\“\
2

o[
2l
o

IBWIVLATIFNY I

Tas9n13: Nonlinear Frame Model for Large Displacement
|nelastic Analysis of Frame Structures

lag 509 ans19158 A9.8216 Annayw

19 NWYYW 2557



fyyaef RSA 5480001

immuﬁﬁ'mﬁ'uawymf

Tasen1s : Nonlinear Frame Model for Large Displacement
| nelastic Analysis of Frame Structures

FIAEAII1IE ALETIE ANNA MAIAINTINLEST AMEIAINTINAEAS

ARINYIRYFIVANBAIUNS

AU m&ui@m%wﬁfmmﬂamuaﬁu mgumﬁ?d” e

LLazﬁWﬁﬂG’]%ﬂM$ﬂ§3&lﬂ’ﬁﬂ'ﬁaq@&laﬂ‘]ﬂ"]

(mmLﬁulmwmuﬁﬂwaqgﬁﬁy &N, uaz ana. Windudaadiudoanaly)



naansINdsend

NENWIFBAUUH vL@T%‘um‘saﬁuagunuﬁ%’mm fUNNBINUIULAUUNNTIY (F07.)
;ﬁ%’ﬂﬂimamauws:qmﬂuashogam o N9 HaNINHIBTIIIAINIUITLINIIFINN
NOINUFHUERUNTIVY (JN12.) ﬂ'\iaﬁ”wﬂammm:L?]@‘*ﬁaamﬂummaﬂLﬂaaum’mjizmw
o @ Aa o un o A A ' Ac A o = v A o o A '
gaamm:mmwmﬂa HI988U 9 mgiumammam@mnumalﬂmﬂm LLa:gaﬁ]ﬂwaglu
UINWAU

U Qv

ma]mJamauqmmﬂ%ﬁmmmiam ATWAAINTINAIRAT

2

a [ a & A 3 v 6 o A '
URNINUIRYURIVITUATIUNT ‘Yll‘ﬁﬂ’]’]Nai#Lﬂi’]z‘Vﬂ%ﬂWil‘ﬁEJﬂﬂim LRZLATBINDANN 9 1%
Aa o & A [ a £ {9 o
INUIATY TIUNY @.a7. Jusn anqmzﬂs:a*nﬁ LS ¢.973.8UTY ?%Wﬁq& ﬁl‘]ﬁﬂ’]’]&lﬂ?ﬂh’]

D UIARNNLTUTDI LN IR mnu‘i%’ 2

gavn aﬁmamauqmﬁmﬁwﬁm DIMUNNDINUTULEUUNNITIAY (FN2.) NdrwIBa

szanludue 9 eldnuidoildiiagawluded

FRINFANNIG 93, IA.A7.]F Funany

Bk
U



ABSTRACT

Project Code: RSA 5480001

Project Title: Nonlinear Frame Model for Large Displacement Inelastic Analysis of
Frame Structures
Investigator: Associate Professor Dr. Suchart Limkatanyu

Department of Civil Engineering, Faculty of Engineering,
Prince of Songkla University

Project Period: 2 Years

The main goal of this research is to develop and implement the simple but efficient
nonlinear frame models (bar and beam) that take into account geometric and material
nonlinearities. These frame elements can be used to model both elastic and inelastic
behaviors of slender framed structures undergoing large displacements and large
rotations. The material nonlinearity is included into the models through the fiber-section
discretization. This could be done with ease since the Euler-Bernoulli-von Karman beam
theory will be used in describing the frame section kinematics. Therefore, the local
geometric nonlinearity (P-¢ effect) is automatically accounted for. However, the use of
standard displacement-based frame element with this nonlinear beam theory can lead
to the so-called membrane-locking problem, thus resulting in an over-stiff frame model.
One way to remedy this locking phenomenon is to use the reduced integration
technique. In this research, both Hellinger-Reissner mixed and force-hybrid variational
principles are used to develop the nonlinear frame elements within the corotating local
framework. This stems from the fact that the resulting frame elements are locking free
and have superb performance in describing the inelastic actions when compared with
the standard displacement-based frame models. The global geometric nonlinearity
(P-A effect) is introduced into the models via the corotational approach.

Keywords: Corotational formulation; Large displacement/rotation; Hellinger-Reissner
mixed functional; Nonlinear bar element; Nonlinear beam element; Geometric
nonlinearity; Material nonlinearity; Euler-Bernoulli-von Karman beam theory; Total

Lagrangian formulation.
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CHAPTER 1
INTRODUCTION

1.1 I mportance and Motivation of This Research

During the last sixty years, the level of structural analysis needed to assess and
analyze structural performance has been more and more sophisticated especially with
drastic advances on computer technology as well as a better understanding of the
physical and mathematical principles governing the behavior of complex structures.
The driving forces for higher requirement on structural analysis are partly due to the
occurrence of catastrophic damages, loss of human lives, etc. during exceptiona and
extreme events (e.g. rare earthquakes, terrorist attacks, construction errors, etc.).
These force structural engineers to rely on more advanced structural modeling
techniques in order to understand and trace the structural behavior under abnormal
loading conditions. Generally, abnormal loads are categorized as exerted forces not
accounted for in the design of structures during their service lives. In the worst case
scenario, these abnormal loads can eventualy result in the structura collapse.
Therefore, nonlinear behaviors of structures due to material properties and geometric
changes are necessarily included in more reliable structural models. This leads to a
need for the simple but efficient numerical model capable of simulating the nonlinear
behavior of structures undergoing large displacements and rotations associated with
severa collapse limit states. Such a numerical model is also essential to assess the
safety of structural design for progressive collapse resistance. Progressive collapse of
structures is characterized by local failure of primary structural components leading to
the collapse of entire structures or disproportionately large parts of them. Following

the tragic loss due to the collapse of the Ronan Point Apartment building in London in



1968 as shown Figure 1, progressive collapse of structures has become a growing
concern among structural engineers to include it as an important consideration for
structural design. The use of finite element models that fail to account for either
material or geometric nonlinearity is inadequate to give accurate and reliable analysis
results, thus preventing structural engineers from understanding the whole process of
structural collapse. Consequently, the primary focus of this work is to develop and
implement simple but efficient nonlinear frame elements capable of taking into
account both material (inelastic) and geometric (large displacements and rotations)

nonlinearities.

Figure 1: Ronan Point Apartment Building

(http://en.wikipedia.org/wiki/Ronan Point)

Furthermore, the drastic advance in materia technology has resulted in engineering
structures with high-strength but lightweight in nature (e.g. aerospace structures,
marine vehicles, innovative structural buildings, etc.). Such structures often fail by
losses of their stability and may behave elastically well into the post-buckling regime.

During the post-buckling regime, these structures generally experience large



displacements and rotations. Therefore, the use of nonlinear frame elements
developed herein is also essential in predicting the pre and post buckling responses of

these structures.

1.2 Objectives of This Research

The main goal of this research is to develop and implement the simple but efficient
nonlinear frame models that take into account geometric and material nonlinearities.
These frame elements can be used to model both elastic and inelastic behaviors of
slender framed structures undergoing large displacements and large rotations. The
material nonlinearity is included into the models through the fiber-section
discretization. This could be done with ease since the Euler-Bernoulli-
vonKa'rma'n beam theory will be used in describing the frame section kinematics.
Therefore, the local geometric nonlinearity (P -6 effect) is automatically accounted
for. However, the use of standard displacement-based frame element with this
nonlinear beam theory can lead to the so-called membrane-locking problem, thus
resulting in an over-stiff frame model (Reddy, 2005). One way to remedy this locking
phenomenon is to use the reduced integration technique (Hughes, 1987). In this
research, both Hellinger-Reissner mixed and force-hybrid variational principles
(Limkatanyu and Spacone, 2006) are used to develop the nonlinear frame elements
within the corotating local framework. This stems from the fact that the resulting
frame elements are locking free and have superb performance in describing the
inelastic actions when compared with the standard displacement-based frame models
(Limkatanyu and Spacone, 2002). The global geometric nonlinearity (P—A effect) is

introduced into the models via the corotational approach.



The objectives of this research can be summarized as follows:

1.

Develop and implement the efficient nonlinear finite element models as a
reliable numerical tool for large displacement elastic and inelastic analyses of
frames.

Explore the importance of including the rotational-related quadratic terms in
the local strain-displacement equations (Euler-Bernoulli-vonKa'rma’n beam
theory).

Explore the feasibility of formulating the Hellinger-Reissner mixed frame
elements within the framework of the Euler-Bernoulli-vonKa'rman beam
theory.

Explore the feasibility of merging the Hellinger-Reissner mixed fiber frame
elements with the corotational approach.

Compare the performance of the developed frame elements with the standard
displacement-based frame elements formulated based on total Lagrangian,
updated Lagrangian, and corotational approaches and indicate their pros and
cons.

Validate the accuracy of the developed frame elements by comparing their
numerical results to benchmark analytical results, to results obtained from
other finite element software, and to experimental results published in the

literature.



1.3 Literature Review

To certain extent, al engineering structures response nonlinearly to their applied
loads. In particular, structural collapse may be induced by both material failures and
geometric changes. Consequently, the inclusion of both material and geometric
nonlinearities into the numerical models is essential in understanding the realistic
collapse mechanism of engineering structures. Since the main focus in this research is
on reticulated structures, only finite frame elements for large-displacement inelastic
analysis of frame structures are developed. Therefore, a literature review relevant to
the development of nonlinear frame models incorporating material and geometric
nonlinearities is presented in this section. The review begins with frame models
considering material nonlinearity and ends up with frame models considering

geometric nonlinearity.

1.3.1 Material Nonlinearity

Nonlinear frame elements are used to discretize a building into a skeletal structure.
The hysteretic behavior of non-linear elementsis either introduced at the element ends
or is spread over the entire element length. As aresult, the element formulation can be
classified into two groups. (a) lumped nonlinear frame models, and (b) distributed
nonlinear frame models. Several nonlinear frame elements belonging to these two
element formulations have been proposed by severa researchers in the research

community.



1.3.1.1 Lumped Nonlinear Frame Models

In lumped nonlinear frame models, inelastic zones are idealized as zero-length plastic
hinges in the form of hysteretic springs. At each inelastic region, more than one
hysteretic spring can be used depending on the number of nonlinear actions to be
represented. Each hysteretic spring represents either flexural, shear, or bond-dlip
mechanism. Several lumped nonlinear frame models have been proposed by several
researchers. Among others, the widely used lumped models are the two-component
model by Clough et al. (1965), the one component model by Giberson (1969), and the
sandwich-like model by La et a. (1984). An excellent overview of the lumped
nonlinear frame models is presented in the state-of-the-art report by Comite Euro-

International du Beton: Task Group 111/6 (1996).

1.3.1.1.1 Pros and cons of lumped nonlinear frame models

The actual behavior of a structural member (either steel or reinforced concrete)
involves the gradual penetration of inelastic deformations into the members as a
function of the excitation history. The use of lumped nonlinear frame models greatly
simplifies the representation of this behavior. However, the limitations of these
models have been recognized in severa correlation studies, especialy in large
resisting elements of flexural wall-frame system (Charney and Bertero, 1982; Bertero
et a., 1984). The main advantages of lumped nonlinear frame models are the
followings: (a) the compactness of their mathematical formulation, which reduces
storage requirements and computational cost and improves numerical stability, and
(b) the ease of including the effects of different inelastic actions (flexural, shear, and
bond-dlip) into the models. However, the lumped representation of the inelastic
behavior oversimplifies certain crucia aspects of the hysteretic behavior of structural

members and hence limits the applicability of the models. One such limitation derives



from an ad-hoc assumption needed to define the hysteretic parameters of the end-
springs. Several researchers (Mahin and Bertero, 1975; Agardh, 1974;
Anagnostopoulos, 1981) performed parametric and theoretical investigations of
reinforced concrete beams under monotonic loadings and showed that there is a strong
combination between model parameters and loading pattern. None of these two
factors is expected to remain constant during the entire loading history. This problem
is further magnified by the fluctuation of the axial forces in compression members.
Because of this history dependence, damage predictions at the global level as well as
at the local level may be completely inaccurate. Furthermore, most lumped nonlinear
frame models fail to describe the deformation softening behavior of reinforced
concrete members. Deformation softening is usually indicated by the reduction in
loading resistance under increasing deformations.

1.3.1.2 Distributed Nonlinear Frame Models

Distributed nonlinear frame models give a more refined and accurate description of
the inelastic behavior of structures. Unlike lumped nonlinear frame models, the
inelastic behavior can take place in any section in the distributed nonlinear frame
model. In a reinforced concrete structure, the discrete nature of cracks is represented
via the smeared crack concept. The nonlinear nature of a cross-section can be
formulated either by the classical plasticity theory (Prager and Hodge, 1951) in terms
of the stress and strain resultants or by the fiber-section discretization. The main
drawback of the first approach is the need for specific force-deformation relations for
specific shapes of cross section. Due to the loss of its generality, the first approach is
mostly applied to steel frame structures where standard shapes of member cross
section are available. Furthermore, the difficulty of characterizing partia yielding of

the cross section is another drawback of this approach. The fiber-discretized section is



a more refined and rational way to introduce the distributed nonlinear feature. The
detailed discussion of the fiber-discretized section is presented in Spacone (1994).
The fiber-discretized section model can be combined with the finite frame element to
develop the more refined and rational distributed nonlinear numerical model for frame
structures. This may lead to different nonlinear fiber frame elements derived based on
different variational principles (Limkatanyu, 2002). These nonlinear fiber frame
models can be classified into three groups. (a) displacement-based model (e.g.
Hellesand and Scordelis, 1981; Rubiano-Benavides, 1998); (b) force-based model
(e.g. Ciampi and Carlessimo, 1986; Spacone et a., 1996; Limkatanyu and Spacone,
2002); and (c) multi-fields (mixed) model (e.g. Limkatanyu and Spacone, 2002;
Taylor et a., 2003; Lee and Filippou, 2009). The pros and cons of these three fiber
frame models are comprehensively discussed in Limkatanyu (2002). Generdly, the
force-based and mixed frame elements are more accurate than the displacement-based
element. This advantage stems from two main observations: (1) in some simplified
cases the internal force distributions in frame elements are known “exactly”. Thisis,
for example, the case of the reinforced concrete element with perfect bond; (2) in
general, the force fields aong the element are smoother than the deformation fields,
which may show large jumps in the inelastic zones, especially where plastic hinges
tend to form (i.e., in the column base, girder ends, beam midspan, etc.). While the
development of elements that use force shape functions is per se simple, the
implementation of such elements in an existing nonlinear structural analysis program

isthereal challengein the element formulation.



1.3.2 Geometric Nonlinearity

In recent years, the development of finite elements for the nonlinear anaysis of frame
structures has attracted many researchers. Depending on the choice of reference
configuration and the method of kinematical description, there are three finite element
models for geometrically non-linear frame problems, namely: (a) Total Lagrangian
(TL) model; (b) Updated Lagrangian (UL) model; and (c) Corotational (CR) model.
However, the most widely used models are derived based on the total Lagrangian and
updated Lagrangian kinematical descriptions of a displaced body. Most of
geometrically nonlinear finite element models implemented into commercial finite
element packages available in the market (e.g. ABAQUS, ANSYS, etc.) are derived
based on these two kinematical descriptions. However, during the last twenty years,
the concept on the corotational kinematical description has been more understood and
gained more popularity. Especially, the corotational concept iswell-suited to a certain
class of nonlinearly geometric frame problems in which displacements and rotations
are large but strains are moderate. This is due to its natural treatment of rigid-body
motions.

A brief review of these three kinematical descriptions (TL, UL, and CR) will be
provided in the following. More comprehensive review can be found in Vu (2006)
and Belytschko et al. (2000). To gain the big picture of the total Lagrangian, updated
Lagrangian, and corotational approaches, let us consider the schematic motion of a

frame element shown in Figure 1-1.



Figure 1-1: Motion of a Frame Element
In the total Lagrangian formulation, the reference system is the origina undeformed

element configuration C,. All static and kinematic variables of the current element
configuration C, are referred to this reference configuration. Several total Lagrangian

frame elements for large displacement problems have been proposed by several
researchers in the research community (e.g. Bathe and Bolourchi, 1979; Crespo Da
Silva, 1988; lura and Atluti, 1988; Saje, 1990; Pacoste and Eriksson, 1997; Nanakorn
and Vu, 2006; etc.) Within the total Lagrangian framework, a highly nonlinear beam
theory (Reissner’ s beam theory) is usually required to simulate the frame motion even
if the relative deformations of the frame experiencing finite rigid displacements are
small. Using the standard Hermite frame interpolation functions leads to the problem
of field inconsistency (Nanakorn and Vu, 2006). This is due to the fact that for large
displacement problems, the longitudinal displacement field, the transverse

displacement field, and the sectional rotation field are complicatedly dependent on

10



each other. In other words, these three field variables must satisfy a set of nonlinear
kinematical constraints as advocated by the refined beam theory proposed by Reissner
(1972). Severa researches have proposed several approaches to overcome this
difficulty, For example, Sge (1990) and Nanakorn and Vu (2006) proposed the semi-
analytical approaches to obtain the field-consistency interpolation functions. More
comprehensive explanation of the total Lagrangian formulation is given in Bathe
(1996) and Belytschko et al. (2000).

