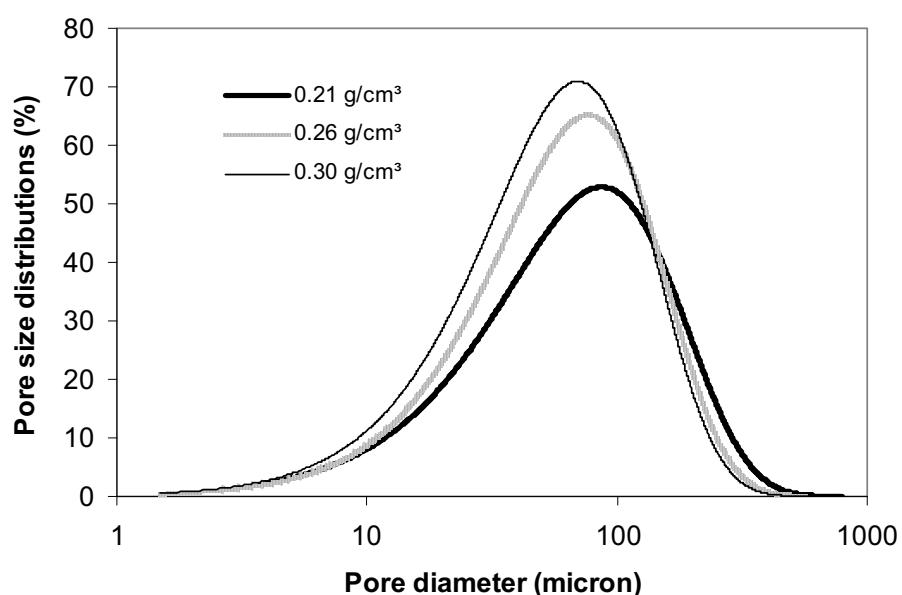
574

575

576

577

578


579

580

581

582

583

584

585 FIG. 3. Pore size distribution of dry banana foam at various densities.

586

587

588

589

590

591

592

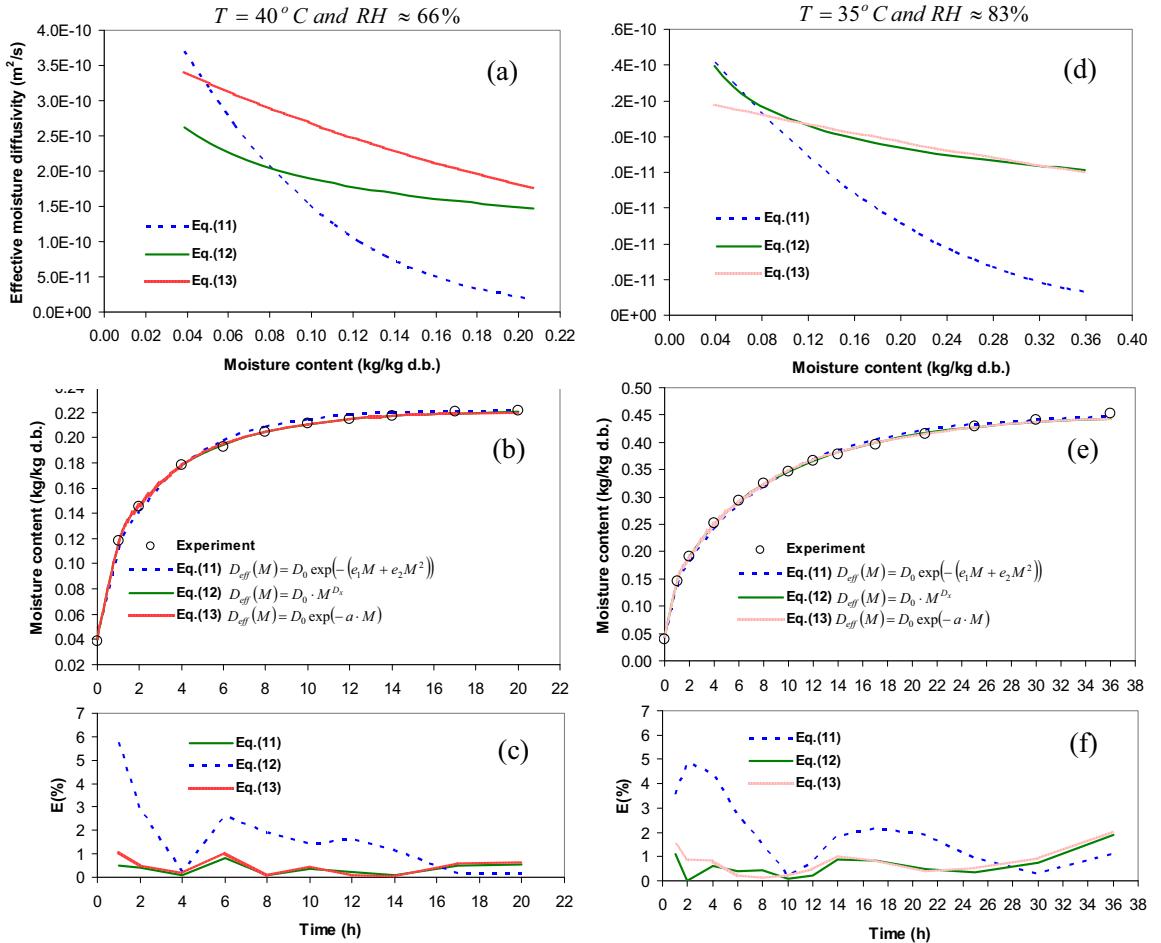


FIG. 4. Validation of the experimental and estimated moisture uptakes and the variation of effective diffusivity with moisture content of two selected example cases: 40°C, 66 %RH at left-hand side and 35°C, 83 %RH at right-hand side.

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

FIG. 5. Effect of values of relative humidity on moisture adsorption kinetics at 35°C for the foam density of 0.21 g/cm³. Dash lines are the predictions; symbols represent experimental data.

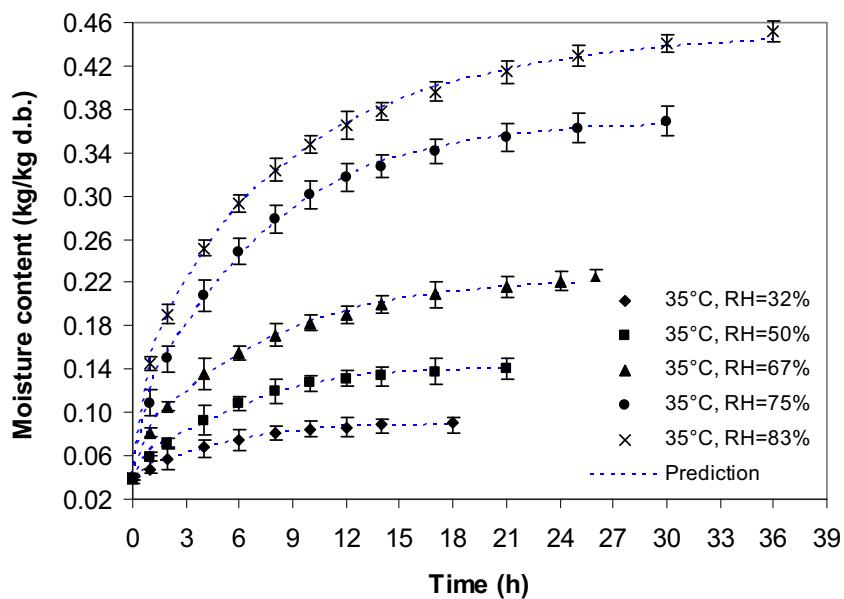
655

656

657

658

659


660

661

662

663

664

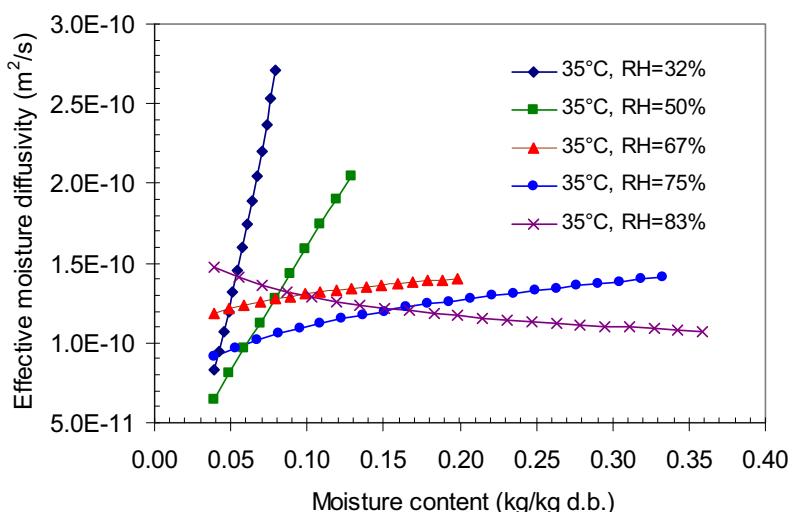
665

666

667

668

669


670

671

672

673

674

(a) Density of 0.21 g/cm^3

675

676

677

678

679

680

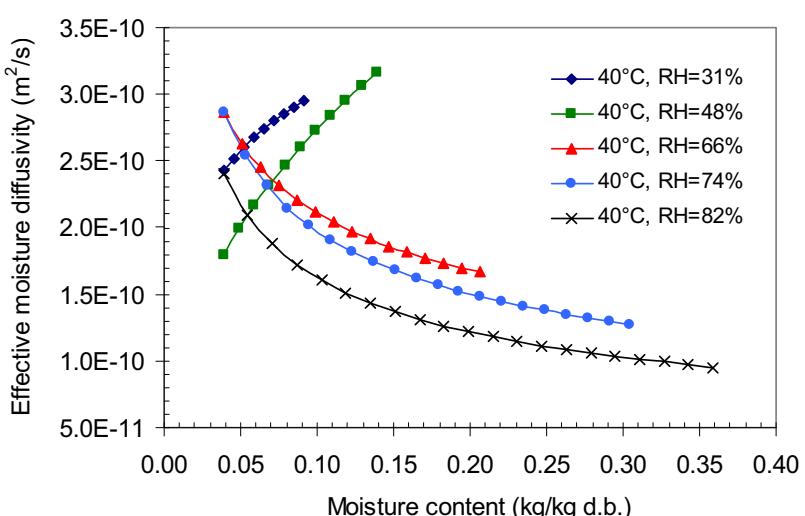
681

682

683

684

685


686

687

688

689

690

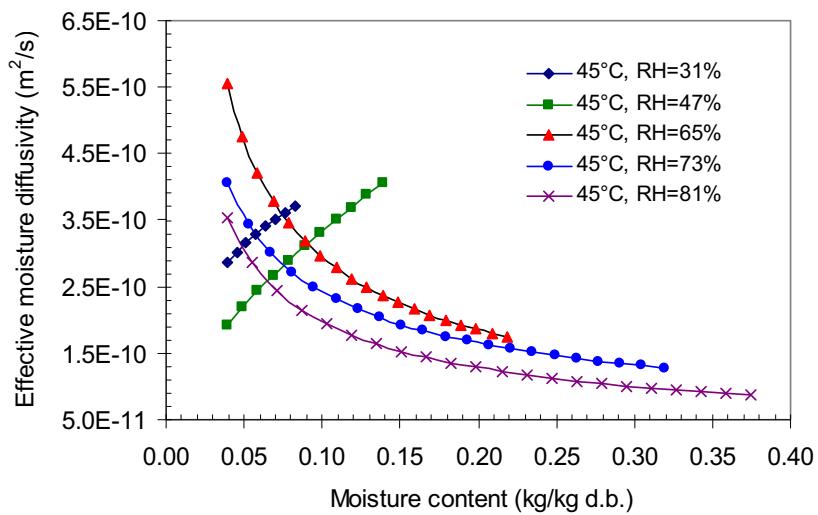
(b) Density of 0.21 g/cm^3

691
692
693
694
695

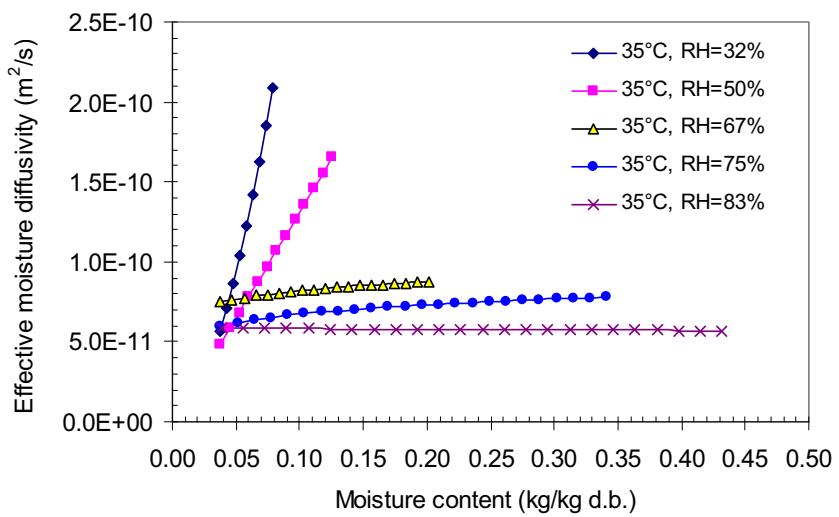
696

697
698
699
700
701
702
703

704

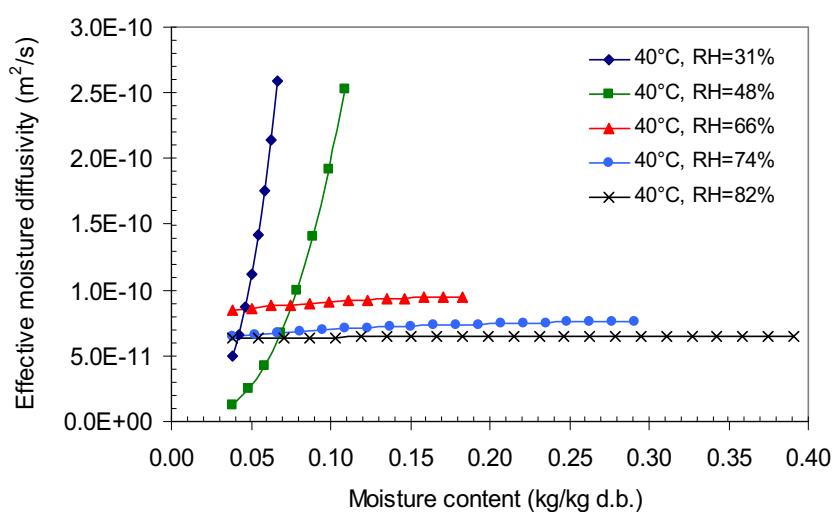
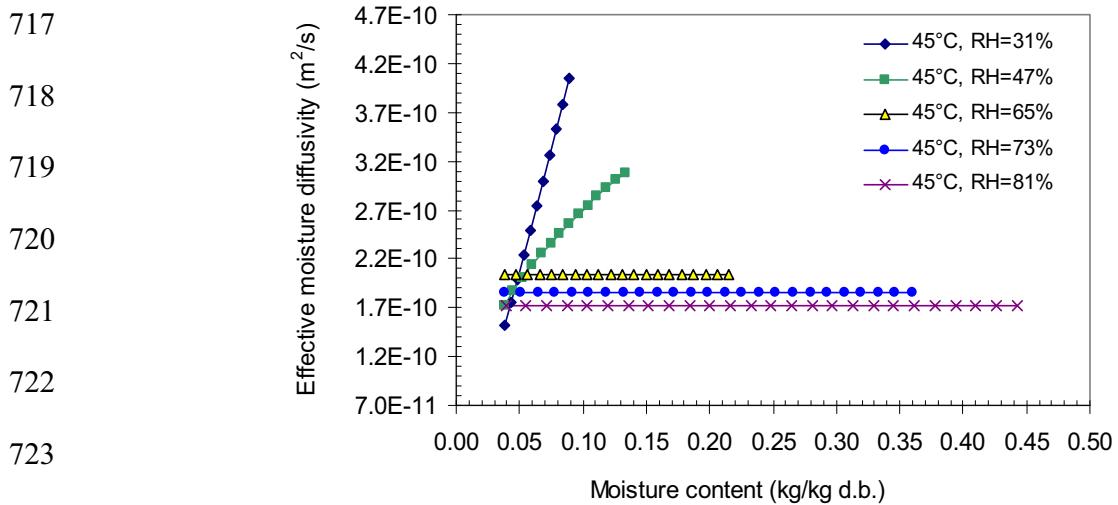

705

706


707
708
709
710
711
712
713

714

715

(c) Density of 0.21 g/cm^3

(d) Density of 0.26 g/cm^3

716

737 FIG. 6. Variation of effective diffusivity with moisture content at various relative
738 humidities for the foam density of $0.21, 0.26$ and 0.30 g/cm^3 .

739
740

741

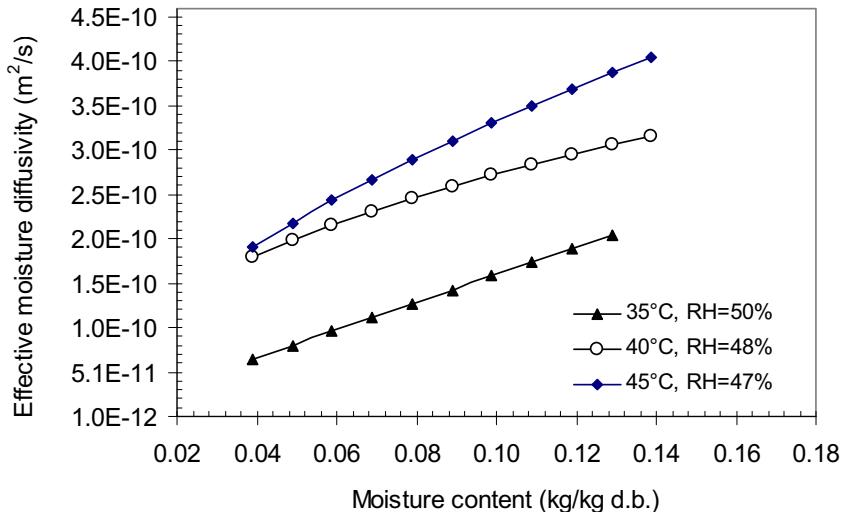
742

743

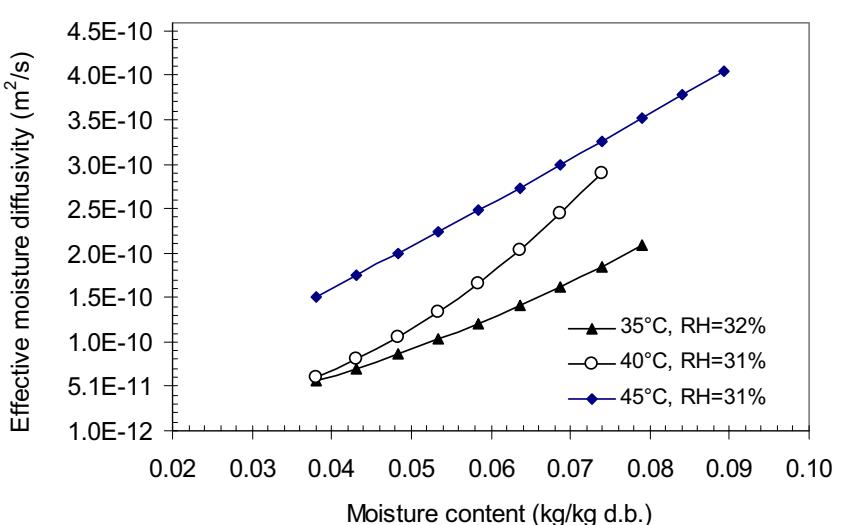
744

745

746


747

748


749

750

751

(a) $\rho = 0.21 \text{ g/cm}^3$

(b) $\rho = 0.26 \text{ g/cm}^3$

760

761

762 FIG. 7. Effect of temperatures on the effective moisture diffusivity.

763

764

765

766

767

768

769

770

771

772

773

774

775

776

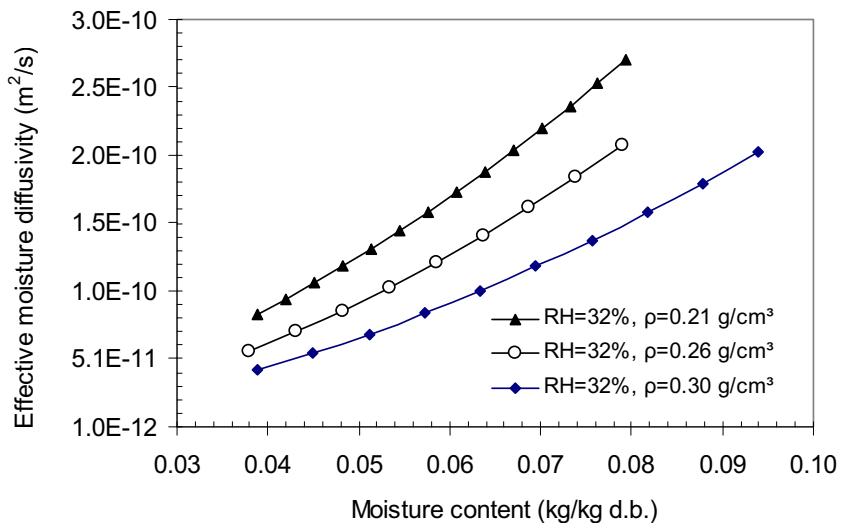
777

778

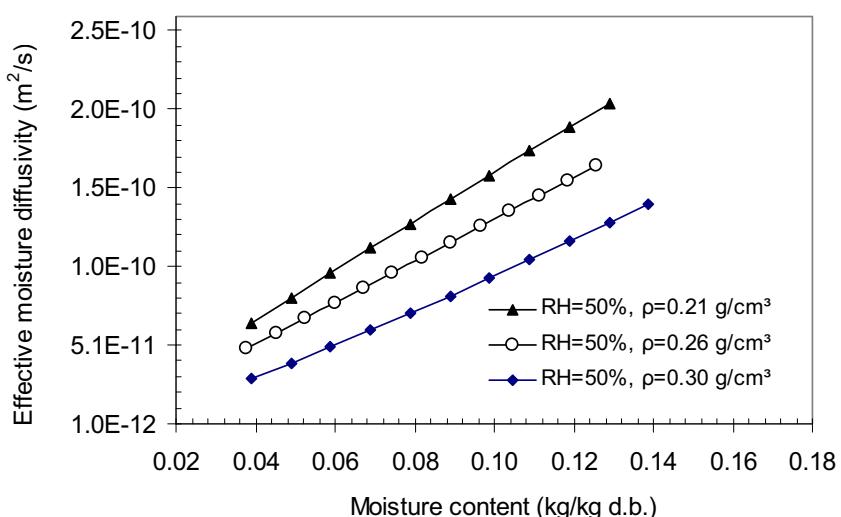
779

780

781

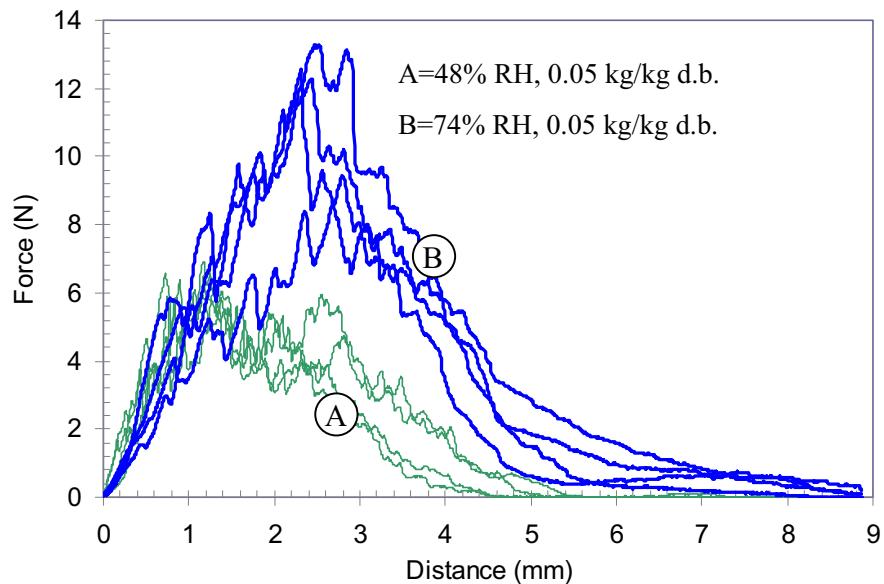

782

783


784

785

786


(a) 32% RH

(b) 50% RH

787 FIG. 8. Effect of initial foam densities on effective diffusivity at the temperature of 35°C,
 788 relative humidities of 32% and 50%.

789

790

791 FIG. 9. The effect of adsorbed moisture on force-deformation curve for foam density of
792 0.26 g/cm^3 .

793

794

795

796

797

798

799

800

801

802

803

804

805

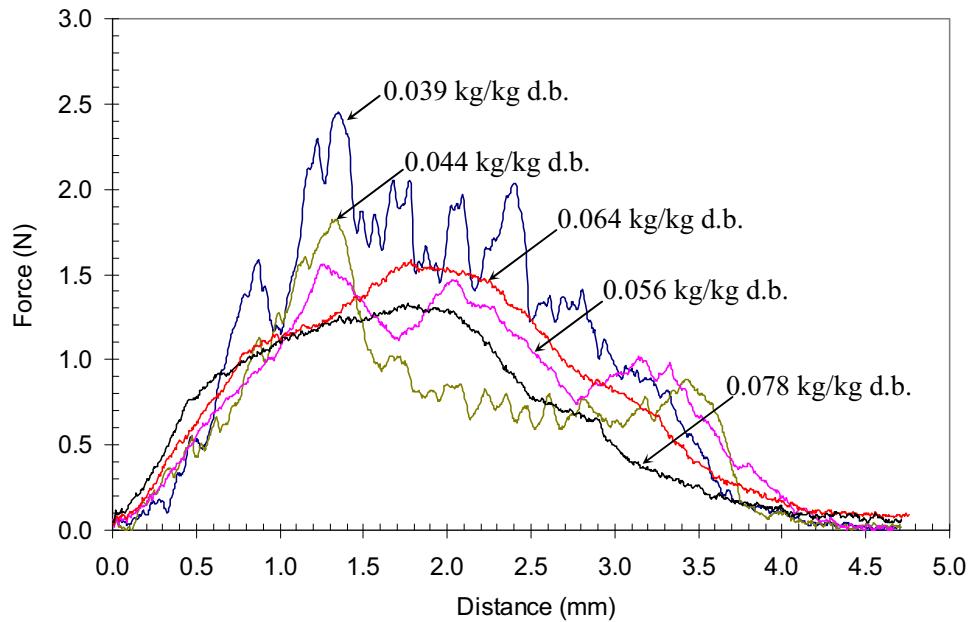
806

807

808

809

810


811

812

813

814

815 FIG. 10. Variation in force-deformation curve during compression test at various
816 moisture content levels for foam density of 0.21 g/cm^3 .

817

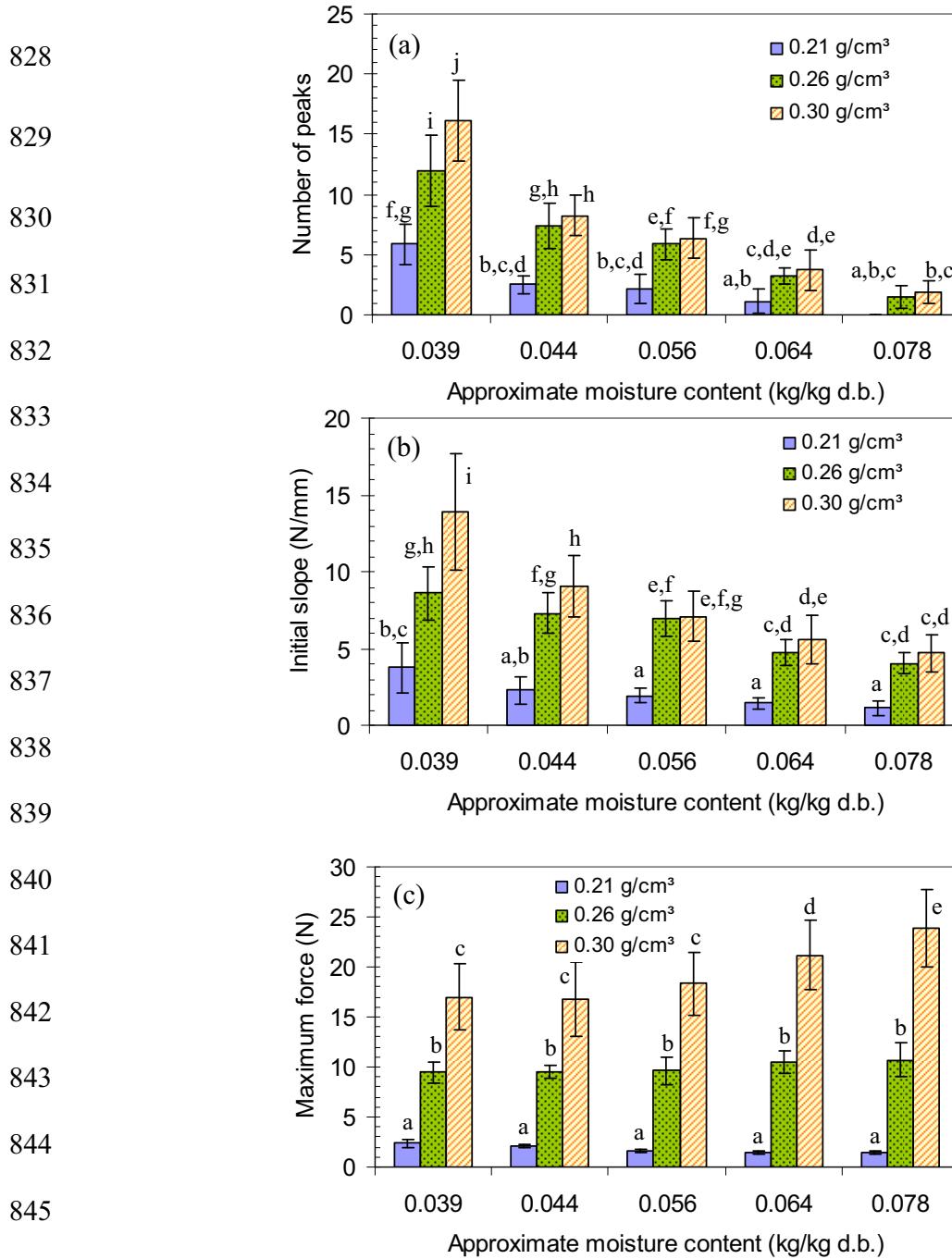
818

819

820

821

822


823

824

825

826

827

847 FIG. 11. Effect of moisture content and initial foam densities on (a) number of peaks (b)
 848 initial slope and (c) maximum force of the banana foam mats: the same letter means
 849 insignificant difference at $P>0.05$.

Effects of foaming agents and foam densities on drying characteristics and textural property of banana foam

Ratiya Thuwapanichayanan^{1,*}, Somkiat Prachayawarakorn², and Somchart Soponronnarit³

¹Department of Farm Mechanics, Kasetsart University,

50 Phaholyothin Road, Bangkok 10900, Thailand

²Department of Chemical Engineering, King Mongkut's University of Technology Thonburi,
126 Pracha u-tid Road, Bangkok 10140, Thailand

³School of Energy, Environment and Materials, King Mongkut's University of Technology
Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand

Abstract

Foaming technique can apply for producing porous structure which is an important requirement for crisp food. With this technique, foam density and foaming agent play a key role in drying kinetics and textural property of food. The influences of foam densities and foaming agents on the moisture diffusivity and the qualities of dried banana foam in terms of shrinkage, texture, microstructure and volatile loss were therefore investigated. Three foaming agents *i.e.* fresh egg albumen (EA), soy protein isolate (SPI) and whey protein concentrate (WPC) were used. The experimental results showed that *the* WPC banana foam after drying could retain more open structure during drying. This morphology encouraged the lower shrinkage and higher value of effective diffusivity than that of dried SPI and EA banana foams. For the textural properties of banana foam mats, the WPC and EA banana foams were spongy and less crisp than *the* SPI banana foam. The samples with lower foam densities for

* Corresponding author. Tel.: +662 561 3482; fax +662 561 3482.

E-mail address: t_ratiya@yahoo.com, agratty@ku.ac.th (Ratiya Thuwapanichayanan).

all foaming agents had higher effective diffusivity and smaller hardness than those with higher foam densities. However, the crispness was lower. The volatile substances lost during the foaming and drying steps, the main loss occurring during foaming.

Keywords: crispness; drying; foaming agent; shrinkage; volatile loss

1. Introduction

Bananas are often consumed as fresh and sometimes processed to produce new products, i.e., snacks, puree and powder, etc. Because of the increasing consumer demand for snack foods, bananas have the potential to commercially produce a snack at a small scale industry. Drying of banana may take a long time and thus consume a large amount of energy since the tissue structure of banana is very dense. Such dense structure may not present a good quality for producing a banana snack for which the crisp texture is preferred. A crisp food is characterized by a structure that consists of cellular assembly or a porous structure. Porous structure can also improve the hardness of food. There are several techniques to create the porous structure. Foaming technique, one of the methods, can be used to produce porous structure in foods. This technique is practically applied for many foods including bread, cake, cracker and confectionery products (Campbell and Mugeot, 1999). The combination of foam formation and drying may be a good method for producing crisp banana chips.

Foam is a dispersion of gas bubbles within liquid or semi-solid continuous phase. It is thermodynamically unstable. Two types of foaming agent are used in foods: low-molecular weight emulsifiers (lipids, phospholipids, surfactants etc.) and high-molecular weight biopolymers (proteins and polysaccharides). Proteins are widely used as an ingredient for foam formation and stabilization. The primary function of proteins in foam is to decrease the interfacial tension at the air/liquid interface which promotes the bubble formation (Davis and

Foegeding, 2007). The protein-protein attractions at the interface can result in the network formation which promotes the bubble stability, and contribute to texture of food foams.

One of the most difficult problems in the drying of foamed biological materials is the instability of the foam during heating (Ratti and Kudra, 2006). If the foam is unstable, the collapse of porous structure occurs resulting in the serious problem of drying operation and the foamed product quality. There are many variables involving the foam density and stability, and these variables include chemical nature of fruits, total soluble solids and concentration and type of foaming agent (Hart et al., 1963). The selection of foaming agent is thus the most important factors in preparation of the foam that can withstand processing, i.e., spreading and drying (Eduardo et al., 2001).

During drying of food foam, moisture gradient induces the material shrinkage. The volume change is larger than the volume of removed water during early period of drying, which corresponds to the semi-liquid state, and it closes to the volume change of removed water when the food foam becomes rigid (Thuwapanichayanan et al., 2008a). Thuwapanichayanan et al. (2008a), who investigated the drying of banana foam using egg white as foaming agent, described such volume change by the collapse of gas bubbles. This represents the bubble instability when using egg white.

The objectives of this work were therefore to study the effect of foaming agents, i.e., soy protein isolate, egg white and whey protein concentrate on the effective diffusivity of moisture and the qualities of the final product regarding to shrinkage, texture, microstructure and volatile compounds.

2. Materials and methods

2.1 Preparation of the banana puree and foam

Gros Michel bananas at a mature stage of 5, which contained total soluble solids of approximately 23-25°Brix, were used. Soy protein isolate (SPI) and whey protein concentrate

(WPC) were used as foaming agents in this study. The SPI contained 90.2% protein (dry basis), 6% moisture content, 4.5% ash and 0.32% fat. The WPC contained 80% protein (dry basis), 6.7% moisture content, 4.5% ash and 8.5% fat. Bananas were cut into slices with a slicing machine. To prevent discoloration during foaming, the sliced bananas were pretreated by immersing them in 1% (w/w) sodium metabisulphite solution for 2 min and then rinsed with distilled water for 30 s. The pretreated banana slices were chopped into small pieces and then blended with a blender (Waring, model no. 8011 BU, Torrington, CT) for 1 min. About 800 g of the banana puree was then poured into a mixing bowl and then added with different foaming agents. SPI and WPC were added as a dry solid at a concentration of 5%. The concentration of SPI and WPC used in this study was the same of fresh egg albumen (EA) used in the previous work (Thuwapanichayanan et al., 2008a). The banana puree with a foaming agent was whipped by a Kitchen Aid Mixer (model no. 5K5SS, Strombeek-Bever, Belgium) at a maximum speed (220 rpm) to foam densities of 0.3, 0.5 and 0.7 g/cm³. Foam density was determined by measuring the mass of a fixed volume of the foam. The experiments were done in duplicate.

2.2 Drying of banana foam mats

Banana foam mats with a thickness of 5 mm were placed on a mesh tray, which was covered with aluminum foil, and then placed in the drying chamber. The samples were dried to about 0.03 kg/kg db using the drying air temperature of 80°C and a superficial air velocity of 0.5 m/s. This drying temperature was a minimum temperature that could reduce the sample moisture content to the desire value. Moisture loss from the samples was determined by weighing the sample tray outside the drying chamber using an electronic balance with an accuracy of ± 0.01 g.

2.3 Determination of moisture diffusivity

The diffusion of moisture inside a single banana foam mat was described by Fick's second law and the shape of sample was assumed to be an infinite slab, implying that the transfer of moisture is occurred in one dimension and it can be expressed by the following equation:

$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial x} \left(D_v^{\text{eff}} \frac{\partial M}{\partial x} \right), \quad 0 < x < L(t) \quad (1)$$

where D_v^{eff} is the effective moisture diffusivity (m^2/s), L is the sample thickness (m), M is the local moisture content (kg/kg d.b.), x is the coordinate along the diffusion path and t is the drying time (s).

Since the effective moisture diffusivity of banana foam varied with moisture content (Thuwapanichayanan et al., 2008a), the space derivative of the product of D_v^{eff} and $\frac{\partial M}{\partial x}$ on the right side of Eq. (1) can then be written as:

$$\frac{\partial M}{\partial t} = D_v^{\text{eff}} \frac{\partial^2 M}{\partial x^2} + \frac{\partial M}{\partial x} \frac{\partial D_v^{\text{eff}}}{\partial x}, \quad 0 < x < L(t) \quad (2)$$

Eq.(2) was digitized using variable grid central finite difference method in its explicit form. In order to know the moisture at positions inside the banana foam and at drying times, Eq.(2) must be solved with initial and boundary conditions. The top surface of banana foam mat was only exposed to hot air, and no evaporation took place at the bottom, thus the initial and boundary conditions are:

$$\text{initial: } M = M_0, \quad 0 \leq x \leq L(t) \quad \text{at } t = 0 \quad (3)$$

$$\text{boundary: } M = M_{\text{eq}}, \quad x = L(t) \quad \text{at } t > 0 \quad (4)$$

$$\frac{\partial M}{\partial x} = 0, \quad x = 0 \quad \text{at } t > 0 \quad (5)$$

Because of the couple effects of foam instability and stress formation, the size of drying sample was shrunk and the shrinkage occurred only in the direction of thickness or x ,

thus providing a shorter distance for diffusion of moisture. This effect was included into the diffusion model in order to determine the effective diffusivity. In the present study, the moving boundary method was employed to solve the diffusion model including shrinkage (Thuwapanichayanan et al., 2008b). From the experimental shrinkage data, it was found that a decrease in the thickness of banana foam mat was in a linear relation with the moisture content, and the shrinkage was expressed in finite difference form as given below

$$\Delta x_i / \Delta x_0 = a + b(M_{av} / M_0) \quad (6)$$

where a and b are the constant parameters, which were obtained from the experiments. Δx_i is the spacing between each grid point (m), Δx_0 is the spacing between grid point at the beginning (m), M_{av} is the average moisture content of each section (kg/kg d.b.), M_0 is the initial moisture content (kg/kg d.b.). The values of constant parameters a and b in Eq. (6) obtained by linear regression analysis of the experimental data are given in Table 1. Both constant parameters depended on the initial foam densities and types of foaming agent.

Table 1 Values of a and b in Eq. (6) for various foam densities and foaming agents

	EA			SPI			WPC		
	0.3g/cm ³	0.5g/cm ³	0.7g/cm ³	0.3g/cm ³	0.5g/cm ³	0.7g/cm ³	0.3g/cm ³	0.5g/cm ³	0.7g/cm ³
A	0.349	0.496	0.503	N/A	0.319	0.411	0.509	0.632	0.606
B	0.702	0.521	0.507	N/A	0.645	0.609	0.472	0.360	0.390
R ²	0.977	0.983	0.984	N/A	0.982	0.994	0.991	0.997	0.999

N/A: not available since SPI could not form foams at density of 0.3 g/cm³.

To determine the effective diffusion coefficient, the modified Nelder-Mead simplex optimization technique was used. By this technique, it is necessary to identify the equation describing the relationship between the moisture content and effective moisture diffusivity

and determine the constant parameters of that equation. An exponential form as given by Eq. (7) was used to describe the diffusion in banana foams (Thuwapanichayanan et al., 2008a)

$$D_{\text{eff}}(M) = a \exp\left(\sum_{i=1}^4 \alpha_i M^i\right) \quad (7)$$

where a and α_i are the constant parameters. Initial guess values of such two constant parameters were obtained by the method of slopes.

After assuming the initial guess for the constant parameters in Eq. (7), the moisture contents of banana during drying were calculated and compared to the experimental values. The root mean square error (RMSE) was set as an objective function and the calculation was stopped when the value of RMSE was less than 10^{-6} .

2.4 Shrinkage measurement

Four banana foam mats taken at different drying times were measured for their volumes. The volume was determined by the volumetric displacement method using glass beads with a diameter in the range of 0.106-0.212 mm as a replacement medium (Hwang and Hayakawa, 1980). In each measurement, one sample piece was used and the mean value of four samples was reported.

Shrinkage or volume change of sample at different drying times (ΔV) can be defined as:

$$\Delta V = V_0 - V \quad (8)$$

where V is the volume of the sample at different drying times (cm^3) and V_0 is the initial volume of the sample before drying (cm^3).

2.5 Texture measurement

The texture of dried banana foam mats was evaluated by a compressive test using a texture analyzer model TA.XT.plus (Stable Micro Systems, Surrey, UK). The sample was

placed on the hollow planar base. The test applied a direct force to the sample using a 5 mm spherical probe at a constant crosshead speed of 2 mm/s. The hardness was defined as the maximum force in the force-deformation curve while the crispness was characterized by the number of peaks and the slope of the first peak. Eight samples were tested and the average values of hardness and crispness were reported.

2.6 Microstructure evaluation

A scanning electron microscope (JEOL JSM-5600LV, Tokyo, Japan) was used to study the microstructure of dried banana foam mats. The dried banana foam mats were placed on two-side adhesive tape attached to metal stubs and were coated with gold. SEM micrographs were taken at an accelerating voltage of 10 kV and a magnification of 35 \times .

2.7 Analysis of volatiles

2.7.1 Sample preconcentration

The volatile components of fresh banana, foamed banana and dried banana foam mat were isolated by solid phase micro-extraction. Each sample was done in duplicate. Each sample was homogenized, placed in a 20 ml vial and then weighed with precision of ± 0.01 g; 4 g for fresh and foamed bananas, and 1 g for dried banana foam mat. The sample with a mass of 4 g was filled up with 6 mL of distilled water while the sample with a size of 1 g was filled up with 9 ml of distilled water. The internal standard, which consists of 0.2 μ l of caproic acid ethyl ester in 0.1% (v/v) methanol solution, was added to those samples. The vial was then covered with a silicone Teflon-lined septum. A stainless steel needle covered with an 85 μ m length carboxane/polydimethyl siloxane fiber penetrated the septum. The fiber was then pushed into the headspace above the sample for absorption at 30°C for 30 min.

2.7.2 Gas chromatography-mass spectrometry analysis (GC-MS)

Sample analysis was carried out with a Hewlett-Packard 6890 gas chromatography (GC). A HP5 column (30 m, 0.25 mm diameter, 0.25 μ m thickness) was used. Helium was used as the carrier gas at a flow rate of 1 ml/min. Thermal desorption of the components from the fiber was carried out in the GC split injector (1:10) at 200°C for 5 min. The oven temperature was programmed from 40°C (1 min) to 120°C at 3°C/min. The volatile compounds were analyzed by mass spectrometry with electronic impact (EI) 70 eV quadripolar filter and identified by comparison with spectra stored in a data bank.

2.8 Statistical analysis

The data were analyzed using the analysis of variance (ANOVA). Duncan's test was used to establish the multiple comparisons of mean values. Mean values were considered at 95% significance level ($p<0.05$).

3. Results and discussion

3.1 Foam density

The foam ability can simply be measured by the foam density (Wilde and Clark, 1996). Lower foam density indicates more air to be entrapped in the foam. Figure 1 shows the effect of foaming agents on the foam ability, indicating that foaming agents took an effect on the foam ability. The additions of EA and WPC at 5% could produce the minimum foam density of 0.3 g/cm³ whereas the addition of SPI at the same concentration could produce the minimum foam density of 0.8 g/cm³ as shown in Fig. 1. The higher SPI foam density is probably because SPI might not be adequate to decrease the interfacial tension at the air/liquid interface due to the lower protein solubility. The protein solubilities of WPC and SPI at the present study were

When SPI was added at 10%, banana puree could be foamed to the minimum density of 0.5 g/cm³. The more addition of SPI could not reduce banana foam density to be lower than 0.5 g/cm³ significantly (data not shown) and thus the 10% SPI was enough for foaming banana.

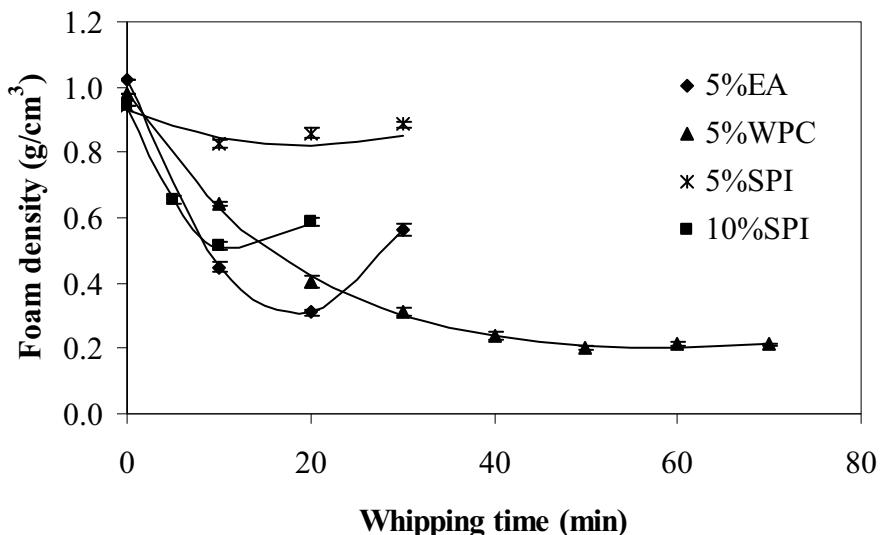


Fig. 1 Effects of foaming agent and whipping time on the foam density

It is interesting to that although the WPC and EA at 5% can produce the foam density of 0.3 g/cm³, but the whipping time used was different. The whipping time for EA was significantly shorter than that of WPC; the whipping times were 20 and 50 min for EA and WPC, respectively. From this result, it implies that the proteins in egg white can be more rapidly absorbed at the air-liquid interface and more denatured than the WPC (Townsend and Nakai, 1983). However, the foams produced from EA was less stable than that from WPC as depicted in Fig.1, showing the increase of EA banana foam density at whipping time beyond 20 min whilst the WPC foam density did not change after it reached the minimum density even though the whipping time was continued. The instability of SPI banana foam was also found. These results corresponded to the experimental results reported by Mott et al. (1999). In their work, the whey protein foams could maintain the overrun during the extended whipping whereas the overrun of egg white foams decreased foam quickly. The increase in foam

density when using EA was explained by a result of protein aggregation caused by electrostatic interactions of the negatively charged lysozyme proteins (Phillips et al., 1990).

Whey protein does not have the basic protein lysozyme and thus does not exhibit the electrostatic interactions. Hence, the foams are quite stable.

3.2 Drying characteristics of banana foams

Fig. 2 shows the drying curves of banana foam mats obtained from three foaming agents. The initial moisture contents of foamed banana samples added with different foaming agents were different; the initial moisture contents of EA, SPI and WPC banana samples were in the range of 3.2-3.5, 2.0-2.2 and 2.6-2.9 kg/kg db, respectively. This is because the SPI and WPC were added as a dry solid form while the EA was added as a liquid form. From their drying kinetics shown in Fig. 2, it indicated that the moisture content decreased exponentially with time, implying that the drying rate of banana foam mat is controlled by the internal diffusion process. Similarly, drying of star fruit foam mat was also controlled by diffusion (Karim & Wei, 1999). On the other hand, the drying rate of tomato foam was governed by both convection and diffusion (Brygidyr et al., 1977). From these facts, it reveals that the drying mechanisms depend on the product characteristic. Each fruit has differences in the chemical composition and the solid content.

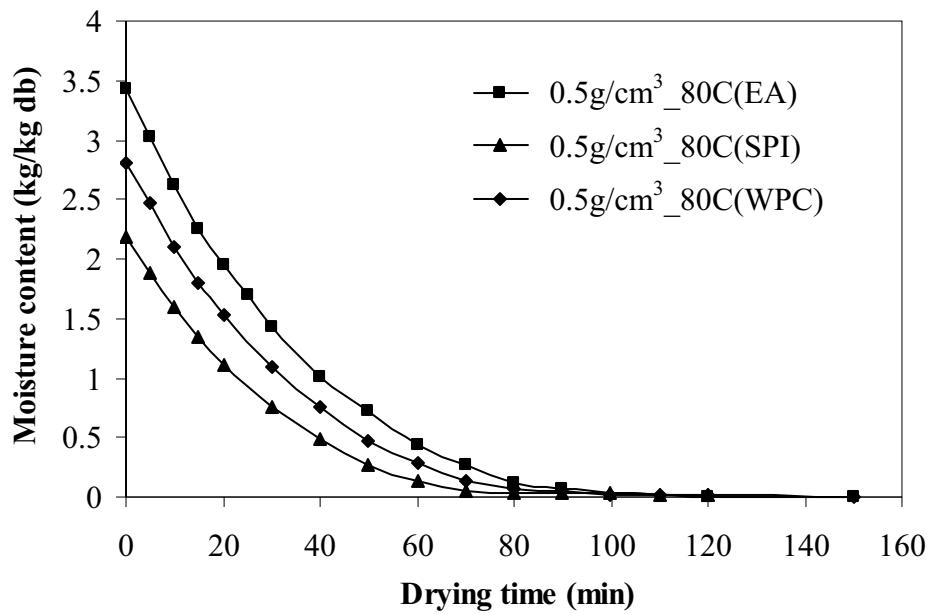


Fig. 2 Drying curves of banana foam mats at different foaming agents

Table 2 shows the effects of foaming agents and foam densities on the drying times of banana foam mat used for reducing moisture content to 3% d.b. at the drying temperature of 80°C. It was found that the drying of banana foam mats at lower initial foam densities took shorter time for all foaming agents because of the larger void area fraction at lower initial foam densities which facilitate the moisture moving from inside to the surface.

Considering the foaming agent effect, it can be seen that the drying time was different amongst foaming agents as compared at the same foam density and the same drying temperature. The difference in drying time is caused by differences in initial moisture content, effective moisture diffusivity and material shrinkage. The drying time for the SPI banana foam mat was shortest as compared to the WPI or EA banana foam mats. The lower initial moisture content of sample and the larger shrinkage provides the shorter drying time. The final thicknesses of EA, SPI and WPC banana foams are given in Table 2.

Table 1 Drying time of banana foam mats at different foaming agents and foam densities

Foam density (g/cm ³)	Drying time (min)		
	EA	SPI	WPC
0.3	60	N/A	80
0.5	150	120	150
0.7	270	180	270

N/A : not available since SPI could not form foams of density of 0.3 g/cm³.

3.3 Shrinkage

Table 2 shows the thickness of EA SPI and WPC banana foams at the drying end. The banana foam mats before drying were prepared at a 5 mm thickness and when the drying was finished, the banana foam mat thickness was different amongst foam densities and amongst foaming agents. In the case of foam density, it is clear that the banana foam mat produced from the lower foam density had a thinner material or had a higher shrinkage. This can be explained by the fact that as observed from the experiment, the gas bubbles created during the preparation of banana foam at lower density had larger sizes and they were adjacent together. When it was subject to be dried, these gas bubbles were rather unstable and collapsed easily, resulting in the higher shrinkage of banana foam mat with the lower density.

As presented in Table 2, the thickness of the finished WPC banana foam mat had a largest value as compared to the other two foaming agents i.e. EA and SPI. This result indicated that the banana foams added with WPC had more stability than those with additions of EA and SPI. This result is contrast to that reported by several researchers (Devilbiss et al., 1974, Yang & Foegeding, 2010). From their works, the results have been shown that the egg white protein was better foam stability than the WPC. Such contradict results might possibly be due to the fact that the egg white protein used in this study was in the fresh form and thus, it had lower amount of proteins than the WPC. For SPI foam, however, though the amount of

protein for SPI was not very different from that of WPC as already reported in section 2.1, but the SPI foam was less stable than the WPC. This could be attributed to compact tertiary structure of the soy protein which provides the poor foaming properties i.e. foam formation and foam drainage (Martínez et al., 2009).

Table 2 Final thickness of EA SPI and WPC banana foams

Foam density (g/cm ³)	Sample thickness (mm)		
	EA	SPI	WPC
0.3	1.7	N/A	2.7
0.5	2.5	1.7	3.2
0.7	2.6	2.1	3.1

N/A: not available since SPI could not form foams at density of 0.3 g/cm³.

3.3 Moisture diffusivity of banana foams

Fig. 3 illustrates the moisture diffusivities of EA, SPI and WPC banana foams at various initial foam densities. It was found that at the early drying time of the first 25 min drying time, corresponding to the higher moisture ratio of 0.5, the effective moisture diffusivity was highest for the SPI banana foam, followed by EA and WPC banana foams, respectively. The difference in the effective moisture diffusivity at this drying time range was not caused by the foaming agent effect but it might be related to the product temperature. As shown in Fig. 4, the product temperatures of SPI, EA and WPC at drying times were different. The SPI banana foam temperature was highest during course of drying, followed by the EA and WPC banana foam temperatures, respectively. The highest temperature for the SPI banana foam is due to the fact that the SPI banana foam had lowest initial moisture content, and when it was dried, the evaporation of moisture was not faster than the EA or WPC banana foam. Hence, heat transferring from drying air to the sample was utilized for warming up the sample, thereby providing the higher temperature of the SPI banana foam and, in turn, the higher value of effective diffusivity of SPI banana foam than the other two banana foams.

When the drying time was longer than 25 min, corresponding to lower moisture ratio of 0.5, the banana foam mat changed the state from semi-liquid to solid. At this later drying time, the SPI banana foam temperature was still relatively higher as compared to that of the other two foaming agents, but the value of moisture diffusivity became lower. This result was unexpected since the temperature is a main factor to the diffusion coefficient; the diffusion coefficient is higher at higher temperature. The lower moisture diffusivity for the SPI banana foam is possibly due to the different morphologies for the banana foam produced from SPI, EPC and WPI. Fig. 5 demonstrates the cross sectional views of morphology of dried banana foam, showing different morphologies of dried banana foam samples produced from foaming agents. The microstructure of dried SPI banana foam was more compact and the solid matrices were more compacted than the EA and WPC banana foams. The compact structure for the SPI banana foam resulted in the moisture present at inner area travelling to the sample surface with more difficulty, hence the lower moisture diffusivity for the SPI banana foam. As shown in Fig. 3, the moisture diffusion coefficient for the WPI banana foam at moisture ratio lower than 0.5 was highest. This result corresponded to the WPC banana foam structure, exhibiting very high porous structure.

It is also seen from Fig. 5 that the pore shape of dried EA and SPI banana foams was more elongate than that of dried WPC banana foam. This is probably due to the fact that the stability of gas bubbles produced from EA and SPI is less which leads to more bubble collapse and subsequent greater shrinkage, as compared to the shrinkage of the WPC banana foam. The high shrinkage caused some distortion of material and, in turn, resulted in the microstructural change such as elongation of pores.

