บทคัดย่อ

รหัสโครงการ: RSA5280034

ชื่อโครงการ: การลดความเสียหายเนื่องจากแผ่นดินใหว

ชื่อนักวิจัย: อมร พิมานมาศ

ภาควิชาวิศวกรรมและเทคโนโลยีโยธา สถาบันเทคโนโลยีนานาชาติสิรินธร

มหาวิทยาลัยธรรมศาสตร์

Email Address: amorn@siit.tu.ac.th

ระยะเวลาโครงการ: 13 มีนาคม 2552 – 6 ตุลาคม 2555

งานวิจัยนี้เป็นการศึกษาการลดความเสียหายเนื่องจากแผ่นดินไหวของโครงสร้างคอนกรีต เสริมเหล็ก โดยการเสริมกำลังให้โครงสร้างที่มีอยู่เดิมให้มีความต้านทานแผ่นดินไหวหรือมีความ เหนียวขององค์อาคารเพิ่มขึ้น โดยแบ่งเป็น 3 หัวข้อที่ศึกษาได้แก่ 1) การเสริมกำลังการทาบต่อเหล็ก เสริมในองอ์อาคารคอนกรีตเสริมเหล็กด้วยแผ่นเส้นใยโพลิเมอร์ 2) การเสริมกำลังคานคอนกรีตเสริม เหล็กต้านทานแรงเฉือนด้วยเฟอร์โรซีเมนต์ และ 3) การทดสอบและแบบจำลองการเสริมกำลังการ ทาบต่อเหล็กเสริมด้วยเฟอร์โรซีเมนต์

การเสริมกำลังการทาบต่อเหล็กเสริมในองค์อาคารคอนกรีตเสริมเหล็กด้วยแผ่นเส้นใยโพลิ เมอร์ จะทำการทดสอบตัวอย่างคานจำนวน 8 ตัวอย่าง ประกอบด้วย 1 ตัวอย่างที่ไม่ทาบต่อเหล็ก เสริม และ 7 ตัวอย่างที่ทาบต่อเหล็กเสริม โดยตัวอย่างที่ทาบต่อเหล็กเสริม แบ่งเป็น 2 กลุ่มคือ กลุ่ม 15db ที่มีความยาวระยะทาบ 200 มม. และกลุ่ม 20db ที่มีความยาวระยะทาบ 250 มม. คานทดสอบ พิจารณาเป็นคานช่วงเดียว มีความยาวช่วง (Span length) 2.34 ม. ขนาดหน้าตัดกว้าง 15 ซม. ลึก 30 ซม. ทดสอบภายใต้แรงกระทำเชิงสถิต ณ ตำแหน่งกึ่งกลางคานโดยการทดสอบได้พิจารณากำลัง รับน้ำหนัก ระยะแอ่นตัว กำลังยึดเหนี่ยวที่บริเวณการทาบต่อเหล็กเสริม และกำลังรับน้ำหนักของ เหล็กเสริมรับแรงดึง ตัวแปรที่ส่งผลต่อกำลังของเหล็กเสริมบริเวณทาบต่อประกอบด้วยความยาวของ การทาบต่อเหล็กเสริม ระยะหุ้มคอนกรีตและจำนวนรอบของการพันด้วยแผ่นเส้นใยโพลิเมอร์ จากผล การทดสอบพบว่า องค์อาคารที่มีระยะทาบต่อเหล็กเสริมที่ไม่เพียงพอหรือสั้นจนเกินไป จะส่งผลให้ กำลังรับน้ำหนักและความเหนียงขององค์อาคารลดลง รวมทั้งก่อให้เกิดการวิบัติแบบเปราะซึ่งเกิดจาก รอยแตกร้าวปริแตกตามแนวรอยทาบต่อเหล็ก การพันด้วยแผ่นโพลิเมอร์เสริมเส้นใยในบริเวณการ ต่อทาบเหล็กเสริมจะส่งผลให้เหล็กเสริมสามารถพัฒนากำลังรับแรงดึงถึงจุดครากได้โดยไม่เกิดการ วิบัติแบบปริแตก โดยผลการทดสอบในการวิจัยนี้ได้นำมาใช้พัฒนาแบบจำลองทางคณิตศาสตร์ Tri uniform bond stress model เพื่อคำนวณผลของการโอบรัดที่เกิดจากการใช้แผ่นโพลิเมอร์เสริมเส้นใย หุ้มบริเวณการทาบต่อเหล็กเสริม รวมทั้งสามารถหาปริมาณของจำนวนแผ่นโพลิเมอร์เสริมเส้นใยที่ ต้องการสำหรับเสริมกำลังให้เพียงพอในการต้านทานแผ่นดินไหวได้อีกด้วย