In the updated Lagrangian formulation, the last computed equilibrium configuration

C, , of the displaced element is used as the reference system. All static and kinematic
variables of the current element configuration C, are referred to this reference
configuration. A rectangular coordinate frame (X, ,, Y, ) is usualy attached to the

last computed equilibrium configuration. In each incremental step, this attached
coordinate frame is updated. Several updated Lagrangian frame element for large
displacement problems have been proposed by severa researchers in the research
community (e.g. Bathe et al., 1975; Bathe and Bolourchi, 1979; Yang and McGuire,
1986; Gattass and Abel, 1987; Chan, 1988; Yang and Leu, 1991; Shugyo, 2003; etc.).
Due to the updating nature of the reference configuration, the standard Hermite
interpolation functions could be used if the displacement increment from the reference

element configuration C_; to the current element configuration C, is sufficiently

small. If this is not to be the case, the use of the standard Hermite interpolation
functions may lead to the field-inconsistency problem (Nanakorn and Vu, 2006).

Besides total Lagrangian and updated Lagrangian formulations used to derive
geometrically nonlinear frame elements, the corotational concept is an alternative to
formulate the numerical model for large displacement and large rotation analysis of

frame structures and becomes extremely popular. The corotational concept, dating

11



back to the early 60's (Argyris et al., 1964), has employed the polar decomposition
principle used in continuum mechanics in its rudimentary form. Following the polar
decomposition principle (Malvern, 1969), the deformational motions of a solid body
can be separated from its rigid body motions (trandations and rotations). In other
words, the total motion of a solid body can be decomposed into two parts, namely:
rigid-body part and deformational part. In the finite frame element formulation, this

decomposition can be done by attaching a local coordinate frame (., Y,) corotating
with the average rigid body rotation of the current element configuration C..

Consequently, the rigid-body motions of the current element configuration can be
nicely represented by the rigid-body motions of the corotating local coordinate frame
and the deformations of the current element configuration can be simply measured
with respect to the corotating local coordinate frame. Since the deformational part of
the motion is generally small with respect to the corotating local frame, the linear
beam theory (i.e. Euler-Bernoulli beam theory) can be employed to describe the
relative deformations in the corotating local coordinate system. The geometric
nonlinearity is introduced globally via the coordinate transformation between the
displacements with respect to the corotating local coordinate system and
displacements with respect to the fixed global coordinate system. Up to date, the
corotational concept has been employed by several researchers to formulate
geometrically nonlinear frame elements (e.g. Powell, 1968; Oran, 1973; Belytschko
and Glaum, 1979; Rankin and Brogan, 1984; Crisfield, 1990; Krenk et al., 1999; Scott

and Filippou, 2007; etc.).

12



1.4 Research Methodology

The main focus of this research is on the development and implementation of the
simple but efficient nonlinear frame models accounting for geometric and material
nonlinearities. The research will involve the following phases,

1.4.1 The formulation and implementation of the finite element model for large
displacement elastic and inelastic analyses of frame structures.

The finite element formulation of the nonlinear frame element will start from the
derivation of governing differential equations (strong form) and then the variationa
principle will be used to derive the finite element equation (weak form).

This finite element model will be implemented in FEAP (Finite Element Analysis
Program). FEAP is the genera-purpose finite element program developed by
Professor R.L. Taylor at University of California, Berkeley and was extensively used
by the principal investigator of this research during his doctoral work.

1.4.2 The development and implementation of constitutive relations for steel and

concrete.

-
i

N
[
I

2/
Figure 1-2: Frame Element: Discretization of Cross Section into Fibers

In this research, the fiber-section model (Figure 1-2) will be developed to

model the nonlinear behavior of the frame element. The fiber-section model

13



automatically couples the interactions between the axial force and bending moment

and allows the proposed frame element to analyze severa types of frame structures

%&iﬂ:ﬁ
. .
alalee]

@ (b)

(Figure 1-3).

xxxxxxxxxxxx
111111111111

Figure 1-3: Fiber-Discretization of Frame Sections: (a) Square RC Section; (b)

Circular RC Section; (c) Steel H Section.

In the fiber-section model, each fiber represents the constituent material of the section
(e.g. concrete, steel). In this research, only the reinforced concrete and steel piles are
of interest. Consequently, the following uniaxial laws will be developed and be

implemented in the library of constitutive laws.
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1.4.2.1 Confined and Unconfined Concrete

——  CONFINED
A , — = UNCONFINED

MONOTONIC ENVELOPE CURVE

Concrete Stress

Concrete Strain

Figure 1-4: Concrete Material Model under Cyclic Loading in Compression

The concrete material model (Figure 1-4) used in this research is based on the
modified Kent-and-Park model. The origina model proposed by Kent and Park
(1971) was modified by Scott et al. (1982) to account for the confinement effects and
was later modified by Yassin (1994) to include the tensile stiffening and the tensile
damage. The main features represented by this modified version of Kent-and-Park
model are asfollows:

- Theinfluence of concrete confinement on the monotonic envelope curvein

compression.
- Theeffect of tensile damage under unloading and reloading.
- Thetensle stiffening

- The hysteretic response under cyclic loadings.

15



1.4.2.2 Steel
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Figure 1-5: Steel Material Model under Cyclic L oading

In this research, the steel material model (Figure 1-5) under monotonic or cyclic
loading is described by the nonlinear model of Menegotto and Pinto (1973), as
modified by Filippou et al. (1983) to include the isotropic hardening effects.

1.4.3 Verification of the model accuracy.

The accuracy of the numerical models proposed in this research will be verified
through several correlation studies between the numerical and analytical results of
benchmark problems published in the literature. The following classes of problems
will be considered:

(a) Cantilever beam with a concentrated load at the free end (Bisshop and Drucker,
1945).

(b) Cantilever beam with an end moment (Mattiasson, 1981).

(c) William’'stoggle frame (William, 1964).

(d) Lee’'sframe (Leeet a., 1968)

16



1.4.4 Correlation studies between the experimental and numerical results.
The capability of the proposed frame elements in collapse analysis will be assessed
through correlation studies between the experimental and analytical results available

in literature.

1.5 Scope of This Research Area

The main scope of the proposed research is to develop a set of realistic and easy to
use numerical models for the nonlinear analysis of frame structures considering both
geometric and material nonlinearities. The project is especially important in view of
the assessment of vulnerability of framed structures against progressive collapse
scenarios induced by extreme events (e.g. rare earthquakes, terrorist attacks,

construction errors, etc.).
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CHAPTER 2

UNIAXIAL CONSTITUTIVE LAWS

21 Generd

This chapter presents the constitutive models for reinforcing steel, concrete, and soils.
The nonlinear behavior of reinforcing steel under monotonic or cyclic loading is
modeled using the Menegotto and Pinto (1973) stress-strain relation. This model was
later modified by Filippou et al. (1983) to include isotropic-hardening effects. As for
the plain concrete, the Kent and Park (1971) stress-strain relation is used with the
modification proposed by Scott et al. (1982) to include the confinement effects. This
model was later modified by Yassin (1994) to include tensile strength and tensile
damage. All of aforementioned constitutive laws are based on uniaxial behaviors and

are expressed in the strain (deformation) space.

2.2  Stedl Congtitutive Law

In the present study, the reinforcing steel stress-strain behavior under monotonic or
cyclic loading is described by the nonlinear model of Menegotto and Pinto (1973), as

modified by Filippou et al. (1983) to include the isotropic hardening effects. The



model is computationally efficient and can closely represent experimental

from cyclic tests on reinforcing bars.

results

Stress

Figure 2-1 M enegotto-Pinto M odel

In the Menegotto and Pinto steel model the stress-strain relation

following nonlinear equation:

o =be + (1_b)gm
«\R
(1+(g))
where
_E-¢4
&y~ &
and
. O0—0,
o =
0,— 0,

is defined by the

(2.1)

(2.2)

(2.3)

19



A schematic representation of the steel model is shown in Figure 2-1. Eq. (2.1)

defines a curved smooth transition from the straight-line through the origin with slope

E, to another straight-line through the yield point (&,,0,) with slope E;. The tangent

modulus E; of this transition curve is obtained by differentiating Egs. (2.1), (2.2), and

(2.3), and is given by the following expression.

+\R
do (o,-0 1-b 3
E‘Zd_ZE%J b+ —7R 1- ( ) = (2.4
oo | e T )
In the previous eguations, o, and ¢, are the stress and strain at the point of strain

reversal (point A in Figure 2-1), which also forms the origin of the asymptote with

slope Eq (line (a) Figure 2-1). o, and g,are the stress and strain at the point of

intersection of the two asymptotes (point B in Figure 2-1). The parameter b is the
strain-hardening ratio, that isb = E; / Eo. The parameter R isintroduced to control the

shape of the transition curve between the asymptotes and permits a good

representation of the Bauschinger effect. As shown in Figure 2-1, (¢,,0,) and

(£,,0,) are updated after each strain reversal.
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Normalized Steel Stress

Normalized Steel Strain

Figure 2-2 Definition of Curvature Parameter R in M enegotto-Pinto Steel M odel

The parameter R is dependent on the absolute strain difference between the current
asymptote intersection point (point B in Figure 2-2) and the previous maximum or
minimum strain reversal point (point C in Figure 2-2) depending on whether the
current strain is increasing or decreasing, respectively. The expression for R

suggested by Menegotto and Pinto is as follows:

R(£)=R, _aji—fg (2.5)

where Ry is the value of the parameter R during first loading and a; and a, are
experimentally determined parameters to be defined together with Ry. The definition
of £ remainsvalid in case that reloading occurs after partial unloading

Some elucidations are needed in connection with the set of rules for unloading and
reloading, which are implied by the use of Egs. (2.1) through (2.5), allowing for a
generalized load history. If the analytical model had a memory extending over all
previous branches of stress-strain history, it would allow for the resumption of the
previous reloading branch, as soon as the new loading curve reached it. This would
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require that the model stores all necessary information to retrace all previous
incomplete reloading curve. This is clearly impractical from a computational
standpoint. Memory of the past stress-strain history is, therefore, limited to a
predefined number of values, which in the present model are:

1. The monotonic envelope.

2. The ascending upper branch originating at the reversal point with smallest &
value.

3. The descending lower branch curve originating at the reversal point with
largest ¢ value.

4, The current curve originating at the most recent reversal point.

Due to the above restrictions reloading after partia loading does not rejoin the
origina reloading curve after the point from which unloading started, but, instead,
continues on the new reloading curve until reaching the monotonic envelope.
However, the discrepancy between the analytical model and the actual behavior is
typically very small, as discussed in details by Filippou et al. (1983).

The above implementation of the model corresponds to its simplest form, as
proposed in Menegotto and Pinto (1973): Elastic and yield asymptotes are assumed to
be straight lines, the position of the limiting asymptotes corresponding to the yield
surface is assumed to be fixed at all times and the slope E,remains constant (Figure
2-1).

In spite of the simplicity in formulation, the model is capable of reproducing

experimental results well. Its magjor drawback stems from its failure to alow for
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isotropic hardening. To account for this effect Filippou et al. (1983) proposed a stress

shift in the linear yield asymptote as follows:

Ogq= a{g’“ax —a4jc7y (2.6)

where ¢, is the absolute strain at the maximum strain reversal point if the stress

shift is applied to the negative yield asymptote, or at the minimum strain reversal
point if the stress shift o, is applied to the positive yield asymptote. ¢, and o are
the strain and stress at yield, respectively, and a,and a, are experimental determined
parameters. Although the model implemented in this study has the option of including
isotropic hardening, that option is not exercised in the analytical studies. Therefore,
the parameter values used in this study are: R,= 20, a,= 185, a,=0.15, a, = 0.0, a,
= 0.0. With the exception of the last two parameters, the values used are those in the
original model of Menegotto and Pinto (1973). The study by Filippou et a. (1983)

also showed that the steel model with and without isotropic hardening yielded yield

almost identical results.

2.3 Concrete Constitutive Law

The concrete material model used in this study is based on the modified Kent-and-
Park model. The original model proposed by Kent and Park (1971) was modified by
Scott et al. (1982) to account for the confinement effects and was later modified by
Yassin (1994) to include the tensile stiffening and the tensile damage. The main

features represented by this modified version of Kent-and-Park model are as follows:
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- The influence of concrete confinement on the monotonic envelope curve
In compression.

- The effect of tensile damage under unloading and reloading.

- Thetensile stiffening

- The hysteretic response under cyclic loadings.
In this study the effects of the tensile stiffening and tensile damage are neglected in
the analysis of the reinforced concrete structures. As a result, only the concrete
material model without tensile stiffening is presented. However, the tensile stiffening
is of great importance in predicting the monotonic response of reinforced concrete
dab and beam strengthened with FRP or steel thin plates. As a result, only the

behavior of concrete material under monotonic tensile loading is presented.

2.3.1 Concrete Stress-Strain Relation in Compression

——  CONFINED
A , — — UNCONFINED

MONOTONIC ENVELOPE CURVE

Concrete Stress

Concrete Strain

Figure 2-3 Concrete Material Model under Cyclic Loading in Compression
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The monotonic envelope of the concrete model in compression is based on the Kent
and Park (1971) model, which was later modified by Scott et al. (1982) to account for
the confinement effect. Even though more precise and sophisticated concrete models
based on the plasticity theory (for example Willam and Warnke, 1974) have been
more recently proposed by the research community, the so-called Kent and Park
model represents a good compromise between simplicity and accuracy. A number of
experimental studies on the behavior of plain concrete under repetitions of
compressive stress (Sinha et al., 1964 and Karsan et a., 1969) indicate that the
envelope curve for cyclic loading is very close to the envelope curve for the
monotonic loading. Consequently, in this present study, the cyclic damage of the
compression envelope is not taken into account

In the modified Kent and Park concrete model of Figure 2-3 the three following

regions are used to describe the monotonic concrete stress-strain relation:

2
Region OA: ¢, <g, o, =K f, [Z(EJ[ﬁ] ] (2.7)
o o
Region AB: ¢ <¢g <¢, o.=KHf, [1—2(5C —50)] (2.8)
Region BC: ¢, <e, o, =0.2K f. (2.9)

The corresponding tangent stiffness E; are given by the following expressions:

Region OA: &, <¢, g KL [1—(8—H (2.10)
& &

Region AB: g, <e, <5 E =-ZK f. (2.12)

Region BC: ¢, <¢, E =0 (2.12)
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where

&, = 0.002K (2.13)
f
K=1+2 = (2.14)
z- _ 05 (2.15)
340290 675, M _ oook
145, 1000 s,

In the above equations, ¢, is the concrete strain at maximum stress, K is a factor
which accounts for the strength increase due to confinement, Z is the slope of the
softening branch, f_ isthe concrete compressive cylinder strength in MPa, f,, isthe
yield strength of stirrupsin MPa, p; isthe ratio of the volume of hoop reinforcement
to the volume of concrete core measured to outside of stirrups, h' is the width of
concrete core measured to outside of stirrups, and s, is the center to center spacing of

stirrups or hoop sets. The empirical expressions of K and Z in Eqg. (2.14) and (2.15),
respectively, are given by Scott et al. (1982).
If concrete is confined by stirrup-ties, Scott et al. (1982) suggest that &, be

determined conservatively from the following expression:

£,=0.004+0.9p,( f,,/300) (2.16)

Crushing of concrete is accounted for by reducing the strength in concrete to 0.2 f,
once the compressive strains exceeds the values of ¢,. Figure 2-3 also shows the

hysteretic behavior of the plain concrete stress-strain relation. The following rules are

considered to define this behavior:
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1. Unloading from a point on the envelope curve occurs along a straight line

between the point &, at which unloading starts and the point ¢, on the strain axis

given by the following equations:

2
L TR o.145(i} ; 0.13[3] 2.17)
& & & &
iy Lo 0.707(i - 2} 1+ 0.834 (2.18)
&o &g &o

where ¢, isthe concrete strain at maximum stress in compression. Eq. (2.17), which

relates the normalized strain on the envelope with the strains at the completion of
unloading through a quadratic formula, was proposed by Karsan and Jirsa (1969).
This equation shows unrealistic behavior under high compressive strain conditions.
Therefore, Eqg. (2.18) is introduced to the model so that the unloading modulus of
elasticity remains positive under high compressive strains.

2. As shown in Figure 2-3, the tensile resistance is ignored. Consequently, for
concrete strains smaller than the concrete strain at complete unloading (crack
opening). The concrete stressis equal to zero.

3. On reloading in compression, the concrete behavior isin tension as long as the
strain is smaller than the strain a complete unloading (crack opening). Once the
concrete strain exceeds that value, reloading follows the previous unloading path. In
reality, unloading and reloading follow nonlinear paths, which together form a
hysteretic loop. However, this phenomenon is neglected here for the sake of

simplicity.
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2.3.2 Concrete Stress-Strain Relation in Tension

The ability of the concrete between the cracks to resist the tensile stress and
contribute to the member flexura stiffness is obtained by the concrete tension
stiffening. Due to the discrete feature of the concrete cracks, concrete between cracks
is still bonded to the reinforcing bars, hence contributing to the member stiffness.
However, when the applied load is increased the crack intervals are closer and closer,
hence limiting the contributions of concrete tension to the member stiffness. Beyond
the post cracking state, the tensile stress decreases gradually when the applied load is
increased. Past researches have considered the effect of tension stiffening by
modifying the concrete tensile stress-strain relation such that, after the tensile strength
(crack initiation), the tensile stress reduces gradualy to zero as the tensile strain is
increased. The descending path of the tensile stress-strain relation can be
approximated as linear, multi-linear, or exponential decay functions. In this study the
modified Kent and Park model developed by Yassin (1994) is adopted. In this
modified model the linear descending path is used. The ultimate tensile strain ¢, at
which the tensile stress can no longer be resisted plays an important role in describing
the tensile softening behavior. For this purpose, the fracture energy of concrete is
considered so that the equivalent amount of energy can be dissipated by the concrete

rupture between the nonlinear and linear branch model. The fracture energy G, is

defined as the amount of energy required to create one unit of area of a continuous
crack and calculated by the area under the tensile stress-cracking opening softening

diagram. Therefore, the fracture energy G, can be expressed as
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&y

G =hg, =h| ods, (2.19)
0
where g, is the area under the tensile stress-strain diagram as shown in Figure 4-4.

