

# รายงานวิจัยฉบับสมบูรณ์

การประยุกต์ใช้สารประกอบเชิงซ้อนยา-แมกนีเซียมอะลูมินัมซิลิเคตเป็น ส่วนกักเก็บขนาดเล็กในระบบนำส่งยาและเป็น ใมโครพาร์ติเคิลสำหรับการนำส่งยา

Application of drug-magnesium aluminum silicate complexes as microreservoirs in drug delivery systems and as microparticles for drug delivery

โดย

รองศาสตราจารย์ ดร. ธเนศ พงศ์จรรยากุล คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

กุมภาพันธ์ 2555

# รายงานวิจัยฉบับสมบูรณ์

การประยุกต์ใช้สารประกอบเชิงซ้อนยา-แมกนีเซียมอะลูมินัมซิลิเคตเป็น ส่วนกักเก็บขนาดเล็กในระบบนำส่งยาและเป็น ใมโครพาร์ติเคิลสำหรับการนำส่งยา

Application of drug-magnesium aluminum silicate complexes as microreservoirs in drug delivery systems and as microparticles for drug delivery

ผู้วิจัย

รองศาสตราจารย์ ดร. ชเนศ พงศ์จรรยากุล คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

สนับสนุนโดย

สำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

#### I

#### าเทคัดย่อ

วัตถุประสงค์ของโครงการวิจัยนี้ คือ เพื่อพัฒนาและประเมินคุณสมบัติของยาเม็ดและบีด แคลเซียมอัลจิเนตที่บรรจุสารประกอบเชิงซ้อนยา-แมกนีเซียมอะลูมินัมซิลิเคตเป็นส่วนกักเก็บยา ขนาดเล็ก และเพื่อเตรียมและศึกษาคุณลักษณะไมโครพาร์ติเคิลนิโคติน-แมกนีเซียมอะลูมินัม ซิลิเคตและไลโซไซม์-แมกนีเซียมอะลูมินัมซิลิเคตที่ผ่านและไม่ผ่านการดัดแปรผิวด้วยไคโตแซน ผล การทดลอง พบว่า แมกนีเซียมอะลูมินัมซิลิเคตสามารถเกิดอันตรกิริยากับยาประจุบวก เช่น โพรพราโนลอลและนิโคติน บีดแคลเซียมอัลจิเนตที่บรรจุสารประกอบเชิงซ้อนโพรพราโนลอล-แมกนีเซียมอะลูมินัมซิลิเคตมีประสิทธิภาพการกักเก็บยาสูงกว่าและการปลดปล่อยยาช้ากว่าบีดที่ บรรจุยาบริสุทธิ์ ยาเม็ดพอลิเมอร์ที่บรรจุสารประกอบเชิงซ้อนโพรพราโนลอล-แมกนีเซียมอะลูมินัม ซิลิเคตแสดงการปลดปล่อยยาแบบทยอยในภาวะทางเดินอาหาร ขณะที่ยาเม็ดที่บรรจุสารประกอบ เชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตให้การปลดปล่อยยาแบบอันดับศูนย์และการซึมผ่าน เยื่อเมือกของนิโคตินขึ้นกับพีเอชของการเตรียมสารประกอบเชิงซ้อน พีเอชของการเตรียม สารประกอบเชิงซ้อนสูงขึ้นการซึมผ่านของนิโคตินก็มากขึ้นตามไปด้วย นอกจากนี้ การเติมสารดัด แปรที่เป็นเบส เช่นแมกนีเซียมไฮดรอกไซด์ สามารถเร่งการซึมผ่าน ขณะที่การซึมผ่านของนิโคติน ช้าลงเมื่อเติมสารดัดแปรที่เป็นกรด เช่น กรดซิตริก นอกจากนี้ ลักษณะของไมโครพาร์ติเคิลนิโคติน หรือไลโซไซม์-แมกนีเซียมอะลูมินัมซิลิเคตมีรูปร่างไม่แน่นอนเมื่อใช้การทำแห้งแบบเยือกแข็ง ไมโครพาร์ติเคิลนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตดัดแปรผิวด้วยไคโตแซนมีประสิทธิภาพในการ นำส่งยาสูงกว่าและมีคุณสมบัติยึดติดเยื่อเมือกมากกว่าไมโครพาร์ติเคิลที่ไม่ดัดแปรผิว อย่างไรก็ ตาม ผลที่ได้เหล่านี้ขึ้นกับมวลโมเลกุลและความเข้มข้นของไคโตแซน ไมโครพาร์ติเคิลไลโซไซม์-แมกนีเซียมอะลูมินัมซิลิเคตสามารถเตรียมได้ที่พีเอช 4 6 และ 8 ไมโครพาร์ติเคิลไลโซไซม์-แมกนีเซียมอะลูมินัมซิลิเคตเตรียมที่พีเอช 4 มีการปลดปล่อยที่สูงกว่า แต่การทำงานของไลโซไซม์ ต่ำกว่าไมโครพาร์ติเคิลเตรียมที่พีเอช 8 การดัดแปรผิวด้วยไคโตแซนทำให้การปลดปล่อยช้าลงและ การทำงานของไลโซไซม์ต่ำลง อย่างไรก็ตาม ไมโครพาร์ติเคิลไลโซไซม์-แมกนีเซียมอะลูมินัม ซิลิเคตสามารถใช้เป็นส่วนกักเก็บยาขนาดเล็กในเมทริกซ์ไข ผลการศึกษาชี้ให้เห็นว่า สารประกอบ เชิงซ้อนหรือไมโครพาร์ติเคิลยา-แมกนีเซียมอะลูมินัมซิลิเคตมีความเป็นไปได้ในการใช้เป็นส่วนกัก เก็บยาขนาดเล็กในระบบนำส่งยาที่ให้ทางปากและทางเยื่อเมือก และไมโครพาร์ติเคิลนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตเป็นระบบนำส่งทางเยื่อเมือกของนิโคตินได้

#### Abstract

The objectives of this research project were to develop and evaluate properties of tablets and calcium alginate beads containing drug-magnesium aluminum silicate (MAS) complexes as drug microreservoirs, and to prepare and characterize nicotine (NCT)-MAS and lysozyme (LSZ)-MAS microparticles with or without surface-modified using chitosan (CS). The results showed that MAS could electrostatically interact with positively charged drug, such as propranolol (PPN) and NCT. The calcium alginate beads containing PPN-MAS complex particles gave higher PPN entrapment efficiency and slower PPN release than those containing pure PPN. The polymeric tablets containing PPN-MAS complexes also displayed a sustained-release drug profiles in gastro-intestinal condition, whereas those loaded with NCT-MAS complexes gave a zero-order drug release and NCT permeation across mucosal membrane was dependent on preparation pHs of the complexes. The higher the preparation pH, the greater the NCT permeation rate was found. Moreover, addition of basic modifying agent, magnesium hydroxide, into the tablets could accelerate NCT permeation, whereas slower permeation of NCT was obtained when adding acidic modifying agent, citric acid. Additionally, the particle morpholophy of NCT-MAS and LSZ-MAS microparticles had an irregular shape when using lyophilization method for drying. The NCT-MAS microparticles surface-modified with CS prepared at acidic pH showed higher efficiency NCT delivery across mucosal membrane and greater mucoadhesive properties than those without CS. However, these effects were dependent upon molecular weight and concentration used of CS. The LSZ-MAS microparticles could be prepared using pH 4, 6 and 8. The pH 4 LSZ-MAS microparticles showed higher LSZ release, but lower LSZ activity when compared with the microparticles prepared at pH 8. Surface modification using CS caused slower release and lower activity of LSZ. However, the LSZ-MAS microparticles could be also used as microreservoirs in wax matrix. This finding suggested that the drug-MAS complex and microparticles demonstrated strong potential for use as microreservoirs in drug delivery systems for oral and mucosal routes, and NCT-MAS microparticles surfacemodified with CS displayed a promising mucosal delivery system for NCT.

#### **Executive summary**

งานวิจัยนี้เป็นงานวิจัยต่อเนื่อง เพื่อค้นหาองค์ความรู้ใหม่ของสารประกอบเชิงซ้อนและไมโคร พาร์ติเคิลยา-แมกนีเซียมอะลูมินัมซิลิเคต โดยเน้นการศึกษาเพื่อใช้เป็นส่วนกักเก็บยาขนาดเล็กใน ระบบนำส่งยาและใช้ในการนำส่งยาโดยตรง แมกนีเซียมอะลูมินัมซิลิเคตสามารถเกิดอันตรกิริยา กับยาประจุบวก เช่น โพรพราโนลอลและนิโคติน บีดแคลเซียมอัลจิเนตที่บรรจุสารประกอบเชิงซ้อน โพรพราโนลอล-แมกนีเซียมอะลูมินัมซิลิเคตมีประสิทธิภาพการกักเก็บยาสูงกว่าและการปลดปล่อย ยาซ้ากว่าบีดที่บรรจุยาบริสุทธิ์ ยาเม็ดพอลิเมอร์ที่บรรจุสารประกอบเชิงซ้อนโพรพราโนลอล-แมกนีเซียมอะลูมินัมซิลิเคตแสดงการปลดปล่อยยาแบบทยอยในภาวะทางเดินอาหาร ขณะที่ยา เม็ดที่บรรจุสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตให้การปลดปล่อยยาแบบ อันดับศูนย์และการซึมผ่านเยื่อเมือกของนิโคตินขึ้นกับพีเอชของการเตรียมสารประกอบเชิงซ้อน พีเอชของการเตรียมสารประกอบเชิงซ้อนสูงขึ้นการซึมผ่านของนิโคตินก็มากขึ้นตามไปด้วย นอกจากนี้ การเติมสารดัดแปรที่เป็นเบส เช่นแมกนีเซียมไฮดรอกไซด์ สามารถเร่งการซึมผ่าน ขณะที่การซึมผ่านของนิโคตินช้าลงเมื่อเติมสารดัดแปรที่เป็นกรด เช่น กรดซิตริก นอกจากนี้ ลักษณะของอนุภาคไมโครพาร์ติเคิลนิโคตินหรือไลโซไซม์-แมกนีเซียมอะลูมินัมซิลิเคตมีรูปร่างไม่ แน่นอนเมื่อใช้การทำแห้งแบบเยือกแข็ง ไมโครพาร์ติเคิลนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตดัด แปรผิวด้วยใคโตแซนมีประสิทธิภาพในการนำส่งยาสูงกว่าและมีคุณสมบัติยึดติดเยื่อเมือกมากกว่า ไมโครพาร์ติเคิลที่ไม่ดัดแปรผิว อย่างไรก็ตาม ผลที่ได้เหล่านี้ขึ้นกับมวลโมเลกุลและความเข้มข้น ของไคโตแซน ไมโครพาร์ติเคิลไลโซไซม์-แมกนีเซียมอะลูมินัมซิลิเคตสามารถเตรียมได้ที่พีเอชต่างๆ ไมโครพาร์ติเคิลไลโซไซม์-แมกนีเซียมอะลูมินัมซิลิเคตเตรียมที่พีเอชกรดมีการปลดปล่อยที่สูงกว่า แต่การทำงานของไลโซไซม์ต่ำกว่าไมโครพาร์ติเคิลเตรียมที่พีเอชกลาง การดัดแปรผิวด้วยไคโตแซน ทำให้การปลดปล่อยซ้าลงและการทำงานของไลโซไซม์ต่ำลง อย่างไรก็ตาม ไมโครพาร์ติเคิลไลโซ ไซม์-แมกนีเซียมอะลูมินัมซิลิเคตสามารถใช้เป็นส่วนกักเก็บยาขนาดเล็กในเมทริกซ์ไขได้ ผล การศึกษาชี้ให้เห็นว่า สารประกอบเชิงซ้อนหรือไมโครพาร์ติเคิลยา-แมกนีเซียมอะลูมินัมซิลิเคตมี ความเป็นไปได้ในการใช้เป็นส่วนกักเก็บยาขนาดเล็กในระบบนำส่งยาที่ให้ทางปากและทางเยื่อ เมือก และไมโครพาร์ติเคิลนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตเป็นระบบนำส่งทางเยื่อเมือกของ นิโคตินได้ การศึกษานี้ยังก่อให้เกิดองค์ความรู้ใหม่ที่กระทบต่อบทบาทของสารประกอบเชิงซ้อนยา-เคลย์ในด้านวัสดุศาสตร์ และการประยุกต์ใช้ทางด้านเภสัชกรรมขั้นสูง โดยเฉพาะการพัฒนาระบบ นำส่งยาที่บริหารยาทางปากและทางเยื่อเมื่อก

### กิตติกรรมประกาศ

ผู้วิจัยขอขอบคุณฝ่ายวิชาการ สำนักงานกองทุนสนับสนุนการวิจัย ที่ได้ให้โอกาสในการทำวิจัยโดย สนับสนุนทุนพัฒนานักวิจัย ปิงบประมาณ 2552 (RSA5280013) และคณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น ที่ได้สนับสนุนสถานที่และเครื่องมือต่างๆ ในการทำวิจัยโครงการนี้จนสำเร็จ ลุล่วง

> รองศาสตราจารย์ ดร. ธเนศ พงศ์จรรยากุล กุมภาพันธ์ 2555

# สารบัญ

|                         | หน้า |
|-------------------------|------|
| บทคัดย่อ                | I    |
| Abstract                | II   |
| Executive summary       | III  |
| กิตติกรรมประกาศ         | IV   |
| สารบัญ                  | V    |
| บทน้ำ                   | 1    |
| ผลงานวิจัยที่เกี่ยวข้อง | 2    |
| วัตถุประสงค์การวิจัย    | 10   |
| ผลงานวิจัย              | 10   |
| บทสรุป                  | 81   |
| เอกสารอ้างอิง           | 81   |
| ผลลัพธ์ที่ได้จากโครงการ | 86   |
| ภาคผนวก                 | 89   |

#### บทนำ

แมกนีเซียมอะลูมินัมซิลิเคตเป็นสารในกลุ่มเคลย์ผสมมอนต์โมริลโลในต์ เป็นสารเชิงซ้อน (สารประกอบเชิงซ้อน) ของแมกนีเซียม อะลูมินัม ซิลิคอน ออกซิเจนและน้ำ ซึ่งอยู่ในรูปของ ออกไซด์ ส่วนประกอบหลัก คือ ซิลิคอนไดออกไซด์ แมกนีเซียมออกไซด์และอะลูมินัมออกไซด์ โครงสร้างของสารกลุ่มนี้ในลักษณะเป็นแผ่นซิลิเคตที่มีประจุลบ ส่วนหัวท้ายของแผ่นจะมีประจุ บวก รูปแบบของผลึกจะเกิดจากการเรียงซ้อนกันของแผ่นซิลิเคต(Grim, 1953) ประโยชน์ของสาร นี้คือ เป็นสารช่วยในยาเม็ด ยาขี้ผึ้งและครีม รวมทั้งใช้เป็นสารช่วยแขวนตะกอนและสารเพิ่ม ความคงตัวของตำรับยาได้ เนื่องจากแมกนีเซียมอะลมินัมซิลิเคตมีความปลอดภัยในการใช้ทาง เภสัชกรรม (Wade and Weller, 1994) แมกนีเซียมอะลูมินัมซิลิเคตซึ่งมีประจุลบ สามารถเกิด อันตรกิริยากับตัวยาที่มีประจบวก เช่น propranolol (Sánchez-Martin amphetamine (McGinity and Lach, 1977) donezepil (Park et al., 2008) และ nicotine (Suksri and Pongjanyakul, 2008) ซึ่งแผ่นซิลิเคตจะมีการดูดซับยาไว้ที่ผิว เกิดเป็นสารเชิงซ้อน ยา-เคลย์ขึ้น ซึ่งสามารถเตรียมได้โดยการกระจายแมกนีเซียมอะลูมินัมซิลิเคตในน้ำ แล้วเติม สารละลายยาลงไป จะได้สารประกอบเชิงซ้อน และหลังจากทำให้แห้งและนำมาบดก็จะได้ผงของ สารประกอบเชิงซ้อน ถ้านำผงของสารประกอบเชิงซ้อนไปเคลือบด้วยพอลิเมอร์ (Park et al., 2008) สามารถควบคุมการปลดปล่อยยาได้ นอกจากนี้ การใช้เคลย์เป็นส่วนประกอบในยาเม็ดจะ ทำให้ยาปลดปล่อยซ้าลง เนื่องจากการเกิดอันตรกิริยาของยากับเคลย์ (Harris et al., 1985; Forni et al., 1989) ประเด็นของปัญหาวิจัยในเรื่องสารเชิงซ้อนยา-เคลย์เพื่อใช้ในการนำส่งยา สามารถ รวบรวมได้ 3 ประเด็น คือ

- 1. การปลดปล่อยตัวยาออกจากสารซ้อนนี้ จะเกิดขึ้นไม่สมบูรณ์เนื่องจากการปลดปล่อยยา จะเข้าสู่สมดุลเสมอ (Zheng et al., 2007; Park et al., 2008) ทำให้ไม่สามารถมั่นใจได้ว่า การ ปลดปล่อยยาในร่างกายจะสามารถให้ระดับยาในเลือดถึงระดับที่รักษาโรคได้ จุดนี้เป็นปัญหาที่ ต้องแก้ไข โดยผู้วิจัยมีแนวคิดในการออกแบบระบบนำส่งที่ประกอบด้วยไอออนบวกจากเกลือที่มี ค่าการละลายสูงในน้ำ เพื่อกระตุ้นการปลดปล่อยยาให้มีความต่อเนื่องและสมบูรณ์มากขึ้น
- 2. การดูดซับยาประจุบวกที่ผิวของแผ่นซิลิเคตของแมกนีเซียมอะลูมินัมซิลิเคต ทำให้มีการ เปลี่ยนแปลงประจุที่ผิวของแผ่นซิลิเคต ทำให้แผ่นชิลเคตเกิดการรวมกลุ่ม (flocculation) ซึ่งกลุ่มที่ เกิดขึ้น เรียกว่า flocculate กระจายอยู่ในสารกระจายผสมยา-แมกนีเซียมอะลูมินัมซิลิเคต ซึ่ง ผู้วิจัยได้รายงานในกรณีของ nicotine กับแมกนีเซียมอะลูมินัมซิลิเคต (Suksri and Pongjanyakul, 2008) ซึ่งการรวมกลุ่มของแผ่นซิลิเคตน่าจะสามารถประยุกต์ใช้ในระบบนำส่งยา ได้ โดยทำหน้าที่เสมือนหนึ่งเป็นแหล่งกักเก็บยาขนาดเล็กในระบบนั้น และสามารถเพิ่ม ประสิทธิภาพการกักเก็บยาในระบบนำส่งที่ต้องมีการเชื่อมขวางของพอลิเมอร์ เช่น บีด

แคลเซียมอัลจิเนต ดังนั้น การกระจายอัลจิเนตลงในสารกระจายผสมยา-แมกนีเซียมอะลูมินัม ซิลิเคต จากนั้นนำสารกระจายนี้ไปหยดลงในสารละลายแคลเซียมคลอไรด์ ซึ่งเป็นสารเชื่อมโยง ข้ามของอัลจิเนต ก็จะได้เม็ดบีด ซึ่งประกอบด้วยแหล่งกักเก็บยาขนาดเล็กที่เป็นการรวมกลุ่มยา-แมกนีเซียมอะลูมินัมซิลิเคต และคาดว่าสามารถเพิ่มประสิทธิภาพการกักเก็บยาที่มีคุณสมบัติ ละลายน้ำได้ดีในบีดแคลเซียมอัลจิเนตได้ รวมทั้งยังช่วยในการควบคุมการปลดปล่อยยาได้บีดอีก ด้วย

3. จากการศึกษาคุณลักษณะของสารกระจายนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตที่ pH ต่างๆ (Suksri and Pongjanyakul, 2008) พบว่า ที่ pH เป็นกลางและกรด นิโคตินจะดูดซับบน แมกนีเซียมอะลูมินัมซิลิเคตอย่างรวดเร็ว เนื่องจากนิโคตินอยู่ในรูปที่แตกตัวมากขึ้น และการ รวมกลุ่มของแมกนีเซียมอะลูมินัมซิลิเคตเกิดเป็นอนุภาคเล็กๆและตกตะกอนเร็ว ซึ่งแสดงถึงการมี ความหนาแน่นที่มากขึ้น ด้วยปรากฏการณ์นี้ จึงทำให้มีแนวคิดในการศึกษาการเตรียมไมโคร พาร์ติเคิลของยากับแมกนีเซียมอะลูมินัมซิลิเคต เพื่อพัฒนาเป็นระบบนำส่งยา ซึ่งยาใช้เป็นยา ประจุบวก เช่น นิโคติน และโปรตีนจำลอง เช่น Iysozyme เป็นต้น และยังสามารถศึกษาการ เคลือบไมโครพาร์ติเคิลของยา-แมกนีเซียมอะลูมินัมซิลิเคตด้วยไคโตแซน ซึ่งอาจปรับให้ผิวของไม โครพาร์ติเคิลเป็นบวก เพื่อเพิ่มความสามารถในการยึดติดเยื่อเมือกและควบคุมการปลดปล่อยยา ได้ด้วย

การศึกษาเพื่อแก้ปัญหาและตอบคำถามทั้งสามประเด็นจะเป็นการเพิ่มองค์ความรู้ใหม่ของ ประโยชน์ของแมกนีเซียมอะลูมินัมซิลิเคตในทางเภสัชกรรมขั้นสูง และระบบนำส่งยาที่ได้จะเป็น ระบบนำส่งยาแบบใหม่ ซึ่งจะมีประโยชน์ในการนำส่งยาทั้งทางรับประทานและทางเยื่อเมือกของ ร่างกาย

## ผลงานวิจัยที่เกี่ยวข้อง (literature review)

## <u>แมกนีเซียมอะลูมินัมซิลิเคต</u>

แมกนีเซียมอะลูมินัมซิลิเคตเป็นสารในกลุ่มเคลย์ผสมมอนต์โมริลโลในต์และสาโปในท์ (Wade and Weller, 1994) ซึ่งเป็นสารประกอบเชิงซ้อนของแมกนีเซียม อะลูมินัม ซิลิคอน ออกซิเจนและน้ำ ซึ่งอยู่ในรูปของออกไซด์ ส่วนประกอบหลัก คือ ซิลิคอนไดออกไซด์ (61.1%) แมกนีเซียมออกไซด์ (13.7%) อะลูมินัมออกไซด์ (9.3%) นอกจากนี้ยังมีออกไซด์ของไททาเนียม เฟอร์ริก แคลเซียม โซเดียม โพแทสเซียมและคาร์บอน โครงสร้างของสารกลุ่มนี้ในลักษณะ แบบจำลอง จะมีลักษณะเป็นแผ่นซิลิเคต ซึ่งตัวแผ่นซิลิเคตมีประจุลบ ส่วนหัวท้ายของแผ่น ซิลิเคตมีประจุบวก รูปแบบของผลึกจะเกิดจากการเรียงซ้อนกันของแผ่นซิลิเคล (Grim, 1953) ประโยชน์ของสารนี้คือ เป็นสารช่วยในยาเม็ด ยาขี้ผึ้งและครีม รวมทั้งใช้เป็นสารช่วยแขวนตะกอน

และสารเพิ่มความคงตัวของตำรับยาได้ นอกจากนี้ ยังมีความปลอดภัยในการใช้ทางเภสัชกรรม (Wade and Weller, 1994) แมกนีเซียมอะลูมินัมซิลิเคตมีประจุลบ สามารถเกิดอันตรกิริยากับตัว ยาต่างๆ เช่น propranolol (Martin et al., 1981), tetracycline (Browne et al., 1980) papaverine (Sayalero et al., 1985) amphetamine (Mcinity and Lach, 1977) nicotine (Suksri and Pongjanyakul, 2008) 5-fluorouracil (Lin et al., 2002) และ donezepil (Park et al., 2008) การเกิดอันตรกิริยานี้ทำให้ได้สารประกอบเชิงซ้อนยา-เคลย์ขึ้น นอกจากนี้ แมกนีเซียม อะลูมินัมซิลิเคตยังสามารถเกิดอันตรกิริยากับไคโตแซนประจุบวกอีกด้วย (Khunawattanakul et al., 2008) อย่างไรก็ตาม ประจุบวกที่ส่วนหัวท้ายของแผ่นซิลิเคตและกลุ่มไซลานอล (silanol) ที่ แผ่นซิลิเคต ยังสามารถเกิดอันตรกิริยากับพอลิเมอร์ประจุลบได้ เช่น carbomer (Ciullo and Braun, 1991), xanthan gum (Ciullo, 1981) และ sodium alginate (Pongjanyakul et al., 2005; Pongjanyakul and Puttipipatkhachorn, 2007a) ซึ่งทำให้ความหนืดเพิ่มขึ้นและการไหล เปลี่ยนแปลงไป

### สารเชิงซ้อนยา-เคลย์

การเตรียมสารเชิงซ้อนยา-เคลย์สามารถเตรียมโดยกระจายเคลย์ในน้ำจนเกิดการพองตัว แล้วเติมสารละลายของยาลงไป คนผสมสารทั้งสองจนเป็นเนื้อเดียวกันและนำไปเขย่าและควบคุม สภาวะทั้งอุณหภูมิและเวลาที่เหมาะสมจนการดูดซับเกิดขึ้นอย่างสมบูรณ์ นำสารแขวนตะกอนที่ ได้มาผ่านการกรองเพื่อเก็บตะกอนของสารประกอบของยา-เคลย์ นำไปอบแห้งและบดเพื่อลด ขนาดอนุภาค การดูดซับยาของเคลย์ สามารถอธิบายโดยใช้สมการของ Langmuir เพื่ออธิบาย การดูดซับชนิดที่เกิดอย่างสมบูรณ์บนพื้นผิวของตัวดูดซับเพียงชั้นเดียว (monolayer) (Bekçi et al., 2006; Bekçi et al., 2007, Gereli et al., 2006; Suksri and Pongjanyakul, 2008) แสดงได้ ดังสมการต่อไปนี้

$$\frac{C_e}{C_s} = \frac{1}{K_L Q_m} + \frac{C_e}{Q_m}$$

เมื่อ C<sub>e</sub> คือ ความเข้มข้นสมดุลของยาในสารละลาย

 $C_{_{\mathrm{S}}}$  คือ ความเข้มข้นสมดุลของยาบนตัวดูดซับ

Q... คือ ปริมาณของการดูดซับที่ทำให้เกิดเป็น monolayer

 $\mathbf{K}_{\mathsf{L}}$  คือ ค่าคงที่การดูดซับของ Langmuir ซึ่งแสดงถึงความชอบในการดูดซับของ ตัวดูดซับ

จากสมการ เมื่อเขียนกราฟระหว่าง  $C_{\rm e}/C_{\rm s}$  กับ  $C_{\rm e}$  จะได้กราฟเส้นตรงที่มีค่าความชั้นเท่ากับ  $1/C_{\rm m}$  และจุดตัดแกน y เท่ากับ  $1/LC_{\rm m}$ 

กลไกการดูดซับสารนั้น จะเกี่ยวข้องกับหมู่ฟังก์ชัน (functional group) เคลย์และสารที่ถูก ดูดซับ ซึ่งกลไกการดูดซับ สามารถแบ่งได้ ดังนี้ (Aguzzi et al., 2007)

- 1. การแลกเปลี่ยนไอออนบวก (cation exchange) เกิดจากการที่โครงสร้างของเคลย์ มีประจุเป็นลบ ทำให้สารที่มีประจุบวกสามารถดูดซับและเข้าในแผ่นซิลิเคต จนเกิด ความสมดุลของประจุ
- 2. พันธะไฮโดรเจน (hydrogen bonding) จะเกิดขึ้นระหว่างออกซิเจนที่บริเวณพื้นผิว ของเคลย์กับหมู่ NH หรือ OH ของสารที่ถูกดูดซับ
- 3. Water bridging เป็นกลไกการดูดซับที่มีน้ำเป็นตัวเชื่อม โดยยาจะเกิดพันธะ ไฮโดรเจนกับโมเลกุลของน้ำ และโมเลกุลของน้ำนั้นก็จะจับกับเคลย์ เกิดเป็น สารประกอบเชิงซ้อนขึ้น
- 4. Hydrophobic interaction เป็นการเกิด แรง van der Waals ของสารที่ไม่มีขั้วกับ ส่วนที่มีออกซิเจนหรือส่วนที่เป็นกลางของเคลย์

สารเชิงซ้อนยา-เคลย์ ส่วนใหญ่เกิดขึ้นด้วยกลไกของการแลกเปลี่ยนไอออนบากร่วมกับการ เกิดพันธะไฮโดรเจน ถ้าตัวยามีประจุบวกจะเกิดการแลกเปลี่ยนไอออนบากเป็นหลัก การดูดซับใน กรณีนี้จะขึ้นกับความเป็นกรดด่างของตัวกลาง ซึ่งมีผลกระทบต่อการแตกตัวเป็นไอออนของตัวยา ส่วนยาที่ไม่มีประจุบวก จะเป็นการเกิดพันธะไฮโดรเจนเป็นหลัก เช่น ibuprofen (Zheng et al., 2007) เป็นต้น สารเชิงซ้อนยา-เคลย์ มีการเตรียมและการศึกษามากขึ้นเนื่องจากสารประกอบ เชิงซ้อนที่ได้จะช่วยให้ความคงตัวของยาที่อุณหภูมิสูงดีขึ้น การกักเก็บยาไว้ภายในแผ่นซิลิเคตทำ ให้สามารถลดการระคายเคืองทางเดินอาหารหรืออวัยวะที่สัมผัส และยังสามารถทำให้การ ปลดปล่อยยาซ้าลงเมื่อเปรียบเทียบกับการใช้ยาดั้งเดิม ดังนั้น การศึกษาคุณสมบัติทางเคมีพิสิกส์ ของสารประกอบเชิงซ้อนยา-เคลย์ (Bekçi et al., 2006; Zheng et al., 2007; Park et al., 2008) จึงมุ่งเพื่อที่จะทำให้เกิดความเข้าใจถึงการเกิดอันตรกิริยาของสารทั้งสอง โดยใช้ FTIR spectroscopy การแทรกตัวของยาเข้าไปในชั้นของแผ่นชิลิเคต โดย basal spacing ของเคลย์จะ เพิ่มขึ้น ซึ่งต้องใช้เทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (X-ray diffractometry) การศึกษาด้านความ ร้อน โดยใช้ Thermogravimetric analysis การศึกษาลักษณะพื้นผิวของสารเชิงซ้อนด้วยกล้อง จุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning electron microscopy) การศึกษาองค์ประกอบ

ทางเคมีด้วยการวัดการกระจายพลังงานของรังสีเอ็กซ์ (Energy dispersive X-ray spectroscopy) ตลอดจนการศึกษาการปลดปล่อยยาจากสารประกอบเชิงซ้อนด้วยวิธีการทดสอบการปลดปล่อย ยา (drug release test) ซึ่งจะเป็นข้อมูลพื้นฐานที่สำคัญในการที่จะทราบลักษณะโครงสร้างและ กลไกการเกิดสารประกอบเชิงซ้อนของยาและเคลย์

การปลดปล่อยยาออกจากสารประกอบเชิงซ้อนยา-เคลย์ จะมีการปลดปล่อยยาที่รวดเร็ว โดยกระบวนการแลกเปลี่ยนไอออนบวก ซึ่งมีอยู่ในตัวกลางการละลาย ซึ่งการปลดปล่อยยาจะ เกิดขึ้นน้อยมากเมื่อใช้น้ำปราศจากไอออนเป็นตัวกลางการละลาย (Papin-Castéla et al., 1999) อย่างไรก็ตาม การปลดปล่อยยาที่ไม่สมบูรณ์เกิดขึ้นเสมอ คือยังคงมียาเหลืออยู่ในสารประกอบ เชิงซ้อน ซึ่งแสดงถึงการเกิดสมดุลของการปลดปล่อยยา แม้ว่าระบบตัวกลางการละลายที่ใช้ สามารถสร้าง sink condition ที่ดีก็ตาม การเกิดปรากฏการณ์เช่นนี้ ทำให้ไม่สามารถมั่นใจได้ว่า การปลดปล่อยยาจะสามารถเกิดขึ้นอย่างสมบูรณ์ในทางเดินอาหารหรืออวัยวะบริเวณที่บริหารยา ในร่างกาย ซึ่งมีของเหลวหรือน้ำคัดหลั่งที่ประกอบด้วยไอออนบวกและลบ การศึกษาระบบนำส่ง ยาที่มีสารเชิงซ้อนยา-เคลย์เป็นแหล่งกักเก็บยามีน้อยมาก ส่วนใหญ่เป็นยาเม็ดที่มีส่วนผสมของยา และเคลย์ หลังจากยาเม็ดสัมผัสน้ำจะละลายและถูกดูดซับด้วยเคลย์ ทำให้ยาเม็ดเหล่านี้มีการ ปลดปล่อยยาที่ยายนานขึ้น (Harris et al., 1985; Forni et al., 1989) นอกจากนี้ ยังมีการเตรียม สารเชิงซ้อนยา-เคลย์ที่เคลือบด้วยพอลิเมอร์ด้วยวิธีการทำแห้งแบบพ่น (spray drying) ซึ่งสามารถ ควบคุมการปลดปล่อยยาได้แต่การปลดปล่อยยายังคงไม่สมบูรณ์เช่นเดิม (Park et al., 2008) จะ เห็นได้ว่า ถ้านำสารเชิงซ้อนยา-เคลย์มาทำหน้าที่เป็นแหล่งกักเก็บยาในยาเม็ดมาทริกซ์พอลิเมอร์ โดยออกแบบให้มีส่วนประกอบของเกลือซึ่งมีองค์ประกอบเป็นไอออนบวกกระจายหรือเป็นยาเม็ด แกนอยู่ภายในมาทริกซ์พอลิเมอร์ เมื่อยาเม็ดสัมผัสกับของเหลว จะเกิดการพองตัวของพอลิเมอร์ และการละลายของเกลือ ซึ่งไอออนบวกจะมีการแลกเปลี่ยนกับยาในสารเชิงซ้อน ซึ่งส่งผลให้มีการ กระตุ้นการปลดปล่อยยาให้ต่อเนื่องและสมบูรณ์มากขึ้น ซึ่งที่กล่าวมาเป็นประเด็นวิจัยที่น่าสนใจ และสามารถเพิ่มองค์ความรู้ใหม่ได้

การศึกษาการเกิดสารเชิงซ้อนของ propranolol กับมอนต์โมริลโลไนต์ (Sánchez-Martin et al., 1981) ซึ่งตัวยา propranolol สามารถแทรกเข้าไปในช่องว่างระหว่างแผ่นซิลิเคต ซึ่งศึกษาโดย ใช้ X-ray diffractometry และยังมีการศึกษาอันตรกิริยาระหว่างสารทั้งสอง ซึ่งแสดงให้เห็นว่าตัว ยาเข้าแทนที่โมเลกุลของน้ำในช่องว่างระหว่างแผ่นซิลิเคตเท่านั้น นอกจากนี้ ยังไม่มีรายงาน คุณสมบัติทางเคมีฟิสิกส์อื่นๆ รวมทั้งการปลดปล่อยยา ซึ่งในการศึกษานี้ จะมีการศึกษาคุณสมบัติ ทางเคมีฟิสิกส์ของสารเชิงซ้อนของ propranolol กับแมกนีเซียมอลูมิเนียมซิลิเกต เพื่อให้เติมเต็ม องค์ความรู้ที่ยังขาดหายไป และจะใช้สารเชิงซ้อน propranolol-แมกนีเซียมอลูมิเนียมซิลิเกตนี้ เป็น แบบจำลองในการพัฒนายาเม็ดมาทริกซ์พอลิเมอร์ที่ให้ทางรับประทาน

สารเชิงซ้อนนิโคติน-แมกนีเซียมอลูมิเนียมซิลิเกต ซึ่งสารเชิงซ้อนนี้ได้มีการศึกษาในส่วนของ คุณลักษณะทางเคมีฟิสิกส์และการปลดปล่อยยา (ทุนอาจารย์รุ่นกลาง ปี 2549) ซึ่งพบว่าการเกิด อันตรกิริยาของนิโคตินกับแมกนีเซียมอลูมิเนียมซิลิเกต จะขึ้นกับความเป็นกรดด่างของสภาวะการ เตรียม ซึ่งใน pH ที่เป็นกรด นิโคตินจะแตกตัวให้ประจุบวก 2 ประจุ ซึ่งจะมีความซอบจับ (affinity) ต่อแมกนีเซียมอลูมิเนียมซิลิเกตสูงมาก (Suksri and Pongjanyakul, 2008) และกลไกการดูดซับ เป็นการแลกเปลี่ยนไอออนเป็นหลัก นอกจากนี้ การปลดปล่อยนิโคติน เกิดขึ้นอย่างรวดเร็วในช่วง ต้นและจะค่อยๆปลดปล่อยตัวยาออกมาอย่างช้าๆ ผู้วิจัยจึงมีความสนใจในการศึกษาต่อยอด งานวิจัยในส่วนนี้ โดยจะพัฒนาแบบจำลองยาเม็ดนิโคตินแบบมาทริกซ์พอลิเมอร์ โดยใช้สาร เชิงซ้อนนิโคติน-แมกนีเซียมอลูมิเนียมซิลิเกต เป็นแหล่งกักเก็บยาและมีเกลือเพื่อกระตุ้นการ ปลดปล่อยยาให้ต่อเนื่อง และจะใช้ประโยชน์ในการบริหารยาทางเยื่อเมือกในช่องปาก ซึ่งนิโคติน สามารถซึมผ่านได้ดีแม้ว่าจะอยู่ในรูปแตกตัวก็ตาม (Nair et al., 1997) และรูปแบบยาเม็ดของ นิโคตินที่ให้ทางช่องปากยังอยู่ในระหว่างการพัฒนาเพื่อใช้กับผู้ป่วยที่อดบุหรี่ (ikinci et al., 2004)

### บีดแคลเซียมอัลจิเนต

กรดอัลจินิคเป็นสาร polysaccharides ที่ได้จากสาหร่ายทะเลสีน้ำตาล และสามารถทำให้มี ค่าการละลายเพิ่มขึ้นโดยทำปฏิกิริยากับโซเดียมไบคาร์บอเนท เป็นเกลือของโซเดียม อัลจิเนตพอลิ เมอร์จะประกอบด้วย β-D-mannuronopyranosyl เชื่อมกันด้วยพันธะ β-D(1-4) ซึ่งเรียกว่า M block และ α-L-guluronopyranosyl เชื่อมกันด้วยพันธะ α-L(1-4) ซึ่งเรียกว่า G block (Clare, 1993) คุณสมบัติที่เด่นมากของพอลิเมอร์ชนิดนี้ คือ สามารถเกิดอันตรกิริยากับอิออนบวกหลาย ประจุ (multivalent cation) เช่น แคลเซียม อะลูมิเนียม และซึงค์อิออน เป็นต้น ซึ่งจะทำให้เกิดการ เชื่อมข้าม (crosslink) ของสายพอลิเมอร์ การเกิดการเชื่อมข้ามของ GG block ของอัลจิเนตโดย แคลเซียมอิออน จะเรียกว่า โครงสร้าง egg-box การมีปริมาณของ M และ G block ที่แตกต่างกัน จะส่งผลต่อคุณสมบัติของเจลที่เกิดขึ้น อัลจิเนตที่มีขายในท้องตลาดส่วนใหญ่จะเป็นเกรดที่มี M สูง ซึ่งเจลที่ได้จะอ่อนและมีความยืดหยุ่นสูง ในขณะที่เกรดที่มี G สูง จะให้เจลที่แข็งแรงและ เปราะ (Clare, 1993; Wade and Weller, 1994)

การประยุกต์ใช้อัลจิเนตพอลิเมอร์เพื่อการพัฒนาระบบนำส่งยาและโปรตีน สามารถทำได้ โดยการทำให้เกิดการเชื่อมข้ามกับอิออนบวกหลายประจุ ซึ่งจะทำให้เกิดเจลที่ควบคุมการ ปลดปล่อยยาได้ รูปแบบระบบนำส่งที่มีการพัฒนามาก คือ บีด (Badwan et al., 1985; Østberg et al., 1993; Sugawara et al., 1994; Østberg and Graffner, 1994) ซึ่งในการเตรียมสามารถ ทำได้ง่ายโดยการหยดสารละลายหรือสารแขวนตะกอนของตัวยาที่กระจายในอัลจิเนตที่พองตัว ลง ในสารละลายแคลเซียม พอลิเมอร์รอบนอกจะเกิดการเชื่อมข้ามเป็นเจลขึ้น ซึ่งปัจจัยที่มีผลต่อ

คุณสมบัติของ คือ ความเข้มข้นของอัลจิเนต ความเข้นข้นของแคลเซียมอิออน ระยะเวลาที่ใช้ใน การเกิดการเชื่อมโยงข้ามและสัดส่วนของยาต่อพอลิเมอร์ (Østberg et al., 1993; Sugawara et al., 1994; Østberg and Graffner, 1994) อย่างไรก็ตาม การเกิดบีดในสารละลายแคลเซียมไอออน นั้นจะมีตัวยาที่สามารถรั่วออกจากบีดได้ โดยเฉพาะตัวยาที่มีคุณสมบัติละลายน้ำได้ดี ทำให้บีด แคลเซียมอัลจิเนตมีประสิทธิภาพในการกักเก็บยาลดลงมา (Lee et al., 1999) การแก้ไขปัณหานี้ทำได้ โดยทำการผสมพอลิเมอร์หรือเคลย์ ได้แก่ microcrystalline cellulose (Hwang et al., 1995; Pongjanyakul, 2007), konjac glucomannan (Wang and He, 2002), sodium starch glycolate (Hwang et al., 1995; Puttipipatkhachorn et al., 2005) xanthan gum Puttipipatkhachorn, และแมกนีเซียมอะลูมินัมซิลิเคต 2007b) (Pongjanyakul (Puttipipatkhachorn et al., 2005) ซึ่งสามารถเกิดอันตรกิริยากับอัลจิเนต ก่อนที่จะทำการ ้เชื่อมโยงข้ามเป็นบีดแคลเซียมอัลจิเนต การเกิดอันตรกิริยากับอัลจิเนตของสารเหล่านี้จะทำให้บีดที่ ได้มีความแข็งแรงและมีมาทริกซ์ที่ซับซ้อนขึ้น ทำให้ลดการรั่วของตัวยาออกจากบีด ส่งผลให้ ประสิทธิภาพการกักเก็บยาของบีดเพิ่มขึ้นและทำให้การปลดปล่อยยาออกจากบีดยาวนานขึ้น นอกจากนี้ ยังมีการนำพอลิเมอร์ประจุบวกเพื่อทำให้เกิดอันตรกิริยากับอัลจิเนต ซึ่งมีประจุเป็นลบ ในขั้นตอนการเกิดการเชื่อมโยงข้ามกับไอออน พอลิเมอร์ที่มีประจุบวกเหล่านี้ คือ chondroitin sulfate และใคโตแซน ผลส่งในการเพิ่มการกักเก็บยาและเปลี่ยนแปลงคุณสมบัติของบีดที่ได้รับ (Murata et al., 1996)

ในการใช้แมกนีเซียมอะลูมินัมซิลิเคตในการเตรียมบีดแคลเซียมอัลจิเนต สามารถเพิ่ม ประสิทธิภาพการกักเก็บยา diclofenac sodium ได้ (Puttipipatkhachorn et al., 2005) อย่างไรก็ ตาม แมกนีเซียมอะลูมินัมซิลิเคตและ diclofenac sodium ไม่สามารถเกิดอันตรกิริยาที่ชัดเจน คือ diclofenac sodium ไม่ได้ถูกดูดซับโดยแมกนีเซียมอะลูมินัมซิลิเคต ซึ่งสามารถยืนยันในการศึกษา เรื่องเจลผสมอัลจิเนต-แมกนีเซียมอะลูมินัมซิลิเคต ที่ผสมตัวยานี้ จะสามารถวิเคราะห์ปริมาณตัว ยาได้เกือบ 100% เมื่อสกัดตัวยาด้วยน้ำกลั่น (Pongjanyakul et al., 2005) แสดงว่าบีด แคลเซียมอัลจิเนตสามารถเพิ่มประสิทธิภาพการกักเก็บยาได้โดยความแข็งแรงที่เพิ่มของโครงสร้าง ของบีดเอง

ตัวยา propranolol HCI เป็นตัวยาที่ละลายน้ำได้ดี ซึ่งบีดแคลเซียมอัลจิเนตมีความสามารถ กักเก็บยานี้ได้น้อยมาก วิธีที่สามารถเพิ่มการกักเก็บยาให้มากขึ้น คือการนำยากับดูดซับกับเรซิ นแลกเปลี่ยนไอออน (Halder et al., 205) ดังนั้น ผู้วิจัยจึงมีแนวคิดในการทำให้เกิดสารประกอบ เชิงซ้อนของยา propranolol กับแมกนีเซียมอลูมิเนียมซิลิเกต ซึ่งการเกิดอันตรกิริยาของสารทั้งสองจะ ทำให้เกิดการรวมกลุ่ม (flocculation) ของอนุภาคของแมกนีเซียมอลูมิเนียมซิลิเกต เกิดเป็นแหล่งกัก เก็บยาขนาดเล็ก (microreservoir) ในสารกระจายอัลจิเนต จากนั้น จึงนำมาผ่านกระบวนการเชื่อมโยง ข้ามด้วยแคลเซียมไอออน คาดว่าจะได้บีดแคลเซียมอัลจิเนตที่มีกลุ่มยา-แมกนีเซียมอลูมิเนียมซิลิเกต เป็นแหล่งกักเก็บยาขนาดเล็ก ซึ่งเป็นระบบนำส่งยาแบบใหม่ ที่มีประสิทธิภาพการกักเก็บยาสูงและ สามารถควบคุมการปลดปล่อยยาได้ด้วย

### <u>ไมโครพาร์ติเคิล</u>

ไมโครพาร์ติเคิลเป็นระบบนำส่งยาขนาดเล็กในระดับไมโคร ซึ่งถือได้ว่าเป็นระบบนำส่งยา แบบหลายหน่วย (multiple-unit drug delivery system) ซึ่งอนุภาคขนาดเล็กจำนวนมากในหนึ่ง ขนาดยา สามารถผสมกระจายด้วยพื้นที่ผิวที่สูงมากในทางเดินอาหาร ทำให้สามารถลดความ เข้มข้นของยาที่บริเวณใดบริเวณหนึ่ง ซึ่งเป็นการลดความเสี่ยงต่อการระคายเคืองทางเดินอาหาร ได้ นอกจากนี้ ยังสามารถลดความแปรปรวนของเวลาที่ระบบนำส่งยาจะอยู่ที่ทางเดินอาหารและ ทำให้การดูดซึมยาดีขึ้น (Bechgaard and Nielsen, 1978) นอกจากการใช้ไมโครพาร์ติเคิลที่ บริหารยาโดยการรับประทานแล้ว ระบบนำส่งยาแบบนี้ ยังสามารถใช้ในการนำส่งยาทางเยื่อเมือก (mucosal drug delivery) โดยการใช้ในรูปของผงที่บริหารยาโดยการพ่น เช่น ทางจมูก เป็นต้น

การเตรียมไมโครพาร์ติเคิล สามารถเตรียมได้หลายวิธี เช่น emulsion-solvent evaporation method (Hachicha et al., 2006) และ spay drying method (Harikarnpakdee et al., 2006) เป็นต้น และในการเตรียมนี้ต้องใช้พอลิเมอร์เป็นส่วนประกอบหลัก ในช่วงหลายปีที่ผ่านมา การ เตรียมอนุภาคขนาดเล็กไม่ว่าจะเป็นนาใน/ไมโครพาร์ติเคิล ได้หันมาใช้วิธีการเป็นง่ายๆ โดยอาศัย การเกิดอันตรกิริยาของสารทั้งสองที่มีประจุแตกต่างกัน เพื่อให้ได้สารประกอบเชิงซ้อนที่ไม่ละลาย น้ำแต่กระจายตัวในน้ำ ซึ่งมีอนุภาคขนาดเล็ก ก็จะได้นาใน/ไมโครพาร์ติเคิลขึ้นกับขนาดอนุภาค ตัวอย่าง เช่น ไคโตแซนที่มีประจุบวก เกิดอันตรกิริยากับ pentasodium tripolyphosphate ที่มี ประจุลบ โดยการเทสารละลายของ pentasodium tripolyphosphate ผสมกับสารกระจายของไค โตแซนที่มีตัวยาภายใต้สภาวะที่มีการกวน ก็สามารถเกิดนาใน/ไมโครพาร์ติเคิลที่กักเก็บยา รวมทั้ง โปรตีนได้สูงมาก (Boonsongrit et al., 2006) นอกจากนี้ ไคโตแซนยังสามารถเกิดนาในพาร์ติเคิล กับ caseinate ซึ่งเป็น phosphoprotein ที่มีประจุลบ (Anal et al., 2008)

การเตรียมนาโน/ไมโครพาร์ติเคิลโดยการเกิดอันตรกิริยาของสารสองชนิด เป็นแนวทางที่ดีที่ น่าจะสามารถนำมาประยุกต์ใช้ในกรณีของการเกิดอันตรกิริยาของแมกนีเซียมอะลูมินัมซิลิเคตกับ ยาประจุบวกได้ ผู้วิจัยได้ศึกษาการเตรียมสารเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตที่ความ เป็นกรดด่างต่างๆ พบว่า ใน pH ที่เป็นกรดและกลาง นิโคตินจะแตกตัวให้ประจุบวก ซึ่งจะมี ความชอบ (affinity) ต่อแมกนีเซียมอะลูมินัมซิลิเคตสูง (Suksri and Pongjanyakul, 2008) ซึ่ง นำไปสู่การลดค่า zeta potential ของแมกนีเซียมอะลูมินัมซิลิเคต ทำให้เกิดการรวมกลุ่ม (flocculation) ของแมกนีเซียมอะลูมินัมซิลิเคต ซึ่งการดูดซับของนิโคตินบนผิวของแผ่นซิลิเคตของ

แมกนีเชียมอะลูมินัมชิลิเคตก็เป็นการกักเก็บยาใน flocculate ด้วยการเกิด flocculate จะเห็น ขอบเขตชัดเจนใน pH ที่เป็นกรดและกลาง ซึ่งการเกิด flocculate นี้ ก็เสมือนหนึ่งการเกิดไมโค รพาร์ติเคิลนั่นเอง อย่างไรก็ตาม การศึกษาที่ผ่านมาไม่ได้มีการควบคุมสภาวะการเกิด flocculate และยังไม่ได้นำอนุภาคดังกล่าวมาผ่านกระบวนการทำให้แห้ง นอกจากนี้ ผู้วิจัยยังมีแนวคิดในการ เคลือบอนุภาคดังกล่าวด้วยไคโตแซน เนื่องจาก flocculate ที่ได้รับยังคงมีประจุเป็นลบ ซึ่งสามารถ เกิดอันตรกิริยากับไคโตแซนประจุบวกได้ และจะทำให้อนุภาคที่ได้มีประจุบวก (Khunawattanakul et al., 2008) ซึ่งจะยึดเกาะกับเยื่อเมือกที่มีประจุลบของ mucin ได้ดีขึ้น ดังนั้น การวิจัยนี้จะศึกษา การเตรียมและคุณลักษณะของไมโครพาร์ติเคิลนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตที่เคลือบด้วย โคโตแซน เพื่อใช้เป็นระบบนำส่งยานิโคตินทางเยื่อเมือก เช่น ทางจมูก เป็นต้น นอกจากนี้ การ ศึกษษนี้ยังจะขยายผลไปยังสารกลุ่มโปรตีน ซึ่งมีการแตกตัวให้ประจุบวกในสภาวะที่เป็นกรด ซึ่ง น่าจะดูดซับบนแมกนีเซียมอะลูมินัมซิลิเคต ซึ่งมีรายการถึงการดูดซับของสารโมเลกุลใหญ่บน เคลย์ (Kalra et al., 2003; Fiorito et al., 2008) และยังไม่มีรายงานการเกิดเป็น flocculate ขึ้น ซึ่ง ในการศึกษานี้จะใช้ lysozyme เป็นโปรตีนจำลองในการศึกษาการเกิด flocculate กับแมกนีเซียม อะลูมินัมซิลิเคตและพัฒนาเป็นระบบนำส่งโปรตีนที่เป็นไมโครพาร์ติเคิลต่อไป

### วัตถุประสงค์การวิจัย

- 1. เพื่อพัฒนาและประเมินคุณสมบัติยาเม็ดที่มีสารเชิงซ้อนยา-แมกนีเซียมอะลูมินัมซิลิเคต เป็นแหล่งกักเก็บยาและมีเกลือที่มีไอออนบวก เพื่อกระตุ้นการปลดปล่อยยา
- 2. เพื่อศึกษาคุณลักษณะของบีดแคลเซียมอัลจิเนตที่ประกอบด้วยแหล่งกักเก็บยาขนาดเล็ก ที่เป็นการรวมกลุ่มของยา-แมกนีเซียมอะลูมินัมซิลิเคต
- 3. เพื่อศึกษาการเตรียมและคุณลักษณะของไมโครพาร์ติเคิลยา-แมกนีเซียมอะลูมินัมซิลิเคต และไมโครพาร์ติเคิลยา-แมกนีเซียมอะลูมินัมซิลิเคตที่เคลือบด้วยไคโตแซน เพื่อพัฒนาเป็น ระบบนำส่งยาขนาดเล็ก

### ผลงานวิจัย

## งานวิจัยนี้ แบ่งออกเป็น 4 ส่วน ดังต่อไปนี้

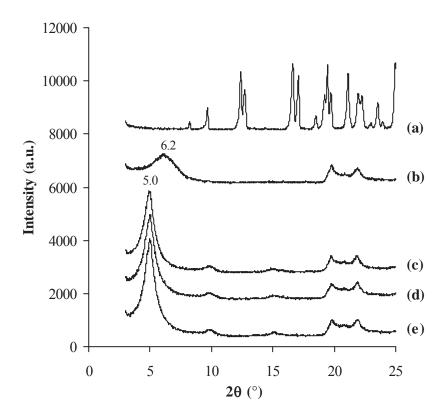
- 1. สารเชิงซ้อน propranolol-magnesium aluminum silicate (PPN-MAS)
  - 1.1. คุณลักษณะทางเคมีฟิสิกส์และการปลดปล่อยยาจากสารเชิงซ้อน PPN-MAS
  - 1.2. การใช้สารเชิงซ้อน PPN-MAS ในปิดแคลเซียมอัลจิเนต
  - 1.3. การใช้สารเชิงซ้อน PPN-MAS ในยาเม็ดและผลของเกลือแคลเซียมต่อการ ปลดปล่อยยา
- สารเชิงซ้อน nicotine-magnesium aluminum silicate (NCT-MAS) เป็นส่วนกักเก็บยา ในยาเม็ดกระพุ้งแก้ม
  - 2.1. การใช้สารเชิงซ้อนในยาเม็ดเมทริกซ์อัลจิเนตเพื่อการนำส่งทางกระพุ้งแก้ม
  - 2.2. ผลของสารดัดแปรพีเอชต่อคุณลักษณะยาเม็ดที่บรรจุสารเชิงซ้อน NCT-MAS
- 3. ไมโครพาร์ติเคิล NCT-MAS และการดัดแปรผิวของไมโครพาร์ติเคิลด้วย chitosan (CS)
- 4. ไมโครพาร์ติเคิล lysozyme (LSZ)-MAS และการดัดแปรผิวของไมโครพาร์ติเคิลด้วย CS

### 1. สารเชิงซ้อน propranolol-magnesium aluminum silicate (PPN-MAS)

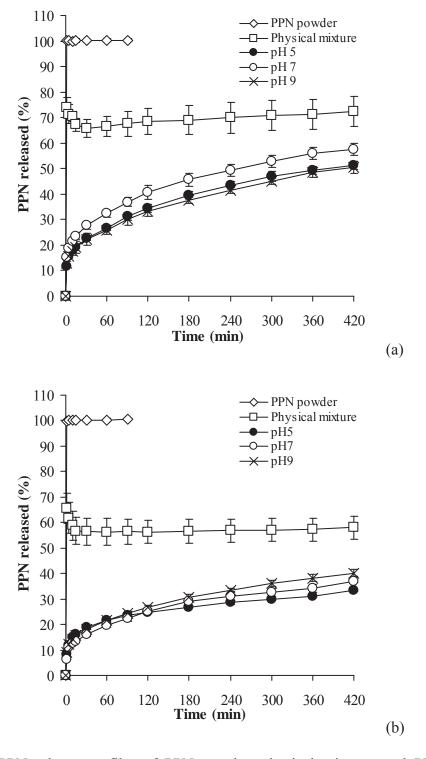
## 1.1. คุณลักษณะทางเคมีฟิสิกส์และการปลดปล่อยยาจากสารเชิงซ้อน PPN-MAS

ในการศึกษาคุณสมบัติทางเคมีฟิสิกส์ของสารเชิงซ้อน PPN-MAS ได้ทำการเตรียมที่ ความเป็นกรดด่าง เท่ากับ 5, 7 และ 9 สารเชิงซ้อนที่ได้มีปริมาณ PPN ที่ใกล้เคียงกัน (ตารางที่ 1) และสารเชิงซ้อนที่เตรียมและผ่านการบดและแร่ง จะมีขนาดอนุภาคใกล้เคียงกันทั้งที่วัดขนาดใน กรดและบัฟเฟอร์ (ตารางที่ 1) แสดงให้เห็นว่า อนุภาคของสารเชิงซ้อนไม่ได้แตกออกเป็นอนุภาค เล็กๆของ MAS ซึ่งการที่อนุภาคของสารประกอบเชิงซ้อนยังคงอยู่ เกิดจากการที่ MAS เกิดอันตร กิริยากับตัวยา และการคงอนุภาคอยู่สามารถชลอการปลดปล่อยยาได้

จากการศึกษาโดยใช้ Powder x-ray diffractometer พบว่า PPN สามารถแทรกเข้าไป ในชั้นซิลิเคตของ MAS ได้ (รูปที่ 1) ซึ่งการเกิดอันตรกิริยาของสารทั้งสองในการเกิดเป็นสารเชิงซ้อน โดยเกิด electrostatic force, hydrogen bonding และการเกิด water bridging การศึกษาการ ปลดปล่อยตัวยาใน 0.1 N HCI และ pH 6.8 phosphate buffer พบว่าอนุภาคของสารเชิงซ้อน สามารถซะลอการปลดปล่อยตัวยาได้ เมื่อเปรียบเทียบกับการละลายของผงยาและสารผสมของ PPN-MAS (รูปที่ 2) นอกจากนี้ ปัจจัยที่มีผลต่อการปลดปล่อยยา ได้แก่ ขนาดอนุภาค ปริมาณยาที่ บรรจุและชนิดของตัวกลางการละลายที่ใช้ทดสอบ


รายละเอียดของงานวิจัยส่วนนี้ อยู่ในภาคผนวก บทความวิจัยที่ตีพิมพ์ เรื่อง

Rojtanataya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: characterization and factors influencing drug release. International Journal of Pharmaceutics 2010; 383: 106-115.


 Table 1. Particle size and PPN content of PPN-MAS complexes.

| Condition of preparation | ration PPN content (%w/w) | Particle size (μm) |                         |
|--------------------------|---------------------------|--------------------|-------------------------|
|                          |                           | 0.1 N HCl          | pH 6.8 phosphate buffer |
| - pH 5                   | $14.13 \pm 0.18$          | $190.2 \pm 1.0$    | $196.6 \pm 1.0$         |
| - pH 7                   | $14.51 \pm 0.22$          | $181.9 \pm 0.4$    | $189.8 \pm 2.2$         |
| - pH 9                   | $14.42 \pm 0.08$          | $189.3 \pm 0.4$    | $190.4 \pm 0.9$         |

Data are the mean  $\pm$  SD of three determinations.



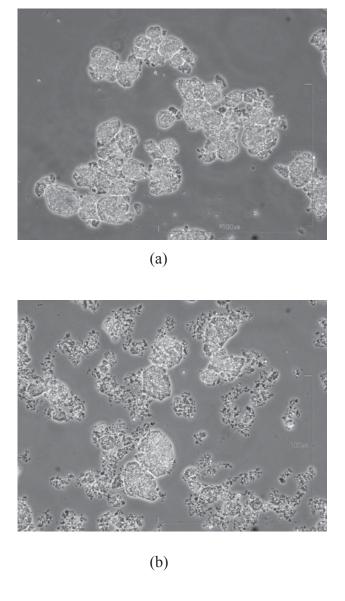
**Figure 1.** PXRD patterns of PPN (a), MAS (b), and PPN-MAS complexes prepared at pH 5 (c), 7 (d), and 9 (e).



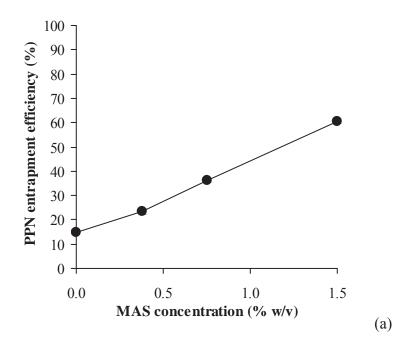
**Figure 2.** PPN release profiles of PPN powder, physical mixture, and PPN-MAS complexes prepared at various pHs using 0.1 N HCl (a) and pH 6.8 phosphate buffer (b). Each point is the mean  $\pm$  SD, n=3.

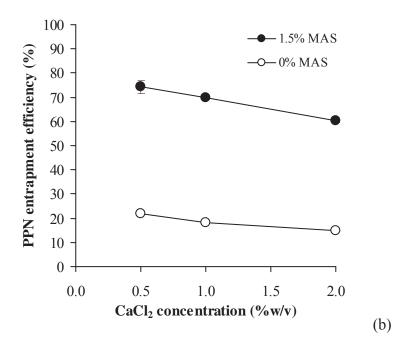
### 1.2. การใช้สารเชิงซ้อน PPN-MAS ในปิดแคลเซียมอัลจิเนต

ในการศึกษาการผสมตัวยา propranolol (PPN) กับแมกนีเซียมอะลูมินัมซิลิเคต (MAS) ในรูปสารกระจาย พบว่าสารทั้งสองมีอันตรกิริยาและเกิดสารเชิงซ้อนขึ้น ซึ่งสังเกตได้จาก การที่ MAS เกิดการรวมกลุ่มกัน เรียกว่า flocculate (รูปที่ 3a) และการเติมโซเดียมอัลจิเนต (SA) มีผลทำ ให้เกิดการแตกออกของ flocculate บางส่วน (รูปที่ 3b) ทั้งนี้อาจเกิดจาก MAS สามารถเกิดอันตร-กิริยากับ SA ได้ หลังจากนั้นได้นำสารกระจาย SA ที่มี PPN-MAS flocculate หยดลงใน สารละลายแคลเซียมคลอไรด์ เกิดเป็นเม็ดปิดขึ้น

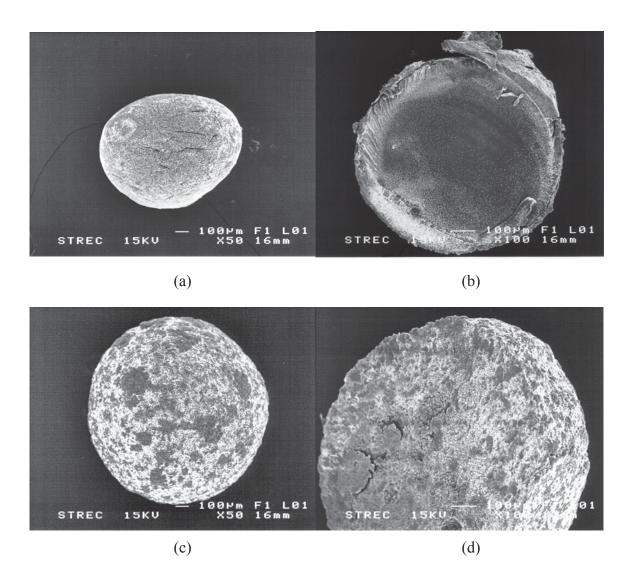

การเพิ่มปริมาณ MAS ในบีด ทำให้ประสิทธิภาพการกักเก็บยาเพิ่มขึ้นอย่างต่อเนื่อง (รูป ที่ 4a) ซึ่งเกิดจากการเกิดสารเชิงซ้อนของยากับ MAS ทำให้เกิดการสูญตัวยาในระหว่างการเกิดบีด น้อยลง ในขณะที่การเพิ่มความเข้มข้นของแคลเซียมคลอไรด์ทำให้ประสิทธิภาพการกักเก็บยาลดลงเล็กน้อย (รูปที่ 4b) และพบว่าการเติม MAS ในบีดทำให้ประสิทธิภาพการกักเก็บยาสูงกว่า บีดที่ไม่มี MAS อย่างมีนัยสำคัญ บีดที่มี MAS มีลักษณะที่แตกต่างจากบีดที่ไม่มี MAS อย่าง ชัดเจน (รูปที่ 5) โดยบีดที่มี MAS จะมีบริเวณสีดำกระจายอยู่ทั่วไป ซึ่งน่าจะเป็น PPN-MAS flocculate และจากการทดสอบด้วยเครื่อง EDX ปรากฏว่าบริเวณสีดำมีส่วนประกอบของซิลิคอน สูงมากเมื่อเปรียบเทียบกับบริเวณภายนอก แสดงว่าเป็น PPN-MAS flocculate ซึ่งทำหน้าที่เป็น แหล่งกักเก็บยาขนาดเล็กในบีด

ในการศึกษาการปลดปล่อยยาใน 0.1 N HCI และ pH 6.8 phosphate buffer พบว่า ปริมาณ MAS ในปิดทำให้การปลดปล่อยยาช้าลง แต่ทำให้บริมาณยาที่ปลดปล่อยออกมาน้อยลง ด้วย (รูปที่ 6) ทั้งนี้เนื่องจาก การปลดปล่อยยาออกจากบิดที่มีสารเชิงซ้อน PPN-MAS จะเข้าสู่ สมดุลไอออน นอกจากนี้ ความเข้มข้นของแคลเซียมคลอไรด์ไม่มีผลต่อการปลดปล่อยยาใน 0.1 N HCI เนื่องจากแคลเซียมอัลจิเนตสามารถเปลี่ยนเป็นกรดอัลจินิค ซึ่งไม่ละลายน้ำ ทำให้บิดเป็นเมท ริกซ์ที่สามารถควบคุมการปลดปล่อยยาได้ ในขณะที่ การปลดปล่อยยาใน pH 6.8 phosphate buffer มีการเปลี่ยนแปลง (รูปที่ 7) โดยการใช้ 2% calcium chloride ทำให้บิดมีการปลดปล่อยยา เร็วกว่า การใช้ 0.5 และ 1% calcium chloride เนื่องจากการใช้แคลเซียมไอออนสูงทำให้การ เชื่อมโยงข้ามของอัลจิเนตเกิดขึ้นอย่างรวดเร็วและมีความหนาแน่นในการเชื่อมโยงข้ามสูงที่บริเวณ ผิวของบิด ส่งผลให้การแพร่ของแคลเซียมเข้าสู่ภายในของบิดน้อยลง และโครงสร้างภายในของบิดมีความแน่นของเมทริกซ์น้อยกว่าการใช้ความเข้มข้นของแคลเซียมคลอไรด์ที่ต่ำ ทำให้บิดสามารถ พองตัวอย่างรวดเร็วใน pH 6.8 phosphate buffer และปลดปล่อยยาอย่างรวดเร็วเช่นกัน เนื่องจากการปลดปล่อยยาจากบิดที่มี MAS จะเข้าสู่สมดุลและทำให้การปลดปล่อยยาไม่สมบูรณ์ ดังนั้น จึงทำการทดสอบการปลดปล่อยยาเลียนแบบภาวะของทางเดินอาหาร โดยใช้ 0.1 N HCI เป็นเวลา 2 ชั่วโมง จากนั้นใช้ pH 6.8 phosphate buffer (รูปที่ 8) พบว่า การเปลี่ยนตัวกลางที่ใช้

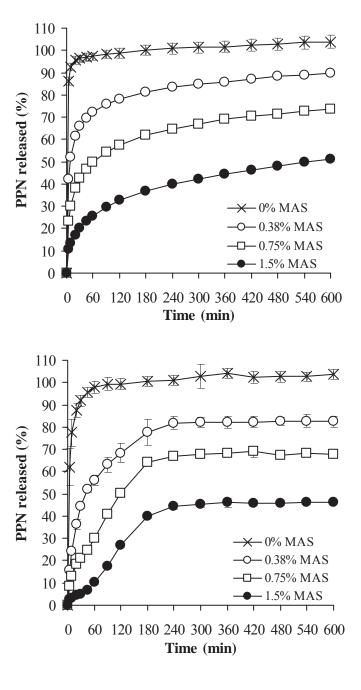

ในการศึกษาทำให้การปลดปล่อยยาเพิ่มขึ้น แสดงให้เห็นว่า การปลดปล่อยยาอย่างต่อเนื่อง สามารถเกิดขึ้นเมื่อปิดเปลี่ยนสภาวะภายในทางเดินอาหาร


รายละเอียดของงานวิจัยส่วนนี้ อยู่ในภาคผนวก บทความวิจัยที่ตีพิมพ์ เรื่อง

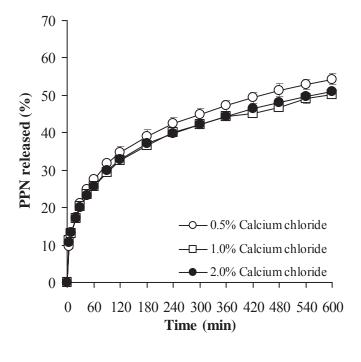
Pongjanyakul T, Rongthong T. Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug-clay intercalated complexes as microresservoirs. Carbohydrate Polymers 2010; 81: 409-419.




**Figure 3.** Microscopic morphology of PPN-MAS flocculates in distilled water without (a) and with SA (b).

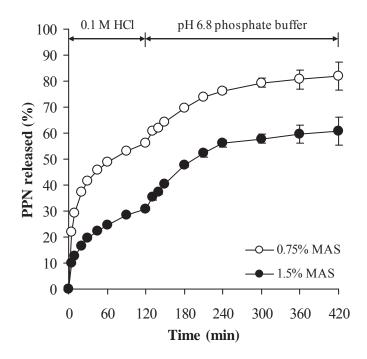






**Figure 4.** Effect of MAS concentration (a) and calcium chloride concentration used (b) on PPN entrapment efficiency of calcium alginate beads.



**Figure 5.** Microscopic morphology and internal structure of PPN-loaded CA beads (a,b) and PPN-loaded 1.5%MAS-CA beads (c,d).




**Figure 6.** PPN release profiles of PPN-loaded CA beads prepared using different concentrations of MAS in 0.1 N HCl (a) and pH 6.8 phosphate buffer (b).



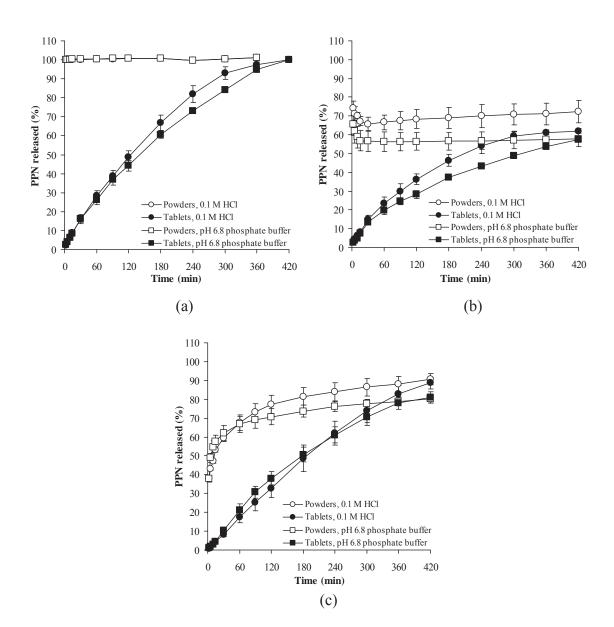


**Figure 7.** PPN release profiles of PPN-loaded 1.5%MAS-CA beads prepared using different concentrations of calcium chloride in 0.1 N HCl (a) and pH 6.8 phosphate buffer (b).

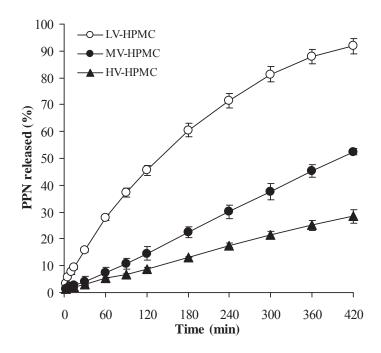


**Figure 8.** PPN release profiles of PPN-loaded CA beads with 0.75% and 1.5% MAS in simulated gastro-intestinal condition.

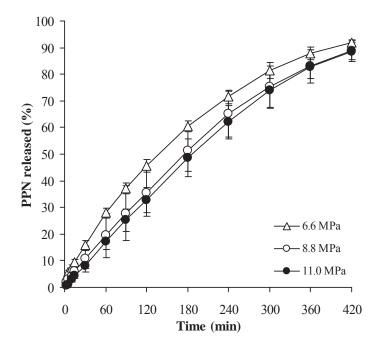
1.3. การใช้สารเชิงซ้อน PPN-MAS ในยาเม็ดและผลของเกลือแคลเซียมต่อการปลดปล่อยยาการใช้สารเชิงซ้อน PPN-MAS มาใช้เป็นแหล่งกักเก็ยยาในยาเม็ดเมทริกซ์ที่ใช้ hydroxypropylmethyl cellulose (HPMC) สามารถตอกเป็นยาเม็ดได้และมีคุณสมบัติทางกายภาพที่ดี และได้ทำการศึกษาการปลดปล่อยยาในตั้งกลาง คือ 0.1 M HCI และ pH 6.8 phosphate buffer พบว่ายาเม็ดที่มีสารเชิงซ้อนสามารถควบคุมการปลดปล่อยได้ดีกว่ายาเม็ดที่บรรจุผงยา PPN (รูปที่ 9) แสดงให้เห็นว่า สารเชิงซ้อนมีส่วนช่วยในการควบคุมการปลดปล่อยยานอกจากนี้ การปลดปล่อยยาของยาเม็ดที่บรรจุสารเชิงซ้อน มีความแตกต่างจากยาเม็ดบรรจุสารผสมกายภาพยากับ MAS ซึ่งการใช้สารผสมกายภาพยากับ MAS จะทำให้ยาปลดปล่อยอกจากยาเม็ดได้ช้าลง เนื่องจากตัวยาถูกดูดซับโดย MAS ในยาเม็ด นอกจากนี้ยังทำให้จลนศาสตร์การปลดปล่อยยาเปลี่ยนแปลงไป


ผลของการใช้ HPMC เกรดความหนืดต่างๆ พบว่า เกรดความหนืดของ HPMC มี ผลกระทบกับการปลดปล่อยยา โดยเกรดความหนืดสูงทำให้การปลดปล่อยยาช้า เนื่องจาก สามารถสร้างเจลที่แข็งแรงรอบเม็ดยา ส่งผลให้เกิดความคดเคี้ยวของช่องน้ำในเม็ดยา การแพร่ของ ยาซ้าลง (รูปที่ 10)

ผลของความดันในการตอกยาเม็ด พบว่า การเพิ่มความดันในการตอกยาเม็ด ทำให้การ ปลดปล่อยยาช้าลง แต่ไม่มากนัก เนื่องจากการเพิ่มความดันในการตอก ทำให้ยาเม็ดมีแรงดัน ภายในสูง และอาจเกิดการพองตัวที่เร็วขึ้น ส่งผลให้การปลดปล่อยยาเปลี่ยนแปลงน้อยลง แสดงว่า ปัจจัยนี้มีผลต่อการปลดปล่อยยาค่อนข้างน้อย (รูปที่ 11)


ผลของ calcium acetate ต่อการปลดปล่อยยา การเติม calcium acetate มีผลทำให้ การปลดปล่อยยาเร็วขึ้น ทั้งในตัวกลางที่เป็นกรด และ pH 6.8 Tris buffer ที่ผสม sodium chloride และ potassium chloride ทั้งนี้เนื่องจาก การละลายของ calcium acetate ทำให้ได้ แคลเซียมไอออน ซึ่งสามารถกระตุ้นการแลกเปลี่ยนยาในสารเชิงซ้อนในยาเม็ด ส่งผลให้การ ปลดปล่อยยาเร็วขึ้น (รูปที่ 12)

รายละเอียดของงานวิจัยส่วนนี้ อยู่ในภาคผนวก ต้นฉบับที่นำเสนอเพื่อตีพิมพ์และอยู่ในระหว่าง การพิจารณา เรื่อง


Pongjanyakul T, Rojtanataya S. Use of propranolol-magnesium aluminum silicate intercalated complexes as drug reservoirs in polymeric matrix tablets. Indian Journal of Pharmaceutical Sciences (Submitted).



**Figure 9.** PPN release profiles of HPMC matrix tablets containing pure PPN (a), PPN-MAS physical mixture (b) and PPN-MAS complexes (c). Each point is the mean  $\pm$  SD, n=3.



**Figure 10.** Effect of viscosity grade of HPMC on PPN release of PPN-MAS complex-loaded HPMC tablets in 0.1 M HCl. Each point is the mean  $\pm$  SD, n=3.



**Figure 11.** Effect of compression pressure on PPN release of PPN-MAS complex-loaded HPMC tablets in 0.1 M HCl. Each point is the mean  $\pm$  SD, n=3.