การเสริมกำลังคานคอนกรีตเสริมเหล็กต้านทานแรงเฉือนด้วยเฟอร์โรซีเมนต์จะทำการ ทดสอบตัวอย่างคานจำนวน 9 ตัวอย่าง ประกอบด้วยคานที่ไม่เสริมกำลัง (คานควบคุม) 3 ตัวอย่าง และคานที่เสริมกำลัง 6 ตัวอย่าง โดยแปรผันรูปแบบของการเสริมแรง คานทดสอบพิจารณาเป็นคาน simple beam ที่มีความยาวช่วง 2.20 ม. ขนาดหน้าตัดกว้าง 20 ซม. ลึก 40 ซม. ทดสอบภายใต้แรง กระทำเชิงสถิต ณ ตำแหน่งกึ่งกลางคาน รูปแบบการเสริมกำลังด้วยเฟอร์โรซีเมนต์เพื่อต้านทานแรง เฉือนได้ประยุกต์ใช้โครงเหล็กหุ้มตาข่ายและเหล็กเดือยที่ทำจากเหล็กเส้นกลมดัดเป็นรูปตัวซียึด ทางด้านข้างของคานจัดเรียงระยะห่างของเหล็กเดือยที่แตกต่างกัน การทดสอบได้พิจารณาลักษณะ การวิบัติของตัวอย่างและประสิทธิผลของการเสริมกำลัง ผลการทดสอบพบว่า คานที่ได้รับการเสริม กำลังต้านทานแรงเฉือนด้วยเฟอร์โรซีเมนต์สามารถเพิ่มกำลังต้านทานแรงเฉือนได้เป็นอย่างดี โดย เพิ่มกำลังทั้งรับแรงเฉือนและความเหนียว ซึ่งกำลังที่เพิ่มขึ้นจะขึ้นอยู่กับจำนวนและระยะห่างของ เหล็กเดือยที่เสริมข้างคาน รูปแบบและวิธีการเสริมกำลัง และเมื่อจำลองในโปรแกรมเพื่อศึกษารอย แตกที่เกิดขึ้นโดยระเบียบวิธีทางไฟในล์อิลิเมนต์แล้วพบว่ารอยแตกที่ได้มีรูปแบบที่ใกล้เคียงกันกับ รอยแตกจากตัวอย่างทดสอบ

การทดสอบและแบบจำลองการเสริมกำลังการทาบต่อเหล็กเสริมด้วยเฟอร์โรซีเมนต์ โดยทำ การทดสอบตัวอย่างคานจำนวน 9 ตัวอย่าง ประกอบด้วยคานที่ไม่ทำการทาบต่อเหล็กเสริม (คาน ควบคุม) 1 ตัวอย่าง และคานที่ทำการเสริมกำลัง 8 ตัวอย่าง โดยแบ่งเป็น 2 กลุ่มคือ กลุ่ม 20 db ที่มี ความยาวระยะทาบ 250 มม. และกลุ่ม 25db ที่มีความยาวระยะทาบ 300 มม. คานทดสอบพิจารณา เป็นคานช่วงเดียว มีความยาวช่วง (Span length) 2.34 ม. ขนาดหน้าตัดกว้าง 15 ซม. ลึก 30 ซม. การเสริมกำลังจะประยุกต์ใช้เฟอร์โรซีเมนต์ที่ประกอบด้วยมอร์ต้าร์และลวดตะแกรงจำนวน 2 ชั้น นอกจากนั้นจะมีการประยุกต์ใช้เหล็กโครงเพื่อที่ทำจากเหล็กเส้นกลม 9 มม. ดัดเป็นรูปตัวซีโอบรัด ตัวอย่างคานมีระยะเรียงที่แตกต่างกันออกไป ตัวอย่างคานจะถูกทดสอบภายใต้แรงกระทำเชิงสถิต ณ ตำแหน่งกึ่งกลางคาน โดยการทดสอบได้พิจารณากำลังรับน้ำหนัก ระยะแอ่นตัว กำลังยึดเหนี่ยวที่ บริเวณการทาบต่อเหล็กเสริม และกำลังรับน้ำหนักของเหล็กเสริมรับแรงดึง ตัวแปรที่ส่งผลต่อกำลัง ของเหล็กเสริมบริเวณทาบต่อประกอบด้วย ความยาวของการทาบต่อเหล็กเสริมและรูปแบบการเสริม กำลัง จากผลการทดสอบพบว่า การทาบต่อเหล็กเสริมที่มีระยะน้อยกว่า 25 เท่าของเส้นผ่าน ศูนย์กลางจะไม่สามารถพัฒนากำลังของเหล็กเสริมไปถึงจุดครากได้ การวิบัติจะปรากฏให้เห็นรอย แตกร้าวเกิดขึ้นตามแนวการทาบต่อเหล็กเสริมส่งผลให้องค์อาคารคอนกรีตเสริมเหล็กเกิดการวิบัติ อย่างฉับพลัน การเสริมกำลังด้วยเฟอร์โรซีเมนต์ร่วมกับเหล็กโครงสามารถเพิ่มกำลังรับน้ำหนัก บรรทุกได้สูงสุดกว่า 100 เปอร์เซ็นต์เมื่อเทียบกับตัวอย่างที่ไม่ได้เสริมกำลังในระยะทาบเดียวกัน พฤติกรรมของโครงสามารถเปลี่ยนแปลงจากพฤติกรรมที่ไม่มีความเหนียวให้มีความเหนียวได้ จาก ผลการทดสอบได้นำมาสร้างแบบจำลองโดยอาศัยแบบจำลอง Tri uniform bond stress model เพื่อ คำนวณกำลังของเหล็กเสริมหลังจากเสริมกำลังด้วยเฟอร์โรซีเมนต์ ผลจากการคำนวณแสดงให้เห็นว่า กำลังของเหล็กเสริมที่ได้จากการวิเคราะห์แบบจำลองมีค่าใกล้เคียงกับผลการทดสอบ

