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Abstract

Project Code: RSA5480026

Project Title: Development of Machine Learning Metaheuristics for SNP Biomarker Selection in
Genome Wide Studies

Investigator: Mr. Sissades Tongsima

E-mail Address: sissades@biotec.or.th

Project Period: 3 years

Single nucleotide polymorphisms (SNPs) are the most common genetic variant that
differentiate human individuals and many diploid organisms. Hence, SNPs can be used to
detect certain abnormalies if they are associated with a trait of interest. Much research has
been conducted to identify those associated SNPs whose impact will be on the development of
personalized medicine, therapeutic and preventive interventions of many complex diseases. To
date, most published predictive SNP markers chosen by using statistical techniques cannot

replicate the success due to confounding effects from population stratification.

We developed an algorithm called i2pPCA with a novel ‘EigenDev’ stopping criterion to
control the iterative pruning steps of the algorithm. The algorithm can efficiently detect and
correct population stratification that confounds the genetic disease susceptibility signal. We
applied i2pPCA to the recent Thai population SNP genotype data combined with 40 world-wide
populations. As a result, the recent Thai genetic structures were resolved to 4 main
subpopulations. This indicates that Thai population hidden structure should be taken into
account when performing disease association studies in the future. We also developed an
algorithm, iLOCi, that can efficiently and correctly identify putative SNP markers for predicting
the risks of common complex diseases. We successfully identified predictive markers complex
diseases including Bipolar Disorder, Crohn's Disease, Coronary Artery Disease, Type 1 and 2
Diabetes Mellitus, Hypertension and Rheumatoid Arthritis from the Wellcome Trust Case

Control Consortium (WTCCC).

Our contribution provides an elucidation of 4 Thai population structures using our novel
algorithm. This finding would be important to genetic association studies to account for

population-structure confounding effects.

Keywords: Single nucleotide polymorphisms (SNPs), population structure, genetic association

studies, Thai population
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PanSNPdb: The Pan-Asian SNP Genotyping Database
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Abstract

The HUGO Pan-Asian SNP consortium conducted the largest survey to date of human genetic diversity among Asians by
sampling 1,719 unrelated individuals among 71 populations from China, India, Indonesia, Japan, Malaysia, the Philippines,
Singapore, South Korea, Taiwan, and Thailand. We have constructed a database (PanSNPdb), which contains these data and
various new analyses of them. PanSNPdb is a research resource in the analysis of the population structure of Asian peoples,
including linkage disequilibrium patterns, haplotype distributions, and copy number variations. Furthermore, PanSNPdb
provides an interactive comparison with other SNP and CNV databases, including HapMap3, JSNP, dbSNP and DGV and thus
provides a comprehensive resource of human genetic diversity. The information is accessible via a widely accepted
graphical interface used in many genetic variation databases. Unrestricted access to PanSNPdb and any associated files is
available at: http://www4a.biotec.or.th/PASNP.
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Introduction

In recent years, genome-wide single nucleotide polymorphism
(SNP) data from high density array platforms and next generation
whole-genome sequencing data have been gathered from various
human populations. These data embody the transition from single-
locus based studies to genomics analyses of human population
structure and disease gene mapping [1-5]. Until recently, Asian
populations have been largely underrepresented in genome-wide
studies in comparison to other peoples of the world. For example,
both the International HapMap project and 1000 Genome project
lack population samples from Southeast Asia, which is known to
contain the most ethno-linguistically diverse populations in Asia.
To address this type of shortcoming, the Human Genome
Organization (HUGO) Pan-Asian SNP consortium was estab-
lished to sample genetic diversity in Asia. This effort culminated in
a survey of 1,719 unrelated individuals from 71 populations from
China (including Taiwan), India, Indonesia, Japan, Malaysia, the
Philippines, Singapore, South Korea and Thailand [6]. These 71
populations represent most of the major linguistic groups in Asia
and the Pacific, 1.e. Altaic, Austro-Asiatic, Austronesian, Dravid-
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1an, Hmong-Mien, Indo-European, Papuan, Sino-Tibetan and
Thai-Kadai. Considering the general concordance between
linguistic and genetic affiliations of human populations, genome-
wide data from these samples also captured the majority of the
human genetic diversity in Asia. A distinct north - south cline with
increasing genetic diversity was observed and contrary to the two-
wave migration hypothesis, our study showed substantial genetic
proximity of Southeast Asian and East Asian populations [6]. This
suggested that the entry of humans into the Asian continent
occurred as a single primary wave, populating the south and then
expanding northward.

Beside population genetics, there are many other uses of this
information include pharmacogenomics, forensics, and genetic
epidemiology. The complexity of this dataset poses difficulties for
analysis, since only the genotypic transformations of the data are
available from the SNP database from National Center for
Biotechnology Information (dbSNP), and are thus accessible only
to researchers with advanced bioinformatic capabilities. Hence, a
database of various analyses accompanying the data would be of
benefit to researchers in different disciplines who may not have the
bioinformatic capabilities to obtain the information they require.
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The goals of the Pan-Asian SNP database are 1) present the
data in different formats to facilitate analysis with different tools by
providing a graphical viewing interface; 2) comparison of the Pan-
Asian dataset with other genetic variation databases including
HapMap3 [7], dbSNP [8], and Japan SNP database (JSNP) [9]; 3)
incorporate the results of different analyses, including the
previously published patterns of population genetic structure and
new analyses (linkage disequilibrium patterns, haplotype blocks
inferred from the linkage disequilibrium (LD) patterns, tagSNPs as
markers of LD blocks, copy number variations (CNVs) inferred
from the SNP raw data); and 4) provide an infrastructure for future
deposition of data and analysis pertaining to Asia.

| TH-mA 9‘ ( Analyze LD ) or Download all genotype files

A Pre-analysis of whole-genome PASNP haplotype blocks

PanSNPdb: The Pan-Asian SNP Genotyping Database

Results and Discussion

Genotyping and allele frequencies

Genotyping of Affymetrix GeneChip Human Mapping 50K
Xba arrays was performed at eight different genotyping centers
(China, India, Japan, Korea, Malaysia, Singapore, Taiwan and
USA), according to the manufacturer’s protocols. More informa-
tion regarding SNP calling can be found in the Supplements of [6].
In addition to these HUGO Pan-Asian SNP consortium data, the
data for the matching SNPs from 209 HapMap samples (CEU,
CHB, JPT and YRI) were included into PanSNP. The final
dataset contained the genotypes of 54,794 and 1,204 SNPs
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Figure 1. Representation of Haplotype blocks A) haplotype blocks calculation and population selection panel B) SNPs and genes
located on chromosome 20 between 52-53 Mb displayed in SVG C) haplotype blocks of the selected populations and D) detailed
information (block frequency, tag SNPs) of haplotype blocks displayed by clicking on the SVG view.

doi:10.1371/journal.pone.0021451.g001
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Figure 2. Copy Number Variation view A) interface to view CNV information B) CNV data of each individuals in SVG, showing
log2ratio of signal intensity plots and called states from CNAT 4.0 and CNAG 2.0 programs C) individual CNV results on each

chromosome corresponding with CNV type selected in panel A.

doi:10.1371/journal.pone.0021451.g002

mapping to autosomal and sex chromosomes respectively for each
individual.

Haplotype inference and block partitioning

Haplotype blocks were predicted exclusively on autosomal
chromosomes using HaploBlockFinder [10] using 1928 individuals
from 75 populations (excluding AX—AI) based on the four gamete
test (FGT) assumption with parameters:

—A3 -D0.8 —-B0.01 -M1 —-T1 —P0.8 —Q0.2

The haplotypes of each block were inferred using fastPHASE
[11] with parameters:

T20 —~C50 ~Km1000 —Kp.05

The blocks and their haplotypes are stored in the database and
can be graphically displayed through the web interface shown in
Figure 1. Detail on SNP distribution of each chromosome is listed
in Table S1.

Copy number variation analysis

Copy number analyses were done using Copy Number Analysis
Tools version 4.0 (CNAT4.0) [12] and Copy number analyzer for
GeneChip(CNAG 2.0) [13]. Since the focus is on the population
level, un-paired sample analysis with 1 Mbps genomic smoothing
was used in these analyses. Male and female data were analyzed
separately for chromosome X. The CNV graphical interface
shown in Figure 2 displays the logoratio of the probe intensities
and CNstate/N_AB results from CNAT4.0 and CNAG2.0
respectively. More information on CNV analysis can be found
in Text S2.

Conclusion

Following the publication of the HUGO Pan-Asian SNP
consortium study of human genetic diversity in Asia, it became
apparent that there was a need for an information resource which
integrates the Asian data with other worldwide populations and
presents this data is a user friendly format. Similar to the HapMap
initiative, PanSNPdb offers genome structural information per-
taining to Asian populations in a familiar graphical comparative
view based on GBrowse where SNP genotyping from multiple
populations can be visualized on the same page. This database also
offers pre-computed information of LD blocks and their
haplotypes on each chromosome; such information for each
population can be visualized both in table and SVG formats and
can be exported for future use. Furthermore, users can adjust the
number of SNPs for haplotype inferencing and calculate this using
Haploview, which is performed by our server. In terms of genome
structure, we calculated the CNV information using un-paired
sample analysis whose information, e.g., log2ratio and CNV state
for individual visualization (SVG) and CNV state at the population
level (GBrowse) comparing with CNV information from the
database of genomic variations. The database is available for
public access at: http://www4a.biotec.or.th/PASNP.

This database offers a comprehensive catalog of Asian
population genotypes, which is compatible with the HapMap
project. It also serves as the main genotyping repository of the Pan
Asian SNP consortium which will contribute further Asian specific
genetic information in the future. We anticipate that newer Asian
populations with denser genotyping platform along with their
analyses from the consortium will be deposited into PanSNPdb.
With the advent of more cost effective whole genome sequencing
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technology, other structural genomic variations among Asian
populations will also be explored.

Methods

System Design and Implementation

PanSNPdb manages the genetic variation data, reference
information and precomputed haplotypes using the open source
database management MySQL version 5.5.1. The web interface
was constructed using the content management system (CMS)
Plone version 3.3.5. Python scripting language was used to
connect to MySQL and draw scalable vector graphic (SVG)
images of precomputed haplotype blocks and CNV log2ratio
signals. PanSNPdb adopts GBrowse to display population-level
comparison of SNP and CNV locations on genes and
chromosomes. The database system is hosted by a dedicated
computer server equipped with 2xAMD 6-core with a clock speed
of 2.8 GHz using 64 Gigabytes of memory and 2 Terabytes of
hard disk space.

The PanSNPdb database was constructed using the genotyping
information described in [6] consisting of 1,928 unrelated
individuals representing 71 Asian populations and 4 populations
from HapMap. Information related to each population, such as
geographical, ethnic and linguistic data were added to the
database; this information is provided in Table S2 and can be
visualized through the PanSNPdb web interface. The database
was designed and implemented so as to facilitate comparison with
genotyping information from other public data sources including
HapMap, dbSNP and JSNP. To locate SNPs, the Reference
Sequence of Human Genome build 36.3 is used as the template.
Since these SNPs may be useful for medical genetic studies, the
gene-disease information published by GeneCards was incorpo-
rated into the database. These reference data were downloaded,
and will be periodically updated when newer versions are
announced. Furthermore, copy number variations from the
PanAsian SNP dataset were inferred using CNAT and CNAG
for future CNV referencing of Asian populations. CNV data from
the database of genomic variants (DGV) [14] were incorporated
mnto PanSNPdb so that the comparative view of CNVs across
different populations can be rendered. Figure 3A presents the
main data sources of the PanSNPdb. Consequently, the compre-
hensive information in this PanSNPdb can be considered as
worldwide data collection, but with special emphasis on Asian
populations.

Graphical interface of the data

Figure 3B shows how the graphical interface of PanSNPdb was
constructed. In PanSNPdb, SNPs and their corresponding
information can be located graphically on the reference sequence
along with SNPs from other populations in different tracks. This
visualization is made possible using the GBrowse visualization
engine [15]. SNPs can be searched via four main entry points: 1)
chromosomal location 2) gene name/gene id 3) SNP id or rs
number and for medical purpose 4) disease name from GeneCards
that are associated with disease-related genes. Similarly, the CNV
region information can also be visualized using GBrowse along
with other CNVs from DGV.

Haplotype blocks were also inferred at the chromosome level
(autosomes) with overlapping regions (see Table SI1 for
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distribution of SNPs on each chromosomes). The results can be
displayed graphically in any web browser with scalable vector
graphic (SVG) supported. The Haploview tool [16] is also
integrated into the PanSNPdb website; users can adjust the
haplotype inferencing parameters in order to recalculate
haplotype blocks “on-the-fly”. Lastly, PanSNPdb allows users
to export SNP and CNV data, such as location of SNPs,
genotyping and CNV data of each individual (in comma
separated value (CSV) and/or tab delimited formats). Figure 4
show representative SNP data with beautified text format and a
user-interactive graphical view.

Supporting Information

Text S1 The participants of the HUGO Pan-Asian SNP
Consortium are arranged by surname alphabetically.

(DOC)

Text $2 PanSNPdb CNV analysis.
(PDF)
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Abstract

Background: The ever increasing sizes of population genetic datasets pose great challenges for population structure
analysis. The Tracy-Widom (TW) statistical test is widely used for detecting structure. However, it has not been
adequately investigated whether the TW statistic is susceptible to type | error, especially in large, complex datasets.
Non-parametric, Principal Component Analysis (PCA) based methods for resolving structure have been developed
which rely on the TW test. Although PCA-based methods can resolve structure, they cannot infer ancestry. Model-based
methods are still needed for ancestry analysis, but they are not suitable for large datasets. We propose a new structure
analysis framework for large datasets. This includes a new heuristic for detecting structure and incorporation of the
structure patterns inferred by a PCA method to complement STRUCTURE analysis.

Results: A new heuristic called EigenDev for detecting population structure is presented. When tested on
simulated data, this heuristic is robust to sample size. In contrast, the TW statistic was found to be susceptible to
type | error, especially for large population samples. EigenDev is thus better-suited for analysis of large datasets
containing many individuals, in which spurious patterns are likely to exist and could be incorrectly interpreted as
population stratification. EigenDev was applied to the iterative pruning PCA (ipPCA) method, which resolves the
underlying subpopulations. This subpopulation information was used to supervise STRUCTURE analysis to infer
patterns of ancestry at an unprecedented level of resolution. To validate the new approach, a bovine and a large
human genetic dataset (3945 individuals) were analyzed. We found new ancestry patterns consistent with the
subpopulations resolved by ipPCA.

Conclusions: The EigenDev heuristic is robust to sampling and is thus superior for detecting structure in large
datasets. The application of EigenDev to the ipPCA algorithm improves the estimation of the number of
subpopulations and the individual assignment accuracy, especially for very large and complex datasets.
Furthermore, we have demonstrated that the structure resolved by this approach complements parametric analysis,
allowing a much more comprehensive account of population structure. The new version of the ipPCA software
with EigenDev incorporated can be downloaded from http://www4a.biotec.or.th/Gl/tools/ippca.