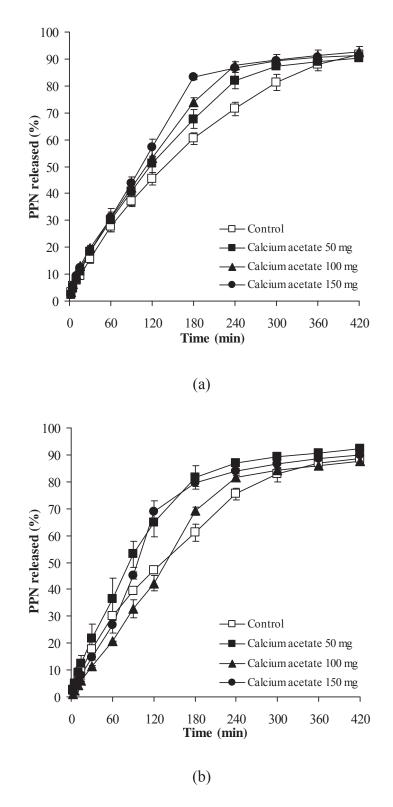
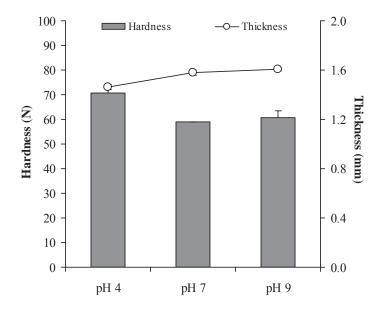


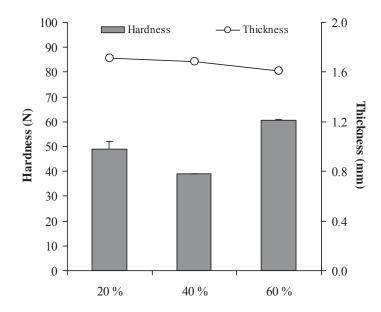

Figure 12. Effect of calcium acetate amount on PPN release of PPN-MAS complex-loaded HPMC tablets in 0.1 M HCl (a) and pH 6.8 Tris buffer containing sodium chloride and potassium chloride (b). Each point is the mean  $\pm$  SD, n=3.

- 2. สารเชิงซ้อน nicotine-magnesium aluminum silicate (NCT-MAS) เป็นส่วนกักเก็บยา ในยาเม็ดกระพุ้งแก้ม
- 2.1. การใช้สารเชิงซ้อนในยาเม็ดเมทริกซ์อัลจิเนตเพื่อการนำส่งทางกระพุ้งแก้ม
  ผลของการใช้สารเชิงซ้อนนิโคติน-เคลย์เตรียมที่สภาวะกรด-ด่างแตกต่างกัน (รูปที่ 13)
  และผลของปริมาณสารเชิงซ้อนในยาเม็ด (รูปที่ 14) พบว่า ยาเม็ดที่ได้มีคุณลักษณะทางกายภาพ
  ที่ดี มีความหนาไม่เกิน 2 มิลลิเมตร ความแข็งของยาเม็ดมากพอสมควร ทำให้ยาเม็ดไม่เปราะและ
  แตกหักง่าย ซึ่งยาเม็ดที่ได้มีความหนาและความแข็งที่สามารถใช้ภายในช่องปากได้

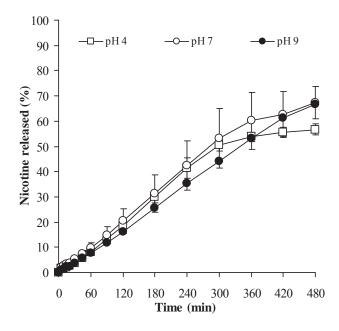
การศึกษารูปแบบการปลดปล่อยนิโคตินของยาเม็ดเมทริกซ์บรรจุสารเชิงซ้อนนิโคติน-เคลย์ โดยใช้สารเชิงซ้อนเตรียมที่สภาวะกรด-ด่างแตกต่างกัน เครื่องมือที่ใช้ทดสอบ คือ USP dissolution apparatus I ตัวกลางการละลายที่ใช้ คือ pH 6 phosphate buffer ที่อุณหภูมิ 37 องศาเซลเซียส คือ การปลดปล่อยนิโคตินของยาเม็ดที่ใช้สารเชิงซ้อนที่เตรียมในสภาวะกรด-ด่าง แตกต่างกัน มีลักษณะเป็นเส้นตรง (รูปที่ 15) ซึ่งเป็นการปลดปล่อยยาแบบจลนศาสตร์อันดับศูนย์ (zero-order kinetic) และมีอัตราการปลดปล่อยยาที่ใกล้เคียงกัน ส่วนการศึกษาผลของปริมาณ สารเชิงซ้อนนิโคติน-เคลย์ในยาเม็ดต่อการปลดปล่อยนิโคติน โดยใช้ปริมาณสารเชิงซ้อนเตรียมที่พี เอช 9 (รูปที่ 16) พบว่า การเพิ่มปริมาณสารเชิงซ้อนไม่มีผลต่อการปลดปล่อยนิโคติน เมื่อคำนวณ ในหน่วยของร้อยละนิโคตินที่ปลดปล่อย ซึ่งแสดงให้เห็นว่า ยาเม็ดเมทริกซ์ยังคงสามารถควบคุม การปลดปล่อยนิโคตินได้ นอกจากนี้ การปลดปล่อยนิโคตินของยาเม็ดยังคงเป็นการปลดปล่อยยา แบบจลนศาสตร์อันดับศูนย์ และมีอัตราการปลดปล่อยยาที่ใกล้เคียงกันเมื่อเพิ่มปริมาณสาร เชิงซ้คน


สำหรับการศึกษารูปแบบการซึมผ่านเยื่อเมือกหลอดอาหารหมูของนิโคตินจากยาเม็ด เมทริกซ์บรรจุสารเชิงซ้อนนิโคติน-เคลย์ โดยใช้สารเชิงซ้อนที่เตรียมในสภาวะกรด-ด่างแตกต่างกัน เครื่องมือที่ใช้ทดสอบ คือ modified USP dissolution apparatus II ตัวกลางการละลายที่ใช้ คือ isotonic pH 7.4 phosphate buffer ที่อุณหภูมิ 37 องศาเซลเซียส คือ การใช้สารเชิงซ้อนเตรียมที่ พีเอช 9 มีการซึมผ่านของนิโคตินได้สูงที่สุด รองลงมาคือ สารเชิงซ้อนเตรียมที่พีเอช 7 และ 4 ตามลำดับ (รูปที่ 17) ทั้งนี้ เนื่องจาก สารเชิงซ้อนเตรียมที่ pH 9 สามารถปลดปล่อยนิโคตินในรูปที่ ไม่แตกตัว (unionized form) สูง ซึ่งนิโคตินรูปที่ไม่แตกตัวมีคุณสมบัติในการซึมผ่านเยื่อเมือกได้ดี และนิโคตินรูปที่ไม่แตกตัวจะมีสัดส่วนลดลงเมื่อความเป็นกรด-ด่างในการเตรียมสารเชิงซ้อนลดลง ซึ่งทำให้การใช้สารเชิงซ้อนเตรียมที่พีเอช 4 ให้ผลการซึมผ่านเยื่อเมือกน้อยที่สุด ส่วนการศึกษาผล ของปริมาณสารเชิงซ้อนนิโคติน-เคลย์ในยาเม็ด ต่อการซึมผ่านเยื่อเมือก โดยใช้ปริมาณสาร เชิงซ้อนเตรียมที่พีเอช 9 ผลการทดลองดังรูปที่ 18 พบว่า การซึมผ่านเยื่อเมือกของนิโคตินสูงขึ้น

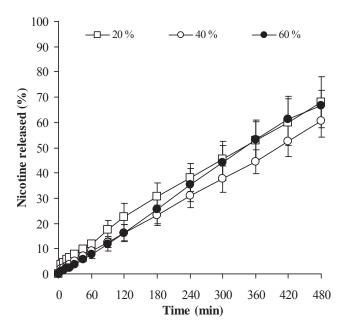
เมื่อมีการเพิ่มปริมาณสารเชิงซ้อนในยาเม็ด และปริมาณนิโคตินที่ชึมผ่านเยื่อเมือกมีความสัมพันธ์ กับปริมาณสารเชิงซ้อนที่บรรจุในยาเม็ด


การศึกษาคุณสมบัติยึดติดเยื่อเมือกหลอดอาหารหมูของยาเม็ดเมทริกซ์บรรจุสาร เชิงซ้อนนิโคติน-เคลย์ โดยใช้สารเชิงซ้อนที่เตรียมในสภาวะกรด-ด่างแตกต่างกัน แสดงโดยค่า maximum detachment force และ work of adhesion ซึ่งทดสอบโดยใช้เครื่อง texture analyzer พบว่า การใช้สารเชิงซ้อนที่เตรียมในสภาวะกรด-ด่างแตกต่างกัน ในยาเม็ดแสดงค่า maximum detachment force และ work of adhesion ที่ใกล้เคียงกัน (รูปที่ 19) ซึ่งค่าทั้งสองแสดงถึงการมี คุณสมบัติยึดติดเยื่อเมือกของยาเม็ดที่เตรียมได้ ส่วนการศึกษาผลของปริมาณสารเชิงซ้อนนิโคติน-เคลย์ในยาเม็ด โดยใช้ปริมาณสารประกอบเชิงซ้อนเตรียมที่พีเอช 9 ต่อค่า maximum detachment force และ work of adhesion (รูปที่ 20) พบว่า การเพิ่มปริมาณสารเชิงซ้อนในยาเม็ด ทำให้ค่า maximum detachment force และ work of adhesion ลดลง ซึ่งแสดงถึงการลดลงของคุณสมบัติ ยึดติดเยื่อเมือกของยาเม็ด ทั้งนี้เนื่องจาก การเพิ่มขึ้นของปริมาณสารเชิงซ้อน ทำให้พอลิเมอร์ที่ใช้ ในตำรับลดลงด้วย ซึ่งส่งผลให้พื้นที่ของพอลิเมอร์ที่พองตัวเกิดการยึดติดกับเยื่อเมือกจอลง

รายละเอียดของงานวิจัยส่วนนี้ อยู่ในภาคผนวก บทความวิจัยที่ตีพิมพ์ เรื่อง


Kanjanabat S, Pongjanyakul T. Preparation and characterization of nicotine-magnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery. AAPS PharmSciTech 2011; 12: 683-692.

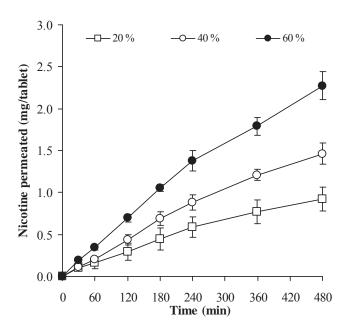



**Figure 13.** Thickness and hardness of sodium alginate matrix tablets containing NCT-MAS complexes prepared at various pHs.

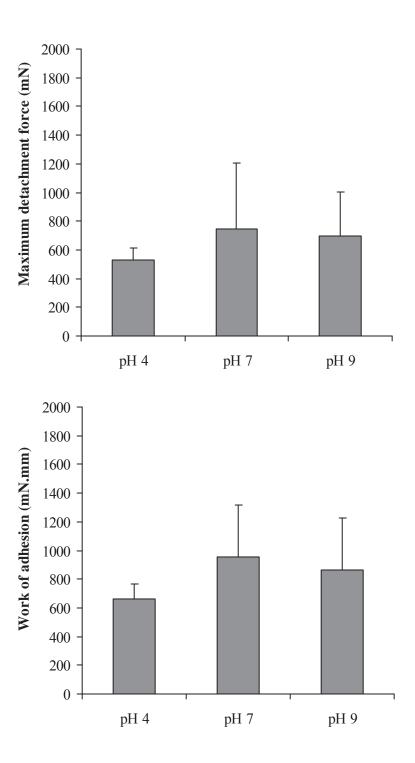


**Figure 14.** Thickness and hardness of sodium alginate matrix tablets containing various amounts of NCT-MAS complexes prepared at pH 9.

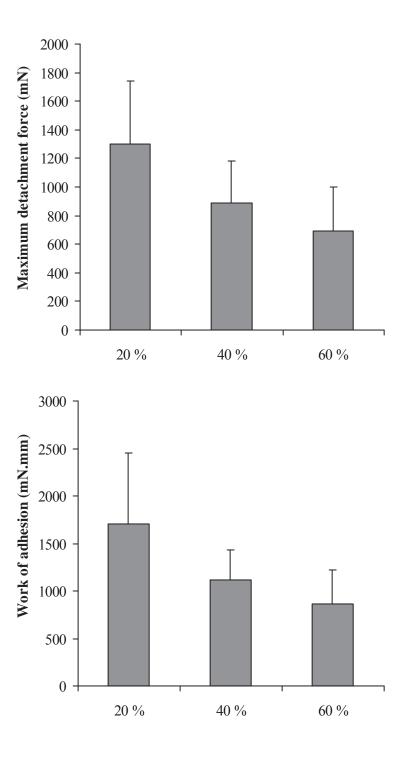



**Figure 15.** NCT release profiles of sodium alginate matrix tablets containing various amounts of NCT-MAS complexes prepared at various pHs.




**Figure 16.** NCT release profiles of sodium alginate matrix tablets containing various amounts of NCT-MAS complexes prepared at pH 9.




**Figure 17.** NCT permeation profiles of sodium alginate matrix tablets containing NCT-MAS complexes prepared at various pHs.



**Figure 18.** NCT permeation profiles of sodium alginate matrix tablets containing various amounts of NCT-MAS complexes prepared at pH 9.

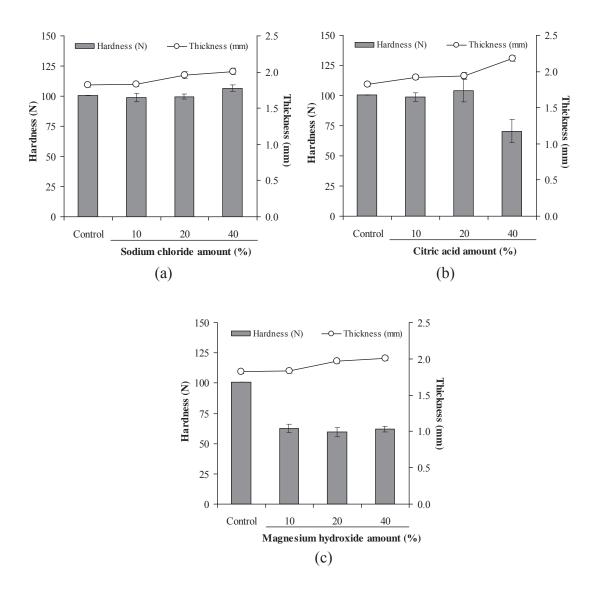


**Figure 19.** Maximum detachment force and work of adhesion of sodium alginate matrix tablets containing NCT-MAS complexes prepared at various pHs.

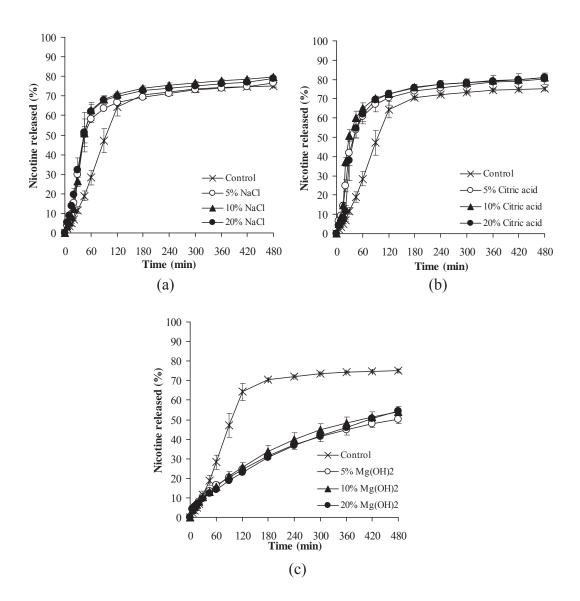


**Figure 20.** Maximum detachment force and work of adhesion of sodium alginate matrix tablets containing various amounts of NCT-MAS complexes prepared at pH 9.

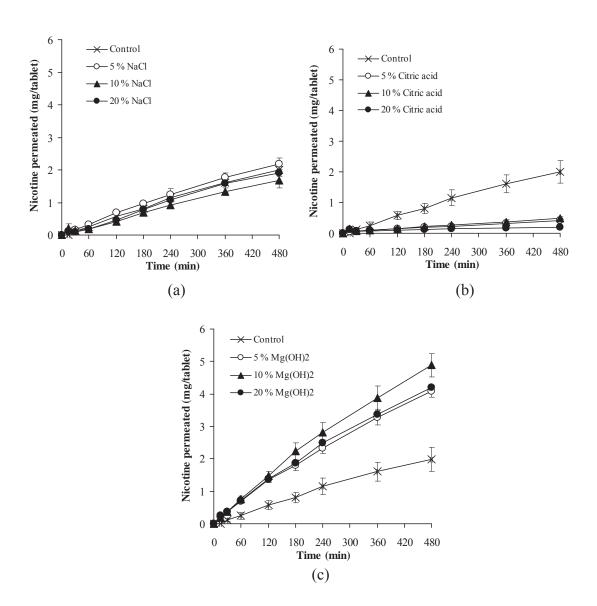
## 2.2. ผลของสารดัดแปรพีเอชต่อคุณลักษณะยาเม็ดที่บรรจุสารเชิงซ้อน NCT-MAS


ผลของกรด เกลือและด่างต่อคุณลักษณะของยาเม็ดสารเชิงซ้อนนิโคติน-เคลย์ ที่ใช้ hydroxymethylcellulose (HPMC) เป็นพอลิเมอร์ ผลของ sodium chloride citric acid และ magnesium hydroxide ต่อความหนาและความแข็งของยาเม็ดสารประกอบเชิงซ้อนนิโคติน-เคลย์ แสดงในรูปที่ 21 การเพิ่มสารดังกล่าวในยาเม็ดทำให้ความหนาของยาเม็ดเพิ่มขึ้น และการเพิ่ม citric acid และ magnesium hydroxide มีผลทำให้ความแข็งของยาเม็ดลดลง อย่างไรก็ตาม ยา เม็ดยังคงมีความแข็งเพียงพอ และให้คุณลักษณะของยาเม็ดที่ดีได้

การศึกษาการปลดปล่อยนิโคตินจากยาเม็ดที่เตรียมได้ พบว่า sodium chloride และ citric acid ทำให้นิโคตินปลดปล่อยได้เร็วขึ้น ทั้งนี้เนื่องจากสารทั้งสองสามารถละลายน้ำได้ดี ยา เม็ดสามารถพองตัวและกร่อนได้รวดเร็ว (รูปที่ 22) ในขณะที่ magnesium hydroxide เป็นสารที่ ไม่ละลายน้ำและสามารถเกิด inorganic gel ได้เมื่อสัมผัสกับน้ำ ทำให้สามารถชะลอการ ปลดปล่อยนิโคตินได้


การศึกษาการซึมผ่านเยื่อเมือกของนิโคตินจากยาเม็ดที่เตรียมได้ พบว่า sodium chloride ไม่มีผลต่อการซึมผ่านเยื่อเมือก ในขณะที่ citric acid มีผลทำให้การซึมผ่านลดลงมาก เนื่องจาก citric acid ทำให้สภาวะของยาเม็ดเป็นกรด นิโคตินสามารถรับโปรตอนและเปลี่ยนเป็น รูป protonated ส่งผลให้การซึมผ่านลดลง ส่วน magnesium hydroxide มีผลทำให้สภาวะของยา เม็ดเป็นเบส นิโคตินส่วนใหญ่อยู่ในรูป neutral การซึมผ่านเยื่อเมือกสูงขึ้น ดังแสดงในรูปที่ 23 ส่วนคุณสมบัติการยึดติดเยื่อเมือกของยาเม็ดไม่มีการเปลี่ยนแปลงเมื่อเติมสารต่างๆเหล่านี้

รายละเอียดของงานวิจัยส่วนนี้ อยู่ในภาคผนวก ต้นฉบับที่นำเสนอเพื่อตีพิมพ์และอยู่ในระหว่าง การพิจารณา เรื่อง


Pongjanyakul T, Kanjanabat S. Influence of pH modifiers and HPMC viscosity grades on nicotine-magnesium aluminum silicate complex-loaded buccal matrix tablets. AAPS PharmSciTech (Submitted).



**Figure 21.** Hardness and thickness of pH 9 NCT-MAS complex-loaded HPMC tablets incorporating sodium chloride (a), citric acid (b), and magnesium hydroxide (c).



**Figure 22.** Nicotine release profiles of pH 9 NCT-MAS complex-loaded HPMC tablets incorporating sodium chloride (a), citric acid (b), and magnesium hydroxide (c).



**Figure 23.** Nicotine permeation profiles of pH 9 NCT-MAS complex-loaded HPMC tablets incorporating sodium chloride (a), citric acid (b), and magnesium hydroxide (c).

#### 3. ไมโครพาร์ติเคิล NCT-MAS และการดัดแปรผิวของไมโครพาร์ติเคิลด้วย chitosan (CS)

การศึกษาขนาดอนุภาคและค่าซี่ต้าโพเทนเชียลของไมโครพาร์ติเคิลนิโคติน-เคลย์ในสาร กระจายที่พีเอช 4 และ 7 โดยใช้เครื่อง Mastersizer 2000 และ Zetasizer ตามลำดับ พบว่า อัตราส่วนของนิโคตินต่อเคลย์มีผลต่อขนาดอนุภาคของไมโครพาร์ติเคิล โดยอัตราส่วนนิโคติน เพิ่มขึ้นทำให้ไมโครพาร์ติเคิลมีอนุภาคใหญ่ขึ้น ส่วนค่าซี่ต้าโพเทนเชียล ซึ่งแสดงประจุที่ผิวอนุภาค มีค่าอยู่ในช่วงระหว่าง -20 ถึง -30 mV (ดังแสดงในรูปที่ 24a และ 24b) นอกจากนี้ พีเอชที่ใช้ เตรียมมีผลต่อขนาดไมโครพาร์ติเคิล โดยพีเอช 4 ทำให้ได้ไมโครพาร์ติเคิลที่มีขนาดเล็กกว่าพีเอช 7 เมื่อใช้อัตราส่วนนิโคตินต่อเคลย์ 0.1:1 และ 0.2:1 ข้อมูลพื้นฐานของแมกนีเซียมอะลูมินัม ซิลิเคตที่กระจายในน้ำพบว่ามีขนาดอนุภาค เท่ากับ 4.47 ± 0.01 ไมครอนและค่าซี่ต้าโพเทนเชียล เท่ากับ -33.5 ± 2.4 mV

การเตรียมไมโครพาร์ติเคิลนิโคติน-เคลย์ดัดแปรผิวด้วยไคโตแซน สามารถเตรียมได้ที่ พีเอชเป็นกรดเท่านั้น เนื่องจากไคโตแซนมีค่า pK เท่ากับ 6.5 ซึ่งที่พีเอชเป็นกลางไคโตแซนจะ ตกตะกอนและไม่ละลาย การศึกษาขนาดอนุภาคและค่าซี่ต้าโพเทนเชียลของไมโครพาร์ติเคิล นิโคติน-เคลย์ดัดแปรผิวด้วยไคโตแซน โดยใช้สารกระจายที่มีอัตราส่วนนิโคตินต่อเคลย์ เท่ากับ 0.2:1 ที่พีเอช 4 และใช้ไคโตแซนความเข้มข้นและมวลโมเลกุลแตกต่างกัน เครื่องมือที่ใช้ คือ Mastersizer 2000 และ Zetasizer ตามลำดับ ผลการทดลองแสดงในรูปที่ 25a และ 25b พบว่า การเติมไคโตแซนในความเข้มข้น 0.02 และ 0.04 %w/v มีผลทำให้ขนาดไมโครพาร์ติเคิลใหญ่ขึ้น โดยเฉพาะการใช้ไคโตแซนมวลโลกุลสูง ในขณะเดียวกันค่าซี่ต้าโพเทนเชียลมีค่าลดลงและ เปลี่ยนเป็นประจุบวกเมื่อใช้ไคโตแซนมวลโลกุลสูงความเข้มข้น 0.02 และ 0.04 %w/v แสดงให้ เห็นว่า ไคโตแซนสามารถดูดซับและดัดแปรผิวของไมโครพาร์ติเคิลนิโคติน-เคลย์ได้

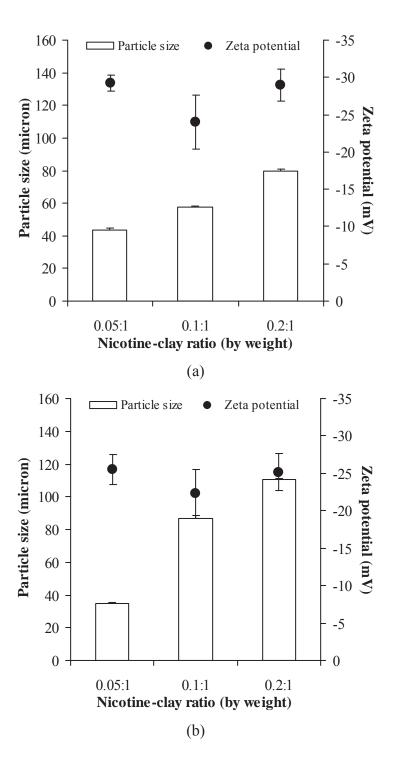
การศึกษาขนาดอนุภาคของไมโครพาร์ติเคิลนิโคติน-เคลย์เตรียมที่พีเอช 4 และ 7 และ ทำให้แห้งโดยใช้วิธีทำให้แห้งเยือกแข็ง วัดขนาดอนุภาคโดยใช้กล้องจุลทรรศน์ พบว่า ไมโครพาร์ติเคิลที่เตรียมได้มีขนาดอนุภาคอยู่ในช่วง 20 – 250 ไมครอน โดยไมโครพาร์ติเคิลนิโคติน-เคลย์มีขนาดอนุภาคเฉลี่ย 70 – 100 ไมครอน (รูปที่ 26) ขณะที่ไมโครพาร์ติเคิลนิโคติน-เคลย์ดัดแปรผิว ด้วยไคโตแซนมีขนาดอนุภาคเฉลี่ยในช่วง 55 – 80 ไมครอน (รูปที่ 27) นอกจากนี้ การศึกษาลักษณะและพื้นผิวอนุภาคโดยใช้กล้องอิเล็กตรอนแบบส่องกราด ดังรูปที่ 28 พบว่า เคลย์ที่ใช้ คือ แมกนีเชียมอะลูมินัมซิลิเคต มีลักษณะเป็นแกรนูล และพื้นผิวมีลักษณะเป็นแผ่นซ้อนกัน (รูปที่ 28a) ซึ่งสามารถกระจายเป็นอนุภาคเล็กๆเมื่อสัมผัสน้ำ ส่วนลักษณะของไมโครพาร์ติเคิลนิโคติน-เคลย์ (รูปที่ 28b) และไมโครพาร์ติเคิลนิโคติน-เคลย์ดัดแปรผิวด้วยไคโตแซน (รูปที่ 28c) มีลักษณะ คล้ายกัน คือ เป็นอนุภาครูปร่างไม่แน่นอนและพื้นผิวมีลักษณะเป็นแผ่นซ้อนกัน

การวิเคราะห์ปริมาณนิโคตินในไมโครพาร์ติเคิล ทดลองโดยใช้การสกัดด้วยสารละลาย กรดไฮโดรคลอลิกความเข้มข้น 2 โมลาร์ พบว่า ปริมาณนิโคตินของไมโครพาร์ติเคิลนิโคติน-เคลย์ เพิ่มขึ้นเมื่อเพิ่มอัตราส่วนของนิโคตินทั้งในพีเอช 4 และ 7 (รูปที่ 29a) อย่างไรก็ตาม ประสิทธิภาพ การกักเก็บนิโคตินของไมโครพาร์ติเคิลกลับลดลง (รูปที่ 29b) ทั้งนี้ เนื่องจากการเพิ่มอัตราส่วนของ นิโคตินสามารถเพิ่มการดูดซับที่ผิวของเคลย์ได้ แต่ประสิทธิภาพการกักเก็บกลับลดลง เนื่องจาก เคลย์มีความสามารถที่จำกัดในการดูดซับนิโคตินและการดูดซับที่เกิดขึ้นจะเข้าสู่สมดุล ทำให้มี นิโคตินเหลืออยู่ในปริมาณมาก ทำให้ประสิทธิภาพการกักเก็บลดลงได้ ส่วนปริมาณนิโคตินของ ไมโครพาร์ติเคิลนิโคติน-เคลย์ดัดแปรผิวด้วยไคโตแซนลดลงเมื่อเติมไคโตแซน (รูปที่ 30a) เนื่องจากไคโตแซนมีประจุบวกที่สามารถแลกเปลี่ยนกับนิโคตินได้ นอกจากนี้ ยังทำให้ ประสิทธิภาพการกักเก็บนิโคตินลดลงด้วย (รูปที่ 30b) และเห็นได้ว่าการเพิ่มความเข้นข้นและมวล โมเลกุลของไคโตแซนไม่มีผลปริมาณและประสิทธิภาพการกักเก็บนิโคตินของไมโครพาร์ติเคิล นิโคติน-เคลย์ดัดแปรผิวด้วยไคโตแซน

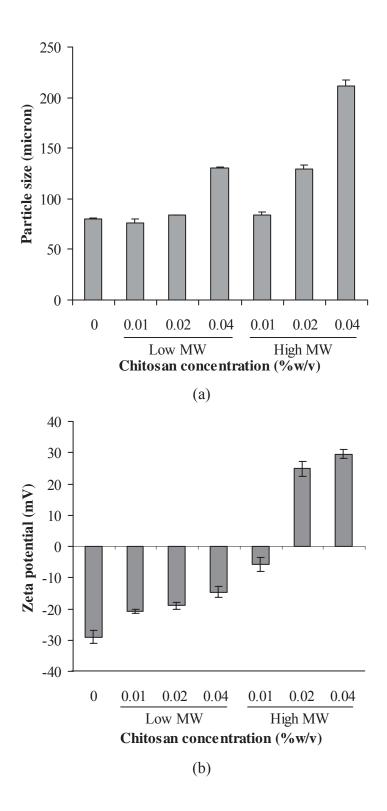
การศึกษาความเป็นผลึกของไมโครพาร์ติเคิล โดยใช้เครื่อง X-ray diffractometer (รูปที่ 31) พบว่า เคลย์ (แมกนีเซียมอะลูมินัมซิลิเคต) มีพีกที่สำคัญที่ 6.9°(20) ซึ่งคำนวณเป็นระยะห่าง ของแผ่นซิลิเคต เท่ากับ 1.29 นาโนเมตร ไมโครพาร์ติเคิลนิโคติน-เคลย์จะให้พีกสำคัญนี้ที่ 6.0°(20) ระยะห่างของแผ่นซิลิเคต เท่ากับ 1.49 นาโนเมตร แสดงว่านิโคตินถูกดูดซับเข้าไปในชั้น ของแผ่นซิลิเคตของเคลย์ และความเข้มของพีกนี้สูงขึ้น แสดงถึงความเป็นผลึกที่มากขึ้น ส่วนไมโครพาร์ติเคิลนิโคติน-เคลย์ดัดแปรผิวด้วยไคโตแซน มีพีกที่ 5.8°(20) ระยะห่างของแผ่นซิลิเคต เท่ากับ 1.59 นาโนเมตร แสดงว่าไคโตแซนอาจสามารถแทรกเข้าไปในชั้นของแผ่นซิลิเคตได้และทำ ให้ความเป็นผลึกของไมโครพาร์ติเคิลลดลงได้

การศึกษาคุณสมบัติด้านความร้อนโดยใช้ DSC พบว่า ไมโครพาร์ติเคิลนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตเตรียมที่พีเอช 4 จะมีพีคคายความร้อนที่อุณหภูมิ 260 และ 318 องศา เซลเซียส ซึ่งเป็นอุณหภูมิที่เกิดการสลายตัวของนิโคติน (รูปที่ 32) ส่วนไมโครพาร์ติเคิลที่ดัดแปรผิว ด้วยไคโตแซน มีพีคการสลายตัวของนิโคตินที่อุณหภูมิที่สูงขึ้นเล็กน้อย แสดงว่าไคโตแซนสามารถ ยับยั้งการสลายตัวของนิโคตินที่อุณหภูมิสูงได้ (รูปที่ 33)

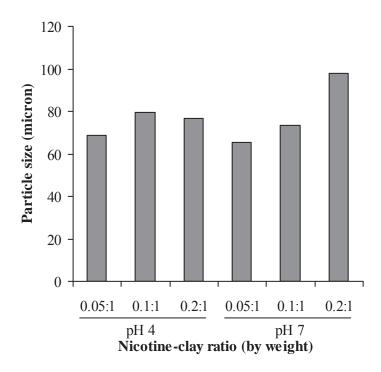
การศึกษาการปลดปล่อยนิโคตินของไมโครพาร์ติเคิล เครื่องมือที่ใช้ คือ Franz diffusion cell ใช้ pH 6 phosphate buffer เป็นตัวรับและใช้เซลลูโลสอะซิเตดเมมเบรน รูพรุน 0.45 ไมครอน เป็นเมมเบรนกั้น พบว่า ร้อยละการปลดปล่อยนิโคตินเพิ่มขึ้นในไมโครพาร์ติเคิลนิโคติน-เคลย์ที่ เตรียมโดยใช้อัตราส่วนนิโคตินสูง (รูปที่ 34) เพราะไมโครพาร์ติเคิลดังกล่าวมีปริมาณนิโคตินสูง ที่สุด ทำให้มีเกรเดียนต์ความเข้นข้นสูงในการผลักดันการปลดปล่อยยา ซึ่งพีเอชในการเตรียม ไมโครพาร์ติเคิลไม่มีผลต่อการปลดปล่อยนิโคติน การดัดแปรผิวของไมโครพาร์ติเคิลด้วยไคโตแซน


ทำให้การปลดปล่อยนิโคตินเพิ่มขึ้น โดยเฉพาะการใช้ไคโตแซนมวลโมเลกุลสูง (รูปที่ 35) เหตุผลที่ สามารถอธิบาย คือการมีสารโมเลกุลใหญ่ในระบบการปลดปล่อยยาจากไมโครพาร์ติเคิล สาร โมเลกุลใหญ่สามารถขยายระยะห่างของแผ่นซิลิเคต ทำให้นิโคตินสามารถปลดปล่อยออกมา ได้มากขึ้น

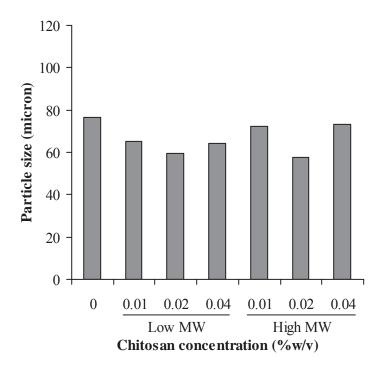
การศึกษาการซึมผ่านเยื่อเมือกของนิโคตินจากของไมโครพาร์ติเคิล เครื่องมือที่ใช้ คือ Franz diffusion cell ใช้ pH 7.4 isotonic phosphate buffer เป็นตัวรับและใช้เยื่อเมือกหลอด อาหารหมูเป็นเมมเบรนกั้น พบว่า พีเอชที่ใช้ในการเตรียมไมโครพาร์ติเคิลนิโคติน-เคลย์มีผลต่อการ ซึมผ่านเยื่อเมือก ไมโครพาร์ติเคิลที่เตรียมพีเอช 7 จะให้การซึมผ่านเยื่อเมือกที่สูงกว่าไมโครพาร์ติเคิลเตรียมที่พีเอช 4 (รูปที่ 36) เนื่องจากการเตรียมที่พีเอช 4 มีนิโคตินที่อยู่ในรูปแตกตัวมาก และ นิโคตินรูปแตกตัวมีคุณสมบัติการซึมผ่านเยื่อเมือกต่ำ ดังนั้น การซึมผ่านเยื่อเมือกของไมโครพาร์ติเคิลเพิ่มขึ้น และมี ความสัมพันธ์กับการปลดปล่อยนิโคติน ส่วนการดัดแปรผิวของไมโครพาร์ติเคิลด้วยไคโตแซน ทำ ให้การซึมผ่านเยื่อเมือกของนิโคตินเพิ่มขึ้น เฉพาะการใช้ไคโตแซนมวลโมเลกุลสูง (รูปที่ 37) ทั้งนี้ เนื่องจาก การใช้ไคโตแซนมวลโมเลกุลสูงทำให้การปลดปล่อยนิโคตินเพิ่มขึ้น ส่งผลให้เกรเดียนต์ ความเข้นข้นของนิโคตินสูง และผลักดันการซึมผ่านเยื่อเมือกของนิโคตินได้


การศึกษาคุณสมบัติยึดติดเยื่อเมือกหลอดอาหารหมูของไมโครพาณ์ติเคิลนิโคติน-เคลย์ แสดงโดยค่า maximum detachment force และ work of adhesion ซึ่งทดสอบโดยใช้เครื่อง texture analyzer พบว่า ไมโครพาร์ติเคิลที่เตรียมที่พีเอช 4 และ 7 มีคุณสมบัติยึดติดเยื่อเมือกและ ให้ค่า maximum detachment force และ work of adhesion ที่ใกล้เคียงกัน ส่วนไมโครพาร์ติเคิล นิโคติน-เคลย์ดัดแปรผิวด้วยไคโตแซนมีคุณสมบัติยึดติดเยื่อเมือกเช่นกัน แต่การใช้ไคโตแซนที่มี มวลโมเลกุลต่ำไม่มีผลต่อคุณสมบัติดังกล่าว ส่วนการใช้ไคโตแซนมวลโมเลกุลสูงทำให้ค่า maximum detachment force สูงขึ้นมาก ทำให้การยึดติดเยื่อเมือกดีขึ้น

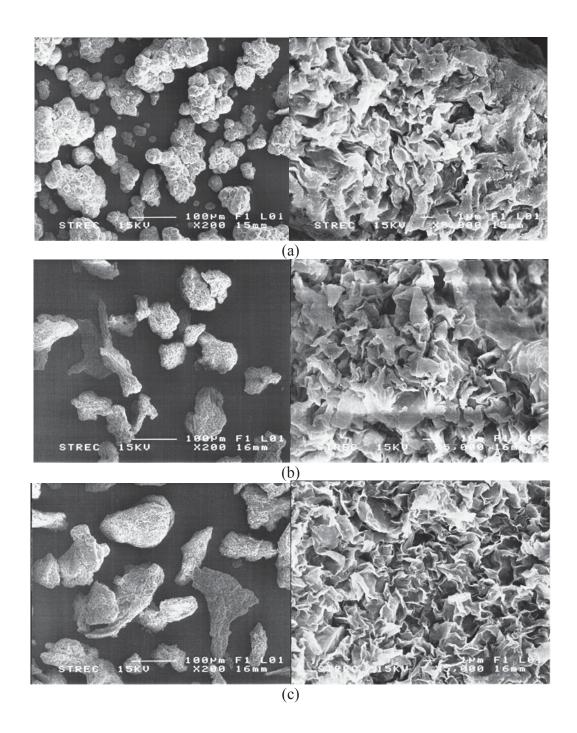
รายละเอียดของงานวิจัยส่วนนี้ อยู่ในภาคผนวก ต้นฉบับที่นำเสนอเพื่อตีพิมพ์และอยู่ในระหว่าง การพิจารณา เรื่อง


Kanjanakawinkul W, Rades T, Puttipipatkhachorn S, Pongjanyakul T. Nicotine-magnesium aluminum silicate microparticles surface-modified using chitosan for mucosal delivery (In prepraration, English edited).

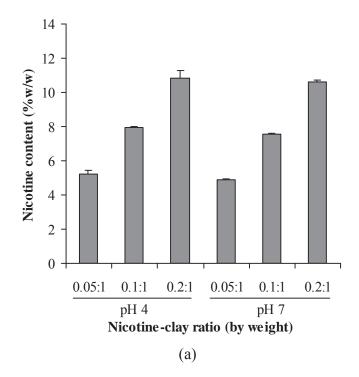


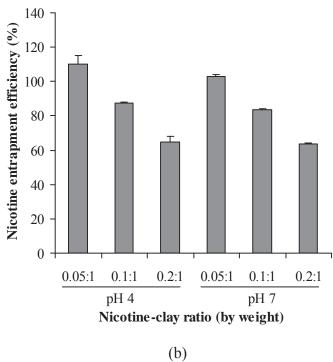

**Figure 24.** Particle size and zeta potential of NCT-MAS microparticles in dispersion prepared at pH 4 (a) and 7 (b).



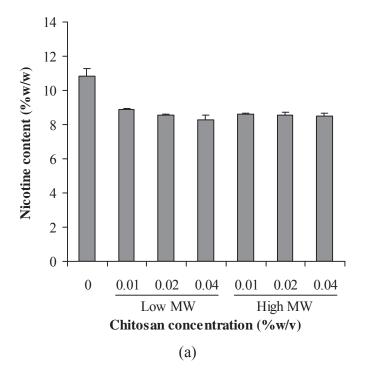

**Figure 25.** Particle size (a) and zeta potential (b) of NCT-MAS microparticles surface-modified using LCS and HCS in dispeson at pH 4.

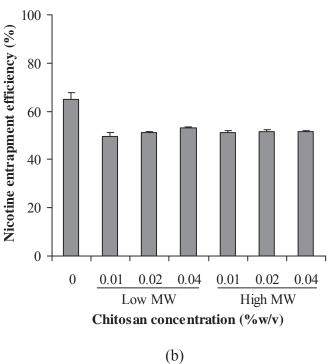



**Figure 26.** Particle size of NCT-MAS microparticles prepared at pH 4 and 7.

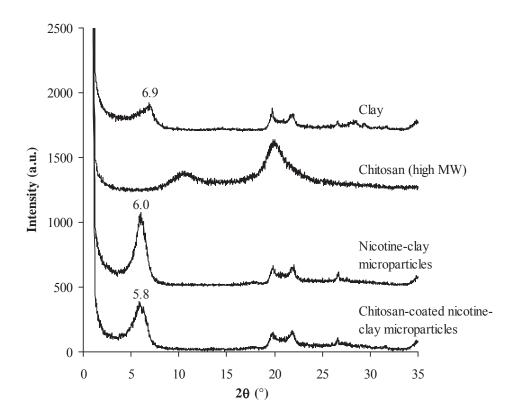



**Figure 27.** Particle size of pH 4 NCT-MAS (0.2:1) microparticles surface-modified using LCS and HCS.





**Figure 28.** Particle and surface morphology of MAS (a), pH 4 NCT-MAS (0.2:1) microparticles (b), and pH 4 NCT-MAS (0.2:1) microparticles surface-modified using 0.04% HCS (c).






**Figure 29.** NCT content (a) and NCT entrapment efficiency (b) of NCT-MAS microarticles prepared at pH 4 and 7.

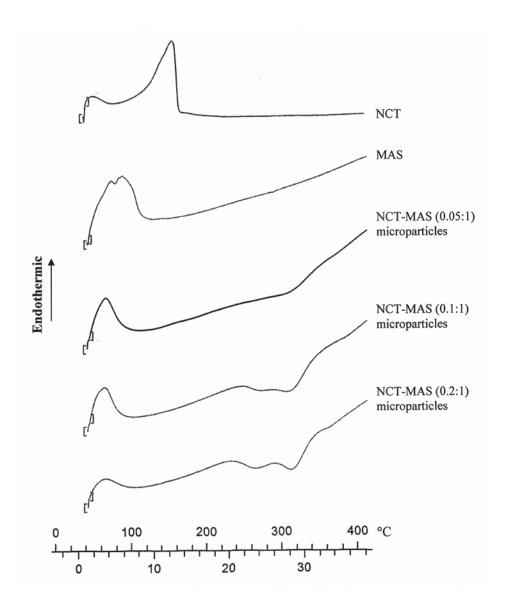
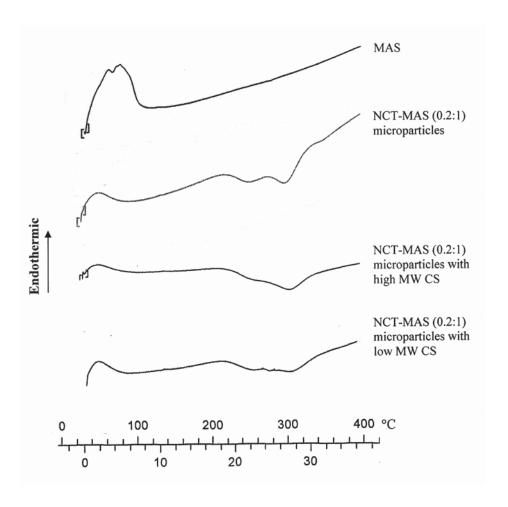
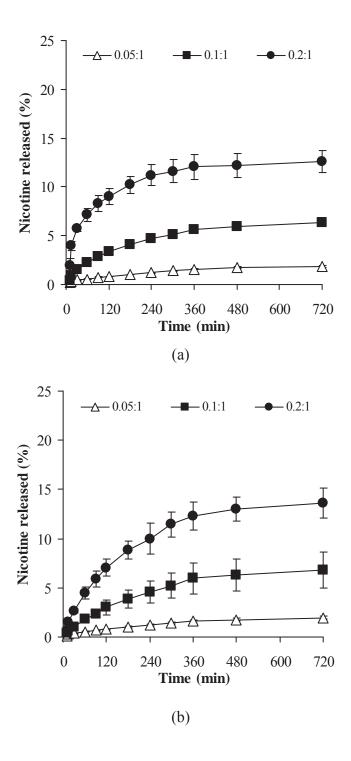


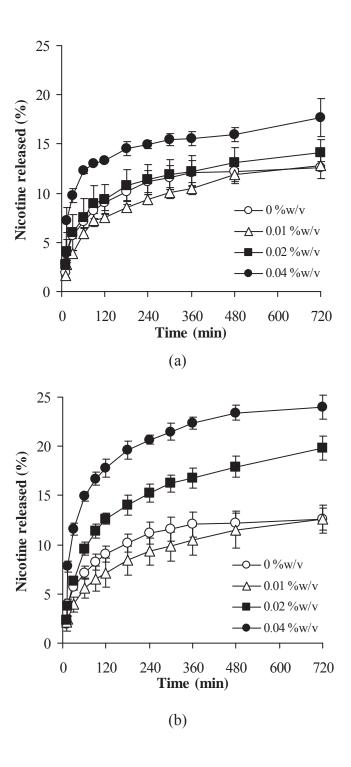


**Figure 30.** NCT content (a) and NCT entrapment efficiency (b) of pH 4 NCT-MAS (0.2:1) microarticles surface-modified using LCS and HCS.

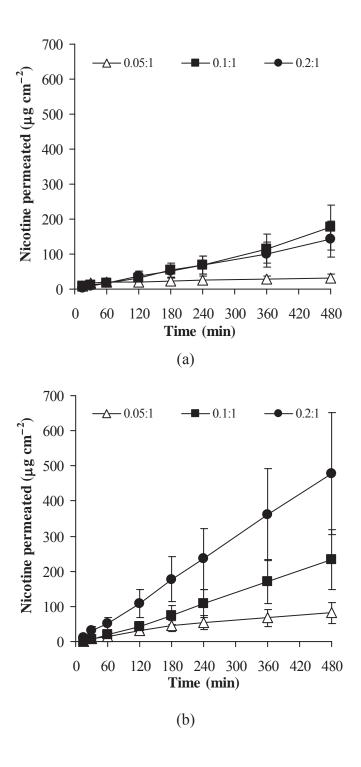


**Figure 31.** PXRD pattern of MAS, HCS, and NCT-MAS microparticles without and with surface modification with HCS.

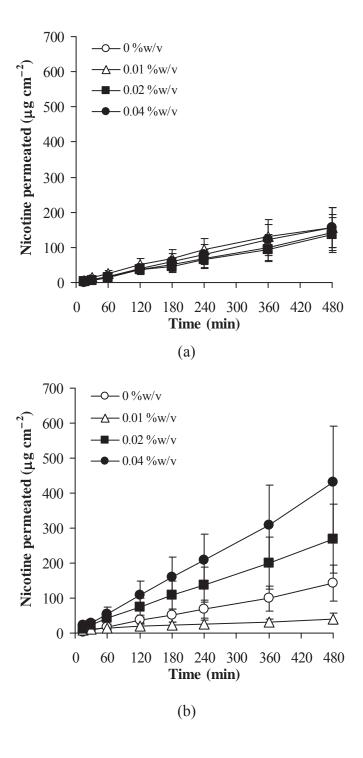






Figure 32. DSC thermogram of MAS, HCS, and NCT-MAS microparticles.




**Figure 33.** DSC thermogram of NCT-MAS microparticles surface-modified using HCS and LCS.




**Figure 34.** NCT release profiles of NCT-MAS microparticles prepared at pH 4 (a) and 7 (b) using different ratios of NCT and MAS.



**Figure 35.** NCT release profiles of pH 4 NCT-MAS (0.2:1) microparticles surface-modified using LCS (a) and HCS (b).



**Figure 36.** NCT permeation profiles of NCT-MAS microparticles prepared at pH 4 (a) and 7 (b) using different ratios of NCT and MAS.



**Figure 37.** NCT permeation profiles of pH 4 NCT-MAS (0.2:1) microparticles surface-modified using LCS (a) and HCS (b).

4. ไมโครพาร์ติเคิล lysozyme (LSZ)-MAS และการดัดแปรผิวของไมโครพาร์ติเคิลด้วย CS

#### การศึกษา adsorption isotherm ของ LSZ ต่อ MAS

ในการศึกษาการดูดซับไลโซไซม์ของแมกนีเซียมอะลูมินัมซิลิเคตที่พีเอชต่างๆ (รูปที่ 38a) พบว่า ที่พีเอช 4 แมกนีเซียมอะลูมินัมซิลิเคตสามารถดูดซับไลโซไซม์ได้มากที่สุด รองลงมา คือพีเอช 6 และ 8 ตามลำดับ เมื่อนำข้อมูลมาเขียน Langmuir isotherm ตามสมการด้างล่าง

$$\frac{C_e}{C_s} = \frac{1}{K_L Q_m} + \frac{C_e}{Q_m}$$

เมื่อ C<sub>e</sub> คือ ความเข้มข้นสมดุลของยาในสารละลาย

 $C_{_{\mathrm{S}}}$  คือ ความเข้มข้นสมดุลของยาบนตัวดูดซับ

 $Q_m$  คือ ปริมาณของการดูดซับที่ทำให้เกิดเป็น monolayer

K คือ ค่าคงที่การดูดซับของ Langmuir ซึ่งแสดงถึงความชอบในการดูดซับของ ตัวดูดซับ

จากสมการ เมื่อเขียนกราฟระหว่าง  $C_{_{\rm e}}/C_{_{\rm s}}$  กับ  $C_{_{\rm e}}$  จะได้กราฟเส้นตรงที่มีค่าความชัน เท่ากับ  $1/Q_{_{\rm m}}$  และจุดตัดแกน y เท่ากับ  $1/K_{_{\rm e}}Q_{_{\rm m}}$ 

จากรูปที่ 38b เป็นกราฟ Langmuir isotherm ที่เขียนได้ และสามารถคำนวณค่า  $Q_m$  และ  $K_L$  ได้ดังตารางที่ 2 ซึ่งเห็นได้ว่า ที่พีเอช 4 แมกนีเซียมอะลูมินัมซิลิเคตสามารถดูดซับไลโซไซม์ ได้มากที่สุด คือ ค่า  $Q_m$  สูงที่สุด แต่มีความชอบต่อไลโซไซม์น้อยที่สุด เพราะมีค่า  $K_L$  ต่ำที่สุด อย่างไรก็ตาม การดูดซับที่ทดลองอยู่บนพื้นฐานของการดูดซับแบบชั้นเดียว เท่านั้น จากการศึกษา เพิ่มเติมเกี่ยวกับค่า zeta potential ของ LSZ ที่พีเอช 4, 6 และ 8 มีค่าเท่ากับ 8.12  $\pm$  1.17, 4.59  $\pm$  1.27 และ 3.65  $\pm$  0.56 mV การลดพีเอชให้ต่ำลง ทำให้ประจุบวกของ LSZ เพิ่มขึ้น ซึ่งทำให้เกิด อันตรกิริยากับ MAS ได้มากขึ้น

## ขนาดอนุภาค zeta potential และปริมาณ LSZ

ในส่วนของไมโครพาร์ทิเคิลเปียก คืออยู่ในสารกระจายหลังการเตรียม พบว่า การใช้พี่ เอชที่ต่ำลง ทำให้ขนาดอนุภาคใหญ่ขึ้น (ตารางที่ 3) และการเพิ่มสัดส่วนของ LSZ ในการเตรียมทำ ให้อนุภาคมีขนาดเพิ่มขึ้น ส่วนค่า zeta potential มีไม่มีการเปลี่ยนแปลงมากนัก การเติม CS มี ผลทำให้ขนาดอนุภาคใหญ่ขึ้นมาก และการใช้ HCS ทำให้ได้อนุภาคที่ใหญ่กว่าการใช้ LCS

ในทางตรงกันข้าม LCS ทำให้อนุภาคมีค่า zeta potential เป็นบวกได้มากกว่าการใช้ HCS แสดง ให้เห็นว่า LSZ ซึ่งมีประจุเป็นบวกบางส่วน (isoelectric point = 11.1) สามารถเกิดอันตรกิริยา แบบไฟฟ้าสถิตกับ MAS ทำให้เกิดการรวมกลุ่มของ MAS เกิดเป็นไมโครพาร์ติเคิลขึ้น อย่างไรก็ ตาม ประจุของไมโครพาร์ติเคิลยังคงเป็นลบ จากการที่ LSZ มีลักษณะโมเลกุลที่ยาว ทำให้ส่วนที่ เป็นประจุลบหันออกจากมาโครพาร์ติเคิล การเติม CS ที่มีประจุบวกจึงสามารถเกิดอันตรกิริยากับ LSZ ที่ดูดซับบนผิวของไมโครพาร์ติเคิลได้ และเกิดการรวมกลุ่มกันมากขึ้น การการที่มี CS ที่ บริเวณผิวทำให้ประจุที่ผิวของไมโครพาร์ติเคิลเป็นบวกมากขึ้น โดย LCS สามารถทำให้ประจุบน ผิวเปลี่ยนเป็นบวกได้มาก

ในการศึกษาขนาดอนุภาคของไมโครพาร์ติเคิลแห้ง พบว่า ขนาดอนุภาคมีขนาดใหญ่ กว่าไมโครพาร์ติเคิลเปียกเป็นอย่างมาก (ตารางที่ 3) ทั้งนี้เนื่องจาก อาจเกิดอนุภาคเกิดการ รวมกลุ่มมากขึ้นขณะที่ผ่านกระบวนการทำให้แห้งเยือกแข็ง ในส่วนของปริมาณ LSZ ในไมโคร พาร์ติเคิล พีเอชไม่มีผลต่อปริมาณ LSZ ขณะที่อัตราส่วนของ LSZ ต่อ MAS มีผลโดยการใช้ LSZ ในอัตราส่วนที่เพิ่มขึ้น ทำให้ปริมาณ LSZ ในไมโครพาร์ติเคิลเพิ่มขึ้นด้วย การดูดซับ LSZ เป็นไป อย่างสมบูรณ์ มี LSZ เหลืออยู่ในของเหลวเหนือตะกอนน้อยมาก ทำให้ค่าเบี่ยงเบนมาตรฐานมีค่า ต่ำมาก จึงไม่มีการรายงานค่านี้ในตารางที่ 3 ส่วนการเติม CS ไม่มีผลต่อปริมาณ LSZ ที่ดูดซับเลย ทั้งนี้เนื่องจากกระบวนการดูดซับ LSZ โดย MAS เกิดขึ้นอย่างสมบูรณ์และ CS ไม่สามารถแย่งจับ กับ MAS ได้

## <u>รูปร่างลักษณะของไมโครพาร์ติเคิล</u>

ลักษณะและรูปร่างของไมโครพาร์ติเคิล ศึกษาโดยใช้กล้องจุลทรรศน์อิเล้กตรอนแบบ ส่องกราด MAS มีรูปร่างของ granular ขณะที่ LSZ มีลักษณะเป็นแผ่นบางๆ (รูปที่ 39) ส่วน ไมโครพาร์ติเคิล LSZ-MAS ที่เตรียมที่พีเอชต่างๆ มีลักษณะรูปร่างไม่แน่นอนและลักษณะพื้นผิว คล้ายกัน (รูปที่ 40) การดัดแปลงผิวของไมโครพาร์ติเคิลก็ไม่มีผลให้เกิดการเปลี่ยนแปลงรูปร่าง และพื้นผิวของอนุภาคได้ (รูปที่ 41)

#### อันตรกิริยาของ MAS LSZ และ CS

การศึกษาอันตรกิริยาของสารทั้งสาม ทำโดยใช้ FTIR spectroscopy และ Powder X-ray diffractometry ในการศึกษาโดยใช้ FTIR spectroscopy สเปกตรัมของ MAS LSZ และ ไมโครพาร์ติเคิลแสดงในรูปที่ 42 LSZ มีพีคที่สำคัญ 2 พีคที่ 1542 และ 1654 cm<sup>-1</sup> ซึ่งแสดงถึง amide II และ amide I ของโครงสร้างของ LSZ พีค amide I เป็นพีคที่แสดงถึง secondary structure ของ LSZ (Sun et al., 2011) ไมโครพาร์ติเคิล LSZ-MAS ทั้งในพีเอช 4 6 และ 8 มีพีค

ของ amide I ที่ 1663 cm<sup>-1</sup> แสดงให้เห็นว่า การเกิดสารเชิงซ้อนมีผลต่อ secondary structure ของ LSZ นอกจากนี้ การเปลี่ยนแปลงของพีค C-H stretching ที่ 2962 cm<sup>-1</sup> ของ LSZ และพีค O-H stretching ของ SiOH ของ MAS ในไมโครพาร์ติเคิล แสดงให้เห็นกลไกการเกิดอันตรกิริยา ของ LSZ และ MAS เกิดขึ้นโดยแรงไฟฟ้าสถิตและการเกิดพันธะไฮโดรเจน ในส่วนของไมโคร พาร์ติเคิลที่ดัดแปรผิวโดยใช้ CS ได้สเปกตรัมที่ไม่แตกต่างจากไมโครพาร์ติเคิลที่ไม่ได้ผ่านการ ดัดแปรผิว ดังแสดงในรูปที่ 43 การที่ไม่เห็นการเปลี่ยนแปลงอาจเกิดจากปริมาณของ CS ที่ดูดซับ ที่ผิวของไมโครพาร์ติเคิลมีน้อย ซึ่งผลการทดลองคล้ายกับการใช้นิโคติน

การศึกษาความเป็นผลึกของไมโครพาร์ติเคิล โดยใช้ Powder x-ray diffractometry ยัง สามารถใช้ในการหาความหนาระหว่างชั้นชิลิเคตของ MAS ได้ รูปที่ 44 แสดงถึงพีค basal spacing ของ MAS ที่ 7.21 ° (20) และมีความหนาของชั้นซิลิเคต เท่ากับ1.22 nm การเกิดสาร เชิงซ้อน LSZ-MAS ในไมโครพาร์ติเคิล ทำให้พีค basal spacing เคลี่ยนไปที่ 5.55-5.59 ° (20) ซึ่งความหนาของซิลิเคต เท่ากับ 1.59 nm ข้อมูลนี้ชี้ใหเห็นว่า LSZ สามารถแทรกตัวเข้าไปใน ช่องว่างระหว่างชั้นซิลิเคต การดัดแปรผิวของไมโครพาร์ติเคิลด้วย CS ไม่ได้ทำให้เกิดการ เปลี่ยนแปลงความหนาของชั้นซิลิเคต ดังแสดงในรูปที่ 45 อาจเนื่องมาจากการเกิดสารเชิงซ้อนกับ สารมวลโมเลกุลใหญ่อย่าง LSZ โอกาสที่ LSZ จะเคลือบผิวของไมโครพาร์ติเคิลมีมาก ทำให้การ แทรกตัวของ CS เข้าไปในช่องว่างระหว่างชั้นซิลิเคตมีน้อยมาก ซึ่งแตกต่างกับสารเชิงซ้อน NCT-MAS NCT มีมวลโมเลกุลน้อย การแทรกตัวของ CS เข้าในช่องว่างมีโอกาสมากกว่า

## <u>คุณสมบัติด้านความร้อน</u>

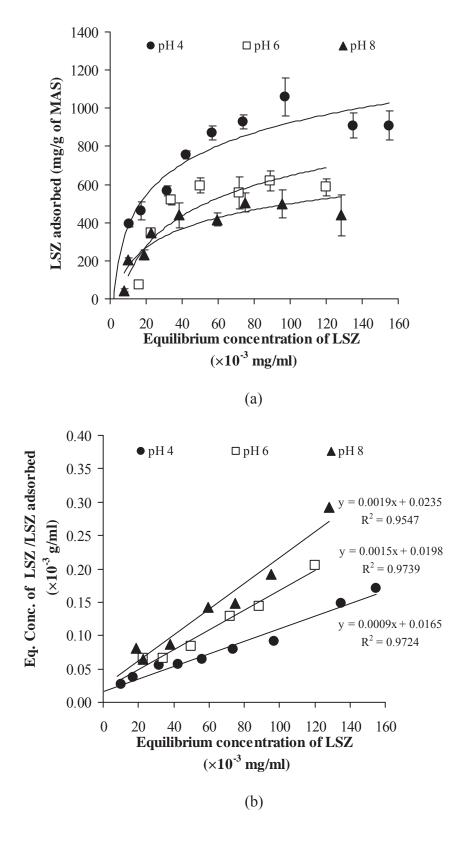
คุณสมบัตินี้ ศึกษาโดยใช้ Differential scanning calorimetry (DSC) LSZ มีพีคดูด ความร้อน (endothermic) ที่ 200 °C ซึ่งเป็นพีคแสดงจุดหลอมเหลว และมีพีคคายความร้อนที่ ประมาณ 350 °C เป็นอุณหภูมิของการสลายตัว (ดังแสดงในรูปที่ 46) ไมโครพาร์ติเคิล LSZ-MAS แสดงพีคการสลายตัวของ LSZ ที่อุณหภูมิประมาณ 355-360 °C ส่วนไมโครพาร์ติเคิลที่ดัดแปรผิว ด้วย CS ก็มีคุณสมบัติด้านความร้อนที่ไม่แตกต่างจากไมโครพาร์ติเคิล LSZ-MAS (รูปที่ 47)

#### การปลดปล่อยและ activity ของ LSZ

การปลดปล่อย LSZ จากไมโครพาร์ติเคิลในตัวกลาง pH 7.4 phosphate buffer ที่เติม 0.1%sodium azide รูปแบบการปลดปล่อย LSZ ของไมโครพาร์ติเคิลที่เตรียมที่พีเอชต่างๆ แสดง ในรูปที่ 48 ปริมาณ LSZ ในไมโครพาร์ติเคิลมีผลต่อการปลดปล่อย ปริมาณ LSZ มากก็มีการ ปลดปล่อยมากเช่นกันและเห็นได้ชัดเจนในไมโครพาร์ติเคิลที่เตรียมที่พีเอช 4 ส่วนไมโครพาร์ติเคิล ที่เตรียมที่พีเอช 6 และ 8 มีการปลดปล่อย LSZ ที่ใกล้เคียงกัน ส่วนพีเอชที่ใช้ในการเตรียม

ไมโครพาร์ติเคิลมีผลต่อการปลดปล่อย LSZ ดังแสดงในรูปที่ 49 พีเอช 4 มีการปลดปล่อย LSZ มากที่สุด รองลงมาคือ พีเอช 6 และ 8 ตามลำดับ ทั้งนี้เป็นเพราะที่พีเอช 4 LSZ มีความชอบจับกับ MAS น้อยที่สุด (เป็นข้อมูลที่ได้จากการทำ adsorption isotherm ที่ได้อธิบายไปแล้ว) ทำให้ กระบวนการ desorption เกิดขึ้นได้มากกว่าพีเอชอื่นๆ การดัดแปรผิวของไมโครพาร์ติเคิลด้วย CS มีผลทำให้การปลดปล่อย LSZ ลดลงอย่างมาก (รูปที่ 50) ทั้งนี้อาจเนื่องมาจากการเคลือบผิวด้วย CS ทำให้ LSZ ไม่สามารถแพร่ออกมาจากไมโครพาร์ติเคิลได้

การศึกษา activity ของ LSZ โดยใช้วิธี bacterial cell lysis ซึ่งใช้เซลล์ Micrococcus lysodeikticus และวัดความขุ่นที่เปลี่ยนแปลงไปหลังการเติม LSZ จากการศึกษา activity ของ LSZ ที่ปลดปล่อยออกจากไมโครพาร์ติเคิลที่เตรียมที่พีเอชต่างๆ (รูปที่ 51) พบว่า ไมโครพาร์ติเคิล ที่เตรียมที่พีเอช 8 จะให้ LSZ ที่มี activity สูงกว่าไมโครพาร์ติเคิลที่เตรียมที่พีเอช 6 และ 4 ตามลำดับ เป็นที่น่าสังเกตว่า ไมโครพาร์ติเคิลที่เตรียมที่พีเอช 4 มีการปลดปล่อย LSZ มากที่สุด แต่กลับมี LSZ ที่อยู่ในรูป active น้อยกว่า ซึ่งอาจเป็นเพราะว่า LSZ มี activity สูงสุดในช่วงพีเอช 5.2-8.0 (Davis et al., 1969) ทำให้ LSZ ที่เตรียมที่พีเอช 4 มีสภาพ inactive ในขณะที่พีเอช 8 ไมโครพาร์ติเคิลมีการปลดปล่อยน้อยกว่า เนื่องจากมีความชอบจับกับ MAS มาก แต่ LSZ ที่ ปลดปล่อยออกมา อยู่ในรูปที่ active อย่างไรก็ตาม การปลดปล่อย LSZ ที่ไม่สมบูรณ์ อาจเป็น เพราะ LSZ ที่แทรกเข้าไปในขั้นซิลิเคตของ MAS ไม่สามารถปลดปล่อยออกมาได้ เนื่องจาก LSZ เป็นสารโมเลกุลใหญ่ ดังนั้น LSZ ที่ปลดปล่อยออกมาน่าจะดูดซับอยู่บริเวณผิวของไมโคร พาร์ติเคิลเท่านั้น


ส่วนไมโครพาร์ติเคิลที่ดัดแปรผิวด้วย HCS สามารถปลดปล่อย LSZ ที่มี activity สูงกว่า ไมโครพาร์ติเคิลที่ไม่ได้ดัดแปรผิว (รูปที่ 52) เพราะไมโครพาร์ติเคิลที่ดัดแปรผิวด้วย HCS มีการ ปลดปล่อย LSZ น้อยมาก ซึ่งส่วนใหญ่อยู่ในรูป active ในทางตรงกันข้าม การใช้ LCS ทำให้ LSZ ไม่เหลือ activity อยู่เลย สาเหตุอาจเนื่องมาจาก CS ซึ่งมีประจุบวกสามารถเกิดอันตรกิริยากับ LSZ และทำให้การทำงานของ LSZ ลดลงได้ (Kafedjiiski et al., 2007) และ LCS ซึ่งมีมวล โมเลกุลต่ำน่าจะสามารถเข้าสัมผัสและเกิดอันตรกิริยากับ LSZ ได้ดีกว่า HCS จากการทดลอง เพิ่มเติม โดยการผสม CS ในสารละลาย LSZ พบว่า activity ของ LSZ ลดลงเรื่อยๆ ตามความ เข้มข้นที่เพิ่มขึ้นของ CS (รูปที่ 53) แสดงให้เห็นว่า CS มีผลต่อ activity ของ LSZ มาก

# การใช้ไมโครพาร์ติเคิล LSZ-MAS เป็นส่วนกักเก็บยาในเพลเลต

ในการศึกษานี้ ได้ใช้ไมโครพาร์ติเคิล LSZ-MAS ที่เตรียมที่พีเอช 4 6 และ 8 เป็นส่วน กักเก็บยาในเพลเลตของ glyceryl palmitostearate โดยนำไมโครพาร์ติเคิลผสมกับ glyceryl palmitostearate นำส่วนผสมบรรจุในเบ้าขนาดเส้นผ่านศูนย์กลาง 2.5 mm แล้วตอกด้วยความดัน 15 kgf/cm² ซึ่งคุณลักษณะของเพลเลตแสดงในตารางที่ 4 น้ำหนักของเพลเลตอยู่ในช่วง 23.8-24.6 มิลลิกรัม ความสูง 4-5 มิลลิเมตร การมีส่วนผสมของ MAS ทำให้ความแข็งของเพลเลต เพิ่มขึ้น เพลเลตที่มี glyceryl palmitostearate หรือมี MAS อย่างเดียวสามารถตอกอัดได้

จากการศึกษาลักษณะของ glyceryl palmitostearate ด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบส่องกราด พบว่า glyceryl palmitostearate เป็นอนุภาคค่อยข้างกลม เมื่อตอกเป็นเพลเลต ผิวของเพลเลตเรียบ และมีโครงสร้างภายในของเพลเพลตดังแสดงในรูปที่ 54 การเตรียม ไมโครพาร์ติเคิลทำให้ผิวของเพลเลตเปลี่ยนแปลงไปและโครงสร้างภายในของเพลเลตที่มี ไมโครพาร์ติเคิล จะเห็นไมโครพาร์ติเคิลแทรกอยู่ในเพลเลต ดังแสดงในรูปที่ 55 และเพลเลตที่ บรรจุไมโครพาร์ติเคิลที่เตรียมที่พีเอช 4 6 และ 8 มีลักษณะที่คล้ายคลึงกัน

การศึกษาการปลดปล่อย LSZ จากเพลเลต (รูปที่ 56) พบว่าเพลเลตที่บรรจุผลึก LSZ มี การปลดปล่อย LSZ อย่างต่อเนื่องและปลดปล่อยอย่างสมบูรณ์ที่เวลา 14 วัน การใช้สารผสมทาง กายภาพของ LSZ และ MAS ในการเตรียมเพลเลต ทำให้ LSZ ปลดปล่อยออกมาช้าลงมากและ ไม่สมบูรณ์ เป็นเพราะ MAS สามารถดูดซับ LSZ ในเพลเลตได้ ส่วนเพลเลตที่บรรจุไมโครพาร์-ติเคิลที่เตรียมที่พีเอช 4 ยังคงปลดปล่อย LSZ ได้มากกว่าเพลเลตที่มีไมโครพาร์ติเคิลที่เตรียมที่ พีเอช 6 และ 8 คล้ายกับการปลดปล่อย LSZ ของไมโครพาร์ติเคิล ในส่วนของการศึกษา activity ของ LSZ ที่ปลดปล่อยจากเพลเลตที่วันที่ 7 และ 14 ของการศึกษา (รูปที่ 57) พบว่าเพลเลตที่มี ผลึก LSZ มี LSZ ที่ active อยู่เพียง 50% และ 35% ตามลำดับ การใช้สารผสม LSZ และ MAS จะให้ LSZ ที่ active ได้น้อยมาก ขณะที่ไมโครพาร์ติเคิลที่เตรียมที่พีเอช 8 ยังคงมี LSZ ที่ active อยู่ประมาณ 20-30% เท่านั้น



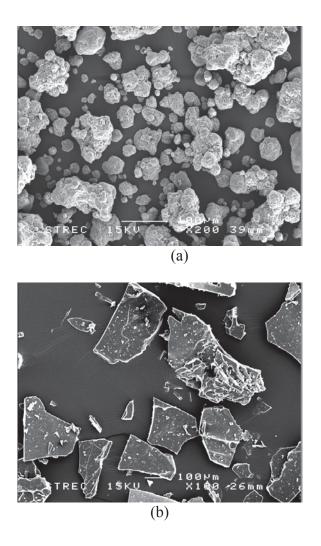
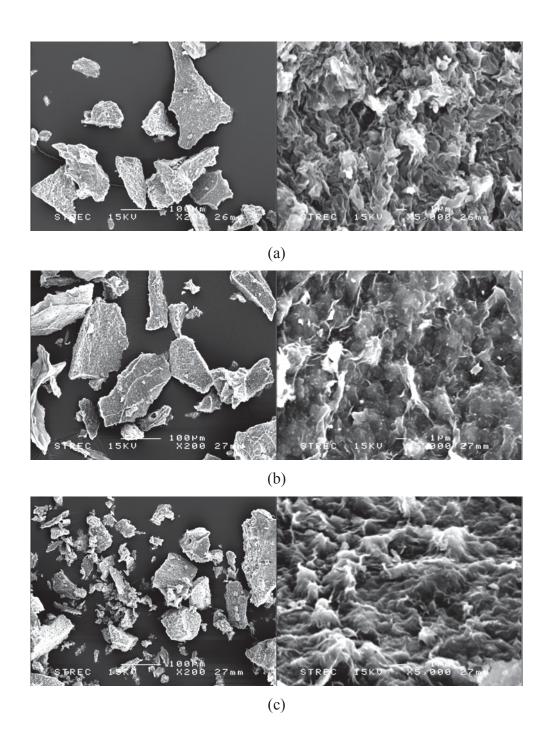
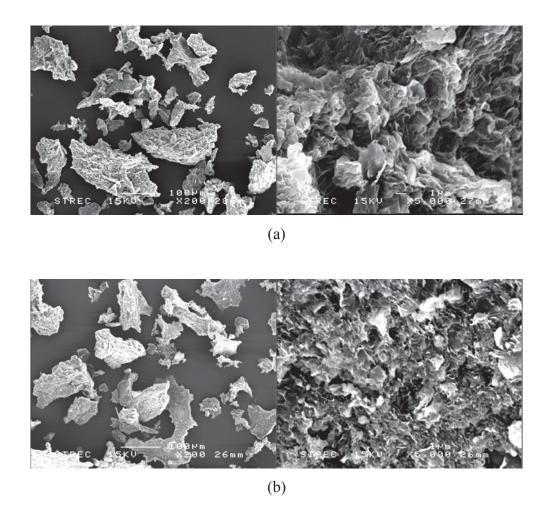
**Figure 38.** Adsorption isotherm (a) and Langmuir plot (b) of LSZ adsorbed onto MAS at different pHs.

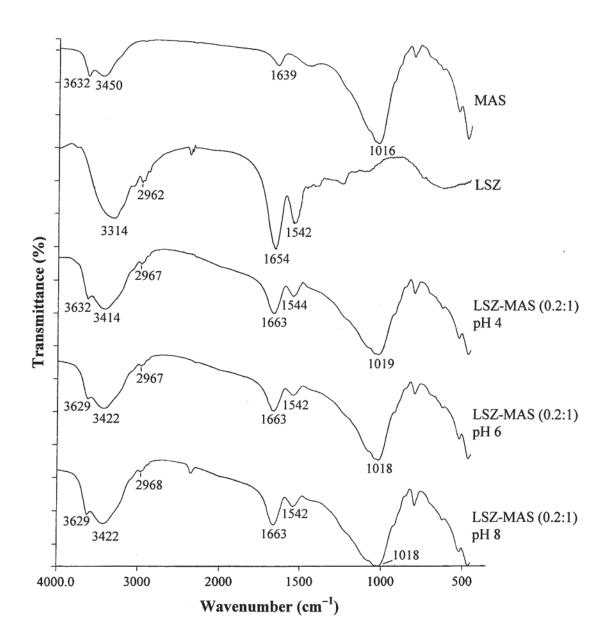
**Table 2.** Adsorption parameters calculated using Langmuir equation of LSZ onto MAS at different pHs.

| рН | Q <sub>m</sub> (mg/g of MAS) | K <sub>L</sub> (ml/mg) |
|----|------------------------------|------------------------|
| 4  | 1111.11                      | $0.089 \times 10^{-2}$ |
| 6  | 666.67                       | $7.576 \times 10^{-2}$ |
| 8  | 526.32                       | $8.085 \times 10^{-2}$ |

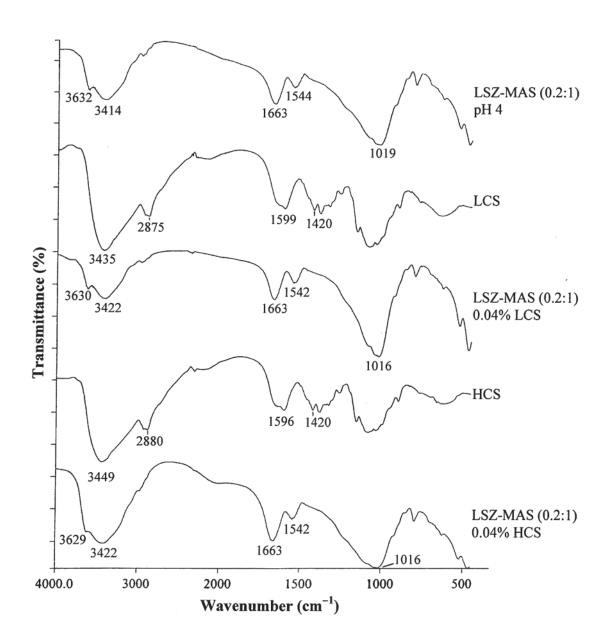
**Table 3.** Characteristics of wet and dry LSZ-MAS microparticles without and with surface modification using CS.

| Component and condition | Wet microparticles |                     | Dry microparticles |                    |
|-------------------------|--------------------|---------------------|--------------------|--------------------|
|                         | Particle size (μm) | Zeta potential (mV) | Particle size (µm) | LSZ content (%w/w) |
|                         |                    |                     |                    |                    |
| 0.05:1                  | $4.63 \pm 0.01$    | $-31.4 \pm 1.5$     | $111.4 \pm 3.1$    | 4.72               |
| 0.10:1                  | $22.3 \pm 0.93$    | $-22.8 \pm 2.2$     | $124.1 \pm 3.1$    | 9.04               |
| 0.20:1                  | $14.2\pm0.20$      | $-27.0 \pm 1.4$     | $157.0 \pm 2.35$   | 16.7               |
| pH 6, LSZ:MAS           |                    |                     |                    |                    |
| 0.05:1                  | $4.35 \pm 0.01$    | $-31.6 \pm 1.9$     | $136.4 \pm 2.7$    | 4.73               |
| 0.10:1                  | $7.09 \pm 0.12$    | -27.7 ± 1.9         | $125.5 \pm 4.1$    | 9.05               |
| 0.20:1                  | $8.99 \pm 0.30$    | $-32.7 \pm 1.5$     | $134.4 \pm 1.2$    | 16.6               |
| pH 8, LSZ:MAS           |                    |                     |                    |                    |
| 0.05:1                  | $4.40\pm0.02$      | $-35.2 \pm 0.8$     | $80.1 \pm 4.4$     | 4.63               |
| 0.10:1                  | $5.60 \pm 0.15$    | $-35.8 \pm 0.6$     | $133.6 \pm 5.6$    | 9.02               |
| 0.20:1                  | $6.34 \pm 0.38$    | $-34.9 \pm 0.6$     | $125.8 \pm 2.0$    | 16.7               |
| pH 4, LSZ:MAS = 0.20:1  |                    |                     |                    |                    |
| LCS 0.01 %w/v           | $27.0\pm2.0$       | $-23.2 \pm 2.2$     | $123.9 \pm 5.4$    | 16.6               |
| 0.02 %w/v               | $31.8 \pm 2.7$     | $7.59 \pm 1.48$     | $117.8 \pm 1.4$    | 16.6               |
| 0.04 %w/v               | $50.0 \pm 2.7$     | $29.2 \pm 1.2$      | $145.3 \pm 1.7$    | 16.6               |
| HCS 0.01 %w/v           | $84.0 \pm 5.6$     | $-28.3 \pm 2.8$     | $126.9 \pm 4.9$    | 16.6               |
| 0.02 %w/v               | $123.6 \pm 4.2$    | $-27.3 \pm 2.8$     | $134.3 \pm 4.7$    | 16.6               |
| 0.04 %w/v               | $88.8 \pm 6.6$     | $2.94 \pm 2.0$      | $133.0 \pm 2.0$    | 16.6               |

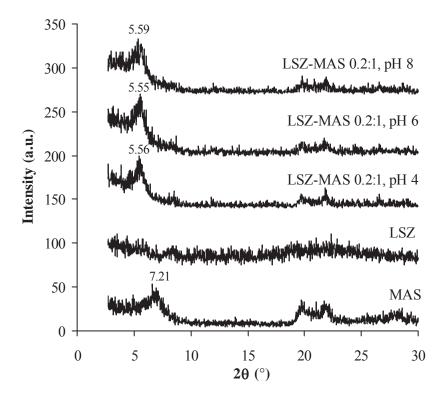






Figure 39. Particle morphology of MAS (a) and LSZ (b).

