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Abstract 

 

Project code :   RSA5480016 

Project Title : Theoretical Studies on Human Serum Albumin. A key Plasma Transport 

Protein with widespread ADMET implications  

Investigator :  Dr. Matthew Paul Gleeson  Kasetsart University 

E-mail Address :  paul.gleeson@ku.ac.th 

Project period :  June 2011 –June 2014 

 

 

The goal of this research project is to develop predictive models for studying absorption, distribution, 

metabolism excretion and toxicity (ADMET) phenomenon. In the first phase of the project we have 

reviewed in great detail the available methodologies, publishing a number of reviews in the area. 

Subsequently, we have developed quantum mechanical (QM) based methods for understanding 

ADMET phenomenon.  

 

Initial studies were focused on validating the methodology using the available kinase X-ray crystal 

structures. The studies were extended to models of protein reactivity, as given by the local lymph 

node assay (LLNA. Our calculations shows that the sensitivity of aromatic halides were directly 

proportional to their reactivity as predicted by high level QM calculations.  

 

Simulations on HSA, a protein important for drug distribution, show that differences in fatty acid 

binding can have a dramatic effect on the flexibility of the protein and also the pocket characteristics. 

We discuss how the remarkable selectivity of the HSA pockets, towards both endogenous fatty acids 

and exogenous drug molecules, is highly complex and is not simply driven by the number of H-bonds, 

or VDW contacts or even solvent accessibility. Further QM/MM calculations on HSA suggest that 

Lys199, His242, Arg257 give rise to the experimentally observed esterase activity and that the most 

catalytically efficient active site configuration requires that both Lys199 and Aspirin are in their neutral 

forms. The abundance of HSA in the body suggest the protein might be a suitable target for the 

computational guided design of acetyl based pro-drugs of acidic molecule that often displayed limited 

oral exposure due to their unmasked ionizable substituent. 

 

Keywords: Human serum albumin (HSA), skin sensitization, Simulations, MD, QM/MM 
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วัตถุประสงคของโครงการวิจัยน้ี เพื่อพัฒนาแบบจําลองการทํานายสําหรับการศึกษาปรากฏการณการดูดซึม 

การกระจาย การเผาผลาญอาหาร การขับถาย และความเปนพิษ หรือท่ีเรียกวา ADMET โดยในระยะแรกของ

โครงการ ไดศึกษารายละเอียดเกี่ยวกับระเบียบวิธีและตีพิมพผลงานในสาขาท่ีเกี่ยวของ ซ่ึงตอมาไดพัฒนา

พื้นฐานวิธีกลศาสตรควอนตัม (QM) เพื่อใหเขาใจปรากฏการณ ADMET 

 

การศึกษาในเบ้ืองตน จะเนนถึงการตรวจสอบวิธีการ โดยการใชโครงสรางผลึกรังสีเอ็กซ (X-ray) ของไคเนสท่ีมี

อยู นอกจากน้ียังไดจําลองแบบความวองไวในการทําปฏิกิริยาของโปรตีน ตามวิธี LLNA การคํานวณแสดงให

เห็นวาความวองไวของหมู aromatic halides แปรผันโดยตรงกับความวองไวท่ีทํานายโดยการคํานวณดวย

กลศาสตรควอนตัมในระดับสูง  

 

การจําลองบน HSA ซ่ึงเปนโปรตีนท่ีสําคัญสําหรับการกระจายของยา แสดงใหเห็นวาความแตกตางของการยึด

ของกรดไขมัน สงผลกระทบอยางมากตอความยืดหยุนของโปรตีนและลักษณะเฉพาะของตําแหนงท่ีเกิด 

ปฏิกิริยา (HAS pockets) ไดอภิปรายถึงการเลือกท่ีสําคัญของ HSA pockets โดยผานกรดไขมันท่ีเกิดข้ึน

ภายในสิ่งมีชีวิตและท่ีเกิดข้ึนภายนอกโมเลกุลของยา ซ่ึงมีความซับซอนมากและไมถูกขับไดงาย ๆ เพียงแค

จํานวนพันธะไฮโดรเจน หรือติดตอกับวันเดอรวาลส หรือแมแตการเขาถึงของตัวทําละลาย การคํานวณ 

QM/MM ข้ันตอไปบน HSA ไดช้ีใหเห็นวา Lys199, His242  Arg257 กอใหเกิดความวองไวของ esterase ท่ี

สังเกตไดจากการทดลอง และมีประสิทธิภาพการเปนตัวเรงของการจัดเรียงตัวของบริเวณท่ีวองไวมากท่ีสุด 

จําเปนตองใช Lys199 และ Aspirin ในรูปท่ีเปนกลาง จากปริมาณของ HSA ในรางกายจํานวนมาก ช้ีใหเห็นวา

โปรตีนอาจจะเปนเปาหมายท่ีเหมาะสมสําหรับเปนแนวทางการออกแบบทางการคํานวณของยาท่ีมี acetyl เปน

พื้นฐานของโมเลกุลท่ีเปนกรดซ่ึงมักจะปรากฏขอจํากัดท่ีจะเกิดข้ึนในชองปาก เน่ืองจากแสดงหมูแทนท่ีท่ี

แลกเปลี่ยนไอออนได 

 

Keywords: Human serum albumin (HSA), skin sensitization, Simulations, MD, QM/MM 
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เน้ือหางานวิจัย 

1. บทนํา (Introduction)   

The research plans proposed over the course of the 3 year project have been undertaken in full. 

Some aspects of the project have proved more difficult than others; however all of the topics proposed 

have been undertaken and have resulted in publications. In particular, due to the very large size and 

flexibility of HSA, QM and MD calculations proved very challenging, requiring additional unexpected 

validation work to ensure the calculations could be completed in a timeframe consistent with the 

project plan. These final issues have been resolved through careful validation using smaller model 

systems and the final binding and reactivity studies of HSA have been submitted for publication.  

 

Year 1  
 Validate proposed methods via extensive literature review.  

• Completed, 2 publications obtained. 
 Validate QM models to assess subtle binding interactions  

• Completed, 1 publication obtained. 

Year 2 
 Validate the MD methodologies for use with HSA. 

• Completed, 1 publication obtained. 
 Validate the QM methods to study excited state reaction intermediates. 

• Completed, 2 publications obtained. 

 

Year 3 
 Use MD to assess HSA ligand binding and origin of affinity. 

• Completed, 1 publication submitted for publication. 
 Use QM/MM to study the catalytic reactions of HSA.  

• Completed, 1 publication submitted for publication. 

 

The goal of this research project is to develop predictive models for studying absorption, distribution, 

metabolism excretion and toxicity (ADMET) phenomenon. In the first phase of the project we have 

reviewed in great detail the available methodologies, publishing a number of reviews in the area. 

Subsequently, we have developed quantum mechanical (QM) based methods for understanding 

ADMET phenomenon. Initial studies were focused on validating the methodology using the available 

kinase X-ray crystal structures. The studies were extended to models of protein reactivity (as given by 

the local lymph node assay – LLNA) to validate the methods utility in explaining experimental 

biological data.  
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The final phase of the project has focused on studying binding and reactivity phenomena associated 

with human serum albumin. As described in the proposal, the initial focus of this study has been 

directed towards understanding aspects of ligand binding using the available X-ray crystal structures 

from the RCSB including: (a) the differing affinity of the two key drug binding pockets (b) the differing 

affinity of the seven key fatty acid binding pockets (c) the impact of concomitant fatty acid or ligand 

binding to the HSA-drug complex and (d) the newly suggested esterase mechanism. The reason for 

this is to better understand the methods needed to study the HSA protein-ligand complex. 

 

The original proposal specified between 3-5 papers as output, being depending on the scientific 

findings. To date, the project has resulted in 6 international publications. Two additional publications 

are expected, 1 of which has been submitted for publication and another which is due to be submitted 

in the coming weeks. Thus it is expected that the project will result in 8 scientific papers in total. 

 

2. วิธีการทดลอง (Method) 

Both the AMBER and Gromacs 4.0 programs were assessed. Due to the dramatic speed advantage 

of the latter found from test calculations, it was used for all the MD simulations. However, the AMBER 

99SB force field was used instead of the inbuilt GROMOS forcefield as the former was found to be 

more reliable for simulating drug-like molecules.   

 

To try and better understand what MD simulations conditions are best for proteins such as HSA, 

simulations were undertaken on a smaller, simpler protein kinase system to begin with (the same as 

used in the test QM system calculations). These results have been written up and submitted for 

publication. Following these simulations, studies on HSA were undertaken. Simulations of HSA with 

different sites occupied with fatty acid were undertaken to better understand the dynamics 

characteristics of the protein and how fatty acid binding affects this, as well as ligand binding.  

 

Quantum chemical calculations have been performed as described in the original proposal. Cluster 

models of protein ligand complexes based on kinase crystal structures have been used as the models 

systems to study binding interactions. All calculations have used the Gaussian 09 program.  

 

The effect of using a number of different theoretical methods to optimize QM active site models were 

investigated. MP2/6-31+G**, M062X/6-31G*, HF/6-31G*, HF/3-21G, AM1 and CHARMm methods 

have been employed, and considered the effect of BSSE and the inclusion of an implicit solvation 

model.  The M062X method showed the best balance between speed and reliability so was taken 

forward for further validation. The method was shown to also be very suitable for studying reaction 
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mechanisms, predicting excited state species with good accuracy compared to higher computational 

cost methods. As such the M062X/6-31G* method was used for QM/MM simulations of HSA, with 

singles point being performed with the 6-31+G** basis set. 

 

Hybrid QM/MM calculations to explore HSA reactivity have been undertaken using a similar 

methodology as used in the earlier gasphase calculations (MO62X). The reaction profile of the protein 

with active site residues in 3 distinct protonation states were investigated. Minima and transition states 

along the reaction coordinates were obtained and confirmed from vibrational frequency analysis. 

 

3. ผลการทดลองและวิจารณผลการทดลอง (Results and Discussions) 

 

PART 1: Probing the Binding Site Characteristics of HSA: A Combined Molecular Dynamics and 

Cheminformatics Investigation. 

ABSTRACT 

Human serum albumin is a remarkable protein found in high concentrations in the body. It contains 

at least 7 distinct fatty acid binding sites and 2 principle sites for drugs. Its primary function is to act 

as a fatty acid transport system, but it also shows the capacity to bind a diverse range of acidic, 

neutral and zwitterionic drug molecules. In this paper we investigate the ligand binding selectivity of 

HSA using cheminformatics analyses and molecular dynamics simulations. We compare and contrast 

the known ligand binding specificities as obtained from X-ray structural data using PCA, with 

additional direct analyses of the 7 key binding pockets using analyses derived from molecular 

simulations. We assess both the fatted and defatted states of HSA using 100 ns simulations of the 

APO and HOLO forms as well as structures containing 1, 3 and 7 myristic acid molecules. We find 

that differences in fatty acid binding can have a dramatic effect on the flexibility of the protein and also 

the pocket characteristics. We discuss how the remarkable selectivity of the HSA pockets, towards 

both endogenous fatty acids and exogenous drug molecules, is highly complex and is not simply 

driven by the number of H-bonds, or VDW contacts or even solvent accessibility. 

 

1. Introduction 

The binding of molecules to plasma proteins is important from a pharmaceutical perspective since 

this property can be used to estimate the total body clearance in man.
1
 There are two main proteins 

implicated in the binding of drug molecules in plasma, namely human serum albumin (HSA) and α1-

acid glycoprotein (AGP). The former is the most abundant protein found in plasma, making up 
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approximately 60% of the total protein present.  HSA is an important transport protein that binds 

numerous molecules of endogenous and exogenous molecules. Fatty acid (FA) binding to HSA has 

been long studied due to the critical role these molecules play in  energy metabolism and membrane 

synthesis.
2
HSA is well known for its capacity to bind drug molecules and understanding the structure 

and function of the protein is thus essential for future drug development. As a result, the binding 

characteristics and specificity of HSA have received much attention both experimentally and 

computationally. To date, approximately 100 HSA structures have been determined by X-ray.
3, 4

 In 

addition,  NMR
5-7

, EPR
8
 and biochemical assays have been widely used to explore aspects of ligand 

binding to the protein.
9, 10

  

 

A. B. 

Figure 1 Cartoon views of the key regions  and binding sites (E) and important residues in HSA (F) 

 

 

HSA has a molecular mass of 66 kDa (585 amino acids). It exists as a monomer with three similar 

α-helical domains (I–III) (Figure 1). Each domain can be divided further into subdomains A (4 α-

helices) and B (6 α-helices).
3, 4, 11

 HSA contains numerous sites for long chain fatty acids, distributed 

across the protein, and 2 primary sites for drugs known as drug site I and II.
6, 12

 Simard et al. 

observed that such 7 FA sites exist for FAs with chain lengths >14 carbons.
5, 6

 Kragh-Hansen et al. 

noted that Lauric acid (12 carbons) binds to 8 unique sites and decanoic acid (10 carbons) can bind 

to 10.
13

 Subsequent studies revealed that three of the sites displayed higher affinities for FA (sites 

FA2, FA4 and FA5, where FA5 is the highest).
5, 6

 Even so, even the lower affinity site FA1 can bind 

very large acidic molecules such as HEME with high affinity.
14

 The presence of FA bound to HSA is 

also known to induce conformational change in the protein and this affects drug binding.
15

 Thus, 

FA5

FA6

FA3 FA7

FA2

IB

IA
IIIB

IIIA

IIB

IIA

FA1

FA4

FA7 (Site I): 
230-240

FA3/4 (Site II): 460-470

H242

V116H510

K199

R348
E450

K195

D451

V344
V343

E383
R485
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understanding the origin of the FA-binding differences among these 7 sites remains a source of major 

interest.
6, 14-17

 

QSAR approaches have been extensively used to rationalise both HSA and whole plasma protein 

binding.
10, 18, 19

 However, the specific interactions and pocket shapes give rise to ligand selectivity
15

 

which bulk physico-chemical property QSAR models cannot easily account for. However, incorporating 

specific details of the binding interactions at a molecular level may help improve this situation in the 

future.
20-22

 Furthermore, there are an increasing number of computational studies on HSA in which 

molecular docking or molecular dynamics (MD) simulations have been used to gain insight into HSA-

ligand binding. For example, Fujikara et al. employed MD simulations and principle component 

analysis (PCA) to evaluate the possible conformational changes of HSA in the presence of bound 

myristic acids.
23

 MD simulations have also been used to postulate drug-binding sites or understand 

the drug-binding mechanisms at specific HSA pockets (i.e. warfarin,
24

 hydroxyquinoline derivatives,
25

 

betulinic acid
26

). More recently Castellanos et al. have investigated the role of disulphide bonds on the 

structural flexibility of the protein.
27

 Nevertheless, previous studies have focused their attention on the 

macroscopic conformational changes of HSA in the presence or absence of natural or synthetic 

ligands are bound. The microscopic characteristics of the individual binding pocket remain largely 

unstudied computationally. For an extensive review of the molecular modelling studies conducted on 

HSA readers are referred to reference.
28

 

In this study we aim to shed further light on the structural characteristics and binding pocket 

selectivities of HSA. We have extracted and analysed known drug molecules bound to each of the 7 

principle binding pockets of HSA. PCA was then used to understand what physical properties are 

most important in defining the selectivity for each site. We then contrast this result with those derived 

from 100 ns MD simulations of HSA, performed using a number of different states, to assess how the 

7 different pockets evolve over time and under different conditions. Simulations have been performed 

on the closed form of HSA (APO model), the open form with 7 myristic acid (MYR) molecules bound 

(FA(1-7) model). We have also assessed intermediate states by removing a portion of FA molecules 

from the open protein structure, with only those occupying (a) the 3 highest affinity sites (FA(2,4,5) 

model), (b) the single highest affinity site (FA(5) model) (c) zero FA molecules bound (HOLO model).  

2.0 Computational Procedures  

2.1 MD Simulations 

HSA models for the closed and open form or HSA were created from the coordinates 1e78 and 

1e7g, respectively,
29

 which were sourced from the RCSB databank.
30

 The closed structure, 

corresponding to the non-liganded form, was used to generate the APO HSA model. The open 
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structure, containing bound MYR molecules, was used to create a HSA model containing ligands at 

the 7 principle FA sites (FA(1-7) model). The latter X-ray structure was also used to create an 

additional model of HSA in the open form but containing no fatty acids (HOLO model). Additionally, 

two other HSA models were created which contained either 1 or 3 fatty acids at the most high affinity 

sites. These are termed the FA(2) and FA(2,4,5) models. The N- and C-terminal ends of each model 

were capped with acetyl (ACE) and methyl amino (NME) groups, respectively, and the overall quality 

confirmed using PROCHECK v3.5.4.
1
 The protonation state of ionisable residues were determined 

using PROPKa
31

 and a visual analysis of the environment surrounding each ionisable residue. 

Residues were treated as HID unless otherwise stated:  HIE (39, 288, 40) and HIP (3, 67, 105, 128, 

146, 247, 338, 367, 510). Each model was then placed in a cubic simulation box containing water and 

neutralized with counter ions by randomly replacing water molecules.  

Simulations were carried out using GROMACS v4
32

 with the AMBER99SB forcefield 33
 Ligand 

topology files were generated using ACPYPE script
6
 and the GAFF force field

34
. Electrostatic charges 

were generated using a HF/6-31G(d) optimized structures (Gaussian 09 Revision C01)
35

 and the 

RESP protocol of Ambertool1.5
36

 Long range electrostatic interactions were calculated using the 

Particle Mesh Ewald (PME) method with a 0.12 nm cut-off 
37

 while van der Waals interactions utilized 

a 1 nm cut-off. Simulations were performed at constant temperature, pressure and number of particles 

(NPT). The temperature of the protein and solvent were each coupled separately. The Berendsen 

thermostat
38

 was applied at 300 K with a coupling constant of 0.1 ps.
39

 Coordinates and velocities 

were saved every 2 ps. The LINCS algorithm was used to restrain bond lengths and a 2 fs timestep 

was used for integration.
40

 Five ns of protein backbone-restrained dynamics were employed initially, 

followed by 100 ns production runs. Simulations for the APO, HOLO and FA(1-7) models were 

performed in duplicate to assess the sensitivity of the results to different starting conditions. Analyses 

on the resulting MD coordinates were performed using GROMACS routines, Discovery Studio,
41

 and 

locally written scripts. Molecular graphics images were produced using VMD.
42

 The statistical 

significance of any reported differences have been confirmed using paired Student’s T-test or F-test, 

respectively at >95% confidence level.  

2.2 Cheminformatics Analyses 

The physico-chemical determinants of selectivity for the 7 HSA binding pockets were assessed by 

curating a list of ligands known to bind in each pocket. This was done based on an analysis of 

structures deposited in the Protein databank structures. A range of commonly used physico-chemical 

descriptors were calculated for the list of 57 inhibitors identified as binding to at least one of the 

known binding sites. All descriptors were calculated using the Chemaxon JChem suite
43

.  
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A PCA model was also generated using data reported in Table 1 to Table 3 to (a) investigate the 

structural differences between the difference proteins simulations and (b) investigate the differences in 

pockets of HSA and the effect of different simulation conditions. 

All models were generated in SIMCA-P10
44

 using the default settings (i.e., mean centred and 

scaled descriptors, with the auto-fitting of components) and report in the form of either the traditional 

loading and scores plot or a combined loadings bi-plot (i.e. both the scores and loadings projected 

onto the same plot). 

 

Table 1 Comparison of key parameters obtained for each of the 5 simulations. All values reported are average 

values obtained over the course of the 100nS simulations. Standard devision given in parenthesis. * results derived 

from a single simulations. 

  

Model RMSD RMSF H-bonds Ryd. Gyr. Area 

APO 0.38 (0.07) 0.18 (0.12) 456 (11.4) 2.72 (0.03) 0.59 (0.39) 

HOLO 0.31 (0.07) 0.17 (0.07) 459 (11.4) 2.76 (0.03) 0.60 (0.38) 

FA (1-7) 0.32 (0.08) 0.15 (0.06) 461 (11.3) 2.77 (0.02) 0.61 (0.37) 

FA (2,4,5)* 0.24 (0.04) 0.16 (0.06) 461 (11.9) 2.77 (0.02) 0.60 (0.38) 

FA (5)* 0.27 (0.04) 0.19 (0.08) 462 (10.4) 2.78 (0.02) 0.60 (0.38) 

 

 

Table 2 Center of Mass (COM) distances between key residues within HSA. Distances are reported in nm. * 

results derived from a single simulations. 

 

 Descriptor APO HOLO FA(1-7) FA (2,4,5)* FA (5)* 

H510-V116 2.12 (0.67) 2.09 (0.39) 2.63 (0.27) 2.40 (0.29) 2.28 (0.24) 

E383-R485 0.74 (0.06) 0.85 (0.15) 0.78 (0.08) 0.89 (0.11) 0.83 (0.09) 

K195-D451 0.81 (0.08) 0.69 (0.05) 0.69 (0.05) 0.82 (0.14) 0.84 (0.12) 

R348-E450 0.91 (0.17) 1.24 (0.12) 1.18 (0.04) 0.89 (0.05) 0.87 (0.03) 

V343-E450 0.89 (0.07) 0.76 (01.2) 0.66 (0.04) 0.79 (0.04) 0.83 (0.06) 

V344-E450 0.62 (0.06) 0.69 (0.10) 0.67 (0.05) 0.58 (0.02) 0.59 (0.04) 

Y138-Y161 0.37 (0.02) 0.51 (0.03) 0.45 (0.10) 0.47 (0.07) 0.90 (0.06) 

 

11 

 



 

Table 3 The mean number of H2O contacts, H-bonds, Total contacts observed for FA bound in the FA(1-7) simulations. Also reported are the mean pocket sizes for each 

simulation. 

 
Simulation Descriptor FA Site.1 FA Site.2 FA Site.3 FA Site.4 FA Site.5 FA Site.6 FA Site.7 

FA(1-7) H2O-contacts 5.58 (0.75) 4.10 (0.93) 2.58 (0.75) 6.14 (0.99) 5.84 (0.66) 7.75 (0.97) 8.43 (0.83) 

FA(1-7) H-bonds 3.45 (0.38) 3.35 (0.29) 3.24 (0.11) 2.29 (0.53) 1.75 (0.20) 1.83 (0.31) 1.83 (0.32) 

FA(1-7) Total-contacts 182.1 (14.2) 203.3 (16.5) 212.9 (14.2) 185.3 (17.1) 214.4 (14.6) 184.4 (14.7) 169.7 (15.2) 

FA(1-7) FA length 0.88 (0.18) 1.4 (0.09) 1.24 (0.05) 1.3 (0.07) 1.34 (0.03) 1.16 (0.10) 0.78 (0.12) 

FA(1-7) Volume 5.74 (0.75) 5.89 (0.74) 5.27 (0.53) 5.28 (0.56) 4.76 (0.61) 4.44 (0.45) 5.01 (0.58) 

HOLO Volume 5.35 (0.71) 5.94 (0.77) 5.42 (0.53) 5.29 (0.52) 4.73 (0.58) 4.53 (0.46) 4.91 (0.60) 

APO Volume 5.58 (0.70) 5.99 (0.76) 5.09 (0.52) 5.04 (0.48) 4.78 (0.58) 4.36 (0.45) 4.93 (0.60) 

FA(5) Volume 5.02 (0.19) 5.97 (0.23) 5.14 (0.21) 5.10 (0.17) 4.88 (0.16) 4.60 (0.13) 4.96 (0.19) 

FA(2,4,5) Volume 4.76 (0.62) 5.52 (0.69) 5.00 (0.47) 5.32 (0.51) 4.88 (0.58) 4.59 (0.44) 5.01 (0.50) 
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3. Results and Discussion 

We begin this section with a discussion of the structural features of the HSA. In the 

subsequent section we discuss the use of FA molecules to assess the dynamic characteristics of 

the 7 pockets of HSA over the course of the MD simulations. This of course assumes that FA 

molecules are suitable probes for the range of substrates that FAs bind. As such, in the final 

section we employ a complementary, ligand-based approach to further probe the binding site 

specificity of the protein. We compare and contrast the calculated physico-chemical descriptors of 

the known substrates of each pocket, to the binding site parameters obtained from the MD 

simulations.  In this way we can gain insight into the unique characteristics of the pockets and 

assess their dynamic character to a level of detail yet reported.   

3.1 HSA Structural Characteristics 

The overall size, shape, and dynamics of the HSA protein are thought to influence the 

behaviour of its binding pockets, which in turn affect the binding affinity of fatty acids and other 

drug molecules
45

. Based on a series of simulations performed in this study, the global dynamic 

properties of HSA under each condition were investigated and compared in order to elucidate the 

key dynamic features that are essential for structure and function. Moreover, we pay particular 

attention to the microscopic details of the binding pockets that contribute to the binding of fatty 

acid. 

The constant total energy of each simulation indicates the convergence of each run after 5-ns 

pre-equilibration. Both Cα RMSDs and RMSFs of the proteins show the significant flexibility of 

HSA, with the greatest fluctuation being found at the interface between the different sub-domains 

(Figure 2). The RMSDs of the duplicate simulations performed on the APO and HOLO structures 

show slight differences in the backbone flexibility, this being related to when the inter-domain 

movement begins. Unlike the APO and HOLO models, the presence of 7 bound FA molecules is 

found to reduce the magnitudes of both the RMSDs and RMSFs significantly, which indicates a 

more rigid protein. We observe that the key structural features are preserved well although 

certain individual residues or loop movements can differ between duplicates.
4
 We see a subtle 

difference between the two FA(1-7) simulations due to a change in the interaction pattern of R117 

. R117 sidechain is so flexible that it can form a salt-bridge with either E119 located in domain I 

or E520 on domain III.  
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Figure 2 (A-C) Cα RMSDs observed in the APO (open conformation with no FA), HOLO (closed 

conformation with FAs removed) and FA(1-7) (closed conformation containing 7 FAs) models. (D) B-factor for 

APO, HOLO, and FA(1-7). (E-F) show cartoon views of the key regions  and binding sites (E) and important 

residues in HSA (F). 

 

Simulations with either 1 or 3 FA molecules at the highest binding sites (FA(5) and FA(2,4,5) 

models) are more akin to the physiologically FA binding conditions experienced in the body.
41,42

 

Experimental X-ray crystallographic studies have shown that HSA in this state is found to adopt a 

structure intermediate between the open and closed forms of the protein.
29

 It appears that these 

configurations can also enhance the protein rigidity (Table 1). This higher rigidity is observed over 

the closed protein due to the additional ~3-6 hydrogen bonds found in the presence of the FA in 

the open conformation. Taken overall, the similarities between the number of hydrogen bonds 

among amino acids, the radius of gyration (indicating the compactness of protein structure), and 

the residue surface area, suggest the partially and fully FA-bound HSA show similar global 

properties (Table 1).  Furthermore, it also appears that the HOLO structure does not transition to 

the closed conformation, as might be expected. The 100ns timescale appears to be insufficiently 

long to observe the complete conformational change from FA-bound to native HSA structure.   

Nevertheless, a number of interactions have been identified as key indicators of the 

conformational state of the protein in the fatted and de-fatted states.
5, 6, 15

 The H510-V116 
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distance is such a parameter, being indicative of the distance between interface of domain IIIB 

and IB (H510 on domain IIIB and V116 on domain IB, Figure 1B). A change in the distance 

between H510-V116 can indicate the movement of both domains, which is an indicator for the 

open and closed states. When FA binds, the H510-V116 distance increases from 2.12nm (APO) 

to 2.63nm for FA(1-7), 2.4nm for FA(2,4,5), and 2.28nm for FA(5) (Table 2), respectively. Binding 

of FA molecules clearly induces the movement of domain IIIB and IB, which agree well with 

previous studies
46, 47

 and shows that the partially occupied structures are in a more intermediate 

state as expected experimentally. This direction of movement can be captured by PCA analysis. 

The dominant motion obtained from the PCA model (i.e component 1) demonstrates a scissor-like 

motion of domain IIB and IB in both the absence and presence of bound FAs. This is in a good 

agreement with previous studies.
47, 48

 Compared to domain IB and IIIB, the other domains seem 

to be rather rigid. Furthermore, Ghuman et al.
15

 noted that FA binding at site FA3 in domain IIIA 

led to the disruption of a salt-bridge between R348-E450, resulting in a stronger H-bond 

interaction between E450 with the backbone of V343/V344 (Figure 1). The relocation of E450 

sidechain also force the displacement of D451, resulting in an interaction with K195. From our 

simulations, we clearly observed an increase in R348-E450 distance in the HOLO and FA(1-7) 

(~1.2nm) models, while the two FA3-free simulations (FA(5) and FA(2,4,5)) display shorter 

distances of ~0.9nm (Table 2). The disruption of R348-E450 when the FA3 site is occupied 

allows E450 to interact with V343, leading to closer contacts between the two (~0.6nm), and an 

improved interaction between K195-D451 (reducing from ~0.8nm in FA3-free models to ~0.69nm 

in FA(1-7) (Table 2).  

3.2 HSA Binding Site Characteristics from MD 

The binding of ligands to the Sudlow sites I (FA 3&4) and II (FA7) have been extensively 

reported in the literature from a structural, biochemical and computational perspective.
12, 15, 16

 Of 

course, other binding sites play a role in ligand binding, although often secondary, and are 

therefore less well studied. For some sites the intricacies of the interactions have not been 

elaborated on, or for others the primary amino acids that bind substrates have not been 

confirmed.
5
 In this section we aim to describe the different binding pockets of HSA in terms of the 

size, shape and interactions, and how they evolve over the course of the simulations. We also 

discuss the effect of FA binding on the characteristics of these sites and the implications this will 

have on more rigorous calculations to estimate binding affinities.  
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Figure 3 The average RMSD and RMSF values associated with Sudlow sites 1 and 2 sites for the APO, 

HOLO and FA(1-7) simulations of HSA. 

 

The Cα RMSDs of residues surrounding both binding pockets for the APO, HALO and FA(1-7) 

have been analysed in Figure 3. RMSDs indicate that the Sudlow site II is much less sensitive to 

the conformation state of the protein. The RMSD of surrounding site I are broadly comparable for 

the APO and FA(1-7) structures. However, removing the FA from the latter (i.e. the HOLO 

structure) leads to a dramatically larger RMSD and RMSF. In contrast, site II shows a smaller 

effect, with a smaller deviation between the different HSA configurations. This suggests site II is 

less sensitive to dynamic effects (i.e. the open, closed or intermediate conformation). 

All of the 7 known fatty acids sites can bind drug-like molecules, albeit most with much lower 

frequency that the Sudlow sites. It is of interest to us to explore the differences between these 

sites in greater detail and how they are affected by random dynamic fluctuation. To better 

characterise each pocket, the distances between each FA and its neighbouring key residues, 

hydrogen bonds, water and total contacts were extracted and reported in Table 3 as well as 

graphically in Figure 4, Figure 5.  

APO
HALO
FA(1-7)
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Figure 4 Distances between the carboxylic carbon of each FA in FA(1-7) and the center atom in functional 

group on a sidechain of key neighbours in an individual pocket (NZ is an amine nitrogen, N is a quanidinium 

nitrogen, and OH is a hydroxyl oxygen). 

 

 

 

The FA1 pocket, located in subdomain IB, is a curved cavity of large size with moderately 

solvent accessibility. Within the cavity, the FA molecules are on average found to maintain ~3 

non-covalent bonds. Distances of ~0.4 nm between FA1 and R117 (before 70ns), R186, and 

Y161 indicate the presence of 2 salt bridges and 1 hydrogen bond, where R186 and Y161 

interact with FA1 consistently (Figure 5 and Table 3). The fluctuating distance after 70ns of R117 

sidechain indicates the high flexibility which enables interactions with residues in subdomain IB as 

mentioned above. FA2 is also a large linear pocket, located between subdomains IA and IIA. It is 
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the 2
nd

 most enclosed of the HSA sites and maintains 1 salt bridge (R257) and 2 H-bonds with 

Y150 and S287 over the course of the FA(1-7) 100 ns simulation (Figure 5). FA3 is a moderately 

sized pocket located in subdomain IIIA. The lowest water contacts of ~2.58 demonstrates the 

most buried site for FA3. However, FA3 can make 2 salt bridges with R348 and R485.  

 

 
Figure 5 (A) Computed volume of fatty acid binding sites 1 to 7 for APO, HOLO, FA(1-7), FA(2,4,5), and 

FA(5) models. (B) Final snapshot of FA alignment in each pocket with key residues for FA(1-7). 

 

FA4 sits in subdomain IIIA, whose site is a moderately sized linear pocket. This site makes up 

Sudlow site II in combination with FA3. FA4 site is rather solvent accessible with the water 

contacts of 6.14 (Table 3). Based on closed distances and computed H-bonds, FA4 can form ~2 

H-bonds with N391 and Y411 and a salt bridge to R410 even though such interactions are 

transient. FA5 is a small linear pocket located in subdomain IIIB. It is however moderately 

accessible with the ~5.84 water contacts. H-bond with Y401 and a salt bridge with K525 are 

observed.  

FA6 is a small pocket in HSA, located in domain IIB. However, it is also the 2
nd

 most solvent 

accessible of the sites. From earlier X-ray and NMR results it was not clear which residues 
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helped to anchor the bound carboxyl group of the bound FA.
5
 Here, FA6 is found to make a salt 

bridge with K351 consistently and a H-bond to S480 to a lesser extent. FA7, located in 

subdomain IIA, is a moderately large pocket and is also known as the Sudlow site II. It is the 

most solvent accessible FA pocket with 2 salt bridges with K199 and R257. Despite the small 

pocket size, and low number of protein-FA interactions, the high degree of water exposure permit 

FA6 and FA7 to easily diffuse out of a pocket resulting in low binding affinity.  

These results are broadly in line with previous NMR reports which suggested that 2,4,5 are the 

most enclosed sites and this helps to promote their high affinity for FA.
5
 The findings also support 

more recent NMR displacement studies which showed that FA bound to the low affinity FA6 and 

FA7 sites were easily displaceable.
7
 Our simulation results also appear to confirm that 

electrostatic interactions (H bonds and salt bridges) are certainly important for anchoring the 

acidic groups within the binding pockets. All sites are found to have at least 2 electrostatic bonds 

(at least one has to be salt bridge and another can be either a H-bond or salt bridge). However, 

the number of electrostatic interactions or H-bonds does not correlate well with the FA binding 

affinities. Indeed, more detailed calculations of the  strength of the electrostatic interactions with 

the program APBS
49

 appears to confirm this. We find the strength of the electrostatic interactions 

have the following order FA7 > FA6 = FA3 > FA5 > FA2 = FA4 > FA1.  

 FA sites 2,4, and 5 are known to be the most high affinity FA sites, yet site 1, 2, and 3 have 

the greatest number of H-bonds on average, sites 4 6 and 7 are the most solvent accessible, and 

sites 1, 2 are the largest in size. Furthermore, sites FA1, FA2 and FA3 show the greatest degree 

of volume fluctuation between the different protein configurations (APO, HALO, FA(1-7). However, 

we can see that FAs bound to FA1, FA6, and FA7 bind in a more distorted, non-linear fashion 

(Table 3 & Figure 4B), indicting greater internal strain. In addition, these ligands show greater 

fluctuation, as given by the standard deviation, suggesting there are less effectively bound. FA3 

lies in an intermediate state, presumably adversely affected by the bonding of FA to the adjacent 

site 4. It would appear that the selectivity of the HSA pockets towards much more diverse 

exogenous drug molecules will be much more complex, and  not simply driven by the number of 

H-bonds, or VDW contacts or even the accessibility (i.e. difficult to predict).  

The effect of concomitant ligand binding is important over the course of our simulations (Table 

3). It is found that the FA2 pocket of the FA (1-7) model shows much greater fluctuation than in 

the partially occupied FA(2,4,5) model. In contrast, for FA5, ligand binding to this pocket 

increases the distances between two the ring centers of the π-staked residues Y138 and Y161 

significantly (0.37nm in Apo to ~0.9nm in FA(5) (Table 2), increasing the volume of the pocket, 
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and presumably also having an impact of the structural flexibility of the protein due to its location 

at the hinge point for the inter-domain movement of III and I. 

3.3 Cheminformatics Analysis of HSA Ligand Binding Sites 

Thus far, the focus of this study has been on assessing the unique characteristics of the 

seven different HSA binding sites using atomic information derived from the MD simulation data. 

A limitation of the univariate discussion above is that it neglects the correlation between the 

multiple different parameters that were extracted. To rectify this limitation we have assessed (a) 

the structural features and (b) the pocket characteristics derived from each simulation using PCA. 

We also used an orthogonal, ligand based approach to assess the features of the different sites.  

3.3.1 PCA Analysis of the MD Structural Information 

A PCA model was generated using the 8 distinct simulations performed and the 18 common 

simulation derived descriptors (Table 1-Table 3).  The model fitted 3 components which describe 

87% of the total variation in the dataset. The information content of each component corresponds 

to 42%, 36% and 13% respectively. In addition to the correlation between different models, this 

analysis also offers us a way to assess the impact the different starting configurations have on an 

individual simulation. The results for the two key components are presented in as a loadings bi-

plot Figure 6A.  

 

 
Figure 6 Loadings bi-plot for the PCA models describing the differences between the different protein 

configurations (right) and the differences between the binding pockets (left) 
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The clustering of the simulations in different areas of the plots is indicative of their relative 

similarity or dissimilarity. On the first component we see that the APO and FA(1-7) simulations 

are separated. Both replicates are closely clustered together indicating the two simulations differ 

only to a limited degree compared to the difference between the different simulations. The key 

descriptors that give rise to the separation are found at the extreme of the X-axis. For example, 

the radius of gyration, area, total hydrogen bonds etc are all greater in the FA(1-7) model, which 

are indicative of the open conformation. In contrast, the HOLO, FA(5) and FA(2,4,5) all occupy a 

position intermediate between the fatted and de-fatted states as is expected. Component 2, as 

described by the X-axis, describes the physical differences between the FA(1-7) and APO from 

the FA(5), FA(2,4,5) and HOLO structures. It should be noted that the HOLO structure shows the 

greatest deviation in terms of the distance between replicates. This difference reflects the 

observations in Figure 2, where there is a dramatic change in RMSD due to domain movements 

between IIB and IB caused by the change of a salt bridge between R117 with either E119 or 

E520 located nearby. Duplicate simulations were not undertaken for FA(5) and FA(2,4,5) were 

not undertaken, however, but we appear to observe the opposite behaviour with significantly 

lower RMSDs than either of the FA(1-7) simulations. It is also apparent from Figure 6A that the 

change in fatty acid binding has a dramatic change on the flexibility of the structure, key 

distances and the pocket volumes. This has dramatic implications for simulations of HSA since it 

is known that the effect of fatty acid can change the affinity of exogenous ligands for HSA. 
50, 51

 

3.3.2 PCA Analysis of the MD based Pocket data  

We next assessed the similarities and differences between the different pockets using an 

analysis of the FA site data extracted from the MD simulations. The FA site PCA model was 

generated using information from the 7 distinct simulations performed for which 12 descriptors 

were extracted. The model fitted 3 components which describe 94% of the total variation in the 

dataset. The information content of each component corresponds to 67%, 19% and 8% 

respectively.  

The multivariate analysis of the FA binding pockets presented in Figure 6B shows the 

similarities between the pockets in terms of the volume, H-bond interactions, total interactions and 

water contacts over the course of the 8 different simulations performed. While this analysis does 

not take into account the specific 3D volume, or the precise nature of the H-bonds (i.e. salt 

bridge), they provide at least a crude estimate or their overall properties. Component 1 is 

dominated by the volume and H-bond, and appears to be a descriptor for the overall size of the 

pockets (i.e. the total no. of H-bonds correlates with the volume). In contrast, the total VDW 
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contacts and the H2O contacts dominate the second component. As discussed above FA2 

displays the largest volume and FA5 and FA6 the smallest. Sites FA1 and FA7 make the most 

VDW contacts with sites FA3 and FA5 being the least. The solvent exposure descriptor is 

encompassed in both Components 1 and 2, lying in the bottom right quadrant. Thus Sites FA6 

and FA7 have the greatest exposure and FA2 and FA3 the least. Considering Figure 6B 

holistically, sites FA5 and FA6 cluster together roughly, as do sites FA1, FA4 and FA7, while 

sites FA3 and FA2 seem more unique.  

3.3.3 PCA Analysis of the X-ray based ligand-pocket data  

An orthogonal approach to exploring the HSA binding pockets is to consider the ligand 

properties of those molecules that are confirmed binders. Thus, a second PCA model was 

generated using 57 different crystallographic determined ligands of HSA (at different sites) for 

which 14 physico-chemical descriptors were calculated, for contrasting with the orthogonal MD 

based approach described above. The model fitted 4 components which describe 81% of the total 

variation in the dataset. The information content of each component corresponds to 37%, 20%, 

13% and 11% respectively. Again, we limit our discussion to the two most significant 

components. 