Background

As genotyping platforms incorporate more markers, and
the costs for genotyping keep falling, ever larger and
more complex datasets are being analyzed. The compu-
tationally efficient non-parametric methods for analysis
of genotypic datasets are thus increasingly being used to
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reveal population structure. Resolution of population
structure reveals evolutionary relationships between
groups of individuals. Furthermore, population structure
must be accounted for in genome-wide association stu-
dies to reduce spurious associations resulting from
ancestral differences between cases and controls [1].
Principal component analysis (PCA) is a widely used
non-parametric method for population structure analysis,
which uses a covariance matrix for eigenanalysis. The
amount and axes of variation among individuals are

© 2011 Limpiti et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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captured in the eigenvalues and eigenvectors, respectively.
Previously, we developed a PCA framework for population
structure analysis which extended the use of PCA beyond
its usual application for visualizing the population struc-
ture trend by employing an iterative process to simplify
the pattern of population structure. The iterative methods
used by others, e.g. [2,3] rely on the available ethno-geo-
graphical population labels for subjectively grouping indi-
viduals, unlike our objective approach.

Our framework, which we dubbed iterative pruning
PCA (ipPCA) uses a clustering algorithm to assign indi-
viduals into subpopulations without imposing any prior
assumptions [4]. ipPCA resolves all subpopulations in a
population dataset, and thus reports the total number of
primal subpopulations K in addition to assigning indivi-
duals contained within them. The term “population” is
synonymous with dataset for ipPCA, which is the entire
collection of individuals available for analysis. The term
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“subpopulation” defines a group of individuals assigned
by ipPCA in which no further significant substructure is
present. ipPCA operates by systematically separating
individuals into two clusters using a clustering algorithm
based on the Euclidean distances between projected data
points and the cluster centroids. The decision to sepa-
rate individuals requires testing of whether significant
structure is present within the dataset (or nested dataset
for subsequent iterations of the algorithm). To test for
homogeneity among groups of individuals, we previously
proposed using the test statistic as implemented in the
EIGENSTRAT/SmartPCA algorithm, which reports the
probability of structure according to Tracy-Widom
(TW) distribution [5]. If no significant structure exists,
then the individuals under testing belong to a subpopu-
lation, thus terminating the iterative clustering process.
The ipPCA framework is summarized in Figure 1. Using
datasets of simulated and real data, we showed how

encode genotypic data elements for PCA

y

Encode Data

project individuals onto PC space
calculated from the

\ 4

singular vectors of each data matrix

Y

does NOT

determine structure metric

crosses
threshold

v

separate individuals into two clusters

cross threshold Terminate
algorithm
matrix
considered

Check Terminating Criterion

Clustering

form two new data matrices

according to individual assignments

Figure 1 Outline of the ipPCA framework. The framework consists of three main components. First, the genetic data are encoded, zero-
means centered and normalized. Then, individuals are projected onto a space spanned by the principal components of the input data matrix.
Next, a structure metric is calculated to decide whether to advance to the clustering step or to terminate the algorithm. When the metric does
not cross the threshold, a homogenous subpopulation is resolved and subsequently the algorithm terminates. Otherwise, the individuals are
bisected. The algorithm iterates until all individuals have been assigned into terminal subpopulations.
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ipPCA can correctly assign individuals to subpopulations
and infer K. However, the accuracy of ipPCA may be
affected by the stopping criterion. An inappropriate ter-
mination criterion leads to under- or over-estimation of
the number of subpopulations. Moreover, individual
assignment errors in early iterations will be com-
pounded and carried forward to later iterations.

Parametric algorithms for clustering individuals into
subpopulations, e.g., STRUCTURE, frappe, ADMIX-
TURE, and BAPS, differ from ipPCA in one crucial
aspect, namely the method of assigning individuals into
subpopulation clusters. The aforementioned parametric
algorithms infer ancestral proportions for each indivi-
dual separately, and group individuals with similar pat-
terns of inferred ancestry. ipPCA and other non-
parametric approaches cannot infer ancestry. These
techniques attempt to group individuals with similar
genetic profiles together. Hence, parametric approaches
still offer important information not seen by non-para-
metric analyses. Large and highly structured population
datasets are however intractable for parametric analysis
because the number of K ancestral clusters is limited.
This is due to the limited number of available samples
used to estimate subpopulation allele frequencies. In
order to better observe the inherent population struc-
ture, a “supervised” structure analysis, with re-sampled
individuals, should be performed. The choice of indivi-
duals for such supervised analysis is arbitrary and typi-
cally guided by available ethno/geographical labels.
Nonetheless, careful selection is needed to ensure that
individuals being compared have similar ancestries,
otherwise the signals of ancestries important for differ-
entiating some groups of individuals may be too weak.

In this paper, we propose a modification to ipPCA by
introducing a new stopping criterion called EigenDev
for the iterative clustering process which is more robust
to spurious patterns in large datasets. The new algo-
rithm is termed EigenDev-ipPCA. To distinguish
between the two algorithms in the ipPCA framework,
we refer to the previously proposed algorithm which
uses the TW statistic as the termination criterion as
TW-ipPCA in the subsequent sections. Furthermore, we
suggest a new protocol which uses the information from
EigenDev-ipPCA to guide parametric analysis. Using
real datasets, we demonstrate how this approach can
reveal new and structure-informative patterns of ances-
try not detectable with unsupervised STRUCTURE
analysis.

Methods

New ipPCA terminating criterion

The Tracy-Widom (TW) test statistic, which is imple-
mented in the EIGENSTRAT/SmartPCA algorithm [5],
is used as a stopping criterion for the TW-ipPCA
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algorithm. Although this stopping criterion has been
found to work well for some datasets, we found that
when much larger datasets containing roughly >1000
individuals were analyzed, the TW-ipPCA resolved far
more subpopulations than were expected. We therefore
suspected that in some cases when sampling is large,
the subpopulations resolved may be spurious, i.e., type I
error. Indeed, as pointed out in [5], the relative sample
sizes of the underlying subpopulations affect the TW
test statistic.

Besides the type I error we found when using the TW
statistical test for structure, there are other drawbacks
which motivated us to develop an alternative terminat-
ing criterion. The first issue is computational difficulty.
To obtain the final value of the TW test statistic, too
many unknown parameters need to be estimated. No
best estimators for these parameters are available, so
choices of estimators affect the result. Instead of using
the p-values of TW test statistics as thresholds, we pro-
pose a new terminating criterion for determining
whether the data are structured. The new criterion is
based on the eigenvalues of the data matrix and is
termed the EigenDev heuristic. The EigenDev heuristic
follows the same assumption as the TW theory, namely,
if the first eigenvalue of the data matrix is significantly
larger than the remaining eigenvalues, then substructure
exists. However, we extend this observation beyond
merely testing the significance of the first eigenvalue to
take into account the remaining variance of the data.
This allows us to observe structure in higher dimen-
sions. We were inspired to develop EigenDev from the
Eigenvalue Grads heuristic, which is applied in the sig-
nal processing domain [6]. This work showed that if the
data contain only noise and no signal, i.e., non-struc-
tured, then there is an excellent linear fit for the eigen-
values ranked in descending order. In population
genetic data, the noise represents the natural genetic
variation within a (sub)population.

To test for population structure, the EigenDev statistic
is calculated from the genotypic data. This calculation
first requires that a data matrix is constructed from
encoded, zero-means and normalized genotypic data, as
described in [5]. This matrix contains rows correspond-
ing to individuals and columns corresponding to alleles.
Thus, biallelic SNP markers are encoded by entries in
two columns, one for each allele, and STRs by the total
number of alleles for that marker locus in the dataset.
The presence of an allele is encoded as 1 and its
absence as 0. For missing data, i.e., markers with no
genotypic call, they are encoded as all 0’s.

Given the zero-means, normalized genotype data
matrix X (according to [5]) containing m samples with
n allele columns per sample, we construct the sample
covariance matrix
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The EigenDev value can then be computed from

p
EigenDev = % (log(67) — log(o7)) (1)
i=1
where
log(67) = log(o?2) + (i — 1)c ()
and

(log(o;’) — log(o7)
C =
(r-1)

where 02,i=1,...,p, are the first p eigenvalues of C
ranked in descending order. The quantity in Eq. (1)
could be negative in some cases. To militate against this
possibility, the encoded entries are normalized to have
zero mean. This step is important to remove the signal
from the common elements, leaving only the differences
(genetic variance) between individuals for eigenanalysis.
In all empirical studies on both simulated and real data,
we found that 90% of the variance in the data always
results in a positive value and the convexity constraint
in question has never been violated. To account for the
rare cases when negative values are encountered, we
have included a checking step in the algorithm to detect
and report negative values. If negative values are found,
the parameter p can be adjusted to ensure a positive
quantity in the square root. Recall that p < min{m, n} is
the number of eigenvalues used to compute the Eigen-
Dev statistic. We also stabilize the variance using log
transformation. If the EigenDev value is large, the group
of individuals being analyzed would comprise more than
one subpopulation and ipPCA progresses to bisect the
group; otherwise, the EigenDev-ipPCA algorithm termi-
nates when the EigenDev value falls below a threshold.

3)

Results

Testing

To test the EigenDev concept, several datasets were ana-
lyzed:

1. A simulated dataset composed of 10,000 indivi-
duals from the same population, each containing
10,000 SNP markers was used for testing the fit of
TW distribution. It was generated using the GEN-
OME tool [7] with the following parameters and the
following tree file:

-pop 1 10000 -N tree.txt -C 20 -S 500

tree.txt:

0 10000
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1-1

110000

Starting at 10,000 founder population individuals,

GENOME generates the first generation with the

same size as the founder. Each individual has 20

chromosomes and each chromosome contains

500 SNPs.
2. The second dataset was simulated using the same
GENOME parameters as the first dataset but with
different tree file:

tree.txt:

0 5000 5000

1-12-1

40 5000

1-11-2

80 5000 5000

1-12-1

100 10000

to generate two subpopulations of size 5,000

individuals each.
3. The third dataset is the Bovine HapMap Project
collection of 497 individuals obtained from 19 differ-
ent breeds, genotyped for 27203 SNPs. It is publicly
available from [8].
4. The fourth dataset is publicly available from [9]. It
contains 3945 individuals comprising 185 different
ethno/geographical labels, typed for 1327 markers
(consisting of 848 microsatellites, 476 indels, and 3
SNPs) from [10].

The ipPCA encoded input matrices from the simu-
lated and real complex datasets are also available for
download from http://www4a.biotec.or.th/GI/tools/
ippca.

Testing metrics for population structure

To test how TW is affected by sampling, a simulated
dataset with no substructure was sampled randomly at
20 different sample sizes from 10 to 200 individuals.
The corresponding probability-probability (p-p) plots
for testing the fit of the TW distribution are shown in
Figure 2. It is observed that the TW distribution is vio-
lated for most of the sample sizes; good fit is observed
only for the sample of 70 individuals. Therefore, the
deviation from TW distribution will give a false detec-
tion (type I error), particularly for large sample sizes.
On the other hand, the TW test is very sensitive for
detecting structure, since it is based on a non-linear
phase change. It is not susceptible to type II error pro-
vided sufficient data are available [5]. However, the
non-linearity of the phase change means that an all-or-
nothing situation exists where the likelihood of type I
cannot be controlled, even across a wide range of p-
value thresholds.
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Figure 2 Testing the fit of the TW distribution. A population of size 10,000 individuals with 5000 markers was simulated using the coalescent
model. The p-p plots were generated for sample sizes of 10 to 200 individuals.
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To test the performance of the EigenDev heuristic, we
simulated the receiver operating characteristic (ROC)
curves for three different sample sizes of 100, 200, and
500 individuals from the second simulated dataset, as
shown in Figure 3. To obtain the curves, the EigenDev
threshold was varied between 0.077 and 0.387. It is
observed that the threshold value increases with samples
size, and that EigenDev performs better when the sam-
ple size is large. An EigenDev threshold of 0.21 was
used for analysis of real datasets. This value is an aver-
age of the thresholds needed to achieve a 10% false posi-
tive rate for the three sample sizes. This value is a good
compromise between detecting and resolving all struc-
ture present, with minimal spurious structure at typical
sample sizes in real datasets.

Guiding parametric analysis with ipPCA

STRUCTURE [11] can be used to perform unsupervised
clustering using ancestral components information.
However, the high computational complexity of

STRUCTURE, especially in finding the maximum pos-
terior probabilities for the number of K ancestral clus-
ters limits practically to K = 20 or fewer. Therefore,
highly complex datasets must be divided into sub-data-
sets, which are then analyzed separately by STRUC-
TURE. Conventionally, this is done in an arbitrary
fashion using prior information, e.g., ethno-geographical
population labels. However, the prior information could
bias the clustering results. To address this issue, we pro-
pose using the unsupervised clustering feature of ipPCA
to assist in narrowing the search space for STRUCTURE
in a more efficient fashion. In practice, subpopulations
assigned by ipPCA can be selected for subsequent
STRUCTURE analysis. We call this approach ipPCA-
guided STRUCTURE. We applied this method to the
Bovine HapMap dataset [8], which is the expanded data-
set from the one previously analyzed by us [4]. The
result was similar to that reported earlier, i.e. EigenDev-
ipPCA resolved 18 subpopulations, each of which are
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Figure 3 The empirical receiver operating characteristic curve
of the EigenDev heuristic. A structured population of 10,000
individuals of 5,000 markers containing two subpopulations (5,000
each) was simulated using the coalescent model. The ROCs were
generated for sample sizes of 100, 200, and 500 individuals.

largely composed of individuals of the same breed,
except for one subpopulation containing Angus (ANG)
and Red Angus (RGU) individuals (the EigenDev-ipPCA
results can be viewed from the ipPCA download
webpage).

STRUCTURE was used with the default parameters
and 10,000 burn in and 10,000 run iterations. Indivi-
duals from the Gir (GIR), Brahman (BRM), and Nelore
(NEL) breeds resolved as three separate subpopulations
by EigenDev-ipPCA) were selected for STRUCTURE
analysis to determine whether differences in inferred
ancestry exist between these breeds. Furthermore, these
three breeds were chosen because they are B.indicus
breeds, and thus more closely related to each other than
the other B.taurus breeds in the dataset. STRUCTURE
analysis at K = 3 on these selected individuals, as shown
in Figure 4, revealed breed-distinctive patterns of ances-
try not previously reported.

