Abstract

The representative wave heights of an irregular wave train are the essential required factors for many coastal engineering applications such as the design of coastal structures and the study of beach deformations. This study concentrates on the determination of six common representative wave heights, i.e. the mean wave height (H_m) , the root-mean-square wave height (H_{rms}) , the average of the highest one-third wave height $(H_{1/3})$, the average of the highest one-tenth wave height ($H_{1/10}$), the maximum wave height ($H_{\rm max}$) and the spectral significant wave height (H_{mo}) or the spectral root-mean-square wave height (H_{moz}) . Possibly, because of its importance, many wave models have been proposed during the past decades. The main purpose of the present study is to find out suitable wave models for computing H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, H_{max} , and H_{mo} based on three simple approaches, i.e. empirical approach, representative wave approach, and conversion approach. This study is divided into 3 main chapters. The first chapter describes the transformation of representative wave heights based on empirical approach. The second chapter describes the development of wave models using representative wave approach. The third chapter describes the transformation of representative wave heights based on the conversion approach. The conversion approach consists of four parts, i.e. the wave models for computing the transformation of H_{m0} [which can be converted to zeroth moment of wave spectrum (m_0) through the known constant], the wave models for computing the transformation of $H_{\it rms}$, the conversion formulas for converting from $H_{\it rms}$ to other representative wave heights (i.e. H_m , $H_{1/3}$, $H_{1/10}$, and $H_{\rm max}$), and the conversion formulas for converting from m_0 to other representative wave heights (i.e. H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, and H_{max}). Hence the conversion model should be constructed based on the best model (or formulas) from each part. Therefore, this study is divided into 6 parts. The following is the abstract of the six parts.

The first part concentrates on empirical approach. The empirical approach is introduced to facilitate engineers for design works and preliminary study of coastal processes. It seems that only Goda (1975 and 2009) proposed empirical formulas for computing the transformation of some representative wave heights from offshore to shoreline. The formulas were proposed for computing the transformation of three common representative wave heights (i.e. $H_{1/3}$, H_{\max} , and H_{m0}) on plane beaches. The objectives of this part are to verify the Goda formulas for computing the transformation of $H_{1/3}$, H_{\max} , and H_{m0} on unbarred beaches and to extend the formulas for computing the transformation of H_m , H_{rms} , and $H_{1/10}$. Laboratory data from small-scale and large-scale wave flumes with unbarred beach conditions are used to verify the formulas. The verification shows that the formulas give very good predictions of $H_{1/3}$ and H_{m0} , but give fair prediction of H_{\max} . The formulas are rewritten in the form of a general formula. The general form of Goda formulas is recalibrated and extended to compute other representative wave heights (i.e. H_m , H_{rms} , and $H_{1/10}$). The general formula gives very good predictions of H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, H_{\max} , and H_{m0} .

The second part focuses on a model for computing representative wave heights (i.e. $H_{\it rms}$, $H_{\it 1/3}$, $H_{\it 1/10}$, $H_{\it max}$, and $H_{\it rmsz}$) by using representative wave approach. Many researchers have pointed out that the use of representative wave approach can give erroneous results in the computation of representative wave height transformation. However, the representative wave approach has a great merit in simple calculation. It will be useful for practical works (especially for the design of coastal structures), if this approach can be used to compute the representative wave heights. Rattanapitikon (2008) showed that the representative wave approach can be used to compute the transformation of $H_{1/3}$ with good accuracy. Therefore, it may be possible to use the representative wave approach to predict the transformation of other representative wave heights, i.e. H_m , H_{rms} , $H_{\rm 1/10}$, $H_{\rm max}$, and $H_{\rm rmsz}$. This part is carried out to investigate the possibility of using the representative wave approach and find out a suitable dissipation model that can be used to compute H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, H_{max} , and H_{rmsz} . A large amount and wide range of experimental conditions (covering small-scale, large-scale, and field experimental conditions) are used to calibrate and examine the model. The representative wave height transformation is computed from the energy flux conservation law. Various energy dissipation models of regular wave breaking are directly applied to the irregular wave model and test their applicability. It is found that by using an appropriate energy dissipation model with new coefficients, the representative wave approach can be used to compute H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, H_{max} , and H_{rmsz} .

