

รายงานฉบับสมบูรณ์

โครงการวิจัยเรื่อง “อุบัติการณ์ของการเกิดโรคไตจากยาทีโนฟเวียร์ และการศึกษาทางด้านเภสัชจลนศาสตร์และเภสัชพันธุศาสตร์ของยาทีโนฟเวียร์ในผู้ป่วยติดเชื้อเอชไอวี” (Incidence of TDF associated nephrotoxicity and pharmacokinetics/pharmaogenomics of TDF in HIV-1 infected Thai patients)

แพทย์หญิงอัญชลี อวิหิงสานนท์
และคณะผู้วิจัย

คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ศูนย์ประสานความร่วมมือระหว่างไทย ออสเตรเลีย เนเธอร์แลนด์
เพื่อการวิจัยทางคลินิกด้านโรคเอดส์,
ศูนย์วิจัยโรคเอดส์ สภากาชาดไทย

ได้รับทุนสนับสนุนการวิจัยจาก
สำนักงานกองทุนสนับสนุนการวิจัย (TRF)
งบประมาณประจำปี 2553
พิมพ์เมื่อสิงหาคม 2558

รายงานฉบับสมบูรณ์

เรื่อง

“อุบัติการณ์ของการเกิดโรคไตจากยาทีโนโฟเวียร์
และการศึกษาทางด้านเภสัชจลนศาสตร์และ
เภสัชพันธุศาสตร์ของยาทีโนโฟเวียร์ในผู้ป่วยติดเชื้อเอชไอวี”
(Incidence of TDF associated nephrotoxicity and
pharmacokinetics/pharmacogenomics of TDF in
HIV-1 infected Thai patients)

คณะผู้วิจัยและ สังกัด

แพทย์หญิงอัญชลี อวิหิงสานนท์

คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

และยิพเนท ศูนย์วิจัยโรคเออดส์ สภากาชาดไทย

ศาสตราจารย์นายแพทย์ยิ่งยศ อวิหิงสานนท์

หน่วยโรคไต คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ศาสตราจารย์นายแพทย์เกื้อเกียรติ ประดิษฐ์พรศิลป์

หน่วยโรคไต คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สตีเฟ่น เคอร์ร์ มหาวิทยาลัยนิวเซาส์เวลล์ ชิดนีย์ ออสเตรเลีย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

ความเห็นในรายงานนี้เป็นของผู้วิจัย

สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป

Acknowledgement

We are grateful to our patients who have participated in this study. We thank the study teams at the Division of Nephrology, Department of Internal Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University and the HIV Netherlands Australia Thailand Research Collaboration, the Thai Red Cross AIDS Research Centre in Bangkok, Thailand for their contribution to the study. Importantly, we are in debt to The Thailand Research Fund for supporting this study during the budget fiscal year 2009 (RSA5380002).

HIV-NAT 114 Study team

07 August 2015

บทคัดย่อ

ยาทีโนฟอเวียร์ (Tenofovir, TDF) เป็นยาที่แนะนำให้ใช้เป็นตัวแรกๆ เนื่องจากมีประสิทธิภาพดีมากในการรักษาผู้ติดเชื้อเอชไอวีทั้งในผู้ที่เริ่มยาครั้งแรกหรือผู้ที่เคยต้องยามาก่อน แต่ยังขาดข้อมูลด้านความปลอดภัยระยะยาวทางไตและระดับยาที่เหมาะสมในผู้ป่วยคนไทยที่ติดเชื้อเอชไอวี

การศึกษานี้ประกอบด้วยการศึกษาอย่าง 4 การศึกษา ได้แก่

1. การศึกษาความปลอดภัยทางด้านไตของยาทีโนฟอเวียร์ โดยดูการทำงานของ proximal tubular เช่น ตรวจน้ำตาล ฟอสฟे�ต ยูริคแอซิด โปรตีนโดยประเมินจากการตรวจปัสสาวะ 24 ชั่วโมงในผู้ป่วยติดเชื้อเอชไอวีผู้ใหญ่ทั้งหมด 1,391 ราย แบ่งเป็น 3 กลุ่ม คือ กลุ่มที่ใช้ยา TDF เป็นยาตัวแรก (TDF based HAART) กลุ่มที่เริ่มต้นด้วยยาอื่นและเปลี่ยนมาเป็น TDF เพราะต้องการหรือเพราะผลข้างเคียง (TDF switching) และกลุ่มที่ไม่ได้ยา TDF เลย (non-TDF) โดยกลุ่มที่ไม่ได้ยา TDF มีผู้ป่วยที่เคยกินยา indinavir มาก่อนถึง 40% เมื่อดูความปลอดภัยทางด้านไต ถ้าดูจากการลดลงของ eGFR (eGFR ลดลงมากกว่า 25% จาก baseline หรือ $<60 \text{ cc/min/1.73m}^2$) ในทั้งกลุ่มที่ได้ยา TDF ตั้งแต่แรกหรือได้ตอนหลังจะต่างจากกลุ่มที่ไม่ได้ TDF โดยพบว่า มี incidence rate ของการเกิด renal insufficiency ประมาณ 1.9 per 100 person year of follow up และ 2.4 per 100 person year of follow up ตามลำดับ เมื่อเทียบกับ 6.9 per 100 person year of follow up ในกลุ่มที่ไม่ได้ TDF โดยพบว่า ทั้ง 3 กลุ่มเริ่มเกิด renal insufficiency เมื่อใช้ยาต้านมาเป็นระยะเวลาเฉลี่ย 1.2 ปี 1.8 ปี และ 1.4 ปี ตามลำดับ กลุ่มที่มีความเสี่ยงในการเกิด renal insufficiency ได้แก่ อายุ > 35 ปี (1.76 เท่า) เคยได้ยา indinavir มาก่อน (3.68 เท่า) เป็นความดันโลหิตสูงร่วมด้วย (1.61 เท่า) หรือมี CD4 ก่อนเริ่มกินยาต้าน ต่ำกว่า 200 cells/ μL (1.77 เท่า) การได้ TDF ให้ผลตรงข้ามคือ เกิด renal insufficiency น้อยกว่ากลุ่มที่ไม่ได้ แต่ถ้าตัดคนที่เคยได้ indinavir ออกผลต่อการเกิด renal insufficiency ไม่ต่างกันระหว่างกลุ่มที่ได้และไม่ได้ TDF ซึ่งข้อมูลนี้แตกต่างจาก การศึกษาในต่างประเทศที่พบว่า การให้ยา TDF มีผลต่อการทำงานของไตมากกว่า และน้ำหนักตัวน้อย จะมีความเสี่ยงสูงขึ้น การที่กลุ่มที่ไม่ได้ยา TDF ใน cohort นี้เกิดการลดลงของการทำงานของไตมากกว่า คงเป็น เพราะมี selection bias เพราะเลือกให้ TDF ในผู้ป่วยที่มี eGFR สูงกว่า 70 mL/min/1.73m² และเสี่ยง การให้ในผู้ป่วยที่มีความเสี่ยงสูง เช่น เป็นโรคความดันโลหิตสูง เบาหวาน อายุมากเป็นต้น นอกจากนั้น การศึกษานี้ยังพบว่าถึง แม้ ณ เวลาที่เริ่มยาต้านกลุ่มที่ได้ TDF มีจำนวนผู้ป่วยที่เป็นเบาหวานและความดันโลหิตสูงก็ไม่ต่างกันกับกลุ่ม non TDF แต่หลังจากใช้ยาต้านมาแล้ว กลุ่มที่ได้ non TDF จะมีผู้ป่วยที่เป็นเบาหวานและความดันโลหิตสูงมากกว่าอย่างชัดเจน ซึ่งอาจจะเป็นข้อดีของการใช้ยา TDF ที่ทำให้ลดความเสี่ยงในการเกิดภาวะ metabolic complication เมื่อเทียบกับการใช้ยากลุ่มที่ได้ thymidine analogue เช่น AZT, d4T ส่วนการเกิด subclinical renal tubular dysfunction (PRTD) ในอาสาสมัครจำนวน 696 รายที่ได้เก็บปัสสาวะ 24 ชั่วโมง พบว่ากลุ่มที่ได้ยา TDF เมื่อเปรียบเทียบกับกลุ่มที่ได้ยาต้านไม่มี TDF (non TDF based HAART) พบร่วมถึง 29% และ 16% ตามลำดับที่มีภาวะ fraction tubular reabsorption of phosphate < 3 และ subclinical renal tubular dysfunction ตามลำดับ ทั้งกลุ่มที่ได้ TDF และไม่ได้ TDF ไม่มีความแตกต่างกันทางสถิติในการเกิด subclinical renal tubular dysfunction แต่กลุ่มที่ได้ TDF มีระดับ uric acid ในเลือด และการขับ uric acid ในปัสสาวะ สูงกว่าอย่างชัดเจน

2. เกสัชจลนศาสตร์ของยาทีโนฟอเวียร์ดำเนินการในอาสาสมัครผู้ติดเชื้อเอชไอวีใหญ่ที่มียาต้านไวรัสชนิดที่มี TDF ร่วมกับยาต้านไวรัสกลุ่ม NNRTI (efavirenz) จำนวน 14 ราย และ ผู้ป่วยติดเชื้อเอชไอวีที่ได้รับยา tenofovir ร่วมกับยาต้านไวรัสกลุ่ม ritonavir-boosted PI จำนวน 33 ราย ผู้ป่วยแต่ละรายจะได้รับการตรวจทางด้านเภสัชจลนศาสตร์จำนวน 1 ครั้ง ณ เวลา ก่อนกินยา ($t=0$) และหลังกินยา ณ ชั่วโมงที่ 1.0, 2.0,

4.0, 6.0, 8.0, 10.0, 12.00 และ 24.0 รวม 9 ครั้ง วิเคราะห์ระดับยาด้วยวิธี High Performance Liquid Chromatography (HPLC) จากการศึกษาพบว่า ระดับยา TDF เมื่อให้ TDF ร่วมกับ boosted PI หรือ NNRTI ไม่แตกต่างกันอย่างมีนัยสำคัญและ eGFR by MDRD with Thai racial factor $<90\text{ml/min}/1.73\text{m}^2$, RTV AUC0-24 และการใช้ยา TDF นานกว่า 2 ปี ที่มีผลต่อระดับAUC0-24 ของยา TDF แต่ถ้าเปรียบเทียบกับ lopinavir/ritonavir จะมีระดับยา TDFสูงกว่าการให้คู่กับ efavirenz ซึ่งยา lopinavir/ritonavir เป็นยา boosted protease inhibitorที่ใช้ร่วมกับ TDF มากที่สุด อย่างไรก็ตามคงต้อง monitor การทำงานของไตเพื่อดู TDF related renal toxicity ในคนไข้กลุ่มนี้ต่อไป และนอกจากนั้นเมื่อถูกระดับยาในคนที่การทำงานของไตต่ำ ($30-50\text{ cc/min}$) การให้ tenofovir ขนาดครึ่งเม็ด หรือให้ 1 เม็ด วันเว้นวัน ให้ระดับยาไม่ต่างกัน แต่ในคนที่ได้คู่กับ LPV/r มีค่าระดับยาสูงกว่าอย่างชัดเจนและสูงกว่า ช่วงตัววันตกล

3. ระดับยาที่โนโฟเวียร์ในอาสาสมัครผู้ติดเชื้อเอชไอวีผู้ใหญ่ จำนวน 351 ราย พบร่วมกันว่า อาสาสมัครที่ได้รับการเจาะเลือดแบบ mid dose (11-13 hr post dose) ค่าเฉลี่ยของระดับยาอยู่ที่ 0.136 (IQR 0.11-0.17) mg/L ซึ่งมีระดับตามที่แนะนำ (ค่า TDF mid dose ควรเป็น 0.16 mg/L และค่า Cmin (24hr post dose) ควรเป็น 0.05 mg/L) และระดับยาสูงกว่า 0.16 mg/L มีความสัมพันธ์กับการเกิด subclinical tubular dysfunction ปัจจัยที่มีผลต่อระดับยา $\text{TDF} > 0.16\text{ mg/ml}$ ได้แก่น้ำหนักตัวน้อยกว่า $< 55\text{ kg}$ มีความเสี่ยง 2.32 เท่า chronic HCV 2.64 เท่า, eGFR $< 90\text{ mL/min}/1.73\text{m}^2$ 2.66 เท่า, lopinavir/ritonavir 2.47 เท่า และ PRTD 2.08 เท่า ดังนั้นผู้ป่วยกลุ่มนี้ควรจะมีระบบเฝ้าระวังการเกิด renal tubular dysfunction เช่น การตรวจปัสสาวะว่ามี proteinuria, glycosuria, การตรวจ phosphate ในปัสสาวะ เป็นต้น ในคนที่มี eGFR $< 60\text{ mL/min}/1.73\text{m}^2$ ก็ควรจะมีการปรับขนาดยา TDF

4. การตรวจด้านพันธุศาสตร์โดยดูจาก polymorphismของ ABCC2, ABCC4, ABCC10 และ SLC22A6 ในคนไข้400คน พบรความถี่ของ allele frequencies ของ ABCC2 -24C>T; 1249G>A; 3563T>A; 3972C>T, ABCC4 3463A>G; 4131T>G, ABCC10 526G>A and 2759T>C เป็นดังนี้ตามลำดับ 21.8%, 7.8%, 0.1%, 24.9%, 19.8%, 49.2%, 51% และ 7.1% แต่ไม่พบ polymorphism ของSLC22A6 728G>A ซึ่งข้อมูลที่พบจะเหมือนกับคนเอเชีย นอกจากนั้น polymorphismของ ABCC2 -24C>T (genotype CC), และ ABCC10 2759 T>C (genotype CC or C/T) มีความสัมพันธ์กับการเกิด tubular dysfunction และ ABCC4 4131T>G (genotype TG or GG) สัมพันธ์กับระดับยา tenofovir

คำสำคัญ (keyword) ของการวิจัย

เอชไอวี, ยาต้านไวรัสเอชไอวี, เภสัชจลนศาสตร์, การทำงานของไตผิดปกติ, ยาที่โนโฟเวียร์, (HIV, Anti-retroviral drug, Pharmacokinetic, Tenofovir, tubular dysfunction, renal insufficiency)

Abstract

Tenofovir disoproxil fumarate (tenofovir, TDF) is a preferred NRTI in HIV-infected adult for both ARV naïve and ARV experience/resistance. However, long term renal safety and tenofovir plasma concentrations in HIV-infected Thai population is largely unknown.

This study composes of 4 sub-studies;

1. Long term renal toxicity of TDF in 1,391 HIV-infected adults which was determined by renal insufficiency (eGFR declining $>25\%$ or $< 60 \text{ ml/min}/1.73\text{m}^2$) Subjects or proximal tubular dysfunction (PRTD). Patients were divided in to 3 groups (TDF at first ARV: TDF based HAART, TDF switching after using other ARV: TDF switching, and non TDF groups). In non TDF group, 40% of them had past indinavir exposure. The incidence of renal insufficiency (95%CI) for overall cohort, TDF based HAART, TDF switching and non TDF were 1.9 (1.3-3.1), 2.4 (1.9-3.1) and 6.9 (5.8-8.3) per 100 person year of follow up, respectively. The median time for developing renal insufficiency was 1.2 years, 1.8 years and 1.4 years, respectively. In multivariate analysis, factors associated with renal insufficiency were older than > 35 yrs(Hazard ratio: 1.76 (95% Confidential interval : CI 1.26-2.45), $p<0.001$, indinavir exposure 3.68 (2.73-4.96) , $p<0.001$, Baseline CD4 $< 200 \text{ cells}/\mu\text{L}$: 1.77 (1.32-2.38), $p <0.001$; being hypertension 1.161 (1.14-2.28) ; $p<0.007$. In this cohort, subclinical proximal renal dysfunction was found as high as 16% for non TDF and 29% for TDF group. There was no statistically significant between TDF and non TDF.

2. Intensive pharmacokinetic study in 48 HIV-infected adults using TDF with efavirenz, darunavir/ritonavir, Lopinavir/ritonavir, and Atazanavir/ritonavir. Blood (pre-dose, 1, 2, 4, 6, 8, 10, 12, and 24 hours after taking ARVs). PK parameters were analysed using High Performance Liquid Chromatography (HPLC) method. We found that there were no statistically significant between using TDF with boosted PI or NNRTI. However, patients with lopinavir/ritonavir had higher tenofovir concentrations compared to efavirenz. Only eGFR by MDRD with Thai racial factor $<90\text{ml}/\text{min}/1.73\text{m}^2$, RTV AUC0-24 and duration of TDF longer than 2 years has influenced on AUC0-24 of TDF. In TDF with boosted PI, the lower eGFR, the higher TDF plasma concentration was observed. In addition, in patients with low renal clearance (30-50 ml/min), TDF can be administered as 1 pill alternate day or half pill every day. Furthermore, Thai patients using TDF with lopinavir/ritonavir had greater tenofovir concentrations than the Caucasian

3. Therapeutic drug monitoring of tenofovir in 351 HIV-infected adults. The median mid dose tenofovir plasma concentrations were 0.136 (IQR 0.11-0.17) mg/L (Target TDF mid dose plasmaconcentration is 0.16 mg/L and target Cmin (24 hr post dose) is 0.05 mg/L). In this sub-study, TDF concentrations $>0.16 \text{ mg/L}$ was associated with subclinical tubular dysfunction (PRTD). Low body weight $<55 \text{ kg}$, chronic hepatitis C, PRTD, boosted lopinavir and low eGFR $<90 \text{ ml}/\text{min}/1.73\text{m}^2$ were associated with high TDF plasma concentrations $>0.16 \text{ mg/L}$.

4. Pharmacogenomic study of tenofovir; Nine single nucleotide polymorphisms (SNPs) including *ABCC2* -24C>T; 1249G>A; 3563T>A; 3972C>T, *ABCC4* 3463A>G; 4131T>G, *ABCC10* 526G>A; 2759T>C and *SLC22A6* 728G>A were investigated. The genotyping was performed by Taqman allelic discrimination assays with fluorogenic probes. The allele frequencies of *ABCC2* -24C>T; 1249G>A; 3563T>A; 3972C>T, *ABCC4* 3463A>G; 4131T>G, *ABCC10* 526G>A and 2759T>C in this population were 21.8%, 7.8%, 0.1%, 24.9%, 19.8%, 49.2%, 51% and 7.1%, respectively. The polymorphism of *SLC22A6* 728G>A was not found in this population. The prevalence of the polymorphisms examined in this study was similar to those observed in Asian populations. Additionally, polymorphism of *ABCC2* -24C>T (*genotype CC*), and *ABCC10* 2759 T>C (*genotype CC or C/T*) were significantly associated with proximal renal tubular dysfunction. Furthermore, *ABCC4* 4131T>G variant (*genotype TG or GG*) were independently associated with higher tenofovir plasma concentrations.

Key words: Tenofovir, efficacy and safety, renal toxicity, proximal tubular dysfunction, pharmacogenomic, tenofovir plasma concentrations

สารบัญ

	หน้า
กิตติกรรมประกาศ	3
บทคัดย่อภาษาไทย	4
บทคัดย่อภาษาอังกฤษ	6
สารบัญ	8
สารบัญตาราง	9
สารบัญแผนภูมิและสารบัญภาพ	10
ความสำคัญและที่มาของปัญหาของการวิจัย	11
ผลงานวิจัยที่เกี่ยวข้อง	12
วัตถุประสงค์การวิจัย	16
สมมติฐานของการวิจัย	17
กรอบแนวคิด	17
ขอบเขตการวิจัย	17
ระเบียบวิธีวิจัย	19
ผลการศึกษาวิจัย	28
สรุปผลการศึกษาวิจัยและข้อเสนอแนะ	69
ผลผลิตของโครงการวิจัย	72
ผลงานตีพิมพ์	73
ผลงานตีพิมพ์ (รอแก้ไข)	73
ผลผลิตมหาบัณฑิตและดุษฎีบัณฑิต	74
บรรณานุกรม	75
ภาคผนวก	
- ผลงานตีพิมพ์	
- ผลงานส่งตีพิมพ์	

สารบัญตาราง

	หน้า
ตารางที่ 1 Stage of Chronic Kidney Diseases	18
ตารางที่ 2 ข้อมูลพื้นฐานทางคลินิกของอาสาสมัครทั้งหมด	28
ตารางที่ 2.1 เปรียบเทียบ baseline characteristic	30
ตารางที่ 3 ตัวแปรที่มีผลต่อการเกิด renal impairment	32
ตารางที่ 4 ลักษณะพื้นฐานของประชากรที่ศึกษา	33
ตารางที่ 5 การทำงานของไต	34
ตารางที่ 5.1 การเกิด Tubular dysfunction ในคนที่เป็นและไม่เป็นเบาหวาน	35
ตารางที่ 5.2 การเกิด Tubular dysfunction ในคนที่เป็นและไม่เป็นความดันโลหิตสูง	36
ตารางที่ 5.3 การเกิด Tubular dysfunction ในคนที่เคยได้รับและไม่เคยได้รับยา boosted indinavir	37
ตารางที่ 5.4 การเกิด Tubular dysfunction ระหว่างเพศหญิงและเพศชาย	38
ตารางที่ 6 การเกิด Tubular dysfunction ในกลุ่มอายุต่างๆ	39
ตารางที่ 7 Predictors of RPTD in HIV-1 infected Thai patients	40
ตารางที่ 8 Subject categorical characteristics at the time of PK assessment	42
ตารางที่ 9 TDF pharmacokinetic parameters by drug group	43
ตารางที่ 10 PK parameters of TDF with ATV, LPV, DRV	45
ตารางที่ 11 Factors ที่มีผลต่อ AUC_{0-24} of TDF	46
ตารางที่ 12 ลักษณะพื้นฐานของอาสาสมัครที่เข้าร่วมโครงการ	47
ตารางที่ 12 A TDF PK parameters at Day 0 and Day 14 as part of NNRTI	48
ตารางที่ 12 B TDF PK parameters at Day 0 and Day 14 as part of boosted PI	48
ตารางที่ 12 C ระดับยา TDF เมื่อให้ร่วมกับ EFV หรือ LPV/r	49
ตารางที่ 12 D การให้ยา tenofovir ขนาด 300 mg ในคนที่มีค่าการทำงานของไต	49
ตารางที่ 13 ลักษณะของกลุ่มประชากรที่มี PRTD และไม่มี PRTD	50
ตารางที่ 14 Predictors of PRTD in HIV-1 infected Thai patients	52
ตารางที่ 15 Predictors for plasma tenofovir concentration $>160\text{ng/ml}$	53
ตารางที่ 16 Genotype frequencies of ABCC2, ABCC4, ABCC10 and SLC22A6	56
ตารางที่ 17 Comparison of ABCC2, ABCC4, ABCC10 and SLC22A6	57
ตารางที่ 18 Predictors of PRTD in HIV-1 infected Thai patients	58
ตารางที่ 19 Genetic and non-genetic factors	60
ตารางที่ 20 Regression analysis of vitamin d and associated factors	63
ตารางที่ 21 Factors associated with advanced liver fibrosis (TE $\geq 7.5\text{ kPa}$)	68

สารบัญแผนภูมิรูปและสารบัญภาพ

สารบัญภาพ

หน้า

แผนภูมิรูปที่ 1	กรอบแนวคิดของงานวิจัย	17
แผนภูมิรูปที่ 2	ระเบียบวิธีวิจัย	19
แผนภูมิรูปที่ 3	การตรวจทางด้านเภสัชจลนศาสตร์	23

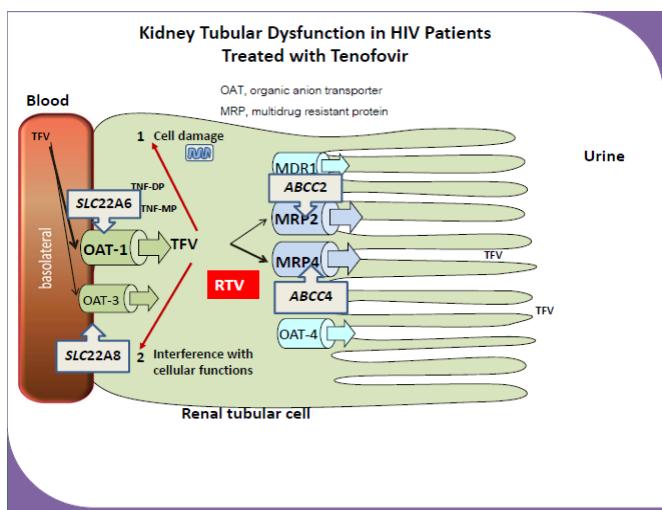
สารบัญภาพ

ภาพที่ 1	โอกาสที่จะเกิด renal insufficiency จากการใช้ยา TDF	24
ภาพที่ 2	Mean TDF plasma concentration curves, by drug group	43
ภาพที่ 3	Mean TDF plasma concentration curves, by drug group	44
ภาพที่ 4	เม็ดยา tenofovir ขององค์การเภสัช	47
ภาพที่ 5	ระดับยา TDF กับปัจจัยเสี่ยงแต่ละตัว	54
ภาพที่ 6	Vitamin D concentrations	63
ภาพที่ 6A	Vitamin D concentrations between male and female	63
ภาพที่ 6B	Vitamin D concentrations between >40 and <40 years old	64
ภาพที่ 7	จำนวนคนที่มีภาวะ hypovitaminosis D ก่อนและหลังได้ยา tenofovir	67

รายงานฉบับสมบูรณ์

1. ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

เนื่องด้วยมีจำนวนผู้ติดเชื้อเอชไอวีที่ดื้อยาต่อสูตรพื้นฐานสูงเพิ่มมากขึ้น จึงเป็นเหตุให้มีการใช้ยาลุ่ม Protease inhibitor โดยเฉพาะ Lopinavir/ritonavir ร่วมกับยา tenofovir เพิ่มมากขึ้นด้วย แต่ยา tenofovir ตัวนี้มีผลข้างเคียงที่สำคัญคือ renal toxicity โดยเฉพาะ proximal tubular dysfunction ซึ่งการทำงานของท่อไตผิดปกติ (renal tubular dysfunction) พบร้าในหลายรูปแบบตั้งแต่เป็นน้อยๆไม่มีอาการไปจนถึงเกิดไตวาย ลักษณะเฉพาะเรียกว่า Fanconi syndrome หรืออาจจะพบอาการอื่นๆได้ เช่น ไตอักเสบ (nephritis), proximal tubulopathy, proteinuria, diabetes insipidus และ hypokalemia ถึงแม้อุบัติการณ์ของการเกิด renal tubular dysfunction จาก TDF ที่รายงานจากต่างประเทศจะพบน้อย รายงานเหล่านี้ส่วนใหญ่มาจากการศึกษาวิจัยทางคลินิกของยาตัวอื่น ซึ่งอาสาสมัครที่เข้าร่วมโครงการวิจัยจะได้รับการคัดสรรแล้วว่า มี Glomerular filtration rate (GFR) $> 70 \text{ cc/min}$ อายุ 18-60 ปี เป็นต้น และโครงการวิจัยเหล่านี้ไม่ได้ตั้งใจจะดูการทำงานของไตเป็นวัตถุประสงค์หลัก ทำให้ไม่มี power พอที่จะพบความแตกต่างอย่างมีนัยสำคัญ ดังนั้นอุบัติการณ์ของการเกิด renal tubular dysfunction จาก TDF ในผู้ป่วยที่ไม่ได้อยู่ในโครงการวิจัยน่าจะสูงกว่า โดยเฉพาะในคนไทยซึ่งมีระดับยาต้าน�이alityตัวสูงกว่าชาวตะวันตก และ ผู้ป่วยที่เป็นเบาหวาน หรือความดันโลหิตสูงจะพบมากขึ้นตามอายุที่สูงขึ้น ซึ่งผู้ป่วยเหล่านี้จะมีปัญหารื่องการทำงานของไตลดลงถ้าเป็นเบาหวาน หรือความดันโลหิตสูงนานๆและรักษาไม่ดี และในผู้ป่วยอายุมาก (> 50 ปีในผู้ป่วยติดเชื้อเอชไอวี) การทำงานของไตจะลดลงจาก physiologic change ทำให้บุคคลเหล่านี้เสี่ยงต่อการทำงานของไตผิดปกติมากขึ้น และความเสี่ยงจะสูงขึ้นถ้ามีการใช้ยา TDF ด้วย


การศึกษาเพื่อให้ทราบอุบัติการณ์และปัจจัยเสี่ยงต่อการเกิด TDF renal toxicity และระดับยา TDF ในคนไทยรวมถึงการตรวจทางด้าน pharmacogenomics ข้อมูลเหล่านี้จะมีความสำคัญมาก เพราะจะต้องยาต้านไวรัสเดสเซนต์ต่างๆจะแตกต่างกันในแต่ละบุคคลและเชื้อชาติ โดยพบว่าระดับยาต้านไวรัสเดส์หลายตัวในคนไทยมีระดับยาที่สูงกว่าชาวตะวันตก pharmacogenomics และ pharmacokinetic จึงมีบทบาทสำคัญที่จะอธิบายว่าทำไมคนไทยจึงมีระดับยาสูงกว่าชาวตะวันตกเพรำหลายๆ การศึกษาที่ผ่านมา พบว่า น้ำหนักตัวอย่างเดียวไม่สามารถอธิบายได้ทั้งหมดซึ่งการที่มีระดับยาสูงจะเพิ่มความเสี่ยงของผลข้างเคียงของยาการตรวจหาระดับยาต้านไวรัสเดส์และเกสซ์พันธุศาสตร์จะทำให้มีการใช้ขนาดยาในคนไทยที่มีขีดพอเพียงในการรักษาและลดการเกิดผลข้างเคียงลดลงลดค่าใช้จ่ายของการรักษา นอกจากนี้ ยังทำให้เป็นแนวทางให้องค์การเภสัชกรรมผลิตยาขนาดที่เหมาะสมสำหรับคนไทย ซึ่งองค์การเภสัชกรรมวางแผนที่จะผลิตยา TDF หรือยาเม็ดรวมระหว่าง TDF+3TC หรือ TDF+3TC+EFV ซึ่งในอนาคตยา tenofovir คงมีการใช้อย่างแพร่หลายมากขึ้นในประเทศไทย ในผู้ป่วยติดเชื้อเอชไอวี เพราะเป็นยาที่ใช้ง่าย วันละ 1 ครั้ง ราคากลูมีผลต่อการเกิด mitochondrial toxicity น้อย ใช้สำหรับคนที่ดื้อยาสูตรแรกได้ และยังมีผลช่วยรักษาไวรัสตับอักเสบบีด้วยจากการที่ยานี้มีประสิทธิภาพดีมากในการรักษาไวรัสตับอักเสบบีทำให้ยานี้ใช้อย่างแพร่หลายในผู้ป่วยที่มีการติดเชื้อไวรัสตับอักเสบบีโดยที่ไม่ติดเชื้อเอชไอวีด้วย ดังนั้นข้อมูลการเกิดอุบัติการณ์และปัจจัยเสี่ยงต่อการเกิด TDF renal toxicity และระดับยา TDF ในคนไทยไม่ได้เป็นประโยชน์เฉพาะผู้ป่วยที่มีการติดเชื้อเอชไอวี แต่ยังมีประโยชน์ต่อผู้ป่วยที่มีการติดเชื้อไวรัสตับอักเสบบีโดยที่ไม่ติดเชื้อเอชไอวีด้วย ซึ่งการติดเชื้อไวรัสตับอักเสบบีก็เป็นปัญหาสำคัญของการสาธารณสุขไทย การใช้ยา TDF ขนาดที่เหมาะสมทำให้ใช้ยาได้นานขึ้น ไม่เช่นนั้นต้องหยุดยาเนื่องจากผลข้างเคียง ทำให้คนเข้าด้วยกันที่ไม่ใช้ยาที่มีประสิทธิภาพดีทั้งในและเอชไอวีเองหรือไวรัสตับอักเสบบี

2. ผลงานวิจัยที่เกี่ยวข้อง (literature review)

Tenofovir disoproxil fumarate (tenofovir,TDF) เป็น prodrug ของยา tenofovir ซึ่งเป็นยาต้านไวรัสในกลุ่ม nucleotide analogue (ntRTI) ออกฤทธิ์ยับยั้งการทำงานของเอนไซม์ reverse transcriptase และยับยั้งการต่อสายของดีเอ็นเอของเชื้อไวรัส ใช้รักษาการติดเชื้อเอชไอวี โดยให้ร่วมกับยาต้านไวรัสในกลุ่ม nucleoside reverse transcriptase inhibitor (NRTI) 1 ตัว ร่วมกับ non nucleoside reverse transcriptase inhibitor (NNRTI) หรือกลุ่ม Protease inhibitor (PI)[1] นอกจากนี้ยา TDF ยังได้รับการขึ้นทะเบียนให้รักษาการติดเชื้อไวรัสตับอักเสบบีด้วย ยาตัวนี้มีข้อได้เปรียบยาตัวอื่นคือสามารถยับยั้งไวรัสเอชไอวีในมาโคร์เพจรวมถึงเซลล์ที่ไม่แบ่งตัวอื่นๆ [2] และยาตัวนี้ยังใช้ง่าย จำนวนเม็ดยาต่ำและมีอยู่ในลักษณะที่รวมเม็ดกับยาอื่นด้วย เช่น TDF+ emtricitabine (FTC) เรียกว่า truvada หรือ TDF+ FTC+ efavirenz เรียกว่า Atripla ทำให้ใช้ยาワン璘 1 เม็ดต่อวัน นอกจากนี้ยาตัวนี้มีผลเป็นพิษต่อไมโครคอนเดรียของเซลล์อย่างกว่ายาตัวอื่นทำให้เกิดภาวะแก้มตอบ แขนขาลีบ น้ำหนักลด เป็นอาหาร ตามปลายประสาท น้อยกว่ายาตัวอื่นในกลุ่ม NRTI ยา TDF จึงเป็นยาที่ใช้กันอย่างแพร่หลาย[1] แต่อย่างไรก็ตามยา TDF อยู่ในกลุ่มเดียวกับยา adefovir และ cidofovir ซึ่งยกกลุ่มนี้ทำให้เกิด Fanconi syndrome และ acute renal failure ได้[3]

ทีโนฟิเวียร์ในรูปแบบยารับประทานจะอยู่ในรูป tenofovir disoproxil fumarate ซึ่งเป็น prodrug โดยเมื่อเข้าสู่ร่างกายจะถูกเปลี่ยนให้อยู่ในรูป tenofovir diphosphate ซึ่งเป็นรูปที่ออกฤทธิ์ได้จากการศึกษา เกสซ์จลนศาสตร์พัฒนาสูงสุดในพลาスマเท่ากับ 0.3 ± 0.09 ไมโครกรัมต่อมิลลิลิตร และระดับยาต่ำสุด ในพลาasmaเท่ากับ 0.04 ไมโครกรัมต่อมิลลิลิตร เวลาที่รีดับยาในพลาasmaมีค่าสูงสุด (T_{max}) เท่ากับ 1 ± 0.4 ชั่วโมงและมีค่าครึ่งชีวิตประมาณ 17 ชั่วโมง ยาถูกขับออกทางไตโดยกระบวนการ glomerular filtration และ tubular secretion ผ่านทาง proximal renal tubule[2, 4] ซึ่งในกระบวนการ tubular secretion ต้องอาศัยยีนที่ทำหน้าที่ลำเลียงยา (transporter) ได้แก่ OAT1, OAT3, ABCC2 และ ABCC4 [5, 6] ต้องอาศัยยีนที่ทำหน้าที่ลำเลียงยา (transporter) ได้แก่ OAT1, OAT3, ABCC2 และ ABCC4 โดยทีโนฟิเวียร์ในพลาasmaจะเข้าไปในเซลล์เนื้อเยื่อบุผิว (epithelial cells) ของท่อไตส่วนต้นผ่าน basolateral membrane โดย organic anion transporters (OATs) คือ OAT1 เป็นหลัก และ OAT3 ซึ่งเป็น influx transporter เป็นตัวนำยาจากกระแสเลือดเข้าสู่ tubular lumen[7] และหลังจากนั้น TDF จะถูกขับออกจากท่อไตส่วนต้นไปกับน้ำปัสสาวะโดยมี Multidrug Resistance Protein 4 (MDR-4) [3, 8] เป็น pump ที่ขับยาออกจาก proximal tubule (ตั้งรูปที่ 1) ซึ่งมียีน ABCC2 และ ABCC4 ควบคุมการทำงานของ MDR2 และ MDR4 transporter ตามลำดับ หากเกิดความผันแปรทางพันธุกรรมของยีนที่ทำหน้าที่ลำเลียงยาจะทำให้มีผลต่อระดับความเข้มข้นของยาในพลาasmaและภายในเซลล์ ซึ่งการสะสมของ Tenofovir ใน proximal tubule ทำให้เกิดการทำงานของท่อไตผิดปกติ (renal tubular dysfunction) เพิ่มมากขึ้นได้ [5, 6]

รูปที่ 1 แสดงการทำงานของ organic anion transporter และ multidrug resistance protein ใน การขับยา tenofovir

อาการไม่พึงประสงค์จากการใช้ยาทีโนฟอเรียร์ที่สำคัญ ได้แก่ การเกิดพิษต่อไต โดยมีรายงาน อุบัติการณ์การเกิดความผิดปกติของท่อไตร้อยละ 1.4 – 22 [9, 10] ในผู้ป่วยที่ได้รับยาทีโนฟอเรียร์ การทำงาน ของท่อไตผิดปกติ (renal tubular dysfunction) พบรูปแบบที่เป็นน้อยๆไม่มีอาการ ไป จนถึงเกิดไตวาย ลักษณะเฉพาะเรียกว่า Fanconi syndrome หรืออาจจะพบอาการอื่นๆได้ เช่น ไตอักเสบ (nephritis), proximal tubulopathy, proteinuria, diabetes insipidus, และ hypokalemia [3, 11, 12] ถึงแม้อุบัติการณ์ของการเกิด renal tubular dysfunction จาก TDF ที่รายงานจากต่างประเทศจะพบน้อย รายงานเหล่านี้ส่วนใหญ่มาจากการศึกษาวิจัยทางคลินิกของยาตัวอื่น [13-16] ซึ่งอาสาสมัครที่เข้าร่วม โครงการวิจัยจะได้รับการคัดสรรแล้วว่า มี renal clearance (CrCl) $> 70 \text{ cc/min}$ อายุ 18-60 ปี เป็นต้น และโครงการวิจัยเหล่านี้ไม่ได้ตั้งใจจะดูการทำงานของไตเป็นวัตถุประสงค์หลัก ทำให้มี power พอที่จะพบ ความแตกต่างอย่างมีนัยสำคัญ ดังนั้นอุบัติการณ์ของการเกิด renal tubular dysfunction จาก TDFในคนไข้ ที่ไม่ได้อยู่ในโครงการวิจัยน่าจะสูงกว่า โดยเฉพาะในคนไทยซึ่งมีระดับยาต้านหลายตัวสูงกว่าชาวตะวันตก

การศึกษาที่ผ่านมาพบว่า TDF น่าจะมีผลต่อ tubular มากกว่า glomerular function [3] แต่ อย่างไรก็ตามอุบัติการณ์ของการเกิด renal tubular dysfunction จาก TDF ส่วนใหญ่มาจาก serum creatinine หรือ estimated glomerular filtration rate (eGFR) จากการคำนวณ [13, 17, 18] ซึ่งการใช้ serum creatinine เป็นตัวบ่งบอกว่ามี nephrotoxicity จาก TDF มักจะช้าเกินไป ต้องเป็นมากแล้วจึงจะพบ ความผิดปกติ ส่วน estimated GFR จากการคำนวณโดยใช้ Cockcroft-Gault (C-G) method ก็ต้องอาศัย น้ำหนักตัว ซึ่งช่วงแรกๆคนไข้อาจไม่รู้ว่ามีน้ำหนักตัวน้อยอยู่แล้ว ทำให้ได้ค่าไม่แน่นอน ส่วนการคำนวณโดย ใช้ simplified modification of diet in renal disease (MDRD) equation ซึ่งพบว่าการใช้ C-G หรือ MDRD มีความคลาดเคลื่อนประมาณ 20% [19] เพราะวิธีนี้จะมี เชื้อชาติมาเกี่ยวซึ่งเช่นกัน จากการศึกษาใน ระยะที่ผ่านมาพบว่าระดับ Cystatin C น่าจะเชื่อถือได้มากกว่า [20, 21]

ภาวะ hypophosphatemia, glycosuria (โดยที่ผลน้ำตาลในเลือดปกติ) microalbuminuria และ urine β -2 microglobulinemia ภาวะเหล่านี้แสดงถึงการทำงานของ renal tubule ที่ผิดปกติและพบก่อนที่ จะมีการลดลงของ GFR ซึ่งน่าจะเป็น early marker ของ TDF renal tubule toxicity [22-25] นอกจากนี้ ภาวะ hypophosphatemia อาจจะเกี่ยวข้องกับการเกิด osteoporosis

Labarga และคณะ [9] ได้ทำการศึกษาการทำงานของ renal tubule ในผู้ป่วยเอชไอวีจากประเทศไทย สเปนที่มีการทำงานของไตปกติโดยดูจาก serum creatinine และ eGFR พบว่า 22% มี proximal tubular dysfunction (ดูจากหลักฐานดังต่อไปนี้ glycosuria (โดยที่ผลน้ำตาลในเลือดปกติ), hyperaminoaciduria, fractional tubular reabsorption of phosphate < 0.85, total excretion of phosphorus > 1200mg/day, fractional excretion of uric acid > 15% และ urine β -2 microglobulinemia > 1 mg/d) ซึ่งการศึกษานี้พบว่าการใช้ยา TDF และอายุมากจะเพิ่มความเสี่ยงของ renal tubular dysfunction นอกจากนี้ Rodriguez Novoa และคณะ [26, 27] พบว่า homozygosity ของ C allele ที่ตำแหน่ง 24 ของ ABCC2 gene มีความสัมพันธ์กับการเกิด proximal tubular dysfunction ยิ่งกว่านั้นนักวิจัยจากทีมเดียวกัน ได้ศึกษาซึ่งแสดงถึงความสัมพันธ์ของระดับที่โนโฟเวียร์ในพลาสma และการเกิดพิษต่อไต ซึ่งมีรูปแบบการศึกษาแบบ cohort study ทำการศึกษาในผู้ป่วยติดเชื้อเอชไอวี จำนวน 92 คน พบผู้ป่วยที่เกิดความผิดปกติของท่อไต 18 คน และผู้ป่วยที่ไม่เกิดความผิดปกติของท่อไต 74 คน เมื่อวัดระดับยาในพลาสma หลังจากผู้ป่วยรับประทานยา 10-14 ชั่วโมงพบว่า ผู้ป่วยที่มีการทำงานน้ำที่ของท่อไตส่วนต้นผิดปกติจะมีระดับที่โนโฟเวียร์ในพลาสma สูงกว่ากลุ่มผู้ป่วยที่มีการทำงานน้ำที่ของท่อไตส่วนต้นเป็นปกติ อย่างมีนัยสำคัญทางสถิติ ($P=0.001$) และพบว่าผู้ป่วยที่มีระดับที่โนโฟเวียร์ในพลาสma สูงกว่า 160 นาโนกรัมต่อมิลลิลิตร มีความเสี่ยงที่จะเกิดท่อไตส่วนต้นทำงานน้ำที่ผิดปกติเป็น 4.8 เท่าของผู้ป่วยที่มีระดับที่โนโฟเวียร์ในพลาสma ต่ำกว่า 160 นาโนกรัมต่อมิลลิลิตร [28] นอกจากนี้ Fux และคณะ [29] ได้ทำการศึกษาการทำงานของ proximal renal tubule ในผู้ป่วยเอชไอวีที่อยู่ใน Swiss cohort ก็พบว่าการใช้ TDF ร่วมกับยา กลุ่ม PI พบภาวะ proximal tubular dysfunction สูงขึ้นอย่างชัดเจน ซึ่งอาจจะอธิบายจากยา boosted PI โดยเฉพาะ lopinavir/ritonavir (kaletra) จะไปยับยั้งการทำงานของ MDRP-4 transporter pump ซึ่งทำให้ลดการขับออกของ tenofovir และเกิดการสะสมของ Tenofovir ใน proximal tubule ทำให้เกิดการทำงานของท่อไตผิดปกติ ซึ่งในประเทศไทยเองมีโอกาสใช้ lopinavir/ritonavir (kaletra) ร่วมกับ TDF สูงในคนไข้ที่ด้อยกลุ่ม NNRTI based regimen ก็จะเพิ่มความเสี่ยงต่อ TDF renal toxicity

ระดับที่โนโฟเวียร์ในเลือดมีความสัมพันธ์กับประสิทธิอิผลในการรักษาของยา โดย Barditch-Crovo P และคณะ [4] ได้ทำการศึกษาทางเภสัชศาสตร์ของที่โนโฟเวียร์ในผู้ป่วยติดเชื้อเอชไอวีจำนวน 49 คน โดยแบ่งผู้ป่วยออกเป็น 5 กลุ่ม ในแต่ละกลุ่มได้รับที่โนโฟเวียร์ในขนาดแตกต่างกันคือ 75, 150, 300, 600 มิลลิกรัม และกลุ่มที่ได้รับยาหลอก (Placebo) พบว่าการให้ยาขนาด 300 มิลลิกรัม วันละครั้งเป็นระยะเวลา 35 วัน สามารถลดระดับ HIV-1 RNA ในพลาสma ได้มากที่สุด โดยพบว่าสามารถลดระดับ HIV-1 RNA ได้ $1.22 \log_{10}$ ก็อปปีต่อมิลลิลิตร และมีระดับยาสูงสุดในพลาสma 326 นาโนกรัมต่อมิลลิลิตร แต่ย่างไรก็ตาม การให้ยาในขนาด 600 มิลลิกรัมต่อวัน แม้จะพบว่าผู้ป่วยมีระดับยาในเลือดสูงขึ้น แต่พบความสามารถในการลดระดับ HIV-1 RNA ในพลาสma ได้เพียง $0.80 \log_{10}$ ก็อปปีต่อมิลลิลิตร และนอกจากนี้ยังพบว่าการใช้ยาขนาดที่ต่ำกว่า 300 มิลลิกรัมต่อวันส่งผลให้ระดับยาในพลาสma จะลดต่ำลง และมีผลทำให้ความสามารถในการลดระดับ HIV-1 RNA ลดลงไปด้วย ตั้งนั้นขนาด 300 มิลลิกรัมต่อวันจึงถูกเลือกให้ทำการศึกษาระยะที่ 3 และขึ้นทะเบียนให้เป็นขนาดมาตรฐานในการรักษาเอชไอวี

ปัจจัยทางพันธุกรรมเป็นปัจจัยที่สำคัญอย่างหนึ่งที่ทำให้เกิดความผันแปรของระดับยาในพลาสma สำหรับยาที่ขับออกทางไตโดยกระบวนการ tubular secretion มีการศึกษาความสัมพันธ์ระหว่างความผันแปรทางพันธุกรรมของยีนที่ทำงานน้ำที่ลำเลียงยา tenofovir กับระดับความเข้มข้นของยาภายในเซลล์ โดย Kiser และคณะ [30] ได้ทำการศึกษาความสัมพันธ์ระหว่างความเข้มข้นของ tenofovir diphosphate ภายในเซลล์กับภาวะพหุสัณฐานของยีน ABCC2, ABCC4 และ SLC22A6 ในผู้ป่วยติดเชื้อเอชไอวีจำนวน 30 คน โดยทำการวิเคราะห์ยีนที่ทำงานน้ำที่ลำเลียงยาทั้งหมด 3 ยีน คือ ยีน ABCC2 วิเคราะห์ 2 SNPs ได้แก่ -24

C>T, 1249 G>A ยืน ABCC4 วิเคราะห์ 2 SNPs ได้แก่ 3463 A>G, 4131 T>G ยืน SLC22A6 วิเคราะห์ 2 SNPs ได้แก่ 728 G>A, 453 G>A ผลการศึกษาพบว่ากลุ่มผู้ป่วยที่มีรูปแบบพันธุกรรม AA (กลุ่ม homozygous wild type allele) มีระดับความเข้มข้นของทีโนโนเฟอเรียร์ภายในเซลล์ต่ำกว่ากลุ่มที่มีรูปแบบพันธุกรรมแบบ AG หรือ GG (กลุ่มที่มีอย่างน้อย 1 variant allele) อย่างมีนัยสำคัญทางสถิติ ($P=0.04$)

Rodríguez-Nóvoa และคณะ[27] ได้ทำการศึกษาถึงความสัมพันธ์ระหว่างภาวะพหุสัมฐานในยืน ABCC2, ABCC4, ABCB1, SLC22A6 และ SLC22A11 กับการเกิดความผิดปกติของห่อไตในผู้ป่วยที่ได้รับยาทีโนโนเฟอเรียร์ รูปแบบการศึกษาเป็นแบบภาคตัดขวาง โดยศึกษาในผู้ป่วยติดเชื้อเอชไอวีจำนวน 115 คน ซึ่งเป็นชาวผิวขาว 103 คน ผิวดำ 2 คน และอื่น ๆ 10 คน มีผู้ป่วยที่เกิดความผิดปกติของห่อไต 19 คน (16.5%) ผลการศึกษาพบว่าในกลุ่มผู้ป่วยที่มีลักษณะยืน ABCC2 -24 CC จะมีจำนวนผู้ป่วยที่มีความผิดปกติของห่อไตมากกว่ากลุ่มผู้ป่วยที่มีลักษณะยืน ABCC2 -24 CT หรือ TT อย่างมีนัยสำคัญทางสถิติ ($P=0.02$)

Izzedine และคณะ [31] ได้ทำการศึกษาถึงความสัมพันธ์ระหว่างความผันแปรทางพันธุกรรมของยืน ABCC2, ABCC4 และ ABCB1 กับความเสี่ยงของการเกิดความเป็นพิษต่อห่อไตในผู้ป่วยที่ได้รับทีโนโนเฟอเรียโดยรูปแบบการศึกษาเป็นแบบ case-control analysis ทำการศึกษาในผู้ป่วยติดเชื้อเอชไอวีจำนวน 30 คน ซึ่งเป็นชาวผิวขาว 29 คน และชาว แอฟริกัน 1 คน ในการศึกษานี้มีผู้ป่วยที่เกิดความผิดปกติของห่อไต 13 คน และผู้ป่วยที่ไม่เกิดความผิดปกติของห่อไต 17 คน ในการศึกษานี้ทำการวิเคราะห์ยืนที่ทำหน้าที่ลำเลียงยาทั้งหมด 4 ยืนคือยืน ABCC2, ABCC4 และ ABCB1 ผลการศึกษาพบว่าความผันแปรทางพันธุกรรมที่ตำแหน่ง 1249 G>A ของยืน ABCC2 มีความสัมพันธ์กับการเกิดความผิดปกติของห่อไตอย่างมีนัยสำคัญทางสถิติ ($P=0.02$)

Nishijima T และคณะ [32] ได้ทำการศึกษาถึงความสัมพันธ์ระหว่างภาวะพหุสัมฐานในยืน ABCC2, ABCC4, ABCC10, ABCB1 และ SLC22A6 กับการเกิดความผิดปกติของห่อไตในผู้ป่วยที่ได้รับทีโนโนเฟอเรีย รูปแบบการศึกษาเป็น cohort study โดยศึกษาในผู้ป่วยติดเชื้อเอชไอวีชาวญี่ปุ่นจำนวน 190 คน พบรูปแบบที่เกิดความผิดปกติของห่อไต 19 คน (10%) ในการศึกษานี้ทำการวิเคราะห์ยืนที่ทำหน้าที่ลำเลียงยาทั้งหมด 5 ยืน คือ ABCC2, ABCC4, ABCC10, ABCB1, และ SLC22A6 ผลการศึกษาพบว่า รูปแบบพันธุกรรม CC ที่ตำแหน่ง -24 และรูปแบบพันธุกรรม AA ที่ตำแหน่ง 1249 ของยืน ABCC2 มีความสัมพันธ์กับการเกิดความผิดปกติของห่อไตอย่างมีนัยสำคัญทางสถิติ ซึ่งการศึกษานี้เป็นการศึกษาแรกที่ทำการศึกษาในชาวเอเชีย อย่างไรก็ตามในการศึกษานี้ไม่ได้มีการตรวจวัดระดับยาในพลาスマซึ่งอาจเป็นไปได้ว่าความผันแปรทางพันธุกรรมเหล่านี้ส่งผลต่อระดับทีโนโนเฟอเรียในพลาスマและทำให้เกิดพิษต่อห่อไต และยังไม่พบการศึกษาใดที่แสดงความสัมพันธ์ระหว่างความผันแปรทางพันธุกรรมของยืนที่ทำหน้าที่ลำเลียงยา กับระดับทีโนโนเฟอเรียในพลาスマ

ข้อมูลเกี่ยวกับ TDF renal toxicity ส่วนใหญ่มาจากชาวตะวันตก มีการศึกษาน้อยในเอเชีย ส่วนใหญ่มาจากญี่ปุ่น [33-36] และมี retrospective study จากประเทศไทย[37] ที่พบร่วมน้ำหนักตัวน้อยมีความสัมพันธ์กับการลดลงของการทำงานของไต

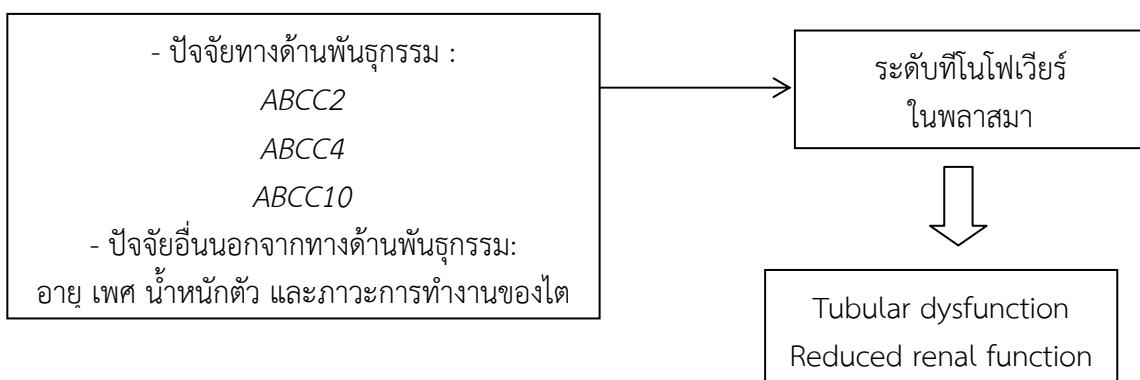
การศึกษาที่ผ่านมาพบว่าระดับยาต้านไวรัสเอดส์หลายตัว เช่น nevirapine indinavir saquinavir lopinavir/r และ atazanavir [38-42] เป็นต้น มีระดับสูงขึ้นในคนไทยเมื่อเทียบกับชาวตะวันตก TDF เองก็คาดว่าระดับยาจะสูงในคนไทยเช่นกัน จากหลายการศึกษาพบว่าระดับยาที่สูงสัมพันธ์กับการเกิดผลข้างเคียง TDF ก็เช่นกัน

3. วัตถุประสงค์ของการ

วัตถุประสงค์หลัก

1. เพื่อประเมินอุบัติการณ์และปัจจัยเสี่ยงต่อการเกิด TDF renal toxicity โดยวัดจาก eGFR ลดลง มากกว่า 25% หรือมี estimated GFR < 60 cc/min/1.73m² ระหว่างกลุ่มที่ได้ และไม่ได้รับยา TDF
2. เพื่อประเมินอุบัติการณ์และปัจจัยเสี่ยงต่อการเกิด renal tubular dysfunction (ดูจากหลักฐาน 2 ข้อของภาวะดังต่อไปนี้ glycosuria (โดยที่ผลน้ำต่ำในเลือดปกติ), hyperaminoaciduria, fractional tubular reabsorption of phosphate <0.85, total excretion of phosphorus >1200mg/day, fractional excretion of uric acid >15% และ urine β -2 microglobulinuria >1 mg/d) โดยการเปรียบเทียบ ระหว่างกลุ่มที่ได้และไม่ได้รับยา TDF
3. เพื่อประเมินระดับยา TDF ในผู้ป่วยติดเชื้อเอชไอวีที่ได้รับยา TDF ร่วมกับยาตัวอื่น

วัตถุประสงค์รอง


1. เพื่อประเมินปัจจัยที่เกี่ยวข้องกับ renal insufficiency
2. เพื่อเปรียบเทียบแนวโน้มของการเกิด renal tubular dysfunction ระหว่างกลุ่มที่ได้และไม่ได้รับยา boosted PI
3. เพื่อเปรียบเทียบแนวโน้มของการเกิด renal insufficiency ระหว่างกลุ่มที่มีหรือไม่มีการติดเชื้อ ไวรัสตับอักเสบบีร่วมด้วย
4. เพื่อเปรียบเทียบแนวโน้มของการเกิด renal insufficiency ระหว่างกลุ่มที่ได้และไม่ได้รับยา boosted PI
5. เพื่อเปรียบเทียบระดับยา TDF ระหว่างกลุ่มที่ได้และไม่ได้รับยา boosted PI และในคนที่เป็นหรือไม่เป็นไวรัสตับอักเสบบี
6. เพื่อเปรียบเทียบระดับยา TDF ระหว่างกลุ่มที่มีและไม่มี renal tubular dysfunction/ renal insufficiency
7. เพื่อประเมินภาวะการขาดวิตามินดีในคนที่ได้ยา TDF และในคนที่เป็นไวรัสตับอักเสบบีหรือไวรัสตับอักเสบซี
8. เพื่อประเมิน pharmacokinetic parameters โดย intensive 24 hours pharmacokinetic study (full PK curve) ในผู้ป่วยที่ใช้ยา TDF จำนวน 40 คน
9. เพื่อประเมินผลของ target genes (เช่น ABCC2, ABCC4, SCL22A6, SLC22A11, ABCB10) ต่อ ระดับยา TDF และการเกิด renal tubular dysfunction/ renal insufficiency
10. เพื่อเปรียบเทียบค่า renal clearance หรือ glomerular filtration rate (GFR) ในผู้ป่วยติดเชื้อเอชไอวีและไม่ติดเชื้อเอชไอวี (จาก historical cohort) โดยดูจากค่า estimated GFR ด้วยวิธี Cockcroft-Gault (C-G) method กับวิธี simplified modification of diet in renal disease (MDRD) equation และการตรวจปัสสาวะ 24 ชั่วโมง รวมถึงระดับ cystatin C และ actual eGFR จากการวัดโดย isotope

4. สมมติฐานงานวิจัย

1. น้ำหนักตัว เบาหวาน ความดันโลหิตสูง อายุมาก เพศหญิง ระดับยา tenofovir ยาต้านกลุ่ม boosted PI มีความเสี่ยงต่อการเกิด tenofovir renal toxicity/tubular dysfunction
2. ภาวะพหุสัณฐานของยีน ABCC2, ABCC4 และปัจจัยอื่นนอกจกภาวะพหุสัณฐานของยีนได้แก่ อายุ เพศ น้ำหนักตัว และภาวะการทำงานของไต มีผลต่อระดับยาที่โนโนฟอเรียร์ในพลาสma

5. กรอบแนวคิดของงานวิจัย

แผนภูมิรูปที่ 1 กรอบแนวคิดของงานวิจัย

6. ขอบเขตงานวิจัย

การศึกษานี้เป็นการศึกษาแบบ observational cohort รับอาสาสมัครทั้งหมดจาก HIV-NAT 006 ซึ่งเป็น prospective long term cohort ซึ่งจาก HIV-NAT 006 และศึกษาในผู้ป่วยเชื้อเอชไอวีที่ได้รับการรักษาด้วยยาที่โนโนฟอเรียร์ในช่วงวันที่ 1 มกราคม 2553 ถึงวันที่ 30 ธันวาคม 2556 ณ ศูนย์ประสานความร่วมมือระหว่าง ไทย ออสเตรเลีย เนเธอร์แลนด์ เพื่อการศึกษาวิจัยทางคลินิกด้านโรคเอชไอวี (HIV-NAT) มีการนัดคนไข้ตรวจ CD4 HIV RNA serum creatinine SGPT Lipid profile ทุก 6 เดือน และมีการเก็บ stored plasma หรือ serum ทุก 6 เดือน รวมถึงการเก็บ peripheral mononuclear cell (PBMC) ปีละครั้ง ซึ่งข้อมูลเหล่านี้รวมถึงประวัติและการเกิดผลข้างเคียงต่างๆ ซึ่งมีการเก็บในฐานข้อมูลอยู่แล้ว ซึ่งข้อมูลมีตั้งแต่ก่อนเริ่มยาต้าน ก่อนเริ่มยา TDF ระหว่างหรือหลังได้ยา TDF ทำให้นำมาวิเคราะห์ได้ ส่วนการตรวจปัสสาวะ 24 ชั่วโมงเปรียบเทียบกับในเลือดรวมถึงการตรวจระดับยา TDF และ การตรวจทางด้านเภสัชพันธุศาสตร์จะทำเป็นแบบ cross sectional ณ เวลาปัจจุบันครั้งเดียว ซึ่งข้อมูลอุบัติการณ์ของการเกิด renal tubular dysfunction และการเปรียบเทียบการตรวจการทำงานของไต วิธีต่างๆ จะเปรียบเทียบระหว่างผู้ป่วยติดเชื้อเอชไอวีที่อยู่ในโครงการนี้ และผู้ป่วยที่ติดเชื้อเอชไอวีที่ไม่ใช่คนไทย จาก

ข้อมูลระดับยา TDF จะมีการเปรียบเทียบระหว่างผู้ป่วยติดเชื้อเอชไอวีที่อยู่ในโครงการนี้ และผู้ป่วยติดเชื้อเอชไอวีช่วงวันตกลจาก historical cohort

นอกจากนี้จะมีผู้ป่วยที่ใช้ยา TDF จำนวน 48 คนได้รับการตรวจระดับยา TDF อย่างละเอียด และจะนำไปเปรียบเทียบกับช่วงตกลจาก historical cohort และมีการเปรียบเทียบระดับวิตามินดีในผู้ติดเชื้อเอชไอวีที่มีหรือไม่มี การติดเชื้อไวรัสตับอักเสบบี และการเปรียบเทียบระดับวิตามินดีในผู้ติดเชื้อไวรัสตับอักเสบซีที่มีหรือไม่มีการติดเชื้อเอชไอวีร่วมด้วย

นอกจากนี้มีการตรวจระดับยาทีโนไฟเวียร์ในคนที่มีการทำงานของไตไม่ดี โดยมี renal clearance 30-50 mL/min เพื่อคุ้ว่าจะใช้ยา tenofovir ขนาด 300mg วันเว้นวันหรือ 150 mg (ครึ่งเม็ด) ทุกวัน

คำสำคัญของงานวิจัย

เภสัชพัฒนาสตร์, ยืนที่ใช้ในการลำเลียงยา, ระดับยาทีโนไฟเวียร์, ความผิดปกติของท่อไตส่วนต้น การทำงานของไตลดลง

คำจำกัดความที่ใช้ในงานวิจัย

1. ภาวะพหุสัมฐานของนิวคลีโอไทด์เดียว หรือ SNP (Single Nucleotide Polymorphisms) หมายถึง ความแตกต่างทางพันธุกรรมที่เกิดจากการเปลี่ยนนิวคลีโอไทด์เพียงตำแหน่งเดียวโดยพบในประชากรมากกว่า ร้อยละ 1 ซึ่งก่อให้เกิดผลที่แตกต่างกันทางกายภาพ เช่น มีความสูงแตกต่างกัน ผิวสีต่างกัน มีความแข็งแรงต่างกัน เป็นโรคต่างกัน มีการตอบสนองต่อยาแตกต่างกัน เป็นต้น [43]

2. คำนิยามของ proximal tubular dysfunction

ดูจากหลักฐานตั้งแต่ 2 ข้อของภาวะดังต่อไปนี้

- glycosuria (โดยที่ผลน้ำตาลในเลือดปกติ)
- hyperaminoaciduria
- fractional tubular reabsorption of phosphate <0.85
- total excretion of phosphorus >1200mg/day
- fractional excretion of uric acid >15%
- urine β -2 microglobulinemia >1 mg/d

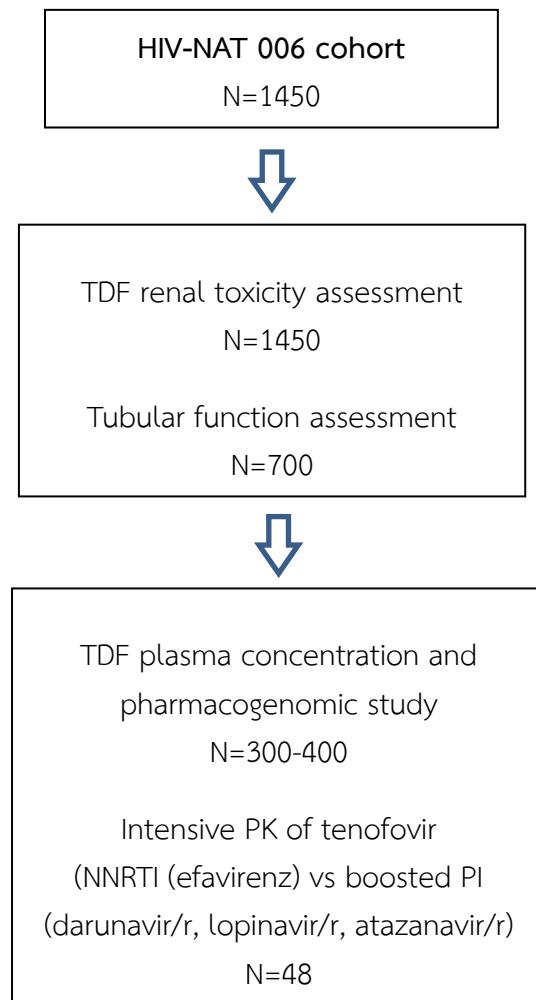
3. Stage of chronic kidney diseases (according to the Kidney Disease Outcomes Quality Initiative classification by glomerular filtration rate (GFR) value และ เกิดขึ้นนานกว่า 3 เดือน [44] ตารางที่ 1 Stage of Chronic Kidney Diseases

Stage	Description	GFR (mL/min/1.73m ²)
I	Kidney damage with normal or increased GFR	≥ 90 (with other evidence of chronic kidney damage ¹)
II	Kidney damage with slight decrease GFR	60-89 (with other evidence of chronic kidney damage ¹)
III	Moderately decrease GFR	30-59
IV	Severely decrease GFR	15-29
V	Kidney failure	<15

¹Other evidence of chronic kidney damage may be 1 of the following criteria: persistent albuminuria; persistent proteinuria, persistent hematuria (after exclusion of other causes), structural abnormalities of the kidneys at ultrasound scanning or other imaging tests, biopsy-proven chronic glomerulonephritis.

4. 25 hydroxy (OH) vitamin D

Hypovitaminosis D: 25 (OH) D <30ng/mL


Vitamin D sufficient: plasma 25(OH)D levels > 30 ng/mL

Vitamin D insufficiency: plasma 25(OH)D levels 21-29ng/mL

Vitamin D deficiency: plasma 25(OH) D levels < 20 ng/mL

7. ระเบียบวิธีวิจัย

การศึกษานี้ได้รับอาสาสมัครผู้ป่วยติดเชื้อเอชไอวีทั้งหมดจาก HIV-NAT 006 ซึ่งเป็น prospective long term cohort ดังแผนภูมิรูปที่ 2 ระเบียบวิธีวิจัย
แผนภูมิรูปที่ 2 ระเบียบวิธีวิจัย

วิธีการ

- 1) ทำการเก็บ urine 24 ชั่วโมงและ clotted blood 10 ซีซี (2 ช้อนชา) เพื่อส่งตรวจการทำงานของ proximal tubular เช่น ตรวจ น้ำตาล ฟอสฟे�ต ยูริคแอcid โปรตีน urine β -2 เป็นต้น
- 2) ทำการตรวจปัสสาวะ
- 3) ทำการตรวจระดับยาของยา tenofovir (เฉพาะคนที่ใช้ยาตัวนี้) โดยมีการเก็บตัวอย่างเลือดของผู้ป่วย 5 มิลลิลิตรเพื่อทำการตรวจ การตรวจระดับยาของยา tenofovir จะจะเจาะเลือด ณ เวลาที่ใกล้กับเวลาที่จะกินยาเมื่อต่อไปให้มากที่สุด เช่น ปกติกินยาเวลา 09.00 น ก็จะจะเจาะเลือดเวลาประมาณ 08.30 - 09.00 น

- 4) ทำการตรวจทางด้านเกสัชพันธุศาสตร์ (เฉพาะคนที่ใช้หรือเคยใช้ยา TDF แล้วหยุดไปเพราฯเกิด renal toxicity) ทำการวิเคราะห์สารพันธุกรรม หรือยืน เช่น ABCC2, ABCC4, SCL22A6, SLC22A11, ABCB1 เป็นต้น โดยมีการเก็บตัวอย่างเลือดของผู้ป่วย 5 มิลลิลิตรเพื่อทำการตรวจ
- 5) ทำการตรวจระดับยาของยา tenofovir แบบIntensive pharmacokinetic study (เฉพาะคนที่ใช้ยา ตัวนี้จำนวน48 คน) เพื่อดู area under curve 24 hours(AUC₂₄), minimal concentration (C_{min} or C_{trough}), maximal concentration (C_{max}), half life (T_{1/2}) และclearance ในวันนี้ จะต้องเจาะเลือด 9 ครั้งครั้งละ 5 มิลลิลิตร ตั้งแต่ก่อนเริ่มกินยา หลังกินยาที่เวลา 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 และ 24 ชั่วโมง (วันรุ่งขึ้น) หลังกินยา ปริมาณเลือดทั้งหมดรวมได้ 45 มิลลิลิตร ในวันนี้อาสาสมัคร จะได้รับการเจาะเลือดเพียงครั้งแรกครั้งเดียว หลังจากนั้นพยาบาลจะดำเนินการเจาะเลือดໄว้เพื่อดูดเลือดครั้งต่อๆไป และจะเอาเข็มเจาะเลือดนื้อออกเมื่อเสร็จสิ้นการเจาะเลือดที่ 12.0 ชั่วโมงหลังกินยา ในวันที่จะทำการตรวจระดับความเข้มข้นของยา อาสาสมัครทุกรายจะได้รับยา ร่วมกับอาหารเช้า กลางวัน อาหารเย็น และอาหารว่าง ตามที่กำหนดໄว้ให้อาสาสมัครจะไม่ได้รับอนุญาตให้รับประทานอาหารอื่น ๆ นอกเหนือจากที่จัดให้
- 6) ทำการเก็บข้อมูล demographic data และ ผลข้างเคียงของยาจาก HIV-NAT 006 database การตรวจ urine 24 ชั่วโมงและ clotted blood 10 ซีซี ทำที่หน่วยโรคติด คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
- 7) ทำการตรวจ inactive vitamin D levels ในคนที่ได้และไม่ได้ tenofovir และในคนที่เป็นไวรัสตับอักเสบบีหรือไวรัสตับอักเสบซี

การตรวจระดับยาต้านในเลือดทำการตรวจที่ ศูนย์วิจัยโรคเอดส์ สภากาชาดไทย
ส่วน inactive vitamin D levels ตรวจที่หน่วยต่อมรีด่อ ภาควิชาอายุรศาสตร์ คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

หัวข้อที่ 1 : Renal insufficiency และ proximal tubular dysfunction

ผู้ป่วยเชื้อไวรัสที่ได้หรือไม่ได้ TDF จำนวนทั้งหมดประมาณ 700 คนจะได้รับตรวจ serum creatinine, UA, urine 24 hr

การติดตามอาสาสมัครทำ 2 วิธี ดังนี้ (ขึ้นกับความสะดวกของอาสาสมัคร)

1. เมื่ออาสาสมัครมาติดตามการรักษาตามโครงการ HIV-NAT 006 วันนี้จะมีการพูดคุยถึงโครงการนี้ ถ้าอาสาสมัครเข้าใจก็จะได้เข็นต์ชื่อยินยอมเพื่อเข้าร่วมในการวิจัย ซึ่งในวันเดียวกันนั้นก็จะมีการตรวจตาม HIV-NAT 006 เช่น ซักประวัติทางการแพทย์ ตรวจร่างกายทั่ว ๆ ไป รวมทั้งส่วนสูงและน้ำหนัก ตรวจทางห้องปฏิบัติการตามโครงการ HIV-NAT 006 เช่นจะมีการเจาะเลือดตรวจโดยตรวจทางโลหิตวิทยา CD4 HIV RNA ALT creatinine ในวันนี้จะยังไม่มีการตรวจเลือดของโครงการนี้ แต่จะได้นัดหมายอาสาสมัครมาอีกครั้งที่3 เดือนในวันที่อาสาสมัครต้องมารับยาต้านอยู่แล้ว เพื่อตรวจปัสสาวะและเลือดตามโครงการนี้

2. อาสาสมัครที่มารับยาต้าน (ทุก 3 เดือน) วันนั้นจะมีการพูดคุยถึงโครงการนี้ ถ้าอาสาสมัครเข้าใจก็จะได้เข็นต์ชื่อยินยอมเพื่อเข้าร่วมในการวิจัย โดยวันนี้จะไม่มีการเจาะเลือดตรวจ และจะนัดหมายให้มาระหว่างเดือนกับที่คนไข้ต้องมาตรวจตามนัดของ HIV-NAT 006 ซึ่งวันนั้นจะมีการซักประวัติทางการแพทย์ ตรวจร่างกายทั่ว ๆ ไป รวมทั้งส่วนสูงและน้ำหนัก ตรวจทางห้องปฏิบัติการตามโครงการ HIV-NAT 006 เช่นจะมีการเจาะเลือดตรวจโดยตรวจทางโลหิตวิทยา CD4 HIV RNA ALT creatinine และจะเพิ่มการตรวจเลือด

ของของโครงการนี้ ส่วนการเก็บ urine 24 ชั่วโมง คนไข้จะได้รับนัดหมายตั้งแต่ครั้งที่นัดคุยก่อนเรื่องโครงการนี้ และพยาบาลจะโทรศัพท์ไปตีอนคนไข้ล่วงหน้าประมาณ 1 สัปดาห์ก่อนวันนัด

สถานที่ทำการทดลอง และ / หรือเก็บข้อมูล

โรงพยาบาลจุฬา คณะแพทยศาสตร์ มหาวิทยาลัยจุฬาลงกรณ์ และศูนย์ประสานความร่วมมือระหว่างไทย ออสเตรเลีย เนเธอร์แลนด์ เพื่อการศึกษาวิจัยทางคลินิกด้านโรคเออดส์ (HIV-NAT), ศูนย์วิจัยโรคเออดส์ สถาบันชั้นนำไทย กรุงเทพมหานคร

การวิเคราะห์ข้อมูล

ตัวชี้วัดหลัก

Proximal tubular dysfunction between TDF vs non TDF, boosted PI vs NNRTI

Chronic kidney disease/renal insufficiency between TDF vs non TDF HIV RNA < 50 copies/mL

ตัวชี้วัดรอง

Factor associated with renal tubular dysfunction/renal dysfunction

Proportion of vitamin D deficiency

Correlation of Vitamin D and hepatitis B or hepatitis C liver fibrosis

วิเคราะห์ข้อมูลพื้นฐานผู้ป่วยทั้งหมดได้แก่ อายุ, เพศ, การทำงานของไต, การเกิด renal tubular dysfunction, chronic kidney disease/renal insufficiency, ยาต้านไวรัสเออดส์ที่ผู้ป่วยได้รับโดยเฉพาะยา tenofovir, ยาคู่ NNRTI, PI ระยะเวลาของการกินยาต้าน, ค่า CD4, HIV RNA และแจ้งค่าเฉลี่ย ค่า median และทำการแบ่งกลุ่มผู้ป่วยตามระดับการเกิด renal tubular dysfunction และแจ้งตามกลุ่มผู้ป่วยที่มีการใช้และไม่ใช้ยา tenofovir และวิเคราะห์หาปัจจัยที่อาจเกี่ยวข้องกับการเกิด renal tubular dysfunction/renal dysfunction

การคำนวณขนาดตัวอย่าง

Sample size calculations are based on precision estimates around the 22% prevalence of tubular dysfunction that was reported by Labarga P et al[9]. We currently have approximately 350 patients taking TDF. If the prevalence of tubular dysfunction is the same as reported in Caucasians, the confidence intervals would run from 17 to 28%, allowing us to discern the actual prevalence in Thais with an error margin of approximately +/- 6%. According to these estimates, our study would have approximately 80% power to detect an odds ratio of 2.25 for a predictor variable present in the patients taking TDF with a prevalence of 25%; and 90% power to detect an odds ratio of 2.6 for the same predictor variable.