Analysis of a large human dataset by ipPCA

The dataset from Tishko et.al. [10] contains a large
number of individuals (3945). Furthermore, these indi-
viduals comprise 185 ethno-linguistic distinguishing
labels suggesting a large number of genetically distinct
groups. The dataset was analyzed by EigenDev-ipPCA,
which assigned 49 subpopulations (Figure 5). The

NEL BRM GIR

Figure 4 ipPCA-guided STRUCTURE analysis on selected
individuals from Bovine HapMap dataset. STRUCTURE analyses
were performed on individuals from B. indicus breeds (GIR, BRM, and
NEL). Results with K = 2 and K = 3 are shown.

assigned subpopulations were largely consistent with
the patterns reported earlier [10], in which geographi-
cally disparate groups of individuals are genetically dis-
tinct, and within Africa, major cultural and linguistic
groups are also genetically distinct (see Additional file
1 for more information). In contrast, ipPCA using the
TW stopping criterion (TW-ipPCA) assigned 109 sub-
populations. Comparison of the subpopulations which
differed between the two methods showed that on the
whole, subpopulations assigned by TW-ipPCA were
sub-clusters of larger subpopulations assigned by
EigenDev-ipPCA. For instance, all Indian individuals
(15 ethnic labels) were assigned to two subpopulations
(SP2 and SP7) by EigenDev-ipPCA, whereas Indians
were assigned to 11 subpopulations by TW-ipPCA (see
Additional file 1).

ipPCA-guided STRUCTURE analysis

African American is a term used to describe US
nationals with self-identified African ancestry, the
majority of whom are descended from West African
individuals who came to the US via the slave trade. The
term African American though is very broad, as it
encompasses individuals descended from African ances-
tors from a broad geographical range, and some also
have recent non-African ancestry. African American
individuals were assigned into four subpopulations by
EigenDev-ipPCA, namely SP4, SP5, SP15 and SP16. Sub-
populations SP4 and SP5 contain the majority of African
Americans together with predominantly West and Cen-
tral African Niger-Khordofanian speaking ethnic groups.
Five African Americans were assigned to SP15, which
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Igala(17/17) Baggara(1/23) Russian(3/25)
Kotoko(12/17) Orcadian(15/15)
Baggara(13/23)
Bassange(20/20) Gogo(2/13) ggara(18/23) Sardinian(28/28) SP48
Yoruba(19/25) Burunge(1/22) Mandara(21/26) French(28/28)
Turu(1/32) Giziga(17/24) |:| Druze(37/42)
Sukuma(1/10) Ouldeme(17/26) SP34
Datoga(1/54) Mada(28/28)
D e [— Spas
Hadza(2/63) Fulani Adamawa(23/41) SP35 - Mozabite(27/29)
Dinka(16/17) Rangi(1/36)

Fulani (Nigeria)(1/4)

Biaka(23/23)

Figure 5 Population assignments of the Tishkoff et al dataset using the EigenDev-ipPCA method. 49 assigned subpopulations are labeled
SP1 to SP49. The height of the bars are proportional to the number of assigned individuals in each subpopulation. The population labels of the
assigned individuals are shown to the right of each bar with the number of individuals with the same label in parentheses. To aid visualization
of the individual assignment, the 185 population labels were grouped into 14 color groups reflecting geographical regions. Color gradients

within the color group denote different population labels. For the complete color scheme, see Figure s3 in the Additional file 1.
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contains predominantly Afroasiatic Cushitic speaking
Bejans from Sudan. Two African Americans were
assigned to SP16, which contains predominantly East
Africans of mixed Nilo-Saharan Sudanic and Afroasiatic
Cushitic speaking ethnic groups.

We then used the information from EigenDev-ipPCA
to guide STRUCTURE. All the individuals assigned to
SP4, SP5, SP15 and SP16, which included all African-
American individuals, were analyzed by STRUCTURE
from K = 2 to K = 5 (see part A in Figure 6). At K = 3
or greater, each of the four subpopulations assigned by
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EigenDev-ipPCA showed distinctive patterns of ancestry,
although there appeared to be some overlap between
SP15 and SP16 individuals. When focusing on the Afri-
can-American individuals, distinctive ancestry patterns
can also be observed, in particular when comparing SP4
and SP5 assigned individuals (see part B in Figure 6).

Discussion

TW and EigenDev stopping criteria

Analysis of population genetic structure requires first a
method for detecting whether significant structure exists
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Figure 6 ipPCA-guided STRUCTURE analysis on selected individuals from the Tishkoff et.al. dataset. A) All individuals assigned to SP4,
SP5, SP15 and SP16 (see Figure 5), which included all African-American individuals, were analyzed by STRUCTURE from K = 2 to K = 5.
Individuals were sorted according to the ipPCA assignments. Major ethno-linguistic labels for individuals within each subpopulation are also
shown (see Figure 5 for complete listing). B) Expanded view of African-American individuals from A).
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in the dataset (or nested dataset for further iterations of
ipPCA). The current method to obtain this information
is to test for deviation from the Tracy-Widom distribu-
tion of the largest eigenvalue computed from PCA. A p-
value lower than 10*? is considered an acceptable
threshold for significance in rejecting the null hypothesis
that the data belong to a homogenous (sub)population,
and thus are structured [5]. The first experiment with a
simulated dataset with no structure revealed that signifi-
cant deviation from the expected distribution is found,
particularly with large sampling (>70 individuals). We
infer from this result that when the sample size is large,
the TW method suffers from type I error because of
this deviation from the TW distribution. Simply using
lower p-value thresholds may not give better results,
since there is a very small range of p-value that is prac-
tical [5]. When applied to real datasets, homogenous
(sub)populations sampled at high density may be incor-
rectly construed as possessing structure. In TW-ipPCA,
this would lead to a group of individuals being assigned
into separate subpopulations, when they should actually
be considered belonging to a single (sub)population.

To alleviate the drawbacks of the TW test statistic, we
propose a new termination criterion called EigenDev
statistic that is simpler to compute, has no hidden para-
meters and is shown to be more robust to type I error.
For simplicity, one could choose a single EigenDev value
to be applied as a universal stopping criterion for
ipPCA, which needs to be determined empirically. We
determined a threshold of 0.21 from data simulation,
which was also appropriate for the real datasets analyzed
in this paper.

Analyses of Bovine HapMap dataset

The subpopulation assignment by EigenDev-ipPCA sup-
ports the accepted notion that cattle breeds have dis-
tinctive genetic profiles. The finding that ANG and
RGU were assigned together in the same subpopulation
suggests that these breeds are genetically indistinguish-
able for the markers available, which was also reported
by other methods [12]. However, the finding that GIR,
BRM, and NEL breeds are resolved as separate subpopu-
lations by EigenDev-ipPCA is novel, since the earlier
unsupervised STRUCTURE analysis in [12] on the entire
dataset could not distinguish these breeds. ipPCA-
guided STRUCTURE analysis on the Bovine HapMap
dataset demonstrated differences in ancestries among
these breeds, consistent with the assignments by Eigen-
Dev-ipPCA. Among these indicine breeds, there is evi-
dence (high heterozygosity and unique SNPs) to suggest
that BRM is genetically distinct from others, including
GIR and NEL [12]. These results beg the question, why
STRUCTURE analysis, when done in a EigenDev-ipPCA
guided manner, can reveal differences among these
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breeds which is not apparent in the unsupervised
STRUCTURE analysis? The likeliest explanation is that
the overall number of informative markers is low among
these indicine breeds in comparison with the others
(only 19% of the loci having minor allele frequencies
greater than 0.3) [12]. In other words, the allele frequen-
cies among the indicine breeds are highly correlated in
comparison with the taurine breeds. Groups of indivi-
duals with highly correlated allele frequencies in com-
parison with other groups tend to be merged by
STRUCTURE [11].

Analyses of a large human dataset

The 49 subpopulations assigned by EigenDev-ipPCA
each contain individuals largely sharing the same ethno-
linguistic label/affiliation, in accordance with [10,13]. Of
note, the 426 Indian individuals were assigned to two
subpopulations by EigenDev-ipPCA. This grouping is
consistent with the parametric analysis of these indivi-
duals in [13], which showed weak evidence of structure.
Hence, the greater degree of stratification resolved by
TW-ipPCA compared with EigenDev-ipPCA is likely to
be spurious. The spurious structure resolved by TW-
ipPCA is thus attributable to the large sample size (426),
which is well above the threshold encountered for type I
error from the analysis of simulated data.

Among the African individuals, subpopulations were
assigned by EigenDev-ipPCA revealing stratification pat-
terns not described previously. For instance, Niger-
Khordofanian speaking non-Pygmy individuals from
West and Central Africa could not be distinguished
genetically in [10], but were assigned to SP3, SP4 and
SP5 subpopulations by EigenDev-ipPCA. The assign-
ment of the majority African Americans to SP4 and SP5
by EigenDev-ipPCA (Figure 5) suggests they have West
and Central African Niger-Khordofanian ancestors, in
agreement with [10]. On the other hand, the assignment
of African Americans to different subpopulations by
EigenDev-ipPCA is suggestive of significant structure
among these individuals. Supervised STRUCTURE runs
performed in [10] to elucidate African American ances-
try could only reveal a subtle clinal pattern of variation
among the African Americans. The EigenDev-ipPCA
guided STRUCTURE analysis, however, shows clear dif-
ferences in ancestry between SP4 and SP5 African
Americans. The SP15 and SP16 assigned African Ameri-
cans also show ancestry distinct from the SP4 and SP5
assigned individuals, although given the small number
of individuals assigned to SP15 and SP16, it is not possi-
ble to observe significant ancestry differences between
these two groups.

The EigenDev-ipPCA assignment of some African
Americans to SP15 and SP16 was unexpected. The con-
temporary African individuals in these subpopulations
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are predominantly from Saharan and East Africa. A
recent study of African American ancestry concluded
that some individuals have a major ancestral component
which is neither West African Niger-Khordofanian, nor
European [14]. The possibility that this anomalous
ancestry is of Saharan or East African may also be
reflected in mtDNA haplotypes, since some African
Americans have anomalous haplotypes of unknown
African origin [15,16]. The discrepancy between Eigen-
Dev-ipPCA guided STRUCTURE and supervised
STRUCTURE performed in [10] is due to the choice of
individuals in the analysis. When individuals with inap-
propriately diverged allele frequencies from others are
used, key ancestral differences will be missed, the same
as was shown in analysis of Bovine data.

Conclusion

We describe EigenDev-ipPCA for analyzing population
structure. This approach assigns individuals to subpopu-
lations and determines the total number of subpopula-
tions present. This algorithm incorporates a novel
heuristic called EigenDev for detecting substructure,
which is applied to the iterative clustering process.
EigenDev is robust to population sampling, allowing us
to analyze large complex datasets with higher accuracy.
The subpopulations assigned by EigenDev-ipPCA reveals
overall genetic relatedness among groups of individuals,
which can then be used to guide STRUCTURE. Other
parametric algorithms such as Admixture and frappe
could also be used in the same way. Therefore, the com-
bination of EigenDev-ipPCA and STRUCTURE are
complementary and can be used together to perform a
powerful population stratification analysis. The software
both in Matlab source code (m- file) and executable ver-
sions on Windows and Linux (64 bit) are available for
download at http://www4a.biotec.or.th/GlI/tools/ippca.

Additional material

Additional file 1: The detailed analysis and further discussion of the
EigenDev-ipPCA results for the Tishkoff et al. dataset.

Acknowledgements and Funding

The authors thank King Mongkut's Institute of Technology Ladkrabang
(KMITL), the National Electronics and Computer Technology Center (NECTEC)
and the National Center for Genetic Engineering and Biotechnology
(BIOTEQ) for financial support. In particular, TL and ST acknowledge the
funding supported by the National Science and Technology Development
Agency (NSTDA). AA was supported by BIOTEC postdoctoral fellowship. JP
was supported by BIOTEC platform technology grant and the Thailand
Research Fund (TRF) new researcher grant (TRG5380028). PJS was funded by
the Bill & Melinda Gates Foundation through the Grand Challenges
Explorations Initiative. ST received the support from BIOTEC platform
technology and TRF Career Development grant (RSA-54). We thank the
reviewers and editors for their constructive comments, which improve the

Page 10 of 11

quality and presentation of the manuscript. Finally, we would like to thank
the authors and the donors who made the real datasets used in this paper
available.

Author details

"Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang,
Bangkok 10520, Thailand. “National Electronics and Computer Technology
Center, Thailand Science Park, Pathumthani 12120, Thailand. >National Center
for Genetic Engineering and Biotechnology, Thailand Science Park,
Pathumthani 12120, Thailand.

Authors’ contributions

TL, Al, PJS and ST wrote the manuscript. TL, Al and ST constructed the
computational improvement scheme of the new algorithm. AA, PJS and JP
conceived the ideas to reanalyze the mixed complex datasets. TL, Al, PW
and CN conducted all the experiments presented in this work. TL, AA, PJS,
JP and ST analyzed the results. Al, PW and CN wrote the EigenDev-ipPCA
program and made it available in executable formats using a Matlab
compiler. All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 8 October 2010 Accepted: 23 June 2011
Published: 23 June 2011

References

1. Marchini J, Cardon LR, Phillips MS, Donnelly P: The effects of human
population structure on large genetic association studies. Nat Genet
2004, 36(5):512-7.

2. Tian C, Plenge R, Ransom M, Lee A, Villoslada P, Selmi C, Klareskog L,
Pulver A, Qi L, Gregersen P, Seldin M: Analysis and application of
European genetic substructure using 300 K SNP information. PLoS Genet
2008, 4:e4.

3. Paschou P, Lewis J, Javed A, Drineas P: Ancestry informative markers for
fine-scale individual assignment to worldwide populations. J Med Genet
2010, 47(12):835-47.

4. Intarapanich A, Shaw PJ, Assawamakin A, Wangkumhang P, Ngamphiw C,
Chaichoompu K, Piriyapongsa J, Tongsima S: Iterative pruning PCA
improves resolution of highly structured populations. BMC Bioinformatics
2009, 10:382.

5. Patterson N, Price A, Reich D: Population structure and eigenanalysis. PLoS
Genet 2006, 2(12):2190.

6. Luo J, Zhang Z: Using Eigenvalue Grads Method to Estimate the Number
of Signal Source. In Proceedings of the 5th International Conference on
Signal Processing (WCCC-ICSP 2000). Volume 1. Beijing, China; 2000:223-225.

7. Liang L, Zollner S, Abecasis GR: GENOME: a rapid coalescent-based whole
genome simulator. Bioinformatics 2007, 23(12):1565-7.

8. The BovineHapMap dataset. [http://bfgl.anri.barc.usda.gov/cgi-bin/
hapmap/affy2/BulkDownloads].

9. The Tishkoff et. al. dataset. [http://www.sciencemag.org/content/vol0/
issue2009/images/data/1172257/DC1/1172257_datasetzip).

10.  Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A,
Hirbo JB, Awomoyi AA, Bodo JM, Doumbo O, Ibrahim M, Juma AT,

Kotze MJ, Lema G, Moore JH, Mortensen H, Nyambo TB, Omar SA, Powell K,
Pretorius GS, Smith MW, Thera MA, Wambebe C, Weber JL, Williams SM:
The genetic structure and history of Africans and African Americans.
Science 2009, 324(5930):1035-44.

11, Pritchard JK, Stephens M, Donnelly P: Inference of Population Structure
Using Multilocus Genotype Data. Genetics 2000, 155:945-59.