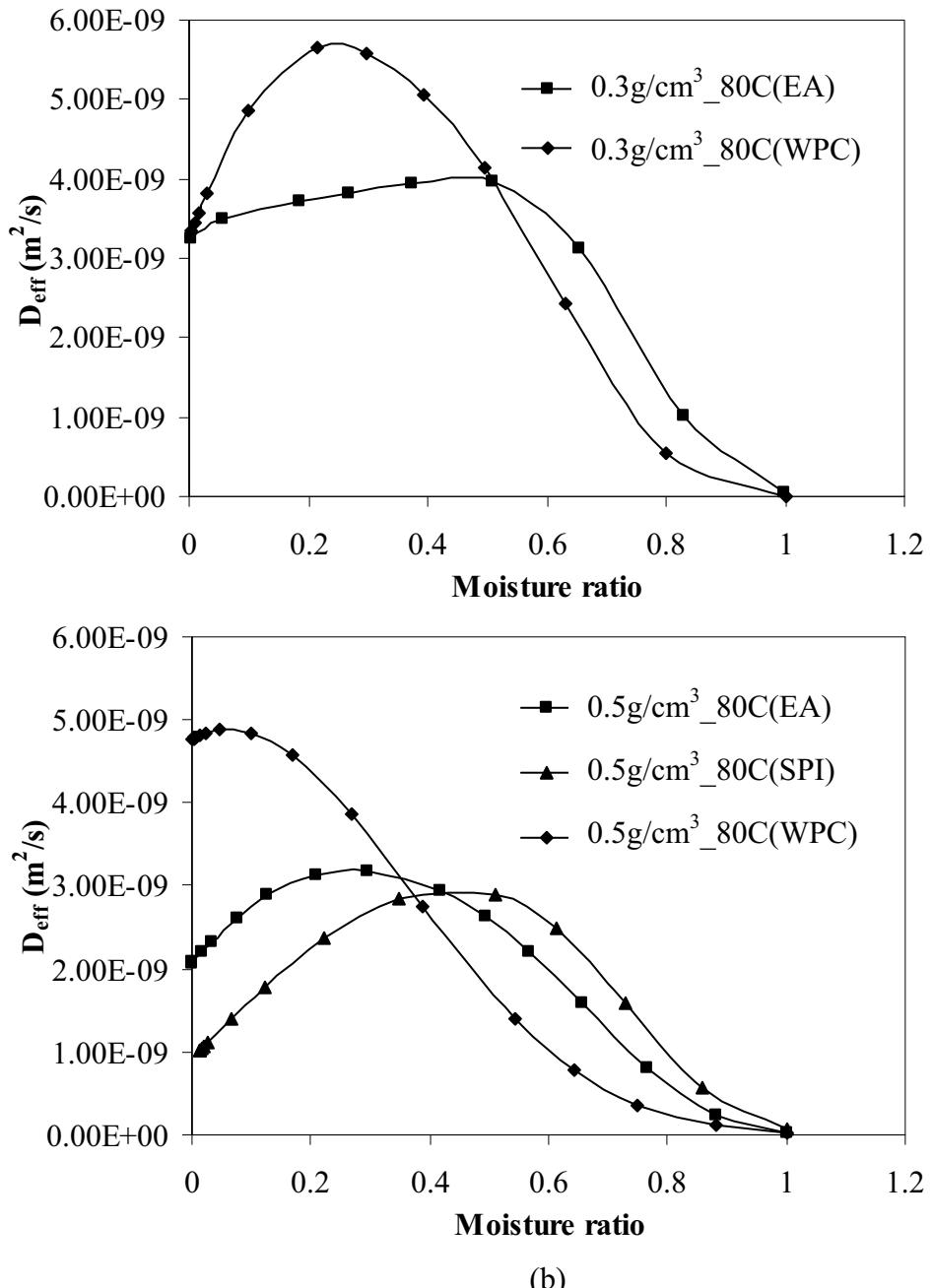
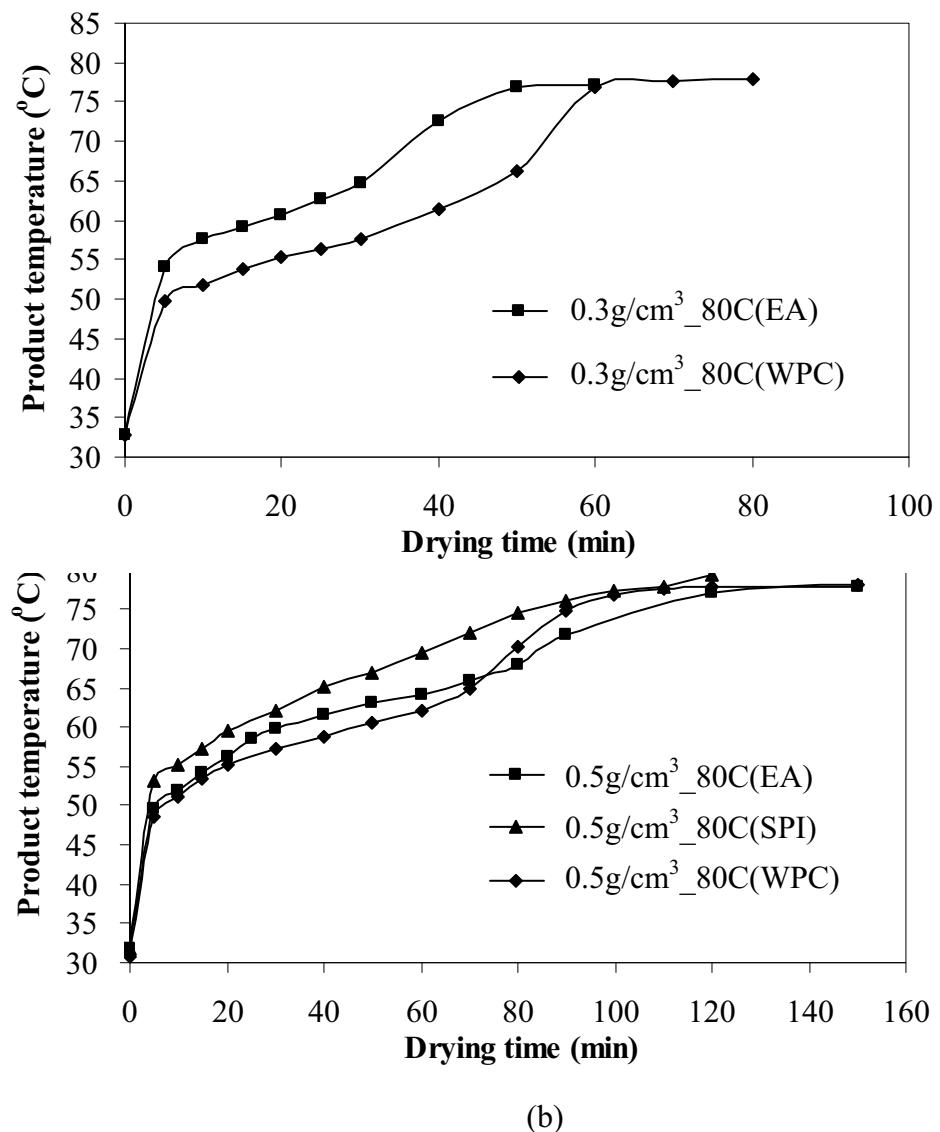
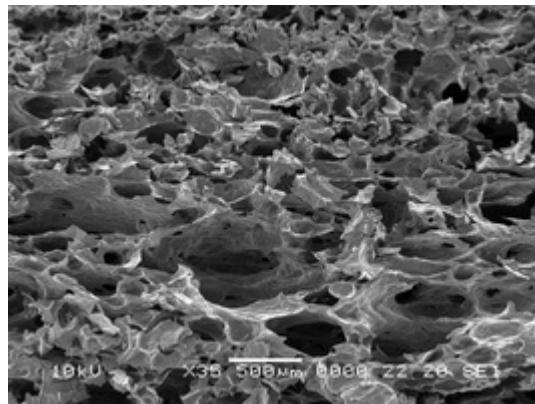
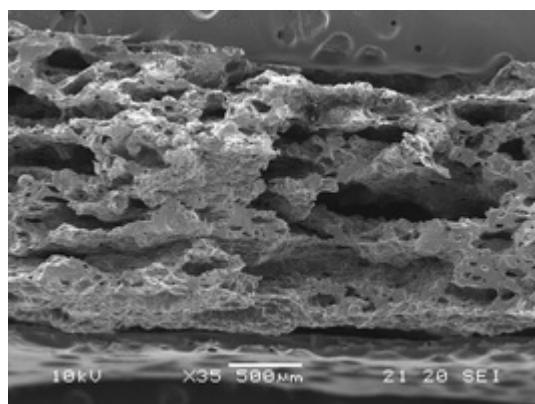
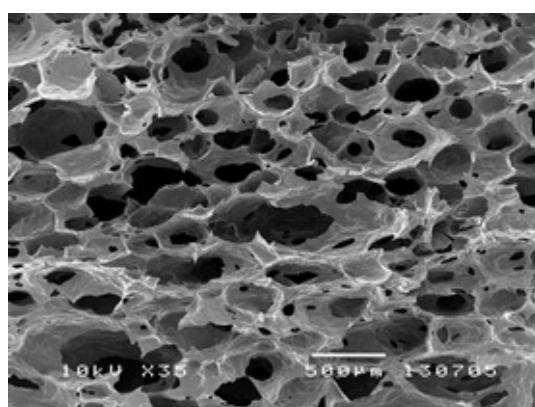


Fig. 3 Moisture diffusivity of banana foam mats at different banana foam densities and drying temperature of 80°C


Fig. 4 Change in temperature of banana foam mats at 80°C

(a) EA

(b) SPI

(c) WPC

Fig. 5 SEM micrographs of dried banana foam mats added with different foaming agents
(initial foam density of 0.5 g/cm³)

3.5 Textural properties

Fig. 6 shows the results of textural properties of dried banana foam mats produced from different foaming agents and foam densities. The hardness was defined as the maximum force in the force-deformation curve and the crispness was characterized by the number of peaks and the slope of the first peak from force curve. It was noted that the textural properties were strongly affected by the porous structure. The samples with lower initial foam densities, characterized by a number of large pores and more limited number of small pores, was very porous. Hence, the hardness was smaller as compared with those samples with higher initial foam densities. In terms of crispness as characterized by number of peaks and initial slope shown in Figs. 6b and 6c, respectively, the samples with lower initial foam densities, for each foaming agent, had smaller numbers of peaks and lower slopes of the first peak for all foaming agents as shown in Fig. 6, both textural characteristics showing less crispy at the lower banana foam density.

Considering the effect of foaming agent for a given banana foam density, it was found that the foaming agents i.e. SPI, EA and WPC strongly affected the crispy characteristics of dried banana foam, but they did not take an effect on the hardness. The SPI banana foam was significantly larger initial slope than the EA and WPC banana foams, but it was lower fracture points or number of peaks, both textural properties presenting rather crispier and less porous material for the SPI banana foam. For the EA and WPC banana foams, in spite of the larger number of peaks, their texture was not crisp but was relatively spongy. The different crispiness amongst three foaming agents may be related to different morphological features. Fig. 7 shows the pore size distributions of the dried banana foam mats with different foaming agents. These pore sizes were determined by image analysis and the details could be seen from Thuwapanichayanan, Prachayawarakorn and Soponronnait (2008a). As shown in Fig. 7, the dried EA banana foam had a range of pore size of 10-160 μm with a larger number than

the SPI and WPC dried banana foams. At this pore size range, the number of pores was 594, 270 and 350 for the samples produced from EA, SPI and WPC, respectively. In addition, the numbers of pores with diameters larger than 240 μm were 17, 8 and 24 for EA, SPI and WPC banana foams. Because of a greater number of large pore assemblies in the WPC sample, the void area fraction of the samples added with WPC was higher than that of the samples added with EA and SPI. The void area fractions of EA, SPI and WPC banana foam were 18%, 13% and 20%, respectively. From these pore size distribution, it clearly indicated that the SPI banana foam possessed the smallest number of pores and consequently provided the smallest number of fracture points.

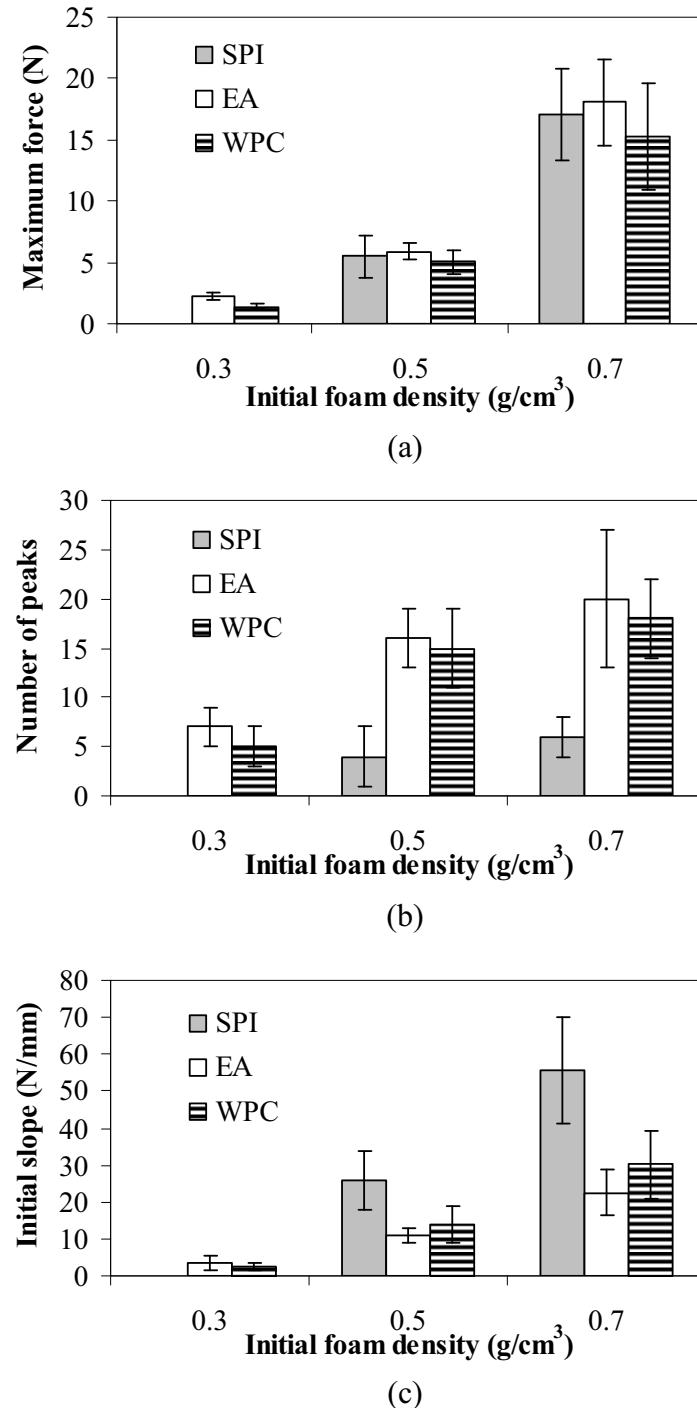


Fig. 6 Effects of foaming agents and initial foam densities on (a) Maximum force, (b) Number of peaks and (c) Initial slope of dried banana foam mat

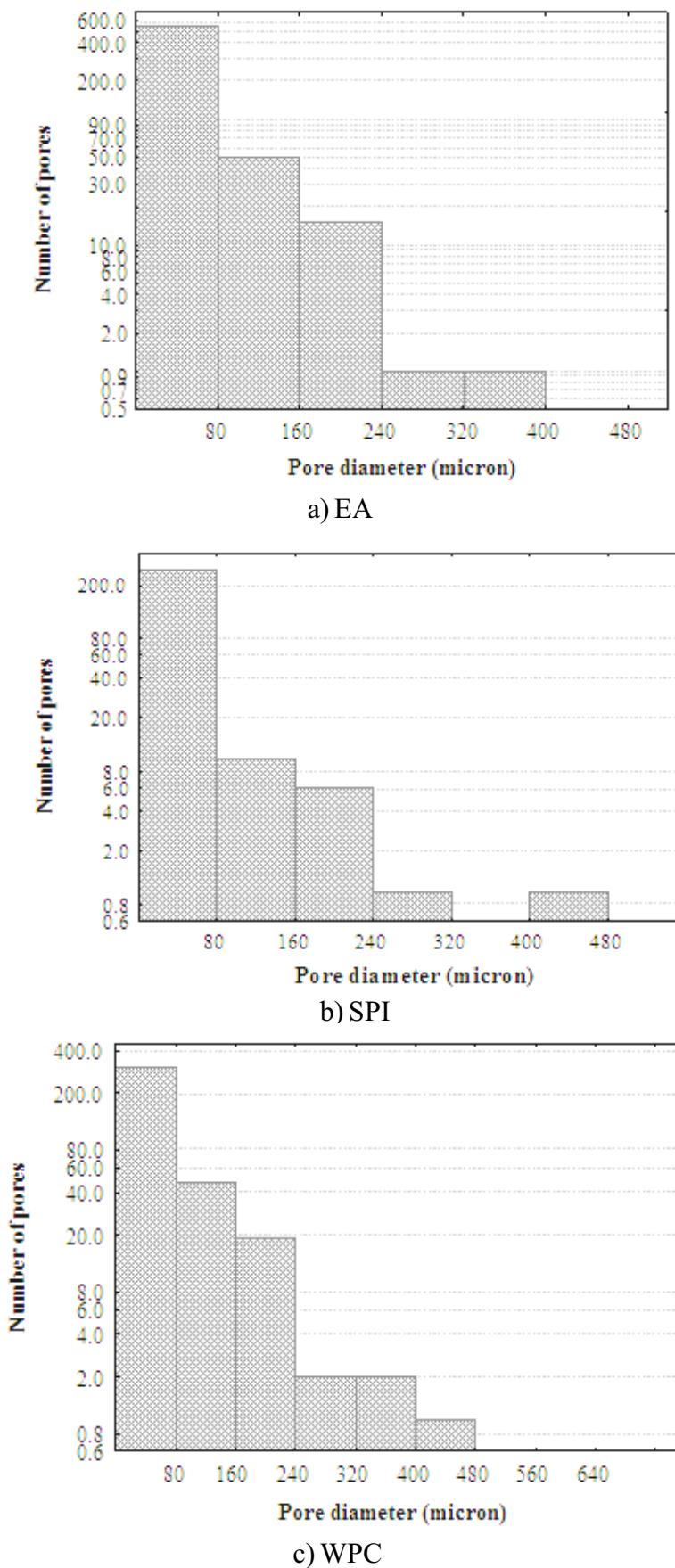


Fig. 7 Pore size distribution of dried banana foam mats using different foaming agents (initial foam density of 0.5 g/cm³ and drying temperature of 80°C)

3.7 Volatile compounds

Fig. 8 (a-c) shows the chromatogram profiles obtained from fresh banana, foamed banana and dried foamed banana. The dried foamed banana was prepared by drying at 80°C. The volatile compounds extracted from the banana samples were identified by GC-MS. It was found that the most significant volatile compounds in fresh banana were the isoamyl acetate, isobutyl butanoate, butyl butyrate, isoamyl butyrate and isoamyl isovalerate. The retention times of these compounds were 6.75 ± 0.1 , 9.72 ± 0.1 , 11.46 ± 0.1 , 14.15 ± 0.1 and 16.41 ± 0.1 min, respectively. Among these five esters, only isoamyl acetate, isoamyl butyrate and isoamyl isovalerate, are the key components of the banana's fruity odor (Salmon et al., 1996).

From Fig. 8 (a-c), it can be seen that the substantial loss of volatile substances occurred during the foaming process although the foaming was performed at room temperature. The volatile fractions of fresh banana, banana foam and dried banana foam are shown in Table 4 for different foam densities and foaming agents. The whipping time strongly affected the loss of volatile compounds during foaming process; the longer the whipping time, the higher the evaporation of volatile compounds. This is because air was brought into the liquid puree during the whipping process and thus the evaporation of volatile compounds from the liquid phase to the air phase could occur easily. The isoamyl acetate, which is the lowest molecular weight, exhibited the highest loss during the foaming process.

In addition to the loss during foaming, the volatiles also lost during drying. As shown in Table 4, the losses of each volatile compound that was present in each banana foam sample seemed to be not the same in quantity although the samples were dried at the same drying temperature. At the initial foam density of 0.5 g/cm³, for example, the losses of isoamyl acetate, isobutyl butanoate, butyl butyrate, isoamyl butyrate and isoamyl isovalerate were respectively 10.97, 6.45, 10.95, 16.31, 25.67% for EA banana foam, and 10.85, 20.26, 26.93, 31.80, 35.47% for SPI banana foam. The lower volatile retention for the SPI banana foam is

possibly due to the lower thickness of the SPI sample, as previously shown in Table 2; the volatile compounds diffused through the sample surface in a shorter time for the sample with lower thickness. In this case, the morphology of SPI banana foam, characterized by the dense porous structure as previously shown in Fig. 5 (b), could not retard the diffusion of volatile compounds. This is because the molecular sizes of such volatile compounds are very smaller than the pore sizes of the SPI banana foam, causing them to transport through pores easily.

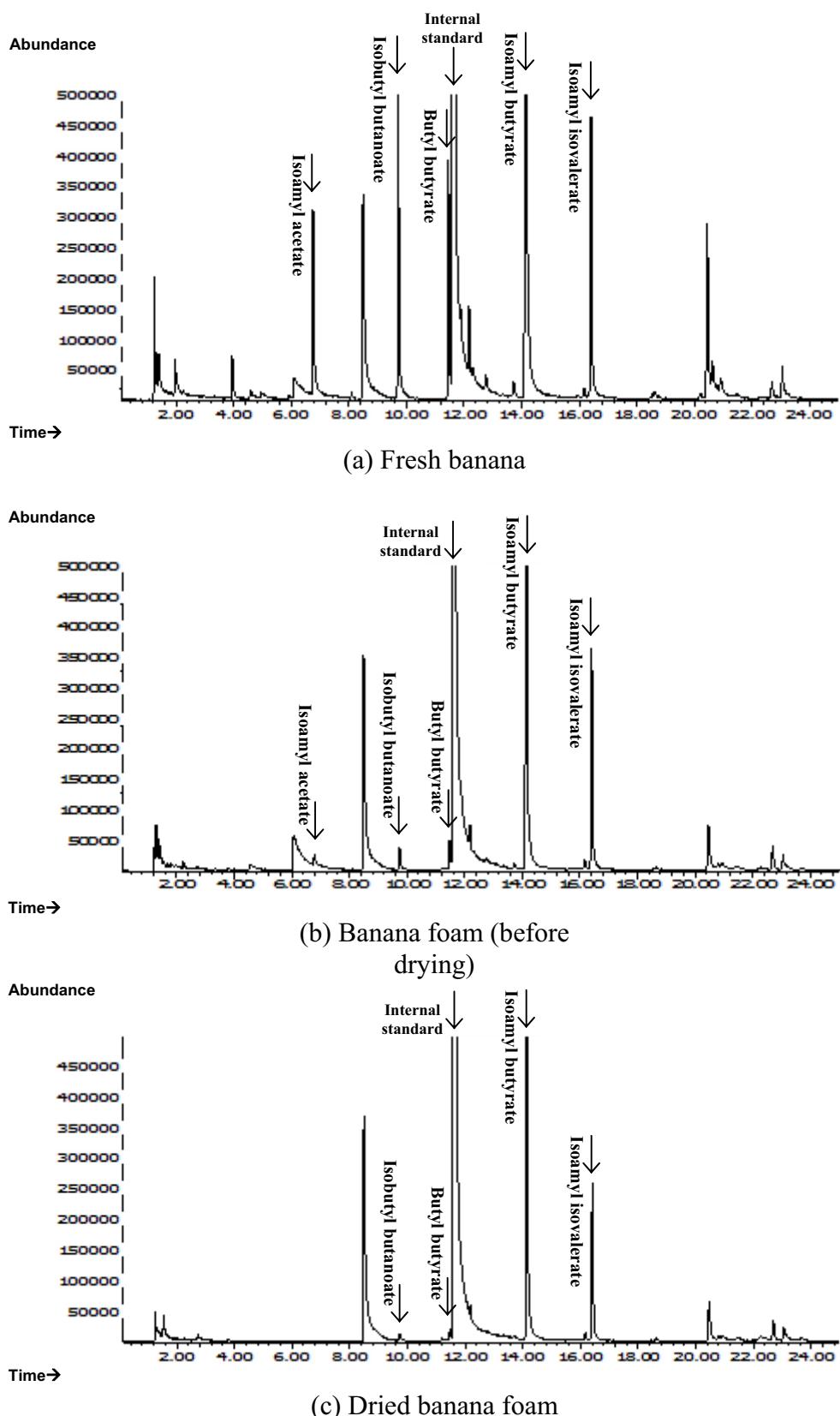


Fig. 8 Chromatograms of fresh, foamed and dried bananas (using EA as a foaming agent and whipping to foam density of 0.5 g/cm³)

Table 4 Losses of five major components of banana odor during processing

Whipping condition	Volatile compounds	Fraction (%)			%loss during foaming	%total loss
		Fresh	Foamed	Dried		
EA with initial foam density of 0.3 g/cm ³ , Whipping time 20 min	Isoamyl acetate	4.35	0.00	0.00	100.00	100.00
	Isobutyl butanoate	5.82	0.11	0.00	98.14	100.00
	Butyl butyrate	8.75	0.29	0.03	96.68	99.68
	Isoamyl butyrate	54.64	4.57	0.16	91.63	99.70
	Isoamyl isovalerate	3.72	1.61	0.08	56.64	97.92
	Total components	100.00	10.92	0.57	89.08	99.43
EA with initial foam density of 0.5 g/cm ³ , Whipping time 9 min	Isoamyl acetate	4.35	0.48	0.00	89.03	100.00
	Isobutyl butanoate	6.88	0.60	0.16	91.28	97.73
	Butyl butyrate	4.55	0.72	0.22	84.14	95.08
	Isoamyl butyrate	56.46	21.11	11.90	62.62	78.93
	Isoamyl isovalerate	6.27	5.08	3.47	18.94	44.61
	Total components	100.00	36.93	19.69	63.07	80.31
WPC with initial foam density of 0.5 g/cm ³ , Whipping time 15 min	Isoamyl acetate	4.23	0.00	0.00	100.00	100.00
	Isobutyl butanoate	4.55	0.42	0.00	90.80	100.00
	Butyl butyrate	2.89	0.60	0.08	79.03	97.10
	Isoamyl butyrate	59.54	15.91	7.16	73.27	87.98
	Isoamyl isovalerate	8.08	4.47	3.08	44.70	61.87
	Total components	100.00	27.59	9.97	72.41	90.03
SPI with initial foam density of 0.5 g/cm ³ , Whipping time 10 min	Isoamyl acetate	2.97	0.32	0.00	89.15	100.00
	Isobutyl butanoate	5.07	1.09	0.07	78.45	98.71
	Butyl butyrate	5.20	1.51	0.11	71.01	97.94
	Isoamyl butyrate	60.53	25.48	6.24	57.90	89.70
	Isoamyl isovalerate	5.17	3.18	1.35	38.45	73.92
	Total components	100.00	38.12	8.32	61.88	91.68

Note: Fractions of each component (%) = $\frac{\text{Peak area of a component}}{\text{Total peak area of all components in fresh banana}} \times 100$

4. Conclusions

EA and WPC at 5% by weight were found to be efficient foam inducer, decreasing banana foam density to 0.3 g/cm³, whilst the addition of SPI at this percent weight or higher could not produce at this foam density. Banana foams produced using WPC had more stability during whipping than another two foaming agents and this, in turn, provided less shrinkage during drying, higher void area fraction and higher value of effective moisture diffusivity than the EA and SPI banana foam mats. However, banana foams produced by the EA and WPC were less crisp than the SPI one. The foams produced at lower densities had higher value of moisture diffusivity, and had lower values of hardness and crispness. The substantial loss of volatile substances occurred during foaming process. The SPI banana foam, which had high shrinkage value, provided a greater loss of volatile compounds during drying than another two foaming agents.

Acknowledgements

The authors express their sincere appreciation to the Thailand Research Fund (TRF), King Mongkut's University of Technology Thonburi and the National Science and Technology Development Agency (NSTDA) for their financial support.

References

Brygidyr, A. M., Rzepecka, M. A. and McConnel, M. B. (1977). Characterization and drying of tomato paste foam by hot air and microwave energy. Canadian Institute of Food Science and Technology Journal, 10, 313±319.

Campbell, G.M., & Mugeot, E. (1999). Creation and characterisation of aerated food products. *Trend in Food Science and Technology*, 10, 283-296.

Davis, J.P. & Foegeding, E.A.(2007). Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. *Colloids and Surfaces B: Biointerfaces*, 54, 200-210.

Eduardo, J.V.C., Gilberto, E.P., Cesar, I.B., & Hipolito, R.T. (2001). Effect of foaming agents on the stability, rheological properties, drying kinetics and flavour retention of tamarind foam-mats. *Food Research International*, 34, 587-598.

Garcia, R., Leal, F., & Rolz, C. (1988). Drying of bananas using microwave and air ovens. *International Journal of Food Science and Technology*, 23, 73-80.

Hart, M. R., Graham, R. P., Ginnette, L. E. and Morgan, A. I. (1963), Foams for foam-mat drying. *Food Technology* 17(10), 90±92.

Hutton, C.W., & Campbell, A.M. (1981). Water and fat absorption. In J.P. Cherry (Ed.) *Protein Functionality in Foods* (pp. 177-200). Washington, D.C.: American Chemical Society.

Hwang, M.P., & Hayakawa, K.I. (1980). Bulk densities of cookies undergoing commercial baking processes. *Journal of Food Science*, 45, 1400-1402.

Karim, A.A. & Way, C.C. (1999). Foam-mat drying of starfruit (*Averrhoa carambola* L.) puree. Stability and air drying characteristics. *Food Chemistry*, 64, 337-343.

Kinsella, J.E. (1976). Functional properties of proteins in foods: A survey. *Critical Reviews in Food Science and Nutrition*, 7, 219-280.

Martínez, K.D., Sánchez, C. C., Patino, M.R. & Pilosof, A.M.R. (2009). Interfacial and foaming properties of soy protein and their hydrolysates. *Food Hydrocolloids*, 23, 2149-2157.

Mott, C.L., Hettiarachchy, N.S., & Qi, M. (1999). Effect of Xanthan gum on enhancing the foaming properties of whey protein isolate. *Journal of the American Oil Chemists' Society*, 76, 1383-1386.

Phillips, L.G., German, J.B., O'Neill, T.E., Foegeding, E.A., Harwalkar, V.R., Kilara, A., Lewis, B.A., Mangino, M.E., Morr, C.V., Regenstein, J.M., Smith, D.M., & Kinsella, J.E. (1990). Standardised procedure for measuring foaming properties of three proteins, a collaborative study. *Journal of Food Science*, 55, 1441-1444&1453.

Ratti, C. & Kudra, T. (2006) Drying of foamed biological materials: opportunities and challenges. *Drying Technology*, 24, 1101-1108.

Salmon, B., Martin, G.J., Remaud, G., & Fourel, F. (1996). Compositional and isotopic studies of fruit flavours. Part I. The banana aroma. *Flavour and Fragrance Journal*, 11, 353-359.

Sankat, C.K., & Castaigne, F. (2004). Foaming and drying behaviour of ripe bananas. *Lebensmittel-Wissenschaft und-Technologie*, 37, 517-525.

Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit S. (2008a). Drying Characteristics and Quality of Banana Foam Mat. *Journal of Food Engineering*, 86, 573-583.

Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit S. (2008b). Modeling of Diffusion with Shrinkage and Quality Investigation of Banana Foam Mat Drying. *Drying Technology*, 26, 1326-1333.

Townsend, A.A., & Nakai, S. (1983). Relationships between hydrophobicity and foaming characteristics of food proteins. *Journal of Food Science*, 48, 588-594.

Wilde, P.J., & Clark, D.C. (1996). Foam formation and stability. In G.M. Hall (Ed.) *Methods of testing protein functionality* (pp. 110-152). London: Blackie Academic & Professional.

Modelling of moisture diffusion in pores of banana foam mat using a 2-D stochastic pore network: Determination of moisture diffusion coefficient during adsorption process

Preeda Prakotmak ^{a,*}, Somchart Soponronnarit ^a, Somkiat Prachayawarakorn ^b

^a School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi 126 Pracha u-tid Road, Bangkok 10140, Thailand

^b Department of Chemical Engineering King Mongkut's University of Technology Thonburi 126 Pracha u-tid Road, Bangkok 10140, Thailand

ARTICLE INFO

Article history:

Received 23 November 2008

Received in revised form 1 July 2009

Accepted 6 July 2009

Available online 31 July 2009

Keywords:

Adsorption kinetics

Banana foam mat

Pore diffusivity

Pore network

ABSTRACT

The purpose of this research was to determine the diffusion coefficient of moisture in the pores of banana foam mat using stochastic pore network. A 2-D pore network was used to represent the pore voids inside the banana foam sample and the moisture movement inside the individual pore segments was described by Fick's law. To determine the moisture diffusion coefficient, the adsorption experiments were carried out with standard static method using saturated salt solutions. Two banana foam densities of 0.21 and 0.26 g/cm³ were used to adsorb the water vapour. The interactions between moisture and pore structure were illustrated using a 3-D pictorial representation of network concentration gradients in spaces with colour representing the moisture content. The network model described the experimental results relatively well. The diffusion coefficient of moisture in pores was in order of 10⁻⁹ m²/s which was nine times higher than the effective diffusion coefficient calculated from the continuum model. The value of moisture diffusion coefficient was dependent on the temperature and independent of the foam densities and the relative humidity, except for the diffusivity determined from the condition at higher relative humidity of 70%.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Moisture migration during storage is of great importance to food quality, in particular for dried crispy products such as biscuits, ready-to-eat cereals and snacks. An increase in the product moisture content, which in turn leads to the loss of crispness, generally occurs by migration of water vapor from the ambient into the product. The rate of moisture adsorption into porous food is governed by the environmental conditions, i.e., temperature and relative humidity. The rate also relies upon the porous structure of the food (Guillard et al., 2003; Roca et al., 2006). Therefore, an ability to model water migration in porous food is of great interest. To date, two different approaches have been developed for studying moisture movement in porous foods.

The first modeling is based on a continuum model. In this type of model, porous spaces are considered as a continuum, consistent with its appearance on the macroscopic scale. In this case, the effective moisture diffusivity includes in itself all microscopic com-

plexities of the porous structure (e.g., sizes of pores and their connectedness) as well as mechanisms of mass transfer, which may occur by molecular diffusion or capillary flow, etc. (Efremov and Kudra, 2004; Roca et al., 2006). When a dried porous food is subject to humid air, water vapor transports from the air to the sample surface and is then assumed to diffuse into the internal area of the sample via the pores by assuming that the solid act as an impermeable surface. This adsorption phenomenon is described by the Fick's second law of diffusion. Under isothermal condition, moisture transport in a porous food with an infinite slab geometry (Chen, 2007) can be described by:

$$\frac{\partial M}{\partial t} = \nabla(D_{eff} \nabla M) \quad (1)$$

where M is the moisture content (kg/kg d.b.), t the time (s), D_{eff} the effective moisture diffusivity (m²/s), which can be expressed by:

$$D_{eff} = \frac{\varepsilon D_p}{\tau} \quad (2)$$

where ε is the porosity of the material (dimensionless), D_p the actual diffusivity in the pore voids (m²/s) and τ the tortuosity factor (dimensionless). Tortuosity factor accounts for the fact that the pore

* Corresponding author. Tel.: +662 470 8695; fax: +662 470 8663.
E-mail address: preeda_list@hotmail.com (P. Prakotmak).

spaces do not provide straight line paths through, thereby lengthening the diffusive path and reducing the internal diffusional fluxes.

The second approach is based on the discrete model or pore network model. In this type of model, the pore sizes and topology of a porous material are taken into account by mapping them onto an equivalent network of the interconnected pores. Network models represent void spaces of a porous medium by a simple two- or more realistic three-dimensional lattice in which large and small pores are randomly interconnected. Each pore can be assumed to be cylindrical, slit, triangular and polygonal shapes. Segura and Toledo (2005) found that pore shapes used in the network model had an insignificant effect on the drying characteristic curves, vapour relative diffusivity, and liquid relative permeability. The pore network model is more useful and flexible than the first approach since the moisture calculation using continuum model requires use of the effective moisture diffusivity, which varies from material to material, whilst the pore network model requires only the structural parameters of the material such as total pore volume or pore size distribution (providing that the actual moisture diffusivity in the pore voids is known). However, at present, there is no available information on the actual diffusion coefficient of moisture in pore voids, D_p . To be able to estimate the actual diffusion coefficient, first the pore network model needs to be constructed, where more or less simplified geometries, and pore size distributions are used to describe the topology of the pore structure of a real material (Mann, 1993; Hollewand and Gladden, 1992; Androuloupolous and Mann, 1979). Diffusion equation is then applied to an individual pore of the network; the flow of substances through pore segments can then be numerically predicted (Blunt, 2001; Yiotis et al., 2005; Prachayawarakorn et al., 2008) and compared with the experimental results. Although, theoretically, either experimental data on desorption (or drying) or adsorption could be used to calculate the moisture diffusivity in the pore voids, the adsorption experiment is preferred since the transfer rate of heat is usually faster than the transport rate of moisture and hence the temperature of the porous material remains close to the temperature of the experiment. Also, the morphology of porous food changes only slightly during adsorption experiment whilst it significantly changes during drying (Saravacos and Maroulis, 2001).

As the data on the moisture diffusivity in the pore voids of any porous food are not available, the aim of the present investigation was to determine the pore diffusivity by using a two-dimensional stochastic pore network. Banana foam mat was used as a representative porous medium. The Fick's second law was used to describe the moisture diffusion in individual pore segments and an optimization technique was implemented to determine the pore diffusivity under adsorption conditions. The actual moisture diffusion coefficient in pore voids obtained in this work may be applied to other porous foods as well.

2. Materials and methods

2.1. Dried banana foam preparation

The banana puree with 5% of fresh egg albumen used as foaming agent was foamed to densities of 0.3 and 0.5 g/cm³. The selected foam densities were suitable to produce the snack since its texture provided the low hardness and crispiness as reported by Thuwapanichayanan et al. (2008a,b).

The density was determined by measuring the mass of a fixed volume of the prepared foam. The banana foam was poured slowly into a steel block with a dimension of 43 × 43 × 4 mm³ and then placed on a mesh tray, which was covered with aluminium foil. After that, it was dried to about 3% dry basis (d.b.) at a temperature

of 80 °C and a 0.5 m/s superficial air velocity. The banana foam prepared from the initial foam densities of 0.3 and 0.5 g/cm³ can produce the dried banana densities of 0.21 ± 0.02 and 0.26 ± 0.02 g/cm³, respectively. The product thicknesses after drying were 2.8 mm and 3.2 mm for the densities of 0.21 and 0.26 g/cm³, respectively.

2.2. Adsorption experiment

Moisture adsorption experiments were carried out using the static method. Samples were placed into the glass jars contained the saturated salt solutions (MgCl₂·6H₂O, Mg(NO₃)₂·6H₂O, KI, NaCl and KCl) which provided the relative humidity (RH) in range of 32–82% at the temperatures of 35, 40 and 45 °C. The glass jars were kept in the hot air oven that controlled the temperature with an accuracy of ±1 °C (UFE500, Memmert, Germany). Samples were weighed at different exposure times ranging from 1 to 120 h. At RH > 74%, a small amount of toluene held in a vial was fixed in the glass jars in order to prevent microbial spoilage of the samples (Kaya and Kahyoglu, 2005). Moisture content of each sample after reaching the equilibrium condition was determined by drying it with the hot air oven at a temperature of 103 °C for 3 h. Under this moisture content determination condition, the percentage error was approximately 0.4% when compared to the result obtained by the standard vacuum method (AOAC, 1995) at a temperature of 70 °C and at a negative pressure of 13.3 kPa for 24 h. This error might be caused by the vaporization of volatile compounds. Thuwapanichayanan (2007) reported that the loss of volatile compounds after drying of banana foam was approximately 90%. The experiment at each sorption condition was repeated three times and the mean value was reported.

2.3. SEM photograph

The morphologies of dried banana foam mats were characterized using scanning electron microscope (SEM) with an accelerating voltage of 10 kV. Before photographing, the specimens were cut into a dimension of 5 × 5 mm² and then glued on the metal stub. The samples were coated with gold, scanned, and photographed at 15× magnification.

To quantify the porous banana foam characteristics such as pore diameter and pore area, Image J software was used. Each pixel of the SEM micrograph was assigned a value of gray intensity between 0 and 255 and the binary images were generated. The pixels with gray levels lower than the selected threshold were assigned as pore, which appeared as black colour, and the pixels with gray levels above the selected threshold were set as solid phase, which appeared as white colour in binary image. The pore diameter was estimated from the known pore area by counting the number of pixels filled in the specified space.

2.4. Estimation of activation energy

The diffusion coefficient of moisture was related with the temperature through the following Arrhenius equation:

$$D_p = D_0 \exp \left(\frac{-E_a}{RT} \right) \quad (3)$$

where D_0 is the constant value (m²/s), E_a is the activation energy (kJ/mol), R is the universal gas constant and T is the temperature (K). In this work, the pore diffusivity data obtained from the experimental conditions at the relative humidity below 70% and at the temperatures of 35–45 °C were used to determine the values of E_a and D_0 . Under the specified conditions, the moisture content of banana foam ranged between 0.038 and 0.37 kg/kg d.b.

3. Generation of the pore network

When the pore size distribution of material is known, these pores are assigned according to its distribution and allocated randomly onto a lattice. In this work, the pore was assumed to be of cylindrical geometry and each pore in the network had the same length. The pores with different sizes were randomly placed onto the network and this approach provided pore at any positions within the network independent to the neighboring pores. Such random arrangement of pore assemblies was referred to stochastic pore network. Fig. 1 illustrates an example of a 2-D stochastic pore network with a small size of 23×50 , defined by the number of pore junctions in the vertical direction multiplied by the number of pore junctions in the horizontal direction. This network size consists of 2373 pores obeying a pore size distribution of dried banana foam shown in Fig. 6 for the density of 0.21 g/cm^3 . The pores in this figure were represented by black colour and solid by white colour. In addition, each pore junction, where the pores are intersected, had a connectivity of 4. However, for calculating the pore diffusivity, we used a larger network size, with a number of pores of the network corresponding to those pores in the cross-sectional area of sample.

In this work, the network size of 20×231 for the foam density of 0.21 g/cm^3 , accounting for 9491 pores, and the size of 23×264 for the density of 0.26 g/cm^3 , accounting for 12 431 pores, were used. These numbers of pores were estimated from the known number of pores in the unit area of sample that was obtained from SEM. The length of each pore, L , was calculated by dividing the thickness of banana foam sample by number of vertical pores in each row; 21 for the network size of 20×231 and 24 for the network size of 23×264 . The average value of L was equal to $133 \mu\text{m}$.

3.1. Single pore

In this work, moisture adsorption between surrounding air and banana foam mat occurred under isothermal condition. The water vapor from the air will be adsorbed at the sample surface and then moves in the liquid form through interior area via the pores. The moisture diffusing through each pore in the network, whether

the pore is allocated in horizontal or vertical direction, can be described by Fick's second law:

$$\frac{\partial M}{\partial t} = D_p \frac{\partial^2 M}{\partial x^2} \quad (4)$$

where M is the moisture content (kg/kg d.b.), t the adsorption time (s), D_p the water diffusivity in pore (m^2/s), and x the distance along the pore length (m). The migration of moisture from the surrounding air to the banana foam surface occurred specifically at the top surface and no moisture transferred at the bottom surface of the network since the banana foam mat was placed on an opaque glass dish. The samples had the length and width about 11 times of its thickness and thus, the banana foam mats were reasonably assumed to be an infinite slab. Accordingly, moisture movement during adsorption process occurred along the material thickness direction. The constant diffusion coefficient at a given condition was assumed and the moisture profile in the pores at the beginning was uniform along the pore axis:

$$M = M_i : t = 0, \quad 0 \leq x \leq L \quad (5)$$

where M_i is the initial moisture content (kg/kg d.b.). From the prepared sample size, it indicated that the surface area at each sample side was remarkably smaller than that at the top surface. Hence, the moisture transferring from the surrounding to the pores allocated at the two sides of sample was small. Accordingly, the boundary condition for the pores allocated at both sides of the network (see Fig. 1) is set as:

$$\frac{\partial M}{\partial x} \Big|_{r_{ij}} = 0 : t > 0 \quad (6)$$

where r is the pore radius (m) and subscripts i and j are the position of the pores in the network as can be seen in Fig. 1. The positions of pore, r_{ij} , at the left edge of network are $r_{1,2}, r_{1,4}, \dots, r_{1,V+1}$, at the right edge are $r_{H,2}, r_{H,4}, \dots, r_{H,V+1}$, and at the bottom edge are $r_{2,1}, r_{4,1}, \dots, r_{H+1,1}$. Subscripts H and V are the number of columns and rows of the pores on the network, respectively. For the periphery pores positioned on the top of the network, such as $r_{2,V}, r_{4,V}, \dots, r_{H+1,V}$, the moisture moving from the surrounding to those pores was occurred by convection and the boundary condition is set by:

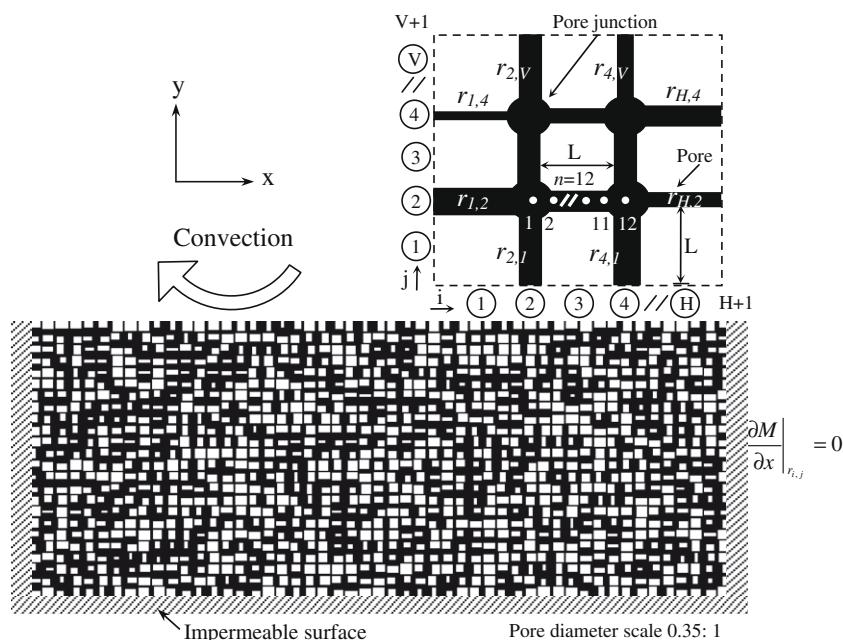


Fig. 1. Illustration of a simple 2-D stochastic pore network and boundary conditions.

$$D_p \left(\frac{\partial M}{\partial x} \right)_{r_{ij}} = h_m (M_e - M_s) \quad : t > 0 \quad (7)$$

where h_m is the convective mass transfer coefficient (m/s), M_e the equilibrium moisture content (kg/kg d.b.) and M_s the moisture content at the sample surface (kg/kg d.b.). To calculate the moisture concentration of the pores, a finite difference method was used. An individual pore in the network was divided into n intervals ($n = 12$ as shown in Fig. 1) and Eq. (4) was discretized using the explicit method as follows:

$$M_{n,r_{ij}}^{p+1} + M_{n,r_{ij}}^p (2\alpha - 1) - \alpha (M_{n+1,r_{ij}}^p + M_{n-1,r_{ij}}^p) = 0 \quad (8)$$

where $\alpha = D_p \Delta t / \Delta x^2$ is the Fourier number, p and n the respective indexes of the present time and of nodal position along the pore axis. Eq. (8) is used to calculate the moisture content for the inner pores of network. The boundary conditions in Eqs. (6) and (7) can be written respectively as:

$$M_{n,r_{ij}}^{p+1} + M_{n,r_{ij}}^p (2\alpha - 1) - 2\alpha (M_{n+1,r_{ij}}^p) = 0 \quad (9)$$

$$M_{n,r_{ij}}^{p+1} (\gamma + 1) - M_{n-1,r_{ij}}^p - \gamma M_e^{p+1} = 0 \quad (10)$$

Where $\gamma = h_m \Delta x / D_p$. The moisture adsorption rate $Q_{r_{ij}}$ (kg/s) for the individual pores can be calculated by:

$$Q_{r_{ij}} = \rho \cdot \pi r_{ij}^2 \cdot D_p \left(\frac{dM_{r_{ij}}(x, t)}{dx} \right)_{x=L} \quad (11)$$

The finite difference approximation of Eq. (11) is

$$Q_{r_{ij}} = \rho \cdot \pi r_{ij}^2 \cdot D_p \left(\frac{M_n^{p+1} - M_{n-1,r_{ij}}^{p+1}}{\Delta x} \right)_{x=L} \quad (12)$$

where ρ is the dried banana densities (kg/m³) and M_n^{p+1} is the moisture contents at pore junctions.

3.2. Mass balance in the network

To determine the moisture contents at the pore junctions for the inner pores of the network, the mass balance of moisture content at the inner nodes of network was made, assuming no accumulation of moisture at each pore junction within the network, which is thus expressed by:

$$\sum_{\{u,v\}} Q_{r_{ij}} = 0 \quad (13)$$

where sum is over all the pores, r_{ij} , that connected to the pore junction (u,v) , and u,v are the coordinate for a pore junction in the network. Substituting Eq. (12) into Eq. (13) and solve it for the moisture contents at the pore junctions. After the moisture contents at nodes of the network were known, the average moisture content \bar{M}_{network} of network can then be calculated using the following equation:

$$\bar{M}(t)_{\text{network}} = \frac{\sum_{n=1}^Z r_{ij}^2 \int_0^L M_{r_{ij}}(x, t) dx}{Z \cdot L \sum_{n=1}^Z r_{ij}^2} \quad (14)$$

where Z is number of pores in the network. To estimate the pore diffusion coefficient, D_p , the optimization technique using a golden-search method was used. The root mean square error (RMSE) for the residuals of the measured and predicted values of average moisture content was set as the objective function with a tolerance of 10^{-5} . The RMSE is defined as:

$$RMSE = \left[\frac{1}{K} \sum_{n=1}^K (M(t)_{\text{exp}} - \bar{M}(t)_{\text{network}})^2 \right]^{1/2} \quad (15)$$

where $M(t)_{\text{exp}}$ is the experimental moisture content of material at time t , $\bar{M}(t)_{\text{network}}$ is the predicted moisture content, and K is the number of the experimental data. The lower the value of RMSE, the better the goodness of fit. All computations were implemented using Intel C++ Compiler (Intel® Software Network, 2009) and run on a PC compatible with 3.0 GHz dual-processor and 2 GB of RAM.

4. Results and discussion

4.1. Effects of temperature and relative humidity

Figs. 2 and 3 show the effects of temperature and relative humidity on the adsorption rate, respectively. As observed from the experimental results, the rate of moisture uptake was very fast during the early period of time and gradually decreased as the moisture content approached the moisture equilibrium. The higher adsorption rate was clearly evident when the temperature and relative humidity increased.

At the equilibrium state, the equilibrium moisture content tended to decrease with increasing temperature; these values were 0.1384, 0.1368 and 0.1308 kg/kg d.b. for the corresponding temperatures of 35, 40 and 45 °C and respective humidities of 50%, 48% and 47% as shown in Fig. 2. The decrease of equilibrium moisture content with temperature can be attributed to the excitation states of water molecules. At elevated temperature, the water molecules are in higher states of excitation, thus increasing their distance apart and, in turn, decreasing the attractive forces between them (Jamali et al., 2006). The experimental results found in this study were similar to those reported by Kim and Okos (1999) and Palou et al. (1997). In their works, the sorption capacity or equilibrium moisture content of crackers and cookies decreased with increasing temperature.

4.2. Effect of foam densities

Fig. 4 shows the moisture adsorption kinetics at temperature of 45 °C for the banana foam densities of 0.21 and 0.26 g/cm³. It can be seen that the foam density strongly affects the moisture adsorption rate; the lower the foam density, the faster the adsorption rate. The different moisture adsorption rates are due to the fact that the void area fractions of both banana foam samples were different; the void area fractions of the banana foam densities of 0.21 and 0.26 g/cm³ were 31% and 26%, respectively.

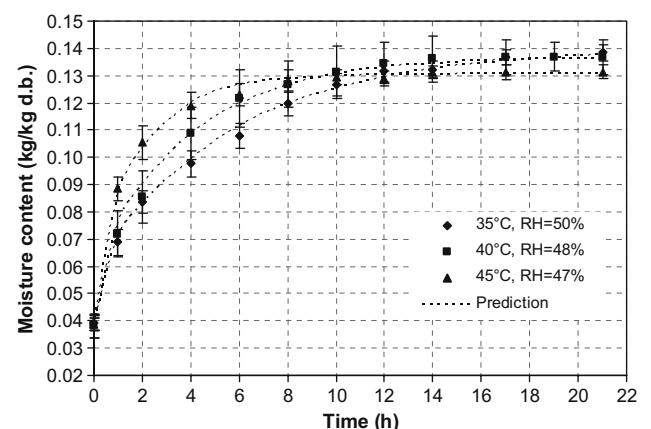
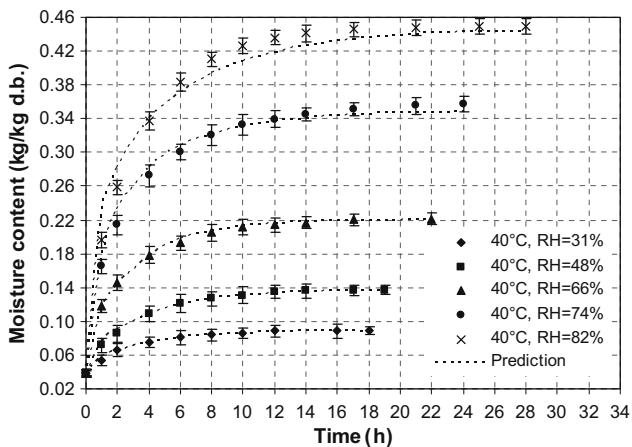
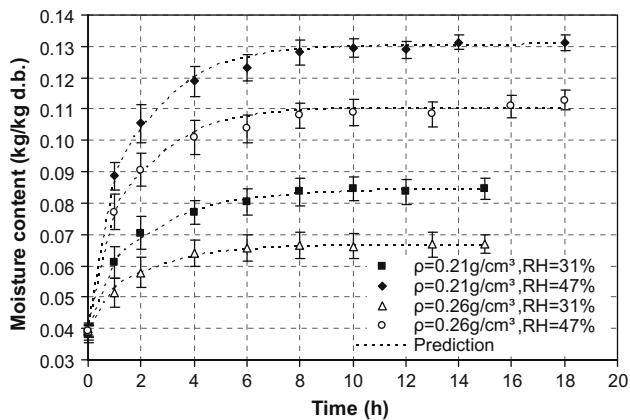




Fig. 2. Kinetics data of moisture adsorption at different temperatures and relative humidities for the foam density of 0.21 g/cm³.

Fig. 3. Kinetics data of moisture adsorption at 40 °C and relative humidities of 31%, 48%, 66%, 74% and 82% for the foam density of 0.21 g/cm³.

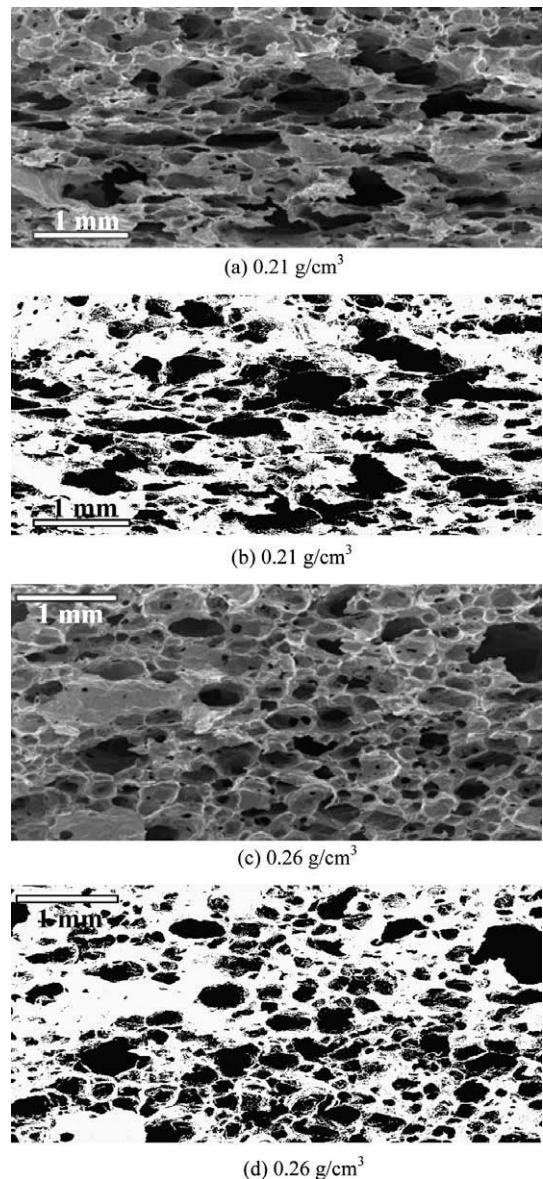


Fig. 4. Moisture adsorption kinetics at 45 °C and relative humidities of 31% and 47% for the banana foam densities of 0.21 and 0.26 g/cm³.

High porosity in porous foods provides less diffusional flux resistance and thus greatly facilitates the moisture transport to those porous foods. In the porous banana foam studied, the higher void area fraction for the banana foam density of 0.21 g/cm³ was a result of the assembly of the giant pores with sizes larger than 150 µm which had a larger number (38%) than that at the foam density of 0.26 g/cm³ as will be seen in Fig. 6. These huge pores, serving as a massive transport of moisture through the interior pores, may possibly be interconnected into almost all parts of the whole network. Hence, the rapid moisture adsorption is obviously evident in the foam density of 0.21 g/cm³.