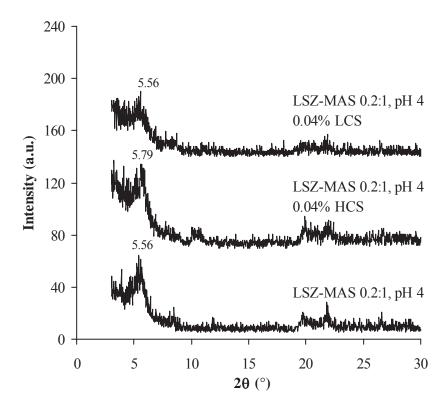



**Figure 40.** Particle and surface morphology of LSZ-MAS (0.2:1) microparticles prepared at pH 4 (a), 6 (b), and 8 (c).

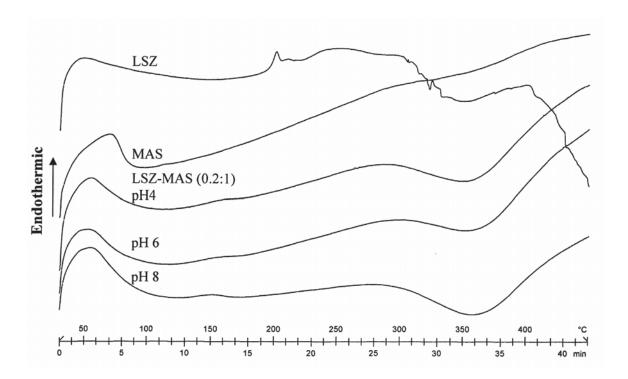



**Figure 41.** Particle and surface morphology of pH 4 LSZ-MAS (0.2:1) microparticles surface-modified using LCS (a), and HCS (b).




**Figure 42.** FTIR spectra of MAS, LSZ and LSZ-MAS microparticles prepared at various pHs.

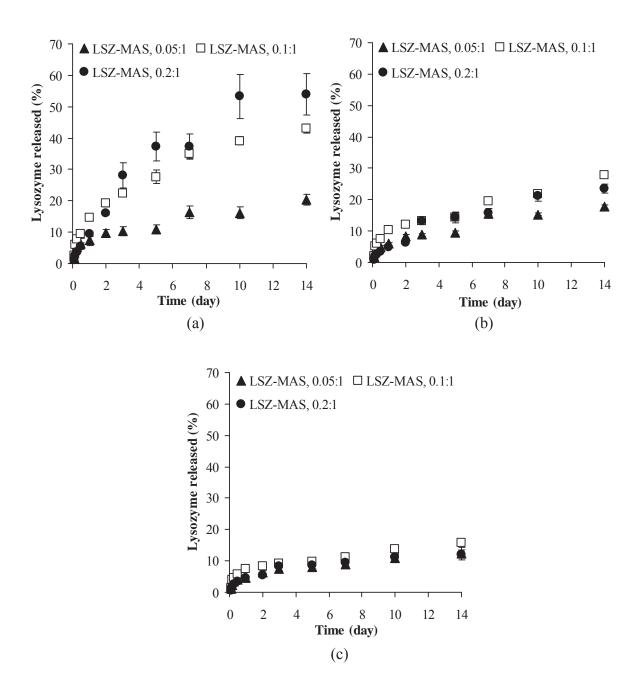



**Figure 43.** FTIR spectra of LCS, HCS and LSZ-MAS microparticles surface-modified using CS.

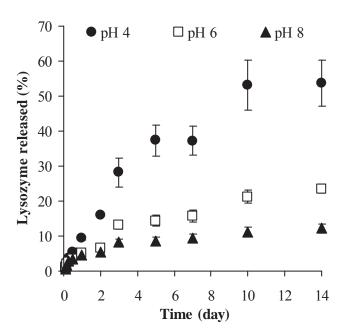


**Figure 44.** PXRD pattern of MAS, LSZ, and LSZ-MAS (0.2:1) microparticles prepared at various pHs.

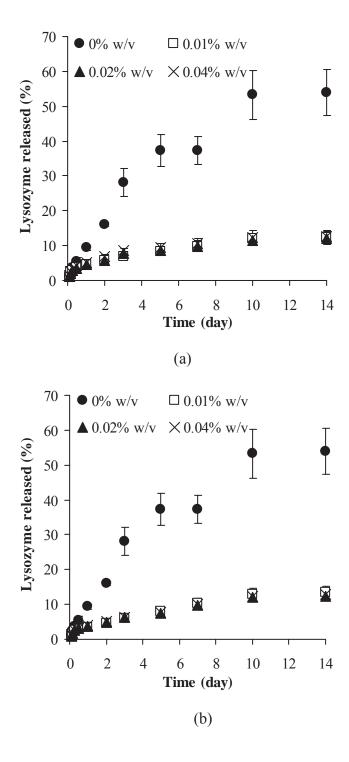



**Figure 45.** PXRD pattern of pH 4 LSZ-MAS (0.2:1) microparticles surface-modified with LCS and HCS.

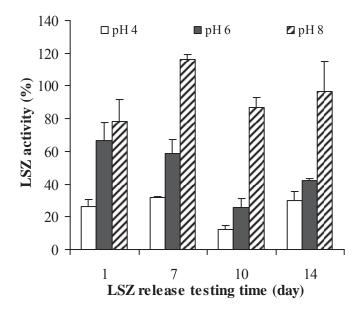



**Figure 46.** DSC thermogram of LSZ, MAS, and LSZ-MAS (0.2:1) microparticles prepared at different pHs.

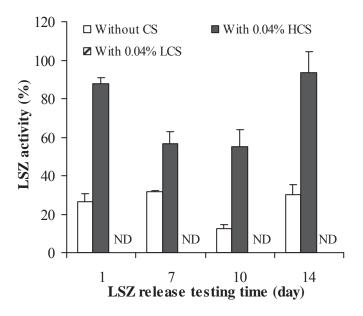



**Figure 47.** DSC thermogram of pH 4 LSZ-MAS (0.2:1) microparticles surface-modified using LCS (a) and HCS (b).

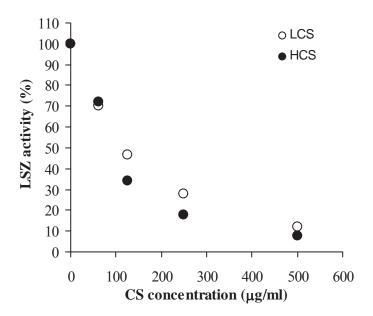



**Figure 48.** LSZ release profiles of LSZ-MAS microparticles prepared at pH 4 (a), 6 (b), and 8 (c) using various ratios of LSZ and MAS.




**Figure 49.** Comparative LSZ release profiles of LSZ-MAS (0.2:1) microparticles prepared at various pHs.

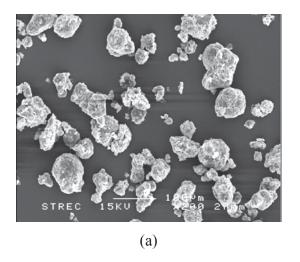


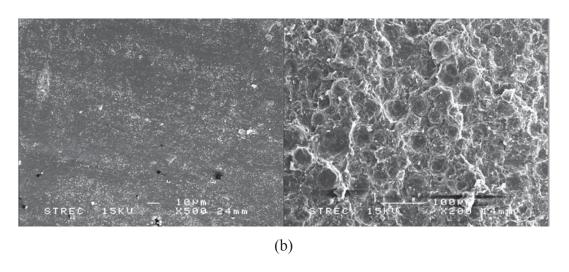

**Figure 50.** LSZ release profiles of pH 4 LSZ-MAS (0.2:1) microparticles surface-modified using LCS (a) and HCS (b).



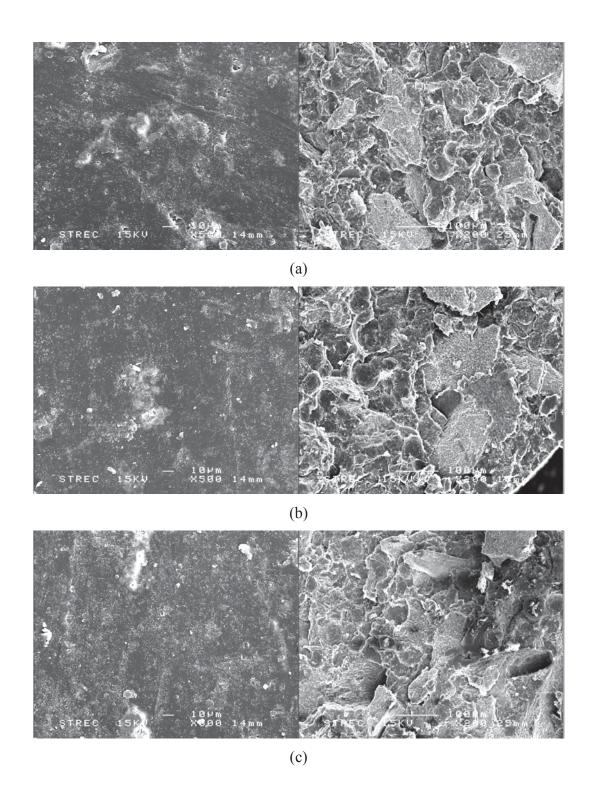
**Figure 51.** Bacterial lysis activity of LSZ released from LSZ-MAS (0.2:1) microparticles prepared at various pHs.



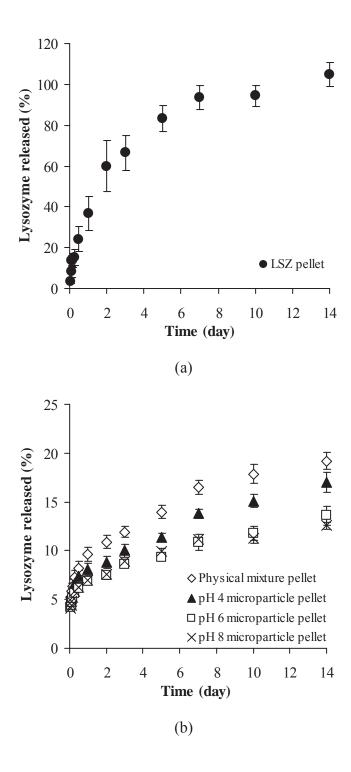

**Figure 52.** Bacterial lysis activity of LSZ released from LSZ-MAS (0.2:1) microparticles without and with surface-modified using LCS and HCS.



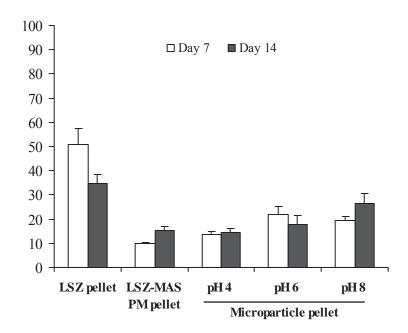

**Figure 53.** Effect of CS concentration on LSZ activity of 20  $\mu$ g/ml LSZ solution incubated at 37 °C for 24 h.


**Table 4.** Physical characteristics of pellets prepared using glycerylpalmitotearate as a wax matrix.

| Sample                            | Weight (mg)      | Height (mm)     | Hardness (N)    |
|-----------------------------------|------------------|-----------------|-----------------|
| Blank pellet                      | $24.61 \pm 0.33$ | $4.79 \pm 0.05$ | $3.50 \pm 0.31$ |
| LSZ pellet                        | $24.54 \pm 0.17$ | $4.78\pm0.04$   | $3.51 \pm 0.24$ |
| MAS pellet                        | $23.78 \pm 0.97$ | $4.17 \pm 0.26$ | $3.56 \pm 0.21$ |
| LSZ-MAS physical mixture pellet   | $24.40 \pm 0.18$ | $4.30\pm0.05$   | $3.90 \pm 0.21$ |
| pH 4 LSZ-MAS microparticle pellet | $24.44 \pm 0.27$ | $4.47\pm0.05$   | $4.42 \pm 0.11$ |
| pH 6 LSZ-MAS microparticle pellet | $24.28 \pm 0.73$ | $4.44 \pm 0.13$ | $4.47 \pm 0.22$ |
| pH 8 LSZ-MAS microparticle pellet | $24.60 \pm 0.35$ | $4.51 \pm 0.08$ | $4.63 \pm 0.08$ |







**Figure 54.** Particle morphology of GPS (a), and surface and cross-section morphology of GPS pellet (b).



**Figure 55.** Surface and cross-section morphology of GPS pellet containing LSZ-MAS (0.2:1) microparticles prepared at pH 4 (a), 6 (b), and 8 (c).



**Figure 56.** LSZ release profiles of LSZ pellets (a), and microparticle pellets (b).



**Figure 57.** Bacterial lysis activity of LSZ released from pellets at day 7 and 14 of release testing.

# บทสรุป

สารเชิงซ้อนยา-แมกนีเซียมอะลูมินัมซิลิเคตสามารถประยุกต์ใช้เป็นส่วนกักเก็บยาขนาดเล็กใน ระบบนำส่งยา เช่น บีดและยาเม็ด และสามารถดัดแปรเพื่อใช้ในรูปแบบยาที่ให้ทางปากและทาง เยื่อเมือก ทำให้การปลดปล่อยยาซ้าลงและสามารถออกฤทธิ์ได้ยาวนานมากขึ้น การเตรียม ไมโครพาร์ติเคิลยา-แมกนีเซียมอะลูมินัมซิลิเคต สามารถเตรียมได้โดยการทำให้แห้งเยือกแข็งและ ดัดแปรคุณสมบัติโดยใช้ไคโตแซนได้ ส่วนไมโครพาร์ติเคิลของไลโซไซม์ ซึ่งเป็นสารมวลโมเลกุล ใหญ่ สามารถดูดซับกับเคลย์ได้ดีมาก แต่มีปัญหาเรื่องการปลดปล่อยไลโซไซม์ได้น้อยและการ ทำงานของไลโซไซม์ลดลงมาก จากการศึกษานี้ สารเชิงซ้อนยา-แมกนีเซียมอะลูมินัมซิลิเคตมี ประโยชน์ในการเป็นส่วนกักเก็บยาและเตรียมเป็นระบบนำส่งแบบไมโครพาร์ติเคิล ซึ่งเป็นระบบ นำส่งชนิดใหม่และใช้ในทางเภสัชกรรมขั้นสูงได้

# เอกสารอ้างอิง

- Aguzzi, C., Cerezo, P. and Viseras, C. Use of clays as drug delivery systems: Possibilities and imitations. Appl Clay Sci 2007; 36: 22-36
- Anal AK, Tobiassen A, Flanagan J, Singh H. Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions. Colloids Surf B 2008; 64: 104-110.
- Badwan AA, Abumalooh A, Sallam E, Abukalaf A, Jawan O. A sustained release drug delivery system using calcium alginate beads. Drug Dev Ind Pharm 1985; 11: 239-256.
- Bechgaard H, Nielsen GH. Controlled-release multiple-units and single-unit doses. Drug Dev Ind Pharm 1978; 4: 53-67.
- Bekçi, Z., Seki, Y., Yurdakoc, M.K. A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10. J Mol Struct 2007;827:67-74
- Bekçi, Z., Seki, Y., Yurdakoc, M.K. Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. J Hazard Mater 2006;133:233-242
- Boonsongrit Y, Mitrevej A, Mueller BW. Chitosan drug binding by ionic interaction. Eur J Pharm Biopharm 2006; 62: 267-274.
- Browne JE, Feldkamp JR, White JL, Hem SL. Characterization and adsorptive properties of pharmaceutical grade clays. J Pharm Sci 1980; 69: 816-823.

- Cerchiara T, Luppi B, Chidichimo G, Bigucci F, Zecchi V. Chitosan and poly(methyl vinyl ether-co-maleic anhydride) microparticles as nasal sustained delivery systems. Eur J Pharm Biopharm 2005; 61: 195-200.
- Ciullo PA, Braun DB. Clay/carbomer mixtures enhance emulsion stability. Cosmet Toilet 1991:106: 89-95
- Ciullo PA. Rheological properties of magnesium aluminum silicate/xanthan gum dispersions. J Soc Cosmet Chem. 1981; 32: 275-285
- Clare K. Algin. In: Whistler RL, Bemiller JN, editors. Industrial gums: Polysaccharides and their derivatives. 3<sup>rd</sup> ed. New York: Academic Press, 1993: 105-143.
- Consuelo ID, Falson F, Guy RH, Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J Control Release 2007; 122: 135-140
- Consuelo ID, Jacques Y, Pizzolato G-P, Guy RH, Falson F. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch Oral Biol 2005; 50: 981-987.
- Davis RC, Neuberger A, Wilson BM. The dependence of lysozyme activity on pH and ionic strength. Biochim Biophys Acta 1969; 178: 294-305.
- Fiorito TM., Icoz I, Stotzky G. Adsorption and binding of the transgenic plant proteins, human serum albumin, β-glucuronidase, and Cry3Bb1, on montmorillonite and kaolinite: Microbial utilization and enzymatic activity of free and clay-bound proteins. Appl Clay Sci 2008; 39: 142-150
- Forni F, Iannuccelli V, Coppi G, Bernabei MT. Effect of montmorillonite on drug release from polymeric matrices. Arch Pharm 1989; 322: 789–793.
- Gereli, G., Seki, Y., Kusoglu, I.M., Yurdakoc, K. Equilibrium and kinetic for the sorption of promethazine hydrochloride onto K10 montmorillonite. J Colloid Interface Sci 2006; 299: 155-162.
- Grim RE. Clay Mineralogy, McGraw-Hill Book Company, Inc., New York, 1953. pp. 43-83.
- Hachicha W, Kodjikian L, Fessi H. Preparation of vancomycin microparticles: Importance of preparation parameters. Int J Pharm 2006; 324: 176-184.

- Halder A, Maiti S, Sa B. Entrapment efficiency and release characteristics of polyethyleneimine-treated or -untreated calcium alginate beads loaded with propranolol-resin complex. Int J Pharm 2005; 302: 84-94.
- Harikarnpakdee S, Lipipun V, Sutanthavibul N, Ritthidej GC. Spary-dried mucoadhesive microspheres: preparation and transport through nasal cell monolayer. AAPS Pharm Sci Tech 2006; 7: article 12.
- Harris MR, Schwartz JB, McGinity JW. Optimization of a slow-release tablet formulation containing sodium sulphathiazole and a montmorillonite clay. Drug Dev Ind Pharm 1985; 11: 1089-1110.
- Hwang S, Rhee GJ, Lee KM, Oh K, Kim C. Release characteristics of ibuprofen from excipient-loaded alginate gel beads. Int J Pharm 1995; 116: 125-128.
- İkinci G, Senel S, Wilson CG, Sumnu M. Development of a buccal bioadhesive nicotine tablet formulation for smoking cessation. Int J Pharm 2004; 277: 173-178.
- Kafedjiiski K, Föger F, Hoyer H, Bernkop-Schnürch A. Evaluation of in vitro enzymatic degradation of various thiomers and cross-linked thiomers. Drug Dev Ind Pharm 2007; 33: 199-208.
- Kalra S, Pant CK, Pathak HD, Mehata MS. Studies on the adsorption of peptides of glycine/alanine on montmorillonite clay with or without co-ordinated divalent cations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 212, Issue 1, 1 January 2003, Pages 43-50.
- Khunawattanakul W, Puttipipatkhachorn S, Rades T, Pongjanyakul T. Chitosan-magnesium aluminum silicate composite dispersions: Characterization of rheology, flocculate size and zeta potential. Int J Pharm 2008; 351: 227-235.
- Lee BJ, Min GH, Cui JH. Correlation of drug solubility with trapping efficiency and release characteristics of alginate beads. Pharm Pharmacol Commun 1999; 5: 85-89.
- Lin FN, Lee YH, Jian CH, Wong J-M, Shieh M-J, Wang C-Y. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 2002; 23: 1981-1987.
- McGinity JW, Lach JL. Sustained release applications of montmorillonite interaction with amphetamine sulfate. J Pharm Sci 1977; 66: 63-66.

- Murata Y, Miyamoto E, Kawashima S. Additive effect of chondroitin sulfate and chitosan on drug release from calcium-induced alginate gel beads. J Control Release 1996; 38: 101-108.
- Nair MK, Chetty DJ, Ho H, Chien YW. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J Pharm Sci 1997; 86(2): 257-262.
- Østberg T, Graffner C. Calcium alginate matrices for oral multiple unit administration:III.

  Influence of calcium concentration, amount of drug added and alginate characteristics on drug release. Int J Pharm 1994; 111: 271-282.
- Østberg T, Vesterhus L, Graffner C. Calcium alginate matrices for oral multiple unit administration: II. Effect of process and formulation factors on matrix properties. Int J Pharm 1993; 97: 183-193.
- Papin-Castéla N, Prognon P, Keller F, Benazeth S, Farinotti R, Mahuzier G, Souleau Ch. Cerium-doped diosmectite for topical application studies of the cerium-clay interaction. Int. J. Pharm 1999; 181: 193-202.
- Park JK, Choy YB, Oh J, Kim JY, Hwang S, Choy J. Controlled release of donepezil intercalated in smectite clays. Int J Pharm 2008; 359: 198-204.
- Pongjanyakul T, Medlicott NJ, Tucker IG. Melted glyceryl palmitostearate (GPS) pellets for protein delivery. Int J Pharm 2004; 271: 53-62.
- Pongjanyakul T, Priprem A, Puttipipatkhachorn S. Influence of magnesium aluminium silicate on rheological, release and permeation characteristics of diclofenac sodium aqueous gels in-vitro. J Pharm Pharmacol. 2005; 57: 429-434.
- Pongjanyakul T, Puttipipatkhachorn S. Sodium alginate-magnesium aluminum silicate composite gels: Characterization of flow behavior, microviscosity and drug diffusivity. AAPS PharmSciTech 2007a; 8: Article 72.
- Pongjanyakul T, Puttipipatkhachorn S. Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm 2007b; 331: 61-71.
- Pongjanyakul T. Characterization of microcrystalline cellulose loaded diclofenac calcium alginate gel beads in vitro. Pharmazie 2007; 62: 493-498.
- Puttipipatkhachorn S, Pongjanyakul T, Priprem A. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesiumaluminum silicate, and their physical characteristics. Int J Pharm 2005; 293:51-62

- Sánchez Martin MJ, Camazano MS, Hernandez MTV, Dominguez-Gil A. Interaction of propranolol hydrochloride with montmorillonite. J Pharm Pharmacol 1981; 33: 408-410.
- Sayalero ML, Sanchez MJ, Sanchez-Camazano M, Dominguez-Gil A. In vitro adsorption desorption of papaverine hydrochloride by montmorillonite. Drug Dev Ind Pharm 1985; 11: 1909-1930.
- Sugawara S, Imai T, Otagiri M. The controlled release of prednisolone using alginate gel.

  Pharm Res 1994; 11: 272-277.
- Suksri H, Pongjanyakul T. Interaction of nicotine with magnesium aluminum silicate at different pHs: characterization of flocculate size, zeta potential and nicotine adsorption behavior. Colloids Surf B 2008; 65: 54-60.
- Sun J, Xu R, Yang Y. Conformational changes and bioactivity of lysozyme on binding to and desorptionfrom magnetite nanoparticles. J Chromatography B 2011; 879: 3053-3058.
- Wade A, Weller PJ. Handbook of pharmaceutical excipients. 2<sup>nd</sup> ed. London: The Pharmaceutical Press, 1994: 428-430.
- Wang K, He Z. Alginate-konjac glucomannan-chitosan beads as controlled release matrix. Int J Pharm 2002; 244: 117-126.
- Zheng JP, Luan HY, Wang LF. Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci 2007; 36: 297-301

# ผลลัพธ์ที่ได้จากโครงการ

# บทความตีพิมพ์ระดับนานาชาติ

- Rojtanataya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: characterization and factors influencing drug release.
   International Journal of Pharmaceutics 2010; 383: 106-115 (Impact factor2010 = 3.607).
- Pongjanyakul T, Rongthong T. Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug-clay intercalated complexes as microresservoirs. Carbohydrate Polymers 2010; 81: 409-419 (Impact factor2010 = 3.463).
- 3. Kanjanabat S, Pongjanyakul T. Preparation and characterization of nicotine-magnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery. AAPS PharmSciTech 2011; 12: 683-692 (Impact factor2010 = 1.211).
- 4. Pongjanyakul T, Rojtanataya S. Use of propranolol-magnesium aluminum silicate intercalated complexes as drug reservoirs in polymeric matrix tablets. Indian Journal of Pharmaceutical Sciences (Submitted).
- 5. Pongjanyakul T, Kanjanabat S. Influence of pH modifiers and HPMC viscosity grades on nicotine-magnesium aluminum silicate complex-loaded buccal matrix tablets. AAPS PharmSciTech (Submitted).
- 6. Kanjanakawinkul W, Rades T, Puttipipatkhachorn S, Pongjanyakul T. Nicotine-magnesium aluminum silicate microparticles surface-modified using chitosan for mucosal delivery (In prepraration, English edited).

# สิทธิบัตร

- 1. ธเนศ พงศ์จรรยากุล และ โสภาพรรณ กาญจนบัตร "ยาเม็ดเมทริกซ์บรรจุสารประกอบ เชิงซ้อนนิโคติน-เคลย์" คำขอสิทธิบัตร เลขที่ 1001000839 วันยื่นคำขอ 27 พฤษภาคม 2553
- 2. ธเนศ พงศ์จรรยากุล และ วัชระ กาญจนกวินกุล "ไมโครพาร์ติเคิลนิโคติน-เคลย์" คำขอ สิทธิบัตร เลขที่ 1001001351 วันยื่นคำขอ 11 สิงหาคม 2553

3. ธเนศ พงศ์จรรยากุล และ วัชระ กาญจนกวินกุล "ไมโครพาร์ติเคิลนิโคติน-เคลย์ดัดแปรผิว ด้วยไคโตแซน" คำขอสิทธิบัตร เลขที่ 1101002588 วันยื่นคำขอ 29 กันยายน 2554

# <u>การนำเสนอผลงานในการประชุมวิชาการ</u>

# ระดับนานาชาติ จำนวน 3 เรื่อง

- Kanjanabat S, Khunawattanakul W, Pongjanyakul T. Alginate matrix tablets containing nicotine-clay complexes for mucosal delivery: Effect of preparation pH of complexes. FIP Pharmaceutical Sciences 2010 World Congress in Association with the AAPS Annual Meeting and Exposition, 14-18 Nov 2010, New Orleans.
- Pongjanyakul T, Rojtanatanya S. Propranolol-clay intercalated complex-loaded HPMC matrix tablets: Drug release characteristics and effect of calcium ion. FIP Pharmaceutical Sciences 2010 World Congress in Association with the AAPS Annual Meeting and Exposition, 14-18 November 2010, New Orleans.
- Pongjanyakul T, Kanjanabat S, Khunawattanakul W. Nicotine-magnesium aluminum silicate complex-loaded HPMC tablets: effect of acidic and basic modifying agents on unidirectional release and permeation. The 8th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical technology, Istanbul. 19-22 March 2012.

# ระดับชาติ จำนวน 4 เรื่อง

- Pongjanyakul T, Rongthong T, Rojtanatanya S. Characterization of calcium alginate beads loading propranolol-magnesium aluminum silicate intercalated complexes as microreservoirs. การประชุมนักวิจัยรุ่นใหม่ พบ เมธีวิจัยอาวุโส สกว. ครั้งที่ 10 วันที่ 14-16 ตุลาคม 2553 เพชรบุรี หน้า 4.
- 2. Kanjanakawinkul W, Puttipipatkhachorn S, Pongjanyakul T. Characterization of nictone-magnesium aluminum silicate microparticles for mucosal delivery. การ ประชุมวิชาการโครงการปริญญาเอกกาญจนาภิเษก ครั้งที่ 12 วันที่ 1-3 เมษายน 2554 หน้า 307.
- 3. Kanjanabat S, Pongjanyakul T. Characterization of nicotine-clay complex loaded hydroxylpropyl methylcellulose tablets for buccal delivery. การประชุมน้ำเสนอ

- ผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ 21 วันที่ 26 พฤษภาคม 2554 มหาวิทยาลัยรังสิต ปทุมธานี หน้า 493-499.
- 4. Pongjanyakul T, Kanjanabat S. Application of nicotine-magnesium aluminum silicate complexes as drug carriers in alginate matrix buccal tablets: effect of complex/alginate ratio. การประชุมนักวิจัยรุ่นใหม่ พบ เมธีวิจัยอาวุโส สกว. ครั้งที่ 11 วันที่ 19-21 ตุลาคม 2554 เพชรบุรี หน้า 19.



# บทความตีพิมพ์ระดับนานาชาติ

- Rojtanataya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: characterization and factors influencing drug release. International Journal of Pharmaceutics 2010; 383: 106-115 (Impact factor2010 = 3.607).
- Pongjanyakul T, Rongthong T. Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug-clay intercalated complexes as microresservoirs. Carbohydrate Polymers 2010; 81: 409-419 (Impact factor2010 = 3.463).
- 3. Kanjanabat S, Pongjanyakul T. Preparation and characterization of nicotine-magnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery. AAPS PharmSciTech 2011; 12: 683-692 (Impact factor2010 = 1.211).
- 4. Pongjanyakul T, Rojtanataya S. Use of propranolol-magnesium aluminum silicate intercalated complexes as drug reservoirs in polymeric matrix tablets. Indian Journal of Pharmaceutical Sciences (Submitted).
- 5. Pongjanyakul T, Kanjanabat S. Influence of pH modifiers and HPMC viscosity grades on nicotine-magnesium aluminum silicate complex-loaded buccal matrix tablets. AAPS PharmSciTech (Submitted).
- 6. Kanjanakawinkul W, Rades T, Puttipipatkhachorn S, Pongjanyakul T. Nicotine-magnesium aluminum silicate microparticles surface-modified using chitosan for mucosal delivery (In prepraration, English edited).



Contents lists available at ScienceDirect

# International Journal of Pharmaceutics

journal homepage: www.elsevier.com/locate/ijpharm



# Propranolol–magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release

Sarasit Rojtanatanya, Thaned Pongjanyakul\*

Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittraphab Road, Khon Kaen 40002, Thailand

#### ARTICLE INFO

Article history: Received 16 July 2009 Received in revised form 25 August 2009 Accepted 6 September 2009 Available online 12 September 2009

Keywords: Propranolol Magnesium aluminum silicate Complexes Drug release Molecular interaction

#### ABSTRACT

In this study, complexation of magnesium aluminum silicate (MAS) and propranolol HCl (PPN) in the form of dispersions and solid particles was investigated. PPN-MAS dispersions at different pHs were prepared and characterized. The physicochemical properties and in vitro drug release of the complexes were also examined. Incorporation of PPN into MAS dispersions at various pHs caused the formation of PPN-MAS flocculates with a different particle size, zeta potential and amount of PPN adsorbed. The PPN-MAS complexes prepared at various pHs were formed via cation exchange, hydrogen bonding and water bridging mechanisms, which were revealed by FTIR and solid-state <sup>29</sup>Si NMR spectroscopy. This led to the intercalation of PPN molecules into the silicate layers of MAS. In vitro drug release studies demonstrated that the kinetic release of PPN can be described using the particle diffusion controlled mechanism, suggesting that drug release was controlled by diffusion of the drug in aqueous channels in the particle matrix of the complexes. The PPN-MAS complexes provided a sustained-release of PPN after an initial burst release in acidic medium and pH 6.8 phosphate buffer when compared with the physical mixture and pure PPN powder. This was due to a slow diffusion of drug that was intercalated in the inside of the particle matrix. The preparation pH of the complexes did not influence the release of PPN; the important factors affecting drug release were particle size, percentage of drug loaded in the complexes and the type of release medium. This finding suggests that the PPN-MAS complexes obtained in this study are strong candidates for use as drug carriers in oral modified-release dosage forms.

© 2009 Elsevier B.V. All rights reserved.

## 1. Introduction

In pharmaceutics, complexation between drugs and biocompatible materials has been used for enhancement of drug solubility, drug stability, drug absorption and bioavailability (Martin, 1993). In recent years, clays and biocompatible inorganic materials have been applied to adsorb the drugs onto their structures because they have a large specific surface area, good adsorption ability and cation exchange capacity (Velde, 1992; Murray, 2000). It has been shown that the drug–clay complexes can retard and/or modulate the release of drugs (Trikeriotis and Ghanotakis, 2007; Park et al., 2008; Joshi et al., 2009). This finding led to the use of drug–clay complexes as drug carriers, and when the complexes are coated with a cationic polymer, a good drug release profile during a short period of time is observed (Park et al., 2008).

Magnesium aluminum silicate (MAS) is a mixture of natural smectite clays, specifically montmorillonite and saponite (Kibbe, 2000; Viseras et al., 2007). MAS has a layered structure that is constructed from tetrahedrally coordinated silica atoms fused into

an edge-shared octahedral plane of either aluminum hydroxide or magnesium hydroxide (Alexandre and Dubois, 2000; Kibbe, 2000). The surface of the silicate layer contains numerous silanol groups (SiOH), which have the potential to form hydrogen bonds with other substances (Gupta et al., 2003). The separation of the layered structures occurs when they are hydrated in water, and the weakly positively charged edges and the negatively charged faces of MAS are then presented. The negatively charged faces on the silicate layers of MAS have strong electrostatic interactions with amine drugs (McGinity and Lach, 1977; Sánchez-Martin et al., 1981; Nunes et al., 2007; Pongjanyakul et al., 2009), thereby leading to the prolonged release of the drug. Due to the non-toxicity and non-irritation at the levels employed in pharmaceutical use (Kibbe, 2000), it is of interest to use MAS as a drug adsorbent to improve the physical characteristics and modulate drug release behavior. Recently, nicotine–MAS complexes were shown to enhance thermal stability of nicotine and provide a sustained-release of nicotine after an initial burst release (Pongjanyakul et al., 2009).

Propranolol hydrochloride (PPN) was the first  $\beta$ -adrenoceptor blocking drug to achieve wide therapeutic use in angina and hypertension (Dollery, 1991). It is a secondary amine compound, and its structure is shown in Fig. 1. Due to the short half life of PPN (3.9 h) (Dollery, 1991), PPN has been selected as a drug candidate

<sup>\*</sup> Corresponding author. Tel.: +66 43 362092; fax: +66 43 202379. E-mail address: thaned@kku.ac.th (T. Pongjanyakul).

Fig. 1. Chemical structure of propranolol hydrochloride (PPN).

for developing sustained-release dosage forms (Gil et al., 2006; Sahoo et al., 2008; Paker-Leggs and Neau, 2009). However, many researchers in development of PPN sustained-release dosage forms were met with problems, such as the difficulty to control the release of the drug due to the high aqueous solubility of PPN. Thus, this problem may be solved by the complexation of PPN with MAS because the complexes obtained may retard the release of PPN. Sánchez-Martin et al. (1981) reported the interaction of PPN with montmorillonite; PPN can intercalate into the interlayer space of montmorillonite. However, there is no data available concerning other physicochemical properties or the *in vitro* release behavior of the PPN-montmorillonite complexes. Thus, it is necessary to study the physicochemical properties of PPN-MAS complexes in the form of dispersions and solid particles. The particle complexes obtained may be applicable as drug carriers for modulating PPN release.

In the present study, PPN–MAS dispersions at different pHs were prepared, and particle size, zeta potential of PPN–MAS flocculates, and drug adsorbed onto the MAS were investigated. Additionally, the physicochemical properties of the solid complexes such as thermal behavior, solid-state crystallinity, particle size and morphology were investigated. FTIR and solid-state <sup>29</sup>Si NMR spectroscopy were used to examine the molecular interaction between PPN and MAS within the complexes. The *in vitro* release behavior and release kinetics of PPN from the complexes using 0.1N HCl and pH 6.8 phosphate buffer were also examined.

## 2. Materials and methods

# 2.1. Materials

MAS (Veegum®HV) and PPN were purchased from the R.T. Vanderbilt Company Inc. (Norwalk, CT, USA) and Changzhou Yabang Pharmaceutical Co., Ltd. (Jiangsu, China), respectively. All other reagents used were of analytical grade and used as received.

### 2.2. Preparation of PPN-MAS dispersion

A 4% w/v MAS suspension was prepared using hot water and cooled to room temperature prior to use. Next, 25 ml of the 4% w/v MAS suspension was mixed with 25 ml of the 1% w/v PPN deionized water solution in an Erlenmeyer flask. The pH of all PPN–MAS dispersions were adjusted by adding a small amount of 1N HCl or 1N NaOH into the flask while swirling and using a pH meter (Ion Analyzer 250, Coring, USA) to determine when the final pH of the dispersions was 5, 7 or 9. Then the dispersions were incubated at 37  $^{\circ}\text{C}$  with shaking for 24 h to allow PPN adsorption into the MAS to equilibrate. The PPN–MAS dispersions prepared at various pHs were characterized as described below.

## 2.3. Characterization of PPN-MAS dispersions

## 2.3.1. Microscopic morphology studies

The morphology of the MAS particles and the PPN–MAS flocculates in the dispersions were investigated using an inverted microscope (Eclipse TS100, Nikon, Japan) and viewed using a digital camera (Coolpix 4500, Nikon, Japan).

#### 2.3.2. Particle size determination

The particle size of the MAS particles and the PPN–MAS flocculates in the dispersions were measured using a laser diffraction particle size analyzer (Mastersizer2000 Model Hydro2000SM, Malvern Instrument Ltd., UK). The samples were dispersed in 70 ml of deionized water in a small volume sample dispersion unit and stirred at a rate of 50 Hz for 30 s before the measurement. The particle sizes (volume weighted mean diameter) were then recorded.

## 2.3.3. Zeta potential measurement

The zeta potential of the dispersions was measured by using a laser Doppler electrophoresis analyzer (Zetasizer Model ZEN 2600, Malvern Instrument Ltd., UK). The temperature of the samples was controlled at 25 °C. The dispersions were diluted using deionized water to obtain appropriate concentrations (count rates >20,000 counts per second) prior to measurement.

#### 2.3.4. Determination of PPN adsorbed onto MAS

The clear supernatants of the dispersions were collected, filtered with a 0.45- $\mu$ m cellulose acetate membrane, and then analyzed using UV-visible spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 289 nm. The amount of PPN adsorbed onto MAS was calculated as the difference between the amount of PPN added and the amount of PPN in the supernatant.

## 2.4. Preparation of PPN-MAS complexes

The PPN-MAS dispersions at various pHs were prepared using the method that was mentioned previously in Section 2.2. The PPN-MAS complexes were separated from the filtrates by filtration, washed 2 times with 20 ml of deionized water and dried overnight at 50 °C. For the second drug loading at pH 7, the PPN-MAS dispersions were prepared following the method in Section 2.2. The complexes collected from the first drug loading by filtration were redispersed in 25 ml of the 1% w/v PPN solution in an Erlenmeyer flask, and the mixture was incubated at 37 °C with shaking for 24 h. The PPN-MAS complexes of the double drug loading were separated, washed and dried following the method mentioned above. The dry PPN-MAS complexes were ground using a mortar and pestle and divided into 3 particle sizes using a sieving method: small size (passed through 125 µm sieve), medium size (125-180 µm sieve), and large size (180–250 µm sieve). The obtained complexes were kept in a desiccator prior to use. The small sized PPN-MAS complexes were used for investigation of PPN content and physicochemical properties. Additionally, the physical mixture between PPN and MAS was freshly prepared by gentle mixing in a small vial, in which the concentration of PPN was 14% (w/w) of the mixture.

#### 2.5. Characterization of PPN-MAS complexes

## 2.5.1. Determination of PPN content

Fifty milligrams of the complexes were weighed and dispersed in 100 ml of 2N HCl for 24 h. Then the supernatant was collected and filtered, and the PPN content was assayed using a UV-visible spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 289 nm.

# 2.5.2. Particle size determination

The particle size of the complexes was measured using the same method mentioned in Section 2.3.2. The media used were 0.1N HCl and pH 6.8 phosphate buffer, and the volume weighted mean diameter of the particles was reported.

# 2.5.3. Scanning electron microscopy (SEM)

The particle shape and surface morphology of the MAS powder and the PPN-MAS complexes were observed using scanning elec-

**Table 1**Characteristics of MAS and PPN–MAS dispersions.

| Dispersion         | Particle size <sup>a</sup> (μm) | Zeta potential <sup>b</sup> (mV) | PPN adsorption <sup>a</sup> (mg/1 g of MAS) | PPN content in flocculates (%w/w) |
|--------------------|---------------------------------|----------------------------------|---------------------------------------------|-----------------------------------|
| MAS dispersion     | $4.76\pm0.12$                   | $-36.0 \pm 1.1$                  | -                                           | -                                 |
| PPN-MAS dispersion |                                 |                                  |                                             |                                   |
| pH 5               | $141.8 \pm 13.7$                | $-10.2 \pm 2.5$                  | $207.8 \pm 2.4$                             | $17.21 \pm 0.16$                  |
| pH 7               | $134.1 \pm 14.0$                | $-12.4 \pm 2.8$                  | $215.3 \pm 1.5$                             | $17.71 \pm 0.10$                  |
| pH 9               | $125.1 \pm 10.6$                | $-15.0 \pm 3.2$                  | $221.0 \pm 0.2$                             | $18.10 \pm 0.01$                  |

- <sup>a</sup> Data are the mean  $\pm$  SD of three determinations.
- b Data are the mean ± SD of six determinations.

tron microscopy (SEM). Samples were mounted onto stubs, sputter coated with gold in a vacuum evaporator, and photographed using a scanning electron microscope (Jeol Model JSM-6400, Tokyo, Japan).

#### 2.5.4. Powder X-ray diffractometry

Powder X-ray diffraction (PXRD) measurements of samples were performed on a powder X-ray diffractometer (Jeol Model JDX-3530, Tokyo, Japan). The measurement conditions were a Cu radiation generated at 40 kV and 40 mA as X-ray source, angular  $3-25^{\circ}$  ( $2\theta$ ), and step angle  $0.02^{\circ}$  ( $2\theta$ ) s<sup>-1</sup>.

#### 2.5.5. Fourier transform infrared (FTIR) spectroscopy

The FTIR spectra of samples were recorded with an FTIR spectrophotometer (Spectrum One, Perkin Elmer, Norwalk, CT) using the KBr disc method. Each sample was pulverized, gently triturated with KBr powder in a weight ratio of 1:100 and then pressed using a hydrostatic press at a pressure of 10 tons for 5 min. The disc was placed in the sample holder and scanned from 4000 to 450 cm $^{-1}$  at a resolution of  $4\,\mathrm{cm}^{-1}$ .

## 2.5.6. Nuclear magnetic resonance (NMR) spectroscopy

The  $^{29}$ Si NMR spectra of the samples were measured using a solid-state  $^{29}$ Si cross-polarization magic angle spinning (CP/MAS) NMR spectrometer (DPX-300, Bruker-BioSpin AG, Fällanden, Switzerland). The spectral parameters used were as follows: 1600 spins, a relaxation delay of 6 s, a spin rate of 5 kHz, and a spectral size of 4 K with a 2 K time domain size.

## 2.5.7. Differential scanning calorimetry (DSC)

DSC sample curves were recorded using a differential scanning calorimeter (DSC822, Mettler Toledo, Switzerland). Each sample (2–3 mg) was accurately weighed into a 40- $\mu$ l aluminum pan and crimped without an aluminum cover. The measurements were performed in air over the range of 30–450 °C at a heating rate of 10 °C min<sup>-1</sup>.

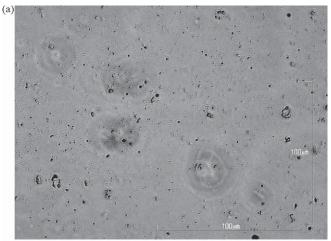
# 2.5.8. In vitro drug release studies

A USP dissolution apparatus 2 (paddle method, Hanson Research, USA) was used to characterize the release of PPN from the complexes. The amount of the PPN–MAS complexes used was equivalent to that containing 40 mg of PPN. The studies were performed in 500 ml of release medium at  $37.0\pm0.5\,^{\circ}\text{C}$  at a rotation speed of 50 rev/min. Samples (20 ml) were collected and replaced with fresh medium at various time intervals. The amount of PPN released was analyzed using a UV–visible spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 289 nm. The dissolution media used in this study were 0.1N HCl and pH 6.8 phosphate buffer.

The PPN release kinetic mechanism was investigated using a particle diffusion controlled model that has been previously proposed by Bhaskar et al. (1986). This model was applied to test the drug release from layered double hydroxides (Ni et al., 2008) and from MAS (Pongjanyakul et al., 2009), which can be expressed by

the following equation (Bhaskar et al., 1986):

$$-\ln(1-F) = 1.59 \left(\frac{6}{d_{\rm p}}\right)^{1.3} D^{0.65} t^{0.65}$$
 (1)


where F is the fractional release of drug from the complexes at given time (t),  $d_{\rm p}$  is the mean particle size of the complexes, D is the apparent diffusion coefficient and t is time. This model can be investigated by simply testing for linearity between  $-\ln(1-F)$  and  $t^{0.65}$ . The slope (drug release rate constant) of the straight line (estimated using linear regression analysis) was used to calculate the apparent diffusivity according to the following equation:

$$D = \frac{d_{\rm p}^2}{36} \left(\frac{\rm slope}{1.59}\right)^{1/0.65} \tag{2}$$

#### 3. Results and discussion

#### 3.1. Characteristics of PPN-MAS dispersions

The particle size, zeta potential, and PPN adsorption onto MAS in the composite dispersion prepared at different pHs are presented in Table 1. The mean particle size of MAS was found to be  $4.76 \mu m$  with a negatively charged surface that had a zeta potential of -36.0 mV. The microscopic morphology of the MAS dispersion showed separated particles of MAS (Fig. 2a). Incorporation of PPN into the MAS dispersion caused a rapid sedimentation of MAS particles, indicative of the formation of PPN-MAS flocculates (Fig. 2b), which is due to the electrostatic interaction between negatively charged MAS and positively charged PPN. This led to an obvious decrease of the zeta potential of MAS (Table 1). Decreasing the preparation pH resulted in a reduction of both the zeta potential of the flocculates and percent of PPN adsorbed onto MAS; however, a larger particle size of the flocculates was observed when preparation pH was decreased. The zeta potential of the flocculates at pH 9 was higher than the zeta potential at pH 7 due to a lower degree of ionization of PPN at pH 9. The pKa value of PPN is 9.5 (Dollery, 1991), and thus 75.8% of PPN was in the protonated form at pH 9. The protonated form of PPN increased to 99.7 and 99.9% at pH 7 and 5, respectively. The protonated form of PPN at pH 5 and 7 could potentially interact with the negatively charged MAS more readily than at pH 9, leading to increased adsorption of PPN onto the particle surface of MAS and a reduction of the electric barrier between the MAS particles, which was evident by a decrease in the zeta potential and the formation of a bridge between adjacent particles so as to link them together in a loosely arranged structure of flocculates (Martin, 1993). The lower the zeta potential, the larger the flocculate size was found. This result was in agreement with a previous study using nicotine and MAS (Suksri and Pongjanyakul, 2008). However, the PPN adsorbed onto MAS at pH 7 was lower than that at pH 9. It is probable that the larger flocculate size at neutral pH possessed lower surface area for PPN adsorption when compared with the smaller size of flocculates at pH 9. In comparison to pH 7, at pH 5 a reduction of the zeta poten-





**Fig. 2.** Microphotographs of MAS particles in a MAS dispersion (a) and PPN-MAS flocculates in the composite dispersion prepared at pH 7 (b).

tial and increased flocculate size was observed, although both pHs displayed a similar degree of PPN ionization. This suggests that hydronium ions that increased at the lower pH could adsorb onto the MAS surface and partially neutralize the negative charge of MAS (Benna et al., 1999; Suksri and Pongjanyakul, 2008), thereby resulting in increased flocculate size and decreased PPN adsorbed onto the MAS. These results suggest that the pH of preparation influences the characteristics of the PPN–MAS flocculates in the composite dispersions, which may cause different physicochemical properties and drug release behavior of the obtained PPN–MAS complexes.

#### 3.2. PPN content and particle size analysis

The PPN content of the PPN–MAS complexes prepared at pH 5, 7, and 9 by using a single drug loading was approximately 14% (w/w), which is listed in Table 2. It was observed that the PPN content of the dry complexes was significantly less than that of the complexes in the dispersions (Table 1). This was due to a loss of PPN from the surface of the complexes during the washing process with deionized water. Moreover, the PPN content of the complexes obtained from the double drug loading was significantly higher than that obtained from the single drug loading. This suggests that part of the adsorption site of MAS remained free after reaching adsorption equilibrium during the single drug loading, and the higher concentration of PPN in the second drug loading could drive the PPN adsorption onto the remaining site of MAS. Therefore, an increase in PPN content of the complexes was found when using a double loading of PPN.

The MAS particles were in a granular form and displayed many small flakes on the surface (Fig. 3a and b). The PPN–MAS complexes prepared at pH7 (small size) had irregular shapes as shown in Fig. 3c and d. It was found that the PPN–MAS complexes had a different surface morphology when compared with that of MAS alone. The features of the small particles on the surface of the complexes were found to be caused by the aggregation of many small flocculates during the drying process.

The particle size of MAS granules dispersed in 0.1N HCl and pH 6.8 phosphate buffer was  $50.4\pm2.2$  and  $10.6\pm1.4\,\mu m$  (n=3), respectively. The MAS particle size in both media was larger than in deionized water (Table 1). This suggests that cations in the medium influenced the dispersibility of MAS granules. On the other hand, the PPN–MAS complexes prepared at various pHs showed similar particle sizes generally in the range of medium size (Table 2). Moreover, neither media affected the particle size of the complexes (Table 2). These results suggest that the complexes could not disperse in 0.1N HCl and pH 6.8 phosphate buffer because a strong attraction force between the silicate layers of MAS formed upon interaction with PPN. The particle size obtained from this study was used to calculate the diffusion coefficient of PPN in the particle matrix of the complexes.

# 3.3. PXRD study

The MAS powder showed a distinct diffraction peak at  $6.2^{\circ}$  ( $2\theta$ ) (Fig. 4b), representing a 1.42-nm thickness of the silicate layer of MAS. The PPN–MAS complexes prepared at various pHs did not present the PXRD pattern of PPN alone (Fig. 4c–e), suggesting that PPN was in an amorphous form and molecularly dispersed onto the surface of the MAS silicate layer. However, the peak of the MAS powder at  $6.2^{\circ}$  ( $2\theta$ ) was shifted to  $5.0^{\circ}$  ( $2\theta$ ) (Fig. 4c–e) and gave stronger intensity when the PPN–MAS complexes occurred. This

**Table 2**Particle size and PPN content of PPN–MAS complexes.

| Condition of preparation     | PPN content (%w/w) | Particle size (µm) |                         |
|------------------------------|--------------------|--------------------|-------------------------|
|                              |                    | 0.1N HCl           | pH 6.8 phosphate buffer |
| Single loading (medium size) |                    |                    |                         |
| pH 5                         | $14.13 \pm 0.18$   | $190.2 \pm 1.0$    | $196.6 \pm 1.0$         |
| pH 7                         | $14.51 \pm 0.22$   | $181.9 \pm 0.4$    | $189.8 \pm 2.2$         |
| pH 9                         | $14.42\pm0.08$     | $189.3\pm0.4$      | $190.4\pm0.9$           |
| Double loading at pH 7       | $20.05 \pm 0.60$   |                    |                         |
| Small size                   |                    | $90.3 \pm 0.7$     | $89.3 \pm 0.6$          |
| Medium size                  |                    | $203.9 \pm 0.4$    | $201.5 \pm 0.8$         |
| Large size                   |                    | $259.4 \pm 2.5$    | $261.8 \pm 1.1$         |

Data are the mean  $\pm$  SD of three determinations.

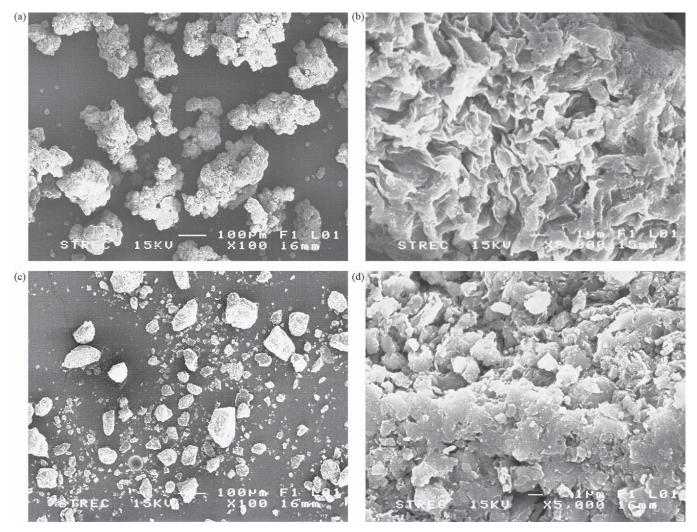
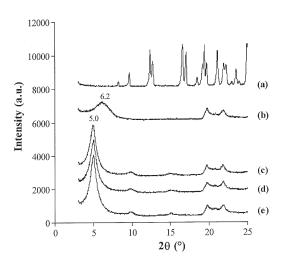
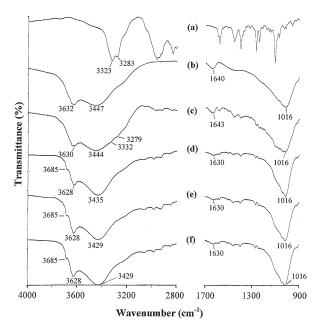




Fig. 3. Particle and surface morphology of MAS (a and b) and PPN-MAS complexes (c and d) prepared at pH 7 using a single loading (small size).

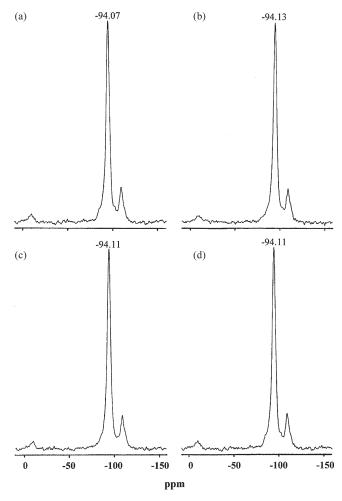
indicates that PPN can intercalate into the silicate layers of MAS because the MAS layer thickness was increased to approximately 1.77 nm. Moreover, a previous study showed that a stronger intensity of the basal spacing peak occurs when the drug molecule is intercalated into the silicate layers of MAS (Pongjanyakul et al.,




**Fig. 4.** PXRD patterns of PPN (a), MAS (b), and PPN–MAS complexes prepared at pH 5 (c), 7 (d), and 9 (e).

2009). This may be due to an increased stacking of the intercalated silicate layers (Sinha Ray et al., 2003), which resulted from the interaction between MAS and PPN.

#### 3.4. Interaction between PPN and MAS


The molecular interaction between PPN and MAS was elucidated by using FTIR spectroscopy. The FTIR spectra of PPN showed N-H and O-H stretching peaks at 3323 and 3283 cm<sup>-1</sup> (Fig. 5a), respectively, which was an essential peak for detecting the interaction of PPN with MAS. The outstanding peaks of MAS were the O-H stretching peak of SiOH at  $3632\,\mathrm{cm}^{-1}$ , the O-H stretching peak of water residues at  $3447\,\mathrm{cm}^{-1}$ , the O-H bending peak of water crystallization at 1640 cm<sup>-1</sup>, and the Si-O-Si stretching peak at 1016 cm<sup>-1</sup> (Fig. 5b). The physical mixture between PPN and MAS presented a shift of the N-H and O-H stretching peaks of PPN to 3332 and 3279 cm<sup>-1</sup> (Fig. 5c), respectively. It is possible that the amine and hydroxyl groups of PPN may have potentially interacted with MAS during gentle mixing. However, no obvious changes in the peaks of MAS were observed. The PPN-MAS complexes prepared at various pHs showed a remarkable change of the MAS peaks (Fig. 5d-f). The O-H stretching peak at 3447 cm<sup>-1</sup> and the O-H bending peak at  $1640\,\mathrm{cm}^{-1}$  strongly shifted to lower wavenumbers at 3429-3435 cm<sup>-1</sup> and 1630 cm<sup>-1</sup>, respectively. This suggests that in the complexes, water bound with PPN and/or MAS via hydrogen bonding. These data indicate that the interaction between PPN



**Fig. 5.** FTIR spectra of PPN (a), MAS (b), physical mixture (c) and PPN–MAS complexes prepared at pH 5 (d), 7 (e), and 9 (f).

and MAS occurred via the water bridging mechanism (Aguzzi et al., 2007; Pongjanyakul et al., 2009). The O-H stretching peak of SiOH at 3632 cm<sup>-1</sup> was sharper and shifted to a lower wavenumber (3628 cm<sup>-1</sup>), and the N-H and O-H stretching peaks of PPN were not observed, which can be attributed to the hydrogen bonding formation of silanol groups (SiOH) of MAS with the amine and hydroxyl groups of PPN. Additionally, the occurrence of the new peak at 3685 cm<sup>-1</sup> (Fig. 5d-f) after the formation of the PPN-MAS complexes indicates free OH groups on the inner surface of the silicate layer of MAS (Hoch and Bandara, 2005). The stronger vibration of free hydroxyl groups on the inner surface of the silicate layers was able to occur when the basal spacing of the MAS silicate layers increased due to the intercalation of the PPN molecules, which was demonstrated by PXRD. This result was similar with a previous report that observed this phenomenon in nicotine-MAS complexes (Pongjanyakul et al., 2009).

The electrostatic interaction between PPN and MAS was expected. The solid-state <sup>29</sup>Si NMR spectra of the MAS and the PPN–MAS complexes are illustrated in Fig. 6. The <sup>29</sup>Si NMR spectra give evidence of electronic changes in the tetrahedral sheet of



**Fig. 6.** Solid-state <sup>29</sup>Si NMR spectra of MAS (a) and PPN-MAS complexes prepared at pH 5 (b), 7 (c), and 9 (d).

montmorillonite. The <sup>29</sup>Si chemical shift of –94.07 ppm of MAS to –94.13, –94.11, and –94.11 ppm of the complexes at pH 5, 7, and 9, respectively, was found. Additionally, the Si–O–Si stretching peak (1016 cm<sup>-1</sup>) of the complexes (Fig. 5d–f) was narrower than that of MAS alone. The slightly negative change in the chemical shift and the narrower Si–O–Si stretching peak indicates a decrease in the charge of the MAS layer (Gates et al., 2000).

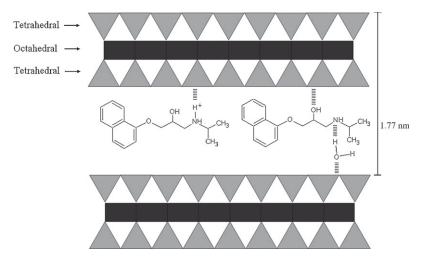



Fig. 7. Possible structure arrangement of PPN-MAS complexes.

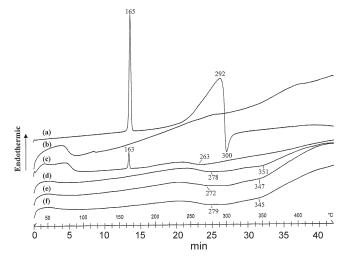
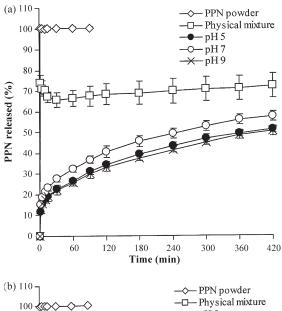


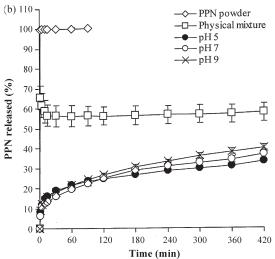

Fig. 8. DSC thermograms of PPN (a), MAS (b), physical mixture (c), and PPN-MAS complexes prepared at pH 5 (d), pH 7 (e) and pH 9 (f).

According to the results obtained from the FTIR and <sup>29</sup>Si NMR spectroscopy as well as PXRD, it can be suggested that complexation between PPN and MAS formed via electrostatic interaction by cation exchange, hydrogen bonding, and the water bridging mechanism, which can occur at various pHs. This led to the possible structure arrangement of the PPN-MAS complexes as illustrated in Fig. 7.

#### 3.5. Thermal behavior

The DSC thermogram of PPN showed a sharp endothermic peak at 165 °C (Fig. 8a), indicating the melting point of PPN. A broad endothermic peak at 292 °C followed by an exothermic peak at 300 °C represented the decomposition of PPN. MAS presented a broad endothermic peak at 70 °C, which was attributable to the dehydration of free water residues (Fig. 8b). The PPN-MAS physical mixture had an endothermic peak at 163 °C, indicative of a melting peak of PPN, and a broad exothermic peak was observed at 263 °C, suggesting the degradation of PPN in the physical mixture (Fig. 8c). For the PPN-MAS complexes, the absence of a melting peak of PPN suggests a molecular dispersion and amorphous form of PPN in the complexes, which confirmed the results of PXRD. The complexes prepared at various pHs presented two broad exothermic peaks at around 272–279  $^{\circ}$ C and 345–351  $^{\circ}$ C (Fig. 8d–f). This is likely due to both the decomposition of PPN adsorbed onto the particle surface of the complexes and the PPN that was intercalated in the silicate layers of MAS.

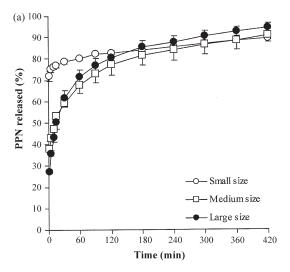

## 3.6. In vitro release of PPN-MAS complexes

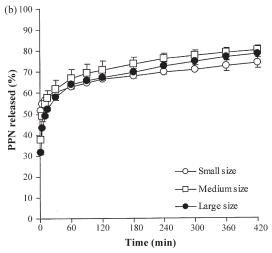

The effect of preparation pH and particle size of the PPN-MAS complexes on PPN release profiles using 0.1N HCl and pH 6.8 phosphate buffer are shown in Figs. 9 and 10, respectively. As shown in Fig. 11, the relationship between  $-\ln(1-F)$  and  $t^{0.65}$  of the PPN released from the complexes showed a good linearity. This relationship presented two stages of PPN release after the burst release at 2 min, and the slope (release rate constant) obtained was used to compute the diffusion coefficient (D value) shown in Table 3. The PPN released from a freshly prepared physical mixture of PPN with MAS and PPN powder was also investigated. In both media, the PPN powder was completely dissolved within 2 min of the test. The physical mixture showed very fast release with 65–74% drug released at 2 min in both media (Table 3), and then the amount of PPN released gradually decreased (Fig. 9), suggesting that the

PPN release characteristics of PPN-MAS complexes

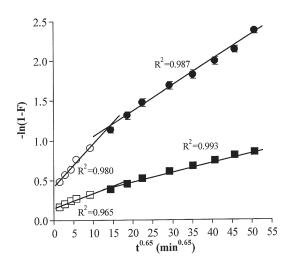
| PPN-MAS                          | 0.1N HCI                                |                                                                    |                                |                                                               |                                    | pH 6.8 phosphate buffer       | buffer                                                     |                                                              |                                                             |                 |
|----------------------------------|-----------------------------------------|--------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|------------------------------------|-------------------------------|------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-----------------|
|                                  | Drug released<br>at 2 min (%)           | $Slope \times 10^2 \text{ (min}^{-0.65}\text{)}$                   |                                | D value $\times 10^{10} \text{ (cm}^2 \text{ s}^{-1}\text{)}$ | (cm <sup>2</sup> s <sup>-1</sup> ) | Drug released<br>at 2 min (%) | Slope $\times 10^{2} \; (min^{-0.65})$                     |                                                              | D value $\times 10^{10}$ (cm <sup>2</sup> s <sup>-1</sup> ) | $(cm^2 s^{-1})$ |
|                                  |                                         | Stage 1                                                            | Stage 2                        | Stage 1                                                       | Stage 2                            |                               | Stage 1                                                    | Stage 2                                                      | Stage 1                                                     | Stage 2         |
| Physical mixture 74.1 ± 3.7      | 74.1 ± 3.7                              | ı                                                                  | I                              | ı                                                             | ı                                  | $65.6 \pm 5.9$                | ı                                                          | I                                                            | ı                                                           | 1               |
| Complexes (single                | Complexes (single loading, medium size) | size)                                                              |                                |                                                               |                                    |                               | ,                                                          | ,                                                            |                                                             |                 |
| pH 5                             | $11.9 \pm 0.3$                          | $2.00 \pm 0.07 (R^2 = 0.946)$ $1.17 \pm 0.06 (R^2 = 0.996)$        | $1.17 \pm 0.06  (R^2 = 0.996)$ | $2.00\pm0.11$                                                 | $0.88\pm0.07$                      | $8.08 \pm 0.55$               | $2.18 \pm 0.06 (R^2 = 0.966)  0.44 \pm 0.01 (R^2 = 0.986)$ | $0.44 \pm 0.01  (R^2 = 0.986)$                               | $2.44\pm0.10$                                               | $0.21 \pm 0.01$ |
| pH 7                             | $15.1 \pm 0.4$                          | $2.06 \pm 0.26  (R^2 = 0.965)  1.28 \pm 0.09  (R^2 = 0.993)$       | $1.28 \pm 0.09  (R^2 = 0.993)$ | $1.92 \pm 0.37$                                               | $0.92 \pm 0.09$                    | $6.25 \pm 0.06$               | $1.79 \pm 0.22  (R^2 = 0.865)$                             | $1.79 \pm 0.22  (R^2 = 0.865)  0.63 \pm 0.07  (R^2 = 0.977)$ | $1.68 \pm 0.33$                                             | $0.34 \pm 0.06$ |
| 6 Hd                             | $13.0\pm0.8$                            | $1.73 \pm 0.50 \ (R^2 = 0.973)  1.10 \pm 0.04 \ (R^2 = 0.997)$     | $1.10\pm0.04~(R^2=0.997)$      | $1.62\pm0.74$                                                 | $0.79\pm0.04$                      | $9.20\pm0.25$                 | $1.71 \pm 0.06  (R^2 = 0.968)$                             | $1.71 \pm 0.06  (R^2 = 0.968)  0.81 \pm 0.06  (R^2 = 0.991)$ | $1.58\pm0.08$                                               | $0.50\pm0.06$   |
| Complexes (pH 7, double loading) | double loading)                         |                                                                    |                                |                                                               |                                    |                               |                                                            |                                                              |                                                             |                 |
| Small size                       | $71.8 \pm 2.3$                          | I                                                                  | $1.63 \pm 0.08  (R^2 = 0.983)$ | ı                                                             | $0.33 \pm 0.02$                    | $51.6 \pm 1.1$                | ı                                                          | $1.64 \pm 0.07  (R^2 = 0.986)$                               | ı                                                           | $0.33 \pm 0.02$ |
| Medium size                      | $37.9\pm1.5$                            | $5.66 \pm 0.65  (R^2 = 0.980)  3.31 \pm 0.70  (R^2 = 0.987)$       | $3.31 \pm 0.70  (R^2 = 0.987)$ | $11.4\pm2.0$                                                  | $5.05 \pm 1.67$                    | $37.7 \pm 1.6$                | $8.82 \pm 1.36 (R^2 = 0.936) 1.43 \pm 0.29 (R^2 = 0.989)$  | $1.43 \pm 0.29  (R^2 = 0.989)$                               | $22.0\pm5.1$                                                | $1.36\pm0.42$   |
| Large size                       | $27.1\pm0.4$                            | $8.56 \pm 1.22  (R^2 = 0.997) \  \   4.15 \pm 0.52  (R^2 = 0.994)$ | $4.15 \pm 0.52  (R^2 = 0.994)$ | $35.0\pm7.8$                                                  | $11.5\pm2.2$                       | $31.7 \pm 1.0$                | $8.27 \pm 0.67 (R^2 = 0.939)$                              | $8.27 \pm 0.67 (R^2 = 0.939)$ $1.41 \pm 0.28 (R^2 = 0.993)$  | $33.7\pm4.2$                                                | $2.24 \pm 0.66$ |
| CD of the mainting               | CD of throo dotorn                      | in the second                                                      |                                |                                                               |                                    |                               |                                                            |                                                              |                                                             |                 |

the mean  $\pm$  SD of three determinations




**Fig. 9.** PPN release profiles of PPN powder, physical mixture, and PPN–MAS complexes prepared at various pHs using a single loading in 0.1N HCl (a) or pH 6.8 phosphate buffer (b). Each point is the mean  $\pm$  SD, n = 3.


PPN that was released could be readsorbed by the MAS dispersed in the release medium. The PPN-MAS complexes showed a slow release profile, and the preparation pH did not influence the release of PPN from the complexes (Fig. 9). This was observed from the drug released at 2 min, and release rate constants are shown in Table 3. The release rate constant in stage 2 was lower than that in stage 1 because of the reduction of the drug concentration gradient in the complex particle. No difference was observed in the release rate constant of stage 1 between the two media, whereas a higher release rate constant of stage 2 in acidic medium was obtained when compared with using pH 6.8 phosphate buffer. This difference was also found in the D values. Apart from the effect of preparation pH, particle size also had a strong influence on the drug release. It was observed that the drug released at 2 min significantly increased with decreasing particle size of the complexes (Table 3). In contrast, increasing release rate constants were found for the larger particle sizes, particularly in the acidic medium. Additionally, the D values in both stages increased with increasing particle size of the complexes.

This study shows that release of PPN from the complexes is controlled by a particle matrix that acts as a diffusion barrier for drug release. This was due to a good fit of the PPN release data using the particle diffusion controlled model. When the particles of the





**Fig. 10.** Effect of particle size on PPN released from PPN–MAS complexes prepared at pH 7 using a double loading in 0.1N HCl (a) or pH 6.8 phosphate buffer (b). Each point is the mean  $\pm$  SD. n = 3.



**Fig. 11.** Relationship between  $-\ln(1-F)$  and  $t^{0.65}$  of PPN–MAS complexes prepared at pH 7 using a single ( $\square$ ) or double ( $\bigcirc$ ) loading in 0.1N HCl. Open and closed symbols represented drug release data at stages 1 and 2, respectively, and the solid line is the linear regression line of each drug release stage. Each point is the mean  $\pm$  SD, n=3.

complexes are exposed to the dissolution medium, the simultaneous penetration of the surrounding medium and cation exchange process occurred, thereby leading to a burst release (drug released at 2 min) of the PPN adsorbed onto the particle surface of the complexes. Then the cations diffuse into the particles to exchange with the PPN adsorbed and intercalated in the silicate layers of MAS, which leads to the leaching out of PPN through interstitial aqueous channels. After which, the diffusion of PPN molecules through numerous aqueous channels within the particle matrix occurs. These processes can describe the first stage of drug release. However, in this study the PPN-MAS complexes also demonstrated a second stage of drug release. It is probable that this stage represents the drug released and diffused from the silicate layer space of the MAS, which could be called a nanostructure matrix, on the inside of the particles of the complexes. This resulted in a lower release rate constant and D value.

The preparation pH of the PPN-MAS complexes did not obviously affect the PPN release. These results were similar to a previous report using complexes of nicotine and MAS (Pongjanyakul et al., 2009). This is likely due to the similar mechanism of complex formation at the different pHs, which was hydrogen bonding, water bridging, and the cation exchange process, which led to the similar PPN release profiles in acidic medium and pH 6.8 phosphate buffer. However, the use of 0.1N HCl showed increase PPN release than pH 6.8 phosphate buffer, even though the cation concentration of 0.1N HCl (100 mequiv./l) was not different from that of pH 6.8 phosphate buffer (99.7 mequiv./l). Therefore, the factors affecting the release of PPN were both the type of cation and pH of the medium. Generally, hydrogen ions (28 pm) have smaller ionic radii than sodium ions (161 pm) (Heyrovska, 2009). This leads to faster diffusion into the particles of the complexes. Moreover, MAS has high affinity for hydrogen ions in the acidic medium because it had a lower zeta potential in this condition when compared with the neutral pH medium (Suksri and Pongjanyakul, 2008). Taken together, these reasons explain why faster release of PPN in the acidic medium was observed. Furthermore, it was observed that the PPN released at 7 h in the acidic medium was higher than that in pH 6.8 phosphate buffer (Figs. 9 and 10), indicating that the smaller size of hydrogen ions could diffuse deep into the inside of the particles of the complexes for the cation exchange process.

The particle size of the complexes is one of the important factors influencing drug release. It was found that the larger the particle size of the complexes, the lower the initial burst release (drug released at 2 min). This was due to decreased specific surface area of the large size particles. Higher release rate constants and D values were obtained from the large size particles. This can potentially be explained by the higher remaining of PPN content in the larger size complexes compared to the smaller size complexes after the initial burst release, leading to a higher concentration gradient of PPN in the large size complexes. This brought about faster drug release, which increased the calculated D values. Furthermore, increasing drug loading from 14% (w/w) to 20% (w/w) of the complexes prepared at pH 7 (medium size) caused an increase in drug released at 2 min and release rate constant (Table 3). The higher PPN content in the complexes provided a reduction of the relative amount of diffusional barrier material in the complexes. Moreover, the higher drug loading also created a larger drug concentration gradient in the complexes when exposed to the release medium. The higher the concentration gradient, the faster the mass transfer, resulting in the increased drug release rate constant and D values obtained

The PPN–MAS complexes provided a slow release of PPN after the burst release in acidic medium within 7 h of the test, during which equilibrium of drug release was not reached. Moreover, the PPN release at 7 h was more than 89% for 0.1N HCl and 74% for pH 6.8 phosphate buffer. Park et al. (2008) reported that

donepezil-montmorillonite complexes have a 12% drug release at 180 min in simulated human gastric medium supplemented with a cationic polymer to enhance drug release. It is possible that because PPN has a lower molecular weight than donepezil, this led to an increased rate of diffusion of PPN in aqueous channels of the particle matrix. The low amount of drug released using the larger donepezil molecule could be due to a very slow diffusion of drug that was adsorbed and intercalated in the inside of the particles of the complexes. Additionally, the PPN–MAS complexes showed a faster drug release rate than the nicotine–MAS complexes in the same range of particle size, which used the same preparation method (Pongjanyakul et al., 2009). Smaller nicotine molecules contain two protonated amino groups that possibly have very high affinity for MAS. This led to the slower rate of release of nicotine when compared with PPN. This suggests that the drug release behavior of drug-clay complexes is also dependent upon the properties of the intercalated drug such as its molecular weight and chemical structure.

#### 4. Conclusions

The study presented herein demonstrated that the interaction of PPN and MAS caused a flocculation in the composite dispersion at various pHs, resulting in a change of particle size and zeta potential of MAS and a different amount of PPN adsorbed onto MAS. The complexation between PPN and MAS was created via cation exchange, hydrogen bonding and water bridging mechanisms, which led to the intercalation of PPN molecules into the MAS silicate layers. The PPN-MAS complexes provided a sustained-release of PPN after an initial burst release, and the PPN release kinetics were described using the particle diffusion controlled model. The preparation pH did not influence the release of PPN; the important factors affecting drug release were particle size, percent of drug loading of the complexes and the type of release medium. This study suggests that these PPN-MAS complexes have a strong potential to be employed as drug carriers in oral modified-release dosage forms. Further work to evaluate the drug release of polymer matrix tablets containing PPN-MAS complexes is currently ongoing.