. f) : : . :
& = E—t and g, is the ultimate strain beyond which stress can no longer transferred.

C

The discrete crack model can be related to the smeared crack model by the
relationship

w=he; (2.20)
where w is crack opening displacement due to crack strain over the crack band width
h in the direction of maximum tensile stress. Based on studies by Bazant and Oh
(2983), the crack bandwidth is dependent on the aggregate size following the
simplified equation.

h=3d (2.21)

where d, is the maximum aggregate size. Based on the linear descending model, the
tensile softening modulus E, can be defined as:

Ets=—( 5 j (2.22

oF

r0
where E.istheinitial stiffness of the concrete. ry is the elastic strain energy density,

defined as:

rh==fe (2.23)
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The monotonic response of concrete under tensile strain is shown in Figure 4-5. The
monotonic tensile stress-strain relation and tangential stiffness are defined by the

following equations:

e<e c=Eg¢ E =FE
8tl sesg, o= ftl+Els(8_gt‘) E=-E (2.24)
E> &, o=0 E =0
w h
e D —
Discrete crack model Smeared crack model
N E.
. — G
" Sy
/
Es
gt gtu

Figure 2-4 Crack Model and Definition of Fracture Energy of Concrete
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E[S monotonic envelope

Tensile Stress

Tensile Strain Cc

Figure 2-5 M onotonic Response of Concrete under Tensile Strain

Clearly, the sizes of member and maximum aggregate have a significant effect on the

tension stiffening behavior of the member. However, the rigorous calibration of these
parameters is beyond the scope of this study.

In this study the tensile behavior of model developed by Yassin (1994) takes into
account the effects of tension stiffening. Typically, the maximum tensile strength of

the concrete (modulus of rupture) is approximately:
f, =0.6228,f, (2.25)

where f_ and f, are described in MPa.
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CHAPTER 3
TOTAL LAGRANGIAN FORMULATION OF PLANAR
BAR ELEMENT USING VECTORIAL KINEMATICAL
DESCRIPTION

3.1 Introduction

In recent years, the Performance-Based Design and Assessment Methodology (ICC
2012) has been adopted in the structural engineering community. This forces
structural engineers to rely on more advanced structural modeling techniques in order
to understand and trace the structural responses to loading conditions ranging from
service to collapse states. Therefore, a structural model capable of capturing the
system nonlinearities is deemed essential in the Performance-Based Design and
Assessment Methodology.

Large truss structures have been frequently used as structural systems for both civil
and aerospace engineering structures. Bridges, offshore platforms, and large-span arch
roofs are examples of truss structures for civil engineering structures. Solar power
satellite platforms and supporting structures for antennae are examples of truss
structures for aerospace engineering structures. Designers of such systems usually try
to optimize the structural weights, thus rendering the systems highly flexible and
prone to instability when subjected to loadings. Furthermore, the structural materials
used nowadays could possess high strengths but light weights due to the drastic
advance in material technology. The truss structures made of such materials become
highly flexible and experience large displacements when subjected to loadings.
Consequently, a geometrically nonlinear bar element is inevitably needed to model

such truss systems.



Nonlinear behavior of truss structures has been investigated by several researchers
since the late sixties. Berke and Mallet (1969) performed nonlinear analyses of trusses
using the energy search approach (Mallet and Schmit 1967) to investigate the
combined effects of geometric nonlinearity and member elastic buckling. Wolf (1971)
incorporated member inelastic post-buckling with linear structural theory to predict
the post-buckling strength of trusses using the initial stress method (Zienkiewicz, et
al. 1969). The event-by-event method in which buckled or yielding members were
removed from the model was used by Schmidt et al. (1976) to perform nonlinear
analyses of trusses. Papadrakakis (1983) refined the model by Schmidt et al. (1976)
by providing the post-buckling and post-yielding branches for buckled and yielding
members, respectively. Kondoh and Atluri (1985) derived the bar element stiffness
matrices for both pre-buckling and post-buckling states using the Euler elastica
theory. The displacement-based Lagrangian bar model was developed by de Freitas
and Ribeiro (1992). In this model, the bar-section constitutive relation was used to
account for local elasto-plastic buckling effects. The geometrically nonlinear bar
model with a bilinear sectional response was developed by Greco et a. (2006) using
the nonlinear positional formulation. Recently, the updated Lagrangian bar model
with alinear elastic section behavior was proposed by Torkamani and Shieh (2011).

In this chapter, a geometrically nonlinear bar element is developed within the total
Lagrangian framework. Thus, the undeformed element state is used as the reference
configuration. All statical and kinematical quantities of the current element state are
measured with respect to this reference configuration. The vectorial form is
conveniently used to describe the element kinematics and element strain as well as to
eliminate the need of shape functions as required in a standard finite element

formulation. The incremental equilibrium equations are obtained by linearization of
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the nonlinear virtual displacement function. The generalized displacement control
method proposed by Yang and Shieh (1990) is adopted as a nonlinear solution
algorithm. Only linear elastic materia law is of interest in this work. However, the
model can naturally be extended to account for other more complex material
behaviors (e.g. elastic-plastic, viscoelastic, etc.). Furthermore, it is worthwhile to
emphasize that the total Lagrangian bar element developed in this chapter naturally
complies with the material constitutive relation described in the total form (e.g.
hyperelastic material, etc.). This kind of material law is widely used in modeling the
behavior of nonlinear elastic materials (e.g. natural rubber, human muscle, etc.). The
in-house structural analysis software is developed in which the proposed nonlinear bar
element, as well as the adopted solution algorithm, are implemented in the MATLAB
programming language (Chapman 2005). The validity and efficiency of the developed
software are confirmed by analyzing five truss structures exhibiting several types of

critical points and comparing these results with those available in the literature.

3.2 Total Lagrangian Formulation

Depending on the choice of reference configuration and method of kinematical
description, there are two model formulations for geometrically nonlinear analyses of
truss structures, namely: (a) Total Lagrangian (TL) formulation; and (b) Updated
Lagrangian (UL) formulation. The schematic motion of a truss element shown in
Figure 3-1 is used to convey the hig picture of total Lagrangian and updated
Lagrangian formulations. In the total Lagrangian formulation, the reference system is

the original undeformed element configuration C,. All statical and kinematical

variables of the current element configuration C, refer to this reference configuration.



In the updated Lagrangian formulation, the last computed equilibrium configuration

C

t

, of the displaced element is used as the reference system. All statical and

kinematical variables of the current element configuration C, refer to this reference

configuration. Due to its ease of model implementation and prevalent uses in research

community, the geometrically nonlinear bar element developed in the present work is

based on the total Lagrangian formulation.

Y,y 4

(0]

-1

_»

X, X

Figure 3-1: Schematic Motion of a Bar Element: Total Lagrangian vs. Updated

Lagrangian Formulations.
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3.2.1 Element Kinematics and Green-Lagrange Strain
The kinematics of a two-node bar element is shown in Figure 3-2. In the reference

configuration C,, the element has cross sectional area A, and length L,. Under
loading exertion, the element displaces from the reference configuration C, to the
current configuration C, and the element cross sectional area and element length
become A and L, , respectively. The first node moves from i, to i, viahorizontal and
vertical displacements U, and V,, respectively while the second node moves from |,
to j, viahorizontal and vertical displacements U, and V,, respectively. The vectoria

approach is used to describe the element kinematics and element strain as shown in

Figure 3-3. The positional vectors of nodes i and j intheconfiguration C, are:

Va
I:V
F it F,
T V‘ L(’A — !
F i
C Uiy
v
V.
o
Lo Ay U

v

Figure 3-2. Element Kinematics.
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Y’yA

(3.1)

The direction and length of the element with respect to the configuration C, are

contained in the element vector X i » defined as:

X, =X, - =] X, =X Y- [ (32

Similarly, the positional vectors of nodes i and j inthe configuration C, are:

X =xT+yi=[% [

o ] (33)
xj:xj|+yiJ:Lxj y].J

The direction and length of the element with respect to the configuration C, are
contained in the element vector X ., defined as:

ji?
.
in:Xj_Xi:LXj_x yj_yiJ (3.4)
The displacement vectors of nodes i and j moving from the configurations C, to C,

are:
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(3.5)

From the geometrical analysis of vectorsin Figure 3-3, the current element vector X

can alternatively be written as:
X; =X, +0, (3.6)

where U =0, -0, isthe difference between displacement vectors of nodes i and j .

In the matrix relation, the relative vectors in » X

and U, can be written in terms of
their relevant nodal quantities as:

X.=hX; x. =hx;and o, =hU (3.7)

where h=[-I 1] is the rectangular mapping matrix; | is the identity matrix;

X:LX. Y X, YjJT is the reference noda coordinate  vector;
X=X ¥ X ijT is the ocurrent noda coordinate vector; and

U :LU‘ Vi U, Vv, JT isthe nodal displacement vector.

In the total Lagrangian formulation, a consistent finite strain measure is the Green-
Lagrange strains (Belytschko, et a. 2000). In a bar problem, only the axial strain

component is present in the element formulation and is defined as:

o _L-L (3.8)

Exx o2

The sguares of reference and current element lengths can be expressed as scalar
products of their relevant element vectors as.
L2 =X;"X; and L?=%;'X, (3.9)

Substituting Egs. (3.6), (3.7), and (3.9) into (3.8), the axial strain component &5, can
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be expressed in terms of the reference nodal coordinate vector X and nodal
displacement vector U as.

&% =$XTHU+2:L

UTHU (3.10)

2
0

where H =h'h isthe square mapping matrix. It is noted that on the right-hand side of
Eq. (3.10), thefirst term isalinear function of U while the second term is a quadratic

function of U. Asaresult, Eq. (3.10) represents the nonlinear compatibility relation
between &5 and U .

3.2.2 Material Constitutive Law
In total Lagrangian formulation, the stress measure conjugate to the Green-Lagrange

strain tensor is the 2™ Piola-Kirchhoff stress tensor (Holzapfel 2000). In a bar

PK 2

problem, only the axial stress component s, “ is present in the element formulation.

Throughout this work, only a linear relation between axia stress and strain is of
interest. Thus, the axial stress and strain are related through the following linear
constitutive equation:

S’ =Eefy (3.11)
where E is the elastic modulus. Based on this stress measure, the axia force is
defined as:

NP<2 = A s72 (3.12)

With Egs. (3.10) and (3.11), N™? can be expressed in terms of U as:

AE
NPK2 = -
0

(xT +%uTjHu (3.13)
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3.2.3 Element Equilibrium: The Virtual Displacement Principle

As an dternative way to express the element equilibrium equations, the virtual

displacement function is written in the general form as:

oW = oW,

int

+OW,, (3.14)

where W is the system total virtual work; oW

| is the system internal virtual work;
and oW, isthe system external virtual work.

In the case of abar element, SW

int

and oW,, can be expressed as:

W, [U, 8U] = [ de5c [U, SUINP dX = Loy [U, SUIN (3.15)
Ly

SW,, [6U]=-6U"F (3.16)

.
where the vector F = LFUi R R, K J contains element nodal forces as shown

in Figure 3-2; the vector 5U=L5Ui oV, oV, éVJ.JT collects virtua noda

GL

displacements; and oey, isthe virtua Green-Lagrange axial strain. Substituting Egs.
(3.15) and (3.16) into (3.14), the virtual displacement function becomes:
OW[U, 6U] = Lydegy [U, SUINT2-SU'F (3.17)

The directiona derivative operator (Gateaux operator) is used to obtain the virtual

strain from the virtual nodal displacements as:

d 1
553;[U,5U]=Dg%[U].&UzE[S%(UvLoﬁU)] O:F(XT+UT)H5U (3.18)

“= 0
It is noted that Dej, [U].6U represents the directional derivative of the function

v [U] inthedirection of §U . Substitution of Egs. (3.18) into (3.17) yields:

NPKZ

é\N[U,5U]=5UT[ HT(X+U)—FJ (3.19)

0
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From the fundamental lemma of variational calculus (Washizu 1982), the equilibrated
element configuration is obtained if SW[U, SU] vanishes for all choices of SU .
Thus, from the arbitrariness of 6U , the nonlinear relation between the internal axial

force N™* and external applied nodal forces Fis:

NPKZ

H™(X+U)=F (3.20)

In summary, Egs. (3.10), (3.13), and (3.20) represent the compatibility, constitutive,
and equilibrium equations of the problem, respectively, and form the core of the
displacement-based total Lagrangian bar element developed in this study. These three
equations are conveniently represented in the so-called “Tonti’s Diagram” (Tonti

1977) shown in Figure 3-4.

U strong form m

| - — — . weak form I

[

Compatibility Equilibrium
I I
NPK2
ESXL:é(XH%UTjHU C H'(X+U)=F
0

| |
Material Constitutive
GL N PK 2

Exx NP2 = A EgCL
= AEsyy

Figure 3-4. Tonti’s Diagram for Displacement-Based Total Lagrangian Bar
Element (Tonti 1977).

41



3.3 Incremental Equilibrium Equations

Due to the nonlinear nature of compatibility and equilibrium equations, an
incremental-iterative structural analysis is used to trace an equilibrium path of a
nonlinear truss system. In thistype of structural analysis, the tangent element stiffness
matrix and the internal element resisting forces are needed and can be derived from

linearization of the virtual displacement function of Eq. (3.19). Let U, represent the

current bar configuration. It is noted that this bar configuration is not necessary in
equilibrium. Consequently, Eq. (3.20) may not be satisfied. With respect to U, , EQ.

(3.19) can be linearized as:

L[é\N] =[éW]Ui +A[5\N]Ui (3.20)
where
[éW]Ui :5UT$HT(X+Ui)—§UTF (22)

0

The incremental virtual displacement function A[éW]U can be determined using the

directional derivative operator as:

A[6W], =D[sW], SU= di[éw(u +aAU,6U)] (3.23)
i a a=0

It is noted that D[éW]Ui .oU impliesthe directional derivative of the function [6VV]Ui
in the direction of 6U . Carrying out the above expression and substituting it into Eq.
(3.21) yield:

L[oW]=8UT| (Ko +Ky +k, +k, +kg ) AU, ~fiy +F ] (3.24)

int

where the element matrices are
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Kk, _BhyuxH (3.25)

and the element vector is:

PK2
— Ni

fi == —H"(X+U)) (3.26)

0

It is noted that all element matrices and element vector are explicitly written in

Appendix.
In the incremental -iterative solution technique, L[éW] is forced to be zero regardless
of 6U . Therefore, the incremental equilibrium equations are obtained as:
KAU, =r, (3.27)

where

k=k,+k,+k, +k,+k, and r, =F-f, (3.28)
The tangent element stiffness matrix consists of five matrices of Eq. (3.25). k, is
constant and corresponds to the stiffness matrix of a linear bar element; k, and k,
are linear in current nodal displacements, k, are quadratic in current nodal
displacements; and k is linear in the current internal axial force. The vector r,

represents the unbalanced forces between external and internal nodal forces. This
incremental  equilibrium equations are used to estimate incremental nodal

displacements AU, . These incremental nodal displacements are used to improve the



current nodal displacements U, in obtaining the equilibrated element configuration

corresponding to the applied nodal forces F. More details on the solution technique

are to be discussed in the next section.

3.4 INCREMENTAL-ITERATIVE SOLUTION PROCEDURE

Load
Limit Point
\ Dynarnic Instability
'( =T
Cannot be traced J o
Displacement
€Y
Load
ﬁ Limit Point
‘ﬁ Turning Point
Cannot be traced
T Dynamic Instability
- Displacement

>

(b)
Figure 3-5. Breakdowns of Solution Procedures: (a) L oad-Control Method; (b)
Displacement-Control Method.

One of the main objectives in analyzing a structure is to trace its equilibrium path.

This is usually represented in the form of a load-displacement diagram. In linear



structural analysis, the applied load can be imposed on the structure in a single step.
However, in nonlinear structural analysis, the applied load has to be subdivided into
several increments and each loading increment is imposed on the structure in a
successve manner, with or without corrective steps (equilibrium check).
Consequently, the incremental solution procedures used in nonlinear structural
analysis can be categorized into two types, namely: (a) the pure incremental method;
and (b) the incremental-iterative method. The pure incremental method is the earliest
nonlinear solution method and is simplest to implement. However, in each
incremental step, drift-off error is accumulated and the obtained equilibrium path may
greatly deviate from the true one since no equilibrium check is performed. Thus, this
nonlinear solution scheme becomes obsolete nowadays. The incremental-iterative
method is more effective and free from the drift-off error since equilibrium check is
performed to eliminate the unbalanced forces between applied and internal resistant
forces. This solution scheme is employed in this work.