12. Consortium TBH: Genome-Wide Survey of SNP Variation Uncovers the
Genetic Structure of Cattle Breeds. Science 2009, 324(5926):528-32.

13. Rosenberg N, Mahajan S, Gonzalez-Quevedo C, Blum M, Nino-Rosales L,
Ninis V, Das P, Hegde M, Molinari L, Zapata G, Weber J, Belmont J, Patel P:
Low levels of genetic divergence across geographically and linguistically
diverse populations from India. PLoS Genet 2006, 2(12):e215.

14. Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S,

Froment A, Bodo JM, Wambebe C, Tishkoff SA, Bustamante CD: Genome-
wide patterns of population structure and admixture in West Africans
and African Americans. Proc Natl Acad Sci USA 2010, 107(2):786-91.


http://www4a.biotec.or.th/GI/tools/ippca
http://www.biomedcentral.com/content/supplementary/1471-2105-12-255-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/15052271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15052271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20921023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20921023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17194218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17459963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17459963?dopt=Abstract
http://bfgl.anri.barc.usda.gov/cgi-bin/hapmap/affy2/BulkDownloads
http://bfgl.anri.barc.usda.gov/cgi-bin/hapmap/affy2/BulkDownloads
http://www.sciencemag.org/content/vol0/issue2009/images/data/1172257/DC1/1172257_dataset.zip
http://www.sciencemag.org/content/vol0/issue2009/images/data/1172257/DC1/1172257_dataset.zip
http://www.ncbi.nlm.nih.gov/pubmed/19407144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10835412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10835412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19390050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19390050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17194221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17194221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20080753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20080753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20080753?dopt=Abstract

Limpiti et al. BMC Bioinformatics 2011, 12:255 Page 11 of 11
http://www.biomedcentral.com/1471-2105/12/255

15. Salas A, Richards M, Lareu MV, Scozzari R, Coppa A, Torroni A, Macaulay V,
Carracedo A: The African diaspora: mitochondrial DNA and the Atlantic
slave trade. Am J Hum Genet 2004, 74(3):454-65.

16.  Ely B, Wilson JL, Jackson F, Jackson BA: African-American mitochondrial
DNAs often match mtDNAs found in multiple African ethnic groups.
BMC Biol 2006, 4:34.

doi:10.1186/1471-2105-12-255

Cite this article as: Limpiti et al: Study of large and highly stratified
population datasets by combining iterative pruning principal
component analysis and structure. BMC Bioinformatics 2011 12:255.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVied Central



http://www.ncbi.nlm.nih.gov/pubmed/14872407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14872407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17038170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17038170?dopt=Abstract

Piriyapongsa et al. BMC Genomics 2012, 13(Suppl 7):52
http://www.biomedcentral.com/1471-2164/13/57/S2

LN EITUY

BMC
Genomics

PROCEEDINGS Open Access

iLOCi: a SNP interaction prioritization technique
for detecting epistasis in genome-wide

association studies

Jittima Piriyapongsa', Chumpol Ngamphiw', Apichart Intarapanich?, Supasak Kulawonganunchai',
Anunchai Assawamakin', Chaiwat Bootchai', Philip J Shaw', Sissades Tongsima'~

From Asia Pacific Bioinformatics Network (APBioNet) Eleventh International Conference on Bioinformatics

(InCoB2012)
Bangkok, Thailand. 3-5 October 2012

Abstract

at http//www4a.biotec.or.th/Gl/tools/iloci.

Background: Genome-wide association studies (GWAS) do not provide a full account of the heritability of genetic
diseases since gene-gene interactions, also known as epistasis are not considered in single locus GWAS. To address
this problem, a considerable number of methods have been developed for identifying disease-associated gene-
gene interactions. However, these methods typically fail to identify interacting markers explaining more of the
disease heritability over single locus GWAS, since many of the interactions significant for disease are obscured by
uninformative marker interactions e.g., linkage disequilibrium (LD).

Results: In this study, we present a novel SNP interaction prioritization algorithm, named iLOCi (Interacting Loci).
This algorithm accounts for marker dependencies separately in case and control groups. Disease-associated
interactions are then prioritized according to a novel ranking score calculated from the difference in marker
dependencies for every possible pair between case and control groups. The analysis of a typical GWAS dataset can
be completed in less than a day on a standard workstation with parallel processing capability. The proposed
framework was validated using simulated data and applied to real GWAS datasets using the Wellcome Trust Case
Control Consortium (WTCCC) data. The results from simulated data showed the ability of iLOCi to identify various
types of gene-gene interactions, especially for high-order interaction. From the WTCCC data, we found that among
the top ranked interacting SNP pairs, several mapped to genes previously known to be associated with disease,
and interestingly, other previously unreported genes with biologically related roles.

Conclusion: iLOCi is a powerful tool for uncovering true disease interacting markers and thus can provide a more
complete understanding of the genetic basis underlying complex disease. The program is available for download

Background

A major challenge for human genetics is identifying sus-
ceptibility genes for complex heritable diseases.
Advanced single nucleotide polymorphism (SNP) geno-
typing technology and genome-wide association study
(GWAS) are at the forefront of research in this area. In
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conventional single locus analysis, each variant is tested
individually for disease association. Systematic analysis of
GWAS data in this manner can typically uncover multi-
ple SNPs associated with complex diseases [1-3]. These
analyses have provided valuable insights into the genetics
of complex diseases; however, they typically detect only
common, low-risk variants each with small effect and
explain only a tiny proportion of disease heritability [4].
The existence of interactions among genes (epistasis)
has been proposed to constitute a major proportion of

© 2012 Piriyapongsa et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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disease heritability, which is not captured by single-locus
GWAS [5]. The genetical nature of epistasis can be
described by several different models as shown in a variety
of interaction schema discussed in [6]. Note that genetic
factors primarily function through a complex mechanism;
thus, epistatic interactions are not limited to independent
gene pairs. Multiple genes interacting through a biological
network (i.e. indirect interactions) exist which can modify
disease penetrance and expressivity.

A number of methods for detecting epistatic interactions
among genotypic data have been proposed. Most methods
employ a statistical approach to identify interacting mar-
ker pairs based on deviation from a null distribution and
estimation of type I error. These statistical approaches
have been shown to work well in theory, e.g., regression
methods [7,8], partitioning chi-square [9], Focused Inter-
action Testing Framework (FITF) [10], Bayesian model
selection [11], and other recent approaches [12,13]. How-
ever, the need for control of type I error reduces power to
detect interactions in real data, which is exacerbated by
the huge number of statistical tests performed in this
analysis [14].

Given the challenges for statistical approaches, non-sta-
tistical methods such as machine-learning and data-
mining methods have been proposed for the study of
genetic interactions [15,16]. Instead of model fitting, these
methods attempt to explain all of the heritability in terms
of marker interactions. Multifactor dimensionality reduc-
tion (MDR) is an brute-force method for identifying the
most plausible interactions which fit the data [17]. How-
ever, MDR and other recently published exhaustive non-
parametric approaches [18] are computationally complex
and thus impractical for analysis of GWAS data. To over-
come the computational burden of non-parametric analy-
sis, several techniques have been developed that employ
statistics to assist the non-parametric search for epistasis,
including SNPHarvester [19], SNPRuler [20], and BOOST
[21]. In these methods, the search space is reduced by a
filtering step, usually employing a statistical threshold. The
filtered dataset is then used for non-parametric search for
epistasis. Although these methods can be applied for ana-
lysis of GWAS data, the interactions found rarely offer any
new insights since the majority of interacting markers
map to the same genomic regions. For example, the analy-
sis of WTCCC (Wellcome Trust Case Control Consor-
tium) data by BOOST revealed that after removal of
linked pairs, no interactions were found for five of the
seven diseases. Using another approach for exhaustive
search of interactions, the most recent paper by Ueki and
Tamiya [22] also reported very few interactions in the
WTCCC data.

The possible reason for the disappointingly modest
improvement of the current hybrid approaches is that
they do not adequately account for marker dependencies
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not related to disease. A well known marker dependency
which can confound the identification of genomic regions
associated with disease is linkage disequilibrium (LD). LD
is non-random association of genotypes at two or more
loci that can be on the same or different chromosomes.
LD is caused by a number of factors, including genetic
linkage and the rate of recombination [23]. Earlier
reports [24,25] showed that LD contrast, i.e., differences
in LD patterns between case and control groups can
reveal the disease signal above the noise of background
LD in candidate disease regions. However, to our knowl-
edge, LD contrast has not been employed for compre-
hensive genetic epistasis study, owing to the high
computational complexity.

Clearly, a computationally efficient and comprehensive
prioritization technique is required which accounts for
marker dependencies unrelated to disease. Moreover,
instead of trying to control type I error, a prioritization
procedure may be more effective in revealing more of the
true disease markers which may have modest individual
effects and interact in complex higher-order networks.

In this paper, we propose a novel tool for prioritizing
gene-gene interactions called iLOCi (interacting Loci).
The iLOCi algorithm ranks all SNP pair combinations
according to a novel heuristic that we call p 4. The iLOCi
program is specifically designed to handle large-scale
GWAS data partly through the application of data paralle-
lization. The tests with WTCCC datasets show that the
top ranked pairs by our algorithm reveal novel disease
genes, several of which are consistent with biological net-
works underpining disease etiology.

Methods

iLOCi algorithm

The proposed iLOCi algorithm performs genome-wide
analysis for identifying SNP pairs that are plausibly asso-
ciated with a disease. No prior genetical assumptions are
employed in the algorithm, which allows the exploration
of different dimensions of the association results. The
framework can be characterized into two main modules:
1) calculating SNP pair dependencies separately in case
and control groups and 2) disease SNP pair prioritiza-
tion as shown in Figure 1.

Calculation of SNP pair dependencies

iLOCi explores all possible combinations of SNP pairs.
Given N SNPs from a SNP array with the SNP index
starting from 1 to N, there are a total of

2 2
assigned a unique index (i,j), where izj.

From the large number of SNP pairs, it is necessary to
identify the dependency unrelated to disease. This
dependency includes linkage disequilibrium (LD),

<N> = M possible pairs. Each SNP pair is
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Figure 1 The workflow of the iLOCi algorithm.

population structure, genotype calling artifacts, etc. and
is performed separately between the case and control
groups. This step of the algorithm is called dependence
test. Therefore, for each indexed SNP pair, the algorithm
calculates two scores, Peyse and Peousrorr The calculated p
values using genotypic information were proven to be
concordant with LD values (see Additional file 1). LD
values are calculated using allelic deviation from the
Hardy-Weinberg Equilibrium (HWE) model, which
assumes that, without the introduction of specific dis-
turbing factors, the frequencies of alleles and genotypes
in a population remain constant from one generation to
the next. However, it should be noted that the only
information captured by p values is the correlation
between markers, which is needed for identifying inter-
actions. For LD calculation, the haplotypic phase is also
considered, which is computationally very demanding
for datasets of this size.

To compute marker p values, each SNP locus is con-
sidered as a discrete random variable and the numeric
values of -1, 0 and 1 are assigned to homozygous wild
(w), heterozygous (/), and homozygous variant (v) types
respectively. This encoding ensures zero-means, which
obviates a normalization step. Let x and y be two dis-
crete random variables of SNPx and SNPy, respectively.

Let P, represents a genotypic joint probability mass
function, whose entries are the probability of genotype
combinations from both SNPs. Hence, there are nine
possible genotypic combinations that are represented by
the following matrix:

Pyyw Puyn Py
Puyy=| P P Ph
Py Pw Py

For example, P, is a probability that (x,y) are both
homozygous wild type. Each of these probabilities can be
calculated by dividing the number of the joint genotypic
outcomes with the total number of individuals for either
case (N¢ase) or control (Neonerol) groups. For example,

ctrl
ctrl ctrl (x=w,y=w)
P = p(x=w,y=w) - T The dependence test must
Ctr

be performed for all possible SNP pairs. The correlation
value pPeontrol for each SNP pair is calculated as:

ffx) v potl o o o potrl , petrl , petrl 4 o o potrl , petrl’ v v potrl 3 oo patrl ¢
[0 PR + X VPSR + X Vo PSS} + (XY PR + XnVnPSE+ XnVoPRT) + (X PSS + X VnPSR + %,y

X=w’* x=v’ =V
probability of SNPx wild type, SNPx variant type, SNPy
wild type and SNPy variant type respectively.

Note that P pcul P;S,L, and P;trl are the estimated
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By the same reasoning, p..s. is calculated as:

case _ pcase _ pcase case
Py B3y Piyt + By

Pl +Pezn (B + Bz

y=w

Disease SNP pair prioritization

The next step is to identify whether the same SNP pair
(x,y) from case and control groups have contrasting pat-
terns of p values. A difference test is performed by dif-
ferentiating the p values between the case and control
groups using a simple subtraction operation, namely
Padiff= |pcontrol'pcase | .

To select the highly associated SNP pairs, all SNP
pairs are ranked according to the pgir values. The rank-
ing of top SNP pairs was chosen, rather than a P-value
cutoff in order to avoid too many false positive pairs
due to the heavy-tailed distribution phenomenon, where
the Gaussian distribution decreases faster than the dis-
tribution of disease associated SNP pairs [26].

Parallel computing algorithm implemented in iLOCi

The iLOCi algorithm is designed for genome-scale analysis
which requires the computation of a huge number of SNP
interaction pairs, e.g.~1.25x10"" pairs for a 500,000 SNP
dataset. Data parallelization is applied to accelerate this
computationally intensive and time-consuming process.
The SNP interaction matrix is divided into submatrices of
100,000 or fewer SNPs each. Each SNP interaction subma-
trix is computed in parallel using a MacPro workstation
with 2x2.4 GHz quad-core Intel Xeon processors with
8GB RAM. With this configuration, the complete
WTCCC dataset can be analyzed in 19 hours. Details for
implemention of the code and data parallelization are
available upon request.

Testing iLOCi algorithm performance using simulated
data

The performance of iLOCi for detecting disease-associated
gene interactions was evaluated and compared with FastE-
pistasis [27]. The evaluation was made using simulated
datasets, which were generated using the GenomeSIM pro-
gram [28]. The algorithm performance was determined for
detection of four different epistatic interaction scenarios:

1) Single pair interaction without marginal effects:
Eighteen epistatic models in [29] with heritability (h?)
of 0.2, 0.3, and 0.4 were used for performance com-
parison (see Additional file 2: Table S1). These herit-
ability levels were chosen to represent those typically
found in common complex diseases. The minor allele
frequency (MAF), which is the frequency of the less
common allele, was assigned to be two levels, 0.2 and
0.4. In total, there are six model groups comprising
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three models with the same heritability and MAF for
each group. 100 independent datasets containing
1600 samples (800 cases and 800 controls) with 100
SNPs were generated for each model group.

2) Single pair interaction with marginal effects: Six
epistatic models in [30] with MAF of 0.5 were tested
(see Additional file 2: Table S2). 100 independent
datasets containing 800 samples (400 cases and 400
controls) and 100 independent datasets containing
1600 samples (800 cases and 800 controls) with 100
SNPs each were generated for each model group.

