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ABSTRACT  

 
Project Code:  RSA 5480001 
Project Title: Nonlinear Frame Model for Large Displacement Inelastic Analysis of 
FRA                 Frame Structures 
Investigator: Associate Professor Dr. Suchart Limkatanyu 
            Department of Civil Engineering, Faculty of Engineering,  
                    Prince of Songkla University 
Project Period:    2 Years 
 

The main goal of this research is to develop and implement the simple but efficient 
nonlinear frame models (bar and beam) that take into account geometric and material 
nonlinearities. These frame elements can be used to model both elastic and inelastic 
behaviors of slender framed structures undergoing large displacements and large 
rotations. The material nonlinearity is included into the models through the fiber-section 
discretization. This could be done with ease since the Euler-Bernoulli-von Karman beam 
theory will be used in describing the frame section kinematics. Therefore, the local 
geometric nonlinearity ( P   effect) is automatically accounted for. However, the use of 
standard displacement-based frame element with this nonlinear beam theory can lead 
to the so-called membrane-locking problem, thus resulting in an over-stiff frame model. 
One way to remedy this locking phenomenon is to use the reduced integration 
technique. In this research, both Hellinger-Reissner mixed and force-hybrid variational 
principles are used to develop the nonlinear frame elements within the corotating local 
framework. This stems from the fact that the resulting frame elements are locking free 
and have superb performance in describing the inelastic actions when compared with 
the standard displacement-based frame models. The global geometric nonlinearity 
( P   effect) is introduced into the models via the corotational approach.  
Keywords: Corotational formulation; Large displacement/rotation; Hellinger-Reissner 
mixed functional; Nonlinear bar element; Nonlinear beam element; Geometric 
nonlinearity; Material nonlinearity; Euler-Bernoulli-von Karman beam theory; Total 
Lagrangian formulation. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Importance and Motivation of This Research 
 

During the last sixty years, the level of structural analysis needed to assess and 

analyze structural performance has been more and more sophisticated especially with 

drastic advances on computer technology as well as a better understanding of the 

physical and mathematical principles governing the behavior of complex structures. 

The driving forces for higher requirement on structural analysis are partly due to the 

occurrence of catastrophic damages, loss of human lives, etc. during exceptional and 

extreme events (e.g. rare earthquakes, terrorist attacks, construction errors, etc.). 

These force structural engineers to rely on more advanced structural modeling 

techniques in order to understand and trace the structural behavior under abnormal 

loading conditions. Generally, abnormal loads are categorized as exerted forces not 

accounted for in the design of structures during their service lives. In the worst case 

scenario, these abnormal loads can eventually result in the structural collapse. 

Therefore, nonlinear behaviors of structures due to material properties and geometric 

changes are necessarily included in more reliable structural models. This leads to a 

need for the simple but efficient numerical model capable of simulating the nonlinear 

behavior of structures undergoing large displacements and rotations associated with 

several collapse limit states. Such a numerical model is also essential to assess the 

safety of structural design for progressive collapse resistance. Progressive collapse of 

structures is characterized by local failure of primary structural components leading to 

the collapse of entire structures or disproportionately large parts of them. Following 

the tragic loss due to the collapse of the Ronan Point Apartment building in London in 
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1968 as shown Figure 1, progressive collapse of structures has become a growing 

concern among structural engineers to include it as an important consideration for 

structural design. The use of finite element models that fail to account for either 

material or geometric nonlinearity is inadequate to give accurate and reliable analysis 

results, thus preventing structural engineers from understanding the whole process of 

structural collapse. Consequently, the primary focus of this work is to develop and 

implement simple but efficient nonlinear frame elements capable of taking into 

account both material (inelastic) and geometric (large displacements and rotations) 

nonlinearities.  

 

 

Figure 1: Ronan Point Apartment Building 

(http://en.wikipedia.org/wiki/Ronan_Point) 

Furthermore, the drastic advance in material technology has resulted in engineering 

structures with high-strength but lightweight in nature (e.g. aerospace structures, 

marine vehicles, innovative structural buildings, etc.). Such structures often fail by 

losses of their stability and may behave elastically well into the post-buckling regime. 

During the post-buckling regime, these structures generally experience large 
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displacements and rotations. Therefore, the use of nonlinear frame elements 

developed herein is also essential in predicting the pre and post buckling responses of 

these structures.  

 
1.2 Objectives of This Research 

 

The main goal of this research is to develop and implement the simple but efficient 

nonlinear frame models that take into account geometric and material nonlinearities. 

These frame elements can be used to model both elastic and inelastic behaviors of 

slender framed structures undergoing large displacements and large rotations. The 

material nonlinearity is included into the models through the fiber-section 

discretization. This could be done with ease since the Euler-Bernoulli-

von Ka rma n  beam theory will be used in describing the frame section kinematics. 

Therefore, the local geometric nonlinearity ( P   effect) is automatically accounted 

for. However, the use of standard displacement-based frame element with this 

nonlinear beam theory can lead to the so-called membrane-locking problem, thus 

resulting in an over-stiff frame model (Reddy, 2005). One way to remedy this locking 

phenomenon is to use the reduced integration technique (Hughes, 1987). In this 

research, both Hellinger-Reissner mixed and force-hybrid variational principles 

(Limkatanyu and Spacone, 2006) are used to develop the nonlinear frame elements 

within the corotating local framework. This stems from the fact that the resulting 

frame elements are locking free and have superb performance in describing the 

inelastic actions when compared with the standard displacement-based frame models 

(Limkatanyu and Spacone, 2002). The global geometric nonlinearity ( P   effect) is 

introduced into the models via the corotational approach.    
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The objectives of this research can be summarized as follows: 

1. Develop and implement the efficient nonlinear finite element models as a 

reliable numerical tool for large displacement elastic and inelastic analyses of 

frames. 

2. Explore the importance of including the rotational-related quadratic terms in 

the local strain-displacement equations (Euler-Bernoulli-von Ka rma n  beam 

theory).  

3. Explore the feasibility of formulating the Hellinger-Reissner mixed frame 

elements within the framework of the Euler-Bernoulli-von Ka rma n  beam 

theory. 

4. Explore the feasibility of merging the Hellinger-Reissner mixed fiber frame 

elements with the corotational approach. 

5. Compare the performance of the developed frame elements with the standard 

displacement-based frame elements formulated based on total Lagrangian, 

updated Lagrangian, and corotational approaches and indicate their pros and 

cons. 

6. Validate the accuracy of the developed frame elements by comparing their 

numerical results to benchmark analytical results, to results obtained from 

other finite element software, and to experimental results published in the 

literature. 
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1.3 Literature Review 

 

To certain extent, all engineering structures response nonlinearly to their applied 

loads. In particular, structural collapse may be induced by both material failures and 

geometric changes. Consequently, the inclusion of both material and geometric 

nonlinearities into the numerical models is essential in understanding the realistic 

collapse mechanism of engineering structures. Since the main focus in this research is 

on reticulated structures, only finite frame elements for large-displacement inelastic 

analysis of frame structures are developed. Therefore, a literature review relevant to 

the development of nonlinear frame models incorporating material and geometric 

nonlinearities is presented in this section. The review begins with frame models 

considering material nonlinearity and ends up with frame models considering 

geometric nonlinearity. 

 

1.3.1 Material Nonlinearity 

Nonlinear frame elements are used to discretize a building into a skeletal structure.  

The hysteretic behavior of non-linear elements is either introduced at the element ends 

or is spread over the entire element length. As a result, the element formulation can be 

classified into two groups: (a) lumped nonlinear frame models, and (b) distributed 

nonlinear frame models. Several nonlinear frame elements belonging to these two 

element formulations have been proposed by several researchers in the research 

community. 
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1.3.1.1 Lumped Nonlinear Frame Models 

In lumped nonlinear frame models, inelastic zones are idealized as zero-length plastic 

hinges in the form of hysteretic springs. At each inelastic region, more than one 

hysteretic spring can be used depending on the number of nonlinear actions to be 

represented. Each hysteretic spring represents either flexural, shear, or bond-slip 

mechanism. Several lumped nonlinear frame models have been proposed by several 

researchers. Among others, the widely used lumped models are the two-component 

model by Clough et al. (1965), the one component model by Giberson (1969), and the 

sandwich-like model by Lai et al. (1984). An excellent overview of the lumped 

nonlinear frame models is presented in the state-of-the-art report by Comite Euro-

International du Beton: Task Group III/6 (1996). 

1.3.1.1.1 Pros and cons of lumped nonlinear frame models 

The actual behavior of a structural member (either steel or reinforced concrete) 

involves the gradual penetration of inelastic deformations into the members as a 

function of the excitation history. The use of lumped nonlinear frame models greatly 

simplifies the representation of this behavior. However, the limitations of these 

models have been recognized in several correlation studies, especially in large 

resisting elements of flexural wall-frame system (Charney and Bertero, 1982; Bertero 

et al., 1984). The main advantages of lumped nonlinear frame models are the 

followings: (a) the compactness of their mathematical formulation, which reduces 

storage requirements and computational cost and improves numerical stability, and 

(b) the ease of including the effects of different inelastic actions (flexural, shear, and 

bond-slip) into the models. However, the lumped representation of the inelastic 

behavior oversimplifies certain crucial aspects of the hysteretic behavior of structural 

members and hence limits the applicability of the models. One such limitation derives 



 7

from an ad-hoc assumption needed to define the hysteretic parameters of the end-

springs. Several researchers (Mahin and Bertero, 1975; Agardh, 1974; 

Anagnostopoulos, 1981) performed parametric and theoretical investigations of 

reinforced concrete beams under monotonic loadings and showed that there is a strong 

combination between model parameters and loading pattern. None of these two 

factors is expected to remain constant during the entire loading history. This problem 

is further magnified by the fluctuation of the axial forces in compression members. 

Because of this history dependence, damage predictions at the global level as well as 

at the local level may be completely inaccurate. Furthermore, most lumped nonlinear 

frame models fail to describe the deformation softening behavior of reinforced 

concrete members. Deformation softening is usually indicated by the reduction in 

loading resistance under increasing deformations.     

1.3.1.2 Distributed Nonlinear Frame Models 

Distributed nonlinear frame models give a more refined and accurate description of 

the inelastic behavior of structures. Unlike lumped nonlinear frame models, the 

inelastic behavior can take place in any section in the distributed nonlinear frame 

model. In a reinforced concrete structure, the discrete nature of cracks is represented 

via the smeared crack concept. The nonlinear nature of a cross-section can be 

formulated either by the classical plasticity theory (Prager and Hodge, 1951) in terms 

of the stress and strain resultants or by the fiber-section discretization. The main 

drawback of the first approach is the need for specific force-deformation relations for 

specific shapes of cross section. Due to the loss of its generality, the first approach is 

mostly applied to steel frame structures where standard shapes of member cross 

section are available. Furthermore, the difficulty of characterizing partial yielding of 

the cross section is another drawback of this approach. The fiber-discretized section is 
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a more refined and rational way to introduce the distributed nonlinear feature. The 

detailed discussion of the fiber-discretized section is presented in Spacone (1994). 

The fiber-discretized section model can be combined with the finite frame element to 

develop the more refined and rational distributed nonlinear numerical model for frame 

structures. This may lead to different nonlinear fiber frame elements derived based on 

different variational principles (Limkatanyu, 2002). These nonlinear fiber frame 

models can be classified into three groups: (a) displacement-based model (e.g. 

Hellesland and Scordelis, 1981; Rubiano-Benavides, 1998); (b) force-based model 

(e.g. Ciampi and Carlesimo, 1986; Spacone et al., 1996; Limkatanyu and Spacone, 

2002); and (c) multi-fields (mixed) model (e.g. Limkatanyu and Spacone, 2002; 

Taylor et al., 2003; Lee and Filippou, 2009). The pros and cons of these three fiber 

frame models are comprehensively discussed in Limkatanyu (2002). Generally, the 

force-based and mixed frame elements are more accurate than the displacement-based 

element. This advantage stems from two main observations: (1) in some simplified 

cases the internal force distributions in frame elements are known “exactly”. This is, 

for example, the case of the reinforced concrete element with perfect bond; (2) in 

general, the force fields along the element are smoother than the deformation fields, 

which may show large jumps in the inelastic zones, especially where plastic hinges 

tend to form (i.e., in the column base, girder ends, beam midspan, etc.). While the 

development of elements that use force shape functions is per se simple, the 

implementation of such elements in an existing nonlinear structural analysis program 

is the real challenge in the element formulation.    
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1.3.2 Geometric Nonlinearity 

In recent years, the development of finite elements for the nonlinear analysis of frame 

structures has attracted many researchers. Depending on the choice of reference 

configuration and the method of kinematical description, there are three finite element 

models for geometrically non-linear frame problems, namely: (a) Total Lagrangian 

(TL) model; (b) Updated Lagrangian (UL) model; and (c) Corotational (CR) model. 

However, the most widely used models are derived based on the total Lagrangian and 

updated Lagrangian kinematical descriptions of a displaced body. Most of 

geometrically nonlinear finite element models implemented into commercial finite 

element packages available in the market (e.g. ABAQUS, ANSYS, etc.) are derived 

based on these two kinematical descriptions. However, during the last twenty years, 

the concept on the corotational kinematical description has been more understood and 

gained more popularity. Especially, the corotational concept is well-suited to a certain 

class of nonlinearly geometric frame problems in which displacements and rotations 

are large but strains are moderate. This is due to its natural treatment of rigid-body 

motions.  

A brief review of these three kinematical descriptions (TL, UL, and CR) will be 

provided in the following. More comprehensive review can be found in Vu (2006) 

and Belytschko et al. (2000). To gain the big picture of the total Lagrangian, updated 

Lagrangian, and corotational approaches, let us consider the schematic motion of a 

frame element shown in Figure 1-1. 
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Figure 1-1: Motion of a Frame Element  

In the total Lagrangian formulation, the reference system is the original undeformed 

element configuration 0C . All static and kinematic variables of the current element 

configuration nC  are referred to this reference configuration. Several total Lagrangian 

frame elements for large displacement problems have been proposed by several 

researchers in the research community (e.g. Bathe and Bolourchi, 1979; Crespo Da 

Silva, 1988; Iura and Atluti, 1988; Saje, 1990; Pacoste and Eriksson, 1997; Nanakorn 

and Vu, 2006; etc.) Within the total Lagrangian framework, a highly nonlinear beam 

theory (Reissner’s beam theory) is usually required to simulate the frame motion even 

if the relative deformations of the frame experiencing finite rigid displacements are 

small. Using the standard Hermite frame interpolation functions leads to the problem 

of field inconsistency (Nanakorn and Vu, 2006). This is due to the fact that for large 

displacement problems, the longitudinal displacement field, the transverse 

displacement field, and the sectional rotation field are complicatedly dependent on 
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each other. In other words, these three field variables must satisfy a set of nonlinear 

kinematical constraints as advocated by the refined beam theory proposed by Reissner 

(1972). Several researches have proposed several approaches to overcome this 

difficulty, For example, Saje (1990) and Nanakorn and Vu (2006) proposed the semi-

analytical approaches to obtain the field-consistency interpolation functions. More 

comprehensive explanation of the total Lagrangian formulation is given in Bathe 

(1996) and Belytschko et al. (2000).  