 

 
Figure 7 PCA scores (top) and loadings plots (bottom) generated from the key physicochemical properties 

of substrates known to bind at each binding site. RTB=rotatable bonds, PSA=polar surface area, HBA=H-bond 

acceptor, HBD=H-bond donor, AR Rings=aromatic rings, AL rings=aliphatic rings, while Acid and Base or 

ionisation state indicator variables. 
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Of the 57 ligands identified as binding to HSA,
28 43 are acidic, 10 are neutral and 3 are 

zwitterionic. HEME, a forth known zwitterionic molecule was not included in the study due to the 

inability to calculate a number of descriptors due to the presence of the Fe
3+

 metal cofactor. The 

zwitterions Lysophosphatidylethanolamine and dansyl-L-arginine, are found to bind to site 1 while 

the latter is also found to bind to site 7. The 6 unique neutral molecules are found to occupy sites 

FA1, FA2, FA3, FA6 and FA7. No basic molecules were identified from the crystallographic 

studies. The multivariate analysis of the HSA ligands broken down by binding site is presented in 

Figure 7. Firstly, Component 1 primarily encode for H-bonding characteristics, with larger 

molecules capable of more H-bonds or salt bridge interactions (i.e. Acid class indicator) being 

found to the left of the x-axis. Component 2 of the PCA plot is dominated by descriptors that 

encode hydrophobicity, with polar molecule found at the bottom of the Y axis and hydrophobicity 

(i.e. JClogP). Molecular size descriptors contribute to both component 1 and 2, with large, 

hydrophobic molecule capable of multiple H-bonds being found in the top left quadrant. Three 

non-polar FA molecules (C14, C15 and C16), which contain 1 H-bonding substituent were added 

as references, and these are located in the upper right hand quadrant. 

In contrast to the model presented in Figure 6, we do not see a dramatic separation of the 

ligands that bind to HSA based on the pockets that they are found to occupy (Figure 7). Indeed, 

analysis of the ligands in greater detail showed that it was not possible to separate them based 

on bulk properties, suggesting that binding to HSA must involve a large degree of pocket 

specificity. Interestingly, from Figure 7 it can be seen that drug-like molecules that bind to FA1 

often do so in combination with FA7 or FA3. This is consistent with the PCA model results based 

on the known ligands as these two sites have very similar bulk properties, which leads them to 

cluster together. While FA3 does not cluster with FA1 on both components, the pockets are very 

similar on Component 1 which indicates they have similar H-bonding and volume characteristics. 

4.0 Conclusions 

Ligand binding to HSA is a remarkably exciting, but very difficult task due to rationalize
5
, let 

alone predict due to (a) the diverse conformational states the protein can occupy (open, 

intermediate and closed), (b) the seven distinct binding pockets known for endogenous and 

exogenous ligands and (c) the interaction effect other ligands binding at other pockets can have 

on the binding affinity (d) good configurational sampling of protein-ligand space via replicate runs 

and longer sampling times
52-54

. While bulk ligand molecule properties can describe binding to a 

moderate degree of accuracy from QSAR analyses,
10, 18, 19

 it is clear that greater understanding of 
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the specificity of binding is needed before we can have confidence in predicting either the likely 

binding pocket or overall affinity from molecular dynamics.  

In this work we have shown that different starting configurations of HSA will have implications 

for simulation results obtained. Indeed, this is consistent with experimental data since it is known 

that the effect of fatty acid can change the overall structure or affect the affinity of ligands for 

HSA. Additionally, the overall size, shape and dynamics of the protein is expected to have a 

dramatic effect on the binding pockets within HSA, and this will affect the affinity fatty acids and 

other drug molecules have for them. Our results confirm that differences in fatty acid binding can 

have a dramatic effect on the flexibility of the structure and the pocket volumes. We see that over 

the course of a 100ns simulation, varying the amount of FA bound to the protein allows the open 

form of the protein to adopt the experimentally expected intermediate conformational state, 

between the open and closed. Interestingly, FA sites 2, 4 and 5 are known to be the most high 

affinity FA sites, yet site 1,2 and 3 have the greatest number of H-bonds on average, sites 4 6 

and 7 are the most solvent accessible and sites 1,2 are the largest in size. However, sites FA1, 

FA2 and FA3 show the greatest degree of volume fluctuation between the different simulations. 

Analysis of the linearity of the pockets reveals that FA2, FA4 and FA5 can bind long chained fatty 

acids with the lowest strain and this would help to explain their higher affinity status.  

Our comparison of the properties of the HSA pockets using MD parameters or physic-chemical 

properties of known pocket ligands provides interesting results. In terms of their gross properties, 

sites FA5 and FA6 cluster together, as do sites FA1, FA4 and FA7, while sites FA3 and FA2 

appear more unique. In contrast, a ligand based analysis of bound drug-like molecules shows 

that we do not see a dramatic separation of the ligands according to physiochemical properties 

and the pockets that they occupy. This suggests that binding to HSA must involve a large degree 

of specificity and is not heavily influenced by the bulk properties of its ligands. It therefore 

appears that the remarkable selectivity of the HSA pockets towards exogenous drug molecules is 

more complex, and is not driven as a simple function of the number of H-bonds, VDW contacts, 

pocket linearity, or even solvent accessibility. 
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PART 2: Elucidating the Origin of the Esterase Activity of HSA using QM/MM Calculations. 

ABSTRACT 
Human serum albumin (HSA) is a critical plasma protein found, accounting for ~60% of the 

total protein content in blood. Remarkably, this transport protein is also found to displays esterase 

catalytic activity. In this study we apply theoretical studies to elucidate the origin of the esterase-

like activity arising from Sudlow Site I. Using MD and QM/MM calculations we investigate which 

active site residues are involved in the reaction, and the precise mechanistic sequence of events. 

Our results suggest Lys199, His242, Arg257 give rise to the esterase activity and that the most 

catalytically efficient active site configuration requires that both Lys199 and Aspirin are in their 

neutral forms. The abundance of HSA in the body suggest the protein might be a suitable target 

for the computational guided design of acetyl based pro-drugs of acidic molecule that often 

displayed limited oral exposure due to their unmasked ionizable substituent.  

Introduction 

Human serum albumin (HSA) is an extremely important transport protein in blood plasma, 

accounting for approximately 60% of the total protein content overall. HSA is a monomeric protein 

which consists of 585 amino acids with molecular mass of 66.5 KDa.
3
 There are three structural 

domains, each domain can be divided into 2 subdomains, termed IA, IB, IIA, IIB, IIIA and IIIB 

(Figure 1). HSA binds a range of endogenous and exogenous substrates, including fatty acids
11

 

and molecules such as Warfarin
16

 and aceytl-salicylic acid (Aspirin).
15

 Long chained fatty acid 

molecules can bind to 7 sites distributed across the protein
6, 29

 while drug-like molecules are 

typically found at 1 of 2 sites, termed the Sudlow sites I and II.
12

 Site I is located within 

subdomain IIA while Site II is located within subdomain IIIA.
12, 15

  

The primary function of HSA is to transport endogenous compounds such as fatty acids and 

steroids throughout the body. However, it also display remarkable ability to deacylate Aspirin to 

its active metabolite salicylic acid.
55, 56

 Crystallographic studies by Yang et al.
57

 have shed light on 

the origin of the esterase activity arising from Site I. The structural coordinates reveal that Lys199 

is in an acylated state with Aspirin bound nearby, suggesting adjacent residues must facilitate the 

generation of an amine nucleophile and help to stabilize any excited state species along the 

reaction coordinate. Moreover, it opened up the possibility that HSA could be used to activate 

specifically designed prodrugs
57

. This strategy would be attractive from a safety point of view, 

given the abundance of HSA in the body means that drug-drug interactions are not likely to 

arise.
12,13

  Furthermore, the rational design of prodrugs would also offer drug discovery scientist a 

useful way of overcoming exposure limitations associated with acidic compounds.
58-60
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Figure 8 Illustration of the HSA protein structure (PDB 2I2Z). Structural data confirms Sudlow Site I plays a 

role in the deacylation of Aspirin based on X-ray crystallography data (PDB ID 2I2Z).  

 

The esterase activity possessed by HSA is very similar to that catalyzed by the acetylcholine 

esterase (Ache) family of proteins.
61

 Ache contains the so called catalytic triad consisting of a 

serine nucleophile, a histidine base and an acidic group such as glutamate that can stabilize the 

histidine carbocation on generating the negatively charged serine nucleophile required for C-O 

bond breaking (Figure 2A).
62

 The serine nucleophile can attack the carbonyl of the substrate 

forming a negatively charged tetrahedral intermediate which is stabilized by 2 hydrogen bonds 

from adjacent glycine residues (the rate determining step). Decomposition of this intermediate 

leads to the breaking of the substrate C-O bond, through the loss of the hydroxide leaving group. 

This results in the formation of the acylated serine residue and the deprotonation of histidine to 

give the corresponding hydroxyl moiety (Figure 3). Analysis of Site I HSA reveals that if the 

imidazole of His242 is rotated 180
o
 then a catalytic triad is observed,

62
 consisting of a lysine 

nucleophile
63

, a histidine base and a carbonyl group from the protein backbone capable of 

stabilizing a histidine carbocation (Figure 2B). Site I also contains a number of basic residues and 

bound water molecules, however these are not in the same optimal position as the oxyanion hole 

found in Ache. Thus, while this non-standard catalytic triad
62

 could be the origin of catalytic 

activity, is not totally clear what is the sequence of events during the Aspirin deacylation reaction, 

and the range of residues involved.  
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Figure 9 Illustration of similarities and differences between Acetylcholine Esterase (2C4H)64 vs HSA (2I2Z)57. 

The latter corresponds to the classic catalytic triad configuration.62  
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Figure 10 Catalytic reaction invovled in the ester bond breakage by AChE. 62, 64  

 

Molecular simulations have been employed to study a wide variety of phenomena associated 

HSA.
28

 The methods employed have included quantitative structure activity relationships 

(QSAR)
10, 18, 19

, molecular dynamics (MD)
22-24, 27, 65, 66

 and ligand docking.
22, 25, 26

 For example, 

Diaz et al.
65

 used MD simulations to study the protonation state of Lys195 and Lys199 ins Site I 

and its implications for ligand binding and selectivity. Castellanos et al.
27

 investigated how specific 

disulphide bond are critical for the structural flexibility of the protein. Fujiwara et al.
24

 who used 

MD simulations to study the effect fatty acid binding has on warfarin affinity for HSA. Also worth 

noting is the work of Alvarez et al
67

 used MD to assess the binding free energy of Aspirin to HSA. 

Very recently, Etienne et al.
68

 used quantum mechanical/molecular mechanical (QM/MM) methods 

to study the absorption spectra of the protein with good accuracy. QM/MM is a hybrid technique 

that allows the reactivity of large biomolecules to be simulated.
69, 70

 In this approach the substrate 

27 

 



and catalytic residues located in the protein active site are treated using QM while the remainder 

is described using as MM forcefield. In this way bond breaking and formation can be simulated in 

the presence of the extended protein framework and solvent. Aspirin works by selectively 

acetylates the hydroxyl group of Ser530
71

 on cyclooxygenase (COX) and this has been studied 

from a QM/MM perspective.
72

 

 

 
Figure 11. Three possible HSA reaction mechanisms leading to the deacylation of Acetyl salicylic acid. Each 

of the three models simulations have active sites with different protonation configurations.  

 

In this work we report the use of MD and QM/MM methods to study the deacylation 

mechanism of Asprin at the Site I of HSA. As noted by Diaz et al.
65

, multiple protonation 

configuration are possible within the active site. We therefore simulate 3 different configurations 

where Lys199 is either protonated (Lys
+
) or deprotonated (Lys

0
) and Asprin is either protonated 

(Sub
0
) or deprotonated (Sub

-
). These are termed the Sub

-
-Lys

+
, Sub

-
-Lys

0 
and Sub

0
-Lys

0 
models. 

We assess which HSA configuration is more likely to contribute to the esterase activity by 

performing MD simulations with Aspirin bound to see which leads to the greatest number of 

reactive confirmations over a 10 ns timeframe. We subsequently assess the reactivity of the three 

different configurations using hybrid QM/MM methods to compute the complete reaction 

coordinate (Figure 4). The key goal of this work is to further our understanding of HSA reactivity 
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and to try assess whether this abundant protein could conceivably be used in a safe,
73

 effective 

prodrug activation strategy.
74

  

Computational Methods 

HSA models were constructed from PDB structure 2I2Z
57

 which was downloaded from the 

RCSB databank.
30

 The acetyl salicylic acid substrate was generated by removing the acetyl group 

from Lys199. Fatty acid molecules bound to HSA were retained. The imidazole ring of His242 

was rotated 180
o
 such that it made strong interactions with both Lys199 and the backbone 

carbonyl of Leu238. The N- and C-terminal ends of each model were capped with acetyl (ACE) 

and methyl amino (NME) groups, respectively, and the overall quality confirmed using 

PROCHECK v3.5.4.
1
 The protonation state of ionisable residues were determined using 

PROPKa
31

 and a visual analysis of the environment surrounding each ionisable residue. 

Residues were treated as HID unless otherwise stated:  HIE (39, 288, 40) and HIP (3, 67, 105, 

128, 146, 247, 338, 367, 510). Finally, the protonation state of the substrate and Lys199 were 

manually altered to create the 3 separate models: Sub
-
-Lys

+
, Sub

0
-Lys

0
 and Sub

-
-Lys

0
 (Figure 4). 

Sub
-
-Lys

+
 differs from Sub

0
-Lys

0 
only in the position of one proton while the Sub

-
-Lys

0
 system has 

1 less proton.
 
Each model was then placed in a 12 Å rectangular box containing water. The 

system was neutralized with counter ions (0.15 mM of NaCl) by randomly replacing water 

molecules. 

2.1 MD Simulations 

Simulations were carried out using GROMACS v4
32

 with the AMBER99SB forcefield.
33

 Ligand 

topology files were generated using ACPYPE script
6
 and the GAFF force field

34
. The TIP3P water 

model was employed. Ligand electrostatic charges were generated using HF/6-31G(d) optimized 

structures (Gaussian 09 Revision d01)
75

 and the RESP protocol of Ambertool1.5.
36

 Long range 

electrostatic interactions were calculated using the Particle Mesh Ewald (PME) method with a 

0.12 nm cut-off
37

 while van der Waals interactions utilized a 1 nm cut-off. Simulations were 

performed at constant temperature, pressure and number of particles (NPT). The temperature of 

the protein and solvent were each coupled separately. The Berendsen thermostat
38

 was applied 

at 300 K with a coupling constant  of τ = 0.1 ps.
39

 Coordinates and velocities were saved every 2 

ps. The LINCS algorithm was used to restrain bond lengths and a 2 fs timestep was used for 

integration.
40

 Two hundred ps of protein backbone-restrained dynamics were employed initially, 

followed by 10 ns production runs. The total energy, RMSD, RMSF and the key distances 

associated with hydrogen transfer (His242-Lys199, ND---HZ) and nucleophilic attack (Lys199-

substrate, NZ---C) were extracted for further analysis. 

29 

 



2.2 QM/MM Calculations 

The energy minimized HSA structures were used as input for the ONIOM QM/MM calculations. 

All but two water molecule bound within the Site I cavity were excluded from the charge neutral 

system for reasons of computational efficiency. The QM region consisted of acetyl-salicylic acid, 

the side chains of Lys199, His242, Arg257 and the two water molecules bound within the cavity. 

Arg257 was included as it adopts a position close to where the oxyanion hole of AChE is found.
62

 

All MM atoms were treated flexibly except for residues >12 Å from the active site and link atoms.  

All ONIOM calculations were performed using the electrical embedding scheme as 

implemented in Gaussian 09 (d01).
75

 All stationary points were optimized at the M062X/6-

31G+(d,p) level of theory and confirmed by vibrational frequency analysis. Minima showed no 

negative frequencies and transition states displayed a single high intensity negative frequency. 

∆G values were estimated by adding the vibrational and thermal corrections to the ∆H. 

3.0 Results and Discussion 

The preferred protein-ligand active site configuration required for reactivity
57

 was initially 

evaluated using the results from the MD simulations. This was done by monitoring the two key 

interactions that define the reaction coordinate (Figure 5). We evaluate the H-bond distance 

between Lys199 and HID242 (NH---:N) and the distance between Lys199 NZ atom and the 

substrate carbonyl carbon atom (HN:---C=O). The active site model that maintains these 

distances in an optimal configuration is at a distinct advantage in terms of the probability of the 

reaction occurring (Figure 6).  

Subsequently, we assess the reactivity of the 3 different protein-ligand models towards the de-

acylation of the substrate using the hybrid QM/MM scheme previously described (Figure 8 & 

Figure 7). We then use the computed rate determining step in conjunction with the data derived 

from the MD simulations to determine whether one particular protein-ligand configuration plays a 

dominant role in the catalytic process. 

3.1 MD Results 

Minimal variation in the total energy found over the course of the three simulation indicates 

they had converged after the 200 ps of pre-equilibration.  In addition, the change in Cα RMSDs 

after the 10 ns simulation is consistent with other reports on HSA (Figure S2) suggesting the 

protein is dynamically well behaved.
23

 

For a reaction to occur within HSA, the two key coordinates illustrated in Figure 2 (proton 

transfer and nucleophilic attack) must be in a desirable configuration to enable reaction. Thus, 
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along with mean values, we assessed the frequency with which each model systems maintained 

a H-transfer coordinate (NH---:NH)  distance < 0.25 nm, and the nucleophilic attack coordinate 

(HN:---C=O) maintains a distance < 0.40 nm (Figure 5). These values were chosen as within 

these cut-offs subtle translation of the flexible lysine side chain or the unbound ligand is sufficient 

to result in optimal starting geometry (i.e. NH---:N ~ 0.20 and HN:---C=O ~ 0.30 nm).  We found 

that the NH---:N distances were 0.44±0.08, 0.56±0.18, and 0.59±0.12 nm for the Sub
-
-Lys

+
, Sub

0
-

Lys
0
 and Sub

-
-Lys

0
 simulations, well beyond the ideal values. We also found that the HN:---C=O 

was not in a range that would facilitate reaction easily, with average distances of 0.85±0.14, 

0.55±0.10, and 1.04±0.12 nm respectively for the Sub
-
-Lys

+
, Sub

0
-Lys

0
, and Sub

-
-Lys

0 
models. 

The percentage of cases where the NH---:NH distances were within an ideal range, were 2.2, 8.5, 

and 2.5%. The corresponding values for the HN:---C=O distance were 0.0% 6.6% and 0.0%, 

respectively. Furthermore, the angle for proton transfer N-H-N ~180
o
 and nucleophilic attack N:-

C=O ~120
o
 are also found to be optimal for Sub

0
-Lys

0 
. 

 

 
Figure 12. Distributions associated with the nucleophilic attack (left) and proton transfer distances (right) for 

the Sub--Lys+ (top), Sub0-Lys0 (middle) and Sub--Lys0 models (bottom) over the course of the MD simulations. 

 

A visual analysis of the simulations results revealed that the substrate showed marked 

structural freedom to rotate and translate within the rather large Site I pocket.
57

 The substrate 

was found to  rotate and translate within the pocket, maintaining optimal interaction between its 

acidic substituent and at least 1 adjacent basic residues (Site I contains; Lys195, Lys199, Arg218, 

Arg222 & Arg257). The dramatic instability of the catalytic triad is primarily due to the rather weak 

interaction between the Lys-His triad units being easily broken during the simulation, in 

preference to salt-bridge interactions, particularly between the acidic group of the substrate which 
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can easily rotate and translate to interact with Lys199. Both the HN:---C=O and HN:---N distance 

must be in the necessary configuration consistent with other forms of catalytic triads for HSA to 

have activity. The frequency with which both of these interactions are formed will be indicative of 

the probability of reaction and from (Figure 6) it is clear that the Sub
0
-Lys

0 
model has a distinct 

advantage over both the Sub
-
-Lys

+
 and

 
Sub

-
-Lys

0 
models. The fact that neither model is in an 

ideal configuration all of the time is consistent with the known catalytic activity of HSA, which is a 

much weaker metabolizer of Aspirin than its principle activator human butyrylcholinesterase 

(BChE).
76

 

 

 
Figure 13. Plot of the distance corresponding to the nucleophilic attack (Y-axis) versus proton transfer 

distance (X-axis) for the Sub--Lys+, Sub0-Lys0 and Sub--Lys0  model for each time point of the MD simulation. 

 

These results would suggest that Lys199 and the substrate may be in neutral form prior to the 

reaction commencing. This is consistent with the fact that the acetoxyl group of Aspirin must 

position itself in such a way that it faces toward Lys199.
57

 Furthermore, the finding that Lys199 in 

the neutral state is preferred is consistent with earlier studies by Diaz et al.
65

 Their MD 

investigations suggested the presence of water bridges within Site I can potentially promote a 

Lys195 - Lys199 proton-transfer process. This would add weight to the proposal that the 

catalytically active configuration involves Lys199 in the neutral form As for the protonation state of 

the substrate, it is clear that the neutral form results in a catalytically more preferable active site 

configuration. This must be balanced with the fact that its acidic pKa favors the ionized form, 

although the effect of the surrounding environment will certainly modify this.
77, 78

 Furthermore, it 

must it must be noted that nucleophilic attack of an electron rich acidic molecule will be less 

favorable than the attack of the neutral form. 
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3.2 QM/MM Results 

The esterase activity of HSA was subsequently assessed according to the proposal presented 

in Figure 4. All structures were fully optimized at the M062X/6-31+G** and transition states 

between stationary points were then determined. It was quickly identified that the pKa miss-match 

between Lysine (basic pKa ~ 10) and Histidine (basic pKa ~7) were too large to allow for full 

proton transfer between. Analysis of the resulting Mulliken charge distribution shows that His242 

plays a role in stabilizing the excited state species on the reaction coordinate. Thus, the Sub
-
-

Lys
+ 

configuration was found to be unreactive. His242 is unable to accept a proton from Lys199 

and Lys199 is therefore not sufficiently nucleophilic to attack the Aspirin carbonyl group to form 

the tetrahedral intermediate. The Sub
-
-Lys

+ 
reactant is however capable of interconverting into the 

Sub
0
-Lys

0 
reactant (3.8 kcal/mol more exothermic) with a barrier of just 6.0 kcal/mol (Figure 7 & 

Table 1). The proton on Lys199 can be transferred to carboxylate group of Aspirin by a proton 

shuttle mechanism involving an adjacent water molecule. The distance between the proton being 

transferred from Lys199 to water drops from 0.18 to 0.12 nm in the transition state, while the 

distance between the water proton and the Aspirin carboxyl group goes from 0.17 to 0.12 nm 

(Figure 8).  

 
Figure 14. Predicted QM/MM Reaction Coordinate for HSA deacylation of Aspirin acid to salicylic acid. 

 

Nucleophilic attack of the Acetyloxy group of Aspirin can only occur within the Sub
0
-Lys

0 
and

 

Sub
-
-Lys

+ 
models. In the former case, nucleophilic attack results in a barrier of 16 kcal/mol while 

in the former, a barrier of 19.9 kcal/mol is observed. This is the rate determining step for the 

Sub
0
-Lys

0  
model.
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His242 given since the NH2 moiety is already reasonably nucleophilic itself. However, we do 

observe charge transfer between the Lys199 and His242 with the net charge on the histidine 

residue increasing by +0.19 and +0.13, respectively on the Sub
0
-Lys

0 
and

 
Sub

-
-Lys

+ 
models, 

respectively.  The HN:---C=O distances observed in the transition state are 0.19 nm to 0.21 nm 

while the corresponding NH---:N distance decreases slightly from 0.19 nm to 0.20 nm, for both 

models, respectively (Figure 8 and Figure S1). This indicates the former system provides greater 

charge stabilization.  

The tetrahedral intermediate is found to be only weakly stable, with a barrier to reverse 

reaction of < 2 kcal/mol for both models. QM/MM studies on the deacylation mechanism of 

Aspirin by Ser350 in COX were unable to locate a stable tetrahedral intermediate.
72

 We observed 

this artifact using a smaller 6-31G* basis set, as used in that study. However, calculations 

performed with additional diffuse functions, as is the case for M062X/6-31+G** used here, allow 

for more effective delocalization of the negative charge in the tetrahedral intermediate.
72

  Lys199 

is found in the protonated form, which is again expected given its higher basic pKa compared to 

His242. The HN:---C=O distances in the intermediates is 0.16 and 0.17 nm for the Sub
0
-Lys

0 
and

 

Sub
-
-Lys

+ 
models, and NH---:N distance is 0.17 and 0.19 nm, respectively. Analysis of the charge 

distributions shows the charge on Arg257 changes by -0.10 for the former model, as opposed to 

+0.04 for the former. This indicates the Sub
0
-Lys

0 is 
more capable of stabilizing the zwitterionic 

intermediate.  

 The barrier to formation of the acylated Lys199 residue is found to the rate determining step 

in the Sub
-
-Lys

+ 
model (27.2 kcal/mol). The energy of the Sub

0
-Lys

0 
is just 15.3 kcal/mol, slightly 

lower than that of the first step. The transition state associated with this step involves the 

breaking of the C-O acetyloxy bond of Aspirin and the protonation of the resulting hydroxide 

group. The huge discrepancy between the two different models is that in the Sub
-
-Lys

+
, as the C-

O bond breaks, the resulting hydroxyl anion is destabilized by the already ionized carboxyl group 

present in the molecule. In contrast, the protonated carboxyl group in the Sub
0
-Lys

0 
is capable of

 

stabilizing the resulting hydroxide anion as it forms though an intermolecular H-bond (Figure 8). 

The net charge on the substrate is -0.76 for the Sub
0
-Lys

0
, while for Sub

-
-Lys

+
 the value is -1.83, 

respectively.  
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Figure 15. Graphical illustration of the QM/MM optimized minima and transition states for mechanism 2. 

 

The corresponding C-O distance in the transition states are found to be 0.21 and 0.22, while 

the O-H transfer distances are 0.20 and 0.18, for both models respectively. The proton being 

transferred comes from Lys199 since the resulting amide is non-basic in character, and involves 
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a distorted 4-membered arrangement. The result of traversing the final transition state is an 

energetically favorable product for both models. As the bond breaks, acet yl-salicylic translates 

0.1 nm, which completes the proton transfer and leads to the rotation of the carbonyl to allow for 

an internal H-bond. The Sub
0
-Lys

0 
is found to be exothermic by -11.3 compared with -30.6 

kcal/mol for Sub
-
-Lys

+
. This is a reflection of the ability of the negatively charged salicylic acid 

molecule to form a strong salt-bridge interaction with Arg257 (Figure S1). This is completely 

consistent with the ligand selectivity displayed by HSA.
15

 

The main finding from the QM/MM calculations is that Site I in the Sub
0
-Lys

0  
configuration 

results in a dramatically lower barrier to reaction. This is due to electronic destabilization of the 

resulting transition states associated with both nucleophilic attack and the departure of the 

hydroxide leaving group. The rate determining barrier of 16.0 kcal/mol is correctly predicted to be 

higher in energy than  that found in AChE  (12.4 kcal/mol)
79

, a protein specifically evolved for 

esterase activity. Additionally, the MD results show that not all conformations will be catalytically 

active which, taken together, is consistent with its lower esterase activity (~10
-3
 s

-1
) compared to 

AChE (~10
4
 s

-1
).

61
 

Conclusions 

MD and QM/MM simulations were employed to shed greater light on the esterase activity of 

HSA derived from the Site 1 pocket. We assessed the 3 different protonation states that could 

contribute to the catalytic activity. We found that a model consisting of Lys199 and the substrate 

in their neutral forms (a) resulted in active site configurations more capable of undergoing 

reaction and (b) led to dramatically lower rate determining barriers for the deacylation of Aspirin. 

The computed rate determining energy barrier of 16.0 kcal/mol is higher than that of AChE (12.4 

kcal/mol), a protein evolved specifically for its esterase activity.
79

 We found that His242 did act to 

stabilize the reaction however it could not function as a base during the reaction due to the 

mismatch in pKa with Lys199. 

Structural studies Yang et al. led to the suggestion that molecules could be specifically 

designed for activation at HSA (i.e. diflunisal derivatives).
57

 This proposal could be particularly 

useful to overcome exposure limitations associated with acidic compounds.
58-60

. This idea could 

be extend further with computationally driven methods to identify of design molecules to be 

activated by the protein
57, 74

. Employing HSA in this strategy would be attractive from a safety 

point of view given the abundance of the protein in the body would mean that drug-drug 

interactions were less likely to arise as they do for other metabolic pathways.
73, 80

 Furthermore, 
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Site II display different ligand selectivity than Site I,
81

 and it too displays esterase activity (p-nitro-

phenyl-acetate via Arg410 and Tyr411)
82, 83

, offering further opportunity for design.  
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2014, submitted. 
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8. Phuangsawai, O.; Hannongbua, S.; Gleeson, M. P.* Elucidating the Origin of the 

Esterase Activity of HSA using QM/MM Calculations. Biochemistry, 2014, submitted. 
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Abstract: The percentage of failures in late pharmaceutical development due to toxicity has increased dramatically over the last decade 
or so, resulting in increased demand for new methods to rapidly and reliably predict the toxicity of compounds. In this review we discuss 
the challenges involved in both the building of in silico models on toxicology endpoints and their practical use in decision making. In 
particular, we will reflect upon the predictive strength of a number of different in silico models for a range of different endpoints, differ-
ent approaches used to generate the models or rules, and limitations of the methods and the data used in model generation. Given that 
there exists no unique definition of a ‘good’ model, we will furthermore highlight the need to balance model complexity/interpretability 
with predictability, particularly in light of OECD/REACH guidelines. Special emphasis is put on the data and methods used to generate 
the in silico toxicology models, and their strengths and weaknesses are discussed. Switching to the applied side, we next review a number 
of toxicity endpoints, discussing the methods available to predict them and their general level of predictability (which very much depends 
on the endpoint considered). We conclude that, while in silico toxicology is a valuable tool to drug discovery scientists, much still needs 
to be done to, firstly, understand more completely the biological mechanisms for toxicity and, secondly, to generate more rapid in vitro
models to screen compounds. With this biological understanding, and additional data available, our ability to generate more predictive in 
silico models should significantly improve in the future. 

Keywords: Toxicity, QSAR, in silico modeling, descriptors. 

1.0. INTRODUCTION 
 The use of chemicals which display significant levels of toxic-
ity is difficult to countenance in either the pharmaceutical or con-
sumer products industry for ethical reasons, and also due to legal 
responsibility and commitments of the manufacturer to ensure 
products are safe. Significant effort is therefore spent assessing the 
toxic liabilities of large numbers of chemicals for a variety of dif-
ferent endpoints. In the consumer products industry and in late drug 
development, in vivo and in vitro methods are commonly used to 
determine the potential for genotoxicity, carcinogenicity or skin 
sensitization, for example, while in early drug discovery toxicity 
endpoints associated with inhibition of the human ether-a-go-go-
related gene ion-channel (hERG) or cytochrome P450 (abbreviated 
P450 henceforth), as well as metabolite formation assessment, are 
more prevalent.  
 The percentage of failures in late pharmaceutical development 
due to toxicity has increased dramatically over the last decade. 
From reports by Kola et al. [1] it was revealed that the number of 
failures due to absorption, distribution, metabolism and excretion 
(ADME) problems were 40% in 1991 while those due to combined 
safety/toxicity issues were approximately 20%. However, following 
significant investments in in vivo, in vitro and in silico ADME in-
frastructure [1-3], the proportion failures due to ADME in 2000 
dropped to around 10%, mainly due to better ADME screening at 
early stages during last decade. Failures due to safety/toxicity rea-
sons however, increased to around 30% [1]. This noticeable in-
crease might be a reflection of the strengthened regulatory oversight 
in late development, or a reflection of the lack of investment in 
toxicity based testing in early drug discovery, at least relative to 
ADME. Whatever the precise cause, it is undeniable that there is an 
increased emphasis in early drug discovery to minimize toxicity 
failures, in particular in later, more expensive clinical trials [4]. 

*Address correspondence to this author at the Department of Chemistry, 
Faculty of Science, Kasetsart University, 50 Phaholyothin Rd, Chatuchak, 
Bangkok 10900, Thailand; Tel: +662-562-5555; Ext: 2210; Fax: +662-579-
3955; E-mail: paul.gleeson@ku.ac.th 

 In an effort to minimize the number of candidate drug failures 
due to off-target toxicity (as opposed to toxicity associated with the 
primary pharmacology of the target) [5], a variety of in vivo and in 
vitro models have been developed to screen development com-
pounds [6, 7]. For example, the mutagenic potential of a compound 
can be assessed using the Ames test [8], skin sensitization risk as-
sessment can be performed by use of the Organisation for Eco-
nomic Co-operation and Development (OECD) Mouse Local 
Lymph Node Assay (LLNA) test [9-11] and the potential to cause 
cardiac arrhythmia/Torsades de pointes can be evaluated using the 
perfused rabbit heart assay, patch clamp or hERG-dofetilide bind-
ing assays [12].  
 As a result of the continuous experimental assessment of com-
pounds in such assays, large databases of measurements exist 
within many pharmaceutical companies, and also in the public do-
main to a lesser degree. The in vitro hERG inhibition assay used at 
Pfizer had screened almost 60,000 compounds by 2005 [13] while 
the in vitro P450 2D6 inhibition assay used at GSK was reported to 
have assessed at least 50,000 compounds in 2008 [14]. In contrast, 
publicly available databases for toxicity are much smaller, with no 
more than 8000 measurements recently reported in the in vitro
Ames assay in 2011 [15], just 500 for the in vivo LLNA measure of 
sensitization [16], while many other datasets contain much fewer 
measurements [17]. 
 The existence of sizeable, diverse databases of measurements 
has opened up the possibility of generating so called ’in silico’
models of toxicity. In silico models involve the generation of a 
prediction of a given toxicity response using computers alone. 
Since the toxicity response is due to the molecular structure of the 
compounds under investigation, we can try to generate predictive 
models to assess the likely response of compounds not yet tested. 
The prediction of the toxic potential from molecular structure alone 
is highly desirable due to: (a) the high speed at which a prediction 
can be generated, (b) the reduced costs associated with the method 
and (c) ethical considerations due to the lack of animals needed for 
the assessment to be made. For an in silico prediction to be made on 
an untested molecule, we would typically build a statistical,rule-
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based or atomistic model using the available experimental data. 
These models must be built using some representation of a mole-
cule’s physical properties and its chemical characteristics, which is 
then related to their toxicological response. In silico models can in 
principle be built using 1D representations of molecules including 
descriptors such as molecular weight or atom counts, 2D descrip-
tors, which incorporate information about a molecule's topological 
structure, such as predicted lipophilicity, connectivity indices or 
fingerprints, or 3D descriptions such as pharmacophoric points, 3D 
surfaces or grids (discussed in detail below). The relationship be-
tween structure and response must then be fitted (or trained) using 
the available dataset which can be achieved using relatively simple 
methods such as “read-across” or multiple linear regression to more 
complex non-linear machine learning methods such as non-linear 
Support Vector Machines (SVM) or Artificial Neural Networks 
(ANNs). The precise choice of descriptors for a given model is 
generally dictated by: (1) the physical process that underlies the 
toxicity event, (2) regulatory considerations such as OECD QSAR 
guidelines [18] which prefer mechanistically interpretable models 
and (3) the personal preference of the model developer. For exam-
ple, drug-induced phospholipidosis, the potentially toxic excessive 
accumulation of phospholipids in cells/tissues, may be described 
with simple descriptors, such as the presence of a positive 
charge/basic substituent and high lipophilicity [19] (although more 
sophisticated approaches have also been investigated [20]). In con-
trast, P450 inhibition is clearly a complex receptor-mediated proc-
ess, which arguably requires a complex chemical description such 
as that afforded by receptor docking, pharmacophores [21, 22] or 
multiple descriptors in conjunction with complex non-linear model-
ing methods [23] (and which is further complicated by the flexibil-
ity and promiscuity of the proteins involved). In an effort to con-
form with the OECD QSAR regulatory guidelines [18], in silico
methods to predict skin sensitization, which is believed to be a toxic 
response due to covalent modification of unknown proteins in the 
epidermis, rely on mechanistically interpretable models, at least in 
terms of their encoding of chemical reactivity. This means that 
models based on relatively simple chemical descriptors are gener-
ally preferred (such as the presence or absence of certain fragment 
indicator variables) [24-26]. 

2.0. IN SILICO TOXICOLOGY MODELING 
 In 2003, the European Commission adopted a legislative pro-
posal for creation of a new chemical management system called 
REACH (registration, evaluation and authorization of chemicals), 
and one of the key goals was to reduce the number of compounds 
that require toxicity testing in animals through the use of alternative 
methods [27, 28]. A key consideration of REACH was that methods 
such as in silico based quantitative structure activity relationships 
(QSARs) should be used where possible to avoid the use of animal 
testing. For a QSAR model to be appropriate in a regulatory envi-
ronment, OECD guidelines were developed, suggesting the follow-
ing be used [18]: 
• A defined endpoint. 
• An unambiguous algorithm. 
• A defined domain of applicability. 
• Appropriate measures of goodness-of-fit, robustness and pre-

dictivity. 
• A mechanistic interpretation, if possible. 
 The carefully considered, pragmatic guidelines proposed by the 
OECD should be followed in the generation of all in silico models 
to ensure that any subsequent model(s) generated will be reliable in 
use, and acceptable to regulatory agencies.  
 In this review, we discuss published QSAR and modeling stud-
ies in the toxicity field, making references to the above guidelines. 
We first review the general characteristics of toxicity datasets that 
are used to generate the QSAR models. Subsequently, we summa-

rize chemical descriptors that can be used to underpin an in silico
model. This is followed by a review of the basic statistical tech-
niques used to determine the relationship between the experimental 
toxicological response and computed chemical descriptors. Finally, 
we discuss some specific in silico toxicology models that have been 
reported in the literature and how they can be used in a screening 
setting. As we cannot possibly cover every area of the in silico toxi-
cology field in any great detail, nor cover every possible in silico 
toxicology model for those areas that we do cover, we refer readers 
to Table 1 where a list of either very notable papers or comprehen-
sive reviews are listed. 
Table 1. A List of Comprehensive Reviews or Notable Papers 

in the In Silico Toxicology Field

Toxicity Endpoint References 

General Reviews [29-40] 

Genotoxicity/Carcinogenicity  [25, 26, 41-46] 

Skin sensitization [24, 47-50] 

Cardiotoxicity [51-54] 

P450 inhibition/Drug-drug interactions [21, 55-61] 

Metabolite prediction [61-68] 

Reproductive/Developmental toxicity [69-71] 

 It should be noted that the in silico toxicology models discussed 
here are hazard identification methods, and in the majority of cases 
they do not take consider the dose and exposure into account. 
Therefore, these methods will not be capable of predicting the abso-
lute toxicity in isolation, but provide useful supplementary informa-
tion for the overall risk assessment process. 

2.1. Toxicity Data 
 The major challenge in toxicity modeling is that all molecules 
are toxic at some level. It is therefore necessary that an in silico
method can predict both the type of toxicity, as well as the level of 
toxicity of a compound. Since there are numerous different ways in 
which toxicity (related to the primary pharmacology or many sec-
ondary pathways) can arise, the prediction of the absolute toxic 
potential of a compound, either from animal models, or via in vitro
or in silico methods, is extremely challenging [5]. In addition, the 
level of toxicity for a given toxicity mechanism may also depend on 
the level and distribution of drug in the body (ADME processes), 
making accurate toxicity predictions even more difficult [51, 72-
75]. 
 Experimental toxicity screening in drug discovery is a multi-
tiered approach, with in silico models towards the front, followed 
by chemical and in vitro biological assays, and finally, in vivo ani-
mal assays. Assays deployed towards the rear are generally consid-
ered to be the most predictive of man, but also the most labor and 
cost intensive [72]. As a result of the REACH guidelines on animal 
testing, there is now increased pressure for methods towards the 
front, where appropriate, to be used more extensively as alternatives 
to in vivo assays. 
 In silico techniques would appear to be the best choice to screen 
compounds with unknown toxic potential due to the rapid predic-
tions given, and the limited physical resources needed. However, in 
silico modeling of toxicity data is extremely challenging due to the 
complexity, and often considerable variability of the data itself. In 
addition, there are still question marks over the ability of in vitro
data to predict the likely toxic response of a chemical in man. Ani-
mal tests have been known to show poor concordance with results 
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in man on occasions [76], which would explain why many ap-
proved drugs have subsequently been withdrawn from the market 
due to previously undetected toxicity issues [77].  
 Improved understanding of the different mechanisms by which 
chemicals affect biological structures, processes and pathways, and 
thus the physiological response, is critical aspect of toxicology. 
Increased knowledge will help in predicting the toxicity of chemi-
cals, and to implement strategies to reduce the overall exposure to 
toxic compounds, and develop ways to minimize their affect. How-
ever, both the complexity in the biological response andthe lack of 
publically available mechanistic data are key reasons why in silico
approaches to date have had limited success in delivering in vivo
relevant predictions. 
2.1.1. Implications of Experimental Errors for Modeling 
 All data contain errors and it is important to understand the 
frequency or magnitude of the errors involved in a particular toxic-
ity dataset before beginning any analyses. This is particularly im-
portant in the case of in silico modeling since we need to under-
stand how accurate or noisy a dataset is as this will dictate the type 
of model to be built. It can also give us a rough idea of how good 
(or bad) a model we could theoretically produce with such a 
dataset. To highlight this point, we consider three toxicity end-
points. 
• The in vitro inhibition and metabolite assays used to assess for 

drug-drug interactions (DDI) are not totally predictive of a 
molecule's effect in man [72, 73, 76]. Complicating factors in-
clude known inter-species and inter-patient differences due to 
P450 polymorphism [78, 79]. Researchers have also noted that 
routine P450 inhibition assays commonly employed cannot 
easily discriminate competitive/non competitive inhibitor be-
havior, compounds that are substrates or inducers, the precise 
binding site involved in inhibition, as well as time-dependent 
effects [41]. Experimental errors for such assays are expected 
to be ~2 fold, although ketoconazole was reported to have up 
to 17-fold variation in a 2D6 inhibition assay [80].  