The efficient communication of large pores in the network provided not only faster adsorption, but also faster drying. Prachaya-warakorn et al. (2008) studied the effect of pore assembly architecture on the drying rate and found that different arrangements of pores exhibited different drying rates. When the large pores are positioned at the network exterior and the smaller pores assigned to the interior, the drying rate is remarkably faster in such a network archetype than in the network, with smaller pores allocated on the network exterior.

As shown in Fig. 4, the moisture uptakes of the banana foams after the elapsed time of 10 h vary slightly and this indicated that the system reaches the equilibrium state. At the equilibrium, the moisture content of banana foam at density of 0.21 g/cm³ was apparently higher than that at 0.26 g/cm³ due to higher porosity.

Fig. 5. (a and c) SEM micrographs of dried banana foam mats at different initial foam densities and binary images (b and d).

4.3. Pore size distribution

The microstructures of dried banana foam mats characterized by SEM are shown in Figs. 5a and c for several foam densities. The corresponding binary images are illustrated in Figs. 5b and d. The reconstructed porous structures of the banana foams in binary image reasonably represented their original images. The pores in the banana foam were random in sizes, irregular in shape and interconnected. This pore structure results in the movement of moisture into the interior; some pores may have high or low moisture content even though the pores are positioned at the same horizontal plane. Such moisture transport behavior cannot be formulated through a continuum model since the model did not take the pore structure effect into account.

Fig. 6 shows the pore size distributions of the dried banana foams at the densities of 0.21 and 0.26 g/cm³, both distributions obtained from the binary image of SEM. The sample with a foam density of 0.21 g/cm³ had small pore assembly in the range 6 to 150 µm accounting for 62% of the whole number of pores and for 38% with the pores larger than 150 µm. For the density of 0.26 g/

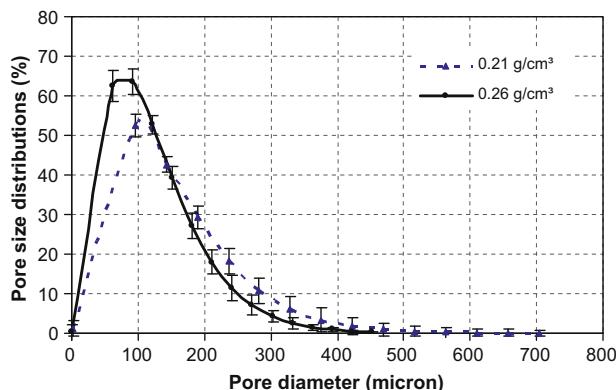


Fig. 6. Pore size distributions of dried banana foam at different densities.

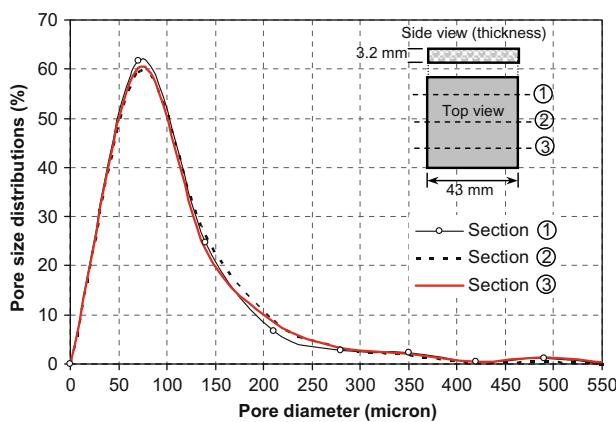


Fig. 7. Pore diameter distributions at different cross-section areas of a banana foam mat (foam density of 0.26 g/cm^3).

cm^3 , it appears the proportion of small pores accounting for 71% which was higher than that of the sample at the density of 0.21 g/cm^3 . However, the porosity of sample at the density of 0.26 g/cm^3 was relatively smaller because the large pores had a smaller number.

Fig. 7 shows the pore size distributions at three cross-sectional areas of a banana foam mat at the density of 0.26 g/cm^3 . A sample was divided into three parts and each part was morphologically characterized by SEM. It indicated that the characteristics of pore size distribution were identical throughout the sample and this may reasonably be assumed that the moisture distributions at any cross-sectional area of sample were not different. Hence, the average moisture content at any cross-sectional area of sample can represent the moisture data of sample.

4.4. Moisture diffusivity in pores

The values of pore diffusivity for two banana foam densities at different temperatures and relative humidities are shown in Table 1 and the results also show in Fig. 8. At a given temperature, most values of moisture diffusion coefficient, except for the value at the relative humidity higher than 70%, presented only a slight change with the relative humidity. These values, when analyzed statistically using Duncan's test, showed an insignificant difference. The mean values of pore diffusivity were in the order of $10^{-9} \text{ m}^2/\text{s}$. In fact, the orders of magnitude of the diffusion coefficients depend on the state of substance: for gases, approximately $10^{-5} \text{ m}^2/\text{s}$; for liquids, approximately $10^{-9} \text{ m}^2/\text{s}$ (Aguilera and Stanley, 1999). From this information, it might be indicated that the transport of

Table 1

Estimated pore diffusivity for two banana foam densities at different adsorption conditions with R^2 -values above 0.96.

T($^{\circ}\text{C}$)	Approximate RH (%)	$\rho (\text{g/cm}^3)$	
		0.21	0.26
35	32	$\text{Pore diffusivity} \times 10^{-9} (\text{m}^2/\text{s})$	
	50	2.276 ± 0.231	2.072 ± 0.193
	67	2.304 ± 0.211	2.149 ± 0.238
	75	2.204 ± 0.185	1.990 ± 0.183
	83	1.941 ± 0.219	1.686 ± 0.241
	83	1.747 ± 0.166	1.544 ± 0.227
40	31	3.152 ± 0.182	2.906 ± 0.236
	48	3.210 ± 0.275	3.084 ± 0.179
	66	3.350 ± 0.231	3.112 ± 0.233
	74	2.922 ± 0.191	2.678 ± 0.164
45	82	2.680 ± 0.179	2.464 ± 0.166
	31	4.602 ± 0.190	4.334 ± 0.190
	46	4.961 ± 0.214	4.538 ± 0.211
	65	5.053 ± 0.188	4.623 ± 0.265
45	74	4.255 ± 0.227	4.139 ± 0.191
	81	4.015 ± 0.162	3.794 ± 0.150

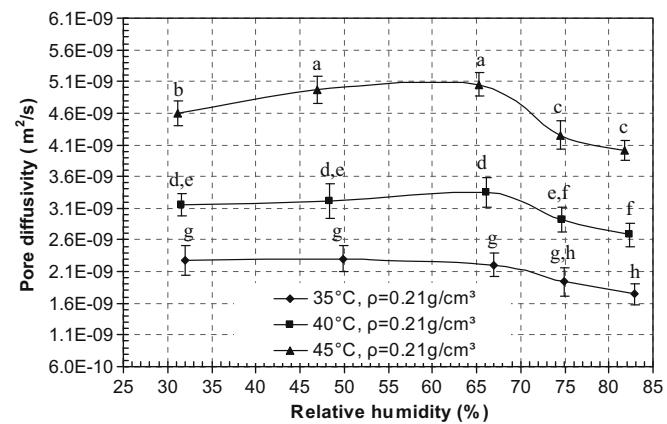


Fig. 8. Effects of temperatures and relative humidities on the pore diffusivities for the banana foam density of 0.21 g/cm^3 : the same letter means insignificant difference at $P>0.05$.

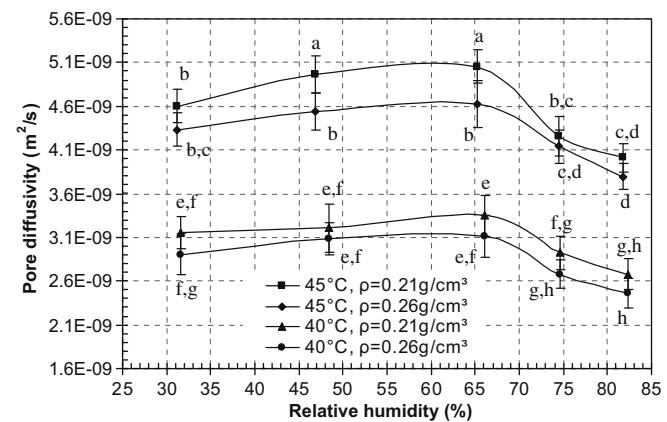
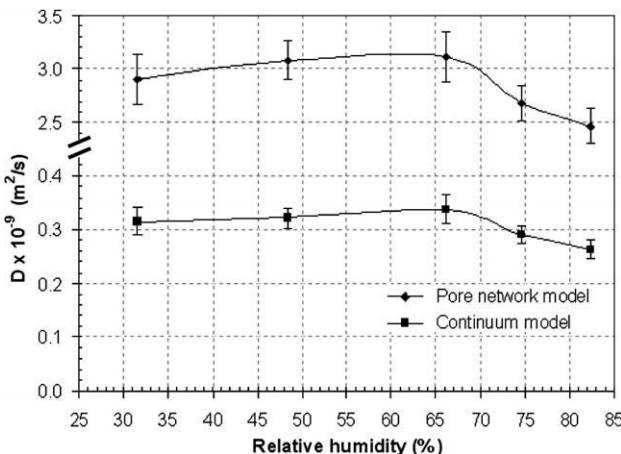



Fig. 9. Effect of initial foam densities on the pore diffusivities at different relative humidities and temperatures of 40 and 45°C : the same letter means insignificant difference at $P>0.05$.

moisture through the banana foam mat is similar to liquid. Roca et al. (2006) also reported that the adsorption of water vapour in sponge cake occurred mainly in the liquid form.

Table 2Constant parameters in Eq. (3) for D_{eff} of banana foam at two foam densities.

Foam density (g/cm ³)	Constant parameters		R^2 -value
	D_0 (m ² /s)	E_a (kJ/mol)	
0.21	488.94	74.00	0.98
0.26	148.39	71.68	0.98

Fig. 10. Comparison between pore diffusivities and effective diffusivities of banana foam mat at 40 °C and relative humidities for foam density of 0.26 g/cm³.

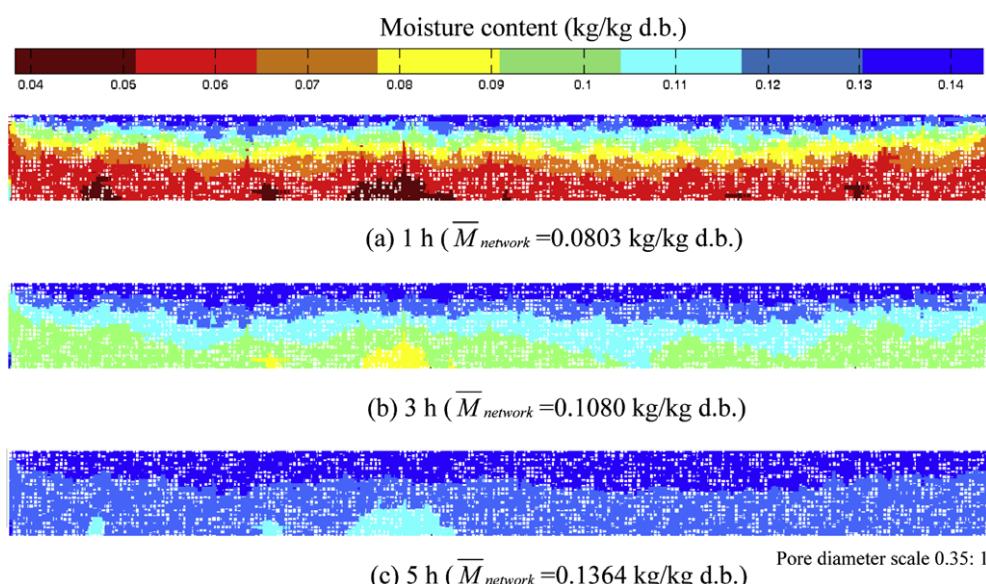
Moreover, the pore diffusivity determined by stochastic pore network is much closer to the water self-diffusion coefficient for all temperature range studied. For example, the moisture diffusion coefficient found in this study was $(3.06 \pm 0.27) \times 10^{-9}$ m²/s at temperature of 40 °C and the water self-diffusion coefficient for pure liquid water was 3.222×10^{-9} m²/s (Holz et al., 2000). In their work, they measured the water self-diffusion coefficient by using pulsed gradient NMR spin-echo technique. These results implied that transport of moisture during adsorption condition can reasonably be described by molecular diffusion equation.

Once the relative humidity was higher than 70%, however, the pore diffusivity relatively decreased with increase in the relative humidity. At this relative humidity range, the banana foam mat

could adsorb a large amount of moisture. Subsequently, the sample was softened and shrunk due to the collapse of pores. This may cause the decrease of moisture diffusion coefficient as shown in Fig. 8. From the statistical analysis, it indicated that the moisture diffusion coefficient at a given temperature was significantly different to those values determined from the relative humidity below 70%.

Fig. 8 also presents the effect temperature on pore diffusivity. As expected, the pore diffusivity significantly increased with increase in temperature ($P < 0.05$).

4.5. Effect of foam densities on diffusion coefficient


Fig. 9 shows the diffusivity of moisture in pores for the samples at the foam densities of 0.21 and 0.26 g/cm³. The pore diffusivity was slightly lower at the foam density of 0.26 g/cm³ than at the density of 0.21 g/cm³ for all experimental conditions. However, the statistical analysis of these pore diffusivity data showed the insignificant difference among the two foam densities.

4.6. Comparison of pore diffusion coefficient and effective diffusion coefficient

Fig. 10 shows the comparison of the pore diffusivity and the effective diffusivity. The value of effective diffusion coefficient was determined using Eq. (1) assuming that the moisture migration occurred in one dimension and the water vapour transported from the air to the top surface by convection. It can be seen that the effective moisture diffusivity was approximately 3.3×10^{-10} m²/s at the temperature of 40 °C and relative humidity in the range of 30–70%. The calculated value was approximately 9 times lower than the diffusivity of moisture in pores.

4.7. Activation energy of pore diffusivity

From the statistical fitting, the Arrhenius equation can suitably describe the relationship between moisture diffusion coefficient in pores and temperature as indicated by R^2 value of 0.97. The values of E_a and D_0 were 64.7 kJ/mol and 193.91 m²/s, respectively. However, if the effective moisture diffusion coefficient was used to correlate with temperature, the fitting results of E_a and D_0 for the effective diffusivity of moisture are shown in Table 2 for two foam

Fig. 11. Visualization of moisture contents in pores of banana foam at temperature of 35 °C, initial foam density of 0.21 g/cm³ and relative humidity of 50%.

densities. The value of the activation energy determined from the pore diffusivity data was relatively lower than the case of using the effective moisture diffusivity data.

4.8. Validation

As previously shown in Figs. 2 and 3, the pore network model showed a good fit to the experimental data throughout the exposure time, with R^2 -values above 0.98 at the relative humidity below 67%. Beyond 67%, however, the accuracy of prediction was slightly smaller (R^2 -values varying between 0.96 and 0.97); the model predicted the change of moisture content of sample relatively faster than the experiment at the early exposure time and became relatively slower afterwards.

4.9. Graphical visualization

Fig. 11 shows the moisture distribution in 2-D pore network during adsorption process. Each pore was colored according to the moisture content. The representative colours with 8 shades from red to blue were used for the corresponding range of moisture from 0.038 to 0.138 kg/kg d.b.

At the beginning, every pore within the network presumably contained the moisture content of 0.038 kg/kg d.b. When the sample was subject to adsorption condition, the capability of moisture diffusing through the pores positioned at the same horizontal plane was different, reflecting the pore shielding effect (Mann, 1993). This can be seen easily at the exposure time of 3 h; some pores located near the bottom surface of the pore network have moisture content of 0.08–0.09 kg/kg d.b. as indicated by yellow colour whilst the other pores were coloured by green corresponding to the moisture contents of 0.095–0.105 kg/kg d.b. The yellow-coloured pore assembly had a size relatively larger than the surrounding nearby pores. Hence, the moisture diffusing through those large pores is restricted by the smaller ones since the cross-sectional area available for moisture diffusion is reduced in the surrounding nearby small pores.

5. Conclusions

A 2-D stochastic pore network has been developed to represent the pore structure of banana foam and the transport of moisture in the pores of the network was described by Fick's second law. The optimization technique with a golden-search method was used to determine the diffusivity of moisture in the pores of banana foam. The experimental results showed that the pore network model could describe the moisture migration inside the banana foam relatively well. The pore diffusivity was not changed with the relative humidity, except for the case of relative humidity higher than 70% at which the value of moisture diffusion had a decreasing trend. The actual moisture diffusion coefficient in pore voids determined from this work may be applied to other porous foods. Moisture in void spaces and interaction between layers of banana foam mat was visualized using colour codes.

Acknowledgments

The authors would like to express their appreciation to the Commission on Higher Education, Thailand for supporting by grant

fund under the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree for this research. This work was also supported in part by the Thailand Research Fund and King Mongkut's University of Technology Thonburi.

References

- Aguilera, J.M., Stanley, D.W., 1999. Microstructure and Mass Transfer: Solid-liquid Extraction. Microstructural Principles of Food Processing and Engineering. Aspen Publishers, Gaithersburg, MD. p. 329.
- AOAC, 1995. Official Methods of Analysis, 16th ed. Association of Official Agricultural Chemists, Washington, DC.
- Androulopoulos, G.P., Mann, R., 1979. Evaluation of mercury porosimeter experiments using a network pore structure model. *Chemical Engineering Science* 34, 1203–1212.
- Blunt, M., 2001. Flow in porous media-pore-network models and multiphase flow. *Current Opinion in Colloid & Interface Science* 6, 197–207.
- Chen, X.D., 2007. Moisture diffusivity in food and biological materials. *Drying Technology* 25, 1203–1213.
- Efremov, G., Kudra, T., 2004. Calculation of the effective diffusion coefficients by applying a quasi-stationary equation for drying kinetics. *Drying Technology* 22, 2273–2279.
- Guillard, V., Broyart, B., Bonazzi, C., Guilbert, S., Gontard, N., 2003. Moisture diffusivity in sponge-cake as related to porous structure evaluation and moisture content. *Journal of Food Science* 68, 555–562.
- Hollewand, M.P., Gladden, L.F., 1992. Modeling of diffusion and reaction in porous catalysts using a random three-dimensional network model. *Chemical Engineering Science* 47, 1761–1770.
- Holz, M., Heli, S.R., Sacco, A., 2000. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate ^1H NMR PFG measurements. *Physical Chemistry Chemical Physics* 2, 4740–4742.
- Intel® Software Network. (2009). Available at: <http://software.intel.com/en-us/articles/intel-c-compiler-professional-edition-for-windows-evaluation/>.
- Jamali, A., Kouhila, M., Mohamed, L.A., Idlizam, A., Lamharrar, A., 2006. Moisture adsorption-desorption isotherms of citrus reticulate leaves at three temperatures. *Journal of Food Engineering* 77, 71–78.
- Kaya, S., Kahyaoglu, T., 2005. Thermodynamic properties and sorption equilibrium of pestil (grape leather). *Journal of Food Engineering* 71, 200–207.
- Kim, M.K., Okos, M.R., 1999. Some physical, mechanical, and transport properties of crackers related to checking phenomenon. *Journal of Food Engineering* 40, 189–198.
- Mann, R., 1993. Developments in chemical reaction engineering: issues relation to particle pore structures and porous materials. *Chemical Engineering Research and Design* 71, 551–562.
- Palou, E., Lopez-Malo, A., Argiz, A., 1997. Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. *Journal of Food Engineering* 31, 85–93.
- Prachayawarakorn, S., Prakotmak, P., Sopornronnarit, S., 2008. Effect of pore size distribution and pore-architecture assembly on drying characteristics of pore networks. *International Journal of Heat and Mass Transfer* 51, 344–352.
- Roca, E., Guillard, V., Guilbert, S., Gontard, N., 2006. Moisture migration in a cereal composite food at high water activity: Effects of initial porosity and fat content. *Journal of Cereal Science* 43, 144–151.
- Saravacos, G.D., Maroulis, Z.B., 2001. Transport of Water in Food Materials. *Transport Properties of Foods.* Marcel Dekker, New York. p. 128.
- Segura, L.A., Toledo, P.G., 2005. Pore-level modeling of isothermal drying of pore networks: Effects of gravity and pore shape and size distributions on saturation and transport parameters. *Chemical Engineering Journal* 111, 237–252.
- Thuwapanichayanan, R., 2007. Drying of foam-mat ripe banana using tray dryer. PhD Thesis, King Mongkut's University of Technology Thonburi, Thailand.
- Thuwapanichayanan, R., Prachayawarakorn, S., Sopornronnarit, S., 2008a. Drying characteristics and quality of banana foam mat. *Journal of Food Engineering* 86, 573–583.
- Thuwapanichayanan, R., Prachayawarakorn, S., Sopornronnarit, S., 2008b. Modeling of diffusion with shrinkage and quality investigation of banana foam mat drying. *Drying Technology* 26, 1326–1333.
- Yiotis, A.G., Stubos, A.K., Boudouvis, A.G., Tsimapanogiannis, I.N., Yortsos, Y.C., 2005. Pore-network modeling of isothermal drying in porous media. *Transport in Porous Media* 58, 63–86.

1 **Effects of Osmotic Treatment and Puffing Superheated**
2 **Steam Temperature on Drying Characteristics and**
3 **Texture Properties of Banana Slices**

4

5 **S. Tabtiang¹, S. Prachayawarakon² S. and Soponronnarit¹**

6

7 ¹Energy Technology Division, School of Energy Environment and Materials,
8 King Mongkut's University of Technology Thonburi, Suksawat 48 Road,
9 Tungkru, Bangkok 10140, Thailand

10 ²Faculty of Engineering, King Mongkut's University of Technology Thonburi,
11 Suksawat 48 Road, Tungkru, Bangkok 10140, Thailand

12 *Corresponding author: somkiat.pra@kmutt.ac.th

13

14 **ABSTRACT**

15 Porous structure as an important characteristic of crisp food can be
16 produced alternatively by puffing process. However, the color of puffed product
17 may have intense brown. To limit the brown reaction, the banana slice needs to be
18 treated osmotically before puffing. This research was therefore to study on the
19 effect of osmotic treatment on quality of puffed banana. The banana with 20-
20 23°Brix total soluble solid was immersed into sucrose solution concentrations at
21 30, 35 and 40°Brix and dried at 90°C using hot air until the sample moisture
22 content reduced to 30% dry basis (d.b.). After that, the banana slices were puffed
23 by superheated steam at 180, 200 and 220°C for 150 s and dried again at 90°C
24 until the sample moisture content reached 4% d.b. From the experimental results,
25 it was found that the osmotic dehydration could improve the color of banana. The

26 puffed osmotic banana was less brown than the puffed non osmotic banana as
27 indicated by the L-, a- and b- values and hue angle. The puffing temperature and
28 osmotic concentrations did not enhance the browning rate. The sucrose
29 impregnation for the osmotic banana caused longer drying time than for the non
30 osmotic one and limited the banana cell wall expansion, resulting in the
31 significantly higher shrinkage of osmotic sample and the less porous structure as
32 viewed by scanning electron microscope. Such morphology of osmotic banana
33 directly affected the texture properties in terms of hardness, initial slope and
34 number of peaks.

35 **Keywords:** Color, Drying, Osmotic dehydration, Snack, Texture

36

37

38

39

40

41

42

43

44

45

46

47 INTRODUCTION

48 Bananas deteriorate rapidly after harvest. To reduce their losses, bananas
49 are processed to various kinds of product such as fried banana, osmotic banana
50 and puree banana. The fried banana chips, one of the most popular products,
51 possess crispy texture^[1,2] and it can serve as a snack food.^[3] However, the fried
52 product contains high oil content and can not be kept for an extended period of
53 time due to possible lipid oxidation leading to rancidity. Hence the free oil crisp
54 banana is an alternative product. The free oil crisp banana may also be received
55 more attention to the conscious consumers. The free oil banana can be produced
56 by drying method. To obtain the crisp texture, the food material requires high
57 porosity. There are several drying techniques for producing high porous food
58 material such as high temperature and short time drying,^[4,5] microwave drying,^[6,7]
59 and low pressure superheated steam drying.^[8,9] In this work, the high temperature
60 and short time drying technique or puffing technique was interested. The
61 operating cost of this puffing technique is rather economics as compared to the
62 other methods.

63 During puffing process, food is subject to high temperature for a short
64 period of time, which allows some amounts of moisture inside the food vaporizing
65 suddenly. The internal vapor pressure can thus be increased and this forces the
66 food structure to be expanded, thereby producing the porous structure of food
67 products. Porous structure and thickness of solid between pores generated by
68 puffing process strongly affect the properties of puffed products such as bulk
69 density and texture.^[4,10] In addition, the puffing process can save drying time^[4,11]

70 and provide 40% energy saving as compared to the conventional hot air
71 dehydration.^[11]

72 The puffing or heating medium normally uses the hot air since it is
73 convenient in practice. Recently, several works have been reported that the
74 superheated steam provides more efficient heat transfer rate than the hot air.^[12,13]
75 Also, during superheated steam drying steam condensation at the material surface
76 is taken place and this releases the latent heat from the phase change which results
77 in the rapid rise in material temperature to stay at the boiling point temperature of
78 water.^[14] From such previous works, it is expected that using superheated steam
79 may increase rapidly vapor pressure inside the product and provides a high
80 expansion of product accordingly. However, up to now, the application of
81 superheated steam for puffing and its effect on the crispiness has not been fully
82 studied. Saca and Lozano^[4] studied the puffing of banana using superheated steam
83 at temperature of 152-175°C and steam pressure of 7.84×10^4 - 27.45×10^4 Pa. It was
84 found that the superheated steam puffed banana had higher porosity than the
85 conventional air dried product, but the product color was browner and this might
86 not be favored by the consumers. Such browning in food is caused by the non-
87 enzymatic browning reactions and pigment degradations.

88 One way of improving color of product can be done by osmotic
89 pretreatment. During osmosis the natural solutes existing in food material such as
90 reducing sugar, acid and minerals flow out from food during osmotic
91 dehydration^[15,16] and those solutes are replaced by osmotic agent. Sucrose is
92 frequently used as osmotic agent.^[17-19] The decrease of reducing sugars i.e.
93 glucose and fructose in the osmotic product can limit brown color development

94 because these monosaccharide are more reactive for the brown reactions than the
95 sucrose.^[20] The food pretreated with sucrose solution before drying can also
96 reduce shrinkage during thermal processing. Many researchers have studied the
97 effect of sugar on shrinkage properties of puffed products i.e. rice and corn,^[21,22]
98 and found that the puffed osmotic products were lower shrinkage than non
99 osmotic ones.

As mentioned-above, the osmotic dehydration of banana before puffing may help to improve the color of puffed product, but the information of effect of osmotic pretreatment on chemical and physical qualities of puffed product has been limited. The objective of this work was therefore to study the effects osmotic solution concentrations and puffing conditions on the drying characteristics and quality of puffed banana. The quality parameters were considered in terms of color, shrinkage and texture properties.

107

108 MATERIALS AND METHODS

109 Material Preparation

110 Fresh bananas were obtained from local market and their soluble solid
111 contents were given in the range of 20-23°Brix. Before processing, the banana
112 was sliced into 3.5 mm thickness and blanched by hot water at 95°C for 1 min.
113 Blanching increased the plasticity of food material which allows the samples to
114 expand during puffing.^[23] Also, blanching decreased the permeability of water
115 vapor and this obstructed the transport of moisture inside the bananas when it
116 vaporized during puffing step. This resulted in the increasing vapor pressure

117 inside the banana samples and the corresponding expansion of the walls of the
118 material.

119

120 **Osmotic Treatment**

121 Osmotic solution was prepared using commercial sucrose with
122 concentrations of 30, 35 and 40°Brix. The banana slices were immersed into
123 various sucrose solution concentrations and the mass ratio of osmotic media to the
124 sample was about 30:1 to avoid the dilution effect. The samples were immersed
125 into the osmotic solution until the banana moisture content was not changed.

126 **Puffing Method**

127 Process for producing crispy banana used in this study was consisted of 3
128 main steps. In the first step, the banana was dried by a hot air tray dryer to certain
129 level, puffed by a superheated steam tray dryer and dried by the hot air tray dryer
130 again. From the preliminary study, it was found that the banana moisture content
131 before puffing and the puffing time were less affected on the volume expansion
132 than the puffing temperature. In addition, the intermediate moisture content of
133 sample of 30% dry basis (d.b.) and puffing time for 150 s were suitable for
134 puffing banana. Before puffing, the banana was dried at 90°C to the recommended
135 moisture content. Drying banana at this temperature did not form the brown
136 color.^[24] After reducing moisture content to 30% d.b., the osmotic banana was
137 puffed at temperatures of 180, 200 and 220°C for 150 s and dried by hot air again
138 at the same temperature as the first stage drying. The final moisture content
139 required at 4% d.b. At the end of each experiment, the moisture content of

samples was determined by drying them in the oven at 103°C for 3 h. The moisture content determined by this method was closed to the vacuum oven method 934.06 (AOAC, 1995)^[25] as reported by Thuwapanichayanan et al.^[26]

143

144 **Texture Property Evaluation.**

145 The puffed banana slices were kept in aluminium foil bag at room
146 temperature for 3 days before texture test. The banana samples were measured by
147 the texture analyzer (Stable Micro System, TA. XT. Plus, UK) with a 5 N load
148 cell. The samples were fractured by a cutting probe (HDP-BSK type) at a constant
149 crosshead speed of 2 mm/s. The maximum compressive force, the initial slope and
150 the number of peaks from force deformation curve were considered as hardness,
151 stiffness and crispness, respectively. The number of peak was counted when the
152 peak was higher than the threshold value which was set at 30 g.

153 Color Evaluation

The color of dried samples was measured using a colorimeter (Hunter Lab, ColorFlex, UK). The color of a banana sample was measured on the banana surface at six different positions and the average value was reported. Twenty banana samples were used to represent the color of sample lot from an experimental condition. The color was expressed as L-value (Brightness), a-value (redness/greenness) and b-value (yellowness/blueness). The overall color of dried banana sample was presented by hue angle ($^{\circ}h$) which is calculated by $h^{\circ} = \tan^{-1}(b/a)$. The angle at 0° , 60° , 120° , 180° and 240° corresponds to red,

162 yellow, green, cyan and blue colors, respectively. The color was calibrated with a
163 standard white plate ($L^*=96.98$, $a^*=0.03$ and $b^*=1.84$).

164 **Shrinkage Determination**

165 Twenty samples were used to determine shrinkage. The volume of each
166 sample was determined by the volumetric displacement method using n-heptane
167 as the replacement medium.^[4] The shrinkage was defined as the ratio of the dried
168 sample volume to the original sample volume

169
$$\% \text{ shrinkage} = \frac{V}{V_i} \times 100$$

170 where V_i and V are the volume of the fresh sample and the volume of dried
171 sample.

172 **Glucose, Fructose and Sucrose Determination**

173 Determination of sugar content was performed according to AOAC
174 method 982.14 (1995)^[25] with some modification. 5-10 g sample was pulverized
175 and mixed with 50 mL water in a 100 mL volumetric flask. 1 mL 15%
176 $\text{K}_4(\text{Fe}(\text{CN}_6)) \bullet 3\text{H}_2\text{O}$ and 1 mL 30% $\text{ZnSO}_4 \bullet 7\text{H}_2\text{O}$ was added into the solution in
177 order to extract protein. After that, it was filtered through filter paper No. 42. The
178 filtered solution from the last step was filtered again through 0.45 μm nylon
179 syringe filter. The final volume of the filtered solution was kept in refrigerator
180 until chromatographic analysis. The 10 μL aliquots of the filtered solution were
181 injected into High Performance Liquid Chromatography (HPLC). The HPLC
182 consists of a Prevail Carbohydrate ES column (4.6 mm, 25 cm; 5 μm) (Alltech,

183 Derfield, USA), a pump and a controller (Agilent, 1100, USA), autosampler
184 (Agilent, 1100, USA) and a evaporative light scattering detector (ELSD detector)
185 (Alltech , 500 ELSD, USA).

186 The fructose and glucose present in the banana can clearly be separated by
187 gradient elution.^[27] Acetonitrile and water was used as mobile phase and flowed
188 through the column at 1 mL/min. The column temperature was kept at 30°C, the
189 detector was controlled at drift tube temperature of 50°C. Nitrogen flowed through
190 the column with a rate of 1.5 L/min. Peaks of samples were quantified with
191 standard.

192 Statistical Analysis

193 The experimental data of color, texture properties and shrinkage was
194 analyzed by an analysis of variance (ANOVA) to indicate how operating
195 conditions affected those qualities. Duncan's test was used to establish the
196 multiple comparisons of the mean values. The mean values were considered
197 significantly different when p -value ≤ 0.05

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216 RESULTS AND DISCUSSION

217 Effect of Osmotic Concentrations on Water Loss and Solid Gain

218 Table 1 shows the moisture loss, solid gain and the losses of native sugars
219 of banana slices immersed in sucrose solutions at 30, 35 and 40°Brix. The banana
220 slices immersed into the higher sucrose concentrations lost the larger amounts of
221 their moisture content. The possible explanation in this case related to the osmotic
222 pressure difference between intracellular fluid in banana and osmotic solution.
223 When the banana sample was immersed into the higher sucrose concentration, the
224 osmotic pressure difference increased, resulting in the larger loss of moisture
225 content. Although the larger amount of moisture lost, the solid gain also increased.
226 The increase of solid gain is caused by the diffusion of sucrose from the solution
227 into the sample. From the experimental results, it was found that the ratios of
228 water loss to solid gain increased with the increased sucrose solution
229 concentrations, implying loss of moisture content larger than the solid gain. This
230 is because the size of sucrose molecule is larger than that of water molecules.^[18,28]
231 Hence, the water molecule can move with a rate faster than the sucrose molecule.

Table 1 also shows that the native sugars i.e. glucose and fructose disappeared during osmosis. The remaining amounts of glucose and fructose in samples immersed into the sucrose solution concentrations were not rather different; the percent losses were 84-86% for glucose and 83-85% for fructose. From these results, it indicated that the losses of glucose and fructose were nearly the same amount. This can be described by the fact that the glucose and fructose have the same molecular weight and this would be expected to have the same diffusion coefficient. Gekas et al.^[29] reported that the diffusion coefficients of glucose and fructose in water at 25°C were equal and had a value of 69×10^{-11} m²/s.

242 Effect of Osmotic Solution Concentration and Puffing Temperature on 243 Drying Characteristics

Fig. 1 illustrates the changes of moisture contents of the osmotic banana slices during the processing steps consisting of drying and puffing. The osmotic samples obtained from the sucrose solution concentrations of 30, 35 and 40°Brixs and puffing temperature of 200°C were demonstrated. It can be seen that the changes of moisture content did not showed a smooth curve throughout the entire process. The decrease of moisture content showed an exponential decay in the first stage drying, followed a rapid decrease during puffing stage and stayed on the exponential curve again at the last drying step. The abrupt change of moisture content during puffing step is due to the fact that the sample was subject to high temperature and this enhanced the diffusion of moisture through the banana tissue.

254 From these drying curve results, it indicated that the drying time was spent
255 mostly in the last drying stage where the sample moisture content was rather low,
256 yielding the low rate of drying. Acceleration in drying rate for the last drying
257 stage using higher temperature of 90°C was not appropriate since the moisture
258 content of banana was rather low and this led to a rapid rise in sample
259 temperature, which induces the brown pigment formation.^[30]

260 Fig 2 shows the drying rates of osmotic and non osmotic samples at the
261 last stage drying. The samples were puffed at the superheated steam temperature
262 of 200°C. The drying rate was relatively lower in osmotic sample than in the
263 sample without osmotic. This is because the solid gain in the osmotic sample
264 increases the internal resistance to water movement during drying.^[10,19]

265 Fig. 3 shows the effects of sucrose solution concentrations and puffing
266 temperatures on total drying time. The lower puffing temperature and higher
267 concentration of sucrose solution provided the longer drying time. During puffing,
268 the moisture content of sample was decreased faster at higher puffing temperature
269 and this resulted further in the drying of banana at the final stage which took a
270 shorter drying time for the sample puffed at higher temperature. In addition, the
271 banana samples had a higher porosity when puffed at higher temperature, which
272 could facilitate the movement of moisture.

273 When comparing the total drying time between osmotic and non osmotic
274 bananas, it was found that the time required to reach the final moisture content for
275 the osmotic samples was taken longer. In addition, the required drying time
276 increased significantly as the sucrose solution concentration increased. The longer

277 drying time for the osmotic banana can be explained by a couple of reasons. The
278 osmotic samples possess the lower porous structure as will be seen in Fig. 6. Also,
279 the sucrose diffusing into the banana slice is bounded with moisture present at
280 banana tissue and this binding resulted in the low drying rate as already seen in
281 Fig. 2.^[10,19]

282 Color

Table 2 shows the effect of the puffing temperatures and sucrose solution concentrations on the color of the bananas slices in terms of lightness (L), redness (a) and yellowness (b) and overall color. The change of color parameters during puffing is related to the browning reactions where a decrease in L value, an increase in a value and a decrease in hue angle indicate more browning.^[31,32] The color of the non osmotic product was rather brown, in particular when it was puffed at the temperature of 220°C which shows the intense brown as interpreted by the °h value of 69° and L-value of 49.5.

When the banana was treated by sucrose solution before processing steps, the product color was improved, with less brown. Both the L- and b-values were higher and the a-value was lower as compared to the corresponding color parameters for the non osmotic banana processed at the same puffing conditions as that of the osmotic banana. The color improvement for the osmotic banana can be explained by the fact that the monosaccharide serving as a main active component for non-enzymatic browning reactions^[33] leaches out during the osmotic dehydration as previously shown in Table 1. Subsequently the browning rate is retarded and results in less brown for the osmotic samples than the non osmotic sample. As shown in Table 2, the osmotic agent concentrations seemed to

301 be not affect the osmotic product color, as indicated by L-, a- and b- values and
302 hue angle, whether it was puffed at 180 or 220°C. The product color had
303 brownish-yellow.

304 **Shrinkage**

305 Fig. 4 shows the shrinkages of non osmotic and osmotic samples, both
306 puffed at temperatures of 180, 200 and 220°C. The volume ratio of osmotic
307 banana samples was significantly lower than that of the non-osmotic ones for all
308 puffing temperatures, indicating larger shrinkage for the osmotic product. These
309 results can be explained by the fact that the OH group of n-C₆H₁₂O₆ in the
310 solution may interact with OH group in the banana tissue by hydrogen bonding.^[34]
311 Their interactions resulted in stronger tissue of the osmotic banana and the
312 resulting tissue may relatively rigid, which leads to more difficulty of expansion
313 of banana during puffing and subsequently provides larger shrinkage. To confirm
314 the explanation of the osmotic banana tissue rigidity, both osmotic and non
315 osmotic samples after the first stage drying were taken to examine their
316 microstructure and their microstructures were shown in Fig. 5, exhibiting the
317 different morphological features of the osmotic and non osmotic samples. The cell
318 walls of the osmotic banana, especially at 35 and 40°Brix, less disrupted, showing
319 very porous structure, whilst most their cell walls were shrunk or disrupted for the
320 non osmotic one.

321 From the microstructure result of osmotic banana, it might be expected
322 that the osmotic banana should have a high volume expansion or a small
323 shrinkage at the process end. The experimental result, however, shows that the
324 degrees of volume ratio for the osmotic bananas at the puffing temperatures of

325 180-220°C were significantly lower than those of the sample without osmotic. The
326 shrinkage of the osmotic banana was in between 54.9 and 67.5%, depending on
327 puffing temperature and sucrose solution concentration. The explanation of the
328 higher shrinkage of the osmotic sample is due to the fact that the tissue of banana
329 after osmotic is strong and rigid, both factors limiting the expansion of cellular
330 structure during puffing.

Considering the puffing temperature effect, the degrees of shrinkage for both osmotic and non osmotic banana samples were lesser at higher puffing temperature. However, the degree of shrinkage, when the puffing temperature increased, was noticeably smaller for the non osmotic sample than for the osmotic sample. As shown in Fig. 6, for example, the volume ratio of non osmotic samples was 82.6% at puffing temperature of 180°C and increased to 103.6% at the puffing of 220°C. In the case of osmotic samples with 40°Brix, the volume ratio was 62.6% at 180°C and 67.5% at 220°C.

339 Fig. 6 demonstrates morphologies of non osmotic banana and osmotic
340 banana samples prepared from sucrose solution concentrations of 30, 35 and
341 40°Brix and puffed at temperature of 200°C. The morphologies of osmotic and
342 non osmotic banana samples were noticeably different. The structure of osmotic
343 banana samples was dense and exhibited less porous, but it was very porous for
344 the non osmotic sample. As shown in Fig. 6 (a), the non osmotic banana had a
345 huge pore with size larger than 1 mm. at the internal area of the sample. The
346 formation of huge pore implies that there was a rapid vaporization of moisture
347 inside the non osmotic samples during puffing, resulting in increasing vapor
348 pressure inside the banana sample and the subsequent cell wall expansion.

349 However, the cell wall expansion was occurred rarely in the osmotic banana
350 samples. From their morphologies, it confirmed the shrinkage results, showing the
351 high shrinkage for the osmotic bananas and the small shrinkage for the non
352 osmotic ones.

353 Texture

The force deformation curve presents the texture characteristics of product. The product that has many fracture points indicates a crispy characteristic^[35] and the number of jags on the force deformation curves indicate the porosity in sample. Fig. 7 shows the force deformation curves of osmotic and non osmotic samples at the puffing temperatures of 180, 200 and 220°C. The force deformation curves of the osmotic samples were clearly different from those of the non osmotic ones. While the cutting probe was acted on the osmotic samples, the force reached the maximum point of 250-270 N. after which it was dropped sharply to zero, without any jag appearance. For the non osmotic samples, on the other hand, the force acting on the samples after reaching the maximum point did not drop rapidly to zero: it still appeared the several smaller peaks. From these force behavior, it can be explained by the fact that the sucrose solution causes banana tissue loosing the elasticity which in turn provides a sharp drop of force after the maximum point. These force characteristics indicated that the osmotic banana after puffing was brittle.

Fig. 8 shows the fracture works of osmotic samples and non osmotic samples at puffing temperatures of 180 200 and 220°C. It was found that the fracture works of osmotic samples had significantly higher than the non osmotic

372 ones. The increase of sucrose solution concentration let to increase of fracture
373 work whilst the puffing temperature did not affect the work.

374 Fig. 9 shows the effects of sucrose concentrations and puffing
375 temperatures on the textural properties of non osmotic and osmotic banana
376 samples. Considering at each sucrose solution, the puffing temperature given in a
377 range of 180-220°C insignificantly affect the textural properties such as hardness,
378 number of peaks and initial slope. The insignificant effect of puffing temperature
379 on the textural characteristics for the non osmotic banana samples was also
380 observed. On the other hand, the sucrose concentration strongly affected such
381 textural characteristics. Increase in both of hardness and initial slope and decrease
382 in number of peaks were found with increasing sucrose solution concentration. As
383 shown in Fig. 9, the banana slices pretreated with 40°Brix sucrose solution had the
384 highest values of hardness and initial slope but the smallest number of peaks. Such
385 textural characteristics revealed that the osmotic banana product after puffing had
386 a harder texture, less crispy and rather brittle than the non osmotic one. The harder
387 texture in the osmotic banana is related to the interaction between the OH-groups
388 of banana tissue and sucrose solution^[34] which will improve the cellulose strength.
389 These results corresponded to the morphological features as already mentioned.

390 From the experimental results, it indicated that although the osmotic
391 dehydration with sucrose could retard the browning of banana after puffing, but
392 the texture of banana at the process end might not be favored by the consumers
393 because of very hard and less crispy of the osmotic banana.

394

395 **CONCLUSION**

396 Osmotic pretreatment of banana slices with sucrose can retard the
397 browning reactions and the subsequent product color was less brown than that of
398 product without osmotic treatment. The color of osmotic products obtained at
399 sucrose solution concentrations and puffing temperatures were not notably
400 different. The color improvement of the osmotic banana was due to the fact that
401 the monosaccharide existing in the banana and serving as reactive component to
402 browning was leached out during osmotic whilst the gain in sucrose during
403 osmotic did not enhance the browning rates. The sucrose diffusing into the banana
404 allowed more difficulty of moisture travelling to the exterior surface, hence
405 lengthening the drying time as compared to that of the non osmotic banana. In
406 addition, the impregnation of sucrose caused the stronger tissue of banana. This
407 caused the less expansion of banana during puffing, resulting in low porous
408 structure of osmotic banana after puffing and corresponding poor texture of
409 product i.e. high hardness and less crisp. The shrinkage was also higher for the
410 osmotic banana than the banana without osmotic. The increase of sucrose solution
411 yielded the harder texture and lesser extent of shrinkage. The range of puffing
412 temperature used in this study could not improve the aforementioned qualities.

413

414 **ACKNOWLEDGEMENTS**

415 The authors express their sincere thanks to Thailand Research Found,
416 National Science and Technology Development Agency and King Mongkut's
417 University of Technology Thonburi for supporting financially this project. Author
418 Tabtiang thanks the Commission on Higher Education, Thailand for support the

419 grant fund under the Strategic Scholarships for Frontier Research Network of the
420 Ph.D. program Thai doctoral degree.

421

422

423

424

425

426

427

428

429

430 **REFERENCES**

431 1. Yamsaengsung, R.; Ngamnuch, M. Transient change in temperatures and
432 pressure during vacuum frying of banana in a pilot scale, Proceeding of the
433 15th annual conference of Thai chemical engineering and applied chemistry,
434 Chonburi, Thailand, October 27-28, 2005, PE 18-11.

435 2. Singthong, J.; Thongkaew, C. Using hydrocolloids to decrease oil absorption in
436 banana chip. LWT – Food Science and Technology **2009**, 42 (7), 1199-1203.

437 3. Nimitpornsuko, N. Changes in physical and chemical qualities of used fried oils
438 for banana slices; M.S. Thesis, Mahidol University, Bangkok, Thailand, 2008.

439 4. Saca, A.S.; Lozano, E.J. Explosion puffing of bananas. International Journal of
440 Food Science and Technology **1992**, 27 (4), 419-426.

441 5. Hofsetz, K.; Lopes, C.C.; Hubinger, M.D.; Mayor, L.; Sereno, A.M. Change in
442 the physical properties of bananas on applying HTST pulse during air drying.
443 Journal of Food Engineering **2007**, 83 (4), 531-540.

444 6. Alibas, I. Microwave, vacuum, and air drying characteristics of collard leaves.
445 Drying Technology **2000**, 27 (11), 1266-1273.

446 7. Hussain, A.; Li, Z.; Ramanah, D.R.; Niamnuy, C.; Raghavan, G.S.V.
447 Microwave drying of ginger by online aroma monitoring. Drying Technology
448 **2010**, 28 (1), 42-48.

449 8. Devahastin, S.; Suvarnakuta, P.; Soponronnarit, S.; Mujumdar, A.S. A
450 comparative study of low-pressure superheated steam and vacuum drying of a
451 heat-sensitive material. Drying Technology **2004**, 22 (8), 1845-1867.

452 9. Elustondo, D.; Elustondo, M.P.; Urbicain, M. J. Mathematical modeling of
453 moisture evaporation from foodstuffs exposed to subatmospheric pressure
454 superheated steam. Journal of Food Engineering **2001**, 49 (1), 15-24.

455 10. Kim, M.H.; Toledo, T.R. Effect of osmotic dehydration and high temperature
456 fluidized bed drying on properties of dehydrated rabbiteye blueberries. Journal
457 of Food Science **1987**, 52 (4), 980-989.

458 11. Sullivan, J.F.; Craig, J.C.; Konstance, R.P.; Egoville, M.J., Aceto, N.C.
459 Continuous explosion-puffing of apples. Journal of Food Science **1980**, 45 (6),
460 1550-1555.

461 12. Chow, L.C.; Chung, J.N. Evaporation of water into a laminar stream of air and
462 superheated steam. International Journal of Heat and Mass Transfer **1983**, 26
463 (3), 373-380.

464 13. Deventer, H.C.; Heijmans R.M.H. Drying with superheated steam. Drying
465 Technolgy **2001**, 19 (8), 2033-2045.

466 14. Taechapairoj, C., Dhuchakallaya, I., Soponronnarit, S., Wetchacama, S.,
467 Prachayawarakorn, S. Superheated steam fluidised bed paddy drying. Journal
468 of Food Engineering **2003**, 58 (1), 67-73.

469 15. Shi, J.; Xue, J.S. Application and development of osmotic dehydration
470 technology in food processing. In *Advances in food dehydration*; Ratti, C.,
471 Eds.; Taylor & Francis Group, New York, 2009; 187-208.

472 16. Sagar, V.R.; Kumar, P.S. Improvement of some process variables in mass
473 transfer kinetics of osmotic dehydration of mango slices and storage stability.
474 Journal of Scientific & Industrial Research **2009**, 68, 1043-1048.

475 17. Krokida, M.K.; Karathanos, V.T.; Maroulis, Z.B. Effect of osmotic
476 dehydration on color and sorption characteristics of apple and banana. Drying
477 Technology **2000**, 18 (4), 937-950.

478 18. Mandala, I.G.; Anagnostaras, E.F.; Oikonomou, C.K. Influence of osmotic
479 dehydrations on apple air drying kinetics and their quality characteristics.
480 Journal of Food Engineering **2005**, 69 (3), 307-316.

481 19. Antonio, G.C.; Alves, D.G.; Azoubel, P.M.; Murr, F.E.X.; Park, K.J. Influence
482 of osmotic dehydration and high temperature short time processes on dried

483 sweet potato (*Ipomoea batatas* Lam.). *Journal of Food Engineering* **2008**, 84
484 (3), 375-382.

485 20. Marquez, G.; Anon, M.C. Influence of reducing sugars and amino acids in the
486 color development of fried potatoes. *Journal of Food Science* **1986**, 51 (1),
487 157-160.

488 21. Hsieh, F.; Hu, L.; Peng, I.C.; Huff, H.E. Pretreating dent corn grits for puffing
489 in a rice cake machine. *Journal of Food Science* **1990**, 55 (5), 1345-1355.

490 22. Orts, W.J.; Glenn, G.M.; Nobes, G.A.R.; Wood, D.F. Wheat starch effect on
491 the textural characteristics of puffed brown rice cakes. *Cereal Chemistry* **2000**,
492 77 (1), 18-23.

493 23. Varnalis, A.I.; Brennan, J.G.; MacDougall, D.B. A proposed mechanism of
494 high-temperature puffing of potato. part II. Influence of blanching and initial
495 drying on the permeability of the partially dried layer to water vapour. *Journal*
496 *of Food Engineering* **2001**, 48 (4) 369-378.

497 24. Thuwapanichayanan, R.; Prachayawarakorn, S.; Kunwisawa, J.;
498 Soponronnarit, S. Determination of effective moisture diffusivity and
499 assessment of quality attributes of banana slices during drying. *LWT - Food*
500 *Science and Technology* 2011, 44, 1502-1510.

501 25. Association of Official Analytical Chemists. *Official Methods of Analysis of*
502 *the AOAC International*, 16th ed.; Gaithersburg, MD, 1995.

503 26. Thuwapanichayanan, R.; Prachayawarakorn, S.; Soponronnarit, S. Modeling
504 of diffusion and shrinkage and quality investigation of banana foam mat

505 drying. *Drying Technology* **2008**, *26* (11), 1326-1333.

506 27. Slimestad, R.; Vågen, I.M. Thermal stability of glucose and other sugar
507 aldoses in normal phase high performance liquid chromatography. *Journal of
508 Chromatography A* **2006**, *1118* (2), 281-284.

509 28. Lerici, C.R.; Pinnavaia, G.; Dalla Rosa, M.; Bartolucci, L. Osmotic
510 dehydration of fruit: Influence of osmotic agents on drying behavior and
511 product quality. *Journal of Food Science* **1985**, *50* (5), 1217-1219.

512 29. Gekas, V.; Oste, R.; Lamberg, I. Diffusion in heated potato tissue. *Journal of
513 Food Science* **1993**, *58* (4), 827-831.

514 30. Baini, R.; Langrish, T.A.G. Assessment of colour development in dried
515 bananas-measurements and implication for modeling. *Journal of Food
516 Engineering* **2009**, *93* (2), 177-182.

517 31. Rocha, A.M.C.N.; Morais, A.M.M.B. Shelf life of minimally processed apple
518 (cv. Jonagored) determined by colour change. *Food control* **2003**, *14* (1), 13-
519 20.

520 32. Hii, C.L.; Law, C.L.; Cloke, M.; Suzannah, S. Thin layer drying kinetics of
521 cocoa and dried product quality. *Biosystems Engineering* **2009**, *102* (2), 153-
522 161.

523 33. Purlis, E. Browning development in bakery product-A review. *Journal of Food
524 Engineering* **2010**, *99* (3), 239-249.

525 34. Allan, G.G.; Stoyanov, A.P.; Ueda, M.; Yahiaoui, A. Sugar-cellulose
526 composites V. The mechanism of fiber strengthening by cell wall
527 incorporation of sugars. *Cellulose* **2001**, 8, 127-138.

528 35. Hofsetz, K.; Lopes, C.C. Crispy banana obtained by the combination of a high
529 temperature and short time drying stage and a drying process. *Brazilian
530 Journal of Chemical Engineering* **2005**, 22 (2), 285-292.

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545 **LIST OF FIGURES**

546 **FIG. 1** Drying curve of banana sliced during processing steps [(●) non osmotic sample;
547 (■) osmotic by sucrose 30°Brix; (▲) osmotic by sucrose 35°Brix and (×) osmotic
548 by sucrose 40°Brix].

549 **FIG. 2** Drying rate of banana sliced at the last drying stage for samples puffed at 200 °C [
550 (♦) non osmotic; (●) osmotic by sucrose 30°Brix; (■) osmotic by sucrose
551 35°Brix; (▲) osmotic by sucrose 40°Brix].

552 **FIG. 3** Drying time of banana slices undergoing puffing at 180, 200 and 220°C and
553 osmotic pretreatment at 30, 35 and 40°Brix.

554 **FIG. 4** Effects of puffing temperatures and osmotic solution concentrations on volume
555 ratio.

556 **FIG. 5** SEM photographs showing cross section of banana slices after first stage drying;
557 (a) non osmotic; (b) 30°Brix; (c) 35°Brix; and (d) 40°Brix.

558 **FIG. 6** SEM photographs showing cross section of banana slices puffed at 200°C; (a)
559 non osmotic; (b) 30°Brix; (c) 35°Brix; and (d) 40°Brix.

560 **FIG. 7** Force deformation curves: (a) the none osmotic banana and (b) the osmotic
561 banana.

562 **FIG. 8** Fracture work of the osmotic bananas and non osmotic bananas at different
563 puffing temperatures.

564 **FIG. 9** Texture properties of the osmotic banana and the non osmotic banana.

565

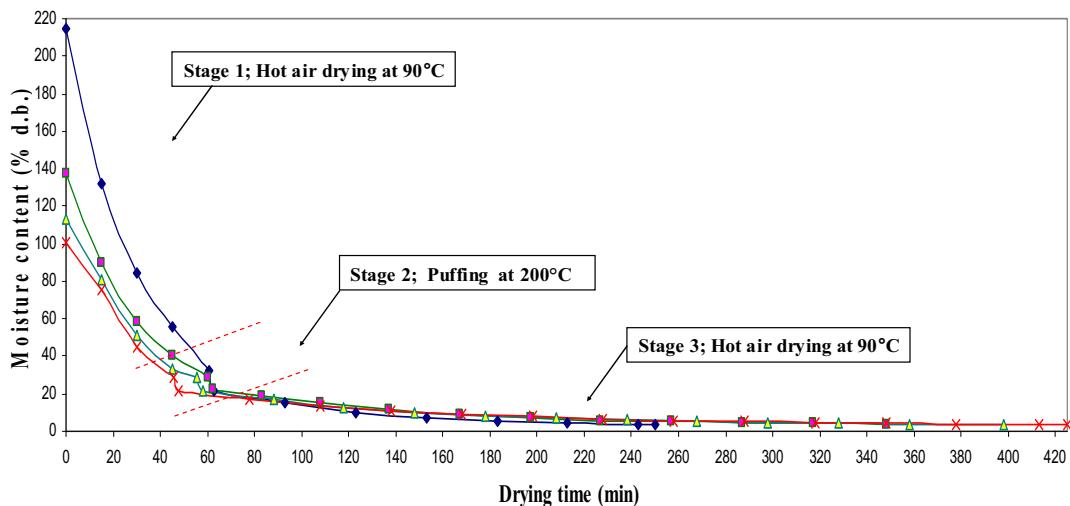
566 **LIST OF TABLES**

567 **Table 1** Immersion time, amount of water loss, amount of solid gain, moisture content,
568 amount of sucrose, amount of fructose and amount of glucose of banana slice at
569 various sucrose concentration.

570 **Table 2** Color of osmotic banana and none osmotic banana slices at different puffing
571 temperatures.

