บทคัดย่อ

รหัสโครงการ: RSA5280015

ชื่อโครงการ: ลักษณะสมบัติเชิงหน้าที่ของยืนกลุ่ม OsCML จากข้าว Oryza sativa L.

ชื่อนักวิจัย: รองศาสตราจารย์ ดร. ธีรพงษ์ บัวบูชา

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

Email Address: <u>Teerapong.B@Chula.ac.th</u>

ระยะเวลาโครงการ: 3 ปี

คัลมอดุลิน (Calmodulin, CaM) เป็นโปรตีนส่งผ่านสัญญาณแคลเซียมที่ทำงานโดยจับและควบคุมโปรตีน เป้าหมายในการตอบสนองทางสรีรวิทยาต่อสิ่งกระตุ้นที่หลากหลายของพืช ในงานวิจัยนี้ผู้วิจัยได้ศึกษาโปรตีนรี คอมบิแนนท์ที่ทำให้บริสุทธิ์ของยีน Cam สามยีนและยีน Cam-like (CML) แปดยีนจากข้าว พบว่าโปรตีนทั้งหมด แสดงสมบัติ electrophoretic mobility shift ในภาวะที่มีแคลเซียม ในตรวจวัดการเปลี่ยนโครงรูปเมื่อจับแคลเซียม โดยวิธี CD spectroscopy และ fluorescence spectroscopy ของ ANS พบว่าโปรตีน OsCML แสดงลักษณะใน เชิงโครงสร้างและหน้าที่ที่มีความหลายหลายทั้งในลักษณะที่เหมือนและที่แตกต่างจาก CaM การศึกษารูปแบบการ แสดงออกของยืน OsCML เก้ายืนโดยวิธี real-time PCR ในข้าวพันธุ์ขาวดอกมะลิ 105 พบว่าภายใต้ภาวะ ความเครียดจากความเค็ม (150 mM NaCl) และความเครียดออสโมติก (20% PEG) การแสดงออกของยีน OsCML4 และ OsCML8 มีระดับสูงขึ้นอย่างชัดเจนตั้งแต่ 3 ชั่วโมงจนถึงอย่างน้อย 24 ชั่วโมงหลังจากได้รับ ความเครียด ขณะที่การแสดงออกของยืน *OsCML5* และ *OsCML11* ถูกกระตุ้นอย่างรวดเร็วที่ 1 และ 3 ชั่วโมง ์ ตามลำดับภายหลังจากได้รับความเครียดทั้งสองชนิด นอกจากนี้ยังพบการแสดงออกของยืน OsCML1 เพิ่มขึ้นที่ 1 ชั่วโมงหลังได้รับความเครียดจากความเค็มแต่ไม่เพิ่มขั้นเมื่อได้รับความเครียดออกโมติก ผลการทดลองนี้แสดงให้ เห็นว่าผลิตภัณฑ์ของยืนเหล่านี้น่าจะมีหน้าที่สำคัญในการตอบสนองที่อาศัยแคลเซียมต่อความเครียดดังกล่าว นอกจากนี้ผู้วิจัยยังได้ค้นหา binding-protein ของ OsCaM1, OsCML3 และ OsCML3d โดยวิธี cDNA expression library screening พบโคลน cDNA ที่แตกต่างกันสำหรับโปรตีน OsCaM1 และ OsCML3d อย่างละเก้าชนิด และ สำหรับโปรตีน OsCML3 อีกสองชนิด โดยพบว่ายืนเหล่านี้สร้างโปรตีนซึ่งเป็น CaM-binding protein ที่รู้จักมาก่อน สี่ชนิดคือ cyclic nucleotide-gated ion channel, glutamate decarboxylase, CaM-binding transcription activator และ kinesin motor domain-containing protein และยังพบ CaM/CML-binding protein ชนิดใหม่ซึ่งยัง ไม่เคยมีการค้นพบมาก่อนอีก 13 ชนิด จากผลการทดลองทั้งหมดแสดงให้เห็นว่า genetic polymorphism ช่วย ส่งเสริมการเกิดความหลากหลายในหน้าที่ของกลุ่มโปรตีน OsCML ซึ่งมีสมาชิกที่น่าจะมีกลไกการทำงานที่ทั้ง ้เหมือนและแตกต่างจากโปรตีน OsCaM ข้อมูลทั้งหมดเหล่านี้จะช่วยให้ทำให้การศึกษาหน้าที่ในระดับโมเลกุลและ ความสำคัญในเชิงสรีรวิทยาของโปรตีน OsCML ในการส่งผ่านสัญญาณควบคุมการตอบสนองต่อความเครียดจาก สิ่งแวดล้อมและควบคุมความทนต่อความเครียดจากสิ่งแวดล้อมที่หลากหลายในข้าวได้ดียิ่งขึ้น

คำสำคัญ สัญญาณแคลเซียม คัลมอดุลิน ข้าว

Abstract

Project Code: RSA5280015

Project Title: Functional characterization of OsCML genes from Oryza sativa L.

Investigator: Teerapong Buaboocha, Ph.D.

Department of Biochemistry, Faculty of Science

Chulalongkorn University

Email Address: Teerapong.B@Chula.ac.th

Project Period: 3 years

Calmodulin (CaM) transduces the increase in cytosolic Ca²⁺ concentrations by binding to and altering the activities of target proteins, and thereby affecting the physiological responses to the vast array of stimuli. Here, we examined the purified recombinant proteins encoded by three Cam and eight Cam-like (CML) genes from rice. All recombinant proteins exhibited an electrophoretic mobility shift when incubated with Ca²⁺. By examining their conformational changes upon Ca²⁺-binding by CD spectroscopy and fluorescence spectroscopy using ANS, OsCMLs were found exhibiting a spectrum of both structural and functional characteristics that ranged from typical to atypical of CaMs. Expression patterns of nine OsCML genes were examined by real-time PCR in rice Oryza sativa L. cv. KDML105. Under salt stress (150 mM) and osmotic stress (20% PEG), expression of OsCML4 and OsCML8 was significantly increased after 3 hours until at least 24 hours after treatment. On the other hand, expression of OsCML5 and OsCML11 was up-regulated as early as 1 hour and 3 hours after both stresses, respectively, before rapidly returning to their normal levels. In addition, expression of OsCML1 was shown to increase only at 1 hour after salt stress, but not after osmotic stress. These results suggest that products of these genes may function in Ca2+-mediated response to these stresses. Finally, binding proteins of OsCaM1, OsCML3 and OsCML3d were identified by cDNA expression library screening. Nine distinct positive cDNA clones were each obtained from OsCaM1 and OsCML3d, and two from OsCML3. Altogether, the screening identified four previously known CaM-binding proteins from other plants including a cyclic nucleotidegated ion channel, a glutamate decarboxylase, a CaM-binding transcription activator, and a kinesin motor domain-containing protein. However, 13 putative novel CaM/CML-binding proteins, whose functions are involved in diverse cellular processes, were revealed. Taken together, these results suggest that genetic polymorphism has promoted the functional diversity of the OsCML family, whose members possess modes of actions probably different from, though maybe overlapping with, those of OsCaMs. These data will help facilitate further investigations into molecular functions and physiological significance of OsCML proteins in mediating stress response and tolerance to diverse environmental stresses of rice plants.

Keywords: calcium signaling; calmodulin; CaM; CML; rice