

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเพิ่มความบริสุทธิ์และมูลค่าของกลีเซอรอลดิบที่มาจาก กระบวนการผลิตไบโอดีเซล

โดย รองศาสตราจารย์ ดร.มะลิ หุ่นสม และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเพิ่มความบริสุทธิ์และมูลค่าของกลีเซอรอลดิบที่มาจาก กระบวนการผลิตไบโอดีเซล

คณะผู้วิจัย

- 1. รองศาสตราจารย์ ดร.มะลิ หุ่นสม
- 2. นางสาวพเยีย สายหล้า
- 3. นายเชาวน์วัศ อรรถานิทธิ์
- 4. นางสาววินะตา โฆษิตนันท์
- 5. นางสาวเพ็ญพิสุทธิ์ ไชยาคำ

สังกัด

จุฬาลงกรณ์มหาวิทยาลัย
จุฬาลงกรณ์มหาวิทยาลัย
จุฬาลงกรณ์มหาวิทยาลัย
จุฬาลงกรณ์มหาวิทยาลัย
จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยนี้สำเร็จลุล่วงได้ด้วยดีโดยการสนับสนุนทุนวิจัยจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และทุนเสริมรากฐานการวิจัย กองทุนรัชดาภิเษกสมโภช จุฬาลงกรณ์มหาวิทยาลัย ซึ่งผู้วิจัยและ คณะขอกราบขอบพระคุณมา ณ ที่นี้

ผู้วิจัยและคณะขอขอบคุณภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และ สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ที่เอื้อเฟื้อ สถานที่และเครื่องมือวิเคราะห์ตัวอย่าง ขอขอบคุณบริษัทบางจากปิโตรเลียมจำกัด (มหาชน) ที่เอื้อเฟื้อ ตัวอย่างกลีเซอรอลดิบในการทำวิจัย และขอขอบคุณบุคลากรทุกท่านในภาควิชาเคมีเทคนิคที่อำนวยความ สะดวกในด้านทางๆ จนงานวิจัยสำเร็จลูล่วง

สุดท้ายนี้ ขอขอบพระคุณบิดา มารดา และครอบครัว ที่คอยเป็นกำลังใจในการทำงานวิจัยจนสำเร็จ ลุล่วงไปด้วยดี

บทคัดย่อ

รหัสโครงการ : RSA5480015

ชื่อโครงการ : การเพิ่มความบริสุทธิ์และมูลค่าของกลีเซอรอลดิบที่มาจากกระบวนการผลิตไบโอดีเซล

ชื่อนักวิจัย และสถาบัน : 1. รองศาสตราจารย์ ดร.มะลิ หุ่นสม

จุฬาลงกรณ์มหาวิทยาลัย

2. นางสาวพเยีย สายหล้า

จุฬาลงกรณ์มหาวิทยาลัย

3. นายเชาวน์วัศ อรรถานิทธิ์

จุฬาลงกรณ์มหาวิทยาลัย

4. นางสาววินะตา โฆษิตนันท์

จุฬาลงกรณ์มหาวิทยาลัย

5. นางสาวเพ็ญพิสุทธิ์ ไชยาคำ

จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: mali.h@chula.ac.th; payiakiss@hotmail.com; ch.resolves@gmail.com;

mild_defry06@hotmail.com; ppc24@live.com,

ระยะเวลาโครงการ : วันที่ 15 มิถุนายน 2554 ถึงวันที่ 14 มิถุนายน 2557

งานวิจัยนี้ศึกษาปัจจัยและภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอล ดิบปรับสภาพ ด้วยการสกัดด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสีย และ ศึกษาการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย กระบวนการเคมีไฟฟ้า พบว่าการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการสกัดด้วยโพรพา นอลที่อัตราส่วนโดยปริมาตรต่อกลีเซอรอลดิบปรับสภาพเท่ากับ 2 จะให้กลีเซอรอลดิบปรับสภาพที่มีความ บริสุทธิ์ร้อยละ 97.85 และการลดลงของสีร้อยละ 94.96 ซึ่งมีความบริสุทธิ์มากกว่ากลีเซอรอลดิบปรับสภาพ ที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการดูดซับด้วยถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสียที่ภาวะที่ดี ที่สุด (กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์และ ถ่านชาร์เท่ากับ 5 เวลาการกระตุ้น 25 ชั่วโมง และคาร์บอในซ์ที่อุณหภูมิ 800 องศาเซลเซียส เป็นเวลา 30 นาที เวลาในการดูดซับ 120 นาที และอัตราการเขย่า 250 รอบต่อนาที) ประมาณ 1.05 เท่า

สำหรับการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย กระบวนการเคมีไฟฟ้า พบว่าการใช้แพลทินัมเป็นขั้วไฟฟ้าสำหรับสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ที่ความเป็นกรด-เบสเท่ากับ 1 และความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.14 แอมแปร์ ต่อตารางเซนติเมตร จะให้ร้อยละการเปลี่ยนของกลีเซอรอลสูงถึงร้อยละ 97.00 การใช้แก๊สไฮโดรเจนเป็น สารตัวเติมจะให้ผลิตภัณฑ์หลักเป็นไกลซิดอล การใช้ไฮโดรเจนเปอร์ออกไซด์จะให้ผลิตภัณฑ์หลักเป็นไกล ซิดอลและกรดไกลโคลิก ส่วนการใช้โซเดียมเปอร์ซัลเฟตจะให้ผลิตภัณฑ์หลักเป็นเอทิลีนไกลคอล และการ ใช้ 2,2,6,6-เตตระเมธิวไพเพอริดีนจะให้ผลิตภัณฑ์เป็น 1,3-ไดไฮดรอกซีแอซีโทน

คำหลัก: การเพิ่มมูลค่ากลีเซอรอลดิบ การสกัดด้วยตัวทำละลาย กระบวนการเคมีไฟฟ้า

Abstract

Project Code: RSA5480015

Project Title: Purification enhancement and value-adding of crude glycerol derived from biodiesel

production plant

Investigator: 1. Assoc.Prof.Mali Hunsom, Ph.D Chulalongkorn University

Miss Payia Saila
 Chulalongkorn University
 Chaowat Autthanit
 Chulalongkorn University
 Winata Kositnan
 Chulalongkorn University
 Penpisuth Chaiyakam
 Chulalongkorn University

E-mail Address: mali.h@chula.ac.th; payiakiss@hotmail.com; ch.resolves@gmail.com;

mild_defry06@hotmail.com; ppc24@live.com

Project Period: 15 June 2011 to 14 June 2014

This work was carried out to investigate the effect of parameters and optimum conditions for crude glycerol purification by solvent extraction and adsorption by sewage sludge-derived activated carbon and for glycerol conversion to value-added compounds by electrochemical technique. The results demonstrated that the solvent extraction by C_3H_7OH at the volume ratio of 2 can enhance the purifty of pretreated crude glycerol upto 97.85 with the color reduction of 94.96%, which was better than that purified by adsorption with the best sewage sludge-derived activated carbons (activated carbon prepared with KOH activation at KOH: char fo 5, activating time of 25 h, activating temeperature of 800 $^{\circ}$ C, adsotion time of 120 min and agitation rate of 250 rpm) of around 1.05-fold. For the systhesis of value-added compounds from purified crude glycerol by electrochemical technique, the results demonstrated that the maximum glycerol conversion of around 97.00% was obtained by using the Pt electrode with initial pH of glycerol of 1, current density of 0.14 Acm² and reaction time of 17 h. The main product of glycerol conversion in the presence of H_2 was glycidol and that of H_2O_2 were glycidol and glycolic acid. On the other hand, the main product in the presence of $Na_2S_2O_8$ was ethylene glycol and that in presence of TEMPO was 1,3-dihydroxyacetone.

Keywords: Value-adding of crude glycerol; Solvent extraction; Electrochemical process

สารบัญ

กิตติกรรมประกาศ	ก
บทคัดย่อ	
Abstract	
สารบัญ	ა
บทที่ 1 บทนำ	1
1.1 วัตถุประสงค์	
1.2 ขอบเขตงานวิจัย	
1.3 ระเบียบวิธีวิจัย	3
1.4 ประโยชน์ที่คาดว่าจะได้รับ	4
d od	
บทที่ 2 วิธีการทดลอง	5
2.1 เครื่องมือและอุปกรณ์	5
2.1.1 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการสกัดด้วยตัวทำละลาย	
2.1.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับ	5
2.1.3 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพ	
ที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้า	
2.1.4 เครื่องมือวิเคราะห์	6
2.2 สารเคมี	
2.2.1 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการสกัดด้วยตัวทำละลาย	7
 2.2.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับ 	7
2.2.3 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพ	
ที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้า	8
2.3 วัตถุดิบ	
2.3.1 กลีเซอรอลดิบ	8
2.3.2 กากตะกอนจากการบำบัดน้ำเสีย	9
2.4 ขั้นตอนการดำเนินการวิจัย	9
2.4.1 การปรับสภาพเบื้องต้นของกลีเซอรอลดิบ	9

2.4.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการสกัดด้วยตัวทำละลาย	10
2.4.3 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับ	
2.4.4 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้า	
บทที่ 3 ผลการทดลองและการวิจารณ์ผล: การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพ <u></u>	18
3.1 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการทางเคมี	
3.1.1 สมบัติของกลีเซอรอลดิบและกลีเซอรอลดิบปรับสภาพ <u></u>	18
3.1.2 ผลของตัวแปรต่อการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับ	
สภาพด้วยการสกัดด้วยตัวทำละลาย	21
3.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับด้วยถ่านกัมมันต์	25
3.2.1 สมบัติของกลีเซอรอลและกลีเซอรอลดิบปรับสภาพ	25
3.2.2 สมบัติของกากตะกอนและถ่านชาร์	
3.2.3 การเตรียมถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียด้วยการกระตุ้นด้วย	
ความร้อนและความสามารถในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพ	27
3.2.4 การเตรียมถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียด้วยการกระตุ้นทางเคมี	
และความสามารถในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพ	32
3.2.5 ภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการดูดซับ	_51
3.2.6 การฟื้นฟูสภาพถ่านกัมมันต์	55
3.2.7 การเปรี [้] ยบเทียบสมบัติของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์	
ด้วยการสกัดด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันต์	61
บทที่ 4 ผลการทดลองและการวิจารณ์ผล : การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลด้วย	
	62
กระบวนการเคมิไฟฟ้า 4.1 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลเชิงพาณิชย์	
4.1.1 ความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอลเชิงพาณิชย์	62
4.1.2 ผลของความเป็นกรด-เบสต่อการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลเชิงพาณิชย์	
4.2 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์	
4.2.1 ความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอลดิบปรับสภาพ	' '
	72
ที่ผ่านการเพิ่มความบริสุทธิ์ 4.2.2 ผลของตัวแปรในการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพ	
ที่ผ่านการเพิ่มความบริสุทธิ์	74
บทที่ 5 บทสรป	98

เอกสารอ้างอิง	100
ผลผลิตจากโครงการวิจัย (Output)	
ภาคผนวก	109
ก. การวิเคราะห์สมบัติกลีเซอรอล	109
ข. การวิเคราะห์สี	113
ค. กากวิเคราะห์องค์ประกอบของถ่านชาร์แบบประมาณ	115
ง. การวิเคราะห์หาหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์	117
จ. ต้นฉบับบทความสำหรับการเผยแพร่	121

บทที่ 1

บทน้ำ

กลีเซอรอลมีลักษณะเป็นของเหลวใสหนืด ไม่มีสี ไม่มีกลิ่น และมีรสหวาน โครงสร้างโมเลกุลมีหมู่ ไฮดรอกซิล (-OH) จำนวน 3 หมู่ กลีเซอรอลเป็นส่วนประกอบสำคัญของไตรกลีเซอไรด์ เช่น ไขมัน และ น้ำมัน ซึ่งสามารถละลายได้ดีในน้ำ เมทานอล เอทานอล ไอโซเมอร์ของโพรพานอล บิวทานอล เพนทานอล รวมทั้งฟีนอลไกลคอล โพรเพนไดออล เอมีน และสารประกอบที่เป็นเฮทเทอโรไซคลิก ไดเอทิลอีเทอร์ เอทิล เอสเทอร์และไดออกเซน ไม่ละลายในไฮโดรคาร์บอน แอลกอฮอล์ที่มีโซ่ยาวและตัวทำละลายจำพวกแฮโล เจน ดังนั้นกลีเซอรอลจึงเป็นตัวทำละลายที่มีประโยชน์ต่อสารหลายชนิดทั้งสารอินทรีย์และอนินทรีย์ซึ่งมี ความสำคัญต่ออุตสาหกรรมหลายประเภท [1] กลีเซอรอลถูกใช้เป็นสารตั้งต้นในอุตสาหกรรมเคมีเพื่อผลิต สารต้านเชื้อจุลินทรีย์เคลือบใยผ้า ใช้ในผลิตในโตรกลีเซอรีนในอุตสาหกรรมผลิตวัตถุไวไฟ ผลิตพอลิ-กลีเซอรอลเอสเทอร์ (สารหล่อลื่น) พอลิกลีเซอรอลเมทาคริเลท (สารเพิ่มเสถียรภาพในเนื้อไม้) ใช้ใน อุตสาหกรรมยาและผลิตภัณฑ์ดูแลช่องปากเพื่อผลิตสารเติมแต่งในน้ำเชื่อม ยาสีฟัน ครีมบำรุงผิว ครีมนวด ผม สบู่ และยาใช้ผสมในเครื่องสำอางเพื่อช่วยเพิ่มความชุ่มชื้น ใช้เป็นสารเพิ่มความขันในเนยหรือสารเพิ่ม ความหวานแทนน้ำตาลในอาหารไขมันต่ำในอุตสาหกรรมอาหาร ใช้เป็นสารตั้งต้นในการผลิตเชื้อเพลิงเหลว ได้ เช่น เอทานอล [2-5] หรือไฮโดรเจน [6-10] เชื้อเพลิงอัดเม็ดจากกลีเซอรอลสามารถใช้แทนถ่านหินได้ และยังใช้เป็นสารผสมในแกโซลีนและใบโอดีเซล นอกจากนี้กลีเซอรอลยังถูกใช้เป็นสารตั้งต้นในการ สังเคราะห์สารเพิ่มมูลค่า เช่น อะโครลีน [11-13] กรดอะคริลิก [1415] ไดไฮดรอกซีแอซีโทน [16-17] โพรพิลีนไกลคอล [18-20] และโพรเพนไดออล [21-37]

จากปัญหาวิกฤตการณ์ด้านพลังงานและราคาน้ำมันในตลาดโลกที่ผันผวนขึ้นลงตลอดเวลา ส่งผล กระทบทั้งทางด้านเศรษฐกิจ สังคม และความมั่นคงของประเทศต่างๆ ทั่วโลก ประเทศไทยก็เป็นอีกประเทศ หนึ่งที่ได้รับผลกระทบดังกล่าว ปัญหาเหล่านี้ทำให้รัฐบาลหันมาดำเนินนโยบายใช้พลังงานทดแทน นั่นคือ การผลิตไบโอดีเซลเพื่อทดแทนการนำเข้าน้ำมันดีเซลจากต่างประเทศ โดยกระทรวงพลังงานได้รายงานว่า ประเทศไทยมีกำลังการผลิตน้ำมันไบโอดีเซลสูงสุดในเดือนมีนาคม พ.ศ. 2556 ประมาณวันละ 2.7 ล้านลิตร ต่อวัน หรือประมาณ 83.7 ล้านลิตรต่อเดือน ซึ่งจะเกิดผลิตภัณฑ์พลอยได้คือกลีเซอรอลประมาณ 8.37 ล้านลิตรต่อเดือน [38-39] ซึ่งผลิตภัณฑ์พลอยได้ที่เกิดขึ้นมีคุณภาพค่อนข้างต่ำ มีสารเจือปนสูง มีสีน้ำตาลถึง น้ำตาลดำ มีฤทธิ์เป็นเบส มีความบริสุทธิ์เพียงร้อยละ 20-30 ซึ่งต่ำกว่ามาตรฐานประมาณ 2.6-4.0 เท่า มี ปริมาณน้ำและสารเจือปนมากกว่ามาตรฐาน เนื่องจากปริมาณที่มากและคุณภาพที่ต่ำส่งผลให้กลีเซอรอลดิบ ในท้องตลาดมีคุณภาพต่ำและไม่เหมาะที่จะนำไปใช้เป็นสารตั้งต้นในกระบวนการผลิต ซึ่งอาจส่งผลให้มีการ สะสมหรือมีการเหลือทั้งในธรรมชาติ ปัจจุบันจึงมีงานวิจัยจำนวนมากที่ศึกษาการเพิ่มความบริสุทธิ์ กลีเซอรอลดิบด้วยกระบวนการต่างๆ เช่น การกลั่นสุญญากาศ [40-41] การแยกกรองด้วยไฟฟ้า

(Electrodialysis) [42] การแลกเปลี่ยนไอออน [43-44] และกระบวนการทางเคมี [45-47] ซึ่งบางกระบวนการ มีต้นทุนสูงและไม่คุ้มทุนในโรงงานหรืออุตสาหกรรมขนาดกลางและขนาดเล็ก

งานวิจัยนี้สนใจศึกษาการเพิ่มความบริสุทธิ์และมูลค่าของกลีเซอรอลดิบจากกระบวนการผลิต ไบโอดีเซลที่ใช้น้ำมันพืชหรือไขมันสัตว์ที่ผ่านการใช้งานแล้วเป็นสารตั้งต้น โดยในการวิจัยจะแบ่งการทำงาน ออกเป็น 2 ส่วน ส่วนแรกจะเป็นการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบที่ผ่านการปรับสภาพด้วยการสกัด ด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันด์ ซึ่งกระบวนการนี้จะช่วยลดสารเจือปนต่าง ๆ เช่น เกลือ กรดไขมัน น้ำและสารเจือปนในกลีเซอรอลดิบ ทำให้กลีเซอรอลดิบมีความบริสุทธิ์มากขึ้น ส่วนที่สองจะเป็น การศึกษาการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย กระบวนการเคมีไฟฟ้า เช่น อะโครลีน อะซีทอล ไกลซิดอล และ 1,2-โพรเพนไดออล (โพรพิลีนไกลคอล) หรือ 1,3-โพรเพนไดออล (ไตรเมทิลีนไกลคอล) เป็นตัน ซึ่งสารเหล่านี้เป็นสารที่มีมูลค่าสูงในเชิงพาณิชย์ และสามารถใช้เป็นสารตั้งต้นในอุตสาหกรรมหลายประเภท โดย 1,2-โพรเพนไดออลสามารถนำไปเป็นสาร ตั้งต้นในการผลิตเรซินพอลิเอสเตอร์ชนิดไม่อิ่มตัว สารต้านการแข็งตัว สารชำระล้างชนิดปราศจากไอออน อุตสาหกรรมสี อุตสาหกรรมเครื่องสำอาง และประยุกต์ใช้ในทางการแพทย์ ส่วน 1,3-โพรเพนไดออลสามารถ ใช้เป็นสารตั้งต้นในอุตสาหกรรมผลิตพอลิเอสเตอร์ อุตสาหกรรมผลิตสารหล่อลื่น อุตสาหกรรมตัวทำละลาย และอุตสาหกรรมอาหาร เป็นต้น

1.1 วัตถุประสงค์

- 1. เพื่อศึกษาปัจจัยและภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการ สกัดด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันต์
- 2. เพื่อศึกษาการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย กระบวนการเคมีไฟฟ้า

1.2 ขอบเขตงานวิจัย

ปรับสภาพกลีเซอรอลดิบซึ่งเป็นผลิตภัณฑ์พลอยได้ (By-product) จากกระบวนการผลิตไบโอดีเซล ด้วยกรดฟอสฟอริก เพิ่มความบริสุทธิ์ให้กับกลีเซอรอลดิบปรับภาพด้วยการสกัดด้วยตัวทำละลายและการ ดูดซับด้วยถ่านกัมมันต์ ศึกษาตัวแปรที่มีผลต่อการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพ วิเคราะห์ สมบัติของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ศึกษาการสังเคราะห์สารเพิ่มมูลค่าจาก กลีเซอรอลดิบปรับสภาพด้วยกระบวนการเคมีไฟฟ้า ศึกษาผลของตัวแปรในกระบวนการเคมีไฟฟ้า ศึกษาการเปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่าด้วยกระบวนการเคมีไฟฟ้า

1.3 ระเบียบวิธีวิจัย

1. คันคว้าข้อมูล ทฤษฎี และงานวิจัยที่เกี่ยวข้องทั้งในและต่างประเทศ

- 2. วิเคราะห์สมบัติทางกายภาพและทางเคมีของกลีเซอรอลดิบที่มาจากกระบวนการผลิตไบโอดีเซลซึ่งใช้ น้ำมันพืชหรือไขมันสัตว์ที่ผ่านการใช้งานแล้วเป็นสารตั้งต้น
- 3. ปรับสภาพกลีเซอรอลดิบจากกระบวนการผลิตไบโอดีเซลซึ่งใช้น้ำมันพืชหรือไขมันสัตว์ที่ผ่านการใช้ งานแล้วเป็นสารตั้งต้นด้วยกระบวนการทางเคมี
- 4. ศึกษาปัจจัยและภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพกระบวนการ สกัดด้วยตัวทำละลายและกระบวนการดูดซับด้วยถ่านกัมมันต์
 - 4.1 กระบวนการสกัดด้วยตัวทำละลายเป็นการเติมสารสกัดหรือตัวทำละลายเพื่อสกัดเกลือและกรด ไขมันออกจากชั้นกลีเซอรอล ตัวแปรที่ศึกษาคือ
 - ชนิดของสารสกัดมีขั้ว : เมทานอล (CH $_3$ OH) เอทานอล (C $_2$ H $_5$ OH) โพรพานอล (n-C $_3$ H $_7$ OH)
 - ชนิดของสารสกัดไม่มีขั้ว : ไดเอทิลอีเทอร์ ($C_4H_{10}O$) เฮกเซน (C_6H_{14})
 - อัตราส่วนโดยปริมาตรระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพ : 0.5 4.0
 - 4.2 กระบวนการดูดซับด้วยถ่านกัมมันต์จะศึกษาภาวะที่เหมาะสมในการเตรียมถ่านกัมมันต์จาก กากตะกอนบำบัดน้ำเสียจากอุตสาหกรรมสิ่งทอเพื่อใช้ในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบ ปรับสภาพ ตัวแปรที่ศึกษาคือ
 - ชนิดสารกระตุ้นที่ใช้ในการเตรียมถ่านกัมมันต์ : โพแทสเซียมไฮดรอกไซด์ (KOH) โพแทสเซียมคาร์บอเนต (K₂CO₃) และกรดฟอสฟอริก (H₃PO₄)
 - อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ : 1.0 6.0
 - เวลาดูดซับสารกระตุ้น : 5 25 ชั่วโมง
 - อุณหภูมิการคาร์บอในซ์ : 500 900 องศาเซลเซียส
 - 4.3 ศึกษาภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการดูดซับ ได้แก่
 - เวลาการดูดซับสารปนเปื้อน : 60 180 นาที
 - ความเร็วรอบการเขย่าระหว่างการดูดซับสารปนเปื้อน: 150-300 รอบต่อนาที
 - 4.4 วิเคราะห์และเปรียบเทียบประสิทธิภาพการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วย การสกัดด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันต์
- 5. ศึกษาการสังเคราะห์โพรเพนไดออลจากกลีเซอรอลดิบปรับสภาพที่ผ่านกระบวนการเพิ่มความบริสุทธิ์ ด้วยกระบวนการเคมีไฟฟ้าเปรียบเทียบกับกลีเซอรอลบริสุทธิ์ทางการค้า ตัวแปรที่ศึกษาคือ
 - ความเป็นกรด-เบส เริ่มต้นของกลีเซอรอลดิบปรับสภาพ : 1 7 และ 11
 - ชนิดของขั้วไฟฟ้า : แพลทินัม ไทเทเนียมเคลือบรูทีเนียมออกไซด์ และเหล็กกล้าไร้สนิม
 - ความเข้มกระแสไฟฟ้า : 0.08-0.27 แอมแปร์ต่อตารางเซนติเมตร
 - ชนิดและความเข้มข้นของสารตัวเติม
- 6. สรุปผลการทดลอง เขียนบทความวิชาการและรายงาน

1.4 ประโยชน์ที่คาดว่าจะได้รับ

- 1. ทราบผลของปัจจัยและวิธีการที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบจากกระบวนการ ผลิตไบโอดีเซลที่ใช้น้ำมันพืชหรือไขมันสัตว์ที่ผ่านการใช้งานแล้วเป็นสารตั้งต้น
- 2. ได้องค์ความรู้ในการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบด้วยกระบวนการเคมีไฟฟ้าเพื่อใช้เป็น ข้อมูลในระดับขยายส่วนหรือใช้เพื่อประโยชน์ทางการศึกษา

บทที่ 2

วิธีการทดลอง

งานวิจัยนี้เป็นงานวิจัยเชิงทดลองในห้องปฏิบัติการเพื่อศึกษาภาวะที่เหมาะสมในการเพิ่มความ บริสุทธิ์กลีเซอรอลดิบซึ่งเป็นผลิตภัณฑ์พลอยได้จากกระบวนการผลิตไบโอดีเซลซึ่งใช้น้ำมันพืชหรือ ไขมันสัตว์ที่ผ่านการใช้งานแล้วเป็นสารตั้งต้นในกระบวนการผลิต จากนั้นทำการสังเคราะห์สารเพิ่ม มูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้า เพื่อนำผล การทดลองที่ได้ไปใช้เป็นข้อมูลในระดับขยายส่วนหรือใช้เพื่อประโยชน์ทางการศึกษาต่อไป โดยขั้นตอน การทดลองมีรายละเอียดดังนี้

2.1 เครื่องมือและอุปกรณ์

2.1.1 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการสกัดด้วยตัวทำละลาย

- ตู้อบ (Drying Oven) ยี่ห้อ Termaks รุ่น Series TS 8000
- เครื่องชั่งละเอียด 4 ตำแหน่ง บริษัท Sartorius
- เตาเผาอุณหภูมิสูง ยี่ห้อ Carbolite Model: 111/14(201)
- นาฬิกาจับเวลา
- เครื่องแก้วในห้องปฏิบัติการ
- เครื่องเขย่า (Shaker) ยี่ห้อ CTL orbital รุ่น SK3
- กระดาษวัดความเป็นกรด-เบส ยี่ห้อ Macherey-Nagel

2.1.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับ

- เตาเผาให้ความร้อนแบบท่อ (Tubular furnace) ยี่ห้อ Vecstar Furnances รุ่น VCTF7
- เครื่องปฏิกรณ์แบบเบดนิ่ง (Fixed bed reactor) ทำจากสแตนเลส
- เทอร์โมคัปเปิล (Thermocouple) ชนิด K
- อุปกรณ์วัดอัตราการใหลของแก๊สในโตรเจน (Rotameter) ยี่ห้อ Newflow รุ่น FBC-V-P-A-500 C
- ตัวควบคุมอุณหภูมิ (Temperature controller) ยี่ห้อ TAIE รุ่น PFY400
- เครื่องเขย่าแนวราบ (Orbital shaker) ยี่ห้อ CTL รุ่น SK3
- ตู้อบ (Oven) ยี่ห้อ Binder รุ่น ED115
- ตะแกรงร่อน (Sieve) เบอร์ 10 (2 มิลลิเมตร) เบอร์ 18 (1 มิลลิเมตร) เบอร์ 60 (0.25 มิลลิเมตร)
- โถดูดความชื้น (Desiccator)
- เครื่องกรองสุญญากาศ (Vacuum pump) ยี่ห้อ Sibata รุ่น WJ-20

- กรวยกรองแบบสุญญากาศ (Buchner funnel)
- ขวดกรอง (Suction flask)
- ขวดรูปชมพู่ (Erlenmeyer flask) ขนาด 125 และ 250 มิลลิลิตร
- ขวดปรับปริมาตร (Volumetric flask) ขนาด 25 100 250 และ 1,000 มิลลิลิตร
- กรวยแยกสาร (Separatory funnel) ขนาด 1,000 มิลลิลิตร
- กระดาษกรอง Whatman เบอร์ 1 และ เบอร์ 42
- กระดาษลิตมัส ยี่ห้อ MACHEREY-NAGEL pH-Fix 0-14
- โกร่งบดสาร

2.1.3 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ด้วยกระบวนการเคมีไฟฟ้า

- ตะแกรงแพลทินัมพื้นที่ผิว 31.82 ตารางเซนติเมตร (ตะแกรงเล็ก) และ 121.38 ตาราง เซนติเมตร (ตะแกรงใหญ่)
- ตะแกรงไทเทเนียมเคลือบรูทีเนียมออกไซด์ (Ti/RuO₂) พื้นที่ผิว 26.8 ตารางเซนติเมตร
- ตะแกรงเหล็กกล้าไร้สนิม (Stainless steel) พื้นที่ผิว 29.79 ตารางเซนติเมตร
- ขั้วไฟฟ้าอ้างอิงซิลเวอร์ / ซิลเวอร์คลอไรด์ (Ag/AgCI)
- เครื่องวัดความเป็นกรด-เบส (pH-meter) ยี่ห้อ Enviscience รุ่น sensION378
- เครื่องจ่ายกระแสไฟฟ้าตรงขนาด 10 แอมแปร์ (Power supply) รุ่น ZS 3205-2X
- เครื่องกวนแม่เหล็ก (Magnetic stirrer)
- แท่งแม่เหล็กกวนสาร
- เครื่องชั่งละเอียด 4 ตำแหน่ง บริษัท Sartorius
- กระดาษวัดความเป็นกรด-เบส ยี่ห้อ Macherey-Nagel
- เครื่อง Potentiostat/Galvanostat ยี่ห้อ Auto Lab รุ่น PG stato
- เครื่องแก้วในห้องปฏิบัติการ

2.1.4 เครื่องมือวิเคราะห์

- เครื่อง HPLC (High Performance Liquid Chromatography) รุ่น HP1100 บริษัทAgilent technology
- เครื่อง GC-MS (Gas Chromatography-Mass Spectrometry) รุ่น G3174A บริษัท Agilent
- เครื่องวิเคราะห์พื้นที่ผิวด้วยวิธี Bruneur-Emmet-Teller (BET) ยี่ห้อ Quantachrome Corporation รุ่น Autosorb-1
- เครื่องวัดการดูดกลืนแสงยูวี (UV-VIS Spectrophotometer) ยี่ห้อ Jasco รุ่น V530

2.2 สารเคมี

2.2.1 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการสกัดด้วยตัวทำละลาย

- กรดฟอสฟอริกเข้มข้น (Conc.H₃PO₄, Qrec, 85%)
- โซเดียมไฮดรอกไซด์ (NaOH, Merck, 98%)
- เมทานอล (CH₃OH, Merck, 99.99%)
- เอทานอล (C₂H₅OH, Merck, 99.99%)
- โพรพานอล (n-C₃H₇OH, Fisher, 99.99%)
- เฮกเซน (C₆H₁₄, Honeywell, 99.79%)
- ไดเอทิลอีเทอร์ (C₄H₁₀O, Panreac, 99.7%)
- โซเดียมซัลเฟตปราศจากน้ำ (Anhydrous Na₂SO₄, Qrec, 99%)

2.2.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับ

- แก๊สในโตรเจน (N₂, 99.99%, Praxair)
- โพแทสเซียมไฮดรอกไซด์ (KOH, AR grade, Ajax Finechem)
- กรดฟอสฟอริก (H₃PO₄, 85%, AR grade, Qrec)
- โพแทสเซียมคาร์บอเนต (K₂CO₃, AR grade, Loba Chemie)
- กรดไฮโดรคลอริก (HCI, 37%, Carlo Erba)
- โซเดียมเมตาเพอริโอเดต (NaIO₄, AR grade, Fisher Chemical)
- เอที่ลืนไกลคอล ($C_2H_6O_2$, AR grade, Qrec)
- โซเดียมฟอร์เมต (NaCHO₂, AR grade, Ajax Finechem)
- โซเดียมไฮดรอกไซด์ (NaOH, AR grade, Carlo Erba)
- โซเดียมคาร์บอเนต (Na₂CO₃, AR grade, Loba Chemie)
- โซเดียมไฮโดรเจนคาร์บอเนต (NaHCO₃, AR grade, Loba Chemie)
- กรดซัลฟูริก (H₂SO₄, 96%, Mallinckrodt Chemical)
- โซเดียมไทโอซัลเฟต (Na₂S₂O₃·5H₂O, AR grade, Ajax Finechem)
- ไอโอดีน (I₂, AR grade, Ajax Finechem)
- โพแทสเซียมไอโอไดด์ (KI, AR grade, Ajax Finechem)
- โพแทสเซียมไอโอเดต (KIO₃, AR grade, Ajax Finechem)
- เฮกเซน (C₆H₁₄, AR grade, Qrec)
- ไดเอทิลอีเทอร์ ($C_4H_{10}O$, AR grade, Qrec)
- โบรโมไทมอลบลู (Bromothymol blue)
- ฟีนอล์ฟทาลิน (Phynolpthalein)
- เมทิลออเรนจ์ (Methyl orange)
- แก๊สไฮโดรเจน
- ไฮโดรเจนเปอร์ออกไซด์ (H₂O₂, Qrec)

- โซเดียมเปอร์ซัลเฟต (Na₂S₂O₈, Qrec)
- 2,2,6,6-เตตระเมธิวใพเพอริดีน (2,2,6,6-tetramethylpiperidine-1-oxyl, Sigma Aldrich)
- ถ่านกัมมันต์เชิงพาณิชย์ (Panreac Quimica, UK)

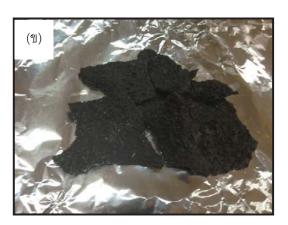
2.2.3 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ด้วยกระบวนการเคมีไฟฟ้า

- 1,2-โพรเพนไดออล (C₃H₈O₂, Fluka, 99.8%)
- 1,3-โพรเพนไดออล (C₃H₈O₂, Fluka, 99.8%)
- กลีเซอรอลเชิงพาณิชย์ Merck, ARgrade, 99%)
- กรดซัลฟูริกเข้มข้น (Conc.H₂SO₄, Fisher, 98%)
- โซเดียมไฮดรอกไซด์ (NaOH, Merck, 98%)
- ไกลซิดอล (C₃H₆O₂, Aldrich, 96%)
- อะซีทอล (C₃H₆O₂, Aldrich, 90%)
- อะโครลีน (C₃H₄O, Merck, 99%)
- เอที่ลื่นไกลคอล (C₂H₆O₂, Qrec, 99.5%)
- แก๊สไฮโดรเจน (H₂, Praxair, 99.99%)
- น้ำกลั่น (HPLC grade)

2.3 วัตถุดิบ

2.3.1 กลีเซอรอลดิบ

กลีเซอรอลดิบที่ใช้ในงานวิจัยนี้ได้รับความอนุเคราะห์จาก บริษัทบางจากปิโตรเลียม จำกัด (มหาชน) ซึ่งเป็นผลิตภัณฑ์พลอยได้จากกระบวนการผลิตไบโอดีเซลโดยใช้น้ำมันพืชหรือไขมันสัตว์ที่ ผ่านการใช้งานแล้วเป็นสารตั้งต้นซึ่งมีลักษณะเป็นสีน้ำตาลดำ แสดงดังภาพที่ 3.1



ภาพที่ 2.1 กลีเซอรอลดิบที่เกิดจากกระบวนการผลิตไบโอดีเซลโดยใช้น้ำมันพืชหรือไขมันสัตว์ที่ผ่าน การใช้งานแล้วเป็นสารตั้งต้น

2.3.2 กากตะกอนจากการบำบัดน้ำเสีย

วัตถุดิบที่ใช้ในการเตรียมถ่านกัมมันต์คือกากตะกอนจากการบำบัดน้ำเสีย ซึ่งได้รับความ อนุเคราะห์จาก บริษัท นั้นยางการทออุตสาหกรรม จำกัด โดยกากตะกอนดังกล่าวเป็นกากตะกอนจาก กระบวนการบำบัดน้ำเสียแบบแอกทิเวเต็ดสลัดจ์ (Activated sludge) ซึ่งถูกปนเปื้อนด้วยกรวดทราย ขนาดเล็ก ดังแสดงในภาพที่ 2.1 (ก) เมื่อนำกากตะกอนจากการบำบัดน้ำเสียมาล้างทำความสะอาดเพื่อ กำจัดสิ่งสกปรกและอบให้แห้งที่อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง หรือจนกว่าน้ำหนัก คงที่ (ภาพที่ 2.2(ข)) จากนั้นนำมาบดให้มีขนาด 1 ถึง 2 มิลลิเมตร และร่อนผ่านตะแกรงเบอร์ 18 จะได้ ผงกากตะกอนจากการบำบัดน้ำเสียที่จะใช้เป็นวัตถุดิบในการเตรียมถ่านกัมมันต์

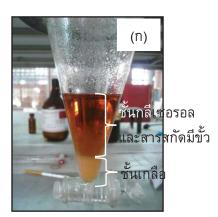
ภาพที่ 2.2 (ก) กากตะกอนจากการบำบัดน้ำเสีย และ (ข) กากตะกอนที่ผ่านการทำความสะอาดแล้ว

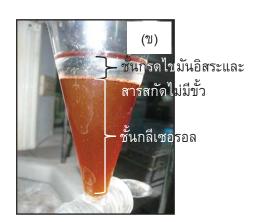
2.4 ขั้นตอนการดำเนินการวิจัย

2.4.1 การปรับสภาพเบื้องต้นของกลีเซอรอลดิบ [46]

- บรรจุกลีเซอรอลดิบในบีกเกอร์ประมาณ 500 กรัม นำไปให้ความร้อนประมาณ 50 องศา เซลเซียส เป็นเวลา 30 นาที เพื่อให้กลีเซอรอลดิบอ่อนตัวและอยู่ในสถานะของเหลว จากนั้นทิ้งไว้ให้เย็น
- เติมกรดฟอสฟอริกเข้มข้นเพื่อปรับค่าความเป็นกรด-เบสให้มีค่าประมาณ 2.5 คนให้เข้า กัน และนำไปใส่กรวยแยก ตั้งทิ้งไว้ประมาณ 12 ชั่วโมง เพื่อให้เกิดการแยกชั้นอย่าง สมบูรณ์
- เมื่อครบกำหนดเวลาจะได้สารละลายที่แยกออกเป็น 3 ชั้น ชั้นบนเป็นชั้นของกรดไขมัน อิสระ (Free fatty acid layer) ชั้นกลางเป็นชั้นที่มีกลีเซอรอลอยู่มาก (Glycerol-rich layer) และชั้นล่างเป็นชั้นที่มีเกลืออยู่มาก (Salt-rich layer) ดังภาพที่ 2.3(ก)
- แยกสารชั้นบนและชั้นล่างออกจากของเหลวชั้นกลางซึ่งเป็นชั้นที่มีกลีเซอรอลอยู่มาก
- เติมสารละลายโซเดียมไฮดรอกไซด์เข้มข้น 12.5 โมลต่อลิตร ในชั้นที่มีกลีเซอรอลอยู่มาก จนมีความเป็นกรด-เบสเท่ากับ 7 คนให้เข้ากันและตั้งทิ้งไว้ประมาณ 3 ชั่วโมง เพื่อให้เกิด การแยกชั้นอย่างสมบูรณ์ ดังภาพที่ 2.3(ข)

- เทแยกของเหลวชั้นบนที่มีกลีเซอรอลอยู่มากไปอบที่ 110 องศาเซลเซียส เป็นเวลา 15 ชั่วโมง
- เติมโซเดียมซัลเฟตปราศจากน้ำ 15 กรัมต่อลิตร เพื่อดูดน้ำออกจากกลีเซอรอล เขย่าจน โซเดียมซัลเฟตจับกันเป็นเม็ดและกรองแยกโซเดียมซัลเฟตออก
- นำสารละลายกลีเซอรอลดิบที่ผ่านการปรับสภาพเบื้องต้นหรือกลีเซอรอลดิบปรับสภาพมา วิเคราะห์ปริมาณกลีเซอรอล เถ้า และสารเจือปน (ภาค ผนวก ก.) และความเข้มสี (ภาคผนวก ข.)

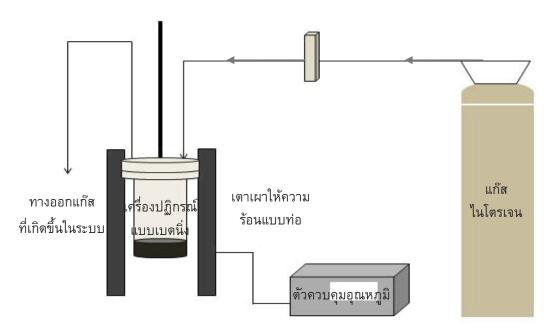

ภาพที่ 2.3 ลักษณะการแยกชั้นของสารละลายกลีเซอรอลดิบที่ทำการปรับสภาพเบื้องต้นด้วย (ก) กรดฟอสฟอริกเข้มขัน และตามด้วย (ข) โซเดียมไฮดรอกไซด์เข้มขัน 12.5 โมลต่อลิตร


2.4.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการสกัดด้วยตัวทำละลาย ก. การศึกษาผลของการสกัดด้วยสารสกัดมีขั้วและอัตราส่วนการสกัด

- บรรจุสารละลายกลีเซอรอลดิบที่ผ่านการปรับสภาพเบื้องต้นแล้วปริมาตร 25 มิลลิลิตร ใน ขวดรูปชมพู่ขนาด 125 มิลลิลิตร เติมเมทานอลปริมาตร 12.5 มิลลิลิตร (คิดเป็น อัตราส่วนระหว่างเมทานอลต่อกลีเซอรอลเท่ากับ 0.5:1 โดยปริมาตร)
- นำไปเขย่าที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 4 ชั่วโมง
- นำสารละลายใส่ในกรวยแยกและตั้งทิ้งไว้ 12 ชั่วโมง เพื่อให้เกิดการแยกชั้นของสารละลาย โดยสารละลายชั้นล่างจะเป็นชั้นที่มีเกลือมากและสารละลายชั้นบนจะเป็นสารละลายผสม ระหว่างกลีเซอรอลและเมทานอล ดังภาพที่ 2.4(ก)
- เทแยกสารละลายชั้นบนออกและนำไปอบไล่เมทานอลที่อุณหภูมิ 95 องศาเซลเซียส เป็น เวลา 12 ชั่วโมง
- วิเคราะห์ปริมาณกลีเซอรอล เถ้า และสารเจือปนตามภาคผนวก ก. และความเข้มสีตาม ภาคผนวก ข.
- ทำการทดลองซ้ำโดยเปลี่ยนชนิดของสารสกัดมีขั้วเป็นเอทานอล และโพรพานอล และปรับ อัตราส่วนของสารสกัดต่อสารละลายกลีเซอรอลปรับสภาพเท่ากับ 1 2 3 และ 4 ตามลำดับ

ข. การศึกษาผลของการสกัดด้วยสารสกัดไม่มีขั้วและอัตราส่วนการสกัด

- บรรจุสารละลายกลีเซอรอลดิบที่ผ่านการปรับสภาพเบื้องต้นแล้วปริมาตร 25 มิลลิลิตรใน ขวดรูปชมพู่ขนาด 125 มิลลิลิตร เติมเฮกเซนปริมาตร 12.5 มิลลิลิตร (คิดเป็นอัตราส่วน ระหว่างเฮกเซนต่อกลีเซอรอลเท่ากับ 0.5:1 โดยปริมาตร)
- นำไปเขย่าที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 4 ชั่วโมง
- นำสารละลายใส่ในกรวยแยกและตั้งทิ้งไว้ 12 ชั่วโมง เพื่อให้เกิดการแยกชั้นของสารละลาย โดยชั้นล่างจะเป็นชั้นของสารละลายกลีเซอรอล ส่วนชั้นบนจะเป็นชั้นของกรดไขมันอิสระที่ ละลายอยู่ในตัวทำละลายไม่มีขั้ว ดังภาพที่ 3.4(ข)
- เทแยกสารละลายชั้นล่างหรือชั้นของสารละลายกลีเซอรอลไปอบที่อุณหภูมิ 95 องศา เซลเซียส เป็นเวลา 12 ชั่วโมง
- วิเคราะห์ปริมาณกลีเซอรอล เถ้า และสารเจือปนตามภาคผนวก ก. และความเข้มสีตาม ภาคผนวก ข.
- ทำการทดลองซ้ำโดยเปลี่ยนชนิดของสารสกัดไม่มีขั้วเป็นไดเอทิลอีเทอร์ และปรับอัตราส่วน ของสารสกัดต่อสารละลายกลีเซอรอลปรับสภาพเท่ากับ 1 2 3 และ 4 ตามลำดับ


ภาพที่ 2.4 ลักษณะการแยกชั้นของสารละลายกลีเซอรอลที่สกัดด้วย (ก) สารสกัดมีขั้ว และ (ข) สารสกัด ไม่มีขั้ว

2.4.3 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับ

ก. การเตรียมถ่านชาร์จากกากตะกอนบำบัดน้ำเสีย

- บรรจุกากตะกอนจากการบำบัดน้ำเสียที่ผ่านการทำความสะอาดและอบแห้งแล้วประมาณ 50 กรัม ลงในเครื่องปฏิกรณ์แบบเบดนิ่ง (ภาพที่ 2.5)
- ทำการเพิ่มอุณหภูมิอย่างช้าๆ จาก 105 องศาเซลเซียส ไปที่ 400 องศาเซลเซียส ด้วยอัตรา การให้ความร้อน 10 องศาเซลเซียสต่อนาที และให้ความร้อนต่อเนื่องที่อุณหภูมิ 400 องศา เซลเซียส เป็นเวลา 2 ชั่วโมง ภายใต้ภาวะแก๊สในโตรเจนที่อัตราการไหล 50 มิลลิลิตรต่อ นาที เมื่อครบกำหนดเวลา ทิ้งให้เย็นก่อนนำออกจากเครื่องปฏิกรณ์แบบเบดนิ่ง

- นำของแข็งที่ได้บดให้มีขนาดเล็กกว่า 0.25 มิลลิเมตร ร่อนด้วยตะแกรงเบอร์ 60 และอบที่ อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง เก็บผงถ่านชาร์ที่ได้ในโถดูดความชื้นเพื่อ นำไปกระตุ้นต่อไป
- วิเคราะห์องค์ประกอบของถ่านชาร์แบบประมาณ (Proximate analysis, ASTM D3172-3175) เพื่อหาปริมาณความชื้น สารระเหย เถ้า และคาร์บอนคงตัว (ภาคผนวก ค)

ภาพที่ 2.5 เครื่องปฏิกรณ์แบบเบดนิ่งสำหรับคาร์บอในซ์กากตะกอนและการกระตุ้นถ่านชาร์

ข. การกระตุ้นถ่านชาร์

การกระตุ้นเป็นวิธีการเพิ่มรูพรุน หมู่ฟังก์ชัน หรือพื้นที่ผิวให้กับถ่านชาร์ ผลิตภัณฑ์ที่ได้ จากการกระตุ้นเรียกว่าถ่านกัมมันต์ งานวิจัยนี้ทำการกระตุ้นถ่านชาร์ด้วยความร้อนและการ กระตุ้นด้วยวิธีทางเคมีโดยใช้สารเคมี 3 ชนิด วิธีดำเนินงานมีดังนี้

ข.1 การกระตุ้นถ่านกัมมันต์ด้วยความร้อน

- นำถ่านชาร์ประมาณ 10 กรัม ไปกระตุ้นในเครื่องปฏิกรณ์แบบเบดนิ่ง ให้ความร้อนใน เตาเผาแบบท่อภายใต้ภาวะแก๊สในโตรเจนที่อัตราการไหล 50 มิลลิลิตรต่อนาที อัตรา การให้ความร้อน 10 องศาเซลเซียสต่อนาที จนถึงอุณหภูมิ 500 องศาเซลเซียส และให้ ความร้อนต่อเนื่องที่อุณหภูมิดังกล่าว เป็นเวลา 30 นาที
- เมื่อครบกำหนดเวลา ทิ้งตัวอย่างให้เย็นก่อนนำออกจากเครื่องปฏิกรณ์แบบเบดนิ่ง แล้ว นำมาล้างด้วยกรดไฮโดรคลอริกความเข้มข้น 3 โมลต่อลิตร ปริมาตร 500 มิลลิลิตร และ ล้างด้วยน้ำปราศจากไอออนจนมีค่าความเป็นกรด-เบส คงที่
- นำไปอบที่อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จะได้ถ่านกัมมันต์ที่กระตุ้น ด้วยความร้อน
- วิเคราะห์สมบัติของถ่านกัมมันต์ คือ องค์ประกอบแบบประมาณ (ภาคผนวก ค) ปริมาณ หมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ (Oxygen-containing surface

functional groups) โดยใช้วิธี Boehm titration [48] (ภาคผนวก ง) และพื้นที่ผิวด้วยวิธี Bruneur-Emmet-Teller (BET) เพื่อหาพื้นที่ผิวรูพรุนของถ่านกัมมันต์ ปริมาณรูพรุนรวม (Total pore volume) และขนาดรูพรุนเฉลี่ย (Average pore diameters) ด้วยวิธี Nitrogen Adsorption Isotherm ที่อุณหภูมิ 77 เคลวิน

- ทำการทดลองซ้ำโดยเปลี่ยนอุณหภูมิการกระตุ้นเป็น 600 ถึง 900 องศาเซลเซียส

ข.2 การกระตุ้นถ่านกัมมันต์ด้วยวิธีทางเคมี

- นำน้ำหนักถ่านชาร์ประมาณ 10 กรัม บรรจุลงในขวดรูปชมพู่ขนาด 250 มิลลิลิตร
- เตรียมสารละลายโพแทสเซียมไฮดรอกไซด์โดยชั่งโพแทสเซียมไฮดรอกไซด์ น้ำหนัก 10.0 กรัม (คิดเป็นอัตราส่วนโดยน้ำหนักระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์ เท่ากับ 1) ละลายด้วยน้ำปราศจากไอออนแล้วปรับให้มีปริมาตร 100 มิลลิลิตร ด้วยขวด ปรับปริมาตร
- เติมสารละลายโพแทสเซียมไฮดรอกไซด์ปริมาตร 100 มิลลิลิตร ลงในขวดรูปชมพู่ที่มี ถ่านชาร์อยู่ และนำไปเขย่าที่อัตราการเขย่า 200 รอบต่อนาที เวลาดูดซับสารกระตุ้น 20 ชั่วโมง
- กรองแยกถ่านชาร์ที่ผ่านการกระตุ้นด้วยเครื่องกรองแบบสุญญากาศ
- นำถ่านชาร์ที่ดูดซับสารเคมีไปกระตุ้นในเครื่องปฏิกรณ์แบบเบดนิ่ง ให้ความร้อนภายใต้ ภาวะแก๊สในโตรเจนที่อัตราการไหล 50 มิลลิลิตรต่อนาที อัตราการให้ความร้อน 10 องศาเซลเซียสต่อนาที จนถึงอุณหภูมิ 500 องศาเซลเซียส และให้ความร้อนต่อเนื่องที่ อุณหภูมิดังกล่าว เป็นเวลา 30 นาที
- เมื่อครบกำหนดเวลา ทิ้งตัวอย่างให้เย็นก่อนนำออกจากเตาเผา แล้วนำมาล้างด้วยกรด ไฮโดรคลอริกความเข้มขัน 3 โมลต่อลิตร ปริมาตร 500 มิลลิลิตร และล้างด้วยน้ำ ปราศจากไอออนจนมีค่าความเป็นกรด-เบส คงที่
- นำตัวอย่างไปอบที่อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จะได้ถ่านกัมมันต์ที่ กระตุ้นด้วยวิธีทางเคมี
- นำถ่านกัมมันต์ที่เตรียมได้มาวิเคราะห์องค์ประกอบของถ่านกัมมันต์แบบประมาณ (ภาคผนวก ค) วิเคราะห์หาปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ (ภาคผนวก ง) และพื้นที่ผิวด้วยวิธี BET
- ทำการทดลองซ้ำโดยเปลี่ยนอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นต่อถ่านชาร์เป็น 2 3 4 5 และ 6 และเปลี่ยนสารที่ใช้กระตุ้นเป็นโพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก เวลาดูดซับสารกระตุ้นเป็น 5 10 15 และ 25 ชั่วโมง และอุณหภูมิการกระตุ้นเป็น 600 700 800 และ 900 องศาเซลเซียส ตามลำดับ

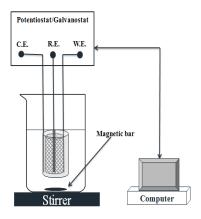
ค. การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการดูดซับด้วยถ่านกัมมันต์

- นำกลีเซอรอลดิบปรับสภาพมาเติมถ่านกัมมันต์ที่เตรียมได้ที่อัตราส่วนระหว่างถ่าน กัมมันต์และกลีเซอรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตร ในขวดรูปชมพู่

- นำไปเขย่าที่ความเร็วรอบ 250 รอบต่อนาที ที่อุณหภูมิห้อง และความดันบรรยากาศ เป็น เวลา 90 นาที
- เมื่อครบกำหนดเวลาแล้ว นำกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับมากรองเพื่อ แยกตัวดูดซับออกจากกลีเซอรอล
- นำกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์มาวิเคราะห์ปริมาณกลีเซอรอล ปริมาณเถ้า ปริมาณสิ่งเจือปน ค่าความเข้มสี ค่าความหนาแน่น และค่าความหนืด (ภาคผนวก ก)
- ทำการทดลองซ้ำโดยเปลี่ยนเวลาในการดูดซับเป็น 60 120 และ 180 นาที และความเร็ว รอบในการเขย่าเป็น 150 200 และ 300 รอบต่อนาที

ง. การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพโดยการดูดซับซ้ำ

- นำกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับครั้งที่ 1 มาใส่ใน ขวดรูปชมพู่แล้วเติมถ่านกัมมันต์ที่กระตุ้นด้วย KOH ที่อัตราส่วนระหว่าง KOH และถ่าน ชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และอุณหภูมิการกระตุ้น 800 องศา เซลเซียส เป็นเวลา 30 นาที โดยใช้อัตราส่วนระหว่างถ่านกัมมันต์และกลีเซอรอลดิบปรับ สภาพเท่ากับ 67 กรัมต่อลิตร ที่อัตราเร็วรอบและเวลาในการดูดซับที่ภาวะที่เหมาะสม
- นำกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับครั้งที่ 2 มากรองด้วยกระดาษกรองเบอร์ 42 เพื่อแยกตัวดูดซับออกจากกลีเซอรอล
- นำกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับครั้งที่ 2 ไปทำการดูดซับซ้ำเป็นครั้งที่ 3 ใน ลักษณะเดิมด้วยถ่านกัมมันต์ที่กระตุ้นด้วย KOH
- เมื่อครบกำหนดเวลาแล้ว นำกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับมากรองเพื่อ แยกตัวดูดซับออกจากกลีเซอรอล
- นำกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับซ้ำครั้งที่ 2 และ ครั้งที่ 3 มาวิเคราะห์ปริมาณกลีเซอรอล ปริมาณเถ้า ปริมาณสิ่งเจือปน ความเข้มสี ความหนาแน่น และความหนืด (ภาคผนวก ก)


จ. การฟื้นฟูสภาพถ่านกัมมันต์และการทดสอบประสิทธิภาพ

- นำถ่านกัมมันต์ที่ผ่านการใช้งานแล้วไปแช่ในเฮกเซน (Hexane) และไดเอทิลอีเทอร์ (Diethyl ether) ที่อัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ เท่ากับ 1 ถึง 3
- นำไปเขย่าที่ความเร็วรอบ 200 รอบต่อนาที เป็นเวลา 24 ชั่วโมง จากนั้นกรองแยก ถ่านกัมมันต์ด้วยกระดาษกรองเบอร์ 1
- อบถ่านกัมมันต์ที่อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จะได้ถ่านกัมมันต์ที่ ผ่านการฟื้นฟูสภาพ
- วิเคราะห์องค์ประกอบแบบประมาณ (ภาคผนวก ค) ของถ่านกัมมันต์ที่ผ่านการฟื้นฟู สภาพ วิเคราะห์ปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ (ภาคผนวก ง) และพื้นที่ผิวด้วยวิธี BET

- นำกลีเซอรอลดิบปรับสภาพในขั้นตอนที่ 2.4.1 มาเติมถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพ ที่อัตราส่วนระหว่างถ่านกัมมันต์และกลีเซอรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตรที่ ความเร็วรอบ 250 รอบต่อนาที และเวลาการดูดซับ 120 นาที
- เมื่อครบกำหนดเวลา นำกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์มากรอง เพื่อแยกตัวดูดซับออกจากกลีเซอรอล
- นำกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่ ผ่านการฟื้นฟูสภาพมาวิเคราะห์ปริมาณกลีเซอรอล ปริมาณเถ้า ปริมาณสิ่งเจือปน ความ เข้มสี ความหนาแน่น และความหนืด (ภาคผนวก ก)

2.4.4 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้า ก.การศึกษาความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอล

- บรรจุสารละลายกลีเซอรอลทางการค้าความเข้มข้น 0.3 โมลต่อลิตร ปริมาตร 300 มิลลิลิตร ในปีกเกอร์ขนาด 600 มิลลิลิตร
- ปรับความเป็นกรด-เบสของสารละลายกลีเซอรอลให้มีค่าเท่ากับ 1 ด้วยกรดซัลฟูริก
- นำสารละลายกลีเซอรอลที่ผ่านการปรับค่าความเป็นกรด-เบสเริ่มต้นแล้วต่อเข้ากับเครื่อง Potentiostat/Galvanostat ดังภาพที่ 3.6 โดยใช้ตะแกรงแพลทินัมพื้นที่ผิว 31.82 ตาราง เซนติเมตร เป็นขั้วไฟฟ้าใช้งาน ตะแกรงแพลทินัมพื้นที่ผิว 121.38 ตารางเซนติเมตร เป็นขั้วไฟฟ้าร่วม และขั้ว Ag/AgCl เป็นขั้วไฟฟ้าอ้างอิง และทำการตรวจกราดศักย์ไฟฟ้า ในช่วง +150 ถึง -0.50 โวลต์เทียบกับ Ag/AgCl ด้วยอัตราการตรวจกราด (Scan rate) 5 มิลลิโวลต์ต่อวินาที และอัตราการปั่นกวน 650 รอบต่อนาที
- ทำการทดลองซ้ำโดยปรับค่าความเป็นกรด-เบสของสารละลายกลีเซอรอลให้เท่ากับ 7 และ 11 โดยใช้สารละลายโซเดียมไฮดรอกไซด์เข้มข้น 1 โมลต่อลิตร
- ทำการทดลองซ้ำโดยใช้กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ภาวะที่ดี ที่สุดจากข้อ 2.4.2-2.4.3

ภาพที่ 2.6 ชุดการทดลองเคมีไฟฟ้าเพื่อศึกษาความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอล

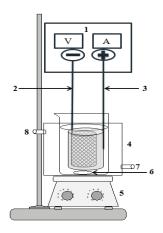
ข. การศึกษาผลของตัวแปรต่อการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์

ข.1 ความเป็นกรด-เบสเริ่มต้น

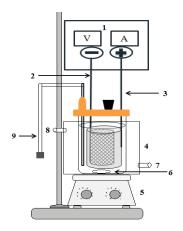
- บรรจุสารละลายกลีเซอรอลความเข้มข้น 0.3 โมลต่อลิตร ปริมาตร 500 มิลลิลิตร ใน บีกเกอร์ขนาด 600 มิลลิลิตร
- ปรับค่าความเป็นกรด-เบสให้เท่ากับ 1 ด้วยกรดซัลฟูริกเข้มข้น
- นำกลีเซอรอลต่อเข้ากับอุปกรณ์ดังภาพที่ 2.7 โดยใช้ตะแกรงแพลทินัมพื้นที่ผิว 31.82 ตารางเซนติเมตร เป็นขั้วแคโทด และตะแกรงแพลทินัมพื้นที่ผิว 121.38 ตาราง เซนติเมตรเป็นขั้วแอโนด
- ป้อนกระแสไฟฟ้าตรงที่ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร เก็บตัวอย่างสารละลายกลีเซอรอลครั้งละ 5 มิลลิลิตร และทำการทดลองเป็นเวลา 24 ชั่วโมง
- วิเคราะห์ความเข้มข้นของกลีเซอรอลที่เหลือและความเข้มข้นของผลิตภัณฑ์ที่เกิดขึ้นด้วย เครื่อง HPLC (ภาคผนวก ก.1)
- ทำการทดลองซ้ำโดยใช้สารละลายกลีเซอรอลที่มีค่าความเป็นกรด-เบสเท่ากับ 7 และ 11 โดยใช้สารละลายโซเดียมไฮดรอกไซด์เข้มขัน 1 โมลต่อลิตรเป็นสารปรับความเป็นกรด-เบส

ข.2 ชนิดขั้วไฟฟ้า

- บรรจุสารละลายกลีเซอรอลความเข้มขัน 0.3 โมลต่อลิตร ปริมาตร 500 มิลลิลิตรในปีก เกอร์ขนาด 600 มิลลิลิตร ที่ผ่านการปรับค่าความเป็นกรด-เบสเริ่มต้นที่เหมาะสมจากข้อ ข.1
- นำกลีเซอรอลต่อเข้ากับอุปกรณ์ดังภาพที่ 2.7 เปลี่ยนชนิดขั้วแคโทดที่ทำการศึกษาคือ ตะแกรงแพลทินัม ตะแกรงไทเทเนียมเคลือบรูทีเนียมออกไซด์ และตะแกรงเหล็กกล้าไร้ สนิม และใช้ตะแกรงแพลทินัมพื้นที่ผิว 121.38 ตารางเซนติเมตรเป็นขั้วแอโนด
- ป้อนกระแสไฟฟ้าตรงที่ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร เก็บตัวอย่างสารละลายกลีเซอรอลครั้งละ 5 มิลลิลิตร และทำการทดลองเป็นเวลา 24 ชั่วโมง
- วิเคราะห์ความเข้มข้นของกลีเซอรอลที่เหลือและความเข้มข้นของผลิตภัณฑ์ที่เกิดขึ้นด้วย เครื่อง HPLC (ภาคผนวก ก.1)


ข.3 ความหนาแน่นกระแสไฟฟ้า

- บรรจุสารละลายกลีเซอรอลความเข้มขัน 0.3 โมลต่อลิตร ปริมาตร 500 มิลลิลิตรในปีก เกอร์ขนาด 600 มิลลิลิตร ที่ผ่านการปรับค่าความเป็นกรด-เบสเริ่มต้นที่เหมาะสมจากข้อ ข.1
- นำกลีเซอรอลต่อเข้ากับอุปกรณ์ดังภาพที่ 2.7 โดยใช้ขั้วไฟฟ้าที่เหมาะสมจาก ข้อ ข.2 เป็นขั้วแคโทด และตะแกรงแพลทินัมพื้นที่ผิว 121.38 ตารางเซนติเมตร เป็นขั้วแอโนด


- ป้อนกระแสไฟฟ้าตรงที่ความหนาแน่นกระแสไฟฟ้าที่ทำการศึกษาคือ 0.08-0.27แอมแปร์ ต่อตารางเซนติเมตร เก็บตัวอย่างสารละลายกลีเซอรอลครั้งละ 5 มิลลิลิตร และทำการ ทดลองเป็นเวลา 24 ชั่วโมง
- วิเคราะห์ความเข้มข้นของกลีเซอรอลที่เหลือและความเข้มข้นของผลิตภัณฑ์ที่เกิดขึ้นด้วย เครื่อง HPLC (ภาคผนวก ก.1)

ข.4 ชนิดและความเข้มข้นของสารตัวเติม

- บรรจุสารละลายกลีเซอรอลความเข้มข้น 0.3 โมลต่อลิตร ปริมาตร 500 มิลลิลิตร ในปีก เกอร์ขนาด 600 มิลลิลิตร ที่ผ่านการปรับค่าความเป็นกรด-เบสเริ่มตันที่เหมาะสมจากข้อ ข.1 เติมสารตัวเติมในปริมาณที่ต้องการ
- นำกลีเซอรอลต่อเข้ากับอุปกรณ์ดังภาพที่ 2.7 โดยใช้ขั้วไฟฟ้าที่เหมาะสมจากข้อ ข.2 เป็นขั้วไฟฟ้าแคโทด และตะแกรงแพลทินัมพื้นที่ผิว 121.38 ตารางเซนติเมตร เป็น ขั้วแอโนด
- ป้อนกระแสไฟฟ้าตรงที่ความหนาแน่นกระแสไฟฟ้าที่เหมาะสมจากข้อ ข.3 เก็บตัวอย่าง สารละลายกลีเซอรอลครั้งละ 5 มิลลิลิตร และทำการทดลองเป็นเวลา 24 ชั่วโมง
- วิเคราะห์ความเข้มข้นของกลีเซอรอลที่เหลือและความเข้มข้นของผลิตภัณฑ์ที่เกิดขึ้นด้วย เครื่อง HPLC (ภาคผนวก ก.1)

ภาพที่ 2.7 ชุดการทดลองเคมีไฟฟ้าเพื่อศึกษา การเปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่า (1) เครื่องจ่ายกระแสไฟฟ้าตรง (2) ขั้วแคโทด (3) ขั้วแอโนด (4) ปีกเกอร์ (5) เครื่องกวนสาร (6) แท่งแม่เหล็กกวนสาร (7) ทางน้ำหล่อเย็นเข้า (8) ทางน้ำหล่อเย็นออก

ภาพที่ 2.8 ชุดการทดลองเคมีไฟฟ้าเพื่อศึกษา การเปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่า (1) เครื่องจ่ายกระแสไฟฟ้าตรง (2) ขั้วแคโทด (3) ขั้วแอโนด (4) บีกเกอร์ (5) เครื่องกวนสาร (6) แท่งแม่เหล็กกวนสาร (7) ทางน้ำหล่อเย็นเข้า (8) ทางน้ำหล่อเย็นออก (9) ท่อผ่านแก๊ส ไฮโดรเจน

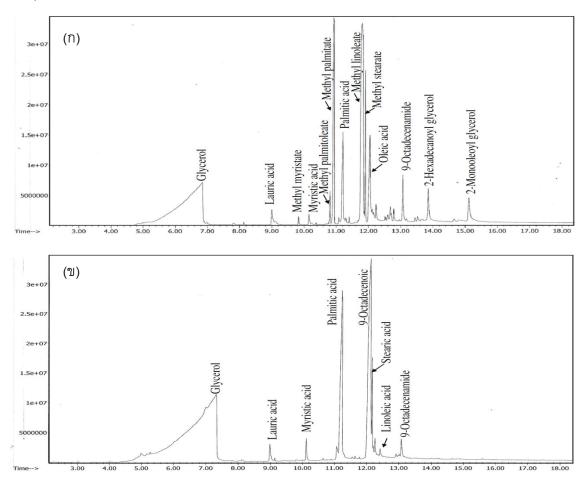
บทที่ 3

ผลการทดลองและการวิจารณ์ผล : การเพิ่มความบริสุทธิ์ของ กลีเซอรอลดิบปรับสภาพ

งานวิจัยนี้ศึกษาปัจจัยและภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับ สภาพด้วยการสกัดด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัด น้ำเสีย ตัวแปรที่ศึกษาในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการสกัดด้วยตัวทำ ละลายคือชนิดของสารสกัดคือสารสกัดมีขั้ว (เมทานอล เอทานอล และโพรพานอล) และสารสกัดไม่มีขั้ว (ไดเอทิลอีเทอร์และเฮกเซน) อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเบื้องตัน (0.5-4.0 โดยปริมาตร) ส่วนตัวแปรที่ศึกษาในการเตรียมถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสีย คือ ชนิดสาร กระตุ้นที่ใช้ในการเตรียมถ่านกัมมันต์ ได้แก่ โพแทสเซียมไฮดรอกไซด์ (KOH) โพแทสเซียมคาร์บอเนต (K_2CO_3) และกรดฟอสฟอริก (H_3PO_4) ที่อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เท่ากับ 1.0-6.0 เวลาดูดซับสารกระตุ้น 5-25 ชั่วโมง อุณหภูมิการกระตุ้น 500-900 องศาเซลเซียส และศึกษา ภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการดูดซับ ผลการทดลองที่ ได้และการวิเคราะห์ผลมีดังนี้

3.1 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการทางเคมื

3.1.1 สมบัติของกลีเซอรอลดิบและกลีเซอรอลดิบปรับสภาพ

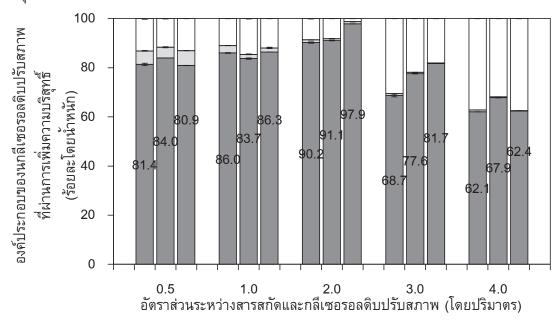

ตารางที่ 3.1 แสดงองค์ประกอบของกลีเซอรอลดิบจากกระบวนการผลิตไบโอดีเซลโดยใช้น้ำมัน พืชหรือไขมันสัตว์ที่ใช้งานแล้วเป็นสารตั้งต้น พบว่ากลีเซอรอลดิบมีสภาพเป็นเบส มีความหนาแน่นสูง กว่าน้ำเล็กน้อย มีปริมาณกลีเซอรอลร้อยละ 29.8 ซึ่งต่ำกว่ามาตรฐาน BS 2621:1979 ประมาณ 2.68 เท่า และมีปริมาณสารเจือปนอื่นร้อยละ 62.3 ซึ่งสูงกว่ามาตรฐานประมาณ 6.23 เท่า และมีสีน้ำตาลเข้ม เมื่อพิจารณาองค์ประกอบของกลีเซอรอลดิบ พบว่านอกจากกลีเซอรอลดิบจะประกอบด้วยกลีเซอรอล เป็นองค์ประกอบหลักแล้วยังประกอบด้วยสารเจือปนหลายชนิดจำพวกกรดไขมันและอนุพันธ์ของกรด ไขมัน เช่น กรดลอริก (Lauric acid) เมทิลมายริสเทต (Methyl myristate) กรดมายริสทิก (Myristic acid) เมทิลปาล์มิโทลิเอต (Methyl palmitoleate) เมทิลปาล์มิเทต (Methyl palmitate) กรดปาล์มิติก (Palmitic acid) เมทิลลิโนลิเอต (Methyl linoleate) กรดโอเลอิก (Oleic acid) เมทิลสเตียเรต (Methyl stearate) ดังแสดงในภาพที่ 3.1 (ก) ซึ่งเป็นองค์ประกอบหลักที่พบได้ในน้ำมันพืชที่ใช้เป็นสารตั้งต้นใน กระบวนการผลิตไบโอดีเซล ดังนั้นจึงต้องมีการปรับสภาพเบื้องต้นเพื่อให้กลีเซอรอลดิบมีสิ่งเจือปน ลดลงและมีความบริสุทธิ์มากขึ้น

ตารางที่ 3.1 องค์ประกอบของกลีเซอรอลดิบจากกระบวนการผลิตไบโอดีเซลที่ใช้น้ำมันใช้แล้วเป็นสารตั้งต้น กลีเซอรอลดิบปรับสภาพ และกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการทางเคมี

r					
	ค่ามาตรฐาน BS 2621:			กลีเชอรอลดิบปรับสภาพที่ผ่านการเพิ่ม	าาพที่ผ่านการเพิ่ม
- (((((((((((((((((((1979	100 000 000 1000 1000 1000	กลีเซอรอลดิบ	ความบริสุทธิ์ด้วยกระบวนการทางเคมี	ะบวนการทางเคมี
ยงที่บระกยบ	[40]	נואים בשמשות	ปรับสภาพ ^ก	การสกัดด้วย โพรพายล	การสกัดด้วย ไดเอกิลลีเพอร์ใ
				NDN N N	evicurinderid d
ความเป็นกรด-เบส		9.5-9.8	7.0-7.2	5.5-6.0	5
กลีเซอรอล (ร้อยละ)	> 80	29.8 ± 0.14	51.88 ± 0.16	97.85 ± 0.03	86.57 ± 1.7
เถ้า (ร้อยละ)	≥ 10	7.90 ± 0.5	23.37 ± 1.08	0.86 ± 0.07	12.40 ± 0.06
สารเจือปน (ร้อยละ)	≥ 10	62.3 ± 1.04	24.75 ± 0.16	1.29 ± 0.05	1.03 ± 0.31
ความหนาแน่นที่ 20 องศาเซลเซียส (กรัม ต่อลูกบาศก์เซนติเมตร)		1.03 ± 0.02	1.273 ± 0.03	1.276 ± 0.05	1.271 ± 0.017
ความหน็ดที่ 40 องศาเซลเซียส (เซนติส โตกส์)		48.3 ± 0.17	53.8 ± 1.29	69 ± 0.74	78 ± 1.12
สี (หน่วยสี Pt-Co)		484,855 \pm	$221,575 \pm 7,257$	$15,440 \pm 1,072$	$6,570\pm64$
		10,499			

็กลีเซอรอลดิบปรับสภาพด้วยกรดฟอสฟอริกเข้มข้นที่ความเป็นกรด-เบส เท่ากับ 2.5 และโซเดียมไฮดรอกไซด์เข้มข้น 12.5 โมลต่อลิตร ที่ความเป็นกรด-เบส เท่ากับ 7 ็กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วยไดเอทิลอีเทอร์ที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเท่ากับ 1.0 ็กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วยโพรพานอลที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเท่ากับ 2.0

เมื่อนำกลีเซอรอลดิบมาทำการปรับสภาพเบื้องต้นตามงานวิจัยของ [46] โดยการปรับค่าความ เป็นกรด-เบส ด้วยกรดฟอสฟอริกเข้มข้นที่ค่าความเป็นกรด-เบส เท่ากับ 2.5 พบว่ากลีเซอรอลดิบที่ผ่าน การปรับภาพหรือกลีเซอรอลดิบปรับสภาพ ที่ได้จะมีความเข้มสีลดลง 2.19 เท่า ความหนืดเพิ่มขึ้น 1.11 เท่า ปริมาณสารเจือปนลดลง 2.52 เท่า และมีเถ้าเพิ่มขึ้น 2.96 เท่า และเมื่อพิจารณาองค์ประกอบของ กลีเซอรอลดิบปรับสภาพ (ภาพที่ 3.1(ข)) พบว่ากลีเซอรอลดิบปรับสภาพยังประกอบด้วยกลีเซอรอล เป็นองค์ประกอบหลักโดยมีกลีเซอรอลเพิ่มขึ้นเป็นร้อยละ 51.88 ดังแสดงในภาพที่ 3.1(ข) โดยสิ่งเจือปน ที่ถูกแยกออกด้วยการปรับสภาพเบื้องต้นด้วยกรดฟอสฟอริก ได้แก่ เมทิลมายริสเทต เมทิลปาล์มิโทลิ เอต เมทิลปาล์มิเทต กรดโอเลอิก และเมทิลสเตียเรต เป็นตัน เนื่องจากกรดที่เติมในกลีเซอรอลดิบจะ แตกตัวให้โปรตอนและเข้าไปแทนที่โซเดียมในสารประกอบสบู่ เกิดเป็นกรดไขมันอิสระซึ่งเป็น สารประกอบอินทรีย์ที่ไม่มีขั้วจึงแยกชั้นออกจากกลีเซอรอลตึงเป็นสารมีขั้ว อย่างไรก็ดีแม้ว่าการปรับ สภาพกลีเซอรอลดิบด้วยกรดจะสามารถเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบได้ แต่กลีเซอรอลดิบปรับ สภาพที่ได้ยังคงมีความบริสุทธิ์ต่ำกว่ามาตรฐาน BS 2621:1979 จึงต้องมีการศึกษาการเพิ่มความ บริสุทธิ์ของกลีเซอรอลดิบปรับสภาพในขั้นตอนต่อไป


ภาพที่ 3.1 องค์ประกอบของ (ก) กลีเซอรอลดิบจากกระบวนการผลิตไบโอดีเซล และ (ข) กลีเซอรอลดิบ ปรับสภาพ

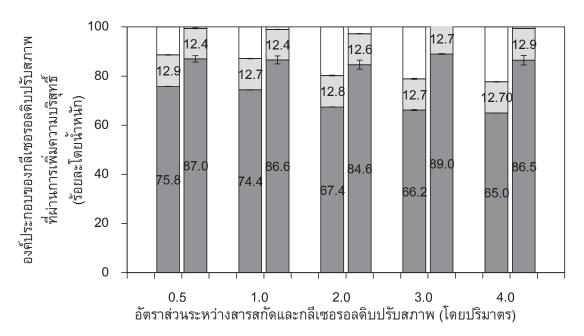
3.1.2 ผลของตัวแปรต่อการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพด้วยการสกัดด้วยตัวทำ ละลาย

ก. ผลของการสกัดด้วยสารสกัดมีขั้วและอัตราส่วนการสกัด

การเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพจะดำเนินการโดยการสกัดด้วยสารสกัดมีขั้ว ได้แก่ เมทานอล เอทานอล และโพรพานอล โดยสารสกัดมีขั้วจะละลายกลีเซอรอลแต่ไม่ละลายเกลือและกรด ไขมันอิสระทำให้สามารถแยกสารดังกล่าวออกจากกลีเซอรอลได้ เมื่อนำของผสมกลีเซอรอลและสารสกัด ไปอบเพื่อไล่สารสกัดออกจะได้กลีเซอรอลที่มีความบริสุทธิ์มากขึ้น ในที่นี้จะศึกษาอัตราส่วนโดยปริมาตร ระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพในช่วง 0.5-4 ระยะเวลาการสกัด 4 ชั่วโมง และเขย่าที่ ความเร็วรอบ 200 รอบต่อนาที

ภาพที่ 3.2 แสดงปริมาณกลีเซอรอล เถ้า และสารเจือปนอื่นในกลีเซอรอลดิบปรับสภาพเมื่อผ่าน การเพิ่มความบริสุทธิ์ด้วยสารสกัดมีขั้วทั้ง 3 ชนิดคือ เมทานอล เอทานอล และโพรพานอล พบว่า ปริมาณเถ้าในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะลดลงเมื่อใช้สารสกัดมากขึ้น เนื่องจากเกลือในกลีเซอรอลดิบปรับสภาพจะไม่ละลาย (หรือละลายเล็กน้อย) ในสารสกัดมีขั้วส่งผลให้มี เกลือตกค้างในชั้นกลีเซอรอลดิบที่ผ่านการสกัดลดลง เมื่อพิจารณาปริมาณสารเจือปนอื่นซึ่งได้แก่ น้ำ และสารอินทรีย์อื่นที่ไม่ใช่กลีเซอรอล (Matter organic non glycerol, MONG) และความบริสุทธิ์ของกลีเซ อรอลดิบปรับสภาพ พบว่าการใช้สารสกัดมีขั้วทั้ง 3 ชนิด ที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบ ปรับสภาพเท่ากับ 0.5-2 จะส่งผลต่อปริมาณสารเจือปนอื่นและความบริสุทธิ์ของกลีเซอรอลดิบปรับ สภาพอย่างเด่นชัด กล่าวคือเมื่อปริมาณสารสกัดเพิ่มขึ้นปริมาณสารเจือปนอื่นจะลดลงส่งผลให้ความ บริสุทธิ์ของกลีเซอรอลเพิ่มขึ้นจนถึงที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเท่ากับ 2

ภาพที่ 3.2 องค์ประกอบของกลีเซอรอลดิบปรับสภาพ ได้แก่ กลีเซอรอล (■) เถ้า (■) และสารเจือปน (□) ที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วยเมทานอล (แท่งซ้าย) เอทานอล (แท่งกลาง) และ โพรพานอล (แท่งขวา)


จากนั้นปริมาณสารเจือปนอื่นจะเพิ่มสูงขึ้นและความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพจะลดลง ความ บริสุทธิ์ของกลีเซอรอลที่เพิ่มขึ้นในช่วงแรกเกิดจากปริมาณสารสกัดที่มากจะสามารถแยกสิ่งเจือปนออก จากกลีเซอรอลได้มาก แต่เมื่อเพิ่มสารสกัดมากกว่าปริมาณที่เหมาะสม สารสกัดที่มากเกินพออาจไป ตกค้างและเจือจางกลีเซอรอลได้ ส่งผลให้ร้อยละสารเจือปนเพิ่มสูงขึ้น ความบริสุทธิ์ของกลีเซอรอลดิบ ปรับสภาพจึงลดลง เมื่อพิจารณาที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเดียวกัน พบว่าการโพรพานอลเป็นสารสกัดจะทำให้กลีเซอรอลมีความบริสุทธิ์มากกว่าสารสกัดมีขั้วตัวอื่นคือ ร้อย ละ 97.9 เนื่องจากโพรพานอลมีสภาพขั้วต่ำกว่าเมทานอลและเอทานอล (สภาพขั้วของเมทานอล เอทา นอล และโพรพานอลมีค่าเท่ากับ 5.1 5.2 และ 4.0 ตามลำดับ [49]) จึงละลายเกลือและสารเจือปนอื่นได้ น้ายกว่า

ข. ผลของการสกัดด้วยสารสกัดไม่มีขั้วและอัตราส่วนการสกัด

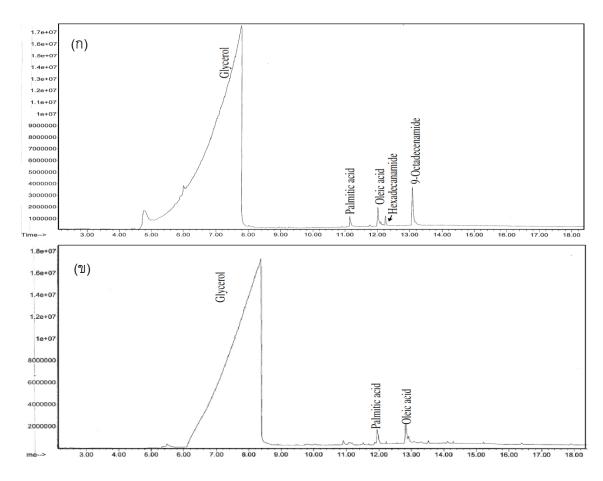
การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยสารสกัดไม่มีขั้วจะดำเนินการโดยใช้ สารสกัด 2 ชนิด ได้แก่ เฮกเซน และไดเอทิลอีเทอร์ โดยสารสกัดไม่มีขั้วจะละลายสารที่ไม่มีขั้วออกจาก ชั้นกลีเซอรอล เช่น กรดไขมัน ทำให้ได้ชั้นกลีเซอรอลที่มีความบริสุทธิ์มากขึ้น โดยจะศึกษาอัตราส่วน โดยปริมาตรระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพในช่วง 0.5-4 ระยะเวลาการสกัด 4 ชั่วโมง และเขย่าที่ความเร็วรอบ 200 รอบต่อนาที

ภาพที่ 3.3 แสดงปริมาณกลีเซอรอล เถ้า และสารเจือปนในกลีเซอรอลดิบปรับสภาพเมื่อผ่าน การเพิ่มความบริสุทธิ์ด้วยสารสกัดไม่มีขั้ว พบว่าปริมาณเถ้าในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสุทธิ์ที่อัตราส่วนต่างๆ จะมีค่าใกล้เคียงกันคือ ประมาณร้อยละ 12-13 เนื่องจากสารสกัดไม่มีขั้ว จะแยกสกัดได้เฉพาะสารที่ไม่มีขั้ว เช่น กรดไขมันอิสระ ส่งผลให้ยังมีการตกค้างของเกลืออยู่ในชั้น กลีเซอรอล เมื่อพิจารณาปริมาณสารเจือปนอื่นซึ่งได้แก่ น้ำและสารอินทรีย์อื่นที่ไม่ใช่กลีเซอรอลและ ความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพ พบว่าอัตราส่วนระหว่างสารสกัดเฮกเซนและกลีเซอรอลดิบ ปรับสภาพเพิ่มขึ้น ปริมาณสารเจือปนอื่นจะเพิ่มขึ้นส่งผลให้ความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพ ลดลง เนื่องจากเฮกเซนมีความสามารถในการละลายน้ำต่ำ (ร้อยละการละลายของเฮกเซนเท่ากับ 0.001 [49]) และสารสกัดที่มากกว่าปริมาณที่เหมาะสมอาจไปตกค้างและเจือจางกลีเซอรอลได้ โดยการใช้สาร สกัดเฮกเซนที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเพิ่มขึ้นจะให้ปริมาณสารเจือปนดลงและค่อนข้างคงที่ที่ทุกอัตราส่วนส่งผลให้ความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพเพิ่มขึ้นจะให้ปริมาณสารเจือปนลดลงและค่อนข้างคงที่ที่ทุกอัตราส่วนส่งผลให้ความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพเพิ่มขึ้น เนื่องจากไดเอทิลอีเทอร์มีค่าเท่ากับ 6.89 [49]) การสกัดด้วยไดเอทิลอีเทอร์จึงสามารถแยกน้ำออกจากกลีเซอรอลดิบปรับสภาพได้มากความบริสุทธิ์ของกลีเซอรอลจึงเพิ่มขึ้น

ภาพที่ 3.4 แสดงผลของชนิดของสารสกัดและอัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับ สภาพต่อการลดลงของสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ พบว่าสีของ กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วยตัวทำละลายจะลดลงมากถึงร้อย ละ 91.03-97.03 เนื่องจากสารสกัดดังกล่าวสามารถแยกโมเลกุลที่ทำให้เกิดสีออกจากชั้นกลีเซอรอล ส่งผลให้ความเข้มสีของกลีเซอรอลลดลง โดยเมื่อใช้สารสกัดไม่มีขั้ว คือไดเอทิลอีเทอร์ที่อัตราส่วน ระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเท่ากับ 1.0 จะทำให้สีของกลีเซอรอลดิบลดลงมากถึงร้อย ละ 97.03 ส่วนการใช้สารสกัดมีขั้วคือ เมทานอลที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับ สภาพเท่ากับ 0.5 จะให้การลดลงของสีร้อยละ 94.96

ภาพที่ 3.3 องค์ประกอบของกลีเซอรอลดิบปรับสภาพได้แก่ กลีเซอรอล (■) เถ้า (■) และสารเจือปน (□) ที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วยเฮกเซน (แท่งซ้าย) และไดเอทิลอีเทอร์ (แท่งขวา)

ภาพที่ 3.4 การลดลงของสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการสกัดด้วยสารสกัดมีขั้วและ ไม่มีขั้ว ได้แก่ เมทานอล (□) เอทานอล (■) โพรพานอล (■) เฮกเซน (■) และไดเอทิลอีเทอร์ (■) ที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพเท่ากับ 0.5-4.0


จากผลการทดลองข้างต้นพบว่าสารสกัดที่ทำให้กลีเซอรอลดิบปรับสภาพมีความบริสุทธิ์มาก ที่สุด คือโพรพานอลที่อัตราส่วนระหว่างโพรพานอลและกลีเซอรอลดิบปรับสภาพเท่ากับ 2.0 (ความ บริสุทธิ์ของกลีเซอรอลร้อยละ 97.85) แต่สารสกัดที่ให้ร้อยละการลดลงของสีมากที่สุดคือ ไดเอทิลอีเทอร์ ที่อัตราส่วนระหว่างใดเอทิลอีเทอร์และกลีเซอรอลดิบปรับสภาพเท่ากับ 1.0 การลดลงของสีร้อยละ 97.03 โดยเมื่อเปรียบเทียบสมบัติของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัด ด้วยโพรพานอลและไดเอทิลอีเทอร์กับกลีเซอรอลดิบปรับสภาพ (ตารางที่ 3.1) พบว่ากลีเซอรอลดิบปรับ สภาพที่ผ่านการสกัดด้วยโพรพานอลมีความบริสุทธิ์ร้อยละ 97.85 หรือคิดเป็นการเพิ่มขึ้นประมาณ 1.88 เท่า ปริมาณเถ้าร้อยละ 0.86 หรือคิดเป็นการลดลง 27.17 เท่า และปริมาณสารเจือปนร้อยละ 1.29 หรือ คิดเป็นการลดลง 19.18 เท่า ส่วนสีลดลง 14.35 เท่า และเมื่อใช้ใดเอทิลอีเทอร์เป็นสารสกัดจะให้ กลีเซอรอลดิบปรับสภาพมีความบริสุทธิ์ร้อยละ 86.57 ซึ่งเป็นการเพิ่มขึ้น 1.66 เท่า ปริมาณเถ้าร้อยละ 12.40 หรือคิดเป็นการลดลง 1.88 เท่า และปริมาณสารเจือปนร้อยละ 1.03 ซึ่งเป็นการลดลง 24.03 เท่า ส่วนสีลดลงมากถึง 33.73 เท่า โดยกลีเซอรอลดิบปรับสภาพที่ผ่านการสกัดด้วยสารทั้ง 2 ชนิดจะมีความ หนืดเพิ่มขึ้นเล็กน้อย ภาพที่ 3.5 แสดงสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย การสกัดด้วยโพรพานอลและใดเอทิลอีเทอร์ พบว่ากลีเซอรอลดิบปรับสภาพที่ผ่านการสกัดด้วยใดเอทิล-อีเทอร์ (ภาพที่ 3.5 (ข)) จะมีสีอ่อนกว่ากลีเซอรอลดิบปรับสภาพที่ผ่านการสกัดด้วยโพรพานอล (ภาพที่ 3.5 (ก)) เล็กน้อย