• The Ames test [8] for mutagenicity has experimental errors 
that are not negligible [81] and an experimental error rate of 
~15% between laboratories has been quoted [82]. The 
method's ability to predict rodent carcinogenicity is good at 
between 77-90% [8]. However, while predicted Ames test 
mutagens have a high probability of being carcinogens, com-
pounds that are predicted to be non-mutagens still have an 
equal probability of being either entirely non-carcinogenic, or 
potentially carcinogenic via a different mechanism (i.e., non-
genotoxic carcinogens) [43, 83]. 

• The gold standard assay in skin sensitization assessment, the in 
vivo LLNA assay [84], is reported to display a relatively low 
error rate of ~10% [85]. This quantitative assay is considered 
more reliable than the earlier Guinea pig assay where the toxic 
potential was scored based on visual analysis [85]. This, along 
with species differences, would explain the considerable dis-
crepancies between the two assays as noted by Lalko et al.
[48]. 

 A consideration of the experimental variability of an assay, and 
its relevance in predicting the human toxicological endpoint, is 
therefore desirable before beginning any in silico modeling. It also 
helps us to understand: (a) what level of predictive ability is theo-
retically possible for a given dataset and (b) determine what level of 
predictive ability from a model would be deemed acceptable. In
silico models cannot predict the experimental result with absolute 
accuracy, since the experimental results themselves have associated 
errors, so an understanding of this variability is important in setting 
our expectations. It is also unlikely that an in silico model will pre-
dict the in vivo/in vitro assay with an error rate equivalent to its 
experimental error (a perfect model) since there are other errors that 
are introduced during the descriptor calculations and model fitting 

procedures. An apparently perfectly fitted model would most likely 
have been fitted to some of the experimental variation also, i.e. it 
would actually be overfitted in practice. 
2.1.2. Compound Screening and Curation Issues 
 An important factor affecting data generated via in vitro assays 
is whether the compound being tested is soluble enough to be as-
sayed, or whether storage has resulted in compound degradation [7, 
86, 87]. As an example, following the merger of SmithKline-
Beecham and GlaxoWellcome, a large scale analytical exercise to 
assess the company’s combined screening collection showed that 
80% of the entries were considered both pure and confirmed as 
having the correct structure based on mass spectrometry - which in 
turn means that 1/5 of the compounds did not fulfill those require-
ments [88]. 
 Another issue can arise as a result of data archiving. Transcrip-
tion errors are known to arise when data reported in the public do-
main are curated and added into publically accessible databases. 
Young et al., for example, highlighted data translation errors rang-
ing from 0.1 to 3.4% depending on the database in question [89]. In 
addition, Fourches et al. have shown that these transcription errors 
can complicate the generation of quantitative structure activity rela-
tionship (QSAR) models [90]. 
2.1.3. Importance of Data Treatment 
 Data treatment is an important aspect of modeling toxicity data. 
Based on a consideration of the data error, a modeler may decide to 
build a model on either the continuous output from a given toxicity 
assay (LD50, IC50, EC3 etc), or a categorical measure (e.g. a two 
class system distinguishing toxic and non-toxic predictions). Defin-
ing a class based output for data coming from an assay reporting a 
continuous output, in effect, discards useful data. However, it can 
be advantageous in modeling studies as categorization, in effect, 
reduces the complexity of fitting a QSAR relationship and in prac-
tice this often leads to models with a better performance (i.e. a 
model only has to determine how the features separate the classes, 
not a continuum). 
 Categorization of data can also be advantageous in modeling 
studies since data from related assay systems can be more easily 
combined. This, of course, requires that the errors introduced due to 
assay differences are more than compensated for by building a 
model on a larger, more diverse dataset. Examples of this approach 
include modeling studies by Schultz et al. who used both LLNA 
and glutathione binding data to build models for skin sensitization 
[91]. A similar approach was taken in the TIMES-SS program 
where three different sources of in vivo data, derived from multiple 
animals, were used in modeling skin sensitization [92].  

2.2. Determining the Relationship between Chemical Structure 
and Toxicity 
 Accurate and rapid in silico models of toxicological endpoints 
are the most ideal solution to the proposals for animal testing. In
silico models/rules are quantitative or qualitative relationships be-
tween descriptors encoding molecular structure and a response 
variable encoding bioactivity and can take a variety of forms (Table 
2).
 Before generating a model on a particular toxicological end-
point, some key questions must be considered to assess the viability 
of model building and setting our expectations as to the likely pre-
dictive ability, namely: 
• Is the in vitro or in vivo assay sufficiently predictive of toxic 

events in man? If it is weakly predictive then it is questionable 
how useful an in silico model generated for this endpoint will 
be. 

• Is the data sufficiently reproducible to allow for model build-
ing? If the assay variability is large over successive experi-
ments, or between laboratories, then any in silico model will 
not perform better than the reproducibility of the data. 
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Table 2. A list of Common Techniques Employed in In Silico Toxicology Studies 

Method Advantages Disadvantages 

Similarity 

(Read across) 

• A variety of methods can be used to determine the mo-
lecular similarity between pairs of molecules (i.e. un-
tested molecules with those that have been experimen-
tally tested). A query compound is expected to have 
similar activity to those that display high similarity to it 
in the measured set. This can be done using 1D, 2D or 
3D descriptors. 

• Advantages are simplicity, speed, and the ability to di-
rectly compare the compound at hand with the refer-
ence compound for interpretation. 

• The main premise in computational chemistry is that simi-
lar molecules act similarly. It is known, however, that this 
does not hold true in many circumstances, with molecules 
that differ only very subtly showing dramatically different 
biological activities. 

Substructure 
Alerts/  

Reaction 
schemes 

• Computational methods can be used to assess for the 
presence of a particular functional group/molecular 
scaffolds which are known to form specific metabolites. 

• Computational enumeration can be used to generate all 
possible combinations of metabolites. The toxic poten-
tial of each metabolite can then be assessed. 

• The main advantage of this method is its interpretabil-
ity, which is immediately apparent to a chemist. 

• Software packages such as Meteor [99] can predict large 
numbers of metabolites for a particular molecule based on 
expert curation of the available literature data. 

• As with SAR data, the lack of contextual molecular infor-
mation in such rule bases can mean that the majority of 
predictions are not actually relevant [100].  

• While these method might be acceptable when looking 
qualitatively at individual compounds on a case by case ba-
sis, they are less useful when trying to assess very large 
sets of molecules in an automated fashion. 

SAR 

• A qualitative observation that certain molecular charac-
teristics (including substructures) can give rise to a cer-
tain toxicological outcomes. This SAR can be molecu-
lar property based or substituent/fragment based. 

• Qualitative rules can be problematic as they generally lack 
contextual molecular information. For example the pres-
ence of a liability such as functional group may be accept-
able if found in combination with some other feature [100]. 

• Absolute estimation of risk is difficult or even impossible 

QSAR 

• A quantitative statistical relationship between a com-
pound’s structure and a toxicological response fitted, 
prior to the assessment of an unknown molecule, using 
a training set of compounds with known toxicity. 

• QSARs can be used to predict an absolute value for a 
given toxicity endpoint, a class, or probability of class 
membership. 

• QSAR models have received much criticism of late, al-
though much of this is due to inappropriate model use 
and/or modeling building errors.  

• While undeniably useful, such models are unable to relia-
bly extrapolate to chemical structures which are signifi-
cantly different to those used to generate the model and, in 
addition, care must be taken to avoid capturing non-
generalisable patterns in the underlying data.  

• A general rule is that QSAR models need validation for 
each molecular series that is to be predicted and this should 
be continuously assessed over time. 

3D Receptor 
models 

• Many toxicity events require a degree of recognition 
between a molecule and a protein. This suggests that a 
consideration of the 3D shape of a molecule, and the 
3D structure of the protein could be beneficial. 

• MetaSite [101] is an example of 3D-based tool for pre-
dicting the likely site of metabolism of a molecule. 

• Hybrid quantum mechanical/molecular mechanical 
(QM/MM) models have also been used to assess the in-
trinsic reactivity of molecules with particular 3D pro-
tein conformations [98]. 

• The main advantage of these methods is their ability to 
cover different chemical series, since an arrangement in 
3D protein space potentially more relevant to the toxic 
mechanism is used to derive the model/prediction (in-
stead of non-context specific chemical descrip-
tors/features). 

• The application of 3D methods to understand toxicity is 
generally done in a retrospective way at present. 

• These calculations are very time-consuming compared to 
other methods, and require extensive expertise. 

• In some cases, no X-ray structures are available for the 
protein in question (or a protein-ligand complex for the se-
ries in question). Therefore, one needs to use molecular 
docking and/or construct less reliable homology models 

• The introduction of shape, while increasing the information 
content within the model, also introduces additional noise 
(e.g. due to conformation sampling), and whether the final 
model will be superior to simpler models depends on the 
signal gained (the ratio of information to noise introduced 
into the model when considering 3D information). 
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• Has a diverse set of compounds been screened in the assay? If 
the dataset screened in the assay is small, or unrepresentative, 
then our ability to make predictions for a diverse set of un-
tested compounds will be questionable. 

• Is the toxic event/mechanism understood? If the toxic event is 
due to multiple processes (e.g. tissue permeation, followed by 
protein binding, then reaction), each with different dependen-
cies on a compound's molecular structure, then obtaining an 
accurate relationship between structure and measured toxicity 
is much more challenging. 

• Is it apparent what type of descriptors/in silico method should 
be used to model the toxicity parameter in question? If the 
process requires binding to a particular protein to achieve the 
toxic event then this level of specificity should in principle re-
quire a 3D model of the interaction/event [61] or a quantum 
chemical consideration of the reaction [93]. Nevertheless, 3D 
methods are still not sufficiently mature to be used in a black 
box manner [94, 95], meaning more simplistic 2D and 1D 
methods are often preferred. 

• Is it known what the relationship between structure and func-
tion looks like - i.e., whether there are multiple binding modes, 
which might benefit from non-linear modeling methods? The 
modeling algorithm linking molecular descriptors to the output 
variable needs to be chosen so that it takes the complexity of 
the particular relationship into account, otherwise overfitting 
(in case of too complex a modeling procedure used) or an in-
sufficiently predictive model (in case of too simple a modeling 
procedure used) may result. 

 A wide range of different computational methods have been 
used to build in silico models of toxicological endpoints and these 
are summarised briefly in Table 2. The methods range from rather 
simple similarity measures to known toxic/non-toxic molecules, the 
presence of undesirable substituents in a molecule, or simple SAR, 
to more complex multivariate QSAR models or, at the other ex-
treme, atomistic simulations of the toxic events. In this review, we 
try to cover the theory used in a variety of these methods and dis-
cuss a number of different applications to specific toxicological 
endpoints.  
 The computational resources needed to generate a prediction of 
toxicity can range significantly for the methods listed in Table 1.
Methods relying on functional group identification, or similarity, 
are highly automated and can take seconds to perform. QSAR pre-
dictions using conventional 2D descriptors are also rapid, however, 
comparative molecular field analysis (COMFA) based 3D QSAR 
[96] are much more time consuming due to the alignment step 
needed. Quantum mechanical based descriptors can be very time 
consuming (minutes to hours); however this is very dependent on 
the level of theory used. Semi-empirical calculations are generally 
rapid, while more accurate density functional theory calculations 
are considerably slower [97]. Protein-ligand simulations are gener-
ally the most time consuming due to the number of atoms involved. 
Molecular dynamics simulations (MD) can take days to months 
depending on the amount of sampling needed to reach convergence 
[97]. Hybrid quantum mechanical/molecular mechanical (QM/MM) 
methods, which are commonly used to study reactions within pro-
teins [98], can take similar amounts of time as MD simulations. 
2.2.1. Encoding Chemical Information in in silico Models 
 A fundamental part of any data driven, predictive method is 
how we choose to encode the chemical information of the toxic and 
non-toxic molecules in question. If we cannot accurately describe a 
molecule using some type of relevant, computationally-based de-
scriptor(s), then it will not be possible to generate a useful model. 
Molecular descriptors can be rapidly calculated from a known mo-
lecular structure using a wide variety of methods reported in the 
literature [102-112]. These are commonly grouped into three dis-
tinct categories: 1D, 2D and 3D descriptors. 1D molecular descrip-

tors (sometimes also referred to as ‘0D’ descriptors) represent cer-
tain bulk properties of compounds, such as the number of atoms of 
a particular element, the molecular weight etc, and these can usu-
ally be calculated solely based on the molecular formula of a mole-
cule (i.e. do not necessarily require a knowledge of the precise con-
nectivity of the molecule). The socalled 2D molecular descriptors 
are computed from a representation of a molecule which takes into 
account the precise connectivity. Examples include the presence of 
particular functional groups [26], or path-based descriptors/indices 
[113] and fingerprints [113-115]. Finally, 3D molecular descriptors 
capture structural information based on the three-dimensional struc-
ture of a molecule (or set of conformations, sometimes referred to 
as 4D descriptors [116]). These descriptors encompass those such 
as 3D polar surface area [117], pharmacophore-based [97] ap-
proaches or descriptors derived from docking into a receptor [118, 
119]. It could be argued that 3D molecular descriptors might per-
form better than 2D variants in modeling molecule-target binding; 
however, it has been shown that combinations of 1D and 2D de-
scriptors are often more successful [120]. This appears to be due to 
the number of approximations involved in the former methods and 
these are discussed in later sections of the paper. 
 The toxicity of a compound can arise for different reasons, and 
the choice of descriptors for a modeling study very much depends 
on the particular type of toxicity under investigation. For example, 
toxicity due to the physicochemical properties of a compound may 
be caused by its ability to interact with cell membranes, such as 
binding to [19], or increasing the intrinsic permeability through, the 
cell itself [121]. In many cases, the amphiphilic character of a com-
pound is the cause of the issue; hence, descriptors capturing the 
lipophilicity and charge of a compound will be needed. In addition, 
physicochemical properties such as lipophilicity increase the likeli-
hood of a compound being metabolized. This has the potential to 
lead to toxicity due to drug-drug interactions, caused by the block-
ing of pathways of metabolizing enzymes, such as those of the 
P450 family. 
 The binding of a molecule to a protein target is another poten-
tial cause of toxicity. The toxic event may be a side effect of bind-
ing to the therapeutically relevant target, a result of binding to a 
related target with high affinity, or due to inhibition of other unre-
lated targets. In these cases, descriptors which can be used for vir-
tual screening can also be applied [122-126]. Recently, a large-scale 
analysis of the relationships between adverse effects of drug mole-
cules and their interactions with protein targets has been published 
[127]. 
 Toxicity due to the chemical reactivity of particular functional 
groups found in a molecule is another cause of toxicity. These types 
of toxic events are defined by particular structural groups of ‘reac-
tive functional groups’ for which multiple filters have been pub-
lished [128]. A key limitation of these methods however is that they 
lack molecular context. For example, certain undesirable substitu-
ents will not cause problems due to the presence of additional fea-
tures in a molecule. A recent matched ��������	
 pairs analysis 
shows that the effect of certain undesirable substructures can be 
modulated by other features found in the molecule [129].  
2.2.2. Knowledge-Based Rules and Alerts 
 A wide variety of knowledge-based rules or systems have been 
generated for toxicity endpoints based on the observation that cer-
tain types of molecules frequently display similar toxicological 
outcomes. These rules are generally derived based on an expert 
analysis of toxicity data and chemical structures, rather than by the 
use statistical models and computed descriptors (i.e. data min-
ing/machine learning). In this review, we have separated substruc-
ture-based and similarity-based methods from those that employ 
QSAR. It is worth noting that software packages such as Multi-
CASE [17] and Toxtree [130, 131] employ hybrid systems that 
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make QSAR predictions on subsets of compounds that display a 
particular substructure. 
Structural Alerts
 A number of commercial and freely available tools are avail-
able to virtually screen for structural features that can give rise to 
toxicity. An example of the former is the DEREK program (Deduc-
tive Estimation of Risk from Existing Knowledge) [132, 133]. 
DEREK uses a set of structural rules derived from experts in indus-
try, academia, and government to give a qualitative assessment of 
the probability a compound will display toxicity for a variety of 
endpoints. In many studies that have evaluated the performance of 
DEREK, the absence of an alert has been associated with a negative 
(toxicity free) prediction. However, this is not how DEREK was 
designed to be used [64]. The absence of any alert does not mean 
the molecule will not display toxicity; rather, an alert for a toxic 
substructure may not have been compiled yet. Conversely, the pres-
ence of an alert does not necessarily mean that a molecule will dis-
play toxicity either, since other properties determined by its overall 
structure are not considered in this type of analysis (such as distri-
bution of the compound). An alternative to DEREK is the freely 
available Toxtree program [134]. This program can predict the 
carcinogenicity and mutagenicity potential of molecules as well as 
other endpoints listed in Table 3.
Table 3. Alerts Implemented in Toxtree [134] 

Cramer decision tree approach to estimate toxic hazard [135] 

Verhaar scheme for modes of toxic action [136] 

German Federal Institute for Risk Assessment (BfR) and skin irritation 
corrosion rules estimation tool (SICRET) rules to predict skin irritation 
and corrosion [137] 

BfR rules to predict eye irritation and corrosion [138] 

Benigni-Bossa rules to predict mutagenicity and carcinogenicity [134] 

Cytochrome P450 mediated drug metabolism alerts [139] 

Skin sensitisation alerts [24] 

Alerts for Michael Acceptors [140] 

Similarity Searching / Read-across
 Similarity searching is a popular tool in virtual screening [114, 
115, 125]. The method involves finding molecules that are similar, 
in some chemical manner, to a query molecule that is of biological 
interest. The similarity can be computed using fingerprints, phar-
macophores or shape based descriptors and the most similar mole-
cules are generally considered to be more likely to display similar 
biological characteristics to the query. However, even molecules 
that display very high similarity do not necessarily share similar 
levels of activity. This is because it is well known that very small 
differences in structure can result in dramatic change in response 
for a particular process, or activity at a particular receptor (i.e. ac-
tivity cliffs) [100, 125].  
 Similarity methods are commonly framed in terms of molecular 
fingerprints. These fingerprints consist of a bit string that defines a 
molecule in terms of the fragments, atom paths or pharmacophoric 
points present in the molecule. Common fingerprint implementa-
tions include: Daylight fingerprints [141], MDL keys/fragments 
[142] and 2D/3D pharmacophoric fingerprints [113, 125]. The rela-
tive performance of these methods have been compared recently by 
Bender et al [120]. Similarity between molecules can be assessed 
using the Tanimoto or Tversky metrics or distance measures (such 
as the Euclidean distance) [97]. 

 Similarity concepts can also be used to assess the toxic potential 
of molecules and the term “read-across” is commonly used to de-
scribe the process in the in silico toxicology field. In this case, simi-
larity to the toxic query molecule is considered undesirable, unlike 
in traditional virtual screening applications. Similarity-based meth-
ods have been implemented in the freely available Toxmatch pro-
gram described in detail by Gallegos-Saliner et al. [131].  
 Of course, in some cases the overall similarity of two molecules 
may not be a relevant consideration, but rather the presence of par-
ticular functional groups might be defining factor. Therefore, 
whether the overall similarity concept can be applied to toxicity 
prediction needs to be considered in every individual case (both in 
terms of the toxicity endpoint and the molecular series in question). 
2.2.3. QSAR Modeling Methods 
 A wide variety of methods may be employed to derive QSAR 
models of toxicological endpoints. We present a brief summary of 
those techniques which have found widespread applicability in the 
QSAR literature. We shall discuss some of their key strengths and 
weaknesses and, in particular, we consider the relative merits of 
linear and non-linear modeling approaches. The following discus-
sion of QSAR is by no means exhaustive, so readers are referred 
elsewhere for greater detail on this topic [23, 90, 122, 143-152]. 
 An important initial consideration in any in silico modeling 
investigation is which of many different statistical methodologies 
will be used to determine a QSAR between the structures in a 
dataset, which are encoded using chemical descriptors, and their 
toxicological response. QSAR methods can be broadly split into 
two basic types, namely (i) linear models, which assume the rela-
tionship between the descriptors and response value is linear (which 
is not always true) and (ii) non-linear methods, which make no such 
assumption about this relationship.  
 Non-linear methods would appear to be the most sensible op-
tion in most circumstances; however, the fact that fewer assump-
tions are made about the relationship between structure and toxicity 
means that many possible relationships between the descriptors and 
response can be explored. While this situation is more likely to find 
the correct relationship, it is also potentially more capable of fitting 
a model to the idiosyncracies of a particular dataset, especially if 
the dataset is rather small and lacking in chemical diversity. In ad-
dition, the complexity of non-linear statistical methods means the 
resulting models are difficult, if not impossible, to interpret (as 
discussed in later sections).  
2.2.3.1. QSAR Model Building and Validation
 QSAR models or rules are derived using pre-existing experi-
mental data. To allow for the generation and validation of the 
model in question, this data needs to be split into a training set, 
containing the majority of the data, and a smaller external 
test/validation set (~10-25%). The former set (which may itself be 
split into a training and test set for internal validation purposes, see 
Fig. (1)) is used to build the in silico model, while the latter set is 
used to determine its predictivity, since this data was not used in the 
building process. The splitting of a dataset can be done either in a 
random fashion or using a variety of selection techniques [153] 
(Fig. (1)).  
 The size and nature of the dataset will dictate whether the 
model can be classed as a local or global model. Global models are 
models built on very large, diverse datasets and these models cover 
a larger area of chemical space and therefore have a larger coverage 
or domain of applicability [154-158]. This essentially means that 
the model is more likely to maintain its performance when used to 
predict more diverse compounds. Local models, on the other hand, 
are generated on relatively small, often congeneric series of com-
pounds and are generally only used to predict related molecules 
such as other members of that series. One cannot reliably describe 
the chemical space beyond that of the rather limited dataset used to 
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build the model [159]. Local models are extensively used in toxicity 
models implemented in MultiCASE [17] and Toxmatch [131], but 
only for compounds identified as having particular toxic functional 
groups (i.e. compounds within their domain of applicability).  
 The potential always exists for statistical methods to overfit (i.e.
to fit both the real variation and experimental error/idiosyncracies 
in a dataset) so it is critical that predictivity of the model is assessed 
in a rigorous way. Ideally, external validation, on data neither used 
to train the model, nor select the descriptors or model parameters, 
should be used [158, 160, 161]. Benigni et al. argue that internal 
cross-validation (i.e. validation that assesses the effect of building 
models with different subsets of the training set, such as leave one 
out (LOO) or leave many out (LMO)), where the validation data is 
used for model selection purposes, is often of little value, particu-
larly with very small datasets [42, 149], and that external validation 
is a better measure of true model predictivity [146, 162, 163]. Ide-
ally, external validation should be carried out using a large, inde-
pendent test set. However, cross-validation may yield unbiased 
estimations of model performance when it has not been used for 
model selection [160]. Another useful test to assess the reliability of 
the model is Y-randomization [20, 164]. In this process, the Y val-
ues of the compounds are randomized many times within the train-
ing set and random models are built. If the performance of the ran-
dom models approaches that of the true model, then the model must 
be considered unreliable.  
 Given that an independent test set is often a random subset of 
the data set, or a hypothetically optimal representation of the data 
set if selection methods are used, then the test set might be expected 
to perform as well in prediction as the training set (at least for large 
datasets). This means that temporal validation may be needed to get 
a better estimate of the true predictivity of the model in real world 
use [153, 156, 165, 166]. Data generated after the initial batch of 
data used in the model building and validation process typically 
consists of more diverse chemical types due to the nature of scien-
tific research. This dataset would be expected to be more challeng-

ing to predict and application of the model to this dataset would be 
closer to how the model would be used in practice.  
 A consideration of QSAR model metrics is important for de-
termining if a model is sufficiently predictive for the purpose it was 
generated for. We therefore discuss a number of commonly used 
metrics in later sections. It is also important that we consider 
whether there exists a relationship between the distance of a query 
compound to the training set and its prediction error [158]. If we 
can predict which compounds are more reliably predicted by the 
model [155], then we can employ the model with greater confi-
dence, trusting only predictions for those that lie sufficiently within 
the space the model is qualified to make predictions for.  
2.2.3.2. Linear QSAR Methods
 In linear models, the output of the model (either the predicted 
bioactivity for regression models, or a value used for class assign-
ment), takes the following general form [167-169].  

                                     Equation 1 

where ypred  is the model output, xi and wi the ith descriptor (out of a 
total of M) and corresponding coefficient (weight) respectively, and 
w0 an offset term.  

Multiple Linear Regression  
 The original QSARs pioneered by Hansch and Fujita were de-
veloped for congeneric (structurally related) chemical series [170-
172]. These studies  derived QSARs using Multiple Linear Regres-
sion (MLR), for which the coefficients in Equation 1 are found by 
minimizing the sum of the squared deviations between the experi-
mental bioactivity values and the corresponding values of the model 
output, for all N compounds in the training set, with respect to these 
coefficients. Considerable overfitting is expected when descriptors 
are correlated (even incompletely) so this situation is not advised. It 

Fig. (1). A graphical representation of a QSAR model building strategy. 
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is further recommended that the number of observations (N) is 
much greater than the number of descriptors (M) [168]. 

Principal Components Regression 
 To overcome the problem of correlated descriptors in MLR, 
Principal Components Regression (PCR) may be employed. This 
applies the MLR procedure after estimating a new set of variables 
(the principal components) for use in place of the original descrip-
tors. The principal components are linear combinations of the origi-
nal descriptors which are designed to be orthogonal (i.e. entirely 
uncorrelated). More precisely, the coefficients of the original de-
scriptors in each of these linear combinations are given by the ei-
genvectors of the co-variance matrix describing the correlation 
between the descriptors in the training set. Since using all M princi-
pal components would be equivalent to applying MLR to the origi-
nal descriptors, a subset of principal components is selected for 
fitting the regression equation; commonly, this would entail ranking 
the principal components by their eigenvalues (or variances) and 
observing how the model performance (estimated on a subset of 
compounds not used to fit the model) varied with respect to the 
number of retained principal components [168].

Partial Least Squares (PLS) Regression  
 PLS entails the application of the same procedure as per PCR, 
save for initially weighting the descriptor values for each compound 
by its experimental bioactivity, prior to computing the covariance 
matrix. This is designed to yield explanatory variables for which the 
highest variance is associated with the highest correlation with bio-
activity [168]. Recently, Gavaghan and co-workers at AstraZeneca 
derived various 'hierachical' PLS regression models for hERG pIC50
values (i.e. the outputs of one set of models were used as the inputs 
for the final model). By binning the experimental and predicted 
pIC50 values, they also interpreted their models as classifiers [153]. 
PLS may also be used to directly generate classification models. 
For example, class labels A and B may be assigned values 1 and 0 
and a PLS regression model derived, followed by the selection of a 
threshold output value to enable class assignment [173]. This pro-
cedure was recently applied by Clark and Wiseman to derive mod-
els for discriminating between drugs with and without the potential 
to induce Torsades de Pointes (a potentially fatal cardiac arrhythmia 
related to hERG inhibition) [174].  

Linear Discriminant Analysis  
 Linear classifiers may also be derived from Linear Discriminant 
Analysis (LDA). A variety of approaches to determine a linear dis-
criminant separation of two classes exist [167, 175] (i.e. a model 
with the form of Equation 1, along with a threshold delimiting pre-
dictions for one class from predictions for the other). However, 
LDA is usually used to denote the determination of such a linear 
discriminant via adjusting the coefficients of the descriptors in or-
der to maximise the Fisher criterion (which effectively entails 
maximizing the ratio of between-class-variance to within-class-
variance within the training set, under certain data assumptions) 
[167, 175, 176]. Recently, Doddareddy et al. [177] used LDA to 
derive binary classifiers for discriminating hERG blockers from 
non-blockers, while also comparing this approach to non-linear 
Support Vector Machines (see below). Like MLR, LDA cannot 
handle M > N (see above) [173].
Naive Bayes
 This method estimates the relative probabilities of a compound 
belonging to a given bioactivity class by assuming that all descrip-
tors contribute independently to these probabilities. When loga-
rithms of these probabilities are taken (yielding scores which can be 
used for class assignment), and the classifier is used with binary 
descriptors (e.g. based on occurrences of substructures) [178], this 
method yields a linear classifier. A commonly used Laplacian 
modified version of the Naive Bayes classifier was successfully 

employed by O'Brien and de Groot to identify hERG inhibitors 
[13].  
2.2.3.3. Non-Linear QSAR Methods
 Non-linear methods are inherently more versatile than linear 
methods in that they do not assume a linear relationship between 
structure and a biological response. For large, diverse datasets this 
flexibility should be beneficial; however for small datasets it may 
lead to overfitting [179]. Concerns have also been raised regarding 
the lack of interpretability of such models [180].  
Recursive Partitioning 
 In this approach, a decision tree model is generated using the 
training set. Starting from the entire training set (i.e. the "root 
node"), each descriptor is searched for "cutpoints" which partition 
the training set compounds within the current "parent node" into K 
"daughter nodes" [181], such that the separation in the experimental 
bioactivities of the subgroups of the data passed to different daugh-
ter nodes is maximized according to some measure of separation. 
Commonly only one split criterion is sought per descriptor (i.e. 
K=2) [181]. For classification, this separation might be determined 
via the decrease in Gini impurity [182], or a t-test might be used for 
continuous bioactivities [183]. A variant on the standard approach 
is to select cutpoints from linear or non-linear combinations of de-
scriptors [184]. Partitioning continues until some stopping criterion 
(e.g. all compounds in the current node belong to the same class) is 
met. Predictions are generated by passing compounds through the 
tree, and assigning the majority class or the average bioactivity 
value for training set compounds in the final ("leaf") node.
 Recursive partitioning is notably prone to overfitting [184]. 
Even small changes to the training set can yield changes to one 
cutpoint, appreciably changing the structure of the decision tree 
[181]. Overfitting can be limited to some extent via pruning, that is 
removing branches from the fully grown tree, with the optimal 
depth of the tree determined using internal cross-validation [185]. 
Recursive partitioning may also be particularly sensitive to the use 
of unbalanced training sets (i.e. when there are unequal numbers of 
compounds in different classes) [185].  
 Higher predictivity, but lower interpretability [181], may be 
obtained using ensembles of decision trees, such as Breiman's Ran-
dom Forest (RF) [186], which uses the CART algorithm [187] to 
grow decision trees on multiple random samples of the training set 
[173]. 
Artificial Neural Networks 
 This class of methods may be used to generate either regression 
or classification models. As comprehensively discussed by Peterson 
[188], Artificial Neural Networks (ANNs) are comprised of a series 
of interlinked layers of "neurons" which transform weighted input 
variables (signals) into a new signal which may be passed to subse-
quent neurons. The original input variables are descriptor values 
and the final output signal(s) are used to make predictions. During 
training, the training set compounds are sequentially, and randomly, 
passed through the network, commonly multiple times, and the 
weights adjusted according to a set of learning rules. Learning may 
be "unsupervised" (no information about the experimental bioactiv-
ities is used to update the weights), "supervised" (the difference 
between the output and the desired output, based on the experimen-
tal bioactivity, for the current training set compound, is used to 
adjust the weights) or, as an alternative/in addition to supervised 
learning, "reinforcement learning" uses information about how well 
the network is currently performing (e.g. via an error rate) in order 
to adjust the weights [188].  
 A plethora of network types exist. In the commonly used 
"backpropagation" class of networks, the difference between the 
output and the desired output is not only used to adjust the weights 
associated with the inputs to the neurons in the output layer, but 
also to calculate, by computing partial derivatives of the output 
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error with respect to the weights, how the input weights in preced-
ing layers should be updated to minimize this difference [169, 188]. 
In "counterpropagation" networks [188, 189], the weights in the 
Kohonen layer are adjusted on the basis of the difference between 
the descriptor values and the weights for a "winning" neuron, and 
the weights for the output layer are adjusted on the basis of the 
experimental bioactivities. Counterpropagation networks tend to be 
faster to train compared to backpropagation networks [188]; how-
ever, care must be taken to optimize the number of neurons in the 
Kohonen layer [189]. If this is greater than or equal to the size of 
the training set, considerable overfitting may occur [188]. Given the 
tendency of ANNs to overfit [23], a variety of strategies have been 
developed to prevent overfitting including "early stopping" (train-
ing ceases when the performance on a validation set starts to de-
crease) and regularization (see below) [169]. It has also been sug-
gested that, to avoid overfitting, the number of training instances 
must exceed the total number of weights in the network, with a ratio 
of 3:2 (training samples:weights) proposed as a "realistic mini-
mum" [190]. 
Support Vector Machines 
 Support Vector Machines (SVMs) aim to determine a linear 
decision boundary (or "hyperplane") which will optimally separate 
classes in some "feature space" [191]. If the training set is perfectly 
separable, SVMs find the "maximum margin" hyperplane in order 
to avoid overfitting (i.e. the hyperplane, out of the set of possible 
hyperplanes separating compounds in both classes, corresponding 
to the maximum distance, in the perpendicular direction to the hy-
perplane, between correctly classified points on either side of the 
hyperplane). If the data are not perfectly separable, SVMs balance 
the need to maximise this distance, in order to limit overfitting, with 
the need to minimize the extent of training set misclassification (i.e. 
the trade-off between both objectives is determined via an adjust-
able parameter) [192 193]. Control of overfitting by adding a pen-
alty term to the error function, which limits the extent to which the 
model can adapt to the training data, is known as regularization,
and is a generally applicable approach for methods which seek to 
minimize an error term during training [169]. Importantly, this fea-
ture space may be a non-linear projection of the original descriptor 
space, such that the linear decision boundary in the feature space 
corresponds to a non-linear boundary in the original descriptor 
space. The determination of the decision function in the feature 
space can be achieved via the use of a kernel function. If a linear 
kernel is used, the hyperplane is determined in the original descrip-
tor space (i.e. a linear classifier is generated). For non-linear ker-
nels, such as the popular Gaussian Radial Basis Function (RBF) 
kernel, the shape of the decision boundary in the descriptor space is 
controlled using an additional parameter [192]. 
 A regression model may be developed using an extension of 
this approach, Support Vector Regression (SVR) [191 194]. As 
before, overfitting is controlled using regularization and a kernel 
function allows for a (potentially) non-linear model to be generated 
from the descriptors. Importantly, deviations between the experi-
mental bioactivities and the model output for the training set are 
usually only considered errors if their magnitude is greater than an 
adjustable parameter. Hence, for SVR, three (or two, if a linear 
kernel is used) parameters need to be determined, controlling the 
extent of regularization, the form of the model, and the size of de-
viations not treated as errors. 
 It is important to recognize that these approaches are capable of 
overfitting and that the correct choice of the parameters is crucial
for their successful application. These parameters should be chosen 
by assessing model predictivity on an internal portion of the train-
ing set not used to fit the model [193] (possibly followed by subse-
quent training of the model, using the "optimised" parameters, on 
the entire training set).  

k-Nearest Neighbours (k-NN)
 This approach, which may be used for classification or regres-
sion, entails the generation of predictions for experimentally un-
tested compounds using the experimentally determined bioactivities 
of the k most similar compounds in the training set (as determined 
using some distance metric computed from the descriptors). For 
regression, a (distance weighted) average over the values for these 
neighbours may be used as a prediction [162], whilst, for classifica-
tion, majority voting is employed (k is typically an odd number) 
[195]. k-NN approaches can be seen as an extension of the molecu-
lar similarity principle, where the distance to the set of neighbors, 
and hence their contributions to the predicted output, can be 
weighted in different ways. 

2.3. Quantifying Model Performance and Applicability Domain 
2.3.1. Assessing the Predictive Ability of Categorical Models 
 To judge the predictive power of in silico models, some, or all, 
of the following statistical parameters should be reported. These 
statistics can be easily calculated based on a confusion matrix (C)
with elements Cij denoting the number of compounds belonging to 
class i and predicted to belong to class j [196]. For simplicity, we 
only define these statistical parameters for the case of a 2-class 
model, which is commonly encountered in in silico toxicology. In 
addition to the simple metrics described in Table 4 and Table 5, the 
Matthews’ correlation coefficient (Equation 2) [197] and Cohen's 
kappa coefficient (Equation 3) [198] can also be used to gain in-
sight into model predictivity. These measures of agreement for 
categorical items are generally thought to be a more appropriate 
measure than a simple percentage agreement calculation, since both 
these measures take into account the agreement expected to occur 
by chance. The popular Matthews’ correlation coefficient takes into 
account true and false positives and negatives and is regarded as a 
balanced measure, which can be used even if the classes are of dif-
ferent sizes. However, every performance measure has its advan-
tages and disadvantages, many of which are discussed in the fol-
lowing reference [196]. 

              Equation 2 

 Equation 3 

2.3.2 Assessing the Predictive Ability of Continuous Response 
Models 
 For regression models, the Pearson's correlation coefficient (r),
the Coefficient of Determination (R2) and the Root Mean Square 
Error (RMSE) may be used to quantify predictive performance 
[199-201]. Common definitions for these metrics are provided be-
low, where yi,obs and yi,model represent the experimental and predicted 
bioactivity values for compound i, Yobs and Ymodel , their respective 
arithmetic means, and N the total number of compounds on which 
the model is tested. 

             Equation 4 

           Equation 5 

             Equation 6 
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2.3.3. The Applicability Domains of in silico Models 
 The training set used to derive a QSAR model cannot com-
pletely cover all of chemical space. Thus, an in silico QSAR model 
will only be predictive of a finite variety of chemical structures. 
Consequently, there is a need for additional metrics to determine 
whether a model can be expected to make a reliable prediction for a 
given query compound. This desire has led to the development of 
the so called domain of applicability, which may be defined using 
the distance to model concept. In this method, the similarity of a 
compound is assessed with respect to the training set, in the context 
of a specific model, and, if it is found to be sufficiently similar, the 
prediction can be trusted [155, 156, 158 202-206]. 
 The "applicability domain" (AD) of the model is widely under-
stood to define the range of chemical structures to which the model 
is 'applicable'. More precisely, a report for the European Centre for 
the Validation of Alternative Methods (ECVAM) has defined the 
applicability domain as: "the response and chemical structure space 
in which the model makes predictions with a given reliability" 
[207]. When making predictions for an experimentally untested 
compound, its inclusion within the applicability domain may, of 
course, only be assessed with respect to its location within chemical 
structure space. Whilst this may be interpreted as a range of chemi-
cal structures for which the expected model performance is well 
characterized [180], the "applicability domain" is commonly inter-
preted as a region of chemical structure space in which the model is 
known to exhibit desirable predictivity [155, 156, 158 205 208].  
A distinction may be made between those approaches which simply 
try to categorize compounds as inside the applicability domain 
(AD) or outside the AD, and those which seek to directly assess the 
expected performance of the model for a particular compound 

[205]. In the context of predictive toxicology, where the "mecha-
nism of toxic action" is understood, the former approach may be 
informed by mechanistic reasoning [207]. For example, skin sensi-
tizers may be categorized as belonging to different "natural mecha-
nistic domains", on the basis of the mechanism via which they co-
valently bind to skin proteins and hence trigger sensitization [47]. 
Models may then be developed that are specific to one such do-
main. Unfortunately, automated assignment to such domains on the 
basis of chemical structures is not trivial: For example, aldehydes 
may either belong to the Schiff base or Michael Acceptors domain. 
Moreover, for many endpoints the "mechanism of toxic action" 
may be poorly understood [207]. Alternatively, an approach based 
upon molecular fragments may be employed [155 207]. The sim-
plest approach is to simply categorize compounds with unknown 
fragments (i.e. fragments unseen in any training set compound) as 
being outside the AD. This raises various questions, such as which 
fragments should be used and whether or not to consider additional 
information such as the frequency with which the fragment occurs 
within and across compounds in the training set. Kühne et al. re-
cently explored some of these questions with respect to Atom-
Centered Fragments [208]. 
 An alternative approach has been to relate a distance between 
the query compound and compounds in the training set to the pre-
diction error. A number of authors have assessed the ability of nu-
merous metrics (e.g. distance to the K nearest training set neigh-
bours, leverage etc.) to discriminate between well and poorly pre-
dicted compounds [148, 156, 158 204 205]. Sushko et al. [205] 
emphasize the value of considering metrics based on the output of 
the model - in particular, measures based upon the variation in the 
predictions yielded by an ensemble of models. Similarly, Dragos et

Table 4. Classification Confusion Matrix for a 2 Class Model. Which Class of Correctly Predicted Instances (True Positives or 
True Negatives) and Falsely Predicted Instances (False Positives and False Negatives) One is Particularly Interested in 
Depends on the Property the User Attempts to Predict 

OBS/PRED Observed +ve Observed -ve 

Predicted. +ve True Positive (TP) False Positive (FP) 

Predicted -ve False Negative (FN) True Negative (TN) 

Table 5. A List of Common Classification Statistics used to Assess the Predictive Ability of Models 

Statistic Description Formula 

Total accuracy 
Proportion of compounds correctly predicted to be positive and negative relative to total 
number of predictions. 