หัวข้อที่ 2 เกสัชจนศาสตร์ของยาทีโนฟิเวียร์ในผู้ติดเชื้อเอชไอวีที่มีการทำงานของไตปกติและการทำงานของไตต่ำ

1. เกสัชจนศาสตร์ของยาทีโนฟิเวียร์ในผู้ติดเชื้อเอชไอวีที่มีการทำงานของไตปกติ รับอาสาสมัครเข้าร่วมงานวิจัยส่วนนี้จำนวน 48 รายซึ่งมีคุณสมบัติดังนี้

1) รับประทานยาต้านไวรัสชนิดที่มี TDF เป็นส่วนประกอบมากกว่า 1 เดือน

- 2) มี HIV RNA <50 copies/ml ภายใน 6 เดือนที่ผ่านมา
- 3) สมัครเข้าร่วมในโครงการวิจัย
- 4) ALT <100 U/L และ
- 5) eGFR > 60 mL/min/1.73m²

ผู้ป่วยที่เข้าร่วมโครงการอยู่นี้มีทั้งหมด 48 รายแบ่งเป็น 2 กลุ่ม ขึ้นอยู่กับชนิดของยาต้านไวรัสที่กำลังรับประทานอยู่ร่วมกับ tenofovir โดยแบ่งเป็น

กลุ่ม A ผู้ป่วยติดเชื้อเอชไอวีที่ได้รับยา tenofovir ร่วมกับยาต้านไวรัสกลุ่ม NNRTI (efavirenz) จำนวน 12 ราย

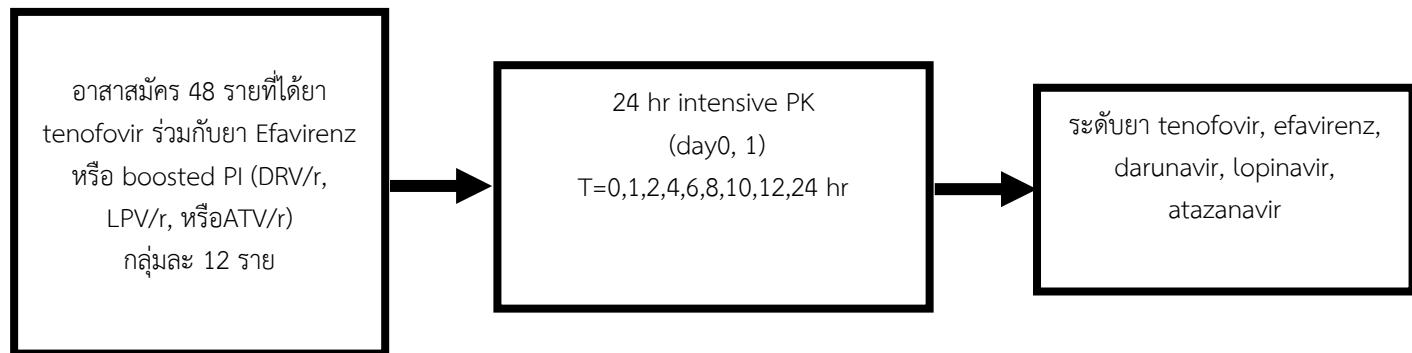
กลุ่ม B ผู้ป่วยติดเชื้อเอชไอวีที่ได้รับยา tenofovir ร่วมกับยาต้านไวรัสกลุ่ม ritonavir-boosted PI จำนวน 36 ราย โดยแบ่งเป็นได้ยาร่วมกับ darunavir/ritonavir, Lopinavir/ritonavir และ atazanavir/ritonavir

ในผู้ป่วยแต่ละรายได้รับการตรวจนัดทางด้านเภสัชลศาสตร์จำนวน 1 ครั้งตั้งรายและอีกด้วยไปนี้

2.1 ตรวจคัดกรองก่อนวันนัดมาตรฐานยาอย่างละเอียด ซึ่งทำภายในเวลา 1 เดือนก่อนวันนัดตรวจระดับยา โดยผู้วิจัยทำการคัดเลือกยาสามัคคีที่ใช้ยาต้าน TDF ร่วมกับยาต้านกลุ่ม NNRTI (efavirenz) หรือ boosted PI (lopinavir/ritonavir, atazanavir/ritonavir, หรือ darunavir/ritonavir) จากฐานข้อมูล และในวันที่อาสาสมัครที่มีรายชื่อที่ได้รับการคัดเลือกไว้มาตรวจตามนัดหรือมารับยาตามนัดของโครงการ long term observational prospective cohort (HIV-NAT 006) อาสาสมัครกลุ่มดังกล่าวได้รับฟังข้อมูลต่างๆของโครงการวิจัยที่ได้ระบุไว้ในเอกสารแสดงความยินยอมเข้าร่วมโครงการวิจัย (patient informed consent) ทางผู้วิจัยได้ให้อาสาสมัครแต่ละรายมีเวลาอ่าน และให้เวลาซักถามจนอาสาสมัครพอใจ

2.2 การตรวจระดับยาอย่างละเอียด เมื่ออาสาสมัครได้เซ็นต์ชื่อยินยอมเพื่อเข้าร่วมในการวิจัย โดยสมัครใจแล้วได้รับการนัดตรวจดังนี้

2.2.1. วันที่ 0 ตรวจทางด้านเภสัชลศาสตร์ ซึ่งวันนี้ อาสาสมัครต้องไม่กินยาต้านมาจากบ้าน หลังจากที่อาสาสมัครมาถึงศูนย์วิจัยสีฟ男篮ทตามเวลาที่นัดหมาย อาสาสมัครได้รับการตรวจความดัน ชีพจร อุณหภูมิร่างกาย น้ำหนักและส่วนสูง อาสาสมัครได้รับการเจาะเลือดเพียงครั้งแรกครั้งเดียวหลังจากนั้นพยาบาลจะคานเข็มเจาะเลือดไว้เพื่อดูดเลือดครั้งต่อๆไป ในวันนี้มีการเจาะเลือดครั้งละ 6 ซีซี ก่อนกินยา ($t=0$) และหลังกินยา ณ ชั่วโมงที่ 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.00 และ 24.0 รวม 9 ครั้ง


ในวันนี้หลังจากที่อาสาสมัครดอนเจาะเลือด ณ ก่อนกินยา ($t=0$) แล้ว อาสาสมัครได้รับ TDF ของบริษัท Gilead Sciences ขนาด 300 มิลลิกรัม จำนวน 1 เม็ด ร่วมกับยา NNRTI หรือ ritonavir boosted PI และยา NRTI อีก 1 ตัว ที่อาสาสมัครเคยกินประจำ และหลังจากนั้นอาสาสมัครได้รับอาหารเช้า และมีการดูดเลือดจากเข็มที่ค้าไว้ตามเวลาที่กำหนด และอาสาสมัครได้รับอาหารกลางวัน และอาหารเย็น ตามเวลา ส่วนยากลุ่ม NNRTI หรือ ritonavir boosted PI และยา NRTI อีก 1 ตัวที่อาสาสมัครเคยกินประจำเป็นชนิดที่อาสาสมัครต้องกินวันละ 2 ครั้ง เมื่อถึงเวลาอาสาสมัครสามารถทานยาได้เลย วันนี้มีการตรวจทางชีวเคมีทางโลหิตวิทยาร่วมถึง ตรวจ CD4 และ HIV RNA ในเลือด รวมถึงน้ำตาลในเลือด ไขมันในเลือด (ครั้งละ 12 ซีซี) เพื่อติดตามดูความปลอดภัยด้วย

2.2.2. วันที่ 1 อาสาสมัครได้รับการนัดหมายให้มาตรวจเลือดตามเวลาที่กำหนด (24 ชั่วโมงหลังจากกินยา TDF)

โดยสรุปอาสาสมัครได้รับการนัดตรวจทางด้านเภสัชจลนศาสตร์ 1 ครั้ง (วันที่ 0 เวลา 8.00 - 20.00 น. และวันที่ 1 เวลา 8.00 น.) ขณะที่ใช้ยา TDF ขนาด 300 มิลลิกรัม ดังแสดงในแผนภูมิรูปที่ 3 การ

ตรวจทางด้านเภสัชจลนศาสตร์

แผนภูมิรูปที่ 3 การตรวจทางด้านเภสัชจลนศาสตร์

การวิเคราะห์ข้อมูลทางเภสัชจลนศาสตร์

ตัวอย่างเลือดเพื่อการตรวจวิเคราะห์ข้อมูลทางเภสัชจลนศาสตร์นั้นถูกนำมาปั่นด้วยความเร็ว 1,500 รอบต่อนาที หลังจากนั้นได้ทำการแยกเก็บพลาสมาไว้ที่อุณหภูมิ -80°C ตัวอย่างเลือดทั้งหมดมีการติดฉลากที่มีข้อมูลของผู้เข้าร่วมการศึกษาประกอบด้วย รหัสประจำตัว หมายเลขตัวอย่าง เลือด และเวลาที่จะมาตรวจ รวมทั้งตัวอย่างที่จะมาตรวจ ระดับยา tenofovir, efavirenz, darunavir, lopinavir, atazanavir นั้นทำการวิเคราะห์โดยวิธี High Performance Liquid Chromatography (HPLC) ที่ห้องปฏิบัติการของ HIV-NAT ซึ่งมีมาตรฐานผ่านการตรวจ Quality Assurance จากทางมหาวิทยาลัย Radboud Nijmegen Medical Center ประเทศเนเธอร์แลนด์แล้ว

ในแต่ละครั้งที่ทำการวิเคราะห์มีการสร้าง calibration curve (อย่างน้อย 5 จุด) เพื่อใช้ในการคำนวณค่าความเข้มข้นของยาต้านดังกล่าว ตัวอย่างที่ทำการตรวจ ถ้ามีความแตกต่างของค่าที่ซ้ำกันของ QC มากกว่า 15% ในการทำ calibration curve ก็ไม่สามารถรับค่าในการตรวจครั้งนั้นและต้องทำ calibration curve ใหม่ทั้งหมด

การเตรียมตัวอย่าง QC's ได้ทำไว้จำนวนมากในครั้งเดียว และแบ่งเก็บเป็นหลอดย่อยๆ ไว้ในอุณหภูมิ ≤ -18 องศาเซลเซียส ซึ่งได้เก็บรวมกันกับตัวอย่างที่ต้องการตรวจวัด การวิเคราะห์เริ่มจากชุดตัวอย่าง QC ที่มีค่าระดับความเข้มข้น ต่ำ กลาง สูง ก่อน จากนั้นจึงตามด้วยตัวอย่างที่ต้องการตรวจวัด

ค่าผลของตัวอย่าง QC ที่ได้ถูกนำมาใช้ในการตัดสินว่า สามารถยอมรับ หรือ ปฏิเสธค่าผลการตรวจวัดของตัวอย่างของอาสาสมัคร เกณฑ์การยอมรับค่าผลการตรวจ เป็นดังนี้ ต้องมีอย่างน้อย 4 ใน 6 ของตัวอย่าง QC มีค่าอยู่ในช่วง $\pm 20\%$ ของค่าปกติโดย 2 ใน 6 ของตัวอย่าง QC (ที่ไม่ใช่ความเข้มข้นเดียวกัน หรือ ตำแหน่งเดียวกันในการทดสอบ) อาจมีค่าอยู่นอกช่วง $\pm 20\%$ ของค่าปกติ

ทุกตัววัดทางเภสัชจลนศาสตร์ได้ถูกนำมาคำนวณด้วยโปรแกรม Microsoft Excel รุ่น 2000 จากข้อมูล plasma concentration-time ของแต่ละราย ตัววัดทางเภสัชจลนศาสตร์ที่จะศึกษาได้แก่

AUC_{0-24h} : ค่าพื้นที่ภายใต้กราฟ ความเข้มข้นของระดับยา-เวลา

(plasma concentration-time curve) [มิลลิกรัม*ชั่วโมง/ลิตร]

C_{max} : ระดับความเข้มข้นของยาที่มีค่าสูงสุด [มิลลิกรัม/ลิตร]

C_{min} : ระดับความเข้มข้นของยาที่มีค่าต่ำสุด [มิลลิกรัม/ลิตร]

t_{max} : ระยะเวลาที่ระดับยามีความเข้มข้นสูงที่สุด [ชั่วโมง]

$t_{1/2}$: เวลาที่พบว่ามีการขจัดยาครึ่งหนึ่ง (elimination half-life) ซึ่งสัมพันธ์กับ terminal slope ของกราฟ semilogarithmic concentration-time curve ($\ln 2/\lambda$) [ชั่วโมง], ขณะที่ λ คือค่าคงที่ของการขจัดยา (elimination rate constant)

ในการศึกษานี้ได้นำข้อมูลของอาสาสมัครทุกรายที่อยู่ในงานโครงการวิจัย มาทำการวิเคราะห์ค่าทางสถิติ โดยข้อมูลที่ใช้ คือ ข้อมูลสถิติประชากร (demographics) และข้อมูลความปลอดภัย

ข้อมูลจากอาสาสมัครได้ถูกเก็บไว้ใน case record form (CRF) และวิเคราะห์เปรียบเทียบกันระหว่างกลุ่ม A และ B และระหว่าง boosted PI แต่ละตัวโดยจะใช้การวิเคราะห์แบบ descriptive analysis ด้วยโปรแกรม SAS[®] ตัวแปรทางเภสัชจลนศาสตร์จะใช้โปรแกรม Excel 1997 และการวิเคราะห์โดยวิธี noncompartmental method

การศึกษานี้มีข้อดีคือทำการเปรียบเทียบความเข้มข้นของยา tenofovir เมื่อให้ร่วมกับยาต้านไวรัสทั้ง NNRTI (Efavirenz) และ boosted PI ทั้ง 3 ชนิด (Darunavir/r, Atazanavir/r, Lopinavir/r) และยังสามารถคุณว่าระดับยา efavirenz หรือ boosted PI มีผลต่อ tenofovir plasma concentration หรือไม่

2. เภสัชจลนศาสตร์ของยาที่ในโพลีเมอร์ในผู้ติดเชื้อเอชไอวีที่มีการทำงานของไตต่ำ

ได้มีการตรวจระดับยา tenofovir แบบละเอียดในคนที่มีการทำงานของไตต่ำ (renal clearance 30-50 mL/min เพื่อตอบคำถามว่าควรจะใช้ยา tenofovir 300 mg วันเว้นวันตามที่แนะนำ แต่คนไข้อาจไม่สะดวก หรือใช้ tenofovir 150 mg (tenofovir ขององค์การเภสัชสามารถหักครึ่งเม็ดได้) โดยมีรายละเอียดดังนี้

โครงการวิจัยนี้ได้ถูกออกแบบให้เป็นการวิจัยระยะที่ 1 ไม่สุ่มตัวอย่าง แบบเปิด (open-label) การศึกษาทางเภสัชจลนศาสตร์ จาก 4 สถานวิจัย: HIV-NAT, รพ ชลบุรี รพ พะเยา รพ สันป่าตองและ รพ นครพิงค์ อาสาสมัครที่มีผลการตรวจยืนยันการติดเชื้อเอช ไอ วี และได้รับการรักษาด้วยยาที่ในโพลีเมอร์ขนาด 300 มก. ทุก 48 ชั่วโมง ซึ่งเป็นส่วนหนึ่งของสูตรยาต้านไวรัส HAART ที่มียาอีฟ้าไวเรนซ์ หรือยาโลพินาเวียร์/ริโโนวีเรียร์เป็นองค์ประกอบ จะถูกเสนอให้เข้าร่วมโครงการวิจัย

อาสาสมัครที่มีคุณสมบัติเข้าร่วมโครงการจะได้เข้าร่วมโครงการวิจัยในกลุ่มได้กลุ่มนี้ทั้งนี้ขึ้นอยู่กับสูตรยา HAART ของอาสาสมัคร

กลุ่มที่ 1: อาสาสมัครได้รับยาที่ในโพลีเมอร์ขนาด 300 มก. ทุก 48 ชั่วโมง ร่วมกับยาลาเมวูดีนและยาอีฟ้าไวเรนซ์ และได้รับการยืนยันว่ามีค่า CLcr 30 ลิตรน้อยกว่า 50 mL./นาที

กลุ่มที่ 2: อาสาสมัครได้รับยาที่ในโพลีเมอร์ขนาด 300 มก. ทุก 48 ชั่วโมง ร่วมกับยาลาเมวูดีนและยาโลพินาเวียร์/ริโนวีเรียร์ และได้รับการยืนยันว่ามีค่า CLcr 30 ลิตรน้อยกว่า 50 mL./นาที

ขั้นตอนการวิจัยจะเหมือนกันทั้งสองกลุ่ม อาสาสมัครทุกรายที่เข้าร่วมอยู่ในการวิจัยจะมีนัดหมายการวิจัย 2 ครั้ง ในนัดหมายการวิจัยครั้งแรกอาสาสมัครจะได้รับการประเมินทางด้านเภสัชจลนศาสตร์เป็นเวลา 48 ชั่วโมง ที่นัดหมายการวิจัยครั้งที่สองในเวลาสองสัปดาห์ต่อมา อาสาสมัครจะได้รับการประเมินทางด้านเภสัชจลนศาสตร์เป็นเวลา 24 ชั่วโมง หากจำเป็นอาสาสมัครจะต้องนอนพักที่โรงพยาบาลตลอดระยะเวลาในการเก็บตัวอย่างเลือดเพื่อการศึกษาทางเภสัชจลนศาสตร์อย่างละเอียด

โครงการจะนัดหมายในวันเข้าร่วมโครงการ (วันที่ 0) เพื่อให้เป็นนัดหมายเดียวกันกับที่อาสาสมัครได้รับประทานยาที่โนโฟเวียร์พร้อมกับอาหารตามกำหนดการรับประทานยาต้านไวรัสปกติ จะเจ้าเลือดอาสาสมัคร (3 มล.) ก่อนรับประทานยาต้านไวรัสเพื่อศึกษาระดับยาที่โนโฟเวียร์และที่ 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 12, 24, 36 และ 48 ชั่วโมงหลังรับประทานยา เพื่อกำหนดความเข้มข้นของยาที่โนโฟเวียร์ภายในเซลล์ อาสาสมัครจะถูกเจ้าเลือดเพิ่มปริมาณ 10 มล. ที่ 48 ชั่วโมงหลังรับประทานยา ทันทีที่การเก็บตัวอย่างเลือดเพื่อศึกษาทางด้านเภสัชจลนศาสตร์ได้เสร็จสิ้นลง อาสาสมัครจะถูกเปลี่ยนให้รับประทานยาที่โนโฟเวียร์เป็นขนาด 150 มก. วันละครั้ง และอาสาสมัครจะถูกขอให้กลับไปยังโรงพยาบาลในเวลาสองสัปดาห์ต่อมา (14 วัน) อาสาสมัครจะกลับไปที่โรงพยาบาลและจะได้รับการประเมินทางด้านเภสัชจลนศาสตร์เป็นเวลา 24 ชั่วโมง โครงการจะเจ้าเลือดเพื่อเก็บตัวอย่างเลือดเป็นชุดได้แก่ก่อนรับประทานยาต้านไวรัสและที่ 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 12, และ 24 ชั่วโมงหลังรับประทานยา เพื่อกำหนดความเข้มข้นของยาที่โนโฟเวียร์ภายในเซลล์ อาสาสมัครจะถูกเจ้าเลือดเพิ่มปริมาณ 10 มล. ที่ 24 ชั่วโมงหลังรับประทานยา เมื่อการเก็บตัวอย่างเลือดเพื่อการศึกษาทางเภสัชจลนศาสตร์ครั้งที่สองเสร็จสิ้นลง อาสาสมัครจะถูกเปลี่ยนให้กลับไปรับประทานยาที่โนโฟเวียร์เป็นขนาด 300 มก. ทุก 48 ชั่วโมง ซึ่งเป็นการสิ้นสุดการวิจัย

หัวข้อที่ 3 ระดับยาที่โนโฟเวียร์และความปลอดภัยทางไตรในผู้ป่วยติดเชื้อเอชไอวีคนไทย

อาสาสมัครเข้าร่วมงานวิจัยส่วนนี้จำนวน 300 รายต้องรับประทานยาต้านไวรัสนิดที่มี TDF เป็นส่วนประกอบมากกว่า 1 เดือน

ผู้ป่วยที่เข้าร่วมโครงการย่อยนี้จะแบ่งเป็น 2 กลุ่ม ขึ้นอยู่กับชนิดของยาต้านไวรัสที่กำลังรับประทานอยู่ร่วมกับ tenofovir โดยแบ่งเป็น

กลุ่ม A ผู้ป่วยติดเชื้อเอชไอวีที่ได้รับยา tenofovir ร่วมกับยาต้านไวรัสกลุ่ม NNRTI (efavirenz)

กลุ่ม B ผู้ป่วยติดเชื้อเอชไอวีที่ได้รับยา tenofovir ร่วมกับยาต้านไวรัสกลุ่ม ritonavir-boosted PI

ทุกคนได้รับการเจ้าเลือดเพื่อดูรุ่งตับยา tenofovir ใน พลasmA 1 ครั้ง

วิธีการศึกษาวิจัยของโครงการ

ในวันที่ผู้ป่วยมาตามนัดการตรวจปกติ ผู้ป่วยได้รับการปฏิบัติตั้งนี้

- ผู้วิจัยทำการคัดเลือกอาสาสมัครที่ใช้ยาต้าน TDF จากฐานข้อมูล
- ในวันที่อาสาสมัครที่มีรายชื่อที่ได้รับการคัดเลือกไว้มาตรวจตามนัดหรือมารับยาตามนัดของโครงการ long term observational prospective cohort (HIV-NAT 006) อาสาสมัครกลุ่มดังกล่าวได้รับฟังข้อมูลต่างๆของโครงการวิจัยที่ได้ระบุไว้ในเอกสารแสดงความยินยอมเข้าร่วมโครงการวิจัย (patient informed consent) และผู้วิจัยให้อาสาสมัครแต่ละรายมีเวลาอ่าน และซักถามคำถามจนอาสาสมัครพอใจ และเมื่ออาสาสมัครได้เข็นต์ชื่อยินยอมเพื่อเข้าร่วมในการวิจัยโดยสมัครใจแล้ว ผู้วิจัยทำการตรวจผู้ป่วยดังต่อไปนี้
 - ซักประวัติทางการแพทย์
 - ตรวจร่างกายทั่ว ๆ ไป รวมทั้งส่วนสูงและน้ำหนัก
 - ตรวจทางห้องปฏิบัติการ : ในผู้ป่วยแต่ละรายได้รับการตรวจทางระดับยา 1 ครั้ง ณ จุดเดียว โดยให้เจ้าเลือดในช่วง 23-25 ชั่วโมงหลังกินยาหรือ mid dose (11-13 ชั่วโมงหลังกินยา) ในรายที่กินยาในตอนกลางคืน

สำหรับในรายที่กินยา tenofovir ขนาดต่ำ (TDF 300 mg 3-4 times/week) เช่น กินยาวันจันทร์ พุธ ศุกร์ เสาร์ กลุ่มนี้ได้รับการตรวจระดับยาวันจันทร์ หรือ วันพุธ

ในคนที่มีไวรัสตับอักเสบบีร่วมด้วย จะได้รับการตรวจระดับยา tenofovir คนละ 2 ครั้ง ณ เวลา ก่อนกินยา tenofovir และหลังกินยาประมาณ 1-4 ชั่วโมง เพื่อคำนวณ population pharmacokinetic (PK)

3. ข้อมูลของ CD4, HIV RNA, liver function test, lipid profile, FBS, วันที่เริ่มกินยา tenofovir ซึ่งถูกเก็บไว้ในฐานข้อมูลแบบ prospective cohort ทุก 6 เดือนอยู่แล้วได้ถูกดึงมาจากฐานข้อมูลเพื่อมาวิเคราะห์ข้อมูล

หัวข้อที่ 4: pharmacogenomics

ทำการตรวจทางด้านเภสัชพันธุศาสตร์ (เฉพาะคนที่ใช้หรือเคยใช้ยา TDF และหยุดไปเพาะเกิด renal toxicity) ทำการวิเคราะห์สารพันธุกรรม หรือยีน เช่น ABCC2, ABCC4, SCL22A6, SLC22A11, ABCB1 เป็นต้น โดยมีการเก็บตัวอย่างเลือดของผู้ป่วย 5 มิลลิลิตรเพื่อทำการตรวจ polymorphism การวิเคราะห์สารพันธุกรรมจะกระทำที่ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

Pharmacogenetic analyses

Human genomic DNA ได้ extract มาจาก peripheral blood mononuclear cells (PBMC) โดย QIAamp[®] DNA Blood Mini Kit (Qiagen, Hilden, Germany) ตามวิธีการที่ระบุใน manufacturer instruction ได้ทำการตรวจ Single nucleotide polymorphisms (SNPs) จำนวน 9 genes ได้แก่ ABCC2 -24C>T (rs717620), ABCC2 1249G>A (rs2273697), ABCC2 3563T>A (rs17222723), ABCC2 3972C>T (rs3740066), ABCC4 3463A>G (rs1751034), ABCC4 4131T>G (rs3742106), ABCC10 526G>A (rs9349256), ABCC10 2759T>C (rs2125739) and SLC22A6 728G>A (rs11568626)

โดยการตรวจด้วย Taqman allelic discrimination assays with fluorogenic probes (Applied Biosystems, Foster City, CA) ซึ่ง probes สำหรับ 9 SNPs ได้ถูกออกแบบโดย Applied Biosystems 7500 Real-Time PCR System.

Statistical analysis

Genotype frequencies were determined by direct counting. The genotypes were divided into three groups: wild-type (two copies of common allele), heterozygous (one copy of the variant allele) and homozygous (two copies of the variant allele). The deviation from Hardy-Weinberg equilibrium was determined by Chi-square test. Allele frequencies were compared between populations using Chi-square test. All statistical analyses were performed using the Statistical Package for Social Sciences software (SPSS version 17, SPSS Co., Ltd., Bangkok Thailand). The level of significance was set at 0.05.

การวิเคราะห์ข้อมูล (Data analysis)

1. การสรุปข้อมูล: ข้อมูลเชิงปริมาณ, วัดผลเป็นค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐาน
2. การนำเสนอข้อมูล: ตาราง, กราฟเปรียบเทียบ
3. การทดสอบสมมติฐาน: Unpaired t-test, Chi-square test ตามลักษณะข้อมูล กำหนดค่าทัยสำคัญทางสถิติที่ 0.05
4. แสดงความสัมพันธ์: Pearson correlation

ปัญหาทางจริยธรรม (Ethical Consideration)

การศึกษานี้เป็น observational cohort ไม่มีการใช้ยาได้านอกเหนือจากที่ผู้ป่วยได้รับอยู่เดิม การศึกษานี้จะต้องผ่านการพิจารณาจากคณะกรรมการจริยธรรมขององค์นະแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัยก่อนและต้องผ่านมติที่ประชุมของคณะกรรมการที่ปรึกษาชุมชนcommunity advisory board (CAB) ของศูนย์วิจัยโรคเอดส์ สถาบันฯ ที่จะเริ่มโครงการได้และผู้วิจัยได้เตรียมเอกสารขอความยินยอมจากคนไข้ก่อนที่จะร่วมโครงการ ผู้ป่วยที่เข้าร่วมการวิจัยจะได้รับการอธิบายถึงข้อดีและข้อเสียของการเข้าร่วมการวิจัย เมื่อผู้ที่ยินยอมและลงชื่อในใบยินยอมแล้ว จะถูกเจ้าหน้าที่จัดการเพียงเล็กน้อยและเก็บปัสสาวะ 24 ชั่วโมง และผลของการวิจัยไม่มีผลเปลี่ยนแปลงการรักษาที่ผู้ป่วยกำลังได้รับอยู่ การเก็บรวมข้อมูลอื่นๆ อาทิ จำกัดการรักษาที่มีอยู่เดิมซึ่งทั้งหมดนี้ ผู้จัดทำการวิจัยคาดว่าไม่น่าจะมีปัญหาทางจริยธรรม

ภาวะเสี่ยงจากการทำหัตถการ

ภาวะเสี่ยงจากการทำหัตถการที่เกิดอาการไม่สบายนี้ เสี่ยงกับการล้มเหลวทางเดินหายใจ ภาวะเสี่ยงจากการติดเชื้อเฉพาะบริเวณเจ้าเดือดอาจเกิดขึ้นได้แต่พบได้ไม่บ่อย

ประเด็นอื่น ๆ ด้านจริยธรรม

รายงานประวัติ ตัวอย่างเช่นการล้มเหลวทางเดินหายใจ ภาวะเสี่ยงจากการติดเชื้อเฉพาะบริเวณเจ้าเดือดอาจเกิดขึ้นได้แต่พบได้ไม่บ่อย

อุปกรณ์ที่ใช้ในการวิจัย

อุปกรณ์ที่มีอยู่แล้ว : เครื่องตรวจปัสสาวะ 24 ชั่วโมง เครื่องตรวจ creatinine

อุปกรณ์ที่ต้องจัดหาเพิ่ม : เครื่องตรวจยาทีโนไฟเวียร์ อุปกรณ์เจาะเลือดต่างๆ reagents

8. ผลการศึกษา

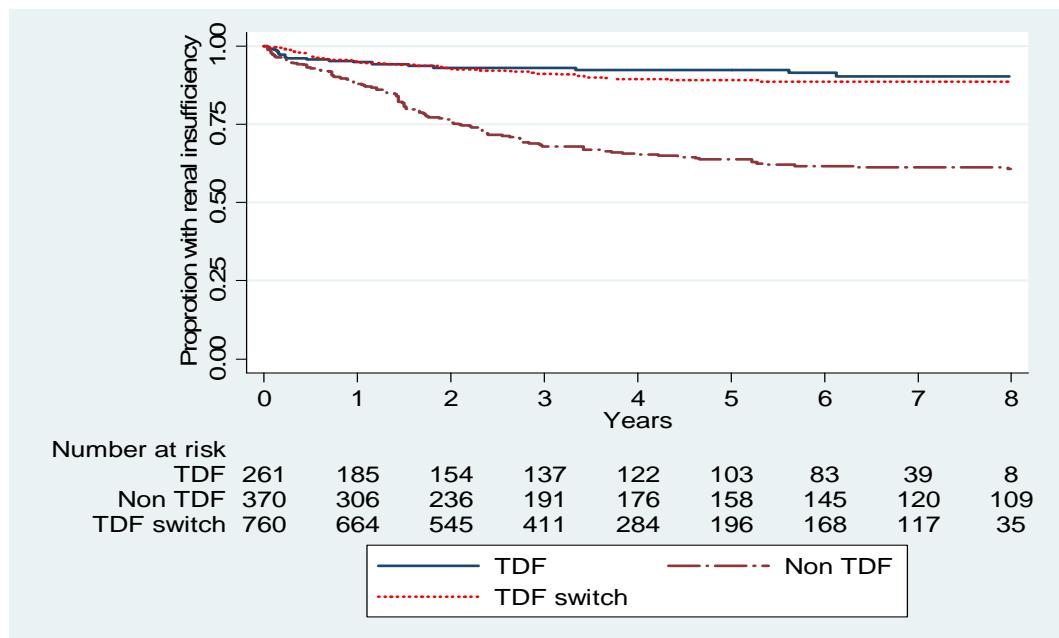
คณะผู้วิจัยขอแยกรายงานเป็นไปตามหัวข้อย่ออย่างทั้ง 4 หัวข้อดังต่อไปนี้

หัวข้อที่ 1 : Renal insufficiency และ proximal tubular dysfunction

ณ วันที่ 30 เมษายน 2556 มีผู้เข้าร่วมโครงการวิจัย renal toxicity ทั้งสิ้นจำนวน 1,391 ราย โดยได้แบ่งผู้ป่วยออกเป็น 3 กลุ่มได้แก่กลุ่มที่ได้ยา TDF ตั้งแต่แรกเริ่มของยาต้านไวรัส (TDF based HAART) กลุ่มที่ได้ยาต้านไม่มี TDF (non TDF based HAART) และกลุ่มที่ใช้ TDF หลังจากได้ยาต้านตัวอื่นมาก่อน (TDF switching group) ซึ่งลักษณะพื้นฐานของผู้ป่วยทั้ง 3 กลุ่มได้แสดงในตารางที่ 2 ข้อมูลพื้นฐานทางคลินิกของอาสาสมัครทั้งหมดซึ่งแสดงให้เห็นว่ากลุ่มที่ได้ยา TDF ตั้งแต่แรกเริ่มของยาต้าน (TDF based HAART) เมื่อเปรียบเทียบกับกลุ่มที่ได้ยาต้านไม่มี TDF (non TDF based HAART) มีอายุน้อยกว่า จำนวนผู้หญิงน้อยกว่า น้ำหนักมากกว่า แต่ BMI สูงกว่า current CD4 count ต่ำกว่า แต่จำนวนผู้ป่วยที่มี HIV RNA < 50 copies/mL มากกว่า มี Median (IQR) GFR สูงกว่า มีผู้ป่วยที่เคยได้ indinavir และ stavudine น้อยกว่า และ มีรายที่ใช้ NNRTI (non nucleoside reverse transcriptase) มากกว่า มีผู้ติดเชื้อไวรัสตับอักเสบบีมากกว่า แต่ไม่ได้ป่วยเป็นหวาน ความดันโลหิตสูง ภาวะ metabolic syndrome และ ภาวะ lipodystrophy น้อยกว่าอย่างชัดเจน

ตารางที่ 2 ข้อมูลพื้นฐานทางคลินิกของอาสาสมัครทั้งหมด (Subject characteristics)

Characteristic	Total N=1,391	TDF based HAART N=261	Non TDF based HAART N=370	TDF switching group N=760	P-value
Median (IQR) age, years	36.7 (31.4 - 42.3)	32.6 (28.5 - 37.6)	34.8 (30.4 - 40.6)	38.5 (33.4 - 43.9)	<0.001
n(%) female	636 (42.7)	91 (34.9)	158 (42.7)	352 (46.3)	0.005
% CDC classification A:B:C	52 : 33 : 14	52:33:14	52:31:17	51:34:15	0.765
Median (IQR) weight (kg)	57.2 (51 - 65.4)	58 (51.4 - 65)	57.6 (51 - 67)	56.5 (50.8 - 65)	<0.001
Median (IQR) BMI (kg/m ²)	21.5 (19.5 - 23.6)	21.3 (19.3 - 23.3)	21.8 (19.7 - 23.8)	21.4 (19.5 - 23.5)	<0.001
Median (IQR) current CD4 count (cells/µL)	536.5 (374 - 711)	488 (352 - 644)	540 (347 - 711)	571 (437 - 759)	<0.001
Nadir CD4 < 200(cells/µL)	185 (84 - 261)	188 (86 - 248)	170 (68 - 259)	191 (96 - 264)	0.511
Median (IQR) HIV-RNA log ₁₀ copies/ml	3.9 (1.7 - 4.7)	4.2 (2.7 - 4.9)	4.4 (3.8 - 4.8)	1.7 (1.7 - 4.1)	<0.001
n(%) Patients with current HIV-RNA < 50 copies/mL	1239 (89.1)	234 (89.6)	308 (83.2)	697 (91.7)	<0.001


Median (IQR) creatinine (mg/dl)	0.9 (0.8 - 1.04)	0.91 (0.8 - 1.06)	0.92 (0.8 - 1.1)	0.9 (0.77 - 1)	0.002
Median (IQR) GFR (mL/min/1.73 ²)	95.3 (82.5 - 107.6)	96.4 (85.9 - 109.5)	92.3 (81.6 - 105.5)	96.2 (82.3- 108.1)	0.002
n(%)					
PI based HAART	361(26)	65(25)	81(22)	215(28)	<0.001
NNRTI based HAART	418(30)	135(52)	117(32)	166(22)	
PI and NNRTI based HAART	612(44)	61(23)	172(46)	379(50)	
n(%) indinavir exposure	294 (21.1)	-	139 (37.6)	155 (20.4)	<0.001
Median (IQR) accumulation of IDV exposure (years)	294	-	3.9 (1.6- 6.8)	4.4 (1.7- 6.7)	0.583
n(%) stavudine (d4T) exposure	729 (52.4)	15 (5.6)	215 (58.1)	499 (65.6)	<0.001
n(%) atazanavir exposure	227 (16.3)	29 (11.6)	43 (11.1)	155 (20.4)	<0.001
Median (IQR) of duration follow up (years)	8.9 (4.8 - 12.2)	4.2 (0.9 - 6.7)	10.6 (5.9 - 14.0)	10.8 (6.2 - 13.3)	<0.001
n(%) hepatitis B co-infection	168 (12.1)	46 (17.6)	14 (3.8)	108 (14.2)	<0.001
n(%)hepatitis C co-infection	109 (7.8)	16 (6.1)	31 (8.4)	62 (8.2)	0.519
n(%) diabetes	78 (5.2)	4 (1.5)	21 (5.7)	51 (6.7)	0.006
n(%) hypertension	167 (12.0)	8 (3.1)	58 (15.7)	101 (13.3)	<0.001
n(%) Cotrimoxazole exposure	142 (10.2)	-	76 (20.5)	66 (8.7)	<0.001
n(%) Metabolic syndrome	130 (9.4)	6 (2.3)	41 (11.1)	83 (10.9)	<0.001
n(%) Lipodystrophy	541 (38.9)	17 (6.5)	178 (48.1)	346 (45.5)	<0.001
n(%) Renal dysfunction at baseline					0.007
Normal	843(60.6)	168(64.4)	200(54.1)	475(62.5)	
Mild	503(36.1)	92(35.2)	150(40.5)	261(34.3)	
Moderate	43(3.1)	1(0.4)	19(5.1)	23(3.0)	
Severe	1(0.1)	0	0	1(0.2)	
Kidney failure	1(0.1)	0	1(0.3)	0	

ตารางที่ 2.1 เปรียบเทียบ baseline characteristic ณ เวลาที่เริ่มยาต้าน ระหว่างผู้ป่วยที่เริ่มรักษาด้วยยาต้าน TDF และ non TDF เป็นยาสูตรแตกต่างแต่เริ่มต้น

Characteristic	TDF based HAART N=261	Non TDF based HAART N=370	P-value
Median (IQR) age, years	32.6(28.5-37.6)	34.8(30.4-40.6)	<0.001
n(%) female	91(34.9)	158(42.7)	0.047
% CDC classification A:B:C	52:33:14	52:31:17	0.59
Median (IQR) weight (kg)	58(51.4-65)	57.6(51-67)	0.06
Median (IQR) BMI (kg/m ²)	21.3(19.3-23.3)	21.8(19.7-23.8)	0.24
Median (IQR) baseline CD4 count (cells/ μ L)	218(126-290)	228(105-342)	0.07
Nadir CD4 < 200(cells/ μ L)	188(86-248)	170(68-259)	0.30
Median (IQR) HIV-RNA log ₁₀ copies/ml at baseline	4.5(3.9-5)	4.4(3.8-4.8)	0.28
n(%) Patients with HIV-RNA > 4 log ₁₀ copies/ml at baseline	174 (66.8)	246(66.4)	0.02
Median (IQR) creatinine (mg/dl)	0.91(0.8-1.06)	0.92(0.8-1.1)	0.02
Median (IQR) GFR (mL/min/1.73 ²)	96.4(85.9-109.5)	92.3(81.6-105.5)	0.57
n(%) hepatitis B co-infection	46(17.6)	14(3.8)	<0.001
n(%)hepatitis C co-infection	16(6.1)	31(8.4)	0.03
Diabetes, N	1	2	-
Hypertension, N	0	2	-
n(%) Renal dysfunction at baseline			
Normal			0.001
Mild	168(64.4)	200(54.1)	
Moderate	92(35.2)	150(40.5)	
Severe	1(0.4)	19(5.1)	
Kidney failure	0	0	
	0	1(0.3)	

จากตารางที่ 2.1 ผู้ป่วยที่เริ่มรักษาด้วยยาต้าน TDF มีอายุน้อยกว่าและมีจำนวนผู้ป่วยหญิงน้อยกว่า มีผู้ป่วยที่มีการทำงานของไตผิดปกติน้อยกว่า และมีผู้ป่วยติดเชื้อไวรัสตับอักเสบซีน้อยกว่าแต่มีผู้ป่วยติดเชื้อไวรัสตับอักเสบมากกว่า ในกลุ่ม non TDF นอกจากนั้นจำนวนผู้ป่วยที่เป็นเบาหวานและความดันก็ไม่ต่างกัน ณ เวลาที่เริ่มยาต้าน แต่ถ้าดูตารางที่ 1 หลังจากใช้ยาต้านมาแล้วกลุ่มที่ได้ non TDF จะมีผู้ป่วยที่เป็นเบาหวานและความดันมากกว่าอย่างชัดเจน

ภาพที่ 1 แสดงโอกาสที่จะเกิด renal insufficiency จากการใช้ยา TDF โดยดูจาก eGFR ลดลงมากกว่า 25% จาก baseline หรือ $< 60 \text{ ml/min}/1.73\text{m}^2$ โดยเปรียบเทียบทั้ง 3 กลุ่มระหว่างกลุ่มที่ได้ยา TDF ตั้งแต่แรกเริ่มของยาต้าน (TDF based HAART) กลุ่มที่ได้ยาต้านไม่มี TDF (non TDF based HAART) และ กลุ่มที่ใช้ TDF หลังจากได้ยาต้านตัวอื่นมาก่อน (TDF switching group) ซึ่งพบว่ากลุ่มที่ได้ยาต้าน (TDF based HAART) ตั้งแต่แรก และกลุ่มที่ใช้ TDF หลังจากได้ยาต้านตัวอื่นมาก่อน (TDF switching group) ไม่ต่างกัน และต่างจากกลุ่มที่ได้ยาต้านไม่มี TDF (non TDF based HAART)

Incidence rate (95%CI) overall = 3.8(3.2-4.3) per 100 person year of follow up

Incidence rate for TDF = 1.9(1.3-3.1) per 100 person year of follow up

Incidence rate for non TDF = 6.9(5.8-8.3) per 100 person year of follow up

Incidence rate for TDF switching = 2.4(1.9-3.1) per 100 person year of follow up

โดยพบว่าทั้ง 3 กลุ่มเริ่มเกิด renal insufficiency เมื่อใช้ยาต้านมาเป็นระยะเวลาเฉลี่ย ดังนี้

1.2, 1.8 และ 1.4 ปีตามลำดับ

ตารางที่ 3 แสดงตัวแปรที่มีผลต่อการเกิด renal impairment โดยการวิเคราะห์แบบ Univariate and multivariate by Cox proportion hazard regression

Variables	Univariate			Multivariate		
	Hazard Ratios	95% CI	P	Hazard Ratios	95% CI	P
Subject group						
Non-TDF	1.00		<0.001			
TDF based HAART	0.26	0.16-0.43				
TDF switch	0.26	0.19-0.36				
Age >35 years	1.98	1.45-2.72	<0.001	1.76	1.26-2.45	0.001
Gender : Female	1.40	1.04-1.89	0.028			
BMI	1.00	0.98-1.03	0.768			
Weight	1.00	0.99-1.01	0.603			
CD4 cell count at baseline < 200 cell/mm ³	1.92	1.44-2.58	<0.001	1.77	1.32-2.38	<0.001
HIV-RNA > 4 log ₁₀ copies/ml at baseline	1.80	1.3-2.4	<0.001			
indinavir exposure	4.85	3.62- 6.49	<0.001	3.68	2.73-4.96	<0.001
d4T exposure	0.72	0.54-0.96	0.028			
Currently taking TDF				0.66	0.56-0.77	<0.001
Currently taking ATV	1.71	1.21-2.41	0.004			
Hepatitis B	0.43	0.24-0.78	0.006			
Hepatitis C	1.11	0.67-1.85	0.683			
Diabetes mellitus	2.76	1.80- 4.25	<0.001			
Hypertension	2.42	1.73-3.39	<0.001	1.61	1.14-2.28	0.007
Metabolic syndrome	2.98	2.10- 4.23	<0.001			
Lipodystrophy	1.70	1.27-2.27	<0.001			
Cotrimoxazole exposure months	3.44	2.47-4.80	<0.001			
Year at start ART	0.86	0.83-0.90	<0.001			

จากตารางที่ 3 พบร่วมกันการวิเคราะห์แบบ multiple variate ตัวแปรที่มีผลต่อการเกิด renal insufficiency (eGFR declining > 25% or eGFR < 60 mL/min/1.73m²) ได้แก่ อายุ > 35 ปี เริ่มยาต้านใน ขณะที่ CD4 ต่ำกว่า 200 cells/ μ L เคยได้รับยาต้านไวรัส คือ indinavir หรือ stavudine (d4T) มา ก่อน และ มี ภาวะความดันโลหิตสูงร่วมด้วย การได้ TDF ให้ผลตรงข้าม คือ เกิด renal insufficiency น้อยกว่ากลุ่มที่ไม่ได้ คง เป็นเพียง selection bias เพราะเลือกให้ TDF ในผู้ป่วยที่มี eGFR สูงกว่า 70 mL/min/1.73m² และเลี่ยงการ ให้ในผู้ป่วยที่มีความเสี่ยงสูง เช่น เป็นโรคความดันโลหิตสูง เบาหวาน อายุมาก เป็นต้น ประกอบกับกลุ่ม non TDF มีผู้ป่วยที่เคยได้ indinavir และ stavudine มากกว่า

ผลการศึกษาทางด้าน Renal tubular dysfunction

หลังจากนั้นได้ทำการวิเคราะห์ผู้ป่วยที่มีการตรวจปัสสาวะ 24 ชั่วโมง ว่ามีการเกิด tubular dysfunction กี่ราย โดยเลือกกลุ่มที่มี eGFR $> 60 \text{ ml/min}/1.73^2$ และเปรียบเทียบระหว่างกลุ่มที่ได้และไม่ได้ยา TDF โดย proximal tubular dysfunction คือจากหลักฐานตั้งแต่ 2 ข้อของภาวะดังต่อไปนี้

- glycosuria (โดยที่ผลน้ำตาลในเลือดปกติ)
- hyperaminoaciduria
- fractional tubular reabsorption of phosphate <0.85
- total excretion of phosphorus $>1200\text{mg/day}$
- fractional excretion of uric acid $>15\%$
- urine β -2 microglobulinemia $>1 \text{ mg/d}$

ตารางที่ 4 แสดงลักษณะพื้นฐานของประชากรที่ศึกษา (Baseline characteristics of the study population)

	Total N=696	Non TDF based HAART N=152	TDF based HAART N=544	p-value
Gender : female n(%)	324(46.6)	57(37.5)	267(49.1)	0.011
Age (years)	41.5(36.78-47.1)	43.7(38.0-48.5)	40.9(36.8-46.6)	0.005
BW (kg)	57.1(52-65.5)	56.4(51.2-65)	58(52-65.7)	0.458
Duration of ART exposure (years)	9.5(4.9-12.1)	10.6(8.2-13.2)	8.4(4.8-11.0)	<0.001
Indinavir exposure n(%)	88(12.6)	30(19.7)	58(10.7)	0.003
Atazanavir exposure n(%)	108(15.5)	16(10.5)	92(16.9)	0.055
Other PI based HAART n(%)	328(47.1)	55(36.2)	273(50.2)	0.002
CD4 cell count (cells/uL)	558(416-723)	601(436-772)	546(407-716)	0.039
Nadir CD 4 cell count(cells/ μL)	191(96-257)	199(122-292)	187(93-250)	0.003
Proportion with HIV RNA $< 50 \text{ copies/mL}$	636(91.4)	134(88.2)	502(92.3)	0.109
History of hypertension (%)	89(12.8)	30(19.7)	59(10.9)	0.004
History of diabetes (%)	39(5.6)	11(7.2)	28(5.2)	0.322
Lipodystrophy (%)	307(44.1)	71(46.7)	236(43.4)	0.465
Metabolic syndrome (%)	60(8.6)	10(6.6)	50(9.2)	0.310
Chronic HBV (%)	97(13.9)	8(5.3)	89(16.4)	<0.001
Chronic HCV (%)	54(7.7)	13(8.6)	41(7.5)	0.679
Cotrimoxazole exposure (ever, %)	58(8.3)	21(13.8)	37(6.8)	0.006

ตารางที่ 4 ข้อมูลพื้นฐานทางคลินิกของอาสาสมัครจำนวน 696 รายที่ได้เก็บปัสสาวะ 24 ชั่วโมง เพื่อคุ้มครองต่อไปนี้ 2 กลุ่มได้แสดงในตารางที่ 3 ซึ่งแสดงให้เห็นว่ากลุ่มที่ได้ยา TDF เมื่อเปรียบเทียบกับกลุ่มที่ได้ยาต้านไวรัสที่ไม่มี TDF (non TDF based HAART) มีอายุน้อยกว่า จำนวนผู้หญิงมากกว่า ระยะเวลาที่ได้ยา

ต้านมาสั้นกว่า มีผู้ป่วยที่เคยได้ indinavir น้อยกว่า แต่มีผู้ป่วยที่ใช้ยาต้านกลุ่ม PI ตัวอื่นที่นอกเหนือจาก indinavir มากกว่า และ มี nadir CD4 ต่ำกว่า แต่มี current CD4 count สูงกว่า มีผู้ติดเชื้อไวรัสตับอักเสบบีมากกว่า แต่มีผู้ป่วย ความดันโลหิตสูงและเคยได้รับยา cotrimoxazole น้อยกว่าอย่างชัดเจน

ตารางที่ 5 แสดงข้อมูลของผลการตรวจลิมิกของอาสาสมัครจำนวน 696 รายที่ได้เก็บปัสสาวะ ที่ได้รับยาที่เรื่องการทำงานของไต เปรียบเทียบ subclinical renal tubular dysfunction ระหว่างกลุ่มที่ได้ และไม่ได้ TDF

	Total N=696	Non TDF based HAART N=154	TDF based HAART N=544	p-value
Median (IQR) plasma creatinine (mg/dl)	0.8 (0.7-1)	0.85(0.7-1)	0.8 (0.7-1)	0.098
Median (IQR) eGFR (ml/min/1.73 ²)	96.5(82.6-106.3)	96.8(77.8-110.8)	96.3(83.3-104.8)	0.578
Median (IQR) creatinine clearance (mL/min)	88.4(74.7-102.2)	88.3(70.5-103.9)	88.5(76-101.7)	0.437
Median (IQR) plasma phosphorus (mg/dl)	3.5(3.2-3.9)	3.5(3.2-3.8)	3.55(3.-3.9)	0.203
Plasma phosphorus < 3 mg/dl (%)	65(9.3)	19(12.5)	46(8.5)	0.13
Fractional tubular reabsorption of phosphorus (units)	0.87(0.84-0.90)	0.87(0.82-0.90)	0.87(0.84-0.90)	0.717
Fractional tubular reabsorption of phosphorus < 0.85 (N, %)	165(29)	41(33.8)	124(27.7)	0.182
TmP/GFR	3.12(2.77-3.45)	3.06(2.72-3.45)	3.14(2.78-3.45)	0.248
TmP/GFR <2.6 mg/dl	105(15.1)	28(18.4)	77(14.1)	0.194
Median (IQR) plasma uric acid (mg/dl)	5.1(4.2-6.3)	5.45(4.5-6.75)	5(4.1-6.1)	0.001
Fractional excretion of uric acid (%)	8.9(6.7-11.9)	7.9(6.3-10.9)	9.2(6.9-12.0)	0.003
Fractional excretion of uric acid >15% (N, %)	79(11.4)	12(7.9)	67(12.3)	0.127
Nondiabetic glucosuria (%)	47(6.8)	7(4.6)	40(7.3)	0.233
total excretion of phosphorus > 1200 mg/day	12(2.1)	3(2.5)	9(2)	0.749
RPTD (%)	114(16.4)	28(18.4)	86(15.8)	0.442

ตารางที่ 5 จำนวนผู้ป่วยเข้าร่วมโครงการทั้งหมด 700 ราย แต่วิเคราะห์ได้แค่ 696 ราย เพราะเก็บปัสสาวะไม่ครบ ซึ่ง renal tubular dysfunction จากตารางนี้จะเห็นว่า มีถึง 29% และ 16% ตามลำดับที่มีภาวะ fraction tubular reabsorption of phosphate < 0.85 และ subclinical renal tubular dysfunction ตามลำดับ ทั้งกลุ่มที่ได้ TDF และ ไม่ได้ TDF ไม่มีความแตกต่างกันทางสถิติในการเกิด subclinical renal tubular dysfunction แต่กลุ่มที่ได้ TDF มีระดับ uric acid ในเลือด และ การขับ uric acid ในปัสสาวะสูงกว่าอย่างชัดเจน

ตารางที่ 5.1 เปรียบเทียบการเกิด Tubular dysfunction ในคนที่เป็นและไม่เป็นเบาหวาน

	Non DM N=(639)	DM (n=39)	p-value
Median (IQR) plasma creatinine (mg/dl)	0.8(0.7-1)	1(0.8-1.2)	<0.01
Median (IQR) eGFR (ml/min/1.73m ²)	97.1(83.3-106.8)	83.5(58.6-97.1)	<0.01
Median (IQR) creatinine clearance (ml/min)	88.9(75.8-102.3)	73.2(57.9-98.2)	0.01
Median (IQR) plasma phosphorus (mg/dl)	3.5(3.2-3.9)	3.5(3.1-3.9)	0.95
Plasma phosphorus < 3 mg/dl (%)	59(8.9)	6(15.3)	0.18
Fractional tubular reabsorption of phosphorus (units)	0.87(0.84-0.90)	0.84(0.82-0.89)	0.02
Fractional tubular reabsorption of phosphorus < <0.85 (N, %)	149(22.7)	16(41)	0.01
TmP/GFR	3.1(2.8-3.5)	3.1(2.6-3.4)	0.32
TmP/GFR <2.6 mg/dl	96(14.6)	9(23.1)	0.15
Median (IQR) plasma uric acid (mg/dl)	5.1(4.15-6.2)	5.9(4.8-6.9)	<0.01
Fractional excretion of uric acid(%)	8.8(6.7-11.8)	9.7(7.2-12.2)	0.16
Fractional excretion of uric acid >15% (N, %)	71(10.8)	8(20.5)	0.06
Nondiabetic glucosuria (%)	36(5.4)	11(28.2)	<0.01
total excretion of phosphorus> 1200 mg/day	11(1.7)	1(2.5)	0.68
PRTD (%)	99(15.0)	15(38.5)	<0.01

ตารางที่ 5.2 เปรียบเทียบการเกิด Tubular dysfunction ในคนที่เป็นและไม่เป็นความดันโลหิตสูง

	Non Hypertension N=(607)	Hypertension (n=89)	p-value
Median (IQR) plasma creatinine (mg/dl)	0.8(0.7-1)	0.9(0.8-1.1)	<0.01
Median (IQR) eGFR (ml/min/1.73 ²)	97.2(83.8-106.9)	85.9(71-100)	<0.01
Median (IQR) creatinine clearance (ml/min)	88.5(75.3-102)	86.9(67.6-105.7)	0.34
Median (IQR) plasma phosphorus (mg/dl)	3.6(3.2-3.9)	3.5(3.2-3.7)	0.02
Plasma phosphorus < 3 mg/dl (%)	53(8.7)	12(13.5)	0.15
Fractional tubular reabsorption of phosphorus (units)	0.87(0.84-0.90)	0.86(0.80-0.89)	0.08
Fractional tubular reabsorption of phosphorus < <0.85 (N, %)	135(22.2)	30(33.7)	0.02
TmP/GFR	3.1(2.8-3.4)	2.9(2.7-3.3)	<0.01
TmP/GFR <2.6 mg/dl	86(14.1)	19(21.4)	0.08
Median (IQR) plasma uric acid (mg/dl)	5.1(4.1-6.2)	5.6(4.6-7.1)	<0.01
Fractional excretion of uric acid(%)	9(6.8-11.8)	8.5(6-11.5)	0.39
Fractional excretion of uric acid >15% (N, %)	65(10.7)	14(15.7)	0.17
Nondiabetic glucosuria (%)	35(5.8)	12(13.5)	0.01
total excretion of phosphorus> 1200 mg/day	10(1.7)	2(2.3)	0.69
PRTD (%)	89(14.7)	25(28.1)	<0.01

ตารางที่ 5.3 เปรียบเทียบการเกิด Tubular dysfunction ในคนที่เคยได้รับและไม่เคยได้รับยา boosted indinavir

	Non Indinavir N=(608)	Indinavir (n=88)	p-value
Median (IQR) plasma creatinine (mg/dl)	0.8(0.7-0.9)	1(0.8-1.1)	<0.01
Median (IQR) eGFR (ml/min/1.73 ²)	97.7(84.6-108)	82.6(66.7-96.7)	<0.01
Median (IQR) creatinine clearance (ml/min)	90.3(76.9-103.6)	72.5(58.6-91.7)	<0.01
Median (IQR) plasma phosphorus (mg/dl)	3.5(3.2-3.9)	3.5(3.1-3.9)	0.15
Plasma phosphorus < 3 mg/dl (%)	52(8.6)	13(14.8)	0.06
Fractional tubular reabsorption of phosphorus (units)	0.87(0.84-0.90)	0.84(0.80-0.87)	<0.01
Fractional tubular reabsorption of phosphorus < <0.85 (N, %)	129(21.2)	36(40.9)	<0.01
TmP/GFR	3.1(2.8-3.4)	2.9(2.6-3.3)	0.01
TmP/GFR <2.6 mg/dl	81(13.3)	24(27.3)	<0.01
Median (IQR) plasma uric acid (mg/dl)	5(4.1-6.2)	5.4(4.7-7.0)	<0.01
Fractional excretion of uric acid(%)	8.9(6.8-11.8)	9.3(6.3-12.7)	0.62
Fractional excretion of uric acid >15% (N, %)	67(11)	12(13.6)	0.47
Nondiabetic glucosuria (%)	39(6.4)	8(9.1)	0.35
total excretion of phosphorus > 1200 mg/day	9(1.5)	3(3.4)	0.19
PRTD (%)	87(14.3)	27(30.7)	<0.01

ตารางที่ 5.4 เปรียบเทียบการเกิด Tubular dysfunction ระหว่างเพศหญิงและเพศชาย

	Female N=(324)	Male (n=372)	p-value
Median (IQR) plasma creatinine (mg/dl)	0.7(0.7-0.8)	0.9(0.9-1.1)	<0.01
Median (IQR) eGFR (ml/min/1.73m ²)	97.7(84.2-105.3)	94.7(80.6-106.8)	0.05
Median (IQR) creatinine clearance (ml/min)	84.3(73.7-99.2)	91.2(76.1-105.3)	0.01
Median (IQR) plasma phosphorus (mg/dl)	3.7(3.4-4)	3.4(3.1-3.8)	<0.01
Plasma phosphorus < 3 mg/dl (%)	17(5.3)	48(12.9)	<0.01
Fractional tubular reabsorption of phosphorus (units)	0.88(0.85-0.91)	86.4(82.7-89.1)	<0.01
Fractional tubular reabsorption of phosphorus < <0.85 (N, %)	49(15.1)	116(31.2)	<0.01
TmP/GFR	3.3(2.9-3.5)	2.9(2.6-3.3)	<0.01
TmP/GFR <2.6 mg/dl	29(8.9)	76(20.4)	<0.01
Median (IQR) plasma uric acid (mg/dl)	4.4(3.5-5.2)	5.8(4.9-6.9)	<0.01
Fractional excretion of uric acid(%)	9.8(8.0-13.1)	7.9(5.8-10.6)	<0.01
Fractional excretion of uric acid >15% (N, %)	47(14.5)	32(8.6)	0.02
Nondiabetic glucosuria (%)	13(4)	34(9.1)	0.01
total excretion of phosphorus > 1200 mg/day	1(0.3)	11(3)	0.01
PRTD (%)	34(10.4)	80(21.5)	<0.01

จากตารางที่ 5.1-5.4 พบร้าผู้ป่วยที่เป็นเบาหวานเกิด tubular dysfunction สูงกว่าผู้ที่ไม่เป็นเบาหวาน (38.5% vs 15%, p< 0.01) ผู้ป่วยที่เป็นความดันโลหิตสูงมีผู้ป่วยที่เกิด tubular dysfunction สูงกว่าผู้ที่ไม่เป็นความดันโลหิตสูง (28.1% vs 14.7%, p< 0.01) ผู้ป่วยที่เคยได้รับยา boosted indinavir มีผู้ป่วยที่เกิด tubular dysfunction สูงกว่าผู้ที่ไม่เคยได้รับยา boosted indinavir (30.7% vs 14.3%, p < 0.01) ผู้ชายมีผู้ป่วยที่เกิด tubular dysfunction สูงกว่าผู้หญิง (21.5% vs 16.4%, p< 0.01)

ตารางที่ 6 เปรียบเทียบการเกิด Tubular dysfunction ในกลุ่มอายุต่างๆ

	Age > 40 years N=(291)	Age ≤ 40 years (n=405)	p-value
Median (IQR) plasma creatinine (mg/dl)	0.8(0.7-0.9)	0.9(0.7-1)	<0.01
Median (IQR) eGFR (ml/min/1.732)	100.9(89-114.5)	92.2(78.2-99)	<0.01
Median (IQR) creatinine clearance (ml/min)	94.4(81.5-107.6)	83.1(69.9-98.2)	<0.01
Median (IQR) plasma phosphorus (mg/dl)	3.6(3.3-3.9)	3.5(3.2-3.8)	0.06
Plasma phosphorus < 3 mg/dl (%)	25(8.6)	40(9.9)	0.57
Fractional tubular reabsorption of phosphorus (units)	0.87(0.85-0.90)	0.87(0.83-0.90)	0.02
Fractional tubular reabsorption of phosphorus < 0.85 (N, %)	55(18.9)	110(27.2)	0.01
TmP/GFR	3.2(2.8-3.5)	3.1(2.7-3.4)	0.01
TmP/GFR <2.6 mg/dl	41(14.1)	64(15.8)	0.53
Median (IQR) plasma uric acid (mg/dl)	4.9(4.1-5.9)	5.2(4.2-6.4)	0.01
Fractional excretion of uric acid(%)	8.7(6.4-11.9)	9.1(6.8-11.8)	0.33
Fractional excretion of uric acid >15% (N, %)	30(10.3)	49(12.1)	0.45
Nondiabetic glucosuria (%)	10(3.4)	37(9.1)	<0.01
total excretion of phosphorus > 1200 mg/day	2(0.7)	10(2.5)	0.08
PRTD (%)	37(12.7)	77(19)	0.03

ตารางที่ 7 แสดง Predictors of RPTD in HIV-1 infected Thai patients

	Univariate analysis		Multivariate analysis	
	OR (95%CI)	p	OR (95%CI)	p
Gender				
Female	1		1	
Male	2.33 (1.52-3.60)	<0.001	2.35(1.49-3.68)	<0.001
Age (years)				
Age ≤ 40	1			
Age > 40	1.61 (1.05-2.46)	0.025		
BW (kg)	0.99(0.98-1.01)	0.656		
Duration of ART exposure (years)	1.05 (1.0- 1.11)	0.032		
TDF				
No	1		0.447	
Yes	0.83(0.52-1.33)			
Indinavir exposure (%)				
No	1		<0.001	
Yes	2.65(1.59-4.39)	0.010	2.04(1.19-3.51)	
Atazanavir exposure (%)				
No	1		0.012	
Yes	1.91(1.17-3.13)	0.029	1.79(1.06-3.04)	
Other PI (%)				
No	1		0.28	
Yes	1.24(0.84-1.86)			
CD4 cell count (cells/uL)				
≥ 350	1		0.127	
< 350	1.50(0.89-2.52)			
Nadir CD 4 cell count(cells/uL)				
≥ 100	1		0.015	
< 100	1.72(1.12-2.64)			
Proportion of HIV RNA > 50				
No	1		0.089	
Yes	0.44 (0.17-1.12)			
History of hypertension (%)				
No	1		0.003	
Yes	2.27 (1.36-3.80)			

ตารางที่ 7 Predictors of PRTD in HIV-1 infected Thai patients (cont'd)

	Univariate analysis		Multivariate analysis	
	OR (95%CI)	p	OR (95%CI)	P
History of diabetes Mellitus (%)				
No	1	0.001	1	0.017
Yes	3.52(1.79-6.95)		2.38(1.17-4.85)	
Defined lipodystrophy (%)				
No	1	0.791		
Yes	0.94(0.63-1.41)			
Metabolic syndrome (%)				
No	1	<0.001		
Yes	3.14(1.77-5.58)			
Chronic HBV (%)				
No	1	0.382		
Yes	0.76(0.41-1.42)			
Chronic HCV (%)				
No	1	0.254		
Yes	0.61(0.26-1.48)			
Cotrimoxazole exposure (ever, %)				
No	1	0.368		
Yes	1.37(0.70-2.67)			

HCV: hepatitis C, HBV : hepatitis B, OR: Odd ratio; 95% CI : 95% confidential interval

สรุปโดยภาพรวมจากตารางที่ 5 -7 การให้ยาต้านระยะยาวโดยเฉลี่ย 8-10 ปี พบรการเกิด subclinical tubular dysfunction 16% และที่มีภาวะ fraction tubular reabsorption of phosphate < 0.85 มี 29% ทั้งกลุ่มที่ได้ TDF และ ไม่ได้ TDF ไม่มีความแตกต่างกันทางสถิติในการเกิด subclinical renal tubular dysfunction แต่กลุ่มที่ได้ TDF มีระดับ uric acid ในเลือด และ การขับ uric acid ในปัสสาวะสูงกว่าอย่างชัดเจน จาก multivariate analysis พบร่วมกับกลุ่มที่มีความเสี่ยงในการเกิด subclinical tubular dysfunction ได้แก่ เพศชาย (Odd ratio : OR 2.35 (95% Confidential interval : CI 1.49 - 3.68) เดย์ได้ยา indinavir มาก่อน 2.04 (1.19-3.51) ได้ยา atazanavir 1.79 (1.06-3.04) และ เป็นเบาหวานร่วมด้วย 2.38 (1.17-4.85) ดังนั้น ผู้ป่วยกลุ่มเสี่ยงต้องมีการติดตามการทำงานของไตอย่างใกล้ชิด

หัวข้อที่ 2 เกสัชจลนศาสตร์ของยาทีโนฟเวียร์ในคนที่มีการทำงานของไตปกติ

ณ วันที่ 30 มิถุนายน 2556 มีผู้เข้าร่วมโครงการวิจัยทั้งสิ้นจำนวน 48 รายโดยเป็นผู้หญิงจำนวน 23 รายและผู้ชาย 25 รายคิดเป็น 100% ได้รับยา tenofovir ได้ใน 47 ราย ส่วนอีก 1 รายได้ตัดออกจาก การวิเคราะห์ระดับยา เพราะคนไข้ไม่ได้มาตรวจนะดับ TDF ที่ 24 ชั่วโมง

ตารางที่ 8 แสดง Subject categorical characteristics at the time of the PK assessment, by NNRTI or PI-based regimen

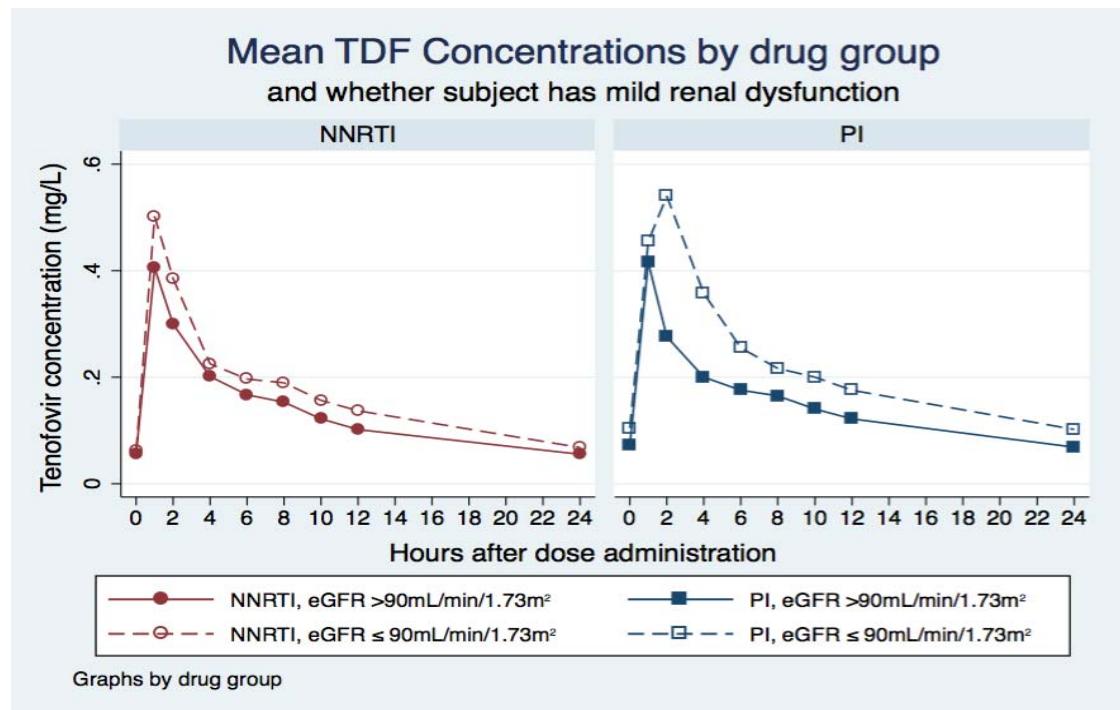
Covariate	n	Mean	SD	min	median	IQR	max
<i>PI-treated</i>							
Age (years)	33	39	6.5	22	39	35-43	56
Height (cm)	33	163	9	143	161	156-170	181
Weight (kg)	33	60	8.9	45	60	53-66	79
Serum Creatinine (mg/dL)	33	0.81	0.16	0.6	0.8	0.7-0.9	1.3
eGFR (MDRD) mL/min/1.73m ²	33	97	16	61	96	86-108	130
eGFR (MDRD_Th) mL/min/1.73m ²	33	109	19	69	108	97-122	147
<i>EFV-treated</i>							
Age (years)	14	44	8.2	30	44	39-50	57
Height (cm)	14	164	6.9	155	164	158-170	175
Weight (kg)	14	59	9.3	46	55	53-69	73
Serum Creatinine (mg/dL)	14	0.81	0.12	0.6	0.8	0.7-0.9	1
eGFR (MDRD) mL/min/1.73m ²	14	91	12	65	92	83-99	111
eGFR (MDRD_Th) mL/min/1.73m ²	14	103	13	73	104	94-112	125
<i>All subjects</i>							
Age (years)	47	41	7.3	22	40	36-45	57
Height (cm)	47	163	8.4	143	163	156-170	181
Weight (kg)	47	60	8.9	45	60	53-68	79
Serum Creatinine (mg/dL)	47	0.81	0.15	0.6	0.8	0.7-0.9	1.3
eGFR (MDRD) mL/min/1.73m ²	47	95	15	61	94	85-107	130
eGFR (MDRD_Th) mL/min/1.73m ²	47	107	17	69	106	96-121	147