572

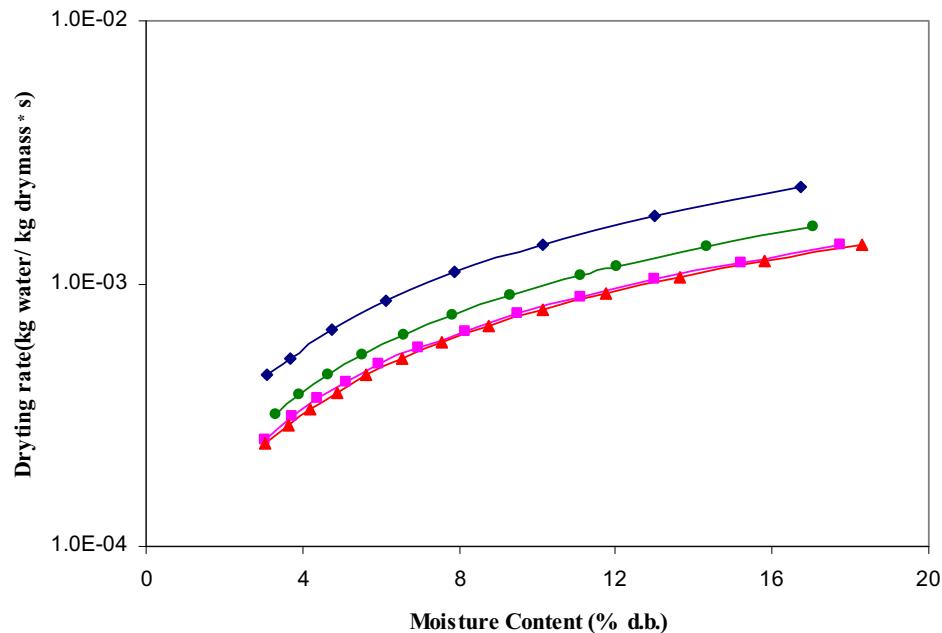
573


574

575

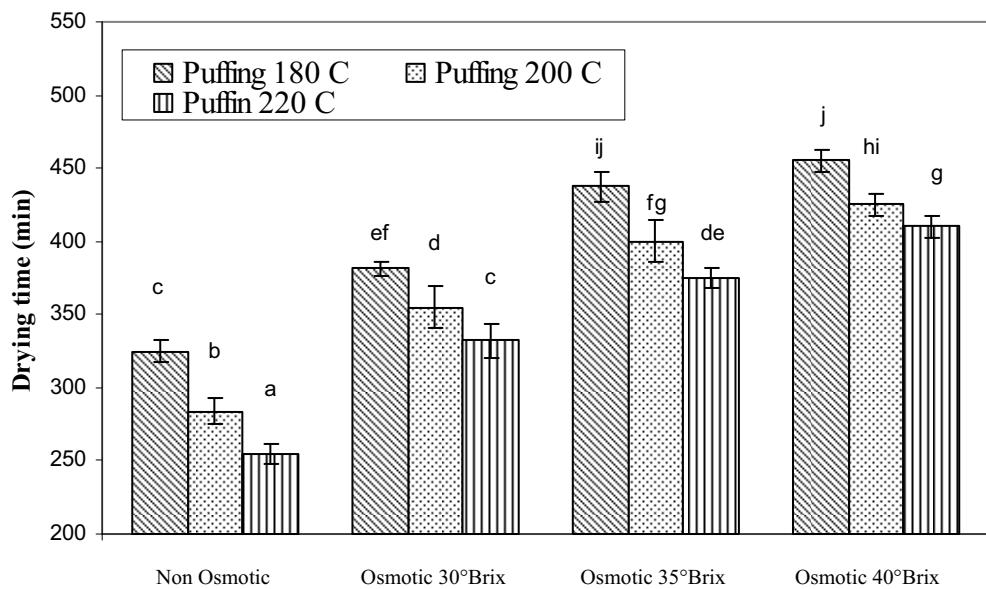
576

577


578

579
580

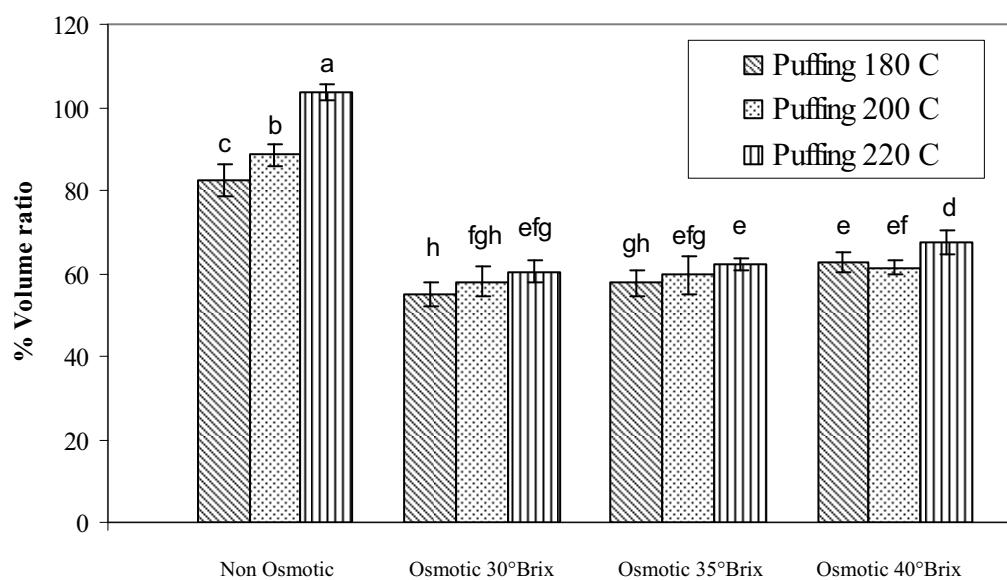
FIG. 1 Drying curve of banana sliced during processing steps [(●) non osmotic sample; (■) osmotic by sucrose 30°Brix; (▲) osmotic by sucrose 35°Brix and (×) osmotic by sucrose 40°Brix].


584
585

586
587

FIG. 2 Drying rate of banana sliced at the last drying stage for samples puffed at 200 °C [(◆) non osmotic; (●) osmotic by sucrose 30°Brix; (■) osmotic by sucrose 35°Brix; (▲) osmotic by sucrose 40°Brix].

591

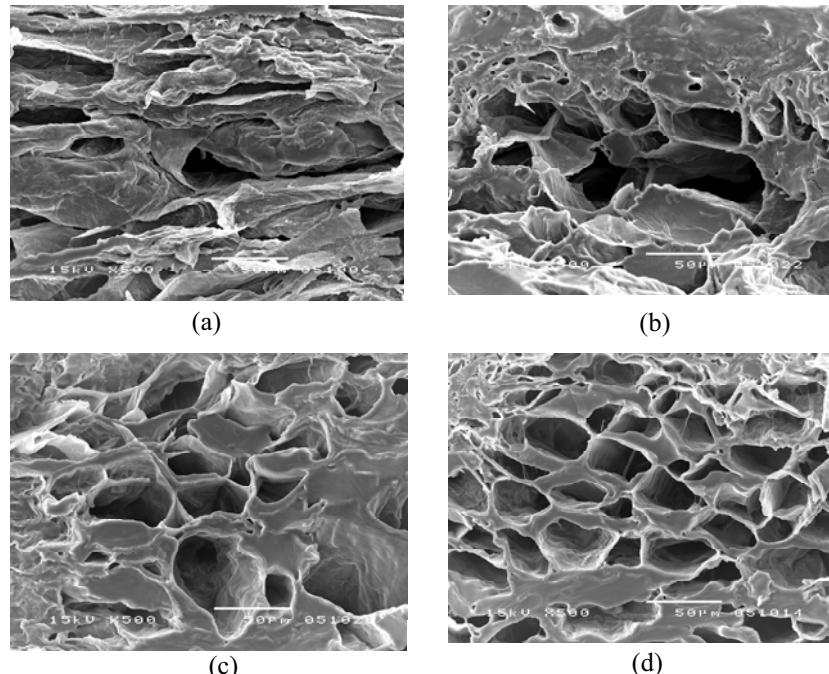

592

593 The different scripts presented over the bar mean the significant difference at $p \leq 0.05$.

594 **FIG. 3** Drying time of banana slices undergoing puffing at 180, 200 and 220°C and
595 osmotic pretreatment at 30, 35 and 40°Brix.

596

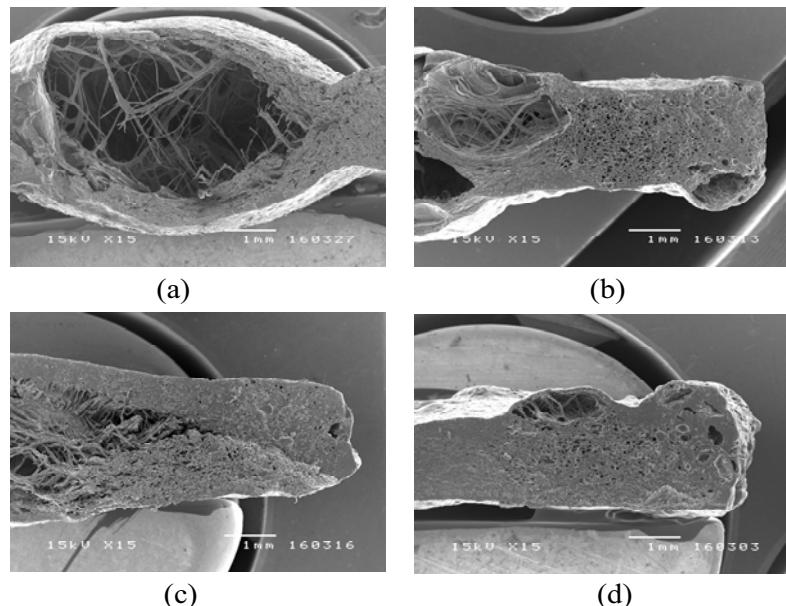
597


598

599 The different scripts presented over the bar mean the significant difference at $p \leq 0.05$.

600 **FIG. 4** Effects of puffing temperatures and osmotic solution concentrations on volume
601 ratio.

602


603

604

FIG. 5 SEM photographs showing cross section of banana slices after first stage drying; (a) non osmotic; (b) 30°Brix; (c) 35°Brix; and (d) 40°Brix.

607

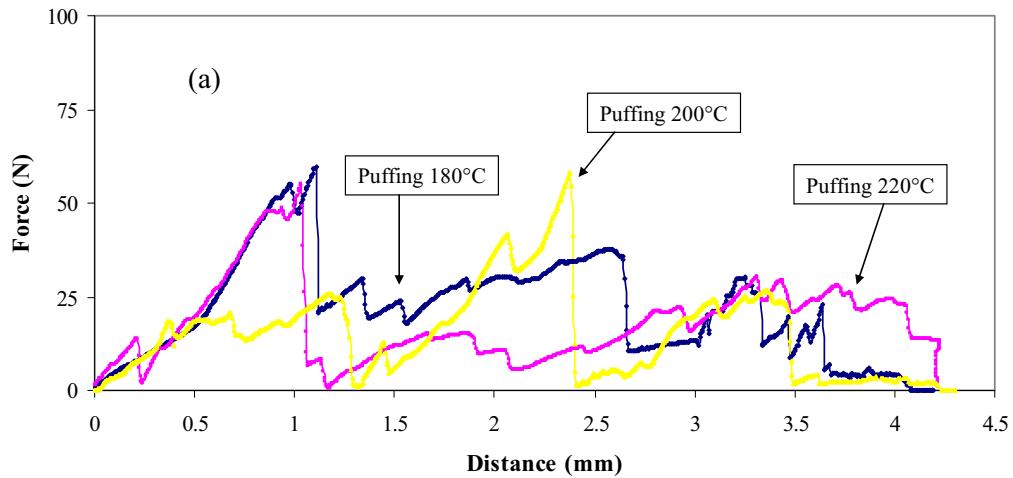
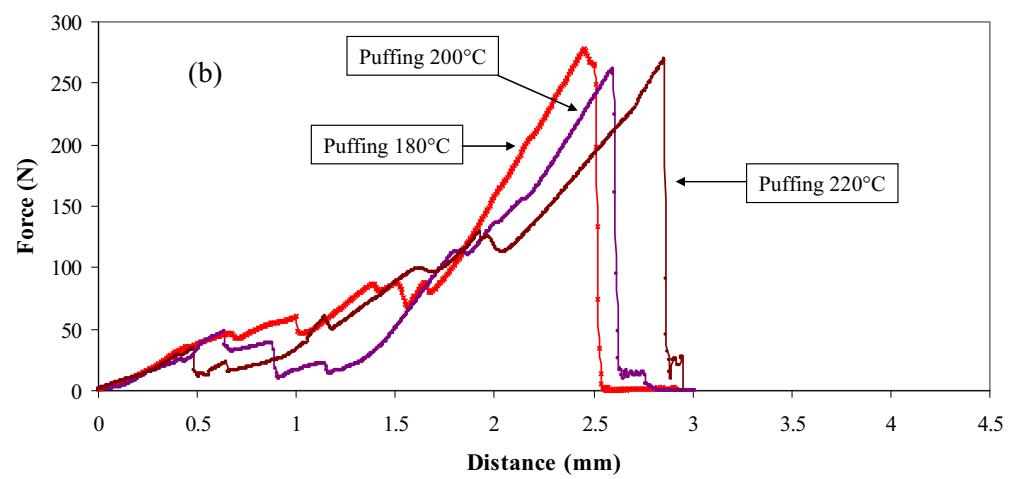

608

FIG. 6 SEM photographs showing cross section of banana slices puffed at 200°C; (a) non osmotic; (b) 30°Brix; (c) 35°Brix; and (d) 40°Brix.

611


612

613

614

615

616

617 **FIG. 7** Force deformation curves: (a) the none osmotic banana and (b) the osmotic banana.

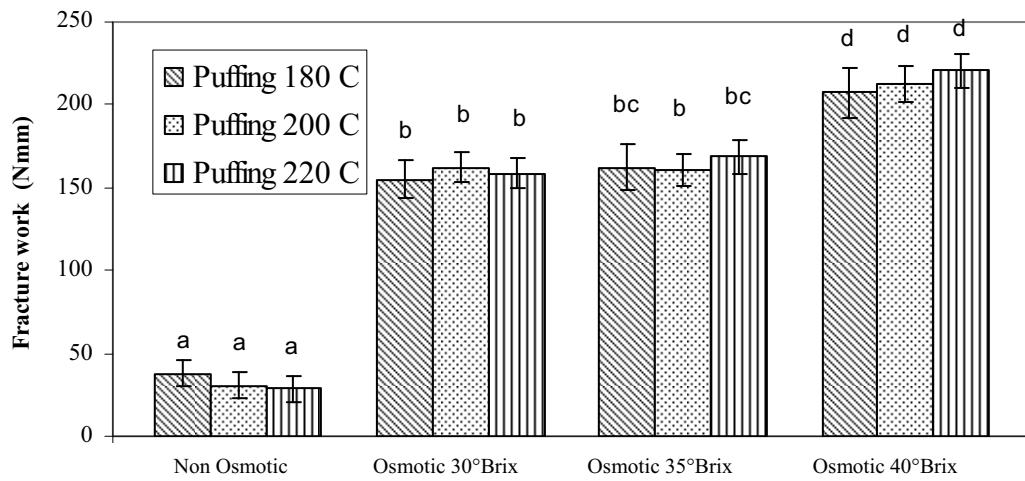
619

620

621

622

623


624

625

626

627

628

629

630 The different scripts presented over the bar mean the significant difference at $p \leq$
631 0.05.

FIG. 8 Fracture work of the osmotic banana and non osmotic banana at different puffing temperatures.

634

635

636

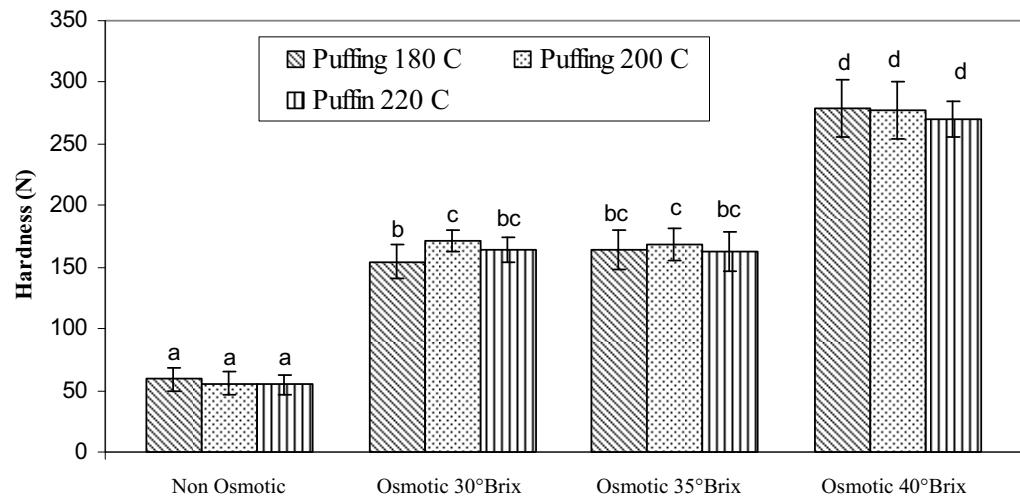
637

638

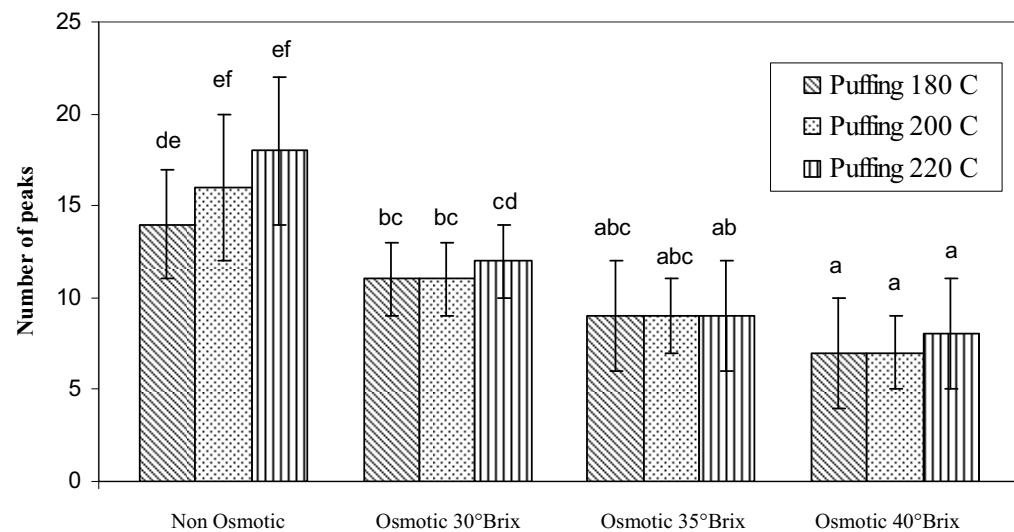
639

640

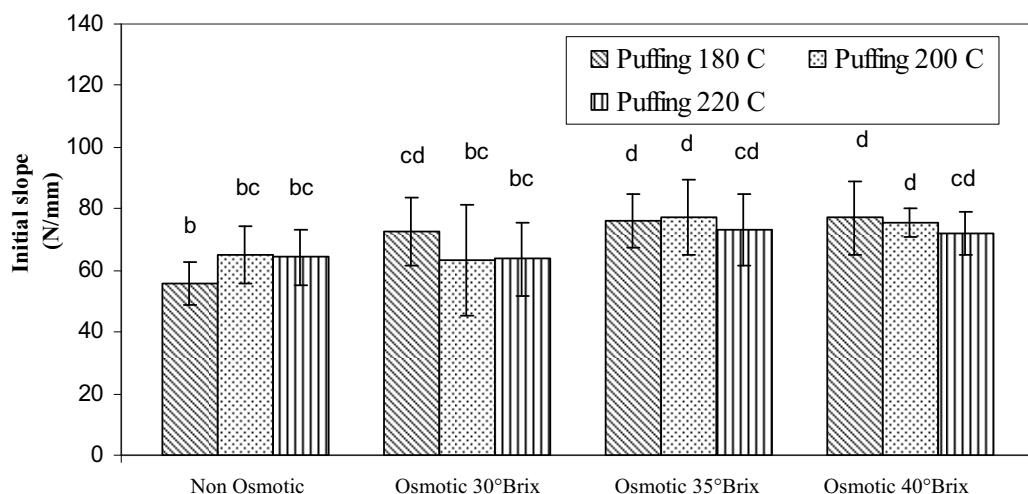
641


642

643


644

645


646

647

648

649

650 The different scripts presented over the bar mean the significant difference at $p \leq 0.05$.

651

FIG. 9 Texture properties of the osmotic banana and non osmotic banana.

Table 1 Immersion time, amount of water loss, amount of solid gain, moisture content, amount of sucrose, amount of glucose and amount of fructose of glucose of banana slice at various sucrose concentration.

Sucrose concentration (°Brix)	Immersion time (min)	Water loss (g water/g dry mass)	Solid gain g dry mass)	Water loss/ g solid/g dry mass)	Moisture content (% d.b.)	Amount of sucrose (g/100 g banana)	Amount of glucose (g/100 g banana)	Amount of fructose (g/100 g banana)
none osmotic	-	-	-	-	210.1 ± 3.5	7.43	1.04	1.12
30°Brix	240	0.321	0.248	1.29	134.1 ± 2.4	16.41	0.14	0.17
35°Brix	290	0.539	0.303	1.78	116.4 ± 3.7	18.45	0.16	0.19
40°Brix	330	0.772	0.326	2.37	102.4 ± 3.1	22.86	0.14	0.16

Table 2 Color of osmotic banana and none osmotic banana slices at different puffing temperatures.

Puffing temperature (°C)	Osmotic concentration (°Brix)	L	a	b	$^{\circ}\text{h}$	Product	
180°C	0	52.1 ^{ab} ± 1.02	5.32 ^{cd} ± 0.3	16.81 ^a ± 0.83	72.41 ^{bc} ± 1.20		
	30	59.29 ^f ± 1.51	4.87 ^{abc} ± 0.26	19.97 ^{cd} ± 0.74	76.30 ^h ± 0.62		
	35	57.01 ^{ef} ± 3.02	5.02 ^{abc} ± 0.32	16.65 ^a ± 0.9	73.21 ^{cd} ± 0.59		
	40	57.43 ^{ef} ± 1.28	5.02 ^{abc} ± 0.28	18.68 ^{bc} ± 0.97	74.91 ^{efg} ± 1.19		
	200°C	0	51.3 ^{ab} ± 1.66	5.66 ^{cd} ± 0.25	16.85 ^a ± 0.85	71.48 ^b ± 0.62	
	30	59.1 ^{ef} ± 2.73	4.93 ^{abc} ± 0.21	18.89 ^{bc} ± 1.11	75.35 ^{fh} ± 0.73		
	35	58.35 ^{ef} ± 1.7	5.40 ^{cd} ± 0.51	18.15 ^{bc} ± 0.50	73.42 ^{cd} ± 1.82		
	40	57.31 ^{ef} ± 1.3	5.2 ^{cd} ± 1.3	18.71 ^{bc} ± 0.83	74.32 ^{def} ± 1.02		
	220°C	0	49.5 ^a ± 1.5	6.11 ^e ± 0.21	16.3 ^a ± 0.83	69.44 ^a ± 1.78	
	30	57.22 ^{ef} ± 2.1	5.41 ^{cd} ± 0.33	18.68 ^{bc} ± 0.5	73.71 ^{cde} ± 1.24		
	35	56.36 ^{de} ± 2.45	5.06 ^{abed} ± 0.3	18.39 ^{bc} ± 0.54	74.60 ^{def} ± 0.93		
	40	54.19 ^{bcd} ± 4.22	5.27 ^{bcd} ± 0.32	17.7 ^b ± 1.14	73.75 ^{cde} ± 1.19		

POROUS STRUCTURE DESIGN OF BANANA FOAM TO RESIST MOISTURE ADSORPTION USING A 2-D STOCHASTIC PORE NETWORK: EXPERIMENT AND SIMULATION

P. Prakotmak¹, S. Soponronnarit¹, S. Prachayawarakorn²

¹ *Energy Technology Division, School of Energy Environment and Materials,
King Mongkut's University of Technology Thonburi, Suksawat 48 Road, Tungkru, Bangkok 10140, Thailand*
E-mail: preeda_list@hotmail.com

² *Faculty of Engineering, King Mongkut's University of Technology Thonburi,
Suksawat 48 Road, Tungkru, Bangkok 10140, Thailand*
E-mail: somkiat.pra@kmutt.ac.th

Abstract: High porosity of dried banana foam could quickly adsorb the moisture from the air during storage, leading to the lost of quality and textural property. The purpose of this research was to design banana foam porous structure that can resist moisture adsorption using a stochastic pore network. The textural quality of the structured banana foams regarding to hardness and initial slope was also determined. A 2-D network of cylindrical pores was used to represent the voids inside the banana foam and the moisture movement inside the individual pore segments was described by Fick's law. A network size of 23×264 accounting for 12431 pores was used. The pore size distributions of dried banana foam for the foam densities of 0.21, 0.26 and 0.31 g/cm³ were characterized by binary image of SEM. The result shows that the stochastic pore network could qualitatively describe the adsorption experimental results. The rate of moisture adsorption depends on both pore size distribution and the arrangement of pores within network.

Keywords: adsorption, pore structure, snack, texture property

INTRODUCTION

Moisture migration plays a part in almost all of the chemical and physical changes that occur in the production of dried crispy products e.g. ready to eat cereals, biscuits and snack foods. (Cauvain and Young, 2000). Quality change is, for example, texture and color. The rate of moisture migration into porous food is governed by the environmental conditions, i.e. relative humidity and temperature. Also, it depends on the porous food structure. The dried crispy products try to achieve moisture equilibrium with their surroundings so that the moisture may be lost or gained with time. If moisture adsorption occurred from any exposed surfaces, the relative humidity would not be uniform throughout the product. This RH gradient means that moisture will gradually migrate from the outside to the centre of the product through the porous structure in order to restore equilibrium atmosphere.

The moisture transport in porous foods can be governed by different mechanisms. Diffusion of moisture may be divided into molecular diffusion, capillary diffusion, Knudsen diffusion, etc. Among these, molecular diffusion is the most important phenomenon that has a major influence. In molecular

diffusion, gases or liquid molecules transferred from a region of high concentration to a region of low concentration due to the random motion of the substance. In general, the Fick's law can describe the diffusing molecular within pores and other interconnected voids in the porous solid. The molecular diffusion is defined as the net transport of gases and liquids on a molecular scale due to a concentration or partial pressure gradient throughout a medium (Saravacos and Maroulis, 2001). Each of these diffusion mechanisms is difficult to study independently and the effect of porous microstructure is lumped into effective parameters. However, more recent works studied the discrete model (or pore network model) to overcome the limitations of continuum model by mapping pore sizes and topology of porous food onto the network model (Yiotis et al., 2005; Prat and Bray, 1999; Blunt, 2001; Segura and Toledo, 2005).

Pore network models represent porous media as simplified randomly connected sets of large and small pores with fluid flow. The network models have been applied mostly in theoretical study and used to describe the experimental observations. Banana foam mat in this study is considered to be a high porous and this product could quickly adsorb the moisture from the air when exposed to the

surrounding, leading to the loss of crispness. A better understanding relation of moisture transfer and its microstructure can therefore reduce or prevent the quality change in the banana foam. The effect of porous structures on moisture migration is of great interest. The study of the effect of porous structure on the moisture migration in porous foods during adsorption has limited in the literature. Prakotmak et al. (2010) studied the effect of densities of banana foam mats, characterizing different porous structures, on the moisture adsorption rate.

In addition to the porous structure, the arrangement of pores within network is also important to transport of moisture. Prachayawarakorn et al. (2008) theoretically studied the effect of pore architecture assembly on moisture evaporation rate and found that the minimum shielding network, large pore assembly exposed to the exterior surface, enhanced greatly the drying rate. On the other hand, the maximum shielding network, which is small pores allocated onto the network exterior, exhibits the slowest drying rate. Similarly, Pillai et al. (2009) studied moisture evaporation in dual-porosity porous medium using square network model and found that when the lower porosity material (smaller pore) covered the material containing large pore can limit the evaporation rate and the result became converse when the high porosity material (larger pore) exposed to the drying air.

Limited information concerning the effect of two-layer products on moisture transport is available in the literature. The objective of the present study was to design the banana foams structure to resist moisture migration using a two dimensional stochastic pore network. The network model results were then compared with the adsorption experiments. The textural property of dried banana foam was also characterized by initial slope, number of peaks and maximum force.

DRIED BANANA FOAM PREPARATION

The banana puree with 5% fresh egg albumen, used as foaming agent, were foamed to densities of 0.3, 0.5 and 0.7 g/cm³. The density was determined by measuring the mass of a fixed volume of the foam. The banana foams was poured slowly into a steel block and then placed on a mesh tray, which was covered with aluminium foil. After that, it was dried to about 3% kg/kg d.b. using 80°C and a 0.5 m/s superficial air velocity. The banana foam prepared from the initial foam densities of 0.3, 0.5 and 0.7 g/cm³ can produce the dried banana densities of 0.21±0.02, 0.26±0.02 and 0.31±0.01 g/cm³, respectively. The product thicknesses after drying were 2.8, 3.2 mm and 3.5 mm for the densities of 0.21, 0.26 and 0.31 g/cm³, respectively. For dual density preparation, the first density of banana foams was poured into a steel block with a thickness of 2 mm and dried by hot air for 1 h. After that, the

second density of banana foam was poured on it and dried again by the hot air for 2 h.

ADSORPTION EXPERIMENT

Moisture adsorption experiments were carried out using the static method. Samples were placed into the glass jars contained a saturated potassium iodine solution (KI) which provided the relative humidity (RH) in a range of 66-68% at the temperatures of 35°C. The jars were placed in the temperature-controlled oven with a precision of ±1°C (UFE500, Memmert, Germany). Samples were weighed at different exposure times ranging from 1 to 80 h. A small amount of toluene held in a vial was fixed in the glass jars in order to prevent microbial spoilage of the samples. Moisture content of each sample after reaching the equilibrium condition was determined by drying it with the hot air oven at a temperature of 103°C for 3 h. As compared to the AOAC procedure (AOAC, 1995), the error from this method was approximately 0.4% as reported by Thuwapanichayanan et al. (2008). The experiment at each sorption condition was repeated three times and the mean value was reported.

SEM PHOTOGRAPH

The morphologies of dried banana foam mats were characterized using scanning electron microscope (SEM) with an accelerating voltage of 10 kV. Before photographing, the specimens were cut into a dimension of 5×5 mm and then glued on the metal stub. The samples were coated with gold, scanned, and photographed at 15× magnification.

TEXTURE ANALYSIS

The effects of moisture content and porous foam configuration on the product texture were determined quantitatively. The initial moisture content of the banana foam was about 0.038 kg/kg d.b. A compressive force was applied to the sample using a 5 mm spherical probe moving down at a constant crosshead speed of 2 mm/s. The hardness was defined as the maximum force of the force-deformation curve and the crispness was characterized by the number of peaks and the slope of the first peak. Eight samples were tested and the average values of hardness and crispness were presented. All experiments were performed at 24°C.

GENERATION OF THE PORE NETWORK

In this study, the microstructure of single banana foam mat can be represented by a two dimensional network of randomly connected pores. Each pore in the network had a constant connectivity of 4. In this work, pores are assumed to be cylindrical shape with their diameter assigned according to the experimental pore size distribution, and each pore in the network had the same pore length and was denoted as L . The pore diameters determined from this study was

characterized by SEM. Fig. 1 illustrates an example of a 2-D stochastic pore network with a small size of 16×40 , defined as the number of pore junctions in the vertical direction multiplied by those pore junctions in the horizontal direction. This network size consists of 1336 pores. The pores in this figure were presented by black color and solid by white color.

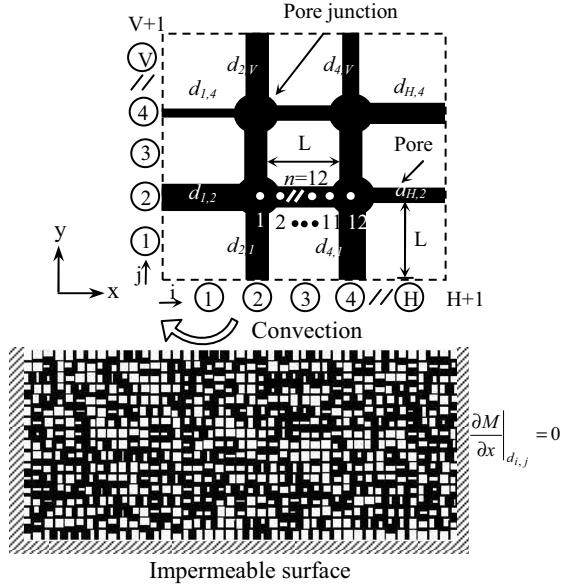


Fig. 1. An Illustration of 2- D stochastic pore network with a size of 16×40

However, for calculating the pore diffusivity, we used a large network size, with a number of pores of the network corresponding to number of pores in the real sample. The single foam densities of 0.31, 0.26 and 0.21 g/cm³ had the network sizes of 26×291 , 23×264 and 20×231 , respectively, and their sizes were accounted for 15449, 12431 and 9491 pores, respectively. These numbers of pores were estimated from the number of pores in the unit area of sample that was obtained from SEM. The length of each pore, L , was calculated by dividing the thickness of banana foam sample by number of vertical pores in each row. The average value of L was equal to 133 μm .

DIFFUSION IN A SINGLE PORE

In this work, moisture adsorption between surrounding air and banana foam mat occurred under isothermal condition. The water vapor from the air will be adsorbed at the sample surface and then moves in the liquid form through interior area via the pores. The moisture diffusing through each pore in the network, whether the pore is allocated in horizontal or vertical direction of the network, can be described by Fick's second law:

$$\frac{\partial M}{\partial t} = D_p \left(\frac{\partial^2 M}{\partial x^2} \right) \quad (1)$$

where M is the moisture content (kg/kg d.b.), t the adsorption time (s), D_p the water diffusivity in pore (m²/s), and x the distance along the pore length (m). The migration of moisture from the surrounding air to the banana foam surface occurred specifically at the top surface and no moisture transferred at the bottom surface of the network since the banana foam mat was placed on an opaque glass dish. The constant diffusion coefficient at a given adsorption condition was assumed and the moisture profile in the pore at the beginning was uniform along the pore axis:

$$M = M_i \quad : t = 0, 0 \leq x \leq L \quad (2)$$

where M_i is the initial moisture content (kg/kg d.b.).

Boundary condition for pores at edges of network

From the prepared sample size, it indicated that the surface area at each sample side was remarkably smaller than that at the top surface. Hence, the moisture transferring from the surrounding to the pores allocated at the three sides of sample was small, as can be seen in Fig. 1, and the three sides of the pore network are reasonably presented as impermeable surface. Accordingly, the boundary condition for the pores allocated at these three sides of the network is set as:

$$\left. \frac{\partial M}{\partial x} \right|_{d_{i,j}} = 0 \quad : t > 0 \quad (3)$$

where d is the pore diameter (m) and subscripts i and j are the positions of the pore in the network. The positions of outer pores are represented as $d_{1,2}$, $d_{1,4}, \dots, d_{1,V+1}$ for the pores at the left edge of network, $d_{H,2}$, $d_{H,4}, \dots, d_{H,V+1}$, for the pore at the right edge and $d_{2,1}$, $d_{4,1}, \dots, d_{H+1,1}$ for the pores at the bottom edge. Subscripts H and V are the number of columns and rows of the pores on the network, respectively.

Boundary condition for the pores at top surface of network

For the periphery pores positioned on the top of the network, such as $d_{2,V}$, $d_{4,V}, \dots, d_{H+1,V}$, the moisture moving from the surrounding to those pores was occurred by convection and the boundary condition is set by:

$$D_p \left(\frac{\partial M}{\partial x} \right)_{d_{i,j}} = h_m (M_e - M_s) \quad : t > 0 \quad (4)$$

where h_m is the convective mass transfer coefficient (m/s), M_e the equilibrium moisture content (kg/kg d.b.) and M_s the moisture content at the sample surface (kg/kg d.b.). To calculate the moisture concentration of the pores inside the network, a finite difference method was used. An individual pore in the network was divided into $n=12$ intervals as shown in Fig 1 and Eq. (1) was discretized using the explicit method as follows:

$$M_{n,d_{i,j}}^{p+1} + M_{n,d_{i,j}}^p (2\alpha - 1) - \alpha (M_{n+1,d_{i,j}}^p + M_{n-1,d_{i,j}}^p) = 0 \quad (5)$$

where $\alpha = D_p \Delta t / \Delta x^2$ is the Fourier number, p and n the respective indexes of the present time and of nodal position along the pore axis. The Eq. (5) is used to calculate the moisture content for the inner pores of network. The boundary conditions in Eqs. (3) and (4) can be written respectively as:

$$M_{n,d_{i,j}}^{p+1} + M_{n,d_{i,j}}^p (2\alpha - 1) - 2\alpha (M_{n+1,d_{i,j}}^p) = 0 \quad (6)$$

$$M_{n,d_{i,j}}^{p+1} (\gamma + 1) - M_{n-1,d_{i,j}}^{p+1} - \gamma M_e^{p+1} = 0 \quad (7)$$

where $\gamma = h_m \Delta x / D_p$. The moisture adsorption rate $Q_{d_{i,j}}$ (kg/s) for the individual pores can be calculated by:

$$Q_{d_{i,j}} = \rho \cdot \frac{\pi}{4} d_{i,j}^2 \cdot D_p \left(\frac{dM_{d_{i,j}}(x,t)}{dx} \right)_{x=L} \quad (8)$$

The finite difference approximation of Eq. (8) is

$$Q_{d_{i,j}} = \rho \cdot \frac{\pi}{4} d_{i,j}^2 \cdot D_p \left(\frac{M_n^{p+1} - M_{n-1,d_{i,j}}^{p+1}}{\Delta x} \right)_{x=L} \quad (9)$$

where ρ is the dried banana densities (kg/m³) and M_n^{p+1} is the moisture contents at pore junctions.

Mass balance for the network

To determine the moisture contents at the pore junctions for the inner pores of the network, the mass balance of moisture content at the inner nodes of network was made, assuming no accumulation of moisture at each pore junction within the network, which is thus expressed by:

$$\sum_{\{u,v\}} Q_{d_{i,j}} = 0 \quad (10)$$

where Σ is over all the pores, $d_{i,j}$, that connected to the pore junction (u,v) , and u,v are the coordinate for a pore junction in the network. Substituting Eq. (9) into Eq. (10) and solve it for the moisture contents at the pore junctions. After the moisture contents at nodes of the network were known, the average moisture content \bar{M}_{network} of network can then be calculated using the following equation:

$$\bar{M}(t)_{\text{network}} = \frac{\sum_{n=1}^Z \frac{d_{i,j}^2}{4} \int_0^L M_{r_{i,j}}(x,t) dx}{Z \cdot L \sum_{n=1}^Z \frac{d_{i,j}^2}{4}} \quad (11)$$

where Z is number of pores in the network. All computations were implemented using Intel C++ Compiler (Intel® Software Network, 2009).

RESULT AND DISCUSSION

Pore size distribution

The pore size distributions of the dried banana foam at densities were shown in Fig. 2. These pore size distributions were determined from the cross-sectional view of samples from SEM using image analysis. The sample with a foam density of 0.31 g/cm³ had small pores in the range of 7-120 µm accounting for 63% of the whole number of pores and for 37 % with the pores larger than 120 µm. For the densities of 0.26 and 0.21 g/cm³, it had the proportions of small pores accounting for 57% and 43% respectively, which was lower than that of sample at the density of 0.31 g/cm³. The porosity of sample at the density of 0.31 g/cm³ was relatively higher due to higher number of large pores. The void area fractions for the banana foam densities of 0.21, 0.26 and 0.31 g/cm³ obtained by counting the pore area of binary images, were 31, 26 and 22%, respectively. From these characterizations of porous banana foam, it indicated that the high void area fraction for the low banana foam density resulted from the large pore size assembly although the number of pores in the sample was smaller.

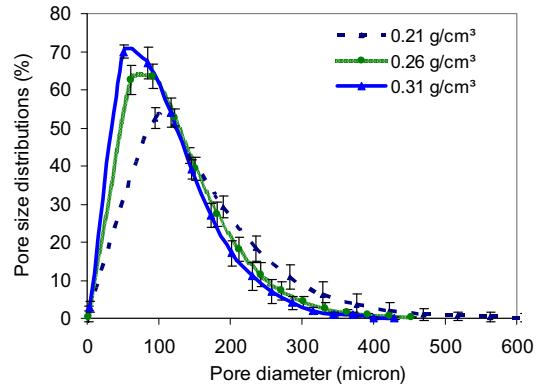


Fig. 2. Pore size distributions of single banana foam
Diffusion in single foam density

The pore diffusion coefficients for three banana foam densities at 35°C and different relative humidities are shown in Table. 1. The diffusion coefficients were obtained by using the optimization technique with the golden search.

Table 1. Estimated pore diffusivity for three banana foam densities at 35°C and relative humidities with R^2 -values above 0.96

RH (%)	$D_p \times 10^{-9}$ (m ² /s)		
	0.21 g/cm ³	0.26 g/cm ³	0.31 g/cm ³
32	2.276 ± 0.230^a	2.072 ± 0.193^{ab}	0.903 ± 0.295^c
50	2.304 ± 0.210^a	2.149 ± 0.238^{ab}	1.024 ± 0.480^c
67	2.204 ± 0.185^{ab}	1.990 ± 0.183^{ab}	1.102 ± 0.280^c
75	1.941 ± 0.219^{ab}	1.686 ± 0.241^b	0.876 ± 0.405^c

Values in the table with different superscripts mean that the values are significantly different ($p < 0.05$).

The root mean square error RMSE was set as the objective function. The calculation will be stop when the value of RMSE was lower than 10^{-6} . The RMSE is defined as:

$$RMSE = \left[\frac{1}{K} \sum_{n=1}^K (M(t)_{\text{exp}} - \bar{M}(t)_{\text{network}})^2 \right]^{1/2} \quad (12)$$

where $M(t)_{\text{exp}}$ is the experimental moisture content of material at time t , $\bar{M}(t)_{\text{network}}$ is the predicted moisture content, and K is the number of the experimental data.

The effects of relative humidity and banana foam density as well as their interactions on the values of moisture diffusion coefficient were examined by the univariate full factorial analysis of variance (ANOVA). Duncan's multiple range test was used to indicate the difference of means at a confidence level of 95%. The results from the statistical analysis shows that the relative humidity did not affect the moisture diffusion coefficient, but the banana foam density significantly affect the diffusion coefficient.

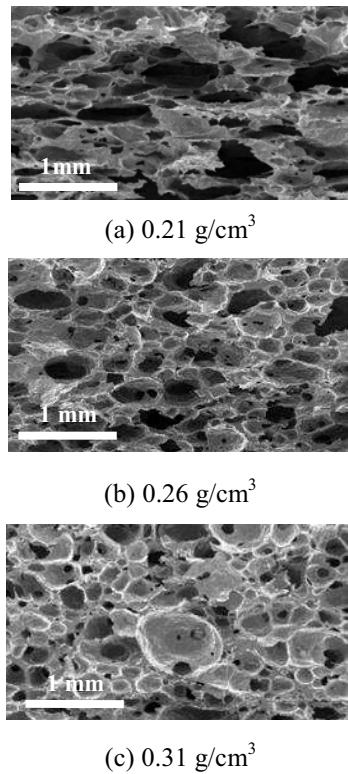


Fig. 3. SEM micrographs of dried banana foam mats at different foam densities

The later result is rather interesting that even though the pore size distribution was included into the network model, the diffusion coefficient still varied amongst foam densities. The strong influence of banana foam density on the diffusivity may be caused by the different morphologies amongst banana foam densities. As shown in Fig. 3, shape of pores for the dried banana foam at density of 0.31 and 0.26 g/cm³ is rather circle. However, when the

foam density was lower particularly at 0.21 g/cm³, pore shape was elongate. Different pore shapes may affect the transport property. This is because the difference of pore shapes can result in the different arrangements of solid matrix in the porous material and provides further the different length scales of travelling path of fluid and the resulting mass transport property (Segular and Toledo, 2005; Stewart et al., 2006). Stewart et al. (2006) theoretically studied the pore geometry effect on intrinsic hydraulic permeability of porous material using lattice-Boltzmann method and found that porous material, with the same porosity but different pore geometries, provided different values of hydraulic permeability.

Fig. 3 shows typical scanning electron micrographs of cross-sectional views of three banana foam densities, 0.21, 0.26 and 0.31 g/cm³. The pore shape was rather more circular at the foam density of 0.31 g/cm³ than at the other two foam densities, which exhibited more elliptical. The higher gas bubbles were produced at lower foam density and these bubbles were presented near together which can then be coalesced simply. The large gas bubble size is thus not quite stable and collapse easily. In addition, its shape can be changed, due to the stress formation during drying.

Adsorption kinetics and validation

Fig. 4 shows the moisture adsorption kinetics at temperature of 35°C and 67% RH for the banana foam densities of 0.21, 0.26 and 0.31 g/cm³. The adsorption rate was high at the beginning of adsorption, and gradually decreased as the moisture content increased.

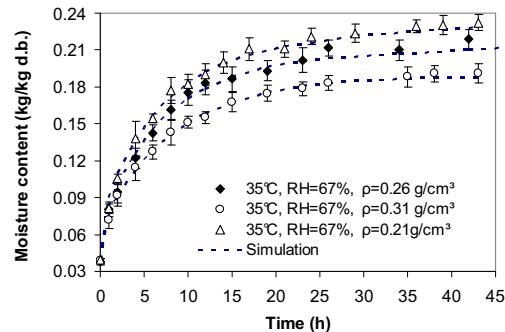


Fig. 4. Moisture adsorption kinetics at 35°C and relative humidity of 67% for banana foam densities of 0.21, 0.26 and 0.31 g/cm³

The rate of moisture adsorption was highest for the foam density of 0.21 g/cm³ and became slower with the higher banana foam density. The low adsorption rate for the high banana foam density can be attributed to the low porosity. When the moisture content of product was changed with the exposure time or in the equilibrium with the exposed condition, the moisture content at the equilibrium were not identical amongst the banana foam densities, presenting the strong influence of porous

structure on the equilibrium moisture content. As shown in Fig. 4, the lower equilibrium moisture content was observed at the higher banana foam density, which corresponded to the lower porosity. The moisture diffusion coefficients shown in Table 1 were used to calculate the moisture content of banana foams and found that the stochastic pore network can predict the moisture content in agreement with the experiments.

Porous structure design

From the results in the previous section, it indicated that the porosity or the porous structure play an important role in moisture migration in food. If the pore assembly taking from the different pore size distributions was arranged onto the 2-D network in order to produce the two-layer network, it is interesting to see how such a porous structure affected the adsorption rate. To achieve this, we proposed two types of two-layer network, small pore assembly or large pore assembly at the upper layer network. For the lower layer, the pore assembly was assigned from a particular pore size distribution, and the pore size distribution from the dried banana foam density of 0.26 g/cm^3 was chosen because the texture at this density was rather crispy and not very hard, which was suitable for the snack as reported by Thuwapanichayanan et al. (2008). For the upper layer, the pores were assigned from the pore size distributions at foam densities of 0.21 and 0.31 g/cm^3 . The pore size distribution from the foam density of 0.31 g/cm^3 was allocated randomly onto the upper half layer of the pore network with a size of 23×264 , and this porous structure appeared the dense layer at the upper part of pore network as illustrated in Fig. 7b. On the other hand, if pores at the upper half layer of the pore network were allocated with the distributive size from the density of 0.21 g/cm^3 , the structure exhibited very porous at the outer network as depicted in Fig. 7c.

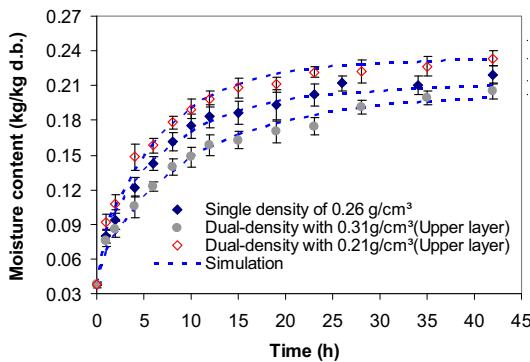


Fig. 5. Moisture adsorption kinetics at 35°C and relative humidity of 67% of the single and dual-density of the banana foams and its simulation curve

Fig. 5 shows the simulation results of moisture uptake of banana foam samples exposed to the static air at temperature of 35°C and 67% RH. The

moisture diffusion coefficients from Table 1 were used for calculating the moisture uptake in the two-layer networks. The slowest adsorption rate was evident in the two-layer network of which the pore sizes obtained from the foam density of 0.31 g/cm^3 was laid at the upper half. On the other hand, the fastest adsorption rate was found in the case that the pore sizes from the foam density of 0.21 g/cm^3 was laid on the upper half layer.

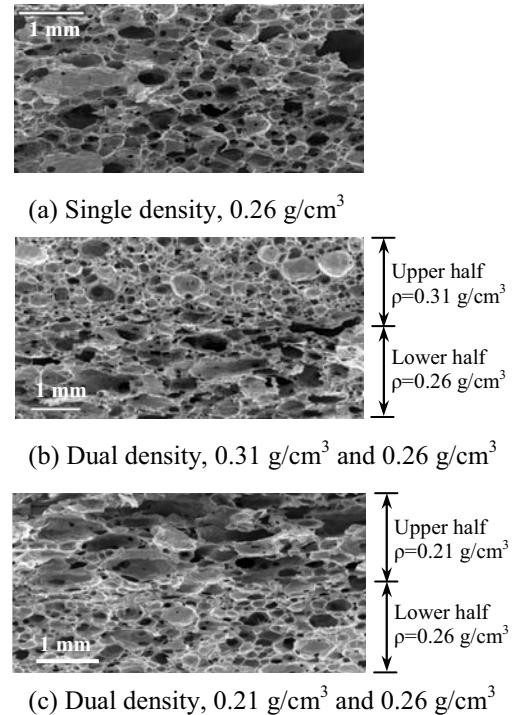


Fig. 6. SEM micrographs of single and dual-density of dried banana foam mats

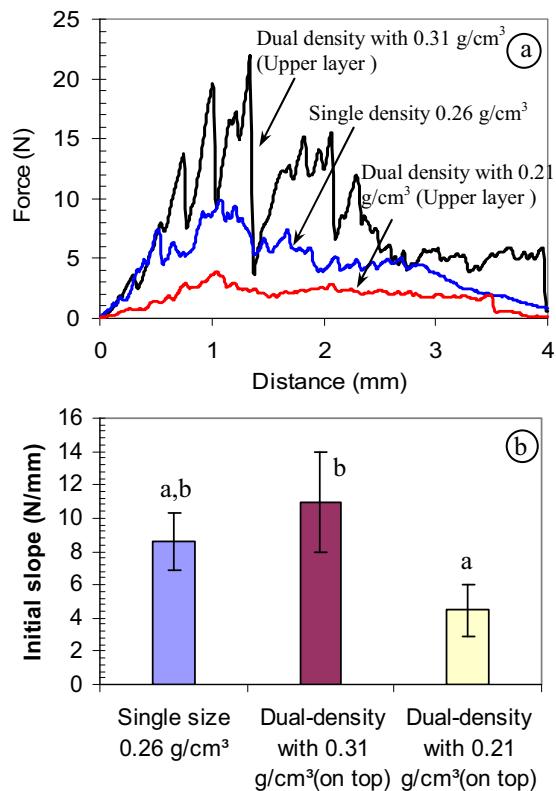
To validate the simulation results, the two layer banana foams were produced and their morphologies are shown in Figs. 6b and 6c, showing low porosity and high porosity at the upper layer respectively. From the experiments, it indicated that the 2-D stochastic pore network can predict the moisture uptake throughout the exposure time in agreement with experiments, with the R^2 -value of 0.95. The results from both simulation and experiments revealed that as the small pore assembly was positioned near the surface which is exposed to the humid air, it can limit the water vapor diffusing into the porous material, thus delaying the moisture uptake in the porous food. On the other, when small pore assembly in a porous food is covered with layers of porous material with large pores, such a porous structure provides less diffusional flux resistance and thus greatly facilitates the moisture transport to the porous foods. As shown in Fig. 5, the moisture uptake of the two-layer banana foam in the case of foam density of 0.21 g/cm^3 laid on the upper layer was faster than that in the single foam density of 0.26 g/cm^3 .

g/cm^3 and this porous structure is not preferred for the crispy food, which is sensitive to moisture.

Graphical visualization

The visualization using colour represented the moisture content helped understanding of the interactions between moisture and pore structure. For calculating the moisture content, we used a large network size with 23×264 . However, middle part of the large network was selected to represent the moisture movement in the idealised porous food and the visualization is shown in Fig. 7.

Fig. 7. Visualization of moisture contents in pores of banana foam mats at 3h of adsorption time


Each pore was colored according to its moisture content. The representative colours with 8 shades from dark red to blue were used for the

corresponding range of moisture from 0.038 to 0.210 $\text{kg}/\text{kg d.b.}$ At the beginning of adsorption, every pore within the network contained the moisture content of 0.038 $\text{kg}/\text{kg d.b.}$ When the moisture migrated to the porous food, the concentration of moisture diffusing through pores positioned at the same horizontal plane was different, implying the different fluxes of moisture into pores due to the random assembly of pore sizes.

The moisture diffusing through the pores positioned at the same horizontal plane in Fig. 7a was different. When moisture migration to the network, moisture diffusing through the pores positioned at the same horizontal plane was different, reflecting the random assembly of pore sizes. With the two-layer networks, transport of moisture through pores was noticeably different from the single layer network. The moisture is difficult to reach the pores allocated at the lower part of network as shown in Fig. 7b, pores at the bottom half network coloured by dark brown corresponding to the moisture contents of 0.04-0.06 $\text{kg}/\text{kg d.b.}$ On the other hand, it can arrive easily as the large pore assembly was dominant at upper part: moisture content in the pores at the lower part as shown in Fig. 7c was given in the range of 0.06-0.13 $\text{kg}/\text{kg d.b.}$

Texture of dried banana foams

From Fig. 8a shows the curves of the force versus displacement recorded by texture analyzer of single and dual foam density. The direct force was applied until the sample has completely cracked. The jagged pattern of the force-deformation curve reflects the crispy behavior of the banana foam mats.

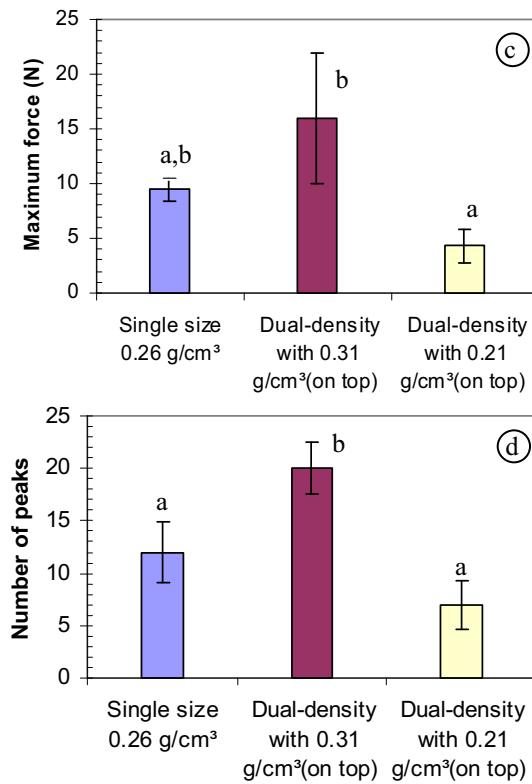


Fig. 8. Variation in force-deformation curve during compression test (a) and the textural parameters (b-d) at initial moisture content of dried banana foams (0.038 kg/kg d.b.)

As shown in Fig. 8a, the force curves were different for the banana foam samples, presenting the strong effect of porous structure on textural property. The initial slope, maximum forces and number of peaks of single foam density and dual density were significantly different.

The dual density with high density of 0.31 g/cm³ laid on the upper layer was crispier than the single density of banana foam as indicated by the number of peaks which showed higher than 20 for the dual density while it was 12 for the single density. In contrast, it is not crispy for the dual density with density of 0.21 g/cm³ laid on the upper layer.

CONCLUSIONS

- The 2-D pore networks comprised of the cylindrical pore segments have been developed to determine the diffusion coefficient of moisture in pore and found that the diffusion coefficient determined from the moisture adsorption kinetics did not vary with the relative humidity but varied with the banana foam density, due to different pore shapes at the dried banana foam densities.
- The transport of moisture, from the humid air, through the 2-D stochastic pore network is highly complex. The diffusion rate of moisture moving

through the individual pores within network was very different, indicating that the inherently random assembly of pores with different sizes governs the moisture migration. Such complex can be demonstrated through the visualization with the color code.

- The stochastic pore network can be applied successfully to design the porous structure and is able to predict the results in agreement with the experiment.
- The characteristic of porous structure was important to textural property of food besides the moisture migration. The two-layer porous structure of banana foam mats with the high foam density having most small pores laid on the upper layer of sample could resist the moisture adsorption and provided the crispy texture. On the other hand, the low crispness and rapid moisture migration was found in the banana foam mat with the low foam density characterizing most large pores laid on the upper layer of sample.