In the updated Lagrangian formulation, the last computed equilibrium configuration 

1nC   of the displaced element is used as the reference system. All static and kinematic 

variables of the current element configuration nC  are referred to this reference 

configuration. A rectangular coordinate frame ( 1 1,n nx y  ) is usually attached to the 

last computed equilibrium configuration. In each incremental step, this attached 

coordinate frame is updated. Several updated Lagrangian frame element for large 

displacement problems have been proposed by several researchers in the research 

community (e.g. Bathe et al., 1975; Bathe and Bolourchi, 1979; Yang and McGuire, 

1986; Gattass and Abel, 1987; Chan, 1988; Yang and Leu, 1991; Shugyo, 2003; etc.). 

Due to the updating nature of the reference configuration, the standard Hermite 

interpolation functions could be used if the displacement increment from the reference 

element configuration 1nC   to the current element configuration nC  is sufficiently 

small. If this is not to be the case, the use of the standard Hermite interpolation 

functions may lead to the field-inconsistency problem (Nanakorn and Vu, 2006).  

Besides total Lagrangian and updated Lagrangian formulations used to derive 

geometrically nonlinear frame elements, the corotational concept is an alternative to 

formulate the numerical model for large displacement and large rotation analysis of 

frame structures and becomes extremely popular. The corotational concept, dating 
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back to the early 60’s (Argyris et al., 1964), has employed the polar decomposition 

principle used in continuum mechanics in its rudimentary form. Following the polar 

decomposition principle (Malvern, 1969), the deformational motions of a solid body 

can be separated from its rigid body motions (translations and rotations). In other 

words, the total motion of a solid body can be decomposed into two parts, namely: 

rigid-body part and deformational part. In the finite frame element formulation, this 

decomposition can be done by attaching a local coordinate frame ( ,c cx y ) corotating 

with the average rigid body rotation of the current element configuration nC . 

Consequently, the rigid-body motions of the current element configuration can be 

nicely represented by the rigid-body motions of the corotating local coordinate frame 

and the deformations of the current element configuration can be simply measured 

with respect to the corotating local coordinate frame. Since the deformational part of 

the motion is generally small with respect to the corotating local frame, the linear 

beam theory (i.e. Euler-Bernoulli beam theory) can be employed to describe the 

relative deformations in the corotating local coordinate system. The geometric 

nonlinearity is introduced globally via the coordinate transformation between the 

displacements with respect to the corotating local coordinate system and 

displacements with respect to the fixed global coordinate system. Up to date, the 

corotational concept has been employed by several researchers to formulate 

geometrically nonlinear frame elements (e.g. Powell, 1968; Oran, 1973; Belytschko 

and Glaum, 1979; Rankin and Brogan, 1984; Crisfield, 1990; Krenk et al., 1999; Scott 

and Filippou, 2007; etc.). 
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1.4 Research Methodology 

 

The main focus of this research is on the development and implementation of the 

simple but efficient nonlinear frame models accounting for geometric and material 

nonlinearities. The research will involve the following phases;  

1.4.1 The formulation and implementation of the finite element model for large 

displacement elastic and inelastic analyses of frame structures.  

The finite element formulation of the nonlinear frame element will start from the 

derivation of governing differential equations (strong form) and then the variational 

principle will be used to derive the finite element equation (weak form). 

This finite element model will be implemented in FEAP (Finite Element Analysis 

Program). FEAP is the general-purpose finite element program developed by 

Professor R.L. Taylor at University of California, Berkeley and was extensively used 

by the principal investigator of this research during his doctoral work.  

1.4.2 The development and implementation of constitutive relations for steel and 

concrete. 

x

y

z

z

y
thi fiber

 

Figure 1-2: Frame Element: Discretization of Cross Section into Fibers 

In this research, the fiber-section model (Figure 1-2) will be developed to 

model the nonlinear behavior of the frame element. The fiber-section model 
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automatically couples the interactions between the axial force and bending moment 

and allows the proposed frame element to analyze several types of frame structures 

(Figure 1-3).  

(a) (b)

(c)  

Figure 1-3: Fiber-Discretization of Frame Sections: (a) Square RC Section; (b) 

Circular RC Section; (c) Steel H Section. 

In the fiber-section model, each fiber represents the constituent material of the section 

(e.g. concrete, steel). In this research, only the reinforced concrete and steel piles are 

of interest. Consequently, the following uniaxial laws will be developed and be 

implemented in the library of constitutive laws. 
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1.4.2.1 Confined and Unconfined Concrete  

Concrete Strain
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Figure 1-4: Concrete Material Model under Cyclic Loading in Compression 

The concrete material model (Figure 1-4) used in this research is based on the 

modified Kent-and-Park model. The original model proposed by Kent and Park 

(1971) was modified by Scott et al. (1982) to account for the confinement effects and 

was later modified by Yassin (1994) to include the tensile stiffening and the tensile 

damage. The main features represented by this modified version of Kent-and-Park 

model are as follows: 

- The influence of concrete confinement on the monotonic envelope curve in 

compression. 

- The effect of tensile damage under unloading and reloading. 

- The tensile stiffening 

- The hysteretic response under cyclic loadings. 
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1.4.2.2 Steel 
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Figure 1-5: Steel Material Model under Cyclic Loading 

In this research, the steel material model (Figure 1-5) under monotonic or cyclic 

loading is described by the nonlinear model of Menegotto and Pinto (1973), as 

modified by Filippou et al. (1983) to include the isotropic hardening effects.  

1.4.3 Verification of the model accuracy. 

The accuracy of the numerical models proposed in this research will be verified 

through several correlation studies between the numerical and analytical results of 

benchmark problems published in the literature. The following classes of problems 

will be considered:  

(a) Cantilever beam with a concentrated load at the free end (Bisshop and Drucker, 

1945). 

(b) Cantilever beam with an end moment (Mattiasson, 1981). 

(c) William’s toggle frame (William, 1964). 

(d) Lee’s frame (Lee et al., 1968) 
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1.4.4 Correlation studies between the experimental and numerical results. 

The capability of the proposed frame elements in collapse analysis will be assessed 

through correlation studies between the experimental and analytical results available 

in literature.  

 

1.5 Scope of This Research Area 
 
 

The main scope of the proposed research is to develop a set of realistic and easy to 

use numerical models for the nonlinear analysis of frame structures considering both 

geometric and material nonlinearities. The project is especially important in view of 

the assessment of vulnerability of framed structures against progressive collapse 

scenarios induced by extreme events (e.g. rare earthquakes, terrorist attacks, 

construction errors, etc.).  

 



CHAPTER 2 

UNIAXIAL CONSTITUTIVE LAWS 

 

2.1  General 

 

This chapter presents the constitutive models for reinforcing steel, concrete, and soils. 

The nonlinear behavior of reinforcing steel under monotonic or cyclic loading is 

modeled using the Menegotto and Pinto (1973) stress-strain relation.  This model was 

later modified by Filippou et al. (1983) to include isotropic-hardening effects. As for 

the plain concrete, the Kent and Park (1971) stress-strain relation is used with the 

modification proposed by Scott et al. (1982) to include the confinement effects. This 

model was later modified by Yassin (1994) to include tensile strength and tensile 

damage. All of aforementioned constitutive laws are based on uniaxial behaviors and 

are expressed in the strain (deformation) space.  

 

2.2  Steel Constitutive Law 

In the present study, the reinforcing steel stress-strain behavior under monotonic or 

cyclic loading is described by the nonlinear model of Menegotto and Pinto (1973), as 

modified by Filippou et al. (1983) to include the isotropic hardening effects. The 
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model is computationally efficient and can closely represent experimental results 

from cyclic tests on reinforcing bars.  
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Figure 2-1 Menegotto-Pinto Model  

In the Menegotto and Pinto steel model the stress-strain relation is defined by the 

following nonlinear equation: 
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A schematic representation of the steel model is shown in Figure 2-1. Eq. (2.1) 

defines a curved smooth transition from the straight-line through the origin with slope 

E0 to another straight-line through the yield point  0 0,   with slope E1. The tangent 

modulus Et of this transition curve is obtained by differentiating Eqs. (2.1), (2.2), and 

(2.3), and is given by the following expression. 
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       (2.4) 

In the previous equations, r and r are the stress and strain at the point of strain 

reversal (point A in Figure 2-1), which also forms the origin of the asymptote with 

slope E0 (line (a) Figure 2-1). 0  and 0 are the stress and strain at the point of 

intersection of the two asymptotes (point B in Figure 2-1). The parameter b is the 

strain-hardening ratio, that is b =  E1 / E0. The parameter R is introduced to control the 

shape of the transition curve between the asymptotes and permits a good 

representation of the Bauschinger effect. As shown in Figure 2-1,  ,r r   and 

 0 0,   are updated after each strain reversal. 
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Normalized Steel Strain

N
or

m
al

iz
ed

 S
te

el
 S

tre
ss

 

1

0R
2

 2R 

 1R 

  1
0

2

y

y

aR R
a














 


B

C

A

 

Figure 2-2 Definition of Curvature Parameter R in Menegotto-Pinto Steel Model  

The parameter R is dependent on the absolute strain difference between the current 

asymptote intersection point (point B in Figure 2-2) and the previous maximum or 

minimum strain reversal point (point C in Figure 2-2) depending on whether the 

current strain is increasing or decreasing, respectively. The expression for R 

suggested by Menegotto and Pinto is as follows: 

   1
0

2

aR R
a




 


 (2.5) 

where R0 is the value of the parameter R during first loading and a1 and a2 are 

experimentally determined parameters to be defined together with R0. The definition 

of   remains valid in case that reloading occurs after partial unloading 

Some elucidations are needed in connection with the set of rules for unloading and 

reloading, which are implied by the use of Eqs. (2.1) through (2.5), allowing for a 

generalized load history. If the analytical model had a memory extending over all 

previous branches of stress-strain history, it would allow for the resumption of the 

previous reloading branch, as soon as the new loading curve reached it. This would 



 22

require that the model stores all necessary information to retrace all previous 

incomplete reloading curve. This is clearly impractical from a computational 

standpoint. Memory of the past stress-strain history is, therefore, limited to a 

predefined number of values, which in the present model are: 

1. The monotonic envelope. 

2. The ascending upper branch originating at the reversal point with smallest   

value. 

3. The descending lower branch curve originating at the reversal point with 

largest   value. 

4. The current curve originating at the most recent reversal point. 

Due to the above restrictions reloading after partial loading does not rejoin the 

original reloading curve after the point from which unloading started, but, instead, 

continues on the new reloading curve until reaching the monotonic envelope. 

However, the discrepancy between the analytical model and the actual behavior is 

typically very small, as discussed in details by Filippou et al. (1983). 

The above implementation of the model corresponds to its simplest form, as 

proposed in Menegotto and Pinto (1973): Elastic and yield asymptotes are assumed to 

be straight lines, the position of the limiting asymptotes corresponding to the yield 

surface is assumed to be fixed at all times and the slope 0E remains constant (Figure 

2-1). 

In spite of the simplicity in formulation, the model is capable of reproducing 

experimental results well. Its major drawback stems from its failure to allow for 
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isotropic hardening. To account for this effect Filippou et al. (1983) proposed a stress 

shift in the linear yield asymptote as follows: 

 max
3 4st y

y

a a 


 
   

 
 (2.6) 

where max  is the absolute strain at the maximum strain reversal point if the stress 

shift is applied to the negative yield asymptote, or at the minimum strain reversal 

point if the stress shift st  is applied to the positive yield asymptote. y  and y are 

the strain and stress at yield, respectively, and 3a and 4a  are experimental determined 

parameters. Although the model implemented in this study has the option of including 

isotropic hardening, that option is not exercised in the analytical studies. Therefore, 

the parameter values used in this study are: 0R = 20, 1a = 18.5, 2a = 0.15, 3a  = 0.0, 4a  

= 0.0. With the exception of the last two parameters, the values used are those in the 

original model of Menegotto and Pinto (1973). The study by Filippou et al. (1983) 

also showed that the steel model with and without isotropic hardening yielded yield 

almost identical results. 

 2.3  Concrete Constitutive Law 

The concrete material model used in this study is based on the modified Kent-and-

Park model. The original model proposed by Kent and Park (1971) was modified by 

Scott et al. (1982) to account for the confinement effects and was later modified by 

Yassin (1994) to include the tensile stiffening and the tensile damage. The main 

features represented by this modified version of Kent-and-Park model are as follows: 
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- The influence of concrete confinement on the monotonic envelope curve 

in compression. 

- The effect of tensile damage under unloading and reloading. 

- The tensile stiffening 

- The hysteretic response under cyclic loadings. 

In this study the effects of the tensile stiffening and tensile damage are neglected in 

the analysis of the reinforced concrete structures. As a result, only the concrete 

material model without tensile stiffening is presented. However, the tensile stiffening 

is of great importance in predicting the monotonic response of reinforced concrete 

slab and beam strengthened with FRP or steel thin plates. As a result, only the 

behavior of concrete material under monotonic tensile loading is presented. 

2.3.1 Concrete Stress-Strain Relation in Compression 
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Figure 2-3 Concrete Material Model under Cyclic Loading in Compression 
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The monotonic envelope of the concrete model in compression is based on the Kent 

and Park (1971) model, which was later modified by Scott et al. (1982) to account for 

the confinement effect. Even though more precise and sophisticated concrete models 

based on the plasticity theory (for example Willam and Warnke, 1974) have been 

more recently proposed by the research community, the so-called Kent and Park 

model represents a good compromise between simplicity and accuracy. A number of 

experimental studies on the behavior of plain concrete under repetitions of 

compressive stress (Sinha et al., 1964 and Karsan et al., 1969) indicate that the 

envelope curve for cyclic loading is very close to the envelope curve for the 

monotonic loading. Consequently, in this present study, the cyclic damage of the 

compression envelope is not taken into account  

In the modified Kent and Park concrete model of Figure 2-3 the three following 

regions are used to describe the monotonic concrete stress-strain relation: 
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The corresponding tangent stiffness Et are given by the following expressions: 

 
'

0
0 0

1c c
c t

K fE  
 

  
    

  
Region OA  (2.10) 

 '
0 c u t cE ZK f     Region AB  (2.11) 

 0u c tE  Region BC  (2.12) 

 



 26

where 

 0 0.002K   (2.13) 
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In the above equations, 0  is the concrete strain at maximum stress, K is a factor 

which accounts for the strength increase due to confinement, Z is the slope of the 

softening branch, '
cf  is the concrete compressive cylinder strength in MPa, yhf  is the 

yield strength of stirrups in MPa, s  is the ratio of the volume of hoop reinforcement 

to the volume of concrete core measured to outside of stirrups, 'h  is the width of 

concrete core measured to outside of stirrups, and hs  is the center to center spacing of 

stirrups or hoop sets. The empirical expressions of K and Z in Eq. (2.14) and (2.15), 

respectively, are given by Scott et al. (1982). 