*P from 2-sided Fisher's exact test

[†]eGFR 60 - 90mL/min/m² by MDRD formula

ค่า parameter ต่างๆของ intensive pharmacokineticของยา TDF เมื่อให้ร่วมกับ boosted PI หรือ NNRTI ได้แสดงในตารางที่ 8 และได้ plot graph ดังแสดงในภาพที่ 2 ซึ่งพบว่าทั้ง 2 กลุ่มไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ

ตารางที่ 9 แสดง TDF pharmacokinetic parameters by drug group


PK parameter	TDF with PI (n=33)	TDF with NNRTI (n=14)	Total (n=47)
Mean Age (SD), (years)	39 (6.5)	44 (8.2)	41 (7.3)
Mean Height (SD), (cm)	163 (9)	164 (6.9)	163 (8.4)
Mean Weight (SD), (kg)	60 (8.9)	59 (9.3)	60 (8.9)
Mean Serum Creatinine (SD), (mg/dL)	0.81 (0.16)	0.81 (0.12)	0.81 (0.15)
Mean eGFR (SD), (MDRD) mL/min/1.73m ²	97 (16)	91 (12)	95 (15)
Mean eGFR (SD), (MDRD_Th) mL/min/1.73m ²	109 (19)	193 (13)	107 (17)
Mean AUC0-24 (SD), h*mg/l	3.491 (1.23)	3.18 (0.93)	3.43 (1.06)
Mean Cmax (SD), mg/l	0.41 (0.18)	0.42 (0.14)	0.43 (0.16)
Mean Clast (SD), mg/l	0.096 (0.04)	0.064 (0.03)	0.07 (0.03)
Mean Half-life (SD), hr	11.8 (3.9)	11.8 (2.6)	12.2 (2.68)
Mean CL/F (L/hr)	96.4(43.8)	98.4 (28.1)	93.6 (27.3)
Kel (h-1)	0.06(0.014)	0.062(0.015)	0.06(0.014)

รูปภาพที่ 2 แสดง Mean TDF plasma concentration curves, by drug group

ภาพที่ 2 พบว่าในผู้ป่วยที่มีการทำงานของไตต่ำกว่า $90 \text{ mL/min/1.73m}^2$ ระดับยา TDF จะสูงขึ้น โดยเฉพาะในกลุ่มที่ได้ TDF with boosted PI โดยระดับยา Tenofovir ที่ให้ระหว่างกลุ่ม NNRTI (รูปซ้าย) และ boosted PI (รูปขวา) เปรียบเทียบกับการทำงานของไต ซึ่งพบว่า ในผู้ป่วยที่มีการทำงานของไตต่ำกว่า $90 \text{ mL/min/1.73m}^2$ ระดับยา Tenofovir จะสูงขึ้นโดยเฉพาะในกลุ่มที่ได้ยา Tenofovir ร่วมกับ boosted PI

ภาพที่ 3 แสดง Mean TDF plasma concentration curves, by drug group and whether the subject had mild renal impairment

ระดับยา atazanavir, lopinavir, darunavir และ efavirenz ได้แสดงในตารางที่ 10
 ตารางที่ 10 แสดง Pharmacokinetic parameters of TDF with ATV, LPV, DRV,
 a converted AUC₀₋₂₄for subjects taking RTV, and the mid-range (C₁₂) EFV level

Variable	mean	sd	min	median	IQR	max	GM	%CV
ATV								
Half life (h)	10.4	0.9	9.6	11.2	9.8-12.4	12.5	9.50	33
K _{el} (h ⁻¹)	0.0762	0.0255	0.0556	0.0618	0.056-0.0999	0.108	0.073	33
T _{max} (h)	2.6	1.34	1	2	2-4	4	2.3	63
C _{max} (mg/L)	0.41	0.096	0.288	0.41	0.34-0.471	0.52	0.397	24.8
C ₂₄ (mg/L)	0.0538	0.0154	0.038	0.053	0.041-0.067	0.071	0.0521	29.7
AUC ₀₋₂₄ (mg*h/L)	3.299	1.099	2.051	3.295	2.424-4.172	4.551	3.154	36.1
CL/F (L/h)	99.6	35.6	65.9	93.2	72.5-126.8	146.3	95.1	36.1
LPV								
Half life (h)	13.5	2.7	9.3	13.9	11.2-14.2	20	13.3	19.8
K _{el} (h ⁻¹)	0.129	0.0481	0.0554	0.13	0.159	0.205	0.120	43
T _{max} (h)	3.5	1.24	2	4	4	6	3.3	40
C _{max} (mg/L)	0.487	0.171	0.286	0.414	0.334-0.609	0.827	0.462	35.2
C ₂₄ (mg/L)	0.079	0.026	0.055	0.069	0.061-0.101	0.135	0.076	30
AUC ₀₋₁₂ (mg*h/L)	3.964	1.1115	3.021	3.633	3.021-4.018	6.729	3.849	24.5
CL/F (L/h)	79.8	16.6	44.6	82.6	74.7-91.4	99.3	77.9	24.5
DRV								
Half life (h)	11	4.7	5.6	9.4	8.2-12.7	21.8	10.2	40.7
K _{el} (h ⁻¹)	0.178	0.0416	0.128	0.167	0.195	0.269	0.174	22
T _{max} (h)	3.75	1.71	1	4	5	6	3.3	61
C _{max} (mg/L)	0.359	0.193	0.107	0.374	0.169-0.529	0.654	0.304	70
C ₂₄ (mg/L)	0.118	0.0461	0.077	0.102	0.084-0.127	0.226	0.112	35.1
AUC ₀₋₁₂ (mg*h/L)	3.214	1.303	1.909	2.938	2.072-3.677	6.176	3.0	38.9
CL/F (L/h)	48.2	11.6	22	46.4	37-65.6	71.2	45.3	38.9
C ₁₂ (mg/L)	3.23	4.01	0.799	1.57	3.49	14.9	2.06	110

จากการวิเคราะห์ว่าปัจจัยใดมีผลต่อระดับยา tenofovir พบว่ามีเพียง eGFR by MDRD with Thai racial factor $<90\text{mL/min}/1.73\text{m}^2$, RTV AUC₀₋₂₄ และการใช้ยาTDFนานกว่า2ปี ที่มีผลต่อระดับAUC₀₋₂₄ ของยา TDF ดังแสดงในตารางที่ 11

ตารางที่ 11 แสดง Factors ที่มีผลต่อ AUC₀₋₂₄ of TDF in Subjects using Ritonavir-boosted PI regimens

Covariate	Univariate				Multivariate			
	GMR	LCI	UCI	P	GMR	LCI	UCI	P
RTV BID dosing	1.037	0.886	1.213	0.65				
Age (years)	1.005	0.99	1.019	0.55				
Height (cm)	0.993	0.982	1.004	0.21				
Weight per 10kg	0.934	0.839	1.039	0.21				
Serum Creatinine (mg/dL)	1.225	0.655	2.292	0.53				
MDRD*	0.994	0.988	0.999	0.03				
eGFR_Thai*	0.994	0.989	0.999	0.03				
eGFR_Thai $< 90\text{mL/min}/1.73\text{m}^2$	1.327	1.044	1.687	0.02	1.29	1.03	1.60	0.025
RTV AUC ₀₋₂₄ (mg*h/L)	1.013	0.997	1.029	0.116	1.02	1.01	1.03	0.006
Tenofovir exposure > 2 years	1.24	1.06	1.45	0.006	1.26	1.09	1.46	0.002
Duration of TDF exposure	1							
2-3 years	1.24	1.04	1.48	0.020				
> 3 years	1.25	1.01	1.55	0.038				

หัวข้อที่ 2 เกสัชจลนศาสตร์ของยาที่โนไฟเวียร์ในคนที่มีการทำงานของไตต่ำ

ภาพที่ 4 แสดงเม็ดยา tenofovir ขององค์การเภสัชที่ใช้ในการศึกษานี้ ซึ่งจะเห็นว่าเม็ดยาสามารถหักครึ่งได้

ตารางที่ 12 แสดงลักษณะพื้นฐานของอาสาสมัครที่เข้าร่วมโครงการ

	Group 1: TDF-NNRTI (n=20)	Group 2: TDF-LPV/r (N=20)	Total (n=40)
Gender			
Male	6 (30%)	12 (60%)	18 (45%)
Female	14 (70%)	8 (40%)	22 (55%)
Race/Ethnicity: Asian	20 (100%)	20 (100%)	40 (100%)
Age (yrs)	59 (44-65)	53 (39-82)	56 (39-82)
Weight (kg)	54.0 (40.0-80.0)	49.5 (37.8-75.1)	50.6 (37.8-80)
Body Mass Index (cells/mm³)	21.8 (17.9-32.9)	19.2 (16.3-29)	20.8 (16.3-32.9)
Creatinine (mg/dL)	1.2 (0.8-1.9)	1.3 (0.9-2.1)	1.3 (0.8-2.1)
Creatinine Clearance (mL/min)	45.7 (30.0-49.6)	42.0 (31.7-49.7)	43.9 (30.9-49.7)
HIV-1 RNA Viral Load (copies/mL)	<50 (<50-<50)	<50 (<50-<50)	<50 (<50-<50)
CD4 Cell Count (cell/mm³)	465 (170-773)	596 (113-1063)	502 (113-1063)
HAART Regimen			
TDF+3TC+EFV	10		
TDF+3TC+NVP	10		
TDF+3TC+LPV/r		19	
TDF+3TC+ZDV+LPV/r		1	

จากตารางที่ 12 พบร่วมแต่ละกลุ่มมีคนไข้จำนวน 20 คน เป็นเพศชาย 45% อายุเฉลี่ย 56 ปี ซึ่งจัดว่าอายุค่อนข้างมาก (Aging HIV) น้ำหนักเฉลี่ย 50.6 กิโลกรัม ค่า creatinine clearance เฉลี่ย 43.9 mL/min ค่า CD4 เฉลี่ย 502 cells/mm³ และทุกคนมี HIV RNA undetectable (<50 copies/ml)

ตารางที่ 12 A Tenofovir pharmacokinetic parameters at Day 0 (300 mg every 48 hours) and Day 14 (150 mg once daily) as part of NNRTI-based HAART

N=19	Tenofovir 300 mg, every 48 hours	Tenofovir 150 mg, every 24 hours	P value ^b	GM Ratio (90% CI) 24 hr / 48 hr
AUC_{0-t} (mg.hr/L)	5.76 (3.34 - 11.08)	3.15 (1.73 - 6.49)	NA	NA
AUC_{0-48h} (mg.hr/L)	5.76 (3.34 - 11.08)	6.29 (3.45 - 12.99) ^a	0.04	1.09 (0.98 to 1.22)
Cmax (mg/L)	0.44 (0.23 - 0.67)	0.31 (0.16 - 0.55)	<0.01	0.71 (0.62 to 0.80)
Clast (mg/L)	0.04 (0.02 - 0.10)	0.07 (0.03 - 0.14)	0.02	1.63 (1.34 to 1.99)
Cmin (mg/L)	0.04 (<0.008 - 0.10) ^c	0.07 (0.03 - 0.14)	0.01	1.90 (1.57 to 2.30)
CL/F (L/hr)	23.60 (12.26 - 40.73)	21.61 (10.47 - 39.37)	0.02	0.91 (0.82 to 1.02)
T_{max} (hr)	1.50 (0.50 - 8.00)	1.00 (0.50 - 4.00)	0.02	0.57 (0.40 to 0.81)
T_{1/2} (hr)	18.0 (13.9 - 32.5)	13.9 (10.7 - 19.1)	<0.01	0.73 (0.66 to 0.81)

ตารางที่ 12 B Tenofovir pharmacokinetic parameters at Day 0 (300 mg every 48 hours) and Day 14 (150 mg once daily) as part of boosted protease inhibitor (Lopinavir/ritonavir)

	Tenofovir 300 mg, every 48 hrs	Tenofovir 150 mg, every 24 hrs	P value ^b	GM Ratio (90% CI) 24 hr / 48 hr
AUC_{0-t} (mg.hr/L)	9.61 (6.06 - 18.92)	4.80 (2.61 - 9.29)	NA	NA
AUC_{0-48h} (mg.hr/L)	9.61 (6.06 - 18.92)	9.61 (5.21 - 18.59) ^a	0.45	1.00 (0.92 to 1.09)
Cmax (mg/L)	0.68 (0.44 - 1.31)	0.42 (0.24 - 0.73)	<0.01	0.55 (0.49 to 0.63)
Clast (mg/L)	0.07 (0.03 - 0.11)	0.10 (0.05 - 0.20)	<0.01	1.59 (1.35 to 1.87)
Cmin (mg/L)	0.06 (0.03 - 0.09)	0.09 (0.04 - 0.18)	<0.01	1.42 (1.18 to 1.72)
CL/F (L/hr)	14.15 (7.19 - 22.44)	14.17 (7.32 - 26.08)	0.62	1.00 (0.92 to 1.08)
T_{max} (hr)	1.01 (0.48 - 4.00)	1.25 (0.50 - 4.00)	0.48	1.18 (0.83 to 1.68)
T_{1/2} (hr)	18.91 (12.51 - 23.31)	13.30 (6.09 - 42.05)	0.04	0.76 (0.64 to 0.91)

ตารางที่ 12 C เปรียบเทียบระดับยา tenofovir เมื่อให้ร่วมกับ efavirenz หรือ lopinavir/ritonavir

	efavirenz	Lopinavir/ritonavir	P value ^b
AUC₀₋₄₈ (mg.hr/L)	3.15 (1.73 - 6.49)	4.80 (2.61 - 9.29)	NA
AUC_{0-48h} (mg.hr/L)	6.29 (3.45 - 12.99)^a	9.61 (5.21 - 18.59)^a	<0.001
Cmax (mg/L)	0.31 (0.16 - 0.55)	0.42 (0.24 - 0.73)	0.012
Clast (mg/L)	0.07 (0.03 - 0.14)	0.10 (0.05 - 0.20)	0.003
Cmin (mg/L)	0.07 (0.03 - 0.14)	0.09 (0.04 - 0.18)	0.075
CL/F (L/hr)	21.61 (10.47 - 39.37)	14.17 (7.32 - 26.08)	<0.001
Tmax (hr)	1.00 (0.50 - 4.00)	1.25 (0.50 - 4.00)	0.12
T_{1/2} (hr)	13.9 (10.7 - 19.1)	13.30 (6.09 - 42.05)	0.58

ตารางที่ 12 D การให้ยา tenofovir ขนาด 300 mg ในคนตัววันตกลที่มีค่าการทำงานของไต

Baseline Creatinine Clearance (mL/min)	>80 (N=3)	50-80 (N=10)	30-49 (N=8)	12-29 (N=11)
C _{max} (μg/mL)	0.34 ± 0.03	0.33 ± 0.06	0.37 ± 0.16	0.60 ± 0.19
AUC _{0-∞} (μg·hr/mL)	2.18 ± 0.26	3.06 ± 0.93	6.01 ± 2.50	15.98 ± 7.22
CL/F (mL/min)	1043.7 ± 115.4	807.7 ± 279.2	444.4 ± 209.8	177.0 ± 97.1
CL _{renal} (mL/min)	243.5 ± 33.3	168.6 ± 27.5	100.6 ± 27.5	43.0 ± 31.2

a. 300 mg, single dose of VIREAD

Group 1(efavirenz): AUC_{0-48h} (mg.hr/L): 5.76 (3.34 - 11.08); Cmax: 0.44 (0.23 - 0.67)

Group 2 (lopinavir/r): AUC_{0-48h} (mg.hr/L): 9.61 (6.06 - 18.92); Cmax: 0.68 (0.44 - 1.31)

จากตารางที่ 12 แสดงให้เห็นว่าในคนที่มีการทำงานของไตต่ำ การให้ยา tenofovir ขนาด 300 mg วันเว้นวันหรือการให้ยา tenofovir ขนาด 150 mg (ครึ่งเม็ด) ทุกวัน ให้ระดับยา tenofovir ไม่ต่างกัน และ การให้ยา tenofovir ร่วมกับ lopinavir/r ให้ระดับยา tenofovir สูงกว่า เมื่อให้ยา tenofovir ร่วมกับ efavirenz และระดับยา tenofovir ในกลุ่มที่ได้ lopinavir/r มีค่าสูงกว่า (AUC 9.61 vs 6.01 mg.hr/L) การให้ยา tenofovir ขนาด 300 mg ในคนตัววันตกลที่มีค่าการทำงานของไตต่ำเหมือนกัน (ตารางที่ 12 D)

หัวข้อที่ 3 ระดับยาทีโนฟเวียร์และความปลอดภัยทางไตรในผู้ป่วยติดเชื้อเอชไอวีคนไทย

ณ วันที่ 30 มิถุนายน 2556 มีผู้เข้าร่วมโครงการวิจัยทั้งสิ้นจำนวน 351 รายโดยเป็นผู้หญิงจำนวน 167 รายและผู้ชาย 184 ราย

การวิเคราะห์ระดับยา TDF ซึ่งการเจาะเลือดจะเป็นแบบ mid dose (11-13 hr post dose) ผลพบว่าค่าเฉลี่ยของระดับยาอยู่ที่ 0.136 (IQR 0.11-0.17) mg/L ซึ่งมีระดับสูงกว่าที่แนะนำ (ค่า TDF mid dose ควรเป็น 0.16 mg/L และค่า Cmin (24hr post dose) ควรเป็น 0.05 mg/L) และ TDF concentration มีผลต่อการเกิด tubular dysfunction โดยพบว่ารายที่มี tubular dysfunction มีจำนวนคนมากกว่าที่มี TDF mid dose สูงกว่า 0.16 mg/L ได้แบ่งผู้ป่วยเป็นสองกลุ่มตามการเกิด subclinical tubular dysfunction(PRTD) ตามตารางที่ 12 ซึ่งกลุ่มที่มี PRTD มีการใช้ยา atazanavir มากกว่า มีระดับ serum creatinine สูงกว่า ค่า eGFR ต่ำกว่า และมีจำนวนผู้ป่วยที่มีระดับยา > 0.160mg/ml มากกว่าอย่างชัดเจน การวิเคราะห์ข้อมูลด้วย multivariate analysis ในตารางที่ 13 พบว่ามีเพียง tenofovir concentrations >0.160 ng/mL ที่เกี่ยวข้องกับการเกิด PRTD ในคนที่ได้ TDF [odds ratio: OR2.02 (95% CI 1.13-3.66)].

ตารางที่ 13 ลักษณะของกลุ่มประชากรที่มี PRTD และไม่มี PRTD

	Total N=351	PRTD N=54	Non PRTD N=297	p-value
Sex: Male N(%)	184(52.4)	31(57.4)	153(51.5)	0.43
Age (years), median (IQR)	40.2(36.3-45.6)	40.6(37.9-47.4)	40.2(35.9-45.3)	0.16
BW (kg), median (IQR)	58.9(52-67.5)	60.2(53-68.1)	58.5(52-67.5)	0.22
Duration of ART exposure (month)	7.1(4.6-10.3)	9.1(4.7-11.9)	6.8(4.6-10.2)	0.31
TDF exposure, years				
ARV-naïve	4.7(2.9-5.4)	4.2(2.8-6.0)	4.7(2.9-5.4)	0.74
ARV-experienced	2.9(1.8-4.9)	2.8(1.5-4.7)	2.9(1.8-4.9)	0.33
Indinavir exposure N(%)	29(8.3)	8(14.8)	21(7.1)	0.06
Atazanavir exposure, N(%)	61(17.3)	15(27.7)	46(15.5)	0.03
Stavudine exposure, N(%)	198(56.4)	29(53.7)	169(56.9)	0.66
Current ARV regimen N(%)				0.06
NNRTI				
Boosted PI	185(52.7) 166(47.3)	22(40.7) 32(59.3)	163(54.9) 134(45.1)	
Current CD4 cell count (cells/mm ³), median (IQR)	554(428-749)	538(429-730)	554(428-749)	0.53
Proportion with HIV RNA < 50 copies/mL, N (%)	327(93.1)	52(96.3)	275(92.5)	0.32
Hypertension, N (%)	30(8.6)	8(14.8)	22(7.4)	0.07
Diabetes Mellitus, N (%)	9(2.6)	1(1.9)	8(2.7)	0.72
Lipodystrophy, N (%)	133(37.9)	14(25.9)	119(40.1)	0.05
Chronic HBV, N (%)	76(21.6)	10(18.5)	66(22.2)	0.54
Chronic HCV, N(%)	26(7.4)	2(3.7)	24(8.1)	0.26
Median plasma creatinine,	0.8(0.7-0.9)	0.9(0.8-1)	0.8(0.7-0.9)	0.001

mg/dl, median (IQR)				
Median eGFR (ml/min/1.73m ²)	97.8(84.9-108.1)	86.8(75.4-100.5)	98.5(85.6-109.3)	0.002
Plasma TDF concentrations: mg/ml	0.152(0.120-0.198)	0.168(0.124-0.242)	0.149(0.120-0.193)	0.06
Proportion of patients with plasma TDF >0.160mg/ml, N(%)	156(44.4)	32(59.2)	124(41.7)	0.02

Data is expressed as median and interquatile range (IQR). TDF: tenofovir disoproxil fumarate; BW: body weight; BMI: body mass index; NNRTI: non nucleoside reverse transcriptase; PI: protease inhibitor; ART: antiretroviral therapy; eGFR: estimated glomerular filtration rate; HBV: hepatitis B; HCV: hepatitis C; PRTD: proximal renal tubular dysfunction

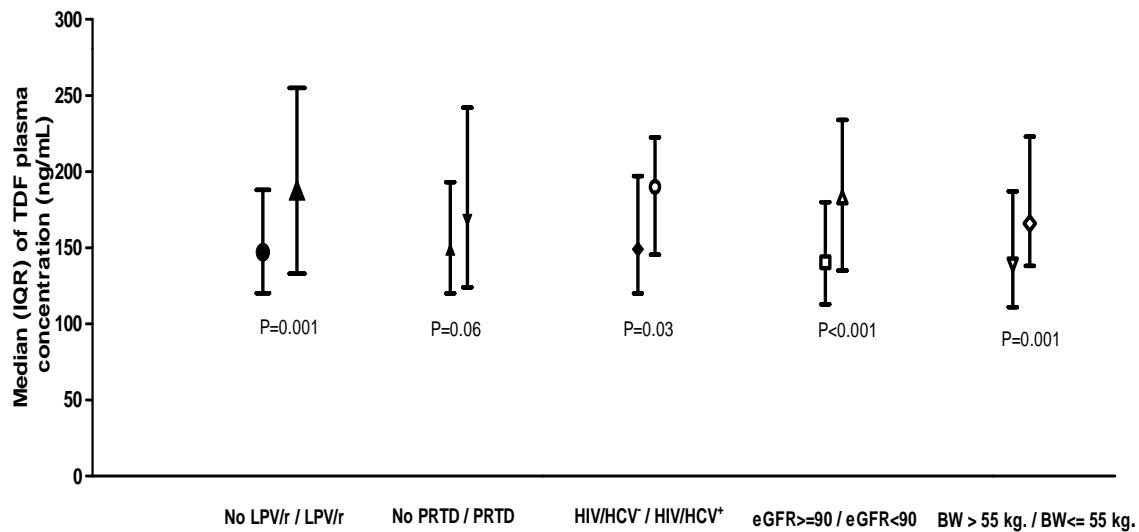
ตารางที่ 14 Predictors of PRTD in HIV-1 infected Thai patients

	PRTD	No PRTD	Univariate analysis		Multivariate analysis	
			OR (95%CI)	p	OR (95%CI)	p
Indinavir exposure (%)						
No	46(14.2)	276(85.8)	1	0.07		
Yes	8(27.6)	21(72.4)	2.29(0.96-5.46)			
Atazanavir exposure (%)						
(%)	39(13.4)	251(86.6)	1	0.03		
No	15(24.5)	46(75.5)	2.1(1.07-4.11)			
Yes						
Other boosted PI (mainly lopinavir/r) (%)				0.27		
No	20(13)	134(87)	1			
Yes	34(17.2)	163(82.8)	1.39(0.71- 2.54)			
Hypertension, n(%)						
No	46(14.3)	275(85.7)	1	0.09		
Yes	8(26.6)	22(73.4)	2.17(0.91-5.17)			
Chronic HCV (%)						
No	52(16)	273(84)	1	0.22		
Yes	2(7.7)	24(92.3)	0.44(0.1-1.90)			
TDF plasma concentrations						
<0.160 ng/ml						
>0.160 ng/ml	23(11.6)	175(88.4)	1	0.02	1	0.02
	31(20.3)	122(79.7)	2.02(1.13-3.66)		2.02(1.13-3.66)	

Age, sex, body weight, duration of ART, duration of tenofovir, diabetes mellitus, chronic hepatitis B were not associated with PRTD

HCV: hepatitis C; HBV: hepatitis B; OR: Odd ratio; 95% CI : 95% confidential interval; TDF: Tenofovir disoproxil fumarate; PRTD: proximal renal tubular dysfunction; boosted PI: protease inhibitor

ตารางที่ 15 Predictors for plasma tenofovir concentration >160ng/ml in HIV-1 infected Thai adults


	TDF plasma concentration >0.160ng/ml		Univariate analysis		Multivariate analysis	
	Yes	NO	OR (95%CI)	p	OR (95%CI)	p
Gender						
Male	73(39.7)	111(60.3)	1			
Female	84(50.3)	83(49.7)	1.5(0.98-2.29)	0.06		
BW						
Weight > 55kg	81(38.2)	131(61.8)	1	0.004	1	
Weight ≤ 55kg	75(54)	64 (46)	1.9(1.23- 2.92)		2.19(1.37-3.50)	0.001
BW/creatinine boosted PI			0.96(0.95-.97)	<0.001		
No	60(39)	94(61)	1			
Yes	96(48.7)	101(51.3)	1.49(0.97-2.28)	0.07		
LPV/r						
No	118(40.3)	175(59.7)	1	0.001	1	
Yes	38(65.5)	20(34.5)	2.82(1.56-5.08)		2.47(1.32-4.60)	0.004
Chronic HCV (%)						
No	145(43.2)	190(56.8)	1	0.05	1	0.02
Yes	11(68.7)	5(31.3)	2.88(0.98-8.48)		3.63(1.18-11.18)	
eGFR , mL/min/1.73m ²						
>90	86(37.1)	146(62.9)	1		1	
≤90	70(58.8)	49(41.2)	2.49(1.54-3.81)	<0.001	2.56(1.58-4.16)	<0.001
PRTD						
No	124(41.7)	173(58.3)	1		1	0.03
Yes	32(59.3)	22(40.7)	2.02(1.13-3.66)	0.02	1.98(1.05-3.73)	

Age, duration of ART, duration of tenofovir, diabetes mellitus, chronic hepatitis B, and hypertension were not associated with tenofovir concentrations >160ng/mL.

HCV: hepatitis C; HBV: hepatitis B; OR: Odd ratio; 95% CI: 95% confidential interval; TDF: tenofovir disoproxil fumarate; LPV/r: lopinavir/ritonavir; PRTD: proximal tubular dysfunction; BW: body weight; BMI: body mass index; PI: protease inhibitor; eGFR: estimated glomerular filtration rate

จากตารางที่ 15 การวิเคราะห์ข้อมูลด้วย multivariate analysis เพื่อหาปัจจัยที่มีผลต่อระดับยา TDF >0.16mg/ml พบดังนี้ BW ≤55kg [OR2.32 (95% CI1.45-3.68)], chronic HCV [OR 2.64 (95% CI 1.13-6.17)], eGFR <90 mL/min/1.73m² [OR 2.66 (95%CI 1.64-4.31)], lopinavir/ritonavir [OR2.47 (95%CI 1.32-4.6)] and PRTD [OR 2.08 (95% CI 1.10-3.92)] ซึ่งรูปภาพที่ 5 แสดงระดับยา TDF กับปัจจัยเสี่ยงแต่ละตัว

ภาพที่ 5 Tenofovir plasma concentrations in patients with PRTD, boosted lopinavir, hepatitis C, eGFR<90 mL/min/1.73m² and BW<55 kg

PRTD: proximal tubular dysfunction, LPV/r: lopinavir and ritonavir, HCV: hepatitis C infection, eGFR: estimated glomerular rate, BW: body weight

ดังนั้นผู้ป่วยกลุ่มนี้ควรจะมีระบบเฝ้าระวังการเกิด renal tubular dysfunction เช่น การตรวจปัสสาวะว่ามี proteinuria, glycosuria, การตรวจ phosphate ในปัสสาวะ เป็นต้น ในคนที่มีeGFR<50 mL/min/1.73m² ควรจะมีการปรับขนาดยา TDF

หัวข้อที่ 4 เกสัชจลนศาสตร์ของยาทีโนฟอเวียร์

ได้มีการตรวจ gene ที่ควบคุมการทำงานของ transporter ที่นำยา tenofovir เข้าห้องออก จาก proximal tubular cells โดยตรวจ 9 single nucleotides (SNPs): ABCC2 -24C>T (rs717620), ABCC2 1249G>A (rs2273697), ABCC2 3563T>A (rs17222723), ABCC2 3972C>T (rs3740066), ABCC4 3463A>G (rs1751034), ABCC4 4131T>G (rs3742106), ABCC10 526G>A (rs9349256), ABCC10 2759T>C(rs2125739) and SLC22A6 728G>A (rs11568626) ในผู้ป่วยติดเชื้อเอชไอวีที่ได้ยา tenofovir จำนวน 400 คน เป็นผู้หญิง 180 คน (45%) ผู้ชาย 220 คน (55%) อายุเฉลี่ย 43.47 ± 7.85 ปี พบความถี่ของ allele frequencies ของ ABCC2 -24C>T; 1249G>A; 3563T>A; 3972C>T, ABCC4 3463A>G; 4131T>G, ABCC10 526G>A and 2759T>C เป็นดังนี้ตามลำดับ 21.8%, 7.8%, 0.1%, 24.9%, 19.8%, 49.2%, 51% และ 7.1% แต่ไม่พบ polymorphism ของ SLC22A6 728G>A ดังรายละเอียดในตารางที่ 16 ซึ่งข้อมูลที่พบจะเหมือนกับคนเอเชียแต่ต่างจากที่พบในคนตะวันตก ดังรายละเอียดในตารางที่ 17

ตารางที่ 16 Genotype frequencies of *ABCC2*, *ABCC4*, *ABCC10* and *SLC22A6* in Thai patients (n=400)

Gene (Protein)	Polymorphisms (SNP identification)	Genotype	Frequency	%	P value*
<i>ABCC2</i> (<i>MRP2</i>)	1249G>A (rs2273697)	GG	342	85.5	0.264
		AG	54	13.5	
		AA	4	1.0	
<i>ABCC2</i> (<i>MRP2</i>)	-24C>T (rs717620)	CC	247	61.8	0.542
		CT	132	33.0	
		TT	21	5.2	
<i>ABCC2</i> (<i>MRP2</i>)	3563T>A (rs17222723)	TT	399	99.8	0.980
		TA	1	0.2	
		AA	0	0.0	
<i>ABCC4</i> (<i>MRP4</i>)	3972C>T (rs3740066)	CC	230	57.5	0.255
		CT	141	35.2	
		TT	29	7.3	
<i>ABCC4</i> (<i>MRP4</i>)	3463T>C (rs1751034)	TT	258	64.5	0.900
		CT	126	31.5	
		CC	16	4.0	
<i>ABCC10</i> (<i>MRP7</i>)	4131A>C (rs3742106)	AA	107	26.8	0.426
		AC	192	48.0	
		CC	101	25.2	
<i>ABCC10</i> (<i>MRP7</i>)	526G>A(rs9349256)	GG	88	22.0	0.108
		GA	216	54.0	
		AA	96	24.0	
<i>ABCC10</i> (<i>MRP7</i>)	2759T>C(rs2125739)	TT	346	86.5	0.464
		TC	51	12.8	
		CC	3	0.7	
<i>SLC22A6</i> (<i>OAT1</i>)	728C>T (rs11568626)	CC	400	100.0	-
		CT	0	0.0	
		TT	0	0.0	

*Test for Hardy-Weinberg Equilibrium, Chi-square test

ตารางที่ 17 Comparison of *ABCC2*, *ABCC4*, *ABCC10* and *SLC22A6* allele frequencies between Thai and other populations.

Gene (Protein)	Polymorphisms (SNP identification)	Ethnicity	Sample Size	Allele frequency (%)	P value*
<i>ABCC2</i> (<i>MRP2</i>)	-24C>T (rs717620)	Thai (This study)	400	C 78.2	T 21.8
		Chinese ^[43]	168	78.6	21.4
		Mexican ^[43]	154	75.3	24.7
		European ^[43]	330	80.3	19.7
	1249G>A (rs2273697)	Thai (This study)	400	G 92.2	A 7.8
		Japanese ^[32]	190	86.0	14.0
		Chinese ^[43]	168	89.9	10.1
		Mexican ^[43]	154	87.0	13.0
		European ^[43]	330	76.7	23.3
					0.003
	3563T>A (rs17222723)	Thai (This study)	400	T 99.9	A 0.1
		Asian ^[45]	90	100.0	0.0
		African ^[45]	76	93.8	6.2
		Caucasian ^[45]	60	93.3	6.7
					0.030
	3972C>T (rs3740066)	Thai (This study)	400	C 75.1	T 24.9
		Japanese ^[43]	88	71.6	28.4
		Chinese ^[43]	90	73.3	26.7
		Caucasian ^[45]	46	62.0	38.0
					0.048
<i>ABCC4</i> (<i>MRP4</i>)	3463T>C (rs1751034)	Thai (This study)	400	T 80.2	C 19.8
		Japanese ^[43]	172	65.7	34.3
		Chinese ^[43]	166	81.9	18.1
		African ^[43]	166	78.3	21.7
		European ^[43]	330	86.7	13.3
	4131A>C (rs3742106)	Thai (This study)	400	A 50.8	C 49.2
		Chinese ^[43]	168	46.4	53.6
		African ^[43]	166	65.1	34.9
		Caucasian ¹⁸⁾	46	58.0	42.0
					0.045

Gene (Protein)	Polymorphisms (SNP identification)	Ethnicity	Sample Size	Allele frequency (%)		P value
<i>ABCC10</i> (<i>MRP7</i>)	526G>A(rs9349256)	Thai (This study)	400	G	A	
		Japanese ^[32]	190	38.4	61.6	0.117
		Chinese ^[43]	166	40.4	59.6	0.200
		African ^[43]	166	91.6	8.4	<0.001
		European ^[43]	328	54.3	45.7	0.479
9)	2759T>C(rs212573	Thai (This study)	400	T	C	
		Japanese ^[32]	190	86.6	13.4	0.157
		Chinese ^[43]	168	94.0	6.0	0.774
		African ^[43]	166	71.7	28.3	<0.001
		Caucasian ^[45]	66	63.6	36.4	<0.001
<i>SLC22A6</i> (<i>OAT1</i>)	728C>T (rs11568626)	Thai (This study)	400	C	T	
		African ^[45]	59	100.0	0.0	0.614

*Chi-square test

นอกจากนี้ได้มีการวิเคราะห์ว่า polymorphism ของ 9 SNPs มีความสัมพันธ์กับการเกิด tubular dysfunction หรือไม่ โดยได้ศึกษาในคนไข้ที่มีการตรวจ pharmacogenomics และมีผลการตรวจ tubular function จำนวน 358 คน โดยมี 67 (18.7%) คนที่เกิด proximal tubular dysfunction (PRTD) ซึ่งใน multivariate analysisพบว่า (ตารางที่ 16) diabetes (adjusted odds ratio [OR], 3.74; 95% confidence interval [CI], 1.34-10.41, $P=0.01$); eGFR <90 ml/min/1.73m²(OR 1.98; 95% CI 1.12-3.50, $P=0.02$; *ABCC2* -24C>T (genotype CC) (OR 2.34; 95% CI 1.26-4.34, $P=0.007$); *ABCC2* -24C>T 1249(genotype GG) (OR 3.77; 95% CI 1.27-11.22, $P=0.02$) และ *ABCC10* 2759 T>C (genotype CC or C/T) (OR 2.80; 95% CI 1.38-5.66, $P=0.004$) มีความสัมพันธ์กับการเกิด PRTD

ตารางที่ 18 Predictors of PRTD in HIV-1 infected Thai patients in a step-wise multivariate logistic regression model

	Univariate analysis		Multivariate analysis	
	OR (95%CI)	p	OR (95%CI)	p
Male (versus female)	1.87 (1.08-3.26)	0.03		
Age > 50 years	1.6 (0.78-3.27)	0.20		
BW > 55 kg	2.04 (1.14-3.64)	0.02		
Duration of ART exposure > 5 years	1.47 (0.81-2.68)	0.21		
Indinavir exposure	2.4 (1.1-5.23)	0.03		
Other PI	1.75 (0.98-3.12)	0.06		
CD4 cell count < 350 cells/uL	0.77 (0.38-1.56)	0.47		
Nadir CD 4 cell count < 100 cells/uL	1.57 (0.9-2.74)	0.11		
HIV RNA > 50 copies/mL	0.16 (0.02-1.21)	0.08		
Hypertension	2.09 (1.03-4.28)	0.04		
History of diabetes	3.81 (1.44-10.06)	0.01	3.74 (1.34-10.41)	0.01
Chronic HBV	0.53 (0.26-1.1)	0.09		
TDF plasma concentration >160 ng/ml	1.36 (0.76-2.42)	0.30		
Duration of TDF exposure	0.92 (0.8-1.05)	0.22		
eGFR <90 ml/min/1.73m ²	1.83 (1.07-3.14)	0.03	1.98 (1.12-3.50)	0.02
ABCC2: rs2273697: 1249G>A : GG	2.96 (1.03-8.52)	0.05	3.77 (1.27-11.22)	0.02
ABCC2: rs717620 : -24C>T : C/C	1.94 (1.08-3.49)	0.03	2.34 (1.26-4.34)	0.007
ABCC2: rs3740066: 3972C>T : C/C or C/T	1.79 (1.02-3.16)	0.04		
ABCC4: rs1751034 : 3463T>C: : C/C or C/T	0.82 (0.46-1.45)	0.50		
ABCC4: rs3742106 : 4131A>C: C/C or C/A	1.57 (0.88-2.8)	0.12		
ABCC10: rs9349256: 526G>A : A/A or A/G	1.45 (0.8-2.62)	0.22		
ABCC10: rs2125739: 2759T>C : C/C or C/T	2.45 (1.26-4.79)	0.01	2.80 (1.38-5.66)	0.004

นอกจากนี้ได้วิเคราะห์ข้อมูลว่า SNPs ที่ตรวจได้มีความสัมพันธ์กับการระดับยา tenofovir หรือไม่ โดยได้วิเคราะห์ข้อมูลในคนไข้จำนวน 150 ราย ซึ่งมีอายุเฉลี่ย 43.9 ± 7.2 ปี มีระดับ mid dose tenofovir plasma concentration เฉลี่ย 100.3 ± 52.7 ng/ml Variant alleles ของ ABCC2 -24C>T, ABCC2 1249G>A, ABCC2 3972C>T, ABCC4 3463A>G และ ABCC4 4131T>G พบร้อยละ 19.3%, 9.3%, 21.7%, 19.3% และ 50.7% ตามลำดับ ในการวิเคราะห์แบบ multivariate analysis พบร้อยละ low body weight, low eGFR, concomitant use of ritonavir-boosted protease inhibitor และ ABCC4 4131T>G variant (genotype TG or GG) มีความสัมพันธ์กับระดับยา tenofovir ดังรายละเอียดในตารางที่ 18

ตารางที่ 19 Univariate and multivariate analysis of genetic and non-genetic factors for tenofovir plasma concentrations

Factors	Univariate analysis			Multivariate analysis ^a		
	B	95%CI	p value	B	95%CI	p value
Sex	13.986	-3.079 to 31.052	0.107			
Age	0.183	-1.002 to 1.368	0.760			
Weight	-0.918	-1.622 to 0.214	0.011*	-0.861	-1.494 to 0.229	0.008**
eGFR-MDRD	-0.970	-1.420 to 0.520	<0.001*	-0.934	-1.375 to 0.492	<0.001**
Concomitant use of ritonavir-boosted PI	40.088	22.998 to 57.177	<0.001*	29.231	12.649 to 45.813	0.001**
ABCC2 -24C>T	-3.435	-21.352 to 14.482	0.706			
ABCC2 1249G>A	0.217	-21.989 to 22.422	0.984			
ABCC2 3972C>T	-6.675	-24.279 to 10.930	0.455			
ABCC4 3463A>G	-12.127	-29.791 to 5.536	0.177			
ABCC4 4131T>G	18.464	-1.690 to 38.619	0.072*	25.180	7.049 to 43.310	0.007**

^a factors had p-value < 0.1 in univariate analysis and were entered into multivariate analysis

*p<0.1

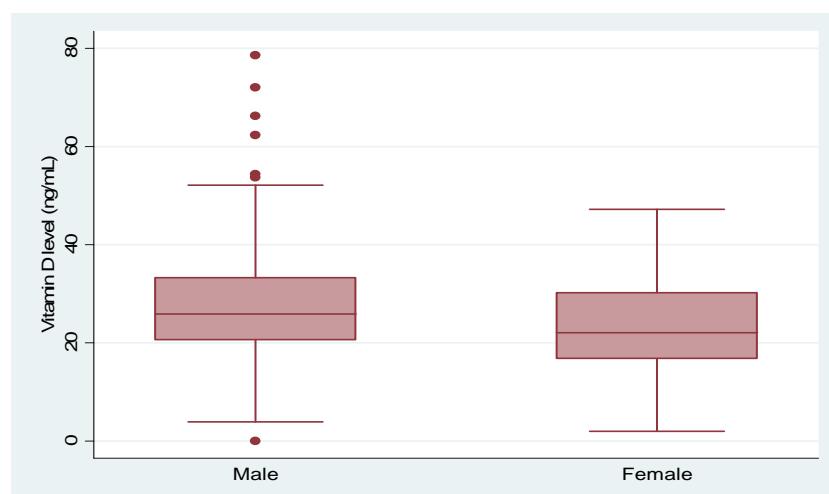
**p<0.05

ผลการศึกษาเกี่ยวกับวิตามินดี

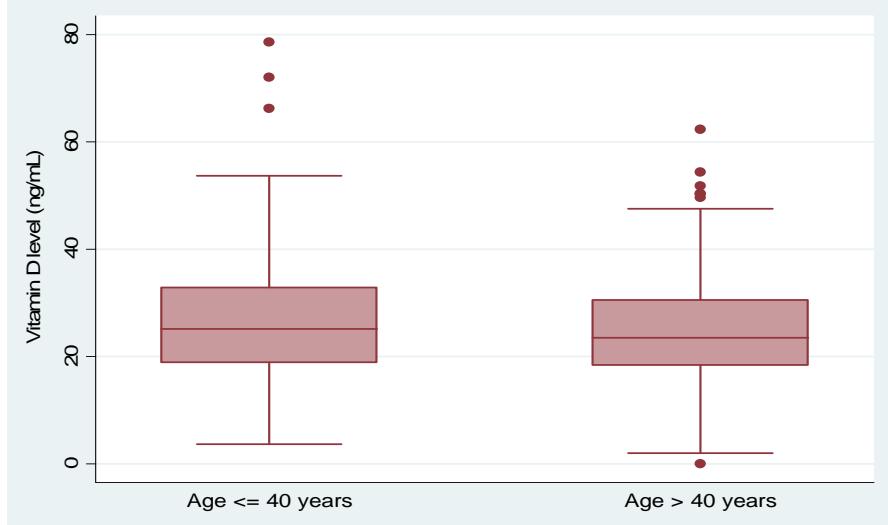
ได้ทำการตรวจ vitamin D concentration (25 hydroxy vitamin D) ในผู้ป่วยทั้งหมด 673 ราย คิดเป็นผู้หญิง 47% อายุเฉลี่ย 41.5 ปี และ 16% อายุ > 50 ปี น้ำหนักเฉลี่ย 57.6 kg และ 18% อยู่ในเกณฑ์ อ้วน (BMI > 25kg/m²) ค่าเฉลี่ย eGFR 96.5(82.6-106.3) mL/min/1.73m² ประมาณ 93% ได้รับยาต้าน ด้วยค่าเฉลี่ยของระยะเวลาต้าน 8.9 (IQR5.0-10.4) ปี ปัจจุบันใช้Efavirenz และ tenofovir คิดเป็น 31% และ 79%, ตามลำดับ 57% เคยได้ stavudine (d4T) ในอดีต ค่า median CD4 cell count =571 cells/mm³ (IQR 434-766 cells/mm³) และ 92% มี HIV RNA < 50copies/mL ไม่มีใครได้ steroid, vitamin D และ calcium ภายใน 6 เดือนก่อนตรวจเลือด มีเพียง 3% ที่ดื่มเหล้ามากกว่า 4 standard alcoholic drinks ต่อวัน 21 % ยังสูบบุหรี่ และ 13% ของผู้หญิงได้หมดประจำเดือนแล้ว ทั้งจากการตัดดมดลูก รังไข่ หรือ ตามอายุ ไม่พบว่ามีกระดูกหัก ค่าเฉลี่ย circulating 25(OH)D concentrations ได้ 24.1(IQR18.5-31.5) ng/mL อุบัติการณ์ของ hypovitaminosis D (25(OH) D< 30ng/ml), vitamin D deficiency (25(OH)D <20ng/ml) และ vitamin D insufficiency (25(OH)D 20-30ng/mL) คิดเป็น 70.5%, 29.9% และ 40.6% ตามลำดับ จากการวิเคราะห์ข้อมูลพบรัศดิ์วิตามินดีต่ำในผู้หญิง mean (SD) 25(OH) D concentrations (23.2 (8.9) ng/ml), p<0.001 ปัจจุบันใช้ยา efavirenz (23.4 (9.3) ng/mL), p<0.001

จากการวิเคราะห์ด้วย multiple logistic regression analysis พบว่าผู้หญิง [OR (95% CI) 1.6 (1.1-2.1), p= 0.01], อายุ > 40 ปี [OR (95%CI) 1.6 (1.1-2.2), p < 0.01], และปัจจุบันใช้ยา efavirenz [OR (95%CI) 1.9 (1.3-2.8), p 0.001] มีความสัมพันธ์กับภาวะ hypovitaminosis D อย่างมีนัยสำคัญทางสถิติ ตามรายละเอียดในตารางที่ 20 และรูปภาพ 6A - 6C

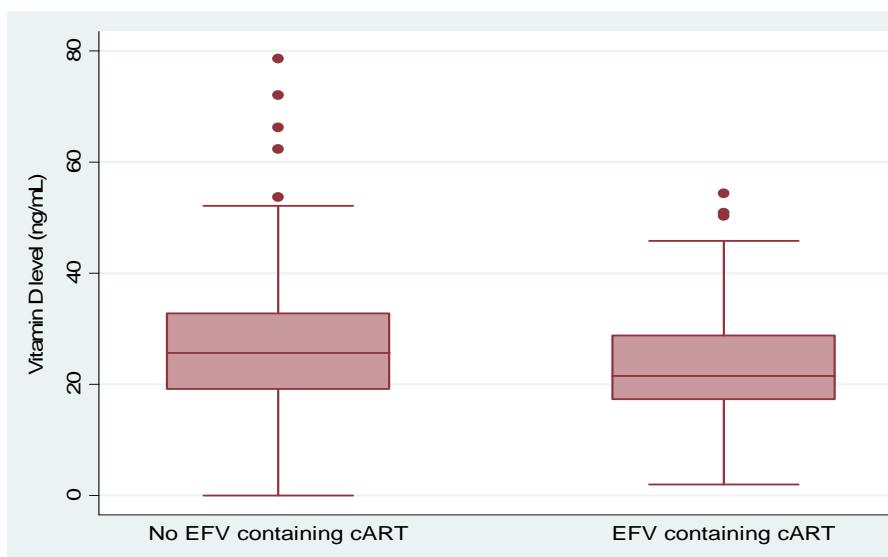
ตารางที่ 20 Regression analysis of vitamin d and associated factors


Characteristics	Vitamin D group		Odds Ratio (95% CI)			
	Normal 25(OH) D > 30ng/ml N=199	Insufficient/ Deficient 25(OH) D <=30ng/ml N=474	Unadjusted (95%CI)	P value	Adjusted (95%CI)	P value
Gender N (%)						
Male	120(33.5)	238(66.5)	1	0.02	1	
Female	79(25.1)	236(74.9)	1.50(1.1-2.1)		1.6(1.1-2.2)	0.010
Age, years N (%)						
<40	95(33.8)	186(66.2)	1	0.04	1	
>40	104(26.5)	288(73.5)	1.41(1.0-1.9)		1.6(1.1-2.2)	0.010
HIV transmission N (%)						
Heterosexual contacts	141(28.7)	351(71.3)	1	0.54		
Homosexual contacts	36(31.5)	78(68.5)	0.87(0.6-1.3)			
Season N (%)						
Dry season	75(31)	167(69)	1			
Rainy season	124(28.8)	307(71.2)	1.1 (0.8-1.6)			
EFV containing regimen N (%)						
No				0.55		
Yes	115(33.5)	308(66.5)	1		1	
	44(20.9)	166(79.1)	1.9(1.3-2.78)	0.001	1.9(1.3-2.8)	0.001
NVP containing regimen N (%)						

No				
Yes	163(29.1)	396(70.9)	1	0.61
	36(31.6)	78(68.4)	0.9 (0.6-1.37)	
TDF containing regimen N (%)				
No,				
Yes	39(27.9)	101(72.1)	1	0.62
	160(30)	373(70)	0.9(0.6-1.4)	
Ritonavir containing regimen				
No				
Yes	79(24.7)	244(75.3)	1	
	120(34.1)	230(65.9)	1.4(1.1-2.0)	0.04
Duration of ART, years				
	8.5(4.9-10.6)	9.0(5.0-10.4)	1.0(0.9-1.1)	0.54


EFV: efavirenz, NVP: nevirapine, TDF: tenofovir disoproxil fumarate, CVD: cardiovascular disease, CAD: coronary artery disease, HBVART: antiretroviral therapy

ภาพที่ 6 Vitamin D concentrations between Male and female (9A), older than 40 years old and younger 40 years old (9B) and efavirenz use(9C)


ภาพที่ 6A Vitamin D concentrations between male and female

ກາພົ່ມ 6B Vitamin D concentrations between older than 40 years old and younger 40 years old

ກາພົ່ມ 6C Vitamin D concentrations between efavirenz use

ตารางที่ 20 Regression analysis of vitamin d and associated factors

Characteristics	Vitamin D group		Odds Ratio (95% CI)		
	Normal 25(OH) D > 30ng/ml	Insufficient/ Deficient 25(OH) D <=30ng/ml	Unadjusted (95%CI)	P value	Adjusted (95%CI)
	N=199	N=474			
Gender N (%)					
Male	120(33.5)	238(66.5)	1	0.02	1
Female	79(25.1)	236(74.9)	1.50(1.1-2.1)		1.6(1.1-2.2) 0.010
Age, years N (%)					
<40	95(33.8)	186(66.2)	1	0.04	1
>40	104(26.5)	288(73.5)	1.41(1.0-1.9)		1.6(1.1-2.2) 0.010
HIV transmission N (%)					
Heterosexual contacts	141(28.7)	351(71.3)	1	0.54	
Homosexual contacts	36(31.5)	78(68.5)	0.87(0.6-1.3)		
Season N (%)					
Dry season	75(31)	167(69)	1		
Rainy season	124(28.8)	307(71.2)	1.1 (0.8-1.6)		
EFV containing regimen N (%)					
No				0.55	
Yes	115(33.5)	308(66.5)	1		1
	44(20.9)	166(79.1)	1.9(1.3-2.78)	0.001	1.9(1.3-2.8) 0.001
NVP containing regimen N (%)					
No					
Yes	163(29.1)	396(70.9)	1	0.61	
	36(31.6)	78(68.4)	0.9 (0.6-1.37)		

TDF containing regimen N (%)

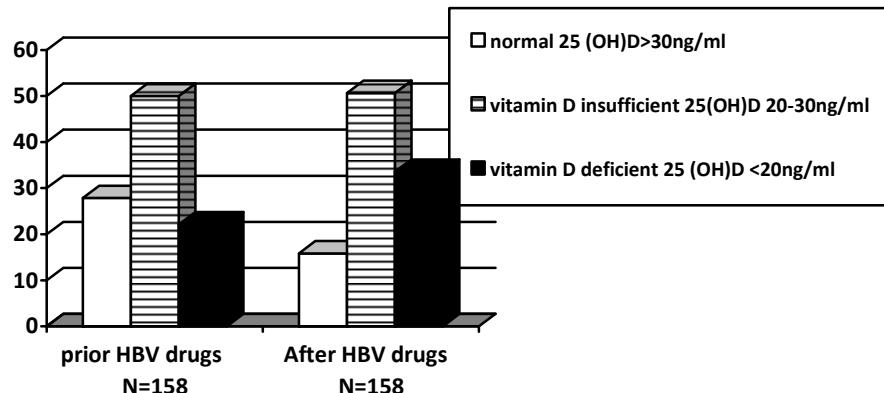
No,

Yes	39(27.9)	101(72.1)	1	0.62
	160(30)	373(70)		0.9(0.6-1.4)

Ritonavir containing regimen

No

Yes	79(24.7)	244(75.3)	1	
	120(34.1)	230(65.9)	1.4(1.1-2.0)	0.04


Duration of ART, years	8.5(4.9-10.6)	9.0(5.0-10.4)	1.0(0.9-1.1)	0.54
------------------------	---------------	---------------	--------------	------

EFV: efavirenz, NVP: nevirapine, TDF: tenofovir disoproxil fumarate, CVD: cardiovascular disease, CAD: coronary artery disease, HBVART: antiretroviral therapy

วิตามินดีในผู้ป่วยเอชไอวีที่มีไวรัสตับอักเสบบี

ได้ทำการตรวจระดับวิตามินดี ในผู้ป่วยติดเชื้อเอชไอวีร่วมกับไวรัสตับอักเสบบีเรื้อรังที่ได้ยา tenofovir based ART จำนวน 158 ราย (33% female) อายุเฉลี่ย 42 ปี ค่าเฉลี่ย CD4 509 cells/mm³ และ 89% had HIV RNA <50 copies/ml ค่าเฉลี่ยระยะเวลาที่ได้ยา tenofovir เป็นเวลา 5(IQR3-7) ปี ค่าเฉลี่ย eGFR 94.2 mL/min/1.73m² Fibrosis score > 7.5 KPa และ 14 KPa โดยการตรวจ fibroscan พบร 11.9% และ 1.9% ตามลำดับ ค่าเฉลี่ย serum 25(OH)D levels ก่อนกินยา tenofovir เป็น 24.8 (IQR 21.3-30.6)ng/ml และลดลงหลังกินยา tenofovir เป็นระยะเวลาเฉลี่ยนาน 5 ปี [22.8(IQR 18.0-27.7) ng/ml] จำนวนคนที่มี vitamin D deficiency (25(OH)D < 20 ng/ml) เพิ่มจาก 22.2% ก่อนกินยา tenofovir เป็น 33.5% หลังได้ยา tenofovir (p 0.01) (ภาพที่ 7) ปัจจัยที่มีผลต่อการเกิด hypovitaminosis D จากการวิเคราะห์แบบ multivariate analysis ได้แก่ female [adjusted odd ratio: OR (95% confidential interval : 95% CI : 3.6 (1.2-11.1), p=0.026); and duration of ART >5 years OR 2.6 (IQR 1.1-6.4), p=0.039

ภาพที่ 7 แสดงจำนวนคนที่มีภาวะ hypovitaminosis D ก่อนและหลังได้ยา tenofovir

วิตามินดีในผู้ป่วยเอชไอวีที่มีไวรัสตับอักเสบซี

ได้ทำการตรวจระดับวิตามินดี ในผู้ป่วยติดเชื้อไวรัสตับอักเสบซีเรื้อรังที่ติดเชื้อเอชไอวีจำนวน 331 ราย และไม่ติดเชื้อเอชไอวีจำนวน 133 ราย และตรวจ liver fibrosis ด้วยเครื่อง fibroscan พบร ไวรัสตับอักเสบซีสายพันธุ์ GT3 47%, GT1 34%, GT6 17% IL-28B CC genotype (rs12979860) ซึ่งแสดงถึงการตอบสนองดีต่อการรักษาไวรัสตับอักเสบซีด้วย Pegylated interferon/ribavirin พบรสูงถึง 88% ใน HIV/HCV และ 85% ใน HCV mono

Liver fibrosis ใน HCV mono เป็นดังนี้ 56.5% mild (fibrosis score < 7.2 KPa); 18.4% moderate (fibrosis score 7.2-9.5 KPa), 12.4% severe (fibrosis score 9.5-14 KPa) และ 12.7% cirrhosis (fibrosis score > 14 KPa) ส่วนใน HIV/HCV พบร liver fibrosis รุนแรงกว่าโดยพบร 30.6% mild, 27.8% moderate, 17.6% severe และ 24.1% cirrhosis คนที่มี significant fibrosis (fibrosis score > 7.2 KPa) มักจะพบร ผู้ชาย อายุมาก HIV-infection และมีภาวะ hypovitaminosis D ปัจจัยที่เกี่ยวข้องกับการเกิด significant fibrosis โดยการวิเคราะห์แบบ multivariate analysis ได้แก่ HIV-infection [adjusted odd ratio (95% confidential

interval):2.67, 1.20-5.93), p=0.016, Fib4 score >1.45 (6.30, 2.70-14.74), p<0.001 hypovitaminosis D(2.48, 1.09-5.67), p=0.031และการได้ยา stavudine (4.92,1.44-16.79)p=0.011) ตามตารางที่ 21

ตารางที่ 21 Univariate and multivariate logistic regression analysis of the factors associated with advanced liver fibrosis (TE \geq 7.5 kPa) only HIV/HCV co-infected patients

Variables	Univariate			Multivariate		
	OR	95%CI	P	aOR	95%CI	P
Male gender	1.24	(0.41-3.73)	0.702			
Age increased by 10 years	1.48	(0.81-2.71)	0.208			
BMI $>$ 25kg/m ²	3.88	(0.82-18.23)	0.086	1.34	(0.17-10.84)	0.782
HCV RNA of $>$ 800,000 IU/ml	0.95	(0.42-2.11)	0.892			
Current abnormal ALT	3.50	(1.48-8.25)	0.004			
HCV genotype			0.335			0.419
Genotype 3	1.37	(0.47-4.03)		1.59	(0.42-6.03)	
Genotype6	0.52	(0.13-2.04)		0.53	(0.09-2.99)	
Fib4 score of $>$ 1.45	4.55	(1.92-10.76)	0.001	5.29	(1.52-18.35)	0.009
APRI score of $>$ 0.5	5.18	(2.15-12.47)	<0.001			
Estimated duration of HCV						
infection of $>$ 20 years	1.30	(0.54-3.13)	0.558			
Current alcohol consumption	1.11	(0.48-2.58)	0.800			
Hypovitaminosis D [25(OH)D						
$<$ 30 (ng/ml)]	2.00	(0.88-4.53)	0.096	5.04	(1.44-17.62)	0.011
rs12979860 CC allele	1.38	(0.57-3.33)	0.468			
ART Regimen			0.494			
Efavirenz or nevirapine	Ref	1				
Protease inhibitor	0.96	(0.4-2.28)				
Stavudine exposure	2.66	(1.17-6.07)	0.020	4.92	(1.44-16.79)	0.011
Didanosine exposure	0.87	(0.35-2.14)	0.756			

9. สรุปผลการวิจัยและข้อเสนอแนะ

สรุปโดยภาพรวม ยาต้านที่มี TDF อยู่ในสูตรยาให้ประสิทธิผลระยะยาวดีทั้งในผู้ป่วยที่เคยได้ยาตัวอื่นมา ก่อน และเปลี่ยนมาเป็น TDF เพราะต้องหายหรือเพาะผลข้างเคียง หรือมีการใช้ยาตัวนี้ตั้งแต่แรกโดย ดูจากการเพิ่มขึ้นของ CD4 และสัดส่วนผู้ป่วยที่มี HIV RNA < 50 copies/mL จะพบว่า สัดส่วนผู้ป่วยที่มี HIV RNA < 50 copies/mL ตั้งกันอย่างชัดเจนตั้งแต่ 6 เดือนหลังได้ยาจนกระทั่งปีที่ 8 โดยสัดส่วนผู้ป่วยที่มี HIV RNA < 50 copies/mL ที่ 8 ปีเป็น 96% และ 94% ตามลำดับ แสดงว่า ยาให้ประสิทธิภาพในการรักษาสูง ซึ่งต่างจากกลุ่มที่ไม่ได้ยา TDF ซึ่งที่ 8 ปีมีสัดส่วนผู้ป่วยที่มี HIV RNA < 50 copies/mL คิดเป็น 84%

ส่วนความปลอดภัย ดูจากการเปลี่ยนแปลงของการทำงานของไต ถ้าดูจากการลดลงของ eGFR ในทั้งกลุ่มที่ได้ยา TDF ตั้งแต่แรกหรือได้ตอนหลัง จะต่างจากกลุ่มที่ไม่ได้ TDF พบร่วมกัน eGFR ลดลงมากกว่า 25% จาก baseline หรือ < 60 cc/min/1.73m² ประมาณ 1.9 per 100 person year of follow up และ 2.4 per 100 person year of follow up ตามลำดับ เมื่อเทียบกับ 6.9 per 100 person year of follow up ในกลุ่มที่ไม่ได้ TDF นอกจากนี้ยังพบว่า ทั้ง 3 กลุ่มเริ่มเกิด renal insufficiency โดยดูจาก eGFR ลดลงมากกว่า 25% จาก baseline หรือ < 60 cc/min/1.73m² ประมาณ 1.9 per 100 person year of follow up และ 2.4 per 100 person year of follow up ตามลำดับ เมื่อเทียบกับ 6.9 per 100 person year of follow up ในกลุ่มที่ไม่ได้ TDF นอกจากนี้ยังพบว่า ทั้ง 3 กลุ่มเริ่มเกิด renal insufficiency เมื่อใช้ยาต้านมาเป็นระยะเวลาเฉลี่ย ดังนี้ 1.2, 1.8 และ 1.4 ปี ตามลำดับ และ จาก multivariate analysis พบร่วมกันที่มีความเสี่ยงในการเกิด renal insufficiency ได้แก่ อายุ > 35 ปี (Hazard ratio : HR 1.76 (95% Confidential interval : CI 1.26-2.45) เคยได้ยา indinavir มาก่อน 3.68 (2.73-4.96) เป็นความดันโลหิตสูงร่วมด้วย 1.61 (1.14-2.28) หรือมี CD4 ก่อนเริ่มกินยาต้านต่ำกว่า 200 cells/ μ L 1.77 (1.32-2.38) การได้ TDF ให้ผลตรงข้ามคือ เกิด renal insufficiency น้อยกว่ากลุ่มที่ไม่ได้ ซึ่งข้อมูลนี้แตกต่างจากการศึกษาในต่างประเทศ ที่พบว่า การให้ยา TDF มีผลต่อการทำงานของไตมากกว่า และน้ำหนักตัวน้อย จะมีความเสี่ยงสูงขึ้น การที่กลุ่มที่ไม่ได้ยา TDF ใน cohort นี้เกิดการลดลงของการทำงานของไตมากกว่า คงเป็นเพราะมี selection bias เพราะเลือกให้ TDF ในผู้ป่วยที่มี eGFR สูงกว่า 70 ml/min/1.73m² และเลี่ยงการให้ในผู้ป่วยที่มีความเสี่ยงสูง เช่นเป็นโรคความดันโลหิตสูง เบาหวาน อายุมากเป็นต้น ประกอบกับกลุ่ม non TDF มีผู้ป่วยที่เคยได้ indinavir และ stavudine มากกว่า และนอกจากนี้ยังมีการมีการติดตามการทำงานของไต โดยดูค่า estimated eGFR ทุก 6 เดือน ถ้ามีการลดลงของการทำงานของไต ต่ำกว่า 60 ml/min/1.73m² ก็มีการลดขนาดยา TDF ลง ทำให้ลดการเกิด TDF renal toxicity การวิเคราะห์นี้ยังพบว่า ณ เวลาที่เริ่มยาต้านกลุ่มที่ได้ TDF มีจำนวนผู้ป่วยที่เป็นเบาหวานและความดันโลหิตสูงก็ไม่ต่างกันกับกลุ่ม non TDF แต่หลังจากใช้ยาต้านมาแล้วกลุ่มที่ได้ non TDF จะมีผู้ป่วยที่เป็นเบาหวานและความดันโลหิตสูงมากกว่าอย่างชัดเจน ซึ่งอาจจะเป็นข้อดีของการใช้ยา TDF ที่ทำให้เกิดภาวะ metabolic complication น้อยกว่า

ดังนั้นผู้ป่วยกลุ่มเสี่ยงต้องมีการติดตามการทำงานของไตอย่างใกล้ชิด และมีการเปลี่ยนหรือปรับขนาดยา ก่อนที่การทำงานของไตจะลดลงมาก

ส่วนการเกิด subclinical renal tubular dysfunction ในอาสาสมัครจำนวน 696 รายที่ได้เก็บปัสสาวะ 24 ชั่วโมง พบร่วมกันที่ได้ยา TDF เมื่อเปรียบเทียบกับกลุ่มที่ได้ยาต้านไม่มี TDF (non TDF based HAART) มีอายุน้อยกว่า จำนวนผู้หญิงมากกว่า ระยะเวลาที่ได้ยาต้านมาสั้นกว่า มีผู้ป่วยที่เคยได้ indinavir น้อยกว่า แต่เมื่อผู้ป่วยที่ใช้ยาต้านกลุ่ม PI ตัวอื่นที่น้อยกว่า indinavir มากกว่า และมี nadir CD4 ต่ำกว่า แต่มี current CD4 count สูงกว่า มีผู้ติดเชื้อไวรัสตับอักเสบมากกว่า แต่มีผู้ป่วยความดันโลหิตสูง และเคยได้รับยา cotrimoxazole น้อยกว่าอย่างชัดเจน เมื่อดูการเกิด subclinical renal tubular dysfunction พบร่วมกันถึง 29% และ 16% ตามลำดับที่มีภาวะ fraction tubular reabsorption of phosphate < 3 และ subclinical renal tubular dysfunction ตามลำดับ ทั้งกลุ่มที่ได้ TDF และไม่ได้ TDF ไม่มีความแตกต่างทางสถิติในการเกิด subclinical renal tubular dysfunction แต่กลุ่มที่ได้ TDF มีระดับ uric acid ในเลือด และ การขับ uric

acid ในปัสสาวะ สูงกว่าอย่างชัดเจน ซึ่งการที่มี uric acid สูง อาจจะเสี่ยงต่อ การเกิดความดันโลหิตสูงและภาวะ metabolic syndrome ในอนาคต และในผู้ป่วยที่มี subclinical renal tubular dysfunction โดยที่การทำงานของไตปกติ กลุ่มนี้คงต้องติดตามการทำงานของไตในระยะยาวต่อไปว่าจะมีผลต่อการทำงานของไตลดลงในอนาคต หรือไม่ และมีโอกาสเกิดไตวายเรื้อรังหรือไม่ และควรจะมีการติดตามการตรวจ tubular function ที่ 3-5 ปีว่าจะมีผู้ป่วยเป็นมากขึ้นหรือไม่ และคนที่เป็นอยู่มีอาการแย่ลงหรือไม่ เพื่อที่จะได้หมายการป้องกัน

ผู้ป่วยเชื้อเอชไอวีใน cohort นี้มีภาวะ vitamin D insufficiency (vitamin D < 30 ng/ml) ค่อนข้างสูงถึง 70% โดยทั้งกลุ่มนี้มี normophosphate และ hypophosphate หรือ ที่ได้ และ ไม่ได้ TDF ไม่มีความแตกต่างกัน ซึ่งภาวะ vitamin D insufficiency มีความเสี่ยงสูงที่จะเกิด osteopenia/osteoporosis ในอนาคต คงต้องแนะนำให้ผู้ป่วยรับวิตามินดีมากขึ้น เพื่อเป็นการป้องกันภาวะนี้ในอนาคต

ทางด้านระดับยา TDF ในการศึกษาแบบ intensive pharmacokinetic พบว่าระดับยา TDF เมื่อให้ TDF ร่วมกับ boosted PI หรือ NNRTI ไม่แตกต่างกันอย่างมีนัยสำคัญ แต่ถ้าเปรียบเทียบกับเฉพาะกลุ่มที่ได้ boosted lopinavir/r และ efavirenz กลุ่มที่ได้ boosted lopinavir/r มีระดับยาสูงกว่าจากนั้นการศึกษานี้พบคือ ถ้าการทำงานของไตลดลง ระดับยา TDF จะสูงขึ้นมากกว่า 0.16 mg/L และระดับยาสูงมีความสัมพันธ์กับการเกิด subclinical tubular dysfunction ซึ่งข้อมูลนี้จะเหมือนกับที่พบในชาติอังกฤษ[28] ดังนั้นรายที่มีการทำงานของไตลดลงควรมีการปรับลดขนาดยา TDF การวิเคราะห์ข้อมูลด้วย multivariate analysis พบปัจจัยที่มีผลต่อระดับยา $TDF > 0.16 \text{ mg/ml}$ ดังนี้ น้ำหนักตัวน้อยกว่า $\leq 55 \text{ kg}$ มีความเสี่ยง 2.32 เท่า chronic HCV 2.64 เท่า, eGFR $< 90 \text{ mL/min/1.73m}^2$ 2.66 เท่า, lopinavir/ritonavir 2.47 เท่า และ PRTD 2.08 เท่า ดังนั้นผู้ป่วยกลุ่มนี้ควรจะมีระบบเฝ้าระวังการเกิด renal tubular dysfunction เช่น การตรวจปัสสาวะว่ามี proteinuria, glycosuria, การตรวจ phosphate ในปัสสาวะ เป็นต้น ในคนที่มี eGFR $< 60 \text{ mL/min/1.73m}^2$ ก็ควรจะมีการปรับขนาดยา TDF

การมีความดันโลหิตสูง หรือ เบาหวาน ไม่มีผลต่อโดยตรงต่อ Pharmacokinetic ของยาที่โนฟเวียร์และไม่มีผลต่อ endpoint ของการศึกษาทางด้าน Pharmacokinetic ของยาที่โนฟเวียร์ถ้าการทำงานของไตยังดีเนื่องจากยานี้ขับออกส่วนใหญ่จาก glomerular filtration และ tubular secretion ที่ proximal tubule ของไต ดังนั้นความดันโลหิตสูง หรือ เบาหวาน จะมีผลต่อ Pharmacokinetic ของยาที่โนฟเวียร์ก็ต่อเมื่อห้องโครนีที่ทำการทำงานของไตลดลง ซึ่งการศึกษานี้ได้แสดงให้เห็นว่า ในผู้ป่วยที่มีการทำงานของไตต่ำกว่า $90 \text{ mL/min/1.73m}^2$ ระดับยา Tenofovir จะสูงขึ้นโดยเฉพาะในกลุ่มที่ได้ยา Tenofovir ร่วมกับ boosted PI ซึ่งการศึกษาในต่างประเทศก็ให้ผลเช่นเดียวกัน[46, 47] ซึ่งการให้ยา lopinavir ร่วมกับ tenofovir ทำให้ renal clearance ของ tenofovir ลดลงถึง 17% และเป็นผลให้ระดับ tenofovir คั่งใน proximal renal tubule ซึ่งข้อมูลต่างประเทศ การให้ lopinavir/ritonavir ทำให้ระดับยา tenofovir สูงขึ้น 32% แต่การศึกษานี้ พบว่า ระดับยา tenofovir สูงมากกว่า 50% ส่วนหนึ่งน่าจะอธิบายจากระดับยาของ lopinavir ในคนไทยสูง (ระดับที่ต้องการคือ $1-4 \text{ mg/L}$ [1] แต่ในคนไทยมีระดับ lopinavir โดยเฉลี่ย 7.2 mg/L [42] และยา Lopinavir ใช้ ritonavir 200 mg/day และ protease inhibitor ตัวอื่น เช่น atazanavir, saquinavir, darunavir ซึ่งให้ ritonavir 100 mg/day การที่คนไทยมีระดับยา ritonavir และ lopinavir สูงจะทำให้ไปยับยั้ง efflux ของ tenofovir จาก proximal tubule มากยิ่งขึ้น

ในผู้ป่วยที่มีการทำงานของไตบกพร่อง พบว่าใช้ยา tenofovir ในขนาด 300 mg วันเว้นวันและ 150 mg ทุกวันให้ระดับ tenofovir ไม่ต่างกัน แต่การให้ขนาด 150 mg ทุกวันทำให้คันเข็มดูมากกว่า จะให้แบบนี้ได้ ควรจะเป็นยา tenofovir ที่ผลิตโดยองค์การเภสัชกรรมไทย ซึ่งมีรอยให้หักได้ชัดเจน เนื่องจากระดับยา tenofovir สูงมากเมื่อให้ร่วมกับยา lopinavir/ritonavir ดังนั้นอาจพิจารณาลดขนาดยา tenofovir ตั้งแต่การทำงานของไตไม่ต่ำมาก เช่น creatinine clearance ประมาณ $60-70 \text{ mL/min}$ เพื่อลดการเกิด renal toxicity

ยิ่งกว่าคนไทยมี polymorphism ของ gene ที่ควบคุม efflux ของ tenofovir ที่ proximal tubule เช่น ABCC4 4131T>G variant (genotype TG or GG) ทำให้ระดับยา tenofovir ยิ่งสูงขึ้นโดยเฉพาะในคนที่มีการทำงานของไตบกพร่องและน้ำหนักตัวน้อยกว่า 55 kg และเพิ่มโอกาสเกิด tubular dysfunction มากขึ้น โดยเฉพาะมี polymorphism of ABCC2 -24C>T (genotype CC), and ABCC10 2759 T>C (genotype CC or C/T)

ถึงแม้ประเทศไทยจะอุดมไปด้วยแสงแดดผู้ป่วยเชื้อไวรัสไทยบรรดับ vitamin D concentration < 20ng/mL ถึง 70% โดยเฉพาะกลุ่มเสี่ยงคือผู้หญิง อายุมาก > 40 ปี และได้ยาต้าน efavirenz ด้วย เพราะยา efavirenz จะไปรบกวนระบบ metabolism ของวิตามินดี[48-61] และเป็นได้ว่าแสงแดดในกรุงเทพมีfluence ของมาก ทำให้ลดการรับแสงแดดที่ผิวนัง รวมถึงคนไทยกลัวแดด ทำให้ใช้ครีมกันแดดมากขึ้น และคนไทยไม่นิยมอาหารที่อุดมด้วยแคลเซียมและ vitamin D ดังนั้นในคนไข้กลุ่มนี้ควรจะได้ vitamin D supplement เพราะการได้ tenofovir มีโอกาสที่ทำให้เกิด hypophosphatemia/hyperphosphaturia และเกิด osteopenia/osteoporosis ถ้าขาดวิตามินดีร่วมด้วยก็จะยิ่งทำให้ยั่งไปมากกว่าเดิม โดยเฉพาะในคนที่มีไวรัสตับอักเสบบี หรือซีร่วมด้วย ทำให้ liver fibrosis เป็นมากขึ้นได้ และผู้ป่วยเชื้อไวรัสที่ขาดวิตามินดีทำให้ภูมิคุ้มกันต่ำลง เพิ่มโอกาสติดเชื้อวัณโรค เป็นโรคเบาหวาน ความดันโลหิตสูง และมะเร็งได้[62]

10. ผลผลิตของโครงการวิจัย

โปสเตอร์

- Poster presentation ในงานประชุม Conference on Retroviruses and Opportunistic Infections (CROI) ที่เมืองบอสตัน ประเทศสหรัฐอเมริกา ในวันที่ 27 กุมภาพันธ์ - 3 มีนาคม 2554 (abstract หมายเลขที่ 843) เรื่อง Prevalence and prognostic factors of chronic kidney disease in HIV-infected patients, HIV-NAT 006 cohort, Thailand
- Poster presentation ในงานประชุม Conference on Retroviruses and Opportunistic Infections (CROI) ที่เมืองชีแอตเติล ประเทศสหรัฐอเมริกา ในวันที่ 5-8 มีนาคม 2555 (abstract หมายเลขที่ 862) เรื่อง Validation of Estimated Glomerular Filtration Rate (GFR) Equations Compared with the Isotopic GFR in an HIV infected Patients
- Poster presentation ในงานประชุม Conference on Retroviruses and Opportunistic Infections (CROI) ที่เมืองชีแอตเติล ประเทศสหรัฐอเมริกา ในวันที่ 5-8 มีนาคม 2555 (abstract หมายเลขที่ 871) เรื่อง Increased risk of Subclinical Kidney Tubular abnormalities in HIV-infected individuals on long term Antiretroviral Therapy : Asian cohort perspective
- Poster presentation ในงานประชุม Conference on Retroviruses and Opportunistic Infections (CROI) ที่เมืองชีแอตเติล ประเทศสหรัฐอเมริกา ในวันที่ 5-8 มีนาคม 2555 (abstract หมายเลขที่ 882) เรื่อง Prevalence of and Risk factors for Hypovitaminosis D among HIV-infected Adults living in the Tropics
- Poster presentation ในงานประชุม 7th IAS Conference on HIV Pathogenesis, treatment and Prevention ที่เมืองกัวลาลัมเปอร์ ประเทศมาเลเซีย ในวันที่ 30 มิถุนายน 2556 (abstract หมายเลขที่ MOPE028) เรื่อง Factors influencing plasma tenofovir concentrations in HIV-infected adults: effect of low body weight, chronic hepatitis C and proximal tubular dysfunction".
- Poster presentation ในงานประชุม 7th IAS Conference on HIV Pathogenesis, treatment and Prevention ที่เมืองกัวลาลัมเปอร์ ประเทศมาเลเซีย ในวันที่ 30 มิถุนายน 2556 (abstract หมายเลขที่ MOPE032) เรื่อง Predictors of Daily Tenofovir Exposure in Thai Subjects taking PI-based Combination Antiretroviral Therapy
- Poster presentation ในงานประชุม 20th Conference on Retroviruses and Opportunistic Infections (CROI) ที่เมือง Atlanta ประเทศสหรัฐอเมริกา ในวันที่ 3-6 มีนาคม 2556 (abstract หมายเลขที่ 646) เรื่อง Predictors for the Presence of Liver fibrosis among Hepatitis C virus and HIV/hepatitis C virus-infected Patients : Role of vitamin D
- Poster presentation ในงานประชุม 21st Conference on Retroviruses and Opportunistic Infections (CROI) ที่เมือง Boston ประเทศสหรัฐอเมริกา ในวันที่ 3-6 มีนาคม 2557 (abstract หมายเลขที่ 799) เรื่อง Genetic variants of ABCC2 and ABCC10 Are Associated with Tenofovir-induced Proximal Tubular Dysfunction

11. ผลงานตีพิมพ์ของโครงการวิจัย

1. Comparisons between validated estimated glomerular filtration rate equations and isotopic glomerular filtration rate in HIV patients. AIDS. 2012;26(14):1781-8
2. Decline in serum 25-OH vitamin D levels in HIV/hepatitis B virus (HBV) co-infected patients after long term antiretroviral therapy. Antivir Ther 2014;19:41-49
3. Advanced Liver Fibrosis by Transient Elastography, FIB-4 and APRI among Asian Hepatitis C with and without HIV infection: Role of vitamin D levels. J Gastroenterol Hepatol. 2014;29(9):1706-14.
4. HIV and noncommunicable diseases: the Asian perspective. J Acquir Immune Defic Syndr. 2014 Sep 1;67 Suppl 1:S99-103
5. Factors Associated with Daily Tenofovir Exposure in Thai Subjects Taking Combination Antiretroviral Therapy. AIDS Res Hum Retroviruses. 2015 Volume 31 number4
6. The influence of ABCC2 and ABCC4 polymorphisms on tenofovir plasma concentrations in Thai HIV-infected patients. Antimicrob Agents Chemother. 2015 Jun;59(6):3240-5
7. Plasma and intracellular pharmacokinetics of tenofovir disoproxil fumarate (TDF) 300 mg every 48 hours versus 150 mg once daily in HIV-infected adults with moderate renal function impairment. Clin Infect Dis. 2015 Apr 28
8. Plasma tenofovir concentrations and proximal tubular dysfunction in HIV-infected adults receiving tenofovir in Thailand. J AIDS Clin Res 2015, 6:7
9. Population pharmacokinetics of tenofovir in HIV/HBV co-infected patients. Int J Clin Pharm Th 2015 (Accepted)

11. 1 ผลงานส่งตีพิมพ์ รอการแก้ไข

The association of gender, age, efavirenz use and hypovitaminosis D among HIV-infected adults living in the tropics: a cross sectional study submitted to AIDS RESEARCH AND HUMAN RETROVIRUSES

12. ผลการผลิตนักศึกษามหาบัณฑิตและดุษฎีบัณฑิต

1. แพทย์หญิงอัญชลี อวิหิงสารนนท์ จบดุษฎีบัณฑิต จาก Amsterdam University

เมื่อ 24 เมษายน 2013 ในหัวข้อเรื่อง Non AIDS complications and treatment optimizations for HIV-1 infected Thai adult patients with and without TB or Hepatitis โดยได้รวม 2 papers จากโครงการวิจัยนี้ใน thesis book ได้แก่เรื่อง

1. Decline in serum 25-OH vitamin D levels in HIV/hepatitis B virus (HBV) co-infected patients after long term antiretroviral therapy. Antivir Ther 2014;19:41-49

2. Advanced Liver Fibrosis by Transient Elastography, FIB-4 and APRI among Asian Hepatitis C with and without HIV infection: Role of vitamin D levels. J Gastroenterol Hepatol. 2014;29(9):1706-14.

