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Abstract 

 
The representative wave heights of an irregular wave train are the essential required factors 
for many coastal engineering applications such as the design of coastal structures and the 
study of beach deformations. This study concentrates on the determination of six common 
representative wave heights, i.e. the mean wave height ( mH ), the root-mean-square wave 

height ( rmsH ), the average of the highest one-third wave height ( 3/1H ), the average of the 

highest one-tenth wave height ( 10/1H ), the maximum wave height ( maxH ) and the spectral 

significant wave height ( moH ) or the spectral root-mean-square wave height ( rmszH ). 

Possibly, because of its importance, many wave models have been proposed during the 
past decades. The main purpose of the present study is to find out suitable wave models for 
computing mH , rmsH , 3/1H , 10/1H , maxH , and moH  based on three simple approaches, i.e. 

empirical approach, representative wave approach, and conversion approach. This study is 
divided into 3 main chapters. The first chapter describes the transformation of 
representative wave heights based on empirical approach. The second chapter describes the 
development of wave models using representative wave approach. The third chapter 
describes the transformation of representative wave heights based on the conversion 
approach. The conversion approach consists of four parts, i.e. the wave models for 
computing the transformation of 0mH  [which can be converted to zeroth moment of wave 

spectrum ( 0m ) through the known constant], the wave models for computing the 

transformation of rmsH , the conversion formulas for converting from rmsH  to other 

representative wave heights (i.e. mH , 3/1H , 10/1H , and maxH ), and the conversion 

formulas for converting from 0m  to other representative wave heights (i.e. mH , rmsH , 

3/1H , 10/1H , and maxH ). Hence the conversion model should be constructed based on the 

best model (or formulas) from each part. Therefore, this study is divided into 6 parts. The 
following is the abstract of the six parts. 

 The first part concentrates on empirical approach. The empirical approach is 
introduced to facilitate engineers for design works and preliminary study of coastal 
processes. It seems that only Goda (1975 and 2009) proposed empirical formulas for 
computing the transformation of some representative wave heights from offshore to 
shoreline. The formulas were proposed for computing the transformation of three common 
representative wave heights (i.e. 3/1H , maxH , and 0mH ) on plane beaches. The objectives 

of this part are to verify the Goda formulas for computing the transformation of 3/1H , 

maxH , and 0mH  on unbarred beaches and to extend the formulas for computing the 

transformation of mH , rmsH , and 10/1H . Laboratory data from small-scale and large-scale 

wave flumes with unbarred beach conditions are used to verify the formulas. The 
verification shows that the formulas give very good predictions of 3/1H  and 0mH , but give 

fair prediction of maxH . The formulas are rewritten in the form of a general formula. The 

general form of Goda formulas is recalibrated and extended to compute other 
representative wave heights (i.e. mH , rmsH , and 10/1H ). The general formula gives very 

good predictions of mH , rmsH , 3/1H , 10/1H , maxH , and 0mH . 
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 The second part focuses on a model for computing representative wave heights (i.e. 

rmsH , 3/1H , 10/1H , maxH , and rmszH ) by using representative wave approach. Many 

researchers have pointed out that the use of representative wave approach can give 
erroneous results in the computation of representative wave height transformation. 
However, the representative wave approach has a great merit in simple calculation. It will 
be useful for practical works (especially for the design of coastal structures), if this 
approach can be used to compute the representative wave heights. Rattanapitikon (2008) 
showed that the representative wave approach can be used to compute the transformation 
of 3/1H  with good accuracy. Therefore, it may be possible to use the representative wave 

approach to predict the transformation of other representative wave heights, i.e. mH , rmsH , 

10/1H , maxH , and rmszH . This part is carried out to investigate the possibility of using the 

representative wave approach and find out a suitable dissipation model that can be used to 
compute mH , rmsH , 3/1H , 10/1H , maxH , and rmszH . A large amount and wide range of 

experimental conditions (covering small-scale, large-scale, and field experimental 
conditions) are used to calibrate and examine the model. The representative wave height 
transformation is computed from the energy flux conservation law. Various energy 
dissipation models of regular wave breaking are directly applied to the irregular wave 
model and test their applicability. It is found that by using an appropriate energy 
dissipation model with new coefficients, the representative wave approach can be used to 
compute mH , rmsH , 3/1H , 10/1H , maxH , and rmszH .  

 The objective of the third part is to propose the most suitable dissipation model for 
computing the transformation of spectral significant wave height ( 0mH ). A wide range of 

experimental conditions (covering small-scale, large-scale, and field experiments) were 
used to examine the models. Fourteen existing dissipation models, for computing root-
mean-square wave heights ( rmsH ), were applied to compute 0mH . The coefficients of the 

models were re-calibrated and the accuracy of the models was compared. It appears that 
the model of Janssen and Battjes (2007) with new coefficients gives the best overall 
prediction. The simple model proposed in the present paper was modified by changing the 
formula of stable wave height in the dissipation model. Comparing with the existing 
models, the modified model is the simplest one but gives better accuracy than those of 
existing models. 

 The fourth part focuses on energy dissipation for computing the transformation of 
root-mean-square ( rms ) wave height in the surf zone. There are two approaches to 
describe the rms  wave height, i.e. statistical approach (or wave-by-wave approach) and 
spectral approach (or energy approach). It has been point out by many researchers that the 
rms  wave height derived from these two approaches is significantly difference. This 
difference is expected to cause a significant effect on the estimation of energy dissipation. 
However, no direct literature has been made to describe clearly the applicability of existing 
energy dissipation models in simulating statistical-based rms  wave height ( rmsH ). This 

part is undertaken to find out the suitable dissipation models for computing rmsH . Five 

sources of experimental data are used to examine the accuracy of fifteen existing models. 
The existing models are recalibration before examination. By using the new calibrated 
coefficients, four existing models give the overall average errors less than 10%. The 
models developed based on representative wave concept trend to give better estimation 
than those of parametric wave concept. 
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 The fifth part is undertaken to find out suitable conversion formulas for computing 
representative wave heights (i.e. mean, significant, highest one-tenth, and maximum wave 
heights) from the known commonly used parameters (i.e. root-mean-square wave height, 
water depth, spectral peak period, and beach slope). Seventeen sets of conversion formulas 
(including existing and modified formulas) are re-calibrated and their accuracy is 
compared. A large amount and wide range of experimental conditions from small-scale, 
large-scale, and field experiments (2,619 cases collected from 10 sources) are used to 
calibrate and verify the conversion formulas. The examination shows that most of the 
selected formulas give very good predictions and have similar accuracy. The suitable 
formulas are recommended based on the consideration of accuracy and simplicity of the 
formulas. 

 The sixth part focuses on conversion formulas for estimating statistical-based 
representative wave heights (i.e. mH , rmsH , 3/1H , and 10/1H ) from zeroth moment of wave 

spectrum ( 0m ). The applicability of five sets of existing conversion formulas is examined 

based on two field experiments of COAST3D project (including 13,430 wave records). 
The examination shows that the conversion formulas of Forristall (1978) give the best 
prediction. The formulas of Forristall (1978) are modified by reformulating the shape 
factor in the formulas. The modified formulas give better estimation than those of existing 
formulas. Simple empirical formulas are also proposed. The empirical formulas give nearly 
the same accuracy as those of the modified formulas. 
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บทคัดยอ 

 
การเปล่ียนแปลงของคล่ืน เปนตัวการสําคัญท่ีทําใหเกิดการกัดเซาะและการทับถมชายฝงทะเลและทํา
ความเสียหายตอทรัพยสินหรือส่ิงกอสรางบนฝง โครงการนี้จะเนนไปท่ีสวนของแบบจําลองคล่ืน สําหรับ
คํานวณการเปล่ียนแปลงความสูงคล่ืนตัวแทนท่ีใชท่ัวไปในการคํานวณการกัดเซาะชายฝงและการ
ออกแบบส่ิงกอสรางบริเวณชายฝง ไดแก mean wave height ( mH ), root-mean-square wave height 
( rmsH ), average of the highest one-third wave height ( 3/1H ), average of the highest one-tenth wave 
height ( 10/1H ), the maximum wave height ( maxH ) และ spectral significant wave height ( moH ) หรือ 
spectral root-mean-square wave height ( rmszH ) มีหลายวิธีท่ีสามารถนํามาใชในการจําลองการ
เปล่ียนแปลงความสูงคล่ืนตัวแทน [ mH , rmsH , 3/1H , 10/1H , maxH , และ moH  (หรือ rmszH )] 
การศึกษาคร้ังนี้จะสนใจเฉพาะสามวิธีหลัก ท่ีเหมาะสมในทางปฎิบัติ คือ empirical approach, 
representative wave approach, และ conversion approach จุดประสงคหลักในการศึกษาคร้ังนี้คือ การหา
แบบจําลองคล่ืนท่ีเหมาะสมสําหรับแตละวิธี การศึกษาโครงการนี้แบงออกเปน 3 บทหลักๆ คือ บทท่ี 1 
เปนการคํานวณการเปล่ียนแปลงความสูงคล่ืนตัวแทนโดยวิธี empirical approach บทท่ี 2 เปนการคํานวณ
การเปล่ียนแปลงความสูงคล่ืนตัวแทนโดยวิธี representative wave approach และบทท่ี 3 เปนการคํานวณ
การเปล่ียนแปลงความสูงคล่ืนตัวแทนโดยวิธี conversion approach ซ่ึงเปนการแปลงคาจากความสูงคล่ืน
อางอิงตัวหนึ่ง ไปเปนคล่ืนตัวแทนตัวอ่ืนโดยใชสมการความสัมพันธระหวางคล่ืนตัวแทน วิธี conversion 
approachนี้ ประกอบดวย 2 สวนหลักๆคือ แบบจําลองคล่ืนสําหรับคํานวณการเปล่ียนแปลงความสูงคล่ืน
อางอิง ( moH  หรือ rmsH ) และสมการการแปลงคล่ืนตัวแทนสําหรับแปลงคาจากความสูงคล่ืนอางอิงตัว
หนึ่ง ไปเปนคล่ืนตัวแทนตัวอ่ืน ดังนั้น วิธี conversion approach สามารถแบงออกเปน 4 สวน คือ สวนท่ี 
1 เปนแบบจําลองคล่ืนสําหรับคํานวณการเปล่ียนแปลงความสูงคล่ืน moH  ซ่ึงสามารถแปลงเปน zeroth 
moment of wave spectrum ( 0m ) สวนท่ี 2 เปนแบบจําลองคล่ืนสําหรับคํานวณการเปล่ียนแปลงความสูง
คล่ืน rmsH  สวนท่ี 3 เปนสมการการแปลงคาจากความสูงคล่ืน rmsH  ไปเปนความสูงคล่ืน mH , 3/1H , 

10/1H , maxH  และ สวนท่ี 4 เปนสมการการแปลงคาจากความสูงคล่ืนตัวแทนแบบ spectrum (หรือ 0m ) 
ไปเปนความสูงคล่ืน mH , rmsH , 3/1H , 10/1H , และ maxH  แบบจําลองคล่ืนโดยวิธี conversion 
approach จะสรางจากแบบจําลองท่ีดีท่ีสุดจากท้ัง 4 สวน ดังนั้นโครงการนี้สามารถแบงการศึกษาออกเปน 
6 สวนดวยกัน บทคัดยอของท้ัง 6 สวนมีดังตอไปนี้ 

 สวนท่ี 1 เปนการคํานวณการเปล่ียนแปลงความสูงคล่ืนตัวแทนโดยวิธี empirical approach ใน
ปจจุบันมีเพียง สมการของ Goda (1975 และ 2009) ท่ีสามารถคํานวณการเปล่ียนแปลงความสูงคล่ืนของ
คล่ืนตัวแทนจากนอกฝงถึงชายฝง แตสมการมีขอจํากัดซ่ึงสามารถคํานวณไดเฉพาะ 3/1H , maxH , และ 
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moH  สําหรับชายหาดเรียบท่ีมีความชันคงท่ีเทานั้น จุดประสงคของการศึกษาสวนนี้คือ ทดสอบความ
ถูกตองของสมการของ Goda (1975 และ 2009) ในการคํานวณการเปล่ียนแปลงความสูงคล่ืน 3/1H , 

maxH , และ moH  สําหรับหาดท่ีไมมีเนินทรายใตน้ํา และประยุกตใชสูตรในการคํานวณการเปล่ียนแปลง
ความสูงคล่ืนตัวแทนตัวอ่ืน ( mH , rmsH , และ 10/1H ) ขอมูลการทดลองจากรางจําลองคล่ืนขนาดเล็ก
และใหญถูกนํามาใชในการทดสอบความถูกตองของสมการ การทดสอบพบวาสมการของ Goda ใหผลดี
มากสําหรับ 3/1H  และ moH  แตใหผลไมดีนักสําหรับ maxH  สมการของ Goda ไดถูกปรับปรุงใหอยูใน
รูปท่ัวไปรูปแบบเดียวกัน แลวจึงทําการปรับเทียบคาคงท่ีตางๆในสมการสําหรับการคํานวณการ
เปล่ียนแปลงความสูงคล่ืนตัวแทนท้ังหกตัว การทดสอบพบวาสมการท่ีปรับปรุงข้ึนใหม ใหผลดีมาก
สําหรับ  mH , rmsH , 3/1H , 10/1H , maxH , และ moH  

 สวนท่ี 2 เปนการคํานวณการเปล่ียนแปลงความสูงคล่ืนตัวแทนโดยวิธี representative wave 
approach วิธี representative wave approach มุงความสนใจไปท่ีภาพรวมของคล่ืนแตกและคํานวณเฉพาะ
การเปล่ียนแปลงความสูงของคล่ืนตัวแทน นักวิจัยหลายทานเช่ือวาวิธีนี้ใหผลการคํานวณท่ีไมดีนัก 
ดังนั้นการศึกษานี้ทําข้ึนเพื่อทดสอบหาความเปนไปไดท่ีจะใชวิธีนี้ในการคํานวณการเปล่ียนแปลงของ
คล่ืนตัวแทน โดยทดลองใชแบบจําลองการสูญเสียพลังงานหลายๆแบบ ขอมูลการทดลองจํานวนมาก 
จากรางจําลองคล่ืนขนาดเล็กและใหญ และจากสนาม ถูกนําใชในการทดสอบความถูกตองของ
แบบจําลอง จากการศึกษาพบวา เม่ือใชแบบจําลองการสูญเสียพลังงานท่ีเหมาะสม วิธี representative 
wave approach จะใหผลการคํานวณท่ีคอนขางดีมากสําหรับ  mH , rmsH , 3/1H , 10/1H , maxH , และ 

rmszH  
 จุดประสงคของสวนท่ี 3 คือหาแบบจําลองการสูญเสียพลังงานของคล่ืนท่ีเหมาะสมสําหรับคํานวณ

การเปล่ียนแปลงความสูงคล่ืน moH  แบบจําลองการสูญเสียพลังงานของคล่ืนสําหรับคํานวณการ
เปล่ียนแปลงความสูงคล่ืน rmsH  ท่ีมีอยู 14 แบบจําลอง ไดถูกนํามาประยุกตใชสําหรับคํานวณ moH  และ
ทําการปรับเทียบคาสัมประสิทธใหม ขอมูลการทดลองจํานวนมาก จากรางจําลองคล่ืนขนาดเล็กและใหญ 
และจากสนาม ถูกนํามาใชในการปรับเทียบและทดสอบความถูกตองของแบบจําลอง การทดสอบพบวา
แบบจําลองของ Janssen and Battjes (2007) ใหผลการคํานวณดีท่ีสุด ไดมีการพัฒนาแบบจําลองอยางงาย
ข้ึนมา จากการเปรียบเทียบกับแบบจําลองท่ีมีอยูเดิม 14 แบบจําลอง พบวา แบบจําลองท่ีเสนอใหผลการ
คํานวณท่ีดีท่ีสุดและงายตอการคํานวณท่ีสุด 

 จุดประสงคของสวนท่ี 4 คือหาแบบจําลองการสูญเสียพลังงานของคล่ืนท่ีเหมาะสม สําหรับ
คํานวณการเปล่ียนแปลงความสูงคล่ืน rmsH  แบบจําลองการสูญเสียพลังงานของคล่ืนสําหรับคํานวณการ
เปล่ียนแปลงความสูงคล่ืน rmsH  ท่ีมีอยู 15 แบบจําลอง ไดถูกนํามาทดสอบและปรับเทียบคาสัมประสิทธ
ใหม ขอมูลการทดลองจากรางจําลองคล่ืนขนาดเล็กและใหญ และจากสนาม ถูกนํามาใชในการปรับเทียบ
และทดสอบความถูกตองของแบบจําลอง การทดสอบพบวามีแบบจําลองอยู 4 แบบจําลอง ท่ีใหผลการ
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คํานวณดีมาก แบบจําลองท่ีพัฒนาจาก representative wave approach มีแนวโนมท่ีจะใหผลการคํานวณ
ดีกวา ท่ีพัฒนาจาก parametric wave concept 

 สวนท่ี 5 เปนการหาสมการท่ีเหมาะสมสําหรับการแปลงคาจากความสูงคล่ืน rmsH  ไปเปนความ
สูงคล่ืน mH , 3/1H , 10/1H , และ maxH   สมการการแปลงคา 17 ชุด ไดถูกนํามาทดสอบและปรับเทียบ
คาสัมประสิทธใหม ขอมูลการทดลองจํานวนมาก จากรางจําลองคล่ืนขนาดเล็กและใหญ และจากสนาม 
ถูกนํามาใชในการปรับเทียบและทดสอบความถูกตองของแบบจําลอง การทดสอบพบวาสมการสวน
ใหญใหผลการคํานวณดีมากและคอนขางใกลเคียงกัน 

 สวนท่ี 6 เปนการหาสมการท่ีเหมาะสมสําหรับการแปลงคาจากความสูงคล่ืนตัวแทนแบบ 
spectrum ( moH  หรือ rmszH ) ไปเปนความสูงคล่ืน mH , rmsH , 3/1H , และ 10/1H  สมการการแปลงคา 5 
ชุด ไดถูกนํามาทดสอบและปรับเทียบคาสัมประสิทธใหม ขอมูลการทดลองจากสนามของโครงการ 
COAST3D  ถูกนํามาใชในการปรับเทียบและทดสอบความถูกตองของแบบจําลอง การทดสอบพบวา 
สมการของ Forristall (1978) ใหผลการคํานวณท่ีดีท่ีสุด แตยังใหผลการคํานวณ 10/1H  ไมดีนัก ดังนั้นจึง
มีการปรับปรุงสมการของ Forristall (1978) ในสวนของ shape factor การทดสอบพบวาสมการปรับปรุง
ใหมใหผลการคํานวณท่ีดีข้ึนโดยเฉพาะในสวนของ 10/1H  ไดมีการพัฒนาสมการอยางงายข้ึนมา จากการ
เปรียบเทียบพบวา สมการอยางงายใหผลการคํานวณใกลเคียงกับสมการปรับปรุงใหม 
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Executive Summary 

 
Project Code: RSA5180016 
 
Project Title: Mathematical Model for Computing Representative Wave Heights 
Transformation  
 
Investigator: Mr. Winyu Rattanapitikon, D.Eng., Assoc. Prof., Civil Engineering 
Program, Sirindhorn International Institute of Technology, Thammasat University. 
E-mail Address: winyu@siit.tu.ac.th 
 
Project Period: 3 years (15 Sep. 2008 – 14 Sep. 2011) 
 
Objectives: The main objective of this study is to find out suitable wave models for 
computing the transformation of representative wave heights (i.e. mH , rmsH , 3/1H , 10/1H , 

maxH , and moH ) based on three simple approaches, i.e. empirical approach, representative 

wave approach, and conversion approach. 
 
Methodology:  

1) Collect the published experimental data of representative wave heights under 
irregular wave actions.  

2) Collect the existing models or formulas for computing the transformation of 
representative wave heights ( mH , rmsH , 3/1H , 10/1H , maxH , and moH ) based on 

three simple approaches, i.e. empirical approach, representative wave approach, and 
conversion approach.  

3) Compare the accuracy of existing models or formulas.  
4) Modify the existing wave models or develop new wave models. 

 
Results: Reliable mathematical models for computing the representative wave heights, i.e. 

mH , rmsH , 3/1H , 10/1H , maxH , and moH . The outputs of this project are as follows: 

1) Rattanapitikon, W., 2010. Verification of conversion formulas for computing 
representative wave heights. Ocean Engineering 37, 1554-1563. 

2) Rattanapitikon, W. and Shibayama, T., 2010. Energy dissipation model for computing 
transformation of spectral significant wave height. Coastal Engineering Journal, JSCE 
52, 305-330.  

3) Nuntakamol, P. and Rattanapitikon, W., 2011. Conversion formulas for estimating 
statistical-based representative wave heights from zeroth moment of wave spectrum 
based on field experiments. Ocean Engineering, submitted. 

4) Nuntakamol, P. and Rattanapitikon, W., 2011. Transformation of mean and highest 
one-tenth wave heights using representative wave approach. Kasetsart Journal: 
Natural Science, submitted. 
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Discussion Conclusion: Based on a wide range and large amount of published 
experimental results, reliable models are developed for computing the transformation of 
representative wave heights ( mH , rmsH , 3/1H , 10/1H , maxH , and moH ) based on three 

simple approaches, i.e. empirical approach, representative wave approach, and conversion 
approach. The accuracy of the present models and some existing models are also 
compared. The comparisons show that the present models give better agreement than those 
of existing models. 
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I. INTRODUCTION 
 
 
1.1. General 
 
In recent years, utilization of coastal area has steadily been increasing for human activities 
such as transportation, industry, sports, recreation, and sightseeing. During storms, 
catastrophic beach erosion can occur in the order of hours, resulting in damage to property 
and resources along the coast. Consequently, protection of beach and infrastructure along 
the coast against storm wave attack is a primary concern in the field of coastal 
engineering. The representative wave heights of an irregular wave train are the essential 
required factors for many coastal engineering applications such as the design of coastal 
structures and the study of beach deformation.  

 There are two basic approaches to describing the representative wave heights, i.e. 
statistical approach (or wave-by-wave approach) and spectral approach (or energy 
approach). For the statistical approach, an individual wave in a wave record is determined 
by a zero crossing definition of wave. A wave is defined between two upward (or 
downward) crossings of the water surface about the mean water elevation. The wave 
height ( H ) of an individual wave is defined as the difference between the highest and 
lowest water surface elevation between two zero-up-crossings (or zero-down-crossings). 
The statistical-based representative wave heights [i.e. the mean wave height ( mH ), the 

root-mean-square wave height ( rmsH ), the average of the highest one-third wave height 

( 3/1H ), the average of the highest one-tenth wave height ( 10/1H ), and the maximum wave 

height ( maxH )] can be determined from the wave heights data of the wave record.  

 For the spectral approach, the moments of a wave spectrum are important in 
characterizing the spectrum and are useful in relating the spectral description of wave to 
the statistical-based wave heights. The representative parameter of the average wave 
energy is the zeroth moment of wave spectrum ( 0m ), which can be obtained by integrating 

the wave spectrum [ )( fS ] in the full range of frequency ( f ) as: 





0

0 )( dffSm             (1.1) 

The spectral-based representative wave heights can be determined from 0m . Two 

commonly used spectral representative wave heights are the spectral significant wave 

height ( 04 mHmo  ) and the spectral root-mean-square wave height ( 08mHrmsz  ). The 

spectral representative wave heights can be converted from one to another (and to 0m ) 

through the known constant. 
 The two wave approaches are both important, and neither one alone is sufficient for 

successful application of wave height for engineering problems (Goda, 1974). While some 
formulas in the design of coastal structures are appropriate for statistical-based wave 
heights, others may be more appropriate for spectral-based wave heights. The statistical-
based wave heights should be used in those applications where the effect of individual 
waves is more important than the average wave energy. Measured ocean wave records are 
often analysed spectrally by the instrument package. Similarly, modern wave hindcasts are 
often expressed in terms of spectral-based wave height (or zeroth moment of wave 
spectrum). The present study focuses on five common used statistical-based representative 
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wave heights (i.e. mH , rmsH , 3/1H , 10/1H , and maxH ) and a spectral-based representative 

wave height (i.e. moH  or rmszH ). 

 Wave data are usually available in deepwater but not available in the shallow water 
at the depths required. The wave height in shallow water can be determined from a wave 
model. Various governing equations have been used in the wave model to compute wave 
height transformation, e.g. Navier-Stoke equations, Boussinesq equations, mild slope 
equations, parabolic equations, and energy flux balance equation. If we apply wave model 
for computing beach transformation, the wave model should be kept as simple as possible 
because of the frequent updating of wave field for accounting the variability of mean water 
surface and the change of bottom profiles. Common equation for computing regular wave 
height transformation is the energy flux balance equation. It is: 

 
B

g D
x

Ec



 cos

           (1.2) 

where E  is the wave energy density, gc  is the group velocity,   is the mean wave angle, 

and BD  is the energy dissipation rate due to wave breaking.  
 Irregular wave breaking is more complex than regular wave breaking. In contrast to 

regular waves, there is no well-defined breaking position for irregular waves. The higher 
wave tends to break at the greater distance from the shore. Closer to the shore, more and 
more waves are breaking, until in the inner surf zone almost all the waves are breaking. 
Common methods to model the representative wave heights ( mH , rmsH , 3/1H , 10/1H , 

maxH , and moH ) of an irregular wave train can be classified into five main approaches, i.e. 

empirical approach, representative wave approach, conversion approach, probabilistic 
approach, and spectral approach.  

 The empirical approach is introduced to facilitate engineers for design works and 
preliminary study of coastal processes. It seems that only Goda (1975) proposed empirical 
formulas for computing the transformation of 3/1H  and maxH  from offshore to shoreline. 

The formulas for computing the transformation of 3/1H  and maxH  on plane beaches were 

derived by fitting dimensionless groups to data determined from his probabilistic model. 
Recently, Goda (2009) showed that the formula for computing 3/1H  is also applicable for 

computing 0mH  on plane beaches. The great benefit of this approach is simplicity and 

minimal time requirements, which can be determined from a pocket calculator.  As the 
formulas were developed based on wave propagation on plane beaches, they should not be 
applicable for wave propagation on barred beaches. However, the application of the 
formulas is doubtful for a beach of varying bathymetry in which the sand bar is not formed 
in the surf zone. Moreover, as the formulas are crude, they are not expected to have good 
accuracy. 

 For the representative wave approach, the formulas of regular waves have been 
directly applied to irregular waves by using representative waves ( mH , rmsH , 3/1H , 10/1H , 

maxH , and moH ). Since the highest wave in irregular wave train tends to break at the 

greatest distance from shore, the initiation of surf zone of irregular waves tend to occur at 
greater distance from shore than that of regular waves. Therefore, the use of regular wave 
model may give considerable errors in the surf zone. However, some researchers found 
that by using an appropriate energy dissipation model with new coefficients, the 
representative wave approach can be used to compute rmsH  (Rattanapitikon et al., 2003) 
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and 3/1H  (Rattanapitikon, 2008).  

 The conversion approach is used to convert the representative wave heights from one 
to another through the known relationships. The root-mean-square-wave height (statistical-
based or spectral-based) is usually used as a reference wave height of the conversion 
because it is the output of many wave models (e.g. the models of Battjes and Janssen, 
1978; Thornton and Guza, 1983; Larson, 1995; and Rattanapitikon, 2007). Therefore, the 
other representative wave heights ( mH , 3/1H , 10/1H , and maxH ) can be determined from 

the known relationships between the representative wave heights (e.g. the relationships of 
Longuet-Higgins, 1952; Battjes and Groenendijk, 2000; and Rattanapitikon and 
Shibayama, 2007). 

 Wave-by-wave approach considers the propagation of individual waves. The 
incident individual waves may be determined from the irregular wave records or from 
probability density function ( pdf ) of wave height. These individual waves are then 
propagated shoreward independently using an appropriate regular wave model, assuming 
no wave-to-wave interaction. The representative wave heights ( mH , rmsH , 3/1H , 10/1H , 

maxH , and moH ) at the required location can be constructed from the simulation results of 

all individual waves. This method is particularly useful if a detailed wave height 
distribution is required. However, it requires large computation times. Over the past few 
decades, many research works have been performed in this approach (e.g. Mase and 
Iwagaki, 1982; Mizuguchi, 1982; Dally, 1990 and 1992; Kuriyama, 1996; and Goda, 
2004). The main difference of those research works is the formulation of regular wave 
model that used to simulate the propagation of individual wave. 

 The parametric approach may also be considered as a simplified form of the 
probabilistic approach. It seeks to reduce the computational effort by describing the energy 
dissipation rate in term of time-averaged parameter. As this approach relies on the 
macroscopic features of breaking waves and predicts only the transformation of root-
mean-square ( rms ) wave height, it is suitable when a detail wave height distribution is not 
needed. The works on this approach can be separated into two classes based on the 
assumption about the pdf  of wave height in the surf zone.  The first class assumes that the 
Rayleigh pdf  (or modified Rayleigh pdf ) is valid in the surf zone. The average rate of 
energy dissipation is described by integrating the product of energy dissipation of a single 
broken wave and the probability of occurrence of breaking waves. Various semi-analytical 
models have been developed based on this class (e.g. Battjes and Janssen, 1978; Thornton 
and Guza, 1983; Baldock et al., 1998; and Rattanapitikon and Shibayama, 1998). The 
significant differences of those models are the formulation of energy dissipation of a single 
broken wave and the assumption on probability of occurrence of breaking waves. The 
weak point of this class is the assumption on Rayleigh pdf  in the surf zone, because this 
assumption is not supported by some experiments (Dally, 1990). The second class was 
proposed, by Larson (1995), to overcome the weakness of the first class. Larson (1995) 
proposed a semi-analytic model without making any assumptions about the pdf  in the 
surf zone. The average rate of energy dissipation is described by adding up the dissipation 
of each broken wave component and dividing by the total number of waves (including 
broken and unbroken waves). The semi-analytic model reproduces macroscopic features of 
wave height and energy flux transformation, including breaking and reforming, in 
agreement with the individual wave approach that involves transformation of many 
individual waves. 

 Spectral approach assumes that irregular wave trains consist of numerous wave 
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heights with different frequencies. The distribution of the energy of these wave heights 
when plotted against the frequency (and direction) is called wave spectrum. In the 
modeling, the incident spectrum is decomposed into a number of component waves. The 
propagation of each wave component is computed by using an appropriate regular wave 
model. The wave spectrum at the required location is obtained by assembling the 
simulation results from all the wave components by linear superposition. Several models 
have been proposed based on this approach, differing mainly in the regular wave model 
used to simulate the propagation of wave components (e.g. Izumiya and Horikawa, 1987; 
Isobe, 1987; Panchang et al., 1990; and Grassa, 1990). The application of this approach 
may be restricted when applying in the surf zone, i.e. the component waves in frequency 
domain do not break, but real waves or individual waves in the time domain do break. To 
overcome this problem, the energy dissipation model developed based on parametric 
approach may be incorporated to predict the energy losses due to wave breaking (e.g. 
Mase and Kirby, 1992; Chawla et al., 1998; and Mase and Kitano, 2000). However, the 
spectrum approach requires large computation times. It may not be appropriate to 
incorporate into the beach deformation model. 

 For computing beach deformation, the wave model should be kept as simple as 
possible because of the frequent updating of wave field to account for the change of 
bottom profiles. The present study focuses on empirical approach, representative wave 
approach and conversion approach, as these appear to be the simple methods. During the 
last few decades, many theories have been developed and experimental studies, both in 
laboratory and in the field, have been carried out to draw a clearer picture of wave height 
transformation. Considerable amount of knowledge on the mechanism of wave has been 
accumulated so far. However, it has not reached to a satisfactory level. Owing to the 
complexity of the wave breaking mechanism, full description of the mechanism of the 
wave breaking has not yet been developed. At the present state of knowledge, clearly any 
type of energy dissipation model due to wave breaking has to be based on empirical or 
semi-empirical formulas calibrated with the experimental results. Various wave models 
have been proposed during the past decades. It is not clear which model is the most 
suitable for the three wave approaches. Moreover, most of the models were developed 
with the limited experimental conditions. Therefore, their validity is limited according to 
the range of experimental conditions, which were employed in the calibration. The 
evidence is that there are so many models exist.  

 In the past, we could not develop a model based on a large amount of experimental 
results covering a wide range of test conditions, because they did not exist. However, at 
present, the experimental results obtained by many researchers have been accumulated and 
a large amount of experimental results have become available. It is a good time to develop 
models based on the large amount and wide range of experimental results.  
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1.2. Scope and Objective of Study 
 
The scope and objectives of the present study can be described as follows: 

1. This study focuses mainly on two-dimensional irregular wave models. 
2. Three simple approaches for computing the transformation of mH , rmsH , 3/1H , 

10/1H , maxH , and moH  (or rmszH ) are considered in the present study, i.e. 

empirical approach, representative wave approach, and conversion approach. 
3. To review and summarize existing models which were developed based on the 

three approaches. 
4. To collect a wide range and large amount of published experimental data on mH , 

rmsH , 3/1H , 10/1H , maxH , and moH  for calibration and examination of the models. 

5. To examine the existing wave models for identifying the suitable models for each 
approach.  

6. To modify the existing models or develop new models for the three approaches.  
 
 

 1.3. Organization of Report 
 
The contents of some parts of this report are substantially the same as a series of papers 
submitted to journals. The report updates and extends some material in the papers. The 
present report is written in the following stages: 

 Chapter 1 is an introduction and gives a statement of problem and objective and 
scope of study. 

 Chapter 2 presents empirical formulas for computing the representative wave 
heights based on empirical approach. 

 Chapter 3 describes the transformation of the representative wave heights based 
on representative wave approach. 

 Chapter 4 presents the models and formulas for computing the representative 
wave heights based on conversion approach. 

 Chapter 5 gives conclusions of the study. 
 Appendix presents the paper reprints of this research. 
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2. EMPIRICAL FORMULAS FOR COMPUTING 
REPRESENTATIVE WAVE HEIGHTS 

TRANSFORMATION 
 
 
2.1. Introduction 
 
The representative wave heights ( repH ) are the essential required factors for the study of 

beach deformation and the design of coastal structures. This chapter concentrates on the 
determination of six common representative wave heights, i.e. the mean wave height 
( mH ), the root-mean-square wave height ( rmsH ), the significant wave height or highest 

one-third wave height ( 3/1H ), the highest one-tenth wave height ( 10/1H ), the maximum 

wave height ( maxH ), and the spectral significant wave height ( 0mH ). Wave data are usually 

available in deepwater, but not available in shallow water at the depths required. When 
waves propagate to the nearshore zone, wave profiles steepen, and eventually waves break. 
Once the waves start to break, a part of wave energy is dissipated, and wave height 
decreases towards the shore. Irregular wave breaking is more complex than regular wave 
breaking. In contrast to regular waves, there is no well-defined breaking position for 
irregular waves. A higher wave tends to break at a greater distance from the shore. Closer 
to the shore, more and more waves are breaking, until in the inner surf zone, almost all the 
waves are breaking. The transformation of representative wave heights ( repH ) from 

offshore to shoreline can be determined from a wave model. Common approaches to 
model the transformation of repH  may be classified into four main approaches, i.e. 

empirical approach, representative wave approach, conversion approach, probabilistic 
approach, and spectral approach. For convenience, most engineers seem to prefer the 
simplest approach (which does not give bad accuracy) for practical work. Therefore, the 
present study focuses on the empirical approach, as this appears to be the simplest 
approach for computing the representative wave heights in shallow water.  

 The empirical approach is introduced to facilitate engineers for design works and 
preliminary study of coastal processes. It seems that only Goda (1975) proposed empirical 
formulas for computing the transformation of 3/1H  and maxH  from offshore to shoreline. 

The formulas for computing the transformation of 3/1H  and maxH  on plane beaches were 

derived by fitting dimensionless groups to data determined from his probabilistic model. 
Recently, Goda (2009) showed that the formula for computing 3/1H  is also applicable for 

computing 0mH  on plane beaches. The great benefit of this approach is simplicity and 

minimal time requirements, which can be determined from a pocket calculator.  As the 
formulas were developed based on wave propagation on plane beaches, they should not be 
applicable for wave propagation on barred beaches. However, the application of the 
formulas is doubtful for a beach of varying bathymetry in which the sand bar is not formed 
in the surf zone. Moreover, as the formulas are crude, they are not expected to have good 
accuracy. 

 Although the Goda formulas are widely used, it seems that no literature has verified 
the formulas on computing the transformation of 3/1H  and maxH , and it is not clear 

whether the formulas are applicable for computing other representative wave heights. The 
objectives of the present study are to examine the formulas of Goda (1975 and 2009) for 
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computing the transformation of 3/1H , maxH , and 0mH  on unbarred beach conditions and 

to extend the formulas for computing the transformation of mH , rmsH , and 10/1H . 

Laboratory data of waves propagating on unbarred beaches, from small-scale and large-
scale wave flumes, are used to verify the formulas. 

 This chapter is divided into four main parts. The first part describes the empirical 
formulas of Goda (1975 and 2009). The second part describes the collected data used to 
verify the formulas. The third part is the examination of the formulas for computing 3/1H , 

maxH , and 0mH . The fourth part describes the general form of Goda formulas for 

computing mH , rmsH , 3/1H , 10/1H , maxH , and 0mH . 

 
 
2.2. Goda Formulas 
 
Goda (1975) proposed a wave model based on the probabilistic approach. The model deals 
with unidirectional random waves propagating on plane beaches. In the offshore zone, the 
probability density function ( pdf ) of wave height is assumed to follow the Rayleigh 
distribution. The monochromatic nonlinear theory of Shuto (1974) was used to compute 
wave shoaling. The breaking criterion of Goda (1970) was applied to determine the 
gradational breaker of the random waves. Wave breaking was assumed to occur with 
linearly varying probability of occurrence over a small range of wave heights, resulting in 
a modified distribution with a gradual cutoff of the distribution around the range of breaker 
heights. The effect of surf beats on breaking wave heights was taken into account by 
statistically varying the water depth with addition of surf beat amplitude. The model 
calculates a gradual evolution of the shape of the pdf  of the wave heights from offshore 

throughout the surf zone, from which various representative wave heights (e.g. mH , 

rmsH , 3/1H , 10/1H , and 250/1H ) can be determined. The maximum wave height ( maxH ) is 

set in the computation as that of the highest one-250th wave ( 250/1H ). Since the model was 

developed based on the plane beach conditions, the model should be applicable if the 
beach does not deviate much from a plane beach, and the model should not be applicable 
when a bar is formed on the beach. The applicability of the model has been verified 
through comparison with several laboratory tests and field measurement data. By using 
this model, Goda (1975) computed the propagation of unidirectional random waves on 
plane beaches and presented a set of design diagrams for the transformation of 3/1H  and 

maxH  from the offshore to the shoreline for four beach slopes of 1/10, 1/20, 1/30, and 

1/100. To facilitate coastal engineers for design work, empirical formulas for computing 

3/1H  and maxH  are extracted from the design diagrams. Recently, Goda (2009) showed 

that the formula for computing 3/1H  is also applicable for computing the propagation of 

0mH  on plane beaches. A summary of Goda formulas for computing 3/1H , maxH , and 0mH  

are given below. 
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where sK  is the shoaling coefficient, oH ,3/1  is the deepwater significant wave height, 

omH ,0  is the deepwater spectral significant wave height, h  is the still water depth, and oL  

is the deepwater wavelength related to the significant wave period ( 3/1T ). If the significant 

wave period ( 3/1T ) is not available, Goda (2009) suggested using the spectral mean period 

( 0,1mT ). The coefficients   have been formulated as follows. 
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where m  is the beach slope. The shoaling coefficient ( sK ) is calculated based on the 

nonlinear wave theory of Shuto (1974). The nonlinear wave shoaling makes the Goda 
formulas complicated because the shoaling coefficient has to be solved by a numerical 
method. Thornton and Guza (1983) noted that the use of nonlinear wave theory to shoal 
random waves introduces unnecessary numerical complications into the relatively crude 
model. For convenience of computation, Goda (2009) suggested calculating sK  with the 

linear wave theory as:  
2/1
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where k  is the wave number related to 3/1T  or 0,1mT , which can be determined from the 

dispersion equation.  
 For the wave period parameter, Goda (1975 and 2009) proposed to use 3/1T  or 0,1mT  

for computing the related wave parameters. However, comparing among the wave period 
parameters, the spectral peak period ( pT ) is the most commonly used parameter and 

typically reported for the irregular wave data. It seems to be more convenient to use pT  in 

the formulas. In the present study, all wave parameters are based on linear wave theory 
related to pT .  

 
 
2.3. Collected Laboratory Data 
 
As the Goda formulas were derived from the Goda’s (1975) model which deals with the 
unidirectional waves propagating on plane beaches, the data that are used to examine the 
formulas should be data from the experiments, which were performed under the same 
conditions, i.e. unidirectional waves and plane beaches. However, it is expected that the 
formulas may also be valid for beaches of varying bathymetry in which a bar is not formed 
in the surf zone. Although, the formulas were derived based on the results from the 
unidirectional wave model, it could be applied to account for the effect of wave refraction 
by using the equivalent deepwater wave height concept (for more detail, please see Goda, 
2009). Nevertheless, the application of equivalent deepwater wave height concept is 
restricted to use with 3/1H  (Goda, 2000). It is not clear whether the concept is applicable 

for other representative wave heights or not. However, because of the limitation of the 
available data, the study of applicability of the equivalent deepwater wave height concept 
is not included in this study.  

 Laboratory data of representative wave heights transformation from 6 sources were 
collected for examination and calibration of the formulas. Only the experiments performed 
based on unidirectional waves propagating on unbarred beaches are used to verify the 
Goda formulas. A summary of the collected laboratory data is shown in Table 2.1.  
 