ภาพที่ 3.6 แสดงองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการ สกัดด้วยโพรพานอลและไดเอทิลอีเทอร์ พบว่ากลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์มี สิ่งเจือปนลดลงเป็นอย่างมากเมื่อเทียบกับกลีเซอรอลดิบก่อนการเพิ่มความบริสุทธิ์ (ภาพที่ 3.1)

ภาพที่ 3.5 สีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วย
(ก) โพรพานอล และ (ข) ไดเอทิลอีเทอร์ ที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพ
เท่ากับ 2.0 และ 1.0 ตามลำดับ

ภาพที่ 3.6 องค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วย (ก) โพรพานอล และ (ข) ไดเอทิลอีเทอร์

3.2 การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยกระบวนการดูดซับด้วยถ่านกัมมันต์

งานวิจัยส่วนนี้จะเป็นการศึกษาปัจจัยและภาวะที่เหมาะสมในการเตรียมถ่านกัมมันต์จากกาก ตะกอนบำบัดน้ำเสียจากอุตสาหกรรมสิ่งทอเพื่อให้มีสมบัติที่เหมาะสมในการดูดซับสิ่งปนเปื้อนใน กลีเซอรอลดิบปรับสภาพ โดยทำการเปรียบเทียบสมบัติและประสิทธิภาพในการเพิ่มความบริสุทธิ์ กลีเซอรอลดิบปรับสภาพกับถ่านกัมมันต์เชิงพาณิชย์ ซึ่งได้ผลการทดลองดังนี้

3.2.1 สมบัติของกลีเซอรอลและกลีเซอรอลดิบปรับสภาพ

กลีเซอรอลดิบที่ใช้ในการทดลองส่วนนี้จะมีสมบัติแตกต่างจากกลีเซอรอลดิบที่ใช้ในการทดลอง ในหัวข้อ 3.1 เล็กน้อยดังแสดงในตารางที่ 3.2 เนื่องจากเป็นกลีเซอรอลที่ได้คนละแบตซ์การผลิต กล่าวคือ มีค่าความเป็นกรด-เบส สูงในช่วง 8.0-9.0 มีความหนาแน่นและความหนืดต่ำ มีปริมาณ กลีเซอรอลร้อยละ 27.2 มีปริมาณสารปนเปื้อนและเถ้าสูงกว่ามาตรฐาน BS 2621:1979 ประมาณ 3.6 เท่า และเมื่อนำกลีเซอรอลดิบมาทำการปรับสภาพเบื้องต้นด้วยกรดฟอสฟอริกเข้มข้นที่ค่าความเป็น

ตารางที่ 3.2 องค์ประกอบของกลีเซอรอลดิบจากกระบวนการผลิตไบโอดีเซลที่ใช้น้ำมันใช้แล้วเป็นสารตั้งต้น กลีเซอรอลดิบปรับสภาพ และกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสูทธิ์ด้วยกระบวนการทางกายภาพ

				กลีเซอรอลดิบ1	กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ โดยการดูดซับด้วย -	เพิ่มความบริสุทธิ์ บ	กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสุทธิ์โดยการดูดซับด้วยถ่านกัม มันต์จากกากตะกอนบำบัดน้ำเสีย	ภาพที่ผ่านการเพิ่ม เจูดซับด้วยถ่านกัม อนบำบัดน้ำเสีย
องค์ประกอบ	BS 2621:1979 [40]	กลีเซอรอลดิบ	กลีเซอรอลดิบ ปรับสภาพ	ถ่านกัมมันต์	ถ่านกัมมันต์ที่เตรียมจากตะกอน บำบัดน้ำเสีย	ันต์ที่เตรียมจากตะกอน บำบัดน้ำเสีย	การดูดซับซ้ำ	การดูดซับซ้ำ ก็เลือ
				- 30,131 M.Cd.3	กระตุ้นด้วย ความร้อน	กระตุ้นตัวย สารเคมี	1 1 2 7 2 1 4	7 Mrc 4
ความเป็นกรด-เบส		8.0-9.0	7.0	7.0	7.0	7.0	7.0	7.0
กลีเซอรอล (ร้อยละ)	> 80	27.2 ± 0.84	35.7 ± 0.27	88.6 ± 0.63	85.78 ± 0.84	93.0 ± 0.57	95.09 ± 0.35	96.9 ± 1.34
เถ้า (ร้อยละ)	≥ 10	36.2 ± 0.20	29.1 ± 0.51	11.4 ± 1.03	14.09 ± 0.87	7.0 ± 0.82	4.91 ± 0.15	3.1 ± 1.2
สารปนเปื้อน (ร้อยละ)	≤ 10	36.6 ± 0.64	35.2 ± 0.78		0.13 ± 0.01	ı	ı	ı
ความหนาแน่นที่ 20 องศา		1.01 ± 0.062	1.21 ± 0.02	1.264 ±		1.277 ± 0.006	1.270 ± 0.023	1.275 ± 0.027
เซลเซียส (กรัมต่อลูกบาศก์				900.0				
เชนติเมตร)								
ความหนิดที่ 40 องศาเซลเซียส		49.2 ± 0.20	57.4 ± 1.03	89.6 ± 0.79		104.7 ± 0.54	105.8 ± 0.38	106.9 ± 0.14
(เซนติสโตกส์)								
สี (หน่วยสี Pt-Co)		$172,857 \pm 5,580$	$154,038 \pm 4,477$		$3,239 \pm 39.8$	$3,654 \pm 22$	713 ± 74	673 ± 68
ิกลีเซอรอลดิบปรับสภาพด้วยกรดฟอสฟอริกเข้มขันที่ความเป็นกรด-เบส เท่ากับ 2.5 และโซเดียมไฮดรอกไซด์เข้มขัน 12.5 โมลต่อลิตร ที่ความเป็นกรด-เบส เท่ากับ 7	ารดฟอสฟอริกเข้มข้น	์ที่ความเป็นกรด-เบส	เท่ากับ 2.5 และโซ	เดียมไฮดรอกไซ	ด์เข้มข้น 12.5 โมธ	งต่อลิตร ที่ความเป็ง	<u> </u>	

็ถ่านกัมมันต์กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ที่อัตราส่วนโดยน้ำหนักระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และคาร์บอไนซ์ "ถ่านกัมมันต์เชิงพาณิชย์ที่อัตราส่วนระหว่างถ่านกัมมันต์และกลีเซอรอลติบปรับสภาพเท่ากับ 67 กรัมต่อลิตร เวลาในการดูดซับ 120 นาที ความเร็วรอบการเขย่า 250 รอบต่อนาที ที่อุณหภูมิ 800 องศาเซลเซียส เป็นเวลา 30 นาที ที่อัตราส่วนระหว่างถ่านกัมมันต์และกลีเซอรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตร เวลาดูคซับ 120 นาที อัตราการเขย่า 250 รอบต่อนาที กรด-เบส เท่ากับ 2.5 พบว่ากลีเซอรอลดิบปรับสภาพจะมีลักษณะเป็นสีน้ำตาลอ่อน มีความเข้มสีลดลง 1.12 เท่า ความหนืดและความหนาแน่นเพิ่มขึ้นเป็น 1.21 กรัมต่อลูกบาศก์เซนติเมตร และ 57.4 เซนติสโตกส์ ตามลำดับ มีเถ้าลดลงเล็กน้อย และปริมาณสารปนเปื้อนลดลง 1.04 เท่า

3.2.2 สมบัติของกากตะกอนและถ่านชาร์

ตารางที่ 3.3 แสดงผลการวิเคราะห์โดยประมาณ (Proximate analysis) ของกากตะกอนจากการ บำบัดน้ำเสียและถ่านชาร์ พบว่ากากตะกอนจากการบำบัดน้ำเสียจะมีปริมาณสารระเหยได้ (Volatile matter) และเถ้าเป็นองค์ประกอบหลัก มีส่วนคาร์บอนคงตัว (Fixed carbon) และความชื้น (Moisture) ในปริมาณต่ำ เมื่อนำกากตะกอนจากการบำบัดน้ำเสียไปผ่านการคาร์บอไนซ์จะทำให้ความชื้นและสาร ระเหยได้ในกากตะกอนเกิดการสลายตัว ถ่านชาร์ที่ได้จึงมีความชื้นและปริมาณสารระเหยได้ลดลง ส่งผล ให้มีปริมาณเถ้าและคาร์บอนคงตัวเพิ่มขึ้น กล่าวคือความชื้นและปริมาณสารระเหยได้จะลดลง 2.91 และ 2.58 เท่า ในขณะที่ปริมาณเถ้าและคาร์บอนคงตัวเพิ่มขึ้น 1.31 และ 7.40 เท่า ตามลำดับ

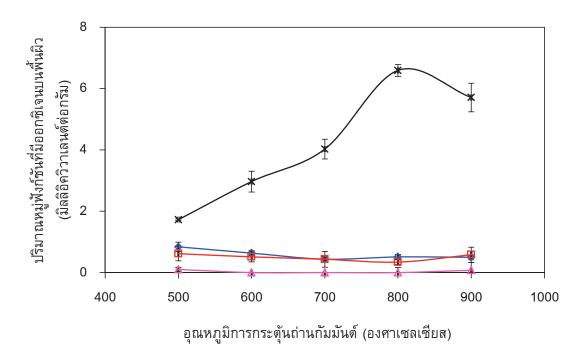
ตารางที่ 3.3 ผลการวิเคราะห์องค์ประกอบโดยประมาณของกากตะกอนบำบัดน้ำเสียและถ่านชาร์ที่ได้ จากการคาร์บอในซ์

การวิเคราะห์โดยประมาณ	ปริมาณ (ร้อยละโดยน้ำหนัก)			
	กากตะกอนจากการบำบัดน้ำเสีย	ถ่านชาร์		
ความชื้น	9.53 ± 0.44	3.27 ± 0.55		
เถ้า	24.40 ± 0.63	32.06 ± 0.85		
สารระเหยได้	60.50 ± 0.89	23.45 ± 0.98		
คาร์บอนคงตัว	5.57 ± 0.16	41.22 ± 0.44		

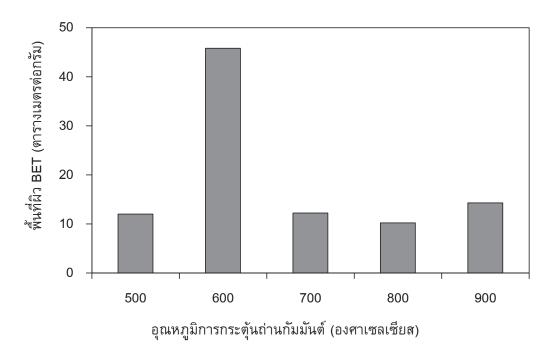
3.2.3 การเตรียมถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียด้วยการกระตุ้นด้วยความร้อนและ ความสามารถในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพ

การเตรียมถ่านกัมมันต์ด้วยกระบวนการทางกายภาพจะดำเนินการในเครื่องปฏิกรณ์แบบ เบดนิ่ง ภายใต้ภาวะแก๊สในโตรเจนที่อัตราการใหล 50 มิลลิลิตรต่อนาที อัตราการให้ความร้อน 10 องศา เซลเซียสต่อนาที อุณหภูมิการกระตุ้น 500-900 องศาเซลเซียส เป็นเวลา 30 นาที จากนั้นนำมาดูดซับ สารปนเปื้อนในกลีเซอรอลดิบปรับสภาพที่อัตราส่วนระหว่างถ่านกัมมันต์และกลีเซอรอลดิบปรับสภาพ เท่ากับ 67 กรัมต่อลิตร เวลาดูดซับ 90 นาที อัตราการเขย่า 250 รอบต่อนาที

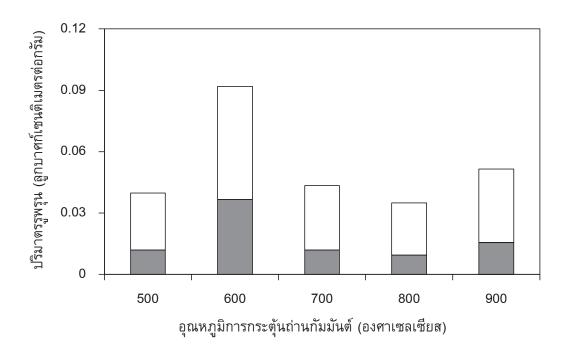
ตารางที่ 3.4 แสดงผลการวิเคราะห์โดยประมาณของถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัด น้ำเสียที่เตรียมด้วยการกระตุ้นด้วยความร้อนในบรรยากาศในโตรเจน พบว่าการเพิ่มอุณหภูมิในช่วง 500 ถึง 900 องศาเซลเซียส จะทำให้ความชื้น เถ้า และสารระเหยได้ลดลงจากร้อยละ 0.34 เป็น 0.17 จากร้อยละ 2.65 เป็น 1.73 และจากร้อยละ 0.95 เป็น 0.52 ตามลำดับ เนื่องจากถ่านกัมมันต์ที่กระตุ้น ด้วยความร้อนในบรรยากาศในโตรเจนที่อุณหภูมิ 500-900 องศาเซลเซียส จะทำให้เกิดการสลายตัวของ โครงสร้างที่มีพันธะไม่แข็งแรงและหลุดออกไปในรูปของสารระเหยได้ ทำให้กลุ่มโมเลกุลวงแหวนแตก


ออกจากกันเป็นกลุ่มๆ จำนวนมาก โครงสร้างวงแอโรแมติกหลักที่เหลือจะกลายเป็นโครงสร้างของ ถ่านกัมมันต์ ทำให้ถ่านกัมมันต์มีสัดส่วนของคาร์บอนคงตัวเพิ่มมากขึ้นจากร้อยละ 96.1 เป็นร้อยละ 97.6

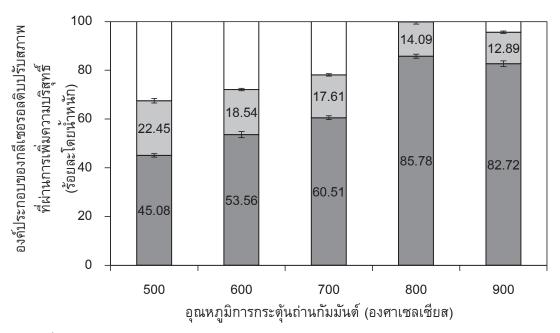
ตารางที่ 3.4 ผลการวิเคราะห์องค์ประกอบโดยประมาณของถ่านกัมมันต์ที่เตรียมด้วยการกระตุ้นด้วย ความร้อนในบรรยากาศในโตรเจน


อุณหภูมิการกระตุ้น	องค์ประกอบ (ร้อยละโดยน้ำหนัก)			
ถ่านกัมมันต์	ความชื้น	เก้า	สารระเหย	คาร์บอนคงตัว
(องศาเซลเซียส)				
500	0.34 ± 0.05	2.65 ± 0.15	0.95 ± 0.01	96.1 ± 0.11
600	0.30 ± 0.01	2.31 ± 0.04	0.83 ± 0.03	96.6 ± 0.05
700	0.26 ± 0.04	1.92 ± 0.03	0.43 ± 0.12	97.4 ± 0.13
800	0.23 ± 0.02	1.82 ± 0.03	0.49 ± 0.06	97.5 ± 0.07
900	0.17 ± 0.08	1.73 ± 0.01	0.52 ± 0.03	97.6 ± 0.04

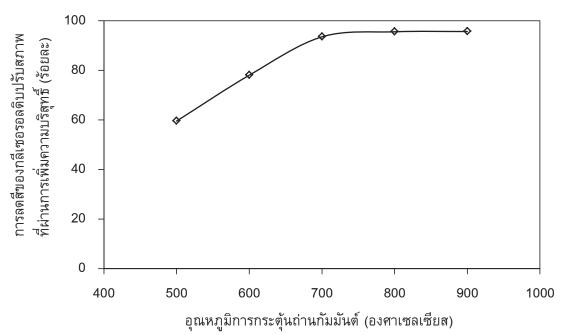
ภาพที่ 3.7 แสดงปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่กระตุ้นด้วย ความร้อนในบรรยากาศในโตรเจนที่อุณหภูมิ 500-900 องศาเซลเซียส พบว่าการเตรียมถ่านกัมมันต์ ด้วยการกระตุ้นด้วยความร้อนที่ทุกอุณหภูมิจะให้หมู่ฟังก์ชันที่มีออกซิเจนที่เป็นหมู่เบสหรือหมู่คาร์บอนิล (Carbonyl) มากกว่าหมู่กรดหรือหมู่คาร์บอกซิล (Carboxyl) หมู่ไฮดรอกซิล (Hydroxyl) และหมู่แลคโตน (Lactone) เนื่องจากการให้ความร้อนจะทำให้เกิดการออกซิเดชันของลิวอิสออกซิเจน (Lewis oxygen) ที่อยู่ในระนาบชั้นแกรฟืนเป็นหมู่ฟังก์ชันที่มีออกซิเจนที่เป็นหมู่เบสมากกว่าหมู่กรด [50] โดยการเพิ่ม อุณหภูมิในช่วง 500 ถึง 800 องศาเซลเซียส ทำให้ปริมาณหมู่คาร์บอนิลเพิ่มจาก 1.7 เป็น 6.6 มิลลิอิควิ วาเลนต์ต่อกรัม และเมื่อเพิ่มอุณหภูมิมากกว่า 800 องศาเซลเซียส พบว่าหมู่คาร์บอนิลจะลดลง เนื่องจากหมู่คาร์บอนิลจะเกิดการสลายตัวเป็นแก๊สคาร์บอนมอนอกไซด์ที่อุณหภูมิสูงกว่า 850 องศา เซลเซียส [50]


เมื่อพิจารณาพื้นผิวของถ่านกัมมันต์ที่กระตุ้นด้วยความร้อนในบรรยากาศในโตรเจนที่อุณหภูมิ 500-900 องศาเซลเซียส พบว่าการกระตุ้นถ่านกัมมันต์ด้วยความร้อนไม่สามารถเพิ่มพื้นที่ผิว BET (ภาพที่ 3.8) และปริมาตรรูพรุนรวมของถ่านกัมมันต์ (ภาพที่ 3.9) ให้มีค่าสูงในทุกภาวะของอุณหภูมิการ กระตุ้น โดยที่อุณหภูมิการกระตุ้น 600 องศาเซลเซียส ทำให้ถ่านกัมมันต์ที่กระตุ้นด้วยความร้อนมีพื้นที่ ผิว BET และปริมาตรรูพรุนรวมสูงสุดเท่ากับ 45.83 ตารางเมตรต่อกรัม และ 0.059 ลูกบาศก์เซนติเมตร ต่อกรัม ตามลำดับ และจากภาพที่ 3.9 พบว่าไม่มีความสัมพันธ์ระหว่างอุณหภูมิการกระตุ้นถ่านกัมมันต์ กับปริมาตรรูพรุนแบบไมโครพอร์และเมโซพอร์ แสดงว่าการเตรียมถ่านกัมมันต์ด้วยการกระตุ้นด้วย ความร้อนเพียงอย่างเดียวไม่สามารถทำให้ถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียมีพื้นที่ผิวและ ปริมาตรรูพรุนเพิ่มมากขึ้นได้

ภาพที่ 3.7 ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อปริมาณ (♦) หมู่คาร์บอกซิล (□) หมู่แลคโตน (△) หมู่ไฮดรอกซิล และ (×) หมู่คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์ที่กระตุ้นด้วยความร้อนใน บรรยากาศในโตรเจน



ภาพที่ 3.8 ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อพื้นที่ผิว BET ของถ่านกัมมันต์จากกากตะกอน บำบัดน้ำเสียที่กระตุ้นด้วยความร้อนในบรรยากาศในโตรเจน



ภาพที่ 3.9 ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อ (■) ปริมาตรรูพรุนแบบไมโครพอร์ และ (□) ปริมาตรรูพรุนแบบเมโซพอร์ของถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียที่กระตุ้นด้วยความร้อน ในบรรยากาศไนโตรเจน

ภาพที่ 3.10 แสดงองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย ถ่านกัมมันต์ที่กระตุ้นด้วยความร้อนที่อุณหภูมิ 500-900 องศาเซลเซียส พบว่าการเพิ่มอุณหภูมิจาก 500 เป็น 800 องศาเซลเซียส จะทำให้เถ้าลดลงจากร้อยละ 22.45 เป็นร้อยละ 14.09 และสารปนเปื้อน ลดลงจากร้อยละ 32.47 เป็นร้อยละ 0.13 ทำให้ความบริสุทธิ์ของกลีเซอรอลดิบเพิ่มขึ้นจากร้อยละ 45.08 เป็น 85.78 แต่การเพิ่มอุณหภูมิของการกระตุ้นเป็น 900 องศาเซลเซียส ทำให้ปริมาณกลีเซอรอลใน กลีเซอรอลดิบปรับสภาพลดลงเหลือร้อยละ 82.72 เมื่อพิจารณาการเปลี่ยนแปลงองค์ประกอบใน กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์กับสมบัติของถ่านกัมมันต์ที่กระตุ้นด้วยความร้อน พบว่าการเปลี่ยนแปลงร้อยละกลีเซอรอลจะสอดคล้องกับการเปลี่ยนแปลงปริมาณหมู่คาร์บอนิล เป็นหมู่ที่มีสมบัติในการรับอิเล็กตรอนคู่โดด เดียวหรือประจุลบ (Anionic charge) จากกรดไขมันอิสระ (R-COO) ที่เป็นองค์ประกอบส่วนใหญ่ใน กลีเซอรอลดิบปรับสภาพ ทำให้ปริมาณสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพลดลง ความบริสุทธิ์ของ กลีเซอรอลดิบปรับสภาพ ทำให้ปริมาณสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพลดลง ความบริสุทธิ์ของ กลีเซอรอลจึงเพิ่มมากขึ้น ส่วนปริมาณหมู่ฟังก์ชันที่มีออกซิเจนที่เป็นหมู่กรดจะมีความสามารถทางประจุ เป็นลบจึงไม่ส่งผลต่อการดูดซับกรดไขมันอิสระ แต่จะดูดซับปริมาณเถ้าหรือสารประกอบจำพวกเกลือที่ มีความสามารถทางประจุเป็นบวกได้ [52] ทำให้ปริมาณเถ้ามีแนวโน้มลดลง

ภาพที่ 3.10. ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ ผ่านการเพิ่มความบริสุทธิ์: (■) กลีเซอรอล (■) เถ้า และ (□) สารปนเปื้อน

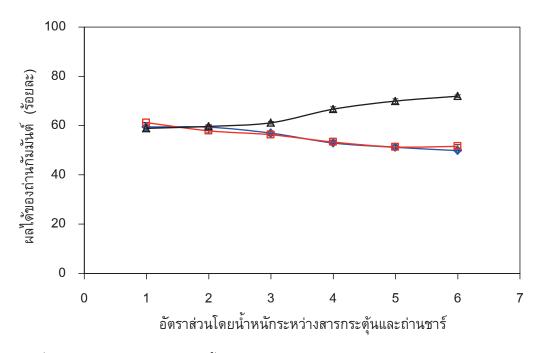
ภาพที่ 3.11 การลดลงของสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับ ด้วยถ่านกัมมันต์ที่เตรียมด้วยการกระตุ้นด้วยความร้อน

ภาพที่ 3.11 แสดงผลของการกระตุ้นถ่านกัมมันต์ด้วยความร้อนต่อการลดสีของกลีเซอรอลดิบ ปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ พบว่ากลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการดูดซับด้วย ถ่านกัมมันต์ที่กระตุ้นด้วยความร้อนจะมีสีลดลงมากกว่าร้อยละ 59.5 โดยกลีเซอรอลที่ผ่านการเพิ่มความ บริสุทธิ์ด้วยการดูดซับด้วยถ่านกัมมันต์ที่อุณหภูมิการกระตุ้น 800 องศาเซลเซียส จะมีการลดลงของสี มากกว่าร้อยละ 95.6 เนื่องจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วย ถ่านกัมมันต์ที่กระตุ้นด้วยความร้อนที่อุณหภูมิ 800 องศาเซลเซียส จะมีปริมาณสารปนเปื้อนต่ำนั่นเอง

3.2.4 การเตรียมถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียด้วยการกระตุ้นทางเคมีและ ความสามารถในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพ

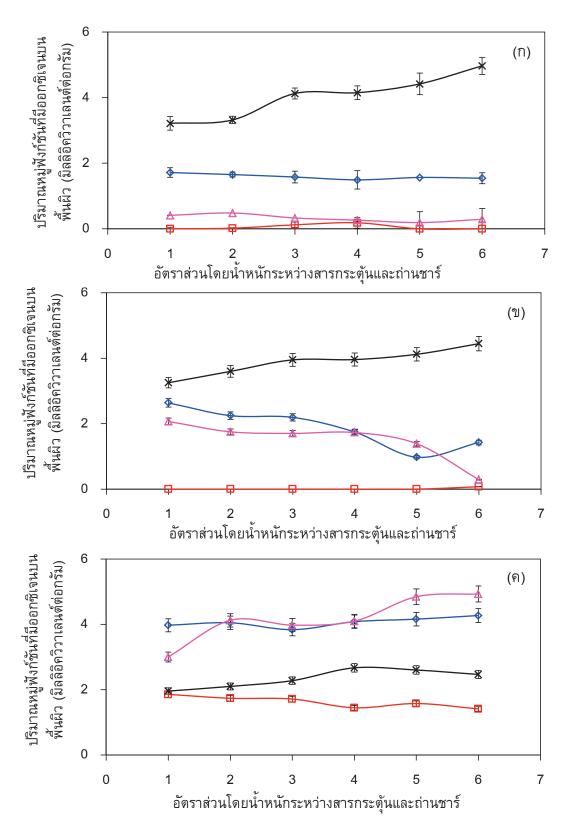
ก. ผลของสารกระตุ้นและอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์

การศึกษาชนิดของสารกระตุ้นและอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ต่อ ความสามารถในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพจะดำเนินการโดยใช้สารกระตุ้น 3 ชนิด ได้แก่ โพแทสเซียมไฮดรอกไซด์ โพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก ที่อัตราส่วนระหว่างสาร กระตุ้นและถ่านชาร์ในช่วง 1 ถึง 6 อัตราการเขย่าระหว่างการกระตุ้นเท่ากับ 200 รอบต่อนาที เวลา ดูดซับสารกระตุ้น 20 ชั่วโมง และกระตุ้นในเครื่องปฏิกรณ์แบบเบดนิ่ง ภายใต้ภาวะแก๊สไนโตรเจนที่ อัตราการใหล 50 มิลลิลิตรต่อนาที อัตราการให้ความร้อน 10 องศาเซลเซียส เป็นเวลา 30 นาที จากนั้นนำมาดูดซับสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพที่ อัตราสวนระหว่างถ่านกัมมันต์และกลีเซอรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตร เวลาดูดซับ 90 นาที อัตราการเขย่า 250 รอบต่อนาที


ตารางที่ 3.5 แสดงผลการวิเคราะห์โดยประมาณของถ่านกัมมันต์ที่เตรียมด้วยกระบวนการทาง เคมี พบว่าถ่านกัมมันต์ที่เตรียมได้จะมีความชื้น เถ้า และสารระเหยได้ต่ำกว่าถ่านชาร์ และมีคาร์บอน คงตัวสูงกว่าถ่านชาร์ เนื่องจากการกระตุ้นถ่านชาร์ด้วยกระบวนการทางเคมีจะทำให้อินทรียวัตถุหรือ อนินทรีย์วัตถุต่างๆ ที่อยู่ในโครงสร้างของถ่านชาร์หลุดออกหรือสลายตัวไปซึ่งเป็นการเพิ่มโครงสร้าง จูพรุนให้กับถ่านกัมมันต์ เมื่อพิจารณาถึงผลของอัตราส่วนของสารกระตุ้นและถ่านชาร์ต่อองค์ประกอบ โดยน้ำหนักของถ่านกัมมันต์ที่ได้ พบว่าความชื้น เถ้า และสารระเหยได้ในถ่านกัมมันต์ที่กระตุ้นด้วย โพแทสเซียมไฮดรอกไซด์ และโพแทสเซียมคาร์บอเนต จะลดลงเมื่ออัตราส่วนโดยน้ำหนักระหว่างสาร กระตุ้นและถ่านชาร์เพิ่มมากขึ้น เนื่องจากสารกระตุ้นชนิดเบสสามารถระเหยได้อย่างรวดเร็วเมื่อทำการ กระตุ้นที่อุณหภูมิสูง ส่วนถ่านกัมมันต์ที่กระตุ้นด้วยกรดฟอสฟอริกเมื่อเพิ่มอัตราส่วนโดยน้ำหนักระหว่าง สารกระตุ้นและถ่านชาร์จาก 1 เป็น 6 พบว่าความชื้นจะเปลี่ยนแปลงเล็กน้อยอย่างไม่เป็นรูปแบบในช่วง ร้อยละ 0.13 ถึง 0.33 ปริมาณเถ้าและสารระเหยได้เพิ่มขึ้น ในขณะที่คาร์บอนคงตัวลดลง เนื่องจากการ ใช้กรดฟอสฟอริกเป็นสารกระตุ้นจะทำให้เกิดการสะสมตัวของสารประกอบประเภทฟอสเฟส (Phosphate) หรือพอลิฟอสเฟส (Polyphosphate) เชื่อมโยงโครงสร้างบนพื้นผิวของถ่านกัมมันต์ [53]

ภาพที่ 3.12 แสดงร้อยละผลได้ (Yield) ของถ่านกัมมันต์ที่ถูกกระตุ้นด้วยสารเคมีชนิดต่างๆ พบว่าร้อยละผลได้ของถ่านกัมมันต์ที่กระตุ้นโดยโพแทสเซียมไฮดรอกไซด์ และโพแทสเซียมคาร์บอเนต มีแนวโน้มลดลงเล็กน้อยจากประมาณร้อยละ 60 เป็นร้อยละ 50 เมื่ออัตราส่วนระหว่างสารกระตุ้นและ ถ่านชาร์เพิ่มขึ้นในช่วง 1 ถึง 6 โดยน้ำหนัก ในขณะที่ร้อยละผลได้ของถ่านกัมมันต์ที่กระตุ้นโดยกรด ฟอสฟอริกจะเพิ่มขึ้นจากร้อยละ 59 เป็นร้อยละ 72 เนื่องจากโพแทสเซียมไฮดรอกไซด์ และ โพแทสเซียมคาร์บอเนตจะจับกับโครงสร้างของถ่านชาร์ระหว่างการกระตุ้นและสามารถระเหยได้อย่าง รวดเร็วเมื่อได้รับความร้อน [54] การใช้สารกระตุ้นในปริมาณมากและกระตุ้นที่อุณหภูมิสูงจะทำให้เกิด

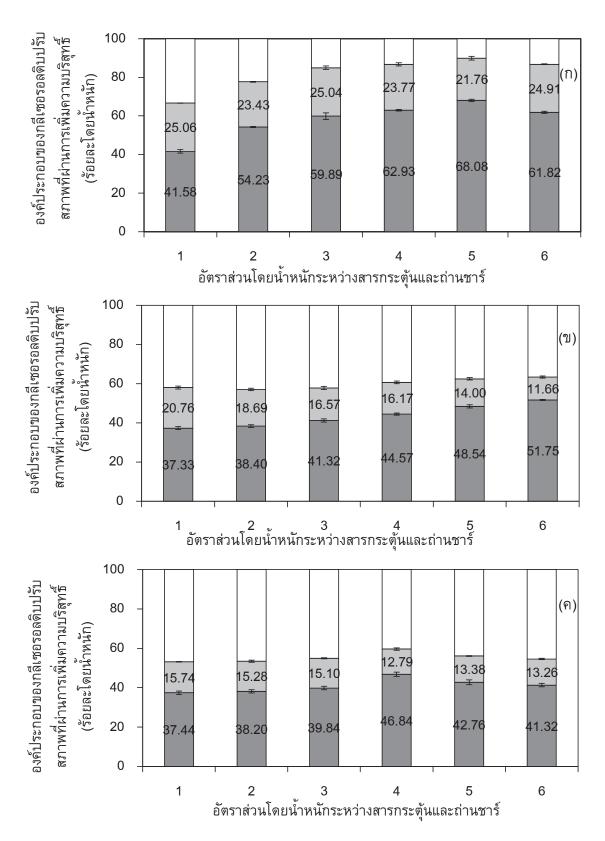
การสูญเสียสารระเหยได้จากโครงสร้างของถ่านกัมมันต์ ร้อยละผลได้จึงลดลง ส่วนการกระตุ้นด้วยกรด ฟอสฟอริกจะทำให้เกิดสารประกอบประเภทฟอสเฟสหรือพอลิฟอสเฟสเชื่อมโยงโครงสร้างของถ่านกัม มันต์ [53] เมื่อเพิ่มปริมาณกรดฟอสฟอริกในการกระตุ้นจึงทำให้เกิดการสะสม ตัวของสารประกอบ ฟอสเฟสหรือพอลิฟอสเฟสบนพื้นผิวของถ่านกัมมันต์ ร้อยละผลได้ของถ่านกัมมันต์จึงเพิ่มขึ้น การสะสม ตัวของสารประกอบดังกล่าวบนพื้นผิวของถ่านกัมมันต์สามารถสังเกตได้จากการเพิ่มขึ้นของปริมาณเถ้า ในถ่านกัมมันต์ที่กระตุ้นด้วยกรดฟอสฟอริกที่อัตราส่วนสูงๆ ดังแสดงในตารางที่ 3.5


ตารางที่ 3.5 ผลของอัตราส่วนระหว่างสารกระตุ้นและถ่านชาร์ต่อองค์ประกอบโดยประมาณของ ถ่านกัมมันต์

	11011001001			9/	
สารกระตุ้น	สารกระตุ้น:ถ่านชาร์	องค์ประกอบ (ร้อยละโดยน้ำหนัก)			
		ความชื้น	เถ้า	สารระเหย	คาร์บอนคงตัว
кон	1	0.40 ± 0.45	3.08 ± 0.03	0.82 ± 0.11	95.70 ± 0.23
	2	0.37 ± 0.23	2.79 ± 0.07	0.56 ± 0.03	96.27 ± 0.34
	3	0.31 ± 0.07	2.33 ± 0.19	0.46 ± 0.26	96.90 ± 0.22
	4	0.23 ±0.05	1.94 ± 0.28	0.35 ± 0.37	97.48 ± 0.14
	5	0.21 ± 0.02	1.71 ± 0.31	0.53 ± 0.12	97.55 ± 0.56
	6	0.30 ± 0.13	1.24 ± 0.42	0.54 ± 0.33	97.92 ± 0.28
K₂CO₃	1	0.34 ± 0.22	2.44 ± 0.04	0.73 ± 0.10	96.49 ± 0.59
	2	0.37 ± 0.09	2.24 ± 0.46	0.96 ± 0.26	96.44 ± 0.20
	3	0.33 ± 0.06	1.72 ± 0.58	0.81 ± 0.32	97.14 ± 0.27
	4	0.24 ± 0.12	1.42 ± 0.32	0.52 ± 0.07	97.82 ± 0.09
	5	0.23 ± 0.08	1.12 ± 0.43	0.44 ± 0.02	98.21 ± 0.35
	6	0.23 ± 0.78	1.22 ± 0.34	0.59 ± 0.26	97.96 ± 0.15
H₃PO₄	1	0.33 ± 0.04	3.12 ± 0.32	1.02 ± 0.09	95.54 ± 0.60
	2	0.26 ± 0.13	3.39 ± 0.16	1.05 ± 0.27	95.30 ± 0.18
	3	0.22 ± 0.38	3.62 ± 0.24	1.06 ± 0.33	95.09 ± 0.04
	4	0.13 ± 0.11	3.87 ± 0.03	1.05 ± 0.05	94.95 ± 0.48
	5	0.24 ± 0.51	4.15 ± 0.40	1.21 ± 0.27	94.41 ± 0.16
	6	0.22 ± 0.48	4.38 ± 0.08	1.25 ± 0.15	94.14 ± 0.39

ภาพที่ 3.12 ผลของอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ต่อร้อยละผลได้ของถ่าน กัมมันต์ที่ถูกกระตุ้นด้วย (♦) โพแทสเซียมไฮดรอกไซด์ (□) โพแทสเซียมคาร์บอเนต และ (△) กรด ฟอสฟอริก เวลาดูดซับสารกระตุ้น 20 ชั่วโมง และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส

ภาพที่ 3.13 แสดงปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วย โพแทสเซียมไฮดรอกไซด์ โพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก ที่อัตราส่วนโดยน้ำหนักระหว่าง สารกระตุ้นและถ่านชาร์ในช่วง 1 ถึง 6 พบว่าถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์จะมีหมู่ คาร์บอนิลมากที่สุดในช่วง 3.2 ถึง 4.8 มิลลิอิควิวาเลนต์ต่อกรัม และมีปริมาณเพิ่มมากขึ้นเมื่ออัตราส่วน โดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เพิ่มขึ้น (ภาพที่ 3.13(ก)) หมู่คาร์บอกซิลและหมู่ไฮดรอกซิล จะลดลงเล็กน้อยจาก 1.6 เป็น 1.4 มิลลิอิควิวาเลนต์ต่อกรัม และ 0.4 เป็น 0.2 มิลลิอิควิวาเลนต์ต่อกรัม ตามลำดับ และมีหมู่แลคโตนเพียงเล็กน้อย (< 0.07 มิลลิอิควิวาเลนต์ต่อกรัม) ที่อัตราส่วนโดยน้ำหนัก ระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์เท่ากับ 6 เนื่องจากหมู่แลคโตนสามารถรวมตัวอยู่ในหมู่ คาร์บอกซิล [55] ทำให้ไม่ปรากฏหมู่ฟังก์ชันของแลคโตนบนพื้นผิวของถ่านกัมมันต์ในปริมาณมากนัก สำหรับการเพิ่มขึ้นของปริมาณหมู่คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์เมื่ออัตราส่วนโดยน้ำหนักระหว่าง สารกระตุ้นและถ่านชาร์เพิ่มขึ้นในขณะที่ปริมาณหมู่คาร์บอกซิลและหมู่ไฮดรอกซิลลดลงเนื่องจากความ เป็นกรด-เบสของหมู่ฟังก์ชันที่แตกต่างกัน กล่าวคือหมู่คาร์บอนิลเป็นหมู่ฟังก์ชันออกซิเจนที่เป็นหมู่เบส (Basic oxygen functional group) ส่วนหมู่คาร์บอกซิลและหมู่ไฮดรอกซิลเป็นหมู่ฟังก์ชันออกซิเจนที่ เป็นหมู่กรด (Acid oxygen functional group) การเพิ่มปริมาณสารกระตุ้นโพแทสเซียมไฮดรอกไซด์ซึ่ง เป็นเบสจึงเพิ่มปริมาณหมู่เบส หรือปริมาณหมู่แอลคาไลน์(Alkaline group) ชนิดไพโรนและอนุพันธ์ ของคีโตนชนิดไพแรนและโครมีน [56]) ซึ่งต่างเป็นอนุพันธ์ของหมู่คาร์บอนิล แต่ไม่เพิ่มหมู่กรดหรือ อาจจะลดปริมาณหมู่กรดบนพื้นผิวของถ่านกัมมันต์



ภาพที่ 3.13 ผลของอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ต่อปริมาณ (♦)
หมู่คาร์บอกซิล (□) หมู่แลคโตน (△) หมู่ไฮดรอกซิล และ (×) หมู่คาร์บอนิล บนพื้นผิวของถ่านกัมมันต์
ที่ถูกกระตุ้น ด้วย (ก) โพแทสเซียมไฮดรอกไซด์ (ข) โพแทสเซียมคาร์บอเนต (ค) กรดฟอสฟอริก
เวลาดูดซับสารกระตุ้น 20 ชั่วโมง และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส

เมื่อพิจารณาชนิดและปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่กระตุ้นด้วย โพแทสเซียมคาร์บอเนต (ภาพที่ 3.13(ข)) พบว่ามีแนวโน้มที่คล้ายคลึงกับถ่านกัมมันต์ที่กระตุ้นด้วย โพแทสเซียมไฮดรอกไซด์ กล่าวคือมีหมู่คาร์บอนิลมากที่สุดคือประมาณ 3.3 ถึง 4.5 มิลลิอิควิวาเลนต์ต่อ กรัม และมีปริมาณเพิ่มมากขึ้นเมื่ออัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เพิ่มขึ้น และมี หมู่แลคโตนเกิดขึ้นเพียงเล็กน้อย (< 0.1 มิลลิอิควิวาเลนต์ต่อกรัม) ที่อัตราส่วนระหว่างโพแทสเซียม คาร์บอเนตและถ่านชาร์เท่ากับ 6 โดยน้ำหนัก ส่วนหมู่คาร์บอกซิลและหมู่ไฮดรอกซิลจะลดลงจาก 2.6 เป็น 1.4 มิลลิอิควิวาเลนต์ต่อกรัม และ 2.1 เป็น 0.3 มิลลิอิควิวาเลนต์ต่อกรัม ตามลำดับ เมื่ออัตราส่วน โดยน้ำหนักระหว่างโพแทสเซียมคาร์บอเนต และถ่านชาร์เพิ่มขึ้นจาก 1 เป็น 6

เมื่อพิจารณาชนิดและปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่กระตุ้นด้วย กรดฟอสฟอริก (ภาพที่ 3.13(ค)) พบว่าพื้นผิวของถ่านกัมมันต์ดังกล่าวจะมีหมู่ไฮดรอกซิลและหมู่ คาร์บอกซิลเป็นส่วนใหญ่ โดยการเพิ่มอัตราส่วนโดยน้ำหนักระหว่างกรดฟอสฟอริกและถ่านชาร์ จาก 1 เป็น 6 จะทำให้หมู่ไฮดรอกซิลและหมู่คาร์บอกซิลมีปริมาณเพิ่มขึ้นจาก 3.0 เป็น 4.9 มิลลิอิควิวาเลนต์ ต่อกรัม และ 3.9 เป็น 4.3 มิลลิอิควิวาเลนต์ต่อกรัม ตามลำดับ เนื่องจากการเพิ่มปริมาณกรดฟอสฟอริก ในการกระตุ้นจะเป็นการเพิ่มปริมาณหมู่กรดหรือหมู่ฟังก์ชันที่มีออกซิเจนที่เป็นหมู่กรดบนพื้นผิวของ ถ่านกัมมันต์ ทำให้ปริมาณหมู่คาร์บอนิลที่เป็นหมู่เบสและหมู่แลคโตนที่สามารถรวมตัวอยู่ในหมู่คาร์บอก ซิลเปลี่ยนแปลงเล็กน้อย

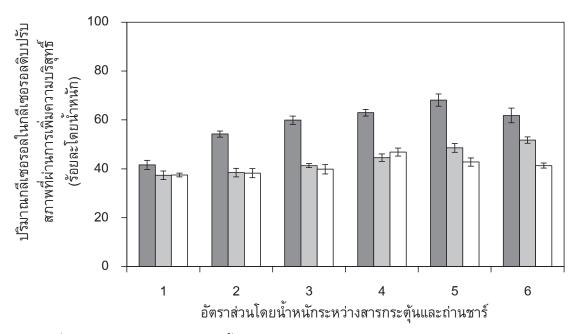
ภาพที่ 3.14 แสดงองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย การดูดซับด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ โพแทสเซียมคาร์บอเนต และกรด ฟอสฟอริก ที่อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ในช่วง 1 ถึง 6 พบว่าการเพิ่มความ บริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ทำให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพเพิ่มขึ้นจาก ร้อยละ 35.7 เป็นร้อยละ 41.8 37.3 และ 36.3 เมื่อใช้ถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอก ไซด์ โพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก ตามลำดับ เมื่อพิจารณาองค์ประกอบในกลีเซอรอลดิบ ปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮ ดรอกไซด์ (ภาพที่ 3.14(ก)) พบว่าปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพจะเพิ่มขึ้นจากร้อยละ 41.8 เป็นร้อยละ 68.1 เมื่อเพิ่มอัตราส่วนโดยน้ำหนักระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์จาก 1 เป็น 5 ความบริสุทธิ์ของกลีเซอรอลที่เพิ่มมากขึ้นเมื่ออัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและ ถ่านชาร์มากขึ้นเกิดขึ้น เนื่องจากเมื่ออัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์มาก ปริมาณ หมู่ฟังก์ชันที่มีออกซิเจนบนผิวถ่านกัมมันต์โดยเฉพาะหมู่คาร์บอนิลจะมีมากขึ้น (ภาพที่ 3.13(ก)) ซึ่งหมู่ ้ดังกล่าวเป็นหมู่เบสและมีสภาพผิวเป็นประจุบวก [50] จึงสามารถดูดซับสารปนเปื้อนโดยเฉพาะกรด ไขมันอิสระที่มีสมบัติทางประจุเป็นลบได้ ทำให้ปริมาณสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ลดลง ในขณะที่หมู่แลคโตน หมู่คาร์บอกซิล และหมู่ไฮดรอกซิลจะไม่มีผลต่อการ เพิ่มความบริสุทธิ์ของกลีเซอรอลปรับสภาพมากนักซึ่งสามารถยืนยันได้จากเปลี่ยนแปลงปริมาณที่น้อย มากหรือปริมาณที่ลดลงเมื่ออัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เพิ่มขึ้น อย่างไรก็ดีการ เพิ่มอัตราส่วนโดยน้ำหนักระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์จาก 5 เป็น 6 จะทำให้ปริมาณ

ภาพที่ 3.14 ผลของอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ต่อองค์ประกอบของ กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่กระตุ้นด้วย (ก) โพแทสเซียม ไฮดรอกไซด์ (ข) โพแทสเซียมคาร์บอเนต และ (ค) กรดฟอสฟอริก เวลาดูดซับสารกระตุ้น 20 ชั่วโมง และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส: (■) กลีเซอรอล (■) เถ้า และ (□) สารปนเปื้อน

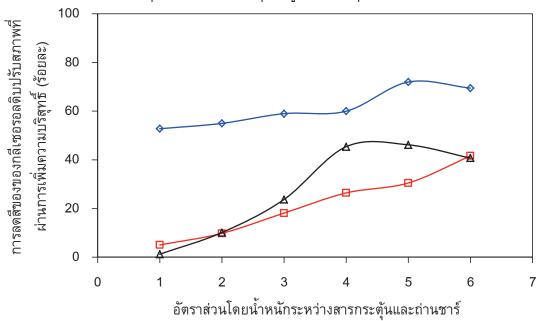
สารปนเปื้อนเพิ่มขึ้นส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ลดลง (ภาพที่ 3.14(ก)) ทั้งที่ปริมาณหมู่คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์ยังเพิ่มขึ้น (ภาพที่ 3.14(ก)) เนื่องจากโมเลกุลของโพแทสเซียมไฮดรอกไซด์ที่มากเกินพออาจสลายตัวเป็นโมเลกุลของน้ำดังสมการ (3.1) และน้ำที่เกิดขึ้นทำปฏิกิริยาแกซิฟิเคชัน (Gasification) ต่อเนื่องกับอะตอมคาร์บอนดังสมการ (3.2) ส่งผลให้พื้นที่ผิวในการดูดซับลดลง [56]

$$2KOH \longrightarrow K_2O + H_2O \qquad (3.1)$$

$$H_2O + C \longrightarrow CO + H_2$$
 (3.2)


พิจารณาองค์ประกอบในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับ ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมคาร์บอเนต (ภาพที่ 3.14(ฃ)) พบว่าเมื่อเพิ่มอัตราส่วนโดย น้ำหนักระหว่างโพแทสเซียมคาร์บอเนตและถ่านชาร์จาก 1 เป็น 6 จะทำให้ปริมาณสารปนเปื้อนลดลง จากร้อยละ 41.9 เป็นร้อยละ 36.6 (ภาพที่ 3.14(ฃ)) เนื่องจากเมื่ออัตราส่วนโดยน้ำหนักระหว่างสาร กระตุ้นและถ่านชาร์มากขึ้น ปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนผิวของถ่านกัมมันต์โดยเฉพาะหมู่ คาร์บอนิลจะเพิ่มมากขึ้น (ภาพที่ 3.13(ฃ)) ส่งผลให้สามารถเพิ่มปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับ สภาพจากร้อยละ 37.1 เป็นร้อยละ 51.7

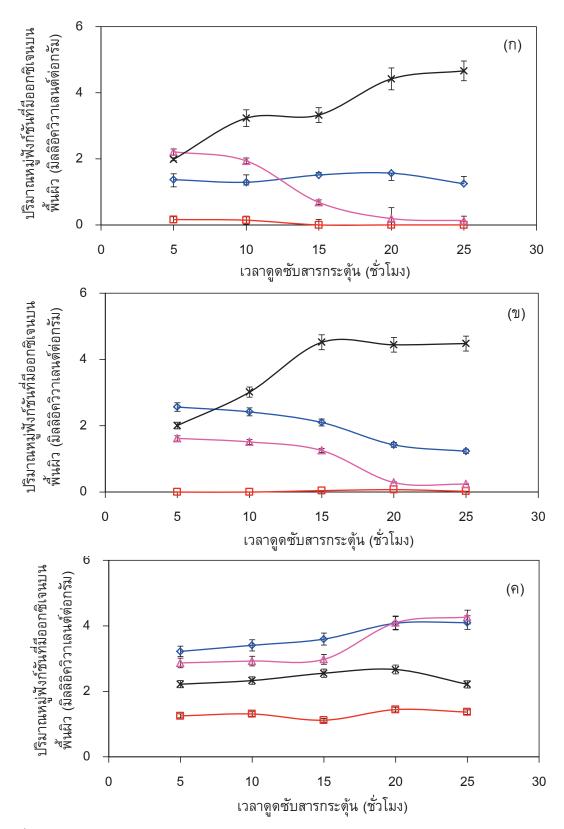
พิจารณาองค์ประกอบในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับ ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยกรดฟอสฟอริก (ภาพที่ 3.14(ค)) พบว่าเมื่อเพิ่มอัตราส่วนโดยน้ำหนัก ระหว่างกรดฟอสฟอริกและถ่านชาร์ในช่วง 1 ถึง 4 จะเพิ่มปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับ สภาพจากร้อยละ 36.3 เป็นร้อยละ 40.8 อย่างไรก็ดีการเพิ่มอัตราส่วนโดยน้ำหนักระหว่างกรด ฟอสฟอริกและถ่านชาร์จาก 4 เป็น 6 จะทำให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการ เพิ่มความบริสุทธิ์ลดลง เนื่องจากปริมาณกรดฟอสฟอริกที่มากเกินพอจะทำให้เกิดสารประกอบประเภท ฟอสเฟสหรือพอลิฟอสเฟส ซึ่งสารประเภทนี้จะจับตัวเป็นชั้นบางๆ บนผิวของถ่านกัมมันต์ส่งผลให้การ สลายตัวของสารกระตุ้นจากโครงสร้างของถ่านกัมมันต์ระหว่างให้ความร้อนเกิดขึ้นได้ยากและมีโอกาส ตกค้างในรูพรุนของถ่านกัมมันต์ทำให้พื้นที่ผิวในการดูดซับลดลง [53]


เมื่อพิจารณาผลของชนิดของสารกระตุ้นและอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่าน ชาร์ในช่วงที่ศึกษาต่อปริมาณเถ้า พบว่ากระบวนการดูดซับสามารถลดปริมาณเถ้าหรือสารประกอบ จำพวกเกลือในกลีเซอรอลดิบปรับสภาพได้เล็กน้อย กล่าวคือสามารถลดปริมาณเถ้าในกลีเซอรอลดิบ ปรับสภาพจากร้อยละ 29.1 ลงเหลือร้อยละ 21.8-25.1 11.7-20.8 และ 12.8-15.7 เมื่อผ่านการดูดซับ ด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ โพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก ตามลำดับ

เมื่อเปรียบเทียบความบริสุทธิ์ของกลีเซอรอลหรือร้อยละกลีเซอรอลในกลีเซอรอลดิบปรับสภาพ ที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยสารเคมีทั้ง 3 ชนิด (ภาพที่ 3.15) พบว่ากลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดร อกไซด์จะมีความบริสุทธิ์สูงสุดที่อัตราส่วนโดยน้ำหนักระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์ เท่ากับ 5 คือร้อยละ 68.1 ส่วนกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมคาร์บอเนต

และถ่านชาร์เท่ากับ 6 คือร้อยละ 51.7 และกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์ที่ กระตุ้นด้วยกรดฟอสฟอริกจะมีความบริสุทธิ์สูงสุดที่อัตราส่วนโดยน้ำหนักระหว่างกรดฟอสฟอริกและ ถ่านชาร์เท่ากับ 4 คือ ร้อยละ 48.0

ภาพที่ 3.15 ผลของอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ต่อปริมาณกลีเซอรอลใน กลีเซอรอลดิ บปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (■) โพแทสเซียมคาร์บอเนต และ (□) กรดฟอสฟอริก เวลาดูดซับสาร กระตุ้น 20 ชั่วโมง และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส

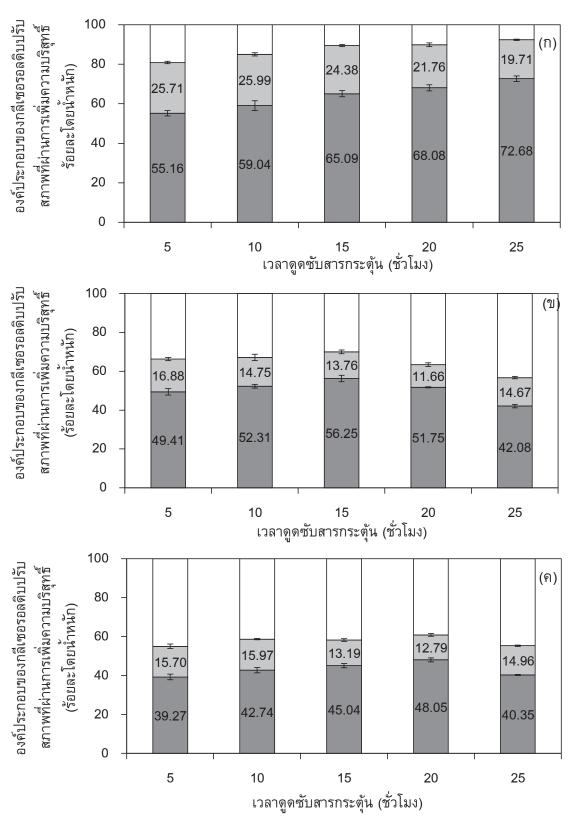

ภาพที่ 3.16 ผลของอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ต่อการลดสีของกลีเซอรอลดิบ ปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (♦) โพแทสเซียมไฮดรอกไซด์ (□) โพแทสเซียมคาร์บอเนต และ (△) กรดฟอสฟอริก เวลาดูดซับสารกระตุ้น 20 ชั่วโมง และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส

ภาพที่ 3.16 แสดงผลของอัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์ต่อการลดสีของ กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียม ไฮดรอกไซด์ โพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก พบว่ากลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์ โดยการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์จะมีสีอ่อนที่สุดเมื่อเปรียบเทียบ กับกลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียม คาร์บอเนตและกรดฟอสฟอริก เนื่องจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการ ดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์มีปริมาณสารปนเปื้อนในปริมาณที่น้อย กว่ากลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วย โพแทสเซียมคาร์บอเนตและกรดฟอสฟอริก

ข. ผลของเวลาดูดซับสารกระตุ้นถ่านกัมมันต์

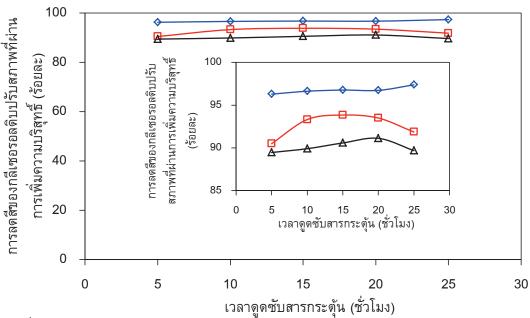
การศึกษาผลของเวลาดูดซับสารกระตุ้นถ่านกัมมันต์ต่อความสามารถในการเพิ่มความบริสุทธิ์ ของกลีเซอรอลดิบปรับสภาพจะดำเนินการโดยใช้โพแทสเซียมไฮดรอกไซด์ โพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก ที่อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เท่ากับ 5 6 และ 4 ตามลำดับ อัตราการเขย่าระหว่างการกระตุ้นเท่ากับ 200 รอบต่อนาที เวลาดูดซับสารกระตุ้น 5-25 ชั่วโมง และกระตุ้นในเครื่องปฏิกรณ์แบบเบดนิ่งภายใต้ภาวะแก๊สไนโตรเจนที่อัตราการไหล 50 มิลลิลิตรต่อนาที อัตราการให้ความร้อน 10 องศาเซลเซียสต่อนาที ที่อุณหภูมิ 500 องศาเซลเซียส เป็น เวลา 30 นาที จากนั้นนำมาดูดซับสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพที่อัตราส่วนระหว่างถ่านกัม มันต์และกลีเซอรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตร เวลาการดูดซับ 90 นาที อัตราการเขย่า 250 รอบต่อนาที ภาพที่ 3.17(ก) และ (ข) แสดงผลของเวลาดูดซับสารกระตุ้นถ่านกัมมันต์ต่อปริมาณหมู่ ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วยสารกระตุ้นชนิดเบสคือโพแทสเซียมไฮ ดรอกไซด์และโพแทสเซียมคาร์บอเนต พบว่าจะมีหมู่คาร์บอนิลมากกว่าหมู่ฟังก์ชันที่มีออกซิเจนชนิดอื่น โดยปริมาณหมู่คาร์บอนิลจะเพิ่มขึ้นเมื่อระยะเวลาดูดซับสารกระตุ้นมากขึ้น เนื่องจากเวลาดูดซับสาร กระตุ้นที่มากขึ้นจะทำให้สารกระตุ้นสามารถแพร่เข้าไปในโครงสร้างของถ่านชาร์ได้มากขึ้น ทำให้มี ปริมาณหมู่เบสเกิดขึ้นบนพื้นผิวของถ่านกัมมันต์ได้มากขึ้น ส่วนหมู่คาร์บอกซิลและหมู่ไฮดรอกซิลซึ่ง เป็นหมู่กรดจะมีปริมาณคงที่หรือลดลงเมื่อระยะเวลาดูดซับสารกระตุ้นสูงขึ้น สำหรับหมู่แลคโตนมัก รวมตัวอยู่ในหมู่คาร์บอกซิลจึงปรากฏบนพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วยเบสเพียงเล็กน้อย เท่านั้น

เมื่อพิจารณาผลของเวลาดูดซับสารกระตุ้นถ่านกัมมันต์ต่อปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบน พื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วยกรดฟอสฟอริก (ภาพที่ 3.17(ค)) พบว่าหมู่ฟังก์ชันที่มีออกซิเจน บนพื้นผิวที่เป็นหมู่กรด ได้แก่ หมู่คาร์บอกซิลและหมู่ไฮดรอกซิลมีแนวโน้มเพิ่มขึ้นเมื่อระยะเวลาดูดซับ สารกระตุ้นสูงขึ้น เนื่องจากการเพิ่มระยะเวลาดูดซับสารกระตุ้นจะเป็นการเพิ่มปริมาณหมู่กรดหรือหมู่ ฟังก์ชันที่มีออกซิเจนที่เป็นหมู่กรดบนพื้นผิวของถ่านกัมมันต์ได้มากขึ้น ในขณะที่หมู่แลคโตนมักรวมตัว อยู่ในหมู่คาร์บอกซิลและหมู่คาร์บอนิลซึ่งเป็นหมู่เบสจะมีแนวโน้มคงที่



ภาพที่ 3.17 ผลของเวลาดูดซับสารกระตุ้นถ่านกัมมันต์ต่อปริมาณ (♦)หมู่คาร์บอกซิล (□) หมู่แลคโตน (△) หมู่ไฮดรอกซิล และ (×) หมู่คาร์บอนิลบนพื้นผิวถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (ก) โพแทสเซียม ไฮดรอกไซด์ (ข) โพแทสเซียมคาร์บอเนต และ (ค) กรดฟอสฟอริก ที่อัตราส่วนโดยน้ำหนักระหว่างสาร กระตุ้นและถ่านชาร์เท่ากับ 5 6 และ 4 ตามลำดับ และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส

เมื่อพิจารณาองค์ประกอบในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่าน กัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ (ภาพที่ 3.18(ก)) พบว่าการเพิ่มเวลาดูดซับสาร กระตุ้นจาก 5 ชั่วโมง เป็น 25 ชั่วโมง จะทำให้เถ้าลดลงจากร้อยละ 25.71 เป็นร้อยละ 19.71 สาร ปนเปื้อนลดลงจากร้อยละ 19.13 เป็นร้อยละ 7.61 ส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์เพิ่มขึ้นจากร้อยละ 47.0 เป็นร้อยละ 72.5 ซึ่งจะสอดคล้องกับการ เพิ่มขึ้นของปริมาณหมู่คาร์บอนิลบนพื้นผิว (ภาพที่ 3.17(ก)) เมื่อพิจารณาองค์ประกอบในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมคาร์บอเนต (ภาพที่ 3.18(ข)) พบว่าเมื่อเวลาดูดซับสารกระตุ้นเพิ่มขึ้นจาก 5 ชั่วโมง เป็น 15 ชั่วโมง จะทำให้เถ้าลดลงจาก ร้อยละ 16.88 เป็นร้อยละ 13.76 สารปนเปื้อนลดลงจากร้อยละ 33.71 เป็นร้อยละ 29.99 ส่งผลให้ ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เพิ่มขึ้นจากร้อยละ 49.4 เป็น ร้อยละ 56.3 แต่เมื่อเพิ่มเวลามากกว่า 15 ชั่วโมง พบว่าปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ดดลงเป็นร้อยละ 42.1 แม้ว่าปริมาณหมู่คาร์บอนิลจะสูงในช่วงเวลาดูดซับสาร กระตุ้นดังกล่าว (ภาพที่ 3.17(ข)) แสดงว่าเวลาที่มากเกินพอทำให้โพแทสเซียมคาร์บอเนตไปสะสมตัว บนพื้นผิวของถ่านกัมมันต์ส่งผลให้พื้นที่ผิวในการดูดซับสารปนเปื้อนจากกลีเซอรอลดิบปรับสภาพลดลง


เมื่อพิจารณาองค์ประกอบในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับ ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยกรดฟอสฟอริก (ภาพที่ 3.18(ค)) พบว่าเมื่อเวลาดูดซับสารกระตุ้น เพิ่มขึ้นจาก 5 ชั่วโมง เป็น 20 ชั่วโมง จะทำให้เถ้าลดลงจากร้อยละ 15.70 เป็นร้อยละ 12.79 สาร ปนเปื้อนลดลงจากร้อยละ 45.03 เป็นร้อยละ 39.16 ส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์เพิ่มขึ้นจากร้อยละ 39.27 เป็นร้อยละ 48.05 แต่เมื่อเพิ่มเวลามากกว่า 20 ชั่วโมง พบว่าปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะลดลงเป็น ร้อยละ 40.35 เนื่องจากปริมาณหมู่คาร์บอกซิลและหมู่ไฮดรอกซิลมีแนวโน้มเพิ่มขึ้น (ภาพที่ 3.17(ค)) ซึ่งหมู่ดังกล่าวมีสภาพพื้นผิวเป็นลบจึงไม่ส่งผลต่อการดูดซับกรดไขมันอิสระทำให้ปริมาณกลีเซอรอลใน กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์มีค่าลดลง

ภาพที่ 3.19 แสดงผลของระยะเวลาดูดซับสารกระตุ้นต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ โพแทสเซียม คาร์บอเนต และกรดฟอสฟอริก พบว่ากลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วย ถ่านกัมมันต์ที่กระตุ้นด้วยสารเคมีต่างๆ จะมีสีลดลงมากกว่าร้อยละ 89.5 โดยกลีเซอรอลที่ผ่านการเพิ่ม ความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์จะมีสีอ่อนที่สุด และ มีการลดลงของสีมากกว่าร้อยละ 96.3 เนื่องจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ โดยการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์มีปริมาณสารปนเปื้อนต่ำที่สุด

ภาพที่ 3.18 ผลของเวลาดูดซับสารกระตุ้นถ่านกัมมันต์ต่อองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (ก) โพแทสเซียมไฮดรอกไซด์ (ข) โพแทสเซียมคาร์บอเนต และ (ค) กรดฟอสฟอริก และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส :

(
) กลีเซอรอล (
) เถ้า และ (
) สารปนเปื้อน

ภาพที่ 3.19 ผลของเวลาดูดซับสารกระตุ้นถ่านกัมมันต์ต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (♦) โพแทสเซียมไฮดรอกไซด์ (□) โพแทสเซียมคาร์บอเนต และ (△) กรดฟอสฟอริก ที่อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและ ถ่านชาร์เท่ากับ 5 6 และ 4 ตามลำดับ และอุณหภูมิการกระตุ้น 500 องศาเซลเซียส

ค. ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์

การศึกษาผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อความสามารถในการเพิ่มความบริสุทธิ์ของ กลีเซอรอลดิบปรับสภาพจะดำเนินการโดยใช้อัตราส่วนระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์ เท่ากับ 5 ที่เวลาดูดซับสารกระตุ้น 25 ชั่วโมง อัตราส่วนระหว่างโพแทสเซียมคาร์บอเนตและถ่านชาร์ เท่ากับ 6 ที่เวลาดูดซับสารกระตุ้น 15 ชั่วโมง และอัตราส่วนระหว่างกรดฟอสฟอริกและถ่านชาร์เท่ากับ 4 ที่เวลาดูดซับสารกระตุ้น 20 ชั่วโมง อัตราการเขย่าระหว่างการกระตุ้นเท่ากับ 200 รอบต่อนาที และ กระตุ้นในเครื่องปฏิกรณ์แบบเบดนิ่งภายใต้ภาวะแก๊สในโตรเจนที่อัตราการใหล 50 มิลลิลิตรต่อนาที อัตราการให้ความร้อน 10 องศาเซลเซียสต่อนาที ที่อุณหภูมิ 500-900 องศาเซลเซียส เป็นเวลา 30 นาที จากนั้นนำมาดูดซับสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพที่อัตราส่วนระหว่างถ่านกัมมันต์และกลีเซ อรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตร เวลาดูดซับ 90 นาที อัตราการเขย่า 250 รอบต่อนาที

ภาพที่ 3.20 แสดงปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วย โพแทสเซียมไฮดรอกไซด์ โพแทสเซียมคาร์บอเนต และกรดฟอสฟอริก และอุณหภูมิการกระตุ้น 500 ถึง 900 องศาเซลเซียส พบว่าปริมาณหมู่คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วย โพแทสเซียมไฮดรอกไซด์ (ภาพที่ 3.20(ก)) และโพแทสเซียมคาร์บอเนต (ภาพที่ 3.20(ข)) จะเพิ่มขึ้น เมื่อเพิ่มอุณหภูมิการกระตุ้นจาก 500 องศาเซลเซียส เป็น 800 องศาเซลเซียส แต่เมื่ออุณหภูมิของการ กระตุ้นสูงกว่า 800 องศาเซลเซียส ปริมาณหมู่คาร์บอนิลบนพื้นผิวถ่านกัมมันต์จะลดลง ส่วนการเพิ่ม อุณหภูมิการกระตุ้นในช่วงอุณหภูมิที่ศึกษาคือ 500 ถึง 900 องศาเซลเซียส จะทำให้ปริมาณหมู่คาร์บอก ซิลและหมู่ไฮดรอกซิลลดลงอย่างต่อเนื่อง เนื่องจากหมู่ฟังก์ชันแต่ละชนิดจะเกิดการสลายตัวที่อุณหภูมิ

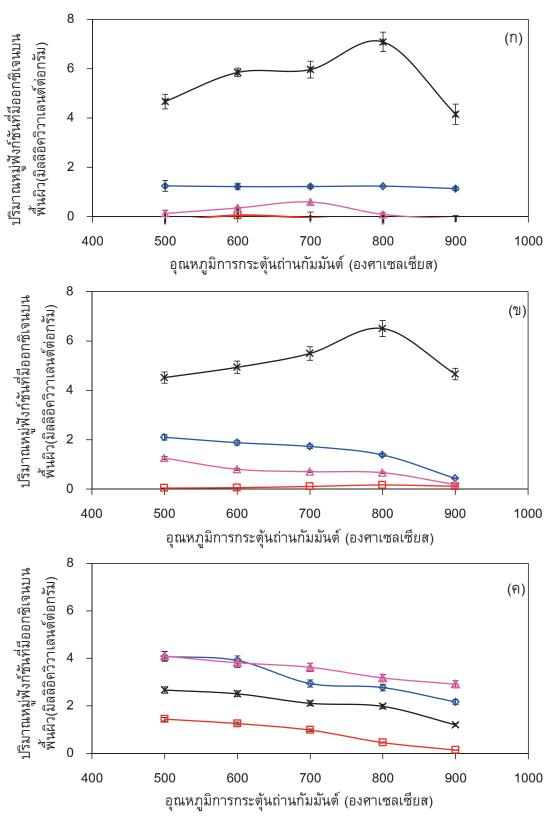
สูงแตกต่างกัน กล่าวคือหมู่คาร์บอกซิลจะเริ่มสลายตัวที่อุณหภูมิ 400 องศาเซลเซียส หมู่แลคโตนเริ่ม สลายตัวที่อุณหภูมิ 650 องศาเซลเซียส หมู่ไฮดรอกซิลจะเริ่มสลายตัวที่อุณหภูมิ 700 องศาเซลเซียส และหมู่คาร์บอนิลจะเริ่มสลายตัวที่อุณหภูมิ 850 องศาเซลเซียส [57] ส่งผลให้การเปลี่ยนแปลงปริมาณ หมู่ฟังก์ชันบนพื้นผิวถ่านกัมมันต์แตกต่างกันเมื่ออุณหภูมิการกระตุ้นแตกต่างกัน สำหรับถ่านกัมมันต์ที่ ถูกกระตุ้นด้วยกรดฟอสฟอริก พบว่าหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวมีปริมาณลดลงเมื่ออุณหภูมิ สูงขึ้น (ภาพที่ 3.20(ค))

เมื่อพิจารณาผลของอุณหภูมิการกระตุ้นต่อพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วยสารเคมีชนิด ต่างๆ พบว่าการกระตุ้นถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์จาก 500 เป็น 800 องศา เซลเซียส จะเพิ่มพื้นที่ผิว BET (ภาพที่ 3.21) และปริมาตรรูพรุนรวม (ภาพที่ 3.22) เนื่องจากถ่านกัม มันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์จะเกิดปฏิกิริยาต่อเนื่องหลายขั้นตอน โดยโมเลกุลของ โพแทสเซียมไฮดรอกไซด์ที่มากเกินพอจะสลายตัวเป็นโมเลกุลของโพแทสเซียมออกไซด์และน้ำดัง สมการ (3.3) และน้ำที่เกิดขึ้นจะทำปฏิกิริยาต่อเนื่องกับอะตอมคาร์บอน (ปฏิกิริยาแก๊ส-น้ำ) ดังสมการ (3.4) ซึ่งแก๊สคาร์บอนมอนอกไซด์ที่เกิดขึ้นจะทำปฏิกิริยากับน้ำ (ปฏิกิริยาวอเตอร์แก๊สซิพ) ดังสมการ (3.5) ได้เป็นคาร์บอนไดออกไซด์และแก๊สไฮโดรเจน และระเหยออกจากโครงสร้างของถ่านกัมมันต์ทำให้ ถ่านกัมมันต์ที่ผิว BET และปริมาตรรูพรุนรวมเพิ่มมากขึ้น

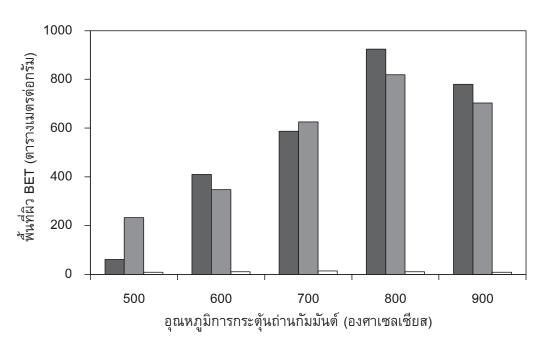
2KOH
$$\rightarrow$$
 $K_2O + H_2O$ (ปฏิกิริยาการกำจัดน้ำ) (3.3)

$$C + H_2O \rightarrow H_2 + CO (ปฏิกิริยาแก๊ส-น้ำ) (3.4)$$

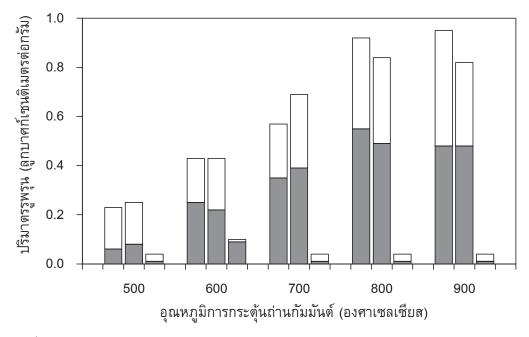
$$CO + H_2O \rightarrow H_2 + CO_2$$
 (ปฏิกิริยาวอเตอร์แก๊สซิพ) (3.5)


อย่างไรก็ตามเมื่อเพิ่มอุณหภูมิการกระตุ้นถ่านกัมมันต์สูงกว่า 800 องศาเซลเซียส พื้นที่ผิว BET จะลดลง ขณะที่ปริมาตรรูพรุนรวมจะมีแนวโน้มเพิ่มสูงขึ้น จากงานวิจัยที่ผ่านมา พบว่าเมื่อใช้อุณหภูมิ การกระตุ้นสูงกว่า 700 องศาเซลเซียส โมเลกุลของโพแทสเซียมออกไซด์ที่เกิดจากการสลายตัวของ โพแทสเซียมไฮดรอกไซด์ที่มากเกินพอจะทำปฏิกิริยากับแก๊สคาร์บอนไดออกไซด์ แก๊สไฮโดรเจน และ อะตอมของคาร์บอน [58-59] ดังสมการ (3.6)-(3.8) เกิดเป็นโมเลกุลของโพแทสเซียมคาร์บอเนตและ อะตอมของโลหะโพแทสเซียม

$$K_2O + CO_2 \rightarrow K_2CO_3$$
 (โครงสร้างของคาร์บอเนต) (3.6)


$$K_2O + H_2 \rightarrow 2K + H_2O$$
 (การรีดักชั้นด้วยแก๊สไฮโดรเจน) (3.7)

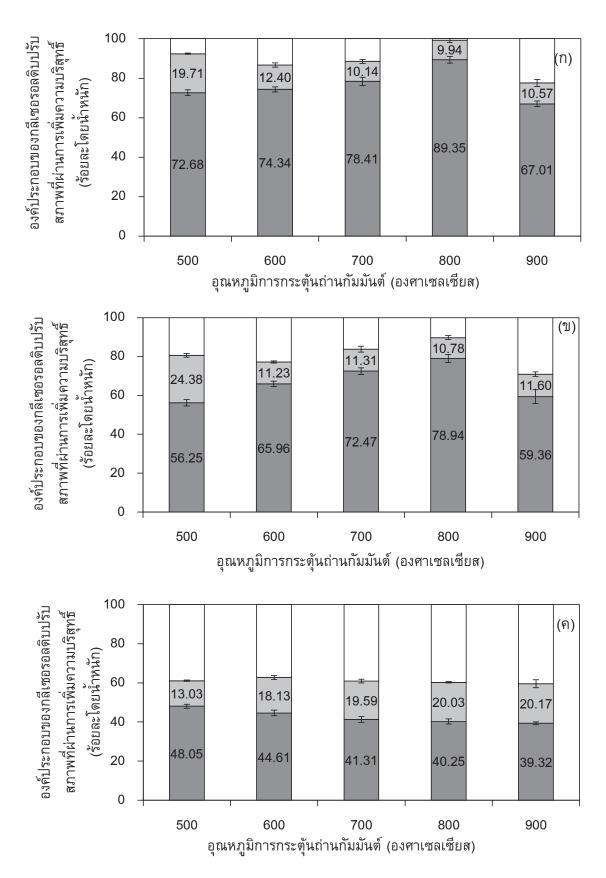
$$K_2O+C$$
 \rightarrow 2K + CO (การรีดักชั้นด้วยคาร์บอน) (3.8)


ผลิตภัณฑ์ที่เกิดขึ้นทั้งโพแทสเซียมคาร์บอเนตและอะตอมของโลหะโพแทสเซียมจะแทรกเข้าไป ในชั้นของอะตอมคาร์บอน ทำให้โครงสร้างรูพรุนระหว่างชั้นของอะตอมคาร์บอนมีความกว้างที่เพิ่มมาก ขึ้น [60] ส่งผลให้พื้นที่ผิว BET มีแนวโน้มที่ลดต่ำลง นอกจากนี้การกระตุ้นถ่านกัมมันต์ที่อุณหภูมิสูงจะ ทำให้ผนังรูพรุนเกิดการพังทลายและเชื่อมต่อกันเป็นรูพรุนที่มีขนาดใหญ่ขึ้น ส่งผลให้ปริมาตรรูพรุนแบบ ไมโครพอร์ลดลงและปริมาตรรูพรุนแบบเมโซพอร์มีแนวโน้มเพิ่มสูงขึ้น (ภาพที่ 3.22)

ภาพที่ 3.20 ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อปริมาณปริมาณ (◇) หมู่คาร์บอกซิล (□) หมู่ แลคโตน (△) หมู่ไฮดรอกซิล และ (×) หมู่คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (ก) โพแทสเซียมไฮดรอกไซด์ (ข) โพแทสเซียมคาร์บอเนต และ (ค) กรดฟอสฟอริก

ภาพที่ 3.21 ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อพื้นที่ผิว BET ของถ่านกัมมันต์ที่กระตุ้นด้วย (■) โพแทสเซียมไฮดรอกไซด์ (■) โพแทสเซียมคาร์บอเนต และ (□) กรดฟอสฟอริกและถ่านชาร์ เวลา ดูดซับสารกระตุ้น 20 ชั่วโมง

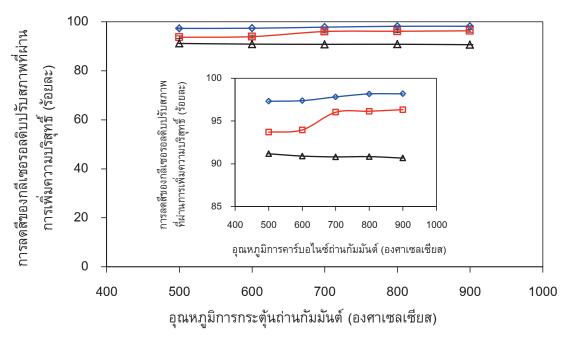
ภาพที่ 3.22 ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อ (■) ปริมาตรรูพรุนแบบไมโครพอร์ และ (□) ปริมาตรรูพรุนแบบเมโซพอร์ของถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียที่กระตุ้นด้วยโพแทสเซียม ไฮดรอกไซด์ (แท่งซ้าย) โพแทสเซียมคาร์บอเนต (แท่งกลาง) และกรดฟอสฟอริก (แท่งขวา)


เมื่อพิจารณาพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมคาร์บอเนต พบว่ามีแนวโน้มที่ คล้ายคลึงกับถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ กล่าวคือพื้นที่ผิว BET และปริมาตรรู พรุนรวมจะเพิ่มมากขึ้น เมื่อเพิ่มอุณหภูมิการกระตุ้นจาก 500 เป็น 800 องศาเซลเซียส เนื่องจาก ขั้นตอนของการกระตุ้นถ่านกัมมันต์โมเลกุลของโพแทสเซียมคาร์บอเนตจะทำปฏิกิริยากับอะตอม คาร์บอน (ปฏิกิริยาแกซิฟิเคชัน) ดังสมการ (3.9) ได้เป็นอะตอมของโพแทสเซียมและมีการปลดปล่อย สารระเหยออกมาเป็นแก๊สคาร์บอนมอนอกไซด์ [61] ทำให้เกิดการสลายตัวของโครงสร้างที่เกิดการ เชื่อมโยงหรือส่วนที่เป็นผลึกที่อุดตันโครงสร้างรูพรุนของถ่านกัมมันต์ ส่งผลให้ถ่านกัมมันต์มีพื้นที่ผิว BET และปริมาตรรูพรุนรวมเพิ่มมากขึ้น [62]

$$2C+ K_2CO_3 \longrightarrow 2K+ 3CO$$
 (3.9)

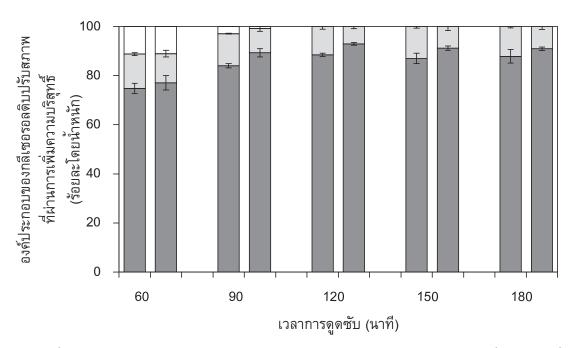
นอกจากนี้อะตอมของโพแทสเซียมเป็นโลหะที่อ่อนตัวได้ที่อุณหภูมิสูงจึงแทรกเข้าไปในชั้นของ อะตอมคาร์บอนทำให้เกิดรูพรุนได้มากขึ้น [63] การเพิ่มอุณหภูมิการกระตุ้นจึงทำให้ปริมาตรรูพรุนแบบ เมโซพอร์เพิ่มสูงขึ้น (ภาพที่ 3.22) เนื่องจากผนังรูพรุนแบบไมโครพอร์จะเกิดการพังทลาย (Collapse) ระหว่างการปล่อยสารระเหยได้ออกจากโครงสร้างของถ่านกัมมันต์ในขั้นตอนการกระตุ้น ทำให้รูพรุน ขนาดเล็กขยายตัวเป็นรูพรุนที่มีขนาดใหญ่มากขึ้น อย่างไรก็ตามเมื่อเพิ่มอุณหภูมิการกระตุ้นเป็น 900 องศาเซลเซียส พื้นผิวของถ่านกัมมันต์ที่ได้จะลดลง เนื่องจากอาจเกิดการหดตัวของโครงสร้างรูพรุน ส่งผลให้โครงสร้างรูพรุนและพื้นที่ผิว BET มีแนวโน้มที่ลดลง

เมื่อพิจารณาพื้นผิวของถ่านกัมมันต์ที่ถูกกระตุ้นด้วยกรดฟอสฟอริก พบว่าเมื่อเพิ่มอุณหภูมิการ กระตุ้นจาก 500 เป็น 900 องศาเซลเซียส ไม่สามารถเพิ่มพื้นที่ผิว BET และปริมาตรรูพรุนรวมให้มีค่า สูงในทุกภาวะของอุณหภูมิการกระตุ้นถ่านกัมมันต์ โดยอุณหภูมิการกระตุ้นที่ 600 องศาเซลเซียส ถ่านกัมมันต์ที่กระตุ้นด้วยกรดฟอสฟอริกจะมีพื้นที่ผิว BET และปริมาตรรูพรุนรวมสูงสุดเท่ากับ 13.40 ตารางเมตรต่อกรัม และ 0.035 ลูกบาศก์เซนติเมตรต่อกรัม และจากภาพที่ 3.22 พบว่าไม่มี ความสัมพันธ์ระหว่างอุณหภูมิการกระตุ้นกับปริมาตรรูพรุนแบบไมโครพอร์และเมโซพอร์ โดยลักษณะ ทางพื้นผิวของถ่านกัมมันต์ที่ต่ำที่สุดพบในถ่านกัมมันต์ที่กระตุ้นด้วยกรดฟอสฟอริกที่อุณหภูมิมากกว่า 450 องศาเซลเซียส เนื่องจากการเชื่อมโยงของฟอสเฟสหรือพอลิฟอสเฟสในโครงสร้างของถ่านกัมมันต์ จะไม่เสถียรและเกิดการแตกออกของพันธะทำให้โครงสร้างของถ่านกัมมันต์เกิดการหดตัว ส่งผลให้ โครงสร้างรูพรุนและพื้นที่ผิวของถ่านกัมมันต์ลดลง [64]

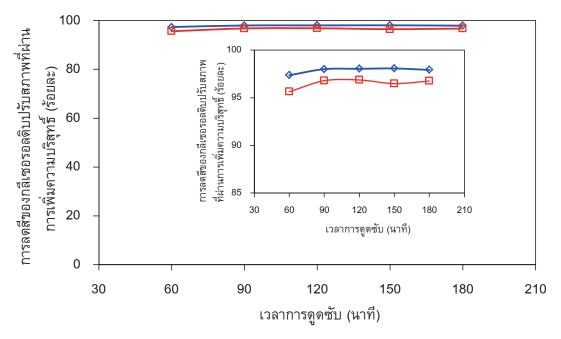

เมื่อพิจารณาองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูด ซับด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ (ภาพที่ 3.23(ก)) พบว่าการเพิ่มอุณหภูมิ การกระตุ้นจาก 500 เป็น 800 องศาเซลเซียส จะทำให้เถ้าลดลงจากร้อยละ 19.71 เป็นร้อยละ 9.94 สาร ปนเปื้อนลดลงจากร้อยละ 13.27 เป็นร้อยละ 0.71 ส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์เพิ่มขึ้นจากร้อยละ 72.68 เป็นร้อยละ 89.35 ซึ่งสอดคล้องกับการ เพิ่มขึ้นของปริมาณหมู่คาร์บอนิลบนพื้นผิว (ภาพที่ 3.20(ก)) และลักษณะกายภาพทางพื้นผิวของ ถ่านกัมมันต์ (ภาพที่ 3.21 และ 3.22) แต่เมื่อเพิ่มอุณหภูมิการกระตุ้นมากกว่า 800 องศาเซลเซียส พบว่าปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะลดลงเหลือร้อยละ 7.01 เนื่องจากปริมาณหมู่คาร์บอนิลบนพื้นผิวและพื้นที่ผิว BET มีแนวโน้มที่ลดต่ำลง สำหรับ องค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่ ถูกกระตุ้นด้วยโพแทสเซียมคาร์บอเนต (ภาพที่ 3.23(ข)) พบว่ามีแนวโน้มที่คล้ายคลึงกับถ่านกัมมันต์ที่

ภาพที่ 3.23 ผลของอุณหภูมิการกระตุ้นถ่านกัมมันต์ต่อองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (ก) โพแทสเซียมไฮดรอกไซด์ (ข) โพแทสเซียมคาร์บอเนต และ (ค) กรดฟอสฟอริก: (■) กลีเซอรอล (■) เถ้า และ (□) สารปนเปื้อน

ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ กล่าวคือการเพิ่มอุณหภูมิการกระตุ้นจาก 500 เป็น 800 องศา เซลเซียส จะทำให้เถ้าลดลงจากร้อยละ 24.38 เป็นร้อยละ 10.78 สารปนเปื้อนลดลงจากร้อยละ 22.81 เป็นร้อยละ 10.62 ส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ เพิ่มขึ้นจากร้อยละ 56.25 เป็นร้อยละ 78.94 แต่เมื่อเพิ่มอุณหภูมิการกระตุ้นมากกว่า 800 องศา เซลเซียส พบว่าปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะลดลงเป็น ร้อยละ 59.36 ซึ่งจะสอดคล้องกับการเพิ่มขึ้นของปริมาณหมู่คาร์บอนิลบนพื้นผิว (ภาพที่ 3.20(ข)) และ ลักษณะกายภาพทางพื้นผิวของถ่านกัมมันต์อย่างชัดเจน เมื่อพิจารณาองค์ประกอบในกลีเซอรอลดิบ ปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยกรดฟอสฟอริก (ภาพที่ 3.23 (ค)) พบว่าการเพิ่มอุณหภูมิการกระตุ้นจาก 500 เป็น 900 องศาเซลเซียส จะทำให้เถ้า เพิ่มขึ้นจากร้อยละ 13.03 เป็นร้อยละ 20.17 สารปนเปื้อนเพิ่มขึ้นจากร้อยละ 38.92 เป็นร้อยละ 40.51 เนื่องจากการเพิ่มอุณหภูมิการกระตุ้นทำให้ปริมาณหมู่คาร์บอนิลและพื้นที่ผิว BET ลดลง ส่งผลให้ ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะลดลงจากร้อยละ 48.05 เป็นร้อยละ 39.32