# Acknowledgments

The authors would like to thank the Thailand Research Fund (Bangkok, Thailand) for research funding (Grant no. RSA5280013). We are very pleased to acknowledge the Center for Research and Development of Herbal Health Products and the Faculty of Pharmaceutical Sciences, Khon Kaen University (Khon Kaen, Thailand), for technical support.

#### References

Aguzzi, C., Cerezo, P., Viseras, C., Caramella, C., 2007. Use of clays as drug delivery systems: possibilities and limitations. Appl. Clay Sci. 36, 22–36.

Alexandre, M., Dubois, P., 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63.

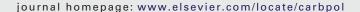
Benna, M., Kbir-Ariguib, N., Magnin, A., Bergaya, F., 1999. Effect of pH on rheological properties of purified sodium bentonite suspensions. J. Colloid Interface Sci. 218, 442–455.

Bhaskar, R., Murthy, R.S.R., Miglani, B.D., Viswanathan, K., 1986. Novel method to evaluate diffusion controlled release of drug from resinate. Int. J. Pharm. 28, 59–66

Dollery, S.C., 1991. Therapeutic Drugs. Churchill Livingstone, Edinburgh, pp. P272–P278.

Gates, W.P., Komadel, P., Madejová, J., Bujdák, J., Stucki, J.W., Kirkpatrick, R.J., 2000. Electronic and structural properties of reduced-charge montmorillonite. Appl. Clay Sci. 16, 257–271.

Gil, E.C., Colarte, A.I., Bataille, B., Pedraz, J.L., Rodríguez, F., Heinämäki, J., 2006. Development and optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride. Int. J. Pharm. 317, 32–39.


- Gupta, M.K., Vanwert, A., Bogner, R.H., 2003. Formation of physical stable amorphous drugs by milling with Neusilin. J. Pharm. Sci. 92, 536–551.
- Heyrovska, R., 2009. Golden sections of inter-atomic distances as exact ionic radii of atoms. Nature Precedings (http://hdl.handle.net/10101/npre.2009.2929.1).
- Hoch, M., Bandara, A., 2005. Determination of the adsorption process of tributyltin (TBT) and monobutyltin (MBT) onto kaolinite surface using Fourier transform infrared (FTIR) spectroscopy. Colloids Surf. A 253, 117-124.
- Joshi, G.V., Kevadiya, B.D., Patel, H.A., Bajaj, H.C., Jasra, R.V., 2009. Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int. I. Pharm. 374, 53-57.
- Kibbe, H.A., 2000. Handbook of Pharmaceutical Excipients, 3rd ed. American Pharmaceutical Association, Washington, pp. 295–298. Martin, A., 1993. Physical Pharmacy, 4th edition. Lea&Febiger, Philadelphia, pp.
- 251-283.
- McGinity, J.W., Lach, J.L., 1977. Sustained-release application of montmorillonite interaction with amphetamine sulfate. J. Pharm. Sci. 66, 63-66.
- Murray, H.H., 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl. Clay Sci. 17, 207–221.
- Ni, Z., Xing, F., Wang, P., Cao, G., 2008. Synthesis, characterization and release of curcumin-intercalated Mg-Al-layered double hydroxides. Appl. Clay Sci. 40,
- Nunes, C.D., Vaz, P.D., Fernandes, A.C., Ferreira, P., Romão, C.C., Calhorda, M.J., 2007. Loading and delivery of sertraline using inorganic micro and mesoporous materials. Eur. J. Pharm. Biopharm. 66, 357–365.
- Paker-Leggs, S., Neau, S.H., 2009. Pellet characteristics and drug release when the form of propranolol is fixed as moles or mass in formulations for extruded and spheronized Carbopol-containing pellets. Int. J. Pharm. 369, 96-104.

- Park, J.K., Choy, Y.B., Oh, J., Kim, J.Y., Hwang, S., Choy, J., 2008. Controlled release of donepezil intercalated in smectite clays. Int. J. Pharm. 359, 198-
- Pongjanyakul, T., Khunawattanakul, W., Puttipipatkhachorn, S., 2009. Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. Appl. Clay Sci. 44, 242-250.
- Sahoo, J., Murthy, P.N., Biswal, S., Sahoo, S.K., Mahapatra, A.K., 2008. Comparative study of propranolol hydrochloride release from matrix tablets with Kollidon®SR or hydroxy propyl methyl cellulose. AAPS Pharm. Sci. Technol. 9, 577-582
- chez-Martin, M.J., Sánchez-Camazano, M., Vicente-Hernández, M.T., Dominguez-Gil, A., 1981. Interaction of propranolol hydrochloride with Sánchez-Martin. montmorillonite. J. Pharm. Pharmacol. 33, 408–410.
- Sinha Ray, S., Yamada, K., Okamoto, M., Ogami, A., Ueda, K., 2003. New polylactide/layered silicate nanocomposites: 3. High performance biodegradable materials. Chem. Mater. 15, 1456-1465.
- Suksri, H., Pongjanyakul, T., 2008. Interaction of nicotine with magnesium aluminum silicate at different pHs: characterization of flocculate size, zeta potential and nicotine adsorption behavior. Colloids Surf. B. 65, 54-60.
- Trikeriotis, M., Ghanotakis, D.F., 2007. Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Int. J. Pharm. 332, 176-184.
- Velde, B., 1992. Introduction to Clay Minerals. Chapman & Hall, London, pp. 12-36.
- Viseras, C., Aguzzi, C., Cerezo, P., Lopez-Galindo, A., 2007, Uses of clay minerals in semisolid health care and therapeutic products. Appl. Clay Sci. 36, 37-



Contents lists available at ScienceDirect

# Carbohydrate Polymers





# Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug-clay intercalated complexes as microreservoirs

Thaned Pongjanyakul\*, Thitiphorn Rongthong

Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittraphap Road, Khon Kaen 40002, Thailand

#### ARTICLE INFO

Article history:
Received 28 January 2010
Received in revised form 16 February 2010
Accepted 22 February 2010
Available online 6 March 2010

Keywords: Alginate bead Propranolol Magnesium aluminum silicate Complexes Drug entrapment efficiency Drug release

#### ABSTRACT

Calcium alginate (CA) beads loaded with intercalated complexes of propranolol HCl (PPN) and magnesium aluminum silicate (MAS), which serve as microreservoirs, were prepared using an ionotropic gelation method. The surface and matrix morphology, drug entrapment efficiency, thermal behavior, mechanical properties, and PPN release of the CA beads were characterized. The results showed that the molecular interaction of MAS with PPN and sodium alginate (SA) resulted in PPN-MAS intercalated complex particles as microservoirs and denser matrix structure formation in the CA beads. The small particles of the PPN-MAS complexes were embedded on the surface and in the matrix of the CA beads, which was revealed using SEM and EDX. The PPN entrapment efficiency of the PPN-MAS complex-loaded CA beads was significantly higher than that of the PPN-loaded CA beads. Increased MAS content caused an increase in PPN entrapment efficiency, thermal stability, and the strength of the CA beads. Moreover, the PPN-MAS complexes in the CA beads could remarkably reduce the initial burst of PPN release as well as its release rate in both 0.1 M HCl and phosphate buffer at pH 6.8, depending on the MAS content added. Additionally, the PPN-MAS complex-loaded CA beads also produced a sustained release pattern of PPN in simulated gastro-intestinal conditions. In conclusion, the CA beads containing drug-clay intercalated complexes as microreservoirs could enhance drug entrapment efficiency, reduce initial burst release and modulate drug release. Furthermore, these beads represent a promising oral drug delivery system for highly water-soluble cationic drugs.

© 2010 Elsevier Ltd. All rights reserved.

# 1. Introduction

In oral drug delivery systems, the dosing of drugs in multipleunits has been found to have advantages over single-unit dosage forms (Bechgaard & Nielsen, 1978). Multiple-unit dosage forms are often composed of numerous particles that are contained in a tablet or a capsule. The small particles are mixed with the contents of the gastro-intestinal (GI) tract and are distributed over a large area. Therefore, high local concentrations of the drug are avoided, and the risk of local irritations is reduced. Additionally, multiple-units are less variable and less dependent on gastric transit time, which results in a reproducible bioavailability of the drug.

Small beads have been used as drug carriers to prepare oral multiple-unit capsules intended for sustained release dosage forms (Takada & Yoshikawa, 1999). These beads can be prepared using an ionotropic gelation method, where polysaccharides are crosslinked to form an insoluble gel bead. Sodium alginate (SA), which is a naturally occurring non-toxic polysaccharide found in marine brown algae, is one of the polysaccharides employed to fabricate

small beads. Gelation of SA occurs when uronic acids ( $\alpha$ -L-guluronic and β-D-mannuronic acids) are cross-linked with divalent cations, such as calcium ions (Draget, 2000). Gelation occurs when the extended chain sequences of these acids adopt a regular twofold conformation and dimerize by chelating calcium, forming the socalled 'egg-box' structure (Grant, Morris, Rees, Smith, & Thom, 1973). Each calcium ion takes part in nine coordination bonds with each oxygen atom, resulting in a three-dimensional network of calcium alginate (CA). This phenomenon has been applied to the preparation of CA beads for use as a drug delivery system, by dropping the drug-containing SA dispersion into a calcium chloride bath (Østberg, Lund, & Graffner, 1994; Sugawara, Imai, & Otagiri, 1994). The CA beads could protect an acid-sensitive drug from gastric juice, and the drug was consequently released from the beads in the intestine (Fernández-Hervás, Holgado, Fini, & Fell, 1998; Hwang, Rhee, Lee, Oh, & Kim, 1995).

A low entrapment efficiency of water-soluble drugs in the CA beads is a problem for developing CA beads as a drug delivery system (Lee, Min, & Cui, 1999). This is largely due to the leakage of drug molecules from the wet beads during the cross-linking process. To solve this problem, the incorporation of water-soluble polymers, such as chondroitin sulfate (Murata, Miyamoto, & Kawashima, 1996), konjac glucomannan (Wang & He, 2002), gelatin (Almeida

<sup>\*</sup> Corresponding author. Tel.: +66 43 362092; fax: +66 43 202379. E-mail address: thaned@kku.ac.th (T. Pongjanyakul).

& Almeida, 2004), sodium starch glycolate (Puttipipatkhachorn, Pongjanyakul, & Priprem, 2005), and xanthan gum (Pongjanyakul & Puttipipatkhachorn, 2007a), have been used to improve drug entrapment efficiency by reinforcing CA beads due to complex formation of SA with such water-soluble polymers. An alternative approach involves the use of water insoluble materials for reinforcement of the CA beads. Due to the formation of a complex between the carboxyl groups of SA and the amino groups of chitin, water insoluble chitin has previously been added to the beads to retard drug release (Murata, Tsumoto, Kofuji, & Kawashima, 2003). Furthermore, complexes formed between an amine drug and a synthetic cation exchange resin have been applied as a drug carrier in the CA beads (Halder, Maiti, & Sa, 2005).

Magnesium aluminum silicate (MAS) is a mixture of natural smectite clays, specifically montmorillonite and saponite (Kibbe, 2000; Viseras, Aguzzi, Cerezo, & Lopez-Galindo, 2007). MAS has a layered silicate structure, and the surface of the silicate layer contains numerous silanol groups (SiOH), which are able to form hydrogen bonds with other substances (Gupta, Vanwert, & Bogner, 2003). The separation of the layered structures occurs when these clays are hydrated in water, and the weakly positively charged edges and the negatively charged faces of MAS are presented. Due to the interaction of the silanol groups of MAS with the carboxyl groups of SA, MAS has been used to improve the physical properties of CA beads (Puttipipatkhachorn et al., 2005). Recently, MAS was used as an adsorbent for amine drugs to form drug-MAS complexes. A simultaneous formation of small particle drug-MAS complexes occurred when a MAS dispersion and a drug solution were mixed, due to electrostatic interactions between these materials (Rojtanatanya & Pongjanyakul, 2010; Suksri & Pongjanyakul, 2008). Thus, the drug-MAS complexes obtained provided a sustained release pattern of the drug (Pongjanyakul, Khunawattanakul, & Puttipipatkhachorn, 2009; Rojtanatanya & Pongjanyakul, 2010). Therefore, it is possible that the drug-MAS complexes can be added to a SA dispersion before the cross-linking process to prepare CA beads that contain drug-MAS complexes, which serve as drug microreservoirs. The resulting complexes may enhance drug entrapment efficiency and modulate drug release.

Propranolol HCl (PPN), a secondary amine compound with high water solubility, was the first β-adrenoceptor-blocking drug to achieve wide therapeutic use for the treatment of angina and hypertension (Dollery, 1991). Due to the short half-life of PPN (3.9h) (Dollery, 1991), PPN has been selected as a drug candidate for developing multiple-unit sustained release dosage forms (Paker-Leggs & Neau, 2009). Moreover, PPN has previously been reported to form small particle complexes with MAS (Rojtanatanya & Pongjanyakul, 2010). Therefore, the aim of this study was to prepare and investigate CA beads loaded with PPN-MAS complexes that serve as microreservoirs. The SA dispersions containing PPN-MAS complexes formed with different MAS concentrations were prepared and characterized according to particle size, zeta potential, and the amount of PPN adsorbed prior to cross-linking using different concentrations of calcium chloride. The surface and matrix morphology of the PPN-MAS complex-loaded CA beads were investigated using a scanning electron microscopy and energy dispersive X-ray analysis. Moreover, PPN entrapment efficiency, thermal behavior, mechanical properties, and PPN release of the beads were examined.

#### 2. Materials and methods

#### 2.1. Materials

MAS (Veegum®HV, Lot No. V-GHV-5H-367) and PPN (Batch No. M080115) were purchased from the R.T. Vanderbilt Company,

Inc. (Norwalk, CT, USA) and Changzhou Yabang Pharmaceutical Co., Ltd. (Jiangsu, China), respectively. SA (Manugel®DMF, Batch No. 991131) was obtained from ISP Thailand Ltd. (Bangkok, Thailand). All other reagents used were of analytical grade and used as received.

#### 2.2. Preparation of PPN-MAS complex dispersions

A 4% (w/v) MAS suspension was prepared using hot water and cooled to room temperature prior to use. Next, the 4% (w/v) MAS suspension in 4.7, 9.4 or 18.8-ml volumes were mixed with 25 ml of the 1% w/v PPN deionized water solution in a beaker, and then the PPN–MAS dispersions were adjusted to a final volume of 50 ml to yield MAS concentrations of 0.38, 0.75, or 1.5% (w/v), respectively. The pH of all dispersions was approximately 7.6, which was measured using a pH meter (Ion Analyzer 250, Corning, USA). Next, the dispersions were incubated at 25 °C for 24 h to allow PPN adsorption onto the MAS particles to equilibrate and obtain complete formation of the PPN–MAS complexes. The PPN–MAS complex dispersions were investigated as described in Section 2.4.

#### 2.3. Preparation of SA dispersions with PPN-MAS complexes

SA (0.75 g) was gently added to the PPN–MAS complex dispersions, which had been incubated at  $25\,^{\circ}\text{C}$  for 24 h. The SA dispersions with PPN–MAS complexes were incubated again at  $25\,^{\circ}\text{C}$  for 24 h. Then, the dispersions obtained were characterized and used to prepare the CA beads.

#### 2.4. Characterization of PPN-MAS complex dispersions

#### 2.4.1. Microscopic morphology studies

The morphology of the PPN–MAS complexes in the dispersions was investigated using an inverted microscope (Eclipse TS100, Nikon, Japan) and imaged using a digital camera (Coolpix 4500, Nikon, Japan).

#### 2.4.2. Particle size determination

The sizes of the MAS particles and the PPN–MAS complexes in the dispersions were measured using a laser diffraction particle size analyzer (Mastersizer2000 Model Hydro2000SM, Malvern Instrument Ltd., UK). The samples were dispersed in 70 ml of deionized water in a small volume sample dispersion unit and stirred at a rate of 50 Hz for 30 s prior to measurement. The particle sizes in terms of volume weighted mean diameter were then recorded.

#### 2.4.3. Zeta potential measurement

The zeta potential of the MAS particles and the PPN–MAS complexes in the dispersions were measured using a laser Doppler electrophoresis analyzer (Zetasizer Model ZEN 2600, Malvern Instrument Ltd., UK). The samples were kept at 25  $^{\circ}$ C, and the dispersions were diluted using deionized water to obtain the appropriate concentrations (count rates >20,000 counts per second) prior to measurement.

#### 2.4.4. Determination of PPN adsorbed onto MAS

The clear supernatants of the dispersions were collected, diluted with deionized water, and then filtered through a 0.45- $\mu m$  cellulose acetate membrane. The amount of PPN in the supernatants was analyzed using an UV-vis spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 289 nm. The amount of PPN adsorbed onto the MAS was calculated as the difference between the amount of PPN added and the amount of PPN in the supernatant.

#### 2.4.5. Rheological studies of composite dispersions

Rheological properties and viscosity of the dispersions were studied using a small sample adapter of a Brookfield Digital Rheometer (Model DV-III, Brookfield Engineering Labs Inc., Stoughton, MA) at  $32\pm1\,^{\circ}$ C. A rheogram of the samples was obtained by plotting the shear rate and the shear stress from various revolution rates when a spindle (no. 34) was used. To characterize the type of flow of the samples, the following exponential formula was used (Martin, 1993):

$$F^N = \eta G \tag{1}$$

$$Log G = N Log F - Log \eta \tag{2}$$

where G, F, N and  $\eta$  are shear rate, shear stress, exponential constant that defines the type of flow, and viscosity coefficient, respectively. The N value is approximately unity, indicating Newtonian flow, whereas increasing of the N value more than unity represents pseudoplastic flow of the dispersions.

#### 2.5. Preparation of beads

PPN–MAS complex-loaded CA beads were prepared by dropping the SA dispersions containing PPN–MAS complexes that were prepared in Section 2.3 through a nozzle (1.2 mm inner diameter) into 0.5, 1.0, or 2.0% (w/v) calcium chloride solution (80 ml) with gentle agitation. The gel beads were cured in this solution for 30 min, washed 2 times with 20 ml of deionized water, blotted to remove excess water, and dried at 50 °C for 24 h. To prepare blank beads and PPN-loaded CA beads, the 1.5% SA dispersions without and with 0.5% PPN, respectively, were prepared, and bead preparation proceeded as described above.

# 2.6. Characterization of beads

#### 2.6.1. Particle size analysis

The particle size of the beads was determined using an optical microscope (Nikon, Japan). One hundred beads were randomly selected, and their Feret diameters were measured.

## 2.6.2. Determination of drug entrapment efficiency

The beads were ground using a mortar and pestle, and 100 mg of the ground beads was dispersed in 50 ml of 2 M HCl. The mixture was sonicated for 30 min and incubated at 37 °C for 24 h. The solution was then filtered, and the PPN content was assayed using an UV–vis spectrophotometer (Shimadzu UV1201, Kyoto, Japan) at a wavelength of 289 nm. The entrapment efficiency was calculated according to the ratio of actual to the theoretical drug content in the beads (Wang & He, 2002).

# 2.6.3. Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis

The surface and matrix morphology of the beads were observed using scanning electron microscopy (SEM). The samples were mounted onto stubs, which were then sputter coated with gold in a vacuum evaporator and photographed using a scanning electron microscope (Jeol Model JSM-6400, Tokyo, Japan). Additionally, the surface chemical analysis of the samples was investigated by EDX analysis (Link ISIS series 300, Oxford Instruments, England). The characteristic X-rays emitted and elemental information of the samples were recorded.

# 2.6.4. Differential scanning calorimetry (DSC)

DSC thermograms of the samples were recorded using a differential scanning calorimeter (DSC822, Mettler Toledo, Switzerland). Each sample (2.0-2.5 mg) was accurately weighed into a  $40-\mu l$  alu-

minum pan without a cover. The measurements were performed over  $30-450\,^{\circ}\text{C}$ , heating at a rate of  $10\,^{\circ}\text{C}$  min<sup>-1</sup>.

#### 2.6.5. Fourier transform infrared (FTIR) spectroscopy

FTIR spectra of the samples in KBr discs were recorded with a FTIR spectrophotometer (Spectrum One, Perkin Elmer, Norwalk, CT). Each sample was gently triturated with KBr powder at a weight ratio of 1:100 and then compacted into a disc using a hydrostatic press at 10 tons for 5 min. The disc was placed in the sample holder and scanned from 4000 to  $450\,\mathrm{cm}^{-1}$  at a resolution of  $4\,\mathrm{cm}^{-1}$ .

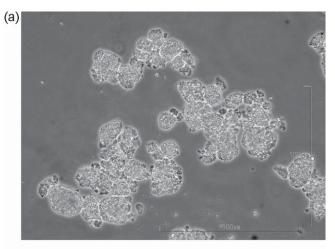
#### 2.6.6. Mechanical property of beads

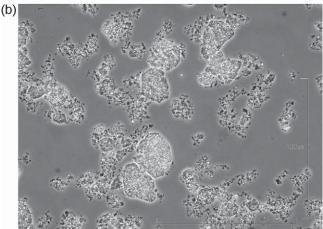
The method for determining the mechanical property of the beads was modified from a previous reported by Edwards-Lévy and Lévy (1999). Analysis of the mechanical property of the beads was carried out using a texture analyzer (TA.XT plus, Stable Micro Systems, UK) with a 50-kg load cell equipped with a cylindrical probe of 6 mm in diameter. One bead was placed on the platform at room temperature. The probe was positioned to touch the bead, recorded as the initial position, and then the probe flattened the bead at a constant speed of 1.0 mm s<sup>-1</sup>. The probe was removed when the bead was reduced to 50% of its original height. The force and percent displacement was plotted, and the maximum force at 50% displacement, which represents the strength of the beads, was reported.

#### 2.6.7. In vitro drug release studies

A USP dissolution apparatus I (Hanson Research, Northridge, CA) was used to characterize the release of PPN from the beads. The baskets were rotated at a rate of  $50\,\mathrm{rev}$ .  $\mathrm{min}^{-1}$  at  $37.0\pm0.5\,^{\circ}\mathrm{C}$ . The amount of beads added to  $500\,\mathrm{ml}$  dissolution medium was equivalent to  $20\,\mathrm{mg}$  of PPN. The dissolution media used were  $0.1\,\mathrm{M}$  HCl and pH 6.8 phosphate buffer. The simulated gastro-intestinal conditions used to measure drug release were performed using  $0.1\,\mathrm{M}$  HCl ( $500\,\mathrm{ml}$ ) for  $2\,\mathrm{h}$ , followed by pH 6.8 phosphate buffer ( $500\,\mathrm{ml}$ ). Samples ( $20\,\mathrm{ml}$ ) were collected and replaced with fresh media at various time intervals. The amount of PPN released was analyzed spectrophotometrically at  $289\,\mathrm{nm}$  (Shimadzu UV1201, Japan).

The PPN release kinetics from the CA beads in various dissolution media were investigated by fitting the PPN release data into zero order and Higuchi's models, which can be expressed using the following equation:


$$Q = kt^n \tag{3}$$


Here, Q is the percentage of drug released at a given time (t), k is the release rate and n is the diffusion exponent. The n value could be defined as 0.5 and 1, which indicated the Higuchi's and zero order equation, respectively (Costa & Lobo, 2001). The release rate was estimated by fitting the experimental drug release data into both models and analyzed by linear regression analysis.

# 3. Results and discussion

#### 3.1. Characteristics of PPN-MAS complexes

The PPN solution was mixed with different concentrations of MAS to form the flocculates or complexes, as shown in Fig. 1a. This phenomenon occurred due to the molecular interaction between the negatively charged MAS and cationic PPN (Rojtanatanya & Pongjanyakul, 2010). The characteristics of the PPN–MAS complex dispersions are presented in Table 1. The MAS particle size was  $4.81\pm0.17~\mu m$ , whereas the mean particle sizes of the PPN–MAS complexes ranged from 65.9 to 75.9  $\mu m$ . The zeta potential of the negatively charged complexes and the percentage of PPN adsorbed onto MAS increased with increasing MAS concentration. This was

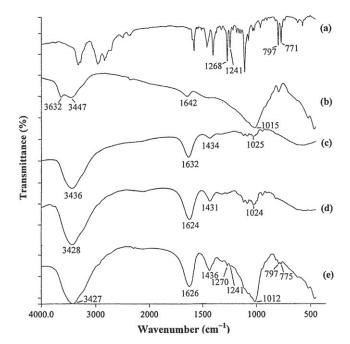




**Fig. 1.** Microscopic morphology of PPN–MAS complexes in distilled water without (a) and with 1.5% (w/v) SA (b).

because a fixed concentration of PPN was used in the dispersions and the increased MAS provided additional negative charges and higher adsorption sites for PPN. The incorporation of SA into the PPN–MAS dispersions resulted in PPN–MAS complexes with smaller particle sizes and a higher percentage of PPN adsorbed onto the MAS (Table 1). An explanation for the smaller particle sizes is shown in Fig. 1b. Specifically, the PPN–MAS complexes were broken into smaller particles because the negative charge of SA could interact molecularly not only with MAS (Pongjanyakul & Puttipipatkhachorn, 2007b) but also with the positive charge of PPN. However, the smaller particle sizes of the PPN–MAS complexes possessed a larger surface area for PPN adsorption, and therefore a higher percent of PPN was adsorbed.

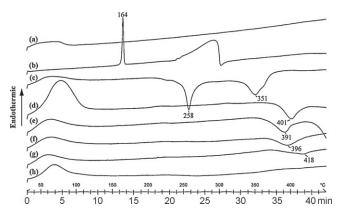
The rheology of the 1.5% SA dispersion was Newtonian, with an N value close to 1 (Table 1). The presence of PPN in the SA dispersion increased the viscosity coefficient. This is likely due to the partially electrostatic interaction of the negatively charged SA with the cationic drug (Bertram & Bodmeier, 2006). The presence of MAS in the dispersions seemed to increase the N value and the viscosity coefficient of the dispersions. The PPN-1.5% MAS dispersion with SA had the highest N value and viscosity coefficient, indicating that the interaction between MAS and SA could change the rheological behavior from Newtonian to pseudoplastic flow and could increase the viscosity of the dispersion in a manner similar to previous studies (Pongjanyakul & Puttipipatkhachorn, 2007b). This finding suggested that the formation of the PPN-MAS complexes and the increase in viscosity of the dispersions might affect the cross-linking process of the alginate beads in the calcium chloride solution.


#### 3.2. FTIR studies

The molecular interactions of SA, PPN and MAS in the CA beads were investigated using FTIR spectroscopy. FTIR spectra of SA powder showed peaks around 3435, 1615, 1418, and 1031 cm<sup>-1</sup>, reflective of O-H, COO<sup>-</sup> (asymmetric), COO<sup>-</sup> (symmetric), and C-O-C stretching, respectively (Pongjanyakul & Puttipipatkhachorn, 2007a). The cross-linking process of SA with calcium caused an obvious shift to higher wave numbers and a decrease in the intensity of COO<sup>-</sup> stretching peaks. Additionally, a change to lower wave numbers and a decrease in the intensity of the C-O-C stretching peak of SA was observed (Fig. 2c). This indicated the presence of an ionic bond between the calcium ion and the carboxyl groups of SA and partial covalent bonding between the calcium and oxygen atoms of the ether groups, and it is in agreement with previous studies (Sartori, Finch, & Ralph, 1997). The PPN-loaded CA beads caused a shift in the O-H, COO- (asymmetric), and COO- (symmetric) stretching peaks to lower wave numbers, suggesting that a molecular interaction between SA and PPN was formed due to hydrogen bonding and electrostatic force. Furthermore, these results suggest that this interaction occurred before the cross-linking process, which is in agreement with a previous study (Lim & Wan, 1997). This finding can account for the changes in the rheological properties of the SA dispersion with PPN. The addition of MAS in the PPN-loaded CA beads caused a change in the carboxylate peaks of SA. The Si-O-Si stretching peak of MAS at  $1015\,\text{cm}^{-1}$  (Fig. 2b) became narrower and moved to a lower wave number (Fig. 2e), suggesting that MAS could interact with SA and PPN in the beads. Moreover, the PPN peaks at 775, 797, 1241 and  $1270\,\text{cm}^{-1}$  were found in the spectra of the PPN-1.5% MAS complex-loaded CA beads and were not observed in the spectra of PPN-loaded CA beads. These results suggested that the PPN-MAS complex-loaded CA beads might have a higher PPN entrapment efficiency.

**Table 1**Characteristics of PPN–MAS complexes and SA dispersions with PPN–MAS complexes.

| characteristics of the state of any enspections with the completies |                                                                                              |                                        |                                                                                  |                                                                                                                     |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Particle size (µm)                                                  | Zeta potential (mV)                                                                          | PPN adsorbed (%)                       | N                                                                                | Viscosity coefficient ([dyne cm $^{-2}$ ] $^N$ s)                                                                   |  |  |
| 0.5% PPN-MAS dispersion                                             |                                                                                              |                                        |                                                                                  |                                                                                                                     |  |  |
| $75.9 \pm 2.3$                                                      | $-6.2 \pm 0.5$                                                                               | $15.0 \pm 1.6$                         | -                                                                                | -                                                                                                                   |  |  |
| $65.9 \pm 2.6$                                                      | $-18.5 \pm 2.6$                                                                              | $34.5 \pm 0.6$                         | -                                                                                | -                                                                                                                   |  |  |
| $66.1 \pm 1.5$                                                      | $-26.2\pm1.4$                                                                                | $69.9\pm0.4$                           | -                                                                                | -                                                                                                                   |  |  |
| -                                                                   | _                                                                                            | -                                      | $0.98\pm0.01$                                                                    | $5.23\pm0.22$                                                                                                       |  |  |
| _                                                                   | _                                                                                            | _                                      | $1.04\pm0.01$                                                                    | $8.23 \pm 0.29$                                                                                                     |  |  |
|                                                                     |                                                                                              |                                        |                                                                                  |                                                                                                                     |  |  |
| $15.6 \pm 0.3$                                                      | $-77.2 \pm 2.9$                                                                              | $27.9 \pm 3.2$                         | $1.06 \pm 0.01$                                                                  | $11.64 \pm 0.38$                                                                                                    |  |  |
| $23.9 \pm 0.5$                                                      | $-90.1 \pm 2.4$                                                                              | $47.3 \pm 0.4$                         | $1.06\pm0.02$                                                                    | $11.35 \pm 1.07$                                                                                                    |  |  |
| $54.7 \pm 1.2$                                                      | $-93.6 \pm 2.9$                                                                              | $77.4\pm0.3$                           | $1.87\pm0.11$                                                                    | $1,733.8 \pm 795.4$                                                                                                 |  |  |
|                                                                     | Particle size ( $\mu$ m)  ion  75.9 ± 2.3  65.9 ± 2.6  66.1 ± 1.5  -  15.6 ± 0.3  23.9 ± 0.5 | Particle size (μm) Zeta potential (mV) | Particle size ( $\mu$ m) Zeta potential (mV) PPN adsorbed (%) ion 75.9 $\pm$ 2.3 | Particle size ( $\mu$ m) Zeta potential (mV) PPN adsorbed (%) N $ \begin{array}{cccccccccccccccccccccccccccccccccc$ |  |  |


Data are the mean  $\pm$  S.D., n = 3.



**Fig. 2.** FTIR spectra of PPN powder (a), MAS powder (b), blank CA beads (c), PPN-loaded CA beads (d), and PPN-1.5% MAS complex-loaded CA beads (e).

#### 3.3. Thermal behavior

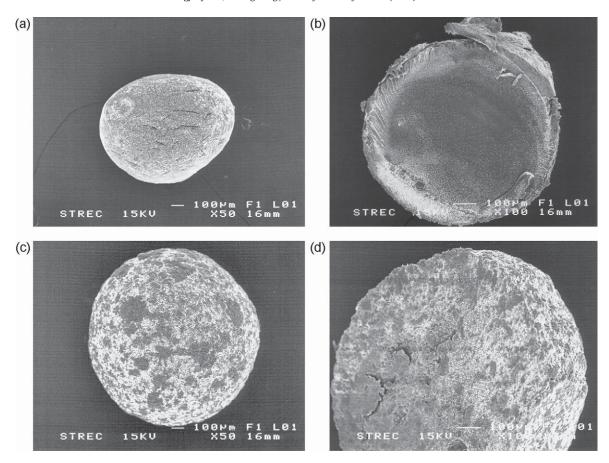
The thermal behavior of the CA beads was characterized using DSC, as shown in Fig. 3. SA powder presented two decomposition peaks at 258 and 351 °C (Fig. 3c). The blank CA beads presented a broad endothermic peak at 70°C, and the exothermic peak of SA at 258 °C was absent (Fig. 3d). However, the second exothermic peak of the CA beads moved to a higher temperature (401 °C), indicating that the interaction of SA and calcium could enhance the thermal stability of SA. The interaction of PPN and SA caused a decrease in the thermal stability of the CA beads, evidenced by the shift of the exothermic peak to a lower temperature (Fig. 3e). The presence of MAS in the PPN-loaded CA beads caused an increase in the exothermic peak temperature (Fig. 3f and 3g). Moreover, an increasing MAS content lowered the intensity of the exothermic peak, and this peak was absent when 1.5% MAS was used (Fig. 3f-h). These data suggested that MAS could improve the thermal stability of the CA beads. Additionally, the DSC thermograms of the PPN- and PPN-MAS complex-loaded CA beads did not contain the melting peak of PPN at 164°C (Fig. 3b), suggesting that PPN was



**Fig. 3.** FTIR spectra of MAS powder (a), PPN powder (b), SA powder (c), blank CA beads (d), PPN-loaded CA beads (e), and CA beads containing PPN-MAS complexes prepared using 0.38 (f), 0.75 (g), and 1.5 (h) % MAS.

molecularly dispersed in the MAS silicate layers and the CA bead matrix.

#### 3.4. Particle size and morphology


The mean particle size of all the beads prepared ranged from 1.07 to 1.28 mm and tended to increase with increasing content of MAS. The CA beads were spherical and are shown in the SEM photographs in Fig. 4. The PPN-loaded CA beads showed small white crystals throughout their surface and internal matrix (Fig. 4a and b, respectively). In contrast, many dark circle regions on the surface and in the matrix structure were observed in the PPN-1.5% MAS complex-loaded CA beads (Fig. 4c and d, respectively). EDX analysis was used to identify the main element of the dark circle regions in these beads. The results revealed that this region showed an element pattern of Mg, Al, and Si (Fig. 5b), which was obviously different than the pattern on the outside of this region (Fig. 5a). This finding indicated that the dark regions on the surface and in the matrix structure of the beads represented the PPN-MAS complexes. Furthermore, this finding suggested that the PPN-MAS complex-loaded CA beads were successfully prepared and the complexes, which were embedded in the beads, could possibly act as drug microreservoirs.

The presentation model of the PPN–MAS complex-loaded CA beads is illustrated in Fig. 6. The CA beads consisted of the PPN–MAS complex particles and the PPN molecules dispersed in the matrix. MAS has a layered structure that is constructed from tetrahedrally coordinated silica atoms fused into an edge-shared octahedral plane of either aluminum hydroxide or magnesium hydroxide. The PPN–MAS complexes were formed via cation exchange, hydrogen bonding, and water bridging interactions, allowing the PPN molecules to intercalate into the MAS silicate layers (Rojtanatanya & Pongjanyakul, 2010). Hence, this system is referred to as PPN–MAS intercalated complex-loaded CA beads.

# 3.5. Drug entrapment efficiency

The effect of the concentration of MAS on the ability of beads prepared using 2% calcium chloride to efficiency entrap PPN is shown in Fig. 7a. The drug entrapment efficiency of the beads significantly increased with increasing amounts of MAS. This observation indicated that the PPN–MAS complexes formed in the dispersion prior to cross-linking could enhance the drug entrapment efficiency of the beads. Increasing the concentration of MAS in the dispersions increased the amount of PPN adsorbed onto the MAS, resulting in higher drug entrapment efficiency. Moreover, the interaction of MAS with SA increased the barrier preventing water from leaking from the beads during the preparation period (Puttipipatkhachorn et al., 2005). This also could account for the reduction of drug lost from the beads.

The PPN entrapment efficiency was also affected when beads were formed with different concentrations of calcium chloride. Increases in calcium chloride concentration resulted in decreased drug entrapment efficiency of the PPN-loaded and the PPN-1.5% MAS complex-loaded CA beads (Fig. 7b). It is possible that enhanced bead shrinkage occurred during gelation under conditions with higher concentrations of calcium chloride (Østberg & Graffner, 1994). This shrinkage could have lead to a shorter path length for drug leakage, and therefore higher drug loss. Moreover, the calcium ions could have exchanged with PPN in the PPN-MAS complexes of the gel beads in a calcium concentration dependent manner. As a result, the PPN-1.5% MAS complex-loaded CA beads showed a greater decrease in drug entrapment efficiency when compared with the PPN-loaded CA beads. These results showed that the PPN-MAS complex-loaded CA beads provided remarkably higher drug entrapment efficiency due to the



 $\textbf{Fig. 4.} \ \ \text{Microscopic morphology and internal structure of PPN-loaded CA beads (a, b) and PPN-1.5\% MAS complex-loaded CA beads (c, d) prepared using 2\% calcium chloride.}$ 

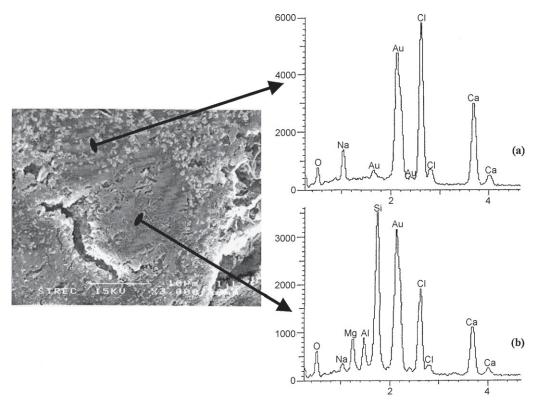



Fig. 5. SEM micrograph focused on PPN-MAS complexes in PPN-1.5% MAS complex-loaded CA beads and EDX patterns of CA matrix (a) and PPN-MAS complexes (b).

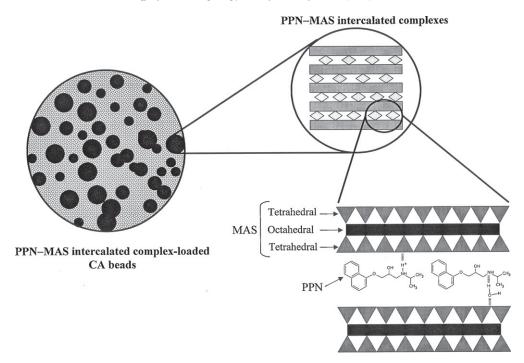



Fig. 6. Schematic presentation of PPN-MAS intercalated complex-loaded CA beads.

presence of the PPN-MAS complexes, which act as drug micro-reservoirs.

#### 3.6. Mechanical property

The maximum force for 50% displacement was used to evaluate the strength of the CA beads. The effect of MAS on the strength of the beads using 2% calcium chloride is shown in Fig. 8a. The maximum force for 50% displacement of the PPN-loaded beads gradually increased with increasing MAS content. This result indicated that the interaction of SA and MAS could create a dense matrix structure that reinforced the strength of the CA beads. In addition, the PPN-1.5% MAS complex-loaded CA beads were weaker when tested under conditions of increasing calcium chloride concentration (Fig. 8b). It is probable that the higher concentration of calcium chloride could rapidly cross-link with the denser network of CA on the surface of the gel beads, leading to the slower diffusion of calcium ions into the interior of the beads during the crosslinking process. Moreover, a limited duration of time (30 min) for the cross-linking process was used in this study. Thus, under high concentrations of calcium chloride, incomplete cross-linking in the interior of the beads may have occurred, resulting in the decreased strength of the beads.

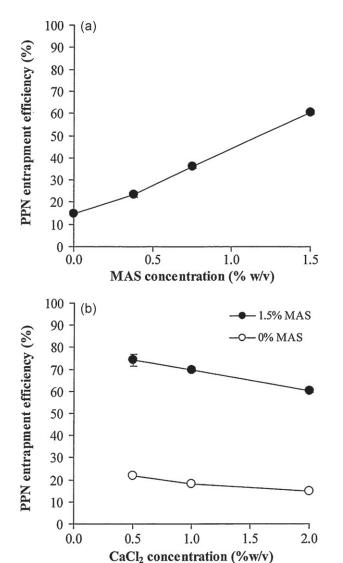
# 3.7. In vitro drug release

The PPN release profiles of the CA beads containing PPN–MAS complexes prepared using various MAS concentrations in 0.1 M HCl and pH 6.8 phosphate buffer are shown in Fig. 9. The PPN-loaded CA beads gave the highest initial burst of drug release at 5 min and complete drug release in both media tested (Table 2). The initial burst of drug release of these beads in an acidic medium was higher than the same beads in pH 6.8 phosphate buffer. In addition, the initial burst release of the beads significantly decreased with increasing MAS content (Table 2). The release of PPN from the CA beads in 0.1 M HCl showed a strong correlation with the square root of time ( $R^2 > 0.95$ ), indicative of a matrix diffusion controlled mechanism. In contrast, in the pH 6.8 phosphate buffer, the drug release

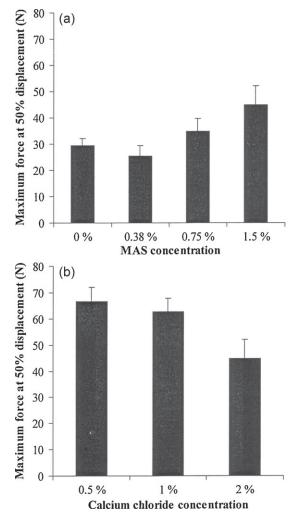
displayed a good fit with respect to time ( $R^2 > 0.95$ ), suggesting zero order release kinetics. These data indicated PPN release was dependent on a polymer swelling mechanism. The rate of release and the amount of PPN released at 10 h in both media are listed in Table 2. Both PPN release parameters obviously decreased with increasing MAS content. Moreover, a higher amount of PPN was released at 10 h in 0.1 M HCl, as compared to the amount released using pH 6.8 phosphate buffer.

The release of PPN from the PPN- and the PPN-MAS complexloaded CA beads in 0.1 M HCl and pH 6.8 phosphate buffer revealed different release mechanisms and that were influenced by the type of cation present in the release medium. It is probable that the calcium ions in the CA beads were totally exchanged with hydrogen ions in the acidic medium, which lead to a unionized form of the carboxyl groups of SA. This could have led to the formation of an insoluble alginic matrix bead for sustained drug release, and therefore the drug release can be explained by a matrix diffusion controlled mechanism. Alternatively, the CA beads could have swelled in a sodium ion-rich medium (pH 6.8 phosphate buffer). The swelling of the CA matrices would have occurred via an exchange of cross-linking calcium ions with sodium ions (Østberg et al., 1994). Thus, the partial formation of soluble SA occurred. In addition, CA gels could be solubilized in the medium containing phosphate ions, which acted as a calcium ion complexing agent at pH levels above 5.5 (Remuñán-López & Bodmeier, 1997). For these reasons, the CA beads had higher water uptake and demonstrated swelling properties in the pH 6.8 phosphate buffer. Thus, the PPN release was controlled by swelling of the beads (Pongjanyakul & Puttipipatkhachorn, 2007a; Puttipipatkhachorn et al., 2005).

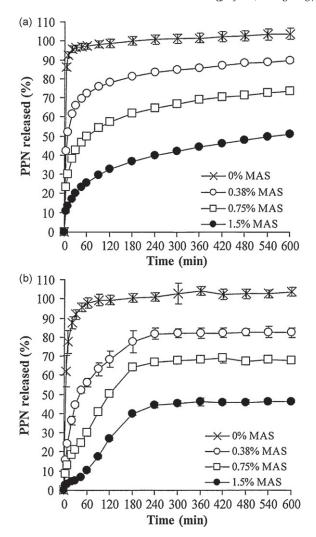
The initial burst release of PPN in the PPN-loaded CA beads was significantly decreased when increased MAS content was used, suggesting that the PPN-MAS complexes formed prior to cross-linking to the CA beads could control drug release and reduce drug leaching from the CA beads. However, the initial burst release in the acidic medium was higher than the release in pH 6.8 phosphate buffer. This was due to a faster PPN release of the PPN-MAS complexes in 0.1 M HCl when compared to the pH 6.8 phosphate buffer


**Table 2**PPN release characteristics of PPN–MAS complex-loaded CA beads.

| PPN-loaded CA beads           | 0.1 M HCl                             |                                            |                             | pH 6.8 phosphate buffer               |                                     |                          |
|-------------------------------|---------------------------------------|--------------------------------------------|-----------------------------|---------------------------------------|-------------------------------------|--------------------------|
|                               | Initial burst release<br>at 5 min (%) | Release rate (% min <sup>-1/2</sup> )      | PPN released at<br>10 h (%) | Initial burst release<br>at 5 min (%) | Release rate (% min <sup>-1</sup> ) | PPN released at 10 h (%) |
| Effect of MAS                 |                                       |                                            |                             |                                       |                                     |                          |
| -0% (w/v) MAS                 | $86.2 \pm 1.9$                        | -                                          | $103.9 \pm 2.8$             | $62.2 \pm 8.2$                        | -                                   | $103.8 \pm 2.4$          |
| -0.38% (w/v) MAS              | $42.2 \pm 0.9$                        | $14.05 \pm 0.05  (R^2 = 0.952)$            | $89.8 \pm 0.7$              | $15.5 \pm 1.2$                        | $0.77 \pm 0.02  (R^2 = 0.955)$      | $82.4 \pm 2.5$           |
| -0.75% (w/v) MAS              | $23.4 \pm 1.2$                        | $8.64 \pm 0.08  (R^2 = 0.982)$             | $73.8 \pm 1.1$              | $8.41 \pm 0.70$                       | $0.34 \pm 0.02  (R^2 = 0.997)$      | $67.8 \pm 0.2$           |
| -1.50% (w/v) MAS              | $10.7\pm0.7$                          | $2.88\pm0.02(\textit{R}^{2}\text{=}0.979)$ | $51.1\pm0.5$                | $2.65\pm1.05$                         | $0.22 \pm 0.01  (R^2 = 0.987)$      | $46.2\pm0.6$             |
| Effect of CaCl <sub>2</sub>   |                                       |                                            |                             |                                       |                                     |                          |
| -0.5% (w/v) CaCl <sub>2</sub> | $9.66 \pm 0.54$                       | $3.33 \pm 0.05 (R^2 = 0.997)$              | $54.3 \pm 1.4$              | $0.39 \pm 0.57$                       | $0.17 \pm 0.01  (R^2 = 0.988)$      | $56.0 \pm 3.4$           |
| -1.0% (w/v) CaCl <sub>2</sub> | $11.1 \pm 1.5$                        | $2.82 \pm 0.09  (R^2 = 0.995)$             | $50.3 \pm 1.1$              | $1.95 \pm 1.09$                       | $0.14 \pm 0.01  (R^2 = 0.982)$      | $48.8 \pm 0.3$           |
| -2.0% (w/v) CaCl <sub>2</sub> | $10.7\pm0.7$                          | $2.88 \pm 0.02  (R^2 = 0.979)$             | $51.1\pm0.5$                | $2.65\pm1.05$                         | $0.22 \pm 0.01  (R^2 = 0.987)$      | $46.2\pm0.6$             |


Data are the mean  $\pm$  S.D., n = 3.

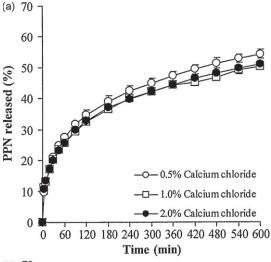
(Rojtanatanya & Pongjanyakul, 2010). Moreover, the gel formation and swelling property of the CA beads in pH 6.8 phosphate buffer could retard initial drug release, resulting in the lower burst release observed in the pH 6.8 phosphate buffer solution. After the initial stage of drug release, the PPN release rate also decreased as a function of the amount of MAS. In the case of the acidic medium, the MAS could have interacted with SA before the cross-linking process,

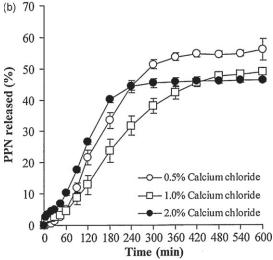

which could reinforce the matrix structure of the CA beads, despite the fact that the beads were exposed in an acidic medium. Increases in the MAS content in the beads, resulted in denser matrix structures. Furthermore, increases in MAS content resulted in greater particle sizes of PPN–MAS complexes in the CA beads (Table 1). Additionally, the presence of MAS in the CA beads did not affect water uptake but obviously reduced the swelling capability of the CA beads in the pH 6.8 phosphate buffer (Puttipipatkhachorn et al., 2005). These results revealed the rate of drug release of the



**Fig. 7.** Effect of MAS (a) and calcium chloride concentrations used (b) on PPN entrapment efficiency of CA beads. Each point is the mean  $\pm$  S.D., n = 3.



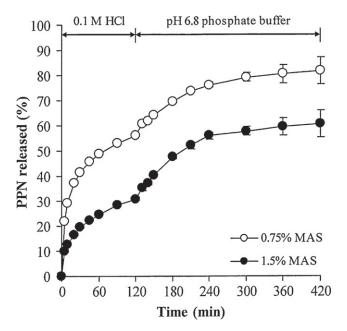

**Fig. 8.** Effect of MAS (a) and calcium chloride (b) concentrations used on mechanical properties of PPN-MAS complex-loaded CA beads. Each value is the mean  $\pm$  S.D., n = 10.




**Fig. 9.** PPN release profiles of CA beads containing PPN–MAS complexes prepared using different MAS concentrations in 0.1 M HCl (a) and pH 6.8 phosphate buffer (b). Each point is the mean  $\pm$  S.D., n = 3.

PPN-MAS complex-loaded CA beads decreased when higher MAS content was used

The last drug release parameter of the PPN- and the PPN-MAS complex-loaded CA beads was the amount of PPN released at 10 h. Complete PPN release was found only for the PPN-loaded CA beads in either release media. The PPN released at 10 h of the PPN-MAS complex-loaded CA beads in 0.1 M HCl was higher than the release in pH 6.8 phosphate buffer, and this release parameter also decreased with increasing MAS content in the beads. The higher percentage of PPN release from the PPN-MAS complexes in acidic medium was because the PPN-MAS complexes were embedded in the bead matrix (Rojtanatanya & Pongjanyakul, 2010). The higher MAS content in the beads provided a greater affinity for PPN, resulting in a lower amount of PPN released at 10 h. Recently, many researchers have reported that drug-clay complexes provide incomplete drug release (Joshi, Kevadiya, Patel, Bajaj, & Jasra, 2009; Jung, Kim, Choy, Hwang, & Choy, 2008; Park et al., 2008). This release behavior was also characteristic of alginate films containing drug-clay complexes (Pongjanyakul & Suksri, 2009). Jung et al. (2008) described that it is difficult for cations in the solution to exchange with drug molecules inside the MAS layers. This ion exchange process may result in zipping of the crystal edge and a shortening of the distance between the layers. However, these reports revealed that the ion exchange process between the






**Fig. 10.** PPN release profiles of PPN-1.5% MAS complex-loaded CA beads prepared using different calcium chloride concentrations in 0.1 M HCl (a) and pH 6.8 phosphate buffer (b). Each point is the mean  $\pm$  S.D., n = 3.

complexes and counter ions in the surrounding medium could reach an equilibrium of drug release, which is similar to the drug release behavior of drug-synthetic ion exchange resin complexes (Borodkin, 1993).

The effect of the concentration of calcium on the release of PPN from the PPN-1.5% MAS complex-loaded CA beads was also investigated and results are shown in Fig. 10. The increase in calcium concentration for cross-linking did not influence the release profiles and parameters of PPN when using 0.1 M HCl as the media (Fig. 10 and Table 2). These results are in agreement with a previous study by Østberg and Graffner (1994). These data suggested the formation of the insoluble alginic matrix bead occurred rapidly and a similar matrix structure was obtained. Combined these effects could have lead to the similar release rates of PPN observed. In contrast, in experiments using pH 6.8 phosphate buffer, the initial burst release of the beads tended to increase with increasing calcium chloride concentration (Table 2). This is possibly because the drug molecules, which can leach out the wet beads during the gelation process, may have accumulated at the surface of the wet beads. Denser cross-linking at the surface of the beads occurred when higher concentrations of calcium chloride were used. The rate of PPN release from the beads decreased with increasing calcium chloride concentration from 0.5 to 1% (w/v). However, an increase in the rate of drug release was found when using 2% calcium chloride. This



**Fig. 11.** PPN release profiles of CA beads containing PPN–MAS complexes prepared using 0.75 and 1.5% MAS in simulated gastro-intestinal condition. Each point is the mean  $\pm$  S.D., n = 3.

result suggested that exposing the beads to 2% calcium chloride after treatment with pH 6.8 phosphate buffer increased swelling due to incomplete cross-linking in the interior of the beads. Results demonstrating the decreased strength of the beads support this hypothesis (Fig. 8b). These conditions released the greatest amount of drug.

Due to the fact that PPN was incompletely released in either 0.1 M HCl or pH 6.8 phosphate buffer, simulated gastro-intestinal conditions starting with 0.1 M HCl for 2 h followed by pH 6.8 phosphate buffer were used to investigate the amount of PPN released from the PPN-MAS complex-loaded CA beads. The release of PPN from the CA beads containing PPN-MAS complexes prepared using 0.75 and 1.5% MAS proceeded continuously when the dissolution medium was changed from acidic medium to pH 6.8 phosphate buffer (Fig. 11). The swollen beads could be visualized when the release medium was changed to pH 6.8 phosphate buffer. This indicated that the alginic matrix beads formed in the acidic medium could convert to SA allowing the sodium ions in the phosphate buffer to exchange with drug in the PPN-MAS complexes, leading to higher amount of PPN release when compared with either 0.1 M HCl or pH 6.8 phosphate buffer. This finding suggested that the release of PPN could possibly take place continuously when the PPN-MAS complex-loaded CA beads were transferred from the stomach to the small intestine in the GI tract.

# 4. Conclusions

This study demonstrated that the molecular interaction of MAS with PPN and SA resulted in PPN–MAS intercalated complex particles and denser matrix structure formation in the CA beads. The PPN–MAS intercalated complexes formation enhanced PPN entrapment efficiency and modulated PPN release in both acidic medium and pH 6.8 phosphate buffer. The PPN entrapment efficiency of the PPN–MAS complex-loaded CA beads was remarkably higher than that of the PPN-loaded CA beads. Increasing the MAS content of these beads resulted in an increase in PPN entrapment efficiency, thermal stability, and strength of the CA beads. Moreover, the initial burst of PPN and its rate of release were decreased in the PPN–MAS complex-loaded CA beads, which was dependent on the

MAS content added. Additionally, the PPN-MAS complex-loaded CA beads also demonstrated a sustained release pattern of PPN in the simulated GI conditions. These results suggested that the CA beads containing drug-clay intercalated complexes, which served as microreservoirs, showed strong potential as an oral drug delivery system for cationic drugs with high water solubility.

#### Acknowledgments

The authors would like to thank the Thailand Research Fund (Bangkok, Thailand) for research funding (Grant No. RSA5280013). We are very pleased to acknowledge the Center for Research and Development of Herbal Health Products and the Faculty of Pharmaceutical Sciences, Khon Kaen University (Khon Kaen, Thailand), for technical support.

#### References

Almeida, P. F., & Almeida, A. J. (2004). Cross-linked alginate-gelatin beads: A new matrix for controlled release of pindolol. *Journal of Controlled Release*, 97, 431–439.

Bechgaard, H., & Nielsen, G. H. (1978). Controlled-release multiple-units and singleunit doses. *Drug Development and Industrial Pharmacy*, 4, 53–67.

Bertram, U., & Bodmeier, R. (2006). In situ gelling, bioadhesive nasal inserts for extended drug delivery: In vitro charaterization of a new nasal dosage form. *European Journal of Pharmaceutical Sciences*, 27, 62–71.

Borodkin, P. B. (1993). Ion exchange resins and sustained release. In J. Swarbrick, & J. C. Boylan (Eds.), Encyclopedia of pharmaceutical technology (pp. 203–216). New York: Marcel Dekker. Inc.

York: Marcel Dekker, Inc.
Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles.

European Journal of Pharmaceutical Sciences. 13, 123–133.

Dollery, S. C. (1991). Therapeutic drugs. Edinburgh: Churchill Livingstone.

Draget, K. I. (2000). Alginates. In G. O. Philips, & P. A. Williams (Eds.), Handbook of hydrocolloids (pp. 379–395). Cambridge: Woodhead Publishing.

Edwards-Lévy, F., & Lévy, M. C. (1999). Serum albumin–alginate coated beads: Mechanical properties and stability. *Biomaterials*, 20, 2069–2084.

Mechanical properties and stability. *Biomaterials*, 20, 2069–2084. Fernández-Hervás, M. J., Holgado, M. A., Fini, A., & Fell, J. T. (1998). In vitro evaluation of alginate beads of a diclofenac salt. *International Journal of Pharmaceutics*, 163, 23–34.

Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., & Thom, D. (1973). Biological interaction between polysaccharides and divalent cations: The egg-box model. *FEBS Letters*, 32, 195–198.

Gupta, M. K., Vanwert, A., & Bogner, R. H. (2003). Formation of physical stable amorphous drugs by milling with Neusilin. *Journal of Pharmaceutical Sciences*, 92, 536–551

Halder, A., Maiti, S., & Sa, B. (2005). Entrapment efficiency and release characteristics of polyethyleneimine-treated or -untreated calcium alginate beads loaded with

propranolol-resin complex. International Journal of Pharmaceutics, 302, 84–94.
Hwang, S. J., Rhee, G. J., Lee, K. M., Oh, K. H., & Kim, C. K. (1995). Release characteristics of ibuprofen from excipient-loaded alginate gel beads. International Journal of Pharmaceutics, 116, 125–128.

Joshi, G. V., Kevadiya, B. D., Patel, H. A., Bajaj, H. C., & Jasra, R. V. (2009). Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. *International Journal of Pharmaceutics*, 374, 53–57.

Jung, H., Kim, H., Choy, Y. B., Hwang, S., & Choy, J. (2008). Itraconazole-laponite: Kinetics and mechanism of drug release. *Applied Clay Science*, 40, 99–107.

Kibbe, H. A. (2000). Handbook of pharmaceutical excipients. Washington: American Pharmaceutical Association.

Lee, B. J., Min, G. H., & Cui, J. H. (1999). Correlation of drug solubility with trapping efficiency and release characteristics of alginate beads. *Pharmacy and Pharmacology Communications*, 5, 85–89.

Lim, L. Y., & Wan, L. S. C. (1997). Propranolol hydrochloride binding in calcium alginate beads. *Drug Development and Industrial Pharmacy*, 23, 973–980.

Martin, A. (1993). Physical pharmacy. Philadelphia: Lea & Febiger.

Murata, Y., Miyamoto, E., & Kawashima, S. (1996). Additive effect of chondroitin sulfate and chitosan on drug release from calcium-induced alginate gel beads. *Journal of Controlled Release*, 38, 101–108.

Murata, Y., Tsumoto, K., Kofuji, K., & Kawashima, S. (2003). Effect of natural polysac-

Murata, Y., Tsumoto, K., Kofuji, K., & Kawashima, S. (2003). Effect of natural polysaccharide addition on drug release from calcium-induced alginate gel beads. Chemical and Pharmaceutical Bulletin, 51, 218–220.

Østberg, T., & Graffner, C. (1994). Calcium alginate matrices for oral multiple unit administration. III. Influence of calcium concentration, amount of drug added and alginate characteristics on drug release. *International Journal of Pharmaceutics*, 111, 271–282.

Østberg, T., Lund, E. M., & Graffner, C. (1994). Calcium alginate matrices for oral multiple unit administration. IV. Release characteristics in different media. *International Journal of Pharmaceutics*, 112, 241–248.

Paker-Leggs, S., & Neau, S. H. (2009). Pellet characteristics and drug release when the form of propranolol is fixed as moles or mass in formulations for extruded and spheronized Carbopol-containing pellets. *International Journal of Pharmaceutics*, 369. 96–104.

- Park, J. K., Choy, Y. B., Oh, J., Kim, J. Y., Hwang, S., & Choy, J. (2008). Controlled release of donepezil intercalated in smectite clays. *International Journal of Pharmaceutics*, 359, 198–204.
- Pongjanyakul, T., Khunawattanakul, W., & Puttipipatkhachorn, S. (2009). Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. *Applied Clay Science*, 44, 242–250.
- Pongjanyakul, T., & Puttipipatkhachorn, S. (2007a). Xanthan–alginate composite gel beads: Molecular interaction and in vitro characterization. *International Journal of Pharmaceutics*, 331, 61–71.
- Pongjanyakul, T., & Puttipipatkhachorn, S. (2007b). Sodium alginate-magnesium aluminum silicate composite gels: Characterization of flow behavior, microviscosity, and drug diffusivity. AAPS PharmSciTech, 8, E72.
- Pongjanyakul, T., & Suksri, H. (2009). Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. *Colloids and Surfaces B: Biointerfaces*, 74, 103–113.
- Puttipipatkhachorn, S., Pongjanyakul, T., & Priprem, A. (2005). Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics. *International Journal of Pharmaceutics*, 293, 51–62.
- Remuñán-López, C., & Bodmeier, R. (1997). Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. *Journal of Controlled Release*, 44, 215–225.

- Rojtanatanya, S., & Pongjanyakul, T. (2010). Propranolol-magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. *International Journal of Pharmaceutics*, 383, 106–115.
- Sartori, C., Finch, D. S., & Ralph, B. (1997). Determination of the cation content of alginate thin films by FTIR spectroscopy. *Polymer*, 38, 43–51.
- Sugawara, S., Imai, T., & Otagiri, M. (1994). The controlled release of prednisolone using alginate gel. *Pharmaceutical Research*, 11, 272–277.
- Suksri, H., & Pongjanyakul, T. (2008). Interaction of nicotine with magnesium aluminum silicate at different pHs: Characterization of flocculate size, zeta potential and nicotine adsorption behavior. *Colloids and Surfaces B: Biointerfaces*, 65, 54–60.
- Takada, K., & Yoshikawa, H. (1999). Oral drug delivery, traditional. In E. Mathiowitz (Ed.), *Encyclopedia of controlled drug delivery* (pp. 728–742). New York: John Wiley & Sons, Inc.
- Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. *Applied Clay Science*, 36, 37–50.
- Wang, K., & He, Z. (2002). Alginate-konjac glucomannan-chitosan beads as controlled release matrix. *International Journal of Pharmaceutics*, 244, 117–126.

# Research Article

# Preparation and Characterization of Nicotine–Magnesium Aluminum Silicate Complex-Loaded Sodium Alginate Matrix Tablets for Buccal Delivery

Sopaphan Kanjanabat<sup>1</sup> and Thaned Pongjanyakul<sup>1,2</sup>

Received 2 February 2011; accepted 5 May 2011; published online 19 May 2011

Abstract. Nicotine (NCT) buccal tablets consisting of sodium alginate (SA) and nicotine-magnesium aluminum silicate (NCT-MAS) complexes acting as drug carriers were prepared using the direct compression method. The effects of the preparation pH levels of the NCT-MAS complexes and the complex/SA ratios on NCT release, permeation across mucosa, and mucoadhesive properties of the tablets were investigated. The NCT-MAS complex-loaded SA tablets had good physical properties and zero-order release kinetics of NCT, which indicate a swelling/erosion-controlled release mechanism. Measurement of unidirectional NCT release and permeation across porcine esophageal mucosa using a modified USP dissolution apparatus 2 showed that NCT delivery was controlled by the swollen gel matrix of the tablets. This matrix, which controlled drug diffusion, resulted from the molecular interactions of SA and MAS. Tablets containing the NCT-MAS complexes prepared at pH 9 showed remarkably higher NCT permeation rates than those containing the complexes prepared at acidic and neutral pH levels. Larger amounts of SA in the tablets decreased NCT release and permeation rates. Additionally, the presence of SA could enhance the mucoadhesive properties of the tablets. These findings suggest that SA plays the important role not only in controlling release and permeation of NCT but also for enhancing the mucoadhesive properties of the NCT-MAS complex-loaded SA tablets, and these tablets demonstrate a promising buccal delivery system for NCT.

**KEY WORDS:** buccal tablets; magnesium aluminum silicate; nicotine; release and permeation; sodium alginate.

#### INTRODUCTION

Nicotine (NCT), obtained from tobacco plants, is a volatile and strongly alkaline liquid. NCT is highly soluble not only in water but also in hydrophobic solvents (1). It has well-separated p $K_a$  values; p $K_{a1}$  and p $K_{a2}$  are 3.04 and 7.84, respectively (2). This leads to the formation of diprotonated, monoproptonated, and neutral NCT at acidic, neutral, and basic pH levels, respectively. NCT has been widely used in smoking cessation therapy for relieving addiction symptoms. NCT is absorbed through skin and mucosal membranes, such as buccal and nasal membranes (2). The free base form of NCT is volatile and susceptible to oxidative degradation. Several researchers have sought an NCTadsorbing material to prevent the evaporation and improve stability. NCT-adsorbent complexes are employed to carry the drug in powdered form. Cellulose powders were employed as such adsorbent complexes, but in water, NCT adsorbed to these complexes was observed to quickly and completely dissociate within 1 h (3). In addition, adsorption onto a cation exchange resin was employed to

Magnesium aluminum silicate (MAS) is a mixture of montmorillonite and saponite clays (6), both of which have silicate layer structures. Each layer comprised tetrahedrally coordinated silica atoms fused into an edge-shared octahedral plane, with either aluminum hydroxide or magnesium hydroxide (6,7). The silicate layers of MAS have weakly positively charged edges and negatively charged surfaces. The negatively charged surfaces of the silicate layers strongly interact with NCT at different pH levels (8), leading to the formation of NCT-MAS complexes. This allows NCT to intercalate into the silicate layers of MAS that was investigated using a powder X-ray diffractometry in the previous study (9). The NCT-MAS complex particles enhance NCT's thermal stability and were shown to sustain NCT release in distilled water and phosphate buffer with a pH 6 (9). Additionally, MAS forms a microcomposite material with sodium alginate (SA), a negatively charged polysaccharide, via intermolecular hydrogen bonding (10,11). SA is a sodium salt of alginic acid, a linear polysaccharide found in marine brown algae. SA has been widely used as a food and pharmaceutical additive as well as a tablet disintegrant and gelling agent. Additionally, it has been employed as a bioadhesive material and drug release modifier for intraoral drug delivery dosage forms such as tablets (12-16) and films (17).

<sup>&</sup>lt;sup>2</sup> To whom correspondence should be addressed. (e-mail: tha-ned@kku.ac.th)



deliver NCT both in a chewing gum (4) and in powder formulations intended for nasal delivery (5).

<sup>&</sup>lt;sup>1</sup> Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.

Buccal drug delivery offers many advantages in comparison to oral delivery. For example, buccal delivery allows drugs to avoid first-pass hepatic metabolism, leading to higher bioavailability and facilitating drug withdrawal (18). NCT is a candidate for buccal delivery due to its low bioavailability after oral administration (1) and its ability to permeate across the buccal mucosa (2,19,20). For these reasons, buccal tablets using NCT hydrogen tartrate, a salt form of NCT with high solubility in water, were previously developed (16,21). Thus, it is interesting that usage of NCT-MAS complex particles as drug carriers in SA tablets offers several advantages. First, SA tablets would offer the advantageous physical properties of tablets. Furthermore, interaction of MAS with SA in the swollen gel matrix tablets may aid in controlling NCT release and permeation across the mucosa. Finally, SA may improve the mucoadhesive properties of the tablets for buccal delivery.

The objective of this study was to prepare and characterize NCT-MAS complex-loaded SA tablets for buccal delivery of NCT. The effects of complex preparation pH and the complex/SA ratio on the properties of the complex-loaded SA tablets were investigated. The tablets were prepared using a direct compression method. The NCT release kinetics and mucoadhesive properties of the tablets were investigated. Unidirectional NCT release and permeation was measured using a modified USP dissolution apparatus 2; this is the first report for the use of such an experimental setup with buccal tablets. In addition, molecular interaction of SA with MAS in the swollen gel matrix was examined using Fourier transform infrared (FTIR) spectroscopy.

#### **MATERIALS AND METHODS**

#### **Materials**

MAS (Veegum®HV) and NCT were obtained from R.T. Vanderbilt Company, Inc. (Norwalk, CT, USA) and Fluka (Buchs, Switzerland), respectively. SA (Manugel®DMF) was obtained from ISP Thailand Ltd. (Bangkok, Thailand). Magnesium stearate (Mallinckrodt Inc., St Louis, MO) was used as a lubricant for tabletting. All other reagents used were of analytical grade and were used as received.

# **Preparation of NCT-MAS Complexes**

A 4% (w/v) MAS suspension was prepared using hot water and was cooled to room temperature prior to use. An NCT solution (2.0%, w/v) was prepared using deionized water as solvent. Fifty milliliters of the 4% (w/v) MAS suspension was then mixed with 50 ml of the 2% (w/v) NCT solution in an Erlenmeyer flask. The pH levels of all NCT–MAS dispersions were adjusted by adding small amounts of 1 M HCl or 1 MNaOH into the flask while swirling until the final pH of the dispersions was either at 4, 7, or 9, as measured with a pH meter (WalkLAB TI9000, Singapore). To achieve equilibrium of NCT adsorption onto MAS, the dispersions were then incubated with shaking at 37°C for 24 h (8). Following incubation, the NCT–MAS complexes were separated from the filtrates by filtration, washed twice using 20 ml of deionized water, and dried at 50°C for 24 h. The dry

NCT-MAS complexes were ground using a mortar and pestle, sieved through a 180- $\mu m$  sieve, and stored in a desiccator.

### Characterization of the NCT-MAS Complexes

Determination of NCT Content

Twenty-five milligrams of the NCT-MAS complexes were weighed and dispersed in 100 ml of 2 M HCl for 12 h. The supernatant was then collected and filtered and its NCT content analyzed using a UV-visible spectrophotometer (Shimadzu UV1201, Kyoto, Japan) at a wavelength of 259 nm.

#### Particle Size Determination

The particle sizes of the NCT–MAS complexes prepared at different pH levels were measured using a laser diffraction particle size analyzer (Mastersizer2000 Model Hydro2000SM, Malvern Instrument Ltd., UK). The samples were dispersed in 70 ml of pH 6 phosphate buffer in a small volume sample dispersion unit and stirred at a rate of 50 Hz for 30 s before the measurement. The particle sizes (volume-weighted mean diameter) were reported.

#### In Vitro Release Studies

A USP dissolution apparatus 1 (basket method, VanKel VK200, USA) was used to characterize the release of NCT from the complexes. In each case, the amount of NCT–MAS complex used was sufficient to contain 15 mg of NCT. The complex particles were placed into the basket. The bottom of the basket was coated with a 0.45- $\mu$ m cellulose acetate membrane to retain the complex particles during the test. The studies were performed in 500 ml of phosphate buffer, pH 6, at 37.0  $\pm$  0.5°C and a rotation speed of 50 rpm. Samples (7 ml) were collected and replaced with fresh medium at various time intervals. The amount of NCT released was analyzed using a UV–visible spectrophotometer (Shimadzu UV1201) at a wavelength of 259 nm.

#### **Preparation of NCT-MAS Complex-Loaded SA Tablets**

All tablets were prepared using a direct compression method. The tablets consisted of NCT-MAS complexes, SA, and magnesium stearate. The effects of the complexes' preparation pH levels and the complex/SA ratios on the characteristics of the tablets were investigated. The tablet components are listed in Tables I and II. The NCT-MAS complexes were mixed with SA in a rotomixer for 3 min; magnesium stearate was then blended with the mixture for 1 min before tabletting. Tablets were prepared by placing each 202-mg mix into 10-mm flat-faced punches and dies and then applying 23 MPa with a hydrostatic press (model 3126, Shimadzu) without holding time. The tablets obtained were stored in a desiccator until the measurements.

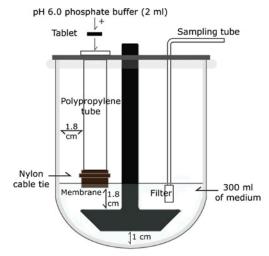
**Table I.** Component of NCT-MAS Complex-loaded SA Tablets Using Different Preparation pH Levels of Complexes

|                                                     | Prepara       | Preparation pH of complexes |               |  |  |  |
|-----------------------------------------------------|---------------|-----------------------------|---------------|--|--|--|
| Component                                           | pH 4          | рН 7                        | pH 9          |  |  |  |
| NCT-MAS complexes (mg)<br>(equivalent to 15 mg NCT) | 166.0         | 129.0                       | 120.0         |  |  |  |
| SA (mg)                                             | 34.0          | 71.0                        | 80.0          |  |  |  |
| Magnesium stearate (mg) Complex/SA ratio            | 2.0<br>1:0.20 | 2.0<br>1:0.55               | 2.0<br>1:0.67 |  |  |  |

#### Characterization of NCT-MAS Complex-Loaded SA Tablets

#### Thickness and Hardness

The thicknesses of the tablets were measured using a Vernier caliper (Mitutoyo, Japan). The hardness of the tablets was measured with a Stokes tablet hardness tester.


#### In Vitro Release Studies

NCT release from the NCT–MAS complex-loaded SA tablets was studied using two apparatus. NCT release from the whole tablets was studied using a USP dissolution apparatus 1 (basket method, VanKel VK200). The tablets were placed into the basket with a rotation speed of 50 rpm. The release medium was 500 ml of pH 6 phosphate buffer at  $37.0 \pm 0.5$ °C. Samples (7 ml) were collected and replaced with fresh medium at various time intervals. The amount of NCT released was analyzed using a UV–visible spectrophotometer (Shimadzu UV1201) at a wavelength of 259 nm.

Unidirectional release of NCT from the tablets was characterized using a modified USP dissolution apparatus 2, shown in Fig. 1. A 0.45-µm cellulose acetate membrane which had been hydrated in pH 6 phosphate buffer for 12 h was tightly attached at the lowest point of a polypropylene tube (inner diameter=1.8 cm) using a nylon cable tie. This tube was vertically placed in a dissolution vessel containing 300 ml of pH 6 phosphate buffer at  $37.0 \pm 0.5$ °C. The tube position was adjusted so that the membrane was wetted and in contact with the medium. The distance between the paddle and vessel bottom was set to 1 cm, and the rotation speed of the paddle was set to 50 rpm. The tablets were placed in the tube and wetted using 2 ml of phosphate buffer, pH 6. Samples (7 ml) were collected and replaced with fresh medium at various time intervals. The amount of NCT released was quantified with high-performance liquid chromatography (HPLC).

**Table II.** Component of NCT-MAS Complex-Loaded SA Tablets Using Different Complex/SA Ratios

|                                         |       | Complex/SA ratio |        |       |  |
|-----------------------------------------|-------|------------------|--------|-------|--|
| Component                               | 1:4   | 1:1.5            | 1:0.67 | 1:0   |  |
| NCT-MAS complexes prepared at pH 9 (mg) | 40.0  | 80.0             | 120.0  | 200.0 |  |
| SA (mg)                                 | 160.0 | 120.0            | 80.0   | 0.0   |  |
| Magnesium stearate (mg)                 | 2.0   | 2.0              | 2.0    | 2.0   |  |
| Amount of NCT (mg)                      | 5     | 10               | 15     | 26.3  |  |

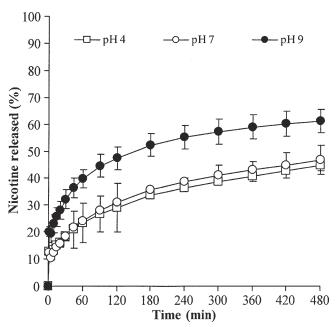


**Fig. 1.** Schematic presentation of the modified USP dissolution apparatus 2 for characterizing unidirectional NCT release and permeation of the buccal tablets

#### In Vitro Permeation Studies

NCT permeation of the tablets was also performed using a modified USP dissolution apparatus 2 (Fig. 1). Porcine esophageal mucosa was employed in this study because it has a lipid composition similar to porcine buccal mucosa, but a simpler preparation method (22). Esophageal mucosa of crossbred pig (hybrid kinds of Duroc Jersey-Landrace-Large White) with 80- to 100-kg weight was obtained from a local slaughterhouse (Non Muang Village, Khon Kaen, Thailand). The porcine esophageal tube was opened longitudinally and immersed in 0.9% sodium chloride at 60°C for 1 min (22,23). The epithelium was then peeled away from the connective tissue and stored at -20°C. The frozen mucosal membranes were brought to room temperature by immersion in pH 7.4 isotonic phosphate buffer for 15 min. The mucosal membrane was then mounted and tightly attached to the end of a polypropylene tube. The dissolution vessel contained 300 ml of pH 7.4 isotonic phosphate buffer at 37.0 ± 0.5°C; the methods and experimental conditions were the same as the previous release study.