Table 2.1 Collected experimental data for verifying empirical formulas. 
Sources  Measured wave heights No. of 

cases 
No. of

data
Smith and Kraus (1990) mH , rmsH , 3/1H , maxH  3 24

Smith and Vincent (1992) 0mH  
4 36

Ting (2001)  mH , rmsH , 3/1H , 10/1H , maxH  1 7

Kraus and Smith (1994)  mH , rmsH , 3/1H , 10/1H , maxH , 0mH  49 780

Roelvink and Reniers (1995) 0mH  25 246

Dette et al. (1998)  rmsH , 3/1H , 10/1H , maxH , 0mH  64 1625
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Table 2.1 (cont.) Collected experimental data. 
Sources  

oo LH ,3/1  or 

oom LH ,0
* 

m Beach  
conditions  

Apparatus  

Smith and Kraus (1990) 0.030-0.080 0.033 fixed plane small-scale  
Smith and Vincent (1992) 0.032-0.064* 0.033 fixed plane small-scale  
Ting (2001)  0.022 0.029 fixed plane small-scale  
Kraus and Smith (1994)  0.002-0.066 0.034-0.043 movable large-scale  
Roelvink and Reniers (1995) 0.024-0.040* 0.024-0.025 movable large-scale  
Dette et al. (1998)  0.009-0.021 0.022-0.026 movable large-scale  

 
 

 The collected data are separated into 2 groups based on the experiment scale, i.e. 
small-scale and large-scale experiments. The experiments of Smith and Kraus (1990), 
Smith and Vincent (1992), and Ting (2001) were performed in small-scale wave flumes 
under fixed bed conditions, whereas the experiments of Kraus and Smith (1994), Roelvink 
and Reniers (1995), and Dette et al. (1998) were undertaken in large-scale wave flumes 
under movable bed (sandy bed) conditions. For the movable bed conditions, beach profiles 
were initially set as equilibrium beach profiles, and the beach conditions were varied in 
time. The collected data cover a range of deepwater significant wave steepness ( oo LH ,3/1  

or oom LH ,0 ) from 0.002 to 0.080 and average beach slope ( m ) from 0.022 to 0.043. A 

brief description of the experiments is given below. 
 The experiment of Smith and Kraus (1990) was conducted to investigate the macro-

features of wave breaking over bars and artificial reefs using a small wave flume of 45.70 
m long, 0.46 m wide, and 0.91 m deep. Both regular and irregular waves were employed in 
this experiment. A total of 12 cases were performed for irregular wave tests. Three 
irregular wave conditions were generated for three bar configurations as well as for a plane 
beach. A JONSWAP (Hasselmann et al., 1973) computer signal was generated for spectral 
width parameter of 3.3 and spectral peak periods of 1.07, 1.56, and 1.75 s with significant 
wave heights of 0.12, 0.15, and 0.14 m, respectively. Water surface elevations were 
measured at eight cross-shore locations using resistance-type gages. Only 3 cases of waves 
on a plane beach were used in this study (cases no. 2000, 6000, and 8000). 

 The experiment of Smith and Vincent (1992) was conducted to examine the 
development of double-peaked spectral across the surf zone. The tests were performed in a 
small-scale wave flume of 45.7 m long, 0.45 m wide, and 0.61 m deep. The bottom of the 
flume is smooth concrete and rises at a slope of 1:30 from the middle of the flume. Water 
surface elevations were measured at nine cross-shore locations using resistance-type gages. 
Twelve cases were investigated, differing in the position and the energy density level of 
the two peaks. The four most energetic cases (i.e. cases 1, 3, 7, and 9) are available in the 
thesis of Vink (2001) and are used in this study. 

 The experiment of Ting (2001) was conducted to study wave and turbulence 
velocities in a broad-banded irregular wave surf zone. The experiment was performed in a 
small-scale wave flume, which was 37 m long, 0.91 m wide and 1.22 m deep. A false 
bottom with 1/35 slope built of marine plywood was installed in the flume to create a plane 
beach. The irregular waves were developed from the TMA spectrum (Bouws et al., 1985), 
with a spectral peak period of 2.0 s, a spectral significant wave height of 0.15 m, and 
spectral width parameter of 3.3. Water surface elevations were measured at seven cross-
shore locations using a resistance-type gage. 

 The SUPERTANK laboratory data collection project (Kraus and Smith, 1994) was 
conducted to investigate cross-shore hydrodynamic and sediment transport processes. A 
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76-m-long sandy beach was constructed in a large wave tank of 104 m long, 3.7 m wide, 
and 4.6 m deep. The wave conditions were designed to balance the need for repetition of 
wave conditions to move the beach profile toward equilibrium, and development of a 
variety of conditions for hydrodynamic studies. Wave conditions included both regular and 
irregular waves. The TMA spectral shape (Bouws et al., 1985) with spectral width 
parameter of 3.3, 20, and 100 was used to design all irregular wave tests. Most of the 
experiments were performed with the spectral width parameter of 3.3 and only a few 
experiments were performed with the spectral width parameter of 100. Sixteen resistance-
type gages were used to measure water surface elevations across the shore. The initial 
beach profile of the first major test was a planar foreshore joining to the subaqueous 
portion formed in a concave shape of equilibrium beach profile. The beach profiles of 
other testes were initiated using the final profile configuration of the previous run or 
modified form of it. The beach profiles cover either barred or unbarred beaches. Fourteen 
major tests (including 128 cases) were performed under irregular wave actions. Only 49 
cases of unbarred beach conditions were used in this study. The collected experiments 
cover deepwater significant wave steepness ( oo LH /,3/1 ) from 0.002 to 0.066, average 

beach slope from 0.034 to 0.043 and spectral width parameter of 3.3 and 20.  
 LIP 11D Delta Flume Experiment (Roelvink and Reniers, 1995) was performed at 

Delft Hydraulics large-scale wave flume. A 175-m-long sandy beach was constructed in a 
large wave tank of 233 m long, 5 m wide and 7 m deep. The 2 major tests were performed, 
i.e., with dune (test no. 1A-1C) and without dune (test no 2A-2C). Each major test 
consisted of several wave conditions. The duration of each wave condition lasted about 12 
to 21 hr. Initial beach profiles of the test no. 1A and 1B are equilibrium Dean-type 
beaches. The beach profiles of other tests (test no. 1B, 1C, 2B, 2E, and 2C) were initiated 
using the final profile configuration of the previous test. The fixed measurement set-up 
consisted of 10 pressure gauges and three wave height meters deployed in the flume to 
measure the wave transformation. Board banded random waves, JONSWAP spectrum with 
spectral width parameter of 3.3, were generated. During the run, the sand bar feature grows 
and becomes more pronounced after sometimes. Only the experiments of unbarred beach 
conditions are used in this study. The collected experiments include 25 cases of wave and 
beach conditions, covering deepwater significant wave steepness ( oom LH /,0 ) from 0.024 to 

0.040 and average beach slope from 0.024 to 0.025. 
 SAFE Project (Dette et al., 1998) was carried out to improve the methods of design 

and performance assessment of beach nourishment. The SAFE Project consisted of four 
activities, one of which was to perform experiments in a large-scale wave flume in 
Hannover, Germany. A 250-m-long sandy beach was constructed in a large wave tank of 
300 m long, 5 m wide and 7 m deep. The test program was divided into two major phases. 
The first phase (test no. A, B, C, and H) was aimed to study the beach deformation of 
equilibrium profile with different beach slope changes. The equilibrium beach profile was 
adopted from Bruun’s (1954) approach ( 3/212.0 xh  ). In the second phase, the sediment 
transport behaviors of dunes with and without structural aid were investigated (test no.  D, 
E, F, and G). The TMA spectral shape with spectral width parameter of 3.3 was used to 
design all irregular wave tests. A total of 27 wave gages was installed over a length of 175 
m along one wall of the flume. The collected experiments included 64 cases of unbarred 
beach conditions, covering deepwater significant wave steepness ( oo LH /,3/1 ) from 0.009 

to 0.021 and average beach slope from 0.022 to 0.026. 
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2.4. Formula Examination 
 
The basic parameter for determination of the overall accuracy of the formulas is the 
average root-mean-square relative error ( avgER ), which is defined as: 
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where n  is the data group number, gnER  is the root-mean-square relative error of the 

group no. n , and tn  is the total number of data groups. A small value of avgER  indicates 

good overall accuracy of the prediction. 
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where i  is the wave height number, ciH  is the computed wave height of number i , miH  is 

the measured wave height of number i , and nc  is the total number of measured wave 
heights in each data group. 

 The question of how good a model is, is usually defined in a qualitative ranking (e.g. 
excellent, very good, good, fair, and poor). As the error of some existing irregular wave 
models is in the range of 7 to 21% (please see Table 2 of Rattanapitikon, 2007), the 
qualification of error ranges of an irregular wave model may be classified into five ranges 
[i.e. excellent ( %0.5gER ), very good ( %0.100.5  gER ), good ( %0.150.10  gER ), 

fair ( %0.200.15  gER ), and poor ( %0.20gER )]. 

 The laboratory data from 6 sources (see Table 2.1) are used to examine the validity 
of the formulas. The experiments are separated into 2 groups, i.e. small-scale and large-
scale experiments. The small-scale experiments were performed under fixed plane beach 
conditions, while the large-scale experiments were performed under movable unbarred 
beach conditions. 

 The computations of repH  are carried out with the 6 sources of collected data. The 

variables required for the examination are repH , pT , h , m , orepH , , oL , sK , and k . The 

data of repH , pT , h , and m  are measured directly from the laboratory. The bottom slope 

( m ) used in the computation is the average bottom slope. The data of orepH , , oL , sK , and 

k  are calculated based on linear wave theory related to the spectral peak period ( pT ). The 

deepwater representative wave height ( orepH , ) is calculated from the wave height at the 

farthest offshore measurement location. 
 Errors of Eqs. (2.1) – (2.3) on predicting 3/1H , maxH , and 0mH  for two groups of 

experiment scales are shown in Table 2.2. The examination results from Table 2.2 can be 
summarized as follows. 
 
(a) It is common to expect that the crude formula should not give very good accuracy. 

Surprisingly, the Goda formula [Eq. (2.1)] gives very good predictions of 3/1H  for 

either small-scale or large-scale experiments ( gER  = 8.7 and 8.1%, respectively). 
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These errors seem to be able to compete with other complicated wave models. 
However, the use of pT  (instead of 3/1T  or 0,1mT ) may cause the coefficients in the 

formula to change slightly. The accuracy of the predictions may be improved by 
recalibrating the coefficients in the formula. 

(b) The Goda formula [Eq. (2.2)] gives fair predictions of maxH  for both of small-scale 

and large-scale experiments ( gER  = 18.8 and 17.6%, respectively). These errors seem 

not to be acceptable for practical work. As the errors are too large, the formula for 
computing maxH  may have to be modified before use in practical work. 

(c) For computing 0mH , the Goda formula [Eq. (2.3)] gives very good prediction for 

small-scale experiments ( gER = 5.3%) and good prediction for large-scale 

experiments ( gER = 10.4%). However, many researchers (e.g. Goda, 1974; Thompson 

and Vincent, 1985; Battjes and Groenendijk, 2000; and Goda, 2009) showed that  

0mH  is not equal to 3/1H , especially near the breaking point. The coefficients in the 

formula of 0mH  [Eq. (2.3)] are expected to be different from those of 3/1H . Although, 

the overall accuracy of 0mH  is very good ( avgER  = 7.8%), it may be possible to 

improve the accuracy by recalibrating the coefficients. 
(d) The overall errors ( avgER ) of the formulas for computing 3/1H , maxH , and 0mH  are 

8.4, 18.2, and 7.8%, respectively. The formulas give very good predictions of 3/1H  

and 0mH  but give fair prediction of maxH .  

 
 
Table 2.2 The errors ( gER  and avgER ) of Goda formulas on computing 3/1H , maxH , and 

0mH  for two groups of experiment scales. 

gER  repH  No of 
cases 

Formulas 

small-
scale 

large-
scale 

avgER

3/1H  117 Eq. (2.1) 8.7 8.1 8.4

maxH  117 Eq. (2.2) 18.8 17.6 18.2

0mH  142 Eq. (2.3) 5.3 10.4 7.8

maxH  117 Eq. (2.16) 10.1 15.0 12.6
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2.5. Formula Modification 
 
It can be seen from Eq. (2.2) that maxH  is a function of oH ,3/1 . The formula is proposed 

based on the assumption that the deepwater maximum wave height ( oHmax, ) is equal to 

oH ,3/18.1 . The formula may not be appropriate if oo HH ,3/1max, 8.1 . It seems to be more 

appropriate if the formula is rewritten in terms of the corresponding representative wave 
height (i.e. oHmax, ). Equation (2.2) can be rewritten in terms of oHmax,  by replacing oH ,3/1  

with 8.1/max,oH . The modified formula for computing maxH  can be expressed as: 
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 Errors of Eq. (2.16) on predicting maxH  for two groups of experiment scales are 

shown in the last row of Table 2.2. It can be seen that the overall error ( avgER ) of the 

prediction is reduced significantly from 18.2% to be 12.6%. Therefore, the use of Eq. 
(2.16) for computing maxH  seems to be more suitable than that of Eq. (2.2).  

 
 
2.5.1. General formula 
 
It can be seen from Eqs. (2.1), (2.3), and (2.16) that the pattern of the formulas is similar. 
They can be written in general form for computing the representative wave heights ( repH ) 

as: 
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where 1C - 5C  are constants and sK  is the linear wave shoaling coefficient which is 

determined from Eq. (2.13). The proposed values of the constants 1C - 5C  for computing 
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3/1H , maxH , and 0mH  are shown in Table 2.3. The general form of Goda formulas [Eq. 

(2.20)] consists of three main parts, i.e. the parts of wave shoaling ( orepsHK , ), maximum 

limit of wave height ( orepH ,3 ), and wave decay in surf zone ( hH orep 2,1   ). 

 
Table 2.3 Default constants ( 1C - 5C ) of the general form of Goda formulas [Eq. (2.20)]. 

repH  
1C  2C  3C  4C  5C  

3/1H  0.028 0.52 4.2 0.92 0.32 

maxH  0.036 0.63 3.8 0.92 0.35 

0mH  0.028 0.52 4.2 0.92 0.32 
 
 

 It should be noted that the Goda formulas were derived from the numerical results of 
Goda’s (1975) model which may give some errors compared with the measured data. Also, 
the use of pT  (instead of 3/1T  or 0,1mT ) may cause the coefficients in the formula to change 

slightly. The predictions may be more accurate if the constants ( 1C - 5C ) are re-calibrated 

with the measured data. Moreover, because the transformation of other representative 
wave heights (i.e. mH , rmsH  and 10/1H ) are in similar fashion as those of 3/1H , maxH , and 

0mH , it may be possible to extend the general formula [Eq. (2.20)] to compute the other 

representative wave heights (i.e. mH , rmsH  and 10/1H ). The calibration of the 1C - 5C  for 

computing mH , rmsH , 3/1H , 10/1H , maxH , and 0mH  are carried out in the next subsection. 

 
 
2.5.2. Formula calibration and extension 
 
A calibration of the general formula [Eq. (2.20)] is conducted by gradually adjusting the 
coefficients ( 1C - 5C ) in the formula until the minimum error ( avgER ) between measured 

and computed repH  is obtained. The optimum values of 1C - 5C  for computing the 

representative wave heights ( mH , rmsH , 3/1H , 10/1H , maxH , and 0mH ) are shown in the 

third to seventh columns of Table 2.4. The errors of the general formula on simulating the 
representative wave heights are shown in Table 2.4. The examination results from Table 
2.4 can be summarized as follows. 
 
(a) After calibration, the constants 1C  and 2C  in the part of wave decay in surf zone are 

changed significantly, while the other constants are changed slightly. The overall 
accuracies of the general formula for computing  3/1H , maxH  and 0mH  are improved 

significantly. The formula gives very good overall predictions of 3/1H , maxH , and 

0mH . The overall errors ( avgER ) of the general formula for computing 3/1H , maxH , 

and 0mH  are 7.4, 8.8, and 5.9%, respectively. The general formula gives very good 

predictions of 3/1H , and 0mH  for either small-scale or large-scale experiments, while 

it gives very good prediction of maxH  for only small-scale experiments. The accuracy 

of maxH  for large-scale experiments is much less than the others. 
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(b) The general formula gives very good predictions of mH , rmsH , and 10/1H  for either 

small-scale or large-scale experiments. The overall errors ( avgER ) of the general 

formula for computing mH , rmsH , and 10/1H  are 7.5, 7.5, and 7.3%, respectively. This 

shows that the general formula can be used for computing mH , rmsH , and 10/1H . 

(c) Overall, the general formula gives very good predictions of mH , rmsH , 3/1H , 10/1H , 

maxH , and 0mH . 

 
 
Table 2.4 The errors ( gER  and avgER ) of the general form of Goda formulas [Eq. (2.20)] 

on computing mH , rmsH , 3/1H , 10/1H , maxH , and 0mH  for two groups of experiment 

scales. 
Calibrated constants 

gER  repH  No of 
cases 

1C  2C  3C 4C 5C small-
scale 

large-
scale 

avgER  

mH  53 0.017 0.40 4.2 0.86 0.28 6.8 8.2 7.5 

rmsH  117 0.023 0.43 4.2 0.86 0.28 7.8 7.2 7.5 

3/1H  117 0.049 0.44 4.2 0.86 0.32 7.4 7.4 7.4 

10/1H  114 0.062 0.45 4.2 0.86 0.32 7.0 7.6 7.3 

maxH  117 0.076 0.45 4.2 0.86 0.32 6.6 11.0 8.8 

0mH  142 0.049 0.44 4.2 0.86 0.28 5.7 6.1 5.9 
 
 

 To gain an impression of overall performance of the general formula, the results of 
Eq. (2.20) are plotted against the measured data. Examples of computed representative 
wave heights transformation across-shore are shown in Figs. 2.1 to 2.4. Case numbers in 
Figs. 2.1 to 2.4 are kept to be the same as the originals. It can be seen from Figs. 2.1 to 2.4 
that the fluctuation of measured wave heights in large-scale wave flumes is larger than that 
in small-scale wave flumes. The fluctuation of measured maxH  in large-scale wave flumes 

is the largest. The formula could not predict the fluctuation of wave height profiles. It 
seems to be impossible to use the simple formula for simulating the fluctuation. However, 
from the general tendency of computed wave heights from Figs. 2.1 to 2.4, we can judge 
that the formula gives reasonably well estimations of the transformation of representative 
wave heights in small-scale and large-scale wave flumes. 
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Fig. 2.1 Example of computed and measured representative wave heights transformation 
(measured data from Smith and Kraus, 1990, case no. 6000). 
 
 
 

 
 
Fig. 2.2 Example of computed and measured representative wave heights transformation 
(measured data from Ting, 2001, case no. 1). 
 
 
 
 
 



18 
 

 
 

 
 
Fig. 2.3 Example of computed and measured representative wave heights transformation 
(measured data from Kraus and Smith, 1994, case no. a0515a). 
 
 
 

 
 
Fig. 2.4 Example of computed and measured representative wave heights transformation 
(measured data from Dette et al., 1998, case no. 11129601). 
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3. TRANSFORMATION OF REPRESENTATIVE 
WAVE HEIGHTS USING REPRESENTATIVE WAVE  

APPROACH 
 
 
3.1. Introduction 
 
The present chapter concentrates on the determination of six common representative wave 
heights, i.e. the mean wave height ( mH ), the root-mean-square wave height ( rmsH ), the 

significant wave height ( 3/1H ), the highest one-tenth wave height ( 10/1H ), the maximum 

wave height ( maxH ), and the spectral root-mean-square wave height ( rmszH ). The 

representative wave heights are the essential required factors for the study of beach 
deformation and the design of coastal structures. When waves propagate to the nearshore 
zone, wave profiles steepen and eventually waves break. Once the waves start to break, a 
part of wave energy is transformed into turbulence and heat, and wave height decreases 
towards the shore. Irregular wave breaking is more complex than regular wave breaking. 
In contrast to regular waves, there is no well-defined breaking position for irregular waves. 
The higher wave tends to break at the greater distance from the shore. Closer to the shore, 
more and more waves are breaking, until in the inner surf zone almost all the waves are 
breaking. Wave data are usually available in deepwater but not available in the shallow 
water at the depths required. The representative wave heights ( mH , rmsH , 3/1H , 10/1H , 

maxH , and rmszH ) in shallow water can be determined from a wave height transformation 

model. Common methods to model the representative wave heights ( mH , rmsH , 3/1H , 

10/1H , maxH , and rmszH ) may be classified into five approaches, i.e. empirical approach, 

representative wave approach, conversion approach, wave-by-wave approach, and spectral 
approach. The present chapter concentrates on the representative wave approach. 

 For the representative wave approach, the regular wave models are directly applied 
to irregular waves by using the representative wave heights. The approach is easy to 
understand and also simple to use. However, the characteristics of the irregular waves (e.g. 
wave height and period) are statistical variability in contrast to regular waves, which has a 
single height, period, and direction. As the representative wave approach does not consider 
such variability, the method may possibly contain a large estimation error. It seems that no 
literature has pointed out that the representative wave approach is applicable in the surf 
zone. Consequently, engineers have been reluctant to use the representative wave 
approach. However, the representative wave approach has the merits of easy 
understanding, simple application and it is not necessary to assume the shape of the pdf  
of wave heights. It will be useful for some practical work if this approach can be used to 
compute the representative wave heights in shallow water. Moreover, Rattanapitikon et al. 
(2003) and Rattanapitikon (2008) reported that the representative wave approach can be 
used to compute rmsH and 3/1H  with very good accuracy. It may also be used to compute 

other representative wave heights ( mH , 10/1H , maxH , and rmszH ). The main objective of 

this study is to investigate the possibility of using the representative wave approach. 
 This chapter is divided into four main parts. The first part describes the collected 

data. The second part describes some existing regular wave models. The third part 
describes modeling of irregular waves using representative wave approach. The fourth part 
deals with the modification of the selected model.  
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3.2. Collected Experimental Data 
 
Experimental data from 13 sources, including 1729 cases, have been collected for 
calibration and examination of the models. The experiments cover wide range of wave and 
bottom topography conditions, including small-scale, large-scale, and field experiments. A 
summary of the collected experimental data is given in Table 3.1.  
 
Table 3.1 Summary of collected experimental data for verifying representative wave 
approach. 

Sources 
No. of  
cases

Apparatus Measured parameters 

Smith and Kraus (1990) 12 small-scale mH , rmsH , 3/1H , maxH  

Hurue (1990) 1 small-scale 3/1H  

Katayama (1991) 2 small-scale 3/1H  

Smith and Vincent (1992) 4 small-scale rmszH  

Hamilton and Ebersole (2001) 1 small-scale rmszH  

Smith and Seabergh (2001) 11 small-scale mH , 3/1H , rmszH  

Ting (2001) 1 small-scale mH , rmsH , 3/1H , 10/1H , maxH  

Kraus and Smith (1994) 128 large-scale mH , rmsH , 3/1H , 10/1H , maxH , rmszH  

Roelvink and Reniers (1995) 95 large-scale rmszH  

Dette et al. (1989) 138 large-scale rmsH , 3/1H , 10/1H , maxH , rmszH  

Thornton and Guza (1986) 4 field rmsH  

Birkemeier et al. (1997) 745 field rmszH  

Herbers et al. (2006)  587 field rmszH  

Total 1729   
 
 

 The collected experimental data shown in Table 3.1 are separated into 3 groups 
based on experiment scale, i.e. small-scale, large-scale, and field experiments. The data 
cover a range of deepwater wave steepness ( oso LH , where soH  is the deepwater 

significant wave height) from 0.002 to 0.064. The examination of these independent data 
sources and wide range of experimental conditions are expected to clearly demonstrate the 
accuracy of the models. A brief description of the experiments is given below.  

 The experiment of Smith and Kraus (1990) was conducted to investigate the macro-
features of wave breaking over bars and artificial reefs using a small wave flume of 45.70 
m long, 0.46 m wide, and 0.91 m deep. Both regular and irregular waves were employed in 
this experiment. A total of 12 cases were performed for irregular wave tests. Three 
irregular wave conditions were generated for three bar configurations as well as for a plane 
beach. A JONSWAP (Hasselmann et al., 1973) computer signal was generated for spectral 
width parameter of 3.3 and spectral peak periods of 1.07, 1.56, and 1.75 s with significant 
wave heights of 0.12, 0.15, and 0.14 m respectively. Water surface elevations were 
measured at eight cross-shore locations using resistance-type gages. 

 The experiment of Ting (2001) was conducted to study wave and turbulence 
velocities in a broad-banded irregular wave surf zone. The experiment was performed in a 
small-scale wave flume, which was 37 m long, 0.91 m wide and 1.22 m deep. A false 
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bottom with 1/35 slope built of marine plywood was installed in the flume to create a plane 
beach. The irregular waves were developed from the TMA spectrum (Bouws et al., 1985), 
with a spectral peak period of 2.0 s, a spectrally based significant wave height of 0.15 m 
and spectral width parameter of 3.3. Water surface elevations were measured at seven 
cross-shore locations using a resistance-type gage. 

 The SUPERTANK laboratory data collection project (Kraus and Smith, 1994) was 
conducted to investigate cross-shore hydrodynamic and sediment transport processes from 
August 5 to September 13, 1992 at Oregon State University, Corvallis, Oregon, USA. A 
76-m-long sandy beach was constructed in a large wave tank of 104 m long, 3.7 m wide, 
and 4.6 m deep. Wave conditions included both regular and irregular waves. In all, 20 
major tests were performed, and each major test consisted of several cases. Most of the 
tests (14 major tests) were performed under the irregular wave actions. The wave 
conditions were designed to balance the need for repetition of wave conditions to move the 
beach profile toward equilibrium and development of a variety of conditions for 
hydrodynamic studies. The TMA spectral shape (Bouws et al., 1985) was used to design 
all irregular wave tests. The collected experiments for irregular waves included 128 cases 
of wave and beach conditions (a total of 2047 wave records), covering incident significant 
wave heights from 0.2 m to 1.0 m, spectral peak periods from 3.0 sec to 10.0 sec, and 
spectral width parameter between 3.3 (broad-banded) and 100 (narrow-banded). Sixteen 
resistance-type gages were used to measure water surface elevations across shore. 

 SAFE Project (Dette et al., 1998) was carried out to improve the methods of design 
and performance assessment of beach nourishment. The SAFE Project consisted of four 
activities, one of which was to perform experiments in a large-scale wave flume in 
Hannover, Germany. A 250-m-long sandy beach was constructed in a large wave tank of 
300 m long, 5 m wide and 7 m deep. The test program was divided into two major phases. 
The first phase (cases A, B, C, and H) was aimed to study the beach deformation of 
equilibrium profile with different beach slope changes. The equilibrium beach profile was 
adopted from the Bruun (1954)’s approach ( 3/212.0 xh  ). In the second phase, the 
sediment transport behaviors of dunes with and without structural aid were investigated 
(cases D, E, F, and G). The TMA spectral shape (Bouws et al., 1985) was used to design 
all irregular wave tests. The tests were performed under normal wave conditions ( oso LH / = 

0.010, water depth in the horizontal section = 4.0 m) and storm wave conditions ( oso LH / = 

0.018, water depth in the horizontal section = 5.0 m). A total of 27 wave gages was 
installed over a length of 175 m along one wall of the flume. The collected experiments 
included 138 cases of wave and beach conditions, covering deepwater wave steepness 
( oso LH / ) from 0.010 to 0.018. 

 
 
3.3. Regular Wave Model 
 
Common equation for computing regular wave height transformation across-shore is the 
energy flux balance equation. It is: 
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g D
x

Ec
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
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           (3.1) 

where E  is the wave energy density, gc  is the group velocity,   is the mean wave angle, 

x  is the distance in cross shore direction, and BD  is the energy dissipation rate due to 
wave breaking which is zero outside the surf zone. The energy dissipation rate due to 
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bottom friction is neglected. In the present study, all variables are based on the linear wave 
theory. Snell’s law is employed to describe wave refraction. 


c

sin
 constant            (3.2) 

where c  is the phase velocity. 
 From the linear wave theory, the wave energy density ( E ) is equal to 8/2gH , 

where H  is the wave height. Therefore, Eq. (3.1) can be written in terms of wave height 
as: 
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  The wave height transformation can be computed from the energy flux balance 
equation [Eq. (3.3)] by substituting the model of energy dissipation rate ( BD ) and 
numerically integrating from offshore to shoreline. In the offshore zone, the energy 
dissipation rate is set to zero. The main difficulty of Eq. (3.3) is how to formulate the 
energy dissipation rate caused by the breaking waves. During the past decades, various 
models have been developed for computing the energy dissipation of regular wave 
breaking. Widely used concepts for computing energy dissipation rate ( BD ) for regular 
wave breaking are the bore concept and the stable energy concept.  

 The bore concept is based on the similarity between the breaking wave and the 
hydraulic jump. Several models have been proposed based on slightly different 
assumptions on the conversion from energy dissipation of hydraulic jump to energy 
dissipation of a breaking wave. Some existing BD  models, which were developed based 
on the bore concept, are listed below. 

a) Battjes and Janssen (1978): 
T
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               (3.4) 

b) Thornton and Guza (1983): 
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c) Deigaard et al. (1991):   
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where h  is the water depth, and T  is the wave period. The constants in the above models 
were calibrated by Rattanapitikon et al. (2003) based on a wide range of experimental 
conditions. 

 The stable energy concept was introduced by Dally et al. (1985) based on an analysis 
of the measured breaking wave height on horizontal slope of Horikawa and Kuo (1966). 
When a breaking wave enters an area with horizontal bed, the breaking continues (the 
wave height decreases) until some stable wave height is attained. The development of the 
stable energy concept was based on an observation of stable wave height on horizontal 
slope. Dally et al. (1985) assumed that the energy dissipation rate was proportional to the 
difference between the local energy flux per unit depth and the stable energy flux per unit 
depth. Several models have been proposed on the basis of this concept. The main 
difference is the formula for computing the stable wave height (for more detail, please see 
Rattanapitikon et al., 2003). Some existing BD  models, which were developed based on 
the stable energy concept, are listed as follows. 

a) Dally et al. (1985):     22 )4.0(
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            (3.7) 

b) Rattanapitikon and Shibayama (1998):  
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c) Rattanapitikon et al. (2003):   22 27.0
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d) Rattanapitikon (2008):  
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in which the breaker height bH  is determined from the formula of Miche (1944) as: 

       khLHb tanh14.0           (3.11) 

where L  is the local wavelength, and k  is the local wave number. The second terms on 
the right hand side of Eqs. (3.7) to (3.10) are the terms of stable wave height. The energy 
dissipation will be zero if the wave height is less than the stable wave height. 
 
 
3.4. Irregular Wave Model 
 
For the representative wave approach, the energy flux of the representative wave 
represents the average energy flux of an irregular wave train. The governing equation 
(energy flux conservation) of the representative wave ( rmsH ) can be derived based on the 

assumptions of linear wave theory and Rayleigh distribution of wave heights (for more 
detail, please see e.g. Larson, 1995). Although the crude assumptions of the representative 
wave approach may not be theoretically justified (mainly because of the nonlinearity of 
each individual wave), the approach is physical validity (the prediction agrees well with 
actual measurements). There are many wave models that are successful in using the energy 
flux conservation of the representative wave ( rmsH ) for computing the transformation of 

rmsH  across-shore, e.g. the models of Battjess and Janssen (1978), Thornton and Guza 

(1983), Larson (1995), Baldock et al. (1998), Ruessink et al. (2003), and Rattanapitikon 
(2007). If the energy flux conservation of rmsH  is valid, the energy flux conservation of 

sH  should also be valid; because rmsH  can be converted to sH  through the known 

coefficient (i.e. rmss HH 42.1  for the Rayleigh distribution). 

 In the present study, for the significant wave representation method, the regular 
wave model is applied directly to irregular waves by using the significant wave height 
( sH ) and the spectral peak period ( pT ). The spectral peak period is used because it is the 

most commonly used parameter and typically reported for the irregular wave data. Since 
the BD  formulas shown in Sec. 3.3 [Eqs. (3.7) to (3.10)] were developed for regular 
waves, it is not clear which formula is suitable for the significant wave representation 
method. Therefore, all of them were used to investigate the possibility of simulating the 
significant wave height transformation.  
  Similar to the regular wave model, the irregular wave model based on representative 
wave approach can be computed from the energy flux conservation as: 
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where repH  is the representative wave heights, i.e. mean wave height ( mH ), root-mean-

square wave height ( rmsH ), significant wave height or highest one-third wave height 
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( 3/1H ), highest one-tenth wave height ( 10/1H ), maximum wave height ( maxH ), and spectral 

root-mean-square wave height ( rmszH ). 

 Since the highest wave in irregular wave train tends to break at the greatest distance 
from shore, the initiation of surf zone of irregular waves tend to occur at greater distance 
from shore than that of regular waves. Therefore, the use of regular wave model may give 
considerable errors in the surf zone. To overcome this problem, the coefficient of breaker 
height formula for regular waves may have to be reduced when applying to model 
irregular waves. 

 Applying regular wave dissipation models [Eqs. (3.7) - (3.10)] for representative 
wave height ( repH ) and spectral peak period ( pT ), the dissipation models for irregular 

wave breaking can be expressed as: 
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where 1K - 12K  are constants. It can be seen from Eqs. (3.7) - (3.10) that the coefficients 

1K - 12K  for the regular wave models are 0.47, 0.67, 0.48, 0.15, 0.4, 0.15, 1.0, 0.15, 0.073, 

0.010, 0.128, and 0.226, respectively. When applying to the irregular wave, 1K - 12K  are 
the adjustable coefficients to allow for the effect of the transformation to irregular waves. 
Hereafter, Eqs. (3.13) - (3.19) are referred to as MD1, MD2, MD3, MD4, MD5, MD6, and 
MD7, respectively. The variables gc , c , L , and k  in the models MD1-MD7 are 

calculated based on the peak spectral wave period ( pT ). 

 When waves propagate toward a shore, the wave profile steepens and then 
eventually breaks. Once the wave starts to break, energy flux is dissipated to turbulence 
and causes a decrease in wave energy and wave height towards the shore. Hence, the 
primary task is to consider the point where the wave starts to break (incipient wave 
breaking). The incipient wave breaking is used in an effort to provide the starting point to 
include the energy dissipation rate ( BD ) in the equation of energy flux conservation. In the 
present study, the formula of Miche (1944) is selected for inclusion into the irregular wave 
model. However, the Miche’s (1944) formula was developed for regular wave breaking. It 
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is necessary to modify before applying to irregular wave model. For using in the 
representative wave approach, the Miche’s (1944) formula is modified to be: 

 khLKH brep tanh13,             (3.20) 

where 13K  is constant. The energy dissipation ( BD ) of models MD1-MD7 occur when 

breprep HH ,  and is equal to zero when breprep HH , . 

 
 
3.4.1. Model calibration and examination 
 
The objective of this section is to calibrate and test the applicability of models MD1-MD7. 
All collected data shown in Table 3.1 are used to calibrate and examine the models. The 
collected experimental data shown in Table 3.1 are separated into 3 groups based on 
experiment scale, i.e. small-scale, large-scale, and field experiments. The examination is 
performed for all collected data shown in Table 3.1. The examination of these independent 
data sources and wide range of experimental conditions are expected to clearly 
demonstrate the accuracy of the models. 

 The basic parameter for determination of the overall accuracy of the model is the 
average rms  relative error ( avgER ), which is defined as: 
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ER
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n
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
 1             (3.21) 

where n  is the data group number, gnER  is the rms  relative error of the group no. n , and 

tn  is the total number of data group. The small value of avgER  indicates good overall 

accuracy of the wave model. 
 The rms  relative error of each data group ( gER ) is defined as: 
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where i  is the wave height number, ciH  is the computed representative wave height of 

number i , miH  is the measured representative wave height of number i , and nc  is the 

total number of measured significant wave heights in each data group. 
 The question of how good a model is usually defined in a qualitative ranking (e.g. 

excellent, very good, good, fair, and poor). As the error of some existing irregular wave 
models is in the range of 7 to 21% (please see Table 5 of Rattanapitikon, 2007), the 
qualification of error ranges of an irregular wave model may be classify into five ranges 
[i.e. excellent ( %0.5gER ), very good ( %0.100.5  gER ), good ( %0.150.10  gER ), 

fair ( %0.200.15  gER ), and poor ( %0.20gER )] and the acceptable error should be 

less than 10.0%. 
 The transformation of each representative wave height is determined by substituting 

each dissipation model (MD1 - MD7) into Eq. (3.12) and replacing repH  by each 

representative wave height ( mH , rmsH , 3/1H , 10/1H , maxH , and rmszH ) after that take 

numerical integration from offshore to shoreline. The energy dissipation is set to be zero in 
the offshore zone. The incipient wave breaking is computed from Eq. (3.20). The 
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backward finite difference scheme is used to solve the differential equations. The grid 
length ( x ) is set to be equal to the length between the point of measured wave height, 
except if x 5m, x  is set to be 5 m. The length steps ( x ) used in the present study are 
0.2 - 1.5 m for small-scale experiments and 2.1 - 5.0 m for large-scale and field 
experiments. 

 A calibration of each model is conducted by varying the coefficients ( 1K - 13K ) in the 

model until the minimum error ( avgER ) between measured and computed representative 

wave heights is obtained. The optimum values of 1K - 13K  are shown in Table 3.2. The 

errors of models MD1-MD7 on simulating repH  are shown in Table 3.3. The results from 

Table 3.3 can be summarized in the following points: 
 

(a)   Overall, the stable energy concept gives a better prediction than the bore concept.  
(b)   The accuracy of models for small-scale wave flume in descending order are MD7, 

MD6, MD4, MD5, MD2, MD3, and MD1.   
(c)   The accuracy of models for large-scale wave flume in descending order are MD7, 

MD6, MD5, MD4, MD2, MD1, and MD3.  
(d)   The accuracy of models for field experiment in descending order are MD4, MD6, 

MD7, MD5, MD3, MD2, and MD1. 
(e)   The overall accuracy of the models in descending order are MD7, MD6, MD4, MD5, 

MD2, MD1, and MD3. The models that can be used for computing the irregular wave 
height transformation are MD4 to MD7.  

(f)   The average error avgER  of the best model (MD7) is 7.9 %. This number confirms in a 

quantitative sense the high degree of realism processed by the model. This means that 
the representative wave approach is acceptable to use for computing the irregular 
wave height transformation. 
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Table 3.2 The calibrated constants of models MD1-MD7 for mH , rmsH , 3/1H , 10/1H , 

maxH , and rmszH . 

Models Constants 
mH  rmsH 3/1H 10/1H maxH rmszH  

MD1 
1K  0.32 0.35 0.35 0.36 0.33 0.27 

 
13K  0.066 0.070 0.097 0.110 0.140 0.058 

MD2  
2K  0.62 0.60 0.53 0.45 0.44 0.63 

 
13K  0.066 0.070 0.097 0.110 0.140 0.058 

MD3 
3K  0.67 0.61 0.40 0.38 0.37 0.61 

 
13K  0.066 0.070 0.097 0.110 0.140 0.058 

MD4  
4K  0.09 0.09 0.09 0.09 0.09 0.09 

 
5K  0.28 0.31 0.42 0.54 0.51 0.30 

 
13K  0.052 0.055 0.076 0.089 0.095 0.051 

MD5  
6K  0.09 0.09 0.09 0.09 0.09 0.09 

 
7K  0.81 0.79 1.04 1.15 1.24 0.75 

 
13K  0.052 0.055 0.076 0.089 0.095 0.051 

MD6  
8K  0.09 0.09 0.09 0.09 0.09 0.09 

 
9K  0.052 0.055 0.076 0.089 0.095 0.051 

 
13K  0.052 0.055 0.076 0.089 0.095 0.051 

MD7  
10K  0.095 0.095 0.095 0.095 0.095 0.095 

 
11K  0.263 0.263 0.263 0.263 0.263 0.263 

 
12K  0.179 0.179 0.179 0.179 0.179 0.179 

 
13K  0.052 0.055 0.076 0.089 0.095 0.051 
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Table 3.3 The errors gER  of the models MD1-MD7 for computing mH , rmsH , 3/1H , 

10/1H , maxH , and rmszH . 

Apparatus Models 
mH rmsH 3/1H 10/1H maxH rmszH  Avg. 

MD1 14.2 15.0 13.5 4.9 18.0 16.4 13.7
MD2 11.6 11.1 12.2 4.4 16.4 12.2 11.3
MD3 12.6 11.1 10.0 4.3 32.0 12.0 13.7
MD4 11.0 11.3 11.6 4.0 12.3 6.3 9.4
MD5 9.8 11.7 9.9 4.2 10.3 12.1 9.7
MD6 9.1 9.2 9.1 4.2 10.3 8.4 8.4

Small-scale 

MD7 8.0 7.9 8.2 4.0 9.4 8.8 7.7
MD1 11.3 8.3 8.1 8.5 15.9 11.7 10.6
MD2 10.3 7.3 6.4 7.4 14.3 10.0 9.3
MD3 9.6 6.8 6.7 7.7 24.7 9.6 10.8
MD4 8.3 7.9 7.1 7.3 12.9 7.5 8.5
MD5 9.6 6.8 5.6 6.5 11.0 8.1 7.9
MD6 8.4 6.9 5.8 6.7 11.8 7.5 7.8

Large-scale 

MD7 8.2 6.8 5.7 6.4 11.0 6.6 7.5
MD1 - 30.5 - - - 17.8 24.1
MD2 - 29.5 - - - 15.5 22.5
MD3 - 27.5 - - - 15.0 21.2
MD4 - 8.4 - - - 9.7 9.1
MD5 - 17.7 - - - 12.1 14.9
MD6 - 10.4 - - - 9.9 10.1

Field 

MD7 - 11.0 - - - 9.5 10.3
MD1 12.8 17.9 10.8 6.7 16.9 15.3 13.4
MD2 11.0 16.0 9.3 5.9 15.3 12.5 11.7
MD3 11.1 15.1 8.4 6.0 28.4 12.2 13.5
MD4 9.7 9.2 9.4 5.6 12.6 7.8 9.1
MD5 9.7 12.1 7.7 5.3 10.7 10.8 9.4
MD6 8.7 8.8 7.5 5.5 11.0 8.6 8.4

All-scales 

MD7 8.1 8.6 6.9 5.2 10.2 8.3 7.9
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4. TRANSFORMATION OF REPRESENTATIVE 
WAVE HEIGHTS USING CONVERSION APPROACH 
 
 
4.1. Introduction 
 
The representative wave heights [e.g. the mean wave height ( mH ), the root-mean-square 

wave height ( rmsH ), the significant wave height ( 3/1H ), the highest one-tenth wave height 

( 10/1H ), the maximum wave height ( maxH ), and the spectral significant wave height 

( 0mH )] are the essential required factors for the study of beach deformation and the design 

of coastal structures. The wave heights are usually available in deepwater but not available 
at the depths required in shallow water. The wave heights in shallow water can be 
determined from wave models. Common methods to model the representative wave 
heights transformation may be classified into five main approaches, i.e. wave-by-wave 
approach, spectral approach, conversion approach, representative wave approach, and 
empirical approach. This chapter focuses on the conversion approach.  