2. นางสาวศิวพร มิตรรักษ์ เลขประจำตัว 547 62246 33 มหาบัณฑิต คณภาพสัชศาสตร์ จุฬาลงกรณ์ เรื่อง ASSOCIATION BETWEEN TENOFOVIR TRANSPORTER POLYMORPHISMS AND TENOFOVIR PLASMA LEVELS ปี 2013

3. นางสาวกนกรัตน์ รุ่งทิวาสุวรรณ มหาบัณฑิต คณภาพสัชศาสตร์ จุฬาลงกรณ์ เรื่อง POPULATION PHARMACOKINETICS OF TENOFOVIR IN THAI HIV-INFECTED PATIENTS ปี 2014 และตีพิมพ์ 1 เรื่อง The influence of ABCC2 and ABCC4 polymorphisms on tenofovir plasma concentrations in Thai HIV-infected patients. Antimicrob Agents Chemother. 2015 Jun;59(6):3240-5

13. บรรณานุกรม

1. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at <http://aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf>. Section accessed on August10,2015
2. Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. *Clin Pharmacokinet* 2004;43:595-612.
3. Roling J, Schmid H, Fischereider M, Draenert R, Goebel FD. HIV-associated renal diseases and highly active antiretroviral therapy-induced nephropathy. *Clin Infect Dis* 2006;42:1488-1495.
4. Barditch-Crovo P, Deeks SG, Collier A, Safrin S, Coakley DF, Miller M, et al. Phase i/ii trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. *Antimicrob Agents Chemother* 2001;45:2733-2739.
5. Hall AM, Hendry BM, Nitsch D, Connolly JO. Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. *Am J Kidney Dis* 2005;45:773-780.
6. Rodriguez-Novoa S, Alvarez E, Labarga P, Soriano V. Renal toxicity associated with tenofovir use. *Expert Opin Drug Saf* 2005;4:545-559.
7. Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD, et al. Mechanism of active renal tubular efflux of tenofovir. *Antimicrob Agents Chemother* 2006;50:3297-3304.
8. Izzedine H, Launay-Vacher V, Deray G. Renal tubular transporters and antiviral drugs: an update. *AIDS* 2005;19:455-462.
9. Labarga P, Barreiro P, Martin-Carbonero L, Rodriguez-Novoa S, Solera C, Medrano J, et al. Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. *Aids* 2009;23:689-696.
10. Izzedine H, Harris M, Perazella MA. The nephrotoxic effects of HAART. *Nat Rev Nephrol* 2009;5:563-573.
11. Cirino CM, Kan VL. Hypokalemia in HIV patients on tenofovir. *AIDS* 2006;20:1671-1673.
12. Verhelst D, Monge M, Meynard JL, Fouqueray B, Mougenot B, Girard PM, et al. Fanconi syndrome and renal failure induced by tenofovir: a first case report. *Am J Kidney Dis* 2002;40:1331-1333.
13. Gallant JE, Parish MA, Keruly JC, Moore RD. Changes in renal function associated with tenofovir disoproxil fumarate treatment, compared with nucleoside reverse-transcriptase inhibitor treatment. *Clin Infect Dis* 2005;40:1194-1198.
14. Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naïve patients: a 3-year randomized trial. *JAMA* 2004;292:191-201.

15. Schooley RT, Ruane P, Myers RA, Beall G, Lampiris H, Berger D, *et al.* Tenofovir DF in antiretroviral-experienced patients: results from a 48-week, randomized, double-blind study. *AIDS* 2002;16:1257-1263.
16. Izzedine H, Hulot JS, Vittecoq D, Gallant JE, Staszewski S, Launay-Vacher V, *et al.* Long-term renal safety of tenofovir disoproxil fumarate in antiretroviral-naive HIV-1-infected patients. Data from a double-blind randomized active-controlled multicentre study. *Nephrol Dial Transplant* 2005;20:743-746.
17. Antoniou T, Raboud J, Chirhin S, Yoong D, Govan V, Gough K, *et al.* Incidence of and risk factors for tenofovir-induced nephrotoxicity: a retrospective cohort study. *HIV Med* 2005;6:284-290.
18. Crane HM, Kestenbaum B, Harrington RD, Kitahata MM. Tenofovir-associated decline in renal function. *J Infect Dis* 2008;198:937; author reply 937-938.
19. Praditpornsilpa K, Townamchai N, Chaiwatanarat T, Tiranathanagul K, Katawatin P, Susantitaphong P, *et al.* The need for robust validation for MDRD-based glomerular filtration rate estimation in various CKD populations. *Nephrol Dial Transplant* 2006;21:2780-2785.
20. Odden MC, Scherzer R, Bacchetti P, Szczech LA, Sidney S, Grunfeld C, Shlipak MG. Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: the FRAM study. *Arch Intern Med* 2007;167:2213-2219.
21. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. *Am J Kidney Dis* 2002;40:221-226.
22. Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. *Am J Kidney Dis* 2005;45:804-817.
23. Badiou S, De Boever CM, Terrier N, Baillat V, Cristol JP, Reynes J. Is tenofovir involved in hypophosphatemia and decrease of tubular phosphate reabsorption in HIV-positive adults? *J Infect* 2006;52:335-338.
24. Essig M, Duval X, Kaied FA, Lordache L, Gervais A, Longuet P, *et al.* Is phosphatemia the best tool to monitor renal tenofovir toxicity? *J Acquir Immune Defic Syndr* 2007;46:256-258.
25. Gatanaga H, Tachikawa N, Kikuchi Y, Teruya K, Genka I, Honda M, *et al.* Urinary beta2-microglobulin as a possible sensitive marker for renal injury caused by tenofovir disoproxil fumarate. *AIDS Res Hum Retroviruses* 2006;22:744-748.
26. Rodriguez-Novoa S, Labarga P, Soriano V. Pharmacogenetics of tenofovir treatment. *Pharmacogenomics* 2009;10:1675-1685.
27. Rodriguez-Novoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J, *et al.* Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. *Clin Infect Dis* 2009;48:e108-116.

28. Rodriguez-Novoa S, Labarga P, D'Avolio A, Barreiro P, Albalate M, Vispo E, *et al.* Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. *AIDS*,24:1064-1066.
29. Fux CA, Christen A, Zgraggen S, Mohaupt MG, Furrer H. Effect of tenofovir on renal glomerular and tubular function. *AIDS* 2007,21:1483-1485.
30. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. *J Acquir Immune Defic Syndr* 2008,47:298-303.
31. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, *et al.* Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. *J Infect Dis* 2006,194:1481-1491.
32. Nishijima T, Komatsu H, Higasa K, Takano M, Tsuchiya K, Hayashida T, *et al.* Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. *Clin Infect Dis*,55:1558-1567.
33. Nishijima T, Kawasaki Y, Tanaka N, Gatanaga H, Oka S. Reply to 'how does weight influence tenofovir disoproxil-fumarate induced renal function decline?' *AIDS*,29:645-647.
34. Nishijima T, Kawasaki Y, Tanaka N, Mizushima D, Aoki T, Watanabe K, *et al.* Long-term exposure to tenofovir continuously decrease renal function in HIV-1-infected patients with low body weight: results from 10 years of follow-up. *AIDS*,28:1903-1910.
35. Nishijima T, Gatanaga H, Komatsu H, Tsukada K, Shimbo T, Aoki T, *et al.* Renal function declines more in tenofovir- than abacavir-based antiretroviral therapy in low-body weight treatment-naive patients with HIV infection. *PLoS One*,7:e29977.
36. Nishijima T, Komatsu H, Gatanaga H, Aoki T, Watanabe K, Kinai E, *et al.* Impact of small body weight on tenofovir-associated renal dysfunction in HIV-infected patients: a retrospective cohort study of Japanese patients. *PLoS One*,6:e22661.
37. Chaisiri K, Bowonwatanuwong C, Kasettratat N, Kiertiburanakul S. Incidence and risk factors for tenofovir-associated renal function decline among Thai HIV-infected patients with low-body weight. *Curr HIV Res*,8:504-509.
38. van der Lught J, Autar RS, Ubolyam S, Garcia EF, Sankote J, Avihingsanon A, *et al.* Pharmacokinetics and short-term efficacy of a double-boosted protease inhibitor regimen in treatment-naive HIV-1-infected adults. *J Antimicrob Chemother* 2008,61:1145-1153.
39. Avihingsanon A, Manosuthi W, Kantipong P, Chuchotaworn C, Moolphate S, Sakornjun W, *et al.* Pharmacokinetics and 48-week efficacy of nevirapine: 400 mg versus 600 mg per day in HIV-tuberculosis coinfection receiving rifampicin. *Antivir Ther* 2008,13:529-536.

40. Avihingsanon A, van der Lught J, Kerr SJ, Gorowara M, Chanmano S, Ohata P, *et al.* A low dose of ritonavir-boosted atazanavir provides adequate pharmacokinetic parameters in HIV-1-infected Thai adults. *Clin Pharmacol Ther* 2009;85:402-408.
41. van der Lught J, Gorowara M, Avihingsanon A, Burger D, Ananworanich J, Sringam K, *et al.* Reducing the boosting dose of ritonavir does not affect saquinavir plasma concentrations in HIV-1-infected individuals. *AIDS* 2009;23:1176-1179.
42. van der Lught J, Lange J, Avihingsanon A, Ananworanich J, Sealoo S, Burger D, *et al.* Plasma concentrations of generic lopinavir/ritonavir in HIV type-1-infected individuals. *Antivir Ther* 2009;14:1001-1004.
43. วรรณพิพา ทองสินมา สร. โครงการ Thailand SNP Discovery[Online] Available from: URL: <http://www.biotec.or.th/biotechnology-th/newsdetail> 2010, Accessed online on August 10, 2015.
44. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. *Am J Kidney Dis* 2002;39:S1-266.
45. National Center for Biotechnology Information. dbSNP short genetic variations [Online]. 2013 [cited 2013 Mar 3]. Available from: URL: <http://www.ncbi.nlm.nih.gov/snp>.
46. Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, *et al.* The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. *Clin Pharmacol Ther* 2008;83:265-272.
47. Calza L, Trapani F, Salvadori C, Magistrelli E, Manfredi R, Colangeli V, *et al.* Incidence of renal toxicity in HIV-infected, antiretroviral-naive patients starting tenofovir/emtricitabine associated with efavirenz, atazanavir/ritonavir, or lopinavir/ritonavir. *Scand J Infect Dis* 2013;45:147-154.
48. Allavena C, Delpierre C, Cuzin L, Rey D, Viget N, Bernard J, *et al.* High frequency of vitamin D deficiency in HIV-infected patients: effects of HIV-related factors and antiretroviral drugs. *J Antimicrob Chemother* 2013;67:2222-2230.
49. Brown TT, McComsey GA. Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. *Antivir Ther* 2010;15:425-429.
50. Cervero M, Agud JL, Garcia-Lacalle C, Alcazar V, Torres R, Jusdado JJ, Moreno Guillen S. Prevalence of vitamin D deficiency and its related risk factor in a Spanish cohort of adult HIV-infected patients: effects of antiretroviral therapy. *AIDS Res Hum Retroviruses* 2010;28:963-971.
51. Childs K, Welz T, Samarawickrama A, Post FA. Effects of vitamin D deficiency and combination antiretroviral therapy on bone in HIV-positive patients. *AIDS* 2012;26:253-262.
52. Conesa-Botella A, Florence E, Lynen L, Colebunders R, Menten J, Moreno-Reyes R. Decrease of vitamin D concentration in patients with HIV infection on a non nucleoside reverse transcriptase inhibitor-containing regimen. *AIDS Res Ther* 2007;7:40.

53. Dao CN, Patel P, Overton ET, Rhame F, Pals SL, Johnson C, *et al.* Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. *Clin Infect Dis*,52:396-405.
54. Fox J, Peters B, Prakash M, Arribas J, Hill A, Moecklinghoff C. Improvement in vitamin D deficiency following antiretroviral regime change: Results from the MONET trial. *AIDS Res Hum Retroviruses*,27:29-34.
55. Fux CA, Baumann S, Furrer H, Mueller NJ. Is lower serum 25-hydroxy vitamin D associated with efavirenz or the non-nucleoside reverse transcriptase inhibitor class? *AIDS*,25:876-878.
56. Gutierrez F, Masia M. The role of HIV and antiretroviral therapy in bone disease. *AIDS Rev*,13:109-118.
57. Kwan CK, Eckhardt B, Baghdadi J, Aberg JA. Hyperparathyroidism and complications associated with vitamin D deficiency in HIV-infected adults in New York City, New York. *AIDS Res Hum Retroviruses*,28:1025-1032.
58. Pasquet A, Viget N, Ajana F, de la Tribonniere X, Dubus S, Paccou J, *et al.* Vitamin D deficiency in HIV-infected patients: associated with non-nucleoside reverse transcriptase inhibitor or efavirenz use? *AIDS*,25:873-874.
59. Welz T, Childs K, Ibrahim F, Poulton M, Taylor CB, Moniz CF, Post FA. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. *AIDS*,24:1923-1928.
60. Welz T, Childs K, Post FA. Do nevirapine and efavirenz affect vitamin D homeostasis similarly? *AIDS*,25:875-876.
61. Fabbriciani G, De Socio GV. Efavirenz and bone health. *AIDS* 2009,23:1181.
62. Holick MF. Vitamin D deficiency. *N Engl J Med* 2007,357:266-281.

Comparisons between validated estimated glomerular filtration rate (GFR) equations and isotopic GFR in HIV patients

Kearkiat Praditpornsilpa^{1,a}, Anchalee Avihingsanon^{1,b,c}, Tawatchai Chaiwatanarat^d, Prachya Chaiyahong^b, Jiratchaya Wongsabut^b, Sasiwimol Ubolyam^b, Adhisabandh Chulakadabba^e, Yingyos Avihingsanon^a, Kiat Ruxrungtham^{b,c}, Kriang Tunsanga^a, Somchai Eiam-Ong^a and Praphan Phanuphak^b

Objective: Understanding how best to measure renal function in HIV-infected patients is critical because estimated glomerular filtration rate (eGFR) in HIV-infected patients can be affected by ethnicity and body composition. We validated the available eGFR equations and compared them to the plasma ^{99m}Tc -diethylenetriaminepentaacetic acid (^{99m}Tc -DTPA) clearance in HIV-infected patients.

Design: Test of diagnostic accuracy.

Methods: 196 HIV-infected patients underwent measuring ^{99m}Tc -DTPA plasma clearance, 5 creatinine-based eGFR equations, cystatin-C GFR and 24-hour urine creatinine clearance(CrCl).

Results: Mean (SD) ^{99m}Tc -DTPA GFR was 117.7 ± 29.2 mL/min per 1.73 m². The reexpressed MDRD, CKD-EPI, re-expressed MDRD formula with Thai racial correction factor, Thai eGFR equation, Cockcroft & Gault, cystatin-C GFR, and 24 hr urine CrCl, underestimated the reference GFR. The bias estimated by the mean of differences \pm the limits of agreement for the re-expressed MDRD equation, CKD-EPI, re-expressed MDRD formula with Thai racial correction factor, Thai eGFR, Cockcroft & Gault, cystatin C, and 24 hr urine CrCl can be expressed as 18.9 ± 27.3 , 11.1 ± 25.5 , 6.2 ± 28.8 , 13.5 ± 27.0 , 30.4 ± 28.0 , 3.2 ± 36.1 , and 5.0 ± 12.1 mL/min per 1.73 m² respectively.

Conclusion: The available eGFR equations underestimated GFR in HIV-infected adults. However, the eGFR by cystatin C GFR was the most precise and accurate. Among Cr-based eGFR equations, re-expressed MDRD formula with Thai racial correction factor was the most precise and accurate. The racial factor for each ethnicity is important and the existing eGFR equation should be validated before using it in the HIV population.

© 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins

AIDS 2012, 26:000–000

Keywords: ^{99m}Tc -DTPA GFR, eGFR equation, glomerular filtration rate, HIV-infected patients, race

^aDivision of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, ^bHIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center, Bangkok, ^cDivision of Allergy and Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, ^dDepartment of Radiology, Faculty of Medicine, Chulalongkorn University, and ^eDepartment of Surgery, Faculty of Medicine, Chulalongkorn University.

Correspondence to Kearkiat Praditpornsilpa MD, Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand 10330.

Tel: +662 2526920; fax: +662 2526920; e-mail: kearkiat.p@md.chula.ac.th

¹ contributed equally.

Received: 20 February 2012; revised: 22 May 2012; accepted: 24 May 2012.

DOI:10.1097/QAD.0b013e328356480d

Introduction

Antiretroviral therapy (ART) has significantly reduced mortality and progression to AIDS. Instead, complications of long-standing HIV infection and treatment, including renal disease, have become increasingly important. Aging, concomitant metabolic diseases, and use of potentially nephrotoxic ART can lead to higher risks for developing renal diseases in HIV-infected people; therefore, it is critical that physicians have the best tool to measure renal function in HIV-infected patients. However, there is no clear guidance which tool is the most appropriate for measuring the renal function in patients with HIV.

Physicians who treat HIV-infected patients are concerned whether the calculated eGFRs derived from non-HIV population are precise and accurate in assessing HIV-associated chronic kidney disease (CKD) because the body compositions of HIV and non-HIV patients vary. None of the methods used to date have been well validated in HIV-infected Asian patients. Since all of the GFR measuring tools were validated in HIV-negative caucasians and blacks (African Americans) [1–4], therefore its use in other ethnic groups casts doubt to its appropriateness. Even though ^{99m}Tc DTPA plasma clearance is highly accurate and is the gold standard for GFR assessment, it is impractical to scale up in resource-limited settings. The serum creatinine is the simplest method but its inability to detect early decline of the renal function is its major pitfall [5]. Serum cystatin C is more expensive than serum creatinine and the effect of HIV replication may limit its use in this population [6]. The calculated methods for GFR may be the best tool for use in resource-limited settings because it does not require the use of sophisticated equipments nor has any other additional expenses aside from serum creatinine tests. Each of the equations has its own pitfall but the most important issue is that it has not been well validated in HIV-infected patients, especially Asians. The Cockcroft-Gault (CG) method [7] is the most commonly used because it is easy to calculate. Lately, there is increasing evidence suggesting that the Modification of Diet in Renal Disease (MDRD) [1,3] and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) [4] may be more accurate in assessing GFR in caucasians and African Americans yet in Asians, the MDRD tends to overestimate the prevalence of renal disease [8]. As a result of this, Praditpornsilpa K *et al.* [9] proposed a racial factor for Thais that appears to give a more accurate GFR measurement, at least in HIV-negative patients.

Aside from that, this adjusted eGFR measurement can be used to monitor the deterioration rate of the renal function so physicians can change the dose of ART to prevent CKD/ESRD. Therefore, this study validated all of the available methods used to assess renal function (re-

expressed MDRD formula, CKD-EPI equation, re-expressed MDRD formula with Thai racial factor correction, Thai eGFR equation, Cockcroft & Gault, and cystatin C GFR) in ARV drug experienced HIV-infected patients and compared the results to the gold standard of ^{99m}Tc DTPA plasma clearance.

Materials and methods

Patients

The study was approved by the Ethical Committee for Research, Chulalongkorn University, Bangkok, Thailand. All patients have provided written informed consent. This study was conducted in accordance with the Declaration of Helsinki. Stable HIV-infected adults > 18 years old, followed up by HIV-NAT (The Netherlands Australia and Thailand Collaboration in HIV Research), Bangkok, Thailand, were recruited into the study. The study was conducted in an ambulatory setting and began at 08:00–09:00 AM to avoid the diurnal variations in the renal function. Patients with acute deterioration of the renal function, amputation, malnutrition ($\text{BMI} < 18 \text{ kg/m}^2$), in a bedridden state, with infection, in an edematous state, gastrointestinal bleeding, heart failure, or were hospitalized were excluded. Women of childbearing age without a reliable contraceptive method, patients on renal replacement therapy, patients taking methyldopa, levodopa, ascorbic acid, cimetidine, trimethoprim, antibiotics, steroids, or flucytosine were also excluded.

Clinical data and body composition assessment

Body composition was assessed by bioimpedance analysis (BIA) using Body Composition Analyzer (In Body S20, Biospace, Korea). Skeletal muscle mass, body fat mass, and total body water were analyzed. Body weight (BW), height, blood pressure were recorded.

Reference GFR measurement

The reference GFR was determined by plasma collected at 10 different time points by using the ^{99m}Tc -DTPA plasma clearance method which was performed at the Department of Radiology, Chulalongkorn University. ^{99m}Tc -DTPA was purchased from the Office of Atoms for Peace, Bangkok, Thailand, with a radiopurity of $> 95\%$ and ^{99m}Tc -DTPA bound to plasma protein of $< 5\%$. The same protocol was applied to all patients. In brief, heparin lock was inserted in the arm to obtain blood samples to determine the radioactivity background and for the serum creatinine assay. A single intravenous bolus of ^{99m}Tc -DTPA was injected into each patient. Blood specimens were drawn to assess plasma radioactivity at 5, 10, 20, 30, 60, 90, 120, 180, and 240 minutes post ^{99m}Tc -DTPA injection. Plasma radioactive activities were then plotted as a function of time to create a time-activity

curve to calculate for GFR. The GFR equation was determined by using bi-exponential fitting method [10]:

$$GFR = \frac{D}{\text{area under time - activity curve}} = \frac{D}{\int_0^\infty c(t)dt},$$

D is the dosage of injected ^{99m}Tc -DTPA. The result was normalized by the body surface area which was calculated according to Dubois and Dubois [11]. Reference GFR by ^{99m}Tc -DTPA plasma clearance were read by a radiologist who was blinded to the clinical status and laboratory results of the patients.

Calibration for the serum creatinine assay

Fasting serum creatinine was measured by using a Roche Diagnostics (Indianapolis, IN, US) CREA plus (11775642) enzymatic assay (Cr_{Enz}), on a COBAS, INTRGRA 400 plus analyzer. The measured Cr_{Enz} values were adjusted by using traceable high-level IDMS reference serum creatinine, as recommended by the National Kidney Disease Education Program. The IDMS reference serum creatinine (SRM 967) was purchased from the National Institute of Standards and Technology. The certified concentration values for serum creatinine were $0.847 \pm 0.018 \text{ mg/dL}$ for level 1 and $3.877 \pm 0.082 \text{ mg/dL}$ for level 2. The coefficient of variation for the serum creatinine assay was 1.21%.

Cystatin C

Serum for cystatin C levels was collected at the time of serum creatinine collection. Cystatin C was measured by a particle Enhanced Turbidimetric ImmunoAssay (PETIA) (ARCHITECT *c* Systems and AEROSET Cystatin C Reagent, Abbott Diagnostics). The coefficient of variation for the serum cystatin C assay was 1.17%.

eGFR calculation for the Thai HIV population

The eGFR values were calculated by using the re-expressed MDRD equation, CKD-EPI equation, re-expressed MDRD equation with Thai racial factor correction, Thai eGFR equation, Cockcroft & Gault formula, and cystatin C GFR [12] (Table 1).

Table 1. eGFR equations.

eGFR Methods	Gender	Serum Cr	Equations
Re-expressed MDRD equation [3]	-	Cr_{Enz}	$175 \times (\text{Cr}_{\text{Enz}})^{-1.154} \times (\text{Age})^{-0.203} \times 0.742 \text{ if female}$
CKD-EPI equation [4]	Female	$\text{Cr}_{\text{Enz}} \leq 0.7 \text{ mg/dL}$	$144 \times (\text{Cr}_{\text{Enz}}/0.7)^{-0.329} \times (0.993)^{\text{Age}}$
	Female	$\text{Cr}_{\text{Enz}} > 0.7 \text{ mg/dL}$	$144 \times (\text{Cr}_{\text{Enz}}/0.7)^{-1.209} \times (0.993)^{\text{Age}}$
	Male:	$\text{Cr}_{\text{Enz}} \leq 0.9 \text{ mg/dL}$	$141 \times (\text{Cr}_{\text{Enz}}/0.9)^{-0.411} \times (0.993)^{\text{Age}}$
	Male:	$\text{Cr}_{\text{Enz}} > 0.9 \text{ mg/dL}$	$141 \times (\text{Cr}_{\text{Enz}}/0.9)^{-1.209} \times (0.993)^{\text{Age}}$
Re-expressed MDRD equation with Thai racial factor [9]	-	Cr_{Enz}	$175 \times \text{Cr}_{\text{Enz}}^{-1.154} \times \text{Age}^{-0.203} \times 0.742 \text{ (if female)} \times 1.129 \text{ if Thai}$
Thai eGFR equation [9]	-	Cr_{Enz}	$375.5 \times (\text{Cr}_{\text{Enz}})^{-0.848} \times (\text{Age})^{-0.364} \times 0.712 \text{ (if female)}$
Cockcroft & Gault equation [7]	-	Cr_{Enz}	$[(140-\text{age}) \times \text{BW} / \text{Cr}_{\text{Enz}} \times 72] / \text{BSA} \times 0.85 \text{ if female}$
Cystatin C GFR [12]	-	-	$86.7 / \text{cystatin C}^{-4.2}$

Urine 24-hour collection

Urine was collected over a 24-hr period which included the morning when ^{99m}Tc DTPA plasma clearance GFR was measured. Verbal and written instructions on appropriate collection technique were provided to the patients beforehand. Container for urine collection was provided to each patient. Urine collection was performed at home 1 day prior the day of radioisotope GFR. Creatinine clearance (CrCl) was calculated by using this equation: $\text{CrCl} = (\text{Urine creatinine} / \text{Serum creatinine}) \times (\text{urine volume} / \text{time of the actual collection})$. CrCl estimations were adjusted for BSA.

Statistical analysis

Bland-Altman plots were used to assess the agreement between eGFR and reference GFR [13]. The regression of the average and the difference between the reference GFR and eGFR (reference GFR minus eGFR) were analyzed. Statistical analysis was performed by using MedCalc Software version 10 (Mariakerke, Belgium) and SAS/STAT software version 9.3 (SAS Institute, Cary, NC, USA).

Results

Characteristics of the patients

A total of 208 HIV-infected cases were studied; 12 cases were excluded because of the leakage of radioisotope during the plasma isotope clearance study. 196 cases [10 anti-retrovirus (ARV) naïve and 186 well suppressed HIV; 43% were female] were included in this analysis (Table 2). The average exposure to ARV was 8.6 ± 3.5 years. The mean (SD) viral load was $2,647.9 \pm 18,590.2$ copies/ml, and only 10 subjects (ARV naïve) had viral load > 50 copies/mL. The mean (SD) CD4 count was 610.3 ± 241.5 cells/ μL ; none of the patients had $\text{CD4} < 200$ cells/ μL . The averages of the body mass index (BMI) and body surface area (BSA) were $22.3 \pm 3.2 \text{ kg/m}^2$ and $1.63 \pm 0.18 \text{ m}^2$, respectively. Only 15% of the patients had a BMI in the overweight ($> 25 \text{ kg/m}^2$) range. Fifty-five percent, 44% and 59% of them were classified as having low skeletal muscle mass, high body fat mass and

Table 2. Characteristics of patients enrolled in the study.

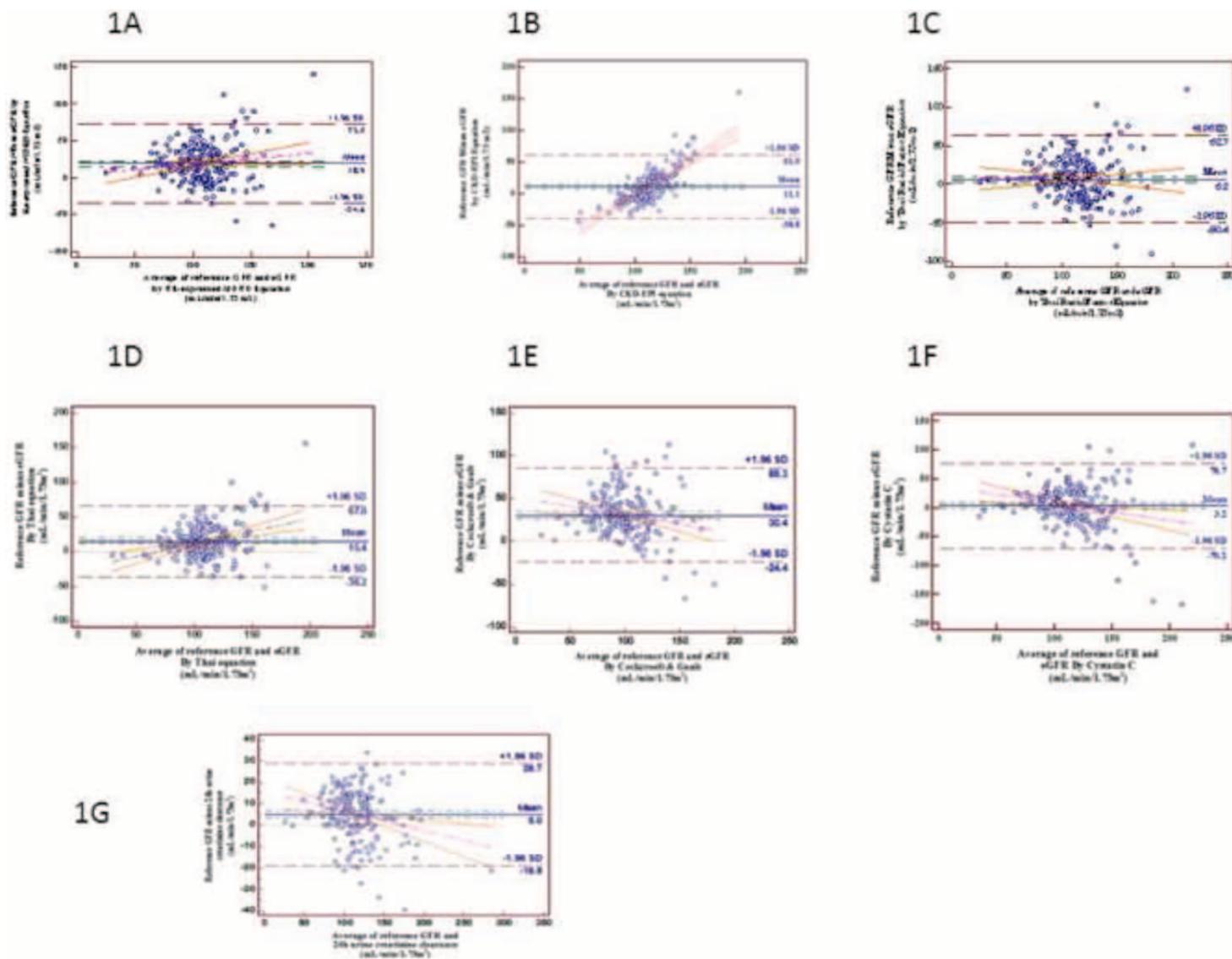
	Mean \pm SD	Median
Age (years)	43.6 \pm 7.8	43.2
Body weight (kg)	59.0 \pm 10.9	56.6
Height (meter)	1.63 \pm 0.82	1.62
ARV vintage (years)	8.6 \pm 3.5	8.7
HIV Viral load (copies/ml)	2,647.9 \pm 18,590.2	50.0
CD4 count (cells/uL)	610.3 \pm 241.5	585.5
CD4 (%)	28.0 \pm 7.8	24.0
BMI (kg/m ²)	22.3 \pm 3.2	21.9
BSA (m ²)	1.63 \pm 0.18	1.60
Skeletal muscle mass (kg)	24.6 \pm 5.6	23.9
Body fat mass (kg)	13.7 \pm 6.5	13.1
Fat free mass (kg)	45.0 \pm 9.2	44.2
Soft lean mass (kg)	42.5 \pm 8.7	41.5
MAP (mmHg)	91.0 \pm 11.5	90
BUN (mg/dL)	12.41 \pm 4.96	12.00
Serum creatinine (mg/dL)	0.91 \pm 0.29	0.90
Urine protein (mg/day)	439.6 \pm 1095.7	220.0
Total cholesterol (mg/dL)	204.1 \pm 45.9	196
Serum triglyceride (mg/dL)	152.0 \pm 96	119
HDL (mg/dL)	50.9 \pm 16.6	49
Plasma glucose (mg/dL)	92.1 \pm 25.1	87.0
Serum phosphate (mg/dL)	3.52 \pm 0.53	3.50

high body fat percent, respectively. The mean Cr_{Enz} was 0.91 ± 0.29 mg/dL (95% confidential interval (95% CI) of 0.86 to 0.95 mg/dL). The mean reference GFR (^{99m}TcDTPA) was 117.7 ± 29.2 mL/min/1.73 m² (95% CI of 113.6 to 121.8 mL/min /1.73 m²). One hundred and sixty-seven patients (85%) had an isotope GFR of > 90 mL/min/1.73² and only 2% had low isotope GFR of < 60 mL/min/1.73 m². Diabetes mellitus and hypertension were found in a minority of the patients (7% and 15%, respectively). None of them were on ganciclovir, adefovir, and cidofovir 6 months prior to this study.

Assessing the agreement between eGFR values from different equations and reference GFR

The bias estimated by the mean of differences \pm the limits of agreement for the re-expressed IDMS traceable MDRD equation was 18.9 ± 27.3 , 11.1 ± 25.5 for CKD-EPI, 6.2 ± 28.8 for re-expressed MDRD formula with Thai racial correction factor, 15.4 ± 27.0 for Thai eGFR, 30.4 ± 28.0 for Cockcroft & Gault, 3.2 ± 36.1 for cystatin C GFR and 5.0 ± 12.1 mL/min per 1.73 m² for CrCL by 24 hr urine (Fig. 1). The slope of the bias regression line between the reference GFR and the eGFR by re-expressed IDMS traceable MDRD equation was 0.15, 1.06 for CKD-EPI, 0.01 for re-expressed MDRD formula with Thai racial correction factor, 0.29 for Thai eGFR, 0.36 for Cockcroft & Gault, 0.17 for cystatin C GFR, and 0.09 for CrCL by 24 hr urine (Table 3). Reexpressed MDRD equation with Thai racial correction factor had the least slope (0.01) which can be interpreted that at each GFR, the bias was the most evenly distributed and was almost constant at 6.2 mL/min/1.73 m² (Fig. 1c).

The correlation of each equation varied by 0.81 for the re-expressed MDRD equation, 0.85 for the CKD-EPI equation, 0.92 for the re-expressed MDRD equation


with Thai racial correction factor, 0.86 for the Thai eGFR equation, 0.73 for the Cockcroft & Gault, 0.89 for the cystatin C GFR, and 0.96 for the CrCl by the 24-hr urine.

The number of eGFR estimates that fell within 30% of measured GFR was 74% by re-expressed MDRD equation, 80% by CKD-EPI equation, 84% by re-expressed MDRD equation with Thai racial correction factor, 84% by Thai eGFR equation, 53% by Cockcroft & Gault, 84% by cystatin C GFR, and 100% by CrCl by the 24-hr urine.

Discussion

HIV infection remains incurable and indefinite ART is often limited by drug toxicity. Renal toxicity is a major cause for morbidity and mortality in HIV-infected patients. HIV infection is also a risk factor for CKD. Since kidney disease tends to be silent during the initial stages, therefore an accurate and reliable tool for measuring GFR in HIV-infected patients is urgently needed globally to properly monitor and manage HIV- and ART-related renal diseases. A recent study showed high prevalence of CKD in HIV population [14]. The exposure to ARV is a unique risk factor for HIV population. Certain ARVs have been shown to be nephrotoxic and can cause renal stone disease as well as chronic tubulointerstitial disease. The expansion of HIV population and the success of HIV treatment can extend the lives of the patients that over time, some of them may develop CKD and progress to ESRD which will ultimately impact all health care services. It is important to find a reliable tool to calculate/measure GFR so physicians can detect patients at risk for developing CKD. In addition, if this tool can accurately monitor the deterioration rate of the renal function so that doses of ART can be reduced, this will significantly help prevent the disease from occurring.

The re-expressed MDRD eGFR equation has been developed primarily for Caucasians and African-Americans with CKD [1–4]. Recent studies have shown that the calculation of eGFR derived from a race without prior validation will result in inaccurate estimations of GFR unless a racial factor is added to the equation to provide a more precise estimation [5–7]. Even though various eGFR equations have been studied in different races, the validation data have not been well studied in a large HIV population, especially in Asians. Our study has a large sample size (N = 196) and is one of the first of its kind to compare various equations of estimated GFR against the radioisotope plasma clearance GFR in HIV-infected patients from Asia. The majority (95%) of the patients from the study's cohort are on ART and their HIV RNA are well suppressed (VL < 50 copies/mL).

Fig. 1. Bland-Altman plots of eGFR values calculated by different equations and the reference GFR which was used to show the disagreement between the equation and the reference. The mean bias and ± 1.96 SD are represented by the horizontal lines. The disagreement of different equations (a); re-expressed MDRD equation, (b); CKD-EPI equation, (c); re-expressed MDRD equation with Thai racial factor correction, (d); Thai eGFR equation, (e); Cockcroft & Gault, (f); cystatin C GFR, and (g); CrCL by 24 hr urine are shown by the regression trend of the difference and the mean bias of the eGFRs towards the reference GFR.

Table 3. The means of reference GFR and eGFR calculated by the different eGFR equations, the bias between mean and reference GFR, the range, and slope of the bias line are shown.

	Mean GFR \pm SD (mL/min/1.73m ²)	Mean bias \pm SD (mL/min/1.73m ²)	Lower limit (mL/min/1.73m ²)	Upper limit (mL/min/1.73m ²)	Slope of bias line by Bland-Altman plot
Reference GFR	117.7 \pm 29.2	NA	NA	NA	NA
eGFR by reexpressed MDRD	98.7 \pm 26.1	18.9 \pm 27.3	-34.8	72.5	0.15
eGFR by CKD-EPI equation	106.6 \pm 11.9	11.1 \pm 25.5	-38.8	61.0	1.06
eGFR by Thai racial factor	111.5 \pm 29.5	6.2 \pm 28.8	-50.4	62.7	0.01
eGFR by Thai equation	104.1 \pm 23.4	15.4 \pm 27.0	-39.4	66.5	0.29
Cockcroft & Gault	86.4 \pm 29.2	30.4 \pm 28.0	-24.4	85.3	0.36
eGFR by Cystatin C	114.0 \pm 36.1	3.2 \pm 36.1	-70.2	76.7	0.17
CrCl by 24 hr urine	112.3 \pm 31.4	5.0 \pm 12.1	-18.8	28.7	0.09

Some of the patients are overweight but many have abnormal body compositions due to ART-related lipodystrophy, resulting in low skeletal mass and high body fat mass.

We demonstrated that the expressed MDRD, CKD-EPI, re-expressed MDRD formula with Thai racial correction factor, Thai eGFR equation, cystatin C GFR, and 24-hr urine CrCl underestimated the reference GFR. The application of re-expressed MDRD and CKD-EPI equations derived from non HIV-CKD population had a bias of 18.9 mL/min/1.73 m² and 11.1 mL/min/1.73 m² respectively. The spread of the bias between the reference GFR and the eGFR by CKD-EPI was not evenly distributed (Fig. 1b). When GFR was less than 110 mL/min/1.73m² or more than 110 mL/min/1.73 m², the eGFR from the CKD-EPI overestimated or underestimated the reference GFR, respectively. From all of the serum creatinine based eGFR equations, the re-expressed MDRD equation with Thai racial factor correction was the only equation that had the least bias of 6.2 mL/min/1.73 m² and an evenly distributed spread of bias. Therefore the re-expressed MDRD equation with Thai racial factor correction is more applicable to Thai HIV-CKD population. Our data agrees with Barracough *et al.*'s [15] data which showed that the MDRD formula was the most precise method for Caucasians infected with HIV.

The racial factor for each ethnicity is important. Recently, our group did a study in 350 HIV-uninfected patients with various CKD stages [16]. We found that differences in ethnicity significantly affected the results of the MDRD-based eGFR equation and the racial factor for Thais was 1.129. When we used the adjusted MDRD equation with Thai racial factor on our HIV-infected population with an abnormal body composition but well-preserved kidney function compared to the uninfected population, GFR estimation was precise and accurate. This study showed that re-expressed MDRD equation with Thai racial factor can precisely and accurately be used in Thais with or without HIV infection.

The performance of the MDRD with Thai racial factor suggests that this equation is suitable for GFR estimation

in our HIV-infected population. However, this formulation may not be applicable for all HIV-infected Asians because other studies conducted in Chinese [17,18] and Japanese [19–21] non-HIV-infected population have different racial factors of 1.23 and 0.88, respectively. This discrepancy within the Asian population makes it difficult to adopt a universal eGFR equation/racial corrected factor. It is unknown whether the body composition or the differences in determining the reference GFR method affected this disparity in eGFR equation and racial corrected factor for the MDRD-based GFR among Asians. The reference GFR from the Japanese study was obtained from using renal clearance of inulin whereas for the Chinese study, ^{99m}Tc DTPA was used. The techniques used in the Chinese study is similar to our group but we incorporated 10 time points within the 4 hours period instead of using only 2 time points as in the Chinese study. Furthermore, we performed all isotopic measurements at the same time during the day for all patients to avoid diurnal GFR variation.

Our data supports Bonjoch *et al.* [22] who reported that cystatin C had the least bias compared to serum creatinine based eGFR equations in estimating isotopic GFR when used in 15 HIV-infected patients. The drawback of using cystatin C is that it is not standardized even though its use as a biomarker for renal function is increasing. It has been shown that there are systematic shifts in cystatin C levels [23] and standardization is necessary before it can be systematically and routinely utilized in the clinical setting. Following cystatin C GFR, the second less biased technique is the use of CrCl by 24-hr urine collection. Unfortunately, 24-hr urine collection is the most impractical and difficult method to be used routinely in clinical practice; its precise collection of the urine has made this method unattractive.

The strength of this study is its large sample size as well as intensive measurements of isotopic GFR (10 time points). This data can also be applied to females as 43% of the patients in the study were females. Aside from that, the present study is representative for both HIV with and without lipodystrophy/abnormal body composition.

The primary limitation of this study is that the results may not be generalizable to non-Thais and very few participants with impaired kidney function were included, therefore the comparison at lower levels of kidney function may be less reliable. In addition, most of the patients had high CD4 and undetectable VL or well-controlled HIV suppression so this data may not be applicable to patients with a more profound immunodeficiency or AIDS-related wasting.

In conclusion, we have proved that there is a need for the racial correction factor for the creatinine based eGFR equation for both non-HIV CKD and HIV population. Therefore, it is highly and strongly recommended that the existing creatinine based eGFR equations should be validated before using it in both non-HIV CKD and HIV population in epidemiologic studies and in the clinical setting.

Acknowledgements

Conflicts of interest

This study was funded by the Thai Research Fund: Grant # RMU538004, Chulalongkorn University: Grant # H-19-79-53 and amfAR/TreatAsia: Grant # 107933-48. We would like to thank Chantip Klaowmee, Thidarat Jumpimai, Napassanant Laopraynak and Pirapon June Ohata for their input and assistance on this manuscript.

Author contributions: Conception and study design, obtain funding, and interpretation of the data were done by K.P. and A.A.

99m Tc-DTPA GFR was done by T.C.

Acquisition of data was done by P.C., J.W., and S.U.,

Bioimpedance analysis was done by A.C.

Review of manuscript was done by Y.Y., K.R., K.T., S.E., and P.P.

All authors declare that there are no conflict of interest.

References

- Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. *Ann Intern Med* 1999; **130**:461-470.
- Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. *Clin Chem* 2007; **53**:766-772.
- Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. *Ann Intern Med* 2006; **145**:247-254.
- Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. *Ann Intern Med* 2009; **150**:604-612.
- Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. *Clin Chem* 1992; **38**:1933-1953.
- Mauss S, Berger F, Kuschak D, Henke J, Hegener P, Wolf E, et al. Cystatin C as a marker of renal function is affected by HIV replication leading to an underestimation of kidney function in HIV patients. *Antivir Ther* 2008; **13**:1091-1095.
- Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. *Nephron* 1976; **16**:31-41.
- Perkovic V, Cass A, Patel AA, Suriyawongpaisal P, Barzi F, Chadban S, et al. High prevalence of chronic kidney disease in Thailand. *Kidney Int* 2008; **73**:473-479.
- Praditpornsilpa T, Chawatanarat T, Wathanavaha A, Pansin P, Tirananthalangkul K, Katawatian P, et al. Differences in the Racial Factor for MDRD-Based Glomerular Filtration Rate Estimation in Different CKD Populations. World Congress of Nephrology 2009 Milan, Italy May 22-26, 2009.
- Sainsbury EJ, Ashley JJ. Curve-fitting in pharmacokinetics—a comparison between gamma- and biexponential fits. *Eur J Clin Pharmacol* 1986; **30**:243-244.
- Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916.. *Nutrition* 1989; **5**:303-311; discussion 312-303.
- Macisaac RJ, Tsalamandris C, Thomas MC, Premaratne E, Panagiotopoulos S, Smith TJ, et al. Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C- and creatinine-based methods. *Diabetologia* 2006; **49**:1686-1689.
- Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. *Lancet* 1986; **1**:307-310.
- Menezes AM, Torelly J Jr, Real L, Bay M, Poeta J, Sprinz E. Prevalence and risk factors associated to chronic kidney disease in HIV-infected patients on HAART and undetectable viral load in Brazil. *PLoS One* 2011; **6**e26042.
- Barracough K, Er L, Ng F, Harris M, Montaner J, Levin A. A comparison of the predictive performance of different methods of kidney function estimation in a well-characterized HIV-infected population. *Nephron Clin Pract* 2009; **111**:c39-c48.
- Praditpornsilpa K, Townamchai N, Chawatanarat T, Tirananthalangkul K, Katawatian P, Susantapong P, et al. The need for robust validation for MDRD-based glomerular filtration rate estimation in various CKD populations. *Nephrol Dial Transplant* 2011.
- Ma YC, Zuo L, Zhang CL, Wang M, Wang RF, Wang HY. Comparison of 99m Tc-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in Chinese patients in different stages of chronic kidney disease. *Nephrol Dial Transplant* 2007; **22**:417-423.
- Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. *J Am Soc Nephrol* 2006; **17**:2937-2944.
- Imai E, Horio M, Nitta K, Yamagata K, Iseki K, Tsukamoto Y, et al. Modification of the Modification of Diet in Renal Disease (MDRD) Study equation for Japan. *Am J Kidney Dis* 2007; **50**:927-937.
- Imai E, Horio M, Nitta K, Yamagata K, Iseki K, Hara S, et al. Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. *Clin Exp Nephrol* 2007; **11**:41-50.
- Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. *Am J Kidney Dis* 2009; **53**:982-992.
- Bonjoch A, Bayes B, Riba J, Puig J, Estany C, Perez-Alvarez N, et al. Validation of estimated renal function measurements compared with the isotopic glomerular filtration rate in an HIV-infected cohort. *Antiviral Res* 2010; **88**:347-354.
- Maahs DM, Jalal D, McFann K, Rewers M, Snell-Bergeon JK. Systematic shifts in cystatin C between 2006 and 2010.. *Clin J Am Soc Nephrol* 2011; **6**:1952-1955.

HEPATOLOGY

Advanced liver fibrosis by transient elastography, Fibrosis 4, and alanine aminotransferase/platelet ratio index among Asian hepatitis C with and without human immunodeficiency virus infection: Role of vitamin D levels

Anchalee Avihingsanon,^{*,†} Salyavit Jitmitraparp,[‡] Pisit Tangkijvanich,[‡] Reshmie A. Ramautarsing,^{*,§} Tanakorn Apornpong,^{*} Supunee Jirajariyavej,[¶] Opass Putcharoen,^{**} Sombat Treeprasertsuk,^{††} Srunthron Akkarathamrongsin,^{‡‡} Yong Poovorawan,^{‡‡} Gail V Matthews,^{§§} Joep MA Lange,^{*,§} Kiat Ruxrungtham^{*,†} and HIV-NAT125 study team

*HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), The Thai Red Cross AIDS Research Center, [†]Divisions of Allergy and Immunology, ^{**}Infectious Disease, and ^{††}Gastroenterology, Department of Medicine, [‡]Department of Biochemistry, ^{‡‡}Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, and [¶]Taksin Hospital, Bangkok, Thailand; [§]Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands; and ^{§§}Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia

Key words

APRI, Fib-4, genotype 3, genotype 6, hepatitis C, HIV/hepatitis C co-infection, liver fibrosis, Thailand, vitamin D.

Accepted for publication 14 March 2014.

Correspondence

Dr Anchalee Avihingsanon, HIV-NAT, The Thai Red Cross AIDS Research Center, 104 Rajdumri Road, Pathumwan, Bangkok 10330, Thailand. Email: Anchalee.A@hivnat.org

Conflict of interest: All authors declare no conflict of interest.

Clinical trial number: NCT01138241.

This study was partly presented at the 20th Conference on Retroviruses and Opportunistic Infection, March 3–6, 2013 Atlanta, GA, USA, abstract number P121.

Abstract

Background and Aim: Vitamin D insufficiency plays an important role in liver fibrosis in hepatitis C virus (HCV)-infected patients. We assessed liver fibrosis by transient elastography and 25 hydroxy vitamin D [25(OH)D] status in HCV-infected patients, with (HIV/HCV) or without HIV co-infection (HCV) from Thailand.

Methods: Fibrosis stage was defined as mild (< 7.1 kPa); moderate (7.2–9.4 kPa); severe (9.5–14 kPa), and cirrhosis (> 14 kPa). Hypovitaminosis D was defined as 25(OH)D < 30 ng/mL. Logistic regression analyses were used to assess predictors for significant fibrosis. Serum 25(OH) D levels, HCV genotypes (GT), interleukin-28B (IL28B) and HCV-RNA were assessed.

Results: A total of 331 HCV and 130 HIV/HCV patients were enrolled (70% male, 35% people who inject drugs [PWIDs]). HCV GT distribution was as follows: GT3 47%, GT1 34%, GT6 17%. IL-28B CC genotype (rs12979860) were found in 88% of HIV/HCV and 85% of HCV. In HCV, liver fibrosis was mild in 56.5%; moderate in 18.4%; severe in 12.4%; and cirrhosis in 12.7%. In HIV/HCV, these figures were 30.6%, 27.8%, 17.6%, and 24.1%, respectively. Patients with significant fibrosis were more often male, older, with HIV infection, hypovitaminosis D, and less likely to be infected with GT6. Factors associated with significant fibrosis by multivariate analysis were HIV infection (adjusted odd ratio [95% confidential interval]: 2.67, 1.20–5.93), $P = 0.016$, Fib-4 score > 1.45 (6.30, 2.70–14.74), $P < 0.001$, and hypovitaminosis D (2.48, 1.09–5.67), $P = 0.031$. GT 6 was less likely to have advanced liver fibrosis (0.17, 0.05–0.65), $P = 0.01$.

Conclusions: HIV infection, Fib-4 score > 1.45, and hypovitaminosis D are strong and independent predictors for the presence of advanced fibrosis in our HCV-infected patients. These data highlight the urgent need of HCV treatment and vitamin D supplement in resource-limited settings.

Introduction

Since the widespread availability of combination antiretroviral therapy (cART), there has been a dramatic decline in HIV/AIDS-related morbidity/mortality, and significant increase in the life expectancies of HIV-infected patients worldwide.¹ However, the improved survival after effective cART has been associated with higher mortality and morbidity rates contributable to chronic

infection with hepatitis C virus (HCV) which is increasing.^{2–4} This is especially problematic for resource-limited settings (RLS), where treatment of HCV is generally not easily accessible. HIV has a negative impact on the natural history of HCV, and compared with HCV mono-infected patients, HIV/HCV co-infected patients have a more rapid progression from chronic-active-hepatitis-to-liver-cirrhosis, end-stage liver disease, liver cancer, and death.⁵

Factors that contribute to the rapid development of liver fibrosis/cirrhosis among HIV/HCV co-infected patients are males, acquiring HCV at an older age, heavy alcohol consumption, low CD4 cell count, HCV genotype 3 and insulin resistance.^{6–12} Studies from HCV genotype 1, HIV/HCV co-infection have found that low serum levels of 25-OH-vitamin D [25(OH)D] are associated with severe liver fibrosis^{13,14} and lower HCV treatment response.^{14,15} However, these data were obtained mostly from resource-rich countries and may not be applicable in Asia where the financial status, behavior, culture, modes of HCV acquisition and HCV genotype distribution are different. Presently, factors associated with liver fibrosis in HIV/HCV co-infection and HCV mono-infection in RLS have not been well-characterized.

Management of HCV-related liver disease is based on staging of liver fibrosis assessed by liver biopsy. This limits the ability to assess the presence of fibrosis in RLS because liver biopsies are not easily accessible. HIV co-infection forms an additional barrier to access to liver biopsy because of widespread HIV stigmatization in many settings in Thailand. Therefore, little is currently known about the prevalence of liver fibrosis in Asia. An alternative non-invasive tool to measure the degree of liver fibrosis is transient elastography (FibroScan, TE, Echosens, Paris, France), which has been validated in both HCV mono-infected and HIV/HCV co-infected patients.¹⁶ This is a promising tool in RLS to assess the presence of liver fibrosis among HCV-infected patients with/without HIV co-infection without the need for liver biopsy.

In the present study, we investigated the prevalence of different stages of liver fibrosis among untreated HCV-infected patients, with/without HIV co-infection. Predictors for the presence of liver fibrosis included serum 25(OH)D levels, HCV genotypes, IL28B and HCV-RNA.

Material and methods

Study design and participants. Chronic HCV (at least two occasions more than 6 months apart) with and without HIV were enrolled from Taksin Hospital, Chulalongkorn Memorial Hospital, and HIV-NAT, Thailand. Study protocol was approved by Institutional Review Board, Faculty of Medicine, Chulalongkorn University. All patients gave written consent. Basic characteristics included age, sex, risk category for HCV infection and for HIV infection if applicable, history of alcohol use, body weight (BW), body mass index (BMI), history of antiretroviral agents (ARV) use among those co-infected with HIV/HCV, calcium and vitamin D intake, and history of bone fracture. Duration of HCV infection was estimated by using the first reported exposure as the start of infection, e.g. first time the person shared used needles if PWIDs (people who inject drugs), first time of receiving blood products, first time of needle stick injury if health-care workers and/or first time of unprotected sex.

Samples for HCV-RNA, HCV genotyping and IL28B were collected between June 2010 and April 2012. Blood was drawn after 10 h of fasting to assess CD4 count, HIV-RNA, complete blood count, glucose, lipid panels, serum creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), 25(OH)D levels, and HBV. Tests for anti-HCV antibody were repeated using chemiluminescent microparticle immunoassay (CMIA) (Abbott test generation3, Abbott Architect ci4100, Wiesbaden, Germany).

HCV viral load testing. Quantification of HCV-RNA was performed by real-time polymerase chain reaction assay (Abbott Molecular Inc. Des Plaines, IL, USA). Lower (LLD) and upper detection limits (ULD) of the assay were < 12 IU/mL and 100 000 000 IU/mL, respectively. Specimens yielding values above ULD were diluted 100-fold and retested.

HCV Genotyping and IL28B polymorphism. HCV-RNA was reversed by random primer and viral 5'UTR was amplified. Positive 5'UTR were then subjected for further amplification with primers specific for the core and NS5B regions as described previously.¹⁷ Viral genotypes were classified based on the nucleotide sequence using BLAST search and viral genotyping tool (<http://www.ncbi.nlm.nih.gov/>). Human DNA was extracted from PBMCs/sera and used to detect IL28B polymorphism. PCR and direct sequencing were used to detect rs12979860. Genotype rs12979860 was analyzed directly from the chromatogram of the nucleotide sequences.

Assessment of vitamin D levels. Whole blood samples were centrifuged at 2500 r.p.m. for 20 min and plasma was stored at –80°C until use. ARCHITECT CMIA was used to quantitate the levels of 25(OH)D according to the manufacturer's instructions (Abbott, Barcelona, Spain). Hypovitaminosis D was defined as having serum levels of 25(OH)D < 30 ng/mL. Imprecision of the ARCHITECT 25-OH Vitamin D assay is < 10% but within laboratory (total) coefficient variation.

Assessment of liver fibrosis and cirrhosis. Liver stiffness was assessed by transient elastography (TE). All TE were performed by a single-blinded TE specialist to avoid interindividual variation and standard criteria with FS validation.¹⁸ AST/platelet ratio index (APRI) score was calculated by using Wai *et al.*'s formula:¹⁹ (AST/upper limit of normal considered as 40 IU/L)/platelet count $\times 10^9$ /L. Fibrosis 4 Score (Fib-4) was calculated by using Sterling *et al.*'s formula:²⁰ (age \times AST)/[(platelet count \times ALT)^{1/2}].

Fibrosis stage was defined according to fibrosis score as measured by TE: mild (equivalent to Metavir F0–F1), ≤ 7.1 kPa; moderate (F2), 7.2–9.4 kPa; severe (F3), 9.5–14 kPa; and cirrhosis (F4), > 14 kPa. Furthermore, advanced liver fibrosis (F3 and F4) was defined as a fibrosis score of > 9.5 kPa. Cirrhosis was diagnosed based on definitive clinical evidence, fibrosis score > 14 kPa, and/or imaging evidence by abdominal sonogram of the liver showing cirrhosis/splenomegaly with portal hypertension.

Statistical analysis. Analysis was performed by Stata version 12.1 (Stata Corp., College Station, TX, USA). For descriptive analysis, frequencies of categorical variable were calculated. Median and interquartile range (IQR) were calculated for continuous variables. Each variable was correlated to vitamin D status and advanced liver fibrosis. Magnitude of associations was expressed as odds ratio (OR) and 95% confidence intervals (95% CI). Categorical variables were analyzed by using the Pearson's chi square test/Fisher's exact test, as appropriate. Continuous variable was analyzed using Student's *t*-test. Pearson correlation coefficient was used to explore the association between serum vitamin D levels and advanced liver fibrosis. For multivariate analysis, mul-

multiple logistic regression analysis was used. Variables presenting $P < 0.1$ in univariate analysis were tested in the final model.

Results

Characteristics of study population (Table 1). A total of 130 untreated HIV/HCV co-infected and 331 untreated HCV mono-infected patients were enrolled. None of them reported fracture nor taking calcium/vitamin D. Majority were males (70%) and former PWIDs. The HCV mono-infected group had a higher proportion of patients > 50 years (34% *vs* 18%), longer estimated duration of HCV infection (17 years *vs* 15 years), and higher proportion of alcohol consumption (77% *vs* 39%). Median 25(OH)D levels were comparable between the HCV mono-infected and HIV/HCV co-infected patients. The prevalence of vitamin D insufficiency [25(OH)D 20–30 ng/mL] and deficiency [25(OH)D < 20 ng/mL] among mono-infected patients was 53.9% and 8.9%, respectively, thus the prevalence of hypovitaminosis D was 62.8%. The prevalence of vitamin D insufficiency and deficiency among co-infected patients was 47.9% and 13.7%, respectively (hypovitaminosis D 61.6%).

HCV genotype (GT) and IL28B polymorphism. The most prevalent circulating genotype was HCV GT3 (47%), followed by GT1 (34%) and GT6 (17%). HIV/HCV co-infected patients more often had plasma HCV-RNA $> 800\,000$ IU/mL (54% *vs* 43%).

IL28B at rs12979860 position was available for 94 HIV/HCV and 136 HCV mono-infected patients. The major allele (CC genotypes) of rs12979860 position was found in 88% of HIV/HCV and 85% HCV mono-infected patients. Only 1% of HIV/HCV and 4% of HCV mono were minor TT allele.

HIV parameters for HIV/HCV co-infected patients.

The median CD4 cell count at time of TE was 494 cells/mm³ (IQR 310–625 cells/mm³), only 16 (12.5%) of patients had a CD4 cell count of < 200 cells/mm³. cART was used by 91% of patients. Median duration of cART was 7 years (IQR 5–11). Protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) were used by 36.4% and 59.3%, respectively, and 78% of those on ART had HIV-RNA < 50 copies/mL. Stavudine was used in 77 (59.2%) patients with the median duration of 33 months (IQR 15–56).

Liver fibrosis and its fibrosis markers based on the transient elastography results.

Median ALT for HIV/HCV co-infected and HCV mono-infected patients were 71 IU/L (IQR 43–112) and 60 IU/L (IQR 31–97), respectively ($P = 0.004$). Figure 1 depicts the distribution of liver fibrosis staging. A greater proportion of the participants from the HIV/HCV co-infected group had advanced liver fibrosis (41.7% *vs* 25.1%). Also, 24.1% of the participants from the HIV/HCV co-infected group had cirrhosis based on the fibrosis score > 14 kPa, compared with 12.7% in the HCV mono-infected group. The proportion of patients with Fib-4 score > 3.25 and APRI score > 1.5 were significantly greater in HIV/HCV co-infection (21.6% *vs* 9.1% and 27.2% *vs* 10.8%, respectively).

Comparisons of HCV genotypes 6 to 1 and 3 (Table 2).

There were no differences in the median age, sex, duration of HCV infection, duration of HIV infection, or transmission route between genotypes. However, patients with HCV GT3 had a significantly higher median ALT (77 IU/L) compared with those with GT1 (61 IU/L) and GT6 (51 IU/L), $P < 0.001$. Only 23% of the participants with HCV GT3 had normal ALT levels. HCV-RNA was significantly higher in GT6 (6.6 log₁₀ IU/mL) compared with GT1 and GT3 (5.9 log₁₀ IU/mL), $P = 0.01$. Furthermore, participants with HCV GT3 had higher median fibrosis scores. In contrast, fewer participants with HCV GT6 had TE > 7.1 kPa (39.7%) compared with GT3 (57.9%) and GT1 (47.5%).

Factors associated with advanced liver fibrosis (metavir F3-F4) (Table 3).

After adjustment in the multivariate analysis, HIV co-infection (aOR 2.67 [95% CI 1.20–5.93], $P = 0.016$), Fib-4 score > 1.45 (aOR 6.30 [95% CI 2.70–14.74], $P < 0.001$), and plasma 25(OH)D level of < 30 ng/mL (aOR 2.48 [95% CI 1.09–5.67], $P = 0.031$) remained significantly associated with advanced liver fibrosis. HCV GT6 was associated with a decreased risk of liver fibrosis (aOR 0.17 [95% CI 0.05–0.65], $P = 0.01$).

In HIV/HCV co-infected patients (Table 4), HIV-related parameters such as CD4 cell count, HIV-RNA, cART use, and duration of ART were not associated with advanced liver fibrosis whereas d4T exposure and 25(OH)D were strongly correlated with advanced liver fibrosis. Importantly, the correlation for 25(OH)D < 30 mg/dL and liver fibrosis was seen at milder levels of liver fibrosis in HIV/HCV co-infection but not in HCV mono-infection (TE > 7.5 kPa *vs* TE > 9.5 kPa). For the multivariate analysis, d4T exposure (aOR 4.92 [95% CI 1.44–16.8; $P = 0.011$]), Fib-4 score > 1.45 (aOR 5.29 [95% CI 1.52–18.35], $P = 0.009$), and 25(OH)D < 30 mg/dL (aOR 5.04 [95% CI 1.44–17.6; $P = 0.011$]) were strongly correlated with significant liver fibrosis (TE > 7.5 kPa). In addition, from the multivariate analysis, only liver fibrosis > 7.5 kPa, not ARV, was associated with 25(OH)D < 30 mg/dL (OR 3.75 [95% CI 1.22–11.55]; $P = 0.021$).