3) Multiple independent interacting pairs without mar-
ginal effects: Eight models of multiple interactions
described in supplementary material of [19] were
tested. Each of these models were generated from five
epistatic models described in [29]. Each model used
the same heritability and MAF. 100 independent data-
sets containing 1600 samples (800 cases and 800 con-
trols) and 100 SNPs were generated for each model
group.

4) Higher-order interactions: Data were simulated for
the eight interaction network models based on pair-
wise interaction described in [31] for three-, four-, and
five-loci interating networks (see Additional file 2:
Table S3). 100 independent datasets containing 800
samples (400 cases and 400 controls) were generated.
The number of SNPs varies from model to model.

The algorithm performance was demonstrated by the
percentage of accuracy, which is determined by the pro-
portion of 100 independent datasets in which the algo-
rithm correctly identified the interacting SNP pairs. For
situations 1 and 2, the identification of disease SNP pair is
defined as correct if the disease SNP pair is the top ranked
pair with the highest p g score (for iLOCi) or the lowest
P-value (for FastEpistasis). For multiple independent inter-
acting pairs (case 3), the identification is taken as correct
when all five disease SNPs fall in the top five ranked pairs
with highest p g score (for iLOCi) or lowest P-value (for
FastEpistasis). The prediction of higher-order interactions
is defined as correct when all disease SNPs are found
within all top ranked pairs. The top ranked pairs are
defined as all consecutive pairs comprising at least one dis-
ease SNP in each pair.

Testing algorithm performance using the WTCCC dataset

In addition to the simulated data, our algorithm was
applied to the real genotypic data of WTCCC (Wellcome
Trust Case Control Consortium) [3]. This dataset
encompasses ~500,000 SNP genotypic data of ~17,000
British samples which are divided into 3000 shared con-
trol samples and ~2000 case samples for each of seven
complex diseases: bipolar disorder (BD), coronary artery
disease (CAD), Crohn’s disease (CD), hypertension (HT),
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Figure 2 The performance comparison between iLOCi (I) and FastEpistasis (F) on epistatic models without marginal effects. The
algorithm performance is shown as the percentage of accuracy, which is the number of simulated datasets (out of 100) in which the correct
SNP pair is identified. The accuracy was tested for two different MAF (0.2, 0.4) and three different levels of heritability (A) 04, (B) 0.3, and (C) 0.2.
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Figure 3 The performance comparison between iLOCi and FastEpistasis on epistatic models with marginal effects. The percentage of
accuracy is shown for two different sample sizes (800 and 1600) for six different pairwise interaction models (A-F).
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Figure 4 The Receiver Operating Characteristic (ROC) curves for simulation datasets of hybrid models. The ROC curves are displayed for
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rheumatoid arthritis (RA), typel (T1D) and type2 (T2D)
diabetes.

For these real datasets, data cleaning was required
prior to the analysis. We considered only SNPs and
individuals passing WTCCC data quality control [3].
We further filtered the SNP set using MAF>0.05 leaving
355,882 SNPs (complete set) for all diseases. We also
generated a SNP marker gene-only subset of 176,148
present in genes (defined as within 10Kb flanking an
annotated gene model reported in RefSeq version 36.3).

First, pqigr values for the seven WTCCC diseases were
calculated for all possible (=63x10° for complete and
~15x10° for the gene-only subset) pairs. Next, the
empirical p g distributions for each disease were graphed
using kernel density plot. For the gene-only SNP subset
analysis, the top ranked 1000 SNP pairs were chosen for
functional analysis to uncover biological significance.
From these pairs, a list of genes was extracted based
upon RefSeq (version 36.3) physical locations of SNPs in
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the genome. To understand the biological significance of
the novel genes reported by our algorithm, we also used
the candidate gene prioritization feature of ToppGene
[32] using the cutoff of P-value = 0.01 with Bonferroni
correction. The training sets for the ToppGene candidate
gene prioritization were the lists of all genes reported in
the HuGE Navigator database [33] for the seven diseases.
The test sets for the ToppGene analysis were the lists of
novel (not reported in HuGE Navigator database) genes
represented among the top ranked 1000 SNP pairs
obtained from iLOCi.

Results

iLOCi algorithm validation

We used simulated datasets to validate the iLOCi algo-
rithm for identifying various disease-associated epistatic
interactions. We chose FastEpistasis for performance
comparison with iLOCi due to the fact that the data
were simulated according to an interaction model;
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Figure 5 The performance comparisons between iLOCi and FastEpistasis on high-order interaction models. The percentage of accuracy
is shown for different models (Ep1, Ep3, Ep5, Ep6, Het1, Het3, S1, S3) of high-order interactions among (A) three-loci, (B) four-loci, and (C) five-
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hence this tool would be most suitable for testing.
Moreover, the theoretical basis for FastEpistasis is
widely accepted for genome-wide analysis.

The first result testing for a single interacting pair
demonstrated that the top ranked iLOCi pair was the dis-
ease interacting pair in 18 different inheritance models
without the presence of marginal effects. Overall, its per-
formance was approximately the same as FastEpistasis
for most of the model groups and slightly better in some
cases (h?=0.2, MAF = 0.4; h?=0.3, MAF = 0.4) as shown
in Figure 2. For epistatic interactions with marginal
effects, iLOCi outperformed FastEpistasis in most mod-
els, except in model 2 for which both methods failed to
detect the interacting disease marker pair (Figure 3).
Furthermore, we want to demonstrate the specificity
as well as sensitivity of iLOCi for detecting multiple
interacting disease marker pairs as would be present in a
real dataset. Therefore, the receiver operating character-
istics (ROC) were plotted for different thresholds of
ranked marker pairs, and for different models of
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heritability and MAF (Figure 4). Generally, iLOCi has
high sensitivity and specificity, although the performance
tends to be worse with lower degrees of heritability.
Moreover, it should be noted that the minimum p g
scores that give 100% sensitivity vary greatly from
0.00511 to 0.41663.

In addition to independent interacting pairs, we exam-
ined the ability of iLOCi and FastEpistasis to detect
higher-order interactions of 3, 4, and 5 loci disease inter-
action networks for eight models at each level (Figure 5).
iLOCi can detect all eight models for all levels of interac-
tions; however, FastEpistasis failed to identify all S3
model interactions. Furthermore, FastEpistasis could
detect, with higher than 50% accuracy, in fewer than 50%
of the 4-loci network models and only Ep1, Ep3 and Ep5
of the 5-loci network models.

In conclusion, these experiments with simulated data
validated the iLOCi algorithm for identifying all four
types of higher-order gene interaction. iLOCi perfor-
mance was comparable to FastEpistasis for a variety of
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W
o
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60 I I I
—— Emprical pdf generated from p it Values
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50 |- —
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Figure 6 The frequency distribution of pgi values from WTCCC datasets. The plot shows the empirical probabilty density function (pdf)
generated from combined pggvalues from all seven diseases of WTCCC datasets.The pdf plots generated from each disease are indistinguishable
from combined pdf. The plots for Weibull distribution (k = 1, A=0.018) and Chi-square distribution (degree of freedom = 1) are shown in the
same axes.
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Table 1 The lookup table of P-values for the associated
Pdiff scores

paisfscore P-value
0.05 6.2177e-2
0.10 3.865%-3
0.15 24037e-4
0.20 1.4945e-5
0.25 9.2925e-7
030 5.7777e-8
0.35 3.5924e-9
040 2.2336e-10
045 1.3888e-11
0.50 8.6353e-13
0.55 5.3735e-14
0.60 3.3307e-15
0.65 2.2204e-16
0.70 <2.2204e-16
0.75 <2.2204e-16
0.80 <2.2204e-16
0.85 <2.2204e-16
0.90 <2.2204e-16
0.95 <2.2204e-16
1.00 <2.2204e-16

The P-values were calculated based on the fitted Weibull distribution with k =
1 and 1=0.018.

two-locus interaction models; however, iLOCi was mark-
edly superior for detecting high-order interactions. This
would be a major advantage of iLOCi for analysis of real
data since high-order interaction is the type of
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interaction likely to be found in real data of complex dis-
eases and may account for current missing heritability.

iLOCi analyses of WTCCC data

The iLOCi algorithm was tested against real data
obtained from WTCCC. The distribution of p g values
follows a Weibull distribution pattern for all seven
diseases (Figure 6). From the Weibull distribution with
k = 1 and 1=0.018, we calculated P-values for pgj¢r
scores ranging from 0.05 to 1.0 (see Table 1). For the
seven diseases, we selected the top 1000 pairs for which
the calculated minimum P-values vary from <2.22e-16
to 1.14e-7 in complete SNP set analysis, and from
<2.22e-16 to 4.72e-5 in gene-only SNP analysis (see
Table 2).

From iLOCi analysis using the complete SNP marker
set, it was found that the great majority of the SNPs
have not been previously reported to be associated with
the diseases [3]. Furthermore, the majority of these
SNPs also do not map to annotated genes. The list of
top 1000 SNP pairs is available in Additional File 3. For
each disease, iLOCi identified ‘hub’ SNPs, i.e. SNPs that
pair with many other SNPs, e.g., rs1553460 pairs with
1000 other SNPs in BD (Table 3).

Owing to the fact that the majority of interacting SNPs
do not map to annotated genes, we re-analyzed the data
using the gene-only SNP subset. ‘Hub’ SNPs were also
observed at the gene level (Table 3). From this analysis,
it was noted that the top ranked 1000 SNP pairs of all
seven diseases map to 321 disease-gene associations that
have been annotated on the HuGE Navigator database

Table 2 The pyiss scores of the 1t and 1000*" ranked SNP pairs and their associated P-values

Complete set of SNPs (355882 SNPs)

Disease 1" Paiss 1P-value 1000™p it 1000™P-value Avg. pgigx SD
BD 0.2878 1.1410e-7 0.2680 3.4206e-7 0.2718£0.0035
CAD 09317 <2.2204e-16 09132 <2.2204e-16 0.9171£0.0031
D 0.3085 3.6109e-8 0.2849 1.3351e-7 0.2887£0.0034
HT 0.2834 14510e-7 0.2626 4.6022e-7 0.2667£0.0037
RA 0.9042 <2.2204e-16 0.8866 <2.2204e-16 0.8903+0.0031
TD 1.0731 <2.2204e-16 0.9996 <2.2204e-16 1.0040£0.0056
12D 03338 8.8226e-9 02159 6.1867e-6 0.2198+0.0052
Gene-only SNPs (176148 SNPs)

Disease 1% paite 1*P-value 1000 i 1000*"P-value Avg. pgirx SD
BD 0.2447 1.2445e-6 02224 4.2957e-6 0.2259+0.0032
CAD 0.9294 <2.2204e-16 09102 <2.2204e-16 0.9143£0.0035
D 0.2653 3.9790e-7 0.2248 3.7769e-6 0.2280£0.0033
HT 0.1793 4.7229e-5 0.1561 1.7142e-4 0.1605+0.0043
RA 0.9040 <2.2204e-16 0.8832 <2.2204e-16 0.8875+0.0036
TD 1.0731 <2.2204e-16 0.9957 <2.2204e-16 1.0007£0.0061
12D 03338 8.8226e-9 02127 7.3731e-6 0.2168+0.0052

The highest and the lowest p g scores including their associated P-values are displayed with the average scores of top 1000 SNP pairs from the analyses of

WTCCC.
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Table 3 The hub SNPs/genes identified in the top-ranked 1000 SNP pairs
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Hub SNPs from analyses of complete SNP set

Disease Hub SNPs (Genomic position) # Interacting SNPs
BD rs1553460 (Chr4:17804959) 1000
CAD 153785579 (Chr17:62472963) 1000
[@b) rs1553460 (Chr4:17804959) 978
154471699 (Chr16:30227808) 22
HT rs10843660 (Chr12:30259724) 999
RA 153785579 (Chr17:62472963) 1000
T1D rs9273363 (Chr6:32734250) 1000
12D 157077039 (Chr10:114779067) 833
1510787472 (Chr10:114771287) 54
rs11196208 (Chr10:114801306) 39
rs11196205 (Chr10:114797037) 30
rs10885409 (Chr10:114798062) 22
154074720 (Chr10:114738487) 17

Hub genes from gene-only SNP analyses

Disease Hub genes # Interacting genes
BD CENPN: centromere protein N 653
CAD CACNGT: calcium channel, voltage-dependent, gamma subunit 1 709
cD ATGI6L1: ATG16 autophagy related 16-like 1 (S. cerevisiae)*** 256
IL23R: interleukin 23 receptor *** 20
HT tcag’.23: similar to ribosomal protein L18; 60S ribosomal protein L18 170
BCATI: branched chain aminotransferase 1, cytosolic *** 57
SAMDA4A: sterile alpha motif domain containing 4A * 27
GABT: GRB2-associated binding protein 1 * 25
RHOJ: ras homolog gene family, member J 20
LYPD5: LY6/PLAUR domain containing 5 * 12
RA CACNGT: calcium channel, voltage-dependent, gamma subunit 1 676
T1D HLA-DQB1: major histocompatibility complex, class Il, DQ beta 1** 686
T2D TCF712: transcription factor 7-like 2 (T-cell specific, HMG-box)*** 481

* Genes associated with disease SNPs that were previously reported in WTCCC original paper

** Genes previously reported to be disease-associated in HUGE Navigator database

*** Genes previously reported to be disease-associated in both WTCCC paper and HUGE Navigator database

Table 4 The disease association of iLOCi selected genes from gene-only SNP analyses

Disease # iLOCi genes in top 1000 SNP pairs Reported in WTCCC Reported in HUGE Navigator database
single SNP analyses
# Analyzed genes # iLOCi genes # Analyzed genes # iLOCi genes
(# SNPs) (# SNPs)

BD 654 42 (1757) 8 665 (16598) 52

CAD 710 29 (2097) 3 735 (11564) 37

cD 279 54 (1651) 4 531 (7181) 10

HT 595 32 (3164) 19 1240 (22004) 64

RA 677 34 (822) 4 503 (5902) 19

D 687 39 (1153) 5 512 (6924) 29

T2D 486 29 (1289) 5 2456 (41244) 110

The table displays the number of previously reported disease-associated genes which were found in all analyzed genes and in the set of genes involved in top
1000 interaction pairs. The reported disease genes are shown for both the genes associated with disease SNPs from WTCCC paper [3] and the ones reported in
HuGE Navigator database [33].
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(see Table 4, Additional File 4). On the other hand, the
majority of the disease interacting genes among these
pairs reported by iLOCi are novel. Moreover, most of
these genes were not reported in the original WTCCC
study (Table 4). To evaluate the biological significance
of the novel genes among these pairs, the ToppGene
candidate gene prioritization tool was employed. The
full results are shown in Additional Files 3 and 4.
Among the novel genes identified by iLOCi, it was
observed that some well known disease pathways from
KEGG [34] contain several of these genes (see Additional
File 5). For instance, the ‘neuroactive ligand-receptor inter-
action’ pathway in BD contains 4 novel genes in addition
to 11 previously reported genes (Figure 7). Other promi-
nent disease pathways include ‘cytokine-cytokine receptor
interaction’ for CAD (Figure 8) and ‘type I diabetes melli-
tus’ for T1D (Figure 9).
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Discussion

In this study, we have developed a new pairwise SNP-
interaction prioritization algorithm for GWAS. We
hypothesized that by first accounting for pairwise mar-
ker dependencies among case and control groups, it
would be possible to observe true disease interactions
above the noise of dependent markers unrelated to dis-
ease, as was proposed in earlier studies of LD contrast
(see Background).