The conversion approach is used to convert the representative wave heights from one 
to another through the known relationships. The root-mean-square wave height ( rmsH ) is 

usually used as a reference wave height of the conversion because it is the output of many 
wave models (e.g. the models of Battjes and Janssen, 1978; Thornton and Guza, 1983; 
Larson, 1995; and Rattanapitikon, 2007). Therefore, the other representative wave heights 
can be determined from the known relationships between the representative wave heights 
(e.g. the relationships of Longuet-Higgins, 1952; Battjes and Groenendijk, 2000; and 
Rattanapitikon and Shibayama, 2007). Hence, the conversion approach is a combination of 
wave model for computing rmsH  and the relationships between rmsH  and other 

representative wave heights ( mH , 3/1H , 10/1H , and maxH ). However, there are two 

approaches to describe the root-mean-square ( rms ) wave height, i.e. statistical approach 
and spectral approach. Therefore, the rms  wave height can be classified according to its 
definition based to be statistical-based rms  wave height ( rmsH ) and spectral-based rms  

wave height ( rmszH ). These two definitions of rms  wave height are usually assumed to be 

equal. However, it was shown by many researchers (e.g. Thompson and Vincent, 1985; 
and Battjes and Groenendijk, 2000) that the rms  wave heights derived from the two 
definitions are significantly difference in the surf zone. Hence the conversion approach 
consists of four parts, i.e. the wave models for computing the transformation of 0mH  

[which can be converted to zeroth moment of wave spectrum ( 0m ) through the known 

constant], the wave models for computing the transformation of rmsH , the conversion 

formulas for converting from rmsH  to other representative wave heights (i.e. mH , 3/1H , 

10/1H , and maxH ), and the conversion formulas for converting from 0m  to other 

representative wave heights (i.e. mH , rmsH , 3/1H , 10/1H , and maxH ). Hence the conversion 

model should be constructed based on the best model (or formulas) from each part. 
During the past decades, various wave models have been proposed for computing 

rmsH  and rmszH  (or 0mH ) and several formulas have been proposed to convert from rmsH  

to other representative wave heights and to convert from 0mH  (or 0m ) to other 

representative wave heights. It is not clear which wave model and conversion formulas are 
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the most suitable for computing the representative wave heights (i.e. mH , rmsH , 3/1H , 

10/1H , maxH , and 0mH . The main objective of this chapter is to find out the suitable wave 

models and conversion formulas that predict well for a wide range of experimental 
conditions. 

This chapter is divided into four main parts. The first part describes the wave models 
for computing the transformation of 0mH  which can be converted to rmszH  (or 0m ) through 

the known constant. The second part describes the wave models for computing the 
transformation of rmsH . The third part describes the conversion formulas for converting 

from rmsH  to mH , 3/1H , 10/1H , and maxH . The fourth part describes the conversion 

formulas for converting from 0m  to mH , rmsH , 3/1H , 10/1H , and maxH .  

 
 
4.2. Transformation of Spectral-Based Wave Heights 
 
Representative wave heights are the essential required factors for many coastal engineering 
applications such as the design of coastal structures and the study of beach deformations. 
Among various representative wave heights, the significant wave height ( sH ) is most 

frequently used in the field of coastal engineering (Goda, 2000). There are two main 
methods to describe the significant wave height, i.e. statistical analysis (or individual wave 
analysis) and spectral analysis. The statistical-based significant wave height ( 3/1H ) is 

defined as the average height of the highest one-third of the individual waves in a record, 
while the spectral significant wave height ( 0mH ) is defined as four times of square root of 

zero moment of wave spectrum ( 00 0.4 mHm  ). These two definitions of significant 

wave height are equal if the wave height distribution obeys a Rayleigh distribution.  
In deepwater, the measured wave heights from different oceans have been found to 

closely conform to the Rayleigh distribution (Demerbilek and Vincent, 2006). The 

relationship 003/1 0.4 mHH m   can be derived based on the assumption of a Rayleigh 

distribution. The relationship has been confirmed by many wave observation data taken 
throughout the world (Goda, 2000). However, the proportional constants are smaller than 

those derived from the Rayleigh distribution, e.g. the ratio 03/1 / mH  is approximately 3.8 

instead of 4.0 (Goda, 1979). When waves propagate in shallow water, their profiles 
steepen and they eventually break. The process of wave breaking becomes relevant in 
shallow water, causing the wave height distribution to deviate from the Rayleigh 
distribution. Several researchers stated that the wave height distribution deviated 
considerably from the Rayleigh distribution (e.g. Klopman, 1996; Battjes and Groenendijk, 
2000; and Mendez et al., 2004). This causes the statistical based wave height to differ from 
the corresponding spectral based wave height. 

The two significant wave heights are both important, and neither one alone is 
sufficient for successful application of wave height for engineering problems (Goda, 
1974). While some formulas in the coastal works are appropriate for 3/1H , others may be 

more appropriate for 0mH . The spectral wave heights ( 0mH ) should be used in those 

applications where the effect of average wave energy is more important than the individual 
waves.  

The wave heights are usually available in deepwater (from measurements or wave 
hindcasts) but not available at the required depths in shallow water. The wave height at 
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desired depth can be determined from a wave model. During the past few decades, many 
wave models have been proposed but most of them are for computing the root-mean-
square wave heights ( rmsH ), not for 0mH . However, measured ocean wave records are 

often analyzed spectrally by the instrument package and expressed in terms of 0mH . 

Similarly, modern wave hindcasts are often expressed in terms of 0mH . It seems to be 

convenient for engineers to have a wave height transformation model for computing the 
transformation of 0mH  directly. Therefore, the present study concentrates on a wave height 

transformation model for computing the transformation of 0mH . 

In this section, the transformation of 0mH  is computed from the energy flux 

conservation equation. The main difficulty of modeling the wave height transformation is 
how to formulate the rate of dissipation due to wave breaking. Various dissipation models 
have been proposed by many researchers but most of them were proposed for computing 

rmsH . Therefore, the existing dissipation models have to be converted to be expressed in 

terms of  0mH  before applying to compute the transformation of 0mH . Similar to the 

significant wave height, the root-mean-square wave height can be classified according to 
its definition based to be statistical-based root-mean-square wave height ( rmsH ) and 

spectral-based root-mean-square wave height ( 08mHrmsz  ). If an energy dissipation 

model is proposed in terms of rmsH , it seems to be difficult to convert the model to be 

expressed in terms of  0mH . However, if an energy dissipation model is proposed in terms 

of rmszH , it can be converted to be expressed in terms of 0mH  easily (because 

rmszm HH 20  ). Unfortunately, most existing models were developed without regard for 

the difference between rmsH  and rmszH . Moreover, it is not clear which model is the most 

suitable one for computing 0mH . The main objectives of this section are to apply the 

existing dissipation models of root-mean-square wave height to compute the 
transformation of 0mH  and to find out the most suitable model for computing 0mH .  

 
 
4.2.1. Compiled experimental data 
 
Experimental data on 0mH  transformation from 8 sources, including 1,713 cases, have 

been compiled to examine the models. A summary of the compiled experimental data is 
given in Table 4.1. The experiments cover a wide range of wave and beach conditions, 
including small- and large-scale laboratory and field experiments. The experiments of 
Smith and Vincent (1992), Hamilton and Ebersole (2001), and Smith and Seabergh (2001) 
were performed under fixed bed conditions, while the others were performed under 
moveable bed (sandy beach) conditions. Only the data in the nearshore zone (excluding 
swash zone) are considered in this study. The data cover a range of deepwater wave 
steepness ( 00,0 LHm ) from 0.001 to 0.069. 
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Table 4.1 Summary of compiled experimental data on 0mH . 

Sources  No. of  
cases

No. of 
data 

points

Apparatus Deepwater  
wave steepness 
(Hm0,0/L0) 

Smith and Vincent (1992) 4 36 small-scale 0.032-0.064 
Hamilton and Ebersole (2001) 1 10 small-scale 0.023 
Smith and Seabergh (2001) 15 180 small-scale 0.007-0.069 
SUPERTANK project 128 2,047 large-scale 0.002-0.064 
LIP IID project 95 923 large-scale 0.005-0.039 
SAFE project 138 3,557 large-scale 0.009-0.021 
DELILAH project 745 5,049 field 0.001-0.036 
DUCK94 project  587 6,104 field 0.001-0.041 
Total 1,713 17,906  0.001-0.069 

 
A brief summary of the compiled data is provided below. 

The experiment of Smith and Vincent (1992) was conducted to investigate shoaling 
and decay of multiple wave trains using a small wave flume of 45.7 m long, 0.45 m wide, 
and 0.9 m deep. The bottom of the flume is smooth concrete and rises at a slope of 1:30 
from the middle of the flume. Twelve double-peaked spectra were generated by 
superimposing two spectra of the TMA type (Bouws et al., 1985) with a spectral width 
parameter of 20. The cases include two double-peak wave period combinations ( pT  = 2.5 

s/1.25 s and 2.5 s/1.75 s) with two total wave heights ( 0mH  = 15.2 cm and 9.2 cm). The 

four most energetic cases (i.e. cases 1, 3, 7, and 9) and the dominant peak periods were 
used in the present study. Water surface elevations were measured at nine cross-shore 
locations using electrical-resistance gages. The significant wave heights were determined 
from water surface elevations in the frequency band 0.1 to 2.5 Hz. 

The experiment of Hamilton and Ebersole (2001) was conducted to establish 
uniform longshore currents in a wave basin, which has dimensions of 30 m cross-shore, 50 
m longshore, and 1.4 m deep. A concrete beach with 1/30 slope has a cross-shore 
dimension of 21 m and a longshore dimension of 31 m. The irregular waves were 
developed from the TMA spectrum (Bouws et al., 1985), with a significant wave height of 
0.21 m, spectral peak period of 2.5 s, direction 10o, and spectral width parameter of 3.3. 
Water surface elevations were measured at ten cross-shore locations using capacitance-
type wave gages and four other wave gages were fixed in the longshore direction near the 
wave generators. The significant wave heights were analyzed based on a lower cut-off 
frequency of 0.2 Hz. 

The experiment of Smith and Seabergh (2001) was conducted to study the effect of 
ebb current on wave shoaling and breaking in an idealized inlet. The experiment was 
performed in a wave basin, which has dimensions of 99 m long, 46 m wide, and 0.6 m 
deep. The physical model included an offshore equilibrium slope, an elliptical ebb shoal 
located seaward of the inlet, rubble jetties, and a flat entrance channel. The tests were 
performed under the conditions of regular and irregular waves and with and without 
currents. Only irregular waves with no current conditions (in total 15 cases) are considered 
in this study. The irregular waves were developed from the TMA spectrum (Bouws et al., 
1985), with significant wave heights from 0.018 to 0.079 m, wave periods from 0.7 to 1.7 
s, spectral width parameter of 3.3, and incident wave direction perpendicular to the shore. 
Water surface elevations were measured at eleven cross-shore locations using capacitance-
type gages. The significant wave heights were analyzed over the entire collected water 
surface elevations. 
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The SUPERTANK laboratory data collection project (Kraus and Smith, 1994) was 
conducted to investigate cross-shore hydrodynamic and sediment transport processes from 
August 5 to September 13, 1992 at Oregon State University, Corvallis, Oregon, USA. A 
76-m-long sandy beach was constructed in a large wave tank of 104 m long, 3.7 m wide, 
and 4.6 m deep. Wave conditions included both regular and irregular waves. In all, 20 
major tests were performed, and each major test consisted of several cases. Most of the 
tests (14 major tests) were performed under the irregular wave actions. The wave 
conditions were designed to balance the need for repetition of wave conditions to move the 
beach profile toward equilibrium and development of a variety of conditions for 
hydrodynamic studies. The TMA spectral shape (Bouws et al., 1985) was used to design 
all irregular wave tests. The compiled experiments for irregular waves included 128 cases 
of wave and beach conditions, covering incident significant wave heights from 0.2 m to 
1.0 m, spectral peak periods from 3.0 sec to 10.0 sec, and spectral width parameter 
between 3.3 (broad-banded) and 100 (narrow-banded). Sixteen resistance-type gages were 
used to measure water surface elevations across shore. A 10-Hz, fifth-order anti-aliasing 
Bessel filter was applied to eliminate noise and avoid aliasing. The wave spectral analysis 
was performed on total, low-pass, and high-pass signals. The data from the total signals 
were used in this study.  

LIP 11D Delta Flume Experiment (Roelvink and Reniers, 1995) was performed at 
Delft Hydraulics large-scale wave flume. A 175-m-long sandy beach was constructed in a 
large wave tank of 233 m long, 5 m wide and 7 m deep. The two major tests were 
performed, i.e., with dune (test no. 1A-1C) and without dune (test no 2A-2C). Each major 
test consisted of several wave conditions. The duration of each wave condition lasted 
about 12 to 21 hr. Initial beach profiles of tests no. 1A and 2A are equilibrium Dean-type 
beaches. The beach profiles of other tests (test no. 1B, 1C, 2B, 2E, and 2C) were initiated 
using the final profile configuration of the previous test. Broad banded random waves, 
JONSWAP spectrum (Hasselmann et al., 1973) with spectral width parameter of 3.3, were 
generated. During the run, the sand bar feature grows and becomes more pronounced after 
some time. Ten fixed wave gages were deployed in the flume to measure water surface 
elevations. To avoid aliasing, each signal was filtered by analog filter at 5 Hz before 
analyzing. The compiled experiments included 95 cases of wave and beach conditions, 
covering incident significant wave heights from 0.6 m to 1.4 m, spectral peak periods from 
5 sec to 8 sec, and water level from 4.1 m to 4.6 m. 

The SAFE Project (Dette et al., 1998) was carried out to improve the methods of 
design and performance assessment of beach nourishment. The SAFE Project consisted of 
four activities, one of which was to perform experiments in a large-scale wave flume in 
Hannover, Germany. A 250-m-long sandy beach was constructed in a large wave tank of 
300 m long, 5 m wide and 7 m deep. The test program was divided into two major phases. 
The first phase (cases A, B, C, and H) was aimed to study the beach deformation of 
equilibrium profile with different beach slope changes. The equilibrium beach profile was 
adopted from Bruun’s (1954) approach. In the second phase, the sediment transport 
behaviors of dunes with and without structural aid were investigated (cases D, E, F, and 
G). The TMA spectral shape (Bouws et al., 1985) was used to design all irregular wave 
tests. The tests were performed under normal wave conditions and storm wave conditions. 
A total of 27 wave gages was installed over a length of 175 m along one wall of the flume. 
The records from all gages were checked for plausibility before analysis. The compiled 
experiments included 138 cases of wave and beach conditions, covering incident 
significant wave heights from 0.65 m to 1.20 m, mean wave period of 5.5 sec, and water 
level from 4.0 m to 5.0 m. 
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DELILAH Project (Birkemeier et al., 1997) was conducted on the barred beach in 
Duck, North Carolina, USA in October 1990. The objective of the project is to improve 
fundamental understanding and modeling of surf zone physics. The experiment 
emphasized surf zone hydrodynamics in the presence of a changing barred bathymetry. 
Nine pressure gauges were installed to measure the nearshore wave heights across-shore 
and one of them was in the swash zone. Tidal elevations were measured at the FRF pier. 
The significant wave heights were determined from water surface elevations in the 
frequency band 0.04 to 0.4 Hz. The measured wave heights are available at 
http://dksrv.usace.army.mi/jg/del90dir. The data of wave heights and water depths 
measured during Oct 2-21, 1990 are available. The wave heights and water depths data are 
available at approximately every 34 min. A total of 776 sets of measured wave heights and 
water depths are available on the data server. A data set that has only a few points of 
measurements is not suitable to use for verifying the models. A total of 745 data sets are 
considered in this study. The incident waves (at the most offshore-ward position) cover the 
range of significant wave height from 0.4 m to 0.7 m, wave period from 3.4 s to 13.5 s, 
and direction from -36o to 2o (counter-clockwise from shore normal). 

DUCK94 Project (Herbers et al., 2006) was conducted on the barred beach in Duck, 
North Carolina, USA during Aug - Oct 1994. The project objective is the same as that of 
DELILAH. The experiment emphasized surf zone hydrodynamics, sediment transport and 
morphological evolution. Thirteen pressure gauges were installed to measure the nearshore 
wave heights across-shore and one of them was in the swash zone. Tidal elevations were 
measured at the FRF pier. The significant wave heights were determined from water 
surface elevations in the frequency band 0.05 to 0.25 Hz. The measured wave heights, and 
water depths are available at http://dksrv.usace.army.mi/jg/dk94dir. The wave heights and 
water depths at every 3 h that were measured during Aug 15 – Oct 31, 1994 are used in the 
present study. Excluding the data sets that have only a few points of measurements, a total 
of 587 data sets are considered in the present study. The incident waves (at the most 
offshore-ward position) cover the range of significant wave height from 0.2 m to 2.6 m, 
wave period from 4.4 s to 11.4 s, and direction from -56o to 71o (counter-clockwise from 
shore normal). 
 
 
4.2.2. Model development 
 
When waves propagate to the nearshore zone, wave profiles steepen and eventually waves 
break. Once the waves start to break, a part of wave energy is transformed into turbulence 
and heat, and wave height decreases towards the shore. In the present study, wave height 
transformation is computed from the energy flux conservation equation. It is: 

 
B

g D
x

Ec



 cos

          (4.1) 

where E  is the wave energy density, gc  is the group velocity,   is the mean wave angle, 

x  is the distance in cross shore direction, and BD  is the energy dissipation rate due to 
wave breaking which is zero outside the surf zone. The energy dissipation rate due to 
bottom friction is neglected. In the present study, all variables are based on the linear wave 
theory and the Snell’s law is employed to describe wave refraction as: 


c

sin
 constant           (4.2) 

where c  is the phase velocity.  
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For the spectral analysis, the moments of a wave spectrum are important in 
characterizing the spectrum and useful in relating the spectral description of waves to the 
significant wave height. The representative value of the total wave energy is the zero 
moment of wave spectrum ( 0m ), which can be obtained by integrating the wave spectrum 

( )( fS ) in the full range of frequency ( f ). The integral is, by definition of the wave 
spectrum, equal to the variance of the surface elevation (Goda, 2000). Therefore, the zero 
moment of the spectrum ( 0m ) can be expressed as: 

dt
t

dffSm
nt

n
 



0

2

0

0

1
)(            (4.3) 

where   is the water surface elevation, t  is time, and nt  is the total time of the wave 

record. 
The zero moment ( 0m ) can be related to the significant wave height by considering 

the total energy density of a wave record. From linear wave theory, the total energy density 
is twice the potential energy density, which can be written in terms of the surface elevation 
as: 
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2 gmdt
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t
EE

nt

n
p 

           (4.4) 

where pE  is the potential energy density,   is the water density, and g  is the acceleration 

due to gravity. 

As the spectral significant wave height ( 0mH ) is defined as 00 4 mHm  , the total 

energy density of a wave record [Eq. (4.4)] can be written in terms of 0mH  as: 

2
016

1
mgHE             (4.5) 

Substituting Eq. (4.5) into Eq. (4.1), the governing equation for computing the 
transformation of 0mH  can be written as: 

 
B

gm D
x

cHg



 cos

16

2
0           (4.6) 

The transformation of 0mH  can be computed from the energy flux balance equation 

[Eq. (4.6)] by substituting the formula of the energy dissipation rate ( BD ) and numerically 
integrating from offshore to shoreline. In the offshore zone, the energy dissipation rate is 
set to zero. The difficulty of the energy flux conservation approach is how to formulate the 
energy dissipation rate caused by the breaking waves. Various dissipation models have 
been proposed but most of them were proposed in terms of rmsH . The selected existing 

dissipation models are described as the following.  
 
 
4.2.2.1. Existing energy dissipation models 
 
The first attempt at examination is to collect the existing dissipation models for computing 

rmsH . Because of the complexity of the wave breaking mechanism, most of the energy 

dissipation models were developed based on the empirical or semi-empirical approach 
calibrated with the measured data. Brief reviews of some selected existing dissipation 
models are described below. 
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(a)  Battjes and Janssen (1978), hereafter referred to as BJ78, proposed to compute BD  by 

multiplying the fraction of irregular breaking waves ( Qb ) by the energy dissipation of a 
single broken wave. The energy dissipation of a broken wave is described by the bore 
analogy and assuming that all broken waves have a height equal to breaking wave 
height ( bH ). The model was proposed as: 

p

b
bB T

gH
QKD

4

2

1


            (4.7) 

where pT  is the spectral peak period and 1K  is the adjustable coefficient. The proposed 

value of 1K  is 1.0. The fraction of breaking waves ( Qb ) was derived based on the 
assumption that the probability density function ( pdf ) of wave heights could be 

modeled with a Rayleigh distribution truncated at the breaking wave height ( bH ) and 

all broken waves have a height equal to the breaking wave height. The result is: 
2
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               (4.8) 

in which the breaking wave height ( bH ) is determined from the formula of Miche 

(1944) with additional coefficient 0.91 as: 
 khLKHb 91.0tanh2               (4.9) 

where L  is the wavelength related to pT , k  is the wave number, h  is the mean water 

depth, 2K  is the adjustable coefficient. The proposed value of 2K  is 0.14. The BD  
model of BJ78 has been used successfully in many applications (e.g. Abadie et al., 
2006; Johnson, 2006; and Oliveira, 2007). As Eq. (4.8) is an implicit equation, it has to 
be solved for bQ  by an iteration technique, or by a 1-D look-up table (Southgate and 

Nairn, 1993). It can be also determined from the polynomial equation as:  
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        (4.10) 

where na  is the constant of thn term. A multiple regression analysis is used to 

determine the constants 0a  to 7a . The correlation coefficient ( 2R ) of Eq. (4.10) is very 

close to 1 (0.99999999). The values of constants 0a  to 7a  are shown in Table 4.2.  

 
Table 4.2 Values of constants 0a  to 7a  for computing bQ . 

Constants Values 

0a  0.2317072 

1a  -3.6095814 

2a  22.5948312 

3a  -72.5367918 

4a  126.8704405 

5a  -120.5676384 

6a  60.7419815 

7a  -12.7250603 
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Equation (4.10) is applicable for 0.25  brms HH 1.0. For brms HH  0.25, the value 

of bQ  is very small and can be set at zero. The value of bQ  is set to be 1.0 when 

brms HH  1.0. As Eqs. (4.8) and (4.10) give almost identical results ( 2R = 

0.99999999), for convenience, Eq. (4.10) is used in this study.  
 
(b)  Thornton and Guza (1983), hereafter referred to as TG83, proposed to compute BD  by 

integrating from 0  to   the product of the dissipation for a single broken wave and 
the pdf  of the breaking wave height. The energy dissipation of a single broken wave 
is described by their bore model which is slightly different from the bore model of 
BJ78. The pdf  of breaking wave height is expressed as a weighting of the Rayleigh 

distribution. By introducing two forms of the weighting, two models of BD  were 
proposed. After calibrating with small-scale experimental data, the models were 
proposed to be: 
Model 1 (hereafter referred to as TG83a):   
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in which    hKHb 4                  (4.12) 

Model 2 (hereafter referred to as TG83b): 
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in which    hKHb 6                  (4.14) 

where 3K  to 6K  are the adjustable coefficients. The proposed values of 3K  to 6K  are 

0.51, 0.42, 0.51 and 0.42, respectively. 
 

(c)  Battjes and Stive (1985), hereafter referred to as BS85, used the same energy 
dissipation model as that of BJ78.  

p
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QKD

4

2

7


        (4.15) 

where 7K  is the adjustable coefficient. The proposed value of 7K  is 1.0. They 

modified the model of BJ78 by recalibrating the additional coefficient in the breaker 
height formula [Eq. (4.9)]. The coefficient was related to the deepwater wave steepness 
 00, / LHrms . After calibration with small-scale and field experiments, the breaker 

height formula was modified to be: 
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where 0,rmsH  is the deepwater root-mean-square wave height, 0L  is the deepwater 

wavelength, and 8K  is the adjustable coefficient. The proposed value of 8K  is 0.14. 

Hence, the model of BS85 is similar to that of BJ78 except for the formula of bH . 

 
(d)  Southgate and Nairn (1993), hereafter referred to as SN93, modified the model of 

BJ78 by changing the expression of energy dissipation of a breaker height from the 
bore model of BJ78 to be the bore model of TG83 as: 
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
           (4.17) 

where 9K  is the adjustable coefficient. The proposed value of 9K  is 1.0. The fraction 

of breaking waves bQ  is determined from Eq. (4.8). The breaker height ( bH ) is 

determined from the formula of Nairn (1990) as: 
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where 10K  is the adjustable coefficient. The proposed value of 10K  is 1.0. Hence, the 

model of SN93 is similar to that of BJ78 except for the formulas of energy dissipation 
of a single breaker height and bH . 

 
(e)  Baldock et al. (1998), hereafter referred to as BHV98, proposed to compute BD  by 

integrating from bH  to   the product of the energy dissipation for a broken wave and 

the pdf  of wave heights. The energy dissipation of a broken wave is described by the 
bore model of BJ78. The pdf  of wave heights inside the surf zone was assumed to be 
the Rayleigh distribution. The result is:  
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     (4.19) 

where 11K  is the adjustable coefficient. The proposed value of 11K  is 1.0. The breaker 

height ( bH ) is determined from the formula of Nairn (1990) as: 
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where 12K  is the adjustable coefficient. The proposed value of 12K  is 1.0. 
 

(f)  Rattanapitikon and Shibayama (1998), hereafter referred to as RS98, modified the 
model of BJ78 by changing the expression of energy dissipation of a single broken 
wave from the bore concept to the stable energy concept as: 
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where 13K  is the adjustable coefficient and the fraction of breaking wave ( bQ ) is 

computed from Eq. (4.8). The proposed value of 13K  is 0.10. The breaking wave 

height ( Hb ) is computed by using the breaking criteria of Goda (1970) as: 
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where m  is the average bottom slope and 14K  is the adjustable coefficient. The 

proposed value of 14K  is 0.10. 
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(g)  Ruessink et al. (2003), hereafter referred to as RWS03, used the same energy 
dissipation model as that of BHV98 [Eq. (4.19)] but a different breaker height formula. 
The breaker height formula of BJ78 [Eq. (4.9)] is modified by relating the additional 
coefficient with the terms kh . After calibration with field experiments, the model was 
proposed to be: 
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  (4.23) 

in which       khkhLKHb 33.086.0tanh16                    (4.24) 

where 15K  and 16K  are the adjustable coefficients. The proposed values of 15K  and 

16K  are 1.0 and 0.14, respectively. 

 
(h)  Rattanapitikon et al. (2003), hereafter referred to as RKS03, developed an energy 

dissipation model based on the representative wave approach. They applied the 
dissipation model for regular waves for computing the energy dissipation of irregular 
waves. It was found that the stable energy concept of Dally et al. (1985) can be used to 
describe the energy dissipation of irregular wave breaking. After calibration with 
laboratory and field experiments, the model was proposed to be: 
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where 17K  is the adjustable coefficient. The proposed value of 17K  is 0.12. The value 

of BD  is set to be zero when brms HH 42.0  and the breaker height ( Hb ) is computed 

by using the breaking criteria of Miche (1944) as: 
 khLKHb tanh18           (4.26) 

where 18K  is the adjustable coefficient. The proposed value of 18K  is 0.14. 

 
(i) Rattanapitikon (2007), hereafter referred to as R07, modified six existing models by 

changing the breaker height formulas in the dissipation models. A total of 42 possible 
models were considered in the study. Considering accuracy, variance of errors, and 
simplicity of the possible models, the following model was recommended. 
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where 19K  is the adjustable coefficient. The proposed value of 19K  is 0.07. The value 

of BD  is set to be zero when brms HH 47.0  and the breaker height ( Hb ) is computed 

by modifying the breaking criteria of BJ78 as 
 khLKHb 68.0tanh20         (4.28) 

where 20K  is the adjustable coefficient. The proposed value of 20K  is 0.14. Hence, the 

model of R07 is similar to that of RKS03 except for the formula of bH . 

 
(j)  Alsina and Baldock (2007), hereafter referred to as AB07, modified the model of 

BHV98 by changing the energy dissipation of a broken wave from the bore model of 
BJ78 to be the bore model of TG83. The correction is introduced to prevent a shoreline 
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singularity that can develop in shallow water. They proposed an alternative dissipation 
model as: 
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where erf  is the error function and 21K  is the adjustable coefficient. The proposed 

value of 21K  is 1.0. The breaking wave height ( bH ) is determined from the formula of 

BS85 as:  
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where 22K  is the adjustable coefficient. The proposed value of 22K  is 0.14. 
 

(k)  Janssen and Battjes (2007), hereafter referred to as JB07, derived the same dissipation 
model as that of AB07 (independently of the study of AB07). The main difference 
between JB07 and AB07 is the breaker height formula. Their dissipation model can be 
summarized as: 
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where 23K  is the adjustable coefficient. The proposed value of 23K  is 1.0. The 

breaking wave height ( bH ) is determined from the formula of Nairn (1990) as: 
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where 24K  is the adjustable coefficient. The proposed value of 24K  is 1.0. 
 

(l)  Rattanapitikon and Sawanggun (2008), hereafter referred to as RS08, modified the 
model of BJ78 by changing the expression of fraction of breaking waves. In contrast to 
the common derivation, the fraction of breaking waves was not derived from the 
assumed pdf  of wave heights, but derived directly from the measured wave heights. 
After calibration, the model can be expressed as: 
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where 25K  is the adjustable coefficient. The proposed value of 25K  is 1.0. The value of 

BD  is set to be zero when brms HH  0.46 and the breaking wave height ( bH ) is 

determined from the formula of BS85 as: 
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where 26K  is the adjustable coefficient. The proposed value of 26K  is 0.14. 

 
(m)  Apotsos et al. (2008), hereafter referred to as AREG08, modified six existing 

dissipation models by recalibrating the coefficient in the breaker height formulas 
incorporated in the dissipation models. The coefficient was related to the deepwater 
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wave height  0,rmsH . The comparison showed that the model TG83b [Eq. (4.13)] with 

new breaker height formula gives the smallest error. The modified model was proposed 
to be: 
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hHKH rmsb )]9.0tanh(40.018.0[ 0,28        (4.36) 

where 27K  and 28K  are the adjustable coefficients. The proposed values of 27K  and 

28K  are 1.0 and 1.0, respectively. 

 
 
4.2.2.2. Model analysis 
 
The development of the existing dissipation models may be classified into two approaches, 
i.e. parametric wave approach and stable energy approach. The parametric wave approach 
seeks to reduce the computational effort by describing the energy dissipation rate in terms 
of time-averaged parameter. Its description is reduced to a single representative wave 
height, period, and direction. As this approach relies on the macroscopic features of 
breaking waves and predicts only the transformation of root-mean-square ( rms ) wave 
height, it is suitable when a detail wave height distribution is not needed. The approach 
assumes that the Rayleigh pdf  (or modified Rayleigh pdf ) is valid in the surf zone. The 
average rate of energy dissipation is described by integrating the product of energy 
dissipation of a single broken wave and the probability of occurrence of breaking waves. 
Most of the selected models (except RKS03 and R07) were developed based on this 
approach. The models were developed based on the work of BJ78. The significant 
differences of those models are the assumption on probability of occurrence of breaking 
waves, the formulation of energy dissipation of a single broken wave, and the breaker 
height formula. The models may be grouped into three groups based on the assumed 
probability of occurrence of breaking waves. The first group (BJ78, BS85, SN93, RS98, 
and RS08) describes the pdf  of wave heights in the surf zone through a sharp cutoff 

Rayleigh distribution, truncated at a breaker height ( bH ) at which all waves are assumed 

to break and have heights equal to the breaker height. The second group (TG83a, TG83b, 
and AREG08) describes the probability of occurrence of breaking waves through a 
weighted Rayleigh distribution. The third group (BHV98, RWS03, AB07, and JB07) 
describes the pdf  of wave heights in the surf zone through a complete Rayleigh 

distribution and the wave heights which are greater than a breaker height ( bH ) are 

considered as broken waves. 
The stable energy concept was introduced by Dally et al. (1985) for computing the 

energy dissipation rate due to regular wave breaking. The model was developed based on 
the measured breaking wave height on the horizontal bed. When a breaking wave enters an 
area with a horizontal bed, the breaking continues (the wave height decreases) until some 
stable wave height is attained. The development of the stable energy concept was based on 
an observation of stable wave height on horizontal slopes. Dally et al. (1985) assumed that 
the energy dissipation rate was proportional to the difference between the local energy flux 
per unit depth and the stable energy flux per unit depth. The energy dissipation will be 
zero if the wave height is less than the stable wave height. The model seems to be widely 
used for computing regular wave height transformation. For irregular waves, RKS03 and 



42 
 

R07 showed that the stable energy concept is applicable for computing the transformation 
of rmsH . The approach has the merits of easy understanding, simple application and it is 

not necessary to assume the shape of the pdf  of wave heights. The stable wave heights of 
the RKS03 and R07 were proposed in terms of breaker heights. The model of RKS03 used 
the breaker height formula of Miche (1944), while the model of R07 used the breaker 
height formula of BJ78. It is known that the process of wave breaking in shallow water is 
influenced by the incident wave steepness and bottom slope. However, the effect of beach 
slope is not included in the stable energy models. The effect of beach slope may be 
included in the models by changing the breaker height formula from Miche (1944) or BJ78 
to be the other breaker height formula which includes the effect of beach slope.  

These two approaches rely on the macroscopic features of breaking waves and 
predict only the transformation of rmsH . The two approaches have different advantages 

and disadvantages. The advantage of the stable energy approach is that it is able to stop 
wave breaking over bar-trough or step profiles, while the parametric wave approach gives 
a continuous dissipation due to wave breaking. However, the parametric approach may not 
give much error in predicting wave height in the trough region because the values of 

brms HH /  and bQ  are very small in the trough. The prediction may not be locally precise in 

the trough region, but generally patterns of wave transformation were reported adequately 
(Battjes and Janssen, 1978). The advantage of the parametric wave approach is that it is 
able to compute a fraction of wave breaking (which is useful for computing undertow and 
suspended sediment concentration), while the fraction of wave breaking cannot be 
determined from the stable energy approach.  
 
 
4.2.2.3. Model adaptation 
 
As the existing dissipation models (shown in section 4.2.2.1) were proposed in terms of  

rmsH , the models have to be converted to be expressed in terms 0mH  before applying to 

compute 0mH . By assuming that rmsm HH 20  , the existing dissipation models are 

applied for computing the transformation of 0mH  by substituting 2/0mrms HH   into the 

models (shown in section 4.2.2.1). Then the wave height transformation models can be 
constructed by substituting the dissipation models into the energy flux balance equation 
[Eq. (4.6)]. Nevertheless, it is not clear which dissipation model is the most suitable one 
for computing 0mH . Therefore, all of them were used to examine their applicability on 

simulating 0mH .  

 
 
4.2.3. Model examination 
 
The objective of this section is to examine the applicability of the fourteen existing 
dissipation models in simulating 0mH . The measured 0mH  from the compiled experiments 

(shown in Table 4.1) are used to examine the accuracy of existing models.  
The transformation of 0mH  is computed by numerical integration of the energy flux 

balance equation [Eq. (4.6)] with the existing energy dissipation models. A backward 
finite difference scheme is used to solve the energy flux balance equation [Eq. (4.6)].  
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The basic parameter for determination of the overall accuracy of a model is the 
average root-mean-square relative error ( avgER ), which is defined as: 

tn
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ER
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j
gj
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
 1          (4.37) 

where gjER  is the root-mean-square relative error of the data group j  (the group number), 

and tn  is the total number of groups. The small value of avgER  indicates good overall 

accuracy of the model. 
The root-mean-square relative error of the data group ( gER ) is defined as: 
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where i  is the wave height number, ciH  is the computed wave height of number i , miH  is 

the measured wave height of number i , and ng  is the total number of measured wave 
heights in each data group. 

The compiled experiments are separated into three groups according to the 
experiment scale, i.e. small-scale, large-scale and field experiments. It is expected that a 
good model should be able to predict well for the three groups of different scale. As the 
present study concentrates on only the transformation of wave height (excluding wave set-
up), the measured mean water depth is used in the computation. However, the measured 
wave set-up is not available for the field data. The water depth including tidal change is 
used for the field experiments. 

Using the default coefficients ( 1K - 28K ) in the computations, the errors ( gER  and 

avgER ) of each dissipation model on predicting 0mH  for three groups of experiment-scales 

have been computed and are shown in Table 4.3. It can be seen from Table 4.3 that the 
models of R07, RS08, BS85, and AB07 give similar overall accuracy ( %5.80.8  avgER ) 

and give better accuracy than the others. For computing beach deformation, a wave model 
has to be run many times to account the frequent updating of beach profile. The error from 
the wave model may be accumulated from time to time. Therefore, for computing the 
beach deformation, the error of the wave model should be kept as small as possible. 
Hence, the best model should be selected for incorporating in the beach deformation 
model. It can be seen from Table 4.3 that there is only one model (model of R07) that 
gives good predictions for the three groups of experiment-scales. Moreover, the model 
R07 also gives the best overall prediction ( 0.8avgER %). However, because some 

dissipation models were developed with limited experimental conditions and it is not clear 
whether the models were developed for statistical-based or spectral-based wave heights, 
the coefficients in each model may not be the optimal values for computing 0mH . 

Therefore, the errors in Table 4.3 should not be used to judge the applicability of the 
existing models. The coefficients in all models should be recalibrated before comparing 
the applicability of the models. 

Each model is calibrated by determining the optimal values of coefficients K  which 
yield the minimum avgER . In order to determine the universal coefficients K , all compiled 

experimental data are used to calibrate the models. Using default coefficients K , wave 
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height transformation for all experiments have been computed and then the average error 
( avgER ) of the model has been computed from the measured and computed wave heights. 

The computations are repeated for various choices of coefficients K , until the minimum 
error ( avgER ) is obtained.  

 
Table 4.3 The errors gER  and avgER  of each dissipation model for three groups of 

experiment-scales by using the default coefficients (measured data from Table 4.1). 

gER  Models 
BD  

formulas 

Default  
coefficients Small-

scale
Large-

scale 
Field 

avgER

BJ78 Eq. (4.7) 
1K = 1.0, 2K = 0.14 9.7 10.5 17.7 12.6

TG83a Eq. (4.11) 
3K = 0.51, 4K = 0.42 13.1 16.1 11.2 13.4

TG83b Eq. (4.13) 
5K = 0.51, 6K = 0.42 11.6 8.1 11.3 10.3

BS85 Eq. (4.15) 
7K = 1.0, 8K = 0.14 8.3 6.7 10.2 8.4

SN93 Eq. (4.17) 
9K = 1.0, 10K = 1.0 9.6 9.4 14.5 11.1

BHV98 Eq. (4.19) 
11K = 1.0, 12K = 1.0 7.9 6.5 13.5 9.3

RS98 Eq. (4.21) 
13K = 0.10, 14K = 0.10 12.4 7.1 10.1 9.9

RWS03 Eq. (4.23) 
15K = 1.0, 16K = 0.14 10.8 7.8 10.0 9.5

RKS03 Eq. (4.25) 
17K = 0.12, 18K = 0.14 8.9 8.6 12.9 10.1

R07 Eq. (4.27) 
19K = 0.07, 20K = 0.14  7.5 7.2 9.3 8.0

AB07 Eq. (4.29) 
21K = 1.0, 22K = 0.14  7.8 7.1 10.5 8.5

JB07 Eq. (4.31) 
23K = 1.0, 24K = 1.0  8.8 7.2 11.1 9.0

RS08 Eq. (4.33) 
25K = 1.0, 26K = 0.14 7.9 6.7 10.5 8.3

AREG08 Eq. (4.35) 
27K = 1.0, 28K = 1.0 10.3 9.1 12.8 10.7

 
 

The calibrated coefficients 1K  to 28K  are summarized in the third column of Table 

4.4. Using the calibrated coefficients ( 1K - 28K ) in the computations, the errors ( gER  and 

avgER ) of each dissipation model on predicting 0mH  for three groups of experiment-scales 

have been computed and are shown in Table 4.4. The results can be summarized as 
follows: 
 
(a) The error ( gER ) of the calibrated models is in the range of 5.8 to 15.9%. The model of 

JB07 gives the best predictions for small-scale and large-scale experiments, while the 
model of R07 gives the best prediction for field experiments.  

(b) Considering overall accuracy ( avgER ) of the models, the overall accuracies of the 

models in descending order are JB07, R07, BS85, RS08, AB07, RKS03, SN93, 
RWS03, BHV98, RS98, TG83b, AREG08, BJ78, and TG83a. The first five of which 
give similar accuracy ( 1.88.7  avgER %) and give better accuracy than the others. 

The accuracy of the five models seems to be sufficient for the design of coastal 
structures. As the model of JB07 gives the best overall prediction ( 8.7avgER %), it 
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seems to be the most suitable one for incorporating in the beach deformation model. 
Since the model of JB07 was developed based on a full Rayleigh distribution of wave 
heights (which is the individual wave analysis or statistical analysis), the model should 
be appropriate for computing the statistical-based wave heights. Moreover, several 
researchers (e.g. Klopman, 1996; Battjes and Groenendijk, 2000; and Mendez et al., 
2004) showed that the Rayleigh distribution is not valid in the surf zone. Surprisingly, 
the model of JB07 gives the best overall prediction.  

(c) The main difference among the models of TG83a, TG83b, AREG08, AB07, and JB07 
is the distribution function of breaking wave heights. As the models of AB07 and JB07 
are significantly better than those of TG83a, TG83b and AREG08, it is expected that 
the key step change and improvement in the parametric models was the adoption of a 
Rayleight pdf  for all waves as proposed by Baldock et al. (1998). 

(d) The main difference among the models of BHV98, RWS03, AB07, and JB07 is the 
energy dissipation of a single broken wave, i.e. BHV98 and RWS03 used the bore 
model of BJ78, while AB07 and JB07 used the bore model of TG83. The results show 
that the bore model of TG83 is more suitable to incorporate in the models. 

(e) Comparing among the models developed based on the parametric wave approach 
(BJ78, TG83a, TG83b, BS85, SN93, BHV98, RS98, RWS03, AB07, JB07, RS08, and 
AREG08), the model JB07 gives the best overall prediction. The significant 
differences of those models are the assumption on probability of occurrence of 
breaking waves, the formulation of energy dissipation of a single broken wave, and the 
breaker height formula. This indicates that the combination which is proposed by JB07 
is the most suitable one for computing the transformation of 0mH . 

(f) Comparing between the models developed based on the stable energy approach 
(RKS03 and R07), the model R07 gives the better overall prediction than the other. 
This indicates that the breaker height formula used by R07 is more suitable than the 
other. 

(g) Either parametric wave approach or stable energy approach can be used to compute the 
transformation of 0mH . The best model for parametric wave approach is JB07, while 

the best model for stable energy approach is R07. 
(h) Although the model of JB07 gives the best overall prediction, it does not give good 

predictions for all experiment-scales. The model gives good predictions for small-scale 
and large-scale experiments but gives fair prediction for field experiments. Another 
model, which may be used to incorporate in the beach deformation model, is the model 
of R07. The model gives the second best overall prediction ( 0.8avgER %) and gives 

good predictions for all experiment-scales. Moreover, the model of R07 is much 
simpler than that of JB07. 
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Table 4.4 The errors gER  and avgER  of each dissipation model for three groups of 

experiment-scales by using the calibrated coefficients (measured data from Table 4.1). 

gER  Models 
BD  

formulas 

Calibrated  
coefficients Small-

scale
Large-

scale 
Field 

avgER

BJ78 Eq. (4.7) 
1K = 0.92, 2K = 0.12 13.1 7.9 12.7 11.2

TG83a Eq. (4.11) 
3K = 0.52, 4K = 0.45 11.0 15.9 12.4 13.1

TG83b Eq. (4.13) 
5K = 0.42, 6K = 0.41 10.5 7.9 12.2 10.2

BS85 Eq. (4.15) 
7K = 0.75, 8K = 0.13 7.6 6.1 10.4 8.0

SN93 Eq. (4.17) 
9K = 1.4, 10K = 0.95 7.5 7.1 11.5 8.7

BHV98 Eq. (4.19) 
11K = 0.88, 12K = 0.97 7.7 6.5 13.3 9.2

RS98 Eq. (4.21) 
13K = 0.10, 14K = 0.10 12.4 7.1 10.1 9.9

RWS03 Eq. (4.23) 
15K = 1.0, 16K = 0.15 9.1 7.9 10.3 9.1

RKS03 Eq. (4.25) 
17K = 0.07, 18K = 0.11 9.3 7.2 9.5 8.7

R07 Eq. (4.27) 
19K = 0.07, 20K = 0.14  7.5 7.2 9.3 8.0

AB07 Eq. (4.29) 
21K = 0.86, 22K = 0.13  7.8 6.4 10.2 8.1

JB07 Eq. (4.31) 
23K = 0.70, 24K = 0.83  6.9 5.8 10.8 7.8

RS08 Eq. (4.33) 
25K = 0.75, 26K = 0.13 7.6 6.2 10.4 8.1

AREG08 Eq. (4.35) 
27K = 0.80, 28K = 0.90 10.7 8.6 12.2 10.5

M1 Eq. (4.42) 
29K = 0.27 6.7 7.2 9.2 7.7

M2 Eq. (4.43) 
30K = 0.75 24.2 8.6 13.7 15.5

 
 
4.2.4. Model modification 
 
Because of the simplicity and good predictions for all experiment-scales of R07’s model, 
the model was selected to modify for better accuracy. The model of R07 can be written in 
general form as  

 22
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B HH
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where stH  is the stable wave height. 