If concrete is confined by stirrup-ties, Scott et al. (1982) suggest that u  be 

determined conservatively from the following expression: 

  0.004 0.9 / 300u s yhf    (2.16) 

Crushing of concrete is accounted for by reducing the strength in concrete to '0.2 cf  

once the compressive strains exceeds the values of u . Figure 2-3 also shows the 

hysteretic behavior of the plain concrete stress-strain relation. The following rules are 

considered to define this behavior: 
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1. Unloading from a point on the envelope curve occurs along a straight line 

between the point r at which unloading starts and the point p  on the strain axis 

given by the following equations: 

 
2

0 0 0 0
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where 0  is the concrete strain at maximum stress in compression. Eq. (2.17), which 

relates the normalized strain on the envelope with the strains at the completion of 

unloading through a quadratic formula, was proposed by Karsan and Jirsa (1969). 

This equation shows unrealistic behavior under high compressive strain conditions. 

Therefore, Eq. (2.18) is introduced to the model so that the unloading modulus of 

elasticity remains positive under high compressive strains. 

2. As shown in Figure 2-3, the tensile resistance is ignored. Consequently, for 

concrete strains smaller than the concrete strain at complete unloading (crack 

opening). The concrete stress is equal to zero. 

3. On reloading in compression, the concrete behavior is in tension as long as the 

strain is smaller than the strain at complete unloading (crack opening). Once the 

concrete strain exceeds that value, reloading follows the previous unloading path. In 

reality, unloading and reloading follow nonlinear paths, which together form a 

hysteretic loop. However, this phenomenon is neglected here for the sake of 

simplicity. 
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2.3.2 Concrete Stress-Strain Relation in Tension 

The ability of the concrete between the cracks to resist the tensile stress and 

contribute to the member flexural stiffness is obtained by the concrete tension 

stiffening. Due to the discrete feature of the concrete cracks, concrete between cracks 

is still bonded to the reinforcing bars, hence contributing to the member stiffness. 

However, when the applied load is increased the crack intervals are closer and closer, 

hence limiting the contributions of concrete tension to the member stiffness. Beyond 

the post cracking state, the tensile stress decreases gradually when the applied load is 

increased. Past researches have considered the effect of tension stiffening by 

modifying the concrete tensile stress-strain relation such that, after the tensile strength 

(crack initiation), the tensile stress reduces gradually to zero as the tensile strain is 

increased. The descending path of the tensile stress-strain relation can be 

approximated as linear, multi-linear, or exponential decay functions. In this study the 

modified Kent and Park model developed by Yassin (1994) is adopted. In this 

modified model the linear descending path is used. The ultimate tensile strain tu  at 

which the tensile stress can no longer be resisted plays an important role in describing 

the tensile softening behavior. For this purpose, the fracture energy of concrete is 

considered so that the equivalent amount of energy can be dissipated by the concrete 

rupture between the nonlinear and linear branch model. The fracture energy fG  is 

defined as the amount of energy required to create one unit of area of a continuous 

crack and calculated by the area under the tensile stress-cracking opening softening 

diagram. Therefore, the fracture energy fG  can be expressed as 
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where fg  is the area under the tensile stress-strain diagram as shown in Figure 4-4. 

'
' t
t

c

f
E

   and tu is the ultimate strain beyond which stress can no longer transferred. 

The discrete crack model can be related to the smeared crack model by the 

relationship  

 1w h  (2.20) 

where w is crack opening displacement due to crack strain over the crack band width 

h in the direction of maximum tensile stress. Based on studies by Bazant and Oh 

(1983), the crack bandwidth is dependent on the aggregate size following the 

simplified equation. 

 3 ah d  (2.21) 

where ad  is the maximum aggregate size. Based on the linear descending model, the 

tensile softening modulus tsE  can be defined as: 
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where cE is the initial stiffness of the concrete. r0 is the elastic strain energy density, 

defined as: 

 ' '
0

1
2 t tr f   (2.23) 
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The monotonic response of concrete under tensile strain is shown in Figure 4-5. The 

monotonic tensile stress-strain relation and tangential stiffness are defined by the 

following equations: 
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Figure 2-4 Crack Model and Definition of Fracture Energy of Concrete 
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Figure 2-5 Monotonic Response of Concrete under Tensile Strain 

Clearly, the sizes of member and maximum aggregate have a significant effect on the 

tension stiffening behavior of the member. However, the rigorous calibration of these 

parameters is beyond the scope of this study. 

In this study the tensile behavior of model developed by Yassin (1994) takes into 

account the effects of tension stiffening.  Typically, the maximum tensile strength of 

the concrete (modulus of rupture) is approximately: 

 ' '0.6228t cf f  (2.25) 

where '
cf  and '

tf are described in MPa. 

 

 

 



CHAPTER 3 

TOTAL LAGRANGIAN FORMULATION OF PLANAR 

BAR ELEMENT USING VECTORIAL KINEMATICAL 

DESCRIPTION 

 
3.1    Introduction 

 

In recent years, the Performance-Based Design and Assessment Methodology (ICC 

2012) has been adopted in the structural engineering community. This forces 

structural engineers to rely on more advanced structural modeling techniques in order 

to understand and trace the structural responses to loading conditions ranging from 

service to collapse states. Therefore, a structural model capable of capturing the 

system nonlinearities is deemed essential in the Performance-Based Design and 

Assessment Methodology. 

Large truss structures have been frequently used as structural systems for both civil 

and aerospace engineering structures. Bridges, offshore platforms, and large-span arch 

roofs are examples of truss structures for civil engineering structures. Solar power 

satellite platforms and supporting structures for antennae are examples of truss 

structures for aerospace engineering structures. Designers of such systems usually try 

to optimize the structural weights, thus rendering the systems highly flexible and 

prone to instability when subjected to loadings. Furthermore, the structural materials 

used nowadays could possess high strengths but light weights due to the drastic 

advance in material technology. The truss structures made of such materials become 

highly flexible and experience large displacements when subjected to loadings. 

Consequently, a geometrically nonlinear bar element is inevitably needed to model 

such truss systems. 
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Nonlinear behavior of truss structures has been investigated by several researchers 

since the late sixties. Berke and Mallet (1969) performed nonlinear analyses of trusses 

using the energy search approach (Mallet and Schmit 1967) to investigate the 

combined effects of geometric nonlinearity and member elastic buckling. Wolf (1971) 

incorporated member inelastic post-buckling with linear structural theory to predict 

the post-buckling strength of trusses using the initial stress method (Zienkiewicz, et 

al. 1969). The event-by-event method in which buckled or yielding members were 

removed from the model was used by Schmidt et al. (1976) to perform nonlinear 

analyses of trusses. Papadrakakis (1983) refined the model by Schmidt et al. (1976) 

by providing the post-buckling and post-yielding branches for buckled and yielding 

members, respectively. Kondoh and Atluri (1985) derived the bar element stiffness 

matrices for both pre-buckling and post-buckling states using the Euler elastica 

theory. The displacement-based Lagrangian bar model was developed by de Freitas 

and Ribeiro (1992). In this model, the bar-section constitutive relation was used to 

account for local elasto-plastic buckling effects. The geometrically nonlinear bar 

model with a bilinear sectional response was developed by Greco et al. (2006) using 

the nonlinear positional formulation. Recently, the updated Lagrangian bar model 

with a linear elastic section behavior was proposed by Torkamani and Shieh (2011). 

In this chapter, a geometrically nonlinear bar element is developed within the total 

Lagrangian framework. Thus, the undeformed element state is used as the reference 

configuration. All statical and kinematical quantities of the current element state are 

measured with respect to this reference configuration. The vectorial form is 

conveniently used to describe the element kinematics and element strain as well as to 

eliminate the need of shape functions as required in a standard finite element 

formulation. The incremental equilibrium equations are obtained by linearization of 



 34

the nonlinear virtual displacement function. The generalized displacement control 

method proposed by Yang and Shieh (1990) is adopted as a nonlinear solution 

algorithm. Only linear elastic material law is of interest in this work. However, the 

model can naturally be extended to account for other more complex material 

behaviors (e.g. elastic-plastic, viscoelastic, etc.). Furthermore, it is worthwhile to 

emphasize that the total Lagrangian bar element developed in this chapter naturally 

complies with the material constitutive relation described in the total form (e.g. 

hyperelastic material, etc.). This kind of material law is widely used in modeling the 

behavior of nonlinear elastic materials (e.g. natural rubber, human muscle, etc.).   The 

in-house structural analysis software is developed in which the proposed nonlinear bar 

element, as well as the adopted solution algorithm, are implemented in the MATLAB 

programming language (Chapman 2005). The validity and efficiency of the developed 

software are confirmed by analyzing five truss structures exhibiting several types of 

critical points and comparing these results with those available in the literature.  

 

3.2    Total Lagrangian Formulation 

 
Depending on the choice of reference configuration and method of kinematical 

description, there are two model formulations for geometrically nonlinear analyses of 

truss structures, namely: (a) Total Lagrangian (TL) formulation; and (b) Updated 

Lagrangian (UL) formulation. The schematic motion of a truss element shown in 

Figure 3-1 is used to convey the big picture of total Lagrangian and updated 

Lagrangian formulations. In the total Lagrangian formulation, the reference system is 

the original undeformed element configuration 0C . All statical and kinematical 

variables of the current element configuration tC  refer to this reference configuration. 
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In the updated Lagrangian formulation, the last computed equilibrium configuration 

1tC   of the displaced element is used as the reference system. All statical and 

kinematical variables of the current element configuration tC  refer to this reference 

configuration. Due to its ease of model implementation and prevalent uses in research 

community, the geometrically nonlinear bar element developed in the present work is 

based on the total Lagrangian formulation. 

 

0C

1tC 

,X x

,Y y

tC

o
 

Figure 3-1: Schematic Motion of a Bar Element: Total Lagrangian vs. Updated 

Lagrangian Formulations. 
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3.2.1 Element Kinematics and Green-Lagrange Strain 

The kinematics of a two-node bar element is shown in Figure 3-2. In the reference 

configuration 0C , the element has cross sectional area 0A  and length 0L . Under 

loading exertion, the element displaces from the reference configuration 0C  to the 

current configuration tC  and the element cross sectional area and element length 

become tA  and tL , respectively. The first node moves from 0i  to ti  via horizontal and 

vertical displacements iU  and iV , respectively while the second node moves from 0j  

to tj  via horizontal and vertical displacements jU  and jV , respectively. The vectorial 

approach is used to describe the element kinematics and element strain as shown in 

Figure 3-3. The positional vectors of nodes i  and j  in the configuration 0C  are: 

 

U
o

tC

0i

0j

ti

tj

0 0,L A

V

iU

iV

0C

,t tL A

jU

jV

iUF
jUF

iVF

jVF

 
Figure 3-2. Element Kinematics. 
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Figure 3-3. Vectorial Description of Element Kinematics and Strain. 

 
T

i i i i i

T

j j j j j

X Y X Y

X Y X Y

     

     

X i j

X i j

 

   (3.1) 

The direction and length of the element with respect to the configuration 0C  are 
contained in the element vector jiX


, defined as: 

 
T

ji j i j i j iX X Y Y      X X X
  

 (3.2) 

Similarly, the positional vectors of nodes i  and j  in the configuration tC  are: 

 
T

i i i i i

T

j j j j j

x y x y

x y x y

     

     

x i j

x i j

 

   (3.3) 

The direction and length of the element with respect to the configuration tC  are 
contained in the element vector jix , defined as: 

 
T

ji j i j i j ix x y y      x x x    (3.4) 

The displacement vectors of nodes i  and j  moving from the configurations 0C  to tC  

are: 
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T

i i i i i

T

j j j j j

U V U V

U V U V

     

     

u i j

u i j

 

   (3.5) 

From the geometrical analysis of vectors in Figure 3-3, the current element vector jix  

can alternatively be written as: 

 ji ji ji x X u
   (3.6) 

where ji j i u u u    is the difference between displacement vectors of nodes i  and j .  

In the matrix relation, the relative vectors jiX


, jix , and jiu  can be written in terms of 

their relevant nodal quantities as: 

 ji X hX


; ji x hx ; and ji u hU  (3.7) 

where   h I I  is the rectangular mapping matrix; I  is the identity matrix; 

T

i i j jX Y X Y   X  is the reference nodal coordinate vector; 

T

i i j jx y x y   x  is the current nodal coordinate vector; and 

T

i i j jU V U V   U  is the nodal displacement vector.  

In the total Lagrangian formulation, a consistent finite strain measure is the Green-

Lagrange strains (Belytschko, et al. 2000). In a bar problem, only the axial strain 

component is present in the element formulation and is defined as:         

 
2 2

0
2

02
GL t
XX

L L
L

 
  (3.8) 

The squares of reference and current element lengths can be expressed as scalar 

products of their relevant element vectors as: 

 2
0

T
ji jiL  X X

 
 and 2 T

t ji jiL  x x   (3.9) 

Substituting Eqs. (3.6), (3.7), and (3.9) into (3.8), the axial strain component GL
XX  can 
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be expressed in terms of the reference nodal coordinate vector X  and nodal 

displacement vector U  as: 

 2 2
0 0

1 1
2

GL T T
XX L L

  X HU U HU  (3.10) 

where TH h h  is the square mapping matrix. It is noted that on the right-hand side of 

Eq. (3.10), the first term is a linear function of U  while the second term is a quadratic 

function of U . As a result, Eq. (3.10) represents the nonlinear compatibility relation 

between GL
XX  and U .   

3.2.2 Material Constitutive Law 

In total Lagrangian formulation, the stress measure conjugate to the Green-Lagrange 

strain tensor is the 2nd Piola-Kirchhoff stress tensor (Holzapfel 2000). In a bar 

problem, only the axial stress component 2PK
XXs  is present in the element formulation. 

Throughout this work, only a linear relation between axial stress and strain is of 

interest. Thus, the axial stress and strain are related through the following linear 

constitutive equation: 

 2PK GL
XX XXs E  (3.11) 

where E  is the elastic modulus. Based on this stress measure, the axial force is 

defined as: 

 2 2
0

PK PK
XXN A s  (3.12) 

With Eqs. (3.10) and (3.11), 2PKN  can be expressed in terms of U as:  

 2 0
2

0

1
2

PK T TA EN
L

   
 

X U HU   (3.13) 
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3.2.3 Element Equilibrium: The Virtual Displacement Principle 

As an alternative way to express the element equilibrium equations, the virtual 

displacement function is written in the general form as: 

 int extW W W     (3.14) 

where W  is the system total virtual work; intW  is the system internal virtual work; 

and extW  is the system external virtual work. 