Two most widely used marching schemes in the incremental-iterative method are
load-control and displacement-control methods. The concept of load-control method
is very straightforward. The nodal force components are used as control variables.
Unfortunately, this marching scheme becomes unstable after alimit point at which the
tangent to the equilibrium path is horizontal as shown in Figure 3-5 (a). As a
counterpart of load-control method, the nodal displacement components are used as
marching variables in the displacement-control method. Even though the
displacement-control method shows no difficulty in passing the limit point, it
becomes unstable after a turning point at which the tangent to the equilibrium path is
vertical, as shown in Figure 3-5 (b). Since both limit and turning points on

equilibrium paths are of interest in this work, a more versatile marching scheme is



needed. Consequently, the so-called “generalized displacement control” method is
employed herein to trace the equilibrium path since it can handle both limit and
turning points. In addition to the generalized displacement control method, the so-
called “arc-length” method proposed by Riks (1972) and modified by Crisfield (1981)
is widely used to handle the snap-back instability phenomenon. However, in several
aspects, the generalized displacement control method adopted here is superior to the
arc-length method. The pros and cons of these two methods are thoroughly discussed

in Yang and Kou (1994).
3.4.1 Generalized Displacement Control Method

In this study, the generalized displacement control method proposed by Yang and
Shieh (1990) is adopted to solve for solution of nonlinear equilibrium equations. A
brief description of the method is given as follows:
Atthe |j" iteration of the i™ incremental step, the incremental equilibrium equations
of astructure are cast into the N+1 dimensional space as:

KIHAU) = AJF+ R (3.29)
where K™ is the structural stiffness matrix assembling from element tangent

stiffness matrices k/™; AU/ is the incremental displacement vector; 4’ is the

incremental load factor and is determined from the constraint equation; F is the

reference load vector; RI'=AJ*F—Fi' is the unbalanced force vector;

int,i
. -1 4
ATt = Z/l" is the cumulative load factor; and F!7 is the internal resistant force

i int,i
k=1

j-1

vector assembling from element resistant force vector f,); .

Based on the decomposition proposed by Batoz and Dhatt (1979), the incremental

46



solution of Eq. (29) can be written as:
AU = 2JAU] + AU/ (3.30)
where AU/ and AU/ are determined from the following matrix equations:

K AD; = F

o (3.31)
K7AD) =R

At the beginning (j =1) of the i" incremental step, the unbalanced force vector R?

isnull and the initial incremental load factor 4 is calculated from:

,#ziquﬁ (332
where 4 is the very first incremental load factor and is defined beforehand; and
GSP is the generalized stiffness parameter and is calculated from the following
constraint equation:

_ AUY AU

GP=—=>1—
AU} | AUY

(3.33)

The parameter GSP accounts for the variation in stiffness of a system. It increases as
the system is stiffer and decreases as the system is softer. Based on Eq. (29), the first
incremental displacement vector at each incremental load step can be computed from:

K AU = A'F (3.34)
For subsequent iterative steps (j >2), the initial incremental load factor A’ is
calculated from the following constraint equation:

AT AT

ﬂ'j =TT =T =
AU; | AU!

(3.35)

Egs. (30) and (31) are employed to compute the incremental displacement vector

AU} and the current displacement vector is updated accordingly:
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_ i
U} = Uee £ 3 AUS (3.36)
k=1

where U9 isthe converged displacement vector at the previous loading step.
Similarly, the current load factor A! can be updated as:
A=A+ ) (3.37)
and the current applied load vector is:
F'=AJF (3.38)
In each incremental loading step, the iterative process is carried out until the

following convergence criterion is satisfied:

‘ AU!'R] ‘
(#a0) (#F)

<e (3.39)

where ¢ is the convergence tolerance and is specified beforehand. In this work,

£=10" isusedin all analyses.
3.4.2 Step-by-step Algorithm for Generalized Displacement Control Method

The generalized displacement control method previously discussed is implemented in
the in-house nonlinear structural analysis program and is incorporated into the
proposed nonlinear bar element. The step-by-step procedure of the generalized

displacement control method is presented as follows:
1: Set the reference load vector F and the very first incremental load factor A
2: At the beginning ( j =1) of the i"™ incremental step,

(i) Retrieve K from the last converged step.

(i) Compute AU' from Eq. (3.31)

(@) For the very first incremental loading step (i =1), set GSP = 1.



(b) For subsequent loading steps (i > 2), use Egs. (3.33) and (3.32) to

determine GSP and A', respectively.

(c) Checkif GSP <0, if yes, reversethe sign of A'.

(d) UseEg. (3.30) to compute AU;.

3: For subsequent iteration steps ( j > 2) of the i™ incremental step,

(i) Retrieve K™ and R/™ from the last iterative step.
(if) Compute AU* and AU from Eq. (3.31).
(i) Compute A’ from Eq. (3.35).

(iv) Use Eg. (3.30) to compute AU/ .

4: Use Egs. (3.36), (3.37), and (3.38) to compute U/, A/, and F', respectively.

5: For each element, perform the state determination to compute the current element

stiffness matrix and element resistant force vector. It is noted that both statical and

kinematical quantities required in the element state determination are measured

with respect to the undeformed element configuration within the total Lagrangian

framework.

Based on U/ :
(i) Compute N™*/ from Eg. (3.13).
(i) Compute k! from Eq. (3.25).

(iii) Compute f.'* from Eq. (3.26).

int,i

6: Assemble K/ from k/ and F/} from f)}.

int,i
7: Compute R) =F) —F/

int,i *

8: Check if the convergence criterion of Eq. (3.39) is satisfied.
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(i) Ifno,set j=j+1 and goto step 3.
(if) If yes, goto step 9.

9: Check if A} and U] arelarger than target values.
(i) Ifno,seti=i+1andgotostep 2.

(i) If yes, stop the analysis.

3.5 NUMERICAL EXAMPLES

Five numerical examples are used to verify the accuracy and show the efficiency of
the proposed geometrically nonlinear bar element as well as the implemented solution
procedure. The correlation studies are performed by comparing the obtained
numerical results with the analytical results (if obtainable) or with other numerical

results published in the literature.

3.5.1 Example|: Shallow von Mises Truss

Figure 3-6. Example|: Shallow von Mises Truss.

The shallow von Mises truss of Figure 3-6 is used to show the ability of the proposed
model as well as the implemented solution procedure to handle a snap-through
instability phenomenon. This truss structure is considered a “classic” benchmark
since it has been widely used by several researchers to evaluate their nonlinear bar

models (e.g. Papadrakakis 1983, Kondoh and Atluri 1985, Greco et a. 2006,
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Torkamani and Shieh 2011, etc.). It consists of two identical bar members with cross

section area A=1.69x107 m?*, length | =11m, and elastic modulus E =206 GPa.

The rise angle « is 3.62° and is corresponding to the aspect ratio h/2L of 0.032.

Since the aspect ratio is low, thistruss structure is considered shallow.
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Figure 3-7. Midspan L oad-Displacement Response for Shallow von Mises Truss.

Figure 3-7 compares the numerical result obtained by the proposed model with the
analytical result for the mid-span load and mid-span displacement. The snap-through
phenomenon is clearly observed. The analytical result for this problem was given by
Greco et a. (2006). Clearly, there is a good agreement between analytical and
numerical results. From this plot, the first limit point occurs a point A and
corresponds to the mid-span load of 339.6 kN and the mid-span displacement of 0.287
m. This value of applied load is the maximum load that the system can sustain before
experiencing the snap-through instability. The second limit point occurs at point C
and corresponds to the mid-span load of -339.6 kN (upward) and the mid-span

displacement of 1.1 m. After this point, the system becomes stable as indicated by the
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positive slope of the equilibrium path. At points B and D, the structure is flat with a
zero applied load and the corresponding displacements are 0.7 and 1.4 m,
respectively. It is noted that when the load-control marching scheme is used for the
solution procedure, the portion A-B-C-D-E of the equilibrium path cannot be traced
and the structure suddenly snaps from points A to E.

3.5.2 Examplell: Crisfield Bar-Spring System

| L |

Figure 3-8. Examplell: Crisfield Bar-Spring System.

The Crisfield bar-spring system of Figure 3-8 is analyzed to show the ability of the
proposed model as well as the implemented solution procedure to cope with a snap-
back instability phenomenon. It consists of a bar member with three linear springs.

The aspect ratio h/L of the system is 0.01. The bar has its axia rigidity EA, of

50x10° and its three spring stiffnesses k, k,, and k, are 1.0, 0.25, and 1.5,
respectively. Numerically, the snap-back instability phenomenon is one of the most
challenging problems in nonlinear structural analysis. A good explanation of this kind
of elastic instability can be found in the textbook by Bazant and Cedolin (1991). It is
noted that both load and displacement control marching schemes fail to completely

trace the equilibrium path of a snap-back structure.
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Figure 3-9. L oad-Displacement Response of Node 1 for Crisfield Bar-Spring
System.

Figure 3-9 shows the load-displacement response curve of node 1 and exhibits the
snap-back instability phenomenon. At point A, the system buckles and the
corresponding applied load is 3507. This value agrees reasonably well with that
determined by Crisfield (1991). The buckling load computed by Crisfield (1991) is
approximately 3750. It is noted that when the displacement-control marching scheme
is used for the solution procedure, the portion A-B-C of the equilibrium path cannot
be traced and the structure suddenly snaps from points A to C.

3.5.3 Examplell1: Thompson-Hunt Strut

A strut structure of Figure 3-10 was first studied by Thompson and Hunt (1973) to
show the effects of local and global imperfections on the global buckling behavior.
Kondoh and Atluri (1983) and Torkamani and Shieh (2011) also used this strut to
evaluate the ability of their nonlinear bar models to represent the global buckling
behavior. This strut is adopted as a benchmarking problem in the present work to

assess the model capability to handle the global buckling phenomenon. As shown in
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Figure 3-10, the strut consists of 35 circular cross-section members with an identical

elastic modulus of 69 GPa. Two sizes of circular cross sections are used. Members 1-
21 has a sectional area of 5.484x10° m? while members 22-35 has a sectional area of

5.161x10° m?.

18 16 B 14 12

8 20 10 7
A 3 1
P L/4
— 34 33 32 31 30 29 28 27 26\ 25 24 23 22
4 L/4
2 a4
21 19 17 15 13 11 9

L2, L I L | L | L | L | L | L L2
f f i i i i i i i 1

L=066m

Figure 3-10. Examplelll: Thompson-Hunt Strut.
Figures 3-11 and 3-12 compare the numerical results obtained by the present model
with those obtained by the bar models of Kondoh and Atluri (1983) and Torkamani
and Shieh (2011). Figure 3-11 shows the |oad-displacement response of node A while
Figure 3-12 shows the response curve between the applied load at node A and the
vertical displacement at node B. Generally, there are good agreements between the
present results and the results obtained by Kondoh and Atluri (1983) and Torkamani
and Shieh (2011). At aload of approximately 7000 kN, the structure buckles globally.
It is noted that the buckling loads reported by Kondoh and Atluri (1983) and
Torkamani and Shieh (2011) are 7063 and 6916 kN, respectively. After thisload level,
the tangent of the equilibrium path becomes flat but the system can still maintain its

loading capacity.
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3.5.4 Example 1 V: Shallow Arch Truss

The shallow arch truss of Figure 3-13 is analyzed to show the global limit point of the
system. Kondoh and Atluri (1983) and Torkamani and Shieh (2011) also used this
structure to evaluate the ability of their nonlinear bar models. It consists of 35

members with an identical elastic modulus of 69GPa and is subjected to a

concentrated load at node A. The cross-section areas of all members are summarized

in Table 3-1.

Figure 3-13. Example I V: Shallow Arch Truss.

Table 3-1: Cross Section Areas of the Member s of the Shallow Arch Truss

Member Area(m?®)
1-10 and 35 5.161x10°°
11-12 6.452x10°°
13-16 8.387x10°°
17-18 0.677x10°°
19-22 10.323x10°®
23-24 16.129x10°°
25-26 19.355x10
27-28 25.806x107
29-32 29.032x10°
33-34 30.968x1073

Figure 3-14 compares the numerical results obtained by the present model with those
obtained by the models of Kondoh and Atluri (1983) and Torkamani and Shieh
(2011). It represents the vertical load-displacement response curves of node A. In

general, they are al in agood agreement. The applied load corresponding to the limit
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point is 25.6 kN as predicted by the proposed model while the models of Kondoh and

Atluri (1983) and Torkamani and Shieh (2011) indicate that the limit point is reached

at applied loads of 25.87 and 25.11 kN, respectively. It is noted that the response

curve of Torkamani and Shieh (2011) shows a drastic loss of the system loading

capacity after the limit point. As reported by Torkamani and Shieh (2011), thisis due

to some divergence that their model experiences after reaching the limit point. Unlike

the updated Lagrangian bar element by Torkamani and Shieh (2011), the total

Lagrangian bar element presented herein does not experience such a divergence.
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Figure 3-14. L oad-Displacement Response at Node A for Shallow Arch Truss.

3.5.5 Example V: Cantilever Truss

The cantilever truss of Figure 3-15 is employed to assess the model capability to

resemble the response of an elastic beam under large displacement. It is composed of

41 members with an identical elastic modulus of 100 GPa and an identical sectional

areaof 0.03m”. The system is subjected to an applied load at its free end.
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Figure 3-15. Example V: Cantilever Truss.
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Figure 3-16. Vertical L oad-Displacement Response at the Free End.

Figure 3-16 shows the vertical load-displacement response at the free end. It is
observed that the structure behaves linearly at small loads. As the load increases, the
system becomes stiffer and behaves nonlinearly. This is due to tension stiffening of
the system in its deformed configuration. Figure 3-17 shows the response curve
between the vertical applied load and the horizontal displacement at the free end. It is
observed that at small loads, the tangential slope of the response curve decreases. This
is due to the compression forces in the bottom chord members at small loads.

However, this phenomenon diminishes drastically as the applied load increases. The
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response characteristics of Figures 16 and 17 are similar to those of a cantilever beam

under large displacement (Nanakorn and Vu 2006).
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Figure 3-17. Vertical Load-Horizontal Displacement Response at the Free End.
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APPENDIX: TANGENT STIFFNESSMATRICESAND ELEMENT VECTOR

The stiffness matrix k
Xi12 XY, _Xijz — XY
2 2
BA | XY YT XY Y
3 2 2
I-o _Xij _xinij xij Xinij

2 2
N Xij Yij _Yii XiiYii Yii

Ko =

The stiffness matrices k, and k, :

X'JU'J X'J\/'l xlJU'J XJ\/'J
k _% YIJUI] Ylj\/l YIJUIj YIJ\/I] _k'T
1= — ™M1
LO3 X'lUU X'I\/U X|IU|I X'I\/U
YI]UIJ YI]\/IJ YI]UI] YI]\/IJ

The stiffness matrix K, :
u? uyv, -U? Uy

ij
UiJViJ' Vi® U iiViJ _Vij i
VR VA VAR U I VAV
U iiVii Vi’ U iJ'Vii Vii ’

The stiffness matrix k:
1 0 -1 0

 _N*?fo 10 -1
° L, |-1 0 1 0

O -1 0 1
The element vector f,, :
Uij +Xij
f ~ NPK2 \/” +Y|J
int —
L, |Yi =X
-,
where
X, =X =X;;Y,=Y-Y;U,=U-U;adV,=V-V,
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CHAPTER 4

FINITE FRAME ELEMENT FOR LARGE

DISPLACEMENT ELASTIC AND INELASTIC

ANALYSES OF FRAME STRUCTURES

4.1 I ntroduction

Frame members are commonly used in engineering structures (e.g. aerospace
structures, marine vessels, innovative structural buildings, etc.). Due to drastic
advance in material technology and economic reasons, designers of such structures
usualy try to optimize the structural weights, thus rendering the systems highly
flexible. Such structures often fail by losses of their stability and may behave
elastically well into the post-buckling regime. During the post-buckling regime, these
structures generally experience large displacements and rotations. Furthermore, the
Performance-Based Design and Assessment Methodology (ICBO 2000) has recently
been adopted in the structural engineering community. In this design and assessment
methodology, it urges structural engineers to understand and trace the structural
responses to loading conditions ranging from service to collapse states. Thus, the
frame model used to analyze highly flexible frame structures and employed in
accordance with the Performance-Based Design and Assessment Methodology needs
to be more sophisticated and capable of capturing the system nonlinearities
(geometric and material nonlinearities).

Severa nonlinear frame models have been proposed in literatures. Depending on the



choice of reference configuration and the complexity of the embedded beam theory,
these frame models can be classified into three groups, namely: (a) Total Lagrangian
model; (b) Updated Lagrangian model; and (c) Corotational model.

Severa nonlinear frame models based on the total Lagrangian description have been
proposed by several researchers (e.g. Milner 1981; Cichon 1984; Sgje 1990; Pai et al.
2000; Nanakorn and Vu 2006, etc.). Within the total Lagrangian framework, a highly
nonlinear beam theory (Reissner 1972) is usually required to simulate the frame
motion even if the relative deformations of the frame experiencing the finite rigid
displacements are small. Using the standard Hermite frame interpolation functions
leads to the problem of field inconsistency (Nanakorn and Vu 2006), thus degrading
the model accuracy. This is due to the fact that for large displacement/rotation
problems, the longitudinal displacement field, the transverse displacement field, and
the sectional rotation field are complicatedly dependent on each other. Severa
researchers have proposed several approaches to overcome this difficulty. For
example, Sgje (1990) and Nanakorn and Vu (2006) proposed the semi-analytical
approaches to obtain the field-consistency interpolation functions.