In GWAS data, it is well known that LD generates
strong pairwise dependency signals that are used to
identify disease associated SNPs by imputation. How-
ever, this type of signal predominates pairwise markers
in analysis of gene interactions. For example, in the
approach used by Wan et al. [21], the majority of the
interactions identified for all seven WTCCC datasets
can be attributed to LD effect, i.e., the interacting
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Figure 7 The iLOCi detected genes from BD and their maps in ‘neuroactive ligand-receptor interaction’ pathway. The KEGG pathway
diagram [34] shows the mapping of BD-associated genes identified among 1000 top ranked iLOCi pairs in ‘neuroactive ligand-receptor
interaction’” KEGG pathway. The gene families containing the genes previously reported in HUGE Navigator database and the novel disease genes
are highlighted in the red boxes and the blue boxes, respectively, with their associated gene names.
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Figure 8 The iLOCi detected genes from CAD and their maps in ‘cytokine-cytokine receptor interaction’ pathway. The KEGG pathway
diagram [34] shows the mapping of CAD-associated genes identified among 1000 top ranked iLOCi pairs in ‘cytokine-cytokine receptor
interaction’ pathway. The gene families containing the genes previously reported in the HUGE Navigator database and novel disease genes are
highlighted in the red boxes and the blue boxes, respectively, with their associated gene names.

TNF Family

SNPs are within 1Mb of each other in the same geno-
mic region. To validate our approach correcting for
pairwise dependencies unrelated to disease SNP inter-
actions, extensive tests were performed on simulated
data. For a simple model with only one interacting
pair, the top ranked iLOCi pair is correctly identified
as the disease marker pair. When testing for multiple
interacting pairs, iLOCi has high accuracy under the
conditions of high heritability and informativeness, i.e.,
low MAEF. On the other hand, low heritability and/or
informativeness leads to type I error as observed by
ROC plot. In general, the pg scores reflect the degree
of heritability and informativeness. Hence, it is not
possible to use a single pgi¢ cutoff for identifying dis-
ease interactions in the real case when the heritability
and informativeness are unknown.

From analyses of real GWAS data, it was found that the
paigr distributions for all seven diseases could be repre-
sented by a single kernel density function with Weibull
distribution. However, the range of pq;¢ values varies
among the diseases and follow the known heritability pat-
tern, i.e., HT has the lowest heritability and lowest top

paigr score, while T1D has the highest heritability and
highest top p 4 score (Table 2). Although it is possible to
calculate P-values of the interacting pairs and use them
as cutoffs for prioritization, we consider the use of P-
value cutoffs inappropriate. For example, a P-value of le-
5 (corresponding to pgie values of approximately 0.2 or
greater) would give approximately 16 million significant
pairs for T1D and 200,000 pairs for HT. The same phe-
nomenon of unacceptable type I error was found by
others when using FastEpistasis for analysis of real data-
sets. It is debatable whether Bonferroni correction is
valid since the tests are not independent, as shown by the
heavy-tailed distributions of pg¢ . Current methods for
correction of type I error by false discovery rate are also
likely to be impractical because of the requirement for
permutation testing.

Instead of using P-value significance thresholds, we
used the top ranked 1000 SNP pairs for prioritization,
which account for a very small portion (<0.0001%) of all
possible pairs. Rather than attempting to identify all
gene interactions, which practically can not be found
[35], we limit the prioritization to the top ranked pairs
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that are most likely to contain the genetic interactions
which are informative of the disease etiology, i.e., disease
pathways. From the full SNP set analysis, several hub
SNPs were identified for each disease which interact
with many other SNPs. For some diseases such as T1D,
these hub SNPs map to well-known disease associated
genes. However, hub SNPs for BD, HT, and CD do not
map to genes. These hub SNPs may mediate interac-
tions at an unknown gene regulatory level, e.g. as non-
coding RNAs, miRNAs or cis-regulatory elements. Since
our knowledge of gene regulation is far from complete
[36], we repeated the iLOCi analysis on the gene-only

SNPs subset. By restricting the analysis to SNP pairs in
genes only, the ToppGene systems approach for gene
prioritization was appropriate, as used by others for
GWAS data [37-39].

Gene-based prioritization of the interacting SNP pairs
revealed significant representation of previously
described disease associated genes. Therefore, we are
confident that the novel genes found among the priori-
tized SNP pairs are novel disease-associated genes. For
each disease, hub genes were found which pair with
many other genes. Some of these disease hub genes are
known and have been replicated as disease genes by



Piriyapongsa et al. BMC Genomics 2012, 13(Suppl 7):52
http://www.biomedcentral.com/1471-2164/13/57/S2

conventional single-SNP GWAS, including the MHC
gene HLADQBI for T1D and TCF7L2 for T2D. However,
some hub genes have not been reported previously, e.g.
the CACNGI gene for RA. This gene’s SNP shows a
modest P-value (>1e-4) for association by single SNP
analysis [3]; therefore, the disease association of this SNP
is dependent on multiple interactions with other loci. For
each disease, including those with low heritability such as
HT, we are able to suggest novel genes and pathways for
further investigation, including re-analysis of other
GWAS datasets for the same diseases.

Conclusions

In this article, we introduce a novel SNP interaction
prioritization method, called iLOCi. The algorithm is
computationally efficient, and thus suitable for exhaus-
tive search for interactions along markers in a typical
GWAS dataset. We have shown that the approach taken
by iLOCi in which marker dependencies unrelated to
disease are accounted for reveal genetic interactions of
biological relevance to complex disease.

Additional material

Additional file 1: The mathematical details of pgis value and its
relation with LD (iLOCi_details.pdf). This file includes the mathematical
details of iLOCi formula and its relationship with the allele-based LD
calculation.

Additional file 2: Penetrance tables for dataset simulation
(Penetrance_tables.pdf). This file includes the penetrance models used
for dataset simulation of two-locus and high-order ineractions.

Additional file 3: Top 1000 SNP pairs from analyses of complete
SNP set of WTCCC (TopPairs_Complete.xls). This file includes the list
of top 1000 SNP pairs with their associated genes obtained from the
iLOCi analyses of all SNPs passing the quality control step. The evidences
for disease association of each identified gene as reported in WTCCC
original paper and HUGE Navigator database are also shown. The genes
identified as candidate disease genes from ToppGene prioritization are
indicated with their rank numbers and P-values.

Additional file 4: Top 1000 SNP pairs from analyses of gene-only
SNP set of WTCCC (TopPairs_GeneOnly.xls). This file includes the list
of top 1000 SNP pairs with their associated genes obtained from the
iLOCi analyses of gene-only SNPs. The evidences for disease association
of each identified gene as reported in WTCCC original paper and HuGE
Navigator database are also shown. The genes identified as candidate
disease genes from ToppGene prioritization are indicated with their rank
numbers and P-values.

Additional file 5: Pathway enrichment analysis of WTCCC datasets
(Pathway_analysis.xls). This file includes the list of enriched biological
pathways obtained from ToppGene program using the training sets of
HUGE Navigator disease-associated genes. The pathway P-value is
reported along with the list of iLOCi identified genes associated with
such pathway. For each pathway, the number of genes previously
reported in HUGE Navigator database, reported in WTCCC paper, and the
novel disease genes, is shown.
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Abstract

There is considerable ethno-linguistic and genetic variation among human populations in Asia, although tracing the
origins of this diversity is complicated by migration events. Thailand is at the center of Mainland Southeast Asia
(MSEA), a region within Asia that has not been extensively studied. Genetic substructure may exist in the Thai
population, since waves of migration from southern China throughout its recent history may have contributed to
substantial gene flow. Autosomal SNP data were collated for 438,503 markers from 992 Thai individuals. Using the
available self-reported regional origin, four Thai subpopulations genetically distinct from each other and from other
Asian populations were resolved by Neighbor-Joining analysis using a 41,569 marker subset. Using an independent
Principal Components-based unsupervised clustering approach, four major MSEA subpopulations were resolved in
which regional bias was apparent. A major ancestry component was common to these MSEA subpopulations and
distinguishes them from other Asian subpopulations. On the other hand, these MSEA subpopulations were admixed
with other ancestries, in particular one shared with Chinese. Subpopulation clustering using only Thai individuals and
the complete marker set resolved four subpopulations, which are distributed differently across Thailand. A Sino-Thai
subpopulation was concentrated in the Central region of Thailand, although this constituted a minority in an otherwise
diverse region. Among the most highly differentiated markers which distinguish the Thai subpopulations, several map
to regions known to affect phenotypic traits such as skin pigmentation and susceptibility to common diseases. The
subpopulation patterns elucidated have important implications for evolutionary and medical genetics. The
subpopulation structure within Thailand may reflect the contributions of different migrants throughout the history of
MSEA. The information will also be important for genetic association studies to account for population-structure
confounding effects.
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Introduction

The human population genetic history of Asia is complex,
which is highlighted by the controversy surrounding the earliest
migrations through Asia. One school of thought is that Asians
are descended from two major ancestral groups, the earliest
who migrated via a southern coastal route and a later group
who spread across northern and eastern Asia [1]. An
alternative hypothesis from genome-wide surveying of genetic
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variation across 73 Asian populations is that there was only
one major migration pattern, in which East Asian peoples are
descended from southern migrants who migrated north [2]. The
controversy has been reignited following analysis of ancient
human genomes from Central Asia [3] and Australia [4] which
tend to support the two-wave hypothesis. The great diversity
across Asia shaped by multiple migrations and population
expansions throughout history will only be realized by more in-
depth population genetic studies [5]. This gap in knowledge
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has begun to be addressed by large-scale studies of Asian
populations sampling thousands of individuals, which have
revealed stratification (distinct subpopulations) among the
populations of India [6], Japan [7], and China [8,9]. The degree
of genetic stratification in these populations largely reflects
known ethno/cultural/linguistic divisions and patterns of
assumed ancestry.

Thailand lies at the heart of mainland Southeast Asia
(MSEA), the region in which peoples speaking Tai-Kadai,
Austroasiatic (Mon-Khmer), Sino-Tibetan, Hmong-Mien and
Austronesian languages are present. The contemporary
populations of this region are dominated by Tai language
speakers (Thai and Laotian) and Austroasiatic speakers
(Cambodian and Vietnamese). Most importantly, Thailand is
located at the crossroads of ancient human migration paths
between North and East Asia and Island Southeast Asia.
Therefore, the genetic footprints of ancestral migrants may be
present among people in this region. The earliest
archaeological evidence of humans in MSEA was obtained in
southern Thailand, dating to approximately 25,000 Years
Before Present (YBP) [10], which is among the oldest remains
documented in Southeast Asia [11]. mtDNA analysis of this
specimen showed close relationship with the present-day
Semang population in Peninsula Malaysia [12]. The Semang
are an aboriginal “Negrito” people (distinguished by their darker
skin pigmentation, different hair morphology, and short average
stature), who may have been living continuously in Southeast
Asia since the earliest Asian migration to Australia 60-75,000
YBP [13]; other Negrito populations elsewhere in Southeast
Asia have a similarly ancient origin [14,15]. The southern part
of Thailand was thus first populated by “Australo-Melanesian”
[13] ancestral people. On the other hand, it is not clear how
extensively populated MSEA was at this time, since
archaeological evidence for communities and settlement prior
to the Bronze Age (approximately 4500 YBP) in MSEA is
sparse [16]. Bellwood (1993) argued that the earliest humans
in MSEA would have been restricted to the coastal regions and
not penetrated inland as the environment was not suitable for a
foraging lifestyle [17]. Therefore, it is likely that the earliest
populations of significance in MSEA were established by
Austric agriculturalist people, the ancestors of Austroasiatic
and Austronesians, who may have originated in Southern
China. These migrants spread along river basins in MSEA
reaching the Malaysian Peninsula in the Neolithic period [16].
Mitochondrial DNA study of Bronze and Iron age human
remains from central Thailand was concordant with the
presence of autochthonous Austric people in central Thailand
[18]. Tai people migrated from southern China into northern
Thailand more recently, establishing settlements in Thailand
alongside the autochthonous Austrics. Eventually, the Tai
became dominant, establishing control over northern Thailand
from the 8" Century AD [19]. Later Tai domination covering
much of present-day Thailand was evidenced by the Sukhothai
dynasty (established 13" Century AD) and the Ayutthaya
dynasty (established 15" Century AD), although the southern
region of Thailand was essentially autonomous and ruled by
Malay vassals until the 19" Century AD. During this most
recent phase of Thai history, a large influx of migrants from
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southern China occurred [20]. Within the same period, other
MSEA populations also experienced similar patterns of
immigration and assimilation of southern Chinese, with
Chinese influence greatest in Vietnam [21].

Despite the strategic location of Thailand in MSEA, there has
been no large-scale study of its population’s genetic variation.
Previous studies of human genetic diversity in Thailand were
done with limited marker sets [22,23], and/or limited sampling
(restricted to ethnic minorities); [2,22,24-28]. To better our
understanding of mainland Southeast Asian and Thai
population genetics, we undertook a study of Thai population
genetic structure. The Thai population dataset comprises 992
individuals genotyped for 552,386 autosomal SNP markers.
We found that the Thai population is genetically distinct from
other Asian populations, but there is evidence of shared
ancestry supporting the known origins and historical migration
patterns across MSEA. Four Thai subpopulations were
resolved which are distributed differently across Thailand.
Interestingly, the most highly differentiated markers which can
distinguish the four Thai subpopulations include several within
genes which are known to affect traits such as skin
pigmentation and susceptibility to common diseases.

Methods

Ethical statement

The recruitment of human subjects was approved by the
ethical review committee for research in human subjects
(Mental Health and Psychiatry): Ministry of Public Health,
Thailand (CCA No. Si 32/2009).