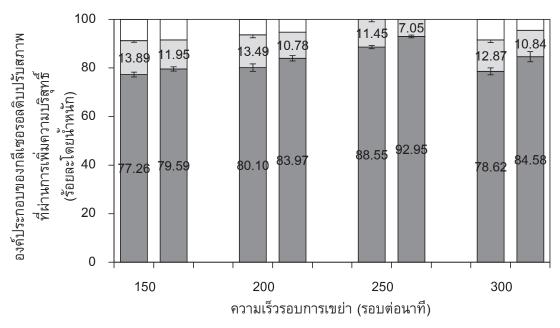

ภาพที่ 3.24 แสดงผลของอุณหภูมิการกระตุ้นต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ โพแทสเซียม คาร์บอเนต และกรดฟอสฟอริก พบว่าการเพิ่มอุณหภูมิการกระตุ้นถ่านกัมมันต์ที่กระตุ้นด้วย โพแทสเซียมไฮดรอกไซด์และโพแทสเซียมคาร์บอเนตจะทำให้ร้อยละการลดลงของสีเพิ่มขึ้น (ความเข้ม สีลดลง) แต่ถ่านกัมมันต์ที่ถูกกระตุ้นด้วยกรดฟอสฟอริกจะทำให้ร้อยละการลดลงของสีลดลงเพียง เล็กน้อย เนื่องจากมีปริมาณสารปนเปื้อนสูง โดยถ่านกัมมันต์ที่ถูกกระตุ้นโดยโพแทสเซียมไฮดรอกไซด์ และกระตุ้นที่อุณหภูมิสูงกว่า 800 องศาเซลเซียส จะทำให้เกิดการลดความเข้มสีสูงสุดคือร้อยละ 98.17

ภาพที่ 3.24 ผลของอุณหภูมิการกระตุ้นต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความ บริสุทธิ์ด้วยถ่านกัมมันต์ที่ถูกกระตุ้นด้วย (♦) โพแทสเซียมไฮดรอกไซด์ (□) โพแทสเซียมคาร์บอเนต และ (△) กรดฟอสฟอริก


3.2.5 ภาวะที่เหมาะสมในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการดูดซับ

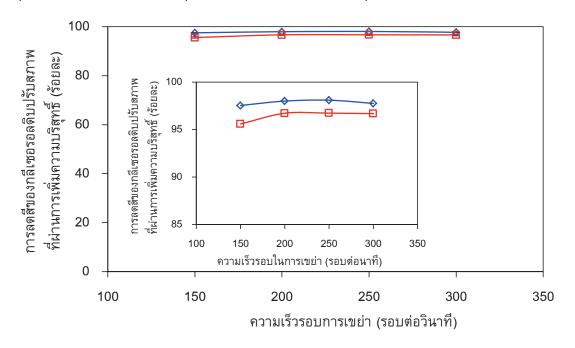
ภาพที่ 3.25 แสดงผลของเวลาการดูดซับต่อความสามารถในการเพิ่มความบริสุทธิ์ของ กลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์เชิงพาณิชย์ และถ่านกัมมันต์ที่เตรียมจาก กากตะกอนบำบัดน้ำเสียที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ที่อัตราส่วนโดยน้ำหนักระหว่าง โพแทสเซียมไฮดรอกไซด์และถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และอุณหภูมิการ กระตุ้น 800 องศาเซลเซียส พบว่าการเพิ่มเวลาในการดูดซับจาก 60 เป็น 120 นาที การดูดซับด้วย ถ่านกัมมันต์เชิงพาณิชย์และถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์จะทำให้เถ้าลดลงจาก ร้อยละ 14.0 เป็นร้อยละ 11.5 และจากร้อยละ 11.9 เป็นร้อยละ 7.0 ตามลำดับ และไม่มีสารปนเปื้อนใน กลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์ ส่งผลให้มีปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์เพิ่มขึ้นจากร้อยละ 74.9 เป็น 88.5 และ 77.1 เป็น 93.0 ตามลำดับ เนื่องจาก ระยะเวลาในการดูดซับที่เพิ่มขึ้นจะเพิ่มโอกาสในการสัมผัสกันระหว่างพื้นผิวของถ่านกัมมันต์กับสาร ปนเปื้อนในกลีเซอรอลดิบปรับสภาพทำให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพจะมีแนวโน้มคงที่ อาจเนื่องมาจากถ่านกัมมันต์ดูดซับสารปนเปื้อนจนถึงจุดอิ่มตัว จึงกล่าวได้ว่าเวลาในการดูดซับที่ เหมาะสมคือ 120 นาที

ภาพที่ 3.25 ผลของเวลาการดูดซับต่อองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความ
บริสุทธิ์ด้วยถ่านกัมมันต์เชิงพาณิชย์ (แถบซ้าย) และถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอก
ไซด์ ที่อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง
และอุณหภูมิการกระตุ้น 800 องศาเซลเซียส (แถบขวา): (■) กลีเซอรอล (■) เถ้า และ (□) สาร
ปนเปื้อน


ภาพที่ 3.26 แสดงผลของเวลาของการดูดซับต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์เชิงพาณิชย์และถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสีย พบว่ากลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ทั้ง 2 ชนิด จะมีสีลดลง มากกว่าร้อยละ 95.6 โดยกลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่เตรียมจาก กากตะกอนบำบัดน้ำเสียจะมีสีอ่อนที่สุด หรือคิดเป็นการลดลงของสีมากกว่าร้อยละ 98.1 เนื่องจาก กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์ที่กระตุ้นด้วย โพแทสเซียมไฮดรอกไซด์จะมีปริมาณสารปนเปื้อนต่ำที่สุด

ภาพที่ 3.26 ผลของเวลาการดูดซับต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ด้วย (ロ) ถ่านกัมมันต์เชิงพาณิชย์ และ (♦) ถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ที่ อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และ อุณหภูมิการกระตุ้น 800 องศาเซลเซียส

ภาพที่ 3.27 แสดงผลของความเร็วรอบการเขย่าต่อความสามารถในการเพิ่มความบริสุทธิ์ กลีเซอรอลดิบปรับสภาพโดยการดูดซับด้วยกัมมันต์เชิงพาณิชย์และถ่านกัมมันต์ที่เตรียมจากกาก ตะกอนบำบัดน้ำเสีย เมื่อใช้เวลาในการดูดซับสารปนเปื้อน 120 นาที ความเร็วรอบการเขย่า 150-300 รอบต่อนาที พบว่าความเร็วรอบการเขย่าในช่วงที่ศึกษามีผลต่อองค์ประกอบของกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์เล็กน้อย กล่าวคือเมื่อเพิ่มความเร็วรอบการเขย่าจาก 150 เป็น 250 รอบต่อนาที จะทำให้เถ้าลดลงจากร้อยละ 13.89 เป็น ร้อยละ 11.45 และจากร้อยละ 11.95 เป็นร้อยละ 7.05 เมื่อใช้ถ่านกัมมันต์เชิงพาณิชย์และถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียเป็นตัวดูดซับ ตามลำดับ และไม่พบสารปนเปื้อน ส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการ เพิ่มความบริสุทธิ์โดยการดูดซับด้วยถ่านกัมมันต์เชิงพาณิชย์และถ่านกัมมันต์ที่เดรียมจากกากตะกอน บำบัดน้ำเสียเพิ่มขึ้นจากร้อยละ 77.26 เป็น 88.55 และ 79.59 เป็น 92.95 ตามลำดับ เนื่องจากการเพิ่ม


ความเร็วรอบการเขย่าจะทำให้ความหนาของชั้นการแพร่ (Diffusion layer) ที่ปกคลุมอนุภาคของ ถ่านกัมมันต์ลดลง ทำให้โมเลกุลของสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพสามารถแพร่เข้าไปใน อนุภาคของถ่านกัมมันต์ส่งผลให้ถ่านกัมมันต์สามารถดูดซับสารปนเปื้อนได้ดีขึ้น แต่เมื่อเพิ่มความเร็ว รอบการเขย่าจาก 250 เป็น 300 รอบต่อนาที ความบริสุทธิ์ของกลีเซอรอลในกลีเซอรอลดิบปรับสภาพ จะลดลง เนื่องจากเกิดแรงเฉือนระหว่างโมเลกุลทำให้โมเลกุลไม่สามารถเกาะกันได้ [65] จึงกล่าวได้ว่า ความเร็วรอบการเขย่าที่เหมาะสมคือ 250 รอบต่อนาที

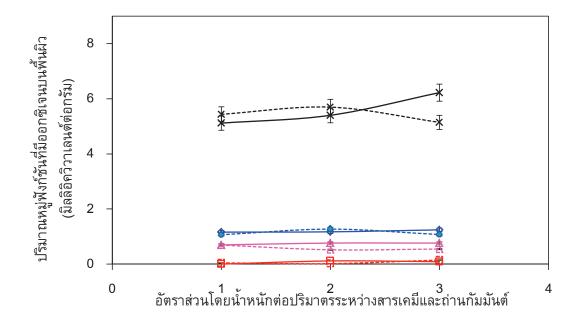
ภาพที่ 3.27 ผลของความเร็วรอบการเขย่าต่อองค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสุทธิ์ด้วยถ่านกัมมันต์เชิงพาณิชย์ (แถบซ้าย) และถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮ ดรอกไซด์ ที่อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และอุณหภูมิการกระตุ้น 800 องศาเซลเซียส (แถบขวา): (■) กลีเซอรอล (■) เถ้า และ (□) สาร ปนเปื้อน

ภาพที่ 3.28 แสดงผลของความเร็วรอบการเขย่าต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์เชิงพาณิชย์และถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสีย ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ที่อัตราส่วนโดยน้ำหนักระหว่างโพแทสเซียมไฮดรอกไซด์และ ถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และอุณหภูมิการกระตุ้น 800 องศาเซลเซียส พบว่ากลีเซอรอลที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสีย โดย ใช้เวลาการดูดซับ 120 นาที ความเร็วรอบการเขย่า 250 รอบต่อนาที จะมีสีอ่อนที่สุดหรือคิดเป็นการ ลดลงของสีมากกว่าร้อยละ 98.1 เนื่องจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย ถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสียจะมีปริมาณสารปนเปื้อนต่ำที่สุด

สมบัติของกลเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการดูดซับด้วย ถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสียแสดงในตารางที่ 3.2 พบว่าถ่านกัมมันต์ที่เตรียมจาก กากตะกอนบำบัดน้ำเสียโดยการกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ที่อัตราส่วนระหว่างโพแทสเซียม- ไฮดรอกไซด์และถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และอุณหภูมิการกระตุ้น 800 องศาเซลเซียส จะมีประสิทธิภาพสูงสุดในการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพ โดย สามารถเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบได้เป็นร้อยละ 93.0 ซึ่งมีความบริสุทธิ์มากกว่ากลีเซอรอล ดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์เชิงพาณิชย์หรือถ่านกัมมันต์ที่เตรียมจากกากตะกอน บำบัดน้ำเสียโดยการกระตุ้นด้วยความร้อนซึ่งมีความบริสุทธิ์ร้อยละ 88.6 และ 85.78 ตามลำดับ ซึ่งกลี เซอรอลที่ได้มีความบริสุทธิ์ที่สามารถนำไปใช้ในอุตสาหกรรมสปู่ได้ แต่ยังคงมีสมบัติไม่ผ่านเกณฑ์ กำหนดชั้นคุณภาพมาตรฐานผลิตภัณฑ์อุตสาหกรรมของกลีเซอรอลบริสุทธิ์ที่ต้องมีความบริสุทธิ์ของกลี เซอรอลไม่น้อยกว่าร้อยละ 95.0 โดยน้ำหนัก และเมื่อนำกลีเซอรอลปรับสภาพที่ผ่านการเพิ่มความ บริสุทธิ์แล้วมาทำให้บริสุทธิ์มากขึ้นโดยการดูดซับซ้ำที่ภาวะที่เหมาะสม พบว่าปริมาณกลีเซอรอลในกลี เซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะเพิ่มขึ้น 1.02 เท่า และ 1.04 เท่า มีความเข้มสีลดลง 3.35 เท่า และ 3.55 เท่า ความหนืดเพิ่มขึ้น 1.01 เท่า และ 1.02 เท่า ปริมาณเถ้าลดลง 1.43 เท่า และ 2.30 เท่า ตามลำดับ และไม่พบปริมาณสารปนเปื้อนในกลีเซอรอล (ตารางที่ 3.2) เนื่องจากการเพิ่ม จำนวนครั้งของการดูดซับซ้ำเป็นการเพิ่มปริมาณหรือพื้นที่ผิวในการดูดซับสารปนเปื้อนและสารประกอบ จำพวกเกลือในกลีเซอรอลดิบปรับสภาพ ส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพเมื่อ ผ่านการดูดซับซ้ำครั้งที่ 2 มีค่าสูงขึ้นเป็นร้อยละ 96.9 โดยน้ำหนัก ซึ่งมีสมบัติผ่านเกณฑ์กำหนดชั้น คุณภาพมาตรฐานผลิตภัณฑ์อุตสาหกรรมของกลีเซอรอลบริสุทธิ์

ภาพที่ 3.28 ผลของความเร็วรอบการเขย่าต่อการลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความ
บริสุทธิ์ด้วย (□) ถ่านกัมมันต์เชิงพาณิชย์ และ (◇) ถ่านกัมมันต์ที่ถูกกระตุ้นด้วยโพแทสเซียมไฮดรอก
ไซด์ ที่อัตราส่วนโดยน้ำหนักระหว่างสารกระตุ้นและถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง
และอุณหภูมิการกระตุ้น 800 องศาเซลเซียส

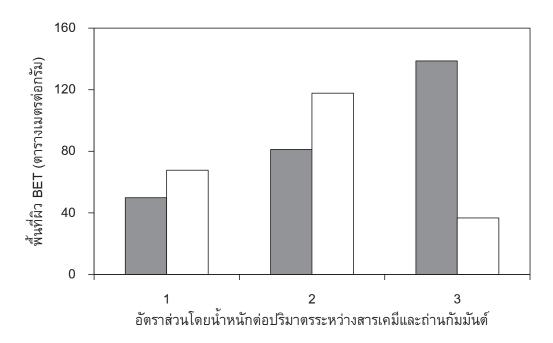
เมื่อพิจารณาสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์เชิงพาณิชย์ และ ถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสีย (ภาพที่ 3.29) พบว่ากลีเซอรอลดิบ (ภาพที่ 3.29(ก)) และกลีเซอรอลดิบปรับสภาพ (ภาพที่ 3.29(ข)) จะมีสีน้ำตาลดำและสีน้ำตาลอ่อนลง ตามลำดับ เมื่อ นำมาผ่านการดูดซับสารปนเปื้อนด้วยถ่านกัมมันต์เชิงพาณิชย์ที่อัตราส่วนระหว่างถ่านกัมมันต์และกลีเซ อรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตร เวลาการดูดซับ 90 นาที และอัตราการเขย่า 250 รอบต่อ นาที (ภาพที่ 3.29(ค)) และด้วยถ่านกัมมันต์เชิงพาณิชย์ที่ภาวะเหมาะสม (ภาพที่ 3.29(ง)) สีของกลีเซ อรอลจะมีลักษณะเป็นสีเหลืองเข้มและสีเหลืองอ่อน ตามลำดับ เมื่อนำมาดูดซับด้วยถ่านกัมมันต์ที่เตรียม จากกากตะกอนบำบัดน้ำเสียโดยใช้เวลาการดูดซับ 90 นาที และอัตราการเขย่า 250 รอบต่อนาที (ภาพที่ 3.29(จ)) และถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสีย ที่ภาวะเหมาะสม (ภาพที่ 3.29(ฉ)) สีของกลีเซอรอลจะมีลักษณะเป็นสีเหลืองใส โดยเมื่อนำถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสีย ที่ภาวะเหมาะสมมาทำการดูดซับซ้ำครั้งที่ 1 (ภาพที่ 3.29(ซ)) และ ครั้งที่ 2 (ภาพที่ 3.29(ซ)) สีของกลีเซอรอลจะเปลี่ยนเป็นสีขาวใส


ภาพที่ 3.29 สีของ (ก) กลีเซอรอลดิบ (ข) กลีเซอรอลดิบปรับสภาพ และกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วย (ค) ถ่านกัมมันต์เชิงพาณิชย์โดยใช้เวลาดูดซับ 90 นาที อัตราการเขย่า 250 รอบต่อนาที (ง) ถ่านกัมมันต์เชิงพาณิชย์ที่ภาวะเหมาะสม (จ) ถ่านกัมมันต์ที่เตรียมจากกากตะกอน บำบัดน้ำเสียโดยใช้เวลาดูดซับ 90 นาที อัตราการเขย่า 250 รอบต่อนาที (ฉ) ถ่านกัมมันต์ที่เตรียมจาก กากตะกอนบำบัดน้ำเสียโดยการกระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์สำหรับการดูดซับครั้งที่ 1 และ การดูดซับซ้ำ (ช) ครั้งที่ 1 และ (ซ) ครั้งที่ 2

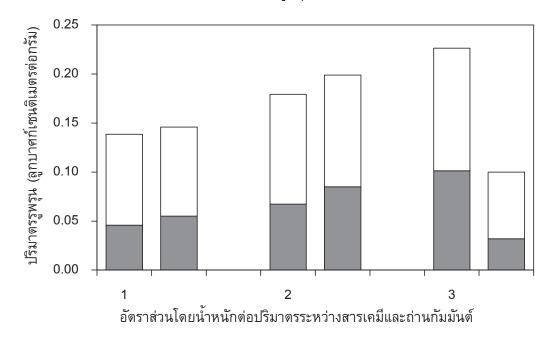
3.2.6 การฟื้นฟูสภาพถ่านกัมมันต์

การฟื้นฟูสภาพถ่านกัมมันต์ที่ผ่านการใช้งานแล้วจะดำเนินการด้วยวิธีทางเคมี โดยนำถ่านกัม มันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสียที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ที่อัตราส่วนระหว่าง โพแทสเซียมไฮดรอกไซด์ และถ่านชาร์เท่ากับ 5 เวลาดูดซับสารกระตุ้น 25 ชั่วโมง และอุณหภูมิการ กระตุ้น 800 องศาเซลเซียส เป็นเวลา 30 นาที ที่ผ่านการใช้งานแล้วไปแช่ในสารเคมี 2 ชนิด ได้แก่ เฮกเซน และไดเอทิลอีเทอร์ ที่อัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์เท่ากับ 1 ถึง 3 กรองแยกและอบที่อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จากนั้นนำถ่านกัมมันต์ที่

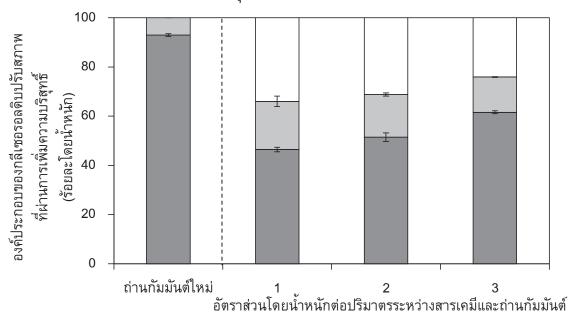
ผ่านการฟื้นฟูสภาพมาดูดซับสารปนเปื้อนในกลีเซอรอลดิบปรับสภาพที่อัตราส่วนระหว่างถ่านกัมมันต์ และกลีเซอรอลดิบปรับสภาพเท่ากับ 67 กรัมต่อลิตร เวลาในการดูดซับ 120 นาที และความเร็วรอบ 250 รอบต่อนาที


ภาพที่ 3.30 แสดงปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่ผ่านการฟื้นฟู สภาพด้วยเฮกเซนและไดเอทิลอีเทอร์ พบว่าถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยเฮกเซนจะมีปริมาณ หมู่คาร์บอนิลสูงสุดเท่ากับ 6.2 มิลลิอิควิวาเลนต์ต่อกรัม ที่อัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างเฮ กเซนและถ่านกัมมันต์เท่ากับ 3 ซึ่งสูงกว่าหมู่อื่น แต่การเพิ่มอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างเฮ กเซนและถ่านกัมมันต์ทำให้เกิดการเปลี่ยนแปลงหมู่กรดเล็กน้อย โดยหมู่แลคโตน หมู่ไฮดรอกซิล และ หมู่คาร์บอกซิล จะเปลี่ยนแปลงในช่วง 0.0-0.1 0.69-0.76 และ 1.1-1.2 มิลลิอิควิวาเลนต์ต่อกรัม ตามลำดับ เมื่อเปรียบเทียบกับถ่านกัมมันต์ใหม่ (ถ่านกัมมันต์ที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์) พบว่าปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยเฮกเซน โดยเฉพาะหมู่คาร์บอนิลมีแนวโน้มลดลง แสดงว่าการฟื้นฟูสภาพด้วยเฮกเซนสามารถกำจัดสารปนเปื้อน จากพื้นผิวของถ่านกัมมันต์ได้บางส่วน ในขณะที่หมู่แลคโตน หมู่ไฮดรอกซิล และหมู่คาร์บอกซิล มี แนวโน้มคงที่ไม่แตกต่างอย่างมีนัยสำคัญเมื่อเปรียบเทียบกับถ่านกัมมันต์ใหม่

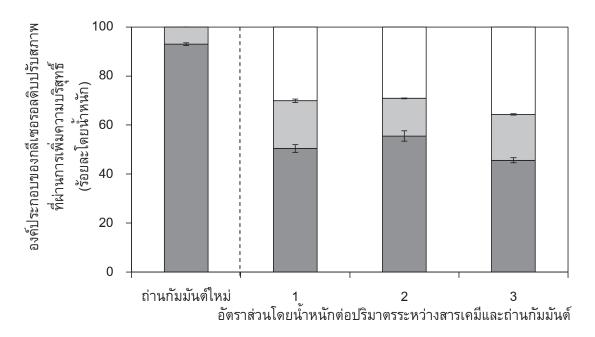
ภาพที่ 3.30 ผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อปริมาณ (◇) หมู่คาร์บอกซิล (□) หมู่แลคโตน (△) หมู่ไฮดรอกซิล และ (×) หมู่คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์ที่ ผ่านการฟื้นฟูสภาพด้วยเฮกเซน (—) และไดเอทิลอีเทอร์ (·····)


เมื่อพิจารณาชนิดและปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ที่ผ่านการฟื้นฟู สภาพด้วยไดเอทิลอีเทอร์ (ภาพที่ 3.30) พบว่าปริมาณหมู่คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์ไม่ แตกต่างอย่างมีนัยสำคัญเมื่อเพิ่มอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างไดเอทิลอีเทอร์และถ่านกัม มันต์จาก 1 เป็น 2 แต่เมื่อเพิ่มอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างไดเอทิลอีเทอร์และถ่านกัมมันต์ มากกว่า 2 จะทำให้ปริมาณหมู่คาร์บอนิลลดลง แสดงว่าการฟื้นฟูสภาพด้วยไดเอทิลอีเทอร์ทำได้ไม่ สมบูรณ์ ทำให้มีการสะสมตัวของสารปนเปื้อนบนพื้นผิวถ่านกัมมันต์ ส่งผลให้รูพรุนบนพื้นผิวรวมถึง ปริมาณหมู่ฟังก์ชันที่เกิดขึ้นจึงลดลง ส่วนหมู่แลคโตน หมู่ไฮดรอกซิล และหมู่คาร์บอกซิลมีแนวโน้มคงที่ หรือเพิ่มขึ้นเพียงเล็กน้อยเมื่อเปรียบเทียบกับถ่านกัมมันต์ใหม่

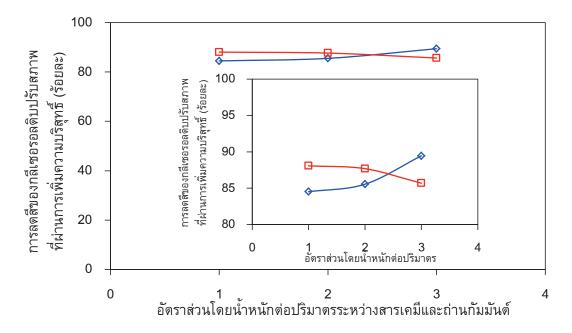
ภาพที่ 3.31 แสดงผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อ พื้นผิวของถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพในช่วง 1 ถึง 3 (ภาพที่ 3.31) พบว่าถ่านกัมมันต์ที่ผ่านการ พื้นฟูสภาพด้วยเอกเซนจะมีพื้นที่ผิว BET และปริมาตรรูพรุนรวมมากกว่าถ่านกัมมันต์ที่ผ่านการใช้งาน แล้วแต่ยังไม่ได้ฟื้นฟูสภาพ (พื้นที่ผิว BET เท่ากับ 17.62 ตารางเมตรต่อกรัม ปริมาตรรูพรุนแบบ ไมโครพอร์และเมโซพอร์เท่ากับ 0.012 และ 0.011 ลูกบาศก์เซนติเมตรต่อกรัม ตามลำดับ) เนื่องจาก การเพิ่มปริมาณเฮกเซนซึ่งเป็นโมเลกุลไม่มีขั้วจะเป็นการเพิ่มความสามารถในการละลายสารปนเปื้อน โดยเฉพาะกรดไขมันอิสระซึ่งเป็นโมเลกุลไม่มีขั้วที่ปกคลุมอยู่บนพื้นผิวและรูพรุนของถ่านกัมมันต์ ซึ่งที่ อัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างเฮกเซนและถ่านกัมมันต์เท่ากับ 3 จะมีพื้นที่ผิว BET และ ปริมาตรรูพรุนแบบไมโครพอร์และเมโซพอร์สูงที่สุด แต่ยังมีค่าที่น้อยกว่าถ่านกัมมันต์ใหม่อยู่มาก แสดง ว่าแยกสารปนเปื้อนอกจากพื้นผิวรูพรุนของถ่านกัมมันต์ด้วยวิธีการที่ศึกษาไม่สามารถทำได้อย่าง สมบูรณ์ ส่งผลให้มีสารปนเปื้อนตกด้างบนพื้นผิวของถ่านกัมมันต์ พื้นที่ผิวรูพรุนและปริมาตรรูพรุนแบบ ไมโครพอร์จึงน้อยกว่าถ่านกัมมันต์ใหม่


ภาพที่ 3.31 ผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อพื้นที่ผิว BET ของถ่านกัมมันต์จากกากตะกอนบำบัดน้ำเสียที่ผ่านการฟื้นฟูสภาพด้วย (■) เฮกเซน และ (□) ไดเอทิล อีเทคร์

เมื่อพิจารณาพื้นผิวของถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยไดเอทิลอีเทอร์ พบว่าพื้นที่ผิว BET และปริมาตรรูพรุนรวมจะเพิ่มขึ้นเมื่อเพิ่มอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างไดเอทิลอีเทอร์ และถ่านกัมมันต์จาก 1 เป็น 2 เนื่องจากไดเอทิลอีเทอร์เป็นโมเลกุลที่ไม่มีขั้วเช่นเดียวกับเฮกเซนแต่มี ความสามารถในการละลายน้ำได้มากกว่า (~6.89 และ 0.001 สำหรับไดเอทิลอีเทอร์และเฮกเซน ตามลำดับ [49]) การเพิ่มปริมาณไดเอทิลอีเทอร์จึงเป็นการเพิ่มความสามารถในการละลายกรดไขมัน อิสระและสารประกอบจำพวกเกลือที่ปกคลุมบนพื้นผิวและรูพรุนของถ่านกัมมันต์ได้ดีกว่าเฮกเซน ส่งผล ให้พื้นที่ผิว BET เพิ่มขึ้นเป็น 117.8 ตารางเมตรต่อกรัม ปริมาตรรูพรุนแบบไมโครพอร์และเมโซพอร์ เพิ่มขึ้นเป็น 0.09 และ 0.11ลูกบาศก์เซนติเมตรต่อกรัม ตามลำดับ (ภาพที่ 3.32) ซึ่งมากกว่าถ่านกัม มันต์ที่ผ่านการฟื้นฟูสภาพด้วยเฮกเซนที่อัตราส่วนเดียวกัน แต่เมื่อเพิ่มอัตราส่วนโดยน้ำหนักต่อ ปริมาตรระหว่างไดเอทิลอีเทอร์และถ่านกัมมันต์มากกว่า 2 พื้นที่ผิว BET และปริมาตรรูพรุนรวมมี แนวโน้มลดลง แสดงว่าอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างไดเอทิลอีเทอร์และถ่านกัมมันต์ที่มาก เกินพออาจไปสะสมตัวบนพื้นผิวของถ่านกัมมันต์หรืออาจเกิดการแข่งขัน (Competition) ระหว่างบริเวณ ที่มีขั้วกับบริเวณที่ไม่มีขั้วในโมเลกุลของไดเอทิลอีเทอร์ [66] ในการละลายสารปนเปื้อนบนพื้นผิวของถ่านกัมมันต์หรืออาจเกิดกรณามันต์ลดลง


ภาพที่ 3.32 ผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อ (■) ปริมาตรรู พรุนแบบไมโครพอร์ และ (□) ปริมาตรรูพรุนแบบเมโซพอร์ของถ่านกัมมันต์จากกากตะกอนบำบัดน้ำ เสียที่ผ่านการฟื้นฟูสภาพด้วยเฮกเซน (แถบซ้าย) และไดเอทิลอีเทอร์ (แถบขวา)

องค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์โดยการดูดซับด้วย ถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยเฮกเซนและไดเอทิลอีเทอร์ที่อัตราส่วนโดยน้ำหนักต่อปริมาตร ระหว่างสารเคมีและถ่านกัมมันต์เท่ากับ 1 ถึง 3 แสดงดังภาพที่ 3.33 และ 3.34 ตามลำดับ พบว่าเมื่อ เพิ่มอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างเฮกเซนและถ่านกัมมันต์จาก 1 เป็น 3 จะทำให้เถ้าลดลง จากร้อยละ 19.60 เป็นร้อยละ 14.35 สารปนเปื้อนลดลงจากร้อยละ 33.96 เป็นร้อยละ 24.06 ส่งผลให้ ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพ ด้วยเฮกเซนเพิ่มขึ้นจากร้อยละ 46.44 เป็นร้อยละ 61.59 (ภาพที่ 3.33) ซึ่งจะสอดคล้องกับการเพิ่มขึ้น ของหมู่คาร์บอนิลบนพื้นผิว และลักษณะทางกายภาพทางพื้นผิวของถ่านกัมมันต์ ส่วนปริมาณกลีเซ อรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการดูดซับด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยไดเอทิล อีเทอร์ พบว่าเมื่อเพิ่มอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างไดเอทิลอีเทอร์และถ่านกัมมันต์จาก 1 เป็น 2 จะทำให้เถ้าลดลงจากร้อยละ 19.49 เป็นร้อยละ 15.38 สารปนเปื้อนลดลงจากร้อยละ 30.09 เป็น ร้อยละ 29.10 ส่งผลให้ปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะ เพิ่มขึ้นจากร้อยละ 50.42 เป็นร้อยละ 55.52 (ภาพที่ 3.34) แต่เมื่อเพิ่มอัตราส่วนโดยน้ำหนักต่อปริมาตร ระหว่างไดเอทิลอีเทอร์และถ่านกัมมันต์มากกว่า 2 พบว่าปริมาณกลีเซอรอลในกลีเซอรอลดิบปรับสภาพ ที่ผ่านการเพิ่มความบริสุทธิ์จะลดลงเป็นร้อยละ 45.61 เนื่องจากปริมาณหมู่คาร์บอนิลบนพื้นผิวรวมถึง พื้นที่ผิว BET ของถ่านกัมมันต์มีแนวโน้มลดลง ซึ่งเป็นการยืนยันว่าสมบัติทางพื้นผิวของถ่านกัมมันต์มี ผลต่อประสิทธิภาพในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบ



ภาพที่ 3.33 ผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อองค์ประกอบ ของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพ ด้วยเฮกเซน: (■) กลีเซอรอล (■) เถ้า และ (□) สารปนเปื้อน

ภาพที่ 3.35 แสดงผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อ การลดสีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพ ด้วยเฮกเซนและไดเอทิลอีเทอร์ พบว่ากลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการดูด ซับด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยสารสกัดทั้ง 2 ชนิด จะมีสีลดลงมากกว่าร้อยละ 84.5 โดย กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการดูดซับด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยเฮกเซนจะมีสีที่อ่อนที่สุดหรือคิดเป็นการลดลงของสีมากกว่าร้อยละ 89.5 เนื่องจากมีปริมาณ สารปนเปื้อนที่ต่ำที่สุด

ภาพที่ 3.34 ผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อองค์ประกอบ ของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วยได เอทิลอีเทอร์: (■) กลีเซอรอล (■) เถ้า และ (□) สารปนเปื้อน

ภาพที่ 3.35 ผลของอัตราส่วนโดยน้ำหนักต่อปริมาตรระหว่างสารเคมีและถ่านกัมมันต์ต่อการลดสีของ กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยถ่านกัมมันต์ที่ผ่านการฟื้นฟูสภาพด้วย (♦) เฮกเซนและ (□) ไดเอทิลอีเทอร์

3.2.7 การเปรียบเทียบสมบัติของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการ สกัดด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันต์

เมื่อเปรียบเทียบความบริสุทธิ์ของกลีเซอรอลปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ด้วยการ สกัดด้วยตัวทำละลายและการดูดซับด้วยถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสียดังแสดงใน ตารางที่ 3.1 และ 3.2 ตามลำดับ พบว่ากลีเซอรอลปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ด้วย กระบวนการสกัดด้วยตัวทำละลายโพรพานอลที่อัตราส่วนระหว่างสารสกัดและกลีเซอรอลดิบปรับสภาพ เท่ากับ 2.0 จะมีความบริสุทธิ์มากกว่ากลีเซอรอลปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการดูดซับ ด้วยถ่านกัมมันต์ที่เตรียมจากกากตะกอนบำบัดน้ำเสียที่กระตุ้นด้วยโพแทสเซียมไฮดรอกไซด์ประมาณ 1.05 เท่า งานวิจัยในส่วนต่อไปจึงเป็นการนำกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วย การสกัดด้วยโพรพานอลไปสังเคราะห์สารเพิ่มมูลค่าด้วยกระบวนการเคมีไฟฟ้า

บทที่ 4

ผลการทดลองและการวิจารณ์ผล : การสังเคราะห์สารเพิ่มมูลค่า จากกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้า

งานวิจัยในส่วนนี้จะศึกษาการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้า โดยกลีเซอรอลที่ใช้ในงานวิจัยมี 2 ชนิด คือ กลีเซอรอลเชิงพาณิชย์และกลีเซอรอลดิบปรับสภาพที่ผ่านการ เพิ่มความบริสุทธิ์ ผลการทดลองที่ได้แสดงดังนี้

4.1 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลเชิงพาณิชย์

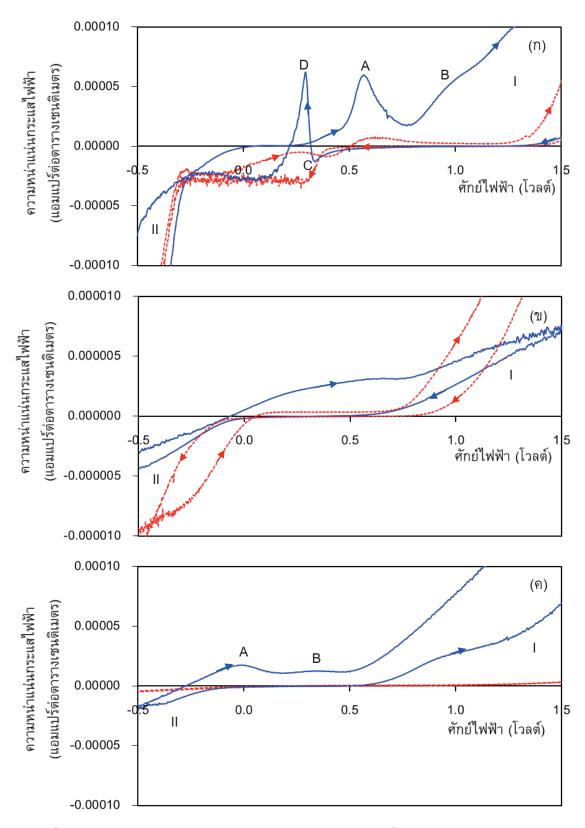
การศึกษาการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลเชิงพาณิชย์ในส่วนแรกจะเป็นการศึกษาความ เป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอลดังกล่าวโดยใช้เครื่อง Potentiostat/ Galvanostat และโปรแกรมไซคลิกโวแทมเมทรี จากนั้นจะเป็นการศึกษาผลของความเป็นกรด-เบสเริ่มต้น ของกลีเซอรอล และกลไกการเกิดปฏิกิริยา

4.1.1 ความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอลเชิงพาณิชย์

การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้า จะเกิดขึ้นได้โดยการ เกิดปฏิกิริยาออกซิเดชัน-รีดักชันบนขั้วไฟฟ้า ในเบื้องต้นจึงทำการศึกษาความเป็นไปได้ในการเกิดปฏิกิริยา ออกซิเดชัน-รีดักชันของกลีเซอรอลโดยใช้โปรแกรมไซคลิกโวแทมเมทรีของเครื่อง Potentiostat/ Galvanostat โดยใช้สารละลายกลีเซอรอลเชิงพาณิชย์ความเข้มขัน 0.3 โมลต่อลิตร ปริมาตร 300 มิลลิลิตร มาปรับค่าความเป็นกรด-เบสเริ่มต้นเท่ากับ 1 7 และ 11 ตามลำดับ ด้วยกรดซัลฟิวริก (H₂SO₄) ความเข้มขันร้อยละ 98 หรือสารละลายโซเดียมไฮดรอกไซด์ (NaOH) ความเข้มขัน 1.0 โมลต่อลิตร และทำการ ตรวจกราดศักย์ไฟฟ้าในช่วง +1.50 ถึง -0.50 โวลต์เทียบกับขั้วไฟฟ้าอ้างอิง Ag/AgCI ด้วยอัตราการตรวจกราด (Scan rate) 5 มิลลิโวลต์ต่อวินาที และอัตราการกวนสารละลาย 650 รอบต่อนาที

ภาพที่ 4.1 แสดงกราฟไซคลิกโวแทมเมทรีของกลีเซอรอลเชิงพาณิชย์ที่ความเป็นกรด-เบสเท่ากับ 1 7 และ 11 เปรียบเทียบกับไซคลิกโวแทมเมทรีของอิเล็กโทรไลต์ (น้ำกลั่น) ที่ความเป็นกรด-เบสเดียวกัน พบว่าที่ความเป็นกรด-เบสเท่ากับ 1 (ภาพที่ 4.1(ก)) ในภาวะที่มีอิเล็กโทรไลต์เพียงอย่างเดียวจะปรากฏพีก ของการเกิดปฏิกิริยาออกซิเดชัน (บริเวณ I) ที่ศักย์ไฟฟ้า +1.27 โวลต์ ตามปฏิกิริยาที่ (4.1) ได้ผลิตภัณฑ์ เป็นแก๊สออกซิเจน และเกิดพีกของปฏิกิริยารีดักชัน (บริเวณ II) ที่ศักย์ไฟฟ้า -0.24โวลต์ ตามปฏิกิริยา (4.2) ได้ผลิตภัณฑ์เป็นแก๊สไฮโดรเจน เมื่อมีกลีเซอรอลในระบบจะปรากฏพีกของปฏิกิริยาออกซิเดชัน 2 พีกคือ พีก A ที่

ศักย์ไฟฟ้าสูงสุดเท่ากับ +0.558 โวลต์ ให้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.056 มิลลิแอมแปร์ต่อตาราง เซนติเมตร และพีก B ในช่วงศักย์ไฟฟ้าเท่ากับ +0.90 ถึง 1.10 โวลต์ ซึ่งซ้อนทับกับช่วงการออกซิเดชันของ น้ำทำให้เห็นพีกดังกล่าวไม่ชัดเจนนัก [67] และเมื่อศักย์ไฟฟ้ามีค่าสูงกว่า +1.15โวลต์ จะเกิดปฏิกิริยา ออกซิเดชันของน้ำ (ช่วง I) เป็นแก๊สออกซิเจน สำหรับการตรวจกราดแบบย้อนกลับจะปรากฏพีกของการ รีดักชันหรือการดูดซับออกซิเจนบนพื้นผิวของแพลทินัม (Pt-O) [68] (พีก C) ที่ศักย์ไฟฟ้าสูงสุดเท่ากับ +0.347 โวลต์ และให้ค่าความหนาแน่นกระแสไฟฟ้าเท่ากับ -0.011 มิลลิแอมแปร์ต่อตารางเซนติเมตร และ ปรากฏพีกของปฏิกิริยาออกซิเดชัน (พีก D) ที่ศักย์ไฟฟ้าสูงสุดเท่ากับ +0.296 โวลต์ ให้ความหนาแน่น กระแสไฟฟ้าเท่ากับ 0.056 มิลลิแอมแปร์ต่อตารางเซนติเมตร ซึ่งคาดว่าน่าจะเป็นพีกของการออกซิเดชัน ของสิ่งเจือปนที่ตกค้างบนขั้วไฟฟ้า [68] และเมื่อศักย์ไฟฟ้ามีค่าต่ำกว่า 0 โวลต์ จะเกิดการเปลี่ยนแปลงของ กระแสไฟฟ้าอย่างมาก (ช่วง II) เนื่องจากเกิดปฏิกิริยารีดักชันของไฮโดรเจนไอออนเป็นแก๊สไฮโดรเจน ซึ่ง เมื่อเปรียบเทียบกับไซคลิกโวแทมเมทรีของน้ำที่ความเป็นกรด-เบสเท่ากับ 1 แล้วพบว่าพีก A และ B เป็น พีกของการเกิดปฏิกิริยาออกซิเดชันของกลีเซอรอล แสดงว่าสารละลายกลีเซอรอลสามารถเกิดปฏิกิริยา ออกซิเดชัน-รีดักชันได้ในภาวะกรด


$$2H_2O \rightarrow O_2 + 4H^{\dagger} + 4e^{-}$$
 (4.1)

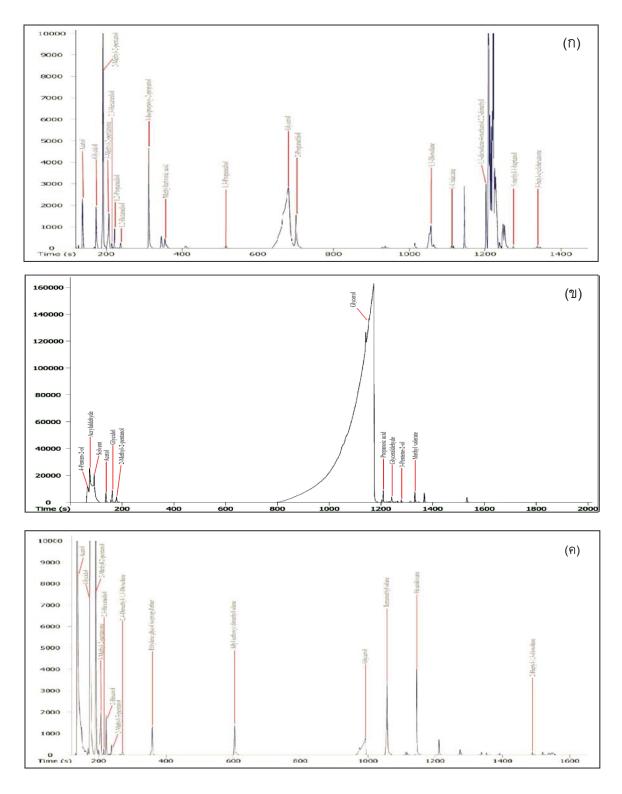
$$2H^{+} + 2e^{-} \rightarrow H_{2}$$
 (4.2)

$$2H_2O + 2e^{-} \rightarrow H_2 + 2OH^{-}$$
 (4.3)

สำหรับไซคลิกโวแทมเมทรีของกลีเซอรอลและอิเล็กโทรไลต์ที่ความเป็นกรด-เบสเท่ากับ 7 (ภาพที่ 4.1(ข)) พบว่าสารละลายอิเล็กโทรไลต์จะเกิดปฏิกิริยาออกซิเดชันที่ศักย์ไฟฟ้า +0.82 โวลต์ ตามปฏิกิริยาที่ (4.1) ได้ผลิตภัณฑ์เป็นแก๊สออกซิเจน และเริ่มเกิดปฏิกิริยารีดักชันที่ศักย์ไฟฟ้า -1.04 โวลต์ ตามปฏิกิริยา (4.2) ได้ผลิตภัณฑ์เป็นแก๊สไฮโดรเจน สำหรับไซคลิกโวแทมเมทรีของสารละลายกลีเซอรอลที่ความเป็น กรด-เบสเดียวกัน พบว่าจะไม่ปรากฏพีกของปฏิกิริยาออกซิเดชัน-รีดักชันในช่วงศักย์ไฟฟ้าที่ทำการศึกษา อย่างชัดเจน พบแต่การเปลี่ยนแปลงกระแสไฟฟ้าในช่วงกว้างๆ เท่านั้น และจะเกิดปฏิกิริยาออกซิเดชันของ น้ำเป็นแก๊สออกซิเจนเมื่อศักย์ไฟฟ้าสูงกว่า +0.75 โวลต์ และปฏิกิริยารีดักชันของน้ำเป็นแก๊สไฮโดรเจนเมื่อ ศักย์ไฟฟ้ามีค่าต่ำกว่า -0.10 โวลต์ เมื่อเปรียบเทียบกับไซคลิกโวแทมเมทรีของน้ำที่ความเป็นกรด-เบส เท่ากับ 7 แสดงว่าสารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 7 เกิดปฏิกิริยาได้บ้างแต่ไม่เด่นชัดนัก

สำหรับไซคลิกโวแทมเมทรีของกลีเซอรอลและอิเล็กโทรไลต์ที่ความเป็นกรด-เบสเท่ากับ 11 (ภาพที่ 4.1(ค)) พบว่าอิเล็กโทรไลต์ที่ความเป็นกรด-เบสเท่ากับ 11 จะไม่แสดงพีกของการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันในช่วงที่ศึกษา ส่วนสารละลายกลีเซอรอลที่ความเป็นกรด-เบสเดียวกันจะแสดงพีกของการ เกิดปฏิกิริยาออกซิเดชัน 2 พีก ได้แก่ พีก A ที่ค่าศักย์ไฟฟ้าสูงสุดเท่ากับ -0.015 โวลต์ และให้ความ หนาแน่นกระแสไฟฟ้าสูงสุดเท่ากับ 0.072 มิลลิแอมแปร์ต่อตารางเซนติเมตร และ พีก B ที่ศักย์ไฟฟ้าสูงสุด เท่ากับ +0.32 โวลต์ ให้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.013 มิลลิแอมแปร์ต่อตารางเซนติเมตร และ เมื่อศักย์ไฟฟ้ามีค่าสูงกว่า +0.50 โวลต์ จะเกิดปฏิกิริยาออกซิเดชันของน้ำเป็นแก๊สออกซิเจน (ช่วง I)

ภาพที่ 4.1. ไซคลิกโวแทมเมทรีของกลีเซอรอลเชิงพาณิชย์ (—) ที่ความเป็นกรด-เบสเท่ากับ (ก) 1 (ข) 7 และ (ค)11 เทียบกับอิเล็กโทรไลต์หรือน้ำกลั่น (·····) ที่ความเป็นกรด-เบสเดียวกัน


สำหรับการตรวจกราดแบบย้อนกลับจะไม่ปรากฏพีกของปฏิกิริยาออกซิเดชัน-รีดักชัน และเมื่อศักย์ไฟฟ้าต่ำ กว่า 0.00 โวลต์ จะเกิดปฏิกิริยารีดักชันของน้ำเป็นแก๊สไฮโดรเจน (ช่วง II) เมื่อเปรียบเทียบกับกราฟไซคลิก โวแทมเมทรีของน้ำที่ความเป็นกรด-เบสเท่ากับ 11 พบว่าพีก A และ B เป็นพีกของการเกิดปฏิกิริยา ออกซิเดชันของกลีเซอรอล แสดงว่ากลีเซอรอลสามารถเกิดปฏิกิริยาออกซิเดชันได้ในภาวะเบสหรือที่ ความเป็นกรด-เบสเท่ากับ 11

เมื่อนำสารละลายที่ได้จากการทดลองไปทดสอบด้วยเครื่อง GC-MS เพื่อหาชนิดของสารที่เกิดขึ้นใน สารละลายกลีเซอรอลเมื่อผ่านกระบวนการเคมีไฟฟ้า พบว่าการทำไซคลิกโวแทมเมทรีสามารถเปลี่ยน กลีเซอรอลเป็นสารเพิ่มมูลค่าหลายชนิดดังแสดงในภาพที่ 4.2 และตารางที่ 4.1 โดยสารเพิ่มมูลค่าที่เกิดขึ้น ในภาวะกรด เช่น อะซีทอล (Acetol) 1,2-โพรเพนไดออล (1,2-propanediol) ไกลซิดอล (Glycidol) 1,3-โพรเพนไดออล (1,2-propanediol) และ 1,3-ไดออกโซเลน (1,3-Dioxolane) เป็นตัน ส่วนสารเพิ่มมูล ค่าที่เกิดขึ้นในภาวะกลาง เช่น อะซีทอล ไกลซิดอล อะโครลีน กรดโพรพาโนอิก (Propinoic acid) และ กลีเซอรอลดีไฮด์ (Glyceroldehyde) เป็นตัน และสารเพิ่มมูลค่าที่เกิดขึ้นในภาวะเบส เช่น อะซีทอล ไกลซิดอล 2-เมทิล-2-เพนทานอล (2-methyl-2-pentanol) 2,3-เฮกเซนไดออล (2,3-Hexanediol) และ 2,4-ไดเมทิล-1,3-ไดออกโซเลน (2,4-dimethyl-1,3-dioxolane) เป็นตัน แสดงว่าปฏิกิริยาเคมีไฟฟ้าสามารถ เปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่าได้หลายชนิด เช่น อะซีทอล อะโครลีน และไกลซิดอล ซึ่งเกิดจากการ กำจัดน้ำจากโมเลกุลของกลีเซอรอล (Dehydrate) และสารดังกล่าวสามารถเกิดปฏิกิริยารีดักซันต่อเนื่องเป็น สารเพิ่มมูลค่าอื่นได้ เช่น 1,2-โพรเพนไดออล และ 1,3-โพรเพนไดออล เป็นตัน [69]

4.1.2 ผลของความเป็นกรด-เบสต่อการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลเชิงพาณิชย์

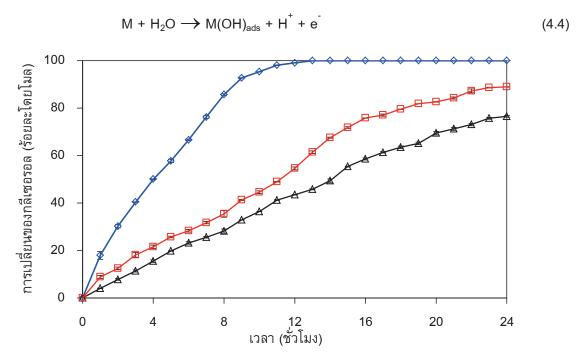
จากการศึกษาด้วยโปรแกรมไซคลิกโวแทมเมทรีแสดงให้เห็นว่ากลีเซอรอลเชิงพาณิชย์สามารถ เกิดปฏิกิริยาออกซิเดชัน-รีดักชันเป็นสารเพิ่มมูลค่าโดยเฉพาะในภาวะกรดแก่และเบสแก่ เพื่อศึกษาการ เปลี่ยนของกลีเซอรอล ชนิด และปริมาณของสารเพิ่มมูลค่าที่เกิดขึ้นที่ความเป็นกรด-เบสต่าง ๆ การทดลอง จึงดำเนินการโดยใช้สารละลายกลีเซอรอลเชิงพาณิชย์ความเข้มขัน 0.3 โมลต่อลิตร ในเครื่องปฏิกรณ์ เคมีไฟฟ้าแบบไม่มีเยื่อเลือกผ่านและป้อนกระแสไฟฟ้าแบบคงที่ (Galvanostatic mode) ความหนาแน่น กระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร ใช้ตะแกรงแพลทินัมขนาดพื้นที่ผิว 31.8 ตารางเซนติเมตร เป็นขั้วแคโทด และตะแกรงแพลทินัมขนาดพื้นที่ผิว 121.4 ตารางเซนติเมตร เป็นขั้วแอโนด และใช้ ระยะเวลาในการสังเคราะห์ 24 ชั่วโมง

ภาพที่ 4.3 แสดงการเปลี่ยน (Conversion) ของกลีเซอรอลเชิงพาณิชย์ที่ความเป็นกรด-เบสเท่ากับ 1 7 และ 11 พบว่าเมื่อระบบมีความเป็นกรด-เบสเท่ากับ 1 การเปลี่ยนของกลีเซอรอลจะเพิ่มขึ้นเป็นร้อยละ 85 ภายใน 8 ชั่วโมง และเมื่อระยะเวลาผ่านไปนานขึ้นร้อยละการเปลี่ยนของกลีเซอรอลเพิ่มขึ้น โดยการ เปลี่ยนของกลีเซอรอลจะเกิดขึ้นอย่างสมบูรณ์เมื่อระยะเวลาผ่านไป 13 ชั่วโมง ซึ่งอาจเกิดจากในภาวะที่มี ความเป็นกรดสูง กลีเซอรอลสามารถเกิดปฏิกิริยากำจัดน้ำจากโมเลกุลหรือการออกซิเดชันส่งผลให้ร้อยละ

ภาพที่ 4.2 องค์ประกอบของกลีเซอรอลเชิงพาณิชย์เมื่อผ่านการทำไซคลิกโวแทมเมทรีที่ความเป็นกรด-เบส เท่ากับ (ก) 1 (ข) 7 และ (ค) 11

ตารางที่ 4.1 สารเพิ่มมูลค่าที่เกิดขึ้นจากการทำไซคลิกโวแทมเมทรีของกลีเซอรอลเชิงพาณิชย์ที่ความเป็น กรด-เบสต่างๆ และราคาในท้องตลาด

Chemical substances	pH 1	pH 7	pH 11	USD (purity, %) [CAS no.]
Acetol/ hydroxyacetone	✓	✓	✓	55.63/100g(90%) ^a [116-09-6]
Glycidol	\checkmark	\checkmark	\checkmark	61.13/100g(96%) ^b [556-52-5]
2-methyl-2-pentanol / Dimethyl propyl	√	✓	✓	79.23/10g(99%) ^c [590-36-3]
carbinol	V			
3-methyl-2-pentanone	\checkmark		\checkmark	381.84/25g(99%) [565-61-7]
2,3-hexanediol	\checkmark		\checkmark	80.96/1mL(99%) ^c [617-30-1]
1,2-propanediol	\checkmark			95.05/500mL(>99.5%) ^c [57-55-6]
1,2-butanediol	\checkmark			174.94/1L(>98.0%) ^d [584-03-2]
1-isopropoxy-2-propanol	\checkmark			213.45/1g(98%) ^c [3944-36-3]
Methyltartronic acid	\checkmark			N/A [595-48-2]
1,3-propanediol	\checkmark			48.18/100g(98%) ^c [504-63-2]
1,3-dioxolane	\checkmark			165.51/1L(99%) ^c [646-06-0]
1-undecane	\checkmark			N/A [1120-21-4]
1,3-dioxolane-4-methanol,2,2-dimethyl	\checkmark			49.23/100g(98%) ^c [100-79-8]
5-methyl-1-heptanol	\checkmark			894.0/1mL(96%) ^c [57803-73-3]
3-butyl-cyclohexanone	\checkmark			N/A [39178-69-3]
2,4-dimethyl-1,3-dioxane			\checkmark	105.04/10g ^c [766-20-1]
Ethylene glycol isopropyl ether			\checkmark	65.04/1L(99%) ^c [109-59-1]
2-hexanol			\checkmark	262.96/100g(>98%)° [626-93-7]
Tetramethylsilane			\checkmark	57.99/25g (>99.9%)c [75-76-3]
4-methyl-1-hexanol			\checkmark	104/1mL(>98%) ^c [1767-46-0]
2,2,5-trimethylhexane-3,4-dione			\checkmark	N/A [20633-03-8]
Acrolein/acryraldehyde		\checkmark		150/1kg(97%) ^c [107-02-8]
4-Pentene-2-ol		\checkmark		111.72/5g (99%) ^c [625-31-0]
Propanoic acid/ Propionic acid		\checkmark		67.35/100mL (>99.5%) ^c [79-09-4]
3-Pentene-2-ol		\checkmark		815.19/25g (96%) ^c [3899-34-1]
Glyceraldehyde		\checkmark		1866.1/25g (>90%) ^c [56-82-6]
Methyl valerate		\checkmark		109.71/1kg (>99%) ^C [624-24-8]


^aTechnical grade

^bNatural grade

^cReagent grade

^dPurum grade

การเปลี่ยนของกลีเซอรอลเพิ่มขึ้น เมื่อพิจารณาที่ความเป็นกรด-เบสเริ่มต้นของกลีเซอรอลเท่ากับ 7 พบว่า เมื่อระยะเวลาในการทำปฏิกิริยานานขึ้นจะส่งผลให้ร้อยละการเปลี่ยนของกลีเซอรอลเพิ่มขึ้นเช่นกันโดยให้ ร้อยละการเปลี่ยนของกลีเซอรอลเป็นร้อยละ 28 ที่เวลา 8 ชั่วโมง แสดงว่าเมื่อสารละลายกลีเซอรอลมีความ เป็นกลางปฏิกิริยาอาจเกิดได้น้อยลง เนื่องจากการทำจัดน้ำจากโมเลกุลเกิดได้น้อยกว่าในภาวะกรดแต่ก็ยัง สามารถเกิดปฏิกิริยาได้ กล่าวคือในภาวะเป็นกลาง น้ำสามารถเกิดการดูดซับบนขั้วไฟฟ้าดังสมการ (4.4) [67] ได้ผลิตภัณฑ์เป็นไฮดรอกซิลแรดิคัล (OH*) ซึ่งเป็นสารที่มีสมบัติเป็นตัวออกซิไดส์ ทำให้เกิดการ ออกซิเดชันของกลีเซอรอลได้ ร้อยละการเปลี่ยนของกลีเซอรอลจึงเพิ่มขึ้น อย่างไรก็ดีการเกิดกระบวนการ ดังกล่าวอาจต้องใช้เวลาในการผลิตไฮดรอกซิลแรดิคัล ส่งผลให้ร้อยละการเปลี่ยนของกลีเซอรอลที่ค่าความ เป็นกรด-เบสเท่ากับ 7 ต่ำ เมื่อเปรียบเทียบกับร้อยละการเปลี่ยนของกลีเซอรอลที่ค่าความเป็นกรด-เบส เท่ากับ 1 ที่เวลาเดียวกัน



ภาพที่ 4.3 ผลของความเป็นกรด-เบสเริ่มต้นเท่ากับ (♦) 1 (△) 7 และ (□) 11 ต่อร้อยละการเปลี่ยนของ กลีเซอรอลเชิงพาณิชย์ด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลความเข้มข้น 0.3 โมลต่อลิตร ที่ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร

สำหรับที่ความเป็นกรด-เบสเริ่มต้นของกลีเซอรอลเท่ากับ 11 พบว่าเมื่อระยะเวลาในการทำปฏิกิริยา นานขึ้นจะทำให้ร้อยละการเปลี่ยนของกลีเซอรอลสูงขึ้น โดยจะให้ร้อยละการเปลี่ยนเท่ากับ 35 ที่เวลา 8 ชั่วโมง และให้ร้อยละการเปลี่ยนเท่ากับ 79 ที่เวลา 18 ชั่วโมง ซึ่งร้อยละการเปลี่ยนดังกล่าวสูงกว่า กลีเซอรอลที่ค่าความเป็นกรด-เบสเท่ากับ 7 แต่ต่ำกว่ากลีเซอรอลที่ค่าความเป็นกรด-เบสเท่ากับ 1 เนื่องจากกลไกการเปลี่ยนกลีเซอรอลอาจแตกต่างกัน กล่าวคือในภาวะเบสจะมีไฮดรอกซิลไอออน (OH) อยู่ มากซึ่งสามารถดูดซับบนผิวของขั้วไฟฟ้าทำให้เกิดการกำจัดโปรตอน (De-protonation) ออกจากโมเลกุล ของกลีเซอรอลส่งผลให้เกิดปฏิกิริยาออกซิเดชันได้ดี [70] ร้อยละการเปลี่ยนจึงสูงขึ้น

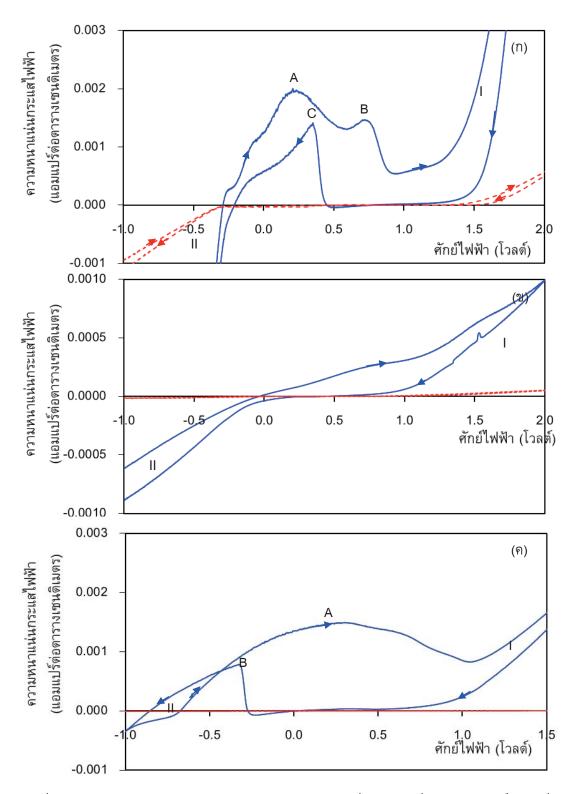
ภาพที่ 4.4 แสดงผลของความเป็นกรด-เบสเริ่มต้นต่อร้อยละผลได้ของสารเพิ่มมูลค่าจาก กระบวนการเปลี่ยนกลีเซอรอลเชิงพาณิชย์ด้วยกระบวนการเคมีไฟฟ้าที่ความเป็นกรด-เบสต่างๆ ที่ ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร พบว่าสารเพิ่มมูลค่าที่เกิดขึ้นและสามารถ ตรวจวัดได้ที่ทุกค่าความเป็นกรด-เบส คือ เอทิลีนไกลคอล อะซีทอล ไกลซิดอล อะโครลีน ส่วนที่ความเป็น กรด-เบสเท่ากับ 1 จะเกิดสารเพิ่มมูลค่าอีก 2 ชนิด คือ 1,2-โพรเพนไดออล และ 1,3-โพรเพนไดออล โดย ภาวะที่เป็นกรดแก่และเบสแก่จะให้ร้อยละผลได้ผลิตภัณฑ์ที่สูงกว่าภาวะกลาง ส่วนเอทิลีนไกลคอลจะเกิดที่ เวลา 4 ชั่วโมง ทั้งในภาวะกรดแก่และเบสแก่ แสดงว่ากลีเซอรอลไม่สามารถเปลี่ยนเป็นเอทิลีนไกลคอลได้ โดยตรงด้วยกระบวนการเคมีไฟฟ้า นอกจากนี้ยังพบว่าร้อยละผลได้ของเอทิลีนไกลคอลในภาวะเบสแก่จะ เพิ่มขึ้นอย่างต่อเนื่อง ส่วนในภาวะกรดผลได้ของเอทิลีนไกลคอลในภาวะกรดจะเพิ่มขึ้นอย่างช้า ๆ ในช่วง เวลาต้นของการสังเคราะห์และลดลงเล็กน้อยที่เวลามากกว่า 18 ชั่วโมง จากงานวิจัยที่ผ่านมาระบุว่าการ เปลี่ยนกลีเซอรอลเป็นเอทิลีนไกลคอลประกอบด้วย 2 ปฏิกิริยาหลัก [67] คือ ปฏิกิริยาการกำจัดไฮโดรเจน (Dehydrogenation) จากโมเลกุลกลีเซอรอลได้เป็นกลีเซอรอลดีไฮด์หรือสารมัธยันตร์บนขั้วไฟฟ้า และ ปฏิกิริยาการแตกพันธะ C-C (C-C bond cleavage) ของกลีเซอรอลดีไฮด์เป็นเอทิลีนไกลคอลและเมทานอล โดยความสามารถในการเกิดสารมัธยันตร์หรือกลีเซอรอลดีไฮด์ในระบบบนขั้วไฟฟ้าแพลทินัม (Pt) จะขึ้นอยู่ กับศักย์ไฟฟ้าที่ป้อนเข้าสู่ระบบและความเป็นกรด-เบสของสารละลาย กล่าวคือการเลือกเกิด (Selectivity) กลีเซอรอลดีไฮด์จะสูงในภาวะกรดที่ศักย์ไฟฟ้าที่ยังไม่ทำให้เกิดการสะสมตัวของออกซิเจนบนแพลทินัมหรือ ขั้วแพลทินัมที่ปราศจากออกไซด์ (Oxide-free Pt) ส่วนการเกิดกลีเซอรอลดีไฮด์ในภาวะเบสมักเกิดบน ขั้วไฟฟ้าที่ถูกปกคลุมด้วยไฮดรอกไซด์ (Pt-OH) [67] ส่วนการแตกพันธะ C-C ของกลีเซอรอลดีไฮด์สามารถ เกิดขึ้นได้ทั้งในภาวะกรดหรือเบสโดยการเติมไฮโดรเจนไอออน (H⁺) ซึ่งมาจากน้ำโดยไม่ขึ้นอยู่กับภาวะ กรด-เบสของระบบ [71] สำหรับการลดลงของเอทิลีนไกลคอลในภาวะกรดที่เวลาสังเคราะห์นานอาจเกิดขึ้น เนื่องจากการออกซิเดชันของเอทิลีนไกลคอลเป็นกรดฟอร์มิก (Formic acid) และกรดไกลโคลิก (Glycolic acid) [72-73]

เมื่อพิจารณาการเกิดอะซีทอล พบว่าอะซีทอลจะเกิดขึ้นเมื่อเวลาผ่านไป 2 ชั่วโมง ทั้งในภาวะ กรดแก่และเบสแก่ และร้อยละผลได้จะเพิ่มขึ้นเมื่อเวลาของการสังเคราะห์นานขึ้น ส่วนอะโครลีนจะเกิดเมื่อ เวลาผ่านไป 7 ชั่วโมง และผลได้จะเพิ่มขึ้นเมื่อเวลาเพิ่มขึ้นเฉพาะในภาวะเบส ส่วนในภาวะกรดผลได้ของ อะโครลีนจะเพิ่มขึ้นเฉพาะในช่วงแรกของการสังเคราะห์และให้ค่าสูงสุดที่ร้อยละ 32.2 ที่เวลา 19 ชั่วโมง จากนั้นผลได้ของอะโครลีนจะลดลง จากการเปลี่ยนแปลงดังกล่าวแสดงว่ากลีเซอรอลไม่สามารถ เปลี่ยนเป็นอะซีทอลและอะโครลีนได้โดยตรงด้วยกระบวนการเคมีไฟฟ้า จากงานวิจัยที่ผ่านมาระบุว่าการ เปลี่ยนกลีเซอรอลเป็นผลิตภัณฑ์จะเกิดขึ้นเมื่อกลีเซอรอลดูดซับบนขั้วไฟฟ้า [74] ถ้ากลีเซอรอลดูดซับบนขั้วไฟฟ้าโดยใช้หมู่ -OH ที่ตำแหน่งปลาย (1°-OH group) และเกิดปฏิกิริยากำจัดน้ำ (Dehydration) จะได้

ภาพที่ 4.4 ผลของความเป็นกรด-เบสเริ่มต้นต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการเปลี่ยน กลีเซอรอลเชิงพาณิชย์ด้วยกระบวนการเคมีไฟฟ้าที่ความเป็นกรด-เบสเท่ากับ 1 (ข) 7 และ (ค) 11 ที่ ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร

ผลิตภัณฑ์เป็น 2,3-ไดไฮดรอกซีโพรพีน (2,3-dihydroxypropene) ซึ่งสามารถจัดเรียงโมเลกุลใหม่เป็นอะซี ทอลหรือ 1-ไฮดรอกซี-2-โพรพาโนน (1-hydroxyl-2-propanone) [45] แต่ถ้ากลีเซอรอลดูดซับบนขั้วไฟฟ้า โดยใช้หมู่ -OH ที่ตำแหน่งกลาง (2 $^\circ$ -OH group) หลังจากเกิดปฏิกิริยาการกำจัดน้ำจะได้ผลิตภัณฑ์เป็น 3-ไฮดรอกซีโพรพานัล (3-hydroxypropanal) ซึ่งสามารถจัดเรียงโมเลกุลใหม่เป็นอะโครลีน [68] ซึ่งในภาวะ กรดสารทั้ง 2 ชนิด สามารถเกิดปฏิกิริยาการกำจัดน้ำต่อเนื่องและเกิดปฏิกิริยารีดักชันเป็น 1,2-โพรเพนได ออล และ 1,3-โพรเพนไดออล ตามลำดับ จากภาพที่ 4.4(ก) จะเห็นว่าผลได้อะโครลีนและ 1,3-โพรเพนได ออล จะเพิ่มขึ้นเมื่อเวลาเพิ่มขึ้น แต่ด้วยอัตราที่ต่างกัน และเมื่อเวลามากกว่า 19 ชั่วโมง ผลได้ของ 1,3-โพรเพนไดออลจะเพิ่มขึ้นน้อยมากจนเกือบคงที่ในขณะที่ผลได้ของอะโครลืนจะลดลงอย่างชัดเจน อาจ เนื่องมาจากอะโครลีนสามารถเกิดปฏิกิริยารีดักชันเป็น 1,2-โพรเพนไดออลในระบบวิวิธพันธุ์ [75] ดังจะเห็น ได้จากผลได้ของ 1,2-โพรเพนไดออล ที่เพิ่มขึ้นอย่างช้าๆ อย่างไรก็ดีผลได้ของ 1,2-โพรเพนไดออล เกิดขึ้น เพียงร้อยละ 5.3 เมื่อเวลาสังเคราะห์ผ่านไป 24 ชั่วโมง แสดงว่ากระบวนการเคมีไฟฟ้าที่มีการป้อน กระแสไฟฟ้าแบบคงที่อาจไม่เหมาะสมในการสังเคราะห์ 1,2-โพรเพนไดออล สำหรับการเกิดไกลซิดอล พบว่าผลได้จะเพิ่มขึ้นอย่างต่อเนื่องในทุกความเป็นกรด-เบสที่ศึกษา เนื่องจากไกลซิดอลเกิดจากการจัดเรียง ์ ตัวใหม่ของกลีเซอรอลคาร์บอเนียมไอออน (Glycerol carbonium ion) ซึ่งเกิดจากเติมไฮโดรเจนไอออนที่หมู่ -OH ที่ตำแหน่งกลางของโมเลกุลกลีเซอรอล [45] จากชนิดของสารเพิ่มมูลค่าที่เกิดขึ้นและการเปลี่ยนแปลง ของผลได้ กลไกการเกิดปฏิกิริยาเคมีไฟฟ้าในการเปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่าสามารถแสดงได้ดัง ภาพที่ 4.5

ภาพที่ 4.5 กลไกการเปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่าด้วยกระบวนการเคมีไฟฟ้า


4.2 การสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์

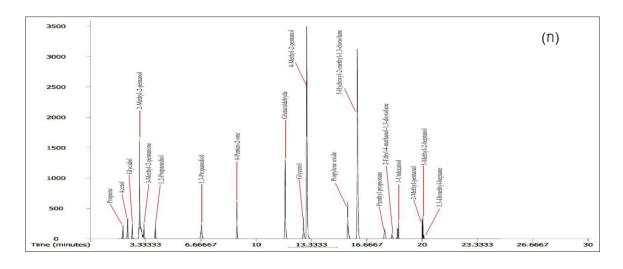
การศึกษาการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะ ดำเนินการโดยกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วยโพรพานอลที่ อัตราส่วนระหว่างโพรพานอลและกลีเซอรอลดิบปรับสภาพเท่ากับ 2 ซึ่งเป็นภาวะที่เหมาะสมจากการศึกษา ในบทที่ 4 ในส่วนแรกจะเป็นการศึกษาความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของ กลีเซอรอลดังกล่าวโดยใช้เครื่อง Potentiostat/Galvanostat และโปรแกรมไซคลิกโวแทมเมทรี จากนั้นจะ เป็นการศึกษาผลของตัวแปรต่างๆ ได้แก่ ความเป็นกรด-เบสเริ่มต้น ชนิดขั้วไฟฟ้า ความหนาแน่น กระแสไฟฟ้า และชนิดและความเข้มขันของสารตัวเติม

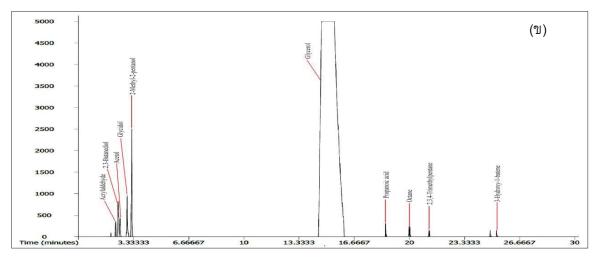
4.2.1 ความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์

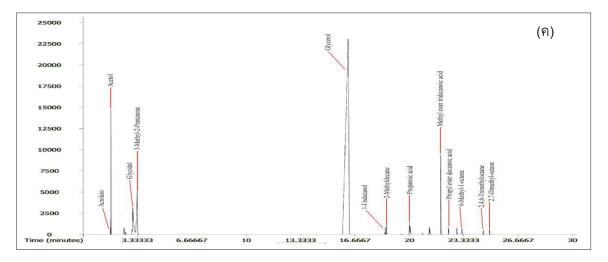
การศึกษาความเป็นไปได้ในการเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอลดิบปรับสภาพที่ ผ่านการเพิ่มความบริสุทธิ์จะดำเนินการเช่นเดียวกับการศึกษาความสามารถในเกิดปฏิกิริยาออกซิเดชัน-รีดักชันของกลีเซอรอลเชิงพาณิชย์โดยใช้เครื่อง Potentiostat/Galvanostat และโปรแกรมไซคลิกโวแทมเมท รี โดยใช้กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยการสกัดด้วยโพรพานอลที่อัตราส่วน ระหว่างโพรพานอลและกลีเซอรอลดิบปรับสภาพเท่ากับ 2 ซึ่งเป็นภาวะที่เหมาะสมจากการศึกษาในบทที่ 4 ความเข้มข้นกลีเซอรอลเท่ากับ 0.3 โมลต่อลิตร ปริมาตร 300 มิลลิลิตร ความเป็นกรด-เบสเริ่มต้นเท่ากับ 1 7 และ 11 อัตราการกวน 650 รอบต่อนาที และทำการตรวจกราดศักย์ไฟฟ้าในช่วง +1.0 ถึง -1.0 โวลต์ เทียบกับขั้วไฟฟ้าอ้างอิง Ag/AgCI ด้วยอัตราการตรวจกราด 5 มิลลิโวลต์ต่อวินาที

ภาพที่ 4.6 แสดงกราฟไซคลิกโวแทมเมทรีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ ที่ความเป็นกรด-เบสเท่ากับ 1 พบว่าการตรวจกราดแบบไปข้างหน้าจะแสดงพีกของปฏิกิริยาออกซิเดชันที่ ศักย์ไฟฟ้าสูงสุดเท่ากับ +0.208 โวลต์ (พีก A) ให้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 1.92 มิลลิแอมแปร์ต่อ ตารางเซนติเมตร ซึ่งพีกดังกล่าวไม่ปรากฏในสารละลายกลีเซอรอลเชิงพาณิชย์โดยอาจเป็นพีก การออกซิเดชันของสารปนเปื้อน [76] เช่น ไอออนของเกลือหรือกรดไขมันอิสระที่ตกค้างอยู่ในสารละลายกลี เซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ นอกจากนี้ยังปรากฏพีกออกซิเดชันที่ศักย์ไฟฟ้า +0.712 โวลต์ (พีก B) ให้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 1.44 มิลลิแอมแปร์ต่อตารางเซนติเมตร และเมื่อ ศักย์ไฟฟ้ามีค่าสูงกว่า +1.40 โวลต์ จะเกิดปฏิกิริยาออกซิเดชันของน้ำ (ช่วง I) เป็นแก๊สออกซิเจน และ สำหรับการตรวจกราดแบบย้อนกลับจะปรากฏพีกของปฏิกิริยาออกซิเดชัน (พีก C) ที่ศักย์ไฟฟ้าสูงสุด เท่ากับ +0.351 โวลต์ ให้ค่าความหนาแน่นกระแสไฟฟ้าเท่ากับ 1.48 มิลลิแอมแปร์ต่อตารางเซนติเมตร ซึ่ง พบว่าศักย์ไฟฟ้าที่เริ่มเกิดปฏิกิริยาออกซิเดชันของพีกดังกล่าวใกล้เคียงกับพีกของการออกซิเดชันของ กลีเซอรอลเชิงพาณิชย์ เมื่อพิจารณากราฟไซคลิกโวแทมเมทรีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสทธิ์ที่ความเป็นกรด-เบสเท่ากับ 7 (ภาพที่ 4.6(ข)) พบว่าจะไม่ปรากฏพีกของปฏิกิริยาออกซิเดชัน-รี่ดักชันในช่วงศักย์ไฟฟ้าที่ทำการศึกษาอย่างชัดเจนเช่นเดียวกับสารละลายกลีเซอรอลเชิงพาณิชย์ ที่ความ เป็นกรด-เบส เดียวกัน พบเพียงการเปลี่ยนแปลงกระแสไฟฟ้าในช่วงกว้างๆ เท่านั้น และเกิดปฏิกิริยา ออกซิเดชันของน้ำเป็นแก๊สออกซิเจน และปฏิกิริยารีดักชันของน้ำเป็นแก๊สไฮโดรเจน เมื่อศักย์ไฟฟ้ามีค่าสูง กว่า +0.75 โวลต์ และศักย์ไฟฟ้าต่ำกว่า -0.10 โวลต์

ภาพที่ 4.6 ไซคลิกโวแทมเมทรีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ (—) ที่ความเป็น กรด-เบสเท่ากับ (ก) 1 (ข) 7 และ (ค) 11 เทียบกับอิเล็กโทรไลต์หรือน้ำกลั่น (·····) ที่ความเป็นกรด-เบส เดียวกัน


เมื่อพิจารณากราฟไซคลิกโวแทมเมทรีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ ความเป็นกรด-เบสเท่ากับ 11 (ภาพที่ 4.6(ค)) สำหรับการตรวจกราดแบบไปข้างหน้าจะไม่ปรากฏพีกของ ปฏิกิริยาออกซิเดชัน-รีดักชันอย่างชัดเจน ปรากฏเพียงการเปลี่ยนแปลงกระแสไฟฟ้าในช่วงกว้าง และเมื่อ ศักย์ไฟฟ้ามีค่าสูงกว่า +1.00 โวลต์ จะเกิดปฏิกิริยาออกซิเดชันของน้ำเป็นแก๊สออกซิเจน สำหรับการตรวจ กราดแบบย้อนกลับจะปรากฏพีกของปฏิกิริยาออกซิเดชัน (พีก B) ที่ศักย์ไฟฟ้าสูงสุดเท่ากับ -0.313 โวลต์ โดยให้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.72 มิลลิแอมแปร์ต่อตารางเซนติเมตร ซึ่งพีกดังกล่าวจะไม่ ปรากฏในกราฟไซคลิกโวแทมเมทรีของกลีเซอรอลเชิงพาณิชย์ซึ่งอาจเป็นพีกการออกซิเดชันของ สารปนเปื้อนอื่น เช่น ไอออนของเกลือที่ยังตกค้างอยู่ในกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ [76] และเมื่อศักย์ไฟฟ้าต่ำกว่า -0.751 โวลต์ จะเกิดปฏิกิริยารีดักชันของน้ำเป็นแก๊สไฮโดรเจน แสดงว่า กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ คำความเป็นกรด-เบสเท่ากับ 11


จากการทำไซคลิกโวแทมเมทรีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ความเป็น กรด-เบสเท่ากับ 1 7 และ 11 แสดงให้เห็นว่าสารละลายกลีเซอรอลดิบสามารถเกิดปฏิกิริยาออกซิเดชันรีดักชันได้เช่นเดียวกับกลีเซอรอลเชิงพาณิชย์ เมื่อนำสารละลายที่ได้จากการทดลองไปทดสอบด้วยเครื่อง GC-MS เพื่อหาชนิดของสารที่เกิดขึ้นในสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์หลัง ผ่านการทำไซคลิกโวแทมเมทรี พบว่ากระบวนการเคมีไฟฟ้าสามารถเปลี่ยนกลีเซอรอลดิบเป็นสารเพิ่ม มูลค่าหลายชนิดดังแสดงในภาพที่ 4.7 ตารางที่ 4.2 แสดงสารเพิ่มมูลค่าที่เกิดขึ้นหลังจากการทำไซคลิก โวแทมเมทรีของสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ สารเพิ่มมูลค่าที่เกิดขึ้นใน ภาวะกรด เช่น อะซีทอล 1,2-โพรเพนไดออล ไกลซิดอล 1,3-โพรเพนไดออล และ 1,3-ไดออกโซเลน เป็นต้น ส่วนสารเพิ่มมูลค่าที่เกิดขึ้นในภาวะกลาง เช่น อะซีทอล ไกลซิดอล และกรดโพรพาโนอิก เป็นต้น และสาร เพิ่มมูลค่าที่เกิดขึ้นในภาวะเบส เช่น อะซีทอล ไกลซิดอล 2-เมทิล-2-เพนทานอล 3-เมทิล-2-เพนทาโนน และกรดโพรพาโนอิก เป็นต้น


4.2.2 ผลของตัวแปรในการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสุทธิ์

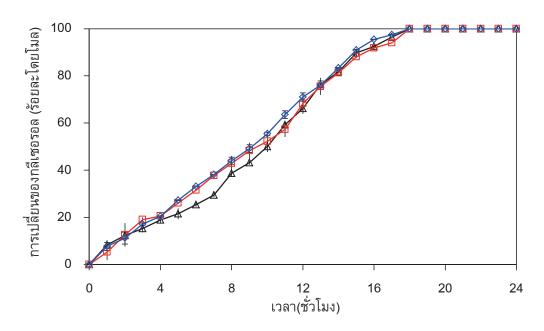
ก. ความเป็นกรด-เบสเริ่มต้น

จากการศึกษากราฟโพลาไรเซชันของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์แสดงให้ เห็นว่ากลีเซอรอลสามารถเกิดปฏิกิริยาออกซิเดชัน-รีดักชันได้โดยเฉพาะในภาวะกรดแก่และเบสแก่ เพื่อ ศึกษาร้อยละการเปลี่ยนของกลีเซอรอล ชนิดและปริมาณสารเพิ่มมูลค่าที่เกิดขึ้นที่ความเป็นกรด-เบสต่างๆ การทดลองจึงดำเนินการโดยใช้สารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ความเข้มข้น 0.3 โมลต่อลิตร ที่ความเป็นกรด-เบสเท่ากับ 1 7 และ 11 ในเครื่องปฏิกรณ์เคมีไฟฟ้าแบบไม่มีเยื่อเลือกผ่าน ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร ใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า และใช้ ระยะเวลาในการสังเคราะห์ 24 ชั่วโมง

ภาพที่ 4.7 องค์ประกอบของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เมื่อผ่านการทำ ไซคลิกโวแทมเมทรี ที่ความเป็นกรด-เบส เท่ากับ (ก) 1 (ข) 7 และ (ค) 11

ตารางที่ 4.2 สารเพิ่มมูลค่าที่เกิดขึ้นหลังจากการทำไซคลิกโวแทมเมทรีโดยใช้สารละลายกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ความเป็นกรด-เบสต่างๆ และราคาในท้องตลาด

Chemical substances	рН 1	pH 7	pH 11	USD (purity, %) [CAS no.]
Acetol/ hydroxyacetone	✓	✓	✓	55.63/100g(90%) ^a [116-09-6]
Glycidol	\checkmark	\checkmark	\checkmark	61.13/100g(96%) ^b [556-52-5]
2-methyl-2-pentanol / Dimethyl	√	√		79.23/10g(99%) ^c [590-36-3]
propyl carbinol	•	•		73.23/109(33/8) [330-30-3]
3-methyl-2-pentanone	\checkmark		\checkmark	381.84/25g(99%) [565-61-7]
Propylene oxide	\checkmark			80.96/1mL(99%) [°] [617-30-1]
1,2-propanediol	\checkmark			95.05/500mL(>99.5%) ^c [57-55-6]
1,2-butanediol	\checkmark			174.94/1L(>98.0%) ^d [584-03-2]
1,3-propanediol	\checkmark			48.18/100g(98%) ^c [504-63-2]
1,3-dioxolane	\checkmark			165.51/1L(99%) [°] [646-06-0]
1-undecane	\checkmark			N/A [1120-21-4]
5-methyl-1-heptanol	\checkmark			894.0/1mL(96%) ^c [57803-73-3 <u>]</u>
3-butyl-cyclohexanone	\checkmark			N/A [39178-69- <i>3]</i>
2,4-dimethyl-1,3-dioxane			\checkmark	105.04/10g° [766-20-1]
2-hexanol			\checkmark	262.96/100g(>98%) ^c [626-93-7]
4-methyl-1-hexanol			\checkmark	104/1mL(>98%) ^c [1767-46-0]
2,2,5-trimethylhexane-3,4-dione			\checkmark	N/A [20633-03-8]
2-heptyl-1,3-dioxolane			\checkmark	N/A [4359-57-3]
Acrolein/acryraldehyde		\checkmark		150/1kg(97%) ^c [107-02-8]
4-Pentene-2-ol		\checkmark		111.72/5g (99%)° [625-31-0]
Propanoic acid/ Propionic acid		\checkmark		67.35/100mL (>99.5%) ^c [79-09-4]
3-Pentene-2-ol		\checkmark		815.19/25g (96%)° [3899-34-1]
Glyceraldehyde		\checkmark		1866.1/25g (>90%) ^c [56-82-6]

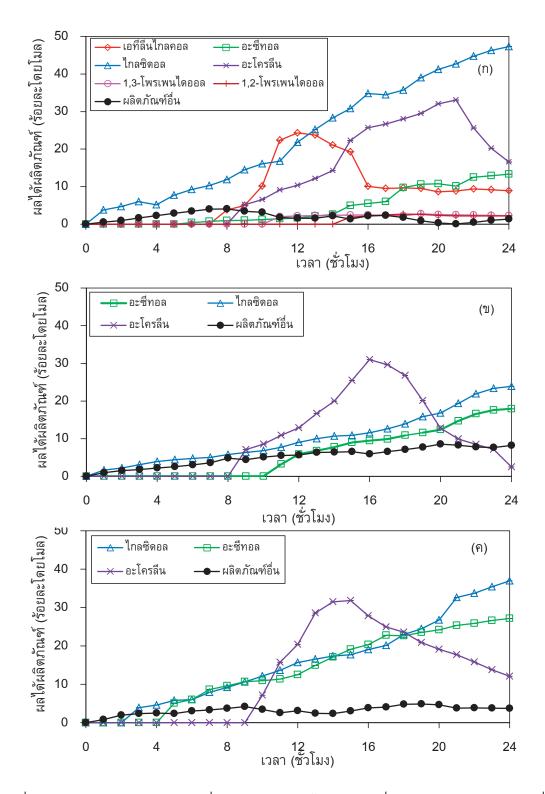

^aTechnical grade

^bNatural grade

^cReagent grade

^dPurum grade

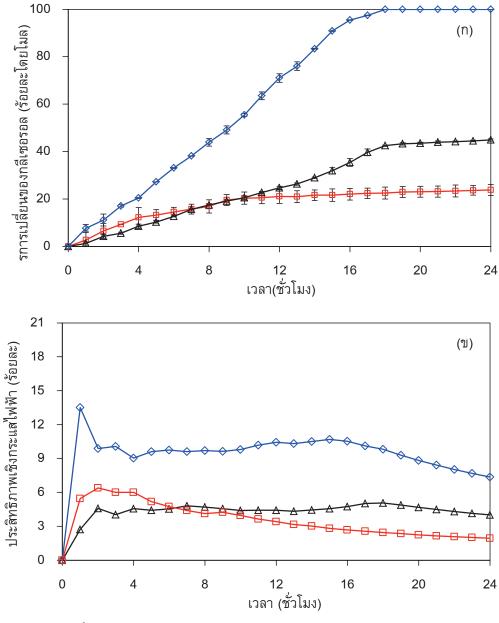
ภาพที่ 4.8 แสดงร้อยละการเปลี่ยนของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ความ เป็นกรด-เบสต่างๆ พบว่าที่ภาวะกรด กลางและเบสจะให้ร้อยละการเปลี่ยนสูงใกล้เคียงกันโดยเมื่อระยะเวลา ผ่านไป 15 ชั่วโมง กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ความเป็นกรด-เบสเท่ากับ 1 7 และ 11 ให้ร้อยละการเปลี่ยนเพิ่มขึ้นถึงร้อยละ 90 89 และ 88 และเมื่อเวลาผ่านไป 18 ชั่วโมง ร้อยละการ เปลี่ยนของกลีเซอรอลจะเกิดขึ้นอย่างสมบูรณ์เช่นเดียวกัน โดยเมื่อเปรียบเทียบกับกลีเซอรอลเชิงพาณิชย์ แล้วพบว่ากลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะให้ร้อยละการเปลี่ยนของกลีเซอรอลที่สูง กว่าและยังให้ร้อยละการเปลี่ยนที่ใกล้เคียงกันมาก ซึ่งอาจเป็นผลของสารตกค้างอื่นที่ปะปนอยู่ เช่น ไอออน ของเกลือชนิดต่างๆ ที่มีส่วนช่วยในการนำไฟฟ้าของสารละลายให้ดีขึ้น ทำให้การเกิดปฏิกิริยาออกซิเดชัน-รีดักชันเกิดได้ดี [76]