A number of updated Lagrangian frame elements for large displacement/rotation
problems have been proposed by several researchers in the research community (e.g.
Bathe and Bolourchi 1979; Yang and McGuire 1986; Gattass and Abel 1987; Chan
1988; etc.). Due to the updating nature of the reference configuration, the standard
Hermite interpolation functions could be used if the displacement increment from the
reference element configuration to the current element configuration is sufficiently

small. If this is not to be the case, the use of the standard Hermite interpolation
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functions may lead to the field-inconsistency problem (Nanakorn and VVu 2006).
Besides total Lagrangian and updated Lagrangian formulations used to derive
geometrically nonlinear frame elements, the corotational concept is an alternative to
formulate the numerical model for large displacement and large rotation analyses of
frame structures and has become extremely popular. The corotational concept has
employed the polar decomposition principle used in continuum mechanics in its
rudimentary form. Following the polar decomposition principle (Reddy 2008), the
deformational motions of a solid body can be separated from its rigid body motions
(trandlations and rotations). In other words, the total motion of a solid body can be
decomposed into two parts: rigid-body part and deformational part. In the finite frame
element formulation, the corotational frame is introduced to split the element motion
into rigid-body part and deformation part. With respect to the corotational frame, the
small displacement/rotation assumption could be made. Thus, the linear beam theory
or any lower-order beam theory can be applied to the large displacement/rotation
problems,

Ancestors of the corotational approach date back to the “natural” approach presented
by Argyris et a. (1964) and the “convected-coordinate” approach proposed by
Belytschko and Hsieh (1973). It is worth noting that Oran (1973) also recognized that
the element formulation could be done locally within the corotational frame and
realized the importance of accounting for the variation between local and global
transformation matrices in order to derive a consistent tangent stiffness matrix. The
Eulerian reference frame was referred to the corotational frame in works by Oran

(1973) and Wen and Rahimzadeh (1983). In a subsequent work by Belytschko and
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Glaum (1979), the word “corotational” was coined to unify the rigid-body-
motion/deformation decomposition concept and has been commonly adopted. Up to
date, the corotational concept has been widely employed by several researchers to
formulate geometrically nonlinear frame elements (e.g. Crisfield 1990; lura 1994;
Jiang and Olson 1994; Lee 1997; Urthaler and Reddy 2005; Rungamornrat and
Tangnovarad 2011, etc.).

In this chapter, an efficient frame element for large displacement and large rotation
analyses of planar frame structures is proposed. The element formulation is based on
the marriage of the corotational concept and the Euler-Bernoulli-von Karman beam
theory. In other words, the global geometric nonlinearity (e.g. P—A effect) is
introduced into the element via the corotational approach while the local geometric
nonlinearity (P—o effect) is accounted for using the Euler-Bernoulli-von Karman
beam theory. The enhancement of the Euler-Bernoulli-von Karman beam theory over
the linear Euler-Bernoulli beam theory is the inclusion of the rotational-related
quadratic term in the axial strain-displacement equation, thus resulting in the
membrane axial strain. However, this membrane axia strain might have an adverse
effect on the element performance when the standard displacement-based finite
element is employed. This adverse effect is known as the “membrane locking”
phenomenon (Reddy 2004). Severa approaches have been proposed to remedy this
locking problem for example: reduced integration (Geyer and Groenwold 2003), use
of enhanced strain field (Perego 2000), mixed and force-based formulations
(Hjelmstad and Taciroglu 2003), etc. This study employs the Hellinger-Reissner

mixed functional to formulate the locking-free Euler-Bernoulli-von Karman frame
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element within the system without rigid-body modes (basic system). It is noted that
the Hellinger-Reissner mixed functional has been used by the authors to formulate the
mixed frame element with bond-interfaces presented in Limkatanyu and Spacone
(2002a) and the mixed Winkler foundation element presented in Limkatanyu and
Spacone (2006).

The organization of the present chapter is set as follows. The kinematics and kinetics
of the corotational framework as well as the transformation relation for the stiffness
matrices are first discussed. Then, the derivation of the governing differentia
equations for the Euler-Bernoulli-von Karman beam theory is given. These governing
equations consist of compatibility, equilibrium, and constitutive relations. It can be
shown that the axial strain in the Euler-Bernoulli-von Karman beam theory is simply
a degenerated Green-Lagrange strain in continuum mechanics. A set of governing
differential equilibrium equations are derived in a direct manner. The virtual
displacement principle is used to demonstrate the variational consistency between the
derived governing differentia equilibrium equations and the compatibility equations.
Next, the Hellinger-Reissner mixed functional is employed to formulate the Euler-
Bernoulli-von Karman frame element with respect to the basic system. The
directional derivative operator or Gateaux operator (Hughes and Pister 1978) is used
to linearize the Hellinger-Reissner mixed functional, thus leading to the incremental
element equations. The derivation of the displacement and force interpolation
functions and element state determination process are also briefly discussed. Finaly,
the validity of the proposed nonlinear frame element is confirmed by analyzing seven

benchmark examples exhibiting severa types of critical points and comparing these
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results with analytical and experimental results available in literatures. The efficiency
of the proposed nonlinear frame element is assessed by comparing the numerical
results obtained with the proposed model to those obtained with other nonlinear frame
models. The general-purpose finite element platform FEAP (Taylor 2000) is used to
host the proposed element and its available solution marching schemes are employed

to obtain the numerical results.

4.2  Corotational Formulation of Planar Frames

4.2.1 Frame Kinematics and Kinetics

Rigid Body Motions Deformations

(Translation + Rotation) (Extension + Flexure)

ij i i'j’

Initial Configuration g

Figure 4-1 Corotational Framework of Planar Frame Element
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Figure 4-2 Element Systems: Complete and Basic Systems
The frame element shown in Figure 4-1 is taken as a generic frame element to convey
the corotational concept. The kinematics of this generic element moving from its

initial to current configurations is described by its nodal displacements in the global

reference system (X -Y). These nodal displacements and their corresponding nodal
forces are grouped in the vectors U and P, respectively:

.

U=|U, U, U, U, U LTJGJ 4.1)
P=|R R R R R R]

Six components of U and six components of P form the element complete system as

shown in Figure 4-2. Eliminating three rigid-body motions leaves three basic element

deformations and forms the element basic system as shown in Figure 4-2. Three basic

element deformations and their corresponding basic forces are grouped in the vectors

U and P, respectively:

(4.2)

The objective of this section isto derive the statical and kinematical relations between
the element basic and complete systems using the corotational concept. In the finite
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element frame formulation, the corotationa reference axes (X'-Y') are rigidly
bounded to the cross section at node i in theinitial configuration and at node i' in the
current configuration. If the element displaces as a rigid body, the corotational
reference axes are carried with it and no element deformations are induced. As shown
in Figure 4-1, the basic element deformations are defined as displacements relative to
the corotational reference axes. Relative to this reference system, the element can be
visualized as a beam simply supported with apin at node i' and with aroller at nodes
jtand j". Thisvirtua supporting system simply helps us to suppress the rigid body
modes. The basic element deformations of this basic system are defined as. the

relative displacement U, at node j' along the chord connecting nodes i' and j'; the
rotational deformation U, at node i' relative to the chord i'j'; and the rotational

deformation U, at node j' relative to the chord i’ j'. Thus, these three basic element

deformations are computed as.

|-L
,=Us;=p=U;-p+p, (4.3)
s=Ug—f=Ug—p+p,

=

I < g

where L and | aretheinitial and current lengths of element chords, respectively and

are computed as:

L= (X ) (%)

(4.4)
| =\/(x]. FU, =X U, ) (Y, U, —Y -U,)

p, and p denote the orientation angles of initial and current element chords,

respectively, and are expressed as:
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cosp, ="' and sinp, =~ (4.5)
Po L Po L

X tUamX Uy o Yi#Us =Y -0,

| | (4.6)

cosp =

The compatibility relation between the element basic and complete systems can be
derived by establishing the kinematica relation between the virtual basic eement
deformations SU and virtual nodal displacements SU . This can be done by first
taking the variation of Eq. (4.3):

Sl
=0U,~B=06U,-dp (4.7
U, =06U,~8f=06U,~p

U,
U,

The virtual axial deformation SU, can be expressed in terms of U by taking the
variation of the second relation in Eq. (4.4):

dU, =5l =—cospdU, —sin pdU, +cospdU, +sin poU,  (4.8)
The virtual element-chord orientation angledp can be expressed in terms of 6U by
taking the variation of Eq. (4.6):

5p:|}(sinp5U1—cos,o5U2—sinp5U4+cos,05U5) (4.9

Substituting Egs. (4.8) and (4.9) into (4.7) leads to the following matrix compatibility
relation:

OU =Tpg, 06U (4.10)
where T, is the compatibility matrix and filters out the rigid body modes from

oU.
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—-cosp -—-sinp 0 cosp snp O
Teew =| —Sinp/l cosp/l 1 sinp/l —cosp/l 0| (4.11)
—sinp/l cosp/l 0 sinp/l —cosp/l 1

The statical relation between the nodal forces in the element complete and basic
systems can be established by accounting for the invariant property of the virtual
work with respect to either the element complete or basic system:
oW =6UP=6U"P=6U"TL,,P (4.12)
Due to arbitrariness of U, the statical relation between the nodal force vectors P
and P is:
P =T, P (4.13)
The contragradient nature between Egs. (4.10) and (4.13) confirms the conjugate-
work pairs of nodal forces and displacements in both element basic and complete
systems.
4.2.2 Global and Basic Element Stiffness Matrices
The transformation relation between the complete and basic element stiffness
matrices can be obtained by taking the variation of Eq. (4.13) as.
OP =Ty, 6P+ 6Tk, P (4.14)
The first term in Eq. (4.14) can be aternatively expressed by accounting for the
compatibility relation of EqQ. (4.10) and introducing the basic element stiffness
equation SP =KJU':
Tigy OP = The, K6U = TL, KT, U (4.15)
where K isthe basic element stiffness matrix.

The second term in Eq. (4.14) can be explicitly written as:
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5T-RI—BM ]T) = 5tRBM 1|51 + 5t RBM ZISZ + 5tRBM 3'53 (416)

where ot Otoevo» and Ot . represent the first, second, and third columns of

RBM 1

STy » Tespectively. Taking the first variation of T, , the row matrices St ,

Ot ey, aNd Oty . are expressed as:

T T + T
Sty = PLELSU A1 Sty , = Oty = P2 2B EL5U - (4.17)

where the row matrices g, and g, are defined as:

g, =[sinp -cosp O -sinp cosp O]

g,=|-cosp -sinp 0 cosp sinp O] (418)
Substituting Egs. (4.15-4.17) into (4.14) leads to the global stiffness equation:
SP =Ks5U (4.19)
where K represents the global element stiffness defined as:
K=K, +K, (4.20)

In EQ. (4.20), the material and globa geometric stiffness contributions to the global

element stiffness matrix K are denoted by the matrices K,, and K, respectively,

and are computed as:

Ky = TI;IQ—BM I_(TRBM (4.21)
T T T
KG:F_)lgl g1+(|?;.2+E)g2 .78, 8 (4.22)

I |2

The elegant outcome of the corotational formulation is the natural separation of
model nonlinearities. The geometric nonlinearity at the global level (large
displacements and rotations) is taken into account in the global geometric stiffness

matrix K. The nonlinearity within the element basic system is accounted for in the
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material stiffness matrix K,,. This source of nonlinearities may have come from

material nonlinearity (e.g. elastic-plastic, nonlinear elastic, etc.) or local geometrical

nonlinearity (e.g. P—o effect, etc.).

4.3 Basic (Local) Beam System: Euler-Bernoulli-von Karman Beam
Theory

4.3.1 Compatibility: Motion, Deformation, and Strain

Current Configuration ]t

y’ yt A

Reference Configuration [] ©

Figure 4-3 Lagrangian Kinematical Description of Beam Section

Let us consider a portion of an initially straight prismatic beam as shown in Figure 4-

3. The Lagrangian kinematical description is used to study the motion of a generic

particle P, originally located at the Lagrangian coordinates (x,y). Under loading
exertion, the particle P, in the reference configuration [1° displaces to the particle P

currently located at the Eulerian coordinates (X, Y, ) in the current configuration [1*.
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Following the Euler-Bernoulli beam-section hypothesis, the mapping between the

Lagrangian and Eulerian coordinates is written as:

X, ¥)=X+U(X)—ysingd(x

X (xy)=x+u(x)-ysino(x) 429
Y (X, y) =Vv(x)+ ycosé(x)

where u(x) and v(x) are horizontal and vertical displacements of the centroidal

point moving from its reference position C,[x,0] to its current position C, [x,v(x)];

and 0(x) isthe sectional rotation angle.

The deformation gradient matrix of the motion of the particle P, is:

ox. O
a—))(‘( Ext 1+@—y0050% -sing

F- - X o (4.24)
N M| | N

—— ysiné’% cosé
ox oy oX OX

Accordingly, the Green-Lagrange strain matrix is:

ES(L EGL 1
ES = {EGL E*GVL} = E(FTF ~1) (4.25)
yX yy

Explicitly, each Green-Lagrange strain component is expressed as:

2 2
Ec :£(1+%— ycosa%j +l(@— ysiné?%j

*o2 oX 2\ ox oX
ou 00 ) . oV .00
2ES = 2E® = _| 1+ —=—ycosfd— |sn@+| —— ysind— |cosé 4.26
Y 7 ( OX Y 6xj (ax Y axJ (4.26)
E, =0

As expected, the transverse normal strain EfyL vanishes since the cross section is

assumed to be transversely rigid. Considering small strains, the first-order

approximation e to the Green-Lagrange strain matrix E®- can be written as:
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GL GL
e :{eg Qg& (4.27)
eyy
where
o ou 1(auj 1(@)2 00
€, =—+ +—=|—| —ycosfd—;
oX 2\ 0X 2\ OX OX
ou ov
2 1+— |sin@+—cosé; 4.28
G = eyx [ 8x] oX ( )
e, =0;

Ensuring that the shear strain € vanishes, three sectional displacement fields u(x),

v(x), and @(x) must be inter-dependent and need to satisfy the following

kinematical constraint:

(1+ a—ujs ne = @cose (4.29)
OX OX

The beam theory based Egs. (4.28) and (4.29) is referred to as the “Euler-Bernoulli-
Reissner” or “refined” beam theory (Reissner 1972). Considering small rotations with

respect to the corotational angle (sind=tand=6f=0v/ox and cosd =1) and
neglecting high-order terms ((du/ox)sing and (au/ax)z), the second-order

approximation €% to the Green-Lagrange strain matrix E®- can be written as:

au 1(av) o
g)c(st P _+_(_J vZY o
sGL=LGL 821}: x 2\x) Yok (4.30)

It is noted that the vanishing condition of the shear strain & is satisfied only in the

approximate sense. The only non-zero strainis £5- and can be alternatively expressed

in terms of sectional deformations &5~ and x as:

74



et =gl —yx (4.31)

XX

where the membrane axial strain ;" at the centroidal axis and the bending strain

(material measure of curvature) x are expressed as.

(4.32)

Lo _ou 1avj and o220 _ v
o Tox 2l X o

The beam theory based on the strain definition of Eq. (4.32) is often referred to as the
Euler-Bernoulli-von Karman or “technical” beam theory (Pignataro et al. 1991). Two

sectional deformations of Eq. (4.32) can be grouped in the following array:
ou 1(ovy ol
_ | 6L T
a[u(x)]=d(x)=| & x| Bﬁ 2[@)(} yJ (4.33)
T . .. . .

where u(x)=|u(x) v(x)| isthe array containing section displacements. On the
left-hand side of Eq. (4.33), the presence of the centroidal displacement vector u(x)
emphasizes that the section deformation vector d(x) is related to the section
displacement vector u(x) through the compatibility condition. In other words, the

variable d(x) isaslaveto thevariable u(x).

4.3.2 Equilibrium: Direct Approach vs. Variational Approach
The governing differential equilibrium equations of the Euler-Bernoulli-von Karman
beam shown in Figure 4-4 (a) are derived in a direct manner. A differential element
dx taken from the beam is shown in Figure 4-4 (b). Considering horizontal and
vertical equilibriums of the infinitesimal segment dx lead to:

N

P +w,(x)=0 (4.34)
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oV (x)
oX

+w, (x)=0 (4.35)

where N(x) and V(x) are the section axial and shear forces, respectively; and

w, (x) and w, (x) arethe horizontal and transverse distributed loads, respectively.

I

o,
F_Jl X
a)
6\:9()(x) V(x)+ 6\;§(X) dx
M,(),()— ) {%__I\/I>(x)+ aMa)((X) dx
N(x) ‘V_—(%‘r - N(x)+ al\(;)((x) dx

-
-
-
-
-

Figure 4-4 Equilibrium of Element Basic System: a) Deformed Basic System;
b) An Infinitesimal Frame Segment
Considering the moment equilibrium and neglecting higher-order terms lead to:

oM ()
OX

ov(x)
OX

+V (x)— N(x) =0 (4.36)

where M (x) is the section bending moment.