The objective of the third part is to propose the most suitable dissipation model for computing the transformation of spectral significant wave height (H_{m0}). A wide range of experimental conditions (covering small-scale, large-scale, and field experiments) were used to examine the models. Fourteen existing dissipation models, for computing root-mean-square wave heights (H_{rms}), were applied to compute H_{m0} . The coefficients of the models were re-calibrated and the accuracy of the models was compared. It appears that the model of Janssen and Battjes (2007) with new coefficients gives the best overall prediction. The simple model proposed in the present paper was modified by changing the formula of stable wave height in the dissipation model. Comparing with the existing models, the modified model is the simplest one but gives better accuracy than those of existing models.

The fourth part focuses on energy dissipation for computing the transformation of root-mean-square (rms) wave height in the surf zone. There are two approaches to describe the rms wave height, i.e. statistical approach (or wave-by-wave approach) and spectral approach (or energy approach). It has been point out by many researchers that the rms wave height derived from these two approaches is significantly difference. This difference is expected to cause a significant effect on the estimation of energy dissipation. However, no direct literature has been made to describe clearly the applicability of existing energy dissipation models in simulating statistical-based rms wave height (H_{rms}). This part is undertaken to find out the suitable dissipation models for computing H_{rms} . Five sources of experimental data are used to examine the accuracy of fifteen existing models. The existing models are recalibration before examination. By using the new calibrated coefficients, four existing models give the overall average errors less than 10%. The models developed based on representative wave concept trend to give better estimation than those of parametric wave concept.

The fifth part is undertaken to find out suitable conversion formulas for computing representative wave heights (i.e. mean, significant, highest one-tenth, and maximum wave heights) from the known commonly used parameters (i.e. root-mean-square wave height, water depth, spectral peak period, and beach slope). Seventeen sets of conversion formulas (including existing and modified formulas) are re-calibrated and their accuracy is compared. A large amount and wide range of experimental conditions from small-scale, large-scale, and field experiments (2,619 cases collected from 10 sources) are used to calibrate and verify the conversion formulas. The examination shows that most of the selected formulas give very good predictions and have similar accuracy. The suitable formulas are recommended based on the consideration of accuracy and simplicity of the formulas.

The sixth part focuses on conversion formulas for estimating statistical-based representative wave heights (i.e. H_m , H_{rms} , $H_{1/3}$, and $H_{1/10}$) from zeroth moment of wave spectrum (m_0). The applicability of five sets of existing conversion formulas is examined based on two field experiments of COAST3D project (including 13,430 wave records). The examination shows that the conversion formulas of Forristall (1978) give the best prediction. The formulas of Forristall (1978) are modified by reformulating the shape factor in the formulas. The modified formulas give better estimation than those of existing formulas. Simple empirical formulas are also proposed. The empirical formulas give nearly the same accuracy as those of the modified formulas.