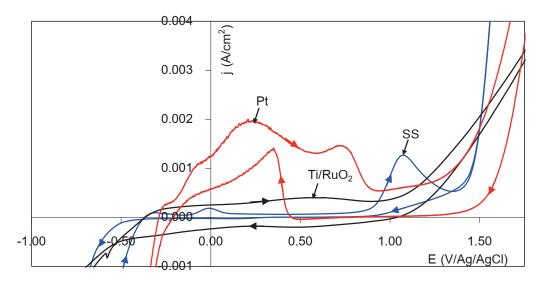
ภาพที่ 4.8 ผลของความเป็นกรด-เบสเริ่มตันเท่ากับ (◇) 1 (△) 7 และ (□) 11 ต่อร้อยละการเปลี่ยนของ กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้าโดยใช้ ความหนาแน่น กระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร

เมื่อพิจารณาร้อยละผลได้ของสารเพิ่มมูลค่าที่ได้จากการเปลี่ยนเชิงเคมีไฟฟ้าของสารละลาย กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ พบว่าที่ความเป็นกรด-เบสเท่ากับ 1 ที่เวลา 21 ชั่วโมง จะให้ร้อยละผลได้รวมของสารเพิ่มมูลค่าสูงที่สุดถึงร้อยละ 99.39 (ภาพที่ 4.9(ก)) โดยสารที่เกิดขึ้น คือ อะโครลีนร้อยละ 33.06 1,3-โพรเพนไดออลร้อยละ 2.5 ไกลซิดอลร้อยละ 42.69 เอทิลลีนไกลคอลร้อยละ 8.80 อะซีทอลร้อยละ 10.14 และ1,2-โพรเพนไดออลร้อยละ 2.16 โดยร้อยละผลได้ของอะโครลีนซึ่งเป็น สารมัธยันต์ที่เกิดจากปฏิกิริยากำจัดน้ำจากโมเลกุลกลีเซอรอล [69] มีแนวโน้มเพิ่มขึ้นและให้ค่าสูงสุดที่เวลา 21 ชั่วโมง จากนั้นจะมีปริมาณลดลงแสดงว่าอะโครลีนสามารถเปลี่ยนไปเป็นสารตัวอื่นในกระบวนการ

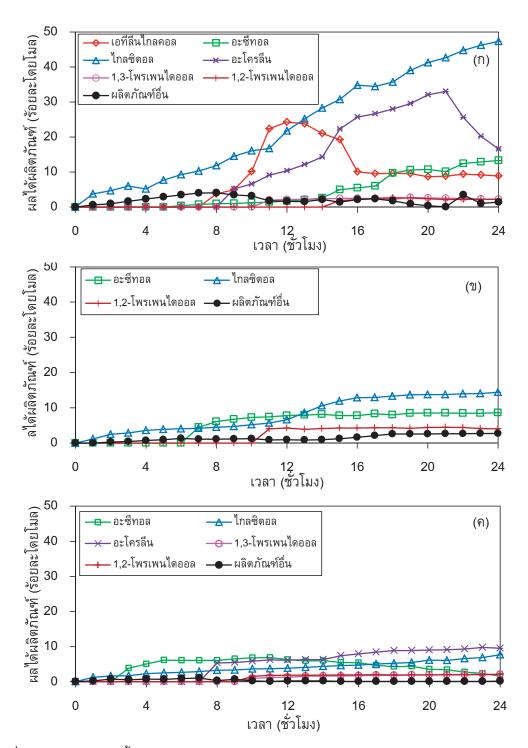
เคมีไฟฟ้า เช่น 1,3-โพรเพนไดออล ซึ่งมีแนวโน้มเพิ่มขึ้นเมื่อเวลาในการสังเคราะห์นานขึ้น ในขณะที่ ไกลซิดอลจะมีแนวโน้มเพิ่มขึ้นอย่างต่อเนื่องเมื่อเวลาเพิ่มขึ้นและเมื่อเปรียบเทียบกับกลีเซอรอลเชิงพาณิชย์ พบว่าสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ให้ปริมาณร้อยละผลได้ของไกลซิดอล สูงกว่าถึงร้อยละ 27 ซึ่งอาจเกิดจากปฏิกิริยาการกำจัดน้ำจากโมเลกุลของกลีเซอรอลเกิดได้ดีกว่าในภาวะนี้ ส่วนอะซีทอลซึ่งเป็นสารมัธยันต์ของการเกิด 1,2-โพรเพนไดออลจะมีปริมาณเพิ่มขึ้นเมื่อเวลาในการ สังเคราะห์นานขึ้นเช่นเดียวกัน และเอทิลีนไกลคอลซึ่งเกิดจากปฏิกิริยาออกซิเดชันของกลีเซอรอลจะมี ปริมาณเพิ่มขึ้นสูงสุดที่ 12 ชั่วโมง จากนั้นจะเริ่มลดลงและคงที่และมีแนวโน้มลดลงเล็กน้อยเมื่อเวลาผ่านไป 23 ชั่วโมง ซึ่งอาจเป็นเพราะเมื่อระยะเวลาในการสังเคราะห์นานขึ้นเอทิลีนไกลคอลอาจเกิดการสลายตัวเป็น สารอื่นหรือเกิดปฏิกิริยาออกซิเดชันเป็นกรดฟอร์มิก [70]


เมื่อพิจารณาร้อยละผลได้ของสารเพิ่มมูลค่าที่ได้จากการเปลี่ยนเชิงเคมีไฟฟ้าของสารละลาย กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ความเป็นกรด-เบสของกลีเซอรอลเท่ากับ 7 พบว่าจะ ให้ร้อยละผลได้สูงสุดที่เวลา 16 ชั่วโมง (ภาพที่ 4.9(ข)) สารที่เกิดขึ้นคืออะซีทอลร้อยละ 9.45 ไกลซิดอลร้อย ละ 11.60 และอะโครลีนร้อยละ 31.03 โดยไกลซิดอลและอะซีทอลจะมีปริมาณเพิ่มขึ้นเมื่อใช้เวลาในการ สังเคราะห์นานขึ้น ส่วนผลได้ของอะโครลีนเพิ่มถึงร้อยละ 31.03 ที่เวลา 16 ชั่วโมง จากนั้นจะลดลง เพราะอะ โครลีนเป็นสารมัธยันต์ของปฏิกิริยาที่สามารถเปลี่ยนไปเป็นสารอื่น เช่น 1,3-โพรเพนไดออลได้ เมื่อพิจารณาถึงร้อยละผลได้ของสารเพิ่มมูลค่าที่ได้จากการเปลี่ยนเชิงเคมีไฟฟ้าของสารละลาย กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ความเป็นกรด-เบสของกลีเซอรอลเท่ากับ 11 พบว่า เมื่อใช้เวลาในการทำปฏิกิริยา 24 ชั่วโมง จะให้ร้อยละผลได้รวมของสารเพิ่มมูลค่าสูงที่สุดคือร้อยละ 76.26 (ภาพที่ 4.9(ค)) สารเพิ่มมูลค่าที่เกิดขึ้นคืออะซีทอลร้อยละ 27.17 ไกลซิดอลร้อยละ 36.98 และอะโครลีนร้อย ละ 12.11 โดยไกลซิดอลและอะซีทอลจะมีปริมาณเพิ่มขึ้นเมื่อใช้เวลาในการสังเคราะห์นานขึ้น เนื่องจากการ มีใฮดรอกไซด์ใอออนอยู่ในสารละลายมากจะช่วยให้เกิดปฏิกิริยาออกซิเดชันและปฏิกิริยากำจัดน้ำจาก โมเลกุลของกลีเซอรอลได้มาก [77] ส่วนอะโครลีนจะมีปริมาณเพิ่มสูงสุดร้อยละ 31.82 ที่ 15 ชั่วโมง จากนั้น ็จะมีปริมาณลดลง จากชนิดของสารเพิ่มมูลค่าและการเปลี่ยนแปลง จากผลการศึกษาความเป็นกรด-เบสของ กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ พบว่าการเปลี่ยนกลีเซอรอลที่ภาวะความเป็นกรดสูง ให้ความหลากหลายของสารเพิ่มมูลค่ามากและให้ร้อยละผลได้สูง ดังนั้นในการทดลองขั้นต่อไปจึงเลือกใช้ สารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ความเป็นกรด-เบสเท่ากับ 1

ภาพที่ 4.9 ผลของความเป็นกรด-เบสเริ่มต้นต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการเปลี่ยน กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้าที่ความเป็นกรด-เบสเท่ากับ (ก) 1 (ข) 7 และ (ค) 11 โดยใช้สารละลายกลีเซอรอลความเข้มขัน 0.3 โมลต่อลิตร ความหนาแน่น กระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร


ข. ชนิดขั้วไฟฟ้า

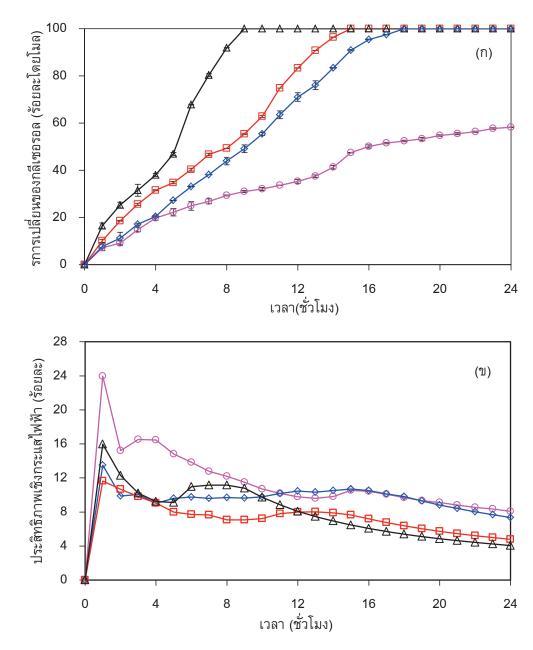
ผลของชนิดขั้วไฟฟ้าต่อการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสุทธิ์จะดำเนินการโดยใช้ขั้วแคโทด 3 ชนิด คือ แพลทินัม ไทเทเนียมเคลือบรูทีเนียมออกไซด์ และ เหล็กกล้าไร้สนิม ความเข้มข้นสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 0.3 โมลต่อลิตร ที่ความเป็นกรด-เบสเท่ากับ 1 ในเครื่องปฏิกรณ์เคมีไฟฟ้าแบบไม่มีเยื่อเลือกผ่าน ความ



ภาพที่ 4.10 ผลของขั้วไฟฟ้า (♦) แพลทินัม (△) ไทเทเนียมเคลือบรูทีเนียมออกไซด์ และ (□) เหล็กกล้าไร้ สนิมต่อ (ก) ร้อยละการเปลี่ยนของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการ เคมีไฟฟ้า และ (ข) ประสิทธิภาพเชิงกระแสไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร

หนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร ใช้ตะแกรงแพลทินัมเป็นขั้วแอโนด และใช้ ระยะเวลาในการสังเคราะห์ 24 ชั่วโมง ภาพที่ 4.10(ก) แสดงผลของชนิดขั้วไฟฟ้าต่อร้อยละการเปลี่ยนของ กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ พบว่าการใช้แพลทินัมเป็นขั้วแคโทดให้ร้อยละการ เปลี่ยนของกลีเซอรอลสูงที่สุดประมาณร้อยละ 97 ที่เวลา 17 ชั่วโมง รองลงมาคือขั้วไทเทเนียมเคลือบ ฐทีเนียมออกไซด์และขั้วเหล็กกล้าไร้สนิม โดยให้ร้อยละการเปลี่ยนประมาณร้อยละ 39 และ 22 ที่เวลา 17 ชั่วโมง เนื่องจากแพลทินัมเป็นขั้วไฟฟ้าที่มีความว่องไวต่อการเกิดปฏิกิริยาทางเคมีไฟฟ้าเพราะบริเวณ พื้นผิวของแพลทินัมสามารถเกิดปฏิกิริยาออกซิเดชันเกิดเป็นแพลทินัมออกไซด์ (Pt-O) ซึ่งออกซิเจนที่อยู่ บนพื้นผิวของแพลทินัมนั้นจะมีความว่องไวต่อการทำปฏิกิริยากับโมเลกุลของกลีเซอรอล [67] ทำให้กลี-เซอรอลสามารถเกิดปฏิกิริยาออกซิเดชันหรือกำจัดน้ำจากโมเลกุลได้ดี ร้อยละการเปลี่ยนของกลีเซอรอลจึง มีค่าสูงขึ้น นอกจากนี้ยังสามารถยืนยันได้จากกราฟไซคลิกโวแทมเมทรีของกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์เมื่อใช้โลหะต่างๆ เป็นขั้วไฟฟ้า (ภาพที่ 4.11) โดยกราฟไซคลิกโวแทมเมทรีของกลีเซ อรอลเมื่อใช้ขั้วไฟฟ้าแพลทินัมจะแสดงพีกในหลายตำแหน่งและมีการเปลี่ยนแปลงกระแสไฟฟ้าสูง ในขณะที่ กราฟไซคลิกโวแทมเมทรีของกลีเซอรอลเมื่อใช้ขั้วไฟฟ้าไทเทเนียมเคลือบรูทีเนียมออกไซด์จ^{*}ะมีลักษณะ แบนกว้างซึ่งเป็นลักษณะของตัวเก็บประจุแสดงว่ามีการสะสมตัวของสารต่างๆ บนขั้วไฟฟ้า [78] สำหรับ กราฟไซคลิกโวแทมเมทรีของกลีเซอรอลเมื่อใช้ขั้วเหล็กกล้าไร้สนิมจะเกิดพีกที่ศักย์ไฟฟ้าประมาณ +1.05 โวลต์ แต่ต่ำกว่าขั้วไฟฟ้าแพลทินัม แสดงว่ากลีเซอรอลสามารถเกิดปฏิกิริยาออกซิเดชัน-รีดักชันบนขั้วไฟฟ้า แพลทินัมได้ดีกว่าขั้วไฟฟ้าชนิดอื่น นอกจากนี้กราฟไซคลิกโวแทมเมทรีของกลีเซอรอลที่ใช้ขั้วไฟฟ้า แพลทินัมจะแสดง พีกออกซิเดชันที่ศักย์ไฟฟ้า +0.351 โวลต์ ซึ่งแสดงถึงพฤติกรรมการฟื้นฟูสภาพขั้ว (Reactivation behavior) ทำให้ขั้วไฟฟ้ามีพื้นที่ผิวว่าง (Free surface) เพื่อใช้ในการเกิดปฏิกิริยา

ภาพที่ 4.11 ไซคลิกโวแทมเมทรีของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เมื่อใช้ขั้ว แพลทินัม ขั้วไทเทเนียมเคลือบรูทีเนียมออกไซด์ และขั้วเหล็กกล้าไร้สนิมเป็นขั้วไฟฟ้า ที่ความเป็นกรด-เบส เท่ากับ 1



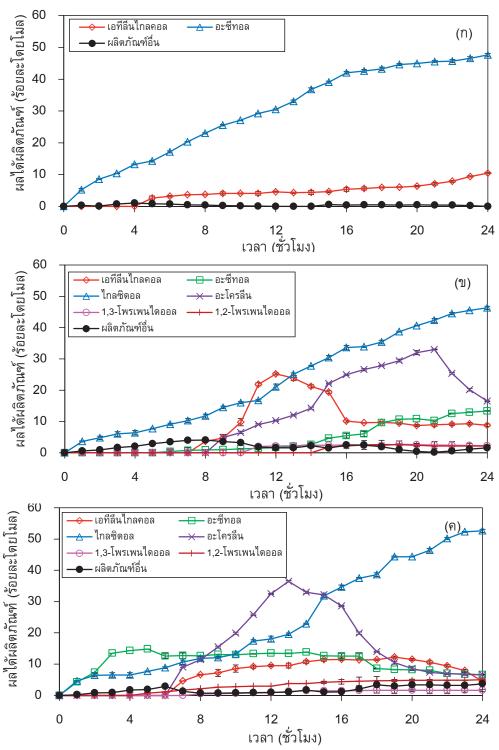
ภาพที่ 4.12 ผลของชนิดขั้วไฟฟ้า (ก) แพลทินัม (ข) ไทเทเนียมเคลือบรูทีเนียมออกไซด์และ (ค) เหล็กกล้า ไร้สนิมต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการเปลี่ยนกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความ หนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร

เมื่อพิจารณาร้อยละผลได้ของสารเพิ่มมูลค่าที่เกิดขึ้นเมื่อใช้แพลทินัมเป็นขั้วแคโทด พบว่ามีสารเพิ่ม มูลค่าเกิดขึ้นหลายชนิดและมีร้อยละผลได้สูงสุดถึงร้อยละ 99.39 ที่เวลา 21 ชั่วโมง (ภาพที่ 4.12(ก)) โดยสารที่เกิดขึ้นหลายชนิดและมีร้อยละ 33.06 1,3-โพรเพนไดออลร้อยละ 2.5 ไกลซิดอลร้อยละ 42.69 เอทิลีน ไกลคอลร้อยละ 8.80อะซีทอลร้อยละ 10.14 และ 1,2-โพรเพนไดออลร้อยละ 2.16 และเมื่อใช้ขั้วไทเทเนียม เคลือบรูที่เนียมออกไซด์เป็นขั้วแคโทด พบว่าให้ร้อยละผลได้สูงสุดประมาณร้อยละ 27.08 ที่เวลา 24 ชั่วโมง (ภาพที่ 4.12(ข)) สารที่เกิดขึ้นคืออะซีทอลร้อยละ 8.62 ไกลซิดอลร้อยละ 14.40 และ 1,2-โพรเพนไดออลร้อยละ 4.06 และเมื่อพิจารณาร้อยละผลได้เมื่อใช้เหล็กกล้าไร้สนิมเป็นขั้วแคโทด พบว่าให้ร้อยละผลได้สูงสุดประมาณร้อยละ 2.18 (ภาพที่ 20 (ค)) สารที่เกิดขึ้นคืออะโครลีนร้อยละ 9.74 1,3-โพรเพนไดออลร้อยละ 2.14 ใกลซิดอลร้อยละ 6.88 อะซีทอลร้อยละ 2.38 และ 1,2-โพรเพนไดออลร้อยละ 2.03 จะ เห็นว่าการใช้แพลทินัมเป็นขั้วแคโทดจะให้ความหลากหลายของสารเพิ่มมูลค่าและร้อยละผลได้สูงสุด อีกทั้ง ยังให้ประสิทธิภาพกระแสไฟฟ้าสูงที่สุดถึงร้อยละ 13.51 ภายในเวลา 1 ชั่วโมง (ภาพที่ 4.11(ข)) แต่เมื่อเวลา ในการทำปฏิกิริยานานขึ้นประสิทธิภาพเชิงกระแสไฟฟ้าจะลดลงอย่างรวดเร็ว ซึ่งอาจเกิดจากการเกิดฟิล์ม ของสารประกอบอินทรีย์และดูดซับอยู่บนพื้นผิวของขั้วไฟฟ้าส่งผลให้มีการสูญเสียพื้นที่ผิวในการ เกิดปฏิกิริยา [79] จึงสามารถกล่าวได้ว่าขั้วแพลทินัมเป็นขั้วไฟฟ้าใช้งานที่เหมาะสมที่สุดต่อการสังเคราะห์ สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้า

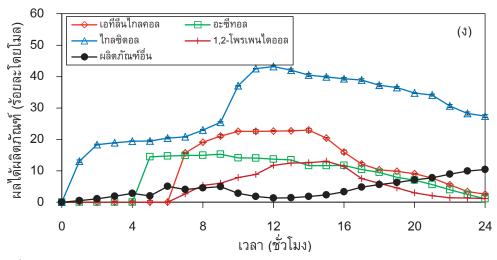
ค. ความหนาแน่นกระแสไฟฟ้า

ผลของความหนาแน่นกระแสไฟฟ้าต่อการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ ผ่านการเพิ่มความบริสุทธิ์จะทำการศึกษาในช่วง 0.08-0.27 แอมแปร์ต่อตารางเซนติเมตร ความเข้มข้น สารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 0.3 โมลต่อลิตร ความเป็นกรด-เบส เท่ากับ 1 ในเครื่องปฏิกรณ์เคมีไฟฟ้าแบบไม่มีเยื่อเลือกผ่าน ใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า และใช้ ระยะเวลาในการสังเคราะห์ 24 ชั่วโมง ภาพที่ 4.13 แสดงผลของความหนาแน่นกระแสไฟฟ้าต่อร้อยละการ เปลี่ยนของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ พบว่าร้อยละการเปลี่ยนของกลีเซอรอลจะมี แนวโน้มเพิ่มขึ้นเมื่อเพิ่มความหนาแน่นกระแสไฟฟ้าให้กับระบบมากขึ้น (ภาพที่ 4.13(ก)) ซึ่งเป็นไปตาม ทฤษฎีของฟาราเดย์ที่กล่าวว่า "ปริมาณสารที่เกิดการเปลี่ยนแปลงทางเคมีจะเป็นสัดส่วนโดยตรงกับจำนวน ประจุที่ผ่านให้กับระบบ" โดยที่ค่าความหนาแน่นกระแสไฟฟ้า 0.14 0.24 และ 0.27 แอมแปร์ต่อตาราง เซนติเมตร ร้อยละการเปลี่ยนของกลีเซอรอลจะเกิดขึ้นอย่างสมบูรณ์ที่เวลา 18 15 และ 9 ชั่วโมง ในขณะที่ ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.08 แอมแปร์ต่อตารางเซนติเมตร จะให้ร้อยละการเปลี่ยนสูงสุดที่ ร้อยละ 58.27 ที่เวลา 24 ชั่วโมง เมื่อพิจารณาร้อยละผลได้ของสารเพิ่มมูลค่าที่เกิดขึ้นเมื่อใช้ความหนาแน่น กระแสไฟฟ้าเท่ากับ 0.08 แอมแปร์ต่อตารางเซนติเมตร (ภาพที่ 4.14(ก)) จะให้สารผลิตภัณฑ์เพียง 2 ชนิด ที่สามารถตรวจวัดปริมาณได้ 2 ชนิด คือเอทิลีนไกลคอลและ ไกลซิดอล โดยไกลซิดอลจะมีแนวโน้มเพิ่มขึ้น เมื่อให้กระแสไฟฟ้ากับระบบอย่างต่อเนื่อง

ภาพที่ 4.13 ผลของความหนาแน่นกระแสไฟฟ้า (○) 0.08 (◇) 0.14 (□) 0. 24 และ (△) 0.27 มิลลิ แอมแปร์ต่อตารางเซนติเมตร ต่อ (ก) ร้อยละการเปลี่ยนของกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความ บริสุทธิ์ (ข) ประสิทธิภาพเชิงกระแสไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 และใช้ แพลทินัมเป็นขั้วไฟฟ้า


เมื่อพิจารณาร้อยละผลได้ของสารเพิ่มมูลค่าที่เกิดขึ้นเมื่อใช้ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร (ภาพที่ 4.14(ข)) พบว่าร้อยละผลได้สูงสุดของสารเพิ่มมูลค่าที่เกิดขึ้นคือ ร้อย ละ 99.39 ที่เวลา 21 ชั่วโมง โดยสารที่เกิดขึ้นคืออะโครลีนร้อยละ 33.06 1,3-โพรเพนไดออลร้อยละ 2.5 ใกลซิดอลร้อยละ 42.69 เอทิลีนไกลคอลร้อยละ 8.80 อะซีทอลร้อยละ 10.14 และ 1,2-โพรเพนไดออลร้อย

ละ 2.16 ซึ่งพบว่าอะโครลีนจะมีแนวโน้มเพิ่มขึ้นถึงจุดหนึ่งจากนั้นจะมีปริมาณลดลง แสดงว่ามีการเปลี่ยนไป เป็นสารเพิ่มมูลค่าตัวอื่น ในขณะที่ไกลซิดอลและอะซีทอลจะมีแนวโน้มเพิ่มขึ้นเมื่อเวลาในการทำปฏิกิริยา นานขึ้น แสดงว่าสารเหล่านี้มีความเสถียรและสามารถเกิดขึ้นได้อย่างต่อเนื่องตราบเท่าที่มีการป้อน กระแสไฟฟ้าให้กับระบบ ในขณะที่สารผลิตภัณฑ์ตัวอื่น เช่น 1,2-โพรเพนไดออล และ 1,3-โพรเพนไดออล จะมีปริมาณเพิ่มขึ้นเล็กน้อย

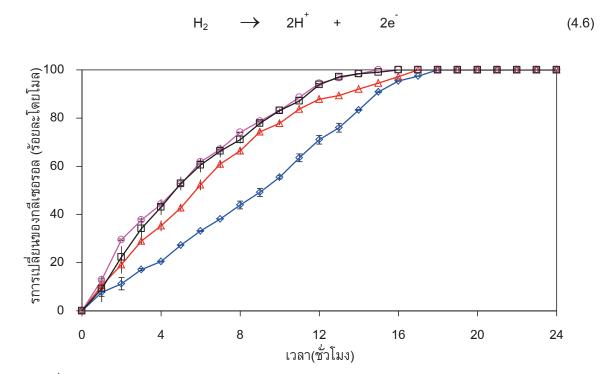

เมื่อพิจารณาร้อยละผลได้ของสารเพิ่มมูลค่าที่เกิดขึ้นเมื่อใช้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.24 แอมแปร์ต่อตารางเซนติเมตร (ภาพที่ 4.14(ค)) พบว่าจะให้แนวโน้มลักษณะเดียวกับการใช้ความหนาแน่น กระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร โดยให้ร้อยละผลได้สูงสุดถึงร้อยละ 99.61 ที่เวลา 15 ชั่วโมง ในขณะที่การใช้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.27 แอมแปร์ต่อตารางเซนติเมตร (ภาพที่ 4.14(ง)) จะให้ร้อยละผลได้สูงสุดร้อยละ 91.36 ภายในเวลา 12 ชั่วโมง แต่จะให้สารเพิ่มมูลค่าเกิดขึ้นเพียง 4 ชนิด คือเอทิลีนไกลคอลร้อยละ 22.68 ไกลซิดอลร้อยละ 43.20 อะซีทอลร้อยละ 13.69 และ 1,2-โพรเพน-ใดออลร้อยละ 11.79 โดยสารเพิ่มมูลค่าทุกตัวมีแนวโน้มเพิ่มขึ้นเมื่อเวลาในการสังเคราะห์นานขึ้นจากนั้นจะ มีปริมาณลดลง แสดงว่าการป้อนความหนาแน่นกระแสไฟฟ้าที่สูงจนเกินไปให้กับระบบด้วยเวลานานจะเป็น ภาวะที่รุนแรงต่อการสังเคราะห์สารเพิ่มมูลค่าซึ่งอาจทำให้สารเพิ่มมูลค่าบางชนิดเกิดปฏิกิริยาต่อเนื่องเป็น สารอื่นหรือโมเลกุลของกลีเซอรอลอาจเกิดการสลายตัวเป็นแก๊สคาร์บอนไดออกไซด์ [74] ดังสมการ (4.5)

$$C_3H_8O_3 + 3H_2O \rightarrow 3CO_2 + 14H^{+} + 14e^{-}$$
 (4.5)

ค่าความหนาแน่นกระแสไฟฟ้าที่เหมาะสมต่อการสังเคราะห์สารเพิ่มมูลค่าชนิดต่างๆ จากกลีเซอรอล จะพิจารณาจากประสิทธิภาพเชิงกระแสไฟฟ้า (ภาพที่ 4.13(ข)) และร้อยละผลได้ของสารเพิ่มมูลค่าชนิด ต่างๆ ที่เกิดขึ้น พบว่าประสิทธิภาพเชิงกระแสไฟฟ้าจะเพิ่มขึ้นอย่างรวดเร็วภายใน 1 ชั่วโมง โดยการใช้ ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.08 และ 0.27 แอมแปร์ต่อตารางเซนติเมตร จะให้ประสิทธิภาพเชิง กระแสไฟฟ้าสูงสุดร้อยละ 23.96 และ 15.99 และสารเพิ่มมูลค่าที่เกิดขึ้น คือ เอทิลีนไกลคอล อะซีทอล ไกลซิดอล และ 1,2-โพรเพนไดออลเท่านั้น ในขณะที่การใช้ความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.14 แอมแปร์ต่อตารางเซนติเมตร จะให้ประสิทธิภาพเชิงกระแสไฟฟ้าสูงสุดร้อยละ 13.51 แต่มีสารเพิ่มมูลค่า เกิดขึ้นหลายชนิด ได้แก่ เอทิลีนไกลคอล อะซีทอล ไกลซิดอล อะโครลีน 1,3-โพรเพนไดออล และ 1,2-โพรเพนไดออล แต่เมื่อเวลานานขึ้นประสิทธิภาพเชิงกระแสไฟฟ้าจะลดลงอย่างรวดเร็วและคงที่ ซึ่งอาจ มีสาเหตุมาจากการเกิดฟิล์มของสารประกอบอินทรีย์และดูดซับบนพื้นผิวของขั้วไฟฟ้าส่งผลให้มีการสูญเสีย พื้นที่ผิวในการเกิดปฏิกิริยา [79] จึงกล่าวได้ว่าความหนาแน่นกระแสไฟฟ้าเท่ากับ 0.14 แอมแปร์ต่อตาราง เซนติเมตร เป็นความหนาแน่นกระแสไฟฟ้าที่เหมาะสมที่สุดต่อการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอล ดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์

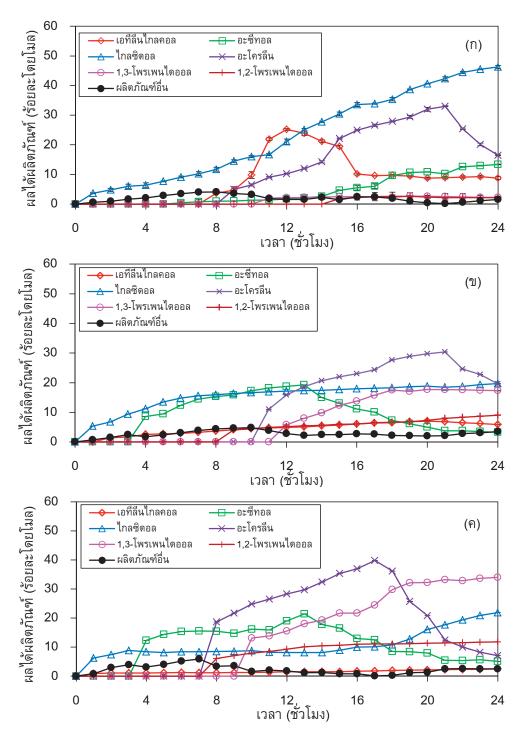
ภาพที่ 4.14 ผลของความหนาแน่นกระแสไฟฟ้า (ก) 0.08 (ข) 0.14 (ค) 0.24 และ (ง) 0.27 แอมแปร์ต่อ ตารางเซนติเมตร ต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการเปลี่ยนกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 และใช้แพลทินัมเป็นขั้วไฟฟ้า

ภาพที่ 4.14 ผลของความหนาแน่นกระแสไฟฟ้า (ก) 0.08 (ข) 0.14 (ค) 0.24 และ (ง) 0.27 แอมแปร์ต่อ ตารางเซนติเมตร ต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการเปลี่ยนกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 และใช้แพลทินัมเป็นขั้วไฟฟ้า (ต่อ)

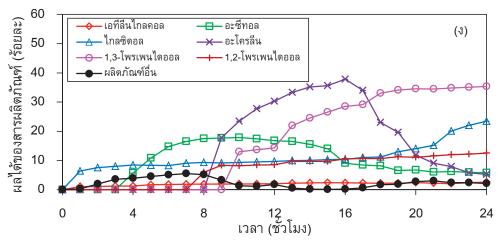

ง. ชนิดและความเข้มข้นของสารตัวเติม

งานวิจัยในส่วนนี้จะศึกษาผลของชนิดและความเข้มข้นของสารตัวเติมต่อร้อยละการเปลี่ยนของ กลีเซอรอลและร้อยละผลได้ของผลิตภัณฑ์ โดยจะใช้สารตัวเติม 2 ชนิด ได้แก่ สารที่มีสมบัติในการรีดิวซ์ (Reducing agent) คือแก๊สไฮโดรเจน และสารที่มีสมบัติในการออกซิไดซ์ (Oxidizing agent) คือ ไฮโดรเจน เปอร์ออกไซด์ (H_2O_2) โซเดียมเปอร์ซัลเฟต ($Na_2S_2O_8$) และ 2,2,6,6-เตตระเมธิวไพเพอริดีน (2,2,6,6-tetramethylpiperidine-1-oxyl, CH_2) $_3$ (CMe_2) $_2$ NO หรือ TEMPO) ซึ่งให้ผลการทดลองดังนี้

ง.1 สารตัวเติมที่มีสมบัติเป็นในการรีดิวซ์


ผลของความเข้มข้นของไฮโดรเจนในสารละลายกลีเซอรอลต่อการสังเคราะห์สารเพิ่มมูลค่าจาก กลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์จะดำเนินการโดยใช้ความเข้มข้นของไฮโดรเจนที่อัตรา การไหลเท่ากับ 25 มิลลิลิตรต่อนาที เป็นเวลา 30 60 และ 120 นาที ซึ่งคิดเป็นปริมาณแก๊สไฮโดรเจนที่ ละลายในสารละลายกลีเซอรอลเท่ากับ 0.50 2.0 และ 5.0 มิลลิลิตรต่อกรัมกลีเซอรอล ความเข้มข้น สารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 0.3 โมลต่อลิตร ความเป็นกรด-เบส เท่ากับ 1 ในเครื่องปฏิกรณ์เคมีไฟฟ้าแบบไม่มีเยื่อเลือกผ่าน ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อ ตารางเซนติเมตร ใช้ตะแกรงแพลทีนัมเป็นขั้วไฟฟ้า และระยะเวลาในการสังเคราะห์ 24 ชั่วโมง

ภาพที่ 4.15 แสดงผลของปริมาณแก๊สไฮโดรเจนในสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่าน การเพิ่มความบริสุทธิ์ต่อร้อยละการเปลี่ยนของกลีเซอรอล พบว่าร้อยละการเปลี่ยนของกลีเซอรอลมีแนวโน้ม เพิ่มขึ้นเมื่อระยะเวลาในการสังเคราะห์นานขึ้น เมื่อเปรียบเทียบร้อยละการเปลี่ยนของกลีเซอรอลดิบปรับ สภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ไม่ผ่านการป้อนแก๊สไฮโดรเจน พบว่าให้ร้อยละการเปลี่ยนสูงสุดที่ร้อยละ 97.45 ในเวลา 17 ชั่วโมง ในขณะที่การป้อนแก๊สไฮโดรเจนเข้าสู่สารละลายกลีเซอรอลดิบจะให้ร้อยละการ เปลี่ยนอย่างสมบูรณ์ที่เวลา 17 ชั่วโมง แสดงให้เห็นว่าการป้อนแก๊สไฮโดรเจนเข้าสู่สารละลายกลีเซอรอลจะ มีผลต่อการเกิดปฏิกิริยาของกลีเซอรอล โดยแก๊สไฮโดรเจนที่ละลายอยู่ในสารละลายอาจช่วยให้ปฏิกิริยา ไฮโดรจิเนชันเกิดได้ดีขึ้น หรือเกิดจากแก๊สไฮโดรเจนที่ป้อนเข้าสู่สารละลายสามารถเกิดปฏิกิริยาออกซิเดชัน เป็นไฮโดรเจนไอออนเมื่อมีการผ่านกระแสไฟฟ้าเข้าสู่ระบบดังสมการ (4.6) [74] ซึ่งสารดังกล่าวจะเข้าร่วม ในการเกิดปฏิกิริยาการกำจัดน้ำจากโมเลกุลของกลีเซอรอล [69]



ภาพที่ 4.15 ผลของปริมาณแก๊สไฮโดรเจนเท่ากับ (♦) 0 (△) 0.5 (○) 2 และ (□) 5 มิลลิกรัมต่อกรัม กลีเซอรอลในสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ต่อร้อยละการเปลี่ยนของกลีเซ อรอลด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่น กระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า

เมื่อพิจารณาถึงร้อยละผลได้ของสารผลิตภัณฑ์ชนิดต่าง ๆ ที่เกิดขึ้น พบว่าเมื่อการละลายของแก๊ส ไฮโดรเจนในสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 0.5 มิลลิลิตรต่อกรัม (ภาพที่ 4.16(ข)) จะให้ร้อยละผลได้รวมของผลิตภัณฑ์สูงที่สุดถึงร้อยละ 85.53 ที่เวลา 20 ชั่วโมง โดยสาร เพิ่มมูลค่าที่เกิดขึ้นคืออะโครลีนร้อยละ 29.72 1,3-โพรเพนไดออลร้อยละ 17.69 ไกลซิดอลร้อยละ 18.80 เอทิลีนไกลคอลร้อยละ 7.02 อะซีทอลร้อยละ 5.03 และ 1,2-โพรเพนไดออลร้อยละ 7.25 ซึ่งพบว่าอะโครลีน

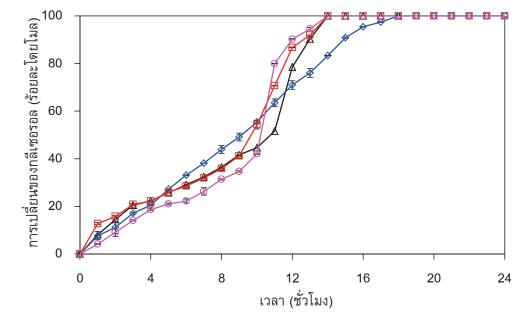
ภาพที่ 4.16 ผลของปริมาณแก๊สไฮโดรเจนในสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความ บริสุทธิ์ (ก) 0 (ข) 0.5 (ค) 2 และ (ง) 5 มิลลิลิตรต่อกรัม ต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการ เปลี่ยนกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลาย กลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรงแพลทีนัมเป็นขั้วไฟฟ้า

ภาพที่ 4.16 ผลของปริมาณแก๊สไฮโดรเจนในสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความ บริสุทธิ์ (ก) 0 (ข) 0.5 (ค) 2 และ (ง) 5 มิลลิลิตรต่อกรัม ต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการ เปลี่ยนกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลาย กลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า (ต่อ)

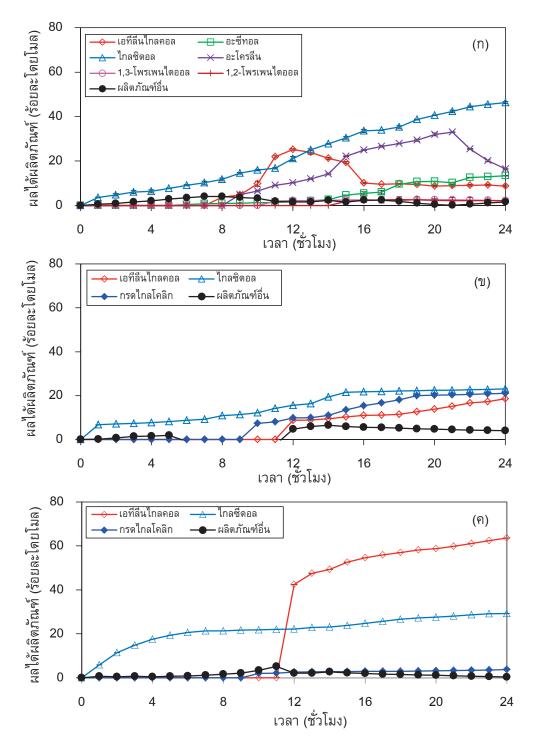
และอะซีทอลซึ่งเป็นสารมัธยันต์ที่เกิดจากปฏิกิริยากำจัดน้ำของโมเลกุลกลีเซอรอลมีแนวโน้มเพิ่มขึ้นและ สูงสุดที่เวลา 21 และ 13 ชั่วโมง จากนั้นจะมีปริมาณลดลง แสดงว่าสารทั้งสองตัวสามารถเปลี่ยนไปเป็นสาร อื่นได้ เช่น 1,3-โพรเพนไดออล และ 1,2-โพรเพนไดออล ซึ่งมีแนวโน้มเพิ่มขึ้นเมื่อเวลาในการสังเคราะห์นาน ขึ้นและเมื่อเปรียบเทียบกับสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ไม่ผ่านการป้อน แก๊สไฮโดรเจน ภาพที่ 4.16(ก)) พบว่าร้อยละผลได้ของ1,3-โพรเพนไดออล และ 1,2-โพรเพนไดออล จะมี ปริมาณที่สูงกว่าโดยอาจเกิดจากไฮโดรเจนไอออนสามารถเกิดปฏิกิริยารีดักชันกับอะโครลีนเพื่อเปลี่ยนเป็น 1,3-โพรเพนไดออลได้ [30]

เมื่อพิจารณาร้อยละผลได้ของผลิตภัณฑ์เมื่อมีการละลายของแก๊สไฮโดรเจนในสารละลายกลีเซอรอล ดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 2.0 มิลลิลิตรต่อกรัม (ภาพที่ 4.16(ค)) พบว่าให้ร้อยละ ผลได้รวมของผลิตภัณฑ์สูงสุดถึงร้อยละ 99.42 ที่เวลา 17 ชั่วโมง และสารเพิ่มมูลค่าที่เกิดขึ้นคืออะโครลีน ร้อยละ 39.74 1,3-โพรเพนไดออลร้อยละ 24.40 ไกลซิดอลร้อยละ 10.03 เอทิลีนไกลคอลร้อยละ 1.72 อะซีทอลร้อยละ 12.50 และ 1,2-โพรเพนไดออลร้อยละ 11.01 และเมื่อการละลายของแก๊สไฮโดรเจนใน สารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 5.0 มิลลิลิตรต่อกรัม (ภาพที่ 4.16 (ง)) พบว่าร้อยละผลได้จะใกล้เคียงกับการละลายของแก๊สไฮโดรเจนในสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 2.0 มิลลิลิตรต่อกรัม โดยที่เวลา 16 ชั่วโมง จะให้ร้อยผลได้รวมของสาร เพิ่มมูลค่าสูงสุดคือร้อยละ 98.65 สารเพิ่มมูลค่าที่เกิดขึ้นคืออะโครลีนร้อยละ 37.86 1,3-โพรเพนไดออลร้อยละ 28.49 ใกลซิดอลร้อยละ 10.37 เอทิลีนไกลคอลร้อยละ 2.31 อะซีทอลร้อยละ 9.00 และ 1,2-โพรเพนไดออลร้อยละ 28.49 ใกลซิดอลร้อยละ 10.59 ซึ่งพบว่าอะซีทอลและอะโครลีนจะมีแนวโน้มเพิ่มขึ้นและลดลง เนื่องจากเป็นสารมัธยันต์

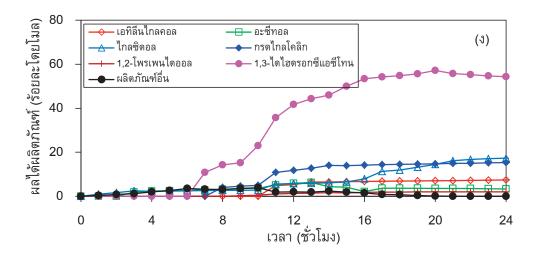
ในปฏิกิริยากำจัดน้ำของโมเลกุลกลีเซอรอลซึ่งเปลี่ยนเป็น 1,2-โพรเพนไดออล และ1,3-โพรเพนไดออล ซึ่งมี ร้อยละผลได้สูงขึ้นเมื่อเวลาในการทำปฏิกิริยานานขึ้นและเมื่อเปรียบเทียบความเร็วในการเกิดปฏิกิริยา พบว่าเมื่อสารละลายกลีเซอรอลมีไฮโดรเจนละลายอยู่จะทำให้ 1,2-โพรเพนไดออล และ 1,3-โพรเพนไดออล เกิดได้เร็วขึ้น เนื่องจากไฮโดรเจนไอออนจะเป็นสารเข้าร่วมในการเกิดปฏิกิริยาการกำจัดน้ำจากโมเลกุลของ กลีเซอรอลเพื่อเปลี่ยนเป็นสารมัธยันต์ เช่น อะซีทอล และสามารถเกิดปฏิกิริยาไฮโดรจิเนชันกับแก๊ส ไฮโดรเจนที่ละลายอยู่ในสารละลายร่วมได้ [80] ในขณะที่สารเพิ่มมูลค่าตัวอื่น เช่น เอทิลีนไกลคอลจะมีการ เปลี่ยนแปลงเพิ่มขึ้นเล็กน้อยเมื่อเวลานานขึ้น ในขณะที่ไกลซิดอลซึ่งเกิดจากปฏิกิริยากำจัดน้ำของกลีเซ อรอลจะมีปริมาณเพิ่มขึ้นเมื่อเวลาในการทำปฏิกิริยานานขึ้น และเมื่อเปรียบเทียบกับสารละลายกลีเซอรอล ดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์ที่ไม่ผ่านการป้อนแก๊สไฮโดรเจน พบว่าจะให้ปริมาณของไกล ซิดอลน้อยกว่า เนื่องจากไฮโดรเจนไอออนที่ผลิตจากปฏิกิริยาออกซิเดชันของไฮโดรเจนสามารถทำปฏิกิริยากับไกลซิดอลเพื่อเปลี่ยนเป็น 1,2-โพรเพนไดออลได้ [81] ดังกลไกที่แสดงในภาพที่ 4.17


ภาพที่ 4.17 กลไกการเปลี่ยนไกลซิดอลเป็น 1,2-โพรเพนไดออล [81]

ง.2 สารตัวเติมที่มีสมบัติเป็นในการออกซิไดซ์

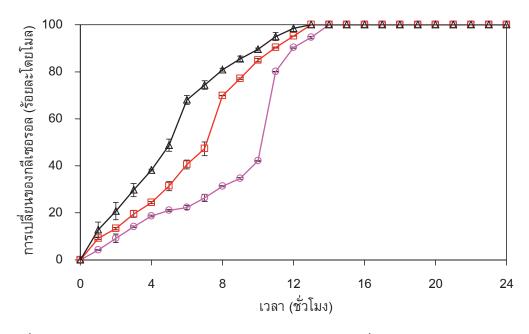

รูปที่ 4.18 แสดงผลของการเติมสารที่มีสมบัติเป็นในการออกซิไดซ์ คือ ไฮโดรเจนเปอร์ออกไซด์ โซเดียมเปอร์ซัลเฟต และ 2,2,6,6-เตตระเมธิวไพเพอริดีน ต่อร้อยละการเปลี่ยนกลีเซอรอลเป็นผลิตภัณฑ์ โดยใช้ความเข้มขันของสารตัวเติมแต่ละชนิดเท่ากับ 0.001 โมลต่อลิตร ความเข้มขันสารละลายกลีเซอรอล ดิบปรับสภาพที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 0.3 โมลต่อลิตร ความเป็นกรด-เบสเท่ากับ 1 ในเครื่อง ปฏิกรณ์เคมีไฟฟ้าแบบไม่มีเยื่อเลือกผ่าน ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า พบว่าร้อยละการเปลี่ยนของกลีเซอรอลในระบบที่มีการเติมสารตัวเติม ทั้ง 3 ชนิด จะต่ำกว่าร้อยละการเปลี่ยนของกลีเซอรอลในระบบที่ไม่มีการเติมสารตัวเติมเล็กน้อยในช่วง 10 ชั่วโมงแรกของปฏิกิริยา ซึ่งอาจเกิดขึ้นเนื่องจากการแข่งขันการเข้าทำปฏิกิริยาของสารตัวเติมที่หมู่ -OH ที่

ตำแหน่งปฐมภูมิ (Primary OH group) หรือทุติยภูมิ (Secondary OH group) แต่เมื่อเวลาในการสังเคราะห์ มากกว่า 10 ชั่วโมง การเปลี่ยนของกลีเซอรอลจะเกิดขึ้นอย่างรวดเร็วและมีค่ามากกว่าการเปลี่ยนของกลีเซ อรอลในระบบที่ไม่มีการเติมสารตัวเติม โดยการเปลี่ยนกลีเซอรอลจะเกิดขึ้นอย่างสมบูรณ์เมื่อเวลาของการ สังเคราะห์ผ่านไป 14 ชั่วโมง ซึ่งเร็วกว่าการเปลี่ยนกลีเซอรอลอย่างสมบูรณ์ในระบบที่ไม่มีการเติมสารตัว เติมถึง 3 ชั่วโมง แสดงว่าสารตัวเติมช่วยส่งเสริมให้เกิดการเปลี่ยนของกลีเซอรอลร่วมกับปฏิกิริยาเคมีไฟฟ้า [82] แต่ต้องใช้เวลาชักนำ (Induction time) ระยะหนึ่ง

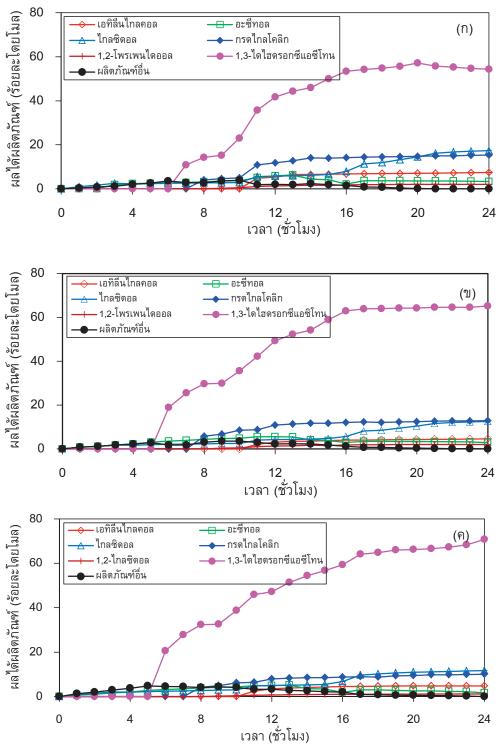

เมื่อพิจารณาชนิดของผลิตภัณฑ์ที่เกิดขึ้น พบว่าผลิตภัณฑ์ที่เกิดขึ้นและสามารถตรวจวัดได้ในภาวะ ที่ไม่มีการเติมสารตัวเติมคือ เอทิลีนไกลคอล ไกลซิดอล อะซิทอล อะโครลีน และ โพรเพนไดออล (รูปที่ 4.19 (ก)) ซึ่งส่วนใหญ่เป็นผลิตภัณฑ์จากปฏิกิริยาไฮโดรจิโนไลซีส (Hydrogenolysis) ส่วนผลิตภัณฑ์ที่ เกิดขึ้นในภาวะที่มีการเติมไฮโดรเจนเปอร์ออกไซด์และโซเดียมเปอร์ซัลเฟต คือ เอทิลีนไกลคอล ไกลซิดอล และกรดไกลโคลิก (ภาพที่ 4.19 (ข)-(ค)) ส่วนระบบที่มี 2,2,6,6-เตตระเมธิวไพเพอริดีน จะมีสารที่เกิดขึ้นคือ เอทิลีนไกลคอล ไกลซิดอล อะซิทอล กรดไกลโคลิก 1,2-โพรเพนไดออล และ 1,3-ไดไฮดรอกซีแอซีโทน (ภาพที่ 4.19 (ง)) ซึ่งกรดไกลโคลิก และ 1,3-ไดไฮดรอกซีแอซีโทนจะเป็นสารที่เกิดขึ้นจากกระบวน ออกซิเดชัน แสดงว่าสารตัวเติมดังกล่าวช่วยผลักดันให้กลีเซอรอลเกิดปฏิกิริยาออกซิเดชันบนขั้วไฟฟ้า โดย ในระบบที่มีภาวะออกซิเดชันที่รุนแรงหรือภาวะที่มีไฮโดรเจนเปอร์ออกไซด์และโซเดียมเปอร์ซัลเฟต

ภาพที่ 4.18 ผลของ (♦) การไม่เติมสารตัวเติม และการเติมสารตัวเติม (△)ไฮโดรเจนเปอร์ออกไซด์ (□) โซเดียมเปอร์ซัลเฟต และ (♦) 2,2,6,6-เตตระเมธิวไพเพอริดีน ที่ความเข้มขัน 0.001 โมลต่อลิตร ต่อร้อยละ การเปลี่ยนของกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบส เท่ากับ 1 ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรงแพลทินัมเป็น ขั้วไฟฟ้า

ภาพที่ 4.19 ผลของการ (ก) ไม่เดิมสารตัวเติม และการเติมสารตัวเติม (ข) ไฮโดรเจนเปอร์ออกไซด์ (ค) โซเดียมเปอร์ซัลเฟต และ (ง) 2,2,6,6-เตตระเมธิวไพเพอริดีน ต่อร้อยละผลได้ของสารเพิ่มมูลค่าจาก กระบวนการเปลี่ยนของกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร ความเข้มข้นการสารตัวเติม 0.001 โมลต่อลิตร และใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า



ภาพที่ 4.19 ผลของการ (ก) ไม่เติมสารตัวเติม และการเติมสารตัวเติม (ข) ไฮโดรเจนเปอร์ออกไซด์ (ค) โซเดียมเปอร์ซัลเฟต และ (ง) 2,2,6,6-เตตระเมธิวไพเพอริดีน ต่อร้อยละผลได้ของสารเพิ่มมูลค่าจาก กระบวนการเปลี่ยนของกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร ความเข้มข้นการสารตัวเติม 0.001 โมลต่อลิตร และใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า (ต่อ)


รูปที่ 4.20 กลไกการเปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่าด้วยกระบวนการเคมีไฟฟ้าในภาวะที่มี ไฮโดรเจนเปอร์ออกไซด์ โซเดียมเปอร์ซัลเฟต และ 2,2,6,6-เตตระเมธิวไพเพอริดีน

กลีเซอรอลจะเกิดปฏิกิริยาออกซิเดชันเชิงเคมีไฟฟ้า (Electrooxidation) ที่หมู่ไฮดรอกซิลที่ตำแหน่งที่ 1 เป็น กรดไกลโคลิกซึ่งเป็นโมเลกุลที่มีอะตอมของคาร์บอนน้อยกว่ากลีเซอรอล ส่วนในระบบที่มีภาวะออกซิเดชันที่ รุนแรงน้อยกว่าหรือระบบที่มี 2,2,6,6-เตตระเมธิวไพเพอริดีน กลีเซอรอลจะถูกออกซิไดซ์ที่หมู่ไฮดรอกซิลที่ ตำแหน่งที่ 2 เป็น 1,3-ไดไฮดรอกซีแอซีโทน ดังนั้นกลไกการเกิดปฏิกิริยาเคมีไฟฟ้าในการเปลี่ยนกลีเซ อรอลเป็นสารเพิ่มมูลค่าบนขั้วไฟฟ้าแพลทินัมในภาวะที่มีการเติมไฮโดรเจนเปอร์ออกไซด์ โซเดียมเปอร์ ซัลเฟต และ 2,2,6,6-เตตระเมธิวไพเพอริดีนสามารถแสดงได้ดังภาพที่ 4.20

รูปที่ 4.21 แสดงผลของความเข้มข้นของ 2,2,6,6-เตตระเมธิวไพเพอริดีน ในช่วง 0 - 0.005 โมลต่อ ลิตร ต่อร้อยละการเปลี่ยนกลีเซอรอลเป็นผลิตภัณฑ์ เมื่อใช้ความเข้มข้นสารละลายกลีเซอรอลดิบปรับสภาพ ที่ผ่านการเพิ่มความบริสุทธิ์เท่ากับ 0.3 โมลต่อลิตร ความเป็นกรด-เบสเท่ากับ 1 ในเครื่องปฏิกรณ์เคมีไฟฟ้า แบบไม่มีเยื่อเลือกผ่าน ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรง แพลทินัมเป็นขั้วไฟฟ้า พบว่าร้อยละการเปลี่ยนของกลีเซอรอลในระบบที่มีการเติม 2,2,6,6-เตตระเมธิวไพ เพอริดีน จะแสดงพฤติกรรมของเวลาชักนำ โดยเมื่อความเข้มข้นของ 2,2,6,6-เตตระเมธิวไพเพอริดีน มาก ขึ้นช่วงเวลาของการชักนำจะลดลง ระบบที่มี 2,2,6,6-เตตระเมธิวไพเพอริดีนที่ความเข้มข้นสูงจะทำให้กลีเซ อรอลเปลี่ยนเป็นผลิตภัณฑ์ได้รวดเร็วกว่าในระบบที่มี 2,2,6,6-เตตระเมธิวไพเพอริดีนที่ความเข้มข้นสู่ก่า

ภาพที่ 4.21 ผลของสารตัวเติม (2,2,6,6-เตตระเมธิวไพเพอริดีน) ที่ความเข้มข้น (○) 0.001 (□) 0.003 (△) 0.005 โมลต่อลิตรต่อร้อยละการเปลี่ยนของกลีเซอรอลด้วยกระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลี เซอรอลความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า

ภาพที่ 4.22 ผลของสารตัวเติม (2,2,6,6-เตตระเมธิวไพเพอริดีน) ที่ความเข้มขัน (ก) 0.001 (ข) 0.003 และ (ค) 0.005 โมลต่อลิตรต่อร้อยละผลได้ของสารเพิ่มมูลค่าจากกระบวนการเปลี่ยนของกลีเซอรอลด้วย กระบวนการเคมีไฟฟ้าโดยใช้สารละลายกลีเซอรอลที่ความเป็นกรด-เบสเท่ากับ 1 ความหนาแน่น กระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า

โดยการเปลี่ยนกลีเซอรอลจะเกิดขึ้นอย่างสมบูรณ์เมื่อเวลาของการสังเคราะห์ผ่านไป 13 ชั่วโมง ในระบบที่มี 2,2,6,6-เตตระเมธิวไพเพอริดีน เข้มขัน 0.004 และ 0.005 โมลต่อลิตร

รูปที่ 4.22 แสดงผลของความเข้มข้นของ 2,2,6,6-เตตระเมธิวไพเพอริดีน ในช่วง 0 - 0.005 โมลต่อ ลิตร ต่อร้อยละผลได้ผลิตภัณฑ์ เมื่อใช้ความเข้มข้นสารละลายกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่มความ บริสุทธิ์เท่ากับ 0.3 โมลต่อลิตร ความเป็นกรด-เบสเท่ากับ 1 ในเครื่องปฏิกรณ์เคมีไฟฟ้าแบบไม่มีเยื่อเลือก ผ่าน ความหนาแน่นกระแสไฟฟ้า 0.14 แอมแปร์ต่อตารางเซนติเมตร และใช้ตะแกรงแพลทินัมเป็นขั้วไฟฟ้า พบว่าผลิตภัณฑ์หลักที่เกิดขึ้นในระบบคือ 1,3-ไดไฮดรอกซีแอซีโทน ซึ่งจะมีผลได้เพิ่มมากขึ้นเมื่อใช้ความ เข้มข้นของ 2,2,6,6-เตตระเมธิวไพเพอริดีนสูงขึ้น โดยร้อยละผลได้ของ 1,3-ไดไฮดรอกซีแอซีโทนมีค่าร้อย ละ 57.16 64.24 และ 69.19 เมื่อใช้ 2,2,6,6-เตตระเมธิวไพเพอริดีน เข้มข้น 0.001 0.003 และ 0.005 โมล ต่อลิตร ตามลำดับ

บทที่ 5

บทสรุป

งานวิจัยนี้ศึกษาการเพิ่มความบริสุทธิ์และมูลค่าของกลีเซอรอลดิบจากกระบวนการผลิต ไบโอดีเซลที่ใช้น้ำมันพืชหรือไขมันสัตว์ที่ผ่านการใช้งานแล้วเป็นสารตั้งต้น ตัวแปรที่ศึกษาในการเพิ่มความ บริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการสกัดด้วยตัวทำละลายคือชนิดของสารสกัดคือสารสกัดมีขั้ว (เมทานอล เอทานอล และโพรพานอล) และสารสกัดไม่มีขั้ว (ไดเอทิลอีเทอร์และเฮกเซน) อัตราส่วนระหว่างสาร สกัดและกลีเซอรอลดิบปรับสภาพเบื้องต้น (0.5-4.0 โดยปริมาตร) ส่วนตัวแปรที่ศึกษาในการเตรียมถ่านกัม มันต์จากกากตะกอนบำบัดน้ำเสีย คือ ชนิดสารกระตุ้นที่ใช้ในการเตรียมถ่านกัมมันต์ ได้แก่ โพแทสเซียมไฮ ดรอกไซด์ (KOH) โพแทสเซียมคาร์บอเนต (K₂CO₃) และกรดฟอสฟอริก (H₃PO₄) ที่อัตราส่วนโดยน้ำหนัก ระหว่างสารกระตุ้นและถ่านชาร์เท่ากับ 1.0-6.0 เวลาดูดซับสารกระตุ้น 5-25 ชั่วโมง อุณหภูมิการกระตุ้น 500-900 องศาเซลเซียส เวลาดูดซับสารปนเปื้อน (60-180 นาที) และอัตราการเขย่าระหว่างการดูดซับสาร ปนเปื้อน (150-300 รอบต่อนาที) ซึ่งให้ผลการทดลองดังนี้

- 1. การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการสกัดด้วยตัวทำละลาย
 - สารสกัดมีขั้วที่ทำให้กลีเซอรอลดิบปรับสภาพมีความบริสุทธิ์มากที่สุด คือโพรพานอลที่ อัตราส่วนระหว่างโพรพานอลและกลีเซอรอลดิบปรับสภาพเท่ากับ 2.0 โดยให้ความบริสุทธิ์ ของกลีเซอรอลร้อยละ 97.85
 - สารสกัดไม่มีขั้วที่ให้กลีเซอรอลดิบปรับสภาพมีความบริสุทธิ์มากที่สุดคือ ไดเอทิลอีเทอร์ที่ อัตราส่วนระหว่างไดเอทิลอีเทอร์และกลีเซอรอลดิบปรับสภาพเท่ากับ 1.0 โดยให้ความบริสุทธิ์ ของกลีเซอรอลร้อยละ 86.57
 - สารสกัดมีขั้วคือโพรพานอลจะมีประสิทธิภาพในการเพิ่มความบริสุทธิ์ของกลีเซอรอลมากกว่า สารสกัดไม่มีขั้ว
- 2. การเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพด้วยการดูดซับด้วยถ่านกัมมันต์ที่เตรียมจาก กากตะกอนบำบัดน้ำเสีย
 - ความสามารถในการเพิ่มความบริสุทธิ์กลีเซอรอลดิบปรับสภาพจะขึ้นอยู่กับปริมาณหมู่ คาร์บอนิลบนพื้นผิวของถ่านกัมมันต์
 - ถ่านกัมมันต์ที่เตรียมด้วยการกระตุ้นทางเคมีจะมีประสิทธิภาพในการเพิ่มความบริสุทธิ์ กลีเซอรอลดิบปรับสภาพมากกว่าถ่านกัมมันต์ที่เตรียมโดยการกระตุ้นด้วยความร้อน โดยภาวะ ที่ดีที่สุดในการเตรียมถ่านกัมมันต์ด้วยการกระตุ้นทางเคมีคือการกระตุ้นด้วยโพแทสเซียม-ไฮดรอกไซด์ที่อัตราส่วนโดยน้ำหนักระหว่างโพแทสเซียมไฮดรอกไซด์และถ่านชาร์เท่ากับ 5

เวลาการกระตุ้น 25 ชั่วโมง และคาร์บอในซ์ที่อุณหภูมิ 800 องศาเซลเซียส เป็นเวลา 30 นาที เวลาในการดูดซับ 120 นาที และอัตราการเขย่า 250 รอบต่อนาที โดยให้ความบริสุทธิ์ของกลี เซอรอลร้อยละ 93.0 เมื่อใช้เวลาดูดซับ 120 นาที และอัตราการเขย่า 250 รอบต่อนาที

เมื่อเปรียบเทียบประสิทธิภาพการเพิ่มความบริสุทธิ์ของกลีเซอรอลดิบปรับสภาพของทั้ง 2 กระบวนการ พบว่ากระบวนการสกัดด้วยตัวทำละลายที่เหมาะสม (โพรพานอล) จะให้กลีเซอรอลที่มีความ บริสุทธิ์มากกว่าการดูดซับด้วยถ่านกัมมันต์

สำหรับตัวแปรที่ศึกษาในการสังเคราะห์สารเพิ่มมูลค่าจากกลีเซอรอลดิบปรับสภาพที่ผ่านการเพิ่ม ความบริสุทธิ์ด้วยกระบวนการเคมีไฟฟ้า ได้แก่ ความเป็นกรด-เบสเริ่มต้น (ความเป็นกรด-เบสเท่ากับ 1 7 และ 11) ความหนาแน่นกระแสไฟฟ้า (0.08-0.27 แอมแปร์ต่อตารางเซนติเมตร) ชนิดขั้วแคโทด (แพลทินัม ไทเทเนียมเคลือบรูทีเนียมออกไซด์ และเหล็กกล้าไร้สนิม) และชนิดและความเข้มข้นของสารตัวเติม (แก๊ส ไฮโดรเจน ไฮโดรเจนเปอร์ออกไซด์ โซเดียมเปอร์ซัลเฟต และ 2,2,6,6-เตตระเมธิวไพเพอริดีน) ให้ผลการ ทดลองดังนี้

- 1. กลีเซอรอลเชิงพาณิชย์และกลีเซอรอลดิบปรับสภาพสามารถเปลี่ยนเป็นสารเพิ่มมูลค่าได้ดีด้วย กระบวนการเคมีไฟฟ้าในภาวะกรดแก่และเบสแก่
- 2. ขั้วไฟฟ้าแพลทินัมมีประสิทธิภาพสูงกว่าขั้วไทเทเนียมเคลือบรูทีเนียมออกไซด์และขั้วเหล็กกล้า ไร้สนิมในการเปลี่ยนกลีเซอรอลเป็นสารเพิ่มมูลค่า
- 3. สารเพิ่มมูลค่าที่เกิดขึ้นในภาวะที่ไม่มีสารตัวเติมและมีสารตัวเติมเป็นแก๊สไฮโดรเจน คือ เอทิลีน ไกลคอล อะซีทอล อะโครลีน ไกลซิดอล 1,2-โพรเพนไดออล และ 1,3-โพรเพนไดออล
- 4. สารเพิ่มมูลค่าที่เกิดขึ้นในภาวะที่มีสารตัวเติมที่มีสมบัติในการออกซิไดซ์ คือ เอทิลีนไกลคอล ไกลซิดอล อะซิทอล กรดไกลโคลิก 1,2-โพรเพนไดออล และ 1,3-ไดไฮดรอกซีแอซีโทน

เมื่อพิจารณาชนิดของสารผลิตภัณฑ์ที่เกิดขึ้นในภาวะที่ไม่มีสารตัวเติมและมีสารตัวเติมเป็นแก๊ส ไฮโดรเจน พบว่าสารเพิ่มมูลค่าที่เกิดขึ้นส่วนใหญ่จะเกิดจากปฏิกิริยากำจัดน้ำ (Dehydration) และ/หรือ ปฏิกิริยาเติมไฮโดรเจน (Hydrogenation) ได้แก่ อะซีทอล อะโครลีน หรือเกิดจากปฏิกิริยาทั้ง 2 ปฏิกิริยา ต่อเนื่องกัน ซึ่งรวมเรียกว่าปฏิกิริยาไฮโดรจิโนไลซีส ได้แก่ เอทิลลีนไกลคอล 1,2-โพรเพนไดออล และ 1,3-โพรเพนไดออล ส่วนสารผลิตภัณฑ์ที่เกิดขึ้นในภาวะที่มีสารตัวเติมที่มีสมบัติในการออกซิไดซ์จะเกิดทั้งจาก ปฏิกิริยากำจัดน้ำ ได้แก่ อะซิทอล ปฏิกิริยาไฮโดรจิโนไลซีส ได้แก่ เอทิลีนไกลคอล 1,2-โพรเพนไดออล และ จากปฏิกิริยาออกซิเดชัน ได้แก่ กรดไกลโคลิก และ 1,3-ไดไฮดรอกซีแอซีโทน โดยในภาวะที่มีตัวออกซิไดซ์ ที่รุนแรงคือไฮโดรเจนเปอร์ออกไซด์และโซเดียมเปอร์ซัลเฟตจะได้สารเพิ่มมูลค่าเป็นกรดไกลโคลิก และ 1,3-ไดไฮดรอกซีแอซีโทน

เอกสารอ้างอิง

- [1] Ayoub M., Abdullah A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews. 16 (2012) 2671-2686.
- [2] Wua K.J., Lin, Y.H. Lo Y.C., Chen C.Y., Chen W.M., Chang J.S. Converting glycerol into hydrogen, ethanol, and diols with a *Klebsiella* sp. HE1 strain via anaerobic fermentation. Journal of the Taiwan Institute of Chemical Engineers. 42 (2011) 20–25.
- [3] Metsoviti M., Paraskevaidi K., Koutinas A., Zeng A., Papanikolaou S. Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated *Klebsiella oxytoca* strain growing on biodiesel-derived glycerol based media. Process Biochemistry. 47 (2012) 1872-1882.
- [4] Moon C., Lee C.H., Sang B.I., Uma Y. Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresource Technology. 102 (2011) 10561–10568.
- [5] Kao W.C., Lin D.S., Cheng C.L., Chen B.Y., Lin C.Y., Chang J.S. Enhancing butanol production with Clostridium pasteurianum CH4 using sequential glucose-glycerol addition and simultaneous dual-substrate cultivation strategies. Bioresource Technology. 135 (2013) 324–330.
- [6] Slinn M., Kendall K., Mallon C., Andres J. Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresource Technology. 99 (2008) 5851–5858.
- [7] Pairojpiriyakul T., Croiset E., Kiatkittipong W., Kiatkittipong K., Arpornwichanop A., Assabumrungrat S. Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts. International journal of hydrogen energy. 38 (2013) 4368-4379.
- [8] Adhikari S., Fernando S.D., Haryanto A. Hydrogen production from glycerin by steam reforming over nickel catalysts. Renewable Energy 33 (2008) 1097-1100.
- [9] Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., Güemez M.B., Navarro R.M., Sánchez-Sánchez M.C., Fierro J.L.G. Hydrogen production from glycerol over nickel catalysts supported on Al₂O₃ modified by Mg, Zr, Ce or La. Topics in Catalysis. 49 (2008) 46-58.
- [10] Kamonsuangkasem K., Therdthianwong S., Therdthianwong A. Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel Processing Technology. 106 (2013) 695–703.
- [11] Chai S.H., Wang H.P., Liang Y., Xu B.Q. Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb₂O₅ catalyst. Journal of Catalysis. 250 (2007) 342-349.

- [12] Chai S.H., Wang H.P., Liang Y., Xu, B.Q. Sustainable production of acrolein: Investigation of solid acid-base catalysts for gas-phase dehydration of glycerol. Green Chemistry (2007) 1130-1136.
- [13] Atia H., Armbruster U., Martin, A. Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. Journal of Catalysis. 258 (2008) 71-82.
- [14] Tsukuda E., Sato S., Takahashi R., Sodesawa T. Production of acrolein from glycerol over silica-supported heteropolyacids. Catalysis Communications. 8 (2007) 1349-1353.
- [15] Witsuthammakul A., Sooknoi T. Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system. Applied Catalysis A: General. 413–414 (2012) 109–116.
- [16] Rodrigues E.G., Pereira M.F.R., Delgado J.J., Chen X., Órfão J.J.M. Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes. Catalysis Communications. 16 (2011) 64-69.
- [17] Pollington S.D., Enache D.I., Landon P., Meenakshisundaram S., Dimitratos N., Wagland A., Hutchings G.J., Hugh Stitt E. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today. 145 (2009) 169–175.
- [18] Anuar M.R., Abdullah A.Z., Othman M.R. Etherification of glycerol to polyglycerols over hydrotalcite catalyst prepared using a combustion method. Catalysis Communications. 32 (2013) 67–70.
- [19] Garcia-Sancho C., Moreno-Tost R., Merida-Robles J.M., Santamaria-Gonzalez J., Jimenez-Lopez A., Torres P.M. Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catalysis Today. 167 (2011) 84–90.
- [20] Gholami Z., Abdullah A.Z., Lee K.T. Glycerol etherification to polyglycerols using Ca_{1+x} Al_{1_x} La_xO_3 composite catalysts in a solventless medium. Journal of the Taiwan Institute of Chemical Engineers. 44 (2013) 117–122.
- [21] Feng J., Fu H., Wang J., Li R., Chen H., Li X. Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature. Catalysis Communications. 9 (2008) 1458-1464.
- [22] Ma L., He D. Influence of catalyst pretreatment on catalytic properties and performances of Ru–Re/SiO₂ in glycerol hydrogenolysis to propanediols. Catalysis Today. 149 (2010) 148–156.
- [23] Hamzah N., Nordin N.M., Nadzri A.H.A., Nik Y.A., Kassim M.B., Yarmo M.A. Enhanced activity of Ru/TiO₂ catalyst using bisupport, bentonite-TiO₂ for hydrogenolysis of glycerol in aqueous media. Applied Catalysis A: General. 419–420 (2012) 133–141.

- [24] Bolado S., Treviño R.E., García-Cubero M.T., González-Benito G. Glycerol hydrogenolysis to 1, 2 propanediol over Ru/C catalyst. Catalysis Communications. 12 (2010) 122–126.
- [25] Roy D., Subramaniam B., Chaudhari R.V. Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition. Catalysis Today. 156 (2010) 31–37.
- [26] Gong L., Lu Y., Ding Y., Lin R., Li J., Dong W., Wang T., Chen W. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO₃/TiO₂/SiO₂ catalyst in aqueous media. Applied Catalysis A: General. 390 (2010) 119–126.
- [27] Zhu S., Qiu Y., Zhu Y., Hao S., Zheng H., Li Y. Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids. Catalysis Today. 212 (2012) 120–126.
- [28] Longjie L., Yanhua Z., Aiqin W., Tao Z. Mesoporous WO₃ Supported Pt Catalyst for Hydrogenolysis of Glycerol to 1,3-Propanediol. Chinese Journal of Catalysis. 33(7-8) (2012) 1257–1261.
- [29] Gandarias I., Arias P.L., Fernandez S.G., Requies J., Doukkali M.E., Guemez M.B. Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2propanediol. Catalysis Today. 195 (2012) 22-31.
- [30] Dasari M.A., Kiatsimkul P., Sutterlin W.R., Suppes G.J. Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis A: General. 281 (2005) 225–231.
- [31] Musolino M.G., Scarpino L.A., Mauriello F., Pietropaolo R. Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen Green Chemistry. 11 (2009) 1511–1513.
- [32] Musolino M.G., Scarpino L.A., Mauriello F., Pietropaolo R. Glycerol Hydrogenolysis Promoted by Supported Palladium Catalysts. ChemSusChem. 4 (8) (2011) 1143–1150.
- [33] Nakagawa Y., Ning X., Amada Y., Tomishige K. Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReO_x/SiO₂. Applied Catalysis A: General. 433-434 (2012) 128-134.
- [34] Amada Y., Shinmi Y., Koso S., Kubota T., Nakagawa Y., Tomishige K. Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReO_x/SiO₂ catalyst. Applied Catalysis B: Environental. 105 (1–2) (2011) 117–-127.
- [35] Nakagawa Y., Shinmi Y., Koso S., Tomishige K. Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. Journal of Catalysis. 272 (2010) 191–194.

- [36] Guo L., Zhou J., Mao J., Guo X., Zhang S. Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols. Applied Catalysis A: General. 367 (2009) 93-98.
- [37] Vasiliadou E.S., Eggenhuisen T.M., Munnik P., de Jongh P.E., de Jong K.P., Lemonidou A.A. Synthesis and performance of highly dispersed Cu/SiO₂ catalysts for the hydrogenolysis of glycerol. Applied Catalysis B: Environmental. 145 (2014) 108-119.
- [38] กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน, กรม. ปริมาณการผลิตไบโอดีเซล (B100) ของ ประเทศไทย. กระทรวงพลังงาน, 2556.
- [39] สำนักงานนโยบายและแผนพลังงาน (สนพ.) กรมธุรกิจพลังงาน กระทรวงพลังงาน. ปริมาณการผลิตไบ โอดีเซลของประเทศไทยช่วงปี พ.ศ. 2550-2555. กระทรวงพลังงาน, 2556.
- [40] Ooi T.L., Yong K.L., Dzulkefly K., Wan Yunus W.M.Z., Hazimah A.H. Crude glycerine recovery from glycerol residue waste from a palm kernel oil methyl ester plants. Journal of Oil Palm Research 13 (2001) 16–22.
- [41] Lancrenon X., Fedders J. An innovation in glycerin purification. Biodiesel Magazine. May, 2008.
- [42] Schaffner F., Pontalier P.Y., Sanchez V., Lutin F. Bipolar electrodialysis for glycerin production from diester wastes. Filtration and Separaction 40 (2003) 35–39.
- [43] Carmona M., Valverde J., Prez A. Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium removal Part I. Journal of Chemical Technology and Biotechnology 84 (2009) 738–744.
- [44] Isahak W.N.R.W., Ismail M., Yarmo M.A., Jahim J.M., Salimon J. Purification of crude glycerol from transesterification RBD palm oil over homogeneous and heterogeneous catalysts for the biolubricant preparation. Journal of Applied Science. 10 (2010) 2590–2595.
- [45] Kongjao S., Damronglerd S., Hunsom M. Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. Journal of Applied Electrochemistry. 41 (2011) 215–222.
- [46] Manosak R., Limpattayanate S., Hunsom M. Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption. Fuel Processing Technology. 92 (2010) 92–99.
- [47] Javani A., Hasheminejad M., Tahvildari K., Tabatabaei M. High quality potassium phosphate production through step-by-step glycerol enrichment: A strategy to economize biodiesel production, Biores. Technol. 104 (2012) 788–790.
- [48] Chen X., Jeyaseelan S., Graham N. Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management. 22 (2002) 755-760.

- [49] Byers J.A. Solvent polarity and miscibility (Online). 2003.
- [50] Pereira M.F.R., Soares S.F., Orfao J.J.M., Figueiredo J. L. Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41 (2003) 811-821.
- [51] Epiotis N.D. Configuration interaction and organic reactivity cycloaddition electrophilic additions exchange-reaction and eliminations. Journal of the American Chemical Society. 94 (1972) 1946.
- [52] Carrott P.J.M., Poddubnaya O.I., Martinez-Alonso A., Suárez-Garcia F., Tascon J.M.D. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon. 40 (2002) 1493-1505.
- [53] Carrott P.J.M., Ribeiro Carrott M.M.L., Mourao P.A.M. Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork. Analytical Applied Pyrolysis. 75 (2006) 120-127.
- [54] เกศศิริ เหล่าวชิระสุวรรณ. การเตรียมและศึกษาคุณสมบัติของถ่านกัมมันต์จากกาแฟโดยวิธีการกระตุ้น ทางเคมี. วารสารวิชาการมหาวิทยาลัยหอการค้าไทย. 29, 2 (เมษายน-มิถุนายน 2552): 116-130.
- [55] Henry H., Uwe H., Gregor F. Fischer Esterification. [Online]. Available from: http://www.chemgapedia.de/vsengine.html/ [2012, December 26] 2012.
- [56] Guo J., Lua A.C. Surface functional groups on oil-palm-shell adsorbents prepared by H₃PO₄ and KOH activation and their effects on adsorptive capacity, Chemical Engineering Research and Design. 81 (2003) 585-590.
- [57] Faria P.C.C., Orfao J.J.M., Pereira M.F.R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research. 38 (2004) 2043-2052.
- [58] Otowa T., Nojima Y., Miyazaki T. Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon. 35 (1997) 1315-1319.
- [59] Yang T., Lua A.C. Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Microporous and Mesoporous Materials 63 (2003) 113-124.
- [60] Lillo-Raodenas M.A., Cazorla-Amoros D., Linares-Solano A. Uderstanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon. 41 (2003) 267-275.
- [61] Muroyama K., Hayashi J., Sato A. Production of activated carbon with high specific surface area from bean-curd refuse by chemical activation. Carbon. 172 (1996) 1164.

- [62] Hayashi J., Toshihide H., Katsuhiko M., Vincent G.G. Activated carbon from chickpea husk by chemical activation with K₂CO₃: preparation and characterization. Microporous and Mesoporous Materials. 55 (2002) 63-68.
- [63] Sanada Y., Suzuki M., Fujimoto K. Activated Carbon: Its Fundamentals and Application. Kodan-sha. Tokyo, 1975.
- [64] Jagtoyen M., Derbyshire F. Activated carbons from yellow poplar and white oak by H₃PO₄ activation. Carbon. 36 (1998) 1087-1097.
- [65] ธิติวรรณ นันทปรีชาชาญ. การขจัดไดเบนโซไทโอฟีนจากนอร์มัล-ออกเทนโดยการดูดซับด้วยถ่านกัม มันต์ที่เตรียมจากกากตะกอนจากการบำบัดน้ำเสีย. วิทยานิพนธ์ปริญญามหาบัณฑิต, ภาควิชาเคมี เทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2555.
- [66] อนรรฆอร ศรีไสยเพชร และ มาโนชย์ ถนอมวัฒน์. การพัฒนาวิธีการสกัดแยกและวิเคราะห์ปริมาณ น้ำมันโดยใช้ค่าสัมประสิทธิ์การดูดซับ. รายงานผลการวิจัย, มหาวิทยาลัยแม่โจ้, 2555.
- [67] Roquet L. Belgsir E.M., Leger J.M., Lamy C. Kinetics and mechanisms of the Electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: potential and pH effects. Electrochemica Acta 39 (1994) 2387-2394.
- [68] Kim J.H., Choi S.M., Nam S.H., Seo M.H., Choi S.H., Kim W.B., Influence of Sn content on PtSn/C catalysts for electrooxidation of C₁–C₃ alcohols: Synthesis, characterization, and electrocatalytic activity. Applied Catalysis B 82 (2008) 89–102.
- [69] Nimlos M.R., Blanksby, S.J., Qian, X., Himmel, M.E,. and Johnson, D.K. Mechanisms of Glycerol Dehydration. Physical chemistry :A, 110 (2006) : 6145-6156.
- [70] Xin L., Zhang Z., Qi J., Chadderdon D., Li W. Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors. Applied Catalysis B: Environmental 125 (2012) 85–94.
- [71] Sasaki M., Wahyudiono A. Yuksel, Goto M., Applications of hydrothermal electrolysis for conversion of 1-butanol in wastewater treatment. Fuel Processing Technology 91 (2010) 1125-1132.
- [72] Kwon Y., Koper M.T.M., Combining voltammetry with HPLC: application to electro-oxidation of glycerol, Analytical Chemistry. Chem. 82 (2010) 5420-5424.
- [73] Falase A., Main M., Garcia K., Serov A., Lau C., Atanassov P. Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts, Electrochim. Acta 66 (2012) 295–301.

- [74] Ishiyama K., Kosaka F., Shimada I., Oshima Y., Otomo J. Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures. Journal of Power Sources 225 (2013) 141-149.
- [75] Chaminand J., Djakovitch L., Gallezot P., Marion P., Pinel C., Rosier C., Glycerol hydrogenolysis on heterogeneous catalysts, Green Chemistry 6 (2004) 359–361.
- [76] Jung Y.J., Baek K.W., Oh B.S., Kang J.W. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies. Water research 44 (2010) 5345-5355.
- [77] Zope, B.N., Hibbitts, D.D., Neurock, M., and Davis, R.J. Reactivity of the Gold-Water interface during selective oxidation catalysis. Science 330 (2010) 74–78.
- [78] Šebeka J.B., Kalinauskas P., Juodkazis K., Light energy accumulation using Ti/RuO₂ electrode as capacitor, Journal of Solid State Electrochemistry 14 (2010) 741–746.
- [79] Zoski, C.G. Handbook of electrochemistry. 1st edition. USA: Elsevier, 2007.
- [80] Akiyama M., Sato S., Takahashi R., Inui K., Masahiro Y. Dehydration-hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Applied Catalysis A: General 371 (2009) 60–66.
- [81] Sun W., Liu J., Chu X. Zhang C., Liu C. Theoretical study of the dynamics and thermal mechanisms of the reaction: Dehydration of glycerol to glycidol. Journal of Molecular Structure 942 (2010) 38–42.
- [82] Ciriminna R., Palmisano G., Pina C.D., Rossi M., Pagliaro M. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Letters 47 (2006) 6993-6995.

ผลผลิตจากโครงการวิจัย (Output)

- 1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า)
 - Mali Hunsom, Payia Saila, Penpisuth Chaiyakam, Winata Kositnan. Comparison and combination of solvent extraction and adsorption for crude glycerol enrichment. International Journal of Renewable Energy Research. 3(2) (June 2013) 364-371.
 - 2. Mali Hunsom, Chaowat Autthanit, Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H₃PO₄, K₂CO₃ and KOH. Chem. Eng. J. 229 (Aug 2013) 334-343. Impact factor 3.461 (2012).
 - Mali Hunsom, Payia Saila. Product distribution of electrochemical conversion of glycerol via Pt electrode: Effect of initial pH. Int. J. Electrochem. Sc. 8 (Sept. 2013) 11288-11300. Impact factor 3.729 (2012).
 - 4. Mali Hunsom, Chaowat Autthanit. Impact of the preparation conditions of sludge-derived KOH-activated carbon on its physicochemical properties and adsorptive purification of crude glycerol. Journal of Analytical and Applied Pyrolysis. Submitted. 2014.
 - 5. Mali Hunsom, Payia Saila. Electrochemical conversion of enriched crude glycerol: Effect of operating parameters. Renewable energy. Submitted. 2014.
 - Payia Saila, Mali Hunsom. One-pot electrochemical conversion of enriched crude glycerol: Effect of additives. In Preparation. 2014.
- 2. การนำผลงานวิจัยไปใช้ประโยชน์ (เชิงพาณิชย์ / เชิงนโยบาย / เชิงสาธารณะ / เชิงวิชาการ) ไม่มี
- 3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การ จดสิทธิบัตร)
 - Payia Saila and Mali Hunsom. Purification enhancement of crude glycerol derived from biodiesel production plant. The 8th Mathematics and Physical Sciences Graduate Congress 2012. Chemistry section. Abstract page 32; 8-10 December 2012. Faculty of Science, Chulalongkorn University, Thailand.
 - Payia Saila and Mali Hunsom. Product distribution of electrochemical conversion of glycerol via Pt electrode. Pure and Applied Chemistry International Conference 2013. IIN P007. January 23-25, 2013, Bangsaen Beach. Thailand.

 Chaowat Autthanit, Mali Hunsom. Crude glycerol purification by adsorption via activated carbon derived from sewage sludge. Pure and Applied Chemistry International Conference 2013. ENV P005. January 23-25, 2013, Bangsaen Beach. Thailand.