# Analysis of Release and Permeation Data


The mechanisms of NCT release were determined both with a semi-empirical equation and a power law (24,25), shown in Eqs. 1 and 2, respectively, as follows:

$$\frac{M_t}{M_{\infty}} = kt^n \tag{1}$$

**Table III.** Characteristics of NCT-MAS Complexes Prepared at Different pH Levels

| NCT-MAS complexes | Particle size (µm) | NCT content (% w/w) | NCT release rate (% min <sup>-1/2</sup> ) |
|-------------------|--------------------|---------------------|-------------------------------------------|
| pH 4              | 94.0±2.6           | 9.50±0.03           | 1.84±0.10 ( $R^2$ =0.993)                 |
| pH 7              | 82.1±2.4           | 12.20±0.02          | 2.22±0.06 ( $R^2$ =0.993)                 |
| pH 9              | 93.2±1.8           | 13.20±0.04          | 3.54±0.08 ( $R^2$ =0.991)                 |

Data are the mean  $\pm$  SD, n=3



**Fig. 2.** NCT release profiles of the NCT-MAS complex particles prepared at different pH levels. Each *point* is the mean±SD, *n*=3

and

$$\log \frac{M_t}{M_{\infty}} = n \log t + \log k \tag{2}$$

where  $M_t/M_\infty$  is the fractional NCT release at time t, k is the kinetic constant, and n is the release exponent indicative of the drug release mechanism. A release exponent of n=0.5 indicates a diffusion-controlled drug release (Fickian diffusion), whereas a release exponent of n=1 corresponds to a polymer swelling/erosion-controlled release mechanism. Thus, release exponents between these two extreme values indicate a so-called anomalous transport—a complex transport mechanism that is a mixture of both drug diffusion and swelling/erosion of polymer (26).

The NCT release and permeation rates of the tablets were analyzed using both zero-order and Higuchi models (27), which can be expressed as Eqs. 3 and 4, respectively, as follows:

$$Q = K_0 t \tag{3}$$

and

$$Q = K_{\rm H} t^{1/2},\tag{4}$$

where Q is the amount of NCT released, t is time, and  $K_0$  and  $K_H$  are the zero-order and Higuchi release rates, respectively.

#### Determination of Mucoadhesive Properties

The mucoadhesive properties of the tablets were measured using a texture analyzer (TA.XT plus, Stable Micro Systems, UK) with a 50-N load cell equipped with a bioadhesive test rig.

The tablet was attached to a 10-mm diameter cylindrical probe using a two-sided adhesive tape. Esophageal mucosa of pig was also obtained from a local slaughterhouse (Non Muang Village, Khon Kaen, Thailand). The mucosal membrane from the porcine esophagus (about 2×2 cm) without heat treatment and elimination of the connective tissue that had been hydrated with pH 7.4 isotonic phosphate buffer for 20 min was placed on the stage of bioadhesive holder and gently blotted with tissue paper to remove excess water on the surface of the mucosal membrane. Next, 200 µl of pH 6 phosphate buffer was pipetted onto the membrane surface before testing. The probe and attached tablets were moved down at a constant speed of 1 mm s<sup>-1</sup> with 0.5-N contact force and 2-min contact time. Immediately afterwards, the probe was moved upwards with a constant speed of  $0.5 \text{ mm s}^{-1}$ . The relationship between the force and tablet displacement was plotted. The maximum detachment force  $(F_{\text{max}})$  and work of adhesion ( $W_{ad}$ , the area under the force versus distance curve) were calculated using the Texture Exponent 32 program version 4.0.9.0 (Stable Micro Systems).

Table IV. Physical Properties and NCT Release Characteristics of NCT-MAS Complex-Loaded SA Tablets

|                   |                 |                | NCT release                     |                                     |  |
|-------------------|-----------------|----------------|---------------------------------|-------------------------------------|--|
| Tablets           | Thickness (mm)  | Hardness (N)   | Release exponent, n             | Release rate (% min <sup>-1</sup> ) |  |
| Preparation pH of | f complexes     |                |                                 |                                     |  |
| pH 4              | $1.46 \pm 0.02$ | $70.6 \pm 2.7$ | $1.05\pm0.07 \ (R^2=0.992)$     | $0.14\pm0.01 \ (R^2=0.962)$         |  |
| pH 7              | $1.58 \pm 0.02$ | $58.8 \pm 0.1$ | $0.92\pm0.05 \ (R^2=0.990)$     | $0.15\pm0.02 \ (R^2=0.980)$         |  |
| pH 9              | $1.61 \pm 0.01$ | $60.8 \pm 2.7$ | $0.98 \pm 0.07 \ (R^2 = 0.992)$ | $0.15\pm0.03 \ (R^2=0.997)$         |  |
| Complex/SA ratio  | )               |                |                                 |                                     |  |
| 1:4               | $1.71 \pm 0.02$ | $48.8 \pm 3.2$ | $0.77 \pm 0.03 \ (R^2 = 0.992)$ | $0.14\pm0.02~(R^2=0.996)$           |  |
| 1:1.5             | $1.69 \pm 0.02$ | $39.2 \pm 0.1$ | $0.85\pm0.04~(R^2=0.992)$       | $0.12\pm0.01~(R^2=0.999)$           |  |
| 1:0.67            | $1.61 \pm 0.01$ | $60.8 \pm 2.7$ | $0.98 \pm 0.07 \ (R^2 = 0.992)$ | $0.15\pm0.03 \ (R^2=0.997)$         |  |
| 1:0               | $1.42 \pm 0.01$ | $68.6 \pm 0.1$ | $0.46\pm0.01 \ (R^2=0.972)$     | $3.20\pm0.08^a \ (R^2=0.988)$       |  |
| Pure SA           | $1.87 \pm 0.02$ | $14.7 \pm 3.5$ | ND                              | ND                                  |  |
| Pure MAS          | $1.31 \pm 0.01$ | $36.3 \pm 4.4$ | ND                              | ND                                  |  |

Data are the mean  $\pm$  SD, n=3

ND not determined

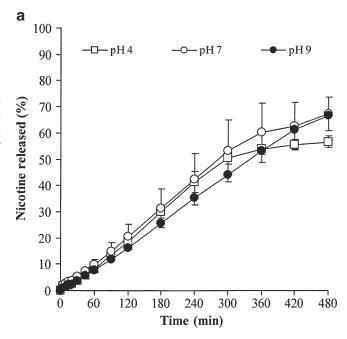
<sup>&</sup>lt;sup>a</sup> Calculated from Higuchi model (unit, % min<sup>-1/2</sup>)

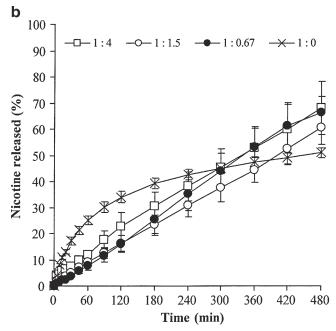
#### **HPLC Condition for NCT Analysis**

The concentration of NCT was determined using HPLC (Perkin Elmer Series, USA). Reversed-phase HPLC using a C-18 column (Waters Spherisorb® S5 ODS2, 5- $\mu$ m particle size, 4.6 × 250 mm, Ireland) connected with a guard column was employed. The mobile phase was 0.05 M sodium acetate/methanol/triethylamine (88:12:0.5,  $\nu/\nu$ ), and the final pH was adjusted to 4.2 with glacial acetic acid. The flow rate of the mobile phase was 1 ml min<sup>-1</sup>, and the detector was a UV-visible detector at a wavelength of 259 nm. The retention time of NCT was approximately 7.0 min. Under these conditions, good linearity and reproducibility were shown over the range 1.0–100.0  $\mu$ g ml<sup>-1</sup> NCT.

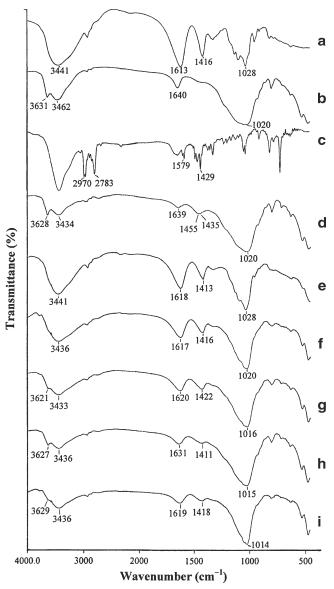
#### FTIR Spectroscopy

The molecular interactions between SA and MAS in the tablets were investigated using an FTIR spectrophotometer (Spectrum One, Perkin Elmer, Norwalk, CT) and the KBr disc method. The residual mass of the swollen gel matrix tablets on the cellulose acetate membrane after the NCT release testing with the modified USP dissolution apparatus 2 ("In *Vitro* Release Studies") was collected, dried at 50°C, and gently ground with a mortar and pestle. Each sample was pulverized, gently triturated with KBr powder in a weight ratio of 1:100, and then pressed in a hydrostatic press at a pressure of 10 tons for 5 min. The disc was placed in the sample holder and scanned from 4,000 to 450 cm<sup>-1</sup> at a resolution of 4 cm<sup>-1</sup>.


#### **RESULTS AND DISCUSSION**


# **Characteristics of NCT-MAS Complexes**

Due to the molecular interactions between NCT and MAS via electrostatic force and hydrogen bonding (9), NCT-MAS complexes were formed and successfully prepared at pH 4, 7, and 9 using an adsorption method. The sizes of the NCT-MAS complex particles obtained fell into the range of 82.1-94.0 µm (Table III). The NCT content in the NCT-MAS complexes increased with increasing preparation pH (Table III). This was due to the denser matrix structure of the NCT-MAS complexes formed at acidic and neutral pH levels (8), resulting in a reduction of surface area for NCT adsorption. The NCT release profile of the complexes at different preparation pH levels is presented in Fig. 2. The NCT release percentage showed good agreement with the Higuchi model ( $R^2$  higher than 0.99). This indicates that the NCT release kinetics from the complex particles is controlled by a matrix/particle diffusion mechanism (9). The complexes prepared at pH 9 gave a higher NCT release rate than those prepared at neutral and acidic pH levels (Table III). It is possible that the higher NCT content of the complexes prepared at pH 9 brought about a greater NCT concentration gradient in the complex particles, leading to faster NCT release. Moreover, the denser matrix formation of the complexes at pH 4 and 7 led to a lower NCT release rate than that of the complexes at pH 9.


# Physical Properties of NCT-MAS Complex-Loaded SA Tablets

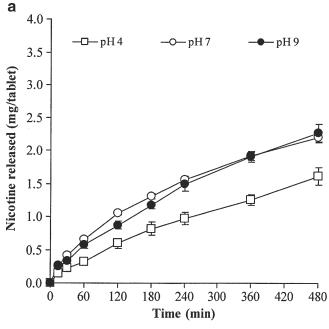
All mixtures prepared were easily compressed into tablets using a direct compression method. The thicknesses of the NCT-MAS complex-loaded SA tablets were in the range of 1.46–1.71 mm and are listed in Table IV. The tablets thus obtained were acceptable upon visual inspection, and acceptable hardness ranges from 39.2 to 70.6 N. Moreover, the hardness of pure SA and MAS tablets was found to be 14.7 and 36.3 N, respectively, suggesting that both materials

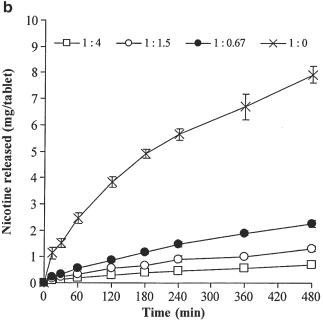




**Fig. 3.** NCT release profiles of the NCT–MAS complex-loaded SA tablets prepared using different preparation pH levels of complexes (a) and various complex/SA ratios (b). Each *point* is the mean  $\pm$  SD, n=3




**Fig. 4.** FTIR spectra of SA tablet (a), MAS tablet (b), NCT (c), pH 9 NCT–MAS complex tablet (d), pH 9 NCT–MAS complex-loaded SA tablets using 1:4 (e), 1:1.5 (f) and 1:0.67 (g)complex/SA ratios, and NCT–MAS complex-loaded SA tablets using pH 4 (h) and pH 7 (i) complexes


have acceptable compressibility under pressure. Additionally, it was observed that pure MAS tablets had lower hardness than the pH 9 NCT–MAS complex tablets (1:0 complex/SA ratio), suggesting that the NCT adsorbed onto MAS may alter the surface interfacial properties of the MAS particles. This may lead to higher cohesive force at the contact surface after deformation of the NCT–MAS complex particles under compression.

## **NCT Release Characteristics of the Tablets**

The NCT release profiles of the whole tablets in pH 6 phosphate buffer are shown in Fig. 3. The measured release of NCT from the NCT-MAS complex-loaded SA tablets (Table IV) fits well with the power law (Eq. 2;  $R^2$  more than

0.99). The exponent *n* of the NCT–MAS complex-loaded SA tablets at all preparation pH levels was close to unity. This suggests that the NCT release was controlled by a polymer swelling/erosion mechanism and can be described using zero-order release kinetics. Additionally, increasing the SA ratio in the tablets led to a lower exponent value, particularly in the 1:4 and 1:1.5 complex/SA ratios. This indicates that the NCT release involved both a diffusion process through the swollen matrix and a swelling/erosion process of the SA. Moreover, the release process of the pH 9 NCT–MAS complex tablets without SA (1:0 complex/SA ratio) had an exponent value of





**Fig. 5.** Effect of preparation pH (a) and complex/SA ratio (b) on NCT release of NCT-MAS complex-loaded SA tablets using cellulose acetate as a membrane, measured using a modified USP dissolution apparatus 2. Each *point* is the mean $\pm$ SD, n=3

0.46, the lowest that was found, suggesting that the NCT release was Fickian diffusion. Apart from NCT release mechanism, the NCT release rate of the whole tablets was calculated using the zero-order model (Eq. 3), as shown in Table IV. It was observed that the effect of preparation pH and the complex/SA ratio did not influence the NCT release rate. In contrast, the NCT release rate of the NCT–MAS complex tablets were well described by the Higuchi model, but not the zero-order model. The release rate of NCT from the tablets was lower than that of the complex particles (Table III) because of complex tablets' lower surface area for NCT release.

In this study, the observed NCT release from the NCT-MAS complex tablets without SA indicates a matrix/particle diffusion-controlled mechanism. Incorporation of a small amount of SA into the tablets could control the NCT release to achieve the zero-order release kinetics that was clearly observed in the tablets containing the complexes prepared at different pH levels. This indicates that the NCT release was controlled not only by matrix diffusion of the complex particles but also by the swollen gel matrix of SA formed around the tablets. However, the higher ratio of SA in the tablets caused the NCT release to be dominated by a matrix diffusion mechanism. We hypothesize that the greater amount of SA in the tablets may lead to higher viscosity and thickness in the swollen gel matrix during NCT release. Furthermore, it is interesting that all NCT-MAS complex-loaded SA tablets measured had a similar NCT release rate despite very different complex/SA ratios. It is possible that the swollen gel matrix may have changed during NCT release because of interactions between SA with MAS. We therefore investigated the molecular interactions of the tablet's components after drug release testing using FTIR spectroscopy.

## Molecular Interaction of SA with MAS

The molecular interaction of SA with MAS in the swollen gel matrix was investigated in this study. SA showed stretching peaks from OH, COO<sup>-</sup> (symmetric), and COO<sup>-</sup> (asymmetric) at 3,441, 1,613, and 1,416 cm<sup>-1</sup>, respectively (Fig. 4a). Figure 4b shows the peaks of MAS, such as hydroxyl stretching in SiOH (3,631 cm<sup>-1</sup>), hydroxyl stretching in hydrogen-bonded water (3,462 cm<sup>-1</sup>), hydroxyl bending (1,640 cm<sup>-1</sup>), and stretching of Si–O–Si (1,020 cm<sup>-1</sup>)

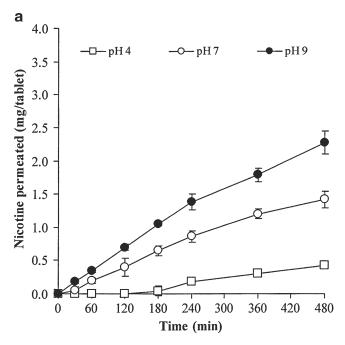
(28). In the FTIR spectra of the pH 9 NCT-MAS complex tablets (Fig. 4d), a shift of the hydroxyl stretching peak of water hydrogen bonded to MAS to a lower wavenumber (3,462 to 3,434 cm<sup>-1</sup>) was observed. A shift of the hydroxyl stretching peak of SiOH from 3,631 to 3,628 cm<sup>-1</sup> was also observed. Moreover, the C-H bending on the pyridine ring of NCT was of low intensity and shifted from 1,429 cm<sup>-1</sup> (Fig. 4c) to a higher wavenumber of 1,435 cm<sup>-1</sup> (Fig. 4d). These results suggest that the amine group of the pyridine ring could interact with MAS via electrostatic forces and intermolecular hydrogen bonding (9). FTIR spectra of the pH 9 NCT-MAS complex-loaded SA tablets showed a shift of the SA COO stretching peaks (Fig. 4e-g) to a higher wavenumber, suggesting that the negative charge of the carboxyl groups of SA interacted electrostatically with the positively charged sites in the edges of MAS and could also create intermolecular hydrogen bonding with MAS silanol groups (11). Furthermore, the shift of the MAS Si-O-Si stretching peak to a lower wavenumber (from 1,020 to 1,016 cm<sup>-1</sup>) could indicate intermolecular hydrogen bonding between SA and MAS. The pH 4 and 7 NCT-MAS complexloaded SA tablets (Fig. 4h, i, respectively) also had spectra similar to those loaded with the pH 9 complexes. Unfortunately, the interaction of SA with NCT could not be clearly examined in this study. This may be due to a small amount of NCT remaining in the swollen gel matrix tablets. However, it is possible that NCT and SA could interact electrostatically because of their opposite charges, as well as through previously reported intermolecular hydrogen bonding (29). These findings indicate that SA can interact with MAS in the swollen gel matrix tablets, resulting in a denser matrix formation, thus modifying NCT release from the tablets. This was the reason describing why a small amount of SA could control the NCT release to achieve zeroorder release kinetics. Additionally, the interaction of NCT with SA in the swollen gel matrix led to NCT release that was mainly controlled by swelling and erosion of the tablets.

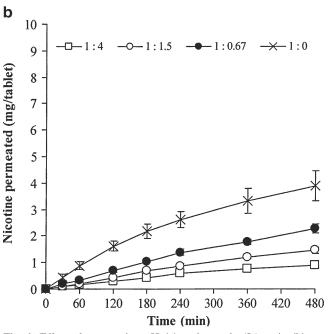
#### **Unidirectional Release and Permeation of NCT**

Studies of the unidirectional NCT release and permeation of the NCT-MAS complex-loaded SA tablets were

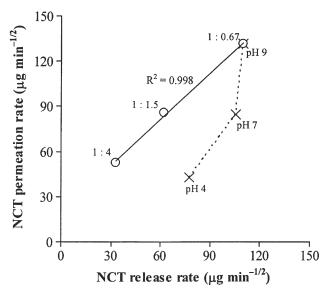
Table V. NCT Release and Permeation Rate of NCT-MAS Complex-Loaded SA Tablets Tested Using Modified USP Dissolution Apparatus 2

|           |                                 | NCT release rate <sup>a</sup>                  |                                                             | NCT perm                                       | neation rate <sup>b</sup>            |
|-----------|---------------------------------|------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------|
| Tablets   | Release exponent, n             | $K_0 \; (\mu \mathrm{g} \; \mathrm{min}^{-1})$ | $K_{\mathrm{H}} \; (\mu \mathrm{g} \; \mathrm{min}^{-1/2})$ | $K_0 \; (\mu \mathrm{g} \; \mathrm{min}^{-1})$ | $K_{\rm H}~(\mu {\rm g~min}^{-1/2})$ |
| Preparati | on pH of complexes              |                                                |                                                             |                                                |                                      |
| pH 4      | $0.70\pm0.01 \ (R^2=0.990)$     | $3.18\pm0.26~(R^2=0.984)$                      | $77.2 \pm 6.6 \ (R^2 = 0.981)$                              | $0.97 \pm 0.10 \ (R^2 = 0.922)$                | $43.1\pm2.6 \ (R^2=0.963)$           |
| pH 7      | $0.61\pm0.01~(R^2=0.997)$       | $4.26\pm0.13~(R^2=0.955)$                      | $105.6\pm2.7\ (R^2=0.994)$                                  | $3.10\pm0.28 \ (R^2=0.979)$                    | $84.6\pm5.3 \ (R^2=0.980)$           |
| pH 9      | $0.66\pm0.04~(R^2=0.993)$       | $4.51\pm0.23 \ (R^2=0.979)$                    | $109.8 \pm 5.2 \ (R^2 = 0.986)$                             | $4.88\pm0.30\ (R^2=0.980)$                     | $131.6\pm7.4\ (R^2=0.993)$           |
| Complex   | /SA ratio                       |                                                |                                                             |                                                |                                      |
| 1:4       | $0.58\pm0.04~(R^2=0.989)$       | $1.30\pm0.07 \ (R^2=0.992)$                    | $32.7\pm1.7 (R^2=0.989)$                                    | $1.90\pm0.24 \ (R^2=0.982)$                    | $52.5\pm6.6 \text{ (R}^2=0.989)$     |
| 1:1.5     | $0.63\pm0.05 \ (R^2=0.991)$     | $2.49\pm0.23 \ (R^2=0.966)$                    | $62.3\pm5.5 \ (R^2=0.981)$                                  | $3.11\pm0.23 \ (R^2=0.986)$                    | $85.7 \pm 5.8 \ (R^2 = 0.990)$       |
| 1:0.67    | $0.66\pm0.04~(R^2=0.993)$       | $4.51\pm0.23 \ (R^2=0.979)$                    | $109.8 \pm 5.2 \ (R^2 = 0.986)$                             | $4.88\pm0.30 \ (R^2=0.980)$                    | $131.6\pm7.4\ (R^2=0.993)$           |
| 1:0       | $0.58 \pm 0.03 \ (R^2 = 0.991)$ | $15.27 \pm 0.66 \ (R^2 = 0.937)$               | $382.3 \pm 15.8 \ (R^2 = 0.995)$                            | $7.90 \pm 1.30 \ (R^2 = 0.955)$                | $208.9 \pm 32.6 \ (R^2 = 0.996)$     |


Data are mean  $\pm$  SD, n=3


NCT release using cellulose acetate membrane

<sup>&</sup>lt;sup>b</sup> NCT permeation using porcine esophageal membrane


performed using 0.45-µm cellulose acetate membrane and porcine esophageal membrane, respectively. The USP dissolution apparatus 2 was modified for measuring the NCT release and permeation of the buccal tablets. The advantages of this modified apparatus were its convenience of operation, high stirring efficiency, and large medium volume for maintaining the sink condition. The NCT release profiles of the NCT-MAS complex-loaded SA tablets from this study are shown in Fig. 5. The NCT release data fit well with the power law equation (Eq. 2), with  $R^2 > 0.99$  (Table V). The exponent obtained was in the range of 0.58-0.70, suggesting an anomalous release mechanism, i.e., that drug diffusion and polymer swelling mechanisms controlled NCT release from the tablets. The exponent values obtained in this study were lower than those obtained from the release testing of whole tablets. This is due to the difference in release conditions and the surface area of the tablets exposed to the medium. Moreover, in the current study, erosion of the swollen gel matrix could not occur because of the use of cellulose acetate membrane as a barrier. The NCT release rates of the tablets were also calculated using the zero-order and Higuchi models, the results of which are listed in Table V. The NCT release rates showed a better fit with the Higuchi model than the zero-order model, as shown by the determination coefficient  $(R^2)$ . The NCT release rate of the tablets increased with increasing preparation pH, even though the amount of SA used in the tablets using the complexes prepared at pH 4 was less than that in the complexes prepared at pH 7 and 9. This is due to the influence of the NCT release of the complex particles that was previously described in "Characteristics of NCT-MAS Complexes." An effect of the complex/SA ratio on NCT release was observed. Increasing the amount of complex in the tablets led to higher NCT release rates (Table V) by increasing the NCT concentration gradient for diffusion process. Moreover, the reduction of SA in the tablets decreased the swelling in the gel matrix that acted as a diffusion barrier for NCT. For this reason, the highest NCT release rate was found in the pH 9 NCT-MAS complex tablets without SA.

The permeation profiles of NCT from the NCT-MAS complex-loaded SA tablets across the mucosal membrane are shown in Fig. 6. NCT permeation rate was calculated using the zero-order and Higuchi models. The Higuchi model provided described the data better than the zero-order model (Table V), as was the case with the NCT release. This suggests that the rate-limiting step was not permeation across the mucosal membrane but NCT diffusion in the swollen gel matrix was. The preparation pH of NCT-MAS complexes had a clear effect on the NCT permeation rate (Fig. 6a and Table V). The tablets using the complexes prepared at pH 4 had the lowest NCT permeation rate with a very long lag time (the point of intersection with time axis); the highest NCT permeation rate was obtained from the complexes prepared at pH 9. This phenomenon occurred because the NCT molecules in the complexes formed at pH 4 were the protonated species (8) that possess lower permeability across the mucosal membranes (19,20). However, at pH 9, NCT is in its neutral species, which has higher mucosal permeability. Moreover, increasing the amount of SA in the tablets led to lower permeation rates of NCT (Table V). This was due to a slower NCT release in tablets with a higher ratio of SA. It was also observed that the permeation rates of NCT were greater than the NCT release rates in the pH 9 NCT-MAS complexloaded SA tablets. This could be explained by the fact that the tablets composed of SA could absorb the medium through the pore channels of the cellulose acetate membrane used, whereas tablets rarely absorbed the medium when using the mucosal membrane due to the membrane's low water permeability. This resulted in increased swelling of the tablets during the release testing and led to the reduction of the concentration gradient and increase of the path length for NCT diffusion. Thus, the NCT release rate was possibly lower than the NCT permeation rate in this study.



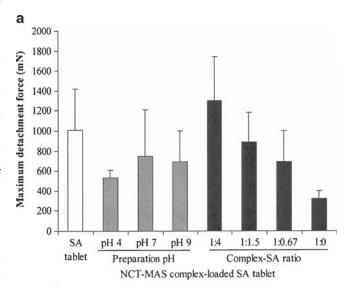


**Fig. 6.** Effect of preparation pH (a) and complex/SA ratio (b) on NCT permeation across porcine esophageal membranes of NCT–MAS complex-loaded SA tablets, measured using a modified USP dissolution apparatus 2. Each *point* is the mean $\pm$ SD, n=3



**Fig. 7.** Relationship between release rate and permeation rate of NCT from NCT-MAS complex-loaded SA tablets prepared using different preparation pH levels of complexes and complex/SA ratios

Relationship between the release rate and the permeation rate of NCT from the matrix tablets with various complex/SA ratios showed good linearity with  $R^2$  higher than 0.99, as shown in Fig 7. It can be seen that the NCT permeation rate increased with increasing NCT release rate from the swollen matrix tablets. This suggested that the greater the NCT release rate, the higher the NCT concentration gradient on the surface of the mucosal membrane. This led to a higher NCT permeation rate as well. In contrast, the matrix tablets using NCT–MAS complexes prepared at different pH levels had not a linear relationship of both parameters. This was due to the low permeability across the mucosal membrane of protonated NCT released from the complexes prepared at acidic and neutral pH levels.


It is preferable to control the delivery of drugs via the drug delivery system rather than via the mucosal membrane. This study showed that the pH 9 NCT–MAS complex tablets without SA gave remarkably higher NCT release rates when compared with the NCT permeation rate, indicating that the permeation of NCT was controlled via the mucosal membrane. In contrast, the pH 9 NCT–MAS complex-loaded SA tablets gave similar release and permeation rates to NCT, suggesting that the delivery of NCT across the mucosal membrane was mainly controlled by the swollen gel matrix of the NCT–MAS complex-loaded SA tablets. This resulted from the molecular interaction of SA with MAS to form the gel matrix structure for controlling drug delivery.

#### **Mucoadhesive Properties of the Tablets**

The mucoadhesive properties, maximum detachment force  $(F_{\rm max})$ , and work of adhesion  $(W_{\rm ad})$  of the tablets are presented in Fig. 8. The NCT-MAS complex-loaded SA tablets with different preparation pH levels had comparable  $F_{\rm max}$  and  $W_{\rm ad}$  values and did not differ from the mucoadhesive properties of SA tablets, although the amount of SA incorporated was quite low in the tablets. However, the pH 4 NCT-MAS complex-loaded SA tablets seemed to display the lowest  $F_{\rm max}$  and  $W_{\rm ad}$ . This is likely because these tablets used

the smallest amount of SA. The complex/SA ratios used in the tablets affected the mucoadhesive properties. The  $F_{\rm max}$  and  $W_{\rm ad}$  of the tablets tended to decrease with decreasing SA amount in the tablets. Surprisingly, the pH 9 NCT–MAS complex tablets without SA showed large enough  $F_{\rm max}$  and  $W_{\rm ad}$  values for adhesion onto the mucosal membrane.

MAS has a silicate layer surface containing numerous hydroxyl groups which could possibly adhere to the mucosal membrane via hydrogen bonding with mucus. The NCT–MAS complex tablets possess mucoadhesive properties, suggesting that MAS still has enough hydroxyl groups to interact with mucus after the complexation with NCT. SA is a polysaccharide that possesses a mucoadhesive property (18,30,31) because it contains numerous hydrogen bondforming groups, *i.e.*, carboxyl and hydroxyl groups. It has been proposed that the interaction between the mucus on mucosal membrane and hydrophilic polymers occurs by physical entanglement and chemical interactions, such as hydrogen bonding (31). Due to the mucoadhesive properties of SA and NCT–MAS complexes, the NCT–MAS complex-loaded SA tablets



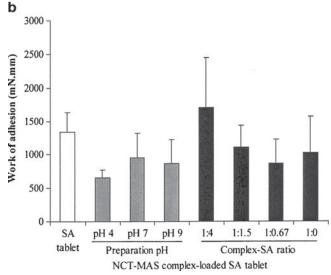



Fig. 8. Maximum detachment force (a) and work of adhesion (b) of the tablets. Each bar is the mean  $\pm$ SD, n=5

were sufficiently mucoadhesive for adhesion onto the mucosal membrane. However, the reduction of SA amount in the tablets caused a decrease of  $F_{\rm max}$  and  $W_{\rm ad}$ , suggesting that the swelling and physical entanglement of SA on the tablet surface was an important process for promoting the interaction with mucus.

#### **CONCLUSION**

The NCT-MAS complex-loaded SA tablets prepared using the direct compression method had favorable physical properties and gave a zero-order NCT release kinetic controlled by a swelling/erosion mechanism. The matrix tablets containing the NCT-MAS complexes prepared at pH 9 showed obviously greater NCT permeation rates than those containing the complexes prepared at acidic and neutral conditions. NCT release and permeation rates decreased with increasing SA amounts in the tablets. The use of the NCT-MAS complexes prepared at pH 9 in the tablets provided a highly effective NCT delivery across the mucosal membrane, which was controlled by the swollen gel matrix of the tablets. This resulted from the molecular interaction of SA with MAS to form the gel matrix structure that controlled the drug diffusion. Moreover, the presence of SA in the tablets could enhance the mucoadhesive properties of the tablets. This study suggests that SA could play an important role for controlling NCT release and enhancing the mucoadhesive properties of NCT-MAS complex-loaded SA tablets, and these tablets demonstrate strong potential for use as a buccal delivery system for NCT.

#### **ACKNOWLEDGMENTS**

The authors would like to thank the Thailand Research Fund (Bangkok, Thailand) for research funding (grant no. RSA5280013) and the Faculty of Pharmaceutical Sciences, Khon Kaen University (Khon Kaen, Thailand) for technical support. We are very pleased to acknowledge the Graduate School, Khon Kaen University (Khon Kaen, Thailand) for a scholarship for Sopaphan Kanjanabat.

#### **REFERENCES**

- 1. Dollery SC. Therapeutic drugs. Edinburgh: Churchill Livingstone; 1991. p. N65–72.
- 2. Nair MA, Chetty DJ, Ho H, Chien YW. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J Pharm Sci. 1997;86:257–62.
- 3. Mihranyan A, Andersson SB, Ek R. Sorption of nicotine to cellulose powders. Eur J Pharm Sci. 2004;22:279–86.
- Borodkin PB. Ion exchange resins and sustained release. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology, vol. 8. New York: Marcel Dekker; 1993. p. 203–16.
- Cheng YH, Watts P, Hinchcliffe M, Hotchkiss R, Nankervis R, Faraj NF, et al. Development of a novel nasal nicotine formulation comprising an optimal pulsatile and sustained plasma nicotine profile for smoking cessation. J Control Release. 2000;79:243–54.
- Kibbe HA. Handbook of pharmaceutical excipients. 3rd ed. Washington: American Pharmaceutical Association; 2000. p. 295–8.
- Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28:1–63.

- Suksri H, Pongjanyakul T. Interaction of nicotine with magnesium aluminum silicate at different pHs: characterization of flocculate size, zeta potential and nicotine adsorption behavior. Colloids Surf B. 2008;65:54–60.
- Pongjanyakul T, Khunawattanakul W, Puttipipatkhachorn S. Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. Appl Clay Sci. 2009;44:242–50.
- Pongjanyakul T, Priprem A, Puttipipatkhachorn S. Investigation of novel alginate-magnesium aluminum silicate microcomposite films for modified-release tablets. J Control Release. 2005;107:343–56.
- Pongjanyakul T. Alginate-magnesium aluminum silicate films: importance of alginate block structures. Int J Pharm. 2009;365:100-8.
- 12. Boyapally H, Nukala RK, Bhujbal P, Douroumis D. Controlled release from directly compressible theophylline buccal tablets. Colloids Surf B. 2010;77:227–33.
- Miyazaki S, Nakayama A, Oda M, Takada M, Attwood D. Chitosan and sodium alginate based bioadhesive tablets for intraoral drug delivery. Biol Pharm Bull. 1994;17:745–7.
- 14. Choi HG, Kim CK. Development of omeprazole buccal adhesive tablets with stability enhancement in human saliva. J Control Release. 2000;68:397–404.
- 15. Choi H, Jung J, Yong CS, Rhee C, Lee M, Han J, *et al.* Formulation and *in vivo* evaluation of omeprazole buccal adhesive tablet. J Control Release. 2000;68:405–12.
- İkinci G, Senel S, Wilson CG, Şumnu M. Development of buccal bioadhesive nicotine tablet formulation for smoking cessation. Int J Pharm. 2004:277:173–8
- Save T, Shah UM, Ghamande AR, Venkatachalam P. Comparative study of buccoadhesive formulations and sublingual capsules of nifedipine. J Pharm Pharmacol. 1994;46:192–5.
- Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.
- Chen LH, Chetty DJ, Chien YW. A mechanistic analysis to characterize oramucosal permeation properties. Int J Pharm. 1999;184:63–72.
- Adrian CL, Olin HBD, Dalhoff K, Jacobsen J. *In vivo* human buccal permeability of nicotine. Int J Pharm. 2006;311:196–202.
- Park CR, Munday DL. Development and evaluation of a biphasic buccal adhesive tablet for nicotine replacement therapy. Int J Pharm. 2002;237:215–26.
- Diaz-del Consuelo I, Jacques Y, Pizzolato G, Guy RH, Falson F. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch Oral Biol. 2005;50:981–7.
- Diaz-del Consuelo I, Falson F, Guy RH, Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J Control Release. 2007;122:135–40.
- Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.
- Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2009;364:328

  –43.
- Ritger PL, Peppas NA. A simple equation for description of solute release. I. Fickian and non-Fickian release from nonswellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.
- Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.
- Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D. Molecular interaction in intercalated organically modified clay and clay– polycaprolactam nanocomposites: experiments and modeling. Polymers. 2006;47:403–14.
- Pongjanyakul T, Suksri H. Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids Surf B. 2009;74:103–13.
- 30. Batchelor HK, Banning D, Dettmar PW, Hampson FC, Jolliffe IG, Craig DCM. An *in vitro* mucosal model for prediction of bioadhesion of alginate solutions to the oesophagus. Int J Pharm. 2002;238:123–32.
- Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57:1666–91.

# Use of propranolol-magnesium aluminum silicate intercalated complexes as drug reservoirs in polymeric matrix tablets

# THANED PONGJANYAKUL\* AND SARASIT ROJTANATANYA\*\*

Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand

Running title: Propranolol-clay complexes as drug reservoirs in tablets

<sup>\*</sup>Address for correspondence E-mail: <u>thaned@kku.ac.th</u>

<sup>\*\*</sup>Current address: Sirindhorn College of Public Health, Ubonratchthani 34190, Thailand

The objective of the present study was to investigate the use of propranolol hydrochloride-magnesium aluminum silicate (PPN-MAS) intercalated complexes as drug reservoirs in hydroxymethyl propylcellulose (HPMC) tablets. HPMC tablets containing PPN-MAS complexes were prepared and characterized PPN release in comparison with PPN tablets and PPN-MAS physical mixture tablets. Additionally, the effect of HPMC viscosity grades, compression pressures, and calcium acetate incorporated on PPN release characteristics of the PPN-MAS complex tablets was also examined. The results showed that the PPN-MAS complex tablets gave higher tablet hardness than the PPN tablets containing pure and PPN-MAS physical mixture. The PPN release of the PPN-MAS complex tablets followed a zero-order release kinetic, whereas an anomalous transport was found in the PPN tablets and the PPN-MAS physical mixture tablets. The use of PPN-MAS complexes provided lower release rate than that of pure PPN. The PPN release rate of the PPN-MAS complex tablet significantly decreased with increasing HPMC viscosity grade. The higher compression pressure used could slow down the PPN released from these tablets. Furthermore, calcium ions incorporated could accelerate PPN release, particularly in acidic medium, because calcium ion could exchange with PPN molecules intercalated in the silicate layers of MAS. These findings suggest that PPN-MAS intercalated complexes showed strong potential for use as drug reservoirs in matrix tablets intended for modifying drug release.

**Keywords:** propranolol, magnesium aluminum silicate, complexes, hydroxypropyl methylcellulose, drug release; matrix tablets

Complexation between drugs and biocompatible materials has been used for improvement of drug solubility, drug stability, drug absorption and bioavailability<sup>[1]</sup>. In recent years, clays and biocompatible inorganic materials have been applied to adsorb the drugs onto their structures because they have a large specific surface area, good adsorption ability and cation exchange capacity<sup>[2,3]</sup>. Magnesium aluminum silicate (MAS), a mixture of natural montmorillonite and saponite clays<sup>[4]</sup>, has a layered structure that is composed of tetrahedrally-coordinated silica atoms fused into an edge-shared octahedral plane of either aluminum hydroxide or magnesium hydroxide<sup>[4,5]</sup>. The negatively charged faces on the silicate layers of MAS have strong electrostatic interactions with amine drugs to form an intercalated complexes, which the drugs could intercalate into the silicate layers of MAS<sup>[6-8]</sup>, thereby leading to the prolonged release of the drug. This finding recently led to potential application of drug-MAS complexes as drug carriers in matrix tablets for buccal delivery<sup>[9]</sup>.

Propranolol hydrochloride (PPN), a secondary amine compound, was the first  $\beta$ –adrenoceptor blocking drug to achieve wide therapeutic use in angina and hypertension<sup>[10]</sup>. It has been selected as a drug candidate for developing sustained-release dosage forms<sup>[11-13]</sup> due to the short half life of PPN (3.9 h)<sup>[10]</sup>. However, many

researchers in development of PPN sustained-release dosage forms were met with problems, such as the difficulty to control drug release because of high aqueous solubility of PPN. This led to a large amount of polymer used in the matrix tablets for sustaining release of drug with high water solubility<sup>[14]</sup>. Recently, PPN could electrostatically interact with MAS to form intercalated complexes. The physicochemical properties of the complex particles were characterized and the PPN-MAS complexes showed sustained release of PPN after initial burst release<sup>[8]</sup>. Thus, it is interesting that the use of the PPN-MAS complexes as drug reservoirs in hydrophilic matrix tablets may modify drug release behavior when compared with the tablets contained with pure PPN.

Therefore, the aim of this work was to investigate physical properties and PPN release behavior of the matrix tablets containing PPN-MAS complexes as drug reservoirs by comparison with those containing pure PPN and PPN-MAS physical mixture. HPMC has been popularly used as a hydrophilic matrix-forming agent<sup>[14-17]</sup>, and was employed in this study. Additionally, the effect of HPMC viscosity grades, compression pressures, and calcium acetate incorporated on PPN release characteristics of the PPN-MAS complex tablets was also examined.

# **MATERIALS AND METHODS:**

MAS (Veegum®HV) and PPN were purchased from the R.T. Vanderbilt Company, Inc. (Norwalk, CT, USA) and Changzhou Yabang Pharmaceutical Co., Ltd. (Jiangsu, China), respectively. Hydroxypropyl methylcellulose in the viscosity grades of 10-20 cP (low viscosity, LV-HPMC), and 40-60 cP (medium viscosity, MV-HPMC) was purchased from Onimax Co., Ltd. (Bangkok, Thialand). High viscosity grade HPMC (HV-HPMC), 80-120 cP, was obtained from S.M. Chemical Supplies Co., Ltd. (Bangkok, Thailand). All other reagents used were of analytical grade and used as received.

# **Preparation of PPN-MAS complexes:**

A 4% w/v MAS suspension was prepared using hot water and cooled to room temperature prior to use. Next, 25 ml of the 4% w/v MAS suspension was mixed with 25 ml of the 1% w/v PPN deionized water solution in an Erlenmeyer flask. The pH of the PPN-MAS dispersion was adjusted by adding a small amount of 1 M HCl or 1 M NaOH into the flask while swirling and using a pH meter (Ion Analyzer 250, Coring, USA) to determine when the final pH of the dispersions was 7. Then the dispersions were incubated at 37 °C with shaking for 24 h to allow PPN adsorption into the MAS to

equilibrate. The PPN-MAS complexes were separated from the filtrates by filtration. Then, the complexes collected were redispersed in 25 ml of the 1% w/v PPN solution in an Erlenmeyer flask, and the mixture was incubated at 37 °C with shaking for 24 h for the second drug loading. The PPN-MAS complexes of the double drug loading were separated, washed and dried at 50 °C for 24 h. The dry PPN-MAS complexes were ground using a mortar and pestle, sieved for collecting the complex particles in the size range of 125-180  $\mu$ m, and kept in a desiccator before use.

# **Scanning electron microscopy (SEM):**

Particle shape and surface morphology of the MAS powder and the PPN-MAS complexes were observed using scanning electron microscopy (SEM). Samples were mounted onto stubs, sputter coated with gold in a vacuum evaporator, and photographed using a scanning electron microscope (Jeol Model JSM-6400, Tokyo, Japan).

# **Preparation of matrix tablets:**

All tablets were prepared using the direct compression method. PPN-MAS complex tablet composed of 200 mg PPN-MAS complexes (equivalent to PPN 40 mg) and 600 mg HPMC for each. The complexes and HPMC were mixed in a rotomixer for 10 min; magnesium stearate (1 %w/w) was then blended with the mixture for 3 min before tabletting. The mixtures were filled into 12-mm flat-faced punches and dies, then applying 6.6, 8.8 or 11.0 MPa with a hydrostatic press (Model 3126, Shimadzu, Kyoto, Japan) without holding time. The tablets obtained were stored in a desiccator prior to use.

PPN tablets and PPN-MAS physical mixture tablets were prepared for drug release comparison with the PPN-MAS complex tablets. Each PPN tablet contained 40 mg PPN and 760 mg LV-HPMC. The PPN-MAS physical mixtures were prepared by mixing PPN and MAS in the ratio of 1:4 by weight. The PPN-MAS physical mixture tablets composed of 200 mg physical mixture (equivalent to PPN 40 mg) and 600 mg LV-HPMC. The next preparation method of these tablets was followed that mentioned above.

Effect of calcium acetate on PPN released from the PPN-MAS complex tablets was investigated in this study. The amount of calcium acetate added was 50, 100 or 150 mg in the PPN-MAS complex tablets that LV-HPMC amount was reduced to 550, 500 or 450 mg, respectively. The proceeded method was the same as mentioned previously.

# **Evaluation of matrix tablets:**

Thickness and hardness. The thicknesses of the tablets were measured using a vernier caliper (Mitutoyo, Japan). The hardnesses of the tablets were measured using a tablet hardness tester (VanKel VK 200, USA).

In vitro release studies. PPN release of the tablets prepared was tested using a USP dissolution apparatus 1 (basket method, VanKel 7000, USA). The tablets were placed into the basket with a rotation speed of 100 revolutions/min. The release medium were 0.1 M HCl and pH 6 phosphate buffer in the volume of 750 ml and the temperature was controlled at  $37.0 \pm 0.5$  °C. Twenty milliliters of samples were collected and replaced with fresh medium at various time intervals. The amount of PPN released was analyzed using a UV-visible spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 290 nm. In the case of calcium ion effect study, the release media were 0.1 M HCl and pH 6.8 Tris buffer containing 8.19 g/l sodium chloride and 0.32 g/l potassium chloride for simulating sodium and potassium ions in small intestine<sup>[18]</sup>. Tris buffer was used instead of phosphate buffer because calcium acetate could not completely dissolve in a phosphate ion-rich medium and an insoluble calcium phosphate was formed.

# **Analysis of PPN release:**

The release mechanisms of PPN from the tablets were determined with a power law<sup>[19]</sup> as shown in Equations 1 and 2, respectively, as follows:

$$\frac{M_t}{M_{\infty}} = kt^n$$
 Eq. 1

and

$$\log \frac{M_t}{M_{\infty}} = n \log t + \log k , \qquad \text{Eq. 2}$$

where  $M_t/M_{\infty}$  is the fractional NCT release at time t, k is the kinetic constant, and n is the release exponent indicative of the drug release mechanism. A release exponent of n=0.5 indicates a diffusion-controlled drug release (Fickian diffusion), whereas a release exponent of n=1 corresponds to a polymer-swelling/erosion-controlled release mechanism. Thus, release exponents between these two extreme values indicates so-called anomalous transport-a complex transport mechanism that is a mixture of both drug diffusion and swelling/erosion of polymer.

The PPN release rate of the tablets was analyzed using both zero-order and Higuchi models<sup>[20]</sup>, which can be expressed as Equations 3 and 4, respectively, as follows:

$$Q = K_0 t$$
 Eq. 3

and

$$Q = K_H t^{1/2}$$
, Eq. 4

where Q is amount of PPN released, t is time, and  $K_0$  and  $K_H$  are the zero-order and Higuchi release rates, respectively.

# Matrix erosion studies:

Matrix erosion of the tablets containing calcium acetate was carried out in 0.1 M HCl and pH 6.8 Tris buffer with sodium chloride and potassium chloride. The method used in this study was modified from that of the previous report<sup>[21,22]</sup>. Weighed tablet (W<sub>i</sub>) was placed in basket and subjected to the condition of the release studies described above. Each basket was taken out at 1 h and morphology of the swollen tablets was viewed using a digital camera (Canon Ixy 920iS, Japan). The baskets were placed in a small beaker, and then put in an oven at 50 °C until the constant weight of the tablet (W<sub>d</sub>) was obtained. The %matrix erosion can be calculated using the following equation.

Matrix erosion (%) = 
$$\left(\frac{W_i - W_d - W_r}{W_i}\right) \times 100$$
 (2)

where W<sub>r</sub> is the mean amount of PPN released during the release study.

# **Statistical analysis:**

One-way analysis of variance (ANOVA) with the least significant difference (LSD) test for multiple comparisons and Student t-test were used to compare the significantly different results of thickness, hardness, and PPN release parameters of the tablets. All statistical tests were performed using the software SPSS for MS Windows, release 11.5 (SPSS (Thailand) Co. Ltd., Bangkok, Thailand).

# **RESULTS AND DISCUSSION:**

# Comparative physical properties and PPN release mechanism of the tablets:

The matrix tablets containing pure PPN, PPN-MAS physical mixture, and PPN-MAS complexes were successfully prepared by using the direct compression method. The LV-HPMC was used as a matrix-forming agent and the compression pressure applied was 11.0 MPa. The thickness of the tablets obtained was in the range of 5.75-6.44 mm (Table 1). The different hardness of the tablets was found that the PPN tablets showed the lowest hardness. The hardness of the PPN-MAS complex tablets was statistically higher (P<0.05) than that of the PPN-MAS physical mixture tablets. This

result suggested that incorporation of MAS in the tablets could increase tablet hardness due to a good compressibility behavior of MAS<sup>[9]</sup>. Moreover, particle and surface morphology of MAS (Fig. 1a and 1b) were different with those of the PPN-MAS complex particles (Fig. 1c and 1d). The PPN adsorbed onto the silicate layers of MAS could modify surface morphology of the PPN-MAS complex particles. The change of surface morphology as well as particle shape of the complex particles may lead to greater interparticle bonding and interlocking with LV-HPMC particles, resulting in higher tablet hardness.

PPN release profiles of the tablets containing pure PPN, PPN-MAS physical mixture, and PPN-MAS complexes are presented in Fig. 2. The PPN tablets gave a sustained release profile of PPN in both 0.1 M HCl and pH 6.8 phosphate buffer, whereas an immediately complete dissolution of pure PPN was obtained with in 2 min of the test (Fig. 2a, left panel). The PPN-MAS physical mixture tablets also showed a sustained release of PPN. The PPN-MAS physical mixture gave an incomplete dissolution of PPN with 65-75 % fast dissolution of PPN and followed with a decreased amount of PPN dissolved (Fig. 2b, left panel). This decrease was due to adsorption of PPN with MAS particles<sup>[8]</sup>. In contrast, the PPN-MAS complexes gave sustained release of PPN after an initial burst release. Incorporation of the PPN-MAS complexes into the matrix tablets could eradicate PPN burst release and could control PPN release (Fig. 2c, left panel).

The PPN release parameters of all tablets are listed in Table 1. The PPN-MAS complex tablets gave the highest release exponent, n value, which was found to be 0.98 in 0.1 M HCl and 0.89 in pH 6.8 phosphate buffer. These values suggested that the PPN release possibly followed a zero-order release kinetic. The release exponents of the PPN tablets and the PPN-MAS physical mixture tablets were in the range of 0.72-0.75 and 0.62-0.64, respectively, indicating an anomalous transport. The PPN release rates of the tablets were calculated using the zero-order and Higuchi models as shown in Table 1. The PPN release of the PPN tablets and the PPN-MAS complex tablets presented good fit with R<sup>2</sup> higher than 0.99 when using the zero-order model. On the other hand, the Higuchi model gave better fit with the PPN released from the PPN-MAS physical mixture tablets showed the lowest PPN release rate, whereas the highest release rate of PPN was found in the PPN tablets. Additionally, the PPN release rates of the PPN tablets and the PPN-MAS physical mixture tablets in 0.1 M HCl were higher than those in pH 6.8 phosphate

buffer. On the other hand, the lower PPN release of the PPN-MAS complex tablets in acidic medium was obtained when compared with that in neutral buffer.

The release exponent of the tablets could be used to describe PPN release mechanism from the matrix tablets. The PPN release mechanism model of the PPN tablets is illustrated in Fig. 2a, right panel. The PPN powders embedded in the matrix tablets could rapidly dissolve after the tablets exposed to dissolution medium owing to high water solubility of PPN. The PPN molecules diffused through a water-filled channel in the swollen matrix, which this process involved tortuosity of the matrix. However, the swollen HPMC matrix could be eroded due to disentanglement and dissolution of HPMC molecules. Thus, the drug release of the PPN tablets was mainly controlled by drug diffusion and polymer swelling/erosion mechanism. Additionally, PPN dissolution rate in the medium also involved the drug release mechanism. This can be seen that the PPN release rate in 0.1 M HCl was lower than that in pH 6.8 phosphate buffer because the PPN solubility in acidic medium was reported to be 225 mg/ml, whereas that in pH 6.8 phosphate buffer was 130 mg/ml<sup>[23]</sup>. This led to higher PPN release in acidic medium. This finding was in agreement with the previous study<sup>[24]</sup>.

The PPN-MAS physical mixture tablets showed the other process that involved the PPN release (Fig. 2b, right panel). The matrix tablets could absorb water from the surrounding medium, leading to dissolution of PPN powders and swelling of MAS particles in the swollen tablets. According to high affinity of a negatively charged MAS with a positively charged PPN<sup>[8]</sup>, an adsorption process of PPN molecules onto the surface of MAS particles was occurred. This resulted in slower PPN release and lower amount of PPN release at 7 h of the test; even through the erosion of the swollen matrix was progressed. Therefore, the release exponent of this tablet was smaller than that of the PPN tablets and the PPN released from this tablet can be described well with the Higuchi model. Moreover, the PPN release rate in acidic medium was also greater than that in pH 6.8 phosphate buffer because of higher PPN solubility and lower PPN affinity of MAS in acidic medium<sup>[8]</sup>.

In the case of the PPN-MAS complex tablets, the PPN-MAS complex particles embedded in the matrix tablets could absorb dissolution medium that was composed of cations, such as hydrogen ion and sodium ion. The PPN intercalated in the silicate layers of MAS could be released by using a cation exchange process, and followed particle diffusion mechanism within the complex particles<sup>[8]</sup>. After that, the diffusion of PPN molecules through water-filled channels in the swollen matrix occurred, which the

erosion of swollen matrix was also progressed (Fig. 2c, right panel). Hence, the particle diffusion-controlled mechanism of the complex particles as drug reservoirs coupled with the drug diffusion and polymer swelling/erosion could control drug release with release exponent close to unity, indicating a zero-order release kinetic of this tablet. However, the PPN release rate in pH 6.8 phosphate buffer was higher than that in acidic medium that in contrast with the PPN tablets and the PPN-MAS physical mixture tablets. For explanation of this point, the matrix erosion of the PPN-MAS complex tablets at 1 h in both media was performed that the results were  $20.5 \pm 2.0 \%$  (n=3) for 0.1 M HCl and  $35.1 \pm 6.7 \%$  (n=3) for pH 6.8 phosphate buffer. This suggested that the faster erosion of the swollen matrix caused greater PPN release rate in pH 6.8 phosphate buffer. It was also indicated that the drug dissolution process did not involve the PPN release mechanism of the PPN-MAS complex tablets, but this process predominantly controlled the drug released from the PPN tablets and the PPN-MAS physical mixture tablets.

# Effect of HPMC viscosity grade on PPN release:

The thickness and hardness of the PPN-MAS complex tablets prepared using different viscosity grades of HPMC and compression pressure at 6.6 MPa are listed in Table 2. The HPMC viscosity grade did not affect thickness of the tablets prepared. On the other hand, the tablet hardness significantly increased (P<0.05) with increasing viscosity grade of HPMC. The use of HV-HPMC presented the highest tablet hardness that was similar to the result of the previous study<sup>[25]</sup>. This result was due to a lower relative density of HV-HPMC when applying compression pressure<sup>[25]</sup>.

The PPN release profiles of the PPN-MAS complex tablets prepared using different grades of HPMC in 0.1 M HCl are shown in Fig. 3. The release exponent, n value, of the tablets seemed to increase when increasing viscosity grade of HPMC (Table 2). The MV-HPMC and HV-HPMC tablets presented the n value close to unity. However, all tablets had better fit with the zero-order model than the Higuchi model. The PPN release rate, K<sub>0</sub>, of the tablets statistically decreased (P<0.05) with increasing HPMC viscosity grade. Generally, increasing viscosity grade of HPMC brought about slower drug release from the HPMC tablets<sup>[26]</sup>. This result was because of a higher viscosity gel barriers created around the tablets when exposed to the dissolution medium. A higher viscosity gel barrier could retard water absorption rate that affected on an ion exchange process of the PPN-MAS complex particles and could reduce drug diffusivity in a water-filled channels due to increasing of tortuosity of swollen matrix. Additionally, slower matrix erosion of the swollen matrix occurred when HV-HPMC was used<sup>[27]</sup>.

# **Effect of compression pressure on PPN release:**

The thickness of the PPN-MAS complex tablets using LV-HPMC was significantly reduced (P<0.05) when increasing compression pressure (Table 3). In contrast, increase of compression pressure caused a significantly higher hardness of the tablets (P<0.05). These results were similar with the previous study<sup>[28]</sup>. It was indicated that the higher the compression pressure, the lower the porosity of the tablets was obtained, leading to decreasing of tablet thickness. Moreover, HPMC presented a plastic deformation under compression pressure, which greater compression pressure caused an increase of interparticle bonding of HPMC particles, resulting in higher tablet hardness<sup>[25]</sup>.

The PPN release of the tablets using different compression pressures in 0.1 M HCl is shown in Fig. 4. It can be seen that the compression pressure affected PPN release. The release exponent of the tablets seemed to increase with increasing compression pressure (Table 3). The tablets using 11.0 MPa compression pressure gave the release exponent close to unity, indicative of the zero-order release kinetic. This led to a good fit of the PPN release with the zero-order model. The PPN release rate, K<sub>0</sub>, decreased with increasing compression pressure and a significantly higher PPN release rate of the tablets using 11.0 MPa compression pressure was found (P<0.05) when compared with those using 6.6 MPa compression pressure. This finding was in contrast with the previous study that the compression pressure had a little influence on drug release from HPMC tablets<sup>[28-31]</sup>. The matrix erosion of the tablets was also investigated as shown in Table 3. It was shown that the tablets using different compression pressures had a similarity of the matrix erosion. This result suggested that higher tablet hardness did not influence water absorption and swelling processes of the tablets when exposed to dissolution medium. Thus, the interesting reason was a change of the PPN-MAS complex particles embedded in the matrix tablets under compression pressure. Previously, the drug-MAS complex particles without other excipients could be compressed as a tablet that provided a very high hardness<sup>[9]</sup>. This result led to slower drug release of the drug-MAS complex tablets when compared with the drug-MAS complex particles. For this reason, the PPN-MAS complex particles could possibly deform under higher compression pressure, which may cause a slower PPN release within the deformed complex particles. Hence, this finding suggested that the use of the PPN-MAS complexes as drug reservoirs in the HPMC tablets was sensitive with compression pressure rather than the HPMC tablets containing pure PPN.

# Effect of calcium ion on PPN-MAS complex tablets:

The PPN-MAS complex tablets incorporated with various amounts of calcium acetate were prepared using LV-HPMC and 6.6 MPa compression pressure. The thickness of the PPN-MAS complex tablets tended to decrease when 150 mg of calcium acetate was incorporated (Table 4). In contrast, the tablet hardness significantly reduced (P<0.05) with adding 50 and 100 mg of calcium acetate, whereas a statistical increase of tablet hardness was found (P<0.05) in the tablets added with 150 mg of calcium acetate when compared with the control tablets. These results suggested that calcium acetate could reduce interparticle bonding of LV-HPMC when adding some of calcium acetate. However, the highest amount (150 mg) of calcium acetate caused an increase in tablet hardness because calcium acetate may have a good compressibility and may form interparticle bonding among itself that could be observed from a reduction of tablet thickness.

The PPN release profiles of the PPN-MAS complex tablets containing various amounts of calcium acetate in 0.1 M HCl and pH 6.8 Tris buffer are shown in Fig. 5a and 5b, respectively. Using 0.1 M HCl, the release exponent, n value, of the tablets was not affected by incorporation of calcium acetate that these values were over the range of 0.67-0.75 (Table 4). The matrix erosion of the swollen tablets statistically increased (P<0.05) when calcium acetate was added, but did not relate to the increase of calcium acetate amount. It can be confirmed by using photo image of the swollen tablets after 1 h of the release testing as presented in Fig. 6. The similarity morphology of the swollen tablets with or without calcium acetate was observed. However, the PPN release rate, K<sub>0</sub>, of the tablets added with calcium acetate was significantly higher (P<0.05) than that of the control tablets. The greater the calcium acetate incorporated, the higher the PPN release rate was found. Apart from the result in acidic medium, the n value of the PPN release in pH 6.8 Tris buffer was close to unity when calcium acetate was incorporated into the tablets (Table 4). The swollen tablets showed higher %matrix erosion when incorporating calcium acetate (Table 4). The morphology of the swollen tablets with calcium acetate was changed (Fig. 6), indicating that incorporation of calcium acetate promoted matrix erosion of the swollen tablets in pH 6.8 Tris buffer. It was also observed that the matrix erosion of the tablets in pH 6.8 Tris buffer was greater than that in 0.1 M HCl. This result led to higher PPN release rate in pH 6.8 Tris buffer when compared with using acidic medium.

Calcium acetate could be dissolved for providing calcium ions in the swollen matrix tablets. The divalent calcium ions could accelerate an ion exchange process of the PPN-MAS complexes, resulting in higher release of PPN from the site of adsorption on the silicate layers of MAS. This occurrence led to higher release rate of PPN from the tablets. However, effect of calcium ions could be clearly observed when the matrix erosion of the swollen HPMC tablets occurred slowly and calcium ions had sufficient time for diffusion into the complex particles for ion exchange process. The phenomena mentioned could be found when using 0.1 M HCl as a dissolution medium. Increase of calcium acetate amount did not promote matrix erosion of the swollen tablets, which calcium ion could accelerate ion exchange process, resulting in higher PPN release rate. In contrast to the use of pH 6.8 Tris buffer, the matrix erosion of the swollen tablets progressed rapidly that the action of calcium ions could not completely occur. Thus, the higher release rate of the PPN-MAS complex tablets in pH 6.8 Tris buffer was mainly controlled by matrix erosion mechanism.

In conclusion, the PPN-MAS complex tablets were successfully prepared using the direct compression method and HPMC was used as a matrix-forming agent. The PPN-MAS complex tablets gave higher tablet hardness than the tablets containing pure PPN and PPN-MAS physical mixture. The PPN release from the PPN-MAS complex tablets followed a zero-order release kinetic because the release of PPN was controlled by many mechanisms, such as a cation exchange process, a particle diffusion-controlled mechanism of the complex particles, drug diffusion through water-filled channel in the matrix, and polymer swelling/erosion of HPMC. The PPN release rate of the PPN-MAS complex tablet decreased with increasing HPMC viscosity grade. The higher compression pressure used could slow down the PPN release from these tablets. Additionally, calcium salt incorporated into the tablets could accelerate PPN release, particularly in acidic medium, because calcium ion could exchange with PPN intercalated in the silicate layers of MAS. These findings suggest that PPN-MAS intercalated complexes can be used as drug reservoirs in polymeric matrix tablets intended for modifying drug release in oral drug delivery systems.

# **ACKNOWLEDGEMENTS**

The authors would like to thank the Thailand Research Fund (Bangkok, Thailand) for research funding (Grant no. RSA5280013). We are very pleased to acknowledge the Faculty of Pharmaceutical Sciences, Khon Kaen University (Khon Kaen, Thailand), for technical support.

## REFERENCES

- 1. Sinko PJ. Martin's Physical Pharmacy and Pharmaceutical Sciences. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 197-222.
- 2. Velde B. Introduction to Clay Minerals. London: Chapman & Hall; 1992. p. 12-36.
- 3. Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 2000;17:207-21.
- 4. Kibbe HA. Handbook of Pharmaceutical Excipients. 3rd ed. Washington: American Pharmaceutical Association; 2000. p. 295-298.
- 5. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 2000;28:1-63.
- 6. Nunes CD, Vaz PD, Fernandes AC, Ferreira P, Romão CC, Calhorda MJ. Loading and delivery of sertraline using inorganic micro and mesoporous materials. Eur J Pharm Biopharm 2007;66:357-65.
- 7. Pongjanyakul T, Khunawattanakul W, Puttipipatkhachorn S. Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. Appl Clay Sci 2009;44:242-50.
- Rojtanatanya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: characterization and factors influencing drug release. Int J Pharm 2010;383:106-15.
- Kanjanabat S, Pongjanyakul T. Preparation and characterization of nicotinemagnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery, AAPS PharmSciTech 2011;12:683-92.
- Dollery SC. Therapeutic Drugs. Edinburgh: Churchill Livingstone; 1991. p. P272-P278.
- 11. Gil EC, Colarte AI, Bataille B, Pedraz JL, Rodríguez F, Heinämäki J. Development and optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride. Int J Pharm 2006;317:32-9.
- 12. Sahoo J, Murthy PN, Biswal S, Sahoo SK, Mahapatra AK. Comparative study of propranolol hydrochloride release from matrix tablets with Kollidon<sup>®</sup>SR or hydroxy propyl methyl cellulose. AAPS PharmSciTech 2008;9:577-82.
- 13. Paker-Leggs S, Neau SH. Pellet characteristics and drug release when the form of propranolol is fixed as moles or mass in formulations for extruded and spheronized Carbopol-containing pellets. Int J Pharm 2009;369:96-104.

- 14. Chakraborty S, Khandai M, Sharma A, Patra CN, Patro VJ, Sen KK. Effects of drug solubility on the release kinetics of water soluble and insoluble drugs from HPMC based matrix formulations. Acta Pharm 2009;59:313-23.
- 15. Basak SC, Srinivasa Rao Y, Manavalan R, Rama Rao P. Controlled release HPMC matrix tablets of propranolol hydrochloride. Ind J Pharm Sci 2004;66:827-30.
- 16. Basak SC, Jayakumar Reddy BM, Lucas Mani KP. Formulation and release behaviour of sustained release ambroxol hydrochloride HPMC matrix tablet. Ind J Pharm Sci 2006;68:594-8.
- 17. Mughal MA, Iqbal Z, Neau SH. Guar gum, xanthan gum, and HPMC can define release mechanisms and sustain release of propranolol hydrochloride. AAPS PharmSciTech 2011;12:77-87.
- 18. Notari RE. Biopharmaceutics and Clinical Pharmacokinetics. New York: Marcel Dekker; 1987. p. 130-220.
- 19. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm 2009;364:328-43.
- 20. Costa P, Sousa Lobo JM., Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001;13:123-33.
- 21. Sutananta W, Craig DQM, Newton JM. An evaluation of the mechanisms of drug release from glyceride bases. J Pharm Pharmacol 1995;47:182-7.
- 22. Pongjanyakul T, Medlicott NJ, Tucker IG. Melted glyceryl palmitostearate (GPS) pellets for protein delivery. Int J Pharm 2004;271:53-62.
- 23. Takka S, Rajbhandari S, Sakr A. Effect of anionic polymers on the release of propranolol hydrochloride from matrix tablets. Eur J Pharm Biopharm 2001;52:75-82
- 24. Colombo P, Bettini R, Massimo G, Catellani PL, Santi P, Peppas NA. Drug diffusion front movement is important in drug release control from swellable matrix tablets. J Pharm Sci 1995;84:991-7.
- 25. Nokhodchi A, Ford JL, Rowe PH, Rubinstein MH. The effects of compression rate and force on the compaction properties of different viscosity grades of hydroxypropylmethylcellulose 2208. Int J Pharm 1996;129:21-31.
- 26. Campos-Aldrete ME, Villafuerte-Robles L. Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets. Eur J Pharm Biopharm 1997;43:173-8.

- 27. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 2001;48:139-57.
- 28. Velasco MV, Ford JL, Rowe P, Rajabi-Siahboomi AR. Influence of drug:hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J Control Release 1999;57:75-85.
- 29. Ford JL, Rubinstein MH, Hogan JE. Propranolol hydrochloride and aminophylline release from matrix tablets containing hydroxypropylmethylcellulose. Int J Pharm 1985;24:339-50.
- 30. Dahl TC, Calderwood T, Bormeth A, Trimble K, Piepmeir E. Influence of physiochemical properties of hydroxypropylmethylcellulose in naproxen release from sustained release matrix tablets. J Control Release 1990;14:1-10.
- 31. Liu C, Kao Y, Chen S, Sokoloski TD, Sheu MT. In-vitro and in-vivo studies of the diclofenac sodium controlled-release matrix tablets. J Pharm Pharmacol 1995;47:360-4.

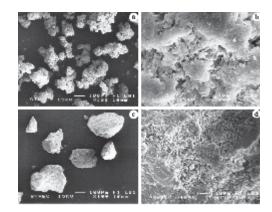



Fig. 1: Particle and surface morphology of MAS (a,b) and PPN-MAS complexes (c,d) used in this study.

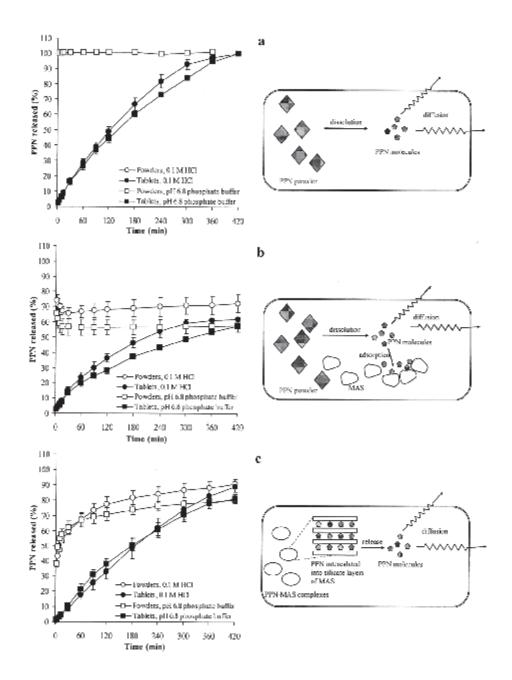



Fig. 2: PPN release profiles (left panel) and PPN release mechanism model (right panel) of HPMC matrix tablets containing pure PPN (a), PPN-MAS physical mixture (b) and PPN-MAS complexes (c). Each point in PPN release profiles is the mean  $\pm$  SD, n=3.

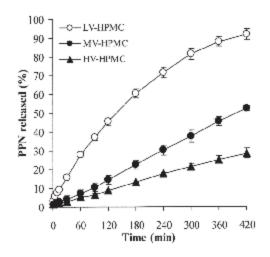



Fig. 3: Effect of viscosity grade of HPMC on PPN release of PPN-MAS complex-loaded HPMC tablets in 0.1 M HCl. Each point is the mean  $\pm$  SD, n=3.

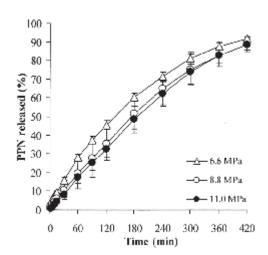



Fig. 4: Effect of compression pressure on PPN release of PPN-MAS complex-loaded HPMC tablets in 0.1 M HCl. Each point is the mean  $\pm$  SD, n=3.

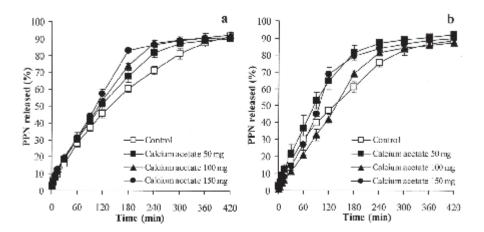



Fig. 5: Effect of calcium acetate amount on PPN release of PPN-MAS complex-loaded HPMC tablets in 0.1 M HCl (a) and pH 6.8 Tris buffer containing sodium chloride and potassium chloride (b). Each point is the mean  $\pm$  SD, n=3.

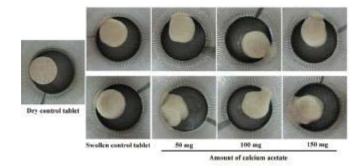



Fig. 6: Photo images of swollen matrix morphology of PPN-MAS complex tablets containing various amounts of calcium acetate in 0.1 M HCl and pH 6.8 Tris buffer after 1 h of release testing.

TABLE 1: PHYSICAL AND DRUG RELEASE CHARACTERISTICS OF HPMC TABLETS CONTAINING DIFFERENT FORMS OF PPN.

| HPMC tablet                 | Thickness       | Hardness     | n                                          |                                            | $ m K_{H}$ (% min <sup>-0.5</sup> ) |                                            | $K_0 \times 10 \ (\% \ min^{-1})$          | -1)                             |
|-----------------------------|-----------------|--------------|--------------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------|
|                             | (mm)            | ( <u>N</u> ) | 0.1 M HCl                                  | Phosphate buffer                           | 0.1 M HCl                           | Phosphate<br>buffer                        | 0.1 M HCI                                  | Phosphate buffer                |
| Pure PPN                    | 6.44 ± 0.02     | 86.6 ± 10.8  | $0.75 \pm 0.02$ $(R^2=0.997)$              | $0.72 \pm 0.04$ $(R^2=0.987)$              | $4.91 \pm 0.37$ $(R^2=0.981)$       | $4.49 \pm 0.30$ (R <sup>2</sup> =0.983)    | $3.90 \pm 0.30$ (R <sup>2</sup> =0.995)    | $3.60 \pm 0.20$ $(R^2=0.991)$   |
| PPN-MAS<br>physical mixture | $5.83 \pm 0.02$ | 131.4 ± 4.3  | $0.64 \pm 0.02$ $(R^2=0.992)$              | $0.62 \pm 0.03$<br>(R <sup>2</sup> =0.992) | $3.76 \pm 0.30$ $(R^2=0.994)$       | $2.98 \pm 0.05$<br>(R <sup>2</sup> =0.998) | $2.20 \pm 0.20$<br>(R <sup>2</sup> =0.965) | $1.33 \pm 0.01$ $(R^2=0.951)$   |
| PPN-MAS<br>complexes        | $5.75 \pm 0.03$ | 179.1 ± 4.4  | $0.98 \pm 0.02$<br>(R <sup>2</sup> =0.993) | $0.89 \pm 0.03$<br>(R <sup>2</sup> =0.990) | $3.91 \pm 0.60$ $(R^2=0.959)$       | $4.28 \pm 0.36$<br>(R <sup>2</sup> =0.976) | $2.70 \pm 0.44$ $(R^2=0.999)$              | $2.90 \pm 0.25$ ( $R^2$ =0.987) |

Data are the mean  $\pm$  SD, n=3. LV-HPMC was used to prepare the tablets at 11.0 MPa compression pressure.

TABLE 2: PHYSICAL AND DRUG RELEASE CHARACTERISTICS OF PPN-MAS COMPLEX-LOADED HPMC TABLETS PREPARED USING DIFFERENT VISCOSITY GRADES OF HPMC IN 0.1 M HCL.

| Viscosity grade of HPMC | Thickness<br>(mm) | Hardness (N)     | n                                          | K <sub>H</sub> (% min <sup>-0.5</sup> )    | $K_0 \times 10$ (% min <sup>-1</sup> )     |
|-------------------------|-------------------|------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| LV-HPMC (10-20 cP)      | $6.22 \pm 0.02$   | $78.5 \pm 5.1$   | $0.74 \pm 0.03$<br>(R <sup>2</sup> =0.997) | $4.79 \pm 0.17$ $(R^2 = 0.984)$            | $3.26 \pm 0.01$ (R <sup>2</sup> =0.987)    |
| MV-HPMC (40-60 cP)      | $6.13 \pm 0.01$   | $288.0 \pm 15.0$ | $0.92 \pm 0.04$<br>(R <sup>2</sup> =0.993) | $2.62 \pm 0.16$<br>(R <sup>2</sup> =0.936) | $1.20 \pm 0.06$<br>(R <sup>2</sup> =0.998) |
| HV-HPMC (80-120 cP)     | $6.13 \pm 0.01$   | $332.4 \pm 10.0$ | $0.83 \pm 0.05$<br>(R <sup>2</sup> =0.992) | $1.40 \pm 0.10$ (R <sup>2</sup> =0.941)    | $0.70 \pm 0.06$<br>(R <sup>2</sup> =0.996) |

Data are the mean  $\pm$  SD, n=3. Compress pressure used to prepare the tablets was 6.6 MPa and 0.1 M HCl was employed as a dissolution medium.

TABLE 3: PHYSICAL AND DRUG RELEASE CHARACTERISTICS OF PPN-MAS COMPLEX-LOADED HPMC TABLETS PREPARED USING DIFFERENT COMPRESSURE PRESSURES.

| Compression pressure (MPa) | Thickness (mm)  | Hardness<br>(N) | n                                          | K <sub>H</sub> (% min <sup>-0.5</sup> )    | $K_0 \times 10$ (% min <sup>-1</sup> )     | Matrix<br>erosion at 1<br>h (%) |
|----------------------------|-----------------|-----------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------|
| 6.6                        | $6.24 \pm 0.02$ | $78.5 \pm 5.1$  | $0.74 \pm 0.03$<br>(R <sup>2</sup> =0.997) | $4.79 \pm 0.17$<br>(R <sup>2</sup> =0.984) | $3.26 \pm 0.01$ (R <sup>2</sup> =0.987)    | $20.7 \pm 1.9$                  |
| 8.8                        | $6.06 \pm 0.02$ | $124.5 \pm 6.1$ | $0.75 \pm 0.10$<br>(R <sup>2</sup> =0.980) | $4.31 \pm 0.42$ (R <sup>2</sup> =0.960)    | $3.00 \pm 0.21$<br>(R <sup>2</sup> =0.990) | $18.7 \pm 0.2$                  |
| 11.0                       | $5.75 \pm 0.03$ | $179.1 \pm 4.4$ | $0.98 \pm 0.02$<br>(R <sup>2</sup> =0.993) | $3.91 \pm 0.60$<br>(R <sup>2</sup> =0.959) | $2.70 \pm 0.44$ (R <sup>2</sup> =0.999)    | $20.5 \pm 2.0$                  |

Data are the mean  $\pm$  SD, n=3.

LV-HPMC was used to prepare the tablets and 0.1 M HCl was employed as a dissolution medium.