The model of R07 was developed based on the stable energy wave concept. The 
concept was firstly introduced by Dally et al. (1985) for computing energy dissipation of 
regular wave breaking. The energy dissipation is assumed to be proportional to the 
difference between the local energy flux and the stable energy flux. Based on a wide range 
of experimental conditions, Rattanapitikon et al. (2003) showed that the following stable 
wave height formulas could also be used for computing the energy dissipation of regular 
wave breaking.  

(a)  Dally et al. (1985):     hHst 4.0        (4.40) 

(b)  Rattanapitikon and Shibayama (1998): 





 

LH

h
hHst 25.136.0exp    (4.41) 
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It is expected that the accuracy of the R07’s model [Eq. (4.39)] could be improved 
by using the suitable stH  formula, and the formula for regular wave breaking may be 

applicable for irregular wave breaking. In this section, an attempt has been made to modify 
the model of R07 by changing the terms of stable wave height.  

Substituting Eqs. (4.40) and (4.41) into Eq. (4.39), the two modified energy 
dissipation models for computing 0mH  (hereafter referred to as M1 and M2, respectively) 

can be expressed as  
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M2: 




































2

0

4/1

30
2

0

2
25.136.0exp5.0

8
07.0

m

m
g

B
LH

h
hKH

h

gc
D


 (4.43) 

where 3029 KK   are the adjustable coefficients. 

The calibration of the two modified dissipation models is performed by using the 
measured data shown in Table 4.1. The calibrations are conducted by gradually adjusting 
the coefficients until the minimum error ( avgER ) of each model is obtained. The calibrated 

coefficients of M1 and M2 and the errors ( gER  and avgER ) for three groups of 

experiment-scales are shown in the last two rows of Table 4.4. The results can be 
summarized as follows: 

 
(a) Comparing between the two modified models, the model M1 is much better than the 

model M2. The model M2 gives too much errors and it should not be used for 
computing 0mH . 

(b) Comparing among the models developed based on the stable energy approach (RKS03, 
R07, M1, and M2), the model M1 gives the best overall prediction. This indicates that 
the stable wave height formula of Dally et al. (1985) is the most suitable one for 
computing the transformation of 0mH . 

(c) Comparing with the existing models, the model M1 is the simplest model. Because of 
the simplicity of M1, it is expected that this model will give less accuracy than the 
others. Surprisingly, the result shows that the simplest model gives the best overall 
prediction. It should be noted that the stable wave height in the model M1 is 
proportional to the breaker height formula of TG83 [Eq. (4.12)]. Attempts have been 
made to modify the model M1 by using other breaker height formulas [Eqs. (4.9), 
(4.16), (4.18), (4.22), (4.24), and (4.36)]. However, it was found that no model gives 
better prediction than that of M1. 

(d) Comparing between the best existing model (JB07) and the model M1, the model M1 
gives slightly better overall prediction than that of JB07. The model of M1 gives the 
best predictions for small-scale and field experiments, while the model of JB07 gives 
the best prediction for large-scale experiments. Moreover, the model M1 gives good 
predictions for all experiment-scales while the model JB07 does not. Considering the 
complexity of the models, the model M1 is much simpler than that of JB07. As the 
simple model gives slightly better accuracy than the more complicated model, it may 
not necessary to use the complicated model to compute the transformation of 0mH . 

(e) In the present study, the most suitable model is selected based on accuracy and 
simplicity of the models. Considering the accuracy of the models, the models M1, 
JB07, R07, BS85, RS08, and AB07 give nearly the same accuracy ( 1.87.7  avgER ) 
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and give better accuracy than the others. Considering the simplicity of the 6 models, 
the formula of model M1 is the simplest one. Therefore, the model M1 is judged to be 
the most suitable model. Substituting the calibrated coefficients into the model M1, the 
recommended model can be written as 

    22
0
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0 27.05.0

8
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16
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   (4.44) 

 
The greatest asset of the model M1 is its simplicity and ease of application, i.e. the 

transformation of 0mH  from offshore to shoreline can be computed by using only one 

equation [Eq. (4.44)]. The model can be converted to compute the transformation of 

spectral-based root-mean-square wave height ( rmszH ) by substituting rmszm HH 20   into 

Eq. (4.44). The result is 
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To gain an impression of overall performance of the best model of the two 
approaches, the results of JB07 and M1 are plotted against the measured data. Examples of 
computed 0mH  transformation across-shore are shown in Figs. 4.1 to 4.3. Case numbers in 

Figs. 4.1-4.3 are kept to be the same as the originals. Overall, it can be seen that the two 
models are quite realistic in simulation of the 0mH  and have similar accuracy. Because the 

0mH  is computed by a simple expression of energy flux conservation, the models are 

limited to use on open coasts away from river mouths and coastal structures. As the swash 
processes are not included in the models, the models are limited to use in the nearshore 
zone (excluding swash zone). Furthermore, the major disadvantage of the models is that 
they do not provide any detail on the behavior of individual waves. For example, all waves 
are assumed to refract based on the mean wave angle, which is not realistic in the case of 
broad-banded spectra. The effect of directional spread on wave refraction is presented in 
the book of Goda (2000). For more accuracy, it is essential to follow individual wave 
transformation. 
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Fig. 4.1 Examples of measured and computed 0mH  transformation from models JB07 

and M1 (measured data from small-scale experiments). 
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Fig. 4.2 Examples of measured and computed 0mH  transformation from models JB07 

and M1 (measured data from large-scale experiments). 
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Fig. 4.3 Examples of measured and computed 0mH  transformation from models JB07 and 

M1 (measured data from field experiments). 
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4.3. Transformation of Root-Mean-Square Wave Heights 
 
The transformation of root-mean-square ( rms ) wave heights has been a subject of study 
for decades because of its importance in studying beach deformations and the design of 
coastal structures. When waves propagate to the nearshore zone, wave profiles steepen and 
eventually waves break. Once the waves start to break, a part of wave energy is 
transformed into turbulence and heat, and wave height decreases towards the shore. 
Irregular wave breaking is more complex than regular wave breaking. In contrast to 
regular waves, there is no well-defined breaking position for irregular waves. The higher 
wave tends to break at the greater distance from the shore. Closer to the shore, more and 
more waves are breaking, until in the inner surf zone almost all the waves are breaking. 
Thus, the energy dissipation of irregular waves occurs over a considerably greater area 
than that of regular waves with the same strength. There are several concepts to model the 
wave height transformation or energy dissipation. For computing beach deformation, the 
wave model should be kept as simple as possible because of the frequent updating of wave 
field to account for the change of bottom profiles. Therefore, the present study focuses on 
the macroscopic features of breaking waves by describing the energy dissipation rate in 
terms of time-averaged parameter and predicts only the transformation of root-mean-
square ( rms ) wave height. In the present study, wave height transformation is computed 
from the energy flux conservation law [Eq. (4.1)]. 

There are two approaches to analyze irregular wave record, i.e. statistical approach 
and spectral approach. The average energy density based on the two approached can be 
expressed as:  

2

8

1
rmsgHE         (4.46) 

2

8

1
rmszgHE          (4.47) 

where   is the water density, g  is the gravity acceleration, rmsH  is the statistical-based 

rms  wave height, 08mHrmsz   is the spectral-based rms  wave height, and 0m  is the 

zeroth moment of wave spectrum. There are two definitions of the rms  wave height ( rmsH  

and rmszH ). The two definitions of rms  wave height are usually assumed to be equal. 

However, it was shown by many researchers (e.g. Thompson and Vincent, 1985; Hughes 
and Borgman 1987; and Battjes and Groenendijk, 2000) that the rms  wave heights derived 
from the two definitions are significantly difference, especially near the breaking point. It 
is importance for engineers to understand what definition of rms  wave height they are 
using in the model and which model is suitable in computing rmsH  or rmszH .  

The rms  wave height transformation can be computed from the energy flux balance 
equation [Eq. (4.1)] by substituting the formula of the energy dissipation rate ( BD ) and 
numerically integrating from offshore to shoreline. The difficulty of the energy flux 
conservation approach is how to formulate the energy dissipation rate caused by the 
breaking waves. During the past decades, various energy dissipation models have been 
proposed for computing rms  wave height in the surf zone. However, most of the models 
were developed with the regardlessness on the difference between rmsH  and rmszH . 

Therefore, the coefficients in the models may not be the optimal values for computing 

rmsH  or rmszH . Rattanapitikon and Shibayama (2010) presented the applicable of 14 

existing dissipation models on simulating spectral significant wave height (which can be 
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converted to rmszH  through the known constant). However, no direct literature has been 

described clearly the applicable of existing models on simulating rmsH . Therefore, this 

section was carried out to recalibrate some existing energy dissipation models and find out 
the suitable models, which can be used to compute rmsH  for a wide range of experimental 

conditions. 
 
 
4.3.1. Collected experimental data 
 
Experimental data of rmsH  from 5 sources have been collected to examination of the 

models. The collected experiments cover a wide range of wave and bottom topography 
conditions. The experimental data include small-scale, large-scale, and field experiments. 
Summary of the collected experimental results are shown in Table 4.5. 
 
Table 4.5 Summary of collected experimental data of statistical-based rms  wave heights 
( rmsH ). 

Sources  No. of  
Cases

No. of 
Data 

Points 

Beach 
Condition 

Apparatus 

Smith and Kraus (1990) 
12 96

plane and 
barred beach 

small-scale 

Ting (2001) 1 7 plane beach small-scale 
Kraus and Smith (1994): 
SUPERTANK project  

128 2223 sandy beach large-scale 

Dette et al. (1998): 
MAST III – SAFE project  

138 3561 sandy beach large-scale 

Thornton and Guza (1986) 4 60 sandy beach field 
Total 283 5947   

 
 

The experiment of Smith and Kraus (1990) was conducted to investigate the macro-
features of wave breaking over bars and artificial reefs using a small wave flume of 45.70 
m long, 0.46 m wide, and 0.91 m deep. Both regular and irregular waves were employed in 
this experiment. A total of 12 cases were performed for irregular wave tests. Three 
irregular wave conditions were generated for three bar configurations as well as for a plane 
beach. A JONSWAP (Hasselmann et al., 1973) computer signal was generated for spectral 
width parameter of 3.3 and spectral peak periods of 1.07, 1.56, and 1.75 s with significant 
wave heights of 0.12, 0.15, and 0.14 m, respectively. Water surface elevations were 
measured at eight cross-shore locations using resistance-type gages. 

The experiment of Ting (2001) was conducted to study wave and turbulence 
velocities in a broad-banded irregular wave surf zone. The experiment was performed in a 
small-scale wave flume, which was 37 m long, 0.91 m wide and 1.22 m deep. A false 
bottom with 1/35 slope built of marine plywood was installed in the flume to create a plane 
beach. The irregular waves were developed from the TMA spectrum (Bouws et al., 1985), 
with a spectral peak period of 2.0 s, a spectrally based significant wave height of 0.15 m 
and spectral width parameter of 3.3. Water surface elevations were measured at seven 
cross-shore locations using a resistance-type gage. 
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The SUPERTANK laboratory data collection project (Kraus and Smith, 1994) was 
conducted to investigate cross-shore hydrodynamic and sediment transport processes from 
August 5 to September 13, 1992 at Oregon State University, Corvallis, Oregon, USA. A 
76-m-long sandy beach was constructed in a large wave tank of 104 m long, 3.7 m wide, 
and 4.6 m deep. Wave conditions included both regular and irregular waves. In all, 20 
major tests were performed, and each major test consisted of several cases. Most of the 
tests (14 major tests) were performed under the irregular wave actions. The wave 
conditions were designed to balance the need for repetition of wave conditions to move the 
beach profile toward equilibrium and development of a variety of conditions for 
hydrodynamic studies. The TMA spectral shape (Bouws et al., 1985) was used to design 
all irregular wave tests. The collected experiments for irregular waves included 128 cases 
of wave and beach conditions (a total of 2047 wave records), covering incident significant 
wave heights from 0.2 m to 1.0 m, spectral peak periods from 3.0 sec to 10.0 sec, and 
spectral width parameter between 3.3 (broad-banded) and 100 (narrow-banded). Sixteen 
resistance-type gages were used to measure water surface elevations across shore. 

SAFE Project (Dette et al., 1998) was carried out to improve the methods of design 
and performance assessment of beach nourishment. The SAFE Project consisted of four 
activities, one of which was to perform experiments in a large-scale wave flume in 
Hannover, Germany. A 250-m-long sandy beach was constructed in a large wave tank of 
300 m long, 5 m wide and 7 m deep. The test program was divided into two major phases. 
The first phase (cases A, B, C, and H) was aimed to study the beach deformation of 
equilibrium profile with different beach slope changes. The equilibrium beach profile was 
adopted from the Bruun (1954)’s approach ( 3/212.0 xh  ). In the second phase, the 
sediment transport behaviors of dunes with and without structural aid were investigated 
(cases D, E, F, and G). The TMA spectral shape (Bouws et al., 1985) was used to design 
all irregular wave tests. The tests were performed under normal wave conditions ( oso LH / = 

0.010, water depth in the horizontal section = 4.0 m) and storm wave conditions ( oso LH / = 

0.018, water depth in the horizontal section = 5.0 m). A total of 27 wave gages was 
installed over a length of 175 m along one wall of the flume. The collected experiments 
included 138 cases of wave and beach conditions, covering deepwater wave steepness 
( oso LH / ) from 0.010 to 0.018. 

The experiment of Thornton and Guza (1986) was conducted on a beach with nearly 
straight and parallel depth contours at Leadbetter Beach, Santa Barbara, California, USA, 
to measure longshore currents, waves, and beach profiles, during the period January 30 to 
February 23, 1980. 
 
 
4.3.2. Existing energy dissipation models 
 
During the past decades, various energy dissipation models have been developed based on 
the parametric approach and the representative wave approach. Because of the complexity 
of the wave breaking mechanism, most of the energy dissipation models were developed 
based on the empirical or semi-empirical approach calibrated with the measured rms  wave 
height.  
Brief reviews of 14 existing dissipation models are described in Sec. 4.2.2.1. The 
additional one is summarized below: 
 
(a) Rattanapitikon and Shibayama (2010) examined 14 existing dissipation models on 

simulating spectral significant wave height. The comparison shows that the models of 
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JB07 and R07 give very good predictions on 0mH . The model of R07 was modified 

by changing the stable wave height from the term of breaker height to be the term of 
water depth. As the modified model is similar to that of Dally et al. (1985), it may be 
also considered as the modified model of Dally et al. (1985). Comparing with the 
existing models, the modified model is the simplest one but gives the best accuracy. 
The modified model can be expressed in terms of root-mean-square wave height as: 

  2
32

2
31 8

hKH
h

gc
KD rms

g
B 


      (4.48) 

where 31K  and 32K  are the adjustable coefficients. The proposed values of 31K  and 

32K  are 0.07 and 0.27, respectively. Equation (4.48) is hereafter referred to as MD85. 

It should be noted that originally Eq. (4.48) is used for computing rmszH  (not for 

computing rmsH ).  

 
 
4.3.3. Examination of existing models 
 
The objective of this section is to examine the applicability of the 15 existing dissipation 
models on simulating rmsH . The measured rmsH  from the collected experiments (shown in 

Table 4.5) are used to examine the existing models. 
The rms  wave height transformation is computed by numerical integration of the 

energy flux balance equation [Eq. (4.1)] with the energy dissipation rate of the existing 
models [Eqs. (4.7), (4.11), (4.13), (4.15), (4.17), (4.19), (4.21), (4.23), (4.25), (4.27), 
(4.29), (4.31), (4.33), (4.35), and (4.48)]. A backward finite difference scheme is used to 
solve the energy flux balance equation [Eq. (4.1)]. 

The collected experiments are separated into three groups according to the 
experiment scale, i.e. small-scale, large-scale, and field experiments. It is expected that a 
good model should be able to predict well for the three groups of experiment scale. 
Therefore, the average error ( avgER ) from the three groups of experiment scale are used as 

a main criteria to verify the models. 
Using the default coefficients ( 281 KK  , 31K , and 32K ) in the computations, the 

errors ( gER  and avgER ) of each dissipation model on predicting rmsH  for three groups of 

experiment scale have been computed and shown in Table 4.6. It can be seen from Table 
4.6 the model of RKS03 gives the best prediction on estimating rmsH . Because most 

models were developed with the regardlessness on the difference between rmsH  and rmszH , 

the coefficients in the models may not be the optimal values for computing both of rmsH  

and rmszH . Therefore, the errors in Table 4.6 should not be used to judge the applicability 

of the models. The coefficients in all models should be recalibrated before verifying the 
applicability of the models. 
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Table 4.6 The errors gER  and avgER  of each dissipation model for computing rmsH  for 

three groups of experiment-scales (using default coefficients). 

gER  Model Default coefficients 

Small scale Large scale Field 
avgER

BJ78 1K = 1.0, 2K = 0.14 9.3 6.6 26.4 14.1
TG83a 3K = 0.51, 4K = 0.42 35.1 18.4 12.8 22.1
TG83b 5K = 0.51, 6K = 0.42 28.0 10.4 17.4 18.6
BS85 7K = 1.0, 8K = 0.14 8.6 9.8 14.7 11.0
SN93 9K = 1.0, 10K = 1.0 13.1 7.6 26.7 15.8
BHV98 11K = 1.0, 12K = 1.0 12.5 10.8 16.1 13.1
RS98 13K = 0.10, 14K = 0.10 11.7 7.9 14.3 11.3
RWS03 15K = 1.0, 16K = 0.14 14.1 10.8 17.3 14.1
RKS03 17K = 0.12, 18K = 0.14 9.7 7.7 9.8 9.1
R07 19K = 0.07, 20K = 0.14  9.6 8.8 9.2 9.2
AB07 21K = 1.0, 22K = 0.14  7.6 8.1 17.4 11.0
JB07 23K = 1.0, 24K = 1.0  9.7 8.9 15.0 11.2
RS08 25K = 1.0, 26K = 0.14 8.5 9.5 12.9 10.3
AREG08 27K = 1.0, 28K = 1.0 30.9 9.9 18.6 19.8
MD85 31K = 0.07, 32K = 0.27 10.8 9.0 8.8 9.5

 
 
4.3.4. Model calibration and comparison 
 
All collected data shown in Table 4.5 are used to calibrate the coefficients ( 301 KK  ). The 

calibrations are conducted by gradually adjusting the coefficients 281 KK  , 31K , and 32K  

until the minimum error ( avgER ) of each model is obtained. The optimum values of 

281 KK  , 31K , and 32K  are shown in the second column of Table 4.7.  

Using the calibrated coefficients in the computations, the errors ( gER  and avgER ) of 

each dissipation model for three groups of experiment scale have been computed and 
shown in Table 4.7. The results can be summarized as follows: 

 
(a) Most of existing models (except TG83a) give very good prediction ( 0.10avgER %) 

for large-scale experiments. 
(b) Eight existing models (BJ78, BS85, RS98, RKS03, R07, AB07, JB07, and RS08) give 

very good prediction ( 0.10avgER %) for small-scale experiments. 

(c) Four existing models (BHV98, RWS03, R07, and MD85) give very good prediction 
( 0.10avgER %) for field experiments. 

(d) The overall accuracy of models for computing rmsH  in descending order are the 

models of R07, RKS03, MD85, BS85, RS08, BHV98, AB07, RS98, JB07, RWS03, 
SN93, BJ78, TG83b, AREG08, and TG83a.  
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(e) The top four models that give very good prediction on rmsH  are the models of R07, 

RKS03, MD85, and BS85 ( 7.98.8  avgER %).  

(f) The models developed based on representative wave concept trends to give better 
estimation than those of parametric wave concept. 

 
Table 4.7 The errors avgER  of each dissipation models for computing rmsH  by using the 

calibrated coefficients (measured data from Table 4.5).  
Apparatus 

Models Calibrated coefficients 
Small scale Large scale Field avgER

BJ78 
1K = 1.19, 2K = 0.15 8.8 6.8 26.0 13.9

TG83a 3K = 0.51, 4K = 0.47  31.2 16.6 15.9 21.2

TG83 
5K = 0.10, 6K = 0.29 11.0 6.4 25.6 14.3

BS85 
7K = 1.37, 8K = 0.16 8.1 9.0 11.9 9.7

SN93 
9K = 1.57, 10K = 1.15  12.1 8.5 18.5 13.1

BHV98 
11K = 2.06, 12K = 1.41  13.0 8.5 8.8 10.1

RS98 
13K = 0.13, 14K = 0.12  8.6 6.9 16.8 10.8

RWS03 
15K = 1.96, 16K = 0.20  15.0 9.9 9.3 11.4

RKS03 
17K = 0.09, 18K = 0.13  9.3 7.0 10.2 8.8

R07 
19K = 0.09, 20K = 0.16  9.8 7.7 8.8 8.8

AB07 21K = 1.03, 22K = 0.15  6.8 7.3 17.9 10.7

JB07 23K = 0.98, 24K = 0.99  9.5 8.9 15.2 11.2

RS08 25K = 1.09, 26K = 0.15 8.3 8.3 13.4 10.0

AREG08 27K = 0.10, 28K = 0.51 10.5 6.5 26.1 14.4

MD85 
31K = 0.09, 32K = 0.31 11.3 7.9 8.4 9.2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



58 
 

4.4. Conversion from Root-Mean-Square Wave Height to Other 
Representative Wave Heights  
 
The representative wave heights [e.g. mean wave height ( mH ), root-mean-square wave 

height ( rmsH ), significant wave height ( 3/1H ), highest one-tenth wave height ( 10/1H ), and 

maximum wave height ( maxH )] are the essential required factors for the study of coastal 

processes and the design of coastal structures. The wave heights are usually available in 
deepwater but not available at the depths required in shallow water. The wave heights in 
shallow water can be determined from a wave transformation model or phase-resolving 
wave model. However, the output of many existing wave models (e.g. see Rattanapitikon, 
2007) is the root-mean-square wave height ( rmsH ). Thus, it is necessary to know 

conversion formulas for converting from rmsH  to other representative wave heights. The 

present study concentrates on the conversion formulas for converting from common 
parameters obtained from the wave models [i.e. rmsH , water depth ( h ), spectral peak 

period ( pT ), and beach slope ( m )] to be other representative wave heights (i.e. mH , 3/1H , 

10/1H , and maxH ). 

In deepwater, the probability density function ( pdf ) of measured wave heights from 
different oceans have been found to closely obey the Rayleigh distribution (Demerbilek 
and Vincent, 2006). Widely accepted conversion formulas are derived based on the 
assumption of the Rayleigh distribution of wave heights. The representative wave heights 
can all be converted one to another through the known proportional coefficients.  

When waves propagate to shallow water, wave profiles steepen and eventually 
waves break. The higher waves tend to break at a greater distance from the shore. Closer to 
the shore, more and more waves are breaking, until in the inner surf zone almost all the 
waves break. Investigations of shallow-water wave records from several studies indicate 
the wave heights distribution deviates slightly from the Rayleigh distribution and the 
conversion formulas derived from the Rayleigh distribution are acceptable (e.g. 
Goodknight and Russell, 1963; Goda, 1974; and Thornton and Guza, 1983). However, 
some researchers have pointed out that the wave heights deviate considerably from the 
Rayleigh distribution (e.g. Dally, 1990; Battjes and Groenendijk, 2000; and Mendez et al., 
2004); consequently, the conversion formulas derived from the Rayleigh distribution may 
not be valid in shallow water. It is expected that the deviation of wave heights from the 
Rayleigh distribution is mainly caused by the wave breaking. 

Several conversion formulas have been proposed for computing the representative 
wave heights, e.g. the formulas of Longuet-Higgins (1952), Glukhovskiy (1966), Klopman 
(1996), Battjes and Groenendijk, (2000), and Rattanapitikon and Shibayama (2007). Most 
of them were developed based on an empirical or semi-empirical approach calibrated with 
experimental data. To make an empirical formula reliable, it has to be calibrated with a 
large amount and wide range of experimental conditions. However, most of the existing 
formulas were developed with limited experimental conditions. Therefore, their 
coefficients may not be the optimal values for a wide range of experimental conditions and 
their validity may be limited according to the range of experimental conditions that were 
employed in calibration or verification. It is not clear which formulas are suitable for 
computing the representative wave heights from offshore to shoreline. No direct study has 
been made to describe clearly the accuracy of existing conversion formulas on the 
estimation of mH , 3/1H , 10/1H , and maxH  for a wide range of experimental conditions. 

This makes engineers and scientists hesitant in using those conversion formulas. The 
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objective of this study is to find out the suitable conversion formulas that predict well for a 
wide range of experimental conditions.  

This section is divided into three main parts. The first part is a brief review of 
selected existing and modified formulas for computing the representative wave heights 
(i.e. mH , 3/1H , 10/1H , and maxH ) from the known rmsH . The second part presents the 

collected data for verifying the conversion formulas. The third part describes the 
verification of the selected conversion formulas. 
 
 
4.4.1. Selected conversion formulas 
 
Two approaches have been used to derive the conversion formulas for computing 
representative wave heights. The first approach derives the formulas by curve fitting 
between the representative wave heights and the breaker height parameters. The second 
approach derives the formulas from the selected pdf  of wave heights. Various conversion 
formulas have been proposed, some of which are expressed in terms of uncommon output 
parameters from most of the existing wave models (e.g. spectral bandwidth and wave 
nonlinearity parameters), e.g. the distributions of Naess (1985), Hughes and Borgman 
(1987), Mori and Janssen (2006), and Tayfun and Fedele (2007). Including more related 
parameters is expected to make the pdf  more accurate. However, it may not be suitable to 
incorporate with most of the existing wave models because such parameters are not 
available from the wave models. Therefore, this study concentrates on only the formulas 
which are expressed in terms of common parameters obtained from the wave models, i.e. 

rmsH , h , pT , and m . Brief reviews of selected existing and modified formulas for 

computing mH , 3/1H , 10/1H , and maxH  are presented below. 

 
a) Longuet-Higgins (1952), hereafter referred to as LH52, demonstrated that the Rayleigh 
distribution is applicable to the wave heights in the sea. The validity of the distribution for 
deepwater waves has been confirmed by many researchers, even though the bandwidth 
may not always be narrow-banded (Demerbilek and Vincent, 2006). The cumulative 
distribution function ( cdf ) and the probability density function ( pdf ) of the Rayleigh 
distribution can be expressed as: 
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where )(HF  is the cumulative distribution function ( cdf ) of wave height ( H ), )(Hf  is 

the probability density function ( pdf ) of wave height ( H ), and rmsH  is the root-mean-

square ( rms ) wave height, which is defined as: 

M

H
Hrms


2

        (4.51) 

where M  is the total number of individual waves identified by the zero-crossing method. 
The conversion formulas are obtained by manipulation of the pdf  of wave heights. The 

average of the highest N/1  wave heights ( NH /1 ) is defined as: 



60 
 



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where N  is the number of individual waves, and NH  is the wave height with exceedance 

probability of N/1  which can be obtained from the cdf  as: 
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where P  is the probability of occurrence. Manipulation of Eq. (4.53) yields, 

  rmsN HNH 2/1ln         (4.54) 

Substituting )(Hf  from Eq. (4.50) and NH  from Eq. (4.54) into Eq. (4.52), and taking 

integration, the result is 
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where )(xerfc  is the complementary error function of variable x . The representative wave 

heights (i.e. mH , 3/1H , and 10/1H ) can be determined by substituting N  equal to 1, 3, and 

10, respectively into Eq. (4.55). The maximum wave height is affected by the total number 
of waves in a record ( M ) which varies from one sample to another. The probability 
distribution of maxH  in general depends on the sample size and the parent distribution 

from which the sample was obtained. Longuet-Higgins (1952) proposed a cumulative 
distribution function of maxH  by considering that the cumulative probability of maxH  is 

equal to the total probability of all M  waves being less than maxH . The result is 

 MHFHF )()( maxmax1        (4.56) 

where )( max1 HF  is the cumulative distribution function of maxH , and )( maxHF  is the 

cumulative distribution function of H  at H = maxH . Equation (4.56) is valid if maxH  of all 

M  waves are independently and identically distributed. Substituting Eq. (4.49) at 
H = maxH  into Eq. (4.56), the cumulative distribution function of maxH  is expressed as: 
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The arithmetic mean (expected value) is usually used as an approximation of maxH . Based 

on Eq. (4.57), approximated formula for computing the arithmetic mean of maxH  is 

expressed as: 
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where  maxHE  is the expected value of maxH , and )( max1 Hf  is the pdf  of maxH . From 

the known rmsH  and M , the representative wave heights NH /1  are determined from Eq. 

(4.55) and maxH  is determined from Eq. (4.58). 

 
b) Glukhovskiy (1966), hereafter referred to as G66, proposed a two parameter Weibull 
distribution to describe the wave height distribution in shallow water. The influence of 
depth-limited wave breaking is taken into account by including a function of hHm /  into 
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the two parameters. However, the mean wave height ( mH ) is not a common output from 

most existing wave models. Klopman (1996) suggested replacing hHm /  with hHrms /7.0 . 

The cdf  and pdf  of G66 can be written in terms of rmsH  as: 
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where A  and   are the position and shape parameters, respectively, which can be 
determined from the following empirical formulas. 
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where 1C  and 2C  are the constants. The proposed values of 1C  and 2C  are 2.0 and 0.7, 

respectively. It should be noted that when the ratio of hHrms /  gets small (deep water), 

then A  approaches 1,   approaches 2, and the G66 (Weibull) distribution reverts to 
Rayleigh. The wave height with exceedance probability of N/1  ( NH ) and the average of 

the highest N/1  wave heights ( NH /1 ) are obtained by manipulation of the probability 

function (similar procedure as that of LH52). The results are 
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where ),( xa  is the upper incomplete Gamma function of variables a  and x . For 

computing the maximum wave height ( maxH ), following the same procedures as that of 

LH52, the cdf  of maxH  can be written as: 
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Based on Eq. (4.65), an approximated formula for computing the expected value of maxH  

is expressed as: 
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From the known rmsH , h , and M , the representative wave heights NH /1  are determined 

from Eq. (4.64) and maxH  is determined from Eq. (4.66), in which the parameters A  and 

  are determined from Eqs. (4.61) and (4.62), respectively. It was pointed out by 
Klopman (1996) that the distribution of G66 is not consistent, i.e. the first moment of the 
distribution is not equal to mH  (if the distribution is expressed in terms of mH ) or the 

second moment of the distribution is not equal to 2
rmsH  (if the distribution is expressed in 
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terms of rmsH ). However, the distribution of G66 has often been mentioned but it seems 

that no literature shows its applicability on estimating the representative wave heights. It 
may be worthwhile to examine its applicability on estimating the representative wave 
heights. 
 
c) Klopman (1996), hereafter referred to as K96, used the same probability function as that 
of G66 and consequently the same conversion formulas for computing NH /1  and maxH  

[Eqs. (4.64) and (4.66), respectively]. He modified the distribution of G66 by 
reformulating the position and shape parameters ( A  and  ) to assure consistency of the 
distribution. The parameters A  and   of K96 are determined from the following 
formulas.  

2/
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
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where )(x  is the Gamma function of variable x , and 3C  and 4C  are the constants. The 

proposed values of 3C  and 4C  are 2.0 and 0.7, respectively. From the known rmsH , h , and 

M , the representative wave heights NH /1  can be determined from Eq. (4.64) and maxH  

can be determined from Eq. (4.66), in which the parameters A  and   are determined from 
Eqs. (4.67) and (4.68), respectively.  
 
d) Battjes and Groenendijk (2000), hereafter referred to as BG00, proposed a composite 
Weibull wave height distribution to describe the wave height distribution on shallow 
foreshore. The distribution consists of a Weibull distribution with exponent of 2.0 for the 
lower wave heights and a Weibull with exponent of 3.6 for the higher wave heights. The 
two Weibull distributions are matched at the transitional wave height ( trH ). The 

cumulative distribution function and the probability density function are described as: 
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where 5C  and 6C  are the constants, 1H  and 2H  are the scale parameters, and trH  is the 

transitional wave height. The proposed values of 5C  and 6C  are 2.0 and 3.6, respectively. 

The transitional wave height ( trH ) is determined from the following empirical formula.  

hmHtr )8.535.0(          (4.71) 

where m  is the beach slope. At the transitional wave height, the wave height distribution 
abruptly changes its shape. This change in shape is ascribed to wave breaking. Therefore, 
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trH  can be considered as a kind of depth-limited breaking or breaker height ( bH ). For 

convenience in the calculation, all wave heights are normalized with rmsH  as: 

rms

x
x H

H
H ~

        (4.72) 

where xH
~

 is the normalized characteristic wave height. The normalized transitional wave 

height ( trH
~

) can be determined from 

rms

tr
tr H

HC
H 7~          (4.73) 

where 7C  is the constant. The proposed value of 7C  is 1.0. The normalized scale 

parameters 1

~
H  and 2

~
H  are determined by solving the following 2 equations 

simultaneously. 
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where ),( xa  is the lower incomplete Gamma function of variables a  and x . After 
manipulation of the probability function (for more detail, please see Groenendijk, 1998), 
the normalized NH  and NH /1  are expressed as:  
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Unlike LH52, Battjes and Groenendijk (2000) did not use the probability function of maxH  

for computing maxH . They determined the highest wave height in a wave record of total 

number of waves M (or maximum wave height, maxH ) from the formula of NH  [Eq. 

(4.76)]. Substituting MN   into Eq. (4.76), the formula for computing the maximum 
wave height ( maxH ) can be expressed as: 
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All conceivable normalized characteristic wave heights are a function of trH
~

 only. From 

the known rmsH , h , m , and M , the normalized transitional wave height ( trH
~

) is 

determined from Eq. (4.73) and the normalized scale parameters 1

~
H  and 2

~
H  are 

determined from Eqs. (4.74) and (4.75) simultaneously. Once 1

~
H  and 2

~
H  have been 

determined, NH /1  can be determined from Eq. (4.77) and maxH  can be determined from 
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Eq. (4.78). It should be noted that the disadvantage of BG00 is the complexity of the 
formulas. 
 
e) Elfrink et al. (2006), hereafter referred to as EHR06, used the same probability function 
as that of G66 and K96 and, consequently, the same conversion formulas for computing  

NH /1  and maxH  [Eqs. (4.64) and (4.66), respectively]. They modified the distribution of 

K96 by reformulating the shape parameter ( ). The proposed formula for computing the 
parameter   of EHR06 is expressed as: 
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where 8C  - 10C  are the constants. The proposed values of 8C  - 10C  are 15.5, 1.0, and 2.03, 

respectively. From the known rmsH , h , and M , the representative wave heights NH /1  are 

determined from Eq. (4.64) and maxH  is determined from Eq. (4.66), in which the 

parameters A  and   are determined from Eqs. (4.67) and (4.79), respectively. 
 
f) Rattanapitikon and Shibayama (2007), hereafter referred to as RS07, modified the 
conversion formulas of LH52 by empirically incorporating the effect of wave breaking 
into the formulas. The proportional coefficients (   ) in the formulas of LH52 were fitted 

with three dimensionless parameters ( hHrms , trrms HH , and brms HH / ); consequently, 

three conversion formulas (hereafter referred to as RS07a, RS07b, and RS07c, 
respectively) were proposed. The general formulas for computing NH /1  and maxH  of 

RS07a-RS07c are expressed as: 

rmsNN HH /1/1          (4.80) 
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where   is the proportional coefficient, and subscripts N/1  and max  represent the 

coefficients for NH /1  and maxH , respectively. The proportional coefficients   for RS07a-

RS07c are determined from the following empirical formulas.  
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RS07c:  
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where 1K - 8K  are the constants. The proposed values of 1K - 8K  for coefficients   are 

shown in the third to sixth columns of Table 4.8. The breaker height ( bH ) is determined 

from the breaking criteria of Goda (1970) as: 
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where oL  is the deepwater wavelength related to the spectral peak period ( pT ). The 

coefficient 0.1 is used according to Rattanapitikon and Shibayama (1998). From the 
known rmsH , h , pT , m , and M , the representative wave heights NH /1  are determined 

from Eq. (4.80) and maxH  is determined from Eq. (4.81), in which the coefficients   for 

RS07a, RS07b, and RS07c are determined from Eqs. (4.82), (4.83), and (4.84), 
respectively. 
 
Table 4.8 Default and calibrated constants 1K  to 8K  of the coefficients   for RS07a-

RS07c. 
Default constants Calibrated constants Formulas Constants 

1  3/1 10/1 max 1 3/1  10/1  max
RS07a 

1K  0.87 1.43 1.81 0.97 0.89 1.41 1.75 1.00

 
2K  0.92 1.36 1.58 0.69 0.92 1.34 1.56 0.69

 
3K  0.10 0.10 0.10 0.10 0.06 0.06 0.06 0.06

 
4K  0.52 0.52 0.52 0.52 0.50 0.50 0.50 0.50

RS07b 
1K  0.87 1.43 1.81 0.97 0.89 1.41 1.75 1.00

 
2K  0.92 1.36 1.58 0.69 0.92 1.34 1.56 0.69

 
5K  0.25 0.25 0.25 0.25 0.15 0.15 0.15 0.15

 
6K  0.95 0.95 0.95 0.95 1.00 1.00 1.00 1.00

RS07c 
1K  0.87 1.43 1.81 0.97 0.89 1.41 1.75 1.0

 
2K  0.92 1.36 1.58 0.69 0.92 1.34 1.56 0.69

 
7K  0.43 0.43 0.43 0.43 0.25 0.25 0.25 0.25

 
8K  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 
 
g) You (2009), hereafter referred to as Y09, proposed using modified Rayleigh and 
Weibull distributions to describe the distribution of wave orbital velocity amplitudes. As 
wave height and orbital velocity amplitude have a certain relationship, the distribution of 
the orbital velocity may also be applicable for describing the wave height distribution. The 
cumulative distribution functions of the modified Rayleigh distribution (hereafter referred 
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to as Y09a) and the Weibull distribution (hereafter referred to as Y09b) can be rewritten in 
a general form as: 
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The cdf  of Y09 [Eq. (4.86)] is the same as that of G66. The difference is the terms of 
parameters A  and   which are set to be constants as: 

Y09a:     11CA           (4.87) 
2               (4.88) 

Y09b:     1A          (4.89) 

12C              (4.90) 

where 11C  and 12C  are the constants. The proposed values of 11C  and 12C  are 1.09 and 
2.15, respectively. As the cdf of Y09 is the same as that of G66, the representative wave 

heights can be determined from the same equations as of G66. From the known rmsH  and 

M , the representative wave heights NH /1  can be determined from Eq. (4.64) and maxH  

can be determined from Eq. (4.66), in which the parameters A  and   are determined from 
Eqs. (4.87) and (4.88) for Y09a and from Eqs. (4.89) and (4.90) for Y09b. It should be 
noted that the distributions of Y09 are not consistent. The second moment of the 
distributions are not equal to 2

rmsH . However, You (2009) showed that the distributions 

give better accuracy than that of LH52. It may be worthwhile to examine their applicability 
on predicting the representative wave heights. 
 
h) As wave breaking may cause the wave height distribution to deviate from the Rayleigh 
distribution, the variable that may affect the distribution in the shallow water is the terms 
of depth-limited wave breaking or breaker height. There are three breaker parameters 
which were used by the previous researchers, i.e. h , trH  [Eq. (4.71)], and bH  [Eq. (4.85)]. 

Using the suitable breaker parameters in the conversion formulas is expected to give better 
accuracy. The modification is carried out by changing the breaker parameters in the 
conversion formulas. Modified K96 formulas (hereafter referred to as MK96) are 
performed by changing the breaker parameters in the formula of  . Replacing h  in Eq. 
(4.68) by trH  and bH , respectively, the modified   can be expressed as: 

MK96a:    
trrms HHC

C

/1 14

13


         (4.91) 

MK96b:    
brms HHC

C

/1 16

15


         (4.92) 

where 13C - 16C  are the constants which can be determined from formula calibration. The 

representative wave heights ( NH /1 ) are determined from Eq. (4.64) and maximum wave 

height ( maxH ) is determined from Eq. (4.66), in which the parameter A  is determined 

from Eq. (4.67) and the parameters   for MK96a and MK96b are determined from Eqs. 
(4.91) and (4.92), respectively. 
 
i) For similar reasons, modified BG00 formulas (hereafter referred to as MBG00) are 

performed by changing the breaker parameters in the formula of trH
~

. Replacing trH  in 

Eq. (4.73) by h  and bH , respectively, the modified trH
~

 can be expressed as: 
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MBG00a:    
rms
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hC
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MBG00b:    
rms

b
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where 17C  and 18C  are the constants which can be determined from formula calibration. 

The representative wave heights NH /1  and maxH  are determined from Eqs. (4.77) and 

(4.78), respectively, in which the parameters 1

~
H  and 2

~
H  are determined from Eqs. (4.74) 

and (4.75) simultaneously and trH
~

 for MBG00a and MBG00b are determined from Eqs. 

(4.93) and (4.94), respectively. 
 
j) As in item h), modified EHR06 formulas (hereafter referred to as MEHR06) are 
performed by changing the breaker parameters in the formula of  . Replacing h  in Eq. 
(4.79) by trH  and bH , respectively, the modified   can be expressed as: 
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where 19C - 24C  are the constants which can be determined from formula calibration. The 

representative wave heights NH /1  are determined from Eq. (4.64) and maxH  is determined 

from Eq. (4.66), in which the parameter A  is determined from Eq. (4.67) and the 
parameters   for MEHR06a and MEHR06b are determined from Eqs. (4.95) and (4.96), 
respectively. 
 
k) As the distribution of Y09 is not consistent, it should be modified for consistency. The 
modified Y09 is performed by reformulating the position and shape parameters ( A  and 
 ). As the probability function of Y09 is the same as that of K96, the position parameter 
( A ) can be determined from Eq. (4.67) while the shape parameter ( ) is set to be a 
constant as: 

25C          (4.97) 

where 25C  is the constant which can be determined from formula calibration. The 

representative wave heights NH /1  can be determined from Eq. (4.64) and maxH  can be 

determined from Eq. (4.66), in which the parameters A  and   are determined from Eqs. 
(4.67) and (4.97), respectively. 
 
