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Abstract

Project Code : RSA5480015
Project Title : Purification enhancement and value-adding of crude glycerol derived from biodiesel

production plant

Investigator : 1. Assoc.Prof.Mali Hunsom, Ph.D Chulalongkorn University
2. Miss Payia Saila Chulalongkorn University
3. Chaowat Autthanit Chulalongkorn University
4. Winata Kositnan Chulalongkorn University
5. Penpisuth Chaiyakam Chulalongkorn University

E-mail Address : mali.h@chula.ac.th; payiakiss@hotmail.com; ch.resolves@gmail.com;
mild_defry06@hotmail.com; ppc24@live.com

Project Period : 15 June 2011 to 14 June 2014

This work was carried out to investigate the effect of parameters and optimum conditions
for crude glycerol purification by solvent extraction and adsorption by sewage sludge-derived
activated carbon and for glycerol conversion to value-added compounds by electrochemical
technique. The results demonstrated that the solvent extraction by C;H;OH at the volume ratio of 2
can enhance the purifty of pretreated crude glycerol upto 97.85 with the color reduction of 94.96%,
which was better than that purified by adsorption with the best sewage sludge-derived activated
carbons (activated carbon prepared with KOH activation at KOH : char fo 5, activating time of 25 h,
activating temeperature of 800 °C, adsotion time of 120 min and agitation rate of 250 rpm) of
around 1.05-fold. For the systhesis of value-added compounds from purified crude glycerol by
electrochemical technique, the results demonstrated that the maximum glycerol conversion of
around 97.00% was obtained by using the Pt electrode with initial pH of glycerol of 1, current
density of 0.14 Acm2 and reaction time of 17 h. The main product of glycerol conversion in the
presence of H, was glycidol and that of H,O, were glycidol and glycolic acid. On the other hand,
the main product in the presence of Na,S,05 was ethylene glycol and that in presence of TEMPO

was 1,3-dihydroxyacetone.

Keywords : Value-adding of crude glycerol; Solvent extraction; Electrochemical process
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2141 mstﬁla\lmwu‘%qﬂ§waon§masaaﬁuﬂ%’uamwfmﬂm‘saﬁ'mﬁ'wéhﬁmzmﬂ

- (gjfa‘i_l (Drying Oven) ﬁl‘vq{a Termaks ju Series TS 8000
L LA3ITIRZIBEA 4 FUWI USHT Sartorius
- entngunniigs Ba Carbolite Model: 111/14(201)
- WIRNIAVLIAN
- insaautlukasdfuidnis
- 103891281 (Shaker) 88 CTL orbital §4 SK3

- nvEanwIaanuldunte-lug 8%e Macherey-Nagel

2.1.2 mstﬁla\lmwn’%qw%aonﬁvzrjasaaﬁuﬂ%’uﬁmwé’hﬂnszmumi@m%'u

- W@l uIauULYia (Tubular furnace) fi%o Vecstar Furnances I VCTF7

- Lﬂ‘%'aaﬁﬁﬂsﬁl,mmmﬁa (Fixed bed reactor) fNINNRUAKLAE

- wasluathda (Thermocouple) i@ K

- gnIalindainyinazesudalulasian (Rotameter) Sk Newflow 1 FBC-V-P-
A-500 C

- ﬁumquqm%nﬂﬁ (Temperature controller) El'lﬁa TAIE ju PFY400

- 03I (Orbital shaker) fivo CTL I% SK3

- §iau (Oven) 4@ Binder j1 ED115

- AZUNIITAH (Sieve) LUas 10 (2 Vadiuas) Lwas 18 (1 Nafiuas) Lwas 60 (0.25
UaaLNGT)

- Im@@m’m%u (Desiccator)
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- LAIBINTDIFYYINA (Vacuum pump) f%a Sibata 31 WJ-20



- NYNINIUVUFYYINTF (Buchner funnel)
- UIANIBY (Suction flask)
- 2203UTUNW (Erlenmeyer flask) 311@ 125 uag 250 Jaaaas
- 220U5udIN0T (Volumetric flask) 241@ 25 100 250 waz 1,000 JaaaaT
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- 3ssnenszuglWiessswe 10 wowuyds (Power supply) 34 ZS 3205-2X
- LA3BININLNLAEN (Magnetic stirrer)
- UWALNRANNIBRNY
L 1930979821800 4 duribe USHN Sartorius
- nyzansSannuLlwnIa-Lwa §%a Macherey-Nagel
- Lﬂ%laa Potentiostat/Galvanostat ﬁﬁa Auto Lab i;u PG stato
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Lﬂ%‘a\‘l HPLC (High Performance Liquid Chromatography) jlu HP1100 U%ﬂ'ﬂAgilent

technology

Lﬂ%ad GC-MS (Gas Chromatography-Mass Spectrometry) i;u G3174A U3HN
Agilent

¥ ]

LAIBIILATLANUNAIA83T Bruneur-Emmet-Teller (BET) 8%8 Quantachrome

Corporation 3% Autosorb-1

LA209IANINANALEILT (UV-VIS Spectrophotometer) E%a Jasco 34 V530
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- nyaWasWaINIuT% (Conc.HsPO,, Qrec, 85%)
-lmdsnlaasen’lad (NaOH, Merck, 98%)
- L Nuaa (CH;OH, Merck, 99.99%)
~ @M% (CoHsOH, Merck, 99.99%)
- IWsWuea (n-CsH,OH, Fisher, 99.99%)
~ L8N (C4Hys, Honeywell, 99.79%)
- latafiadines (C,H,,0, Panreac, 99.7%)

- lmdsngainalsnaainiia (Anhydrous Na,SO,, Qrec, 99%)
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-lm@suinanweslaaa (NalO,, AR grade, Fisher Chemical)
- afianlnanea (C,HgO,, AR grade, Qrec)
-lamdsunasiue (NaCHO,, AR grade, Ajax Finechem)
ladoylaasenlod (NaOH, AR grade, Carlo Erba)
- lm@suansuaiue (Na,COs, AR grade, Loba Chemie)
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- ﬂi@%&?ﬁﬂ (H,SOy4, 96%, Mallinckrodt Chemical)
lmdsnlnladama (NayS,04-5H,0, AR grade, Ajax Finechem)
- laladu (1,, AR grade, Ajax Finechem)
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- Iwunsgonlalaaa (KIOs, AR grade, Ajax Finechem)
- Lantuu (CgHq4, AR grade, Qrec)
- latafiadinas (C,H,,0, AR grade, Qrec)
- I‘uﬂu"lmaaug (Bromothymol blue)
- Auasanan (Phynolpthalein)
- .wiaealsus (Methyl orange)

- unslalasan

-lalasiaudaseanlaq (H,0, Qrec)



- Im@suassane (Na,S,0s, Qrec)
- 2,2,6,6-.0072 02 LWwa3au (2,2,6,6-tetramethylpiperidine-1-oxyl, Sigma Aldrich)

- UNNNWALTIN T (Panreac Quimica, UK)

[N
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- 1.2-Iwsinnlaaaa (C;HgO,, Fluka, 99.8%)
- 1,3-Iwstwnlaaaa (C;HgO,, Fluka, 99.8%)
- NALTaTaALEINIBLTE Merck, ARgrade, 99%)
- nIaTANINLINTH (Conc.H,SO,, Fisher, 98%)
-lmdsulaaseanlad (NaOH, Merck, 98%)
- lna%aaa (CsHeO,, Aldrich, 96%)
- 92TNOR (CaHgO,, Aldrich, 90%)
- 8zla38% (C4H,0, Merck, 99%)
- afianlnanea (C,HgO,, Qrec, 99.5%)
- wiiwlalasiau (H,, Praxair, 99.99%)

- vinaw (HPLC grade)
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a1 12 T2l
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AINFINVBIFNIRNAAOANTAZALNALTEToaUTUFAIWIYIINL 1 2 3 uaz 4
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functional groups) lasl43% Boehm titration [48] (AMNANWIN 9) WAzWRNARIAI18TT
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NIA-LEA19 9 wazsanluriaiaaa

Chemical substances pH 1 pH7 pH 11 USD (purity, %) [CAS no.]
Acetol/ hydroxyacetone 4 4 v 55.63/100g(90%)" [116-09-6]
Glycidol v v v 61.13/1 OOg(96%)b [656-52-5]
2-methyl-2-pentanol / Dimethyl propyl v v v 79.23/109(99%)0 (500-36.3]
carbinol

3-methyl-2-pentanone 4 v 381.84/259(99%) [565-61-7]
2,3-hexanediol 4 v 80.96/1mL(99%)" [617-30-1]
1,2-propanediol v 95.05/500mL(>99.5°/o)C [57-55-6]
1,2-butanediol v 174.94/1 L(>98.0%)d [584-03-2]
1-isopropoxy-2-propanol v 213.45/1 g(98%)c [3944-36-3]
Methyltartronic acid v N/A [595-48-2]
1,3-propanediol v 48.18/1 009(98%)C [504-63-2]
1,3-dioxolane v 165.51/1L(99%)° [646-06-0]
1-undecane v N/A [1120-21-4]
1,3-dioxolane-4-methanol,2,2-dimethyl v 49.23/1 OOg(98%)c [100-79-8]
5-methyl-1-heptanol v 894.0/1 mL(96%)C [67803-73-3 ]
3-butyl-cyclohexanone v N/A [39178-69-3]
2,4-dimethyl-1,3-dioxane v 105.04/10g° [766-20-1]
Ethylene glycol isopropyl ether v 65.04/1 L(99%)C [109-59-1]
2-hexanol v 262.96/100g(>98%)° [626-93-7]
Tetramethylsilane v 57.99/25g (>99.9%)c [75-76-3]
4-methyl-1-hexanol v 104/1mL(>98%)’ [1767-46-0]
2,2,5-trimethylhexane-3,4-dione v N/A [20633-03-8]
Acrolein/acryraldehyde v 150/1 kg(97%)C [107-02-8]
4-Pentene-2-ol 4 111.72/5g (99%)° [625-31-0]
Propanoic acid/ Propionic acid v 67.35/100mL (>99.5%)C[79-09-4]
3-Pentene-2-ol 4 815.19/25g (96%) [3899-34-1]
Glyceraldehyde v 1866.1/25¢g (>90%)C [56-82-6]
Methy! valerate v 109.71/1kg (>99%)° [624-24-8]

*Technical grade
bNatural grade
cReagent grade

dPurum grade
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Chemical substances pH 1 pH 7 pH 11 USD (purity, %) [CAS no.]
Acetol/ hydroxyacetone 4 4 4 55.63/100g(90%)" [116-09-6]
Glycidol v v v 61.13/1 009(96%)b [5656-52-5]
2-methyl-2-pentanol / Dimethyl R

v v 79.23/109(99%) [590-36-3]
propyl carbinol
3-methyl-2-pentanone 4 4 381.84/259(99%) [565-61-7]
Propylene oxide 4 80.96/1mL(99%)C [617-30-1]
1,2-propanediol v 95.05/500mL(>99.5%)C [57-55-6]
1,2-butanediol 4 174.94/1 L(>98.0%)d [584-03-2]
1,3-propanediol v 48.18/1 OOg(98%)C [504-63-2]
1,3-dioxolane v 165.51/1 L(99%)C [646-06-0]
1-undecane v N/A [1120-21-4]
5-methyl-1-heptanol v 894.0/1mL(96%)" [67803-73-3 ]
3-butyl-cyclohexanone v N/A [39178-69-3]
2,4-dimethyl-1,3-dioxane v 105.04/1 OgC [766-20-1]
2-hexanol 4 262.96/1 009(>98%)C [626-93-7]
4-methyl-1-hexanol v 104/1mL(>98%)’ [1767-46-0]
2,2,5-trimethylhexane-3,4-dione v N/A [20633-03-8]
2-heptyl-1,3-dioxolane v N/A [4359-57-3]
Acrolein/acryraldehyde v 150/1 kg(97%)C [107-02-8]
4-Pentene-2-ol v 111.72/5g (99%) [625-31-0]
Propanoic acid/ Propionic acid v 67.35/100mL (>99.5%)C[79—09—4]
3-Pentene-2-ol 4 815.19/25g (96%)  [3899-34-1]
Glyceraldehyde v 1866.1/25¢ (>90%)C [566-82-6]

*Technical grade
bNatural grade
CReagent grade

dPurum grade
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Abstract- A comparative study of enrichment of crude glycerol via solvent extraction and adsorption was performed at a
laboratory at 30 °C. Effect of various parameters on the properties of the obtained glycerol including glycerol-, ash- and
contaminant contents and color, was explored. The results showed that the enrichment of glycerol by solvent extraction was
significantly affected by the solvent type and ratio of solvent to pre-treated crude glycerol. The use of n-C;H;OH at a ratio of
2.0 was given the highest purity of glycerol, but the lowest color reduction. However, use of C4,H;O at a ratio of 1.0 was given
the low glycerol content but the highest color removal. On the other hand, adsorption with activated carbon was given poor
glycerol purity of 70.3 wt.% but its color was decreased more than 97.1%. The combined process of extraction with n-
C3H;OH at a ratio of 2.0 was followed by activated carbon adsorption and it was given the highest glycerol purity with the
color removal to a clear solution. In addition, the cost analysis of crude glycerol enrichment by the combined approach was
also explored.

Keywords- Crude glycerol, Transesterification, Enrichment, FAME (Fatty Acid Methyl Ester), MONG (Matter Organic Non-

Glycerol)

1. Introduction

Glycerol or propan-1, 2, 3-triol (also glycerin or
glycerine) is a trivalent alcohol that is widely used in diverse
applications including in the cosmetic, paint, automotive,
food, tobacco, pharmaceutical, pulp and paper, cleaning
materials, detergents, wetting agents, emulsifiers, skin
protectives, asphalt, ceramics, photographic products, wood
treatment, adhesives, leather and textile industries or as a
feedstock [1-2]. It can be produced by either microbial
fermentation [3], or by chemical synthesis from
petrochemical feedstocks, such as the oxidation or
chlorination of propylene [2], or can be recovered as a by-
product of soap production by saponification or biodiesel
production by transesterification of triglycerides from
vegetable oils or animal fats [4].

Due to the fast development and commercialization of
biodiesel in many countries, a large amount of glycerol is
produced [5]. Within Thailand, the recent increase in
biodiesel production is increased from less than 2.1x10°

l/day in 2008 to an expected 8.4x10° l/day in 2012 [6].
Stoichiometrically, glycerol is produced at 10 wt.% of the
total biodiesel production [7]. Thus, any further increase in
biodiesel production rates will significantly raise the quantity
and surplus of crude glycerol as waste in the environment.
The crude glycerol discharged from biodiesel production
plants consists not only glycerol but also various chemicals
such as water, organic and inorganic salts, soap and alcohol,
traces of glycerides and vegetable colors [4]. Thus, there
have been various studies focusing on the glycerol
enrichment and refining. For example, Ref. [8] pointed out
that a simple vacuum distillation at 120-126 °C and 0.04-0.4
mbar pressure was effective to recover a high purity of
glycerol (~ 96.6%) from crude glycerine that contained high
levels of salt and matter organic non-glycerol (MONG). To
avoid foaming, the pH of crude glycerine was adjusted as <
5. However, this process is energy intensive due to the high
specific heat capacity of glycerol and so has a high-energy
input requirement for vaporization under the low pressure
[9]. By using the electrochemical technique, Ref. [10]
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reported that the EUR2C-7hip electrolyzer allowed 80%
demineralization of a 65 vol.% glycerin solution from diester
wastes with faradic efficiencies of 47% and 35% for
sulphuric acid (H,SO,) concentrations of 2 M and 3 M,
respectively, and an energy cost of 0.5 kWh/kg of pure
glycerin. After concentration, a 95% pure glycerin solution
was obtained with less than 2 wt.% mineral content. The
selective removal of ions-contained within the glycerol was
performed using an ion-exchange technique. Ref. [11]
demonstrated that the macroporous resin Amberlite 252 was
effective to remove sodium ions from glycerol/water
solutions with a high salt concentration. A strongly basic
anionic-exchange resin (Amberlite IRA-420) could be used
for chloride removal, whilst a strongly acidic ion exchanger
(Amberlite IR-120) exhibited higher selectivity for
potassium and sodium ions [12]. By using a physicochemical
approach, a neutralization step was first performed to remove
the excess homogeneous catalyst as well as the un-reacted
free fatty acids (FFAs) from the crude glycerol, and then the
level of free ions from the salt and catalyst were reduced by
passage through ion exchange resins [13]. The acidification
of crude glycerol by H,SO, in the pH range of 1-6 can alter
the properties of obtained crude glycerol [14], where
increasing the pH in the acidification step led to an increased
yield of the glycerol-rich layer and decreased amounts of
residual inorganic salt and FFAs. Under strong acid
conditions, large quantities of FFAs and salt in the glycerol-
enriched fraction were eliminated. At pH = 1, high purity of
the glycerol (~93.34%) with a relatively low content of ash
(0.00045 wt.%) and MONG (5.16 wt.%) was obtained. Hajek
and Skopal [4] pointed out that the utilization of phosphoric
acid (HsPOy) in the acidification step can produce the useful
fertilizer potash phosphate (KH,PO,). Accordingly, Ref.
[15] claimed that the step-by-step purification of glycerol by
saponification, acidification and neutralization can
simultaneously produce high quality FFAs, glycerol and
potassium phosphate (KH,PO,, K,;HPO,) from crude
glycerol derived from the transesterification of waste cooking
oil. Based on this process; KH,PO,, K,HPO,, glycerol and
FFAs with a purity of 98.0%, 98.1%, 96.1% and 99.6% were
obtained, respectively.

In this study, comparative and combinative ability of
glycerol enrichment via solvent extraction and activated
carbon adsorption was performed at a the laboratory
temperature of 30 °C. Effect of various parameters on the
properties of enriched crude glycerol including glycerol-,
ash- and other contaminant contents as well as color were
investigated. Finally, the operating cost related to the cost of
chemical/material for crude glycerol enrichment by both
enrichment processes was estimated.

2. Experimental Proceses

Crude glycerol was obtained from a local fatty acid
methyl ester (FAME) production plant in Thailand that
utilizes waste used-oil as the raw material for biodiesel
production via the alkali mediated “transesterification”
process. It was dark brown solution with a high viscosity and
it can change to a semi-solid substance during the long

storage. Thus, prior to use, the crude glycerol was slowly
melted at around 40-60 °C.

2.1. Pre-treatment of Crude Glycerol

Due to the presence of organic and inorganic
contaminants in the crude glycerol such as soap, fatty acid
esters of glycerol, mineral salt, water and residual FAME, it
was first pre-treated according to the procedure of Ref. [16].
Namely, the crude glycerol was acidified by the addition of
H3PO,4 (85%, Qrec) to a pH of 2.5 and shook at constant rate
of 200 rpm (CTL, model SK electric shaker) for 1 h. Then, it
was left for 12 h until the solution had phase separated into
the three distinct layers of a top FFA-rich layer, the middle
glycerol-rich layer and the bottom inorganic salt-rich layer.
All layers were separated from each other by slow
decantation. Subsequently, the middle glycerol-rich layer
was neutralized by the addition of 12.5 M NaOH (98%
Merck) to pH 7.0, left for a while and then filtered to
eliminate the precipitated salt. The pre-treated crude glycerol
was obtained after drying at 110 °C for 15 h [16].

2.2. Enrichment of Pre-Treated Crude Glycerol

The enrichment of pre-treated crude glycerol was carried
out by two main procedures including solvent extraction and
adsorption. For the first one, various types of solvents
including polar solvent (methanol (99.99% CH30H, Merck),
ethanol (99.9% C,HsOH, Merck), propanol (99.99% n-
C3H;OH, Fisher Scientific)) and non-polar solvent (hexane
(99.79% CgHy4, Honey well) and diethyl ether (99.7%
C4H10, Panreac)) were utilized at different volume ratios of
solvent to pre-treated crude glycerol in the range of 0.5-4.0.
For the second one (with the polar solvents), the pre-treated
crude glycerol was mixed with the selected solvent and
volume ratio by shaking at 200 rpm for 4 h and then left for 2
h to encourage the phase separation into the glycerol-alcohol
phase on the top and the crystallized salt on the bottom. The
top layer was separated from the bottom layer by slow
decantation and the enriched glycerol was obtained after
evaporation of the solvent at 95 °C for 12 h. For the
extraction with the non-polar solvents, a similar procedure
was carried out except the non-polar contaminant-solvent
phase was observed on the top and the glycerol-rich phase
was observed on the bottom. The slow decantation was
carried out and the enriched crude glycerol was obtained
after evaporation of free water at 95 °C for 12 h.

For the adsorption, the commercial activated carbon
(Rankem, India) at the ratio of activated carbon to pre-treated
crude glycerol in the range of 33-167 g/l was used in this
work. The particle size, BET surface area, pore size and
micropore volume of the utilized activated carbon were 0.1-
0.3 nm, 898 m?/g, 0.239 nm and 0.539 cm®g, respectively.
Prior to use, the activated carbon was dried at 105 °C to
eliminate free moisture. The selected dose of activated
carbon was added to a 250-ml flask containing 150 ml of
pre-treated crude glycerol and shaken at a constant 200 rpm.
Finally, the adsorbent was separated by vacuum filtration and
the properties of the enriched glycerol were analyzed.
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2.3. Analytical Procedures

The glycerol content was analyzed by the High
Performance Liquid Chromatography (HPLC: Agilent 1100)
with a RID-10A refractive index detector. The stationary
phase was a Pinnacle II C18 column (240 x 4.6 mm) and the
mobile phase was a 99.9:0.1 (v/v) ratio of 10 mM H,SOy:
pure CH;OH, passed through the column at 0.5 ml/min. Ash
content was analyzed according to the standard method (ISO
2098-1972) by slowly eating 2 g of glycerol on a hot plate to
eliminate the free moisture and volatile matter. When no
further mist was generated, the glycerol was burnt in a
muffle furnace at 750 °C for 10 min. The residue was cooled
down to room temperature and weighed. The quantity of
water and MONG measured in terms of contaminants was
calculated by the difference in weights as;

Contaminant (wt.%) = 100 — [Glycerol content (wt.%)
+ Ash content (Wt.%)] Q)
The pH of the glycerol solution was measured with a pH
meter (Mettler Toledo, MP220). The color of glycerol was
measured by a UV/Vis spectrophotometer (Jasco, V-530) at a
wavelength of 487 nm. The density and viscosity were
measured by using a pycnometer and Oswald viscosity
according to 1SO 2099-1972 and ASTM D 445, respectively.
The composition of the crude, pre-treated and enriched crude
glycerol were analyzed by gas chromatography coupled mass
spectrometry (GC/MS) on a 6890N GC-MS system (Agilent
of GC/Pegosees Ill, Lego of MS).

3. Results and Discussion

3.1. Characteristics of the Crude Glycerol and Pre-Treated
Crude Glycerol

The original crude glycerol obtained from the waste
used-oil FAME biodiesel production plant was a dark brown
liquid (Fig. 1(a)) with a high pH in the range of 9.5-9.8 and a
low density and viscosity (Table 1) compared to that of the
commercial glycerol (density and viscosity of commercial
glycerol are 1.2671 g/cm® and 267.70 cSt, respectively [14]).
It contained a very low glycerol content (29.8 wt. %),

acceptable level of ash (7.90 wt. %), and has a relatively high
contaminant (62.3 wt. %). The ash was largely composed of
inorganic matter such as sodium salts that originated from
the NaOH catalyst used in the transesterfication process. The
large quantity of contaminant might be attributed to the
absorption of moisture from its surroundings during the
production process and by the contamination of soap,
methanol, fatty acid-glycerol esters and residual FAME from
the production process. During the phase separation process,
some of the fatty acids and FAME can dissolve or suspend in
the glycerol solution, which can consequently react with the
excess NaOH during the neutralization step to form
suspended soap in the crude glycerol [17]. The composition
of the crude glycerol derived from the waste used-oil FAME
production plant was then analyzed by a GC/MS apparatus.
Besides glycerol, the crude glycerol contained various
compounds (Fig. 2(a)) including FFAs and derivatives such
as lauric acid, methyl myristate, myristic acid, methyl
palmitoleate, methyl palmitate, palmitic acid, methyl
linoleate, oleic acid and methyl stearate which are the main
components of vegetable oil.

B
f

Fig. 1. Color of the (a) crude glycerol obtained from the
FAME biodiesel production plant, (b) pre-treated crude
glycerol, (c) enriched crude glycerol by solvent extraction
with n-CsH;OH at a volume ratio of solvent to pre-treated
crude glycerol of 2.0 and (d) enriched crude glycerol by
adsorption with activated carbon at ratio of activated carbon
to pre-treated crude glycerol of 67 g/l glycerol.

Table 1. Characteristics of the crude, pre-treated and enriched crude glycerol.

Crude glycerol enriched by the

Crude glycerol enriched by Crude - : :
Pre-treated ; - s combined sequential chemical
Parameters Stan7d ard Icrcug:f)l crude chemical extraction with: en%li)clﬁgjo:) extraction and adsorption
7 i glycerol® n-CsH;OH® C4H;00° adsor tion)"/ n-CaHyOH + CaHiO +
s 410 P adsorption® adsorption’
pH 9.5-9.8 7.0-7.2 5.5-6.0 5 5 4 4
Glycerol content (wt. %) >80 208+0.14 51.9+015 979+0.02 86.6+166 689+0.11 99.0+0.12 87.0+£0.01
Ash (wt. %) <10 7.90+0.5 234+11 0.86 +0.07 12.4+0.06 17.0£0.13 0.995 + 0.00 10.8+0.11
Other contaminant (wt. %) <10 62.3+1.04 24.8+0.16 1.29+0.05 1.03+£0.31 141+0.17 0.01+0.00 2.25+0.04
Density at 20 °C (g/cm®) 1.03+0.024 1.27+0.03 1.28 £0.05 1.27£0.02 .245+0.03 1.30£0.00 1.25+0.01
Viscosity at 40 °C (cSt) 48.3+0.172 53.8+1.29 na’ na na na na
, 484855+ 221,575+ 15,440 +
Color (Pt-Co unit) 10,499 7257 1,072 6,570 +£641 1,030 +25 310+81 285+ 90

& Pre-treatment by acidification with HsPO, at pH= 2.5.

b at volume ratio of solvent to pre-treated crude glycerol of 2.0

“at volume ratio of solvent to pre-treated crude glycerol of 1.0

dat weight by volume of absorbent to pre-treated crude glycerol of 67 g/l

¢at volume ratio of solvent to pre-treated crude glycerol of 2.0 and adsorption at activated carbon dose of 67 g/l
fat volume ratio of solvent to pre-treated crude glycerol of 1.0 and adsorption at activated carbon dose of 67 g/l
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Meanwhile, the excess H,PO, (ionized from H3PO,) can
couple with the Na* salts in the crude glycerol to form the
relatively insoluble NaH,PQO, in glycerol [16], resulting in
the formation of an inorganic salt layer on the bottom of the
aqueous solution. As demonstrated in Table 1, the pre-
treatment by acidification with H3;PO, altered the
characteristics of the crude glycerol. The pH of the pre-
treated crude glycerol was slightly lower at 7.0-7.2, the
density increased 1.23-fold to 1.273 g/cm?® (near that of pure
glycerol), whilst the viscosity was only slightly increased.
The appearance of the acid pre-treated crude glycerol was
changed to a brown liquid (Fig. 1(b)), or some 2.2-fold lower
(Table 1). The contaminant content was decreased 2.51-fold
to 24.8 wt.%, resulting in an increase in the glycerol content
to 51.9 wt. %. However, the ash content increased almost
2.96-fold in comparison with the original crude glycerol,
probably due to the fact that the generated phosphate salt
(NaH,PO,) remains partially soluble in the crude glycerol-
containing water (1.6 ¢/100 ml H,0), leading to the
contamination of this salt in the pre-treated crude glycerol. In
terms of the chemical composition, the acidification stage
can partially or totally remove different FFAs and derivatives
such as 2 hexadecanoyl glycerol, methyl linoleate, methyl
myristate, methyl palmitate, methyl palmitoleate, methyl
palmitate, methyl stearate, 2 monooleoy! glycerol and oleic
acid (Fig. 2(b)).

According to previous reports, the addition of a mineral
acid such as H,SO,4 [14] or H3PO, [16] to crude glycerol can
cause automatic phase separation into two or three distinct
layers comprised of a FFA layer on the top, a glycerol-rich
layer on the middle and an inorganic salt layer on the bottom.
This is because the H* from the mineral acid can protonate
the soap bulk to insoluble FFAs (Eg. (2)), which
consequently separate out as a top layer due to their low
density and low polarity compared to the polar glycerol.

R-COONa+H" — R-COOH + Na* (2)

where R is the variable hydrophobic core of the fatty acids.