ภาคผนวก ก

การวิเคราะห์สมบัติกลีเซอรอล

ก.1 การวิเคราะห์ความเข้มข้นของกลีเซอรอลและสารเพิ่มมูลค่า

การวิเคราะห์ความเข้มข้นของกลีเซอรอลและสารเพิ่มมูลค่าที่เกิดขึ้นจากปฏิกิริยาจะดำเนินการด้วย เทคนิคโครมาโทกราฟีของเหลวสมรรถนะสูง (High Performance Liquid Chromatography, HPLC) ซึ่งมี วิธีการวิเคราะห์ดังนี้

- 1. เตรียมสารละลายมาตรฐานกลีเซอรอลความเข้มข้นร้อยละ 10 30 50 70 และ 90 โดยปริมาตรต่อ ปริมาตร และทำการเจือจาง 25 เท่า จะทำให้สารละลายกลีเซอรอลมีความเข้มข้น 0.4 1.2 2.0 2.8 และ 3.6 โดยปริมาตรต่อปริมาตร
- 2. นำสารละลายมาตรฐานกลีเซอรอลทั้งหมดวัดความเข้มข้นด้วยเครื่องโครมาโทกราฟีของเหลว สมรรถนะสูง โดยใช้ภาวะในการวิเคราะห์ ดังนี้
 - วัฏภาคนิ่ง ได้แก่ คอลัมน์ C-18 ชนิดวัฏภาคผันกลับ (C-18 Reverse phase) ขนาด 4.6x150 มิลลิเมตร บรรจุซิลิกาขนาดอนุภาค 5 มิลลิเมตร รุ่น Pinnacle II C18
 - วัฏภาคเคลื่อนที่ ได้แก่ สารละลายกรดซัลฟูริกเข้มข้น 10 มิลลิโมลต่อลิตร
 - อัตราการใหล 0.5 มิลลิลิตรต่อนาที
 - อุณหภูมิของคอลัมน์ 40 องศาเซลเซียส
 - ตัวตรวจวัดสัญญาณ คือ ตัวตรวจวัดสัญญาณความแตกต่างของดัชนีหักเห (Refractive index, RI)
- 3. สร้างกราฟมาตรฐานความเข้มข้นของสารละลายกลีเซอรอล (ภาพที่ ก.1) จากข้อมูลความเข้มข้น และพื้นที่ใต้พีกและแทนค่าพื้นที่ลงในสมการที่ได้เพื่อหาความเข้มข้น วิธีการคำนวณคือ

ความเข้มข้นกลีเซอรอล (โดยมวลต่อปริมาตร) =
$$\frac{yD
ho_{\mathrm{Gly}}}{a}$$
 (ก.1)

ความเข้มข้นกลีเซอรอล (โมลต่อลิตร) =
$$\frac{10M}{MW}$$
 (ก.2)

ความเข้มข้นกลีเซอรอล (โมล) =
$$\frac{CV}{1,000}$$
 (ก.3)

ร้อยละการเปลี่ยนของกลีเซอรอล =
$$\left(1 - \frac{C_{\scriptscriptstyle A}}{C_{\scriptscriptstyle A0}}\right) \times 100$$
 (ก.4)

ร้อยละผลได้ของสารผลิตภัณฑ์ =
$$\frac{C_{\scriptscriptstyle B}}{C_{\scriptscriptstyle A0}} \times 100$$
 (ก.5)

เมื่อ v คือ พื้นที่

D คือ ปริมาณการเจือจาง

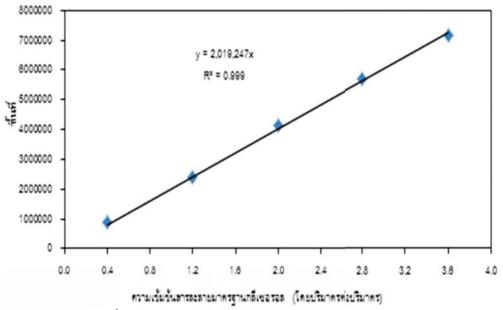
a คือ ความชั้นของกราฟมาตรฐานรูปที่ ก.1 (ซึ่งในที่นี้เท่ากับ 2,019,247)

C คือ ความเข้มข้นกลีเซอรอล (โมลต่อลิตร)

 ho_{Gly} คือ ความหนาแน่นของกลีเซอรอล (กรัมต่อลูกบาศก์เซนติเมตร)

M คือ ความเข้มข้นกลีเซอรอล (โดยมวลต่อปริมาตร)

V คือ ปริมาตรสารละลายกลีเซอรอล (ลูกบาศก์เซนติเมตร)


MW คือ น้ำหนักโมเลกุลของกลีเซอรอล (กรัมต่อโมล)

 $C_{\scriptscriptstyle A}$ คือ ความเข้มข้นกลีเซอรอล

 $C_{{\scriptscriptstyle A}0}$ คือ ความเข้มข้นเริ่มต้นของกลีเซอรอล

 $C_{\scriptscriptstyle B}$ คือ ความเข้มข้นของ 1,3-โพรเพนไดออล

ส่วนสารผลิตภัณฑ์อื่นก็ใช้วิธีการคำนวณและการสร้างกราฟความเข้มข้นของสารละลายมาตรฐานใน ลักษณะเดียวกัน

ภาพที่ ก.1 กราฟมาตรฐานความเข้มข้นของสารละลายกลีเซอรอล

ก.2 การวิเคราะห์ปริมาณเถ้า

- 1. ชั่งน้ำหนักเบ้ากระเบื้อง (Crucible) เปล่า
- 2. นำสารตัวอย่าง 2 กรัม ใส่ในเบ้ากระเบื้องที่ชั่งน้ำหนักไว้เรียบร้อยแล้ว
- 3. นำไประเทยให้แห้งด้วยไฟอ่อนๆ (สังเกตว่าไม่มีควัน)
- 4. นำไปเผาในเตาเผาอุณหภูมิสูง ที่อุณหภูมิ 750 องศาเซลเซียส เป็นเวลา 10 นาที

- 5. นำออกมาใส่ในตู้ดูดความชื้น (Desiccator)
- 6. เมื่อเย็นแล้วนำไปชั่งน้ำหนัก

การคำนวณ

ร้อยละของเถ้า =
$$\frac{A-B}{C} \times 100$$
 (ก.6)

เมื่อ A คือ น้ำหนักของเบ้ากระเบื้องและเถ้าหลังจากเผาแล้ว (กรัม)

B คือ น้ำหนักของเบ้ากระเบื้องเปล่า (กรัม)

C คือ ปริมาณสารตัวอย่างที่นำมาทดสอบ (กรัม)

ก.3 การวิเคราะห์ปริมาณสารเจือปนที่ไม่ใช่กลีเซอรอล

ปริมาณสารเจือปนที่ไม่ใช่กลีเซอรอล (Matter Organic Non Glycerin: MONG) สามารถคำนวณได้ จาก

ร้อยละของปริมาณสารเจือปนที่ไม่ใช่กลีเซอรอล =
$$100 - G - A - W$$
 (ก.8)

เมื่อ G คือ ร้อยละของกลีเซอรอล

A คือ ร้อยละของเถ้า

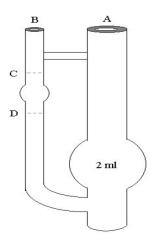
W คือ ร้อยละของน้ำ

ก.4 การวิเคราะห์ความหนาแน่น (ISO 2099-1972) มีรายละเอียดการวิเคราะห์ดังต่อไปนี้

- 1. ชั่งน้ำหนักขวดที่ทราบปริมาตรอย่างแน่นอน พร้อมฝาปิด
- 2. นำขวดวัดปริมาตรที่ชั่งแล้วมาใส่สารตัวอย่างให้เต็ม แล้วปิดฝา
- 3. จากนั้นนำไปเก็บไว้ที่อุณหภูมิ 20 องศาเซลเซียส
- 4. เมื่ออุณหภูมิคงที่แล้ว นำไปชั่งน้ำหนักอีกครั้ง

วิธีการคำนวณ

ความหนาแน่น = =
$$\frac{X-Y}{Z}$$
 (ก.9)


เมื่อ 🛮 🗶 คือ น้ำหนักของขวดวัดปริมาตรที่มีสารตัวอย่างอยู่ (กรัม)

Y คือ น้ำหนักของขวดวัดปริมาตรเปล่า พร้อมฝาปิด (กรัม)

Z คือ ปริมาตรที่แท้จริงของขวดวัดปริมาตร (มิลลิลิตร)

ก.5 การวิเคราะห์ความหนืด (ASTM D 445) มีรายละเอียดการวิเคราะห์ดังต่อไปนี้

- 1. บรรจุสารละลายที่ต้องการวัดปริมาตร 2 มิลลิลิตร ลงในอุปกรณ์วัดความหนืดทางช่อง A ดังภาพที่ ก 1
- 2. นำจุกยางครอบไว้ที่ตำแหน่ง B ดูดสารละลายให้เคลื่อนขึ้นไปอยู่เหนือระดับตำแหน่ง C จากนั้นถอด จุกยางออกปล่อยให้สารละลายไหลกลับลงมา
- 3. จับเวลาการใหลของสารละลาย เริ่มจับเวลา t=0 และ t=t ใด ๆ เมื่อสารละลายเคลื่อนจาก C ถึง D
- 4. ทำการทดลองซ้ำอย่างน้อย 3 ครั้งหาค่าเวลาเฉลี่ย เพื่อนำไปแทนค่าในสมการความหนืดของ สารละลาย

ภาพที่ ก.ข อุปกรณ์สำหรับวัดค่าความหนืดสารละลาย

วิธีการคำนวณ

ความหนืด (
$$\eta$$
) = Dkt_{av} (ก.10)

เมื่อ η คือ ความหนืดของสารละลาย (N.s.m $^{-2}$ หรือ Pa*s)

k คือ ค่าคงที่ของอุปกรณ์การวัดมีค่า $1.1 \times 10^{-8} \text{ m}^{-2}.\text{s}^{-2}$

 t_{av} คือ เวลาเฉลี่ยที่สารละลายใช้ในการเคลื่อนที่จาก C ถึง D หน่วยวินาที (s)

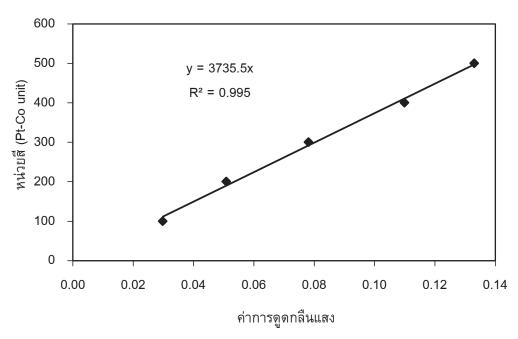
D คือ ความหนาแน่นของสารละลาย (kg/m³)

ภาคผนวก ข

การวิเคราะห์สี

การวิเคราะห์ความเข้มสีของกลีเซอรอลจะใช้วิธีเปรียบเทียบโดยใช้หลอดเนสเลอร์ (Nessler tube) ซึ่งตัวอย่างกลีเซอรอลที่ต้องการวัดสีจะถูกเปรียบเทียบกับสารละลายสีมาตรฐานที่ทราบความเข้มข้น ในการ วัดสีครั้งนี้ใช้เครื่อง Spectrophotometer ในการหาความสัมพันธ์ระหว่างค่า Absorbance กับค่าหน่วยสีของ สารละลายสีมาตรฐานซึ่งจะใช้เป็นกราฟมาตรฐานในการหาหน่วยสีของน้ำเสียที่ต้องการวัด อุปกรณ์ที่ใช้ เครื่อง UV Spectrophotometer รุ่น V - 530 สารเคมีที่ใช้

สารละลายสต๊อคสีมาตรฐาน โดยละลายโพแทสเซียมคลอโรแพลทิเนต (K₂PtCl₆) 0.623 กรัม และ โคบอลตัสคลอไรด์ (CoCl₂·6H₂O) 0.50 กรัม ในน้ำกลั่นซึ่งเติมกรดไฮโดรคลอริก 50 มิลลิลิตร แล้วเจือจาง ด้วยน้ำกลั่นจนมีปริมาตร 500 มิลลิลิตร ซึ่งจะได้สารละลายที่มีความเข้มของสีเท่ากับ 500 หน่วย วิธีวิเคราะห์


- 1. เตรียมอนุกรมสารละลายสีมาตรฐานที่มีสี 100 200 300 และ 400 หน่วย โดยทำการเจือจางปริมาตร สารละลายสต็อคสีมาตรฐานด้วยน้ำกลั่นให้เป็น 20 มิลลิลิตร
- 2. นำอนุกรมสีทั้งหมดมาทำการวัด Absorbance ด้วยเครื่อง UV Spectrophotometer โดยใช้ความยาว คลื่นในการวัดคือ 457 นาโนเมตร
 - 3. นำกลีเซอรอลตัวอย่างมาวัดค่า Absorbance
- 4. แทนค่า Absorbance ลงในสมการที่ได้จากกราฟมาตรฐาน (ภาพ ข.1) เพื่อทราบค่าหน่วยสีของ กลีเซอรอล

วิธีการคำนวณ

เมื่อ a คือ ความชันของกราฟมาตรฐานรูปที่ ข.1 (ซึ่งในที่นี้เท่ากับ 2,019,247)

X คือ ค่าการดูดกลืนแสง

D คือ ปริมาณการเจือจาง

ภาพที่ ข.1 กราฟมาตรฐานของการวัดสีด้วยเครื่อง UV Spectrophotometer

ภาคผนวก ค

กากวิเคราะห์องค์ประกอบของถ่านชาร์แบบประมาณ

การวิเคราะห์องค์ประกอบของถ่านชาร์แบบประมาณ (Proximate analysis) จะดำเนินตาม มาตรฐาน ASTM D3172-3175) เพื่อหาปริมาณความชื้น สารระเหย เถ้า และคาร์บอนคงตัว

ค.1 การวิเคราะห์ปริมาณความชื้น (Moisture) (ASTM D 3173-95) มีรายละเอียดการวิเคราะห์ ดังต่อไปนี้

- 1. อุ่นเตาเผาให้ร้อนที่อุณหภูมิ 150 องศาเซลเซียส
- 2. อ[้]บถ้วยกระเบื้องพร[้]อมฝาที่อุณหภูมิ 150 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง ปล่อยทิ้งไว้ให้เย็นใน โถดูดความชื้น
- 3. ชั่งถ่านกัมมันต์หนักประมาณ 1.0 กรัม ใส่ในถ้วยกระเบื้อง
- 4. อบสารจนกระทั่งน้ำหนักคงที่ และคำนวณปริมาณความชื้นในถ่านกัมมันต์ตัวอย่าง

วิธีการคำนวณ

ข.2 การวิเคราะห์ปริมาณสารระเหย (Volatile matter) (ASTM D 3175-95) มีรายละเอียดการวิเคราะห์ ดังต่อไปนี้

- 1. เผาถ้วยกระเบื้องพร้อมฝาที่อุณหภูมิ 950 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง และปล่อยทิ้งให้เย็นใน โถดูดความชื้น
- 2. บรรจุถ่านกัมมันต์หนักประมาณ 1.0 กรัม ในถ้วยกระเบื้อง
- 3. เผาถ่านกัมมันต์ตัวอย่างที่อุณหภูมิ 950 องศาเซลเซียส เป็นเวลา 7 นาที (ขณะเผาให้ปิดฝาถ้วย กระเบื้อง) ตั้งทิ้งไว้ในสภาพบรรยากาศประมาณ 20 นาที แล้วนำไปตั้งทิ้งไว้ให้เย็นในโถดูดความชื้น
- 4. บันทึกน้ำหนักตัวอย่างหลังเผา

วิธีการคำนวณ

ร้อยละสารระเหย =
$$\frac{(น้ำหนักตัวอย่างก่อนเผา - น้ำหนักตัวอย่างหลังเผา)}{น้ำหนักตัวอย่างก่อนเผา} ×100 (ค.2)$$

ข.3 การวิเคราะห์ปริมาณเถ้า (ASTM D 3174-95) มีรายละเอียดการวิเคราะห์ดังต่อไปนี้

- เผาถ้วยกระเบื้องพร้อมฝาที่อุณหภูมิ 650 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง และปล่อยทิ้งให้เย็นใน โถดูดความชื้น
- 2. บรรจุถ่านกัมมันต์ตัวอย่างหนักประมาณ 1.0 กรัม ใส่ในถ้วยกระเบื้อง
- 3. เผาถ่านกัมมันต์ตัวอย่างที่อุณหภูมิ 650 องศาเซลเซียส จนกระทั่งน้ำหนักคงที่ (เปิดฝาถ้วย กระเบื้องขณะเผา) คำนวณปริมาณเถ้าในถ่านกัมมันต์ตัวอย่าง

วิธีการคำนวณ

ข.4 การวิเคราะห์ปริมาณคาร์บอนคงตัว

ปริมาณคาร์บอนคงตัวคำนวณได้จาก

ภาคผนวก ง

การวิเคราะห์หาหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์

การวิเคราะห์หมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์ตามวิธี Boehm titration ต้องใช้ สารละลายทั้งหมด 4 ชนิด (Tessmer และคณะ 1977; Chen และคณะ, 2002) คือ

- 1. NaOH ความเข้มข้น 0.05 และ 0.25 นคร์มัล
- 2. Na₂CO₃ ความเข้มข้น 0.05 นอร์มัล
- 3. NaHCO₃ ความเข้มข้น 0.05 นอร์มัล
- 4. H₂SO₄ ความเข้มข้น 0.1 นอร์มัล

วิธีการเตรียมสารละลาย และวิธีวิเคราะห์มีดังต่อไปนี้

ง.1 วิธีเตรียมสารละลาย

ง.1.1 การเตรียมสารละลายที่เป็นของแข็ง

เตรียมสารละลาย NaOH ความเข้มข้น 0.05 นอร์มัล (จำนวนกรัมสมมูลต่อลิตร) ปริมาตร 1,000 มิลลิลิตร โดยใช้ NaOH มวลโมเลกุล 40 กรัมต่อโมล คำนวณหาเลขออกซิเดชันของอะตอมที่เปลี่ยน (n)

Na = 1

เพราะฉะนั้น n = 1 × 1 = 1

คำนวณหาน้ำหนักสมมูล

จาก น้ำหนักสมมูล = น้ำหนักสูตร / n

จะได้ น้ำหนักสมมูล = <u>40</u> = 40

คำนวณหาจำนวนกรัมสมมูล

จาก จำนวนกรัมสมมูล = น้ำหนักสาร x ปริมาตรที่ต้องการ

จะได้ จำนวนกรัมสมมูล = 0.05 × 1 = 0.05

คำนวณหาน้ำหนักสารที่ใช้

จาก น้ำหนักสารที่ใช้ = จำนวนกรัมสมมูล x น้ำหนักสมมูล

จะได้ น้ำหนักสารที่ใช้ = 0.05 × 40 = 2 กรัม

ดังนั้น ต้องนำ NaOH น้ำหนัก 2 กรัม ไปละลายด้วยน้ำปราศจากไอออนให้มีปริมาตรรวมเป็น 1.000 มิลลิลิตร ด้วยขวดปรับปริมาตร

ง.1.2 การเตรียมสารละลายที่เป็นของเหลว

เตรียมสารละลาย H_2SO_4 ความเข้มข้น 0.1 นอร์มัล (จำนวนกรัมสมมูลต่อลิตร) ปริมาตร 1,000 มิลลิลิตร โดยใช้ H_2SO_4 ความเข้มข้นร้อยละ 96 ความหนาแน่น 1.84 คำนวณหาเลขออกซิเดชันของอะตอมที่เปลี่ยน (n)

ดังนั้น ต้องนำ H₂SO₄ 2.8 มิลลิลิตร ไปละลายด้วยน้ำปราศจากไอออนให้มีปริมาตรรวมเป็น 1,000 มิลลิลิตร ด้วยขวดปรับปริมาตร

ง.2 การวิเคราะห์

- 1. ชั่งถ่านกัมมันต์น้ำหนัก 0.2 กรัม ใส่ลงในขวดรูปชมพู่ขนาด 250 มิลลิลิตร ที่มีจุกปิด ทั้งหมด 4 ขวด
- 2. เต็มสารละลาย NaOH ความเข้มข้น 0.05 และ 0.25 นอร์มัล สารละลาย Na $_2$ CO $_3$ และ NaHCO $_3$ ความเข้มข้น 0.05 นอร์มัล ปริมาตร 50 มิลลิลิตร ลงในแต่ละขวด
- 3. นำไปเขย่าด้วยเครื่องเขย่าที่อัตราเร็ว 250 รอบต่อนาที เป็นเวลา 2 วัน
- 4. กรองสารละลายด้วยกระดาษกรองเบอร์ 1 แล้วดูดสารละลายที่ได้ปริมาตร 20 มิลลิลิตร บรรจุลงใน ขวดรูปชมพู่ขนาด 250 มิลลิลิตร

5 ทำการไทเทรตสารละลายที่ได้ด้วย H₂SO₄ ความเข้มข้น 0.1 นอร์มัล บันทึกปริมาตรที่ใช้ โดยอินดิเคเตอร์ที่ใช้ในการไทเทรตสารละลายแต่ละชนิดมีดังนี้ NaOH ใช้โบรโมไทมอลบลู (Bromothymol blue) Na₂CO₃ ใช้ฟืนอล์ฟทาลีน (Phynolpthalein) และ NaHCO₃ ใช้ เมทิ ลออเรนจ์ (Methyl orange)

ง.3 การคำนวณปริมาณหมู่ฟังก์ชัน

- 1. ปริมาณหมู่คาร์บอซิล (Carboxyl group) คำนวณจากปริมาณการใช้ H₂SO₄ ของ NaHCO₃ ความ เข้มขัน 0.05 นอร์มัล
- 2. ปริมาณหมู่แลกโตน (Lactone group) คำนวณจากผลต่างของปริมาณการใช้ H_2SO_4 ของ Na_2CO_3 ความเข้มข้น 0.05 นอร์มัล และ $NaHCO_3$ ความเข้มข้น 0.05 นอร์มัล
- 3. ปริมาณหมู่ไฮดรอกซิล (Hydroxyl group) คำนวณจากผลต่างของปริมาณการใช้ H_2SO_4 ของ NaOH ความเข้มข้น 0.05 นอร์มัล และ Na_2CO_3 ความเข้มข้น 0.05 นอร์มัล
- ปริมาณหมู่คาร์บอนิล (Carboxyl group) คำนวณจากผลต่างของปริมาณการใช้ H₂SO₄ ของ NaOH ความเข้มขัน 0.25 นอร์มัล และ 0.05 นอร์มัล

ตารางที่ ง.1 ตัวอย่างการคำนวณปริมาณหมู่ฟังก์ชันที่มีออกซิเจนบนพื้นผิวของถ่านกัมมันต์

ถ่านกัมมันต์ทางการค้า	(ก)	(ข)	(ค)	(4)
U IMUNNWALI IQUI 1941 I	0.05N NaOH	0.25N NaOH	0.05N Na ₂ CO ₃	0.05N NaHCO ₃
(1) น้ำหนักตัวอย่าง (กรัม)	0.2136	0.2341	0.2205	0.2467
(2) ปริมาตรสารละลาย (มิลลิลิตร)	20.0	20.0	20.0	20.0
(3) ปริมาตร 0.1N H₂SO₄ (มิลลิลิตร)	11.3	49.6	9.8	11.0
(4) Blank	12.0	50.7	10	11.2
(5) = (4)-(3)	0.7	1.1	0.2	0.2
(6) = [(5) x 0.1]/20	0.0035	0.0055	0.0010	0.0010
(7) = [(6) x 50]/(1)	0.8193	1.1747	0.2268	0.2027

จากตารางเมื่อนำมาคำนวณปริมาณหมู่กรดแต่ละชนิดจะได้ดังนี้

- ปริมาณหมู่คาร์บอซิล เท่ากับ (ง) หรือเท่ากับ 0.2027 มิลลิอิควิวาเลนต์ต่อกรัม
- ปริมาณหมู่แลกโตน เท่ากับ (ค) (ง) หรือเท่ากับ 0.2268 0.2027 = 0.0241 มิลลิอิควิวาเลนต์ ต่อกรัม
- ปริมาณหมู่ไฮดรอกซิล เท่ากับ (ก) (ค) หรือเท่ากับ 0.8193 0.2268 = 0.5925 มิลลิอิควิวา เลนต์ต่อกรัม
- ปริมาณหมู่คาร์บอนิล เท่ากับ (ฃ) (ก) หรือเท่ากับ 1.1747 0.8193 = 0.6250 มิลลิอิควิวา เลนต์ต่อกรัม

ภาคผนวก จ

ต้นฉบับบทความสำหรับการเผยแพร่

Comparison and Combination of Solvent Extraction and Adsorption for Crude Glycerol Enrichment

Mali Hunsom*[‡], Payia Saila*, Penpisuth Chaiyakam*, Winata Kositnan*

*Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University mali.h@chula.ac.th, payiakiss@hotmail.com, ppc24@live.com, mild_defry06@hotmail.com

[‡]Corresponding Author; Mali Hunsom, 254 Phaya Thai Rd., Pathumwan, Bangkok, Thailand, 10330, +662 2187523, mali.h@chula.ac.th

Received: 08.03.2013 Accepted: 04.04.2013

Abstract- A comparative study of enrichment of crude glycerol via solvent extraction and adsorption was performed at a laboratory at 30 °C. Effect of various parameters on the properties of the obtained glycerol including glycerol-, ash- and contaminant contents and color, was explored. The results showed that the enrichment of glycerol by solvent extraction was significantly affected by the solvent type and ratio of solvent to pre-treated crude glycerol. The use of n-C₃H₇OH at a ratio of 2.0 was given the highest purity of glycerol, but the lowest color reduction. However, use of C₄H₁₀O at a ratio of 1.0 was given the low glycerol content but the highest color removal. On the other hand, adsorption with activated carbon was given poor glycerol purity of 70.3 wt.% but its color was decreased more than 97.1%. The combined process of extraction with n-C₃H₇OH at a ratio of 2.0 was followed by activated carbon adsorption and it was given the highest glycerol purity with the color removal to a clear solution. In addition, the cost analysis of crude glycerol enrichment by the combined approach was also explored.

Keywords- Crude glycerol, Transesterification, Enrichment, FAME (Fatty Acid Methyl Ester), MONG (Matter Organic Non-Glycerol)

1. Introduction

Glycerol or propan-1, 2, 3-triol (also glycerin or glycerine) is a trivalent alcohol that is widely used in diverse applications including in the cosmetic, paint, automotive, food, tobacco, pharmaceutical, pulp and paper, cleaning materials, detergents, wetting agents, emulsifiers, skin protectives, asphalt, ceramics, photographic products, wood treatment, adhesives, leather and textile industries or as a feedstock [1-2]. It can be produced by either microbial fermentation [3], or by chemical synthesis from petrochemical feedstocks, such as the oxidation or chlorination of propylene [2], or can be recovered as a byproduct of soap production by saponification or biodiesel production by transesterification of triglycerides from vegetable oils or animal fats [4].

Due to the fast development and commercialization of biodiesel in many countries, a large amount of glycerol is produced [5]. Within Thailand, the recent increase in biodiesel production is increased from less than 2.1×10^6

1/day in 2008 to an expected 8.4×10^6 1/day in 2012 [6]. Stoichiometrically, glycerol is produced at 10 wt.% of the total biodiesel production [7]. Thus, any further increase in biodiesel production rates will significantly raise the quantity and surplus of crude glycerol as waste in the environment. The crude glycerol discharged from biodiesel production plants consists not only glycerol but also various chemicals such as water, organic and inorganic salts, soap and alcohol, traces of glycerides and vegetable colors [4]. Thus, there have been various studies focusing on the glycerol enrichment and refining. For example, Ref. [8] pointed out that a simple vacuum distillation at 120-126 °C and 0.04-0.4 mbar pressure was effective to recover a high purity of glycerol (~ 96.6%) from crude glycerine that contained high levels of salt and matter organic non-glycerol (MONG). To avoid foaming, the pH of crude glycerine was adjusted as < 5. However, this process is energy intensive due to the high specific heat capacity of glycerol and so has a high-energy input requirement for vaporization under the low pressure [9]. By using the electrochemical technique, Ref. [10]

reported that the EUR2C-7bip electrolyzer allowed 80% demineralization of a 65 vol.% glycerin solution from diester wastes with faradic efficiencies of 47% and 35% for sulphuric acid (H₂SO₄) concentrations of 2 M and 3 M, respectively, and an energy cost of 0.5 kWh/kg of pure glycerin. After concentration, a 95% pure glycerin solution was obtained with less than 2 wt.% mineral content. The selective removal of ions-contained within the glycerol was performed using an ion-exchange technique. Ref. [11] demonstrated that the macroporous resin Amberlite 252 was effective to remove sodium ions from glycerol/water solutions with a high salt concentration. A strongly basic anionic-exchange resin (Amberlite IRA-420) could be used for chloride removal, whilst a strongly acidic ion exchanger (Amberlite IR-120) exhibited higher selectivity for potassium and sodium ions [12]. By using a physicochemical approach, a neutralization step was first performed to remove the excess homogeneous catalyst as well as the un-reacted free fatty acids (FFAs) from the crude glycerol, and then the level of free ions from the salt and catalyst were reduced by passage through ion exchange resins [13]. The acidification of crude glycerol by H₂SO₄ in the pH range of 1-6 can alter the properties of obtained crude glycerol [14], where increasing the pH in the acidification step led to an increased yield of the glycerol-rich layer and decreased amounts of residual inorganic salt and FFAs. Under strong acid conditions, large quantities of FFAs and salt in the glycerolenriched fraction were eliminated. At pH = 1, high purity of the glycerol (~93.34%) with a relatively low content of ash (0.00045 wt.%) and MONG (5.16 wt.%) was obtained. Hájek and Skopal [4] pointed out that the utilization of phosphoric acid (H₃PO₄) in the acidification step can produce the useful fertilizer potash phosphate (KH₂PO₄). Accordingly, Ref. [15] claimed that the step-by-step purification of glycerol by saponification, acidification and neutralization simultaneously produce high quality FFAs, glycerol and potassium phosphate (KH₂PO₄, K₂HPO₄) from crude glycerol derived from the transesterification of waste cooking oil. Based on this process; KH₂PO₄, K₂HPO₄, glycerol and FFAs with a purity of 98.0%, 98.1%, 96.1% and 99.6% were obtained, respectively.

In this study, comparative and combinative ability of glycerol enrichment via solvent extraction and activated carbon adsorption was performed at a the laboratory temperature of 30 °C. Effect of various parameters on the properties of enriched crude glycerol including glycerol-, ash- and other contaminant contents as well as color were investigated. Finally, the operating cost related to the cost of chemical/material for crude glycerol enrichment by both enrichment processes was estimated.

2. Experimental Proceses

Crude glycerol was obtained from a local fatty acid methyl ester (FAME) production plant in Thailand that utilizes waste used-oil as the raw material for biodiesel production via the alkali mediated "transesterification" process. It was dark brown solution with a high viscosity and it can change to a semi-solid substance during the long

storage. Thus, prior to use, the crude glycerol was slowly melted at around 40-60 $^{\rm o}{\rm C}.$

2.1. Pre-treatment of Crude Glycerol

Due to the presence of organic and inorganic contaminants in the crude glycerol such as soap, fatty acid esters of glycerol, mineral salt, water and residual FAME, it was first pre-treated according to the procedure of Ref. [16]. Namely, the crude glycerol was acidified by the addition of H₃PO₄ (85%, Qrec) to a pH of 2.5 and shook at constant rate of 200 rpm (CTL, model SK electric shaker) for 1 h. Then, it was left for 12 h until the solution had phase separated into the three distinct layers of a top FFA-rich layer, the middle glycerol-rich layer and the bottom inorganic salt-rich layer. All layers were separated from each other by slow decantation. Subsequently, the middle glycerol-rich layer was neutralized by the addition of 12.5 M NaOH (98% Merck) to pH 7.0, left for a while and then filtered to eliminate the precipitated salt. The pre-treated crude glycerol was obtained after drying at 110 °C for 15 h [16].

2.2. Enrichment of Pre-Treated Crude Glycerol

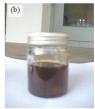
The enrichment of pre-treated crude glycerol was carried out by two main procedures including solvent extraction and adsorption. For the first one, various types of solvents including polar solvent (methanol (99.99% CH₃OH, Merck), ethanol (99.9% C₂H₅OH, Merck), propanol (99.99% n-C₃H₇OH, Fisher Scientific)) and non-polar solvent (hexane (99.79% C₆H₁₄, Honey well) and diethyl ether (99.7% C₄H₁₀O, Panreac)) were utilized at different volume ratios of solvent to pre-treated crude glycerol in the range of 0.5-4.0. For the second one (with the polar solvents), the pre-treated crude glycerol was mixed with the selected solvent and volume ratio by shaking at 200 rpm for 4 h and then left for 2 h to encourage the phase separation into the glycerol-alcohol phase on the top and the crystallized salt on the bottom. The top layer was separated from the bottom layer by slow decantation and the enriched glycerol was obtained after evaporation of the solvent at 95 °C for 12 h. For the extraction with the non-polar solvents, a similar procedure was carried out except the non-polar contaminant-solvent phase was observed on the top and the glycerol-rich phase was observed on the bottom. The slow decantation was carried out and the enriched crude glycerol was obtained after evaporation of free water at 95 °C for 12 h.

For the adsorption, the commercial activated carbon (Rankem, India) at the ratio of activated carbon to pre-treated crude glycerol in the range of 33-167 g/l was used in this work. The particle size, BET surface area, pore size and micropore volume of the utilized activated carbon were 0.1-0.3 nm, 898 m²/g, 0.239 nm and 0.539 cm³/g, respectively. Prior to use, the activated carbon was dried at 105 °C to eliminate free moisture. The selected dose of activated carbon was added to a 250-ml flask containing 150 ml of pre-treated crude glycerol and shaken at a constant 200 rpm. Finally, the adsorbent was separated by vacuum filtration and the properties of the enriched glycerol were analyzed.

2.3. Analytical Procedures

The glycerol content was analyzed by the High Performance Liquid Chromatography (HPLC: Agilent 1100) with a RID-10A refractive index detector. The stationary phase was a Pinnacle II C18 column (240×4.6 mm) and the mobile phase was a 99.9:0.1 (v/v) ratio of 10 mM H₂SO₄: pure CH₃OH, passed through the column at 0.5 ml/min. Ash content was analyzed according to the standard method (ISO 2098-1972) by slowly eating 2 g of glycerol on a hot plate to eliminate the free moisture and volatile matter. When no further mist was generated, the glycerol was burnt in a muffle furnace at 750 °C for 10 min. The residue was cooled down to room temperature and weighed. The quantity of water and MONG measured in terms of contaminants was calculated by the difference in weights as;

The pH of the glycerol solution was measured with a pH meter (Mettler Toledo, MP220). The color of glycerol was measured by a UV/Vis spectrophotometer (Jasco, V-530) at a wavelength of 487 nm. The density and viscosity were measured by using a pycnometer and Oswald viscosity according to ISO 2099-1972 and ASTM D 445, respectively. The composition of the crude, pre-treated and enriched crude glycerol were analyzed by gas chromatography coupled mass spectrometry (GC/MS) on a 6890N GC-MS system (Agilent of GC/Pegosees III, Lego of MS).


3. Results and Discussion


3.1. Characteristics of the Crude Glycerol and Pre-Treated Crude Glycerol

The original crude glycerol obtained from the waste used-oil FAME biodiesel production plant was a dark brown liquid (Fig. 1(a)) with a high pH in the range of 9.5-9.8 and a low density and viscosity (Table 1) compared to that of the commercial glycerol (density and viscosity of commercial glycerol are 1.2671 g/cm³ and 267.70 cSt, respectively [14]). It contained a very low glycerol content (29.8 wt. %),

acceptable level of ash (7.90 wt. %), and has a relatively high contaminant (62.3 wt. %). The ash was largely composed of inorganic matter such as sodium salts that originated from the NaOH catalyst used in the transesterfication process. The large quantity of contaminant might be attributed to the absorption of moisture from its surroundings during the production process and by the contamination of soap, methanol, fatty acid-glycerol esters and residual FAME from the production process. During the phase separation process, some of the fatty acids and FAME can dissolve or suspend in the glycerol solution, which can consequently react with the excess NaOH during the neutralization step to form suspended soap in the crude glycerol [17]. The composition of the crude glycerol derived from the waste used-oil FAME production plant was then analyzed by a GC/MS apparatus. Besides glycerol, the crude glycerol contained various compounds (Fig. 2(a)) including FFAs and derivatives such as lauric acid, methyl myristate, myristic acid, methyl palmitoleate, methyl palmitate, palmitic acid, methyl linoleate, oleic acid and methyl stearate which are the main components of vegetable oil.

Fig. 1. Color of the (a) crude glycerol obtained from the FAME biodiesel production plant, (b) pre-treated crude glycerol, (c) enriched crude glycerol by solvent extraction with n-C₃H₇OH at a volume ratio of solvent to pre-treated crude glycerol of 2.0 and (d) enriched crude glycerol by adsorption with activated carbon at ratio of activated carbon to pre-treated crude glycerol of 67 g/l glycerol.

Table 1. Characteristics of the crude, pre-treated and enriched crude glycerol.

Parameters	Standard	Crude glycerol	crude		2	Crude glycerol enriched by	Crude glycerol enriched by the combined sequential chemical extraction and adsorption	
	[7]	gryceror	glycerol ^a			adsorption ^d	n-C ₃ H ₇ OH + adsorption ^e	C ₄ H ₁₀ O + adsorption ^f
рН		9.5-9.8	7.0-7.2	5.5-6.0	5	5	4	4
Glycerol content (wt. %)	≥ 80	29.8 ± 0.14	51.9 ± 0.15	97.9 ± 0.02	86.6 ± 1.66	68.9 ± 0.11	99.0 ± 0.12	87.0 ± 0.01
Ash (wt. %)	≤ 10	7.90 ± 0.5	23.4 ± 1.1	0.86 ± 0.07	12.4 ± 0.06	17.0 ± 0.13	0.995 ± 0.00	10.8 ± 0.11
Other contaminant (wt. %)	≤ 10	62.3 ± 1.04	24.8 ± 0.16	1.29 ± 0.05	1.03 ± 0.31	14.1 ± 0.17	0.01 ± 0.00	2.25 ± 0.04
Density at 20 °C (g/cm ³)		1.03 ± 0.024	1.27 ± 0.03	1.28 ± 0.05	1.27 ± 0.02	$.245 \pm 0.03$	1.30 ± 0.00	1.25 ± 0.01
Viscosity at 40 °C (cSt)		48.3 ± 0.172	53.8 ± 1.29	na^g	na	na	na	na
Color (Pt-Co unit)		484,855 ± 10,499	221,575 ± 7,257	15,440 ± 1,072	$6,570 \pm 641$	$1,\!030\pm25$	310 ± 81	285 ± 90

^a Pre-treatment by acidification with H_3PO_4 at pH= 2.5.

^b at volume ratio of solvent to pre-treated crude glycerol of 2.0

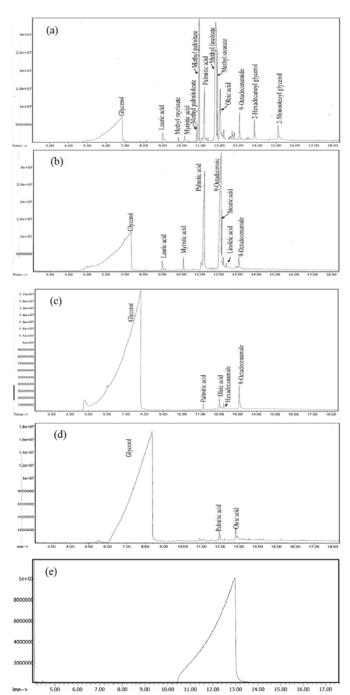
^c at volume ratio of solvent to pre-treated crude glycerol of 1.0

^d at weight by volume of absorbent to pre-treated crude glycerol of 67 g/l

^e at volume ratio of solvent to pre-treated crude glycerol of 2.0 and adsorption at activated carbon dose of 67 g/l

f at volume ratio of solvent to pre-treated crude glycerol of 1.0 and adsorption at activated carbon dose of 67 g/l

Meanwhile, the excess H₂PO₄ (ionized from H₃PO₄) can couple with the Na⁺ salts in the crude glycerol to form the relatively insoluble NaH₂PO₄ in glycerol [16], resulting in the formation of an inorganic salt layer on the bottom of the aqueous solution. As demonstrated in Table 1, the pretreatment by acidification with H₃PO₄ altered the characteristics of the crude glycerol. The pH of the pretreated crude glycerol was slightly lower at 7.0-7.2, the density increased 1.23-fold to 1.273 g/cm³ (near that of pure glycerol), whilst the viscosity was only slightly increased. The appearance of the acid pre-treated crude glycerol was changed to a brown liquid (Fig. 1(b)), or some 2.2-fold lower (Table 1). The contaminant content was decreased 2.51-fold to 24.8 wt.%, resulting in an increase in the glycerol content to 51.9 wt. %. However, the ash content increased almost 2.96-fold in comparison with the original crude glycerol, probably due to the fact that the generated phosphate salt (NaH₂PO₄) remains partially soluble in the crude glycerolcontaining water (1.6 g/100 ml H₂O), leading to the contamination of this salt in the pre-treated crude glycerol. In terms of the chemical composition, the acidification stage can partially or totally remove different FFAs and derivatives such as 2 hexadecanoyl glycerol, methyl linoleate, methyl myristate, methyl palmitate, methyl palmitoleate, methyl palmitate, methyl stearate, 2 monooleoyl glycerol and oleic acid (Fig. 2(b)).

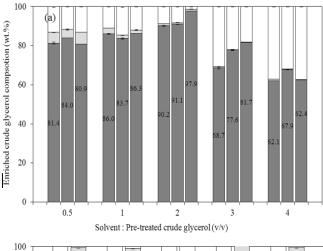

According to previous reports, the addition of a mineral acid such as H_2SO_4 [14] or H_3PO_4 [16] to crude glycerol can cause automatic phase separation into two or three distinct layers comprised of a FFA layer on the top, a glycerol-rich layer on the middle and an inorganic salt layer on the bottom. This is because the H^+ from the mineral acid can protonate the soap bulk to insoluble FFAs (Eq. (2)), which consequently separate out as a top layer due to their low density and low polarity compared to the polar glycerol.

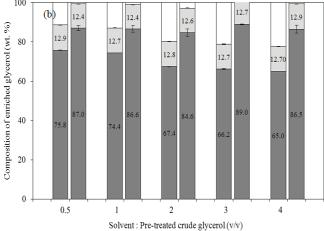
$$R\text{-COONa} + H^+ \rightarrow R\text{-COOH} + Na^+$$
 (2)

where *R* is the variable hydrophobic core of the fatty acids.

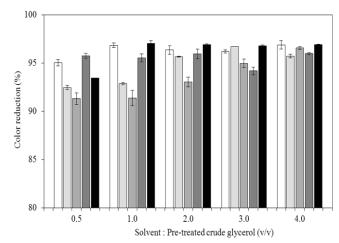
3.2. Enrichment of the Pre-Treated Crude Glycerol via Solvent Extraction

To further increase the glycerol content in the crude glycerol, the pre-treated crude glycerol was then subjected to solvent extraction. Three types of polar solvent (CH₃OH, C₂H₅OH and n-C₃H₇OH) and two types of non-polar solvent (C₆H₁₄ and C₄H₁₀O) at different volume ratios in the range of 0.5 to 4.0 were utilized at constant extraction time of 4 h and shaking rate of 200 rpm. As demonstrated in Fig. 3(a), in the presence of polar solvent, the glycerol content in enriched crude glycerol increased as the increase of volume ratio of solvent to pre-treated crude glycerol up to 2.0. This is because large quantity of polar solvent can extract large amount of glycerol from mineral salts and other contaminants. However, further increase volume ratio greater than 2.0 cannot enhance higher glycerol content in enriched crude glycerol. Oppositely, it decreased the glycerol content in enriched crude glycerol. This might be due to the fact that an excess solvent can contaminate or dissolve in enriched crude glycerol, resulting to the reduction of glycerol content.




Fig. 2. Representative GC/MS spectra of the (a) original crude glycerol as obtained from the FAME biodiesel plant, (b) pre-treated crude glycerol and (c,d) enriched crude glycerol following solvent extraction with (c) n-C₃H₇OH at a volume ratio of solvent to pre-treated crude glycerol of 2.0 or with (d) C₄H₁₀O at a volume ratio of solvent to pre-treated crude glycerol of 1.0, and (e) adsorption with commercial activated carbon.

At volume ratio of 2.0, the highest glycerol content was observed in the enriched crude glycerol extracted by n- C_3H_7OH (97.9 wt. %). With respect to the efficiency of nonpolar solvent (Fig. 3(b)), using different volume ratio of $C_4H_{10}O$ and pre-treated crude glycerol in the range of 0.5-4.0 cannot alter the glycerol content in enriched crude glycerol, whilst increasing the volume ratio of C_6H_{14} and pre-treated


crude glycerol resulted to the slight increase of glycerol content in enriched crude glycerol. For all ratios, the utilization of C₄H₁₀O as a solvent gave a more extraction efficiency in comparison to C₆H₁₄. The glycerol content in enriched crude glycerol extracted by C₄H₁₀O was greater than that extracted by C₆H₁₄ for all ratios. This is because the C₄H₁₀O had a higher water solubility compared with C₆H₁₄ $(\sim 6.89 \text{ and } 0.001 \text{ for } C_4H_{10}O \text{ and } C_6H_{14}, \text{ respectively } [18]),$ resulting to a high content of water in extract phase (solventrich phase) and low content in raffinate phase (glycerol-rich phase). Considering the effect of solvent types and ratios on the color of enriched crude glycerol, it was evidenced that the color of enriched crude glycerol decreased of around 91.0-97.0 % in comparison to that of pre-treated crude glycerol as demonstrated in Fig. 4. This is because the utilized solvent can extract contaminants or color-generating compounds from glycerol, resulting to the reduction of color in enriched crude glycerol. Among the utilized solvents and ratios, the most color reduction (97.0 %) was observed by the utilization of C₄H₁₀O at the volume ratio of solvent to pretreated crude glycerol of 1.0, while the lowest color reduction was observed by the utilization of n-C₃H₇OH as a solvent (93.0 % at the ratio of 2.0). The optimal extraction conditions for enriching the glycerol were thus $n-C_3H_7OH$ at a volume ratio of solvent to crude glycerol of 2.0 in terms of the obtained glycerol purity, but with C₄H₁₀O at a corresponding volume ratio of 1.0 in terms of the color reduction. The main composition in enriched crude glycerol by n-C₃H₇OH and C₄H₁₀O were glycerol as demonstrated in Fig. 2(c) and 2(d), respectively. As also exhibited in Table 1, the glycerol content in enriched crude glycerol by solvent extraction with n-C₃H₇OH increase of around 3.28-fold, while the ash content, contaminants and color decreased of approximately 9.19-, 48.29- and 31.40-fold, respectively in comparison to the original crude glycerol. With regard to the characteristic of enriched crude glycerol by solvent extraction with C₄H₁₀O, the quantities of glycerol and ash in enriched crude glycerol increase of around 2.91-, and 1.56fold, respectively. The amount of contaminants changed slightly whereas the color of crude glycerol decreased of approximately 73.79-fold.

Based on the obtained results in this part, it is difficult to decide which solvent is better between n-C₃H₇OH and C₄H₁₀O because the former solvent can enhance the highest purity of enriched crude glycerol (97.9 wt.%), but lowest color reduction (93.0 %), whist the latter solvent can facilitate the low glycerol content (86.6 wt.%), but highest color reduction (97.0 %).

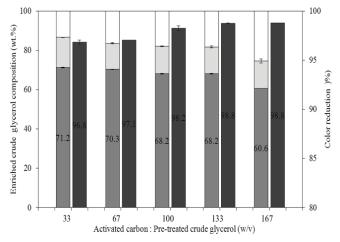

Fig. 3. Effect of solvent to pre-treated crude glycerol ratio on glycerol (■), ash (■) and other contaminant (□) contents in enriched crude glycerol purified by solvent extraction via (a) polar solvents: CH_3OH (left bar), C_2H_5OH (middle bar), n- C_3H_7OH (right bar) and (b) non-polar solvents: C_6H_{14} (left bar), $C_4H_{10}O$ (right bar).

Fig. 4. Effect of solvent to pre-treated crude glycerol ratios on color of enriched crude glycerol purified by solvent extraction via CH₃OH (□), C₂H₅OH (■), n-C₃H₇OH (■), C₆H₁₄ (■) and C₄H₁₀O (■).

3.3. Enrichment of Pre-Treated Crude Glycerol via Adsorption

The enrichment of pre-treated crude glycerol was carried out by the adsorption with commercial activated carbon at different dost in the range of 33-167 g/l during the adsorption time of 15-180 min at constant shaking rate of 200 rpm. The results evidenced that the glycerol and ash contents in enriched crude glycerol increased from initial content as the increase of adsorption time and reached their bateau after 15 min (data not shown). Further increase the adsorption time cannot enhance a more glycerol and ash reduction, they were equilibrated after 15 min. This observation could be explained by the theory of adsorption process. That is, the adsorbate molecules (mineral salt) have to first transport from the bulk solution to the surface of the adsorbent (activated carbon) and then adsorb onto the adsorbent surface [19]. The former stage occurs on the adsorbate-free surface, so the adsorbate molecules arriving the surfaces of adsorbent may attach instantly, resulting in a fast reduction of mineral salt substance. The rate of adsorption during this period may be dominated by the transportation of pollutant molecules from the bulk solution to the adsorbent surfaces. On the other hands, the latter stage occurs on the adsorbate-covered surface and the rate of adsorption during this period may be controlled by the adsorption kinetics. Thus, the rate of adsorption may be slow depending on the quantity of free active site of adsorbent. In our case, the fast adsorption rate occurred during the former period consistently with the adsorption theory. No more adsorption during the latter period might be attributed to the equal rate of adsorption and desorption of mineral salt on activated carbon surface [20]. Regarding to the effect of ratio of activated carbon to pretreated crude glycerol, the adsorbent dose slightly affected the content of glycerol as well as ash contents in enriched crude glycerol as demonstrated in Fig. 5. However, increasing the adsorbent dose in the range of 33-167 g/l glycerol resulted to a slight decrease in the glycerol content. Nevertheless, a higher dose can achieve a higher color reduction.

Fig. 5. Effect of activated carbon to pre-treated crude glycerol ratios on composition of enriched crude glycerol (left bar) including glycerol (\blacksquare), ash (\blacksquare) and other contaminant (\square) contents and color (right bar) purified by adsorption with activated carbon at 180 min.

A clear color of glycerol with greater than 97% color reduction is being obtained with the commercial activated carbon at 67 g/l glycerol at 180 min. The characteristics of the enriched crude glycerol with the process by the adsorption with activated carbon were also demonstrated in Table 1. The glycerol and ash contents in enriched crude glycerol increased of approximately 2.31- and 2.15-fold, while the contaminants and color decreased of approximately 4.42 -and 471-fold, respectively in comparison to the original crude glycerol. The composition of enriched crude glycerol obtained by the enrichment by adsorption with activated carbon at the dose of 67 g/l as displayed in Fig. 2(e). The principle composition is glycerol.

To further increase the glycerol purity and decrease the color in the enriched glycerol, a sequential process of extraction with either n-C₃H₇OH or C₄H₁₀O at volume ratio of solvent to pre-treated crude glycerol of 2.0 or 1.0, respectively, was followed by activated carbon adsorption at 67 g/l glycerol. A significant increase in the glycerol purity was obtained (up to 99.1%) after the combined sequential process of n-C₃H₇OH extraction and carbon adsorption, while only a slight increase in the glycerol content was obtained in the case of the corresponding process of C₄H₁₀O extraction and carbon adsorption (Table 1). Surprisingly, the color of glycerol obtained in both combined processes was not reduced as much as that by the adsorption with activated carbon alone (Table 1). This might be due to the complete elimination of water and MONG levels, leaving a more heavily enriched crude glycerol. The properties of the crude glycerol enriched by our proposed approach compared with that of the other published reports were summarized in Table 2. Direct comparison is difficult since the initial glycerol content in each crude glycerol source as well as the contaminants was different and depended on the type of raw material used in the process. Regardless, using waste usedoil as a raw material for biodiesel production generates a low-grade crude glycerol, and it was noticed that our combined approach was more efficient to enrich crude glycerol than the simple distillation [21], the electrodialysis [10], a combined process of neutralization, microfiltration and ion exchange resin [13], the saponification and neutralization procedures [4] and a step-by-step chemical enrichment [15].

The operating cost of chemical/material used in glycerol enrichment by either solely chemical extraction or adsorption and a combined process were estimated based on the properties of utilized crude glycerol as well as the developed enrichment approach, and summarized in Table 3. For the acidification step, two types of chemical substance were used; $\rm H_3PO_4$ and NaOH. The yield of this step was approximately 65%. With respect to the enrichment of pretreated crude glycerol by either chemical or process, the chemical enrichment by $\rm C_4H_{10}O$ was cheaper than that of $\it n$ -C₃H₇OH (8.09- and 11.4 USD/l for C₄H₁₀O and $\it n$ -C₃H₇OH, respectively) while the cheapest cost (0.59 USD/l) was observed in case of adsorption process. However, the yield of enriched crude glycerol was in the reverse order as demonstrated in Table 3. The chemical extraction with n-

Table 2. Comparison of the enriched glycerol properties obtained from this work and other works.

Author(s)	Sources of crude glycerol	Glycerol (wt.%)		Ash (wt. %)		Contaminant (wt.%)		Color
Author(s)	Sources of crude gryceror	w_i	w_f	w_i	w_f	w_i	w_f	
Yong et al [21] ^a	Residual glycerol from chemical and physical treatment of olive oil	50.4	96.60	17.0	0.03	32.6	3.4	-
Schaffner et al [10] ^b	Synthetic solution	65	95	2	0.054	8	1.01	-
Isahak et al [13] ^c	Palm oil <i>transesterification</i> (homogeneous catalyst)	96.66	97.47	-	-	3.34	2.53	-
Hájek and Skopal [4] ^d	Transesterification	56.4-58.9	86	-	-	-	-	-
Kongjao et al [14] ^e	Transesterification of waste used-oil	28.6	93.3	2.7	0.00045	68.8	6.7	light brown
Javani et al [15] ^f	Transesterification of waste used-oil	-	96.08	-	-	-	-	-
This work ^g	Transesterification of waste used-oil	29.8 ± 0.14	99.01 ± 0.12	7.90 ± 0.5	1.013 ± 0.04	62.3 ± 1.04	na	almost clear

 w_i initial content of glycerol and impurities in the crude glycerol

Table 3. Operating cost analysis of chemical/material for glycerol enrichment via chemical extraction and physical adsorption processes.

Estimated cost for 1 liter glycerol enrichment	Quantity of used chemical/material (1 or g)	Actual cost of chemical/material (USD)	Quantity of obtained glycerol (1)
I. Pre-treated crude glycerol by acidification	-		
H_3PO_4	0.2	2.71	0.650
NaOH	0.375	2.42	
II. Enrichment of glycerol via chemical extraction or physical adsorption			
Extraction with n -C ₃ H ₇ OH	1.30	11.4	0.624
Extraction with C4H10O	0.65	8.09	0.507
Physical adsorption with activated carbon	0.215	0.59	0.232
III. A combined process of chemical extraction and physical adsorption			
Extraction by n-C3H7OH and adsorption with activated carbon			
Extraction with -C3H7OH	1.30	11.4	0.416
Physical adsorption with activated carbon	20.6	0.57	
Extraction by C4H10O and adsorption with activated carbon			
Extraction with C4H10O	0.65	8.09	0.338
Physical adsorption with activated carbon	16.73	0.46	
Summary			
Enrichment cost by extraction with <i>n</i> -C ₃ H ₇ OH (USD/l crude glycerol)		16.6	
Enrichment cost by extraction with C ₄ H ₁₀ O (USD/l crude glycerol)		13.2	
Enrichment cost by extraction with activated carbon (USD/l crude glycerol		5.72	
Enrichment cost by extraction with n-C ₃ H ₇ OH and adsorption with activate	rol)	17.1	
Enrichment cost by extraction with C ₄ H ₁₀ O and adsorption with activated of		13.7	

C₃H₇OH provided the highest yield of enriched crude glycerol and the adsorption process donated the lowest yield. By using a combined approach, the chemical extraction with n-C₃H₇OH and adsorption was more expensive than that of the chemical extraction with C₄H₁₀O and adsorption of around 28.6%. However, more yield of enriched crude glycerol was obtained in the former approach. For the whole enrichment process, based on equal quantity of crude glycerol, it was noticed that the adsorption process was cheapest process (5.72 USD/l crude glycerol) while a combined process of chemical extraction with n-C₃H₇OH and adsorption was the most costly (17.1 USD/l crude glycerol). The different cost of both approaches was around 11.40 USD/l. Based on the quantity of an obtained enriched crude glycerol, the operating cost of both approaches was increased to 26.4 and 41.2 USD/l enriched crude glycerol, respectively. According to this analysis, it seemed to be that

the operating cost of glycerol enrichment increased with the increase of enrichment step, while the yield of enriched crude glycerol decreased.

4. Conclusion

The enrichment of crude glycerol derived from a waste used-oil FAME biodiesel plant was performed by solvent extraction and adsorption. For the solvent extraction, types of solvent as well as the volume ratio played an importance role on the purity and color of enriched crude glycerol. Among the utilized solvent and ratio, the n-C₃H₇OH at the volume ratio of solvent to pre-treated crude glycerol of 2.0 was the best of the evaluated solvents, yielding a glycerol purity of 97.9 wt.% and reducing the color level by around 93.0%, whereas extraction with C₄H₁₀O at its optimal ratio of 1.0 yielded a higher color removal efficiency (97.0%) but a

 W_f final content of glycerol and impurities in the crude glycerol

^aBy simple distillation

^bBy electrodialysis

^cBy combination process of neutralization, microfiltration and ion exchange resin

^dBy saponification and neutralization procedures

^eBy acidification by H₂SO₄

^fBy step-by-step chemical enrichment

Purify at volume ratio of solvent to pre-treated crude glycerol of 2.0 and adsorption at activated carbon dose of 67 g/l

Not detected

lower glycerol purity (86.6 wt.%). For the adsorption process, the adsorption with activated carbon was poor at improving the glycerol purity (70.3 wt.%), but it can decrease the color in the glycerol by 97.1% at 67 g/l. A combined process of solvent extraction with $n\text{-C}_3\text{H}_7\text{OH}$ followed by adsorption gave a high glycerol purity (99.0 wt.%) and reduction in the color (99.1%), but it was costly (41.2 USD/l enriched crude glycerol). Thus, the operation should be balanced between its enrichment efficiency and operating cost.

Acknowledgements


The authors would like to thank the Center for Petroleum, Petrochemicals and Advanced Materials. Chulalongkorn University for facility support, the Bangchak Petroleum Public Company Limited for samples and materials; the TRF-CHE Research Grant for Mid-Career University Faculty (Grant No. RSA5480015); and the Research Foundation Enchancement, Ratchadaphiseksomphot Endownment Fund of Chulalongkorn university for financial support. Also, we thank the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University, and Dr. Robert D.J. Butcher for the valuable assistances.

References

- [1] M. Grayson, Kirk-Othmer encyclopedia of chemical technology, 3rd ed, vol. 11, New York, John Wiley, 1978, pp. 921-922.
- [2] Z. Wang, J. Zhuge, H. Fang, B.A. Prior, "Glycerol production by microbial fermentation: A review", Biotechnol. Adv., vol. 19, pp. 201-223, June 2001.
- [3] M.J. Taherzadeh, L. Adler, G. Lidén, "Strategies for enhancing fermentative production of glycerol -a review", Enzyme Microb. Technol., vol. 31, pp. 53-56, July 2002.
- [4] M. Hájek, F. Skopal, "Treatment of glycerol phase formed by biodiesel production", Biores. Technol., vol. 101, pp. 3242-3245, May 2010.
- [5] M. Ayoub, A.Z. Abdullah, "Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry", Renew. Sustain. Energ. Rev., vol. 16, pp. 2671 2686, June 2012.
- [6] Ministry of Thailand. http://www.dede.go.th/dede/index.php?option=com_content&view=article&id=898&I temid=123&lang=th, Access date: 28 March 2013.
- [7] N. Rahmat, A.Z. Abdullah, A.R. Mohamed, "Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review", Renew. Sustain. Energy Rev., vol. 14, pp. 987-1000, April 2010.
- [8] T.L. Ooi, K.L. Yong, K. Dzulkefly, W.M.Z. Wan Yunus, A.H. Hazimah, "Crude glycerine recovery from glycerol residue waste from a palmkernel oilmethyl ester plants", J. Oil Palm Res., vol. 13, pp. 16-22, December 2001.

- [9] Lancrenon X, Fedders J, "An Innovation in Glycerin Purification", http://www.biodieselmagazine.com/ articles/2388/an-innovation-in-glycerin-purification. Biodiesel Magazine, May 2008. Access date: 28 March 2013.
- [10] F. Schaffner, P.Y. Pontalier, V. Sanchez, F. Lutin, "Bipolar electrodialysis for glycerin production from diester wastes", Filtra. Separ., vol. 40, pp. 35-39, December 2003.
- [11] M. Carmona, J. Valverde, A. Prez, "Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium removal Part I", J. Chem. Techno. Biotechnol., vol. 84, pp. 738-744, May 2009.
- [12] M. Carmona, A. Lech, A. de Lucas, A. Perez, J.F. Rodriguez, "Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium and chloride removal Part II", J. Chem. Techno. Biotechnol., vol. 84, pp. 1130-1135, August 2009.
- [13] W.N.R.W. Isahak, M. Ismail, M.A. Yarmo, J.M. Jahim, J. Salimon, "Purification of crude glycerol from transesterification RBD palm oil over homogeneous and heterogeneous catalysts for the biolubricant preparation" J. Appl. Sci., vol. 10, pp. 2590-2595, November 2010.
- [14] S. Kongjao, S. Damronglerd, M. Hunsom, "Purification of crude glycerol derived from waste used-oil methyl ester plant", Korean J. Chem. Eng., vol. 27, pp. 944-949, May 2010.
- [15] A. Javani, M. Hasheminejad, K. Tahvildari, M. Tabatabaei, "High quality potassium phosphate production through step-by-step glycerol enrichment: A strategy to economize biodiesel production", Biores. Technol., vol. 104, pp. 788-790, January 2012.
- [16] R. Manosak, S. Limpattayanate, M. Hunsom. Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption. Fuel Process. Technol., vol. 92, pp. 92-99, January 2010.
- [17] D.T. Johnson, K.A. Taconi, "The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production", Eng. Prog., vol. 26, pp. 338-343, October 2007.
- [18] J.A. Byers, "Solvent polarity and miscibility", Available from: http://www.chemical-ecology.net/java/solvents.htm, Access date 28 March 2003. (Report)
- [19] F.L. Burton, H.D. Stensel, Wastewater engineering: treatment and reuse / Metcalf & Eddy, Inc, Revised by G. Tchobanoglous, 4th ed, Boston: McGraw-Hill, 2003, pp. 1140.
- [20] I.A.W Tan, A.L. Ahmad, B.H. Hameed, "Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies", J. Hazard. Mater., vol. 154, pp. 337-346, June 2008.
- [21] K.C. Yong, T.L. Ooi, K. Dzulkefly, W.M.Z. Wan Yunus, A.H. Hazimah, "Refining of crude glycerine recovered from glyceol residue by simple vacuum distillation", J. Oil Palm Res., vol. 13, pp. 39-44, December 2001.

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/authorsrights

Chemical Engineering Journal 229 (2013) 334-343

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Chemical Engineering Journal

Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H₃PO₄, K₂CO₃ and KOH

Mali Hunsom a,b,*, Chaowat Autthanit a

^a Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand ^b Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

HIGHLIGHTS

- Adsorptive desulfurization of crude glycerol was done by the sludge-ACs at ambient condition.
- The KOH-800AC showed the highest glycerol purification efficiency.
- The adsorption time and the shaking rate influenced the adsorptive purification of crude glycerol.
- The adsorption of ash or contaminants via the sludge-derived AC followed the Langmuir isotherm.

ARTICLE INFO

Article history: Received 17 April 2013 Received in revised form 29 May 2013 Accepted 31 May 2013 Available online 12 June 2013

Keywords: Sludge-derived AC Crude glycerol Carbonyl group Isotherm

ABSTRACT

Adsorptive purification of crude glycerol (CG) from a used-oil/methanol utilizing biodiesel production plant was performed using sewage sludge-derived activated carbons (ACs) at a laboratory scale and ambient conditions. The effect of different chemical activating agents ($\rm H_3PO_4$, $\rm K_2CO_3$ and KOH) and carbonization temperatures (500–900 °C) on the surface properties of the obtained sludge-derived ACs, as well as the adsorption efficiency of impurities from pre-treated crude glycerol (PTCG), was explored. The results showed that both the activating agent type and the carbonization temperature affected the textural properties and the surface chemistry of the sludge-derived AC. The oxygen-containing surface functional groups, particularly the carbonyl groups, as well as the textural properties played a more important role in the adsorptive purification of CG. Among the as-prepared sludge-derived AC, the activated carbon impregnated by KOH (KOH-AC) carbonized at 800 °C (KOH-800AC) exhibited suitable surface properties to enhance the purity of the PTCG up to 93.0 wt.% when using an AC dose of 67 g/L, 2 h adsorption time and a shaking rate of 250 rpm. The adsorption of either ash or other contaminants via the sludge-derived AC followed the Langmuir isotherm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Glycerol is recognized as one of the top-12 building block chemicals that can be converted to high-value bio-based chemicals or materials [1]. It is an oxygenated hydrocarbon with the potential to produce hydrogen, synthesis gas, and hydrocarbons using various processes such as pyrolysis, steam gasification and the catalytic reforming reaction [2]. The dehydration of glycerol results in the formation of acrylic aldehyde (acrolein), an important chemical intermediate for the synthesis of many useful compounds, such as acrylic acid and its esters, superabsorbent polymers and

E-mail address: mali.h@chula.ac.th (M. Hunsom).

detergents [3,4]. In addition, glycerol can be used as a feed stock for the production of C3 and C2 valuable oxygenated compounds, and in particular glyceric acid and dihydroxyacetone, which are used as intermediate compounds for the synthesis of fine chemicals and polymers and forms the main active ingredient in all sunless tanning skincare preparations [5,6]. The selective hydrogenolysis of glycerol in the presence of an appropriate catalyst and hydrogen produces several products that are widely used in the manufacture of polyester resins, pharmaceuticals, liquid detergents, cosmetics, paints, animal feed, antifreeze, food flavorants and fragrances, such as 1,2-propanediol, 1,3-propanediol or ethylenglycol [7].

Glycerol can be produced by either chemical synthesis from petrochemical feed stocks, such as the oxidation or chlorination of propylene [8], or by microbial fermentation [9]. It can also be recovered as a by-product from soap production by saponification,

^{*} Corresponding author at: Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand. Tel.: +66 (2) 2187523 5; fax: +66 (2) 2555831.

hydrogenolysis of sugars to obtain propylene glycol [10] or methanolysis during biodiesel production [11]. Currently, the world's capacity for biodiesel production is increasing dramatically. This is also the case in Thailand where biodiesel production has increased up to 1.71×10^6 L/day in 2012 [12]. Typically, approximately 1 kg of glycerol is obtained when 10 kg of biodiesel are produced [2]. Any further increase in biodiesel production rates will significantly raise the quantity of glycerol produced above the demands for it and so decrease its economic value. The glycerol coming from biodiesel production is not economically suitable (viable) for use in its traditional uses in the pharmaceutical and cosmetic trades, since it does not have the required purity. Rather it contains various other chemicals, such as water, organic and inorganic salts, soap and alcohol, traces of glycerides and vegetable colors [11]. Thus, various studies have been carried out focusing on glycerol purification or enrichment, such as by simple vacuum distillation [13,14], electrodialysis [15], ion-exchange chromatography [16,17], and chemical processes [11,18-21]. However, each of them has some drawbacks. For example, a simple distillation is energy consuming due to the high specific heat capacity of glycerol. The chemical processes require various kinds of chemical substances, leading to a high operating cost.

Besides the above mentioned processes, adsorption is recognized as an efficient and economical way to remove organic compounds from an aqueous solution due to its low-energy consumption, ability to operate at ambient temperature and pressure, and to regenerate the spent adsorbent, plus the often broad availability of adsorbents [22,23]. To remove the oily-like compounds, various adsorbents can be applied, such as modified or unmodified chitosans [24,25], bentonite [26,27], minerals and clays [28,29], mixed metal oxides [30], and activated carbon (AC) [27,31]. However, no work in the literature has reported on the use of AC derived from sewage sludge to adsorb the oily-like impurities, such as free fatty acids (FFA), from the crude glycerol (CG).

Thus, in this work, a set of 15 different ACs was prepared using the sewage sludge from a wastewater treatment plant as the raw material. The effect of the type of chemical activating agent, carbonization temperature, adsorption time and shaking rate was explored in order to obtain glycerol with a purity within the acceptable limit of the BS 2621 standard (\geq 80 wt.%). The novelty of this work is the utilization of sewage as the raw material for preparing the AC, which could offer the benefits of reducing the volume of sludge for disposal and management.

2. Experimental

2.1. Pretreatment of crude glycerol (CG)

CG was obtained from a local fatty acid methyl ester (FAME) production plant in Thailand that utilizes waste used-oil and methanol as the raw materials for biodiesel production via the alkali catalyst mediated transesterification process. As obtained, the CG was a sticky dark brown solution with a high viscosity, and changed to a semi-solid substance on storage. Prior to use, the CG was slowly melted at around 40-60 °C and was pre-treated according to the procedure of Manosak et al. [20]. Initially, fresh CG was acidified by the addition of H_3PO_4 (85%, Qrec) to a pH of 2.5 and then shaken for 1 h at a constant rate of 200 rpm (CTL, model SK electric shaker). It was then left for 12 h until the solution had phase separated into the three distinct layers of a top FFA-rich layer, a middle glycerolrich layer and a bottom inorganic salt-rich layer. All layers were separated from each other by slow decantation. Subsequently, the middle glycerol-rich layer was neutralized by the addition of 12.5 M NaOH (98%, Carlo Erba) to pH 7.0, left for a while and then filtered to eliminate the precipitated salt. The pretreated crude glycerol (PTCG) was then obtained after drying at 110 °C for 15 h.

2.2. Preparation of sludge-derived AC

The raw material used for preparing the AC was the sewage sludge obtained from a textile industry wastewater treatment plant in Thailand. The obtained sludge was washed several times with deionized water to eliminate the contaminated grits and then dried at 105 °C for 24 h until the weight loss was constant. Finally, it was crushed with a grinder and sieved to a size range of 1-2 mm. The preparation of the sludge-derived AC was comprised of the two main steps of pyrolysis and activation. For the pyrolysis step, approximately 50 g of crushed sewage sludge was heated slowly in a stainless steel fixed-bed reactor at a constant heating rate of 10 °C/min from room temperature to the pre-set pyrolysis temperature of 400 °C under a nitrogen (N2) atmosphere (flow rate 50 mL/ min). It was then held at this temperature for 2 h before being cooled down slowly still under a N2 atmosphere. The obtained sample was crushed and sieved to a size smaller than 0.25 mm. The ready-to-use char was obtained after drying at 105 °C for 2 h.

For the activation step, 100 mL of 100x g/L potassium hydroxide solution (KOH, Ajax Finechem) was mixed with 10 g of char a KOH/ char weight ratio of x:1 (x=1, 2, 3, 4, 5 or 6). The liquid/solid phases were maintained in contact under mechanical shaking at a constant rate of 200 rpm for 0.5 h. The supernatant was then separated by vacuum filtration and the remaining solid was rinsed several times by deionized water until the pH of filtrate was constant. Subsequently, it was carbonized in a fixed-bed reactor at a slow heating rate of 10 °C/min from room temperature to the pre-set carbonization temperature (500-900 °C) under a N2 atmosphere (flow rate 10 mL/min, then held at this temperature for 30 min before being allowed to cool down slowly under a N2 atmosphere. The obtained samples were rinsed with 3 M hydrochloric acid (HCl, 37% Carlo Erba) to remove other inorganic matter and then with distilled water to eliminate the excess HCl until the pH become neutral. The respective sludge-derived AC was obtained after drying at 105 °C for 24 h. A similar procedure was repeated for potassium carbonate (K2CO3, Loba Chemie) and phosphoric acid (H₃PO₄), except using 100x g/L K₂CO₃ or conc. H₃PO₄ in place of the

2.3. Adsorptive purification of PTCG

The adsorptive purification of PTCG was carried out at room temperature (\sim 30 °C) and ambient pressure using either a commercial AC preparation (Panreac Quimica S.A.U.) or the in-house sludge-derived ACs. Prior to use, all utilized ACs were dried at 105 °C for 30 min to eliminate free moisture. Subsequently, approximately 1 g of AC was mixed with 15 mL PTCG (\sim 67 g/L) and shaken at a constant rate of 250 rpm for 90 min. Finally, the AC was separated by vacuum filtration and the properties of the obtained purified crude glycerol (PCG) were characterized.

2.4. Characterizations

The glycerol content in the glycerol solution was measured according to the Standard method (ASTM D7637-10) by titration with sodium metaperiodate (NaIO₄, Fisher Chemical), based on the cold oxidation of the glycerol by NaIO₄ in a strong acidic medium. Ash content was analyzed according to the Standard method (ISO 2098-1972) by burning approximately 1.0 g glycerol in a muffle furnace (Protherm, alserteknik) at 750 °C for 3 h. The water content as well as the MONG (matter organic non glycerol) content were reported as 'other contaminants', and was calculated as [100-(glycerol content (wt.%)+ ash content (wt.%)]. The pH of the glycerol solution was measured with a pH paper (MACHEREY-NAGEL pH-Fix 0–14). The color of glycerol was measured by in a UV/Vis spectrophotometer (Jasco, V-530) in terms of the absorbance at

a wavelength of 457 nm. The density and viscosity were measured according to the standard ISO 2099-1972 and ASTM D 445 methods, respectively. The composition of glycerol both before and after purification was characterized by gas chromatograpy–mass spectroscopy (GC/MS) (6890 N, Agilent of GC/Pegosees III, Lego of MS).

The composition of both the sewage sludge and char were analyzed by proximate and elemental analysis according to ASTM D3172 and by energy dispersive X-ray analysis (EDX) on a JEOL JSM-5800LV. The contents of oxygen-containing surface functional groups on the ACs were determined by Boehm's method of titration with basic solutions of different base strengths (NaHCO₃, Na₂-CO₃ and NaOH) [32,33]. The textural properties of AC was measured with a surface area analyzer (Quantachrome, Autosorb-1) using the Brunauer, Emmett and Teller (BET) method.

3. Results and discussion

3.1. Characteristics of the CG and PTCG

The original CG obtained from the waste used-oil FAME biodiesel production plant was a sticky dark brown liquid (Fig. 1a) with a high pH and a relatively low density and viscosity. It contained low glycerol content below the acceptable limit, and a relatively high content of ash and other contaminants that were 3.62- and

3.66-fold higher, respectively, than the acceptable value (Table 1). From the GC/MS analysis, the main components in the CG were found to be FFAs and derivatives, such as tridecanoic acid, oleic acid, lauric acid and elaidic acid, which are the main components of vegetable oil (data not shown). When the pretreatment of the CG was performed by the addition of H₃PO₄, the composition as well as color of the obtained PTCG changed. The pH of the PTCG was slightly lower at around 7.1, the density and viscosity increased to 1.210 g/cm³ and 57.4 cSt, respectively. The color of PTCG was lightened to a brown liquid (Fig. 1b), and was 1.12-fold lower in Pt-Co units than before the pretreatment (Table 1). The content of the other contaminants decreased slightly from 36.6 to 35.2 wt.% but it was still 3.53-fold above the acceptable limit, while the ash content significantly decreased (1.24-fold from 36.2 to 29.1 wt.%) but was still 2.9-fold above the acceptable limit. This resulted in a 1.31-fold increase in the glycerol content to 35.7 wt.%. This is because the H⁺ from the H₃PO₄ can protonate the soap bulk to insoluble FFAs, which consequently phase separate out as a top layer due to their low density and low polarity relative to the polar glycerol-rich layer [20]. Meanwhile, the excess H₂PO₄ ions can couple with the Na+ salts in the crude glycerol to form the relatively insoluble NaH₂PO₄ [34], and also forms an inorganic salt layer on the bottom of the aqueous solution. In terms of the chemical composition, as evaluated by GC/MS analysis, the H₃PO₄ pretreatment stage partially to totally removed the FFAs and their

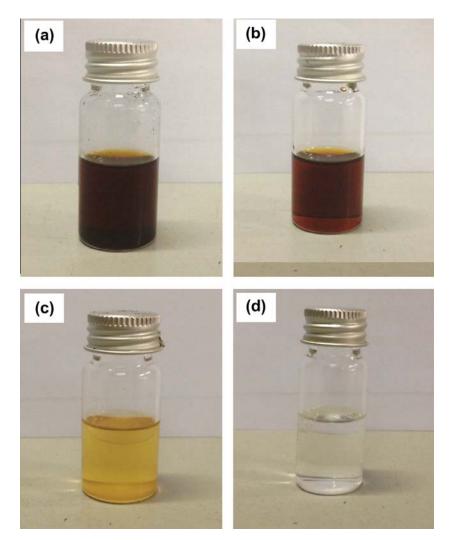


Fig. 1. Color of the (a) crude glycerol (CG) obtained from the FAME biodiesel production plant, (b) the pretreated crude glycerol (PTCG), and (c and d) the purified crude glycerol (PCG) obtained after adsorption for (c) one or (d) three cycles with KOH-800AC for 120 min and 250 rpm.

derivatives, leaving a low quantity of methyl esters of tridecanoic acid, lauric acid and decanoic acid (data not shown). However, although the pretreatment stage can enhance the level of glycerol purity in the resulting PTCG, its properties were still unacceptable compared with the BS 2621 standard. Thus, further purification of glycerol from the PTCG was performed by adsorption with the different sludge-derived ACs in comparison with a commercial AC.

3.2. Properties of sewage sludge and char

The physicochemical characteristics, in terms of the proximate and elemental analyses, of the obtained sewage sludge and derived char are shown in Table 2. The fresh sewage sludge mainly contained volatile matter followed by ash (various kinds of either organic or inorganic components), with a low fixed carbon. In the course of pyrolysis, the partial volatilization of the organic matter decreased the net volatile mater and moisture contents by around 2.6- and 2.9-fold, respectively, which consequently resulted in an increased fixed carbon and ash content by 7.4- and 1.3-fold, respectively.

In terms of the elemental analysis, the pyrolysis of the sewage sludge decreased the oxygen content almost one-third, which resulted in an almost two fold or higher level of the other detected elements except for sulphur, silicon and carbon that showed lower increased levels. The changes in the element proportions might be also be attributed to their phase transformations due to the loss of crystallization water of hydration [35].

3.3. Effect of activating agent and carbonization temperature on the properties of the obtained sludge-derived ACs

In total, 15 different ACs were prepared from the sewage sludge by chemical activation using three types of activating agent (H₃PO₄, K₂CO₃ and KOH) and carbonized under different temperatures in the range of 500-900 °C. The proximate analysis revealed that the moisture, ash and volatile mater contents in all obtained sludge-derived ACs decreased as the carbonization temperature increased, except those of H₃PO₄-ACs (Table 3). The volatile matter and especially ash contents of the H₃PO₄-ACs were greater than that of the other types of sludge-derived ACs (1.10- to 3.0-fold and 1.46- to 3.17-fold, respectively), and this difference tended to be slightly more pronounced as the carbonization temperature increased. This can be explained as that during the carbonization of the H₃PO₄-ACs, the formation of phosphate or polyphosphate species occurs and these remain chemically bound inside the pore structure of the sludge-derived ACs [36], resulting in the formation of dense structures [37] as well as a higher fraction of ash.

Regarding the textural properties of the sludge-derived ACs, the H₃PO₄ activation did not generate a high BET surface area (Fig. 2) or total pore volume (Fig. 3) at all carbonization temperatures. No relationship between the carbonization temperature and the volume of the generated micropores and mesopores was observed. This implied that the H₃PO₄ activation not facilitate the formation of sludge-derived ACs with better textural properties, which might be due to the continued cleavage of the phosphate and polyphosphate linkages at temperatures above 450 °C [38] resulting in a reduced crosslink density. This, in turn, would allow the growth and alignment of polyaromatic clusters, producing a more densely pack structure with a lower BET surface area and total porous volume. Similarly, ACs with a low BET surface area have previously been reported when the raw sludge from a domestic influent wastewater treatment plant or its pyrolyzed char was activated by H₃PO₄ at 450 °C (<5 and <17 m²/g, respectively) [35]. Nevertheless, it has previously been reported that H₃PO₄-activation can enhance the formation of a high BET surface area of organic sewage sludge-derived AC up to $300 \text{ m}^2/\text{g}$ [39]. The reason for such differences may be the different washing solution (NaOH vs. HCl) and preparation procedures employed by Zhang et al. [39].

In the case of the K_2CO_3 and KOH activation, the behaviors of both sets of ACs were very similar. That is, the carbonization temperature greatly influenced the development of the BET surface area and the porosity in the obtained sludge-derived ACs. Both chemical reagents induced a significant increase in the obtained BET surface area (Fig. 2) as well as the total pore volume (Fig. 3) as the carbonization temperature was increased from 500 to $800\,^{\circ}$ C. In the case of K_2CO_3 activation, this is due to the fact that, during the carbonization, the K_2CO_3 was reduced in the inert carbonization atmosphere by the edge carbons to form atomic K and CO by the reaction shown in Eq. (1) [40];

$$2C + K_2CO_3 \rightarrow 2K + 3CO \tag{1}$$

This led to the decomposition of the disordered cross-linked crystallites plugging the pores, resulting in an increased BET specific surface area and total pore volume [41]. In addition, the generated atomic K may intercalate and expand the interlayers of adjacent hexagonal network C atom planes and so enhance the pore formation [42].

With respect to KOH activation, an increased BET surface area and total pore volume was observed (Fig. 2), which likely reflects the various elementary reactions outlined in Eqs. (2)–(4) [43]:

$$2KOH \rightarrow K_2O + H_2O \ (Dehydration) \eqno(2)$$

$$C + H_2O \rightarrow H_2 + CO \ (Water-gas \ reaction) \eqno(3)$$

Table 1Characteristics of the CG, PTCG and PCG obtained from adsorption over the indicated ACs.

Parameters	BS 2621:1979	CG	PTCG ^a	PCG obtained from adsorptive purification using:		
	[13]			Commercial AC ^b	KOH-800AC (1st-adsorption) ^c	KOH-800AC (3rd-adsorption) $^{\rm d}$
pH		9.65 ± 0.21	7.10 ± 0.14	7.0	7.0	7.0
Glycerol content (wt.%)	≥80	27.2 ± 0.84	35.7 ± 0.27	88.6 ± 0.63	93.0 ± 0.57	96.9 ± 1.34
Ash (wt.%)	≤10	36.2 ± 0.20	29.1 ± 0.51	11.4 ± 1.03	7.0 ± 0.82	3.1 ± 1.2
Other contaminants (wt.%) ^e	≤10	36.6 ± 0.64	35.2 ± 0.78	N/A ^f	N/A	N/A
Density at 20 °C (g/cm ³)	1.261	1.01 ± 0.062	1.21 ± 0.02	1.264 ± 0.006	1.277 ± 0.006	1.275 ± 0.027
Viscosity at 40 °C (cSt)		49.2 ± 0.20	57.4 ± 1.03	89.6 ± 0.79	104.7 ± 0.54	106.9 ± 0.14
Color (Pt-Co unit)		172,857 ± 5580	154,038 ± 4477	3,654 ± 22	2314 ± 141	673 ± 68

^a Pretreatment by acidification with H₃PO₄ at pH 2.5.

^b Adsorption with commercial AC (Panreac Quimica1, UK) at 67.7 g/L, 120 min, 250 rpm.

Adsorption with KOH-800AC at 67 g/L PTCG, 120 min, 250 rpm after cone or dthree adsorption cycle.

e Includes water and MONG.

f N/A not available.

$$CO + H_2O \rightarrow H_2 + CO_2$$
 (Water-gas shift reaction) (4)

The continuous evolution of volatiles from the char further develops the rudimentary pore structure in the char, enhancing the existing pores and creating new ones. This results in an increased BET surface area and total pore volume with increasing carbonization temperature, (Fig. 2), while the total pore volume either decreased (K₂CO₃ activation) or increased (KOH activation) slightly (Fig. 3). Accordingly, increasing the carbonization temperature increased the mesopore volume gradually, which is likely to be due to the widening of existing pores or the combining of micropores during the evolution of volatile matter from the char structure during carbonization. This hypothesis is supported by the proximate analysis (Table 3), where the fixed carbon content increased, while the volatile matter content decreased as carbonization temperature increased. However, both surface properties decreased slightly when the carbonization temperature was raised to 900 °C (Fig. 2), which is probably due to the shrinkage in the carbon structure, resulting in a reduction in porosity and BET surface area.

As reported elsewhere [43,44], when the temperature exceeds 700 °C, a considerable amount of K_2CO_3 and a small amount of metallic potassium (K) were generated according to Eqs. (5)–(7).

$$K_2O + CO_2 \rightarrow K_2CO_3$$
 (Carbonate formation) (5)

$$K_2O + H_2 \rightarrow 2K + H_2O$$
 (Reduction by hydrogen) (6)

$$K_2O+C \rightarrow 2K+CO \; (Reduction \; by \; carbon) \eqno(7)$$

Both K_2CO_3 and K are then intercalated into the carbon matrix [45], resulting in the widening of the spaces between the carbon layers and so causing a sharp decrease in the BET surface area. In addition, the high temperature induces the widening of pores through the complete burning-off of some walls between neighboring pores and continuous pore wall thinning. Together these result in a decreased micropore volume and an increased mesopore volume. Among the obtained sludge-derived ACs, the KOH-800AC provided the closest BET surface area and total pore volume to the commercial AC (the BET surface and total pore volume of the commercial AC were 984 m²/g and 0.663 cm³/g, respectively).

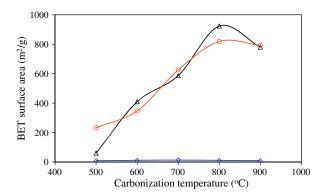
With regards to the effect of the carbonization temperature and the type of activating agent on the surface chemistry of the sludge-derived ACs, the quantity of all detected oxygen-containing surface functional groups on the surface of the H₃PO₄-ACs decreased with increasing carbonization temperature (Fig. 4a). This is probably caused by the shrinkage in the carbon structure due to the cleavage

Table 2 Physicochemical characteristics of the sewage sludge and derived char.

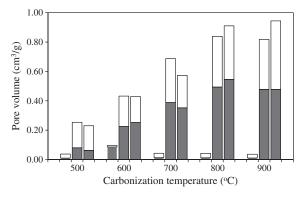
Type of analysis	Content (wt.%)	Sewage sludge	Char
Proximate analysis	Moisture	9.53 ± 0.44	3.27 ± 0.55
	Ash	24.40 ± 0.63	32.06 ± 0.85
	Volatile matter	60.50 ± 0.89	23.45 ± 0.98
	Fixed carbon	5.57 ± 0.16	41.22 ± 0.44
Elemental analysis	Carbon (C)	68.69 ± 2.99	73.98 ± 0.59
	Oxygen (O)	29.05 ± 3.34	20.98 ± 0.13
	Sulphur (S)	0.30 ± 0.04	0.35 ± 0.08
	Sodium (Na)	0.50 ± 0.21	1.46 ± 0.57
	Magnesium (Mg)	0.12 ± 0.03	0.33 ± 0.06
	Aluminium (Al)	0.19 ± 0.05	0.36 ± 0.03
	Silicon (Si)	0.53 ± 0.07	0.76 ± 0.06
	Phosphorous (P)	0.29 ± 0.07	0.94 ± 0.08
	Chloride (Cl)	0.10 ± 0.03 0.07 ± 0.03	0.19 ± 0.16 0.21 ± 0.06
	Potassium (K)	0.07 ± 0.03	0.21 ± 0.06
	Calcium (Ca)	0.10 ± 0.03	0.26 ± 0.07
	Iron (Fe)	0.03 ± 0.01	0.13 ± 0.02
	Copper (Cu)	0.03 ± 0.01	0.08 ± 0.01

of some of the phosphate and polyphosphate linkages at temperatures above 450 °C [38], resulting in the reduction of the surface area available to bind the generated oxygen-containing surface functional species. Nevertheless, the level of oxygen-containing surface functional groups after carbonization at all evaluated temperatures were still higher than that of the commercial AC, where the carbonyl-, carboxyl-, lactone- and hydroxyl groups on the surface of the H₃PO₄-800AC were 1.92, 2.75, 0.46 and 3.17 mEq/g, respectively, compared to 0.36, 0.20, 0.02 and 0.59 mEq/g, respectively, for the commercial AC. For the K₂CO₃ and KOH-ACs, carbonization in the range of 500-900 °C had no effect on the quantity of measurable acidic oxygen-containing surface functional groups, including carboxyl, hydroxyl and lactone groups (Fig. 4b and c). However, a significant increase in the level of carbonyl groups (alkaline oxygen-containing surface functional group) was induced, especially between 700 and 800 °C. This is because both alkaline chemicals preferentially generate alkaline oxygen-containing surface functional groups such as pyrones (cyclic ketone) and other keto-derivatives of pyran [46,47], which are derivative species of the carbonyl group. Increasing the carbonization temperature induced a higher generation of carbonyl groups but a lower generation of carboxyl, lactone, and hydroxyl groups. However, further raising the carbonization temperature from 800 to 900 °C decreased the quantity of all oxygen-containing surface functional groups, particularly the carbonyl group (1.4- to 1.7-fold). The differences lie in the fact that the different oxygen-containing surface functional groups have different thermal stabilities. That is, the carboxylic and lactone groups decompose to CO2 and phenol at 700–800 °C, the carbonyl (quinone or ether) groups decompose to CO at 500-1000 °C, and the hydroxyl groups release water from 200-300 to 400-500 °C [48].