To further investigate the nature of the relationship between Fib-4 and APRI and the development of advanced liver fibrosis, we examined the correlation between Fib-4, APRI and liver stiffness which revealed positive correlation between liver stiffness and Fib-4 [Pearson correlation (r) = 0.50, $P = < 0.001$] and APRI (r = 0.49, $P = < 0.001$).

A subanalysis was performed including patients who had IL28B testing. IL28B polymorphism was not found to be a predictor for liver fibrosis [rs 12979860 CC: OR 1.27 (95% CI 0.47–3.42, $P = 0.639$)].

Discussion

In this analysis of 130 untreated HIV/HCV and 331 untreated HCV mono-infected patients using TE to measure degree of liver fibrosis, the primary finding was that people co-infected with HCV and HIV have a high prevalence of significant liver fibrosis. HIV co-infected patients were 2.67 times more likely to have advanced liver fibrosis (TE > 9.5 kPa) compared with HCV mono-infected patients. Almost 70% of our HIV/HCV co-infected patients had significant liver fibrosis (TE > 7.1 kPa) and 41.6% had advanced liver fibrosis with TE > 9.5 kPa.

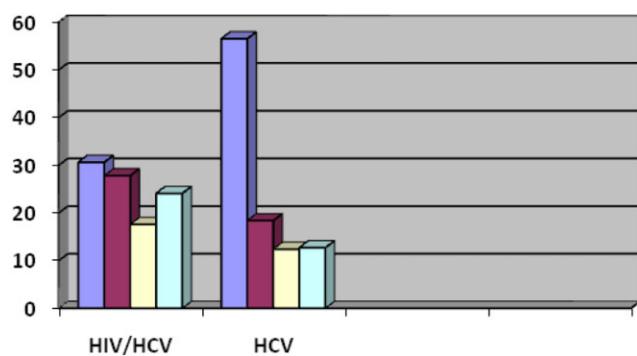
Table 1 Demographic and clinical features of the study participants: 130 HIV/HCV co-infected and 331 HCV mono-infected participants

Characteristics	Total (N = 461)	HIV/HCV (N = 130)	HCV mono (N = 331)	P-value
Sex, N (%)				< 0.001
Male	323 (70.1)	111 (85.4)	212 (64.1)	
Age, years	43 (36–52)	42 (37–48)	44 (36–53)	0.364
Age ≥ 50 years, N (%)	136 (29.50)	24 (18.46)	112 (33.84)	0.001
Duration of HCV exposure, years	17 (10–24)	15 (10–21)	17.5 (10–25)	0.042
Median (IQR) body mass index (BMI), kg/m ²	23.2 (20.8–25.6)	21.6 (19.4–23.8)	23.9 (21.5–26.0)	< 0.001
BMI > 25 kg/m ² , N (%)	116 (29.3)	19 (15.8)	97 (35.1)	< 0.001
HCV risk factors				< 0.001
Heterosexual	25 (5.73)	25 (19.23)	5 (1.63)	
MSM	17 (3.90)	17 (13.08)	0 (0.0)	
IV drug use	154 (35.32)	81 (62.31)	73 (23.86)	
Blood transfusion	91 (20.87)	4 (3.08)	87 (28.43)	
TAS	64 (14.68)	1 (0.77)	63 (20.59)	
Unknown	80 (18.35)	2 (1.54)	78 (25.49)	
Alcohol consumption, N (%)	273 (66)	44 (39)	229 (77)	< 0.001
Current ALT (IU/L)	62 (35–100)	71 (43–112)	60 (31–97)	0.004
Plasma HCV-RNA, log ₁₀ IU/mL [†]	5.9 (5.4–6.6)	6.0 (4.9–6.6)	5.8 (5.6, 6.5)	0.829
Plasma HCV-RNA levels of > 800,000 IU/mL, N (%)	118 (49.2)	70 (54.3)	48 (43.2)	< 0.001
HCV genotype [‡]				
1	128 (34)	32 (31.7)	96 (34.9)	
2	2 (0.5)	0	2 (0.7)	
3	176 (46.8)	50 (49.5)	126 (45.8)	
5	1 (0.3)	0	1 (0.4)	
6	63 (16.8)	13 (12.9)	50 (18.2)	
1 + 3	5 (1.3)	5 (4.9)	0	
1 + 2	1 (0.3)	1 (0.9)	0	
FibroScan, [§] kPa	7.1 (5.2–10.5)	8.5 (6.4–13.85)	6.6 (4.9–9.5)	< 0.001
Fib-4 score, median (IQR) [¶]	1.3 (0.8–2.1)	1.7 (1.0–3.1)	1.1 (0.8–1.9)	0.001
< 1.45, N (%)	241 (57.2)	54 (43.2)	187 (63.2)	< 0.001
1.45–3.25, N (%)	126 (29.9)	44 (35.2)	82 (27.7)	
> 3.25, N (%)	54 (12.8)	27 (21.6)	27 (9.1)	
APRI score, median (IQR) [¶]	0.6 (0.3–1.1)	0.8 (0.4–1.6)	0.5 (0.3–1.0)	< 0.001
< 0.5, N (%)	188 (44.7)	38 (30.4)	150 (50.7)	< 0.001
0.5–1.5, N (%)	167 (39.7)	53 (42.4)	114 (38.5)	
> 1.5, N (%)	66 (15.7)	34 (27.2)	32 (10.8)	
25(OH)D levels, ^{††} ng/mL, median (IQR)	27.4 (22.9–33.6)	27 (22.4–34.3)	27.5 (23.2–33.4)	0.961
> 30 ng/mL, N (%)	112 (37.7)	45 (38.5)	67 (37.2)	
20–30 ng/mL, N (%)	153 (51.5)	56 (47.9)	97 (53.9)	
< 20 ng/mL	32 (10.8)	16 (13.7)	16 (8.9)	
Median (IQR) current CD4 cell counts, cells/mm ³		494 (310–625)		
HIV RNA < 50 copies/mL, N (%)		100 (78.1)		
Current antiretroviral therapy, N (%)		118 (90.8)		
None		12 (9.2)		
2 NRTIs and NNRTI		70 (59.3)		
2 NRTIs and boosted PI		43 (36.4)		
Other		5 (4.2)		

Note: Median and interquartile range (IQR) is presented, unless otherwise indicated. APRI = [(AST/ULN) × 100]/Platelets count 10⁹/L (ULN = the upper limit of normal); Fib-4 = [age (years) × AST (IU/L)]/[platelet count (10⁹/L) × ALT(IU/L)^{1/2}].

[†]HCV-RNA was available for 129 HCV/HIV co-infected and 111 HCV mono-infected participants.

[‡]HCV genotype was available for 101 HCV/HIV co-infected and 275 HCV mono-infected participants.


[§]FibroScan was available for 108 HIV/HCV co-infected and 331 HCV mono-infected participants.

[¶]Fib-4 and APRI were available for 125HIV/HCV co-infected and 296 HCV mono-infected participants.

^{††}Vitamin D levels were available for 117HIV/HCV co-infected and 180 HCV mono-infected participants.

ALT, alanine aminotransferase; APRI, AST/platelet ratio index; IV, intravenous; HCV, hepatitis C virus; HIV, human immunodeficiency virus; MSM, men having sex with men; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; PI, protease inhibitor; TAS, tattoo, acupuncture, sharing of contaminated needles.

To our knowledge, this study is the first of its kind to report the prevalence of liver fibrosis among HCV-infected Asians with/without HIV co-infection. Even though the participants from the HCV mono-infected group had a longer duration of expected HCV infection (17.5 years *vs* 15 years) and had a higher proportion of patients over 50 years old (34% *vs* 18%). The prevalence of advanced liver fibrosis was higher among the HIV/HCV co-infected group (41.7% *vs* 25.1%). Only 12.7% of the participants from the HCV mono-infected group had cirrhosis, whereas

Figure 1 Distribution of liver fibrosis staging among HIV/HCV and HCV mono-infected patients. □, F1 (< 7.1 kPa); ■, F2 (7.2–9.4 kPa); ▨, F3 (9.5–14 kPa); ▨, F4 (> 14 kPa).

in the HIV/HCV co-infected group, 24.1% had cirrhosis. These findings are consistent with previous studies that the prevalence of liver fibrosis is much higher in individuals co-infected with HCV and HIV.^{6,21,22} The prevalence of cirrhosis in our HIV/HCV co-infected population (24.1%) was higher than Europe (13%)²¹ and Brazil (8.5%).²³ Given the significant risk for hepatocellular carcinoma (HCC) development in this population, our findings highlight the urgent need for HCV treatment and HCC screening for patients in RLS. Given that 47% of the HCV patients in our patients have HCV GT3 and 90% of them have IL28B rs12979860 CC allele, they are good candidates for HCV treatment with pegylated interferon alfa (PegIFN) and ribavirin.

Our findings disagree with prior studies that patients infected with HCV GT1 tend to have higher plasma HCV-RNA levels than those infected with HCV GT3.^{24,25} In fact, we found that patients infected with HCV GT6 had higher HCV-RNA than those infected with GT1 and GT3. Although patients infected with HCV GT6 had higher median plasma HCV-RNA and a greater proportion of plasma HCV-RNA > 800,000 IU/mL, they had lower median fibrosis score by TE and a lower proportion of patients with advanced liver fibrosis compared with GT3 and 1. By multivariate analysis, HCV GT3 was only marginally significantly associated with advanced fibrosis. In a cross-sectional study from France and Spain, of 314 liver biopsy specimens from HCV mono-infected patients²⁶ and 283 HIV/HCV co-infected patients by TE,¹² the association between HCV GT3 and advanced liver fibrosis was

Table 2 Hepatitis C (HCV) genotypes 1, 3 and 6 are compared with each other as well as to the study participants' characteristics

Characteristics	Total (n = 367)	HCV genotypes, N (%)			P-value
		Genotype 1 (n = 128)	Genotype 3 (n = 176)	Genotype 6 (n = 63)	
Age, years	44 (37–52)	44 (37–52)	44 (37–52)	46 (36–53)	0.987
Median (IQR)					
Male	261 (71.12)	87 (67.97)	130 (73.86)	44 (69.84)	0.518
MSM	14 (4.08)	6 (4.96)	7 (4.19)	1 (1.82)	0.618
History of intravenous drug use	120 (34.99)	36 (29.75)	66 (39.52)	18 (32.73)	0.213
Duration of HCV infection, years	18 (12–25)	16 (10–24)	19 (13–25)	20 (10–25)	0.262
HIV co-infection	95 (25.89)	32 (25.00)	50 (28.41)	13 (20.63)	0.463
HCV-RNA, log ₁₀ IU/mL	6.0 (5.7–6.6)	5.9 (5.7–6.4)	5.9 (5.5–6.6)	6.6 (5.9–6.8)	0.010
Median (IQR)					
ALT, IU/L	66 (42–108)	61 (37–100)	77 (53–114)	51 (32–83)	< 0.001
Median (IQR)					
Normal	109 (32.15)	43 (36.13)	37 (22.84)	29 (50.00)	< 0.001
Abnormal	230 (67.85)	76 (63.87)	125 (77.16)	29 (50.00)	
Platelet count < 100,000/mm ³	22 (6.57)	6 (5.13)	14 (8.75)	2 (3.45)	0.278
Fib-4 score	1.36 (0.88–2.24)	1.35 (0.8–2.16)	1.49 (0.97–2.49)	1.11 (0.86–1.68)	0.034
Median (IQR)					
< 1.45	179 (54.08)	64 (55.17)	77 (48.73)	38 (66.67)	0.064
> 1.45	152 (45.92)	52 (44.83)	81 (51.27)	19 (33.33)	
APRI score					
Median (IQR)					
< 0.5	0.63 (0.38–1.18)	0.59 (0.31–1.12)	0.75 (0.5–1.4)	0.42 (0.33–0.85)	< 0.001
> 0.5	128 (38.67)	52 (44.83)	44 (27.85)	32 (56.14)	< 0.001
Fibroscan, kPa					
Median (IQR)					
< 7.1	7.6 (5.4–10.95)	7.2 (5.4–11.4)	8.1 (5.6–11.6)	6.5 (5.2–8.4)	0.008
≥ 7.1	174 (48.88)	64 (52.46)	72 (42.11)	38 (60.32)	0.029
≥ 7.1	182 (51.12)	58 (47.54)	99 (57.89)	25 (39.68)	

ALT, alanine aminotransferase; APRI, AST/platelet ratio index; IQR, interquartile range; MSM, men having sex with men.

Table 3 Univariate and multivariate logistic regression analyses of the factors associated with advanced liver fibrosis (TE > 9.5 kPa)

Variables	Univariate			Multivariate		
	OR	95% CI	P	aOR	95% CI	P
Male gender	1.69	(1.05–2.72)	0.032	1.01	(0.40–2.52)	0.988
Current age of ≥ 50 years	2.96	(1.91–4.6)	< 0.001	—	—	—
Age by 10 years	1.83	(1.46–2.29)	< 0.001	1.51	(0.88–2.58)	0.133
BMI > 25 kg/m ²	1.75	(1.09–2.80)	0.020	2.25	(0.89–5.72)	0.087
HCV-RNA of > 100,000 IU/mL	2.03	(0.94–4.38)	0.072	—	—	—
HCV-RNA of > 800,000 IU/mL	1.12	(0.64–1.95)	0.685	—	—	—
Current abnormal ALT	4.58	(2.68–7.80)	< 0.001	—	—	—
HIV co-infection	2.12	(1.34, 3.36)	0.001	2.67	(1.20–5.93)	0.016
HCV genotype	—	—	< 0.001	—	—	0.010
Genotype 3	1.32	(0.81, 2.16)	—	0.96	(0.44–2.10)	—
Genotype 6	0.32	(0.14, 0.74)	—	0.17	(0.05–0.65)	—
Fib-4 score of > 1.45	8.51	(5.15–14.07)	< 0.001	6.30	(2.70–14.74)	< 0.001
APRI score of > 0.5	10.31	(5.62–18.89)	< 0.001	—	—	—
Estimated duration of HCV infection of > 20 years	1.93	(1.21–3.07)	0.006	1.10	(0.47–2.60)	0.828
Current alcohol consumption	0.86	(0.54–1.35)	0.510	—	—	—
Hypovitaminosis D [25(OH)D < 30 (ng/mL)]	1.78	(1.04–3.06)	0.037	2.48	(1.09–5.67)	0.031
IL28 B	—	—	—	—	—	—
rs12979860 CC allele	1.4	(0.58–3.37)	0.045	—	—	—

Calculations for Fib-4 and APRI scores are described in the Materials and Methods section.

95% CI, 95% confidence interval; aOR, adjusted odds ratio; APRI, AST/platelet ratio index; HCV, hepatitis C virus; HIV, human immunodeficiency virus; OR, odds ratio.

Table 4 Univariate and multivariate logistic regression analysis of the factors associated with advanced liver fibrosis (TE ≥ 7.5 kPa) only HIV/HCV co-infected patients

Variables	Univariate			Multivariate		
	OR	95%CI	P	aOR	95% CI	P
Male gender	1.24	(0.41–3.73)	0.702	—	—	—
Age increased by 10 years	1.48	(0.81–2.71)	0.208	—	—	—
BMI > 25 kg/m ²	3.88	(0.82–18.23)	0.086	1.34	(0.17–10.84)	0.782
HCV-RNA of > 800,000 IU/mL	0.95	(0.42–2.11)	0.892	—	—	—
Current abnormal ALT	3.50	(1.48–8.25)	0.004	—	—	—
HCV genotype	1.37	(0.47–4.03)	0.335	1.59	(0.42–6.03)	0.419
Genotype 3	—	—	—	—	—	—
Genotype6	0.52	(0.13–2.04)	—	0.53	(0.09–2.99)	—
Fib-4 score of > 1.45	4.55	(1.92–10.76)	0.001	5.29	(1.52–18.35)	0.009
APRI score of > 0.5	5.18	(2.15–12.47)	< 0.001	—	—	—
Estimated duration of HCV infection of > 20 years	1.30	(0.54–3.13)	0.558	—	—	—
Current alcohol consumption	1.11	(0.48–2.58)	0.800	—	—	—
Hypovitaminosis D [25(OH)D < 30 (ng/mL)]	2.00	(0.88–4.53)	0.096	5.04	(1.44–17.62)	0.011
rs12979860 CC allele	1.38	(0.57–3.33)	0.468	—	—	—
ART Regimen	—	—	0.494	—	—	—
Efavirenz or nevirapine	Ref	1	—	—	—	—
Protease inhibitor	0.96	(0.4–2.28)	—	—	—	—
Stavudine exposure	2.66	(1.17–6.07)	0.020	4.92	(1.44–16.79)	0.011
Didanosine exposure	0.87	(0.35–2.14)	0.756	—	—	—
Indinavir exposure	0.54	(0.17–1.74)	0.301	—	—	—
CD4 ≤ 500 cells/mm ³	0.66	(0.29–1.47)	0.306	—	—	—
HIV-RNA < 50 copies/mL	2.61	(0.95–7.16)	0.063	2.01	(0.45–9.03)	0.362

95% CI, 95% confidence interval; aOR, adjusted odds ratio; APRI, AST/platelet ratio index; ART, antiretroviral therapy; BMI, body mass index; HCV, hepatitis C virus; HIV, human immunodeficiency virus; OR, odds ratio.

highly significant. Surprisingly, we found that patients with HCV GT6 were less likely to have liver fibrosis compared with infection with HCV GT1 and 3. To our knowledge, we are the first to compare HCV-RNA and liver fibrosis between patients infected with HCV GT6 to those infected with GT1 or 3. Data from Caucasians indicate that the progression rate for fibrosis is much faster among patients infected with HCV GT3 compared with those with HCV GT1.^{12,26} However, data from our cohort indicate that HCV GT3 was not significantly correlated with liver fibrosis compared with GT1. Our finding is similar to another HCV study from India where HCV GT3 is the most circulating genotype (75%).²⁷ Hissar *et al.* reported that GT3 was not correlated with liver fibrosis.²⁷ Therefore, it is highly likely that host genetic factors may play an important role in liver fibrosis. Host genetic factors among HCV GT3 Asians and Caucasians should be further explored.²⁷

Although ALT elevations are not a good marker of liver fibrosis especially in HIV co-infected patients, in this study we found that Fib-4 score was strongly correlated with advanced liver fibrosis. Participants with Fib-4 score of > 1.45 had a sevenfold increased risk of having advanced liver fibrosis compared with those with Fib-4 score of < 1.45 . Fib-4 is cheap and very easy to perform, requiring only levels of ALT, AST, platelet and age. No additional tests, machines, or skills are required besides laboratory tests routinely given twice a year. From this observation, Fib-4 can be used as a surrogate marker to detect advanced liver fibrosis, especially in RLS where liver biopsy and FibroScan machine are not widely accessible as well as a tool for monitoring liver disease progression.^{28,29}

In this study, patients with hypovitaminosis D(25(OH)D levels < 30 ng/mL) were almost three times more likely to have advanced liver fibrosis. Recently, low serum 25(OH)D levels have been reported in patients with chronic HCV GT1 and were found to be associated with severe liver fibrosis.^{13,14} Vitamin D plays a major role for calcium homeostasis and bone health, but vitamin D is now also widely recognized as a critical factor involved in the immune system, inflammatory response, and fibrogenesis.³⁰ Recent studies have found that low serum levels of 25(OH)D are also associated with low sustained virological response (SVR) to Peg-IFN/ribavirin therapy.^{14,15} Furthermore, vitamin D supplementation improves early virological response (EVR) (94% vs 48%) and SVR (86% vs 42%) in HCV GT1 treated with Peg-IFN/ribavirin.³¹ Therefore, hypovitaminosis D in our HCV population has clinical implication both for liver fibrosis progression and for treatment efficacy. Ensuring adequate vitamin D levels in this population is important.

Almost of our HIV/HCV co-infected patients were on cART, with a median duration of 7 years. Furthermore, only 13% had current CD4 cell counts of 200 cells/mm³. We did not find any association between several HIV-related factors, such as current or nadir CD4 count, HIV-RNA or duration of cART, and the presence of liver fibrosis. This finding is inconsistent with previous studies that showed advanced liver disease progression among HIV/HCV co-infected patients with current CD4 < 500 cells/mm³, and nadir CD4 of < 250 cells/mm³.^{12,32} We found only d4T exposure was positively correlated (sixfold increased) with advanced liver fibrosis, which might be explained by mitochondrial toxicity and/or insulin resistance. The data on the effect of cART on liver fibrosis is conflicting. Macias *et al.* showed that the use of PIs was able to slow down the progression of the liver disease.³³ Moreover, a

recent report on the use of didanosine has been shown to be associated with liver fibrosis,³⁴ whereas another recent publication from the EuroSida group failed to support whether ART could ameliorate the progression of liver disease.²¹

Our study had some limitations. First, we did not perform liver biopsy for the assessment of the presence of liver fibrosis. However, TE has already been validated for both HIV/HCV and HCV mono-infected Caucasian patients in several studies. The positive predictive value of TE for diagnosis of advanced liver fibrosis has been as high as 95%.²⁸ In addition, when we combined the APRI, Fib-4 and TE together, the result of advanced fibrosis was the same. Therefore the combined use of TE and Fib-4 or APRI to evaluate advanced liver fibrosis could avoid a liver biopsy. Second, this was a cross-sectional study that precluded analysis of the progression of liver fibrosis. In order to see the trend of liver fibrosis using the TE, longitudinal studies are recommended. Third, data on bone mass density, parathyroid hormone, calcium and phosphate were not available. Therefore it is unclear whether low levels of vitamin D had any effect on the bones or any calcium homeostasis in this population or not. Lastly, because insulin resistance has not been investigated in our study population, we were not able to confirm the positive association between insulin resistance and advanced liver fibrosis, especially in HIV/HCV co-infected patients with the median of 8 years of cARTs.

Regardless of these limitations, the findings from this study did have several important clinical implications. Our results underline the need for HCV treatment in chronically infected patients, especially for those co-infected with HIV. In this study, most of our HIV/HCV co-infected participants were not on HCV therapy and 70% had significant liver fibrosis at a median age of 40 years. Without the availability of HCV treatment, these patients will develop end-stage liver disease within the next decade. In addition, the majority of our patients had HCV non-GT1, along with favorable IL28B (89% CC genotype), and would therefore be good candidates for the treatment with Peg IFN/ribavirin.

In conclusion, advanced liver fibrosis is seen in 41.7% and 25.1% of HIV/HCV co-infected and HCV mono-infected patients from Thailand, respectively. HCV-RNA tends to be higher among patients infected with HCV GT6, but advanced liver fibrosis is seen less often in this group, compared with those infected with GT1 or GT3. Strong and independent predictors for the presence of advanced fibrosis were HIV infection, Fib-4 score > 1.45 , d4T use and hypovitaminosis D. These data highlight the urgent need of HCV treatment and HCC screening for HCV patients in RLS. In addition, the role of vitamin D supplementation should be further explored as a relatively cheap therapeutic option to reduce liver fibrosis and improve SVR.

Acknowledgments

We would like to thank our patients, HIV-NAT staff, and Piraporn June Ohata.

Source of funding

This study was funded by the National Research Council of Thailand (NRCT) under grant number Por Kor/2554-136, the Thailand Research Fund (TRF) under grant numbers RSA5380002, BRG5580005, the Ratchadapisek Sompotch Endowment Fund,

Faculty of Medicine, Chulalongkorn University under grant number RA33/53, Research Unit of Hepatitis and Liver Cancer, Chulalongkorn University, and the Aligning Care and Prevention of HIV/AIDS with Government Decentralization to Achieve Coverage and Impact: ACHIEVED Project (The Global Fund Project, Thailand).

Authors' contribution

All authors contributed to the study design. AA drafted the manuscript and conducted the study. TA performed all statistical analyses. SA performed all laboratory experiments for genotyping and polymorphisms. RAR, PT, SJ, OP, and ST conducted the study at their perspective sites, helped collect data and necessary specimens. YP, GVM, JMAL and KR provided feedback and finalized the manuscript.

References

- 1 Palella FJ Jr, Delaney KM, Moorman AC *et al.* Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. *N. Engl. J. Med.* 1998; **338**: 853–60.
- 2 Weber R, Sabin CA, Friis-Møller N *et al.* Liver-related deaths in persons infected with the human immunodeficiency virus: the D:A:D study. *Arch. Intern. Med.* 2006; **166**: 1632–41.
- 3 Mocroft A, Brettle R, Kirk O *et al.* Changes in the cause of death among HIV positive subjects across Europe: results from the EuroSIDA study. *AIDS* 2002; **16**: 1663–71.
- 4 Joshi D, O'Grady J, Dieterich D, Gazzard B, Agarwal K. Increasing burden of liver disease in patients with HIV infection. *Lancet* 2011; **377**: 1198–209.
- 5 Thein HH, Yi Q, Dore GJ, Krahn MD. Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis. *AIDS* 2008; **22**: 1979–91.
- 6 Benhamou Y, Bochet M, Di Martino V *et al.* Liver fibrosis progression in human immunodeficiency virus and hepatitis C virus coinfecting patients. The Multivirc Group. *Hepatology* 1999; **30**: 1054–8.
- 7 Poynard T, Ratziu V, Charlotte F, Goodman Z, McHutchison J, Albrecht J. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis C. *J. Hepatol.* 2001; **34**: 730–9.
- 8 Puoti M, Bonacini M, Spinetti A *et al.* Liver fibrosis progression is related to CD4 cell depletion in patients coinfecting with hepatitis C virus and human immunodeficiency virus. *J. Infect. Dis.* 2001; **183**: 134–7.
- 9 Hull MW, Rollet K, Moodie EE *et al.* Insulin resistance is associated with progression to hepatic fibrosis in a cohort of HIV/hepatitis C virus-coinfecting patients. *AIDS* 2012; **26**: 1789–94.
- 10 Salmon D, Bani-Sadr F, Loko MA *et al.* Insulin resistance is associated with a higher risk of hepatocellular carcinoma in cirrhotic HIV/HCV-co-infected patients: results from ANRS CO13 HEPAVIH. *J. Hepatol.* 2012; **56**: 862–8.
- 11 Collazos J, Carton JA, Asensi V. Gender differences in liver fibrosis and hepatitis C virus-related parameters in patients coinfecting with human immunodeficiency virus. *Curr. HIV Res.* 2011; **9**: 339–45.
- 12 Barreiro P, Martin-Carbonero L, Nunez M *et al.* Predictors of liver fibrosis in HIV-infected patients with chronic hepatitis C virus (HCV) infection: assessment using transient elastometry and the role of HCV genotype 3. *Clin. Infect. Dis.* 2006; **42**: 1032–9.
- 13 Terrier B, Carrat F, Geri G *et al.* Low 25-OH vitamin D serum levels correlate with severe fibrosis in HIV-HCV co-infected patients with chronic hepatitis. *J. Hepatol.* 2011; **55**: 756–61.
- 14 Petta S, Camma C, Scazzone C *et al.* Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. *Hepatology* 2010; **51**: 1158–67.
- 15 Mandorfer M, Reiberger T, Payer BA *et al.* Low vitamin D levels are associated with impaired virologic response to PEGIFN + RBV therapy in HIV-hepatitis C virus coinfecting patients. *AIDS* 2013; **27**: 227–32.
- 16 Kirk GD, Astemborski J, Mehta SH *et al.* Assessment of liver fibrosis by transient elastography in persons with hepatitis C virus infection or HIV-hepatitis C virus coinfection. *Clin. Infect. Dis.* 2009; **48**: 963–72.
- 17 Akkarathamrongsin S, Praianantathavorn K, Hacharoen N *et al.* Geographic distribution of hepatitis C virus genotype 6 subtypes in Thailand. *J. Med. Virol.* 2010; **82**: 257–62.
- 18 Ziol M, Handra-Luca A, Kettaneh A *et al.* Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. *Hepatology* 2005; **41**: 48–54.
- 19 Wai CT, Greenon JK, Fontana RJ *et al.* A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. *Hepatology* 2003; **38**: 518–26.
- 20 Sterling RK, Lissen E, Clumeck N *et al.* Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. *Hepatology* 2006; **43**: 1317–25.
- 21 Martin-Carbonero L, Benhamou Y, Puoti M *et al.* Incidence and predictors of severe liver fibrosis in human immunodeficiency virus-infected patients with chronic hepatitis C: a European collaborative study. *Clin. Infect. Dis.* 2004; **38**: 128–33.
- 22 Mohsen AH, Easterbrook PJ, Taylor C *et al.* Impact of human immunodeficiency virus (HIV) infection on the progression of liver fibrosis in hepatitis C virus infected patients. *Gut* 2003; **52**: 1035–40.
- 23 Mendes-Correa MC, Widman A, Bruschi ML, Guastini CF, Gianini RJ. Incidence and predictors of severe liver fibrosis in HIV-infected patients with chronic hepatitis C in Brazil. *AIDS Patient Care STDS* 2008; **22**: 701–7.
- 24 Garcia F, Roldan C, Hernandez-Quero J *et al.* Relationship between viral genotype and viral load in patients with chronic hepatitis C. *Eur. J. Clin. Microbiol. Infect. Dis.* 1996; **15**: 884–7.
- 25 Yoo TW, Donfield S, Lail A, Lynn HS, Daar ES. Effect of hepatitis C virus (HCV) genotype on HCV and HIV-1 disease. *J. Infect. Dis.* 2005; **191**: 4–10.
- 26 Cholet F, Nousbaum JB, Richécoeur M *et al.* Factors associated with liver steatosis and fibrosis in chronic hepatitis C patients. *Gastroenterol. Clin. Biol.* 2004; **28**: 272–8.
- 27 Hissar SS, Kumar M, Tyagi P *et al.* Natural history of hepatic fibrosis progression in chronic hepatitis C virus infection in India. *J. Gastroenterol. Hepatol.* 2009; **24**: 581–7.
- 28 Castera L, Vergniol J, Foucher J *et al.* Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. *Gastroenterology* 2005; **128**: 343–50.
- 29 Boursier J, Vergniol J, Sawadogo A *et al.* The combination of a blood test and Fibroscan improves the non-invasive diagnosis of liver fibrosis. *Liver Int.* 2009; **29**: 1507–15.
- 30 Holick MF. Vitamin D deficiency. *N. Engl. J. Med.* 2007; **357**: 266–81.
- 31 Abu-Mouch S, Fireman Z, Jarchovsky J, Zeina AR, Assy N. Vitamin D supplementation improves sustained virologic response in chronic hepatitis C (genotype 1)-naïve patients. *World J. Gastroenterol.* 2011; **17**: 5184–90.

- 32 Monto A, Kakar S, Dove LM, Bostrom A, Miller EL, Wright TL. Contributions to hepatic fibrosis in HIV-HCV coinfecting and HCV monoinfected patients. *Am. J. Gastroenterol.* 2006; **101**: 1509–15.
- 33 Macias J, Mira JA, Lopez-Cortes LF *et al.* Antiretroviral therapy based on protease inhibitors as a protective factor against liver fibrosis progression in patients with chronic hepatitis C. *Antivir. Ther.* 2006; **11**: 839–46.
- 34 Suarez-Zarracina T, Valle-Garay E, Collazos J *et al.* Didanosine (ddI) associates with increased liver fibrosis in adult HIV-HCV coinfecting patients. *J. Viral Hepat.* 2012; **19**: 685–93.

HIV and Noncommunicable Diseases: The Asian Perspective

Jintanat Ananworanich, MD, PhD*† and Anchalee Avihingsanon, MD, PhD‡§

Abstract: Asia is seeing a rise in noncommunicable diseases in their general population and among people living with HIV. Many Asians have low body weight, which can lead to higher plasma concentrations of antiretrovirals and, as a result, their toxicities. Examples are metabolic complications from protease inhibitors, chronic kidney disease from tenofovir, and hepatotoxicity from nevirapine. Asia has not only the highest burden of hepatitis B viral infection than any other continent but also a predominance of genotypes B and C, the latter associated with higher risk for hepatocellular carcinoma. HIV-associated neurocognitive disorders are equally common among Asians as other populations. Diastolic dysfunction and asymptomatic myocardial ischemia are not infrequent. Non-Hodgkin lymphoma is the most common AIDS-related cancer, whereas Kaposi sarcoma is relatively infrequent. Emerging data show high prevalence of human papillomavirus-associated anal dysplasia in men who have sex with men. Resource-limited countries in Asia suffer from lack of resources for national screening programs of noncommunicable diseases, which, in turn, limits the epidemiologic data that exist to guide the use of national health resources.

Key Words: HIV, Asia, noncommunicable diseases, HIV-associated neurocognitive disorders, non-Hodgkin lymphoma, kidney disease

(*J Acquir Immune Defic Syndr* 2014;67:S99–S103)

INTRODUCTION

More people live in Asia than any other continent. Among its population of 4.3 billion, around 5 million are living with HIV. This number could rise markedly even with a small increase in HIV incidence in highly populated countries like China, India, or Indonesia. Although access to antiretroviral therapy (ART) is improving and the death rate from HIV/AIDS is decreasing, Asia continues to grapple with 270,000 deaths and 350,000 new infections each year and only half of those infected have access to ART.¹

Noncommunicable diseases (NCDs) account for half of all deaths reported in the general population in South and

Southeast Asia.^{2,3} Diabetes, coronary heart diseases (CHD), and cancer are being diagnosed at a younger age in these particular regions than in other parts of the world, likely because of unplanned urbanization, smoking, unhealthy diet, physical inactivity, poverty, and alcohol use.^{4,5} Diabetes quadrupled in the last 30 years in Thailand, Indonesia, and China, whereas the rate barely doubled in the United States.⁶ Among South Asians, earlier onset of acute myocardial infarction and diabetes was observed.⁷ Genetic, anthropometric, and biological factors, such as greater accumulation of visceral fat and lower glucose disposal, may underlie South Asians' propensity for diabetes.⁵ South and Southeast Asians also seemed to have more unfavorable health outcomes than others at similar waist-hip ratio or lipid levels.^{2,3,5,8}

This article will focus on some key HIV-related NCD burdens and outcomes among Asians and discuss areas for future research. Although this commentary is on the Asian experience, it focuses on South, East, and Southeast Asia and does not include experiences of Pacific Islanders.

METABOLIC AND BONE DISORDERS

In a 10-year study, diabetes incidence was almost 7 times higher in Taiwanese living with HIV compared with the general population.^{9,10} A large study among newly infected Chinese found that 20% had hyperglycemia and 10% had diabetes and that these conditions were associated with older age, low CD4 count, and genetic and lifestyle risk factors. Among those receiving ART, prolonged exposure to protease inhibitors and nucleoside analogs also increased the risk.⁹ Dyslipidemia and lipodystrophy are also common in Thais and Indians, particularly after the use of suboptimal antiretrovirals (ARVs), such as stavudine and indinavir.^{11,12} In a regional Therapeutics Research, Education, and AIDS Training study with an Asian cohort, 1 in 10 had clinically diagnosed lipodystrophy.¹³ Plasma concentrations of ARVs were found to be higher among South, Southeast, and East Asians, possibly because of unique genetics and low body weight.^{14–20} Lowering the dose of atazanavir/ritonavir from 300/100 to 200/100 mg in Thais reduced lipid and bilirubin levels without compromising its antiviral activity.¹⁶ It is possible that lower doses of many ARVs would be more appropriate for Asians, and the pharmacokinetics of ARVs should be studied to inform the design of clinical trials comparing low vs. standard ARV doses.

Cohort studies across South, Southeast, and East Asian countries report that at least 25% of people living with HIV experience low bone mass.^{21–26} Studies among Koreans and

From the *US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD; †Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD; ‡HIV-NAT, The Thai Red Cross AIDS Research Center, Bangkok, Thailand; and §Division of Allergy and Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

The views expressed are those of the authors and should not be construed to represent the positions of the US Army or the Department of Defense.

Correspondence to: Jintanat Ananworanich, MD, PhD, US Military HIV Research Program, 6720A Rockledge Drive, Suite 400, Bethesda, MD 20817 (e-mail: jananworanich@hvresearch.org).

Copyright © 2014 by Lippincott Williams & Wilkins

Thais suggested that they may be predisposed to this condition because of their low height and body mass index.^{23,25} Despite most of Asia being in the tropics with year-round sunshine, vitamin D deficiency is highly prevalent in Thais and Nepalese, and causal factors may include diet, pollution, sun protection, ARV, and other comorbidities, such as viral hepatitis.^{22,24,26}

Future research should focus on identifying the true incidence of these metabolic-related disorders among people with HIV, and the long-term outcomes, to guide the use of national health resources.²⁷

CHRONIC KIDNEY DISEASES

Emerging cohort data are suggesting worrisome rates of severe chronic kidney diseases of up to 10% among Chinese, Japanese, and Indians living with HIV.^{28–31} Older age and low CD4 count predicted chronic kidney diseases, and the use of nephrotoxic drugs, such as indinavir, seemed to have a long-lasting adverse effect, highlighting the importance of treating earlier and with safer ARVs. Asians may also be prone to tenofovir-related kidney complications. Cohort studies suggest a higher prevalence of proximal tubular dysfunction among East and Southeast Asians than among Westerners,^{32–34} thought to result from high tenofovir plasma concentration, which develops because of their generally low body weight and unique genetics associated with poorer tenofovir renal excretion. Concomitant use of protease inhibitors with tenofovir in second-line regimens further enhances this risk.^{30,32–34}

Perhaps, the most challenging comorbidity management issue in the region is the assessment of the glomerular filtration rate (GFR). The widely used Cockroft–Gault and modification of diet in renal disease equations significantly underestimate the true GFR in Thais and could lead to premature modifications of ART or unnecessary treatment.³⁵ Future research should identify the appropriate estimated glomerular filtration rate (eGFR) measure for each Asian population and monitor glomerular and tubular functions, particularly as tenofovir use is widely scaled up.

HEPATIC DISEASES

Nearly 75% of the 350 million people worldwide chronically infected with hepatitis B virus (HBV) are from the Southeast Asia and Western Pacific regions.³⁶ The more virulent HBV genotypes C and B predominate in Southeast and East Asia, in contrast to the more favorable genotype A in Europe and the United States.^{28,37,38} Genotype C is associated with more rapid liver fibrosis and a higher risk for hepatocellular carcinoma (HCC).^{39,40} Tenofovir given with emtricitabine or lamivudine is extremely effective in lowering the risk for HCC and ultimately preventing death, particularly if treatment is started early.^{41,42}

Worldwide, about 185 million people have chronic hepatitis C virus (HCV) infection, and Central and East Asia are among the most affected regions.^{43–45} This infection predominates in people who inject drugs (PWID), but the incidence is rising among men who have sex with men (MSM)

living in large Asian cities.⁴⁶ It is not surprising that many PWID and other persons at risk in Vietnam and Cambodia have triple HIV, HBV, and HCV infections, which markedly increase their risk for end-stage liver disease and other comorbidities, such as kidney and bone diseases, in addition to complications from commonly used first-line ART with non-nucleoside analogs.^{38,47} A large study of Vietnamese with HBV examined coinfection rates with HIV and HCV. Among PWID with HBV, 28% also had HIV and 90% had HCV.⁴⁸ Among commercial sex workers with HBV, 15% also had HIV and 40% had HCV. In Thailand, high costs and weak infrastructure for diagnosing, genotyping, and treating HCV have led to an almost universal lack of access to HCV management.⁴⁹

Even when viral hepatitis is absent, patients with HIV continue to be at risk for chronic hepatitis. The incidence of chronic hepatitis was 5.4 per 100 person-years in a Thai cohort, and the onset was generally within the first 18 months of ART, occurring more in males and those with higher body mass index.⁵⁰

Nevirapine is commonly used in first-line ART in Asia. However, Chinese may be at a greater risk for nevirapine-related hepatotoxicity because of high plasma concentration of the drug.⁵¹ From 25% to 40% of Indians and Chinese experience hepatotoxicity from nevirapine, which is associated with having a CD4 count above 250 cells per cubic millimeter.^{52,53} This has a direct implication for ART choices in national programs, as a higher CD4 threshold for ART initiation is now recommended.

NEUROCOGNITION

Asians are as prone to HIV-associated neurocognitive disease (HAND) as those living in Western countries, with 30%–50% of Chinese and Thais exhibiting some form of HAND; its severity is associated with advanced HIV disease.^{54–56} Although there is information supporting the neurovirulent nature of HIV clade D found in parts of Africa, such an association is less clear with other clades found in Asia (B, C, E), and limited data suggest no clinically relevant differences between these clades.^{57,58} Studies in Thais have informed the field regarding the brain insult that occurs very early in HIV infection^{59,60} and the associations between high proviral DNA burden and HAND (also brain atrophy, inflammation, and injury).⁶¹

Screening for HAND is challenging in the Asian context.⁶² Lack of time and personnel to perform a comprehensive assessment in busy clinics and limited validated tools are major barriers. A Thai study found that adding Trail Making Test A to the international HIV Dementia Scale significantly improved its sensitivity and specificity in identifying HIV-associated dementia but not the less severe forms of HAND.⁵⁰ Interestingly, even healthy Thais performed differently from Hawaiians on almost every aspect of the same neuropsychological test, illustrating the need for appropriate controls in HIV studies.⁶³

A possible research area for HAND intervention that could be synergistic with Asian cultures, religions, and ways of life is mindfulness or meditation.⁶⁴ Mindfulness can reduce

stress and symptoms of psychiatric conditions in HIV patients.⁶⁵ Although its favorable effect on cognitive function is suggested for other neurologic diseases,⁶⁶ this has yet to be explored in association with HAND.

CORONARY HEART DISEASES

Hypertension, the most important treatable risk factor for CHD, is commonly underdiagnosed in Asians, as it is in other populations. Though its prevalence among Asians is largely unknown, high rates of hypertension have been observed, for example, among Malaysian adults with HIV, whose rate approaches 50%.⁶⁷

Although the population of Asians with HIV is aging, the majority is still relatively young; therefore, CHD events are infrequent. Assessing the 10-year risk for CHD may aid in targeting people who need monitoring and preventive therapy. There are some warnings that more CHD cases will be identified in the future. In the Strategies for Management of Antiretroviral Therapy (SMART) study, asymptomatic myocardial ischemia was borderline more common among subjects in Asia than those in North America.⁶⁸ In India and China, up to 40% had diastolic dysfunction on echocardiogram, associated with having low CD4.^{69,70} The commonly used Framingham equation overestimated the CHD risk in Thais; so, identifying population-appropriate equations will be important.⁷¹

CANCER

The types of cancer observed in Asians living with HIV are similar to those reported elsewhere. In the Therapeutics Research, Education, and AIDS Training Asia retrospective study of 13 sites across South, Southeast, and East Asian regions, which included about 200 HIV-infected Asians with cancer, two-thirds had AIDS-defining cancers [40% non-Hodgkin lymphoma (NHL), 16% Kaposi sarcoma, and 9% cervical cancer]. The remaining one-third had non-AIDS-defining cancers (5% lung, 5% breast, and 5% HCC). Having a low CD4 count, being older, or not being on ARVs were predictors. Still, not much is known about the true prevalence of cancers among Asians with HIV. A Thai study of around 1500 people with HIV reported a 3% prevalence over 5 years.⁷²

Declining rates of NHL after the highly active ART era were observed in a retrospective study from Taiwan.⁷³ Kaposi sarcoma was infrequent in Korea, likely because of low-circulating Kaposi sarcoma-associated herpesvirus.⁷⁴ Another study in Japanese MSM also found a low Kaposi sarcoma-associated herpesvirus seropositivity of 10%.⁷⁵

Asians living in hot spots for HBV and HCV are at risk for these infections and for HCC, but little has been reported on the latter.⁷⁶ Chronic HBV infection may also increase the risk for other types of cancers, such as NHL, as has been shown in a study from Korea.⁷⁷

Cervical cancer is among the top killers of women with HIV, but the screening rate is generally low, as illustrated by a report from Taiwan.⁷⁸ A recent study from India evaluated 4 methods of screening and found that sequential testing with visual inspection with acetic acid followed by visual inspection

with Lugol iodine was feasible and had adequate sensitivity and specificity to detect abnormalities confirmed by colposcopy and biopsy. Of around 1100 women with HIV screened, 5% already had cervical intraepithelial neoplasia grades 2 and 3.⁷⁹ Among Cambodian female sex workers younger than 30 years living with HIV, 44% had cervical infection with multiple human papillomavirus (HPV) types, and their HPV risk was 6 times higher than their HIV-uninfected peers.⁸⁰ Emerging data are identifying anal HPV infection and anal intraepithelial neoplasia (AIN) as important health issues for Asian MSM. A Thai study found that 60% of MSM living with HIV had oncogenic anal HPV infection, and among these MSM, 29% progressed from normal/low-grade AIN to high-grade AIN in 1 year.⁸¹ Abnormal anal pap smear was also observed in 40% of HIV-infected MSM in China.⁸² Immunization against HPV is not yet the standard of care in most Asian countries, and its high price renders it out of reach to most Asians living with HIV.

CONCLUSIONS

Knowledge of HIV/NCD disease burdens and related characteristics among Asians is important not only for patient care in Asia but also for providers in other parts of the world who are increasingly caring for immigrants from Asia. Not surprisingly, screening programs found high rates of HBV and HCV infections among Vietnamese immigrants in the United States⁸³ and the Netherlands.⁸⁴ End-stage renal diseases from diabetes were also more common among South Asian immigrants.⁸⁵

For clinicians in these resource-rich settings, active screening and management of conditions Asians face are likely achievable given the available resources. For those who care for Asians living with HIV in resource-limited settings, there is an unfortunate theme of limited access for managing all types of NCDs. A concerted effort is needed to prioritize research to understand the magnitude of NCDs among people living with HIV and determine how best to target diagnosis and treatment for those most at risk.

ACKNOWLEDGMENT

The authors thank Ms Piraporn June Ohata for her help in preparing the manuscript.

REFERENCES

1. UNAIDS. HIV in Asia and the Pacific: UNAIDS Report 2013. Available at: http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2013/2013_HIV-Asia-Pacific_en.pdf. Accessed April 5, 2014.
2. World Health Organization. Action plan for the prevention and control of noncommunicable disease in South-East Asia, 2013–2020. Available at: [http://www.searo.who.int/entity/noncommunicable_diseases/documents/sea-ncd-89\(reduced\).pdf](http://www.searo.who.int/entity/noncommunicable_diseases/documents/sea-ncd-89(reduced).pdf). Accessed April 4, 2014.
3. Dans A, Ng N, Varghese C, et al. The rise of chronic non-communicable diseases in Southeast Asia: time for action. *Lancet*. 2011;377:680–689.
4. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. *JAMA*. 2009;301:2129–2140.
5. Gujral UP, Pradeepa R, Weber MB, et al. Type 2 diabetes in South Asians: similarities and differences with white Caucasian and other populations. *Ann N Y Acad Sci*. 2013;1281:51–63.

6. Yoon KH, Lee JH, Kim JW, et al. Epidemic obesity and type 2 diabetes in Asia. *Lancet*. 2006;368:1681–1688.
7. Joshi P, Islam S, Pais P, et al. Risk factors for early myocardial infarction in South Asians compared with individuals in other countries. *JAMA*. 2007;297:286–294.
8. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. *Lancet*. 2005;366:1640–1649.
9. Lo YC, Chen MY, Sheng WH, et al. Risk factors for incident diabetes mellitus among HIV-infected patients receiving combination antiretroviral therapy in Taiwan: a case-control study. *HIV Med*. 2009;10:302–309.
10. Tseng CH, Tseng CP, Chong CK, et al. Increasing incidence of diagnosed type 2 diabetes in Taiwan: analysis of data from a national cohort. *Diabetologia*. 2006;49:1755–1760.
11. Kerr SJ, Duncombe C, Avihingsanon A, et al. Dyslipidemia in an Asian population after treatment for two years with protease inhibitor-containing regimens. *J Int Assoc Physicians AIDS Care (Chic)*. 2007;6:36–46.
12. Pujari SN, Dravid A, Naik E, et al. Lipodystrophy and dyslipidemia among patients taking first-line, World Health Organization-recommended highly active antiretroviral therapy regimens in Western India. *J Acquir Immune Defic Syndr*. 2005;39:199–202.
13. Han SH, Zhou J, Saghayam S, et al. Prevalence of and risk factors for lipodystrophy among HIV-infected patients receiving combined antiretroviral treatment in the Asia-Pacific region: results from the TREAT Asia HIV Observational Database (TAHOD). *Endocr J*. 2011;58:475–484.
14. Autar RS, Ananworanich J, Apateerapong W, et al. Pharmacokinetic study of saquinavir hard gel caps/ritonavir in HIV-1-infected patients: 1600/100 mg once-daily compared with 2000/100 mg once-daily and 1000/100 mg twice-daily. *J Antimicrob Chemother*. 2004;54:785–790.
15. Autar RS, Boffito M, Hassink E, et al. Interindividual variability of once-daily ritonavir boosted saquinavir pharmacokinetics in Thai and UK patients. *J Antimicrob Chemother*. 2005;56:908–913.
16. Avihingsanon A, van der Lugt J, Kerr SJ, et al. A low dose of ritonavir-boosted atazanavir provides adequate pharmacokinetic parameters in HIV-1-infected Thai adults. *Clin Pharmacol Ther*. 2009;85:402–408.
17. Dickinson L, Boffito M, Back DJ, et al. Population pharmacokinetics of ritonavir-boosted saquinavir regimens in HIV-infected individuals. *J Antimicrob Chemother*. 2008;62:1344–1355.
18. Manosuthi W, Kiertiburanakul S, Sungkanuparph S, et al. Efavirenz 600 mg/day versus efavirenz 800 mg/day in HIV-infected patients with tuberculosis receiving rifampicin: 48 weeks results. *AIDS*. 2006;20:131–132.
19. van der Lugt J, Avihingsanon A. Clinical pharmacology and pharmacokinetics of antiretrovirals in Asia. *Asian Biomed*. 2009;3:53–62.
20. van der Lugt J, Lange J, Avihingsanon A, et al. Plasma concentrations of generic lopinavir/ritonavir in HIV type-1-infected individuals. *Antivir Ther*. 2009;14:1001–1004.
21. Kim HS, Chin BS, Shin HS. Prevalence and risk factors of low bone mineral density in Korean HIV-infected patients: impact of abacavir and zidovudine. *J Korean Med Sci*. 2013;28:827–832.
22. Avihingsanon A, Apornpong T, Ramautarsing RA, et al. Decline in serum 25 hydroxyvitamin D levels in HIV-HBV-coinfected patients after long-term antiretroviral therapy. *Antivir Ther*. 2014;19:41–49.
23. Choe PG, Choi HJ, Kim NH, et al. High prevalence of low bone mass and associated factors in Korean HIV-positive male patients undergoing antiretroviral therapy. *J Int AIDS Soc*. 2014;17:18773.
24. Poudel-Tandukar K, Poudel KC, Jimba M, et al. Serum 25-hydroxyvitamin D levels and C-reactive protein in persons with human immunodeficiency virus infection. *AIDS Res Hum Retroviruses*. 2013;29:528–534.
25. Puthanakit T, Saksawad R, Bunupuradah T, et al. Prevalence and risk factors of low bone mineral density among perinatally HIV-infected Thai adolescents receiving antiretroviral therapy. *J Acquir Immune Defic Syndr*. 2012;61:477–483.
26. Wiboonchutikul S, Sungkanuparph S, Kiertiburanakul S, et al. Vitamin D insufficiency and deficiency among HIV-1-infected patients in a tropical setting. *J Int Assoc Physicians AIDS Care (Chic)*. 2012;11:305–310.
27. Ali MH, Magee MJ, Dave JA, et al. HIV and metabolic, body, and bone disorders: what we know from low- and middle-income countries. *J Acquir Immune Defic Syndr*. 2014;67(suppl 1):S27–S39.
28. Cao Y, Gong M, Han Y, et al. Prevalence and risk factors for chronic kidney disease among HIV-infected antiretroviral therapy-naïve patients in mainland China: a multicenter cross-sectional study. *Nephrology (Carlton)*. 2013;18:307–312.
29. Cheung CY, Wong KM, Lee MP, et al. Prevalence of chronic kidney disease in Chinese HIV-infected patients. *Nephrol Dial Transplant*. 2007;22:3186–3190.
30. Pujari SN, Smith C, Makane A, et al. Higher risk of renal impairment associated with tenofovir use amongst people living with HIV in India: a comparative cohort analysis between Western India and United Kingdom. *BMC Infect Dis*. 2014;14:173.
31. Yanagisawa N, Ando M, Ajisawa A, et al. Clinical characteristics of kidney disease in Japanese HIV-infected patients. *Nephron Clin Pract*. 2011;118:c285–C291.
32. Kiertiburanakul S, Chaisiri K, Kasettrat N, et al. Monitoring of renal function among HIV-infected patients receiving tenofovir in a resource-limited setting. *J Int Assoc Physicians AIDS Care (Chic)*. 2011;10:297–302.
33. Mizushima D, Tanuma J, Kanaya F, et al. WHO antiretroviral therapy guidelines 2010 and impact of tenofovir on chronic kidney disease in Vietnamese HIV-infected patients. *PLoS One*. 2013;8:e79885.
34. Nishijima T, Komatsu H, Gatanaga H, et al. Impact of small body weight on tenofovir-associated renal dysfunction in HIV-infected patients: a retrospective cohort study of Japanese patients. *PLoS One*. 2011;6:e22661.
35. Praditpornsilpa K, Avihingsanon A, Chaiwatanarat T, et al. Comparisons between validated estimated glomerular filtration rate equations and isotope glomerular filtration rate in HIV patients. *AIDS*. 2012;26:1781–1788.
36. Gust ID. Epidemiology of hepatitis B infection in the Western Pacific and South East Asia. *Gut*. 1996;38(suppl 2):S18–S23.
37. Fibriani A, Wisaksana R, Alisjahbana B, et al. Hepatitis B virus prevalence, risk factors and genotype distribution in HIV infected patients from West Java, Indonesia. *J Clin Virol*. 2014;59:235–241.
38. Quan VM, Go VF, Nam le V, et al. Risks for HIV, HBV, and HCV infections among male injection drug users in northern Vietnam: a case-control study. *AIDS Care*. 2009;21:7–16.
39. Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. *Gut*. 2004;53:1494–1498.
40. Kao JH, Chen PJ, Lai MY, et al. Hepatitis B virus genotypes and spontaneous hepatitis B e antigen seroconversion in Taiwanese hepatitis B carriers. *J Med Virol*. 2004;72:363–369.
41. Matthews GV, Avihingsanon A, Lewin SR, et al. A randomized trial of combination hepatitis B therapy in HIV/HBV coinfected antiretroviral naïve individuals in Thailand. *Hepatology*. 2008;48:1062–1069.
42. Matthews GV, Seaberg EC, Avihingsanon A, et al. Patterns and causes of suboptimal response to tenofovir-based therapy in individuals coinfected with HIV and hepatitis B virus. *Clin Infect Dis*. 2013;56:e87–e94.
43. World Health Organization. Guidelines for the screening, care and treatment of persons with hepatitis C infection. 2014. Available at: <http://www.who.int/hiv/pub/hepatitis/hepatitis-c-guidelines/en/>. Accessed April 18, 2014.
44. Mohd Hanafiah K, Groeger J, Flaxman AD, et al. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. *Hepatology*. 2013;57:1333–1342.
45. Ye S, Pang L, Wang X, et al. Epidemiological implications of HIV-hepatitis C co-infection in South and Southeast Asia. *Curr HIV/AIDS Rep*. 2014;11:128–133.
46. Nishijima T, Shimbo T, Komatsu H, et al. Incidence and risk factors for incident Hepatitis C infection among men who have sex with men with HIV-1 infection in a large Urban HIV clinic in Tokyo. *J Acquir Immune Defic Syndr*. 2014;65:213–217.
47. van Griensven J, Phirum L, Choun K, et al. Hepatitis B and C co-infection among HIV-infected adults while on antiretroviral treatment: long-term survival, CD4 cell count recovery and antiretroviral toxicity in Cambodia. *PLoS One*. 2014;9:e88552.
48. Dunford L, Carr MJ, Dean J, et al. A multicentre molecular analysis of hepatitis B and blood-borne virus coinfections in Viet Nam. *PLoS One*. 2012;7:e39027.
49. Maek-A-Nantawat W, Avihingsanon A, Ohata PJ. Challenges in providing treatment and care for viral hepatitis among individuals co-infected with HIV in resource-limited settings. *AIDS Res Treat*. 2012;2012:948059.

50. Chalermchai T, Valcour V, Sithinamsuwan P, et al. Trail Making Test A improves performance characteristics of the International HIV Dementia Scale to identify symptomatic HAND. *J Neurovirol*. 2013;19:137–143.
51. Wang J, Kou H, Fu Q, et al. Nevirapine plasma concentrations are associated with virologic response and hepatotoxicity in Chinese patients with HIV infection. *PLoS One*. 2011;6:e26739.
52. Kumarasamy N, Vallabhaneni S, Cecelia AJ, et al. Reasons for modification of generic highly active antiretroviral therapeutic regimens among patients in southern India. *J Acquir Immune Defic Syndr*. 2006;41:53–58.
53. Zhang C, Wang W, Zhou M, et al. The interaction of CD4 T-cell count and nevirapine hepatotoxicity in China: a change in national treatment guidelines may be warranted. *J Acquir Immune Defic Syndr*. 2013;62:540–545.
54. Bunupuradah T, Chetchotisakd P, Jirajariyavej S, et al. Neurocognitive impairment in patients randomized to second-line lopinavir/ritonavir-based antiretroviral therapy vs. lopinavir/ritonavir monotherapy. *J Neurovirol*. 2012;18:479–487.
55. Pumpradit W, Ananworanich J, Lolak S, et al. Neurocognitive impairment and psychiatric comorbidity in well-controlled human immunodeficiency virus-infected Thais from the 2NN Cohort Study. *J Neurovirol*. 2010;16:76–82.
56. Zhang Y, Qiao L, Ding W, et al. An initial screening for HIV-associated neurocognitive disorders of HIV-1 infected patients in China. *J Neurovirol*. 2012;18:120–126.
57. Joseph J, Achim CL, Boivin MJ, et al. Global NeuroAIDS roundtable. *J Neurovirol*. 2013;19:1–9.
58. Tyor W, Fritz-French C, Nath A. Effect of HIV clade differences on the onset and severity of HIV-associated neurocognitive disorders. *J Neurovirol*. 2013;19:515–522.
59. Sailasuta N, Ross W, Ananworanich J, et al. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection. *PLoS One*. 2012;7:e49272.
60. Valcour V, Chalermchai T, Sailasuta N, et al. Central nervous system viral invasion and inflammation during acute HIV infection. *J Infect Dis*. 2012;206:275–282.
61. Shiramizu B, Ananworanich J, Chalermchai T, et al. Failure to clear intra-monocyte HIV infection linked to persistent neuropsychological testing impairment after first-line combined antiretroviral therapy. *J Neurovirol*. 2012;18:69–73.
62. Chibanda D, Benjamin L, Weiss HA, et al. Mental, neurological and substance use disorders in people living with HIV/AIDS in low- and middle-income countries. *J Acquir Immune Defic Syndr*. 2014;67(suppl 1):S54–S67.
63. Heaps J, Valcour V, Chalermchai T, et al. Development of normative neuropsychological performance in Thailand for the assessment of HIV-associated neurocognitive disorders. *J Clin Exp Neuropsychol*. 2013;35:1–8.
64. Rungreangkulkij S, Wongtakee W. The psychological impact of Buddhist counseling for patients suffering from symptoms of anxiety. *Arch Psychiatr Nurs*. 2008;22:127–134.
65. Gonzalez-Garcia M, Ferrer MJ, Borras X, et al. Effectiveness of mindfulness-based cognitive therapy on the quality of life, emotional status, and CD4 cell count of patients aging with HIV infection. *AIDS Behav*. 2014;18:676–685.
66. Tan LF, Dienes Z, Jansari A, et al. Effect of mindfulness meditation on brain-computer interface performance. *Conscious Cogn*. 2014;23:12–21.
67. Hejazi N, Huang MS, Lin KG, et al. Hypertension among HIV-infected adults receiving highly active antiretroviral therapy (HAART) in Malaysia. *Glob J Health Sci*. 2014;6:58–71.
68. Carr A, Grund B, Neuhaus J, et al. Asymptomatic myocardial ischaemia in HIV-infected adults. *AIDS*. 2008;22:257–267.
69. Guha S, Pande A, Mookerjee S, et al. Echocardiographic profile of ART naïve human immunodeficiency virus (HIV) infected patients in a tertiary care hospital in Kolkata. *Indian Heart J*. 2010;62:330–334.
70. Luo L, Ye Y, Liu Z, et al. Assessment of cardiac diastolic dysfunction in HIV-infected people without cardiovascular symptoms in China. *Int J STD AIDS*. 2010;21:814–818.
71. Edwards-Jackson N, Kerr S, Tieu H, et al. Cardiovascular risk assessment in persons with HIV infection in the developing world: comparing three risk equations in a cohort of HIV-infected Thais. *HIV Med*. 2011;12:510–515.
72. Kiertiburanakul S, Likhitpongwit S, Ratanasiri S, et al. Malignancies in HIV-infected Thai patients. *HIV Med*. 2007;8:322–323.
73. Yang CJ, Chen MY, Hsieh SM, et al. Non-Hodgkin's lymphoma in patients with human immunodeficiency virus infection in Taiwan. *J Microbiol Immunol Infect*. 2010;43:278–284.
74. Chung CY, Park SW, Myung E, et al. AIDS-related gastrointestinal kaposi's sarcoma in Korea: a case report and review of the literature. *Korean J Gastroenterol*. 2012;60:166–171.
75. Katano H, Yokomaku Y, Fukumoto H, et al. Seroprevalence of Kaposi's sarcoma-associated herpesvirus among men who have sex with men in Japan. *J Med Viro*. 2013;85:1046–1052.
76. Yanagimoto S, Yotsuyanagi H, Kikuchi Y, et al. Chronic hepatitis B in patients coinfected with human immunodeficiency virus in Japan: a retrospective multicenter analysis. *J Infect Chemother*. 2012;18:883–890.
77. Engels EA, Cho ER, Jee SH. Hepatitis B virus infection and risk of non-Hodgkin lymphoma in South Korea: a cohort study. *Lancet Oncol*. 2010;11:827–834.
78. Chen YC, Liu HY, Li CY, et al. Low Papanicolaou smear screening rate of women with HIV infection: a nationwide population-based study in Taiwan, 2000–2010. *J Womens Health (Larchmt)*. 2013;22:1016–1022.
79. Joshi S, Sankaranarayanan R, Muwonge R, et al. Screening of cervical neoplasia in HIV-infected women in India. *AIDS*. 2013;27:607–615.
80. Couture MC, Page K, Stein ES, et al. Cervical human papillomavirus infection among young women engaged in sex work in Phnom Penh, Cambodia: prevalence, genotypes, risk factors and association with HIV infection. *BMC Infect Dis*. 2012;12:166.
81. Phanuphak N, Teeratakulpisarn N, Triratanachat S, et al. High prevalence and incidence of high-grade anal intraepithelial neoplasia among young Thai men who have sex with men with and without HIV. *AIDS*. 2013;27:1753–1762.
82. Yang Y, Li X, Zhang Z, et al. Association of human papillomavirus infection and abnormal anal cytology among HIV-infected MSM in Beijing, China. *PLoS One*. 2012;7:e35983.
83. Nguyen K, Van Nguyen T, Shen D, et al. Prevalence and presentation of hepatitis B and C virus (HBV and HCV) infection in Vietnamese Americans via serial community serologic testing. *J Immigr Minor Health*. 2014. [ePub ahead of print, January 29, 2014].
84. Richter C, Ter Beest G, Gisolf EH, et al. Screening for chronic hepatitis B and C in migrants from Afghanistan, Iran, Iraq, the former Soviet Republics, and Vietnam in the Arnhem region, The Netherlands. *Epidemiol Infect*. 2014;1–7. [ePub ahead of print, January 7, 2014].
85. Van den Berg E, Hospers FA, Navis G, et al. Dietary acid load and rapid progression to end-stage renal disease of diabetic nephropathy in Westernized South Asian people. *J Nephrol*. 2011;24:11–17.

Factors Associated with Daily Tenofovir Exposure in Thai Subjects Taking Combination Antiretroviral Therapy

Stephen J. Kerr,^{1,2,*} Baralee Punyawudho,^{3,*} Narukjaporn Thammajaruk,¹ Angela Colbers,⁴ Prachya Chaiyahong,¹ Supalak Phonphithak,¹ Vorapot Sapsirisavat,¹ Kiat Ruxrungham,^{1,5} David M. Burger,⁴ and Anchalee Avihingsanon^{1,5}

Abstract

Tenofovir (TFV) exposure is associated with antiretroviral efficacy and risk of kidney disease. There is evidence of high interindividual variability of the pharmacokinetics of TFV. The effect of several clinical conditions on the pharmacokinetics of TFV has been observed and may partly explain its variability. We assessed factors influencing the pharmacokinetics of TFV in Thai patients. Thirty participants (50% female) taking efavirenz- or ritonavir-boosted protease inhibitor-based regimens were investigated. Intensive pharmacokinetic sampling was performed over 24 h. Multivariate geometric mean regression models adjusted for covariates with $p \leq 0.2$ in univariate analysis were developed. The median age was 41 years. Five participants [three taking a protease inhibitor (PI) and two taking efavirenz (EFV)] had mild renal dysfunction [estimated glomerular filtration rate (eGFR) 60–90 ml/min/1.73 m²; range 72–89]. TFV AUC_{0–24} was 23% (95% CI 1–49%; $p = 0.04$) higher in those taking PI vs. Efv, 39% (95% CI 5–84%; $p = 0.02$) higher in those with mild renal dysfunction, and reduced by 16% (95% CI 5–26%; $p = 0.008$) with each 10 kg body weight increase, after adjusting for sex and duration of TFV exposure. In PI-treated subjects TFV AUC_{0–24} increased by 3% (0.3–6%; $p = 0.03$) for each mg · h/liter increase in ritonavir (RTV) AUC_{0–24} after adjusting for sex, weight, mild renal impairment, and proximal renal tubular dysfunction. Significantly higher TFV exposures were independently associated with PI regimens, mild renal impairment, lower body weight, and increasing RTV AUC_{0–24}. Clinicians should be aware of the effect of these factors on TFV exposure when this drug is prescribed.

Introduction

TENOFOVIR (TFV) IS ONE OF THE MOST widely used antiretroviral agents worldwide, recommended as a choice in first line combination antiretroviral regimens (cART) in both resource-rich and resource-limited settings for adults and adolescents initiating treatment.^{1,2} Tenofovir disoproxil fumarate (TDF) is an oral prodrug of TFV. It is converted to TFV after absorption through the gut and first pass metabolism through the liver. Within cells, TFV is rapidly phosphorylated to tenofovir diphosphate (TFV-DP), which is the active form. TFV is mainly excreted unchanged into urine by glomerular filtration and active tubular secretion.³ Although TFV is usually well tolerated, TFV-induced renal toxicity has been reported.⁴

The mechanism of TFV-induced renal dysfunction involves damage to the proximal renal tubular cells, but the precise

mechanisms mediating the toxicity are unclear.⁵ Previous studies demonstrated that TFV concentrations and cumulative duration of TFV exposure are found to be associated with an increased risk of kidney disease.^{6–9} Higher TFV trough concentrations were found in subjects with renal dysfunction.^{6–8} This supports the hypothesis that TFV concentrations may play a part in the development of renal toxicity through chronic exposure to higher TFV concentrations.

Along with TFV exposure, recent studies have shown that concomitant treatment with protease inhibitors (PIs) boosted with ritonavir (RTV) and lower body weight are independent risk factors for TFV-associated renal dysfunction.^{7,10} The efficacy of TFV was mainly established in combination with efavirenz, but TFV dosed concomitantly with boosted PIs but not efavirenz results in higher TFV exposure, which may have little benefit in terms of efficacy, but serves to increase a

¹HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.

²The Kirby Institute, University of New South Wales, Sydney, Australia.

³Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.

⁴Radboud University Medical Center, Nijmegen, the Netherlands.

⁵Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

*These authors contributed equally to this work.

person's risk of renal toxicity.¹¹ Asians may be at particularly high risk for renal complications with TFV treatment because of their low body mass index and body weight.¹⁰ Thai patients have higher concentrations of a number of antiretroviral agents than Western counterparts, at least in part explained by their lower body weight.¹² In a recent meta-analysis, the greatest mean difference in calculated creatinine clearance between TFV-treated subjects and the comparator group was noted in a study in which the subjects were Japanese, although the confidence intervals were wide.¹³ Therefore, the lower body weight of the patients in this population could lead to a higher TFV concentration, ultimately increasing the risk of developing TFV toxicity.

High interindividual variability of TFV pharmacokinetics has been observed,¹⁴ and body weight, renal function, and comedications can influence TFV pharmacokinetics.^{11,14,15} Although factors contributing to interindividual variability of TFV pharmacokinetics have been extensively investigated in other ethnicities,^{14–16} none of the studies was performed in an Asian population. Identifying factors influencing TFV concentrations in Asians could be useful for adjusting TFV dosage regimens to obtain optimal therapeutic effects while preventing toxicities related to high TFV concentrations.

In this study we identified factors influencing daily TFV exposure, assessed as the AUC_{0-24} , and other pharmacokinetic parameters including C_{max} and C_{24h} , in Thai subjects taking efavirenz (EFV) or RTV-boosted PI-based cART.

Materials and Methods

This was a cross-sectional, intensive pharmacokinetic (PK) study conducted at the HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT) in Bangkok, Thailand. The study was approved by the Chulalongkorn University Institutional Review Board, and all subjects gave written informed consent.

Pharmacokinetic sampling and pharmacokinetic assay

HIV-1-infected adult Thai patients (over 18 years of age) who had been taking 300 mg TDF qd with Efv qd, lopinavir/RTV bid, or atazanavir/RTV qd for at least 6 months and had plasma HIV RNA <50 copies/ml were studied. Subjects were asked to take cART in the morning for 2 weeks before the intensive PK sampling day. On that day, medication intake was observed by a study nurse, and blood sampling was performed at time = 0 (predose) and at 1, 2, 4, 6, 8, 10, 12, and 24 h postdosing. A physical examination was also conducted and routine clinical chemistry and hematology laboratory analyses were performed. Plasma was transferred to a polypropylene tube and stored at –20°C (for no longer than 1 month) and then at –80°C until analysis.

Plasma concentrations of TFV were determined by a validated high-performance liquid chromatography (HPLC) assay with fluorescence detection and a lower limit of quantification of 0.015 mg/liter.¹⁷ The TFV calibration curve was linear over the concentration range of 0.015 to 1.5 mg/liter, and within-run and between-run percent variation was <10%. In subjects taking RTV-boosted lopinavir or atazanavir, RTV concentrations were determined using HPLC with fluorescence detection. The lower limit of quantification was 0.045 mg/liter.¹⁸ The within-run and between-run variation was <10% and the accuracy was between 95% and

105%. As an external quality control measure, the HIV-NAT laboratory participates in an International program for therapeutic drug monitoring of antiretroviral drugs in plasma.¹⁹

Statistical analyses

PK parameters for TFV and RTV were calculated by noncompartmental methods using WinNonLin (version 5.2, Pharsight Corporation, Mountain View, CA). The following parameters were calculated for TFV: area under the plasma concentration-time 0–24 h (AUC_{0-24}), the maximum plasma concentration (C_{max}), the trough plasma concentration at 24 h (C_{24}), the time to reach the maximum plasma concentration (T_{max}), the apparent elimination half-life ($t_{1/2}$), the apparent clearance (CL/F), and the apparent volume of distribution (V_d/F). In subjects taking RTV-boosted lopinavir or atazanavir, we calculated the RTV AUC_{0-12} or AUC_{0-24} , respectively.

Estimated glomerular filtration rate (eGFR) was calculated by the Modification of Diet in Renal Disease (MDRD) equation with Thai racial correction factor (eGFR-Th), developed to accurately assess GFR in a Thai population.²⁰ Body surface area was calculated according to the formula of Dubois.²¹ Proximal renal tubular dysfunction (PRTD) was defined as at least two of the following five criteria: (1) fractional tubular absorption of phosphorus <0.80 or tubular maximum phosphorus corrected for GFR <2.6 mg/dl; (2) total urinary phosphorus excretion >1,200 mg/day; (3) fractional excretion of uric acid >15%; (4) β_2 -microglobulin >1 mg/day or β_2 -microglobulin/urinary creatinine >0.3 mg/liter; and (5) nondiabetic glucosuria (urine glucose >300 mg/day or positive urine glucose) with normal glycemia (plasma glucose <100 mg/dl).

Statistical analyses were performed using Stata version 12 (Statacorp, College Station, TX). Demographic characteristics of subjects taking Efv- and PI-based regimens were compared using a Wilcoxon test for continuous covariates and a chi-square or Fisher's exact test as appropriate for categorical covariates. The geometric mean (GM) and percentage coefficient of variation (%CV) and the mean (SD) or the median (IQR) of TFV PK parameters were calculated for subjects on Efv- and PI-based regimens; T_{max} was reported as the median (IQR). Regression models were used to assess how the TFV AUC_{0-24} , C_{max} , and C_{min} GM were influenced by factors including regimen type (PI or Efv), age, body weight, gender, hepatitis B positive, mild renal dysfunction (eGFR-Th = 60–90 ml/min/1.73 m²), PRTD, duration of TFV exposure, and total duration of ART exposure. Factors significant at $p \leq 0.2$ in univariate analysis were adjusted for in a multivariate model. Since an aim of the project was to compare PK parameters in subjects taking PI- or non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens, regimen was included in all multivariate models regardless of the significance level in univariate analysis.