ACKNOWLEDGEMENTS

The authors would like to express their appreciation to the Commission on Higher Education, Thailand for supporting by grant fund under the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree for this research. This work was also supported in part by the National Science and Technology Development Agency and King Mongkut's University of Technology Thonburi.

REFERENCES

AOAC. Official Methods of Analysis, 16th ed. (1995), Association of Official Agricultural Chemists, Washington, DC.

Blunt, M. (2001), Flow in porous media-pore-network models and multiphase flow. Current Opinion in Colloid & Interface Science, Vol.6, pp. 197-207.

Bustos, C.I., and Toledo, P.G. (2004), Pore shape effects on the relative permeability of gas and condensate in three-dimensional pore networks. Transport in Porous Media, Vol. 55, pp. 247-251.

Cauvain, S. and Young, L. (2000), Bakery food manufacture and quality: Water control and effects, Blackwell Science, Oxford, UK.

Intel® Software Network. Available (2009) at: <http://software.intel.com/en-us/articles/intel-c-compiler-professional-edition-for-windows-evaluation/>

Pillai, K.M., Part, M. and Marcoux, M. (2009), A study on slow evaporation of liquids in a dual-porosity porous medium using square network

model, Internationnal Journal of Heat and Mass Transfer, Vol. 52, pp. 1643-1656.

Prat, M. and Bray, Y., Le. (1999), Three dimensional pore network simulation of drying in capillary porous media. Internationnal Journal of Heat and Mass Transfer, Vol. 42, pp. 4207-4224.

Prakotmak, P., Soponronnarit, S. and Prachayawarakorn, S. (2010), Modelling of moisture diffusion in pores of banana foam mat using a 2-D stochastic pore network: Determination of moisture diffusion coefficient during adsorption process, Journal of Food Engineering, Vol. 96, pp. 119-126.

Saravacos, G.D. and Maroulis, Z.B. (2001), Transport properties of foods, Marcel Dekker, New York.

Segura, L. A., and Toledo, P. G. (2005), Pore-level modeling of isothermal drying of pore networks: Effects of gravity and pore shape and size distributions on saturation and transport parameters, Chemical Engineering Journal, Vol. 111, pp. 237-252.

Stewart, M.L., Ward, A.L. and Rector, D.R. (2006), A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method. Advances in Water Resources, Vol. 29, pp. 1328-1340.

Thuwapanichayanan, R., Prachayawarakorn, S. and Sopornronnarit, S. (2008), Modeling of diffusion with shrinkage and quality investigation of banana foam mat drying, Drying Technology, Vol. 26, pp. 1326-1333.

Yiotis, A.G., Stubos, A. K., Boudouvis, A. G., Tsimapanogiannis, I. N. and Yortsos, Y. C. (2005), Pore-network modeling of isothermal drying in porous media. Transport in Porous Media, Vol. 58, pp. 63-86.

การหาสภาวะที่เหมาะสมของการพัฟฟิ่งกล้วยด้วยไอน้ำร้อนยอดยิ่ง

Optimization of the superheated steam puffing of banana

คำพัน บัวลaphanh¹⁾ สมเกียรติ ปรัชญาภารก²⁾ สมชาติ โสภณรรณฤทธิ³⁾ วรุณี เตีย⁴⁾

Khamphanh Boualaphanh¹⁾ Somkiat Prachayawarakorn²⁾ Somchart Soponronnarit³⁾ Warunee Tia⁴⁾

Abstract

The purpose of this research was to investigate the effects of superheated steam temperature and puffing time and moisture content of banana before puffing on physical properties of banana slice i.e. shrinkage, texture and color. The banana was dried with three drying steps, hot air drying at a temperature of 90°C and a velocity of 2 m/s in order to reduce moisture contents to the range of 20-30% d.b. followed by puffing it with superheated steam at temperatures of 160, 170 and 180°C and puffing time of 1, 2 and 3 minutes. After puffing step the samples were dried by hot air at the same conditions at the first step until its final moisture content reduced to 3% d.b. The results showed that the high puffing temperature and long puffing time caused high values of redness (a) and low values of both lightness (L) and yellowness (b). In addition, high puffing temperature resulted in low shrinkage, low hardness and high crispiness. The optimal puffing conditions were at the superheated steam temperatures of 180°C, puffing time of 1.4 min and moisture content of banana before puffing 26.16. %d.b.

Keyword: Banana/ Color/ Puffing/ Shrinkage / Superheated steam/ Texture

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาปัจจัยของอุณหภูมิของไอน้ำร้อนยอดยิ่ง เวลาในการพัฟฟิ่ง(puffing) และ ความชื้นของกล้วยก่อนการพัฟฟิ่ง ที่มีผลต่อคุณสมบัติทางกายภาพของกล้วยแผ่นในด้านต่าง ๆ ได้แก่ การหดตัว เนื้อสัมผัส (ความแข็ง และความกรอบ) และ สี โดยใช้เทคนิคการอบแห้งด้วยลมร้อนร่วมกับการพัฟฟิ่งด้วยไอน้ำร้อนยอดยิ่ง ซึ่งแบ่งออกเป็น 3 ขั้นตอน ได้แก่ ในขั้นตอนแรกทำการอบแห้งด้วยลมร้อนที่อุณหภูมิ 90°C ความเร็วลม 2 m/s เพื่อลดความชื้นของกล้วยให้เหลือระหว่าง 20-30% d.b. ตามด้วยการพัฟฟิ่งด้วยไอน้ำร้อนยอดยิ่งที่อุณหภูมิ 160, 170 และ 180°C เป็นเวลา 1, 2 และ 3 นาที และในขั้นสุดท้ายนำไปอบแห้งด้วยลมร้อนที่สภาวะเดียวกันกับในขั้นตอนแรกให้เหลือความชื้นสุดท้ายประมาณ 3 % d.b. จากผลการทดลองพบว่าเมื่อใช้อุณหภูมิของไอน้ำร้อนยอดยิ่งสูงขึ้นและเวลาในการพัฟฟิ่งมากขึ้น ผลิตภัณฑ์กล้วยแผ่นที่ได้มีค่าความเป็นสีแดง (ค่า a) เพิ่มขึ้น ค่าความสว่าง (ค่า L) และ ค่าความเป็นสีเหลือง (b) ลดลง การพัฟฟิ่งด้วยไอน้ำร้อนยอดยิ่งที่อุณหภูมิสูง ทำให้ผลิตภัณฑ์ที่ได้มีการหดตัวน้อย มีค่าความแข็งต่ำ มีความกรอบมาก สภาวะที่เหมาะสมของการพัฟฟิ่งของกล้วยอยู่ที่อุณหภูมิของไอน้ำร้อนยอดยิ่งเท่ากับ 180°C เวลาที่ใช้ในการพัฟฟิ่งเท่ากับ 1.4 นาที และ ความชื้นของกล้วยก่อนการพัฟฟิ่งเท่ากับ 26.16 %d.b.

คำสำคัญ: กล้วย/ การพัฟฟิ่ง/ การหดตัว/ เนื้อสัมผัส/ สี/ ไอน้ำร้อนยอดยิ่ง

1)Graduated student,

2) Associate Professor, Faculty of Engineering,

3) Professor, School of Energy and Materials,

4) Associate Professor, School of Energy and Materials,

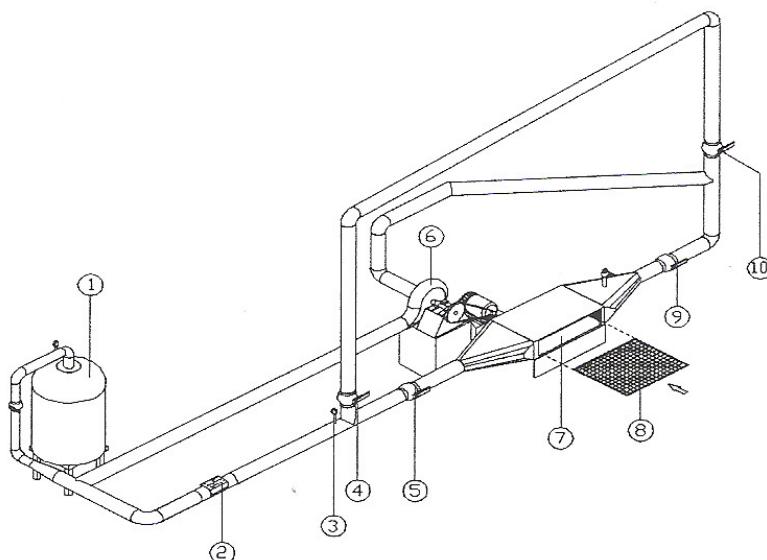
King Mongku's University of Technology Thonburi, 126 Pracha-Uthid, Tungkru, Bangkok 10140

*Corresponding author. Tel.:0-0-2470-8695 ext.112; E-mail address: khamphans@hotmail.com

บทนำ

กล้วยเป็นผลไม้ที่นิยมบริโภคในรูปของผลสด โดยเฉพาะกล้วยหอม แต่เนื่องจากกล้วยเป็นผลไม้ที่เน่าเสียได้ง่าย จึงนิยมนำมาเปรรูปเป็นผลิตภัณฑ์ในรูปแบบต่างๆ เช่น กล้วยอบ กล้วยตาก กล้วยຈານ กล้วยแผ่น เป็นต้น การแปรรูปมีความสำคัญยิ่งต่อการรักษาคุณภาพ ลดความสูญเสีย ยืดเวลาการเก็บ ผลิตภัณฑ์ให้ได้นานขึ้น และทำให้ผลิตภัณฑ์หลังการแปรรูปมี น้ำส่วนมากขึ้นด้วยผลิตภัณฑ์กล้วยแผ่นที่มีข่ายตามห้องตลาด ส่วนใหญ่ทำการแปรรูปโดยการหดในน้ำมัน ผลิตภัณฑ์ที่ได้มัก จะมีสีเข้ม สีไม่สม่ำเสมอ เมื่อเก็บไว้นานกล้วยแผ่นจะเกิดกลิ่น หืนเนื่องจากปฏิกิริยาออกซิเดชันของไขมันกับออกซิเจน ในปัจจุบันผลิตภัณฑ์อาหารว่างที่มีปริมาณไขมันสูงอาจไม่เป็นที่ ต้องการของผู้บริโภคที่ใส่ใจในสุขภาพ เพราะไขมันก่อให้เกิด โรคหัวใจ ความดันโลหิตสูงและโรคอ้วน ผลิตภัณฑ์กล้วยแผ่น ที่มีข่ายตามห้องตลาดส่วนมากจะผลิตโดยการหดในน้ำมันที่ใช้ อุณหภูมิประมาณ 177 ถึง 200°C ผลิตภัณฑ์ที่ได้มักจะมีสีน้ำตาล เข้มและมีปริมาณไขมันสูง ในการผลิตอาหารว่างประเภทขนม ขันเคี้ยวที่มีลักษณะพองกรอบ นั้นจะเกี่ยวข้องกับปริมาณความ ชื้น อุณหภูมิของตัวกล่อง และเวลาที่ใช้ในกระบวนการ เช่น การทำข้าวเกรียบ โดยความชื้นที่เหมาะสมของข้าวเกรียบคือ 12% เมื่อหดในน้ำมันร้อนที่อุณหภูมิ 180 °C โดยใช้เวลาสั้น มากจะได้ผลิตภัณฑ์ข้าวเกรียบที่มีรูพรุนสม่ำเสมอ ความหนา แน่นต่ำ ถ้าหดในน้ำที่อุณหภูมิต่ำข้าวเกรียบจะไม่พอง เพราะ อุณหภูมิไม่สูงพอที่จะให้น้ำภายในเป็นไอ ได้อ讶งรวดเร็ว ขณะเดียวกันหากความชื้นของข้าวเกรียบคินสูงจะได้ผลิตภัณฑ์ ข้าวเกรียบที่มีรูพรุนใหญ่บ้างเล็กบ้าง ไม่สม่ำเสมอ ซึ่งเป็น ลักษณะของข้าวเกรียบคุณภาพดี (เพลินใจ ตั้งกณะกุล, 2546)

ดังนั้นในงานวิจัยนี้จึงมีวัตถุประสงค์เพื่อหาสภาวะที่เหมาะสม ในการผลิตกล้วยแผ่นให้เป็นผลิตภัณฑ์อาหารชนิดนี้ที่ไม่มี ไขมัน โดยจะทำการศึกษาถึงอิทธิพลของความชื้นของกล้วย แผ่นก่อนกระบวนการพัฟฟิ่ง อุณหภูมิของไอน้ำร้อนยอดยิ่ง และเวลาที่ใช้ ในกระบวนการพัฟฟิ่ง


อุปกรณ์และวิธีการทดลอง

อุปกรณ์การทดลอง

เครื่องอบแห้งด้วยลมร้อนและไอน้ำร้อนยอดยิ่งที่ใช้ใน การทดลอง ดังรูปที่ 1 ประกอบด้วยอุปกรณ์หลักคือ เครื่องกำเนิด ไอน้ำเพื่อผลิตไอน้ำ ความดันสูงกว่าบรรยากาศเล็กน้อย อุปกรณ์ ให้ความร้อน เพื่อให้ความร้อนกับอากาศและทำให้ไอน้ำอิ่มตัว กลายเป็นไอน้ำร้อนยอดยิ่ง ขนาด 13.5 kW โดยการควบคุมด้วย PID มีค่าความถูกต้อง $\pm 1^\circ\text{C}$ ห้องอบแห้ง ขนาด $30 \times 30 \times 10 \text{ cm}^3$ พัดลมเป็นแบบหวี่ยงในพัดโดยหลังอัตราการไหลของตัวกล่อง ที่ใช้ในการอบแห้งความคุณโดยการปรับความเร็วรอบของพัดลม และในระบบอบแห้งยังประกอบด้วยอุปกรณ์อื่น ๆ เช่น วาล์ว ควบคุมและมาตรวัดความดัน

การออกแบบการทดลอง และการหาสภาวะที่เหมาะสม

การทดลองของกล้วยแผ่นด้วยลมร้อนร่วมกับการ พัฟฟิ่งด้วยไอน้ำร้อนยอดยิ่ง โดยมี 3 ขั้นตอนคือ ในขั้นตอน แรกอบแห้งกล้วยแผ่นด้วยลมร้อนที่อุณหภูมิ 90°C โดยใช้ความ เร็วเฉลี่ยของอากาศเข้าห้องอบแห้งประมาณ 2 m/s บนกล้วยแผ่น ให้เหลือความชื้นประมาณ 20, 25 และ 30% d.b. ตามด้วยการ พัฟฟิ่งด้วยไอน้ำร้อนยอดยิ่งที่อุณหภูมิ $160, 170$ และ 180°C ที่เวลาพัฟฟิ่ง 1, 2 และ 3 นาที และในขั้นตอนสุดท้ายนำไปอบ

1. เครื่องกำเนิดไอน้ำ (Boiler)
2. อุปกรณ์ให้ความร้อน (Heater)
3. มาตรวัดความดัน (Pressure gauge)
- 4., 5., 9., 10. วาล์ว (Valve)
6. พัดลม (Blower)
7. ห้องอบแห้ง (Drying chamber)
8. คาดอบแห้ง

รูปที่ 1 ໄດอະແກນระบบอบแห้งด้วยลมร้อนและไอน้ำร้อนยอดยิ่ง

ตารางที่ 1 แสดงตัวแปรและระดับของตัวแปรที่ต้องการศึกษา

Independent Variable	Symbol		Levels	
	Uncoded	Coded	Uncoded	Coded
Steam Temperature (°C)	Temperature	x_1	160	1
			170	2
			180	3
Puffing time (min)	time	x_2	1	1
			2	2
			3	3
Moisture content (% d.b.)	Moisture	x_3	20	1
			25	2
			30	3

แห้งด้วยลมร้อนที่สภาวะเดียวกันกับในขันตอนแรก อบแห้ง กล้วยแผ่นให้เหลือความชื้นประมาณ 3%d.b. ในการออกแบบ การทดลองเป็นแบบ Full Factorial โดยมีการศึกษา 3 ตัวแปร 3 ระดับ จำนวนการทดลองทั้งหมด 27 การทดลอง ดังแสดงในตารางที่ 1

การอบแห้งกล้วยหอมแผ่น ด้วยลมร้อนร่วมกับการพัฟฟิ่ง ด้วยไอน้ำร้อนbatch ปัจจัยที่ต้องการศึกษาได้แก่ อุณหภูมิของไอน้ำร้อนbatch ความชื้นก่อนการพัฟฟิ่ง และเวลาพัฟฟิ่ง ที่มีผลต่อคุณภาพของกล้วยด้าน เนื้อสัมผัส (Hardness, Number of peaks และ Initial slope) การหดตัว (Shrinkage) และสี (L, a และ b) ของกล้วยแผ่น ในงานวิจัยนี้ ทำการหาสภาวะที่เหมาะสมด้วยวิธี Response Surface Methodology (RSM) การหาความสัมพันธ์ระหว่างตัวแปรกับผลตอบสนองในรูปสมการโพลีโนมียิกกำลังสอง โดยมีรูปแบบทั่วไปดังสมการ (1)

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^k \sum_{j=1}^k \beta_{ij} x_i x_j + \varepsilon \quad (1)$$

โดยตัวแปรที่ต้องการศึกษานี้ 3 ตัวคือ อุณหภูมิของไอน้ำร้อนbatch ยิ่ง (x_1) เวลาพัฟฟิ่ง (x_2) และความชื้นของกล้วยก่อนการพัฟฟิ่ง (x_3) จากสมการ (1) สามารถเขียนสมการ ได้ดังสมการ (2)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1^2 + \beta_5 x_2^2 + \beta_6 x_3^2 + \beta_7 x_1 x_2 + \beta_8 x_1 x_3 + \beta_9 x_2 x_3 \quad (2)$$

เมื่อ $\beta_0, \beta_1, \dots, \beta_9$ เป็นค่าคงที่

การวิเคราะห์ความแปรปรวน (ANOVA) ของสัมประสิทธิ์คงอยู่ในสมการที่ (2) โดยการพิจรณ์ข้อมูลที่ได้จาก การทดลอง เพื่อวิเคราะห์หนันย์สำคัญทางสถิติในแต่ละเทอม ของแบบจำลอง

สำหรับการหาสภาวะที่เหมาะสมของตอบสนอง

หลายค่า (Multiple response) จะใช้ฟังก์ชันความพึงพอใจ รวม (Desirability Function) (Myers & Montgomery, 2002) เพื่อ หาค่าที่เหมาะสมของปัจจัย ดังสมการที่ (3)

$$D = [d_1(y_1) \cdot d_2(y_2) \cdot \dots \cdot d_k(y_k)]^{\frac{1}{k}} \quad (3)$$

โดย k คือ จำนวนของผลตอบสนอง

$d_1(y_1), d_2(y_2)$ และ $d_k(y_k)$ คือ ความพึงพอใจของผลตอบสนอง y_1, y_2 และ y_k ตามลำดับ

การเตรียมตัวอย่าง

กล้วยหอมทองระยะสุกที่ 3 ซึ่งพิจารณาได้จากสีของเปลือกจากเขียวอ่อนเหลืองมากขึ้นแต่ยังมีสีเขียวมากกว่าสีเหลือง โดยความหวานของเนื้อกล้วยมีค่าประมาณ 14-18% Brix ขนาดเส้นผ่านศูนย์กลางประมาณ 25 mm ความชื้นเริ่มต้นของกล้วยแผ่นก่อน การพิรีทิมเนตเท่ากับ 250-300 %d.b. ปอกเปลือกและหั่นตามขวางด้วยเครื่องหั่น ความหนาของชิ้นตัวอย่างมีขนาด 35 mm ก่อนการทดลองทำการพิรีทิมเนตตัวอย่าง ด้วยสารละลายน้ำและสกอร์บิคความเข้มข้น 0.1% (w/w) นาน 1 นาที (Demirel และ Turhan, 2003) หลังจากนั้นนำตัวอย่างมาล้างด้วยน้ำกล่อมนาน 30 วินาที ซับน้ำให้แห้งแล้วทิ้งไว้ 5 นาที จากนั้นนำไปจัดเรียงบนตะแกรงก่อนเข้าเครื่องอบแห้ง

วิธีการทดลอง

ทำการอบแห้งกล้วยแผ่น ที่ผ่านการพิรีทิมเนตด้วยสารละลายน้ำและสกอร์บิคด้วยอากาศร้อนในขันตอนแรกที่อุณหภูมิ 90°C ให้เหลือความชื้นเท่ากับ 20, 25 และ 30 %d.b. แล้วทำให้พองตัว (puffing) ด้วยไอน้ำร้อนbatch ยิ่งที่อุณหภูมิ 160, 170 และ 180°C โดยใช้เวลา 1, 2 และ 3 นาที และในขันตอนสุดท้ายนำ

กลับไปอบแห้งด้วยลมร้อนที่สภาวะเดิมกับในตอนเริ่มต้นจนเหลือความชื้นสุดท้ายประมาณ 3% d.b. จากนั้นนำผลิตภัณฑ์กลับยกลับที่ได้ไปทดสอบคุณภาพในด้านสี การหดตัว และเนื้อสัมผัส

การทดสอบคุณภาพด้านสี

สีของกลับยกลับที่ทำการอบโดยใช้เครื่องวัดสีอาหาร HunterLab รุ่น ColorFlex โดยวัดค่าสีของกลับยกลับตามระบบ Hunter ซึ่งแสดงในเทอมของตัวแปร L, a และ b โดยค่า L แสดงค่าความสว่าง, a แสดงค่าสีแดงและสีเขียว, b แสดงค่าสีเหลืองและน้ำเงิน การทดสอบจะใช้กลับยกลับอบแห้ง 3 ตัวอย่างและวัดสีตัวอย่างละ 6 ครั้ง โดยก่อนจะวัดสีของกลับยกลับที่เครื่องวัดสีต้องถูกตั้งค่า ต้องทำการทดสอบเบรียบเทียบ (Calibrate) ด้วยแผ่นสีมาตรฐานที่มีลักษณะเป็นแผ่นสีคำและสีขาว

การทดสอบคุณภาพด้านการหดตัว

การทดสอบคุณภาพด้านการหดตัวของกลับยกลับที่ใช้วิธีแบบที่ปริมาตรกลับยกลับในของแข็งทึบก้อนและหลังการอบแห้งตัวอย่างละ 10 ชิ้น โดยของแข็งที่ใช้ทดสอบคือ Glass beads ซึ่งมีขนาดมีเส้นผ่านศูนย์กลาง 0.106-0.212 mm (Hwang และ Hayakawa, 1980) ร้อยละการหดตัวเทียบกับปริมาตรของกลับยกลับสามารถคำนวณได้จากสมการ (4)

$$\% Shrinkage = \frac{V_0 - V}{V_0} \times 100 \quad (4)$$

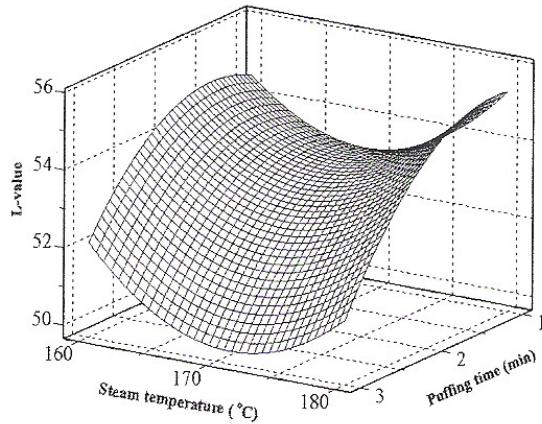
โดย V_0 คือ ปริมาตรของกลับยกลับ原始, cm^3

V คือ ปริมาตรของกลับยกลับหลังจากการอบแห้ง, cm^3

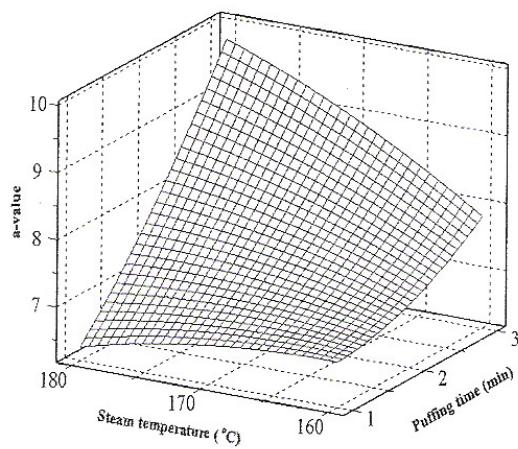
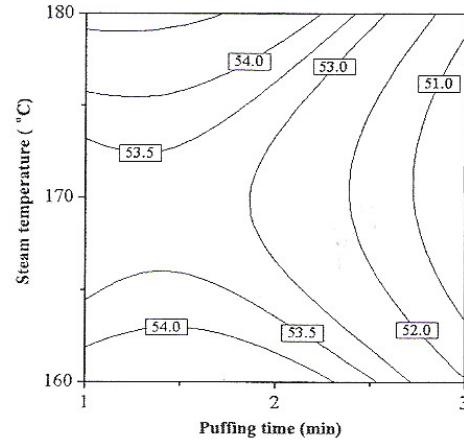
การทดสอบคุณภาพด้านเนื้อสัมผัส

การทดสอบคุณภาพด้านเนื้อสัมผัสของกลับยกลับหลังการอบแห้งโดยใช้เครื่อง Texture Analyzer รุ่น TA.XT.plus (Stable Microsystems Texture Technologies Inc.,UK) ค่าความถูกต้อง $\pm 0.001 \text{ N}$ โดยจะทำการทดสอบในลักษณะของแรงกดใช้หัวกดแบบตัด (Cutting probe) และความเร็วในการกด 2 mm/s กดจนกระหั่งตัวอย่างแยกออกจากกัน พิจารณาคุณภาพด้านเนื้อสัมผัสของกลับยกลับจากค่าความแข็ง (Hardness) จำนวนยอด (Number of peaks) ที่มีค่า Threshold force ตั้งแต่ 30 g ขึ้นไป และความชันเริ่มต้น (Initial slope)

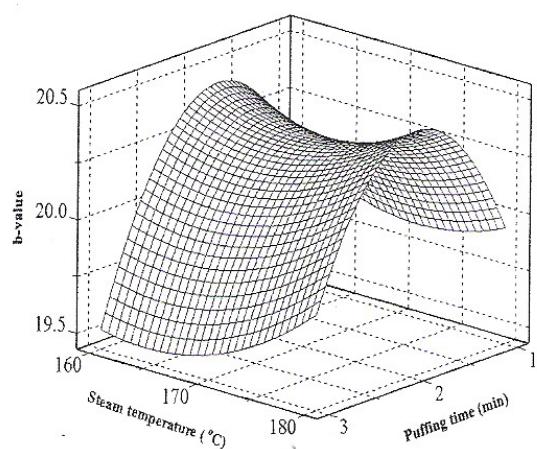
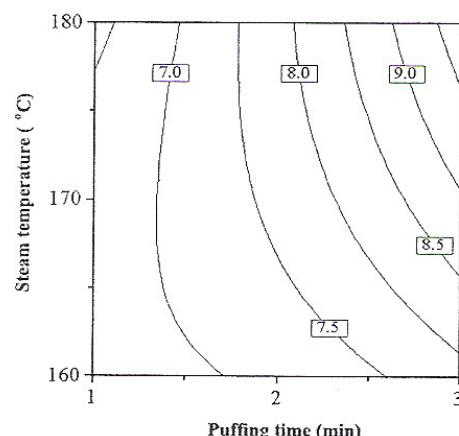
ผลการทดลองและวิเคราะห์


การวิเคราะห์ความแปรปรวนของปัจจัยที่ต้องการศึกษาคือ อุณหภูมิของไอน้ำร้อนบดยิ่ง เวลาพัฟฟิ่ง และความชื้นของกลับยกลับก่อนการพัฟฟิ่งต่อคุณภาพของกลับยกลับดังตารางที่ 2 โดยเป็นผลการวิเคราะห์การลดด้อยของแบบจำลองพบว่าเวลาพัฟฟิ่งมีอิทธิพลต่อคุณภาพด้านสี (ค่า L, a, b) มากที่สุด โดย

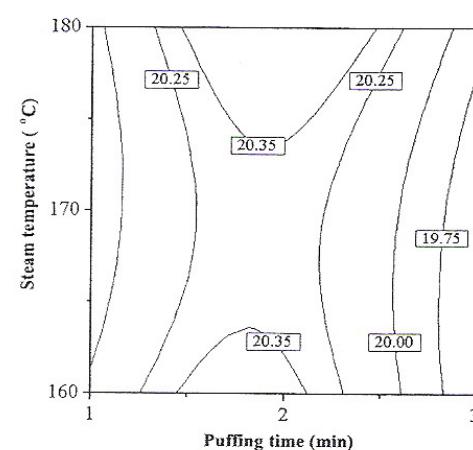
ตารางที่ 3 ค่าคงที่ต่าง ๆ ของสมการที่ (2) ซึ่งได้จากการวิเคราะห์การลดด้อยสำหรับคุณภาพด้านต่าง ๆ



Coefficient	Texture			shrinkage	Color		
	Hardness	Number of Peaks	Initial slope		L-value	a-value	b-value
Intercept							
β_0	4208.59*	-1027.46*	-774.44*	1834.90*	517.61*	-17.368*	57.799*
Linear							
β_1	-52.166*	13.478*	10.458*	-17.981*	-5.72	0.431	-0.467
β_2	92.081	9.083	-38.625	-12.698*	3.648*	-6.614*	-0.206
β_3	17.614	-10.211	-6.293	-16.933*	1.893*	-0.714	0.206
Quadratic							
β_4	0.166*	-0.046	-0.035	0.049*	0.017	-0.0014	0.0014
β_5	-1.718	-4.278	-3.888	4.007	-1.209	0.212	-0.611*
β_6	0.208	-0.131	-0.037	0.261*	-0.049	0.0244	-0.0014
Interaction							
β_7	-0.468*	0.058	0.304	-0.139	-0.039	0.060*	0.011
β_8	-0.165*	0.100*	0.048	0.023	-0.0016	-0.0016	-0.0013
β_9	-0.211	-0.1	0.075	0.541	0.249	-0.135*	0.025
R^2	0.8	0.59	0.53	0.87	0.6	0.69	0.52

* Significant at 95% level



อิทธิพลที่มีต่อค่า L นั้น คือ เวลาพัฟฟิ่งและความชื้นก่อนการพัฟฟิ่ง สำหรับอิทธิพลที่มีต่อค่า a มากที่สุดคือเวลาพัฟฟิ่ง โดยเฉพาะผลกระทบของเวลาพัฟฟิ่งกับอุณหภูมิของไอน้ำร้อนยอดยิ่ง (ในเทอมของ Interaction) จะมีอิทธิพลต่อค่า a มาก สำหรับอิทธิพลของปัจจัยต่อค่า b ไม่ค่อนข้างนัก จากการทดสอบจะได้รู้ว่าค่าสัมประสิทธิ์การตัดสินใจ (R^2) ของสมการลดด้วยคุณภาพ

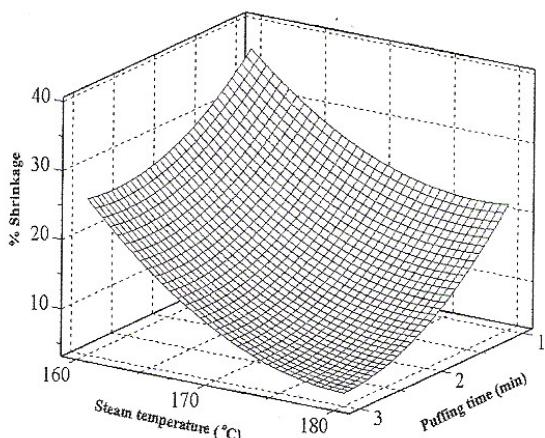
(ก) การเปลี่ยนแปลงค่า L ของกลั่ว yay แผ่น



(ข) การเปลี่ยนแปลงค่า a ของกลั่ว yay แผ่น

(ค) การเปลี่ยนแปลงค่า b ของกลั่ว yay แผ่น

ของกลั่ว yay แผ่นด้านความแข็ง และการหดตัวเท่ากับ 0.80 และ 0.87 ตามลำดับ ซึ่งทำให้สามารถใช้สมการที่ได้ไปพิพากษาคุณภาพของกลั่ว yay แผ่นที่สภาวะต่าง ๆ ได้อย่างมีประสิทธิภาพ แต่สำหรับสมการลดด้วยคุณภาพของกลั่ว yay แผ่น ด้านอื่น ๆ ค่าสัมประสิทธิ์การตัดสินใจก่อนข้างต่ำ ซึ่งอาจจะทำให้มีความคลาดเคลื่อนอยู่บ้างเมื่อนำไปใช้


รูปที่ 2 ผลของอุณหภูมิและเวลาพัฟฟิ่งต่อการเปลี่ยนสีของกลั่ว yay แผ่น (ความชื้นของกลั่ว yay แผ่นก่อนการพัฟฟิ่ง 25% d.b.)

คุณภาพด้านสีของกล้วยแห่น

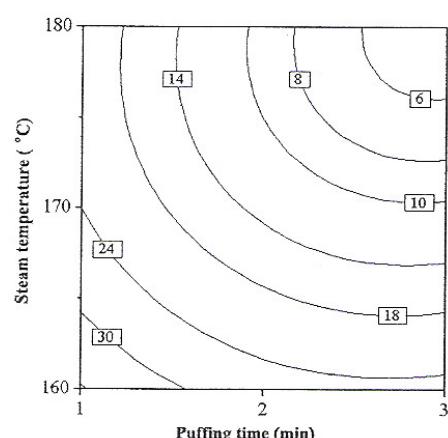
จากการทดลองพบว่า การเปลี่ยนสีของกล้วยแห่นที่ได้หลังการอบแห้งด้วยลมร้อนอย่างเดียว และการอบแห้งด้วยลมร้อนร่วมกับการพัฟฟิงด้วยไอน้ำร้อนขนาดอิ่งมีศีริโดยรวมเป็นสีเหลืองปนน้ำตาล โดยบริเวณรอบจุดศูนย์กลางของกล้วยแห่นจะมีสีน้ำตาลเข้มมากที่สุด เมื่อจากมีปริมาณน้ำตาลมากกว่าบริเวณอื่น ๆ โดยผลของอุณหภูมิเวลาพัฟฟิงและความชื้นของกล้วยแห่นก่อนการพัฟฟิงต่อการเปลี่ยนแปลงสีของกล้วยแห่นในเทอมของ L, a และ b ดังแสดงในรูปที่ 2 ซึ่งจะประกอบด้วย surface plot และ contour plot

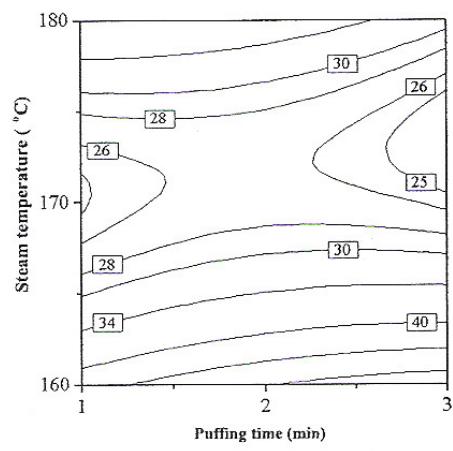
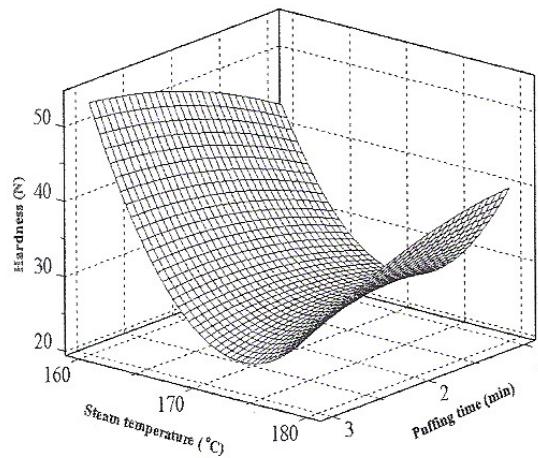
รูปที่ 2 (ก) แสดงผลของอุณหภูมิของไอน้ำร้อนขนาดอิ่งและเวลาพัฟฟิงต่อการเปลี่ยนแปลงสีของกล้วยแห่น พบว่าเวลาพัฟฟิงมีอิทธิพลต่อความสร้าง (ค่า L) มากกว่าอิทธิพลของอุณหภูมิไอน้ำร้อนขนาดอิ่ง เมื่อเวลาพัฟฟิงมากขึ้นค่า L ลดลง เมื่อจากที่เวลาพัฟฟิงนานขึ้นทำให้เกิดปฏิกิริยาสีน้ำตาลเพิ่มขึ้น สำหรับอิทธิพลของอุณหภูมิไอน้ำร้อนขนาดอิ่งนั้นพบว่า การเพิ่มอุณหภูมิในช่วงระหว่าง 160-170°C ค่า L มีค่าลดลงหลังจากนั้นค่า L มีแนวโน้มเพิ่มขึ้น ทั้งนี้เนื่องจากที่อุณหภูมิพัฟฟิงต่ำนี้หลังสิ้นสุดกระบวนการพัฟฟิงความชื้นของกล้วยแห่นยังเหลืออยู่มากทำให้การอบแห้งในขั้นตอนที่ 3 นั้นใช้ระยะเวลานานขึ้น

รูปที่ 2 (ข) แสดงอิทธิพลของอุณหภูมิไอน้ำร้อนขนาดอิ่งและเวลาพัฟฟิงต่อการเปลี่ยนแปลงค่า a ของกล้วยแห่น พบว่า เมื่อเวลาพัฟฟิงนานและอุณหภูมิพัฟฟิงสูงขึ้น ค่าของ a ซึ่งแสดงความเป็นสีแดงมีค่าสูงขึ้น จากรูปจะเห็นว่า ที่เวลาพัฟฟิง 3 นาที เมื่ออุณหภูมิของการพัฟฟิงสูงขึ้น การเปลี่ยนแปลงของ a จะเป็นไปอย่างรวดเร็ว แต่ผลของอุณหภูมิอาจไม่เด่นชัดนัก เมื่อเวลาในการพัฟฟิงสั้น (1 นาที) จากรูปค่า a มีค่าต่ำสุดเท่ากับ 6.12 ± 0.7 ที่อุณหภูมิของไอน้ำร้อนขนาดอิ่ง 180°C และเวลาใน

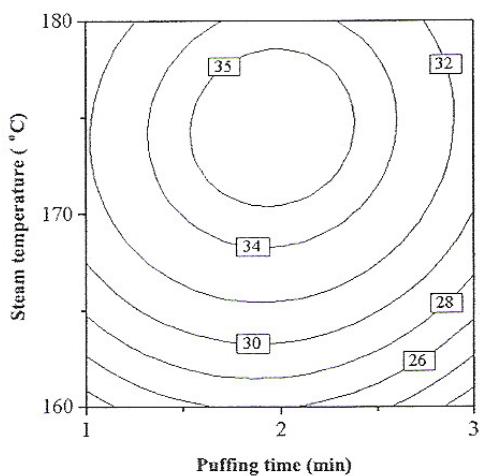
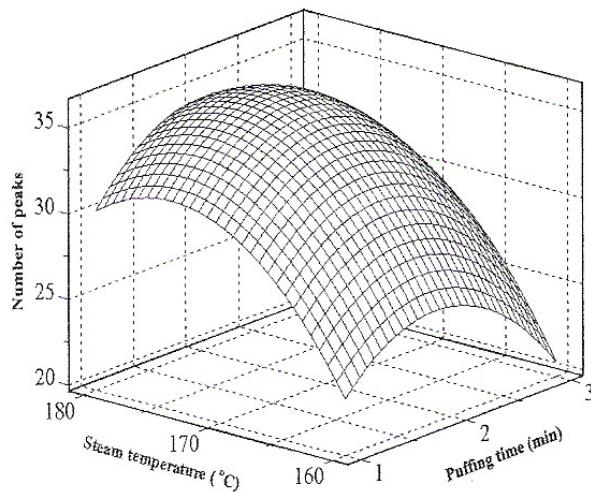
รูปที่ 3 ผลของอุณหภูมิและเวลาพัฟฟิงต่อการลดตัวของกล้วยแห่น (ความชื้นของกล้วยแห่นก่อนการพัฟฟิง 25% d.b.)

การพัฟฟิง 1 นาที

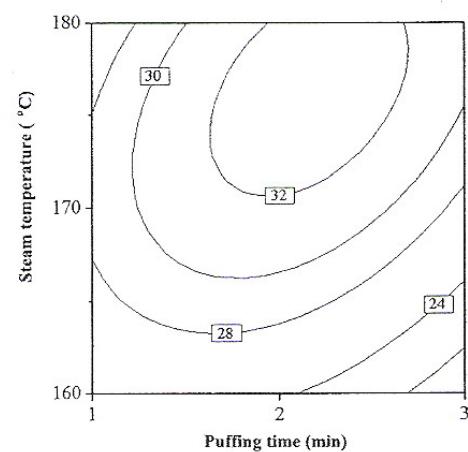

รูปที่ 2 (ค) แสดงอิทธิพลของอุณหภูมิไอน้ำร้อนขนาดอิ่งและเวลาพัฟฟิงต่อการเปลี่ยนแปลงค่า a ของกล้วยแห่น พบว่าเวลาพัฟฟิงจะมีอิทธิพลต่อค่า a มากกว่าอิทธิพลของอุณหภูมิไอน้ำร้อนขนาดอิ่ง แต่อย่างไรก็ตามช่วงของค่า a ที่เปลี่ยนแปลงจะแคบมากโดยค่า a อยู่ระหว่าง 19.25 และ 20.29 ตลอดเงื่อนไขการทดลอง



การลดตัวของกล้วยแห่น

รูปที่ 3 แสดงอิทธิพลของเวลาพัฟฟิงและอุณหภูมิของไอน้ำร้อนขนาดอิ่งต่อร้อยละการลดตัวของกล้วยแห่น พบว่า เมื่ออุณหภูมิของไอน้ำร้อนขนาดอิ่ง และเวลาพัฟฟิงนานขึ้น ส่งผลให้ร้อยละการลดตัวของกล้วยแห่นน้อยลง เมื่อจากที่อุณหภูมิสูงและเวลาพัฟฟิงนานขึ้นนี้จะทำให้น้ำในกล้วยแห่นเดือดกลายเป็นไออกย่างรวดเร็ว เกิดความดันไออกขึ้นภายในกล้วยแห่น โครงสร้างมีการพองตัวขึ้น ในการพัฟฟิงที่อุณหภูมิสูง และเวลาพัฟฟิงนานนี้ ความชื้นของกล้วยแห่นหลังกระบวนการพัฟฟิงจะเหลืออยู่น้อยมากทำให้โครงสร้างมีเสถียรภาพมากขึ้นเมื่อนำไปอบแห้งในขั้นตอนสุดท้าย โครงสร้างจะไม่มีการยุบตัวอีกทำให้ร้อยละการลดตัวมีน้อย



คุณภาพด้านเนื้อสัมผัสของกล้วยแห่น

คุณภาพด้านเนื้อสัมผสของกล้วยแห่น จะพิจารณาจากค่าความแข็ง จำนวนยอด และ ความชื้นเริ่มต้น โดยที่จำนวนยอดและความชื้นเริ่มต้น แสดงถึงความกรอบของผลิตภัณฑ์ หากจำนวนยอดและความชื้นเริ่มต้นมาก ก็แสดงว่าผลิตภัณฑ์มีความกรอบมาก เนื่องจากยอดเกิดจากการเปลี่ยนแปลงความชื้นของกราฟความสัมพันธ์ระหว่างแรงกับระยะทาง ซึ่งการเปลี่ยนแปลงความชื้นเกิดจากผลิตภัณฑ์มีช่องว่างหรือโพรงอากาศภายใน




(ก) ผลของอุณหภูมิและเวลาพัฟฟิ่งต่อความแข็งของกลั่วญี่ปุ่น

(ข) ผลของอุณหภูมิและเวลาพัฟฟิ่งต่อจำนวนยอดของกลั่วญี่ปุ่น

(ค) ผลของอุณหภูมิและเวลาพัฟฟิ่งต่อความชันเริ่มต้นของกลั่วญี่ปุ่น

รูปที่ 4 ผลของอุณหภูมิ และเวลาพัฟฟิ่งต่อเนื้อสัมผัสของกลั่วญี่ปุ่น (ความชื้นของกลั่วญี่ปุ่นก่อนการพัฟฟิ่ง 25% d.b.)

ตารางที่ 4 ผลที่ได้จากการทำ optimization

	Hardness	Peaks	slope	Shrinkage	L-value	a-value	b-value
Optimal value	37.081	33.982	30.025	17.019	54.615	7.000	20.238
Individual Desirability (d _i)	0.996	0.999	1.000	0.999	0.9777	1.000	0.981
Composite Desirability (D)				0.994			

ในผลิตภัณฑ์ที่มีความกรอบมากจะมีจำนวนยอดมากและมีค่าความแข็งน้อย

รูปที่ 4 (ก) แสดงความสัมพันธ์ระหว่างอุณหภูมิของไอน้ำร้อนยอดยิ่งและเวลาพัฟฟิ่งต่อคุณภาพด้านความแข็ง โดยพิจารณาที่ความชื้นของกลั่ว yay แผ่นก่อนการพัฟฟิ่ง 25 %d.b. พบว่าอุณหภูมิของไอน้ำร้อนยอดยิ่งมีผลต่อความแข็งของกลั่ว yay แผ่นมากกว่าเวลาพัฟฟิ่งซึ่งสังเกตได้จากการชั้นของเส้นกราฟ โดยที่พัฟฟิ่งด้วยไอน้ำร้อนยอดยิ่งที่อุณหภูมิต่ำกลั่ว yay แผ่นจะมีความแข็งมาก เนื่องจากที่อุณหภูมิต่ำน้ำในวัสดุจะเดือดได้น้อย โครงสร้างเกิดการพองตัวได้น้อย ดังนั้นหลังกระบวนการพัฟฟิ่งกลั่ว yay แผ่นเมื่อนำมาอบแห้งต่อทำให้ โครงสร้างที่ไม่มีเสถียรภาพจะบุบตัวลง (collapse) ซึ่งสอดคล้องกับข้อมูลของการทดสอบที่ได้กล่าวมาด้วย โดยการทดสอบมากทำให้โครงสร้างมีรูพรุนน้อย มีความหนาแน่นมาก ทำให้กลั่ว yay แผ่นมีความแข็งมาก

รูปที่ 4 (ข) และ (ก) แสดงความสัมพันธ์ระหว่างอุณหภูมิของไอน้ำร้อนยอดยิ่งและเวลาพัฟฟิ่งต่อจำนวนยอด และความชั้นเริ่มต้นของกลั่ว yay แผ่นที่ความชื้นของกลั่ว yay แผ่นก่อนการพัฟฟิ่ง 25 %d.b. พบว่า อุณหภูมิไอน้ำร้อนยอดยิ่งมีอิทธิพลต่อจำนวนยอด และความชั้นเริ่มต้นของกลั่ว yay แผ่นมากกว่า อิทธิพลของเวลาพัฟฟิ่ง กล่าวคือเมื่ออุณหภูมิของไอน้ำร้อนยอดยิ่งสูงขึ้นจำนวนยอด และความชั้นเริ่มต้นมีค่ามากขึ้น เนื่องจากที่อุณหภูมิไอน้ำร้อนยอดยิ่งสูงขึ้น น้ำภายในวัสดุจะเกิดการเดือด ทำให้เกิดความดันไอน้ำขึ้นภายในกลั่ว yay แผ่นมาก กลั่ว yay แผ่นจะเกิดการพองตัว โครงสร้างมีรูพรุนเกิดขึ้นมากทำให้กลั่ว yay แผ่นกรอบมากขึ้น และที่เวลาพัฟฟิ่งมากขึ้นจำนวนยอด และความชั้นเริ่มต้นจะไม่เปลี่ยนแปลงมากนัก

การหาสภาวะที่เหมาะสมของการทดสอบ

การหาจุดที่เหมาะสมของคุณภาพกลั่ว yay ของกรอบ จะใช้ความพึงพอใจโดยรวม (Desirability Function) เพื่อหาค่าที่เหมาะสมของปัจจัยโดยการกำหนดค่า Weight function ของแต่ละผลตอบสนองด้านคุณภาพ ได้แก่ คุณภาพด้านสี และการทดสอบตัวกำหนดค่า Weight เป็น 0.5 ด้วยเหตุผลที่ว่าในขั้นตอนการวัดสี และ การหาค่าการทดสอบของกลั่ว yay แผ่นนั้นอาจมีความผิด

พลาดอยู่บ้างทำให้ข้อมูลมีความแปรปรวนค่อนข้างมาก สำหรับคุณภาพด้านเนื้อสัมผัสกำหนดค่า Weight เป็น 0.1 ด้วยเหตุผลที่ว่าลักษณะการพองตัวของกลั่ว yay แผ่นไม่สม่ำเสมอ ทำให้ข้อมูลที่ได้จากการวัดด้านเนื้อสัมผัสมีความแปรปรวนมาก และการกำหนด Importance ในงานวิจัยนี้จะให้ความสำคัญกับทุกผลตอบสนองเท่าๆ กัน โดยค่า defaults ที่โปรแกรมกำหนดมาคือ 1

ตารางที่ 4 แสดงผลของคุณภาพกลั่ว yay แผ่นที่ได้จากการทำ Optimization โดยสภาวะที่เหมาะสมสำหรับการพัฟฟิ่งกลั่ว yay ด้วยไอน้ำร้อนยอดยิ่งคือ อุณหภูมิของไอน้ำร้อนยอดยิ่งเท่ากับ 180 °C เวลาพัฟฟิ่งเท่ากับ 1.4 นาที และความชื้นก่อนการพัฟฟิ่งเท่ากับ 26.16%d.b. ที่สภาวะเงื่อนไขของกลั่ว yay โดยความพึงพอใจโดยรวม (Composite Desirability) เท่ากับ 0.994

สรุปผล

จากการศึกษาปัจจัยต่างๆ ในกระบวนการพัฟฟิ่ง คือ อุณหภูมิของไอน้ำร้อนยอดยิ่ง เวลาพัฟฟิ่ง และความชื้นของกลั่ว yay แผ่นก่อนการพัฟฟิ่งที่มีอิทธิพลต่อคุณภาพของกลั่ว yay แผ่น พบว่า อุณหภูมิของไอน้ำร้อนยอดยิ่งมีอิทธิพลต่อคุณภาพของกลั่ว yay แผ่นมากกว่าอิทธิพลของเวลาพัฟฟิ่ง สำหรับความชื้นของกลั่ว yay แผ่นก่อนการพัฟฟิ่งมีอิทธิพลต่อคุณภาพของกลั่ว yay แผ่นน้อยมาก เมื่อพัฟฟิ่ง กลั่ว yay แผ่นที่อุณหภูมิสูงขึ้นและเวลาพัฟฟิ่งนานคุณภาพด้านสี ค่า a เพิ่มขึ้น และค่า L และ ค่า b ลดลง และเมื่อพัฟฟิ่งกลั่ว yay แผ่นด้วยไอน้ำร้อนยอดยิ่งที่อุณหภูมิสูง (เวลาพัฟฟิ่งสั้นๆ) ทำให้คุณภาพของกลั่ว yay แผ่นด้านการทดสอบตัว และความแข็งลดลง แต่ความกรอบเพิ่มขึ้น และคุณภาพด้านสีค่าความเป็นสีแดง (ค่า a) ต่ำ สภาวะที่เหมาะสมของกระบวนการพัฟฟิ่งที่ให้ค่าการทดสอบตัวน้อย ค่าความแข็งต่ำ มีความกรอบมาก และ สีดีที่สุด คือที่อุณหภูมิของไอน้ำร้อนยอดยิ่งเท่ากับ 180 °C เวลาที่ใช้ในการพัฟฟิ่งเท่ากับ 1.4 นาที และ ความชื้นของกลั่ว yay แผ่นก่อนการพัฟฟิ่งเท่ากับ 26.16%d.b.

คำขอบคุณ

ผู้วิจัยขอขอบคุณสำนักงานคณะกรรมการอุดมศึกษาและ

สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.) ที่ให้ทุนอุดหนุนการวิจัย และ ขอขอบคุณสำนักงานความร่วมมือเพื่อการพัฒนาระหว่างประเทศ (สพร.) ที่ให้ทุนสนับสนุนงานวิจัย

เอกสารอ้างอิง

เพลินใจ ตั้งคณะกุล. 2546. การทำข้าวเกรียบเป็นผลิตภัณฑ์คุณภาพ. อาหาร. 33(2): 90-93.

Demirel, D. and Turhan, M. (2003). Air-drying behavior of dwarf cavendish and Gros Michel banana slices. *Journal of Food Engineering.*, 59(1), 1- 11.

Hwang, M.P., & Hayakawa, K.I. (1980). Bulk densities of cookies undergoing commercial baking processes. *Journal of Food Science.*, 45(5), 1400-1402.

Myers, R., & Montgomery, D.C. (2002). *Response surface Methodology*. New York, USA: Wiley.

Prachayawarakorn, S., Soponronarit, S., Wetchacama, S. and Jaisut, D. (2002). Desorption isotherms and drying characteristics of shrimp in superheated steam and hot air. *Drying Technology.*, 20(3), 669-684.

Tang, Z. and Cenkowski, S. (2000). Dehydration dynamics of potatoes in superheated steam and hot air. *Canadian Agricultural Engineering.*, 42(1), 6.1-6.13.

Effect of Osmotic Treatment and Puffing Temperature on Textural Properties of Banana Slices

S. Tabtiang¹, S. Soponronnarit¹ and S. Prachayawarakon²

¹Energy Technology Division, School of Energy Environment and Materials,
King Mongkut's University of Technology Thonburi, Suksawat 48 Road,
Tungkru, Bangkok 10140, Thailand, E-mail: ohmpare@hotmail.com

²Faculty of Engineering, King Mongkut's University of Technology Thonburi,
Suksawat 48 Road, Tungkru, Bangkok 10140, Thailand, E-mail:

somkiat.pra@kmutt.ac.th

***Corresponding author: somkiat.pra@kmutt.ac.th**

Porous structure in food, a very important characteristic to crisp product, can be produced by intensive heating technique. However, the color of puffed product may have intense brown. To limit the brown reaction, the banana slice needed to be treated before puffing. This research was therefore to study on the effect of osmotic treatment on quality of puffed banana. The banana with 20-23°Brix total soluble solid was immersed into sucrose solution concentrations at 30, 35 and 40°Brix and dried at 90°C using hot air until the sample moisture content reduced to 30% dry basis (d.b.). After that, the banana slices were puffed by superheated steam at 180, 200 and 220°C for 150 s and dried again at 90°C until the sample moisture content reached 4% d.b. From the experimental results, it was found that the osmotic dehydration can improve the color of banana. The puffed osmotic banana was less brown than the puffed none osmotic banana as indicated by the L-, a- and b- values. The puffing temperature and osmotic concentrations did not enhance the browning rate. The osmotic dehydration limited the banana cell wall expansion, and resulted in the significantly larger shrinkage of osmotic sample than the none osmotic one. . In addition, the osmotic product had less porous as visually observed by scanning electron

microscope. Such morphology of osmotic banana directly affected the textural properties in terms of hardness, initial slope and number of peaks.

Keywords: Puffing, Banana, Drying, Osmotic dehydration, Texture, Color

Introduction

Bananas, one of the most popular fruits in tropical climate country, deteriorate rapidly after harvest. To reduce their losses, bananas are processed to various types of product such as fried banana, osmotic banana and puree banana. The fried banana is the one of those products which is more favourite because it attain crispy texture (Ali, 2008). However, the obtained product contains high oil content and can not be kept for an extended period of time due to possible lipid oxidation leading to rancidity. Thus, the free oil crisp banana is an alternative product. To obtain the crisp texture, the food material needs high porosity.

There are several drying techniques to produce high porous food material such as high temperature and short time drying (Saca and Lozano, 1992; Hofsetz *et al.*, 2007; Varnalis *et al.*, 2001), microwave drying (Maskan 2000; Erle and Schubert, 2001) and low pressure superheated steam drying (Devahastin *et al.*, 2004; Elustondo *et al.*, 2001). In this work, the high temperature and short time drying technique was chosen.

During puffing process, some amounts of moisture or gas inside the food suddenly vaporize or expand. It can build up pressure and force the food structure to be expanded, thereby producing the porous structure of food products. The product characteristics after puffing has low bulk density (Kim and Toledo, 1987; Saca and Lozano, 1992). Moreover, the puffing process can save drying time (Sullivan *et al.*, 1980; Saca and Lozano, 1992) and provide 40% energy saving as compared to the conventional hot air dehydration (Sullivan, *et al.*, 1980).

The puffing medium normally uses the hot air since it is convenient in practice. For this research, the superheated steam will be used because the steam condensation at the material surface during the initial drying period can release the latent heat which results in the rapid rise in temperature of food material to stay at boiling point temperature of water. (Taechapairoj *et al.*, 2003; Rordprapart *et al.*, 2005) This may increase rapidly vapor pressure inside the product and thus provides a high expansion of product. However, the study of puffing with superheated steam has been limited in literature. Saca and Lozano, (1992) studied the puffing of banana using superheated steam at temperature of 152-

175°C and steam pressure at 0.8-2.8 kg/cm. It was found that the puffed banana had higher porosity than the conventional air dried product. Although, the product contained very porous structure, the product color was brown. Such browning in food is caused by the none enzymatic browning reaction and pigment degradation.