3.4. Effect of activating agent and carbonization temperature of the obtained sludge-derived ACs on the adsorptive purification of PTCG


The composition of the PCG obtained using the adsorption process with the different sludge-derived ACs is shown in Fig. 5. The adsorptive purification of PTCG with H₃PO₄-ACs was reduced from 48.0 to 39.3 wt.% as the carbonization temperature increased from 500 to 900 °C (Fig. 5a). The ash content increased with increasing carbonization temperature, whilst the level of the other contaminants remained essentially constant between 38.9 and 40.5 wt.%. For the adsorptive purification of PTCG by K₂CO₃- and KOH-ACs, a similar change of the glycerol content of the obtained ECG was observed with either set of ACs at the same carbonization temperature. That is, the glycerol content increased as the carbonization temperature increased to reach a maximum content at a carbonization temperature of 800 °C of 78.9 wt.% for K₂CO₃ pretreatment (Fig. 5b) and 89.4 wt.% for KOH pretreatment (Fig. 5c). Further raising the carbonization temperature to 900 °C led to a significant reduction in the glycerol content in the obtained PCG.

To correlate the properties of the sludge-derived ACs and their adsorptive purification abilities of PTCG, it is necessary to take into account both their textural properties and surface chemistry. The K_2CO_3 - and KOH-ACs, which had both a high BET surface area and a large number of carbonyl group after carbonization at 800 °C, exhibited the high adsorption capacity for ash as well as other contaminants from the PTCG. This indicated that both properties had the synergetic positive effect on the purification of crude glycerol. Theoretically, carbonyl groups are good electron acceptor [49,50] that can bond well to the anionic charged portions of FAME or FFAs (R-COO $^-$), resulting in the decreased level of these contaminants in the PCG and consequentially an increased glycerol content in the obtained PCG fraction. This hypothesis was supported by the glycerol content in the PCG obtained by the H_3PO_4 -ACs with its low BET surface area (8.48–13.4 m 2 /g) and low quantity of


Table 3Proximate analysis of the commercial activated carbon (AC) and the sludge-derived ACs of this study.

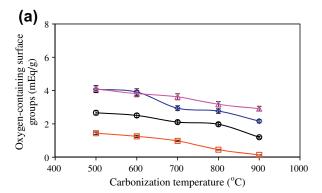
Types of AC	Proximate analysis (wt.%)							
	Moisture	Ash	Volatile matter	Fixed carbon				
Commercial AC ^a	0.47 ± 0.15	3.42 ± 0.23	0.98 ± 0.08	95.13 ± 0.68				
H ₃ PO ₄ -500AC	0.13 ± 0.11	3.87 ± 0.03	1.05 ± 0.05	94.9 ± 0.12				
H ₃ PO ₄ -600AC	0.15 ± 0.05	3.72 ± 0.11	1.09 ± 0.02	95.0 ± 0.08				
H ₃ PO ₄ -700AC	0.15 ± 0.01	3.45 ± 0.02	1.08 ± 0.02	95.3 ± 0.01				
H ₃ PO ₄ -800AC	0.15 ± 0.02	3.45 ± 0.05	1.06 ± 0.03	95.3 ± 0.03				
H ₃ PO ₄ -900AC	0.14 ± 0.04	3.33 ± 0.04	1.05 ± 0.02	95.5 ± 0.03				
K ₂ CO ₃ -500AC	0.23 ± 0.07	1.22 ± 0.34	0.59 ± 0.26	98.0 ± 0.89				
K ₂ CO ₃ -600AC	0.20 ± 0.01	1.18 ± 0.03	0.54 ± 0.03	98.1 ± 0.05				
K ₂ CO ₃ -700AC	0.18 ± 0.01	1.16 ± 0.02	0.51 ± 0.02	98.1 ± 0.05				
K ₂ CO ₃ -800AC	0.15 ± 0.04	1.16 ± 0.04	0.51 ± 0.02	98.2 ± 0.02				
K ₂ CO ₃ -900AC	0.13 ± 0.02	1.13 ± 0.02	0.50 ± 0.09	98.2 ± 0.09				
KOH-500AC	0.21 ± 0.08	1.71 ± 0.31	0.53 ± 0.12	97.6 ± 0.85				
KOH-600AC	0.19 ± 0.01	1.37 ± 0.19	0.49 ± 0.02	98.0 ± 0.18				
KOH-700AC	0.16 ± 0.02	1.12 ± 0.06	0.48 ± 0.01	98.2 ± 0.10				
KOH-800AC	0.14 ± 0.01	1.07 ± 0.03	0.35 ± 0.03	98.4 ± 0.05				
KOH-900AC	0.11 ± 0.01	1.04 ± 0.10	0.35 ± 0.01	98.5 ± 0.09				

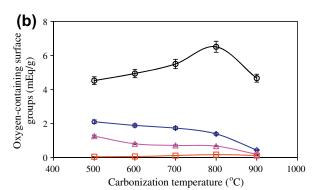
^a ACs are coded as the precedent H_3PO_4 -, K_2CO_3 - or KOH- for the respective activating agents, followed by the carbonization temperature and AC.

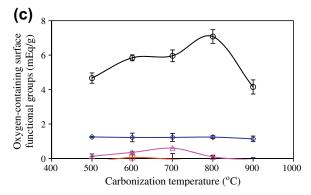
Fig. 2. Effect of the carbonization temperature on the BET surface area of the sludge-derived ACs prepared by chemical activation with (\diamondsuit) H₃PO₄, (\bigcirc) K₂CO₃ and (\triangle) KOH activation at different carbonization temperatures.

Fig. 3. Effect of the carbonization temperature on the volume of (\blacksquare) micropores and (\square) mesopores of the sludge-derived ACs prepared by chemical activation with (left bar) H_3PO_4 , (middle bar) K_2CO_3 and (right bar) KOH at different carbonization temperatures.

carbonyl groups, where a high ash and contaminant contents and a low glycerol was observed. Although the presence of acidic oxygen-containing surface functional groups (carboxyl, hydroxyl and lactone groups) preferred to form complexes with cations (mineral salts) according to the surface complexation model [51], the mineral salt content measured in terms of ash content was still high.


This likely reflects the strong influence of its low BET surface area providing a synergetic negative effect on the adsorptive purification of PTCG.


Among all the prepared sludge-derived ACs, the KOH-800AC exhibited the highest efficiency to adsorb impurities in PTCG. Compared with the commercial AC, the KOH-800AC showed an enhanced glycerol purity, being 1.06-fold higher than that obtained with the commercial AC (84.1 wt.%). According to the obtained results it was evident that both the textural properties and surface chemistry of ACs were very important to achieve a high efficiency of glycerol purification. Better textural properties of sludge-derived ACs, such as a high specific surface area and pore volume, offered a higher opportunity to adsorb the ash and contaminants in the PTCG. The oxygen-containing surface functional groups were responsible for both cation- and anion-uptake.


3.5. Effect of the adsorption time and shaking rate on the adsorptive purification of PTCG by the sludge-derived ACs

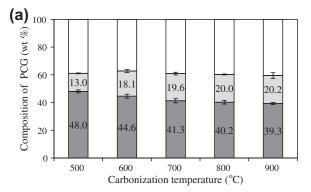
To obtain higher glycerol purity the effect of the adsorption time and shaking rate were explored. Fig. 6a shows the effect of varying the adsorption time (60–180 min) on the composition of the obtained PCG after adsorption of PTCG with the commercial AC and the KOH-800AC at a dosage of 67 g/L at a shaking rate of 250 rpm. The KOH-800AC exhibited a higher efficiency, in terms of a 2.2-5.3% (1.03- to 1.06-fold) higher glycerol yield in the obtained PCG, for purifying PTCG than the commercial AC at all adsorption times, presumably due to its better surface properties. Increasing the adsorption time up to 120 min decreased the level of other contaminants and ash, resulting in an increased glycerol content in the PCG (up to 93.0 wt.% at 120 min). This decreased impurity level with increasing adsorption time might reflect that a longer adsorption time can enhance the chance of interaction between the impurity molecules and the AC particles. Further increasing the adsorption time over 120 min did not achieve a higher adsorption level of the impurities, probably due to the saturation of the AC.

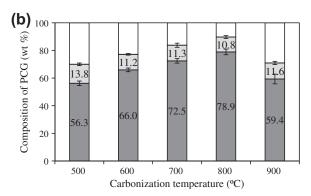
With respect to the effect of the shaking rate on the composition of the obtained PCG, decreasing or increasing the shaking rate from 250 rpm did not enhance the purity of glycerol in the obtained PCG (Fig. 6b). It is speculated that the adsorption process was controlled by the mass transport at low mixing rates (<250 rpm) and by the kinetics at a high mixing rate (>250 rpm). The properties of the obtained PCG are summarized in Table 1.

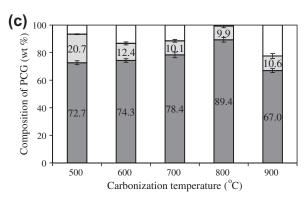
Fig. 4. Effect of the carbonization temperature on the quantity of the oxygen-containing surface functional groups: (\diamondsuit) carboxyl; (\Box) lactone; (\triangle) hydroxyl and (\bigcirc) carbonyl groups of the sludge-derived ACs prepared by chemical activation with (a) H_3PO_4 , (b) K_2CO_3 and (c) KOH at different carbonization temperatures.

The pH was neutral, with a pale yellow color that was much lighter compared with either the CG or PTCG (Fig. 1c). The GC/MS analysis of the PCG revealed the main component was glycerol with only a low level of contaminated-FFA or decanoic acid (data not shown). To obtain a higher purity of glycerol, repetitive adsorption was performed under otherwise the same adsorption conditions each cycle. The first and third repetitive adsorptions reduced the ash content further, leaving an increased purity of glycerol up to 95.1 and 96.9 wt.%, respectively. At this stage, the color of the obtained PCG was clear (Fig. 1d).

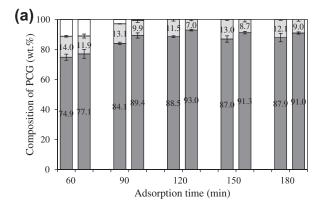
3.6. Adsorption isotherm

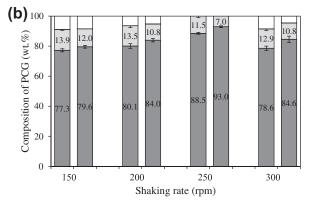

The equilibrium adsorption of ash and the other contaminants from PTCG by the KOH-800AC at 67 g/L PTCG for 120 min with shaking at 250 rpm is shown in Fig. 7. The adsorption capacity (q_e) initially increased to 3.68 and 7.0 g/g for ash and other contaminants, respectively, with increasing equilibrium concentrations (C_e) to 0.121 and 0.026 g/mL, respectively, and thereafter


only slightly increased with further increases in the equilibrium constant. Since the equilibrium adsorption isotherm can be used to describe the interactive behavior between the adsorbates and adsorbents, as well as the design of adsorption system, then two adsorption isotherm models, Langmuir and Freundlich isotherms, were used to analyze the obtained results.


The Langmuir model is the most commonly used model for monolayer adsorption on a surface with a finite number of identical sites [52]. The linear form of the Langmuir isotherm shows the relationship between C_e/q_e and C_e , as represented by the following equation:

$$\frac{C_e}{q_e} = \frac{1}{k_L q_0} + \frac{C_e}{q_0} \tag{8}$$


where q_e is the adsorption capacity at the equilibrium adsorbate concentration (or ash and other contaminants in this case), k_L is the Langmuir constant, C_e is residue adsorbate concentration at



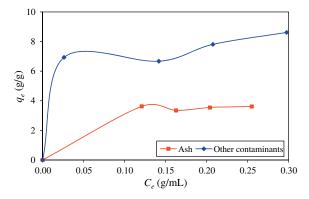
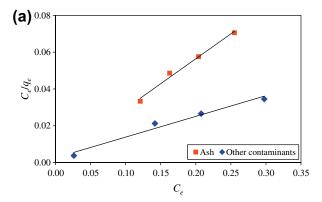
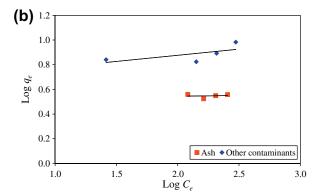


Fig. 5. Effect of the carbonization temperature on the content of (\blacksquare) glycerol, (\blacksquare) ash, and (\square) other contaminants in the purified crude glycerol (PCG) obtained by adsorption with the sludge-derived ACs prepared by chemical activation with (a) H_3PO_4 , (b) K_2CO_3 and (c) KOH at different carbonization temperatures.

Fig. 6. Effect of the (a) adsorption time and (b) shaking rate on the content of (glycerol, (log) ash and (□) the other contaminants in the EG obtained after adsorption of PCTG by commercial AC (left bare) and KOH-800AC (right bar).


Fig. 7. Equilibrium adsorption of ash and other contaminants from PTCG by the KOH-800AC (67 g/L) for 2 h at 250 rpm.


equilibrium and q_0 is the maximum amount of adsorption corresponding to a complete monolayer coverage.

Thus, the plots of $C_e|q_e$ and C_e allow the determination of the q_0 and k_L values (Fig. 8). In addition, the dimensionless separation factor constant (r) calculated from the Langmuir isotherm according to Eq. (9) can be used to estimate the adsorption favorability. Values of r > 1 and 0 < r < 1 show unfavorable and favorable adsorptions, respectively, while values of r = 1 and r = 0 show a linear adsorption and irreversible adsorption, respectively [53].

$$r = \frac{1}{1 + k_t C_0} \tag{9}$$

where C_0 is the initial concentration of ash and other contaminants.

Fig. 8. Linearized plots of the (a) Langmuir and (b) Freundlich models for the adsorption of ash and other contaminants from PTCG by the KOH-800AC (67 g/L) for 2 h at 250 rpm.

The Freundlich isotherm is an empirical model that is valid for non-ideal adsorption on heterogeneous surfaces as well as for multilayer adsorption [54]. It can predict the increase in concentration of the ionic species adsorbed on the adsorbent surfaces with increasing concentrations of the ionic species in the liquid phase [55]. A linear form can be expressed by the following equation:

$$\log q_e = \log k_F + \frac{1}{n} \log C_e \tag{10}$$

where k_F is the Freundlich isotherm constant that indicates the adsorption capacity, and n is the adsorption intensity that varies with the heterogeneity of the material. The adsorption is favorable when values of 1/n are in the range of 0.1 < 1/n < 1 [56]. A plot of the linearized log q_e vs. log C_e of Eq. (10).

The Langmuir isotherm provided the highest coefficient of determination (R^2) for fitting the data for the adsorption of both the ash and other contaminants (Table 4). Thus, the Langmuir isotherm fits well for all both ash and other contaminants in this study. From the Langmuir model, the maximum amount of adsorption corresponding to the complete monolayer coverage (q_0) was observed in case of the other contaminants, which was some 2.41-fold greater than that for ash. The maximum Langmuir constant (k_L) was observed for ash (0.122 L/g), which was 2.77-fold higher than that for the other contaminants. The values of R_L of both impurities were between 0 and 1, indicating the favorable adsorption of ash and the other contaminants on the sludge-derived AC.

4. Conclusions

CG derived from the waste used-oil/methanol utilizing biodiesel (FAME) production plant was purified by adsorption using

Table 4Langmuir and Freundlich isotherm constants for the adsorption of ash and the other contaminants.

Parameters	Langmuir constants			R_L	Freundlich constants		
	q ₀ (g/g)	$k_L (L/g)$	R^2		$k_F (L/g)$	1/n	R^2
Ash	3.69	0.122	0.9884	0.022	0.00331	0.012	0.4248
Contaminants	8.88	0.044	0.9741	0.049	0.00475	0.100	0.0112

sludge-derived ACs. The H₃PO₄ activation provided the worst textural properties of the examined ACs, while the K₂CO₃ or KOH activations provided the ACs with more suitable textural properties, close to that of the commercial activated AC. The H₃PO₄ activation provided a low quantity of oxygen-containing surface functional groups, especially carbonyl groups and increasing the subsequent carbonization temperature decreased the level of oxygen-containing surface functional groups. In contrast, the K₂CO₃- and KOHimpregnation as well as the carbonization temperature did not significantly affect the quantity of the carbonyl, carboxyl or lactone groups, but significantly affected the quantity of carbonyl groups. A carbonization temperature of 800 °C exhibited the highest BET surface area and the quantity of carbonyl group. In utilization, the surface chemistry as well as the textural properties of ACs played a more important role in the adsorptive purification of CG. The adsorption time and the shaking rate influenced the adsorptive purification of CG. The adsorption of ash or other contaminants via sludge-derive ACa followed the Langmuir isotherm.

Acknowledgments

The authors would like to thank the Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University for facility support, the Bangchak Petroleum Public Co., Ltd. for samples and materials; the TRF-CHE Research Grant for Mid-Career University Faculty (Grant No. RSA5480015); and the Research Foundation Enhancement, Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University for financial support. Also, we thank the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University, and Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

References

- T. Werpy, G. Petersen, Top value added chemicals from biomass, Results of Screening for Potential Candidates from Sugars and Synthesis Gas, US DOE Report, vol. 1, 2004.
- [2] M. Olga Guerrero-Pérez, J.M. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, Recent inventions in glycerol transformations and processing, Rec. Patents Chem. Eng. 2 (2009) 11–21.
- [3] S. Adhikari, S.D. Fernando, A. Haryanto, Hydrogen production from glycerin by steam reforming over nickel catalysts, Renew. Energ. 33 (2008) 1097–1100.
- [4] M. Slinn, K. Kendall, C. Mallon, J. Andres, Steam reforming of biodiesel byproduct to make renewable hydrogen, Bioresource Technol. 99 (2008) 5851– 5858.
- [5] P. Kampe, L. Giebeler, D. Samuelis, J. Kunert, A. Drochner, F. Haa, A.H. Adams, J. Ott, S. Endres, G. Schimanke, T. Buhrmester, M. Martin, H.F.H. Vogel, Heterogeneously catalysed partial oxidation of acrolein to acrylic acid-structure, function and dynamics of the V-Mo-W mixed oxides, Phys. Chem. 9 (2007) 3577-3589.
- [6] W. Hu, D. Knight, B. Lowry, A. Varma, Selective oxidation of glycerol to dihydroxyacetone over Pt-Bi/C catalyst: optimization of catalyst and reaction conditions, Ind. Eng. Chem. Res. 49 (2010) 10876–10882.
- [7] J. Szajewski, Warsaw poison control centre (August, 1991). Propylene glycol (PIM 443) [Online]. IPCS INChem. http://www.inchem.org/documents/pims/chemical/pim443.htm [25.08.11].
- [8] Z. Wang, J. Zhuge, H. Fang, B.A. Prior, Glycerol production by microbial fermentation: a review, Biotechnol. Adv. 19 (2001) 201–223.
- [9] M.J. Taherzadeh, L. Adler, G. Lidén, Strategies for enhancing fermentative production of glycerol – a review, Enzym. Microb. Technol. 31 (2002) 53–56.
- [10] T.A. Werpy, J.J.G. Frye, A.H. Zacher, D.J. Miller, US20046677385, 2004.
 [11] M. Hájek, F. Skopal, Treatment of glycerol phase formed by biodiesel production, Bioresources Technol. 101 (2010) 3242–3245.

- [12] DEDE (Department of Alternative Energy Development and Efficiency), Ministry of Energy, [Online 2013] <a href="http://www.dede.go.th/dede/index.php?option=com_content&view=article&id=898<emid=123&lang=th">http://www.dede.go.th/dede/index.php?option=com_content&view=article&id=898<emid=123&lang=th.
- [13] T.L. Ooi, K.L. Yong, K. Dzulkefly, W.M.Z. Wan Yunus, A.H. Hazimah, Crude glycerine recovery from glycerol residue waste from a palm kernel oil methyl ester plants, J. Oil Palm Res. 13 (2001) 16–22.
- [14] X. Lancrenon, J. Fedders, An innovation in glycerin purification, Biodiesel Mag. (May 2008).
- [15] F. Schaffner, P.Y. Pontalier, V. Sanchez, F. Lutin, Bipolar electrodialysis for glycerin production from diester wastes, Filtra. Separ. 40 (2003) 35–39.
- [16] M. Carmona, J. Valverde, A. Prez, Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium removal Part I, J. Chem. Techno. Biotechnol. 84 (2009) 738–744.
- [17] M. Carmona, A. Lech, A. de Lucas, A. Perez, J.F. Rodriguez, Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium and chloride removal Part II, J. Chem. Techno. Biotechnol. 84 (2009) 1130– 1135.
- [18] W.N.R.W. Isahak, M. Ismail, M.A. Yarmo, J.M. Jahim, J. Salimon, Purification of crude glycerol from transesterification RBD palm oil over homogeneous and heterogeneous catalysts for the biolubricant preparation, J. Appl. Sci. 10 (2010) 2590–2595.
- [19] S. Kongjao, S. Damronglerd, M. Hunsom, Purification of crude glycerol derived from waste used-oil methyl ester plant, Korean J. Chem. Eng. 27 (2010).
 [20] R. Manosak, S. Limpattayanate, M. Hunsom, Sequential-refining of crude
- [20] R. Manosak, S. Limpattayanate, M. Hunsom, Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption, Fuel Process. Technol. 92 (2010) 92– 99.
- [21] A. Javani, M. Hasheminejad, K. Tahvildari, M. Tabatabaei, High quality potassium phosphate production through step-by-step glycerol enrichment: a strategy to economize biodiesel production, Biores. Technol. 104 (2012) 788–790.
- [22] Y. Wang, R.T. Yang, Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration, Langmuir 23 (2007) 3825–3831
- [23] Q. Wang, X. Liang, W. Qiao, C. Liu, X. Liu, L. Zhan, L. Ling, Preparation of polystyrene-based activated carbon spheres with high surface area and their adsorption to dibenzothiophene, Fuel Process. Technol. 90 (2009) 381–387.
- [24] A.L. Ahmad, S. Sumathi, B.H. Hameed, Adsorption of residue oil from palm oil mill effluent using powder and chitosan flake: equilibrium and kinetic studies, Water Res. 39 (2005) 2483–2494.
- [25] H.H. Sokker, Naeem M. El-Sawy, M.A. Hassan, Bahgat E. El-Anadouli, Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization, J. Hazard. Mater. 190 (2011) 359–365.
- [26] A.L. Ahmad, S. Sumathi, B.H. Hameed, Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study, Chem. Eng. J. 108 (2005) 179–185.
- [27] K. Okiel, Mona El-Sayed, Mohamed Y. El-Kady, Treatment of oil-water emulsions by adsorption onto activated carbon, bentonite and deposited carbon, Egypt J. Petrol. 20 (2011) 9–15.
- [28] M.H. Ma, C.I. Lin, Adsorption kinetics of β-carotene from soy oil using regenerated clav. Separ. Purif. Technol. 39 (2004) 201–209.
- regenerated clay, Separ. Purif. Technol. 39 (2004) 201–209. [29] W. Wainipee, D.J. Weiss, M.A. Sephton, B.J. Coles, C. Unsworth, R. Court, The effect of crude oil on arsenate adsorption on goethite, Water Res. 44 (2010) 5673–5683.
- [30] C. Solisio, A. Lodi, A. Converti, M.D. Borghi, Removal of exhausted oils by adsorption on mixed Ca and Mg oxides, Water Res. 36 (2002) 899–904.
- [31] D. Angelova, I. Uzunov, S. Uzunova, A. Gigova, L. Minchev, Kinetics of oil and oil products adsorption by carbonized rice husks, Chem. Eng. J. 172 (2011) 306– 311.
- [32] C.H. Tessmer, R.D. Vidic, L.J. Uranowski, Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols, Environ. Sci. Technol. 31 (1997) 1872–1879.
- [33] X. Chen, S. Jeyaseelan, N. Graham, Physical and chemical properties study of the activated carbon made from sewage sludge, Waste Manage. (Oxford) 22 (2002) 755–760.
- [34] D.T. Johnson, K.A. Taconi, The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production, Eng. Progress 26 (2007) 338–343.
- [35] A. Ros, M.A. Lillo-Ródenas, E. Fuente, M.A. Montes-Morán, M.J. Martín, A. Linares-Solano, High surface area materials prepared from sewage sludge-based precursors, Chemosphere 65 (2006) 132–140.
- [36] P.J.M. Carrott, M.M.L. Ribeiro Carrott, P.A.M. Mourao, Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork, Anal. Appl. Pyrol. 75 (2006) 120–127.

- [37] M. Molina-Sabio, F. Rodrigues-Reinoso, F. Caturla, M.J. Sellés, Porosity in granular carbons activated with phosphoric acid, Carbon 33 (1995) 1105– 1113.
- [38] M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by $\rm H_3PO_4$ activation, Carbon 36 (1998) 1085–1097.
- [39] F.S. Zhang, J.O. Nriagu, H. Itoh, Mercury removal from water using activated carbons derived from organic sewage sludge, Water Res. 39 (2005) 389–395.
- [40] K. Muroyama, J. Hayashi, A. Sato, S. Takemoto, Production of activated carbon with high specific surface area from bean-curd refuse by chemical activation, Tanso 172 (1996) 95–99.
- [41] J. Hayashi, T. Horikawa, K. Muroyama, V.G. Gomes, Activated carbon from chickpea husk by chemical activation with K₂CO₃: preparation and characterization, Micropor. Mesopor. Mat. 55 (2002) 63–68.
- [42] Y. Sanada, M. Suzuki, K. Fujimoto, Activated Carbon: Its Fundamentals and Application, Kodan-sha, Tokyo, 1975.
- [43] T. Yang, A.C. Lua, Characteristics of activated carbons prepared from pistachionut shells by potassium hydroxide activation, Micropor. Mesopor. Mat. 63 (2003) 113–124.
- [44] T. Otowa, Y. Nojima, T. Miyazaki, Development of KOH activated high surface area carbon and its application to drinking water purification, Carbon 35 (1997) 1315–1319.
- [45] M.A. Lillo-Raodenas, D. Cazorla-Amoros, A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism, Carbon 41 (2003) 267–275.
- [46] R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York (USA), 1988.
- [47] J. Guo, A.C. Lua, Surface functional groups on oil-palm-shell adsorbents prepared by $\rm H_3PO_4$ and KOH activation and their effects on adsorptive capacity, Chem. Eng. Res. Des. 81 (2003) 585–590.

- [48] H. Jankowska, A. Swiatkowski, J. Choma, Active Carbon, Ellis Horwood, New York, 1991.
- York, 1991.
 [49] N.D. Epiotis, Electrocyclic reactions. IV. Importance of donor-acceptor interactions in photocycloadditions involving the carbonyl group, J. Am. Chem. Soc. 94 (1972) 1946–1950.
- [50] G.X. Yu, S.X. Lu, H. Chen, Z.N. Zhu, Thermal regeneration of activated carbon saturated with p-nitrophenol, Carbon 43 (2005) 2285–2293.
 [51] A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M.D.
- [51] A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M.D. Tascón, Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties, Carbon 40 (2002) 1493–1505.
 [52] A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen, Comparative adsorption of Cu(II),
- [52] A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen, Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater. 154 (2008) 184–191.
- [53] K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions, Ind. Eng. Chem. Fund. 5 (1966) 212–218.
- [54] J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif, A. Borgna, Desulfurization of diesel fuels by selective adsorption on ACs: competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons, Chem. Eng. J. 166 (2011) 207–217.
- [55] I. Vázquez, J. Rodríguez-Iglesias, E. Marañón, L. Castrillón, M. Álvarez, Removal of residual phenols from coke wastewater by adsorption, J. Hazard. Mater. 147 (2007) 395–400.
- [56] J.J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater. 162 (2009) 616– 645.

International Journal of ELECTROCHEMICAL SCIENCE

www.electrochemsci.org

Product Distribution of Electrochemical Conversion of Glycerol via Pt Electrode: Effect of Initial pH

Mali Hunsom^{1, 2,*} and Payia Saila¹

*E-mail: mali.h@chula.ac.th

Received: 21 June 2013 / Accepted: 23 July 2013 / Published: 20 August 2013

The effect of the initial solution pH (1, 7 and 11) on the glycerol conversion and product distribution by electrochemical technique with a Pt electrode was explored at a laboratory scale and ambient condition. Under steady-state cyclic voltammetry (CV), the electrochemical conversion of glycerol to various reaction intermediates and products was observed. Under a galvanostatic mode, the glycerol conversion level as well as the product distribution and yields were highly dependent on the initial electrolyte pH. The conversion of glycerol underwent first-order rate kinetics model with a rate constant of 2.95×10^{-3} , 7.95×10^{-4} and 9.20×10^{-4} min⁻¹ for an initial electrolyte solution pH of 1, 7 and 11, respectively. 1,2-Propanediol (1,2-PD) and 1,3-PD were only generated at pH 1, while ethylene glycerol, acetol, glycidol and acrolein were formed in the electrolytes at all three tested pH values. Product analysis revealed that the electrochemical conversion under these conditions could convert glycerol directly and quickly to glycidol, but more slowly to ethylene glycerol, acetol, acrolein, 1,2-PD and 1,3-PD.

Keywords: Glycerol; Electrosynthesis; Pt electrode; Cyclic voltammetry

1. INTRODUCTION

Glycerol is the main by-product from biodiesel production, with approximately 100 kg of glycerol being generated per ton of biodiesel produced (10% (w w⁻¹)) [1-2]. The growing biodiesel market has generated an oversupply of glycerol, resulting in a decreased commercial price of glycerol that negatively impacts upon the economy of biodiesel production. Thus, the current exploitation of glycerol as a raw material focuses on the transformation of glycerol to added-value products because its molecule is rich in functionalities with three -OH groups [3]. A diverse array of processes to

¹ Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

² Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

transform glycerol into more valuable chemicals have been developed, such as pyrolysis [4-7], gasification [8-10], selective oxidation [11, 12], biological processes [13-15], esterification and acetylation [16, 17], and hydrogenolysis [18-22]. However, many of these processes have drawbacks, such as a lack of sufficient selectivity and yield. Some processes require specialized or high running-cost production systems (e.g., high temperature and pressure) or require a long reaction time, preventing them from being commercially viable [23]. To address these drawbacks and to facilitate the commercial conversion of glycerol to valuable compounds, electrochemical conversion approaches have been evaluated as an alternative method that could be used to convert glycerol waste from the biodiesel industry to valuable alternative compounds. This is because of its relative simplicity and robustness in structure and operation.

In general, the electrochemical conversion of alcohols involves various different steps: alcohol adsorption, breaking of the inter-atomic bonds, electronic charge transfer, reaction between the oxygenated species and fragments from the alcohol, and desorption of the reaction products [24]. As a result, the conversion efficiency depends on the: (i) interaction between the catalyst surface and the alcohol molecules, (ii) interaction between the catalyst surface and the resulting adsorbed fragments from the original alcohol molecules, and (iii) formation of surface oxides. In other words, the degree of glycerol conversion, the product distribution obtained and the reaction mechanism depends significantly on (i) the geometric and electronic properties of the electrodes, (ii) the glycerol concentration, and (iii) the working conditions of the electrochemical conversion process (electrolyte solution, solution pH, temperature, etc) [23].

During controlled potential electrolysis, glycerol can be oxidized to formic acid, oxalic acid and glycolic acid in an acid electrolyte (0.1 M HClO₄) when the potential of electrolysis was set in the so called "oxygen region". However, the selectivity towards the formation of glyceraldehyde is very high when the applied potential is chosen before the beginning of the oxidation of the electrode surface. Conversely, in an alkaline electrolyte (0.1 M NaOH), very few dissociation products were detected [25]. A simple application of a low voltage (1.1 V vs. Ag | AgCl) to a solution of glycerol (50 mM) buffered at pH 9.1 with bicarbonate (0.2 M) in the presence of catalytic TEMPO (7.5 mM) could oxidize glycerol selectively to 1,3-dihydroxyacetone (DHA) over a glassy carbon electrode [26]. However, prolonging the reaction time resulted in the formation of hydroxypyruvic acid.

By using CV, glycerol was first oxidized in alkaline media (0.1 M NaOH), to glyceric acid on both gold (Au) and platinum (Pt) electrodes with a lower overpotential on Pt electrodes. Afterwards, glyceric acid was further oxidized by cleavage of a C-C bond into glycolic acid and formic acid on both electrodes [27]. However, a much higher conversion activity of glyceric acid to glycolic acid and formic acid was observed on a Au electrode than on a Pt one, which was ascribed to the higher surface oxidation potential of Au compared to Pt. In a strong acid electrolyte (pH 1, H₂SO₄), glycerol was converted to various added-value products, such as 1,2-propanediol (1,2-PD), 1,3-PD, glycidol, etc [28]. The presence of bismuth (Bi) on the Pt/C electrode in 0.5 M H₂SO₄ can block the oxidation of the 1°-OH group of glycerol, resulting in the oxidation of the 2°-OH group to provide 100% selectivity in the synthesis of DHA [29]. The templated binary Pt₈₄Ru₁₆, Pt₉₆Sn₄ and ternary Pt₈₈Ru₆Sn₆ catalysts supported on a glassy carbon electrode enhanced the complete oxidation of glycerol to CO₂ in 1.0 M KOH [30]. The electrooxidation of glycerol on a palladium-rhodium (PdRh) electrode in alkaline

media (0.1 M KOH) yielded carbonate (${\rm CO_3}^{2-}$) as the main product and glyceraldehyde, glycerate, glycolate and oxalate as minor products [31]. For application to power generation, approximately 10 m³ day⁻¹m⁻³ (reactor volume basis) of H₂ was produced from glycerol over Pt on a ruthenium-iridium (RuIr) oxide catalyst in a proton exchange membrane (PEM) electrolysis cell with an energy efficiency of 44% [32]. Although this production rate is high compared to that obtained with microbial cells, it is still low compared with a conventional PEM water electrolysis cell. In the gas phase at an intermediate temperature (235–260 $^{\circ}$ C), C1 (CO₂, CO, CH₄), and C₂ (C₂H₆ and glycolic acid) compounds plus H₂ were the main reaction products formed from the electro-oxidation of glycerol with a Pt/C electrode. The selectivity for the C1 products (CO₂, CO and CH₄) increased with increasing electrode potential [33].

In this work, the galvanostatic mode of electrochemical conversion was used to convert glycerol in electrolyte solutions of three different pH values (pH 1, 7 and 11). The types of generated products as well as their yields were traced. Finally, the mechanism of the electrochemical conversion of glycerol was proposed.

2. EXPERIMENTAL

The aqueous glycerol solution was prepared from a commercial glycerol stock (99.5%, Fisher) at a constant initial concentration of 0.3 M. The pH of the glycerol solution was adjusted by analytical grade H₂SO₄ (98%, Qrec) or NaOH (1 M, Qrec) as required. The electrochemical conversion of glycerol was performed at a constant CV using a Potentiostat/Galvanostat (Auto Lab, model PG stato). Two cylindrical Pt grids with a surface area of 31.82 and 121.38 cm² were used as the working and counter electrodes, respectively, while Ag | AgCl was used as the reference electrode. The scan potential was varied in the range from +2.0 to -0.5 V at a scan rate of 5 mV s⁻¹, and the system was agitated by a magnetic stirrer at a constant rate of 650 rpm. The product composition after electrolysis at steady-state CV was examined by gas chromatography-mass spectrometry (GC-MS, G3174A, Agilent) equipped with a flame ionization detector.

The electrochemical conversion of glycerol under galvanolstatic mode was explored at a laboratory scale at ambient temperature (\sim 25 °C) and pressure (\sim 101 kPa). The electrochemical reactor was made from Pyrex glass having a total capacity of 600 mL. The temperature of electrolytic cell was controlled by a cooling system. A regulated DC power supply (ZS 3205-2X type) was employed to supply the external electricity at a galvanostatic mode (0.14 A cm $^{-2}$). The conversion of glycerol (calculated from Eq. (1)) as well as the yield of value-added products (calculated from Eq. (2)) were analysed by high performance liquid chromatography (HPLC: Agilent 1100) with a RID-10A refractive index detector. The stationary phase was a Pinnacle II C18 column (240 \times 4.6 mm) and the mobile phase was a 99.9:0.1 (v v $^{-1}$) ratio of 10 mM H₂SO₄: pure CH₃OH, passed through the column at 0.5 mL min $^{-1}$.

Gly cerol conversion (%) =
$$\frac{\text{amount of gly cerol converted (C-based mole)}}{\text{total amount of gly cerol in reactant (C-based mole)}} \times 100$$
 (1)

Yield (%) =
$$\frac{\text{amount of gly cerol converted to each product (C - based mole)}}{\text{total amount of gly cerol in reactant (C - based mole)}} \times 100$$
 (2)

3. RESULTS AND DISCUSSION

3.1 Steady-state CVs of glycerol solution and supporting electrolytes

The typical steady-state CVs of a 0.3 M glycerol solution and supporting electrolytes at different initial pH values (1, 7 and 11) with an applied potential of +2.0 to -0.5 V are shown in Fig. 1. In a strongly acidic (pH 1) electrolyte solution in the absence of glycerol (Fig. 1a), the utilized Pt electrode showed a quasi-reversible system at the anodic and cathodic scan regions. A small increase in the current was observed at too high a positive (E > +1.3 V) or too low a potential (E < -0.25 V), which is related to the oxidation of H₂O to O₂ (region I) and the reduction of H⁺ to H₂ (region II), respectively. In the presence of glycerol, various anodic current peaks were observed in the anodic and cathodic scan regions. The first oxidation peak (peak A), observed at 0.55 V, in the anodic scan corresponds to the oxidation of glycerol (1.8 mA). At a potential greater than +0.75 V, a sharp increase in the current compared with the blank current was observed. The shoulder peak (peak B) connected to the oxygen region (region I) was also attributed to the oxidation of glycerol. During the cathodic scan region, after the reductive peak of Pt-oxide (peak C), one sharp peak (peak D) was observed that was attributed to the incomplete oxidization of carbonaceous residues on the catalyst surface during the negative sweep [34-35]. These carbonaceous residues can accumulate tightly on the Pt surface, blocking the active catalyst sites for subsequent reactions and so resulting in sluggish anodic reactions [35].

In a neutral (pH 7) electrolyte (Fig. 1b), a very low current was detected in the CV plot in the presence of the supporting electrolyte without glycerol except for in the regions in which the O2 (region I) and H₂ (region II) were generated. The presence of glycerol led to a slightly higher current over the investigated potential range. Nevertheless, no sharp peak was observed, suggesting the accumulation of strongly absorbed hydroxyls on the electrode surface under the neutral condition. In a strong basic (pH 11) electrolyte (Fig. 1c), a very low current was detected in the presence of the supporting electrolyte only, except again for in the regions I and II. In the presence of glycerol, two broad oxidation peaks were observed at a peak potential of -0.03 V (peak A) and +0.32 V (peak B) in the forward scan. Interestingly, both peaks were shifted to a more negative potential compared with those at pH 1, indicating that the oxidation of glycerol occurs more easily at pH 11 than at pH 1 (Fig. 1a). For the backward scan, no oxidation was observed, suggesting that the electrode is not poisoned in the basic medium. Typically, the poisoning effect on the electrode depends significantly on the type and concentration of the supporting electrolyte as well as the type of electrode. The use of 1.0 M NaOH as a supporting electrolyte for glycerol oxidation can enhance the formation of a small poisoning effect on the Pt electrode surface [25], which can limit the glycerol adsorption rate on the freshly reduced Pt surface during the relatively rapid negative potential sweep. The oxidation of glycerol on a PdRh electrode in 0.1 M KOH resulted in the production of CO_3^{2-} as the principal product [31].

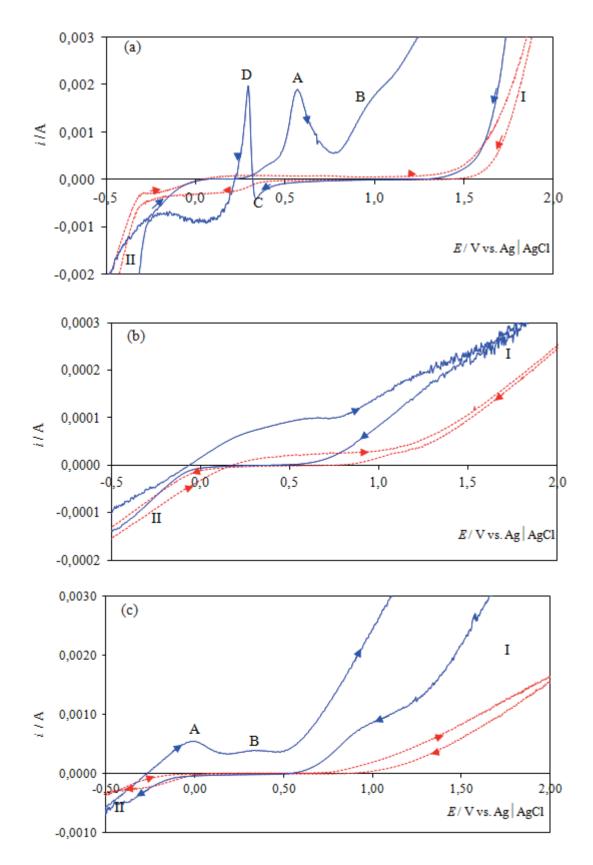
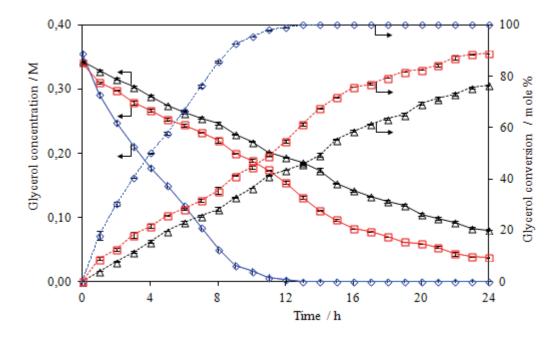


Figure 1. Polarization curve of 0.3 M glycerol at (a) pH 1, (b) pH 7 and (c) pH 11 over Pt electrode.

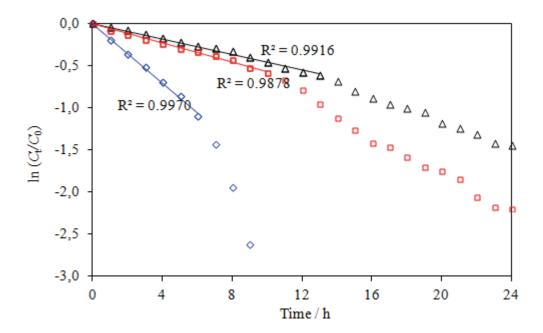
The product compositions following the glycerol electrolysis by CV were traced by GC-MS analysis. The presence of lower and higher molecular weight products than glycerol were observed to vary as a function of the initial electrolyte pH (data not shown). The identities of compounds determined through matching their mass spectra in the GC-MS computer library were deemed to be reliable and are summarized in Table 1. Acetol, glycidol and 2-methyl-2-pentanol were generated by the electrochemical conversion of glycerol at all three investigated electrolyte pH values. Other compounds, such as 1,2-PD, 1,3-PD, 1,2-butanediol and 5-methyl-1-heptanol, were only produced at pH 1, whilst acrolein and glyceraldehyde were only produced at pH 7, and 2-hexanol, 2,4-dimethyl-1,3-dioxane and 4-methyl-1-hexanol were only found at pH 11.

Some of these compounds have a significantly higher market value compared with that for crude glycerol (88 USD kg⁻¹ or 111 USD L⁻¹). For example, the commercial prices of technical grade acetol (90% purity), natural grade glycidol (96% purity) and reagent grade 2-methyl-2-pentanol (99% purity) are greater than 556, 611 and 7923 USD kg⁻¹, respectively. The commercial prices of 1,2-PD (98% purity) and 1,3-PD (98% purity), produced by electrochemical conversion of glycerol in an acidic electrolyte are 190 USD L⁻¹ and 481 USD kg⁻¹, respectively. Also, the commercial prices of reagent grade acrolein (97% purity) and glyceraldehyde (90% purity), generated under a neutral condition are greater than 150 and 74,657 USD kg⁻¹, respectively. In addition, they have a high market capacity and application in various industries [1].


Table 1. List of added-value chemicals generated by the steady-state CVs of glycerol solution at different initial pH values and their current price and CAS reference number.

Chemical	Initial solution pH		USD (%purity) [36]	[CAS no.]	
	pH 1	pH 7	pH 11		
Acetol/ Hydroxyacetone	✓	✓	✓	556.3 kg ⁻¹ (90%) ^a	[116-09-6]
Glycidol	✓	✓	✓	611.3 kg ⁻¹ (96%) ^b	[556-52-5]
2-Methyl-2-pentanol	✓	✓	✓	7923 kg ⁻¹ (99%) ^c	[590-36-3]
3-Methyl-2-pentanone	✓	-	✓	1,527 kg ⁻¹ (99%)	[565-61-7]
2,3-Hexanediol	✓	-	✓	80,960 L ⁻¹ (99%) ^c	[617-30-1]
1,2-Propanediol	✓	-	-	190 L ⁻¹ (>99.5%) ^c	[57-55-6]
1,2-Butanediol	✓	-	-	174.9 L ⁻¹ (>98.0%) ^d	[584-03-2]
1-Isopropoxy-2-propanol	✓	-	-	213,450 kg ⁻¹ (98%) ^c	[3944-36-3]
1,3-Propanediol	✓	-	-	481.8 kg ⁻¹ (98%) ^c	[504-63-2]
1,3-Dioxolane	✓	-	-	165.5 L ⁻¹ (99%) ^c	[646-06-0]
1,3-Dioxolane-4-methanol,2,2-dimethyl	✓	-	-	492.3 kg ⁻¹ (98%) ^c	[100-79-8]
5-Methyl-1-heptanol	✓	-	-	894,000 L ⁻¹ (96%) ^c	[57803-73-3]
2,4-Dimethyl-1,3-dioxane	-	-	✓	10,504 kg ^{-1c}	[766-20-1]
Ethylene glycol isopropyl ether	-	-	✓	65.0 L ⁻¹ (99%) ^c	[109-59-1]
2-Hexanol	-	-	✓	$2,630 \text{ kg}^{-1} (>98\%)^{\text{c}}$	[626-93-7]
Tetramethylsilane	-	-	✓	2,320 kg ⁻¹ (>99%) ^c	[75-76-3]
4-Methyl-1-hexanol	-	-	✓	104,000 L ⁻¹ (>98%) ^c	[1767-46-0]
Acrolein/acryraldehyde	-	✓	-	150 kg ⁻¹ (97%) ^c	[107-02-8]
4-Pentene-2-ol	-	✓	-	22,344 kg ⁻¹ (99%) ^c	[625-31-0]
Propanoic acid/ Propionic acid	-	✓	-	673.5 L ⁻¹ (>99.5%) ^c	[79-09-4]
3-Pentene-2-ol	-	✓	-	32,607 kg ⁻¹ (96%) ^c	[3899-34-1]
Glyceraldehyde	-	✓	-	74,644 kg ⁻¹ (>90%) ^c	[56-82-6]

^aTechnical grade, ^bNatural grade, ^cReagent grade, ^dPurum grade


3.2 Effect of the initial electrolyte pH on the electrochemical glycerol conversion level and distribution of the products

The variation in the glycerol concentration and conversion during the long-term electrolysis at different initial electrolyte pH values is given as a function of time in Fig. 2. As expected, the glycerol concentration decreased while the glycerol conversion increased with increasing electrolysis time. The highest glycerol conversion was observed in the pH 1 electrolyte, the lowest at pH 7. The glycerol was completely converted within the first 13 h at an initial electrolyte pH value of 1, while the conversion was around 49.4 and 67.6% at an initial electrolyte pH of 7 and 11, respectively. This might be attributed to the different conversion mechanisms in the presence of different H⁺ and OH⁻ concentrations. As outlined in the introduction, the electrolysis of alcohol is a multi-step reaction [23]. The efficiency of the alcohol conversion and product yield depended on the interaction between both the electrode surface and the alcohol molecules and the resulting adsorbed product fragments, as well as the formation of surface oxides [24]. In the case of glycerol, the electrochemical conversion may occur after the adsorption of glycerol on either the oxide-free Pt (Pt) or oxidized Pt (PtO) electrode surface in an acid electrolyte or on the hydroxide-adsorbed Pt (Pt-OH) surface in a basic electrolyte [25, 35, 37]. Besides, the electrooxidation of glycerol to some intermediate species, such as glyceraldehydes, requires only the abstraction of two protons and no adsorbed OH is needed [38]. In a basic electrolyte the available OH can act as a catalyst to accelerate the dehydration and retro-aldol reaction of glyceraldehyde [39-42], resulting in the variation of glycerol conversion products formed in the presence of different pH conditions.

Figure 2. Variation in the (–) glycerol concentration and (···) glycerol conversion by electrochemical conversion at an initial glycerol solution pH of 1 (\diamondsuit), 7 (\triangle), and 11 (\square) at a current intensity of 4.5 A using a Pt electrode.

The initial kinetics of glycerol conversion was calculated using a macro-kinetics model based upon the first-order rate kinetics. The decrease in the glycerol concentration at all three initial pH values was found to fit the model very well over the first 6, 10 and 13 h at pH 1, 11 and 7, respectively, with coefficient of determination (R^2) of greater than 0.987 in all three cases (Fig. 3). The linear plot obtained during the first 6, 13 and 10 h of electrolysis time of the glycerol solution at an initial pH of 1, 7 and 11, respectively, gave a rate constant (k) of 2.95×10^{-3} , 7.95×10^{-4} and 9.20×10^{-4} min⁻¹, respectively.

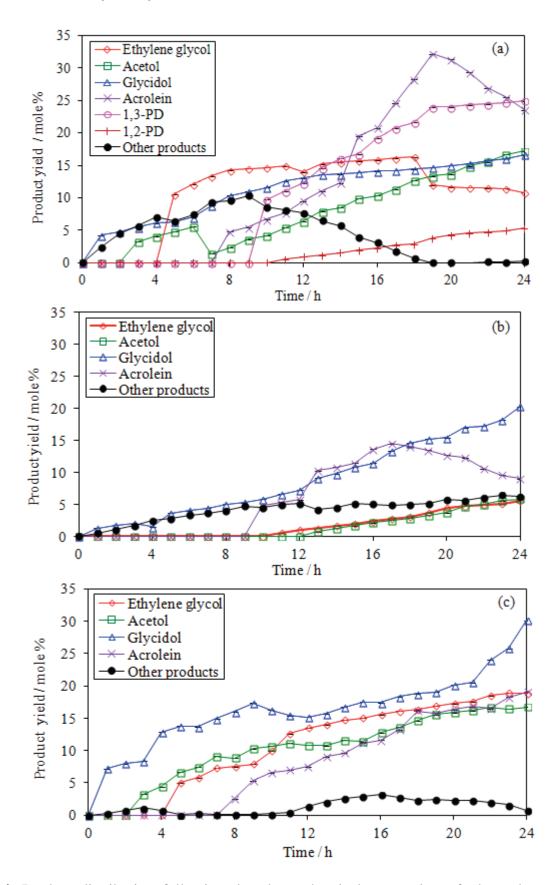


Figure 3. First-order kinetics of the electrochemical conversion of glycerol at an initial glycerol solution pH of 1 (\diamondsuit), 7 (\triangle), and 11 (\square) with a current intensity of 4.5 A using a Pt electrode.

The variation in the yield of the high market value products, as detected by HPLC analysis, during the long-term electrolysis of glycerol in the presence of electrolytes with an initial pH of 1, 7 and 11 is demonstrated in Fig. 4. Glycidol ($C_3H_6O_2$) and acrolein (C_3H_4O) were the major reaction products generated at all three initial pH values, although ethylene glycol ($C_2H_6O_2$) and acetol ($C_3H_6O_2$) were produced at both pH 1 and 11. In the strong acidic electrolyte, 1,2-PD and 1,3-PD were also generated at proportionally high levels, but were not found in the neutral and basic electrolytes. The strong acid and basic electrolytes lead to a high level of generated reaction products compared to that obtained with the neutral pH electrolyte. Ethylene glycerol was generated after 4 h of electrolysis time in both pH 1 and pH 11 (but not pH 7) electrolytes, implying that the glycerol cannot be directly converted to ethylene glycerol. The yield of ethylene glycerol then increased, slightly at pH 1 and significantly at pH 11, with further electrolysis time, although in the acidic electrolyte it decreased slightly after 18 h electrolysis and longer, while it continued to increase in the basic electrolyte. The conversion of glycerol to ethylene glycol might involve a two-step reaction; the (i) dehydrogenation of adsorbed glycerol to the intermediate species or glyceraldehyde ($C_3H_6O_3$), and (ii) the cleavage of the

C-C bond of glyceraldehyde to ethylene glycol and methanol (CH₃OH). As previously reported, the production of glyceraldehyde was found to depend greatly on the applied potential and the pH of the electrolyte [25]. The selectivity towards the formation of glyceraldehyde was very high in the acidic electrolyte when the applied potential was chosen before the beginning of the oxidation of the electrode surface. In other words, the dehydration occurred on the oxide-free Pt electrode. In the basic electrolyte, the oxidation of glycerol to glyceraldehyde can occur over the equilibrium oxide-covered Pt (Pt-OH) [25]. The C-C cleavage of the intermediate glyceraldehyde may occur by proton (H⁺) addition in near-critical water without the addition of acid or base [43]. The decrease in ethylene glycerol levels at longer electrolysis times in the acidic electrolyte might be attributed to the electrooxidation of ethylene glycerol to formic acid and glycolic acid [27, 30]. Besides, glyceraldehyde can undergo oxidation or reduction to other products, such as glyceric acid [38].

The yield of acetol was observed after 2 h of electrolysis time in both the acidic and basic electrolytes, but not until after 10–12 h in the neutral electrolyte, and then increased in concentration with increasing electrolysis time (Fig. 4). The generation of acrolein was clearly detected after 7 h and increased with the electrolysis time thereafter in the basic electrolyte. However, in the acidic electrolyte it increased as a function of time and reached its maximum yield (32.2%) within 19 h before decreasing with further electrolysis time (Fig. 4a). The main mechanism can be speculated that, in the presence of electricity, glycerol undergoes adsorption and dehydration on the active site of the Pt electrode [33, 35]. If the 1°-OH group of glycerol was involved 2,3-dihydroxypropene would be generated and instantaneously transformed to acetol (1-hydroxyl-2-propanone). On the other hand, if the 2°-OH group of glycerol is involved the enol intermediate species (3-hydroxypropanal) would be formed, which would then rapidly be rearranged to acrolein (acrylaldehyde) [28]. In the acidic electrolyte, these two species are themselves reactive and readily reduced to 1,2-PD and 1,3-PD, respectively. However, their yields were very low during the early period of acrolein and acetol formation, because the rapid C-C bond dissociation can occur at the utilized operating condition [33]. In terms of the yield of acrolein and 1,3-PD (in the acidic electrolyte), a higher yield of 1,3-PD than acrolein was observed during 10-14 h electrolysis. Acrolein was observed from 7 to 8 h and increased up to 19 h before declining with longer times. 1,3-PD appeared from 9 to 10 h and increased in accumulation quickly up to after 19 h electrolysis but then increased only slowly thereafter. Thus, a slower increase in the rate of 1,3-PD accumulation relative to acrolein was observed during 15–18 h of electrolysis time (Fig. 4a). The reduction in acrolein without significant accumulation of 1,3-PD might be due to the reduction of acrolein into 1,2-PD in the heterogeneous system [44]. With respect to the yield of glycidol, it increased instantaneously when the electricity was applied. It is believed that glycidol was obtained from the rearrangement of the glycerol carbonium ion, derived from the protonation of the 2°-OH group of glycerol [28]. A simplified diagram showing the possible major reaction pathways of glycerol conversion by this electrochemical conversion over a Pt electrode is shown in Scheme 1. These compounds have a potentially important role in the petrochemical industries for fuel and chemical production. However, this technique still needs additional research and development to reliably provide a higher selectivity of any given specific product in order to obtain high quality products that are both economically and operationally feasible.

Figure 4. Product distribution following the electrochemical conversion of glycerol at an initial glycerol pH of (a) pH 1, (b) pH 7, and (c) pH 11 with a current intensity of 4.5 A using a Pt electrode.

Scheme 1. Proposed reaction pathways for the electrochemical conversion of glycerol over a Pt electrode

4. CONCLUSIONS

The electrochemical conversion of glycerol to higher value and in-demand chemicals, such as acrolein, 1,2-PD, 1,3-PD and glycidol, was successfully developed in a simple electrochemical system with a Pt electrode. The initial pH of the glycerol electrolyte significantly affected the glycerol conversion and product distribution and yields. Quantitatively, the electrochemical conversion of glycerol was in the order of pH 1 >> pH 11 > pH 7 with a rate constant of 2.95×10^{-3} , 7.95×10^{-4} and 9.20×10^{-4} min⁻¹, respectively. In a strong acid electrolyte (pH 1), complete glycerol conversion was obtained within 13 h with a product yield of greater than 63.6% and a maximum product yield of 99.99 mol% being obtained after 19 h electrolysis time. This provided a yield of acrolein, 1,2-PD, 1,3-PD, glycidol, ethylene glycol and acetol of 32.2, 3.77, 24.0, 14.7, 12.0 and 13.4 mole %, respectively.

ACKNOWLEDGMENTS

The authors would like to thank the Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University for facility support and the Bangchak Petroleum Public Company Limited for samples and materials. Funding was from the TRF-CHE Research Grant for Mid-Career University Faculty (Grant No. RSA5480015), the CU Graduate School Thesis Grant, and the Research Foundation Enhancement, Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University. We also thank the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University, and Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

References

1. Duque JAP (2011) Design and analysis of technological schemes for glycerol conversion to added value products. Thesis submitted in partial fulfillment of the requirements for the degree of:

- Doctor of Philosophy in Engineering. Department of Electricity, Electronic and Computational Engineering. National University of Colombia
- M.L. Faro, M. Minutoli, G. Monforte, V. Antonucci and A.S. Aricò, *Biomass Bioenerg*, 35 (2011) 1075
- 3. F. Jérôme, Y. Pouilloux and J. Barrault, Chem. Sus. Chem, 1 (2008) 586
- 4. T. Valliyappan, N.N. Bakhshi and A.K. Dalai, Biores Technol, 99 (2008) 4476
- Y. Fernández, A. Arenillas, M.A. Díez, J.J. Pis and J.A. Menéndez, J. Anal. Appl. Pyrol., 84 (2009) 145
- 6. S. Xiu, A. Shahbazi, V. Shirley, M.R. Mims and C.W. Wallace, *J. Anal. Appl. Pyrol.*, 87 (2010) 194
- 7. V.K. Skoulou, P. Manara and A.A. Zabaniotou, J. Anal. Appl. Pyrol., 97 (2012) 198
- 8. A. May, J. Salvadó, C. Torras and D. Montané, Chem. Eng. J., 160 (2010) 751
- 9. D. Atong, C. Pechyen, D. Aht-Ong and V. Sricharoenchaikul, Appl. Clay Sci., 53 (2011) 244
- 10. S. Guo, L. Guo, C. Cao, J. Yin, Y. Lu and X. Zhang, Int. J. Hydrog. Energy, 37 (2012) 5559
- 11. S. Gil, M. Marchena, L. Sánchez-Silva, A. Romero, P. Sánchez and J.L. Valverde, *Chem. Eng. J.*, 178 (2011) 423
- 12. E.G. Rodrigues, S.A.C. Carabineiro, J.J. Delgado, X. Chen, M.F.R. Pereira and J.J.M. Órfão, *J. Catal.*, 285 (2012) 83
- 13. A. André, P. Diamantopoulou, A. Philippoussis, D. Sarris, M. Komaitis and S. Papanikolaou, *Indus. Crops. Prod.*, 31(2010) 407
- 14. A. Chatzifragkou, A. Makri, A. Belka, S. Bellou, M. Mavrou, M. Mastoridou, P. Mystrioti, G. Onjaro, G. Aggelis and S. Papanikolaou, *Energy*, 36 (2011) 1097
- 15. M. Metsoviti, K. Paraskevaidi, A. Koutinas, A. Zeng and S. Papanikolaou, *Proc. Biochem.*, 47 (2012) 1872
- 16. J.A. Melero, G. Vicente, M. Paniagua, G. Morales and P. Muñoz, *Biores. Technol.*, 103 (2012) 142
- 17. L. Zhou, E. Al-Zaini and A.A. Adesina, Fuel, 103 (2013) 617
- 18. X. Guo, Y. Li, R. Shi, Q. Liu, E. Zhan and W. Shen, Appl. Cat. A., 371 (2009) 108
- 19. Y. Nakagawa, Y. Shinmi, S. Koso and K. Tomishige, J. Catal., 272 (2010) 191
- 20. M.A. Dasari, P. Kiatsimkul, W.R. Sutterlin and G.J. Suppes, Appl. Catal. A., 281 (2005) 225
- 21. H.L. Hosgün, M. Yıldız and H.F. Gerçel, *Ind. Eng. Chem. Res.*, 51 (2012) 3863
- 22. R.B. Mane, A.A. Ghalwadkar, A.M. Hengne, Y.R. Suryawanshi and C.V. Rode, *Catal. Today* 164 (2011) 447
- 23. M. Olga Guerrero-Pérez, J.M. Rosas, J. Bedia, J. Rodríguez-Mirasol and T. Ordero, *Recent Pat. Chem. Eng.* 2 (2009) 11
- 24. J.F. Gomes and G. Tremiliosi-Filho, Electrocatal 2 (2011) 96
- 25. L. Roquet, E.M. Belgsir, J-M Léger and C. Lamy, Electrochim. Acta, 39 (1994) 2387
- 26. R. Ciriminna, G. Palmisano, C.D. Pina, M. Rossi M and M. Pagliaro, *Tetrahedron Lett.*, 47 (2006) 6993
- 27. Y. Kwon and M.T.M. Koper, *Anal. Chem.* 82 (2010) 5420
- 28. S. Kongjao, S. Damronglerd and M. Hunsom, J. Appl. Electrochem. 41 (2011) 215
- 29. Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez and M.T.M. Koper, ACS Catal., 2 (2012) 759
- 30. A. Falase, M. Main, K. Garcia, A. Serov, C. Lau and P. Atanassov, *Electrochim. Acta*, 66 (2012) 295
- 31. R.S. Ferreira Jr, M. Janete Giz and G.A. Camara, J. Electroanal. Chem., 697 (2013) 15
- 32. A.T. Marshall and R.G. Haverkamp, Int. J. Hydrog. Energy, 33 (2008) 4649
- 33. K. Ishiyama, F. Kosaka, I. Shimada, Y. Oshima and J. Otomo, J. Power Sources, 225 (2013) 141
- 34. G. Girishkumar, T.D. Hall, K. Vinodgopal and P.V. Kamat, J. Phys. Chem. B, 110 (2006) 107
- 35. J.H. Kim, S.M. Choi, S.H. Nam, M.H. Seo, S.H. Choi and W.B. Kim, *Appl. Catal.* B, 82 (2008)

- 36. Sigma-Aldrich Co. LLC, [Online] (2013) Available on http://www.sigmaaldrich.com/sigma-aldrich/home.html
- 37. M.R. Tarasevich, A. Sadkonski and E. Yeager, in Comprehensive Treatise of Electrochemistry (Edited by E. Conway et al.) (1983) Plenum Press, New York 7, 332
- 38. J.W. Schnaidt, Electrooxidation of C₂ and C₃ molecules studied by combined in situ ATR-FTIRS and online DEMS. Dr. rer. nat Dissertation. (2012) ULM University
- 39. J. Feng, J. Wang, Y. Zhou, H. Fu, H. Chen and X. Li, *Chem. Lett.*, 36 (2007) 1274
- 40. E.P. Maris and R.J. Davis, J. Catal., 249 (2007) 328
- 41. Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou and X. Zheng, Appl. Catal. B 101(2011) 431
- 42. E.P. Maris, W.C. Ketchie, M. Murayama and R.J. Davis, J. Catal. 251 (2007) 281
- 43. M. Sasaki, Wahyudiono, A. Yuksel and M. Goto, Fuel Process. Technol. 91 (2010) 1125
- 44. J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel and C. Rosier, *Green. Chem.* 6 (2004) 359

© 2013 by ESG (www.electrochemsci.org)

Elsevier Editorial System(tm) for Journal of Analytical and Applied Pyrolysis Manuscript Draft

Manuscript Number: JAAP-D-13-00419

Title: Impact of the preparation conditions of sludge-derived KOH-activated carbon on its physicochemical properties and adsorptive purification of crude glycerol

Article Type: Research Paper

Keywords: Sludge-derived AC; Crude glycerol; Adsorption

Corresponding Author: Dr. Mali Hunsom, Ph.D.

Corresponding Author's Institution: Chulalongkon University

First Author: Mali Hunsom, Ph.D.

Order of Authors: Mali Hunsom, Ph.D.; Chaowat Autthanit, M.Sc.

Abstract: Activated carbon (AC) was prepared from wastewater treatment sludge by KOH activation and then used for the adsorptive purification of crude glycerol (CG). The effect of different KOH: char (w/w) ratios (1-6), KOH soaking times (5-25 h) and carbonization temperatures (500-900 oC) on the surface properties of the obtained sludge-derived ACs and their adsorption capacity for impurities in H3PO4 pretreated CG was explored. The preparation conditions affected the textural properties and surface chemistry of the sludge-derived AC and its efficiency in the adsorptive purification of CG. Oxygen-containing surface functional groups, particularly carbonyl groups, as well as the textural properties, played a more important role in the adsorptive purification of CG. Among the sludge-derived ACs, the one impregnated at a KOH: char (w/w) ratio of 5.0 for 25 h and then carbonized at 800 oC exhibited the most suitable surface properties for the enrichment of glycerol in the pretreated CG, attaining a 93.0% (w/w) glycerol level at an AC dose of 67 g/L for 2 h with agitation at 250 rpm. The AC-adsorption of impurities from the pretreated CG followed the Langmuir isotherm. However, the reusability of the used AC by hexane or diethyl ether extraction was not suitable.

Suggested Reviewers: Teresa J. Bandosz
Department of Chemistry and Center for Water Resources and Environmental Research, The City College of New York, New York, tbandosz@scisun.sci.ccny.cuny.edu
He works in this field

H. Tamon

Department of Chemical Engineering, Kyoto University, Kyoto 606-8501, Japan tamon@cheme.kyoto-u.ac.jp He works in this field

Nikolaos K. Lazaridis Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece nlazarid@chem.auth.gr He works in this field

Cover Letter

Nov 22, 2013

Dear Sir.

I'm Dr.Mali Hunsom from Department of Chemical Technology, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand. I would like to submit the manuscript entitled

"Impact of the preparation conditions of sludge-derived KOH-activated carbon on its

physicochemical properties and adsorptive purification of crude glycerol". This manuscript

have not been printed or under consideration by other journals.

This work attempt to prepare the activated carbon from the sewage sludge from a wastewater

treatment plant and used to adsorb impurities in crude glycerol in to order to obtain glycerol with

a purity within the acceptable limit of the BS 2621 standard (≥ 80 wt.%). The obtained results

demonstrated that the preparation conditions affected the textural properties and surface chemistry

of the sludge-derived AC and its efficiency in the adsorptive purification of CG. Oxygen-

containing surface functional groups, particularly carbonyl groups, as well as the textural

properties, played a more important role in the adsorptive purification of CG. Among the sludge-

derived ACs, the one impregnated at a KOH: char (w/w) ratio of 5.0 for 25 h and then carbonized

at 800 °C exhibited the most suitable surface properties for the enrichment of glycerol in the

pretreated CG, attaining a 93.0% (w/w) glycerol level at an AC dose of 67 g/L for 2 h with

agitation at 250 rpm. The AC-adsorption of impurities from the pretreated CG followed the

Langmuir isotherm. However, the reusability of the used AC by hexane or diethyl ether extraction

was not suitable.

The language of this manuscript is already proved by the native speaker, Dr. Robert D.J. Butcher

from the Publication Counselling Unit (PCU) of the Faculty of Science, Chulalongkorn

University, Thailand. Could you please consider in details and accept to publish this manuscript

in your journal and looking forward to receiving the good news about the acceptance to publish in

your journal soon. Thank you very much.

Best Regards,

Assoc. Prof.Dr. Mali Hunsom

Department of Chemical technology

Faculty of Science, Chulalongkorn University PhayaThai Rd. Bangkok

Tel. (662) 2187523 Fax. (662) 2555831

E-mail: mali.h@chula.ac.th

Impact of the preparation conditions of sludge-derived KOH-activated carbon on its

physicochemical properties and adsorptive purification of crude glycerol

Mali Hunsom^{a,b,*}, Chaowat Autthanit^a

^a Fuels Research Center, Department of Chemical Technology, Faculty of Science,

Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

^b Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT),

Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

Abstract

Activated carbon (AC) was prepared from wastewater treatment sludge by KOH activation and then used for the adsorptive purification of crude glycerol (CG). The effect of different KOH: char (w/w) ratios (1-6), KOH soaking times (5-25 h) and carbonization temperatures (500-900 °C) on the surface properties of the obtained sludge-derived ACs and their adsorption capacity for impurities in H₃PO₄ pretreated CG was explored. The preparation conditions affected the textural properties and surface chemistry of the sludge-derived AC and its efficiency in the adsorptive purification of CG. Oxygen-containing surface functional groups, particularly carbonyl groups, as well as the textural properties, played a more important role in the adsorptive purification of CG. Among the sludge-derived ACs, the one impregnated at a KOH: char (w/w) ratio of 5.0 for 25 h and then carbonized at 800 °C exhibited the most suitable surface properties for the enrichment of glycerol in the pretreated CG, attaining a 93.0% (w/w) glycerol level at an AC dose of 67 g/L for 2 h with agitation at 250 rpm. The AC-adsorption of impurities from the pretreated CG followed the Langmuir isotherm. However, the reusability of the used AC by hexane or diethyl ether extraction was not suitable.

^{*}Corresponding author. Tel.: 662 2187523; E-mail address: mali.h@chula.ac.th (Mali Hunsom)

1. Introduction

Glycerol is the major by-product of biodiesel production via transesterification of triglycerides from vegetable oils or animal fats [1]. Approximately 1 kg of glycerol is generated per 10 kg of biodiesel produced. Various methods have been used for the disposal or utilization of crude glycerol (CG), including direct combustion [2,3], fertilizer [4,5], animal feed [6,7] or anaerobic digestion feedstock [5,8], and thermo-chemical or biological conversion to value added products [9–14]. However, with the rapid expansion of the biodiesel industry, the market is now flooded with excessive CG and any increase in biodiesel production rates will significantly raise the quantity of glycerol above the current market demands and decrease its economic value. Thus, finding new uses for the CG and so maintaining or increasing its value can improve the cost effectiveness of biodiesel production.

The CG obtained from biodiesel production is not suitable for use in its traditional applications due to the presence of various contaminants, such as moisture, ash, soap, alcohol, traces of glycerides and vegetable color, which results in a low glycerol content in the CG [15,16]. Recently, various studies have focused on methods for glycerol purification or enrichment, such as by simple vacuum distillation [17,18], electrodialysis [19], ion-exchange chromatography [20,21], membrane filtration [22] and chemical processes [23–26].

Adsorption is recognized as a generally efficient and economical process to remove organic compounds from an aqueous solution due to the low-energy consumption, ability to operate at ambient temperature and pressure, and to regenerate the spent adsorbent, plus the often broad availability of adsorbents [27]. One such abundant and relatively cheap adsorbent is activated carbon (AC), which can be prepared by physical or chemical activation methods or by a combination of both [28]. Compared with physical activation, chemical activation uses dehydrating agents that influence the pyrolytic decomposition and inhibit tar formation and so

enhances the yield of carbon [29]. In addition, the temperatures used in chemical activation are

2 lower than those used in the physical activation process, resulting in the development of a better

3 porous structure and catalytic activity compared to that derived from the physical activation

process [30]. Chemical activation typically uses alkali and alkaline earth metal-containing

5 substances and some acids, such as KOH [27,31–33], NaOH [34,35], HNO₃ [36], ZnCl₂ [37–39]

and H₃PO₄ [40–42], as activators, and various types of carbonaceous materials, such as coal-tar

pitch, biomass and industrial and domestic wastes, as the carbon source.

4

7

8

9

10

11

15

16

17

21

22

23

24

25

26

Among all the utilized chemical activators, the mixed physical and chemical processes of KOH-activation is one of the most popular processes because it can lead to a very large surface area and micropore volume of the obtained AC [43]. The activation mechanism of KOH consists of various elementary dehydration as outlined in Eqs. (1) - (3) [44].

12
$$2KOH \rightarrow K_2O + H_2O \text{ (Dehydration)}$$
 (1)

13
$$C + H_2O \rightarrow H_2 + CO$$
 (Water-gas reaction) (2)

14
$$CO + H_2O \rightarrow H_2 + CO_2$$
 (Water-gas shift reaction) (3)

When the temperature exceeds 700 $^{\circ}$ C, a considerable amount of K_2CO_3 and a small amount of metallic potassium (K) are generated by the formation of carbonate and the reduction of the K_2O , respectively, according to Eqs. (4) - (6) [45]:

18
$$K_2O + CO_2 \rightarrow K_2CO_3$$
 (Carbonate formation) (4)

19
$$K_2O + H_2 \rightarrow 2K + H_2O$$
 (Reduction by hydrogen) (5)

20
$$K_2O + C \rightarrow 2K + CO$$
 (Reduction by carbon) (6)

The textural properties as well as the surface chemistry of the obtained AC depend on the type of raw material and on the conditions used in the activation [46, 47].

In the present work, a set of ACs was prepared from the sewage sludge obtained from a wastewater treatment plant using KOH activation. The impact of the preparation conditions on the efficiency of the adsorptive purification of pretreated CG of the obtained ACs was evaluated in order to obtain a glycerol enriched CG (PCG) within the acceptable limit of the BS 2621

- standard ($\geq 80\%$ (w/w)). The adsorption isotherms of the ash and other contaminants from the
- 2 pretreated GC on the adsorbent surface were investigated and the reusability of the used sludge-
- 3 derived ACs was also examined.

2. Experimental

2.1 Preparation of the sludge-derived AC

The raw material used for preparing the ACs was the sewage sludge obtained from a wastewater treatment plant of a textile factory in Thailand. Prior to use, the sludge was washed several times with deionized water to eliminate the contaminated grits and then dried at 105 °C for 24 h to a constant weight. Finally, it was crushed with a grinder and sieved to a size range of 1–2 mm.

The preparation of the sludge-derived AC was performed in the two main steps of pyrolysis and activation. For the char producing pyrolysis step, approximately 50 g of crushed sewage sludge was heated slowly in a stainless steel fixed-bed reactor at a constant heating rate of 10 °C/min from room temperature to the pre-set pyrolysis temperature of 400 °C under a nitrogen (N_2) atmosphere (flow rate 50 mL/min). It was then held at this temperature for 2 h before being cooled down slowly under a N_2 atmosphere. The obtained sample was crushed and sieved to a size smaller than 0.25 mm. The ready-to-use char was obtained after drying at 105 °C for 2 h.

For the activation step, 100 mL potassium hydroxide solution (KOH, Ajax Finechem) was mixed with 10 g of char, varying the a KOH/char weight ratio of x:1 (x = 1, 2, 3, 4, 5 or 6). The liquid/solid phase was maintained in contact by mechanical shaking at a constant rate of 200 rpm for the entire soaking time (5–25 h). The suspension was then subject to vacuum filtration and the solid portion was rinsed several times by deionized water until the pH of filtrate was constant. Subsequently, it was carbonized in a fixed-bed reactor at a slow heating rate of 10 °C/min from room temperature to the pre-set carbonization temperature (500–900 °C) under a N₂

atmosphere at flow rate of 10 mL/min, then held at this temperature for 30 min before being

2 allowed to cool down slowly under a N₂ atmosphere. The obtained samples were rinsed with 3 M

hydrochloric acid (HCl, 37% Carlo Erba) to remove other inorganic matter and then with

distilled water to eliminate the excess HCl until the pH become neutral. Each respective sludge-

derived AC was obtained after drying at 105 °C for 24 h.

2.2 Adsorptive enrichment of glycerol from the pretreated CG by each AC

The obtained sludge-derived ACs were used to adsorb some of the impurities from the CG obtained from a local fatty acid methyl ester (FAME) production plant in Thailand that utilizes waste used-oil and methanol as the raw materials via the alkali catalyst mediated transesterification process. Due to the presence of a high amount of contaminants, such as soap, free fatty acids (FFA), FAME and soluble inorganic salts, it was pretreated by the addition of H₃PO₄ (85%, Qrec) as previously reported [23].

The adsorptive purification of the pretreated CG was carried out at room temperature (~30 °C) and ambient pressure using either the in-house sludge-derived AC or a commercial AC (Panreac Quimica S.A.U.). Prior to use, each AC was dried at 105 °C for 30 min to eliminate the free moisture. Subsequently, approximately 1 g of AC was mixed with 15 mL pretreated CG (~67 g/L) and shaken at the indicated speed (15–300 rpm) for the indicated time (60–180 min). Finally, the AC was separated by vacuum filtration and the properties of the obtained PCG were characterized.

2.3 Regeneration of used sludge-derived AC

To test the reusability of used sludge-derived AC, the regeneration was attempted by solvent extraction using either diethyl ether (C_6H_{14}) or hexane ($C_4H_{10}O$) at the solvent to used AC ratio of 1, 2 and 3 (v/w), abbreviated as R1, R2 and R3, respectively and shaken at 250 rpm for 2 h. Afterwards, the ACs were separated from the solution by filtration and rinsed several

times with distilled water to remove the excess solvent. The regenerated AC was then obtained

2 after drying in an oven at 105 °C for 24 h.

2.4 Characterization of the ACs and different glycerol solutions

The glycerol content in the different solutions was measured according to the standard method (ASTM D7637-10) by titration with sodium metaperiodate (NaIO₄, Fisher Chemical), based on the cold oxidation of the glycerol by NaIO₄ in a strong acidic medium. Ash content was analyzed according to the Standard method (ISO 2098-1972) by burning approximately 1.0 g glycerol in a muffle furnace (Protherm, alserteknik) at 750 °C for 3 h. The water and the MONG (matter organic non glycerol) contents are reported together as 'other contaminants', calculated as [100 - (glycerol content (% (w/w)) + ash content (% (w/w))]. The pH of the different glycerol solutions was measured with pH paper (Macherey-Nagel pH-Fix 0–14), whilst the color was measured in a UV/Vis spectrophotometer (Jasco, V-530) as the absorbance at a wavelength of 457 nm. The density and viscosity were measured according to the standard ISO 2099-1972 and ASTM D 445 methods, respectively.

The composition of both the sewage sludge and char were evaluated by proximate analysis according to ASTM D3172, and elemental analysis by energy dispersive X-ray analysis (EDX) on a JEOL JSM-5800LV. The level of oxygen-containing surface functional groups on the ACs were determined by Boehm's method of titration with basic solutions of different base strengths (NaHCO₃, Na₂CO₃ and NaOH) as reported [38,48]. The textural properties of AC was measured with a surface area analyzer (Quantachrome, Autosorb-1) using the Brunauer, Emmett and Teller (BET) method.

3. Results and discussion

25 3.1 *Composition of the ACs*

The elemental analysis revealed that the main mineral elements of the sewage sludge were carbon and oxygen, with a low content (< 2.26% (w/w)) of Na, S, Si, Mg, Al, P and Cl (Table 1). In terms of the proximate analysis, the main component of the air-dried sludge was volatile matter and various kinds of either organic or inorganic components measured in terms of ash, with low contents of moisture content and fixed carbon (Table 1). Pyrolysis of the sewage sludge to char decreased the proportional amount of volatile matter (2.58-fold) and moisture content (2.75-fold) and so resulted in an increased (7.23-fold) proportional amount of fixed carbon and ash (7.31-fold) (Table 1). In addition, pyrolysis slightly changed the element proportions, which is attributed to their phase transformations and the loss of their crystallization water of hydration [49].

The H₃PO₄ pre-treatment of the CG reduced the color (10.9%) and ash content (19.6%) without any significant effect on the content of the other contaminants and so resulted in a 1.31-fold increased glycerol content (Table 2).

Table 1

Table 2

3.2 Effect of the KOH: char (v/w) ratio

The sludge-derived ACs prepared from different KOH: char weight ratios clearly had different content and types of oxygen-containing surface functional groups (Fig. 1). Large quantities of carbonyl groups were generated on the surface of ACs and increased with increasing KOH: char ratios (~3.22 to 5.06 mEq/g as the ratio changed from 1:1 to 6:1), compared to the content of surface carboxyl (~1.4 to 1.6 mEq/g), lactone and hydroxyl groups (< 0.4 mEq/g). This is because the strong alkali KOH preferentially generates alkaline oxygen-containing surface functional groups, such as pyrones (cyclic ketones) and other keto-derivatives of pyran [50], which are derivative species of the carbonyl group. Accordingly, increasing the KOH: char ratio induced a higher content of formation of carbonyl groups with no significant

- 1 effect on the content of acidic surface functional groups (carboxyl, lactone and hydroxyl groups).
- 2 This suggests that a high KOH: char ratio can increase the degree of KOH impregnation and the
- 3 generation of basic surface functional groups on the surface of ACs. A similar trend has been
- 4 reported in the preparation of oil-palm-shell adsorbent by H₃PO₄ and KOH [50].

5 Fig. 1.

With respect to the textural properties of the sludge-derived ACs, the maximum BET surface area (107 m²/g) and micropore volume (0.09 cm³/g) was observed at a KOH: char ratio of 5, and decreased with either a higher or lower KOH: char ratio (Fig. 2). Increasing the ratio from 1 to 5, predominantly micropore was progressively formed and hence the BET surface area of the activated carbon continues to increase up to a maximum of 107 m²/g. This is because the presence of high impregnating agent can minimize the formation of tars and other liquids [51] which can be clogged up the pores and inhibited the development of porosity. In addition, when large amount of KOH penetrated and occupied a substantial volume of precursor (char), a large amount of porosity was formed when these agents were extracted by intense washing after preparation. Thus, the specific surface area increased with increasing amount of KOH [50].

When the KOH: char ratio was further increased from 5 to 6 a significant decrease in both the micropore- (2.25-fold) and BET surface area (1.25-fold) was observed as well as a slight decrease (1.2-fold) in the mesopore volume. This is speculated to be because an excessive level of KOH molecules intercalated into the char and decomposed by dehydration into water forming a WG reaction and an over-gasification (Eqs. (1) and (2)), resulting in the widening of pores through the burning-off of some walls between neighboring pores and continuous pore wall thinning. The general widening of large pores resulted in a reduced non-micropore volume that is not compensated for sufficiently by the conversion of micropores to mesopores or macropores, and so resulted in the reduced BET surface area.

25 Fig. 2.

The adsorption capacity for ash and the other contaminants of the sludge-derived ACs increased as the KOH: char ratio used in the AC preparation increased from 1 to 5, with a decrease in the ash and other contaminant levels from 25.1% and 33% (w/w) (pretreated CG) to 21.8% and 10.2%, respectively, (Fig. 3). This resulted in an increased glycerol content from 41.6% to 68.1% (w/w). However, further increasing the KOH: char ratio to 6 led to a significantly decreased adsorption of the impurities in the pretreated CG and so to a 1.1-fold decreased glycerol content in the obtained PCG. A similar trend was seen for the color reduction in the pretreated CG by AC adsorption, where increasing the KOH: char ratio in the AC activation up to 5 increased the color reduction induced by the obtained AC, but then decreased at a KOH: char ratio of 6.

11 Fig. 3.

The adsorptive purification ability of AC is likely to be influenced by both its textural properties and surface chemistry. The sludge-derived ACs prepared at a KOH: char ratio of 5 had the highest BET surface area and porosity (textural properties) and a high quantity of oxygen-containing surface functional groups, particularly carbonyl groups (4.42 mEq/g), but this was slightly less than that for the AC prepared at a ratio of 6 (4.97 mEq/g). Theoretically, carbonyl groups are a good electron acceptor [52] that can bond well to the anionic charged portions of FAME or FFAs (R-COO) and so result in a decreased level of contaminants and increased glycerol level in the PCG. In addition, the presence of carboxyl or acidic oxygen-containing surface functional groups can form complexes with cations (mineral salts), according to the surface complexation model [40], which results in a reduction in the mineral salt content in PCG (here measured as ash content). However, too high a carbonyl group level, as induced by a KOH: char ratio of 6, can lead to a more marked C-KOH reaction and so result in a decreased BET surface area (Fig. 2) with the concomitant decreased adsorption capacity of the derived AC for both ash and contaminants from the pretreated CG (Fig. 3).

3.3 Effect of the KOH soaking time

The content of oxygen-containing surface functional groups (carboxyl, lactone, hydroxyl and carbonyl groups) varied with the KOH treatment (soaking) time (Fig. 4). Increasing the soaking time from 5 to 25 h for a KOH: char ratio of 5 resulted in a time-dependent increase in the level of carbonyl groups (up to ~4.7 mEq/g, some 2.3-fold higher) and a decrease in the level of hydroxyl groups (> 15-fold) with no significant effect on the level of carboxyl and lactone groups. This is explained as that a longer soaking time allowed for more diffusion of KOH into the char structure, resulting in a higher generation of basic surface functional groups on the ACs.

9 Fig. 4.

With respect to the textural properties of sludge-derived ACs, increasing the soaking time from 5 to 20 h with a KOH: char ratio of 5 increased the BET surface area and micropore volume (1.9- and 1.8-fold, respectively), and slightly increased (1.5-fold) the mesopore volume (Fig. 5). However, further increasing the soaking time to 25 h decreased the BET surface area (1.78-fold) and micropore volume (1.5-fold) but increased the mesopore volume 1.4-fold further. This trend can be explained by the same rational used for the effect of the KOH: char ratio (section 3.2), as that a longer soaking time allowed a larger impregnation of KOH into the char structure and so porosity when subsequently washed out [50]. Likewise, that the BET surface area and micropore volume decreased when a soaking time of 25 h was used reflects that excessive KOH impregnation and subsequent decomposition into water formed an overgasification reaction (Eqs. (1) and (2)) that consequently widened the existing pores or combined micropores during the evolution of volatile matter from the char structure during carbonization [51].

The effect of the KOH soaking time on the adsorption ability of the resultant AC formed from a KOH: char ratio of 5 was evaluated for the pretreated CG in terms of the resultant composition and color of the obtained PCG (Fig. 6). The ash and other contaminants were decreased with increasing soaking time, resulting in the increase of glycerol content up to 1.55-

fold as the increase of soaking time from 5 to 25 h. This again can be explained as that the AC prepared at a longer soaking time had a higher quantity of carbonyl groups and larger BET surface area, which could couple with the anionic charged portions of FAME or FFAs. In addition, the presence of carboxylic groups on the surface of ACs can bind to the mineral salts in the pretreated CG and so reduce the mineral salt content (ash) in the obtained PCG. In accord, increasing the KOH soaking time from 5 to 25 h also slightly increase the level of color reduction from 96.3 to 97.4%.

8 Fig. 5.

9 Fig.6.

3.4 Effect of the carbonization temperature

The BET surface area, micropore and mesopore volumes of the sludge-derived ACs prepared at a KOH: char (w/w) ratio of 5 and soaking time of 25 h were found to increase significantly and markedly with an increasing carbonization temperature from 500 to 800 °C to a 15.4-, 9.2- and 2.2-fold higher level, respectively (Fig. 7). These increases are the result of the elementary dehydration, water-gas and water-gas shift reactions as outlined in Eqs. (1) to (3). At a high carbonization temperature, some volatiles are emitted continuously from the char resulting in the formation of rudimentary pores in the char surface that enhanced the existing pores and created new ones. Thus, increased carbonization temperatures increased the mesopore volume due to the widening of existing pores and the combining of micropores during the evolution of volatile matter from the char structure during carbonization.

When the carbonization temperature was raised from 800 to 900 $^{\circ}$ C the BET surface area and micropore volume decreased (1.18- and 1.15-fold, respectively), whilst the mesopore volume was increased (1.27-fold). It has been reported previously that when the temperature exceeds 700 $^{\circ}$ C the K_2CO_3 and metallic K, generated according to Eqs. (4) to (6), can intercalate into the carbon matrix, resulting in the widening of the spaces between the carbon layers and

causing a sharp decrease in the BET surface area [44]. In addition, as discussed in section 3.2, a

high temperature induced pore widening through the complete burning-off of some walls

between neighboring pores and continuous pore wall thinning. Together, these result in a

decreased micropore volume and an increased mesopore volume.

5 Fig. 7.

With respect to the surface chemistry of the sludge-derived ACs, increasing the carbonization temperature from 500 to 800 °C induced a higher content of carbonyl groups (up to 1.5-fold) but a lower content of carboxyl, lactone and hydroxyl groups (Fig. 8). However, further raising the carbonization temperature from 800 to 900 °C decreased the quantity of all oxygen-containing surface functional groups, particularly the carbonyl group (1.7-fold). The difference between the groups is due to fact that the different oxygen-containing surface functional groups have different thermal stabilities. The carboxylic and lactone groups decompose to CO₂ and phenol at 700–800 °C, the carbonyl (quinone or ether) groups decompose to CO at 500–1000 °C, and the hydroxyl groups release water from 200–300 to 400–500 °C [53].

15 Fig. 8

As expected then, increasing the carbonization temperature of the AC from 500 to 800 °C improved its adsorptive capacity, as determined by the reduction in the ash (2.1-fold) and the other contaminants (9.4-fold) in the PCG compared to the pretreated CG prior to adsorption, resulting in a 1.23-fold increased glycerol content to 89.4% (w/w) (Fig. 9). Further increasing the carbonization temperature from 800 to 900 °C led to a significant reduction in adsorptive ability of the obtained AC, as seen by the 1.33-fold reduced glycerol content and increased contents of ash, color and other contaminants. This again reflects that the sludge-derived AC prepared at 800 °C had the highest BET surface area and largest number of carbonyl groups.