3.2. Enrichment of the Pre-Treated Crude Glycerol via
Solvent Extraction

To further increase the glycerol content in the crude
glycerol, the pre-treated crude glycerol was then subjected to
solvent extraction. Three types of polar solvent (CH3;OH,
C,HsOH and n-CsH;0OH) and two types of non-polar solvent
(CgHy4 and C4H100O) at different volume ratios in the range of
0.5 to 4.0 were utilized at constant extraction time of 4 h and
shaking rate of 200 rpm. As demonstrated in Fig. 3(a), in the
presence of polar solvent, the glycerol content in enriched
crude glycerol increased as the increase of volume ratio of
solvent to pre-treated crude glycerol up to 2.0. This is
because large quantity of polar solvent can extract large
amount of glycerol from mineral salts and other
contaminants. However, further increase volume ratio greater
than 2.0 cannot enhance higher glycerol content in enriched
crude glycerol. Oppositely, it decreased the glycerol content
in enriched crude glycerol. This might be due to the fact that
an excess solvent can contaminate or dissolve in enriched
crude glycerol, resulting to the reduction of glycerol content.
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Fig. 2. Representative GC/MS spectra of the (a) original
crude glycerol as obtained from the FAME biodiesel plant,
(b) pre-treated crude glycerol and (c,d) enriched crude
glycerol following solvent extraction with (c) n-CsH,OH at a
volume ratio of solvent to pre-treated crude glycerol of 2.0 or
with (d) C4H,O at a volume ratio of solvent to pre-treated
crude glycerol of 1.0, and (e) adsorption with commercial
activated carbon.

At volume ratio of 2.0, the highest glycerol content was
observed in the enriched crude glycerol extracted by n-
C3H;0OH (97.9 wt. %). With respect to the efficiency of non-
polar solvent (Fig. 3(b)), using different volume ratio of
C4H100 and pre-treated crude glycerol in the range of 0.5-4.0
cannot alter the glycerol content in enriched crude glycerol,
whilst increasing the volume ratio of C¢Hy4 and pre-treated
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crude glycerol resulted to the slight increase of glycerol
content in enriched crude glycerol. For all ratios, the
utilization of C4,H;0O as a solvent gave a more extraction
efficiency in comparison to C¢Hys. The glycerol content in
enriched crude glycerol extracted by C4H;0O was greater
than that extracted by CgH,, for all ratios. This is because the
C4H100 had a higher water solubility compared with CgHy4
(~6.89 and 0.001 for C4H1,0 and CgHy4, respectively [18]),
resulting to a high content of water in extract phase (solvent-
rich phase) and low content in raffinate phase (glycerol-rich
phase). Considering the effect of solvent types and ratios on
the color of enriched crude glycerol, it was evidenced that
the color of enriched crude glycerol decreased of around
91.0-97.0 % in comparison to that of pre-treated crude
glycerol as demonstrated in Fig. 4. This is because the
utilized solvent can extract contaminants or color-generating
compounds from glycerol, resulting to the reduction of color
in enriched crude glycerol. Among the utilized solvents and
ratios, the most color reduction (97.0 %) was observed by the
utilization of C4H;,0O at the volume ratio of solvent to pre-
treated crude glycerol of 1.0, while the lowest color
reduction was observed by the utilization of n-C;H,OH as a
solvent (93.0 % at the ratio of 2.0). The optimal extraction
conditions for enriching the glycerol were thus n-CsH;OH at
a volume ratio of solvent to crude glycerol of 2.0 in terms of
the obtained glycerol purity, but with C4;H;(O at a
corresponding volume ratio of 1.0 in terms of the color
reduction. The main composition in enriched crude glycerol
by n-CsH;OH and C,H;,0 were glycerol as demonstrated in
Fig. 2(c) and 2(d), respectively. As also exhibited in Table 1,
the glycerol content in enriched crude glycerol by solvent
extraction with n-C3H,OH increase of around 3.28-fold,
while the ash content, contaminants and color decreased of
approximately 9.19-, 48.29- and 31.40-fold, respectively in
comparison to the original crude glycerol. With regard to the
characteristic of enriched crude glycerol by solvent
extraction with C4H;,0, the quantities of glycerol and ash in
enriched crude glycerol increase of around 2.91-, and 1.56-
fold, respectively. The amount of contaminants changed
slightly whereas the color of crude glycerol decreased of
approximately 73.79-fold.

Based on the obtained results in this part, it is difficult to
decide which solvent is better between n-C;H;OH and
C4H100 because the former solvent can enhance the highest
purity of enriched crude glycerol (97.9 wt.%), but lowest
color reduction (93.0 %), whist the latter solvent can
facilitate the low glycerol content (86.6 wt.%), but highest
color reduction (97.0 %).
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Fig. 3. Effect of solvent to pre-treated crude glycerol ratio on
glycerol (H), ash (H) and other contaminant (L) contents in
enriched crude glycerol purified by solvent extraction via (a)
polar solvents: CH;OH (left bar), C,HsOH (middle bar), n-
C3H;OH (right bar) and (b) non-polar solvents: CgHi4 (left
bar), C4H100 (right bar).
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0.5 1.0 20 3.0 4.0
Solvent : Pre-treated crude glycerol (v/v)

Fig. 4. Effect of solvent to pre-treated crude glycerol ratios
on color of enriched crude glycerol purified by solvent
extraction via CH3;OH (OJ), C,HsOH (M), n-CsH,OH (M),
C6H14 (.) and C4H100 (.)
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3.3. Enrichment of Pre-Treated Crude

Adsorption

Glycerol via

The enrichment of pre-treated crude glycerol was carried
out by the adsorption with commercial activated carbon at
different dost in the range of 33-167 g/l during the adsorption
time of 15-180 min at constant shaking rate of 200 rpm. The
results evidenced that the glycerol and ash contents in
enriched crude glycerol increased from initial content as the
increase of adsorption time and reached their bateau after 15
min (data not shown). Further increase the adsorption time
cannot enhance a more glycerol and ash reduction, they were
equilibrated after 15 min. This observation could be
explained by the theory of adsorption process. That is, the
adsorbate molecules (mineral salt) have to first transport
from the bulk solution to the surface of the adsorbent
(activated carbon) and then adsorb onto the adsorbent surface
[19]. The former stage occurs on the adsorbate-free surface,
so the adsorbate molecules arriving the surfaces of adsorbent
may attach instantly, resulting in a fast reduction of mineral
salt substance. The rate of adsorption during this period may
be dominated by the transportation of pollutant molecules
from the bulk solution to the adsorbent surfaces. On the other
hands, the latter stage occurs on the adsorbate-covered
surface and the rate of adsorption during this period may be
controlled by the adsorption kinetics. Thus, the rate of
adsorption may be slow depending on the quantity of free
active site of adsorbent. In our case, the fast adsorption rate
occurred during the former period consistently with the
adsorption theory. No more adsorption during the latter
period might be attributed to the equal rate of adsorption and
desorption of mineral salt on activated carbon surface [20].
Regarding to the effect of ratio of activated carbon to pre-
treated crude glycerol, the adsorbent dose slightly affected
the content of glycerol as well as ash contents in enriched
crude glycerol as demonstrated in Fig. 5. However,
increasing the adsorbent dose in the range of 33-167 g/l
glycerol resulted to a slight decrease in the glycerol content.
Nevertheless, a higher dose can achieve a higher color
reduction.

100 100

80
95

)o)

60

F 90

40

Color reduction

I 85

Enriched crude glycerol composition (wt.%o)

33 67 100 133 167
Activated carbon : Pre-treated crude glycerol (w/v)

Fig. 5. Effect of activated carbon to pre-treated crude
glycerol ratios on composition of enriched crude glycerol
(left bar) including glycerol (M), ash (H) and other
contaminant (CJ) contents and color (right bar) purified by
adsorption with activated carbon at 180 min.

A clear color of glycerol with greater than 97% color
reduction is being obtained with the commercial activated
carbon at 67 g/l glycerol at 180 min. The characteristics of
the enriched crude glycerol with the process by the
adsorption with activated carbon were also demonstrated in
Table 1. The glycerol and ash contents in enriched crude
glycerol increased of approximately 2.31- and 2.15-fold,
while the contaminants and color decreased of approximately
4.42 -and 471-fold, respectively in comparison to the original
crude glycerol. The composition of enriched crude glycerol
obtained by the enrichment by adsorption with activated
carbon at the dose of 67 g/l as displayed in Fig. 2(e). The
principle composition is glycerol.

To further increase the glycerol purity and decrease the
color in the enriched glycerol, a sequential process of
extraction with either n-CsH,OH or C,H;,O at volume ratio
of solvent to pre-treated crude glycerol of 2.0 or 1.0,
respectively, was followed by activated carbon adsorption at
67 g/l glycerol. A significant increase in the glycerol purity
was obtained (up to 99.1%) after the combined sequential
process of n-CsH;OH extraction and carbon adsorption,
while only a slight increase in the glycerol content was
obtained in the case of the corresponding process of C4H;,0
extraction and carbon adsorption (Table 1). Surprisingly, the
color of glycerol obtained in both combined processes was
not reduced as much as that by the adsorption with activated
carbon alone (Table 1). This might be due to the complete
elimination of water and MONG levels, leaving a more
heavily enriched crude glycerol. The properties of the crude
glycerol enriched by our proposed approach compared with
that of the other published reports were summarized in Table
2. Direct comparison is difficult since the initial glycerol
content in each crude glycerol source as well as the
contaminants was different and depended on the type of raw
material used in the process. Regardless, using waste used-
oil as a raw material for biodiesel production generates a
low-grade crude glycerol, and it was noticed that our
combined approach was more efficient to enrich crude
glycerol than the simple distillation [21], the electrodialysis
[10], a combined process of neutralization, microfiltration
and ion exchange resin [13], the saponification and
neutralization procedures [4] and a step-by-step chemical
enrichment [15].

The operating cost of chemical/material used in glycerol
enrichment by either solely chemical extraction or adsorption
and a combined process were estimated based on the
properties of utilized crude glycerol as well as the developed
enrichment approach, and summarized in Table 3. For the
acidification step, two types of chemical substance were
used; HsPO, and NaOH. The vyield of this step was
approximately 65%. With respect to the enrichment of pre-
treated crude glycerol by either chemical or process, the
chemical enrichment by C4H;,0 was cheaper than that of n-
C3H;OH (8.09- and 11.4 USD/I for C4H.,0 and n-CsH;OH,
respectively) while the cheapest cost (0.59 USD/I) was
observed in case of adsorption process. However, the yield of
enriched crude glycerol was in the reverse order as
demonstrated in Table 3. The chemical extraction with n-
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Table 2. Comparison of the enriched glycerol properties obtained from this work and other works.

Author(s) Sources of crude glycerol Glycerol (wt.%) Ash (wt. %) Contaminant (wt.%) Color
Wi Wi Wi Wi Wi Wi
Residual glycerol from
Yong et al [21]* chemical and physical 50.4 96.60 17.0 0.03 32.6 34 -
treatment of olive oil
Schaffner et al [10]° Synthetic solution 65 95 2 0.054 8 1.01 -
c Palm oil transesterification
Isahak et al [13] (homogeneous catalyst) 96.66 97.47 - - 3.34 2.53 -
Hajek and Skopal [4]* Transesterification 56.4-58.9 86 - - - - -
Kongjao et al [14]° Transesterification of 28.6 933 27 0.00045 68.8 6.7 light
waste used-oil ' ' ' ' ' ' brown
Javani et al [15]' Transesterification of - 96.08 - - - - -
waste used-oil
- Transesterification of 29.8+ 99.01 + almost
This work® waste used-oil 014 012 7.90+0.5 1.013+0.04 62.3+1.04 na clear

w; initial content of glycerol and impurities in the crude glycerol

W final content of glycerol and impurities in the crude glycerol

By simple distillation

®By electrodialysis

By combination process of neutralization, microfiltration and ion exchange resin
“By saponification and neutralization procedures

°By acidification by H,SO,4

'By step-by-step chemical enrichment

9Purify at volume ratio of solvent to pre-treated crude glycerol of 2.0 and adsorption at activated carbon dose of 67 g/l

"Not detected

Table 3. Operating cost analysis of chemical/material for glycerol enrichment via chemical extraction and physical adsorption

processes.
- - . Quantity of used Actual cost of Quantity of obtained
Estimated cost for 1 liter glycerol enrichment chemical/material (I or g)  chemical/material (USD) glycerol (1)
I. Pre-treated crude glycerol by acidification
HsPO, 0.2 2.71 0.650
NaOH 0.375 2.42
I1. Enrichment of glycerol via chemical extraction or physical adsorption
Extraction with n-C;H;OH 1.30 11.4 0.624
Extraction with C4H100 0.65 8.09 0.507
Physical adsorption with activated carbon 0.215 0.59 0.232
I11. A combined process of chemical extraction and physical adsorption
Extraction by n-C3H70H and adsorption with activated carbon
Extraction with -C3H70H 1.30 11.4 0.416
Physical adsorption with activated carbon 20.6 0.57
Extraction by C4H100 and adsorption with activated carbon
Extraction with C4H100 0.65 8.09 0.338
Physical adsorption with activated carbon 16.73 0.46
Summary
Enrichment cost by extraction with n-C3H;OH (USD/I crude glycerol) 16.6
Enrichment cost by extraction with C4,H;0O (USD/I crude glycerol) 13.2
Enrichment cost by extraction with activated carbon (USD/I crude glycerol) 5.72
Enrichment cost by extraction with n-C3H;OH and adsorption with activated carbon (USD/I crude glycerol) 17.1
Enrichment cost by extraction with C,H;00 and adsorption with activated carbon (USD/I crude glycerol) 13.7

C3H;OH provided the highest yield of enriched crude
glycerol and the adsorption process donated the lowest yield.
By using a combined approach, the chemical extraction with
n-CsH;OH and adsorption was more expensive than that of
the chemical extraction with C4H;00 and adsorption of
around 28.6%. However, more vyield of enriched crude
glycerol was obtained in the former approach. For the whole
enrichment process, based on equal quantity of crude
glycerol, it was noticed that the adsorption process was
cheapest process (5.72 USD/I crude glycerol) while a
combined process of chemical extraction with n-C;H,OH
and adsorption was the most costly (17.1 USD/I crude
glycerol). The different cost of both approaches was around
11.40 USD/I. Based on the quantity of an obtained enriched
crude glycerol, the operating cost of both approaches was
increased to 26.4 and 41.2 USD/I enriched crude glycerol,
respectively. According to this analysis, it seemed to be that

the operating cost of glycerol enrichment increased with the
increase of enrichment step, while the yield of enriched crude
glycerol decreased.

4. Conclusion

The enrichment of crude glycerol derived from a waste
used-oil FAME biodiesel plant was performed by solvent
extraction and adsorption. For the solvent extraction, types of
solvent as well as the volume ratio played an importance role
on the purity and color of enriched crude glycerol. Among
the utilized solvent and ratio, the n-C;H;OH at the volume
ratio of solvent to pre-treated crude glycerol of 2.0 was the
best of the evaluated solvents, yielding a glycerol purity of
97.9 wt.% and reducing the color level by around 93.0%,
whereas extraction with C4H30O at its optimal ratio of 1.0
yielded a higher color removal efficiency (97.0%) but a
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lower glycerol purity (86.6 wt.%). For the adsorption
process, the adsorption with activated carbon was poor at
improving the glycerol purity (70.3 wt.%), but it can
decrease the color in the glycerol by 97.1% at 67 g/l. A
combined process of solvent extraction with n-C;H,OH
followed by adsorption gave a high glycerol purity (99.0
wt.%) and reduction in the color (99.1%), but it was costly
(41.2 USD/I enriched crude glycerol). Thus, the operation
should be balanced between its enrichment efficiency and
operating cost.
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ABSTRACT

Adsorptive purification of crude glycerol (CG) from a used-oil/methanol utilizing biodiesel production
plant was performed using sewage sludge-derived activated carbons (ACs) at a laboratory scale and
ambient conditions. The effect of different chemical activating agents (H;PO4, K,CO5; and KOH) and car-
bonization temperatures (500-900 °C) on the surface properties of the obtained sludge-derived ACs, as
well as the adsorption efficiency of impurities from pre-treated crude glycerol (PTCG), was explored.
The results showed that both the activating agent type and the carbonization temperature affected the
textural properties and the surface chemistry of the sludge-derived AC. The oxygen-containing surface
functional groups, particularly the carbonyl groups, as well as the textural properties played a more
important role in the adsorptive purification of CG. Among the as-prepared sludge-derived AC, the acti-
vated carbon impregnated by KOH (KOH-AC) carbonized at 800 °C (KOH-800AC) exhibited suitable sur-
face properties to enhance the purity of the PTCG up to 93.0 wt.% when using an AC dose of 67 g/L, 2 h
adsorption time and a shaking rate of 250 rpm. The adsorption of either ash or other contaminants via
the sludge-derived AC followed the Langmuir isotherm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Glycerol is recognized as one of the top-12 building block chem-
icals that can be converted to high-value bio-based chemicals or
materials [1]. It is an oxygenated hydrocarbon with the potential
to produce hydrogen, synthesis gas, and hydrocarbons using vari-
ous processes such as pyrolysis, steam gasification and the cata-
lytic reforming reaction [2]. The dehydration of glycerol results
in the formation of acrylic aldehyde (acrolein), an important chem-
ical intermediate for the synthesis of many useful compounds,
such as acrylic acid and its esters, superabsorbent polymers and

* Corresponding author at: Fuels Research Center, Department of Chemical
Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road,
Bangkok 10330, Thailand. Tel.: +66 (2) 2187523 5; fax: +66 (2) 2555831.
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1385-8947/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
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detergents [3,4]. In addition, glycerol can be used as a feed stock
for the production of C3 and C2 valuable oxygenated compounds,
and in particular glyceric acid and dihydroxyacetone, which are
used as intermediate compounds for the synthesis of fine chemi-
cals and polymers and forms the main active ingredient in all
sunless tanning skincare preparations [5,6]. The selective hydrog-
enolysis of glycerol in the presence of an appropriate catalyst
and hydrogen produces several products that are widely used in
the manufacture of polyester resins, pharmaceuticals, liquid deter-
gents, cosmetics, paints, animal feed, antifreeze, food flavorants
and fragrances, such as 1,2-propanediol, 1,3-propanediol or ethy-
lenglycol [7].

Glycerol can be produced by either chemical synthesis from
petrochemical feed stocks, such as the oxidation or chlorination
of propylene [8], or by microbial fermentation [9]. It can also be
recovered as a by-product from soap production by saponification,
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hydrogenolysis of sugars to obtain propylene glycol [10] or meth-
anolysis during biodiesel production [11]. Currently, the world’s
capacity for biodiesel production is increasing dramatically. This
is also the case in Thailand where biodiesel production has in-
creased up to 1.71 x 10° L/day in 2012 [12]. Typically, approxi-
mately 1kg of glycerol is obtained when 10 kg of biodiesel are
produced [2]. Any further increase in biodiesel production rates
will significantly raise the quantity of glycerol produced above
the demands for it and so decrease its economic value. The glycerol
coming from biodiesel production is not economically suitable
(viable) for use in its traditional uses in the pharmaceutical and
cosmetic trades, since it does not have the required purity. Rather
it contains various other chemicals, such as water, organic and
inorganic salts, soap and alcohol, traces of glycerides and vegetable
colors [11]. Thus, various studies have been carried out focusing on
glycerol purification or enrichment, such as by simple vacuum dis-
tillation [13,14], electrodialysis [15], ion-exchange chromatogra-
phy [16,17], and chemical processes [11,18-21]. However, each
of them has some drawbacks. For example, a simple distillation
is energy consuming due to the high specific heat capacity of glyc-
erol. The chemical processes require various kinds of chemical sub-
stances, leading to a high operating cost.

Besides the above mentioned processes, adsorption is recog-
nized as an efficient and economical way to remove organic com-
pounds from an aqueous solution due to its low-energy
consumption, ability to operate at ambient temperature and pres-
sure, and to regenerate the spent adsorbent, plus the often broad
availability of adsorbents [22,23]. To remove the oily-like com-
pounds, various adsorbents can be applied, such as modified or
unmodified chitosans [24,25], bentonite [26,27], minerals and
clays [28,29], mixed metal oxides [30], and activated carbon (AC)
[27,31]. However, no work in the literature has reported on the
use of AC derived from sewage sludge to adsorb the oily-like impu-
rities, such as free fatty acids (FFA), from the crude glycerol (CG).

Thus, in this work, a set of 15 different ACs was prepared using
the sewage sludge from a wastewater treatment plant as the raw
material. The effect of the type of chemical activating agent, car-
bonization temperature, adsorption time and shaking rate was ex-
plored in order to obtain glycerol with a purity within the
acceptable limit of the BS 2621 standard ( >80 wt.%). The novelty
of this work is the utilization of sewage as the raw material for pre-
paring the AC, which could offer the benefits of reducing the vol-
ume of sludge for disposal and management.

2. Experimental
2.1. Pretreatment of crude glycerol (CG)

CG was obtained from a local fatty acid methyl ester (FAME) pro-
duction plant in Thailand that utilizes waste used-oil and methanol
as the raw materials for biodiesel production via the alkali catalyst
mediated transesterification process. As obtained, the CG was a
sticky dark brown solution with a high viscosity, and changed to
a semi-solid substance on storage. Prior to use, the CG was slowly
melted at around 40-60 °C and was pre-treated according to the
procedure of Manosak et al. [20]. Initially, fresh CG was acidified
by the addition of H3PO4 (85%, Qrec) to a pH of 2.5 and then shaken
for 1 h at a constant rate of 200 rpm (CTL, model SK electric shaker).
It was then left for 12 h until the solution had phase separated into
the three distinct layers of a top FFA-rich layer, a middle glycerol-
rich layer and a bottom inorganic salt-rich layer. All layers were
separated from each other by slow decantation. Subsequently, the
middle glycerol-rich layer was neutralized by the addition of
12.5 M NaOH (98%, Carlo Erba) to pH 7.0, left for a while and then
filtered to eliminate the precipitated salt. The pretreated crude
glycerol (PTCG) was then obtained after drying at 110 °C for 15 h.

2.2. Preparation of sludge-derived AC

The raw material used for preparing the AC was the sewage
sludge obtained from a textile industry wastewater treatment
plant in Thailand. The obtained sludge was washed several times
with deionized water to eliminate the contaminated grits and then
dried at 105 °C for 24 h until the weight loss was constant. Finally,
it was crushed with a grinder and sieved to a size range of 1-2 mm.
The preparation of the sludge-derived AC was comprised of the
two main steps of pyrolysis and activation. For the pyrolysis step,
approximately 50 g of crushed sewage sludge was heated slowly
in a stainless steel fixed-bed reactor at a constant heating rate of
10 °C/min from room temperature to the pre-set pyrolysis temper-
ature of 400 °C under a nitrogen (N,) atmosphere (flow rate 50 mL/
min). It was then held at this temperature for 2 h before being
cooled down slowly still under a N, atmosphere. The obtained
sample was crushed and sieved to a size smaller than 0.25 mm.
The ready-to-use char was obtained after drying at 105 °C for 2 h.

For the activation step, 100 mL of 100x g/L potassium hydroxide
solution (KOH, Ajax Finechem) was mixed with 10 g of char a KOH/
char weight ratio of x:1 (x=1, 2, 3, 4, 5 or 6). The liquid/solid
phases were maintained in contact under mechanical shaking at
a constant rate of 200 rpm for 0.5 h. The supernatant was then sep-
arated by vacuum filtration and the remaining solid was rinsed
several times by deionized water until the pH of filtrate was con-
stant. Subsequently, it was carbonized in a fixed-bed reactor at a
slow heating rate of 10 °C/min from room temperature to the
pre-set carbonization temperature (500-900 °C) under a N, atmo-
sphere (flow rate 10 mL/min, then held at this temperature for
30 min before being allowed to cool down slowly under a N, atmo-
sphere. The obtained samples were rinsed with 3 M hydrochloric
acid (HCl, 37% Carlo Erba) to remove other inorganic matter and
then with distilled water to eliminate the excess HCI until the pH
become neutral. The respective sludge-derived AC was obtained
after drying at 105 °C for 24 h. A similar procedure was repeated
for potassium carbonate (K,COs, Loba Chemie) and phosphoric acid
(H3PO4), except using 100x g/L K,CO3 or conc. H3PO, in place of the
KOH.

2.3. Adsorptive purification of PTCG

The adsorptive purification of PTCG was carried out at room
temperature (~30°C) and ambient pressure using either a com-
mercial AC preparation (Panreac Quimica S.A.U.) or the in-house
sludge-derived ACs. Prior to use, all utilized ACs were dried at
105°C for 30 min to eliminate free moisture. Subsequently,
approximately 1 g of AC was mixed with 15 mL PTCG (~67 g/L)
and shaken at a constant rate of 250 rpm for 90 min. Finally, the
AC was separated by vacuum filtration and the properties of the
obtained purified crude glycerol (PCG) were characterized.

2.4. Characterizations

The glycerol content in the glycerol solution was measured
according to the Standard method (ASTM D7637-10) by titration
with sodium metaperiodate (NalO4, Fisher Chemical), based on
the cold oxidation of the glycerol by NalO,4 in a strong acidic med-
ium. Ash content was analyzed according to the Standard method
(ISO 2098-1972) by burning approximately 1.0 g glycerol in a muf-
fle furnace (Protherm, alserteknik) at 750 °C for 3 h. The water con-
tent as well as the MONG (matter organic non glycerol) content
were reported as ‘other contaminants’, and was calculated as
[100-(glycerol content (wt.%) + ash content (wt.%)]. The pH of the
glycerol solution was measured with a pH paper (MACHEREY-NA-
GEL pH-Fix 0-14). The color of glycerol was measured by in a UV/
Vis spectrophotometer (Jasco, V-530) in terms of the absorbance at
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a wavelength of 457 nm. The density and viscosity were measured
according to the standard ISO 2099-1972 and ASTM D 445 meth-
ods, respectively. The composition of glycerol both before and after
purification was characterized by gas chromatograpy-mass spec-
troscopy (GC/MS) (6890 N, Agilent of GC/Pegosees III, Lego of MS).

The composition of both the sewage sludge and char were ana-
lyzed by proximate and elemental analysis according to ASTM
D3172 and by energy dispersive X-ray analysis (EDX) on a JEOL
JSM-5800LV. The contents of oxygen-containing surface functional
groups on the ACs were determined by Boehm’s method of titra-
tion with basic solutions of different base strengths (NaHCOs3, Na,_
CO; and NaOH) [32,33]. The textural properties of AC was
measured with a surface area analyzer (Quantachrome, Autosorb-
1) using the Brunauer, Emmett and Teller (BET) method.

3. Results and discussion
3.1. Characteristics of the CG and PTCG

The original CG obtained from the waste used-oil FAME biodie-
sel production plant was a sticky dark brown liquid (Fig. 1a) with a
high pH and a relatively low density and viscosity. It contained low
glycerol content below the acceptable limit, and a relatively high
content of ash and other contaminants that were 3.62- and

3.66-fold higher, respectively, than the acceptable value (Table 1).
From the GC/MS analysis, the main components in the CG were
found to be FFAs and derivatives, such as tridecanoic acid, oleic
acid, lauric acid and elaidic acid, which are the main components
of vegetable oil (data not shown). When the pretreatment of the
CG was performed by the addition of H3PO,4, the composition as
well as color of the obtained PTCG changed. The pH of the PTCG
was slightly lower at around 7.1, the density and viscosity in-
creased to 1.210 g/cm? and 57.4 cSt, respectively. The color of PTCG
was lightened to a brown liquid (Fig. 1b), and was 1.12-fold lower
in Pt-Co units than before the pretreatment (Table 1). The content
of the other contaminants decreased slightly from 36.6 to
35.2 wt.% but it was still 3.53-fold above the acceptable limit, while
the ash content significantly decreased (1.24-fold from 36.2 to
29.1 wt.%) but was still 2.9-fold above the acceptable limit. This re-
sulted in a 1.31-fold increase in the glycerol content to 35.7 wt.%.
This is because the H* from the H3PO,4 can protonate the soap bulk
to insoluble FFAs, which consequently phase separate out as a top
layer due to their low density and low polarity relative to the polar
glycerol-rich layer [20]. Meanwhile, the excess H,PO, ions can
couple with the Na* salts in the crude glycerol to form the rela-
tively insoluble NaH,PO, [34], and also forms an inorganic salt
layer on the bottom of the aqueous solution. In terms of the chem-
ical composition, as evaluated by GC/MS analysis, the H3PO4 pre-
treatment stage partially to totally removed the FFAs and their

Fig. 1. Color of the (a) crude glycerol (CG) obtained from the FAME biodiesel production plant, (b) the pretreated crude glycerol (PTCG), and (c and d) the purified crude
glycerol (PCG) obtained after adsorption for (c) one or (d) three cycles with KOH-800AC for 120 min and 250 rpm.
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derivatives, leaving a low quantity of methyl esters of tridecanoic
acid, lauric acid and decanoic acid (data not shown). However,
although the pretreatment stage can enhance the level of glycerol
purity in the resulting PTCG, its properties were still unacceptable
compared with the BS 2621 standard. Thus, further purification of
glycerol from the PTCG was performed by adsorption with the dif-
ferent sludge-derived ACs in comparison with a commercial AC.

3.2. Properties of sewage sludge and char

The physicochemical characteristics, in terms of the proximate
and elemental analyses, of the obtained sewage sludge and derived
char are shown in Table 2. The fresh sewage sludge mainly con-
tained volatile matter followed by ash (various kinds of either or-
ganic or inorganic components), with a low fixed carbon. In the
course of pyrolysis, the partial volatilization of the organic matter
decreased the net volatile mater and moisture contents by around
2.6- and 2.9-fold, respectively, which consequently resulted in an
increased fixed carbon and ash content by 7.4- and 1.3-fold,
respectively.