บทคัดย่อ

การเปลี่ยนแปลงของคลื่น เป็นตัวการสำคัญที่ทำให้เกิดการกัดเซาะและการทับถมชายฝั่งทะเลและทำ ความเสียหายต่อทรัพย์สินหรือสิ่งก่อสร้างบนฝั่ง โครงการนี้จะเน้นไปที่ส่วนของแบบจำลองคลื่น สำหรับ คำนวณการเปลี่ยนแปลงความสูงคลื่นตัวแทนที่ใช้ทั่วไปในการคำนวณการกัดเซาะชายฝั่งและการ ออกแบบสิ่งก่อสร้างบริเวณชายฝั่ง ใค้แก่ mean wave height (H_m), root-mean-square wave height (H_{rms}) , average of the highest one-third wave height $(H_{1/3})$, average of the highest one-tenth wave height ($H_{1/10}$), the maximum wave height (H_{\max}) ដោះ spectral significant wave height (H_{mo}) អេទី០ spectral root-mean-square wave height (H_{rmsz}) มีหลายวิธีที่สามารถนำมาใช้ในการจำลองการ เปลี่ยนแปลงความสูงคลื่นตัวแทน [H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, H_{\max} , และ H_{mo} (หรือ H_{rmsz})] การศึกษาครั้งนี้จะสนใจเฉพาะสามวิธีหลัก ที่เหมาะสมในทางปฏิบัติ คือ empirical approach, representative wave approach, และ conversion approach จดประสงค์หลักในการศึกษาครั้งนี้คือ การหา แบบจำลองคลื่นที่เหมาะสมสำหรับแต่ละวิธี การศึกษาโครงการนี้แบ่งออกเป็น 3 บทหลักๆ คือ บทที่ 1 เป็นการคำนวณการเปลี่ยนแปลงความสูงคลื่นตัวแทน โดยวิธี empirical approach บทที่ 2 เป็นการคำนวณ การเปลี่ยนแปลงความสูงคลื่นตัวแทนโดยวิธี representative wave approach และบทที่ 3 เป็นการคำนวณ การเปลี่ยนแปลงความสูงคลื่นตัวแทนโดยวิธี conversion approach ซึ่งเป็นการแปลงค่าจากความสูงคลื่น อ้างอิงตัวหนึ่ง ไปเป็นคลื่นตัวแทนตัวอื่นโดยใช้สมการความสัมพันธ์ระหว่างคลื่นตัวแทน วิธี conversion approachนี้ ประกอบด้วย 2 ส่วนหลักๆคือ แบบจำลองคลื่นสำหรับคำนวณการเปลี่ยนแปลงความสูงคลื่น อ้างอิง ($H_{\it mo}$ หรือ $H_{\it rms}$) และสมการการแปลงคลื่นตัวแทนสำหรับแปลงค่าจากความสูงคลื่นอ้างอิงตัว หนึ่ง ไปเป็นคลื่นตัวแทนตัวอื่น คังนั้น วิธี conversion approach สามารถแบ่งออกเป็น 4 ส่วน คือ ส่วนที่ 1 เป็นแบบจำลองคลื่นสำหรับคำนวณการเปลี่ยนแปลงความสูงคลื่น H_{mo} ซึ่งสามารถแปลงเป็น zeroth moment of wave spectrum (m_0) ส่วนที่ 2 เป็นแบบจำลองคลื่นสำหรับคำนวณการเปลี่ยนแปลงความสูง คลื่น $m{H}_{ms}$ ส่วนที่ 3 เป็นสมการการแปลงค่าจากความสูงคลื่น $m{H}_{ms}$ ไปเป็นความสูงคลื่น $m{H}_{m}$, $m{H}_{1/3}$, $H_{1/10}$, $H_{
m max}$ และ ส่วนที่ 4 เป็นสมการการแปลงค่าจากความสูงคลื่นตัวแทนแบบ spectrum (หรือ m_0) ไปเป็นความสูงคลื่น H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, และ $H_{
m max}$ แบบจำลองคลื่นโดยวิธี conversion approach จะสร้างจากแบบจำลองที่ดีที่สุดจากทั้ง 4 ส่วน ดังนั้นโครงการนี้สามารถแบ่งการศึกษาออกเป็น 6 ส่วนด้วยกัน บทคัดย่อของทั้ง 6 ส่วนมีดังต่อไปนี้