(TP+TN)/(TP+FP+TN+FN) 

Sensitivity 
Proportion of compounds correctly predicted to be positive relative to all compounds experi-
mentally determined to be positive. 

TP/(TP+FN) 

Specificity 
Proportion of compounds correctly predicted to be negative relative to all compounds ex-
perimentally determined to be negative. 

TN/(TN+FP) 

Positive predictive power 
Proportion of compounds correctly predicted to be positive relative to all predictions catego-
rized as positive. 

TP/(TP+FP) 

Negative predictive power 
Proportion of compounds correctly predicted to be negative relative to all predictions catego-
rized as negative. 

TN/(TN+FN) 

Dataset Prevalence 
Proportion of compounds that are observed in the positive (or negative) class. For a dataset 
that contains 95% actives, a model predicting all compounds “active” will therefore have a 
95% overall success rate even though it offers no discrimination whatsoever.  

(TP+FN)/(TP+FP+TN+FN) 
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al. found that a metric based on the variation in predictions across 
an ensemble of models was amongst the top three "mistrust scores" 
for a range of datasets [148]. 

3.0. TOXICITY MODEL EXAMPLES 
 The use of in silico toxicology models early in the life of a dis-
covery project can prove useful to weed out compounds that are 
highly likely to cause problems. It is unarguable however, that such 
models are not sufficiently predictive to make definitive decisions 
in late studies where costs are significant both in terms of product 
termination or financial liabilities that might arise later in the life 
span of a product due to the discovery of significant toxicity.  
 Nevertheless, in silico methods can be effectively used for the 
following purposes. (a) Models may be used to prioritise com-
pounds for testing in particular toxicity assays. For example, lipo-
philic bases often cause phospholipidosis [19], or significant hERG 
inhibition [209], the presence of unsubstituted aniline substituents is 
an alert for genotoxicity [43], while the presence of an aldehyde 
attached to an aromatic ring is a Schiff base alert for skin sensitiza-
tion [24]. (b) In cases where a compound tests positive in a toxicity 
assay, models can be used to shed light on the mecha-
nism/molecular origin of the toxicity, and then used to suggest ways 
to remove the liability. (c) In cases where a compound is predicted 
to be toxic in lead generation, or early lead optimization, but an 
equally acceptable alternative is available that has no predicted 
risks, the latter could be prioritized for further development work, 
with potentially expensive experimental testing performed later if 
the compound passes other development hurdles. 

3.1. hERG Inhibition 
 A hERG inhibition assay is an early hurdle a compound/series 
in drug discovery must overcome. Inhibition of this ion-channel has 
been linked to a potentially fatal cardiac arrhythmia, Torsades de 
Pointes (TdP) [153]. A variety of different experimental assays are 
routinely employed to measure hERG inhibitory potential, includ-
ing competitive binding assays, as well as both manual and, higher 
throughput, automated electrophysiological assays [210, 211]. From 
recent reports, it is apparent that significant hERG inhibition does 
not necessarily mean that a drug will induce Torsades de Pointes 
[51, 75]. This may be in part due to the fact that the plasma concen-
tration of the compound is an important additional determinant of 
its physiological effect. Nevertheless, not least due to FDA guide-
lines, there is considerable pressure to minimize the likelihood of 
this form of toxicity occurring, meaning hERG inhibition is still 
routinely screened for in drug discovery [153]. 
 A wide range of experimental protocols are employed for as-
sessing hERG inhibition [210]. It has also been suggested that the 
level of variability for replicate electrophysiological measurements 
is typically of the order of 0.10 to 0.50 log units [153]. The result-
ing variation in the IC50 values reported in the literature for the 
same compounds, commonly measured using different protocols, 
means that the generation and validation of in silico models using 
literature mined datasets is a recognized challenge [161, 177, 212, 
213]. Furthermore, an additional challenge is the small size of many 
literature datasets [161, 214, 215]. Whilst it has been suggested that 
training on larger literature mined datasets may decrease predictive 
performance due to increased data inconsistency [213], Doddareddy 
et al. have argued that combining data from patch-clamp and bind-
ing assays to yield larger training sets may actually be beneficial 
[177]. 
 The prediction of hERG inhibition potential has been exten-
sively tackled using QSAR approaches. Both regression and classi-
fication based approaches have been employed for this purpose. For 
the most part, the latter approaches have entailed the construction of 
binary classifiers designed to discriminate between inhibitors and 
non-inhibitors. The experience of Yao and co-workers within 
GlaxoSmithKline is that compounds with an IC50 < 1 �M usually 

induce QT prolongation (a surrogate marker for TdP) in in vivo 
assays, and their development is usually discontinued, while those 
with IC50 > 10 �M usually do not and are typically progressed 
[216]. These cut-offs are generally accepted values elsewhere in the 
pharmaceutical industry [153, 217]. In keeping with this, various 
modeling studies have sought to develop binary classifiers based on 
either a 1 �M or 10 �M threshold [161, 185, 212, 217]. However, a 
variety of other thresholds (between 130 nM and 40 �M) has also 
been proposed [217]. Some studies have sought to develop models 
designed to discriminate between strong (IC50 < 1 �M) and weak 
inhibitors (IC50 > 10 �M) [185, 217, 218]. Whilst this type of strat-
egy may have some justification, in light of possible class ambigui-
ties arising due to experimental uncertainty [177], these models 
might be of limited value in drug discovery, where many compound 
series exhibit moderate inhibition values (i.e. IC50 in the range 1-
10�M) [153]. To our knowledge, only Dubus et al. [185] and Thai 
and Ecker [189, 219] have specifically sought to develop ternary 
classifiers discriminating between strong, moderate and weak in-
hibitors, with only the latter authors having sought to externally 
validate their models; Gavaghan et al. also considered how their 
regression model might be used to categorize compounds as strong, 
weak and moderate inhibitors [153]. 
Modeling Studies 
 A diverse set of computational approaches has been employed 
to predict hERG inhibition in silico. These approaches include the 
use of pharmacophores to define inhibitors of hERG [220, 221], 
PLS regression based on docking scores [222] (structure-based 
approaches using homology models, in the absence of a crystal 
structure [223]), as well as a variety of ligand-based QSAR studies 
which are our primary focus here. QSARs based on 2D [189, 217, 
219], including variants using 2D molecular fingerprints [13, 161, 
177], 3D[219] and 4D [213] descriptors have been described in the 
literature.  
 All manner of statistical algorithms have been used to relate the 
types of descriptors described above to hERG activity, including 
PLS regression [153], PLS classification [213, 214, 224], LDA 
[177], linear [212] and non-linear SVMs [161, 177, 212], linear 
[194] and non-linear [225] SVRs, Laplacian modified Naive Bayes 
classifiers [13], and ANNs [189, 219, 224]. Many of the earlier 
QSAR studies were reviewed by Demel et al. [226], while a sum-
mary of the performance of different classification models was also 
presented more recently by Thai and Ecker [219] and Marchese 
Robinson et al. [161]. 
 Obrezanova and Segal reported binary classifiers based on the 
non-linear Gaussian Processes method [214]. This approach has 
also recently been used to build hERG regression models [227]. 
Recently, Marchese Robinson et al. reported, to the best of our 
knowledge, the first hERG classification models based on the Win-
now method [161]. Both these relatively underused methods were 
compared, in conjunction with the same descriptors, to other widely 
used statistical methods. Obrezanova and Segal [214] found that 
both their binary classifiers, based on a 10 �M threshold, generated 
using Gaussian Processes, outperformed RF, SVM (using a RBF 
kernel), a Decision Tree and PLS, using the same descriptor sets. 
They presented the following kappa values for these methods using 
an external test set (save for their Decision Tree model, which was 
optimised using this test set): 0.66 and 0.60 (Gaussian Processes), 
0.54 (RF and SVM), 0.58 (Decision Tree) and 0.43 (PLS). 
Marchese Robinson et al. found that binary classifiers (1 �M
threshold) built using Winnow (a linear method) performed compa-
rably well to both RF and SVM (using a RBF kernel) models gen-
erated using the same high dimensional descriptor sets and trained 
on the same data. They reported MCC values, on randomly selected 
external test sets, across the following ranges: 0.43-0.59 (Winnow), 
0.40-0.55 (SVM) and 0.44-0.52 (RF). [161] However, in keeping 
with many studies based on literature mined data [226], these stud-
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ies validated their models on small test sets, comprised of (up to) 50 
[214] and 148 [161] literature mined compounds respectively.  
 It is of interest to note that studies on large propriety pharma-
ceutical datasets by Johnson et al. [228] and Gavaghan et al. [153], 
both obtained some RMSE values, from external validation, less 
than 0.65, with linear models which are readily interpretable. How-
ever, studies which also assessed their models on large amounts of 
data, and which compared non-linear and linear approaches, appear 
to suggest that linear approaches may be somewhat outperformed 
by non-linear approaches. In the studies by Doddareddy et al. [177] 
and O'Brien and de Groot [13], the comparison between the linear 
and non-linear approaches is confounded by the lack of regulariza-
tion to control overfitting for the linear LDA model [177] and the 
use of different descriptors [13] respectively. Neither of these con-
founding factors exists when comparing the linear Ridge Regres-
sion model to the non-linear approaches employed by Hansen et al.
[225]. 
 A common theme echoed by both Gavaghan et al. [153], as 
well as Thai and Ecker [189], working with large in-house datasets 
and linear methods, and considerably smaller, literature mined 
datasets and neural networks respectively, is the inherent difficulty 
in discriminating moderate inhibitors from strong and weak inhibi-
tors (as previously defined). Whilst Thai and Ecker's approaches to 
discriminating between these three classes showed some promise, it 
must be noted that their predictive power was only assessed on 
small quantities of data (various 20-50% subsets of 285 compounds 
[189], or a set of 58 compounds [219] were used to test their mod-
els) and that the performance of some of their models was clearly 
appreciably different when different training and validation ap-
proaches were employed. For example, the (average) fraction of 
moderate inhibitors they were able to identify with one of their 
models fell from 86% to 46% depending upon the manner in which 
their data was partitioned into training and test sets [189]. 
Model Interpretation 
 The study by Gavaghan et al. [153] also serves to emphasise 
how in silico models for hERG inhibition can be used. (1) To serve 
as a screening tool for eliminating potent hERG inhibitors from 
chemical libraries in early drug discovery. This could serve as an 
alternative to more expensive, time consuming experimental as-
sessment, or the model could be used to prioritise sending predicted 
inhibitors for experimental assay. In addition, virtual libraries could 
be filtered prior to synthesis. (2) If the model is interpretable, the 
contributions to hERG inhibition for a particular compound may be 
discerned, suggesting synthetic strategies to the medicinal chemist 
for the reduction of hERG activity. It is conceivable that a suitably 
interpretable model may allow for an "inverse QSAR" approach, 
whereby one seeks to predict the specific change in molecular 
structure required for a specific change in biological activity [129]. 
The examination of electrostatic complementarities between a 
docked inhibitor and a hERG homology model may also be used for 
this task [229].  
 Various studies, including those which have sought to evaluate 
fragment contributions to hERG models [161 194, 230], have sug-
gested structural fragments contributing to or reducing hERG 
blockade. For example, tertiary amines (less so those on the mo-
lecular periphery) [161], as well as fluorinated phenyl rings, are 
suggested to contribute to hERG blockade, while amides are sug-
gested to reduce it. As discussed in these studies, the first of these 
relationships is well known in the literature, and various mechanis-
tic interpretations - cation-pi interactions [12], non-classical hydro-
gen bond facilitation [231], or non-specific electrostatics [223] - 
have been proposed, based on the fact that amines are expected to 
mainly exist in a protonated form at physiological pH. The typical 
increase in hERG inhibition with molecular size, as well as lipo-
philicity, as well as the significance of ionisation state, was also re-
emphasised in a recent study utilising thousands of compounds 

[14]. These clear relationships may suggest that descriptors encod-
ing these physiochemical properties should be included in models 
for hERG blockade. However, the most appropriate descriptors to 
encode these is not always obvious and the contributions of descrip-
tors designed to do so may not always be as expected; for example, 
a recent study found that two descriptors, both encoding hydro-
philic character, made both positive and negative contributions to 
predicted hERG inhibition [213]. 

3.2. Genotoxicity / Carcinogenicity 
 Carcinogenic chemicals are divided into two broad categories 
based on their presumed mode of action: genotoxic and non-
genotoxic. Genotoxic carcinogens cause damage by interact-
ing/binding directly with DNA (mutagens), whereas non-genotoxic 
carcinogens cause changes in cellular processes, differing consid-
erably from the process of binding directly to DNA [232]. Chemi-
cals are defined as carcinogenic if they induce tumors, increase 
tumor incidence or shorten the time to tumor occurrence. The car-
cinogenic potential of a chemical also depends on the conditions of 
exposure (e.g., route, level, pattern and duration of exposure). 
 The bacterial reverse mutation assay (Ames test) is commonly 
used to detect for mutagenicity and has been widely used as an 
early alerting system for potential genotoxicity. This assay was 
designed to detect and identify genetic damage caused by chemicals 
in bacterial cells [8, 233-235]. In the Ames test, frame-shift muta-
tions or base-pair deletions may be detected by exposure of his-
tidine dependent strains of Salmonella typhimurium and/or Es-
cherichia coli to a test compound. When these strains are exposed 
to a mutagen, reverse mutations that restore the functional capabil-
ity of the bacteria to synthesize histidine enable bacterial colony 
growth on a medium deficient in histidine. These altered bacteria 
are referred to as “revertants”. Since many chemicals interact with 
genetic material only after metabolic activation by enzyme systems 
not available in the bacterial cell, the test compounds are, in many 
cases, additionally examined in the presence of a mammalian me-
tabolizing system, which contains liver microsomes (S9 mix). A 
compound is classified as Ames positive (otherwise negative) if it 
significantly induces revertant colony growth in any of the (usually 
five) strains, tested either in the presence or absence of an S9 mix. 
As a consequence of this definition, Ames-negative compounds in 
the benchmark dataset which have not been tested in all recom-
mended strains may turn out to cause reverse mutations when ex-
amined in additional strains.  
 The main sources of publically available data for this assay are; 
the US Food and Drug Administration (FDA), Centre for Food 
Additives and Applied Nutrition (CFSAN), Food Additive Re-
source Management system (FARM), Chemical Carcinogenicity 
Research Information System (CCRIS) [236], the National Toxi-
cology Programs (NTP) Genetic Toxicology database [237] and the 
Tokyo-Eiken database [238]. As there is quite a large dataset avail-
able for this test, it is not surprising that this is the most commonly 
modeled endpoint for genotoxicity. 
 Kirkland et al. [239] evaluated the ability of a battery of in vitro
genotoxicity tests (Ames, mouse lymphoma assay, in vitro micro-
nucleus (MN) and chromosomal aberrations) to discriminate rodent 
in vivo carcinogens and non-carcinogens. It was found that a com-
bination of two or three test systems had greater sensitivity than 
individual tests, resulting in sensitivities of around 90% or more, 
depending on the test combination. The sensitivity of individual 
methods was between 59% (for Ames, over more than 500 chemi-
cals) and 79% (for MN, over more than 80 chemicals). The speci-
ficity of the Ames test was reasonable (73.9%), but all mammalian 
cell tests had a low specificity (below 45%), and this was reduced 
in combinations of two and three test systems. This highlights the 
difficulties in the current ability to extrapolate from in vitro geno-
toxicity results to in vivo carcinogenicity.  
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 As discussed above, in silico toxicology methods are hazard 
identification methods and in most of cases they don’t take dose 
and exposure into account unless an exposure-response relationship 
has been studied. Therefore, these methods cannot predict toxicity 
in isolation, but can provide useful supplementary information for 
the overall risk assessment process. For example, the aromatic nitro 
group is a well known fragment that triggers a structural alert for 
carcinogenicity, but if a chemical containing this fragment has very 
low exposure, or bioavailability, it is questionable whether the toxic 
prediction will be correct. Therefore, whenever possible, internal 
exposure (i.e. the amount taken up and distributed as given by the 
free plasma concentration) should be taken into account by use of 
either in silico or in vitro ADME data. Ideally, the results of the 
predictions should be combined with other evidence and data for 
consideration for the risk assessments.  
Modeling Studies 
 In silico predictive models for genotoxicity fall into two princi-
pal categories: rule based (expert systems) and QSARs. The former 
approach is associated with the local reactivity of chemicals, i.e.,
reactivity of functional groups or structural alerts. The key step in 
the development of this approach is defining chemical categories 
for genotoxicity and defining the organic chemistry associated with 
the formation of a covalent bond between DNA and an exogenous 
chemical. In this approach, a well-defined reactive group which has 
the potential to interact with DNA is identified. Several rule-based 
systems have been developed [240-242] which help to summarize 
the relationships between specific chemical substructures and ob-
served mutagenicity outcomes. This technique can be an invaluable 
tool in the in silico prediction of genotoxicity, as it is very simple 
and highlights the presence of certain substructures (toxicophores) 
within the molecule, and can be related to the Ames test outcome. 
This alert approach may also provide mechanistic understanding of 
the Ames test outcome.  
 It should be noted that this approach is generally used to predict 
if a chemical to be Ames positive only. If no alert is triggered, it 
does not mean that the chemical under investigation will be Ames 
negative [243]. A recent comprehensive review [232] of different in 
silico models and approaches for predictions of genotoxic outcome, 
shows that most of the earlier approaches described for the predic-
tion of Ames mutagenicity produced good specificity and sensitiv-
ity values (prediction accuracy of up to 85%). Depending on the 
descriptors and the statistical methods used, some of the models 
offer simple SAR information [82, 244], whilst others are harder to 
interpret due to the choice of chemical descriptors derived from 
structural information [245, 246]. 
 QSAR models are widely used to predict genotoxicity. One of 
the advantages of these approaches is that they can be used to pre-
dict both positive and negative outcomes (i.e. unlike structural 
alerts which focus on toxic/positive molecules). Different QSAR 
and machine learning methods have been used to derive in silico
predictions about the Ames outcome of the chemicals. These in-
clude Ames test QSAR models using PLS, NN, RF, and SVM [46, 
244-250]. 
 There have been several attempts to generate in silico models 
from rodent in vivo carcinogenicity data [46, 251]. However, as 
with many toxicity measures, there are difficulties in modeling this 
endpoint due to the diversity of carcinogenicity pathways and the 
relatively small number of compounds available. Several complex 
pathways contribute to carcinogenicity for which reliable data sets 
are in general unavailable. Most carcinogenicity models have pri-
marily focused on rodent bioassays. Using a dataset extracted from 
the Carcinogenicity Potency Database CPDB, consisting of 805 
chemicals with rat TD50 values, Fjodorova et al. [251] generated a 
classification model using a Counter-Propagation ANN method. 
Although a good accuracy (93%) for classification was reported for 
the training set, the corresponding value for the test set dropped to 

approximately 70%. While this model may still be of value, the 
result suggests that overfitting is a possibility, and that applicability 
domain considerations are likely to be important and must be taken 
into account.  
 At present, QSAR methods are more reliable for predicting 
genotoxic potential than carcinogenic potential. As discussed 
above, carcinogenicity prediction represents a considerable chal-
lenge due to the multitude of possible mechanisms of toxic action. 
One of the main aspects these models do not include is a considera-
tion of ADME properties, which could be critical steps in the car-
cinogenic process. It is crucial we understand how a molecule is 
distributed across different organs to fully understand their toxic 
potential. 

3.3. P450 Inhibition 
 Drug-drug interactions (DDIs) arise from either inhibi-
tion/blockage or induction of certain metabolic pathways, causing 
substantial variations in drug concentrations present in the systemic 
circulation [252]. Inhibition of one or more cytochrome P450 iso-
forms may potentially block the metabolism of a drug molecule, 
which may in turn lead to its accumulation in the body. In the case 
of metabolism-activated prodrugs, inhibition of an enzyme needed 
for its activation may lead to a loss of pharmacological efficacy.  
 The prediction of DDIs is a non-trivial, complex problem that 
has traditionally been addressed using elaborate clinical studies 
[253]. Indeed there are some major uncertainties regarding the ex-
trapolation of in vitro assay data to in vivo effects [254]. Several in 
vitro P450 inhibitors, such as clotrimazole and other imidazoles 
have in fact been observed to actually induce these proteins in vivo
[255]. One major challenge in predicting systemic effects derives 
from the crosstalk between receptors regulating metabolizing en-
zymes [256]. Though assays are becoming more readily available, 
and greater insight into the mechanisms of inhibition and induction 
of metabolic enzymes has been gathered, a complete framework 
that will allow the accurate prediction of enzyme inhibition and 
induction is still missing [252]. 
 P450 enzymes play a pivotal role in drug metabolism and DDIs. 
This is particularly observed for drugs where metabolism is de-
pendent on a single P450 isoform. Polymorphism of certain P450 
isoforms such as P450 2D6, P450 2C9 or P450 2C19 adds an addi-
tional layer of complexity to the problem [257, 258]. Inhibition is, 
in general, considered to be more problematic than P450 induction 
due to its potential to cause toxic effects due to compound accumu-
lation. Inhibition is commonly evaluated by determining the IC50 or 
Ki using human liver microsomes, cDNA-expressed microsomes or 
recombinant protein systems [58]. In addition, as a result of the 
availability of 3D structures for a variety of P450s, a wide range of 
3D modeling techniques have been used to model P450 inhibition. 
Modeling Studies 
 A plethora of P450 QSAR modeling studies have been reported 
in the literature, reflecting the considerable interest in predicting 
interactions of small organic molecules with P450s [60]. The qual-
ity of training and test data is critical in defining the performance of 
a computational model. Assay data may be inaccurate or noisy and, 
in the case of highly promiscuous interaction sites like those ob-
served for P450 3A4, may mean assay data based on a single probe 
may be not sufficient to map the binding properties of the enzyme 
or its inhibitors [56]. Potent inhibitors of P450 are often found to 
coordinate directly with the heme iron, as illustrated in Fig. (2).  
 The extent to which coverage of chemical space can be 
achieved by a model, which is dictated by the diversity of the mole-
cules used for training and testing, is particularly critical for model-
ing P450 activity given the promiscuity of these proteins for a di-
verse range of molecules. Despite this, only a minority of reported 
P450 QSAR studies have considered the applicability domain  
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Fig. (2). Cytochrome P450 3A4 with metyrapone (PDB accession code 
1W0G). The protein is denoted using a cartoon representation, the heme 
using sticks, and metyrapone using spheres. 

concept. The commonly observed superior prediction accuracy of 
local models when compared to more general, global models comes 
at the cost of a much smaller domain of applicability [159]. In addi-
tion, performance differences between linear and non-linear ap-
proaches are in general smaller for local models, likely due to the 
fact that local phenomena are more easily described by linear rela-
tionships. For more information on challenges for QSAR modeling 
of P450 data the reader is referred to [22]. 
 Local models have been reported for the major CYPs of interest 
in drug development. Examples include models for the prediction 
of flavonoids interacting with P450 1A2 using MLR and back-
propagation ANN models [259], as well as MLR, PLS, genetic 
function approximation, and genetic PLS [260]. Saraceno et al.
[261] recently reported QSAR models for P450 2D6 based on 51 
known inhibitors. The authors found that only models including 3D 
descriptors in addition to 2D descriptors obtained high prediction 
accuracy. Susnow and Dixon used 2D structural descriptors to iden-
tify inhibitors of P450 2D6 [262], using a recursive partitioning 
approach and training data of 100 compounds with known inhibi-
tion constants. Correct classification was obtained in 75 to 80% of 
the cases. For P450 2B and 3A, a local, bilinear model for azoles 
was reported, which points out the importance of logP for binding 
affinity [263].  
 Global models based on PLS, MLR, classification and regres-
sion tree (CART) and Bayesian ANNs models were developed for 
P450 1A2 [264]. The training set consisted of 109 compounds and a 
validation set of 249 orally applied administered drugs, respec-
tively. Similar results were obtained for the four methods, with R2

values of the training set ranging from 0.72 to 0.84 and correct 
classification in 83% of all cases for a consensus model. A compli-
cating factor was the bias of inactive molecules in the test set mak-
ing true validation more difficult. For the same isoform, recently a 
number of classification models using a set of approximately 400 
inhibitors and 7000 non-inhibitors were reported [265]. Binary 
QSAR, SVM, RF, k-NN and decision tree models were developed 
using Volsurf [266] and MOE descriptors [104], with between 73-
76% of compounds included in the test set predicted correctly. Bur-
ton et al. employed recursive partitioning to classify inhibitors and 
non-inhibitors of P450 1A2 and P450 2D6, with data sets of 306 
and 498 molecules, respectively. Again, MOE descriptors were 
employed and accuracy of >80% was reported [267]. 
 Recursive partitioning was also used in a study by Ekins et al.
to model the inhibition potential of more than 1750 molecules for 
P450 2D6 and P450 3A4 (Spearman’s rho of 0.61 and 0.48 for 
CYP2D6 and CYP3A4 on the test set, respectively) [268]. Both 

isoforms were also modeled by Jensen et al., who used a Gaussian 
kernel-weighted k-NN approach employing extended connectivity 
fingerprints (ECFPs) using 1153 P450 data points for 2D6, and 
1382 values for P450 3A4, respectively [269]. Correct classification 
was obtained for 82% to 88% of the test set molecules, with 10-
14% of the compounds not being classified. 
 Examples of QSAR studies for the prediction of inhibitory po-
tential for P450 3A4 include the PLS binary classification model by 
Zuegge et al. [270] based on a training set of 311 compounds and 
333 descriptors. Correct predictions were obtained for 95% of the 
training data and for 90% of a semi-independent validation set of 50 
compounds. In a further study, 807 drug-like compounds were used 
to train SVM classification models for P450 3A4 inhibition [271]. 
A three-class model based on 2D descriptors yielded correct predic-
tions for 70% of a comprehensive test set. Using structural finger-
prints and topological indices, SVMs were also found to outperform 
various algorithms such as recursive partitioning, Bayesian classi-
fier, logistic regression, k-NN in a study based on 4470 inhibitors 
and non-inhibitors of P450 3A4 [272]. This investigation demon-
strated the correlation between the prediction accuracy and the 
structural similarity of the query molecule to the training data. A 
drop in predictive power was identified for molecules sharing a 
Tanimoto similarity index lower than 0.8 with compounds of the 
training set. Similar observations were also reported by Zhou et al., 
who used a set of 826 P450 3A4 inhibitors and 873 non-inhibitors 
to train a SVM binary classification model [273]. 
 Several QSAR efforts aimed at the prediction of inhibition for 
multiple isoforms. Regression QSAR models were developed for 
six P450 isoforms relevant to xenobiotic metabolism, P450 1A2, 
P450 2B6, P450 2C9, P450 2C19, P450 2D6 and P450 3A4 [274]. 
The authors of this study report correlation coefficients for this 
approach between 0.94 and 0.99, but it should be noted that the 
datasets were of very small size. Interestingly, it was found that the 
consideration of hydrogen bonding and pi-pi interaction capability 
is crucial for model performance. Gleeson et al. used PLS and re-
gression trees in combination with a number of relatively interpret-
able descriptors to develop global classification models for P450 
1A2, P450 2C9, P450 2C19, P450 2D6 and P450 3A4 [275] based 
on a high quality data set of approximately 1500 compounds. Inter-
estingly, the P450 3A4 model was found to outperform models of 
other isoforms such as P450 2D6 and P450 2C19, which the authors 
infer is due to its greater promiscuity/softer molecular recognition 
features. Another recent study employed PLS regression along with 
18 non-linear methods on eight P450 isoforms including P450 2D6, 
P450 1A2, P450 3A4 and P450 2C9. The predictions of pIC50 val-
ues displayed R2 values between 0.69 and 0.94 for a subset of six 
descriptors, as well as R2 values between 0.78 and 0.99 for a subset 
of 6 and 15 descriptors, respectively [276]. 
 Hammann et al. employed k-NN, decision trees, RFs, ANNs 
and SVMs using different kernel functions to classify 335 sub-
strates, inhibitors of P450 1A2, P450 2D6 and P450 3A4 isoforms 
[277]. Using 188 descriptors and 10-fold cross validation, classifi-
cation performances were reported between 82 to 94% for the dif-
ferent isoforms. In reality a significant proportion of xenobiotics are 
metabolized by more than one isoform. This was addressed in a 
recent study employing multi-label classifiers such as SVMs, multi-
label k-NNs and ANNs [278] based on a set of 580 substrates of 
seven P450 isoforms (approx. 15% of these substrates are known to 
bind to up to five enzyme variants). While single-label and multi-
label classifiers in general seem to obtain comparable prediction 
rates, the multi-label approach more adequately represents the real 
situation and avoids information loss on isoform specificity. 
3D QSAR Methods 
 3D QSAR methods such as Comparative Molecular Field 
Analysis (CoMFA) have been used to predict P450 inhibition of 
small organic molecules. While these 3D methods introduce an-
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other level of complexity by their dependency on an accurate ligand 
alignment, the 3D visualization of the observed stereochemical and 
electronic properties responsible for the exhibited bioactivity can 
provide valuable insights for the interpretation of the underlying 
protein-inhibitor interactions. Examples of the application of 3D 
QSAR methods to analyze P450 inhibition include the derivation of 
CoMFA models for P450 1A2 [279], P450 2A5 [280], P450 2A6 
[280], P450 2B6 [281] and P450 19A1 (aromatase) [282].  
 Molecular interaction fields (MIFs) encode the variation in 
interaction energies between a target structure and a chemical probe 
in three-dimensional space. GRID [283], which has been developed 
as a tool to assess protein surfaces for areas of favorable interaction 
energies with ligands, has been extensively used for P450 enzymes 
in combination with several computational approaches. The 
GRID/GOLPE approach was used to rationalize the inhibitory ac-
tivity of compounds on P450 2C9 [284], P450 2A5 [280] and P450 
2A6 [280] and P450 1A2 [279]. A potential drawback of GRID and 
related descriptors is their dependence on the pre-alignment of the 
molecules. This of course can be bypassed using GRID alignment 
independent descriptors (GRIND) [285, 286]. These descriptors 
were successfully employed to generate a PLS-derived model for 
quantitative predictions (r2 = 0.77, q2 = 0.60) of P450 2C9 inhibi-
tion [287]. Another GRIND-based 3D-pharmacophoric model was 
reported for P450 3A4, where a data set of 331 compounds with 
inhibition data was used to derive a 3D-QSAR model from MIFs 
[288, 289]. 
3D Modeling Studies 
 A pharmacophore defines a pattern of chemical and steric fea-
tures essential for a ligand to exhibit biological activity. A major 
reason for the popularity of this approach is its simple underlying 
concept that relates closely to the way medicinal chemists intui-
tively consider SAR. Pharmacophore models for the qualitative and 
quantitative assessment of substrate and inhibitor binding have been 
reported for a large number of P450 isoforms relevant to drug dis-
covery, including; P450 1A2, P450 2A6, P450 2B6, P450 2C9, 
P450 2D6, P450 3A4, P450 3A5 and P450 3A7. These models have 
been discussed and summarized in a number of comprehensive 
reviews elsewhere [63, 290-293]. 
 A collection of eleven structure-based and ligand-based phar-
macophore models for P450 substrates and inhibitors has been pub-
lished by Schuster et al. [294]. Pharmacophore models of P450 2C9 
substrates typically include a hydrophobic/aromatic and a nega-
tively charged interaction feature [290, 291]. There are, however, 
also non-anionic substrates of 2C9 known that have been consid-
ered by Locuson et al. [295]. Pharmacophores of P450 2D6 include 
an aromatic interaction as well as a characteristic positive charge 
about 5 to 7 Å distant from the oxidation site [291]. Contrary to 
more specific P450 isoforms, the promiscuity of P450 3A4 is re-
flected in the apparent absence of pharmacophoric requirements 
[292]. Mao et al. showed that for modeling QSARs of P450 3A4 
inhibitors a number of local pharmacophore models is required to 
adequately represent distinct binding modes [296]. A more recent 
study used three individually derived pharmacophore models to 
identify substrates and inhibitors of P450 2A6 in an attempt to ac-
count for protein flexibility. This approach was combined with an 
SVM to increase prediction accuracy [297]. 
 Protein-ligand docking has been used to predict potential drug-
drug interactions via P450 2D6, which may affect the therapeutic 
success of anti-cancer treatments [298]. A homology model of P450 
2D6 was derived to dock 20 drugs commonly prescribed to cancer 
patients using GOLD [119]. 13 compounds were identified in silico
to potentially bind to P450 2D6. For eleven of these compounds, 
binding to P450 2D6 was confirmed experimentally. 
 A wide variety of techniques can be applied, from simple SAR, 
complex multivariate QSARs, to more complex 3D modeling 
methods traditionally used in structure based design. P450 inhibi-

tion is probably the most accessible area of toxicology to main-
stream computational chemistry due to the wealth of experimental 
inhibitor screening and X-ray structural data, and is likely to remain 
so, at least in the near future.  

3.4. Metabolite Prediction 
 The prediction of metabolites formed by a particular molecule 
in vivo is of critical importance, as the presence of these in the body 
may give rise to undesirable toxic side effects due to a wide variety 
of reasons (protein reactivity, P450 inhibition etc). The experimen-
tal determination of these metabolites is very resource intensive, 
meaning in silico methods for prediction are highly sought after 
[299]. 
 Within the past few years a wide variety of computational ap-
proaches and tools have been developed that attempt to pinpoint the 
most likely site of metabolism (SOM) of a molecule and the result-
ing metabolites. These can be classified into QSARs, fingerprint-
based methods, shape-focused techniques, molecular interaction 
fields, protein-ligand docking and reactivity-based methods. Most 
of these approaches consider one particular aspect of a metabolic 
reaction such as the reaction energy barrier, geometrical properties 
or pharmacokinetic aspects. In reality, however, an ensemble of 
properties is required for a metabolic reaction to take place and, 
hence, combined approaches have been developed to enable more 
realistic assessments. Readers are referred to the excellent review of 
Tarcsay and Keser� on SOM prediction for more detail on this area 
[300]. 
 Expert systems were the earliest computational approaches to 
predict metabolic liability in rational drug development. They are 
based on dictionaries of biotransformations, encoding rules for 
metabolic reactions derived from in vivo and in vitro experimental 
data. These dictionaries can in general be adapted and extended by 
the user and several of the software tools come with a dedicated 
programming language for setting up such rules. Examples of ex-
pert systems include a number of well known products including 
META [301], MetabolExpert [302], METEOR [64], SyGMa [303] 
and TIMES [92, 304]. Due to their rule-based approach, expert 
systems tend to have a high false positive hit rate. In order to filter 
these false positives, Tarcsay et al. [305] recently proposed a com-
bination of MetabolExpert with the docking protocol Glide [118]. 
 Fingerprint-based descriptors allow for the encoding of the 
chemical environment of SOMs as well as metabolically stable 
atom environments. Mining metabolic reaction databases such as 
the Accelrys Metabolite Database [306] allows for the derivation of 
probability scores that an atom in a defined environment will be 
involved in a metabolic reaction. MetaPrint2D is a software tool to 
mine these (and other) biotransformation resources and enables the 
prediction of the most likely SOMs for xenobiotics, providing a 
normalized probability score [307, 308]. However, this score does 
not account for the absolute probability of a metabolic reaction. The 
approach is not limited to P450-based reactions and an additional 
module, MetaPrint2D-React allows one to predict the metabolites 
based on SMIRKS pattern-encoded chemical reactions [141]. 
MetaPrint2D is open source software [309]. Also, the PASS method 
(Prediction of Activity Spectra for Substances) uses fingerprints 
(Multi-Level Neighborhood of Atoms) to predict the metabolic 
liability of atom positions of small organic compounds [310]. This 
software tool reports the name of the biotransformation, but does 
not explicitly highlight the SOM or generate structures of potential 
metabolites. 
 The P450 Regioselectivity Module, provided by ACDlabs, is a 
recently introduced commercial software tool for the prediction of 
SOMs, based on a comprehensive training set of more than 900 
compounds. The method assigns a probability score for a biotrans-
formation to occur at a defined atom position considering N- and O-
dealkylation, aliphatic and aromatic hydroxylation, as well as S-
oxidation. Also, isoform-specific predictions can be performed on 
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five of the cytochromes most relevant to xenobiotic metabolism 
using additional modules from ACDlabs [311]. 
 Well-known approaches and products for SOM prediction are 
based on MIFs. MetaSite [101], which evolved from earlier devel-
opments using GRID and ALMOND [312, 313], combines several 
different computational approaches to address metabolic liability: A 
MIF-based module for the assessment of protein and ligand proper-
ties and a quantum chemical component to simulate metabolic reac-
tivity. More recently, a knowledge-based module was introduced, 
which accounts for preferred reaction types for the individual P450 
isoforms. The authors of MetaSite report a success rate of 85% for 
correctly identifying the known SOM amongst the two top-ranked 
positions, and an 80% success rate for the identification of the en-
zyme isoform involved in the biotransformation [101]. Comparing 
several methods for the prediction of SOMs of P450 3A4-based 
biotransformation, Zhou et al. found that MetaSite correctly pre-
dicted at least one SOM within the top three atom positions in 78% 
of all cases [314]. In a more recent prospective assessment, SOMs 
for atom positions ranked first by MetaSite were confirmed as cor-
rect in 55% of all cases, increasing to 84% when considering the 
top three atom positions[315]. 
 Protein-ligand docking is another frequently employed ap-
proach to predict SOMs based on the orientation of the ligand 
within the catalytic binding site of P450s. Atom positions closest to 
the heme iron are considered the most likely SOMs. Unwalla et al.
used Glide to identify SOMs of P450 2D6. Predictions were 
deemed correct in cases where a known SOM is located within a 
4.5 Å distance from the catalytic center among the five highest-
ranked poses. This was found to be correct for 85% of the 16 inves-
tigated compounds [316]. This study points out the common obser-
vation that, due to considerable conformational rearrangements of 
the protein upon ligand binding, P450 apo structures generally yield 
inferior performance compared to holo structures. Related studies 
were reported using GOLD [317, 318], which also investigated the 
impact of water molecules placed in the binding site. The effect of 
the latter was systematically investigated for 19 P450 structures 
[319] using AutoDock [320], FlexX [321], and GOLD and, in a 
study by Santos et al., again using GOLD [322]. 
 P450 enzymes show a remarkable degree of flexibility within 
the binding site and, hence, make it a prime target for ensemble-
based docking approaches. Teixeira et al., for example, used mo-
lecular dynamics simulations to derive an ensemble of P450 3A4 
structures [323]. While the original X-ray structures did not allow 
for the identification of the known SOM for any of the 16 ligands 
under investigation, the ensemble-based technique was able to suc-
cessfully predict the correct SOM for all 16 compounds in at least 
one of the investigated MD-derived protein conformations. Also, 
using docked poses as a starting point for MD simulations may 
considerably improve prediction accuracy [324]. 
 Shape-based methods are becoming increasingly popular as a 
technique for similarity-based virtual screening [325-330] and bio-
activity profiling [331]. They are based on the observation that 
compounds of comparable shape are more likely to exhibit similar 
bioactivity at the same receptors. A recently published study em-
ployed the shape-based screening engine ROCS (Rapid Overlay of 
Chemical Structures) [332] to identify the most likely SOMs for 
P450 2C9 substrates [333]. In this study, flurbiprofen was extracted 
in its protein-bound conformation from an X-ray structure and used 
as a query for alignment of 70 known P450 2C9 substrates. The 
authors reported the correct alignment of the known SOMs of these 
substrates to the known SOM of flurbiprofen in 60% of all cases, 
with 89% out of the 44 top-ranked compounds predicted correctly. 
 Quantum chemical (QC) methods allow for prediction of liabil-
ity to metabolism based on theoretical reactivity measures. For 
aliphatic hydroxylation, aldehyde hydroxylation and dealkylation 
reactions, the hydrogen abstraction energy from a carbon atom 

correlates with metabolic reactivity [98]. Modern approaches in-
clude SMARTCyp, which ranks SOMs based on pre-computed 
transition state energies, in conjunction with an accessibility de-
scriptor (SPAN) [334, 335]. Recently, the RS-Predictor program 
was developed, a method that uses topological and QC descriptors 
to represent the reactivity potential of SOMs [336]. The tool was 
found to correctly predict known SOMs for 78% of all cases be-
tween the two top-ranked atom positions, outperforming 
SMARTCyp and StarDrop (see below). For further information the 
reader is referred to [61]. 
 One of the earliest approaches combining several different 
techniques to identify SOMs employed ligand-based pharmacopho-
res, homology modeling and molecular orbital (MO) calculations 
[337]. The experimental SOM was identified for six out of eight 
investigated compounds. Related to MetaSite, which has been al-
ready discussed above, StarDrop identifies SOMs via a combination 
of approaches, including a QC-based, global P450 model. In addi-
tion, StarDrop features P450 isoform-specific, ligand-based models 
derived from known substrates, and considers logP to improve pre-
diction accuracy. Recently, another combined approach was pre-
sented that uses five QC descriptors related to reaction energies, 
plus the energies calculated using the SmartCyp approach, SASA 
and pharmacophoric constraints, to reflect the properties of the 
P450 3A4 binding site [338]. The best performing model was ob-
tained using all three different descriptor types and RF, which was 
found to correctly identify known SOMs in 82% of all cases among 
the two highest-ranked atom positions. Ligand docking methods do 
not account for reactivity and, hence, are frequently combined with 
QC-based methods in particular.  
 Kuhn et al. analyzed the P450 3A4-catalyzed hydroxylation and 
O-dealkykation of sirolimus (rapamycin) and everolimus (RAD-
001) employing a QC/docking/MD simulations workflow [339]. 
This led to valuable insights on how to potentially reduce the meta-
bolic liability of these compounds. MLite is a model for the predic-
tion of P450 3A4-mediated metabolism based on a docking algo-
rithm and a QC method developed by Korzekwa at al. [340], and 
Jones et al. [341] for the estimation of reactivity [342]. With the 
optimized model, correct predictions of the SOM were obtained for 
76% of the 25 investigated compounds, when taking into account 
the two highest-ranked atom positions for each molecule.  
 Finally, one of the latest methods employed to predict the re-
gioselectivity of P450 3A4 substrates considers four metabolic 
reaction types, which are aliphatic and aromatic hydroxylation, N- 
and O-dealkylation [338]. 61 data points were considered, 51 
thereof were used to develop a pharmacophore model and 10 were 
used as a test set. Geometric accessibility of any atoms of a mole-
cule was encoded by its solvent accessible surface area (SASA) and 
metabolic reactivity was represented by calculated reaction energet-
ics which was calculated using activation energy, electronegativity 
equalization sigma charge and sigma Fukui function, as well as 
Huckel pi charge and pi Fukui function. A RF model was gener-
ated, which obtained 82% correct predictions on the test set. 
 The general conclusion is that the tools available to predict 
SOM provide users with useful insight into the potential sites of 
metabolism. This ability can be useful to rationalize results from 
experimental metabolic assays or in the design of new molecules 
with reduced metabolic liability. At present the methods discussed 
here are not sufficiently accurate to be used to predict whether a 
molecule is likely to suffer significant metabolism or not. 