In terms of the elemental analysis, the pyrolysis of the sewage
sludge decreased the oxygen content almost one-third, which re-
sulted in an almost two fold or higher level of the other detected
elements except for sulphur, silicon and carbon that showed lower
increased levels. The changes in the element proportions might be
also be attributed to their phase transformations due to the loss of
crystallization water of hydration [35].

3.3. Effect of activating agent and carbonization temperature on the
properties of the obtained sludge-derived ACs

In total, 15 different ACs were prepared from the sewage sludge
by chemical activation using three types of activating agent
(H3POy4, K,CO3 and KOH) and carbonized under different tempera-
tures in the range of 500-900 °C. The proximate analysis revealed
that the moisture, ash and volatile mater contents in all obtained
sludge-derived ACs decreased as the carbonization temperature in-
creased, except those of H3PO4-ACs (Table 3). The volatile matter
and especially ash contents of the H3PO4-ACs were greater than
that of the other types of sludge-derived ACs (1.10- to 3.0-fold
and 1.46- to 3.17-fold, respectively), and this difference tended
to be slightly more pronounced as the carbonization temperature
increased. This can be explained as that during the carbonization
of the H3PO4-ACs, the formation of phosphate or polyphosphate
species occurs and these remain chemically bound inside the pore
structure of the sludge-derived ACs [36], resulting in the formation
of dense structures [37] as well as a higher fraction of ash.

Table 1

Characteristics of the CG, PTCG and PCG obtained from adsorption over the indicated ACs.

Regarding the textural properties of the sludge-derived ACs, the
HsPO, activation did not generate a high BET surface area (Fig. 2) or
total pore volume (Fig. 3) at all carbonization temperatures. No
relationship between the carbonization temperature and the vol-
ume of the generated micropores and mesopores was observed.
This implied that the H3PO,4 activation not facilitate the formation
of sludge-derived ACs with better textural properties, which might
be due to the continued cleavage of the phosphate and polyphos-
phate linkages at temperatures above 450 °C [38] resulting in a re-
duced crosslink density. This, in turn, would allow the growth and
alignment of polyaromatic clusters, producing a more densely pack
structure with a lower BET surface area and total porous volume.
Similarly, ACs with a low BET surface area have previously been re-
ported when the raw sludge from a domestic influent wastewater
treatment plant or its pyrolyzed char was activated by H3PO4 at
450°C (<5 and <17 m?/g, respectively) [35]. Nevertheless, it has
previously been reported that H3;PO4-activation can enhance the
formation of a high BET surface area of organic sewage sludge-de-
rived AC up to 300 m?/g [39]. The reason for such differences may
be the different washing solution (NaOH vs. HCl) and preparation
procedures employed by Zhang et al. [39].

In the case of the K,CO3; and KOH activation, the behaviors of
both sets of ACs were very similar. That is, the carbonization tem-
perature greatly influenced the development of the BET surface
area and the porosity in the obtained sludge-derived ACs. Both
chemical reagents induced a significant increase in the obtained
BET surface area (Fig. 2) as well as the total pore volume (Fig. 3)
as the carbonization temperature was increased from 500 to
800 °C. In the case of K,COs3 activation, this is due to the fact that,
during the carbonization, the K,CO3 was reduced in the inert car-
bonization atmosphere by the edge carbons to form atomic K
and CO by the reaction shown in Eq. (1) [40];

2C + K,CO5 — 2K + 3CO 1)

This led to the decomposition of the disordered cross-linked
crystallites plugging the pores, resulting in an increased BET spe-
cific surface area and total pore volume [41]. In addition, the gen-
erated atomic K may intercalate and expand the interlayers of
adjacent hexagonal network C atom planes and so enhance the
pore formation [42].

With respect to KOH activation, an increased BET surface area
and total pore volume was observed (Fig. 2), which likely reflects
the various elementary reactions outlined in Eqgs. (2)-(4) [43]:

2KOH — K;0 + H,0 (Dehydration) (2)

C+H,0 — H; + CO (Water-gas reaction) 3)

Parameters BS 2621:1979 CG PTCG? PCG obtained from adsorptive purification using:
(13] Commercial KOH-800AC (1st- KOH-800AC (3rd-

ACP adsorption)° adsorption)?

pH 9.65+0.21 7.10+0.14 7.0 7.0 7.0

Glycerol content (wt.%) >80 27.2+0.84 35.7+0.27 88.6 +0.63 93.0+0.57 96.9+1.34

Ash (wt.%) <10 36.2+0.20 29.1+0.51 11.4+£1.03 7.0 +0.82 3.1+1.2

Other contaminants <10 36.6 £0.64 352+0.78 N/A! N/A N/A

(wt.%)®

Density at 20 °C (g/cm?) 1.261 1.01 £ 0.062 1.21+£0.02 1.264 +0.006 1.277 £ 0.006 1.275+0.027

Viscosity at 40 °C (cSt) 49.2 £0.20 57.4+1.03 89.6+0.79 104.7 £ 0.54 106.9 +0.14

Color (Pt-Co unit) 172,857 £5580 154,038 +4477 3,654 £22 2314 + 141 673 + 68

@ Pretreatment by acidification with H3PO,4 at pH 2.5.

b Adsorption with commercial AC (Panreac Quimical, UK) at 67.7 g/L, 120 min, 250 rpm.
cd Adsorption with KOH-800AC at 67 g/L PTCG, 120 min, 250 rpm after “one or %three adsorption cycle.

¢ Includes water and MONG.
f N/A not available.
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CO + H,0 — H; + CO, (Water-gas shift reaction) 4)

The continuous evolution of volatiles from the char further
develops the rudimentary pore structure in the char, enhancing
the existing pores and creating new ones. This results in an in-
creased BET surface area and total pore volume with increasing
carbonization temperature, (Fig. 2), while the total pore volume
either decreased (K,COs3 activation) or increased (KOH activation)
slightly (Fig. 3). Accordingly, increasing the carbonization temper-
ature increased the mesopore volume gradually, which is likely to
be due to the widening of existing pores or the combining of
micropores during the evolution of volatile matter from the char
structure during carbonization. This hypothesis is supported by
the proximate analysis (Table 3), where the fixed carbon content
increased, while the volatile matter content decreased as carbon-
ization temperature increased. However, both surface properties
decreased slightly when the carbonization temperature was raised
to 900 °C (Fig. 2), which is probably due to the shrinkage in the car-
bon structure, resulting in a reduction in porosity and BET surface
area.

As reported elsewhere [43,44], when the temperature exceeds
700 °C, a considerable amount of K,CO3 and a small amount of
metallic potassium (K) were generated according to Egs. (5)-(7).

K,0 + CO, — K,CO; (Carbonate formation) (5)
K,0 + H, — 2K+ H,0 (Reduction by hydrogen) (6)
K,0 + C — 2K + CO (Reduction by carbon) (7)

Both K,CO3 and K are then intercalated into the carbon matrix
[45], resulting in the widening of the spaces between the carbon
layers and so causing a sharp decrease in the BET surface area. In
addition, the high temperature induces the widening of pores
through the complete burning-off of some walls between neigh-
boring pores and continuous pore wall thinning. Together these re-
sult in a decreased micropore volume and an increased mesopore
volume. Among the obtained sludge-derived ACs, the KOH-800AC
provided the closest BET surface area and total pore volume to
the commercial AC (the BET surface and total pore volume of the
commercial AC were 984 m?/g and 0.663 cm?>/g, respectively).

With regards to the effect of the carbonization temperature and
the type of activating agent on the surface chemistry of the sludge-
derived ACs, the quantity of all detected oxygen-containing surface
functional groups on the surface of the H3PO4-ACs decreased with
increasing carbonization temperature (Fig. 4a). This is probably
caused by the shrinkage in the carbon structure due to the cleavage

Table 2
Physicochemical characteristics of the sewage sludge and derived char.

Type of analysis Content (wt.%) Sewage sludge Char

Proximate analysis Moisture 9.53 +0.44 3.27£0.55
Ash 24.40 +0.63 32.06 +0.85
Volatile matter 60.50 + 0.89 23.45+0.98
Fixed carbon 5.57 £0.16 41.22+0.44
Elemental analysis Carbon (C) 68.69 +2.99 73.98 £ 0.59
Oxygen (0) 29.05+3.34 20.98 +0.13
Sulphur (S) 0.30+0.04 0.35+0.08
Sodium (Na) 0.50+0.21 1.46 £0.57
Magnesium (Mg) 0.12 £0.03 0.33 £0.06
Aluminium (Al) 0.19 £ 0.05 0.36 £ 0.03
Silicon (Si) 0.53 £ 0.07 0.76 + 0.06
Phosphorous (P) 0.29 +0.07 0.94 +0.08
Chloride (Cl) 0.10+0.03 0.19+0.16
Potassium (K) 0.07 £ 0.03 0.21 £ 0.06
Calcium (Ca) 0.10£0.03 0.26 £ 0.07
Iron (Fe) 0.03 £0.01 0.13+0.02
Copper (Cu) 0.03 £0.01 0.08 +0.01

of some of the phosphate and polyphosphate linkages at tempera-
tures above 450 °C [38], resulting in the reduction of the surface
area available to bind the generated oxygen-containing surface
functional species. Nevertheless, the level of oxygen-containing
surface functional groups after carbonization at all evaluated tem-
peratures were still higher than that of the commercial AC, where
the carbonyl-, carboxyl-, lactone- and hydroxyl groups on the sur-
face of the H3PO4-800AC were 1.92, 2.75, 0.46 and 3.17 mEq/g,
respectively, compared to 0.36, 0.20, 0.02 and 0.59 mEq/g, respec-
tively, for the commercial AC. For the K,CO3; and KOH-ACs, carbon-
ization in the range of 500-900 °C had no effect on the quantity of
measurable acidic oxygen-containing surface functional groups,
including carboxyl, hydroxyl and lactone groups (Fig. 4b and c).
However, a significant increase in the level of carbonyl groups
(alkaline oxygen-containing surface functional group) was in-
duced, especially between 700 and 800 °C. This is because both
alkaline chemicals preferentially generate alkaline oxygen-con-
taining surface functional groups such as pyrones (cyclic ketone)
and other keto-derivatives of pyran [46,47], which are derivative
species of the carbonyl group. Increasing the carbonization tem-
perature induced a higher generation of carbonyl groups but a low-
er generation of carboxyl, lactone, and hydroxyl groups. However,
further raising the carbonization temperature from 800 to 900 °C
decreased the quantity of all oxygen-containing surface functional
groups, particularly the carbonyl group (1.4- to 1.7-fold). The dif-
ferences lie in the fact that the different oxygen-containing surface
functional groups have different thermal stabilities. That is, the
carboxylic and lactone groups decompose to CO, and phenol at
700-800 °C, the carbonyl (quinone or ether) groups decompose
to CO at 500-1000 °C, and the hydroxyl groups release water from
200-300 to 400-500 °C [48].

3.4. Effect of activating agent and carbonization temperature of the
obtained sludge-derived ACs on the adsorptive purification of PTCG

The composition of the PCG obtained using the adsorption pro-
cess with the different sludge-derived ACs is shown in Fig. 5. The
adsorptive purification of PTCG with H3PO4-ACs was reduced from
48.0 to 39.3 wt.% as the carbonization temperature increased from
500 to 900 °C (Fig. 5a). The ash content increased with increasing
carbonization temperature, whilst the level of the other contami-
nants remained essentially constant between 38.9 and 40.5 wt.%.
For the adsorptive purification of PTCG by K,CO3- and KOH-ACs,
a similar change of the glycerol content of the obtained ECG was
observed with either set of ACs at the same carbonization temper-
ature. That is, the glycerol content increased as the carbonization
temperature increased to reach a maximum content at a carbon-
ization temperature of 800 °C of 78.9 wt.% for K,CO3 pretreatment
(Fig. 5b) and 89.4 wt.% for KOH pretreatment (Fig. 5¢). Further rais-
ing the carbonization temperature to 900 °C led to a significant
reduction in the glycerol content in the obtained PCG.

To correlate the properties of the sludge-derived ACs and their
adsorptive purification abilities of PTCG, it is necessary to take into
account both their textural properties and surface chemistry. The
K;CO3- and KOH-ACs, which had both a high BET surface area
and a large number of carbonyl group after carbonization at
800 °C, exhibited the high adsorption capacity for ash as well as
other contaminants from the PTCG. This indicated that both prop-
erties had the synergetic positive effect on the purification of crude
glycerol. Theoretically, carbonyl groups are good electron acceptor
[49,50] that can bond well to the anionic charged portions of FAME
or FFAs (R-COO™), resulting in the decreased level of these contam-
inants in the PCG and consequentially an increased glycerol con-
tent in the obtained PCG fraction. This hypothesis was supported
by the glycerol content in the PCG obtained by the H;PO4-ACs with
its low BET surface area (8.48-13.4 m?/g) and low quantity of
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Table 3

Proximate analysis of the commercial activated carbon (AC) and the sludge-derived ACs of this study.

Types of AC Proximate analysis (wt.%)
Moisture Ash Volatile matter Fixed carbon

Commercial AC* 0.47 +0.15 3.42+0.23 0.98 £ 0.08 95.13 +0.68
H3P04-500AC 0.13+0.11 3.87+£0.03 1.05 £ 0.05 94.9+0.12
H3P04-600AC 0.15+0.05 3.72+0.11 1.09 £ 0.02 95.0 + 0.08
H3P0O4-700AC 0.15+£0.01 3.45 +£0.02 1.08 +0.02 95.3£0.01
H3P0,4-800AC 0.15+0.02 3.45+0.05 1.06 £ 0.03 95.3 +0.03
H3P04-900AC 0.14 £ 0.04 3.33+0.04 1.05 £ 0.02 95.5+0.03
K5C03-500AC 0.23 £0.07 1.22+0.34 0.59 £0.26 98.0 £0.89
K>CO3-600AC 0.20 £ 0.01 1.18 £0.03 0.54 + 0.03 98.1 +0.05
K>CO3-700AC 0.18 £0.01 1.16 £0.02 0.51+0.02 98.1+0.05
K,C0O3-800AC 0.15 £ 0.04 1.16 £ 0.04 0.51 £0.02 98.2 £0.02
K,C03-900AC 0.13+0.02 1.13 £0.02 0.50 + 0.09 98.2 +0.09
KOH-500AC 0.21 £0.08 1.71+£0.31 0.53+0.12 97.6 £0.85
KOH-600AC 0.19+0.01 1.37+£0.19 0.49 + 0.02 98.0+0.18
KOH-700AC 0.16 £ 0.02 1.12 £0.06 0.48 £ 0.01 98.2+0.10
KOH-800AC 0.14 +0.01 1.07 £0.03 0.35+0.03 98.4 +0.05
KOH-900AC 0.11£0.01 1.04 £0.10 0.35+0.01 98.5+0.09

2 ACs are coded as the precedent H3PO4-, K»CO3- or KOH- for the respective activating agents, followed by the carbonization temperature and AC.
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Fig. 2. Effect of the carbonization temperature on the BET surface area of the
sludge-derived ACs prepared by chemical activation with () H3POy4, (O) K;CO5 and
(A) KOH activation at different carbonization temperatures.
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Fig. 3. Effect of the carbonization temperature on the volume of (Jl]) micropores
and (O) mesopores of the sludge-derived ACs prepared by chemical activation with
(left bar) H3PO,4, (middle bar) K,CO3 and (right bar) KOH at different carbonization
temperatures.

carbonyl groups, where a high ash and contaminant contents and a
low glycerol was observed. Although the presence of acidic oxy-
gen-containing surface functional groups (carboxyl, hydroxyl and
lactone groups) preferred to form complexes with cations (mineral
salts) according to the surface complexation model [51], the min-
eral salt content measured in terms of ash content was still high.

This likely reflects the strong influence of its low BET surface area
providing a synergetic negative effect on the adsorptive purifica-
tion of PTCG.

Among all the prepared sludge-derived ACs, the KOH-800AC
exhibited the highest efficiency to adsorb impurities in PTCG. Com-
pared with the commercial AC, the KOH-800AC showed an en-
hanced glycerol purity, being 1.06-fold higher than that obtained
with the commercial AC (84.1 wt.%). According to the obtained re-
sults it was evident that both the textural properties and surface
chemistry of ACs were very important to achieve a high efficiency
of glycerol purification. Better textural properties of sludge-de-
rived ACs, such as a high specific surface area and pore volume, of-
fered a higher opportunity to adsorb the ash and contaminants in
the PTCG. The oxygen-containing surface functional groups were
responsible for both cation- and anion-uptake.

3.5. Effect of the adsorption time and shaking rate on the adsorptive
purification of PTCG by the sludge-derived ACs

To obtain higher glycerol purity the effect of the adsorption
time and shaking rate were explored. Fig. 6a shows the effect of
varying the adsorption time (60-180 min) on the composition of
the obtained PCG after adsorption of PTCG with the commercial
AC and the KOH-800AC at a dosage of 67 g/L at a shaking rate of
250 rpm. The KOH-800AC exhibited a higher efficiency, in terms
of a 2.2-5.3% (1.03- to 1.06-fold) higher glycerol yield in the ob-
tained PCG, for purifying PTCG than the commercial AC at all
adsorption times, presumably due to its better surface properties.
Increasing the adsorption time up to 120 min decreased the level
of other contaminants and ash, resulting in an increased glycerol
content in the PCG (up to 93.0 wt.% at 120 min). This decreased
impurity level with increasing adsorption time might reflect that
a longer adsorption time can enhance the chance of interaction be-
tween the impurity molecules and the AC particles. Further
increasing the adsorption time over 120 min did not achieve a
higher adsorption level of the impurities, probably due to the sat-
uration of the AC.

With respect to the effect of the shaking rate on the composi-
tion of the obtained PCG, decreasing or increasing the shaking rate
from 250 rpm did not enhance the purity of glycerol in the ob-
tained PCG (Fig. 6b). It is speculated that the adsorption process
was controlled by the mass transport at low mixing rates
(<250 rpm) and by the kinetics at a high mixing rate (>250 rpm).
The properties of the obtained PCG are summarized in Table 1.
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(O) carbonyl groups of the sludge-derived ACs prepared by chemical activation
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The pH was neutral, with a pale yellow color that was much lighter
compared with either the CG or PTCG (Fig. 1c). The GC/MS analysis
of the PCG revealed the main component was glycerol with only a
low level of contaminated-FFA or decanoic acid (data not shown).
To obtain a higher purity of glycerol, repetitive adsorption was per-
formed under otherwise the same adsorption conditions each cy-
cle. The first and third repetitive adsorptions reduced the ash
content further, leaving an increased purity of glycerol up to 95.1
and 96.9 wt.%, respectively. At this stage, the color of the obtained
PCG was clear (Fig. 1d).

3.6. Adsorption isotherm

The equilibrium adsorption of ash and the other contaminants
from PTCG by the KOH-800AC at 67 g/L PTCG for 120 min with
shaking at 250 rpm is shown in Fig. 7. The adsorption capacity
(qe) initially increased to 3.68 and 7.0 g/g for ash and other con-
taminants, respectively, with increasing equilibrium concentra-
tions (C.) to 0.121 and 0.026 g/mL, respectively, and thereafter

only slightly increased with further increases in the equilibrium
constant. Since the equilibrium adsorption isotherm can be used
to describe the interactive behavior between the adsorbates and
adsorbents, as well as the design of adsorption system, then two
adsorption isotherm models, Langmuir and Freundlich isotherms,
were used to analyze the obtained results.

The Langmuir model is the most commonly used model for
monolayer adsorption on a surface with a finite number of identi-
cal sites [52]. The linear form of the Langmuir isotherm shows the
relationship between C./q. and C,, as represented by the following
equation:

C. 1 C.
e _° 4 xe 8
de kido Qo ®

where ¢, is the adsorption capacity at the equilibrium adsorbate
concentration (or ash and other contaminants in this case), k; is
the Langmuir constant, C, is residue adsorbate concentration at
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Fig. 5. Effect of the carbonization temperature on the content of (i) glycerol, (J)
ash, and (OJ) other contaminants in the purified crude glycerol (PCG) obtained by
adsorption with the sludge-derived ACs prepared by chemical activation with (a)
H3POy, (b) K2CO3 and (c) KOH at different carbonization temperatures.
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Fig. 7. Equilibrium adsorption of ash and other contaminants from PTCG by the
KOH-800AC (67 g/L) for 2 h at 250 rpm.

equilibrium and qo is the maximum amount of adsorption corre-
sponding to a complete monolayer coverage.

Thus, the plots of C./g. and C,. allow the determination of the go
and k; values (Fig. 8). In addition, the dimensionless separation fac-
tor constant (r) calculated from the Langmuir isotherm according
to Eq. (9) can be used to estimate the adsorption favorability. Val-
ues of r>1 and 0 <r<1 show unfavorable and favorable adsorp-
tions, respectively, while values of r=1 and r=0 show a linear
adsorption and irreversible adsorption, respectively [53].

1
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where (, is the initial concentration of ash and other contaminants.
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Fig. 8. Linearized plots of the (a) Langmuir and (b) Freundlich models for the
adsorption of ash and other contaminants from PTCG by the KOH-800AC (67 g/L) for
2 h at 250 rpm.

The Freundlich isotherm is an empirical model that is valid for
non-ideal adsorption on heterogeneous surfaces as well as for mul-
tilayer adsorption [54]. It can predict the increase in concentration
of the ionic species adsorbed on the adsorbent surfaces with
increasing concentrations of the ionic species in the liquid phase
[55]. A linear form can be expressed by the following equation:

log q, = log ke +% log C, (10)

where kr is the Freundlich isotherm constant that indicates the
adsorption capacity, and n is the adsorption intensity that varies
with the heterogeneity of the material. The adsorption is favorable
when values of 1/n are in the range of 0.1 < 1/n < 1 [56]. A plot of the
linearized log g, vs. log C, of Eq. (10).

The Langmuir isotherm provided the highest coefficient of
determination (R?) for fitting the data for the adsorption of both
the ash and other contaminants (Table 4). Thus, the Langmuir iso-
therm fits well for all both ash and other contaminants in this
study. From the Langmuir model, the maximum amount of adsorp-
tion corresponding to the complete monolayer coverage (qo) was
observed in case of the other contaminants, which was some
2.41-fold greater than that for ash. The maximum Langmuir con-
stant (k;) was observed for ash (0.122 L/g), which was 2.77-fold
higher than that for the other contaminants. The values of R; of
both impurities were between 0 and 1, indicating the favorable
adsorption of ash and the other contaminants on the sludge-de-
rived AC.

4. Conclusions

CG derived from the waste used-oil/methanol utilizing biodie-
sel (FAME) production plant was purified by adsorption using
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Table 4
Langmuir and Freundlich isotherm constants for the adsorption of ash and the other contaminants.
Parameters Langmuir constants Ry Freundlich constants
qo (g/g) ki (Lfg) R? ke (L[g) 1/n R?
Ash 3.69 0.122 0.9884 0.022 0.00331 0.012 0.4248
Contaminants 8.88 0.044 0.9741 0.049 0.00475 0.100 0.0112

sludge-derived ACs. The H5PO, activation provided the worst tex-
tural properties of the examined ACs, while the K,CO5 or KOH acti-
vations provided the ACs with more suitable textural properties,
close to that of the commercial activated AC. The H3PO, activation
provided a low quantity of oxygen-containing surface functional
groups, especially carbonyl groups and increasing the subsequent
carbonization temperature decreased the level of oxygen-contain-
ing surface functional groups. In contrast, the K,CO3- and KOH-
impregnation as well as the carbonization temperature did not sig-
nificantly affect the quantity of the carbonyl, carboxyl or lactone
groups, but significantly affected the quantity of carbonyl groups.
A carbonization temperature of 800 °C exhibited the highest BET
surface area and the quantity of carbonyl group. In utilization,
the surface chemistry as well as the textural properties of ACs
played a more important role in the adsorptive purification of
CG. The adsorption time and the shaking rate influenced the
adsorptive purification of CG. The adsorption of ash or other con-
taminants via sludge-derive ACa followed the Langmuir isotherm.
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The effect of the initial solution pH (1, 7 and 11) on the glycerol conversion and product distribution
by electrochemical technique with a Pt electrode was explored at a laboratory scale and ambient
condition. Under steady-state cyclic voltammetry (CV), the electrochemical conversion of glycerol to
various reaction intermediates and products was observed. Under a galvanostatic mode, the glycerol
conversion level as well as the product distribution and yields were highly dependent on the initial
electrolyte pH. The conversion of glycerol underwent first-order rate kinetics model with a rate
constant of 2.95 x 1073, 7.95 x 10 and 9.20 x 10™ min™ for an initial electrolyte solution pH of 1, 7
and 11, respectively. 1,2-Propanediol (1,2-PD) and 1,3-PD were only generated at pH 1, while
ethylene glycerol, acetol, glycidol and acrolein were formed in the electrolytes at all three tested pH
values. Product analysis revealed that the electrochemical conversion under these conditions could
convert glycerol directly and quickly to glycidol, but more slowly to ethylene glycerol, acetol,
acrolein, 1,2-PD and 1,3-PD.

Keywords: Glycerol; Electrosynthesis; Pt electrode; Cyclic voltammetry

1. INTRODUCTION

Glycerol is the main by-product from biodiesel production, with approximately 100 kg of
glycerol being generated per ton of biodiesel produced (10% (w w™)) [1-2]. The growing biodiesel
market has generated an oversupply of glycerol, resulting in a decreased commercial price of glycerol
that negatively impacts upon the economy of biodiesel production. Thus, the current exploitation of
glycerol as a raw material focuses on the transformation of glycerol to added-value products because
its molecule is rich in functionalities with three -OH groups [3]. A diverse array of processes to
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transform glycerol into more valuable chemicals have been developed, such as pyrolysis [4-7],
gasification [8-10], selective oxidation [11, 12], biological processes [13-15], esterification and
acetylation [16, 17], and hydrogenolysis [18-22]. However, many of these processes have drawbacks,
such as a lack of sufficient selectivity and yield. Some processes require specialized or high running-
cost production systems (e.g., high temperature and pressure) or require a long reaction time,
preventing them from being commercially viable [23]. To address these drawbacks and to facilitate the
commercial conversion of glycerol to valuable compounds, electrochemical conversion approaches
have been evaluated as an alternative method that could be used to convert glycerol waste from the
biodiesel industry to valuable alternative compounds. This is because of its relative simplicity and
robustness in structure and operation.

In general, the electrochemical conversion of alcohols involves various different steps: alcohol
adsorption, breaking of the inter-atomic bonds, electronic charge transfer, reaction between the
oxygenated species and fragments from the alcohol, and desorption of the reaction products [24]. As a
result, the conversion efficiency depends on the: (i) interaction between the catalyst surface and the
alcohol molecules, (ii) interaction between the catalyst surface and the resulting adsorbed fragments
from the original alcohol molecules, and (iii) formation of surface oxides. In other words, the degree of
glycerol conversion, the product distribution obtained and the reaction mechanism depends
significantly on (i) the geometric and electronic properties of the electrodes, (ii) the glycerol
concentration, and (iii) the working conditions of the electrochemical conversion process (electrolyte
solution, solution pH, temperature, etc) [23].

During controlled potential electrolysis, glycerol can be oxidized to formic acid, oxalic acid
and glycolic acid in an acid electrolyte (0.1 M HCIO,4) when the potential of electrolysis was set in the
so called “oxygen region”. However, the selectivity towards the formation of glyceraldehyde is very
high when the applied potential is chosen before the beginning of the oxidation of the electrode
surface. Conversely, in an alkaline electrolyte (0.1 M NaOH), very few dissociation products were
detected [25]. A simple application of a low voltage (1.1 V vs. Ag | AgCl) to a solution of glycerol (50
mM) buffered at pH 9.1 with bicarbonate (0.2 M) in the presence of catalytic TEMPO (7.5 mM) could
oxidize glycerol selectively to 1,3-dihydroxyacetone (DHA) over a glassy carbon electrode [26].
However, prolonging the reaction time resulted in the formation of hydroxypyruvic acid.

By using CV, glycerol was first oxidized in alkaline media (0.1 M NaOH), to glyceric acid on
both gold (Au) and platinum (Pt) electrodes with a lower overpotential on Pt electrodes. Afterwards,
glyceric acid was further oxidized by cleavage of a C-C bond into glycolic acid and formic acid on
both electrodes [27]. However, a much higher conversion activity of glyceric acid to glycolic acid and
formic acid was observed on a Au electrode than on a Pt one, which was ascribed to the higher surface
oxidation potential of Au compared to Pt. In a strong acid electrolyte (pH 1, H,SO,), glycerol was
converted to various added-value products, such as 1,2-propanediol (1,2-PD), 1,3-PD, glycidol, etc
[28]. The presence of bismuth (Bi) on the Pt/C electrode in 0.5 M H,SO,4 can block the oxidation of the
1°-OH group of glycerol, resulting in the oxidation of the 2°-OH group to provide 100% selectivity in
the synthesis of DHA [29]. The templated binary Ptg4Ruis, PtosSns and ternary PtggRugSng catalysts
supported on a glassy carbon electrode enhanced the complete oxidation of glycerol to CO, in 1.0 M
KOH [30]. The electrooxidation of glycerol on a palladium-rhodium (PdRh) electrode in alkaline
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media (0.1 M KOH) yielded carbonate (CO3%) as the main product and glyceraldehyde, glycerate,
glycolate and oxalate as minor products [31]. For application to power generation, approximately 10
m?® day™m™ (reactor volume basis) of H, was produced from glycerol over Pt on a ruthenium-iridium
(Rulr) oxide catalyst in a proton exchange membrane (PEM) electrolysis cell with an energy efficiency
of 44% [32]. Although this production rate is high compared to that obtained with microbial cells, it is
still low compared with a conventional PEM water electrolysis cell. In the gas phase at an intermediate
temperature (235-260 °C), C1 (CO,, CO, CH,), and C, (C;Hs and glycolic acid) compounds plus H;
were the main reaction products formed from the electro-oxidation of glycerol with a Pt/C electrode.
The selectivity for the C1 products (CO,, CO and CHy,) increased with increasing electrode potential
[33].