ส่วนที่ 1 เป็นการคำนวณการเปลี่ยนแปลงความสูงคลื่นตัวแทนโดยวิธี empirical approach ใน ปัจจุบันมีเพียง สมการของ Goda (1975 และ 2009) ที่สามารถคำนวณการเปลี่ยนแปลงความสูงคลื่นของ คลื่นตัวแทนจากนอกฝั่งถึงชายฝั่ง แต่สมการมีข้อจำกัดซึ่งสามารถคำนวณได้เฉพาะ $H_{1/3}$, H_{\max} , และ H_{mo} สำหรับชายหาดเรียบที่มีความชั้นคงที่เท่านั้น จุดประสงค์ของการศึกษาส่วนนี้คือ ทดสอบความ ถูกต้องของสมการของ $\operatorname{Goda}(1975$ และ 2009) ในการคำนวณการเปลี่ยนแปลงความสูงคลื่น $H_{1/3}$, H_{\max} , และ H_{mo} สำหรับหาดที่ไม่มีเนินทรายใต้น้ำ และประยุกต์ใช้สูตรในการคำนวณการเปลี่ยนแปลง ความสูงคลื่นตัวแทนตัวอื่น (H_m , H_{rms} , และ $H_{1/10}$) ข้อมูลการทดลองจากรางจำลองคลื่นขนาดเล็ก และใหญ่ถูกนำมาใช้ในการทดสอบความถูกต้องของสมการ การทดสอบพบว่าสมการของ Goda ให้ผลดี มากสำหรับ $H_{1/3}$ และ H_{mo} แต่ให้ผลไม่ดีนักสำหรับ H_{\max} สมการของ Goda ได้ถูกปรับปรุงให้อยู่ใน รูปทั่วไปรูปแบบเดียวกัน แล้วจึงทำการปรับเทียบค่าคงที่ต่างๆในสมการสำหรับการคำนวณการ เปลี่ยนแปลงความสูงคลื่นตัวแทนทั้งหกตัว การทดสอบพบว่าสมการที่ปรับปรุงขึ้นใหม่ ให้ผลดีมาก สำหรับ H_m , H_{rms} , $H_{1/3}$, $H_{1/10}$, H_{\max} , และ H_{mo}

ส่วนที่ 2 เป็นการคำนวณการเปลี่ยนแปลงความสูงคลื่นตัวแทนโดยวิธี representative wave approach วิธี representative wave approach มุ่งความสนใจไปที่ภาพรวมของคลื่นแตกและคำนวณเฉพาะ การเปลี่ยนแปลงความสูงของคลื่นตัวแทน นักวิจัยหลายท่านเชื่อว่าวิธีนี้ให้ผลการคำนวณที่ไม่ดีนัก ดังนั้นการศึกษานี้ทำขึ้นเพื่อทดสอบหาความเป็นไปได้ที่จะใช้วิธีนี้ในการคำนวณการเปลี่ยนแปลงของ คลื่นตัวแทน โดยทดลองใช้แบบจำลองการสูญเสียพลังงานหลายๆแบบ ข้อมูลการทดลองจำนวนมาก จากรางจำลองคลื่นขนาดเล็กและใหญ่ และจากสนาม ถูกนำใช้ในการทดสอบความถูกต้องของ แบบจำลอง จากการศึกษาพบว่า เมื่อใช้แบบจำลองการสูญเสียพลังงานที่เหมาะสม วิธี representative wave approach จะให้ผลการคำนวณที่ค่อนข้างดีมากสำหรับ H_m , H_{mss} , $H_{1/3}$, $H_{1/10}$, H_{max} , และ H_{mss}

จุดประสงค์ของส่วนที่ 3 คือหาแบบจำลองการสูญเสียพลังงานของคลื่นที่เหมาะสมสำหรับคำนวณ การเปลี่ยนแปลงความสูงคลื่น H_{mo} แบบจำลองการสูญเสียพลังงานของคลื่นสำหรับคำนวณการ เปลี่ยนแปลงความสูงคลื่น H_{mo} ที่มีอยู่ 14 แบบจำลอง ได้ถูกนำมาประยุกต์ใช้สำหรับคำนวณ H_{mo} และ ทำการปรับเทียบค่าสัมประสิทธ์ใหม่ ข้อมูลการทดลองจำนวนมาก จากรางจำลองคลื่นขนาดเล็กและ ใหญ่ และจากสนาม ถูกนำมาใช้ในการปรับเทียบและทดสอบความถูกต้องของแบบจำลอง การทดสอบพบว่า แบบจำลองของ Janssen and Battjes (2007) ให้ผลการคำนวณดีที่สุด ได้มีการพัฒนาแบบจำลองที่เสนอให้ผลการ คำนวณที่ดีที่สุดและง่ายต่อการคำนวณที่สุด