24 Fig. 9.

3.5 Effect of the adsorption time and shaking rate

To increase the purity of the glycerol in the AC-adsorbed PCG, the effects of the adsorption time (60–180 min) and shaking rate (150–300 rpm) were explored using the sludge-derived AC (67 g/L), prepared at a KOH: char ratio of 5 with a soaking time of 25 h and carbonized at 800 °C. Increasing the adsorption time up to 120 min increased the adsorption efficiency, as seen in the decreased level of ash, color and the other contaminants and the increased glycerol content (to 93.0% in the PCG (Fig. 10a). The increased adsorption time enhances the chance of interaction between the impurity molecules and the AC particles. However, increasing the adsorption time further over 120 min did not have any significant effect, presumably reflecting the saturation of the AC.

With respect to the shaking rate, used to mix the suspended solid AC phase with the pretreated CG solution liquid phase, decreasing or increasing the shaking rate from 250 rpm increased the content of impurities and so reduced the glycerol content obtained in the PCG (Fig. 10b). It is speculated that the adsorption process was controlled by mass transport at low mixing rates (< 250 rpm) and by the reaction kinetics at a high mixing rate (> 250 rpm).

16 Fig. 10.

The characteristics of the obtained PCG are summarized in Table 2. The pH of PCG was neutral with a color reduction of more than 98.6%. The content of glycerol, ash and other contaminants were in the acceptable range of the BS 2621 standard. This sludge-derived AC enhanced the glycerol purity 1.05-fold more than that obtained with the commercial AC (89.6% (w/w)) (Table 2). This likely reflects the lower quantity of oxygen-containing surface functional groups on the commercial AC (0.59, 0.20, 0.35 and 0.02 mEq/g for the surface carbonyl-, carboxyl-, lactone- and hydroxyl groups, respectively) compared with the optimal sludge-derived AC of this study (7.08, 1.24, 0.09 and 0 mEq/g for the surface carbonyl-, carboxyl-, lactone- and hydroxyl groups, respectively).

Although the adsorptive purification of glycerol by the sludge-derived AC was slightly higher than that of the commercial AC (\sim 4.4% (w/w)), the utilization of sewage as the raw material for preparing the AC could offer the additional benefit of reducing the volume of industrial sludge for disposal and management.

3.6 Adsorption isotherm

To describe the adsorption mechanism of ash and the other contaminants from the pretreated CG on the AC adsorbent surface, various equilibrium models were analyzed to investigate the adsorption isotherm. The isotherms from the appropriate model will allow insight into the properties of the surface binding mechanism and the affinity of the adsorbent towards the impurities in the pretreated CG, which is useful for the design of an optional adsorption process and scale-up.

The Langmuir isotherm is applicable for a monolayer adsorption on a surface with a finite number of identical sites [54]. It assumes that all the adsorption sites have an equal adsorbate affinity and that the adsorption at one site does not affect the adsorption at an adjacent site [55]. The linear form of the Langmuir isotherm is represented in Eq. (7);

$$\frac{C_e}{q_e} = \frac{1}{k_L q_0} + \frac{C_e}{q_0} \tag{7}$$

where q_e is the adsorption capacity at the equilibrium adsorbate concentration (ash and other contaminants), k_L is the Langmuir constant, C_e is residue adsorbate concentration at equilibrium and q_0 is the maximum amount of adsorption corresponding to a complete monolayer coverage. A plot of C_e/q_e and C_e allows the determination of q_0 and k_L from the slope and intercept, respectively.

The Freundlich isotherm is an empirical model that is valid for non-ideal adsorption on heterogeneous surfaces as well as for multilayer adsorption [56], and can predict the increase in concentration of the ionic species adsorbed on the adsorbent surfaces with increasing

1 concentrations of the ionic species in the liquid phase [57]. The linear form is expressed in Eq.

2 (8);

$$\log q_e = \log k_F + \frac{1}{n} \log C_e \tag{8}$$

4 where k_F is the Freundlich isotherm constant that indicates the adsorption capacity, and n is the

5 adsorption intensity that varies with the heterogeneity of the material. The adsorption is

favorable when values of 1/n are in the range of 0.1 < 1/n < 1 [58]. A plot of log q_e vs. log C_e

7 provides the values of k_F and 1/n.

The Tempkin isotherm is based on the assumptions that (*i*) the heat of adsorption of all the molecules in the layer decreases linearly with the coverage of molecules, due to the adsorbate-adsorbate repulsions, (*ii*) the adsorption of the adsorbate is uniformly distributed [59] and (*iii*) the fall in the heat of adsorption is linear rather than logarithmic, as implied in the Freundlich isotherm. The linear form of the Tempkin equation is given by Eq. (9) [60];

$$q_e = B_T \ln A_T + B_T \ln C_e \tag{9}$$

where, $B_T = (RT)/b_T$, R is the universal gas constant (8.314 J/mol· K), T is the absolute temperature, b_T is the constant related to the heat of adsorption and A_T is the equilibrium binding constant corresponding to the maximum binding energy [61]. A plot of q_e versus $\ln C_e$ allows a determination of the constants B_T and A_T from the slope and intercept, respectively.

The Dubinin-Radushkevich (D-R) isotherm is an analogue of the Langmuir isotherm but it is more general because it does not assume a homogeneous surface or a constant sorption potential and the linearized form is represented by Eq. (10) [62];

$$\ln q_e = \ln q_0 - K\varepsilon^2 \tag{10}$$

Where ε is the Polanyi potential, equal to RT ln $(1+1/C_e)$, R is the gas constant and T is the absolute temperature. The value of q_0 and K can be determined by plotting ln q_e as a function of ε^2 . The D-R isotherm allows the estimation of the mean free energy of adsorption (E), equal to $1/\sqrt{2K}$, that can be used to distinguish between physical and chemical adsorptions. The

- adsorption behavior is predicted to be by physical adsorption when the mean adsorption energy
- 2 is in the range of 1–16 kJ/mol, and by chemical adsorption when the mean adsorption energy is
- 3 greater than 16 kJ/mol [63].
- 4 The generalized isotherm is the combination of the Langmuir and Freundlich isotherms
- 5 [64] and in linear form is given by Eq. (11);

$$\log\left(\frac{q_0}{q_e} - 1\right) = \log k_G - N_b \log C_e \tag{11}$$

- 7 where k_G is the saturation constant (g/L), N_b is the cooperative binding constant and q_0 is the
- 8 maximum amount of adsorption corresponding to a complete monolayer coverage obtained from
- 9 the Langmuir isotherm model. The slope and intercept of the plot of $\log [(q_0/q_e)-1]$ versus $\log C_e$
- allows the determination of k_G and N_b , respectively.
 - The adsorption of ash and other contaminants fitted quite well to the Langmuir isotherm (Fig. 11; Table 3), where the high values of R^2 for ash (0.9884) and the other contaminants (0.9741) indicated a good agreement between the experimental values and the isotherm parameters. This then supports the monolayer adsorption of both ash and the other contaminants onto the surface of sludge-derived AC. The derived maximum amount of adsorption corresponding to a complete monolayer coverage (q_0) of the other contaminants was 2.41-fold greater than that of ash, indicating the higher adsorption ability of the other contaminants than ash onto the surface of the sludge-derived AC. A high Langmuir constant (k_L) was observed for ash (0.122 L/g), some 2.77-fold higher than that for the other contaminants. The separation factors, or dimensionless equilibrium parameter (R_L), was estimated by $1/(1+k_LC_0)$ and found to be between 0 to 1 (0.022 and 0.049 for ash and contaminants, respectively), indicating their favorable adsorption on the sludge-derived AC.
- 23 Fig. 11.
- Table 3.

11

12

13

14

15

16

17

18

19

20

21

22

3.7 Regeneration of sludge derived ACs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

The textural properties (Fig. 12) and the oxygen-containing surface functional groups (Fig. 13), particularly the quantity of the carbonyl groups, of the sludge-derived AC were dramatically decreased after adsorptive purification of pretreated CG. The regeneration of the used ACs was then attempted by solvent extraction using C₆H₁₄ or C₄H₁₀O at solvent : AC ratios of 1, 2 and 3. Extraction with either C₆H₁₄ or C₄H₁₀O could slightly recover the BET surface area, micropore and mesopore volumes of the used sludge-derived ACs in a solvent concentration-dependent manner, except that for C₄H₁₀O was optimal at a solvent : AC ratio of 2 and declined at a ratio of 3 (Fig. 12). For extraction with C₆H₁₄, the BET surface area, micropore and mesopore volumes were restored to 15%, 18.3% and 35.6% of that of the unused AC level, respectively, whilst those for C₄H₁₀O extraction were lower at 12.8%, 15.6% and 24.7%, respectively. However, they could recover a large quantity of the oxygen-containing surface functional groups (up to 43-75%), particular the carbonyl groups at 87.5% and 80.3% of the unused AC level for C₆H₁₄ and C₄H₁₀O extraction, respectively, (Fig. 13). This is because both solvents can extract the oily-like compounds, such as FAME or FFAs, and other non-polar impurities from the surface of the used ACs, resulting in an increased BET surface area and pore volume as well as the quantity of free carbonyl groups compared with that before regeneration. Overall, C₄H₁₀O gave a better degree of recovery of the textural properties (BET surface area and pore volumes) of the used AC when extracted at a C₄H₁₀O: AC ratio of 2, but in contrast it was inferior to C₆H₁₄ extraction in restoring the used AC surface chemistry. This might be due to the greater water solubility of $C_4H_{10}O$ than C_6H_{14} (6.89% and 0.001% for $C_4H_{10}O$ and C_6H_{14} , respectively [65]. Thus, C₄H₁₀O can dissolve a higher quantity of polar (mineral salt) and low to non-polar (FAME or FFAs) impurities from the surface of the used AC compared to that of C₆H₁₄, except at a C₄H₁₀O: AC ratio of 3. The decreased textural properties and level of free carbonyl groups on the sludge-derived AC regenerated by extraction with a C₄H₁₀O: used AC

- 1 ratio of 3 might be due to the competition bonding of polar and non-polar portions of excess
- $C_4H_{10}O$ on the impurity molecule, leading to the decrease of its extraction efficiency.

3 Fig. 12.

4 Fig. 13.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

The adsorptive efficiency of the regenerated ACs appeared in part to correlate with their surface properties. Increasing the C₆H₁₄: used AC ratio from 1 to 3 resulted in an increased ability to remove ash and the other contaminants from the pretreated CG from 19.6% to 14.3% and from 34.0% to 24.1%, respectively, and so increased the glycerol content and color reduction from 46.4% to 61.6% and from 84.5% to 89.5%, respectively (Fig. 14). This reflects the better surface properties when generated at a solvent: used AC (v/w) ratio of 2 and highest at 3. This was also the case for the C₄H₁₀O-regenerated AC, including that it was less efficient at a C₄H₁₀O: used AC ratio of 3, where the surface properties were also decreased. However, against this is that C₆H₁₄ extraction gave a slightly superior restoration of the surface chemistry but an inferior adsorption of the impurities in the pretreated CG. Given the higher restoration of the surface textural properties by C_6H_{14} extraction, this then supports that for adsorption both the AC surface textural and chemical properties are important and interact. Although extraction with a $C_4H_{10}O$: used AC ratio of 2 and a C_6H_{14} : used AC ratio of 3 could increase the glycerol content of the pretreated CG from 35.7% to 55.5% or 61.6% in the PCG, respectively, these were still below the acceptable content of BS 2621. Thus, alternative regeneration procedures will be required to be developed to improve the properties of the regenerated ACs, such as thermal processing, which is currently under investigation.

22 Fig. 14.

4. Conclusions

The KOH: char ratio, soaking time and carbonization temperature affected the surface textural and chemical properties, and the adsorption capacity for impurities from pretreated CG,

1 of the obtained sludge-derived ACs. Better textural properties, such as a high BET specific 2 surface area and pore volume, offered a higher opportunity to adsorb the ash and other contaminants in the pretreated CG. The oxygen-containing surface functional groups were 3 responsible for both cation- and anion-uptake. The AC formed from a KOH: char (w/w) ratio of 4 5:1, soaked for 25 h and carbonized at 800 °C exhibited the most suitable surface properties and 5 6 ability to enhance the glycerol purity in the pretreated CG, attaining up to 93.0% (w/w) when used at an AC dose of 67 g/L for a 2 h adsorption time with shaking at 250 rpm. The adsorption 7 of both ash and the other contaminants via the sludge-derived AC followed the Langmuir 8 9 isotherm. Regenerated of the used AC by solvent extraction with either C₄H₁₀O or C₆H₁₄ was not

11

12

10

Acknowledgments

suitable.

The authors thank the Bangchak Petroleum Public Co. Ltd. for samples and materials; the
TRF-CHE Research Grant for Mid-Career University Faculty staff (Grant No. RSA5480015),
the CU Graduate School Thesis Grant and the Research Foundation Enhancement,
Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University for financial support.
Also, we thank the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn
University, and Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

19

20

References

- 21 [1] M. Hájek, F. Skopal, Treatment of glycerol phase formed by biodiesel production, Biores.
- Technol. 101 (2010) 3242–3245.
- 23 [2] M.D. Bohon, B.A. Metzger, W.P. Linak, C.J. King, Roberts WL, Glycerol combustion and
- emissions, P. Comb. Inst. 33 (2011) 2717–2724.
- 25 [3] D. Hernández, J.J. Fernández, F. Mondragón, D. López, Production and utilization
- performance of a glycerol derived additive for diesel engines, Fuel 92 (2012) 130–136.

- 1 [4] L. Tolner, I. Czinkota, G. Sándor, K. Tolner, Testing the effect of redirected glycerol by-
- products on the nutrition providing ability of the soil, Proceedings of 19th World Congress
- of Soil Science, Soil Solutions for a Changing World, 1–6 August 2010, Brisbane,
- 4 Australia. Published on DVD.
- 5 [5] Y. Baba, C. Tada, R. Watanabe, Y. Fukuda, N. Chida, Y. Nakai, Anaerobic digestion of
- 6 crude glycerol from biodiesel manufacturing using a large-scale pilot plant: Methane
- 7 production and application of digested sludge as fertilizer, Biores. Technol. 140 (2013)
- 8 342–348.
- 9 [6] S. Cerrate, F. Yan, Z. Wang, C. Coto, P. Sacakli, P.W. Waldroup, Evaluation of glycerine
- from biodiesel production as a feed ingredient for broilers, Int. J. Poult. Sci. 5 (2006) 1001–
- 11 1007.
- 12 [7] P.J. Lammers, B.J. Kerr, T.E. Weber, W.A. Dozier, M.T. Kidd, K. Bregendahl, M.S.
- Honeyman, Digestible and metabolizable energy of crude glycerol for growing pigs, J.
- 14 Anim. Sci. 86(3) (2008) 602–608.
- 15 [8] J.L.S. López, M.A.M. Santos, A.F.C. Pérez, A.M. Martín, Anaerobic digestion of glycerol
- derived from biodiesel manufacturing, Biores. Technol. 100(23) (2009) 5609–5615.
- 17 [9] G.S. Sabourin-Provost, P.C. Hallenbeck, High yield conversion of a crude glycerol fraction
- from biodiesel production to hydrogen by photofermentation, Biores. Technol. 100(14)
- 19 (2009) 3513–3517.
- 20 [10] K. Pathak, K. Mohan Reddy, N.N. Bakhshi, A.K. Dalai, Catalytic conversion of glycerol to
- value added liquid products, Appl. Catal. A. 372(2) (2010) 224–238.
- 22 [11] A.K. Kinage, P.P. Upare, P. Kasinathan, Y.K. Hwang, J.S. Chang, Selective conversion of
- 23 glycerol to acetol over sodium-doped metal oxide catalysts, Catal. Com. 11(7) (2010) 620–
- 24 623.
- 25 [12] Z.Y. Zakaria, J. Linnekoski, N.A.S. Amin, Catalyst screening for conversion of glycerol to
- light olefins, Chem. Eng. J. 207-208 (2012) 803–813.

- 1 [13] J. Xu, X. Zhao, W. Wang, W. Du, D. Liu, Microbial conversion of biodiesel byproduct
- 2 glycerol to triacylglycerols by oleaginous yeast *Rhodosporidium toruloides* and the
- 3 individual effect of some impurities on lipid production, Biochem. Eng. J. 65 (2012) 30–36.
- 4 [14] J. Wang, M. Zhang, Z. Zheng, F. Yu, J. Ji, The indirect conversion of glycerol into 1,3-
- 5 dihydroxyacetone over magnetic polystyrene nanosphere immobilized TEMPO catalyst,
- 6 Chem. Eng. J. 229 (2013) 234–238.
- 7 [15] Y. Mohtar, T.S. Tang, A. Salmiah, Quality of basic oleochemicals produced in Malaysia,
- 8 Informatics 12 (2001) 529**–5**36.
- 9 [16] A.H. Hazimah, T.L. Ooi, A. Salmiah, Recovery of glycerol and diglycerol from glycerol
- 10 pitch, J. Oil Palm Res. 15 (2003) 1–5.
- 11 [17] T.L. Ooi, K.L. Yong, K. Dzulkefly, W.M.Z. Wan Yunus, A.H. Hazimah, Crude glycerine
- recovery from glycerol residue waste from a palm kernel oil methyl ester plants, J. Oil Palm
- 13 Res. 13 (2001) 16–22.
- 14 [18] X. Lancrenon, J. Fedders, An innovation in glycerin purification, Biodiesel Magazine, May
- 15 2008.
- 16 [19] F. Schaffner, P.Y. Pontalier, V. Sanchez, F. Lutin, Bipolar electrodialysis for glycerin
- production from diester wastes, Filtra. Separ. 40 (2003) 35–39.
- 18 [20] M. Carmona, A. Lech, A. de Lucas, A. Perez, J.F. Rodriguez, Purification of glycerol/water
- solutions from biodiesel synthesis by ion exchange: sodium and chloride removal Part II, J.
- 20 Chem. Technol. Biotechnol. 84 (2009) 1130–1135.
- 21 [21] M. Carmona, J. Valverde, A. Perez, Purification of glycerol/water solutions from biodiesel
- synthesis by ion exchange: sodium removal Part I, J. Chem. Technol. Biotechnol. 84 (2008)
- 23 738–744.
- 24 [22] A. Miyagi, H. Nabetani, R. Subramanian, Purification of crude fatty acids using a PDMS-
- based composite membrane, Separ. Purif. Technol. 77(1) (2011) 80–86.

- 1 [23] R. Manosak, S. Limpattayanate, M. Hunsom, Sequential-refining of crude glycerol derived
- 2 from waste used-oil methyl ester plant via a combined process of chemical and adsorption,
- 3 Fuel Process. Technol. 92 (2011) 92–99.
- 4 [24] S. Kongjao, S. Damronglerd, M. Hunsom, Purification of crude glycerol derived from waste
- 5 used-oil methyl ester plant, Korean J. Chem. Eng. 27(3) (2010) 944–949.
- 6 [25] W.N.R.W. Isahak, M. Ismail, M.A. Yarmo, J.M. Jahim, J. Salimon, Purification of crude
- 7 glycerol from transesterification RBD palm oil over homogeneous and heterogeneous
- 8 catalysts for the biolubricant preparation, J. Appl. Sci. 10 (2010) 2590–2595.
- 9 [26] A. Javani, M. Hasheminejad, K. Tahvildari, M. Tabatabaei, High quality potassium
- phosphate production through step-by-step glycerol purification: A strategy to economize
- biodiesel production, Biores. Technol. 104 (2012) 788–790.
- 12 [27] Q. Wang, X. Liang, W. Qiao, C. Liu, X. Liu, L. Zhan, L. Ling, Preparation of polystyrene-
- based activated carbon spheres with high surface area and their adsorption to
- dibenzothiophene, Fuel Proc. Technol. 90 (2009) 381–387.
- 15 [28] K.M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano,
- Preparation of activated carbons from cherry stones by activation with potassium hydroxide,
- 17 Appl. Surface Sci. 252 (2006) 5980–5983.
- 18 [29] R. Kandiyoti, J.L. Lazaridis, B. Dyrvold, C. Ravindra, Pyrolysis of a ZnCl₂-impregnated
- coal in an inert atmosphere, Fuel 63 (1984) 1583–1587.
- 20 [30] A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and
- 21 physical activation, Carbon 34(4) (1996) 471–479.
- 22 [31] T. Nunthaprechachan, S. Pengpanich, M. Hunsom, Adsorptive desulfurization of
- dibenzothiophene by sewage sludge-derived activated carbon, Chem. Eng. J. 228 (2013)
- 24 263–271.
- 25 [32] W. Chen, X. Liu, R.L. He, T. Lin, Q.F. Zeng, X.E. Wang, Activated carbon powders from
- 26 wool fibers, Powder Technol. 234 (2013) 76–83.

- 1 [33] J. Hayashi, T. Horikawa, K. Muroyama, V.G. Gomes, Activated carbon from chickpea husk
- by chemical activation with K₂CO₃: preparation and characterization, Micropor. Mesopor.
- 3 Mater. 55(1) (2002) 63–68.
- 4 [34] A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins,
- 5 T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area
- 6 produced from coconut shell: Kinetics and equilibrium studies from the methylene blue
- 7 adsorption, Chem. Eng. J. 174(1) (2011) 117–125.
- 8 [35] K.Y. Foo, B.H. Hameed, Potential of jackfruit peel as precursor for activated carbon
- 9 prepared by microwave induced NaOH activation, Biores. Technol. 112 (2012) 143–150.
- 10 [36] L. Liu, Q.F. Deng, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, HNO₃-activated mesoporous carbon
- catalyst for direct dehydrogenation of propane to propylene, Catal. Com. 16(1) (2011) 81–
- 12 85.
- 13 [37] N.R. Khalili, M. Campbell, G. Sandi, J. Golaś, Production of micro- and meso-porous
- activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon 38(14)
- 15 (2000) 1905–1915.
- 16 [38] X. Chen, S. Jeyaseelan, N. Graham, Physical and chemical properties study of the activated
- carbon made from sewage sludge, Waste Manage 22(7) (2002) 755–760.
- 18 [39] S. Yorgun, N. Vural, H. Demiral, Preparation of high-surface area activated carbons from
- Paulownia wood by ZnCl₂ activation, Micropor. Mesopor. Mater. 122 (2009) 189–194.
- 20 [40] A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M.D. Tascón,
- 21 Synthetic carbon activated with phosphoric acid: II. Porous structure, Carbon 40(9) (2002)
- 22 1507–1519.
- 23 [41] B. Jibril, O. Houache, R. Al-Maamari, B. Al-Rashidi, Effects of H₃PO₄ and KOH in
- carbonization of lignocellulosic material, J. Anal. Appl. Pyrolysis 83 (2008) 151–156.

- 1 [42] K.S.K. Reddy, A.A. Shoaibi, C. Srinivasakannan, A comparison of microstructure and
- adsorption characteristics of activated carbons by CO₂ and H₃PO₄ activation from date palm
- 3 pits, New Carbon Mater. 27(5) (2012) 344–351.
- 4 [43] J. Guo, A.C. Lua, Adsorption of sulphur dioxide onto activated carbon prepared from oil-
- 5 palm shells with and without pre-impregnation, Sep. Purif. Technol. 30 (2003) 265–273.
- 6 [44] T. Yang, A.C. Lua, Characteristics of activated carbons prepared from pistachio-nut shells
- by potassium hydroxide activation, Micropor. Mesopor. Mater. 63 (2003) 113–124.
- 8 [45] T. Otowa, Y. Nojima, T. Miyazaki, Development of KOH activated high surface area
- 9 carbon and its application to drinking water purification, Carbon 35 (1997) 1315–1319.
- 10 [46] O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon
- production-A review, Renew. Sustain. Energ. Rev. 11(9) (2007) 1966–2005.
- 12 [47] J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo, Waste
- materials for activated carbon preparation and its use in aqueous-phase treatment: A review,
- J. Environ. Manag. 85(4) (2007) 833–846.
- 15 [48] C.H. Tessmer, R.D. Vidic, L.J. Uranowski, Impact of oxygen-containing surface functional
- groups on activated carbon adsorption of phenols, Environ. Sci. Technol. 31 (1997) 1872–
- 17 1879.
- 18 [49] A. Ros, M.A. Lillo-Ródenas, E. Fuente, M.A. Montes-Morán, M.J. Martín, A. Linares-
- Solano, High surface area materials prepared from sewage sludge-based precursors,
- 20 Chemosphere 65 (2006) 132–140.
- 21 [50] J. Guo, A.C. Lua, Surface functional groups on oil-palm-shell adsorbents prepared by
- 22 H₃PO₄ and KOH activation and their effects on adsorptive capacity, Chem. Eng. Res. Des.
- 23 81 (2003) 585–590.
- 24 [51] J. Laine, A. Calafat, Factors affecting the preparation of activated carbons from coconut
- shell catalyzed by potassium, Carbon 29 (1991) 949–953.

- 1 [52] G.X. Yu, S.X. Lu, H. Chen, Z.N. Zhu, Thermal regeneration of activated carbon saturated
- 2 with *p*-nitrophenol, Carbon 43 (2005) 2285–2293.
- 3 [53] H. Jankowska, A. Swiatkowski, J. Choma, Active Carbon, Ellis Horwood, New York, 1991.
- 4 [54] A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen, Comparative adsorption of Cu(II), Zn(II), and
- 5 Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard.
- 6 Mater. 154 (2008) 184–191.
- 7 [55] S. Gupta, B.V. Babu, Removal of toxic metal Cr(VI) from aqueous solutions using sawdust
- 8 as adsorbent: Equilibrium, kinetics and regeneration studies, Chem. Eng. J. 150 (2009) 352–
- 9 365.
- 10 [56] J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif, A. Borgna, Desulfurization of diesel
- fuels by selective adsorption on ACs: Competitive adsorption of polycyclic aromatic sulfur
- heterocycles and polycyclic aromatic hydrocarbons, Chem. Eng. J. 166 (2011) 207–217.
- 13 [57] I. Vázquez, J. Rodríguez-Iglesias, E. Marañón, L. Castrillón, M. Álvarez, Removal of
- residual phenols from coke wastewater by adsorption, J. Hazard. Mater. 147 (2007) 395–
- 15 400.
- 16 [58] J.J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, Equilibrium and
- kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies,
- 18 J. Hazard. Mater. 162 (2009) 616–645.
- 19 [59] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue
- adsorption by coir pith carbon, Bioresour. Technol. 98 (2007) 14–21.
- 21 [60] X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu²⁺ on rice bran, Proc. Biochem.
- 22 40 (2005) 677–680.
- 23 [61] G. Akkaya, A. Ozer, Adsorption of acid red 274 (AR 274) on *Dicranella varia*:
- 24 determination of equilibrium and kinetic model parameters, Proc. Biochem. 40 (2005)
- 25 3559–3568.

- 1 [62] A. Kilislioglu, B. Bilgin, Thermodynamic and kinetic investigation of uranium adsorption
- on amberlite IR-118H resin, Appl. Radiat. Isotopes. 58 (2003) 155–160.
- 3 [63] M.M. Dubinin, Modern state of the theory of volume filling of micropore adsorbents during
- 4 adsorption of gases and steams on carbon adsorbents, Zhurnal Fizicheskoi Khimii 39 (1965)
- 5 1305–1317.
- 6 [64] F. Kargi, S. Ozmichi, Biosorption performance of powdered activated sludge for removal of
- 7 different dyestuffs, Enzyme Microb. Technol. 35 (2004) 267–271.
- 8 [65] J.A. Byers, Solvent polarity and miscibility. 2003. [Online]. Available from:
- 9 http://www.chemical-ecology.net/java/solvents.htm [2012, December 26].

Figure captions

Fig. I	Effect of the KOH: char (w/w) ratio on the quantity of the oxygen-containing surface
	functional groups ((\blacksquare) lactone, (\blacksquare) hydroxyl, (\blacksquare) carboxyl and (\square) carbonyl groups) of
	the sludge-derived ACs prepared with a soaking time of 20 h and carbonized at 500 $^{\rm o}$ C.
Fig. 2	Effect of the KOH: char (w/w) ratio on the (■) BET surface area, (■) micropore volume
	and (\square) mesopore volume of the sludge-derived AC prepared with a soaking time of 20 h
	and carbonized at 500 °C.
Fig. 3	Effect of the KOH: char (w/w) ratio on the content of (\blacksquare) glycerol, (\blacksquare) ash, (\square) other
	contaminants and () color of the PCG obtained by adsorption of pretreated CG with the
	sludge-derived AC prepared with a soaking time of 20 h and carbonized at 500 $^{\circ}$ C.
Fig. 4	Effect of the KOH soaking time on the quantity of the oxygen-containing surface
	functional groups ((\blacksquare) lactone, (\blacksquare) hydroxyl, (\blacksquare) carboxyl and (\square) carbonyl groups) of
	the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 and carbonized at 500 $^{\rm o}C.$
Fig. 5	Effect of the KOH soaking time on the (■) BET surface area, (■) micropore volume and
	(\Box) mesopore volume of the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5
	and carbonized at 500 $^{\circ}\mathrm{C}$
Fig. 6	Effect of the KOH soaking time on the content of (\blacksquare) glycerol, (\blacksquare) ash, (\square) other
	contaminants and (■) color in the PCG obtained by adsorption with the sludge-derived
	AC prepared at a KOH: char (w/w) ratio of 5 and carbonized at 500 °C.
Fig. 7	Effect of the carbonization temperature on the (■) BET surface area, (■) micropore
	volume and (\square) mesopore volume of the sludge-derived AC prepared at a KOH: char
	(w/w) ratio of 5 for 25 h.
Fig. 8	Effect of the carbonization temperature on the quantity of the oxygen-containing surface
	functional groups ((\blacksquare) lactone, (\blacksquare) hydroxyl, (\blacksquare) carboxyl and (\square) carbonyl groups) of
	the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 for 25 h.

- Fig. 9 Effect of the carbonization temperature on the content of (■) glycerol, (■) ash, (□) other contaminants and (■) color in the PCG obtained by adsorption with the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 for 25 h.
- Fig. 10 Effect of (a) the adsorption time with shaking at 250 rpm, and (b) the shaking rate with an adsorption time of 120 min, on the content of (■) glycerol, (■) ash, (□) other contaminants and (■) color in the PCG obtained by adsorption with the sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 for 25 h and carbonized at 800 °C.
- Fig. 11 (a) Equilibrium adsorption and the linearized (b) Langmuir, (c) Freundlich, (d) Tempkin, (e) Dubinin-Radushkevich and (f) Generalized isotherms plots of this data for (●) ash and (◆) the other contaminants from the pretreated CG by the sludge derived-AC with an adsorption time of 120 min and shaking at 250 rpm. The AC was prepared with a KOH: char (w/w) ratio of 5 for 25 h and carbonized at 800 °C.
- Fig. 12 Effect of the (a) C_6H_{14} and (b) $C_4H_{10}O$ solvent: used AC (v/w) ratio (where R1, R2 and R3 represent a ratio of 1:1, 2:1 and 3:1, respectively) on the (\blacksquare) BET surface, (\blacksquare) micropore volume and (\square) mesopore volume of the used sludge-derived AC.
- Fig. 13 Effect of the (a) C_6H_{14} and (b) $C_4H_{10}O$ solvent: used AC (v/w) ratio (where R1, R2 and R3 represent a ratio of 1:1, 2:1 and 3:1, respectively) on the quantity of oxygen-containing surface functional groups: ((\blacksquare) lactone, (\blacksquare) hydroxyl, (\blacksquare) carboxyl and (\square) carbonyl groups) of the used sludge-derived AC.
- Fig. 14 Effect of the (a) C_6H_{14} and (b) $C_4H_{10}O$ solvent : used AC (v/w) ratio (where R1, R2 and R3 represent a ratio of 1:1, 2:1 and 3:1, respectively) on the regeneration of AC, in terms of the content of (\blacksquare) glycerol, (\blacksquare) ash, (\square) other contaminants and (\blacksquare) color in the PCG obtained by adsorption with the regenerated sludge-derived AC.

Table 1. Physicochemical characteristics of the sewage sludge and derived char.

Type of analysis	Sludge (% (w/w))	Char (% (w/w))	
Elemental analysis			
Carbon (C)	68.69 ± 2.99	73.98 ± 0.59	
Oxygen (O)	29.05 ± 3.34	20.98 ± 0.13	
Sodium (Na)	0.50 ± 0.21	1.46 ± 0.57	
Others (ex. S, Si, Mg, Al, P, Cl, etc.)	1.76 ± 0.06	3.58 ± 0.63	
Proximate analysis		•	
Moisture	9.53 ± 0.44	3.27 ± 0.55	
Ash	24.40 ± 0.63	32.06 ± 0.85	
Volatile matter	60.50 ± 0.89	23.45 ± 0.98	
Fixed carbon	5.57 ± 0.16	41.22 ± 0.44	

Table 2. Characteristics of the CG, H_3PO_4 pretreated CG and PCG obtained from adsorption using the indicated AC.

Parameters	BS 2621:1979 [17]	CG	Pretreated CG ^a	Sludge-derived AC ^b	Commercial AC ^c
pН		9.65 ± 0.21	7.10 ± 0.14	7.0	7.0
Glycerol content (% (w/w))	≥ 80	27.2 ± 0.84	35.7 ± 0.27	93.0 ± 0.57	88.6 ± 0.63
Ash (% (w/w))	≤ 10	36.2 ± 0.20	29.1 ± 0.51	7.0 ± 0.82	11.4 ± 1.03
Other contaminants (% (w/w))	≤ 10	36.6 ± 0.64	35.2 ± 0.78	N/A^d	N/A
Density at 20 °C (g/cm ³)		1.01 ± 0.062	1.21 ± 0.02	1.277 ± 0.006	1.264 ± 0.006
Viscosity at 40 °C (cSt)		49.2 ± 0.20	57.4 ± 1.03	104.7 ± 0.54	89.6 ± 0.79
Color (Pt-Co unit)		$172,857 \pm 5,580$	$154,038 \pm 4,477$	$2,314 \pm 141$	$3,654 \pm 22$

^aPretreated by acidification with H₃PO₄ at pH 2.5.

^bAdsorption with sludge-derived AC prepared at a KOH: char (w/w) ratio of 5 for 25 h and carbonized at 800 °C.

^cAdsorption with commercial AC (Panreac Quimica1, UK) at 67.7 g/L, 120 min, 250 rpm

^dN/A not available

Table 3. Summation of the isotherm constants for the adsorption of ash and the other contaminants from the pretreated CG by the sludge-derived AC.

Type of	Isotherm	Ash		Contan	ninants
isotherm	parameters	Values	R^2		R^2
			0.0004	0.0=0	
Langmuir	q_0	3.689	0.9884	8.878	0.9741
	$k_L (L/g)$	0.122		0.044	
Freundlich	$k_F(L/g)$	3.312	0.0112	5.288	0.4387
	1/n	0.012		0.072	
Tempkin	$A_T(L/g)$	8.16×10^{34}	0.0105	6.90×10^{3}	0.4469
	B_T	0.0413		0.5498	
D-R	$K \left(\text{mol/kJ} \right)^2$	20.83	0.0068	11.82	0.2004
	E (kJ/mol)	0.155		0.206	
	q_0 (g/g)	3.512		7.681	
Generalized	N_b	0.0413	0.0003	0.6671	0.4340
	$k_G(g/L)$	0.0447		3.4721	

The AC used was derived from sewage sludge char prepared with activation with a KOH : char (w/w) ratio of 5 for 25 h and then carbonized at $800\,^{\circ}$ C

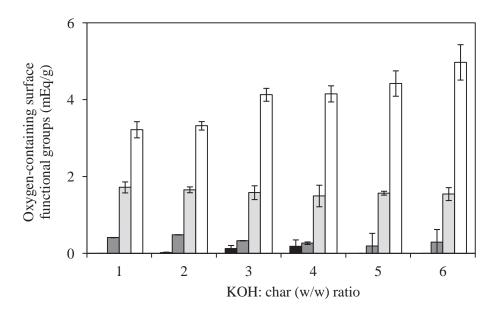


Fig. 1

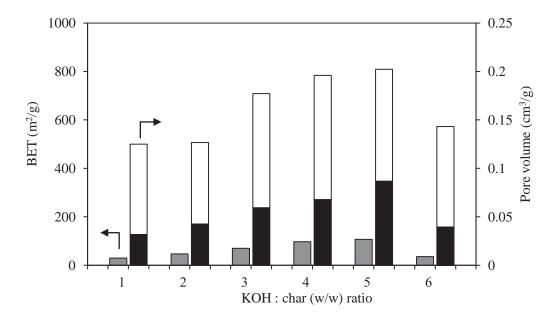


Fig. 2

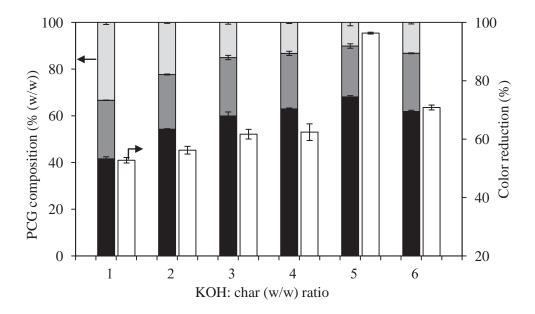


Fig. 3

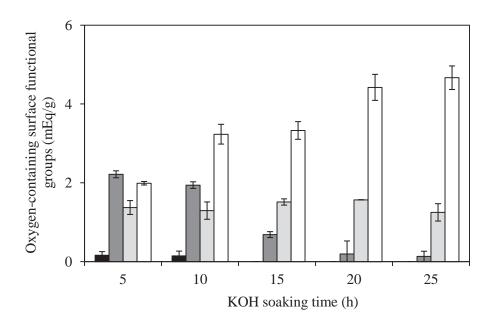


Fig. 4

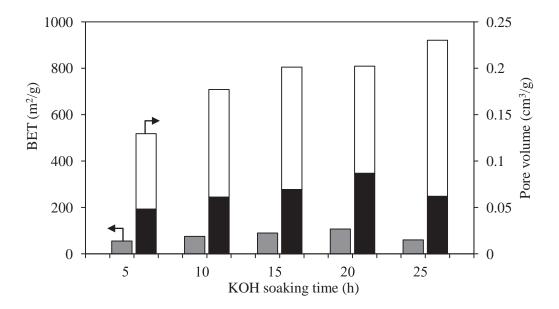


Fig. 5

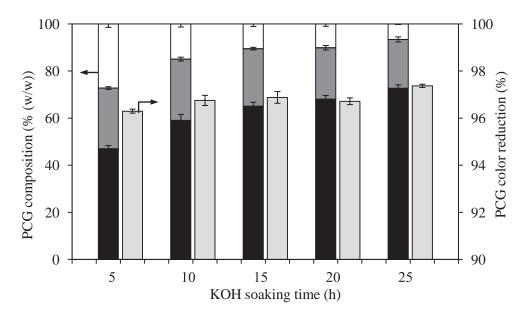


Fig. 6

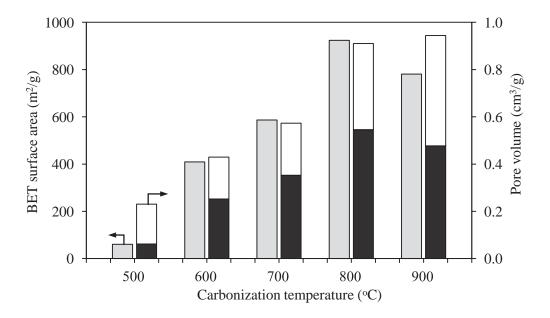


Fig. 7

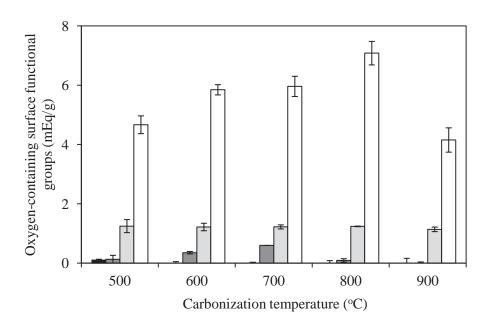


Fig. 8

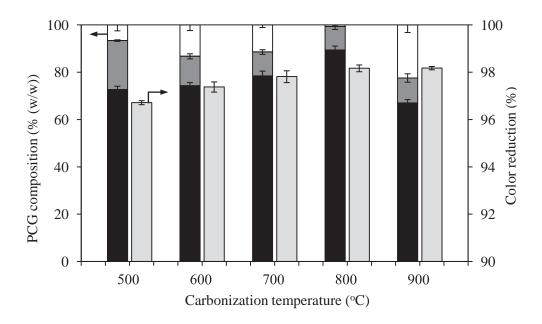
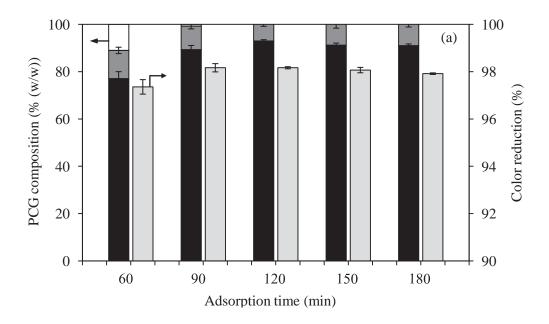



Fig. 9

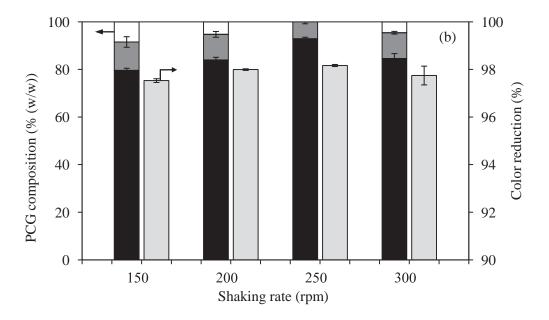


Fig. 10

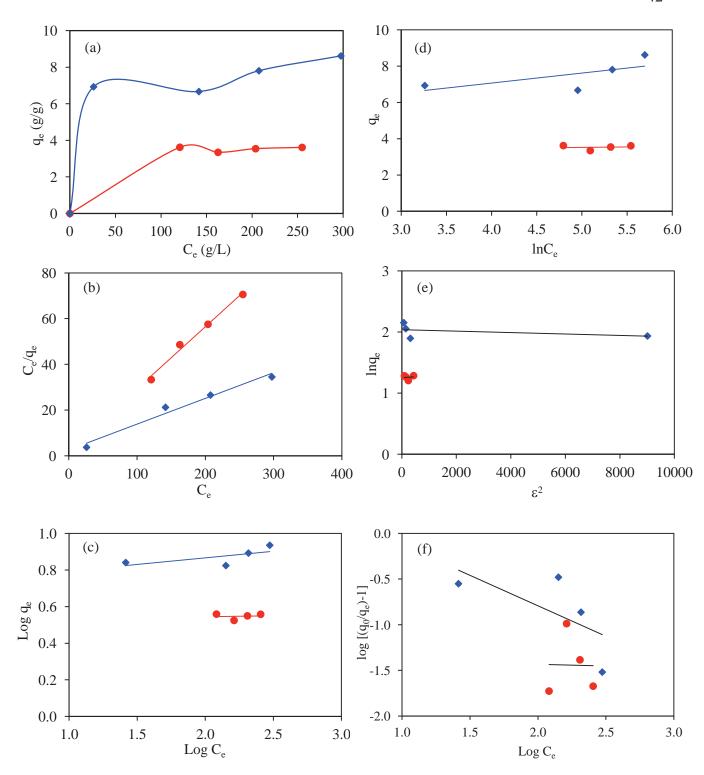
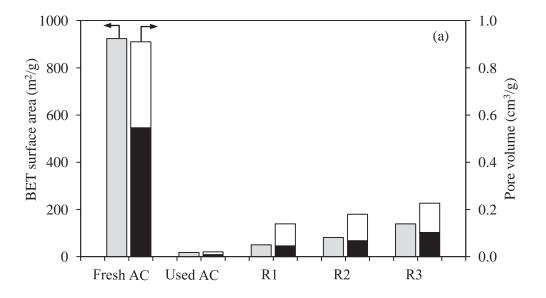



Fig. 11

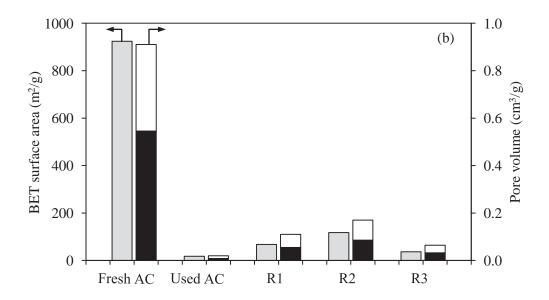


Fig. 12

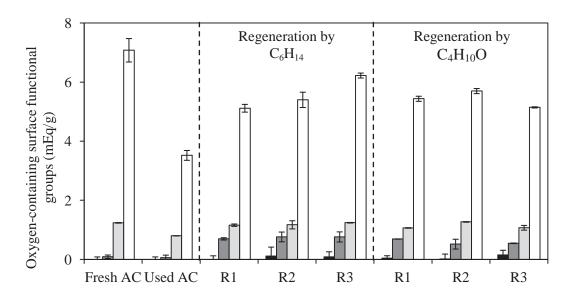
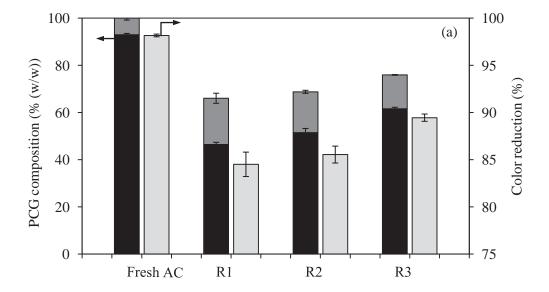



Fig. 13

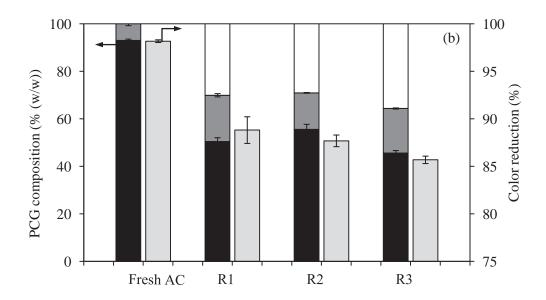


Fig. 14

*Highlights (for review)

Highlight

Impact of preparing condition of sludge-derived AC on glycerol purification was studied. > The preparing conditions affected textural property and surface chemistry of sludge-derived AC. > The AC prepared appropriate condition can enhance the glycerol purity up to 93.0%. > The adsorption of ash or contaminants via sludge-derived AC followed the Langmuir isotherm. > The reusability of the used AC by hexane or diethyl ether extraction was not suitable.

Elsevier Editorial System(tm) for Renewable Energy Manuscript Draft

Manuscript Number: RENE-D-13-01597

Title: Electrochemical conversion of enriched crude glycerol: Effect of operating parameters

Article Type: Research Paper

Keywords: Crude glycerol; Solvent extraction, Added-value compound, Electrochemical conversion

Corresponding Author: Dr. Mali Hunsom,

Corresponding Author's Institution:

First Author: Mali Hunsom

Order of Authors: Mali Hunsom; Payia Saila, M.Sc.

Abstract: The enrichment of crude glycerol (29.8 wt.%) from a biodiesel production plant and its subsequent electrochemical conversion under a galvanostatic mode to added-value compounds was successfully performed at a laboratory scale. The optimal solvent-extraction based enrichment of the crude glycerol, after the acid pretreatment to remove most free fatty acids and salts, was found using n-propanol: pretreated crude glycerol volume ratio of 2, attaining 97.9% glycerol. The effects of the initial glycerol solution pH (1, 7 or 11), type of electrode (platinum (Pt), titanium-coated rubidium oxide (Ti/TuO2) or stainless steel (SS)) and applied current density (0.08-0.27 A/cm2) were explored. Using a galvanostatic mode, the enriched glycerol could be converted to added-value products, such as ethylene glycol, acetol, glycidol, acrolein, 1,2-propanediol (PD) and 1,3-PD. A Pt electrode, initial glycerol solution pH of 1 and current density of 0.14 A/cm2 were found to be optimal giving complete conversion of 0.3 M glycerol within 14 h with a total product yield of 68.7% mol. However, each specific product had a different optimal applied current density and electrolysis time. Finally, a simplified diagram showing the possible major reaction pathways of glycerol conversion by this electrochemical conversion over a Pt electrode is presented.

Cover Letter

Aug 22, 2013

Dear Sir.

I'm Dr.Mali Hunsom from Department of Chemical Technology, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand. I would like to submit the manuscript

entitled "Electrochemical conversion of enriched crude glycerol: Effect of operating

parameters. This manuscript have not been printed or under consideration by other journals.

This work attempted to transform crude glycerol to added-value compounds. Initially, the

crude glycerol obtained from the biodiesel production plant was enriched for glycerol in a

two-stage chemical treatment, and then the enriched glycerol was used as the raw substrate

for the electrochemical synthesis of other compounds. The enrichment of the crude glycerol

was optimized in terms of the solvent and solvent : crude glycerol volume ratio in the

extraction to obtain the optimal glycerol yield and purity, and then the electrochemical

conversion to added-value compounds was optimized.

The novelty of this work is the utilization of surplus crude glycerol as the raw material to

synthesize added-value compounds that can be used in various industries, and so this could

offer the benefits of reducing the volume of surplus crude glycerol and the decline in crude

glycerol price.

The language of this manuscript is already proved by the native speaker, Dr. Robert D.J.

Butcher from the Publication Counselling Unit (PCU) of the Faculty of Science,

Chulalongkorn University, Thailand. Could you please consider in details and accept to

publish this manuscript in your journal and looking forward to receiving the good news

about the acceptance to publish in your journal soon. Thank you very much.

Best Regards,

Assoc. Prof.Dr. Mali Hunsom

Department of Chemical technology

Faculty of Science, Chulalongkorn University PhayaThai Rd. Bangkok

Tel. (662) 2187523 Fax. (662) 2555831

E-mail: mali.h@chula.ac.th

*Highlights (for review)

Highlight

The chemical enrichment of crude glycerol to 97.9 wt.% was successfully performed using n-propanol. > The enriched crude glycerol was converted to added-value products by electrochemical technique. > More oxidation-reduction peaks of the enriched glycerol were observed under strong acid condition. > Pt cathode gave higher glycerol conversion and more added-value products than Ti/RuO_2 or SS cathode. > High applied current density can facilitate the conversion of glycerol to value-added products.

Electrochemical conversion of enriched crude glycerol: Effect of operating parameters

3 Mali Hunsom^{a,b*}, Payia Saila^a

^aFuels Research Center, Department of Chemical Technology, Faculty of Science,

^bCenter of Excellence on Petrochemical and Materials Technology (PETRO-MAT),

Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

Abstract

The enrichment of crude glycerol (29.8 wt.%) from a biodiesel production plant and its subsequent electrochemical conversion under a galvanostatic mode to added-value compounds was successfully performed at a laboratory scale. The optimal solvent-extraction based enrichment of the crude glycerol, after the acid pretreatment to remove most free fatty acids and salts, was found using *n*-propanol: pretreated crude glycerol volume ratio of 2, attaining 97.9% glycerol. The effects of the initial glycerol solution pH (1, 7 or 11), type of electrode (platinum (Pt), titanium-coated rubidium oxide (Ti/TuO₂) or stainless steel (SS)) and applied current density (0.08–0.27 A/cm²) were explored. Using a galvanostatic mode, the enriched glycerol could be converted to added-value products, such as ethylene glycol, acetol, glycidol, acrolein, 1,2-propanediol (PD) and 1,3-PD. A Pt electrode, initial glycerol solution pH of 1 and current density of 0.14 A/cm² were found to be optimal giving complete conversion of 0.3 M glycerol within 14 h with a total product yield of 68.7% mol. However, each specific product had a different optimal applied current density and electrolysis time. Finally, a simplified diagram showing the possible major reaction pathways of glycerol conversion by this electrochemical conversion over a Pt electrode is presented.

E-mail address: mali.h@chula.ac.th

^{*}Corresponding author. Tel.: +66 (2) 2187523-5; Fax: +66 (2) 2555831

Keywords: Crude glycerol; Solvent extraction, Added-value compound, Electrochemical

conversion

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

1

2

1. Introduction

Due to the increasing global human population and, especially, fast expansion of their global economies and industries, a large and increasing quantity of energy is being used and this is mainly derived from non-renewable fossil fuel-based sources. This results in a significant diminishment of the fossil fuel resources, with a predicted end of the supply of cheap (<USD 100 per barrel) fossil fuel oil by 2040 at the latest [1]. In addition, the current rate of utilization of fossil fuel-based energy releases higher levels of various greenhouse gases than can be fixed leading to an increased atmospheric and aquatic level of these gases with, for example, global warming and ocean acidification. These economic and environmental issues have driven an increasing interest in developing alternative technologies in order to produce alternative fuels and chemicals using sustainably renewable resources with a reduced carbon footprint. In this way, biodiesel is one potential alternative energy source to partially replace fossil fuel-based energy due to its high cetane number, lubricity, flash point and biodegradability plus its low toxicity [2]. In addition, it is seen as a much safer fuel than petroleum-derived diesel fuel because it has a low emission of toxic compounds, such as sulfur dioxide, hydrocarbons, particulates, polycyclic aromatic hydrocarbons and carbon monoxide [3,4]. Biodiesel (fatty acid alkyl esters) is made from renewable biological sources, such as vegetable oils and animal fats, esterified to a simple alcohol, and commercially is principally made by transesterification in the presence of an acidic or alkaline catalyst. Currently, the world's capacity for biodiesel production is increasing dramatically. This is also the case in Thailand where biodiesel production has increased up to 1.71×10^6 L/day in 2012 [5]. Stoichiometrically, glycerol is produced at 10 wt.% of the total biodiesel production

[6]. However, the crude glycerol obtained from biodiesel production has a low economic value

due to the presence of significant levels of various impurities, such as moisture, ash, soap, chloride, soap, residual alcohol, traces of glycerides and vegetable colors [7,8]. Thus, various studies have focused on enrichment of glycerol from this crude glycerol, such as by simple vacuum distillation [9,10], electrodialysis [11], ion-exchange chromatography [12,13], and chemical [14–16] and adsorption [17] based processes. Purified or enriched crude glycerol with a purity between 96–99.5% can be used in the food, pharmaceutical or cosmetic industries [7], but this is still a limited and saturateable market. Thus, the additional approach of transforming crude glycerol to more valuable chemicals, such as propanediol [18,19], synthesis gas [20–22], acrylonitrile [23,24] or liquid fuels [25,26], since it is a molecule rich in functionalities with three -OH groups [27], is of increasing interest. A diverse array of processes to transform glycerol into more valuable chemicals have been developed, such as pyrolysis [28,29], gasification [30–32], selective oxidation [33–35], biological processes [36,37], esterification and acetylation [38–40] and hydrogenolysis [41–45].

However, the conversion of crude glycerol to added-value compounds has not been sufficiently reported in the previous literature. Therefore, this work attempted to transform crude glycerol to added-value compounds. Initially, the crude glycerol obtained from the biodiesel production plant was enriched for glycerol in a two-stage chemical treatment, and then the enriched glycerol was used as the raw substrate for the electrochemical synthesis of other compounds. The enrichment of the crude glycerol was optimized in terms of the solvent and solvent: crude glycerol volume ratio in the extraction to obtain the optimal glycerol yield and purity, and then the electrochemical conversion to added-value compounds was optimized. The novelty of this work is the utilization of surplus crude glycerol as the raw material to synthesize added-value compounds that can be used in various industries, and so this could offer the benefits of reducing the volume of surplus crude glycerol and the decline in crude glycerol price.

2. Experimental

Crude glycerol was obtained from a local biodiesel, as fatty acid methyl esters (FAME), production plant in Thailand that utilizes waste used-oil and methanol as the raw materials for biodiesel production via the alkali-mediated "transesterification" process. The as-obtained crude glycerol was a dark brown solution with a high viscosity and changed to a semi-solid substance during the prolonged storage. Thus, prior to use, the crude glycerol was slowly melted at around 40–60 °C.

2.1. Pre-treatment of crude glycerol

Due to the presence of organic and inorganic contaminants in the crude glycerol, such as soap, fatty acid esters of glycerol, mineral salt, water and residual FAME, it was first pre-treated according to the procedure of Manosak et al. [15]. Briefly, the crude glycerol was acidified with H₃PO₄ (85%, Qrec) to pH 2.5 with shaking at 200 rpm (CTL, model SK electric shaker) for 1 h and then left for 12 h until the solution phase-separated into the three distinct layers of a top free fatty acid (FFA)-rich layer, a middle glycerol-rich layer and the bottom inorganic salt-rich layer. All layers were separated from each other by slow decantation. Subsequently, the middle glycerol-rich layer was neutralized by the addition of 12.5 M NaOH (98% Merck) to pH 7.0, left for a while and then filtered to eliminate the precipitated salt. The pre-treated crude glycerol was obtained after drying at 110 °C for 15 h.

2.2. Enrichment of pre-treated crude glycerol

The enrichment of pre-treated crude glycerol was carried out by single stage solvent extraction, evaluating three types of solvent (methanol (99.99% CH₃OH, Merck), ethanol (99.99% C₂H₅OH, Merck) and *n*-propanol (99.99% *n*-C₃H₇OH, Fisher Scientific)), at five different solvent: pre-treated crude glycerol volume ratios (0.5, 1, 2, 3 and 4.0). In each case, the pre-treated crude glycerol was mixed with the selected solvent and volume ratio by shaking at

1 200 rpm for 4 h and then left for 2 h to encourage the phase separation into the glycerol-alcohol

2 phase on the top and the crystallized salt on the bottom. The top layer was separated from the

bottom layer by slow decantation and the enriched glycerol was obtained after evaporation of

4 the solvent at 95 °C for 12 h.

2.3. Steady-state cyclic voltammetry (CV) of the enriched glycerol

The steady-state cyclic voltammetry (CV) of the enriched glycerol was performed using a Potentiostat/Galvanostat (Auto Lab, model PG stato) with an initial concentration of enriched glycerol of 0.3 M. Two cylindrical platinum (Pt) grids with a surface area of 31.82 cm² and 121.38 cm² were used as the working and counter electrodes, respectively, while Ag/AgCl was used as the reference electrode. The scan potential was varied in the range from +2.0 to -1.0 V at a scan rate of 5 mV/s, and the system was agitated by a magnetic stirrer at a constant rate of 650 rpm. Where indicated the Pt working electrode was replaced with either a titanium-coated ruthenium oxide (Ti/RuO₂) or a stainless steel (SS) electrode of the same surface area.

2.4. Electrochemical conversion and product distribution of the enriched glycerol

The electrochemical conversion of the enriched glycerol (0.3 M) under a galvanostatic mode was explored at a laboratory scale at ambient temperature (~25 °C) and pressure (~101 kPa). The electrochemical reactor was made from Pyrex glass having a total capacity of 600 mL. The temperature of electrolytic cell was controlled by a cooling system. A regulated DC power supply (ZS 3205-2X type) was employed to supply the external electricity at a galvanostatic mode.

2.5. Analytical procedures

The glycerol content in glycerol solution was analyzed by high performance liquid chromatography (HPLC: Agilent 1100) with a RID-10A refractive index detector. The

stationary phase was a Pinnacle II C18 column (240 × 4.6 mm) and the mobile phase was a 1

99.9:0.1 (volume) ratio of 10 mM H₂SO₄: pure CH₃OH, passed through the column at 0.5 2

mL/min. Ash content was analyzed according to the standard method (ISO 2098-1972) by 3

slowly heating 2 g of glycerol on a hot plate to eliminate the free moisture and volatile matter. 4

When no further mist was generated, the glycerol was burnt in a muffle furnace at 750 °C for 10 5

6 min. The residue was cooled down to room temperature and weighed. The quantity of water and

7 organic non-glycerol matter (MONG), as measured in terms of contaminants, were calculated

by the difference in weights using Eq. (1), 8

9

Contaminant (wt.%) =
$$100 - [Glycerol content (wt.%) + Ash content (wt.%)]$$
 (1)

11

12

13

14

15

16

17

18

19

The pH of the glycerol solution was measured with a pH meter (Mettler Toledo, MP220). The color of glycerol was measured in terms of absorbance at a wavelength of 487 nm using a UV/Vis spectrophotometer (Jasco, V-530). The density and viscosity were measured using a pycnometer and Oswald viscosity, respectively, according to ISO 2099-1972 and ASTM D 445, respectively. The qualitative compositions of the crude, pre-treated and enriched crude glycerol as well as the product composition after electrolysis were analyzed by gas chromatography coupled mass spectrometry (GC-MS) on a 6890N GC-MS system (Agilent of GC/Pegosees III, Lego of MS).

20

The conversion of glycerol as well as the yield of value-added products obtained from the electrochemical technique was calculated from Eqs. (2) and (3), respectively:

22

21

Glycerol conversion (%) =
$$\frac{\text{amount of glycerol converted (C-based mole)}}{\text{total amount of glycerol in reactant (C-based mole)}} \times 100$$
 (2)

24

Yield (%) =
$$\frac{\text{amount of gly cerol converted to each product (C - based mole)}}{\text{total amount of gly cerol in reactant (C - based mole)}} \times 100$$
 (3)

3. Results and discussion

3.1. Characteristics of the crude glycerol and pre-treated crude glycerol

Crude glycerol obtained from the waste used-oil FAME production plant was a dark brown liquid with a high pH (range of 9.5–9.8) and a low density and viscosity (Table 1), being 81.3% and 18.0% of that of commercial glycerol (density and viscosity of commercial glycerol from Fisher are 1.2671 g/cm³ and 267.70 cSt), respectively [46]. It contained a very low glycerol content (29.8 %wt.%), acceptable level of ash (7.9% wt.%), and a relatively high contaminant (62.3 wt.%). Quantitatively, the crude glycerol derived from the waste used-oil FAME production plant was composed mainly of glycerol and various compounds including FFAs and their methyl or glycerol ester derivatives, such as lauric acid, methyl myristate, myristic acid, methyl palmitoleate, methyl palmitate, palmitic acid, methyl linoleate, oleic acid and methyl stearate (Fig. 1), which are the main fatty acid components of vegetable oil.

Table 1

14 Fig. 1

The pre-treatment acidification of the crude glycerol led to the automatic phase separation into a FFA layer on the top, a glycerol-rich layer in the middle and an inorganic salt layer below. This is because H⁺ from the H₃PO₄ mineral acid protonated the anionic (carboxylic) groups of the soap bulk to form insoluble FFAs, which consequently separated out as the top layer due to their lower density and polarity compared to glycerol. Meanwhile, the excess H₂PO₄⁻ couples with the Na⁺ salts in the crude glycerol to form the relatively insoluble NaH₂PO₄ [47], resulting in the formation of the inorganic salt layer on the bottom of the aqueous solution. The pre-treatment by H₃PO₄ acidification followed by NaOH neutralization to pH 7.0–7.2 increased the density of the obtained crude glycerol 1.23-fold to 1.273 g/cm³ (near that of pure glycerol), whilst the viscosity was only slightly (1.11-fold) increased (Table 1) and was still only 20% of that of commercial pure glycerol. The appearance of the pre-treated crude glycerol was changed to a brown liquid at a 2.2-fold lower Pt-Co unit (Table 1), whilst the

contaminant content decreased 2.51-fold to 24.8 wt.%, resulting in a 1.74-fold increase in the glycerol content to 51.9 wt.%. However, the ash content increased almost 2.96-fold in comparison with the original crude glycerol, probably due to the residual levels of the partially soluble phosphate salt (NaH₂PO₄) in the crude glycerol-containing water. In terms of chemical composition, the pretreatment stage partially or totally removed different FFAs and their methyl or glycerol ester derivatives, such as 2-hexadecanoyl glycerol, methyl linoleate, methyl myristate, methyl palmitate, methyl palmitate, methyl palmitate, methyl palmitate, methyl stearate, 2-monooleoyl glycerol and oleic acid (Fig. 1(b)).

3.2. Enrichment of the pre-treated crude glycerol via solvent extraction

The single stage solvent extraction of the pre-treated crude glycerol led to an increase in the glycerol content as the solvent: pre-treated crude glycerol volume ratio increased up to 2.0 for all three solvents (Fig. 2(a)). This is because a larger quantity of solvent can extract more glycerol from the mineral salts and other contaminants before being saturated. However, further increasing the solvent: pretreated crude glycerol volume ratio to 3 or 4 decreased the glycerol content in the enriched glycerol, which might be due to the fact that the excess solvent contaminates (partitions into) the enriched crude glycerol, resulting in a reduced net glycerol proportion. The highest glycerol concentration was obtained (97.9 wt.%) using n-C₃H₇OH at a solvent: crude glycerol volume ratio of 2.

With respect to the color of the enriched glycerol, the color was decreased significantly by around 91.0–97.0% compared to that of the pre-treated crude glycerol (Fig. 3). This is because the solvent extracted colored contaminants from the glycerol.

The solvent extraction with n-C₃H₇OH increased the glycerol content by 1.89-fold over that of the pre-treated crude glycerol, and decreased the ash content, contaminants and color by 27.2-, 19.2- and 14.3- fold, respectively (Table 1). Overall, the enriched glycerol had a 3.28-fold higher glycerol level and a decreased ash content, contaminant and color level by 9.19-, 48.3-

and 31.4-fold, respectively, compared to the original crude glycerol. The main component in the

2 enriched glycerol was glycerol, with some residual FFA (Fig. 1(c)).

3 Fig. 2

4 Fig. 3

- *3.3. Electrochemical conversion of the enriched glycerol*
- 6 3.3.1. Steady-state CVs of the enriched glycerol

The typical steady-state CV curves of the enriched glycerol solution at three different initial pH values during an applied potential of +2.0 to -1.0 V are shown Fig. 4. Under a strong acidic condition (pH 1), various peaks were observed in the anodic and cathodic scans. The first peak observed in the anodic scan, at an electrode potential of +0.208 V (peak I), corresponded to the oxidation of contaminants, such as ionic salts, in the enriched glycerol [48]. The second oxidation peak, observed at a maximum electrode potential of +0.712 V (peak II), related to the oxidation of glycerol. At a potential greater than +1.40 V a sharp increase in the current density was observed, which was attributed to the oxidation of H₂O to O₂. For the backward scan, one oxidation peak (peak III) was observed, at an electrode potential of +0.351 V, and this was attributed to the incomplete oxidization of carbonaceous residues on the catalyst surface during the negative sweep [49,50]. These carbonaceous residues can accumulate tightly on the Pt surface and block the active catalyst sites for next turnover, resulting in sluggish anodic reactions [50].

In the neutral medium (pH 7), a very low current was detected in the CV plot over the investigated potential range. Under a strong basic condition (pH 11), no sharp oxidation peak was observed in both the forward and backward scans. A very broad oxidation peak was observed at an electrode potential of -0.7 to +0.9 V during the forward scan, suggesting the accumulation of strong absorbed hydroxyls on the electrode surface under the basic environment. For the backward scan, the oxidation of the accumulated carbonaceous residues was observed at a maximum electrode potential of -0.313 V (peak IV). This oxidation potential

- 1 was shifted to a more negative potential compared to that of the glycerol solution at pH 1,
- 2 suggesting that the oxidation of carbonaceous residues was easier at pH 11 than at pH 1.
- 3 According to the polarization curve, it is clear that the oxidation-reduction of the enriched
- 4 glycerol was principally observed under the strong acid condition. Therefore, further studies
- 5 related to the electrochemical conversion of the enriched glycerol, namely on the types of
- 6 generated product and their yields, was explored at a solution pH of 1.

7 Fig. 4

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

- 3.3.2. Effect of parameters on glycerol conversion and product distributions by electrochemical technique under galvanostatic mode
- The efficiency of the alcohol conversion and product yield was reported to depend significantly on the interaction between the electrode surface and the alcohol molecules and the resulting adsorbed product fragments, as well as the formation of surface oxides [51]. In this study, the type of cathode material was evaluated from a Pt grid, Ti/RuO2 and SS cathode. The variation in the glycerol conversion during a long-term electrolysis in the presence of these three different types of cathode is shown in Fig. 5(a). As expected, the glycerol conversion increased with increasing electrolysis time, but the degree and rate varied with the cathode material. The highest glycerol conversion was observed in the presence of the Pt grid cathode, the lowest in the presence of the SS cathode although the Ti/RuO₂ cathode was only slightly better. The enriched glycerol was completely converted within the first 17 h in the presence of Pt grid, while the conversion was around 42.5% and 22.5% with the Ti/RuO₂ and SS cathodes, respectively. The CV curves of the enriched glycerol over a Pt cathode provided various current peaks, whereas that over the Ti/RuO2 cathode showed a behavior more typical of a capacitortype response (Fig. 6), where the current density is almost independent of the potential over a wide range of potential values [52]. For the SS cathode, two current peaks were observed in the positive-scan, but no sharp peak in the negative-scan, except at a potential of less that -0.5 V,

2 + 0.351 V) was observed only over the Pt electrode during the negative-scan, and not over the

which is related to the reduction of either H⁺ or H₂O. In addition, the reactivation behavior (ca.

3 Ti/RuO₂ or SS cathodes. This behavior leads to the formation of free electrode sites that are then

4 available for reacting with glycerol molecules [51]. In addition, the Pt electrode provided the

5 highest magnitude of current density compared with other types of electrode. This emphasizes

that the Pt grid was more effective for electrochemical conversion of the enriched crude

glycerol than the Ti/RuO₂ and SS cathodes.

1

6

7

10

11

12

13

14

15

16

The initial kinetics of glycerol conversion was calculated using a macro-kinetics model based upon first-order rate kinetics [53]. The data fitted very well with the first-order kinetics model over the first 5, 12 and 4 h for the Pt grid, Ti/RuO₂ and SS cathodes, respectively, with a coefficient of determination (R^2) of greater than 0.988 in all three cases (Insert of Fig. 5(a)). From this linear part of the plot the glycerol solution at an initial pH of 1 gave a rate constant (k) of 1.19×10^{-3} , 4.13×10^{-4} and 5.54×10^{-4} min⁻¹ for the Pt grid, Ti/RuO₂ and SS cathodes, respectively.

The Faradaic current efficiency (ε_F) of each cathode was then calculated from Eq. (4) 18 [53];

$$\varepsilon_{\rm F} = \frac{Q_{\rm th}}{Q_{\rm exp}} \times 100 \tag{4}$$

where Q_{th} is the theoretical quantity of electricity calculated from the detected reaction products and Q_{exp} is the experimental quantity of electricity measured by the coulometer. The term Q_{th} is derived as shown in Eq. (5);

$$Q_{\rm th} = nFV\Delta C \tag{5}$$

- where n is the theoretical number of Faraday for the oxidation of glycerol in product (i), F is the
- 2 Faraday's constant, V is the volume of the reaction mixture and ΔC is the concentration of the
- 3 transformed glycerol.

of calcium or magnesium salts [54,55].

The variation of Faradaic current efficiency as a function of electrolysis time is shown in Fig. 5(b). The current efficiencies increased sharply during the early electrolysis period (0–2 h) and then dropped rapidly for all three types of utilized cathode when the electrolysis time increased beyond 2 h. This might be due to the accumulation of some product species or/and residual contaminants (*ex.* metal salts or MONG) on the electrode surface, resulting in a decreased amount of free surface sites available for reacting with glycerol molecules. This behavior has also been observed in the electrochemical treatment of wastewater in the presence

The variation in the yield of the value-added products, as detected by HPLC analysis, during the long-term electrolysis of the enriched glycerol solution (initial pH 1) in the presence of the three different cathode types is shown in Fig. 7. A greater diversity of generated species as well as their yields was obtained by the electrochemical conversion with a Pt cathode than with the Ti/RuO₂ or SS cathode. Glycidol and acetol were the major reaction products generated with all three types of cathode material, although acrolein, 1,2-PD and 1,3-PD were produced in the presence of the Pt and SS cathodes. In addition, ethylene glycol and 1,2-PD were generated using the Pt and SS cathodes, respectively. From the previously proposed reaction pathway for the electrochemical conversion of glycerol in an acid solution [14], the glycerol cannot convert directly to ethylene glycerol, but rather this involves the two steps of the (i) dehydrogenation of adsorbed glycerol to the intermediate species or glyceraldehyde, and (ii) the subsequent cleavage of the C-C bond of glyceraldehyde to ethylene glycol and CH₃OH [53]. Here, the ethylene glycerol was generated after 7 h of electrolysis time (Fig. 7(a)), consistent with the mentioned mechanism. Accordingly, of the three evaluated cathode materials, only the Pt electrode could facilitate the cleavage of the C-C bond of glyceraldehyde to ethylene glycol.

1 The decrease in ethylene glycerol levels at electrolysis times greater than 12 h might be

2 attributed to the electrooxidation of ethylene glycerol to formic acid and glycolic acid [56,57].

In addition, glyceraldehyde can undergo oxidation or reduction to other products, such as

glyceric acid [58].

5 Fig. 7

The yield of glycidol increased almost instantaneously as the electricity was applied in all three utilized cathodes, indicating that the glycerol can convert directly/rapidly to this compound. As mentioned previously [14], this species is obtained from the rearrangement of the glycerol carbonium ion, derived from the protonation of the 2°-OH group of glycerol. The acetol and acrolein were obtained from the transformation of 2,3-dihydroxypropene and 3-hydroxypropanal, which occurs by the dehydration of adsorbed glycerol molecule at 1°-OH and 2°-OH groups, respectively [59,60].

Nevertheless, the adsorption of the 2°-OH group of glycerol was not preferred on the Ti/RuO₂ electrode, thus no acrolein was generated. In the presence of electricity, the generated acetol and acrolein are themselves reactive and readily reduced to 1,2-PD and 1,3-PD, respectively [14]. However, a small quantity of either 1,2-PD or 1,3-PD was obtained using the Pt or SS cathodes, indicating the slowness of the reduction reaction of acetol and acrolein to both types of PD. Interestingly, a decrease in the acrolein yield was observed in the presence of the Pt cathode at electrolysis times of greater than 21 h, while the yield of 1,3-PD did not increase. This might be attributed to the reduction of acrolein into 1,2-PD [61]. However, the conversion of acrolein to 1,2-PD was not observed with the SS electrode. A simplified diagram showing the possible major reaction pathways of enriched glycerol conversion by electrochemical technique under galvanostatic conditions over a Pt electrode is shown in Scheme 1.

The glycerol conversion over 24 h in the presence of different current densities is summarized in Fig. 8. Increasing the applied current density led to an increased level of glycerol

conversion, in accordance with Faraday's law [62]. Complete glycerol conversion was not observed in 24 h and was observed after 18, 15 and 9 h in the presence of a current density of 0.08, 0.14, 0.24 and 0.27 A/cm², respectively. By employing a first-order macro-kinetic rate model (Insert in Fig. 8), the rate constant increased with increasing current density, being 7.42 × 10⁻⁴, 1.14 × 10⁻³, 1.56 × 10⁻³ and 4.51 × 10⁻³ min⁻¹ at 0.08, 0.14, 0.24 and 0.27 A/cm², respectively.

7 Fig. 8

With respect to the product distribution and their yields, different applied current densities led to different types of generated products and yields (Fig. 9). Ethylene glycol and glycidol were the major reaction products generated at all four applied current densities, which implies that the dehydrogenation of adsorbed glycerol and the cleavage of the C-C bond of an intermediate species to ethylene glycol can occur during a low to high applied current density (range of 0.08—0.27 A/cm²). For acetol and 1,2-PD, they were generated at medium to high current densities (0.14–0.27 A/cm²), suggesting that the dehydration of the adsorbed glycerol molecule at the 1°-OH is not preferred at a low (0.08 A/cm²) current density. The higher the current density, the higher the yield of acetol and 1,2-PD (Fig. 9(b) and (c)).

With regard to the yield of acrolein and 1,3-PD, they appeared only at current densities of 0.14–0.24 A/cm², which suggests that the dehydration of the adsorbed glycerol molecule at 2°-OH is not preferred at too low (0.08 A/cm²) or too high (0.27 A/cm²) current densities. A fast rate of acrolein production was observed at high current densities (Fig. 9(b) and (c)), showing that a high current can facilitate the high dehydration rate of adsorbed glycerol molecules at the 2°-OH group. Also, a high current can facilitate the reduction of acrolein to 1,2-PD and 1,3-PD at a long electrolysis time. Nevertheless, too high a current density (0.27 A/cm²) could not facilitate a higher conversion of the enriched crude glycerol to the required added-value compounds, presumably because it then facilitates the decomposition of glycerol to gaseous compounds, such as CO₂ [60].

Overall, the enriched glycerol could be converted to some value-added compounds using the electrochemical technique. However, this technique still needs additional research and development to reliably provide a higher selectivity of any given specific product in order to obtain high quality products that are both economically and operationally feasible to produce and purify.

6 Fig. 9

4. Conclusions

The enrichment of crude glycerol derived from a waste used-oil FAME plant was successfully performed at a laboratory scale using a H₃PO₄-acidification mediated phase separation pretreatment followed by extraction of the glycerol rich phase with an *n*-C₃H₇OH: pre-treated crude glycerol (v/v) ratio of 2.0. The enriched glycerol had a glycerol content of 97.9 wt.% with a color reduction of 93.0%. The electrochemical conversion of this enriched glycerol to various added-value compounds, such as glycidol, acrolein and PD, was achieved. More oxidation-reduction peaks of the enriched glycerol were observed under very a strong acid condition (pH 1), and a Pt cathode gave a better glycerol conversion and generated more added-value compounds than a Ti/RuO₂ or SS cathode. A high applied current density (0.14–0.24 A/cm²) can facilitate the conversion of glycerol to value-added products, but too high a current density (0.27 A/cm²) does not enhance the formation of some required added-value compounds.

Acknowledgments

The authors would like to thank the Bangchak Petroleum P.L.C. for samples and materials; the TRF-CHE Research Grant for Mid-Career University Faculty (Grant No. RSA5480015); and the Research Foundation Enhancement Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University for financial support. Also, we thank the

- 1 Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University, and
- 2 Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

3

4

References

- 5 [1] J.A. Posada, C.E. Orrego, C.A. Cardona, Biodiesel production: Biotechnological approach,
- 6 Int. Rev. Chem. Eng. 1 (2009) 571–580.
- 7 [2] C. Kongyai, M. Hunsom, Improvement of the oxidative stability of used-oil biodiesel by
- 8 epoxidation reaction, J. Renew. Sustain. Energy. 4 (2012) 53108–53112.
- 9 [3] G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters,
- 10 Fuel Process. Technol. 86 (2005) 1059–1070.
- 11 [4] P.C. Smith, Y. Ngothai, Q.D. Nguyen, B.K. O'Neill, Alkoxylation of biodiesel and its
- impact on low-temperature properties, Fuel 88 (2009) 605–612.
- 13 [5] DEDE (Department of Alternative Energy Development and Efficiency). Ministry of
- Energy. [Online 2013]
- http://www.dede.go.th/dede/index.php?option=com_content&view=article&id=898&Itemi
- 16 d=123&lang=th
- 17 [6] N. Rahmat, A.Z. Abdullah, A.R. Mohamed, Recent progress on innovative and potential
- technologies for glycerol transformation into fuel additives: A critical review, Renew.
- 19 Sustain. Energy Rev. 14 (2010) 987–1000.
- 20 [7] M. Ayoub, A.Z. Abdullah, Critical review on the current scenario and significance of crude
- 21 glycerol resulting from biodiesel industry towards more sustainable renewable energy
- industry, Renew. Sustain. Energy Rev. 16 (2012) 2671–2686.
- 23 [8] M. Hájek, F. Skopal, Treatment of glycerol phase formed by biodiesel production, Biores.
- 24 Technol. 101 (2010) 3242–3245.

- 1 [9] T.L. Ooi, K.L. Yong, K. Dzulkefly, W.M.Z. Wan Yunus, A.H. Hazimah, Crude glycerine
- 2 recovery from glycerol residue waste from a palm kernel oil methyl ester plants, J. Oil
- 3 Palm Res. 13 (2001) 16–22.
- 4 [10] X. Lancrenon, J. Fedders, An innovation in glycerin purification. Biodiesel Magazine.
- 5 May, 2008.
- 6 [11] F. Schaffner, P.Y. Pontalier, V. Sanchez, F. Lutin, Bipolar electrodialysis for glycerin
- production from diester wastes, Filtra. Separ. 40 (2003) 35–39.
- 8 [12] M. Carmona, J. Valverde, A. Prez, Purification of glycerol/water solutions from biodiesel
- 9 synthesis by ion exchange: sodium removal Part I, J. Chem. Techno. Biotechnol. 84 (2009)
- 10 738–744.
- 11 [13] W.N.R.W. Isahak, M. Ismail, M.A. Yarmo, J.M. Jahim, J. Salimon, Purification of crude
- glycerol from transesterification RBD palm oil over homogeneous and heterogeneous
- catalysts for the biolubricant preparation, J. Appl. Sci. 10 (2010) 2590–2595.
- 14 [14] S. Kongjao, S. Damronglerd, M. Hunsom, Electrochemical reforming of an acidic aqueous
- glycerol solution on Pt electrodes J. Appl. Electrochem. 41 (201) 215–222.
- 16 [15] R. Manosak, S. Limpattayanate, M. Hunsom, Sequential-refining of crude glycerol derived
- from waste used-oil methyl ester plant via a combined process of chemical and adsorption,
- 18 Fuel Process. Technol. 92 (2010) 92–99.
- 19 [16] A. Javani, M. Hasheminejad, K. Tahvildari, M. Tabatabaei, High quality potassium
- 20 phosphate production through step-by-step glycerol enrichment: A strategy to economize
- biodiesel production, Biores. Technol. 104 (2012) 788–790.
- 22 [17] M. Hunsom, C. Autthanit, Adsorptive purification of crude glycerol by sewage sludge-
- derived activated carbon prepared by chemical activation with H₃PO₄, K₂CO₃ and KOH.
- 24 Chem. Eng. J. 229 (2013) 334-343.
- 25 [18] L. Huang, Y. Zhu, H. Zheng, G. Ding, Y. Li, Direct Conversion of Glycerol into 1,3-
- Propanediol over $Cu-H_4SiW_{12}O_{40}/SiO_2$ in Vapor Phase, Catal. Lett. 131 (2009) 312–320.

- 1 [19] L. Gong, Y. Lu, Y. Ding, R. Lin, J. Li, W. Dong, T. Wang, W. Chen, Selective
- 2 hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO₃/TiO₂/SiO₂ catalyst in aqueous
- 3 media Appl. Catal. A. 390 (2010) 119–126.
- 4 [20] G. Sabourin-Provost, P.C. Hallenbeck, High yield conversion of a crude glycerol fraction
- from biodiesel production to hydrogen by photofermentation, Biores. Technol. 100 (2009)
- 6 3513–3517.
- 7 [21] S.A. Markov, J. Averitt, B. Waldron, Bioreactor for glycerol conversion into H₂ by
- 8 bacterium *Enterobacter aerogenes* Int. J. Hydrog Energy 36 (2011) 262–266.
- 9 [22] D. Ghosh, I.F. Sobro, P.C. Hallenbeck, Stoichiometric conversion of biodiesel derived
- crude glycerol to hydrogen: Response surface methodology study of the effects of light
- intensity and crude glycerol and glutamate concentration, Biores. Technol. 106 (2012)
- 12 154–160.
- 13 [23] A. Chieregato, F. Basile, P. Concepción, S. Guidetti, G. Liosi, M.D. Soriano, C.
- Trevisanut, F. Cavani, J.M.L. Nieto, Glycerol oxidehydration into acrolein and acrylic acid
- over W–V–Nb–O bronzes with hexagonal structure, Catal. Today 197 (2012) 58–65.
- 16 [24] L. Shen, H. Yin, A. Wang, Y. Feng, Y. Shen, Z. Wu, T. Jiang, Liquid phase dehydration of
- glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic
- acids, Chem. Eng. J. 180 (2012) 277–283.
- 19 [25] Z.Y. Zakaria, J. Linnekoski, N.A.S. Amin, Catalyst screening for conversion of glycerol to
- 20 light olefins, Chem. Eng. J. 207–208 (2012) 803–813.
- 21 [26] C. Beatrice, G.D. Blasio, M. Lazzaro, C. Cannilla, G. Bonura, F. Frusteri, F. Asdrubali, G.
- Baldinelli, A. Presciutti, F. Fantozzi, G. Bidini, P. Bartocci, Technologies for energetic
- exploitation of biodiesel chain derived glycerol: Oxy-fuels production by catalytic
- 24 conversion, Appl. Energy 102 (2013) 63–71.
- 25 [27] F. Jérôme, Y. Pouilloux, J. Barrault, Rational design of solid catalysts for the selective use
- of glycerol as a natural organic building block, Chem. Sus. Chem. 1 (2008) 586–613.

- 1 [28] Y. Fernández, A. Arenillas, M.A. Díez, J.J. Pis, J.A. Menéndez, Pyrolysis of glycerol over
- 2 activated carbons for syngas production, J. Anal. Appl. Pyrol. 84 (2009) 145–150.
- 3 [29] V.K. Skoulou, P. Manara, A.A. Zabaniotou, H₂ enriched fuels from co-pyrolysis of crude
- 4 glycerol with biomass, J. Anal. Appl. Pyrol. 97 (2012) 198–204.
- 5 [30] A. May, J. Salvadó, C. Torras, D. Montané, Catalytic gasification of glycerol in
- 6 supercritical water, Chem. Eng. J. 160 (2010) 751–759.
- 7 [31] D. Atong, C. Pechyen, D. Aht-Ong, V. Sricharoenchaikul, Synthetic olivine supported
- 8 nickel catalysts for gasification of glycerol, Appl. Clay Sci. 53 (2011) 244-253.
- 9 [32] S. Guo, L. Guo, C. Cao, J. Yin, Y. Lu, X. Zhang, Hydrogen production from glycerol by
- supercritical water gasification in a continuous flow tubular reactor, Int. J. Hydrog. Energy
- 11 37 (2012) 5559–5568.
- 12 [33] S. Gil, M. Marchena, L. Sánchez-Silva, A. Romero, P. Sánchez, J.L. Valverde, Effect of
- the operation conditions on the selective oxidation of glycerol with catalysts based on Au
- supported on carbonaceous materials, Chem. Eng. J. 178 (2011) 423–435.
- 15 [34] D. Liang, J. Gao, H. Sun, P. Chen, Z. Hou, X. Zheng, Selective oxidation of glycerol with
- oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts, Appl. Catal.
- 17 B: 106 (2011) 423–432.
- 18 [35] E.G. Rodrigues, S.A.C. Carabineiro, J.J. Delgado, X. Chen, M.F.R. Pereira, J.J.M. Órfão.
- Gold supported on carbon nanotubes for the selective oxidation of glycerol, J. Cat. 285
- 20 (2012) 83–91.
- 21 [36] A. André, P. Diamantopoulou, A. Philippoussis, D. Sarris, M. Komaitis, S. Papanikolaou,
- Biotechnological conversions of bio-diesel derived waste glycerol into added-value
- compounds by higher fungi: production of biomass, single cell oil and oxalic acid, Indus.
- 24 Crops Prod. 31 (2010) 407–416.

- 1 [37] M. Metsoviti, K. Paraskevaidi, A. Koutinas, A. Zeng, S. Papanikolaou, Production of 1,3-
- propanediol, 2,3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain
- growing on biodiesel-derived glycerol based media, Proc. Biochem. 47 (2012) 1872–1882.
- 4 [38] X. Liao, Y. Zhu, S. Wang, Y. Li, Producing triacetylglycerol with glycerol by two steps:
- 5 Esterification and acetylation, Fuel Process. Technol. 90 (7–8) (2009) 988–993.
- 6 [39] L. Zhou, E. Al-Zaini, A.A. Adesina, Catalytic characteristics and parameters optimization
- of the glycerol acetylation over solid acid catalysts, Fuel 103 (2013) 617–625.
- 8 [40] J.A. Melero, G. Vicente, M. Paniagua, G. Morales, P. Muñoz, Etherification of biodiesel-
- 9 derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts, Biores.
- Technol. 103 (2012) 142–151.
- 11 [41] X. Guo, Y. Li, R. Shi, Q. Liu, E. Zhan, W. Shen, Co/MgO catalysts for hydrogenolysis of
- 12 glycerol to 1,2-propanediol, Appl Catal. A. 371 (2009) 108–113.
- 13 [42] H.L. Hoşgün, M. Yildiz, H.F. Gerçel, Hydrogenolysis of aqueous glycerol over Raney
- nickel catalyst: Comparison of pure and biodiesel by-product, Ind. Eng. Chem. Res. 51
- 15 (2012) 3863–3869.
- 16 [43] R.B. Mane, C.V. Rode, Continuous Dehydration and Hydrogenolysis of Glycerol over
- Non-Chromium Copper Catalyst: Laboratory-Scale Process Studies, Org. Process Res.
- 18 Dev. 16 (2012) 1043–1052.
- 19 [44] R.B. Mane, A.A. Ghalwadkar, A.M. Hengne, Y.R. Suryawanshi, C.V. Rode, Role of
- promoters in copperchromite catalysts for hydrogenolysis of glycerol, Catal. Today 164
- 21 (2011) 447–450.
- 22 [45] A. Bienholz, R. Blume, A. Knop-Gericke, F. Girgsdies, M. Behrens, P. Claus, Prevention
- of Catalyst Deactivation in the Hydrogenolysis of Glycerol by Ga₂O₃-Modified
- 24 Copper/Zinc Oxide Catalysts, J. Phys. Chem. C 115 (2011) 999–1005.
- 25 [46] S. Kongjao, S. Damronglerd, M. Hunsom, Purification of crude glycerol derived from
- waste used-oil methyl ester plant, Korean J. Chem. Eng. 27 (2010) 944–949.