Three SNP genotyping datasets were analyzed in this study.
The first dataset is from a worldwide population study of 850
individuals from 40 populations published in [29]. The
genotypic data from this dataset were obtained using the
Affymetrix Human SNP Array 6.0 comprising 246,554 SNPs
that passed quality control (after removal of markers that
deviate from Hardy-Weinberg Equilibrium (HWE) (P< 5.5x10%)
and missing data >10%). The second dataset is a case-control
association study to identify genetic factors of major depressive
disorder. Human subjects for genotyping were recruited
according to the ethical statement mentioned above. The
dataset comprises 374 individuals (186 cases and 188
controls) collected from North, Northeastern, Central and
Southern regions of Thailand. The DNA samples were
genotyped using the lllumina Human 610-Quad BeadChips
Array at RIKEN, Japan. The total number of genotyped SNPs
is 593,542. SNPs were filtered to remove markers in high LD
(linkage disequilibrium r? > 0.5), high deviation from HWE
(P<10%) and missing data >5% using the PLINK tool. After
filtering, 438,503 SNP markers remained for further analyses.
Disease association test was performed using the PLINK tool.
No marker passed the threshold for Bonferroni-corrected
significance (P<107). The top 50 ranked markers are shown in
Table S1. The third dataset is a case-control study to identify
modifying genetic factors that cause patients with C-
thalassemia’/hemoglobin E with different spectrums of disease
severities. The study collected 383 severe patients and 235
mild patients and performed case-control association. The data
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and association study were previously published in [30].
Genotyping was done using the same platform as with the
second dataset, i.e. 610-Quad BeadChips Array for a total
number of 593,542 SNPs. Note that both datasets 2 and 3
were from two independent case-control association studies of
Thais where individuals’ samples were collected from different
regions in Thailand by different Principal Investigators. For
datasets 2 and 3, individuals were asked to assign a
geographical label for themselves (North, South, Northeast or
Central) based on their place of birth, or their parent’s place of
birth. We tested for systematic differences of allele frequency
caused by sampling bias between datasets 2 and 3 for 438,503
SNPs. A Bonferroni corrected P-value of 10-7 was used as the
significance threshold. In accordance with PLoS policy on data
availability, requests to access datasets 2 and 3 should be sent
to Dr. Verayuth Prapanpoj and Prof. Suthat Fucharoen,
respectively.

Population analyses

The analyses were done in two stages. First we observed
the relationship between Thais and other related populations.
The common polymorphic SNPs from all three datasets
(41,569 SNPs) were used for population structure analysis.
This marker set includes only SNPs that have the same
reference SNP identification code (rs-id) between the
Affymetrix and lllumina SNP array platforms. For some of these
SNPs in common, the SNP calling on one platform is the
complement of the other platform, i.e., A/G versus T/C. In these
cases, the Affymetrix SNP calls were complemented to be the
same as lllumina’s. Common SNPs in which the base identity
of the variant SNP was ambiguous on either platform were
excluded. Finally to ensure that no hidden technical bias may
exist between the two platforms for the common marker set,
minor allele frequencies (MAF) for each SNP were calculated
from a control population with 136 samples from Affymetrix [29]
and 1,182 samples from lllumina [31] platforms, respectively.
The scatter plot and the calculated correlation coefficient of
MAFs do not show any evidence of biased MAFs (Figure S1).

Population structure was analyzed first by bootstrapping
neighbor-joining (NJ) tree of the three combined datasets
(1,842 individuals genotyped for 41,569 markers common
among the two genotyping platforms) using the segboot,
gendist, consense and neighbor programs within the PHYLIP
program suite (with default parameters) [32]. Allele frequencies
of each population were calculated using seqboot (individuals
with the same label were assumed to belong to the same
population). The dissimilarity matrix was calculated from the
matrix of allele frequencies using the gendist program. The
neighbor module was used to construct NJ-trees from these
matrices. Finally, consense was used to generate the
consensus tree with bootstrapping values using the Pygmy
population as an out-group. The unrooted phylogram was
plotted using Dendroscope [33].

The ipPCA program [34,35] was used with stopping criterion
EigenDev=0.21 [35] to assign 1,842 individuals genotyped for
41,569 markers into subpopulations in an unsupervised
manner disregarding the population labels for each individual.
The data matrices were generated with each row representing
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a SNP profile for an individual and each column representing a
SNP genotype (0: homozygous wild type, 1: heterozygous and
2: homozygous variant). The ADMIXTURE [36] program was
used to estimate individual ancestries of each individual from
the same SNP genotypic data from K=2 to K=10 ancestors.
ADMIXTURE uses the same maximum likelihood principle of
STRUCTURE [37] to infer the ratio of assumed ancestors for
each individual. The admixture ratios of individuals were plotted
using the ‘bar’ function in MATLAB version 2009b on Linux
operating system.

High-resolution study of population substructure within the
Thai population was performed on the combined datasets 2
and 3 (992 individuals genotyped for 438,503 SNPs).
Subpopulations were assigned using ipPCA with stopping
criterion EigenDev=0.21. ADMIXTURE was used to estimate
individual ancestries from K=2 to K=4 ancestors. Genome-wide
Fst values [37] were calculated among all pair-wise
combination of ipPCA assigned subpopulations using the
Arlequin software with default settings [38], and the
significance tested by permutation testing option for 1023
permutations. Fst values for each of the 438,503 SNPs among
all pair-wise combination of ipPCA assigned subpopulations
were calculated using the Arlequin software. The SNPs were
then ranked according to Fst values in all pairwise
subpopulation comparisons.

Results

In order to frame the Thai population in a worldwide context,
the Thai genetic data were combined with the worldwide
population data published in [29]. The combined dataset of
1,842 individuals was analyzed using the 41,569 SNP markers
common to the two different microarray platforms (File S1).
Consensus neighbor-joining (NJ) unrooted tree of populations
assigned using the ethno-geographical information (Figure 1)
reveals that the Southeast and East Asian populations are
distinct from the rest of the world. Moreover, all the Southeast
and East Asian populations occupy distinctive positions (clades
with 100% bootstrap support) from other populations except for
Thai Moken and Cambodian people who occupy positions in
the tree with weaker bootstrap support. It is striking that the
Thai subpopulations (according to the regional geographic
origins) are also distinct.

Next, subpopulation genetic structure was analyzed using
the ipPCA algorithm [34,35]. Subpopulation assignment of
individuals by this algorithm is performed using an
unsupervised clustering approach that does not use the
individuals’ ethno-geographical information. The
subpopulations resolved by this algorithm are genetically
homogeneous with no significant variation from that expected
for a random collection of unrelated individuals. The resulting
24 subpopulations assigned by ipPCA generally reflected the
individual ethno-geographical labels in agreement with the
pattern from the consensus NJ tree (Figure 2), but with some
interesting discrepancies. Mainland Thais were assigned to
four subpopulations (SP19-22) together with some of the Thai
Moken individuals from Xing’s dataset. However, Thai Mokens
were assigned exclusively to SP23. Interestingly, all
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Figure 1. Consensus population Neighbor-Joining unrooted Tree. An amalgamated worldwide dataset of 1842 individuals
genotyped for 41,569 SNPs was analyzed by PHYLIP. The minor allele frequencies for each population were calculated and used
as input to produce the dissimilarity matrix using Nei’s approach for unrooted NJ tree. The data were comprised of 850 individuals
from 40 populations (dataset no.1; [29]), 618 Thai individuals (dataset no. 2; [30]) and 374 Thai individuals (dataset no. 3; this
study). The Thai individuals from datasets no. 2 and 3 were assumed to belong to the same population and then separated into
regional subpopulations based on self-reported origins: Thai (C), Thai (NE), Thai (N) and Thai (S). The other population labels are
the same as those reported previously in [29], except “Thai” which has been re-labeled as “Thai-Moken”. The consensus tree from
100 bootstrap replicates is shown, and the bootstrap values are indicated on each node of the tree. Southeast and East Asian
populations are ringed and the clades separating Thai subpopulations are in red.

doi: 10.1371/journal.pone.0079522.g001
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Vietnamese individuals were assigned with Thais in SP21 and
SP22 and all Cambodians were assigned with Thais in SP19,
20 and 22. Some Chinese individuals were also assigned to
SP22 with Thais, Vietnamese and Cambodians. Another
important observation is that among the predominantly Thai
subpopulations SP19-22, there appears to be regional bias.
For instance, SP19 contained the majority of Southern Thais,
while SP20 contained the majority of Northeastern Thais and
SP21 the majority of Northern Thais. SP22 is dominated by
Central Thais, although this subpopulation constitutes only a
minority of the total of Central Thais. 20 Thai individuals
appeared as genetically distinct “outliers” that could not be
assigned to a specific subpopulation and were separated by
ipPCA at different iterations of the algorithm (see Figure S2).

Next, admixture ratios of inferred ancestry (K=2 to 10) for
each individual (ipPCA outliers excluded) were determined
using the ADMIXTURE program [36]. When individuals are
grouped according to their subpopulation assignments made
by ipPCA, subpopulation-distinctive admixture patterns were
observed at K=7 (Figure 3). Analysis with higher K ancestral
clusters was not much more informative, since no new major
ancestral components of any subpopulation were apparent.
SP19-22 containing mostly Thai individuals were assigned with
one major ancestral component (blue) and two minor
components (pink and yellow) at K=7. The major blue
component is also a major component of SP24 (Iban
individuals) and to a lesser extent SP18 (mostly Chinese
individuals).

Next, having shown substructure among the mainland Thai
population with relatively few markers, a higher resolution
analysis of 992 Thai individuals was performed using 438,503
SNP markers. Subpopulation assignment by ipPCA revealed
four subpopulations labeled SPA, B, C and D (Figure 4). 20
outlier individuals could not be assigned to these four
subpopulations (Figure S3), and were excluded from further
analysis. The assignment of individuals to the four
subpopulations SPA, B, C and D was correspondent with
SP19, 20, 21, and 22, respectively from low-resolution ipPCA
(Figure 2), with minor discrepancies (Table S2). Regional bias
in subpopulation assignment was apparent, with predominance
of South individuals in SPA, Northeast individuals in SP-B, and
North individuals in SPC. SPD contains predominantly Central
individuals, although this subpopulation does not constitute the
majority of Central individuals. The level of variance in allele
frequency among subpopulations SPA, B, C and D was
determined by Fst analysis, and all pairwise comparisons were
significant as shown by permutation testing (Table 1).
Therefore, the population substructure found by ipPCA was
cross-validated by Fst analysis. An alternative explanation for
the substructure among the Thai samples is that the patterns
reflect the individual's disease status or an artifact of the
sample collection rather than general population structure. To
test this hypothesis, deviation of minor allele frequency of the
Thalassemia dataset was compared with the Major depressive
disorder dataset from the expected ratio for all markers
(438,503) by chi-squared analysis. No markers showed
significant  deviation (Table S3), indicating that the
amalgamation of two datasets carried no bias for population
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structure analysis. Admixture analysis of these individuals with
438,503 SNP markers shows that each subpopulation has
distinct patterns of admixture ratios at K=3; the fourth ancestral
component is not informative as it carries only a tiny proportion
of the ancestry in almost all individuals (Figure 5).

Having demonstrated substructure among the Thai
population, an investigation of the genomic regions most
diverged among the subpopulations was performed. The
markers were ranked according to their Fst values in pairwise
subpopulation comparisons (Table S4). Among the top-ranked
markers with highest Fst between subpopulations, several
were present in genes, and a few have been reported
previously to affect phenotypic traits such as skin pigmentation
and susceptibility to disease in other populations (Table 2).
SPA is distinguished by high frequencies of SNPs in the OCA2
and SLC24A5 genes, and these markers are strongly
associated across different populations with skin pigmentation
[38]. The same markers are present at lowest frequency in
SPC compared with SPA, B and D. SPB is distinguished by
high frequency of the rs987870 SNP, which present in the
HLA-DPB1 gene and is associated with pediatric asthma in
different Asian populations [39]. SPD is distinguished by high
frequency of several SNPs previously reported to be
associated with disease in East Asian populations, including
SNPs in the ADH4, ALDH2, BRAP and PANK4 genes which
are associated with upper aerodigestive tract cancer, metabolic
effect of alcohol, metabolic syndrome and type 2 diabetes,
respectively [40-43]. Although some of the markers that
distinguish the Thai subpopulations have phenotypic
associations in other populations, phenotypic associations for
the majority of distinguishing markers have not been reported.

Discussion

In this study, we have attempted to fill an important gap in
the knowledge about human population genetics in MSEA.
Consensus NJ tree (Figure 1) and ipPCA subpopulation
assignment using a limited marker set (Figure 2) showed that
genetically distinct groups exist among Eurasian peoples that
are broadly aligned with ethno-linguistic labels. Among these
populations though, there were some unexpected patterns.
Five subpopulations of Thais were clearly distinct by NJ tree
and ipPCA assignment, including a subpopulation of Thai
individuals from the Xing dataset (SP23, Figure 2). The Thai
individuals in SP23 were sampled from the Moken minority
ethnic group, who are distinct from majority Thais in that they
have lived continuously in coastal areas of Southern Thailand
for several generations and speak their own Austronesian
language [29]. The distinct ethnic identity of the Moken may
thus have acted as a barrier to gene flow and led to genetic
divergence from the majority of Thai people. The existence of
the other four Thai subpopulations was unexpected as there
are no ethno/linguistic distinguishing labels among these
individuals. Geographical origin could partly explain the
divergence of these subpopulations, with South, North and
Northeastern Thais predominating SP19, 20 and 21
respectively. Central individuals comprised the majority of
SP22, but this subpopulation was only a minority of the total of
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Figure 2. ipPCA subpopulation assignment. The amalgamated worldwide dataset of 1842 individuals was analyzed by ipPCA.
The Thai ethno/geographical labels pertaining to datasets 2 and 3 are italicized; all other labels are the same as those shown in
Figure 1. Individuals were assigned into 24 genetically distinct subpopulations (SP1 to 24) by ipPCA. 20 Thai individuals that could
not be assigned to subpopulations are not shown. The height of each subpopulation bar is proportional to the number of assigned
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doi: 10.1371/journal.pone.0079522.g002

Central individuals. Also surprising was the genetic similarity of
other MSEA peoples with Thais, i.e., Cambodians were

assigned with Thais in SP19, 20 and 22, while Vietnamese
were assigned with Thais in SP21 and SP22 (with some
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Chinese also). Although the sampling of Cambodians and
Vietnamese was much lower than Thais, the patterns suggest
that the subpopulation structure within Thailand is
representative of MSEA.

From the Admixture analysis at K=7, MSEA people in
SP19-22 were shown to be represented by one major ancestral
component (Figure 3). This component could represent the
ancestry of autochthonous Austroasiatic people present in
MSEA before the Tai expansion (see Introduction). This
ancestry is also a major component of SP24 which is
comprised of Austronesian-speaking Iban from the Peninsula
Malaysia. Previous genetic analysis of Iban showed close
association with MSEA people, suggesting that the ancestors
of Iban were from MSEA [44]. The MSEA ancestors of the Iban
and other Austronesians in MSEA were probably Austric-
speaking migrants who migrated from central Thailand to the
Malaysian Peninsula [45]. The most common mtDNA
haplotypes in the Austronesian-speaking Thai Moken are also
found in aboriginal peoples of the Malaysian Peninsula [46],
and these Malay aborigines speak Austronesian and
Austroasiatic languages. Among other Austronesian-speaking

PLOS ONE | www.plosone.org

minorities in MSEA, the Cham group in Vietnam also has a
closer genetic affiliation with Austroasiatic populations in MSEA
than with Austronesian populations from Island Southeast Asia
[47].