Differentiating Eq. (4.36) with respect to x and eliminating the section shear force
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V(x) through Eq. (4.35) yield:

(4.37)

Egs. (4.34) and (4.37) form a set of governing differential equilibrium equations of
the Euler-Bernoulli-von Karman beam theory. To validate the variational consistency
between the derived governing differential equilibrium equations and compatibility
equations obtained earlier, the virtual displacement principle is employed as follows.

For the basic system of Figure 4-4 (a), the virtual work equation can be written as:

OW = J'(&SLN + kM )dx—j(&uwX + 6w, ) dx
L L

~0U,R-0U,P, ~0U,R =0

(4.38)

The directiona derivative operator (Gateaux operator) is used to obtain the virtua

sectional deformations degt and Sk from the virtual section displacements su and

oV as.
.
e T | osu ovosv 0%
sd[u, su]=| se5" ok | _Dd[u]au{ Fvairvavllev (4.39)
The matrix form of Eq. (4.39) can be written as:
5d = @dSu (4.40)
where the differential matrices ® and 0 are defined as:
ai 0
L g "
0= OX ando=| 0 = (4.41)
0 0 1 X
62
0 -
L ox?
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Substituting Egs. (4.39) into (4.38), applying integration by parts, and imposing
essential boundary conditions for su and oV yield the weighted residual form of

equilibrium equations:

e +
L oxt ox (4.42)

Accounting for the arbitrariness of all virtual quantities yields the governing
differential equilibrium equations of Egs. (4.34) and (4.37) as well as three natural
boundary conditions. Therefore, it confirms that the equilibrium and compatibility
equations derived earlier are variationally consistent.

4.3.3 Sectional Deformation-Force Relations
Throughout this work, both linear and nonlinear material responses are of interest.
For a linearly elastic material, the sectional deformations are related to their

conjugate-work sectional forces as follows:

M(x)

- (4.43)

=—— and x(X) =

where EA and |E are the axial and flexural rigidities, respectively. The matrix form of

Eq. (4.43) can be written as:
d(x)=fD(x) (4.44)
where D(x) isthe array containing sectional forces N(x) and M (x); and f isthe

diagonal matrix containing sectional compliances 1/EA and 1/IE.
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For a nonlinear material, the fiber section model is used to derive the beam-section

constitutive lav D=D(d). The fiber model automatically accounts for the

interaction between axial and bending responses and can be used to model reinforced
concrete, steel and other kinds of composite sections. The explicit expression for the
fiber beam-section force-deformation relation is given in Spacone et a (1996). The

section nonlinear law islinearized according to the following forms:

D(x) =D°(x)+AD(x) =D°(x) +k°(x)Ad(x) (4.45)
where k(x) is the section matrix. The consistent inverse of Eq. (4.45) can be
expressed in the following form:

d(x)=d’(x)+Ad(x)=a’(x)+f°(x)AD(x) (4.46)
where fo(x) is the section flexibility matrices, respectively. In the above equation,

the superscript O indicates the value of a vector or matrix at the initial point of a

linearized nonlinear scheme.

4.4 Local Euler-Bernoulli-von Karman Finite  Beam
Formulation

4.4.1 Hélinger-Reissner Mixed Functional

In the two-field mixed formulation (Reddy 2002), both section forces and section

deformations are approximated by interpolation functions. The section forces D(x)

are expressed in terms of the nodal force degrees of freedom R (to be defined later in

the paper) through force interpolation functions, and the section deformations d(x)
are expressed as functions of the basic nodal displacements U via displacement
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interpolation functions. The nodal force degrees of freedom R and basic noda
displacements U serve as the primary element variables. For the sake of simplicity, it
is assumed that horizontal and vertical element loads w, (x) and w, (x) vanish along
the element.

Based on the virtua displacement principle, the integra form of the equilibrium

equationsis expressed as:

A" = [5d(x)" D(x)dx-5U'P (4.47)

L
where 3d(x) are the virtual section deformations compatible with the virtual section
displacements u(x) through Eq. (4.40).
Based on the virtual force principle, the integral form of the compatibility equations

can be written as;

AR = [D(x) [d(x)-d(x) ]dx (4.48)

L

where 3D(x) are the virtual section forces; and d(x) are the section deformations

determined from the section forces D(x) )

Combining Egs. (4.47) and (4.48), the first variation of the Hellinger-Reissner mixed
functional can be written as:
M1 [u,D,5u,5D] = AT + ATLT
= [(5a(x)" D(x)+oD(x) [a(x)-d(x) ) -oTF 44
L
According to the fundamental lemma of variational calculus (Washizu 1982), the

compatible equilibrium configuration is obtained when oI1"[u, D, Su,6D] vanishes
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for all choices of Su(x) and 6D(x).

4.4.2 Incremental Element Equations
Due to the nonlinear nature of compatibility and equilibrium equations, an
incremental-iterative structural analysis is used to trace an equilibrium path of a
system. In this type of structural analysis, the tangent element stiffness matrix and the

internal element resisting forces are needed and can be derived from linearization of
Eq. (4.49). Let u,(x) and D, (x) represent the current element state. It is noted that
this element state is not necessary in equilibrium and compatibility. Consequently,
SIT™ may not necessarily vanish. With respect to u; (x) and D, (x), Eq. (4.49) can
be linearized as:

L[éHHR] _ éHHR

+A[ o] (4.50)

u;,D; u;,D;

where

éHHR

oo = (98007, (x)+ 5D (x)"[d, (x) -4, (x) ]| e~ 5T (451)

The increment of the first variational Hellinger-Reissner mixed functional can be

determined using the directional derivative operator as:

afar™] =%[an”R(u+aAu,D+aAD,5u,5D)]jif; (4.52)
Carrying out the above expression yields:
A[oT™ ] =[(6u"d"[@]AD+N,0Au]+5D'[©,0Au-£AD ])dx (4.53)
v L

where the axial-force matrix N, isdefined as:
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0 0
N =0 N(x) O (4.54)
0 0

It is noted that f, and N, are computed with respect to D, (x) while ©, is evaluated
with respect to u, (X).
To obtain the discrete form of Eq. (4.50), the section forces and section displacements
are expressed in terms of the noda force degrees of freedom R and basic nodal
displacements U through the force and displacement interpolation functions,
respectively:
D, (x)=Ng7 (X)R; and 6D(x)=NpF (Xx)OR+Np5 (x)O0U (4.55)
u(x)=N"(x)U and Su(x)=N®(x)6U (4.56)
where N7 (x) and N5 (x) arethe vertical displacement-dependent and axial force-
dependent force interpolation functions, respectively for the beam-section forces; and

N;®(x) are the displacement interpolation functions for the beam-section

u

displacements. It is noted that Npy (x) and Ny; (x) are evaluated with respect to

u; (x) and R;, respectively. Detailed derivations of these interpolation functions are
to be discussed later in the paper.

Substituting Egs. (4.55) and (4.56) into (4.50) and enforcing that L[ SIT"" | vanishes
for al choicesof 8R and U yield the following mixed matrix equations:

TTAR+[ G, +K, |AU+r; =0

_ (4.57)
~FAR+TAU+1, =0
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where T serves as the transformation matrix between the force degrees of freedom

and the displacement degrees of freedom, and is defined as:

T, = [N, B - [N N ox (458)
L L

with B (x) =8 N} (x).
The local geometric stiffness matrix G, accounts for the coupling between axial force

and transverse displacement, and is defined as:

G, = [BIR O NiR dx+ [Ni2 '@, Bk~ [Ni2 'f N dx  (4.59)
L L L

The axial-force matrix K, takes into account the effects of the axia force, and is

defined as:

K, = B N, B! (4.60)
L
F, istheflexibility matrix, and is defined as:
F, = [NSE'f, NiRax (4.61)
L

rg and r, represent the force and displacement residuals corresponding to the

U\
weighted integral forms of equilibrium and of compatibility, respectively, and are

defined as:

rg, = [B @D, dx+ [Ni3 ' (d, -d, ok P
- o (4.62)

In view of the element implementation into a general-purpose finite element program,

the force degrees of freedom in Eq. (4.57) are eliminated using static condensation.
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Consequently, solving the second relation in Eq. (4.57) yields:
AR =F(r, +T, AU) (4.63)
Substitution of EQ. (4.63) into the first relation in Eq. (4.57) leads to the mixed
stiffness equation:
K,AU=P -F (4.64)
where K, and F, represent the basic element stiffness matrix and basic element
resisting force vector, respectively, and are defined as:

I_(i = TiTFiilTi +Gn JrKNi
_ 4.65
F (4.65)

[BE*'@!D, dx+ [NI2 ' (d, ~d, ) dx—TF’r,
L L

4.4.3 Displacement and Force Interpolation Functions

Figure 4-5 Displacement Interpolation Functions

Following the first derivative of the axial displacement and the second derivative of
the transverse displacement, C° and C* continuous functions are used respectively
for the axial and transverse displacements for the basic system shown in Figure 4-5.
As aresult, linear Lagrangian and cubic Hermitian polynomials are used for the axial

and transverse displacements, respectively. Therefore, the displacement- interpolation

84



matrix N%(x) isdefined as:

(4.66)

B)

Figure 4-6 Force Interpolation Functions

Considering equilibriums of the basic system shown in Figure 4-6 with respect to its
deformed configuration, the displacement-dependent and axial force-dependent force

interpolation functions are:
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N (9=, g X X (4.67)
‘ L L
0 0 0
Niz (9= x(l—%j N; (x) X{(%— jNi(X) e

It is noted that with assumed transverse displacement, the displacement-dependent

force interpolation functions in NE? (x) satisfy the axial and moment equilibrium of
Egs. (4.34) and (4.37). The axial force-dependent force interpolation matrix NEZ (x)
accounts for the dependence of the virtual section forces §D(x) on the virtual basic

nodal displacements 6U .

45 Element State Determination

The element state determination procedure for the mixed frame element proposed in
this study follows the one presented by Limkatanyu and Spacone (2002b). A similar
procedure is also proposed by Hjelmstad and Taciroglu (2003). The adopted state
determination procedure s briefly explained as follows:

Solving the incremental stiffness equation yields the incremental nodal displacements
AU and the incremental basic element deformations AU through the rigid-body-
mode transformation matrix T, . The incrementa nodal forces AR can be
computed from Eq. (4.63). The current nodal forces, current nodal displacements, and

current basic element deformations are updated as:
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R, =R +AR
U, =U +AU (4.69)
U, =U +AU

With this element state determination procedure, all residuals at element level are sent
to the global structure level. Therefore, iterations are conducted only at the global
level, thus easing the model implementation. A more refined element state
determination procedure in which iterations are also performed at element level is

proposed by several researchers (e.g. Simo et a. 1993; Spacone et a. 1996; etc.).

4.6 Mode Evaluation by Benchmark Examples

Seven numerical examples are used to verify the accuracy and show the efficiency of
the proposed geometrically nonlinear frame element as well as the solution marching
schemes available in FEAP (Taylor 2000). The correlation studies are performed by
comparing the obtained numerical results with the analytical and experimental results.
For the first two examples, the numerical results obtained with the proposed model
are also compared with those obtained with two different frame models. For the sake
of brevity, the proposed frame model is abbreviated as the CR-HR-EBvK model
while other two frame models are abbreviated as the CR-DB-EB and the CR-DB-
EBVK models. For the CR-DB-EB model, the element formulation within the basic
system is based on the displacement-based Euler-Bernoulli frame element and the
corotational framework is used to describe the global element kinematics. Detailed
formulation of the CR-DB-EB model is presented in Urthaler and Reddy (2005). For
the CR-DB-EBVK model, the element formulation within the basic system is based

on the displacement-based Euler-Bernoulli-von Karman frame element as given by
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Hjelmstad and Taciroglu (2003) and the corotational framework is used to describe

the global element kinematics.

4.6.1 Example I: Cantilever Beam Subjected to an End-Point Load

E A I l

N
\

Figure 4-7 Example I: Cantilever Beam Subjected to an End-Point Load

A cantilever beam subjected to an end-point load shown in Figure 4-7 is employed to
illustrate the ability and accuracy of the proposed element to model a beam
experiencing considerable large displacements compared to its initial length and
showing unlimited hardening behavior. This beam system is considered a “classic”
benchmark since it has been widely used by severa researchers to evaluate their

nonlinear frame models (lura 1994; Jiang and Olson 1994; Urthaler and Reedy 2005).

It consists of an prismatic beam with cross section area A=1.27x10 m?, moment of

inertia 1 =3.66x10° m’, length L=4m, and elastic modulus E=200GPa. The

displacement-control method is used to trace the equilibrium path of the system. The
target value of the vertical displacement v is 3.2 m corresponding to approximately

80 % of the beam initial length.
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Figure 4-8 Load-Displacement Responses for Example

I:

(a) End Point Load-Vertical Displacement Diagram; B) End Point Load-

Horizontal Displacement Diagram
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Figures 4-8 (a) and (b) compare the numerical results obtained by three models with
the analytical results for the end point load-vertical displacement and end point |oad-
horizontal displacement responses, respectively. The analytical results for this
problem were given by Bisshop and Drucker (1945) based on elliptical integrals.
These plots indicate that only 2 CR-HR-EBVK elements are needed to match the
analytical responses while 8 CR-DB-EB and 16 CR-DB-EBVK elements are required
to obtain the same degree of accuracy. It is noted that even though the local beam
theory of the CR-DB-EBVK model is more refined than that of the CR-DB-EB
model, its accuracy is hampered by the membrane locking phenomenon (Reddy
2004). Comparing between the CR-HR-EBvVK and CR-DB-EB models, it is
confirmed that the local geometrical nonlinearity embedded in the CR-HR-EBVK

model greatly enhance the element accuracy.

4.6.2 Example II: Cantilever Beam Subjected to an End Moment
M
Q E A I )
N |

Figure 4-9 Example II: Cantilever Beam Subjected to an End Moment

The same cantilever beam of Figure 4-7 is subjected to an end moment as shown in
Figure 9. This beam system is used to demonstrate the large-rotational capability and

accuracy of the proposed element under extreme inextensible bending action. This
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beam system is also considered a “classic” benchmark since it has been widely used
by several researchersto evaluate their nonlinear frame models (Saje 1990; Lee 1997;

Urthaler and Reedy 2005). Under an applied end moment M this cantilever is

end !

rolled up one time into a circle when M, =M. =27 (IE/L), two times into two

circleswhen M, =2M and so on. The load-control marching scheme is used to

circle ?
trace the equilibrium path of the system. To show the robustness of the proposed
element under arbitrarily large rotations, the target value of the end moment M is set

to 3M, 4. = 3450 kN —m, thus curling the beam around the fixed end three times.

circle
Figures 4-10 (@) and (b) show the correlation studies between the numerical results
obtained by the three models and the analytical results, respectively for the end
moment-horizontal displacement and the end moment-vertica displacement

responses. The analytical results for this problem were given by Sge and SrpCic

(1985) based on the integral solution to the nonlinear differential equations. From
these plots, it is shown that only 8 CR-HR-EBVK elements are needed to match the
analytical responses while 16 CR-DB-EB and 32 CR-DB-EBvVK elements are required
to obtain the same degree of accuracy. During the convergence study, it is found that
only 2 and 4 CR-HR-EBVK elements are sufficient to trace the equilibrium paths for
the cases of the beam rolled up one-time and two-times, respectively. Comparing
these three frame models, it is found that the accuracy of the CR-DB-EBvVK model is
degraded by the membrane locking and the superiority of the CR-HR-EBvK model is

due to the local geometrical nonlinearity.
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Figure 4-10 Load-Displacement Responses for Example II: (a) End Moment-

Horizontal Displacement Diagram; (b) End Moment-Vertical Displacement

Diagram
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4.6.3 Example II1: Williams’ Toggle Frame

P,v

| 0.320m ‘ 0.329m ‘

| 0.329m |

Figure 4-11 Example III: Williams’ Toggle Frame [50]

The toggle frame shown in Figure 4-11 was analytically and experimentally studied
by Williams (1964). This frame serves as a benchmark example to show the ability
and efficiency of the proposed model to handle a snap-through instability
phenomenon and has been investigated by several researchers (Powell 1969; Yang

and Chiou 1987; Nanakorn and Vu 2006). It consists of two identical frame members

with cross section area A=1.14x10"* m?, moment of inertia | =3.42x10° m*,

length 1 =0.3292m, and elastic modulus E=71GPa. Therise angle « is 1.74°

and is corresponding to an aspect ratio of 0.0304. Since the aspect ratio is low, this
toggle frame structure is considered shallow. Due to symmetry, only one-half of the
toggle is modeled. To overcome the limit point, the displacement-control marching

scheme is used to trace the equilibrium path of the system. The target vertical

93



displacement v, ., is0.018 m.
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Figure 4-12 Equilibrium Path for Example II1

Figure 12 compares the numerical results obtained by the proposed model with the
analytical result for the midspan load-vertical displacement response. The analytical
result for this problem was given by Williams (1964). From Figure 12, it is observed
that only 2 CR-HR-EBVK elements are needed to match the analytical response.
4.6.4 Example IV: Jenkins et al.’s Diamond Frame

A pinned-fixed diamond frame shown in Figure 4-13 was analyticaly and
experimentally investigated by Jenkins et al. (1966). Several researches (Mattiasson
1981; Coda and Greco 2004; Rungamornrat and Tangnovarad 2011) have used this
frame as a caliber to evaluate their proposed frame models. It consists of four
identical frame members with cross section area A=1000, moment of inertia | =1,
length L =1, and elastic modulus E =1 and is subjected to tension and compression
as shown in Figures 13 (a) and (b), respectively. Due to symmetry, only one-half of

the frame is considered. The load-control marching scheme is used to trace the
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equilibrium path of the system. The target value of the point load P is 10.