In this work, the galvanostatic mode of electrochemical conversion was used to convert
glycerol in electrolyte solutions of three different pH values (pH 1, 7 and 11). The types of generated
products as well as their yields were traced. Finally, the mechanism of the electrochemical conversion
of glycerol was proposed.

2. EXPERIMENTAL

The aqueous glycerol solution was prepared from a commercial glycerol stock (99.5%, Fisher)
at a constant initial concentration of 0.3 M. The pH of the glycerol solution was adjusted by analytical
grade H,SO4 (98%, Qrec) or NaOH (1 M, Qrec) as required. The electrochemical conversion of
glycerol was performed at a constant CV using a Potentiostat/Galvanostat (Auto Lab, model PG stato).
Two cylindrical Pt grids with a surface area of 31.82 and 121.38 cm? were used as the working and
counter electrodes, respectively, while Ag\AgCI was used as the reference electrode. The scan
potential was varied in the range from +2.0 to -0.5 V at a scan rate of 5 mV s, and the system was
agitated by a magnetic stirrer at a constant rate of 650 rpm. The product composition after electrolysis
at steady-state CV was examined by gas chromatography-mass spectrometry (GC-MS, G3174A,
Agilent) equipped with a flame ionization detector.

The electrochemical conversion of glycerol under galvanolstatic mode was explored at a
laboratory scale at ambient temperature (~25 °C) and pressure (~101 kPa). The electrochemical reactor
was made from Pyrex glass having a total capacity of 600 mL. The temperature of electrolytic cell was
controlled by a cooling system. A regulated DC power supply (ZS 3205-2X type) was employed to
supply the external electricity at a galvanostatic mode (0.14 A cm™). The conversion of glycerol
(calculated from Eq. (1)) as well as the yield of value-added products (calculated from Eq. (2)) were
analysed by high performance liquid chromatography (HPLC: Agilent 1100) with a RID-10A
refractive index detector. The stationary phase was a Pinnacle II C18 column (240 x 4.6 mm) and the
mobile phase was a 99.9:0.1 (v v*) ratio of 10 mM H,SO,: pure CHsOH, passed through the column at
0.5 mLmin™.

Glycerol conversion (% ) _ amount of glycerol co_nverted (C-based mole) <100 (1)
totalamount of glycerol in reactant (C - based mole)
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amount of glycerol converted toeach product (C - based mole)
totalamount of glycerol in reactant (C - based mole)

»100 2)

Yield (%) =

3. RESULTS AND DISCUSSION

3.1 Steady-state CVs of glycerol solution and supporting electrolytes

The typical steady-state CVs of a 0.3 M glycerol solution and supporting electrolytes at
different initial pH values (1, 7 and 11) with an applied potential of +2.0 to -0.5 V are shown in Fig. 1.
In a strongly acidic (pH 1) electrolyte solution in the absence of glycerol (Fig. 1a), the utilized Pt
electrode showed a quasi-reversible system at the anodic and cathodic scan regions. A small increase
in the current was observed at too high a positive (E > +1.3 V) or too low a potential (E < -0.25 V),
which is related to the oxidation of H,O to O, (region ) and the reduction of H* to H, (region I1),
respectively. In the presence of glycerol, various anodic current peaks were observed in the anodic and
cathodic scan regions. The first oxidation peak (peak A), observed at 0.55 V, in the anodic scan
corresponds to the oxidation of glycerol (1.8 mA). At a potential greater than +0.75 V, a sharp increase
in the current compared with the blank current was observed. The shoulder peak (peak B) connected to
the oxygen region (region I) was also attributed to the oxidation of glycerol. During the cathodic scan
region, after the reductive peak of Pt-oxide (peak C), one sharp peak (peak D) was observed that was
attributed to the incomplete oxidization of carbonaceous residues on the catalyst surface during the
negative sweep [34-35]. These carbonaceous residues can accumulate tightly on the Pt surface,
blocking the active catalyst sites for subsequent reactions and so resulting in sluggish anodic reactions
[35].

In a neutral (pH 7) electrolyte (Fig. 1b), a very low current was detected in the CV plot in the
presence of the supporting electrolyte without glycerol except for in the regions in which the O,
(region 1) and H (region I1) were generated. The presence of glycerol led to a slightly higher current
over the investigated potential range. Nevertheless, no sharp peak was observed, suggesting the
accumulation of strongly absorbed hydroxyls on the electrode surface under the neutral condition. In a
strong basic (pH 11) electrolyte (Fig. 1c), a very low current was detected in the presence of the
supporting electrolyte only, except again for in the regions I and Il. In the presence of glycerol, two
broad oxidation peaks were observed at a peak potential of -0.03 V (peak A) and +0.32 V (peak B) in
the forward scan. Interestingly, both peaks were shifted to a more negative potential compared with
those at pH 1, indicating that the oxidation of glycerol occurs more easily at pH 11 than at pH 1 (Fig.
1a). For the backward scan, no oxidation was observed, suggesting that the electrode is not poisoned in
the basic medium. Typically, the poisoning effect on the electrode depends significantly on the type
and concentration of the supporting electrolyte as well as the type of electrode. The use of 1.0 M
NaOH as a supporting electrolyte for glycerol oxidation can enhance the formation of a small
poisoning effect on the Pt electrode surface [25], which can limit the glycerol adsorption rate on the
freshly reduced Pt surface during the relatively rapid negative potential sweep. The oxidation of
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glycerol on a PdRh electrode in 0.1 M KOH resulted in the production of COs* as the principal
product [31].
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Figure 1. Polarization curve of 0.3 M glycerol at (a) pH 1, (b) pH 7 and (c) pH 11 over Pt electrode.
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The product compositions following the glycerol electrolysis by CV were traced by GC-MS
analysis. The presence of lower and higher molecular weight products than glycerol were observed to
vary as a function of the initial electrolyte pH (data not shown). The identities of compounds
determined through matching their mass spectra in the GC-MS computer library were deemed to be
reliable and are summarized in Table 1. Acetol, glycidol and 2-methyl-2-pentanol were generated by
the electrochemical conversion of glycerol at all three investigated electrolyte pH values. Other
compounds, such as 1,2-PD, 1,3-PD, 1,2-butanediol and 5-methyl-1-heptanol, were only produced at
pH 1, whilst acrolein and glyceraldehyde were only produced at pH 7, and 2-hexanol, 2,4-dimethyl-
1,3-dioxane and 4-methyl-1-hexanol were only found at pH 11.

Some of these compounds have a significantly higher market value compared with that for
crude glycerol (88 USD kg™ or 111 USD L™). For example, the commercial prices of technical grade
acetol (90% purity), natural grade glycidol (96% purity) and reagent grade 2-methyl-2-pentanol (99%
purity) are greater than 556, 611 and 7923 USD kg™, respectively. The commercial prices of 1,2-PD
(98% purity) and 1,3-PD (98% purity), produced by electrochemical conversion of glycerol in an
acidic electrolyte are 190 USD L™ and 481 USD kg™, respectively. Also, the commercial prices of
reagent grade acrolein (97% purity) and glyceraldehyde (90% purity), generated under a neutral
condition are greater than 150 and 74,657 USD kg™, respectively. In addition, they have a high market
capacity and application in various industries [1].

Table 1. List of added-value chemicals generated by the steady-state CVs of glycerol solution at
different initial pH values and their current price and CAS reference number.

Chemical Initial solution pH USD (%purity) [36] [CAS no.]
pH 1 pH 7 pH 11
Acetol/ Hydroxyacetone v v v 556.3 kg™ (90%)? [116-09-6]
Glycidol v % v 611.3 kg™ (96%)" [556-52-5]
2-Methyl-2-pentanol v v v 7923 kg* (99%)° [590-36-3]
3-Methyl-2-pentanone v v 1,527 kg™ (99%) [565-61-7]
2,3-Hexanediol % v 80,960 L™ (99%)° [617-30-1]
1,2-Propanediol v - 190 L (>99.5%)° [57-55-6]
1,2-Butanediol v 174.9 L (>98.0%)" [584-03-2]
1-1sopropoxy-2-propanol v 213,450 kg™ (98%)° [3944-36-3]
1,3-Propanediol v 481.8 kg™ (98%)° [504-63-2]
1,3-Dioxolane v 165.5 LT (99%)° [646-06-0]
1,3-Dioxolane-4-methanol,2,2-dimethyl v 492.3 kg™ (98%)° [100-79-8]
5-Methyl-1-heptanol v - 894,000 L (96%)° [57803-73-3]
2,4-Dimethyl-1,3-dioxane - v 10,504 kg*° [766-20-1]
Ethylene glycol isopropy! ether v 65.0 L™ (99%)° [109-59-1]
2-Hexanol v 2,630 kg (>98%)° [626-93-7]
Tetramethylsilane v 2,320 kg™ (>99%)° [75-76-3]
4-Methyl-1-hexanol - v 104,000 L™ (>98%)° [1767-46-0]
Acrolein/acryraldehyde v - 150 kg (97%)° [107-02-8]
4-Pentene-2-ol 4 22,344 kg™ (99%)° [625-31-0]
Propanoic acid/ Propionic acid v 673.5 L (>99.5%)° [79-09-4]
3-Pentene-2-ol v 32,607 kg™ (96%)° [3899-34-1]
Glyceraldehyde - v - 74,644 kg (>90%)° [56-82-6]

*Technical grade ,’Natural grade, “Reagent grade,

ol

Purum grade
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3.2 Effect of the initial electrolyte pH on the electrochemical glycerol conversion level and
distribution of the products

The variation in the glycerol concentration and conversion during the long-term electrolysis at
different initial electrolyte pH values is given as a function of time in Fig. 2. As expected, the glycerol
concentration decreased while the glycerol conversion increased with increasing electrolysis time. The
highest glycerol conversion was observed in the pH 1 electrolyte, the lowest at pH 7. The glycerol was
completely converted within the first 13 h at an initial electrolyte pH value of 1, while the conversion
was around 49.4 and 67.6% at an initial electrolyte pH of 7 and 11, respectively. This might be
attributed to the different conversion mechanisms in the presence of different H* and OH
concentrations. As outlined in the introduction, the electrolysis of alcohol is a multi-step reaction [23].
The efficiency of the alcohol conversion and product yield depended on the interaction between both
the electrode surface and the alcohol molecules and the resulting adsorbed product fragments, as well
as the formation of surface oxides [24]. In the case of glycerol, the electrochemical conversion may
occur after the adsorption of glycerol on either the oxide-free Pt (Pt) or oxidized Pt (PtO) electrode
surface in an acid electrolyte or on the hydroxide-adsorbed Pt (Pt-OH) surface in a basic electrolyte
[25, 35, 37]. Besides, the electrooxidation of glycerol to some intermediate species, such as
glyceraldehydes, requires only the abstraction of two protons and no adsorbed OH" is needed [38]. In a
basic electrolyte the available OH™ can act as a catalyst to accelerate the dehydration and retro-aldol
reaction of glyceraldehyde [39-42], resulting in the variation of glycerol conversion products formed in
the presence of different pH conditions.
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Figure 2. Variation in the (=) glycerol concentration and (---) glycerol conversion by electrochemical
conversion at an initial glycerol solution pH of 1 (<), 7 (A), and 11 ([J) at a current intensity
of 4.5 A using a Pt electrode.
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The initial kinetics of glycerol conversion was calculated using a macro-kinetics model based
upon the first-order rate kinetics. The decrease in the glycerol concentration at all three initial pH
values was found to fit the model very well over the first 6, 10 and 13 h at pH 1, 11 and 7, respectively,
with coefficient of determination (R?) of greater than 0.987 in all three cases (Fig. 3). The linear plot
obtained during the first 6, 13 and 10 h of electrolysis time of the glycerol solution at an initial pH of 1,
7 and 11, respectively, gave a rate constant (k) of 2.95 x 10, 7.95 x 10* and 9.20 x 10™ min™,
respectively.
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Figure 3. First-order kinetics of the electrochemical conversion of glycerol at an initial glycerol
solution pH of 1 (<), 7 (A), and 11 ([J) with a current intensity of 4.5 A using a Pt electrode.

The variation in the yield of the high market value products, as detected by HPLC analysis,
during the long-term electrolysis of glycerol in the presence of electrolytes with an initial pH of 1, 7
and 11 is demonstrated in Fig. 4. Glycidol (C3HgO) and acrolein (C3H4O) were the major reaction
products generated at all three initial pH values, although ethylene glycol (C,HsO2) and acetol
(C3Hs0O,) were produced at both pH 1 and 11. In the strong acidic electrolyte, 1,2-PD and 1,3-PD were
also generated at proportionally high levels, but were not found in the neutral and basic electrolytes.
The strong acid and basic electrolytes lead to a high level of generated reaction products compared to
that obtained with the neutral pH electrolyte. Ethylene glycerol was generated after 4 h of electrolysis
time in both pH 1 and pH 11 (but not pH 7) electrolytes, implying that the glycerol cannot be directly
converted to ethylene glycerol. The yield of ethylene glycerol then increased, slightly at pH 1 and
significantly at pH 11, with further electrolysis time, although in the acidic electrolyte it decreased
slightly after 18 h electrolysis and longer, while it continued to increase in the basic electrolyte. The
conversion of glycerol to ethylene glycol might involve a two-step reaction; the (i) dehydrogenation of
adsorbed glycerol to the intermediate species or glyceraldehyde (C3HgOs3), and (ii) the cleavage of the
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C-C bond of glyceraldehyde to ethylene glycol and methanol (CH3OH). As previously reported, the
production of glyceraldehyde was found to depend greatly on the applied potential and the pH of the
electrolyte [25]. The selectivity towards the formation of glyceraldehyde was very high in the acidic
electrolyte when the applied potential was chosen before the beginning of the oxidation of the
electrode surface. In other words, the dehydration occurred on the oxide-free Pt electrode. In the basic
electrolyte, the oxidation of glycerol to glyceraldehyde can occur over the equilibrium oxide-covered
Pt (Pt-OH) [25]. The C-C cleavage of the intermediate glyceraldehyde may occur by proton (HY)
addition in near-critical water without the addition of acid or base [43]. The decrease in ethylene
glycerol levels at longer electrolysis times in the acidic electrolyte might be attributed to the
electrooxidation of ethylene glycerol to formic acid and glycolic acid [27, 30]. Besides, glyceraldehyde
can undergo oxidation or reduction to other products, such as glyceric acid [38].

The vyield of acetol was observed after 2 h of electrolysis time in both the acidic and basic
electrolytes, but not until after 10-12 h in the neutral electrolyte, and then increased in concentration
with increasing electrolysis time (Fig. 4). The generation of acrolein was clearly detected after 7 h and
increased with the electrolysis time thereafter in the basic electrolyte. However, in the acidic
electrolyte it increased as a function of time and reached its maximum yield (32.2%) within 19 h
before decreasing with further electrolysis time (Fig. 4a). The main mechanism can be speculated that,
in the presence of electricity, glycerol undergoes adsorption and dehydration on the active site of the Pt
electrode [33, 35]. If the 1°-OH group of glycerol was involved 2,3-dihydroxypropene would be
generated and instantaneously transformed to acetol (1-hydroxyl-2-propanone). On the other hand, if
the 2°-OH group of glycerol is involved the enol intermediate species (3-hydroxypropanal) would be
formed, which would then rapidly be rearranged to acrolein (acrylaldehyde) [28]. In the acidic
electrolyte, these two species are themselves reactive and readily reduced to 1,2-PD and 1,3-PD,
respectively. However, their yields were very low during the early period of acrolein and acetol
formation, because the rapid C-C bond dissociation can occur at the utilized operating condition [33].
In terms of the yield of acrolein and 1,3-PD (in the acidic electrolyte), a higher yield of 1,3-PD than
acrolein was observed during 10-14 h electrolysis. Acrolein was observed from 7 to 8 h and increased
up to 19 h before declining with longer times. 1,3-PD appeared from 9 to 10 h and increased in
accumulation quickly up to after 19 h electrolysis but then increased only slowly thereafter. Thus, a
slower increase in the rate of 1,3-PD accumulation relative to acrolein was observed during 15-18 h of
electrolysis time (Fig. 4a). The reduction in acrolein without significant accumulation of 1,3-PD might
be due to the reduction of acrolein into 1,2-PD in the heterogeneous system [44]. With respect to the
yield of glycidol, it increased instantaneously when the electricity was applied. It is believed that
glycidol was obtained from the rearrangement of the glycerol carbonium ion, derived from the
protonation of the 2°-OH group of glycerol [28]. A simplified diagram showing the possible major
reaction pathways of glycerol conversion by this electrochemical conversion over a Pt electrode is
shown in Scheme 1. These compounds have a potentially important role in the petrochemical
industries for fuel and chemical production. However, this technique still needs additional research and
development to reliably provide a higher selectivity of any given specific product in order to obtain
high quality products that are both economically and operationally feasible.
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4. CONCLUSIONS

The electrochemical conversion of glycerol to higher value and in-demand chemicals, such as
acrolein, 1,2-PD, 1,3-PD and glycidol, was successfully developed in a simple electrochemical system
with a Pt electrode. The initial pH of the glycerol electrolyte significantly affected the glycerol
conversion and product distribution and yields. Quantitatively, the electrochemical conversion of
glycerol was in the order of pH 1 >> pH 11 > pH 7 with a rate constant of 2.95 x 10%, 7.95 x 10" and
9.20 x 10™ min™, respectively. In a strong acid electrolyte (pH 1), complete glycerol conversion was
obtained within 13 h with a product yield of greater than 63.6% and a maximum product yield of 99.99
mol% being obtained after 19 h electrolysis time. This provided a yield of acrolein, 1,2-PD, 1,3-PD,
glycidol, ethylene glycol and acetol of 32.2, 3.77, 24.0, 14.7, 12.0 and 13.4 mole %, respectively.
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Abstract

Activated carbon (AC) was prepared from wastewater treatment sludge by KOH
activation and then used for the adsorptive purification of crude glycerol (CG). The effect of
different KOH: char (w/w) ratios (1-6), KOH soaking times (5-25 h) and carbonization
temperatures (500-900 °C) on the surface properties of the obtained sludge-derived ACs and
their adsorption capacity for impurities in H3PO, pretreated CG was explored. The preparation
conditions affected the textural properties and surface chemistry of the sludge-derived AC and its
efficiency in the adsorptive purification of CG. Oxygen-containing surface functional groups,
particularly carbonyl groups, as well as the textural properties, played a more important role in
the adsorptive purification of CG. Among the sludge-derived ACs, the one impregnated at a
KOH: char (w/w) ratio of 5.0 for 25 h and then carbonized at 800 °C exhibited the most suitable
surface properties for the enrichment of glycerol in the pretreated CG, attaining a 93.0% (w/w)
glycerol level at an AC dose of 67 g/L for 2 h with agitation at 250 rpm. The AC-adsorption of
impurities from the pretreated CG followed the Langmuir isotherm. However, the reusability of

the used AC by hexane or diethyl ether extraction was not suitable.

“Corresponding author. Tel.: 662 2187523; E-mail address: mali.n@chula.ac.th (Mali Hunsom)
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1. Introduction

Glycerol is the major by-product of biodiesel production via transesterification of
triglycerides from vegetable oils or animal fats [1]. Approximately 1 kg of glycerol is generated
per 10 kg of biodiesel produced. Various methods have been used for the disposal or utilization
of crude glycerol (CG), including direct combustion [2,3], fertilizer [4,5], animal feed [6,7] or
anaerobic digestion feedstock [5,8], and thermo-chemical or biological conversion to value
added products [9-14]. However, with the rapid expansion of the biodiesel industry, the market
is now flooded with excessive CG and any increase in biodiesel production rates will
significantly raise the quantity of glycerol above the current market demands and decrease its
economic value. Thus, finding new uses for the CG and so maintaining or increasing its value
can improve the cost effectiveness of biodiesel production.

The CG obtained from biodiesel production is not suitable for use in its traditional
applications due to the presence of various contaminants, such as moisture, ash, soap, alcohol,
traces of glycerides and vegetable color, which results in a low glycerol content in the CG
[15,16]. Recently, various studies have focused on methods for glycerol purification or
enrichment, such as by simple vacuum distillation [17,18], electrodialysis [19], ion-exchange
chromatography [20,21], membrane filtration [22] and chemical processes [23—-26].

Adsorption is recognized as a generally efficient and economical process to remove
organic compounds from an aqueous solution due to the low-energy consumption, ability to
operate at ambient temperature and pressure, and to regenerate the spent adsorbent, plus the often
broad availability of adsorbents [27]. One such abundant and relatively cheap adsorbent is
activated carbon (AC), which can be prepared by physical or chemical activation methods or by
a combination of both [28]. Compared with physical activation, chemical activation uses

dehydrating agents that influence the pyrolytic decomposition and inhibit tar formation and so
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enhances the yield of carbon [29]. In addition, the temperatures used in chemical activation are

lower than those used in the physical activation process, resulting in the development of a better
porous structure and catalytic activity compared to that derived from the physical activation
process [30]. Chemical activation typically uses alkali and alkaline earth metal-containing
substances and some acids, such as KOH [27,31-33], NaOH [34,35], HNO3 [36], ZnCl, [37-39]
and H3PO, [40-42], as activators, and various types of carbonaceous materials, such as coal-tar
pitch, biomass and industrial and domestic wastes, as the carbon source.

Among all the utilized chemical activators, the mixed physical and chemical processes of
KOH-activation is one of the most popular processes because it can lead to a very large surface
area and micropore volume of the obtained AC [43]. The activation mechanism of KOH consists

of various elementary dehydration as outlined in Egs. (1) - (3) [44].

2KOH - K20 + H,0 (Dehydration) Q)
C+H0 - H, + CO (Water-gas reaction) (2)
CO+H,O - H, + CO, (Water-gas shift reaction) (3)

When the temperature exceeds 700 °C, a considerable amount of K,CO3 and a small
amount of metallic potassium (K) are generated by the formation of carbonate and the reduction

of the K0, respectively, according to Egs. (4) - (6) [45]:

K:O0+CO;, — K,COj3 (Carbonate formation) 4)
K0 + H, - 2K + H,0 (Reduction by hydrogen) 5)
KO+ C - 2K + CO (Reduction by carbon) (6)

The textural properties as well as the surface chemistry of the obtained AC depend on the
type of raw material and on the conditions used in the activation [46, 47].

In the present work, a set of ACs was prepared from the sewage sludge obtained from a
wastewater treatment plant using KOH activation. The impact of the preparation conditions on
the efficiency of the adsorptive purification of pretreated CG of the obtained ACs was evaluated

in order to obtain a glycerol enriched CG (PCG) within the acceptable limit of the BS 2621
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4
standard (> 80% (w/w)). The adsorption isotherms of the ash and other contaminants from the

pretreated GC on the adsorbent surface were investigated and the reusability of the used sludge-

derived ACs was also examined.

2. Experimental
2.1 Preparation of the sludge-derived AC

The raw material used for preparing the ACs was the sewage sludge obtained from a
wastewater treatment plant of a textile factory in Thailand. Prior to use, the sludge was washed
several times with deionized water to eliminate the contaminated grits and then dried at 105 °C
for 24 h to a constant weight. Finally, it was crushed with a grinder and sieved to a size range of
1-2 mm.

The preparation of the sludge-derived AC was performed in the two main steps of
pyrolysis and activation. For the char producing pyrolysis step, approximately 50 g of crushed
sewage sludge was heated slowly in a stainless steel fixed-bed reactor at a constant heating rate
of 10 °C/min from room temperature to the pre-set pyrolysis temperature of 400 °C under a
nitrogen (N,) atmosphere (flow rate 50 mL/min). It was then held at this temperature for 2 h
before being cooled down slowly under a N, atmosphere. The obtained sample was crushed and
sieved to a size smaller than 0.25 mm. The ready-to-use char was obtained after drying at 105 °C
for 2 h.

For the activation step, 100 mL potassium hydroxide solution (KOH, Ajax Finechem)
was mixed with 10 g of char, varying the a KOH/char weight ratio of x:1 (x =1, 2,3,4,50r
6). The liquid/solid phase was maintained in contact by mechanical shaking at a constant rate of
200 rpm for the entire soaking time (5-25 h). The suspension was then subject to vacuum
filtration and the solid portion was rinsed several times by deionized water until the pH of filtrate
was constant. Subsequently, it was carbonized in a fixed-bed reactor at a slow heating rate of 10

°C/min from room temperature to the pre-set carbonization temperature (500-900 °C) under a N
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atmosphere at flow rate of 10 mL/min, then held at this temperature for 30 min before being

allowed to cool down slowly under a N, atmosphere. The obtained samples were rinsed with 3 M
hydrochloric acid (HCI, 37% Carlo Erba) to remove other inorganic matter and then with
distilled water to eliminate the excess HCI until the pH become neutral. Each respective sludge-

derived AC was obtained after drying at 105 °C for 24 h.

2.2 Adsorptive enrichment of glycerol from the pretreated CG by each AC

The obtained sludge-derived ACs were used to adsorb some of the impurities from the
CG obtained from a local fatty acid methyl ester (FAME) production plant in Thailand that
utilizes waste used-oil and methanol as the raw materials via the alkali catalyst mediated
transesterification process. Due to the presence of a high amount of contaminants, such as soap,
free fatty acids (FFA), FAME and soluble inorganic salts, it was pretreated by the addition of
H3PO,4 (85%, Qrec) as previously reported [23].

The adsorptive purification of the pretreated CG was carried out at room temperature
(~30 °C) and ambient pressure using either the in-house sludge-derived AC or a commercial AC
(Panreac Quimica S.A.U.). Prior to use, each AC was dried at 105 °C for 30 min to eliminate the
free moisture. Subsequently, approximately 1 g of AC was mixed with 15 mL pretreated CG
(~67 g/L) and shaken at the indicated speed (15-300 rpm) for the indicated time (60-180 min).
Finally, the AC was separated by vacuum filtration and the properties of the obtained PCG were

characterized.

2.3 Regeneration of used sludge-derived AC

To test the reusability of used sludge-derived AC, the regeneration was attempted by
solvent extraction using either diethyl ether (CeH14) or hexane (C4H100) at the solvent to used
AC ratio of 1, 2 and 3 (v/w), abbreviated as R1, R2 and R3, respectively and shaken at 250 rpm

for 2 h. Afterwards, the ACs were separated from the solution by filtration and rinsed several
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times with distilled water to remove the excess solvent. The regenerated AC was then obtained

after drying in an oven at 105 °C for 24 h.

2.4 Characterization of the ACs and different glycerol solutions

The glycerol content in the different solutions was measured according to the standard
method (ASTM D7637-10) by titration with sodium metaperiodate (NalO,4, Fisher Chemical),
based on the cold oxidation of the glycerol by NalOy in a strong acidic medium. Ash content was
analyzed according to the Standard method (ISO 2098-1972) by burning approximately 1.0 g
glycerol in a muffle furnace (Protherm, alserteknik) at 750 °C for 3 h. The water and the MONG
(matter organic non glycerol) contents are reported together as ‘other contaminants’, calculated
as [100 - (glycerol content (% (w/w)) + ash content (% (w/w))]. The pH of the different glycerol
solutions was measured with pH paper (Macherey-Nagel pH-Fix 0-14), whilst the color was
measured in a UV/Vis spectrophotometer (Jasco, V-530) as the absorbance at a wavelength of
457 nm. The density and viscosity were measured according to the standard 1SO 2099-1972 and
ASTM D 445 methods, respectively.

The composition of both the sewage sludge and char were evaluated by proximate
analysis according to ASTM D3172, and elemental analysis by energy dispersive X-ray analysis
(EDX) on a JEOL JSM-5800LV. The level of oxygen-containing surface functional groups on
the ACs were determined by Boehm’s method of titration with basic solutions of different base
strengths (NaHCOj3, Na,CO3; and NaOH) as reported [38,48]. The textural properties of AC was
measured with a surface area analyzer (Quantachrome, Autosorb-1) using the Brunauer, Emmett

and Teller (BET) method.

3. Results and discussion

3.1 Composition of the ACs
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The elemental analysis revealed that the main mineral elements of the sewage sludge

were carbon and oxygen, with a low content (< 2.26% (w/w)) of Na, S, Si, Mg, Al, P and CI
(Table 1). In terms of the proximate analysis, the main component of the air-dried sludge was
volatile matter and various kinds of either organic or inorganic components measured in terms of
ash, with low contents of moisture content and fixed carbon (Table 1). Pyrolysis of the sewage
sludge to char decreased the proportional amount of volatile matter (2.58-fold) and moisture
content (2.75-fold) and so resulted in an increased (7.23-fold) proportional amount of fixed
carbon and ash (7.31-fold) (Table 1). In addition, pyrolysis slightly changed the element
proportions, which is attributed to their phase transformations and the loss of their crystallization
water of hydration [49].