In the case of a bar element, intW  and extW  can be expressed as: 

      
0

2 2
0, , ,GL PK GL PK

int XX XX
L

W N dX L N      U U U U U U   (3.15) 

   T
extW   U U F  (3.16) 

where the vector 
i i j j

T

U V U VF F F F   F  contains element nodal forces as shown 

in Figure 3-2; the vector 
T

i i j jU V U V       U  collects virtual nodal 

displacements; and GL
XX  is the virtual Green-Lagrange axial strain. Substituting Eqs. 

(3.15) and (3.16) into (3.14), the virtual displacement function becomes: 

     2
0, ,GL PK T

XXW L N     U U U U U F  (3.17) 

The directional derivative operator ( ˆGateaux operator) is used to obtain the virtual 

strain from the virtual nodal displacements as: 

            20
0

1, .GL GL GL T T
XX XX XX

dD
d L

      
 
      U U U U U U X U H U  (3.18) 

It is noted that  GL
XXD U . U  represents the directional derivative of the function 

 GL
XX U  in the direction of U . Substitution of Eqs. (3.18) into (3.17) yields: 

       
2

0

,
PK

T TNW
L

  
 

   
 

U U U H X U F  (3.19) 
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From the fundamental lemma of variational calculus (Washizu 1982), the equilibrated 

element configuration is obtained if  ,W U U  vanishes for all choices of U . 

Thus, from the arbitrariness of U , the nonlinear relation between the internal axial 

force 2PKN  and external applied nodal forces F is: 

    
2

0

PK
TN

L
 H X U F  (3.20) 

In summary, Eqs. (3.10), (3.13), and (3.20) represent the compatibility, constitutive, 

and equilibrium equations of the problem, respectively, and form the core of the 

displacement-based total Lagrangian bar element developed in this study. These three 

equations are conveniently represented in the so-called “Tonti’s Diagram” (Tonti 

1977) shown in Figure 3-4.         

Compatibility Equilibrium
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GL
XX 2PKN

F

2
0

1 1
2

GL T T
XX L

    
 

X U HU  
2

0

PK
TN

L
 H X U F

2
0

PK GL
XXN A E

Material Constitutive

strong form

weak form

 

Figure 3-4. Tonti’s Diagram for Displacement-Based Total Lagrangian Bar 

Element (Tonti 1977). 
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3.3    Incremental Equilibrium Equations 

Due to the nonlinear nature of compatibility and equilibrium equations, an 

incremental-iterative structural analysis is used to trace an equilibrium path of a 

nonlinear truss system. In this type of structural analysis, the tangent element stiffness 

matrix and the internal element resisting forces are needed and can be derived from 

linearization of the virtual displacement function of Eq. (3.19). Let iU  represent the 

current bar configuration. It is noted that this bar configuration is not necessary in 

equilibrium. Consequently, Eq. (3.20) may not be satisfied. With respect to iU , Eq. 

(3.19) can be linearized as: 

      
i i

L W W W    
U U

 (3.21) 

where 

    
2

0
i

PK
T T Ti

i
NW

L
    

U
U H X U U F  (22) 

The incremental virtual displacement function  
i

W
U

 can be determined using the 

directional derivative operator as: 

       
0

. , i

i i

dW D W W
d 

     





      

U U

U U
U U U U  (3.23) 

It is noted that   .
i

D W 
U

U  implies the directional derivative of the function  
i

W
U

 

in the direction of U . Carrying out the above expression and substituting it into Eq. 

(3.21) yield: 

            '
0 1 1 2

T
G i intL W           U k k k k k U f F  (3.24) 

where the element matrices are 
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0
0 3

0

0
1 3

0

' 0
1 3

0

0
2 3

0

2

0

T

T
i

T
i

T
i i

PK
i

G

EA
L

EA
L
EA
L
EA
L
N

L











k HXX H

k HXU H

k HU X H

k HU U H

k H

 (3.25) 

and the element vector is: 

  
2

0

PK
Ti

int i
N

L
 f H X U  (3.26) 

It is noted that all element matrices and element vector are explicitly written in 

Appendix.   

In the incremental-iterative solution technique,  L W  is forced to be zero regardless 

of U . Therefore, the incremental equilibrium equations are obtained as: 

 i i k U r  (3.27) 

where  

 '
0 1 1 2 G    k k k k k k  and i int r F f  (3.28) 

The tangent element stiffness matrix consists of five matrices of Eq. (3.25). 0k  is 

constant and corresponds to the stiffness matrix of a linear bar element; 1k  and '
1k  

are linear in current nodal displacements; 2k  are quadratic in current nodal 

displacements; and Gk  is linear in the current internal axial force. The vector ir  

represents the unbalanced forces between external and internal nodal forces. This 

incremental equilibrium equations are used to estimate incremental nodal 

displacements iU . These incremental nodal displacements are used to improve the 
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current nodal displacements iU  in obtaining the equilibrated element configuration 

corresponding to the applied nodal forces F. More details on the solution technique 

are to be discussed in the next section. 

 

3.4    INCREMENTAL-ITERATIVE SOLUTION PROCEDURE 

 

 
(a) 

 
(b) 

Figure 3-5. Breakdowns of Solution Procedures: (a) Load-Control Method; (b) 

Displacement-Control Method. 

One of the main objectives in analyzing a structure is to trace its equilibrium path. 

This is usually represented in the form of a load-displacement diagram. In linear 
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structural analysis, the applied load can be imposed on the structure in a single step. 

However, in nonlinear structural analysis, the applied load has to be subdivided into 

several increments and each loading increment is imposed on the structure in a 

successive manner, with or without corrective steps (equilibrium check). 

Consequently, the incremental solution procedures used in nonlinear structural 

analysis can be categorized into two types, namely: (a) the pure incremental method; 

and (b) the incremental-iterative method. The pure incremental method is the earliest 

nonlinear solution method and is simplest to implement. However, in each 

incremental step, drift-off error is accumulated and the obtained equilibrium path may 

greatly deviate from the true one since no equilibrium check is performed. Thus, this 

nonlinear solution scheme becomes obsolete nowadays. The incremental-iterative 

method is more effective and free from the drift-off error since equilibrium check is 

performed to eliminate the unbalanced forces between applied and internal resistant 

forces. This solution scheme is employed in this work.  

Two most widely used marching schemes in the incremental-iterative method are 

load-control and displacement-control methods. The concept of load-control method 

is very straightforward. The nodal force components are used as control variables. 

Unfortunately, this marching scheme becomes unstable after a limit point at which the 

tangent to the equilibrium path is horizontal as shown in Figure 3-5 (a). As a 

counterpart of load-control method, the nodal displacement components are used as 

marching variables in the displacement-control method. Even though the 

displacement-control method shows no difficulty in passing the limit point, it 

becomes unstable after a turning point at which the tangent to the equilibrium path is 

vertical, as shown in Figure 3-5 (b). Since both limit and turning points on 

equilibrium paths are of interest in this work, a more versatile marching scheme is 
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needed. Consequently, the so-called “generalized displacement control” method is 

employed herein to trace the equilibrium path since it can handle both limit and 

turning points. In addition to the generalized displacement control method, the so-

called “arc-length” method proposed by Riks (1972) and modified by Crisfield (1981) 

is widely used to handle the snap-back instability phenomenon. However, in several 

aspects, the generalized displacement control method adopted here is superior to the 

arc-length method. The pros and cons of these two methods are thoroughly discussed 

in Yang and Kou (1994).     

3.4.1 Generalized Displacement Control Method 

In this study, the generalized displacement control method proposed by Yang and 

Shieh (1990) is adopted to solve for solution of nonlinear equilibrium equations. A 

brief description of the method is given as follows:   

At the thj  iteration of the thi  incremental step, the incremental equilibrium equations 

of a structure are cast into the N+1 dimensional space as: 

 1 1ˆj j j j
i i i i   K U F R  (3.29) 

where 1j
i
K  is the structural stiffness matrix assembling from element tangent 

stiffness matrices 1j
i
k ; j

iU  is the incremental displacement vector; j
i  is the 

incremental load factor and is determined from the constraint equation; F̂  is the 

reference load vector; 1 1 1ˆj j j
i i int,i
    R F F  is the unbalanced force vector; 

1
1

1

j
j k
i i

k







    is the cumulative load factor; and 1j
int,i
F  is the internal resistant force 

vector assembling from element resistant force vector 1j
int,i
f .         

Based on the decomposition proposed by Batoz and Dhatt (1979), the incremental 
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solution of Eq. (29) can be written as: 

 j j j j
i i i i    U U U  (3.30) 

where j
iU  and j

iU  are determined from the following matrix equations: 

 
1

1 1

ˆj j
i i

j j j
i i i



 

 

 

K U F

K U R
 (3.31) 

At the beginning ( 1j  ) of the thi  incremental step, the unbalanced force vector 0
iR  

is null and the initial incremental load factor 1
i  is calculated from: 

 
1

1 1 2
1i GSP    (3.32) 

where 1
1   is the very first incremental load factor and is defined beforehand; and  

GSP is the generalized stiffness parameter and is calculated from the following 

constraint equation: 

 
1 1
1 1

1 1
1

T

T

i i

GSP


 

 

U U
U U

 (3.33) 

The parameter GSP accounts for the variation in stiffness of a system. It increases as 

the system is stiffer and decreases as the system is softer. Based on Eq. (29), the first 

incremental displacement vector at each incremental load step can be computed from: 

 0 1 1 ˆ
i i i K U F  (3.34) 

For subsequent iterative steps ( 2j  ), the initial incremental load factor j
i  is 

calculated from the following constraint equation: 

 
1

1

1
1

T

T

i i
jj

i i
i j






 
 

 

U U
U U

 (3.35) 

Eqs. (30) and (31) are employed to compute the incremental displacement vector 

j
iU   and the current displacement vector is updated accordingly: 



 48

  1
1

j
j converged k
i i i

k




  U U U  (3.36) 

where 1
converged
iU  is the converged displacement vector at the previous loading step.  

Similarly, the current load factor j
i  can be updated as: 

 1j j j
i i i

     (3.37) 

and the current applied load vector is:  

 ˆj j
i i F F  (3.38) 

In each incremental loading step, the iterative process is carried out until the 

following convergence criterion is satisfied: 

 
   1 1 1 ˆ

T

T

j j
i i

i i i


 






U R

U F
 (3.39) 

where   is the convergence tolerance and is specified beforehand. In this work, 

1210   is used in all analyses. 

3.4.2 Step-by-step Algorithm for Generalized Displacement Control Method 

The generalized displacement control method previously discussed is implemented in 

the in-house nonlinear structural analysis program and is incorporated into the 

proposed nonlinear bar element. The step-by-step procedure of the generalized 

displacement control method is presented as follows: 

1: Set the reference load vector F̂  and the very first incremental load factor 1
1 . 

2: At the beginning ( 1j  ) of the thi  incremental step,  

(i) Retrieve 0
iK  from the last converged step. 

(ii)  Compute 1
iU  from Eq. (3.31) 

(a) For the very first incremental loading step ( 1i  ), set GSP = 1. 
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(b) For subsequent loading steps ( 2i  ), use Eqs. (3.33) and (3.32) to 

determine GSP  and 1
i , respectively. 

(c) Check if 0GSP  , if yes, reverse the sign of 1
i . 

(d) Use Eq. (3.30) to compute 1
iU . 

3: For subsequent iteration steps ( 2j  ) of the thi  incremental step,  

(i) Retrieve 1j
i
K  and 1j

i
R  from the last iterative step. 

(ii) Compute 1
iU  and 1

iU  from Eq. (3.31). 

(iii) Compute j
i  from Eq. (3.35). 

(iv) Use Eq. (3.30) to compute j
iU .    

4: Use Eqs. (3.36), (3.37), and (3.38) to compute j
iU , j

i , and j
iF , respectively. 

5: For each element, perform the state determination to compute the current element     

stiffness matrix and element resistant force vector. It is noted that both statical and 

kinematical quantities required in the element state determination are measured 

with respect to the undeformed element configuration within the total Lagrangian 

framework.  

    Based on j
iU : 

(i) Compute 2,PK j
iN  from Eq. (3.13). 

(ii) Compute j
ik  from Eq. (3.25). 

(iii) Compute 1j
int,i
f  from Eq. (3.26). 

6: Assemble j
iK  from j

ik  and 1j
int,i
F  from 1j

int,i
f . 

7: Compute j j j
i i int,i R F F . 

8: Check if the convergence criterion of Eq. (3.39) is satisfied. 
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(i) If no, set 1j j   and go to step 3. 

(ii) If yes, go to step 9. 

9: Check if j
i  and j

iU  are larger than target values. 

(i) If no, set 1i i   and go to step 2. 

(ii) If yes, stop the analysis. 

 

3.5    NUMERICAL EXAMPLES 

Five numerical examples are used to verify the accuracy and show the efficiency of 

the proposed geometrically nonlinear bar element as well as the implemented solution 

procedure. The correlation studies are performed by comparing the obtained 

numerical results with the analytical results (if obtainable) or with other numerical 

results published in the literature. 

3.5.1 Example I: Shallow von Mises Truss 

l
h

l

F, u

 

L L
 

Figure 3-6. Example I: Shallow von Mises Truss. 

The shallow von Mises truss of Figure 3-6 is used to show the ability of the proposed 

model as well as the implemented solution procedure to handle a snap-through 

instability phenomenon. This truss structure is considered a “classic” benchmark 

since it has been widely used by several researchers to evaluate their nonlinear bar 

models (e.g. Papadrakakis 1983, Kondoh and Atluri 1985, Greco et al. 2006, 
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Torkamani and Shieh 2011, etc.). It consists of two identical bar members with cross 

section area 2 21.69 10A m  , length 11l m , and elastic modulus 206E GPa .  

The rise angle   is 03.62  and is corresponding to the aspect ratio / 2h L  of 0.032. 

Since the aspect ratio is low, this truss structure is considered shallow.  
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Figure 3-7. Midspan Load-Displacement Response for Shallow von Mises Truss. 

Figure 3-7 compares the numerical result obtained by the proposed model with the 

analytical result for the mid-span load and mid-span displacement. The snap-through 

phenomenon is clearly observed. The analytical result for this problem was given by 

Greco et al. (2006). Clearly, there is a good agreement between analytical and 

numerical results. From this plot, the first limit point occurs at point A and 

corresponds to the mid-span load of 339.6 kN and the mid-span displacement of 0.287 

m. This value of applied load is the maximum load that the system can sustain before 

experiencing the snap-through instability. The second limit point occurs at point C 

and corresponds to the mid-span load of -339.6 kN (upward) and the mid-span 

displacement of 1.1 m. After this point, the system becomes stable as indicated by the 
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positive slope of the equilibrium path. At points B and D, the structure is flat with a 

zero applied load and the corresponding displacements are 0.7 and 1.4 m, 

respectively. It is noted that when the load-control marching scheme is used for the 

solution procedure, the portion A-B-C-D-E of the equilibrium path cannot be traced 

and the structure suddenly snaps from points A to E. 