symmetry
)

A)

symmetry
)

B)

Figure 4-13 Example IV: Jenkins et al’s Diamond Frame [53]:
(a) Tension; (b) Compression

Figures 4-14 (a) and (b) compare the numerical results obtained by the proposed

model with the analytical results for the case of the diamond frame under tension. The
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analytical results were given by Jenkins et a. (1966) using elliptic integrals. These
plots show the point load-vertical displacement and point load-horizonta
displacement. Only 2 CR-HR-EBVK elements per frame member are needed to

resemble the analytical responses.
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Figure 4-14 Load-Displacement Responses for Example IV under Tension:

(a) Load-Vertical Displacement Diagram; (b) Load-Horizontal Displacement
Diagram
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Figures 4-15 (a) and (b) superimpose the numerical results obtained by the proposed
model with the analytical results for the case of the diamond frame under
compression. These plots show the point load-vertical displacement and point load-
horizontal displacement responses. Only 2 CR-HR-EBVK elements per frame

member are sufficient to match the analytical responses.
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Figure 15 Load-Displacement Responses for Example IV under Compression:
A) Load-Vertical Displacement Diagram; B) Load-Horizontal Displacement
Diagram
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4.6.5 Example V: Lee et al.’s Frame

s 4

\%

E = 70.61 GPa

012m IO'OZ m

0.03m

&

| 0.12m |
| |

Figure 4-16 Example V: Lee et al.’s Frame

The analytical solution to the frame problem shown in Figure 4-16 was given by Lee
et a. (1968). Numerous researchers (Waszczyszyn and Janus-Michalska 1998) have
employed this frame example to assess their model capability to handle a snap-back
instability phenomenon. Numerically, the snap-back instability phenomenon is one of
the most challenging problems in nonlinear structural analysis. A good explanation of
this kind of elastic instability can be found in the textbook by Bazant and Cedolin
(1991). The geometric and material properties of the frame are given in Figure 4-16.
To cope with the snap-back instability phenomenon, the arc-length control marching

scheme is used to trace the equilibrium path of the system.
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Figure 4-17 Load-Displacement Responses for Example V under Compression:
(a) Load-Vertical Displacement Diagram; (b) Load-Horizontal Displacement
Diagram

Comparison between the analytical and the numerical responses is shown in Figures

4-17 (a) and (b) for the point load-vertical displacement and point |oad-horizontal
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displacement responses. The column is modeled with 4 CR-HR-EBVK elements
while the beam is discretized by 6 CR-HR-EBvVK elements with 2 elements to the left
of the point load and 4 elements to the right of the point load. Good agreement

between the analytical and the numerical responsesis clearly observed.

4.6.6 Example VI: El Zanaty’s Portal Frame with Stiffness Softening

= =

H,u v ¢
> o
W8x31

7

W8x31 W8x31

UYBETL

‘ L =138.8in. ‘
| |

Figure 4-18 El Zanaty’s Portal Frame Test Set Up

The steel portal frame shown in Figure 4-18 was first employed by El Zanaty et a.
(1980) as atest case for 2™ -order analysis simulations. Subsequently, this frame has
served as a benchmark example to show the ability and efficiency of the proposed
model to handle a frame structure with softening stiffness and has been investigated

by several researchers (e.g. White, 1985; King et al., 1992; Attalla et a., 1994; Chen
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and Chan, 1995). The frame is consists of three steel wide flange members W 8x 31
(two columns and one beam) with length L=138.8in., elastic modulus
E =29x10° ksi, and yield stress o, =36 ksi. The resulting column slenderness ratio
L/r, is40. To account for the residual-stress effects, alinear distribution pattern with
a peak tensile residual stress o, of 6.78 ksi and a peak compressive residual stress
o,. of 10.8 ks is assumed as suggested by Ketter et a. (1955). The fiber-section
model is employed to account for the sectional nonlinear response as well as the
residual-stress effects. Thus, the wide-flange section of aframe member is subdivided
into three regions, namely; web, top flange, and bottom flange. Ten stedl fibers are
used to discretize each flange region while twenty steel fibers are employed to
discretize the web region. As shown in Figure 4-18, the frame is first loaded by two
constant gravity loads P, Subsequently, an applied latera load H exerts
monotonically. To investigate the effects of column axial forces on the frame

response, three values of gravity loads P are considered: 0.2P,, 0.4R,, and 0.6P, .

Figure 4-19 shows the lateral load-displacement response curves under different
vaues of gravity loads (0.2P,,0.4R,, and 0.6R,). On the same diagram, the
responses obtained with the stiffness-based model proposed by King et al. (1992) are

also superimposed. Obvioudly, only 2 CR-HR-EBVK elements per frame member are

sufficient to model the system responses.
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Figure 4-19 Lateral Load-Displacement Response Curves for El Zanaty’s Portal

Frame

4.6.7 Example VII: Bazan’ s Two-Span Beam Specimen

Figures 4-20 and 4-21 show a 3/8" scaled model of a continuous two-span
reinforced concrete beam specimen tested by Bazan (2008). This specimen is a part
of the exterior frame of an RC building where an exterior column underlying the
upper beam is lost. The correlation study between experimental and numerical
results of this beam is performed to assess the model capability to simulate the
catenary actions in reinforced concrete beams when subjected to large
displacements. This capability is an essential feature of the proposed frame model in
studying the progressive collapse resistance of a reinforced concrete frame. Figure
4-22 shows the reinforcement detail of the 3/8" scaled continuous two-span

reinforced concrete beam specimen.
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Figure 4-21 Bazan’ s Two-Span Beam Specimen Installed on Steel Reaction

Frame (Bazan, 2008)
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Figure 4-22 Reinforcement Detail of Bazan’ s Two-Span Beam Specimen (Bazan,

2008)

Figure 4-23 Finite Frame Element Discretization of Bazan’s Two-Span Beam

Specimen

Figure 4-23 shows the finite-element mesh of Bazan's two-span beam specimen.

Each beam span is modeled by four proposed frame elements. The fiber section and
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material constitutive laws for concrete and steel discussed in Chapter 2 are used to

represent the beam sectional response.
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Figure 4-24 Comparison between Experimental and Numerical Results

Comparison between the analytical and the numerical responsesis shown in Figure 4-
24. These plots show the point load-vertical displacement responses. Generdly, the
proposed model can match well the experimental response. The sudden drops are

associated with the fracture of the two bottom reinforcing bars.
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CHAPTER S
SUMMARY AND CONCLUSIONS

5.1 Total Lagrangian Formulation of Planar Bar Element Using

Vectorial Kinematical Description

Based on the total Lagrangian formulation, a geometrically nonlinear bar element is
developed. This bar model is suitable to analyze large displacement problems of plane
truss structures. The vectorial form is used to describe the element kinematics. Within
the total Lagrangian framework, the Green-Lagrange axia strain is employed to
measure the element strain while the 2" Piola-Kirchhoff axial stress is employed to
measure the element stress. Only linear elastic material law is of interest in this work.
However, the model can naturally be extended to account for other more complex
material behaviors (e.g. elastic-plastic, nonlinear elastic, etc.). The element
equilibrium is expressed in the weak form through the nonlinear virtual displacement
function. The tangent element stiffness matrix and the element resistant force vector
are consistently derived by linearization of the virtual displacement function using the
directional derivative operator (Gateaux operator). In the solution process of solving
nonlinear equilibrium equations, the generalized displacement control method is
adopted and implemented into the in-house nonlinear structural analysis program.

Five numerical examples presented prove the accuracy of the proposed bar element
and the efficiency of the implemented solution algorithm. Examples| and Il are small
truss systems. They are analyzed to show that the proposed model as well as the
implemented solution procedure can cope with the snap-through and snap-back

instability phenomena, respectively. Examples |11 and IV are larger truss systems and



are composed of 35 members. Both Kondoh and Atluri (1983) and Torkamani and
Shieh (2011) used these two examples to assess their models, as well as the adopted
solution procedures. The ability of the proposed model to predict the global pre-
buckling and post-buckling responses of truss systems is verified in Examples 111 and
IV. The obtained results are in good agreements with those obtained by Kondoh and
Atluri (1983) and Torkamani and Shieh (2011). Example V shows the ability of the
proposed model to resemble the response of a cantilever beam subjected to large
displacements at its free end.

In summary, the development of the proposed bar element is a step forward in
establishing a computational framework that permits large-displacement and post-
buckling analyses of plane truss structures. Severa truss examples are used to show
the validity of the model. Therefore, the in-house nonlinear structural analysis
program developed here can be used as avital tool in the implementation of the newly

proposed Performance-Based Design and A ssessment Methodology.

5.2 Finite Frame Element for Large Displacement Elastic and I nelastic

Analyses of Frame Structures

This work presents a simple but efficient nonlinear frame element for large
displacement and large rotation analyses of elastic planar frame structures. The
corotational framework is used to describe the element kinematics and kinetics at the
global level while the local element response is derived based on the Euler-Bernoulli-
von Karman beam theory. The Hellinger-Reissner mixed functional is used to
construct the locking-free Euler-Bernoulli-von Karman frame element within the
basic system. The basic element stiffness matrix and basic element force vector are

obtained by linearization of the Hellinger-Reissner mixed functional using the
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directiona derivative operator. The standard displacement interpolation functions for
alinear frame element are used in the element formulation. In accordance with theses
assumed displacement interpolation functions, the force interpolation functions can be
derived such that the governing differential equations are satisfied in the point-wise
sense. Only linear elastic material law is of interest in this work. However, the model
can naturally be extended to account for other more complex material behaviors (e.g.
elastic-plastic, nonlinear elastic, etc.).

Seven benchmark structures are employed to prove the accuracy and efficiency of the
proposed frame element. Examples | and Il are benchmark examples of large
displacement and rotation problems and consist of a single cantilever beam subjected
respectively to an end force and an end moment. Correlation studies show that the
proposed model is very accurate and efficient in resembling the analytical results and
is not prone to the membrane-locking problem. The ability and efficiency of the
proposed model to handle the snap-through instability phenomenon are shown in
Example 1Il. A pinned-fixed square diamond frame in Example IV is analyzed to
demonstrate that the proposed model can handle the problem of small strains and
moderately large displacements with efficiency. The ability and efficiency of the
proposed model to cope with the snap-back instability phenomenon are shown in
Example V. The ability of the proposed model to cope with the inelastic responses of
steel and reinforced concrete frame structures is shown in Examples VI and VII,
respectively.

In summary, the development of the proposed frame element is a step forward in
establishing a computational framework that permits large displacement and rotation
analyses of elastic plane frames. Severa benchmark examples are used to show the

validity and efficiency of the model. The next stepsin this direction are to apply the
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proposed model to assess the vulnerability of framed structures against progressive
collapse scenarios induced by extreme catastrophic events (e.g. rare earthguakes,

terrorist attacks, egregious construction errors, etc.).

109



REFERENCES

-Agardh, L. (1974). “Anaytical and Numerica Analyses of Nonlinear Beam
Elements with Special Consideration of Initial and Numerical Errors.” PhD
Dissertation, Chalmers Tekniska Hogskola, Goteborg, Sweden.

-Anagnostopoulos, S. A. (1981). “Inelastic Beams for Seismic Analyses of
Structures.” Journal of the Sructural Division, ASCE, 107(7), 1297-1311.

-Argyris, JH., Kelsey, S., and Kamel, H. (1964). Matrix Methods of Structural
Analysis: a Precis of Recent Development., Pergomon Press, Oxford, UK.

-Attala, M.R., Deierlein, G.G., and McGuire, W. (1994). “ Spread of plasticity: quasi
plastic-hinge approach.” Journal of Sructural Engineering, ASCE, 120, pp. 2451
2473.

-Belytschko, T., Liu, W.K., and Moran, B. (2000). “Nonlinear Finite Elements for
Continua and Structures.” John Wiley & SonsInc., New York, USA.

-Bathe, K.J.,, Ramm, E., and Wilson, E.L. (1975). “Finite Element Formulations for
Large Deformation Dynamic Analysis’, International Journal for Numerical
Methods in Engineering, 9(2), pp. 353-386.

-Bathe, K.J. and Bolourchi, S. (1979). “Large Displacement Analysis of Three-
Dimensiona Beam Structures.”, International Journal for Numerical Methods in
Engineering, 14(7), pp. 961-986.

-Bathe, K.J. (1996). Finite Element Procedures. Prentice-Hall, Englewood Cliffs,
New Jersey, USA.

-Batoz, J.L. and Dhatt, G. (1979). “Incremental displacement algorithm for nonlinear
problems.” Int. J. Num Meth. Engng., Vol. 14, pp. 1262-1266.

-Bazan, M.L. “Response of Reinforced Concrete Elements and Structures Following
Loss of Load Bearing Elements.” Ph.D. Dissertation, Department of Civil and
Environmental Engineering, Northeastern University, Boston, USA.

-Bazant, Z.P. and Cedolin, L. (1991). Stability of Structures. Elastic, Inelastic,
Fracture, and Damage Theories, Oxford University Press, New York, USA.
-Belytschko, T. and Hsieh, B.J. (1973). “Nonlinear transient finite element analysis
with convected coordinates’, International Journal for Numerical Methods in
Engineering, Vol. 7, pp. 255-271.



-Belytschko, T. and Glaum, L.W. (1979). “ Applications of Higher Order Corotational
Stretch Theories to Nonlinear Finite Element Analysis.”, Computers and Structures,
10, pp. 175-182.

-Belytschko, T., Liu, W.K., and Moran, B. (2000). Nonlinear Finite Elements for
Continua and Structures. John Wiley & SonsInc., New York, USA.

-Bertero, V. V., Aktan, A. E., Charney, F. A., and Sause, R. (1984). Earthquake
Simulation Tests and Associated Studies of a 1/5th-Scale Model of a 7-story R/C
Frame-Wall Test Structure.” EERC Report 84-05, Earthquake Engineering Research
Center, University of California, Berkeley.

-Berke, L. and Mallet, R.H. (1969). “ Automated large deflection and stability analysis
of three-dimensional structures.” In: Mar I, Liebowitz H (eds) Structures Technology
for Large Radio and Radar Telescope Systems, MIT Press, Huntisville, Alabama,
USA, pp. 343-381.

-Bisshop, K.E. and Drucker, D.C. (1945). “Large Deflections of Cantilever Beams.”,
Quarterly of Applied Mathematics, 3, pp. 272-275.

-Chan, S.L. (1988). “Geometric and Material Non-Linear Analysis of Beam-Columns
and Frames Using the Minimum Residual Displacement Method.”, International
Journal for Numerical Methods in Engineering, 26(12), pp. 2657-2669.

-Chapman, S.J. (2005). MATLAB Programming for Engineers, Thomson, Australia.
-Charney, F. A. and Bertero, V. V. (1982). “An Evaluation of the Design and
Analytical Seismic Response of a Seven-Story Reinforced Concrete Frame-Wall
Structure.” EERC Report 82-08, Earthquake Engineering Research Center, University
of California, Berkeley.

-Chen, W.F. and Chan, S.L. (1995). “ Second-order inelastic analysis of steel frames
using element with midspan and end springs.”, Journal of Structural Engineering,
ASCE, 121, pp. 530-541.

-Ciampi, V. and Carlessimo, L. (1986). "A Nonlinear Beam Element for Seismic
Analysis of Structures.” 8th European Conference on Earthquake Engineering,
Lisbon, 6.3/1986, pp. 73-80.

-Cichon, C. (1984). “Large displacements in-plane analysis of elastic-plastic frames”,
Computers and Structures, Vol. 19, No. 5-6, pp. 737-745.

-Clough, RW., Benuska, K. L., and Wilson, E. L. (1965). “Inelastic Earthquake
Response of Tall Buildings.” Proceedings of the Third World Conference on
Earthquake Engineering, Vol. I1, pp. 68-89, Wellington, New Zealand.

111



-Coda, H.B. and Greco, M. (2004). “A simple FEM formulation for large deflection
2D frame analysis based on position description”, Computer Methods in Applied
Mechanics and Engineering, Vol. 193, pp. 3541-3557.

-Comite Euro-International du Beton (1996). “RC Frames under Earthquake
Loading.” State of the Art Report: Task Group 111/6, Thomas Telford Publishing,
London, UK.

-Crespo Da Silva, M.R.M. (1988). “Nonlinear Flexural-Torsiona-Extensiona
Dynamics of Beams.”, International Journal of Solids and Structures, 24(12), pp.
1225-1234.

-Crisfield, M.A. (1981). “A fast incremental/iterative solution procedure that handles
snap-through.” Comput. Struct., Vol. 13, No. 1-3, pp. 55-62.

-Crisfield, M.A. (1990). “A Consistent Corotaional Formulation for Nonlinear Three
Dimensional Beam Elements.”, Computer Methods in Applied Mechanics and
Engineering, 81, 131-150.

-Crisfield, M.A. (1991). Nonlinear Finite Element Analysis of Solids and Structures:
Volumel, John Wiley & Sons, New York, USA.

-de Freitas, JA.T. and Ribeiro, A.C.B.S. (1992). “Large displacement elastoplastic
analysis of space trusses.” Comput. Struct., Vol. 44, No. 5, pp. 1007-1016.