TABLE 4: PHYSICAL AND DRUG RELEASE CHARACTERISTICS OF PPN-MAS COMPLEX-LOADED HPMC TABLETS CONTAINING DIFFERENT AMOUNTS OF CALCIUM ACETATE.

| Calcium<br>acetate    | Thickness       | Hardness               | 0.1 M HCI                               |                                            |                              | pH 6.8 Tris buffer                         | ıffer                                    |                              |
|-----------------------|-----------------|------------------------|-----------------------------------------|--------------------------------------------|------------------------------|--------------------------------------------|------------------------------------------|------------------------------|
|                       | (mm)            | $\widehat{\mathbf{Z}}$ | g                                       | $K_0 \times 10 ~(\%$ min <sup>-1</sup> )   | Matrix erosion<br>at 1 h (%) | п                                          | $K_0 \times 10 ~(\%$ min <sup>-1</sup> ) | Matrix erosion<br>at 1 h (%) |
| 0 mg (Control tablet) | 6.22 ± 0.02     | 78.5 ± 5.1             | $0.74 \pm 0.03$ $(R^2=0.997)$           | $3.26 \pm 0.01$ (R <sup>2</sup> =0.987)    | 20.7 ± 1.9                   | $0.79 \pm 0.03$ (R <sup>2</sup> =0.990)    | $3.38 \pm 0.02$ $(R^2=0.972)$            | 39.0 ± 0.5                   |
| 50 mg                 | $6.13 \pm 0.01$ | 51.3 ± 4.4             | $0.75 \pm 0.03$ $(R^2=0.996)$           | $4.07 \pm 0.05$ $(R^2=0.991)$              | $35.0 \pm 1.4$               | $0.79 \pm 0.05$ (R <sup>2</sup> =0.997)    | $5.29 \pm 0.03$ $(R^2=0.990)$            | 51.2 ± 3.3                   |
| 100 mg                | $6.23 \pm 0.01$ | $69.0 \pm 2.5$         | $0.67 \pm 0.04$ $(R^2=0.999)$           | $4.10 \pm 0.01$<br>(R <sup>2</sup> =0.992) | $31.6 \pm 3.6$               | $0.93 \pm 0.05$<br>(R <sup>2</sup> =0.997) | $3.49 \pm 0.03$ (R <sup>2</sup> =0.998)  | 41.8 ± 5.1                   |
| 150 mg                | $6.06 \pm 0.02$ | 93.8 ± 5.9             | $0.74 \pm 0.06$ (R <sup>2</sup> =0.993) | $4.45 \pm 0.02$ (R <sup>2</sup> =0.995)    | $33.3 \pm 6.1$               | $0.82 \pm 0.03$ ( $R^2$ =0.991)            | $4.73 \pm 0.02$ $(R^2=0.992)$            | 53.9 ± 2.5                   |
|                       |                 |                        |                                         |                                            |                              |                                            |                                          |                              |

Data are the mean  $\pm$  SD, n=3. LV-HPMC was used to prepare the tablets at 6.6 MPa compression pressure.

Influence of pH Modifiers and HPMC Viscosity Grades on Nicotine-Magnesium Aluminum Silicate Complex-Loaded Buccal Matrix Tablets

Thaned Pongjanyakul<sup>1,2</sup>, Sopaphan Kanjanabat<sup>1</sup>

<sup>1</sup>Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002,

Thailand

<sup>2</sup>Corresponding author

#### **ABSTRACT**

Hydroxypropyl methylcellulose (HPMC) tablets containing nicotine-magnesium aluminum silicate (NCT-MAS) complex particles and pH modifiers, namely sodium chloride, citric acid and magnesium hydroxide, were prepared using the direct compression method. The effects of HPMC viscosity grades and pH modifiers on NCT release and permeation of the matrix tablets were examined. The results showed that the higher the viscosity grade of HPMC that was used in the tablets, the lower the unidirectional NCT release rate was found to be. The unidirectional NCT permeation was not affected by the viscosity grade of HPMC because the NCT diffusion through the mucosal membrane was the rate-limiting step of the permeation. Incorporation of magnesium hydroxide could retard NCT release, whereas the enhancement of unidirectional NCT release was found in the tablets containing citric acid. Citric acid could inhibit NCT permeation due to the formation of protonated NCT in the swollen tablets at an acidic pH. Conversely, the NCT permeation rate increased with the use of magnesium hydroxide as a result of the neutral NCT that formed at a basic microenvironmental pH. The swollen HPMC tablets, with or without pH modifiers, gave sufficient adhesion to the mucosal membrane. Furthermore, the addition of magnesium hydroxide to the matrix tablets was the major factor in controlling buccal

delivery of NCT. This study suggests that the NCT-MAS complex-loaded HPMC tablets, which contained magnesium hydroxide, are potential buccal delivery systems of NCT.

*KEY WORDS*: pH modifier, Nicotine, Hydroxypropyl methylcellulose, Magnesium aluminum silicate, Buccal tablet

## INTRODUCTION

Buccal drug administration provides several advantages when compared with oral drug administration. Buccal delivery allows drugs to avoid first-pass hepatic metabolism, resulting in greater bioavailability and facilitating drug withdrawal (1). Traditionally, the drug delivery system of this route is in the form of tablets and films. The films have been widely employed, but a large proportion of the drug dose could be swallowed before drug absorption occurs across buccal mucosa because of an initial burst release of the drug from the films (2). To solve this problem, a sustained-release tablet was designed to help reduce this unwanted effect and extend the duration of drug action. Moreover, the mucoadhesive properties of the tablets were also important because adhesion of the drug delivery system to the buccal mucosa was essential during administration (3). For this reason, tablet formulations of bioadhesive polymer were necessary to enhance the mucoadhesive property and sustain drug release. Hydroxypropyl methylcellulose (HPMC) has been widely used for this purpose (4-6).

Nicotine (NCT), obtained from tobacco plants, is a volatile and strongly alkaline liquid. NCT is highly soluble in both water and hydrophobic solvents (7). It has well-separated pK<sub>a</sub> values; pK<sub>a1</sub> and pK<sub>a2</sub> are 3.04 and 7.84, respectively (8), which leads to the formation of diprotonated, monoprotonated, and neutral NCT at acidic, neutral and basic pH levels, respectively. NCT has been widely used in smoking cessation therapy for relieving withdrawal symptoms. It is a candidate for buccal delivery because of its low bioavailability after oral administration (7) and its ability to permeate buccal mucosa (8-10). Due to the volatility and susceptibility to oxidative degradation of free-base NCT, many researchers have sought an adsorbent material for NCT to prevent evaporation and improve stability. The adsorbents, such as

cellulose powder (11), cation exchange resin (12) and magnesium aluminum silicate (13), were employed to carry NCT in powdered form.

Magnesium aluminum silicate (MAS) is a mixture of montmorillonite and saponite clays (14), both of which have silicate layer structures. Each layer comprises tetrahedrally coordinated silica atoms fused into an edge-shared octahedral plane, with either aluminum hydroxide or magnesium hydroxide (14,15). The silicate layers of MAS have weakly positively charged edges and negatively charged surfaces. The negatively charged surfaces of the silicate layers strongly interact with NCT at different pH levels (16), leading to the formation of NCT-MAS complexes. This interaction allows NCT to intercalate into the silicate layers of MAS (13). The NCT-MAS complex particles could improve the thermal stability of NCT and give a sustained release of NCT after the initial burst release in pH 6 phosphate buffer (13). For these reasons, the NCT-MAS complex-loaded matrix tablets have been developed and evaluated (17). The complexes prepared at basic pH gave remarkably higher NCT permeation rates than those containing the complexes prepared at acidic and neutral pH levels. This result indicated that the pH level during the preparation method gave an NCT species that affected the mucosal delivery of NCT. Thus, modulating the microenvironmental pH of the tablets by adding pH modifiers may alter not only NCT release from the matrix tablets, but also NCT permeation through the mucosal membrane. The use of an additive in the NCT buccal tablets to increase pH, such as magnesium hydroxide, has been developed (18). Unfortunately, the effect the amount of pH increasing agent has on NCT release and permeation characteristics of the matrix tablets is not available in the literature.

Therefore, the aim of this study was to investigate the effect of pH modifiers, namely sodium chloride (neutral compound), citric acid (acidic compound) and magnesium hydroxide (basic compound), on NCT release and permeation of the matrix tablets containing NCT-MAS complexes prepared at basic pH. HPMC was used for this investigation because it is a non-ionic bioadhesive polymer that cannot electrostatically interact with positively or negatively charged compounds in the tablets. Moreover, the effect of the viscosity grade of HPMC on the characteristics of the NCT-MAS complex-loaded matrix tablets was also examined. Based on the results of NCT release and permeation, rate control of the NCT delivery was

investigated for a better understanding of when to incorporate pH modifiers into HPMC matrix tablets.

#### MATERIALS AND METHODS

#### **Materials**

MAS (Veegum®HV) and NCT were obtained from R.T. Vanderbilt Company, Inc. (Norwalk, CT, USA), and Fluka (Buchs, Switzerland), respectively. Hydroxypropyl methylcellulose, of viscosity grades of 10-20 cP (low viscosity, LV-HPMC) and 40-60 cP (medium viscosity, MV-HPMC), was purchased from Onimax Co., Ltd. (Bangkok, Thailand). High viscosity grade HPMC (HV-HPMC), 80-120 cP, was obtained from S.M. Chemical Supplies Co., Ltd. (Bangkok, Thailand). Sodium chloride, citric acid monohydrate and magnesium hydroxide were purchased from Merck Ltd. (Bangkok, Thailand). Magnesium stearate (Mallinckrodt Inc., St Louis, MO) was used as a lubricant for tableting. All other reagents that were used were of analytical grade and were used as received.

# **Preparation of NCT-MAS Complexes**

A 4% w/v MAS suspension was prepared using hot water and was cooled to room temperature before use. An NCT solution (2 % w/v) was prepared using deionized water as the solvent. Fifty milliliters of the 4% w/v MAS suspension was then mixed with 50 ml of the 2% w/v NCT solution in an Erlenmeyer flask. The pH of the NCT-MAS dispersion was adjusted by adding small amounts of 1 M HCl into the flask while swirling until the final pH of the dispersions was at 9, as measured with a pH meter (WalkLAB TI9000, Singapore). To achieve NCT adsorption equilibrium on MAS, the dispersions were then incubated with shaking at 37 °C for 24 h (16). Following incubation, the NCT-MAS complexes were collected by filtration, washed twice using 20 ml of deionized water and dried at 50 °C for 24 h. The dry NCT-MAS complexes were ground using a mortar and pestle, sieved through a 180-μm sieve and stored in a desiccator.

# **Characterization of the NCT-MAS Complexes**

## Determination of NCT Content

Twenty-five milligrams of the NCT-MAS complexes were weighed and dispersed in 100 ml of 2 M HCl for 12 h. The supernatant was then collected and filtered, and the NCT content was analyzed using a UV-visible spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 259 nm.

## Particle Size Determination

The particle sizes of the NCT-MAS complexes were measured using a laser diffraction particle size analyzer (Mastersizer2000 Model Hydro2000SM, Malvern Instrument Ltd., UK). The samples were dispersed in 70 ml of pH 6 phosphate buffer in a small volume sample dispersion unit and stirred at a rate of 50 Hz for 30 s before the measurement. The particle sizes (volume-weighted mean diameter) were reported.

#### **Characterization of HPMC**

#### Particle Size Determination

Particle sizes of HPMC powder with different viscosity grades were determined using a laser diffraction particle size analyzer (Mastersizer2000 Model Scirocco2000SM, Malvern Instrument Ltd., UK). The particle sizes (volume-weighted mean diameter) were presented.

# Measurement of Viscosity

HPMC dispersions at a concentration of 2 % w/v in distilled water were prepared. The viscosity of the HPMC dispersion was investigated using a small sample adapter for the Brookfield digital rheometer (Model DV-III, Brookfield Engineering Labs. Inc., USA). The sample temperature was controlled at  $32 \pm 1$ °C. A rheogram of the samples was obtained by plotting between shear stress (y-axis) and shear rate (x-axis) at various revolution rates when a spindle (No. 34) was used. The slope of the rheogram was calculated as the viscosity of the dispersion.

# **Preparation of NCT-MAS Complex-Loaded HPMC Tablets**

All tablets were produced using the direct compression method. Each tablet consisted of 120 mg NCT-MAS complexes (equivalent to 15.8 mg of NCT), 80 mg HPMC and 2 mg magnesium stearate. When a pH modifier was added, enough sodium chloride,

citric acid or magnesium hydroxide was added to give a final content of 5, 10, or 20 % w/w of the tablet weight. The NCT-MAS complexes were mixed with HPMC and pH modifier in a rotomixer for 3 min; magnesium stearate was then blended with the mixture for 1 min before tableting. The mixtures were filled into 10-mm flat-faced punches and dies, and then 23 MPa compression pressure was applied with a hydrostatic press (Model 3126, Shimadzu, Kyoto, Japan) without holding time. The resulting tablets were stored in a desiccator prior to use.

## **Characterization of NCT-MAS Complex-Loaded HPMC Tablets**

Thickness and Hardness

The thicknesses of the tablets were measured using a vernier caliper (Mitutoyo, Japan). The hardnesses of the tablets were measured with a Stokes tablet hardness tester.

#### In Vitro Release Studies

NCT release of the NCT-MAS complex-loaded HPMC tablets was studied using two apparatuses. NCT released from the whole tablets was tested using a USP dissolution apparatus 1 (basket method, VanKel VK200, USA). The tablets were placed into the basket with a rotation speed of 50 revolutions/min. The release medium was 500 ml of pH 6 phosphate buffer, and the temperature was controlled at  $37.0 \pm 0.5$  °C. Seven-milliliter samples were collected and replaced with fresh medium at various time intervals. The amount of NCT released was analyzed using a UV-visible spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 259 nm.

Unidirectional NCT release of the tablets was characterized using a modified USP dissolution apparatus 2 that was reported previously (17). Briefly, the distance between the paddle and vessel bottom was set to 1 cm, and the dissolution medium used was 300 ml of pH 6 phosphate buffer at  $37.0 \pm 0.5$  °C. A cellulose acetate membrane (0.45-µm pore size), which had been hydrated in pH 6 phosphate buffer overnight, was tightly attached at the lowest end of a polypropylene tube (inner diameter =1.8 cm) using a nylon cable tie. This tube was vertically placed in a dissolution vessel, and the distance between the tube and the vessel wall was approximately 1.8 cm. The end of the tube was adjusted so that the membrane was

wetted and in contact with the medium. The tablets were placed into the tube and wetted using 2 ml of pH 6 phosphate buffer. The rotation speed of the paddle was set to 50 revolutions/min. Samples (7 ml) were collected and replaced with fresh medium at various time intervals. The amount of NCT released was analyzed using HPLC.

#### In Vitro Permeation Studies

Unidirectional NCT permeation of the tablets was also performed using a modified USP dissolution apparatus 2. Porcine esophageal mucosa was employed in this study because it had a lipid composition similar to porcine buccal mucosa, but a simpler preparation method (19). Esophageal mucosa of a crossbred pig (hybrid types of Duroc Jersey-Landrace-Large White) weighing 80-100 kg was obtained from a local slaughterhouse (Non Muang Village, Khon Kaen, Thailand). The porcine esophageal tube was opened longitudinally and immersed in 0.9% sodium chloride at 60 °C for 1 min (19, 20). The epithelium was then peeled away from the connective tissue and stored at -20 °C. The frozen mucosal membranes were brought to room temperature by immersion in pH 7.4 isotonic phosphate buffer for 15 min. The mucosal membrane was then mounted and tightly attached to the end of a polypropylene tube. The dissolution vessel contained 300 ml of pH 7.4 isotonic phosphate buffer at 37.0  $\pm$  0.5 °C; the methods and experimental conditions were the same as the previous release testing.

# Analysis of NCT Release and Permeation

The release mechanisms of NCT released from the whole tablet and the unidirectional tablet were analyzed using a power law (21, 22) as shown in Equations 1 and 2, respectively, as follows:

$$\frac{M_t}{M_{\infty}} = kt^n$$
 Eq. 1

and

$$\log \frac{M_t}{M_{\infty}} = n \log t + \log k , \qquad \text{Eq. 2}$$

where  $M_t/M_{\infty}$  is the fractional NCT release at time t, k is the kinetic constant, and n is the release exponent indicative of the drug release mechanism. A release exponent of n = 0.5 indicates a diffusion-controlled drug release (Fickian diffusion), whereas a

release exponent of n = 1 corresponds to a polymer-swelling/erosion-controlled release mechanism. Thus, release exponents between these two extreme values indicate so-called anomalous transport, which is a complex transport mechanism that is a mixture of both drug diffusion and swelling/erosion of polymer.

The NCT release and permeation rates of the tablets were analyzed using both zeroorder and Higuchi models (23), which can be expressed as Equations 3 and 4, respectively, as follows:

$$Q = K_0 t$$
 Eq. 3

and

$$Q = K_H t^{1/2}$$
, Eq. 4

where Q is the amount of NCT released, t is time, and  $K_0$  and  $K_H$  are the zero-order and Higuchi release rates, respectively.

# Measurement of Mucoadhesive Properties

The mucoadhesive properties of the tablets were measured using a texture analyzer (TA.XT plus, Stable Micro Systems, UK) with a 50-N load cell equipped with a bioadhesive test rig.

The tablet was attached to a 10 mm diameter cylindrical probe using two-sided adhesive tape. Esophageal mucosa of pig was also obtained from a local slaughterhouse (Non Muang Village, Khon Kaen, Thailand). The mucosal membrane from the porcine esophagus (approximately 2 cm  $\times$  2 cm), without heat treatment and elimination of the connective tissue that had been hydrated with pH 7.4 isotonic phosphate buffer for 20 min, was placed on the stage of the bioadhesive holder and gently blotted with tissue paper to remove excess water on the surface of the mucosal membrane. Next, 200  $\mu$ l of pH 6 phosphate buffer was pipetted onto the membrane surface before testing. The probe and attached tablet were moved down at a constant speed of 1 mm s<sup>-1</sup> with 0.5 N contact force and 2 min contact time. Immediately afterwards, the probe was moved upwards with a constant speed of 0.5 mm s<sup>-1</sup>. The relationship between the force and tablet displacement was plotted. The maximum detachment force (F<sub>max</sub>) and work of adhesion (W<sub>ad</sub>, the area under the force versus distance curve) were calculated using the Texture Exponent 32 program version 4.0.9.0 (Stable Micro Systems, UK).

## **HPLC Condition for NCT Analysis**

The NCT concentration of the samples from release and permeation testing was determined using HPLC (Perkin Elmer Series, USA). Reversed-phase HPLC using a C-18 column (Waters Spherisorb® S5 ODS2, 5- $\mu$ m particle size,  $4.6 \times 250$  mm, Ireland) connected to a guard column was employed. The mixture of 0.05 M sodium acetate:methanol:triethylamine in the ratio of 88:12:0.5 by volume was used as a mobile phase and the final pH of the mobile phase was adjusted to 4.2 with glacial acetic acid. The flow rate of the mobile phase was 1 ml min<sup>-1</sup>, and the detector was a UV-visible detector at a wavelength of 259 nm. The retention time of NCT was approximately 7.0 min. Under these conditions, good linearity and reproducibility were shown over the range 1.0 - 100.0  $\mu$ g ml<sup>-1</sup> NCT.

# Statistical analysis

One-way analysis of variance (ANOVA) with the least significant difference (LSD) test for multiple comparisons was performed using SPSS program for MS Windows, release 11.5 (SPSS Thailand Co., Ltd., Bangkok, Thailand), to assess the statistical significance of physical properties as well as NCT release and permeation rate of the tablets. The significance of the difference was determined at 95% confident limit ( $\alpha = 0.5$ ) and considered to be significant at a level of *P* less than 0.05.

#### **RESULTS AND DISCUSSION**

# **Characteristics of NCT-MAS Complexes and HPMC**

The size of NCT-MAS complex particles was  $94.03 \pm 1.28$  microns (n = 3) and the NCT content was  $13.20 \pm 0.04$  % w/w (n = 3). The particle size of HPMC with different viscosity grades is listed in Table 1. The MV-HPMC showed the smallest particle size of 75.7 microns, whereas the particle sizes of the LV-HPMC and HV-HPMC were over the range of 96.2 - 106.8 microns. In the viscosity determination, the relationship between shear stress and shear rate provided good linearity, indicating Newtonian flow. Therefore, the slope of such a relationship was the viscosity of HPMC dispersion. The viscosity of HPMC dispersions, as shown in Table 1, was less than that claimed by the manufacturer due to the higher temperature used in this study.

# Effect of HPMC viscosity grade on characteristics of NCT-MAS complex-loaded tablets

The thickness and hardness of the tablets that were prepared using different viscosity grades of HPMC are listed in Table 1. The HPMC viscosity grade did not affect the thickness of the tablets that were prepared. On the other hand, the hardness of the tablets statistically increased (P < 0.05) with increasing viscosity grade of HPMC, and the use of HV-HPMC presented the highest tablet hardness. This result was in agreement with the previous study (24). The tablets gave acceptable physical properties because HPMC had a good compressibility and showed plastic deformation under compression with small elastic recovery when using low compression speed (24), which was similar to the use of hydrostatic press for tableting that had a slow speed for tablet compression.

The NCT release of the whole tablets is presented in Fig. 1a, and the NCT release parameters are listed in Table 1. It can be observed that NCT release was not related to the viscosity grade of HPMC used. The release exponent, n value, of the MV-HPMC tablets was more than unity, whereas that of the LV- and HV-HPMC tablets was in the range of 0.61-0.77. This result suggested that the NCT release of the MV-HPMC tablets was controlled by a matrix erosion mechanism, whereas both NCT diffusion and matrix erosion controlled NCT release of the LV-HPMC and HV-HPMC tablets. The NCT release data of the MV-HPMC tablets showed good correlation when using the zero-order equation with R<sup>2</sup> higher than 0.99 (Table 1). In contrast, the Higuchi model presented a better determination coefficient (R<sup>2</sup>) than the zero-order model for the LV- and HV-HPMC tablets. Furthermore, the MV-HPMC tablets provided the highest K<sub>0</sub> and K<sub>H</sub> values. The LV-HPMC tablets gave lower K<sub>0</sub> and K<sub>H</sub> values than the HV-HPMC tablets. Generally, increasing the viscosity grade of HPMC caused slower drug release from the HPMC tablets (25) due to a higher viscosity gel barrier that was created around the tablets when exposed to the dissolution medium. This phenomenon could be explained for only the NCT release of the LV- and HV-HPMC tablets, but not for the MV-HPMC tablets. The NCT release of the LV- and HV-HPMC tablets mainly followed a matrix diffusion controlled mechanism, indicating that a continuous gel barrier could be formed around the tablets. In the case of the MV-HPMC tablets, an incomplete swelling of MV-HPMC particles may have occurred because the fracture of some NCT-MAS

complex particles, which have a larger particle size than MV-HPMC powder, could cover the surface of the MV-HPMC particles that underwent plastic deformation under compression. Covering the surface of these particles resulted in a slow water uptake and swelling of the MV-HPMC particles to form a continuous gel barrier around the tablets. An incomplete gel formation may lead to rapid erosion and NCT release of the tablets.

Unidirectional release and permeation of NCT from NCT-MAS complex-loaded HPMC tablets using different viscosity grades of HPMC are shown in Fig. 1b and 1c, respectively. The release and permeation parameters of NCT are listed in Table 1. The release exponents of all tablets were over the range of 0.54-0.60. The NCT release rate computed using the Higuchi model gave a better determination coefficient than that using the zero-order model. For these results, it was indicated that the NCT release was controlled by a matrix diffusion controlled mechanism with only a small impact on polymer swelling, which can be observed from the value of the release exponent that was slightly higher than 0.5. The NCT release rate of the tablets using different viscosity grades of HPMC was related to the viscosity value of 2% w/v HPMC that could be represented by the viscosity of the gel barrier that formed surrounding the swollen tablets (Fig. 2). The NCT release rate tended to decrease with increasing viscosity of HPMC. This result was in contrast with the NCT release of the whole tablets because erosion of the swollen tablets did not involve the unidirectional release of NCT. Therefore, the gel barrier could be completely created on the surface of the swollen tablets that were located on the cellulose acetate membrane. Apart from the unidirectional release, the NCT permeation rate could be computed with both the Higuchi and the zero-order models. It can be observed that the NCT permeation rate did not change significantly when increasing the viscosity value of HPMC (Fig. 2). This result suggested that the NCT diffusion across the mucosal membrane was the rate-limiting step of the NCT permeation.

The mucoadhesive properties,  $F_{max}$  and  $W_{ad}$ , of the NCT-MAS complex-loaded matrix tablets when using different viscosity grades of HPMC are presented in Table 1. It was found that the viscosity grade of HPMC did not influence  $F_{max}$  and  $W_{ad}$  values on porcine esophageal mucosa. HPMC is a nonionic polymer that possesses a mucoadhesive property (1,26) because it contains numerous hydroxyl groups that can

form hydrogen bonds. It has been proposed that the interaction between the mucus on the mucosal membrane and hydrophilic polymers occurs by physical entanglement and chemical interactions, such as hydrogen bonding (26). Due to the mucoadhesive properties of HPMC and NCT-MAS complexes (17), the NCT-MAS complex-loaded HPMC tablets adhered sufficiently onto the mucosal membrane.

# Effect of pH modifier on characteristics of NCT-MAS complex-loaded HPMC tablets

The NCT-MAS complex-loaded MV-HPMV tablet was selected as a control tablet for investigating the effect of pH modifiers including sodium chloride, citric acid and magnesium hydroxide, on characteristics of the tablets. Incorporation of pH modifiers caused a change in the thickness and hardness of the tablets (Table 2). The tablet thickness seemed to increase with increasing amounts of pH modifier. Incorporation of 5-20% sodium chloride did not affect the hardness of the tablets, whereas 20% citric acid caused a decrease in tablet hardness, but 5-10% citric acid caused no change. On the other hand, a small amount of magnesium hydroxide brought about a remarkable decrease in the tablet hardness, and a similar tablet hardness was found by further increasing the magnesium hydroxide content (10 and 20%) in the tablets. It is possible to explain that sodium chloride possessed an intermediate plastic deformation with a low degree of fragmentation under the compression pressure (27,28), which was similar to HPMC. Incorporation of sodium chloride into HPMC did not affect deformation and interparticle bonding, leading to no change in the tablet hardness when sodium chloride was added. Conversely, the highest quantity of citric acid significantly decreased the tablet hardness because large amounts of citric acid may reduce interparticle bonding of HPMC. Inorganic materials, such as magnesium hydroxide, that form hard and brittle particles (28) gave fragmentation under compression pressure. This deformation could obviously reduce interparticle bonding and interlocking of HPMC particles, resulting in a decrease in the tablet hardness.

The effect of pH modifiers on NCT release of whole tablets is presented in Fig. 3, and the release exponent of NCT is shown in Fig. 4a. As observed from the NCT release profiles, sodium chloride and citric acid could accelerate NCT release, but a retardation of NCT release was found in the tablets containing magnesium hydroxide. The release exponents of the tablets containing varying quantities of sodium chloride

and citric acid were higher than unity and similar to the control tablets. This finding indicated that a matrix erosion mechanism was the predominant factor in controlling NCT release. The NCT release rates of the tablets containing various contents of sodium chloride and citric acid are presented in Table 2. The NCT release of the tablets containing sodium chloride showed a good fit with the Higuchi model, whereas neither the Higuchi model nor the zero-order model could fit with that of the tablets adding citric acid, which could be observed from a determination coefficient that was smaller than 0.97. However, it was clear that sodium chloride and citric acid could promote release of NCT from the tablets, but the extent of release did not correlate with the amount of sodium chloride and citric acid that was added. It is possible that the high water solubility of sodium chloride and citric acid could accelerate the swelling and erosion of the HPMC tablets, which could cause matrix erosion of the tablets and a higher NCT release rate compared to the control tablets. Moreover, the high water solubility of citric acid, 1 g in 1.69 ml at 20 °C (29), gave a greater NCT release rate than sodium chloride, which has a water solubility of 1 g in 2.78 ml (29). In contrast to the tablets containing magnesium hydroxide, the release exponent was found to be in the range of 0.58-0.62 even though only a small content of magnesium hydroxide was added to the tablets. This range led to a good fit for NCT release with the Higuchi model (Table 2). The NCT release rate of the tablets with magnesium hydroxide was statistically lower (P < 0.05) than that of the control tablets. This finding suggested that incorporating magnesium hydroxide could reinforce and maintain the matrix of the tablets, which could result from an inorganic gel formation of magnesium hydroxide in the tablet matrix after being exposed to the dissolution medium, leading to retardation of matrix erosion and a matrix diffusioncontrolled mechanism of NCT release.

The effect of pH modifiers on unidirectional NCT release from the tablets is shown in Fig. 5, and the release exponent is summarized in Fig. 4b. It can be observed that the release exponent of all tablets was over the range of 0.55-0.69, which is indicative of a drug diffusion and polymer swelling controlled mechanism. The addition of pH modifiers did not influence the NCT release kinetics. However, the release exponent of the unidirectional NCT release was obviously lower than that of the NCT release of the whole tablets, particularly the control tablets and the tablets containing sodium

chloride and citric acid (Fig. 4a), because of the limitation on the erosion process of the swollen matrix tablets when using a cellulose acetate membrane. The NCT release rate of the tablets is listed in Table 3. The Higuchi model gave a better fit with the release of NCT from the unidirectional test than the zero-order model. The addition of sodium chloride did not remarkably affect the release of NCT when compared with the control tablets. This result suggested that sodium ions dissolved in the swollen tablets could not accelerate an ion exchange process with NCT that was intercalated in the silicate layers of MAS. On the other hand, 10 and 20% citric acid could significantly increase the NCT release rate (P < 0.05) when compared with the control tablets. This result was similar to the previous report (30). This similarity was due to the higher water solubility of citric acid that could it allow it to be rapidly dissolved and leach out from the swollen tablets. This leaching led to a decrease in the tortuosity of the swollen matrix and resulted in faster NCT release. In the case of magnesium hydroxide, a significant retardation of NCT release (P < 0.05) was found in comparison with the control tablets but was not proportional to the content of magnesium aluminum silicate added. This result suggested that the formation of an inorganic gel of magnesium hydroxide could reinforce and increase the tortuosity of the swollen matrix, resulting in slower diffusion and release of NCT from the tablets. The unidirectional permeation of the tablets using porcine esophageal mucosal membrane was also investigated as shown in Fig. 6. The NCT permeation rates were calculated using the Higuchi and zero-order models and are reported in Table 3. The NCT permeation could be described using the zero-order model rather than the Higuchi model because of a greater determination coefficient value, suggesting that the NCT diffusion across the mucosal membrane was the rate-limiting step of the permeation. The tablets containing sodium chloride gave a similar NCT permeation rate when compared with the control tablets. The incorporation of citric acid gave a significantly lower NCT permeation rate (P < 0.05) than the control tablets, and 20% citric acid gave the highest retardation effect (P < 0.05). Citric acid could enhance the NCT release from the swollen matrix, but NCT molecules that were released did not readily permeate across the mucosal membrane because NCT in the protonated form under acidic conditions has a low permeability for the mucosal membrane (8,9). On the other hand, magnesium hydroxide provided a statistical enhancement in NCT permeation (P < 0.05) when compared with the control tablets, even through a small quantity (5%) of magnesium hydroxide was used. The basic microenvironmental pH

of the swollen tablets containing magnesium hydroxide could prevent the protonation of NCT, instead giving a neutral species that showed increased permeability across the mucosal membrane, leading to enhanced permeation of NCT. Additionally, the use of 10% magnesium hydroxide showed the highest NCT permeation rate, suggesting that microenvironmental basic pH in the swollen tablets could be sufficient for inducing the formation of neutral NCT. Curiously, the addition of more than 10% magnesium hydroxide did not enhance the NCT permeation.

The mucoadhesive properties of the tablets containing pH modifier are listed in Table 3. The pH modifiers that were added did not affect the  $F_{max}$  and  $W_{ad}$  values of the tablets, which suggested that the MV-HPMC particles still had swelling properties on the tablet surface that incorporated with the particles of pH modifiers. The rapid swelling and disentanglement of MV-HPMC molecules could interact with mucin on the surface of the porcine esophageal mucosa, which resulted in similar mucoadhesive properties when adding a pH modifier to the tablets.

## Rate control studies of the matrix tablets

In the development of the drug delivery system, the delivery of drug to circulating blood must be controlled by the drug delivery system that is administered, which is not controlled by the mucosal membrane. Thus, the rate control studies of the NCT-MAS complex-loaded matrix tablets were modified from the method that was reported previously (31,32). The fractional rate control provided by the device (buccal tablet) and the mucosal membrane could be computed using the NCT release and permeation data from the unidirectional testing and the following equations:

Fractional control by device 
$$(F_d) = \frac{A_p}{A_R}$$

Fractional control by mucosal membrane  $(F_m) = (1-F_d)$ 

where  $A_P$  is the amount of NCT that permeates across the mucosal membrane at 8 h, and  $A_R$  is the amount of NCT released through the cellulose acetate membrane at 8 h. These equations are based on the same testing method of the unidirectional NCT release and permeation.

The fractional control by the buccal tablets is presented in Fig. 7. In the evaluation of different HPMC viscosity grades, the tablets using HV-HPMC gave a remarkably greater  $F_d$  value than those using LV- and MV-HPMC. This result suggested that an increase in swollen gel viscosity could retard and control NCT release onto the mucosal membrane before NCT permeation, leading to a decrease in NCT permeation. Moreover, incorporation of sodium chloride did not influence the  $F_d$  value when compared with the tablets using MV-HPMC (the control tablet). The reduction in the  $F_d$  value was found when adding citric acid because of lower permeability of the protonated NCT that formed on the mucosal membrane. On the other hand, the  $F_d$  values of the tablets containing magnesium hydroxide were close to unity. This result indicated that the NCT permeation across the mucosal membrane was identical with the release of NCT from the tablets because of the formation of neutral NCT under basic pH.

## **CONCLUSION**

The NCT-MAS complex-loaded HPMC tablets were successfully prepared by the direct compression method. The higher the viscosity grade of HPMC that was used in the tablets, the lower the unidirectional NCT release rate that resulted. The unidirectional NCT permeation was not affected by the viscosity grade of HPMC. The incorporation of magnesium hydroxide could retard NCT release, whereas the enhancement of unidirectional NCT release was found in the tablets containing citric acid. Citric acid could inhibit the NCT permeation rate due to the formation of protonated NCT under acidic pH. Conversely, the NCT permeation rate increased with the use of magnesium hydroxide, resulting from a neutral NCT species that formed under basic pH. The swollen HPMC tablets, with or without pH modifier, showed mucoadhesive properties toward the mucosal membrane. Furthermore, the buccal delivery of NCT could be controlled mainly by the matrix tablets with the addition of magnesium hydroxide. This study suggests that the NCT-MAS complex-loaded HPMC tablets containing magnesium hydroxide presented a promising buccal delivery system of NCT.

## **ACKNOWLEDGMENTS**

The authors would like to thank the Thailand Research Fund (Bangkok, Thailand) for research funding (Grant no. RSA5280013) and the Faculty of Pharmaceutical Sciences, Khon Kaen University (Khon Kaen, Thailand) for technical support.

#### REFERENCES

- Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery-a promising option for orally less efficient drugs. J Control Release. 2006;114:15-40.
- 2. Pongjanyakul T, Suksri H. Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids Surf B. 2009;74:103-13.
- 3. Park CR, Munday DL. Development and evaluation of a biphasic buccal adhesive tablet for nicotine replacement therapy. Int J Pharm. 2002;237:215–26.
- 4. Desai KG, Kumar TM. Preparation and evaluation of a novel buccal adhesive system. AAPS PharmSciTech 2004;5 (3): article 35.
- 5. Hassan N, Khar RK, Ali M, Ali J. Development and evaluation of buccal bioadhesive tablet of an anti-emetic agent ondansetron. AAPS PharmSciTech 2009;10:1085-92.
- Movassaghian S, Barzegar-Jalali M, Alaeddini M, Hamedyazdan S, Afzalifar R, Zakeri-Milani P, Mohammadi G, Adibkia K. Development of amitriptyline buccoadhesive tablets for management of pain in dental procedures. Drug Dev Ind Pharm 2011;37: 849-54.
- Dollery SC. Therapeutic Drugs. Edinburgh: Churchill Livingstone; 1991. p. N65-N72
- 8. Nair MA, Chetty DJ, Ho H, Chien YW. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J Pharm Sci. 1997;86:257-62.
- 9. Chen LH, Chetty DJ, Chien YW. A mechanistic analysis to characterize oramucosal permeation properties. Int J Pharm. 1999;184:63-72.
- 10. Adrian CL, Olin HBD, Dalhoff K, Jacobsen J. In vivo human buccal permeability of nicotine. Int J Pharm. 2006;311:196-202.
- 11. Mihranyan A, Andersson SB, Ek R. Sorption of nicotine to cellulose powders. Eur J Pharm Sci. 2004;22:279-86.

- 12. Cheng YH, Watts P, Hinchcliffe M, Hotchkiss R, Nankervis R, Faraj NF, Smith A, Davis SS, Illum DL. Development of a novel nasal nicotine formulation comprising an optimal pulsatile and sustained plasma nicotine profile for smoking cessation. J Control Release. 2000;79:243-54.
- 13. Pongjanyakul T, Khunawattanakul W, Puttipipatkhachorn S. Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. Appl Clay Sci. 2009;44:242-50.
- 15. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28:1-63.
- 16. Suksri H, Pongjanyakul T. Interaction of nicotine with magnesium aluminum silicate at different pHs: Characterization of flocculate size, zeta potential and nicotine adsorption behavior. Colloids Surf B. 2008;65: 54-60.
- 14. Kibbe HA. Handbook of pharmaceutical excipients. 3rd ed. Washington: American Pharmaceutical Association; 2000. p. 295-8.
- 17. Kanjanabat S, Pongjanyakul T. Preparation and characterization of nicotine-magnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery. AAPS PharmSciTech 2011;12:683-92.
- 18. İkinci G, Senel S, Wilson CG, Şumnu M. Development of buccal bioadhesive nicotine tablet formulation for smoking cessation. Int J Pharm. 2004;277:173–8.
- 19. Diaz-del Consuelo I, Jacques Y, Pizzolato G, Guy RH, Falson F. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch Oral Biol. 2005;50:981-7.
- Diaz-del Consuelo I, Falson F, Guy RH, Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J Control Release. 2007;122:135-40.
- 21. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110-1.
- 22. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2009;364:328-43.
- 23. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123-33.
- 24. Nokhodchi A, Ford JL, Rowe PH, Rubinstein MH. The effects of compression rate and force on the compaction properties of different viscosity grades of hydroxypropylmethylcellulose 2208. Int J Pharm 1996;129: 21-31.

- 25. Campos-Aldrete ME, Villafuerte-Robles L. Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets. Eur J Pharm Biopharm 1997;43:173-8.
- 26. Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57:1666-91.
- 27. Alderborn G, Pasanen K, Nyström C. Studies on direct compression of tablets. XI. Characterization of particle fragmentation during compaction by permeametry measurements of tablets. Int J Pharm 1985;23:79-86.
- 28. Roopwani R, Buckner IS. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data. Int J Pharm 2011;418:227-34.
- 29. Schilling SU, Bruce CD, Shah NH, Malick AW, McGinity JW. Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets. Int J Pharm 2008;361:158-68.
- 30. Espinoza R, Hong E, Villafuerte L. Influence of admixed citric acid on the release profile of pelanserin hydrochloride from HPMC matrix tablets. Int J Pharm 2000;201:165-73.
- 31. Guy RH, Hadgraft J. Rate control in transdermal drug delivery? Int J Pharm 1992, 82, R1-R6.
- 32. Pongjanyakul T, Prakongpan S, Priprem A. Acrylic matrix type nicotine transdermal patches: in vitro evaluations and batch-to-batch uniformity. Drug Dev Ind Pharm 2003, 29, 843-53.

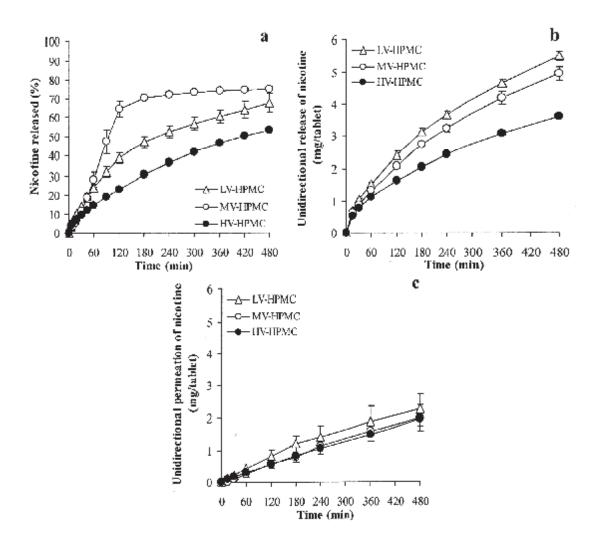



Fig. 1. NCT release profiles of whole tablets (a), and unidirectional NCT release (b) and permeation (c) of NCT-MAS complex-loaded HPMC tablets prepared using different viscosity grade of HPMC. Each value represents the mean  $\pm$  SD of triplicate experiments.

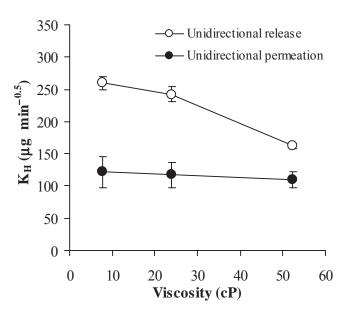



Fig. 2. Relationship between viscosity of 2%w/v HPMC dispersion and unidirectional release and permeation rate of tablets calculated using Higuchi's equation. Each point represented the mean  $\pm$  SD of triplicate experiments.

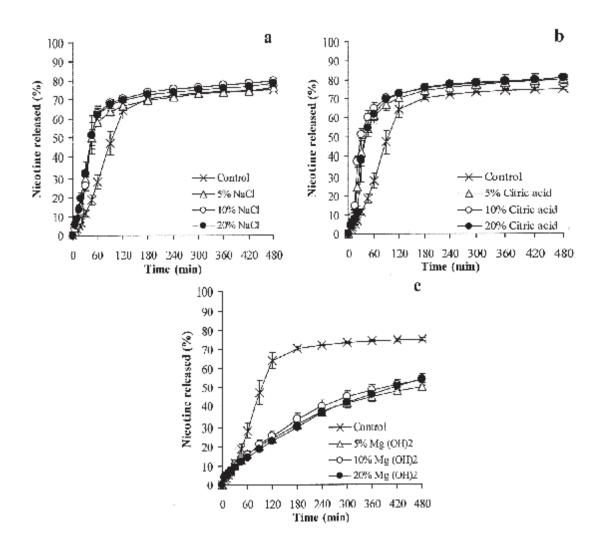



Fig. 3. Effect of pH modifiers on NCT release of whole tablets of NCT-MAS complex-loaded HPMC tablets containing various contents of sodium chloride (a), citric acid (b), and magnesium hydroxide (c). Each value represents the mean  $\pm$  SD of triplicate experiments.

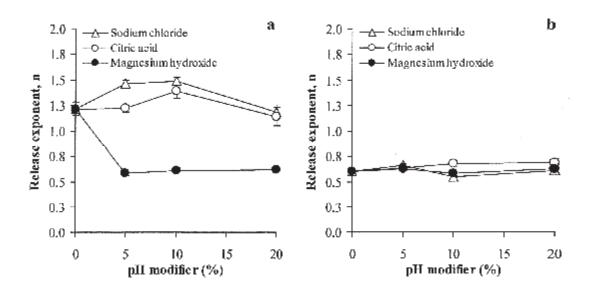



Fig. 4. Release exponent (n) of whole tablets (a) and unidirectional tablets (b) of NCT-MAS complex-loaded HPMC tablets prepared using different pH modifiers. Each value represents the mean  $\pm$  SD of triplicate experiments.

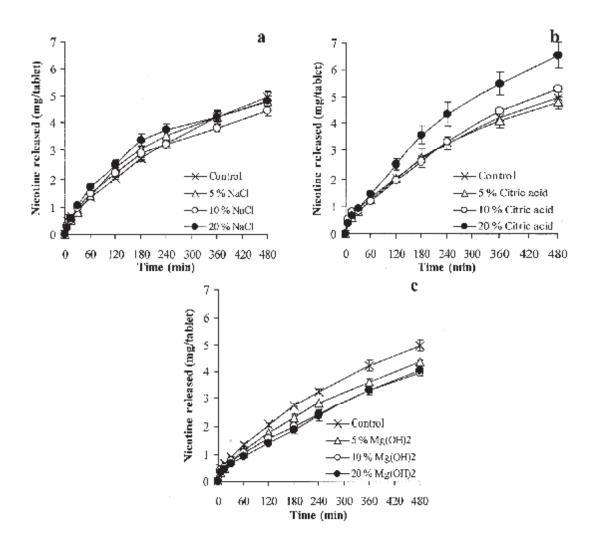



Fig. 5. Effect of pH modifiers on unidirectional NCT release of NCT-MAS complex-loaded HPMC tablets containing various contents of sodium chloride (a), citric acid (b), and magnesium hydroxide (c). Each value represents the mean  $\pm$  SD of triplicate experiments.

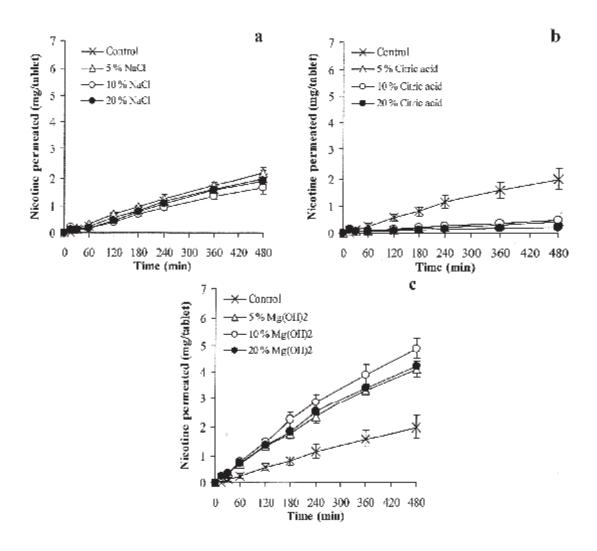



Fig. 6. Effect of pH modifiers on unidirectional NCT permeation of NCT-MAS complex-loaded HPMC tablets containing various contents of sodium chloride (a), citric acid (b), and magnesium hydroxide (c). Each value represents the mean  $\pm$  SD of triplicate experiments.

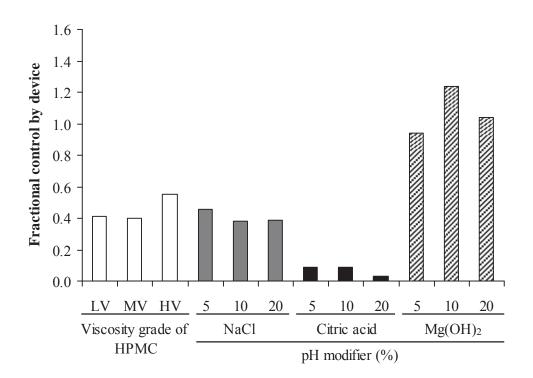



Fig. 7. Fractional control by device of NCT-MAS complex-loaded HPMC tablets prepared using different viscosity grades of HPMC and pH modifiers.

Table 1. Characteristics of HPMC powder and dispersion, and NCT-MAS complexloaded matrix tablets prepared using different viscosity grades of HPMC.

| HPMC characteristics                    | LV-HPMC                                    | MV-HPMC                                     | HV-HPMC                                    |
|-----------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|
| Powders                                 |                                            |                                             |                                            |
| Particles size <sup>a</sup> (µm)        | $106.8 \pm 3.1$                            | $75.7 \pm 0.2$                              | $96.2 \pm 1.3$                             |
| Dispersions                             |                                            |                                             |                                            |
| Viscosity <sup>a</sup> (cP)             | $7.80 \pm 0.02$                            | $24.00\pm0.01$                              | $52.24 \pm 0.01$                           |
| Tablets                                 |                                            |                                             |                                            |
| Thickness <sup>a</sup> (mm)             | $1.81 \pm 0.04$                            | $1.82 \pm 0.03$                             | $1.83 \pm 0.03$                            |
| Hardness <sup>a</sup> (N)               | $66.6 \pm 8.2$                             | $100.7 \pm 3.5$                             | $118.4 \pm 1.8$                            |
| Release of whole tablets <sup>a</sup>   |                                            |                                             |                                            |
| n                                       | $0.77 \pm 0.05$<br>(R <sup>2</sup> =0.996) | $1.21 \pm 0.06$ (R <sup>2</sup> =0.995)     | $0.61 \pm 0.05$ $(R^2 = 0.991)$            |
| K <sub>0</sub> (% min <sup>-1</sup> )   | $0.21 \pm 0.01$<br>(R <sup>2</sup> =0.939) | $0.55 \pm 0.05$<br>(R <sup>2</sup> =0.992)  | $0.11 \pm 0.01$<br>(R <sup>2</sup> =0.939) |
| K <sub>H</sub> (% min <sup>-0.5</sup> ) | $3.84 \pm 0.25$<br>(R <sup>2</sup> =0.995) | $7.14 \pm 0.72$<br>( $R^2 = 0.929$ )        | $2.63 \pm 0.05$<br>( $R^2 = 0.996$ )       |
| Unidirectional release <sup>a</sup>     |                                            |                                             |                                            |
| n                                       | $0.59 \pm 0.02$<br>(R <sup>2</sup> =0.999) | $0.60 \pm 0.01$<br>(R <sup>2</sup> =0.997)  | $0.54 \pm 0.01$<br>(R <sup>2</sup> =0.998) |
| $K_0  (\mu g \; min^{-1})$              | $10.57 \pm 0.36$ (R <sup>2</sup> =0.973)   | $9.54 \pm 0.46$ (R <sup>2</sup> =0.979)     | $6.61 \pm 0.15$ (R <sup>2</sup> =0.973)    |
| $K_{\rm H}$ (µg min <sup>-0.5</sup> )   | $259.6 \pm 9.6$ (R <sup>2</sup> =0.994)    | $242.1 \pm 11.5$<br>(R <sup>2</sup> =0.994) | $162.2 \pm 4.2$ (R <sup>2</sup> =0.993)    |
| Unidirectional permeation <sup>a</sup>  |                                            |                                             |                                            |
| $K_0  (\mu g \; min^{-1})$              | $4.66 \pm 0.92$ (0.969)                    | $4.33 \pm 0.75$<br>(R <sup>2</sup> =0.990)  | $3.96 \pm 0.49$<br>(R <sup>2</sup> =0.997) |
| $K_{H} (\mu g min^{-0.5})$              | $122.1 \pm 24.2$ (0.993)                   | $117.3 \pm 19.4$ (R <sup>2</sup> =0.985)    | $109.3 \pm 12.3$ (R <sup>2</sup> =0.978)   |
| Mucoadhesive property <sup>b</sup>      |                                            |                                             |                                            |
| $F_{max}$ (mN)                          | $541.5 \pm 173.6$                          | $486.7 \pm 122.3$                           | $600.3 \pm 140.2$                          |
| W <sub>ad</sub> (mN mm)                 | $525.7 \pm 87.7$                           | $436.6 \pm 93.3$                            | $577.5 \pm 127.4$                          |

<sup>&</sup>lt;sup>a</sup> Data are mean ± SD, n=3. <sup>b</sup> Data are mean ± SD, n=5.

Table 2. Physical properties and NCT release rate of whole tablets of NCT-MAS complex-loaded MV-HPMC tablets containing different pH modifiers.

| pH modifier              | Thickness (mm)  | Hardness (N)    | K <sub>0</sub> (% min <sup>-1</sup> )      | K <sub>H</sub> (% min <sup>-0.5</sup> )    |
|--------------------------|-----------------|-----------------|--------------------------------------------|--------------------------------------------|
| Control tablet           | $1.82 \pm 0.03$ | $100.7 \pm 3.5$ | $0.55 \pm 0.05$<br>(R <sup>2</sup> =0.992) | $7.14 \pm 0.72$ (R <sup>2</sup> =0.929)    |
| 5 % NaCl                 | $1.83 \pm 0.05$ | $98.8 \pm 2.2$  | $1.30 \pm 0.09$ $(R^2 = 0.993)$            | $12.8 \pm 0.84$ (R <sup>2</sup> =0.968)    |
| 10 % NaCl                | $1.96 \pm 0.04$ | $99.6 \pm 2.7$  | $1.25 \pm 0.08$ (R <sup>2</sup> =0.980)    | $13.6 \pm 0.96$<br>(R <sup>2</sup> =0.964) |
| 20 % NaCl                | $2.01 \pm 0.07$ | $106.4 \pm 4.5$ | $1.18 \pm 0.25$ (R <sup>2</sup> =0.993)    | $10.5 \pm 2.16$ (R <sup>2</sup> =0.945)    |
| 5 % Citric acid          | $1.92 \pm 0.05$ | $98.8 \pm 9.5$  | $1.28 \pm 0.12$ (R <sup>2</sup> =0.972)    | $11.5 \pm 1.18$ (R <sup>2</sup> =0.949)    |
| 10 % Citric acid         | $1.94 \pm 0.04$ | $104.3 \pm 9.5$ | $1.52 \pm 0.10$ (R <sup>2</sup> =0.915)    | $13.9 \pm 0.91$ (R <sup>2</sup> =0.933)    |
| 20 % Citric acid         | $2.18 \pm 0.03$ | $70.6 \pm 2.7$  | $1.52 \pm 0.19$ (R <sup>2</sup> =0.945)    | $14.9 \pm 2.04$<br>(R <sup>2</sup> =0.922) |
| 5 % Mg(OH) <sub>2</sub>  | $1.83 \pm 0.03$ | $62.5 \pm 3.6$  | $0.10 \pm 0.01$<br>(R <sup>2</sup> =0.951) | $2.47 \pm 0.13$<br>(R <sup>2</sup> =0.997) |
| 10 % Mg(OH) <sub>2</sub> | $1.97 \pm 0.03$ | $59.4 \pm 2.6$  | $0.11 \pm 0.01$<br>(R <sup>2</sup> =0.952) | $2.71 \pm 0.13$ (R <sup>2</sup> =0.996)    |
| 20 % Mg(OH) <sub>2</sub> | $2.01 \pm 0.02$ | $61.9 \pm 4.9$  | $0.11 \pm 0.01$<br>(R <sup>2</sup> =0.977) | $2.64 \pm 0.06$ (R <sup>2</sup> =0.995)    |

Data are mean  $\pm$  SD, n=3.

Table 3. Unidirectional release and permeation of NCT and mucoadhesive properties of NCT-MAS complex-loaded MV-HPMC tablets containing different pH modifiers.

| pH modifier                                                                        | Unidirectional NCT release <sup>a</sup>    | VCT release <sup>a</sup>                 | Unidirectional NCT permeation <sup>a</sup> | CT permeation <sup>a</sup>               | Mucoadhesive property <sup>b</sup> | operty <sup>b</sup>     |
|------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------|-------------------------|
|                                                                                    | $K_0$ ( $\mu g \min^{-1}$ )                | $K_{\rm H}$ ( $\mu { m g~min}^{-0.5}$ )  | $K_0$ ( $\mu g \min^{-1}$ )                | $K_{\rm H}$ ( $\mu { m g~min}^{-0.5}$ )  | F <sub>max</sub> (mN)              | W <sub>ad</sub> (mN mm) |
| Control tablet                                                                     | $9.54 \pm 0.46$ (R <sup>2</sup> =0.979)    | $242.1 \pm 11.5$ (R <sup>2</sup> =0.994) | $4.33 \pm 0.75$ $(R^2=0.990)$              | $117.3 \pm 19.4$ (R <sup>2</sup> =0.985) | 486.7 ± 122.3                      | 436.6 ± 93.3            |
| 5 % NaCl                                                                           | $9.43 \pm 0.58$ $(R^2=0.932)$              | $235.8 \pm 13.6$ (R <sup>2</sup> =0.988) | $4.58 \pm 0.16$ (R <sup>2</sup> =0.992)    | $125.6 \pm 4.3$ (R <sup>2</sup> =0.990)  | 435.7 ± 101.6                      | $433.5 \pm 169.6$       |
| 10 % NaCl                                                                          | $9.98 \pm 0.42$ ( $R^2 = 0.926$ )          | $215.8 \pm 9.8$ (R <sup>2</sup> =0.994)  | $3.59 \pm 0.52$ (R <sup>2</sup> =0.992)    | $108.6 \pm 13.7$ (R <sup>2</sup> =0.989) | $437.5 \pm 122.1$                  | $368.3 \pm 67.2$        |
| 20 % NaCl                                                                          | $9.45 \pm 0.31$ (R <sup>2</sup> =0.895)    | $240.8 \pm 9.4$ (R <sup>2</sup> =0.986)  | $4.16 \pm 0.22$ (R <sup>2</sup> =0.989)    | $116.4 \pm 6.4$ (R <sup>2</sup> =0.981)  | 446.7 ± 88.1                       | $449.2 \pm 160.5$       |
| 5 % Citric acid                                                                    | $9.23 \pm 0.50$<br>(R <sup>2</sup> =0.969) | $237.6 \pm 13.8$ (R <sup>2</sup> =0.995) | $0.78 \pm 0.08$<br>(R <sup>2</sup> =0.965) | $19.24 \pm 2.02$ (R <sup>2</sup> =0.942) | $468.2 \pm 96.3$                   | $461.7 \pm 92.4$        |
| 10 % Citric acid                                                                   | $10.19 \pm 0.57$ (R <sup>2</sup> =0.987)   | $268.1 \pm 5.2$ (R <sup>2</sup> =0.986)  | $0.91 \pm 0.22$ (R <sup>2</sup> =0.989)    | $24.92 \pm 5.99$ (R <sup>2</sup> =0.963) | $485.0 \pm 102.6$                  | $392.6 \pm 108.2$       |
| 20 % Citric acid                                                                   | $13.20 \pm 1.25$ $(R^2=0.975)$             | $336.8 \pm 33.4$ (R <sup>2</sup> =0.993) | $0.32 \pm 0.03$<br>(R <sup>2</sup> =0.959) | $8.90 \pm 0.67$ (R <sup>2</sup> =0.945)  | $471.6 \pm 89.6$                   | $464.2 \pm 151.1$       |
| $5\% \mathrm{Mg(OH)}_2$                                                            | $8.44 \pm 0.17$ (R <sup>2</sup> =0.977)    | $213.5 \pm 4.4$ (R <sup>2</sup> =0.994)  | $8.39 \pm 0.53$ (R <sup>2</sup> =0.993)    | $227.4 \pm 13.4$ (R <sup>2</sup> =0.988) | $548.6 \pm 53.8$                   | $531.9 \pm 42.0$        |
| $10\% \mathrm{Mg(OH)_2}$                                                           | $7.34 \pm 0.22$ ( $R^2 = 0.990$ )          | $188.1 \pm 5.9$ (R <sup>2</sup> =0.989)  | $10.19 \pm 0.91$ (R <sup>2</sup> =0.991)   | $277.0 \pm 25.7$ (R <sup>2</sup> =0.990) | $448.8 \pm 76.3$                   | $420.4 \pm 72.6$        |
| $20 \% \mathrm{Mg(OH)_2}$                                                          | $7.76 \pm 0.35$ ( $R^2=0.993$ )            | $196.0 \pm 8.2$ (R <sup>2</sup> =0.977)  | $8.63 \pm 0.21$ (R <sup>2</sup> =0.991)    | $235.4 \pm 5.9$ (R <sup>2</sup> =0.990)  | 452.9 ± 52.7                       | 484.7 ± 42.3            |
| <sup>a</sup> Data are mean $\pm$ SD, n=3. <sup>b</sup> Data are mean $\pm$ SD, n=5 | n=3. <sup>b</sup> Data are mea.            | $n \pm SD, n=5.$                         |                                            |                                          |                                    |                         |

Nicotine-magnesium aluminum silicate microparticles surface-

modified using chitosan for mucosal delivery

Watchara Kanjanakawinkul<sup>1</sup>, Thomas Rades<sup>2</sup>, Satit Puttipipatkhachorn<sup>3</sup>,

Thaned Pongjanyakul<sup>1,\*</sup>

<sup>1</sup>Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002,

Thailand.

<sup>2</sup>School of Pharmacy, University of Otago, PO Box 913, Dunedin, New Zealand.

<sup>3</sup>Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University,

Bangkok 10400, Thailand.

\*Corresponding author

Thaned Pongjanyakul, PhD

Faculty of Pharmaceutical Sciences,

Khon Kaen University,

Khon Kaen 40002,

Thailand

Telephone: 66-43-362092

Fax: 66-43-202379

E-mail: thaned@kku.ac.th

#### **Abstract**

Magnesium aluminium silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, could electrostatically interact to form microparticles. Chitosan (CS) was used for surface modification of the microparticles formed and lyophilization method was applied in order to preserve the originally natural particle morphology of the microparticles. Physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa of the microparticles were investigated. The results showed that the microparticles obtained had an irregular shape and NCT content increased with increasing NCT ratios in the preparation. High molecular weight CS (800 kDa) could adsorb and change the microparticle surface to positive charge. CS molecules could intercalate into the MAS silicate layers and decrease crystallinity of the microparticles, leading to an increase in release rate and diffusion coefficient of NCT from the microparticles. Moreover, higher NCT permeation fluxes and mucoadhesive properties of the microparticles surface-modified with CS was found. However, the enhancement of NCT release and permeation, and also mucoadhesive properties was dependent upon molecular weight and concentration used of CS. This finding suggested that the NCT-MAS microparticles surface-modified with CS displayed a promising mucosal delivery system for NCT.

**Keywords:** Magnesium aluminum silicate, Nicotine, Chitosan, Microparticles, Mucosal delivery.

#### 1. Introduction

Microparticles have been widely used as drug carriers which are very often proposed as drug delivery systems for continuous, targeted, sustained or controlled release of active substances (Agnihotri et al., 2004; Yamada et al., 2001). They can offer homogeneous and reproducible drug absorption, reduction of local irritation, and protection active substances against enzymatic degradation (Allémann et al., 1998). Almost of microparticles have been fabricated using natural and synthetic polymers as the main component. The polymeric microparticles can induce a mucoadhesive effect for increasing a contact time on mucosa, which can enhance drug delivery efficiency (O'Hagan, 1998; Smart, 2005).

Magnesium aluminum silicate (MAS) is a mix of montmorillonite and saponite clays (Kibbe, 2000). MAS presents a silicate layered structure, which is composed of two tetrahedral silicate sheets sandwich to alumina or magnesia octahedral sheet (Alexandre and Dubois, 2000; Kibbe, 2000). It is non-toxicity and non-irritation at the levels employed in pharmaceutical uses (Kibbe, 2000). Moreover, montmorillonite clays presented weak cytotoxicity and good adhesion to cell membrane (Salcedo et al., 2012; Hsu et al., 2012). The MAS silicate layers can be separated when they are hydrated in water. They present a negative charge with large surface area, leading to adsorption with a positively charged drugs. Recently, anionic clays have been used to adsorb drug molecules for enhancing drug stability (Perioli et al., 2012), reducing drug toxicity (Kevadiya et al., 2012) and improving drug efficiency (Perioli et al., 2006), because of drug intercalation into the interlayer spaces of clays.

Nicotine (NCT) is one of drug candidate for adsorbing onto MAS particles via mainly electrostatic interaction (Suksri and Pongjanyakul, 2008; Pongjanyakul et al., 2009). NCT is diprotic base,  $pK_{a1} = 3.04$  and  $pK_{a2} = 7.84$ , resulting in the formation of diprotonated, monoprotonated and neutral species at acidic, neutral, and basic pH levels, respectively (Nair et al., 1997). Rapid interaction between MAS and NCT in neutral and acidic pH conditions lead to formation of NCT-MAS complex flocculates. The characteristics of the NCT-MAS complexes, which were prepared, dried and ground to small particles, were previously investigated (Pongjanyakul et al., 2009). However, drying and grinding process destroyed the particle morphology and characteristics in nature of the flocculate particles, which can be possibly fabricated as

microparticles. For better understanding of the NCT-MAS microparticles in nature, lyophilization technique was used in drying process for maintaining an original morphology of the NCT-MAS microparticles formed. Moreover, the NCT-MAS flocculates formed at acidic and neutral pHs were still have negative charge on the particle surface. It is interesting for modifying the particle surface to positive charge in order to enhance mucoadhesive properties of these microparticles. For this concept, chitosan (CS), which was a cationic polysaccharide and possessed mucoadhesive properties (He et al., 1998), was considered because it could interact and neutralize the MAS charge that was previously reported (Khunawattanakul et al., 2008)

In the present study, we report for the first time about the NCT-MAS microparticles without and with surface modification using CS. The microparticles were prepared using electrostatic interaction between NCT and MAS at pH 4 and 7, and dried using lyophilization method. Low and high molecular weight chitosan (LCS and HCS, respectively) were used for surface modification. The particle morphology, NCT entrapment efficiency, thermal behavior, crystallinity and mucoadhesive properties of the microparticles were investigated. Furthermore, NCT release and permeation across porcine esophageal mucosa were examined to evaluate a potential use for mucosal delivery.

#### 2. Material and method

#### 2.1. Materials

MAS (Veegum<sup>®</sup> HV in the granular form) was obtained from R.T. Vanderbilt Company, Inc.,USA. LCS (MW=80 kDa) and HCS (MW=800 kDa) with 85% degree of deacetylation were purchased from Seafresh Chitosan (Lab) Co. Ltd., Thailand. Nicotine (NCT) was obtained from Fluka, Switzerland. All other reagents used were of analytical grade and used as received.

#### 2.2. Preparation of NCT-MAS microparticles

MAS dispersion (1% w/v) was prepared by dispersing MAS powder in hot deionized water and pH of the MAS dispersion was adjusted to 4 or 7 using 2 M HCl solution. NCT solution in the concentration of 2% w/v at pH 4 or 7 was also prepared in deionized water. To produce NCT-MAS microparticles, 12.5, 25, or 50 ml of 2% w/v NCT solution was dropped into 500 ml of 1% w/v MAS dispersion with stirring using

a propeller at 300 rpm. The mixture was stirred for 1 h before adjusting pH to 4.0 or 7.0 again by using 2 M HCl or 2 M NaOH. Then, the final volume of the mixture was adjusted to 625 ml using deionized water and the mixture was incubated at 37 °C with 75 oscillates/min shaking for 24 h in order to reach equilibrium of NCT adsorption. Then, 10 ml of the mixture was collected to investigate particles size and zeta potential of the wet microparticles. The microparticles were collected by vacuum filtration and washed twice with 25 ml of deionized water. Then, the microparticles were dispersed again in 50 ml of deionized water, and the mixture was frozen at −20 °C and dried using lyophilization method. After drying, the microparticles passed through 125-μm sieve were collected and kept in desiccator until test.

NCT-MAS microparticles surface-modified with CS could be prepared using the following method. Fifty milliliters of 2% w/v NCT solution at pH 4 were dropped into 500 ml of 1% w/v MAS dispersion at pH 4 with continuous stirring using a propeller at 300 rpm for 1 h. After that, 12.5, 25 or 50 of 0.5% w/v HCS or LCS in 0.1 M HCl was gradually poured into NCT-MAS dispersion with continuous stirred for 5 min before adjusting pH to 4.0 by using 2 M HCl or 2 M NaOH. Then, the mixture was adjusted the final volume to 625 ml with deionized water and incubated at 37 °C with 75 oscillates/min shaking for 24 h. The next process was the same as that mentioned above.

#### 2.3. Particle size determination

The particle size of MAS in the dispersions and NCT-MAS microparticles was measured using a laser diffraction particle size analyzer (Mastersizer2000 Model Hydro2000SM, Malvern Instrument Ltd., UK). The samples were dispersed in 70 ml of distilled water in a small volume sample dispersion unit and stirred at a rate of 3,000 rpm for 30 s before the measurement. The volume weighted mean diameter was reported.

#### 2.4. Zeta potential measurement

The zeta potential of MAS and wet NCT-MAS microparticles was determined using a laser Doppler electrophoresis analyzer (Zetasizer Model ZEN 2600, Malvern Instrument Ltd., UK). The temperature of the samples was controlled at 25 °C. The

samples were diluted using deionized water to meet a count rate more than 20,000 counts/s prior to the measurement.

#### 2.5. Scanning electron microscopy (SEM)

The particle shape and surface morphology of MAS and microparticles were observed using SEM. Samples were mounted onto stubs then coated with gold in a vacuum evaporator, and photographed using a scanning electron microscope (Jeol Model JSM-6400, Tokyo, Japan).

#### 2.6. Differential scanning calorimetry (DSC)

DSC thermograms of samples were recorded using a differential scanning calorimeter (DSC822, Mettler Toledo, Switzerland). Each sample (2–3mg) was accurately weighed into a 40-µl aluminum pan without an aluminum cover. The measurements were performed over 30–400 °C at a heating rate of 10 °C/min.

#### 2.7. Fourier transform infrared (FTIR) spectroscopy

The FTIR spectra of samples were recorded with an FTIR spectrophotometer (Spectrum One, Perkin Elmer, Norwalk, CT) using the KBr disc method. Each sample was pulverized, gently triturated with KBr powder in a weight ratio of 1:100 and then pressed using a hydrostatic press at a pressure of 10 tons for 10 min. The disc was placed in the sample holder and scanned from 4000 to 450 cm<sup>-1</sup> at a resolution of 4 cm<sup>-1</sup>.

#### 2.8. Powder X-ray diffractometry

The X-ray diffractograms of each sample was performed on a powder X-ray diffractometer (Philips PW3710 mpd control, The Netherlands). The measurement conditions were a Cu radiation generated at 30 kV and 20mA as X-ray source, angular of 1–35° (2 $\theta$ ) and step angle of 0.02° (2 $\theta$ )/s.

The thickness of the silicate layer of MAS could be computed by Bragg's equation:  $n\lambda = 2d\sin\theta \qquad \qquad \text{Eq. 1}$ 

where n is 1 (the first order reflection),  $\lambda$  is the wavelength of the X-ray (1.54Å),  $\theta$  is the angle of the basal spacing peak of MAS, and d is the silicate layer thickness of MAS.

#### 2.9. Determination of NCT content

Twenty milligrams of the microparticles were weighed and dispersed in 50 ml of 2 M HCl. The mixture was incubated at 37 °C in a shaking water bath for 24 h. Then, the supernatant was collected and filtered using cellulose acetate membrane (0.45-µm pore size). The NCT content was analyzed using a UV–visible spectrophotometer (Shimadzu UV1201, Japan) at a wavelength of 259 nm. The NCT entrapment efficiency could be computed according to the ratio of actual to the theoretical drug content in the microparticles.

#### 2.10. In vitro NCT release studies

A modified Franz diffusion cell was used to characterize NCT release of NCT from the microparticles. The receptor compartment was 5.3 ml of pH 6 phosphate buffer and the temperature was controlled at  $37.0 \pm 0.1$  °C with continuous stirring speed of 600 rpm. A 0.45- $\mu$ m pore size cellulose acetate employed as a membrane in this study was hydrated with pH 6 phosphate buffer for 24 h and mounted on the receptor compartment. The cells were fixed and tightly fastened with a clamp. The amount of the microparticles equivalent to 3 mg NCT was contained in the donor compartment and 100  $\mu$ l of pH 6.0 phosphate buffer was added for wetting the microparticles. At appropriated intervals, samples (0.4 ml) were collected from the receptor compartment and immediately replaced with fresh medium. The concentration of NCT released was analyzed using HPLC.

The NCT release kinetic mechanism was investigated using a particle diffusion controlled model (Bhaskar et al., 1986; Ni et al., 2008; Pongjanyakul et al., 2009), which can be expressed by the following equation:

$$-\ln(1-F) = 1.59 \left(\frac{6}{d_p}\right)^{1.3} D^{0.65} t^{0.65}$$
 Eq. 2

where F is the fractional release of NCT from the microparticles at given time (t),  $d_p$  is the mean particle size of the microparticles, D is the apparent diffusion coefficient and t is time. This model can be investigated by simply testing for linearity between  $-\ln(1-F)$  and  $t^{0.65}$ . The slope (release rate constant) of the straight line (estimated using linear regression analysis) was used to calculate the apparent diffusivity according to the following equation:

$$D = \frac{d_p^2}{36} \left( \frac{\text{slope}}{1.59} \right)^{1/0.65}$$
 Eq. 3

Additionally, the Higuchi model (Siepmann and Siepmann, 2009) was also used to describe the NCT released from the microparticles by diffusion mechanism, which could be expressed by Eq. 4 as follow:

$$F = kt^{1/2}$$
 Eq. 4

where k is release rate constant, and F is the fractional NCT release from the microparticles at given time (t).

#### 2.11. In vitro NCT permeation studies

Porcine esophageal mucosa used as a mucosal membrane was obtained from a local slaughterhouse (Non Muang Village, Khon Kaen, Thailand). The porcine esophageal tube was opened longitudinally and immersed in an isotonic saline solution at 60 °C for 1 min (Diaz-del Consuelo et al., 2005; Diaz-del Consuelo et al., 2007). The epithelium was peeled away from the connective tissue and then frozen at -20°C until further use (Caon and Simões, 2011). The modified Franz diffusion cell was also used for the NCT permeation study. Frozen membranes were brought to room temperature and pre-hydrated in pH 7.4 isotonic phosphate buffer solution for 60 min at 37 °C. The hydrated mucosal membrane was then mounted on a diffusion cell that contained pH 7.4 isotonic phosphate buffer solution as a receptor compartment. The amount of the microparticles equivalent to 3 mg NCT was contained in the donor compartment and 100 µl of pH 6.0 phosphate buffer was added for wetting the microparticles. At appropriated intervals, samples (0.4 ml) were collected from the receptor compartment and immediately replaced with fresh medium. The concentration of NCT released was analyzed using HPLC. Steady-state fluxes of NCT permeation across the mucosal membrane could be calculated from the linear relationship between cumulative amount of NCT permeated (µg cm<sup>-2</sup>) and time (h) using linear regression analysis.

#### 2.12. Measurement of mucoadhesive properties

The mucoadhesive properties of the microparticles were measured using a texture analyzer (TA.XT Plus, Stable Micro Systems, Haslemere, Surrey, UK) equipped with a 50-N load cell and bioadhesion test rig. Porcine esophageal mucosa was also used,

which was obtained from a local slaughterhouse (Non Muang Village, Khon Kaen, Thailand). The porcine esophagus (about  $2 \text{ cm} \times 2 \text{ cm}$ ) without heat treatment and elimination of the connective tissue was hydrated with pH 7.4 isotonic phosphate buffer for 20 min prior to test.

Microparticles were compressed into a thin disc with a smooth surface for complete contact to the mucosal membrane. A 10-mm diameter punches and die was used. To prevent a stick of microparticles, the surface of lower and upper punches was covered with a Teflon sheet (0.5-mm thickness) before compression. Twenty milligrams of microparticles were filled in the die and compressed at a pressure of 6.2 MPa using a hydrostatic press (Model 3126, Shimadzu, Kyoto, Japan). The thin disc (approximately 250-µm thickness) was attached to a 10-mm diameter cylindrical probe of the bioadhesion test rig with double-sided adhesive tape. The hydrate membrane was placed on the stage of bioadhesive holder and gently blotted with tissue paper to remove excess water on the surface of the mucosal membrane. Next, 100 µl of pH 6.0 phosphate buffer was pipetted onto the membrane surface and then, the probe that had been attached with the thin disc was moved down at a constant speed of 1.0 mm s<sup>-1</sup> with 1.0 N contact force and 2.0 min contact time. Immediately afterwards, the probe was moved upwards with a constant speed of 0.5 mm s<sup>-1</sup>. The relationship between detachment force and disc displacement was recorded. The maximum detachment force (DF<sub>max</sub>) and work of adhesion (W<sub>ad</sub>, the area under the force versus distance curve) were calculated using the Texture Exponent 32 program version 4.0.9.0 (Stable Micro Systems, UK).

#### 2.13. HPLC analysis

The concentration of NCT was determined by HPLC analysis (Agilent 1000 series, Agilent Technologies, USA). A Reversed-phase C-18 column (Water Spherisorb® S5 ODS2, 5  $\mu$ m, 4.6 × 250 mm) with a guard column was connected to the HPLC instrument. The mobile phase was 0.05 M sodium acetate:methanol:triethylamine (88:12:0.5 v/v) and adjusted a final pH to 4.2 using glacial acetic acid. The flow rate of mobile phase was 1 ml min<sup>-1</sup>, and samples were detected at a wavelength of 259 nm using a UV-visible spectrophotometric detector. The retention time of NCT was

approximately 6.7 min. Under these conditions, linearity and reproducibility were seen over the range of 1-50  $\mu$ g ml<sup>-1</sup> NCT.

#### 2.14. Statistical analysis

One-way analysis of variance (ANOVA) with the least significant difference (LSD) test for multiple comparisons was performed using SPSS program for MS Windows, release 11.5 (SPSS (Thailand) Co., Ltd., Bangkok, Thailand). The significant difference of the results obtained was determined at 95% confident limit ( $\alpha$ =0.5) and considered to be significant at a level of P less than 0.05.

#### 3. Result and discussion

3.1. Particle morphology, zeta potential and NCT content of NCT-MAS microparticles The particle size and zeta potential of MAS in the dispersion was found to be  $4.47 \pm$  $0.01 \mu m$  (n=3) and  $-33.5 \pm 2.4 mV$  (n=3), respectively. Incorporation of NCT into MAS dispersion at pH 4 and 7 caused a formation of microparticles due to electrostatic interaction between a positively charged NCT and a negatively charged MAS. The wet microparticles prepared using 0.1:1 and 0.2:1 ratios of NCT and MAS at pH 4 gave smaller particle size than those at pH 7 (Table 1). This was due to the difference protonated NCT formed. The 12.7% neutral and 87.3% monoprotonated NCT were formed at pH 7, whereas NCT at pH 4 was composed of 8.4% diproptonated and 91.6% monoprotonated species. The diprotonated NCT formed at pH 4 had stronger attraction force for microparticle formation, resulting in denser structure of microparticles. However, neither preparation pH nor NCT-MAS ratios affected the zeta potential of the wet microparticles formed (Table 1). Surface modification using CS at pH 4 resulted in an increase in particles size and a reduction of negative charges of NCT-MAS microparticles (Table 1). This was due to electrostatic interaction of protonated CS with residue negative charge of MAS on the surface of the microparticles (Khunawattanakul et al., 2008; Khunawattanakul et al., 2010). Additionally, the microparticle surface could be changed to positive charge when using HCS in the concentration of 0.02 and 0.04% w/v, suggesting that the microparticles were completely coated with HCS at those concentrations. The higher the HCS concentration, the greater the quantity of HCS molecules coated on the microparticle surface that could be observed from the increase of positive charge of

the microparticles. Therefore, surface modification of the NCT-MAS microparticles was dependent on molecular weight and concentration of CS.