Abstract

Project Code: RSA5280034

Project Title: Use of ferrocement to strengthen reinforced concrete members not designed

for earthquake

Researcher: Associate Professor Dr. Amorn Pimanmas

School of Civil Engineering and Technology, Sirindhorn International Institute

of Technology, Thammasat University

Email Address: amorn@siit.tu.ac.th

Project Duration: March 2009 – September 2012

This research is a study to reduce the damages to reinforced concrete structures due to earthquakes, by strengthening existing structures so that they have increased seismic strength and ductility. The scope of study consists of 1) strengthening of lap splice of reinforcing bars by fiber reinforced polymer sheets, 2) shear strengthening of reinforced concrete members by ferrocement and 3) test and development of mathematical model to predict the strength of lap splice confined by ferrocement

The study on strengthening lap splice by fiber reinforced polymer sheets consists of 8 specimens. One specimen is the control specimen without lap splice and the other 7 specimens are specimens with lap splices. The later 7 specimens are grouped into 2 series, 15db series with lap length of 200 mm and 20db series with lap length of 250 mm. The specimens are tested as simple beam with the span length 2.34 m. The cross section is 15 cm wide and 30 cm deep. The load is monotonically applied at the middle of the beam. The applied load, deflection and lap splice bond strength are measured in the test.

From the experimental results, it is found that the variables that affect the strength of lap splice are splice length, concrete cover and number of FRP layers. The experiment clearly indicated that members with short lap splice length have lower strength and ductility. The failure of the specimens is characterized by brittle splitting crack along lap splice length. The confinement provided by CFRP around lap splice is effective to suppress the splitting crack propagation and enable the steel to develop yield capacity.

Based on the experimental results, the tri-uniform bond stress model has been developed to predict the confinement effect provided by CFRP. The model can also be applied to calculate the required amount of CFRP for strengthening short lap splice region.

The second research project is the shear strengthening of reinforced concrete members by ferrocement jacket. The experiment consists of 9 specimens. Three specimens are the control (unstrengthened) specimen and the remaining 6 specimens are strengthened specimens. The specimen is a beam type with the span length of 2.20 m. The cross section is 20 cm wide and 40 cm deep. The specimen is tested under monotonically applied control displacement at the middle of the span. The ferrocement for shear strengthening has also included the skeleton dowel steel fabricated in a C-shape and is fixed on the side face of the specimens at predetermined intervals. Experimental results have shown that strengthening of specimens by ferrocement can significantly increase shear strength of specimens. The ductility is also enhanced. The increase in shear strength varies with the spacing of skeleton dowel steels and the form of strengthening. Finite element analysis has been conducted to predict the behavior of specimens in the test. It is found that FEM analysis can satisfactorily reproduce cracks, load-deflection response and failure mode.

The third research project involves the test and development of model to predict the lap splice strengthened by ferrocement. In the experiment, 9 specimens have been tested. Among all specimens, one is the control specimen without lap splice. The remaining 8 specimens have short lap splice and are strengthened by ferrocement. The specimens can be grouped into 2 series; 20db series with lap length of 250 mm. and 25db series with lap length of 300 mm. The specimen is a beam type with span length of 2.34 m. The cross section is 15 cm wide and 30 cm high. The ferrocement consists of high strength mortar reinforced by 2 layers of hexagonal wire mesh. Skeleton steel made of 9 mm round bar bent in a C shape is also wrapped around the lap splice to increase the confinement. The load is statically applied to the specimen at the midspan. The applied load, deflection and bond strength of lap spliced bars are measured in the test. From experimental results, it is found that the variable that affects the development of lap splice strength is length of lap splice, form of strengthening and concrete cover. It is also found that if the splice length is less than 25 times bar diameter, the spliced bars cannot develop yield strength. The failure is characterized by a large splitting crack along the lap splice. Strengthening by ferrocement and skeleton steel can increase the load by more than 100%. The failure mode can be changed from brittle splitting failure to ductile flexural mode. Based on experimental results, tri uniform bond stress model is also developed to predict the behavior of specimens confined by ferrocement. Good agreement between model prediction and experimental results can be obtained.