3.5. Skin Sensitization  
 For the many different types of toxicity known, the underlying 
mechanism for skin sensitization is one of the best understood. It is 
generally believed that it is a result of the formation of chemical 
adducts formed by the reaction of unknown proteins and the chemi-
cal in question [47]. The skin sensitization potential of chemicals 
can be assessed using in vivo methods and the mouse local lymph 
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node assay (LLNA) is the method of first choice at present [84]. 
The LLNA assay has been validated as an alternative to the guinea 
pig models for the identification of potential skin sensitizers. A 
substance is classified as a sensitizer if it induces a threefold stimu-
lation index (EC3) or greater at one or more test concentrations. As 
with all biological endpoints, variability within skin-sensitization 
assays, and between different assay types is not insignificant [85]. 
A more recent, novel approach to assess sensitization potential in 
vitro involves measuring the chemical reactivity of molecules with 
small chain peptides as a protein mimic [44, 343]. 
 The ability of a chemical to react covalently with carrier protein 
nucleophiles relates to electrophilicity, and likely shape and hydro-
phobicity, given protein binding is required. A recent published 
database of more than 200 chemicals tested in the LLNA assay has 
been examined with regards to various chemical reaction domains 
known to be associated with sensitization [344]. LLNA based 
datasets are relatively small compared to other endpoints (e.g.
P450, hERG inhibition or genotoxicity) which use higher-
throughput assays.  
 However, the development of reliable alternative approaches to 
assess skin sensitization, such as QSARs, will require additional 
testing of a broad range of chemicals, covering the major chemical 
mechanisms for skin sensitization, as well as an appropriate balance 
between confirmed skin sensitizers and non-sensitizers. As dis-
cussed above the use of categorical models (i.e. predictions of sen-
sitizers vs non sensitizers) will be of limited use in the the risk as-
sessment of compounds unless an exposure-response relationship 
has also been studied. This is necessary if reliable non-animal ap-
proaches, such as those based on structure-activity relationship 
(SAR), quantitative structure-activity relationships (QSAR), read-
across, quantitative mechanistic modeling (QMM) and experimen-
tal chemistry based models, are to be developed. For a much more 
in-depth review of this area see reference [50]. 
Modeling Studies 
 A hybrid QSAR study by Dimitrov on skin metabolism and 
formation of protein conjugation was able to correctly classify 
about 80% of the chemicals with significant sensitizing effect and 
72% of non-sensitizing chemicals [345]. QSAR analyses of 16 
Schiff base compounds with LLNA measurements were undertaken 
by Aptula et al. [346]. A good model could be generated to predict 
the EC3 value using just the Taft parameter, a model electrophilic-
ity, and the logarithm of the partition coefficient (log P). The pres-
ence of an aliphatic carbonyl group was common to all compounds 
in the set, suggesting the model has a limited applicability domain.  
 Yuan et al. [347] recently modelled the skin sensitization poten-
tial of a larger set of 162 compounds with LLNA measurements, 
and 92 compounds with guinea pig maximization test (GPMT) 
measurements, using a particle swarm optimized Support Vector 
Machine. The particle swarm optimization algorithm was imple-
mented for feature selection from a large number of molecular de-
scriptors. The classification accuracies (sensitizer vs non-sensitizer) 
reported were 95.37% and 88.89% for the training and the test sets, 
respectively. For the GPMT data set, the classification accuracies 
were 91.80% and 90.32% for the training and the test sets, respec-
tively. Chaudhry et al. reported the development of two global 
QSAR models using a 209 compounds dataset for skin sensitization 
using two different computational approaches: Adaptive Fuzzy 
Partition (AFP) and Neural Network (NN) models. The best model 
shows classification success rates of 84 and 71% for the training 
and test set respectively [49]. 
 Enoch et al. [24] adopted a different approach in their study, 
focusing on the development of an expert system/applicability do-
main. They reported a comprehensive series of SMARTS (Smiles 
Arbitrary Target Specification) [141] patterns capable of classifying 
210 chemicals from the LLNA assay database into potential mecha-
nisms of action classes, which were originally assigned based on 

on expert knowledge [344]. The results showed that the SMARTS 
patterns provided an excellent method of identifying potential elec-
trophilic mechanisms, in a rapid manner. Given the small dataset 
size it is probable that the rules will need to reviewed and updated 
as new compounds are identified and potential new mecha-
nisms/substructures are identified. Also important is a consideration 
of the domain of applicability of such models, which has been dis-
cussed recently by Ellison et al. [348]. 
 An alternative strategy to predict skin sensitization EC3 values 
of the LLNA assay uses a mechanism-based read across approach. 
For example, 40 compounds were tested in the LLNA assay [349] 
and previous determined results, in conjunction with a read-across 
approach, led to a good classification of the newly tested com-
pounds. The prediction concordance was found to be 83%. In addi-
tion, Enoch et al. assessed the utility of read-across for 19 Michael 
acceptor chemicals in conjunction with an electrophilicity index. 
These were classified in good agreement with their experimentally 
determined values [350].  
 A substantial research program was initiated by Unilever, to 
critically evaluate the feasibility of a new conceptual approach for 
consumer safety risk assessment [351], including a computational 
model of skin sensitization using system biology [352]. Insights 
from these modelling exercises led to the focus of subsequent non-
animal test development upon the identified toxicity pathways, 
namely skin bioavailability [353], protein binding [343] , skin in-
flammation/Dendritic cell (DC) maturation and T cell proliferation. 

4. CONCLUSIONS 
 There still exists a need for new methods to rapidly and accu-
rately determine the toxic potential of both drug molecules and 
molecules contained in consumer product goods. In silico toxicol-
ogy models, such as those discussed in this review, fit many of 
these criteria, and have seen widespread use in drug discovery ap-
plications. Nevertheless, there is a general consensus in the litera-
ture that in silico toxicology models are not presently capable of 
accurately and reliably predicting the toxicological fate of mole-
cules [34]. This is perhaps not surprising given that researchers also 
question the level predictive ability of in vitro or in chemico meth-
ods to predict toxicity in man [48, 72, 73, 76, 81]. While in silico
predictions are not sufficiently accurate to replace experimentally 
based assays, they can be used to filter large virtual libraries prior to 
synthesis or prioritize compounds in drug discovery programs for 
risk assessment at the very beginning of a program. A compound 
that is predicted toxic in silico can be prioritized for subsequent in 
vitro (or in vivo) screening. If it is confirmed to be toxic, steps can 
be taken to remove the liability, be it a particular functional group, 
or some generic property of the compound in question. Alterna-
tively, models can be used purely in the post-rationalization of ex-
perimental results, and to suggest ways to remove the liability in 
question.  
 Another aspect requiring consideration is that typical in silico
toxicology models (and many in vitro methods for that matter) do 
not take dose or exposure into account. Therefore, these models 
cannot predict the absolute level of toxicity, but may still provide 
useful supplementary information for the overall risk assessment 
process. Therefore, whenever possible, internal exposure should be 
taken into account by use of either in silico or in vitro ADME data 
(i.e. the amount taken up and distributed as free plasma concentra-
tion within an organism). There is also a need for these computa-
tional chemistry tools to align with other information sources (for 
example from systems biology, metabolite information and expo-
sure) to facilitate the development of virtual models of tissues, or-
gans and physiological processes that could be used for the toxico-
logical assessments. Understanding how the different mechanisms 
of action of chemicals can affect biological structures, processes 
and pathways, and thus how they impact on physiological responses 
is an important aspect of toxicology. This knowledge could help 
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improve our ability to predict the level of toxicity of chemicals, and 
to develop strategies to prevent exposure to toxic compounds, or 
ways to minimize their effects. Presently, both the complexity of 
the biological response for a given toxicity, and the lack of publicly 
available mechanistic data are key reasons why in silico approaches 
to date have had limited success in delivering accurate in vivo rele-
vant predictions.  
 In view of these issues, a number of projects have undertaken 
by several groups aimed at delivering improvements in the model-
ling of in vivo human toxicity based on data available during early 
stages of the innovation pipeline. These include (a) the European 
Commission’s seventh framework joint research programmes (FP7) 
[354]; (b) the Innovative Medicines initiative IMI, funded by with 
European Federation of pharmaceutical industries and association 
(EFPIA) [355]; and (C) and the Safety Evaluation Ultimately Re-
placing Animal Testing (SEURAT1 project) funded with European 
Cosmetic, Toiletry and Perfumery Association (Colipa) [356], Fur-
thermore mechanistic understanding of human toxicity forms [357] 
a central component of the National Research Council (NRC) vi-
sion whose roadmap is described in “Toxicity Testing in the 21st 
Century (TT21C): A Vision and a Strategy” [358]. This vision is 
summarized as follows: “Advances in toxicogenomics, bioinformat-
ics, systems biology, epigenetics, and computational toxicology 
could transform toxicity testing from a system based on whole-
animal testing to one founded primarily on in vitro methods that 
evaluate changes in biologic processes using cells, cell lines, or 
cellular components, preferably of human origin.” The National 
Toxicology program (NTP) High Throughput Screening Initiative 
and the EPA Toxcast programme [359] are two efforts that aim to 
utilise the technological advances in molecular biology and compu-
tational science. 
 We conclude that, while in silico toxicology models are valu-
able tools for drug discovery scientists, much still needs to be done 
to firstly, understand more completely the biological mechanisms 
for toxicity, and secondly, to generate more rapid in vitro models to 
screen compounds. With this biological understanding and addi-
tional data available, our ability to generate more predictive in 
silico models should significantly improve in the future. 
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Introduction: The most desirable chemical starting point in drug discovery is a

hit or lead with a good overall profile, and where there may be issues; a clear

SAR strategy should be identifiable to minimize the issue. Filtering based on

drug-likeness concepts are a first step, but more accurate theoretical methods

are needed to i) estimate the biological profile of molecule in question and

ii) based on the underlying structure--activity relationships used by the model,

estimate whether it is likely that the molecule in question can be altered to

remove these liabilities.

Areas covered: In this paper, the authors discuss the generation of ADMET

models and their practical use in decision making. They discuss the issues sur-

rounding data collation, experimental errors, the model assessment and vali-

dation steps, as well as the different types of descriptors and statistical models

that can be used. This is followed by a discussion on how the model accuracy

will dictate when and where it can be used in the drug discovery process. The

authors also discuss how models can be developed to more effectively enable

multiple parameter optimization.

Expert opinion: Models can be applied in lead generation and lead optimiza-

tion steps to i) rank order a collection of hits, ii) prioritize the experimental

assays needed for different hit series, iii) assess the likelihood of resolving a

problem that might be present in a particular series in lead optimization

and iv) screen a virtual library based on a hit or lead series to assess the impact

of diverse structural changes on the predicted properties.

Keywords: ADMET, in silico models, lead generation, lead optimization, virtual screening

Expert Opin. Drug Metab. Toxicol. [Early Online]

1. Introduction

Candidate attrition remains a major concern in the pharmaceutical industry, run-
ning at approximately 90% [1,2]. This dramatic failure rate has led to a concerted
effort to screen development compounds, not only for their target potency and
selectivity, but also their absorption--distribution--metabolism--excretion--toxicity
(ADMET) profile. Large datasets of compounds, ordering on 100,000s, have
been generated for some of these measures within the industry, with 1000s now
contained in databases such as ChEMBL [3], Pubchem [4] or commercial variants
such as Aureus [5] and WOMBAT-PK [6]. Given the massive costs associated with
the determination of these measurements, it is highly desirable that these measure-
ments are utilized to help with the selection of leads, and guide their optimization
into clinical candidates.

The selection of the initial lead molecule is of critical importance in the early
stages of drug discovery. Lead optimization generally tends to increase molecular
properties such as molecular weight and lipophilicity [7]. In addition, it is often
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not possible to alter the key pharmacophoric features associ-
ated with a lead series, without losing activity at the target,
making multivariate optimization of activity and other devel-
opability parameters challenging, if not impossible. Thus, the
final candidate is generally quite similar in terms of structure
or properties to the starting lead compound. This is an area
where computational ADMET models, or so-called in silico
models, could prove useful to guide the selection and optimi-
zation of such leads.
Drug-likeness concepts based on molecular physicochemi-

cal properties are popular as first filters in early drug discov-
ery [8,9]. However, many compounds in what might be
considered ideal physicochemical property space will still
have liabilities, although it is less probable. These liabilities
must therefore be identified and subsequently designed out
if possible. Experimental screening dominates this assessment
process at present, yet the possibility of using computational
(i.e., in silico) tools has the potential to streamline costs and
speed up the assessment process, if they can be more effec-
tively employed as early filters [10-12]. That is, the models do
not replace the experimental methods, rather they supplement
them. Models could have much greater impact in lead gener-
ation and early lead optimization if more effectively integrated
into decision-making processes, and used, where suitable, as
surrogates for experimental measures.
‘All models are wrong, but some are more useful than

others: George Box 1987’. The key issue with the application
of in silico-based methods in drug discovery is that one must
understand in which situations, and for what decisions, a par-
ticular in silico method can be sensibly used [13]. In this paper,
the authors consider this issue, taking into account the sources
of error, the modeling methods, model assessment and its val-
idation. They discuss the criteria required by models that are
to be applied in the lead generation and lead optimization
steps. The uses discussed include: i) the rank ordering of
hits from high-throughput screening (HTS), ii) the prioritiza-
tion of the experimental assays needed for different hit series,
iii) assessing the likelihood of resolving a problem that might

be present in a particular series and iv) the screening of virtual
libraries of a given hit or lead series to assess the impact of
diverse structural changes on the predicted properties.

2. Generating in silico models

In silico ADMET models are theoretically derived functions
based on chemical descriptors, offering a means to virtually
predict the outcome of chemicals for a particular ADMET
measure (Figure 1). The methods rely on leveraging previously
derived results by training a model to relate the known assay
responses to a theoretical description of a molecule’s structure.
In silico predictions can be made for many ADMET assays
types, however, their accuracy can vary significantly due to
the nature of the end point itself, the quality and amount of
data available, and the methods used to build and validate
the model(s).

This paper discusses the different steps involved in building
an in silico ADMET model. The authors discuss aspects of
model building and use, including the data collation steps,
the different statistical methodologies and descriptors avail-
able, the model validation step and finally how and where
one might choose to use the validated model.

2.1 Data considerations
An in silico model cannot predict with 100% accuracy meas-
urements obtained from the experimental assay that it is based
on. This is because in silico models not only must deal with
the experimental errors in the assay output, but also approxi-
mations used in the computation of the theoretical chemical
descriptors, as well as model fitting errors arising from non-
ideal, non-diverse datasets (in terms of both molecular struc-
ture and activities). Before embarking on an in silico model
building exercise, it is therefore advisable to consider i) how
reliable/reproducible the experimental assay output is and
ii) how large and structurally diverse a dataset has been
screened in the experimental assay?

If the available database does not contain a large, diverse
range of activities, then the utility of any derived model to
predict in the underrepresented region is likely to be question-
able. In addition, if the diversity of the compounds screened
in the assay is low, there also exists questions as to whether
the model will be able to predict with any accuracy the out-
come of a molecule which deviates significantly in terms of
molecular structure [14,15]. A number of computational
methods exist to estimate the reliability of a quantitative
structure--activity relationship (QSAR) prediction. These are
based on the similarity of the compound being predicted
to members of the training set. The so-called domain of
applicability, has been reviewed elsewhere [16].

2.1.1 Data variability
A significant challenge in the development of in silico
ADMET models relates to data variability [17,18]. Even within
individual laboratories, methods used to measure parameters

Article highlights.

. Large amounts of ADMET data are available for
data mining.

. Highly desirable to utilize huge investment costs in
screening for future discovery efforts.

. Models of many different types are available. It is
important to consider how they are used.

. Models can be used in lead generation for tasks such as
focused set selection, hit prioritization and highlighting
possible ADMET issues.

. Models can be used in lead optimization to help guide
SAR studies, enable the screening and prioritization of
virtual libraries and to facilitate multiple
parameter optimization.

This box summarizes key points contained in the article.
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can evolve over time, which has implications for ADMET
model building and validation. This is because experimental
data are implicitly assumed to be error free.
To highlight why in silico models cannot be 100% predic-

tive, the authors show some examples of how relatively small
changes in ADMET assay conditions can introduce non-
negligible errors. Reports based on P450 inhibition screening
at GlaxoSmithKline exemplify the point [19]. The effect of a
change in the P450 protein source used in the inhibition
assays, from Cypex Bactosome to Gentest cDNA microsomes,
has been systematically analyzed. One hundred and twenty-
four compounds were measured in one of five P450 isoforms,
using the same probes, which allowed the researchers to assess
the effect of the protein source on variability. The researchers
observed a coefficient of determination (r2) of 0.84 with a
root mean squared error (RMSE) of 0.40 (2.5-fold error)
between the two pIC50 measurements of the combined group
of 124 compounds. For 23 compounds with P450 3A4 meas-
urements in a different protein source, and using a different
probe molecule (DEF vs. PPR), the r2 decreased to 0.74,
and the RMSE increased to 0.77 (5.9-fold error).
Scientists from Schering-Plough reported the impact of

using fresh and frozen hepatocytes on intrinsic clearance
experiments [20]. Analysis of the data in the reference shows
there were a total of 27 compounds with measurements in
both forms. The r2 between the log Clint values, with three
significant outliers removed, was 0.58, and the RMSE was
0.61 (threefold error).
In vivo assays display significant variability due to their

even greater complexity. Indeed, errors are considered larger
for the cassette dosing of compounds, which is now a much
more popular method for ethical and cost reasons [21,22].
Researchers at GlaxoSmithKline systematically compiled a
list of 115 compounds with a full set of discrete and cassette
measurements for total clearance (CL), volume of distribution
(VDSS), plasma half-life (T½) and bioavailability (F) [22].
Analysis of the data provided in this reference shows that
the square of the r2 between the logarithms of the reported
values are: 0.51 for F, 0.67 for T½, 0.83 for VDSS and
0.89 for CL. The corresponding RMSEs are 0.31 (~ 2-fold
error) for F, 0.24 (~ 1.8-fold) for T½, 0.21(~ 1.6-fold) for
VDSS and 0.20 (~ 1.6-fold) for CL.
A common toxicity assay, the AMES mutagenicity test, dis-

plays a ~ 15% classification error rate between laboratories [23],
and the overall classification success rate is between 77 and
90% [24]. Indeed, while the predicted AMES test mutagens
have a high probability of being carcinogens, compounds that
are predicted to be non-mutagens still have an equal proba-
bility of being either non-carcinogenic, or carcinogenic via a
different mechanism (i.e., non-genotoxic carcinogens) [25,26].
Such examples help to highlight the challenge faced when

generating in silico models on ADMET parameters. Consider
the case of rat bioavailability, for example. Since the bioavail-
ability between discrete and cassette experiments shows a
roughly 50% concordance (the r2 of 0.51 means ~ 51% of

the variance in one assay is explained by the other), then it is
probable that in silico models, which are typically built on
data using different methods, rat species, doses, etc., will in
all probability, not do much better. Indeed, in silico errors of
0.5 log (~ threefold) units should be expected for bioavailabil-
ity (in the authors’ experience), and goes some way to explain
why no quantitative models for bioavailability have been
reported in the literature to date. Figure 2 illustrates the impli-
cations of making decisions with an in silicomodel for a param-
eter such as bioavailability (~ threefold), as compared with
experimental results from discrete studies (~ twofold accuracy).

2.1.2 Data collation issues
Database entry errors, compound dispensing errors and com-
pound degradation during storage are additional factors that
can confound SARs. Researchers at GSK highlighted issues
surrounding the maintenance of a good quality screening col-
lection, from an extensive quality control study. Only 80% of
the entries in the original GSK screening collection were
considered both pure and confirmed as having the correct
structure based on mass spectrometry [27]. Data generated
from collections where compounds are poorly quality con-
trolled will have significant detrimental effect on data quality,
SAR rationalization and decision making.

Young et al. [28] reported on the problems associated with
data entry based on an analysis of a number of public data-
bases. These databases typically rely on secondary sources
such as peer review journals for much of their information.
Errors associated with the input structures were found to
range from 0.1 to 3.4% depending on the database in ques-
tion [28]. In addition, Fourches et al. reported on the quite
extensive impact such errors can have a during in silico model
generation. They also discuss the steps required for reliable
data collation prior to QSAR model generation [29].

2.2 Basic model types
A variety of different modeling approaches can be used to esti-
mate the ADMET potential of new compounds [30,31]. All
these methods rely on the derivation of a model using exper-
imental data to train and validate the method. The success of
the method is generally governed by i) the complexity of the
underlying biological process, ii) the diversity of the com-
pounds screened, iii) the diversity of the biological results
obtained, iv) the ability of the theoretical descriptors to
describe the physical events occurring and v) the ability of
the statistical method to fit the correct relationship between
the structure and the response.

One of the simplest approaches employs the similarity
principle in the form of ‘read across’ [32]. The similarity of a
compound to a set of known molecules can be calculated
using fingerprint or fragment-based descriptors (see below).
Molecules that are found to be very similar (i.e., 0.95
Tanimoto similarity) are more likely to display similar
activity. The value of this approach is that it is very intuitive,
however, it only provides qualitative information since the
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success of the similarity principle is dependent on the
relevance of the descriptors chosen to describe chemical space
of the physical event occurring. Indeed, it is well known that
even very simple modifications to a particular molecular
structure can result in dramatic differences in activity [33-35].

A second, qualitative approach involves the use of qualita-
tive SAR. Compounds with known activities are analyzed
and molecular features that can separate the active and inac-
tive compounds are identified [36]. These can then be used
to qualitatively apportion risk to molecules untested in the
experimental assay [37,38].

An extension of SAR models, QSAR models attempt to pre-
dict the level of activity for a given ADMET end point [39,40].
Models are built in a quantitative fashion that relates the exper-
imental activity to a set of molecular descriptors. These models
can be fitted using linear or partial least squares regression, or a
variety of machine learning algorithms. QSAR models can be
built on small sets of congeneric series (local models) or large
diverse sets (global models) [41-43].

A fourth type of model can also be defined. Rather than try
to indirectly associate chemical structure with ADMET assay
output, an atomistic representation of the ADMET event can
be constructed and this used to generate a prediction [44].
An example of this approach can be found in the three-
dimensional (3D) protein-ligand models, used for site of
metabolism prediction, combining molecular docking and
QM calculations [45].

2.3 Molecular descriptors
Theoretically derivedmolecular descriptors are needed to build
in silico ADMET models [46,47]. A large number of different
types exist, which can be broadly categorized as follows: one-
dimensional (1D) molecular properties or substructure counts,

two-dimensional (2D) electro-topological and fingerprint
descriptors, 3D pharmacophore and fingerprint descriptors,
as well as many quantum chemical descriptors or those derived
from atomic simulations [30]. Molecular descriptors can be
computed in a wide variety of software packages, using a variety
of different methodologies. A number of excellent reviews are
available elsewhere [30,32,44,46,48].

The theoretical computation of molecular descriptors is a
non-trivial process since molecules are dynamic in nature.
As such, their physical and electronic properties can change
depending on their ionization state or conformation, meaning
computed values are somewhat limited surrogates of the true
molecular structure [49]. Different ADMET end point will
have varying dependencies on the different types of descrip-
tors, so careful consideration should be given to the choice
prior to model building studies. For example, the permeabil-
ity of molecules through a biological membrane will show a
greater dependence on simple molecule properties such as
size and ionization state than on their molecular fingerprint.
By contrast, molecular properties have less of an impact on
the sites of primary metabolism. This is because the process
is more affected by the precise molecular structure and recog-
nition, with only certain P450 metabolizing molecules. In
addition, quantum mechanical descriptors such as the
HOMO-LUMO band gap are known to be an important
descriptors for the barrier to oxidation [45].

Simple molecular descriptors such as molecular weight, lip-
ophilicity and atom counts are very quick to calculate and
have proved very useful for the derivation of ADMET rules.
This includes the rule of 5 [8] and many others [50-53], as
well as many QSARs based on both diverse dataset and indi-
vidual molecular series [54-57]. More complex descriptors
describing the connectivity, size and shape can also be
employed. Where the ADMET process is controlled by a spe-
cific binding event, such as P450 inhibition or metabolism,
ligand pharmacophores or shape-based methods could prove
useful to identify likely issues [45].

2.4 Model validation
Irrespective of the method or descriptors used to generate a
model, it is of fundamental importance that its performance
be assessed in an independent manner before it is used in deci-
sion making. A variety of protocols for the generation and val-
idating of in silico models have been proposed in the
literature [31,40,43,58-60]. In most modeling studies, a hold-
out set of between 10 and 30% of the data will be held back
to test the independent performance of the model. If the
model performs well on this set then it is typically deemed
suitable for use in real-world decision making. However,
this test set is not necessarily ideal since it will cover the
same diversity as the original training set. Thus, it is necessary
to monitor how new compounds that are predicted compare
with the original training set using so-called domain of
applicability method mentioned before [16]. As newer com-
pounds are synthesized, the diversity of the compounds will
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increase, so the performance of the model would be expected
to drop. In this case, it is typically advisable to experimentally
validate the model for a new series of compounds by assessing
the concordance between experiment and prediction [15,61].
A number of common statistical metrics used to quantify

the performance of in silico models have been reported in
the literature [29,31,40]. A rigorous assessment of the model per-
formance must be undertaken, using standard metrics, so as to
characterize the level of predictivity, but also facilitate the
communication of results. A number of papers have described
the metrics suitable for characterizing models that output a
class-based [31,62] or continuous prediction [31,39].

3. Expert opinion

As a general rule, extensive in vivo-based animal studies are
restricted to very small numbers of heavily optimized mole-
cules, late in the lead optimization phase. This provides the
necessary high-quality information for the critical candidate
selection decisions. In vitro-based studies are generally used
in late-stage hit prioritization and early lead optimization, as
a means to characterize a molecular series, and facilitate its
optimization [63]. In silico-based methods are typically applied
for the selection of HTS screening sets, post-HTS hit charac-
terization and in lead optimization, to help rationalize SAR
and guide the chemical modifications of a lead series.
Many different ADMET models are available; from web-

based portals available in most large pharmaceutical compa-
nies, to freely accessible internet web portals [64], and stand
alone commercial packages [65,66]. With so many tools avail-
able to the drug discovery scientist, it is important that one
carefully considers how and when they should be incorpo-
rated into day-to-day decision making. It is generally accepted
that in silico-based ADMET models are not sufficiently accu-
rate to make the most critical decision in drug discovery. In
vitro-based models are more reliable, however even these
methods cannot be used alone to make candidate selection
decisions. The key to using any predictive surrogate success-
fully is to understand its strengths and limitations, and use
them for decisions where their accuracy and speed of determi-
nation is appropriate. This means that one must first consider
the data used to build the model, the experimental assay
errors, before employing a model for a particular task.
A great number of in silico ADMET models have been

reported in the literature to date [26,31,45,55,57,66-74], and
many papers describe how such models should be incorpo-
rated into drug discovery workflows [10-12]. However, rather
few medicinal chemistry papers have been reported in the lit-
erature that describe the application of such models. Some
examples include the design of a CB1 receptor antagonist
series with reduced central nervous system (CNS) activity by
focusing on high Polar Surface Area (PSA) [75], the reduction
of P-glycoprotein (P-gp) efflux in b-secretase inhibitors by
masking known recognition features [76], and the design of

histamine H3 receptor antagonist with reduced hERG using
3D-based models [77].

The reason for the relative scarcity of in silico ADMET
applications in the literature is likely to be manifold. In silico
ADMET models are certainly used in HTS triaging, but this
is not often reported in literature SAR studies. This is possibly
due to the fact that the primary focus of most publications is
on the optimization step and the source of the lead is not of
primary concern. This could arise where the lead was based
on competitor structures, or was identified by another team
within the same company, whose sole focus is lead generation.
Also, it is generally only discovery projects that fail during
development that are reported. It is also probable that many
of these projects did not benefit from the use of in silico
ADMET model usage given that development failures due
to ADMET issues are known to be significant [1]. Indeed,
those that did benefit, and overcame ADMET issues, are
also unlikely to be published. Another important point is
that it is often very difficult to optimize both potency and
ADMET issues in unison [78].

The challenge of demonstrating the true value of computa-
tional methods has been noted by others [79,80]. A key issue is
that when compounds are predicted as having poor ADMET
properties, they are less likely to be synthesized, thereby mak-
ing it difficult to fully validate said model. In addition, the
focus on target potency [78,81] means that the structural
changes necessary to remove a particular ADMET liability
are unlikely to be pursued. For example, a basic, lipophilic
template with the required dopaminergic activity might also
have significant hERG affinity. However, any in silico model
or rule will lead to the selection of compounds with lower
lipophilicity and reduced basicity, thereby reducing the
dopaminergic activity also.

In the following section, the authors describe situations
where in silico models of varying degrees of predictivity can
make valuable contribution to drug discovery. The discussion
of the methods is split into two categories, those suitable for
i) lead generation and ii) lead optimization. This categoriza-
tion is somewhat subjective given that a considerable degree
of optimization can occur during lead generation. The dis-
tinction is made simply because in earlier decision-
making processes, lower accuracy in a given predictive
method is tolerated better. Hence relatively crude, but useful
rules, such as the rule of 5 [8], can be used to bias hit selection
without the risk of losing too many good molecules. As the
number of compounds under consideration drops, and as
the chemical modifications of a lead series decrease with
each medicinal chemistry iteration, more accurate methods
are needed to guide the design of increasingly more subtle
chemical modifications.

3.1 Using in silico ADMET models in lead generation
In silico models are highly suited for use in lead generation.
This is because one cannot experimentally assess the approxi-
mately 2 million compounds found in a typical screening
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collection with any rigour, even using the most high-
throughput in vitro assays. Models can be used pre-HTS to
reduce the number of compounds that need to be screened,
or post-HTS, to reduce the number of hits obtained to a
more reasonable size that is amenable for full IC50 determina-
tion, or visual assessment. The definition of focused screening
sets, or the filtering of datasets post-HTS, can be achieved
using methods such as Lipinki’s rule of 5 [8], or more lead-
like [82] or fragment-like filters [83]. Alternatively, newer
probabilistic-type functions that encode drug-likeness could
be used to reduce the size of the sets to be screened [84].

Models can be used as an early, qualitative indicator of a
compound or series ADMET tolerability, pre-in vitro assess-
ment. QSAR models are not 100% predictive, so the absolute
prediction could be used to classify compounds as high, low or
indeterminate risk (i.e., if predicted in the middle of the
scale) [85]. For example, if the in silico model error
is ~ 0.5 log unit, predictions 0.5 log units beyond the upper
or lower bound values are ‡ 68% likely to lie either side of
the cut-off. That is, there is ‡ 68% probability that the differ-
ence between the predicted value and the cut-off is not 0 (based
on a two-tailed t-test, which assumes data normality). Predic-
tions at ‡ 1 log unit from the cut-off are ‡ 95% likely to
have a non-zero difference from the cut-off. Compounds pre-
dicted within 0.5 log of the cut-offs (or 1 log unit for greater
accuracy) could then be classed as indeterminate, while those
lying beyond are given a more reliable classification (Figure 3).
The use of a model to conservatively predict what issues are
likely to be present within a given compound, within a give
series, allows scientists to select between different hits, or to
bias the priority of assays during hit workup to be more
specific for a particular compound or series.

One of the most simple but most used models developed is
the rule of 5 [8]. Developed from an analysis of drugs and late
development compounds, it was determined that compounds
which fail two or more of the following rules should probably
be excluded from further development due to the high likeli-
hood of poor absorption (MWT > 500, calculated log P
(clog P) > 5, hydrogen bond acceptors (HBA) > 10, hydrogen
bond donors HBD > 5). More recently, Martin proposed the
relatively intuitive bioavailability score, which also takes into
account the effect of different ionization states on absorption [86].

More focused rules can be used to create focused screening
sets, or during hit selection. As an example consider a situa-
tion where CNS penetration is required. Norinder and
Haeberlein [87] have proposed the following simple rules: rule
1, if N + O (the number of nitrogen and oxygen atoms) in a
molecule is £ 5 it has a high chance of entering the brain.
Rule 2, if log P - (N + O) is > 0 then log BB is positive (i.e.,
greater in the brain than blood). More recently, Di et al.
proposed the following physicochemical guidelines for com-
pounds more likely to cross the blood--brain barrier (BBB);
PSA < 60 -- 70 Å2, log D between 1 and 3 andMWT < 450 [88].

One can use knowledge-based rules to assess for possible
metabolic or toxicity issues for a given compound or series [89].

While, these expert systems are only qualitative (i.e., known to
display false positives and false negative predictions), they can
still prove useful to highlight possible sites of metabo-
lism [90,91]. If the liability is intrinsic to the template in
question, rather than a part or position that is more
easily functionalizable, then this could influence its prioritiza-
tion at the hit selection stage. Examples of such models
include structural alerts for both mutagenicity [26] and skin
sensitivity [92] and reactive metabolites [91].

In summary, the principle uses for these models in lead
generation are: i) definition of focused screening sets, pre-
HTS, ii) prioritization of screening hits, post-HTS,
iii) assessment of the possible ADMET issues for each unique
template and iv) use to determine the priority of assays used
for in vitro ADMET work-up.

3.2 Using in silico ADMET models in lead

optimization
In silico models can also be used in a more quantitative
fashion in lead optimization. The principle uses for these
models in lead optimization are: i) to help discharge a con-
firmed ADMET liability by exploiting SAR knowledge from
the in silico model, ii) to prioritize a diverse virtual library of
all possible template modifications and substituents using
in silico model(s) and iii) to perform multiple-optimization
of confirmed ADMET issues, using underlying SAR from
the relevant in silico models.

Models can be used for qualitative assessments of the like-
lihood of resolving an ADMET problem in a particular series.
Alternatively, screening a virtual library based on the hit or
lead series to assess the impact of diverse structural changes
on the predicted properties. If the model has good discrimi-
nating power, then it suggests that the underlying SAR is rel-
evant and can be used to guide further design. This can be
achieved by exploiting the SAR for parameters that can posi-
tively affect the ADMET end point. In this instance, inter-
pretable models that are physically meaningful are
preferential to black box types. In silico models could also be
used to screen a virtual library of all possible modifications
to a series. This is ideal in cases where the in silico model com-
plexity is high, hindering its use in guiding the design of new
molecules directly.

QSAR models can also be used more quantitatively to facili-
tate the multi-objective optimization of leads [13,93]. Equally
importantly, models can be used to assess whether it is realisti-
cally possible to discharge a particular ADMET liability or lia-
bilities. Based on an analysis of the underlying descriptors
within a model, or predictions made on a virtual library of pos-
sible modifications, it should be possible to assess whether the
discharge of multiple liabilities will be facile or not. Another
important use of such methods is to help facilitate termination
decision on a series or project, more quickly. This is particularly
important since it is often not possible to balance the structural
requirements imposed by the primary target pharmacophore
and the properties required for good experimental ADMET.

Strategies for the generation, validation and application of in silico ADMET models in lead generation and optimization
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This is because the target affinity and the different ADMET
parameters often show differing dependencies with simple
physical properties, making the multi-objective optimization
of many parameters at once challenging [37,38,78].
Some examples of quantitative, and quite predictive in silico

ADMET models include volume of distribution at steady state
(VDSS), plasma protein binding, solubility and CNS penetra-
tion. Using a dataset of 669 compounds with VDSS measure-
ments, Lombardo and collaborators generated QSAR models
with mean fold errors < 2 on their external test set [94].
A model of this accuracy is sufficiently accurate to evaluate the
likely VDSS at an early stage. Plasma protein binding has also
been modeled using large databases, of between 1000 and
10,000 observations in size. On external test sets these QSAR
models show r2 of~ 0.5, andRMSEof~ 0.6 [61,95], certainly suf-
ficient for the initial assessment of protein binding phenomena.
Solubility has also been modeled extensively, using diverse
literature-derived datasets of 1000s of compounds [96], to more
focused sets consisting of ~ 100 drug-like compounds [97]. The
prediction errors found based on independent test set based on
the former datasets were ~ 0.6 log units, while for the latter
they were observed to be ~ 1 log unit. CNS penetration
QSAR models have been reported on relatively small datasets.
Nevertheless, the models show reasonable performance using
very small numbers of simple descriptors, giving greater confi-
dence in their generalizability. A notable example is the QSAR
model of Abraham et al. generated using 148 compounds in
total. The model displayed an r2 of 0.75 and a 2.2-fold mean
error. CNS models of this accuracy are certainly useful for
such tasks as focusing screening sets for improved CNS activity
or other similar tasks in early drug discovery.

3.3 Application of in silico tools in drug discovery
A wide variety of ADMET models are available from commer-
cial and open sources [65]. They can be also be generated from

the large amounts of data in publically accessible databases [3,4],
or using the many curated datasets reported in the QSAR liter-
ature. The challenge however is to effectively incorporate these
techniques into multivariate decision-making processes [10-12].
As the unhealthy focus on absolute potency begins to sub-
side [78,81], it might be expected that greater un healthy focus
on ADMET models, or relevant properties, will probably be
observed in the coming years.

In silico models cannot be used to definitively assign
ADMET risks to a compound or lead series [36,98,99]. The
methods should be used to discard only the highest risk com-
pounds, or those that are predicted to possess multiple issues,
so as to reduce the chance of throwing away good com-
pounds. Should a compound display certain ADMET liabili-
ties, but be an attractive lead for alternate reasons, the series
should be followed up experimentally. Additional theoretical
analyses could be done to assess how likely the liability can
be discharged given the ADMET model SAR and the physical
requirements of the target pharmacophore.