The way to improve the color of product can be done by osmotic pretreatment. Sucrose is frequency used as osmotic agent (Krokida *et al.*, 2000; Mandala *et al.*, 2005; Antonio *et al.*, 2008). During osmotic dehydration, the natural solutes existing in food material such as reducing sugar, acid and minerals flow out from food (Islam and Flink, 1982; Shi and Xue, 2009; Sagar and Kumar, 2009) and they are replaced by osmotic agent. Marquez and Anon (1986) found that monosaccharide, glucose and fructose, had more influent on brown color development than sucrose.

Moreover, the sugar pretreatment before puffing process can improve shrinkage properties. Many researchers studied the effect of sugar on shrinkage properties of puffed products such as rice (Hsieh *et al.*, 1990; Orts *et al.*, 2000). They found that the osmotically puffed products had lower shrinkage or higher expansion volume than the none osmotically puffed products.

As mentioned-above, the objective of this work therefore was to study the effects osmotic solution concentrations and puffing conditions on the drying characteristics and quality of puffed banana. The quality parameter were considered in terms of color, shrinkage and textural properties.

2. Materials and methods

2.1 Material preparation

Fresh bananas were obtained from local market and their soluble solid contents were given in the range of 20-23°Brix. Before processing, the banana was sliced into 3.5 mm thickness and blanched by hot water at 95°C for 1 min.

2.2 Osmotic pretreatment

Osmotic solution was prepared by using commercial sucrose with concentrations of 30 35 and 40°Brix. The banana slices were immersed into various sucrose solution concentrations and the mass ratio of osmotic media to the sample was 30:1 to avoid the dilution effect. The samples were immersed into the osmotic solution until the moisture content of banana was not changed.

2.3 Puffing method

Puffing process used in this studies was consisted of 3 step; drying, puffing and drying. In the first step, the banana was dried by hot air at temperature of 90°C and air velocity of 2 m/s. When the moisture content reached to 30% d.b., the sample was puffed by superheated steam at temperatures of 180, 200 and 220°C for 150 s. In the last drying stage, the banana was dried with hot air at the same temperature as the first stage drying. The final moisture content required at 4% d.b. At the end of each experiment, the moisture content of samples was determined by drying them in the oven at 103°C for 3 hr.

2.5 Textural property evaluation.

The puffed banana slices were kept in aluminium foil bag at room temperature for 3 day before texture test. The banana sample were measured by using the texture analyzer (Stable Micro System, TA. XT. Plus, UK) with a 5 N load cell. The samples were fractured with a cutting probe (HDP-BSK type) using blade speed of 2 mm/s. The probe move down to the banana sample with a speed of 2 mm/s. The maximum compressive force, the initial slope and the number of peaks (over 50 g force threshold) from force deformation curve were considered as an hardness, stiffness and crispness, respectively.

2.6 Color measurement

The color of dried samples were measured using a colorimeter (HunterLab, ColorFlex, UK). In each sample, the measurement were performed at different six positions and the measurement value was reported as the average value. The color were expressed as L-value (Brightness), a-value (redness/greenness) and b-value (yellowness/blueness).

2.6 Shrinkage determination

Ten samples were used to determine shrinkage. The volume of each sample was determined by the volumetric displacement method using n-heptane as the replacement medium (Saca and Lozano, 1992). The shrinkage was defined as the ratio of the dried sample volume to the original sample volume

$$\% \text{ shrinkage} = \frac{V}{V_i} \times 100$$

where V_i and V are the volume of the fresh sample and the volume of dried sample.

2.7 Glucose, fructose and sucrose determination

Determination of sugar content was performed according to AOAC method 982.14 with some modification. The sample of 5-10 g was pulverised and mixed with 50 mL water in a 100 mL volumetric flask. 1 mL 15% $K_4(Fe(CN)_6)3H_2O$ and 1 mL 30% $ZnSO_4 \cdot 7H_2O$ was added into the solution in order to extract

protein. After that, it was filtered through filter paper No. 42. The filtered solution from the last step was filtered through 0.45 μm nylon syringe filter. The final volume of solution kept at refrigerator until its chromatographic analysis. The 10 μL aliquots of the filtered solution were injected into HPLC.

The High Performance Liquid Chromatography consist of a Prevail Carbohydrate ES column (4.6 mm, 25 cm; 5 μm)(Alltech, Derfield, USA), a pump and a controller (Agilent, 1100, USA), autosampler (Agilent, 1100, USA) and a evaporative light scattering detector (ELSD detector) (Alltech , 500 ELSD, USA).

The fructose and glucose which are sugar isomers can clearly separate peaks by gradient elution in column at 1 mL/min flow rate. The gradient elution was varied the portion of mobile phase. The mobile phase used contained acetonitrile and water. The column temperature was kept 30°C and the detector was carried out at drift tube temperature at 50°C and nitrogen flow rate 1.5 L/min. Peaks of samples were quantified with standard.

2.8 Statistical analysis

The experimental data of color, textural and shrinkage properties was analyzed by using an analysis of variance (ANOVA) and presented as mean value with standard deviations. Duncan's test was used to establish the multiple comparisons of the mean values. The mean values were considered significantly different when $p \leq 0.05$

Results and discussion

1. Effect of Osmotic Concentrations on Water loss and Solid Gain

Table 1 shows the moisture loss, solid gain and the losses of native sugars of banana slices immersed into sucrose solutions at 30, 35 and 40°Brix. The banana slices immersed into the higher sucrose concentrations lost the larger amounts of their moisture content. The possible explanation was related to the osmotic pressure difference between intracellular fluid in banana and osmotic solution. When the sample was immersed into the higher sucrose concentration, the osmotic pressure difference was higher, resulting in the larger loss of moisture content. At the same time, the solid gain increased, due to the diffusion of sucrose from the solution into the sample. As shown in Table 1, the solid gain increased from 24.8% to 32.6% when the osmotic concentration increased from 30°Brix to 40°Brix. From these results, the ratios of water loss to solid gain increased with the increased sucrose solution concentrations, implying loss of moisture content larger than the solid gain. This is because the size of sucrose

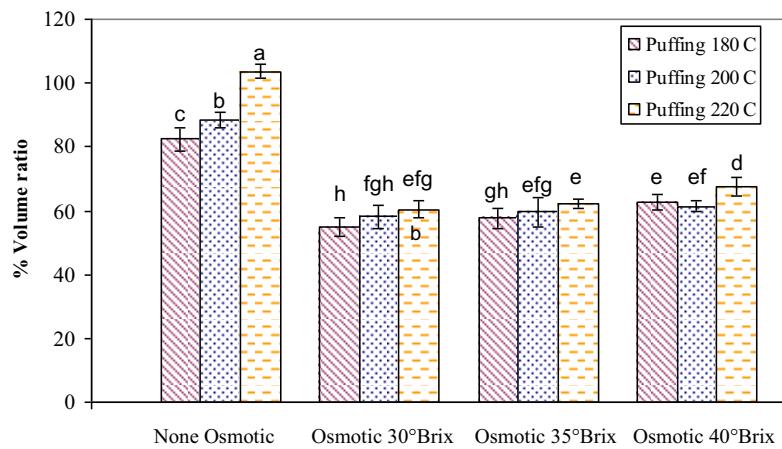

molecule is larger than that of water molecules. Hence, the water molecule can move with a rate faster than the sucrose molecule.

Table 1 also shows that the native sugars i.e. glucose and fructose disappeared during osmosis. The remaining amounts of glucose and fructose in the samples immersed into the sucrose solution concentrations were not rather different; the percent losses were 84-86% for glucose and 83-85% for fructose. From these results, it can be observed that the losses of glucose and fructose were nearly the same amount. This can be described by the fact that the glucose and fructose have the same molecular weight and this would be expected to have the same diffusion coefficient. Gekas *et al.* (1993) reported that the diffusion coefficients of glucose and fructose in water at 25°C were equal and had a value of 69×10^{-11} m²/s.

Table 1 Immersion time, amount of water loss, amount of solid gain, moisture content, amount of sucrose, amount of fructose and amount of glucose of banana slice at various sucrose concentration.

Sucrose concentration (°Brix)	Immersion time (min)	Water loss (g dry mass)	Solid gain (g water/ g dry mass)	Water loss/ Solid gain (g solid/ g dry mass)	Moisture content (% d.b.)	Amount of sucrose (g/100 g banana)	Amount of glucose (g/100 g banana)	Amount of fructose (g/100 g banana)
none osmotic								
30°Brix	240	0.321	0.248	1.29	134.1 ± 2.4	1641	0.14	0.17
35°Brix	290	0.539	0.303	1.78	116.4 ± 3.7	1845	0.16	0.19
40°Brix	330	0.772	0.326	2.37	102.4 ± 3.1	2286	0.14	0.16

2. Shrinkage

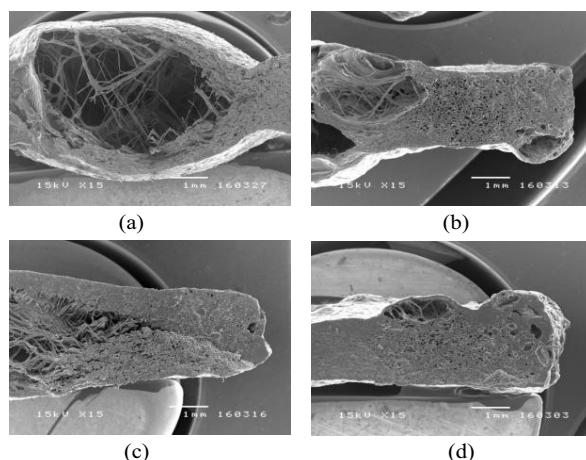
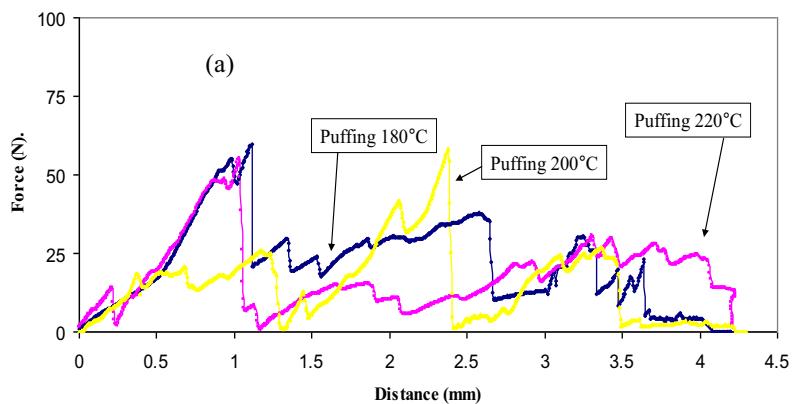

The different scripts presented over the bar mean the significant difference at $p \leq 0.05$.

Figure 1 Effects of puffing temperatures and osmotic solution concentrations on volume ratio.

Fig. 1 shows the shrinkages of none osmotic and osmotic samples both puffed at 180 200 and 220°C. The volume ratio of osmotic banana samples was significantly lower than that of the none osmotic ones for all puffing temperature. These results can be explained by the fact that the OH group of $n\text{-C}_6\text{H}_{12}\text{O}_6$ may bound with OH group in the cellulose of banana by hydrogen bonding (Allan *et al*, 2001). Consequently, the banana cell wall become stronger, allowing the small expansion of cellular structure during puffing and subsequently providing higher degree of banana shrinkage. The sucrose solution concentration affect on degree of banana shrinkage.

Considering the puffing temperature effect, it affected significantly the degree of shrinkage for both osmotic and none osmotic banana samples. The high puffing temperature provided lower degree of shrinkage. As showing in Fig 1, the volume ratio of none osmotic sample was 82% at puffing temperature of 180°C and increased to 103% at the puffing of 220°C.


Fig. 2 demonstrates morphologies of osmotic banana samples prepared from sucrose solution concentrations of 30, 35 and 40°Brix and puffed at temperature of 200°C. The morphologies of osmotic and non osmotic banana samples were noticeably different. The structure of osmotic banana samples was dense and exhibited less porous, but it was very porous for the none osmotic sample. As shown in Fig. 2 (a), the none osmotic banana had a huge pore with size larger than 1 mm. at the internal area of the sample. The formation of huge pore implies that there was a rapid vaporization of moisture inside the none osmotic samples during puffing, resulting in increasing vapor pressure inside the banana sample and the subsequent cell wall expansion. However, the cell wall expansion was occurred rarely in the osmotic banana samples. From their morphologies, it confirmed the shrinkage results, showing the higher shrinkage for the osmotic banana.

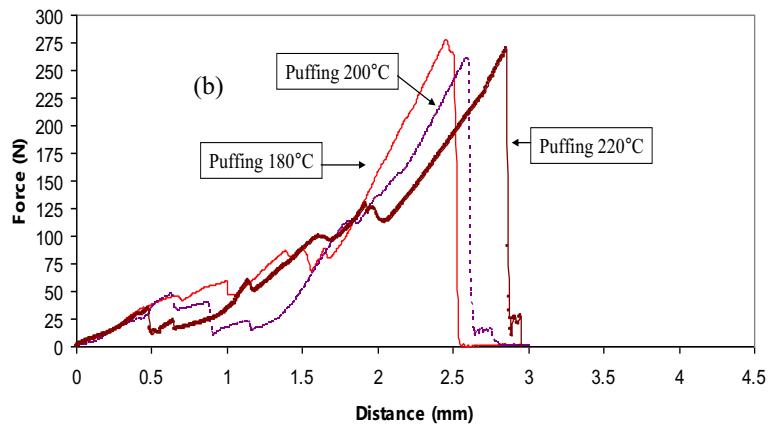
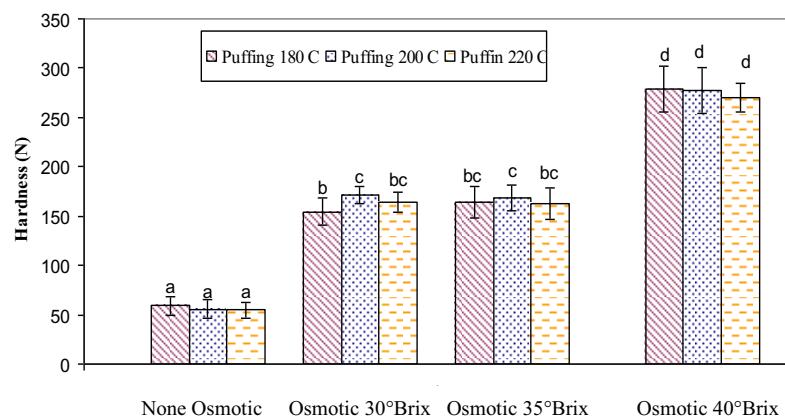


Figure 2 SEM photographs showing cross section of banana slices puffed at 200°C; (a) none osmotic; (b) 30°Brix; (c) 35°Brix; and (d) 40°Brix.


3. Texture

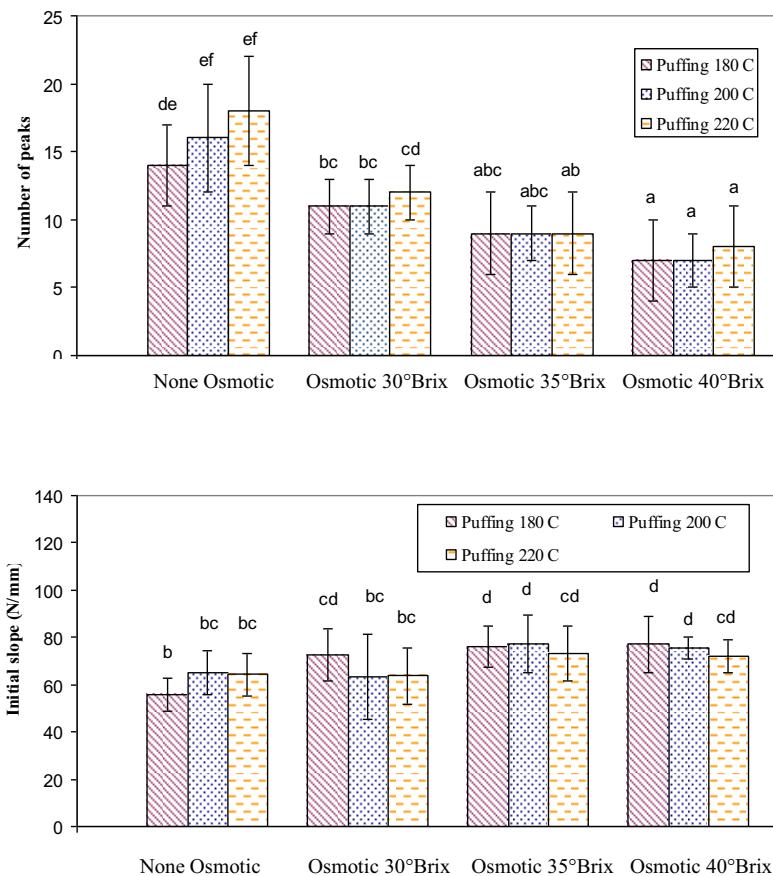

The force deformation curves represents the characteristics of crisp product. The product that was many fracture points indicate a crispy characteristic (Hofsetz and Lopes, 2005) and the number of jags on the force deformation curves indicate the porosity in samples. Fig. 3 shows the force deformation curve of osmotic and none osmotic samples at puffing temperatures of 180, 200 and 220°C. The force deformation curves of the osmotic samples were clearly different from those of the none osmotic ones. While the cutting probe was acted on the osmotic samples, the force reached the maximum point about 250-270 N. after which it was dropped sharply to zero, without any jag appearance. For the none osmotic samples, on the other hand, the force acting on the samples after reaching the maximum point did not drop rapidly to zero: it still appeared the several peaks. This can be explain by the fact that the sucrose solution causes banana tissue loosing the elasticity which in turn provides a sharp drop of force after the maximum point. This force characteristic indicated that the osmotic banana after puffing was brittle.

Figure 3 Force deformation curves: (a) the none osmotic banana and (b) the osmotic banana.

The different scripts presented over the bar mean the significant difference at $p \leq 0.05$.

Figure 4 Texture properties of the osmotic banana and the none osmotic banana.

Fig. 4 shows the effects of sucrose concentrations and puffing temperatures on the textural properties of none osmotic and osmotic banana samples. Considering at each sucrose solution, the puffing temperature given in a range of 180-220°C insignificantly affect the textural properties such as hardness, number of peaks and initial slope. The insignificant effect of puffing temperature on the textural characteristics for the none osmotic banana samples was also observed. On the other hand, the sucrose concentration strongly affected such textural

characteristics. Increase in both of hardness and initial slope and decrease in number of peaks were found with increasing in sucrose solution concentration.

As shown in Fig. 4, the banana slices pretreated with 40°Brix sucrose solution had the highest values for the of hardness initial slope but the smallest number of peaks. Such textural characteristics revealed that the osmotic banana product after puffing had a harder texture, less crispy and rather brittle than the osmotically untreated banana. The harder texture in the osmotic banana is related to the interaction between the OH groups of cellulose and sucrose solutions (Allan *et al*, 2001) which will improve the cellulose strength. These results corresponded to the morphological features as already mentioned.

4. Color

Table 2 shows the effect of the puffing temperatures and sucrose solution concentrations on the color of the bananas slices in terms of lightness (L), redness (a) and yellowness (b).

It was found that osmotic pretreatment can improve the color of banana samples compared with the color of samples without osmotic pretreatment. The color of osmotic samples had brownish-yellow but it had yellowish-brown for the banana without osmotic dehydration. It can indicated by the osmotic sample had higher of L- and b- values and lower of a-value than the none osmotic samples.

The color improvement of osmotic banana can be explain by the fact that the monosaccharide which is the main active component for none-enzymatic browning reaction (Pulis, 2010), leak out during the osmotic dehydration. Thus the browning rate is retarded and resulted in less brown for osmotic samples than the none osmotic sample. The osmotic concentration had not affect on the color of the osmotic samples indicated by L-, a- and b- values which shows insignificant difference among the samples at various sucrose concentrations.

Considering the effect of puffing temperature, it was found that the puffing temperature affect on the color of none osmotic samples. The color of none osmotic samples trend to intensive brown when the puffing temperature was increased as indicated by higher a value. In contrast, the puffing temperature did not affect on the product color of osmotic samples.

Table 2 color of dried osmotic banana slices and puffed none osmotic banana slices.

Drying Condition	L	a	b	Product color
Puffing 180°C	52.1 ^{ab} ±1.02	5.32 ^{cd} ± 0.3	16.81 ^a ± 0.83	
Puffing 200°C	51.3 ^{ab} ± 1.66	5.66 ^{cd} ± 0.25	16.85 ^a ± 0.85	
Puffing 220°C	49.5 ^a ± 1.5	6.11 ^e ± 0.21	16.3 ^a ± 0.83	
Puffing 180°C (30 °Brix)	59.29 ^f ±1.51	4.87 ^{abc} ±0.26	19.97 ^{cd} ±0.74	
Puffing 200°C (30 °Brix)	59.1 ^{ef} ± 2.73	4.93 ^{abc} ± 0.21	18.89 ^{bc} ± 1.11	
Puffing 220°C (30 °Brix)	57.22 ^{ef} ± 2.1	5.41 ^{cd} ± 0.33	18.68 ^{bc} ± 0.5	
Puffing 180°C (35 °Brix)	57.01 ^{ef} ±3.02	5.02 ^{abc} ± 0.32	16.65 ^a ± 0.9	
Puffing 200°C (35 °Brix)	58.35 ^{ef} ± 1.7	5.40 ^{cd} ± 0.51	18.15 ^{bc} ± 0.50	
Puffing 220°C (35 °Brix)	56.36 ^{de} ± 2.45	5.06 ^{abcd} ± 0.3	18.39 ^{bc} ± 0.54	
Puffing 180°C (40 °Brix)	57.43 ^{ef} ± 1.28	5.02 ^{abc} ± 0.28	18.68 ^{bc} ± 0.97	
Puffing 200°C (40 °Brix)	57.31 ^{ef} ± 1.3	5.2 ^{cd} ± 1.3	18.71 ^{bc} ± 0.83	
Puffing 220°C (40 °Brix)	54.19 ^{bcd} ± 4.22	5.27 ^{bcd} ± 0.32	17.7 ^b ± 1.14	

Different superscripts values are significantly different at 95% confidence level.

Conclusions

Osmotic pretreatment of banana slices can limit the browning reaction so the color of final osmotic product can improve. The color of osmotic product obtained at sucrose solution concentrations and puffing temperatures were not different. In spite of color in product, the osmotic pretreatment provided the texture of product to be harder and less crispy than the none osmotic banana. This is because the osmotic product had less porous as revealed by scanning electron microscope. The shrinkage was also high for the osmotic banana. Increase of sucrose solution concentration provided lesser extent of shrinkage whilst increase of puffing temperature did not affect on the textural properties of product.

Acknowledgements

The authors express their sincere thanks to Thailand Research Found, National Science and Technology Development Agency and King Mongkut's University of Technology Thonburi for supporting this financially project. Author Tabtiang thanks the Commission on Higher Education, Thailand for support the grant fund under the Strategic Scholarships for Frontier Research Network of the Ph.D. program Thai doctoral degree.

Reference

Ali, A. S. (2008). Banana chips [Online]. Available: www.practicalaction.org/practicalanswers/product: [5/10/2010].

Allan, G. G., Stoyanov, A. P., Ueda, M. and Yahiaoui, A. (2001). Sugar-cellulose composites V. The mechanism of fiber strengthening by cell wall incorporation of sugars. *Cellulose* **8**: 127-138.

Antonio, G. C., Alves, D. G., Azoubel, P.M., Murr, F. E. X. and Park, K. J. (2008). Influence of osmotic dehydration and high temperature short time processes on dried sweet potato (*Ipomoea batatas* Lam). *Journal of Food Engineering* **84**: 375-382.

AOAC (2006). Official method of analysis (18th ed.). Gaithersburg, Maryland: AOAC.

Devahastin, S., Suvarnakuta, P., Soponronnarit, S. and Mujumdar, A. S. (2004). A comparative study of low-pressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technology **22**: 1845-1867.

Elustondo, D., Elustondo, M. P. and Urbicain, M. J. (2001). Mathematical modeling of moisture evaporation from foodstuffs exposed to subatmospheric pressure superheated steam. Journal of Food Engineering **49**: 15-24.

Erle, U. and Schubert, H. (2001). Combine osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering **49**: 193-199.

Gekas, V., Oste, R. and Lamberg, I. (1993). Diffusion in heated potato tissue. Journal of Food Science **58**: 827-831.

Hofsetz, K. and Lopes, C. C. (2005). Crispy banana obtained by the combination of a high temperature and short time drying stage and a drying process. Brazilian Journal of Chemical Engineering **22**: 285-292.

Hofsetz, K., Lopes, C. C., Hubinger, M. D., Mayor, L. and Sereno, A. M. (2007). Change in the physical properties of bananas on applying HTST pulse during air drying. Journal of Food Engineering **83**: 531-540.

Hsieh, F., Hu, L., Peng, I. C. and Huff, H. E. (1990). Pretreating dent corn grits for puffing in a rice cake machine. Journal of Food Science **55**: 1345-1355.

Islam, M. N. and Flink, J. M. (1982). Dehydration of potato II. Osmotic concentration and its effect on air drying behavior. Journal of Food Technology **17**: 387-403.

Kim, M. H. and Toledo, T. R. (1987). Effect of osmotic dehydration and high temperature fluidized bed drying on properties of dehydrated rabbiteye blueberries. Journal of Food Science **52**: 980-989.

Krokida, M. K., Karathanos, V. T. and Maroulis, Z. B. (2000). Effect of osmotic dehydration on color and sorption characteristics of apple and banana. Drying Technology **18**: 937-950.

Mandala, I. G., Anagnostaras, E. F. and Oikonomou, C. K.. (2005). Influence of osmotic dehydrations on apple air -drying kinetics and their quality characteristics. Journal of Food Engineering **69**: 307-316.

Marquez, G. and Anon, M. C. (1986). Influence of reducing sugars and amino acids in the color development of fried potatoes. *Journal of Food Science* **51**: 157-160.

Maskan, M. (2000). Microwave/air and microwave finish drying of banana. *Journal of Food Engineering* **44**: 71-78.

Orts, W. J., Glenn, G. M., Nobes, G. A. R., and Wood, D. F. (2000). Wheat starch effect on the textural characteristics of puffed brown rice cakes. *Cereal Chemistry* **77**: 18-23.

Purlis, E. (2010). Browning development in bakery product-A review. *Journal of Food Engineering* **99**: 239-249.

Rordprapat , W., Nathakaranakule, A., Tia, W. and Soponronnarit, S. (2005). Comparative study of fluidized bed paddy drying using hot air and superheated steam. *Journal of Food Engineering* **71**: 28-36.

Saca, A. S. and Lozano, E. J. (1992). Explosion puffing of bananas. *International Journal of Food Science and Technology* **27**: 419-426.

Sagar, V. R. and Kumar, P. S. (2009). Improvement of some process variables in mass transfer kinetics of osmotic dehydration of mango slices and storage stability. *Journal of Scientific & Industrial Research* **68**: 1043-1048.

Shi, J. and J. S. Xue (2009). Application and development of osmotic dehydration technology in food processing. In *Advances in food dehydration*; Ratti, C., Ed.; Taylor & Francis Group, LLC, New York, U.S.A.

Sullivan, J. F., Craig, J. C., Konstance, R. P., Egoville, M. J. and Aceto, N. C. (1980). Continuous explosion-puffing of apples. *Journal of Food Science* **45**: 1550-1558.

Taechapairoj, C., Dhuchakallaya, I., Soponronnarit, S., Wetchacama, S., Prachayawarakorn, S. (2003). Superheated steam fluidised bed paddy drying. *Journal of Food Engineering* **58**: 67-73.

Varnalis, A. I., Brennan, J. G. and MacDougall, D. B. (2001). A proposed mechanism of high-temperature puffing of potato. part I. the influence of blanching and drying conditions on the volume of puffed cubes. *Journal of Food Engineering* **48**: 361-367.

DETERMINATION OF APPARENT DIFFUSIVITY OF MOISTURE IN PORES OF DRIED FOAM BANANA USING 2-D STOCHASTIC PORE NETWORKS

P. Prakotmak^{1,*}, S. Prachayawarakon¹, S. Soponronnarit²

^{1,2} School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-utit Rd., Bangmod, Thungkru, Bangkok, Thailand 10140 E-mail: preeda_list@hotmail.com, somkiat.pra@kmutt.ac.th

¹ Department of Chemical Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha-utit Rd., Bangmod, Thungkru, Bangkok, Thailand 10140

Abstract: Moisture diffusivity is an important parameter to predict the shelf life of food products. The main purpose of this research was therefore to determine the apparent diffusivity of moisture in pores of banana foam mat. 2-D stochastic pore network was used to represent the pore voids inside the banana foam sample and the moisture movements inside the individual pore segments were described by Fick's law. To obtain the moisture diffusivity, the experiments were carried out with standard static method using saturated salt solutions over a wide range of relative humidities and a temperature range of 35 to 45°C. Two banana foam densities of 0.3 and 0.5 g/cm³, both having different porosities, were used to adsorb water vapor under the controlled condition. The interactions of transport processes within the pore network were illustrated using a 3-D pictorial representation of network concentration gradients in spaces with colour representing the moisture content. The network model could describe the experimental results relatively well. The diffusivity of water in pores was in order of 10⁻⁹ m²/s which was 9 times higher than the apparent effective diffusivity. For a given temperature, the pore diffusivities were independent of the foam densities and relative humidity, except for the case of higher relative humidity of 70%. Moreover, the diffusivity depended strongly on the temperature.

Keywords: adsorption kinetics, banana foam mat, pore diffusivity, pore network

INTRODUCTION

Moisture migration during food storage is greatly important to many dry crispy products, such as biscuits, ready to eat cereals and snack foods, because the loss of their crispness strongly correlated to the moisture content. Rate of moisture adsorption in porous foods depends not only on the environmental conditions but also on their pore structures. Hence, understanding and capability to predict the moisture migration through their void spaces at different conditions are the main aspects that cannot be avoided in order to preserve their quality and to extend their shelf life as long as possible. To achieve this, model of porous food material is required and equation of moisture transfer is needed.

The moisture transport in porous foods can be mathematically by either a continuum or a discrete approach. In a continuum model, the porous spaces are considered as a continuum consistent with its appearance on macroscopic scale and effective

macroscopic properties lump all the microscopic complexities of real pore network, including mechanisms of mass transfer which may be occurred by molecular diffusion and capillary flow etc. For adsorption under isothermal condition, moisture adsorption occurring in an infinite slab geometry can be described by

$$\frac{\partial M}{\partial t} = \nabla(D_{eff} \nabla M) \quad (1)$$

By using eq.(1), the effective diffusivity, D_{eff} , can simply be determined from the adsorption experiments. The effective diffusivity can be expressed as

$$D_{eff} = \frac{\epsilon D_A}{\tau} \quad (2)$$

Tortuosity factor, τ , accounts for the fact that the pore spaces do not provide straight line paths through the particle, thereby lengthening the diffusive path and reducing the internal diffusional fluxes. At the present, however, there is no reference of the actual

diffusivity of water in pore voids, D_A . To estimate the water diffusivity in the pores, the model must include the information details about the interactions between internal diffusional fluxes and pores, which determine the pathways of moisture movement. The diffusivity of water can be estimated by first constructing the discrete network models, where more or less simplified geometry and pore size distribution are used to describe topology of pore structure of real material (Mann, 1993; Hollewand and Gladden, 1992; Androutsopoulos and Mann, 1979). Diffusion equation is then applied to individual pores of these simulated structures and the flow of substances through pore segments can be numerically predicted (Blunt, 2001; Yiotis et al, 2005; Prachayawarakorn, Prakotmak and Soponronnarit, 2008).

Network models represent the void spaces of a porous medium by a simple two-or more realistic three-dimensional lattice in which the large and small pores are randomly interconnected. Each pore can be assumed to be cylindrical, slit, triangular and polygonal shapes. Segura and Toledo (2005) found that pore shapes used in the network model had an insignificant effect on the drying characteristic curves, vapor relative diffusivity and liquid relative permeability.

As mentioned above, diffusivity data of water in the pores of the porous foods have not been available in the literature. The aim of the present investigation was therefore to determine the pore diffusivity by using a two dimensional stochastic pore network. The banana foam mat was used as a representative porous medium. The Fick's second law was used to describe the moisture diffusion in individual pore segments and an optimization technique was implemented to determine the pore diffusivity under adsorption conditions.

DRIED BANANA FOAM PREPARATION

The banana puree with 5% of fresh egg albumen used as foaming agent was foamed to densities of 0.3 and 0.5 g/cm³. The banana foams was poured slowly into a steel block with a dimension of 43 × 43 × 4 mm and then placed on a mesh tray, which was covered with aluminium foil. After that, it was dried to about 3% dry basis (d.b.) using 80°C and a 0.5 m/s superficial air velocity. The sample thicknesses after drying were 2.8mm and 3.2mm for the banana foam densities of 0.3 and 0.5 g/cm³, respectively.

ADSORPTION EXPERIMENT

Moisture adsorption experiments were carried out using the static method. Samples were placed into the glass jars contained the saturated salt solutions which (MgCl₂ 6·H₂O, Mg(NO₃)₂ 6·H₂O, KI, NaCl and KCl) give the relative humidity (RH) in range of 32-82%

for the temperatures of 35, 40 and 45°C. The glass jars were kept in the hot air oven with an accuracy of ±1°C (UFE500, Memmert, Germany). Samples were weighed at different exposure times until the moisture content of samples did not change. At high relative humidity (RH > 74%), a small amount of toluene was added into a small tube which was fixed in the glass jars in order to prevent microbial spoilage of the samples (Kaya and Kahyaoglu, 2005). Moisture content of each sample after reaching the equilibrium condition was determined by drying it with an oven at a temperature of 103°C for 3 h. The experiment at each sorption condition was repeated three times and the mean value was reported.

SEM PHOTOGRAPH

The morphologies of dried banana foam mats were characterized using scanning electron microscope (SEM) with an accelerating voltage of 10 kV. Before photographing, the specimens were cut into a dimension of 5 × 5 mm and then glued on the metal stub. The samples were coated with gold, scanned, and photographed at 15× magnification.

To quantify the porous banana foam characteristics such as pore diameter and pore area, Image J software was used. Each pixel of the SEM micrograph was assigned a value of gray intensity between 0 and 255 and the binary images were generated. The pixels with gray levels lower than the selected threshold were assigned as pore, which appeared as black colour, and the pixels with gray levels above the selected threshold were set as solid phase, which appeared as white colour in binary image. The pore diameter was estimated by the known pore area by assuming a spherical shape.

PORE NETWORK MODEL

When the pore size distribution of material is known, these pores are assigned according to their distribution and allocated randomly onto a lattice. In this work, the pore was assumed to be cylindrical geometry and each pore in the network had the same length. The pores with different sizes were randomly placed onto the network and this approach provided pore at any positions within the network independent to the neighbouring pores. Such random arrangement of pore assemblies was referred to as stochastic pore network. Figure 1 shows an illustrative 2-D stochastic pore network with a size of 23 × 50 consisting of 2373 pores obeying a pore size distribution of dried banana foam shown in Figure 6 for the initial density of 0.3 g/cm³, but in calculating the pore diffusivity, we used a larger network size. In this work, we considered the 2-D parallelogram pore networks with a size of 20 × 231 consisting of 9491 pores for the sample at the initial foam density of 0.3 g/cm³ and a size of 23 × 264 consisting of 12431

pores for the density of 0.5 g/cm^3 . The distance between two pore bodies (L) was equal to $128 \mu\text{m}$.

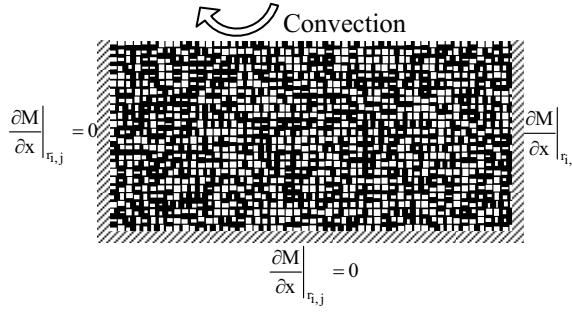


Fig. 1. Illustration of a simple 2-D stochastic pore network and boundary conditions.

Single Pore

In this work, moisture adsorption between surrounding air and banana foam mat occurred under isothermal condition. The moisture moved along the pore axis and it can be described by Fick's second law for the individual pores in the network:

$$\frac{\partial M}{\partial t} = D_p \left(\frac{\partial^2 M}{\partial x^2} \right) \quad (3)$$

The migration of moisture from the surrounding air to the banana foam surface occurred specifically at the top surface and no moisture transferred at the bottom surface of the network since the banana foam mat was placed on an opaque glass dish. The samples had the length and width about 11 times of its thickness and thus, the banana foam mats were reasonably assumed to be an infinite slab. Accordingly, moisture movement during adsorption occurred along the material thickness direction. The constant diffusion coefficient at a given condition was assumed and the moisture profile in the pores at the beginning was uniform along the pore axis,

$$M = M_i \quad : t = 0, 0 \leq x \leq L \quad (4)$$

The length of each pore, L , was calculated by dividing width of material by $NV+1$ where NV is the number of pores in each row of the network; 264 for the network size of 23×264 and 231 for the network size of 20×231 were used. Because the surface area at each sample side was remarkably smaller than that at the top surface, the moisture transferring from the surrounding to the pores allocated at the two sides of sample was small. Hence, the boundary condition for the pores allocated at both sides of the network is set as

$$\frac{\partial M}{\partial x} = 0 \quad : t > 0 \quad (5)$$

For the periphery pores allocated on the top of the network, the moisture moving from the surrounding to those pores was occurred by convection and the boundary condition is set as

$$D_p \left(\frac{\partial M}{\partial x} \right) = h_m (M_e - M_s) \quad : t > 0 \quad (6)$$

To calculate the moisture concentration of the pores, a finite difference method was used. An individual pore in the network was divided into n intervals ($N=12$) and Eq. (3) was discretized using the explicit method as follows:

$$M_{n,r_{i,j}}^{p+1} + M_{n,r_{i,j}}^p (2\alpha - 1) - \alpha (M_{n+1,r_{i,j}}^p + M_{n-1,r_{i,j}}^p) = 0 \quad (7)$$

where $\alpha = D_p \Delta t / \Delta x^2$ is the Fourier number, p and n the respective indexes of the present time and of nodal position along the pore axis. The boundary conditions in Eqs. (5) and (6) can be written as:

$$M_{n,r_{i,j}}^{p+1} + M_{n,r_{i,j}}^p (2\alpha - 1) - 2\alpha (M_{n+1,r_{i,j}}^p) = 0 \quad (8)$$

$$M_{n,r_{i,j}}^{p+1} (\gamma + 1) - M_{n-1,r_{i,j}}^{p+1} - \gamma M_e^{p+1} = 0 \quad (9)$$

where $\gamma = h_m \Delta x / D_p$. The moisture adsorption rate $Q_{i,j}$ for the pore with radius of $r_{i,j}$, can be calculated by

$$Q_{r_{i,j}} = \pi r_{i,j}^2 D_p \left(\frac{dM_{r_{i,j}}(x, t)}{dx} \right)_{x=L} \quad (10)$$

Mass balance in the network

To determine the moisture contents at the pore junctions, the mass balance of moisture content at the inner nodes of network was made, assuming no accumulation at the pore junctions within the network, which is thus expressed by

$$\sum_{j \in \{i\}} Q_{r_{i,j}} = 0 \quad (11)$$

where $\{i\}$ refers to the set of i -adjacent nodes which are connected to node (i) in the network. After the moisture contents at every nodes of the network were known, the average moisture content \bar{M}_{network} of network can then be calculated using the following equation

$$\bar{M}(t)_{\text{network}} = \frac{\sum_{n=1}^Z r_{i,j}^2 \int_0^L M_{r_{i,j}}(x, t) dx}{Z \cdot L \sum_{n=1}^Z r_{i,j}^2} \quad (12)$$

To estimate the apparent pore diffusion, D_p , the optimization technique using a golden-search method was used. The root mean square error (RMSE) for the residuals of the measured and predicted values of average moisture content was set as the objective

function with a tolerance of 10^{-5} . The RMSE is defined as

$$RMSE = \left[\frac{1}{K} \sum_{n=1}^K (M(t)_{\text{exp}} - \bar{M}(t)_{\text{network}})^2 \right]^{1/2} \quad (13)$$

where $M(t)_{\text{exp}}$ is the experimental moisture content of material at time t , $\bar{M}(t)_{\text{network}}$ is the predicted moisture content, and K is the number of the experimental data. The lower the value of RMSE is the better the goodness of fit. All computations were implemented using Intel C++ Compiler (<http://www.intel.com>) to run on a PC compatible with 3.0 GHz dual-processor and 2 GB of RAM.

RESULT AND DISCUSSION

Effect of temperature and relative humidity

Generally, if the partial vapor pressure or vapor concentration is greater in the surrounding atmosphere than in the porous materials, the moisture is then transferred from the air to the materials. The adsorption rate is extremely rapid when there is a great vapor pressure difference between the water in the air and the water in the adsorbent. The process of adsorption continues until the adsorbed layer is in thermodynamical equilibrium with gas or vapour.

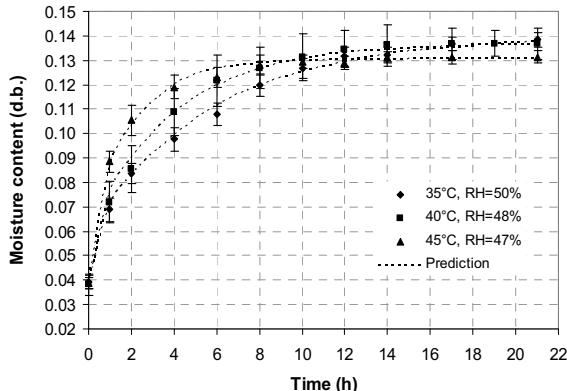


Fig. 2. Kinetics data of moisture adsorption at different temperatures and relative humidities for the initial banana foam density of 0.3 g/cm^3

The effect of partial vapour pressure on the adsorption rate can be studied by changing the temperature or relative humidity and the experimental results are shown in Figure 2 for the temperature effect and Figure 3 for the relative humidity effect.

As shown in Figure 2, the rate of moisture uptake was very fast during the early period of time and gradually decreased as the moisture content approached the moisture equilibrium. The higher adsorption rate was evident in elevated temperature and relative humidity. From the preliminary test, the banana foam mat lost its textures at the moisture content of 0.07 d.b. From this result, it indicated that

the banana foam will lost the crispness when it exposed to air about 40 minutes under the operating conditions at the relative humidity and temperature lower than 75% and 40°C , respectively.

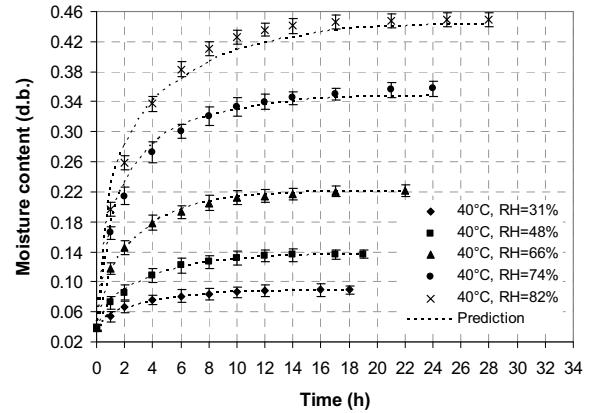


Fig. 3. Kinetics data of moisture adsorption at 40°C and relative humidities of 31, 48, 66, 74 and 82% for the initial banana foam density of 0.3 g/cm^3

At the equilibrium state, the equilibrium moisture content tended to decrease with increasing temperature; these values were 0.1384, 0.1368 and 0.1308 d.b. for the temperatures of 35, 40 and 45°C , respectively. This may attribute to the excitation states of water molecules. At elevated temperature, the molecules are in higher states of excitation, thus increasing their distance apart and, in turn, decreasing the attractive forces between them (Jamali et al., 2006). Similarly, Kim et al. (1999) and Palou et al. (1997) found that the sorption capacity or equilibrium moisture content of crackers and cookies decreased with increasing temperature.

Effect of initial foam density

Figure 4 shows the moisture adsorption kinetics at temperature of 45°C for the initial foam densities of 0.3 and 0.5 g/cm^3 . It can be seen that the initial foam density strongly affects the moisture adsorption rate; the lower the initial foam density, the faster the adsorption rate. This is because the porosities of both banana foams were different; the void area fractions for the banana foam densities of 0.3 and 0.5 g/cm^3 were 31 and 26 %, respectively.

High porosity in porous foods provides less diffusional flux resistance and thus greatly facilitates the moisture transport to those porous foods. In the porous banana foam studied, the higher void area fraction for the banana foam density of 0.3 g/cm^3 is a result of the assembly of the giant pores with sizes larger than $150 \mu\text{m}$ which had a larger number (38%) than that at the foam density of 0.5 g/cm^3 as will be seen in Figure 6. These huge pores, serving as a massive transport of moisture through the interior pores, may be interconnected into almost all parts of the whole network. Hence, the rapid adsorption is

obviously evident for the foam density of 0.3 g/cm^3 . Prachayawarakorn, Prakotmak and Soponronnarit (2008), who studied the effect of pore assembly architecture on the drying rate, found that full set of pores which were assembled in a different way exhibited different drying rates. As the network archetype with the large pore assembly allocated onto the network exterior and the smaller pores to the interior, the drying rate is very fast as compared to the other pore architectures.

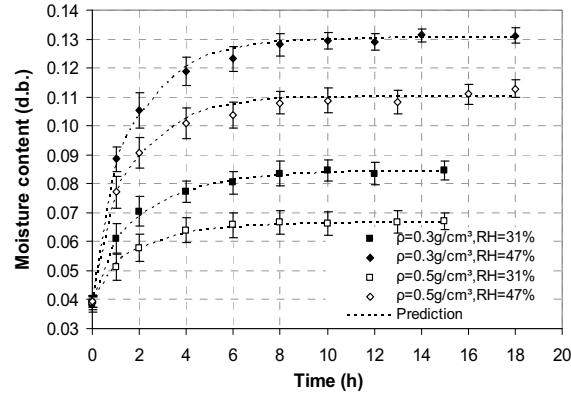


Fig. 4. Moisture adsorption kinetics at 45°C and relative humidities of 31 and 47% for the initial banana foam densities of 0.3 and 0.5 g/cm^3

As shown in Figure 4, the uptakes of moisture content into the banana foams after the elapsed time of 10 hours are very slightly and this indicated the system reaching the equilibrium state. At the equilibrium, the moisture content of banana foam at density of 0.3 g/cm^3 was apparently higher than that at 0.5 g/cm^3 due to different porosities.

Pore size distribution

The microstructures of dried banana foam mats characterized by SEM are shown in Figures 5a and 5b for various initial foam densities. The corresponding binary images are illustrated in Figures 5b and 5d. The reconstructed porous structures of the banana foams in binary image reasonably represented their original images. As shown in Figures 5a and 5c, the pores were random in sizes and irregular in shape. Moreover, the porosity appears to form a mass of interconnecting pores in the banana foam sample. This would be clear that it is very task to understand the interactions between pore structure and diffusional fluxes of moisture by using a simple mathematical model.

Figure 6 shows the pore size distributions of the dried banana foams at the densities of 0.3 and 0.5 g/cm^3 , both distributions obtained from the reconstructed pore structures. The characteristic of distributive pore sizes was reasonably described by grammar distribution. The sample with an initial foam density of 0.3 g/cm^3 had small pore assembly in the range 6 to $150 \mu\text{m}$ accounting for 62% of the whole number

of pores and for 38% with the pores larger than $150 \mu\text{m}$. For the density of 0.5 g/cm^3 , it appears the proportion of small pores accounting for 71% which was higher than the sample at the density of 0.3 g/cm^3 for the same pore size range. However, the porosity of sample at the density of 0.5 g/cm^3 was relatively smaller as mentioned before because the large pores had a smaller number.

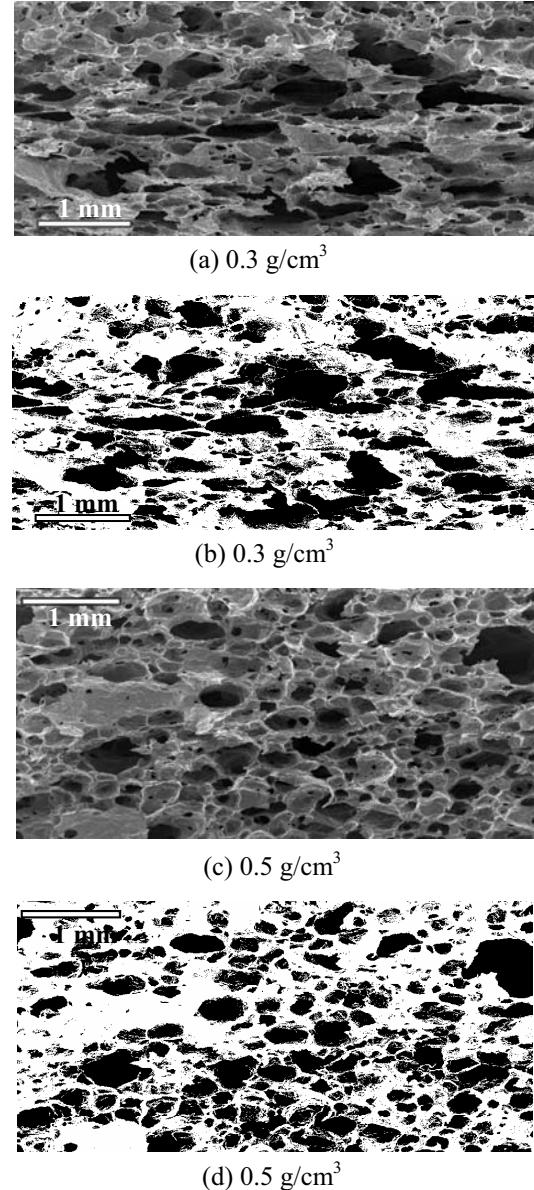


Fig. 5. (a,c) SEM micrographs of dried banana foam mats at different initial foam densities and binary images (b,d)

Apparent pore diffusivity

Figure 7 shows the values of pore diffusivity in banana foam at different temperatures and relative humidities. Considering at a given temperature, for example at 40°C , most moisture diffusivity data had a slight change for the humidity range below 70%, corresponding to the lower equilibrium moisture

contents than 0.2214 d.b. for all adsorption conditions used in this study. These results, when analyzed statistically with Duncan's test, showed an insignificant difference. The mean values of apparent pore diffusivity were in the order of $10^{-9} \text{ m}^2/\text{s}$. In fact, the orders of magnitude of the diffusion coefficients depend on the state of substance: for gases, approximately 10^{-5} ; for liquids, approximately 10^{-9} (Aguilera and Stanley, 1999). From this information, it might be indicated that the transport of moisture through the banana foam mat mainly occurred in form of liquid. Similarly, Roca et al. (2006) reported that the adsorption of water vapor by sponge cake occurred mainly in liquid phase.

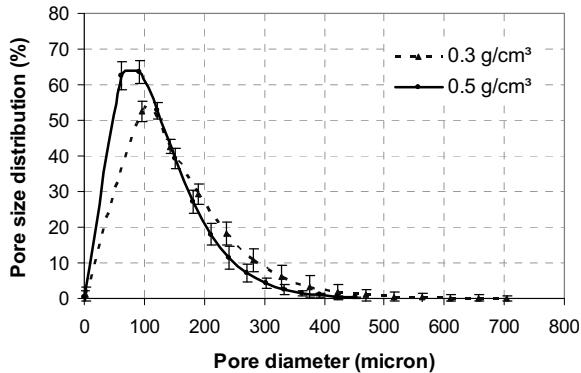


Fig. 6. Pore size distributions of dried banana foam at different densities

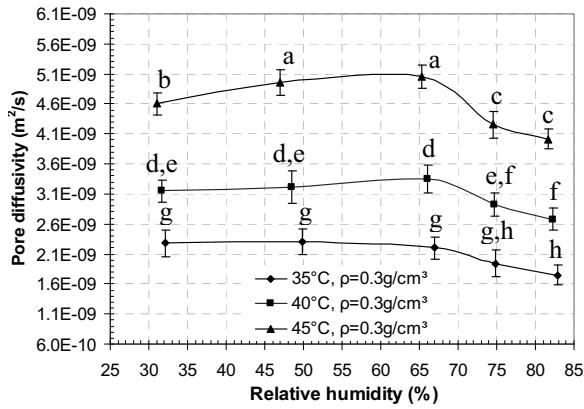


Fig. 7. Effects of temperatures and relative humidities on the pore diffusivities for the initial banana foam density of 0.3 g/cm^3 : the same letter means insignificant difference ($P>0.05$)

Once the relative humidity was higher than 70% however, the pore diffusivity decreased relatively with increase in the relative humidity. In this case, the water vapor adsorption rate was very fast and the texture of banana foam was subsequently very soften as observed from the experiments, which leads to collapse of the pores and decrease of diffusivity as a consequent result. Figure 7 also presents the effect temperature on apparent pore diffusivity. As expected, the apparent pore diffusivity significantly increased with increase in temperature ($P<0.05$).

Figure 8 shows the apparent pore diffusivity of water for the samples at the initial foam densities of 0.3 and 0.5 g/cm^3 . The pore diffusivity was slightly lower at the foam density of 0.5 g/cm^3 than at the density of 0.3 g/cm^3 for all experimental conditions. However, the statistical analysis of these pore diffusivity data showed the insignificant difference among the two initial foam densities.

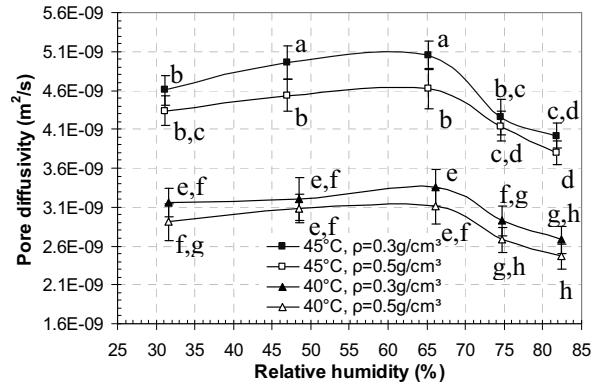


Fig. 8. Effect of initial foam densities on the apparent pore diffusivities at different relative humidities and temperatures of 40 and 45°C : the same letter means insignificant difference ($P>0.05$)

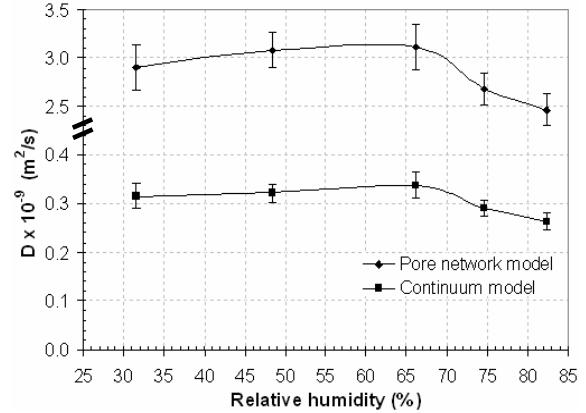


Fig. 9. Comparison between pore diffusivities and effective diffusivities of banana foam mat at 40°C and relative humidities for the initial banana foam density of 0.5 g/cm^3

Figure 9 shows the comparison of the apparent pore diffusivity and the effective diffusivity. The value effective diffusivity was determined using Eq. (1) assuming that the moisture migration occurred in one dimension and the water vapour transported from the air to the top surface by convection. It can be seen that the effective diffusivity is approximately 9 times lower than the pore diffusivity. If the fraction void area for the banana foam density of 0.5 g/cm^3 was 0.26 as previously mentioned, the tortuosity factor calculated by Eq. (2) was 2.3.