 
4.4.2. Collected experimental data 
 
The experimental data of representative wave heights (i.e. mH , rmsH , 3/1H , 10/1H , and 

maxH ) from 10 sources (covering 2,619 cases and 19,776 wave records) have been 

collected for examination of the formulas. The data cover the wave heights in either the 
offshore zone or surf zone. The collected experiments are separated into 3 groups based on 
the experiment-scale, i.e. small-scale, large-scale, and field experiments. The small-scale 
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experiments were conducted under fixed beach conditions whereas the large-scale and 
field experiments were carried out under movable (sandy) beach conditions. The 
experiments cover a variety of beach conditions and cover a range of deepwater rms  wave 
steepness ( ormso LH ) from 0.0002 to 0.059. A summary of the collected laboratory data is 

given in Table 4.9. Some of the data sources are the same as those used by Rattanapitikon 
and Shibayama (2007). The additional data are from the LIP11D project (Roelvink and 
Reniers, 1995), SAFE project (Dette et al. 1998), Long (1991), and COAST3D project 
(Soulsby, 1998).  
 
Table 4.9 Collected experimental data for verifying conversion formulas. 
Sources  Apparatus Measured wave heights 
Smith and Kraus (1990) small-scale mH , rmsH , 3/1H , maxH  
Ting (2001) small-scale mH , rmsH , 3/1H , 10/1H , maxH  
Ting (2002) small-scale mH , rmsH , 3/1H , 10/1H , maxH  
Kraus and Smith (1994): 
SUPERTANK project  

large-scale mH , rmsH , 3/1H , 10/1H , maxH  

Roelvink and Reniers, (1995):  
LIP11D Project 

large-scale rmsH , 3/1H , 10/1H , maxH  

Dette et al. (1998): 
SAFE project  

large-scale rmsH , 3/1H , 10/1H , maxH  

Goodknight and Russell (1963) field mH , rmsH , 3/1H , 10/1H , maxH  
Long (1991) field mH , rmsH , 3/1H , 10/1H , maxH  
Ruessink (1999):  
COAST3D Project at Egmond 

field mH , rmsH , 3/1H , 10/1H  

Whitehouse and Sutherland (2001):  
COAST3D Project at Teigmond 

field mH , rmsH , 3/1H , 10/1H , maxH  

 
Table 4.9 (cont.) Collected experimental data. 
Sources  No of 

cases
No of
points 

M* 
ormso LH

Smith and Kraus (1990) 12 96 500 0.021-0.059
Ting (2001) 1 7 186-207 0.016
Ting (2002) 1 7 154-162 0.015
Kraus and Smith (1994): 
SUPERTANK project  

128 2,048 152-2,046 0.001-0.046

Roelvink and Reniers, (1995):  
LIP11D Project 

87 170 461-892 0.001-0.029

Dette et al. (1998): 
SAFE project  

138 3,557 182 0.001-0.020

Goodknight and Russell (1963) 4 80 95-319 0.011-0.025
Long (1991) 11 11 972-1,693 0.002-0.024
Ruessink (1999):  
COAST3D Project at Egmond 

977 6,480 - 0.002-0.030

Whitehouse and Sutherland (2001):  
COAST3D Project at Teigmond 

1,260 7,320 132-340 0.0002-0.028

Total  2,619 19,776 95-2,046 0.0002-0.059
* for computing Hmax 
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A brief summary of the additional data is provided below. 
LIP 11D Delta Flume Experiment (Roelvink and Reniers, 1995) was performed at 

Delft Hydraulics large-scale wave flume. A 175-m-long sandy beach was constructed in a 
large wave tank of 233 m long, 5 m wide and 7 m deep. The 2 major tests were performed, 
i.e., with dune (test no. 1A-1C) and without dune (test no 2A-2C). Each major test 
consisted of several wave conditions. The duration of each wave condition lasted about 12 
to 21 hr. Initial beach profiles of the test no. 1A and 2A are equilibrium Dean-type beaches 
( 3/2xAh s , where sA  is the sediment scale parameter and x  is the horizontal distance 

directed offshore). The beach profiles of other tests (test no. 1B, 1C, 2B, 2E, and 2C) were 
initiated using the final profile configuration of the previous test. Broad banded random 
waves, JONSWAP spectrum with spectral width parameter of 3.3, were generated. During 
the run, the sand bar feature grows and becomes more pronounced after some time. Ten 
fixed wave gages and one moveable wave gage were deployed in the flume to measure the 
wave transformation. Only the representative wave heights data from the moveable wave 
gage are available and are used in this study. 

SAFE Project (Dette et al., 1998) was carried out to improve the methods of design 
and performance assessment of beach nourishment. The SAFE Project consisted of four 
activities, one of which was to perform experiments in a large-scale wave flume in 
Hannover, Germany. A 250-m-long sandy beach was constructed in a large wave tank of 
300 m long, 5 m wide and 7 m deep. The test program was divided into two major phases. 
The first phase (test no. A, B, C, and H) was intended to study the beach deformation of 
equilibrium profile with different beach slope changes. The equilibrium beach profile was 
adopted from Bruun’s (1954) approach. In the second phase, the sediment transport 
behaviors of dunes with and without structural aid were investigated (test no. D, E, F, and 
G). The TMA spectral shape with spectral width parameter of 3.3 was used to design all 
irregular wave tests. A total of 27 wave gages were installed over a length of 175 m along 
one wall of the flume.  

Long (1991) analyzed the measured data which were taken from the measurements 
archive of CERC’s FRF in Duck, NC. Test data were time series from a Waverider buoy 
near 8-m-depth contour about 1 km offshore. Active depth-induced wave breaking 
happens at this depth only during extreme conditions. This depth is considered either to be 
intermediate or shallow for all wind waves of interest. Diversity of wave climate was 
established by selecting cases classified by energy level as well as broad and narrow 
energy spread in frequency. Eleven test cases were selected for analysis (from September 
1986 to February 1987). The selected cases cover a sequence of measurements before, 
during, and after a large storm. 

COAST3D project is a collaborative project co-funded by the European 
Commission’s MAST-III program and national resources, running from October 1996 to 
March 2001 (Soulsby, 1998). The project was carried out to improve understanding of the 
coastal processes on non-uniform (3D) coasts. Two field experiments were performed at 
Egmond-aan-Zee (Ruessink, 1999) and at Teignmouth (Whitehouse and Sutherland, 
2001). The data are available online at 
“http://www.hrwallingford.co.uk/projects/COAST3D/”. A brief summary of the two sites 
is given below. 

The Egmond site is located in the central part of the Dutch North Sea coast. The site 
was dominated by two well-developed shore-parallel bars intersected by rip channels. Two 
field experiments were executed, a pilot experiment in spring 1998 and main experiments 
(A and B) in autumn 1998. Contrary to the pilot campaign, the main experiment witnessed 
severe conditions. Large waves, strong wind and water level rises due to storm surges were 
present, resulting in considerable morphologic change (e.g. bar movement, lowering of bar 
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crests and the presence of rip channels). The experiments were divided into 3 cases, i.e. 
pre-storm (pilot experiment), storm (main-A experiment), and post storm (main-B 
experiment). A large variety of instruments, such as pressure sensors, wave buoys and 
current meters, were deployed at many stations in the study area. Only the stations which 
have the representative wave heights data are used in this study, i.e. stations 1a, 1b, 1c, 1d, 
2, 7a, 7b, 7c, 7d, and 7e for pilot experiment; stations 1a, 1b, 1c, 1d, 2, 7a, 7b, and 7e for 
main-A experiment; and stations 1a, 1b, 1c, 1d, 2, 7b, 7d, and 7e for main-B experiment. 

The Teigmond site is located on the south coast of Devon, UK. The wave climate 
was mainly characterized by small, short period wind-driven waves. The nature of the 
coastline was irregular and three-dimensional (3D), with a rocky headland, nearshore 
banks, and an estuary mouth all adjacent to the beach with its sea defenses (e.g. groins and 
seawalls). Two field experiments were executed, a pilot experiment (in March 1999) and a 
main experiment (during October to November 1999). A large variety of instruments, such 
as pressure sensors, wave buoys and current meters, was deployed at many stations in the 
study area. Only the stations which are not located close to the structures or river and have 
the representative wave heights data are used in this study, i.e. stations 15, 18, 22, and 25 
for the pilot experiment and stations 3a, 4, 6, 9, 10, 15, 18, 25, 28, 32, and 33 for the main 
experiment. 
 
 
4.4.3. Examination of existing conversion formulas 
 
The objective of this section is to examine the applicability of the ten sets of existing 
conversion formulas (presented in section 4.4.1) on estimating mH , 3/1H , 10/1H , and maxH  

from the known rmsH . The measured representative wave heights from 10 sources 

(covering 2,619 cases) of published experimental results (shown in Table 4.9) are used to 
calibrate and verify the existing formulas. The basic parameter for measuring the accuracy 
of a formula is the rms  relative error ( gER ) which is defined as: 
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where crH  is the computed representative wave height, mrH  is the measured 

representative wave height, and gn  is the total number of representative wave heights in 

each data group. 
To measure a performance of a wave height transformation model, some researchers 

(e.g. Van Rijn et al., 2003; and Grasmeijer and Ruessink, 2003) excluded the effect of 
measurement error by adding the measurement error ( mrH ) to the discrepancy term (i.e. 

mrmrcr HHH  ) in the equation for computing error of the model. The measurement 

error ( mrH ) may cause an effect on model comparison. However, the present study 

concentrates on conversion formulas, in which the computed representative wave height 
( crH ) is determined from the measured rmsH . Since the measured rmsH  is determined 

from the same wave record as the measured representative wave heights ( mrH ), the 

measurement error of rmsH  and mrH  should be in the same proportion. Therefore, the 
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measurement error may not affect the formula comparisons. Hence, the measurement error 
( mrH ) is not included in Eq. (4.98). 

The collected experiments are separated into three groups according to the 
experiment scale (i.e. small-scale, large-scale, and field experiments), and four 
representative wave heights (i.e. mH , 3/1H , 10/1H , and maxH ) are considered in this study. 

It is expected that a good formula should be able to predict well for all experiment-scales 
and all representative wave heights. Therefore, the average error from three experiment-
scales ( avgER ) is used to examine the accuracy of the formulas on estimating each 

representative wave height, and the overall average error from three experiment-scales and 
four representative wave heights ( allER ) is used examine the overall accuracy of the 

formulas. The average error ( avgER ) and overall average error ( allER ) are defined as: 
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4.4.3.1. Examination of existing formulas using default constants 
 
The examinations of the formulas of NH /1  and maxH  are carried out by using the measured 

representative wave heights (i.e. rmsH , mH , 3/1H , 10/1H , and maxH ) shown in Table 4.9. 

From the measured rmsH , the other representative wave heights ( mH , 3/1H , and 10/1H , and 

maxH ) are computed by using the formulas of NH /1  and maxH . Using the default constants 

( 121 CC   and 81 KK  ) in the computations, the errors ( avgER  and allER ) of existing 

formulas for computing mH , 3/1H , 10/1H , and maxH  are shown in Table 4.10.  

 
Table 4.10 The errors ( avgER  and allER ) of the existing formulas on estimating mH , 3/1H , 

10/1H , and maxH  from three experiment-scales (using default constants). 

ERavg Formulas Default  
constants Hm H1/3 H1/10 Hmax 

ERall

LH52 - 3.2 5.0 11.8 24.8 11.2
G66 

1C = 2.0, 2C  = 0.7 2.9 3.7 4.8 11.5 5.7

K96 
3C = 2.0, 4C = 0.7 3.3 3.4 4.6 11.7 5.7

BG00 
5C = 2.0, 6C = 3.6, 7C =1.0 2.7 3.7 6.4 11.6 6.1

EHR06 
8C = 15.5, 9C = 1.0, 10C = 2.03 3.1 3.9 5.5 15.2 6.9

RS07a from Table 4.8 2.7 3.6 5.5 10.9 5.7
RS07b from Table 4.8 2.7 3.6 5.3 12.0 5.9
RS07c from Table 4.8 2.8 3.7 6.3 10.1 5.7
Y09a 

11C = 1.09 6.5 3.7 8.0 21.2 9.9

Y09b 
12C = 2.15 3.3 3.7 8.1 19.8 8.7
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It can be seen from Table 4.10 that the formulas of G66, K96, RS07a, and RS07c 
give the same overall accuracy and give better prediction than the others. The overall 
accuracy of the formulas in descending order are the formulas of G66, K96, RS07a, 
RS07c, RS07b, BG00, EHR06, Y09b, Y09a, and LH53. Since most formulas were 
developed based on a limited range of experimental conditions, the constants in the 
formulas may not be the optimal values for a wide range of experimental conditions. 
Therefore, the errors in Table 4.10 should not be used to judge the applicability of the 
formulas. The constants in all formulas were recalibrated to minimize errors and the 
applicability of the formulas was then reassessed as shown in the following sections.  
 
 
4.4.3.2. Calibration of selected formulas 
 
The objective of this section is to calibrate the constants in the selected conversion 
formulas presented in section 4.4.1 based on a large amount and wide range of 
experimental conditions.  Most of measured data shown in Table 4.9 (except eight wave 
conditions from eight data sources) are used to calibrate the constants. The calibrations are 
conducted by gradually adjusting the constants until the minimum overall error ( allER ) of 

the formulas is obtained. The optimum values of 81 KK   are shown in the last four 

columns of Table 4.8, while the optimum values of 251 CC   are shown in the second 

column of Table 4.11. Using the calibrated constants in the computations of mH , 3/1H , 

10/1H , and maxH  for three experimental scales, the average errors ( avgER  and allER ) of the 

formulas are shown in Table 4.11, and the errors gER  are shown in Table 4.12. The results 

can be summarized as follows:  
 
(a) After calibrations, the constants in most existing formulas (except EHR06) have to be 

changed slightly. However, the use of calibrated constants in the formulas is expected 
to be more reliable than those of default constants because they are recalibrated with a 
larger amount and wider range of experimental conditions.  

(b) The overall accuracy of the formulas in descending order are the formulas of RS07c, 
RS07a, MBG00b, MBG00a, RS07b, MEHR06b, EHR06, G66, MK96b, BG00, K96, 
MEHR06a, MK96a, MY09, Y09b, Y09a, and LH52. The formulas of RS07c give the 
best prediction ( allER = 5.1%), while the formulas of LH52 give the worst prediction 

( allER = 11.1%). This shows that the distribution of wave heights deviates 

considerably from the Rayleigh distribution. However, the use of LH52 seems to be 
acceptable for computing mH  and 3/1H . 

(c) It can be seen from Table 4.12 that the formulas of LH52, Y09a, Y09b, and MY09 
give poor predictions ( gER > 20.0%) on estimating maxH  for small-scale experiments. 

Only the formula of LH52 gives poor prediction on estimating maxH  for large-scale 

experiments. 
(d) The selected formulas can be separated into two groups, i.e. with breaker parameters 

(the formulas of G66, K96, BG00, EHR06, RS07a, RS07b, RS07c, MK96a, MK96b, 
MBG00a, MBG00b, MEHR06a, and MEHR06b), and without breaker parameters (the 
formulas of LH52, Y09a, Y09b, and MY09). As expected, the formulas with breaker 
parameters give better accuracy than those without breaker parameters. The overall 
errors ( allER ) of the formulas with breaker parameters are in the range of 5.1-5.9% 
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while the others are in the range of 7.2-11.1%. This means that the effect of wave 
breaking is significant and the formulas with breaker parameters are superior.  

(e) Comparing among the formulas with breaker parameters, it can be seen from Tables 
4.11 and 4.12 that no formula gives significantly better results than the others. 

(f) The accuracy of all formulas with the breaker parameters is very good 
(5.1  allER 5.9%) and seems to be acceptable for the design of coastal structures. It 

should be noted that, in practical work, the representative wave heights are determined 
from the selected conversion formulas based on the output ( rmsH ) from the selected 

wave model. As the average errors of some existing wave models on predicting rmsH  

are in the range of  8.1-11.4% (Rattanapitikon, 2007), the errors of predicting other 
representative wave heights should be larger than those shown in Tables 4.11 and 
4.12. 

(g) Considering the complexity of the formulas with breaker parameters, the formulas of 
RS07a are the simplest ones while the formulas of MBG00b are the most complex 
ones. Considering accuracy and simplicity of the all formulas, the formulas of R07a 
seem to be the most attractive ones for general applications.  

 
 
Table 4.11 The average errors ( avgER  and allER ) of the selected formulas on estimating 

mH , 3/1H , 10/1H , and maxH  from three experiment-scales (using calibrated constants). 

ERavg Formulas Calibrated  
constants Hm H1/3 H1/10 Hmax 

ERall 

LH52 - 3.2 5.0 11.8 24.6 11.1 
G66 

1C = 2.0, 2C  = 0.64 2.7 3.4 4.6 11.8 5.6 

K96 
3C = 2.0, 4C = 0.66 3.2 3.2 4.5 11.8 5.7 

BG00 
5C = 2.2, 6C = 3.3, 7C =1.0 2.6 3.3 4.9 11.9 5.7 

EHR06 
8C = 31, 9C = 0.53, 10C = 2.0 3.2 3.2 4.7 11.2 5.6 

RS07a from Table 4.8 2.5 3.1 4.4 10.7 5.2 
RS07b from Table 4.8 2.4 3.2 4.5 12.0 5.5 
RS07c from Table 4.8 2.4 3.1 4.5 10.2 5.1 
Y09a 

11C = 1.12 7.7 4.1 7.1 20.1 9.8 

Y09b 
12C = 2.41 3.2 4.4 5.7 16.3 7.4 

MK96a 
13C = 2.0, 14C = 0.32 3.1 3.4 4.6 12.8 5.9 

MK96b 
15C = 2.0, 16C = 0.32 3.2 3.3 4.4 11.6 5.6 

MBG00a 
5C = 2.2, 6C = 3.4, 17C = 0.49 2.7 3.1 5.1 10.7 5.4 

MBG00b 
5C = 2.2, 6C = 3.5, 18C = 1.1 2.6 3.1 5.0 10.4 5.3 

MEHR06a 
19C = 28, 20C = 0.27, 21C = 2.0 3.0 3.4 4.7 12.4 5.9 

MEHR06b 
22C = 34, 23C = 0.23, 24C = 2.0 3.2 3.2 4.6 11.1 5.5 

MY09 
25C = 2.6 3.2 3.7 5.7 16.0 7.2 
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Table 4.12 The errors ( gER ) of the selected formulas on estimating mH , 3/1H , 10/1H , and 

maxH  for small-scale, large-scale, and field experiments (using calibrated constants). 
Small-scale Large-scale Field Formulas 

Hm H1/3 H1/10 Hmax Hm H1/3 H1/10 Hmax Hm H1/3 H1/10 Hmax 
LH52 4.5 7.9 15.3 43.2 2.3 3.7 10.8 20.7 2.9 3.4 9.4 9.9 
G66 2.3 3.7 4.3 16.2 3.9 3.8 5.2 9.8 2.1 2.7 4.1 9.5 
K96 2.8 3.7 4.3 16.2 4.4 3.5 5.2 9.9 2.3 2.5 4.1 9.5 
BG00 2.4 4.6 4.9 12.6 3.3 2.5 5.1 10.0 2.2 2.7 4.7 13.0 
EHR06 2.6 3.4 4.6 14.8 4.4 3.6 5.1 9.3 2.5 2.7 4.4 9.5 
RS07a 2.2 4.1 4.1 11.9 3.1 3.0 5.1 10.0 2.0 2.3 4.0 10.1 
RS07b 2.3 4.3 4.3 14.1 2.9 2.9 4.9 9.7 2.0 2.4 4.2 12.2 
RS07c 2.2 4.1 4.3 10.4 3.0 2.9 5.0 9.6 2.0 2.4 4.1 10.7 
Y09a 9.5 3.8 9.3 35.5 5.8 4.8 6.8 16.1 7.9 3.7 5.2 8.8 
Y09b 4.4 3.7 5.3 22.9 2.3 5.2 6.4 12.8 2.9 4.2 5.3 13.2 
MK96a 2.5 3.8 4.4 18.3 3.9 3.4 4.9 9.6 2.7 3.0 4.4 10.4 
MK96b 2.7 3.6 4.1 14.8 4.5 3.5 5.1 9.8 2.5 2.7 4.2 10.2 
MBG00a 2.4 4.2 5.1 10.5 3.6 2.6 5.3 10.4 2.0 2.4 4.8 11.2 
MBG00b 2.3 4.3 4.9 9.3 3.4 2.5 5.1 10.3 2.0 2.5 4.8 11.7 
MEHR06a 2.4 3.6 4.6 17.6 3.8 3.4 4.8 9.1 2.8 3.1 4.6 10.6 
MEHR06b 2.6 3.4 4.4 14.1 4.4 3.5 5.0 9.3 2.6 2.8 4.4 10.0 
MY09 2.0 4.3 5.5 20.9 5.0 4.0 6.4 12.9 2.6 2.8 5.2 14.1 

 
 
 
4.4.3.3. Verification of selected formulas 
 
Eight wave conditions from eight sources (which have more than one case each) are used 
to verify the conversion formulas. The first case from each data source is selected for 
verifying the formulas. The experimental conditions of the selected data are shown in 
Table 4.13. Using the calibrated constants in the computations of mH , 3/1H , 10/1H , and 

maxH  for three experiment-scales, the average errors ( avgER  and allER ) of the formulas are 

shown in Table 4.14. The results can be summarized as follows: 
  
(a) The overall accuracy of the formulas in descending order are the formulas of 

MBG00b, RS07c, MBG00a, RS07a, MEHR06b, EHR06, G66, BG00, MK96b, K96, 
MEHR06a, RS07b, MK96a, MY09, Y09b, Y09a, and LH52. The formulas of 
MBG00b give the best prediction ( allER = 5.2%), while the formulas of LH52 give the 

worst prediction ( allER = 10.2%).  

(b) The errors in the verification are slightly different from that in the calibration. This is 
because the number of data that were used in the calibration and verification are 
different. However, the results of verification are overall similar to that of calibration, 
i.e. the use of LH52 is acceptable for computing mH  and 3/1H ; the effect of wave 

breaking is significant and the formulas with breaker parameters are superior; and the 
formulas with breaker parameters give very good predictions and have similar 
accuracy. 
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Table 4.13 Selected experimental data for verifying the selected formulas.  
Sources   Case

No
No of
points 

M* 
ormso LH

Smith and Kraus (1990) R2000 8 500 0.059
Kraus and Smith (1994): 
SUPERTANK project  

A0509A 16 354-376 0.043

Roelvink and Reniers, (1995):  
LIP11D Project 

1A0203 2 828-891 0.018

Dette et al. (1998): 
SAFE project  

06129601 21 182 0.007

Goodknight and Russell (1963) Audrey 14 95-319 0.011-0.021
Long (1991) 140986a 1 1,693 0.003
Ruessink (1999):  
COAST3D Project at Egmond 

05064 9 - 0.006

Whitehouse and Sutherland (2001): 
COAST3D Project at Teigmond 

12500 1 - 0.0003

Total 72 95-1,693 0.0003-0.059
* for computing Hmax 
 
 
Table 4.14 Verification results of the selected formulas on estimating mH , 3/1H , 10/1H , 

and maxH  from three experiment-scales (using calibrated constants). 

ERavg Formulas Calibrated  
constants Hm H1/3 H1/10 Hmax 

ERall 

LH52 - 3.1 4.2 6.8 26.7 10.2 
G66 

1C = 2.0, 2C  = 0.64 2.7 3.4 6.3 13.7 6.5 

K96 
3C = 2.0, 4C = 0.66 3.1 3.3 6.2 13.7 6.6 

BG00 
5C = 2.2, 6C = 3.3, 7C =1.0 2.5 3.2 6.1 14.2 6.5 

EHR06 
8C = 31, 9C = 0.53, 10C = 2.0 3.2 3.3 6.1 12.9 6.4 

RS07a from Table 4.8 2.4 3.4 6.6 12.7 6.3 
RS07b from Table 4.8 2.6 3.6 7.2 14.8 7.0 
RS07c from Table 4.8 2.6 3.4 6.8 10.0 5.7 
Y09a 

11C = 1.12 7.0 5.2 6.6 21.6 10.1 

Y09b 
12C = 2.41 3.1 5.5 8.9 16.8 8.6 

MK96a 
13C = 2.0, 14C = 0.32 3.1 3.6 6.8 14.9 7.1 

MK96b 
15C = 2.0, 16C = 0.32 3.7 3.5 6.9 12.0 6.5 

MBG00a 
5C = 2.2, 6C = 3.4, 17C = 0.49 2.3 3.0 5.2 12.4 5.7 

MBG00b 
5C = 2.2, 6C = 3.5, 18C = 1.1 2.5 2.8 5.3 10.4 5.2 

MEHR06a 
19C = 28, 20C = 0.27, 21C = 2.0 3.1 3.6 6.8 14.6 7.0 

MEHR06b 
22C = 34, 23C = 0.23, 24C = 2.0 3.8 3.5 6.7 11.2 6.3 

MY09 
25C = 2.6 4.0 4.6 8.7 16.4 8.4 
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4.5. Conversion from Spectral-Based Wave Height to Other 
Representative Wave Heights 
 
Representative wave height is one of the most essential required factors for many coastal 
and ocean engineering applications such as the design of structures and the study of beach 
deformations. There are two basic approaches to describing wave height parameters, i.e. 
statistical approach (or wave-by-wave approach) and spectral approach. The two 
approaches are both important, and neither one alone is sufficient for successful 
application of wave height for engineering problems (Goda, 1974). While some formulas 
in coastal and ocean engineering are appropriate for statistical-based wave heights, others 
may be more appropriate for spectral-based wave heights [related to zeroth moment of 
wave spectrum ( 0m )]. The statistical-based wave heights should be used in those 

applications where the effect of individual waves is more important than the average wave 
energy. Measured ocean wave records are often analyzed spectrally by an instrument 
package. Similarly, modern wave hindcasts are often expressed in terms of spectral-based 
wave height (or 0m ). The spectral-based wave heights are usually available in deepwater, 

but not available at the depths required in shallow water. The wave heights in shallow 
water can be determined from a spectral-based wave model. Hence the output of the wave 
model is the spectral-based wave height, e.g. spectral significant wave height 

( 00 4 mHm  ). However, some formulas in coastal and ocean engineering applications are 

expressed in terms of statistical-based representative wave heights. Therefore, it is 
necessary to know conversion formulas for converting from 0m  to statistical-based 

representative wave heights. The present study focuses on conversion formulas for 
converting from common parameters obtained from the spectral-based wave model [i.e. 

0m , water depth ( h ), and spectral peak period ( pT )] to the four common statistical-based 

representative wave heights, i.e. mean wave height ( mH ), root-mean-square wave height 

( rmsH ), average of the highest one-third wave height ( 3/1H ), and average of the highest 

one-tenth wave height ( 10/1H ). 

Conversions formulas are usually derived based on a given probability distribution 
function of wave heights. Longuet-Higgins (1952) first applied a Rayleigh distribution 
function to describe the distribution of ocean waves under the conditions of narrow band 
spectrum and linear Gaussian ocean surface. If the Rayleigh distribution of wave heights is 

valid, the representative wave heights can be determined from 0m  through known 

proportional constants, e.g. 03/1 4 mH  . Because of their simplicity, the conversion 

formulas of Longuet-Higgins (1952) are widely used in practical work. However, based on 
the analysis of field data for wind-driven waves in deepwater, Goda (1979) found that the 

proportional constants have to be reduced, e.g. 03/1 8.3 mH  . This discrepancy is 

expected to be caused by the broad band spectrum in the field (Longuet-Higgins, 1980). 
Moreover, when waves propagate in shallow water, the effect of wave breaking may 
become relevant, causing the wave height distribution to deviate from the Rayleigh 
distribution. Nevertheless, it is not clear whether this deviation has a significant effect on 
the estimation of the representative wave heights or not. Some researchers demonstrated 
that the wave height distribution deviated slightly from the Rayleigh distribution (e.g. 
Thornton and Guza, 1983; Goda and Kudaka, 2007; and Risio et al., 2010). On the other 
hand, several researchers stated that the wave height distribution deviated considerably 
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from the Rayleigh distribution (e.g. Klopman, 1996; Battjes and Groenendijk, 2000; and 
Mendez et al., 2004).  

Several conversion formulas with depth-limited wave breaking have been proposed 
for computing the representative wave heights in shallow water. Battjes and Groenendijk, 
(2000) compared the accuracy of their formulas with those of Longuet-Higgins (1952) and 
Klopman (1996), and found that their formulas give the best prediction for small-scale 
laboratory data. The main difference between laboratory and field experiments is the 
incident wave spectrum. In the laboratory, the incident wave spectrum is usually based on 
some standard spectra (e.g. TMA and JONSWAP spectra), while the actual wave spectra 
in the field usually exhibit some deviations from the standard spectra (Goda, 2000). 
Therefore, it is not clear, whether the formulas developed based on laboratory conditions 
are applicable in the field or not. The main objective of this study is to examine five sets of 
existing conversion formulas with field experiments, and find out a suitable set of 
conversion formulas.  

This section is divided into five main parts. The first part is a brief review of selected 
existing conversion formulas for computing the representative wave heights (i.e. mH , 

rmsH , 3/1H , and 10/1H ) from the common parameters obtained from a spectral-based wave 

model (i.e. 0m , h , and pT ). The second part is a brief review of the experiments of 

COAST3D project which are used to examine the conversion formulas. The third part is 
examination of the existing conversion formulas. The fourth part describes the 
modification of the best set of existing conversion formulas. The last part presents 
empirical formulas for computing the representative wave heights. 
 
 
4.5.1. Existing formulas 
 
For the statistical approach, an individual wave in a wave record is determined by a zero 
crossing definition of wave. A wave is defined between two upward (or downward) 
crossings of the water surface about the mean water elevation. The wave height ( H ) of an 
individual wave is defined as the difference between the highest and lowest water surface 
elevation between two zero-up-crossings (or zero-down-crossings). The statistical-based 
representative wave heights (i.e. mH , rmsH , 3/1H , and 10/1H ) can be determined from the 

wave heights data of the wave record.  
For the spectral approach, the moments of a wave spectrum are important in 

characterizing the spectrum and are useful in relating the spectral description of wave to 
the statistical-based wave heights. The representative parameter of the average wave 
energy is the zeroth moment of wave spectrum ( 0m ), which can be obtained by integrating 

the wave spectrum [ )( fS ] in the full range of frequency ( f ) as: 





0

0 )( dffSm        (4.101) 

Conversion formulas for computing the statistical-based representative wave heights 
from the known 0m  can be derived from a given probability density function ( pdf ) of 

wave heights. Various pdfs  of wave heights have been proposed, some of them are 
expressed in terms of uncommon output parameters, which are not available from some 
existing spectral-based wave models (e.g. spectral bandwidth, spectral shape, and wave 
nonlinearity parameters), e.g. the distributions of Naess (1985), Tayfun and Fedele (2007), 
Vandever et al. (2008), and Petrova and Soares (2011). Including more related parameters 
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is expected to make the pdf  more accurate. However, it may not be suitable to 
incorporate them with some spectral-based wave models because such parameters are not 
available from the wave models. Therefore, this study concentrates on only pdfs  which 
are expressed in terms of common parameters obtained from the spectral-based wave 
model, i.e. 0m , h , and pT . Brief reviews of the selected existing conversion formulas are 

described below. 
 
a) Longuet-Higgins (1952), hereafter referred to as LH52, demonstrated that a Rayleigh 
distribution is applicable to the wave heights in the sea. The Rayleigh distribution is 
derived based on the assumption that ocean surface elevations follow a linear Gaussian 
distribution, and the wave energy is concentrated in a narrow band of frequencies. The 
cumulative distribution function ( cdf ) of Rayleigh is expressed as:  
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where H  is the individual wave height, and )(HF  is the cdf  of H . Longuet-Higgins 
(1952) derived the conversion formulas based on this cdf .  
The root-mean-square wave height can be calculated from the second moment of the 
pdf as: 
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where dHHdFHf /)()(   is the pdf  of H , and )(x  is the Gamma function of variable 
x . The formula for computing the average of the highest N/1  wave heights is obtained by 
manipulation of the pdf  of wave heights. The result is:  
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where NH /1  the average of the highest N/1  wave heights, N  is the number of individual 

waves, NH  is the wave height with exceedance probability of N/1 , and ),( xa  is the 

upper incomplete Gamma function of variables a  and x . The representative wave heights 
(i.e. mH , 3/1H , and 10/1H ) can be determined by substituting N  equal to 1, 3, and 10, 

respectively into Eq. (4.104). It can be seen that the conversion formulas of LH52 consists 
of two main formulas, i.e. the formulas for computing rmsH  and NH /1 . From the known 

0m , the root-mean-square wave height ( rmsH ) is determined from Eq. (4.103), and other 

representative wave heights ( NH /1 ) are determined from Eq. (4.104). Substituting N  

equal to 1, 3, and 10, respectively into Eq. (4.104), yields 051.2 mHm  , 

03/1 00.4 mH  , and 010/1 09.5 mH  . 

 
b) Forristall (1978), hereafter referred to as F78, analyzed deepwater wave data recorded 
during hurricanes in the Gulf of Mexico, and suggested that wave height distribution fits 
well with the following Weibull distribution. 



79 
 

 


























126.2

0724.2
exp1)(

m

H
HF      (4.105) 

Following the same procedures as that of LH52, the formulas for computing rmsH  and 

NH /1  can be derived to be: 
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From the known 0m , the root-mean-square wave height ( rmsH ) is determined from Eq. 

(4.106), and the other representative wave heights ( NH /1 ) are determined from Eq. (4.107). 

Substituting N  equal to 1, 3, and 10, respectively into Eq. (4.107), yields 041.2 mHm  , 

03/1 77.3 mH  , and 010/1 73.4 mH  . 

 
c) Klopman (1996), hereafter referred to as K96, used the same probability function as that 
of Glukhovskiy (1966). He modified the distribution of Glukhovskiy (1966) by 
reformulating the position and shape parameters. The relationship between rmsH  and 0m  

was assumed to be the same as that of LH52 [Eq. (4.103)]. The following Weibull 
distribution is used to describe the wave height distribution.  
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where A  is the position parameter, and   is the shape parameter. The influence of depth-
limited wave breaking is taken into account by including a function of hHrms /  (or 

hm /0 ) into the shape parameter as:  

hm /98.11
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where h  is the water depth. To assure consistency, the second moment of the pdf  has to 

be equal to 2
rmsH . This yields the position parameter ( A ) as: 
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Similar to the derivation of LH52, the formula for computing the average of the highest 
N/1  wave heights ( NH /1 ) is obtained by manipulation of the pdf  of wave heights. The 

formula for computing NH /1  can be derived to be: 
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From the known 0m  and h , the root-mean-square wave height ( rmsH ) is determined 

from Eq. (4.103), and the other representative wave heights ( NH /1 ) are determined from 

Eq. (4.111), in which the parameters   and A  are determined from Eqs. (4.109) and 
(4.110), respectively. It should be noted that the Rayleigh distribution is considered as a 
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special case of the Weibull distribution. If the parameter   is equal to 2, the formulas of 
K96 will become the same as those of LH52.  
 
d) Battjes and Groenendijk (2000), hereafter referred to as BG00, proposed a composite 
Weibull wave height distribution to describe the wave height distribution on shallow 
foreshore. The distribution consists of a Weibull distribution with exponent of 2.0 for the 
lower wave heights and a Weibull distribution with exponent of 3.6 for the higher wave 
heights. The two Weibull distributions are matched at the transitional wave height ( trH ). 

The cdf  is expressed as: 
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where 1H  and 2H  are the scale parameters. The transitional wave height ( trH ) is 

determined from the following empirical formula.  
hmHtr )8.535.0(         (4.113) 

where m  is the beach slope. For convenience in the calculations, all wave heights are 
normalized with rmsH  as: 
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where xH
~

 is the normalized characteristic wave height. The root-mean-square wave height 

( rmsH ) is proposed as a function of 0m  and h  as: 
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The normalized scale parameters 1

~
H  and 2

~
H  are determined by solving the following 2 

equations simultaneously. 
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where ),( xa  is the lower incomplete Gamma function of variables a  and x . After 
manipulation of the probability function (for more detail, please see Groenendijk, 1998), 
the normalized NH  and NH /1  are expressed as:  
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From the known 0m , h , and m , the root-mean-square wave height ( rmsH ) is determined 

from Eq. (4.115), and the normalized scale parameters 1

~
H  and 2

~
H  are determined from 

Eqs. (4.116) and (4.117) simultaneously. Once 1

~
H  and 2

~
H  have been determined, NH /1  

can be determined from Eqs. (4.118) and (4.119). 
 
e) Elfrink et al. (2006), hereafter referred to as EHR06, used the same probability function 
as that of K96 and, consequently, the same conversion formulas for computing rmsH  and 

NH /1  [Eqs. (4.103) and (4.111), respectively]. They modified the distribution of K96 by 

reformulating the shape parameter ( ). The proposed formula for computing the 
parameter   of EHR06 is expressed as: 
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From the known 0m  and h , the representative wave heights rmsH  and NH /1  are 

determined from Eqs. (4.103) and (4.111), respectively, in which the parameters   and A  
are determined from Eqs. (4.120) and (4.110), respectively. 
 

It can be seen that the existing formulas are derived based on 2 main distribution 
functions, i.e. Weibull and composite Weibull distributions. The formulas of BG00 are 
based on a composite Weibull distribution function, while the others (LH52, F78, K96 and 
EHR06) are based on a Weibull distribution function. Conversion formulas of a composite 
Weibull distribution are much more complicated than that of a Weibull distribution. With 
regard to simplicity of the conversion formulas from Weibull distributions, the formulas of 
LH52 and F78 have equal simplicity and are simpler than those of K96 and EHR06.  
 
 
4.5.2. Collected experimental data 
 
The existing models of wave height distribution (or conversion formulas) are determined 
by local parameters of wave field and water depth. The models are expected to be valid for 
slow evolution of wave and bathymetry (Battjes and Groenendijk, 2000), and have a small 
influence by discharge from river or wave reflection from structures. Therefore, the 
selected measuring stations should not be located close to structures or a river mouth, and 
should not have a significant change in wave and bathymetry. The data required for 
examination of the conversion formulas are 0m , h , pT , mH , rmsH , 3/1H , and 10/1H . Two 

field experiments from COAST3D project (including 2,237 cases and 13,430 wave 
records) are used to examine the conversion formulas. The experiments cover a range of 

hm /0  from 0.003 to 0.286, and a range of relative depth ( Lh / ) from 0.01 to 0.63. The 

collected wave data belong to the category of deepwater, intermediate-depth, and shallow 
water waves. A summary of the experimental data is shown in Table 4.15. A brief 
summary of the experiments is outlined below. 

COAST3D project is a collaborative project co-funded by the European 
Commission’s MAST-III program and national resources (Soulsby, 1998). Two field 
experiments were performed at two sites, i.e. at Egmond-aan-Zee (Ruessink, 1999) and at 
Teignmouth (Whitehouse and Sutherland, 2001). The data are available online at 
“http://www.hrwallingford.co.uk/projects/COAST3D/”. A brief summary of the two sites 
is given below. 
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The Egmond site is located in the central part of the Dutch North Sea coast. The 
study area was about 0.5 by 0.5 km near the beach of Egmond. The site was dominated by 
two well-developed shore-parallel bars intersected by rip channels. Two field campaigns 
were executed, i.e. a pilot experiment (during April to May 1998), and main experiments 
(during October to November 1998). The experiments were divided into 3 conditions, i.e. 
pre-storm (pilot experiment), storm (main-A experiment), and post storm (main-B 
experiment). For main-A experiment, large waves and water level rises due to storm surges 
were present, resulting in considerably bathymetric change (e.g. bar movement and the 
presence of rip channels). A large variety of instruments was deployed at many stations in 
the study area. The completed data are available at some stations, i.e. stations 1a, 1b, 1c, 
1d, 2, 7a, 7b, 7c, 7d, and 7e for pilot experiment; stations 1a, 1b, 1c, 1d, 2, 7a, 7b, and 7e 
for main-A experiment; and stations 1a, 1b, 1c, 1d, 2, 7b, 7d, and 7e for main-B 
experiment. Most available stations (except station 2 for main-A experiment) are used in 
this study. Station 2 was located close to the crest of a sand bar. Because of the 
consideration changes of waves and sand bar during storms, the data from station 2 for 
main-A experiment is excluded in the present study.  

The Teigmond site is located on the south coast of Devon, UK. The study area was 
about 1.5 km along the beach by 1.0 km offshore of the beach. The Teign river mount is 
situated at the southern end of the beach. The beach is protected by groins and seawalls. A 
leisure pier is situated around the mid-way along the beach. Two field campaigns were 
executed, i.e. a pilot experiment (in March 1999), and a main experiment (during October 
to November 1999). During the experiments, bathymetric changes were minor. A large 
variety of instruments was deployed at many stations in the study area. The data of water 
depth and representative wave heights are available at some stations, i.e. stations 1, 2, 15, 
18, 22, and 25 for the pilot experiment; and stations 1, 2, 3a, 4, 6, 9, 10, 15, 18, 19a, 20a, 
25, 28, 29, 32, and 33 for the main experiment. If the stations are located close to the 
structures or river mouth, the wave spectra may be affected by discharge from the river 
and wave reflection from the structures. Only the data at the stations which are not located 
close to the structures or river mouth are used in the present study, i.e. stations 15, 18, 22, 
and 25 for the pilot experiment; and stations 3a, 4, 6, 9, 10, 15, 18, 25, 28, 32, and 33 for 
the main experiment. 
 
Table 4.15 Collected experimental data from COAST3D project. 
Sites  No of  

cases 
No of

records 
hm /0  Lh /  

Egmond 977 6,110 0.010-0.286 0.01-0.31
Teigmond 1,260 7,320 0.003-0.110 0.01-0.63
Total  2,237 13,430 0.003-0.286 0.01-0.63

 
 
 
4.5.3. Examination of existing formulas 
 
The basic parameter for measuring the accuracy of the conversion formulas is the root-
mean-square relative error ( ER ) which is defined as: 
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where crH  is the computed representative wave height, mrH  is the measured 

representative wave height, and n  is the total number of representative wave heights. It is 
expected that a good set of formulas should be able to predict well for all representative 
wave heights. Therefore, the average error ( avgER ) from the four representative wave 

heights is used to examine the overall accuracy of the set of formulas.  
The collected experimental data (shown in Table 4.15) are used to examine the 

existing formulas. From the known 0m , h , and m , the representative wave heights ( mH , 

rmsH , 3/1H , and 10/1H ) are computed from the formulas of LH52, F78, K96, BG00, and 

EHR06. The errors ( ER  and avgER ) of the existing formulas are shown in the first five 

rows of Table 4.16.  
 