The particle sizes of the dry NCT-MAS microparticles without or with surface modification using CS tended to slight increase when compared with those of the wet microparticles (Table 1). This may be due to a particle aggregation during drying process. The particle and surface morphology of MAS and microparticles are presented in Fig. 1. MAS showed a granular form (Fig. 1a), whereas the NCT-MAS microparticles without and with surface modification using CS had an irregular shape (Fig. 1c and 1e, respectively). However, the surface morphology of the microparticles was similar to that of MAS (Fig. 1b, 1d and 1f). The particle and surface morphology of the NCT-MAS microparticles were remarkably different from those of the NCT-MAS complex particles that were prepared with the same procedure, dried at high temperature and ground to get small particles, which was previously reported (Pongjanyakul et al., 2009). It was suggested that the use of freeze-dried method in this study could maintain an originally natural particle morphology of the NCT-MAS microparticles prepared using an electrostatic interaction.

The NCT content in the NCT-MAS microparticles significantly increased (P<0.05) with increasing NCT ratio in the dispersion (Table 1). This suggested that NCT adsorption onto the MAS particles could be driven by higher concentration of NCT before reaching adsorption equilibrium. However, NCT entrapment efficiency of the microparticles statistically reduced (P<0.05) when the NCT ratio was increased, indicating that adsorption sites of MAS for NCT were limited and thus higher quantity of NCT remained in the supernatant after adsorption equilibrium. The NCT-MAS microparticles surface-modified with LCS and HCS showed 8.3-8.9 % w/w of NCT contents that was significantly decreased (P<0.05) when compared with that of the microparticles without surface modification (Table 1). It was suggested that a large molecules of CS added could exchange with NCT adsorbed onto the microparticles, resulting in reduction of NCT entrapment efficiency of the microparticles.

#### 3.2. Molecular interaction of microparticle components

Molecular interaction of MAS, NCT and CS was investigated using FTIR spectroscopy and PXRD diffractometry. FTIR spectra of NCT showed hydroxyl stretching peak at 3413 cm<sup>-1</sup>, C-H stretching peaks at 2781-2969 cm<sup>-1</sup>, aromatic C=C stretching peak at 1593 cm<sup>-1</sup>, aromatic C=N stretching peak at 1579 cm<sup>-1</sup>, pyridinic C-H bending peaks of CH<sub>2</sub> groups at 1429-1478 cm<sup>-1</sup>, pyridinic C-N stretching peak at 1027 cm<sup>-1</sup>, and the out of plane stretching peak of C-H bond at 717 cm<sup>-1</sup> as presented in Fig. 2a. The MAS presented hydroxyl stretching of SiOH, hydroxyl stretching of hydrogen bonded water, hydroxyl bending, and Si-O-Si stretching peaks at 3632, 3449, 1639, and 1016 cm<sup>-1</sup>, respectively (Fig. 2b). The spectra of the pH 4 NCT-MAS (0.2:1) microparticles showed a shift of hydroxyl stretching peak of SiOH of MAS to lower wavenumber (Fig. 2c), indicating hydrogen formation of SiOH of MAS with an amine group of pyridine ring of NCT. Unfortunately, the change in the C-N stretching peak of NCT at 1027 cm<sup>-1</sup> was not found because this peak was overlapped with the Si-O-Si stretching peaks of MAS. However, the new peak of protonated amine groups (-NH<sup>+</sup>) at 2714 cm<sup>-1</sup> was observed (Nakanishi and Solomon, 1977; Pongjanyakul et al., 2009). It is possible to expect that the change of pyridinic C–H bending peaks of CH<sub>2</sub> groups and the out of plane stretching peak of C–H bond of NCT suggested an electrostatic between the amine group of the pyridine ring and negatively charged MAS (Pongjanyakul et al., 2009). In the case of the NCT-MAS microparticle surface-modified with CS, the spectra of HCS showed the OH stretching peak, which overlapped with the N-H stretching, at 3449 cm<sup>-1</sup>, the C-H stretching peak around 2922-2880 cm<sup>-1</sup>, NH<sub>2</sub> bending (amide II) peak of primary amine at 1596 cm<sup>-1</sup>, and the CH<sub>2</sub> bending peak at 1420 cm<sup>-1</sup> (Fig. 2d). It was found that the HCS spectra peaks were not observed in the microparticle surface-modified with CS (Fig. 2e). This may be due to too low quantity of CS in the microparticles. However, the small peak of free hydroxyl groups around 3681-3683 cm<sup>-1</sup> indicated strong interaction of MAS with NCT and HCS. The stronger vibration of free hydroxyl groups on the inner surface of MAS silicate layers could be occurred when NCT and CS could intercalate into the MAS silicate layers that was previously reported (Pongjanyakul et al., 2009; Khunawattanakul et al., 2010). Additionally, the molecular interaction of the three components could be confirmed using PXRD studies.

The PXRD pattern of MAS presented the basal spacing peak at 7.21  $^{\circ}$ (2 $\theta$ ) (Fig. 3, left panel), representing that the thickness of MAS silicate layer was 1.22 nm. The NCT-MAS microparticles prepared at pH 4 and 7 showed stronger intensity of the basal spacing peak at 5.95 and 6.03 °(20), respectively. This indicated that the thickness of MAS silicate layers was increased to 1.46 and 1.48 nm, respectively, because of NCT intercalation into the MAS silicate layers. Incorporation of LCS and HCS in the preparation process caused a reduction of the basal spacing peak intensity of MAS (Fig. 3, middle and right panels), indicative of lower crystallinity of the microparticle formed. The microparticle surface-modified with LCS and HCS at the concentration of 0.04% w/v showed an obvious shift of the basal spacing peak to 5.95 and 5.83 °(20), respectively. These results indicated that the thicknesses of MAS silicate layers of the microparticles were 1.48 and 1.51 nm for using LCS and HCS, respectively. Furthermore, the microparticles surface-modified with CS had lower intensity and slight broader basal spacing peak. This suggested that CS, which could be coated on the microparticle surface and intercalated into the silicate layers of MAS, could change and reduce crystallinity of the microparticles. Therefore, the schematic presentration model of NCT-MAS microparticles surface-modified with CS can be presented in Fig. 4, which was based on the data obtained. Additionally, this finding showed that CS could also intercalate into the MAS silicate layers after the formation of microparticles and HCS could possibly increase the thickness of MAS silicate layers more than using LCS.

#### 3.3. Thermal behavior of the microparticles

NCT, a volatile liquid, showed a broad endothermic peak at 147 °C because of the evaporation of NCT (Fig. 5, left panel). MAS presented a broad endothermic around 70 °C that was ascribable the dehydration of free water residues. The NCT-MAS microparticles prepared at pH 4 showed a broad exothermic peak around 290-297 °C (Fig. 5, left panel), suggesting a decomposition of NCT adsorbed and intercalated in MAS (Pongjanyakul et al., 2009). It can be seen that increasing NCT ratio in the microparticles brought about higher temperature of NCT decomposition. The similar results were obtained from the microparticles prepared at pH 7. The DSC thermograms of the microparticles surface-modified with LCS and HCS are shown in the middle and right panels of Fig. 5, respectively. The microparticles surface-

modified with CS showed the similar DSC thermograms with those without CS. However, the decomposition temperature of NCT tended to increase when increasing CS concentration, particularly the use of HCS. This suggested that the CS surface modification could retard the decomposition of NCT in the microparticles.

#### 3.4. NCT release studies

The NCT release profiles of the microparticles are presented in Fig. 6. The NCT-MAS microparticles prepared at pH 4 and 7 presented the similar NCT release profiles as shown in Fig. 6a and 6b, respectively. The microparticles prepared using NCT-MAS (0.2:1) ratio provided the highest amount of NCT released because the higher the NCT content in the microparticles, the greater the NCT concentration gradient for driving the NCT release. Additionally, incomplete NCT release of the microparticles was found because equilibrium of cation exchange process could be occurred and this resulted in a zipping of the silicate layer edge and a shortening of interlayer distance (Jung et al., 2008). These led to retention of NCT in the microparticles. The NCT release showed good fit with both Higuchi and particle diffusion-controlled models with determination coefficient (R<sup>2</sup>) more than 0.92 (Table 2). This suggested that the NCT release kinetics from the microparticles was a matrix/particle diffusioncontrolled mechanism. It was indicated that NCT adsorbed and intercalated in MAS silicate layers of the microparticles could rapidly exchange with small cations, such as sodium ions, in pH 6 phosphate buffer, and then an intra-particle diffusion of NCT molecules occurred that was the rate-limiting step of the release process. However, K<sub>H</sub> and slope values statistically increased (P<0.05) with increasing NCT content in the microparticles, but preparation pH did not affect the NCT release (Table 2). The highest D value was obtained from the microparticles prepared using NCT-MAS (0.2:1) ratio that possessed the highest NCT content. The increase of NCT content caused a decrease of MAS matrix ratio that was a diffusion barrier of NCT release. Thus, a faster release and higher D value of NCT was obtained.

The microparticles surface-modified with LCS and HCS showed the similar pattern of NCT release as shown in Fig. 6c and 6d, respectively. The NCT release also displayed well fit with both Higuchi and particle diffusion-controlled models (Table 2). The amount of NCT released and NCT release rate ( $K_H$  and slope values) of the microparticles prepared using 0.04% w/v LCS, and 0.02 and 0.04% w/v HCS were

significantly higher (P<0.05) than those of the microparticles without surface modification. Moreover, the HCS could accelerate NCT release more than the use of LCS, leading to greater of D value of NCT. This result was in agreement with the previous report that showed the effect of CS in CS-clay nanocarriers for drug release (Yuan et al., 2010). It is possible to explain that the higher thickness of MAS silicate layers of the microparticles surface-modified using CS, which was tested using PXRD, brought about a greater water-filled channels and a reduction of tortuosity of matrix structure of the microparticles. Moreover, the CS molecules that were intercalated into the MAS silicate layer could prevent a zipping of the silicate layer edges after NCT release. This resulted in higher release rate and diffusion coefficient of NCT.

#### 3.5. NCT permeation studies

NCT permeation profiles of the microparticles without and with CS are shown in Fig. 7. A linear relationship between NCT permeated and time was found, indicating a steady-state permeation of NCT across the mucosal membrane. The NCT permeation fluxes of the NCT-MAS microparticles prepared at pH 4 and pH 7 are presented in Fig. 8a. The higher NCT content in the microparticles caused an increase in NCT permeation fluxes due to greater release rate of NCT. Furthermore, preparation pH of the microparticles obviously influenced the mucosal permeation of NCT. The microparticles prepared at pH 7 provided significantly higher NCT permeation fluxes (P<0.05) than those prepared at pH 4. At pH 7, NCT molecules were composed of mono-protonated and neutral NCT, whereas the completely protonated NCT was formed at pH 4. The protonated NCT could only permeate through the mucosal membrane via aqueous pore pathway and possessed low permeability with the mucosal membrane (Chen et al., 1999; Adrian et al., 2006; Pongjanyakul and Suksri, 2010). This resulted in lower permeation fluxes of NCT at lower pHs.

The microparticles surface-modified with LCS and HCS also gave steady-state NCT permeation as presented in Fig. 7c and 7d, respectively. The NCT permeation fluxes obtained from the microparticles surface-modified with LCS seemed to decrease, but not different with that obtained from the unmodified microparticles (Fig. 8b). On the other hand, the microparticles surface-modified with 0.04% w/v of HCS displayed a statistically higher NCT permeation flux (P<0.05) than the unmodified microparticles.

This was due to a very high release rate of NCT that could create greater concentration gradient for driving NCT permeation across the mucosal membrane. Moreover, it was well known that CS could act as a permeation enhancer for the mucosal membrane. CS adsorbed onto the surface of the microparticles could possibly interact and disturb lipid organization of mucosa (Şenel et al., 2000; Şenel and Hıncal, 2001), resulting in higher permeation of NCT. Additionally, higher molecular weight CS was more effective permeation enhancing properties than lower molecular weight CS (Tengamnuay et al., 2000).

#### 3.6. Mucoadhesive properties of the microparticles

The DF<sub>max</sub> and W<sub>ad</sub> values of the microparticles are listed in Table 2. It can be seen that the DF<sub>max</sub> values tended to decrease with increasing NCT content in the microparticles, but in contrast with the W<sub>ad</sub> value. Moreover, the preparation pH did not affect the mucoadhesive properties. The mucoadhesive properties of pure MAS were also investigated using the same procedure in this study. The DF<sub>max</sub> and W<sub>ad</sub> values of MAS were found to be  $1284.0 \pm 471.4$  mN and  $534.7 \pm 249.3$  mN mm (n=5), respectively. This indicated that MAS possessed mucoadhesive properties with the mucosal membrane. It can be explained that the MAS silicate layers containing many hydroxyl groups that could mainly interact with mucin on the mucosal membrane via hydrogen bonding. For this reason, interaction of MAS with NCT to form microparticles could reduce a quantity of hydroxyl groups on the surface of silicate layers, leading to a reduction of mucoadhesive properties of the microparticles, which could be obviously observed from the DF<sub>max</sub> values.

The use of LCS in surface modification of the NCT-MAS mcroparticles did not affect the mucoadhesive properties (Table 2). In contrast, the microparticles surface-modified with 0.04% w/v HCS showed the highest DF<sub>max</sub> value (Table 2). It was indicated that surface modification with 0.04% w/v HCS could enhance mucoadhesive properties, especially DF<sub>max</sub> value. CS is a cationic polysaccharide that had good mucoadhesive properties (Grabovac et al., 2005). CS, which had pK<sub>a</sub> approximately 6.5 (Wang et al., 2006), could form 76% of protonated species at pH 6 of the test, which possessed positively charged CS molecules to interact with a negatively charged mucin on the mucosal membrane via electrostatic force (He et al., 1998). This effect was dependent upon molecular weight of CS and quantity of CS

adsorbed onto the surface of microparticles. Furthermore, surface modification of the NCT-MAS microparticles with CS could potentially enhance biocompatibility of MAS because polymer-clay nanomaterials possessed a lower cytotoxicity than the use of clay alone (Depan et al., 2009; Hsu et al., 2012; Salcedo et al., 2012; Mieszawska et al., 2011).

#### 4. Conclusions

NCT-MAS microparticles without and with surface modification using CS were successfully prepared using an electrostatic interaction and dried using lyophilization method. Originally natural particle morphology of the microparticles was irregular shape. Surface modification using CS caused an increase in release rate and diffusion coefficient of NCT from the microparticles because CS could intercalate into the MAS silicate layers and decreased crystallinity of the microparticles. Moreover, higher NCT permeation fluxes and mucoadhesive properties of the microparticles surface-modified with CS was found. However, the enhancement of NCT release and permeation, and also mucoadhesive properties was dependent upon molecular weight and concentration used of CS. This finding suggested that the NCT-MAS microparticles surface-modified with CS displayed a strong potential for mucosal delivery of NCT.

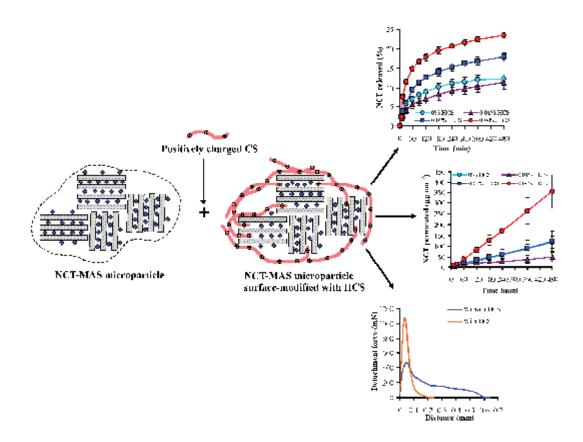
#### Acknowledgements

The authors wish to thank the Thailand Research Fund (Bangkok, Thailand) for research funding (Grant no. RSA5280013) and the Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand for technical support. Financial support from the Thailand Research Fund (Bangkok, Thailand) and Khon Kaen University (Khon Kaen, Thailand) through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0165/2550) for W.K. and T.P. is gratefully acknowledged.

#### Reference

Adrian, C.L., Olin, H.B.D., Dalhoff, K., Jacobsen, J., 2006. In vivo human buccal permeability of nicotine. Int. J. Pharm. 311, 196-202.

Agnihotri, S.A., Tejraj, M., Aminabhavi, T.M., 2004. Controlled release of clozapine through chitosan microparticles prepared by a novel method. J. Control. Release. 96, 245-259.


- Alexandre, M., Dubois, P., 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1-63.
- Allémann, E., Leroux, J.C., Gurny, R., 1998. Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv. Drug Deliv. Rev. 34, 171-189.
- Bhaskar, R., Murthy, R.S.R., Miglani, B.D., Viswanathan, K., 1986. Novel method to evaluate diffusion controlled release of drug from resinate. Int. J. Pharm. 28, 59-66.
- Caon, T., Simões, C.M.O., 2011. Effect of Freezing and Type of Mucosa on Ex Vivo Drug Permeability Parameters. AAPSPharSciTech 12, 587-592.
- Chen, L.H., Chetty, D.J., Chien, Y.W., 1999. A mechanistic analysis to characterize oramucosal permeation properties. Int. J. Pharm. 184, 63-72.
- Depan, D., Kumar, A.P., Singh, R.P., 2009. Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater. 5, 93-100
- Diaz-del Consuelo, I., Falson, F., Guy, R.H., Jacques, Y., 2007. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J. Control. Release 122, 135-140.
- Diaz-del Consuelo, I., Jacques, Y., Pizzolato, G., Guy, R.H., Falson, F., 2005. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch. Oral Biol. 50, 981-987.
- Grabovac, V., Guggi, D., Bernkop-Schnürch, A., 2005. Comparison of the mucoadhesive properties of various polymers. Adv. Drug Deliv. Rev. 57, 1713-1723.
- He, P., Davis, S.S., Illum, L., 1998. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int. J. Pharm. 166, 75-88.
- Hsu, S.H., Wang, M.C., Lin, J.J., 2012. Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl. Clay Sci. 56, 53-62
- Jung, H., Kim, H., Choy, Y.B., Hwang, S., Choy, J., 2008. Itraconazole-laponite: kinetics and mechanism of drug release. Appl. Clay Sci. 40, 99-107.
- Kevadiya, B.D., Patel, T.A., Jhala, D.D., Thumbar, R.P., Brahmbhatt, H., Pandya, M.P., Rajkumar, S., Jena, P.K., Joshi, G.V., Gadhia, P.K., Tripathi, C.B., Bajaj,

- H.C., 2012. Layered inorganic nanocomposites: a promising carrier for 5-fluorouracil (5-FU). Eur. J. Pharm. Biopharm. (doi:10.1016/j.ejpb.2012.01.004)
- Khunawattanakul, W., Puttipipatkhachorn, S., Rades, T., Pongjanyakul, T., 2008. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential. Int. J. Pharm. 351, 227-235.
- Khunawattanakul, W., Puttipipatkhachorn, S., Rades, T., Pongjanyakul, T., 2010. Chitosan-magnesium aluminum silicate nanocomposite films: physicochemical characterization and drug permeability. Int. J. Pharm. 393, 219-229.
- Kibbe, H.A., 2000. Handbook of Pharmaceutical Excipients, 3rd ed. American Pharmaceutical Association, Washington.
- Mieszawska, A.J., Llamas, J.G., Vaiana, C.A., Kadakia, M.P., Naik, R.R., Kaplan, D.L., 2011. Clay enriched silk biomaterials for bone formation. Acta Biomater. 7, 3036-3041.
- Nair, M.A., Chetty, D.J., Ho, H., Chien, Y.W., 1997. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J. Pharm. Sci. 86, 257-262.
- Nakanishi, K., Solomon, P.H., 1977. Infrared Absorption Spectroscopy, 2nd ed., Holden-Day, Inc., San Francisco.
- Ni, Z., Xing, F., Wang, P., Cao, G., 2008. Synthesis, characterization and release of curcumin-intercalated Mg-Al-layered double hydroxides. Appl. Clay Sci. 40, 72-80.
- O'Hagan, D.T., 1998. Microparticles and polymers for the mucosal delivery of vaccines. Adv. Drug Deliv. Rev. 34, 305-320.
- Perioli, L., Ambrogi, V., Bertini, B., Ricci, M., Nocchetti, M., Latterini, L., Rossi, C., 2006. Anionic clays for sunscreen agent safe use: photoprotection, photostability and prevention of their skin penetration. Eur. J. Pharm. Biopharm. 62, 185-193.
- Perioli, L., D'Alba, G., Pagano, C., 2012. New oral solid dosage form for furosemide oral administration. Eur. J. Pharm. Biopharm. (doi:10.1016/j.ejpb.2011.12.011)
- Pongjanyakul, T., Khunawattanakul, W., & Puttipipatkhachorn, S., 2009.

  Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes. Appl. Clay Sci. 44, 242-250.
- Pongjanyakul, T., Suksri, H., 2009. Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids Surf. B Biointerfaces 74:103-113.

- Pongjanyakul, T., Suksri, H., 2010. Nicotine-loaded alginate-magnesium aluminum silicate (SA-MAS) films: Importance of SA-MAS ratio. Carbohydr. Polym. 80, 1018-1027.
- Salcedo, I., Aguzzi, C., Sandri, G., Bonferoni, M.C., Mori, M., Cerezo, P., Sánchez, R., Viseras, C., Caramella, C., 2012. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl. Clay Sci. 55, 131-137.
- Şenel S, Hıncal A.A., 2001. Drug permeation enhancement via buccal route: possibilities and limitations. J. Control. Release 72, 133-144.
- Şenel, S., Kremer, M.J., Kaş, S., Wertz, P.W., Hıncal, A.A., Squier, C.A., 2000. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 21, 2067-2071.
- Siepmann, J., Siepmann, F., 2009. Mathematical modeling of drug delivery. Int. J. Pharm. 364, 328-343.
- Smart, J.D., 2005. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 57, 1556-1568.
- Suksri, H., Pongjanyakul, T., 2008. Interaction of nicotine with magnesium aluminum silicate at different pHs: Characterization of flocculate size, zeta potential and nicotine adsorption behavior. Colloids Surf. B Biointerfaces 65, 54-60.
- Tengamnuay, P., Sahamethapat, A., Sailasuta, A., Mitra, A.K., 2000. Chitosans as nasal absorption enhancers of peptides: comparison between free amine chitosans and soluble salts. Int. J. Pharm. 197, 53-67
- Wang, Q.Z., Chen, X.G., Liu, N., Wang, S.X., Liu, C.S., Meng, X.H., Liu, C.G., 2006. Protonation constant of chitosan with different molecular weight and degree of deacetylation. Carbohydr. Polym. 65, 194-201.
- Yamada, T., Onishi, H., Machida, Y., 2001. Sustained release ketoprofen microparticles with ethylcellulose and carboxymethylethylcellulose. J. Control. Release 75, 271-282.
- Yuan, Q., Shah, J., Hein, S., Misra, R.D.K., 2010. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater. 6, 1140-1148.

## **Graphical abstract**



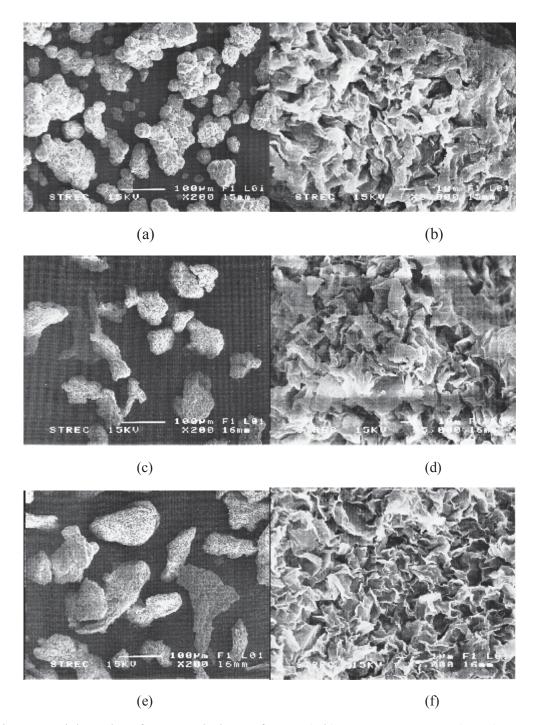



Fig. 1. Particle and surface morphology of MAS (a,b), pH 4 NCT-MAS (0.2:1) microparticle (c,d), and pH 4 NCT-MAS microparticles surface-modified with 0.04% HCS (e,f).

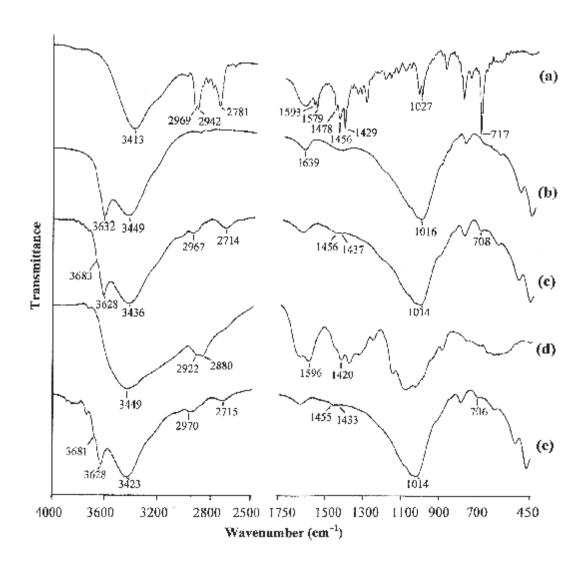



Fig. 2. FTIR spectra of NCT (a), MAS (b), pH 4 NCT-MAS (0.2:1) microparticles (c), HCS, and NCT-MAS (0.2:1) microparticles surface-modified with 0.04% HCS.

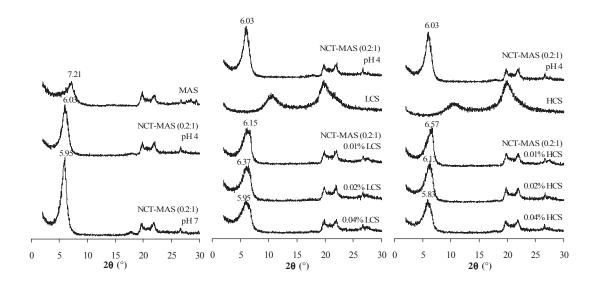



Fig. 3. PXRD patterns of MAS, CS, NCT-MAS microparticles, and NCT-MAS microparticles surface-modified with CS.

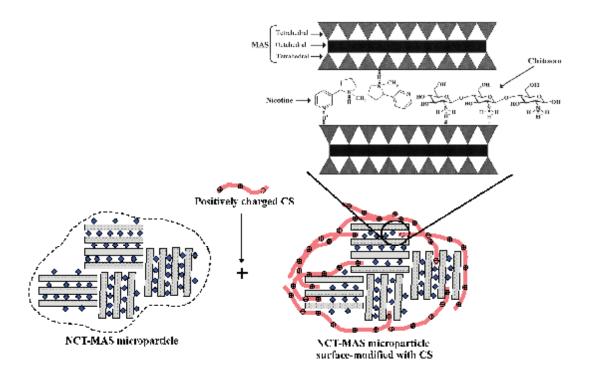



Fig. 4. Schematic representation of NCT-MAS microparticles surface-modified with CS.

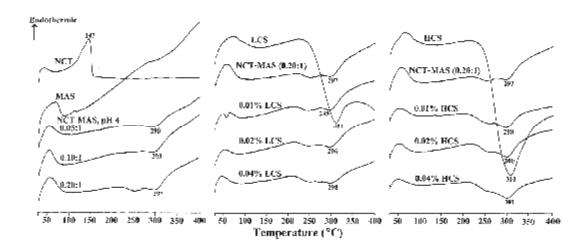



Fig. 5. DSC thermograms of NCT, MAS, CS, NCT-MAS microparticles, and NCT-MAS microparticles surface-modified with CS.

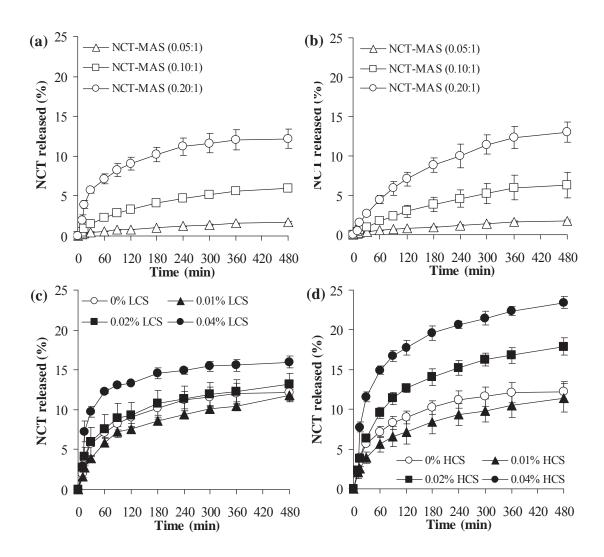



Fig. 6. NCT release profiles of NCT-MAS microparticles prepared at pH 4 (a) and 7 (b), and NCT-MAS microparticles surface-modified with LCS (c) and HCS (d). Each point is the mean  $\pm$  S.D., n=3.

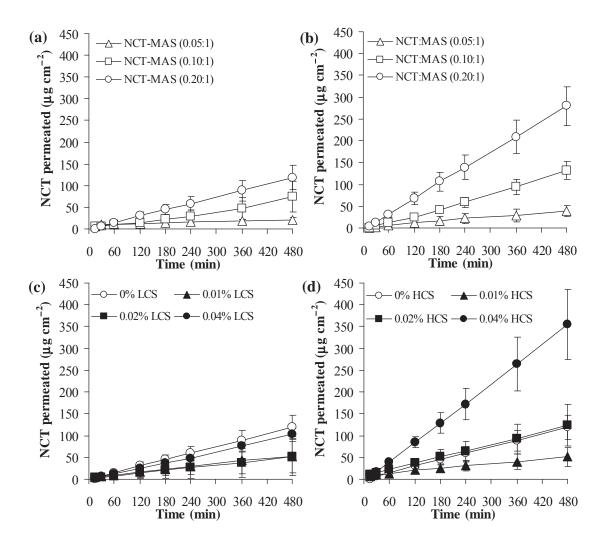



Fig. 7. NCT permeation profiles of NCT-MAS microparticles prepared at pH 4 (a) and 7 (b), and NCT-MAS microparticles surface-modified with LCS (c) and HCS (d). Each point is the mean  $\pm$  S.D., n=3.

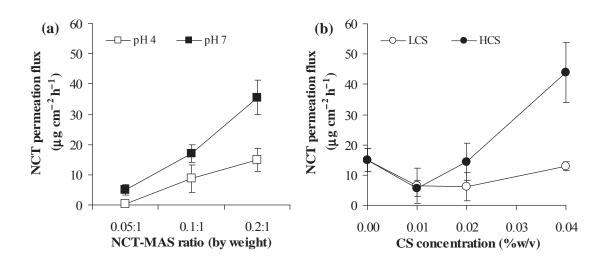



Fig. 8. Effect of preparation pH and NCT-MAS ratio (a), and CS (b) on NCT permeation flux across esophageal mucosal membrane of NCT-MAS microparticles. Each point is the mean  $\pm$  S.D., n=3.

Table 1. Characteristics of wet and dry NCT-MAS microparticles with and without surface modification using CS.

| Component and condition  | Wet microparticles |                     | Dry microparticles |                    |                               |
|--------------------------|--------------------|---------------------|--------------------|--------------------|-------------------------------|
|                          | Particle size (μm) | Zeta potential (mV) | Particle size (µm) | NCT content (%w/w) | NCT entrapment efficiency (%) |
| pH 7, NCT:MAS            |                    |                     |                    |                    |                               |
| 0.05:1                   | $34.92 \pm 0.26$   | $-25.47 \pm 1.99$   | $96.91 \pm 1.38$   | $4.90 \pm 0.07$    | $102.80 \pm 1.36$             |
| 0.10:1                   | $86.89 \pm 1.57$   | $-22.27 \pm 3.28$   | $80.54 \pm 1.21$   | $7.57 \pm 0.05$    | $83.32 \pm 0.53$              |
| 0.20:1                   | $110.45 \pm 0.89$  | $-25.18 \pm 2.53$   | $74.73 \pm 1.30$   | $10.60 \pm 0.14$   | $63.57 \pm 0.81$              |
| pH 4, NCT:MAS            |                    |                     |                    |                    |                               |
| 0.05:1                   | $43.61 \pm 0.86$   | $-29.25 \pm 1.11$   | $103.82 \pm 0.93$  | $5.24 \pm 0.23$    | $110.01 \pm 4.81$             |
| 0.10:1                   | $57.59 \pm 0.61$   | $-24.02 \pm 3.63$   | $84.23 \pm 1.16$   | $7.93 \pm 0.07$    | $87.20 \pm 0.80$              |
| 0.20:1                   | $79.69 \pm 0.98$   | $-28.98 \pm 2.19$   | $108.97 \pm 0.99$  | $10.81 \pm 0.49$   | $64.85 \pm 2.95$              |
| pH 4, NCT:MAS = $0.20:1$ |                    |                     |                    |                    |                               |
| LCS 0.01 %w/v            | $76.18 \pm 4.00$   | $-20.82 \pm 0.55$   | $101.53 \pm 0.90$  | $8.88 \pm 0.06$    | $53.29 \pm 0.37$              |
| 0.02 % w/v               | $83.71 \pm 0.51$   | $-19.00 \pm 1.11$   | $113.64 \pm 1.28$  | $8.56 \pm 0.05$    | 51.37 ±0.29                   |
| 0.04 % w/v               | $130.70 \pm 1.02$  | -14.58 ±1.79        | $118.29 \pm 1.43$  | $8.30 \pm 0.26$    | $49.80 \pm 1.53$              |
| HCS 0.01 %w/v            | $83.84 \pm 3.18$   | -5.67 ±2.19         | $120.24 \pm 0.97$  | $8.63 \pm 0.04$    | $51.77 \pm 0.23$              |
| 0.02 % w/v               | $129.45 \pm 3.97$  | $24.82 \pm 2.29$    | $120.77 \pm 0.81$  | $8.58 \pm 0.15$    | 51.47 ±0.89                   |
| 0.04 % w/v               | $211.17 \pm 6.58$  | $29.52 \pm 1.51$    | $134.84 \pm 1.32$  | $8.52 \pm 0.13$    | $51.13 \pm 0.76$              |
| , A                      |                    |                     |                    |                    |                               |

Data are the mean  $\pm$  S.D., n=3.

Table 2. NCT release parameters and mucoadhesive properties of NCT-MAS microparticles with and without surface modification using CS.

| Microparticles       | Higuchi model <sup>a</sup>                      |                | Particle diffusion-controlled model <sup>a</sup> | olled moc      | lel <sup>a</sup>                   | Mucoadhesive properties <sup>b</sup> | operties <sup>b</sup>   |
|----------------------|-------------------------------------------------|----------------|--------------------------------------------------|----------------|------------------------------------|--------------------------------------|-------------------------|
|                      | $\mathrm{K_H}\times 10^2~\mathrm{(min^{-0.5})}$ | $\mathbb{R}^2$ | $Slope \times 10^3 \text{ (min}^{-0.65}\text{)}$ | $\mathbb{R}^2$ | $D \times 10^{12}  (cm^2  s^{-1})$ | DF <sub>max</sub> (mN)               | W <sub>ad</sub> (mN mm) |
| NCT-MAS (pH 7)       |                                                 |                |                                                  |                |                                    |                                      |                         |
| 0.05:1, 4.9 % NCT    | $0.09 \pm 0.01$                                 | 0.994          | $0.14 \pm 0.01$                                  | 0.992          | $0.25\pm0.01$                      | $698.9 \pm 248.3$                    | $681.8 \pm 204.4$       |
| 0.10:1, 7.6 % NCT    | $0.35 \pm 0.10$                                 | 0.997          | $0.61 \pm 0.18$                                  | 866.0          | $0.17 \pm 0.08$                    | $492.2 \pm 89.9$                     | $1101.2 \pm 118.1$      |
| 0.20:1, 10.6 % NCT   | $0.73 \pm 0.10$                                 | 0.995          | $1.29 \pm 0.18$                                  | 0.991          | $0.46 \pm 0.09$                    | $265.5 \pm 124.5$                    | $1299.4 \pm 362.6$      |
| NCT-MAS (pH 4)       |                                                 |                |                                                  |                |                                    |                                      |                         |
| 0.05:1, 5.2 % NCT    | $0.08 \pm 0.01$                                 | 0.995          | $0.13 \pm 0.01$                                  | 0.992          | $0.26 \pm 0.01$                    | $470.8 \pm 204.5$                    | $377.8 \pm 87.1$        |
| 0.10:1, 7.9 % NCT    | $0.32 \pm 0.01$                                 | 0.992          | $0.52 \pm 0.02$                                  | 0.987          | $0.14\pm0.01$                      | $511.3 \pm 124.3$                    | $490.2 \pm 38.0$        |
| 0.20:1, 10.8 % NCT   | $0.75 \pm 0.07$                                 | 0.940          | $1.42 \pm 0.14$                                  | 0.922          | $1.23 \pm 0.17$                    | $330.9 \pm 144.5$                    | $1138.4 \pm 258.3$      |
| Surface modification |                                                 |                |                                                  |                |                                    |                                      |                         |
| LCS 0.01 %w/v        | $0.67 \pm 0.13$                                 | 0.968          | $1.25 \pm 0.30$                                  | 0.952          | $0.81 \pm 0.29$                    | $904.1 \pm 178.6$                    | $657.6 \pm 107.3$       |
| 0.02 %w/v            | $0.82 \pm 0.12$                                 | 0.956          | $1.62 \pm 0.25$                                  | 0.942          | $1.51 \pm 0.35$                    | $549.4 \pm 99.3$                     | $388.2 \pm 70.0$        |
| 0.04 %w/v            | $1.10 \pm 0.12$                                 | 0.934          | $2.35 \pm 0.24$                                  | 0.928          | $2.87 \pm 0.45$                    | 325.8 123.4                          | $274.0 \pm 65.1$        |
| HCS 0.01 %w/v        | $0.59 \pm 0.12$                                 | 0.982          | $1.07 \pm 0.23$                                  | 896.0          | $0.89 \pm 0.28$                    | $310.1 \pm 103.8$                    | $401.8 \pm 162.9$       |
| 0.02 %w/v            | $1.17 \pm 0.06$                                 | 0.965          | $2.28 \pm 0.13$                                  | 0.949          | $2.86 \pm 0.25$                    | $514.3 \pm 349.6$                    | $855.4 \pm 391.2$       |
| 0.04 %w/v            | $1.57 \pm 0.02$                                 | 0.971          | $2.92 \pm 0.11$                                  | 0.949          | $5.21 \pm 0.31$                    | $1006.8 \pm 288.2$                   | $811.6 \pm 161.5$       |
|                      |                                                 |                |                                                  |                |                                    |                                      |                         |

<sup>a</sup> Data are the mean  $\pm$  S.D., n=3. <sup>b</sup> Data are the mean  $\pm$  S.D., n=5.

แบบ สป/สผ/อสป/003-ก



|           | สำหรับเจ้าหน้าที่ |  |
|-----------|-------------------|--|
| คำขอที่   |                   |  |
| รับวันที่ |                   |  |

# ค่ำขอแก้ไขเพิ่มเติมคำขอรับสิทธิบัตร/อนุสิทธิบัตร

| คำขอรับสิทธิบัตร/ <del>อนุสิทธิบัตร</del> เลขที่1001000839                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| วันยื่นคำขอ 27 พฤษภาคม 2553                                                                                                             |
| ชื่อที่แสดงถึงการประดิษฐ์/ <del>การออกแบบผลิตภัณฑ์</del> ยาเม็ดเมทริกซ์บรรจุสารประกอบเชิงซ้อน                                           |
| นิโคติน-เคลย์                                                                                                                           |
| ชื่อผู้ขอรับสิทธิบัตร/ <del>อนุสิทธิบัตร</del> มหาวิทยาลัยขอนแก่น                                                                       |
|                                                                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
| ข้อ 1. ข้าพเจ้า นางจิราภรณ์ เหลืองไพรินทร์ อยู่บ้านเลขที่123ถนน                                                                         |
| ์ตรภาพสำนักงานบริหารจัดการทรัพย์สินทางปัญญา มหาวิทยาลัยขอนแก่น ตำบล/แขวง                                                                |
| นเมืองอำเภอ/เขตเมือง จังหวัดขอนแก่น โทรศัพท์0-4336-4409                                                                                 |
| งเป็น <del>ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตรหรือ</del> ตัวแทนของผู้ขอรับสิทธิบัตร/ <del>อนุสิทธิบัตร</del> ที่ระบุข้างต้น ขอแก้ไขเพิ่มเติม |
| าขอรับสิทธิบัตร/ <del>อนุสิทธิบัตร</del> ดังกล่าว ดังมีรายละเอียดตามที่แนบมาพร้อมนี้                                                    |
| e e e e e e e e e e e e e e e e e e e                                                                                                   |
| ข้อ 2.ข้าพเจ้าขอยืนยันว่าการแก้ไขเพิ่มเติมนี้เป็นไปตามมาตรา 20 แห่งพระราชบัญญัติ                                                        |
| ทธิบัตร พ.ศ. 2522 กล่าวคือ ไม่เป็นการเพิ่มเติมสาระสำคัญของการประดิษฐ์หรือการออกแบบผลิตภัณฑ์                                             |
| วันที่ <u>30 เดือนมี</u> ภห <i>ายม</i> พ.ศ2553                                                                                          |
|                                                                                                                                         |
| ลายมือชื่อ (การ /การีอาไมร์                                                                                                             |
| (นางจิราภรณ์ เหลืองไพรินทร์)                                                                                                            |

สำหรับเจ้าหน้าที่



| วันรับคำขอ เลขที่คำขอ<br>วันยื่นคำขอ<br>คำขอรับสิทธิบัตร/อนุสิทธิบัตร สัญลักษณ์จำแนกการประดิษฐ์ระหว่างประเทศ        |                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                     |                                              | าเย็าเด้าขอ                         | P32-223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| คำขอรับสิทธิบัตร/อนุสิทธิบัตร สัญลักษณ์จำแนกการประดิษฐ์ระหว่างประเทศ                                                |                                              | MC MFT TILL                         | A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH |  |  |
|                                                                                                                     | แนกการประดิษฐ์ระหว่างประเทศ                  | ญ์ลักษณ์จำแนกการประดิษฐ์ร           | คำขอรับสิทธิบัตร/อนุสิทธิบัตร                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| ✓ การประดิษฐ์                                                                                                       | <b>ก</b> ภัณฑ์                               | ช้กับแบบผลิตภัณฑ์                   | <ul> <li>การประดิษฐ์</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 🗖 การออกแบบผลิตภัณฑ์ ประเภทผลิตภัณฑ์                                                                                | <b>ั</b> ณฑ์                                 | ระเภทผลิตภัณฑ์                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 🗖 อนุสิทธิบัตร วันประกาศโฆษณา เลขที่ประกาศโฆษณา                                                                     | าศโฆษณา เลขที่ประกาศโฆษณา                    | วันประกาศโฆษณา                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ข้าพเจ้าผู้ลงลายมือชื่อในคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้ วันออกสิทธิบัตร/อนุสิทธิบัตร เลขที่สิทธิบัตร/อนุสิทธิบัตร | ตร/อนุสิทธิบัตร เลขที่สิทธิบัตร/อนุสิทธิบัตร | ันออกสิทธิบัตร/อนุสิทธิบัตร         | ข้าพเจ้าผู้ลงลายมือชื่อในคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ขอรับสิทธิบัตร/อนุสิทธิบัตร ตามพระราชบัญญัติสิทธิบัตร พ.ศ 2522                                                      |                                              |                                     | ขอรับสิทธิบัตร/อนุสิทธิบัตร ตามพระราชบัญญัติสิทธิบัตร พ.ศ 2522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| แก้ไขเพิ่มเติมโดยพระราชบัญญัติสิทธิบัตร (ฉบับที่ 2) พ.ศ 2535 ลายมือชื่อเจ้าหน้าที่                                  | ลายมือชื่อเจ้าหน้าที่                        | ลายมือ                              | แก้ไขเพิ่มเติมโดยพระราชบัญญัติสิทธิบัตร (ฉบับที่ 2) พ.ศ 2535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| และ พระราชบัญญัติสิทธิบัตร (ฉบับที่ 3) พ.ศ 2542                                                                     |                                              |                                     | และ พระราชบัญญัติสิทธิบัตร (ฉบับที่ 3) พ.ศ 2542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1.ชื่อที่แสดงถึงการประดิษฐ์/การออกแบบผลิตภัณฑ์                                                                      |                                              | E C                                 | 1.ชื่อที่แสดงถึงการประดิษฐ์/การออกแบบผลิตภัณฑ์                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| ยาเม็ดเมทริกซ์บรรจุสารประกอบเชิงซ้อนนิโคติน-เคลย์                                                                   |                                              |                                     | 100 miles (100 miles ( |  |  |
| 2.คำขอรับสิทธิบัตรการออกแบบผลิตภัณฑ์นี้เป็นคำขอสำหรับแบบผลิตภัณฑ์อย่างเดียวกันและเป็นคำขอลำดับที่                   | วกันและเป็นคำขอลำดับที่                      | นฑ์อย่างเดียวกันและเป็นคำขอ         | 2.คำขอรับสิทธิบัตรการออกแบบผลิตภัณฑ์นี้เป็นคำขอสำหรับแบบผลิต                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ในจำนวน คำขอ ที่ยื่นในคราวเดียวกัน                                                                                  |                                              |                                     | ในจำนวน คำขอ ที่ยื่นในคราวเดียวกัน                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 3.ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร และที่อยู่ (เลขที่ ถนน ประเทศ) 3.1 สัญชาติ ไทย                                     | ลัญชาติ ไทย                                  | 3.1 สัญชาติ ไทย                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1. มหาวิทยาลัยขอนแก่น 3.2 โทรศัพท์ 0-4320-2222-41                                                                   | ัทรศัพท์ 0-4320-2222-41                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 0.0 6/146/14                                                                                                        | เทรสาร -                                     | นา 3.3 โทรสาร -                     | สำนักงานบริหารจัดการทรัพย์สินทางปัญญา ขั้น 3 อาคารสถาบันวิจัยและพัฒนา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 3.4 คืเมล์ -                                                                                                        | อีเมล์ -                                     | 3.4 อีเมล์ -                        | มหาวิทยาลัยขอนแก่น อ. เมือง จ. ขอนแก่น 40002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                     |                                              |                                     | 2. สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                     |                                              |                                     | เลขที่ 979/17-21 ชั้น 14 อาคาร เอส เอ็ม ทาวเวอร์                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                     |                                              |                                     | ถนนพหลโยธิน แขวงสามเสนใน เขตพญาไท กรุงเทพมหานคร 10400 4.สิทธิในการขอรับสิทธิบัตร/อนุสิทธิบัตร                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                     |                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <ul> <li>ผู้ประดิษฐ์/ผู้ออกแบบ</li></ul>                                                                            |                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                     |                                              |                                     | 5.ตัวแทน(ถ้ามี)/ที่อยู่ (เลขที่ ถนน จังหวัด รหัสไปรษณีย์)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 5.2 sharith 0-4550-4409                                                                                             | ทรศัพท์ 0-4336-4409                          | 5.2 โทรศัพท์ 0-4336-                | นางจิราภรณ์ เหลืองไพรินทร์                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 5.5 618 13 0-4550-4409                                                                                              | ทรดาร 0-4336-4409                            | 5.3 โทรสาร 0-4336-4                 | สำนักงานบริหารจัดการทรัพย์สินทางปัญญา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 5.4 อเมล ip@kku.ac.th                                                                                               | เมล์ ip@kku.ac.th                            | 5.4 อีเมล์ ip@kku.ac.               | ขึ้น 3 อาคารสถาบันวิจัยและพัฒนา มหาวิทยาลัยขอนแก่น                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 6.ผู้ประดิษฐ์/ผู้ออกแบบผลิตภัณฑ์ และที่อยู่ ( เลขที่ ถนน ประเทศ )                                                   |                                              | อ. เมือง จ. ขอนแก่น ประเทศไทย 40002 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 6.1 รองศาสตราจารย์ ธเนศ พงศ์จรรยากุล คณะเภลัชศาสตร์ มหาวิทยาลัยขอนแก่น จ. ขอนแก่น 40002                             | กุ๋น 40002                                   | เก๋รเล เของแก้รเ 40002              | (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. ) (ST. )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 6.2 นางสาวโสภาพรรณ กาญจนบัตร คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น จ. ขอนแก่น 40002                                     |                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7. คำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำขอเดิม                                                  |                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร ขอให้ถือว่าได้ยื่นคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้ ในวันเดียวกับคำขอรับสิทธิบัตร     | ดียวกับคำขอรับสิทธิบัตร                      | บัตรนี้ ในวันเดียวกับคำขอรับสิท     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| เลขที่ วันยื่น เพราะคำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้แยกจากหรือเกี่ยวข้องกับคำขอเดิมเพราะ                            |                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 🗆 คำขอเดิมมีการประดิษฐ์หลายอย่าง 🗎 ถูกคัดค้านเนื่องจากผู้ขอไม่มีสิทธิ 🗎 ขอเปลี่ยนแปลงประเภทของสิทธิ                 |                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

หมายเหตุ ในกรณีที่ไม่อาจระบุรายละเอียดได้ครบถ้วน ให้จัดทำเป็นเอกสารแนบท้ายแบบพิมพ์นี้โดยระบุหมายเลขกำกับข้อและหัวข้อที่แสดงรายละเอียด เพิ่มเติมดังกล่าวด้วย

| 8.การยื่นคำขอนอกราชอาณาจั                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | กักร                                               |                          |                                            |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|--------------------------------------------|-------------------------|
| วันยื่นคำขอ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | เลขที่คำขอ                                         | ประเทศ                   | สัญลักษณ์จำแนกการ<br>ประดิษฐ์ระหว่างประเทศ | สถานะคำขอ               |
| 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                          |                                            |                         |
| 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                          |                                            | 3030                    |
| 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                          |                                            |                         |
| 8.4 🗌 ผู้ขอรับสิทธิบัตร/อนุสิท                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | าธิบัตรขอสิทธิให้ถือว่าได้ยื่นค <u>ํ</u>           | าขอนี้ในวันที่ได้ยื่นคำข |                                            | ระเทศเป็นครั้งแรกโดเ    |
| 🗌 ได้ยื่นเอกสารหลักฐาน                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | พร้อมคำขอนี้ 🗌 ขอยื่นเอ                            | กสารหลักฐานหลังจาก       | วันยื่นคำขอนี้                             |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                          | ด้แสดงการประดิษฐ์ที่หน่วยงานขอ             | างรัฐเป็นผู้จัด         |
| วันแสดง                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | วันเปิดงานแสดง                                     |                          | ผู้จัด                                     | 49 V                    |
| 10.การประดิษฐ์เกี่ยวกับจุลชีพ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | į.                       |                                            | -                       |
| 10.1 เลขทะเบียนฝากเก็บ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.2 วันที่ฝ                                       | ากเก็บ                   | 10.3 สถาบันฝากเก็บ                         | /ประเทศ                 |
| 11.ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตร<br>เป็นภาษาไทยภายใน 90 วัน  นั                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                          | <br>นี้ และจะจัดยื่นคำขอรับสิทธิบัตร/      | อนุสิทธิบัตรนี้ที่จัดทำ |
| 🗆 อังกฤษ 🗆 ฝรั่งเศส                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 🗌 เยอรมัน                                          | 🗆 ญี                     | ปุ่น 🗆 อื่นๆ                               |                         |
| หลังจากวันที่ เดือน พ.ศ  □ ผู้ขอรับสิทธิบัตร/อนุสิทธิบัตรขอให้ใช้รูปเขียนหมายเลข ในการประกาศโฆษณา  13.คำขอรับสิทธิบัตร/อนุสิทธิบัตรนี้ประกอบด้วย  ก. แบบพิมพ์คำขอ 2 หน้า □ เอกสารประกอบคำขอ  ข. รายละเอียดการประดิษฐ์ □ หนังสือรับรองการแสดงการประดิษฐ์/การออกแบบ  หรือคำพรรณนาแบบผลิตภัณฑ์ 8 หน้า □ ผลิตภัณฑ์  ค. ข้อถือสิทธิ 2 หน้า □ ผนังสือมอบอำนาจ  ง. รูปเขียน 10 รูป 5 หน้า □ เอกสารรายละเอียดเกี่ยวกับจุลชีพ  จ. ภาพแสดงแบบผลิตภัณฑ์ □ เอกสารการขอนับวันอื่นคำขอในต่างประเทศเป็นวันอื่น  คำขอในประเทศไทย  □ ภาพถ่าย รูป หน้า □ เอกสารขอเปลี่ยนแปลงประเภทของสิทธิ  ฉ. บทสรุปการประดิษฐ์ 1 หน้า □ เอกสารอื่น ๆ |                                                    |                          |                                            |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ขึ้นขอรับสิทธิบัตร/ อนุสิทธิบัต<br>นาปรับปรุงมาจาก | ารมาก่อน                 |                                            |                         |
| 6.ลายมือชื่อ ( 🗆 ผู้ขอรับสิทธิบั                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                          | (นางจิราภรณ์ เหลืองไพรินทร์)               |                         |

หมายเหตุ บุคคลใดยื่นขอรับสิทธิบัตรการประดิษฐ์หรือการออกแบบผลิตภัณฑ์ หรืออนุสิทธิบัตร โดยการแสดงข้อความอันเป็นเท็จแก่พนักงานเจ้าหน้าที่ เพื่อให้ได้ ไปซึ่งสิทธิบัตรหรืออนุสิทธิบัตร ต้องระวางโทษจำคุกไม่เกินหกเดือน หรือปรับไม่เกินห้าพันบาท หรือทั้งจำทั้งปรับ

# หนังสือสัญญาโอนสิทธิขอรับสิทธิบัตร/อนุสิทธิบัตร

เขียนที่ มหาวิทยาลัยขอนแก่น 123 ถ. มิตรภาพ ต.ในเมือง อ. เมือง จ. ขอนแก่น 40002

उँग्यं ९० भुरे खालस ४२२३

สัญญาระหว่างผู้โอน 1.รองศาสตราจารย์ธเนศ พงศ์จรรยากุล และ 2.นางสาวโสภาพรรณ กาญจนบัตร ที่อยู่ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น ต.ในเมือง อ. เมือง จ. ขอนแก่น รหัสไปรษณีย์ 40002 และ ผู้รับโอน คือ สำนักงานกองทุนสนับสนุนการวิจัย ในนาม ศาสตราจารย์ ดร. สวัสดิ์ ตันตระรัตน์ ผู้อำนวยการ สำนักงานกองทุนสนับสนุนการวิจัย ที่อยู่ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) เลขที่ 979/17-21 ชั้น 14 อาคาร เอส เอ็ม ทาวเวอร์ ถนนพหลโยธิน แขวงสามเสนใน เขตพญาไท กรุงเทพมหานคร 10400 โดยสัญญา นี้ ผู้โอนซึ่งเป็นผู้ประดิษฐ์ "ยาเม็ดเมทริกซ์บรรจุสารประกอบเชิงซ้อนนิโคติน-เคลย์" ขอโอนสิทธิในการประดิษฐ์ ดังกล่าว ซึ่งรวมถึงสิทธิขอรับสิทธิบัตร/อนุสิทธิบัตร และสิทธิอื่นๆ ที่เกี่ยวข้องให้แก่ผู้รับโอน เพื่อเป็น พยานหลักฐานแห่งการนี้ ผู้โอนและผู้รับโอนได้ลงลายมือชื่อไว้ข้างล่างนี้

| (ลงชื่อ)ผู้โอน                     | (ลงชื่อ)โลกางระนกญาษบัตร. ผู้โอน |
|------------------------------------|----------------------------------|
| (รองศาสตราจารย์ ธเนศ พงศ์จรรยากุล) | (นางสาวโสภาพรรณ กาญจนบัตร)       |
|                                    |                                  |
|                                    |                                  |
| ลงชื่อ)                            | ส่วง ผู้รับโอน                   |
| (ศาสตราจารย์ ด                     | ร. สวัสดิ์ ตันตระรัตน์)          |

(ลงชื่อ) (ลงชื่อ) พยาน (ลงชื่อ) พยาน (นางสาวนฤมล เบญจปัก) (นายเศกสิทธิ์ พรหมพฤฒา)

### หนังสือมอบอำนาจ

มหาวิทยาลัยขอนแก่น อ.เมือง จ. ขอนแก่น 40002

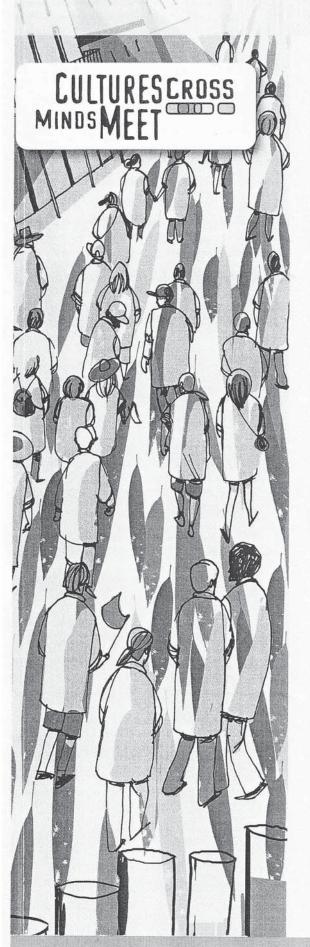
รับรองลำเนาถูกต้อง

Smas Roths

วันที่ 30 มิฎาธายน สรร3

โดยหนังสือฉบับนี้ ข้าพเจ้า สำนักงานกองทุนสนับสนุนการวิจัย โดย ศาสตราจารย์ ดร. สวัสดิ์ ตันตระรัตน์ ผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย ที่อยู่ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) เลขที่ 979/17-21 ชั้น 14 อาคาร เอส เอ็ม ทาวเวอร์ ถนนพหลโยธิน แขวงสามเสนใน เขตพญาไท กรุงเทพมหานคร 10400 ขอมอบ อำนาจและแต่งตั้งให้ นางจิราภรณ์ เหลืองไพรินทร์ อยู่บ้านเลขที่ 123 สำนักงานบริหารจัดการทรัพย์สินทางปัญญา มหาวิทยาลัยขอนแก่น ต.ในเมือง อ. เมือง จ.ขอนแก่น 40002 เป็นตัวแทนและผู้รับมอบอำนาจของข้าพเจ้ามีอำนาจ ในการยื่นขอรับสิทธิบัตร/อนุสิทธิบัตร จำนวน 4 เรื่อง คือ

- 1. ยาเม็ดเมทริกซ์บรรจุสารประกอบเชิงซ้อนนิโคติน-เคลย์
- 2. อนุพันธุ์แอนโดรกราโฟไลด์ การสังเคราะห์ และการใช้สารเหล่านั้น
- ยาฉีดเมลาโทนิน
- 4. เฮดกิมบอลแอสเซมบลี้ (Head Gimbal Assembly) ที่ลดผลภระทบจากการรบกวนทางแม่เหล็กไฟฟ้า โดยให้ตัวแทนดังกล่าวมีสิทธิลงชื่อในเอกสารทั้งมวลในนามของข้าพเจ้าแทนข้าพเจ้า แก้ไขเปลี่ยนแปลงเอกสารและ เอกสารอื่นๆ ที่เกี่ยวข้อง รวมทั้งการอุทธรณ์ต่างๆ ด้วย


ข้าพเจ้าขอรับผิดชอบในการที่ผู้รับมอบอำนาจได้กระทำไปตามหนังสือมอบอำนาจ ที่เสมือนว่าข้าพเจ้า ได้กระทำด้วยตนเองทั้งสิ้น

เพื่อเป็นหลักฐาน ข้าพเจ้าได้ลงลายมือชื่อไว้เป็นสำคัญต่อหน้าพยาน

| อากรแล่ผมปี                  | รแล่ผมปี (ลงชื่อ) | Yn/                                         | ผู้มอบอำนาจ |
|------------------------------|-------------------|---------------------------------------------|-------------|
| ළි⊞∪™ ළි                     |                   | ารย์ ดร. สวัสดิ์ ตันตระรัตเ<br>ป /กวัดในป   |             |
| อากรแล้ง                     | (นางจิ            | ราภรณ์ เหลืองไพรินทร์)                      |             |
| <u>5</u><br><b>⊡O</b> \$\$\$ | 111/1             | ภาคง / <i>บก,กรโ</i> ก,<br>สาวนฤมล เบญจปัก) | พยาน        |
| ,                            | (ลงชื่อ)<br>(นายเ | .ศกสิทธิ์ พรหมพฤฒา)                         | พยาน        |

FIP Pharmaceutical Sciences WORLD CONGRESS

AAPS Annual Meeting and Exposition



# Final Program

November 14-18, 2010

**Ernest N. Morial Convention Center** New Orleans, Louisiana, USA





American Association of **Pharmaceutical Scientists** 

### Wednesday Morning Contributed Papers

Poster Legend

M1000 series: Monday afternoon session
W4000 series: Wednesday morning session

T2000 series: Tuesday morning session W5000 series: Wednesday afternoon session T3000 series: Tuesday afternoon session R6000 series: Thursday morning session

prug DELIVERY - PHARMACEUTICAL TECHNOLOgles (SMALL MOLECULE) / OTHER / FORMULATION W4166 Formulation, Characterization, and Evaluation of TNP 470 Angiogenic Drug Loaded Albumin and PEN Chitosan Microspheres

A. Siddig, S. Ayodele, L. Muscik, O. Oyelowo, X. Sun, D. Hass, K. Yeboah

W4167 Determination of the Molecular Properties of Polymethacrylic Acid Methyl Methacrylate Films Under Simulated Gastrointestinal Conditions H. Fadda, J. Santos, D. Osman, A. Basit

W4168 Effect of Process Variables on Morphology of Voriconazole Formulations Produced by Thin Film Freezing N. Beinborn, H. Lirola, R. Williams

W4169 Development, Formulation and Optimization of Polymer Based Films as Potential Buccal Delivery Systems Using Paracetamol and Ibuprofen as Model Drugs H. Desai, B. Anghan, J. Boateng

W4170 Novel Lyophilization Cycle Development of Chitosan Based Formulation for Buccal Delivery Using Paracetamol as a Model Drug I. Ayensu, J. Mitchell, J. Boateng

W4171 Withdrawn by Author

F. Alvarez-Nunez

ılet

on

ilti-

arsi

oride

orid

эd

**Aixi** 

W4172 Manufacture of Pharmaceutical Relevant Material via Mechanochemistry Using Twin Screw Extrusion - Cocrystals and Salts
D. Daurio, J. MacLean, C. Medina, L. Li, K. Nagpudi,

W4173 Development of a Novel Mucoadhesive Patch for Intraoral Site-specific Controlled Release of Fenretinide

K. Desai, S. Mallery, G. Stoner, P. Larsen, S. Schwendeman

W4174 Biodegradable Thermoplastic Elastomer Grafts for Bone Tissue Regeneration
R. Dorati, C. Colonna, I. Genta, M. Hillmyer, L. Pitet, B. Conti

W4175 Working with Heckel Plots: Method for Checking the Plausibility of Force Displacement Data K. Duchatsch, R. Lammens, B. Fretter

W4176 Delivery of Growth Factors Using Pluronic F127
Gel with Activator Role of Lactoferrin by Performing In Vitro Wound Healing Assay
G. Duman, D. Mercan, E. Yalvaç, D. Erol, E. Yesilada,

W4177 Studies to Investigate the Sensitivity of Operational Parameters on Drug Release Behavior in the USP Apparatus 4

J. Eaton, D. Tran, W. Hauck, E. Stippler

W4178 A Data Sharing Initiative on the Toxicity of Excipients
J. Edwards

W4179 Development of Ketoconazole/Ketorolac Mucoadhesive Gel for Treatment of Fungal Keratitis M. El-Nabarawi, M. El-Miligi, H. El-Mofty, I. Khalil

W4180 Evaluation of a Novel Aqueous Wax Dispersion Rubicoat® for Moisture Barrier Applications P. Pilgaonkar, M. Rustomjee, A. Gandhi, S. Chaudhari

W4181 Bioresponsive Camptothecin Delivery for Brain Cancer
V. Garripelli, S. Jo

W4182 Buccal Formulation Development Based on Novel In Situ Formation of Interpolymer Complex A. Gupta, R. Gaud, G. Srinivasan

W4183 Enhanced In Vitro Transbuccal Delivery of Ondansetron HCl L. Hu, B. Michniak-Kohn

W4184 Development of an Enteric Coating Process and Stability Evaluation of PCcaps™

B. Kadri, A. Johnson, D. Cartwright, M. Cappucci, P. Skultety

W4185 Use of Biorelevant Media for Assessment of Dissolution of a Poorly Soluble Weakly Basic Drug: Mosapride Citrate in the Form of Liquisolid Tablets M. Badawy, A. Kamel, O. Sammour

★ W4186 Alginate Matrix Tablets Containing Nicotine—Clay Complexes for Mucosal Delivery: Effect of Preparation Ph of Complexes S. Kanjanabat, W. Khunawattanakul, T. Pongjanyakul

W4187 Oral Transmucosal Drug Delivery System for Nicotine B. Kilfoyle, H. Tan, B. Michniak-Kohn

W4188 Evaluation of the Properties of HPMC Capsules Manufactured Using Different Methods T. Uyama, A. Inui, T. Kokubo

W4189 Evaluation of Ultrasonic Compaction Technology for Developing Solid Dispersions M. Bordawekar, J. Bilotta, F. Seiler, R. Vippagunta, A. Subramony, L. Rabaglia, J. Lakshman, R. Panicucci Alginate matrix tablets containing nicotine-clay complexes for mucosal delivery: Effect of preparation pH of complexes

S. Kanjanabat<sup>1</sup>, W. Khunawattanakul<sup>1</sup>, T. Pongjanyakul<sup>1</sup>

<sup>1</sup>Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand

#### Purpose.

To prepare and evaluate sodium alginate (SA) tablets containing nicotine-magnesium aluminum silicate (NCT-MAS) complexes prepared at different pHs.

#### Methods.

NCT-MAS complexes were prepared using an adsorption process at pH 4, 7, and 9. NCT-MAS complex particles obtained had 9-13%w/w of NCT. The tablets consisted of the NCT-MAS complexes equivalent to 15 mg of NCT, magnesium stearate (1%w/w) and appropriate amount of SA to adjust each tablet weight to 200 mg. The mixture obtained was filled into 10-mm diameter flat-faced punches and die, and compressed using a hydrostatic press. The NCT release from the tablets was performed using a USP dissolution apparatus I. The NCT permeated across porcine esophageal mucosa was conducted using a modified USP dissolution apparatus II. The concentration of NCT permeated was analyzed by HPLC. Additionally, the muco-adhesive properties of the tablets were determined using a texture analyzer.

#### Results.

The SA tablets containing NCT-MAS complexes prepared at various pHs showed good physical properties and the tablet thickness was over the range of 1.4-1.6 mm. The tablets obtained presented zero order kinetic of NCT release. The preparation pH of the NCT-MAS complexes did not affect the release of NCT. However, the tablets containing the complexes prepared at pH 9 gave the highest NCT permeated across porcine esophageal mucosa and the lowest NCT permeation was found in those containing the complexes prepared at acidic condition. This indicated that the complexes prepared at basic condition could liberate neutral NCT that had a high permeability with the mucosa. Furthermore, the SA tablets containing NCT-MAS complexes also presented sufficient muco-adhesive properties for adhesion to the mucosal membrane.

#### Conclusion.

The NCT-MAS complex-loaded SA tablets showed strong potential for mucosal NCT delivery systems and the highest NCT permeation was obtained when using NCT-MAS complexes prepared at basic condition.

This work was supported by the Thailand Research Fund, Bangkok, Thailand (Grant No. RSA5280013). Financial support from Graduate School, Khon Kaen University, Khon Kaen, Thailand, for S. Kanjanabat is gratefully acknowledged.



# ALGINATE MATRIX TABLETS CONTAINING NICOTINE-CLAY COMPLEXES FOR MUCOSAL DELIVERY EFFECT OF PREPARATION pH OF COMPLEXES



Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand Sopaphan Kanjanabat, Wanwisa Khunawattanakul , Thaned Pongjanyakul

# Objective

prepared at different pHs. containing nicotine-magnesium aluminum silicate (NCT-MAS) complexes To prepare and evaluate sodium alginate (SA) matrix tablets

# Methodology

washed 2 times with 20 ml of deionized water and dried overnight at 50 °C 24 h. After that, the NCT-MAS complexes were separated by filtration. pH 4, 7 and 9. Then, the dispersions were incubated at 37 °C with shaking for sieved through a 180-μm sieve and kept in a desiccator. The dry NCT-MAS complexes were ground using a mortar and and pestle, The NCT-MAS dispersion in the weight ratio of 0.5:1 were prepared at

# Preparation of SA matrix tablets containing NCT-MAS complexes

of NCT, magnesium stearate (1%w/w) and appropriate amount of SA to ingredients for each formulation is represented in table 1. flat-faced punches and die, and compressed using a hydrostatic press. The compression method. The mixture obtained was filled into 10-mm diameter adjust each tablet weight to 200 mg. The tablets were prepared by direct The tablets consisted of the NCT-MAS complexes equivalent to 15 mg

# Table 1 Tablet compositions

Dissolution studies

The NCT release from

# Permeation studies

spectrophotometer

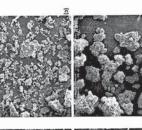
assayed at 259 nm by UV-visible

mucosa was conducted using a modified USP dissolution apparatus II (Figure 1). removing connective tissues and frozen at was used as a mucosal membrane. The concentration of NCT pH 6 phosphate buffer was added. The into the polypropylene tube, then 2 ml of isotonic at 37°C. The tablets were placed medium was pH 7.4 phosphate buffer Appropriate permeated across porcine esophageal mucosal membrane was separated by porcine esophageal tube was washed with under the polypropylene tube. The The porcine esophageal mucosa until isotonic phosphate buffer. sections of mucosa were further use. permeated The NCT The

Modified USP dissolution apparatus II Figure 1

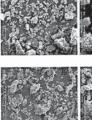
# Mucoadhesive studies

analyzed by HPLC


analyzer with 50 N load cell. mucoadhesive properties of the tablets were determined using a texture Porcine esophageal mucosa was used in this study.

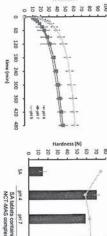
# Results

The NCT content of the complexes prepared at pH 4, 7 and 9 were 9.50 ± 0.03, 12.21 ± 0.02 and 13.17 ± 0.04 %w/w, respectively. The NCT-MAS from the MAS particles as shown in Figure 1 (SEM) complexes prepared at various pHs had irregular shapes which different


The tablets containing the complexes prepared at pH 9 gave the highest NCT permeation across porcine esophageal mucosa. The lowest NCT permeation and the longest lag time were found in those containing the complexes prepared at acidic condition (Figure 6 and 7). This indicated that the complexes prepared at basic condition could liberate neutral NCT that

had a high permeability with the mucosa.






NCT-MAS of MAS granule (a) and SEM photomicrographs prepared at pH 4 (b), 7 (c) complexes





and 9 (d).



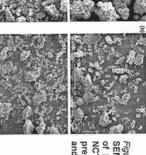
complexes prepared at different pHs NCT release profile of NCT-MAS tablets

in pH 6 phosphate buffer

release from the SA tablets. The release exponent (n) values were ranged from 0.92 to 1.05, indicating swelling and erosion controlled release mechanism. These formulations also showed good fit to zero order model with R2 0.996-0.997 The preparation pH of the NCT-MAS complexes did not affect the NCT



|                  | phosphate buffer | containir                            | NCT rele                          |
|------------------|------------------|--------------------------------------|-----------------------------------|
| Zero order model | te buffer        | containing NCT-MAS complexes in pH 6 | NCT release kinetic of SA tablets |
| Dower law        |                  | plexes in pH 6                       | tablets                           |


|             | Zero order model         | model | Power law               |
|-------------|--------------------------|-------|-------------------------|
| Formulation | K <sub>0</sub> (% min-1) | 70,   | Release exponent<br>(n) |
| pH 4        | 0.17 ± 0.01              | 0.996 | 1.05 ± 0.07             |
| pH 7        | 0.17 ± 0.04              | 0.998 | 0.92 ± 0.05             |
| pH 9        | 0.15 ± 0.03              | 0.997 | 0.98 ± 0.07             |

Acknowledgement

was obtained when using NCT-MAS complexes prepared at basic condition potential for mucosal NCT delivery systems and the highest NCT permeation The SA tablets containing NCT-MAS complexes showed strong Conclusions

various pHs (a) work of adhesion (b) maximum detachment force Mucoadhesive properties of SA tablets containing NCT-MAS complexes at

Khon Kaen University, Khon Kaen, Thailand, for S. Kanjanabat is gratefully This work was supported by the Thailand Research Fund, Bangkok, Thailand (Grant No. RSA5280013). Financial support from Graduate School,





mucoadhesive properties. (Figure 8).

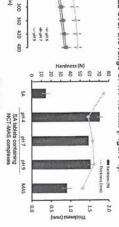
containing NCT-MAS complexes NCT permeation profile of SA tablets

NCT across membrane Permeation rate and lag time of

Figure 7

NCT-MAS

30 40


60

120

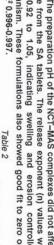
420

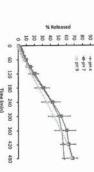
membrane. The preparation pH of the NCT-MAS complexes did not affect on presented sufficient mucoadhesive properties for adhesion to the mucosal

Furthermore, the SA tablets containing NCT-MAS complexes also



Thickness and hardness of matrix


SA tablets containing NCT-MAS complexes


рН9

MAS

SA tablets containing NCT-MAS complexes pH7

MAS





| 480 pH9 0.15±0.03 |
|-------------------|
| 9 0.              |
| 0.15 ± 0.03       |
|                   |
|                   |

Figure 5 NCT release profile of SA tablets containing NCT-MAS complexes

## Tuesday Morning Contributed Papers

Poster Legend

M1000 series: Monday afternoon session W4000 series: Wednesday morning session

**T2000 series: Tuesday morning session** W5000 series: Wednesday afternoon session T3000 series: Tuesday afternoon session R6000 series: Thursday morning session

- T2182 Design and Development of Extended Release
  Tablet Formulation of Guaifenesin Using Coprocessed Excipient
  V. Kadam, K. Jadhav, A. Patil
- T2183 Preparation and Evaluation of Gastro-retentive Tablets Containing Itraconazole J. Kim, T. Oh, J. Ha, S. Jo, H. Kim, C. Park, Y. Rhee, S. Chi, E. Park
- T2184 Modified Release of Poorly Soluble Itraconazole by Means of Polymer Combinations for Hot Melt Extrusion D. Djuric, A. Maschke, K. Kolter
- T2185 Physicochemical Characteristics of a New Polymer Designed for Taste-masking and Moisture Protection
  K. Kolter, F. Guth, M. Angel
- T2186 ICH Stability of Dietary Supplements Coated with an Aqueous Ethylcellulose Based Delayed Release Coating for Nutraceutical Application M. Koska, C. Vesey, R. Steffenino
- T2187 Dissolution-modulating Mechanism of Polyethylene Oxide-based Controlled Release Solid Dispersion B. Lee, T. Tran, P. Tran, Y. Jung, Y. Park, S. Choi
- T2188 Controlled Release of Poorly Water-soluble Drug Using Self-emulsifying Solid Dispersion for Enhanced Bioavailability B. Lee, Z. Piao, P. Tran, Y. Jung, S. Choi, Y. Park, T. Tran
- T2189 Carboxymethyl Starch Mucoadhesive Microspheres as Gastroretentive Drug Delivery System M. Lemieux, P. Gosselin, J. Paquin, M. Mateescu
- T2190 Effect of Polymer Concentration, Polymer Molecular Weight, Drug Solubility and Filler Solubility on Drug Release from Polyethylene Oxide Hydrophilic Extended Release Matrices J. L'Hote-Gaston, C. Karas, R. Schmitt
- T2191 In Vivo Modeling and Simulation (IVMS) Case Study: Developing Advanced Oral Drug Formulation D. Liu, G. Davies
- T2192 Development of Sustained Release Mini Matrices of Zidovudine and Lamivudine with Ethylcellulose and PEO by Hot Melt Extrusion S. Maru, M. DeMatas, A. Kelly, A. Paradkar
- T2193 The Influence of Organic Ions on Polymer
  Hydration and Drug Release in HPMC Matrices
  J. Mongkolpiyawat, C. Melia

- T2194 Effect of Fillers on the Release Profile of Monolithic Dosage Formulation with HPMC as a Matrix

  D. Dogiparti, K. Kurapati, R. Manthri, K. Mudigonda, R. Nirogi
- T2195 Evaluation of Plantage Ovata Mucilage as a Novel Superdisintegrant for Pulsatile Drug Delivery System (PDDS)

A. Mundada, B. Gandhi, C. Upasani

- T2196 Grewia Gum Matrix Tablets for Controlled Release of Cimetidine E. Nep, B. Conway
- T2197 The Method of Adjusting the Dissolution Profile of a Tablet by Direct Compression to that of the Original Tablet by Wet Granulation Method Using Pregelatinized Starch, SWELSTAR™ MX-1 K. Obae, S. Kaneyama, N. Yoshida
- T2198 A Study on the Robustness of the Wetgranulation Process to Prepare Metformin HCI Extended-release Matrix Tablets Using METOLOSE® 90SH-15000SR S. Obara, H. Akin, L. Chen
- T2199 Incorporation of Hydroxypropyl Cellulose as a Binder in a Fluid Bed Granulation of a High Dose, Poorly Compressible Active Drug to Overcome Tablet Capping S. Overholt, A. Danarajan, V. Gupta
- T2200 Formulation of Tableted Microspheres of Guar Guin for Colon Targeted Delivery of Mebeverine Hydrochloride

  M. Patel, A. Amin
- T2201 Formulation of Bilayered Mucoadhesive Tablet of Diltiazenn Hydrochloride Using Modified Acrylate Polymer by Template Polymerization Technique, Co-relating its Properties with the Physical Blend of the Polymers
  S. Pilankar, S. Shah, S. Roy
- T2202 Propranolol-clay Intercalated Complex-loaded HPMC Matrix Tablets: Drug Release Characteristics and Effect of Calcium Ion T. Pongjanyakul, S. Rojtanatanya
  - T2203 A Novel Controlled Release Matrix: Sucrose Fatty Acid Esters (Sucrose Stearate) with Citric Acid Esters S. Potharaju, Y. Zhou, H. Almoazen, E. Brunson, J. Johnson
  - T2204 Applicability of In Situ Polyelectrolyte Complexation for Design of Controlled Release Systems of Losartan Potassium S. Sunil, V. Raju, K. Ramana

### Propranolol-clay intercalated complex-loaded HPMC matrix tablets: Drug release characteristics and effect of calcium ion

T. Pongjanyakul<sup>1</sup>, S. Rojtanatanya<sup>1</sup>

<sup>1</sup>Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand

#### Purpose.

To characterize drug release of hydroxypropyl methylcellulose (HPMC) matrix tablets containing propranolol-magnesium aluminum silicate (PPN-MAS) intercalated complexes and to investigate effect of calcium ion on PPN release from the tablets.