The H3PO, pre-treatment of the CG reduced the color (10.9%) and ash content (19.6%)
without any significant effect on the content of the other contaminants and so resulted in a 1.31-
fold increased glycerol content (Table 2).

Table 1

Table 2

3.2 Effect of the KOH: char (v/w) ratio

The sludge-derived ACs prepared from different KOH : char weight ratios clearly had
different content and types of oxygen-containing surface functional groups (Fig. 1). Large
quantities of carbonyl groups were generated on the surface of ACs and increased with
increasing KOH : char ratios (~3.22 to 5.06 mEqg/g as the ratio changed from 1:1 to 6:1),
compared to the content of surface carboxyl (~1.4 to 1.6 mEq/g), lactone and hydroxyl groups (<
0.4 mEqg/g). This is because the strong alkali KOH preferentially generates alkaline oxygen-
containing surface functional groups, such as pyrones (cyclic ketones) and other keto-derivatives
of pyran [50], which are derivative species of the carbonyl group. Accordingly, increasing the

KOH : char ratio induced a higher content of formation of carbonyl groups with no significant
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effect on the content of acidic surface functional groups (carboxyl, lactone and hydroxyl groups).

This suggests that a high KOH : char ratio can increase the degree of KOH impregnation and the
generation of basic surface functional groups on the surface of ACs. A similar trend has been
reported in the preparation of oil-palm-shell adsorbent by H3PO, and KOH [50].

Fig. 1.

With respect to the textural properties of the sludge-derived ACs, the maximum BET
surface area (107 m%g) and micropore volume (0.09 cm*/g) was observed at a KOH : char ratio
of 5, and decreased with either a higher or lower KOH: char ratio (Fig. 2). Increasing the ratio
from 1 to 5, predominantly micropore was progressively formed and hence the BET surface area
of the activated carbon continues to increase up to a maximum of 107 m?/g. This is because the
presence of high impregnating agent can minimize the formation of tars and other liquids [51]
which can be clogged up the pores and inhibited the development of porosity. In addition, when
large amount of KOH penetrated and occupied a substantial volume of precursor (char), a large
amount of porosity was formed when these agents were extracted by intense washing after
preparation. Thus, the specific surface area increased with increasing amount of KOH [50].

When the KOH : char ratio was further increased from 5 to 6 a significant decrease in
both the micropore- (2.25-fold) and BET surface area (1.25-fold) was observed as well as a
slight decrease (1.2-fold) in the mesopore volume. This is speculated to be because an excessive
level of KOH molecules intercalated into the char and decomposed by dehydration into water
forming a WG reaction and an over-gasification (Egs. (1) and (2)), resulting in the widening of
pores through the burning-off of some walls between neighboring pores and continuous pore
wall thinning. The general widening of large pores resulted in a reduced non-micropore volume
that is not compensated for sufficiently by the conversion of micropores to mesopores or
macropores, and so resulted in the reduced BET surface area.

Fig. 2.
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The adsorption capacity for ash and the other contaminants of the sludge-derived ACs

increased as the KOH : char ratio used in the AC preparation increased from 1 to 5, with a
decrease in the ash and other contaminant levels from 25.1% and 33% (w/w) (pretreated CG) to
21.8% and 10.2%, respectively, (Fig. 3). This resulted in an increased glycerol content from
41.6% to 68.1% (w/w). However, further increasing the KOH : char ratio to 6 led to a
significantly decreased adsorption of the impurities in the pretreated CG and so to a 1.1-fold
decreased glycerol content in the obtained PCG. A similar trend was seen for the color reduction
in the pretreated CG by AC adsorption, where increasing the KOH : char ratio in the AC
activation up to 5 increased the color reduction induced by the obtained AC, but then decreased
at a KOH : char ratio of 6.
Fig. 3.

The adsorptive purification ability of AC is likely to be influenced by both its textural
properties and surface chemistry. The sludge-derived ACs prepared at a KOH : char ratio of 5
had the highest BET surface area and porosity (textural properties) and a high quantity of
oxygen-containing surface functional groups, particularly carbonyl groups (4.42 mEq/g), but this
was slightly less than that for the AC prepared at a ratio of 6 (4.97 mEq/g). Theoretically,
carbonyl groups are a good electron acceptor [52] that can bond well to the anionic charged
portions of FAME or FFAs (R-COQ") and so result in a decreased level of contaminants and
increased glycerol level in the PCG. In addition, the presence of carboxyl or acidic oxygen-
containing surface functional groups can form complexes with cations (mineral salts), according
to the surface complexation model [40], which results in a reduction in the mineral salt content in
PCG (here measured as ash content). However, too high a carbonyl group level, as induced by a
KOH : char ratio of 6, can lead to a more marked C-KOH reaction and so result in a decreased
BET surface area (Fig. 2) with the concomitant decreased adsorption capacity of the derived AC

for both ash and contaminants from the pretreated CG (Fig. 3).



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

10
3.3 Effect of the KOH soaking time

The content of oxygen-containing surface functional groups (carboxyl, lactone, hydroxyl
and carbonyl groups) varied with the KOH treatment (soaking) time (Fig. 4). Increasing the
soaking time from 5 to 25 h for a KOH : char ratio of 5 resulted in a time-dependent increase in
the level of carbonyl groups (up to ~4.7 mEg/g, some 2.3-fold higher) and a decrease in the level
of hydroxyl groups (> 15-fold) with no significant effect on the level of carboxyl and lactone
groups. This is explained as that a longer soaking time allowed for more diffusion of KOH into
the char structure, resulting in a higher generation of basic surface functional groups on the ACs.

Fig. 4.

With respect to the textural properties of sludge-derived ACs, increasing the soaking time
from 5 to 20 h with a KOH : char ratio of 5 increased the BET surface area and micropore
volume (1.9- and 1.8-fold, respectively), and slightly increased (1.5-fold) the mesopore volume
(Fig. 5). However, further increasing the soaking time to 25 h decreased the BET surface area
(1.78-fold) and micropore volume (1.5-fold) but increased the mesopore volume 1.4-fold further.
This trend can be explained by the same rational used for the effect of the KOH : char ratio
(section 3.2), as that a longer soaking time allowed a larger impregnation of KOH into the char
structure and so porosity when subsequently washed out [50]. Likewise, that the BET surface
area and micropore volume decreased when a soaking time of 25 h was used reflects that
excessive KOH impregnation and subsequent decomposition into water formed an over-
gasification reaction (Egs. (1) and (2)) that consequently widened the existing pores or combined
micropores during the evolution of volatile matter from the char structure during carbonization
[51].

The effect of the KOH soaking time on the adsorption ability of the resultant AC formed
from a KOH : char ratio of 5 was evaluated for the pretreated CG in terms of the resultant
composition and color of the obtained PCG (Fig. 6). The ash and other contaminants were

decreased with increasing soaking time, resulting in the increase of glycerol content up to 1.55-
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fold as the increase of soaking time from 5 to 25 h. This again can be explained as that the AC

prepared at a longer soaking time had a higher quantity of carbonyl groups and larger BET
surface area, which could couple with the anionic charged portions of FAME or FFAs. In
addition, the presence of carboxylic groups on the surface of ACs can bind to the mineral salts in
the pretreated CG and so reduce the mineral salt content (ash) in the obtained PCG. In accord,
increasing the KOH soaking time from 5 to 25 h also slightly increase the level of color
reduction from 96.3 to 97.4%.

Fig. 5.

Fig.6.

3.4 Effect of the carbonization temperature

The BET surface area, micropore and mesopore volumes of the sludge-derived ACs
prepared at a KOH: char (w/w) ratio of 5 and soaking time of 25 h were found to increase
significantly and markedly with an increasing carbonization temperature from 500 to 800 °C to a
15.4-, 9.2- and 2.2-fold higher level, respectively (Fig. 7). These increases are the result of the
elementary dehydration, water-gas and water-gas shift reactions as outlined in Egs. (1) to (3). At
a high carbonization temperature, some volatiles are emitted continuously from the char resulting
in the formation of rudimentary pores in the char surface that enhanced the existing pores and
created new ones. Thus, increased carbonization temperatures increased the mesopore volume
due to the widening of existing pores and the combining of micropores during the evolution of
volatile matter from the char structure during carbonization.

When the carbonization temperature was raised from 800 to 900 °C the BET surface area
and micropore volume decreased (1.18- and 1.15-fold, respectively), whilst the mesopore
volume was increased (1.27-fold). It has been reported previously that when the temperature
exceeds 700 °C the K,COj3 and metallic K, generated according to Egs. (4) to (6), can intercalate

into the carbon matrix, resulting in the widening of the spaces between the carbon layers and
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causing a sharp decrease in the BET surface area [44]. In addition, as discussed in section 3.2, a

high temperature induced pore widening through the complete burning-off of some walls
between neighboring pores and continuous pore wall thinning. Together, these result in a
decreased micropore volume and an increased mesopore volume.

Fig. 7.

With respect to the surface chemistry of the sludge-derived ACs, increasing the
carbonization temperature from 500 to 800 °C induced a higher content of carbonyl groups (up to
1.5-fold) but a lower content of carboxyl, lactone and hydroxyl groups (Fig. 8). However, further
raising the carbonization temperature from 800 to 900 °C decreased the quantity of all oxygen-
containing surface functional groups, particularly the carbonyl group (1.7-fold). The difference
between the groups is due to fact that the different oxygen-containing surface functional groups
have different thermal stabilities. The carboxylic and lactone groups decompose to CO, and
phenol at 700-800 °C, the carbonyl (quinone or ether) groups decompose to CO at 5001000 °C,
and the hydroxyl groups release water from 200-300 to 400-500 °C [53].

Fig. 8

As expected then, increasing the carbonization temperature of the AC from 500 to 800 °C
improved its adsorptive capacity, as determined by the reduction in the ash (2.1-fold) and the
other contaminants (9.4-fold) in the PCG compared to the pretreated CG prior to adsorption,
resulting in a 1.23-fold increased glycerol content to 89.4% (w/w) (Fig. 9). Further increasing the
carbonization temperature from 800 to 900 °C led to a significant reduction in adsorptive ability
of the obtained AC, as seen by the 1.33-fold reduced glycerol content and increased contents of
ash, color and other contaminants. This again reflects that the sludge-derived AC prepared at 800
°C had the highest BET surface area and largest number of carbonyl groups.

Fig. 9.
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3.5 Effect of the adsorption time and shaking rate

To increase the purity of the glycerol in the AC-adsorbed PCG, the effects of the
adsorption time (60-180 min) and shaking rate (150-300 rpm) were explored using the sludge-
derived AC (67 g/L), prepared at a KOH : char ratio of 5 with a soaking time of 25 h and
carbonized at 800 °C. Increasing the adsorption time up to 120 min increased the adsorption
efficiency, as seen in the decreased level of ash, color and the other contaminants and the
increased glycerol content (to 93.0% in the PCG (Fig. 10a). The increased adsorption time
enhances the chance of interaction between the impurity molecules and the AC particles.
However, increasing the adsorption time further over 120 min did not have any significant effect,
presumably reflecting the saturation of the AC.

With respect to the shaking rate, used to mix the suspended solid AC phase with the
pretreated CG solution liquid phase, decreasing or increasing the shaking rate from 250 rpm
increased the content of impurities and so reduced the glycerol content obtained in the PCG (Fig.
10b). It is speculated that the adsorption process was controlled by mass transport at low mixing
rates (< 250 rpm) and by the reaction kinetics at a high mixing rate (> 250 rpm).

Fig. 10.

The characteristics of the obtained PCG are summarized in Table 2. The pH of PCG was
neutral with a color reduction of more than 98.6%. The content of glycerol, ash and other
contaminants were in the acceptable range of the BS 2621 standard. This sludge-derived AC
enhanced the glycerol purity 1.05-fold more than that obtained with the commercial AC (89.6%
(w/w)) (Table 2). This likely reflects the lower quantity of oxygen-containing surface functional
groups on the commercial AC (0.59, 0.20, 0.35 and 0.02 mEqg/g for the surface carbonyl-,
carboxyl-, lactone- and hydroxyl groups, respectively) compared with the optimal sludge-derived
AC of this study (7.08, 1.24, 0.09 and 0 mEq/qg for the surface carbonyl-, carboxyl-, lactone- and

hydroxyl groups, respectively).
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Although the adsorptive purification of glycerol by the sludge-derived AC was slightly

higher than that of the commercial AC (~ 4.4% (w/w)), the utilization of sewage as the raw
material for preparing the AC could offer the additional benefit of reducing the volume of

industrial sludge for disposal and management.

3.6 Adsorption isotherm

To describe the adsorption mechanism of ash and the other contaminants from the
pretreated CG on the AC adsorbent surface, various equilibrium models were analyzed to
investigate the adsorption isotherm. The isotherms from the appropriate model will allow insight
into the properties of the surface binding mechanism and the affinity of the adsorbent towards
the impurities in the pretreated CG, which is useful for the design of an optional adsorption
process and scale-up.

The Langmuir isotherm is applicable for a monolayer adsorption on a surface with a
finite number of identical sites [54]. It assumes that all the adsorption sites have an equal
adsorbate affinity and that the adsorption at one site does not affect the adsorption at an adjacent
site [55]. The linear form of the Langmuir isotherm is represented in Eq. (7);

C
—_& _ L_ﬁ.& (7)

g, kaa, 4

where ge is the adsorption capacity at the equilibrium adsorbate concentration (ash and other
contaminants), ki is the Langmuir constant, C, is residue adsorbate concentration at equilibrium
and qo is the maximum amount of adsorption corresponding to a complete monolayer coverage.
A plot of C./q. and C, allows the determination of go and k_ from the slope and intercept,
respectively.

The Freundlich isotherm is an empirical model that is valid for non-ideal adsorption on
heterogeneous surfaces as well as for multilayer adsorption [56], and can predict the increase in

concentration of the ionic species adsorbed on the adsorbent surfaces with increasing
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concentrations of the ionic species in the liquid phase [57]. The linear form is expressed in Eq.

(8);

logg, = logk, + %IogCe (8)

where kg is the Freundlich isotherm constant that indicates the adsorption capacity, and n is the
adsorption intensity that varies with the heterogeneity of the material. The adsorption is
favorable when values of 1/n are in the range of 0.1 < 1/n < 1 [58]. A plot of log ge vs. log C.
provides the values of kg and 1/n.

The Tempkin isotherm is based on the assumptions that (i) the heat of adsorption of all
the molecules in the layer decreases linearly with the coverage of molecules, due to the
adsorbate-adsorbate repulsions, (ii) the adsorption of the adsorbate is uniformly distributed [59]
and (iii) the fall in the heat of adsorption is linear rather than logarithmic, as implied in the
Freundlich isotherm. The linear form of the Tempkin equation is given by Eq. (9) [60];

9. = B;InA + BInC, ©)
where, Bt = (RT)/br, R is the universal gas constant (8.314 J/mol- K), T is the absolute
temperature, by is the constant related to the heat of adsorption and Ar is the equilibrium binding
constant corresponding to the maximum binding energy [61]. A plot of ge versus InC. allows a
determination of the constants Bt and At from the slope and intercept, respectively.

The Dubinin-Radushkevich (D-R) isotherm is an analogue of the Langmuir isotherm but
it is more general because it does not assume a homogeneous surface or a constant sorption
potential and the linearized form is represented by Eq. (10) [62];

Ing, = Ing, —Ke? (10)
Where ¢ is the Polanyi potential, equal to RT In (1+1/C.), R is the gas constant and T is the
absolute temperature. The value of go and K can be determined by plotting In g as a function of

&. The D-R isotherm allows the estimation of the mean free energy of adsorption (E), equal to

1/+2K , that can be used to distinguish between physical and chemical adsorptions. The
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adsorption behavior is predicted to be by physical adsorption when the mean adsorption energy

is in the range of 1-16 kJ/mol, and by chemical adsorption when the mean adsorption energy is
greater than 16 kJ/mol [63].
The generalized isotherm is the combination of the Langmuir and Freundlich isotherms

[64] and in linear form is given by Eq. (11);

log (q—O - J — logk, — N, logC, (11)
where kg is the saturation constant (g/L), Ny is the cooperative binding constant and g is the
maximum amount of adsorption corresponding to a complete monolayer coverage obtained from
the Langmuir isotherm model. The slope and intercept of the plot of log [(go/ge)-1] versus log Ce
allows the determination of kg and Ny, respectively.
The adsorption of ash and other contaminants fitted quite well to the Langmuir isotherm
(Fig. 11; Table 3), where the high values of R® for ash (0.9884) and the other contaminants
(0.9741) indicated a good agreement between the experimental values and the isotherm
parameters. This then supports the monolayer adsorption of both ash and the other contaminants
onto the surface of sludge-derived AC. The derived maximum amount of adsorption
corresponding to a complete monolayer coverage (go) of the other contaminants was 2.41-fold
greater than that of ash, indicating the higher adsorption ability of the other contaminants than
ash onto the surface of the sludge-derived AC. A high Langmuir constant (k_) was observed for
ash (0.122 L/g), some 2.77-fold higher than that for the other contaminants. The separation
factors, or dimensionless equilibrium parameter (R.), was estimated by 1/(1+k, Co) and found to
be between 0 to 1 (0.022 and 0.049 for ash and contaminants, respectively), indicating their
favorable adsorption on the sludge-derived AC.
Fig. 11.

Table 3.
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3.7 Regeneration of sludge derived ACs

The textural properties (Fig. 12) and the oxygen-containing surface functional groups
(Fig. 13), particularly the quantity of the carbonyl groups, of the sludge-derived AC were
dramatically decreased after adsorptive purification of pretreated CG. The regeneration of the
used ACs was then attempted by solvent extraction using CgH14 or C4H100 at solvent : AC ratios
of 1, 2 and 3. Extraction with either CgH14 or C4H100 could slightly recover the BET surface
area, micropore and mesopore volumes of the used sludge-derived ACs in a solvent
concentration-dependent manner, except that for C4H100 was optimal at a solvent : AC ratio of 2
and declined at a ratio of 3 (Fig. 12). For extraction with CgHy4 the BET surface area, micropore
and mesopore volumes were restored to 15%, 18.3% and 35.6% of that of the unused AC level,
respectively, whilst those for C4H;0O extraction were lower at 12.8%, 15.6% and 24.7%,
respectively. However, they could recover a large quantity of the oxygen-containing surface
functional groups (up to 43-75%), particular the carbonyl groups at 87.5% and 80.3% of the
unused AC level for C¢Hy4 and C4H10O extraction, respectively, (Fig. 13). This is because both
solvents can extract the oily-like compounds, such as FAME or FFAs, and other non-polar
impurities from the surface of the used ACs, resulting in an increased BET surface area and pore
volume as well as the quantity of free carbonyl groups compared with that before regeneration.
Overall, C4H100 gave a better degree of recovery of the textural properties (BET surface area
and pore volumes) of the used AC when extracted at a C4H100 : AC ratio of 2, but in contrast it
was inferior to CgH14 extraction in restoring the used AC surface chemistry. This might be due to
the greater water solubility of C4H;00 than CgHi4 (6.89% and 0.001% for C4H;00 and CgHig,
respectively [65]. Thus, C4H;00 can dissolve a higher quantity of polar (mineral salt) and low to
non-polar (FAME or FFAS) impurities from the surface of the used AC compared to that of
CsH14, except at a C4H100 : AC ratio of 3. The decreased textural properties and level of free

carbonyl groups on the sludge-derived AC regenerated by extraction with a C4H100 : used AC
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ratio of 3 might be due to the competition bonding of polar and non-polar portions of excess

C4H100 on the impurity molecule, leading to the decrease of its extraction efficiency.
Fig. 12.
Fig. 13.

The adsorptive efficiency of the regenerated ACs appeared in part to correlate with their
surface properties. Increasing the CgHy4 : used AC ratio from 1 to 3 resulted in an increased
ability to remove ash and the other contaminants from the pretreated CG from 19.6% to 14.3%
and from 34.0% to 24.1%, respectively, and so increased the glycerol content and color
reduction from 46.4% to 61.6% and from 84.5% to 89.5%, respectively (Fig. 14). This reflects
the better surface properties when generated at a solvent : used AC (v/w) ratio of 2 and highest at
3. This was also the case for the C4H100-regenerated AC, including that it was less efficient at a
C4H100 : used AC ratio of 3, where the surface properties were also decreased. However, against
this is that C¢Ha4 extraction gave a slightly superior restoration of the surface chemistry but an
inferior adsorption of the impurities in the pretreated CG. Given the higher restoration of the
surface textural properties by CgH14 extraction, this then supports that for adsorption both the AC
surface textural and chemical properties are important and interact. Although extraction with a
C4H100 : used AC ratio of 2 and a CgHa4: used AC ratio of 3 could increase the glycerol content
of the pretreated CG from 35.7% to 55.5% or 61.6% in the PCG, respectively, these were still
below the acceptable content of BS 2621. Thus, alternative regeneration procedures will be
required to be developed to improve the properties of the regenerated ACs, such as thermal
processing, which is currently under investigation.

Fig. 14.

4. Conclusions
The KOH : char ratio, soaking time and carbonization temperature affected the surface

textural and chemical properties, and the adsorption capacity for impurities from pretreated CG,
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of the obtained sludge-derived ACs. Better textural properties, such as a high BET specific

surface area and pore volume, offered a higher opportunity to adsorb the ash and other
contaminants in the pretreated CG. The oxygen-containing surface functional groups were
responsible for both cation- and anion-uptake. The AC formed from a KOH: char (w/w) ratio of
5:1, soaked for 25 h and carbonized at 800 °C exhibited the most suitable surface properties and
ability to enhance the glycerol purity in the pretreated CG, attaining up to 93.0% (w/w) when
used at an AC dose of 67 g/L for a 2 h adsorption time with shaking at 250 rpm. The adsorption
of both ash and the other contaminants via the sludge-derived AC followed the Langmuir
isotherm. Regenerated of the used AC by solvent extraction with either C4H1,0 or CgH14 was not

suitable.
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Figure captions

Fig. 1 Effect of the KOH: char (w/w) ratio on the quantity of the oxygen-containing surface
functional groups ((H) lactone, () hydroxyl, (**) carboxyl and ([.1) carbonyl groups) of
the sludge-derived ACs prepared with a soaking time of 20 h and carbonized at 500 °C.

Fig. 2 Effect of the KOH: char (w/w) ratio on the (*) BET surface area, (ll) micropore volume
and ([1) mesopore volume of the sludge-derived AC prepared with a soaking time of 20 h
and carbonized at 500 °C.

Fig. 3 Effect of the KOH: char (w/w) ratio on the content of () glycerol, (M) ash, (L) other
contaminants and (") color of the PCG obtained by adsorption of pretreated CG with the
sludge-derived AC prepared with a soaking time of 20 h and carbonized at 500 °C.

Fig. 4 Effect of the KOH soaking time on the quantity of the oxygen-containing surface
functional groups ((H) lactone, (M) hydroxyl, (*) carboxyl and ([1) carbonyl groups) of
the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 and carbonized at 500 °C.

Fig. 5 Effect of the KOH soaking time on the (*) BET surface area, (ll) micropore volume and
(C2) mesopore volume of the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5
and carbonized at 500 °C

Fig. 6 Effect of the KOH soaking time on the content of () glycerol, (M) ash, (L) other
contaminants and () color in the PCG obtained by adsorption with the sludge-derived
AC prepared at a KOH: char (w/w) ratio of 5 and carbonized at 500 °C.

Fig. 7 Effect of the carbonization temperature on the (*7) BET surface area, (ll) micropore
volume and (L1) mesopore volume of the sludge-derived AC prepared at a KOH: char
(w/w) ratio of 5 for 25 h.

Fig. 8 Effect of the carbonization temperature on the quantity of the oxygen-containing surface
functional groups ((IM) lactone, (M) hydroxyl, () carboxyl and (1) carbonyl groups) of

the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 for 25 h.
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Fig. 9 Effect of the carbonization temperature on the content of (ll) glycerol, (M) ash, (1) other

contaminants and (") color in the PCG obtained by adsorption with the sludge-derived
AC prepared at a KOH: char (w/w) ratio of 5 for 25 h.

Fig. 10 Effect of (a) the adsorption time with shaking at 250 rpm, and (b) the shaking rate with
an adsorption time of 120 min, on the content of () glycerol, (M) ash, (L) other
contaminants and (") color in the PCG obtained by adsorption with the sludge-derived
AC prepared at a KOH : char (w/w) ratio of 5 for 25 h and carbonized at 800 °C.

Fig. 11 (a) Equilibrium adsorption and the linearized (b) Langmuir, (c) Freundlich, (d) Tempkin,
(e) Dubinin-Radushkevich and (f) Generalized isotherms plots of this data for (@) ash and
(®) the other contaminants from the pretreated CG by the sludge derived-AC with an
adsorption time of 120 min and shaking at 250 rpm. The AC was prepared with a KOH :
char (w/w) ratio of 5 for 25 h and carbonized at 800 °C.

Fig. 12 Effect of the (a) CsH14 and (b) C4H100 solvent: used AC (v/w) ratio (where R1, R2 and
R3 represent a ratio of 1:1, 2:1 and 3:1, respectively) on the (*7) BET surface, (H)
micropore volume and (L) mesopore volume of the used sludge-derived AC.

Fig. 13 Effect of the (a) CsH14 and (b) C4H100 solvent: used AC (v/w) ratio (where R1, R2 and
R3 represent a ratio of 1:1, 2:1 and 3:1, respectively) on the quantity of oxygen-containing
surface functional groups: ((I) lactone, (M) hydroxyl, () carboxyl and ([1) carbonyl
groups) of the used sludge-derived AC.

Fig. 14 Effect of the (a) CsH14 and (b) C4H100 solvent : used AC (v/w) ratio (where R1, R2 and
R3 represent a ratio of 1:1, 2:1 and 3:1, respectively) on the regeneration of AC, in terms
of the content of () glycerol, (M) ash, (L) other contaminants and () color in the PCG

obtained by adsorption with the regenerated sludge-derived AC.



Table 1. Physicochemical characteristics of the sewage sludge and derived char.

Type of analysis Sludge (% (w/w))  Char (% (w/w))
Elemental analysis

Carbon (C) 68.69 + 2.99 73.98 £ 0.59

Oxygen (O) 29.05 + 3.34 20.98 +0.13

Sodium (Na) 0.50+0.21 1.46 + 0.57

Others (ex. S, Si, Mg, Al, P, ClI, etc.) 1.76 £ 0.06 3.58 £ 0.63
Proximate analysis

Moisture 9.53+0.44 3.27+£0.55

Ash 24.40 £ 0.63 32.06 £ 0.85

Volatile matter 60.50 = 0.89 23.45+0.98

Fixed carbon 557 +0.16 41.22 +0.44
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Table 2. Characteristics of the CG, H3PO, pretreated CG and PCG obtained from adsorption

using the indicated AC.

BS 2621:1979

Parameters (17 CG Pretreated CG®  Sludge-derived AC®  Commercial AC®
pH 9.65+0.21 7.10 £0.14 7.0 7.0
Glycerol content (% (w/w)) >80 27.2+0.84 35.7+£0.27 93.0+0.57 88.6 +0.63
Ash (% (w/w)) <10 36.2+£0.20 29.1+0.51 7.0+0.82 11.4+1.03
Other contaminants (% (w/w)) <10 36.6 +0.64 35.2+0.78 N/AY N/A
Density at 20 °C (g/cm3) 1.01 £ 0.062 1.21+£0.02 1.277 £ 0.006 1.264 £ 0.006
Viscosity at 40 °C (cSt) 49.2 £0.20 57.4+£1.03 104.7 £ 0.54 89.6 £0.79
Color (Pt-Co unit) 172,857 £5,580 154,038 + 4,477 2,314 + 141 3,654 + 22

®Pretreated by acidification with HsPO, at pH 2.5.
®Adsorption with sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 for 25 h and carbonized at 800 °C.
°Adsorption with commercial AC (Panreac Quimical, UK) at 67.7 g/L, 120 min, 250 rpm

INI/A not available
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Table 3. Summation of the isotherm constants for the adsorption of ash and the other
contaminants from the pretreated CG by the sludge-derived AC.