A secondary analysis was conducted in subjects taking PI-based regimens to examine the effect of RTV AUC_{0-24} on TFV AUC_{0-24} , C_{max} , and C_{24} . In subjects taking bid PI regimens, the RTV AUC_{0-12} was doubled to derive the AUC_{0-24} .

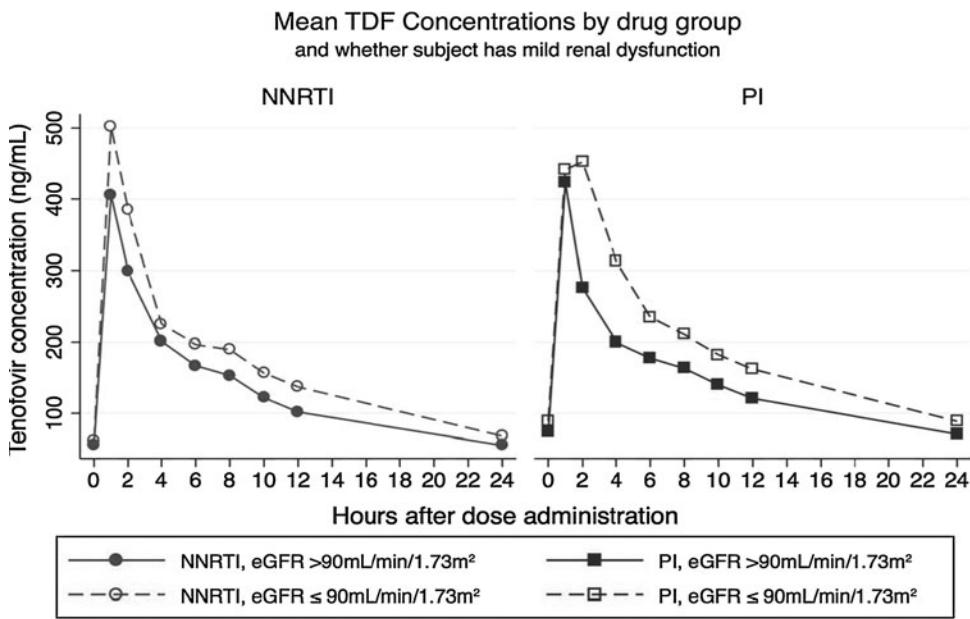
Results

Thirty participants (50% female) with a median age of 41(IQR 38–49; range 30–57) years were studied; the sample

TABLE 1. DEMOGRAPHIC CHARACTERISTICS OF SUBJECTS TAKING TENOFOVIR DIPROXIL FUMERATE WITH EFAVIRENZ OR PROTEASE INHIBITOR-BASED REGIMENS

Covariate ^a	PI (N=16)	EFV (N=14)	Total (N=30)	p ^a
Age (years)	40 (36–48)	43.5 (39–50)	41 (38–49)	0.39
Male:female, n (%)	8 (50):8 (50)	7 (50):7 (50)	15 (50):15 (50)	1.00
Height (cm)	160 (156–170)	164 (158–170)	163 (157–170)	0.49
Weight (kg)	63.4 (56.1–70.2)	55.2 (53.4–68.5)	61.6 (53.5–71.0)	0.33
BSA (m ²)	1.63 (1.55–1.79)	1.62 (1.55–1.75)	1.63 (1.57–1.76)	0.62
Hepatitis B positive	2 (13)	4 (29)	6 (20)	0.38
Proximal tubular dysfunction, n (%)	2 (13)	1 (7)	3 (10)	1.00
Serum creatinine (mg/dl)	0.75 (0.65–0.8)	0.8 (0.7–0.9)	0.8 (0.7–0.9)	0.22
eGFR-Th (ml/min/1.73 m ²)	119 (100–127)	104 (94–112)	110 (96–121)	0.05
Mild renal dysfunction, ^b n (%)	3 (19)	2 (14)	5 (17)	1.00
Duration of cART (years)	10.8 (7.3–13.7)	5.3 (3.8–10.6)	8.4 (5.1–12.7)	0.01
Duration of TDF treatment (years)	3.1 (2.1–4.9)	3.8 (2.1–4.8)	3.6 (2.1–4.8)	0.90

^aCategorical covariates are presented as n (%) and continuous covariates are presented as median (IQR). Significance tests were by Wilcoxon test for continuous covariates and Chi-square or Fisher's exact test as appropriate for categorical covariates.


^beGFR 60–90 ml/min/m² by MDRD-Thai.

PI, protease inhibitor; EFV, efavirenz; BSA, body surface area; eGFR-Th, estimated glomerular filtration rate-Thai; cART, combination antiretroviral therapy; TDF, tenofovir diproxil fumerate.

size was empirical. One subject taking a PI-based regimen was enrolled, but was excluded from analysis because their weight and height (102 kg and 185 cm, respectively) were not representative of the normal Thai population. Subjects were taking EFV 600 mg once daily (qd) (n=14), lopinavir/RTV 400/100 mg twice daily (bid) (n=12), or atazanavir/RTV (ATV/r) 300/100 mg qd (n=4). There were no significant differences in patient characteristics noted between the PI and EFV groups except for eGFR-Th and total duration of ART use, which was significantly lower in the EFV group (Table 1). Five participants (three taking PI and two taking EFV) had mild renal dysfunction (eGFR-Th 60–90 ml/min/1.73 m²; range 73–89); the median (IQR) duration of TFV exposure was 4.2 (3.8–5.1) years in these participants vs. 3.0 (2.1–4.0) years in those with normal renal function ($p=0.1$) and the median (IQR) duration of ART therapy was 11.1

(6.5–13.0) years in those with mild renal dysfunction vs. 7.7(5.1–11.2) years in those with normal renal function ($p=0.5$). One of these subjects with mild renal dysfunction did not have urinalysis conducted, and therefore we were unable to establish whether this subject had RPTD; eGFR in 3/30 subjects with RPTD ranged from 96 ml/min/1.73 m² to 146 ml/min/1.73 m². TFV plasma concentration time curves for subjects taking EFV and PI regimens, by whether subjects had mild renal dysfunction, are shown in Fig. 1.

Geometric means (%CV) of TFV AUC_{0–24}, C_{max} , and C_{24} were 3,517 (31) ng · h/ml, 406 (49) ng/ml, and 70 (34) ng/ml, respectively, in subjects taking PI regimens, and 3,045 (32) ng · h/ml, 402 (33) ng/ml, and 60 (37) ng/ml, respectively, in those taking EFV (Table 2). The median time to maximum plasma concentration was 1 h in 83% of participants and 2 h in the remaining 17%.

FIG. 1. Mean tenofovir (TFV) plasma versus time concentrations by whether the subject has an estimated glomerular filtration rate (eGFR) of 70–90 ml/min/1.73 m².

TABLE 2. TENOFOVIR DIPROZIL FUMERATE PHARMACOKINETIC PARAMETERS BY DRUG GROUP

Parameter	PI (n=16)	EFV (n=14)	Total (n=30)
TFV AUC ₀₋₂₄ (ng · h/ml)			
Geometric mean (%CV)	3,517 (31)	3,045 (32)	3,288 (32)
Arithmetic mean (SD)	3,675 (1,163)	3,177 (925)	3,443 (1071)
TFV C _{max} (ng/ml)			
Geometric mean (%CV)	406 (49)	402 (33)	404 (42)
Arithmetic mean (SD)	443 (175)	422 (135)	433 (155)
TFV C _{24h} (ng/ml)			
Geometric mean (%CV)	70 (34)	60 (37)	65 (36)
Arithmetic mean (SD)	74 (25)	64 (29)	69 (27)
TFV half-life (h)			
Geometric mean (%CV)	12.4 (24)	11.5 (23)	12.0 (23)
Arithmetic mean (SD)	12.7 (2.76)	11.8 (2.62)	12.3 (2.68)
TFV clearance (liters/h)			
Geometric mean (%CV)	85 (31)	95 (27)	88 (30)
Arithmetic mean (SD)	89 (28)	98 (28)	93 (28)
TFV volume of distribution (liters)			
Geometric mean (%CV)	1,482 (30)	1,579 (40)	1,527 (35)
Arithmetic mean (SD)	1,543 (450)	1,713 (854)	1,622 (663)
TFV T _{max} (h)			
Median (IQR)	1 (1-1)	1 (1-1)	1 (1-1)
RTV AUC ₀₋₂₄ (mg · h/liter)			
Geometric mean (%CV)	9.8 (39)		
Arithmetic mean (SD)	10.6 (4.4)		

PI, protease inhibitor; EFV, efavirenz; TFV, tenofovir; RTV, ritonavir.

The univariate and multivariate regression models for TFV AUC₀₋₂₄, C_{max}, and C₂₄ are shown in Table 3. In multivariate models, after adjusting for sex and duration of TVF exposure, the TFV AUC₀₋₂₄ GM was 23% (95% CI 1–49%) higher in subjects taking PI-based regimens vs. EFV, 39% (95% CI 5–84%) higher in those with mild renal dysfunction vs. normal renal function, and reduced by 16% (95% CI 5–26%) for a 10 kg increase in body weight.

The TFV C_{max} geometric mean ratio (GMR) was approximately 1, and not significantly different in subjects taking PI-based vs. EFV-based regimens. The TFV C₂₄ GM was 64% (95% CI 1–269%) higher in participants with proximal renal tubular dysfunction after adjusting for regimen, sex, weight, and duration of TDF exposure. The TFV C₂₄ GM was reduced by 15% (95% CI 2–26%) for a 10 kg increase in body weight after adjusting for regimen and sex. The GM of TFV C₂₄ was on average 26% higher in subjects taking PI-based regimens in adjusted models, but this was not statistically significant.

In subjects taking PI-based regimens, the GM (%CV) for the RTV AUC₀₋₂₄ was 9.8 (39) mg · h/liter. In a multivariate TFV AUC₀₋₂₄ GM model, after adjusting for mild renal dysfunction, PRTD, sex, and weight, a 1 mg · h/liter increase in RTV AUC₀₋₂₄ increased the TVF AUC₀₋₂₄ GM by 3% (95% CI 0.3–6%). A higher, but not significant TFV C_{max} and C₂₄ GM were observed with increasing RTV AUC₀₋₂₄ in univariate models (data not shown).

Discussion

Although intracellular concentrations of TFV-DP contribute to the drug's efficacy, there is evidence of a relationship between TFV concentrations in plasma and viral suppression.^{8,9,22,23} The use of TFV plasma concentrations as

monitoring parameters for efficacy and safety could be convenient in clinical practice. Our study found a high interindividual variability of TFV exposure and pharmacokinetics (Table 2). Several factors may influence TFV exposure including body size, renal function, comedications, and age.^{14,15,24} Therefore, identifying factors that may impact TFV exposure are important for TFV dose adjustment. Currently, information regarding demographic variables and how they influence exposure to TFV is limited, especially in Asian populations.

TFV is primarily excreted unchanged in the urine through a combination of glomerular filtration and active tubular secretion. Therefore, that renal function influences TVF exposure is expected, and is confirmed by the results of our study. We found that the TFV AUC₀₋₂₄ increased by 39% among patients with mild renal dysfunction (eGFR 60–90 ml/min/1.73 m²). However, the decrease in renal function did not affect TFV C_{max} and C₂₄. This finding is consistent with a previous study showing that TFV AUC_{0-∞} slightly increased in subjects with mild renal impairment (CLcr 50–80 ml/min) whereas no differences in C_{max}, T_{max}, and elimination half-life were observed.²⁵ Moreover, the results from previous population pharmacokinetic studies of TFV demonstrate a strong relationship between the ratio of body weight to serum creatinine (BW/Scr) and TFV clearance.^{14,15} Interestingly, the estimated GFR (calculated by the Cockcroft and Gault equation) was not a significant covariate for TFV clearance in these studies.

Several surrogate markers have been used to represent renal function including serum creatinine, BW/Scr, and eGFR. In our study, renal function was estimated using eGFR estimated by the MDRD equation with the Thai racial correction factor.²⁰ This equation takes age, sex, and race into account and therefore should more accurately estimate renal function in our study population. Even though TFV dose adjustments are not required in patients with mild renal dysfunction, TFV concentrations should be closely monitored. Our results also demonstrated that PRTD was significantly associated with TFV C_{max}, but not with TFV AUC₀₋₂₄ and C₂₄. This discordancy could be due to the small number of patients with PRTD in our study, and therefore there is insufficient power to detect its effect on TFV AUC₀₋₂₄.

Body size is one important factor influencing a drug's exposure. Our study demonstrated an inverse relationship between TFV AUC₀₋₂₄ and body weight. A 10 kg weight increase resulted in a 26% reduction in TFV AUC₀₋₂₄. Similarly, previous studies have shown that various measures of body size, including body mass index (BMI) and body weight, are correlated with TFV exposure.^{14–16} A study found a 1.04-fold increase of TFV AUC₀₋₂₄ with each 10% decrease in BMI, and the risk of TFV-associated nephrotoxicity was more evident in patients with lower body weight.^{10,16} Therefore, patients with smaller body size, who potentially have a higher degree of drug exposure, could experience more severe toxicities.^{10,26} In general, Asians, including Thais, have lower body sizes compared with other ethnicities. Thus, close monitoring of TFV exposure and renal function in this population is warranted.

TFV is not a substrate of cytochrome enzymes and therefore has a low potential for drug–drug interactions, but an interaction between TFV and other antiretroviral drugs including lopinavir/RTV has been demonstrated.^{11,15,16,27} A 24–50% increase in TFV AUC, coadministered with lopinavir/RTV or atazanavir,

TABLE 3. UNIVARIATE AND MULTIVARIATE REGRESSION MODELS FOR GEOMETRIC MEAN RATIO OF TENOFOVIR AUC₀₋₂₄, C_{max}, AND C₂₄

	Univariate		Multivariate	
	GMR (95% CI)	p	GMR (95% CI)	p
TFV AUC ₀₋₂₄ (ng · h/ml)				
PI vs. EFV	1.16 (0.92–1.45)	0.21	1.23 (1.01–1.49)	0.04
PRTD	1.25 (0.88–1.77)	0.21		
Mild renal dysfunction ^a	1.35 (1.01–1.82)	0.05	1.39 (1.05–1.84)	0.02
Female vs. male	1.20 (0.95–1.50)	0.12	1.00 (0.81–1.23)	0.97
Age (years)	1.00 (0.99–1.02)	0.77		
Hepatitis B positive	1.11 (0.83–1.49)	0.46		
Weight (per 10 kg increase)	0.87 (0.77–0.99)	0.04	0.84 (0.74–0.95)	0.008
Duration of ART (years)	1.01 (0.98–1.03)	0.67		
Duration of TDF therapy (years)	1.07 (1.00–1.04)	0.04	1.03 (0.97–1.09)	0.29
TFV C _{max} (ng/ml)				
PI vs. EFV	1.01 (0.74–1.37)	0.95	0.98 (0.74–1.30)	0.89
PRTD	1.53 (0.96–2.46)	0.07	1.64 (1.01–2.69)	0.05
Mild renal dysfunction ^a	1.25 (0.84–1.86)	0.27		
Female vs. male	1.23 (0.92–1.65)	0.16	1.21 (0.88–1.65)	0.22
Age (years)	0.99 (0.97–1.01)	0.49		
Hepatitis B positive	1.14 (0.78–1.67)	0.48		
Weight (per 10 kg increase)	0.83 (0.71–0.98)	0.03	0.92 (0.77–1.10)	0.33
Duration of ART (years)	1.00 (0.96–1.03)	0.81		
Duration of TDF therapy (years)	1.08 (1.00–1.17)	0.06	1.06 (0.98–1.15)	0.11
TFV C ₂₄ (ng/ml)				
PI vs. EFV	1.17 (0.91–1.51)	0.21	1.26 (0.99–1.60)	0.06
PRTD	1.14 (0.76–1.71)	0.52		
Mild renal dysfunction ^a	1.21 (0.86–1.71)	0.27		
Female vs. male	1.22 (0.95–1.57)	0.11	1.12 (0.87–1.42)	0.37
Age (years)	1.00 (0.98–1.02)	0.88		
Hepatitis B positive	0.88 (0.64–1.22)	0.44		
Weight (per 10 kg increase)	0.86 (0.75–0.99)	0.04	0.85 (0.74–0.98)	0.03
Duration of ART (years)	1.00 (0.97–1.03)	0.87		
Duration of TDF therapy (years)	1.03 (0.96–1.11)	0.36		
TFV AUC ₀₋₂₄ (ng · h/ml) in subjects taking RTV-boosted PI regimens				
PRTD	1.33 (0.88–2.00)	0.16	1.35 (0.92–1.98)	0.11
Mild renal dysfunction ^a	1.33 (0.89–1.99)	0.15	1.30 (0.93–1.82)	0.10
Female vs. male	1.25 (0.91–1.71)	0.15	1.10 (0.83–1.45)	0.46
Age (years)	0.99 (0.97–1.01)	0.41		
Hepatitis B positive	1.18 (0.71–1.95)	0.49		
Weight (per 10 kg increase)	0.83 (0.69–1.00)	0.05	0.88 (0.74–1.04)	0.11
Duration of ART (years)	0.98 (0.94–1.03)	0.49		
Duration of TDF therapy (years)	1.05 (0.97–1.14)	0.21		
RTV AUC ₀₋₂₄ (mg · h/liter)	1.04 (1.01–1.07)	0.03	1.03 (1.003–1.06)	0.03

^aMild renal dysfunction: eGFR with Thai racial correction = 60–90 liters/min/1.73 m²

GMR, geometric mean ratio; TFV, tenofovir; PI, protease inhibitor; EFV, efavirenz; PRTD, proximal renal tubular dysfunction; ART, antiretroviral therapy; TDF, tenofovir diproxil fumarate; RTV, ritonavir.

was reported in previous pharmacokinetic studies.^{3,27,28} Our results also confirmed the influence of concomitant use of RTV on TFV exposure. In the group of patients taking PI-based regimens, each mg · h/liter increase in RTV AUC₀₋₂₄ resulted in a 3% higher TFV AUC₀₋₂₄, after adjusting for mild renal dysfunction, PRTD, sex, and weight.

Although the exact mechanism of this interaction is still unclear, one possible mechanism could be due to inhibition of efflux transporters by RTV. RTV is a potent inhibitor of efflux transporters, including P-glycoprotein and multidrug-resistant proteins (MRPs) found in the intestine, kidney, and liver,^{29–33} which suggests that the mechanisms could involve interactions in the intestine and kidney. *In vitro*, PIs inhibit intestinal efflux pumps leading to a decrease in TDF efflux

and, thus, an increase in TDF absorption.³⁴ Interestingly, the results from our study demonstrated that TFV C_{max} was similar between patients taking PI-based and EFV-based regimens. Therefore, if the interaction between PI and TFV is through an inhibition of intestinal efflux pump, it is possible that the concomitant use of PIs may affect the extent rather than the rate of TFV absorption.

Another possible mechanism explaining the increase in TFV AUC₀₋₂₄ by RTV could be an inhibition of efflux transporters in the kidney. Kiser *et al.* demonstrated a 17.5% decrease in TFV renal clearance when lopinavir/RTV was coadministered.¹¹ Elimination of TFV into the urine requires drug transporters including organic anion transporters (OATs), MRP2, and MRP4.^{35–38} Inhibition of these transporters in the proximal

tubule cells by RTV or lopinavir/RTV could result in decreased TFV clearance, leading to higher TFV exposure. Based on the available data in our study, the precise mechanism of the interaction between PIs and TFV cannot be determined and requires further investigation.

There are some limitations to our study. First, due to a small number of patients with PRTD, the influence of PRTD on TFV exposure could not be reliably estimated. Second, there is evidence that genetic variation in TFV transporters may influence TFV pharmacokinetics and renal toxicities.^{11,39} These genetic variations may partly explain the interindividual variability of TFV exposure, but were not investigated in this study. Third, due to the cross-sectional nature of our study, we were unable to establish whether mild renal function caused higher TFV exposure or whether the cumulative exposure to higher TFV AUC led to a reduction in eGFR. Lastly, the number of patients taking RTV-boosted PI regimens was small ($N=16$), and limits the power for statistical tests in our secondary analysis.

Despite these limitations, we are not aware of other studies that have investigated factors influencing TFV exposure, assessed by AUC_{0-24} , in Thai patients. As such, our results provide useful evidence to guide clinicians taking care of HIV patients receiving TDF, particularly when Thailand has implemented guidelines for treating HIV regardless of CD4 count, and TDF is a first line agent.⁴⁰ Accordingly, concomitant use of RTV-boosted PIs, body weight, and the impact of renal function on TFV exposure should be considered when clinicians prescribe TDF for Thai and other Asian patients. In some adult patients who are at risk of having higher TFV concentrations, there may be a case for using TDF tablet strengths of 200 mg or 250 mg, which have recently been marketed for pediatric use, although they are not currently available in Thailand.

In summary, significantly higher daily TFV exposures were independently associated with mild renal impairment, lower weight, and higher RTV AUC_{0-24} in those taking RTV-boosted PI. Renal function in patients taking TFV should be carefully monitored once their eGFR falls below 90 ml/min/1.73 m². Moreover, all patients with low body weight receiving RTV-containing cART should be carefully monitored, since they may have higher TFV exposures and may be more prone to renal toxicity.

Acknowledgments

We would like to thank the patients for their participation in this study and the HIV-NAT staff. This study was funded by the National Research Council of Thailand (NRCT) under Grant PorKor/2554-136, the Thailand Research Fund (TRF) under Grant RSA5380002, the Ratchadapisek Sompotch Endowment Fund, Faculty of Medicine, Chulalongkorn University under Grant RA33/53, and the Aligning Care and Prevention of HIV/AIDS with Government Decentralization to Achieve Coverage and Impact: ACHIEVED Project (Global Fund Thailand).

This study was presented at the 24th Conference of the Australasian Society of HIV Medicine (ASHM), Melbourne, Australia, October 17–19, 2012.

Author Disclosure Statement

No competing financial interests exist. KR is partly supported by the Senior Research Scholar, Thai Research Fund

(TRF) and the National Research University Project of CHE (HR1164A).

References

1. Panel on Antiretroviral Guidelines for Adults and Adolescents: Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Available at <http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf>; Department of Health and Human Services. Accessed February 12, 2013.
2. WHO: Antiretroviral therapy for HIV infection in adults and adolescents: recommendations for a public health approach—2010 rev: World Health Organization, 2010. Accessed February 12, 2013.
3. Kearney BP, Flaherty JF, and Shah J: Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. *Clin Pharmacokinet* 2004;43(9):595–612.
4. Barrios A, Garcia-Benayas T, Gonzalez-Lahoz J, and Soriano V: Tenofovir-related nephrotoxicity in HIV-infected patients. *AIDS* 2004;18(6):960–963.
5. Fernandez-Fernandez B, Montoya-Ferrer A, Sanz A, et al.: Tenofovir nephrotoxicity: 2011 update. *AIDS Res Treat* 2011;2011:354908.
6. Ezinga M, Wetzel JF, Bosch ME, et al.: Long-term treatment with tenofovir: Prevalence of kidney tubular dysfunction and its association with tenofovir plasma concentration. *Antivir Ther* 2014. [Epub ahead of press]; DOI: 10.3851/IMP2761.
7. Gervasoni C, Meraviglia P, Landonio S, et al.: Low body weight in females is a risk factor for increased tenofovir exposure and drug-related adverse events. *PLoS One* 2013;8(12):e80242.
8. Rodriguez-Novoa S, Labarga P, D'Avolio A, et al.: Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. *AIDS* 2010;24(7):1064–1066.
9. Scherzer R, Estrella M, Li Y, et al.: Association of tenofovir exposure with kidney disease risk in HIV infection. *AIDS* 2012;26(7):867–875.
10. Nishijima T, Gatanaga H, Komatsu H, et al.: Renal function declines more in tenofovir- than abacavir-based antiretroviral therapy in low-body weight treatment-naïve patients with HIV infection. *PLoS One* 2012;7(1):e29977.
11. Kiser JJ, Carten ML, Aquilante CL, et al.: The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. *Clin Pharmacol Ther* 2008;83(2):265–272.
12. Avihingsanon A, van der Lught J, Kerr SJ, et al.: A low dose of ritonavir-boosted atazanavir provides adequate pharmacokinetic parameters in HIV-1-infected Thai adults. *Clin Pharmacol Ther* 2009;85(4):402–408.
13. Cooper RD, Wiebe N, Smith N, et al.: Systematic review and meta-analysis: Renal safety of tenofovir disoproxil fumarate in HIV-infected patients. *Clin Infect Dis* 2010;51(5):496–505.
14. Gagnieu MC, Barkil ME, Livrozet JM, et al.: Population pharmacokinetics of tenofovir in AIDS patients. *J Clin Pharmacol* 2008;48(11):1282–1288.
15. Jullien V, Treliyer JM, Rey E, et al.: Population pharmacokinetics of tenofovir in human immunodeficiency virus-infected patients taking highly active antiretroviral therapy. *Antimicrob Agents Chemother* 2005;49(8):3361–3366.
16. Baxi SM, Greenblatt RM, Bacchetti P, et al.: Common clinical conditions—age, low BMI, ritonavir use, mild renal impairment—affect tenofovir pharmacokinetics in a large cohort of HIV-infected women. *AIDS* 2014;28(1):59–66.

17. Droste JA, Verweij-van Wissen CP, Kearney BP, *et al.*: Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. *Antimicrob Agents Chemother* 2005;49(2):680–684.
18. Droste JA, Verweij-Van Wissen CP, and Burger DM: Simultaneous determination of the HIV drugs indinavir, amprenavir, saquinavir, ritonavir, nelfinavir, the nelfinavir hydroxymetabolite M8, and nevirapine in human plasma by reversed-phase high-performance liquid chromatography. *Ther Drug Monit* 2003;25(3):393–399.
19. Burger D, Teulen M, Eerland J, *et al.*: The International Interlaboratory Quality Control Program for Measurement of Antiretroviral Drugs in Plasma: A global proficiency testing program. *Ther Drug Monit* 2011;33(2):239–243.
20. Praditpornsilpa K, Avihingsanon A, Chaiwatanarat T, *et al.*: Comparisons between validated estimated glomerular filtration rate equations and isotopic glomerular filtration rate in HIV patients. *AIDS* 2012;26(14):1781–1788.
21. Du Bois D and Du Bois EF: A formula to estimate the approximate surface area if height and weight be known. *Nutrition* 1989;5(5):303–311; discussion 312–313.
22. Best BM, Letendre SL, Koopmans P, *et al.*: Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. *J Acquir Immune Defic Syndr* 2012;59(4):376–381.
23. Hazra R, Gafni RI, Maldarelli F, *et al.*: Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy for pediatric HIV infection. *Pediatrics* 2005;116(6):e846–854.
24. Baheti G, Kiser JJ, Havens PL, and Fletcher CV: Plasma and intracellular population pharmacokinetic analysis of tenofovir in HIV-1-infected patients. *Antimicrob Agents Chemother* 2011;55(11):5294–5299.
25. Kearney BP, Yale K, Shah J, *et al.*: Pharmacokinetics and dosing recommendations of tenofovir disoproxil fumarate in hepatic or renal impairment. *Clin Pharmacokinet* 2006;45(11):1115–1124.
26. Chaisiri K, Bowonwatanuwong C, Kasettrat N, and Kiertiburanakul S: Incidence and risk factors for tenofovir-associated renal function decline among Thai HIV-infected patients with low-body weight. *Curr HIV Res* 2010;8(7):504–509.
27. Pruvost A, Negredo E, Theodoro F, *et al.*: Pilot pharmacokinetic study of human immunodeficiency virus-infected patients receiving tenofovir disoproxil fumarate (TDF): Investigation of systemic and intracellular interactions between TDF and abacavir, lamivudine, or lopinavir-ritonavir. *Antimicrob Agents Chemother* 2009;53(5):1937–1943.
28. Kearney BP, Mathias A, Mittan A, *et al.*: Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. *J Acquir Immune Defic Syndr* 2006;43(3):278–283.
29. Chandler B, Almond L, Ford J, *et al.*: The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on p-glycoprotein expression in peripheral blood mononuclear cells in vitro. *J Acquir Immune Defic Syndr* 2003;33(5):551–556.
30. Gutmann H, Fricker G, Drewe J, *et al.*: Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. *Mol Pharmacol* 1999;56(2):383–389.
31. Lee CG, Gottesman MM, Cardarelli CO, *et al.*: HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. *Biochemistry* 1998;37(11):3594–3601.
32. Mizuno N, Niwa T, Yotsumoto Y, and Sugiyama Y: Impact of drug transporter studies on drug discovery and development. *Pharmacol Rev* 2003;55(3):425–461.
33. Olson DP, Scadden DT, D'Aquila RT, and De Pasquale MP: The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1). *AIDS* 2002;16(13):1743–1747.
34. Tong L, Phan TK, Robinson KL, *et al.*: Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. *Antimicrob Agents Chemother* 2007;51(10):3498–3504.
35. Imaoka T, Kusuhara H, Adachi M, *et al.*: Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. *Mol Pharmacol* 2007;71(2):619–627.
36. Mallants R, Van Oosterwyck K, Van Vaeck L, *et al.*: Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. *Xenobiotica* 2005;35(10–11):1055–1066.
37. Ray AS, Cihlar T, Robinson KL, *et al.*: Mechanism of active renal tubular efflux of tenofovir. *Antimicrob Agents Chemother* 2006;50(10):3297–3304.
38. Uwai Y, Ida H, Tsuji Y, *et al.*: Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). *Pharm Res* 2007;24(4):811–815.
39. Nishijima T, Komatsu H, Higasa K, *et al.*: Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: A pharmacogenetic study. *Clin Infect Dis* 2012;55(11):1558–1567.
40. Bureau of AIDS TB and STI DoDC, Thai Ministry of Public Health: Essentials of HIV/AIDS Treatment and Prevention 2014 Thailand. Thai Ministry of Public Health, Bangkok, Thailand, 2014.

Address correspondence to:
 Anchalee Avihingsanon
*HIV-NAT, Thai Red Cross AIDS Research Centre
 104 Ratchadamri Road
 Bangkok 10330
 Thailand*

E-mail: anchaleea2009@gmail.com

Influence of *ABCC2* and *ABCC4* Polymorphisms on Tenofovir Plasma Concentrations in Thai HIV-Infected Patients

Kanokrat Rungtivasuwan,^a Anchalee Avihingsanon,^{b,c} Narukjaporn Thammajaruk,^b Siwaporn Mitrak,^d David M. Burger,^e Kiat Ruxrungham,^{b,c} Baralee Punyawudho,^f Thitima Pengsuparp^a

Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand^a; HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand^b; Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand^c; Department of Pharmacy, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand^d; Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands^e; Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand^f

Tenofovir (TFV) is eliminated by renal excretion, which is mediated through multidrug-resistant protein 2 (MRP2) and MRP4, encoded by *ABCC2* and *ABCC4*, respectively. Genetic polymorphisms of these transporters may affect the plasma concentrations of tenofovir. Therefore, the aim of this study was to investigate the influence of genetic and nongenetic factors on tenofovir plasma concentrations. A cross-sectional study was performed in Thai HIV-infected patients aged ≥ 18 years who had been receiving tenofovir disoproxil fumarate at 300 mg once daily for at least 6 months. A middose tenofovir plasma concentration was obtained. Multivariate analysis was performed to investigate whether there was an association between tenofovir plasma concentrations and demographic data, including age, sex, body weight, estimated glomerular filtration rate (eGFR), hepatitis B virus coinfection, hepatitis C virus coinfection, duration of tenofovir treatment, concomitant use of ritonavir-boosted protease inhibitors, and polymorphisms of *ABCC2* and *ABCC4*. A total of 150 Thai HIV-infected patients were included. The mean age of the patients was 43.9 ± 7.2 years. The mean tenofovir plasma concentration was 100.3 ± 52.7 ng/ml. In multivariate analysis, a low body weight, a low eGFR, the concomitant use of ritonavir-boosted protease inhibitors, and the *ABCC4* 4131T \rightarrow G variation (genotype TG or GG) were independently associated with higher tenofovir plasma concentrations. After adjusting for weight, eGFR, and the concomitant use of ritonavir-boosted protease inhibitors, a 30% increase in the mean tenofovir plasma concentration was observed in patients having the *ABCC4* 4131 TG or GG genotype. Both genetic and nongenetic factors affect tenofovir plasma concentrations. These factors should be considered when adjusting tenofovir dosage regimens to ensure the efficacy and safety of a drug. (This study has been registered at ClinicalTrials.gov under registration no. NCT01138241.)

Tenofovir disoproxil fumarate (TDF), an oral prodrug of tenofovir (TFV), is widely used for the treatment of human immunodeficiency virus (HIV) infection because of its high potency, good safety profile, limited drug interaction, and convenient once-daily dosing (1, 2). After absorption, TDF is rapidly converted to tenofovir. Tenofovir is then phosphorylated intracellularly to tenofovir diphosphate, an active analog, which inhibits HIV reverse transcriptase, resulting in a termination DNA chain elongation (1, 2).

Tenofovir is eliminated by renal excretion through glomerular filtration and active tubular secretion. It is transported into kidney tubular cells by organic anion transporter 1 (OAT1) and OAT3, encoded by the *SLC22A6* and *SLC22A8* genes, respectively, at the basolateral membrane. Subsequently, tenofovir is secreted to the tubular lumen by multidrug-resistant protein 2 (MRP2) and MRP4, encoded by the *ABCC2* and *ABCC4* genes, respectively, at the apical membrane (3). Therefore, genetic polymorphisms of these transporter genes may affect the transport of tenofovir at kidney tubular cells and may have an impact on tenofovir plasma concentrations.

Previous studies have shown that the polymorphisms of *ABCC2* and *ABCC4* are associated with higher tenofovir concentrations (4, 5) and a higher tenofovir plasma concentration is associated with renal impairment (6, 7). The cutoff values of the middose (12-h) tenofovir concentration (C_{12}) and the trough (minimum) concentration (C_{\min}) (>160 ng/ml and >90 ng/ml, respectively) were proposed to discriminate a risk of kidney tubular dysfunction (KTD) (6, 7). These results suggest that genetic

variation in tenofovir transporter genes may lead to overexposure to tenofovir, resulting in kidney tubular cell damage. Therefore, a study investigating the influence of genetic and nongenetic factors on tenofovir concentrations is crucial for the optimization of dosage regimens to prevent renal toxicity.

However, there are limited studies showing an association between genetic polymorphisms of drug transporters and tenofovir plasma concentrations. Therefore, the aim of this study was to investigate the influence of genetic variants of *ABCC2* and *ABCC4* and nongenetic factors on tenofovir plasma concentrations. The results of this study will be useful for the design of tenofovir dosage regimens to optimize drug concentrations and ensure the safety and efficacy of this drug.

Received 1 December 2014 Returned for modification 29 December 2014

Accepted 14 March 2015

Accepted manuscript posted online 23 March 2015

Citation Rungtivasuwan K, Avihingsanon A, Thammajaruk N, Mitrak S, Burger DM, Ruxrungham K, Punyawudho B, Pengsuparp T. 2015. Influence of *ABCC2* and *ABCC4* polymorphisms on tenofovir plasma concentrations in Thai HIV-infected patients. *Antimicrob Agents Chemother* 59:3240–3245. doi:10.1128/AAC.04930-14.

Address correspondence to Baralee Punyawudho, baralee.p@cmu.ac.th, or Thitima Pengsuparp, thitima.pe@pharm.chula.ac.th.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AAC.04930-14

MATERIALS AND METHODS

Study population. A cross-sectional study was performed in Thai HIV-infected patients recruited from the HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand, from March 2012 to May 2013 (ClinicalTrials.gov registration no. NCT01138241). Patients aged 18 years and older who had been receiving TDF at 300 mg once daily for at least 6 months for the treatment of HIV infection were included in the study. Blood samples were obtained at middose (10 to 14 h after the last dose) for tenofovir concentration determination and genotyping assay. Demographic and laboratory data, including age, sex, body weight, serum creatinine concentration, hepatitis B virus coinfection, hepatitis C virus coinfection, duration of tenofovir treatment, and concomitant use of antiretroviral drugs, were recorded. The estimated glomerular filtration rate (eGFR) was calculated using the modification of diet in renal disease (MDRD) formula. The study was approved by the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. All patients provided written informed consent.

Determination of tenofovir plasma concentration. Tenofovir plasma concentrations were determined at the HIV-NAT research laboratory by a validated high-performance liquid chromatography assay with a fluorescence detector using the modified method of Droste et al. (8) with a lower limit of quantification of 15 ng/ml. The tenofovir calibration curve was linear over the concentration range of from 15 to 1,500 ng/ml. The within-run and between-run coefficients of variation (precision) were less than 10%, and the accuracy of the tenofovir concentration was between 95 and 105%.

Genotyping assay. Human genomic DNA was extracted from peripheral blood mononuclear cells by use of a QIAamp DNA blood minikit (Qiagen, Hilden, Germany) according to the manufacturer's protocol. Five single nucleotide polymorphisms, ABCC2 -24C → T (rs717620), ABCC2 1249G → A (rs2273697), ABCC2 3972C → T (rs3740066), ABCC4 3463A → G (rs1751034), and ABCC4 4131T → G (rs3742106), were genotyped. These polymorphisms were chosen on the basis of the allele frequency, evidence of their association with tenofovir plasma concentrations or toxicity, and their influence on drugs excreted via glomerular filtration and active tubular secretion (4, 9–12).

The genotyping assay was performed by real-time PCR using a Taq-Man allelic discrimination assay with a predesigned probe and primer (Applied Biosystems, CA, USA). The PCR conditions were as follows: 95°C for 10 min, followed by 92°C for 15 s and 60°C for 1 min.

Statistical analyses. Statistical analyses in this study were performed using Statistical Package for the Social Sciences (SPSS; version 17; SPSS Co., Ltd., Bangkok, Thailand) software. The demographic characteristics of the patients are presented as the mean ± standard deviation (SD) for continuous data and the frequency (number and percentage of patients) for categorical data. The allele frequencies of ABCC2 and ABCC4 were calculated. The distribution of the observed genotype according to Hardy-Weinberg equilibrium was tested by the chi-square test. Due to the small number of patients in some genotype groups, the mean tenofovir plasma concentration was compared between 2 genotype groups, patients with a homozygous wild-type allele and patients with at least 1 variant allele, by Student's *t* test. A regression model was used to assess whether an association exists between tenofovir plasma concentrations and demographic data, including age, sex, body weight, eGFR, hepatitis B virus coinfection, hepatitis C virus coinfection, duration of tenofovir treatment, polymorphisms of ABCC2, polymorphisms of ABCC4, and concomitant use of ritonavir-boosted protease inhibitors. Any independent variables with a *P* value of <0.1 in the univariate analysis were entered into a model of multivariable regression analysis using the stepwise method. A *P* value of <0.05 was considered statistically significant.

RESULTS

Demographic data. A total of 150 patients providing 150 blood samples were included in this study. A summary of the patient

TABLE 1 Demographic characteristics of study patients^a

Characteristic	Value
No. (%) of patients of the following sex:	
Male	85 (56.7)
Female	65 (43.3)
Mean age ± SD (yr)	43.9 ± 7.2
Mean body wt ± SD (kg)	60.3 ± 11.9
Mean body mass index ± SD (kg/m ²)	22.5 ± 3.6
Mean serum creatinine concn ± SD (mg/dl)	0.9 ± 0.2
Mean eGFR ^b ± SD (ml/min/1.73 m ²)	90.3 ± 18.0
No. (%) of patients:	
Hepatitis B virus antigen positive	60 (40.0)
Hepatitis C antibody positive	12 (8.0)
Mean duration of tenofovir treatment ± SD (yr)	3.7 ± 2.0
Mean tenofovir sampling time after last dose ± SD (h)	11.9 ± 0.8
Mean tenofovir plasma concn ± SD (ng/ml)	100.3 ± 52.7
No. (%) of patients receiving the following comedications:	
Lamivudine	94 (62.7)
Emtricitabine	46 (30.7)
Zidovudine	10 (6.7)
Efavirenz	91 (60.7)
Nevirapine	10 (6.7)
Lopinavir-ritonavir	17 (11.3)
Atazanavir-ritonavir	9 (6.0)
Darunavir-ritonavir	3 (2.0)
Saquinavir-ritonavir	19 (12.7)
Raltegravir	1 (0.7)

^a Data are for 150 patients.

^b Calculated by use of the MDRD formula.

characteristics is presented in Table 1. Among the 150 patients, 101 (67.3%), 48 (32.0%), and 1 (0.7%) patients were receiving tenofovir in combination with nonnucleoside reverse transcriptase inhibitors (NNRTIs), ritonavir boosted-protease inhibitors, and an integrase inhibitor, respectively.

The frequencies of genetic polymorphisms of ABCC2 and ABCC4 are shown in Table 2. All polymorphisms were in Hardy-Weinberg equilibrium ($\chi^2, P \geq 0.05$).

Predictors of tenofovir plasma concentrations. The mean tenofovir plasma concentration for each polymorphism is presented in Table 3. Tenofovir plasma concentrations between patients with a homozygous wild-type allele and patients with at least 1 variant allele were not significantly different for all genetic polymorphisms.

The influence of genetic and nongenetic factors on tenofovir plasma concentrations in univariate and multivariate analyses is presented in Table 4. Factors including low body weight, low eGFR, concomitant use of ritonavir-boosted protease inhibitors, and having an ABCC4 4131T → G variation (genotype TG or GG) were independently associated with higher tenofovir plasma concentration (*P* < 0.05) in the multivariate analysis. Figure 1 presents the relationship between tenofovir plasma concentrations and eGFR by ABCC4 4131T → G genotype. Patients having the ABCC4 4131 TG or GG genotype tended to have higher tenofovir plasma concentration than those having the TT genotype. On the basis of the results from multivariate analysis, it was shown that after controlling for body weight, eGFR, and concomitant use of a

TABLE 2 Frequencies of *ABCC2* and *ABCC4* genotype polymorphisms^a

Genetic polymorphism	Genotype		Allele		Allele	% of patients
	Genotype	No. of patients	No. of patients	Allele		
<i>ABCC2</i> -24C → T	CC	98	65.3	C	80.7	
	CT	46	30.7	T	19.3	
	TT	6	4.0			
<i>ABCC2</i> 1249G → A	GG	123	82.0	G	90.7	
	GA	26	17.3	A	9.3	
	AA	1	0.7			
<i>ABCC2</i> 3972C → T	CC	94	62.7	C	78.3	
	CT	47	31.3	T	21.7	
	TT	9	6.0			
<i>ABCC4</i> 3463A → G	AA	96	64.0	A	80.7	
	AG	50	33.3	G	19.3	
	GG	4	2.7			
<i>ABCC4</i> 4131T → G	TT	34	22.7	T	49.3	
	TG	80	53.3	G	50.7	
	GG	36	24.0			

^a Data are for 150 patients.

ritonavir-boosted protease inhibitor, patients having the *ABCC4* 4131 TG or GG genotype had, on average, 30% higher mean tenofovir plasma concentrations than patients having the *ABCC4* 4131 TT genotype ($P = 0.007$) (Fig. 2).

DISCUSSION

Although tenofovir is well tolerated, the induction of nephrotoxicity by tenofovir has been reported (13). There is evidence of an association between tenofovir plasma concentrations and renal toxicity (4, 6, 7, 14). A study by Rodríguez-Nóvoa et al. has shown that patients with a tenofovir plasma concentration of more than 160 ng/ml at middose (10 to 14 h after the last dose) were at a 4.8 times higher risk of experiencing KTD than patients with a tenofovir plasma concentration below this cutoff value (6). Moreover, a previous study by Poizot-Martin et al. suggested that a threshold tenofovir trough concentration of >90 ng/ml is a predictor of a risk of KTD (7). Therefore, tenofovir dose adjustment is crucial in decreasing the risk of renal toxicity when tenofovir is prescribed.

The pharmacokinetics of tenofovir are highly variable between individuals (4, 15, 16). Thus, identifying factors that contribute to this high variability would be beneficial for tenofovir dose adjustment. In this study, we investigated the influence of both genetic and nongenetic factors on tenofovir plasma concentrations. The results from multivariate analysis showed that tenofovir plasma concentrations are associated with body weight, eGFR, concomitant use of a ritonavir-boosted protease inhibitor, and the polymorphism *ABCC4* 4131T → G. A lower patient body weight was associated with higher tenofovir plasma concentrations in our study. This finding is consistent with the results from previous studies which demonstrated that body weight is one of the important predictors of tenofovir's pharmacokinetics (4, 15, 17).

Tenofovir is mainly eliminated by renal excretion. It is effluxed across renal proximal tubule cells by MRP2 and MRP4, encoded by the *ABCC2* and *ABCC4* genes, respectively. Genetic polymorphisms of these transporters have been reported to be associated

TABLE 3 Association between tenofovir plasma concentrations and *ABCC2* and *ABCC4* genotypes

Genetic polymorphism	Genotype	Mean tenofovir plasma concn \pm SD (ng/ml)	P value ^a
<i>ABCC2</i> -24C → T	CC	101.5 \pm 57.0	0.706
	CT or TT	98.1 \pm 43.9	
<i>ABCC2</i> 1249G → A	GG	100.3 \pm 55.7	0.984
	GA or AA	100.5 \pm 37.0	
<i>ABCC2</i> 3972C → T	CC	102.8 \pm 57.1	0.455
	CT or TT	96.1 \pm 44.6	
<i>ABCC4</i> 3463A → G	AA	104.7 \pm 57.2	0.177
	AG or GG	92.6 \pm 43.0	
<i>ABCC4</i> 4131T → G	TT	86.0 \pm 30.7	0.072
	TG or GG	104.5 \pm 57.0	

^a Determined by Student's *t* test.

with higher levels of tenofovir exposure and KTD (4, 5, 9, 10, 18). A study by Kiser et al. found that patients carrying the *ABCC4* 3463A → G variation had lower tenofovir renal clearance than those carrying the wild type, leading to an approximately 32% increase in the tenofovir area under the curve in the *ABCC4* 3463A → G variant group (9). A more recent study in a Thai HIV-infected population reported that the *ABCC2* -24 CC genotype was associated with a higher tenofovir plasma concentration than the CT or TT genotype (114 ng/ml for the CC genotype and 93 ng/ml for the CT or TT genotype) (4). However, that study investigated only a limited number of genes (*ABCC2* -24C → T and *ABCB1* 3435C → T), and it is possible that the influence of polymorphisms of other transporter genes may have not been detected. Interestingly, we could not confirm the influence of the *ABCC4* 3463A → G and *ABCC2* -24C → T polymorphisms on tenofovir plasma concentrations in our study. This could be due to the small number of patients enrolled in previous studies and the different ethnicities and the different genetic polymorphisms of the patients investigated among the studies. However, it could be postulated that several transporter genes may play a role in tenofovir elimination. The present study is the first to report an association between the *ABCC4* 4131T → G variation and tenofovir plasma concentrations. The results from multivariate analysis showed that after controlling for body weight, eGFR, and concomitant use of a ritonavir-boosted protease inhibitor, patients carrying the *ABCC4* 4131 TG or GG genotype had, on average, a 30% higher mean tenofovir plasma concentration than patients carrying the TT genotype. Although an association between the *ABCC4* 4131T → G polymorphism and the tenofovir plasma concentrations has never been found, the influence of this polymorphism on the intracellular concentrations of lamivudine has been reported (12). A study by Anderson et al. found a 20% increase in the intracellular concentrations of lamivudine in patients carrying the *ABCC4* 4131 TG or GG genotype than those carrying the TT genotype (12). A potential mechanism of this interaction was proposed. The *ABCC4* 4131T → G variation may reduce MRP4 protein expression and decrease the transportation of drugs in kidney tubular cells (12).

As the elimination of tenofovir requires drug transporters, tenofovir may be susceptible to a drug transporter-mediated in-

TABLE 4 Univariate and multivariate analyses of genetic and nongenetic factors for tenofovir plasma concentrations

Factor	Univariate analysis			Multivariate analysis ^a		
	B	95% CI ^b	P value ^c	B	95% CI	P value ^c
Female	13.986	−3.079 to 31.052	0.107			
Age	0.183	−1.002 to 1.368	0.760			
Body wt	−0.918	−1.622 to −0.214	0.011*	−0.861	−1.494 to −0.229	0.008**
eGFR ^d	−0.970	−1.420 to −0.520	<0.001*	−0.934	−1.375 to −0.492	<0.001**
Hepatitis B virus positive	−12.241	−29.541 to 5.059	0.164			
Hepatitis C virus positive	−0.275	−31.721 to 31.171	0.986			
Duration of tenofovir treatment	−0.385	−4.677 to 3.907	0.860			
Concomitant RTV-boosted PI ^e	40.088	22.998 to 57.177	<0.001*	29.231	12.649 to 45.813	0.001**
ABCC2 −24 CT or TT	−3.435	−21.352 to 14.482	0.706			
ABCC2 1249 GA or AA	0.217	−21.989 to 22.422	0.984			
ABCC2 3972 CT or TT	−6.675	−24.279 to 10.930	0.455			
ABCC4 3463 AG or GG	−12.127	−29.791 to 5.536	0.177			
ABCC4 4131 TG or GG	18.464	−1.690 to 38.619	0.072*	25.180	7.049 to 43.310	0.007**

^a Factors with P values of <0.1 in the univariate analysis were entered into the multivariate analysis.

^b CI, confidence interval.

^c *, P < 0.1; **, P < 0.05.

^d Calculated by use of the MDRD formula.

^e RTV, ritonavir; PI, protease inhibitor.

teraction (1, 19). Previous reports showed that ritonavir-boosted protease inhibitors, including lopinavir-ritonavir, atazanavir-ritonavir, and darunavir-ritonavir, can increase the level of tenofovir exposure by approximately 17 to 37% (1, 9, 20). These interactions were confirmed in our study. The concomitant use of a ritonavir-boosted protease inhibitor resulted in a 35% increase in the tenofovir plasma concentration. Even though the exact mechanism of the interaction between a ritonavir-boosted protease inhibitor and tenofovir has not been conclusively defined, possible mechanisms have been proposed. Ritonavir was shown to be a potent inhibitor of P-glycoprotein (P-gp) and MRP2 (21). Inhibi-

tion of P-gp by a ritonavir-boosted protease inhibitor could lead to increased absorption in the gut (22). On the other hand, an increase in the level of tenofovir exposure due to inhibition of MRP2, an efflux transporter from the renal proximal tubule cells, resulting in decreased renal excretion, was also speculated (21).

Some study limitations should be noted. First, the polymorphisms of other transporter genes involving tenofovir influx transport, such as *SLC22A6* and *SLC22A8*, were not investigated in this study. However, there is evidence that genetic polymorphisms of these transporters are not associated with the pharmacokinetics of several drugs, including tenofovir, adefovir, prava-

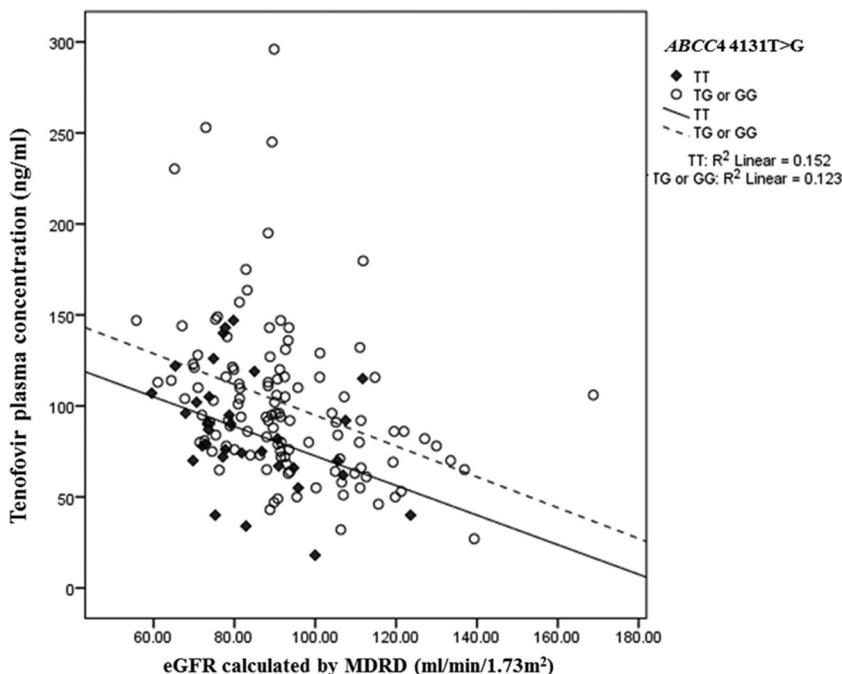
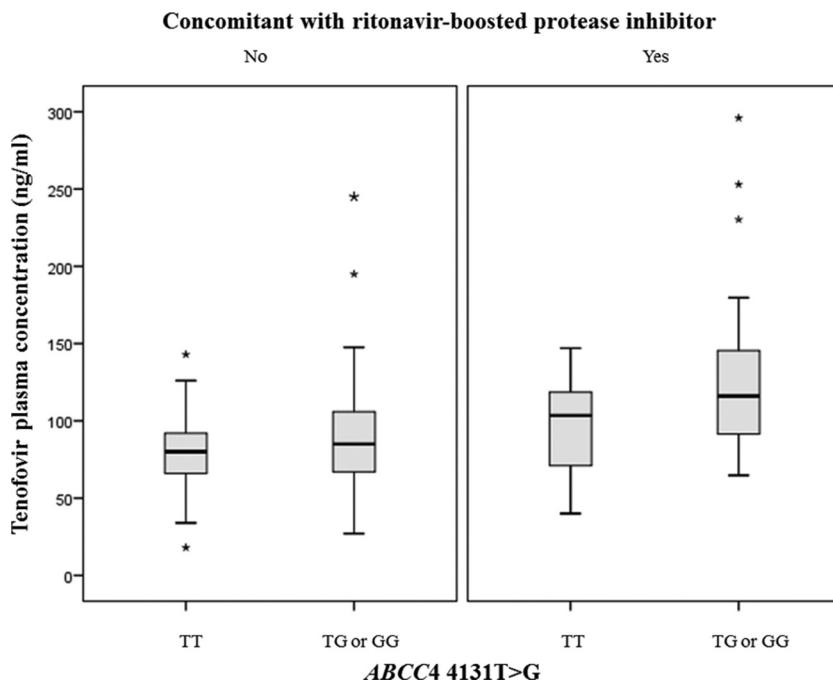



FIG 1 Relationship between tenofovir plasma concentrations and eGFR, calculated by use of the MDRD formula, subgrouped by *ABCC4* 4131 TT genotype and *ABCC4* 4131 TG or GG genotype.

FIG 2 Box plots of tenofovir plasma concentrations in patients having the *ABCC4* 4131 TT genotype versus those having the TG or GG genotype by whether the patients were using ritonavir-boosted protease inhibitors as a comedication. *ABCC4* 4131T → G genotypes are shown on the x axis. The medians and interquartile ranges of tenofovir plasma concentrations are shown on the y axis. Among patients who did not use a ritonavir-boosted protease inhibitor, the median tenofovir plasma concentration was 85.0 ng/ml in patients with the *ABCC4* 4131 TG/GG genotype, whereas it was 80.0 ng/ml in those with the TT genotype. Among patients using a ritonavir-boosted protease inhibitor, the median tenofovir plasma concentration in patients with the *ABCC4* 4131 TG/GG genotype was 118.0 ng/ml, whereas it was 103.5 ng/ml in those with the TT genotype. After controlling for body weight, eGFR, and concomitant use of a ritonavir-boosted protease inhibitor, patients having the *ABCC4* 4131 TG/GG genotype had, on average, a 30% higher mean tenofovir plasma concentration than those having the TT genotype ($P = 0.007$).

statin, and torsemide (9, 23–25). Therefore, the transportation of drugs across the apical membrane (from cell to tubular lumen) by multidrug-resistant proteins may be a rate-limiting step for drug secretion (23, 25). Thus, it is likely that the polymorphisms of organic anion transporters may not be associated with tenofovir's pharmacokinetics. Furthermore, we studied a selected number of efflux transporter polymorphisms. A more comprehensive investigation of various polymorphisms should be performed. Second, the overall effect of ritonavir-boosted protease inhibitors was quantified in this study. Due to the small number of patients using atazanavir-ritonavir and darunavir-ritonavir, the influence of each ritonavir-boosted protease inhibitor was not identified. Third, due to the cross-sectional design of the study, an association between a higher tenofovir plasma concentration and renal toxicity cannot be confirmed. However, it is worth mentioning that if a middose concentration of tenofovir of >160 ng/ml were used as the cutoff for a risk of renal toxicity, all of the patients having a tenofovir concentration at middose of >160 ng/ml in our study would have the *ABCC4* 4131 TG or GG genotype. Therefore, it is possible that patients having the *ABCC4* 4131T → G variation could be at higher risk of renal toxicity because of a high tenofovir plasma concentration. Finally, due to the inhibitory effect of ritonavir-boosted protease inhibitors on the renal tubular secretion of serum creatinine, a rise in the serum creatinine concentration could be observed in a group of patients using ritonavir-boosted protease inhibitors. This may lead to an underestimate of the eGFR in this group of patients. However, with the small increase in the serum creatinine concentration reported in a previ-

ous study (0.08 mg/dl) (26), this would result in a negligible decrease in the eGFR and should not affect the results of this study.

In summary, this study showed that both genetic and nongenetic factors influence tenofovir plasma concentrations, which could be associated with tenofovir-induced renal toxicity. Patients who had a low body weight and a low eGFR, who concomitantly used a ritonavir-boosted protease inhibitor, and who had the *ABCC4* 4131 TG or GG genotype were at risk of a higher tenofovir concentration. Therefore, the tenofovir concentration should be closely monitored in these groups of patients.

ACKNOWLEDGMENTS

This work was supported by the Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University; the National Research Council of Thailand (NRCT) under grant numbers PorKor/2554-136 and PorKor/2553-112; the Thailand Research Fund (TRF) under grant number RSA5380002; and the Aligning Care and Prevention of HIV/AIDS with Government Decentralization to Achieve Coverage and Impact: ACHIEVED Project (Global Fund Thailand).

We thank all patients participating in this study and the HIV-NAT staffs for their support.

REFERENCES

1. Kearney BP, Flaherty JF, Shah J. 2004. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. *Clin Pharmacokinet* 43: 595–612. <http://dx.doi.org/10.2165/00003088-200443090-00003>.
2. Alvarez E, Morello J, Soriano V, Labarga P, Rodriguez-Novoa S. 2011. Critical appraisal and update on tenofovir in management of human immunodeficiency virus infection. *Virus Adapt Treat* 3:55–69. <http://dx.doi.org/10.2147/VAAT.S12708>.

3. Rodriguez-Novoa S, Labarga P, Soriano V. 2009. Pharmacogenetics of tenofovir treatment. *Pharmacogenomics* 10:1675–1685. <http://dx.doi.org/10.2217/pgs.09.115>.
4. Manosuthi W, Sukasem C, Thongyen S, Nilkamhang S, Sungkanupraph S. 2014. ABCC2*1C and plasma tenofovir concentration are correlated to decreased glomerular filtration rate in patients receiving a tenofovir-containing antiretroviral regimen. *J Antimicrob Chemother* 69: 2195–2201. <http://dx.doi.org/10.1093/jac/dku129>.
5. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. 2008. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. *J Acquir Immune Defic Syndr* 47: 298–303. <http://dx.doi.org/10.1097/QAI.0b013e31815e7478>.
6. Rodríguez-Nóvoa S, Labarga P, D'Avolio A, Barreiro P, Albalate M, Vispo E, Solera C, Siccaldi M, Bonora S, Perri GD, Soriano V. 2010. Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. *AIDS* 24:1064–1066. <http://dx.doi.org/10.1097/QAD.0b013e32833202e2>.
7. Poizot-Martin I, Solas C, Allemand J, Obry-Roguet V, Pradel V, Bregigeon S, Faucher O, Lacarelle B. 2013. Renal impairment in patients receiving a tenofovir-cART regimen: impact of tenofovir trough concentration. *J Acquir Immune Defic Syndr* 62:375–380. <http://dx.doi.org/10.1097/QAI.0b013e31827ce4ee>.
8. Drost JA, Verweij-van Wissen CP, Kearney BP, Buffels R, Vanhorssen PJ, Hekster YA, Burger DM. 2005. Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. *Antimicrob Agents Chemother* 49:680–684. <http://dx.doi.org/10.1128/AAC.49.2.680-684.2005>.
9. Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, Delahunt T, Bushman LR. 2008. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. *Clin Pharmacol Ther* 83:265–272. <http://dx.doi.org/10.1038/sj.cpt.6100269>.
10. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, Valantin MA, Lechat P, Deray G. 2006. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. *J Infect Dis* 194: 1481–1491. <http://dx.doi.org/10.1086/508546>.
11. Hagleitner MM, Coenen MJ, Schrauwen M, Vermeulen SH, deBont ES, Hoogerbrugge P, TeLoo DM. 2010. Association of a genetic variant in the ABCC2 gene with high methotrexate plasma concentrations in pediatric malignancies. *J Clin Oncol* 28:15s.
12. Anderson PL, Lamba J, Aquilante C, Schuetz E, Fletcher C. 2006. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. *J Acquir Immune Defic Syndr* 42:441–449. <http://dx.doi.org/10.1097/01.qai.0000225013.53568.69>.
13. Hall AM. 2013. Update on tenofovir toxicity in the kidney. *Pediatr Nephrol* 28:1011–1023. <http://dx.doi.org/10.1007/s00467-012-2269-7>.
14. Ezinga M, Wetzel JF, Bosch ME, van der Ven AJ, Burger DM. 2014. Long-term treatment with tenofovir: prevalence of kidney tubular dysfunction and its association with tenofovir plasma concentration. *Antivir Ther* 19:765–771. <http://dx.doi.org/10.3851/IMP2761>.
15. Gagnieu M, Barkil ME, Livrozet JM, Cotte L, Mialhes P, Boibieux A, Guittot J, Tod M. 2008. Population pharmacokinetics of tenofovir in AIDS patients. *J Clin Pharmacol* 48:1282–1288. <http://dx.doi.org/10.1177/0091270008322908>.
16. Jullien V, Treluyer JM, Rey E, Jaffray P, Krivine A, Moachon L, Louet AL, Lescoat A, Dupin N, Salmon D, Pons G, Urien S. 2005. Population pharmacokinetics of tenofovir in human immunodeficiency virus-infected patients taking highly active antiretroviral therapy. *Antimicrob Agents Chemother* 49:3361–3366. <http://dx.doi.org/10.1128/AAC.49.8.3361-3366.2005>.
17. Baxi SM, Greenblatt RM, Bacchetti P, Scherzer R, Minkoff H, Huang Y, Anastos K, Cohen M, Gange SJ, Young M, Shlipak MG, Gandhi M. 2014. Common clinical conditions—age, low BMI, ritonavir use, mild renal impairment—affect tenofovir pharmacokinetics in a large cohort of HIV-infected women. *AIDS* 28:59–66. <http://dx.doi.org/10.1097/QAD.000000000000033>.
18. Rodriguez-Novoa S, Labarga P, Soriano V, Egan D, Albalate M, Morello J, Cuenca L, Gonzalez-Pardo G, Khoo S, Back D, Owen A. 2009. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. *Clin Infect Dis* 48:e108–e116. <http://dx.doi.org/10.1086/598507>.
19. James AM, Ofotokun I, Sheth A, Acosta EP, King JR. 2012. Tenofovir: once-daily dosage in the management of HIV infection. *Clin Med Insights Ther* 4:201–216. <http://dx.doi.org/10.4137/CMT.S8316>.
20. Kearney BP, Mathias A, Mittan A, Sayre J, Ebrahimi R, Cheng AK. 2006. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. *J Acquir Immune Defic Syndr* 43:278–283. <http://dx.doi.org/10.1097/01.qai.0000243103.03265.2b>.
21. Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS. 1999. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. *Mol Pharmacol* 56:383–389.
22. Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S, Hidalgo IJ, Rhodes GR, Ray AS. 2007. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. *Antimicrob Agents Chemother* 51:3498–3504. <http://dx.doi.org/10.1128/AAC.00671-07>.
23. Fujita T, Brown C, Carlson EJ, Taylor T, Cruz M, Johns SJ, Stryke D, Kawamoto M, Fujita K, Castro R, Chen C, Lin ET, Brett CM, Burchard EG, Ferrin TE, Huang CC, Leabman MK, Giacomini KM. 2005. Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). *Pharmacogenet Genomics* 15:201–209. <http://dx.doi.org/10.1097/01213011-200504000-00003>.
24. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, Takane H, Irie S, Kusuvara H, Urasaki Y, Urae A, Higuchi S, Otsubo K, Sugiyama Y. 2003. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. *Clin Pharmacol Ther* 73:554–565. [http://dx.doi.org/10.1016/S0009-9236\(03\)00060-2](http://dx.doi.org/10.1016/S0009-9236(03)00060-2).
25. Vormfelde SV, Schirmer M, Hagos Y, Toliat MR, Engelhardt S, Meineke I, Burckhardt G, Nurnberg P, Brockmoller J. 2006. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. *Br J Clin Pharmacol* 62:323–335. <http://dx.doi.org/10.1111/j.1365-2125.2006.02655.x>.
26. German P, Liu HC, Szwarcberg J, Hepner M, Andrews J, Kearney BP, Mathias A. 2012. Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. *J Acquir Immune Defic Syndr* 61:32–40. <http://dx.doi.org/10.1097/QAI.0b013e3182645648>.

Plasma Tenofovir Concentrations and Proximal Tubular Dysfunction in HIV-Infected Adults Receiving Tenofovir in Thailand

Anchalee Avihingsanon^{1,2*}, Jiratchaya Sophonphan¹, Narukjaporn Thammajaruk¹, Prachya Chaihong¹, David Burger³, Tim R Cressey^{4,5}, Reshmie A Ramautarsing^{1,6}, Kearniat Praditornsilpa⁷, Yingyos Avihingsanon⁷, Kiat Ruxrungtham^{1,2} and HIV-NAT 114 study team

¹HIV-NAT, Thai Red Cross AIDS Research Centre, 104 Ratchadamri Road, Pathumwan, Bangkok, Thailand

²Division of Allergy and Immunology, Faculty of Medicine, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand

³Radboud Institute for Health Sciences (RIHS), Post 148 RIHS, PO box 9101, 6500 HB Nijmegen, The Netherlands

⁴Program for HIV Prevention and Treatment (PHPT)/IRD Unité 174, Faculty of Associated Medical Sciences, 187/10, Changklan Rd., Changklan, Muang, Chiang Mai, Thailand

⁵Harvard School of Public Health, Bldg 2, Flr 4, Rm 424, 655 Huntington Ave, Boston, MA, USA

⁶Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, the Netherlands

⁷Division of Nephrology, Faculty of Medicine, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand

Abstract

Background: HIV-infected Asians may be at risk for tenofovir toxicity due to their relatively low body weight (BW). We assessed the prevalence of proximal tubular dysfunction (PRTD) and risk associated with PRTD in HIV-infected adults receiving tenofovir in Thailand.

Methods: A cross-sectional study in HIV-infected adults (≥ 18 years) treated with tenofovir for >1 year. Twenty-four-hour urine samples were collected to assess PRTD. PRTD was defined as the presence of >2 of the following criteria: hyper-phosphaturia (total excretion of phosphate >1200 mg/day or renal tubular reabsorption of phosphate (TmP/GFR) < 2.6 mg/dL), hyper-uricosuria (FE of uric acid $>15\%$), or non-diabetic glucosuria. Mid-dose tenofovir plasma concentrations were determined and concentrations >160 ng/mL were used as a cut-off for assessing risk of PRTD.

Results: 351 subjects (52% males) with median age of 40.2 years, BW of 58.9 kg, and duration of tenofovir treatment 4.7 years were included. 93% had a HIV-1 RNA <50 copies/mL and 7% were co-infected with HCV. Fifty-four (15.4%) patients were diagnosed with PRTD. In a multivariate analysis, only a mid-dose tenofovir concentration >160 ng/mL was associated with PRTD [odds ratio: OR 2.02 (95% CI 1.13-3.66)]; 32 of 54 (59.2%) with PRTD had a tenofovir concentration >160 ng/ml; versus 124 of 297 patients (41.7%) without PRTD ($p = 0.02$). Predictors of a tenofovir concentration >160 ng/mL were BW <55 kg [OR 2.32 (95% CI 1.45-3.68)], chronic HCV [OR 2.64 (95% CI 1.13-6.17)], eGFR <90 mL/min/1.73m² [OR 2.66 (95% CI 1.64-4.31)], lopinavir/ritonavir [OR 2.47 (95% CI 1.32-4.6)] and PRTD [OR 2.08 (95% CI 1.10-3.92)].

Conclusion: Mid-dose tenofovir concentrations >160 ng/mL were independently associated with PRTD. Tubular function should be closely monitored in patients using tenofovir with BW <55 kg, lopinavir/ritonavir use, chronic hepatitis C, or low eGFR.

Keywords: Plasma tenofovir concentration; PRTD; Low BW; Hepatitis C; Low eGFR; Lopinavir/ritonavir; Asian

Introduction

Tenofovir disoproxil fumarate (TDF) is a nucleotide reverse transcriptase inhibitor (N (t) RTI) that has activity against both HIV and hepatitis B virus (HBV). Because of its high efficacy, once-daily dose, and availability within several fixed-dose combination tablets, TDF is one of the most widely used ARV drugs as part of combination antiretroviral treatment (cART). TDF is a prodrug of tenofovir (TFV) that is rapidly hydrolyzed to tenofovir monophosphate in the blood, and then converted to its active tenofovir diphosphate form intracellularly. TFV is primarily eliminated unchanged by a combination of glomerular filtration and proximal tubular secretion [1]. Tenofovir clearance is impaired in patients with abnormal renal function and its accumulation inside the tubular cells may result in further renal damage [2]. Tenofovir is generally well-tolerated but several degrees of renal toxicity, including acute tubular necrosis, nephritis, proximal tubulopathy, proteinuria, diabetes insipidus, hypokalemia and subclinical proximal renal tubular dysfunction (PRTD) has been reported [3-14]. In clinical trials, the risk of clinically significant TDF related renal toxicity is relatively low (0.3-2% Fanconi syndrome) [15-17]. However, trial participants may not represent HIV patients at large as they are generally in good health and have fulfilled strict inclusion criteria.

Several studies conducted in HIV-infected patients found that older age, presence of metabolic disease and concomitant use of TDF and protease inhibitor are associated with an increased risk of tubular dysfunction [18-21]. Recently, several pharmacogenomics studies have reported that PRTD in HIV-infected patients receiving tenofovir were associated with certain genetic polymorphisms within genes of several efflux transporters (ABCC2 or ABCC4 or ABCC10) [22-24]. Higher plasma concentration of tenofovir has also been recently associated with proximal tubular dysfunction [10,25]. Even though the isolated presentation of tubular dysfunction such as hypophosphatemia, tubular proteinuria, normoglycemic glucosuria, and a decrease in phosphate

***Corresponding author:** Anchalee Avihingsanon, HIV-NAT, Thai Red Cross AIDS Research Centre, 104 Ratchadamri Road, Pathumwan, Bangkok, Thailand 10330, Tel: +66 2 255 7335; Fax: +66 2 252 5779; E-mail: anchalee.A@hivnat.org, anchaleea2009@gmail.com

Received March 18, 2014; **Accepted** June 22, 2015; **Published** July 03, 2015

Citation: Avihingsanon A, Sophonphan J, Thammajaruk N, Chaihong P, Burger D, et al. (2015) Plasma Tenofovir Concentrations and Proximal Tubular Dysfunction in HIV-Infected Adults Receiving Tenofovir in Thailand. J AIDS Clin Res 6: 477. doi:10.4172/2155-6113.1000477

Copyright: © 2015 Avihingsanon A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

reabsorption has been associated with tubular cell damage but the clinical significance of isolated or subclinical tubular dysfunction in the short- and long- term remains largely unclear whether these particular patients are at increased risk for developing Fanconi syndrome, progressive alteration of eGFR, osteomalacia or reduced bone mass density. However, PRTD may indeed contribute to the persistent loss of the phosphate and subsequent prematuration of osteopenia/osteoporosis. Clinical research on tubular function is challenging because of the complexity of kidney exploration. Few studies have assessed prospectively the tubular function of HIV infected patients, and have shown that approximately 6.5-22% of HIV-infected patients may have subclinical PRTD [10,26]. There are limited data on the prevalence of PRTD of HIV infected patients from Asia whom generally have lower body weight than those in resource-rich countries.

In South East Asia, TDF is now widely used for HIV treatment with increased usage of TDF, many patients with low BW and/or pre-existing renal disease may exhibit clinical symptoms of TDF nephrotoxicity later in life. The studies from Thailand, Vietnam, and Japan in HIV-infected patients with median BW of 55-63 kg showed that the high prevalence of TDF-related renal dysfunction (14.4%-19.6%) was strongly associated with low BW [27-30]. Since TDF-related renal toxicity is linked to an increased plasma concentration, possibly in a dose-dependent manner, Therefore, the Asian population with small body weight is expected to be at higher risk of developing TDF-related renal toxicity [27,28,30,31]. Thus, it is important to understand the relationship between plasma tenofovir concentrations and factors associated with tubular dysfunction among Asian HIV-infected patients. It is also critical to identify subpopulations at risk of developing long-term TDF nephrotoxicity. As a result of this, we assessed the prevalence of PRTD and risk factors associated with proximal tubular dysfunction among HIV-infected patients receiving TDF containing antiretroviral therapy within a large HIV cohort in Thailand.