- 1 [47] D.T. Johnson, K.A. Taconi, The glycerin glut: options for the value-added conversion of
- 2 crude glycerol resulting from biodiesel production, Eng. Prog. 26 (2007) 338–343.
- 3 [48] Y.J. Jung, K.W. Baek, B.S. Oh, J.W. Kang, An investigation of the formation of chlorate
- and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive
- 5 oxygen species and the results of kinetic studies, Water Res. 44 (2010) 5345–5355.
- 6 [49] G. Girishkumar, T.D. Hall, K. Vinodgopal, P.V. Kamat, Single Wall Carbon Nanotube
- Supports for Portable Direct Methanol Fuel Cells, J. Phys. Chem. B 110 (2006) 107–114.
- 8 [50] J.H. Kim, S.M.Choi, S.H. Nam, M.H. Seo, S.H. Choi, W.B. Kim, Influence of Sn content
- 9 on PtSn/C catalysts for electrooxidation of C₁–C₃ alcohols: Synthesis, characterization, and
- electrocatalytic activity, Appl. Catal. B 82 (2008) 89–102.
- 11 [51] J.F. Gomes, G. Tremiliosi-Filho, Spectroscopic studies of the glycerol electro-oxidation on
- polycrystalline Au and Pt surfaces in acidic and alkaline media, Electrocatal. 2 (2011) 96–
- 13 105.
- 14 [52] J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, Light energy accumulation using
- Ti/RuO₂ electrode as capacitor, J. Solid State Electrochem. 14 (2010) 741–746.
- 16 [53] L. Roquet, E.M. Belgsir, J-M Léger, C. Lamy, Kinetics and mechanism of the
- electrocatalytic oxidation of glycerol as investigated by the chromatographic analysis of the
- reaction products, Electrochim. Acta 39 (1994) 2387–2394.
- 19 [54] P. Manisankar, C. Rani, S. Viswanathan, Effect of halides in the electrochemical treatment
- of distillery effluent, Chemosphere 57 (2004) 961–966.
- 21 [55] P. Piya-areetham, K. Shenchunthichai, M. Hunsom, Application of electrooxidation
- process for treating concentrated wastewater from distillery industry with a voluminous
- 23 electrode, Water Res. 40 (2006) 2857–2864.
- 24 [56] Y. Kwon, M.T.M. Koper, Combining voltammetry with HPLC: application to electro-
- oxidation of glycerol, Anal. Chem. 82 (2010) 5420–5424.

- 1 [57] A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, P. Atanassov, Electrooxidation of
- 2 ethylene glycol and glycerol by platinum-based binary and ternary nano-structured
- 3 catalysts, Electrochim. Acta 66 (2012) 295–301.
- 4 [58] J.W. Schnaidt, Electrooxidation of C₂ and C₃ molecules studied by combined in situ ATR-
- 5 FTIRS and online DEMS. Dr. rer. nat Dissertation. ULM University, 2012.
- 6 [59] A.T. Marshall, R.G. Haverkamp, Production of hydrogen by the electrochemical reforming
- of glycerol–water solutions in a PEM electrolysis cell, Int. J. Hydrog. Energy 33 (2008)
- 8 4649–4654.
- 9 [60] K. Ishiyama, F. Kosaka, I. Shimada, Y. Oshima, J. Otomo J, Glycerol electro-oxidation on
- a carbon-supported platinum catalyst at intermediate temperatures, J. Power Sources 225
- 11 (2013) 41–149.
- 12 [61] J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier C, Glycerol
- hydrogenolysis on heterogeneous catalysts, Green Chem. 6 (2004) 359–361.
- 14 [62] G. Prentice, Electrochemical Engineering Principles. Prentice-Hall, Singapore, 1991.

Figure captions

- **Fig. 1.** Representative GC-MS spectra of the (a) original crude glycerol as obtained from the FAME plant, (b) pre-treated crude glycerol, and (c) enriched glycerol following solvent extraction at a n-C₃H₇OH: pre-treated crude glycerol volume ratio of 2.0.
- **Fig. 2.** Effect of the solvent : pre-treated crude glycerol volume ratio on the glycerol (■), ash (■) and other contaminant (\square) levels in the enriched crude glycerol using CH₃OH (left bar), C₂H₅OH (middle bar), or n-C₃H₇OH (right bar) as the extracting solvent.
- **Fig. 3.** Effect of the solvent: pre-treated crude glycerol volume ratio on the color of the enriched glycerol using CH₃OH (□), C₂H₅OH (■), or n-C₃H₇OH (■) as the extracting solvent.
- **Fig. 4.** CV-derived current density-potential curve of 0.3 M enriched glycerol at three different pH values using a Pt electrode.
- Fig. 5. (a) Variation in the glycerol conversion by electrochemical conversion, and (b) the current efficiency, at an initial pH 1 and 0.14 A/m² current density with a (⋄) Pt grid,
 (△) Ti/RuO₂, or (○) SS cathode. Insert in (a) shows the linear regression analysis of the data, assuming first rate order kinetics, and the correlation coefficient.
- **Fig. 6.** CV-derived current density-potential curve of 0.3 M enriched glycerol with different working cathodes.
- **Fig. 7.** Product distribution during the electrochemical conversion of glycerol (initial pH 1) at 0.14 A/m² current density with a (a) Pt grid, (b) T i/RuO₂, or (c) SS cathode.
- **Fig. 8.** Electrochemical conversion of glycerol at an initial pH 1 and current density of; (\bigcirc) 0.08, (\diamondsuit) 0.14, (\square) 0.24, and (\triangle) 0.27 A/cm² with a Pt grid electrode.
- **Fig. 9.** Product distribution from the electrochemical conversion of glycerol at an initial pH 1 and current density of (\bigcirc) 0.08, (\diamondsuit) 0.14, (\Box) 0.24, and (\triangle) 0.27 A/cm² with a Pt grid electrode.
- **Scheme 1.** Proposed reaction pathways for the electrochemical conversion of enriched glycerol over a Pt electrode at an initial pH 1.

Table 1. Characteristics of the untreated, pre-treated and enriched crude glycerol.

Parameter	Standard ^a	Crude glycerol		
		Untreated	Pre-treated ^b	Enriched ^c
рН		9.5–9.8	7.0–7.2	5.5-6.0
Glycerol content (wt.%)	≥ 80	29.8 ± 0.14	51.9 ± 0.15	97.9 ± 0.02
Ash (wt.%)	≤ 10	7.90 ± 0.5	23.4± 1.1	0.86 ± 0.07
Other contaminants (wt.%)	≤ 10	62.3 ± 1.04	24.8 ± 0.16	1.29 ± 0.05
Density at 20 °C (g/cm ³)		1.03 ± 0.024	1.27 ± 0.03	1.28 ± 0.05
Viscosity at 40 °C (cSt)		48.3 ± 0.172	53.8 ± 1.29	
Color (10 ³ Pt-Co units)		484.9 ± 10.5	221.6 ± 7.3	15.4 ± 1.1

^a BS 2621:1979 standard, see [9]

^b Pre-treatment by acidification with H₃PO₄ to pH 2.5, harvesting of the glycerol-rich phase and pH neutralization with NaOH.

 $^{^{}c}$ Solvent extraction with a n-C₃H₇OH: pre-treated crude glycerol volume ratio of 2.0

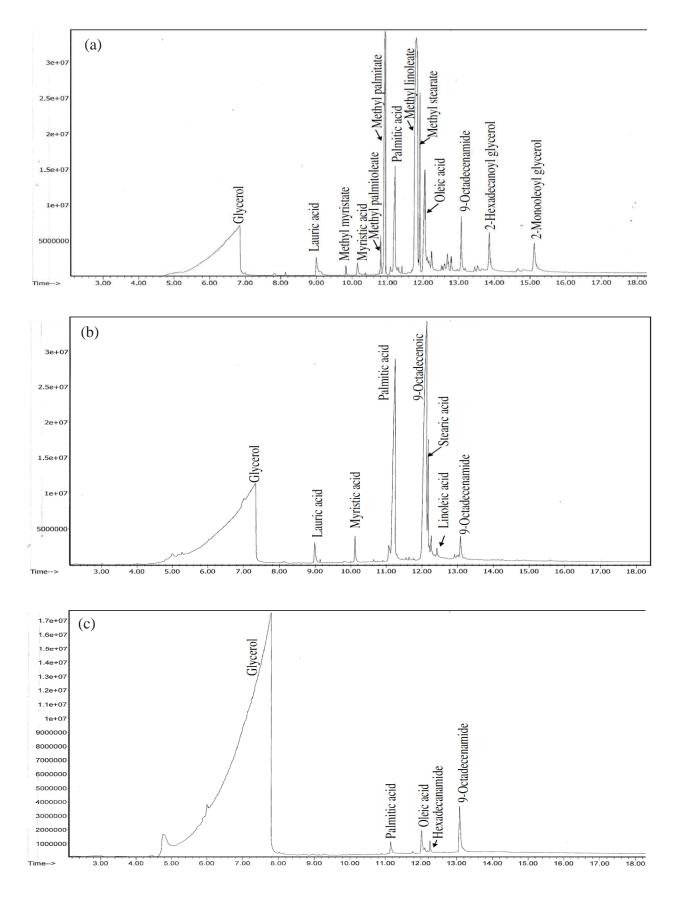


Fig. 1..

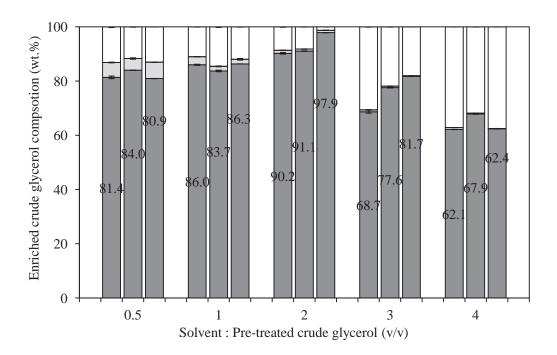


Fig. 2.

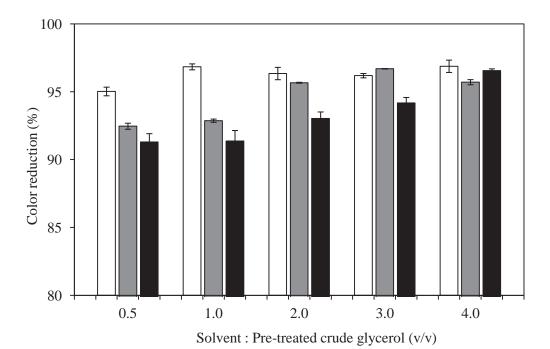


Fig. 3.

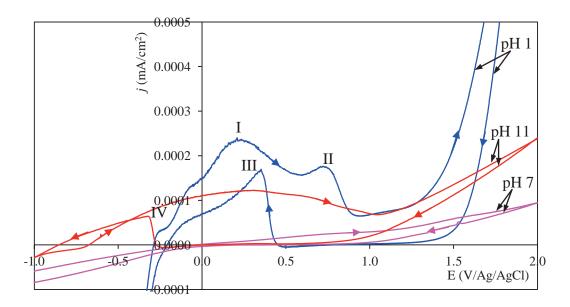
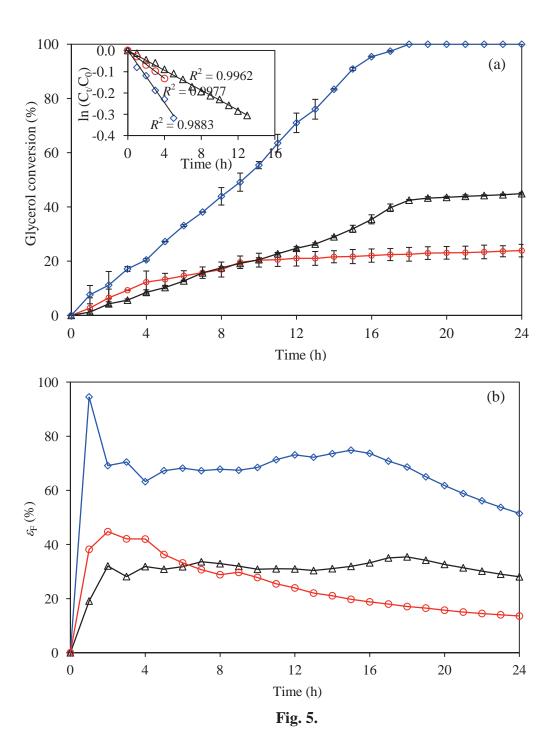



Fig. 4.

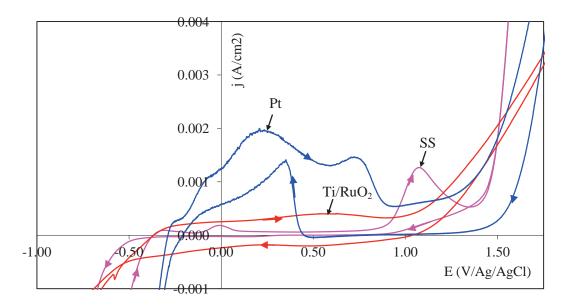


Fig. 6.

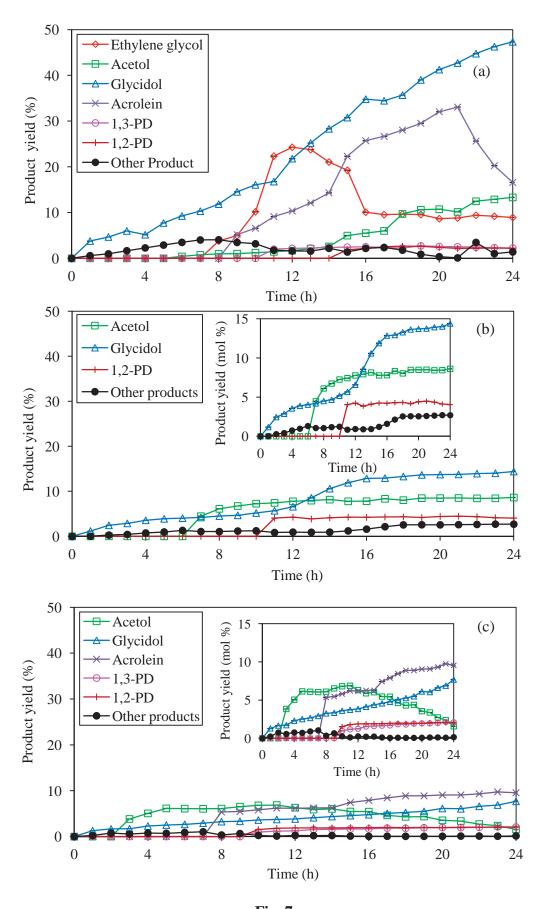
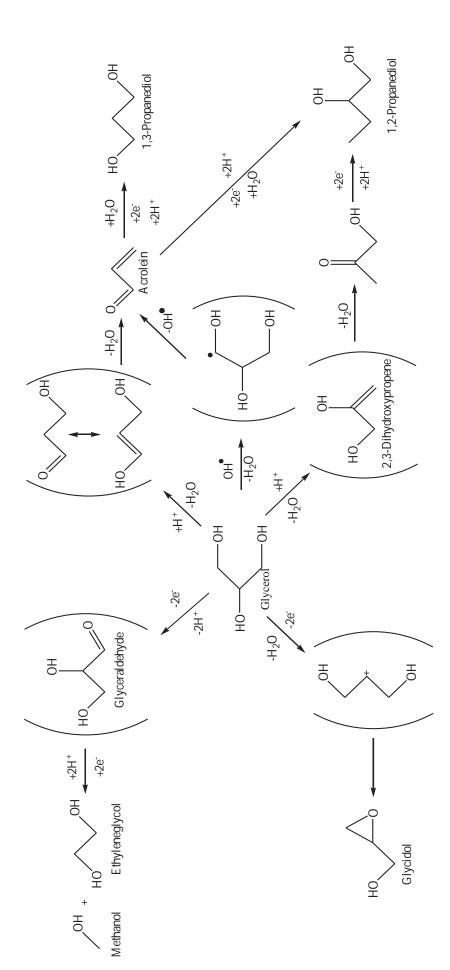



Fig. 7.

Scheme 1.

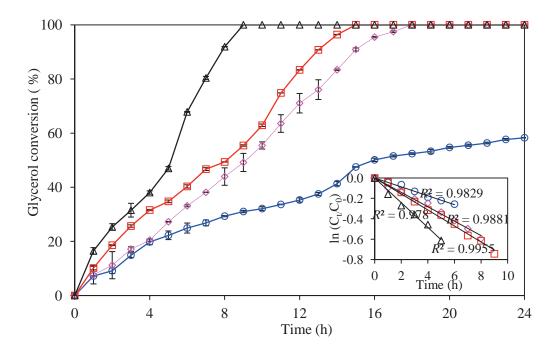


Fig. 8..

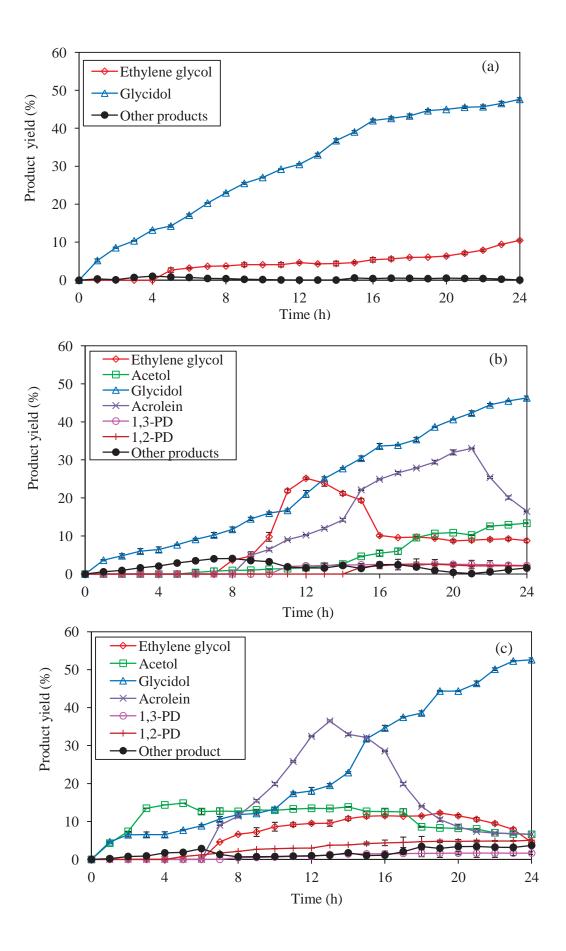


Fig. 9.

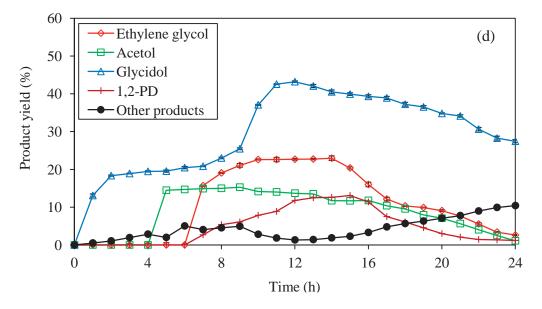


Fig. 9. (Cont.)

1

One-pot electrochemical conversion of enriched crude glycerol: Effect of additives

Payia Saila^a, Mali Hunsom^{a,b*},

^aFuels Research Center, Department of Chemical Technology, Faculty of Science,

^bCenter of Excellence on Petrochemical and Materials Technology (PETRO-MAT),

Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

Abstract

The one-pot electrochemical conversion of enriched crude glycerol to valued-

compounds was carried out in a simple electrochemical reactor under galvanostatic condition

with glycerol solution at pH of 1 via Pt electrode. Effect of three oxidizing additives (H₂O₂,

Na₂S₂O₈ and 2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPO) and concentrations on the

glycerol conversion and product distribution as well as their yields were explored. By using

the proposed approach, various value-added compounds were generated. In the absence of

additive, the principal product from reaction was glycidol. In the presence of H₂O₂, Na₂S₂O8

and TEMPO, the main products were glycidol, ethylene glycol and 1,3-dihydroxyacetone,

resepectively.

Keywords: Crude glycerol; Electrochemical conversion; Additive; Added-value compound

1. Introduction

Glycerol has been recognized as one of the twelve building blocks chemical since it is

a highly functionalized molecule [1-2]. This makes it as an attractive starting material for the

synthesis of high-value oxygenated chemicals. Recently, a great deal of research effort has

been spent to find new applications of glycerol for commercially viable value-added

*Corresponding author. Tel.: +66 (2) 2187523-5; Fax: +66 (2) 2555831

E-mail address: mali.h@chula.ac.th

compounds such as hydrogen (H_2) [3-4], ethanol and butanol [5-6], acrylic acid [7-8], dihydroxyacetone [9-10], polyglycerols [11], and propanediol (PD) [12-13], etc.

Typically, glycerol can be obtained from the non-triglyceride sources via the synthesis process such as epichlorohydrin process [14]. Besides, it can be obtained from the splitting of triglycerides of vegetable oil or animal fat via the hydrolysis, saponification and transesterification [15]. Due to a fast depletion of fossil fuel resources, a fast evolution of biodiesel industry is established, resulting to generation of large volume of crude glycerol. In 2011, greater than 66.2% of total glycerol is obtained from the biodiesel industry and it is expected to surge over the next five years owing to the increasing penetration of biofuels in mainstream applications. Any further increase in biodiesel production rates will significantly raise the quantity and surplus of crude glycerol in the environment.

In our previous works [16-18], we attempted to enrich crude glycerol from biodiesel production plant by using solvent extraction and adsorption. It was found that the solvent extraction provided better glycerol quality than the adsorption process. In this work, we attempts to convert enriched crude glycerol to value-added compounds. Effect of oxidative additives and concentrations on glycerol conversion and product distribution was explored. Finally, the mechanism for the generation of the key compounds is proposed.

2. Experimental

2.1 Preparation of enriched crude glycerol

Due to the presence of organic and inorganic contaminants, the utilized crude glycerol obtaining from a local biodiesel in Thailand was first treated by chemical method according to previous works [17-18]. Briefly, the crude glycerol was acidified with H₃PO₄ (85%, Qrec) to pH 2.5 with shaking at 200 rpm (CTL, model SK electric shaker) for 1 h and then left for 12 h until the solution phase-separated into the three distinct layers of a top free fatty acid (FFA)-rich layer, a middle glycerol-rich layer and the bottom inorganic salt-rich layer. The middle

glycerol-rich layer was taken from the solution and then it was neutralized by the addition of 12.5 M NaOH (98% Merck) to pH 7.0, left for a while and then filtered to eliminate the precipitated salt. The pre-treated crude glycerol was obtained after drying at 110 °C for 15 h. Subsequently, in order to remove the remaining contaminants, it was subjected to the solvent extraction with *n*-propanol (99.99% Fisher Scientific) at the volume ratio of solvent to pre-treated crude glycerol of 2. On this stage, the pre-treated crude glycerol was mixed with the selected solvent and volume ratio by shaking at 200 rpm for 4 h and then left for 2 h to encourage the phase separation into the glycerol-alcohol phase on the top and the crystallized salt on the bottom. The top layer was separated from the bottom layer by slow decantation and the enriched crude glycerol with the purity of around 98% was obtained after evaporation of the solvent at 95 °C for 12 h.

2.2 Electrochemical conversion of enriched crude glycerol

A one-pot electrochemical conversion of the enriched crude glycerol was carried out under a galvanostatic mode at a laboratory scale at temperature of ~25 °C and ambient pressure. The undivided electrochemical reactor was made from Pyrex glass having a total capacity of 600 mL. The temperature of electrolytic cell was controlled by a cooling system. A regulated DC power supply (ZS 3205-2X type) was employed to supply the external electricity at constant current density of 0.14 A/cm². The concentration of enriched crude glycerol was fixed at 0.3 M at pH of 1.0. Three types of additive including H₂O₂ (30 % Qrec), Na₂S₂O8 (Qrec) and 2,2,6,6-tetramethylpiperidine-1-oxyl or TEMPO at different concentrations in the range of 0.003-0.005 M were added in the electrochemical system.

2.3 Analytical procedures

All liquid product samples were analyzed by high performance liquid chromatography (HPLC: Agilent 1100) with a RID-10A refractive index detector. The stationary phase was a

Pinnacle II C18 column ($240 \times 4.6 \text{ mm}$) and the mobile phase was a 99.9:0.1 (volume) ratio of 10 mM H₂SO₄: pure CH₃OH, passed through the column at 0.5 mL/min. The standard solutions of glycerol and major generated components including ethylene glycol (EG), glycidol (GCD), acetol (ACT), acrolein (ACL), glycolic acid (GCA), 1,2-propanediol (1,2-PD), 1,3-propanediol (1,3-PD) and 1,3-dihydroxyacetone (DHA) were run to identify the retention times, and to determine the relationships between peak area and concentration. The conversion of glycerol as well as the yield of value-added compound obtained from the electrochemical process were calculated according to Eqs. (1) and (2), respectively:

Glycerol conversion (%) =
$$\frac{\text{C mole of glycerol converted}}{\text{C mole of glycerol initilialy added}} \times 100$$
 (1)

Product yield (%) =
$$\frac{\text{C mole of glycerol converted to each product}}{\text{C mole of glycerol initially added}} \times 100 (2)$$

3. Results and discussion

The typical steady-state CV curves of the enriched glycerol solution at three different initial pH values during an applied potential of +2.0 to -1.0 V are shown Fig. 1. At this strongly acidic (pH 1), in the absence of glycerol, the utilized Pt electrode showed a quasi-reversible system at the anodic and cathodic scan regions. A small increase in the current was observed at too high a positive (E > +1.5 V) or too low a potential (E < -0.25 V), which is related to the oxidation of H_2O to O_2 (O_2 evolution) and the reduction of H^+ to H_2 (H_2 evolution), respectively. In the presence of enrich crude glycerol, various peaks were observed in the anodic and cathodic scans. The first peak observed in the anodic scan, at an electrode potential of +0.208 V (peak I), corresponded to the oxidation of contaminants, such as ionic salts, in the enriched glycerol [19]. The second oxidation peak, observed at a maximum electrode potential of +0.712 V (peak II), related to the oxidation of glycerol. At a potential greater than +1.40 V a sharp increase in the current density was observed, which was attributed to the oxidation of H_2O to O_2 . For the backward scan, one oxidation peak (peak III)

was observed, at an electrode potential of +0.351 V, and this was attributed to the incomplete oxidization of carbonaceous residues on the catalyst surface during the negative sweep [49,50]. These carbonaceous residues can accumulate tightly on the Pt surface and block the active catalyst sites for next turnover, resulting in sluggish anodic reactions [20].

Fig.2 exhibits the variation of glycerol conversion as a function of electrolysis time both in the absence- and the presence of additives (H_2O_2 , $Na_2S_2O_8$ and TEMPO). As expected, the glycerol conversion increased with increasing electrolysis time. In the absence of additive, the glycerol conversion increased smoothly. The complete conversion was observed within 18 h of electrolysis time. In the presence of additives, shorter reaction time of 14 h was required to gain the complete glycerol conversion. Interesting, two stages of glycerol conversion were observed in the presence of all additives suggesting that the kinetic of glycerol conversion by electrochemical process under galvanostatic mode in the presence of such additives occurred as a two-step process.

By using a macro-kinetics model [21], both stages were fitted very well with the first-order kinetics model with the determination coefficient (R^2) of greater than 0.9630 (Insert of Fig.2). From the linear part, the rate constants (k_1) of glycerol conversion in the first stage were 1.54×10^{-5} , 1.41×10^{-5} and 0.95×10^{-5} s⁻¹ in the presence of H_2O_2 , $Na_2S_2O_8$ and TEMPO, respectively. On the other hand, those (k_2) in the second stage were 2.24×10^{-4} , 1.72×10^{-4} and 2.26×10^{-4} , respectively. At this stage, it is difficult to conclude which principal reaction occurred in each stage in the presence of additive. We make the hypothesis that the anodic surface of Pt may indeed play a role in a concerted reaction mechanism involving additive and the hydrogenolysis (dehydration and hydrogenation), cyclization as well as oxidation can occur simultaneously.

The variation in the yield of the value-added products during the long-term electrolysis time of enriched crude glycerol both in the absence and in the presence of additive is demonstrated in Fig.3. In the absence of additive, glycidol and acrolein were the major

generated products. Approximately 22% of ethylene glycol was generated at 12 h of electrolysis time and decreased to around 9.5% when the electrolysis was preceded. Besides, few quantities of other products (acetol and propanediol) were detected. In the presence of additives, approximately 20-22%, 25-30% and 10-15% of glycidol were generated in the presence of H₂O₂, Na₂S₂O₈ and TEMPO, respectively. Its yield increased very slightly along the reaction time and readily stable. Greater than 60% of ethylene glycerol was produced in the presence of Na₂S₂O₈, while lower than 20% of such species was detected in case of H₂O₂ and TEMPO. Glycolic acid was also generated in the presence of all additives particularly the H₂O₂ and TEMPO. Surprisingly, high yield of 1,3-dihydroxyacetone up to 55% was generated in the presence of TEMPO, which was greater than the electrocatalytic oxidation of glycerol to 1,3-dihydroxyacetone under potentiostatic condition (1.1 V/Ag/AgCl) at pH 9.1 with bicarbonate (0.2 M) in the presence of catalytic TEMPO (0.0075 M) of around 2.29-fold [22].

From the previously proposed reaction pathway for the electrochemical conversion of glycerol in an acid solution [23], the ethylene glycerol was obtained from the cleavage of C₁-C₂ bond of glycerol by oxidation. The primary product of this cleavage is the C₁ alcohol free radical, which is then further dehydrated to formaldehyde, and the C₂ ethylene-free radical that is further dehydrated to acetaldehyde or reduced to ethylene glycol. In the absence of additive, the ethylene glycerol was generated after 7 h of electrolysis time (Fig. 3(a)) and reached its maximum value at 12 h and decreased afterward, suggesting that ethylene glycol can convert to other species such as formic acid [24-25]. In the presence of additives, ethylene glycol was detected after 12 h of electrolysis time and increased importantly particular in the presence of Na₂S₂O₈. This might be due to a high oxidative power of Na₂S₂O₈ that can facilitate a high cleavage of the C-C bond intermediate species, which can compensate the rate of its conversion to other species resulting to a high yield of ethylene glycerol. For glycidol, its yield increased almost instantaneously as the electricity was applied in all cases, indicating that the glycerol can convert directly to this compound. The presence of different additives

affected unimportantly on the glycerol conversion to glycidol. As mentioned previously [23, 26], the glycerol is obtained from the rearrangement of the glycerol carbonium ion or the cyclization, derived from the protonation of the primary -OH group of glycerol.

The acetol and acrolein were obtained from the transformation of 2,3-dihydroxypropene and 3-hydroxypropanal/1,3-propenediol, which occurs by the dehydration of adsorbed glycerol molecule at primary- and secondary -OH groups [27-28], which can further reduced to 1,2-PD and 1,3-PD, respectively [23]. In the presence of oxidizing agent, small quantity of acetol and 1,2-propanediol was generated in the presence of TEMPO, whereas no generation of dehydration and reduction products of glycerol was observed in the presence of H₂O₂ and Na₂S₂O₈. It was believed that, in the presence of strong oxidizing agent, glycerol was directly oxidized at the primary -OH group to obtain glyceroldehyde and followed by C-C cleavage of this intermediate species resulted to the generation of glycolic acid [26]. Besides, in the presence of weak oxidizing agent, the direct oxidation of glycerol under acidic condition preferred to occur at the secondary -OH group [29], resulting to the formation of 1,3- dihydroxyacetone [30]. With some paths more or less possible for each studied system, a simplified diagram showing the possible major reaction pathways of enriched glycerol conversion by electrochemical technique under galvanostatic conditions over a Pt electrode in the presence of oxidizing additive is shown in Scheme 1.

Fig. 4 exhibits the variation of glycerol conversion as a function of electrolysis time in the presence of TEMPO at different concentrations in the range of 0.001-0.005 M. The high concentration of such additive can achieve a fast glycerol conversion. The complete conversions of glycerol in the presence of 0.003 and 0.005 M TEMPO were equal at 13 h. The two-stage behavior of glycerol conversion was slightly observed in the presence of high TEMPO concentration. By using a macro-kinetics model with the first-order reaction rate, the constants of glycerol conversion increased as the increasing TEMPO concentration.

Regarding the effect of additive concentration on the product yield, the main product obtained from the electrochemical conversion of glycerol was still 1,3-dihydroxyacetone. The yield increased as the increasing the TEMPO concentration as demonstrated in Fig. 5. Namely, they were 57.16, 64.24 and 69.19% in the presence of TEMPO at the concentration of 0.001, 0.003 and 0.005 M, respectively. This is attributed to the fact that in the presence of high TEMPO concentration, large quantity of *N*-oxoammonium cation, the active oxidizing species obtained from the oxidation of TEMPO, was produced which can enhance a more oxidation of the secondary -OH group of glycerol, resulting to the formation of high 1,3-dihydroxyacetone. Based on the glycerol conversion and the generated products, it seems to be that the principal reaction occurred in the first stage in the presence of TEMPO was the hydrogenolysis and/or cycliczation to acetol and glycidol. Afterward, the main reaction was the oxidation reaction, which is starting after 5 or 6 h depending on the TEMPO concentration.

4. Conclusions

The electrochemical conversion of enriched crude glycerol to valued-compounds was successfully developed in a simple electrochemical reactor under galvanostatic condition (0.14 mA/cm^2) with glycerol solution at pH of 1.0 via Pt electrode both in the absence and in the presence of additives. The presence of all utilized additives can enhance a fast glycerol conversion, attributing to the concerted reaction mechanism involving additive on electrode surface. Besides, in the absence of additive, the conversion of glycerol was mainly carried out by dehydration and reduction. However, it was carried out mainly by the direct oxidation of glycerol at primary- or secondary -OH group in the presence of additive. The principal product obtained from electrochemical reaction in the absence of additive was glycidol, while those in the presence of H_2O_2 , $Na_2S_2O_8$ and TEMPO were glycidol, ethylene glycol and 1,3-dihydroxyacetone, respectively. Approximately, 69.19% of 1,3-dihydroxyacetone was generated in the presence of 0.005 M of TEMPO.

Acknowledgments

The authors would like to thank the Bangchak Petroleum P.L.C. for samples and materials; the TRF-CHE Research Grant for Mid-Career University Faculty (Grant No. RSA5480015); and the Research Foundation Enhancement Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University for financial support. Also, we thank the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University, and Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

References

- [1] T. Werpy, G. Petersen, Top value added chemicals from biomass, Vol. 1, US Department of Energy (USDOE) (2004).
- [2] E.G. Rodrigues, S.A.C. Carabineiro, X. Chen, J.J. Delgado, J.L. Figueiredo, M.F.R. Pereira, J.J.M. Órfão, Selective Oxidation of Glycerol Catalyzed by Rh/Activated Carbon: Importance of Support Surface Chemistry, Catal. Lett. 141 (2011) 420–431.
- [3] T. Pairojpiriyakul, E. Croiset, W. Kiatkittipong, K. Kiatkittipong, A. Arpornwichanop, S. Assabumrungrat, Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts, Int. J. Hydrogen Energ. 38 (2013) 4368–4379.
- [4] K. Kamonsuangkasem, S. Therdthianwong, A. Therdthianwong, Hydrogen production from yellow glycerol via catalytic oxidative steam reforming, Fuel Process. Technol. 106 (2013) 695–703.
- [5] M. Metsoviti, K. Paraskevaidi, A. Koutinas, A. Zeng, S. Papanikolaou, Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated *Klebsiella oxytoca* strain growing on biodiesel-derived glycerol based media, Proc. Biochem. 47(12) (2012) 1872–1882
- [6] W.C. Kao, D.S. Lin, C.L. Cheng, B.Y. Chen, C.Y. Lin, J.S. Chang, Enhancing butanol production with *Clostridium pasteurianum* CH₄ using sequential glucose–glycerol

- addition and simultaneous dual-substrate cultivation strategies, Biores. Technol. 135 (2013) 324–330.
- [7] A. Witsuthammakul, T. Sooknoi, Direct conversion of glycerol to acrylic acid via integrated dehydration—oxidation bed system, Appl. Catal. A: General 413–414 (2012) 109–116.
- [8] S. Thanasilp, J.W. Schwank, V. Meeyoo, S. Pengpanich, M. Hunsom, Preparation of supported POM catalysts for liquid phase oxydehydration of glycerol to acrylic acid, J. Mol. Catal. A: Chemical. 380 (2013) 49-56.
- [9] E.G. Rodrigues, M.F.R. Pereira, J.J. Delgado, X. Chen, J.J.M. Órfão, Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes, Catal. Commun. 16(1) (2011) 64–69.
- [10] S.D. Pollington, D.I. Enache, P. Landon, S. Meenakshisundaram, N. Dimitratos, A. Wagland, G.J. Hutchings, E.H. Stitt, Enhanced selective glycerol oxidation in multiphase structured reactors, Catal Today 145 (2009) 169–75.
- [11] Z. Gholami, A.Z. Abdullah, K.T. Lee, Glycerol etherification to polyglycerols using $Ca_{1+x}Al_{1-x}La_xO_3 \text{ composite catalysts in a solventless medium, J. Taiwan Ins. Chem. Eng.}$ 44 (2013) 117–122.
- [12] E.S. Vasiliadou, T.M. Eggenhuisen, P. Munnik, P.E. de Jongh, K.P. de Jong, A.A. Lemonidou, Synthesis and performance of highly dispersed Cu/SiO₂ catalysts for the hydrogenolysis of glycerol, Appl. Catal. B: Environ. In Press (2013).
- [13] M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo, Glycerol Hydrogenolysis Promoted by Supported Palladium Catalysts, Chem. Sus. Chem. 4 (8) (2011) 1143–1150.
- [14] C. Ralf; S.Bernd; S. Udo; D. Wolfgang; K. Reetta (2006). Glycerol. "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_477.pub2. ISBN 3527306730.

- [15] S. Demirel-Gülen, M. Lucas, P. Claus, Liquid phase oxidation of glycerol over carbon supported gold catalysts, Catal. Today 102–103 (2005) 166–172.
- [16] S. Kongjao., S. Damronglerd, M. Hunsom, Purification of crude glycerol derived from waste used-oil methyl ester plant, Korean. J. Chem. Eng. 27 (2010) 944-949.
- [17] R. Manosak, S. Limpattayanate, M. Hunsom, Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption, Fuel Process. Technol. 92 (2010) 92–99.
- [18] M. Hunsom, P. Saila, P. Chaiyakam, W. Kositnan, Comparison and combination of solvent extraction and adsorption for crude glycerol enrichment, Int. J. Renew. Energ. Res. 3(2) (2013) 364-371.
- [19] Y.J. Jung, K.W. Baek, B.S. Oh, J.W. Kang, An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies, Water Res. 44 (2010) 5345–5355.
- [20] J.H. Kim, S.M.Choi, S.H. Nam, M.H. Seo, S.H. Choi, W.B. Kim, Influence of Sn content on PtSn/C catalysts for electrooxidation of C₁–C₃ alcohols: Synthesis, characterization, and electrocatalytic activity, Appl. Catal. B 82 (2008) 89–102.
- [21] L. Roquet, E.M. Belgsir, J-M Léger, C. Lamy, Kinetics and mechanism of the electrocatalytic oxidation of glycerol as investigated by the chromatographic analysis of the reaction products, Electrochim. Acta 39 (1994) 2387–2394.
- [22] R. Ciriminna, G. Palmisano, C.D. Pina, M. Rossi, M. Pagliaro, One-pot electrocatalytic oxidation of glycerol to DHA, Tetrahedron Letters 47 (2006) 6993–6995.
- [23] S. Kongjao, S. Damronglerd, M. Hunsom, Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes, J. Appl. Electrochem. 41 (2011) 215–222.
- [24] Y. Kwon, M.T.M. Koper, Combining voltammetry with HPLC: application to electro-oxidation of glycerol, Anal. Chem. 82 (2010) 5420–5424.

- [25] A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, P. Atanassov, Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts, Electrochim. Acta 66 (2012) 295–301.
- [26] C. Len, R. Luque, Continuous flow transformations of glycerol to valuable products: an overview, Sustainable Chem. Process. 2 (2014) 1-10.
- [27] A.T. Marshall, R.G. Haverkamp, Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell, Int. J. Hydrogen. Energ. 33 (2008) 4649–4654.
- [28] K. Ishiyama, F. Kosaka, I. Shimada, Y. Oshima, J. Otomo J, Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures, J. Power Sources 225 (2013) 41–149.
- [29] C.H. Zhou, J.N. Beltramini, C.-X. Lin, Z.-P. Xu, G.Q. Lu, A. Tanksale, Selective oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts, Catal. Sci. Technol. 1 (2011) 111–122.
- [30] E.G. Rodrigues, M.F.R. Pereira, J.J. Delgado, X. Chen, J.J.M. Órfão, Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes, Catal. Commun. 16 (2011) 64–69.

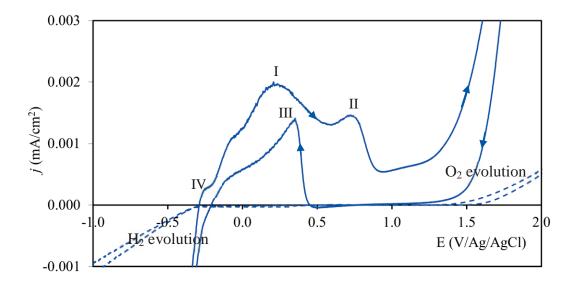


Fig. 1. CV-derived current density-potential curve of (—) 0.3 M enriched glycerol and (---) blank (distilled H_2O) at initial pH of 1.0 using a Pt electrode.

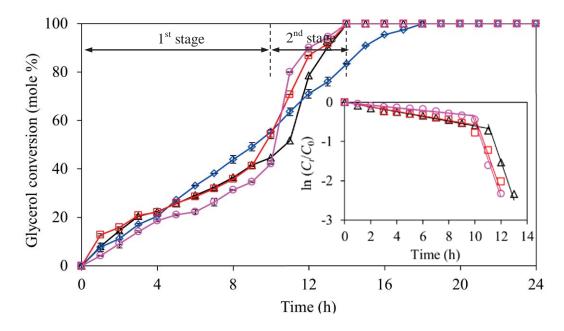


Fig. 2. Glycerol conversion in the (\diamondsuit) absence of additives and in the presence of (\triangle) H_2O_2 , (\Box) $Na_2S_2O_8$ and (\bigcirc) TEMPO at an initial pH of solution of 1.0 and current density of 0.14 mA/cm^2 with Pt grid electrode.

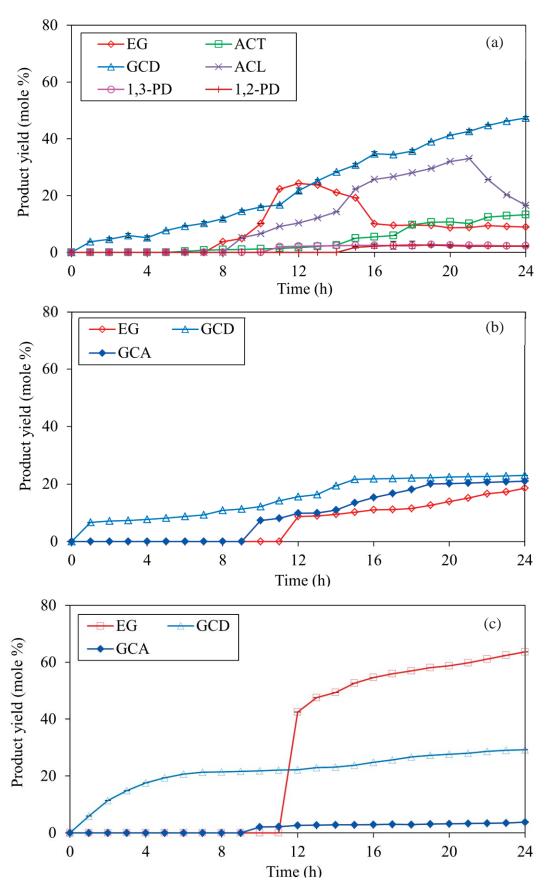


Fig. 3. Product yield in the (a) absence of additive and in the presence of (b) H_2O_2 , (c) Na_2S_2O8 and (d) TEMPO at an initial pH of solution of 1.0 and current density of 0.14 mA/cm^2 with Pt grid electrode.

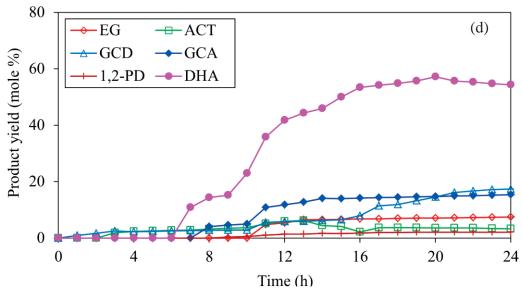


Fig. 3. Cont.

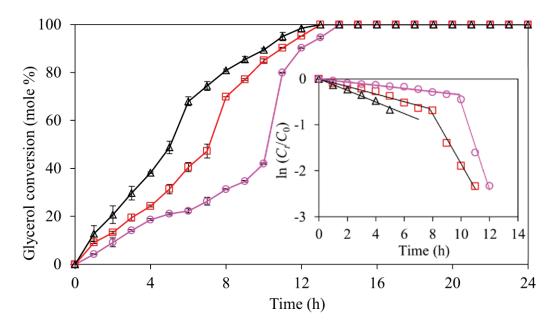


Fig. 4. Glycerol conversion in the presence of TEMPO at concentration of (O) 0.001 M, (\square) 0.003 M and (\triangle) 0.005 M at an initial pH of solution of 1.0 and current density of 0.14 mA/cm² with Pt grid electrode.

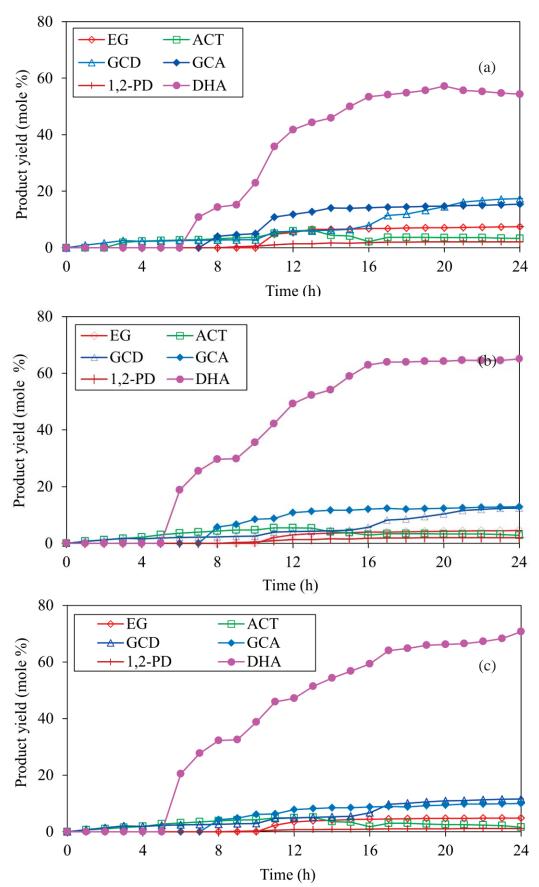
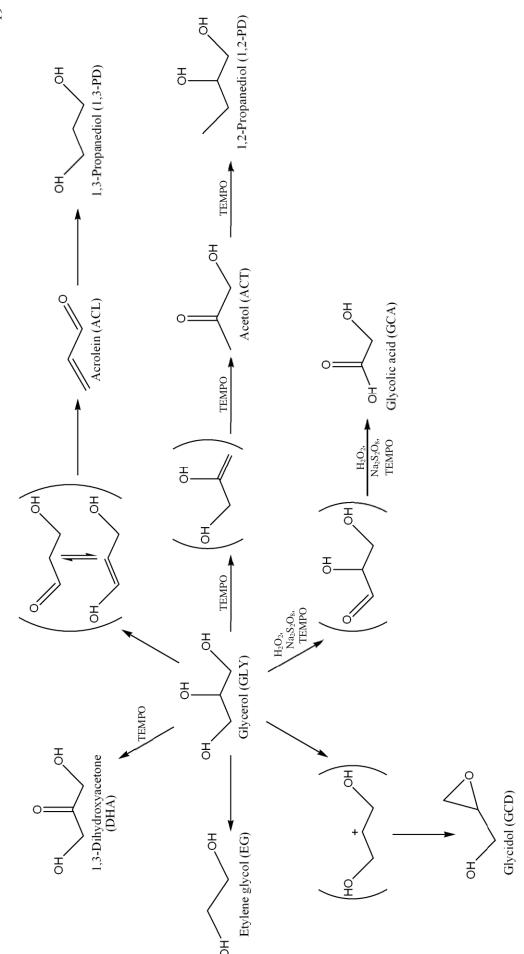



Fig. 5. Product yield in the presence of TEMPO at concentration of (a) 0.001 M, (b) 0.003 M and (c) 0.005 M at an initial pH of solution of 1.0 and current density of 0.14 mA/cm² with Pt grid electrode.

Scheme 1. Proposed reaction pathways for the electrochemical conversion of enriched glycerol over a Pt electrode at an initial pH 1.0 in the presence of additives. The products in dash-box can occur both the absence and presence of additive.

Abstract Book

The 8th Mathematics and Physical Science Graduate Congress

2012

Connect ASEAN

8 - 10 December 2012

Faculty of Science Chulalongkorn University, Thailand

Participating Universities:

Detailed Schedule of Oral Presentation 8th MPSGC 2012

8th December 2012

your occoment with the contract of the co	
Time	Title
10.20-11.00	Keynote talk by Dr. Burin: Experimental particle physics in Thailand
11.00-11.20	Proposal of a proper Thai character size and illumination systems for elderly
11.20-12.20	Lunch Break
12.20-12.40	N. Choomphon-anomakhun - Dynamical Behaviors of Drug Carrier
	Nanoparticles in Magnetic Drug Targeting
12.40-13.00	Mohd Shaiful Rizal Hassan - Redshift Distribution in the Galaxy Cluster A262
13.00-13.20	Noorkhallaf Noorazlan - Very Long Baseline Interferometry Site Selections
	For The Observations Of HI In NGC 1068
13.20-13.40	Zulfazli Rosli - Investigation on the frequency allocation for radio astronomy
	at L-band
13.40-14.00	Luo Ziyu - Low-energy effective model for Bi1-xSbx alloys
14.00-14.40	Coffee Break And Poster Presentation
14.40-15.00	Keynote talk by Prof. Eng Soon Tok: Assembly of Si Magic Clusters on Si(111)
	surface

Chemistry Session, MHMK 306

chemistry sess	CHEILISH Y SESSIOII. MIHMIN 306
Time	Title
10.20-11.00	Keynote talk Dr Kartini Binti Abu Bakar: Chemical Speciation of Selenium
11.00-11.20	S. Thanasilp - Production of acrylic acid from glycerol over alumina-
	supported polyoxometalate
11.20-12.20	Lunch Break
12.20-12.40	Payia Saila - Purification enhancement of crude glycerol derived from
	biodiesel production plant
12.40-13.00	Oratai Torpanyacharn - Environmental-Friendly Thermosetting Copolyesters
	Derived from Poly(Butylene Adipate) and Glycolysed Products of Polylactic
	Acid
13.00-13.20	Abdulrahman Shahul Hameed - Novel Cathode materials for Li-ion batteries
13.20-13.40	Yan Yan - A selective Fluorescent probe based on transition metal complex
13.40-14.00	Liao Yile - Room Temperature Amplified Spontaneous Emission (ASE) in
14.00-14.40	Coffee Break And Poster Presentation
14.40-15.00	Peeyanun Noyrod - A Square Wave Anodic Stripping Voltammetric
	Determination of Isoprotron and Carbendazim in Lettuce Samples
15.00-15.20	Haresh S/O Sivaram - Gold N-Heterocyclic Carbene (NHC) Complexes and
	their Cytotoxic Activities

Geosciences Session. MHMK 305

Time	Time Title
10.20-11.00	Keynote Talk Dr. Nur Iskandar Taib: Unusual ultra-potassic post-orogenic
	basalts from Segamat, Johore - implications for the post-collision tectonics
	of the Indosinian suture
11.00-11.20	Md. Farhaduzzaman - Petroleum source rock potential of Boka Bil shales of
	the Bengal Basin, Bangladesh
11.20-12.20	Lunch Break
12.20-12.40	Zachary Aaron Smith - Considerations for an Integrated Approach to Flood
	Management in Asian Cities with Physical & Human Geography
12.40-13.00	Ng Jun Long, Bernard - Human effects on soil respiration in tropical urban
	green spaces, Singapore
13.00-13.20	Seyed Reza Saghravani - Estimation of Natural Groundwater Recharge Using
	Chloride Mass Balance in the North Kelantan River catchment
13.20-13.40	Siti Nur Syahirah Bt Mohd Adnan - Soil Pollution Study based on Statistical
	Analysis of Ampar Tenang Landfill Site, Selangor, Malaysia
13.40-14.00	Yuen Jiaqi - Review of below-ground root carbon biomass data for Southeast
	Asia: Limitations and uncertainties for REDD+ decision making
14.00-14.40	Coffee Break And Poster Presentation
14.40-15.00	Wisa Wisesjindawat Fink - Spatial relation of deep pools on the Lower
	Mekong River
15.00-15.20	Anver Mohamed Shamraz - Streamflow Modelling using Artificial
	Intelligence

Mathematic Session. MHMK 304

Time	Time Title
10.20-11.00	Keynote Talk by Prof. Dr. Ong Seng Huat: Non exponential Duration and
	Planar Random Walk Distributions Modelling Dispersion
11.00-11.20	Julalak Kaewwangsakoon - Higher derivations and Jordan triple higher
	derivations of Γ-ring
11.20-12.20	Lunch Break
12.20-12.40	Zhao Xiaofei - Multiscale numerical method for highly oscillaroty differential
	equation
12.40-13.00	Jia Xiaowei - Mathematical Analysis and Numerical Methods for the Dirac
	Equation
13.00-13.20	Azam Pirmoradian - Application of a New Multivariate Copula on Malaysia,
	Thailand and Singapore Indexes
13.20-13.40	Sun Xiang - Independent Random Partial Matching with Infinite Types
13.40-14.00	Ali Sassanapitax - A Characterization of Completeness in Cone Metric
	Spaces
14.00-14.40	Coffee Break And Poster Presentation

Purification enhancement of crude glycerol derived from biodiesel production plant

Mali Hunsom¹, Payia Saila*

¹Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand *E-mail:payiakiss@hotmail.com

Abstract

A study of the enrichment of crude glycerol, derived from a waste used-oil utilizingbiodiesel (methyl ester) production plant,via chemical extraction was performed at a laboratory scale at ambient temperature (30 °C). The effect of various parameters on the properties of the obtained glycerol, including glycerol-, ash-, contaminant contents and color, was explored. By using three types of polar solvent (CH_3OH , C_2H_5OH and C_3H_7OH) and two types of non-polar solvent ($C_4H_{10}O$ and C_6H_6) were each evaluated at a 0.5-4.0 solvent: pre-treated crude glycerol volume ratio. The enrichment of glycerol by chemical extraction was significantly affected by the solvent type and solvent:pre-treated crude glycerol (v/v) ratio. The use of C_3H_7OH at a (v/v) ratio of 2.0 gave the highest purity of glycerol (97.9% by weight), but the lowest color reduction level (93.3%), while $C_4H_{10}O$ at a (v/v) ratio of 1.0 gave a low glycerol content (86.6%), but the highest color removal level (97.0%).

PROCEEDINGS

PURE AND APPLIED CHEMISTRY INTERNATIONAL

CONFERENCE 2013 (PACCON2013)

January 23-25, 2013 Bangsaen Beach THAILAND

PRODUCT DISTRIBUTION OF ELECTROCHEMICAL CONVERSION OF GLYCEROL VIA Pt ELECTRODE

Payia Saila¹, Mali Hunsom*

¹Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand *Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University, Bangkok 10330, Thailand

*E-mail:payiakiss@hotmail.com

Abstract: The product distribution of the electrochemical conversion of glycerol to valuable compounds was evaluated with platinum (Pt) electrode under galvanostatic conditions. Effects of initial pH of glycerol and electrolysis time were investigated. The preliminary results demonstrated that either initial pH of glycerol or electrolysis time affected the glycerol conversion as well as types of product and product yield. Greater than 80% of glycerol was converted within 10, 17 and 15 hr at pH 1, 7 and 11, respectively by using current intensity of 4.5 A, and various compounds such as acetol, 1,2-propanediol, 1,3-propanediol, glycidol, etc were generated.

1. Introduction

Glycerol is an important feedstock for industrial application including food products, pharmaceutical industries and others application. Since glycerol forms the backbone of triglycerides, it can be produced by soap production industry and also as a byproduct from transesterification reaction of biodiesel production [1]. Many processes have been developed to make value-added glycerol-based products. For example, the biological production of 1,3-propanediol from glycerol has been demonstrated for several bacterial strains; most prominently in Klebsiella, Clostridium species and heterologously in Escherichia coli by metabolic engineering [2-5]. In heterogeneous catalysis, several monometallic (Pt, Pd, Au) [6-7] and bimetallic catalysts (Pt-Bi, Au-Pt) [6,8-11] have been investigated and revealed that the Pt-Bi bimetallic system showed a promising conversion and selectivity toward DHA at low pH and mild operating conditions [10]. Also homogeneous catalysts have been reported for the selective glycerol oxidation to DHA [12]. The electrochemical technique is an alternative method to reform glycerol due to its unique features such as simplicity and robustness in structure and operation [13]. The selective conversion of glycerol to DHA may be achieved by electro-catalytic oxidation on a carbon-supported platinum (Pt/C) electrode in a bismuth saturated acidic solution [14-15,16].

In this paper, the electrochemical technique has the potential to develop a cost-effective technology for glycerol reforming to 1,2-propanediol, 1,3-propanediol, glycidol and many others products.

2. Materials and Methods

2.1 Chemical substances

The aqueous glycerol solution was prepared from a commercial glycerol stock (99.5%, Fisher) at constant concentration of 0.3 M. The pH of glycerol solution

was adjusted by analytical grade H_2SO_4 (98%, Qrec) or NaOH (1 M, Qrec).

2.2 Polarization curve

The possibility of electrochemical conversion of glycerol at different pH (1, 7 and 11) was performed using a Potentiostat/Galvanostat (Auto Lab, model PG stato). Two Pt grids in cylindrical structure were used as working and counter electrodes, while Ag/AgCl was used as reference electrode. The scan potential was varied in the range from +1.75 to -0.50 V with a scan rate of 5 mV/s. In each set, the system was agitated by a magnetic stirrer at a constant rate of 650 rpm.

2.3 Electrochemical conversion of glycerol

The electrochemical system was performed in a laboratory scale at ambient temperature and pressure. The electrochemical reactor was made from Pyrex glass having a total capacity of 0.6 L. Two Pt grids in a cylinder shape were used as the anode and cathode, respectively. The temperature of electrolytic cell was controlled by a cooling system, a magnetic bar was used to stir the electrolyte in the electrolytic cell at 650 rpm. A regulated DC power supply (ZS 3205-2X type) was employed to supply the external electricity at a galvanostatic mode (4.5A).

2.4 Analytical methods

The chemical compounds generated in the electrochemical reactor were analyzed by gas chromatography equipped with flame ionization detector (Hewlett Packard/HP 5890 Series II). The conversion of glycerol was analyzed by High Performance Liquid Chromatography (HPLC: Agilent 1100) with a RID-10A refractive index detector. The stationary phase was a Pinnacle II C18 column (240 \times 4.6 mm) and the mobile phase was a 99.9:0.1 (v/v) ratio of 10 mM H_2SO_4 : pure CH_3OH , passed through the column at 0.5 ml/min.

3. Results and Discussion

3.1 Polarization curve

Fig. 1 shows the polarization curve of glycerol solution at pH 1, 7 and 11. At pH 1, the oxidation of glycerol was observed at the potential of +0.3477 V (peak B) and the reduction of glycerol was observed at the potential of -0.2962 V (peak A), which gave the maximum current intensity of 1.891 mA and 0.356 mA, respectively. At the potential greater than 0 V, the significant increase of current was observed as the

region D, causing by the reduction of H^+ to H_2 . Also, at the potential greater than -0.76 V, significant change of current intensity was observed due to the oxidation of H_2O to O_2 (region E). At neutral pH, the oxidation-reduction of glycerol was not clearly observed during the investigated potential range. It was appeared a wide shoulder as demonstrated as the insert of Fig.1. At the potential lower than -0.1 V and greater than +0.75 V, it had the formation of H_2O reduction to H_2 and H_2O oxidation to O_2 , respectively. For the polarization curve of glycerol solution at pH 11, the forward scan did not represent the oxidation-reduction peaks obviously, except the reduction of H_2O to H_2 at potential greater than 0 V. For the backward scan, the oxidation peak of glycerol was observed at the

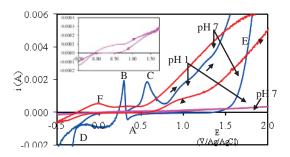


Fig.1 Polarization curved of 0.3 M glycerol at different pH via Pt electrode.

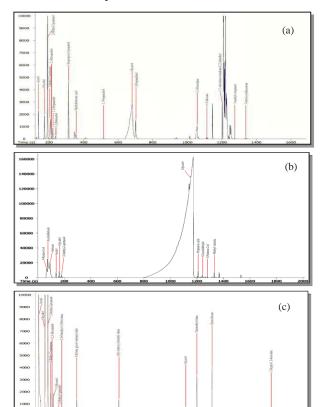


Fig.2 Representative GC/MS spectra of glycerol solution at pH (a) 1, (b) 7 and (c) 11 by using Pt electrode.

potential of -0.0331 V (peak F), providing the maximum current intensity of 0.548 mA. According to the polarization curve, it can be said that glycerol can be oxidized or reduced under strong acid and basic conditions [17].

Fig. 2 demonstrates the product analysis generated from the electrochemical conversion of glycerol different pH values. For example, acetol, glycidol and 2-methyl-2-pentanol were generated by electrochemical conversion of glycerol at all investigated pH values. Other compounds such as 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 5-methyl-1-heptanol were produced in acid condition; whilst acrolein and glyceraldehyde were produced under basic condition. Various generated compounds have a higher market value and also have a high market capacity and application in industries, as listed in Table 1.

3.2 Glycerol conversion and product distribution

Fig.3 exhibits the conversion of glycerol solution (0.3 M) by electrochemical technique at current intensity of 4.5 A during 0-24 hr electrolysis time. It was clear that the conversion of glycerol increase as the increase of electrolysis time. High conversion was observed under strong acid condition compared with that of neutral and basic conditions. The conversion of glycerol was greater than 99.5 at 18 hr electrolysis time, while those of pH 7 and 11 were around 91.0 and 87.1, respectively. This is because the dehydration reaction can proceed effectively under strong acid condition [1], resulting to high conversion of glycerol.

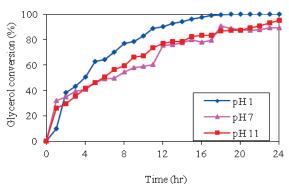


Fig.3 Glycerol conversion by electrochemical technique at different pH values and current intensity of 4.5 A. by using Pt electrode.

Fig. 4 reveals the product distribution of electrochemical conversion of glycerol at different pH values and current intensity of 4.5 A by using Pt electrode. The generated products which can be detected and measured at pH 1 were ethylene glycol, acetol, glycidol, acrolein, ethanol, 1,2-propanediol and 1,3-propanediol at electrolysis time of 8,1, 1, 6, 14, 10 and 15 hr, respectively (Fig. 4(a)). Some of them increased as a function of time and remained constants such as acetol, glycidol, 1,2-propanediol, 1,3-propanediol and ethanol. The rest of them including ethylene glycol and acrolein increased as a function of time during early

Table 1. Listed of compounds generated from elctrochemcial conversion of glycerol.

Chemical substances	pH 1	pH 7	pH 11	USD (purity, %) [CAS no.]
Acetol/ hydroxyacetone	✓	✓	✓	55.63/100g(90%) ^a [116-09-6]
Glycidol	✓	✓	✓	61.13/100g(96%) ^b [556-52-5]
2-methyl-2-pentanol / Dimethyl propyl carbinol	✓	✓	✓	79.23/10g(99%) ^c [590-36-3]
3-methyl-2-pentanone	✓		✓	381.84/25g(99%) [565-61-7]
2,3-hexanediol	✓		✓	80.96/1mL(99%) ^c [617-30-1]
1,2-propanediol	✓			95.05/500mL(>99.5%) ^c [57-55-6]
1,2-butanediol	✓			174.94/1L(>98.0%) ^d [584-03-2]
1-isopropoxy-2-propanol	✓			213.45/1g(98%) ^c [3944-36-3]
1,3-propanediol	✓			48.18/100g(98%) ^c [504-63-2]
1,3-dioxolane	✓			165.51/1L(99%) ^c [646-06-0]
1,3-dioxolane-4-methanol,2,2-dimethyl	✓			49.23/100g(98%) ^c [100-79-8]
5-methyl-1-heptanol	✓			894.0/1mL(96%) ^c [57803-73-3]
2,4-dimethyl-1,3-dioxane			✓	105.04/10g ^c [766-20-1]
Ethylene glycol isopropyl ether			✓	65.04/1L(99%) ^c [109-59-1]
2-hexanol			✓	262.96/100g(>98%) ^c [626-93-7]
Tetramethylsilane			✓	57.99/25g (>99.9%)c [75-76-3]
4-methyl-1-hexanol			✓	104/1mL(>98%) ^c [1767-46-0]
Acrolein/acryraldehyde		✓		150/1kg(97%) ^c [107-02-8]
4-Pentene-2-ol		✓		111.72/5g (99%)° [625-31-0]
Propanoic acid/ Propionic acid		✓		67.35/100mL (>99.5%) ^c [79-09-4]
3-Pentene-2-ol		✓		815.19/25g (96%) ^c [3899-34-1]
Glyceraldehyde		√		1866.1/25g (>90%) ^c [56-82-6]
Methyl valerate		✓		109.71/1kg (>99%) ^C [624-24-8]

^aTechnical grade; ^bNatural grade; ^cReagent grade; ^dPurum grade

period of experiment and then decreased. This demonstrated that ethylene glycol and acrolein are the intermediate substances that can be further converted to other products under strong acid condition. Among the generated products, maximum product yield was observed for acetol and the 1,3-propanediol at 20% and 19%, respectively.

Under neutral condition, the detected products were ethylene glycol, acetol, glycidol, acrolein and ethanol at electrolysis time of 9, 1, 1, 9 and 1 hr, respectively (Fig.4 (b)). The yield of ethylene glycol, glycidol, ethanol and acrolein increased as the increase of electrolysis time, whereas the yield of acetol increased as a function of electrolysis time up to 15 hr and it decreased afterward. This implies that acetol can convert to other substance under neutral condition. According to the obtained results, the maximum yield of glycidol was observed at 29.6% at 20hr electrolysis time.

Under strong basic condition, various products including ethylene glycerol, acetol, acrolein, ethanol were detected at 7, 2, 1, 12 and 9 hr electrolysis time, respectively (Fig.4(c)). The product yield of glycidol, ethylene glycerol, ethanol and acrolein increased as the increase of electrolysis time, whilst the acetol increased to 12% at 4 hr and decreased afterward. Under this condition, the maximum product yield was observed for glycidol at 31.9% at electrolysis time of 20 hr.

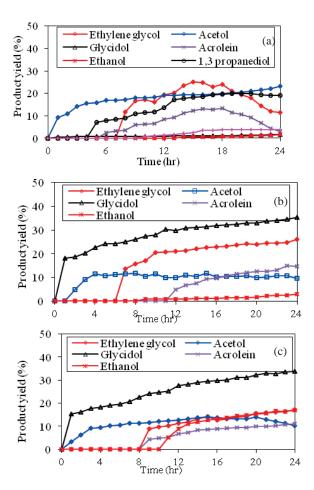


Fig.4 Product distribution of electrochemical conversion of glycerol at different pH values and current intensity of 4.5 A by using Pt electrode.

4. Conclusions

The generated products at different pH values were ethylene glycol, acetol, glycidol, acrolein, ethanol, 1,2propanediol and 1,3-propanediol. The electrochemical conversion of glycerol under strong acid was higher than 99.5% at 18 hr electrolysis time because the dehydration reaction can proceed effectively in this condition, resulting to high conversion of glycerol. Under neutral and basic conditions were around 91.0 and 87.1%,, respectively. The maximum product yield of strong acid was observed for acetol and the 1,3propanediol at 20% and 19% while under neutral condition the maximum yield of glycidol was observed at 29.6% and at strong basic condition, glycidol was observed for the maximum yield at 31.9%. Some of these products are the intermediate substances that can be further converted to other products but some of them increased as a function of time. However, to achieve a higher yield of each desired compound, the specific electrochemical conditions. such concentration of glycerol and applied current density, etc., need to be resolved.

References

- [1] D.T. Johnson, K.A.Taconi, *Environ. Prog* **26** (2007) **338-348.**
- [2] I.T. Tong, et al, *Appl. Environ. Microbiol* **57** (1991) 3541–3546.
- [3] M. Gonza Tez-Pajuelo, et al, *Appl. Environ. Microbio* **72** (2006) 96–101.

- [4] Z.L. Xiu, A.P. Zeng, Appl. Microbiol. Biotechnol 78 (2008) 917–926.
- [5] X. Tang, et al, Appl. Environ. Microbiol 75 (2009) 1628–1634.
- [6] S. Demirel, K. Lehnert, M. Lucas, P. Claus, Appl. Catal. B 70 (2007) 637–643.
- [7] S. Carretin, P. McMorn, P. Johnston, K. Griffin, C. Kiely, G. J. Hutchings, *Phys. Chem. Chem. Phys* **5** (2003) 1329–1336.
- [8] H. Kimura, K. Tsuto, T. Wasisaka, Y. Kazumi, Y. Inaya, Appl. Catal. 96 (1993) 217–228.
- [9] H. Kimura, Appl. Catal. 105 (1993) 147-158.
- [10] W. Hu, D. Knight, B. Lowry, A. Varma, *Ind. Eng. Chem. Res.* 49 (2010) 10876–10882.
- [11] N. Wörz, A. Brandner, P. J. Claus, *Phys. Chem.* **114** (2010) 1164–1172.
- [12] R. M. Painter, D. M. Pearson, R. M. Waymouth, *Angew. Chem. Int. Ed.* **49** (2010) 9456–9459.
- [13] N.A. Grace, K. Pandian, *Electrochemistry Communications* **8** (2006) 1340–1348.
- [14] R. Ciriminna, G. Palmisano, D.C. Pina, Rossi, M. Pagliaro, *Tetrahedron Letters*. 47 (2006) 6993–6995.
- [15] M. El. M. Chbihi, D. Takky, F. Hahn, H. Huser, J.M. Le'ger, C. Lamy, *Electroanalytical Chemistry* **463** (1999) 63–71.
- [16] Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, T. M. Koper, ACS Catalysis 2 (2012) 759-764.
- [17] S. Kongjoa, S. Damrongleard and M. Hunsom, *J. Appl. Electrochem.* **41** (2011) 215-222.

PROCEEDINGS

PURE AND APPLIED CHEMISTRY INTERNATIONAL

CONFERENCE 2013 (PACCON2013)

January 23-25, 2013 Bangsaen Beach THAILAND

CRUDE GLYCEROL PURIFICATION BY ADSORPTION VIA ACTIVATED CARBON DERIVED FROM SEWAGE SLUDGE

Chaowat Autthanit^{1*}, Mali Hunsom^{1, 2}

¹ Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand ² Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand

Abstract: This work was carried out to investigate the effect of parameters on the preparation of activated carbon from sewage sludge for crude glycerol purification. Types of activating agent (KOH, H₃PO₄ and K_2CO_3), ratio of activating agent to char (1.0-6.0 w/w), impregnation time (5-25 hrs) and carbonization temperature (500-900°C) were explored. The preliminary results indicated that among the utilized activating agents, the activated carbon activated by KOH provided the best efficiency for crude glycerol purification. The purity of crude glycerol increased from 35 to 89 wt.% in the presence of activated carbon activated by KOH at ratio of 5:1, impregnation time of 25 hr and carbonization temperature of 800 °C. Moreover, the oxygen-containing surface groups on the surface of activated carbon played a key role on the purity of crude glycerol.

1. Introduction

Interest in biodiesel based on fatty acid methyl esters has grown considerably worldwide. This is also the case in Thailand where the recent increase in biodiesel production is predicted to be at least fourfold over just four years, from less than 2.1×10⁶ 1/day in 2008 to an expected 8.4×10^6 l/day in 2012 [1]. The production of 10 kg of biodiesel yields approximately 1 kg of crude glycerol [2], Increasing the share of biodiesel in transportation fuels may decrease the net emission of CO₂ and alleviate the global warming problem. However, the increase in biodiesel production rates will significantly raise the quantity and surplus of crude glycerol and partially waste in the environment. This is because the crude glycerol discharged from biodiesel production plants consists not only of glycerol but also many other chemicals such as water, salts, soap, alcohol, traces of glycerides, and vegetable colors [3]. In addition, high-purity glycerol is still required as it is an important industrial feedstock for applications in the food, cosmetic and pharmaceutical industries, as well as other more minor uses [4]. Because the separation of glycerol via conventional distillation processes is not economically viable, removal of impurities via adsorption by a selective adsorbent is one of the possible ways to purify crude glycerol to acceptable standards [5].

Considering the potential commercial application of selective adsorption of glycerol, it is certainly necessary to find a cheaper and efficient adsorbent for treatment of crude glycerol [6]. The aqueous-phase adsorption of crude glycerol has been concerned mainly on activated carbon.

In this work, the purification of crude glycerol derived from a waste used-oil utilizing biodiesel (methyl ester) production plant was carried out using activated carbon derived from industrial sewage sludge by chemical activation method. Effects of ratio of activating agent to char, impregnation time and carbonization temperature on the properties of activated carbon as well as the crude glycerol purification efficiency were investigated

2. Materials and Methods

2.1 Pre-treatment of crude glycerol

Initially, the free fatty acid and salt contents were reduced by acidification. In each trial, 300 g of crude glycerol was acidified by the addition of phosphoric acid (85% H₃PO₄) to the desired pH 2.5, and then left for 12 h until the solution had phase separated into three distinct layers, that is a top layer of free fatty acids, the middle glycerol-rich layer and, if present, the bottom inorganic salt-rich layer. The top layer was removed by slow decantation and the middle glycerol-rich layer was separated from the bottom inorganic salt-rich layer, if present, by filtration. Prior to removal of the residue salts from glycerol-rich layer, it was neutralized by the addition of 12.5 M NaOH to pH 7.0, left for a while and then filtered to eliminate the precipitated salt [1].

2.2 Preparation of activated carbons

Activated carbons from sewage sludge were prepared in a two-step process: pyrolysis and chemical activation processes. In the pyrolysis process, sewage sludge was first washed with water to remove the water-soluble impurities, dried at 105 °C for 24 hrs. Then the precursor was heated to 400 °C at the rate of 10 °C/min for 2 hrs under N_2 atmosphere at flow of 50 ml/min, and then cooled to room temperature at the same rate. The resulting material was called chars.

The chars were then subjected to chemical activation. In the chemical activation process, 10.0 g of the pyrolyzed carbon were mixed with 100 mL of distilled water and amount of activation agent, depending on the ratios of activation reagent/pyrolyzed carbons desired (1:1, 2:1, 3:1, 4:1, 5:1 and 6:1 by weight) for each activation agent (KOH, H₃PO₄ and K₂CO₃). The mixture was shaken at 200 rpm depending on the set time (5-25 hrs). Finally, the carbonization was conducted at one of five different temperatures (500-900 °C) under nitrogen flow at heating rate of 10°C/min, and held at 30 min. After

^{*} Author for correspondence; E-Mail: ch.resolves@gmail.com, Tel. +66 02 218 7516, Fax. +66 02 255 5831

activation, the derived activated carbons were removed from the reactor. Then, it was rinsed with 3.0 M HCl and deionized water for several times to remove other inorganic matter until the pH become neutral, filtered and finally dried at $105~^{\circ}\text{C}$ for 24 hrs.

2.3 Adsorption with produced activated carbon

Adsorption of pretreated crude glycerol was conducted at room temperature in conical flasks with continuous shaking. Prior to use, the produced activated carbon was dried at 105 °C for 30 min to eliminate free moisture. In the adsorption stage, activated carbon was mixed with pretreated crude glycerol at ratio of 67 g/l pretreated crude glycerol, mixed at 250 rpm for 90 min and then subjected to vacuum filtration to remove the activated carbon.

2.4 Analysis

The glycerol content in purified crude glycerol was measured according to the standard method (ASTM D7637-10) [1] by a titration with sodium metaperiodate. This test method is based on the cold oxidation of the glycerol by sodium metaperiodate in a strong acidic medium. The glycerol content can be calculated by using Eq. (1)

Glycerol content (%) =
$$1.15125 \times (V_1 - V_2)$$
 (1)

Where:

 V_1 = volume of sodium hydroxide used in glycerol titration (mL)

V₂ = volume of sodium hydroxide used in blank titration (mL)

m = weight of glycerol sample used (g)

Ash content was analyzed according to the Standard method (ISO 2098-1972) by burning 1 g glycerol in a muffle furnace at 750 °C for 3 h. The MONG (Matter Organic Non-glycerol) levels and water was measured in terms of contaminants, which were calculated by the difference from a hundred of the previous three compositions [100-(% glycerol content+% ash content)]. The contents of oxygencontaining surface functional groups with varying acidity were determined by the Boehm's method of

titration with basic solutions of different base strengths (NaHCO₃, Na₂CO₃ and NaOH) [7]. The superiority of sewage sludge for activated carbon production was first checked using proximate analysis.

3. Results and Discussion

3.1 Properties of crude glycerol

The original crude glycerol was a dark brown liquid with a pH of 8-9. It contained a low content of glycerol but a relatively high ash and contaminant contents (Table 1). The ash content was largely composed of inorganic matter such as sodium salts that originated from the utilized catalyst (NaOH) in the transesterfication process. By far the largest contaminant was MONG, which indeed exceeded the glycerol levels, and was generated by the contamination of soap, methanol and methyl esters in the glycerol residue from the biodiesel production process. During the pre-treatment stage, some of the fatty acids were released as soluble soap and some of methyl esters dissolved or suspended in the glycerol solution. These free fatty acids and methyl esters then reacted with the excess NaOH in the subsequent neutralization step to re-form soap which remained in the glycerol residue [8].

3.2 Effect of parameters on crude glycerol purification by adsorption with activated carbon derived from sludge

3.2.1 Effect of weight ratio of activating agent to char

Effects of weight ratio of activating agent to char on crude glycerol purification were carried out at the weight ratio of 1 by using three types of activating agent including KOH, K_2CO_3 and H_3PO_4 at constant activating time of 20 hr and carbonized in N_2 atmosphere at 500 °C for 30 min. The surface oxygen containing functional groups including carbonyl, carboxyl, hydroxyl and lactone were first measured. As shown in Figure 1, large quantity of carbonyl was generated on the surface of activated carbon compared with other types of activating agent. This group increased as the increase of weight ratio of KOH to char while the other measured groups remained

Table 1. Characteristics of crude glycerol, pretreated crude glycerol and purified crude glycerol by adsorption process

process					
Parameters	BS 2621:1979	Crude	Pretreated	Purified crude glycerol by adsorption process	
	[9]	glycerol	crude glycerol		
				Activated Commerc	
				carbon derived	activated
				from sludge ^a	carbon
pН		8.0-9.0	7.0	7.0	7.0
Glycerol content (wt.%)	≥ 80	27.23 ± 0.84	35.76 ± 0.27	89.35 ± 1.72	84.1 ± 0.85
Ash content (wt.%)	≤ 10	36.18 ± 0.20	29.07 ± 0.51	9.94 ± 1.21	13.10 ± 0.13
Contaminant (wt.%)	≤ 10	36.59	35.17	0.71 ± 0.50	2.9 ± 0.72
Color (Pt-Co unit)		172,857	154,038	$2,426 \pm 39$	$46,627 \pm 2678$

 $^{^{\}rm a}$ At the activated carbon dose of 67 g/l glycerol at 250 rpm for 90 min (KOH 5:1, 25 hr and 800 $^{\rm o}C)$

constant or decrease slightly. The similar trend of quantity change was observed in the case of K_2CO_3 . However, in the presence of H_3PO_4 , more quantities of hydroxyl and carboxyl were generated compared with carbonyl and lactone. The hydroxyl and carboxyl groups were 4.9 and 4.1 mEq/g at weight ratio of 6, while only 2.1 and 1.5 mEq/g of carbonyl and lactone were generated. This might be attributed to the fact that KOH and K_2CO_3 are the basic chemicals, which can enhance high generation of basic oxygen functional groups (carbonyl group), while H_3PO_4 is the acid chemical which can enhance a more generation of acid oxygen functional groups (carboxyl, hydroxyl and lactone).

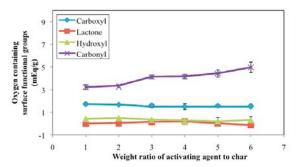


Figure 1. Contents of oxygen containing surface functional groups of the activated carbon with KOH at difference activating ratios.

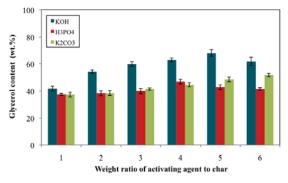


Figure 2. Effect of weight ratio of activating agent to char on the purity of crude glycerol.

Figure 2 shows variation of glycerol content in crude glycerol purified by adsorption with activated carbon activated by KOH, K2CO3 and H3PO4. It was found that the activated carbon activated by KOH at the weight ratio of KOH to char of 5:1 provided the best purity of crude glycerol compared with other types of activating agent. It can enhance the purity of crude glycerol from 35.76 to 68.08 wt.%, while K₂CO₃ and H₃PO₄ can increase the purity of crude glycerol to 51.7 and 40.8 wt.% at the weight ratio of 6 and 4, respectively. This is because the KOH can enhance a high formation of carbonyl group on the surface of activated carbon. As proposed by Pereira et al. [10], the carbonyl group is the basic functional group containing high quantity of electron acceptor [11] [12], which can bond as well to the anionic charge of FAME or FFAs (R-COO⁻), resulting to the decrease of contaminant in

purified crude glycerol. Thus, it favors to bond with the negative charged acid groups. In this case, the crude glycerol contained large quantity of free fatty acid, which has negatively charged acid groups [13]. Thus, the presence of high quantity carbonyl group can reduce high quantity of fatty acid containing in crude glycerol. However, if the ratio of KOH was increased to 6:1, the purity of crude glycerol also decreased from 68.08 to 61.82 wt.%. This was possibly due to the decomposition of excessive KOH molecules to water which can gasify with carbon to form CO and H₂ [14]. Over-gasification might reduce the specific surface area and adsorption of crude glycerol.

3.2.2 Effect of impregnation time

Effect of impregnation time on crude glycerol purification by the adsortion with activated carbon activated by KOH at the weight ratio of 5:1 and carbonize under N_2 atmosphere at 500 °C for 30 min was investigated in the range of 5-25 hrs. The glycerol content in purified crude glycerol increased as the increase of impregnation time (Figure 3). This is might be attributed to the fact that long impregnation time would promote the diffusion of KOH in the char, resulted to the formation of large quantity of carbonyl group from 1.98 mEq/g at 5 hr to 4.66 mEq/g at 25 hr. Hence, the impregnation time of 25 hr was required and was used in subsequent experiments.

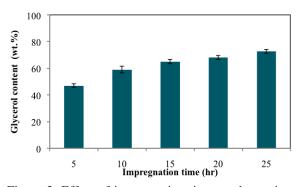


Figure 3. Effect of impregnation time on the purity of crude glycerol purified by adsorption with KOH at weight ratio to char of 5.

3.2.3 Effect of carbonization temperature

Effect of carbonization temperature on crude glycerol purification by the adsortion with activated carbon activated by KOH at the weight ratio of 5:1 and carbonize under N₂ atmosphere at different temperature in the range of 500-900 °C for 30 min was investigated at constant impregnation time of 25 hr. As shown in Figure 4, the glycerol content in purified crude glycerol increased from 72.68 to 89.35 wt.% as the increase of carbonization temperature of 500 to 800 °C. This corresponds to the increase of carbonyl group on the surface of activated carbon from 4.67 mEq/g to 7.08 mEq/g. However, further increase the carbonized temperature from 800 to 900 °C results to the decrease of glycerol content to 67.01 wt.%, consistent with the decrease of the quantity of carbonyl group to 4.15

mEq/g. This is because the carbonyl groups can decomposition around 850 °C [11], resulting to the decrease of the adsorption capacity of contaminants from crude glycerol. In addition, KOH can convert to potassium carbonates at higher temperature [15], resulting to the decrease of surface area as well as the low the capacity to adsorb contaminants in crude glycerol.

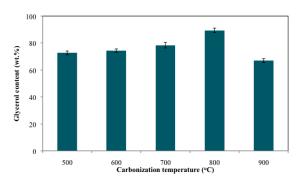


Figure 4. Effect of carbonization temperature on the purity of crude glycerol purified by adsorption with KOH at weight ratio to char of 5.

The properties of purified crude glycerol purified by the adsorption with activated carbon derived from sludge and commercial one were demonstrated in Table 1. It was clearly seen that the crude glycerol purified by the activated carbon derived from sludge had high glycerol content than that purified by commercial activated carbon. In addition, the color of the former case was lower than the latter case as demonstrated in Figure 5.

Figure 5. Color of (a) crude glycerol, (b) pretreatment crude glycerol and purified crude glycerol by adsorption with (c) commercial activated carbon and (d) activated carbon derived from sludge.

4. Conclusions

In this study, sewage sludge has been shown to be a feasible source for crude glycerol purification. Among utilized chemical agent, KOH showed the performance compared with K_2CO_3 and H_3PO_4 because it can enhance the large generation of carbonyl group on the surface of activated carbon. Thus, it was chosen as the most effective activation reagent for activation of sewage sludge for producing the best result in percentage of glycerol. The optimum condition for

preparation of activated carbon from sewage sludge was obtained at activated carbon activated by KOH at ratio of 5:1, impregnation time of 25 hr and carbonization temperature of 800 °C. This condition provided the best activated carbon which gave the most efficiency for crude glycerol purification.

Acknowledgements

The authors acknowledge the Department of Chemical Technology, Faculty of Science, Chulalongkorn University for financial support, the Nanyang Textile Co., Ltd for raw material support.

References

- [1] R. Manosak, S. Limpattayanate and M. Hunsom, *Fuel Processing Technology*, **92** (1), 2011: 92-99.
- [2] Z. Chi, D. Pyle, Z. Wen, C. Frear and S. Chen, *Process Biochem.* 42 (2007) 1537-1545.
- [3] M. Hajek and F. Skopal, Bioresource Technol 101 (2010) 3242-3245.
- [4] D.T. Johnson and K.A. Taconi, Eng. Progress 26 (2007) 338-346.
- [5] F. Karaosmanoglu, K.B. Cigizoglu, M. Tuter, and S. Ertekin, *Energy Fuels* 10 (1996), 890-895.
- [6] L. Peereboom, B. Koenigsknecht, M. Hunter, J.E. Jackson, and D.J. Miller, *Carbon* 45 (2007) 579-586.
- [7] X. Chen, S. Jeyaseelan and N. Graham, Waste Manage 22 (2002) 755-760.
- [8] D.T. Johnson and K.A. Taconi, Eng. Progress 26 (2007) 338-346.
- [9] T.L. Ooi, K.L. Yong, K. Dzulkefly, W.M.Z. Wan Yunus and A.H. Hazimah, J. Palm Oil Res. 13 (2001) 16-22.
- [10] M. F. R. Pereira, S. F. Soares, J. J. M. Orfao, and J. L. Figueiredo, *Carbon* 41 (2003) 811-821.
- [11] N.D. Epiotis, Journal of the American Chemical Society 94 (1972) 1946.
- [12] G.X. Yu, S.X. Lu, H. Chen and Z.N. Zhu, Carbon 43 (2005) 2285.
- [13] G. Vivekanand, Surface modification of activated carbon for the removal of water impurities, The Center for Microfibrous Material Manufacturing, Department of Chemical Engineering, Auburn University, USA (2008).
- [14] J. GUO and A. C. LUA, Chemical Engineering Research and Design 81 (2003) 585-590.
- [15] A. Nasser and A. El. Hendawy, Applied Surface Science 255 (2009) 3723-3730