Type of Isotherm Ash Contaminants
isotherm parameters Values R R
Langmuir Jo 3.689 0.9884 8.878 0.9741
k. (L/g) 0.122 0.044
Freundlich ke (L/g) 3.312 0.0112 5.288 0.4387
1/n 0.012 0.072
Tempkin Ar(L/g)  816x10*  0.0105  6.90 x 10° 0.4469
Br 0.0413 0.5498
D-R K (mol/kJ)2 20.83 0.0068 11.82 0.2004
E (kJ/mol) 0.155 0.206
o (9/9) 3.512 7.681
Generalized Np 0.0413 0.0003 0.6671 0.4340
ks (g/L) 0.0447 3.4721

The AC used was derived from sewage sludge char prepared with activation with a KOH : char
(w/w) ratio of 5 for 25 h and then carbonized at 800 °C
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Impact of preparing condition of sludge-derived AC on glycerol purification was studied. >
The preparing conditions affected textural property and surface chemistry of sludge-derived
AC. > The AC prepared appropriate condition can enhance the glycerol purity up to 93.0%. >
The adsorption of ash or contaminants via sludge-derived AC followed the Langmuir

isotherm. > The reusability of the used AC by hexane or diethyl ether extraction was not

suitable.
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Electrochemical conversion of enriched crude glycerol: Effect of operating parameters

Mali Hunsom*®”, Payia Saila®

®Fuels Research Center, Department of Chemical Technology, Faculty of Science,
bCenter of Excellence on Petrochemical and Materials Technology (PETRO-MAT),

Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

Abstract

The enrichment of crude glycerol (29.8 wt.%) from a biodiesel production plant and its
subsequent electrochemical conversion under a galvanostatic mode to added-value compounds
was successfully performed at a laboratory scale. The optimal solvent-extraction based
enrichment of the crude glycerol, after the acid pretreatment to remove most free fatty acids and
salts, was found using n-propanol: pretreated crude glycerol volume ratio of 2, attaining 97.9%
glycerol. The effects of the initial glycerol solution pH (1, 7 or 11), type of electrode (platinum
(Pt), titanium-coated rubidium oxide (Ti/TuO,) or stainless steel (SS)) and applied current
density (0.08-0.27 A/cm?) were explored. Using a galvanostatic mode, the enriched glycerol
could be converted to added-value products, such as ethylene glycol, acetol, glycidol, acrolein,
1,2-propanediol (PD) and 1,3-PD. A Pt electrode, initial glycerol solution pH of 1 and current
density of 0.14 A/cm? were found to be optimal giving complete conversion of 0.3 M glycerol
within 14 h with a total product yield of 68.7% mol. However, each specific product had a
different optimal applied current density and electrolysis time. Finally, a simplified diagram
showing the possible major reaction pathways of glycerol conversion by this electrochemical

conversion over a Pt electrode is presented.
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Keywords: Crude glycerol; Solvent extraction, Added-value compound, Electrochemical

conversion

1. Introduction

Due to the increasing global human population and, especially, fast expansion of their
global economies and industries, a large and increasing quantity of energy is being used and this
is mainly derived from non-renewable fossil fuel-based sources. This results in a significant
diminishment of the fossil fuel resources, with a predicted end of the supply of cheap (<USD
100 per barrel) fossil fuel oil by 2040 at the latest [1]. In addition, the current rate of utilization
of fossil fuel-based energy releases higher levels of various greenhouse gases than can be fixed
leading to an increased atmospheric and aquatic level of these gases with, for example, global
warming and ocean acidification. These economic and environmental issues have driven an
increasing interest in developing alternative technologies in order to produce alternative fuels
and chemicals using sustainably renewable resources with a reduced carbon footprint. In this
way, biodiesel is one potential alternative energy source to partially replace fossil fuel-based
energy due to its high cetane number, lubricity, flash point and biodegradability plus its low
toxicity [2]. In addition, it is seen as a much safer fuel than petroleum-derived diesel fuel
because it has a low emission of toxic compounds, such as sulfur dioxide, hydrocarbons,
particulates, polycyclic aromatic hydrocarbons and carbon monoxide [3,4]. Biodiesel (fatty acid
alkyl esters) is made from renewable biological sources, such as vegetable oils and animal fats,
esterified to a simple alcohol, and commercially is principally made by transesterification in the
presence of an acidic or alkaline catalyst.

Currently, the world’s capacity for biodiesel production is increasing dramatically. This
is also the case in Thailand where biodiesel production has increased up to 1.71 x 10° L/day in
2012 [5]. Stoichiometrically, glycerol is produced at 10 wt.% of the total biodiesel production

[6]. However, the crude glycerol obtained from biodiesel production has a low economic value
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due to the presence of significant levels of various impurities, such as moisture, ash, soap,
chloride, soap, residual alcohol, traces of glycerides and vegetable colors [7,8]. Thus, various
studies have focused on enrichment of glycerol from this crude glycerol, such as by simple
vacuum distillation [9,10], electrodialysis [11], ion-exchange chromatography [12,13], and
chemical [14-16] and adsorption [17] based processes. Purified or enriched crude glycerol with
a purity between 96-99.5% can be used in the food, pharmaceutical or cosmetic industries [7],
but this is still a limited and saturateable market. Thus, the additional approach of transforming
crude glycerol to more valuable chemicals, such as propanediol [18,19], synthesis gas [20-22],
acrylonitrile [23,24] or liquid fuels [25,26], since it is a molecule rich in functionalities with
three -OH groups [27], is of increasing interest. A diverse array of processes to transform
glycerol into more valuable chemicals have been developed, such as pyrolysis [28,29],
gasification [30-32], selective oxidation [33-35], biological processes [36,37], esterification
and acetylation [38—40] and hydrogenolysis [41-45].

However, the conversion of crude glycerol to added-value compounds has not been
sufficiently reported in the previous literature. Therefore, this work attempted to transform
crude glycerol to added-value compounds. Initially, the crude glycerol obtained from the
biodiesel production plant was enriched for glycerol in a two-stage chemical treatment, and then
the enriched glycerol was used as the raw substrate for the electrochemical synthesis of other
compounds. The enrichment of the crude glycerol was optimized in terms of the solvent and
solvent: crude glycerol volume ratio in the extraction to obtain the optimal glycerol yield and
purity, and then the electrochemical conversion to added-value compounds was optimized. The
novelty of this work is the utilization of surplus crude glycerol as the raw material to synthesize
added-value compounds that can be used in various industries, and so this could offer the
benefits of reducing the volume of surplus crude glycerol and the decline in crude glycerol

price.
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2. Experimental

Crude glycerol was obtained from a local biodiesel, as fatty acid methyl esters (FAME),
production plant in Thailand that utilizes waste used-oil and methanol as the raw materials for
biodiesel production via the alkali-mediated “transesterification” process. The as-obtained crude
glycerol was a dark brown solution with a high viscosity and changed to a semi-solid substance
during the prolonged storage. Thus, prior to use, the crude glycerol was slowly melted at around

40-60 °C.

2.1. Pre-treatment of crude glycerol

Due to the presence of organic and inorganic contaminants in the crude glycerol, such as
soap, fatty acid esters of glycerol, mineral salt, water and residual FAME, it was first pre-treated
according to the procedure of Manosak et al. [15]. Briefly, the crude glycerol was acidified with
H3PO, (85%, Qrec) to pH 2.5 with shaking at 200 rpm (CTL, model SK electric shaker) for 1 h
and then left for 12 h until the solution phase-separated into the three distinct layers of a top free
fatty acid (FFA)-rich layer, a middle glycerol-rich layer and the bottom inorganic salt-rich layer.
All layers were separated from each other by slow decantation. Subsequently, the middle
glycerol-rich layer was neutralized by the addition of 12.5 M NaOH (98% Merck) to pH 7.0,
left for a while and then filtered to eliminate the precipitated salt. The pre-treated crude glycerol

was obtained after drying at 110 °C for 15 h.

2.2. Enrichment of pre-treated crude glycerol

The enrichment of pre-treated crude glycerol was carried out by single stage solvent
extraction, evaluating three types of solvent (methanol (99.99% CH3;OH, Merck), ethanol
(99.9% C,HsOH, Merck) and n-propanol (99.99% n-C3H;OH, Fisher Scientific)), at five
different solvent: pre-treated crude glycerol volume ratios (0.5, 1, 2, 3 and 4.0). In each case, the

pre-treated crude glycerol was mixed with the selected solvent and volume ratio by shaking at
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200 rpm for 4 h and then left for 2 h to encourage the phase separation into the glycerol-alcohol
phase on the top and the crystallized salt on the bottom. The top layer was separated from the
bottom layer by slow decantation and the enriched glycerol was obtained after evaporation of

the solvent at 95 °C for 12 h.

2.3. Steady-state cyclic voltammetry (CV) of the enriched glycerol

The steady-state cyclic voltammetry (CV) of the enriched glycerol was performed using
a Potentiostat/Galvanostat (Auto Lab, model PG stato) with an initial concentration of enriched
glycerol of 0.3 M. Two cylindrical platinum (Pt) grids with a surface area of 31.82 cm? and
121.38 cm? were used as the working and counter electrodes, respectively, while Ag/AgCl was
used as the reference electrode. The scan potential was varied in the range from +2.0 to -1.0 V
at a scan rate of 5 mV/s, and the system was agitated by a magnetic stirrer at a constant rate of
650 rpm. Where indicated the Pt working electrode was replaced with either a titanium-coated

ruthenium oxide (Ti/RuOy) or a stainless steel (SS) electrode of the same surface area.

2.4. Electrochemical conversion and product distribution of the enriched glycerol

The electrochemical conversion of the enriched glycerol (0.3 M) under a galvanostatic
mode was explored at a laboratory scale at ambient temperature (~25 °C) and pressure (~101
kPa). The electrochemical reactor was made from Pyrex glass having a total capacity of 600
mL. The temperature of electrolytic cell was controlled by a cooling system. A regulated DC
power supply (ZS 3205-2X type) was employed to supply the external electricity at a

galvanostatic mode.

2.5. Analytical procedures
The glycerol content in glycerol solution was analyzed by high performance liquid

chromatography (HPLC: Agilent 1100) with a RID-10A refractive index detector. The
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stationary phase was a Pinnacle 1l C18 column (240 x 4.6 mm) and the mobile phase was a
99.9:0.1 (volume) ratio of 10 mM H,SO,: pure CH3OH, passed through the column at 0.5
mL/min. Ash content was analyzed according to the standard method (ISO 2098-1972) by
slowly heating 2 g of glycerol on a hot plate to eliminate the free moisture and volatile matter.
When no further mist was generated, the glycerol was burnt in a muffle furnace at 750 °C for 10
min. The residue was cooled down to room temperature and weighed. The quantity of water and
organic non-glycerol matter (MONG), as measured in terms of contaminants, were calculated

by the difference in weights using Eq. (1),

Contaminant (wt.%) = 100 — [Glycerol content (wt.%) + Ash content (wt.%)] 1)

The pH of the glycerol solution was measured with a pH meter (Mettler Toledo,
MP220). The color of glycerol was measured in terms of absorbance at a wavelength of 487 nm
using a UV/Vis spectrophotometer (Jasco, V-530). The density and viscosity were measured
using a pycnometer and Oswald viscosity, respectively, according to ISO 2099-1972 and ASTM
D 445, respectively. The qualitative compositions of the crude, pre-treated and enriched crude
glycerol as well as the product composition after electrolysis were analyzed by gas
chromatography coupled mass spectrometry (GC-MS) on a 6890N GC-MS system (Agilent of
GC/Pegosees Ill, Lego of MS).

The conversion of glycerol as well as the yield of value-added products obtained from

the electrochemical technique was calculated from Egs. (2) and (3), respectively:

Glycerol conversion (%) = amount of glycerol converted (C-based mole) <100 )

totalamount of glycerol in reactant (C - based mole)

amount of glycerol converted toeach product (C - based mole)
totalamount of glycerol in reactant (C - based mole)

Yield (%) = x100 (©)
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3. Results and discussion
3.1. Characteristics of the crude glycerol and pre-treated crude glycerol

Crude glycerol obtained from the waste used-oil FAME production plant was a dark
brown liquid with a high pH (range of 9.5-9.8) and a low density and viscosity (Table 1), being
81.3% and 18.0% of that of commercial glycerol (density and viscosity of commercial glycerol
from Fisher are 1.2671 g/cm® and 267.70 cSt), respectively [46]. It contained a very low
glycerol content (29.8 %wt.%), acceptable level of ash (7.9% wt.%), and a relatively high
contaminant (62.3 wt.%). Quantitatively, the crude glycerol derived from the waste used-oil
FAME production plant was composed mainly of glycerol and various compounds including
FFAs and their methyl or glycerol ester derivatives, such as lauric acid, methyl myristate,
myristic acid, methyl palmitoleate, methyl palmitate, palmitic acid, methyl linoleate, oleic acid
and methyl stearate (Fig. 1), which are the main fatty acid components of vegetable oil.

Table 1
Fig. 1

The pre-treatment acidification of the crude glycerol led to the automatic phase
separation into a FFA layer on the top, a glycerol-rich layer in the middle and an inorganic salt
layer below. This is because H* from the HsPO,; mineral acid protonated the anionic
(carboxylic) groups of the soap bulk to form insoluble FFAs, which consequently separated out
as the top layer due to their lower density and polarity compared to glycerol. Meanwhile, the
excess H,PO, couples with the Na* salts in the crude glycerol to form the relatively insoluble
NaH,PO, [47], resulting in the formation of the inorganic salt layer on the bottom of the
aqueous solution. The pre-treatment by H3PO, acidification followed by NaOH neutralization to
pH 7.0-7.2 increased the density of the obtained crude glycerol 1.23-fold to 1.273 g/cm® (near
that of pure glycerol), whilst the viscosity was only slightly (1.11-fold) increased (Table 1) and
was still only 20% of that of commercial pure glycerol. The appearance of the pre-treated crude

glycerol was changed to a brown liquid at a 2.2-fold lower Pt-Co unit (Table 1), whilst the
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contaminant content decreased 2.51-fold to 24.8 wt.%, resulting in a 1.74-fold increase in the
glycerol content to 51.9 wt.%. However, the ash content increased almost 2.96-fold in
comparison with the original crude glycerol, probably due to the residual levels of the partially
soluble phosphate salt (NaH,PO,) in the crude glycerol-containing water. In terms of chemical
composition, the pretreatment stage partially or totally removed different FFAs and their methyl
or glycerol ester derivatives, such as 2-hexadecanoyl glycerol, methyl linoleate, methyl
myristate, methyl palmitate, methyl palmitoleate, methyl palmitate, methyl stearate, 2-

monooleoyl glycerol and oleic acid (Fig. 1(b)).

3.2. Enrichment of the pre-treated crude glycerol via solvent extraction

The single stage solvent extraction of the pre-treated crude glycerol led to an increase in
the glycerol content as the solvent: pre-treated crude glycerol volume ratio increased up to 2.0
for all three solvents (Fig. 2(a)). This is because a larger quantity of solvent can extract more
glycerol from the mineral salts and other contaminants before being saturated. However, further
increasing the solvent : pretreated crude glycerol volume ratio to 3 or 4 decreased the glycerol
content in the enriched glycerol, which might be due to the fact that the excess solvent
contaminates (partitions into) the enriched crude glycerol, resulting in a reduced net glycerol
proportion. The highest glycerol concentration was obtained (97.9 wt.%) using n-C3H;OH at a
solvent : crude glycerol volume ratio of 2.

With respect to the color of the enriched glycerol, the color was decreased significantly
by around 91.0-97.0% compared to that of the pre-treated crude glycerol (Fig. 3). This is
because the solvent extracted colored contaminants from the glycerol.

The solvent extraction with n-C3H;OH increased the glycerol content by 1.89-fold over
that of the pre-treated crude glycerol, and decreased the ash content, contaminants and color by
27.2-,19.2- and 14.3- fold, respectively (Table 1). Overall, the enriched glycerol had a 3.28-fold

higher glycerol level and a decreased ash content, contaminant and color level by 9.19-, 48.3-
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and 31.4-fold, respectively, compared to the original crude glycerol. The main component in the
enriched glycerol was glycerol, with some residual FFA (Fig. 1(c)).
Fig. 2
Fig. 3
3.3. Electrochemical conversion of the enriched glycerol
3.3.1. Steady-state CVs of the enriched glycerol

The typical steady-state CV curves of the enriched glycerol solution at three different
initial pH values during an applied potential of +2.0 to -1.0 V are shown Fig. 4. Under a strong
acidic condition (pH 1), various peaks were observed in the anodic and cathodic scans. The first
peak observed in the anodic scan, at an electrode potential of +0.208 V (peak 1), corresponded
to the oxidation of contaminants, such as ionic salts, in the enriched glycerol [48]. The second
oxidation peak, observed at a maximum electrode potential of +0.712 V (peak I1), related to the
oxidation of glycerol. At a potential greater than +1.40 V a sharp increase in the current density
was observed, which was attributed to the oxidation of H,O to O,. For the backward scan, one
oxidation peak (peak Ill) was observed, at an electrode potential of +0.351 V, and this was
attributed to the incomplete oxidization of carbonaceous residues on the catalyst surface during
the negative sweep [49,50]. These carbonaceous residues can accumulate tightly on the Pt
surface and block the active catalyst sites for next turnover, resulting in sluggish anodic
reactions [50].

In the neutral medium (pH 7), a very low current was detected in the CV plot over the
investigated potential range. Under a strong basic condition (pH 11), no sharp oxidation peak
was observed in both the forward and backward scans. A very broad oxidation peak was
observed at an electrode potential of -0.7 to +0.9 V during the forward scan, suggesting the
accumulation of strong absorbed hydroxyls on the electrode surface under the basic
environment. For the backward scan, the oxidation of the accumulated carbonaceous residues

was observed at a maximum electrode potential of -0.313 V (peak IV). This oxidation potential
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was shifted to a more negative potential compared to that of the glycerol solution at pH 1,
suggesting that the oxidation of carbonaceous residues was easier at pH 11 than at pH 1.
According to the polarization curve, it is clear that the oxidation—reduction of the enriched
glycerol was principally observed under the strong acid condition. Therefore, further studies
related to the electrochemical conversion of the enriched glycerol, namely on the types of
generated product and their yields, was explored at a solution pH of 1.

Fig. 4

3.3.2. Effect of parameters on glycerol conversion and product distributions by electrochemical
technique under galvanostatic mode

The efficiency of the alcohol conversion and product yield was reported to depend
significantly on the interaction between the electrode surface and the alcohol molecules and the
resulting adsorbed product fragments, as well as the formation of surface oxides [51]. In this
study, the type of cathode material was evaluated from a Pt grid, Ti/RuO, and SS cathode. The
variation in the glycerol conversion during a long-term electrolysis in the presence of these
three different types of cathode is shown in Fig. 5(a). As expected, the glycerol conversion
increased with increasing electrolysis time, but the degree and rate varied with the cathode
material. The highest glycerol conversion was observed in the presence of the Pt grid cathode,
the lowest in the presence of the SS cathode although the Ti/RuO, cathode was only slightly
better. The enriched glycerol was completely converted within the first 17 h in the presence of
Pt grid, while the conversion was around 42.5% and 22.5% with the Ti/RuO, and SS cathodes,
respectively. The CV curves of the enriched glycerol over a Pt cathode provided various current
peaks, whereas that over the Ti/RuO, cathode showed a behavior more typical of a capacitor-
type response (Fig. 6), where the current density is almost independent of the potential over a
wide range of potential values [52]. For the SS cathode, two current peaks were observed in the

positive-scan, but no sharp peak in the negative-scan, except at a potential of less that -0.5 V,
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which is related to the reduction of either H" or H,O. In addition, the reactivation behavior (ca.
+ 0.351 V) was observed only over the Pt electrode during the negative-scan, and not over the
Ti/RuO; or SS cathodes. This behavior leads to the formation of free electrode sites that are then
available for reacting with glycerol molecules [51]. In addition, the Pt electrode provided the
highest magnitude of current density compared with other types of electrode. This emphasizes
that the Pt grid was more effective for electrochemical conversion of the enriched crude
glycerol than the Ti/RuO, and SS cathodes.
Fig. 5
Fig. 6
The initial kinetics of glycerol conversion was calculated using a macro-kinetics model
based upon first-order rate kinetics [53]. The data fitted very well with the first-order kinetics
model over the first 5, 12 and 4 h for the Pt grid, Ti/RuO, and SS cathodes, respectively, with a
coefficient of determination (R?) of greater than 0.988 in all three cases (Insert of Fig. 5(a)).
From this linear part of the plot the glycerol solution at an initial pH of 1 gave a rate constant (k)
of 1.19 x 10, 4.13 x 10* and 5.54 x 10™* min™ for the Pt grid, Ti/RuO, and SS cathodes,
respectively.
The Faradaic current efficiency (&) of each cathode was then calculated from Eq. (4)

[53];

e = 2,100 (4)

exp
where Qy, is the theoretical quantity of electricity calculated from the detected reaction products
and Qeyp IS the experimental quantity of electricity measured by the coulometer. The term Qy, is
derived as shown in Eq. (5);

Qi =nFVAC (5)
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where n is the theoretical number of Faraday for the oxidation of glycerol in product (i), F is the
Faraday’s constant, V is the volume of the reaction mixture and AC is the concentration of the
transformed glycerol.

The variation of Faradaic current efficiency as a function of electrolysis time is shown in
Fig. 5(b). The current efficiencies increased sharply during the early electrolysis period (0-2 h)
and then dropped rapidly for all three types of utilized cathode when the electrolysis time
increased beyond 2 h. This might be due to the accumulation of some product species or/and
residual contaminants (ex. metal salts or MONG) on the electrode surface, resulting in a
decreased amount of free surface sites available for reacting with glycerol molecules. This
behavior has also been observed in the electrochemical treatment of wastewater in the presence
of calcium or magnesium salts [54,55].

The variation in the yield of the value-added products, as detected by HPLC analysis,
during the long-term electrolysis of the enriched glycerol solution (initial pH 1) in the presence
of the three different cathode types is shown in Fig. 7. A greater diversity of generated species
as well as their yields was obtained by the electrochemical conversion with a Pt cathode than
with the Ti/RuO; or SS cathode. Glycidol and acetol were the major reaction products generated
with all three types of cathode material, although acrolein, 1,2-PD and 1,3-PD were produced in
the presence of the Pt and SS cathodes. In addition, ethylene glycol and 1,2-PD were generated
using the Pt and SS cathodes, respectively. From the previously proposed reaction pathway for
the electrochemical conversion of glycerol in an acid solution [14], the glycerol cannot convert
directly to ethylene glycerol, but rather this involves the two steps of the (i) dehydrogenation of
adsorbed glycerol to the intermediate species or glyceraldehyde, and (ii) the subsequent
cleavage of the C-C bond of glyceraldehyde to ethylene glycol and CH3;OH [53]. Here, the
ethylene glycerol was generated after 7 h of electrolysis time (Fig. 7(a)), consistent with the
mentioned mechanism. Accordingly, of the three evaluated cathode materials, only the Pt

electrode could facilitate the cleavage of the C-C bond of glyceraldehyde to ethylene glycol.
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The decrease in ethylene glycerol levels at electrolysis times greater than 12 h might be
attributed to the electrooxidation of ethylene glycerol to formic acid and glycolic acid [56,57].
In addition, glyceraldehyde can undergo oxidation or reduction to other products, such as
glyceric acid [58].

Fig. 7

The yield of glycidol increased almost instantaneously as the electricity was applied in
all three utilized cathodes, indicating that the glycerol can convert directly/rapidly to this
compound. As mentioned previously [14], this species is obtained from the rearrangement of the
glycerol carbonium ion, derived from the protonation of the 2°-OH group of glycerol. The
acetol and acrolein were obtained from the transformation of 2,3-dihydroxypropene and 3-
hydroxypropanal, which occurs by the dehydration of adsorbed glycerol molecule at 1°-OH and
2°-OH groups, respectively [59,60].

Nevertheless, the adsorption of the 2°-OH group of glycerol was not preferred on the
Ti/RuO; electrode, thus no acrolein was generated. In the presence of electricity, the generated
acetol and acrolein are themselves reactive and readily reduced to 1,2-PD and 1,3-PD,
respectively [14]. However, a small quantity of either 1,2-PD or 1,3-PD was obtained using the
Pt or SS cathodes, indicating the slowness of the reduction reaction of acetol and acrolein to
both types of PD. Interestingly, a decrease in the acrolein yield was observed in the presence of
the Pt cathode at electrolysis times of greater than 21 h, while the yield of 1,3-PD did not
increase. This might be attributed to the reduction of acrolein into 1,2-PD [61]. However, the
conversion of acrolein to 1,2-PD was not observed with the SS electrode. A simplified diagram
showing the possible major reaction pathways of enriched glycerol conversion by
electrochemical technique under galvanostatic conditions over a Pt electrode is shown in
Scheme 1.

The glycerol conversion over 24 h in the presence of different current densities is

summarized in Fig. 8. Increasing the applied current density led to an increased level of glycerol
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conversion, in accordance with Faraday’s law [62]. Complete glycerol conversion was not
observed in 24 h and was observed after 18, 15 and 9 h in the presence of a current density of
0.08, 0.14, 0.24 and 0.27 Alcm?, respectively. By employing a first-order macro-kinetic rate
model (Insert in Fig. 8), the rate constant increased with increasing current density, being 7.42 x
10%, 1.14 x 107, 156 x 10° and 4.51 x 10° min™ at 0.08, 0.14, 0.24 and 0.27 Alcm?,
respectively.

Fig. 8

With respect to the product distribution and their yields, different applied current
densities led to different types of generated products and yields (Fig. 9). Ethylene glycol and
glycidol were the major reaction products generated at all four applied current densities, which
implies that the dehydrogenation of adsorbed glycerol and the cleavage of the C-C bond of an
intermediate species to ethylene glycol can occur during a low to high applied current density
(range of 0.08—0.27 A/cm?). For acetol and 1,2-PD, they were generated at medium to high
current densities (0.14-0.27 Alcm?), suggesting that the dehydration of the adsorbed glycerol
molecule at the 1°-OH is not preferred at a low (0.08 A/cm?) current density. The higher the
current density, the higher the yield of acetol and 1,2-PD (Fig. 9(b) and (c)).

With regard to the yield of acrolein and 1,3-PD, they appeared only at current densities
of 0.14-0.24 A/cm?, which suggests that the dehydration of the adsorbed glycerol molecule at
2°-OH is not preferred at too low (0.08 A/cm?) or too high (0.27 A/cm?) current densities. A fast
rate of acrolein production was observed at high current densities (Fig. 9(b) and (c)), showing
that a high current can facilitate the high dehydration rate of adsorbed glycerol molecules at the
2°-OH group. Also, a high current can facilitate the reduction of acrolein to 1,2-PD and 1,3-PD
at a long electrolysis time. Nevertheless, too high a current density (0.27 A/cm?) could not
facilitate a higher conversion of the enriched crude glycerol to the required added-value
compounds, presumably because it then facilitates the decomposition of glycerol to gaseous

compounds, such as CO; [60].



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

15

Overall, the enriched glycerol could be converted to some value-added compounds using
the electrochemical technique. However, this technique still needs additional research and
development to reliably provide a higher selectivity of any given specific product in order to
obtain high quality products that are both economically and operationally feasible to produce
and purify.

Fig. 9

4. Conclusions

The enrichment of crude glycerol derived from a waste used-oil FAME plant was
successfully performed at a laboratory scale using a H3;POjy-acidification mediated phase
separation pretreatment followed by extraction of the glycerol rich phase with an n-C3H;OH:
pre-treated crude glycerol (v/v) ratio of 2.0. The enriched glycerol had a glycerol content of
97.9 wt.% with a color reduction of 93.0%. The electrochemical conversion of this enriched
glycerol to various added-value compounds, such as glycidol, acrolein and PD, was achieved.
More oxidation-reduction peaks of the enriched glycerol were observed under very a strong acid
condition (pH 1), and a Pt cathode gave a better glycerol conversion and generated more added-
value compounds than a Ti/RuO, or SS cathode. A high applied current density (0.14-0.24
Alcm?) can facilitate the conversion of glycerol to value-added products, but too high a current

density (0.27 A/lcm?) does not enhance the formation of some required added-value compounds.

Acknowledgments

The authors would like to thank the Bangchak Petroleum P.L.C. for samples and
materials; the TRF-CHE Research Grant for Mid-Career University Faculty (Grant No.
RSA5480015); and the Research Foundation Enhancement Ratchadaphiseksomphot

Endowment Fund of Chulalongkorn University for financial support. Also, we thank the



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

16

Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University, and

Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

References

[1] J.A. Posada, C.E. Orrego, C.A. Cardona, Biodiesel production: Biotechnological approach,
Int. Rev. Chem. Eng. 1 (2009) 571-580.

[2] C. Kongyai, M. Hunsom, Improvement of the oxidative stability of used-oil biodiesel by
epoxidation reaction, J. Renew. Sustain. Energy. 4 (2012) 53108-53112.

[3] G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters,
Fuel Process. Technol. 86 (2005) 1059-1070.

[4] P.C. Smith, Y. Ngothai, Q.D. Nguyen, B.K. O’Neill, Alkoxylation of biodiesel and its
impact on low-temperature properties, Fuel 88 (2009) 605-612.

[5] DEDE (Department of Alternative Energy Development and Efficiency). Ministry of
Energy. [Online 2013]
http://www.dede.go.th/dede/index.php?option=com_content&view=article&id=898&Itemi
d=123&Ilang=th

[6] N. Rahmat, A.Z. Abdullah, A.R. Mohamed, Recent progress on innovative and potential
technologies for glycerol transformation into fuel additives: A critical review, Renew.
Sustain. Energy Rev. 14 (2010) 987-1000.

[7] M. Ayoub, A.Z. Abdullah, Critical review on the current scenario and significance of crude
glycerol resulting from biodiesel industry towards more sustainable renewable energy
industry, Renew. Sustain. Energy Rev. 16 (2012) 2671-2686.

[8] M. Hajek, F. Skopal, Treatment of glycerol phase formed by biodiesel production, Biores.

Technol. 101 (2010) 3242-3245.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

17

[9] T.L. Ooi, K.L. Yong, K. Dzulkefly, W.M.Z. Wan Yunus, A.H. Hazimah, Crude glycerine
recovery from glycerol residue waste from a palm kernel oil methyl ester plants, J. Qil
Palm Res. 13 (2001) 16-22.