-El-Zanaty, M.H., Murray, D.W., and Bjorhovde, R. (1980). “Inelastic Behavior of
Multi-Story Steel Frames.”, Structural Engineering Report No. 83, University of
Alberta, Edmonton, Alberta, Canada.

-Filippou, F. C., Popov, E. P, and Bertero, V. V. (1983). “Effects of Bond
Deterioration on Hysteretic Behavior of Reinforced Concrete Joints.” EERC Report
83-19, Earthquake Engineering Research Center, University of California, Berkeley.
-Gattass, M. and Abel, J. (1987). “Equilibrium Considerations of the Updated
Lagrangian Formulation of Beam-Column with Natural Concepts.”, International
Journal for Numerical Methods in Engineering, 24(11), pp. 2119-2141.

-Geyer, S. and Groenwold, A.A. (2003). “On reduced integration and locking of flat
shell elements with drilling rotations’, Communications in Numerical Methods in
Engineering, Vol. 19, pp. 85-97.

-Giberson, M.F. (1967). “The Response of Nonlinear Multi-Story Structures
Subjected to Earthquake Excitation.” Earthquake Engineering Research Laboratory,
California Institute of Technology, Pasadena.

-Greco, M., Gesuado, F.A.R., Venturini, W.S., and Coda, H.B. (2006). “Nonlinear

112



positional formulation for space truss analysis.” Finite. Elem. Anal. Des., Vol. 42, pp.
1079-1086.

-Helledland, J. and Scordelis, A.C. (1981). “Analysis of R/C Bridge Column under
Imposed Deformations.” 1ABSE Colloquium, Delphi, pp. 545-559.

-Hjelmstad, K.D. and Taciroglu, E. (2003). “Mixed variational methods for finite
element analysis of geometrically non-linear, inelastic Bernoulli-Euler beams”,
Communicationsin Numerical Methods in Engineering, Vol. 19, pp. 809-832.
-Holzapfel, G.A. (2000). Nonlinear Solid Mechanics: A Continuum Approach for
Engineering, John Wiley & Sons, West Sussex, England

- Hughes, T.J.R. and Pister, K.S. (1978). “ Consistent linearization in mechanics of
solids and structures’, Computers and Structures, Vol. 8, pp. 391-397.

-Hughes, T.JR. (1987), The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA.

-ICC (2012). International Building Code, International Code Council, Country Club
Hills, Illinois, USA.

-lura, M. and Atluri, S.N. (1988). “Dynamic Analysis of Finitely Stretched and
Rotated Three-Dimensional Space Curved Beams.”, Computers and Structures, 29(5),
pp. 875-889.

-lura, M. (1994). “Effects of coordinate system on the accuracy of corotationa
formulation for Bernoulli-Euler’s beam”, International Journal of Solids and
Structures, Vol. 31, No. 20, pp. 2793-2806.

-Jiang, J. and Olson, M.D. (1994). “Large elastic-plastic deformations of slender
beams: corotational theory vs. von Karman theory”, Computational Mechanics, Vol.
15, pp. 117-128.

-Jenkins, JA., Seitz, T.B. and Przemieniecki, J.S. (1966). “Large deflections of
diamond-shaped frames’, International Journal of Solids and Structures, Vol. 2, pp.
591-603.

-Kent, D. C. and Park, R. (1971). "Flexural Members with Confined Concrete."
Journal of the Sructural Division, ASCE, 97 (7), pp. 1964-1990.

-Ketter, R.L., Kaminsky, E.L., and Beedle, L.S. (1995). “Plastic deformation of wide-
flange beam columns.”, Transactions ASCE, 120, pp. 1028-1069.

-King, W.S., While, D.W., and Chen, W.F. (1992). “ Second-order inelastic analysis
methods for steel-frame design.” Journal of Structural Engineering, ASCE, 118,

113



pp. 408-428.

-Kondoh, K. and Atluri, SIN. (1985). “Influence of the local buckling on global
instability: ssimplified, large deformation, post-buckling analysis of plane trusses.”
Comput. Struct., Vol. 21, No. 4, pp. 613-627.

-Krenk, S., Vissing-Jorgensen, C., and Thesbjerg, L. (1999). “Efficient Collapse
Analysis of Frames.”, Computers and Structures, 72, pp. 481-496.

-Lai, S. S, Will, G. T., and Otani, S. (1984). “Model for Inelastic Biaxial Bending of
Concrete Members.” Journal of Sructural Engineering, ASCE, 110(11), pp. 2563
2584.

-Lee, S, Manudl, F.S,, and Rossow, E.C. (1968). “Large Deflections and Stability of
Elastic Frames.”, Journal of Engineering Mechanics Division, ASCE, 2, pp. 521-547.
-Lee, K. (1997). “Anaysis of large displacements and large rotations of three-
dimensional beams by using small strains and unit vectors’, Communications in
Numerical Methods in Engineering, Vol. 13, pp. 987-997.

-Lee, C.-L. and Filippou, F.C. (2009). “Frame Elements with Mixed Formulation for
Singular Section Response.”, International Journal for Numerical Methods in
Engineering, 78(11), pp. 1320-1344.

-Limkatanyu, S. (2002). “Reinforced Concrete Models with Bond-Interfaces for the
Nonlinear Static and Dynamic Analysis of Reinforced Concrete Frame Structure.”
Ph.D. Dissertation, Department of Civil, Environmental, and Architectural
Engineering, University of Colorado, Boulder, USA.

-Limkatanyu, S. and Spacone, E. (2002). “Reinforced Concrete Frame Element with
Bond Interfaces. Part |: Displacement-Based, Force-Based, and Mixed Formulations.”
Journal of Sructural Engineering, ASCE; V.128, N0.3: 346-355.

-Limkatanyu, S. and Spacone, E. (2006). Frame Element with Lateral Deformable
Supports. Formulation and Numerical Validation. Computers and Structures, 84(13-
14), pp. 942-954.

-Mahin, S. A. and Bertero, V. V. (1975). “An Evauation of Some Methods for
Predicting Seismic Behavior of Reinforced Concrete Buildings.” EERC Report 75/05,
Earthquake Engineering Research Center, University of California, Berkeley.

-Mallet, R.H. and Schmit, L.A. (1967). “Nonlinear structural analysis by energy
search.” J. Struct. Div., ASCE., Vol. 93, No. 6, pp. 221-234.

-Malvern, L.E. (1969). Introduction to the Mechanics of a Continuous Medium.
Prentice-Hall, Englewood Cliffs, New Jersey, USA.

114



-Mattiasson, K. (1981). “Numerical Results from Large Deflection Beam and Frame
Problems Analyzed by Means of Elliptic Integrals.”, International Journal for
Numerical Methodsin Engineering, 17, pp. 145-153.

-Milner, H.R. (1981). “ Accurate finite element analysis of large displacementsin
skeletal frames’, Computers and Structures, Vol. 14, No. 3-4, pp. 205-210.
-Menegotto, M., and Pinto, P. E. (1973). “Method of Analysis for Cyclically Loaded
Reinforced Concrete Plane Frames Including Changes in Geometry and Inelastic
Behavior of Elements under Combined Normal Force and Bending.” IABSE
Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-
Defined Repeated Loads, Final Report, Lisbon.

-Nanakorn, P. and Vu, L.N. (2006). “A 2D Field-Consistent Beam Element for Large
Displacement Analysis Using the Total Lagrangian Formulation.”, Finite Elementsin
Analysis and Design, 42, pp. 1240-1247.

-Oran, C. (1973). “Tangent Stiffness in Plane Frames.”, Journal of Sructural
Division, ASCE, 99(6), pp. 973-985.

-Pacoste, C. and Eriksson, A. (1997). “Beam Elements in Instability Problems.”,
Computer Methods in Applied Mechanics and Engineering, 14, 163-197.

-Pai, P.F., Anderson, T.J.,, and Wheater, E.A. (2000). “Large-deformation tests and
total- Lagrangian finite-element analyses of flexible beams, International Journal of
Solids and Structures, Vol. 37, pp. 2951-2980.

-Papadrakakis, M. (1983). “Inelastic post-buckling analysis of trusses.” J. Struct. Div.,
ASCE., Vol. 109, No. 9, pp. 2129-2147.

-Perego, U.A. (2000). “A variationally consistent generalized variable formulation for
enhanced strain finite elements’, Communications in Numerical Methods in
Engineering, Vol. 16, pp. 151-163.

-Pignataro, M., Rizzi, N. and Luongo, A. (1991). Sability, Bifurcation, and Post-
Critical Behavior of Elastic Sructures, Elsevier.

-Powell, G.H. (1968). “ Theory of Nonlinear Elastic Structures’, Journal of Sructural
Division, ASCE, 95(12), pp. 2687-2701.

-Prager, W. and Hodge, P. (1951). “Theory of Perfectly Plastic Solids.” John Wiley
and Sons, New Y ork.

115



-Rankin, C.C. and Brogan, F.A. (1984). “An Element-Independent Corotaiona
Procedure for the Treatment of Large Rotations’, Collapse Analysis of Structures,
ASME, New York, USA.

-Reddy, JN. (2002). Energy Principles and Variational Methods in Applied
Mechanics, John Wiley & Sons.

-Reddy, JN. (2005). An Introduction to the Finite Element Method. 3 Edition,
McGraw-Hill Inc., New York, USA.

-Reddy, J.N. (2008). An Introduction to Continuum Mechanics, Cambridge University
Press.

-Reissner, E. (1972). “On One-Dimensional Finite-Strain Beam Theory: the Plane
Problem.”, Journal of Applied Mathematics and Physics, 23, pp. 795-804.

-Riks, E. (1972). “The application of Newton's method to the problem of elastic
stability.” J. Appl. Mech., Vol. 39, pp. 1060-1066.

-Rohde, F.V. (1953). “Large Deflections of a Cantilever Beam wit Uniformly
Distributed Load.”, Quarterly of Applied Mathematics, 11, pp. 337-338.
-Rubiano-Benavides, N.R. (1998). "Predictions in the Inelastic Seismic Response of
Concrete Structures Including Shear Deformations and Anchorage Slip." Ph.D.
dissertation, Dept. of Civil Engineering, University of Texas, Austin.

-Rungamornrat, J. and Tangnovarad, P. (2011). “Anaysis of linearly elastic
inextensible frames undergoing large displacement and rotation”, Mathematical
Problemsin Engineering, Vol. 2011(592958), pp. 1-37.

-Sgje, M. and SrpCic, S. (1985). “Large deformations of in-plane beam”,
International Journal of Solids and Structures, Vol. 21, pp. 1181-1195.

-Saje, M. (1990). “A Variationa Principle for Finite Planar Deformation of Straught
Slender Elastic Beams.”, International Journal of Solids and Structures, 24(12), pp.
887-900.

-Schmidt, L.C., Morgan, P.R., and Clarkson, JA. (1976). “ Space trusses with brittle
type strut buckling.” J. Struct. Div., ASCE., Vol. 102, No. 7, pp. 1479-1492.

-Scott, B.D., Park, R., and Priestley, M.JN. (1982). “Stress-Strain Behavior of
Concrete Confined by Overlapping Hoops at Low and High Strain Rates.” ACI
Journal, 79(1), pp. 13-27.

116



-Scott, M.H. and Filippou, F.C. (2007). “Response Gradients for Nonlinear Beam-
Column Elements under Large Displacements.”, Journal of Structural Engineering,
ASCE; V.133, No.2: 155-165.

-Shugyo, M. (2003). “Elastoplastic Large Deflection Analysis of Three-Dimensional
Steel Frames.”, Journal of Structural Engineering, ASCE; V.129, No.9: 1259-1267.
-Simo, J.C., Armero, F. and Taylor, R.L. (1993). “Improved versions of assumed
enhanced strain tri-linear elements for 3D finite deformation problems’, Computer
Methods in Applied Mechanics and Engineering, Vol. 110, pp. 359-386.

-Spacone, E. (1994). "Flexibility-Based Finite Element Models for the Nonlinear
Static and Dynamic Analysis of Concrete Frame Structures.” Ph.D. dissertation,
Department of Civil and Environmental Engineering, University of California,
Berkeley.

-Spacone, E., Filippou, F.C., and Taucer, F.F. (1996). “Fiber Beam-Column Model
for Nonlinear Analysis of R/C Frames. Part |: Formulation.” Earthquake Engineering
and Structural Dynamics, 25(7), pp. 711-725.

-Spacone, E., Ciampi. V. and Filippou, F.C. (1996). “Mixed formulation of nonlinear
beam finite element”, Computers and Structures, Vol. 58, pp. 71-83.

-Urthaer, Y. and Reddy, J.N. (2005). “A corotational finite element formulation for
the analysis of planar beams’, Communications in Numerical Methods in
Engineering, Vol. 21, pp. 553-570.

-Taylor, R.L. (2000). FEAP: A Finite Element Analysis Program, User Manual:
Version 7.3. Department of Civil and Environmental Engineering, University of
California, Berkeley.

-Taylor, R.L., Filippou, F.C., Saritas, A., and Auricchio, F. (2003). "A Mixed Finite
Element Method for Beam and Frame Problems’, Computational Mechanics, Vol. 31,
No. 1-2, pp. 192-203.

-Thompson, JM.T. and Hunt, GW. (1973). A General Theory of Elastic Stability,
Clowes and Sons Ltd, UK.

-Tonti, E. (1977). “The reason for analogies between physical theories.” Appl. Math.
Modd., Val. 1, pp. 37-50.

-Torkamani, M.A.M. and Shieh, JH. (2011). “Higher-order stiffness matrices in
nonlinear finite element analysis of plane truss structures.” Eng. Struct., Vol. 33, No.
12, pp. 3516-3526.

117



-Vu, L.N. (2006). “A 2D Field-Consistent Beam Element for Large Displacement
Analysis Using the Total Lagrangian Formulation.”, Master Thesis:CE-MS-2005-02,
Sirindhorn International Institute of Technology, Thammasat University, Thailand.
-Washizu, K. (1982). Variational Method in Elasticity and Plasticity, 3 edn,
Pergamon Press, New York, USA.

-Waszczyszyn, Z. and Janus-Michalska, M. (1998). “Numerica approach to the exact
finite element analysis of in-plane finite displacements of framed structures’,
Computers and Structures, Vol. 69, pp. 525-535.

-Wen, R.K. and Rahimzadeh, J. (1983). “Nonlinear elastic frame analysis by finite
element”, ASCE Journal Structural Division, Vol. 109, No. 8, pp. 1952-1971.

-White, D.W. (1985). “Materia and Geometric Nonlinear Analysis of Local Planar
Behavior in Steel Frames Using Interactive Computer Graphics.”, Master Thesis,
Cornell University, Ithaca, USA.

-William, F.W. (1964). “An Approach to Nonlinear Behavior of the Members of a
Rigid Joined Place Framework with Finite Deflections.”, Quarterly of Applied
Mathematics, 17, pp. 451-4609.

-Wolf, J.P. (1971). “Post buckling strength of large space truss.” J. Struct. Div.,
ASCE., Vol. 99, No.7, pp. 1708-1712.

-Yang, Y.B. and McGuire, W. (1986). “Stiffness Matrix for Geometric Nonlinear
Analysis.”, Journal of Sructural Engineering, ASCE; V.112, No.4: 853-877.

-Yang, Y.B. and Chiou, H.T. (1987). “Rigid body motion test for nonlinear analysis
with beam elements’, ASCE Journal of Engineering Mechanics, Vol. 113, pp. 1404-
14109.

-Yang, Y.B. and Shieh, M.S. (1990). “Solution method for nonlinear problems with
multiple critical points.” AIAA. J., Vol. 28, pp. 2110-2116.

-Yang, Y.B. and Leu, L.J. (1991). “Force Recovery Procedures in Nonlinear
Analysis.”, Computers and Structures, 41(6), pp. 1255-1261.

-Yang, Y.B. and Kuo, S.R. (1994). Theory and Analysis of Nonlinear Framed
Structures, Prentice-Hall, Singapore.

-Yassin, Mohd H.M. (1994). "Nonlinear Analysis of Prestressed Concrete Structures
under Monotonic and Cyclic Loads." Ph.D. dissertation, Dept. of Civil and
Environmental Engineering, University of California, Berkeley.

118



-Yi, W.J., He, Q.F., Xiao, Y., and Kunnath, S.K. (2008). “Experimental Study on
Progressive Collapse-Resistant Behavior of Reinforced Concrete Frame Structures.”,
ACI Structural Journal, 105(4), pp. 433-439.

-Zienkiewicz, O.C., Valliapan, S., and King, I.P. (1969). “Elasto-plastic solutions of
engineering problems: initial stress finite element approach.” Int. J. Num. Meth.
Engng., Val. 1, pp. 75-100.

119



OUTPUTS

I nternational Journal:

Limkatanyu, S., Prachasaree, W., Kaewkulchai, G., and Spacone, E. (2014)
“Unification of Mixed Euler-Bernoulli-von Karman Planar Frame Modd and
Corotational Approach.” Mechanics Based Design of Sructures and Machines: An
International Journal, 42(4), pp. 419-441.

(ISl Impact Factor (2013/2014) = 0.69)

Limkatanyu, S., Prachasaree, W., Kaewkulchai, G., and Kwon, M. (2013) “Tota
Lagrangian Formulation of 2D Bar Element Using Vectoriad Kinematical
Description”, KSCE Journal of Civil Engineering, 17(6), pp. 1348-1358.

(ISl Impact Factor (2013/2014) = 0.511)



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