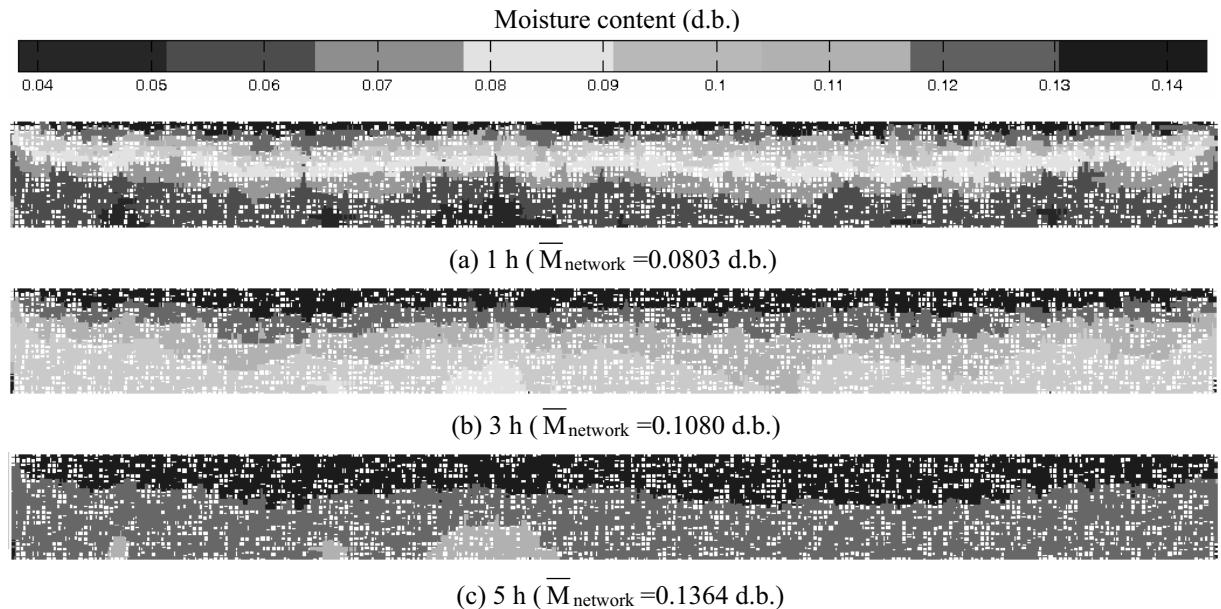


Fig. 10. Visualization of moisture contents in pores of banana foam at temperature of 35°C, initial foam density of 0.3 g/cm³ and relative humidity of 50%

This value was in a normal range of porous materials (adsorbents and catalysts) for which the tortuosity factor varies between 2 and 6, corresponding to the porosity between 0.3 and 0.8 (Aguilera and Stanley, 1999)

Validation

As previously shown in Figures 2 and 3, the pore network model showed a good fit to the experimental data throughout the exposure time, with R^2 -values above 0.98 at the relative humidity below 67%. Beyond 67%, however, the lower accuracy of prediction was found (R^2 values varying between 0.96-0.97); the model predicted the change of moisture content of sample relatively faster than the experiment at the early exposure time and became relatively slower at the later time.

Graphic visualization

Figure 10 shows the moisture distribution in 2-D pore network during adsorption process. Each pore was colored according its moisture content. The representative colours with 8 shades from red to blue were used for corresponding range of moisture from 0.038 to 0.138 d.b.

At the beginning, every pore within the network presumably contained the moisture content of 0.038 d.b. After 1 hour of adsorption, it can be seen in Figure 10a that the adsorption front moved from the top to the bottom and this confirmed the assumption used in the model. Moisture content near the surface reached the equilibrium value of 0.138 d.b. whilst the

moisture content near the bottom was approximately 0.05-0.06 d.b., indicating that the liquid water only forms a thin liquid film near the pore walls and moisture transfer processes at this time may be dominated by molecular vapour diffusion.

In addition, it is clear from Figure 10 that the pattern of increasing moisture content at the same horizontal plane for a given time was irregular, reflecting the pore structure effect. As a result, the moisture contents were quite different and this can be seen clearly at the bottom surface of the pore network for the exposure time of 3 hours as an example, showing the moisture content of approximately 0.08-0.09 d.b in a small area as indicated by yellow colour (see Figure. 10b) whilst the other areas at the bottom surface were coloured by green corresponding to the moisture contents of 0.095-0.105 d.b. For the region of lower moisture content, the pores positioned at that region were relatively larger in sizes than the surrounding nearby pores. Hence, the moisture diffusing through those large pores was restricted by the smaller ones since the cross sectional area available for moisture diffusion is reduced in the surrounding nearby small pores.

CONCLUSIONS

- A 2-D stochastic pore network has been developed to represent the pore structure of banana foam and the transport of water vapour in the pores of the network was described by Fick's second law. The optimization technique with a

golden-search method was used to determine the diffusivity of pores. The experimental results showed that the pore network model could describe the moisture migration inside banana foam relatively well.

- The interactions between pore structure and moisture movement were relatively complicated and the visualization using colour coded moisture content helped understanding of their interactions.
- The pore diffusivity at a given temperature insignificantly changed with the relative humidities, except for the higher relative humidities of 70% at which the diffusivity had a decreasing trend. Moreover, the pore diffusivity depended strongly on the temperature, but was independent of the initial banana foam densities.

NOMENCLATURE

a_w	water activities	-
D_{eff}	effective diffusivity	m^2/s
D_A	actual diffusivity in the pore voids	m^2/s
D_p	apparent pore diffusivity	m^2/s
h_m	convective mass transfer coefficient	m/s
L	pore length	m
M	moisture content (dry basis)	kg/kg^{-1}
N	number of interval	-
$r_{i,j}$	pore radius	m
RH	relative humidity	%
RMSE	root mean square error	-
t	adsorption time	s
T	temperature	$^{\circ}C$
x	distance along the pore length	m
Z	number of pores in the network	-

Greek letters

ε	porosity	-
τ	tortuosity factor	-
ρ	initial foam density	g/cm^3

Subscripts

i	initial
m	mass
e	equilibrium
exp	experimental
s	surface

ACKNOWLEDGEMENTS

The authors express their appreciation to the Commission on Higher Education and the Thailand Research Fund (TRF) for financial support.

REFERENCES

Aguilera, J. M., Stanley, D. W. (1999), Microstructural principles of food processing and engineering. Aspen Publishers Inc, Maryland.

Androutsopoulos, G.P. and Mann, R. (1979), Evaluation of mercury porosimeter experiments using a network pore structure model, Chemical Engineering Science, Vol. 34, pp. 1203-1212.

Blunt, M. (2001), Flow in porous media-pore-network models and multiphase flow, Current Openion in Colloid & Interface Science, Vol. 6, pp. 197-207

<http://www.intel.com/cd/software/products/ascona/eng/compilers/284132.htm>

Hollewand and Gladden, L.F. (1992), Modeling of diffusion and reaction in porous catalysts using a random three-dimensional network model, Chemical Engineering Science, Vol. 47, pp. 1761-1770.

Jamali, A., Kouhila, M., Mohamed, L. A., Idlimam, A., Lamharrar, A. (2006), Moisture adsorption-desorption isotherms of citrus reticulata leaves at three temperatures, Journal of Food Engineering , Vol. 77, pp. 71-78.

Kaya, S., Kahyaoglu, T. (2005), Thermodynamic properties and sorption equilibrium of pestil (grape leather), Journal of Food Engineering, Vol.71, pp. 200-207.

Kim, M. K., Okos, M., R. (1999), Some physical, mechanical, and transport properties of crackers related to checking phenomenon, Journal of Food Engineering, Vol. 40, pp. 189-198.

Labuza, T.P., Hyman, C.R. (1998), Moisture migration and control in multi-domian foods, Food Science and Technology, Vol. 9, pp. 47-55.

Mann, R. (1993), Developments in chemical reaction engineering: issues relation to particle pore structures and porous materials, Chemical Engineering Research and Design, Vol. 71, pp. 551-562.

Palou, E., Lopez-Malo, A., Argiz, A. (1997) Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks, Journal of Food Engineering , Vol. 31, pp. 85-93.

Prachayawarakorn, S., Prakotmak, P., Sopornronnarit, S. (2008), Effect of pore size distribution and pore-architecture assembly on drying characteristics of pore networks, International Journal of Heat and Mass Transfer, Vol. 51, pp. 344-352.

Roca, E., Guillard, V., Guilbert, S., Gontard, N. (2006), Moisture migration in a cereal composite food at high water activity: Effects of initial porosity and fat content, Journal of Cereal Science, Vol. 43, 144-151.

Segura, L.A., Toledo, P.G. (2005), Pore-level modeling of isothermal drying of pore networks:

Effects of gravity and pore shape and size distributions on saturation and transport parameters, Chemical Engineering Journal, Vol. 111, pp. 237-252.

Yiotis, A.G., Stubos, A.K., Boudouvis, A.G., Tsimapanogiannis, I.N., Yortsos, Y.C. (2005), Pore-network modeling of isothermal drying in porous media. Transport in Porous Media, Vol. 58, pp. 63-86.

EFFECT OF MOISTURE ADSORPTION ON EFFECTIVE DIFFUSIVITY AND TEXTURAL PROPERTY OF BANANA FOAM MAT

¹*Preeda PRAKOTMAK¹, Somkiat PRACHAYAWARAKORN² and Somchart SOPONRONNARIT¹

¹*School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi
126 Pracha u-tid Road, Bangkok 10140, Thailand*

²*Department of Chemical Engineering, King Mongkut's University of Technology Thonburi
126 Pracha u-tid Road, Bangkok 10140, Thailand*

Corresponding author: Somkiat PRACHAYAWARAKORN. E-mail: somkiat.pra@kmutt.ac.th

Keywords: adsorption kinetics; banana foam mat; crispness; effective moisture diffusivity

ABSTRACT

Foam-mat drying technique can improve the mass transfer rate. However, the high porous of dried product could quickly adsorb the moisture from the air during storage, leading to the lost of textural property. The main purpose of this research was therefore to study moisture adsorption kinetics of banana foam mat and its quality. The adsorption isotherms experiments were carried out with standard static method using saturated salt solutions over a wide range of relative humidities from 31 to 82%, and a temperature range of 35 to 45°C. Two different banana foam densities of 0.21 and 0.26 g/cm³ were used to adsorb water vapor under the controlled conditions. A Fick's second law and the optimization technique were used to estimate the effective moisture diffusivity (D_{eff}) at adsorption conditions. Three empirical equations i.e. a power-law, and two exponential forms for describing the dependence of the effective moisture diffusivity on moisture content were tested. The power-law function was suitably described the variation of the effective moisture diffusivity with moisture content. The force deformation curve obtained from a penetration test of the samples showed that an increase of moisture content of sample decreased number of peaks and initial slope.

INTRODUCTION

The foam mat drying can enhance the drying rate of banana since its structure is very porous. The textural properties in particular hardness and crispiness are better in the dried foamed banana than the non foamed banana; the foamed banana provides less hardness and more crispy. However, the product is very hygroscopic and its texture could be lost quickly if it keeps undergoing undesirable condition. To circumvent the undesirable property, the understanding of moisture adsorption for the banana foam at conditions is necessary. Application of food texture analysis and moisture diffusivity will help to improve food product quality adsorption conditions and understand the movement of moisture.

Many dry crispy products are sensitive to moisture migration. Moisture transport in porous foods is very complicated since the pore system is very complex and irregular. Generally, the diffusion of gases or liquids through the complex structure can be simply described by classical Fick's second law in which the overall mass transports are lumped into an effective diffusivity. The wide ranges of effective moisture diffusivity in different physical structure of food materials have been reported in

the literature [1] and it has been known to be either independent or function of moisture content. Nevertheless, general model for evaluating the effective diffusivity of food materials have not existed [2]. Many empirical such as power-law, polynomial and exponential forms were frequently used to describe the relation of effective moisture diffusivity with moisture content in the foodstuffs [3, 4 and 5]. The different result in effective moisture diffusivity values would be attributed to the difference in food structure.

The objectives of this study were to select a suitable empirical equation of effective moisture diffusivity, to investigate the influence of relative humidity, temperature and initial foam density on the effective moisture diffusivity. The effect of moisture content on product textures was also determined. The textural property was characterized by initial slope, number of peaks and maximum force.

DRIED BANANA FOAM PREPARATION

The banana puree with 5% of fresh egg albumen used as foaming agent were foamed to density of 0.3 and 0.5 g/cm³. The density was determined by measuring the mass of a fixed volume of the foam. The banana foams was poured slowly into a steel block and then placed on a mesh tray, which was covered with aluminium foil. After that, it was dried to about 3% kg/kg d.b. using 80°C and a 0.5 m/s superficial air velocity. The banana foam prepared from the initial foam densities of 0.3 and 0.5 g/cm³ can produce the dried banana densities of 0.21 ± 0.02 and 0.26 ± 0.02 g/cm³, respectively. The product thicknesses after drying were 2.8 mm and 3.2 mm for the densities of 0.21 and 0.26 g/cm³, respectively. Five replicates were performed.

ADSORPTION EXPERIMENT

Moisture adsorption experiments were carried out using the static method. Samples were placed into the glass jars contained the saturated salt solutions (MgCl₂ 6-H₂O, Mg(NO₃)₂ 6-H₂O, KI, NaCl and KCl) which provided the relative humidity (RH) in range of 32-82% at the temperatures of 35, 40 and 45°C. All the jars were placed in the temperature-controlled oven at the operating temperature with a precision of ±1°C (UFE500, Memmert, Germany). Samples were weighed at different exposure

times ranging from 1 to 120 h. At RH > 74%, a small amount of toluene held in a vial was fixed in the glass jars in order to prevent microbial spoilage of the samples [6]. Moisture content of each sample after reaching the equilibrium condition was determined by drying it with the hot air oven at a temperature of 103°C for 3 h. The moisture content determined by the hot air oven was used instead of the AOAC method [7], the percentage error from two methods approximately 0.4% [8]. The experiment at each sorption condition was repeated three times and the mean value was reported.

SEM PHOTOGRAPH

The morphologies of dried banana foam mats were characterized using scanning electron microscope (SEM) with an accelerating voltage of 10 kV. Before photographing, the specimens were cut into a dimension of 5 × 5 mm and then glued on the metal stub. The samples were coated with gold, scanned, and photographed at 15X magnification

TEXTURE ANALYSIS

The effects of moisture content on product textures were studied. The initial moisture content of the banana foam was about 0.038 kg/kg d.b. The dried banana foam mats adsorbed water vapour in the glass jars which controlled relative humidity about 75% by using saturated NaCl solutions at temperature of 24°C. After moisture adsorbed for determined time, the test applied a direct force to the sample using a 5 mm spherical probe at a constant crosshead speed of 2 mm/s. The hardness was defined as the maximum force of the force-deformation curve and the crispness was characterized by the number of peaks and the slope of the first peak. The data were analyzed by ANOVA using Duncan's multiple range test at $p<0.05$. Eight samples were tested and the average values of hardness and crispness were presented. Moisture content of each sample after the texture analysis was determined. All experiments were performed at 24°C.

DETERMINATION OF EFFECTIVE MOISTURE DIFFUSIVITY

The banana foam mats used in the experiments has a dimension of 43 × 43 × 4 mm. This sample size may provide the transport of moisture in direction of thickness. The transport of moisture can be described by Fick's equation:

$$\frac{\partial M(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(D_{eff}(M) \frac{\partial M(x,t)}{\partial x} \right) \quad (1)$$

or

$$\frac{\partial M(x,t)}{\partial t} = D_{eff}(M) \frac{\partial^2 M(x,t)}{\partial x^2} + \frac{\partial M(x,t)}{\partial x} \cdot \frac{\partial D_{eff}(M)}{\partial x} \quad (2)$$

where $D_{eff}(M)$ is the effective moisture diffusion coefficient (m^2/s), M the moisture content (kg/kg d.b.), t the time (s) and x the distance along the diffusion path (m). In this study, it was assumed that the initial moisture distribution inside the sample was spatially uniform and the migration of water vapor from the surrounding air to

the foam mat surface occurred at the top surface and no moisture transferred at the bottom since the sample surface was placed on an opaque glass dish. Initial moisture distribution in the sample was assumed to be uniform. From the above assumptions, the following initial and boundary conditions can be setup:

$$M(x,t) = M_{in} \quad 0 \leq x \leq L \text{ at } t = 0 \quad (3)$$

$$D_{eff}(M) \left(\frac{\partial M(L,t)}{\partial x} \right) = h_m (M_e - M_s) \quad x = 0 \text{ at } t > 0 \quad (4)$$

$$\frac{\partial M(x,t)}{\partial x} = 0 \quad x = L \text{ at } t > 0 \quad (5)$$

where M_{in} is the initial moisture content (kg/kg d.b.), M_e and M_s the moisture content at the surface and at the equilibrium (kg/kg d.b.), respectively, L thickness of material (m), h_m the convective mass transfer coefficient (m/s). Eqs. (2), (4) and (5) can be, respectively written in a finite difference form as follows:

$$\frac{M_i^{t+1} - M_i^t}{\Delta t} = D_i \left(\frac{M_{i+1}^t - 2M_i^t + M_{i-1}^t}{(\Delta x)^2} \right) + \left(\frac{M_{i+1}^t - M_{i-1}^t}{2\Delta x} \right) \left(\frac{D_{i+1}^t - D_{i-1}^t}{2\Delta x} \right) \quad (6)$$

$$D_N^t \frac{M_N^{t+1} - M_{N-1}^{t+1}}{\Delta x} = h_m (M_e^{t+1} - M_N^{t+1}) \quad (7)$$

$$\frac{M_0^{t+1} - M_0^t}{\Delta t} = 2D_0^t \left(\frac{M_{i-1}^t - M_i^t}{(\Delta x)^2} \right) \quad (8)$$

In the calculation of moisture content, the sample thicknesses of 2.8 and 3.2 mm for the respective foam densities of 0.21 and 0.26 g/cm^3 were divided in 105 and 120 layers and the time step of 0.01 sec was chosen.

After the moisture content at every node is known, the average moisture content $\bar{M}(t)_{pre}$ can be readily be calculated by integrating the predicted moisture profile though out the sample thickness and the trapezoidal numerical integration was used:

$$\bar{M}(t)_{pre} = \frac{\left(M_0^t + M_N^t + 2 \sum_{i=1}^{N-1} M_i^t \right) \Delta x}{2L} \quad (9)$$

where N is number of layer. The dependence of diffusivity on moisture content can not be described by any specific equation. To find the suitable form of equation, three possible empirical equations obtained from the literature [9, 10, and 11] were tested with the moisture adsorption data.

$$D_{eff}(M) = D_0 \exp(- (e_1 M + e_2 M^2)) \quad (10)$$

$$D_{eff}(M) = D_0 \cdot M^{D_x} \quad (11)$$

$$D_{eff}(M) = D_0 \exp(-a \cdot M) \quad (12)$$

where D_0 , D_x , e_1 , e_2 , and a are the constant parameters.

The accuracy of the models was evaluated by root mean square error (RMSE) and coefficient of determination (R^2) value. The RMSE is defined as

$$RMSE = \left[\frac{1}{P} \sum_{n=1}^P (M(t)_{exp} - \bar{M}(t)_{pre})^2 \right]^{1/2} \quad (13)$$

where $M(t)_{exp}$ is the experimental average moisture content of material at time t , $\bar{M}(t)_{pre}$ the predicted average moisture content and P the number of experimental data. The lower the value of RMSE is the better the goodness of fit. In this work, a modified Nelder-Mead simplex method was used to estimate the constant parameters in Eqs. (10), (11) and (12). The RMSE was set as the objective function with a tolerance of 10^{-9} . The initial guesses obtained by least squares fits of the data calculated from the method of slopes [12]. The model with the lowest value of RMSE

and highest value of R^2 was considered the best model to correlate the experimental data. The code for numerical solution was written in Microsoft Visual C++ 6.0 programming language. All computations were implemented using Intel C++ Compiler [13] and run on a PC with 3.0 GHz.

RESULTS AND DISCUSSION

Identification of effective moisture diffusivity model

To find the appropriate diffusion equation, two sets of the moisture adsorption data at 40°C and 66% RH as well as at 35°C and 83% RH were demonstrated. The estimated constant parameters for Eqs (10), (11) and (12) along with their values of RMSE and R^2 are presented in Table. 1. The R^2 -value for all diffusion models is above 0.99 and the values of RMSE were lower than 0.007. When using these constant parameters for calculating the moisture content, it was found that all diffusion models can predict moisture content in agreement with the experiment as can be seen in Figs. 1a and 1d.

Table 1 Estimated parameters of empirical models for selected conditions

Estimated parameters	Experimental conditions					
	40 °C, 66% RH			35 °C, 83% RH		
	Eq.(10)	Eq.(11)	Eq.(12)	Eq.(10)	Eq.(11)	Eq.(12)
D_0	5.947×10^{-10}	8.908×10^{-11}	3.962×10^{-10}	1.709×10^{-10}	6.326×10^{-11}	1.236×10^{-10}
e_1	11.108	-	-	4.604	-	-
e_2	-27.508	-	-	-7.172	-	-
D_x	-	-0.463	-	-	-0.244	-
a	-	-	-3.914	-	-	-1.210
R^2	0.996	0.999	0.998	0.995	0.999	0.998
RMSE	0.0035	0.00101	0.00114	0.0065	0.00306	0.00336

However, when considering moisture diffusivity obtained from the models, it can be seen from Figs 1c and 1f that the diffusivity values of all diffusion models decrease with increasing moisture content. According to these results, it implied that difference in the values of effective moisture diffusivity determined from the models was insensitive to the calculation of moisture content; the moisture contents calculated using the diffusion models were almost superimposed. Hence, it is very difficult to identify the suitable model for predicting the moisture content based on the values of RMSE and R^2 , and one more criterion was used to quantify the quality of estimated constant parameters.

The local relative error (E) was used to identify the suitable diffusion model and it is defined as

$$E(t) = 100 \frac{|M_{exp}(t) - M_{calc}(t)|}{M_{exp}(t)} \quad (14)$$

where $M_{exp}(t)$ is the experimental moisture content at time t and $M_{calc}(t)$ is the moisture content from prediction. If the estimation of moisture content is perfect, the value of E at time t is zero. The values of E for the three empirical

diffusion models are shown in Figs. 1b and 1e, indicating that the value of E was less than 1% throughout the exposure time when the relationship between effective moisture diffusivity and moisture content was described by Eq. (11) whilst the error from prediction by using other equations were higher than 1 %.

The prediction of adsorbed moisture content at the early period with high accuracy is very important to crispy product since the product quickly loses its crispy texture when the product adsorbs the water vapor up to certain moisture content. From this study, the banana foam will lose crispiness at moisture content about 5% d.b. as can be seen in section of texture banana foam. From these results, it can be deduced that Eq. (11) is reasonably used to describe the moisture adsorption of banana foam. This power-law model is also used to describe moisture adsorption in the snack foods such as sponge cake [14], showing the similar trend of moisture diffusivity with moisture content.

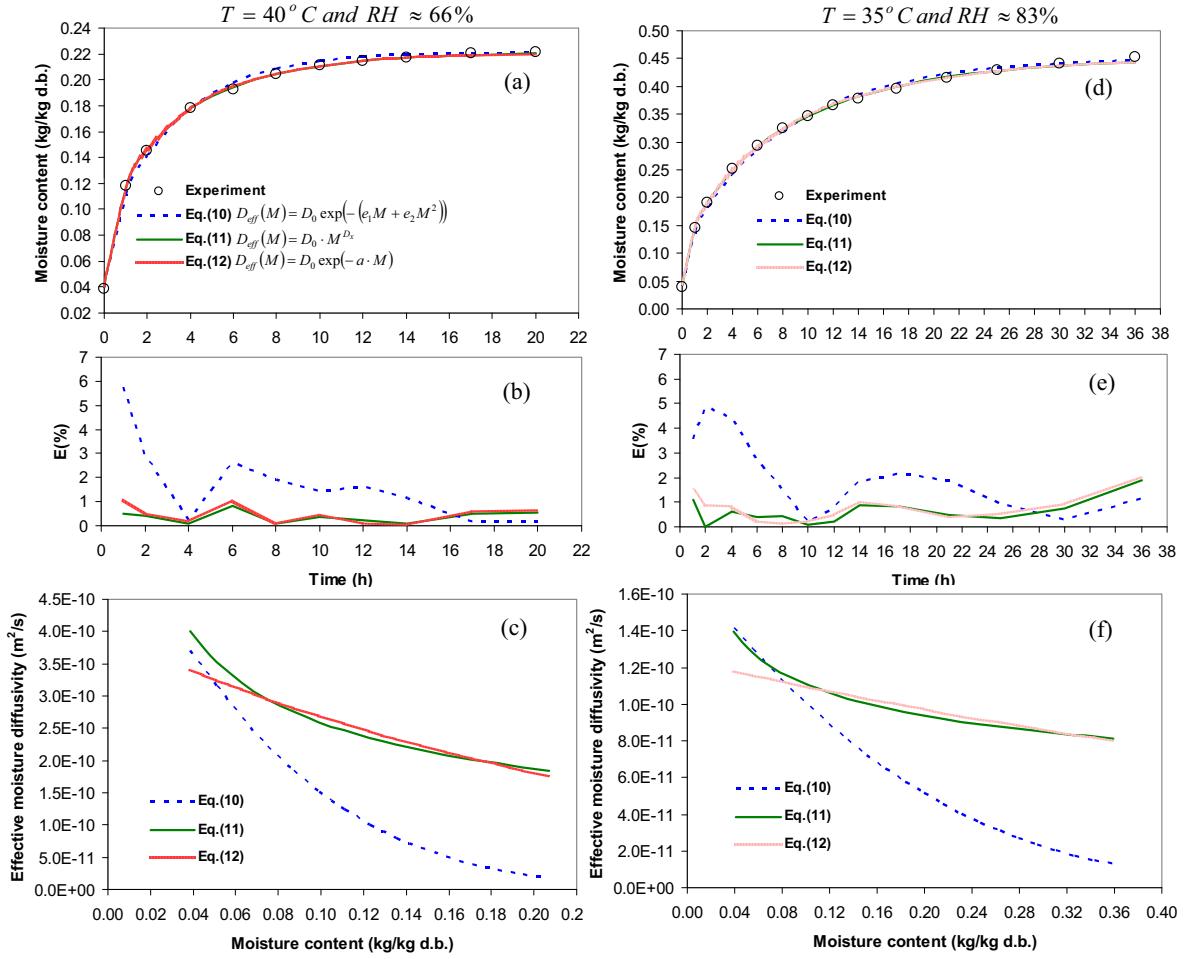


Fig. 1. Validation of the moisture uptake estimated and the variation of effective diffusion coefficient with moisture content of two selected cases

Effect of relative humidity on effective moisture diffusivity

Fig. 2 shows the moisture adsorption at 35°C and relative humidity of 32 to 83% for the banana foam density of 0.21 g/cm³. As expected, the faster adsorption rate was accomplished with higher relative humidity. The predictions of moisture content using Eqs. (1) and (11) agreed well with experimental data over a wide range of relative humidities.

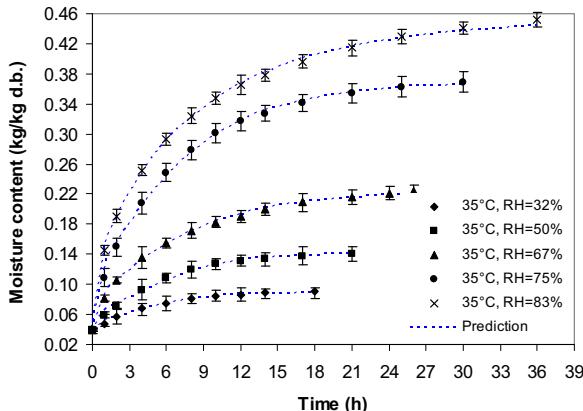


Fig. 2. Effect of relative humidities on moisture adsorption kinetics at 35°C for the foam density of 0.21 g/cm³

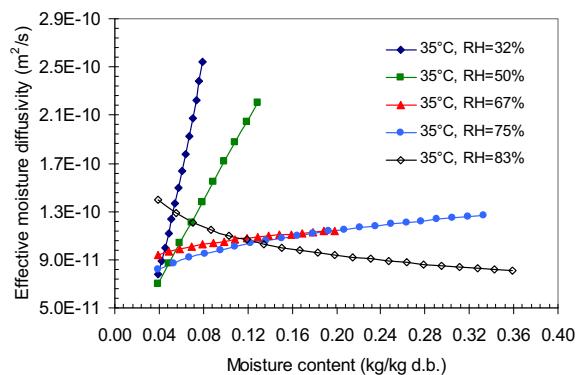


Fig. 3. Variation of effective diffusion coefficient with moisture content at various relative humidities for the dried banana foam density of 0.21 g/cm³

Fig. 3 shows the changes of D_{eff} with moisture content at 35°C and at different relative humidities. The trend of changing D_{eff} with moisture content was very different amongst relative humidities. The values of D_{eff} remarkably increased with increasing moisture content at relative humidity of 32% and when the relative humidity increased continually, the change of D_{eff} with moisture content became smaller, as indicated by a lower slope,

until at relative humidity of 83% the D_{eff} trend was reversed, showing a decrease in D_{eff} when the sample adsorbed water vapor. The D_{eff} trends at other temperatures such as 40 and 45°C were similar to Fig.3, but the tendency for D_{eff} to decrease with moisture content occurred at lower relative humidity (66% RH at 40-45°C).

Such different trends of D_{eff} can be explained by the fact that at the relative humidity of 32% the water vapour can diffuse rapidly through the voids of the banana foam mats and is then adsorbed onto the pore wall. Since the equilibrium moisture content at this relative humidity is very low (< 0.13 kg/kg d.b.), the moisture content at this level is called bound water. The molecular mobility of bound water increases with the level of moisture content. Hence, the increase of D_{eff} with increasing moisture content could be attributed to contributions from diffusion in the solid matrix of food and vapour diffusion in pores.

When the relative humidity increased, the water vapor molecules frequently collide amongst themselves in the pore space and the condensation of water vapor may occur inside the pore spaces in particular small pores. The occurrence of condensation is due to the increasing van der Waals interactions between vapor molecules inside pore space. When the pores inside the porous food are filled with the condensed water, the water vapour cannot diffuse through these pores and this, in turn, provides the smaller flux of water vapor diffusing through the porous food. Hence, the D_{eff} decreased. As shown in Fig. 3, for example, when compared at the same moisture content, the value of D_{eff} was significantly lower at relative humidity of 50% than at 75%. From the condensation effect, the change of moisture diffusivity with moisture content became smaller at higher relative humidity.

At the relative humidity of 83% at which the banana foam surface of banana foam started getting wet at moisture content of approximately 0.12 kg/kg d.b. This may cause a sharp decrease of D_{eff} for the moisture range of 0.04 kg/kg d.b. to 0.12-0.16 kg/kg d.b. Beyond this range, the D_{eff} changed slightly, implying that the transport of moisture is contributed from the liquid diffusion.

Effect of temperature and initial foam density on effective moisture diffusivity

Fig. 4 shows the changes of D_{eff} at 35 and 40°C. As expected, the D_{eff} increased with increase in temperature.

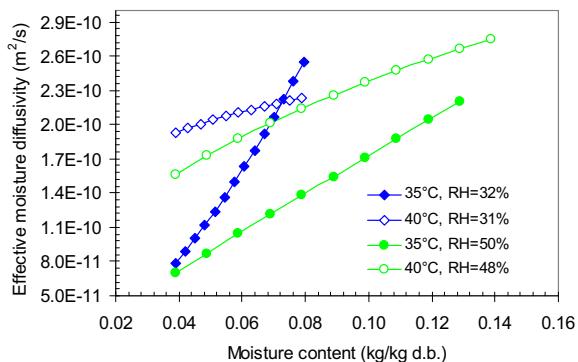


Fig. 4. Effect of temperatures on the D_{eff} at the foam density of 0.21 g/cm^3

Fig. 5 shows the D_{eff} value for both foam densities at an illustrated temperature of 35°C for the relative humidities approximately 32 and 50%. As shown in this

figure, at the same relative humidity, the D_{eff} was slightly lower at the foam density of 0.26 g/cm^3 than at the density of 0.21 g/cm^3 . The difference in the D_{eff} can be accounted for the morphology difference among both samples as can be seen in the SEM.

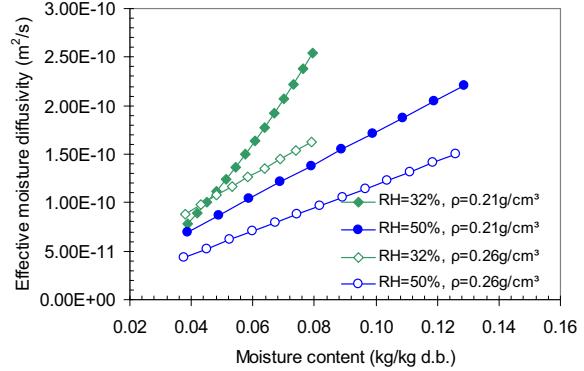
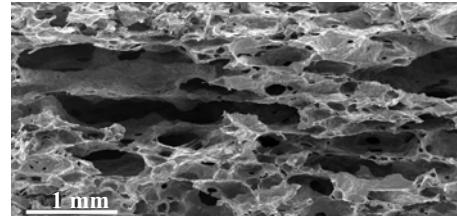
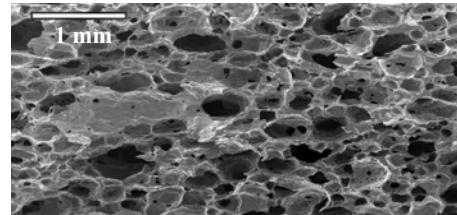




Fig. 5. Effect of initial foam densities on D_{eff} at the temperature of 35°C

(a) 0.21 g/cm^3

(b) 0.26 g/cm^3

Fig. 6. SEM micrographs of dried banana foam mats at different initial foam densities

The microstructures of dried banana foam mats characterized by SEM are shown in Figs. 6a and 6b for two initial foam densities. It is clear from these figures that the sample with an initial foam density of 0.21 g/cm^3 had larger pore than higher foam density. In the porous banana foam studied, the void area fractions for the banana foam densities of 0.21 and 0.26 g/cm^3 were 31 and 26 \% , respectively. High porosity in porous foods provides less diffusional flux resistance and thus greatly facilitates the moisture transport to those porous foods.

Texture of banana foams

Fig. 7 shows the curves of the force measured versus displacement recorded by texture analyzer at different moisture content levels. As observed from this figure, the maximum force decreased with increasing the moisture content levels. The jagged pattern of the force-deformation

curve reflects the higher crispy behavior of the banana foam mats. When the sample was adsorbed more moisture, this fracture pattern was absent, revealing the sample is not expected to have the crisp and hard eating character.

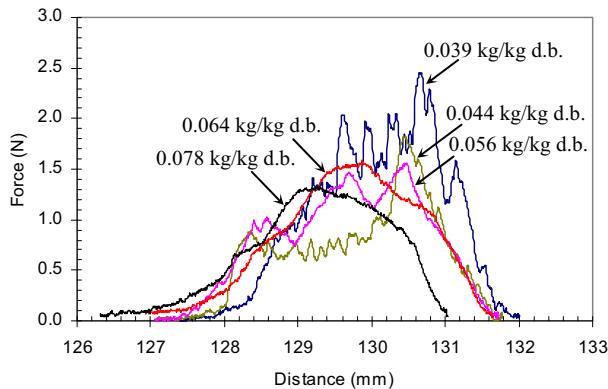


Fig. 7. Variation in force-deformation curve during compression test at various moisture content levels for foam density of 0.21 g/cm^3

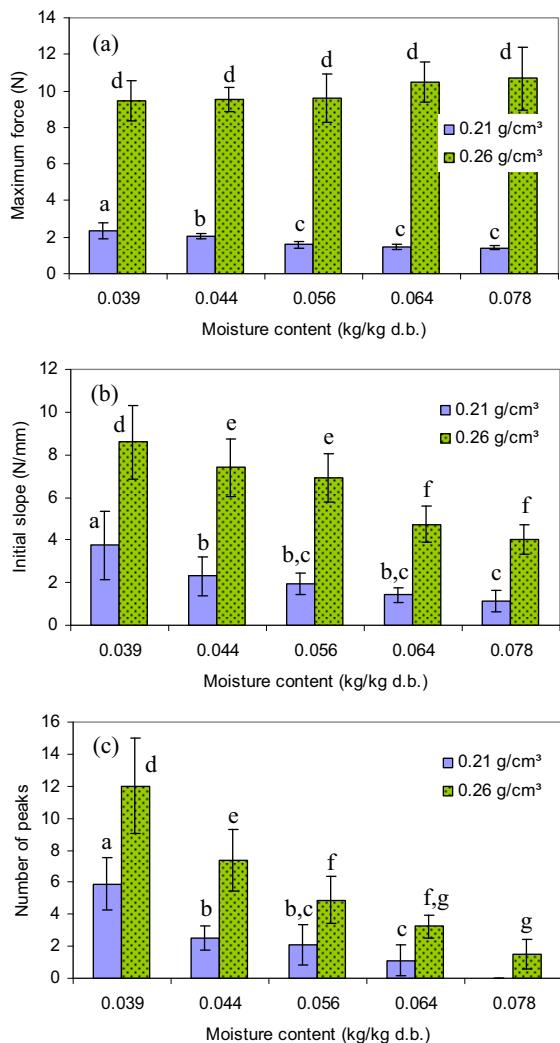


Fig. 8. Effect of moisture content and initial foam densities on (a) maximum force, (b) initial slope and (c) number of peaks of the banana foam mats

The textural parameters such as maximum force, initial slope and number of peaks are determined from force-deformation curve and the results are shown in Fig. 8. The number of peaks was counted when the force amplitude is more than the threshold values, which was set at 30 g. The statistical analysis results were also shown in Figs. 8b and 8c. The number of peaks and initial slope for both foam densities significantly decreased with increasing moisture content, but the maximum forces of each initial foam densities were insignificantly different when the moisture content increased. The number of peaks for both foam densities approaches zero at moisture content of about 0.078 kg/kg d.b. , which indicate that the product lost all its characteristic crispness.

In the tropical countries such as Thailand, the relative humidity was around 65-73%. At this range of relative humidity, the equilibrium moisture content of the banana foam was approximately $0.24\text{-}0.36 \text{ kg/kg d.b.}$ Hence, the banana foam mat can lose its textures. To maintain the crispy texture of product, the banana foam should be kept at low relative humidity or kept with a good packing system.

CONCLUSION

An optimization technique using Nelder-simplex method was applied to estimate the effective moisture diffusivity. Three empirical equations describing the dependence of the effective moisture diffusivity on moisture content were tested. The statistical analysis shows that a power law function suitably described the relationship of the effective moisture diffusivity with moisture content in banana foam mat. The relative humidity strongly affected the moisture diffusion mechanisms as indicated by the subtle changes of effective moisture diffusivity at conditions. In addition to the moisture content and relative humidity, the effective moisture diffusivity depended on the temperature and foam density. As the banana foam adsorbed water vapor, the number of peaks and initial slope decreased, but the maximum force did not change.

ACKNOWLEDGMENTS

The authors would like to express their appreciation to the Commission on Higher Education, Thailand for supporting by grant fund under the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree for this research. This work was also supported in part by the Thailand Research Fund and King Mongkut's University of Technology Thonburi.

REFERENCES

1. Tong, C.H. and Lund, D.B. Effective moisture diffusivity in porous materials as a function of temperature and moisture content. *Biotechnol. Prog.* 6: 67-75 (1990)
2. Saravacos, G.D. and Maroulis, Z.B. Transport properties of foods, Marcel Dekker, New York (2001)

3. Zogzas, N.P., Maroulis, Z.B. and Marinos-Kouris, D. Moisture Diffusivity Data Compilation in Foodstuffs. *Drying Technology*. 14: 2225-2253 (1996)
4. Loulou, T., Adhikari, B. and Lecomte, D. Estimate of concentration-dependent diffusion coefficient in drying process from the space-average concentration versus time with experimental data. *Chemical Engineering Science*. 61: 7185-7198 (2006)
5. Bourlieu, C., Guillard, V., Powell, H., Vallès-Pàmies, B., Guilbert, S., and Gontard, N. Modelling and control of moisture transfers in high, intermediate and low a_w composite food. *Food Chemistry*. 106: 1350-1358 (2008)
6. Kaya, S. and Kahyaoglu, T. Thermodynamic properties and sorption equilibrium of pestil (grape leather). *Journal of Food Engineering*. 71: 200-207 (2005)
7. AOAC. Official Methods of Analysis, 16th ed, Association of Official Agricultural Chemists, Washington, DC (1995)
8. Thuwapanichayanan, R., Prachayawarakorn, S., and Sopornronnarit, S. Modeling of diffusion with shrinkage and quality investigation of banana foam mat drying. *Drying Technology*. 26: 1326-1333 (2008)
9. Olek, W. and Weres, J. Effects of the method of identification of the diffusion coefficient on accuracy of modeling bound water transfer in wood. *Transport Porous Media* (2006)
10. Guillard, V., Broyart, B., Bonazzi, C., Guilbert, S. and Gontard, N. Moisture diffusivity in sponge-cake as related to porous structure evaluation and moisture content. *Journal of Food Science*. 68: 555-562 (2003)
11. Sakin, M., Kaymak-Ertekin, F., and Ilcali, C. Modeling the moisture transfer during baking of white cake. *Journal of Food Engineering*. 80: 822-831 (2007)
12. Karathanos, V. T., Villalobos, G., and Saravacos, G. D. Comparison of two methods of estimation of the effective moisture diffusivity from drying data. *Journal of Food Science*. 55: 218-233 (1990).
13. Intel® Software Network. Available (2009) at: <http://www.intel.com/cd/software/products/asmo-na/eng/368972.htm>
14. Roca, E., Guillard, V., Guilbert, S. and Gontard, N. Moisture migration in a cereal composite food at high water activity: Effects of initial porosity and fat content, *Journal of Cereal Science*. 43: 144-151 (2006)

10 Superheated-Steam Drying Applied in Food Engineering

*Somkiat Prachayawarakorn
and Somchart Soponnonnarat*

CONTENTS

10.1	Introduction	331
10.2	Advantages and Limitations of Superheated Steam Drying	332
10.3	Fundamentals of Drying in Superheated Steam	334
10.3.1	Drying Characteristic Curves	336
10.3.2	Moisture Diffusivity	338
10.3.3	Mathematical Modeling	339
10.3.3.1	Heating-Up Period	341
10.3.3.2	Drying Period	344
10.4	Applications of Superheated Steam Drying to Food Materials	348
10.4.1	Parboiled Rice	348
10.4.2	Soybean Meal	350
10.4.3	Snack Foods	353
10.5	Concluding Remarks	357
	Acknowledgments	358
	References	358

10.1 INTRODUCTION

The primary aim of food drying is to preserve the product, as a decrease in the product moisture content can prevent the growth of microorganisms and enzymatic reactions. However, drying may have an adverse effect on physical, chemical, and nutritional values of food products. The success or failure of a drying process depends on the product quality obtained after drying and also on the efficiency of the process.

An idea of using superheated steam instead of hot gas (air, combustion, or flue gases) for drying was initially introduced in Germany in 1908 as reported by Douglas (1994), but its application was limited to only a few industries. Later, its use has widely been acknowledged in many applications, i.e., paper (Svensson, 1980; Douglas, 1994), foods (Iyota et al., 2001; Taechapairoj et al., 2003; Tang et al., 2005),

coal (Chen et al., 2000), and wood (Pang and Dakin, 1999). The product quality after drying is usually better in superheated-steam drying (SSD) than in hot-air drying, particularly in terms of less shrinkage and higher product porosity.

A superheated-steam dryer is normally designed as a closed loop in which exhaust steam may be either reused or employed in other processes resulting in net energy savings. The temperature of superheated steam used under atmospheric pressure generally varies between 100°C and 150°C. The high temperature restricts its application to foods that are not sensitive to heat. Mostly, the applications of SSD are related to starch-based products such as parboiled rice, noodles, potato chips, and durian chips (Iyota et al., 2001; Markowski et al., 2003; Taechapairoj et al., 2004; Jamradloedluk et al., 2007).

In this chapter, the basic concepts of SSD, drying characteristics, mathematical modeling of the process operation, and quality consideration of the selected food products are outlined and discussed.

10.2 ADVANTAGES AND LIMITATIONS OF SUPERHEATED STEAM DRYING

When water in a liquid state is contained in a closed vessel and heated under a given pressure, its temperature increases up to the boiling point as shown in Figure 10.1. At this point, water is called saturated liquid (shown by letter a in Figure 10.1). Upon continued heating, the temperature would remain constant at that saturation value and water would continually vaporize. During this heating period, the system contains two phases, liquid and vapor. After the last droplet of water vaporizes, there is only water vapor in the system, which is called saturated steam (shown by letter b in Figure 10.1). From a practical viewpoint, saturated steam cannot be used to dry any materials since the steam is wet. To obtain dry or superheated steam, saturated steam

needs to be further heated by flowing it through a heat exchanger. As a result, the temperature of steam increases beyond its saturation temperature. The temperature difference between superheated and saturated steam is called degree of superheat. Using superheated steam in an industrial process can lead to substantial energy savings if the vapor evaporating from the product being dried is condensed and if the latent heat of condensation can be recovered and used in other unit operations. This benefit makes superheated steam a more attractive drying medium for industrial use, especially if the energy cost for drying is a major proportion of the total production cost. In addition, the use of superheated steam for drying foods has advantages to both consumers and industry as detailed by many researchers (Lane and Stern, 1956; Shibata and Mujumdar, 1994; Tang and Cenkowski, 2000; Deventer and Heijmans, 2001; Soponronnarit et al., 2006):

1. Use of superheated steam as the drying medium leads to an oxygen-free drying system, which prevents oxidative reactions, resulting in an improvement of the product quality.
2. SSD allows pasteurization, sterilization, and deodorization of food products during drying. In addition, products are partially cooked, with possible favorable changes in their textural properties.
3. SSD may reduce processing time and processing steps. For example, in producing parboiled rice by a conventional process, the process consists of three main stages, namely, soaking, steaming, and drying. However, steaming and drying can be combined into one stage with the use of SSD, thereby allowing a significantly shorter processing time.
4. Higher drying rates are obvious in both constant and falling rate periods if the product can be dried at a temperature above the inversion temperature since the temperature difference between particle and fluid stream is larger in superheated steam than in hot air, resulting in higher heat flux from the gas to the particle surface. More details about the inversion temperature will be given in Section 10.3. The higher drying rates would increase the dryer performance, which leads to a reduction in equipment size or an increase in drying capacity.
5. SSD may have high thermal efficiency if the exhaust steam can be used elsewhere in the process.
6. SSD enhances physical food qualities as it leads to less shrinkage and high product porosity due to evolution of moisture inside the product during drying.

However, SSD also has the following limitations:

1. There is unavoidable condensation at the beginning of drying because raw materials are generally fed into the system at ambient temperature. This results in an increase in the moisture content of materials by approximately 2%–3%, resulting in an increase in the drying time by 10%–15%. In addition to the increase in the moisture content, condensation may interrupt the drying system, particularly in the case of a fluidized-bed dryer. Condensation of steam causes particle surface to be very wet and hence the particles would

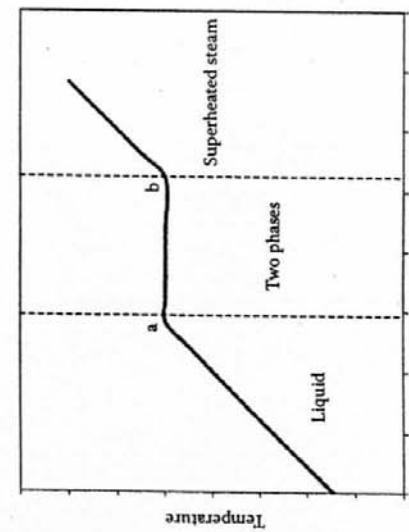


FIGURE 10.1 Illustration of changing states of water during heating.

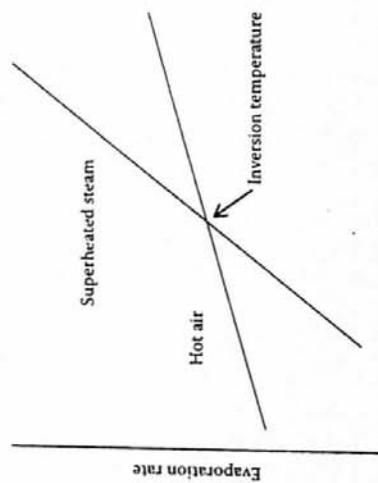


FIGURE 10.2 Variation of the evaporation rates with drying temperatures.

higher than that associated with a hot-air environment at temperatures beyond the inversion temperature.

Below the inversion temperature, the higher moisture evaporation rate in hot-air drying is related to the heat-transfer coefficient and the temperature difference between the sample surface and bulk gas phase. Considered at the same drying condition, i.e., a given gas velocity and a fixed operating pressure, both the heat-transfer coefficient and the temperature difference are higher for hot air than for superheated steam, being the latter variable more important. When the drying temperature reaches the inversion value, the temperature difference in Equation 10.1 is, in turn, smaller in hot-air drying than in SSD. However, this result can be compensated by the higher heat transfer coefficient for hot-air drying, and, hence, the drying rates in SSD and hot-air drying are equal at the inversion temperature. From this point on, the temperature difference is significantly larger for SSD. Moreover, the larger temperature difference in SSD is more dominant than the heat-transfer coefficient in hot-air drying. Thus, it provides higher heat flux and subsequently higher moisture evaporation rate in SSD.

The first experimental investigation to explore the inversion phenomenon was carried out by Yoshida and Hyōdō (1970). They reported an inversion temperature between 160°C and 176°C for the water-air countercurrent flow in a wetted-wall column. Chow and Chung (1983a,b) later presented numerical results of the evaporation of water into superheated steam and dry air for laminar (Chow and Chung, 1983a) and turbulent (Chow and Chung, 1983b) forced convection over a flat plate. Their analysis showed an inversion temperature of 250°C for laminar flow and 190°C for turbulent flow. Schwartz and Bröcker (2002) theoretically studied the evaporation of water into superheated steam, dry air, and humid air. They found the inversion temperature of 199°C for turbulent flow in a wetted-wall column.

The above findings are the results of evaporation rate, which is governed by convective transport phenomena. Several reports have shown that the inversion

agglomerate, resulting in more difficulty in fluidizing them. To alleviate this problem, raw materials need to be warmed up before being fed into the dryer.

2. An SSD system is more complicated and requires higher investment for insulation and auxiliary heating than in the case of a hot-air drying system. Shut down and start up also take longer for a superheated-steam dryer than for a hot-air dryer.
3. Application of SSD for heat-sensitive materials is unfavorable. Products that may suffer degradation at higher temperatures cannot be dried in superheated steam. However, it may be possible to use a two-stage drying technique, i.e., SSD followed by hot-air drying to alleviate this shortcoming. For example, drying of chicken meat using this two-stage technique appears to produce a higher quality dried product, i.e., product with less brown color and higher rehydration ability (Nathakaranakule et al., 2007).

10.3 FUNDAMENTALS OF DRYING IN SUPERHEATED STEAM

During drying, moisture from a drying product vaporizes into the drying medium, which then carries the water vapor away. The drying rate remains constant as long as the evaporated moisture of the material is available at its surface. During this constant drying rate period, heat transfer controls the moisture evaporation rate. In the case of hot-air drying, the moisture evaporation rate can be calculated by:

$$\frac{dM_w}{dt} = \frac{hA(T_{\text{drying medium}} - T_{\text{sample sur}})}{\Delta H_w^{\text{exp}}} \quad (10.1)$$

where

dM_w/dt is the drying rate (kg water s^{-1})

h is the heat transfer coefficient ($\text{W m}^{-2}\text{K}^{-1}$)

A is the surface area of material in contact with the drying medium (m^2)

ΔH_w^{exp} is the latent heat of evaporation of moisture (J kg^{-1})

T is the temperature (K)

The temperature at sample surface is equal to the wet bulb temperature of hot air. However, when hot air is replaced by superheated steam, $T_{\text{sample sur}}$ in Equation 10.1 is replaced by the saturation (boiling) temperature of steam at the dryer operating pressure. Equation 10.1 is derived based on the assumptions that other modes of heat transfer from the gas medium to the solid sample, such as sensible heat effects and heat losses from solid sample, are neglected.

According to Equation 10.1, the evaporation rate of moisture into superheated steam and hot air may have different values, depending on the temperature difference between the sample surface and the bulk gas/vapor phase, and on the heat transfer coefficient of the drying medium. When the drying temperature is lower than the so-called inversion temperature, the evaporation rate of moisture into hot air is higher than that into superheated steam as illustrated in Figure 10.2. On the other hand, the moisture evaporation rate into a superheated-steam environment becomes

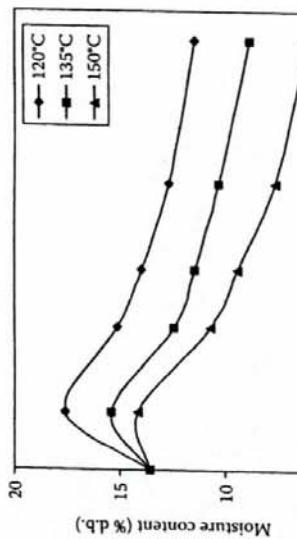


FIGURE 10.4 Change of moisture content of soybean at three different inlet steam temperatures. (From Prachayawarakorn, S. et al., *Drying Technol.*, 22, 2105, 2004. With permission.)

superheated-steam temperature and its saturation value at the dryer operating pressure. A higher degree of superheat obviously leads to a smaller amount of steam condensation, and thus to a smaller increase in the moisture content of the material. The effect of the degree of superheat on the moisture uptake can be seen in Figure 10.4. Condensation of steam may render the dryer operation unstable, particularly in the case of a fluidized-bed dryer. Condensation and formation of liquid around the feed stream of food material leads to a difficulty in maintaining a desired level of fluidization. In such cases, solid preheating may be a useful option because the amount of steam condensation would then decrease.

Nevertheless, steam condensation does not have only the disadvantages as mentioned earlier. Actually, it sometimes provides several advantages. James et al. (2000) compared three different treatment methods for decontaminating lamb carcasses, namely, steam condensation, hot-water immersion, and chlorinated-hot-water immersion. All three treatments significantly reduced aerobic plate counts on the carcasses. There was no significant difference between steam and hot-water treatments; both treatments reduced the counts by approximately $1 \log_{10}$ CFU cm⁻². In all cases, no significant differences were found in the evaluation of lean appearance, color appearance, odor, and overall acceptability of treated and untreated carcasses after 48 h of chilling and chilled storage. However, the use of steam seemed to have the greatest potential for industrial application since legislation and consumer concern would limit the use of chemical substances such as chlorine in decontamination applications, whereas the use of hot water may present problems in filtering, cleaning, and disposal stages.

In addition, steam condensation helps with gelatinization of starch. It has been reported that gelatinization of many starches is more complete in superheated steam than in hot air, in particular on the material surface, from which the moisture can easily be removed. Figure 10.5, for instance, shows morphologies of durian slices dried with superheated steam and hot air at 150°C (Iamradioedluk et al., 2007).

10.3.1 DRYING CHARACTERISTIC CURVES

During air-drying, the moisture content of the material decreases continually with time. An illustrative example of this phenomenon is shown in Figure 10.3. With superheated steam, however, the drying characteristic curve is different from that found with hot air; there is a gain in the moisture content in the early stage of drying. This increase in the moisture content is caused by the condensation of steam. However, for longer drying times, the drying curve becomes similar to the one in hot air.

Condensation occurs when superheated steam contacts the material surface, which is at a lower temperature. As a result, superheated steam releases its energy and changes its phase from vapor to liquid. The amount of steam condensed depends on the degree of superheat, which is defined as the difference between the actual hot air.

Condensation occurs when superheated steam contacts the material surface, which is at a lower temperature. As a result, superheated steam releases its energy and changes its phase from vapor to liquid. The amount of steam condensed depends on the degree of superheat, which is defined as the difference between the actual hot air.

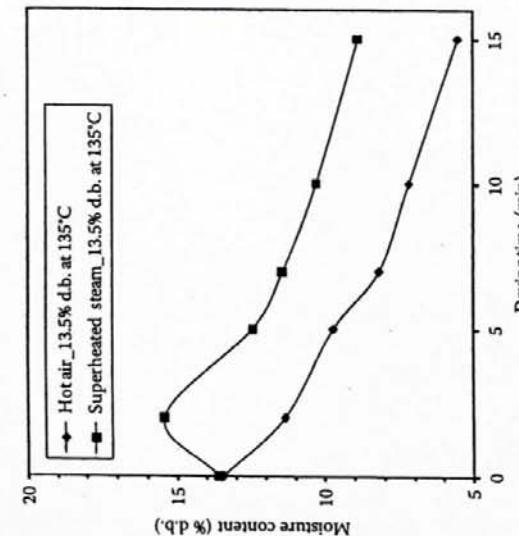
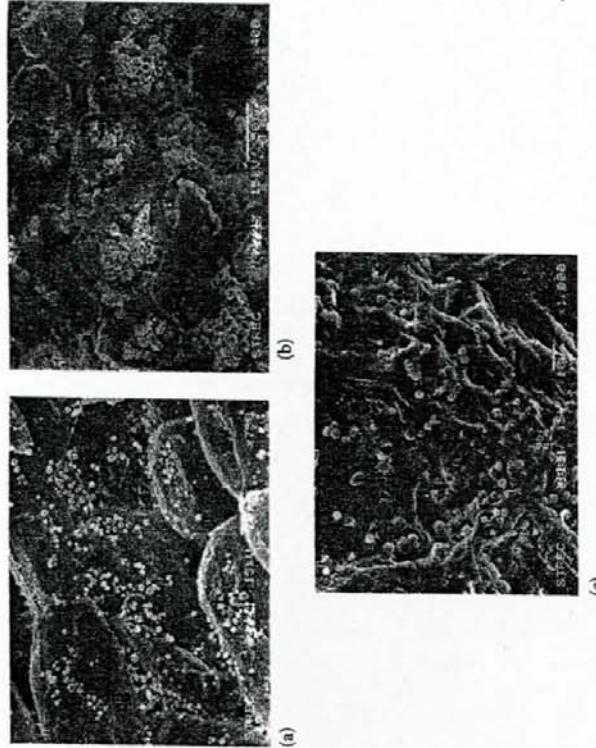



FIGURE 10.3 Drying curves of soybean in superheated-steam and hot-air fluidized bed. (From Prachayawarakorn, S. et al., *LWT-Food Sci. Technol.*, 39, 773, 2006. With permission.)