[10] X. Lancrenon, J. Fedders, An innovation in glycerin purification. Biodiesel Magazine.
May, 2008.

[11] F. Schaffner, P.Y. Pontalier, V. Sanchez, F. Lutin, Bipolar electrodialysis for glycerin
production from diester wastes, Filtra. Separ. 40 (2003) 35-39.

[12] M. Carmona, J. Valverde, A. Prez, Purification of glycerol/water solutions from biodiesel
synthesis by ion exchange: sodium removal Part I, J. Chem. Techno. Biotechnol. 84 (2009)
738-744.

[13] W.N.R.W. Isahak, M. Ismail, M.A. Yarmo, J.M. Jahim, J. Salimon, Purification of crude
glycerol from transesterification RBD palm oil over homogeneous and heterogeneous
catalysts for the biolubricant preparation, J. Appl. Sci. 10 (2010) 2590-2595.

[14] S. Kongjao, S. Damronglerd, M. Hunsom, Electrochemical reforming of an acidic aqueous
glycerol solution on Pt electrodes J. Appl. Electrochem. 41 (201 ) 215-222.

[15] R. Manosak, S. Limpattayanate, M. Hunsom, Sequential-refining of crude glycerol derived
from waste used-oil methyl ester plant via a combined process of chemical and adsorption,
Fuel Process. Technol. 92 (2010) 92-99.

[16] A. Javani, M. Hasheminejad, K. Tahvildari, M. Tabatabaei, High quality potassium
phosphate production through step-by-step glycerol enrichment: A strategy to economize
biodiesel production, Biores. Technol. 104 (2012) 788-790.

[17] M. Hunsom, C. Autthanit, Adsorptive purification of crude glycerol by sewage sludge-
derived activated carbon prepared by chemical activation with H3PO,4, K,CO3 and KOH.
Chem. Eng. J. 229 (2013) 334-343.

[18] L. Huang, Y. Zhu, H. Zheng, G. Ding, Y. Li, Direct Conversion of Glycerol into 1,3-

Propanediol over Cu-H4SiW1,040/SiO; in Vapor Phase, Catal. Lett. 131 (2009) 312—-320.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

18
[19] L. Gong, Y. Lu, Y. Ding, R. Lin, J. Li, W. Dong, T. Wang, W. Chen, Selective

hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO;/TiO,/SiO, catalyst in aqueous
media Appl. Catal. A. 390 (2010) 119-126.

[20] G. Sabourin-Provost, P.C. Hallenbeck, High yield conversion of a crude glycerol fraction
from biodiesel production to hydrogen by photofermentation, Biores. Technol. 100 (2009)
3513-3517.

[21] S.A. Markov, J. Averitt, B. Waldron, Bioreactor for glycerol conversion into H, by
bacterium Enterobacter aerogenes Int. J. Hydrog Energy 36 (2011) 262—266.

[22] D. Ghosh, I.F. Sobro, P.C. Hallenbeck, Stoichiometric conversion of biodiesel derived
crude glycerol to hydrogen: Response surface methodology study of the effects of light
intensity and crude glycerol and glutamate concentration, Biores. Technol. 106 (2012)
154-160.

[23] A. Chieregato, F. Basile, P. Concepcion, S. Guidetti, G. Liosi, M.D. Soriano, C.
Trevisanut, F. Cavani, J.M.L. Nieto, Glycerol oxidehydration into acrolein and acrylic acid
over W—V-Nb-O bronzes with hexagonal structure, Catal. Today 197 (2012) 58—65.

[24] L. Shen, H. Yin, A. Wang, Y. Feng, Y. Shen, Z. Wu, T. Jiang, Liquid phase dehydration of
glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic
acids, Chem. Eng. J. 180 (2012) 277-283.

[25] Z.Y. Zakaria, J. Linnekoski, N.A.S. Amin, Catalyst screening for conversion of glycerol to
light olefins, Chem. Eng. J. 207-208 (2012) 803-813.

[26] C. Beatrice, G.D. Blasio, M. Lazzaro, C. Cannilla, G. Bonura, F. Frusteri, F. Asdrubali, G.
Baldinelli, A. Presciutti, F. Fantozzi, G. Bidini, P. Bartocci, Technologies for energetic
exploitation of biodiesel chain derived glycerol: Oxy-fuels production by catalytic
conversion, Appl. Energy 102 (2013) 63-71.

[27] F. Jérdme, Y. Pouilloux, J. Barrault, Rational design of solid catalysts for the selective use

of glycerol as a natural organic building block, Chem. Sus. Chem. 1 (2008) 586—613.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

19

[28] Y. Fernandez, A. Arenillas, M.A. Diez, J.J. Pis, J.A. Menéndez, Pyrolysis of glycerol over
activated carbons for syngas production, J. Anal. Appl. Pyrol. 84 (2009) 145-150.

[29] V.K. Skoulou, P. Manara, A.A. Zabaniotou, H; enriched fuels from co-pyrolysis of crude
glycerol with biomass, J. Anal. Appl. Pyrol. 97 (2012) 198-204.

[30] A. May, J. Salvado, C. Torras, D. Montané, Catalytic gasification of glycerol in
supercritical water, Chem. Eng. J. 160 (2010) 751-759.

[31] D. Atong, C. Pechyen, D. Aht-Ong, V. Sricharoenchaikul, Synthetic olivine supported
nickel catalysts for gasification of glycerol, Appl. Clay Sci. 53 (2011) 244-253.

[32] S. Guo, L. Guo, C. Cao, J. Yin, Y. Lu, X. Zhang, Hydrogen production from glycerol by
supercritical water gasification in a continuous flow tubular reactor, Int. J. Hydrog. Energy
37 (2012) 5559-5568.

[33] S. Gil, M. Marchena, L. Sadnchez-Silva, A. Romero, P. Sanchez, J.L. Valverde, Effect of
the operation conditions on the selective oxidation of glycerol with catalysts based on Au
supported on carbonaceous materials, Chem. Eng. J. 178 (2011) 423-435.

[34] D. Liang, J. Gao, H. Sun, P. Chen, Z. Hou, X. Zheng, Selective oxidation of glycerol with
oxygen in a base-free aqueous solution over MWNTSs supported Pt catalysts, Appl. Catal.
B: 106 (2011) 423-432.

[35] E.G. Rodrigues, S.A.C. Carabineiro, J.J. Delgado, X. Chen, M.F.R. Pereira, J.J.M. Orf3o.
Gold supported on carbon nanotubes for the selective oxidation of glycerol, J. Cat. 285
(2012) 83-91.

[36] A. Andre, P. Diamantopoulou, A. Philippoussis, D. Sarris, M. Komaitis, S. Papanikolaou,
Biotechnological conversions of bio-diesel derived waste glycerol into added-value
compounds by higher fungi: production of biomass, single cell oil and oxalic acid, Indus.

Crops Prod. 31 (2010) 407-416.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

20

[37] M. Metsoviti, K. Paraskevaidi, A. Koutinas, A. Zeng, S. Papanikolaou, Production of 1,3-
propanediol, 2,3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain
growing on biodiesel-derived glycerol based media, Proc. Biochem. 47 (2012) 1872-1882.

[38] X. Liao, Y. Zhu, S. Wang, Y. Li, Producing triacetylglycerol with glycerol by two steps:
Esterification and acetylation, Fuel Process. Technol. 90 (7-8) (2009) 988-993.

[39] L. Zhou, E. Al-Zaini, A.A. Adesina, Catalytic characteristics and parameters optimization
of the glycerol acetylation over solid acid catalysts, Fuel 103 (2013) 617-625.

[40] J.A. Melero, G. Vicente, M. Paniagua, G. Morales, P. Mufioz, Etherification of biodiesel-
derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts, Biores.
Technol. 103 (2012) 142-151.

[41] X. Guo, Y. Li, R. Shi, Q. Liu, E. Zhan, W. Shen, Co/MgO catalysts for hydrogenolysis of
glycerol to 1,2-propanediol, Appl Catal. A. 371 (2009) 108-113.

[42] H.L. Hosgtin, M. Yildiz, H.F. Gercel, Hydrogenolysis of aqueous glycerol over Raney
nickel catalyst: Comparison of pure and biodiesel by-product, Ind. Eng. Chem. Res. 51
(2012) 3863-3869.

[43] R.B. Mane, C.V. Rode, Continuous Dehydration and Hydrogenolysis of Glycerol over
Non-Chromium Copper Catalyst: Laboratory-Scale Process Studies, Org. Process Res.
Dev. 16 (2012) 1043-1052.

[44] R.B. Mane, A.A. Ghalwadkar, A.M. Hengne, Y.R. Suryawanshi, C.V. Rode, Role of
promoters in copperchromite catalysts for hydrogenolysis of glycerol, Catal. Today 164
(2011) 447-450.

[45] A. Bienholz, R. Blume, A. Knop-Gericke, F. Girgsdies, M. Behrens, P. Claus, Prevention
of Catalyst Deactivation in the Hydrogenolysis of Glycerol by Ga,O3-Modified
Copper/Zinc Oxide Catalysts, J. Phys. Chem. C 115 (2011) 999-1005.

[46] S. Kongjao, S. Damronglerd, M. Hunsom, Purification of crude glycerol derived from

waste used-oil methyl ester plant, Korean J. Chem. Eng. 27 (2010) 944-949.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

21

[47] D.T. Johnson, K.A. Taconi, The glycerin glut: options for the value-added conversion of
crude glycerol resulting from biodiesel production, Eng. Prog. 26 (2007) 338-343.

[48] Y.J. Jung, K.W. Baek, B.S. Oh, J.W. Kang, An investigation of the formation of chlorate
and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive
oxygen species and the results of kinetic studies, Water Res. 44 (2010) 5345-5355.

[49] G. Girishkumar, T.D. Hall, K. Vinodgopal, P.V. Kamat, Single Wall Carbon Nanotube
Supports for Portable Direct Methanol Fuel Cells, J. Phys. Chem. B 110 (2006) 107-114.

[50] J.H. Kim, S.M.Choi, S.H. Nam, M.H. Seo, S.H. Choi, W.B. Kim, Influence of Sn content
on PtSn/C catalysts for electrooxidation of C1;—Cj3 alcohols: Synthesis, characterization, and
electrocatalytic activity, Appl. Catal. B 82 (2008) 89-102.

[51] J.F. Gomes, G. Tremiliosi-Filho, Spectroscopic studies of the glycerol electro-oxidation on
polycrystalline Au and Pt surfaces in acidic and alkaline media, Electrocatal. 2 (2011) 96—
105.

[52] J. Juodkazyté, B. Sebeka, P. Kalinauskas, K. Juodkazis, Light energy accumulation using
Ti/RuO, electrode as capacitor, J. Solid State Electrochem. 14 (2010) 741-746.

[53] L. Roquet, E.M. Belgsir, J-M Léger, C. Lamy, Kinetics and mechanism of the
electrocatalytic oxidation of glycerol as investigated by the chromatographic analysis of the
reaction products, Electrochim. Acta 39 (1994) 2387-2394.

[54] P. Manisankar, C. Rani, S. Viswanathan, Effect of halides in the electrochemical treatment
of distillery effluent, Chemosphere 57 (2004) 961-966.

[55] P. Piya-areetham, K. Shenchunthichai, M. Hunsom, Application of electrooxidation
process for treating concentrated wastewater from distillery industry with a voluminous
electrode, Water Res. 40 (2006) 2857—-2864.

[56] Y. Kwon, M.T.M. Koper, Combining voltammetry with HPLC: application to electro-

oxidation of glycerol, Anal. Chem. 82 (2010) 5420-5424.



10

11

12

13

14

22

[57] A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, P. Atanassov, Electrooxidation of
ethylene glycol and glycerol by platinum-based binary and ternary nano-structured
catalysts, Electrochim. Acta 66 (2012) 295-301.

[58] J.W. Schnaidt, Electrooxidation of C, and C3 molecules studied by combined in situ ATR-
FTIRS and online DEMS. Dr. rer. nat Dissertation. ULM University, 2012.

[59] A.T. Marshall, R.G. Haverkamp, Production of hydrogen by the electrochemical reforming
of glycerol-water solutions in a PEM electrolysis cell, Int. J. Hydrog. Energy 33 (2008)
4649-4654.

[60] K. Ishiyama, F. Kosaka, I. Shimada, Y. Oshima, J. Otomo J, Glycerol electro-oxidation on
a carbon-supported platinum catalyst at intermediate temperatures, J. Power Sources 225
(2013) 41-149.

[61] J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier C, Glycerol
hydrogenolysis on heterogeneous catalysts, Green Chem. 6 (2004) 359-361.

[62] G. Prentice, Electrochemical Engineering Principles. Prentice-Hall, Singapore, 1991.



23

Figure captions

Fig. 1. Representative GC-MS spectra of the (a) original crude glycerol as obtained from the

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FAME plant, (b) pre-treated crude glycerol, and (c) enriched glycerol following solvent

extraction at a n-C3H;OH : pre-treated crude glycerol volume ratio of 2.0.

. Effect of the solvent : pre-treated crude glycerol volume ratio on the glycerol (H), ash

(IM) and other contaminant (L) levels in the enriched crude glycerol using CH3;OH (left

bar), C,HsOH (middle bar), or n-CsH;OH (right bar) as the extracting solvent.

. Effect of the solvent: pre-treated crude glycerol volume ratio on the color of the enriched

glycerol using CH3;OH (L), C,HsOH (W), or n-C3H;OH (M) as the extracting solvent.

. CV-derived current density-potential curve of 0.3 M enriched glycerol at three different

pH values using a Pt electrode.

. (a) Variation in the glycerol conversion by electrochemical conversion, and (b) the

current efficiency, at an initial pH 1 and 0.14 A/m? current density with a (<) Pt grid,
(A) Ti/RuO,, or (O) SS cathode. Insert in (a) shows the linear regression analysis of the

data, assuming first rate order kinetics, and the correlation coefficient.

. CV-derived current density-potential curve of 0.3 M enriched glycerol with different

working cathodes.

. Product distribution during the electrochemical conversion of glycerol (initial pH 1) at

0.14 A/m? current density with a (a) Pt grid, (b) T i/RuO,, or (c) SS cathode.

. Electrochemical conversion of glycerol at an initial pH 1 and current density of; (O)

0.08, (<) 0.14, () 0.24, and (A) 0.27 Alem? with a Pt grid electrode.

. Product distribution from the electrochemical conversion of glycerol at an initial pH 1

and current density of (O) 0.08, (<) 0.14, ((0) 0.24, and (A) 0.27 A/cm? with a Pt grid

electrode.

Scheme 1. Proposed reaction pathways for the electrochemical conversion of enriched glycerol

over a Pt electrode at an initial pH 1.
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Table 1. Characteristics of the untreated, pre-treated and enriched crude glycerol.

Parameter Standard® Crude glycerol

Untreated Pre-treated” Enriched®
pH 9.5-9.8 7.0-7.2 5.5-6.0
Glycerol content (wt.%) >80 29.8+0.14 51.9+0.15 97.9+0.02
Ash (wt.%) <10 7.90+£0.5 234+ 1.1 0.86 + 0.07
Other contaminants (wt.%) <10 62.3+1.04 24.8 +0.16 1.29 +0.05
Density at 20 °C (g/cm®) 1.03 +0.024 1.27 +0.03 1.28 + 0.05
Viscosity at 40 °C (cSt) 48.3+0.172  53.8+1.29
Color (10° Pt-Co units) 484.9+105 221.6+7.3 154+1.1

4 BS 2621:1979 standard, see [9]
® Pre-treatment by acidification with HsPO,to pH 2.5, harvesting of the glycerol-rich phase and
pH neutralization with NaOH.

¢ Solvent extraction with a n-C;H,OH : pre-treated crude glycerol volume ratio of 2.0
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Abstract

The one-pot electrochemical conversion of enriched crude glycerol to valued-
compounds was carried out in a simple electrochemical reactor under galvanostatic condition
with glycerol solution at pH of 1 via Pt electrode. Effect of three oxidizing additives (H,0,,
Na,S,0g and 2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPO) and concentrations on the
glycerol conversion and product distribution as well as their yields were explored. By using
the proposed approach, various value-added compounds were generated. In the absence of
additive, the principal product from reaction was glycidol. In the presence of H,O,, Na,S,08
and TEMPO, the main products were glycidol, ethylene glycol and 1,3-dihydroxyacetone,

resepectively.

Keywords: Crude glycerol; Electrochemical conversion; Additive; Added-value compound

1. Introduction

Glycerol has been recognized as one of the twelve building blocks chemical since it is
a highly functionalized molecule [1-2]. This makes it as an attractive starting material for the
synthesis of high-value oxygenated chemicals. Recently, a great deal of research effort has

been spent to find new applications of glycerol for commercially viable value-added
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compounds such as hydrogen (H,) [3-4], ethanol and butanol [5-6], acrylic acid [7-8],

dihydroxyacetone [9-10], polyglycerols [11], and propanediol (PD) [12-13], etc.

Typically, glycerol can be obtained from the non-triglyceride sources via the synthesis
process such as epichlorohydrin process [14]. Besides, it can be obtained from the splitting of
triglycerides of vegetable oil or animal fat via the hydrolysis, saponification and
transesterification [15]. Due to a fast depletion of fossil fuel resources, a fast evolution of
biodiesel industry is established, resulting to generation of large volume of crude glycerol. In
2011, greater than 66.2% of total glycerol is obtained from the biodiesel industry and it is
expected to surge over the next five years owing to the increasing penetration of biofuels in
mainstream applications. Any further increase in biodiesel production rates will significantly
raise the quantity and surplus of crude glycerol in the environment.

In our previous works [16-18], we attempted to enrich crude glycerol from biodiesel
production plant by using solvent extraction and adsorption. It was found that the solvent
extraction provided better glycerol quality than the adsorption process. In this work, we
attempts to convert enriched crude glycerol to value-added compounds. Effect of oxidative
additives and concentrations on glycerol conversion and product distribution was explored.

Finally, the mechanism for the generation of the key compounds is proposed.

2. Experimental
2.1 Preparation of enriched crude glycerol

Due to the presence of organic and inorganic contaminants, the utilized crude glycerol
obtaining from a local biodiesel in Thailand was first treated by chemical method according to
previous works [17-18]. Briefly, the crude glycerol was acidified with H3PO,4 (85%, Qrec) to
pH 2.5 with shaking at 200 rpm (CTL, model SK electric shaker) for 1 h and then left for 12 h
until the solution phase-separated into the three distinct layers of a top free fatty acid (FFA)-

rich layer, a middle glycerol-rich layer and the bottom inorganic salt-rich layer. The middle
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glycerol-rich layer was taken from the solution and then it was neutralized by the addition of

12.5 M NaOH (98% Merck) to pH 7.0, left for a while and then filtered to eliminate the
precipitated salt. The pre-treated crude glycerol was obtained after drying at 110 °C for 15 h.
Subsequently, in order to remove the remaining contaminants, it was subjected to the solvent
extraction with n-propanol (99.99% Fisher Scientific) at the volume ratio of solvent to pre-
treated crude glycerol of 2. On this stage, the pre-treated crude glycerol was mixed with the
selected solvent and volume ratio by shaking at 200 rpm for 4 h and then left for 2 h to
encourage the phase separation into the glycerol-alcohol phase on the top and the crystallized
salt on the bottom. The top layer was separated from the bottom layer by slow decantation and
the enriched crude glycerol with the purity of around 98% was obtained after evaporation of

the solvent at 95 °C for 12 h.

2.2 Electrochemical conversion of enriched crude glycerol

A one-pot electrochemical conversion of the enriched crude glycerol was carried out
under a galvanostatic mode at a laboratory scale at temperature of ~25 °C and ambient
pressure. The undivided electrochemical reactor was made from Pyrex glass having a total
capacity of 600 mL. The temperature of electrolytic cell was controlled by a cooling system.
A regulated DC power supply (ZS 3205-2X type) was employed to supply the external
electricity at constant current density of 0.14 A/cm?® The concentration of enriched crude
glycerol was fixed at 0.3 M at pH of 1.0. Three types of additive including H,O, (30 % Qrec),
Na,S,08 (Qrec) and 2,2,6,6-tetramethylpiperidine-1-oxyl or TEMPO at different

concentrations in the range of 0.003-0.005 M were added in the electrochemical system.

2.3 Analytical procedures
All liquid product samples were analyzed by high performance liquid chromatography

(HPLC: Agilent 1100) with a RID-10A refractive index detector. The stationary phase was a
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Pinnacle 11 C18 column (240 x 4.6 mm) and the mobile phase was a 99.9:0.1 (volume) ratio

of 10 mM H,SO,: pure CH3OH, passed through the column at 0.5 mL/min. The standard
solutions of glycerol and major generated components including ethylene glycol (EG),
glycidol (GCD), acetol (ACT), acrolein (ACL), glycolic acid (GCA), 1,2-propanediol (1,2-
PD), 1,3-propanediol (1,3-PD) and 1,3-dihydroxyacetone (DHA) were run to identify the
retention times, and to determine the relationships between peak area and concentration. The
conversion of glycerol as well as the yield of value-added compound obtained from the
electrochemical process were calculated according to Egs. (1) and (2), respectively:

C mole of glycerol converted g
C mole of glycerol initilialy added

Glycerol conversion (%)= 100 (1)

C mole of glycerol converted to each product

Product yield (%)=
yield (%) C mole of glycerol initially added

x100 (2)

3. Results and discussion

The typical steady-state CV curves of the enriched glycerol solution at three different
initial pH values during an applied potential of +2.0 to -1.0 V are shown Fig. 1. At this
strongly acidic (pH 1), in the absence of glycerol, the utilized Pt electrode showed a quasi-
reversible system at the anodic and cathodic scan regions. A small increase in the current was
observed at too high a positive (E > +1.5 V) or too low a potential (E < -0.25 V), which is
related to the oxidation of H,O to O, (O, evolution) and the reduction of H" to H, (H.
evolution), respectively. In the presence of enrich crude glycerol, various peaks were observed
in the anodic and cathodic scans. The first peak observed in the anodic scan, at an electrode
potential of +0.208 V (peak I), corresponded to the oxidation of contaminants, such as ionic
salts, in the enriched glycerol [19]. The second oxidation peak, observed at a maximum
electrode potential of +0.712 V (peak Il), related to the oxidation of glycerol. At a potential
greater than +1.40 V a sharp increase in the current density was observed, which was

attributed to the oxidation of H,O to O,. For the backward scan, one oxidation peak (peak Il1)
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was observed, at an electrode potential of +0.351 V, and this was attributed to the incomplete

oxidization of carbonaceous residues on the catalyst surface during the negative sweep
[49,50]. These carbonaceous residues can accumulate tightly on the Pt surface and block the
active catalyst sites for next turnover, resulting in sluggish anodic reactions [20].

Fig.2 exhibits the variation of glycerol conversion as a function of electrolysis time
both in the absence- and the presence of additives (H,O,, Na,S,0g and TEMPO). As expected,
the glycerol conversion increased with increasing electrolysis time. In the absence of additive,
the glycerol conversion increased smoothly. The complete conversion was observed within 18
h of electrolysis time. In the presence of additives, shorter reaction time of 14 h was required
to gain the complete glycerol conversion. Interesting, two stages of glycerol conversion were
observed in the presence of all additives suggesting that the kinetic of glycerol conversion by
electrochemical process under galvanostatic mode in the presence of such additives occurred
as a two-step process.

By using a macro-kinetics model [21], both stages were fitted very well with the first-
order kinetics model with the determination coefficient (R?) of greater than 0.9630 (Insert of
Fig.2). From the linear part, the rate constants (k;) of glycerol conversion in the first stage
were 1.54x10°, 1.41x10™ and 0.95x10” s in the presence of H,0,, Na,;S,05 and TEMPO,
respectively. On the other hand, those (k) in the second stage were 2.24x10™, 1.72x10™ and
2.26x10™, respectively. At this stage, it is difficult to conclude which principal reaction
occurred in each stage in the presence of additive. We make the hypothesis that the anodic
surface of Pt may indeed play a role in a concerted reaction mechanism involving additive and
the hydrogenolysis (dehydration and hydrogenation), cyclization as well as oxidation can
occur simultaneously.

The variation in the yield of the value-added products during the long-term electrolysis
time of enriched crude glycerol both in the absence and in the presence of additive is

demonstrated in Fig.3. In the absence of additive, glycidol and acrolein were the major
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generated products. Approximately 22% of ethylene glycol was generated at 12 h of

electrolysis time and decreased to around 9.5% when the electrolysis was preceded. Besides,
few quantities of other products (acetol and propanediol) were detected. In the presence of
additives, approximately 20-22%, 25-30% and 10-15% of glycidol were generated in the
presence of H,O,, Na,S,0g and TEMPO, respectively. Its yield increased very slightly along
the reaction time and readily stable. Greater than 60% of ethylene glycerol was produced in
the presence of Na,S,0g, while lower than 20% of such species was detected in case of H,0,
and TEMPO. Glycolic acid was also generated in the presence of all additives particularly the
H,0, and TEMPO. Surprisingly, high yield of 1,3-dihydroxyacetone up to 55% was generated
in the presence of TEMPO, which was greater than the electrocatalytic oxidation of glycerol
to 1,3-dihydroxyacetone under potentiostatic condition (1.1 V/Ag/AgCl) at pH 9.1 with
bicarbonate (0.2 M) in the presence of catalytic TEMPO (0.0075 M) of around 2.29-fold [22].

From the previously proposed reaction pathway for the electrochemical conversion of
glycerol in an acid solution [23], the ethylene glycerol was obtained from the cleavage of C;-
C, bond of glycerol by oxidation. The primary product of this cleavage is the C; alcohol free
radical, which is then further dehydrated to formaldehyde, and the C, ethylene-free radical
that is further dehydrated to acetaldehyde or reduced to ethylene glycol. In the absence of
additive, the ethylene glycerol was generated after 7 h of electrolysis time (Fig. 3(a)) and
reached its maximum value at 12 h and decreased afterward, suggesting that ethylene glycol
can convert to other species such as formic acid [24-25]. In the presence of additives, ethylene
glycol was detected after 12 h of electrolysis time and increased importantly particular in the
presence of Na,S,0g. This might be due to a high oxidative power of Na,S,0g that can
facilitate a high cleavage of the C-C bond intermediate species, which can compensate the rate
of its conversion to other species resulting to a high yield of ethylene glycerol. For glycidol,
its yield increased almost instantaneously as the electricity was applied in all cases, indicating

that the glycerol can convert directly to this compound. The presence of different additives
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affected unimportantly on the glycerol conversion to glycidol. As mentioned previously [23,

26], the glycerol is obtained from the rearrangement of the glycerol carbonium ion or the
cyclization, derived from the protonation of the primary -OH group of glycerol.

The acetol and acrolein were obtained from the transformation of 2,3-
dihydroxypropene and 3-hydroxypropanal/1,3-propenediol, which occurs by the dehydration
of adsorbed glycerol molecule at primary- and secondary -OH groups [27-28], which can
further reduced to 1,2-PD and 1,3-PD, respectively [23]. In the presence of oxidizing agent,
small quantity of acetol and 1,2-propanediol was generated in the presence of TEMPO,
whereas no generation of dehydration and reduction products of glycerol was observed in the
presence of H,O, and Na,S,0s. It was believed that, in the presence of strong oxidizing agent,
glycerol was directly oxidized at the primary -OH group to obtain glyceroldehyde and
followed by C-C cleavage of this intermediate species resulted to the generation of glycolic
acid [26]. Besides, in the presence of weak oxidizing agent, the direct oxidation of glycerol
under acidic condition preferred to occur at the secondary -OH group [29], resulting to the
formation of 1,3- dihydroxyacetone [30]. With some paths more or less possible for each
studied system, a simplified diagram showing the possible major reaction pathways of
enriched glycerol conversion by electrochemical technique under galvanostatic conditions
over a Pt electrode in the presence of oxidizing additive is shown in Scheme 1.

Fig. 4 exhibits the variation of glycerol conversion as a function of electrolysis time in
the presence of TEMPO at different concentrations in the range of 0.001-0.005 M. The high
concentration of such additive can achieve a fast glycerol conversion. The complete
conversions of glycerol in the presence of 0.003 and 0.005 M TEMPO were equal at 13 h. The
two-stage behavior of glycerol conversion was slightly observed in the presence of high
TEMPO concentration. By using a macro-kinetics model with the first-order reaction rate, the

constants of glycerol conversion increased as the increasing TEMPO concentration.
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Regarding the effect of additive concentration on the product yield, the main product

obtained from the electrochemical conversion of glycerol was still 1,3-dihydroxyacetone. The
yield increased as the increasing the TEMPO concentration as demonstrated in Fig.5. Namely,
they were 57.16, 64.24 and 69.19% in the presence of TEMPO at the concentration of 0.001,
0.003 and 0.005 M, respectively. This is attributed to the fact that in the presence of high
TEMPO concentration, large quantity of N-oxoammonium cation, the active oxidizing species
obtained from the oxidation of TEMPO, was produced which can enhance a more oxidation of
the secondary -OH group of glycerol, resulting to the formation of high 1,3-dihydroxyacetone.
Based on the glycerol conversion and the generated products, it seems to be that the principal
reaction occurred in the first stage in the presence of TEMPO was the hydrogenolysis and/or
cycliczation to acetol and glycidol. Afterward, the main reaction was the oxidation reaction,

which is starting after 5 or 6 h depending on the TEMPO concentration.