#### Methods.

PPN-MAS dispersion in the weight ratio of 0.25:1 was prepared at pH 7, and then the PPN-MAS complexes were collected and dried at 50 °C. The dry complexes were ground using a mortar and pestle. The HPMC tablets containing PPN-MAS complexes that equivalent to 40 mg PPN were prepared using a direct compression method with a hydrostatic press. Moreover, different amounts of calcium acetate were incorporated into the tablets. The drug release of the tablets in 0.1 M HCl and pH 6.8 phosphate buffer was performed using a USP dissolution apparatus I. The drug release data were fitted using power law, Higuchi's equation, and zero order kinetic model. Additionally, the tablets containing pure PPN and PPN-MAS physical mixture were also prepared for drug release comparison.

#### Results.

The HPMC tablets containing PPN-MAS complexes and pure PPN provided zero order release kinetic of PPN in both 0.1 M HCl and pH 6.8 phosphate buffer. The PPN release rate of the PPN-MAS complex-loaded tablets was lower than that of the PPN-loaded tablets, indicating that the drug release was controlled by the PPN-MAS complexes. In contrast, the drug release of those containing PPN-MAS physical mixture showed good fitting with Higuchi's equation. This suggested that MAS could retard the PPN release via an adsorption process. Furthermore, the PPN release rate increased with increasing amount of calcium ions incorporated in the tablets because calcium ions could induce an ion exchange process with PPN in the silicate layers of MAS.

#### Conclusion.

The PPN-MAS complexes could be applied as drug carriers for controlling drug release in the polymeric matrix tablets. Moreover, incorporation of calcium ion could modulate drug release of the PPN-MAS complex-loaded matrix tablets. This work was supported by the Thailand Research Fund, Bangkok, Thailand (Grant No. RSA5280013).

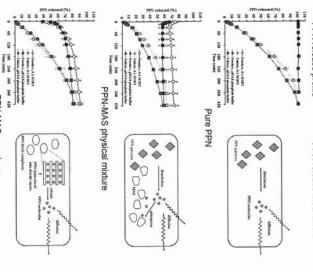


# PROPRANOLOL-CLAY INTERCALATED COMPLEX-LOADED HPMC MATRIX TABLETS DRUG RELEASE CHARACTERISTICS AND EFFECT OF CALCIUM ION

# Thaned Pongjanyakul\*, Sarasit Rojtanatanya






# Objectives

- To characterize drug release of hydroxypropyl methylcellulose silicate (PPN-MAS) intercalated complexes. (HPMC) matrix tablets containing propranolol-magnesium aluminum
- To investigate effect of calcium ion on PPN released from the PPN. MAS complex-loaded HPMC tablets.

- PPN-MAS dispersion in the weight ratio of 0.25:1 was prepared at pH 7, and then the PPN-MAS complexes were collected and dried at 50 °C. The dry complexes were ground using a mortar and pestle.
- complexes that equivalent to 40 mg PPN were prepared using a The HPMC (viscosity grade 15 cp) tablets containing PPN-MAS buffer was performed using a USP dissolution apparatus I. The drug zero order release kinetic model. release data were fitted using Power law, Higuchi's equation, and Additionally, the tablets containing pure PPN and PPN-MAS direct compression method with a hydrostatic press at 11 MPa. The drug release of the tablets in 0.1 M HCl or pH 6.8 phosphate physical mixture were also prepared for drug release comparison.
- Different amounts of calcium acetate were incorporated into the KCI 0.32 g/L was performed using a USP dissolution apparatus I. the tablets in 0.1 M HCl or pH 6.8 tris buffer with NaCl 8.2 g/L and HPMC tablets that were compressed at 6.6 MPa. The drug release of

## Results

# Comparative study of PPN release from the HPMC tablets PPN release profile PPN release mechanism



Characteristics of PPN-MAS complexes

Particle and surface morphology





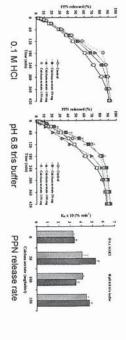











MAS granules

PPN-MAS complexes contained 20%w/w PPN

Particle size of the complexes were in the range of 125-180 micron.

# Effect of calcium ion on PPN release

PPN-MAS complexes



could induce an ion exchange process with PPN in the silicate calcium ions incorporated in the tablets because calcium ions layers of MAS. The PPN release rate increased with increasing amount of

# PPN release characteristics from the HPMC tablets

| HPMC tablets                | Dissolution medium | Release exponent (n)                    | K <sub>H</sub><br>(% min <sup>-0.5</sup> ) | K <sub>0</sub> x 10<br>(% min <sup>-1</sup> ) |
|-----------------------------|--------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|
| Pure PPN                    | 0.1 M HCI          | 0.75 ± 0.02<br>(R <sup>2</sup> =0.997)  | 4.91 ± 0.37<br>(R <sup>2</sup> =0.981)     | 3.90 ± 0.30<br>(R <sup>2</sup> =0.995)        |
|                             | pH 6.8 PB          | $0.72 \pm 0.04$ (R <sup>2</sup> =0.987) | 4.49 ± 0.30<br>(R <sup>2</sup> =0.983)     | $3.60 \pm 0.20$ (R <sup>2</sup> =0.991)       |
| PPN-MAS<br>physical mixture | 0.1 M HCI          | 0.64 ± 0.02<br>(R <sup>2</sup> =0.992)  | $3.76 \pm 0.30$ (R <sup>2</sup> =0.994)    | 2.20 ± 0.20<br>(R <sup>2</sup> =0.965)        |
|                             | pH 6.8 PB          | $0.62 \pm 0.03$ (R <sup>2</sup> =0.992) | $2.98 \pm 0.05$ (R <sup>2</sup> =0.998)    | $1.33 \pm 0.01$<br>(R <sup>2</sup> =0.951)    |
| PPN-MAS<br>complexes        | 0.1 M HCI          | 0.98 ± 0.02<br>(R <sup>2</sup> =0.993)  | 3.91 ± 0.60<br>(R <sup>2</sup> =0.959)     | 2.70 ± 0.44<br>(R <sup>2</sup> =0.999)        |
|                             | pH 6.8 PB          | $0.89 \pm 0.03$<br>( $R^2=0.990$ )      | 4.28 ± 0.36<br>(R <sup>2</sup> =0.976)     | 2.90 ± 0.25<br>(R <sup>2</sup> =0.987)        |

- The HPMC tablets containing PPN-MAS complexes showed zeroorder release kinetic with release exponent (n) close to unity.
- The PPN release rate of the PPN-MAS complex-loaded tablets was the drug release was controlled by the PPN-MAS complex lower than that of the tablets containing pure PPN, suggesting that
- The drug release from the tablets containing PPN-MAS physical mixture gave good fitting with Higuchi model. This suggested that MAS could retard the PPN release via an adsorption process.

# Conclusion

controlling drug release in the polymeric matrix tablets. Moreover, PPN-MAS complex-loaded matrix tablets. incorporation of calcium ion could modulate drug release of the The PPN-MAS complexes could be applied as drug carriers for

# Acknowledgement

(Khon Kaen, Thailand) for technical support and Faculty of Pharmaceutical Sciences, Khon Kaen University (Bangkok, Thailand) for financial support (Grant no. RSA5280013) The authors would like to thank the Thailand Research Fund Third announcement

8<sup>th</sup> World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology

### Istanbul

Turkey 19th to 22nd March 2012




8<sup>th</sup> World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology

In combination with



4 Parallel Symposia on Basic Research, R&D, Industrial Practise and Analytics



#### Key Note Speaker

David Tainsh, Senior Vice President & Global Head of Product Development, GlaxoSmithKline, Harlow, UK

#### Plenary lectures

Patrick Couvreur, Professor of Pharmaceutics and Biopharmaceutics, Université de Paris-Sud, France

Martyn Davies, Professor of Biomedical Surface Chemistry, University of Nottingham, Nottingham, UK

Ajaz Hussain, Vice President R&D, Philip Morris International, Neuchatel, Switzerland

www.worldmeeting.org

Page 1 of 1

kku.ac.th Web Mail :: kku.ac.th

From: Worldmeeting Robot <noreply@worldmeeting.org>

To: thaned@kku.ac.th

Subject: Abstract acceptance - 8th PBP World Meeting Istanbul 2012

Date: December 16, 2011 9:41:18 PM ICT

**Priority:** Normal

Block The Sender

View All Headers | View Printable | Save Message Content | Save Raw Message

Dear Thaned Pongjanyakul,

We are pleased to inform you that your submitted paper entitled

#### NICOTINE MAGNESIUM ALUMINUM SILICATE COMPLEX-LOADED HPMC TABLETS: EFFECT OF ACIDIC AND BASIC MODIFYING AGENTS ON UNIDIRECTIONAL RELEASE AND PERMEATION

has been accepted for a poster presentation.

Your presentation is scheduled for 21.03.12.

The posters must be presented from 09.00 h to 17.00 h. During the poster session from 12.30 h to 15.00 h the presenter should be available for discussions.

Your panel number is 111.

Important information for poster presentations:

The panels for the poster presentations have the following size: height 150 cm, width 90 cm (A0 portrait). The posters must not exceed this size. Please bring fixing materials with you. Only poster strips (removable ones) are permitted.

Please register for the congress using the online form on our homepage http://www.worldmeeting.org. Use your abstract ticket number for a discount on

Students must submit a copy of their student ID.

Yours sincerely, APV Headquarters

# NICOTINE-MAGNESIUM ALUMINUM SILICATE COMPLEX-LOADED HPMC TABLETS: EFFECT OF ACIDIC AND BASIC MODIFYING AGENTS ON UNIDIRECTIONAL RELEASE AND PERMEATION

Thaned Pongjanyakul<sup>1</sup>, Sopaphan Kanjanabat<sup>2</sup>

<sup>1,2</sup> Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand, <sup>1</sup>Tel: +6643 362092, <sup>1</sup>Fax: +6643 362092, <sup>1</sup>email: <a href="mailto:thaned@kku.ac.th">thaned@kku.ac.th</a>

#### INTRODUCTION

Nicotine (NCT) is a volatile and strongly alkaline liquid. It could form diprotonated, monoprotonated and neutral species at acidic, neutral and basic pH levels, respectively [1]. It has been used in smoking cessation therapy for relieving addiction symptoms. NCT is a candidate for mucosal delivery, especially buccal route, due to low bioavailability after oral administration.

NCT could interact with magnesium aluminum silicate (MAS), a mixture of montmorillonite and saponite clays, to form intercalated complexes via electrostatic force and hydrogen bonding. The NCT-MAS complex particles could sustain NCT release after initial burst release in pH 6 phosphate buffer [2]. The use of NCT-MAS complexes as drug reservoirs in matrix tablets was developed and evaluated for buccal delivery of NCT [3]. In this study, the effect of acidic and basic modifying agents, citric acid and magnesium hydroxide, respectively, on unidirectional NCT release and permeation of hydroxypropyl methylcellulose (HPMC) matrix tablets was investigated.

#### **EXPERIMENTAL METHODS**

#### Preparation of NCT-MAS complexes

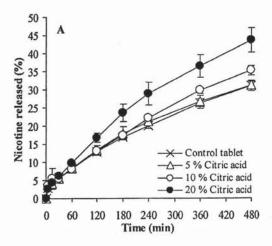
NCT solution and MAS dispersion were mixed and pH of the mixture was adjusted to 9. To achieve equilibrium of NCT adsorption onto MAS, the dispersions were then incubated with shaking at 37 °C for 24 h. The NCT-MAS complexes were separated from the filtrates by filtration, washed twice using 20 ml of deionized water and dried at 50 °C for 24 h. The dry NCT-MAS complexes were ground using a mortar and pestle.

#### Preparation of HPMC tablets loaded with NCT-MAS complexes and pH modifying agents

All tablets were prepared using the direct compression method. Each tablet consisted of 120 mg NCT-MAS complexes (equivalent to NCT 15.8 mg), 80 mg HPMC and 2 mg magnesium stearate. Citric acid or magnesium hydroxide was added in the content of 5, 10, or 20 %w/w of the tablet weight. The ingredients were mixed in a rotomixer for 3 min; magnesium stearate was then blended

with the mixture for 1 min before tabletting. The mixtures were filled into 10-mm flat-faced punches and dies, then applying 23 MPa with a hydrostatic press without holding time. The tablets obtained were stored in a desiccator until the measurements.

#### Thickness and hardness of the tablets


The thicknesses of the tablets were measured using a vernier caliper. The hardnesses of the tablets were measured with a Stokes tablet hardness tester.

#### Unidirectional release and permeation of NCT

Unidirectional release of NCT from the tablets was characterized using a modified USP dissolution apparatus 2 [3]. Briefly, the distance between the paddle and vessel bottom was set to 1 cm, and the dissolution medium used was 300 ml of pH 6 phosphate buffer at 37.0 °C. A cellulose acetate membrane (0.45-μm pore size) which had been hydrated in pH 6 phosphate buffer for overnight was tightly attached at the lowest point of a polypropylene tube (inner diameter=1.8 cm) using a nylon cable tie. This tube was vertically placed in a dissolution vessel and the distance between the tube and the vessel wall was approximately 1.8 cm. The end of the tube was adjusted so that the membrane was wetted and in contact with the medium. The tablets were placed into the tube and wetted using 2 ml of pH 6 phosphate buffer. The rotation speed of the paddle was set to 50 revolutions/min. Samples (7 ml) were collected at various time intervals. The amount of NCT released was quantified with HPLC. In the case of NCT permeation study, porcine esophageal mucosa was used as a mucosal membrane model [4] and the permeation medium was isotonic phosphate buffer at pH 7.4.

#### RESULTS AND DISCUSSION

The tablet thickness seemed to increase with increasing pH modifier content. Citric acid at the content of 20% caused a decrease in tablet hardness. In contrast, a small amount of magnesium hydroxide brought about a remarkable decrease of the tablet hardness. This was due to decrease of interparticle bonding of HPMC when adding citric acid or magnesium hydroxide. However, all tablets were acceptable upon visual inspection and acceptable hardness.



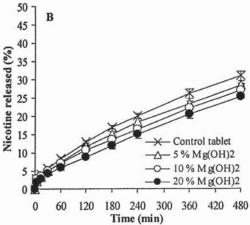



Figure 1. Unidirectional nicotine release of NCT-MAS complex-loaded HPMC tablets adding various contents of citric acid (A) and magnesium hydroxide (B). Each point is mean  $\pm$  SD, n=3.

The NCT release profiles of the tablets containing citric acid and magnesium hydroxide are present in Figure 1. The NCT release rate calculated using Higuchi' equation is listed in Table 1. Incorporation of magnesium hydroxide caused lower NCT release rate due to the formation of aqueous gel barriers of HPMC with inorganic gel of magnesium hydroxide. On the other hand, citric acid could accelerate NCT release rate because fast dissolution of citric acid could reduce tortuosity of swollen HPMC matrix.

Table 1. NCT release and permeation rate of the tablets.

| pH modifying agent      | Release rate<br>(% min <sup>-0.5</sup> ) | Permeation rate<br>(μg min <sup>-0.5</sup> ) |
|-------------------------|------------------------------------------|----------------------------------------------|
| Control tablet          | $1.51 \pm 0.07$                          | $117.3 \pm 19.4$                             |
| 5% Citric acid          | $1.56\pm0.08$                            | $19.2 \pm 2.0$                               |
| 10% Citric acid         | $1.78 \pm 0.04$                          | $24.9 \pm 6.0$                               |
| 20% Citric acid         | $2.24\pm0.23$                            | $8.90 \pm 0.7$                               |
| 5% Mg(OH) <sub>2</sub>  | $1.39 \pm 0.02$                          | $227.4 \pm 13.4$                             |
| 10% Mg(OH) <sub>2</sub> | $1.28\pm0.09$                            | $277.0\pm25.7$                               |
| 20% Mg(OH) <sub>2</sub> | $1.23 \pm 0.05$                          | $235.4 \pm 5.9$                              |

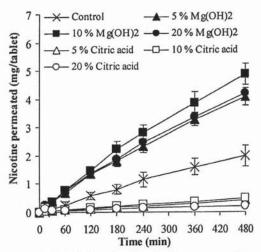



Figure 2. Unidirectional nicotine permeation of NCT-MAS complex-loaded HPMC tablets adding various contents of citric acid and magnesium hydroxide. Each point is mean ± SD, n=3

The NCT permeation across the mucosal membrane is shown in Figure 1. The NCT permeation rate (Table 1), which was computed using Higuchi's equation, of the tablets adding citric acid obviously decreased when compared with the control tablets. This was due to the formation of protonated NCT with low permeability across the mucosal membrane at acidic pH level [1]. Magnesium hydroxide could enhance NCT permeation rate because neutral NCT with high permeability could completely form at basic pH level.

#### CONCLUSION

Addition of pH modifying agents could change NCT species released from the NCT-MAS complexes, leading to modulation of NCT permeation for buccal delivery.

#### **ACKNOWLEDGEMENTS**

This work was supported by the Thailand Research Fund, Bangkok, Thailand (Grant no. RSA5280013).

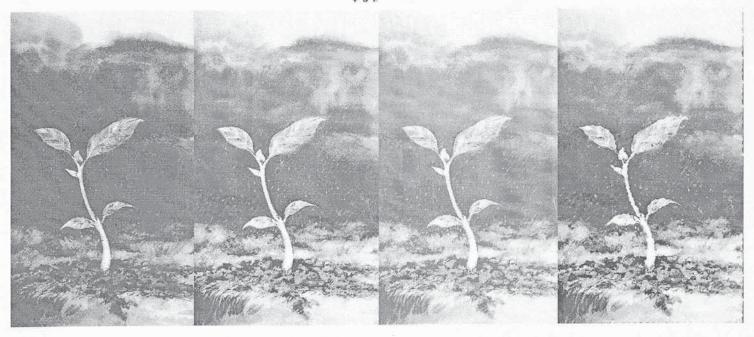
#### REFERENCES

- Chen LH, Chetty DJ, Chien YW, 1999. Int. J. Pharm. 184, 63-72.
- [2] Pongjanyakul T, Khunawattanakul W, Puttipipatkhachorn S, 2009. Appl. Clay Sci. 44, 242-50.
- [3] Kanjanabat S, Pongjanyakul T, 2011. AAPS PharmSciTech. 12, 683-92.
- [4] Diaz-del Consuelo I, Falson F, Guy RH, 2007. J. Control. Release 122, 135-40.

# บทคัดย่อ การเสนอผลงานแบบโปสเตอร์

ทุนเพิ่มขีดความสามารถด้านการวิจัยของอาจารย์รุ่นกลาง ในสถาบันอุดมศึกษา \* เมธีวิจัย สกว. \* วุฒิเมธีวิจัย สกว. และทุนวิจัยพื้นฐานเชิงยุทธศาสตร์

## การประชุมนักวิจัยรุ่นใหม่ พบ เมธีวิจัยอาวุโส สกว. ครั้งที่ 10


วันที่ 14-16 ตุลาคม 2553 โรงแรมฮอลิเดย์อินน์ รีสอร์ท รีเจนท์ บีช ชะอำ จังหวัดเพชรบุรี

สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) 🏂





สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.)



### Characterization of Calcium Alginate Beads Loading Propranolol-Magnesium Aluminum Silicate Intercalated Complexes as Microreservoirs

Pongjanyakul, T.\*, Rongthong, T., Rojtanatanya, S.

Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand

#### Abstract

Propranolol HCl (PPN), a cationic drug, could interact with magnesium aluminum silicate (MAS), a negatively charged clay, to create small flocculate particles of intercalated complexes. In this study, calcium alginate (CA) beads loaded with PPN-MAS intercalated complexes, which serve as microreservoirs, were prepared using an ionotropic gelation method. The surface and matrix morphology, drug entrapment efficiency, mechanical properties, and drug release behavior of the CA beads were investigated. The results showed that the PPN-MAS complex particles were embedded on the surface and in the matrix of the CA beads, which was examined using scanning electron microscopy with energy dispersive X-ray analysis. The PPN entrapment efficiency of the PPN-MAS complex-loaded CA beads was significantly higher than that of the PPN-loaded CA beads. Increased MAS content brought about an increase in PPN entrapment efficiency and the matrix strength of the CA beads. Moreover, the PPN-MAS complexes in the CA beads could remarkably reduce the initial burst of PPN release as well as its release rate in both 0.1 M HCl and pH 6.8 phosphate buffer, depending on the MAS content added. Additionally, the PPN-MAS complex-loaded CA beads also produced a sustained release pattern of PPN in simulated gastro-intestinal conditions. The findings show that the CA beads containing PPN-MAS intercalated complexes as microreservoirs could enhance drug entrapment efficiency, reduce initial burst release and modulate drug release. Furthermore, these beads represent a promising oral drug delivery system for highly water-soluble cationic drugs.

**Keywords:** calcium alginate beads, magnesium aluminum silicate, propranolol, intercalated complexes, entrapment efficiency

#### Outputs

- Rojtanatanya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. International Journal of Pharmaceutics 2010; 383: 106-115.
- 2. Pongjanyakul T, Rongthong T. Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug-clay intercalated complexes as microreservoirs. Carbohydrate Polymers 2010; 81: 409-419.

\*Corresponding author.

Tel.: 0-4336-2092; Fax: 0-4336-2092

E-mail: thaned@kku.ac.th

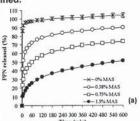
#### CHARACTERIZATION OF CALCIUM ALGINATE BEADS LOADING PROPRANOLOL-MAGNESIUM ALUMINUM SILICATE INTERCALATED COMPLEXES AS MICRORESERVOIRS

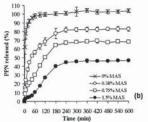


#### Thaned Pongjanyakul\*, Thitiphorn Rongthong, Sarasit Rojtanatanya

Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand



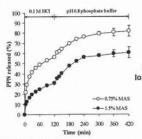

30<sup>th</sup> Anniversary
\*Email address: thaned@kku.ac.th


#### INTRODUCTION

Sodium alginate (SA), a naturally occurring non-toxic polysaccharide found in marine brown algae, is one of the polysaccharides employed to fabricate small beads. Gelation of SA occurs when uronic acids are crosslinked with divalent cations, such as calcium ions[1] . This phenomenon has been applied to the preparation of calcium alginate (CA) beads for use as a drug delivery system, by dropping the drug-containing SA dispersion into a calcium chloride bath[2]. A low entrapment efficiency of water-soluble drugs in the CA beads is a problem for developing CA beads as a drug delivery system[3]. To solve this problem, magnesium aluminum silicate (MAS) was used as an adsorbent for amine drugs to form drug-MAS complexes. A simultaneous formation of small particle drug-MAS complexes occurred when a MAS dispersion and a drug solution were mixed, due to electrostatic interactions between these materials<sup>[4,5]</sup>. Therefore, the aim of this study was to prepare and investigate CA beads loaded with drug-MAS complexes that serve as microreservoirs. Propranolol HCI (PPN), a cationic drug, was used as a model drug.

#### **EXPERIMENTAL**

The PPN-MAS complexes in the dispersion were formed before adding SA. The PPN-MAS complex-loaded SA dispersions were dropped through a nozzle (1.2-mm inner diameter) into 2% w/v calcium chloride solution. The gel beads were cured for 30 min, collected and dried at 50°C for 24 h. The surface and internal morphology were investigated using SEM with EDX analysis. The mechanical properties, PPN entrapment efficiency and PPN release were examined.






PPN release profiles of CA beads containing PPN-MAS complexes prepared using different MAS concentrations in 0.1 M HCl (a) and pH 6.8 phosphate buffer (b).

#### PPN release characteristics of PPN-MAS complex-loaded CA beads.

| PPN-loaded CA<br>beads | 0.1 M HCI                                |                                              | pH 6.8 phosphate buffer                  |                                            |  |
|------------------------|------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|--|
|                        | Initial burst<br>release at 5 min<br>(%) | PPN release rate<br>(% min <sup>-1/2</sup> ) | Initial burst<br>release at 5 min<br>(%) | PPN release rate<br>(% min <sup>-1</sup> ) |  |
| 0% MAS                 | 86.2 ± 1.9                               |                                              | $\textbf{62.2} \pm \textbf{8.2}$         |                                            |  |
| 0.38% MAS              | 42.2 ± 0.9                               | $\textbf{14.05} \pm \textbf{0.05}$           | 15.5 ± 1.2                               | $\textbf{0.77} \pm \textbf{0.02}$          |  |
| 0.75% MAS              | 23.4 ± 1.2                               | $\textbf{8.64} \pm \textbf{0.08}$            | 8.41 ± 0.07                              | $\textbf{0.34} \pm \textbf{0.02}$          |  |
| 1.5% MAS               | 10.7 ± 0.7                               | $2.88 \pm 0.02$                              | 2.65 ± 1.05                              | $0.22 \pm 0.01$                            |  |

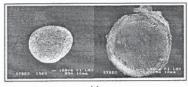


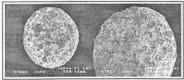
PPN release profiles of PPN-MAS complexloaded CA beads in simulated gastric-intestinal condition.

#### REFERENCES

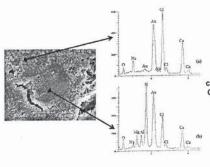
- [1] K.I. Draget, Handbook of hydrocolloids 2000, pp. 379-395..
- [2] S. Sugawara, T. Imai, M. Otagiri, Pharm Res 1994, 11, 272-277.
- [3] B.J. Lee, G.H. Min, J.H. Cui, Pharm Pharmacol Commun 1999, 5, 85-89.
- [4] H. Suksri, T. Pongjanyakul, Colloids Surf B 2008, 65, 54-60.
- [5] S. Rojtanatanya, T. Pongjanyakul, Int J Pharm 2010, 383, 106-115.

#### PUBLICATION


- Rojtanatanya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. International Journal of Pharmaceutics 2010; 383: 106-115.
- Pongjanyakul T, Rongthong T. Enhanced entrapment efficiency and modulated drug release
  of alginate beads loaded with drug-clay intercalated complexes as microreservoirs.
  Carbohydrate Polymers 2010; 81: 409-419.

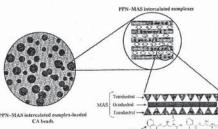

#### RESULTS

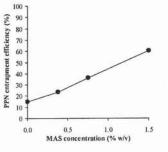


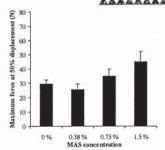



Morphology of PPN-MAS complex particles in the dispersion without (a) and with (b) SA before cross-linking process.







Microscopic morphology and internal structure of PPN-loaded CA beads (a) and PPN-1.5%MAS complex-loaded CA beads (b).




SEM micrograph focused on PPN-MAS complexes in PPN-1.5%MAS complex-loaded CA beads and EDX patterns of CA matrix (a) and PPN-MAS complexes (b).









Effect of MAS on PPN entrapment efficiency of CA beads.

Effect of MAS on mechanical property of

#### CONCLUSION

The PPN-MAS intercalated complexes formation enhanced PPN entrapment efficiency and strength of CA beads, and modulated PPN release in both acidic medium and pH 6.8 phosphate buffer. The drug-MAS complex-loaded CA beads showed strong potential as an oral drug delivery system for cationic drugs with high water solubility.

#### **ACKNOWLEDGEMENTS**

The authors wish to acknowledge the Thailand Research Fund for financial support (Grant no. RSA5280013), and the Faculty of Pharmaceutical Sciences, Khon Kaen University for technical facilities.

## Characterization of Nicotine-Magnesium Aluminum Silicate Microparticles for Mucosal Delivery

Watchara Kanjanakawinkul, a Satit Puttipipatkhachorn, b and Thaned Pongjanyakul a

<sup>a</sup> Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

<sup>b</sup> Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.

Introduction and Objective

Nicotine (NCT), a volatile, strongly alkaline liquid from tobacco plants, has been used for smoking cessation. NCT could interact with magnesium aluminum silicate (MAS), a negatively charged clay, via electrostatic interaction and hydrogen bonding, leading to the formation of NCT-MAS complex flocculates. The aim of this study was to prepare NCT-MAS microparticles by using lyophilization in order to maintain an original morphology of NCT-MAS flocculate particles formed. Effect of preparation pHs and NCT-MAS ratios on characteristics of microparticles were investigated.

#### Methods

A NCT solution was mixed with a MAS suspension at pH 4 or pH 7 to obtain the mixtures with different NCT-MAS ratios by weight. The NCT-MAS microparticles formed were collected and dried using lyophilization. The Feret diameter and morphology of the microparticles were investigated using an optical microscopy and SEM, respectively. NCT content in the microparticles was determined by acid extraction. The crystallinity and thermal behavior of the microparticles were characterized using PXRD and DSC, respectively. Mucoadhesive properties of the microparticles were also examined. NCT release and permeation across porcine esophageal mucosa were performed by using a modified Franz diffusion cell.

#### Results

All microparticles had an irregular shape. The size and NCT content of the microparticles tended to increase when increasing NCT concentrations in the preparation. NCT could intercalate into interlayer space of MAS, which was revealed by PXRD. The formation of the NCT-MAS microparticles could enhance thermal stability of NCT. The microparticles gave a sustain release of NCT after an initial burst release. The greater the NCT content of the microparticles, the higher the NCT release rate was found. The microparticles prepared at pH 4 gave lower NCT permeation flux than those prepared at pH 7. This was due to lower permeability of protonated NCT. Additionally, the microparticles obtained also presented mucoadhesive properties with mucosal membrane.

#### Conclusion

The formation of the NCT-MAS microparticles could improve NCT thermal stability and sustain NCT release. Moreover, the microparticles possessed mucoadhesive properties and NCT released could permeate across mucosal membrane. This finding suggests that the NCT-MAS microparticles have good potential for use as a mucosal delivery system of NCT.

Keywords: Nicotine, Magnesium aluminum silicate, Microparticles, Mucosal delivery

#### **Selected References:**

- 1. Pongjanyakul, T.; Khunawattanakul, W.; Puttipipatkhachorn, S. Appl Clay Sci, 2009, 44, 242-250.
- 2. Suksri, H.; Pongjanyakul, T. Colloids Surf B, 2008, 65, 54-60.
- 3. Diaz del Consuelo, I.; Jacques, Y.; Pizzolato, G.; Guy, R.H.; Falson, F. Arch Oral Biol, 2005; 50, 981-987.



Watchara Kanjanakawinkul (รัชระ กาญจนครินกุล) RGJ10 Khon Kaen University, Thailand, Pharmaceutical Sciences, B.Pharm. 2006

Research field: pharmaceutical technology and drug delivery system

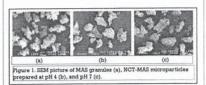


#### **Characterization of Nicotine-Magnesium Aluminum Silicate** Microparticles for Mucosal Delivery

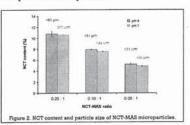
Watchara Kanjanakawinkul, a Satit Puttipipatkhachorn, b and Thaned Pongjanyakul a

- <sup>a</sup> Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
- b Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.

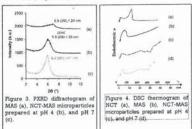
#### Introduction and Objective


Nicotine (NCT), a volatile, strongly alkaline liquid from tobacco plants, has been used for smoking cessation. NCT could interact with magnesium aluminum silicate (MAS), a negatively charged clay, via electrostatic interaction and hydrogen bonding, leading to the formation of NCT-MAS complex flocculates. The aim of this study was to prepare NCT-MAS microparticles by using lyophilization in order to maintain an original morphology of NCT-MAS flocculate particles formed. Effect of preparation pHs and NCT-MAS ratios on characteristics of microparticles were investigated.

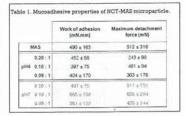
#### Methods


A NCT solution was mixed with a MAS suspension at pH 4 or pH 7 to obtain the mixtures with different NCT-MAS ratios by weight. The NCT-MAS microparticles formed were collected and dried using lyophilization. The Feret diameter and morphology of the microparticles were investigated using an optical microscopy and SEM, respectively. NCT content in the microparticles was determined by acid extraction. The crystallinity and thermal behavior of the microparticles were characterized using PXRD and DSC, respectively. Mucoadhesive properties of the microparticles were also examined. NCT release and permeation across porcine esophageal mucosa were performed by using a modified Franz diffusion cell.

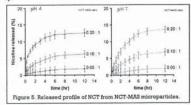
#### Results


All microparticles had an irregular shape (Figure 1). The particle size of NCT-MAS microparticles tended to increase when increasing NCT concentration in the preparation (Figure 2).

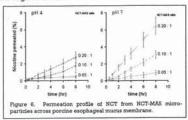



NCT content of the microparticles increased with increasing NCT concentrations in the preparation (Figure 2). In addition, the NCT content of microparticles prepared at pH 4 and pH 7 were comparable.




The shift of basal spacing peak of MAS in NCT-MAS microparticles to lower 20 indicated that NCT could intercalate into interlayer space of MAS (Figure 3).




The absent of endothermic peak of NCT at 147 °c and the present of exothermic degradation peak of NCT around 300 c in DSC thermogram of microparticles (Figure 4) indicated the complex formation between NCT and MAS. This resulted in an improvement of NCT thermal stability.



Additionally, the microparticles obtained also presented mucoadhesive properties with porcine esophageal mucosal membrane (Table 1).



The microparticles gave a sustain release of NCT after an initial burst release (Figure 5). The greater the NCT content of the micro-particles, the higher the NCT release rate was found.



The microparticles prepared at pH 4 gave lower NCT permeation flux than those prepared at pH 7 (Figure 6). This was due to lower microparticles of pH 4 NCT

#### Conclusion

The formation of the NCT-MAS microparticles could improve NCT thermal stability and sustain NCT release. Moreover, the microparticles possessed mucoadhesive properties and NCT released could permeate across mucosal membrane. This finding suggests that the NCT-MAS microparticles have good potential for use as a mucosal delivery system of NCT.

#### Selected References:

- Pongjanyakul, T.; Khunawattanakul, W.; Puttipipatkhachorn, S. Appl Clay Sci, 2009, 44, 242-250.
- 2. Suksri, H.; Pongjanyakul, T. *Colloids Surf B*, **2008**, 65, 54-60.

  3. Diaz del Consuelo, I.; Jacques, Y.; Pizzolato, G.; Guy, R.H.; Falson, F. *Arch Oral Biol*, **2005**; *50*, 981-987.

This work was supported by the Thailand Research Fund and Khon Kaen University through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0165/2550).
The authors thank to the Thailand Research Fund for research grant (RSA 5280013).

#### การศึกษาคุณลักษณะของยาเม็ดไฮดรอกซีโพรพิลเมทิลเซลลูโลส บรรจุสารประกอบเชิงซ้อนนิโคติน-เคลย์ เพื่อนำส่งทางกระพุ้งแก้ม CHARACTERIZATION OF HYDROXYPROPYLMETHYLCELLULOSE TABLETS CONTAINING NICOTINE-CLAY COMPLEXES FOR BUCCAL DELIVERY

โสภาพรรณ กาญจนบัตร<sup>1</sup> และ รศ.คร.**ธ**เนศ พงศ์จรรยากุล<sup>2</sup>

#### บทคัดย่อ

วัตถุประสงค์ของการศึกษานี้ เพื่อเตรียมและประเมินยาเม็ดไฮดรอกซีโพรพิลเมทิลเซลลูโลสบรรจุสาร ประกอบเชิงซ้อนนิโกติน-แมกนีเซียมอะลูมินัมซิลิเกต ซึ่งทำหน้าที่เป็นแหล่งกักเก็บยาเพื่อนำส่งทางกระพุ้งแก้ม โดย ศึกษาผลของปริมาณสารประกอบเชิงซ้อนต่อกุณสมบัติยาเม็ด คือ ความหนา ความแข็ง การปลดปล่อยนิโกติน การซึม ผ่านเยื่อเมือกบริเวณหลอดอาหารหมู และความสามารถในการยึดติดทางชีวภาพ ผลการศึกษาพบว่า ยาเม็ดเมทริกซ์ที่ได้ มีคุณสมบัติทางกายภาพที่ดี การปลดปล่อยนิโกตินจากยาเม็ดเมทริกซ์ควบกุมโดยกลไกการพองตัวและการกร่อนของ พอลิเมอร์ อัตราการปลดปล่อยนิโกติน และอัตราการซึมผ่านเยื่อเมือกของนิโกตินเพิ่มขึ้น เมื่อเพิ่มปริมาณสารประกอบ เชิงซ้อนในยาเม็ด นอกจากนี้ยาเม็ดที่เตรียมได้ แสดงกุณสมบัติการยึดติดทางชีวภาพต่อเมมเบรนเยื่อเมือก จากผล การศึกษาสรุปว่า ยาเม็ดไฮดรอกซีโพรพิลเมทิลเซลลูโลสบรรจุสารประกอบเชิงซ้อนนิโกติน-แมกนีเซียมอะลูมินัมซิลิเคต มีความเป็นไปได้สำหรับใช้เป็นระบบนำส่งทางกระพุ้งแก้มของนิโกติน

คำสำคัญ : นิโคติน, แมกนีเซียมอะลูมินัมซิลิเคต, ไฮครอกซีโพรพิลเมทิลเซลลูโลส, ยาเม็คกระพุ้งแก้ม

#### ABSTRACT

The purpose of this study was to prepare and evaluate hydroxypropylmethylcellulose (HPMC) tablets containing nicotine-magnesium aluminum silicate (NCT-MAS) complexes as drug reservoirs for buccal delivery. The effect the amounts of complexes on tablet properties, such as hardness, thickness, nicotine release, in vitro permeation across porcine esophageal mucosa and mucoadhesive properties were investigated. The results presented that all tablets gave an acceptable physical properties. The release of nicotine from the tablets could be controlled by polymer swelling and erosion mechanisms. The release and permeation rate of nicotine increased with the increasing of the amount of complexes in the tablets. Moreover, the obtained tablets gave the bioadhesive property for adhesion to the mucosal membrane. These findings suggested that the HPMC tablets containing NCT-MAS complexes showed good potential to be a nicotine buccal delivery system.

KEYWORDS: nicotine, magnesium aluminum silicate, hydroxypropylmethylcellulose, buccal tablets

-

<sup>้</sup> นักศึกษาปริญญาโท สาขาวิชาเภสัชภัณฑ์ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

<sup>&</sup>lt;sup>2</sup> อาจารย์ประจำคณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

#### 1. บทน้ำ

การบำบัดด้วยนิโลตินทดแทน (nicotine replacement therapy) มีประโยชน์สำหรับผู้ที่ต้องการอดบุหรี่ แต่การ บริหารนิโลตินรูปแบบรับประทานให้ค่าชีวประสิทธิผลต่ำ จากการที่นิโลตินถูกทำลายที่ทับ (D'Orlando and Fox, 2004) การนำส่งยาผ่านทางเยื่อเมือกกระพุ้งแก้ม (buccal drug delivery) สามารถเพิ่มประสิทธิภาพการรักษาได้ เนื่องจากหลีกเลี่ยงการที่ตัวยาถูกทำลายที่ตับ ทำให้ความเข้มข้นของยาในเลือดถึงระดับที่ต้องการ (Adrian et al., 2006) ยาเม็ดเมทริกซ์สำหรับติดกระพุ้งแก้มเป็นรูปแบบการนำส่งนิโลตินที่มีการวิจัยและพัฒนา (Ikinci et al., 2004) มี ระยะเวลาการออกฤทธิ์นานกว่าหมากฝรั่งเลี้ยวนิโคติน จึงลดความถี่ในการบริหารยาได้ แต่ปัจจัยที่ต้องคำนึงถึงคือ ยา เม็ดต้องติดที่ตำแหน่งเดิมภายในปาก และควบคุมการปลดปล่อยนิโคตินได้ตลอดการบริหารยา (Rossi et al., 2005) นิโลตินเป็นสารประกอบอัลกาลอยด์ เป็นของเหลวใส ไม่มีสี เมื่อสัมผัสกับก๊าซออกซิเจนในอากาสจะเกิดการ ออกซิเดชัน เปลี่ยนเป็นสีเหลืองหรือสีน้ำตาล (Maryadele, J.O., 2006) นิโลตินรูปเบสอิสระซึมผ่านเยื่อเมือกได้ง่าย แต่ เกิดการระเหยและสลายตัวได้ง่าย การนำสารบางชนิด เช่น ไมโลรคริสตัลลีนเซลลูโลส มาดูดซับนิโคติน ช่วยป้องกัน การระเหยและสลายตัวได้ง่าย การนำสารบางชนิด เช่น ไมโลรคริสตัลลีนเซลลูโลส มาดูดซับนิโกติน ซ่วยป้องกัน การระเหยและเพิ่มกวามคงตัวของนิโกตินได้ (Mihranyan et al., 2004) แมกนีเซียมอะลูมินัมซิลิเคต เป็นเคลย์ในกลุ่ม มอนต์โมริลโลในต์ สามารถดูดซับนิโกตินได้ เกิดเป็นสารประกอบเชิงซ้อนนิโกติน-แมกนีเซียมอะลูมินัมซิลิเคต ทำให้ กวามลงตัวของนิโกตินเพิ่มขึ้น และทำให้นิโลตินปลดปล่อยอย่างช้าๆ (Pongjanyakul et al., 2009) แสดงให้เห็นว่า สารประกอบเชิงซ้อนดังกล่าว มีแนวโน้มสำหรับการนำมาใช้เป็นแหล่งกักเก็บยาในระบบนำส่งยา

การศึกษานี้มีวัตถุประสงค์เพื่อเตรียมยาเม็ดเมทริกซ์ ที่มีสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิ ลิเคตเป็นแหล่งกักเก็บยา และใช้ไฮดรอกซีโพรพิลเมทิลเซลลูโลสเป็นพอลิเมอร์สำหรับยึดติดทางชีวภาพ ในการศึกษา นี้จะศึกษาคุณสมบัติต่างๆ ของยาเม็ดเมทริกซ์ เช่น การปลดปล่อยยา ความสามารถในการซึมผ่านเยื่อเมือก และ ความสามารถในการยึดติดทางชีวภาพ เพื่อนำยาเม็ดชนิดนี้ไปประยุกต์ใช้ในการผลิตยาในขั้นอุตสาหกรรมต่อไป

#### 2. ขั้นตอนการศึกษา / อุปกรณ์และวิธีการวิจัย

#### 2.1 การเตรียมสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคต

เตรียมสารกระจายแมกนีเซียมอะลูมินัมซิลิเคตความเข้มข้น 4 %w/v และสารละลายนิโคตินความเข้มข้น 2 %w/v ในน้ำปราสจากไอออน แบ่งสารที่เตรียมอย่างละ 50 มิลลิลิตร ผสมให้เข้ากัน ปรับพีเอช 9 ด้วยสารละลายกรดไฮโดร คลอริกความเข้มข้น 1 M หรือสารละลายโซเดียมไฮตรอกไซด์ความเข้มข้น 1 M นำไปให้ความร้อนในอ่างควบคุม อุณหภูมิที่ 37 องสาเซลเซียส เขย่า 75 ครั้งต่อนาที เป็นเวลา 24 ชั่วโมง กรองสารผสมเพื่อเก็บส่วนตะกอน อบให้แห้งที่ อุณหภูมิ 50 องสาเซลเซียส เป็นเวลา 24 ชั่วโมง สารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตที่ได้ นำมา บดลดขนาดด้วยโกร่งและลูกโกร่ง แร่งผ่านตะแกรงขนาด 180 μm

#### 2.2 การศึกษาการปลดปล่อยนิโคตินจากสารประกอบเชิงซ้อน

เครื่องมือที่ใช้ทคสอบ คือ USP dissolution apparatus II (paddle method) (Vankel VK 200, USA) ตัวกลางการ ละลาย คือ ฟอสเฟตบัฟเฟอร์พีเอช 6.0 ปริมาตร 500 มิลลิลิตร ควบคุมอุณหภูมิที่ 37 องสาเซลเซียส และกวนด้วย ความเร็ว 50 รอบต่อนาที ปริมาณสารประกอบเชิงซ้อนที่ใช้ทคสอบเทียบเท่านิโคติน 15 มิลลิกรัม เก็บสารละลาย ตัวอย่างที่เวลาต่างๆ และวิเคราะห์หาปริมาณนิโคตินโดยการวัดค่าการคูคกลืนแสงที่ความยาวคลื่น 259 นาโนเมตร ด้วย เครื่อง UV-visible spectrophotometer (Shimadzu UV1201, Japan)

#### 2.3 การเตรียมยาเม็ดเมทริกซ์บรรจุสารประกอบเชิงซ้อนนิโกติน-แมกนีเซียมอะลูมินัมซิลิเคต

ยาเม็คประกอบด้วยสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคตเทียบเท่านิโคติน 5 10 และ 15 มิลลิกรัม ปรับน้ำหนักยาเม็คเท่ากับ 200 มิลลิกรัม ด้วยไฮครอกซีโพรพิลเมทิลเซลลูโลสชนิคความหนืค 50 เซนติพอยส์ และเดิมแมกนีเซียมสเตียเรตปริมาณ 1 %w/w ของสารผสม ขั้นตอนการเตรียมทำได้โคย ผสมสารประกอบเชิงซ้อน

#### The 21st National Graduate Research Conference

และ ไฮครอกซี โพรพิลเมทิลเซลลู โลส เป็นเวลา 3 นาที ตามด้วยแมกนีเชียมสเตียเรต 1 นาที นำสารผสมที่ได้ไปอัดเม็ด โดยใช้ชุดสากขนาดเส้นผ่านศูนย์กลาง 10 มิลลิเมตร ใช้ความคันในการตอก 23.7 เมกะปาสคาล ด้วยเครื่องตอกไฮโครลิก

#### 2.4 การประเมินคุณลักษณะยาเม็ดเมทริกซ์

#### 2.4.1 ความแข็งและความหนาของยาเม็ดเมทริกซ์

ทคสอบ โดยเครื่อง Monsanto hardness tester และ Vernier caliper ตามลำคับ

#### 2.4.2 การปลดปล่อยนิโคตินจากยาเม็ดเมทริกซ์

เครื่องมือที่ใช้ทคสอบ คือ USP dissolution apparatus I (basket method) (Vankel VK 200, USA) ใช้ฟอสเฟตบัฟเฟอร์พีเอช 6.0 ปริมาตร 500 มิลลิลิตร เป็นตัวกลางการละลาย ควบคุมอุณหภูมิที่ 37 องศาเซลเซียส basket หมุนด้วยความเร็ว 50 รอบต่อนาที เก็บสารละลายตัวอย่างที่เวลาต่างๆ และวิเคราะห์หาปริมาณนิโคตินโดยการ วัดค่าการดดกลืนแสงที่ความยาวคลื่น 259 นาโนเมตร ด้วยเครื่อง UV-visible spectrophotometer

#### 2.4.3 การซึมผ่านเยื่อเมือกของนิโคตินจากยาเม็ดเมทริกซ์

ใช้เชื่อเมือกหลอดอาหารหมูเป็นเมมเบรน (แหล่งที่มา คือ ตลาดบ้านโนนม่วง อ.เมือง จ.ขอนแก่น) เนื่องจากชนิดและปริมาณไขมันที่เป็นส่วนประกอบคล้ายกับเชื่อเมือกกระพุ้งแก้มหมู และคุณสมบัติการ ขอมให้สารซึมผ่านใกล้เคียงกัน (Diaz del Consuelo et al., 2005) ทำการเตรียมโดยล้างหลอดอาหารหมูด้วยฟอสเฟต บัฟเฟอร์ไอโซโทนิกพีเอช 7.4 ตัดหลอดอาหารหมูขาว 3-4 เซนติเมตร แช่ในสารละลายโซเดียมคลอไรค์ความเข้มข้น 0.9 %w/v ควบคุมอุณหภูมิ 60 องสาเซลเซียส เป็นเวลา 1 นาที จากนั้นแช่ในฟอสเฟตบัฟเฟอร์ ไอโซโทนิกพีเอช 7.4 ที่ อุณหภูมิห้อง แยกส่วนที่เป็นกล้ามเนื้อ นำไปเก็บในคู้เย็นควบคุมอุณหภูมิที่ -20 องสาเซลเซียส (Diaz del Consuelo et al., 2007) เมื่อต้องการทดสอบ นำเนื้อเชื่อแช่ในฟอสเฟตบัฟเฟอร์ไอโซโทนิก พีเอช 7.4 ที่อุณหภูมิห้อง เป็นเวลา 15 นาที เครื่องมือที่ใช้ทดสอบ คือ USP dissolution apparatus II (paddle method) ที่นำมาดัดแปลงโดยใช้หลอดพอลิ พรอพิลินบรรจุตัวอย่างที่ต้องการทดสอบ ชืดเชื่อเมือกติดกับปลายหลอดพอลิพรอพิลินโดยใช้สายในลอน ปรับระดับ ให้ปลายหลอดสัมผัสผิวหน้าตัวกลางการละลาย ตัวกลางที่ใช้คือ ฟอสเฟตบัฟเฟอร์ไอโซโทนิกพีเอช 7.4 ปริมาตร 300 มิลลิลิตรลงในหลอดพอลิพรอพิลิน กานด้วยความเร็ว 50 รอบต่อนาที เก็บสารละลายตัวอย่างที่เวลาต่างๆ และ วิเคราะห์หาปริมาณนิโดตินโดยวิธี HPLC

#### 2.4.4 การยึดติดทางชีวภาพของยาเม็ดเมทริกซ์

ใช้เยื่อเมือกหลอดอาหารหมูในการทดสอบ ล้างหลอดอาหารหมูให้สะอาดด้วยฟอสเฟตบัฟเฟอร์ ใอโซโทนิกพีเอช 7.4 ตัดหลอดอาหารหมูขนาด 2 x 2 เซนติเมตร แช่ในฟอสเฟตบัฟเฟอร์ ใอโซโทนิก พีเอช 7.4 ควบกุมอุณหภูมิที่ 37 องสาเซลเซียส เป็นเวลา 20 นาที แยกส่วนที่เป็นกล้ามเนื้อออกก่อนการทดสอบ ทำการทดสอบ ด้วยเครื่อง Texture Analyzer (TA.XT plus, Stable Micro System, UK) load cell ขนาด 50 นิวตัน ยาเม็ดเมทริกซ์ที่ ทดสอบยึดติดกับ probe โดยใช้กระดาษกาวสองหน้า ยึดเยื่อเมือกติดกับแท่นทดสอบให้แน่น เติมฟอสเฟตบัฟเฟอร์พี เอช 6.0 ปริมาณ 200 ใมโครลิตร ลงบนเยื่อเมือก ควบกุมให้ยาเม็ดเมทริกซ์สัมผัสผิวเยื่อเมือกด้วยแรงกด 0.50 นิวตัน ระยะเวลา 2 นาที เมื่อเริ่มทดสอบให้ probe เคลื่อนที่ขึ้นด้วยอัตราเร็ว 0.50 มิลลิเมตรต่อวินาที หาความสัมพันธ์ระหว่าง แรงที่ใช้กับระยะทาง และกำนวณค่า maximum detachment force

#### 2.4.5 สภาวะของ HPLC เพื่อการวิเคราะห์นิโคติน

ชนิคของคอลัมน์ คือ reversed phase C18 วัฏภาคเกลื่อนที่ (mobile phase) ประกอบด้วย 0.05 โมล ต่อลิตรของโซเดียมอะซีเทต เมทานอล และไตรเอทิลเอมีน ในอัตราส่วน 88 ต่อ 12 และ 0.5 ตามลำดับ ปรับ พีเอช ให้ได้ 4.2 ด้วยกรคอะซิติกเข้มข้น อัตราการไหลของวัฏภาคเคลื่อนที่เท่ากับ 1 มิลลิลิตรต่อนาที วัดปริมาณสารตัวอย่าง ด้วย UV detector ที่ความยาวคลื่น 259 นาโนเมตร

#### 2.4.6 การศึกษากลไกการปลดปล่อยยา

โมเคลทางกณิตศาสตร์ที่ใช้ศึกษารูปแบบการปลดปล่อยยาของยาเม็ดเมทริกซ์ ประกอบด้วย

(1) Zero order kinetics (Costa and Lobo, 2001)

$$Q = K_0 t$$
 .....(1)

เมื่อ Q คือ ปริมาณยา ณ เวลา t และ K คือ อัตราการปลดปล่อยอันดับศูนย์ (zero order release rate)

(2) Korsmeyer-Peppas model (Power law) (Siepmann and Siepmann, 2008)

$$\log \frac{M_t}{M_{\infty}} = n \log t + \log K \qquad ......(2)$$

เมื่อ  $M_t$  คือ ปริมาณยาที่ปลดปล่อยออกมาที่เวลาใดๆ (t)  $M_{\infty}$  คือ ปริมาณยาที่ปลดปล่อยออกมาที่เวลาอนันต์  $(\infty)$  K คือ ค่ากงที่ และ n คือ release exponent ที่บอกกลไกการปลดปล่อยยา เมื่อค่า n เท่ากับ 0.5 แสดงว่า กลไกการปลดปล่อยยาเกิดจากการแพร่ (Fickian diffusion) หากค่า n อยู่ระหว่าง 0.5 และ 1 การปลดปล่อยยาเป็นผล จากจากการแพร่ของยา ร่วมกับการพองตัวของพอลิเมอร์ และเมื่อ n มีค่ามากกว่า 1 แสดงว่า การปลดปล่อยยาควบคุม โดยการพองตัวและการกร่อนของพอลิเมอร์

#### 2.4.7 สถิติที่ใช้ในการวิเคราะห์ข้อมูล

การเปรียบเทียบความแตกต่างของข้อมูล วิเคราะห์โดยใช้ One-way analysis of variance (ANOVA) และใช้ Least significant difference (LSD) test ในการเปรียบเทียบความแตกต่างของข้อมูล 2 กลุ่ม โดยใช้ โปรแกรม SPSS for MS windows, release 11.5 (SPSS (Thailand) Co. Ltd., Bangkok, Thailand)

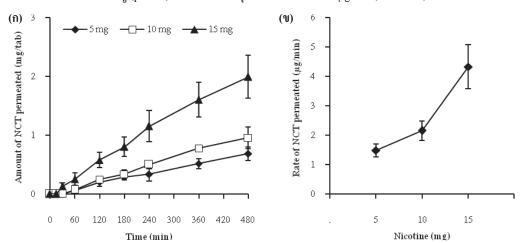
#### 3. ผลการวิเคราะห์ / ผลการวิจัยและอภิปรายผล


#### 3.1 ความหนาและความแข็งของยาเม็ดเมทริกซ์

ขาเม็ดเมทริกซ์มีความแข็งใกล้เคียงกันทุกตำรับอยู่ในช่วง 100-103 นิวตัน และน้อยกว่าความแข็งของ ยาเม็ดที่เตรียมจากไฮดรอกซีโพรพิลเมทิลเซลลูโลสเพียงอย่างเดียวที่มีความแข็งเท่ากับ 118 นิวตัน ความหนาของยา เม็ดเมทริกซ์อยู่ระหว่าง 1.82-2.17 มิลลิเมตร ใกล้เคียงกับความหนาของยาเม็ดที่เตรียมจากไฮดรอกซีโพรพิลเมทิล เซลลูโลสเพียงอย่างเดียว ความหนาของยาเม็ดเมทริกซ์ลดลง เมื่อปริมาณของสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียม อะลูมินัมซิลิเคตในตำรับเพิ่มขึ้น

#### 3.2 การปลดปล่อยนิโคตินจากยาเม็ดเมทริกซ์ไฮดรอกซีโพรพิลเมทิลเซลลูโลส

การปลดปล่อยนิโคตินจากสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคต ที่เตรียมที่พีเอช 9 ในตัวกลางการละลายฟอสเฟตบัฟเฟอร์พีเอช 6.0 (ภาพที่ 1 ก) ในช่วงแรกเกิดการปลดปล่อยยาอย่างรวดเร็วจาก กระบวนการแลกเปลี่ยนไอออนบากระหว่างนิโคตินที่ถูกดูดซับบริเวณผิว และโซเดียมไอออนที่เป็นส่วนประกอบใน ตัวกลางการละลาย จากนั้นอัตราการปลดปล่อยช้าลง เนื่องจากการแลกเปลี่ยนไอออนเกิดกับนิโคตินที่ถูกดูดซับภายในชั้นของแมกนีเซียมอะลูมินัมซิลิเคต (Pongjanyakul et al., 2009) ยาเม็ดเมทริกซ์สามารถลดการปลดปล่อยนิโคติน ในช่วงต้นได้เนื่องจากการพองตัวเป็นชั้นเจลของไฮดรอกซีโพรพิลเมทิลเซลลูโลส เมื่อพิจารณาค่า release exponent (n) จากสมการ Power law (สมการที่ 2) พบว่า ยาเม็ดเมทริกซ์ทุกตำรับ มีค่า n ใกล้เคียง 1 (ภาพที่ 1 ข) แสดงว่า การ ปลดปล่อยยาจากยาเม็ดเมทริกซ์ควบคุมโดยกลไกการพองตัวและการกร่อนของยาเม็ด ดังนั้นในการคำนวณหาอัตราเร็ว ในการปลดปล่อยนิโคตินได้ใช้สมการ Zero order (สมการที่ 1) พบว่า ยาเม็ดเมทริกซ์ที่มีปริมาณนิโคตินเพิ่มขึ้น อัตรา การปลดปล่อยนิโคตินสูงขึ้นอย่างมีนัยสำคัญ (p<0.05) (ภาพที่ 1 ข) เป็นผลจากยาเม็ดเมทริกซ์มีเกรเดียนต์ความเข้มข้น


ของตัวยาสูงขึ้น และเนื่องจากตำรับที่มีนิโคตินปริมาณมาก ต้องใช้สารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัม ซิลิเคตมาก ทำให้ปริมาณ ไฮดรอกซีโพรพิลเมทิลเซลลูโลสลดลง มีผลต่อการก่อตัวเป็นชั้นเจล จากคุณสมบัติของยาเม็ด เมทริกซ์ไฮดรอกซีโพรพิลเมทิลเซลลูโลส เมื่อยาเม็ดสัมผัสตัวกลางการละลาย พอลิเมอร์ดูดน้ำเข้าสู่ภายในยาเม็ด เกิด การพองตัวและก่อตัวเป็นชั้นเจลบริเวณรอบ ยาเม็ด ทำหน้าที่เป็นสิ่งกั้นการซึมผ่านของยาออกสู่ตัวกลางการละลาย (Sung et al., 1996) ตำรับที่มีพอลิเมอร์ปริมาณมาก ก่อให้เกิดชั้นเจลหนาและมีความหนืดมาก มีผลต้านการแพร่ของยา และอัตราการปลดปล่อยยาลดลง (Cao et al., 2005; Narendra et al., 2005; Velasco et al., 1999)



ภาพที่ 1 รูปแบบการปลดปล่อยนิโคติน (ก) และค่า release exponent และอัตราการปลดปล่อยนิโคติน (ข) ของยาเม็ด เมทริกซ์ไฮดรอกซีโพรพิลเมทิลเซลลูโลสที่มีปริมาณนิโคติน 5 10 และ 15 มิลลิกรัมต่อเม็ด ในฟอสเฟตบัฟเฟอร์พีเอช 6.0 แต่ละค่าแสดงในรูปของค่าเฉลี่ย ± ส่วนเบี่ยงเบนมาตรฐาน ค่าละ 3 ตัวอย่าง

#### 3.3 การซึมผ่านเยื่อเมือกของนิโคตินจากยาเม็ดเมทริกซ์

การซึมผ่านเยื่อเมือกของนิโคตินจากยาเม็ดเมทริกซ์แสดงคังภาพที่ 2 ก เมื่อปริมาณนิโคตินในตำรับสูงขึ้น การซึมผ่านของนิโคตินเพิ่มขึ้น อัตราการซึมผ่านเยื่อเมือกของยาเม็ดเมทริกซ์ตำรับที่มีปริมาณนิโคติน 15 มิลลิกรัมต่อ เม็ด เพิ่มขึ้นอย่างมีนัยสำคัญ (p<0.05) และมีค่ามากที่สุดเท่ากับ 4.33 ± 0.75 µg/min (ภาพที่ 2 ข)



ภาพที่ 2 รูปแบบการซึมผ่านเขื่อเมือก (ก) และอัตราการซึมผ่านเชื่อเมือก (ข) ของนิโคตินจากขาเม็ดเมทริกซ์ ใชครอกซีโพรพิลเมทิลเซลลูโลสบรรจุสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัมซิลิเคต ที่มีนิโคติน 5 10 และ 15 มิลลิกรัมต่อเม็ค แต่ละค่าแสดงในรูปของค่าเฉลี่ย ± ส่วนเบี่ยงเบนมาตรฐาน ค่าละ 3 ตัวอย่าง

#### 3.4 การยึดติดทางชีวภาพของยาเม็ดเมทริกซ์

ยาเม็ดเมทริกซ์ ใฮครอกซี โพรพิลเมทิลเซลลูโลสที่มีปริมาณนิโคติน 5 10 และ 15 มิลลิกรัมต่อเม็ด มี ค่า maximun detachment force เท่ากับ 990.0 ± 425.4 505.5 ± 145.0 และ 486.7 ± 122.3 มิลลินิวตัน แสดงให้เห็นว่า ยา เม็ดเมทริกซ์ที่เตรียมขึ้น มีคุณสมบัติการฮึคติดทางชีวภาพต่อเมมเบรนเชื่อเมือก

#### 4. บทสรุป / สรุปผลการวิจัย

ยาเม็คเมทริกซ์ไฮครอกซีโพรพิลเมทิลเซลลูโลสบรรจุสารประกอบเชิงซ้อนนิโคติน-แมกนีเซียมอะลูมินัม ซิ ลิเคตที่เป็นแหล่งกักเก็บยา สามารถควบคุมการปลดปล่อยยานิโคติน และนิโคตินสามารถซึมผ่านเยื่อเมือกจำลองได้ โดยขึ้นอยู่กับปริมาณนิโคตินที่บรรจุในยาเม็ด นอกจากนี้ยาเม็คเมทริกซ์ยังคงให้คุณสมบัติการยึดติดเยื่อเมือก ดังนั้น ยา เม็คเมทริกซ์นี้สามารถนำมาประยุกต์ใช้เป็นระบบนำส่งนิโคตินทางเยื่อเมือกกระพุ้งแก้มได้ และมีความเป็นไปได้ใน การพัฒนาในระดับอุตสาหกรรมต่อไป

#### 5. กิตติกรรมประกาศ

กณะผู้วิจัยขอขอบกุณบัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น ในการสนับสนุนทุนวิจัยสำหรับกณาจารย์ บัณฑิตศึกษา เพื่อให้สามารถรับนักศึกษาที่มีความสามารถและศักยภาพสูง เข้าศึกษาในหลักสูตรและทำวิจัยในสาขาที่ อาจารย์มีความเชี่ยวชาญ ประจำปีการศึกษา 2552 และขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย ที่สนับสนุนทุน พัฒนานักวิจัย ประจำปี 2552 (RSA 5280013)

#### เอกสารอ้างอิง

- Adrian C.L., Olin Helle B.D., Dalhoff K., Jacobsen J. In vivo human buccal permeability of nicotine.

  Int. J. Pharm. 2006; 311: 196-202
- Cao Q.R., Choi Y., Cui J., Lee B. Formulation, release characteristics and bioavailability of novel monolithic hydroxypropylmethylcellulose matrix tablets containing acetaminophen.
- Costa P., Lobo J.M.S. Modeling and comparison of dissolution profiles. *Eur. J. Pharm. Biopharm.* 2001; 13: 123-133

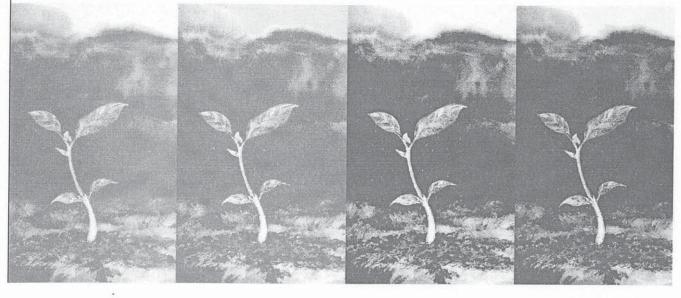
J. Control. Release. 2005; 108: 351-361

- Diaz del Consuelo I., Falson F., Guy R.H., Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. *J. Control. Release.* 2007; 122: 135-140
- Diaz del Consuelo I., Jacques Y., Pizzolato G., Guy R.H., Falson F. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. *Arch. Oral Bio.* 2005; 50: 981-987
- <u>D'Orlando K.J., Fox B.S.</u> Tolerability and pharmacokinetics of single and repeated doses of nicotine with The Straw, a novel nicotine replacement product. <u>Nicotine Tob. Res.</u> 2004; 6: 63-70
- Maryadele J.O., editor. *The Merck Index:* An Encyclopedia of Chemicals, Drugs, and Biologicals. 14<sup>th</sup>ed. Whitehouse Station: Merck & co., Inc.; 2006.
- Mihranyan A., Andersson S., Eka R. Sorption of nicotine to cellulose powders. *Eur. J. Pharm. Sci.* 2004; 22: 279-286
- Narendra C., Srinath M.S., Rao B.P. Development of three layered buccal compact containing metoprolol tartrate by statistical optimization technique. *Int. J. Pharm.* 2005; 304: 102-114

- Pongjanyakul T., Khunawattanakul W., Puttipipatkhachorn S. Physicochemical characterizations and release studies of nicotine–magnesium aluminum silicate complexes. *Appl. Clay Sci.* 2009; 44: 242-250
- Rossi S., Sandri G., Caramella C.M. Buccal drug delivery: A challenge already won? *Drug Discovery Today:*Technologies 2005; 2: 59-65
- Siepmann J., Siepmann F. Mathematical modeling of drug delivery. Int. J. Pharm. 2008; 364: 328-343
- Sung K.C., Nixon P.R., Skoug J.W., Ju T.R., Gao P., Topp E. M., Patel M.V. Effect of formulation variables on drug and polymer release from HPMC-based matrix tablets. *Int. J. Pharm.* 1996; 142: 53-60
- Velasco M.V., Ford J.L., Rowe P., Rajabi-Siahboomi A.R. Influence of drug:hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. *J. Control. Release.* 1999; 57: 75-85

## บทคัดย่อ การเสนอผลงานแบบโปสเตอร์

## **การประชุมนักวิจัยรุ่นใหม่** พบ **เมธีวิจัยอาวุโส สกว.** ครั้งที่ 11


วันที่ 19-21 ตุลาคม 2554 โรงแรมฮอลิเดย์อินน์ รีสอร์ท รีเจนท์ บีช ชะอำ จังหวัดเพชรบุรี

สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)





สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.)



### Application of Nicotine-Magnesium Aluminum Silicate Complexes as Drug Carriers in Alginate Matrix Buccal Tablets: Effect of Complex/Alginate Ratio

Pongjanyakul, T.\*, Kanjanabat, S.

Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand

#### Abstract

Nicotine (NCT) buccal tablets consisting of sodium alginate (SA) and nicotine-magnesium aluminum silicate (NCT-MAS) complexes prepared at pH 9 acting as drug carriers were produced using the direct compression method. The effect of the complex/SA ratios on NCT release, permeation across mucosa and mucoadhesive properties of the tablets was examined. The NCT-MAS complex-loaded SA tablets had good physical properties. The complex-loaded SA tablets tested using the whole tablets showed zero-order release kinetics of NCT, which indicate a swelling/erosion controlled release mechanism. Measurement of unidirectional NCT release and permeation across porcine esophageal mucosa using a modified USP dissolution apparatus 2 showed that the higher the SA content in the tablets, the lower the NCT release and permeation rates were found. The complex-loaded SA tablets provided similar NCT release and permeation rates at the same complex/SA ratio, suggesting that the delivery of NCT across the mucosal membrane was mainly controlled by the swollen matrix tablets. Additionally, the tablets possessed a bioadhesive property for adhesion to the mucosal membrane. These findings suggest that the SA matrix tablets loaded with the pH 9 NCT-MAS complexes as drug carriers present strong potential for use as a buccal delivery system for NCT.

**Keywords:** nicotine, magnesium aluminum silicate, sodium alginate, buccal tablets, release and permeation

#### Outputs

- Rojtanatanya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. International Journal of Pharmaceutics 2010; 383: 106-115.
- Pongjanyakul T, Rongthong T. Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug-clay intercalated complexes as microreservoirs. Carbohydrate Polymers 2010; 81: 409-419.
- Kanjanabat S, Pongjanyakul T. Preparation and characterization of nicotine-magnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery. AAPS PharmSciTech 2011 (DOI: 10.1208/s12249-011-9633-y).

\*Corresponding author.

Tel.: 0-4336-2092; Fax: 0-4336-2092

E-mail: thaned@kku.ac.th

#### APPLICATION OF NICOTINE-MAGNESIUM ALUMINUM SILICATE COMPLEXES AS

#### DRUG CARRIERS IN ALGINATE MATRIX BUCCAL TABLETS:

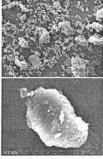


#### Thaned Pongjanyakul\*, Sopaphan Kanjanabat

Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand

\*Email address: thaned@kku.ac.th




Nicotine (NCT), obtained from tobacco plants, is a volatile and strongly alkaline liquid. It has been widely used in smoking cessation therapy. NCT is absorbed through skin and mucosal membrane, such as buccal and nasal membranes[1]. Due to a poor stability of NCT, adsorbing materials were used for reduction of evaporation and oxidative degradation of NCT. Magnesium aluminum silicate (MAS), a mixture of montmorillonite and saponite clays, could interact with NCT to form an intercalated complexes. The complex particles were shown to sustain NCT release in distilled water and pH 6 phosphate buffer[2]. Sodium alginate (SA), a naturally occurring non-toxic polysaccharide found in marine brown algae, has been used as a bioadhesive material and drug release modifier for intraoral drug delivery dosage forms[3]. Thus, the aim of this study was to prepare and investigate SA tablets loaded with NCT-MAS complex particles as microreservoirs for buccal delivery of NCT. The effect of complex/SA ratios in the tablets on NCT release and permeation and mucoadhesive properties was examined.

#### EXPERIMENTAL

The NCT-MAS complexes were prepared using an adsorption process at pH 9[2]. The mixtures of the dried complex particles and SA powder were compressed using a hydrostatic press at 23 MPa pressure. The NCT release from the whole tablets was studied using a USP dissolution apparatus 1 (basket method). A modified USP dissolution apparatus 2 was employed for characterizing unidirectional release and permeation of NCT that cellulose acetate membrane and porcine esophageal membrane<sup>[4,5]</sup> were used as model membranes, respectively. The NCT concentration was analyzed using HPLC. The mucoadhesive properties of the tablets on porcine esophageal mucosa were determined using a texture analyzer.

Component of NCT-MAS complex-loaded SA tablets using different complex/SA ratios.

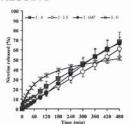
| Component (mg)            | Complex-SA ratio |       |        |         |  |
|---------------------------|------------------|-------|--------|---------|--|
|                           | 1:4              | 1:1.5 | 1:0.67 | 1:0     |  |
| NCT-MAS complexes         | 40.0             | 80.0  | 120.0  | 200.0   |  |
| SA                        | 160.0            | 120.0 | 80.0   | 0.0     |  |
| Magnesium stearate        | 2.0              | 2.0   | 2.0    | 2.0     |  |
| Amount of NCT (mg/tablet) | 5 mg             | 10 mg | 15 mg  | 26.3 mg |  |

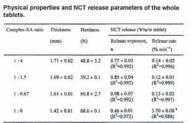


A modified USP dissolution apparatus 2 for

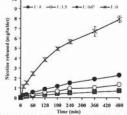
Morphology of NCT-MAS complex particles.

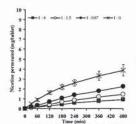
characterizing unidirectional NCT release and permeation of the tablets.


#### REFERENCES


- [11 Nair MA, Chetty DJ, Ho H, Chien YW, J Pharm Sci 1997; 86: 257-62.
- [2] Pongjanyakul T, Khunawattanakul W, Puttipipatkhachorn S. Appl Clay Sci 2009; 44: 242-50. [3] Boyapally H, Nukala RK, Bhujbal P, Douroumis D. Colloids Surf B 2010; 77: 227-33.
- [4] Diaz-del Consuelo I, Falson F, Guy RH, Jacques Y. J Control Release 2007; 122: 135-40.
- [5] Pongjanyakul T, Suksri H. Colloids Surf B 2009; 74: 103-13.

#### PUBLICATION


- Rojtanatanya S, Pongjanyakul T. Propranolol-magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. International Journal of Pharmaceutics 2010; 383: 106-115.
- 2.Pongjanyakul T, Rongthong T. Enhanced entrapment efficiency and modulated drug release
- 2.Ponganyakut 1, Kongitiong 1. Enhanced enhapment enhanced and indudated dray release of alginate beads loaded with drug-clay intercalated complexes as microreservoirs. Carbohydrate Polymers 2010; 81: 409-419.
  3.Kanjanabat S, Pongjanyakut T. Preparation and characterization of nicotine-magnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery.
  AAPS Pharmscitech 2011; 12: 683-692.

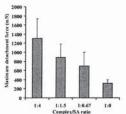

#### RESULTS













Unidirectional release (a) and permeation (b) of NCT from the NCT-MAS complex-loaded SA tablets

Unidirectional NCT release and permeation parameters of the tablets.

| Complex-SA ratio | Release exponent, n                | NCT release rate <sup>8</sup>             |                                             | NCT permeation rate <sup>b</sup>          |                                              |
|------------------|------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|----------------------------------------------|
|                  |                                    | K <sub>0</sub><br>(μg min <sup>-1</sup> ) | K <sub>H</sub><br>(μg min <sup>-1/2</sup> ) | K <sub>0</sub><br>(μg min <sup>-1</sup> ) | K <sub>11</sub><br>(µg min <sup>-1/2</sup> ) |
| 1:4              | 0.58 ± 0.04                        | 1.30 ± 0.07                               | 32.7 ± 1.7                                  | 1.90 ± 0.24                               | 52.5 ± 6.6                                   |
|                  | (R <sup>2</sup> =0.989)            | (R <sup>2</sup> =0.992)                   | (R <sup>2</sup> =0.989)                     | (R <sup>2</sup> =0.982)                   | (R <sup>2</sup> =0.989)                      |
| 1:1.5            | $0.63 \pm 0.05$                    | 2.49 ± 0.23                               | 62.3 ± 5.5                                  | $3.11 \pm 0.23$                           | 85.7 ± 5.8                                   |
|                  | ( $R^2=0.991$ )                    | (R <sup>2</sup> =0.966)                   | (R <sup>2</sup> =0.981)                     | ( $R^2$ =0.986)                           | (R <sup>2</sup> =0.990)                      |
| 1:0.67           | $0.66 \pm 0.04$<br>( $R^2=0.993$ ) | 4.51 ± 0.23<br>(R <sup>2</sup> =0.979)    | 109.8 ± 5.2<br>(R <sup>2</sup> =0.986)      | $4.88 \pm 0.30$<br>( $R^2=0.980$ )        | $131.6 \pm 7.4$ ( $R^2$ =0.993)              |
| 1:0              | $0.58 \pm 0.03$                    | $15.27 \pm 0.66$                          | $382.3 \pm 15.8$                            | 7.90 = 1.30                               | $208.9 \pm 32.6$                             |
|                  | ( $R^2=0.991$ )                    | ( $R^2 = 0.937$ )                         | ( $R^2 = 0.995$ )                           | ( $R^2 = 0.955$ )                         | ( $R^2=0.996$ )                              |

an ± S.D., n=3





Maximum detachment force and work of adhesion of the tablets using porcine esophageal mucosa.

#### CONCLUSION

The NCT-MAS complex-loaded SA tablets could be prepared using the direct compression method. The NCT release from the tablets were controlled by drug diffusion and swelling of SA tablets. The NCT release and permeation rate increased with increasing amount of NCT-MAS complexes in the tablets. The tablets gave mucoadhesive properties on porcine esophageal mucosa. This study suggests that the NCT-MAS complex-loaded SA tablets show strong potential for use as a buccal delivery system for NCT.

#### **ACKNOWLEDGEMENTS**

The authors wish to acknowledge the Thailand Research Fund for financial support (Grant no. RSA5280013), and the Faculty of Pharmaceutical Sciences, Khon Kaen University for technical facilities.