Table 4.16 The errors ( ER  and avgER ) of the conversion formulas on estimating mH , 

rmsH , 3/1H , and 10/1H  for all data shown in Table 4.15. 

ER (%) Formulas 

mH rmsH  3/1H 10/1H
avgER

(%)
LH52 3.9 5.6 8.5 14.4 8.1
F78 3.8 2.9 3.7 7.5 4.5
K96 6.6 5.6 5.4 6.9 6.1
BG00 12.8 12.1 11.7 11.9 12.1
EHR06 6.8 5.6 5.1 6.3 6.0
MF78 3.6 2.9 3.2 4.0 3.4
Empirical 3.3 2.8 3.1 3.9 3.3

 
 
The results can be summarized as follows. 
 
a) Table 4.16 shows that the formulas of F78 give the best overall prediction. The overall 

accuracy of the existing formulas in descending order are F78, EHR06, K96, LH52, and 
BG00.  

b) The formulas of K96 and EHR06 give nearly the same accuracy, and give good overall 
prediction ( avgER = 6.1 and 6.0%, respectively), whereas the formulas of BG00 give 

significantly larger error than those of K96 and EHR06. However, Rattanapitikon 
(2010) showed that if rmsH  is given, the formulas of K96, BG00, and EHR06 give very 

good predictions and have similar accuracy. Therefore, the fair overall prediction of 
BG00 ( 1.12avgER %) may be caused mainly by the formula for computing rmsH  [Eq. 

(4.115)]. 
c) The formulas of LH52, which are widely used, give good predictions at mH , rmsH , and 

3/1H , but fair prediction at 10/1H . The errors tend to be larger for the larger 

representative wave heights. The errors of LH52 are considerably larger than those of 
F78, whereas the simplicity is equal. Therefore, the formulas of F78 are recommended 
to replace the widely used formulas of LH52. 

d) The formulas of F78 give very good predictions at mH , rmsH , and 3/1H  

(2.9  ER 3.8%). However, the error at 10/1H  is equal to 7.5%, which is considerably 
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larger than those at mH , rmsH , and 3/1H . The cdf  of F78 [Eq. (4.105)] should be 

improved for better accuracy at 10/1H .  

 
As the cdf  of F78 was developed based on deepwater conditions, some parameters 

in the cdf  may not be the optimal values for shallow water conditions. Therefore, there is 
a possibility to improve its accuracy by reformulating some parameters in the cdf . 
 
 
4.5.4. Formulas modification 
 
As the formulas of F78 give the best prediction, they are selected to be modified for better 
prediction. The cdf  of F78 [Eq. (4.105)] is expected to be suitable for deepwater 
condition because it was developed based on deepwater wave data. When waves propagate 
in shallow water, the effect of wave breaking may become relevant, causing the wave 
height distribution to deviate from that of F78. Following the concept of Glukhovskiy 
(1966) and Klopman (1996), the effect of depth-limited breaking is taken into account by 

including a function of hm /0  in the shape parameter of the cdf . The cdf  of F78 can be 

written in general form as: 
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where P  is the position parameter, S  is the shape parameter, 1C  is constant, and  xfun  

is a function of variable x . If S = 2.126, 1C = 2.689, and P = 0.973, Eq. (4.122) will 
become the distribution of F78 [Eq. (4.105)]. 
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The average of the highest N/1  wave heights ( NH /1 ) is determined from: 
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It can be seen that there are two independent parameters in Eq. (4.122), i.e. 1C  and S . The 

main objective of this section is to determine the value of 1C  and the formula of S .  
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4.5.4.1. Determination of 1C  and S  
 

As the experiment at Egmond covers a wide range of hm0 , it is used to calibrate and 

formulate 1C  and S . The constant 1C  can be determined from regression analysis between 

measured rmsH  and 0m . The required data for determining 1C  are the measured data of 

rmsH  and 0m . Based on a regression analysis between the measured rmsH  and 0m , the 

constant 1C  is equal to 2.69 (with regression coefficient 2R = 0.995). Substituting 1C = 

2.69 into Eq. (4.123), the formula for computing rmsH  can be expressed as: 

069.2 mHrms          (4.127) 

It can be seen that the value of 1C  is the same as that of F78. This means that the value of 

1C  of F78 is already the optimal value. 
The formula of the shape parameter ( S ) is determined from the graph which shows 

the relationship between measured S  and hm0 . The data of 0m  and h  are available 

from the measurements. The measured value of S  can be determined from the measured 
data of wave height distribution or representative wave heights of a wave record. In the 
present study, the measured S  is determined from the measured representative wave 
heights because the measured wave height distribution is not available. The measured S  
can be determined from the ratio of representative wave heights as the following. 

From Eq. (4.126), the ratio of representative wave heights ( mHH 10/1 , 3/110/1 HH , 

and mHH 3/1 ) can be expressed as:  
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Equations (4.128) to (4.130) are used to determine the measured S  from the measured 

mH , 3/1H , and 10/1H  of a wave record. Equations (4.128) to (4.130) give three values of 

S  for each wave record. The average value of the three S  is used to represent the shape 
parameter ( S ) of the wave height distribution for the wave record. 

Based on the measured data from Egmond site, the relationship between measured 

S  and hm0  is shown in Fig. 4.4. When waves propagate in shallow water, their profiles 

become steeper and they eventually break. The higher waves tend to break at a greater 
distance from the shore. Closer to the shore, more and more waves are breaking, until 
almost all the waves break in the inner zone. Therefore, the zone in coastal region may be 
separated into 3 zones based on the fraction of breaking waves (total number of breaking 
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waves per total number of waves), i.e. offshore zone (where there is no wave breaking), 
outer surf zone (where the fraction of breaking waves increases as more and more waves 
are breaking), and inner surf zone (where almost all waves break).  
 
 
 

 
 

Fig. 4.4 Relationship between measured S  and hm0  (measured data from COAST3D 

project at Egmond). 
 
 

It can be seen from Fig. 4.4 that the parameter S  varies systematically across shore 
and the variation can be separated into three zones. The parameter S  is almost constant in 
the first zone, then gradually increases in the second surf zone, and finally becomes almost 
constant again in the third zone. It is expected that wave breaking is the main factor to 
cause the change in S . The parameter S  is constant in the first zone because there are no 
waves breaking in that zone (offshore zone). Once the higher waves break, the number of 
larger wave heights in a wave train is decreased due to wave breaking. This causes the 
pdf  of wave heights to be narrower (and causes S  larger) than that in the offshore zone. 

As more and more waves are breaking, the parameter S  is gradually increased in the 
second zone until almost all waves break, then, the parameter S  becomes constant in the 
third zone. Hence the three zones in Fig. 4.4 seem to correspond with the zones in coastal 
region. To simplify the calculation, the general form of S  is expressed as: 
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where 1K , 2K , 1x , and 2x  are constants which can be determined from formula 
calibration. 

The approximated values of the constants 1K , 2K , 1x , and 2x  are determined from 
visual fit of Fig. 4.4. These approximated values are used as the initial values in the 
calibration. Using the parameter S  from Eq. (4.131) with the given constants ( 1K , 2K , 1x , 

and 2x ) and 1C = 2.69, the representative wave heights ( mH , 3/1H , and 10/1H ) are 

determined from Eq. (4.126). Then the errors ER  and avgER  are computed. The 

calibration of Eq. (4.131) is performed by gradually adjusting the constants 1K , 2K , 1x , 

and 2x  until the error ( avgER ) becomes minimum. After calibration, the formula of S  can 

be expressed as: 
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The fitted line from Eq. (4.132) is shown as the solid line in Fig. 4.4.  
The modified formulas are hereafter referred to as MF78. However, it should be 

noted that the cdf  models of LH52, K96, and EHR06 can also be written in the same 
general form as that of Eq. (4.122). The modified formulas may also be considered as the 
modification of LH52, K96, and EHR06. 
 
 
4.5.4.2. Formulas examination 
 
All collected experimental data (shown in Table 4.15) are used to examine the modified 

formulas (MF78). From the known 0m  and h , the representative wave heights rmsH  and 

NH /1  are determined from Eqs. (4.127) and (4.126), respectively, in which the parameters 

S  and P  are determined from Eqs. (4.132) and (4.125), respectively. The errors ( ER  and 

avgER ) of MF78 on computing mH , rmsH , 3/1H , and 10/1H  are shown in the sixth row of 

Table 4.16. The results are summarized as follows: 
 
a) The average errors of MF78 for computing mH , rmsH , 3/1H , and 10/1H  are 3.6%, 

2.9%, 3.2%, and 4.0%, respectively. 
b) Comparing with the formulas of F78, the accuracy of MF78 is improved slightly at 

mH , rmsH , and 3/1H , but improved significantly at 10/1H . As 1C  of F78 and MF78 is 
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the same value, the main contribution of the improvement is the shape parameter S  
[Eq. (4.132)].  

c) The formulas of MF78 are more complex than those of F78, but the accuracy is 
better, especially at 10/1H . It seems to be worthwhile to use MF78. 

 
As the shape parameter S  from Eq. (4.132) yields better estimation than that of F78 

( S = 2.126), it may be used to indicate the limitation of F78. Equation (4.132) reveals 
some limitation of F78 as follows: 
 
a) It can be seen from Eq. (4.132) that the value of S  in the offshore zone 

( 04.0/0 hm ) is nearly the same as that of F78. This shows that the formulas of F78 

should be valid for either deepwater or offshore zone conditions. This also reveals the 
limitation of Eq. (4.132). The equation is limited for use in cases that the wave height 
distribution in deepwater (or in the offshore zone) is close to the distribution of F78 
[Eq. (4.105)]. 

b) In the surf zones ( 04.0/0 hm ), the number of larger wave heights in a wave train is 

decreased due to wave breaking. This causes the pdf  of wave heights to be narrower 
(larger S ) than that in the offshore zone. The shape parameter of F78 ( S = 2.126) is 
smaller than that of MF78 [Eq. (4.132)]. This means that the parameter S  of F78 tends 
to be underestimated and, consequently, gives overestimation of the number of large 
waves in the distribution. This seems to be the cause of the considerable error at 10/1H  

of F78 ( %5.7ER ). 
 
 
4.5.5. Empirical formulas 
 
It can be seen from sections 4.5.1 and 4.5.4 that the representative wave heights can be 
determined from a given pdf  (or cdf ) of wave heights. For design purposes, it may not 
be necessary to know the pdf  of wave heights; only a statistical-based representative 

wave height is required. Although the representative wave heights ( mH , rmsH , 3/1H , and 

10/1H ) can be determined from the pdf  of wave heights, it may not be convenient to do 

so. It is more convenient to determine mH , rmsH , 3/1H , and 10/1H  directly from empirical 

formulas. There seems to be no literature that proposes empirical formulas for estimating 

mH , 3/1H , and 10/1H  from 0m ; only that for estimating rmsH  is available. 

Rattanapitikon and Shibayama (2007) showed that if rmsH  is given, the other 

representative wave heights can be determined from simple empirical formulas with very 

good accuracy. In addition, it can be seen from Eq. (4.127) that if 0m  is given,  rmsH  can 

be determined from a simple empirical formula. Therefore, the other representative wave 
heights should also be able to be computed by using simple empirical formulas. Hence the 
objective of this section is to develop the empirical formulas for computing mH , rmsH , 

3/1H , and 10/1H . 

It can be seen from sections 4.5.1 and 4.5.4 that the general form of the existing 
formulas for computing the representative wave heights can be expressed as: 

0mH mm         (4.133) 
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0mH rmsrms           (4.134) 

03/13/1 mH          (4.135) 

010/110/1 mH          (4.136) 

where   is the proportional coefficient of each relationship, and m , rms , 3/1 , and 10/1  

are the proportional coefficients of mH , rmsH , 3/1H , and 10/1H , respectively.  

The representative wave heights ( mH , rmsH , 3/1H , and 10/1H ) can be determined 

from Eqs. (4.133) to (4.136), if the coefficients   are known. The main focus of this 

section is to develop empirical formulas for computing the coefficients m , rms , 3/1 , 

and 10/1 .  

From the modified formulas, the parameter that affects the variation of   is the 

shape parameter S , and the parameter S  depends on hm /0 . Therefore, the parameter 

that affects the variation of   should be hm /0 . Therefore, the variations of   can be 

determined from the graphs of   versus hm /0 . 

The measured data from Egmond site are used to derive the formulas of  . The 

required data for deriving the formulas are mH , rmsH , 3/1H , 10/1H , 0m , and h . The 

coefficients m , rms , 3/1 , and 10/1  are determined from Eqs. (4.133) to (4.136). 

An attempt is made to correlate the coefficients m , rms , 3/1 , and 10/1  with the 

dimensionless parameter hm0 . The relationships of m , rms , 3/1 , and 10/1  versus  

hm /0  are shown in Fig. 4.5. It can be seen from Fig. 4.5 that the coefficients m , rms , 

3/1 , and 10/1  vary systematically across shore, and the variations of the coefficients m , 

rms , 3/1 , and 10/1  are in similar fashion, and similar to the variation of S  (see Fig. 4.4). 

Therefore, it is possible to write the curve fitting equations in a similar form as that of S  
[Eq. (4.132)] as:  
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where 3K  and 4K  are constants which can be determined from formula calibration.  
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Fig. 4.5 Relationships between hm0  versus a) m , b) rms , c) 3/1 , and d) 10/1  (measured 

data from COAST3D project at Egmond). 
 
 
4.5.5.1. Formula calibration 
 
The measured data from Egmond site are used to calibrate the constants 3K  and 4K  in Eq. 

(4.137). The approximated values of the constants 3K  and 4K  for m , rms , 3/1 , and 10/1  

are determined from visual fit of Fig. 4.5. These approximated values are used as the initial 
values in the calibration. Using the coefficients   from Eq. (4.137) with the given constants 

( 3K  and 4K ), the corresponding representative wave heights ( mH , rmsH , 3/1H , and 10/1H ) 

are computed from Eqs. (4.133) to (4.136), respectively. Then the error ( ER ) of each 
representative wave height is computed from Eq. (4.121). The calibration of each formula is 
performed by gradually adjusting the constants 3K  and 4K  until the error ( ER ) becomes 

minimum. The best fitted constants ( 3K  and 4K ) for coefficients m , rms , 3/1 , and 10/1  

are shown in Table 4.17. The fitted lines from Eq. (4.137) with the constants in Table 4.17 are 
shown as the solid lines in Fig. 4.5. 
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Table 4.17 Calibrated constants 3K  and 4K  of the coefficients  . 

Constants 
m  rms  3/1  10/1

3K  2.46 2.73 3.80 4.73

4K  2.45 2.68 3.66 4.34

 
 
4.5.5.2. Examination of the empirical formulas 
 
All collected data shown in Table 4.15 are used to verify the accuracy of the empirical 
formulas [Eqs. (4.133) to (4.136)]. Using the coefficients   from Eq. (4.137), the 

corresponding statistical-based wave heights ( mH , rmsH , 3/1H , and 10/1H ) are computed from 

Eqs. (4.133) to (4.136), respectively. The errors ( ER  and avgER ) of the empirical formulas on 

estimating mH , rmsH , 3/1H , and 10/1H  are shown in the last row of Table 4.16. The results 

are summarized as follows: 
 

a) The errors ( ER ) of the empirical formulas for computing mH , rmsH , 3/1H , and 10/1H  are 

3.3%, 2.8%, 3.1%, and 3.9%, respectively. It can be seen from Table 4.16 that the 
empirical formulas give nearly the same accuracy as those of MF78. This shows that they 
can be used for computing the representative wave heights.  

b) The empirical formulas are slightly more complicated than those of F78, but simpler than 
those of MF78. Considering the accuracy and simplicity of all conversion formulas, the 
empirical formulas are recommended for the field conditions. 

 
It should be noted that Eqs. (4.133) to (4.136) are empirical formulas. Their validity 

may be limited according to the range of experimental conditions that are employed in the 

calibration. The empirical formulas should be applicable for hm /0  ranging between 0.003 

and 0.286. 
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V.  CONCLUSIONS 
 
 
The main purpose of the present study is to find out suitable wave models for computing 
common representative (i.e. mH , rmsH , 3/1H , 10/1H , maxH , and moH ) based on three main 

approaches, i.e. empirical approach, representative wave approach, and conversion 
approach. A large amount of published experimental results covering a wide range of test 
conditions under irregular wave actions were used to verify the models. The study can be 
divided into 6 parts. The first part describes the transformation of representative wave 
heights based on empirical approach. The second part describes the development of wave 
models using representative wave approach. The third to sixth parts describes the 
transformation of representative wave heights based on the conversion approach. The 
following is the conclusions of each part.  

1. The first part of this study was undertaken to develop empirical formulas for 
computing the representative wave heights. Laboratory data of unidirectional waves 
propagating on unbarred beaches, from small-scale and large-scale wave flumes, are used 
to verify the applicability of Goda formulas for computing the transformation of 
representative wave heights. The spectral peak period ( pT ) is used in the calculations 

(instead of using 3/1T  or 0,1mT ) because it is the most commonly used parameter and 

typically reported for the irregular wave data. All wave parameters in the formulas ( orepH , , 

oL , sK , and k ) are calculated based on linear wave theory related to pT . The verification 

results are presented in terms of root mean square relative error. The verification shows 
that the Goda formulas give very good predictions of 3/1H  and 0mH  but give fair 
prediction of maxH . The Goda formulas are rewritten in the form of a general formula. The 
general form of Goda formulas is recalibrated and extended to compute other 
representative wave heights (i.e. mH , rmsH , and 10/1H ). After calibration, the accuracy of 
the general formula for computing 3/1H , maxH  and 0mH  are improved significantly and the 
formula can be used for computing mH , rmsH , and 10/1H . The general formula gives very 
good predictions of mH , rmsH , 3/1H , 10/1H , maxH , and 0mH . The overall errors of the 
general formula for computing mH , rmsH , 3/1H , 10/1H , maxH , and 0mH  are 7.5, 7.5, 7.4, 7.3, 
8.8, and 5.9%, respectively. 

2. The second part was carried out to investigate the possibility of using the wave 
representation method for computing the representative wave heights. The selected seven 
dissipation models of regular waves breaking were directly applied to the irregular waves, 
by using the representative wave heights, to investigate the applicability. The 
representative wave height transformation is computed from the energy flux conservation 
law. The breaking criterion of Miche (1994) was applied to compute the incipient breaker 
height or the starting point to include the energy dissipation into the energy flux 
conservation. A total of 1729 cases from 13 sources of published experimental results 
were used to calibrate and examine the models. The experiments cover a wide range of 
wave and bottom topography conditions, including small-scale, large-scale and field 
experiments. It was found that by using an appropriate dissipation model, the 
representative wave approach could be used to compute the representative wave heights 
transformation with very good predictions. This may lead to the conclusion that the 
concept of representative wave approach can be used for computing the irregular wave 
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height transformation. The greatest asset of the present model is its simplicity and ease of 
application, i.e. the representative wave heights transformation in the nearshore zone can 
be computed by using only one equation. This study is not meant to replace more 
complicated models; it is only intended to provide a simple estimation model for including 
into the cross-shore beach deformation model. As the present model is very simple, it may 
also serve as a reference model to test a more complicated model against. 

3. The third part was undertaken to find out the suitable dissipation models, which 
can be used to compute 0mH  for a wide range of experimental conditions. Fourteen 

existing dissipation models for computing the transformation of rmsH  were applied to 

compute the transformation of 0mH . A total of 1,713 cases from 8 sources of published 

experimental results were used to examine the applicability of the models in predicting 

0mH . The compiled experimental data cover a wide range of wave conditions 

( 069.0001.0 00,0  LHm ), including small-scale, large-scale and field experiments. The 

basic parameters used for determination of the accuracy of the models are the rms  relative 
error ( gER ) of the three groups of experiment-scales and their average ( avgER ). The 

calibration of each model was conducted by varying the adjustable coefficients ( K ) in 
each model until the minimum error ( avgER ), between the measured and computed wave 

height, is obtained. Using the calibrated coefficients, the errors ( gER  and avgER ) of the 

existing models were computed and compared. The comparison shows that the top two 
models are the models of JB07 and R07. The model of JB07 gives better overall accuracy 
than that of R07. The greater assets of R07 are its simplicity and it gives good predictions 
( gER < 10%) for all experiment-scales. For better accuracy, the model of R07 was 

modified by changing the stable wave height formula in the model. Comparing with the 
existing models, the modified model (M1) is the simplest one but gives the best accuracy. 

4. The fourth part was undertaken to find out the suitable dissipation models, which 
can be used to compute rmsH  for a wide range of experimental conditions. The 

transformation of rmsH  are computed from the energy flux conservation law. Fifteen 

existing dissipation models are selected to examine their applicability in computing rmsH . 

A total of 283 cases from 5 sources of published experimental results (including small-
scale, large-scale and field experiments) were used to examine the applicability of the 
models. The verification results are presented in terms of average rms  relative error of 
three experiment scales ( avgER ). Because most of the existing models were developed 

without care on the difference between rmsH , the coefficients in the models may not be the 

optimal values for estimating rmsH . Therefore, coefficients in all models are recalibrated 

before examining the applicability of the existing models. The models developed based on 
representative wave concept trends to give better estimation those of parametric wave 
concept. The top four models that give very good prediction on rmsH  are the models of 

BS85, RKS03, R07, and MD85 ( %7.9%8.8  avgER ). 

5. The fifth part was undertaken to find out the suitable conversion formulas for 
computing the representative wave heights ( mH , 3/1H , 10/1H , and maxH ) from the known 

common parameters obtained from the statistical-based wave model (i.e. rmsH , h , and 

pT ). The conversion formulas from seven researchers (i.e. LH52, G66, K96, BG00, 

EHR06, RS07, and Y09) are selected to verify their applicability. The formulas of K96, 
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BG00, and EHR06 are modified by changing the breaker parameters. The formulas of Y09 
are modified by reformulating the position and shape parameters ( A  and  ) to assure the 
consistency of the distribution. A total of 17 sets of conversion formulas are considered in 
this study. The published experimental data from 10 sources (covering 2,619 cases) are 
used to calibrate and verify the formulas. The experiments cover small-scale, large-scale, 
and field experimental conditions. The verification results are presented in terms of overall 
average rms  relative error of 3 experiment-scales and 4 representative wave heights 
( allER ). The constants in all formulas are recalibrated before comparing the accuracy of 

the formulas. The comparison shows that the formulas with breaker parameters give better 
accuracy than those without breaker parameters. The accuracy of all formulas with the 
breaker parameters is not much different and seems to be acceptable for the design of 
coastal and ocean structures. Considering accuracy and simplicity of the selected formulas, 
the formulas of RS07a seem to be the most suitable ones for computing the representative 
wave heights. 

6. The last part was undertaken to find out suitable conversion formulas for 
estimating the statistical-based representative wave heights (i.e. mH , rmsH , 3/1H , and 

10/1H ) from the common parameters obtained from the spectral-based wave model (i.e. 0m  

and h ). Conversion formulas can be derived from a given cdf  (or pdf ) of wave heights. 
Five existing cdf  models were considered in this study, i.e. the models of LH52, F78, 
K96, BG00, and EHR06. Field data from COAST3D project (including 13,430 wave 
records) were used to examine the accuracy of the existing conversion formulas on 
estimating the representative wave heights. The data cover the wave conditions from 
deepwater to shallow water. The examination showed that the formulas of LH52, F78, 
K96, and EHR06 give good overall prediction, while the formulas of BG00 give fair 
overall prediction. Comparing among the existing formulas, the formulas of F78 give the 
best overall prediction. The formulas of F78 give very good predictions at mH , rmsH , and 

3/1H , but give considerably larger error at 10/1H . The cdf  of F78 was modified by 

reformulating the formula of shape parameter ( S ). The new shape parameter reveals that 
the distribution of F78 is valid in the offshore zone, but gives overestimation of the 
number of large waves in the surf zone. The modified formulas give better estimation than 
those of F78, especially for 10/1H . Simple empirical formulas were also proposed. The 

representative wave heights are expressed as a product of proportional coefficient (  ) and 

0m . The coefficient   is expressed as a step function of hm /0 . The empirical 

formulas give nearly the same accuracy as those of modified formulas. Considering the 
accuracy and simplicity of all formulas, the empirical formulas are recommended for the 
field conditions. 
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a b s t r a c t

This study is undertaken to find out suitable conversion formulas for computing representative wave

heights (i.e. mean, significant, highest one-tenth, and maximum wave heights) from the known

commonly used parameters (i.e. root mean square wave height, water depth, spectral peak period, and

beach slope). Seventeen sets of conversion formulas (including existing and modified formulas) are

recalibrated and their accuracy is compared. A large amount and wide range of experimental conditions

from small-scale, large-scale, and field experiments (2619 cases collected from 10 sources) are used to

calibrate and verify the conversion formulas. The examination shows that most of the selected formulas

give very good predictions and have similar accuracy. The suitable formulas are recommended based on

the consideration of accuracy and simplicity of the formulas.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The representative wave heights [e.g. mean wave height (Hm),
root mean square wave height (Hrms), significant wave height
(H1/3), highest one-tenth wave height (H1/10), and maximum wave
height (Hmax)] are the essential required factors for the study of
coastal processes and the design of coastal structures. The wave
heights are usually available in deepwater but not available at the
depths required in shallow water. The wave heights in shallow
water can be determined from a wave transformation model or
phase-resolving wave model. However, the output of many
existing wave models (e.g. see Rattanapitikon, 2007) is the root
mean square wave height (Hrms). Thus, it is necessary to know
conversion formulas for converting from Hrms to other represen-
tative wave heights. The present study concentrates on the
conversion formulas for converting from common parameters
obtained from the wave models [i.e. Hrms, water depth (h), spectral
peak period (Tp), and beach slope (m)] to be other representative
wave heights (i.e. Hm, H1/3, H1/10, and Hmax).

In deepwater, the probability density function (pdf) of
measured wave heights from different oceans have been found
to closely obey the Rayleigh distribution (Demerbilek and
Vincent, 2006). Widely accepted conversion formulas are derived
based on the assumption of the Rayleigh distribution of wave
heights. The representative wave heights can all be converted one
to another through the known proportional coefficients.

When waves propagate to shallow water, wave profiles steepen
and eventually waves break. The higher waves tend to break at a
greater distance from the shore. Closer to the shore, more and
more waves are breaking, until in the inner surf zone almost all the
waves break. Investigations of shallow-water wave records from
several studies indicate the wave heights distribution deviates
slightly from the Rayleigh distribution and the conversion
formulas derived from the Rayleigh distribution are acceptable
(e.g. Goodknight and Russell, 1963; Goda, 1974; Thornton and
Guza, 1983). However, some researchers have pointed out that the
wave heights deviate considerably from the Rayleigh distribution
(e.g. Dally, 1990; Battjes and Groenendijk, 2000; Mendez et al.,
2004); consequently, the conversion formulas derived from the
Rayleigh distribution may not be valid in shallow water. It is
expected that the deviation of wave heights from the Rayleigh
distribution is mainly caused by the wave breaking.

Several conversion formulas have been proposed for comput-
ing the representative wave heights, e.g. the formulas of Longuet-
Higgins (1952), Glukhovskiy (1966), Klopman (1996), Battjes and
Groenendijk, (2000), and Rattanapitikon and Shibayama (2007).
Most of them were developed based on an empirical or semi-
empirical approach calibrated with experimental data. To make
an empirical formula reliable, it has to be calibrated with a large
amount and wide range of experimental conditions. However,
most of the existing formulas were developed with limited
experimental conditions. Therefore, their coefficients may not be
the optimal values for a wide range of experimental conditions
and their validity may be limited according to the range of
experimental conditions that were employed in calibration or
verification. It is not clear which formulas are suitable for
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computing the representative wave heights from offshore to
shoreline. No direct study has been made to describe clearly the
accuracy of existing conversion formulas on the estimation of Hm,
H1/3, H1/10, and Hmax for a wide range of experimental conditions.
This makes engineers and scientists hesitant in using those
conversion formulas. The objective of this study is to find out the
suitable conversion formulas that predict well for a wide range of
experimental conditions.

This paper is divided into three main parts. The first part is a
brief review of selected existing and modified formulas for
computing the representative wave heights (i.e. Hm, H1/3, H1/10,
and Hmax) from the known Hrms. The second part presents the
collected data for verifying the conversion formulas. The third part
describes the verification of the selected conversion formulas.

2. Selected conversion formulas

Two approaches have been used to derive the conversion
formulas for computing representative wave heights. The first
approach derives the formulas by curve fitting between the
representative wave heights and the breaker height parameters.
The second approach derives the formulas from the selected pdf of
wave heights. Various conversion formulas have been proposed,
some of which are expressed in terms of uncommon output
parameters from most of the existing wave models (e.g. spectral
bandwidth and wave nonlinearity parameters), e.g. the distribu-
tions of Naess (1985), Hughes and Borgman (1987), Mori and
Janssen (2006), and Tayfun and Fedele (2007). Including more
related parameters is expected to make the pdf more accurate.
However, it may not be suitable to incorporate with most of
the existing wave models because such parameters are not
available from the wave models. Therefore, this study concentrates
on only the formulas which are expressed in terms of common
parameters obtained from the wave models, i.e. Hrms, h, Tp, and m.
Brief reviews of selected existing and modified formulas for
computing Hm, H1/3, H1/10, and Hmax are presented below.

(a) Longuet-Higgins (1952), hereafter referred to as LH52,
demonstrated that the Rayleigh distribution is applicable to the

wave heights in the sea. The validity of the distribution for
deepwater waves has been confirmed by many researchers, even
though the bandwidth may not always be narrow-banded
(Demerbilek and Vincent, 2006). The cumulative distribution
function (cdf) and the probability density function (pdf) of the
Rayleigh distribution can be expressed as

FðHÞ ¼ 1�exp �
H

Hrms

� �2
" #

, ð1Þ

f ðHÞ ¼
dFðHÞ

dH
¼

2H

H2
rms

exp �
H

Hrms

� �2
" #

, ð2Þ

where F(H) is the cumulative distribution function (cdf) of wave
height (H), f(H) is the probability density function (pdf) of
wave height (H), and Hrms is the root mean square (rms) wave
height, which is defined as

Hrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
H2

M

r
, ð3Þ

where M is the total number of individual waves identified by the
zero-crossing method.

The conversion formulas are obtained by manipulation of the
pdf of wave heights. The average of the highest 1/N wave heights
(H1/N) is defined as

H1=N ¼N

Z 1
HN

Hf ðHÞdH, ð4Þ

where N is the number of individual waves, and HN is the wave
height with exceedance probability of 1/N which can be obtained
from the cdf as

PðH4HNÞ ¼
1

N
¼ 1�FðHNÞ ¼ exp �

HN

Hrms

� �2
" #

: ð5Þ

where P is the probability of occurrence. Manipulation of Eq. (5)
yields,

HN ¼ ðlnNÞ1=2Hrms: ð6Þ

Nomenclature

A position parameter
As sediment scale parameter
Ci constant no. i

erfc(x) complementary error function of variable x

E(Hmax) expected value of Hmax

f(H) probability density function of wave height (H)
f1(Hmax) probability density function of Hmax

F(H) cumulative distribution function of wave height (H)
F(Hmax) cumulative distribution function of H at H¼Hmax

F1(Hmax) cumulative distribution function of Hmax

h water depth
Hb breaker height
Hcr computed representative wave height
Hm mean wave height
Hmr measured representative wave height
Hmax maximum wave height
HN wave height with exceedance probability of 1/N
Hrms root mean square wave height
Htr transitional wave height
H1 scale parameter no. 1
H2 scale parameter no. 2
H1/N average of the highest 1/N wave heights
H1/3 significant wave height

H1/10 highest one-tenth wave height
~Htr normalized transitional wave height
~Hx normalized characteristic wave height
~H1 normalized scale parameter no. 1
~H2 normalized scale parameter no. 2
Lo deepwater wavelength related to the spectral peak

period
m beach slope
M total number of individual waves identified by the

zero-crossing method
ng total number of representative wave heights in each

data group
N number of individual waves
pdf probability density function
P probability of occurrence
Tp spectral peak period
DHmr measurement error
b proportional coefficient
g(a,x) lower incomplete Gamma function of variables a

and x

G(x) Gamma function of variable x

G(a,x) upper incomplete Gamma function of variables a

and x

k shape parameter

W. Rattanapitikon / Ocean Engineering 37 (2010) 1554–1563 1555



Author's personal copy

Substituting f(H) from Eq. (2) and HN from Eq. (6) into Eq. (4),
and taking integration, the result is

H1=N ¼
ffiffiffiffiffiffiffiffiffi
lnN
p

þ
N

ffiffiffiffi
p
p

2
erfcð

ffiffiffiffiffiffiffiffiffi
lnN
p

Þ

� �
Hrms, ð7Þ

where erfc(x) is the complementary error function of variable x.
The representative wave heights (i.e. Hm, H1/3, and H1/10) can be
determined by substituting N equal to 1, 3, and 10, respectively,
into Eq. (7). The maximum wave height is affected by the total
number of waves in a record (M) which varies from one sample to
another. The probability distribution of Hmax in general depends
on the sample size and the parent distribution from which the
sample was obtained. Longuet-Higgins (1952) proposed a cumu-
lative distribution function of Hmax by considering that the
cumulative probability of Hmax is equal to the total probability
of all M waves being less than Hmax. The result is

F1ðHmaxÞ ¼ FðHmaxÞ½ �
M , ð8Þ

where F1(Hmax) is the cumulative distribution function of Hmax, and
F(Hmax) is the cumulative distribution function of H at H¼Hmax.
Eq. (8) is valid if Hmax of all M waves are independently and
identically distributed. Substituting Eq. (1) at H¼Hmax into Eq. (8),
the cumulative distribution function of Hmax is expressed as

F1ðHmaxÞ ¼ 1�exp �
Hmax

Hrms

� �2
" #( )M

: ð9Þ

The arithmetic mean (expected value) is usually used as an
approximation of Hmax. Based on Eq. (9), approximated formula
for computing the arithmetic mean of Hmax is expressed as

Hmax ¼ EðHmaxÞ ¼

Z 1
0

Hmaxf1ðHmaxÞdHmax

� �
�

ffiffiffiffiffiffiffiffiffiffi
lnM
p

þ
0:5772

2
ffiffiffiffiffiffiffiffiffiffi
lnM
p

� �
Hrms,

ð10Þ

where E(Hmax) is the expected value of Hmax, and f1(Hmax) is the pdf

of Hmax. From the known Hrms and M, the representative wave
heights H1/N are determined from Eq. (7) and Hmax is determined
from Eq. (10).

(b) Glukhovskiy (1966), hereafter referred to as G66, proposed
a two parameter Weibull distribution to describe the wave height
distribution in shallow water. The influence of depth-limited
wave breaking is taken into account by including a function of
Hm/h into the two parameters. However, the mean wave height
(Hm) is not a common output from most existing wave models.
Klopman (1996) suggested replacing Hm/h with 0.7Hrms/h. The cdf

and pdf of G66 can be written in terms of Hrms as

FðHÞ ¼ 1�exp �A
H

Hrms

� �k� �
, ð11Þ

f ðHÞ ¼
AkHk�1

Hk
rms

exp �A
H

Hrms

� �k� �
, ð12Þ

where A and k are the position and shape parameters, respec-
tively, which can be determined from the following empirical
formulas.

A¼ 1þ
1ffiffiffiffiffiffi
2p
p

C2Hrms

h

� ��1

, ð13Þ

k¼ C1

1�C2Hrms=h
, ð14Þ

where C1 and C2 are the constants. The proposed values of C1 and
C2 are 2.0 and 0.7, respectively. It should be noted that when the
ratio of Hrms/h gets small (deep water), then A approaches 1, k
approaches 2, and the G66 (Weibull) distribution reverts
to Rayleigh. The wave height with exceedance probability of

1/N (HN) and the average of the highest 1/N wave heights (H1/N)
are obtained by manipulation of the probability function (similar
procedure as that of LH52). The results are

HN ¼
lnN

A

� �1=k
Hrms, ð15Þ

H1=N ¼
N

A1=k G
1

k þ1,lnN

� �
Hrms, ð16Þ

where G(a,x) is the upper incomplete Gamma function of
variables a and x. For computing the maximum wave height
(Hmax), following the same procedures as that of LH52, the cdf of
Hmax can be written as

F1ðHmaxÞ ¼ 1�exp �A
Hmax

Hrms

� �k� �� �M

: ð17Þ

Based on Eq. (17), an approximated formula for computing the
expected value of Hmax is expressed as

Hmax �
1

A1=k ðlnMÞ1=kþ
0:5772ðlnMÞ1=k�1

k

 !
Hrms: ð18Þ

From the known Hrms, h, and M, the representative wave
heights H1/N are determined from Eq. (16) and Hmax is determined
from Eq. (18), in which the parameters A and k are determined
from Eqs. (13) and (14), respectively. It was pointed out by
Klopman (1996) that the distribution of G66 is not consistent, i.e.
the first moment of the distribution is not equal to Hm (if the
distribution is expressed in terms of Hm) or the second moment of
the distribution is not equal to H2

rms (if the distribution is
expressed in terms of Hrms). However, the distribution of G66
has often been mentioned but it seems that no literature shows its
applicability on estimating the representative wave heights. It
may be worthwhile to examine its applicability on estimating the
representative wave heights.

(c) Klopman (1996), hereafter referred to as K96, used the
same probability function as that of G66 and consequently the
same conversion formulas for computing H1/N and Hmax [Eqs. (16)
and (18), respectively]. He modified the distribution of G66 by
reformulating the position and shape parameters (A and k) to
assure consistency of the distribution. The parameters A and k of
K96 are determined from the following formulas:

A¼ G
2

k þ1

� �� �k=2

, ð19Þ

k¼ C3

1�C4Hrms=h
, ð20Þ

where G(x) is the Gamma function of variable x, and C3 and C4 are
the constants. The proposed values of C3 and C4 are 2.0 and 0.7,
respectively. From the known Hrms, h, and M, the representative
wave heights H1/N can be determined from Eq. (16) and Hmax can
be determined from Eq. (18), in which the parameters A and k are
determined from Eqs. (19) and (20), respectively.

(d) Battjes and Groenendijk (2000), hereafter referred to as
BG00, proposed a composite Weibull wave height distribution to
describe the wave height distribution on shallow foreshore. The
distribution consists of a Weibull distribution with exponent of
2.0 for the lower wave heights and a Weibull with exponent of 3.6
for the higher wave heights. The two Weibull distributions are
matched at the transitional wave height (Htr). The cumulative
distribution function and the probability density function are
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described as

FðHÞ ¼

1�exp �
H

H1

� �C5
" #

for HoHtr

1�exp �
H

H2

� �C6

" #
for HZHtr

,

8>>>>><
>>>>>:

ð21Þ

f ðHÞ ¼

C5HC5�1

HC5

1

exp �
H

H1

� �C5
" #

for HoHtr

C6HC6�1

HC6

2

exp �
H

H2

� �C6

" #
for HZHtr

,

8>>>>><
>>>>>:

ð22Þ

where C5 and C6 are the constants, H1 and H2 are the scale
parameters, and Htr is the transitional wave height. The proposed
values of C5 and C6 are 2.0 and 3.6, respectively. The transitional
wave height (Htr) is determined from the following empirical
formula:

Htr ¼ ð0:35þ5:8mÞh, ð23Þ

where m is the beach slope. At the transitional wave height,
the wave height distribution abruptly changes its shape. This
change in shape is ascribed to wave breaking. Therefore, Htr can
be considered as a kind of depth-limited breaking or breaker
height (Hb). For convenience in the calculation, all wave heights
are normalized with Hrms as

~Hx ¼
Hx

Hrms
, ð24Þ

where ~Hx is the normalized characteristic wave height. The
normalized transitional wave height ð ~HtrÞ can be determined from

~Htr ¼
C7Htr

Hrms
, ð25Þ

where C7 is the constant. The proposed value of C7 is 1.0. The
normalized scale parameters ~H1 and ~H2 are determined by
solving the following 2 equations simultaneously:

~H2 ¼
~Htr

~H1

~Htr

 !C5=C6

, ð26Þ

1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~H

2

1g
2

C5
þ1,

~Htr

~H1

 !C5
2
4

3
5þ ~H2

2G
2

C6
þ1,

~Htr

~H2

 !C6
2
4

3
5

vuuut , ð27Þ

where g(a,x) is the lower incomplete Gamma function of variables
a and x. After manipulation of the probability function (for more
detail, please see Groenendijk, 1998), the normalized HN and H1/N

are expressed as

~HN ¼
HN

Hrms
¼

~H1½lnN�1=C5 for ~HN o ~Htr

~H2½lnN�1=C6 for ~HN Z ~Htr
,

(
ð28Þ

Unlike LH52, Battjes and Groenendijk (2000) did not use the
probability function of Hmax for computing Hmax. They determined
the highest wave height in a wave record of total number of
waves M (or maximum wave height, Hmax) from the formula
of HN [Eq. (28)]. Substituting N¼M into Eq. (28), the formula
for computing the maximum wave height (Hmax) can be

expressed as

~HM ¼
Hmax

Hrms
¼

~H1½lnM�1=C5 for ~HM o ~Htr

~H2½lnM�1=C6 for ~HM Z ~Htr
:

(
ð30Þ

All conceivable normalized characteristic wave heights are a
function of ~Htr only. From the known Hrms, h, m, and M, the
normalized transitional wave height ð ~HtrÞ is determined from
Eq. (25) and the normalized scale parameters ~H1 and ~H2 are
determined from Eqs. (26) and (27) simultaneously. Once ~H1 and
~H2 have been determined, H1/N can be determined from Eq. (29)
and Hmax can be determined from Eq. (30). It should be noted that
the disadvantage of BG00 is the complexity of the formulas.

(e) Elfrink et al. (2006), hereafter referred to as EHR06, used
the same probability function as that of G66 and K96 and,
consequently, the same conversion formulas for computing H1/N

and Hmax [Eqs. (16) and (18), respectively]. They modified the
distribution of K96 by reformulating the shape parameter (k). The
proposed formula for computing the parameter k of EHR06 is
expressed as

k¼ C8 tanh
C9Hrms

h

� �
�

C9Hrms

h

� �2
" #2

þC10, ð31Þ

where C8–C10 are the constants. The proposed values of C8–C10 are
15.5, 1.0, and 2.03, respectively. From the known Hrms, h, and M,
the representative wave heights H1/N are determined from
Eq. (16) and Hmax is determined from Eq. (18), in which the
parameters A and k are determined from Eqs. (19) and (31),
respectively.