Methods

Study population

HIV infected patients participating in a cohort study (clinicaltrials.gov identifier: NCT 00411983) at the HIV Netherlands Australia Thailand Research collaboration (HIV-NAT), Bangkok, Thailand, were included in this analysis. This sub study was reviewed and registered by the Institutional Review Boards of the Faculty of Medicine, Chulalongkorn University (NCT01138241). All patients provided a written consent. A total of 351 patients treated with TDF-containing cART with a normal estimated glomerular filtration rate (eGFR > 90 ml/min/1.73m²) underwent a 24-hour urinary analysis for assessment of proximal tubular dysfunction. Plasma samples were collected "mid-dose (11-13 hours post dose)" to measure the tenofovir plasma concentration. Patients were excluded if they were currently on nephrotoxic agents such as pentamidine, ganciclovir, amphotericin B, adefovir, cidofovir or indinavir. Patient characteristics were extracted from the HIV-NAT 006 cohort database including sex, age, route of HIV transmission, HBV and/or HCV co-infection, hypertension, diabetes, clinically defined lipodystrophy, ARVs, duration of ARVs and concomitant drugs. Chronic hepatitis B (Hep B) and hepatitis C (Hep C) infection were defined as having a two positive tests (i.e., Hep B S antigen (HBsAg or anti-HCV antibody, respectively) more than 6 months apart.

Assessment of proximal tubular function

Blood and 24-hour urine samples were used to assess the kidney

glomerular and tubular parameters. All patients were required to fast for at least 8 hours before blood samples were collected. Written and verbal instructions for urine collection were provided along with the container. Urine was collected over a 24-hour period, which also included the samples from the morning of the blood draw. Various multi-parameter blood chemistry and hematology profiles were assessed, such as glucose, creatinine, sodium, potassium, chloride, bicarbonate, phosphorus, total calcium, uric acid, albumin, and total protein. Urine pH, glucose, creatinine, phosphorus, uric acid, albumin, proteins, β 2 microglobulin, white and red blood cells in urine was assessed. All parameters for renal proximal tubular function were performed at the laboratory of the Division of Nephrology, Chulalongkorn University.

PRTD was defined on the basis of the presence of at least two of the following criteria [10]:

1. Fractional tubular absorption for phosphorus $[1 - \{(urine phosphorus \times plasma\ creatinine) / (plasma\ phosphorus \times urine\ creatinine)\}]$ less than 0.80.
2. Total daily excretion of phosphorus (urine phosphorus \times urine volume) more than 1200 mg.
3. Fractional excretion of uric acid $[1 - \{(urine\ uric\ acid \times plasma\ creatinine) / (plasma\ uric\ acid \times urine\ creatinine)\}] \times 100$ more than 15%.
4. β 2 microglobulin more than 1 mg/day or β 2 microglobulin/urinary creatinine more than 0.3 mg/l.
5. Non-diabetic glucosuria (urine glucose > 300 mg/day or positive for urine glucose) with normal glycemic levels (plasma glucose < 100 mg/dl).

Immunonephelometry (BN II DADE, Behring, Barcelona, Spain) was used to assess urine β 2 microglobulin.

The eGFR was calculated using the Modification of Diet in Renal Disease (MDRD) equation [32].

Assessment of tenofovir plasma concentrations

Tenofovir plasma concentrations were measured using a validated reversed-phase high-performance liquid chromatography (HPLC) method with fluorescent detection. This method was validated using the AIDS Clinical Trials Group (ACTG) method validation guidelines over the concentration range of 15 to 1,500 ng/mL [33]. Average accuracy for tenofovir was 99-102% and precision (inter- and intra-assay) was <5% of the coefficient of variation (CV). Samples were assayed at the PHPT-IRD laboratory at Chiang Mai University which participates in the ACTG Pharmacology Quality Control program, which performs standardized inter-laboratory testing twice a year [34].

Statistical analysis

Continuous values are presented as median (interquartile range: IQR) and categorical data as percentages. A multivariable analysis using logistic regression models evaluated factors associated with PRTD. A mid-dose plasma tenofovir concentration cut-off of 160 ng/mL was used as a threshold to test for an association with PRTD [25]. Variables obtained from the univariate analysis with a p-value < 0.10 were included in the full model. A stepwise selection procedure was used to assess the relative role of the risk factors. P-values of <0.05 were considered significant. All statistical analyses were carried out using STATA version 12.0 (StataCorp, College Station, TX, USA)

Results

Characteristics of the study patients

Baseline characteristic of study participants are presented in Table 1. Between April 2011 and August 2012, 351 TDF-treated HIV-1-infected patients (52% male) were enrolled (Table 1). Median age was 40.2 (IQR 36.3-45.6) years. Body weight (BW) was 58.9 (IQR 52-67.5) kg, 19% and 4% of patients had a body mass index (BMI) > 25 kg/m² or <18 kg/m², respectively, and 21% were ARV-naïve at the time TDF was initiated. Median duration of TDF use was 4.7 (IQR 2.9-5.4) years for ARV-naïve patients and 2.9 (IQR 1.8-4.9) years for ARV-experienced patients. CD4 cell count was 554 (IQR 428-749) cells/mm³ and 93% had a HIV RNA <50 copies/mL. Eight percent of patients had previously used indinavir boosted with ritonavir (IDV/r), with a median duration of 2.2 (IQR 0.9-5.8) years exposure; 53% of the patients were co-treated with a NNRTI (42% on efavirenz (EFV) and 11% on nevirapine (NVP)), and 47% with a ritonavir boosted protease inhibitor (boosted PI; 17% atazanavir/ritonavir (ATV/r), 17% lopinavir/ritonavir (LPV/r), 10% saquinavir/ritonavir (SQV/r), and 3% darunavir/ritonavir (DRV/r)). Chronic HBV and HCV were identified in 22% and 7% of the patients, respectively. Nine percent and 3% of the patients had hypertension and diabetes mellitus, respectively.

Proximal renal tubular function

Fifty-four (15.4%) patients were diagnosed with PRTD. A higher percentage of patients with PRTD had previous IDV exposure (14.8% versus 7.1%), current ATV exposure (27.7% versus 15.5%), boosted PI exposure (59.3% versus 45.1%), hypertension (14.8% versus 7.4%), higher serum creatinine levels and lower median eGFR (86.8 versus 98.5 ml/min/1.73m²). Overall, the median eGFR was 97.8 (IQR 84.9-108.1) ml/min/1.73m² and 29 (8.3%) patients had serum phosphorus

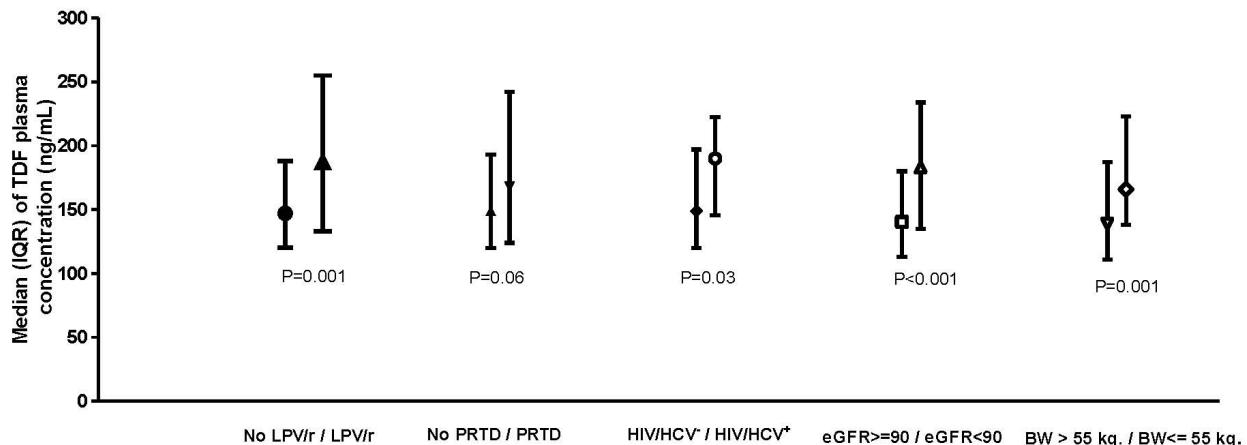
< 3 mg/dL. Median eGFR for TDF ARV-naïve and TDF-switch subjects were not significantly different (99.1 (86.9-107.8) and 97.4 (84.2-108.1) ml/min/1.73m², respectively (p = 0.39) and the prevalence of PRTD was comparable between the two groups (13.9% versus 15.8%, p = 0.69).

Tenofovir plasma concentrations

Median tenofovir plasma concentrations were 168 (IQR 120-198) ng/mL and 149 (IQR 120-193) ng/mL for patients with and without PRTD, respectively (Figure 1, Table 1). Overall, 156 (44.4%) patients had tenofovir plasma concentrations > 160 ng/ml (a reported threshold to predict PRTD) and among these patients, 32 of 54 (59.2%) had PRTD; versus 124 of 297 patients (41.7%) without PRTD (p = 0.02).

Risk factors associated with kidney tubular dysfunction

In a univariate analysis, previous IDV exposure, current ATV exposure, hypertension and a TDF plasma concentration >160 ng/mL were associated with PRTD (Table 2). However, in the multivariate analysis, only a tenofovir plasma concentration >160 ng/mL remained significantly associated with PRTD (OR 2.02, 95% CI 1.13-3.66, p = 0.02). Low body weight, chronic HCV, lopinavir/r use and duration of TDF were not associated with PRTD.


Risk factors for tenofovir plasma concentrations >160 ng/mL

In univariate analysis, body weight < 55 kg, LPV/r, chronic HCV, eGFR < 90 ml/min/1.73m², duration of ART per 5 years, and PRTD were associated with higher tenofovir plasma concentrations >160 ng/mL (Table 3). In multivariate analysis; BW < 55 kg [OR 2.19 (95% CI 1.37-3.50), p = 0.001], chronic HCV [OR 3.63 (95% CI 1.18-11.18, p = 0.024)], eGFR < 90 ml/min/1.73m² [OR 2.56 (95% CI 1.58-4.16), p < 0.001], LPV/r [OR 2.47 (95% CI 1.32-4.6), p = 0.004], and PRTD [OR 1.98 (95% CI 1.05-3.73), p = 0.03] were associated with plasma

	Total N = 351	PRTD N = 54	Non PRTD N = 297	p-value
Sex: Male N (%)	184 (52.4)	31 (57.4)	153 (51.5)	0.43
Age (years), median (IQR)	40.2 (36.3-45.6)	40.6 (37.9-47.4)	40.2 (35.9-45.3)	0.16
BW (kg), median (IQR)	58.9 (52-67.5)	60.2 (53-68.1)	58.5 (52-67.5)	0.22
Duration of ART exposure (month)	7.1 (4.6-10.3)	9.1 (4.7-11.9)	6.8 (4.6-10.2)	0.31
TDF exposure, years				
ARV-naïve	4.7 (2.9-5.4)	4.2 (2.8-6.0)	4.7 (2.9-5.4)	0.74
ARV-experienced	2.9 (1.8-4.9)	2.8 (1.5-4.7)	2.9 (1.8-4.9)	0.33
Indinavir exposure N (%)	29 (8.3)	8 (14.8)	21 (7.1)	0.06
Atazanavir exposure, N (%)	61 (17.3)	15 (27.7)	46 (15.5)	0.03
Stavudine exposure, N (%)	198 (56.4)	29 (53.7)	169 (56.9)	0.66
Current ARV regimen N (%)				0.06
NNRTI	185 (52.7)	22 (40.7)	163 (54.9)	
Boosted PI	166 (47.3)	32 (59.3)	134 (45.1)	
Current CD4 cell count (cells/mm ³), median (IQR)	554 (428-749)	538 (429-730)	554 (428-749)	0.53
Proportion with HIV RNA < 50 copies/mL, N (%)	327 (93.1)	52 (96.3)	275 (92.5)	0.32
Hypertension, N (%)	30 (8.6)	8 (14.8)	22 (7.4)	0.07
Diabetes Mellitus, N (%)	9 (2.6)	1 (1.9)	8 (2.7)	0.72
Lipodystrophy, N (%)	133 (37.9)	14 (25.9)	119 (40.1)	0.05
Chronic HBV, N (%)	76 (21.6)	10 (18.5)	66 (22.2)	0.54
Chronic HCV, N (%)	26 (7.4)	2 (3.7)	24 (8.1)	0.26
Median plasma creatinine, mg/dL, median (IQR)	0.8 (0.7-0.9)	0.9 (0.8-1)	0.8 (0.7-0.9)	0.001
Median eGFR (ml/min/1.73m ²)	97.8 (84.9-108.1)	86.8 (75.4-100.5)	98.5 (85.6-109.3)	0.002
Plasma TDF concentrations: ng/ml	152 (120-198)	168 (124-242)	149 (120-193)	0.06
Proportion of patients with plasma TDF >160ng/ml, N (%)	156 (44.4)	32 (59.2)	124 (41.7)	0.02

Data is expressed as median and interquartile range (IQR). TDF: Tenofovir Disoproxil Fumarate; BW: Body Weight; BMI: Body Mass Index; NNRTI: Non-Nucleoside Reverse Transcriptase; PI: Protease Inhibitor; ART: Antiretroviral Therapy; eGFR: Estimated Glomerular Filtration Rate; HBV: Hepatitis B; HCV: Hepatitis C; PRTD: Proximal Renal Tubular Dysfunction

Table 1: Baseline characteristics of the study population with PRTD and without PRTD.

PRTD: proximal tubular dysfunction, LPV/r: lopinavir and ritonavir, HCV: hepatitis C infection, eGFR: estimated glomerular rate, BW: body weight

Figure 1: Tenofovir plasma concentrations in patients with PRTD, boosted lopinavir, hepatitis C, eGFR < 90 ml/min/1.73m² and BW < 55 kg.

			Univariate analysis		Multivariate analysis	
	PRTD	No PRTD	OR (95%CI)	p	OR (95%CI)	p
Indinavir exposure (%)						
No	46 (14.2)	276 (85.8)	1	0.07		
Yes	8 (27.6)	21 (72.4)	2.29 (0.96-5.46)			
Atazanavir exposure (%)						
No	39 (13.4)	251 (86.6)	1	0.03		
Yes	15 (24.5)	46 (75.5)	2.1 (1.07-4.11)			
Other boosted PI (mainly lopinavir/r (%)				0.27		
No						
Yes	20 (13)	134 (87)	1			
	34 (17.2)	163 (82.8)	1.39 (0.71- 2.54)			
Hypertension, n (%)						
No	46 (14.3)	275 (85.7)	1	0.09		
Yes	8 (26.6)	22 (73.4)	2.17 (0.91-5.17)			
Chronic HCV (%)						
No	52 (16)	273 (84)	1	0.22		
Yes	2 (7.7)	24 (92.3)	0.44 (0.1-1.90)			
TDF plasma concentrations						
<160 ng/ml	23 (11.6)	175 (88.4)	1	0.02	1	0.02
>160 ng/ml	31 (20.3)	122 (79.7)	2.02 (1.13-3.66)		2.02 (1.13-3.66)	

Age, sex, body weight, duration of ART, duration of tenofovir, diabetes mellitus, and chronic hepatitis B were not associated with PRTD. HCV: Hepatitis C; HBV: Hepatitis B; OR: Odd Ratio; 95% CI: 95% Confidential Interval; TDF: Tenofovir Disoproxil Fumarate; PRTD: Proximal Renal Tubular Dysfunction; boosted PI: Protease Inhibitor

Table 2: Predictors of PRTD in HIV-1 infected Thai patients.

concentrations of tenofovir >160ng/mL. Age, sex, duration of ART, duration of tenofovir, diabetes mellitus, hypertension and chronic hepatitis B were not associated with tenofovir concentrations >160ng/mL.

Discussion

In this study, 15.4% of 351 TDF-treated patients had subclinical PRTD. We found that: 1) patients with PRTD had higher tenofovir plasma concentrations compared to those without (168 ng/mL versus 149 ng/mL); 2) tenofovir plasma concentrations of >160 ng/mL was associated with PRTD; 3) BW<55 kg, eGFR<90 ml/min/1.73m², chronic HCV, PRTD, and use of LPV/r were associated with high tenofovir plasma concentrations. The overall prevalence of PRTD in TDF-treated patients (15.4%) in this study is relatively lower when compared to the study from Spain (22%) and higher than study from Italy (Aquitaine cohort) (6.5%) and the United States (7.6%) [10,26,35]. Our findings are in agreement with prior studies performed in Europe which reported

that high tenofovir plasma concentrations were associated with PRTD [25,31]. In the current study, tenofovir plasma concentrations were 2.5-fold higher in patients with eGFR < 90 ml/min/1.73m² and 2-fold higher in patients with subclinical PRTD. Likewise, patients with plasma tenofovir concentrations >160ng/mL were associated with a 2-fold higher risk of developing PRTD, consistent with previous findings showing tenofovir plasma concentrations was independently associated with tubular dysfunction [25,31,36]. It has been theorized that high intracellular concentrations of tenofovir can disrupt the mitochondrial function and damage the proximal tubular cells [37]. The higher the tenofovir plasma concentrations were, the greater the accumulation of tenofovir in the proximal renal tubular cells. This can subsequently result in having a higher risk for tubular cell dysfunction. In this study, we observed that patient with low eGFR had significantly higher plasma tenofovir concentrations and patients with PRTD had lower eGFR than patients without PRTD. Because tenofovir is secreted via glomerular filtration and proximal tubular secretion, thus when the

	TDF plasma concentration >160ng/ml		Univariate analysis		Multivariate analysis	
	Yes	NO	OR (95%CI)	p	OR (95%CI)	p
Gender						
Male	73 (39.7)	111 (60.3)	1	0.06		
Female	84 (50.3)	83 (49.7)	1.5 (0.98-2.29)			
BW						
Weight > 55kg	81 (38.2)	131 (61.8)	1	0.004	1	0.001
Weight ≤ 55kg	75 (54)	64 (46)	1.9 (1.23- 2.92)		2.19 (1.37-3.50)	
BW/creatinine			0.96 (0.95-.97)	<0.001		
boosted PI						
No	60 (39)	94 (61)	1	0.07		
Yes	96 (48.7)	101 (51.3)	1.49 (0.97-2.28)			
LPV/r						
No	118 (40.3)	175 (59.7)	1	0.001	1	0.004
Yes	38 (65.5)	20 (34.5)	2.82 (1.56-5.08)		2.47 (1.32-4.60)	
Chronic HCV (%)						
No	145 (43.2)	190 (56.8)	1	0.05	1	0.02
Yes	11 (68.7)	5 (31.3)	2.88 (0.98-8.48)		3.63 (1.18-11.18)	
eGFR , ml/min/1.73m ²						
>90	86 (37.1)	146 (62.9)	1	<0.001	1	<0.001
≤90	70 (58.8)	49 (41.2)	2.49 (1.54-3.81)		2.56 (1.58-4.16)	
PRTD						
No	124 (41.7)	173 (58.3)	1	0.02	1	0.03
Yes	32 (59.3)	22 (40.7)	2.02 (1.13-3.66)		1.98 (1.05-3.73)	

Age, duration of ART, duration of tenofovir, diabetes mellitus, chronic hepatitis B, and hypertension were not associated with tenofovir concentrations >160ng/mL. HCV: Hepatitis C; HBV: Hepatitis B; OR: Odd Ratio; 95% CI: 95% Confidential Interval; TDF: Tenofovir Disoproxil Fumarate; LPV/r: Lopinavir/Ritonavir; PRTD: Proximal Tubular Dysfunction; BW: Body Weight; BMI: Body Mass Index; PI: Protease Inhibitor; eGFR: Estimated Glomerular Filtration Rate

Table 3: Predictors for plasma tenofovir concentration >160ng/ml in HIV-1 infected Thai adults..

patients have tubular dysfunction/low eGFR, this will possibly cause higher plasma tenofovir concentrations [1,2]. Therefore, it is possible that PRTD could be caused by cumulative exposure to tenofovir. On the other words, PRTD with low renal function can possibly cause high plasma tenofovir concentrations. Our results support data that the effect of tenofovir on PRTD is dose-dependent. However, in this study we could not confirm whether high plasma concentration is mainly caused by PRTD or it is directly caused by low renal clearance.

Three studies from Asia evaluated the risk of developing TDF nephrotoxicity in HIV infected patients with median BW of 55-63 kg. They found that lower body weight was significantly associated with TDF related nephrotoxicity [28-30]. This is consistent with our findings that plasma tenofovir concentrations were 2.2-fold higher among patients with BW < 55 kg. Higher tenofovir plasma concentrations in patients with low BW < 55 kg would lead to further renal damage. In addition, this study found that BW/serum creatinine (Scr) ratio was negatively correlated with tenofovir plasma concentrations (Correlation Coefficient = -0.28; P < 0.001) which was consistent with the findings reported by Rodriguez-Novoa et al. and Calcagno et al. in which tenofovir plasma concentrations decreased as the BW/SCr ratio increased [25,38].

However it is unclear why HCV co-infection was strongly correlated with higher tenofovir plasma concentrations in our study. Patients co-infected with HIV and HCV had higher tenofovir plasma concentrations [median 190 (IQR 146-223) ng/mL] compared to those with HIV mono-infection [median 146 (IQR 120-197) ng/mL] whereas only 2 out of 54 (4%) patients co-infected with HIV/HCV had PRTD. In addition, HCV was strongly associated with higher tenofovir plasma concentration (3.6-fold). Currently, pharmacokinetic data of TDF in HIV and HCV co-infection is largely unknown. Since TDF is not a substrate of CYP450 enzyme, HCV co-infection is not expected to influence the plasma concentrations of tenofovir. There is a higher risk of renal impairment in HIV and hepatitis B co-infection with advanced liver fibrosis (fibrosis score >F3). However, in our study, 20% of the

patients co-infected with HIV and HCV had advanced liver fibrosis (fibrosis score > 9.5kPa) based on transient elastography scores. Median plasma tenofovir concentrations did not differ between those with or without advanced liver fibrosis (191 ng/mL versus 136 ng/mL; p = 0.15). In addition, advanced liver fibrosis was not significantly associated with lower eGFR and higher tenofovir plasma concentrations. Liver damage can lead to impaired blood flow and production of toxins that can have a detrimental effect on kidney function. However, this study did not show any correlation between liver fibrosis and eGFR which may be due to its relatively small sample size. Thus, we cannot ascertain what factors are causing the patients co-infected with HCV to have high TDF plasma concentrations.

Although almost half of the study population (48%) was female, we did not find any association between female sex and high tenofovir plasma concentrations. This finding disagrees with a previous Spanish pharmacokinetic study conducted in 2009 which reported that the female sex was associated with high tenofovir plasma concentrations [25]. Other studies also failed to find an association of sex on tenofovir plasma concentrations. Recently, Gervasoni et al evaluated tenofovir plasma concentrations among 22 post-menopausal and 28 pre-menopausal women from Italy and found that tenofovir plasma concentrations were not difference between pre- and post-menopausal women [39].

Several studies conducted in Caucasians found an association between high plasma tenofovir concentrations with unboosted or boosted PI and a higher risk of developing renal toxicity when compared to EFV, NVP or RAL [21,39-43]. Our results did not observe a correlation of boosted PI and tubular dysfunction, but LPV/r use was associated with higher tenofovir plasma concentrations (2.5 fold). No correlation between ATV/r use and plasma tenofovir concentrations was observed, unlike those patients on unboosted ATV from Calcagno's study which found an association with the high tenofovir plasma concentration [38]. As our ATV/r patients were using ATV/ 200/100 mg once daily, we speculate that receiving a lower dose may lower the

impact on inhibition of multiple resistance protein (MRP) transporters at the apical side of renal tubular cells, and consequently less tenofovir intra-tubular accumulation.

Our study has several limitations. Firstly, due to the nature of the cross-sectional design, we could not foresee whether high plasma tenofovir concentrations and PRTD will predict future renal impairment. Secondly, only patients with eGFR > 60 ml/min/1.73m² were enrolled and approximately 50% of patients using tenofovir at our research center were included in this analysis so it is possible that patients with more serious renal toxicity were excluded. Thirdly, most of the patients on boosted ATV were on ATV/r 200/100 mg once daily instead of the standard dose of ATV/r 300/100 mg once daily. Hence we cannot draw strong conclusion whether boosted ATV/r use is associated with high tenofovir plasma concentration. Lastly, this study had only a single tenofovir plasma measurement at 12-hours post-drug administration. Oral apparent clearance of TDF was not determined. High intra-individual variation of tenofovir clearance have been reported in Caucasians, but little is known of tenofovir clearance in Asians [44].

In conclusion, mid-dose tenofovir concentrations >160 ng/mL was independently associated with PRTD. Low BW, chronic HCV, low eGFR, LPV/r use and PRTD were associated with higher tenofovir plasma concentration and tubular function should be closely monitored in these patients. In addition, the association of higher plasma tenofovir concentrations and PRTD need to be further explored in a large prospective cohort to determine whether this association is linked to rapid renal deterioration in the future. Furthermore, lower dosing strategies of TDF in patients at highest risk of TDF associated renal toxicity should be further explored.

Acknowledgement

We would like to thank the patients for their participation and the HIV-NAT staff.

Author Contributions

AA, DB, TRC, JS, KP, YA and KR designed the study. AA, RAR and SP conducted the study. JS performed all statistical analysis. NT performed all basic laboratory tests such as the multi-parameter blood chemistry and hematology profiles. KP and YA performed all renal proximal tubular function. TRC performed all PK tests. All authors finalized the manuscript.

Financial Support

This study was funded by the National Research Council of Thailand (NRCT) under grant number Por Kor/2554-136, the Thailand Research Fund (TRF) under grant number RSA5380002 and the Ratchadapisek Sompotch Endowment Fund, Faculty of Medicine, Chulalongkorn University under grant number RA33/53.

Conflict of Interest

RAR is supported by the ART AIDS Foundation. All other authors declare no conflict of interest.

Clinical trials.gov registration number: NCT01138241

References

1. Goicoechea M, Liu S, Best B, Sun S, Jain S, et al. (2008) Greater tenofovir-associated renal function decline with protease inhibitor-based versus non-nucleoside reverse-transcriptase inhibitor-based therapy. *J Infect Dis* 197: 102-108.
2. Pavie J, Scemla A, Bouldouyre MA, Pillebout E, Verine J, et al. (2011) Severe acute renal failure in an HIV-infected patient after only 2 weeks of tenofovir-based antiretroviral therapy. *AIDS Patient Care STDS* 25: 457-460.
3. Earle KE, Seneviratne T, Shaker J, Shoback D (2004) Fanconi's syndrome in HIV+ adults: report of three cases and literature review. *J Bone Miner Res* 19: 714-721.
4. de la Prada FJ, Prados AM, Tugores A, Uriol M, Saus C, et al. (2006) Acute renal failure and proximal renal tubular dysfunction in a patient with acquired immunodeficiency syndrome treated with tenofovir. *Nefrologia* 26: 626-630.
5. Cicconi P, Bongiovanni M, Melzi S, Tordato F, d'Arminio Monforte A, et al. (2004) Nephrolithiasis and hydronephrosis in an HIV-infected man receiving tenofovir. *Int J Antimicrob Agents* 24: 284-285.
6. Campbell LJ, Ibrahim F, Fisher M, Holt SG, Hendry BM, et al. (2009) Spectrum of chronic kidney disease in HIV-infected patients. *HIV Med* 10: 329-336.
7. Breton G, Alexandre M, Duval X, Prie D, Peytavin G, et al. (2004) Tubulopathy consecutive to tenofovir-containing antiretroviral therapy in two patients infected with human immunodeficiency virus-1. *Scand J Infect Dis* 36: 527-528.
8. Blaas S, Schneidewind A, Glück T, Salzberger B (2006) Acute renal failure in HIV patients with liver cirrhosis receiving tenofovir: a report of two cases. *AIDS* 20: 1786-1787.
9. Kinai E, Hanabusa H (2009) Progressive renal tubular dysfunction associated with long-term use of tenofovir DF. *AIDS Res Hum Retroviruses* 25: 387-394.
10. Labarga P, Barreiro P, Martin-Carbonero L, Rodriguez-Novoa S, Solera C, et al. (2009) Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. *AIDS* 23: 689-696.
11. Peyrière H, Reynes J, Rouanet I, Daniel N, de Boever CM, et al. (2004) Renal tubular dysfunction associated with tenofovir therapy: report of 7 cases. *J Acquir Immune Defic Syndr* 35: 269-273.
12. Barrios A, García-Benayas T, González-Lahoz J, Soriano V (2004) Tenofovir-related nephrotoxicity in HIV-infected patients. *AIDS* 18: 960-963.
13. Gaspar G, Monereo A, García-Reyne A, de Guzmán M (2004) Fanconi syndrome and acute renal failure in a patient treated with tenofovir: a call for caution. *AIDS* 18: 351-352.
14. Karras A, Lafaurie M, Furco A, Bourgarit A, Droz D, et al. (2003) Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, Fanconi syndrome, and nephrogenic diabetes insipidus. *Clin Infect Dis* 36:1070-1073.
15. Izzedine H, Hulot JS, Vittecoq D, Gallant JE, Staszewski S, et al. (2005) Long-term renal safety of tenofovir disoproxil fumarate in antiretroviral-naïve HIV-1-infected patients. Data from a double-blind randomized active-controlled multicenter study. *Nephrol Dial Transplant* 20: 743-746.
16. Nelson MR, Katlama C, Montaner JS, Cooper DA, Gazzard B, et al. (2007) The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. *AIDS* 21: 1273-1281.
17. Jones R, Stebbing J, Nelson M, Moyle G, Bower M, et al. (2004) Renal dysfunction with tenofovir disoproxil fumarate-containing highly active antiretroviral therapy regimens is not observed more frequently: a cohort and case-control study. *J Acquir Immune Defic Syndr* 37: 1489-1495.
18. Fux CO M, Cavassini M (2009) TDF and protease inhibitor use are associated with an increased prevalence of proximal renal tubular dysfunction in the Swiss HIV cohort study. Program and abstracts of the 16th Conference on Retroviruses and Opportunistic Infections. Montreal, CA, Feb 8-11.
19. Kearney BP, Flaherty JF, Shah J (2004) Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. *Clin Pharmacokinet* 43: 595-612.
20. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, et al. (2008) Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. *J Acquir Immune Defic Syndr* 47: 298-303.
21. Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, et al. (2008) The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. *Clin Pharmacol Ther* 83: 265-272.
22. Rodríguez-Nóvoa S, Labarga P, Soriano V, Egan D, Albalate M, et al. (2009) Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. *Clin Infect Dis* 48: e108-116.
23. Nishijima T, Komatsu H, Higasa K, Takano M, Tsuchiya K, et al. (2012) Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. *Clin Infect Dis* 55: 1558-1567.
24. Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S, Labarga P, Soriano V, et al. (2011) Genetic variants of ABCC10, a novel tenofovir transporter, is associated with kidney tubular dysfunction. *J Infect Dis* 204: 145-153.
25. Rodríguez-Nóvoa S, Labarga P, D'Avolio A, Barreiro P, Albalate M, et al. (2010) Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. *AIDS* 24: 1064-1066.

26. Dauchy FA, Lawson-Ayayi S, de La Faille R, Bonnet F, Rigothier C, et al. (2011) Increased risk of abnormal proximal renal tubular function with HIV infection and antiretroviral therapy. *Kidney Int* 80: 302-309.
27. Nishijima T, Kawasaki Y, Tanaka N, Mizushima D, Aoki T, et al. (2014) Long-term exposure to tenofovir continuously decreases renal function in HIV-1-infected patients with low body weight: results from 10 years of follow-up. *AIDS* 28: 1903-1910.
28. Nishijima T, Komatsu H, Gatanaga H, Aoki T, Watanabe K, et al. (2011) Impact of small body weight on tenofovir-associated renal dysfunction in HIV-infected patients: a retrospective cohort study of Japanese patients. *PLoS One* 6: e22661.
29. Chaisiri K, Bowonwatanuwong C, Kasettrat N, Kiertiburanakul S (2010) Incidence and risk factors for tenofovir-associated renal function decline among Thai HIV-infected patients with low-body weight. *Curr HIV Res* 8: 504-509.
30. Mizushima D, Tanuma J, Dung NT, Dung NH, Trung NV, et al. (2014) Low body weight and tenofovir use are risk factors for renal dysfunction in Vietnamese HIV-infected patients. A prospective 18-month observation study. *J Infect Chemother* 20: 784-788.
31. Ezinga M, Wetzel JF, Bosch ME, van der Ven AJ, Burger DM (2014) Long-term treatment with tenofovir: prevalence of kidney tubular dysfunction and its association with tenofovir plasma concentration. *Antivir Ther* 19: 765-771.
32. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, et al. (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. *Ann Intern Med* 130: 461-470.
33. Delahunt T, Bushman L, Robbins B, Fletcher CV (2009) The simultaneous assay of tenofovir and emtricitabine in plasma using LC/MS/MS and isotopically labeled internal standards. *J Chromatogr B Analyt Technol Biomed Life Sci* 877: 1907-1914.
34. Diane T Holland, Robin DiFrancesco, Judith Stone, Fayez Hamzeh, James D Connor, et al. (2004) Quality assurance program for clinical measurement of antiretrovirals: AIDS clinical trials group proficiency testing program for pediatric and adult pharmacology laboratories. *Antimicrob Agents Chemother* 48: 824-831.
35. Horberg M, Tang B, Towner W, Silverberg M, Bersoff-Matcha S, et al. (2010) Impact of tenofovir on renal function in HIV-infected, antiretroviral-naïve patients. *J Acquir Immune Defic Syndr* 53: 62-69.
36. Poizot-Martin I, Solas C, Allemand J, Obry-Roguet V, Pradel V, et al. (2013) Renal impairment in patients receiving a tenofovir-cART regimen: impact of tenofovir trough concentration. *J Acquir Immune Defic Syndr* 62: 375-380.
37. Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D'Agati VD, et al. (2010) Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. *Kidney Int* 78: 1171-1177.
38. Calcagno A, Gonzalez de Requena D, Simiele M, D'Avolio A, Tettoni MC, et al. (2013) Tenofovir plasma concentrations according to companion drugs: a cross-sectional study of HIV-positive patients with normal renal function. *Antimicrob Agents Chemother* 57: 1840-1843.
39. Gervasoni C, Meraviglia P, Landonio S, Riva A, Galli M, et al. (2013) Tenofovir plasma concentrations in post-menopausal versus pre-menopausal HIV-infected women. *J Antimicrob Chemother* 68: 1206-1207.
40. Mocroft A, Kirk O, Reiss P, De Wit S, Sedlacek D, et al. (2010) Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. *AIDS* 24: 1667-1678.
41. Scherzer R, Estrella M, Li Y, Choi AI, Deeks SG, et al. (2012) Association of tenofovir exposure with kidney disease risk in HIV infection. *AIDS* 26: 867-875.
42. Ryom L, Mocroft A, Kirk O, Worm SW, Kamara DA, et al. (2013) Association between antiretroviral exposure and renal impairment among HIV-positive persons with normal baseline renal function: the D:A:D study. *J Infect Dis* 207: 1359-1369.
43. Young J, Schäfer J, Fux CA, Furrer H, Bernasconi E, et al. (2012) Renal function in patients with HIV starting therapy with tenofovir and either efavirenz, lopinavir or atazanavir. *AIDS* 26: 567-575.
44. Gagnieu MC, Barkil ME, Livrozet JM, Cotte L, Mialhes P, et al. (2008) Population pharmacokinetics of tenofovir in AIDS patients. *J Clin Pharmacol* 48: 1282-1288.

Citation: Avihingsanon A, Sophonphan J, Thammajaruk N, Chaihong P, Burger D, et al. (2015) Plasma Tenofovir Concentrations and Proximal Tubular Dysfunction in HIV-Infected Adults Receiving Tenofovir in Thailand. *J AIDS Clin Res* 6: 477. doi:10.4172/2155-6113.1000477

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:

- User friendly/feasible website-translation of your paper to 50 world's leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:

- 400 Open Access Journals
- 30,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: <http://www.omicsonline.org/submit>

Plasma and Intracellular Pharmacokinetics of Tenofovir Disoproxil Fumarate 300 mg Every 48 Hours vs 150 mg Once Daily in HIV-Infected Adults With Moderate Renal Function Impairment

Tim R. Cressey,^{1,2,3} Anchalee Avihingsanon,^{4,5} Guttiga Halue,⁶ Prattana Leenasirimakul,⁷ Pra-oransuda Sukrakanchana,¹ Yاردپیرون تاون,¹ Nirattiya Jaisieng,¹ Gonzague Jourdain,^{1,2,3} Anthony T. Podany,⁸ Courtney V. Fletcher,⁸ Virat Klinbuayaem,⁹ and Chureeratana Bowonwatanuwong¹⁰

¹Program for HIV Prevention and Treatment, Faculty of Associated Medical Sciences, Chiang Mai University, Thailand; ²Harvard School of Public Health, Boston, Massachusetts; ³Institut de Recherche pour le Développement UMI 174—Program for HIV Prevention and Treatment, Marseille, France; ⁴HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, ⁵Division of Allergy and Immunology, Faculty of Medicine, Chulalongkorn University, Bangkok, ⁶Phayao Hospital, and ⁷Nakornping Hospital, Chiang Mai, Thailand; ⁸Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha; and ⁹Sanpatong Hospital, Chiang Mai, and ¹⁰Chonburi Hospital, Thailand

Background. The approved tenofovir disoproxil fumarate (TDF) dose of 300 mg every 48 hours for adults with moderate renal impairment is often confusing and inconvenient. Using a new TDF formulation, we compared the pharmacokinetics of the standard dose with a dose of 150 mg once daily in HIV-infected adults.

Methods. This was an open-label pharmacokinetic study. Virologically suppressed HIV-infected adults with a creatinine clearance 30 to <50 mL/minute receiving TDF 300 mg every 48 hours as part of a nonnucleoside reverse transcriptase inhibitor (NNRTI)– or lopinavir/ritonavir (LPV/r)–based regimen were enrolled. Intensive 48-hour blood sampling for pharmacokinetic assessment was performed at enrollment, after which the TDF dose was changed to 150 mg once daily. Two weeks later, 24-hour blood sampling was performed; subjects then returned to the standard dose. Tenofovir (TFV) pharmacokinetic parameters were calculated using a noncompartmental analysis.

Results. Forty adults (55% female) were enrolled: 20 receiving NNRTI-based and 20 receiving LPV/r-based treatment. Median age was 56 years (range, 44–65 years), weight 51 kg (range, 38–80 kg), and creatinine clearance 43.9 mL/minute (range, 30.9–49.7 mL/minute). The TFV geometric mean ratio of the area under the curve (AUC_{0–48h}) for every 24 hours vs every 48 hours was 1.09 (90% confidence interval [CI], .98–1.22) and 1.00 (90% CI, .92–1.09) for patients receiving NNRTI- and LPV/r-based treatment, respectively. Concomitant LPV/r use markedly increased TFV plasma concentrations, and AUC_{0–48h} was 67% higher with the standard dose, whereas no differences in intracellular TFV diphosphate concentrations were observed. All subjects remained virologically suppressed, and no drug-related adverse events were reported.

Conclusions. TDF 150 mg every 24 hours provides comparable systemic exposure to the standard dose of 300 mg every 48 hours in patients with moderate renal impairment.

Clinical Trials Registration. NCT01671982.

Keywords. HIV; tenofovir; kidney dysfunction.

Received 27 February 2015; accepted 21 April 2015; electronically published 28 April 2015.

Correspondence: Tim R. Cressey, PhD, Program for HIV Prevention and Treatment (PHPT-IRD174), Faculty of Associated Medical Sciences, 6th Floor, 110 Inthawaroros Road, Muang, Chiang Mai 50200, Thailand (tim.cressey@phpt.org).

Clinical Infectious Diseases® 2015;61(4):633–9

© The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

DOI: 10.1093/cid/civ346

Tenofovir disoproxil fumarate (TDF) is recommended as one of the preferred drugs to be used as part of combination antiretroviral therapy (ART) in treatment-naïve patients [1]. The approved dose of TDF in adults is 300 mg once daily taken orally [2]. TDF is the oral prodrug of tenofovir (TFV). Following oral absorption, TDF is rapidly converted to TFV, a nucleotide (nucleoside monophosphate) analogue. Intracellularly, TFV is phosphorylated by cellular nucleotide kinase to its active anabolite TFV diphosphate (TFV-DP), which is a competitive inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. TFV is primarily excreted unchanged by the renal route through a combination of glomerular filtration, and active tubular secretion and renal impairment can significantly alter TFV pharmacokinetics [3]. A pharmacokinetic (PK) study of TDF in HIV-uninfected subjects with varying degrees of renal impairment showed that subjects with a creatinine clearance (CrCl) ≥ 50 mL/minute (calculated using the Cockcroft-Gault equation) had similar plasma exposure to those with normal renal function, whereas subjects with a CrCl < 50 mL/minute had significantly higher exposures [4]. A PK model was developed based on these data, and model simulations predicted that TDF 300 mg every 48 hours in patients with CrCl 30–49 mL/minute would provide similar exposure to that of patients with normal renal function receiving the standard dose. TDF 300 mg twice weekly (every 72–96 hours) was predicted to be adequate for patients with a CrCl 10–29 mL/minute. These TDF dosing interval adjustments for subjects with renal impairment are US Food and Drug Administration (FDA) approved [2], but have not been clinically evaluated in HIV-infected adults.

Administering TDF every 48 hours can be confusing and inconvenient for patients, especially if other coadministered antiretrovirals are dosed once and/or twice daily. Lower dosage strengths (150, 200, and 250 mg) and formulations (scored tablets) of TDF have recently become available that may facilitate once-daily dosing for patients with moderate renal impairment. We hypothesized that administration of TDF 150 mg once daily to HIV-infected adults with moderate renal function impairment (CrCl 30 to < 50 mL/minute) will provide drug exposure comparable to that of the current recommended dose of TDF 300 mg every 48 hours.

It is also important to assess the pharmacokinetics of TFV in the presence of commonly coadministered drugs. For example, lopinavir/ritonavir (LPV/r) is often prescribed with TDF, particularly as part of second-line regimens in resource-limited settings, and concomitant administration can result in a 32% increase of TFV drug exposure [2, 5].

Our aim was to investigate the plasma and intracellular pharmacokinetics of TFV following a reduced daily dose (TDF 150 mg once daily) vs the current interval adjustment dosing schedule (TDF 300 mg every 48 hours) in HIV-infected adults with

moderate renal function impairment receiving either nonnucleoside reverse transcriptase inhibitor (NNRTI)-based or LPV/r-based ART.

MATERIALS AND METHODS

Study Design and Population

This was a phase 1, nonrandomized, open-label, PK study in HIV-infected adults in Thailand (ClinicalTrials.gov identifier NCT01671982). HIV-infected subjects attending routine outpatient clinic visits with moderate renal impairment and already receiving TDF 300 mg every 48 hours as part of NNRTI- or LPV/r-based ART per standard of care were proposed to participate. The required sample size was 40 adults: 20 subjects receiving TDF plus NNRTI-based highly active antiretroviral therapy (HAART) (group 1) and 20 subjects receiving TDF plus LPV/r-based HAART (group 2) (see “Statistical Considerations and Sample Size” section). All subjects were receiving TDF 300-mg scored tablets manufactured by the Thai Government Pharmaceutical Organization (GPO). The GPO TDF tablet was demonstrated to be bioequivalent to the original Viread formulation (Gilead Sciences, Inc) and has been approved by the Thai FDA. This study was approved by the Ethics Committees at the Ministry of Public Health, Thailand; Faculty of Associated Medical Sciences, Chiang Mai University; and the local hospital ethics committees.

Screening was performed within 30 days of enrollment. Consenting subjects were screened for eligibility: age > 18 years; confirmed HIV-1 infection; receiving TDF 300 mg every 48 hours for at least 2 weeks as part of an NNRTI-based regimen (group 1) or an LPV/r-based regimen (group 2); CrCl between 30 to < 50 mL/minute (defined as 2 CrCl determinations calculated using the Cockcroft-Gault equation within 2 weeks of each other, within 1 month prior to entry); and HIV-1 RNA load < 50 copies/mL within 6 months prior to entry. Exclusion criteria were concomitant use of atazanavir or didanosine; pregnancy; any of the following laboratory tests within 30 days prior to study entry classified as grade 3 or higher (see Division of AIDS Table for Grading the Severity of Adult and Pediatric Adverse Events, version 1.0 [December 2004], Clarification August 2009): neutrophil count, hemoglobin, platelets, aspartate aminotransferase, alanine aminotransferase; hepatitis B surface antigen positive; and any clinically significant diseases (other than HIV-1 infection) or clinically significant findings during the screening medical history or physical examination that, in the investigator’s opinion, would compromise participation in this study.

Plasma and Intracellular PK Assessments

At study entry (day 0), a 48-hour PK evaluation was performed to evaluate the TDF dose of 300 mg every 48 hours. Following the subject’s normal morning schedule of drug intake, a predose

blood sample was drawn, after which TDF was administered with breakfast by the study nurse using directly observed therapy, and blood samples were drawn at 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 12, 24, 36, and 48 hours postdose. Peripheral blood mononuclear cells (PBMCs) were also collected at 48 hours postdose for the determination of intracellular TFV-DP concentrations. Immediately after completing the PK sampling, the TDF dose and administration schedule were changed to 150 mg once daily. The TDF 300-mg scored tablet was cut in half to provide the appropriate 150-mg dose. Two weeks later (day 14), subjects had a second series of blood samples drawn identically to those at day 0 over the first 24 hours. A single PBMC sample was also collected 24 hours postdose for determination of intracellular TFV-DP. Once the 24-hour PK sampling was complete, the subjects returned to use the standard TDF dose of 300 mg every 48 hours and were off-study.

Measurement of TFV Plasma and Intracellular TFV-DP Concentrations

Blood samples collected for plasma TFV measurements were centrifuged and the plasma was frozen at -20°C . TFV plasma drug concentrations were measured using a high-performance liquid chromatography assay with fluorescent detection [6]. This method was internally validated; the average accuracy was 99%–102%, and precision (inter- and intra-assay) was <6% of the coefficient of variation. The lower limit of assay quantification is 0.015 mg/L. Plasma samples were assayed at the Program for HIV Prevention and Treatment laboratory at Chiang Mai University. PBMCs collected at the specified time points were isolated, extracted, and stored at -70°C . PBMC extracts were assayed for TFV-DP concentration at the Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, using a previously validated liquid chromatography-tandem mass spectrometry assay [7]. Both laboratories participate in the international external quality control program of the AIDS Clinical Trial Group Pharmacology Quality Control (Precision Testing) program [8].

Pharmacokinetic Analyses

Steady-state TFV plasma concentration data were analyzed using noncompartmental methods (Phoenix, WinNonLin version 6.3, Pharsight, Missouri). Calculated PK parameters included area under the curve of the plasma concentration vs time profile ($\text{AUC}_{0-\tau}$), maximum plasma concentration (C_{\max}), time to C_{\max} (T_{\max}), apparent oral clearance (CL/F), minimum plasma concentration during the dosing interval (C_{\min}), and last concentration measured postdose (C_{last}). $\text{AUC}_{0-\tau}$ is the exposure during a single dosing interval (ie, AUC_{0-48} or AUC_{0-24}) and was determined using the linear trapezoidal method. C_{\max} , C_{\min} , C_{last} (eg, $C_{48\text{h}}$ or $C_{24\text{h}}$ depending on the TDF dosing schedule), and T_{\max} were taken directly from the observed

concentration-time data. The terminal slope λz was determined from the log-linear portion of the curve. Geometric mean ratios (GMRs) with 90% confidence intervals (CIs) were calculated for within-patient comparisons of PK parameters for every-24-hour vs every-48-hour TDF dosing. Nonpharmacokinetic statistical analyses were performed using Stata software (version 10.1, StataCorp LP, College Station, Texas). Wilcoxon rank-sum tests were used to compare TFV PK parameters between groups. A 2-sided P value of $\leq .05$ was considered statistically significant.

Statistical Considerations and Sample Size

The sample size was based on ensuring precision in PK parameter estimates. The mean (\pm standard deviation [SD]) TFV AUC reported in HIV-infected adults is $3.32 \pm 1.37 \text{ mg} \times \text{hour/L}$ (coefficient of variation 41.2%) following multiple doses of 300 mg once daily in the fed state [2]. Based on this variability at the standard dose and assuming that average AUC results are approximately normally distributed, to be 95% confident that the TFV AUC sample mean is within $0.66 \mu\text{g hour/mL}$ (equivalent to 20% precision) of the true mean, a sample size of 17 subjects was required per group. Also, for the within-subjects comparison, 17 patients would provide at least 80% power for the width of the 90% CI for the mean \log_{10} AUC difference between 48-hour and 24-hour dosing to be <0.2 on the \log_{10} scale (ie, 90% CI GMR falls between 0.8 and 1.25; assuming a within-subject variance of 0.05). To allow for nonevaluable subjects, 20 subjects were enrolled per group, for a total sample size of 40 subjects.

RESULTS

Subject Characteristics

A total of 40 adults (55% female) were enrolled: 20 subjects in group 1 receiving TDF with an NNRTI and 20 subjects in group 2 receiving TDF with LPV/r. All 40 subjects completed both PK sampling visits. The clinical characteristics of the study population by group at study entry are presented in Table 1. The overall median age was 56 years (range, 44–65 years), weight 51 kg (range, 38–80 kg), serum creatinine 1.3 mg/dL (range, 0.8–2.1 mg/dL), CrCl 43.9 mL/minute (range, 30.9–49.7 mL/minute) and CD4 count 502 cells/ μL (range, 113–1063 cells/ μL). Within group 1, 10 subjects were receiving efavirenz and 10 were receiving nevirapine. One subject in group 1 and 2 subjects in group 2 were excluded from the PK analysis due to blood sampling errors.

TFV Plasma Pharmacokinetics: 300 mg Every 48 Hours Versus 150 mg Every 24 Hours

The plasma TFV PK parameters with 300 mg every 48 hours (day 0) and 150 mg once daily (day 14) for group 1 and group 2 are presented in Table 2. The mean TFV concentration versus time curves following TDF 300 mg every 48 hours and TDF 150 mg once daily for both groups are shown in Figure 1.

Table 1. Patient Characteristics

Characteristic	Group 1: TDF-NNRTI (n = 20)	Group 2: TDF-LPV/r (n = 20)	Total (N = 40)
Sex			
Male	6 (30%)	12 (60%)	18 (45%)
Female	14 (70%)	8 (40%)	22 (55%)
Race/ethnicity: Asian	20 (100%)	20 (100%)	40 (100%)
Age, y	59 (44–65)	53 (39–82)	56 (39–82)
Weight, kg	54.0 (40.0–80.0)	49.5 (37.8–75.1)	50.6 (37.8–80)
Body mass index, kg/m ²	21.8 (17.9–32.9)	19.2 (16.3–29)	20.8 (16.3–32.9)
Creatinine, mg/dL	1.2 (0.8–1.9)	1.3 (0.9–2.1)	1.3 (0.8–2.1)
Creatinine clearance, mL/min	45.7 (30.0–49.6)	42.0 (31.7–49.7)	43.9 (30.9–49.7)
HIV-1 RNA load, copies/mL	<50 (<50 to <50)	<50 (<50 to <50)	<50 (<50 to <50)
CD4 count, cells/µL	465 (170–773)	596 (113–1063)	502 (113–1063)
HAART regimen			
TDF + 3TC + EFV	10		
TDF + 3TC + NVP	10		
TDF + 3TC + LPV/r		19	
TDF + 3TC + ZDV + LPV/r		1	

Data are presented as No. (%) or median (range).

Abbreviations: 3TC, lamivudine; EFV, efavirenz; HAART, highly active antiretroviral therapy; HIV-1, human immunodeficiency virus type 1; LPV/r, lopinavir/ritonavir; NNRTI, nonnucleoside reverse transcriptase inhibitor; NVP, nevirapine; TDF, tenofovir disoproxil fumarate; ZDV, zidovudine.

Group 1 (TDF/lamivudine/NNRTI): The geometric mean AUC_{0–48h} ratio (GMR) of TDF 150 mg every 24 hours/300 mg every 48 hours was 1.09 (90% CI, .98–1.22). The mean TVF

C_{max} was reduced by 29% with the lower 150-mg dose (GMR, 0.71 [90% CI, .62–.80]), but the C_{last} was 63% higher (GMR, 1.63 [90% CI, 1.34–1.99]). Group 2 (TDF/lamivudine/LPV/r):

Table 2. Steady-State Tenofovir Pharmacokinetic Parameters With Tenofovir Disoproxil Fumarate 300 mg Every 48 Hours or 150 mg Once Daily as Part of Nonnucleoside Reverse Transcriptase Inhibitor- and Lopinavir/Ritonavir-Based Treatment

Parameter	TDF 300 mg, Every 48 h	TDF 150 mg, Every 24 h	GMR (90% CI) 24 h/48 h
Group 1: TDF/3TC/NNRTI (n = 19)			
AUC _{0–t} , mg × h/L	5.76 (3.34–11.08)	3.15 (1.73–6.49)	NA
AUC _{0–48h} , mg × h/L	5.76 (3.34–11.08)	6.29 (3.45–12.99) ^a	1.09 (.98–1.22)
C _{max} , mg/L	0.44 (0.23–0.67)	0.31 (0.16–0.55)	0.71 (.62–.80)
C _{last} , mg/L	0.04 (0.02–0.10)	0.07 (0.03–0.14)	1.63 (1.34–1.99)
C _{min} , mg/L	0.04 (<0.008–0.10) ^b	0.07 (0.03–0.14)	1.90 (1.57–2.30)
CL/F, L/h	23.60 (12.26–40.73)	21.61 (10.47–39.37)	0.91 (.82–1.02)
T _{max} , h	1.50 (0.50–8.00)	1.00 (0.50–4.00)	0.57 (.40–.81)
Group 2: TDF/3TC/LPV/r (n = 18)			
AUC _{0–t} , mg × h/L	9.61 (6.06–18.92)	4.80 (2.61–9.29)	NA
AUC _{0–48h} , mg × h/L	9.61 (6.06–18.92)	9.61 (5.21–18.59) ^a	1.00 (.92–1.09)
C _{max} , mg/L	0.68 (0.44–1.31)	0.42 (0.24–0.73)	0.55 (.49–.63)
C _{last} , mg/L	0.07 (0.03–0.11)	0.10 (0.05–0.20)	1.59 (1.35–1.87)
C _{min} , mg/L	0.06 (0.03–0.09)	0.09 (0.04–0.18)	1.42 (1.18–1.72)
CL/F, L/h	14.15 (7.19–22.44)	14.17 (7.32–26.08)	1.00 (.92–1.08)
T _{max} , h	1.01 (0.48–4.00)	1.25 (0.50–4.00)	1.18 (.83–1.68)

Data are presented as median (range) unless otherwise specified.

Abbreviations: 3TC, lamivudine; AUC_{0–t}, area under the curve of the plasma concentration vs time profile within a single dosing interval; AUC_{0–48h}, area under the curve of the plasma concentration vs time profile over 48 hours; CI, confidence interval; CL/F, apparent oral clearance; C_{last}, last concentration measured postdose; C_{max}, maximum plasma concentration; C_{min}, minimum plasma concentration during the dosing interval; GMR, geometric mean ratio; LPV/r, lopinavir/ritonavir; NA, not applicable; NNRTI, nonnucleoside reverse transcriptase inhibitor; TDF, tenofovir disoproxil fumarate; T_{max}, time to maximum plasma concentration.

^a Calculated as 2 × AUC_{0–24}.

^b Assay lower limit of quantification (LLOQ) was 0.008 mg/L (4 samples below the LLOQ from 2 patients).

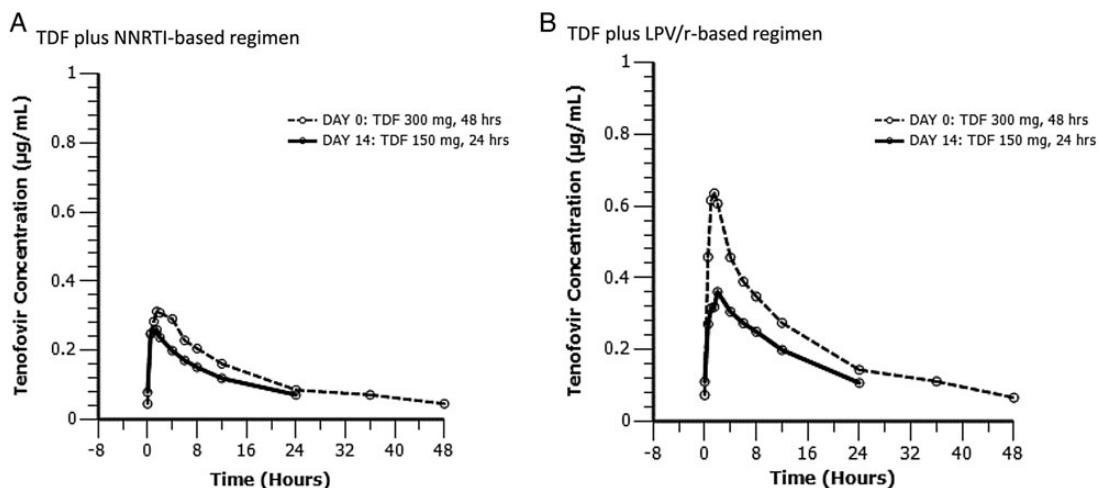
The geometric mean AUC_{0-48h} ratio (GMR) of TFV was 1.00 (90% CI, .92–1.09). The mean TFV C_{max} was reduced by 45% with the lower 150-mg dose (GMR, 0.55 [90% CI, .49–.63]), but the C_{last} was 59% higher (GMR, 1.59 [90% CI, 1.35–1.87]).

No differences in PK parameters between sexes within each group were observed. All subjects in group 1 and group 2 remained virologically suppressed, and no adverse events or serious adverse events were reported during the study.

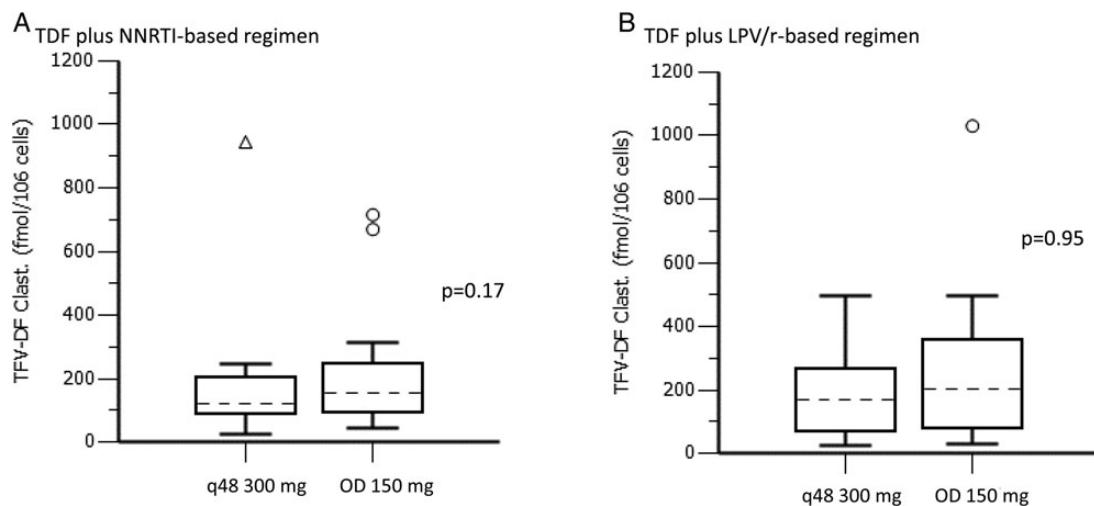
Comparison of TFV Plasma Pharmacokinetics With NNRTI Versus LPV/r

With the standard TDF dose of 300 mg every 48 hours, TFV exposure was significantly higher with the concomitant use of LPV/r compared with NNRTIs (Figure 1) (AUC_{0-48h} , 9.61 vs 5.76 mg \times hour/L; $P < .001$). The TFV AUC_{0-48h} , C_{max} , and C_{last} were 67%, 55%, and 75% higher, respectively, with LPV/r. Similar increases were also observed after subjects switched to 150 mg every 24 hours; the TFV AUC_{0-48h} , C_{max} , and C_{last} were 52%, 35%, and 42% higher, respectively, with LPV/r compared to NNRTIs. The TFV oral clearance (CL/F) was approximately 40% slower in the presence of LPV/r.

Intracellular TFV-DP Concentrations in Patients With Moderate Renal Dysfunction


The TFV-DP C_{last} with 300 mg every 48 hours and 150 mg once daily for group 1 and group 2 are presented in Figure 2. The median duration of TDF 300 mg every 48 hours prior to enrollment was 41 weeks (2–280 weeks). No statistically significant difference was found between TFV-DP C_{last} with 300 mg every 48 hours vs 150 mg every 24 hours for either group. Four patients (2 per group) received between 2 and 4 weeks

of TDF 300 mg every 48 hours prior to enrollment and therefore may not have achieved steady-state intracellular levels (based on an intracellular half-life of 87 hours [9]); TDF-DP levels were reexamined without these patients, but the results did not change. Also, no significant difference was observed between TFV-DP C_{last} with NNRTIs compared to LPV/r. With TDF 300 mg every 48 hours, the median TFV-DP C_{last} was 129 (range, 27–945) fmol/ 10^6 cells with NNRTIs vs 188 (range, 25–497) fmol/ 10^6 cells with LPV/r ($P = .50$); whereas for 150 mg every 24 hours, TFV-DP C_{last} was 158 (range, 47–715) fmol/ 10^6 cells with NNRTIs vs 182 (range, 33–1030) fmol/ 10^6 cells with LPV/r ($P = .88$).


DISCUSSION

This is the first report assessing alternative dosing of TDF in HIV-infected adults with moderate renal dysfunction. Our data demonstrate that reducing the approved TDF dose of 300 mg every 48 hours in adults with a CrCl between 30 and <50 mL/minute to 150 mg once daily provides comparable exposure over a 48-hour period when receiving an NNRTI- or LPV/r-based regimen. Additionally, as observed in adults with normal renal function, TFV plasma exposure was significantly higher with concomitant LPV/r use.

In the package insert of TDF (VIREAD), the mean (\pm SD) TFV $AUC_{0-\infty}$ and C_{max} following a single 300-mg dose was 6.01 ± 2.05 mg \times hour/L and 0.37 ± 0.16 mg/L in subjects with a CrCl between 30 and 49 mL/minute ($n = 8$) [2]. These values are similar to those observed in the patients enrolled in group 1 receiving TDF with an NNRTI and a CrCl between 30 and 49 mL/minute following multiple doses of TDF 300 mg

Figure 1. Mean tenofovir concentration vs time curves following tenofovir disoproxil fumarate (TDF) 300 mg every 48 hours or TDF 150 mg once daily in human immunodeficiency virus type 1-infected adults with moderate renal impairment, as part of nonnucleoside reverse transcriptase inhibitor (NNRTI)-based (A) or lopinavir/ritonavir (LPV/r)-based (B) treatment.

Figure 2. Intracellular tenofovir diphosphate (TFV-DP) last concentration measured postdose (C_{last}) in patients with moderate renal dysfunction, as part of tenofovir disoproxil fumarate (TDF) plus nonnucleoside reverse transcriptase inhibitor (NNRTI)-based (A) or lopinavir/ritonavir (LPV/r)-based (B) treatment every 48 hours (q48), or once daily (OD). Box-plot represents median and interquartile range.

every 48 hours (AUC_{0-48} 5.76 mg × hour/L and C_{max} 0.44 mg/L). The total apparent CL/F of TFV in group 1 was 23.60 L/hour, which is consistent with the 26.7 L/hour reported in the package insert for patients with a similar degree of renal function impairment. Furthermore, the TFV AUC_{0-48} in the present study for Thai HIV-infected adults receiving an NNRTI-based regimen was similar to that for adults in the United States with normal renal function receiving the standard 300-mg once-daily dose (5.74 mg × hour/L [$2 \times AUC_{0-24}$]) [10]). Although several formulas are now available to estimate CrCl, we used the Cockcroft-Gault equation to be consistent with the package insert and have recently shown in a population PK analysis that CrCl estimated using the Cockcroft-Gault equation significantly influenced TFV oral clearance [11]. Based on our results, we can also speculate that further reduced daily doses of TDF may also be an alternative for patients with severe renal impairment (CrCl of 10–29 mL/minute)—that is, 75 mg once daily—but formal PK studies are needed in this patient group.

A drug–drug interaction between TDF and LPV/r is somewhat unexpected, as these drugs are cleared from the body through different pathways (ie, renal extraction for TFV and hepatic extraction for LPV/r). A greater TFV-associated decline in renal function has been reported with protease inhibitors vs NNRTI-based regimens [12]. Indeed, the TFV AUC_{0-24} , C_{max} , and C_{last} were observed to be 32%, 15%, and 51% higher in the presence of LPV/r [10]. Another study has found that the renal clearance of TFV was 18% slower in patients with concomitant LPV/r use compared to those receiving no protease inhibitor [5]. We observed a significantly higher TFV exposure among patients receiving LPV/r compared with those receiving

an NNRTI, and this was independent of TDF dose. Interestingly, this increase of TFV AUC_{0-48} and C_{max} in the presence of LPV/r was approximately 2-fold higher than that previously reported in adults with normal renal function [2]. The mean CL/F of TFV in group 1 was reduced by 40% compared with group 2. Overall, the impact of LPV/r on TFV pharmacokinetics in patients with moderate renal function impairment seems to be higher than in patients with no renal dysfunction; therefore, closer monitoring for drug-related toxicities would be advisable for these patients regardless of TDF dosing interval.

Drug influx/efflux transporters play a key role in the disposition of TFV and may help explain the mechanism of the observed drug–drug interaction. TFV is transported into proximal tubular cells by organic anion transporters located on the basolateral membrane [13]. Three ATP-binding cassette (ABC) transporters—ABCC2 (MRP2) [14], ABCC4 (MRP4) [15], and ABCC10 (MRP7) [16]—have been implicated as playing a role in transporting TFV into the urine. A combination of drug transporter interactions between TFV and LPV/r in the kidney tubular cells may contribute to the changes in TFV pharmacokinetics. TDF is also a substrate for the efflux transporter p-glycoprotein, which is highly expressed in the small intestine. Ritonavir is a potent inhibitor of p-glycoprotein [17], and inhibition of p-glycoprotein in the gut could potentially lead to increased absorption.

In contrast to the plasma TFV concentrations, there was no significant difference in TFV-DP C_{last} between subjects using NNRTI- or LPV/r-based HAART, although the median values with LPV/r were numerically higher. Also, the TFV-DP C_{last} was noted to be higher than that reported in HIV-infected adults with normal kidney function, but the between-patient

variability we observed was relatively high. The median TFV-DP concentration 24 hours postdose was 87.2 fmol/10⁶ cells in adults with normal renal function (n = 7) receiving 300 mg once daily [18]. However, glomerular filtration rate (GFR) has been shown to be predictive of TFV-DP concentrations, with an 8% increase in intracellular TFV-DP concentration for every 10-mL/minute decrease in GFR [19]. Higher TFV-DP is perhaps reassuring in terms of efficacy, but its consequence on renal tubular toxicity need to be determined.

In summary, our data demonstrate that switching TDF to 150 mg once daily in HIV-infected adults with moderate renal function impairment leads to comparable exposure to the current recommended dose of 300 mg every 48 hours. Although the duration of the reduced TDF dose was relatively short, the preservation of virologic suppression and lack of adverse events were reassuring. This daily TDF dose option for this subpopulation of patients may be preferable to simplify their regimen and facilitate drug adherence, but renal function should be continued to be closely monitored in these patients.

Notes

Acknowledgments. The authors thank the patients who participated in the protocol, and the staff of the participating clinical sites.

Financial support. This work was supported by the Thai Government Pharmaceutical Organization. C. V. F. is supported by grants from the National Institute of Allergy and Infectious Diseases.

Potential conflicts of interest. All authors: No potential conflicts of interest.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

- Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at: <http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf>. Accessed 22 August 2013.
- VIREAD (tenofovir disoproxil fumarate) package insert. Foster City, CA: Gilead Sciences, Inc, 2013.
- Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. *Clin Pharmacokinet* 2004; 43:595–612.
- Kearney BP, Yale K, Shah J, Zhong L, Flaherty JF. Pharmacokinetics and dosing recommendations of tenofovir disoproxil fumarate in hepatic or renal impairment. *Clin Pharmacokinet* 2006; 45:1115–24.
- Kiser JJ, Carten ML, Aquilante CL, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. *Clin Pharmacol Ther* 2008; 83:265–72.
- Droste JA, Verweij-van Wissen CP, Kearney BP, et al. Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. *Antimicrob Agents Chemother* 2005; 49:680–4.
- Delahunt T, Bushman L, Robbins B, Fletcher CV. The simultaneous assay of tenofovir and emtricitabine in plasma using LC/MS/MS and isotopically labeled internal standards. *J Chromatogr B Analyt Technol Biomed Life Sci* 2009; 877:1907–14.
- Holland DT, DiFrancesco R, Stone J, Hamzeh F, Connor JD, Morse GD. Quality assurance program for clinical measurement of antiretrovirals: AIDS Clinical Trials Group proficiency testing program for pediatric and adult pharmacology laboratories. *Antimicrob Agents Chemother* 2004; 48:824–31.
- Baheti G, Kiser JJ, Havens PL, Fletcher CV. Plasma and intracellular population pharmacokinetic analysis of tenofovir in HIV-1-infected patients. *Antimicrob Agents Chemother* 2011; 55:5294–9.
- Kearney BP, Mathias A, Mittan A, Sayre J, Ebrahimi R, Cheng AK. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. *J Acquir Immune Defic Syndr* 2006; 43:278–83.
- Sirirungsi W, Urien S, Harrison L, et al. No relationship between drug transporter genetic variants and tenofovir plasma concentrations or changes in glomerular filtration rate in HIV-infected adults. *J Acquir Immune Defic Syndr* 2015; 68:e56–9.
- Goicoechea M, Liu S, Best B, et al. Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase inhibitor-based therapy. *J Infect Dis* 2008; 197:102–8.
- Ray AS, Cihlar T, Robinson KL, et al. Mechanism of active renal tubular efflux of tenofovir. *Antimicrob Agents Chemother* 2006; 50:3297–304.
- Mallants R, Van Oosterwyck K, Van Vaeck L, Mols R, De Clercq E, Augustijns P. Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. *Xenobiotica* 2005; 35:1055–66.
- Imaoka T, Kusuvara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. *Mol Pharmacol* 2007; 71:619–27.
- Pushpakom SP, Liptrott NJ, Rodriguez-Novoa S, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. *J Infect Dis* 2011; 204:145–53.
- Drewe J, Gutmann H, Fricker G, Torok M, Beglinger C, Huwyler J. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. *Biochem Pharmacol* 1999; 57:1147–52.
- Hawkins T, Veikley W, St Claire RL 3rd, Guyer B, Clark N, Kearney BP. Intracellular pharmacokinetics of tenofovir diphosphate, carbovir triphosphate, and lamivudine triphosphate in patients receiving triple-nucleoside regimens. *J Acquir Immune Defic Syndr* 2005; 39:406–11.
- Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. *J Acquir Immune Defic Syndr* 2008; 47:298–303.

Population pharmacokinetics of tenofovir in HIV/HBV co-infected patients

Baralee Punyawudho; Ph.D¹, Narukjaporn Thammajaruk², Parawee Thongpeang², Gail Matthews MD, PhD³, Sharon R Lewin, PhD^{4,5}, David Burger, PhD⁶, Kiat Ruxrungtham, MD^{2,7}, Anchalee Avihingsanon; MD, PhD^{2,7}

¹ Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand

² HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand

³ Kirby Institute, University of New South Wales, Sydney, Australia

⁴ Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia

⁵ Centre for Biomedicine, Burnet Institute, Melbourne, Australia⁶ Radboud University Nijmegen Medical Center & Nijmegen Institute for Infection, Inflammation and Immunology (N4i), Nijmegen, The Netherlands

⁷ Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Corresponding Author:

Baralee Punyawudho, Ph.D.
Department of Pharmacy Practice
Faculty of Pharmaceutical Sciences
Chulalongkorn University
Bangkok, Thailand
Phone: 662-218-8409
Fax: 662-218-8403
Email: baralee.p@chula.ac.th

Word count: 145 abstract; 2971 text; 27 references; 2 tables; 2 figures; 4 keywords

Keywords:

Population pharmacokinetics, NONMEM, Tenofovir, HIV-HBV coinfection

Abstract

Subheadings: Population PK of TFV in HIV/HBV co-infection

Tenofovir is an efficacious drug with a long half-life and high activity against both HIV and HBV. However, there is no pharmacokinetic study of tenofovir in HIV/HBV co-infected patients. Data from HIV mono-infected patients may not be transferable to HIV/HBV co-infected population due to the different nature and consequences of the co-infection. This study developed a population pharmacokinetic model of tenofovir in patients with HIV/HBV co-infection and identify pathophysiologic factors influence its pharmacokinetics to ensure optimal, efficient and safe use of tenofovir. This model can reliably be used to initially adjust the tenofovir dosage if therapeutic drug monitoring services are unavailable. This study confirms that patients with kidney impairment and not liver impairment will require tenofovir dose adjustment to prevent unwanted toxicities. Even though drug-drug interactions of tenofovir co-administered with ritonavir-boosted atazanavir were observed, these did not reach the significance but caution is still warranted.