Lead optimization is, of course, a multi-objective process,
and the critical parameters being optimized can be correlated,
inversely correlated or orthogonal, making the optimization
process itself extremely challenging [93,100]. Physical prop-
erty-based models and substructure-based alerting tools can
only get one so far, however. To use them most effectively
in lead generation they should ideally be deployed alongside
in vitro and in vivo ADMET methods, to reduce the amount
of experimental testing where appropriate, to help rationalize
SAR, and to guide chemical modification.
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Figure 3. A three class model with appropriately selected cut-offs can be used to; (1) exclude the highest risk compounds (i.e.

focus on predicted “low” and “indeterminate” compounds (red)) or (2) bias the selection of a set towards low risk compounds

(i.e. focus on predicted “low” compounds only for example (green)). The latter selection will result in a smaller dataset, with a

much lower percentage of high risk compounds. However, it will also exclude a percentage of observed low and moderate

risk compounds also. Cut-offs that will result in no observation miss-classified by more than 2 classes (denoted a) and few by 1

class (b) are preferred. This however may result in many predictions being classified in the indeterminate category (c).
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As a result of research on ligand efficiency in the pharmaceutical industry, there is greater focus on
optimizing the strength of polar interactions within receptors, so that the contribution of overall size and
lipophilicity to binding can be decreased. A number of quantum mechanical (QM) methods involving
simple probes are available to assess the H-bonding potential of different heterocycles or functional
groups. However, in most receptors, multiple features are present, and these have distinct directionality,
meaning very minimalist models may not be so ideal to describe the interactions. We describe how the
use of gas phase QM models of kinase protein–ligand complex, which can more closely mimic the polar
features of the active site region, can prove useful in assessing alterations to a core template, or different
substituents. We investigate some practical issues surrounding the use of QM cluster models in structure
based design (SBD). These include the choice of the method; semi-empirical, density functional theory or
ab-initio, the choice of the basis set, whether to include implicit or explicit solvation, whether BSSE
should be included, etc. We find a combination of the M06-2X method and the 6-31G* basis set is
sufficiently rapid, and accurate, for the computation of structural and energetic parameters for this system.

1. Introduction

A variety of studies have helped to highlight the important con-
tribution that individual interactions can have on the overall
protein binding energy of a ligand. These include detailed
studies on the characteristic interactions made by a variety of
different functional groups1,2 with amino acid residues, the
characteristics of π–π stacking,3–6 cation–π7 and anion–π8 inter-
actions, halogen bond interactions,9,10 as well as the unique con-
formational preferences of different functional groups.11,12

Indeed, recent analyses of isothermal calorimetry data by Keseru
et al.,13–15 who advocate the assessment of both the enthalpic
and entropic contributions to the binding affinity, have noted
how the focus on entropic gains in potency are not as productive

(i.e., increasing lipophilicity and driving potency through the
hydrophobic effect). Optimization efforts that focus on improv-
ing the enthalpic contribution to protein binding, by directly
improving the polar interactions between the ligand and receptor,
are preferable. In fact, the authors note that the undesirable focus
on entropic potency gains is one of the key reasons for the
increase in lipophilicity and molecular weight of drugs and drug
candidates over time.15 In addition, it helps to explain the obser-
vation that historical drugs generally have lower potencies, lipo-
philicity and molecular weight compared to compounds in
current, or recent development.16,17

In light of the recent focus on ligand efficient molecules,18–23

there now appears to be a greater emphasis on improving the
efficiency of the lead template/series, rather than achieving
potency gains due to addition of lipophilicity. The latter is typi-
cally achieved by filling lipophilic pockets, displacing labile
water, or incorporating extensive non-polar linkers to target more
distant polar interactions, often resulting in questionable overall
gain. This is because the resultant increase in overall lipophili-
city and/or molecular weight to increase potency can have a sig-
nificant detrimental effect on a wide variety of Adsorption
Distribution Metabolism Excretion and Toxicity parameters
(ADMET).24–26

Understanding the interactions between functionality on a
ligand with that in a protein active site is critical to improving
potency in an efficient manner. A more ideal approach is to opti-
mize the available enthalpic interactions present in a template,
with the use of additional approaches to increase potency
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afterwards as needed.13–15 This is not a trivial task, but could be
achieved by leveraging calorimetry binding data and structure
based design (SBD) techniques. The latter technique is exten-
sively used in drug discovery programs with structural data of
the target, to rationally design increases in potency or selectivity
into a lead series. The use of experimental structures derived
from X-ray or NMR, can be used in isolation or in conjunction
with computational chemistry.27 The latter method presents
program teams with a means to rationally design and test new
molecules that can better leverage the interactions and steric fea-
tures present in the protein.

Theoretical models of protein–ligand complexes can be gener-
ated in a number of different ways. Rapid, molecular mechanical
(MM) methods can be used to sample whole protein models
quickly (or over long timescales),28 linear scaling semi-empirical
methods can be used to simulate the whole protein system
quantum mechanically (QM),29–32 or QM/MM methods33–40 can
be used to simulate the active site using QM and the remainder
using MM. Alternatively, smaller, approximate models can be
used at higher levels of QM theory to evaluate particular regions
of interest more rapidly.41–44

Each of the methods discussed above offers distinct advan-
tages in particular circumstances. For example, MM methods are
very quick to evaluate, meaning extensive sampling is possible.
However, non-standard templates, metals or certain interactions
are not ideally described.9,32,45 Semi-empirical QM methods are
relatively rapid, allowing large clusters to be considered or
whole proteins in linear scaling form, but are not considered the
most accurate as a result of the approximate method used.46,47

QM/MM allows the use of accurate QM methods to treat the
important core regions, and take into account longer range
effects using MM, however interactions across the boundary
region can lead to issues.40,48 QM clusters allow the use of very
accurate levels of theory to study the key interactions between a
protein and ligand, however the effect of the surrounding protein
is therefore completely neglected. QM cluster calculations are
nevertheless employed for many tasks including the prediction
of interaction strengths between model ligands and
probes,42–44,49–51 to more complex tasks such as reaction mech-
anism elucidation52,53 and X-ray structure refinement.47,54

In previous reports the authors have investigated the use of
QM/MM methods to study protein kinase-inhibitor complexes,
showing the distinct benefits of this method over traditional
docking in ligand pose scoring.55 A follow up to this study high-
lighted the potential use of this method in aiding refinement of
the active site region where non-standard ligands are present.56

Subsequent investigations were carried out on smaller, but more
rapidly computable QM cluster models, consisting of the ligand
and active site residues that make the key interactions.57 While
this approach neglects the effect of the protein and solvent, it
allows a researcher to assess how optimal the interactions between
the moieties present are, and whether they can be improved.

As illustrated in Fig. 1, if the ligand conformation or inter-
actions in the optimized active site model differ significantly
from the experimental protein–ligand structure: this suggests that
either the conformation/interactions present are not optimal to
make the best possible interactions, due to unfavourable sterics
for example. Alternatively, the structure might change dramati-
cally because the initial ligand parameters used in the refinement

step were sub-optimal. In contrast, a negligible change in struc-
ture without the surrounding protein present suggests that the
enthalpic interactions between the ligand and the key residues
are optimal. Thus, understanding the strength of interactions, and
the preferred conformations adopted by a molecule in a receptor
are important pre-requisites to allow the rational, efficient optim-
ization of a lead series to be performed. A number of methods
are available to predict the strength of interaction of individual
functional groups which can prove extremely insightful in the
design and modification of lead series.41,43,44,49–51

In this work we consider the use of small QM models of
receptors, consisting of the key polar active site interactions,
rather than generic probes. The region selected is not as exten-
sive as used in the approach of Gueto-Tettay, who used residues
within 5 Å of the active site, which, due to the significant size,
necessitates the use of the semi-empirical PM6 method.41 Here
we investigate smaller, yet more interaction relevant active site
models. We are not, per se, interested in predicting the much
more challenging absolute binding free energy,28 rather, the goal
is to determine whether such methods could be used to assess
the relative interaction strength of inhibitors with key polar
elements of a receptor, with the view to using them to rapidly
assess alternative modifications of lead series to improve the con-
tribution to enthalpic binding.

For these initial studies, we have employed the cluster based
approach using a variety of conditions to understand the impact

Fig. 1 An illustration of how QM active site models could be
employed to aid in the optimization of the enthalpic contribution to
overall binding energy. In case (a), a negligible change in the structure
occurs on optimization suggesting the interactions present are optimal,
since when the protein is removed they do not change dramatically. In
case (b), the ligand conformation changes dramatically on optimization
suggesting (1) the polar ligand interactions are not optimal and should
be improved by alteration of the template substituents or (2) the refined
ligand coordinates obtained from the experimental structure were sub-
optimal.
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of the choice of methods in such assessments. We have
attempted to quantify the effect of using different methodologies
on a set of cluster models generated from a set of 8 PDB struc-
tures we have previously reported on (Table 1). We consider a
number of different factors in this study, including; (a) the
choice of model system (i.e., a QM active site model containing
the key residues), (b) the choice of QM method (i.e., semi-
empirical, density functional theory or ab-initio), (c) the size of
the basis set, (d) should solvation be included, (e) should basis
set superposition error be considered when assessing binding
energies.

2. Computational procedures

Crystal structures of the 8 protein-kinases listed were down-
loaded from the RCSB protein databank (www.rcsb.org)
(Table 1). These structures were chosen such that the ligands
only made polar interactions with the three amino acid residues
that constitute the “hinge” region (i.e. no water mediated inter-
actions were present). For a detailed description of the structural
features of the protein kinase target class, see ref. 77.

The 8 truncated protein models consisted of the backbones of
the 3 hinge amino acids involved in binding the adenine portion
of ATP. The amino acid sidechains were replaced by hydrogen
atoms. The QM representation used in this study is exemplified
in Fig. 2 and has been employed by both us and others to eluci-
date aspects of non-bonded interactions in kinase-inhibitor com-
plexes.57 The Cα atoms of the truncated amino acids were frozen
during geometry optimization.

Geometry optimization of QM models was performed using
Gaussian 0358 at the following levels of theory: MP2/6-31+G**,
M06-2X/6-31G*, HF/6-31G*, HF/3-21G, AM1. These span the
time-consuming, to very rapid methods. M06-2X is an increas-
ingly popular, newer, DFT method that has performed better in
recent benchmarking studies than the more common B3LYP
method.59–61 For the purpose of comparison, a purely MM based
approach was also investigated, consisting of the CHARMm
force field as implemented in Discovery Studio 2.5 with empiri-
cally derived Momany-Rone atomic charges.62 The effect of
including an implicit solvent model of water was also investi-
gated for the M06-2X/6-31G* and HF/3-21G models using a
polarizable continuum model (PCM).

Table 1 Kinase-inhibitor structure used in this study. Reported are the PDB ID, inhibitor structure, resolution, kinase target, target pIC50 and a
description of the H-bonds mediated with the hinge. Outer (O), central (C) and inner (I) HBs correspond to those defined in Fig. 1. CH refers to a
short interaction distance between a carbonyl group of the hinge and a CH hydrogen atom of the inhibitor

PDB ID Inhibitor Resolution Target Activitya H bond pattern

1PXJ68 2.3 CDK2 IC50 = 6.5 uM68,69 O(CH), C, I

1W7H70 2.2 P38 IC50 = 1300 uM71 O(CH), C, I

2BHE72 1.9 CDK2 IC50 = 2 uM72 O, C, I

2C5O69 2.1 CDK2 Ki = 6.5 uM68,69 O, C, I(CH)

2UVX73 2.0 PKA-B IC50 > 100 uM O(CH), C, I

2UW374 2.2 PKA-B IC50 = 80 uM C, I

2VTA75 2.0 CDK2 IC50 = 185 uM75 O, C, I(CH)

3DND76 2.3 CDK2 IC50 = 16 uM76 O(CH), C, I

a SD in activity <1 log unit which means the binding energies of these molecules differ no more than 1.4 kcal mol−1 on average.

This journal is © The Royal Society of Chemistry 2012 Org. Biomol. Chem., 2012, 10, 7053–7061 | 7055



Computed interaction energies were obtained by subtracting
the energy of the optimized, isolated ligand, and protein acid
model, from the energy of the complex. In addition, the effect of
correcting the energies for basis set superposition error (BSSE)63

was considered (counterpoise correction) for the M06-2X/
6-31G* and HF/3-21G models.

3. Results and discussion

We have evaluated a number of different methodologies that can
be used to generate small QM models of the polar active site
interactions found within typical protein ligand complexes. This
was done in order to understand how ideal the polar interactions
are in the absence of the extended protein environment, and
discuss their suitability in terms of their RMSDs, in addition to
analyzing H-bond distances and how they compare to their cor-
responding X-ray structures. It should be noted that minor
changes in the distances and angles of a particular interaction
can result in subtle differences in the positioning of a ligand
within an active site pocket, and which in turn may significantly
affect the choice of substituents, or where additional growth is
considered.

A benefit of using such easy to construct, albeit approximate
models, is that we can rapidly evaluate how ideal the interactions
are between the polar active site features and the ligand. As dis-
cussed above, deviations in the interactions or binding confor-
mation on removing the extended protein might suggest that the
ligand binding mode is either sub-optimal due to high confor-
mational strain or sub-optimal polar interactions due to steric
constraints imposed by the extended protein, or potentially due
to sub-optimal refinement.64,65

As discussed in our previous study,57 where we earlier
reported the results at the MP2/6-31+G(d,p) level for this
dataset alone, we found both of the scenarios above had
occurred. Briefly, models for 3DND, and 1W7H, in particular,
showed dramatic differences between the QM optimized models
and X-ray results. Rotation of the non-polar benzyl and benzy-
loxy groups in the two complexes, respectively, led to lower
energy, preferred conformations (i.e., significant strain energy
present). This also led to a dramatic change in the polar inter-
actions in the case of the former, however this is also likely to be

affected by another factor. In 3DND, the ligand lies in a position
rather distant from the hinge, but on QM optimization, the H-
bonds (and the atypical C–H⋯OvC interaction that is fre-
quently seen in kinases) decrease dramatically.

Other effects were independent of the protein and more likely
due to issues regarding the ligand fitting to relatively poor
density. In 2C5O for example, the pyrimidin-2-amine and thia-
zole group are planar with respect to each other. However, on
optimization the groups adopt a more a plausible angle of ∼37°.
Indeed, the same ligand was also found in the structure 1PXJ
where it displayed an angle of 39°, apparently confirming that
the refinement process led to the former result.

Furthermore, unusually short and long H-bond distances were
observed in 2BHE, 3DND, 1PXJ and 2C5O. In particular 2BHE
displays a very short H-bond to the central H-bond acceptor that
on optimization increases to approximately 1.8 Å. In addition,
2C5O displays a very short C–H⋯OvC bond (∼2.0 Å), which
increases to the more realistic value (∼2.4 Å) from an analysis of
known kinase X-ray structures sourced from the PDB databank.
These results also suggest that less attention was spent assessing
the chemical accuracy of the interactions in question, compared
to the empirical fitting to the density, which in these cases is not
ideal.64–66

It should be noted that the resolutions of the X-ray structures
used here are typical of those used in SBD studies (∼1.9–2.3 Å).
However, those studied are not necessarily at an ideal standard to
compare theoretical results to. This is because the structures are
(a) not completely representative of a protein–ligand complex in
solution, at 37° and (2) that the atomic coordinates that have
been derived are not error free.36,64–66 Indeed, these structures
typically lack any information regarding hydrogen atom posi-
tions, and sometimes contain poorly positioned ligands,
especially in cases where inhibitors are non-standard,66 or only
weakly potent.64 We therefore also make reference to higher reso-
lution experimental structural data taken from comparable inter-
actions57 found in the Cambridge Structural Database (CSD)
(www.ccdc.cam.ac.uk/products/csd). This contrasts to compara-
tive studies by others who have used the original electron
density as a reference.65

3.1 Effect of methodology of QM active site structures

For molecular systems of the size employed here, the MP2/6-
31+G(d,p) calculations are resource intensive, requiring days per
complex to optimize on Intel Core i7 workstations. Thus, even
these calculations might be prohibitive when used in SBD exer-
cises, or in support refinement studies. In typical SBD appli-
cations, multiple template modifications or alternate substituents
may require evaluation, and the use of less computationally
expensive methods may therefore be warranted. For example, if
10 alternatives to the heterocyclic template were considered, and
another 10 modifications in terms of the points substitution, or
substituent types, 100 different calculations would be required.
A solution would be to employ DFT, semi-empirical method, or
MM based methods in such studies. We have therefore investi-
gated the use of a number of different methodologies for use in
probing active site models, ranging from the very slow (MP2/6-
31+G(d,p)), to the very fast (AM1 and CHARMm calculations).

Fig. 2 An illustration of the QM model used in this study. The polar
interactions of the proteins are denoted using the backbone atoms of 3
amino acids that constitute the hinge region. The amino acids sidechains
were removed and replaced by hydrogen atoms. The AA chain was ter-
minated one SP3 carbon atom after the nearest amide heteroatom. All
atoms in the calculation were flexible except for the Cα atoms (denoted
with a ball representation).
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A summary of the structural results obtained in this study is
presented in Fig. 3 and 4, and the ESI Table S1.† We present the
results in terms of the H-bond interaction distances from the
different models and also the RMSD to the original X-ray co-
ordinates (Fig. 3). We can also compare these distances to bench-
mark values obtained from a search of high resolution kinase
X-ray structures containing heterocyclic inhibitors, and comparable
interactions in high resolution, small molecule crystal structures.
We observed that there is a general trend toward lower mean
RMSDs with the increasing accuracy of the computation method
used (Fig. 3a). However it is clear that the MP2 based results do
not show the best agreement with the original X-ray results.
Although the X-ray structures are not ideal standards, a general
trend to lower RMSDs is still expected to be a reasonable
measure of computational success, at least up to a point. A
further measure that one can use to assess the overall quality of
the method is the predicted interaction distances.

As a result of the ∼2.0 Å resolution of the X-ray structures,
and the lack of hydrogen information (atoms were added using

the AMBER forcefield57), the X-ray structure derived distances
are not ideal. We also make reference to distances derived from
comparable high resolution small molecule crystal structures.78

We can compare these values to (a) the mean value from the 8
X-ray structures used here, (b) the mean over comparable, high
resolution structures reported in the PDB (c) and the mean dis-
tance between a heterocyclic nitrogen and an amide based on
those reported in the small molecule Cambridge Structural Data-
base (CSD).57 In Fig. 3b it can be seen that the average distance
between the ligand hetero-atom and the hinge H-bond donor,
generally improves with increasing level of theory, albeit with
the MP2 based method again being an outlier. AM1, CHARMm
and HF/6-31G* show mean values higher than the mean of the
original X-ray complexes, or benchmark values taken from the
CSD and PDB sources. In contrast, the MP2/6-31+G**, M06-
2X variants and HF/3-21G variants show lower means than the
mean of the original X-ray complexes, or benchmark values
from the PDB. Apart from the MP2/6-31+G** set, the mean
values are very close to the values obtained from the CSD refer-
ence set suggesting the models here have lost a degree of their
kinase character. These results also show that the neglect of the
protein environment generally leads to a greater association
between the protein model and the ligand. For the MP2 based
result the effect is even more pronounced suggesting that the
increased accuracy of the method is not beneficial since the
structures deviate more significantly from those in the protein
environment. Note, this does not mean that isolated QM active
site models have no value in SBD. Indeed, if this was the case
then data from the CSD would probably not prove useful in
design efforts.78 The value of a simplified QM model is that it
represents the best case interaction between the moieties con-
cerned, without external electrostatic or VDW constraints.
Alteration of the real ligand in the protein environment, so that it
can adopt the preferred low energy conformation observed in the
gas phase, may help to maximise the intermolecular interaction.

Looking more broadly at the structural results, we can see that
the trends identified using the computationally demanding MP2/
6-31+G**,57 are reproduced using the M06-2X methods and
both HF 3-21G based models. AM1 and CHARMm models
have generally larger, but also much more variable, distances
between the ligand and protein hinge model compared to the
other methods, and experimental benchmark values.57 This is
perhaps unsurprising in that rigorous charge derivation for MM
methods is reported to be needed, or additional terms added. In
addition, AM1 semi-empirical methods are being superseded by
the newer PM6 variants, as well as PM6 with additional customi-
zation.46,54 HF/6-31G* models seem to systematically underesti-
mate the association compared to the M06-2X and MP2 based
models. The inclusion of water solvent was also investigated
using an implicit PCM solvent model. The M06-2X/6-31G* and
HF/3-21G models were reoptimized using the PCM model. The
results in Fig. 3 show that the mean RMSD and central H-bond
interaction at the hinge are slightly lower compared to the related
gas phase optimization. Given the considerable computational
overhead, such treatment may not therefore be warranted, at least
in terms of an assessment of the structural features.

The results reported here indicate that the structures obtained
can vary noticeably depending on the method used. Validation
of the method for the system under investigation should be

Fig. 3 (a) Plot of the mean RMSD of the optimized gas phase models
to the original X-ray structures and (b) a box plot summary of the central
hinge H-bond interactions. 1Taken from analysis of PDB kinase com-
plexes. 2Taken from analysis of CSD small molecule interactions.
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undertaken to ensure that the method can reliably account for the
interactions present within the system in question. These results
show that relatively rapid methods could be used to assess inter-
actions of non-charged heterocycles. In particular, the well

validated M06-2X method with a modestly sized basis set, gave
optimized structures with both the lowest RMSDs, and inter-
action distances closest to benchmark values, at relatively
modest computational expense.

Fig. 4 A comparison of the H-bond distances obtained from 8 theoretical models and the original X-ray coordinates.
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3.2 Effect of methodology of QM interaction energies

An additional application of QM cluster models is in the compu-
tation of enthalpies of binding. The goal of such a method is not
to compute a realistic binding free energy, rather it is to try and
assess the strength of polar interactions between a molecule and
a probe (or active site representation in our case). For example, a
number of methods are available to assess the H-bonding poten-
tial of different heterocycles or functional groups.41,43,44,49–51

The basis of such methods is that substituents or frameworks that
have the optimal potential to interact with the polar features of
an active site should lead to greater binding. However, in most
receptors multiple features are present which have distinct direc-
tionality, meaning simple models may not be so ideal to
compute interaction energies. The use of a model more closely
mimicking the polar features of the active site might prove
advantageous in assessing alterations to a core template, or
different templates completely.

It is not expected that simplistic enthalphies will correlate
strongly with the experimental free energy related parameters
such as the Ki or IC50, especially for such a diverse set of tem-
plates, across a range of protein kinases, as sampled in this
study. Indeed, in this study it should be noted that the dataset
chosen here consists of molecules with moderate to low potency
for their particular kinase (Table 1). The observed standard devi-
ation of 0.6 log units corresponds to just a 0.91 kcal mol−1

difference in energy according to the Arrehnius equation, which
is below the accuracy of many theoretical methods. Thus, even
in the best case scenario, a correlation between the predicted
interaction energy and the activity would not be expected
(especially since the contribution of hydrophobic effects also
need to be considered in any evaluation). Nevertheless, in this
study we are interested in examining the magnitude of the differ-
ences in interaction energies for the different methods assessed,
as each method treats H-bond interactions, bond lengths and
angles etc. to different degrees of accuracy. These differences
will have a dramatic effect on the rank ordering, which is
especially pertinent if used in a design setting. For example,
diffuse functions are suggested in cases where negative charges
are present as delocalized can occur within the higher orbitals.
The presence of halogen bonds necessitates additional para-
meters for PM6, and will be poorly described using MM
methods for example.9

It is important to note that the MP2/6-31+G** energies are
the most rigorous that have been obtained here. However,
the optimized geometries deviate slightly more from the X-ray
coordinates than those from M06-2X for example. Nevertheless,
they are expected to be the most suitable here in terms
of describing the interactions and conformational energies in
the systems under investigation. Thus, we compare the inter-
action energies of all methods to these benchmark values
(Table S2†).

The correlation between the energies obtained at the MP2/6-
31+G**, M06-2X/6-31G*, HF/6-31G*, HF/3-21G, AM1 and
CHARMm are reported in the ESI (Fig. S1†). The MP2/6-
31+G** energies correlate well with those at M06-2X/6-31G*
(r2 = 0.74) and HF/6-31G* (r2 = 0.83). Methods such as HF/3-
21G and AM1, relying on smaller basis sets, do not correlate as
well, with r2′s of 0.54 and 0.36, respectively. The CHARMm

based energies show no correlation with the MP2 based results,
or any other QM measure.

Also investigated was the effect of BSSE, a common artifact
in QM calculations that can lead to inaccurate interaction ener-
gies. BSSE arises due to orbitals in the combined complex,
which have negligible overlap, and can in fact lead to a lowering
of the overall energy in the combined complex compared to the
isolated components. This effect can be removed in the QM cal-
culation of each individual component by including the ghost
orbitals of the other component. The results from BSSE calcu-
lations at the M06-2X/6-31G* and HF/3-21G models are
reported in the ESI (Fig. S2†). The correlation between the
BSSE corrected energy and the uncorrected value for HF/3-21G
displayed an r2 of 0.74, while the value for the calculation at
M06-2X/6-31G* level was 0.97. The effect of a common solvent
model (PCM) was also investigated for both the M06-2X/6-
31G* and HF/3-21G models, and these results are also reported
in Fig. S2.† The M06-2X results including a PCM solvent
model of water correlates only moderately well with the gas
phase energies (r2 = 0.57) while those at the HF/3-21G level
display an r2 of just 0.27. These results also highlight the dra-
matic effect the inclusion of solvent can have on the rank order-
ing for a given method.

The overall correlation between the different energies can be
appreciated more clearly using principal components analysis
(PCA). PCA is a method for identifying small numbers of corre-
lated, orthogonal components for a dataset containing many
descriptors. The QM energies (descriptors), and the kinase QM
models (observations), that show a high degree of inter corre-
lation will be located in the same region of component space on
the combined scores/loadings bi-plot. In this case, a two com-
ponent model can describe over 80% of the total variation in the
dataset of 10 descriptors and 8 observations (Fig. 5). The

Fig. 5 PCA loadings bi-plot highlighting the inter-correlation between
the different computed energies. The 2 component model describes 82%
of the total variation (66 and 16% respectively for components 1 and 2)
in the 10 energies computed for the 8 different model proteins.
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combined loading/score plots show that all of the QM energies
display a significant degree of correlation on component 1, as
can be seen by their large positive loading. The CHARMm
based result correlates poorly with the QM results, since it is
located close to the origin on component 1. On component 2,
the HF/3-21G PCM, AM1, M06/6-31G* PCM and the
CHARMm model deviate more significantly from the other com-
puted energies as can be discerned from their more positive
loadings.

These results appear to suggest that the use of a moderately
sized basis set, such as 6-31G* is preferred, especially as the
effect of BSSE is minimal. The fact that the M06-2X method
gives energies close to those of MP2/6-31+G**, and also good
geometries (unlike HF/6-31G* for example which also correlates
well), suggests it may be a preferred method to compute inter-
actions energies. However, given the impact of the implicit
solvent correction on the energies, it may also be beneficial to
evaluate this term given its possible impact on rank ordering.

4. Conclusions

A number of methods are available to assess the H-bonding
potential of different heterocycles or functional
groups.41,43,44,49–51 The advantage of such methods is that sub-
stituents or frameworks that have the potential to more effec-
tively interact, will presumably lead to greater binding efficiency
with a receptor with an opposing feature (assuming it does not
interact with water to a greater extent). However, in most recep-
tors multiple features are present and these have distinct direc-
tionality meaning simple models may not be so ideal to compute
interaction energies.

The use of more representative cluster models, more closely
mimicking the polar features of a specific active site, might
prove advantageous in assessing substituent alterations to a tem-
plate, or different templates altogether. Understanding the
strength of the polar interactions formed between a ligand and
the active site is important if we wish to improve the formers
enthalpic binding efficiency.13–15 Such an understanding would
be beneficial in our attempts to increase the ligand efficiency of
molecules in development and concomitantly improve their
ADMET characteristics.16,67

In this study we have assessed the effect of using a number of
different theoretical methods to optimize QM active site models
of protein kinase–ligand complexes. We employed MP2/6-
31+G**, M06-2X/6-31G*, HF/6-31G*, HF/3-21G, AM1 and
CHARMm methods, and considered the effect of BSSE and the
inclusion of an implicit solvation model. We are interested in the
effect these different choices have on the structures and ener-
getics obtained for the systems in question. The results reported
here on small, active site models, indicate that the structures
obtained can vary noticeably depending on the method used.
Validation of the method for the system under investigation
should be undertaken to ensure that the method can reliably
account for the interactions present within the system in
question.

These results show that relatively rapid methods could be used
to assess interactions of non-charged heterocycles, using the well
validated M06-2X method with a modestly sized basis set,

giving optimized structures with both the lowest RMSDs, and
interaction distances closest to benchmark values, at relatively
modest computational expense. Analysis of the computed ener-
gies shows that a significant degree of correlation exists between
the methods. The effect of BSSE on the rank ordering of the
ligands in this study is negligible with a moderately sized basis
set such as 6-31G*. The effect of PCM was shown to be more
significant and may warrant consideration. The observation that
the M06-2X method gives energies close to those of MP2/6-
31+G**, and also reasonable optimized geometries, suggests it
is the preferred method here for computing interactions energies.

The information derived from such models could be used to
guide the ranking and selection of substituents or heterocyclic
templates to improve their ligand efficiency by maximizing polar
interactions. Alternately small QM models (or more descriptive
QM/MM models47) could be employed to benchmark ligand
conformation and active site interactions which could be used to
guide the refinement of X-ray structures, particularly of low to
moderate resolution. We believe that while such calculations cer-
tainly have limitations, they have a place in SBD applications,
alongside methods such as experimental X-ray structure, CSD
structural analyses, QM/MM calculations of full protein–ligand
complexes, with each offering a different insight into the inter-
actions found within biological complexes.
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Ring opening polymerization of mannosyl tricyclic
orthoesters: rationalising the stereo and regioselectivity
of glycosidic bond formation using quantum chemical
calculations†

Siwarutt Boonyarattanakalin,a Somsak Ruchirawatbc and M. Paul Gleeson*d

Quantum chemical calculations have been used to assess the physico-chemical origin of the stereo and

regio-selectivity of polymerisation reactions of glycosyl tricyclic orthoesters. From the theoretical reaction

pathway we find that subtle modulation of steric and electronic effects at the initiation event can

dramatically influence the nature of the polymer products.
Infectious diseases such as tuberculosis (TB) remain a globally
life-threatening health problem.1 TB is a particular problem in
developing countries as the long term treatment of the disease
using antibiotics is nancially unviable.2 Further research is
undoubtedly needed therefore, to allow the development of
more, rapid and cost effective treatments.

Lipomannan (LM) is one of the key glycolipids that comprise
the unique cell envelope of Mycobacterium tuberculosis (Mtb).
Consisting of a a(1–6) mannopyranan backbone,3 LMs have
been implicated during the infectious, virulent, and survival
events in host mammalian cells.4,5 Thus, improved under-
standing of LM interactions with the host immune system
should help in the development of improved treatments for TB.6

Unfortunately, many experimental studies on this glycolipid are
impeded by the limited amount of naturally occurring
oligosaccharides.

Yongyat et al.7 have previously reported a synthetic approach
utilizing mannosyl tricyclic orthoesters as monomers for regio-
and stereocontrolled polymerizations to generate a(1–6)
mannopyranan. The Lewis acids, trimethylsilyl tri-
uoromethanesulfonate (TMSOTf) and boron triuoride
etherate (BF3$Et2O) were used as catalysts to promote the
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polymerizations of two of the monomers including 3,4-O-
benzyl-b-D-mannopyranose 1,2,6-orthobenzoate (1) and 3,4-O-
benzyl-b-D-mannopyranose 1,2,6-orthopivalate (2) (Fig. 1). From
a single chemical transformation step, polymers of different
lengths and differing degrees of regio- and stereo-selectivity
were obtained. It was found that under the same conditions; (a)
TMSOTf leads to longer and more selective a(1–6) mannan
chains when compared to BF3 and (b) that the monomer 3,4-O-
benzyl-b-D-mannopyranose 1,2,6-orthobenzoate (1) gives rise to
longer, and more selective a(1–6) chains when compared to 3,4-
O-benzyl-b-D-mannopyranose 1,2,6-orthopivalate (2).

To facilitate the design of alternate methods to control regio-
and stereo-selectivity, and to help improve reaction yields,
quantum chemical (QC) calculations have been undertaken, the
goal is to try and understand the physico-chemical origin of the
control in polymerisation results described above. To this end,
we explore the structures and energies associated with the
critical activation step (Fig. 2).

Simulations were performed using complete molecular
models of monomers 1 and 2, the active form of TMSOTf (i.e.
Si(CH3)3

+), and BF3. The initiation pathway (Fig. 1) was char-
acterised using density functional theory (DFT) calculations at
the M062X/6-31+G** level with a polarizable continuum model
(PCM) consisting of dichloromethane. M062X is an increasingly
popular DFT method that has performed better in recent
benchmarking studies compared to the more common B3LYP
method.8 Frequency analyses were used to fully characterise all
Fig. 1 The initiation step of monomer 1 and 2, prior to the formation of a(1–6)
mannopyranan.
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Fig. 2 Reaction pathways obtained for monomer 1, at the O1, O2 and O6 positions, with two different initiators (left) and pathways obtained for monomers 1 and 2
using two different initiators, at the O6 position (right).

Fig. 3 Optimized structures for monomer 1 pathway corresponding to the
reactants (left), transitions states (middle) and intermediates (right) for (CH3)3Si

+

(top) and BF3 (bottom). Benzyl groups andmonomer H atoms have been removed
for clarity. Key distances are given. The BF3 based initiator results in a later tran-
sition state, closer in structure to the intermediate.
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minima and transition states and to compute thermochemical
information. The potential energy surface was corrected for
vibrational, rotational and translational motion.9 All minima
and transition state energies are reported relative to the iso-
lated, solvated reactants. All calculations were performed in
Gaussian 09.10 Basis set superposition errors are known to be
less signicant for DFT based methods so were not evaluated.11

The energetic pathways associated with the initiation step of the
2 different glycosyl tricyclic orthoesters (GTO) are reported in
Fig. 2. We have obtained the reactant (the non-bonded complex
between monomer and initiator), the initiated intermediate,
and the transition state that connects them. We begin our
discussion with the preferred position of activation, followed by
the initiator and nally the monomer.

GTOs contain three suitable Lewis bases on the three oxygen
atoms (labelled as O1, O2, and O6 in Fig. 1) that are connected
to the orthoester carbon (Corth). Upon monomer activation by a
Lewis acid, the bond between the Corth and the activated oxygen
atom is broken. The resulting carbocation ion intermediate is
then capable of propagating the polymerisation process (Fig. 1).
The rst step in the process involves the formation of the initial
non-bonded complex, or reactant as termed here.

The non-bonded reactant structures obtained with BF3
display B–O interaction distances of �1.6 Å while the larger
(CH3)3Si

+ based complexes display Si–O interaction distance of
�1.85 Å. These distances drop to�1.5 Å and�1.7 Å respectively
on reaction with Lewis acid to form the intermediate. We nd
that irrespective of the position of attachment, the (CH3)3Si

+

based complexes formed with monomer 1 are considerably
lower in energy than the corresponding BF3 based structures.
Indeed, it should be noted that the large difference in binding
energy observed (�30 kcal mol�1) is considerably larger than
the expected BSSE errors obtained for a system of comparable
size using similar DFT methods (<5 kcal mol�1).12

Of the three possible oxygen atoms that can be activated (O1,
O2, and O6, Fig. 1), activation at the O6 position is preferred
thermodynamically irrespective of the Lewis acid (Fig. 2). This is
consistent with the fact that the breaking of the O6–Corth bond
leads to the least sterically hindered intermediate. The inter-
mediate formed by the breaking of the O2–Corth bond is found
to be lower in energy than that formed by the cleavage of the
266 | Med. Chem. Commun., 2013, 4, 265–268
O1–C bond. Both the O1 and O2 intermediates form fused eight
and six membered ring systems. However the O1 intermediate
is the least stable as the resultant cyclic ring must span a longer
distance between the C2 and C6 atoms. In contrast, activation at
the O6 position results in a more stable bicyclic intermediate
composed of a fused ve and six membered ring system which
spans the adjacent C1 and C2 atoms. The relative energy of the
intermediates are also found to correlate reasonably well with
the cleaved C+–O distance. We nd that the shorter this distance
on average over all the intermediates observed, the lower the
energy of the intermediate. For the O1 position, the C+–O1
distances are �2.65 and 2.65 Å for (CH3)3Si

+ and BF3 respec-
tively, 2.44 Å and 2.34 Å for the O2 position respectively, and
2.43 Å and 2.35 Å for the C+–O6 position respectively (Fig. 3).
Energetically, we nd that BF3 results in less favourable inter-
mediates than (CH3)3Si

+ due to the fact that the positively
charged (CH3)3Si

+ can interact more effectively with the resul-
tant monomer on cleavage. In addition, while the order of the
stability of the 3 possible intermediates is the same, the BF3
intermediates are considerably higher in energy since they are
zwitterionic structures in the non-polar solvent, rather than
This journal is ª The Royal Society of Chemistry 2013
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cationic for (CH3)3Si
+. The latter Lewis acid forms the most

stable intermediate, this being a pre-requisite for further poly-
merization. This helps to explain why the experimental yields
with this Lewis acid are greater.7

It is also necessary to explain why BF3 is experimentally
observed to form less selective polymers compared to (CH3)3Si

+.
Based on the calculated data obtained here, this appears to be a
function of both the kinetics and thermodynamics of the initi-
ation step (Fig. 2). For the BF3 initiated process for monomer 1
the energies of the initial non-bonded complexes for positions 2
and 6 are similar and the corresponding barriers to reaction are
rather close at 4.7 and 4.6 kcal mol�1, respectively. While the O1
barrier is the lowest of all, it is the least stable of all the BF3
based reactants, and also gives rise to the highest energy
intermediate.

For (CH3)3Si
+, we observe that the initial non-bonded

complex formed at the O2 position is preferred over the O6
position due to the unfavourable steric interaction of the initi-
ator with the C6 methylene. This effect is absent in case of the
smaller BF3 Lewis acid. As is the case for BF3, the O1 position
with (CH3)3Si

+ also displays a low barrier to reaction, but the
reactant and intermediates are also of high energy. It can
therefore be concluded that the rate determining barrier asso-
ciated with the O6 position is dramatically lower than that for
the next preferable position (O2), being 1.5 and 9.8 kcal mol�1,
respectively.

We postulate that the reaction to form the O6 intermediate is
critical because it leads to the formation of the most preferable
intermediate, which also displays a very high barrier to re-form
the non-bonded complex (10.9 kcal mol�1). These results
therefore suggest that (CH3)3Si

+ will selectively form compara-
tively large quantities of the O6 intermediate, while BF3 can
presumably activate at both the O2 and O6, and possibly O1.
The subsequent nucleophilic attack of the carbocation inter-
mediate by the sterically more accessible O6 nucleophile of an
additional monomer is further complicated due to steric
interference from the bridged ring system and the OBn
substituents, as well as electronic effects from the ring oxygens.
Polymerization with initiators at the O1 and O2 positions is
expected to be much more challenging compared to the O6
position as the former two cases contain more sterically
hindered points of attack. Attack at the C1 position of the O6-
intermediate (Fig. 1) is preferential since it is both less sterically
hindered and because the two adjacent oxygen atoms can better
stabilize the resulting transition state with their lone pairs.
Thus, it is clear that the monomer/initiator combination that
give rise to the energetically most favourable and accessible
intermediate, and which displays a large energy gap to the other
possible intermediates, will result in the most selective, longer
chained polymers.

From an analysis of the optimized transition state structures
we indeed nd evidence showing that the better the stabilizing
effect on the C+ by the leaving group, the lower the energy of the
transition state. We nd that the C+–O distances in the transi-
tion state do indeed correlate with the relative energy. The
longest interaction distance is observed for O1 position, being
1.86 and 2.19 Å for BF3 and (CH3)3Si

+, respectively, compared to
This journal is ª The Royal Society of Chemistry 2013
1.73 and 2.08 Å, respectively, for O2, and 1.69 and 2.02 Å,
respectively for O6. The results also show that the (CH3)3Si

+

transitions states lie closer to the reactant state than BF3,
consistent with the Hammonds postulate.

Finally, we investigated why monomer 2 is found to have
experimentally lower reaction yields and poorer selectivity
under the same experimental conditions as monomer 1. We
therefore investigated how the replacement of the phenyl ring
on the Corth of monomer 1 with tert-butyl affected the reaction
prole at the preferred O6 position. We nd that polymerization
reactions involving monomer 2 with both BF3 and (CH3)3Si

+

result in higher energy barriers to reaction, and higher inter-
mediate energies (Fig. 2). We nd that the O6-intermediate of
monomer 2 obtained with BF3 is 3.3 kcal mol�1 higher in energy
than the corresponding value for monomer 1, while that for
(CH3)3Si

+ is 7.1 kcal mol�1. This is due to the generally longer
C+–O6 interaction distances, which is indicative of reduced
electronic stabilization of the carbocation. This helps to
explains why monomer 2 is found to have experimentally lower
reactivity compared to monomer 1.7
Conclusions

The results presented here show that the initiation step is the
critical step in the polymerisation process reported by Yongyat
et al.7 Formation of a(1–6) bonds requires the selective activa-
tion of the rst monomer at the O6 position, with favourable
energies (increased quantities), leading to longer, more regio-
and stereoselective linear chains. This can be achieved with the
bulky initiator, TMSOTF and a stabilizing capping group (i.e.
phenyl ring) that can effectively stabilise the resulting carbo-
cation ion of the intermediate via resonance. It is also clear that
the positively charged Lewis acid Si(CH3)3)

+ results in lower
energy intermediates than does neutral BF3 by providing more
effective stabilization of the carbocation center. This is parti-
cularly important since the reaction is performed in non-polar
solvent which cannot provide effective stabilization of the high
energy species formed over the course of the reaction.