3.5.2 Example II: Crisfield Bar-Spring System 
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Figure 3-8. Example II: Crisfield Bar-Spring System. 

The Crisfield bar-spring system of Figure 3-8 is analyzed to show the ability of the 

proposed model as well as the implemented solution procedure to cope with a snap-

back instability phenomenon. It consists of a bar member with three linear springs. 

The aspect ratio /h L  of the system is 0.01. The bar has its axial rigidity 0EA  of 

650 10  and its three spring stiffnesses 1k , 2k , and 3k  are 1.0, 0.25, and 1.5, 

respectively. Numerically, the snap-back instability phenomenon is one of the most 

challenging problems in nonlinear structural analysis. A good explanation of this kind 

of elastic instability can be found in the textbook by Bazant and Cedolin (1991). It is 

noted that both load and displacement control marching schemes fail to completely 

trace the equilibrium path of a snap-back structure.  
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Figure 3-9. Load-Displacement Response of Node 1 for Crisfield Bar-Spring 

System. 

Figure 3-9 shows the load-displacement response curve of node 1 and exhibits the 

snap-back instability phenomenon. At point A, the system buckles and the 

corresponding applied load is 3507. This value agrees reasonably well with that 

determined by Crisfield (1991). The buckling load computed by Crisfield (1991) is 

approximately 3750. It is noted that when the displacement-control marching scheme 

is used for the solution procedure, the portion A-B-C of the equilibrium path cannot 

be traced and the structure suddenly snaps from points A to C. 

3.5.3 Example III: Thompson-Hunt Strut 

A strut structure of Figure 3-10 was first studied by Thompson and Hunt (1973) to 

show the effects of local and global imperfections on the global buckling behavior. 

Kondoh and Atluri (1983) and Torkamani and Shieh (2011) also used this strut to 

evaluate the ability of their nonlinear bar models to represent the global buckling 

behavior. This strut is adopted as a benchmarking problem in the present work to 

assess the model capability to handle the global buckling phenomenon. As shown in 
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Figure 3-10, the strut consists of 35 circular cross-section members with an identical 

elastic modulus of 69 GPa . Two sizes of circular cross sections are used. Members 1-

21 has a sectional area of 3 25.484 10 m  while members 22-35 has a sectional area of 

3 25.161 10 m . 
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L/4

L = 0.66 m  
Figure 3-10. Example III: Thompson-Hunt Strut. 

Figures 3-11 and 3-12 compare the numerical results obtained by the present model 

with those obtained by the bar models of Kondoh and Atluri (1983) and Torkamani 

and Shieh (2011). Figure 3-11 shows the load-displacement response of node A while 

Figure 3-12 shows the response curve between the applied load at node A and the 

vertical displacement at node B. Generally, there are good agreements between the 

present results and the results obtained by Kondoh and Atluri (1983) and Torkamani 

and Shieh (2011). At a load of approximately 7000 kN, the structure buckles globally. 

It is noted that the buckling loads reported by Kondoh and Atluri (1983) and 

Torkamani and Shieh (2011) are 7063 and 6916 kN, respectively. After this load level, 

the tangent of the equilibrium path becomes flat but the system can still maintain its 

loading capacity.  



 55

0

2000

4000

6000

8000

0.00 0.02 0.04 0.06 0.08

Horizontal Displacement at Node A (m)

A
pp

lie
d 

H
or

iz
on

ta
l F

or
ce

 a
t N

od
e 

A
 (k

N
)

Present Result

Kondoh and Atluri Result

Torkamani and Shieh Result

 
Figure 3-11. Load-Displacement Response at Node A for Thompson-Hunt Strut. 
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Figure 3-12. Load-Displacement Response at Node B for Thompson-Hunt Strut. 
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3.5.4 Example IV: Shallow Arch Truss 

The shallow arch truss of Figure 3-13 is analyzed to show the global limit point of the 

system. Kondoh and Atluri (1983) and Torkamani and Shieh (2011) also used this 

structure to evaluate the ability of their nonlinear bar models. It consists of 35 

members with an identical elastic modulus of 69 GPa  and is subjected to a 

concentrated load at node A. The cross-section areas of all members are summarized 

in Table 3-1. 
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Figure 3-13. Example IV: Shallow Arch Truss. 

Table 3-1: Cross Section Areas of the Members of the Shallow Arch Truss 

 
Member Area ( 2m ) 

1-10 and 35 35.161 10  
11-12 36.452 10  
13-16 38.387 10  
17-18 39.677 10  
19-22 310.323 10
23-24 316.129 10
25-26 319.355 10
27-28 325.806 10
29-32 329.032 10
33-34 330.968 10

 
Figure 3-14 compares the numerical results obtained by the present model with those 

obtained by the models of Kondoh and Atluri (1983) and Torkamani and Shieh 

(2011). It represents the vertical load-displacement response curves of node A. In 

general, they are all in a good agreement.  The applied load corresponding to the limit 
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point is 25.6 kN as predicted by the proposed model while the models of Kondoh and 

Atluri (1983) and Torkamani and Shieh (2011) indicate that the limit point is reached 

at applied loads of 25.87 and 25.11 kN, respectively. It is noted that the response 

curve of Torkamani and Shieh (2011) shows a drastic loss of the system loading 

capacity after the limit point. As reported by Torkamani and Shieh (2011), this is due 

to some divergence that their model experiences after reaching the limit point. Unlike 

the updated Lagrangian bar element by Torkamani and Shieh (2011), the total 

Lagrangian bar element presented herein does not experience such a divergence. 
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Figure 3-14. Load-Displacement Response at Node A for Shallow Arch Truss. 

3.5.5 Example V: Cantilever Truss 

The cantilever truss of Figure 3-15 is employed to assess the model capability to 

resemble the response of an elastic beam under large displacement. It is composed of 

41 members with an identical elastic modulus of 100 GPa   and an identical sectional 

area of 20.03 m . The system is subjected to an applied load at its free end. 
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Figure 3-15. Example V: Cantilever Truss. 
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Figure 3-16. Vertical Load-Displacement Response at the Free End. 

Figure 3-16 shows the vertical load-displacement response at the free end. It is 

observed that the structure behaves linearly at small loads. As the load increases, the 

system becomes stiffer and behaves nonlinearly. This is due to tension stiffening of 

the system in its deformed configuration. Figure 3-17 shows the response curve 

between the vertical applied load and the horizontal displacement at the free end. It is 

observed that at small loads, the tangential slope of the response curve decreases. This 

is due to the compression forces in the bottom chord members at small loads. 

However, this phenomenon diminishes drastically as the applied load increases. The 
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response characteristics of Figures 16 and 17 are similar to those of a cantilever beam 

under large displacement (Nanakorn and Vu 2006).                                
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Figure 3-17. Vertical Load-Horizontal Displacement Response at the Free End. 
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APPENDIX: TANGENT STIFFNESS MATRICES AND ELEMENT VECTOR 

The stiffness matrix 0k : 
2 2

2 2
0

0 2 23
0

2 2

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij ij

X X Y X X Y
X Y Y X Y YEA

X X Y X X YL
X Y Y X Y Y

  
      
 
   

k  

The stiffness matrices 1k  and '
1k : 

'0
1 13

0

ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij T

ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij

X U X V X U X V
Y U Y V Y U Y VEA
X U X V X U X VL
Y U Y V Y U Y V

  
    
  
    

k k  

The stiffness matrix 2k : 
2 2

2 2
0

2 2 23
0

2 2

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij ij

U U V U U V
U V V U V VEA

U U V U U VL
U V V U V V

  
      
 
   

k  

The stiffness matrix Gk : 

2

0

1 0 1 0
0 1 0 1
1 0 1 0

0 1 0 1

PK

G
N

L

 
  
 
  

k  

The element vector intf : 

2

0

ij ij

PK
ij ij

int
ij ij

ij ij

U X
V YN
U XL
V Y

 
      
   

f  

where  
ij i jX X X  ; ij i jY Y Y  ; ij i jU U U  ; and ij i jV V V   

 

 

 
 

 

         

 



CHAPTER 4 

FINITE FRAME ELEMENT FOR LARGE 

DISPLACEMENT ELASTIC AND INELASTIC 

ANALYSES OF FRAME STRUCTURES 

4.1  Introduction 

Frame members are commonly used in engineering structures (e.g. aerospace 

structures, marine vessels, innovative structural buildings, etc.). Due to drastic 

advance in material technology and economic reasons, designers of such structures 

usually try to optimize the structural weights, thus rendering the systems highly 

flexible. Such structures often fail by losses of their stability and may behave 

elastically well into the post-buckling regime. During the post-buckling regime, these 

structures generally experience large displacements and rotations. Furthermore, the 

Performance-Based Design and Assessment Methodology (ICBO 2000) has recently 

been adopted in the structural engineering community. In this design and assessment 

methodology, it urges structural engineers to understand and trace the structural 

responses to loading conditions ranging from service to collapse states. Thus, the 

frame model used to analyze highly flexible frame structures and employed in 

accordance with the Performance-Based Design and Assessment Methodology needs 

to be more sophisticated and capable of capturing the system nonlinearities 

(geometric and material nonlinearities).  

Several nonlinear frame models have been proposed in literatures. Depending on the 
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choice of reference configuration and the complexity of the embedded beam theory, 

these frame models can be classified into three groups, namely: (a) Total Lagrangian 

model; (b) Updated Lagrangian model; and (c) Corotational model.  

Several nonlinear frame models based on the total Lagrangian description have been 

proposed by several researchers (e.g. Milner 1981; Cichon 1984; Saje 1990; Pai et al. 

2000; Nanakorn and Vu 2006, etc.). Within the total Lagrangian framework, a highly 

nonlinear beam theory (Reissner 1972) is usually required to simulate the frame 

motion even if the relative deformations of the frame experiencing the finite rigid 

displacements are small. Using the standard Hermite frame interpolation functions 

leads to the problem of field inconsistency (Nanakorn and Vu 2006), thus degrading 

the model accuracy. This is due to the fact that for large displacement/rotation 

problems, the longitudinal displacement field, the transverse displacement field, and 

the sectional rotation field are complicatedly dependent on each other. Several 

researchers have proposed several approaches to overcome this difficulty. For 

example, Saje (1990) and Nanakorn and Vu (2006) proposed the semi-analytical 

approaches to obtain the field-consistency interpolation functions.  

A number of updated Lagrangian frame elements for large displacement/rotation 

problems have been proposed by several researchers in the research community (e.g. 

Bathe and Bolourchi 1979; Yang and McGuire 1986; Gattass and Abel 1987; Chan 

1988; etc.). Due to the updating nature of the reference configuration, the standard 

Hermite interpolation functions could be used if the displacement increment from the 

reference element configuration to the current element configuration is sufficiently 

small. If this is not to be the case, the use of the standard Hermite interpolation 
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functions may lead to the field-inconsistency problem (Nanakorn and Vu 2006). 

Besides total Lagrangian and updated Lagrangian formulations used to derive 

geometrically nonlinear frame elements, the corotational concept is an alternative to 

formulate the numerical model for large displacement and large rotation analyses of 

frame structures and has become extremely popular. The corotational concept has 

employed the polar decomposition principle used in continuum mechanics in its 

rudimentary form. Following the polar decomposition principle (Reddy 2008), the 

deformational motions of a solid body can be separated from its rigid body motions 

(translations and rotations). In other words, the total motion of a solid body can be 

decomposed into two parts: rigid-body part and deformational part. In the finite frame 

element formulation, the corotational frame is introduced to split the element motion 

into rigid-body part and deformation part. With respect to the corotational frame, the 

small displacement/rotation assumption could be made. Thus, the linear beam theory 

or any lower-order beam theory can be applied to the large displacement/rotation 

problems. 

 Ancestors of the corotational approach date back to the “natural” approach presented 

by Argyris et al. (1964) and the “convected-coordinate” approach proposed by 

Belytschko and Hsieh (1973). It is worth noting that Oran (1973) also recognized that 

the element formulation could be done locally within the corotational frame and 

realized the importance of accounting for the variation between local and global 

transformation matrices in order to derive a consistent tangent stiffness matrix. The 

Eulerian reference frame was referred to the corotational frame in works by Oran 

(1973) and Wen and Rahimzadeh (1983).  In a subsequent work by Belytschko and 
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Glaum (1979), the word “corotational” was coined to unify the rigid-body-

motion/deformation decomposition concept and has been commonly adopted. Up to 

date, the corotational concept has been widely employed by several researchers to 

formulate geometrically nonlinear frame elements (e.g. Crisfield 1990; Iura 1994; 

Jiang and Olson 1994; Lee 1997; Urthaler and Reddy 2005; Rungamornrat and 

Tangnovarad 2011, etc.). 

In this chapter, an efficient frame element for large displacement and large rotation 

analyses of planar frame structures is proposed. The element formulation is based on 

the marriage of the corotational concept and the Euler-Bernoulli-von Karman beam 

theory. In other words, the global geometric nonlinearity (e.g. P   effect) is 

introduced into the element via the corotational approach while the local geometric 

nonlinearity ( P   effect) is accounted for using the Euler-Bernoulli-von Karman 

beam theory. The enhancement of the Euler-Bernoulli-von Karman beam theory over 

the linear Euler-Bernoulli beam theory is the inclusion of the rotational-related 

quadratic term in the axial strain-displacement equation, thus resulting in the 

membrane axial strain. However, this membrane axial strain might have an adverse 

effect on the element performance when the standard displacement-based finite 

element is employed. This adverse effect is known as the “membrane locking” 

phenomenon (Reddy 2004). Several approaches have been proposed to remedy this 

locking problem for example: reduced integration (Geyer and Groenwold 2003), use 

of enhanced strain field (Perego 2000), mixed and force-based formulations 

(Hjelmstad and Taciroglu 2003), etc. This study employs the Hellinger-Reissner 

mixed functional to formulate the locking-free Euler-Bernoulli-von Karman frame 
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element within the system without rigid-body modes (basic system). It is noted that 

the Hellinger-Reissner mixed functional has been used by the authors to formulate the 

mixed frame element with bond-interfaces presented in Limkatanyu and Spacone 

(2002a) and the mixed Winkler foundation element presented in Limkatanyu and 

Spacone (2006). 

The organization of the present chapter is set as follows. The kinematics and kinetics 

of the corotational framework as well as the transformation relation for the stiffness 

matrices are first discussed. Then, the derivation of the governing differential 

equations for the Euler-Bernoulli-von Karman beam theory is given. These governing 

equations consist of compatibility, equilibrium, and constitutive relations. It can be 

shown that the axial strain in the Euler-Bernoulli-von Karman beam theory is simply 

a degenerated Green-Lagrange strain in continuum mechanics. A set of governing 

differential equilibrium equations are derived in a direct manner. The virtual 

displacement principle is used to demonstrate the variational consistency between the 

derived governing differential equilibrium equations and the compatibility equations. 