(f) Rattanapitikon and Shibayama (2007), hereafter referred to
as RS07, modified the conversion formulas of LH52 by empirically
incorporating the effect of wave breaking into the formulas. The
proportional coefficients (b) in the formulas of LH52 were fitted
with three dimensionless parameters (Hrms=h, Hrms=Htr , and
Hrms/Hb); consequently, three conversion formulas (hereafter
referred to as RS07a, RS07b, and RS07c, respectively) were
proposed. The general formulas for computing H1/N and Hmax of
RS07a–RS07c are expressed as

H1=N ¼ b1=NHrms, ð32Þ

Hmax ¼ bmax

ffiffiffiffiffiffiffiffiffiffi
lnM
p

þ
0:5772

2
ffiffiffiffiffiffiffiffiffiffi
lnM
p

� �
Hrms, ð33Þ

where b is the proportional coefficient, and subscripts 1/N and
max represent the coefficients for H1/N and Hmax, respectively. The
proportional coefficients b for RS07a–RS07c are determined from
the following empirical formulas:

RS07a : b¼

K1 for
Hrms

h
rK3

K1þ
ðK2�K1Þ

ðK4�K3Þ

Hrms

h
�K3

� �
for K3o

Hrms

h
oK4

K2 for
Hrms

h
ZK4

,

8>>>>>>><
>>>>>>>:

ð34Þ

H1=N

Hrms
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N ~H1 G
1
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1
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1
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N ~H2G
1

C6
þ1,lnN

� �
for ~HN Z ~Htr

:

8>>>>><
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RS07b : b¼

K1 for
Hrms

Htr
rK5

K1þ
ðK2�K1Þ

ðK6�K5Þ

Hrms

Htr
�K5

� �
for K5o

Hrms

Htr
oK6

K2 for
Hrms

Htr
ZK6

,

8>>>>>>><
>>>>>>>:

ð35Þ

RS07c : b¼

K1 for
Hrms

Hb
rK7

K1þ
ðK2�K1Þ

ðK8�K7Þ

Hrms

Hb
�K7

� �
for K7o

Hrms

Hb
oK8

K2 for
Hrms

Hb
ZK8

,

8>>>>>>><
>>>>>>>:

ð36Þ

where K1–K8 are the constants. The proposed values of K1–K8 for
coefficients b are shown in the third to sixth columns of Table 1.
The breaker height (Hb) is determined from the breaking criteria
of Goda (1970) as

Hb ¼ 0:1Lo 1�exp �1:5
ph

Lo
1þ15m4=3
	 
� �� �

, ð37Þ

where Lo is the deepwater wavelength related to the spectral peak
period (Tp). The coefficient 0.1 is used according to Rattanapitikon
and Shibayama (1998). From the known Hrms, h, Tp, m, and M, the
representative wave heights H1/N are determined from Eq. (32)
and Hmax is determined from Eq. (33), in which the coefficients b
for RS07a, RS07b, and RS07c are determined from Eqs. (34)–(36),
respectively.

(g) You (2009), hereafter referred to as Y09, proposed using
modified Rayleigh and Weibull distributions to describe the
distribution of wave orbital velocity amplitudes. As wave height
and orbital velocity amplitude have a certain relationship, the
distribution of the orbital velocity may also be applicable for
describing the wave height distribution. The cumulative distribu-
tion functions of the modified Rayleigh distribution (hereafter
referred to as Y09a) and the Weibull distribution (hereafter
referred to as Y09b) can be rewritten in a general form as

FðHÞ ¼ 1�exp �A
H

Hrms

� �k� �
: ð38Þ

The cdf of Y09 [Eq. (38)] is the same as that of G66. The
difference is the terms of parameters A and k which are set to be
constants as

Y09a : A¼ C11, ð39Þ

k¼ 2, ð40Þ

Y09b : A¼ 1, ð41Þ

k¼ C12, ð42Þ

where C11 and C12 are the constants. The proposed values of C11

and C12 are 1.09 and 2.15, respectively. As the cdf of Y09 is the
same as that of G66, the representative wave heights can be
determined from the same equations as of G66. From the known
Hrms and M, the representative wave heights H1/N can be
determined from Eq. (16) and Hmax can be determined from
Eq. (18), in which the parameters A and k are determined from
Eqs. (39) and (40) for Y09a and from Eqs. (41) and (42) for Y09b. It
should be noted that the distributions of Y09 are not consistent.
The second moment of the distributions are not equal to H2

rms.
However, You (2009) showed that the distributions give better
accuracy than that of LH52. It may be worthwhile to examine
their applicability on predicting the representative wave heights.

(h) As wave breaking may cause the wave height distribution
to deviate from the Rayleigh distribution, the variable that may
affect the distribution in the shallow water is the terms of depth-
limited wave breaking or breaker height. There are three breaker
parameters which were used by the previous researchers, i.e. h,
Htr [Eq. (23)], and Hb [Eq. (37)]. Using the suitable breaker
parameters in the conversion formulas is expected to give better
accuracy. The modification is carried out by changing the breaker
parameters in the conversion formulas. Modified K96 formulas
(hereafter referred to as MK96) are performed by changing the
breaker parameters in the formula of k. Replacing h in Eq. (20) by
Htr and Hb, respectively, the modified k can be expressed as

MK96a : k¼ C13

1�C14Hrms=Htr
, ð43Þ

MK96b : k¼ C15

1�C16Hrms=Hb
, ð44Þ

where C13–C16 are the constants which can be determined from
formula calibration. The representative wave heights (H1/N) are
determined from Eq. (16) and maximum wave height (Hmax) is
determined from Eq. (18), in which the parameter A is determined
from Eq. (19) and the parameters k for MK96a and MK96b are
determined from Eqs. (43) and (44), respectively.

(i) For similar reasons, modified BG00 formulas (hereafter
referred to as MBG00) are performed by changing the breaker
parameters in the formula of ~Htr . Replacing Htr in Eq. (25) by h and
Hb, respectively, the modified ~Htr can be expressed as

MBG00a : ~Htr ¼
C17h

Hrms
, ð45Þ

MBG00b : ~Htr ¼
C18Hb

Hrms
, ð46Þ

where C17 and C18 are the constants which can be determined
from formula calibration. The representative wave heights H1/N

and Hmax are determined from Eqs. (29) and (30), respectively, in
which the parameters ~H1 and ~H2 are determined from Eqs. (26)
and (27) simultaneously and ~Htr for MBG00a and MBG00b are
determined from Eqs. (45) and (46), respectively.

(j) As in item (h), modified EHR06 formulas (hereafter referred
to as MEHR06) are performed by changing the breaker parameters
in the formula of k. Replacing h in Eq. (31) by Htr and Hb,
respectively, the modified k can be expressed as

MEHR06a : k¼ C19 tanh
C20Hrms

Htr

� �
�

C20Hrms

Htr

� �2
" #2

þC21, ð47Þ

Table 1

Default and calibrated constants K1 to K8 of the coefficients b for RS07a–RS07c.

Formulas Constants Default constants Calibrated constants

b1 b1/3 b1/10 bmax b1 b1/3 b1/10 bmax

RS07a K1 0.87 1.43 1.81 0.97 0.89 1.41 1.75 1.00

K2 0.92 1.36 1.58 0.69 0.92 1.34 1.56 0.69

K3 0.10 0.10 0.10 0.10 0.06 0.06 0.06 0.06

K4 0.52 0.52 0.52 0.52 0.50 0.50 0.50 0.50

RS07b K1 0.87 1.43 1.81 0.97 0.89 1.41 1.75 1.00

K2 0.92 1.36 1.58 0.69 0.92 1.34 1.56 0.69

K5 0.25 0.25 0.25 0.25 0.15 0.15 0.15 0.15

K6 0.95 0.95 0.95 0.95 1.00 1.00 1.00 1.00

RS07c K1 0.87 1.43 1.81 0.97 0.89 1.41 1.75 1.0

K2 0.92 1.36 1.58 0.69 0.92 1.34 1.56 0.69

K7 0.43 0.43 0.43 0.43 0.25 0.25 0.25 0.25

K8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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MEHR06a : k¼ C22 tanh
C23Hrms

Hb

� �
�

C23Hrms

Hb

� �2
" #2

þC24, ð48Þ

where C19–C24 are the constants which can be determined from
formula calibration. The representative wave heights H1/N are
determined from Eq. (16) and Hmax is determined from Eq. (18), in
which the parameter A is determined from Eq. (19) and the
parameters k for MEHR06a and MEHR06b are determined from
Eqs. (47) and (48), respectively.

(k) As the distribution of Y09 is not consistent, it should be
modified for consistency. The modified Y09 is performed by
reformulating the position and shape parameters (A and k). As the
probability function of Y09 is the same as that of K96, the position
parameter (A) can be determined from Eq. (19) while the shape
parameter (k) is set to be a constant as

k¼ C25, ð49Þ

where C25 is the constant which can be determined from formula
calibration. The representative wave heights H1/N can be deter-
mined from Eq. (16) and Hmax can be determined from Eq. (18), in
which the parameters A and k are determined from Eqs. (19) and
(49), respectively.

3. Collected experimental data

The experimental data of representative wave heights (i.e. Hm,
Hrms, H1/3, H1/10, and Hmax) from 10 sources (covering 2619 cases
and 19,776 wave records) have been collected for examination
of the formulas. The data cover the wave heights in either
the offshore zone or surf zone. The collected experiments are
separated into 3 groups based on the experiment-scale, i.e. small-
scale, large-scale, and field experiments. The small-scale experi-
ments were conducted under fixed beach conditions whereas the
large-scale and field experiments were carried out under movable
(sandy) beach conditions. The experiments cover a variety of
beach conditions and cover a range of deepwater rms wave
steepness (Hrmso=Lo) from 0.0002 to 0.059. A summary of the

collected laboratory data is given in Table 2. Some of the data
sources are the same as those used by Rattanapitikon and
Shibayama (2007). The additional data are from the LIP11D
project (Roelvink and Reniers, 1995), SAFE project (Dette et al.,
1998), Long (1991), and COAST3D project (Soulsby, 1998). A brief
summary of the additional data is provided below.

LIP 11D Delta Flume Experiment (Roelvink and Reniers, 1995)
was performed at Delft Hydraulics large-scale wave flume. A 175-
m-long sandy beach was constructed in a large wave tank of
233 m long, 5 m wide, and 7 m deep. The 2 major tests were
performed, i.e., with dune (test no. 1A–1C) and without dune (test
no. 2A–2C). Each major test consisted of several wave conditions.
The duration of each wave condition lasted about 12–21 h. Initial
beach profiles of the test no. 1A and 2A are equilibrium Dean-type
beaches (h¼Asx

2/3, where As is the sediment scale parameter and x

is the horizontal distance directed offshore). The beach profiles of
other tests (test no. 1B, 1C, 2B, 2E, and 2C) were initiated using the
final profile configuration of the previous test. Broad banded
random waves, JONSWAP spectrum with spectral width para-
meter of 3.3, were generated. During the run, the sand bar feature
grows and becomes more pronounced after some time. Ten fixed
wave gages and one moveable wave gage were deployed in the
flume to measure the wave transformation. Only the representa-
tive wave heights data from the moveable wave gage are available
and are used in this study.

SAFE Project (Dette et al., 1998) was carried out to improve the
methods of design and performance assessment of beach
nourishment. The SAFE Project consisted of four activities, one
of which was to perform experiments in a large-scale wave flume
in Hannover, Germany. A 250-m-long sandy beach was con-
structed in a large wave tank of 300 m long, 5 m wide, and 7 m
deep. The test program was divided into two major phases. The
first phase (test no. A, B, C, and H) was intended to study the
beach deformation of equilibrium profile with different beach
slope changes. The equilibrium beach profile was adopted from
Bruun’s (1954) approach. In the second phase, the sediment
transport behaviors of dunes with and without structural aid were
investigated (test no. D, E, F, and G). The TMA spectral shape with

Table 2
Collected experimental data.

Sources Apparatus Measured wave heights

Smith and Kraus (1990) Small-scale Hm, Hrms, H1/3, Hmax

Ting (2001) Small-scale Hm, Hrms, H1/3, H1/10, Hmax

Ting (2002) Small-scale Hm, Hrms, H1/3, H1/10, Hmax

Kraus and Smith (1994): SUPERTANK project Large-scale Hm, Hrms, H1/3, H1/10, Hmax

Roelvink and Reniers, (1995): LIP11D Project Large-scale Hrms, H1/3, H1/10, Hmax

Dette et al. (1998): SAFE project Large-scale Hrms, H1/3, H1/10, Hmax

Goodknight and Russell, (1963) Field Hm, Hrms, H1/3, H1/10, Hmax

Long (1991) Field Hm, Hrms, H1/3, H1/10, Hmax

Ruessink (1999): COAST3D Project at Egmond Field Hm, Hrms, H1/3, H1/10

Whitehouse and Sutherland (2001): COAST3D Project at Teigmond Field Hm, Hrms, H1/3, H1/10, Hmax

Sources No. of cases No. of points Ma Hrmso/Lo

Smith and Kraus (1990) 12 96 500 0.021–0.059

Ting (2001) 1 7 186–207 0.016

Ting (2002) 1 7 154–162 0.015

Kraus and Smith (1994): SUPERTANK project 128 2048 152–2046 0.001–0.046

Roelvink and Reniers, (1995): LIP11D Project 87 170 461–892 0.001–0.029

Dette et al. (1998): SAFE project 138 3557 182 0.001–0.020

Goodknight and Russell (1963) 4 80 95–319 0.011–0.025

Long (1991) 11 11 972–1693 0.002–0.024

Ruessink (1999): COAST3D Project at Egmond 977 6480 – 0.002–0.030

Whitehouse and Sutherland (2001): COAST3D Project at Teigmond 1260 7320 132–340 0.0002–0.028

Total 2619 19,776 95–2046 0.0002–0.059

a For computing Hmax.
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spectral width parameter of 3.3 was used to design all irregular
wave tests. A total of 27 wave gages was installed over a length of
175 m along one wall of the flume.

Long (1991) analyzed the measured data which were taken
from the measurements archive of CERC’s FRF in Duck, NC. Test
data were time series from a Waverider buoy near 8-m-depth
contour about 1 km offshore. Active depth-induced wave break-
ing happens at this depth only during extreme conditions. This
depth is considered either to be intermediate or shallow for all
wind waves of interest. Diversity of wave climate was established
by selecting cases classified by energy level as well as broad and
narrow energy spread in frequency. Eleven test cases were
selected for analysis (from September 1986 to February 1987).
The selected cases cover a sequence of measurements before,
during, and after a large storm.

COAST3D project is a collaborative project co-funded by the
European Commission’s MAST-III program and national resources,
running from October 1996 to March 2001 (Soulsby, 1998). The
project was carried out to improve understanding of the coastal
processes on non-uniform (3D) coasts. Two field experiments
were performed at Egmond-aan-Zee (Ruessink, 1999) and at
Teignmouth (Whitehouse and Sutherland, 2001). The data are
available online at ‘‘http://www.hrwallingford.co.uk/projects/
COAST3D/’’. A brief summary of the two sites is given below.

The Egmond site is located in the central part of the Dutch
North Sea coast. The site was dominated by two well-developed
shore-parallel bars intersected by rip channels. Two field experi-
ments were executed, a pilot experiment in spring 1998 and main
experiments (A and B) in autumn 1998. Contrary to the pilot
campaign, the main experiment witnessed severe conditions.
Large waves, strong wind, and water level rises due to storm
surges were present, resulting in considerable morphologic
change (e.g. bar movement, lowering of bar crests and the
presence of rip channels). The experiments were divided into 3
cases, i.e. pre-storm (pilot experiment), storm (main-A experi-
ment), and post storm (main-B experiment). A large variety of
instruments, such as pressure sensors, wave buoys and current
meters, were deployed at many stations in the study area. Only
the stations which have the representative wave heights data are
used in this study, i.e. stations 1a, 1b, 1c, 1d, 2, 7a, 7b, 7c, 7d, and
7e for pilot experiment; stations 1a, 1b, 1c, 1d, 2, 7a, 7b, and 7e for
main-A experiment; and stations 1a, 1b, 1c, 1d, 2, 7b, 7d, and 7e
for main-B experiment.

The Teigmond site is located on the south coast of Devon, UK.
The wave climate was mainly characterized by small, short period
wind-driven waves. The nature of the coastline was irregular and
three-dimensional (3D), with a rocky headland, nearshore banks,
and an estuary mouth all adjacent to the beach with its sea
defenses (e.g. groins and seawalls). Two field experiments were
executed, a pilot experiment (in March 1999) and a main
experiment (during October to November 1999). A large variety
of instruments, such as pressure sensors, wave buoys and current
meters, was deployed at many stations in the study area. Only the
stations which are not located close to the structures or river and
have the representative wave heights data are used in this study,
i.e. stations 15, 18, 22, and 25 for the pilot experiment and
stations 3a, 4, 6, 9, 10, 15, 18, 25, 28, 32, and 33 for the main
experiment.

4. Examination of existing conversion formulas

The objective of this section is to examine the applicability
of the ten sets of existing conversion formulas (presented in
Section 2) on estimating Hm, H1/3, H1/10, and Hmax from the known
Hrms. The measured representative wave heights from 10 sources

(covering 2619 cases) of published experimental results (shown
in Table 2) are used to calibrate and verify the existing formulas.
The basic parameter for measuring the accuracy of a formula is
the rms relative error (ERg) which is defined as

ERg ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPng

i ¼ 1 ðHcr,i�Hmr,iÞ
2Png

i ¼ 1 H2
mr,i

vuut , ð50Þ

where Hcr is the computed representative wave height, Hmr is the
measured representative wave height, and ng is the total number
of representative wave heights in each data group.

To measure a performance of a wave height transformation
model, some researchers (e.g. Van Rijn et al., 2003; Grasmeijer
and Ruessink, 2003) excluded the effect of measurement error by
adding the measurement error (DHmr) to the discrepancy term
(i.e. 9Hcr�Hmr9�DHmr) in the equation for computing error of the
model. The measurement error (DHmr) may cause an effect on
model comparison. However, the present study concentrates on
conversion formulas, in which the computed representative wave
height (Hcr) is determined from the measured Hrms. Since the
measured Hrms is determined from the same wave record as the
measured representative wave heights (Hmr), the measurement
error of Hrms and Hmr should be in the same proportion.
Therefore, the measurement error may not affect the formula
comparisons. Hence, the measurement error (DHmr) is not
included in Eq. (50).

The collected experiments are separated into three groups
according to the experiment scale (i.e. small-scale, large-scale,
and field experiments), and four representative wave heights (i.e.
Hm, H1/3, H1/10, and Hmax) are considered in this study. It is
expected that a good formula should be able to predict well for all
experiment-scales and all representative wave heights. Therefore,
the average error from three experiment-scales (ERavg) is used to
examine the accuracy of the formulas on estimating each
representative wave height, and the overall average error from
three experiment-scales and four representative wave heights
(ERall) is used examine the overall accuracy of the formulas.
The average error (ERavg) and overall average error (ERall) are
defined as

ERavg ¼

P3
j ¼ 1 ERg,j

3
, ð51Þ

ERall ¼

P4
k ¼ 1 ERavg,k

4
: ð52Þ

4.1. Examination of existing formulas using default constants

The examinations of the formulas of H1/N and Hmax are carried
out by using the measured representative wave heights (i.e. Hrms,
Hm, H1/3, H1/10, and Hmax) shown in Table 2. From the measured
Hrms, the other representative wave heights (Hm, H1/3, and H1/10,
and Hmax) are computed by using the formulas of H1/N and Hmax.
Using the default constants (C1–C12 and K1–K8) in the computa-
tions, the errors (ERavg and ERall) of existing formulas for
computing Hm, H1/3, H1/10, and Hmax are shown in Table 3. It can
be seen from Table 3 that the formulas of G66, K96, RS07a, and
RS07c give the same overall accuracy and give better prediction
than the others. The overall accuracy of the formulas in
descending order are the formulas of G66, K96, RS07a, RS07c,
RS07b, BG00, EHR06, Y09b, Y09a, and LH53. Since most formulas
were developed based on a limited range of experimental
conditions, the constants in the formulas may not be the optimal
values for a wide range of experimental conditions. Therefore, the
errors in Table 3 should not be used to judge the applicability of
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the formulas. The constants in all formulas were recalibrated to
minimize errors and the applicability of the formulas was then
reassessed as shown in the following sections.

4.2. Calibration of selected formulas

The objective of this section is to calibrate the constants in the
selected conversion formulas presented in Section 2 based on a
large amount and wide range of experimental conditions. Most of
measured data shown in Table 2 (except eight wave conditions
from eight data sources) are used to calibrate the constants. The
calibrations are conducted by gradually adjusting the constants
until the minimum overall error (ERall) of the formulas is obtained.
The optimum values of K1–K8 are shown in the last four columns
of Table 1, while the optimum values of C1–C25 are shown in the
second column of Table 4. Using the calibrated constants in the
computations of Hm, H1/3, H1/10, and Hmax for three experimental
scales, the average errors (ERavg and ERall) of the formulas are
shown in Table 4, and the errors ERg are shown in Table 5. The
results can be summarized as follows:

a) After calibrations, the constants in most existing formulas
(except EHR06) have to be changed slightly. However, the use
of calibrated constants in the formulas is expected to be more
reliable than those of default constants because they are
recalibrated with a larger amount and wider range of
experimental conditions.

b) The overall accuracy of the formulas in descending order are
the formulas of RS07c, RS07a, MBG00b, MBG00a, RS07b,
MEHR06b, EHR06, G66, MK96b, BG00, K96, MEHR06a,
MK96a, MY09, Y09b, Y09a, and LH52. The formulas of RS07c
give the best prediction (ERall¼5.1%), while the formulas of
LH52 give the worst prediction (ERall¼11.1%). This shows that
the distribution of wave heights deviates considerably from
the Rayleigh distribution. However, the use of LH52 seems to
be acceptable for computing Hm and H1/3.

c) It can be seen from Table 5 that the formulas of LH52, Y09a,
Y09b, and MY09 give poor predictions (ERg420%) on estimating
Hmax for small-scale experiments. Only the formula of LH52 gives
poor prediction on estimating Hmax for large-scale experiments.

d) The selected formulas can be separated into two groups, i.e.
with breaker parameters (the formulas of G66, K96, BG00,
EHR06, RS07a, RS07b, RS07c, MK96a, MK96b, MBG00a,
MBG00b, MEHR06a, and MEHR06b), and without breaker
parameters (the formulas of LH52, Y09a, Y09b, and MY09).
As expected, the formulas with breaker parameters give better
accuracy than those without breaker parameters. The overall

Table 5
The errors (ERg) of the selected formulas on estimating Hm, H1/3, H1/10, and Hmax for small-scale, large-scale, and field experiments (using calibrated constants).

Formulas Small-scale Large-scale Field

Hm H1/3 H1/10 Hmax Hm H1/3 H1/10 Hmax Hm H1/3 H1/10 Hmax

LH52 4.5 7.9 15.3 43.2 2.3 3.7 10.8 20.7 2.9 3.4 9.4 9.9

G66 2.3 3.7 4.3 16.2 3.9 3.8 5.2 9.8 2.1 2.7 4.1 9.5

K96 2.8 3.7 4.3 16.2 4.4 3.5 5.2 9.9 2.3 2.5 4.1 9.5

BG00 2.4 4.6 4.9 12.6 3.3 2.5 5.1 10.0 2.2 2.7 4.7 13.0

EHR06 2.6 3.4 4.6 14.8 4.4 3.6 5.1 9.3 2.5 2.7 4.4 9.5

RS07a 2.2 4.1 4.1 11.9 3.1 3.0 5.1 10.0 2.0 2.3 4.0 10.1

RS07b 2.3 4.3 4.3 14.1 2.9 2.9 4.9 9.7 2.0 2.4 4.2 12.2

RS07c 2.2 4.1 4.3 10.4 3.0 2.9 5.0 9.6 2.0 2.4 4.1 10.7

Y09a 9.5 3.8 9.3 35.5 5.8 4.8 6.8 16.1 7.9 3.7 5.2 8.8

Y09b 4.4 3.7 5.3 22.9 2.3 5.2 6.4 12.8 2.9 4.2 5.3 13.2

MK96a 2.5 3.8 4.4 18.3 3.9 3.4 4.9 9.6 2.7 3.0 4.4 10.4

MK96b 2.7 3.6 4.1 14.8 4.5 3.5 5.1 9.8 2.5 2.7 4.2 10.2

MBG00a 2.4 4.2 5.1 10.5 3.6 2.6 5.3 10.4 2.0 2.4 4.8 11.2

MBG00b 2.3 4.3 4.9 9.3 3.4 2.5 5.1 10.3 2.0 2.5 4.8 11.7

MEHR06a 2.4 3.6 4.6 17.6 3.8 3.4 4.8 9.1 2.8 3.1 4.6 10.6

MEHR06b 2.6 3.4 4.4 14.1 4.4 3.5 5.0 9.3 2.6 2.8 4.4 10.0

MY09 2.0 4.3 5.5 20.9 5.0 4.0 6.4 12.9 2.6 2.8 5.2 14.1

Table 3
The errors (ERavg and ERall) of the existing formulas on estimating Hm, H1/3, H1/10,

and Hmax from three experiment-scales (using default constants).

Formulas Default constants ERavg ERall

Hm H1/3 H1/10 Hmax

LH52 – 3.2 5.0 11.8 24.8 11.2

G66 C1¼2.0, C2¼0.7 2.9 3.7 4.8 11.5 5.7

K96 C3¼2.0, C4¼0.7 3.3 3.4 4.6 11.7 5.7

BG00 C5¼2.0, C6¼3.6, C7¼1.0 2.7 3.7 6.4 11.6 6.1

EHR06 C8¼15.5, C9¼1.0, C10¼2.03 3.1 3.9 5.5 15.2 6.9

RS07a From Table 1 2.7 3.6 5.5 10.9 5.7

RS07b From Table 1 2.7 3.6 5.3 12.0 5.9

RS07c From Table 1 2.8 3.7 6.3 10.1 5.7

Y09a C11¼1.09 6.5 3.7 8.0 21.2 9.9

Y09b C12¼2.15 3.3 3.7 8.1 19.8 8.7

Table 4
The average errors (ERavg and ERall) of the selected formulas on estimating Hm, H1/3,

H1/10, and Hmax from three experiment-scales (using calibrated constants).

Formulas Calibrated constants ERavg ERall

Hm H1/3 H1/10 Hmax

LH52 – 3.2 5.0 11.8 24.6 11.1

G66 C1¼2.0, C2¼0.64 2.7 3.4 4.6 11.8 5.6

K96 C3¼2.0, C4¼0.66 3.2 3.2 4.5 11.8 5.7

BG00 C5¼2.2, C6¼3.3, C7¼1.0 2.6 3.3 4.9 11.9 5.7

EHR06 C8¼31, C9¼0.53, C10¼2.0 3.2 3.2 4.7 11.2 5.6

RS07a From Table 1 2.5 3.1 4.4 10.7 5.2

RS07b From Table 1 2.4 3.2 4.5 12.0 5.5

RS07c From Table 1 2.4 3.1 4.5 10.2 5.1

Y09a C11¼1.12 7.7 4.1 7.1 20.1 9.8

Y09b C12¼2.41 3.2 4.4 5.7 16.3 7.4

MK96a C13¼2.0, C14¼0.32 3.1 3.4 4.6 12.8 5.9

MK96b C15¼2.0, C16¼0.32 3.2 3.3 4.4 11.6 5.6

MBG00a C5¼2.2, C6¼3.4, C17¼0.49 2.7 3.1 5.1 10.7 5.4

MBG00b C5¼2.2, C6¼3.5, C18¼1.1 2.6 3.1 5.0 10.4 5.3

MEHR06a C19¼28, C20¼0.27, C21¼2.0 3.0 3.4 4.7 12.4 5.9

MEHR06b C22¼34, C23¼0.23, C24¼2.0 3.2 3.2 4.6 11.1 5.5

MY09 C25¼2.6 3.2 3.7 5.7 16.0 7.2
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errors (ERall) of the formulas with breaker parameters are in
the range 5.1–5.9% while the others are in the range 7.2–11.1%.
This means that the effect of wave breaking is significant and
the formulas with breaker parameters are superior.

e) Comparing among the formulas with breaker parameters, it
can be seen from Tables 4 and 5 that no formula gives
significantly better results than the others.

f) The accuracy of all formulas with the breaker parameters is
very good (5.1rERallr5.9) and seems to be acceptable for the
design of coastal structures. It should be noted that, in
practical work, the representative wave heights are deter-
mined from the selected conversion formulas based on the
output (Hrms) from the selected wave model. As the average
errors of some existing wave models on predicting Hrms are in
the range 8.1–11.4% (Rattanapitikon, 2007), the errors of
predicting other representative wave heights should be larger
than those shown in Tables 4 and 5.

g) Considering the complexity of the formulas with breaker
parameters, the formulas of RS07a are the simplest ones while
the formulas of MBG00b are the most complex ones. Considering
accuracy and simplicity of the all formulas, the formulas of R07a
seem to be the most attractive ones for general applications.

4.3. Verification of selected formulas

Eight wave conditions from eight sources (which have more
than one case each) are used to verify the conversion formulas.
The first case from each data source is selected for verifying
the formulas. The experimental conditions of the selected data are
shown in Table 6. Using the calibrated constants in the
computations of Hm, H1/3, H1/10, and Hmax for three experiment-
scales, the average errors (ERavg and ERall) of the formulas are
shown in Table 7. The results can be summarized as follows:

a) The overall accuracy of the formulas in descending order are
the formulas of MBG00b, RS07c, MBG00a, RS07a, MEHR06b,
EHR06, G66, BG00, MK96b, K96, MEHR06a, RS07b, MK96a,
MY09, Y09b, Y09a, and LH52. The formulas of MBG00b give the
best prediction (ERall¼5.2%), while the formulas of LH52 give
the worst prediction (ERall¼10.2%).

b) The errors in the verification are slightly different from that in
the calibration. This is because the number of data that were
used in the calibration and verification are different. However,
the results of verification are overall similar to that of
calibration, i.e. the use of LH52 is acceptable for computing
Hm and H1/3; the effect of wave breaking is significant and
the formulas with breaker parameters are superior; and the
formulas with breaker parameters give very good predictions
and have similar accuracy.

5. Conclusions

This study is undertaken to find out the suitable conversion
formulas, which can be used to compute the representative wave
heights (Hm, H1/3, H1/10, and Hmax) from the common parameters
obtained from the wave model. The conversion formulas from
seven researchers (i.e. LH52, G66, K96, BG00, EHR06, RS07, and
Y09) are selected to verify their applicability. The formulas of K96,
BG00, and EHR06 are modified by changing the breaker
parameters. The formulas of Y09 are modified by reformulating
the position and shape parameters (A and k) to assure the
consistency of the distribution. A total of 17 sets of conversion
formulas are considered in this study. The published experimental
data from 10 sources (covering 2619 cases) are used to calibrate
and verify the formulas. The experiments cover small-scale, large-
scale, and field experimental conditions. The verification results
are presented in terms of overall average rms relative error of 3
experiment-scales and 4 representative wave heights (ERall).
The constants in all formulas are recalibrated before comparing
the accuracy of the formulas. The comparison shows that the
formulas with breaker parameters give better accuracy than those
without breaker parameters. The accuracy of all formulas with the
breaker parameters is not much different and seems to be
acceptable for the design of coastal and ocean structures.
Considering accuracy and simplicity of the selected formulas,
the formulas of RS07a seem to be the most suitable ones for
computing the representative wave heights.

Table 6
Selected experimental data for verifying the selected formulas.

Sources Case no. No of points Ma Hrmso/Lo

Smith and Kraus (1990) R2000 8 500 0.059

Kraus and Smith (1994): SUPERTANK project A0509A 16 354–376 0.043

Roelvink and Reniers, (1995): LIP11D Project 1A0203 2 828–891 0.018

Dette et al. (1998): SAFE project 06129601 21 182 0.007

Goodknight and Russell, (1963) Audrey 14 95–319 0.011–0.021

Long (1991) 140986a 1 1693 0.003

Ruessink (1999): COAST3D Project at Egmond 05064 9 – 0.006

Whitehouse and Sutherland (2001): COAST3D Project at Teigmond 12500 1 – 0.0003

Total 72 95–1693 0.0003–0.059

a For computing Hmax.

Table 7
Verification results of the selected formulas on estimating Hm, H1/3, H1/10, and Hmax

from three experiment-scales (using calibrated constants).

Formulas Calibrated constants ERavg ERall

Hm H1/3 H1/10 Hmax

LH52 – 3.1 4.2 6.8 26.7 10.2

G66 C1¼2.0, C2¼0.64 2.7 3.4 6.3 13.7 6.5

K96 C3¼2.0, C4¼0.66 3.1 3.3 6.2 13.7 6.6

BG00 C5¼2.2, C6¼3.3, C7¼1.0 2.5 3.2 6.1 14.2 6.5

EHR06 C8¼31, C9¼0.53, C10¼2.0 3.2 3.3 6.1 12.9 6.4

RS07a From Table 1 2.4 3.4 6.6 12.7 6.3

RS07b From Table 1 2.6 3.6 7.2 14.8 7.0

RS07c From Table 1 2.6 3.4 6.8 10.0 5.7

Y09a C11¼1.12 7.0 5.2 6.6 21.6 10.1

Y09b C12¼2.41 3.1 5.5 8.9 16.8 8.6

MK96a C13¼2.0, C14¼0.32 3.1 3.6 6.8 14.9 7.1

MK96b C15¼2.0, C16¼0.32 3.7 3.5 6.9 12.0 6.5

MBG00a C5¼2.2, C6¼3.4, C17¼0.49 2.3 3.0 5.2 12.4 5.7

MBG00b C5¼2.2, C6¼3.5, C18¼1.1 2.5 2.8 5.3 10.4 5.2

MEHR06a C19¼28, C20¼0.27, C21¼2.0 3.1 3.6 6.8 14.6 7.0

MEHR06b C22¼34, C23¼0.23, C24¼2.0 3.8 3.5 6.7 11.2 6.3

MY09 C25¼2.6 4.0 4.6 8.7 16.4 8.4
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The objective of this study is to propose the most suitable dissipation model for computing
the transformation of spectral significant wave height (Hm0). A wide range of experimental
conditions, covering small-scale, large-scale, and field experiments, were used to examine
the models. Fourteen existing dissipation models, for computing root-mean-square wave
heights (Hrms), were applied to compute Hm0. The coefficients of the models were re-
calibrated and the accuracy of the models was compared. It appears that the model of
Janssen and Battjes [2007] with new coefficients gives the best overall prediction. The
simple model proposed in the present paper was modified by changing the formula of stable
wave height in the dissipation model. Comparing with the existing models, the modified
model is the simplest one but gives better accuracy than those of existing models.

Keywords: Irregular wave model; spectral significant wave height; energy dissipation; wave
height transformation.

1. Introduction

Representative wave heights are the essential required factors for many coastal

engineering applications such as the design of coastal structures and the study of

beach deformations. Among various representative wave heights, the significant wave
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height (Hs) is most frequently used in the field of coastal engineering [Goda, 2000].

There are two main methods to describe the significant wave height, i.e. statistical

analysis (or individual wave analysis) and spectral analysis. The statistical-based

significant wave height (H1/3) is defined as the average height of the highest one-

third of the individual waves in a record, while the spectral significant wave height

(Hm0) is defined as four times of square root of zero moment of wave spectrum

(Hm0 = 4.0
√
m0). These two definitions of significant wave height are equal if the

wave height distribution obeys a Rayleigh distribution.

In deepwater, the measured wave heights from different oceans have been found

to closely conform to the Rayleigh distribution [Demerbilek and Vincent, 2006]. The

relationship H1/3 = Hm0 = 4.0
√
m0 can be derived based on the assumption of a

Rayleigh distribution. The relationship has been confirmed by many wave observa-

tion data taken throughout the world [Goda, 2000]. However, the proportional con-

stants are smaller than those derived from the Rayleigh distribution, e.g. the ratio

H1/3/
√
m0 is approximately 3.8 instead of 4.0 [Goda, 1979]. When waves propagate

in shallow water, their profiles steepen and they eventually break. The process of

wave breaking becomes relevant in shallow water, causing the wave height distribu-

tion to deviate from the Rayleigh distribution. Several researchers stated that the

wave height distribution deviated considerably from the Rayleigh distribution [e.g.

Klopman, 1996; Battjes and Groenendijk, 2000; Mendez et al., 2004]. This causes

the statistical based wave height to differ from the corresponding spectral based

wave height.

The two significant wave heights are both important, and neither one alone is

sufficient for successful application of wave height for engineering problems [Goda,

1974]. While some formulas in the coastal works are appropriate for H1/3, others

may be more appropriate for Hm0. The spectral wave heights (Hm0) should be used

in those applications where the effect of average wave energy is more important than

the individual waves.

The wave heights are usually available in deepwater (from measurements or

wave hindcasts) but not available at the required depths in shallow water. The wave

height at desired depth can be determined from a wave model. During the past few

decades, many wave models have been proposed but most of them are for comput-

ing the root-mean-square wave heights (Hrms), not for Hm0. However, measured

ocean wave records are often analyzed spectrally by the instrument package and

expressed in terms of Hm0. Similarly, modern wave hindcasts are often expressed in

terms of Hm0. It seems to be convenient for engineers to have a wave height trans-

formation model for computing the transformation of Hm0 directly. Therefore, the

present study concentrates on a wave height transformation model for computing

the transformation of Hm0.

In the present study, the transformation of Hm0 is computed from the energy

flux conservation equation. The main difficulty of modeling the wave height trans-

formation is how to formulate the rate of dissipation due to wave breaking. Various
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dissipation models have been proposed by many researchers but most of them were

proposed for computing Hrms. Therefore, the existing dissipation models have to be

converted to be expressed in terms of Hm0 before applying to compute the transfor-

mation of Hm0. Similar to the significant wave height, the root-mean-square wave

height (Hrms) can be classified according to its definition based on statistical-based

root-mean-square wave height (HrmsW ) and spectral-based root-mean-square wave

height (HrmsE =
√
8m0). If an energy dissipation model is proposed in terms of

HrmsW , it seems to be difficult to convert the model to be expressed in terms of

Hm0. However, if an energy dissipation model is proposed in terms of HrmsE , it can

be converted to be expressed in terms of Hm0 easily (because Hm0 =
√
2HrmsE).

Unfortunately, most existing models were developed without regard for the difference

between HrmsW and HrmsE. Moreover, it is not clear which model is the most suit-

able one for computing Hm0. The main objectives of this study are to apply the

existing dissipation models of Hrms to compute the transformation of Hm0 and to

find out the most suitable model for computing Hm0.

2. Compiled Experimental Data

Experimental data on Hm0 transformation from 8 sources, including 1,713 cases,

have been compiled to examine the models. A summary of the compiled experimental

data is given in Table 1. The experiments cover a wide range of wave and beach

conditions, including small- and large-scale laboratory and field experiments. The

experiments of Smith and Vincent [1992], Hamilton and Ebersole [2001], and Smith

and Seabergh [2001] were performed under fixed bed conditions, while the others

were performed under moveable bed (sandy beach) conditions. Only the data in

the nearshore zone (excluding swash zone) are considered in this study. The data

cover a range of deepwater wave steepness (Hm0,0/L0) from 0.001 to 0.069. A brief

summary of the compiled data is provided below.

Table 1. Summary of compiled experimental data.

Sources No. of No. of Apparatus Deepwater wave

cases data points steepness (Hm0,0/L0)

Smith and Vincent [1992] 4 36 small-scale 0.032–0.064

Hamilton and Ebersole [2001] 1 10 small-scale 0.023

Smith and Seabergh [2001] 15 180 small-scale 0.007–0.069

SUPERTANK project 128 2,047 large-scale 0.002–0.064

LIP IID project 95 923 large-scale 0.005–0.039

SAFE project 138 3,557 large-scale 0.009–0.021

DELILAH project 745 5,049 field 0.001–0.036

DUCK94 project 587 6,104 field 0.001–0.041

Total 1,713 17,906 0.001–0.069
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The experiment of Smith and Vincent [1992] was conducted to investigate shoal-

ing and decay of multiple wave trains using a small wave flume of 45.7m long, 0.45m

wide, and 0.9m deep. The bottom of the flume is smooth concrete and rises at a slope

of 1:30 from the middle of the flume. Twelve double-peaked spectra were generated

by superimposing two spectra of the TMA type [Bouws et al., 1985] with a spectral

width parameter of 20. The cases include two double-peak wave period combinations

(Tp = 2.5 s/1.25 s and 2.5 s/1.75 s) with two total wave heights (Hm0 = 15.2 cm and

9.2 cm). The four most energetic cases (i.e. cases 1, 3, 7, and 9) and the dominant

peak periods were used in the present study. Water surface elevations were mea-

sured at nine cross-shore locations using electrical-resistance gages. The significant

wave heights were determined from water surface elevations in the frequency band

0.1 to 2.5 Hz.

The experiment of Hamilton and Ebersole [2001] was conducted to establish

uniform longshore currents in a wave basin, which has dimensions of 30m cross-

shore, 50m longshore, and 1.4m deep. A concrete beach with 1/30 slope has a cross-

shore dimension of 21m and a longshore dimension of 31m. The irregular waves

were developed from the TMA spectrum [Bouws et al., 1985], with a significant

wave height of 0.21m, spectral peak period of 2.5 s, direction 10◦, and spectral

width parameter of 3.3. Water surface elevations were measured at ten cross-shore

locations using capacitance-type wave gages and four other wave gages were fixed in

the longshore direction near the wave generators. The significant wave heights were

analyzed based on a lower cut-off frequency of 0.2 Hz.

The experiment of Smith and Seabergh [2001] was conducted to study the effect

of ebb current on wave shoaling and breaking in an idealized inlet. The experiment

was performed in a wave basin, which has dimensions of 99m long, 46m wide, and

0.6m deep. The physical model included an offshore equilibrium slope, an elliptical

ebb shoal located seaward of the inlet, rubble jetties, and a flat entrance channel.

The tests were performed under the conditions of regular and irregular waves and

with and without currents. Only irregular waves with no current conditions (in total

15 cases) are considered in this study. The irregular waves were developed from the

TMA spectrum [Bouws et al., 1985], with significant wave heights from 0.018 to

0.079m, wave periods from 0.7 to 1.7 s, spectral width parameter of 3.3, and incident

wave direction perpendicular to the shore. Water surface elevations were measured

at eleven cross-shore locations using capacitance-type gages. The significant wave

heights were analyzed over the entire collected water surface elevations.

The SUPERTANK laboratory data collection project [Kraus and Smith, 1994]

was conducted to investigate cross-shore hydrodynamic and sediment transport pro-

cesses from August 5 to September 13, 1992 at Oregon State University, Corvallis,

Oregon, USA. A 76-m-long sandy beach was constructed in a large wave tank of

104m long, 3.7m wide, and 4.6m deep. Wave conditions included both regular and

irregular waves. In all, 20 major tests were performed, and each major test con-

sisted of several cases. Most of the tests (14 major tests) were performed under the
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irregular wave actions. The wave conditions were designed to balance the need for

repetition of wave conditions to move the beach profile toward equilibrium and de-

velopment of a variety of conditions for hydrodynamic studies. The TMA spectral

shape [Bouws et al., 1985] was used to design all irregular wave tests. The compiled

experiments for irregular waves included 128 cases of wave and beach conditions,

covering incident significant wave heights from 0.2 to 1.0m, spectral peak periods

from 3.0 to 10.0 s, and spectral width parameter between 3.3 (broad-banded) and 100

(narrow-banded). Sixteen resistance-type gages were used to measure water surface

elevations across shore. A 10-Hz, fifth-order anti-aliasing Bessel filter was applied

to eliminate noise and avoid aliasing. The wave spectral analysis was performed on

total, low-pass, and high-pass signals. The data from the total signals were used in

this study.