Introduction

Hepatitis B virus (HBV) is a serious infectious disease affecting approximately 350 to 400 million people worldwide.¹ It can progress to chronic hepatitis, cirrhosis, and hepatocellular carcinoma.² HBV and human immunodeficiency virus (HIV) co-infection is common because they share the same route of transmission. From 40 million HIV-infected people, approximately 10% of them are also co-infected with HBV.³ HIV infection accelerates HBV progression, decreases hepatitis B e antigen (HBeAg) clearance and increases HBV replication resulting in a higher yield of serum HBV DNA.⁴⁻⁶ Most importantly, HIV/HBV co-infection was found to increase the risk of liver-related mortality up to 12.7 fold, particularly among those with low CD4 cell counts.⁷ Therefore, the management of HBV in HIV-infected patients should be carefully implemented with the appropriate selected drug and dosage to obtain optimal efficacy and reduce toxicity and resistance.

Tenofovir is a nucleotide analog recommended to be used as the first-line drug therapy for HIV/HBV co-infected patients who require HIV treatment. Tenofovir is often used with emtricitabine or lamivudine. Tenofovir disoproxil fumarate (TDF) is an oral prodrug of tenofovir. After oral administration, TDF is rapidly converted to tenofovir which is subsequently phosphorylated to tenofovir diphosphate, an active metabolite, by cellular enzymes.⁸ Following intravenous infusion, approximately 70-80% of the administered dose will be excreted unchanged in the urine by active tubular secretion and glomerular filtration, thus dose adjustment in patients with significant renal impairment is necessary.⁹ Since tenofovir exhibits a long half-life (17 hours in serum), a once-daily dose of TDF is sufficient.

The pharmacokinetics of tenofovir exhibit high interindividual variability (IIV).^{10, 11} In a previous population pharmacokinetic study conducted in AIDS patients, it was reported that after accounting for the variation from significant covariates, 50% of IIV was observed for CL/F.¹⁰ Additionally, a variation of estimated tenofovir area under the curve was markedly different, from 1.4 mg.h/L to 6.7 mg.h/L, in patients without tubular dysfunction.¹¹ Hence, suboptimal or toxic tenofovir exposure may be observed in some of the patients.

Tenofovir exposure is found to be associated with efficacy and toxicity. The relationship between TDF concentrations and viral suppression has been demonstrated.¹² Although tenofovir is generally well-tolerated, tenofovir-induced nephrotoxicity have been reported.¹³⁻¹⁵ There is evidence that tenofovir plasma concentration is associated with kidney tubular dysfunction.¹⁶ Thus, dose adjustment is important to ensure the drug's efficacy and safety among those with kidney problems.

Even though the pharmacokinetics of tenofovir were previously investigated in HIV-infected patients, however there are scarce data in HIV/HBV co-infected patients.^{10, 11, 17} This study aimed to develop a population pharmacokinetic model of tenofovir in patients with HIV/HBV co-infection and to identify and quantify the influence of the patient's characteristics on the pharmacokinetics of tenofovir.

Results

Population pharmacokinetics of tenofovir

A total of 146 patients and 340 plasma concentrations were used for the population pharmacokinetics analysis. The patients' characteristics are summarized in table 1. A two-compartment model with first order absorption and elimination best described the observation data. Therefore, the following pharmacokinetic parameters for tenofovir were estimated: the apparent clearance (CL/F), the apparent volume of central and peripheral compartment (V₁/F and V₂/F), the apparent intercompartmental clearance (Q/F), and the absorption rate constant (k_a). A precise estimation of Q/F and IIV of Q/F, V₂/F, and k_a were not obtained due to sparse characteristic of the data so Q/F was fixed to a previously reported value of 144 L/hr¹¹ and the IIV of Q/F, V₂/F, and k_a were not estimated. A sensitivity analysis was further performed by fixing Q/F from 130 to 160 L/hr to assess the impact of the fixed value of Q/F on other parameter estimates. The results from the sensitivity analysis showed that the fixed values of Q/F had a minimal impact on the estimation of the remaining parameters. The estimated CL/F (IIV), V₁/F (IIV), V₂/F, and k_a from the base model, the model without covariates, were 54 L/hr (35.5%), 324 L (112.7%), 508 L, and 0.77 hr⁻¹, respectively. The results from the covariate model building found that CLCR_{CG}, CLCR_{MDRD}, and concomitant use of ATV/r were the significant covariates for CL/F and CLCR_{CG} was the significant covariate for V₁/F during the forward inclusion approach. However, due to a high correlation between CLCR_{CG} and CLCR_{MDRD}, CRCL_{CG} which caused a larger drop of the OFV (-12.55 vs -7.13) was added into the base model. During the backward deletion, the influence of concomitant use of ATV/r on CL/F and CLCR_{CG} on V₁/F failed to reach a significance level. Therefore, CLCR_{CG} was the only significant covariate for CL/F and none of the covariates were found to be significant for V₁/F. The final covariate model on CL/F was:

$$\text{CL/F(L/hr)} = 54.6 \times (\text{CRCL}_{\text{CG}}/93)^{0.43}$$

Based on the final model, the population mean CL/F in patients having CRCL_{CG} 93 ml/min was estimated to be 54.6 L/hr with the estimated IIV of 32.86%. The parameter estimates from the final model are presented in table 2. The goodness-of-fit plots of the final model are shown in figure 1. No significant trends are visible which indicated that the final model adequately described the data.

Model evaluation

The results from the bootstrap analysis showed that from 1000 bootstrap runs, 873 runs were minimized successfully with a successful covariance and were included in the analysis. The summary results of the bootstrap analysis are shown in table 2. The median values of the parameter estimates obtained from the bootstrap analysis were comparable and within 10% of the point estimates obtained from NONMEM. Additionally, the 95% CIs of the parameter estimates obtained from the bootstrap analysis were similar to those obtained from NONMEM, except for V₁/F and V₂/F. Hence, the reliability of the parameter and their 95% CI estimated from NONMEM were confirmed.

The constructed 90% PIs from 500 simulations superimposed on the observed data are presented in figure 2. The results demonstrated that most of the observed data were within the 90% PIs indicating that the final model performed adequately. However, majority of the concentrations outside the 90% PIs are around the maximum concentration which indicated that the model's ability in predicting the concentration around the absorption phase is somewhat limited (Figure 2).

Discussion

In this study, the population pharmacokinetic model of tenofovir in HIV/HBV co-infected patients was developed. To our knowledge, we are the first to investigate the pharmacokinetics of tenofovir in this co-infected population. The plasma concentration of tenofovir can be best described by a two-compartment model with first order absorption and elimination which is consistent with other previous findings.^{10, 11, 17} The estimations for Q/F and the IIV of Q/F, V₂/F, and k_a could not be precisely obtained due to the sparse sampling design of the study. As a result of this, the IIV of Q/F, V₂/F, and k_a were not estimated and Q/F was fixed to a literature value of 144 L/hr.¹¹ The fixed values of Q/F have a small impact on the estimation of other parameters according to the results from a sensitivity analysis. In our study, the population mean CL/F of tenofovir for patients with creatinine clearance of 93 ml/min was estimated to be 54.6 mg/L. This estimated CL/F was comparable to the mean values previously reported in HIV-infected patients (50.5 and 42 L/hr, after adjusting the tenofovir dose from TDF to tenofovir).^{11, 17} The estimated IIV of CL/F was 32.86% which is also consistent with the value obtained from previous studies (19-33.5%).^{10, 11, 17} Even though the therapeutic concentration of tenofovir was not established, the relationship between plasma concentration, efficacy and toxicity was observed. Previous study demonstrated that the plasma concentrations of tenofovir were dose proportional when TDF was given at 75, 150, 300, or 600 mg. However, the antiviral activity was comparable at 600 mg and 300 mg.¹² On the other hand, a concentration of tenofovir greater than 160 ng/ml was found to be associated with renal toxicity.¹⁶ Due to a high IIV of CL/F, a wide range of tenofovir plasma concentrations was detected when a fixed dose regimen was administered as expected. Therefore, therapeutic drug monitoring may be used to detect sub-optimal or toxic concentration to ensure efficacy and safety for the management of HIV.

The pharmacokinetics of tenofovir exhibit high interindividual variability.¹⁰ Several factors may contribute to the variability of the pharmacokinetics of tenofovir including patients' characteristics, renal function, and co-medications. Our study showed that the estimated creatinine clearance (CLCR_{CG}) was a significant covariate for CL/F of tenofovir which was not surprising since tenofovir is primarily eliminated by the kidneys, including glomerular filtration and tubular secretion. The influence of the renal function on tenofovir clearance was confirmed in previous studies conducted in patients with HIV infection.^{10, 11, 17, 18} Previous population pharmacokinetic studies of tenofovir in HIV-infected patients demonstrated that the ratio of body weight to serum creatinine (BW/Scr) could significantly impact the tenofovir CL/F.^{10, 11} However, the effect of the estimated creatinine clearance was not observed. In our study, the CLCR_{CG} was used as a surrogate marker for renal function which also included the effect of age, weight, and sex so that the use of CLCR_{CG} as a predictor may provide a more accurate estimation of tenofovir CL/F. Our finding corroborates with a previous report that tenofovir dose adjustment is required and

recommended among those patients with renal impairment.⁹ In addition, patients co-infected with HIV and HBV may also experience liver impairment which is of concern, especially when the hepatotoxicity is related to a combination of antiretroviral drugs. Yet in our study, the influence of the liver function test (i.e., AST and ALT) was less prominent. This finding support an earlier investigation that the liver function does not affect the pharmacokinetics of tenofovir and thus dose adjustment is not necessary among those with liver problems.⁹

Tenofovir is mainly excreted unchanged in the urine suggesting a low potential for drug-drug interactions. However, interactions with ritonavir-boosted lopinavir and atazanavir were observed. When tenofovir was co-administered with lopinavir/ritonavir and atazanavir, the systemic exposure of TDF increased 32% and 24% respectively.^{9, 11, 19, 20} In our study, the tenofovir pharmacokinetics were not affected by either lopinavir/ritonavir or atazanavir. Even though the influence of ATV/r on CL/F of tenofovir was observed during the forward inclusion, this interaction failed to reach a significance level during the backward deletion. The inability to detect these interactions in our study maybe due to the small number of patients co-administered with LPV/r and ATV/r (11.6% and 8.2%) resulting in having inadequate power to detect such interactions.

The developed model is considered to be fairly reliable. The results from the bootstrap analysis showed that the median and 95% CI obtained from the bootstrap analysis were comparable to the estimates from NONMEM. However, the 95% CI of V1/F and V2/F from the bootstrap analysis were wider than the range obtained from NONMEM which indicated the uncertainty in the parameter estimation from NONMEM. A reason for the uncertainty in the parameter estimation for V1/F and V2/F may be due to the inadequate quantity of samples collected during the distribution phase.²¹ Regardless of this, the results from the predictive check confirmed the predictive power of the model.

This study has some limitations. Due to the sparse samples collected, the precise estimation of some parameters including Q/F and IIV of Q/F, V₂/F, and k_a could not be obtained. For this study, the IIV of Q/F, V₂/F, and k_a were not estimated and the value used for Q/F was based on a previous report. When the sensitivity analysis was performed, the fixed value for Q/F did not affect the results of the other parameters and the results from the bootstrap analysis confirmed the reliability of the final parameter estimates. Second, the influence of the co-medications on tenofovir pharmacokinetics could not be detected. This may be due to a small number of patients using these co-medications resulting in inadequate power in detecting such influence. Hence, a study with sufficient power aiming to investigate the influence of the co-medications on tenofovir pharmacokinetics is warranted.

In conclusion, the population pharmacokinetics of tenofovir in HIV/HBV co-infected patients was successfully developed and validated. The pharmacokinetic parameters for tenofovir in HIV/HBV co-infected patients were found to be comparable to previous reports from HIV-infected patients. Creatinine clearance significantly impacted the tenofovir CL/F which confirmed that for patients with renal impairment, the doses often ofovir need to be adjusted. Despite some of the limitations of the study, the developed model may be used to initially adjust the tenofovir dosage to ensure optimal exposure of tenofovir among HIV/HBV co-infected patients.

Methods

Patients and blood sampling

We performed a cross-sectional study at HIV-NAT (Netherlands-Australia Thailand Research Collaboration), Bangkok, Thailand during March 2012 to May 2013 (clinicaltrials.gov: NCT01138241).²² Additionally, the participants were selected from the HIV-NAT 006 cohort, a prospective longitudinal cohort study initiated since 1996 (clinicaltrials.gov:NCT00411983) in which intensive blood sampling was performed.²³ HBV/HIV co-infected adults (aged ≥ 18 years old) with chronic hepatitis B(CHB) treated with tenofovir for HIV treatment for at least 6 months were selected from the database. CHB was defined as HBsAg positive for at least 2 occasions 6 months apart. Patients with evidence for chronic hepatitis C virus infection, acute infection of other hepatitis viruses, chronic diarrhea or a history of rifampicin use 6 months prior to the time of blood collection were excluded. The study was reviewed and approved by the Institutional Review Boards of the Faculty of Medicine, Chulalongkorn University, Thailand and all patients provided signed consent. Majority of the patients received TDF at 300 mg once daily which is equivalent to 136 mg of tenofovir in the plasma whereas five other patients were on TDF 300 mg every other day or for every 48 hours.

One blood sample was randomly collected at each clinic visit for tenofovir concentration assessment. There were no specific sampling schedules. Intensive blood samples (at time 0, 1, 2, 4, 6, 8, 10, 12, and 24 hours post-dose) were obtained from 6 patients selected from HIV-NAT 006 cohort. Dosing history including actual time and amount of the last dose before blood sampling, and time of blood collection were recorded.

Assessment of tenofovir concentration

Tenofovir concentration was determined by high performance liquid chromatography at the HIV-NAT laboratory according to previously validated assays.²⁴ The lower limit of quantification was 0.015 mg/l. The within-day and between-day coefficient of variation and accuracy for all quality controls were less than 4%.

Population pharmacokinetic modeling

The PK data were analyzed using NONMEM (version VI, Icon Development Solutions, Ellicott City, MD). A first order conditional estimation method with interaction (FOCE-I) was used to estimate the pharmacokinetic parameters. One- and two- compartment model with first order absorption and elimination was evaluated. The interindividual variability (IIV) was described by an exponential error model for all parameters. The residual unexplained variability (RUV) was described by a proportional error model. Structural model selection was guided by the difference of the objective function value (dOFV), successful convergence, precision of the parameter estimates, and goodness-of-fit plot. For an evaluation of the goodness-of-fit, graphical assessment was obtained using R (ver.2.8.0, R Development Core Team; www.r-project.org) and Xpose.²⁵ Once the appropriate structural model was obtained, the covariate model was employed to investigate the influence of the covariates on the population pharmacokinetic parameters. The following covariates were considered: age, weight, serum creatinine

(Scr), creatinine clearance calculated by Cockcroft and Gault equation (CLCR_{CG}) and Modification of Diet in Renal Disease (CLCR_{MDRD}), albumin (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), concomitant ritonavir-boosted protease inhibitors (i.e., lopinavir/ritonavir (LPV/r), saquinavir/ritonavir (SQV/r), andatazanavir/ritonavir (ATV/r)). A continuous covariates were included in both linear and nonlinear (power and exponential models) models. The categorical covariates were introduced into the model using the fractional model ($TVCL = \theta_1 + \theta_2 \times X$), where TVCL is the typical value for tenofovir clearance, θ_1 is the typical value for tenofovir clearance when $X=0$, and θ_2 is the relative difference for the typical value of tenofovir clearance when $X=1$. The covariate model was performed using a stepwise approach. A decrease in the objective function value (OFV) greater than 3.84 (χ^2 , $p \leq 0.05$, $df=1$) was used as a criteria for inclusion of the covariate during forward inclusion whereas an increase in OFV greater than 6.63 (χ^2 , $p \leq 0.05$, $df=1$) was used as the criteria for retaining the covariate in the model during the backward deletion process.

Model evaluation

The bootstrap and visual predictive check were used to evaluate the model. The reliability of the final parameter estimates and their 95% confidence interval (CI) were assessed using the bootstrap approach. One thousand bootstrap datasets were generated by Wings for NONMEM (<http://wfn.sourceforge.net>) and were fitted with the final model. The median and bootstrap 95% CI were constructed and then compared with the values obtained from NONMEM. The visual predictive check was performed to evaluate the predictive performance of the final model.²⁶
²⁷ Five hundred simulated data were generated by using the original dataset as a template. The median and 90% prediction intervals (PI) obtained from simulated data were calculated and superimposed on the observed data.

Study Highlights

What is the current knowledge on the topic?

The pharmacokinetics of tenofovir from HIV mono-infected population are highly interindividually variable. Currently, there are no data on the pharmacokinetics of tenofovir in HIV/HBV co-infected patients.

What question did the study address?

This study aimed to develop a population pharmacokinetic model of tenofovir in HIV/HBV co-infected patients as well as identify factors explaining the interindividual variability of tenofovir concentration in this population.

What this study adds to our knowledge?

The pharmacokinetics of tenofovir in HIV/HBV co-infected patients are similar to those with HIV-infection. Results from this study confirm that patients with renal impairment, not liver impairment, would require adjustment of tenofovir dosage. The final model can be used to initially adjust the tenofovir dosage to ensure optimal exposure of tenofovir among HIV/HBV co-infected patients.

How this might change clinical pharmacology and therapeutics?

The developed model can be used to predict sub-optimal or toxic concentration of tenofovir. This is especially important in a resource-limited setting where services for therapeutic drug monitoring may not be available so an alternative, simpler method is preferred.

Acknowledgements

Sources of funding: This work was supported by Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University, the National Research Council of Thailand (NRCT) under grant number PorKor/2554-136 and PorKor/2553-112, the Thailand Research Fund (TRF) under grant number RSA5380002 and the Aligning Care and Prevention of HIV/AIDS with Government Decentralization to Achieve Coverage and Impact: ACHIEVED Project (Global Fund Thailand). Kiat Ruxrungtham has received support from the Thailand Research Fund (TRF) Senior Research Scholar. We are grateful to all participants and all staffs of the HIV-NAT, Thai Red Cross AIDS Research Centre for their participation and help.

Conflicts of Interest: All authors declare no conflict of interest.

Author contributions: BP, GM, SRL, DB, KR and AA designed the research. BP analyzed the data and wrote the manuscript. PT performed the research. NT performed all laboratory tests. All authors have read the manuscript and approved the final version.

References

- (1) Dienstag, J.L. Hepatitis B virus infection. *N Engl J Med.* **359**, 1486-500 (2008).
- (2) Chen, C.J. *et al.* Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. *JAMA.* **295**, 65-73 (2006).
- (3) Alter, M.J. Epidemiology of viral hepatitis and HIV co-infection. *J Hepatol.* **44**, S6-9 (2006).
- (4) Colin, J.F. *et al.* Influence of human immunodeficiency virus infection on chronic hepatitis B in homosexual men. *Hepatology.* **29**, 1306-10 (1999).
- (5) Krogsgaard, K. *et al.* The influence of HTLV-III infection on the natural history of hepatitis B virus infection in male homosexual HBsAg carriers. *Hepatology.* **7**, 37-41 (1987).
- (6) Biggar, R.J., Goedert, J.J. & Hoofnagle, J. Accelerated loss of antibody to hepatitis B surface antigen among immunodeficient homosexual men infected with HIV. *N Engl J Med.* **316**, 630-1 (1987).

- (7) Thio, C.L. *et al.* HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS). *Lancet.* **360**, 1921-6 (2002).
- (8) Antoniou, T., Park-Wyllie, L.Y. & Tseng, A.L. Tenofovir: a nucleotide analog for the management of human immunodeficiency virus infection. *Pharmacotherapy.* **23**, 29-43 (2003).
- (9) Kearney, B.P., Flaherty, J.F. & Shah, J. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. *Clin Pharmacokinet.* **43**, 595-612 (2004).
- (10) Gagnieu, M.C. *et al.* Population pharmacokinetics of tenofovir in AIDS patients. *J Clin Pharmacol.* **48**, 1282-8 (2008).
- (11) Jullien, V. *et al.* Population pharmacokinetics of tenofovir in human immunodeficiency virus-infected patients taking highly active antiretroviral therapy. *Antimicrob Agents Chemother.* **49**, 3361-6 (2005).
- (12) Barditch-Crovo, P. *et al.* Phase i/ii trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. *Antimicrob Agents Chemother.* **45**, 2733-9 (2001).
- (13) Schaaf, B., Aries, S.P., Kramme, E., Steinhoff, J. & Dalhoff, K. Acute renal failure associated with tenofovir treatment in a patient with acquired immunodeficiency syndrome. *Clin Infect Dis.* **37**, e41-3 (2003).
- (14) Karras, A. *et al.* Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, Fanconi syndrome, and nephrogenic diabetes insipidus. *Clin Infect Dis.* **36**, 1070-3 (2003).
- (15) Nishijima, T. *et al.* Renal function declines more in tenofovir- than abacavir-based antiretroviral therapy in low-body weight treatment-naive patients with HIV infection. *PLoS One.* **7**, e29977 (2012).
- (16) Rodriguez-Novoa, S. *et al.* Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. *AIDS.* **24**, 1064-6 (2010).
- (17) Baheti, G., Kiser, J.J., Havens, P.L. & Fletcher, C.V. Plasma and intracellular population pharmacokinetic analysis of tenofovir in HIV-1-infected patients. *Antimicrob Agents Chemother.* **55**, 5294-9 (2011).
- (18) Baxi, S.M. *et al.* Common clinical conditions - age, low BMI, ritonavir use, mild renal impairment - affect tenofovir pharmacokinetics in a large cohort of HIV-infected women. *AIDS.* **28**, 59-66 (2014).
- (19) Kearney, B.P., Mathias, A., Mittan, A., Sayre, J., Ebrahimi, R. & Cheng, A.K. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. *J Acquir Immune Defic Syndr.* **43**, 278-83 (2006).

- (20) Kiser, J.J. *et al.* The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. *Clin Pharmacol Ther.* **83**, 265-72 (2008).
- (21) Booth, B.P. & Gobburu, J.V. Considerations in analyzing single-trough concentrations using mixed-effects modeling. *J Clin Pharmacol.* **43**, 1307-15 (2003).
- (22) (March 3-6, 2014). Genetic variants of ABCC2 and ABCC10 Are Associated with TFV-induced Proximal Tubular Dysfunction *21st Conference on Retroviruses and Opportunistic Infections*
- (23) (June 30-July 03, 2013). Predictors of daily tenofovir exposure in Thai subjects taking protease inhibitor-based combination antiretroviral therapy. *7th IAS Conference on HIV Pathogenesis, Treatment and Prevention 2013.*
- (24) Droste, J.A. *et al.* Pharmacokinetic study of tenofovir disoproxil fumarate combined with rifampin in healthy volunteers. *Antimicrob Agents Chemother.* **49**, 680-4 (2005).
- (25) Jonsson, E.N. & Karlsson, M.O. Xpose--an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. *Comput Methods Programs Biomed.* **58**, 51-64 (1999).
- (26) Jadhav, P.R. & Gobburu, J.V. A new equivalence based metric for predictive check to qualify mixed-effects models. *AAPS J.* **7**, E523-31 (2005).
- (27) Yano, Y., Beal, S.L. & Sheiner, L.B. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. *J Pharmacokinet Pharmacodyn.* **28**, 171-92 (2001).

Table 1: Summary of patient characteristics

Patient characteristics	mean (range)
Age (years)	42.8 (23-66.5)
Height (cm)	164.5 (145-180)
Weight (kg)	61.2 (38.9-150)
Serum albumin (g/dl)	4.5 (3.2-6)
Serum creatinine (mg/dl)	0.9 (0.5-2.2)
Creatinine clearance, MDRD (ml/min)	96.1 (32.4-171.8)
Creatinine clearance, CG (ml/min)	92.5 (29-256.6)
Aspartate aminotransferase (U/l)	37.7 (17-95)
Alanine aminotransferase (U/l)	46 (20-172)
	Frequency (%)
Gender	
Male	95 (65.1)
Female	51 (34.9)
Concomitant ritonavir-boosted protease inhibitors	
Atazanavir/ritonavir	12 (8.2)
Lopinavir/ritonavir	17 (11.6)
Darunavir/ritonavir	1 (0.7)
Saquinavir/ritonavir	19 (13)

MDRD: Modification of Diet in Renal Disease; CG: Cockcroft and Gault equation

Table 2: Final parameter estimates and 95% CI from NONMEM and bootstrap analysis

Parameters	Estimates (95%CI) ^b	Bootstrap median (95%CI) ^c
CL/F (L/hr)	54.6 (50, 59.2)	54.6 (50.2, 60.2)
Factor associated with CLcr on CL/F	0.43 (0.19, 0.67)	0.44 (0.2, 0.7)
V1/F (L)	316 (96.48, 535.52)	296 (152.8, 748.6)
V2/F (L)	517 (174, 860)	527 (339.7, 1201.5)
Q/F (L/hr)	144 (fixed)	NA
ka (hr-1)	0.73 (0.31, 1.16)	0.71 (0.39, 1.4)
IIV CL/F (%CV)	32.8 (24.7, 39.3)	32.6 (23.3, 39.5)
IIV V1/F (%CV)	108.2 (64.2, 138.9)	110.5 (51.1, 166.1)
RUV, proportional (%CV)	36.2 (30.8, 40.8)	36.2 (30.8, 42.3)

^a From 873 runs minimized successful with successful covariance

^b Calculated as estimates \pm 1.96 x Standard error

^c 2.5th and 97.5 percentiles of the bootstrap parameter estimates

Figure 1: Goodness of fit plot of the final model: the observed vs population predicted concentration and conditional weighted residual vs population predicted concentration.

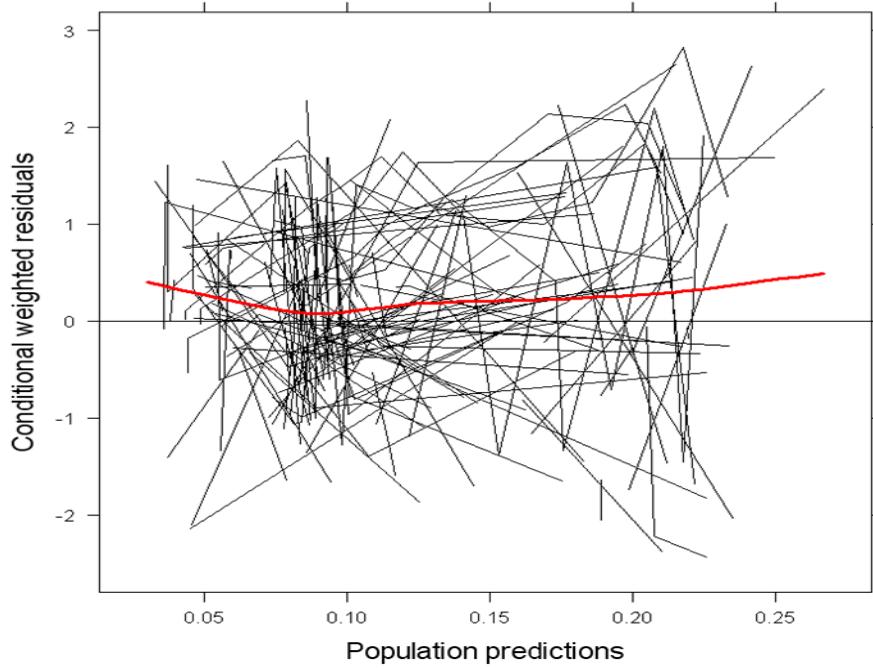
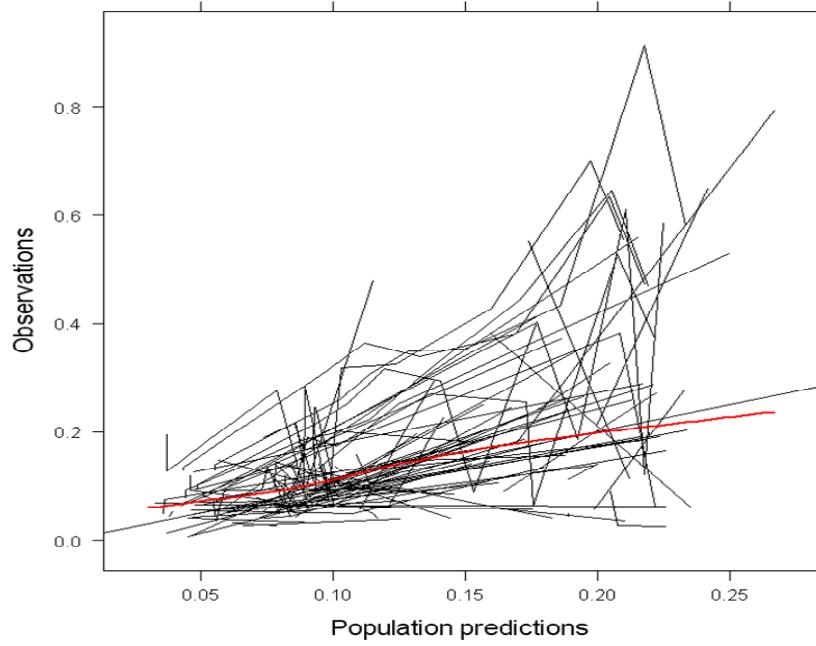
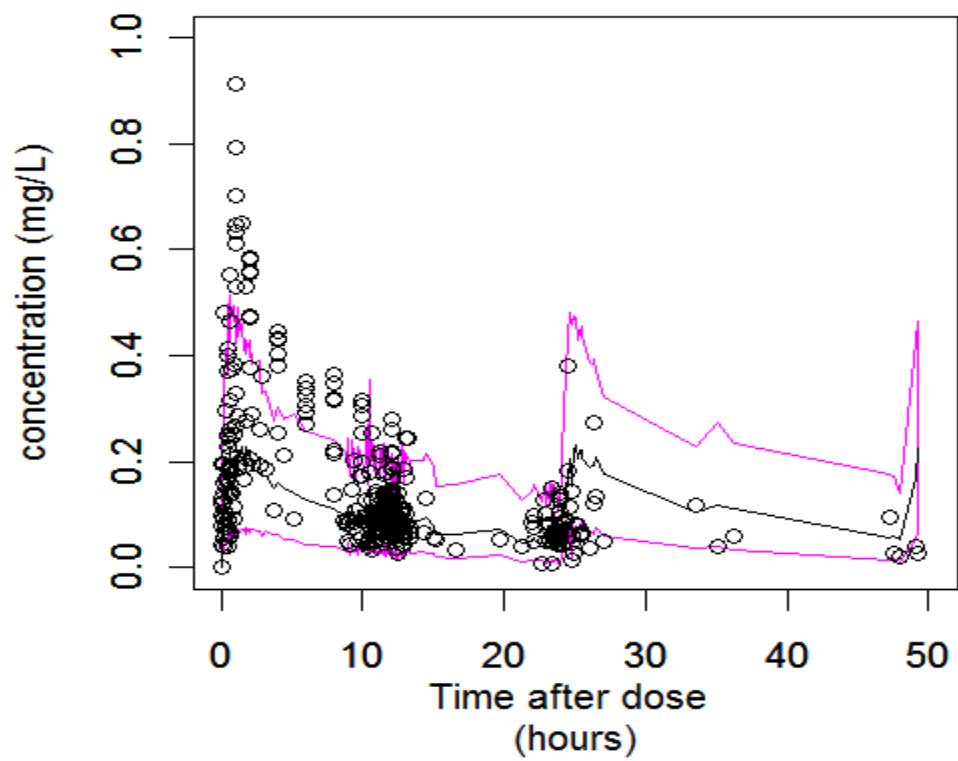




Figure 2: the visual predictive check plot.

Prevalence of and Risk factors for hypovitaminosis D among HIV-infected adults living in the tropics: Role of gender, age and efavirenz

Anchalee Avihingsanon ^{1,2}, Reshmie A. Ramautarsing ^{1,3}, Kearniat Praditpornsilpa ⁴, Jiratchaya Sophonphan ¹, Sasiwimol Ubolyam ¹, Yingyos Avihingsanon ⁴, Weerapan Khovidhunkit ⁵, Narin Hiransuthikul ⁶, Kiat Ruxrungtham ^{1,2} and HIV-NAT 114 study team

¹ HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok

² Division of Allergy and Immunology, Faculty of Medicine, Chulalongkorn University

³ Department of Global Health, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, the Netherlands

⁴ Division of Nephrology, Faculty of Medicine, Chulalongkorn University

⁵ Hormonal and Metabolic Disorders Research Unit and Division of Endocrinology and metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University

⁶ Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University

Corresponding Author:

Anchalee Avihingsanon, MD, PhD

HIV-NAT, The Thai Red Cross AIDS Research Center

104 Rajdumri Road, Pathumwan, Bangkok, Thailand 10330.

Tel: + 66 2 255 7335, Fax: + 66 2 252 5779. Email: Anchalee.A@hivnat.org

Running head: Hypovitaminosis D in HIV-1 infected Thais

Word Counts: Abstract (250), Text (2194), References (33), Figures (1), Tables (2), Keywords (4)

Clinical trial number: NCT01138241

Conflicts of Interest and Source of Funding: All authors declare no conflict of interest. This study was funded by the Thailand Research Fund (TRF), grant number RSA 5380002, the National Research

Councils of Thailand (NRCT), grant number 2553-112, and the Higher Education Research Promotion and National Research University Project of Thailand, office of the higher education commission, grant number HR1161A-55.

This study was a part of poster presentation for 19th Conference on Retroviruses and Opportunistic Infection (CROI2012), March 5-8, 2012, Seattle, WA, abstract #882

Introduction

Vitamin D plays a key role not only for calcium homeostasis and bone metabolism, but it also has several non-calcemic actions. Based on recent studies, there is evidence of an association between vitamin D deficiency and a number of co-morbidities, including impaired immune function, metabolic syndrome, cardiovascular disease, inflammatory disease, autoimmune disorders, impaired neurocognitive function, and malignancies ¹⁻⁵. These co-morbidities are also increasingly recognized in HIV-infected individuals worldwide as this population is living longer as a result of the widespread use of highly active antiretroviral therapy (HAART) ⁶⁻¹¹. Furthermore, HIV-infected individuals are more likely to be vitamin D deficient compared to HIV-uninfected individuals, and there is an indication that vitamin D concentrations are directly related to HIV-disease progression ^{12, 13}. Therefore, the role of vitamin D in preventing these complications is of particular interest.

Currently, the serum concentration of 25-hydroxyvitamin D [25(OH)D] is considered a reliable indicator of vitamin D status because it represents cumulative exposure to sunlight, which is a major source of vitamin D ^{14, 15}. When the plasma vitamin D concentration decreases below 30ng/mL, plasma calcium is depressed and parathyroid hormone is stimulated. This results in secondary hyperparathyroidism which promotes bone turn over, osteopenia, and eventually osteoporosis ¹⁴. Therefore, vitamin D plasma concentrations higher than 30 ng/mL are essential to prevent the stimulation of hyperparathyroidism from low plasma calcium. However, currently there is no consensus on a cut-off level for defining vitamin D deficiency. Nonetheless, it is widely suggested that the definition of sufficiency, insufficiency, and deficiency of vitamin D are plasma 25(OH)D levels above 30 ng/mL, 21-29 ng/mL and lower than 20 ng/mL, respectively ². Using this definition, a high prevalence of vitamin D insufficiency ranging from 12-86% has been described among HIV-infected individuals, mostly from resource rich countries and high latitudes ¹⁶⁻¹⁹. Furthermore, in these patients a high rate of osteopenia or osteoporosis has been reported.

Since exposure to sunlight is a major source of vitamin D, it has been assumed that people living in areas closer to the equator are less likely to have vitamin D insufficiency, because there are strong rays

throughout the year. Although the prevalence of vitamin D deficiency has been well documented in HIV-infected Caucasian populations from countries situated at high latitudes, but it is unclear what the extent of vitamin D insufficiency is among those living in subtropical area. As a result of this, we assessed the prevalence of and risk factors for hypovitaminosis D in our large and long standing cohort of Thai HIV-infected adults who have been followed for up to 15 years. We hypothesized that our HIV-infected patients would have a lower prevalence of vitamin D insufficiency as compared to Caucasian HIV-infected adults.

Methods

Study design and participants

We performed a cross-sectional study among participants enrolled in the HIV-NAT 006 cohort, a prospective longitudinal cohort study initiated in 1996 to evaluate long term HAART treatment response and their complications among HIV-infected patients followed at HIV-NAT (the Netherlands-Australia and Thailand collaboration in HIV research), Thailand. This study took place between July 2010 and June 2011.

As part of the HIVNAT 006 cohort, CD4 cell counts and HIV-RNA viral load (VL) are measured every 6 months, together with other safety laboratory parameters and with clinical and therapy data. All clinical and laboratory parameters have been collected real time into electronic database. All patients have stored plasma samples at entry and once a year. Patients have been asked to be fasting at least 8 hours prior blood drawn for this cohort. All patients signed consent forms to participate in the HIV-NAT 006 cohort and consented to the stored plasma to be used. For 25(OH) D testing, we collected new samples from subjects who visited our clinic during 1 July 2010- 30 June 2011. We also collected data regarding use of steroids in the 6 months before sample collection, smoking, alcohol use, menopausal status, vitamin D/calcium supplements and fracture.

HIV-infected adults (aged ≥ 18 years old) who were enrolled in the cohort for a minimum of 6 months were included in this analysis. Patients with current chronic diarrhea or a history of the use of

corticosteroids, anticonvulsants or rifampicin during the 6 months before planned blood draw were excluded.

This cohort was reviewed and approved by the Institutional Review Boards of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

Setting

Bangkok is located at 13°45'N and 100°30'E in the middle of Thailand. The city has a tropical climate, with high temperatures and high humidity levels. There are only 2 distinct seasons: the dry season through the months of November to April and the rainy season from May to October. The average temperature is 32°C (90°F). Temperatures rarely drop below 25°C(70°F).

Vitamin D measurement and definition

Blood was drawn after at least 8 hours of fasting for determination of 25(OH)D levels. Whole blood samples were centrifuged at 2500rpm for 20 minutes and plasma was stored at -80°C until use. The samples for vitamin D levels were collected during the clinical visit for the HIV-NAT 006 cohort, during which CD4, VL, glucose, lipid panels, serum creatinine, and ALT were also tested. 25(OH)D was tested in plasma by ARCHITECT chemiluminescent microparticle immunoassay (CMIA) for the quantitative determination of 25-hydroxyvitamin D (25-OH Vitamin D, Abbott, Barcelona, Spain) according to the manufacturer's instruction. Serum 25(OH)D less than 20 ng/ml and 20-30 ng/dl were defined as vitamin D deficiency and insufficiency, respectively. The ARCHITECT 25-OH Vitamin D assay is designed to have an imprecision of less than 10% within Laboratory (total) Coefficient Variation.

Criteria of Diabetes Mellitus (DM), Hypertension, and Metabolic syndrome

1. DM was defined at the occurrence of fasting plasma glucose >126 mg/dl in two consecutive time points or a diagnosis of DM, or taking antihyperglycemic drug
2. Cardiovascular events were defined as myocardial infarction, coronary artery disease, stroke, and hypertension. Hypertension was defined as a diastolic blood pressure >90 mmHg or systolic >140 mmHg in a resting state) in two consecutive time points or a diagnosis of hypertension, or taking antihypertensive drug.

3. Metabolic syndrome (MS) was defined if patients had at least 2 criteria of fasting glucose > 110 mg/dl in the absent of overt DM, blood pressure > 135/85 in the absent of HT diagnosis, Triglyceride > 150 mg/dl, Cholesterol > 200 mg/dl, HDL < 40 mg/dl for Men and < 50 mg/dl for women, and waist circumference > 90 cm for Men and >80 cm for women.

Estimated glomerular filtration rate (eGFR) was calculated by Modification of Diet in Renal Disease (MDRD).

Statistical analysis

The data analysis was performed by STATA version 11.2 (Stata Corp., College Station, Texas). For descriptive analysis, the frequencies of the categorical variable were calculated, while median and interquatile range (IQR) were calculated for continuous variables. Each variable was correlated to vitamin D status. The magnitude of associations was expressed as odds ratio (OR) and 95% confidence intervals (95% CI). Pearson correlation coefficient was used to explore the association between serum vitamin D levels and potential risk factors. For multivariate analysis, multiple logistic regression analysis was used. Variables presenting $p < 0.1$ in univariate analysis were tested in the final model.

Results

Study population and vitamin D status

A total of 673 HIV-infected adult patients were included in this analysis. Demographic and clinical characteristics are presented in Table 1. In brief; 47% of patients were female. The median age was 41.5 years and 16% were older than 50 years old. Median BW was 57.6 kg. Median BMI was 21.9kg/m² and approximately 18% of them were obese (BMI greater than 25 kg/m²). The median eGFR was 96.5(82.6-106.3) ml/min/1.73m². A total of 93% were currently using cART for a median (IQR) duration of 8.9 (5.0-10.4) years. Efavirenz (EFV) and tenofovir disoproxil fumarate (TDF) were currently used in 31% and 79%, respectively. Of all, 57% of patients had stavudine (d4T) exposure in the past. The median CD4 cell count was 571 cells/mm³ (IQR 434-766 cells/mm³), and 92% had HIV RNA < 50copies/mL. In addition, none of them took steroid, vitamin D and calcium within 6 months prior blood drawn. Only 3%

of the patients had more than 4 standard alcoholic drinks per day whereas 21 % were current smokers and 13% of the females were menopausal. None of them had fracture.

Median circulating 25(OH)D concentrations were 24.1(IQR18.5-31.5) ng/mL. On average, mean (SD) 25(OH) D concentrations was significantly lower in women (23.2 (8.9) ng/ml) than men (27.5 (10.6) ng/mL), $p<0.001$ and current EFV use (23.4 (9.3) ng/mL) than non EFV(26.5 (10.3) g/mL), $p<0.001$. However, mean (SD) 25(OH) D concentrations in older than 40 years group (24(9.7)ng/mL) and younger group (26 (11) ng/mL) were comparable ($p=0.1$).The overall prevalence of hypovitaminosis D (25(OH) D< 30ng/ml), vitamin D deficiency (25(OH)D <20ng/mL) and vitamin D insufficiency (25(OH)D 20-30ng/mL) were 70.5%, 29.9% and 40.6%, respectively.

Higher proportion of patients in rainy season, d4T exposure, current efavirenz exposure, and cardiovascular disease (mainly hypertension) in vitamin D insufficient/deficient compared to normal vitamin D group.

Median (IQR) intact parathyroid hormone was relatively higher in hypovitaminosis D group [46 (34-61) pg/mL] compared to normal vitamin D group [43(28-62) pg/mL] but it was not statistically significant difference ($P=0.64$).

Identification of the risk factors for hypovitaminosis D (table2 and figure 1)

When serum 25(OH) D concentrations were dichotomized into two groups (insufficient/deficient vs. sufficient), multiple logistic regression analysis showed that women [OR (95% CI) 1.6 (1.1-2.1), $p=0.01$], age older than 40 years old [OR (95%CI) 1.6 (1.1-2.2), $p < 0.01$], and current use of EFV-based ART [OR (95%CI) 1.9 (1.3-2.8), $p 0.001$] were significantly associated with hypovitaminosis D. Other factors such as BMI, CD4 counts, ART naïve/experienced, diabetes mellitus, lipodystrophy, cardiovascular disease, duration of ARV, boosted protease inhibitor use, smoking status, alcoholic drinking and tubular function abnormalities were not associated with low vitamin D concentrations.

Discussion

In this study, we analyzed serum 25(OH)D levels in 673 HIV infected patients on a median of 9 years of ART from tropical region. Our study identified a high prevalence of low vitamin D concentrations among

HIV infected patients living in Thailand, a country located near the equator. When using a 25(OH) D threshold of 30ng/ml, almost 70.5% of our patients in this cohort have inadequate vitamin D status. Furthermore, nearly 30% had a 25(OH) D less than 20ng/ml, which is classified as vitamin D deficiency. Our HIV-infected patients had a relatively similar prevalence of vitamin D insufficiency and deficiency when compared to the general older Thai women from rural area of Thailand.²⁰⁻²⁴ The prevalence of hypovitaminosis D in general Thai population at the same age of our cohort (40 years old) was 64.6%²⁵from Bangkok, Thailand and it was 20-40% from rural area. Studies examining vitamin D status in the HIV-infected patients from the tropics are scarce, but low vitamin D status have been reported up to 74% from Thailand, Brazil and India.²⁶⁻²⁸ These findings suggest inadequate vitamin D is a common problem even in countries that receive abundant sunshine.

The high prevalence of hypovitaminosis D in our cohort is somewhat surprising, considering the relative younger age of this population. The majority of our patients lived in Bangkok, the capital of Thailand. Increasing urbanization, working in office, sunscreen use and polluted air may explain this situation. Recently, a study in the general population in Thailand found that subjects living in urban or big cities have a higher risk of having lower vitamin D concentrations (64.6 % versus 20-40%).²⁵Lifestyle factors and air pollution are possibly important factors. Polluted air in our capital city may have blocked the sun rays from reaching the skin resulting in lower production of vitamin D.^{29, 30} In addition, vitamin D intake among Thais is generally low because foods are usually not fortified with vitamin D and few natural vitamin D-rich food sources are affordable.²⁵Furthermore, vitamin D and calcium supplement are less popular in HIV –infected patients compared to vitamin C supplement.

Our prevalence of hypovitaminosis D at 70% was higher than a report in HIV-infected women from Brazil(40.65%)²⁷ but comparable to studies from countries at high latitudes. In our multivariate analysis, hypovitaminosis D was associated with female gender (1.6 fold), age older than 40 years (1.6fold), and efavirenz based HAART(1.9fold). Our findings are inconsistent to the finding from France³¹ where gender and age were not associated factors. In our cohort, 47% were female but it was only 28% from French study.³¹ In the general population, lower vitamin D status has been commonly found with

advancing age.^{20, 21, 32} Less sun exposure and the decreased ability of the skin to produce vitamin D can explain this.³³ Several studies have reported that HIV-infected individuals more often have vitamin D deficiency compared to HIV-uninfected patients. It is not yet clear what causes this; a problem with the vitamin D metabolism caused by HAART, inhibition of CYP27B1-hydroxylase caused by an increased TNF- α level, reduced sun exposure related to illness, or a combination of these factors. Similar to other studies, we found that the vitamin D levels were lower in patients using efavirenz based HAART as compared to those who were on a non-efavirenz containing regimen.^{18, 19, 31, 34-37} In MONET trial, a higher increase in vitamin D over 96 weeks was observed when patients stopped efavirenz or zidovudine rather than other antiretroviral drugs.³⁶ It is thought that efavirenz induces the 24 hydroxylase enzyme, which hydrolyzes 25(OH)D and 1,25(OH)2D to their inactive form, resulting in low 25(OH)D concentration.³⁷

Several cross sectional studies in HIV-infected patients have shown an association between vitamin D deficiency and chronic disease such as diabetes mellitus^{38, 39}, HIV disease progression.^{12, 40, 41}, or advanced HIV disease.³¹ The association of low vitamin D and diabetes, HIV disease progression or advanced HIV disease was not observed in our study. Only 7.7%, 1.5% and 11% of our patients were reported for diabetes mellitus, CD4<200 cells/mm³ and CD4200-350 cells/mm³, respectively. It has been well established in high latitude area that winter seasons are associated with lower vitamin D levels⁴². However in this study, seasonality was not associated with vitamin D levels. There were no differences in vitamin D levels during the dry (November-April) and the wet /rainy (May-October) seasons. Although the sunray is extremely strong in the dry season compared to in the wet season, majority of Thai people try to avoid sun exposure by using sun protection gears such as sunscreen and umbrellas.

Intact parathyroid hormone levels (iPTH) stimulate the 1- α -hydroxylase enzyme which converts 25(OH)D to 1,25-dihydroxyvitamin D.² In obese patients, iPTH is increased which could contribute to low levels of 25(OH)D in patients with high BMI.² Recently, Vimaleswaran KS et al reported the analysis on 42,024 participants from 21 studies that with each 10% increase in BMI, this will lead 25(OH)D

concentrations to decrease by 4.2% ⁴³ In our study, 122(18%) patients had BMI ≥ 25 kg/m², the 25(OH)D concentrations were not difference between the group with BMI ≥ 25 kg/m² or less. Although, higher proportion of BMI ≥ 25 kg/m² were found more common in hypovitamin D group (75% versus 25%) but we could not find significant association between BMI and hypovitaminosis D which may have been due to small sample size of patients with high BMI. Similarly to the French cohort, BMI was not associated to vitamin D status.³¹

Our study has some limitations. Since this is a cross sectional study, therefore the data for vitamin D at time of ARV initiation and its long-term effect as well as its clinical significance, especially bone mass density, are unavailable and unknown respectively. In addition, this study did not quantitate the level of active vitamin D (1,25 hydroxyvitamin D) which could help to better interpretation of some results, especially in patients treated with efavirenz. Aside from this, another confounding factor is the modern lifestyle our patients have as most of them are from the capital city Bangkok and are rarely exposed to the sun working in the office all day and using sunscreen. Furthermore, it is also possible that the polluted air in Bangkok could have reduced the amount of vitamin D one would typically get if the environment was much cleaner. Hence the findings from this study may not be representative of HIV-infected Thais from non-Bangkok and metropolitan area. Nonetheless, our findings highlight the high prevalence of low vitamin D in HIV-infected patients living in sunshine area and the need to investigate bone health in this population. In addition, best strategies to prevent and /or treat vitamin D deficiency in HIV-infected patients should be further investigated in randomized clinical trial.

In conclusion, we found a high prevalence of vitamin D insufficiency and deficiency in our cohort of HIV-infected adults living in a tropical climate. To prevent reductions in BMD and other hypovitaminosis D related co-morbidities, vitamin D status should be assessed in all HIV-infected patients, especially in those who are at highest risk such as female, older age and efavirenz use. In addition, vitamin D supplement is highly recommended in patients at highest risk. The impact of vitamin D supplement on vitamin D status and their clinical consequences in an HIV infected patients need to be further evaluated.

Acknowledgement

We would like to thank our patients, HIV-NAT staffs, and Piraporn June Ohata.

References

1. Anderson JL, May HT, Horne BD, et al. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. *Am J Cardiol*. Oct 1;106(7):963-968.
2. Holick MF. Vitamin D deficiency. *N Engl J Med*. Jul 19 2007;357(3):266-281.
3. Judd SE, Tangpricha V. Vitamin D deficiency and risk for cardiovascular disease. *Am J Med Sci*. Jul 2009;338(1):40-44.
4. Makariou S, Liberopoulos EN, Elisaf M, Challa A. Novel roles of vitamin D in disease: what is new in 2011? *Eur J Intern Med*. Aug;22(4):355-362.
5. Shikuma C, Seto T, Liang CY, et al. Vitamin D Levels and Markers of Arterial Dysfunction in HIV. *AIDS Res Hum Retroviruses*. Oct 7.
6. Wand H, Calmy A, Carey DL, et al. Metabolic syndrome, cardiovascular disease and type 2 diabetes mellitus after initiation of antiretroviral therapy in HIV infection. *AIDS*. Nov 30 2007;21(18):2445-2453.
7. Estrada V, Martinez-Larrad MT, Gonzalez-Sanchez JL, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. *Metabolism*. Jul 2006;55(7):940-945.
8. Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. *J Acquir Immune Defic Syndr*. Aug 15 2009;51(5):554-561.
9. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. *AIDS*. Nov 14 2006;20(17):2165-2174.
10. Cysique LA, Brew BJ. Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: a review. *Neuropsychol Rev*. Jun 2009;19(2):169-185.
11. Ellis RJ, Badiie J, Vaida F, et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. *AIDS*. Sep 10;25(14):1747-1751.
12. Mehta S, Giovannucci E, Mugusi FM, et al. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. *PLoS One*.5(1):e8770.
13. Viard JP, Souberbielle JC, Kirk O, et al. Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. *Aids*. Jun 19 2011;25(10):1305-1315.
14. Lips P. Vitamin D physiology. *Prog Biophys Mol Biol*. Sep 2006;92(1):4-8.
15. Lips P. Which circulating level of 25-hydroxyvitamin D is appropriate? *J Steroid Biochem Mol Biol*. May 2004;89-90(1-5):611-614.
16. Van Den Bout-Van Den Beukel CJ, Fievez L, Michels M, et al. Vitamin D deficiency among HIV type 1-infected individuals in the Netherlands: effects of antiretroviral therapy. *AIDS Res Hum Retroviruses*. Nov 2008;24(11):1375-1382.
17. Mueller NJ, Fux CA, Ledergerber B, et al. High prevalence of severe vitamin D deficiency in combined antiretroviral therapy-naive and successfully treated Swiss HIV patients. *AIDS*. May 15;24(8):1127-1134.
18. Welz T, Childs K, Ibrahim F, et al. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. *AIDS*. Jul 31;24(12):1923-1928.
19. Adeyemi OM, Agniel D, French AL, et al. Vitamin D deficiency in HIV-infected and HIV-uninfected women in the United States. *J Acquir Immune Defic Syndr*. Jul 1;57(3):197-204.

20. Soonthrapa S, Boonsiri P, Khampitak T. The prevalence of hypovitaminosis D in the elderly women living in the rural area of Khon Kaen Province, Thailand. *J Med Assoc Thai*. Sep 2009;92 Suppl5:S21-25.
21. Soonthrapa S, Bunyaratavej N, Rojanasthien S, Kittimanon N, Lektrakul S. Vitamin D status of Thai premenopausal women. *J Med Assoc Thai*. Sep 2009;92 Suppl5:S17-20.
22. Soonthrapa S, Chailurkit LO. Hypovitaminosis D in Thailand. *J Med Assoc Thai*. Sep 2009;92 Suppl5:S26-29.
23. Chailurkit LO, Kruavit A, Rajatanavin R. Vitamin D status and bone health in healthy Thai elderly women. *Nutrition*. Feb 2011;27(2):160-164.
24. Chailurkit LO, Piaseu N, Rajatanavin R. Influence of normal ageing on mechanism of bone loss in women and men in Bangkok. *J Med Assoc Thai*. Aug 2002;85(8):915-921.
25. Chailurkit LO, Aekplakorn W, Ongphiphadhanakul B. Regional variation and determinants of vitamin D status in sunshine-abundant Thailand. *BMC Public Health*.11:853.
26. Wiboonchutikul S, Sungkanuparph S, Kiertiburanakul S, et al. Vitamin D Insufficiency and Deficiency among HIV-1-Infected Patients in a Tropical Setting. *J Int Assoc Physicians AIDS Care (Chic)*. Jan 13 2012.
27. Conrado T, Miranda-Filho Dde B, Ximenes RA, et al. Vitamin D Deficiency in HIV-Infected Women on Antiretroviral Therapy Living in the Tropics. *J Int Assoc Physicians AIDS Care (Chic)*. Jul-Aug 2011;10(4):239-245.
28. Paul TV, Asha HS, Thomas N, et al. Hypovitaminosis D and bone mineral density in human immunodeficiency virus-infected men from India, with or without antiretroviral therapy. *Endocr Pract*. Jul-Aug 2010;16(4):547-553.
29. Hosseinpahah F, Pour SH, Heibatollahi M, Moghbel N, Asefzade S, Azizi F. The effects of air pollution on vitamin D status in healthy women: a cross sectional study. *BMC Public Health*.10:519.
30. Manicourt DH, Devogelaer JP. Urban tropospheric ozone increases the prevalence of vitamin D deficiency among Belgian postmenopausal women with outdoor activities during summer. *J Clin Endocrinol Metab*. Oct 2008;93(10):3893-3899.
31. Allavena C, Delpierre C, Cuzin L, et al. High frequency of vitamin D deficiency in HIV-infected patients: effects of HIV-related factors and antiretroviral drugs. *J Antimicrob Chemother*. Sep;67(9):2222-2230.
32. Baker MR, Peacock M, Nordin BE. The decline in vitamin D status with age. *Age Ageing*. Nov 1980;9(4):249-252.
33. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. *J Clin Invest*. Oct 1985;76(4):1536-1538.
34. Welz T, Childs K, Post FA. Do nevirapine and efavirenz affect vitamin D homeostasis similarly? *AIDS*. Mar 27;25(6):875-876.
35. Dao CN, Patel P, Overton ET, et al. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. *Clin Infect Dis*. Feb 1;52(3):396-405.
36. Fox J, Peters B, Prakash M, Arribas J, Hill A, Moecklinghoff C. Improvement in vitamin D deficiency following antiretroviral regime change: Results from the MONET trial. *AIDS Res Hum Retroviruses*. Jan;27(1):29-34.
37. Brown TT, McComsey GA. Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. *Antivir Ther*.15(3):425-429.
38. Hammond E, McKinnon E, Glendenning P, Williams R, Mallal S, Phillips E. Association between 25-OH vitamin D and insulin is independent of lipodystrophy in HIV. *Clin Endocrinol (Oxf)*. Feb;76(2):201-206.

39. Szep Z, Guaraldi G, Shah SS, et al. Vitamin D deficiency is associated with type 2 diabetes mellitus in HIV infection. *AIDS*. Feb 20;25(4):525-529.
40. Viard JP, Souberbielle JC, Kirk O, et al. Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. *AIDS*. Jun 19;25(10):1305-1315.
41. Mehta S, Mugusi FM, Spiegelman D, et al. Vitamin D status and its association with morbidity including wasting and opportunistic illnesses in HIV-infected women in Tanzania. *AIDS Patient Care STDS*. Oct;25(10):579-585.
42. van der Mei IA, Ponsonby AL, Engelsen O, et al. The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude. *Environ Health Perspect*. Aug 2007;115(8):1132-1139.
43. Vimalesar KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. *PLoS Med*. 2013;10(2):e1001383.

Table1. Demographic characteristics according to vitamin D concentrations. Median and interquatile range (IQR) is expressed, otherwise indicated.

Characteristics	total	Vitamin D group			P val
		Normal	Insufficient	Deficients	
		25(OH) D	25(OH) D	25(OH) D	
		> 30ng/ml	20-30ng/ml	< 20ng/ml	
		N=199	N=273	N=201	
Gender, N (%) Female	315(46.8)	79(39.7)	110(40.3)	126(62.7)	< 0.001
Median (IQR) Age, years	41.5(37.2-47.0)	40.3(36.1-46.7)	42.9(37.8-47.7)	41.4(37.5-46.3)	0.03
18-35, N(%)	135(20.0)	49(24.6)	48(17.6)	38(18.9)	0.37
36-50, N(%)	432(64.2)	123(61.8)	178(65.2)	131(65.2)	
>50, N(%)	106(15.8)	27(13.6)	47(17.2)	32(15.9)	
Route of HIV transmission, N(%)					0.19
Heterosexual contacts	492(81.2)	141(70.9)	192(70.3)	159(79.1)	
Homosexual contacts	114(18.8)	36(18.1)	51(18.7)	27(13.4)	

Season, N(%)					0.04
Summer	242(36.0)	75(38)	109(39.9)	58(28.9)	
Rainny	431(64.0)	124(62)	164(60.1)	143(71.1)	
Median (IQR); Current CD4 cell counts, N(%)	571(434-766)	567(411-824)	570(434-751)	581(456-761)	0.64
<200 cells/mm ³	10(1.5)	4(2)	5(1.9)	1(0.5)	0.24
200-350 cells/mm ³	74(11)	28(14.1)	29(10.6)	17(8.5)	
>350 cells/mm ³	589(87.5)	167(83.9)	239(87.5)	183(91.0)	
Current HIV RNA					
< 50 copies/mL	619(92.0)	171(85.9)	261(95.6)	187(93)	0.00
≥ 50 copies/mL	54(8.0)	28(14.1)	12(4.4)	14(7)	
D4T exposure	384(57.0)	107(53.8)	147(53.8)	130(64.7)	0.03
Current cART based regimen					
No ART	7(1.0)	5(2.5)	1(0.4)	1(0.5)	0.05
TDF	533(79.2)	160(80.4)	219(80.2)	154(76.6)	0.51
NNRTI					
Nevirapine	114(17.0)	36(18.1)	46(16.8)	32(15.9)	0.84
Efavirenz	210(31.2)	44(22.1)	88(32.2)	78(38.8)	0.00
PI/bPI	349(51.8)	119(59.8)	139(51)	91(45.3)	0.01
Median (IQR) duration of ART, years	8.9(5.0-10.4)	8.5(4.9-10.6)	8.9(5.1-10.4)	9.2(5.0- 10.5)	0.81
Diabetes, N (%)	52(7.7)	17(8.5)	25(9.2)	10(5)	0.21
CVD (Hypertension, stroke, CAD) ; N (%)	120(17.8)	28(14.1)	60(22)	32(15.9)	0.00

HBV co-infection, N (%)	86(12.8)	24(12.1)	35(12.8)	27(13.4)	0.91
HCV co-infection, N(%)	46(6.9)	20(10.1)	13(4.8)	13(6.5)	0.07
Median (IQR) eGFR; cc/min/1.73 ²)	96.3(82.6-105.3)	95.3(82.6-101.9)	95.9(81.5-104.1)	97.6(83.9- 114.5)	0.14
Metabolic syndrome, N (%)	58(8.6)	14(7)	27(9.9)	17(8.5)	0.54

D4T: stavudine, TDF: tenofovir disproxil fumarate, NNRTI: non nucleoside reverse transcriptase, PI: protease inhibitor, bPI: boosted protease inhibitor, CVD: cardiovascular disease, CAD: coronary artery disease, HBV: chronic hepatitis B, HCV: chronic hepatitis C, eGFR: estimated glomerular filtration rate, ART: antiretroviral therapy

Table 2. Regression analysis of vitamin d and associated factors

Characteristics	Vitamin D group		Odds Ratio (95% CI)			
	Normal	Insufficient/ Deficient	Unadjusted	P	Adjusted	P
25(OH) D	25(OH) D	25(OH) D	(95%CI)	value	(95%CI)	value
> 30ng/ml	<=30ng/ml					
N=199						
		N=474				
Gender N (%)						
Male	120(33.5)	238(66.5)	1	0.02	1	
Female	79(25.1)	236(74.9)	1.50(1.1- 2.1)	1.6(1.1- 2.2)	0.010	
Age, years N (%)						
<40	95(33.8)	186(66.2)	1	0.04	1	
>40	104(26.5)	288(73.5)	1.41(1.0- 1.9)	1.6(1.1- 2.2)	0.010	
HIV transmission N (%)						
Heterosexual contacts	141(28.7)	351(71.3)	1	0.54		
Homosexual contacts	36(31.5)	78(68.5)	0.87(0.6- 1.3)			
Season N (%)				0.55		
Dry season	75(31)	167(69)	1			
Rainy season	124(28.8)	307(71.2)	1.1 (0.8- 1.6)			
EFV containing regimen N (%)						

No					
Yes	115(33.5)	308(66.5)	1	1	
	44(20.9)	166(79.1)	1.9(1.3- 2.78)	0.001	1.9(1.3- 2.8)
				0.001	

NVP containing regimen N (%)

No

Yes	163(29.1)	396(70.9)	1	0.61
	36(31.6)	78(68.4)	0.9 (0.6- 1.37)	

TDF containing regimen N (%)

No,

Yes	39(27.9)	101(72.1)	1	0.62
	160(30)	373(70)	0.9(0.6-1.4)	

Ritonavir containing regimen

No

Yes	79(24.7)	244(75.3)	1	
	120(34.1)	230(65.9)	1.4(1.1-2.0)	0.04

Duration of ART, years	8.5(4.9- 10.6)	9.0(5.0- 10.4)	1.0(0.9-1.1)	0.54
------------------------	-------------------	-------------------	--------------	------

CVD

(hypertension,stroke,CAD),N(%)

No	171 (31)	382(69)	1	0.09
Yes	28(23.3)	92(76.1)	1.5(0.9-2.3)	

Diabetes Mellitus, N(%)

No	182(29.3)	439(70.7)	1	0.61
Yes	17(32.7)	35(67.3)	0.9(0.5-1.6)	

EFV: efavirenz, NVP: nevirapine, TDF: tenofovir disoproxil fumarate, CVD: cardiovascular disease, CAD: coronary artery disease, HBVART: antiretroviral therapy

Figure Legend

Figure 1: vitamin D concentrations between Male and female (1A), older than 40 years old and younger 40 years old (1B) and efavirenz use(1C)

Figure 1A vitamin D concentrations between male and female

Figure 1B vitamin D concentrations between older than 40 years old and younger 40 years old

Figure 1C vitamin D concentrations between efavirenz use

Figure 1 : vitamin D concentrations between Male and female (1A), older than 40 years old and younger 40 years old (1B) and efavirenz use(1C)

Figure 1A vitamin D concentrations between male and female

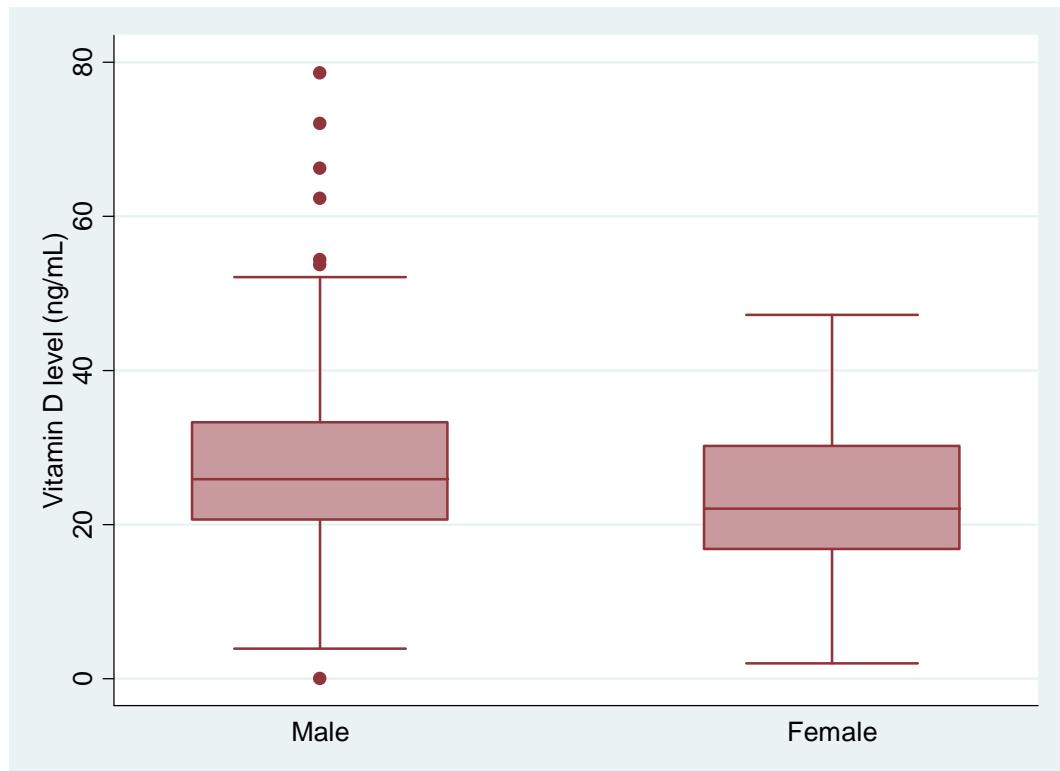


Figure 1B vitamin D concentrations between older than 40 years old and younger 40 years old

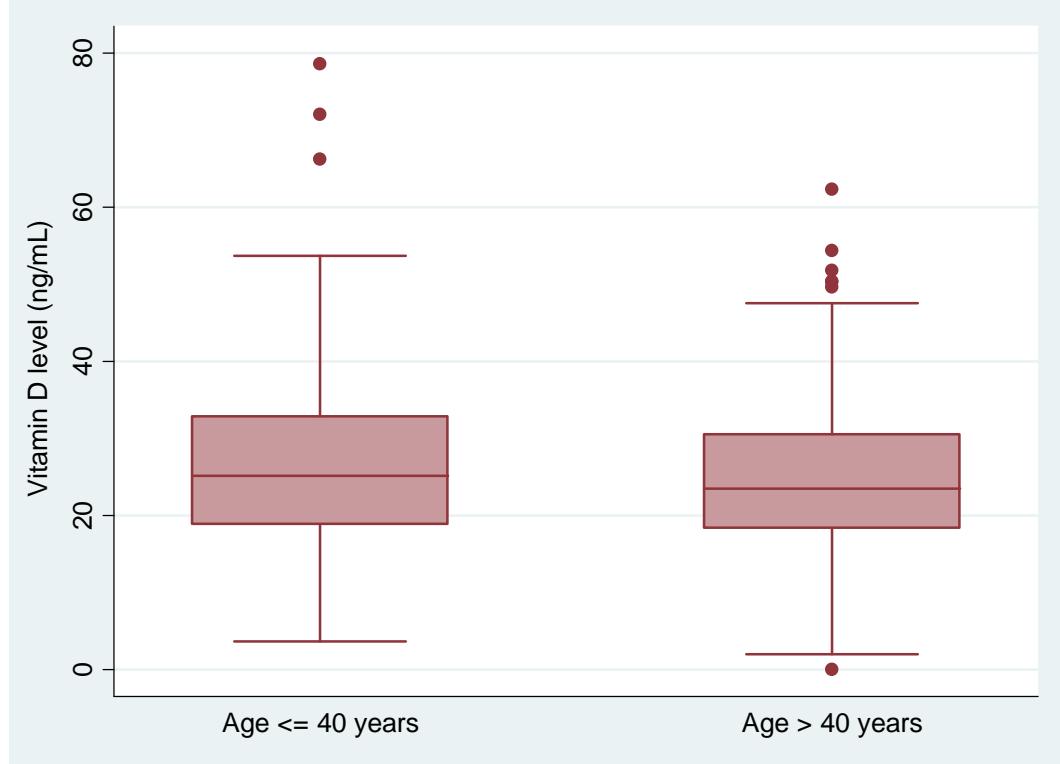
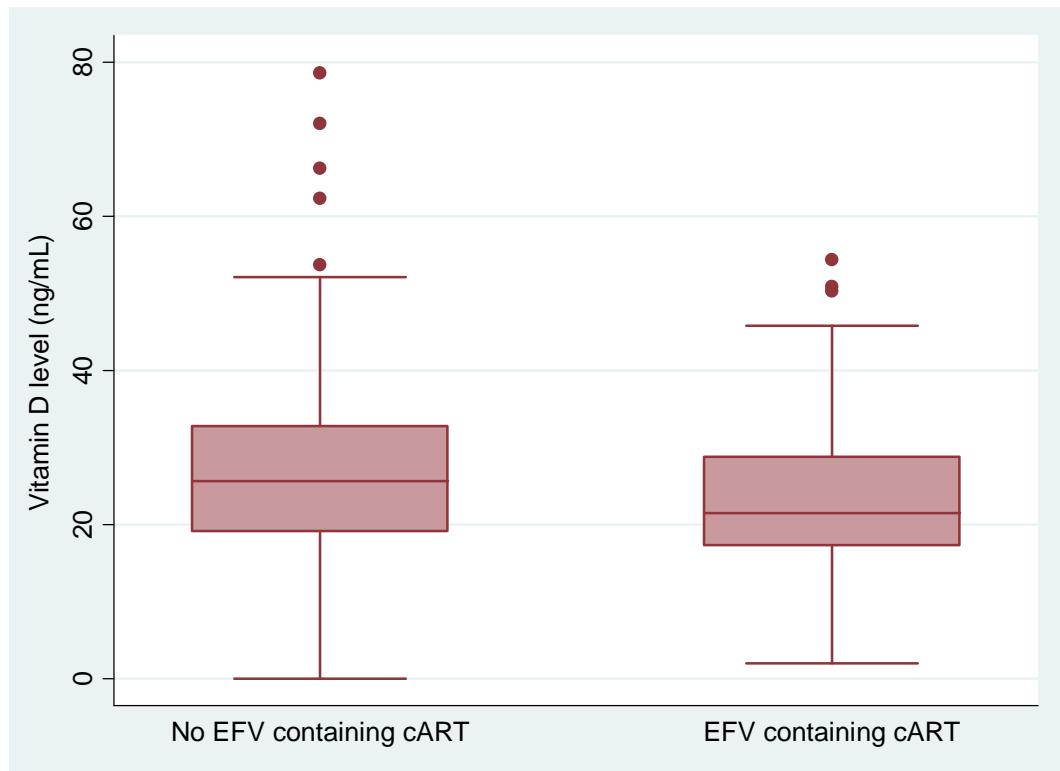



Figure 1C vitamin D concentrations between efavirenz use