FIGURE 10.5 Scanning electron micrographs of durian. (a) Surface of raw sample. (b) Surface of sample dried with hot air. (c) Surface of sample dried with superheated steam. (From Jamradloedluk, J. et al., *J. Food Eng.*, 78, 203, 2007. With permission.)

As shown in Figure 10.5a, durian starch granules are spherical with an average diameter of 1–3 μm . When the samples were dried with superheated steam, the starch granules disappeared as shown in Figure 10.5c, indicating that starch was gelatinized. In contrast, ungelatinized starch granules still appeared when durian was subjected to hot-air drying as shown in Figure 10.5b. The gelatinization of starch granules on the material surface led to a smoother surface, produced a transparent layer, and provided a glossy product.

10.3.2 MOISTURE DIFFUSIVITY

Moisture diffusivity is a fundamental parameter for analyzing, designing, and optimizing a drying system. When a material is being dried with hot air, moisture inside it moves through interfacial void spaces, evaporating and reaching the surface. Moisture is then transported away to the flowing stream on account of the moisture concentration difference between the thin, air boundary layer on the material surface and the bulk air stream. Inside the material, the transport of moisture in the falling rate period may occur by several mass transfer mechanisms, such as Knudsen diffusion, molecular diffusion, and capillary flow. All the drying mechanisms, as well as the effect of the porous structure of the solid material, are lumped together into an effective (apparent) diffusion coefficient. This effective

moisture diffusivity can be determined from an experimental drying curve under a constant drying temperature, using classical analytical solutions of the diffusion equation, given by Crank (1975).

In SSD, the transport of moisture is driven by the pressure difference between the material surface and bulk stream and there is no mass transfer resistance on the gas side. During drying, the pressure at the material surface is equal to the saturation pressure at material temperature, and the pressure in the bulk stream is equal to the operating pressure. Moisture that exists inside the material starts to be removed when the material temperature reaches the saturation temperature of steam. The mechanisms of moisture movement inside the material in SSD are possibly similar to those in hot-air drying as mentioned above.

The morphology of the food material undergoing SSD may also be different from that of the material undergoing hot-air drying. Differences in such morphologies, in turn, affect the effective moisture diffusivity. Figure 10.6 shows experimental values and trends of the effective moisture diffusivity for foods dried by superheated steam and hot air, indicating lower values of this parameter when superheated steam is used (Poomsa-ad et al., 2002; Taechapairoj et al., 2004; Uengkimbuan et al., 2006; Jamradloedluk et al., 2007). The lower moisture diffusivity is due to the physically dense structures of food materials created during SSD. This led consequently to a lower drying rate in superheated steam compared to hot air.

10.3.3 MATHEMATICAL MODELING

This section describes a mathematical model that can be used to predict the temperature and moisture content of a material, especially cereal grain, in a batch superheated-steam dryer, operating near the atmospheric pressure. The model is first derived based on the fundamental transport equations for a drying particle, together with energy and mass balances for the dryer (fluidized bed), neglecting heat transfer by radiation, particle shape or size deformation (disregarding particle shrinkage or growth), and temperature gradients inside the particle. Superheated steam is injected into the bed of particles at constant inlet conditions (i.e., temperature, pressure, and mass flow rate). It is assumed that the inlet steam mass flow rate insures the bed-fluidization regime, and also that bubble formation and flow do not directly affect drying operation in SSD as they do in hot-air fluidized-bed dryers. Note that the free-bubbling regime assures a well mixing of superheated steam, but bubbles pass through the bed as an inactive phase, without the establishment of any concentration gradient to bring about water vapor transport, contrary to what occurs in hot-air drying. During drying, the wet particle with initially low temperature comes into contact with superheated steam. This naturally leads to steam condensation and an increase in both the particle moisture content and temperature. This initial condensation period is described in the mathematical model as the heating-up period. After the particle temperature reaches the saturation temperature of 100°C at an atmospheric pressure, condensation stops. Once the period of initial condensation is over, moisture evaporation starts. During the evaporation period, drying is presumably divided into two subperiods: constant drying-rate period and falling rate periods.

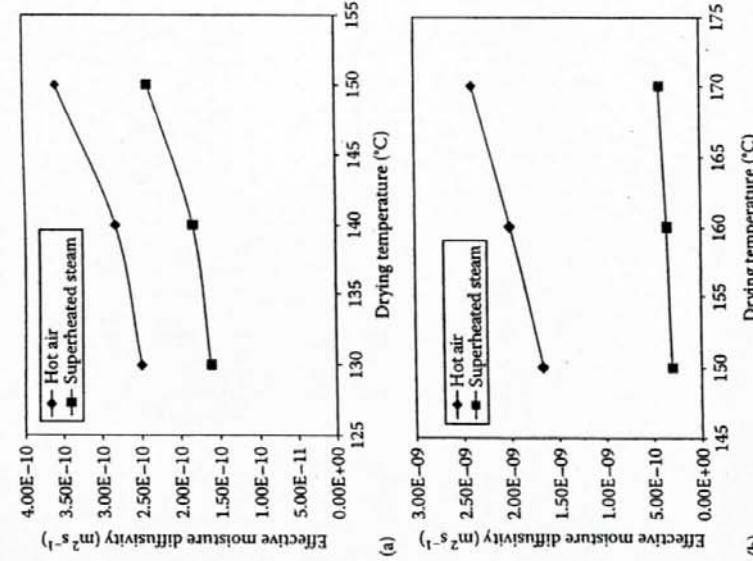


FIGURE 10.6 Comparison of effective moisture diffusivities of food materials dried with superheated steam and hot air. (a) Durian slice. (From Jamradioeduk, J. et al., *J. Food Eng.*, 78, 201, 2007. With permission.) (b) Rice. (From Taechapairoj, C. et al., *Drying Technol.*, 22, 729, 2004; and Poomsa-ad, N. et al., *Drying Technol.* 20, 2002. With permission.) (c) Pork slice. (From Uengkiumbuan, A. et al., *Drying Technol.* 24, 1666, 2004. With permission.)

10.3.3.1 Heating-Up Period

During the heating-up period, it is assumed that the condensed water forms a layer of liquid uniformly distributed over the entire external surface of each particle in the bed. This layer acts as a resistance to heat transfer from steam to particle surface. The rate of heat transfer, q , to particles into the bed can be described by:

$$q = h_{\text{p}} A_{\text{p,bed}} (T_{\text{st}}^{\text{sat}} - T_{\text{p}}) \quad (10.2)$$

with $A_{\text{p,bed}}$ representing the total heat transfer area of particles into the bed, including the thickness of the liquid film covering them.

This rate of heat transfer is equal to the rate of heat released by steam plus the cooling of the condensate, which is expressed by (Holman, 1997):

$$q = \dot{M}_{\text{cond}} \left\{ c_{\text{p,st}} (T_{\text{st}}|_{\text{in}} - T_{\text{st}}^{\text{sat}}) + \Delta H^{\text{vap}} + \frac{3}{8} c_{\text{p,w}} (T_{\text{st}}^{\text{sat}} - T_{\text{p}}) \right\} \quad (10.3)$$

or

$$q = \dot{M}_{\text{cond}} \Delta H^{\text{vap}} \quad (10.4)$$

Equation 10.3 is obtained by assuming a linear temperature distribution in the condensed liquid film and a laminar flow of the liquid film. It is also assumed that, in the bed, the condensed water in contact with particles has their temperature. The condensation of steam onto a spherical particle is schematically shown in Figure 10.7.

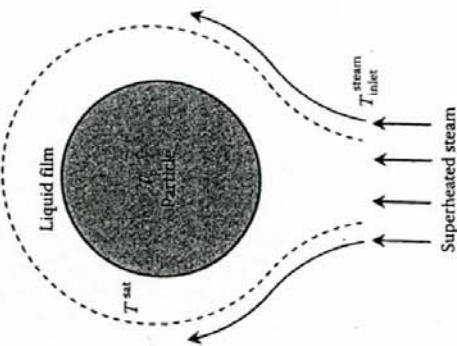


FIGURE 10.7 Liquid film condensation onto the surface of a particle.

Thus, based on these assumptions, the condensation rate of steam, \dot{M}_{cond} , can be calculated. The value of \dot{M}_{cond} calculated with Equation 10.3 may not be precisely accurate since the thin liquid film may not be stagnated in reference to the fluidized particles and there are strong interactions amongst the solid particles, resulting in less uniformity of liquid film covering the entire particle surface. When the condensation rate is higher than the mass flow rate of steam entering the bed, one would expect that the steam flowing through the bed be completely condensed. In this case, the warming up of particles can be calculated using Equation 10.3, with \dot{M}_{cond} replaced by the mass flow rate of steam. This situation may occur if the temperature of particles that are fed into the fluidized-bed dryer is rather low. Hence, the particles in the bed cannot fluidize.

For an energy balance of the solid phase, heat released from steam condensation can warm up both the particles and the condensed water, thus:

$$q = \left[M_{\text{ss}} (c_{\text{p},s} + \bar{m} c_{\text{p},w}) + M_{\text{fw}} c_{\text{p},w} \right] \frac{dT_p}{dt} \quad (10.5)$$

where

c_p is the specific heat capacity

\bar{m} is the average moisture content of particles

M_{fw} is the mass of condensed water covering the particle surface

The initial condition for solving Equation 10.5 is the particle temperature being equal to the ambient air temperature.

The heat transfer coefficient of the film condensation can be calculated from an empirical equation for an isolated sphere (Holman, 1997):

$$h_t = 0.815 \left[\frac{\rho_w (\rho_w - \rho_u) g \Delta H^{\text{vap}} \lambda_u^3}{\mu_u d_p (T_w^{\text{sat}} - T_p)} \right]^{\frac{1}{4}} \quad (10.6)$$

The physical properties of steam and of condensed water are evaluated at the film temperature, $T_h = \frac{T_w^{\text{sat}} + T_p}{2}$. Using Equation 10.6 to calculate the condensation heat transfer coefficient in the fluidized bed may lead to some errors since the fluidized particles change the gas fluid dynamics and subsequently the formation of boundary layers around the particles, which are not similar to the boundary layer around a single sphere.

The resulting steam condensation in the bed increases the moisture content of the particles, and this can be mathematically described by a differential mass balance for moisture in the particle. Assuming the food particle to be spherical with a constant volume, and neglecting convective effects, this mass balance (in spherical coordinates) is then expressed by

$$\frac{\partial m}{\partial r} = D_m^{\text{eff}} \left[\frac{\partial^2 m}{\partial r^2} + \frac{2}{r} \frac{\partial m}{\partial r} \right] \quad (10.7)$$

where D_m^{eff} is the effective diffusion coefficient ($\text{m}^2 \text{s}^{-1}$), assumed to be independent of the particle moisture content and temperature dependent. The value of D_m^{eff} during sorption of condensed water can be determined directly from soaking experiments at a given temperature. Initial and boundary conditions associated with Equation 10.7 are given by

$$m(r, t) = m_0, \quad \text{at } r = 0 \quad (10.8)$$

$$\left. \frac{\partial m}{\partial r} \right|_{r=0} = 0, \quad \text{at } t > 0 \quad (10.9)$$

$$m\left(\frac{d_p}{2}, t\right) = m_{\text{eq},c}, \quad \text{at } t > 0 \quad (10.10)$$

Equations 10.9 and 10.10 imply, respectively, that the minimum moisture content is at the center of the particle and that the surface moisture of the particle is in equilibrium with the condensed water. $m_{\text{eq},c}$ is the moisture content at the particle surface, which is supposed to equilibrate with the condensed water covering the surface. The value of $m_{\text{eq},c}$ can be determined by soaking the particles in hot water at the boiling-point temperatures until the particle mass does not change. The average moisture content of the particle, \bar{m} , is given by

$$\bar{m}(t) = \frac{4\pi}{V_p} \int_0^{d_p/2} m(r, t) r^2 dr \quad (10.11)$$

where V_p is the particle volume (m^3). The amount of the condensed water sorbed by all particles in the bed at time t , $M_{\text{sur}}(t)$, is

$$M_{\text{sur}}(t) = M_{\text{ss}} [\bar{m}(t) - \bar{m}(t - \Delta t)] \quad (10.12)$$

where the time interval, Δt , should be infinitesimal (i.e., tends to zero). The amount of the remaining condensate in the bed at time t , $M_{\text{fw}}(t)$, is thus:

$$M_{\text{fw}}(t) = \sum_{i=0}^t (M_{\text{cond}}(i) \Delta t - M_{\text{sur}}(i)) \quad (10.13a)$$

Initial condensation of steam enables faster development of particle temperature. However, subsequent condensation rate decreases, whereas the rate of water, sorbed by particles, increases. These opposite behavior might result in the sorption rate being faster than the condensation rate. If such a case occurs, the gain in moisture by particles would come from the water condensation at the present time plus the remaining condensed water on the particle surface, resulting in a smaller amount of condensed water into the bed. In this case, the remaining water at the present time is calculated by Equation 10.13a, which can be rewritten as

$$M_{\text{nw}}(t) = \dot{M}_{\text{cond}}(t)\Delta t - M_{\text{ev}}(t) + \sum_{i=0}^{t-\Delta t} M_{\text{nw}}(i) \quad (10.13b)$$

As there is no available condensed water left at the particle surface before condensation stopped, the increase in moisture content cannot be calculated directly by Equation 10.7. Therefore, at this time t_{H} (time just before condensation stop), $M_{\text{nw}}(t_{\text{H}}) = 0$, $T_p(t_{\text{H}}) = T_{\text{st}}^{\text{sat}}$, and $M_{\text{ev}}(t) = M_{\text{ss}} [\bar{m}(t_{\text{H}}) - \bar{m}(t_{\text{H}} - \Delta t)]$. Then, upon dividing Equation 10.13b by M_{ss} and using these equations at $t = t_{\text{H}}$, one obtains:

$$\bar{m}(t_{\text{H}}) = \bar{m}(t_{\text{H}} - \Delta t) + \frac{\dot{M}_{\text{cond}}(t_{\text{H}})\Delta t}{M_{\text{ss}}} + \sum_{i=0}^{t_{\text{cond}}-\Delta t} \frac{M_{\text{nw}}(i)}{M_{\text{ss}}} \quad (10.14)$$

From Equation 10.14, one may expect the occurrence of the constant drying rate period when the average particle moisture content is higher than the critical moisture content. Accordingly, the drying period should be divided into two: constant drying rate and the falling rate.

10.3.3.2 Drying Period

A mathematical description of the temperature changes of steam and particles within the bed is derived from an energy balance in the solid and gas phases. The solid-phase energy balance can generally be written as

$$hA_{\text{p-bed}}(T_{\text{st}}|_{\text{bed}} - T_p) = \left(-M_{\text{ss}} \frac{d\bar{m}}{dt} \right) \left[\Delta H^{\text{vap}} + c_{\text{p,ss}} (T_{\text{st}}|_{\text{bed}} - T_p) \right] \\ + M_{\text{ss}} (c_{\text{p,s}} + \bar{m} c_{\text{p,w}}) \frac{dT_p}{dt} \quad (10.15)$$

Equation 10.15 represents the energy used for vaporizing water and heating up this vapor to the steam temperature inside the bed, $T_{\text{st}}|_{\text{bed}}$ (indicating that the steam within the bed is in a gaseous state), as well as for heating up the bed particles. When the particle temperature reaches the steam saturation value and drying starts in the constant rate regime, the last term on the right hand side of Equation 10.15 is neglected. However, this term is relevant for the falling rate period.

As observed from the experiments carried out in a fluidized bed (Sopontonrat et al., 2006), while the material is being dried, the temperature of steam inside the bed dryer, $T_{\text{st}}|_{\text{bed}}$, is lower than the one at the inlet, $T_{\text{st}}|_{\text{in}}$, but $T_{\text{st}}|_{\text{bed}}$ is insignificantly different from the exhaust steam temperature, $T_{\text{st}}|_{\text{out}}$. Therefore, at least for shallow fluidized-bed dryers, the gas phase can be considered to flow in perfect mixing inside the dryer chamber (i.e., $T_{\text{st}}|_{\text{bed}} = T_{\text{st}}|_{\text{out}}$), with its energy balance written as

$$\dot{M}_{\text{st,in}} c_{\text{p,st}} (T_{\text{st}}|_{\text{in}} - T_{\text{ref}}) - \dot{M}_{\text{st,out}} c_{\text{p,st}} (T_{\text{st}}|_{\text{bed}} - T_{\text{ref}}) \\ = hA_{\text{p-bed}} (T_{\text{st}}|_{\text{bed}} - T_p) + \Gamma_{\text{st-amb}} A_{\text{wall}} (T_{\text{st}}|_{\text{bed}} - T_{\text{amb}}) \quad (10.16)$$

The first and second terms on the left-hand side of Equation 10.16 represent the energy carried by steam that, respectively, enters and leaves the drying chamber. This energy change is equivalent to the heat supplied for drying and heating particles plus the heat lost to the environment, whose temperature, T_{amb} , is known. In Equation 10.16, $\Gamma_{\text{st-amb}}$ represents the overall heat transfer coefficient between the steam inside the dryer and the surroundings, and A_{wall} is the contact area between the dryer walls and the surroundings, adopted as reference in the calculation of $\Gamma_{\text{st-amb}}$. It is assumed that the dryer internal wall is only in contact with steam, and particles therefore cannot lose their energy directly to the surroundings.

The gas-phase mass balance is now considered. The mass flow rate of steam leaving the drying chamber at any instant, $\dot{M}_{\text{st,out}}$, can be calculated by

$$\dot{M}_{\text{st,out}} = \dot{M}_{\text{st,in}} + \left(-M_{\text{ss}} \frac{d\bar{m}}{dt} \right) \quad (10.17)$$

Equation 10.17 represents an evaporation operation ($d\bar{m}/dt < 0$) leading to the mass flow rate of steam at the outlet being higher than that at the inlet under normal operation. Condensation, on the other hand, decreases the steam mass flow rate within the bed ($d\bar{m}/dt > 0$).

10.3.3.2.1 Constant-Rate Drying Period

As mentioned earlier, when the period of condensation finishes, the particle temperature reaches the steam saturation temperature ($T_p = T_{\text{st}}^{\text{sat}}$) and drying starts with the evaporation of unbound water from particle. Since only free water is removed in this case, drying occurs at a constant rate dictated by external conditions (steam flow rate, temperature, and pressure). This constant-rate drying period can be divided into two subperiods: the first one concerning the evaporation of the condensed water film covering particles, and the second one regarding the unbound water on the surface of particles.

During the first subperiod, one can consider that the interface at which water evaporates moves with decreasing film thickness until reaching the particle surface. Therefore, the moisture profile inside the particle remains unchanged until all condensed water has been removed from the surface. The temperatures of both the particle and the condensed water remain equal to $T_{\text{st}}^{\text{sat}}$ and Equation 10.15 is reduced to

$$h_{\text{fr}} A_{\text{p,bed}} (T_{\text{st}}|_{\text{bed}} - T_{\text{st}}^{\text{sat}}) = \left(- \frac{dM_{\text{ss}}}{dt} \right) \left[\Delta H^{\text{vap}} + c_{\text{p,st}} (T_{\text{st}}|_{\text{bed}} - T_{\text{st}}^{\text{sat}}) \right] \quad (10.18a)$$

After the condensed water film has been removed, unbound water starts to be evaporated at particle surface, which marks the beginning of the second drying subperiod. In this case, Equation 10.18a is changed to Equation 10.18b.

$$h_{\text{p-bed}} (T_{\text{st}}|_{\text{bed}} - T_{\text{st}}^{\text{sat}}) = \left(-M_{\text{ss}} \frac{d\bar{m}}{dt} \right) \left[\Delta H^{\text{vap}} + c_{\text{p,st}} (T_{\text{st}}|_{\text{bed}} - T_{\text{st}}^{\text{sat}}) \right] \quad (10.18b)$$

where h , the heat transfer coefficient between particle and steam, is determined from Ranz and Marshall (1952). The changes in internal moisture content of particle, and therefore the vaporization rate, can be calculated using Equation 10.7, with the following initial and boundary conditions:

$$m(r, t) = m(r, t_1), \quad \text{at } r = r_1 \quad (10.19)$$

$$\left. \frac{\partial m}{\partial r} \right|_{r=0} = 0, \quad \text{at } t > t_1 \quad (10.20)$$

$$-\frac{6D_{\text{in}}^{\text{eff}}}{d_p} \left. \frac{\partial m}{\partial r} \right|_{r=\frac{d_p}{2}} = N_c, \quad \text{at } t > t_1 \quad (10.21)$$

where

t_1 is the time at the end of condensed water removal period (s)

N_c is the constant drying rate (kg evaporated water/kg dry matter), which can be determined experimentally

Equation 10.19 represents the existing moisture gradients at the beginning of the second subperiod of constant-rate drying. As mentioned earlier, this moisture profile inside the particle is the one obtained at the end of the condensed water removal period, since during the first subperiod of constant-rate drying only the condensed water film covering the particle is removed.

For both subperiods, the energy balance for the gas phase (steam) is still similar to Equation 10.16, with T_p replaced by $T_{\text{st}}^{\text{sat}}$.

10.3.3.2.2 Falling-Rate Drying Period

After the moisture content of the particle drops below the critical moisture content, further reduction of moisture occurs in the falling-rate drying period. The critical moisture content of the particle can be determined from the experiment and this value is an input parameter in the model. Equation 10.7 still describes water diffusion inside particle, now with the following initial and boundary conditions:

$$m(r, t) = m(r, t_2), \quad \text{at } t = t_2 \quad (10.22)$$

$$\left. \frac{\partial m}{\partial r} \right|_{r=0} = 0, \quad \text{at } t > t_2 \quad (10.23)$$

$$m\left(\frac{d_p}{2}, t\right) = m_{\text{eq}}, \quad \text{at } t > t_2 \quad (10.24)$$

where

t_2 is the drying time at the end of the constant-rate drying period (s)

m_{eq} is the equilibrium moisture content, whose value is the moisture content of the particle in equilibrium with superheated steam at a given temperature and pressure

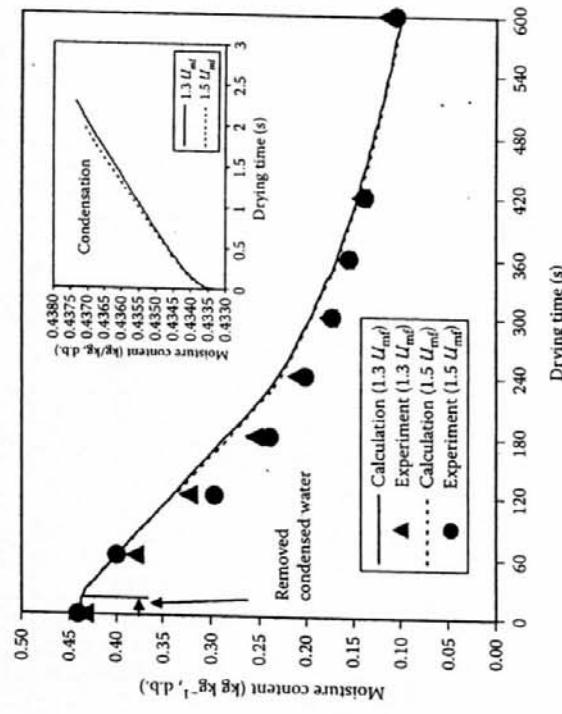


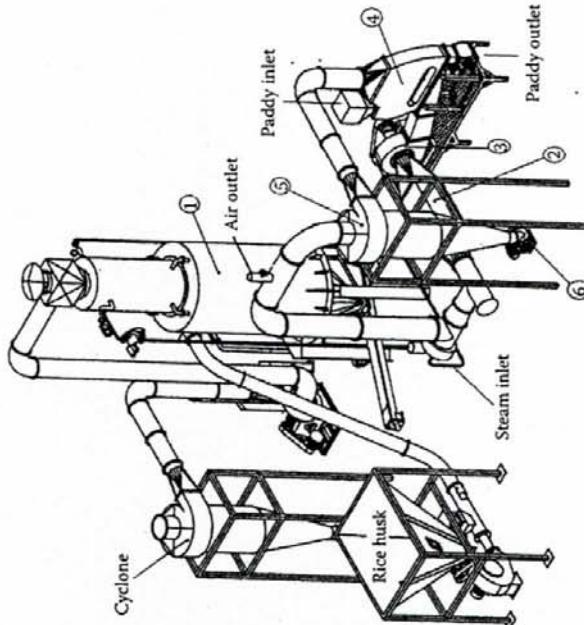
FIGURE 10.8 Comparison between predicted and experimental data of moisture content of paddy at superficial velocities of 1.3 and 1.5 times minimum fluidization velocity and inlet steam temperature of 150°C. (From Soponronnarit, S. et al., *Drying Technol.*, 24, 1462, 2006. With permission.)

10.4 APPLICATIONS OF SUPERHEATED STEAM DRYING TO FOOD MATERIALS

10.4.1 PARBOILED RICE

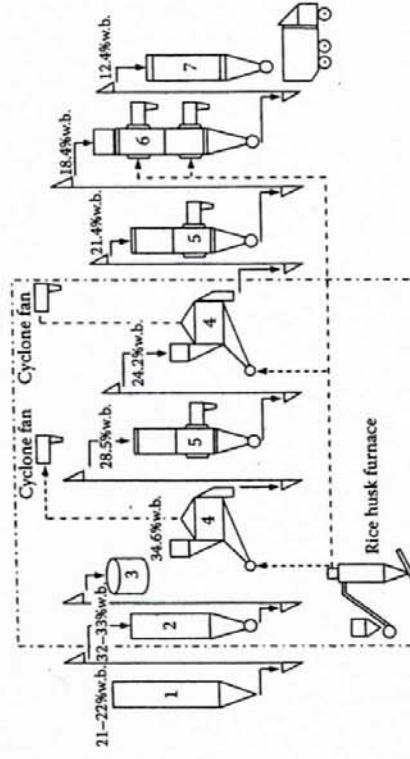
Parboiled rice offers some advantages over unparboiled rice, such as strengthening of kernel integrity, high milling yield, and decrease in solid loss after cooking. Other characteristics of parboiled rice are its firmer and less sticky texture. A process for producing parboiled rice consists essentially of three steps including soaking of paddy, steaming, and drying to the predetermined moisture content. Figure 10.9 shows the conventional production process of parboiled rice that is currently operated in some countries. This process generally takes 3–4 h for the steps of soaking and drying to a moisture content of 22% d.b. A hot-air fluidized-bed dryer is used to dry paddy to moisture content of 39% d.b. (28.5% w.b.). Then, paddy is tempered (see No. 5) and dried again in a fluidized-bed dryer to 21% d.b.

Recently, however, Taechapairoj et al. (2004) found that drying of paddy in a superheated-steam fluidized bed could give a rice texture similar to the parboiled rice; milling yield was also noted to be higher. The moisture content of paddy after drying should not be lower than 18% d.b., otherwise the head rice yield would be very low. The kinetics of rice-starch gelatinization during SSD could suitably be explained by a zeroth-order reaction rate whose rate constant, N_k (s^{-1}), was related to the bed depth and drying temperature in the following form:


$$N_k = -3.0340 \times 10^1 + 3.1920 H_{\text{bed}}^2 - 1.0984 \times 10^{-1} H_{\text{bed}}^2 - \exp\left(-\frac{1.5186 \times 10^3}{T}\right) \quad (10.25)$$

where
 H_{bed} is the bed depth (cm)
 T is the drying temperature (K)

The values of correlation coefficient and absolute mean error associated with Equation 10.25 were 0.97 and 3.66, respectively. Complete gelatinization of rice starch could be established within 5–6 min at steam temperatures of 150°C–160°C, and within 4 min at a steam temperature of 170°C.


The findings of parboiled rice characteristics in SSD would make a significant progress in the parboiling process because superheated steam itself can act as both steaming and drying media at the same time, thereby reducing steps in the parboiling process. With superheated steam, steaming and drying can be combined into one step. Thus, all the units from No. 2 to No. 5, shown in Figure 10.9 by the dash-dot line (Rordprapat et al., 2005), could be replaced by a single superheated-steam dryer. Additionally, the processing time would be much shorter.

Soponronnarit et al. (2006) successfully fabricated and tested a pilot-scale, continuous superheated-steam fluidized-bed dryer, with a capacity of 100 kg h⁻¹. A cyclonic rice husk furnace was used as a heating source to generate steam for the dryer. A schematic diagram of the referred pilot-scale dryer is shown in Figure 10.10.

1. Boiler 2. Blower 3. Drying chamber 4. Cyclone 5. Cyclone 6. Rotary valve

FIGURE 10.9 Conventional parboiled rice process. (From Rordprapat, W. et al., *J. R. Inst. Thailand*, 30, 377, 2005. With permission.)

1. Soaking tank 2. Steamer 3. Ambient air ventilation 4. Fluidized bed dryer 5. Tempering and air ventilation 6. LSU dryer 7. Storage bin

FIGURE 10.10 Schematic diagram of a pilot-scale superheated-steam fluidized bed. (From Soponronnarit, S. et al., *Drying Technol.*, 24, 1462, 2006. With permission.)

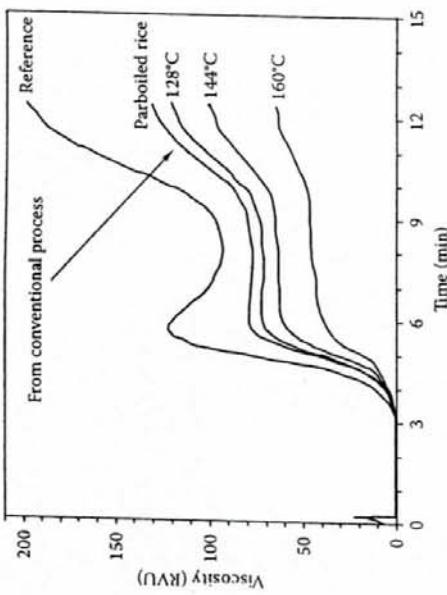


FIGURE 10.11 Pasting viscosities of rice flour samples dried at different steam temperatures. (From Soponronnarit, S. et al., *Drying Technol.*, 24, 1466, 2006. With permission.)

The equipment was also installed in and demonstrated to some parboiled rice factories. Table 10.1 shows the paddy quality after drying with superheated steam. Before drying, paddy was soaked with hot water at 70°C for 7–8 h. The head rice yield of the reference paddy, which was dried in shade, was 56.6%, and the white belly, representing the incomplete gelatinization, was 5.6%. After drying, the head rice yield was improved, being in the range of 63%–68%, and the white belly was not observed. Moreover, the value of hardness of dried parboiled rice significantly increased while less water was adsorbed.

Figure 10.11 shows the pasting viscosity of rice flour after SSD. It can be seen that the peak viscosity, final viscosity, and setback viscosity of dried rice flour are lower than those of the reference rice flour. The lowering of setback viscosity implies a firmer texture of rice flour. The trend of changing pasting viscosity of rice flour dried in SSD was similar to that of commercial parboiled rice obtained from the conventional process, but the values themselves are lower. Note that the extent to which the viscosity of rice flour obtained from the superheated-steam treatment is lower depends on the drying temperature. The pasting curve of flour made from rice dried at a temperature of 128°C is comparable to that of the commercially produced parboiled rice flour.

10.4.2 SOYBEAN MEAL

Full-fat soybean or soybean prior to oil extraction is used as a feedstuff because of its high-oil and high-quality protein contents. However, the presence of biologically active compounds in raw full-fat soybean such as trypsin inhibitors, hemagglutinins,

TABLE 10.1
Paddy Qualities (Chainat 1 Variety) Soaked at 70°C for 7–8 h and Dried at Different Inlet Steam Temperatures

Drying Condition	Feed Rate (kg h ⁻¹)	Moisture Content (d.b.)	Head Rice Yield (%)	Whiteness	White Belly (%)	Hardness (N)	Water Adsorption (g Water/g Rice)
After soaking	—	0.456 ± 0.1*	56.6 ± 1.1*	39.0 ± 0.2*	5.7 ± 0.6*	37.9 ± 1.3*	3.51 ± 0.07*
		0.008	63.5 ± 0.6*	32.2 ± 0.8*	0*	48.6 ± 0.9*	2.82 ± 0.05*
128°C	106	0.290 ± 0.008	0.23 ± 0.004	66.9 ± 0.6*	29.4 ± 0.5*	0*	51.9 ± 0.6*
		0.218 ± 0.004	67.9 ± 0.6*	28.0 ± 0.6*	0*	55.0 ± 1.3*	3.99 ± 0.03*
144°C	98	0.23 ± 0.004	66.9 ± 0.6*	29.4 ± 0.5*	0*	51.9 ± 0.6*	2.19 ± 0.01*
		0.218 ± 0.004	67.9 ± 0.6*	28.0 ± 0.6*	0*	55.0 ± 1.3*	3.99 ± 0.03*
160°C	120	0.23 ± 0.004	66.9 ± 0.6*	29.4 ± 0.5*	0*	51.9 ± 0.6*	2.19 ± 0.01*
		0.218 ± 0.004	67.9 ± 0.6*	28.0 ± 0.6*	0*	55.0 ± 1.3*	3.99 ± 0.03*

Source: Soponronnarit, S. et al., *Drying Technol.*, 24, 1462, 2006. With permission.

Note: Same letters on the same column indicate that values are insignificantly different at $p < 0.05$.

* Chalky grains.

lectins, and saponins limits the utilization of its nutritive values (Hensen et al., 1987; Liener, 1994), resulting in compromised health and performance of nonruminants and immature ruminants. To eliminate these antinutritional factors, heat treatment is needed. Trypsin inhibitors are the main parameter used to control the quality of soybean meal. However, direct measurement of trypsin inhibitors is not frequently practiced. Instead, the urease activity is usually measured to indicate the activity of trypsin inhibitors because their inactivation rate is equal to that of the urease enzyme (Baker and Mustakas, 1973). The residual urease activity for adequately treated soybean is in the range of 10% and 20%; a value below 10% indicates overheating.

Heat-treatment methods frequently used are, for example, cooking, microwave, and roasting (Raghavan and Harper, 1974; Hensen et al., 1987; Stewart et al., 2003). Prachayawarakorn et al. (2006) studied the treatment of full-fat soybean using superheated steam and hot-air fluidized-bed dryers. It was found that both heating media could eliminate the urease enzyme, but at different rates, although the medium temperature used was the same. Insufficient inactivation was obvious with hot air at 120°C for soybean with initial moisture content of 13.5% d.b. As shown in Figure 10.12, the residual urease activity remained steadily at 40% although an extended drying period was applied. As the initial moisture content of soybean increased to 19.5% d.b., however, sufficient inactivation was noted at a heating time of over 25 min. In contrast to hot air, inactivation of the urease enzyme could be achieved at a superheated-steam temperature of 120°C; the levels of residual activity were below 20% for soybean with initial moisture contents of 13.5% and 19.5% d.b. when heated for 7 and 5 min, respectively. The thermal inactivation of urease followed a modified first-order reaction model, which is expressed by

The apparent constant kinetic rate could be expressed as a function of the operating parameters, i.e., heating temperature and moisture content, as

$$N_k = \left[-1.01 \times 10^4 + 7.50 \times 10^{-2} T^2 - 7.66 \times 10^4 M_{in} + 1.89 \times 10^4 M_{in}^2 + \frac{2.62 \times 10^7 M_{in}}{T} \right] \times \exp\left(-\frac{5.35 \times 10^{-1}}{M_{in}} - \frac{1.51 \times 10^3}{T}\right) \quad (10.27)$$

In addition, the expression for $a_{ur}|_{eq}$ is given by

$$a_{ur}|_{eq} = \left(-4.7523 \times 10^{-2} + 7.1742 \times 10^{-2} M_{in}^2 + 1.2200 \times 10^{-4} T \right) \times \exp\left(\frac{3.2273 \times 10^3 - 9.7815 \times 10^2 M_{in}}{T}\right) \quad (10.28)$$

Equations 10.27 and 10.28 both presented a correlation coefficient equal to 0.95, and root mean square errors of 0.347 and 1.47, respectively.

Prachayawarakorn et al. (2006) recommended that a fluidized-bed dryer should be operated at 135°C–150°C for hot air and below 135°C for superheated steam to eliminate the urease enzyme present in soybean. This could simultaneously preserve the nutritional qualities, protein solubility, and lysine content. Under such temperature ranges, the use of superheated steam as the heating/drying medium resulted in higher protein solubility of treated sample than the use hot-air drying when applied to the dried soybean (13.5% d.b.), as can be seen in Table 10.2. In addition, the protein solubility of soybean was similar to that treated by an industrial micronizer (Wiriyapaiwong et al., 2004). For the moist soybean, the heating medium types did not affect the quality since the urease enzyme was inactivated over a short period of time before protein denaturation largely occurred.

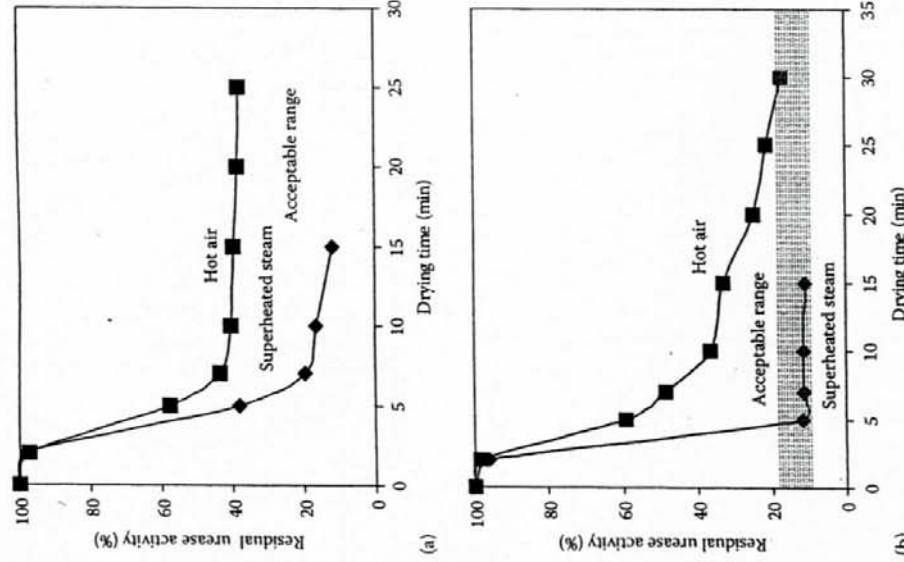


FIGURE 10.12 Apparent inactivation kinetics of urease in soybean during thermal treatments with superheated steam and hot air at 120°C: (a) $M_{in} = 13.5\%$ d.b. and (b) $M_{in} = 19.5\%$ d.b. (From Prachayawarakorn, S. et al., *LWT-Food Sci. Technol.*, 39, 775, 2006. With permission.)

$$\frac{a_{ur}(t) - a_{ur}|_{eq}}{a_{ur}|_{in} - a_{ur}|_{eq}} = \exp(-N_k t) \quad (10.26)$$

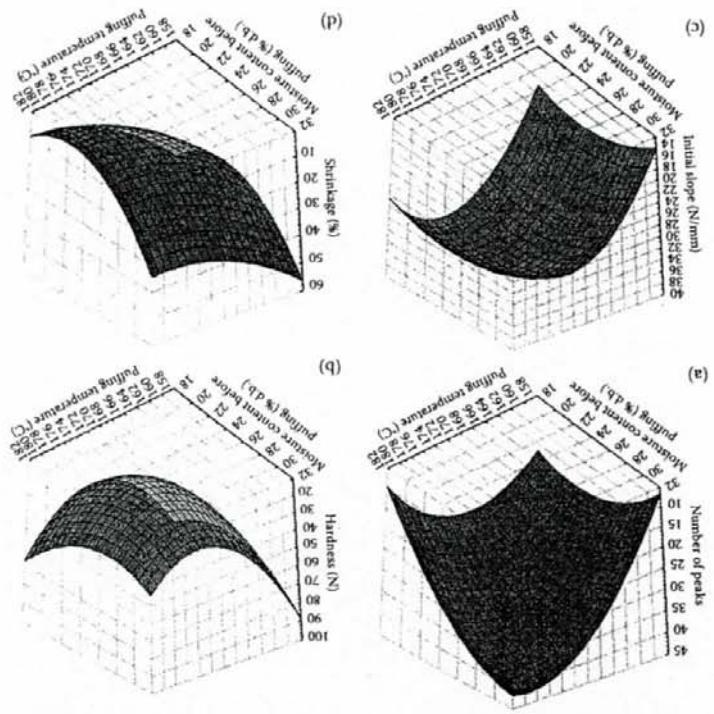
where

$a_{ur}(t)$ is the residual urease activity at time t (%)
 $a_{ur}|_{in}$ is the urease activity at the beginning of heat treatment (%)
 $a_{ur}|_{eq}$ is the residual urease activity at infinite time (%)
 N_k is the apparent constant kinetic rate (min^{-1})
 t is the drying time (min)

10.4.3 SNACK FOODS

Snack foods, e.g., potato chips, banana chips, durian chips, are generally commercially produced by deep-fat frying. The development of a porous structure provides snacks with better quality, especially in terms of texture, compared with air-dried products. Snack products typically have a high oil content and cannot be kept for a long period of time due to possible lipid oxidation, leading to rancidity. In addition, consumers who are concerned with their health may dislike these products. The product with low fat content is an interesting commodity to the consumer.

High-temperature drying could be an alternative to frying to produce low-fat snack products. During high-temperature drying, the product moisture vaporizes and expands rapidly, thereby allowing the formation of pores. Li et al. (1999) studied superheated-steam-impingement drying of tortilla chips and founded that a higher steam temperature resulted in more pores, coarser appearance, and higher modulus of deformation of tortilla chips. In addition, the superheated steam-dried tortilla chips had fewer but


TABLE 10.2
Protein Solubility and Lysine Content of Soybean Treated with Superheated Steam and Hot Air at Various Temperatures

Temperature (°C)	m_{in} (% d.b.)	Heating Time (min)	$m(t)$ (% d.b.)	Urease Activity (%)	Protein Solubility (%)	Lysine Content (mg g ⁻¹ Soybean)
<i>Raw soybean</i>						
Hot air	120	13.5	50	3.9	100	94.28
	19.5	30	6.9	19	71.1	N/A
	13.5	5	9.7	15	70.98	3.0
Superheated steam	120	13.5	5	14.4	13	84.33
	19.5	5	8.2	16	74.17	N/A
	19.5	2	15.5	10	87.86	N/A
	13.5	7	13.9	16	85.66	2.8
	19.5	5	18.3	12	85.2	2.7
	13.5	5	12.4	11	71.76	2.7
	19.5	5	16.5	9	82.25	2.7
	13.5	5	10.6	12	54.94	2.8
	19.5	2	18.9	11	83.84	N/A

Source: Prachayawarakorn, S. et al., *LWT-Food Sci. Technol.*, 39, 776, 2006. With permission.
N/A, not available.

larger pores than the air-dried product. Similar results were also found for dried durian chips (Jannadloedluk et al., 2007). In spite of the different morphologies of products obtained from the two drying media, textural properties such as hardness and stiffness were not significantly different. In the case of some particular fruits such as banana, however, though pores could be formed during high-temperature drying and the texture of the final product might be acceptable, the color of the product normally becomes brown when its moisture content is reduced below 80% d.b. (Prachayawarakorn et al., 2008). In addition, some pores might collapse during the early drying period, resulting in shrinkage of the product and subsequent less crispiness and hard texture. To avoid shrinkage, the structure should be rigid so that it can resist stresses generated during drying. This can be achieved by drying the product at temperatures below the glass transition temperature, and the freezing drying technique is normally applied.

Another technique that provides less material shrinkage involves puffing, by which the moisture inside the material is rapidly vaporized. Vapor expansion inside the product then creates voids or ruptures the existing structure, leading to a more porous dried product. Boualaphanh et al. (2008) studied the textural properties of banana after puffing with superheated steam at different conditions; their experimental results are shown in Figure 10.13, indicating that puffing temperature and moisture content of banana before puffing strongly affected the textural properties and shrinkage of the product. The sample shrunk least, approximately 10%–15%, when the moisture content of banana before puffing ranged between 20% and 25% d.b.

FIGURE 10.13 Quality attributes of banana puffed at different conditions (2 min puffing time). (a) Number of peaks, (b) Hardness, (c) Lethal slope, (d) Shrinkage. (From Boualaphanh, K. et al., Optimization of the superheated steam puffing of banana, in *Proceedings of the 9th Thai Society of Agricultural Engineering Conference*, Chiang Mai, Thailand, January 31–February 1, 2008, CR-16 [in Thai]. With permission.)

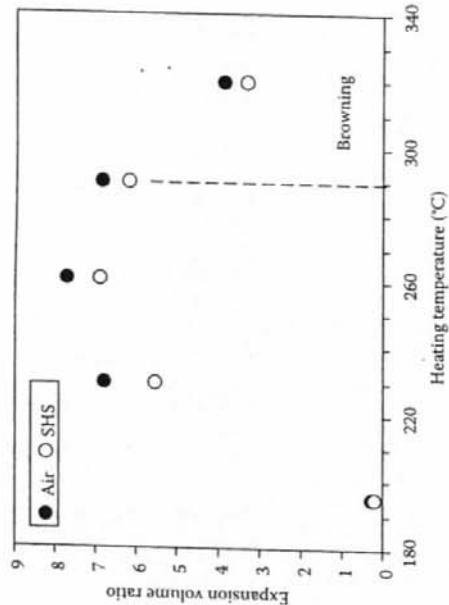


FIGURE 10.15 Effect of heating temperature on volume expansion ratio of amaranth seed in hot air and superheated steam (SHS) (initial moisture content of 13% d.b.). (From Iyota, H. et al., *Drying Technol.*, 23, 1287, 2005. With permission.)

and the puffing temperature was in the range of 170°C–180°C. Under these puffing conditions, the color of the sample fell into the color group of grayed-orange 163C, and the textural property values were in ranges of 35 ± 5 N/mm for the initial slope, 37 ± 5 for the number of peaks and 33 ± 11 N for the hardness. These quality attributes were similar to those of the commercially vacuum fried product; the textural property values of the commercial product were 48 ± 8 N for the hardness, 42 ± 5 for the number of peaks and 45 ± 16 for the initial slope.

Figure 10.14 shows the morphology of puffed banana, indicating the very large voids within the banana sample and the small pores at the exterior. The produced large pores imply the vaporization and expansion of moisture during superheated-steam puffing.

However, a drawback of superheated steam became evident when it was applied to pop amaranth seeds (Iyota et al., 2005). Amaranth, a well-known product in the market as a source of food and high nutritional components, can be consumed after popping. The volume expansion after popping is an important parameter; a high volume expansion produces softer and more appealing texture. Figure 10.15 shows the volume expansion ratio of popped amaranth seeds at different temperatures. In hot air, the maximum expansion ratio reached 7.7 at 260°C. A decrease in expansion ratio and browning occurred at higher temperature of 290°C. In the case of superheated steam, the expansion ratio was approximately 10% lower than that obtained in hot air. This occurred because the seed coats were apparently softened by steam condensation.

10.5 CONCLUDING REMARKS

SSD is a feasible alternative to hot-air drying for a number of food products. The condensation of steam onto the material surface provides a rapid temperature rise, and this causes the food quality obtained from SSD to be different from that related to hot-air drying. The physical appearance of foods is better in SSD than in the hot-air drying, particularly when SSD is applied to starchy foods. Superheated-steam dried products such as tortilla, potato, and durian chips have a smoother surface and are glossier since the starch present in them can form a gel network to a larger extent in SSD than in the case of hot-air drying. Paddy dried by superheated steam has physicochemical and physical properties similar to those of parboiled rice. A temperature of 150°C is recommended for the dryer operation to produce parboiled rice.

In addition to the drying of starch-based foods, superheated steam can also be applied to eliminate the antinutritional factors present in legumes. However, the treatment of soybean with superheated steam should be done at temperatures below 135°C to preserve the protein solubility at the level that is required for feed meal.

A mathematical model for SSD that includes both steam condensation and drying has been derived based on the transport equations for drying a single particle, together with the energy and mass balances in the dryer. It can predict the change of moisture content of product during SSD relatively well. The mathematical model developed for the fluidized-bed dryer can be extended to other dryer types, with some modifications in the governing equations.

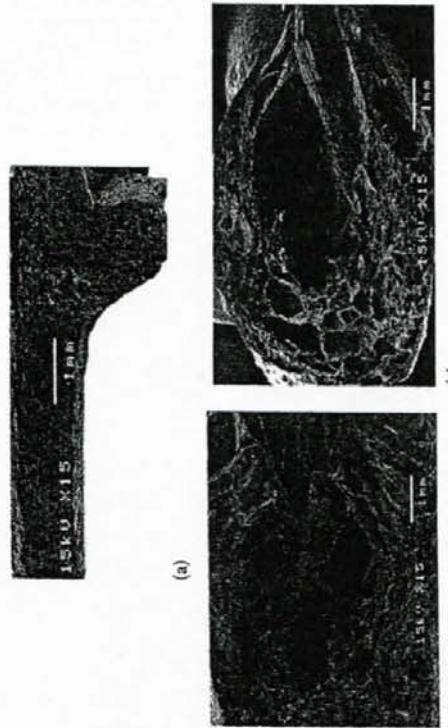


FIGURE 10.14 Morphologies of banana at different puffing temperatures. (a) No puffing. (b) Puffing temperature of 170°C. (c) Puffing temperature of 180°C. (From Boualaphanh, K. et al., Optimization of the superheated steam puffing of banana, in *Proceedings of the 9th Thai Society of Agricultural Engineering Conference*, Chiang Mai, Thailand, January 31–February 1, 2008, CR2-16 [in Thai]. With permission.)

ACKNOWLEDGMENTS

The authors express their sincere appreciation to the Thailand Research Fund and Commission on Higher Education for the financial support of projects for more than 10 years.

REFERENCES

Baker, E.C. and Mustakas, G.C. 1973. Heat inactivation of trypsin inhibitor, lipoxigenase and urease in soybeans: Effect of acid and base additives. *J. Am. Oil Chem. Soc.* 50:137-141.

Boualaphanh, K., Prachayawarakorn, S., and Soponronnarit, S. 2008. Optimization of the superheated steam puffing of banana. In *Proceedings of the 9th Thai Society of Agricultural Engineering Conference*. Chiang Mai, Thailand, January 31-February 1, 2008, CR2-16 (in Thai).

Chen, Z., Wu, W., and Agarwal, P.K. 2000. Steam-drying of coal. Part 1. Modeling the behavior of a single particle. *Fuel* 79:961-973.

Chow, L.C. and Chung, J.N. 1983a. Evaporation of water into a laminar stream of air and superheated steam. *Int. J. Heat Mass Transfer* 26:373-380.

Chow, L.C. and Chung, J.N. 1983b. Water evaporation into a turbulent stream of air, humid air or superheated steam. In *Proceedings of the ASME National Heat Transfer Conference*, No. 83-HT-2 ASME, New York.

Crank, J. 1975. *The Mathematics of Diffusion*, 2nd ed. Oxford, NY: Clarendon Press.

Deventer, H.C. and Heijmans R.M.H. 2001. Drying with superheated steam. *Drying Technol.* 19:2033-2045.

Douglas, W.J.M. 1994. Drying paper in superheated steam. *Drying Technol.* 12:1341-1355.

Hensen, B.C., Flores, E.S., Tanksley, Jr., T.D., and Knabe, D.A. 1987. Effect of different heat treatments during processing of soybean meal on nursery and growing pig performance. *J. Anim. Sci.* 65:1283-1291.

Holman, J.P. 1997. *Heat Transfer*, 8th ed. New York: McGraw-Hill.

Iyota, H., Konishi, Y., Inoue, T., Yoshida, K., Nishimura, N., and Nomura, T. 2005. Popping of amaranth seeds in hot air and superheated steam. *Drying Technol.* 23:1273-1287.

Iyota, H., Nishimura, N., Onuma, T., and Nomura, T. 2001. Drying of sliced raw potatoes in superheated steam and hot air. *Drying Technol.* 19:1411-1424.

James, C., Thornton, J.A., Ketteringham, L., and James, S.J. 2000. Effect of steam condensation, hot water or chlorinated hot water immersion on bacterial numbers and quality of lamb carcasses. *J. Food Eng.* 43:219-225.

Jamroloeduk, J., Nathakaranakule, A., Soponronnarit, S., and Prachayawarakorn, S. 2007. Influences of drying medium and temperature on drying kinetics and quality attributes of durian chip. *J. Food Eng.* 78:198-205.

Lane, A.M. and Stern, S. 1956. Application of superheated-vapor atmospheres to drying. *Mech. Eng.* 78:423-426.

Li, Y.B., Seyed-Yagoobi, J., Moreira, R.G., and Yamsaengsung, R. 1999. Superheated steam impingement drying of tortilla chips. *Drying Technol.* 17:191-213.

Lienert, I.E. 1994. Implications of antinutritional components in soybean foods. *Crit. Rev. Food Sci. Nutr.* 34:31-67.

Markowski, M., Cenkowski, S., Hatcher, D.W., Dexter, J.E., and Edwards, N.M. 2003. The effect of superheated steam dehydration kinetics on textural properties of Asian noodles. *Trans. ASAE* 46:389-395.

Nathakaranakule, A., Kraiwachikul, W., and Soponronnarit, S. 2007. Comparative study of different combined superheated steam drying techniques for chicken meat. *J. Food Eng.* 80:1023-1030.

Pang, S. and Dakin, M. 1999. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber. *Drying Technol.* 17:1135-1147.

Poomsai-ad, N., Soponronnarit, S., Prachayawarakorn, S., and Terdyothin, A. 2002. Effect of tempering on subsequent drying of paddy using fluidization. *Drying Technol.* 20:195-210.

Prachayawarakorn, S., Prachayawasin, P., and Soponronnarit, S. 2006. Heating process of soybean using hot-air and superheated-steam fluidized-bed dryer. *LWT-Food Sci. Technol.* 39:770-778.

Prachayawarakorn, S., Soponronnarit, S., Wetchacama, S., and Jaisut, D. 2002. Description isotherms and drying characteristics of shrimp in superheated steam and hot air. *Drying Technol.* 20:669-684.

Pronyk, C., Cenkowski, S., and Muir, W.E. 2004. Drying foodstuffs with superheated steam. *Drying Technol.* 22:899-916.

Raghavan, G.S.V. and Harper, J.M. 1974. Nutritive value of salt-bed roasted soybean for broiler chicks. *Poultry Sci.* 53:547-553.

Ranz, W. and Marshall, W. 1952. Evaporation from drops-Part I. *Chem. Eng. Prog.* 48, 141.

Rordprapat, W., Nathakaranakule, A., Tia, W., and Soponronnarit, S. 2005. Development of a superheated-steam-fluidized-bed dryer for parboiled rice. *J. R. Inst. Thailand.* 30:363-378 (in Thai).

Schwarze, J.P. and Brückner, S. 2002. A theoretical explanation for the inversion temperature. *Chem. Eng. J.* 86:61-67.

Shibata, H. and Mujumdar, A.S. 1994. Steam drying technologies: Japanese R&D. *Drying Technol.* 12:1485-1524.

Soponronnarit, S., Prachayawarakorn, S., Rordprapat, W., Nathakaranakule, A., and Tia, W. 2006. A superheated-steam fluidized-bed dryer for parboiled rice: Testing of a pilot-scale and mathematical model development. *Drying Technol.* 24:1457-1467.

Stewart, O.J., Raghavan, G.S.V., Orsat, V., and Golden, K.D. 2003. The effect of drying on unsaturated fatty acids and trypsin inhibitor activity in soybean. *Process Biochem.* 39:483-489.

Svensson, C. 1980. Steam drying of pulp. In *Drying '80*, vol. 2, Ed. A.S. Mujumdar, pp. 301-307. New York: Hemisphere.

Taechapairoj, C., Dhuchakallaya, I., Soponronnarit, S., Wechacama, S., and Prachayawarakorn, S. 2003. Superheated steam fluidised bed paddy drying. *J. Food Eng.* 58:67-73.

Taechapairoj, C., Prachayawarakorn, S., and Soponronnarit, S. 2004. Characteristics of rice dried in superheated steam fluidized-bed. *Drying Technol.* 22:719-743.

Tang, Z. and Cenkowski, S. 2000. Dehydration dynamics of potatoes in superheated steam and hot air. *Can. Agr. Eng.* 42:43-49.

Tang, Z., Cenkowski, S., and Izdorczyk, M. 2005. Thin-layer drying of spent grains in superheated steam. *J. Food Eng.* 67:457-465.

Uengkiumban, N., Soponronnarit, S., Prachayawarakorn, S., and Nathakaranakule, A. 2006. A comparative study of pork drying using superheated steam and hot air. *Drying Technol.* 24:1665-1672.

Wiriyapaiwong, S., Soponronnarit, S., and Prachayawarakorn, S. 2004. Comparative study of heating processes for full-fat soybeans. *J. Food Eng.* 65:371-382.

Yoshida, T. and Hyodo, T. 1970. Evaporation of water in air, humid air, and superheated steam. *Ind. Eng. Chem. Process Des. Dev.* 9:207-214.