Next, the Hellinger-Reissner mixed functional is employed to formulate the Euler-

Bernoulli-von Karman frame element with respect to the basic system. The 

directional derivative operator or ˆGateaux operator (Hughes and Pister 1978) is used 

to linearize the Hellinger-Reissner mixed functional, thus leading to the incremental 

element equations. The derivation of the displacement and force interpolation 

functions and element state determination process are also briefly discussed. Finally, 

the validity of the proposed nonlinear frame element is confirmed by analyzing seven 

benchmark examples exhibiting several types of critical points and comparing these 
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results with analytical and experimental results available in literatures. The efficiency 

of the proposed nonlinear frame element is assessed by comparing the numerical 

results obtained with the proposed model to those obtained with other nonlinear frame 

models. The general-purpose finite element platform FEAP (Taylor 2000) is used to 

host the proposed element and its available solution marching schemes are employed 

to obtain the numerical results.  

4.2  Corotational Formulation of Planar Frames 

4.2.1 Frame Kinematics and Kinetics 
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Figure 4-1 Corotational Framework of Planar Frame Element 
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Figure 4-2 Element Systems: Complete and Basic Systems 

The frame element shown in Figure 4-1 is taken as a generic frame element to convey 

the corotational concept. The kinematics of this generic element moving from its 

initial to current configurations is described by its nodal displacements in the global 

reference system  -X Y . These nodal displacements and their corresponding nodal 

forces are grouped in the vectors U  and P , respectively: 

 1 2 3 4 5 6

1 2 3 4 5 6

T

T

U U U U U U

P P P P P P

   

   

U

P
 (4.1) 

Six components of U  and six components of P  form the element complete system as 

shown in Figure 4-2. Eliminating three rigid-body motions leaves three basic element 

deformations and forms the element basic system as shown in Figure 4-2. Three basic 

element deformations and their corresponding basic forces are grouped in the vectors 

U  and P , respectively: 

 
1 2 3

1 2 3

T

T

U U U

P P P

   

   

U

P
 (4.2) 

The objective of this section is to derive the statical and kinematical relations between 

the element basic and complete systems using the corotational concept. In the finite 
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element frame formulation, the corotational reference axes ( ' 'X Y ) are rigidly 

bounded to the cross section at node i  in the initial configuration and at node 'i  in the 

current configuration. If the element displaces as a rigid body, the corotational 

reference axes are carried with it and no element deformations are induced. As shown 

in Figure 4-1, the basic element deformations are defined as displacements relative to 

the corotational reference axes. Relative to this reference system, the element can be 

visualized as a beam simply supported with a pin at node 'i  and with a roller at nodes 

'j  and ''j . This virtual supporting system simply helps us to suppress the rigid body 

modes. The basic element deformations of this basic system are defined as: the 

relative displacement 1U  at node 'j  along the chord connecting nodes 'i  and 'j ; the 

rotational deformation 2U  at node 'i  relative to the chord ' 'i j ; and the rotational 

deformation 3U  at node 'j  relative to the chord ' 'i j . Thus, these three basic element 

deformations are computed as: 

 
1

2 3 3 0

3 6 6 0

U l L
U U U
U U U

  

  

 

    

    

 (4.3) 

where L  and l  are the initial and current lengths of element chords, respectively and 

are computed as: 

 
   

   

2 2

2 2

4 1 5 2

j i j i

j i j i

L X X Y Y

l X U X U Y U Y U

   

       
 (4.4) 

0  and   denote the orientation angles of initial and current element chords, 

respectively, and are expressed as: 
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 0cos j iX X
L




  and 0sin j iY Y
L




  (4.5) 

 4 1cos j iX U X U
l


  

  and 5 2sin j iY U Y U
l


  

  (4.6) 

The compatibility relation between the element basic and complete systems can be 

derived by establishing the kinematical relation between the virtual basic element 

deformations U  and virtual nodal displacements U . This can be done by first 

taking the variation of Eq. (4.3): 

   
1

2 3 3

3 6 6

U l
U U U
U U U

 

    

    



   

   

 (4.7) 

The virtual axial deformation 1U  can be expressed in terms of U  by taking the 

variation of the second relation in Eq. (4.4): 

 1 1 2 4 5cos sin cos sinU l U U U U            (4.8) 

The virtual element-chord orientation angle  can be expressed in terms of U  by 

taking the variation of Eq. (4.6): 

  1 2 4 5
1 sin cos sin cosU U U U
l

         (4.9) 

Substituting Eqs. (4.8) and (4.9) into (4.7) leads to the following matrix compatibility 

relation: 

 RBM U T U  (4.10) 

where RBMT  is the compatibility matrix and filters out the rigid body modes from 

U . 
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cos sin 0 cos sin 0

sin / cos / 1 sin / cos / 0
sin / cos / 0 sin / cos / 1

RBM l l l l
l l l l

   
   
   

  
    
   

T  (4.11) 

The statical relation between the nodal forces in the element complete and basic 

systems can be established by accounting for the invariant property of the virtual 

work with respect to either the element complete or basic system: 

 T T T T
RBMW     U P U P U T P  (4.12) 

Due to arbitrariness of U , the statical relation between the nodal force vectors P  

and P  is: 

 T
RBMP T P  (4.13) 

The contragradient nature between Eqs. (4.10) and (4.13) confirms the conjugate-

work pairs of nodal forces and displacements in both element basic and complete 

systems.  

4.2.2 Global and Basic Element Stiffness Matrices 

The transformation relation between the complete and basic element stiffness 

matrices can be obtained by taking the variation of Eq. (4.13) as: 

  T T
RBM RBM   P T P T P  (4.14) 

The first term in Eq. (4.14) can be alternatively expressed by accounting for the 

compatibility relation of Eq. (4.10) and introducing the basic element stiffness 

equation  P K U : 

 T T T
RBM RBM RBM RBM   T P T K U T KT U  (4.15) 

where K  is the basic element stiffness matrix.  

The second term in Eq. (4.14) can be explicitly written as: 
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 1 1 2 2 3 3
T
RBM RBM RBM RBMP P P     T P t t t  (4.16) 

where 1RBM t , 2RBM t , and 3RBM t  represent the first, second, and third columns of 

T
RBMT , respectively. Taking the first variation of T

RBMT , the row matrices 1RBM t , 

2RBM t , and 3RBM t  are expressed as: 

 1 1
1

T

RBM l
 

g g
t U  and 2 1 1 2

2 3 2

T T

RBM RBM l
  

 
g g g g

t t U  (4.17) 

where the row matrices 1g  and 2g  are defined as: 

 1

2

sin cos 0 sin cos 0

cos sin 0 cos sin 0

   

   

    
    

g

g
 (4.18)     

Substituting Eqs. (4.15-4.17) into (4.14) leads to the global stiffness equation: 

  P K U  (4.19) 

where K  represents the global element stiffness defined as: 

 M G K K K  (4.20) 

In Eq. (4.20), the material and global geometric stiffness contributions to the global 

element stiffness matrix K  are denoted by the matrices MK  and GK , respectively, 

and are computed as:  

 T
M RBM RBMK T KT  (4.21) 

  1 1 2 1 1 2
1 2 3 2

T T T

G P P P
l l


  

g g g g g g
K  (4.22)  

The elegant outcome of the corotational formulation is the natural separation of 

model nonlinearities. The geometric nonlinearity at the global level (large 

displacements and rotations) is taken into account in the global geometric stiffness 

matrix GK . The nonlinearity within the element basic system is accounted for in the 
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material stiffness matrix MK . This source of nonlinearities may have come from 

material nonlinearity (e.g. elastic-plastic, nonlinear elastic, etc.) or local geometrical 

nonlinearity (e.g. P   effect, etc.).  

4.3 Basic (Local) Beam System: Euler-Bernoulli-von Karman Beam 

Theory 

4.3.1 Compatibility: Motion, Deformation, and Strain 

 

, tx x

, ty y

y

0C

0P



tC

tP

x  u x

 v x0�Reference Configuration 0�Reference Configuration

t�Current Configuration

 

Figure 4-3 Lagrangian Kinematical Description of Beam Section 

Let us consider a portion of an initially straight prismatic beam as shown in Figure 4-

3. The Lagrangian kinematical description is used to study the motion of a generic 

particle 0P  originally located at the Lagrangian coordinates  ,x y .  Under loading 

exertion, the particle 0P  in the reference configuration 0�  displaces to the particle tP  

currently located at the Eulerian coordinates  ,t tx y  in the current configuration t� . 
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Following the Euler-Bernoulli beam-section hypothesis, the mapping between the 

Lagrangian and Eulerian coordinates is written as: 

 
     
     

, sin

, cos
t

t

x x y x u x y x

y x y v x y x





  

 
 (4.23) 

where   u x  and  v x  are horizontal and vertical displacements of the centroidal 

point moving from its reference position  0 ,0C x  to its current position  ,tC x v x   ; 

and  x  is the sectional rotation angle. 

The deformation gradient matrix of the motion of the particle 0P  is: 

  
1 cos sin

sin cos

t t

t t

x x u yx y x x
y y v y

x xx y

 

 

                 
              

F  (4.24) 

Accordingly, the Green-Lagrange strain matrix is: 

  1
2

GL GL
xx xyGL T
GL GL
yx yy

E E
E E
 

   
  

E F F I  (4.25) 

Explicitly, each Green-Lagrange strain component is expressed as: 

2 21 11 cos sin
2 2

2 2 1 cos sin sin cos

0

GL
xx

GL GL
xy yx

GL
yy

u vE y y
x x x x

u vE E y y
x x x x

E

  

    

                   
                     



 (4.26) 

As expected, the transverse normal strain GL
yyE  vanishes since the cross section is 

assumed to be transversely rigid. Considering small strains, the first-order 

approximation GLe  to the Green-Lagrange strain matrix GLE  can be written as: 
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GL GL
xx xyGL
GL GL
yx yy

e e
e e
 

  
  

e  (4.27) 

where 

 

2 21 1 cos ;
2 2

2 2 1 sin cos ;

0;

GL
xx

GL GL
xy yx

GL
yy

u u ve y
x x x x

u ve e
x x

e



 

                  
         



 (4.28) 

Ensuring that the shear strain GL
xye  vanishes, three sectional displacement fields  u x , 

 v x , and  x  must be inter-dependent and need to satisfy the following 

kinematical constraint:  

  1 sin cosu v
x x

       
 (4.29) 

The beam theory based Eqs. (4.28) and (4.29) is referred to as the “Euler-Bernoulli-

Reissner” or “refined” beam theory (Reissner 1972). Considering small rotations with 

respect to the corotational angle ( sin tan /v x        and cos 1  ) and 

neglecting high-order terms (  / sinu x    and  2/u x  ), the second-order 

approximation GLε  to the Green-Lagrange strain matrix GLE  can be written as: 

 

2 2

2

1 0
2

0 0

GL GL
xx xyGL
GL GL
yx yy

u v vy
x x x

 
 

                      

ε  (4.30) 

It is noted that the vanishing condition of the shear strain GL
xy  is satisfied only in the 

approximate sense. The only non-zero strain is GL
xx  and can be alternatively expressed 

in terms of sectional deformations 0
GL  and   as: 
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 0
GL GL
xx y     (4.31)        

where the membrane axial strain 0
GL at the centroidal axis and the bending strain 

(material measure of curvature)   are expressed as: 

 
2

0
1
2

GL u v
x x

        
 and  

2

2

v
x x
  

 
 

 (4.32) 

The beam theory based on the strain definition of Eq. (4.32) is often referred to as the 

Euler-Bernoulli-von Karman or “technical” beam theory (Pignataro et al. 1991). Two 

sectional deformations of Eq. (4.32) can be grouped in the following array: 

    
2 2

0 2

1
2

T
TGL u v vx x

x x x
 

                     
d u d  (4.33) 

where       T
x u x v x   u  is the array containing section displacements. On the 

left-hand side of Eq. (4.33), the presence of the centroidal displacement vector  xu  

emphasizes that the section deformation vector  xd  is related to the section 

displacement vector  xu  through the compatibility condition. In other words, the 

variable  xd  is a slave to the variable  xu .  

4.3.2 Equilibrium: Direct Approach vs. Variational Approach 

The governing differential equilibrium equations of the Euler-Bernoulli-von Karman 

beam shown in Figure 4-4 (a) are derived in a direct manner. A differential element 

dx  taken from the beam is shown in Figure 4-4 (b). Considering horizontal and 

vertical equilibriums of the infinitesimal segment dx lead to:   

     0x

N x
w x

x


 


 (4.34) 
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     0y

V x
w x

x


 


 (4.35) 

where  N x  and  V x  are the section axial and shear forces, respectively; and 

 xw x  and  yw x  are the horizontal and transverse distributed loads, respectively. 

 yw x

 xw x

1P

 ,y v x

xdx
2P 3P

 yw x

 xw x

1P

 ,y v x

xdx
2P 3P

 
a) 

  

 yw x

 xw x

   N x
N x dx

x





 N x

   V x
V x dx

x





   M x
M x dx

x





 V x

 M x

 v x
x




dx

 yw x

 xw x

   N x
N x dx

x





 N x

   V x
V x dx

x





   M x
M x dx

x





 V x

 M x

 v x
x




dx
 

b) 
 

Figure 4-4 Equilibrium of Element Basic System: a) Deformed Basic System;  

b) An Infinitesimal Frame Segment 

Considering the moment equilibrium and neglecting higher-order terms lead to: 

         0
M x v x

V x N x
x x

 
  

 
 (4.36) 

where  M x  is the section bending moment. 

Differentiating Eq. (4.36) with respect to x  and eliminating the section shear force 
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 V x  through Eq. (4.35) yield: 

    
   

2

2 0y

v x
N x

xM x
w x

x x

 
      

 
 (4.37) 

Eqs. (4.34) and (4.37) form a set of governing differential equilibrium equations of 

the Euler-Bernoulli-von Karman beam theory. To validate the variational consistency 

between the derived governing differential equilibrium equations and compatibility 

equations obtained earlier, the virtual displacement principle is employed as follows. 

For the basic system of Figure 4-4 (a), the virtual work equation can be written as: 

   0

1 1 2 2 3 3 0

GL
x x

L L

W N M dx uw vw dx

U P U P U P

    

  

   

   

 
        (4.38) 

The directional derivative operator ( ˆGateaux operator) is used to obtain the virtual 

sectional deformations 0
GL  and   from the virtual section displacements u  and 

v  as: 

   
2

0 2, .
T

TGL u v v vD
x x x x
      

               
d u u d u u  (4.39) 

The matrix form of Eq. (4.39) can be written as: 

  d Θ u  (4.40) 

where the differential matrices Θ  and   are defined as: 

 
1 0

0 0 1

v
x
 

   
 

Θ  and 

2

2

0

0

0

x

x

x

 
  

   
 

 
  

  (4.41) 
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Substituting Eqs. (4.39) into (4.38), applying integration by parts, and imposing 

essential boundary conditions for u  and v  yield the weighted residual form of 

equilibrium equations: 

 

     

2

2

1 1 2 2 0 3 3 0

x y
L L

x L x x L

vN
N M xu w dx v w dx
x x x

U P N U P M U P M

 

    

                     
 
 

     

   (4.42) 

Accounting for the arbitrariness of all virtual quantities yields the governing 

differential equilibrium equations of Eqs. (4.34) and (4.37) as well as three natural 

boundary conditions. Therefore, it confirms that the equilibrium and compatibility 

equations derived earlier are variationally consistent.  