LIP 11D Delta Flume Experiment [Roelvink and Reniers, 1995] was performed at

Delft Hydraulics large-scale wave flume. A 175-m-long sandy beach was constructed

in a large wave tank of 233m long, 5m wide and 7m deep. The two major tests were

performed, i.e. with dune (test no. 1A–1C) and without dune (test no. 2A–2C). Each

major test consisted of several wave conditions. The duration of each wave condition

lasted about 12–21 hr. Initial beach profiles of tests no. 1A and 2A are equilibrium

Dean-type beaches. The beach profiles of other tests (test no. 1B, 1C, 2B, 2E, and

2C) were initiated using the final profile configuration of the previous test. Broad

banded random waves, JONSWAP spectrum [Hasselmann et al., 1973] with spectral

width parameter of 3.3, were generated. During the run, the sand bar feature grows

and becomes more pronounced after some time. Ten fixed wave gages were deployed

in the flume to measure water surface elevations. To avoid aliasing, each signal

was filtered by analog filter at 5 Hz before analyzing. The compiled experiments

included 95 cases of wave and beach conditions, covering incident significant wave

heights from 0.6 to 1.4m, spectral peak periods from 5 to 8 s, and water level from

4.1 to 4.6 m.

The SAFE Project [Dette et al., 1998] was carried out to improve the methods

of design and performance assessment of beach nourishment. The SAFE Project

consisted of four activities, one of which was to perform experiments in a large-scale

wave flume in Hannover, Germany. A 250-m-long sandy beach was constructed in a

large wave tank of 300m long, 5m wide and 7m deep. The test program was divided

into two major phases. The first phase (cases A, B, C, and H) was aimed to study

the beach deformation of equilibrium profile with different beach slope changes.

The equilibrium beach profile was adopted from Bruun’s [1954] approach. In the

second phase, the sediment transport behaviors of dunes with and without struc-

tural aid were investigated (cases D, E, F , and G). The TMA spectral shape [Bouws

et al., 1985] was used to design all irregular wave tests. The tests were performed

under normal wave conditions and storm wave conditions. A total of 27 wave gages

was installed over a length of 175m along one wall of the flume. The records from

all gages were checked for plausibility before analysis. The compiled experiments
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included 138 cases of wave and beach conditions, covering incident significant wave

heights from 0.65 to 1.20m, mean wave period of 5.5 s, and water level from

4.0 to 5.0m.

DELILAH Project [Birkemeier et al., 1997] was conducted on the barred beach

in Duck, North Carolina, USA in October 1990. The objective of the project is to

improve fundamental understanding and modeling of surf zone physics. The experi-

ment emphasized surf zone hydrodynamics in the presence of a changing barred

bathymetry. Nine pressure gauges were installed to measure the nearshore wave

heights across-shore and one of them was in the swash zone. Tidal elevations were

measured at the FRF pier. The significant wave heights were determined from water

surface elevations in the frequency band 0.04–0.4 Hz. The measured wave heights

are available at http://dksrv.usace.army.mi/jg/del90dir. The data of wave heights

and water depths measured during Oct 2–21, 1990 are available. The wave heights

and water depths data are available at approximately every 34 min. A total of 776

sets of measured wave heights and water depths are available on the data server.

A data set that has only a few points of measurements is not suitable to use for

verifying the models. A total of 745 data sets are considered in this study. The

incident waves (at the most offshore-ward position) cover the range of significant

wave height from 0.4 to 0.7m, wave period from 3.4 to 13.5 s, and direction from

−36◦ to 2◦ (counter-clockwise from shore normal).

DUCK94 Project [Herbers et al., 2006] was conducted on the barred beach in

Duck, North Carolina, USA during Aug–Oct 1994. The project objective is the

same as that of DELILAH. The experiment emphasized surf zone hydrodynamics,

sediment transport and morphological evolution. Thirteen pressure gauges were

installed to measure the nearshore wave heights across-shore and one of them was

in the swash zone. Tidal elevations were measured at the FRF pier. The signifi-

cant wave heights were determined from water surface elevations in the frequency

band 0.05–0.25 Hz. The measured wave heights, and water depths are available at

http://dksrv.usace.army.mi/jg/dk94dir. The wave heights and water depths at every

3 h that were measured during Aug 15–Oct 31, 1994 are used in the present study.

Excluding the data sets that have only a few points of measurements, a total of

587 data sets are considered in the present study. The incident waves (at the most

offshore-ward position) cover the range of significant wave height from 0.2 to 2.6m,

wave period from 4.4 to 11.4 s, and direction from −56◦ to 71◦ (counter-clockwise

from shore normal).

3. Model Development

When waves propagate to the nearshore zone, wave profiles steepen and eventually

waves break. Once the waves start to break, a part of wave energy is transformed into

turbulence and heat, and wave height decreases towards the shore. In the present

study, wave height transformation is computed from the energy flux conservation
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equation. It is

∂(Ecg cos θ)

∂x
= −DB (1)

where E is the wave energy density, cg is the group velocity, θ is the mean wave

angle, x is the distance in cross shore direction, andDB is the energy dissipation rate

due to wave breaking which is zero outside the surf zone. The energy dissipation rate

due to bottom friction is neglected. In the present study, all variables are based on

the linear wave theory and the Snell’s law is employed to describe wave refraction as

sin θ

c
= constant (2)

where c is the phase velocity.

For the spectral analysis, the moments of a wave spectrum are important in

characterizing the spectrum and useful in relating the spectral description of waves

to the significant wave height. The representative value of the total wave energy is

the zero moment of wave spectrum (m0), which can be obtained by integrating the

wave spectrum (S(f)) in the full range of frequency (f). The integral is, by definition

of the wave spectrum, equal to the variance of the surface elevation [Goda, 2000].

Therefore, the zero moment of the spectrum (m0) can be expressed as

m0 =

∫

∞

0
S(f)df =

1

tn

∫ tn

0
η2dt (3)

where η is the water surface elevation, t is time, and tn is the total time of the wave

record.

The zero moment (m0) can be related to the significant wave height by con-

sidering the total energy density of a wave record. From linear wave theory, the

total energy density is twice the potential energy density, which can be written in

terms of the surface elevation as

E = 2Ep =
2

tn

∫ tn

0

ρgη2

2
dt = ρgm0 (4)

where Ep is the potential energy density, ρ is the water density, and g is the accele-

ration due to gravity.

As the spectral significant wave height (Hm0) is defined as Hm0 = 4
√
m0, the

total energy density of a wave record [Eq. (4)] can be written in terms of Hm0 as

E =
1

16
ρgH2

m0 (5)

Substituting Eq. (5) into Eq. (1), the governing equation for computing the

transformation of Hm0 can be written as

ρg

16

∂(H2
m0cg cos θ)

∂x
= −DB (6)
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The transformation of Hm0 can be computed from the energy flux balance equa-

tion [Eq. (6)] by substituting the formula of the energy dissipation rate (DB) and

numerically integrating from offshore to shoreline. In the offshore zone, the energy

dissipation rate is set to zero. The difficulty of the energy flux conservation approach

is how to formulate the energy dissipation rate caused by the breaking waves. Various

dissipation models have been proposed but most of them were proposed in terms

of Hrms. The selected existing dissipation models are described in the following

subsection.

3.1. Existing energy dissipation models

3.1.1. Model overview

The first attempt at examination is to collect the existing dissipation models for

computing Hrms. Because of the complexity of the wave breaking mechanism, most

of the energy dissipation models were developed based on the empirical or semi-

empirical approach calibrated with the measured data. Brief reviews of some selected

existing dissipation models are described below.

(a) Battjes and Janssen [1978], hereafter referred to as BJ78, proposed to compute

DB by multiplying the fraction of irregular breaking waves (Qb) by the energy

dissipation of a single broken wave. The energy dissipation of a broken wave

is described by the bore analogy and assuming that all broken waves have a

height equal to breaking wave height (Hb). The model was proposed as

DB = K1Qb
ρgH2

b

4Tp
(7)

where Tp is the spectral peak period and K1 is the adjustable coefficient. The

proposed value of K1 is 1.0. The fraction of breaking waves (Qb) was derived

based on the assumption that the probability density function (pdf ) of wave

heights could be modeled with a Rayleigh distribution truncated at the breaking

wave height (Hb) and all broken waves have a height equal to the breaking wave

height. The result is

1−Qb

− lnQb
=

(

Hrms

Hb

)2

(8)

in which the breaking wave height (Hb) is determined from the formula of Miche

[1944] with additional coefficient 0.91 as

Hb = K2L tanh(0.91 kh) (9)

where L is the wavelength related to Tp, k is the wave number, h is the mean

water depth, K2 is the adjustable coefficient. The proposed value of K2 is

0.14. The DB model of BJ78 has been used successfully in many applications
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Table 2. Values of constants
a0 to a7 for computing Qb.

Constants Values

a0 0.2317072

a1 −3.6095814

a2 22.5948312

a3 −72.5367918

a4 126.8704405

a5 −120.5676384

a6 60.7419815

a7 −12.7250603

[e.g. Abadie et al., 2006; Johnson, 2006; and Oliveira, 2007]. As Eq. (8) is an

implicit equation, it has to be solved for Qb by an iteration technique, or by a

1-D look-up table [Southgate and Nairn, 1993]. It can be also determined from

the polynomial equation as

Qb =

7
∑

n=0

an

(

Hrms

Hb

)n

(10)

where an is the constant of nth term. A multiple regression analysis is used to

determine the constants a0 to a7. The correlation coefficient (R2) of Eq. (10)

is very close to 1 (0.99999999). The values of constants a0 to a7 are shown in

Table 2. Equation (10) is applicable for 0.25 < Hrms/Hb < 1.0. For Hrms/Hb ≤
0.25, the value of Qb is very small and can be set at zero. The value of Qb is

set to be 1.0 when Hrms/Hb ≥ 1.0. As Eqs. (8) and (10) give almost identical

results (R2 = 0.99999999), for convenience, Eq. (10) is used in this study.

(b) Thornton and Guza [1983], hereafter referred to as TG83, proposed to compute

DB by integrating from 0 to∞ the product of the dissipation for a single broken

wave and the pdf of the breaking wave height. The energy dissipation of a

single broken wave is described by their bore model which is slightly different

from the bore model of BJ78. The pdf of breaking wave height is expressed

as a weighting of the Rayleigh distribution. By introducing two forms of the

weighting, two models of DB were proposed. After calibrating with small-scale

experimental data, the models were proposed to be model 1 (hereafter referred

to as TG83a):

DB = K3
3
√
π

4

(

Hrms

Hbh

)4 ρgH3
rms

4Tph
(11)

in which

Hb = K4h (12)
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model 2 (hereafter referred to as TG83b):

DB = K5
3
√
π

4

(

Hrms

Hb

)2{

1−
1

[1 + (Hrms/Hb)2]
2.5

}

ρgH3
rms

4Tph
(13)

in which

Hb = K6h (14)

where K3 to K6 are the adjustable coefficients. The proposed values of K3 to

K6 are 0.51, 0.42, 0.51, and 0.42, respectively.

(c) Battjes and Stive [1985], hereafter referred to as BS85, used the same energy

dissipation model as that of BJ78.

DB = K7Qb
ρgH2

b

4Tp
(15)

where K7 is the adjustable coefficient. The proposed value of K7 is 1.0. They

modified the model of BJ78 by recalibrating the additional coefficient in the

breaker height formula [Eq. (9)]. The coefficient was related to the deepwater

wave steepness (Hrms,0/L0). After calibration with small-scale and field experi-

ments, the breaker height formula was modified to be

Hb = K8L tanh

{[

0.57 + 0.45 tanh

(

33
Hrms,0

L0

)]

kh

}

(16)

where Hrms,0 is the deepwater root-mean-square wave height, L0 is the deep-

water wavelength, and K8 is the adjustable coefficient. The proposed value of

K8 is 0.14. Hence, the model of BS85 is similar to that of BJ78 except for the

formula of Hb.

(d) Southgate and Nairn [1993], hereafter referred to as SN93, modified the model

of BJ78 by changing the expression of energy dissipation of a breaker height

from the bore model of BJ78 to be the bore model of TG83 as

DB = K9Qb
ρgH3

b

4Tph
(17)

where K9 is the adjustable coefficient. The proposed value of K9 is 1.0. The

fraction of breaking waves Qb is determined from Eq. (8). The breaker height

(Hb) is determined from the formula of Nairn [1990] as

Hb = K10h

[

0.39 + 0.56 tanh

(

33
Hrms,0

L0

)]

(18)

whereK10 is the adjustable coefficient. The proposed value of K10 is 1.0. Hence,

the model of SN93 is similar to that of BJ78 except for the formulas of energy

dissipation of a single breaker height and Hb.
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(e) Baldock et al. [1998], hereafter referred to as BHV 98, proposed to compute

DB by integrating from Hb to ∞ the product of the energy dissipation for a

broken wave and the pdf of wave heights. The energy dissipation of a broken

wave is described by the bore model of BJ78. The pdf of wave heights inside

the surf zone was assumed to be the Rayleigh distribution. The result is

DB =























K11 exp

[

−
(

Hb

Hrms

)2]ρg(H2
b +H2

rms)

4Tp
for Hrms < Hb

K11 exp[−1]
2ρgH2

b

4Tp
for Hrms ≥ Hb

(19)

where K11 is the adjustable coefficient. The proposed value of K11 is 1.0. The

breaker height (Hb) is determined from the formula of Nairn [1990] as

Hb = K12h

[

0.39 + 0.56 tanh

(

33
Hrms,0

L0

)]

(20)

where K12 is the adjustable coefficient. The proposed value of K12 is 1.0.

(f) Rattanapitikon and Shibayama [1998], hereafter referred to as RS98, modified

the model of BJ78 by changing the expression of energy dissipation of a single

broken wave from the bore concept to the stable energy concept as

DB = K13Qb
cρg

8h



H2
rms −

(

h exp

(

−0.58− 2.0
h

√
LHrms

))2


 (21)

where K13 is the adjustable coefficient and the fraction of breaking wave (Qb)

is computed from Eq. (8). The proposed value of K13 is 0.10. The breaking

wave height (Hb) is computed by using the breaking criteria of Goda [1970] as

Hb = K14Lo

{

1− exp

[

−1.5
πh

Lo
(1 + 15m4/3)

]}

(22)

where m is the average bottom slope and K14 is the adjustable coefficient. The

proposed value of K14 is 0.10.

(g) Ruessink et al. [2003], hereafter referred to as RWS03, used the same energy

dissipation model as that of BHV 98 [Eq. (19)] but a different breaker height

formula. The breaker height formula of BJ78 [Eq. (9)] is modified by relat-

ing the additional coefficient with the terms kh. After calibration with field

experiments, the model was proposed to be

DB =























K15 exp

[

−
(

Hb

Hrms

)2
]

ρg(H2
b +H2

rms)

4Tp
for Hrms < Hb

K15 exp[−1]
2ρgH2

b

4Tp
for Hrms ≥ Hb

(23)
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in which

Hb = K16L tanh[(0.86kh + 0.33)kh] (24)

where K15 and K16 are the adjustable coefficients. The proposed values of K15

and K16 are 1.0 and 0.14, respectively.

(h) Rattanapitikon et al. [2003], hereafter referred to as RKS03, developed an

energy dissipation model based on the representative wave approach. They

applied the dissipation model for regular waves for computing the energy dissi-

pation of irregular waves. It was found that the stable energy concept of Dally

et al. (1985) can be used to describe the energy dissipation of irregular wave

breaking. After calibration with laboratory and field experiments, the model

was proposed to be

DB = K17
ρgcg
8h

[H2
rms − (0.42Hb)

2] (25)

where K17 is the adjustable coefficient. The proposed value of K17 is 0.12. The

value of DB is set to be zero when Hrms ≤ 0.42Hb and the breaker height (Hb)

is computed by using the breaking criteria of Miche [1944] as

Hb = K18L tanh(kh) (26)

where K18 is the adjustable coefficient. The proposed value of K18 is 0.14.

(i) Rattanapitikon [2007], hereafter referred to as R07, modified six existing models

by changing the breaker height formulas in the dissipation models. A total

of 42 possible models were considered in the study. Considering accuracy,

variance of errors, and simplicity of the possible models, the following model

was recommended

DB = K19
ρgcg
8h

[H2
rms − (0.47Hb)

2] (27)

where K19 is the adjustable coefficient. The proposed value of K19 is 0.07. The

value of DB is set to be zero when Hrms ≤ 0.47Hb and the breaker height (Hb)

is computed by modifying the breaking criteria of BJ78 as

Hb = K20L tanh(0.68kh) (28)

where K20 is the adjustable coefficient. The proposed value of K20 is 0.14.

Hence, the model of R07 is similar to that of RKS03 except for the formula of

Hb.

(j) Alsina and Baldock [2007], hereafter referred to as AB07, modified the model

of BHV 98 by changing the energy dissipation of a broken wave from the bore

model of BJ78 to be the bore model of TG83. The correction is introduced to

prevent a shoreline singularity that can develop in shallow water. They proposed
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an alternative dissipation model as

DB = K21
ρgH3

rms

4Tph

{[

(

Hb

Hrms

)3

+
3

2

Hb

Hrms

]

exp

[

−
(

Hb

Hrms

)2
]

+
3

4

√
π

[

1− erf

(

Hb

Hrms

)]

}

(29)

where erf is the error function and K21 is the adjustable coefficient. The pro-

posed value of K21 is 1.0. The breaking wave height (Hb) is determined from

the formula of BS85 as

Hb = K22L tanh

{[

0.57 + 0.45 tanh

(

33
Hrms,0

L0

)]

kh

}

(30)

where K22 is the adjustable coefficient. The proposed value of K22 is 0.14.

(k) Janssen and Battjes [2007], hereafter referred to as JB07, derived the same

dissipation model as that of AB07 (independently of the study of AB07). The

main difference between JB07 and AB07 is the breaker height formula. Their

dissipation model can be summarized as

DB = K23
ρgH3

rms

4Tph

{[

(

Hb

Hrms

)3

+
3

2

Hb

Hrms

]

exp

[

−
(

Hb

Hrms

)2
]

+
3

4

√
π

[

1− erf

(

Hb

Hrms

)]

}

(31)

where K23 is the adjustable coefficient. The proposed value of K23 is 1.0. The

breaking wave height (Hb) is determined from the formula of Nairn [1990] as

Hb = K24h

[

0.39 + 0.56 tanh

(

33
Hrms,0

L0

)]

(32)

where K24 is the adjustable coefficient. The proposed value of K24 is 1.0.

(l) Rattanapitikon and Sawanggun [2008], hereafter referred to as RS08, modified

the model of BJ78 by changing the expression of fraction of breaking waves.

In contrast to the common derivation, the fraction of breaking waves was not

derived from the assumed pdf of wave heights, but derived directly from the

measured wave heights. After calibration, the model can be expressed as

DB = K25
ρgH2

b

4T

[

2.096

(

Hrms

Hb

)2

− 1.601

(

Hrms

Hb

)

+ 0.293

]

for
Hrms

Hb
> 0.46

(33)
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where K25 is the adjustable coefficient. The proposed value of K25 is 1.0. The

value of DB is set to be zero when Hrms/Hb ≤ 0.46 and the breaking wave

height (Hb) is determined from the formula of BS85 as

Hb = K26L tanh

{[

0.57 + 0.45 tanh

(

33
Hrms,0

L0

)]

kh

}

(34)

where K26 is the adjustable coefficient. The proposed value of K26 is 0.14.

(m) Apotsos et al. [2008], hereafter referred to as AREG08, modified six existing

dissipation models by recalibrating the coefficient in the breaker height for-

mulas incorporated in the dissipation models. The coefficient was related to

the deepwater wave height (Hrms,0). The comparison showed that the model

TG83b [Eq. (13)] with new breaker height formula gives the smallest error. The

modified model was proposed to be

DB = K27
3
√
π

4

(

Hrms

Hb

)2{

1−
1

[1 + (Hrms/Hb)2]2.5

}

ρgH3
rms

4Tph
(35)

Hb = K28[0.18 + 0.40 tanh(0.9Hrms,0)]h (36)

where K27 and K28 are the adjustable coefficients. The proposed values of K27

and K28 are 1.0 and 1.0, respectively.

3.1.2. Model analysis

The development of the existing dissipation models may be classified into two

approaches, i.e. parametric wave approach and stable energy approach. The para-

metric wave approach seeks to reduce the computational effort by describing the

energy dissipation rate in terms of time-averaged parameter. Its description is

reduced to a single representative wave height, period, and direction. As this

approach relies on the macroscopic features of breaking waves and predicts only

the transformation of root-mean-square (rms) wave height, it is suitable when

a detail wave height distribution is not needed. The approach assumes that the

Rayleigh pdf (or modified Rayleigh pdf ) is valid in the surf zone. The average rate

of energy dissipation is described by integrating the product of energy dissipation of

a single broken wave and the probability of occurrence of breaking waves. Most of the

selected models (except RKS03 and R07) were developed based on this approach.

The models were developed based on the work of BJ78. The significant differences

of those models are the assumption on probability of occurrence of breaking waves,

the formulation of energy dissipation of a single broken wave, and the breaker height

formula. The models may be grouped into three groups based on the assumed prob-

ability of occurrence of breaking waves. The first group (BJ78, BS85, SN93, RS98,

and RS08) describes the pdf of wave heights in the surf zone through a sharp cutoff
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Rayleigh distribution, truncated at a breaker height (Hb) at which all waves are

assumed to break and have heights equal to the breaker height. The second group

(TG83a, TG83b, and AREG08) describes the probability of occurrence of breaking

waves through a weighted Rayleigh distribution. The third group (BHV 98, RWS03,

AB07, and JB07) describes the pdf of wave heights in the surf zone through a com-

plete Rayleigh distribution and the wave heights which are greater than a breaker

height (Hb) are considered as broken waves.

The stable energy concept was introduced by Dally et al. [1985] for computing

the energy dissipation rate due to regular wave breaking. The model was developed

based on the measured breaking wave height on the horizontal bed. When a breaking

wave enters an area with a horizontal bed, the breaking continues (the wave height

decreases) until some stable wave height is attained. The development of the stable

energy concept was based on an observation of stable wave height on horizontal

slopes. Dally et al. [1985] assumed that the energy dissipation rate was proportional

to the difference between the local energy flux per unit depth and the stable energy

flux per unit depth. The energy dissipation will be zero if the wave height is less

than the stable wave height. The model seems to be widely used for computing

regular wave height transformation. For irregular waves, RKS03 and R07 showed

that the stable energy concept is applicable for computing the transformation of

Hrms. The approach has the merits of easy understanding, simple application and

it is not necessary to assume the shape of the pdf of wave heights. The stable wave

heights of the RKS03 and R07 were proposed in terms of breaker heights. The

model of RKS03 used the breaker height formula of Miche [1944], while the model

of R07 used the breaker height formula of BJ78. It is known that the process of

wave breaking in shallow water is influenced by the incident wave steepness and

bottom slope. However, the effect of beach slope is not included in the stable energy

models. The effect of beach slope may be included in the models by changing the

breaker height formula from Miche [1944] or BJ78 to be the other breaker height

formula which includes the effect of beach slope.

These two approaches rely on the macroscopic features of breaking waves and

predict only the transformation of Hrms. The two approaches have different advan-

tages and disadvantages. The advantage of the stable energy approach is that it is

able to stop wave breaking over bar-trough or step profiles, while the parametric

wave approach gives a continuous dissipation due to wave breaking. However, the

parametric approach may not give much error in predicting wave height in the

trough region because the values of Hrms/Hb and Qb are very small in the trough.

The prediction may not be locally precise in the trough region, but generally pat-

terns of wave transformation were reported adequately [Battjes and Janssen, 1978].

The advantage of the parametric wave approach is that it is able to compute a

fraction of wave breaking (which is useful for computing undertow and suspended

sediment concentration), while the fraction of wave breaking cannot be determined

from the stable energy approach.
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3.2. Model adaptation

As the existing dissipation models (shown in Sec. 3.1) were proposed in terms of

Hrms, the models have to be converted to be expressed in terms Hm0 before apply-

ing to compute Hm0. By assuming that Hm0 =
√
2Hrms, the existing dissipation

models are applied for computing the transformation ofHm0 by substitutingHrms =

Hm0/
√
2 into the models (shown in Sec. 3.1). Then the wave height transformation

models can be constructed by substituting the dissipation models into the energy

flux balance equation [Eq. (6)]. Nevertheless, it is not clear which dissipation model

is the most suitable one for computing Hm0. Therefore, all of them were used to

examine their applicability on simulating Hm0.

4. Model Examination

The objective of this section is to examine the applicability of the fourteen existing

dissipation models in simulating Hm0. The measured Hm0 from the compiled experi-

ments (shown in Table 1) are used to examine the accuracy of existing models. The

transformation of Hm0 is computed by numerical integration of the energy flux

balance equation [Eq. (6)] with the existing energy dissipation models. A backward

finite difference scheme is used to solve the energy flux balance equation [Eq. (6)].

The basic parameter for determination of the overall accuracy of a model is the

average root-mean-square relative error (ERavg), which is defined as

ERavg =

∑tn
j=1ERgj

tn
(37)

where ERgj is the root-mean-square relative error of the data group j (the group

number), and tn is the total number of groups. The small value of ERavg indicates

good overall accuracy of the model. The root-mean-square relative error of the data

group (ERg) is defined as

ERg = 100

√

∑ng
i=1(Hci −Hmi)2
∑ng

i=1H
2
mi

(38)

where i is the wave height number, Hci is the computed wave height of number

i, Hmi is the measured wave height of number i, and ng is the total number of

measured wave heights in each data group.

The compiled experiments are separated into three groups according to the

experiment scale, i.e. small-scale, large-scale and field experiments. It is expected

that a good model should be able to predict well for the three groups of different

scale. As the present study concentrates on only the transformation of wave height

(excluding wave set-up), the measured mean water depth is used in the computation.

However, the measured wave set-up is not available for the field data. The water

depth including tidal change is used for the field experiments.
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Table 3. The errors ERg and ERavg of each dissipation model for three groups of experiment-scales
by using the default coefficients (measured data from Table 1).

Models DB formulas Default coefficients ERg ERavg

Small-scale Large-scale Field

BJ78 Eq. (7) K1 = 1.0, K2 = 0.14 9.7 10.5 17.7 12.6

TG83a Eq. (11) K3 = 0.51, K4 = 0.42 13.1 16.1 11.2 13.4

TG83b Eq. (13) K5 = 0.51, K6 = 0.42 11.6 8.1 11.3 10.3

BS85 Eq. (15) K7 = 1.0, K8 = 0.14 8.3 6.7 10.2 8.4

SN93 Eq. (17) K9 = 1.0, K10 = 1.0 9.6 9.4 14.5 11.1

BHV 98 Eq. (19) K11 = 1.0, K12 = 1.0 7.9 6.5 13.5 9.3

RS98 Eq. (21) K13 = 0.10, K14 = 0.10 12.4 7.1 10.1 9.9

RWS03 Eq. (23) K15 = 1.0, K16 = 0.14 10.8 7.8 10.0 9.5

RKS03 Eq. (25) K17 = 0.12, K18 = 0.14 8.9 8.6 12.9 10.1

R07 Eq. (27) K19 = 0.07, K20 = 0.14 7.5 7.2 9.3 8.0

AB07 Eq. (29) K21 = 1.0, K22 = 0.14 7.8 7.1 10.5 8.5

JB07 Eq. (31) K23 = 1.0, K24 = 1.0 8.8 7.2 11.1 9.0

RS08 Eq. (33) K25 = 1.0, K26 = 0.14 7.9 6.7 10.5 8.3

AREG08 Eq. (35) K27 = 1.0, K28 = 1.0 10.3 9.1 12.8 10.7

Using the default coefficients (K1−K28) in the computations, the errors (ERg

and ERavg) of each dissipation model on predicting Hm0 for three groups of

experiment-scales have been computed and are shown in Table 3.

It can be seen from Table 3 that the models of R07, RS08, BS85, and AB07

give similar overall accuracy (8.0 ≤ ERavg ≤ 8.5) and give better accuracy than

the others. For computing beach deformation, a wave model has to be run many

times to account the frequent updating of beach profile. The error from the wave

model may be accumulated from time to time. Therefore, for computing the beach

deformation, the error of the wave model should be kept as small as possible. Hence,

the best model should be selected for incorporating the beach deformation model.

It can be seen from Table 3 that there is only one model (model of R07) that gives

good predictions for the three groups of experiment-scales. Moreover, the model

R07 also gives the best overall prediction (ERavg = 8.0). However, because some

dissipation models were developed with limited experimental conditions and it is not

clear whether the models were developed for statistical-based or spectral-based wave

heights, the coefficients in each model may not be the optimal values for computing

Hm0. Therefore, the errors in Table 3 should not be used to judge the applicability

of the existing models. The coefficients in all models should be recalibrated before

comparing the applicability of the models.

Each model is calibrated by determining the optimal values of coefficients K

which yield the minimum ERavg . In order to determine the universal coefficients
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Table 4. The errors ERg and ERavg of each dissipation model for three groups of experiment-scales
by using the calibrated coefficients (measured data from Table 1).

Models DB formulas Calibrated coefficients ERg ERavg

Small-scale Large-scale Field

BJ78 Eq. (7) K1 = 0.92, K2 = 0.12 13.1 7.9 12.7 11.2

TG83a Eq. (11) K3 = 0.52, K4 = 0.45 11.0 15.9 12.4 13.1

TG83b Eq. (13) K5 = 0.42, K6 = 0.41 10.5 7.9 12.2 10.2

BS85 Eq. (15) K7 = 0.75, K8 = 0.13 7.6 6.1 10.4 8.0

SN93 Eq. (17) K9 = 1.4, K10 = 0.95 7.5 7.1 11.5 8.7

BHV 98 Eq. (19) K11 = 0.88, K12 = 0.97 7.7 6.5 13.3 9.2

RS98 Eq. (21) K13 = 0.10, K14 = 0.10 12.4 7.1 10.1 9.9

RWS03 Eq. (23) K15 = 1.0, K16 = 0.15 9.1 7.9 10.3 9.1

RKS03 Eq. (25) K17 = 0.07, K18 = 0.11 9.3 7.2 9.5 8.7

R07 Eq. (27) K19 = 0.07, K20 = 0.14 7.5 7.2 9.3 8.0

AB07 Eq. (29) K21 = 0.86, K22 = 0.13 7.8 6.4 10.2 8.1

JB07 Eq. (31) K23 = 0.70, K24 = 0.83 6.9 5.8 10.8 7.8

RS08 Eq. (33) K25 = 0.75, K26 = 0.13 7.6 6.2 10.4 8.1

AREG08 Eq. (35) K27 = 0.80, K28 = 0.90 10.7 8.6 12.2 10.5

M1 Eq. (42) K29 = 0.27 6.7 7.2 9.2 7.7

M2 Eq. (43) K30 = 0.75 24.2 8.6 13.7 15.5

K, all compiled experimental data are used to calibrate the models. Using default

coefficients K, wave height transformation for all experiments have been computed

and then the average error (ERavg) of the model has been computed from the

measured and computed wave heights. The computations are repeated for various

choices of coefficients K, until the minimum error (ERavg) is obtained.

The calibrated coefficients K1 to K28 are summarized in the third column of

Table 4. Using the calibrated coefficients (K1−K28) in the computations, the errors

(ERg and ERavg) of each dissipation model on predicting Hm0 for three groups of

experiment-scales have been computed and are shown in Table 4. The results can

be summarized as follows:

(a) The error (ERg) of the calibrated models is in the range of 5.8 to 15.9%. The

model of JB07 gives the best predictions for small-scale and large-scale experi-

ments, while the model of R07 gives the best prediction for field experiments.

(b) Considering overall accuracy (ERavg) of the models, the overall accuracies of

the models in descending order are JB07, R07, BS85, RS08, AB07, RKS03,

SN93, RWS03, BHV 98, RS98, TG83b, AREG08, BJ78, and TG83a. The

first five of which give similar accuracy (7.8 ≤ ERavg ≤ 8.1) and give better

accuracy than the others. The accuracy of the five models seems to be sufficient

for the design of coastal structures. As the model of JB07 gives the best overall
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prediction (ERavg = 7.8), it seems to be the most suitable one for incorporating

the beach deformation model. Since the model of JB07 was developed based

on a full Rayleigh distribution of wave heights (which is the individual wave

analysis or statistical analysis), the model should be appropriate for computing

the statistical-based wave heights. Moreover, several researchers [e.g. Klopman,

1996; Battjes and Groenendijk, 2000; Mendez et al., 2004] showed that the

Rayleigh distribution is not valid in the surf zone. Surprisingly, the model of

JB07 gives the best overall prediction.

(c) The main difference among the models of TG83a, TG83b, AREG08, AB07,

and JB07 is the distribution function of breaking wave heights. As the models

of AB07 and JB07 are significantly better than those of TG83a, TG83b and

AREG08, it is expected that the key step change and improvement in the para-

metric models was the adoption of a Rayleight pdf for all waves as proposed by

Baldock et al. [1998].

(d) The main difference among the models of BHV 98, RWS03, AB07, and JB07

is the energy dissipation of a single broken wave, i.e. BHV 98 and RWS03 used

the bore model of BJ78, while AB07 and JB07 used the bore model of TG83.

The results show that the bore model of TG83 is more suitable to incorporate

in the models.

(e) Comparing among the models developed based on the parametric wave approach

(BJ78, TG83a, TG83b, BS85, SN93, BHV 98, RS98, RWS03, AB07, JB07,

RS08, and AREG08), the model JB07 gives the best overall prediction. The sig-

nificant differences of those models are the assumption on probability of occur-

rence of breaking waves, the formulation of energy dissipation of a single broken

wave, and the breaker height formula. This indicates that the combination which

is proposed by JB07 is the most suitable one for computing the transformation

of Hm0.

(f) Comparing between the models developed based on the stable energy approach

(RKS03 and R07), the model R07 gives the better overall prediction than the

other. This indicates that the breaker height formula used by R07 is more suit-

able than the other.

(g) Either parametric wave approach or stable energy approach can be used to com-

pute the transformation of Hm0. The best model for parametric wave approach

is JB07, while the best model for stable energy approach is R07.

(h) Although the model of JB07 gives the best overall prediction, it does not give

good predictions for all experiment-scales. The model gives good predictions

for small-scale and large-scale experiments but gives fair prediction for field

experiments. Another model, which may be used to incorporate in the beach

deformation model, is the model of R07. The model gives the second best overall

prediction (ERavg = 8.0) and gives good predictions for all experiment-scales.

Moreover, the model of R07 is much simpler than that of JB07.
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5. Model Modification

Because of the simplicity and good predictions for all experiment-scales of R07’s

model, the model was selected to modify for better accuracy. The model of R07 can

be written in general form as

DB = 0.07
ρgcg
8h

[0.5H2
m0 −H2

st] (39)

where Hst is the stable wave height. The model of R07 was developed based on the

stable energy wave concept. The concept was firstly introduced by Dally et al. [1985]

for computing energy dissipation of regular wave breaking. The energy dissipation is

assumed to be proportional to the difference between the local energy flux and the

stable energy flux. Based on a wide range of experimental conditions, Rattanapitikon

et al. [2003] showed that the following stable wave height formulas could also be used

for computing the energy dissipation of regular wave breaking.

(a) Dally et al. [1985]:

Hst = 0.4h (40)

(b) Rattanapitikon and Shibayama [1998]:

Hst = h exp

(

−0.36− 1.25
h

√
LH

)

(41)

It is expected that the accuracy of the R07’s model [Eq. (39)] could be improved

by using the suitable Hst formula, and the formula for regular wave breaking

may be applicable for irregular wave breaking. In this section, an attempt has

been made to modify the model of R07 by changing the terms of stable wave

height. Substituting Eqs. (40) and (41) into Eq. (39), the two modified energy

dissipation models for computing Hm0 (hereafter referred to as M1 and M2,

respectively) can be expressed as

M1: DB = 0.07
ρgcg
8h

[0.5H2
m0 − (K29h)

2] (42)

M2: DB = 0.07
ρgcg
8h

[

0.5H2
m0 −

(

K30h exp

(

−0.36 − 1.25
21/4h

√
LHm0

))2
]

(43)

where K29−K30 are the adjustable coefficients.

The calibration of the two modified dissipation models is performed by using

the measured data shown in Table 1. The calibrations are conducted by gradually

adjusting the coefficients until the minimum error (ERavg of each model is obtained.

The calibrated coefficients of M1 and M2 and the errors (ERg and ERavg for three

groups of experiment-scales are shown in the last two rows of Table 4. The results

can be summarized as follows:
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(a) Comparing between the two modified models, the model M1 is much better

than the model M2. The model M2 gives too much errors and it should not be

used for computing Hm0.

(b) Comparing among the models developed based on the stable energy approach

(RKS03, R07, M1, and M2), the model M1 gives the best overall prediction.

This indicates that the stable wave height formula of Dally et al. [1985] is the

most suitable one for computing the transformation of Hm0.

(c) Comparing with the existing models, the model M1 is the simplest model.

Because of the simplicity of M1, it is expected that this model will give less

accuracy than the others. Surprisingly, the result shows that the simplest model

gives the best overall prediction. It should be noted that the stable wave height in

the model M1 is proportional to the breaker height formula of TG83 [Eq. (12)].

Attempts have been made to modify the modelM1 by using other breaker height

formulas [Eqs. (9), (16), (18), (22), (24), and (36)]. However, it was found that

no model gives better prediction than that of M1.

(d) Comparing between the best existing model (JB07) and the model M1, the

model M1 gives slightly better overall prediction than that of JB07. The model

of M1 gives the best predictions for small-scale and field experiments, while the

model of JB07 gives the best prediction for large-scale experiments. Moreover,

the model M1 gives good predictions for all experiment-scales while the model

JB07 does not. Considering the complexity of the models, the modelM1 is much

simpler than that of JB07. As the simple model gives slightly better accuracy

than the more complicated model, it may not necessary to use the complicated

model to compute the transformation of Hm0.

(e) In the present study, the most suitable model is selected based on accuracy

and simplicity of the models. Considering the accuracy of the models, the

models M1, JB07, R07, BS85, RS08, and AB07 give nearly the same accuracy

(7.7 ≤ ERavg ≤ 8.1) and give better accuracy than the others. Considering

the simplicity of the 6 models, the formula of model M1 is the simplest one.

Therefore, the model M1 is judged to be the most suitable model. Substituting

the calibrated coefficients into the model M1, the recommended model can be

written as

ρg

16

∂(H2
m0cg cos θ)

∂x
= −0.07

ρgcg
8h

[0.5H2
m0 − (0.27h)2 ] (44)

The greatest asset of the model M1 is its simplicity and ease of application, i.e.

the transformation of Hm0 from offshore to shoreline can be computed by using only

one equation [Eq. (44)]. The model can be converted to compute the transformation

of spectral-based root-mean-square wave height (HrmsE) by substituting Hm0 =√
2HrmsE into Eq. (44). The result is

ρg

8

∂(H2
rmsEcg cos θ)

∂x
= −0.07

ρgcg
8h

[H2
rmsE − (0.27h)2] (45)
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Fig. 1. Examples of measured and computed Hm0 transformation from models JB07 and M1
(measured data from small-scale experiments).

To gain an impression of overall performance of the best model of the two

approaches, the results of JB07 and M1 are plotted against the measured data.

Examples of computed Hm0 transformation across-shore are shown in Figs. 1–3.

Case numbers in Figs. 1–3 are kept to be the same as the originals. Overall, it can

be seen that the two models are quite realistic in simulation of the Hm0 and have

similar accuracy. Because the Hm0 is computed by a simple expression of energy flux

conservation, the models are limited to use on open coasts away from river mouths

and coastal structures. As the swash processes are not included in the models, the

models are limited to use in the nearshore zone (excluding swash zone). Furthermore,

the major disadvantage of the models is that they do not provide any detail on the

behavior of individual waves. For example, all waves are assumed to refract based

on the mean wave angle, which is not realistic in the case of broad-banded spectra.

The effect of directional spread on wave refraction is presented in the book of Goda

[2000]. For more accuracy, it is essential to follow individual wave transformation.



March 22, 2011 12:11 WSPC/101-CEJ S0578563410002191

Energy Dissipation Model for Computing Transformation 327

SUPERTANK: a0509a
-100

-50

0

50

100

0 20 40 60

Distance (m)

H
m

0
 (

c
m

)

-300

-150

0

150

300

D
e
p

th
 (

c
m

)measured

JB07

M1

beach

SUPERTANK: s1008a-80

-40

0

40

80

0 20 40 60

Distance (m)

H
m

0
 (

c
m

)

-300

-150

0

150

300

D
e
p

th
 (

c
m

)

LIPIID: 1b0405
-150

-75

0

75

150

0 50 100 150 200

Distance (m)

H
m

0
 (

c
m

)

-400

-200

0

200

400

D
e
p

th
 (

c
m

)

LIPIID: 2e1113
-160

-80

0

80

160

0 50 100 150 200

Distance (m)
H

m
0

 (
c
m

)

-400

-200

0

200

400

D
e
p

th
 (

c
m

)

SAFE: 10129602
-150

-100

-50

0

50

100

150

50 100 150 200 250

Distance (m)

H
m

0
 (

c
m

)

-500

-250

0

250

500

D
e
p

th
 (

c
m

)

SAFE: 24079701
-150

-100

-50

0

50

100

150

50 100 150 200 250

Distance (m)

H
m

0
 (

c
m

)

-500

-250

0

250

500

D
e
p

th
 (

c
m

)

Fig. 2. Examples of measured and computed Hm0 transformation from models JB07 and M1
(measured data from large-scale experiments).

6. Conclusions

Fourteen existing dissipation models for computing the transformation of Hrms were

applied to compute the transformation of Hm0. A total of 1,713 cases from 8 sources

of published experimental results were used to examine the applicability of the

models in predicting Hm0. The compiled experimental data cover a wide range of

wave conditions (0.001 ≤ Hm0,0/L0 ≤ 0.069), including small-scale, large-scale and

field experiments. The basic parameters used for determination of the accuracy of

the models are the rms relative error (ERg) of the three groups of experiment-scales

and their average (ERavg). The calibration of each model was conducted by varying

the adjustable coefficients (K) in each model until the minimum error (ERavg),

between the measured and computed wave height, is obtained. Using the calibrated

coefficients, the errors (ERg and ERavg) of the existing models were computed and

compared. The comparison shows that the top two models are the models of JB07

and R07. The model of JB07 gives better overall accuracy than that of R07. The
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Fig. 3. Examples of measured and computed Hm0 transformation from models JB07 and M1
(measured data from field experiments).

greater assets of R07 are its simplicity and it gives good predictions (ERg < 10)

for all experiment-scales. For better accuracy, the model of R07 was modified by

changing the stable wave height formula in the model. Comparing with the existing

models, the modified model (M1) is the simplest one but gives the best accuracy.
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