4. Conclusions

The electrochemical conversion of enriched crude glycerol to valued-compounds was
successfully developed in a simple electrochemical reactor under galvanostatic condition
(0.14 mA/cm?) with glycerol solution at pH of 1.0 via Pt electrode both in the absence and in
the presence of additives. The presence of all utilized additives can enhance a fast glycerol
conversion, attributing to the concerted reaction mechanism involving additive on electrode
surface. Besides, in the absence of additive, the conversion of glycerol was mainly carried out
by dehydration and reduction. However, it was carried out mainly by the direct oxidation of
glycerol at primary- or secondary -OH group in the presence of additive. The principal
product obtained from electrochemical reaction in the absence of additive was glycidol, while
those in the presence of H,O,, Na,S,0g3 and TEMPO were glycidol, ethylene glycol and 1,3-
dihydroxyacetone, respectively. Approximately, 69.19% of 1,3-dihydroxyacetone was

generated in the presence of 0.005 M of TEMPO.
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Fig. 1. CV-derived current density-potential curve of (—) 0.3 M enriched glycerol and (---)

blank (distilled H,O) at initial pH of 1.0 using a Pt electrode.
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Purification enhancement of crude glycerol derived from biodiesel
production plant
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Abstract

A study of the enrichment of crude glycerol, derived from a waste used-oil utilizingbiodiesel
(methyl ester) production plant,via chemical extraction was performed at a laboratory scale at
ambient temperature (30 °C). The effect of various parameters on the properties of the
obtained glycerol, including glycerol-, ash- , contaminant contents and color, was explored. By
using three types of polar solvent (CH30H, C,HsOH and C3H;0H) and two types of non-polar
solvent (C,H,,0 and CgH¢) were each evaluated at a 0.5-4.0 solvent: pre-treated crude
glycerol volume ratio. The enrichment of glycerol by chemical extraction was significantly
affected by the solvent type and solvent:pre-treated crude glycerol (v/v) ratio. The use of
C3;H,0H at a (v/v) ratio of 2.0 gave the highest purity of glycerol (97.9% by weight), but the
lowest color reduction level (93.3%), while C4H,,0 at a (v/v) ratio of 1.0 gave a low glycerol
content (86.6%), but the highest color removal level (97.0%).
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Abstract: The product distribution of the electrochemical
conversion of glycerol to valuable compounds was
evaluated with platinum (Pt) electrode under
galvanostatic conditions. Effects of initial pH of glycerol
and electrolysis time were investigated. The preliminary
results demonstrated that either initial pH of glycerol or
electrolysis time affected the glycerol conversion as well
as types of product and product yield. Greater than 80%
of glycerol was converted within 10, 17 and 15 hr at pH 1,
7 and 11, respectively by using current intensity of 4.5 A,
and various compounds such as acetol, 1,2-propanediol,
1,3-propanediol, glycidol, etc were generated.

1. Introduction

Glycerol is an important feedstock for industrial
application including food products, solvent,
pharmaceutical industries and others application. Since
glycerol forms the backbone of triglycerides, it can be
produced by soap production industry and also as a by-
product from transesterification reaction of biodiesel
production [1]. Many processes have been developed
to make value-added glycerol-based products. For
example, the biological production of 1,3-propanediol
from glycerol has been demonstrated for several
bacterial strains; most prominently in Klebsiella,
Clostridium species and heterologously in Escherichia
coli by metabolic engineering [2-5]. In heterogeneous
catalysis, several monometallic (Pt, Pd, Au) [6-7] and
bimetallic catalysts (Pt-Bi, Au-Pt) [6,8-11] have been
investigated and revealed that the Pt-Bi bimetallic
system showed a promising conversion and selectivity
toward DHA at low pH and mild operating conditions
[10]. Also homogeneous catalysts have been reported
for the selective glycerol oxidation to DHA [12]. The
electrochemical technique is an alternative method to
reform glycerol due to its unique features such as
simplicity and robustness in structure and operation
[13]. The selective conversion of glycerol to DHA
may be achieved by electro-catalytic oxidation on a
carbon-supported platinum (Pt/C) electrode in a
bismuth saturated acidic solution [14-15,16].

In this paper, the electrochemical technique has the
potential to develop a cost-effective technology for
glycerol  reforming to  1,2-propanediol, 1,3-
propanediol, glycidol and many others products.

2. Materials and Methods
2.1 Chemical substances

The aqueous glycerol solution was prepared from a
commercial glycerol stock (99.5%, Fisher) at constant
concentration of 0.3 M. The pH of glycerol solution

was adjusted by analytical grade H,SO, (98%, Qrec) or
NaOH (1 M, Qrec).

2.2 Polarization curve

The possibility of electrochemical conversion of
glycerol at different pH (1, 7 and 11) was performed
using a Potentiostat/Galvanostat (Auto Lab, model PG
stato). Two Pt grids in cylindrical structure were used as
working and counter electrodes, while Ag/AgCl was
used as reference electrode. The scan potential was
varied in the range from +1.75 to -0.50 V with a scan
rate of 5 mV/s. In each set, the system was agitated by a
magnetic stirrer at a constant rate of 650 rpm.

2.3 Electrochemical conversion of glycerol

The electrochemical system was performed in a
laboratory scale at ambient temperature and pressure.
The electrochemical reactor was made from Pyrex glass
having a total capacity of 0.6 L. Two Pt grids in a
cylinder shape were used as the anode and cathode,
respectively. The temperature of electrolytic cell was
controlled by a cooling system, a magnetic bar was used
to stir the electrolyte in the electrolytic cell at 650 rpm.
A regulated DC power supply (ZS 3205-2X type) was
employed to supply the external electricity at a
galvanostatic mode (4.5A).

2.4 Analytical methods

The chemical compounds generated in the
electrochemical reactor were analyzed by gas
chromatography equipped with flame ionization detector
(Hewlett Packard/HP 5890 Series Il). The conversion of
glycerol was analyzed by High Performance Liquid
Chromatography (HPLC: Agilent 1100) with a RID-10A
refractive index detector. The stationary phase was a
Pinnacle 11 C18 column (240 x 4.6 mm) and the mobile
phase was a 99.9:0.1 (v/v) ratio of 10 mM H,SO,: pure
CH3O0H, passed through the column at 0.5 ml/min.

3. Results and Discussion
3.1 Polarization curve

Fig. 1 shows the polarization curve of glycerol
solution at pH 1, 7 and 11. At pH 1, the oxidation of
glycerol was observed at the potential of +0.3477 V
(peak B) and the reduction of glycerol was observed at
the potential of -0.2962 V (peak A), which gave the
maximum current intensity of 1.891 mA and 0.356 mA,
respectively. At the potential greater than 0 V, the
significant increase of current was observed as the




region D, causing by the reduction of H* to H,. Also,
at the potential greater than -0.76 V, significant change
of current intensity was observed due to the oxidation
of H,O to O, (region E). At neutral pH, the oxidation-
-reduction of glycerol was not clearly observed during
the investigated potential range. It was appeared a
wide shoulder as demonstrated as the insert of Fig.1.
At the potential lower than -0.1 V and greater than
+0.75 V, it had the formation of H,O reduction to H,
and H,O oxidation to O, respectively. For the
polarization curve of glycerol solution at pH 11, the
forward scan did not represent the oxidation-reduction
peaks obviously, except the reduction of H,O to H, at
potential greater than 0 V. For the backward scan, the
oxidation peak of glycerol was observed at the
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Fig.1 Polarization curved of 0.3 M glycerol at different
pH via Pt electrode.
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Fig.2 Representative GC/MS spectra of glycerol
solution at pH (a) 1, (b) 7 and (c) 11 by using Pt
electrode.

potential of -0.0331 V (peak F), providing the maximum
current intensity of 0.548 mA. According to the
polarization curve, it can be said that glycerol can be
oxidized or reduced under strong acid and basic
conditions [17].

Fig. 2 demonstrates the product analysis generated
from the electrochemical conversion of glycerol
different pH values. For example, acetol, glycidol and 2-
methyl-2-pentanol were generated by electrochemical
conversion of glycerol at all investigated pH values.
Other compounds such as 1,2-propanediol, 1,3-
propanediol, 1,2-butanediol, 5-methyl-1-heptanol were
produced in acid condition; whilst acrolein and
glyceraldehyde were produced under basic condition.
Various generated compounds have a higher market
value and also have a high market capacity and
application in industries, as listed in Table 1.

3.2 Glycerol conversion and product distribution

Fig.3 exhibits the conversion of glycerol solution
(0.3 M) by electrochemical technique at current intensity
of 4.5 A during 0-24 hr electrolysis time. It was clear
that the conversion of glycerol increase as the increase
of electrolysis time. High conversion was observed
under strong acid condition compared with that of
neutral and basic conditions. The conversion of glycerol
was greater than 99.5 at 18 hr electrolysis time, while
those of pH 7 and 11 were around 91.0 and 87.1,
respectively. This is because the dehydration reaction
can proceed effectively under strong acid condition [1],
resulting to high conversion of glycerol.

100
20
60

40

Glycerol conversion (%)

20

Time thr)

Fig.3 Glycerol conversion by electrochemical technique
at different pH values and current intensity of 4.5 A. by
using Pt electrode.

Fig. 4 reveals the product distribution of
electrochemical conversion of glycerol at different pH
values and current intensity of 4.5 A by using Pt
electrode. The generated products which can be detected
and measured at pH 1 were ethylene glycol, acetol,
glycidol, acrolein, ethanol, 1,2-propanediol and 1,3-
propanediol at electrolysis time of 8,1, 1, 6, 14, 10 and
15 hr, respectively (Fig. 4(a)). Some of them increased
as a function of time and remained constants such as
acetol, glycidol, 1,2-propanediol, 1,3-propanediol and
ethanol. The rest of them including ethylene glycol and
acrolein increased as a function of time during early




Table 1. Listed of compounds generated from elctrochemcial conversion of glycerol.

Chemical substances pH1 pH7 pH 11 USD (purity, %) [CAS no.]
Acetol/ hydroxyacetone v v v 55.63/100g(90%)° [116-09-6]
Glycidol v v v 61.13/100g(96%)° [556-52-5]
2-methyl-2-pentanol / Dimethyl propyl carbinol 4 v 4 79.23/109(99%)° [590-36-3]
3-methyl-2-pentanone v v 381.84/259(99%) [565-61-7]
2,3-hexanediol v v 80.96/1mL(99%)° [617-30-1]
1,2-propanediol v 95.05/500mL(>99.5%)° [57-55-6]
1,2-butanediol v 174.94/11(>98.0%)° [584-03-2]
1-isopropoxy-2-propanol v 213.45/19(98%)° [3944-36-3]
1,3-propanediol v 48.18/100g(98%)° [504-63-2]
1,3-dioxolane v 165.51/1L(99%)° [646-06-0]
1,3-dioxolane-4-methanol,2,2-dimethyl v 49.23/100g(98%)° [100-79-8]
5-methyl-1-heptanol v 894.0/1mL(96%)° [57803-73-3 ]
2,4-dimethyl-1,3-dioxane v 105.04/10g° [766-20-1]
Ethylene glycol isopropyl ether v 65.04/1L.(99%)° [109-59-1]
2-hexanol v 262.96/1000(>98%)C [626-93-7]
Tetramethylsilane v 57.99/25g (>99.9%)c [75-76-3]
4-methyl-1-hexanol v 104/1mL(>98%)° [1767-46-0]
Acrolein/acryraldehyde v 150/1kg(97%)° [107-02-8]
4-Pentene-2-ol v 111.72/5g (99%)° [625-31-0]
Propanoic acid/ Propionic acid v 67.35/100mL (>99.5%)°[79-09-4]
3-Pentene-2-ol v 815.19/25g (96%)° [3899-34-1]
Glyceraldehyde v 1866.1/25g (>90%)° [56-82-6]
Methyl valerate v 109.71/1kg (>99%)° [624-24-8]
“Technical grade; "Natural grade; “Reagent grade; “Purum grade
period of experiment and then decreased. This 50
demonstrated that ethylene glycol and acrolein are the & —Ethyleneglycol —— Acetol @
intermediate substances that can be further converted g 40 9| Glyadal —Aaolen
to other products under strong acid condition. Among T30 - ——Ethandl —=— 1.3 propanedidl
the generated products, maximum product yield was ke
observed for acetol and the 1,3-propanediol at 20% g 207
and 19%, respectively. & 10 -

Under neutral condition, the detected products 0'0 p 12 1'8 o4
were ethylene glycol, acetol, glycidol, acrolein and Time (hr)
ethanol at electrolysis time of 9, 1, 1, 9 and 1 hr, <0
respectively (Fig.4 (b)). The yield of ethylene glycol, ] ——Ethyleneglycol —=— Acetol
glycidol, ethanol and acrolein increased as the increase = 40 4 | —*— Glycdidol ——Acolein ()
of electrolysis time, whereas the yield of acetol < ——Ethanol o
increased as a function of electrolysis time up to 15 hr 3z 30
and it decreased afterward. This implies that acetol can g 20
convert to other substance under neutral condition. S
According to the obtained results, the maximum yield g 10
of glycidol was observed at 29.6% at 20hr electrolysis 0 » — :
time. 0 4 8ime (P 16 20 24

Under strong basic condition, various products 50
including ethylene glycerol, acetol, acrolein, ethanol ) ——Ethyleneglycol —— Acetol
were detected at 7, 2, 1, 12 and 9 hr electrolysis time, ~ 40 | = Glyadal ——Aaolen (©)

X . . X = Ethanol
respectively (Fig.4(c)). The product yield of glycidol, S 30 - '
ethylene glycerol, ethanol and acrolein increased as the =
increase of electrolysis time, whilst the acetol £ 20 1 |
increased to 12% at 4 hr and decreased afterward. £ i |
. - . . s 10

Under this condition, the maximum product yield was &
observed for glycidol at 31.9% at electrolysis time of 0 S ' '
20 hr. 0 4 S ie (112 16 20 24

Fig.4 Product distribution of electrochemical conversion
of glycerol at different pH values and current intensity
of 4.5 A by using Pt electrode.




4. Conclusions

The generated products at different pH values were
ethylene glycol, acetol, glycidol, acrolein, ethanol, 1,2-
propanediol and 1,3-propanediol. The electrochemical
conversion of glycerol under strong acid was higher
than 99.5% at 18 hr electrolysis time because the
dehydration reaction can proceed effectively in this
condition, resulting to high conversion of glycerol.
Under neutral and basic conditions were around 91.0
and 87.1%,, respectively. The maximum product yield
of strong acid was observed for acetol and the 1,3-
propanediol at 20% and 19% while under neutral
condition the maximum yield of glycidol was observed
at 29.6% and at strong basic condition, glycidol was
observed for the maximum yield at 31.9%. Some of
these products are the intermediate substances that can
be further converted to other products but some of
them increased as a function of time. However, to
achieve a higher yield of each desired compound, the
specific  electrochemical  conditions, such as
concentration of glycerol and applied current density,
etc., need to be resolved.
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Abstract: This work was carried out to investigate the
effect of parameters on the preparation of activated
carbon from sewage sludge for crude glycerol
purification. Types of activating agent (KOH, H;PO,4 and
K,COsy), ratio of activating agent to char (1.0-6.0 w/w),
impregnation time (5-25 hrs) and carbonization
temperature (500-900°C) were explored. The preliminary
results indicated that among the utilized activating
agents, the activated carbon activated by KOH provided
the best efficiency for crude glycerol purification. The
purity of crude glycerol increased from 35 to 89 wt.% in
the presence of activated carbon activated by KOH at
ratio of 5:1, impregnation time of 25 hr and
carbonization temperature of 800 °C. Moreover, the
oxygen-containing surface groups on the surface of
activated carbon played a key role on the purity of crude
glycerol.

1. Introduction

Interest in biodiesel based on fatty acid methyl
esters has grown considerably worldwide. This is also
the case in Thailand where the recent increase in
biodiesel production is predicted to be at least four-
fold over just four years, from less than 2.1x10° I/day
in 2008 to an expected 8.4x10° I/day in 2012 [1]. The
production of 10 kg of biodiesel yields approximately
1 kg of crude glycerol [2], Increasing the share of
biodiesel in transportation fuels may decrease the net
emission of CO, and alleviate the global warming
problem. However, the increase in biodiesel
production rates will significantly raise the quantity
and surplus of crude glycerol and partially waste in the
environment. This is because the crude glycerol
discharged from biodiesel production plants consists
not only of glycerol but also many other chemicals
such as water, salts, soap, alcohol, traces of glycerides,
and vegetable colors [3]. In addition, high-purity
glycerol is still required as it is an important industrial
feedstock for applications in the food, cosmetic and
pharmaceutical industries, as well as other more minor
uses [4]. Because the separation of glycerol via
conventional distillation processes is not economically
viable, removal of impurities via adsorption by a
selective adsorbent is one of the possible ways to
purify crude glycerol to acceptable standards [5].

Considering the potential commercial application
of selective adsorption of glycerol, it is certainly
necessary to find a cheaper and efficient adsorbent for
treatment of crude glycerol [6]. The aqueous-phase
adsorption of crude glycerol has been concerned
mainly on activated carbon.

In this work, the purification of crude glycerol
derived from a waste used-oil utilizing biodiesel
(methyl ester) production plant was carried out using
activated carbon derived from industrial sewage sludge
by chemical activation method. Effects of ratio of
activating agent to char, impregnation time and
carbonization temperature on the properties of
activated carbon as well as the crude glycerol
purification efficiency were investigated

2. Materials and Methods
2.1 Pre-treatment of crude glycerol

Initially, the free fatty acid and salt contents were
reduced by acidification. In each trial, 300 g of crude
glycerol was acidified by the addition of phosphoric
acid (85% H3PO,) to the desired pH 2.5, and then left
for 12 h until the solution had phase separated into
three distinct layers, that is a top layer of free fatty
acids, the middle glycerol-rich layer and, if present,
the bottom inorganic salt-rich layer. The top layer was
removed by slow decantation and the middle glycerol-
rich layer was separated from the bottom inorganic
salt-rich layer, if present, by filtration. Prior to removal
of the residue salts from glycerol-rich layer, it was
neutralized by the addition of 12.5 M NaOH to pH 7.0,
left for a while and then filtered to eliminate the
precipitated salt [1].

2.2 Preparation of activated carbons

Activated carbons from sewage sludge were
prepared in a two-step process: pyrolysis and chemical
activation processes. In the pyrolysis process, sewage
sludge was first washed with water to remove the
water-soluble impurities, dried at 105 °C for 24 hrs.
Then the precursor was heated to 400 °C at the rate of
10 °C/min for 2 hrs under N, atmosphere at flow of 50
ml/min, and then cooled to room temperature at the
same rate. The resulting material was called chars.

The chars were then subjected to chemical
activation. In the chemical activation process, 10.0 g
of the pyrolyzed carbon were mixed with 100 mL of
distilled water and amount of activation agent,
depending on the ratios of activation reagent/pyrolyzed
carbons desired (1:1, 2:1, 3:1, 4:1, 5:1 and 6:1 by
weight) for each activation agent (KOH, H3PO, and
K,CO3). The mixture was shaken at 200 rpm
depending on the set time (5-25 hrs). Finally, the
carbonization was conducted at one of five different
temperatures (500-900 °C) under nitrogen flow at
heating rate of 10°C/min, and held at 30 min. After




activation, the derived activated carbons were removed
from the reactor. Then, it was rinsed with 3.0 M HCI
and deionized water for several times to remove other
inorganic matter until the pH become neutral, filtered
and finally dried at 105 °C for 24 hrs.

2.3 Adsorption with produced activated carbon
Adsorption of pretreated crude glycerol was
conducted at room temperature in conical flasks with
continuous shaking. Prior to use, the produced
activated carbon was dried at 105 °C for 30 min to
eliminate free moisture. In the adsorption stage,
activated carbon was mixed with pretreated crude
glycerol at ratio of 67 g/l pretreated crude glycerol,
mixed at 250 rpm for 90 min and then subjected to
vacuum filtration to remove the activated carbon.

2.4 Analysis

The glycerol content in purified crude glycerol
was measured according to the standard method
(ASTM D7637-10) [1] by a titration with sodium
metaperiodate. This test method is based on the cold
oxidation of the glycerol by sodium metaperiodate in a
strong acidic medium. The glycerol content can be
calculated by using Eq. (1)
Glycerol content (%) = 1.15125 x (V1-V,) Q

m

Where:

V.= volume of sodium hydroxide used in glycerol
titration (mL)

V, = volume of sodium hydroxide used in blank
titration (mL)

m = weight of glycerol sample used (g)

Ash content was analyzed according to the
Standard method (ISO 2098-1972) by burning 1 g
glycerol in a muffle furnace at 750 °C for 3 h. The
MONG (Matter Organic Non-glycerol) levels and
water was measured in terms of contaminants, which
were calculated by the difference from a hundred of
the previous three compositions [100-(% glycerol
content+% ash content)]. The contents of oxygen-
containing surface functional groups with varying
acidity were determined by the Boehm's method of

titration with basic solutions of different base strengths
(NaHCO3, Na,CO3 and NaOH) [7]. The superiority of
sewage sludge for activated carbon production was
first checked using proximate analysis.

3. Results and Discussion
3.1 Properties of crude glycerol

The original crude glycerol was a dark brown
liquid with a pH of 8-9. It contained a low content of
glycerol but a relatively high ash and contaminant
contents (Table 1). The ash content was largely
composed of inorganic matter such as sodium salts that
originated from the utilized catalyst (NaOH) in the
transesterfication process. By far the largest
contaminant was MONG, which indeed exceeded the
glycerol levels, and was generated by the
contamination of soap, methanol and methyl esters in
the glycerol residue from the biodiesel production
process. During the pre-treatment stage, some of the
fatty acids were released as soluble soap and some of
methyl esters dissolved or suspended in the glycerol
solution. These free fatty acids and methyl esters then
reacted with the excess NaOH in the subsequent
neutralization step to re-form soap which remained in
the glycerol residue [8].

3.2 Effect of parameters on crude glycerol purification
by adsorption with activated carbon derived from
sludge

3.2.1 Effect of weight ratio of activating agent to char
Effects of weight ratio of activating agent to char

on crude glycerol purification were carried out at the

weight ratio of 1 by using three types of activating
agent including KOH, K,CO3; and H3PO, at constant

activating time of 20 hr and carbonized in N,

atmosphere at 500 °C for 30 min. The surface oxygen

containing functional groups including carbonyl,
carboxyl, hydroxyl and lactone were first measured.

As shown in Figure 1, large quantity of carbonyl was

generated on the surface of activated carbon compared

with other types of activating agent. This group
increased as the increase of weight ratio of KOH to
char while the other measured groups remained

Table 1. Characteristics of crude glycerol, pretreated crude glycerol and purified crude glycerol by adsorption

process
Parameters BS 2621:1979 Crude Pretreated Purified crude glycerol by
[9] glycerol crude glycerol adsorption process
Activated Commercial
carbon derived activated
from sludge® carbon
pH 8.0-9.0 7.0 7.0 7.0
Glycerol content (wt.%) >80 27.23+0.84  3576+0.27 89.35+1.72 84.1+£0.85
Ash content (wt.%) <10 36.18 £ 0.20 29.07 £ 0.51 9.94+121 13.10+0.13
Contaminant (wt.%) <10 36.59 35.17 0.71+ 0.50 29+0.72
Color (Pt-Co unit) 172,857 154,038 2,426 + 39 46,627 + 2678

At the activated carbon dose of 67 g/l glycerol at 250 rpm for 90 min (KOH 5:1, 25 hr and 800 °C)




constant or decrease slightly. The similar trend of
quantity change was observed in the case of K,COa.
However, in the presence of H3PO,, more quantities of
hydroxyl and carboxyl were generated compared with
carbonyl and lactone. The hydroxyl and carboxyl
groups were 4.9 and 4.1 mEg/g at weight ratio of 6,
while only 2.1 and 1.5 mEqg/g of carbonyl and lactone
were generated. This might be attributed to the fact that
KOH and K,COj; are the basic chemicals, which can
enhance high generation of basic oxygen functional
groups (carbonyl group), while HiPO, is the acid
chemical which can enhance a more generation of acid
oxygen functional groups (carboxyl, hydroxyl and
lactone).
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Weight ratio of activating agent to char

Figure 1. Contents of oxygen containing surface
functional groups of the activated carbon with KOH at
difference activating ratios.
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Figure 2. Effect of weight ratio of activating agent to
char on the purity of crude glycerol.

Figure 2 shows variation of glycerol content in
crude glycerol purified by adsorption with activated
carbon activated by KOH, K,CO3; and H3PO,. It was
found that the activated carbon activated by KOH at
the weight ratio of KOH to char of 5:1 provided the
best purity of crude glycerol compared with other types
of activating agent. It can enhance the purity of crude
glycerol from 35.76 to 68.08 wt.%, while K,CO; and
HsPO, can increase the purity of crude glycerol to 51.7
and 40.8 wt.% at the weight ratio of 6 and 4,
respectively. This is because the KOH can enhance a
high formation of carbonyl group on the surface of
activated carbon. As proposed by Pereira et al. [10], the
carbonyl group is the basic functional group containing
high quantity of electron acceptor [11] [12], which can
bond as well to the anionic charge of FAME or FFAs
(R-COQ), resulting to the decrease of contaminant in

purified crude glycerol. Thus, it favors to bond with the
negative charged acid groups. In this case, the crude
glycerol contained large quantity of free fatty acid,
which has negatively charged acid groups [13]. Thus,
the presence of high quantity carbonyl group can
reduce high quantity of fatty acid containing in crude
glycerol. However, if the ratio of KOH was increased
to 6:1, the purity of crude glycerol also decreased from
68.08 to 61.82 wt.%. This was possibly due to the
decomposition of excessive KOH molecules to water
which can gasify with carbon to form CO and H, [14].
Over-gasification might reduce the specific surface
area and adsorption of crude glycerol.

3.2.2 Effect of impregnation time

Effect of impregnation time on crude glycerol
purification by the adsortion with activated carbon
activated by KOH at the weight ratio of 5:1 and
carbonize under N, atmosphere at 500 °C for 30 min
was investigated in the range of 5-25 hrs. The glycerol
content in purified crude glycerol increased as the
increase of impregnation time (Figure 3). This is might
be attributed to the fact that long impregnation time
would promote the diffusion of KOH in the char,
resulted to the formation of large quantity of carbonyl
group from 1.98 mEq/g at 5 hr to 4.66 mEq/g at 25 hr.
Hence, the impregnation time of 25 hr was required
and was used in subsequent experiments.
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Figure 3. Effect of impregnation time on the purity of

crude glycerol purified by adsorption with KOH at
weight ratio to char of 5.

Glycerol content (wt.%)

3.2.3 Effect of carbonization temperature

Effect of carbonization temperature on crude
glycerol purification by the adsortion with activated
carbon activated by KOH at the weight ratio of 5:1 and
carbonize under N, atmosphere at different temperature
in the range of 500-900 °C for 30 min was investigated
at constant impregnation time of 25 hr. As shown in
Figure 4, the glycerol content in purified crude glycerol
increased from 72.68 to 89.35 wt.% as the increase of
carbonization temperature of 500 to 800 °C. This
corresponds to the increase of carbonyl group on the
surface of activated carbon from 4.67 mEqg/g to 7.08
mEqg/g. However, further increase the carbonized
temperature from 800 to 900 °C results to the decrease
of glycerol content to 67.01 wt.%, consistent with the
decrease of the quantity of carbonyl group to 4.15




mEq/g. This is because the carbonyl groups can
decomposition around 850 °C [11], resulting to the
decrease of the adsorption capacity of contaminants
from crude glycerol. In addition, KOH can convert to
potassium carbonates at higher temperature [15],
resulting to the decrease of surface area as well as the
low the capacity to adsorb contaminants in crude
glycerol.
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Figure 4. Effect of carbonization temperature on the
purity of crude glycerol purified by adsorption with
KOH at weight ratio to char of 5.

The properties of purified crude glycerol purified
by the adsorption with activated carbon derived from
sludge and commercial one were demonstrated in
Table 1. It was clearly seen that the crude glycerol
purified by the activated carbon derived from sludge
had high glycerol content than that purified by
commercial activated carbon. In addition, the color of
the former case was lower than the latter case as
demonstrated in Figure 5.

Figure 5. Color of (a) crude glycerol, (b) pretreatment
crude glycerol and purified crude glycerol by
adsorption with (c) commercial activated carbon and
(d) activated carbon derived from sludge.

4. Conclusions

In this study, sewage sludge has been shown to be
a feasible source for crude glycerol purification.
Among utilized chemical agent, KOH showed the
performance compared with K,CO5 and H3PO,4 because
it can enhance the large generation of carbonyl group
on the surface of activated carbon. Thus, it was chosen
as the most effective activation reagent for activation
of sewage sludge for producing the best result in
percentage of glycerol. The optimum condition for

preparation of activated carbon from sewage sludge
was obtained at activated carbon activated by KOH at
ratio of 5:1, impregnation time of 25 hr and
carbonization temperature of 800 °C. This condition
provided the best activated carbon which gave the most
efficiency for crude glycerol purification.
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