The dimerization step of the O6-intermediate leads to the
more selective formation of a(1–6) bond since the C1 position in
this intermediate is the preferential point of attack from the
most sterically unhindered O6 atom of another monomer. This
is because the C1 position is less sterically hindered and the
resulting transition state can be more effectively stabilized by
the two adjacent oxygen atoms. With less sterically hindered
initiators (i.e. BF3), or monomers with more poorly stabilizing,
and bulky capping groups (i.e. tert-butyl), the relative preference
for the a(1–6) glycosidic bond decreases. As a result, the poly-
merisation process proceeds in a disorderly fashion, via a
sterically hindered and less energetically favourable pathway,
resulting in shorter, more disorderly chains.

The information derived from such models could be used to
guide the selection of the more optimal substituent at the
orthoester position (R group in Fig. 1), and the initiators. Such
calculations are currently in active use to design further
experiments. QC methods are oen seen as rather unap-
proachable, yet as seen here, they can provide a means to
Med. Chem. Commun., 2013, 4, 265–268 | 267
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post-rationalise complex results and provide a method to
quickly simulate alternative reagents in a matter of days, where
a comparable synthetic approach may take days, weeks or even
months.
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Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and
D. J. Fox, Gaussian 09 Rev C01, Gaussian Inc., Wallingford
CT, 2009.

11 H. Valdés, V. Klusák, M. Pitoňák, O. Exner, I. Starý, P. Hobza
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Abstract The structural diversity observed across protein
kinases, resulting in subtly different active site cavities, is
highly desirable in the pursuit of selective inhibitors, yet it can
also be a hindrance from a structure-based design perspective.
An important challenge in structure-based design is to better
understand the dynamic nature of protein kinases and the
underlying reasons for specific conformational preferences in
the presence of different inhibitors. To investigate this issue, we
performed molecular dynamics simulation on both the active
and inactive wild type epidermal growth factor receptor
(EGFR) protein with both type-I and type-II inhibitors. Our
goal is to better understand the origin of the two distinct EGFR
protein conformations, their dynamic differences, and their
relative preference for Type-I inhibitors such as gefitinib and
Type-II inhibitors such as lapatinib.We discuss the implications
of protein dynamics from a structure-based design perspective.

Keywords EGFR .Kinase .Molecular dynamics . AMBER
force field . GROMACS . Gefitinib . Lapatinib

Abbreviations
EGFR Epidermal growth factor receptor
G-loop Glycine-rich loop
A-loop Activation loop
R-spine Regulatory spine
H-cluster Hydrophobic cluster
DFG motif Asp-Phe-Gly conserved motif
HRD motif His-Arg-Asp conserved motif
PDB Protein data bank
MD Molecular dynamics
RMSD Root average square deviation
RMSF Root average square fluctuation
SD Standard deviation

Introduction

Protein kinases are an important class of therapeutic targets in
drug discovery. At present, eight kinase inhibitors are currently
marketed as anti-cancer treatments [1], and it has been estimated
that approximately one-third of all pharmaceutical research
projects are dedicated to such targets [2]. Three of the eight
marketed kinase drugs target the epidermal growth factor recep-
tor (EGFR), also known as ErbB1 kinase. Awealth of biochem-
ical and structural information has been generated on this target,
offering us considerable insight into the structure, function and
inhibition of this important therapeutic target class [3–5].

Over 160 unique protein kinase X-ray structures have been
deposited in the RCSB (http://www.thesgc.org/resources/
kinases), offering a great deal of information to aid in the
design of new or improved kinase-directed therapies. The
protein kinase domain of EGFR is comprised of two lobes: a
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smaller N-terminal lobe consisting mainly of β-strands and a
single large α-helix; and a larger C-terminal lobe, which is
almost exclusively α-helical. The ATP-binding site is located
at the hinge region between the lobes, meaning the active site
is dynamic in size and shape. The structure of EGFR kinase
can be further divided into a number of structural regions, as
highlighted in Fig. 1a,b. These include the glycine-rich loop
(G-loop), the C α-helix on the N-lobe, the activation loop (A-
loop), and conserved DFG and HRD motifs on the C-lobe.
Several important features for EGFR activation include: (1)
reorientation of the C α-helix closer to the ATP-binding site,
resulting in the formation of a salt bridge between E738 on the
helix and the conserved K721 residue on the β5-strand. The
latter also interacts with the α- and β-phosphates of ATP (see
supporting information Fig. S5A). (2) The positioning of
DFG-D831 and HRD-D813 residues to interact with the
ATP phosphate groups and the peptide substrate, respectively;
and (3) extension of the A-loop, and translation away from the
active site; (4) the formation of the regulatory spine (R-spine)
by three hydrophobic (M742, L753, F832) and one polar
residue (H811), leading to a H-bond between the HRD-

R812 and the DFG+1-L834, which is proposed to help main-
tain the active kinase conformation (Fig. 1c) [6, 7]. Several
other residues, including L723, M742, L764, D831, L834 and
L837, are proposed to form a small hydrophobic cluster (H-
cluster) between the C α-helix and the A-loop, which is also
believed to be important for stabilizing the inactive conforma-
tion of EGFR kinase (Fig. 1d) [7, 8].

The structural diversity observed across protein kinases,
resulting in subtly different active site cavities, as well as the
often distinctly different protein conformations, is highly
desirable in the pursuit of selective inhibitors, yet it is also
can be a hindrance from a structure-based design perspec-
tive. For example, analysis of the active EGFR-gefitinib
crystal structure (PDB accession code: 2ITY) would suggest
that the addition of the substituent 1-methoxy,3-F-phenyl to
the quinazoline template would not be tolerated. However, not
only is this substituent tolerated, it is believed that the resultant
complex, along with increased ErbB2 activity, give lapatinib
its improved efficacy (PDB accession code: 1XKK).

Kinase inhibitors can be classified into two to three
distinct categories [1, 9, 10]. Type-I inhibitors target the

Fig. 1 Ribbon representations
of active (a) and inactive (b)
epidermal growth factor
receptor (EGFR) kinase struc-
tures (PDB codes 2ITY and
1XKK, respectively). Key sec-
ondary structural elements are
colored (green glycine-rich
loop; red C α-helix; blue acti-
vation loop). The ligands are
shown in ball and stick notation
(C-atoms in cyan for both gefi-
tinib and lapatinib). Gatekeeper
(T766) and DFG and HRD
motifs are shown in space-filled
balls. Conserved interactions
and residue clusters differenti-
ating the active (c) and inactive
(d) EGFR conformational states
are indicated. Regulatory spine
and hydrophobic cluster are
represented as transparent
spheres (C-atom in green and
yellow, respectively). The salt
bridge of K721-E738 and the
H-bond of R812-L834 are
shown in red dashed lines. The
figure was made using PYMOL
(DeLano Scientific, San Calos,
CA)
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ATP-binding site of the active or inactive protein. As these
inhibitors target the more generic, evolutionary conserved,
ATP-binding pocket, undesirable activity towards other
members of the approximately 500 strong protein kinase
families is frequently observed [11]. Type-II inhibitors target
both the ATP-binding and allosteric pockets formed within
an inactivated protein. This includes the DFG-out confor-
mation in c-Abl [12] and the allosteric binding pocket of
MEK that lies adjacent to the ATP-binding site [13]. Type-
I½ inhibitors can be considered a hybrid of the previous
two, targeting the ATP-binding site of the DFG-in confor-
mation of the inactive protein, as well as a rather large back-
pocket as exemplified in the EGFR-lapatinib complex
(Fig. 2) [4]. There is particular interest in Type-I½ and
Type-II inhibitors from the point of view of selectivity as
these regions will be under reduced evolutionary pressure to
remain constant. These differences are therefore more likely
to be exploited to produce a selective kinase inhibitor.
However, problems pursuing this type of inhibitor also exist.
Mutations at or around allosteric pockets are more likely to
occur than at evolutionary conserved regions, potentially
leading to problems associated with drug-resistance [14].

Molecular dynamics (MD) studies have in the past been
used to elucidate dynamic aspects associated with protein

kinases, including EGFR [7, 15–18]. Such simulations offer
additional insight beyond the static, but nonetheless critical,
snapshot as represented by an X-ray crystal structure. MD
has proved particularly insightful for EGFR from a drug
resistance perspective, as a dynamic assessment of the effect
of mutations, including L834R, G695S and L834R and
T766M, on protein structure can be assessed [7, 15–17].
Liu et al. [15] studied the origin of resistance for the Type-I
EGFR inhibitor gefitinib (Iressa®), noting the implications
each mutation had on the ATP-binding pocket and on inhib-
itor binding. Balius et al. [16] studied the effect of EGFR
mutations on Type-I inhibitors; erlotinib (Tarceva®), gefti-
nib and AEE788, using models of the wild type (WT) and
three different active EGFR mutants. They were able to
explain the majority of the fold resistance changes in the
different mutants from the calculated binding free energy, as
well as giving an explanation for their physical origin.
Recently, Wan et al. [17] also studied the changes in drug-
binding affinities due to the cancer-related mutations of
EGFR using multiple short MD simulations, which provide
significantly enhanced conformational sampling. Also
worth mentioning is a study by Papakyriakou et al. [7],
who investigated EGFR protein dynamics in the absence
of inhibitors. The focus of their study was understanding the

Fig. 2 Illustration of the EGFR
kinase binding site for potential
kinase inhibitors (PDB codes
2ITY and 1XKK). Important
amino acid residues located in
the binding site and the
chemical structure of ligands
(gefitinib and lapatinib) are
shown. The main interactions of
the EGFR kinase hinge with the
quinazoline moiety are
indicated. The LIGPLOT
diagram [40] for all
hydrophobic and H-bond inter-
actions from the PBD files are
shown in Supporting Informa-
tion Fig. S6

J Mol Model



dynamic differences between the active and inactive protein
conformations of EGFR, and the transition between them.
Using 5 ns of targeted MD to drive the transition between
the two different states, they concluded that the timescales
needed for the formation the back-pocket in inactive EGFR
protein are beyond the timescales of conventional MD.

An important challenge in structure-based design is to
better understand the dynamic nature of protein kinases, and
the underlying reasons for the different protein conforma-
tional preferences observed with different inhibitors. In this
novel study, we perform MD simulations on both active and
inactive protein complexes of wild type EGFR, with both
type-I and type-II inhibitors. Our goal is to try to understand
the origin of the distinct EGFR conformations, and the
relative preference of these protein conformations for the
Type-I inhibitor gefitinib and Type-I½ inhibitor lapatinib.
An improved understanding of inhibitor binding to the
inactive conformation is highly desirable given that inhib-
itors of this conformation, rather than the active form, ap-
pear to be more efficacious [9]. To this end, we employed
MD simulations using the AMBER force field within GRO-
MACS to simulate the active and inactive forms of the
protein. We assessed the drug molecules gefitinib and lapati-
nib to try and decipher the relative contribution of the inhibitor
to the stability of the two protein conformations. We also
simulate the APO forms of both protein conformations, and
the case where gefitinib bound to the inactive conformation.
The value of this information is that the contribution of the
various structural elements, or individual residues, to inhibitor
binding and protein stability can be better understood, poten-
tially allowing the more focused direction of chemistry resour-
ces to target the area most likely to give rise to higher affinity,
tighter binding inhibitors.

Methods and materials

Protein preparation

The EGFR protein coordinates for the active and inactive
conformations were obtained from the Protein Data Bank
(http://www.pdb.org). The active and inactive coordinates used
in this study correspond to the PDB structures with accession
codes 2ITY [5] and 1XKK [4], respectively. EGFR-ligand
protein structure models were created by removing all ions,
and all water molecules except those found within the binding
site (three molecules in 2ITY and eleven in 1XKK). We
retained the water molecules found in the active sites of each
protein for all the simulations used here as they have been
shown to be critical in protein–ligand simulations in the past
[19, 20].Water molecules have been shown to be important for
rationalizing dynamic phenomena from MD simulations [21]
as well as docking and scoring results [22, 23].

The amino acid sequences used for our simulations begin
with A678 and finish at G959, based on the 2ITY number-
ing (or A702 to G983 using the alternative EGFR number-
ing system). Missing loops in both PDB structures (E842 to
K851 in 2ITY and E710 to K713, A726 to S728, E844 to
K851 in 1XKK) were built using MODELER 9v4 [24]. The
stereochemical quality of the resultant models was assessed
using PROCHECK v3.5.4 [25]. The N- and C-terminal ends
of both models were capped with acetyl (ACE) and methyl
amino (NME) groups, respectively. The 2ITY and 1XKK
based models are henceforth referred to as gefitinib-
EGFR(active) and lapatinib-EGFR(inactive), respectively.

A model of the inactive EGFR protein with gefitinib
bound was also generated for the purpose of comparison.
This model was created by replacing lapatinib with gefitinib
in the inactive 1XKK based EGFR model. Superposition of
the ligands was performed based on the 2ITY-1XKK Cα-
atom alignment. Due to differences in the G-loop conforma-
tions between active and inactive proteins, the orientation of
the 7-methoxy-6-(3-morpholin-4-ylpropoxy) moiety of gefi-
tinib was altered subtly to avoid steric clashes, adopting a
conformation resembling that of the 5-{[2-(methylsulfony-
l)ethyl] amino} methyl) group of lapatinib. This structure is
termed gefitinib-EGFR(inactive). No model of lapatinib bound
to the active EGFR conformation was generated as the
absence of the back-pocket II prevents the inhibitor from
binding. APO structures of the active and inactive EGFR
protein were created by removing the ligands from the
gefitinib-EGFR(active) and lapatinib-EGFR(inactive) models.
These models are termed the APO-EGFR(active) and APO-
EGFR(inactive) models, respectively.

The AMBER-99SB force field was used to simulate all
protein structures and the ionization state of amino acid
residues was set according to the standard protocol [26].
All models were solvated in a triclinic box of TIP3P water,
keeping a distance of 10 Å between the protein and the sides
of the solvent box. Chloride ions were added to neutralize
the charge of the system.

Ligand preparation

Gefitinib and lapatinib were simulated in their protonated state
in line with their predicted basic pKa according to Marvin-
View v5.3.1 (ChemAxon, Budapest, Hungary) at pH 7.0
(Fig. 2). This protonation state is further favored due to the
close proximity of a number of H-bond acceptors (either the
negatively charge side chain of D776 or the carbonyl oxygen
atom of L694) at the entrance to the ATP-binding pocket.
GROMACS topology files were generated using ACPYPE
script [27]. GAFF force field parameters [28] were used for
both inhibitors. Partial charges were calculated using the
AM1-BCC method [29] as implemented in QUACPAC
1.3.1 (OpenEye Scientific Software, Santa Fe, NM).
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Simulation conditions

Simulations were carried out using GROMACS v4.0.2 [30, 31]
with the AMBER force field ports [32, 33]. All simulations
used isobaric-isothermal (NPT) conditions at standard temper-
ature (300 K) and pressure (1 bar), using the Berendsen cou-
pling method [34]. The linear constraint (LINCS) algorithm
was applied to fix all hydrogen related bond lengths, facilitating
the use of a 2-fs time step [35]. A short-range nonbonded
interaction cut-off distance of 10 Åwas used. The particle mesh
Ewald (PME) method with a 0.12 nm Fourier grid spacing was
used to account for long-range electrostatics [36, 37].

A three-step procedure was used for MD simulations. First,
each of the EGFR models was energy-minimized using the
steepest descent method (until the maximum force was less
than 100 kJmol−1 nm−1 on any atom) to reduce undesirable van
der Waals contacts, and to optimize H-bond interactions pres-
ent. In the second step, each model was subjected to 500 ps of a
position-restrained MD in which heavy atom positions of each
protein were restrained harmonically using a force constant of
1000 kJ mol−1 nm−2. Water molecules, counterions and inhib-
itors, if present, were not restrained. The systems were then
heated from 0 K to 300 K over the first 50 ps, followed by
450 ps of equilibration. The third step involved unrestrained
MD for a period of 20 ns. Coordinates were archived every
1 ps. The simulations for the APO-EGFR(inactive) and gefitinib-
EGFR(inactive) models were subsequently extended to 50 ns to
assess the conformational characteristics of their C α-helices.

Analyses

All MD analyses were performed using tools available
within the GROMACS suite. The tool “g_rms” was used
to evaluate the root mean square deviation (RMSD) of
heavy atoms in MD trajectories from those of original
structures obtained before energy minimizations. The tool
“g_rmsf” was used to compute the root mean square fluctu-
ation (RMSF) of heavy-atom positions with respect to their
time-averaged position and was used to calculate a theoret-
ically derived B-factor (temperature factor).

The statistical significance of any reported differences in
either the means or standard deviations (SD) in the RMSD
or RMSF have been confirmed using an unpaired Student’s
T-test or F-test, respectively. All reported differences are
significance above the commonly used 95 % confidence
level unless otherwise stated. All statistics were computed
in Microsoft Excel 2007.

Results and discussion

MD simulations were performed on five separate EGFR mod-
els that differ in terms of the bound inhibitor [gefitinib,

lapatinib and no inhibitor (i.e. APO)], or the protein confor-
mation (active or inactive). Analysis of the RMSD of the
protein heavy-atoms (i.e., compared to the initial X-ray struc-
tures obtained before energy minimizations) showed that all
simulations had reached equilibrium well before t010 ns. The
protein structures remained stable throughout the simulation;
with the overall heavy-atomRMSD remaining within 3.0 Å of
the original X-ray coordinates (Fig. 3a–b). In addition, the
total energy of each model remained essentially constant over
the course of the simulation, giving further confirmation of its
stability (Supporting Information Fig. S1). We report all struc-
tural parameter analyses between t010 to 20 ns unless other-
wise stated.

The reliability of such simulations can be assessed qual-
itatively by comparing the experimental Cα-atom B-factor
values to those computed from the MD simulation (Fig. 3c,
d). As shown in Fig. 3d, the MD-predicted B-factors of the
gefitinib-EGFR(active) and APO-EGFR(active) models are in
good qualitative agreement with the corresponding experi-
mental data. Deviation to some degree is expected since the
X-ray data is obtained in a dynamically restricted crystalline
phase. This suggests the MD results are physically repre-
sentative of the protein in general.

Dynamic characteristics of the active and inactive
protein-inhibitor complexes

In the following sections, we consider the dynamic character-
istics of the gefitinib-EGFR(active) and lapatinib-EGFR(inactive)

models, and whether the structural differences observed be-
tween the models have arisen due to (1) the effect of the
ligand, (2) the protein, or (3) a combination of both. To
ascertain their origin, we contrast the results to simulation
data obtained using models of gefitinib bound to the inactive
EGFR conformation and models of both active and inactive
APO protein conformations.

From Fig. 3a,b and Table 1, it can be seen that the
average RMSD and SD of the gefitinib-EGFR(inactive) model
is greater than that of the lapatinib-EGFR(inactive) model over
the course of the simulation. The differences were found to
be statistically highly significant (P<0.0001). From the
APO simulations, we can see that the inactive protein con-
formation (APO-EGFR(inactive)) behaves similarly to the
lapatinib-EGFR(inactive) model in that the average RMSD is
roughly comparable (the SD of the RMSD is only moder-
ately lower by 0.01, Table 1). It is somewhat different for the
active EGFR model in that the RMSD increases by 0.39 Å
in the APO structure compared to the ligand bound struc-
ture. This suggests that the ligand plays a more important
role in stabilizing this conformation (Table 1).

To investigate these differences further, we computed
the average energy of the proteins over the course of
the simulation as the sum of the bonded (internal) and
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nonbonded (electrostatic and van der Waals) energies.
This energy neglects energetic components of the sol-
vent and the inhibitor (apart from the interactions with
the protein, which are considered) as a means of comparing,
albeit approximately, their energy profile over the course of
the simulations. We observed the following statistically sig-
nificant trends in the computed energy: APO-EGFR(active)<
lapatinib-EGFR(inactive)<APO-EGFR(inactive)<gefitinib-
EGFR(inactive)<gefitinib-EGFR(active). It is possible to compare
these energies qualitatively since all models have an identical
number of atoms. The most energetically favorable protein
conformation over the course of the simulation was the APO
protein in the active conformation. Surprisingly, the binding of
gefitinib to the active protein conformation resulted in the
protein with the highest overall energy, more so even than
when bound to the inactive EGFR conformation. The APO

form of the inactive protein is found to be less energetically
favourable than the active form but binding of lapatinib sta-
bilizes this conformation. Gefitinib was found to destabilize
the inactive protein conformation. One might therefore con-
clude that the active protein is destabilized to a degree by
inhibitor binding, whereas the inactive protein conformation is
stabilized, at least by inhibitors such as lapatinib, which pos-
sess a back-pocket binding group.

These observations do not represent the complete picture
since many of the individual structural elements found with-
in the five different protein models will be dynamically
dissimilar over the course of the simulation. To assess these
differences, the heavy-atom RMSF value of each residue
(that which is related to the crystallographic B-factor or
thermal motion) was calculated to understand how the dif-
ferent structural elements behave between t010 to 20 ns

Fig. 3 Heavy-atom protein RMSD plots of the complex (a) and apo
(b) simulations. Comparisons of experimental versus predicted B-
factor values (c) and predicted B-factors of complex versus apo

simulations (d). Heavy-atom RMSF/residue plots of the complex (e)
and apo (f) EGFR kinase structures. Key secondary structural elements
(glycine-rich loop, C α-helix and activation loop are indicated

Table 1 The heavy-atom root mean square deviation (RMSD) average
and standard deviation (SD) values (Å) (in parenthesis) for the overall
protein structure, key secondary structural elements conserved

interactions and ligands bound over the course of the simulation
(values calculated from t010 to 20 ns)

gefitinib-EGFR(active) lapatinib-EGFR(inactive) gefitinib-EGFR(inactive) APO-EGFR(active) APO-EGFR(inactive)

Overall structure 2.39 (0.17) 2.34 (0.15) 2.55 (0.24) 2.78 (0.15) 2.42 (0.14)

Glycine-rich loop 1.73 (0.21) 0.66 (0.11) 0.81 (0.15) 1.68 (0.14) 1.52 (0.39)

C α-helix 1.84 (0.28) 2.99 (0.61) 2.72 (0.54) 1.80 (0.19) 2.55 (0.30)

Activation loop 3.76 (0.72) 3.14 (0.23) 4.01 (0.74) 3.92 (0.20) 2.82 (0.30)

Hydrophobic cluster 1.72 (0.19) 1.66 (0.15) 2.15 (0.26) 1.84 (0.13) 1.77 (0.27)

Regulatory spine 1.58 (0.27) 0.97 (0.14) 1.43 (0.20) 1.24 (0.19) 1.07 (0.26)

Ligand 1.26 (0.28) 1.08 (0.11) 1.14 (0.26) – –
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(Fig. 3e–f). We have also assessed the heavy-atom RMSD
(compared to the initial structures obtained before energy
minimizations) of three important conserved secondary
structural elements, C α-helix (P729 to A743), glycine-
rich loop (G-loop; G695 to T701) and activation loop (A-
loop; D831 to V852) and the bound ligands. In addition, we
have assessed the differences in the EGFR specific regions,
termed the regulatory spine (R-spine) and hydrophobic clus-
ter (H-cluster), which are believed to be important in differ-
entiating the active and inactive protein conformations,
respectively. The data are summarized in Table 1.

Ligand binding

The average RMSD of the inhibitors in the gefitinib-
EGFR(active) and lapatinib-EGFR(inactive) complexes were
comparable over the course of the simulation, yet gefitinib
was found to fluctuate to a much greater extent than lapatinib
since the RMSD SD of the ligand in the former is 0.17 Å
greater than in the latter (Table 1, Fig. 4). The differences are
due primarily to the solvent-exposed tails of the two inhib-
itors, which is evident given that the RMSD of the quinazoline
and anilino-based substituents are rather small (Supporting

Information Fig. S4). The results from the gefitinib-
EGFR(active) simulation are consistent with a recent study in
that the solvent-exposed tail of the inhibitors exhibits greater
movement than the central scaffold [17]. This is expected
given the importance of the hinge interaction between the
quinazoline acceptor and the M769 donor (Fig. 2 and Sup-
porting Information Fig. S6). The differences in flexibility at
the solvent-exposed region could be a result of differences in
the intrinsic flexibility of adjacent protein structural elements,
or a reflection of the differing binding strengths/characteristics
of the substituents in question. Analysis of the interactions
present in Fig. 5 and Supporting Information Table S1 indi-
cates that the basic nitrogen of gefitinib interacts strongly with
the carbonyl oxygen of L694 located on the G-loop, consid-
erably more so compared to lapatinib. In contrast, lapatinib
forms stronger interactions with the C-lobe via residues such
as C773 and its furan ring, D776 and its basic nitrogen, and
R817 and its sulfone group. The three strong interactions
formed by lapatinib contrast with just one strong interaction
of gefitinib, and help to explain the latter’s larger RMSD.
Analysis of the results from the gefitinib-EGFR(inactive) simu-
lation, where gefitinib was placed in the active site of the
inactive protein conformation, reveals that the ligand also

Fig. 4 Heavy-atom RMSD plots of the residues in the key secondary structural elements; glycine-rich loop, C α-helix, activation loop and ligands
for all molecular dynamics (MD) simulations
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fluctuates to a larger degree also in this cavity (Table 1, Fig. 4).
This suggests that the behavior of gefitinib is a characteristic
of the molecule itself and not an effect of the protein
conformation.

Analysis of the interaction energies (the sum of electro-
static and van der Waals interactions) between the inhibitors
and adjacent active site residues was subsequently consid-
ered (Fig. 5 and Supporting Information Table S1). A key
difference between the two inhibitors is the presence of a
large back-pocket binding group of lapatinib, which can
make a number of strong interactions not made by gefitinib.
These include significant interactions by the methoxy-3-F-
phenyl substituent with T830, L753, M742, D831, and F832
(see also Supporting Information Fig. S6). Common inter-
actions made by both inhibitors are those between the 3-Cl-
phenylamine portion and T830 and K721, although these

are noticeably stronger in the case of lapatinib. Strong
interactions are made with the hinge M769 residues in all
cases as can be seen in Fig. 5 and Supporting Information
Table S1.

It is also possible to look at the atomic fluctuation of
individual active site residues as this can shed light on the
nature of the binding site interactions (Fig. 6). An analysis
of the RMSF of these residues shows noticeable differences
between the different EGFR complexes. For example, L694
and S696 of the glycine-rich loop fluctuate considerably
more in the gefitinib-based complexes. Gefitinib forms a
favorable interaction with the G-loop residue L696 and,
over the course of the simulation, this interaction is main-
tained even as the protein undergoes significant fluctuation.
Residues E738 to V745 are located in the back-pocket and
fluctuate along with the inhibitor back-pocket substituents

Fig. 5 Plots for the interaction
energy of selected residues
located in the binding site for
the three complex simulations.
The important residues are
indicated

Fig. 6 Plots for the RMSF for
the selected residues located in
the binding site for the three
complex simulations. The
important residues are indicated
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(or lack of the extended back-pocket binding group of
gefitinib). The hinge binding region, along with the gate-
keeper (T766 to M769), show rather low RMSF values as
might be expected given the importance of the interaction
made by the inhibitors and M769 (although for gefitinib the
values are generally slightly larger). Residues D776–L834
in Fig. 6 correspond to the floor of the ATP-binding site, as
well as part of the back-pocket. It appears that the RMSF
values of these are also slightly larger for gefitinib-
EGFR(active) than lapatinib-EGFR(inactive), which would sug-
gest that lapatinib forms the more tightly bound complex of
the two inhibitors.

We assessed the binding free energies of the inhibitors
(ΔGbind) using the linear interaction energy (LIE) method
[38, 39]. We found that the gefitinib ΔGbind to the active
and inactive proteins were comparable, but that these were≈
7 kJ mol−1 higher in energy than that observed for lapatinib
binding to the inactive protein. Although these energies are
not considered as precise as alternate methods such as FEP
or even MM-PBSA, the results obtained are consistent with
the reports from Woods et al. [4] who found that lapatinib
has a much slower off rate than other EGFR inhibitors
such as gefitinib. That said, the results are not in
agreement with the experimental IC50 values. IC50 values
are generally determined to the active protein conformation
in biochemical assays, and not the inactive form (requiring
longer equilibration times), which might help explain the
discrepancy.

C α-helix

The C α-helix of EGFR kinase is the principle region that
differs between the active and inactive protein conforma-
tions. The formation of the inactive EGFR conformation
requires translation of the C α-helix in the z-direction rela-
tive to the rest of the protein (Fig. 1). This movement then
leads to the formation of an additional hydrophobic pocket
(back-pocket II), which is occupied by the 3- F-phenyl
group of lapatinib.

The C α-helix in the lapatinib-EGFR(inactive) structure
was found to have a larger average RMSD and RMSF over
the course of the simulation than those observed in the
gefitinib-EGFR(active) simulation (Fig. 3e, Fig. 4 and Ta-
ble 1). This appears to be due, in part, to helix–coil tran-
sitions at the N-terminus of the helix (P729–I735) in
simulations of the EGFR(inactive) structures, even though
those residues tended to be helical at the end of simulation.
The higher degree of flexibility and conformational transi-
tions are in fact consistent with the ambiguous electron
density found for residues A726–P729 in the 1XKK struc-
tures [4] and are consistent with the simulation results
reported by others [7]. This observation was assumed ini-
tially to be an artifact of the modeled loop, consisting of

three amino acid residues at the top of the C α-helix in
1XKK. However, a similar effect is observed in 2ITY, where
these residues have been resolved experimentally. Addition-
ally, upon simulation of the APO protein derived from 2ITY
(APO-EGFR(active)), we found the helix remained essentially
intact over the course of the simulation, suggesting the
transitioning was, at least in part, ligand induced. We also
observed a dramatic drop in the flexibility of the C α-helix
going from the inactive ligand-bound structure (lapatinib-
EGFR(inactive)) to the APO structure (APO-EGFR(inactive)).
The RMSD SD dropped from (0.61 to 0.30 Å) indicating
that the ligand plays an important role in inducing this
instability. Additional evidence for this is the drop in flex-
ibility, albeit smaller, going from lapatinib-EGFR(inactive) to
gefitinib-EGFR(inactive). This is because the latter lacks the
back-pocket II binding group created by the C α-helix
movement. As noted by Papakyriakou et al. [7], it is also
likely that differences between crystal stacking forces and
those of the simulated water will be responsible for some of
these differences.

Of additional interest to us was whether the active
and inactive structures had converged to any degree,
particularly when the simulations were extended to
50 ns for the APO-EGFR(inactive) and gefitinib-EGFR(inactive)

models. The N-terminus of the Cα-helix (P729 to I735) of the
EGFR(inactive) structures is unstable and shows the helix to coil
transitioning. In the APO-EGFR(inactive) simulation, we also
found helical bending leading to the N-terminal segment of
the helix drifting toward that of the active conformation (Sup-
porting Information Fig. S5C and S5E). In contrast, the C-
terminal segment of the helix does not change its position,
consistent with the long distance between K721 and E738
(Supporting Information Fig. S2). This helical bending was
seldom observed in the gefitinib-EGFR(inactive) and lapatinib-
EGFR(inactive) complexes (Supporting Information Fig. S5B,
S5D and S5F).

Comparing the C α-helices from structures obtained from
the five different simulation structures, to that of the original
active X-ray structure (2ITY), reveals some interesting trends
(Table 2). The APO-EGFR(active) structure displays the RMSD
of the helix of≈3.7 Å, compared to 3.3 Å for the gefitinib-
EGFR(active). RMSD analysis of the EGFR(inactive) simulations
using the initial active conformation as the reference structure
showed that the C α-helix of the EGFR(inactive) complexes
have the RMSD of≈7 Å to the active conformation and
increase over time to 8.6 A for gefitinib-EGFR(inactive)

after 50 ns of simulation; however, in simulation of the
EGFR(inactive) protein in the APO form, the RMSD
decreases from 7.03 Å to 5.44 Å after 20 ns and to 5.01 after
50 ns (Table 2 and Supporting Information Fig. S7). This
suggests that the C α-helix of both the active and inactive
APO structure start to converge towards a similar minimum
(RMSD decreasing from 7.0 to 3.3 Å at t020 ns). However,
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while the C α-helix of the inactive protein did appear to move
towards a more active-like conformation, we did not observe
the formation of the salt bridge between K721 and E738, the
most critical element associated with the EGFR activation [3].

Analysis of the regulatory (R-) spine (residues, M742,
L753, H811 and F832) [6] shows that the conformation
adopted by these residues in the gefitinib-EGFR(inactive)

and APO-EGFR(inactive) structures are not close to those
found in the active conformation. (Table 1 and Supporting
Information Fig. S3). The H-bond between HRD R812 and
DFG+1 L834, which is an important feature in the active
conformation, was measured over the course of simulation
(Supporting Information Fig. S2). Although at the end of the
simulations, the R812–L834 distance is shorter in the
gefitinib-EGFR(inactive) structure, when compared to the
lapatinib-EGFR(inactive) and APO-EGFR(inactive) structures,
this key H-bond is still unlikely to form during the
gefitinib-EGFR(inactive) simulation since it is still found to
be>4.0 Å.

Glycine-rich loop

The G-loop consists of a set of flexible residues that are
located on the N-lobe of protein kinases. These residues are
important in defining the size and shape of the ATP-binding
pocket, as well as its dynamic characteristics, and should
have major implications for inhibitor binding. Indeed, the
opening of the active site pocket to solvent in the inactive
protein containing lapatinib is slightly smaller than in the
active protein with gefitinib due to the conformation adop-
ted by the G-loop.

Over the course of the 20 ns simulation, it can be seen
that the G-loop of gefitinib-EGFR(active) model deviates
further than that of lapatinib-EGFR(inactive), and fluctuates
to a greater extent (Fig. 4, Table 1). Analysis of the atomic
coordinates reveals that this movement is primarily in the y-
dimension as defined in Fig. 1, corresponding to the expan-
sion and contraction of the entrance into the ATP-binding
site.

The dynamics characteristics of the G-loop in gefitinib-
EGFR(active) and lapatinib-EGFR(inactive) appear to correlate
with that of the bound inhibitors (Table 1). For example, the
average RMSD and SD of the inhibitor and G-loop in
gefitinib-EGFR(active) simulation are almost double those
obtained from the lapatinib-EGFR(inactive) simulation. This

is expected given that gefitinib interacts more strongly with
the G-loop than lapatinib, as discussed previously. From the
results of the separate gefitinib-EGFR(inactive) simulation, we
observed that the G-loop and inhibitor have an average
RMSD between the gefitinib-EGFR(active) and lapatinib-
EGFR(inactive) values. However, while the RMSD SD of
the G-loop is also intermediate in value, that of gefitinib is
the same as the original gefitinib-EGFR(active) simulation.
From a consideration of the APO simulation results (Fig. 4),
it appears that the presence of an inhibitor significantly
stabilizes the G-loop of the inactive protein. Removal of
the inhibitor leads to a dramatic increase in the RMSD and
RMSF compared to the gefitinib-EGFR(inactive) and
lapatinib-EGFR(inactive) structures (Table 1, Fig. 3e–f and
Fig. 4). In contrast, the RMSD and RMSF values of the
APO-EGFR(active) structure do not deviate dramatically from
that of the gefitinib-EGFR(active) structure, suggesting the
G-loop conformation in the active protein is intrinsically
more stable.

Activation loop

The A-loop is an important structural element found in
protein kinases. It contains amino acid residues that are
critical to achieve their catalytic function of phosphoryla-
tion. The key portion of the A-loop is the so called DFG
motif, which is found in the “in” conformation in known
EGFR structures. A key interaction between residues in the
C and N-lobes are mediated through the DFG D831 residue
of the A-loop, and K721 of the β3-strand. There also exists
a short α-helical segment towards the N-terminus of the A-
loop (L834 to L837) in the inactive EGFR structure, but is
not present in the active structure. This may also affect the
conformational characteristics in this region.

The A-loop showed the largest RMSD and RMSF values
among the three key structural elements over the course of the
simulation for both EGFR conformations (Table 1, Figs. 3e,
f; 4). The largest movement of the A-loop is in agreement with
the work of others [17] and this is in line with the experimental
X-ray data in that the residues E844 to K851 are disordered in
both 2ITY and 1XKK structures [4, 5].

The A-loop found in the lapatinib-EGFR(inactive) structure
was found to fluctuate considerably less than that found in
gefitinib-EGFR(active) (RMSD s.d. of 0.23 Å vs 0.72 Å,
respectively) (Table 1). It appears that the short α-helical

Table 2 Heavy-atom RMSD (Å) of the C α-helices after overall superimposition of the EGFR(active) and EGFR(inactive) structures at t020 ns and t0
50 ns when compared to the EGFR(active) structure at t00 ns

APO-EGFR(active) APO-EGFR(inactive) gefitinib-EGFR(active) lapatinib-EGFR(inactive) gefitinib-EGFR(inactive)

t020 ns 3.69 5.44 3.31 7.33 7.15

t050 ns – 5.01 – – 8.64
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segment towards the N-terminus of the A-loop in the inactive
protein limits the degree of flexibility. In addition, the inter-
action between D831 and K721 over the course of the MD
simulations was somewhat weaker in gefitinib-EGFR(active)

than lapatinib-EGFR(inactive) simulations, consistent with the
original X-ray structure (Supporting Information Fig. S2).

The simulation of gefitinib bound to the inactive EGFR
protein structure (gefitinib-EGFR(inactive)) helps to shed light
on the characteristics of the A-loop. The average RMSD and
RMSF from this simulation are roughly comparable to that
of the gefitinib-EGFR(active) simulation, suggesting that the
effect of gefitinib on the A-loop is similar to that observed
for the G-loop (Table 1, Figs. 3e,f; 4).

From the simulations of the APO-EGFR(active) and APO-
EGFR(inactive) structures, it appears that the A-loop in the
active protein deviates to a greater extent (RMSD average of
3.9 Å vs 2.8 Å, respectively), but fluctuates to a lesser
degree (RMSD SD of 0.20 Å vs 0.30 Å, respectively).
However, the binding of lapatinib to the inactive protein
leads to a drop in the RMSD and RMSF suggesting that it
help stabilize the A-loop conformation. In contrast, gefitinib
binding to the active protein conformation leads to dramat-
ically increased RMSD SD values in particular (0.20 Å vs
0.72 Å, respectively) suggesting it has the opposite effect.
The binding of gefitinib to the inactive protein conformation
also results in the larger RMSF and RMSD SD, suggesting
that the destabilizing effect is due to the fact it makes no
interactions with residues on the C-lobe (in contrast to the
three interactions made by lapatinib) (see also Table 1,
Figs. 3e,f; 4; 5).

Hydrophobic cluster

A network of several residues (L723, M742, L764 and
D831), including two on the activation loop (L834 and
L837), form a small hydrophobic (H-) cluster, and are
reported to be important for the stabilization of the inactive
EGFR conformation [7, 8]. Indeed, the cancer-related mu-
tation L834R, has been known to be involved in either the
disruption of the hydrophobic packing of the inactive EGFR
kinase structure [8] or the introduction of an intermediate
state in the active-inactive transformation pathway, adjust-
ing the relative stability of both states [18], subsequently
inducing EGFR activation.

From our simulation data, we find that the H-cluster does
not vary dramatically over the course of the simulation.
Although the H-cluster does not exist in the active confor-
mation, we show the RMSD values for the purpose of
comparison (Table 1 and Supporting Information Fig. S3).
The average RMSD of the H-cluster in both APO proteins
was roughly comparable; however, the RMSD SD in the
APO-EGFR(active) protein is considerably lower than that in
the APO-EGFR(inactive) (0.13 vs 0.27 Å), suggesting that it

does play some form of stabilizing role in the active confor-
mation. The observation that the lapatinib-EGFR(inactive)

simulation displays a very low RMSD (both average and
SD values) is not surprising given that these residues can
reorientate, with interactions with lapatinib in the back-pocket
region being made. The larger RMSD of the H-cluster in the
gefitinib-EGFR(inactive) structure is consistent with the partial
unfolding of the short α helix located close to L834 and L837.
This helical transition was not observed in the APO-
EGFR(inactive) and lapatinib-EGFR(inactive) structures.

Conclusions and future directions

In this study, we performed MD simulations on both the
active and inactive protein complexes of the wild type
EGFR, with both type-I and type- 1½ inhibitors. Our goal
was to better understand the origin for the two distinct
protein conformations and their relative preference for the
Type-I inhibitor gefitinib and Type-II inhibitor lapatinib. We
also simulated both APO forms and gefitinib bound to the
inactive conformation to decipher the relative contribution
of the inhibitor to stability of the two EGFR conformations.