จุดประสงค์ของส่วนที่ 4 คือหาแบบจำลองการสูญเสียพลังงานของคลื่นที่เหมาะสม สำหรับ คำนวณการเปลี่ยนแปลงความสูงคลื่น H_{ms} แบบจำลองการสูญเสียพลังงานของคลื่นสำหรับคำนวณการ เปลี่ยนแปลงความสูงคลื่น H_{ms} ที่มีอยู่ 15 แบบจำลอง ได้ถูกนำมาทดสอบและปรับเทียบค่าสัมประสิทธ์ ใหม่ ข้อมูลการทดลองจากรางจำลองคลื่นขนาดเล็กและใหญ่ และจากสนาม ถูกนำมาใช้ในการปรับเทียบ และทดสอบความถูกต้องของแบบจำลอง การทดสอบพบว่ามีแบบจำลองอยู่ 4 แบบจำลอง ที่ให้ผลการ

คำนวณคืมาก แบบจำลองที่พัฒนาจาก representative wave approach มีแนวโน้มที่จะให้ผลการคำนวณ คีกว่า ที่พัฒนาจาก parametric wave concept

ส่วนที่ 5 เป็นการหาสมการที่เหมาะสมสำหรับการแปลงค่าจากความสูงคลื่น H_{ms} ไปเป็นความ สูงคลื่น H_{m} , $H_{1/3}$, $H_{1/10}$, และ H_{max} สมการการแปลงค่า 17 ชุด ได้ถูกนำมาทดสอบและปรับเทียบ ค่าสัมประสิทธ์ใหม่ ข้อมูลการทดลองจำนวนมาก จากรางจำลองคลื่นขนาดเล็กและใหญ่ และจากสนาม ถูกนำมาใช้ในการปรับเทียบและทดสอบความถูกต้องของแบบจำลอง การทดสอบพบว่าสมการส่วน ใหญ่ให้ผลการคำนวณดีมากและค่อนข้างใกล้เคียงกัน

ส่วนที่ 6 เป็นการหาสมการที่เหมาะสมสำหรับการแปลงค่าจากความสูงคลื่นตัวแทนแบบ spectrum (H_{mo} หรือ H_{msz}) ไปเป็นความสูงคลื่น H_{m} , H_{ms} , $H_{1/3}$, และ $H_{1/10}$ สมการการแปลงค่า 5 ชุด ได้ถูกนำมาทดสอบและปรับเทียบค่าสัมประสิทธ์ใหม่ ข้อมูลการทดลองจากสนามของโครงการ COAST3D ถูกนำมาใช้ในการปรับเทียบและทดสอบความถูกต้องของแบบจำลอง การทดสอบพบว่า สมการของ Forristall (1978) ให้ผลการคำนวณที่ดีที่สุด แต่ยังให้ผลการคำนวณ $H_{1/10}$ ไม่ดีนัก ดังนั้นจึง มีการปรับปรุงสมการของ Forristall (1978) ในส่วนของ shape factor การทดสอบพบว่าสมการปรับปรุง ใหม่ให้ผลการคำนวณที่ดีขึ้นโดยเฉพาะในส่วนของ $H_{1/10}$ ได้มีการพัฒนาสมการอย่างง่ายขึ้นมา จากการ เปรียบเทียบพบว่า สมการอย่างง่ายให้ผลการคำนวณใกล้เคียงกับสมการปรับปรุงใหม่