4.3.3 Sectional Deformation-Force Relations 

Throughout this work, both linear and nonlinear material responses are of interest. 

For a linearly elastic material, the sectional deformations are related to their 

conjugate-work sectional forces as follows: 

    GL
xx

N x
x

EA
   and    M x

x
IE

   (4.43) 

where EA and IE are the axial and flexural rigidities, respectively. The matrix form of 

Eq. (4.43) can be written as: 

     x xd fD  (4.44) 

where  xD  is the array containing sectional forces  N x  and  M x ; and f  is the 

diagonal matrix containing sectional compliances 1/EA and 1/IE. 
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For a nonlinear material, the fiber section model is used to derive the beam-section 

constitutive law  D D d . The fiber model automatically accounts for the 

interaction between axial and bending responses and can be used to model reinforced 

concrete, steel and other kinds of composite sections. The explicit expression for the 

fiber beam-section force-deformation relation is given in Spacone et al (1996). The 

section nonlinear law is linearized according to the following forms:  

            0 0 0x x x x x x   D D D D k d   (4.45) 

where  xk  is the section matrix. The consistent inverse of Eq. (4.45) can be 

expressed in the following form: 

            0 0 0x x x x x x   d d d d f D   (4.46) 

where  0 xf  is the section flexibility matrices, respectively. In the above equation, 

the superscript 0 indicates the value of a vector or matrix at the initial point of a 

linearized nonlinear scheme. 

4.4      Local Euler-Bernoulli-von Karman Finite Beam 

Formulation 

4.4.1 Hellinger-Reissner Mixed Functional 

In the two-field mixed formulation (Reddy 2002), both section forces and section 

deformations are approximated by interpolation functions. The section forces  xD  

are expressed in terms of the nodal force degrees of freedom R (to be defined later in 

the paper) through force interpolation functions, and the section deformations  xd  

are expressed as functions of the basic nodal displacements U  via displacement 
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interpolation functions. The nodal force degrees of freedom R and basic nodal 

displacements U  serve as the primary element variables. For the sake of simplicity, it 

is assumed that horizontal and vertical element loads  xw x  and  yw x  vanish along 

the element.  

Based on the virtual displacement principle, the integral form of the equilibrium 

equations is expressed as: 

    THR T

L

x x dx    u d D U P  (4.47) 

where  xd  are the virtual section deformations compatible with the virtual section 

displacements  xu  through Eq. (4.40).  

Based on the virtual force principle, the integral form of the compatibility equations 

can be written as: 

      ˆTHR

L

x x x dx      D D d d  (4.48) 

where  xD  are the virtual section forces; and  ˆ xd  are the section deformations 

determined from the section forces  xD . 

Combining Eqs. (4.47) and (4.48), the first variation of the Hellinger-Reissner mixed 

functional can be written as: 

          
[ , , , ]

ˆ

HR HR HR

T T T

L

x x x x x dx

    

  

    

     
u Du D u D

d D D d d U P
 (4.49) 

According to the fundamental lemma of variational calculus (Washizu 1982), the 

compatible equilibrium configuration is obtained when [ , , , ]HR   u D u D  vanishes 
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for all choices of  xu  and  xD . 

 

4.4.2 Incremental Element Equations 

Due to the nonlinear nature of compatibility and equilibrium equations, an 

incremental-iterative structural analysis is used to trace an equilibrium path of a 

system. In this type of structural analysis, the tangent element stiffness matrix and the 

internal element resisting forces are needed and can be derived from linearization of 

Eq. (4.49). Let  i xu  and   i xD  represent the current element state. It is noted that 

this element state is not necessary in equilibrium and compatibility. Consequently, 

HR  may not necessarily vanish. With respect to  i xu  and  i xD , Eq. (4.49) can 

be linearized as: 

 
, ,i i i i

HR HR HRL              u D u D
 (4.50) 

where 

          ,
ˆ

i i

T THR T
i i i i

L

x x x x x dx         u D
d D D d d U P  (4.51) 

The increment of the first variational Hellinger-Reissner mixed functional can be 

determined using the directional derivative operator as: 

   0

, ,
, , ,

i i i i

HR HRd
d


     




             u D u D
u u D D u D  (4.52) 

Carrying out the above expression yields: 

 ,i i

HR T T T T
i i i i

L

dx                     u D
u Θ D N u D Θ u f D    (4.53) 

where the axial-force matrix iN  is defined as: 
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  
0 0 0
0 0
0 0 0

i iN x
 
   
  

N  (4.54) 

It is noted that if  and iN  are computed with respect to  i xD  while iΘ  is evaluated 

with respect to  i xu .  

To obtain the discrete form of Eq. (4.50), the section forces and section displacements 

are expressed in terms of the nodal force degrees of freedom R  and basic nodal 

displacements U  through the force and displacement interpolation functions, 

respectively: 

    1i

HR
i ix x RD N R  and      1 2i i

HR HRx x x   R RD N R N U  (4.55) 

    HRx x uu N U  and    HRx x uu N U   (4.56) 

where  1i

HR xRN  and  2i

HR xRN  are the vertical displacement-dependent and axial force-

dependent force interpolation functions, respectively for the beam-section forces; and 

 HR xuN  are the displacement interpolation functions for the beam-section 

displacements. It is noted that  1i

HR xRN  and  2i

HR xRN  are evaluated with respect to 

 i xu  and iR , respectively. Detailed derivations of these interpolation functions are 

to be discussed later in the paper.  

Substituting Eqs. (4.55) and (4.56) into (4.50) and enforcing that HRL      vanishes 

for all choices of R  and U  yield the following mixed matrix equations:     

 1 i i

i

T
i i N

i i

       
     

U

R

T R G K U r 0

F R T U r 0
 (4.57) 
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where iT  serves as the transformation matrix between the force degrees of freedom 

and the displacement degrees of freedom, and is defined as: 

 1 1 2i i i

T THR HR HR HR
i i i

L L

dx dx  R u R RT N Θ B N f N  (4.58) 

with    HR HRx xu uΒ N .  

The local geometric stiffness matrix iG  accounts for the coupling between axial force 

and transverse displacement, and is defined as:  

 2 2 2 2i i i i

T T THR T HR HR HR HR HR
i i i i

L L L

dx dx dx    u R R u R RG B Θ N N Θ B N f N  (4.59) 

The axial-force matrix 
iNK  takes into account the effects of the axial force, and is 

defined as: 

 
i

THR HR
N i

L

dx  u uK B N B  (4.60) 

iF  is the flexibility matrix, and is defined as: 

 1 1i i

THR HR
i i

L

dx  R RF N f N  (4.61) 

iUr  and 
iRr  represent the force and displacement residuals corresponding to the 

weighted integral forms of equilibrium and of compatibility, respectively, and are 

defined as: 

 
 

 

2

1

ˆ

ˆ

ii

i i

T THR T HR
i i i i i

L L
THR

i i
L

dx dx

dx

   

 

 



u RU

R R

r B Θ D N d d P

r N d d
 (4.62) 

In view of the element implementation into a general-purpose finite element program, 

the force degrees of freedom in Eq. (4.57) are eliminated using static condensation. 
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Consequently, solving the second relation in Eq. (4.57) yields: 

  1
ii i

   RR F r T U  (4.63) 

Substitution of Eq. (4.63) into the first relation in Eq. (4.57) leads to the mixed 

stiffness equation: 

 i i i  K U P F  (4.64) 

where iK  and iF  represent the basic element stiffness matrix and basic element 

resisting force vector, respectively, and are defined as: 

  

1
1

1
2

ˆ
i

i i

T
i i i i i N

T THR T HR T
i i i i i i i

L L

dx dx





  

    u R R

K T F T G K

F B Θ D N d d T F r
 (4.65) 

4.4.3 Displacement and Force Interpolation Functions 
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Figure 4-5 Displacement Interpolation Functions 

Following the first derivative of the axial displacement and the second derivative of 

the transverse displacement, 0C  and 1C  continuous functions are used respectively 

for the axial and transverse displacements for the basic system shown in Figure 4-5. 

As a result, linear Lagrangian and cubic Hermitian polynomials are used for the axial 

and transverse displacements, respectively. Therefore, the displacement- interpolation 
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matrix  HR xuN  is defined as: 

   2 2

1 0 0

0 1 1

HR

x
L

x
x x xx
L L L

  
 
             

uN  (4.66) 
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Figure 4-6 Force Interpolation Functions 

Considering equilibriums of the basic system shown in Figure 4-6 with respect to its 

deformed configuration, the displacement-dependent and axial force-dependent force 

interpolation functions are: 
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  
 1

1 0 0

1i

HR

i

x x xv x
L L

 
 
 
 

RN   (4.67) 

  
   

2 2
2

0 0 0

0 1 1i

HR

i i

x x x xx N x N x
L L L

 
               

RN  (4.68) 

It is noted that with assumed transverse displacement, the displacement-dependent 

force interpolation functions in  1i

HR xRN  satisfy the axial and moment equilibrium of 

Eqs. (4.34) and (4.37).  The axial force-dependent force interpolation matrix  2i

HR xRN  

accounts for the dependence of the virtual section forces  xD  on the virtual basic 

nodal displacements U .            

4.5  Element State Determination 

The element state determination procedure for the mixed frame element proposed in 

this study follows the one presented by Limkatanyu and Spacone (2002b). A similar 

procedure is also proposed by Hjelmstad and Taciroglu (2003). The adopted state 

determination procedure is briefly explained as follows: 

Solving the incremental stiffness equation yields the incremental nodal displacements 

U  and the incremental basic element deformations U  through the rigid-body-

mode transformation matrix RBMT . The incremental nodal forces R  can be 

computed from Eq. (4.63). The current nodal forces, current nodal displacements, and 

current basic element deformations are updated as: 
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i i
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



  

  

  

R R R

U U U

U U U

 (4.69) 

With this element state determination procedure, all residuals at element level are sent 

to the global structure level. Therefore, iterations are conducted only at the global 

level, thus easing the model implementation. A more refined element state 

determination procedure in which iterations are also performed at element level is 

proposed by several researchers (e.g. Simo et al. 1993; Spacone et al. 1996; etc.).  

4.6 Model Evaluation by Benchmark Examples 

Seven numerical examples are used to verify the accuracy and show the efficiency of 

the proposed geometrically nonlinear frame element as well as the solution marching 

schemes available in FEAP (Taylor 2000). The correlation studies are performed by 

comparing the obtained numerical results with the analytical and experimental results. 

For the first two examples, the numerical results obtained with the proposed model 

are also compared with those obtained with two different frame models. For the sake 

of brevity, the proposed frame model is abbreviated as the CR-HR-EBvK model 

while other two frame models are abbreviated as the CR-DB-EB and the CR-DB-

EBvK models. For the CR-DB-EB model, the element formulation within the basic 

system is based on the displacement-based Euler-Bernoulli frame element and the 

corotational framework is used to describe the global element kinematics. Detailed 

formulation of the CR-DB-EB model is presented in Urthaler and Reddy (2005). For 

the CR-DB-EBvK model, the element formulation within the basic system is based 

on the displacement-based Euler-Bernoulli-von Karman frame element as given by 
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Hjelmstad and Taciroglu (2003) and the corotational framework is used to describe 

the global element kinematics. 

 

4.6.1 Example I: Cantilever Beam Subjected to an End-Point Load 
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Figure 4-7 Example I: Cantilever Beam Subjected to an End-Point Load 

A cantilever beam subjected to an end-point load shown in Figure 4-7 is employed to 

illustrate the ability and accuracy of the proposed element to model a beam 

experiencing considerable large displacements compared to its initial length and 

showing unlimited hardening behavior. This beam system is considered a “classic” 

benchmark since it has been widely used by several researchers to evaluate their 

nonlinear frame models (Iura 1994; Jiang and Olson 1994; Urthaler and Reedy 2005). 

It consists of an prismatic beam with cross section area 2 21.27 10A m  , moment of 

inertia 6 43.66 10I m  , length 4L m , and elastic modulus 200E GPa .  The 

displacement-control method is used to trace the equilibrium path of the system. The 

target value of the vertical displacement v  is 3.2 m corresponding to approximately 

80 % of the beam initial length. 
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Figure 4-8 Load-Displacement Responses for Example I: 

(a) End Point Load-Vertical Displacement Diagram; B) End Point Load-

Horizontal Displacement Diagram 
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Figures 4-8 (a) and (b) compare the numerical results obtained by three models with 

the analytical results for the end point load-vertical displacement and end point load-

horizontal displacement responses, respectively.  The analytical results for this 

problem were given by Bisshop and Drucker (1945) based on elliptical integrals. 

These plots indicate that only 2 CR-HR-EBvK elements are needed to match the 

analytical responses while 8 CR-DB-EB and 16 CR-DB-EBvK elements are required 

to obtain the same degree of accuracy. It is noted that even though the local beam 

theory of the CR-DB-EBvK model is more refined than that of the CR-DB-EB 

model, its accuracy is hampered by the membrane locking phenomenon (Reddy 

2004). Comparing between the CR-HR-EBvK and CR-DB-EB models, it is 

confirmed that the local geometrical nonlinearity embedded in the CR-HR-EBvK 

model greatly enhance the element accuracy. 

 

4.6.2 Example II: Cantilever Beam Subjected to an End Moment 
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Figure 4-9 Example II: Cantilever Beam Subjected to an End Moment 

The same cantilever beam of Figure 4-7 is subjected to an end moment as shown in 

Figure 9. This beam system is used to demonstrate the large-rotational capability and 

accuracy of the proposed element under extreme inextensible bending action. This 
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beam system is also considered a “classic” benchmark since it has been widely used 

by several researchers to evaluate their nonlinear frame models (Saje 1990; Lee 1997; 

Urthaler and Reedy 2005). Under an applied end moment endM , this cantilever is 

rolled up one time into a circle when  2 /end circleM M IE L  , two times into two 

circles when 2end circleM M , and so on. The load-control marching scheme is used to 

trace the equilibrium path of the system. To show the robustness of the proposed 

element under arbitrarily large rotations, the target value of the end moment M  is set 

to 3 3450circleM kN m  , thus curling the beam around the fixed end three times. 