We find that binding of gefitinib to the active protein
appears somewhat destabilizing when compared to the APO
simulation of the same conformation. The major cause of
destabilization is increased fluctuation of the G-loop, A-
loop and, to a lesser extent, the C α-helix. In contrast, the
binding of lapatinib to the inactive conformation helps to
lower the energy of the protein. Lapatinib binding leads to
lower fluctuation in the G-loop and A-loop but a dramatic
increase for the C α-helix.

Calculation of binding free energies suggests that lapati-
nib also binds more strongly to the inactive protein than
gefitinib does to the active protein. While this would appear
to contradict their reported experimental pIC50 values, it is
in agreement with the experimentally determined slower off
rate displayed by lapatinib [4], which is one of the proposed
reasons for its better efficacy (along with its ErbB2 inhibi-
tion). The more favorable binding energy can be explained
by the more extensive π type interactions it can make in the
EGFR back-pocket by virtue of its additional 3-Cl-phenyl
substituent. In addition, lapatinib makes three moderately
strong interactions with the C-lobe (via its sulfone, furan
and basic nitrogen) in contrast to gefitinib, which makes a
single strong interaction with the G-loop (via its basic ni-
trogen). In addition, an analysis of the RMSF shows that the
G-loop in the gefitinib-EGFR(active) structure fluctuates dra-
matically, but in the process also maintains the interaction
already present. The lack of any interaction between gefiti-
nib and the C-lobe also explains the large RMSF values of
the A-loop. In contrast, the three relatively strong interac-
tions that lapatinib makes with the C-lobe appears to restrain
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the A-loop, while the weaker interaction with the G-loop
leads to a higher RMSF in this region.

The C α-helix of the inactive EGFR conformation is
intrinsically more mobile than that of the active conforma-
tion. This is unsurprising given its more extended position
based on the known X-ray structure. It is found that the
presence of an inhibitor in either protein conformation
increases the flexibility in this region compared to the
equivalent APO structure as a result of interactions mediated
with residues in the back-pocket. Interestingly, from an
analysis of the APO simulations, it appears that the C α-
helix conformation in the active and inactive proteins begins
to converge to a similar minimum after 50 ns of MD.
However, we did not observe the formation of a salt bridge
between K721 and E738—a critical element associated with
EGFR activation [3].

The principle value of inhibitor binding information from
MD is that the contribution of the various structural regions
or individual residues to inhibitor binding and protein sta-
bility can be better understood. This potentially allows the
more focused direction of chemistry resources to target
regions in the active site most likely to give rise to higher
affinity, tighter binding inhibitors. For example, rather than
searching for any H-bond interactions to increase inhibitor
affinity, an analysis of inhibitor binding, and the resultant
change this has on receptor flexibility, may help to deter-
mine which H-bonds will contribute best to inhibitor bind-
ing, since the formation of such interactions may induce
either greater stability or instability in the protein.
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ABSTRACT: It is widely accepted that skin sensitization
begins with the sensitizer in question forming a covalent
adduct with a protein electrophile or nucleophile. We
investigate the use of quantum chemical methods in an
attempt to rationalize the sensitization potential of chemicals of
the SNAr reaction domain. We calculate the full reaction profile
for 23 chemicals with experimental sensitization data. For all
quantitative measurements, we find that there is a good
correlation between the reported pEC3 and the calculated
barrier to formation of the low energy product or intermediate (r2 = 0.64, N = 12) and a stronger one when broken down by
specific subtype (r2 > 0.9). Using a barrier cutoff of ∼10 kcal/mol allows us to categorize 100% (N = 12) of the sensitizers from
the nonsensitizers (N = 11), with just 1 nonsensitizer being mispredicted as a weak sensitizer (9%). This model has an accuracy
of ∼96%, with a sensitivity of 100% and a specificity of ∼91%. We find that the kinetic and thermodynamic information provided
by the complete profile can help in the rationalization process, giving additional insight into a chemical’s potential for skin
sensitization.

1.0. INTRODUCTION

Contact dermatitis is a common environmental and occupa-
tional health concern that arises from exposure to certain
chemical substances. Contact dermatitis can be caused by the
physical effects of chemical irritants on tissue directly (irritant
contact dermatitis, ICD), which includes solvents, acids, or
bases. An irritation may also result from a more extreme allergic
response (allergic contact dermatitis, ACD), a complex phased
response of the immune system to an allergen.1 Experimental
methods for the detection of sensitizers include the guinea pig
maximization test (GPT) and the more recent murine local
lymph node assay (LLNA).2 The LLNA assay is now the
method of choice following extensive validation and has been
adopted by the OECD as a standard protocol.3 The assay works
by identifying compounds with the capacity to provoke a T
lymphocyte proliferative response within the lymph nodes.
Chemicals are classified as sensitizers if they show a 3-fold or
greater proliferative response in the induced draining in lymph
nodes compared with controls.3 While the EC3 is not an
absolute response, it can be used to rank order compounds in
terms of their relative toxicity. EC3 can be subclassified into
strong, weak, and moderate sensitizers as shown in Table 1.
According to the European Union’s Registration, Evaluation,
Authorization and Restriction of Chemical Substances Regu-
lations (REACH), greater effort is needed to reduce the
numbers of animals and the costs associated with toxicity
testing. This requires the greater use of chemical assay
surrogates4,5 and theoretical methods such as QSAR models
and read-across methods.6,7

Skin sensitization begins with the sensitizer in question
forming a covalent adduct with a protein electrophile or
nucleophile. From the pioneering work in this field by Roberts
and Aptula, skin sensitizing chemicals can be assigned to 5
separate chemical classes (or domains) capable of causing
protein adducts: aromatic nucleophilic substitution (SNAr),
Schiff base formation (SB), Michael-type addition (MA),
aliphatic nucleophilic substitution (SN2), and acylation
(Acyl).8,9 The presence of structural or reactive features alone
are not reliable indicators of toxicity,10,11 which is perhaps
unsurprising given that a classification scheme neglects the
overall molecular and local electronic characteristics of a
molecule and the fact that a degree of target recognition may be
present.
Attempts to develop truly global (i.e., covering a wide

diversity of sensitizer types) quantitative structure−activity
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Table 1. EC3 Cut-Offs Used to Classify the Sensitization
Potential of Chemicals in the LLNA Assay

potency classification EC3 value (% weight)

nonsensitizer NR
weak ≥10 to ≤100
moderate ≥1 to <10
strong ≥0.1 to <1
extreme ≤0.1
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relationships (QSAR), either by relative alkylation index (RAI)
approaches12 or by theoretical descriptor-based QSAR
approaches,13,14 have not yet met with sufficient success to
conform with the complete set of OECD QSAR guidelines.6,15

These guidelines are (a) a defined end point and (b) an
unambiguous QSAR model, which is (c) mechanistically
interpretable. In addition, the model must have (d) predictivity
that is fit for the purpose and (e) a defined domain of
applicability for which the model can be used. QSAR models
that currently best fit the OECD principles are termed
quantitative mechanistic models (QMM). These are restricted
to chemicals from an individual reaction domain and thus
resemble the simple but very functional QSARs first reported
by Hansch and Fujita in the 1960s.16 These QSAR methods
typically make use of experimentally derived physicochemical
descriptors and are generally accurate for the particular
chemical series under investigation.5,8,9,17,18 However, given
that these methods rely on experimentally derived descriptors
(i.e., σ electronic and π steric parameters), novel compounds
cannot be predicted without first determining these parameters
directly if they are not already known. Thus, a QMM-like
approach based on purely theoretical methods would therefore
be desirable if it could match the performance of that obtained
with experimentally derived descriptors.
In a recent paper, Enoch and Roberts reported the

development of a theoretically based QMM. This method
relied on quantum chemical (QC) and an empirically based
molecular descriptor to derive an LLNA QSAR for Michael
acceptors.19 The authors approximated the rate determining
barrier to reaction by using the energy of the high energy
intermediate formed following the attack of a substrate by the
negatively charged nucleophile (i.e., relying on the Hammond
postulate to estimate the barrier),20 and included an additional
solvent accessible surface area term in their equation. This QC
based protocol appears to be a significant improvement over
the HOMO-LUMO estimate often used as a surrogate for
reactivity.14 The model led to good discrimination between
sensitizers and nonsensitizers for 26 compounds, with only 4
outliers.
In this article, we investigate the use of QC methods to

rationalize the sensitization potential of chemicals. We start by
collating the LLNA data in the literature to assess the

prevalence of skin sensitizers within the different reaction
domains. On the basis of this analysis, we then focus on the
most problematic domain. The electrophilic reactivity of the
SNAr domain, which was identified as the most toxic of all the
five domains, is determined by a combination of the effects of
the leaving group X and the activating groups Y. The reaction
can occur when X is any halogen or pseudohalogen or a range
of other groups which are not usually considered as good
leaving groups (NO2, SO2Ph, SOPh, and SO3

−). We calculate
the full reaction profile for 23 chemicals reported in the QMM
study of Roberts et al.,21 providing complete details of the
reaction kinetics and thermodynamics using a model sulfur
nucleophile (Scheme 1). This is because it is not clear how the
reactivity of the chemicals are influenced by kinetic and
thermodynamic factors. Thus, computing the complete energy
profile is preferable to estimate reactivity. We then use the
kinetic and thermodynamic data to try and rationalize the
experimentally reported sensitization results for the compounds
in question. We also compare the discriminating potential of an
approximated barrier to the SNAR domain, as used by Enoch
and Roberts for the MA domain.19 In addition, we assess the
performance of the commonly used HOMO−LUMO band gap
descriptor. We are particularly interested in determining
whether the extra cost of the detailed profile is in any way
beneficial over the latter two more approximate representations
of reactivity.

2.0. COMPUTATIONAL PROCEDURES
Three different data sets were extracted in order to determine whether
the chemical application affects the prevalence of chemical sensitizers.
Topical drugs were obtained from ChEMBL,22 and the top 200 drugs
(primarily oral) were taken from Stepan et al.10 The LLNA data set
was created from 3 sources. Four hundred forty-three unique
chemicals with LLNA test information were obtained from (1)
ICCVAM (Interagency Coordination Committee on the Validation of
Alternative Methods),23 (2) Kern et al.,24 and (3) Enoch et al.25 The
data was merged and cleaned using the following protocol: CAS
numbers and/or smiles were rechecked; LLNA data for smiles
duplicates were averaged; and compounds with contradictory
measurements were excluded. The EC3 values of the 296 compounds
with quantitative EC3 values were converted to the molar logarithmic
parameter pEC3 (−log (MWT/EC3)). Compounds were assigned to
a reaction domain using SMARTs rules created by Enoch et al.25

recoded in Pipeline Pilot 6.1,26 as well as manually for the purpose of

Scheme 1. Two Possible Nucleophilic Aromatic Substitution Reaction (SNAR) Profiles for Chemicals in This Studya

aAddition−elimination via concerted (right) and stepwise processes.
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comparison. Manual assignment was only performed in cases where it
was not previously reported.25 Compounds that were unambiguously
assigned to a single reaction class were used for categorization analyses
(∼83%).
The SNAr domain chemicals under QC investigation consist of the

23 halo- and pseudohalobenzenes from the publication of Roberts et
al.21 Of these, 12 are reported skin sensitizers and 11 are
nonsensitizers. An −SCH3 model of a typical cysteine nucleophile
was used to simulate the reaction profile for these 23 compounds in
line with others.19 We evaluate the following states for each chemical:
(a) the isolated reactants, (b) the nonbonded reactant complex, (c)
the bonded intermediate complex (if stable), (d) the nonbonded
product complex, and (e) the isolated products, as well as (f) the
transitions state(s) connecting the different states. The reaction
coordinates of each chemical were modeled using a density functional
theory (DFT) based QC model in Gaussian 09, revision C01.27 In this
case, we use the extensively validated M062X functional developed by
Truhlar and co-workers,28−30 in conjunction with the 6-31+G(d,p)
basis set. Stationary points were confirmed as such using vibrational
frequency analysis. Transition states were confirmed as having a single
negative frequency, while minima were confirmed to have none.
Calculated properties (MWT and clogP) were obtained using the
Chemaxon JChem software package.31

3.0. RESULTS AND DISCUSSION

We were interested in assessing whether chemicals used in a
particular application (consumer vs pharmaceutical for
example) are more likely to display differences in reactivity
alerts. For example, it might be expected that drugs will be
more carefully screened for reactive features (e.g., potentially
leading to drug−drug interactions32) than chemicals used in
manufacturing or consumer products due to the high systemic
concentration generally achieved.33 All compounds were
therefore assigned to their chemical domains using the
SMARTs developed by Enoch et al.25 We first assessed the
concordance between manual and in-silico assignment of all
chemicals in the LLNA data set, which had been assigned using
both methods. For cases where a single, unambiguous
assignment can be made by both methods (∼70% of all 443
compounds), it was observed that the in-silico assignment was
correct ∼82% of the time. While lower than the reported
statistics for the original 210 compounds used to generate the
SMARTs patterns,25 the performance of the method has still
remained high.
Compounds in the oral drug data set are expected to achieve

higher systemic exposure than the topically applied drug data
set. The LLNA data set differs from the former two as it
contains primarily nondrug-like compounds used in consumer
products. Indeed, Figure 1 shows that the three different data
sets are subtly different in terms of the proportion of
nonreactive chemicals present (NR = 55%, 50%, and 39% for
oral drugs, topical drugs, and consumer chemicals, respec-
tively). This might have been expected given the extensive
development testing of the latter set and also because the
LLNA data set is likely artificially enriched with sensitizers. For
example, many known sensitizers identified from other assays
will have been used to validate the LLNA assay. Nevertheless,
almost 50% of oral and topical drugs are members of one or
more reactive domains. This confirms that the presence of a
reactive structural alert in a molecule should not simply be
taken as meaning a compound is high risk and should only be
used in a weight of evidence approach.
Analysis of the compiled LLNA measurements broken down

by the reaction domain reveals significant differences. The
mean pEC3 (quantitative measures only) of each reaction

domain clearly shows that some are more likely to lead to
severe skin sensitization than others (Figure 2). It is notable
that the least represented type of compound in Figure 1 is that
of the SNAr domain. This class on average leads to the highest
sensitization response of all of the chemical classes. MA, Acyl,
and SN2 are shown to display a comparable risk, with SB being

Figure 1. Pie chart showing the distribution of chemical domains
within three different compound sets: (a) topical oral drugs, (b) the
top-200 reported oral drugs, and (c) all compounds reported with
LLNA measurements.

Figure 2. Relationship between skin sensitization potential (pEC3)
and chemical domain for 275 chemicals with both absolute pEC3
values and a single defined chemical domain: SB, SNAr, SN2, Acyl, MA,
and nonsensitizer (NR).
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Table 2. Predicted QC Reaction Profiles for 23 Chemicals of the SNAr Domaina
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the least problematic on average. It is also worth noting that

some chemicals classified as containing no reactive functionality

also show sensitization potential. This, however, is over-

estimated since most NR compounds do not have quantitative

pEC3 measures so are excluded from the analysis (i.e., class

based result only).

Attempts to develop trends with simple molecule properties
were unsuccessful, which is consistent with reports by others.21

This may be due to the relatively small size and limited
chemical diversity of the LLNA data sets currently available.34

Nevertheless, Figures 1 and 2 clearly show the need for
additional methods, on top of the reaction domain scheme, to
help discriminate sensitizers from nonsensitizers more

Table 2. continued

aAlso reported are the measured skin sensitization pEC3 values (or corresponding NR results from the GPA assay). Also shown are the predicted
HOMO-LUMO and clogP.
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effectively. It is also notable that the SNAr domain represents a
particularly significant threat. Nevertheless, such compounds
make up 13% of oral drugs, 2% of topical drugs, and 2% of all
compounds tested in the LLNA assay. In the next section, we
discuss a purely theoretical QC based method suitable for use
in the ranking of the sensitization potential of chemicals.
3.1. QC Model of Skin Sensitization. The addition−

elimination reaction of the SNAr domain chemicals modeled
here are summarized in Scheme 1. On the basis of the gas-
phase QC calculations, the displacement of the halogen or
pseudohalogen group was found to proceed in either one or
two steps. Addition of the nucleophile to the aromatic ring
leads to the expected resonance-stabilized carbanion inter-
mediate35 in 7 out of the 23 cases. These intermediates are
primarily found where the leaving group is less bulky (F, SCN,
SO3

−, NO2, and Cl in 2 out of 14 cases). For the Cl leaving
group, it is also found that the ring system and substituents also
play an important role. The majority of reactions are predicted
to proceed via an SN2-like process that lacks the resonance
stabilized intermediate. In this case, the resonance stabilized
structure is found to be the transition state. From these
calculations, it is clear that the nature of the leaving group (bulk
and electronics), the stabilizing effect of the ring substituents,
and the resonance effects can lead to dramatically different
barrier heights, as well as the profile.21 We note that these
calculations lack solvent effects, which may lead to the reaction
profile changing from the expected SNAR process to an SN2
process. Nevertheless, we still expect the computed barriers to
be a reasonable reflection of the relative reactivity of each of the
chemicals under investigation here.
The complete reaction profile for the 23 chemicals studied

here are reported in Table 2. The first step in the reaction is
expected to be the rate determining step due to the loss of
aromaticity. If the reactivity of the sensitizing chemicals is under
kinetic control, we would expect the RDS to correlate well with
the experimental pEC3s. Alternatively, should the process
depend on the overall thermodynamics, we would expect the
exothemicity of the products to be important. The reaction
profiles of compounds 1−6 are shown pictorially in Figure 3. It
can be seen for those chemicals with halogen or pseudohalogen
leaving groups and common core (i.e., 2,4-dinitrobenzene), that
the profile can vary substantially. It is apparent that compounds
with more effective leaving groups, Br- (3) and I- (4), display

the expected stepwise SNAR reaction and result in highly
exothermic products. In contrast, compounds 1, 2, 5, and 6
follow a concerted pathway. For compounds 1 and 6, the
products are equivalent or somewhat higher in energy than the
corresponding intermediates or reactants, and the second step
is rate determining for the full addition−elimination process.
Compound 2 displays a higher barrier for the second step.
While this result might suggest that the intermediate can also
lead to the sensitization response, rather than the elimination
product, it may be a subtle artifact of the method due to the
lack of solvent stabilization.
For the 2,4-dinitrobenzene series of compounds, analysis of

the correlation between the quantitative pEC3 value and the
computed barrier to intermediate/product shows a rather
strong correlation (r2 = 0.93) (Figure 4). Plotting the rate
determining step to product formation (i.e., for the stepwise
process it may correspond to transition state 2) does not
improve the correlation. As mentioned above, the lack of
solvent in the simulation may in some cases make the
carbanion intermediate appear more stable than it is in reality
(see Figure 2). Analysis of a more diverse set of chemicals that
contain a common Cl leaving group, shows a moderate
correlation between the pEC3 and the barrier (r2 = 0.58). More
importantly, the line of best fit for both relationships in Figure
4 are remarkably similar suggesting that a single QC descriptor
is needed to explain the sensitization potential, irrespective of
ring substituents or leaving group.
Compound 7 appears to be an outlier. Like compounds 11,

16, and 23, compound 7 has substituents at all six phenyl
positions. However, compound 7 has both more strongly
electron withdrawing CN substituents and three distinct
positions for nucleophilic attack. To try and understand
whether this was the cause of this compound being an outlier,
we investigated the reaction profile associated with the two
other distinct addition−elimination positions (Figure 5).
However, the other two positions of attack, not initially
considered, were as expected considerably higher in energy and
were thus not the reason for compound 7 being an outlier. We
note that the r2 obtained from a plot of the observed pEC3 vs
QC barrier for the chemicals with Cl leaving groups (Figure 4)
would increase from 0.58 to 0.76 were compound 7 to be
removed. However, no good reason exists for excluding this
compound, and we do not consider it prudent to include an

Figure 3. Reaction profiles obtained for compounds 1−6. Compounds 1, 2, 5, and 6 show a stepwise reaction profile, while for compounds 3 and 4,
it is concerted.
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additional term in this model to account for lipophilicity or
other factors that might also contribute. This is because the
small number of data points available are not sufficient to
reliably test any hypothesis or to fit a multiparameter QSAR
equation which can conform to the OECD QSAR guidelines.
We cannot of course rule out contributory factors including (a)
the use of a suboptimal QC description in this study, (b) the
fact that confounding factors associated with molecular
recognition between a protein and sensitizer are lacking, or
(c) that a lack of concordance is due to experimental error.3

In Figure 6, we plot the predicted QC barrier to formation of
the stable product or intermediate vs the pEC3 (or class) for all
23 chemicals investigated here. The correlation of pEC3 vs the

barrier for the 12 chemicals with quantitative pEC3s is
reasonably strong (r2 = 0.63). Barriers to reaction below ∼10
kcal/mol indicate a sensitizer, and the absolute value can be
related directly to the strength of sensitization response.
Compound 7 still appears to be an outlier as discussed above,
being more potent than predicted. This could be in part due to
its higher than average clogP.17 Again, discarding this outlier
would result in an r2 = 0.74.
The least potent sensitizer has a predicted barrier of 9.93

kcal/mol. A cutoff of ∼10 kcal/mol could be used to separate
the sensitizers from nonsensitizers with 100% accuracy (N =
12), with just 1 nonsensitizer out of 11 being mispredicted as a
sensitizer (9%). This corresponds to an overall accuracy of
∼96%, with a sensitivity of 100% and a specificity of ∼91%. For
quantitative measurements, we find that there is a high
correlation between the experimental pEC3 and the calculated
barrier to formation of the low energy product or intermediate.
The nonsensitizer mispredicted is compound 14. However,
analysis of the QC data shows that compound 14 has a rather
unstable product compared to that of the others chemicals
(only 1, 6, 10, and 20 have higher product energies). The
relatively low barrier to reaction but also the only moderately
stable product appears to act as a counter balance.
The SNAr QMM model reported by Roberts et al.21 consists

of a QSAR equation that takes into account both the electron
withdrawing effect of the ring substituents (i.e., electronegative
inductive effects of substituents and resonance effects) and the
strength of the leaving group (i.e., electronegative inductive
effects). Their 2 descriptor model was also effective at
discriminating between chemical sensitizers and nonsensitizers
as can be seen in Supporting Information, Figure S1 and Table
S1. They obtained an r2 of 0.41 for the 12 compounds with
quantitative pEC3 values, although it should be noted that
some of these compounds were also used to fit the model. The
correlation is lower than the 0.63 observed for the QC model
developed here. In addition, using the suggested cutoff of ∼1
for their model, 100% of the sensitizers are correctly classified,
but 5 of the nonsensitizers would also be misclassified (i.e.,
45%). This suggests the 2 descriptor QMM is somewhat
inferior to the 1 descriptor QC model developed here. The key
difference between the two methods is that the QC based
model accounts for the same electronic terms used in the
QMM but also accounts for interaction terms (steric and
electrostatic) between the ring, substituents, and leaving and

Figure 4. Plot of the pEC3 vs the predicted barrier to reaction for
chemicals with a common dinitro-phenyl core but different halogen or
pseudohalogen leaving groups (top). A more diverse set of chemicals
with a common chloro leaving group (bottom).

Figure 5. Three distinct concerted reaction profiles observed for
compound 7.

Figure 6. Plot of the LLNA pEC3 vs the predicted barrier for all
chemicals investigated in this study. NR compounds are those
determined as nonreactive in the GPA assay and are included for the
purpose of comparison.
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attacking groups implicitly. The QC model is also unambiguous
since QMMs require fitting and can also require user
modification of standard physicochemical substituent parame-
ters to give optimal results.21 Nevertheless, an advantage of the
QMM approach is that estimations take seconds to minutes
when substituent parameters are available. In contrast,
simulations to obtain the complete reaction profile can take 1
day per compound per computer (i.e., Intel i7).
The recent study by Enoch and Roberts19 on the MA

reaction domain is worth comparing and contrasting to the
approaches used here. The authors in the former study
approximated the barrier by calculating the energy of the
intermediate, minus the isolated energies of the reactants (i.e.,
Michael acceptor and −SCH3), which we term Eint. This
approximation assumes that the barrier heights are directly
proportional to the energy of the intermediates. This approach
will not work in situations where no stable intermediate is
formed. The authors found that the correlation between the
approximated barrier and the pEC3 for 26 compounds (4
outliers removed) was sizable at r2 = 0.43. Addition of a single
additional descriptor (solvent accessible surface area) and
removal of an additional outlier led to a much better correlation
(r2 = 0.79). In our study of the SNAr domain, only 6 of the
compounds react via a stepwise process, thus using the Eint
measure is limited, leading to a rather poor correlation with the
pEC3 (r2 = 0.08, N = 6 for compounds 1, 2, 5, 6, 9, and 10). It
is also apparent from Figure 3 that in our case the barrier
heights do not necessarily correlate well with either the
intermediate or product energy, helping to explain the poor
correlation between pEC3 with Eint. Finally, it is also worth
noting that the correlation between the HOMO−LUMO
energy and pEC3 for all 12 compounds with quantitative pEC3
measurements is negligible (r2 = 0.02). This suggests that the
latter parameter is not such a good surrogate for the barrier
height of the SNAr domain compounds assessed here.

4.0. CONCLUSIONS
In this article, we have reported the use of a QC based
approach to assess skin sensitization potential. We have used a
model −SCH3 nucleophile to predict kinetic and thermody-
namic parameters associated with the addition−elimination
reaction for a set of 23 chemicals from the SNAr domain. We
find that calculating the full reaction profile for the chemicals is
important since, as highlighted in Scheme 1, the reactions can
proceed by either concerted or stepwise addition−elimination
processes depending on the activating substituents, ring
resonance effects, and the nature of the leaving group. It does
not appear to be suitable to approximate the transition state
with either the HOMO−LUMO energy or the energy of the
high energy intermediate.
We find that the use of a single computed descriptor, namely,

the barrier to formation of the stable product or intermediate
can help us to separate sensitizers and nonsensitizers. Barriers
to reaction below ∼10 kcal/mol indicate a sensitizer, and the
absolute value can be related directly to the strength of
sensitization. The use of a cutoff of ∼10 kcal/mol allows us to
categorize 100% (N = 12) of the sensitizers from the
nonsensitizers (N = 11), with just 1 nonsensitizer being
mispredicted as a weak sensitizer (i.e., 9%). This corresponds to
a sensitivity of 100% and a specificity of ∼91%. For quantitative
measurements, we find that there is a high correlation between
the experimental pEC3 and the calculated barrier to formation
of the low energy product or intermediate. We find an r2 = 0.64

for all 23 chemicals, compared to r2 = 0.41 for the comparable
QSAR based approach reported elsewhere.21 The one non-
sensitizer found to be an outlier can be rationalized by a
consideration of the reaction thermodynamics. In the case of
compound 14, it has a low barrier to reaction but forms a less
stable product than most other sensitizers and nonsensitizers..
Physical chemistry approaches such as QSARs5,8,9,17,18 based

on physicochemical parameters and substituent constants, or
QC calculations19 have proved useful in helping discriminating
sensitizers from nonsensitizers. The physical insight and
understanding that can be garnered from QC methods could
prove useful for skin sensitization assessment, especially when
combined in the so-called weight of evidence approach with
other methods. QC calculations by necessity must employ
surrogate nucleophiles for what is a complex biological process,
and that is a key limitation. However, we postulate that the
experimental identification of the most prevalent nucleophiles
or indeed the precise proteins that cause skin sensitization
would provide an additional means to help improve the
performance of such atomic simulations.
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08:15	 Registration & coffee

	 Who is Who?
	 Learn about your peers. Discover who else is participating 
	 in the conference and gain an understanding of the core 
	 challenges your peers are facing right now. The match-
	 making wall will also help you identify the delegates you 
	 want to meet at the conference.

08:55	 Chairman’s welcome & opening address

	 Dr. Peter Ten Holte, Global Business Office Liaison, 
	 Janssen Research & Development, LLC, USA

Compound collections: Updates, new trends and paradigm shift

09:00	 The paradigm shift in the pharma industry and its impact 
	 on in-house innovation and especially compound selection
	 •	 Changes in the structure of the industry’s way of doing 
		  business
	 •	 New scientific trends
	 •	 Partnerships, outsourcing and strategic alliances
	 •	 What is yet to come? How do we peruse innovation?

	 Philippe Roche, PhD, Laboratory of 'integrative Structural & 
	 Chemical Biology (iSCB)' Cancer Research Center of 
	 Marseille (CRCM), 

	 Université Aix-Marseille Institut Paoli Calmettes, France

	 Dr. Peter Ten Holte, Global Business Office Liaison, 
	 Janssen Research & Development, LLC, USA

New scientific directions for enhancing target validation

09:30	 Cutting costs and efforts by the combinatorial de novo 
	 design – The new adventures of old drugs
	 •	 Computer-based de novo design
	 •	 Virtual synthesis
	 •	 Scaffold-hopping

	 •	 Fragment evolution and grafting

	 Prof. Gisbert Schneider, Professor Chem- & Bioinformatics, 	
	 Institute of Pharmaceutical Sciences, Switzerland

10:05	 Refreshment break & speed networking 
	 Get in touch with the other conference guests for a 
	 quick exchange of views (and business cards)

11:05	 How to make most of in-house compound libraries – 
	 The impact of library quality and variety of screening 
	 scenarios on the screen to lead phase
	 •	 How to make most of in-house compound collections: 
		  the traditional single target HTS approach vs. alternative
		  screening scenarios
	 •	 Intelligent assembly of screening collections: how to 
		  enrich internal compound collections with public/private 
		  external collections
	 •	 Novel lead finding/optimization libraries: added value to  
		  drug discovery programs and compound collections through 
		  high throughput biological, physchem and eADME profiling

	 Werngard Czechtizky, Section Head, Medicinal Chemistry, 
	 Sanofi-Aventis Deutschland GmbH, Germany

11:40	 Development of focused chemical libraries dedicated to 
	 protein-protein interactions: an academic perspective
	 •	 Biological and chemical spaces of PPI with known 
		  orthosteric inhibitors
	 •	 Druggability assessment of protein-protein interactions
	 •	 Design and validation of chemical libraries dedicated to PPI
	 •	 Experimental validation with an academic screening platform

	 Philippe Roche, PhD, Laboratory of 'integrative Structural & 
	 Chemical Biology (iSCB)' Cancer Research Center of 
	 Marseille (CRCM), 

	U niversité Aix-Marseille Institut Paoli Calmettes, France

Future Collaboration Models for the pharma industry

12:15	 The European Lead Factory, the new pan-European 
	 drug discovery platform for innovative medicine
	 •	 Presentation on the Innovative Medicine Initiative (IMI) 
		  – The EU lead Factory, an “industry-like discovery 
		  platform to translate cutting edge academic research into 
		  high-quality drug lead molecules.
	 •	 Architecture of the EU Lead Factory; EFPIA Library, 	
		  Public Library, Screening Centre.
	 •	 Expected outcome and end goals. 
	 •	 Interaction between EU Lead Factory and contributing 	
		  third parties from Public Domain.

	 Dr. Sylviane Boucharens, Director of Discovery Operations, 	
	 ‘The European Lead Factory’, UK

12:40	N etworking lunch 

14:10	 EU-OPENSCREEN: A European Infrastructure of Open 
	S creening Platforms for Chemical Biology 
	 •	 Foundation by European academic Chemical Biologists 
		  from 14 countries
	 •	 Supporting you the development of novel ‘tool’ 
		  compounds (i.e. chemical inhibitors or activators) for 
		  target-of-interest
	 •	 Vital part of the European Commission Roadmap of 
		  research infrastructures
	 •	 Transforming your assay into an HTS-ready format – 
		  Screening assays against EU-OPENSCREEN´s unique 
		  compound collection & developing initial ‘hits’ into a 
		  valuable (i.e. potent, selective) research ‘tool’ compound
	 •	 Who should apply and how?

	 Dr. Edgar Specker, Head of Compound Management, 
	 Leibniz Institute of Molecular Pharmacology FMP, 
	G ermany

14:45	 Public-Private-Partnerships at National and EU-Level
	 and their potential impact on the discovery of new 
	 bioactive compounds
	 •	 Public-private partnerships (PPP) to leverage the 
		  creativity of academic research 
	 •	 Examples for PPP: Neuroallianz and AETIONOMY (IMI 
		  project; 8th call; in preparation) 
	 •	 Strategies for integrative approaches combining 
		  systems biology and pharmacological information (the 
		  Human Brain Pharmacome)
	 •	 Strengths and weaknesses of public-private-partnerships 
		  and potential for sustainable collaborative efforts

	 Prof. Martin Hofmann-Apitius, Head of the Department of 
	 Bioinformatics, 
	 Fraunhofer-Institut für Algorithmen und 		

	 Wissenschaftliches Rechnen SCAI, Germany

15:20	 Refreshment break & networking

15:50	 Business models for intelligent compound 
	 acquisition
	 •	 New business models and new chemical space
	 •	 IP transfer of acquired compounds
	 •	 Compound library acquisition as part of the discovery 
		  partnership
	 •	 The Asia factor

	 Dr. Peter Ten Holte, Global Business Office Liaison, 		
	 Janssen Research & Development, LLC, USA
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16:25	 Idea Factory: Round Table Groups - Practical Experience – 
	 Join one of the groups and take active part in the 
	 discussions:

17:00 	 Presentation and summary of gruoup discussion

17:15	 Closing remarks from the chairman Peter Ten Holte & 
	 end of conference day one

	 Join us for an informal evening get-together!
	 This is an excellent opportunity for you to meet the
	 other attendees and to make new business contacts in a
	 relaxed atmosphere.

17:30 – 19:30  Evening Workshop A:  

	N ew business models for successful compound library 
	 acquisition – How do I best spend my compound 
	 library budget?

	 •	 Subscription models and consortia
	 •	 The “Get Compounds for Free Model”
	 •	 Integrated models
	 •	 Blind screening models
	 •	 Membership/partnership
	 •	 Exclusive vs. non-exclusive and patentability

	 Dr. Peter Ten Holte, Global Business Office Liaison,
	 Janssen Research & Development, LLC, USA

08:30	 Registration & coffee

08:55	 Chairman’s welcome & opening address

	 Werngard Czechtizky, Section Head, Medicinal Chemistry, 
	 Sanofi-Aventis Deutschland GmbH,  Germany

09:00	 TrendTracking: Compounds and early-discovery 
	 collaborations
	 Live-survey to the industry’s recent trends. Please prepare 
	 your laptops, smartphones or tablets and take part!

Future Collaboration Models for the pharma industry

09:15	 How to develop a mutual beneficial relationship with 
	 your CRO and create win-win partnerships?
	 •	 CRO – do not only evaluate what they do, but how can 
		  they can truly help us discovering new drugs
	 •	 The change in collaborating with CROs – the paradigm 
		  shift
	 •	 How much knowledge and experience do you need to 
		  retain, to intellectually asses and also challenge the 
		  CRO’s
	 •	 What is the role of emerging markets (China, Brazil, India 
		  and Russia)?

	 Dr. Frederik Deroose, CEO, 
	 Asclepia MedChem Solutions, Belgium

09:50	 Charting new bioactive space for drug discovery – 
	 CROs as innovation source for pharma and biotech 
	 companies
	 •	 An exclusive route towards efficient lead identification:
		  quality beats quantity
	 •	 Design and synthesis of Fsp3-enriched scaffolds: leaving 
		  flatland behind
	 •	 In pursuit of most modern design guidelines: 
		  pre-engineering kinetic signatures
	 •	 Target family-centric libraries for epigentic targets and 
		  protein protein interactions: IP-able priviliged structures

	 Dr. Gerhard Müller, Senior Vice President Medicinal 
	 Chemistry, 		

	 Mercachem b.v, The Netherlands

10:25	 Refreshment break & networking

New screening experiences and approaches – 
Optimizing hit-to-lead

11:00	 Detection of specific gaps in screening collections and 
	 strategies to fill those via combinatorial library design: 
	 e.g. search for potential PPI inhibitors
	 •	 Comparison of screening collections
	 •	 Search for interesting property combinations missing in a 
		  collection
	 •	 Design of combinatorial libraries enriched with 
		  compounds showing the desired property profile
	 •	 Application example: PPI inhibitors

	 Dr. Uta Lessel, Principal Scientist, 
	 Boehringer Ingelheim Pharma GmbH & Co. KG, 

	G ermany

11:35   The benefits of targeting optimal ADMET space in Lead 
	G eneration and Optimization: Findings based on a 
	 systematic analysis of the physicochemical parameters 
	 of oral drugs and preclinical compounds
	 •	 The importance of ADMET in drug discovery. Are the 
		  lessons being taken on board?
	 •	 What are physico-chemical properties influencing almost 
		  all ADMET liabilities?
	 •	 Are we searching in the optimal region of physical 
		  property and biological space? 
	 •	 How can we use this information to increase the 
		  success rate in drug discovery

	 Dr. M. Paul Gleeson, Lecturer, 
	 Kasetsart University, Thailand

12:10	N etworking lunch 

13:40	 The role and significance of Polypharmacology for the 
	 early drug discovery stage 
	 •	 Intro: Polypharmacology can cause adverse effects, but 
		  can also confer superior efficacy
	 •	 Current trends: How to address polypharmacology in 
		  early drug discovery
	 •	 How to reduce undesired polypharmacology in the 
		  hit-to-lead stage
	 •	 How to find leads with a desirable polypharmacological 
		  profile

	 Jens-Uwe Peters, Principal Scientist, 
	 F. Hoffmann-La Roche Ltd., Switzerland

Conference Day 1 | Monday, 28 October 2013

Conference Day 2 | Tuesday, 29 October 2013

To Register  |  T  +49 (0)30 20 91 33 88  |   F  +49 (0)30 20 91 32 10   |   E  eq@iqpc.de   |   www.compound-libraries.com/MM

New screening 
approaches

Werngard Czechtizky

Securing IP 
and patentability of 

acquired compounds
Peter Ten Holte

CADD and 
computational methods
  Prof. Gisbert Schneider

Highlight



14:15	S trategy to select a screening library subset with a bias 
	 towards bioactivity
	 •	 In-house development of Flexophor, a versatile 3D 
		  pharmacophore descriptor 
	 •	 Selection and validation of a biodiverse screening 
		  sub-library based on Flexophor
	 •	 Hit success of biodiverse vs chemical diverse sub-library
	 •	 Hit success of generic biodiverse sub-library vs 
		  customized compound selection

	U rs Luethi, Senior Lab Head HTS, 
	 Actelion Pharmaceuticals Ltd, Switzerland

14:50	 Panel discussion:  Assessing new methods and 
	 approaches for an early and optimized lead generation 

What is the most promising way to enhance hit-to-lead 
in future? Do we always need to learn it the hard way by 
using trial and error? Or is there a best of breed solution 
that colleagues can recommend? Discuss with your peers 
some of the most talked-about approaches and how they 
might support next generation lead finding:

	 •	 Epigenetics
	 •	 Early ADME
	 •	 The role of biotech
	 •	 Systems biology

	U rs Luethi, Senior Lab Head HTS, 
	 Actelion Pharmaceuticals Ltd, Switzerland

	 Dr. M. Paul Gleeson, Lecturer, 
	 Kasetsart University, Thailand

15:20	 Refreshment break & networking

15:50	 The AstraZeneca-Bayer Alliance – Evolution of a 
	S trategic Partnership Between Pharma  for a 
	S ustainable Long-term Relationship
	 •	 Exansion of a successful collaborative partnership
	 •	 Opportunities associated with open innovation
	 •	 Fingerprint comparison of large pharma screening 
		  collections

	 Kirsty Rich, High Throughput Screening Team Leader, 
	 AstraZeneca programme director for the AstraZeneca-Bayer 
	 alliance, 
	 AstraZeneca plc

	 Thierry Kogej, Associate Principal Scientist Computational 	
	 Chemistry, 
	 AstraZeneca Sweden Operations

	 Co-authors: Bernd Kalthof and Jens Schamberger, Bayer

Computational methods for chemistry and biology to predict 
adverse effects earlier

16:25	 Modulating signalling pathways through the 
	 perturbation of protein-protein interactions can achieve
	 better compound validation for cancer therapeutics
	 •	 Targeting signalling pathways
	 •	 Small molecules and peptides
	 •	 Case studies
	 •	 Protein-protein interactions

	 Dr. Eric Chevet, DR2 INSERM, Team Leader, 
	 Université Bordeaux Ségalen, France

17:00	 Closing remarks from the chairman Werngard Czechtizky &
	 end of the conference

 
17:15 – 19:15   Workshop B:  

	 The challenge of reducing compound library size 
	 without reducing the quality and success rate for lead 
	 generation

	 •	 How do we quality design our libraries and new 
		  screening campaigns for new targets
	 •	 How do we design small molecules that might interact 
		  with the protein-protein interaction process
	 •	 The quality of the samples, storage & logistics for cost 
		  effectiveness
	 •	 How do we maximally increase diversity in the screening
		  deck
	 •	 What are the strategies of large pharma versus SMEs
		  and academic centres

	 Dr. Frederik Deroose, CEO, 
	 Asclepia MedChem Solutions, Belgium
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