Figures 4-10 (a) and (b) show the correlation studies between the numerical results 

obtained by the three models and the analytical results, respectively for the end 

moment-horizontal displacement and the end moment-vertical displacement 

responses. The analytical results for this problem were given by Saje and Srpcic   

(1985) based on the integral solution to the nonlinear differential equations. From 

these plots, it is shown that only 8 CR-HR-EBvK elements are needed to match the 

analytical responses while 16 CR-DB-EB and 32 CR-DB-EBvK elements are required 

to obtain the same degree of accuracy. During the convergence study, it is found that 

only 2 and 4 CR-HR-EBvK elements are sufficient to trace the equilibrium paths for 

the cases of the beam rolled up one-time and two-times, respectively. Comparing 

these three frame models, it is found that the accuracy of the CR-DB-EBvK model is 

degraded by the membrane locking and the superiority of the CR-HR-EBvK model is 

due to the local geometrical nonlinearity. 



 92

0

10000

20000

30000

40000

0 2 4 6

Horizontal Displacement u (m)

A
pp

lie
d 

En
d 

M
om

en
t P

 (k
N

-m
)

Analytical Solution
8 CR-HR-EBvK Elements
16 CR-DB-EB Elements
32 CR-DB-EBvK Elements

 

(a) 

0

10000

20000

30000

40000

0 1 2 3 4

Vertical Displacement v  (m)

A
pp

lie
d 

En
d 

M
om

en
t M

 (k
N

-m
)

Analytical Solution

8  CR-HR-EBvK Elements

16 CR-DB-EB Elements

32 CR-DB-EBvK Elements

 

(b) 

 
Figure 4-10 Load-Displacement Responses for Example II: (a) End Moment-

Horizontal Displacement Diagram; (b) End Moment-Vertical Displacement 

Diagram 
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4.6.3 Example III: Williams’ Toggle Frame 
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Figure 4-11 Example III: Williams’ Toggle Frame [50] 

The toggle frame shown in Figure 4-11 was analytically and experimentally studied 

by Williams (1964). This frame serves as a benchmark example to show the ability 

and efficiency of the proposed model to handle a snap-through instability 

phenomenon and has been investigated by several researchers (Powell 1969; Yang 

and Chiou 1987; Nanakorn and Vu 2006). It consists of two identical frame members 

with cross section area 4 21.14 10A m  , moment of inertia 10 43.42 10I m  , 

length 0.3292l m , and elastic modulus 71E GPa .  The rise angle   is 01.74  

and is corresponding to an aspect ratio of 0.0304. Since the aspect ratio is low, this 

toggle frame structure is considered shallow. Due to symmetry, only one-half of the 

toggle is modeled. To overcome the limit point, the displacement-control marching 

scheme is used to trace the equilibrium path of the system. The target vertical 
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displacement targetv  is 0.018 m. 

0

100

200

300

400

500

0.000 0.005 0.010 0.015 0.020

Midspan Deflection  v  (m )

M
id

sp
an

 F
or

ce
 P

 (
kN

) 
Analytical Solution

2 CR-HR-EBvK Elements

 

Figure 4-12 Equilibrium Path for Example III 

Figure 12 compares the numerical results obtained by the proposed model with the 

analytical result for the midspan load-vertical displacement response. The analytical 

result for this problem was given by Williams (1964). From Figure 12, it is observed 

that only 2 CR-HR-EBvK elements are needed to match the analytical response. 

4.6.4  Example IV: Jenkins et al.’s Diamond Frame 

A pinned-fixed diamond frame shown in Figure 4-13 was analytically and 

experimentally investigated by Jenkins et al. (1966). Several researches (Mattiasson 

1981; Coda and Greco 2004; Rungamornrat and Tangnovarad 2011) have used this 

frame as a caliber to evaluate their proposed frame models. It consists of four 

identical frame members with cross section area 1000A  , moment of inertia 1I  , 

length 1L  , and elastic modulus 1E   and is subjected to tension and compression 

as shown in Figures 13 (a) and (b), respectively. Due to symmetry, only one-half of 

the frame is considered. The load-control marching scheme is used to trace the 
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equilibrium path of the system. The target value of the point load P  is 10. 
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Figure 4-13 Example IV: Jenkins et al.’s Diamond Frame [53]: 
(a) Tension; (b) Compression  

Figures 4-14 (a) and (b) compare the numerical results obtained by the proposed 

model with the analytical results for the case of the diamond frame under tension. The 
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analytical results were given by Jenkins et al. (1966) using elliptic integrals. These 

plots show the point load-vertical displacement and point load-horizontal 

displacement. Only 2 CR-HR-EBvK elements per frame member are needed to 

resemble the analytical responses. 
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Figure 4-14 Load-Displacement Responses for Example IV under Tension: 
(a) Load-Vertical Displacement Diagram; (b) Load-Horizontal Displacement 
Diagram 
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Figures 4-15 (a) and (b) superimpose the numerical results obtained by the proposed 

model with the analytical results for the case of the diamond frame under 

compression. These plots show the point load-vertical displacement and point load-

horizontal displacement responses. Only 2 CR-HR-EBvK elements per frame 

member are sufficient to match the analytical responses. 
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(b) 

Figure 15 Load-Displacement Responses for Example IV under Compression: 
A) Load-Vertical Displacement Diagram; B) Load-Horizontal Displacement 
Diagram 
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4.6.5 Example V: Lee et al.’s Frame 
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Figure 4-16 Example V: Lee et al.’s Frame 

The analytical solution to the frame problem shown in Figure 4-16 was given by Lee 

et al. (1968). Numerous researchers (Waszczyszyn and Janus-Michalska 1998) have 

employed this frame example to assess their model capability to handle a snap-back 

instability phenomenon. Numerically, the snap-back instability phenomenon is one of 

the most challenging problems in nonlinear structural analysis. A good explanation of 

this kind of elastic instability can be found in the textbook by Bazant and Cedolin 

(1991). The geometric and material properties of the frame are given in Figure 4-16. 

To cope with the snap-back instability phenomenon, the arc-length control marching 

scheme is used to trace the equilibrium path of the system. 
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(b) 

Figure 4-17 Load-Displacement Responses for Example V under Compression: 
(a) Load-Vertical Displacement Diagram; (b) Load-Horizontal Displacement 
Diagram 

Comparison between the analytical and the numerical responses is shown in Figures 

4-17 (a) and (b) for the point load-vertical displacement and point load-horizontal 
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displacement responses. The column is modeled with 4 CR-HR-EBvK elements 

while the beam is discretized by 6 CR-HR-EBvK elements with 2 elements to the left 

of the point load and 4 elements to the right of the point load. Good agreement 

between the analytical and the numerical responses is clearly observed. 

 

4.6.6 Example VI: El Zanaty’s Portal Frame with Stiffness Softening 
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Figure 4-18 El Zanaty’s Portal Frame Test Set Up 

The steel portal frame shown in Figure 4-18 was first employed by El Zanaty et al. 

(1980) as a test case for 2nd -order analysis simulations. Subsequently, this frame has 

served as a benchmark example to show the ability and efficiency of the proposed 

model to handle a frame structure with softening stiffness and has been investigated 

by several researchers (e.g. White, 1985; King et al., 1992; Attalla et al., 1994; Chen 
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and Chan, 1995). The frame is consists of three steel wide flange members 8 31W   

(two columns and one beam) with length 138.8 .L in , elastic modulus 

329 10E ksi  , and yield stress 36y   ksi. The resulting column slenderness ratio 

/ xL r  is 40. To account for the residual-stress effects, a linear distribution pattern with 

a peak tensile residual stress rt  of 6.78 ksi and a peak compressive residual stress 

rc  of 10.8 ksi is assumed as suggested by Ketter et al. (1955). The fiber-section 

model is employed to account for the sectional nonlinear response as well as the 

residual-stress effects. Thus, the wide-flange section of a frame member is subdivided 

into three regions, namely; web, top flange, and bottom flange. Ten steel fibers are 

used to discretize each flange region while twenty steel fibers are employed to 

discretize the web region. As shown in Figure 4-18, the frame is first loaded by two 

constant gravity loads P, Subsequently, an applied lateral load H exerts 

monotonically. To investigate the effects of column axial forces on the frame 

response, three values of gravity loads P are considered: 0.2 yP , 0.4 yP , and 0.6 yP . 

Figure 4-19 shows the lateral load-displacement response curves under different 

values of gravity loads ( 0.2 yP , 0.4 yP , and 0.6 yP ). On the same diagram, the 

responses obtained with the stiffness-based model proposed by King et al. (1992) are 

also superimposed. Obviously, only 2 CR-HR-EBvK elements per frame member are 

sufficient to model the system responses. 
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Figure 4-19 Lateral Load-Displacement Response Curves for El Zanaty’s Portal 

Frame  

4.6.7 Example VII: Bazan’ s Two-Span Beam Specimen 

Figures 4-20 and 4-21 show a 3/8th scaled model of a continuous two-span 

reinforced concrete beam specimen tested by Bazan (2008). This specimen is a part 

of the exterior frame of an RC building where an exterior column underlying the 

upper beam is lost. The correlation study between experimental and numerical 

results of this beam is performed to assess the model capability to simulate the 

catenary actions in reinforced concrete beams when subjected to large 

displacements. This capability is an essential feature of the proposed frame model in 

studying the progressive collapse resistance of a reinforced concrete frame. Figure 

4-22 shows the reinforcement detail of the 3/8th scaled continuous two-span 

reinforced concrete beam specimen.            
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Figure 4-20 Bazan’ s 3/8th Scaled Two-Span Beam Specimen (Bazan, 2008) 

 

Figure 4-21 Bazan’ s Two-Span Beam Specimen Installed on Steel Reaction 

Frame (Bazan, 2008) 
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Figure 4-22 Reinforcement Detail of Bazan’ s Two-Span Beam Specimen (Bazan, 

2008)  

P, 

 

Figure 4-23 Finite Frame Element Discretization of Bazan’s Two-Span Beam 

Specimen 

  Figure 4-23 shows the finite-element mesh of Bazan’s two-span beam specimen. 

Each beam span is modeled by four proposed frame elements. The fiber section and 
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material constitutive laws for concrete and steel discussed in Chapter 2 are used to 

represent the beam sectional response. 
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Figure 4-24 Comparison between Experimental and Numerical Results 

Comparison between the analytical and the numerical responses is shown in Figure 4-

24. These plots show the point load-vertical displacement responses. Generally, the 

proposed model can match well the experimental response. The sudden drops are 

associated with the fracture of the two bottom reinforcing bars.        

 

 



CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 
 
5.1 Total Lagrangian Formulation of Planar Bar Element Using 

Vectorial Kinematical Description 
 
Based on the total Lagrangian formulation, a geometrically nonlinear bar element is 

developed. This bar model is suitable to analyze large displacement problems of plane 

truss structures. The vectorial form is used to describe the element kinematics. Within 

the total Lagrangian framework, the Green-Lagrange axial strain is employed to 

measure the element strain while the 2nd Piola-Kirchhoff axial stress is employed to 

measure the element stress. Only linear elastic material law is of interest in this work. 

However, the model can naturally be extended to account for other more complex 

material behaviors (e.g. elastic-plastic, nonlinear elastic, etc.). The element 

equilibrium is expressed in the weak form through the nonlinear virtual displacement 

function. The tangent element stiffness matrix and the element resistant force vector 

are consistently derived by linearization of the virtual displacement function using the 

directional derivative operator ( ˆGateaux operator). In the solution process of solving 

nonlinear equilibrium equations, the generalized displacement control method is 

adopted and implemented into the in-house nonlinear structural analysis program. 

Five numerical examples presented prove the accuracy of the proposed bar element 

and the efficiency of the implemented solution algorithm. Examples I and II are small 

truss systems. They are analyzed to show that the proposed model as well as the 

implemented solution procedure can cope with the snap-through and snap-back 

instability phenomena, respectively. Examples III and IV are larger truss systems and 
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are composed of 35 members. Both Kondoh and Atluri (1983) and Torkamani and 

Shieh (2011) used these two examples to assess their models, as well as the adopted 

solution procedures. The ability of the proposed model to predict the global pre-

buckling and post-buckling responses of truss systems is verified in Examples III and 

IV. The obtained results are in good agreements with those obtained by Kondoh and 

Atluri (1983) and Torkamani and Shieh (2011). Example V shows the ability of the 

proposed model to resemble the response of a cantilever beam subjected to large 

displacements at its free end. 

In summary, the development of the proposed bar element is a step forward in 

establishing a computational framework that permits large-displacement and post-

buckling analyses of plane truss structures. Several truss examples are used to show 

the validity of the model. Therefore, the in-house nonlinear structural analysis 

program developed here can be used as a vital tool in the implementation of the newly 

proposed Performance-Based Design and Assessment Methodology.  

 

5.2 Finite Frame Element for Large Displacement Elastic and Inelastic 

Analyses of Frame Structures 

 
 This work presents a simple but efficient nonlinear frame element for large 

displacement and large rotation analyses of elastic planar frame structures. The 

corotational framework is used to describe the element kinematics and kinetics at the 

global level while the local element response is derived based on the Euler-Bernoulli-

von Karman beam theory. The Hellinger-Reissner mixed functional is used to 

construct the locking-free Euler-Bernoulli-von Karman frame element within the 

basic system. The basic element stiffness matrix and basic element force vector are 

obtained by linearization of the Hellinger-Reissner mixed functional using the 
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directional derivative operator. The standard displacement interpolation functions for 

a linear frame element are used in the element formulation. In accordance with theses 

assumed displacement interpolation functions, the force interpolation functions can be 

derived such that the governing differential equations are satisfied in the point-wise 

sense. Only linear elastic material law is of interest in this work. However, the model 

can naturally be extended to account for other more complex material behaviors (e.g. 

elastic-plastic, nonlinear elastic, etc.). 

Seven benchmark structures are employed to prove the accuracy and efficiency of the 

proposed frame element. Examples I and II are benchmark examples of large 

displacement and rotation problems and consist of a single cantilever beam subjected 

respectively to an end force and an end moment. Correlation studies show that the 

proposed model is very accurate and efficient in resembling the analytical results and 

is not prone to the membrane-locking problem. The ability and efficiency of the 

proposed model to handle the snap-through instability phenomenon are shown in 

Example III. A pinned-fixed square diamond frame in Example IV is analyzed to 

demonstrate that the proposed model can handle the problem of small strains and 

moderately large displacements with efficiency. The ability and efficiency of the 

proposed model to cope with the snap-back instability phenomenon are shown in 

Example V. The ability of the proposed model to cope with the inelastic responses of 

steel and reinforced concrete frame structures is shown in Examples VI and VII, 

respectively.    

In summary, the development of the proposed frame element is a step forward in 

establishing a computational framework that permits large displacement and rotation 

analyses of elastic plane frames. Several benchmark examples are used to show the 

validity and efficiency of the model. The next steps in this direction are to apply the 
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proposed model to assess the vulnerability of framed structures against progressive 

collapse scenarios induced by extreme catastrophic events (e.g. rare earthquakes, 

terrorist attacks, egregious construction errors, etc.).  
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