Four genetically distinct Thai subpopulations were assigned
using 438,503 SNPs with essentially the same assignment as
with the smaller marker set. The minor discrepancy between
the two ipPCA analyses performed with different numbers of
markers is clustering error since the ability to resolve
population structure is dependent on the number of markers
available [48]. Even with a larger marker set, a small number of
Thai individuals could not be assigned to subpopulations by
ipPCA and instead separated as outliers at various clustering
steps of ipPCA (Figures S2 and S3). These outlier individuals
may constitute individuals with recent non-SE Asian ancestry,
or unaccounted for familial relationship. Such outlier individuals
are likely to be present in any large population study and are
typically excluded [49,50]. Among the four geographical
regions of Thailand, the Central region is the most diverse in
that no one subpopulation is dominant. In contrast, the other
regions are more genetically homogeneous. The high diversity
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Figure 4. High-resolution ipPCA assignment of 992 Thai
individuals. 992 Thai individuals from datasets no. 2 and 3
were combined and analyzed by ipPCA utilizing 438,503 SNP
markers. Four subpopulations (SPA, B, C and D) were
resolved by ipPCA, whereas 20 individuals could not be
assigned to a subpopulation and are separated as “Outliers”.
The proportions of individuals assigned to each subpopulation
are shown for each geographical region based on the available
information of self-reported origin (North, Northeast, Central,
and South).

doi: 10.1371/journal.pone.0079522.g004

of the Central region is likely because of recent migration, as
this region has been the economic center of the country since
the 15" Century AD Ayutthaya period. Although SP22/SPD
constitutes a minority of Central Thais, SP22/SPD individuals
are concentrated in this region. Several Chinese, Viethamese
and a Cambodian individual were assigned by ipPCA with
Thais in SP22. One explanation for this pattern, given the
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Table 1. Pairwise Fst analysis of Thai subpopulations.

SP-A  SP-B SP-C SP-D
SP-A 0 0.0020* 0.0032* 0.0034*
SP-B 0 0.0015* 0.0025*
SP-C 0 0.0023*
SP-D 0

* Significance tests were performed with 1023 permutations and their resulting P-
value < 0.01
doi: 10.1371/journal.pone.0079522.t001

modern history of MSEA is that the Thais, Viethamese and
Cambodian in SP-22 may be descendants of recent Chinese
migrants. In support of this conjecture, Admixture analysis
showed that these individuals share a prominent ancestry with
predominantly Chinese SP18 individuals (yellow component in
Figure 3). Moreover, among the top-ranked SNP markers
which are present at high frequency in SP-D and distinguish it
from the other four Thai subpopulations, three (rs671,
rs3782886 and rs7535528) have previously been reported to
be associated with disease in the Chinese [41-43]. The
documented rapid expansion and assimilation of very recent
(within 200 years) Chinese immigrants into Thailand (see
Introduction) has thus created a sizeable genetically distinct
Sino-Thai subpopulation. Other evidence to support a
subpopulation of Sino-Thai includes the presence of an
“EAsian” Helicobacter pylori haplotype among Thais, which is
also found in Malays of recent Chinese descent [51].

The predominantly southern Thai subpopulation SP19/SPA
is distinguishable from the other Thai subpopulations by the
presence of minor ADMIXTURE-inferred ancestry at K=7 (pink
component, Figure 3). This ancestry is a major component of
subpopulations SP8-11 comprised of predominantly South and
Central Asians. This ancestry in the SP19/SPA Thais may be
the signal of earliest Australo-Melanesian ancestors who came
from South and Central Asia and migrated via Southeast Asia
to Australia. Other genetic evidence of these very early
ancestors was reported in [28], who found that the Sakai from
southern Thailand were the most diverged ethnic group from
other Thais. The Sakai are a very small ethnic group living near
the Malaysian border and have a Negrito appearance and
speak their own Austroasiatic language similar to Semang
Negritos in Malaysia [52]. Among the top-ranked SNP markers
which are present at higher frequency in SP-A and distinguish
it from the other four Thai subpopulations, two are in genes,
namely SLC24A5 and OCAZ2, known to be associated with skin
pigmentation in different populations. However, the association
of skin pigmentation with these marker among Asian
populations is weak, e.g., as shown among different aboriginal
populations of Peninsula Malaysia [53]. The differences in
allele frequencies for these markers, and others (Table 2), are
thus not likely to reflect signals of selection among Thai
subpopulations.

The other Thai subpopulations SP20/SPB and SP21/SPC
are the two largest. Among the three SNPs which distinguish
SPB from the other Thai subpopulations, one at higher
frequency in the HLA-DPB1 gene has been reported to confer
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subpopulations SPA, B, C and D.
doi: 10.1371/journal.pone.0079522.g005

a pediatric asthma risk (Table 2). Although the MAF differences
among disease associated SNPs appear small among Thai
subpopulations, they collectively may nonetheless have
important consequences for GWAS. It is well-known that cases
and controls must be drawn from a similar genetic background
for GWAS, otherwise spurious associations will result [54]. We
propose that future GWAS for the Thai population must take
into account of the subpopulation background to avoid
population structure confounding effects such as spurious
associations and loss of power to detect subpopulation-specific
disease associations. Regional grouping of samples may not
be effective, particularly for the Central region where no one
subpopulation is in the majority.

Conclusions

This study has elucidated the Thai population structure,
revealing four major subpopulations. A major ancestry is

PLOS ONE | www.plosone.org

common across these subpopulations, which is probably the
signal of Austric ancestors who originally settled across most of
MSEA. The more recent expansion of Tai-Kadai language
throughout MSEA was thus accompanied by assimilation,
rather than displacement of the indigenous people. On the
other hand, the most recent assimilation of southern Chinese
migrants has created shifts in population structure, with one
example being the presence of a distinctive Sino-Thai
subpopulation that is concentrated in the Central region of
Thailand (but which is not in the majority).

Further sampling of genetic variation in other MSEA
populations, particularly Vietnamese and Cambodians may
shed further light on this pattern.
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intron
coding
intron

Allele Region

TIG
AG

TIC
AIG

15 25872900

15 46213776
33150858
1E+08

Chr Position

6
4

rs1426654
rs987870
rs3805322

rs4778220
rs671

Rank® rsID

Table 2. Top-ranked SNPs with highest Fst between subpopulations with known phenotypic association.
109
12
29
5

Fst? value (SPx-SPy)

0.023 (SPA-SPB)
0.046 (SPA-SPC)
0.021 (SPB-SPC)
0.037 (SPA-SPD)
0.042 (SPB-SPD)
0.041 (SPB-SPD)
0.038 (SPB-SPD)
0.046 (SPA-SPC)
0.045 (SPA-SPC)
0.044 (SPA-SPC)
0.048 (SPA-SPD)
0.035 (SPB-SPD)

0.19
0.18
0.36

0.1

0.06
0.06
0.21
0.08
0.07
0.11
0.27
0.17

0.06
0.06
0.18
0.12
0.12
0.16
0.36
0.15

0.1

metabolic effect of alcohol

ALDH2

BRAP

coding

TIC

1.11E+08
1.11E+08
2434274

12
12
1
6
3
8]
6

6

0.1

metabolic syndrome

coding

AIG

rs3782886
rs7535528
rs2517646
rs11130248

rs2291652

16
22

0.22
0.23
0.21
0.27
0.38
0.27

PANK4 type |l diabetes

coding

TIC
TIC

highly differentiated SNP between Chinese subpopulations

TRIM10
COL4A1
MUC3

intron

30230554
50327204
1.97E+08
25925768

13
17
20
20
33

0.12
0.19
0.18
0.31

susceptibility loci for keloid in the Japanese population

A/G  Flanking 5’'UTR

T/IC
TIC

endometriosis-related infertility

coding

SLC17A1 development of gout

intron

rs1165153
rs103294

prostate cancer

LILRA3

Flanking 3UTR
a8 Fstis the value between the specified pair-wise subpopulation comparison shown in parenthesis.

TIC

19 59489660

b Rank value refers to the rank of Fst value for the same pair-wise subpopulation comparison (see Table S4 for complete ranked list)

doi: 10.1371/journal.pone.0079522.t002
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Supporting Information

File S1. List of SNP-ids for the 41,569 SNP markers
common to the Illlumina Human 610-Quad BeadChips
Array and the Affymetrix Human SNP Array 6.0 platforms.
(21P)

Figure S1. MAF correlation of 41,569 SNPs between
lllumina and Affymetrix platforms. MAFs for each SNP were
calculated from a control population of European ancestry with
136 samples from Affymetrix [29] and 1,182 samples from
lllumina [31] platforms, respectively. The calculated correlation
coefficient is indicated by the red line.

(TIFF)

Figure S2. ipPCA clustering decision tree for analysis of
combined datasets 1, 2 and 3 (worldwide datasets). The
terminal nodes boxed in red represent ipPCA resolved
subpopulations labeled SP1-24. The internal nodes represent
groups of individuals with unresolved population structure.
Terminal nodes marked with asterisks represent outlier
individuals. The EigenDev value for each iteration of ipPCA is
shown in each node; values >0.21 indicate the present of
substructure.

(PDF)

Figure S3. ipPCA clustering decision tree for analysis of
combined datasets 2 and 3 (Thai individuals). The terminal
nodes boxed in red and labeled as SPA, SPB, SPC, and SPD
represent ipPCA resolved subpopulations. Terminal nodes
marked with asterisks represent outlier individuals. The
numbers of individuals for each regional origin label (Thai C, S,
NE and N) are indicated in each node. The intermediate nodes
represent groups of individuals with unresolved population
structure. The EigenDev value for each iteration of ipPCA is
shown in each node; values >0.21 indicate the present of
substructure.

(TIFF)

Table S1. Major depressive disorder GWAS top 50
associated SNP data.
(XLSX)

Table S2. Correspondence of individual ipPCA-
assignments of SP19-22 with SPA-D.
(XLSX)

Table S3. Top 50 rank SNP from Chi-squared analysis
between Thalassemia dataset and the Major depressive
disorder dataset from the expected ratio for all markers.
(XLSX)

Table S4. Top 200 ranked SNPs based on Fst values for all

pair-wise comparisons between SPA, SPB, SPC and SPD.
(XLSX)
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Identification of suitable biomarkers for accurate prediction of phenotypic outcomes is a goal for personalized medicine. However,
current machine learning approaches are either too complex or perform poorly. Here, a novel two-step machine-learning
framework is presented to address this need. First, a Naive Bayes estimator is used to rank features from which the top-ranked
will most likely contain the most informative features for prediction of the underlying biological classes. The top-ranked features
are then used in a Hidden Naive Bayes classifier to construct a classification prediction model from these filtered attributes. In
order to obtain the minimum set of the most informative biomarkers, the bottom-ranked features are successively removed from the
Naive Bayes-filtered feature list one at a time, and the classification accuracy of the Hidden Naive Bayes classifier is checked for each
pruned feature set. The performance of the proposed two-step Bayes classification framework was tested on different types of -omics
datasets including gene expression microarray, single nucleotide polymorphism microarray (SNParray), and surface-enhanced
laser desorption/ionization time-of-flight (SELDI-TOF) proteomic data. The proposed two-step Bayes classification framework
was equal to and, in some cases, outperformed other classification methods in terms of prediction accuracy, minimum number of
classification markers, and computational time.

Various machine learning techniques have been proposed to
identify biomarkers that can accurately predict phenotypic
classes by learning the cryptic pattern from -omics data

In recent years, the advent of technologies such as microar-
rays, proteomics, and next-generation sequencing has trans-
formed life science. The data from these experimental
approaches provide a comprehensive picture of the com-
plexity of biological systems at different levels. Within each
of these “-omics” data strata, there exists a small amount
of information relevant to particular biological questions,
for example, indicative markers or biomarkers (for short)
that can accurately predict (classify) phenotypic outcomes.

[1]. There are three main categories of machine learning
methods for biomarker selection and phenotypic classifi-
cation, namely, filter, wrapper, and embedded [2]. These
methods differ in the degree of computational complexity and
prediction accuracy outcomes.

Filtering methods are the least computationally complex
and are used to identify a subset of the most informative
features from -omics data to assist the following classification
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FIGURE 1: Empirical testing of NB selection using breast cancer
dataset. Training breast cancer dataset was sampled 1 million times
for lower-ranked marker set and 100,000 times for the top 40-ranked
marker set.

process. These approaches operate by generating a value
for each marker according to their degree of correlation
with a given phenotype (class label), and then markers are
ranked. However, filter methods are subject to selection of
redundant biomarkers; furthermore, these methods cannot
explore solutions that require more than one marker to
predict the underlying classes. A common filter method is the
well-known Student’s t-test, which is popular because of its
simplicity [7].

Wrapper methods iteratively perform combinatorial
biomarker search aiming to optimize the predictive power of
a classification model. Since this combinatorial optimization
process is computationally complex, NP-hard problem, many
heuristic have been proposed, for example, [8], to reduce the
search space and thus reduce the computational burden of the
biomarker selection.

Similar to wrapper methods, embedded methods attempt
to perform feature selection and classification simultaneously.
Embedded methods, however, integrate feature selection into
the construction of classification models. Recursive feature
elimination support vector machine (SVM-RFE) is a widely
used technique for analysis of microarray data [9, 10]. The
SVM-RFE procedure constructs a classification model using
all available features, and the least informative features for
that particular model are eliminated. The process of classi-
fication model building and feature elimination is repeated
until a model using the predetermined minimum number of
features is obtained. This approach is thus computationally
impractical when a large number of features are considered,
since many iterations of the algorithm are required.

Another approach for performing class prediction is
Naive Bayes (NB). The NB learning model relies on Bayes
probability theory, in which attributes are used to build a
statistical estimator for predicting classes. NB is the simplest
form of the general Bayesian network in which all attributes
are assumed to be independent. This assumption is not valid
for biological systems, in which complex networks of interac-
tions exist, that is, gene regulation; hence, NB has not received
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FIGURE 2: Empirical testing of NB selection using leukemia dataset.
Training leukemia dataset was sampled 1 million times for lower-
ranked marker set and 100,000 times for the top 40-ranked marker
set.
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FIGURE 3: Empirical testing of NB selection using colon cancer
dataset. Training colon cancer dataset was sampled 1 million times
for lower-ranked marker set and 100,000 times for the top 40-ranked
marker set.

much attention for predicting biological classes. Never-
theless, modified Bayesian classification approaches which
account for dependencies among features can accurately
predict biological classes. Notable examples include selective
Bayesian classifiers (SCB) [11], tree-augmented Naive Bayes
(TAN), and averaged one-dependence estimators (AODE)
[12]. The Hidden Naive Bayes (HNB) classifier approach has
recently been claimed to show significant improvement over
other NB techniques [13]. HNB uses a discrete structural
model and hence requires the discretization for preprocessing
with continuous signal attributes, for example, expression
microarray data.
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TABLE 1: Actual performance results on breast cancer (KRBDSR).
Filter Wrapper methods Hybrid methods
Criterion ) . RFE- RFE- RFE- RFE- RFE- RFE-
Fishersratio | \w.gp RFESVM ey REERR - prion pxwi INwz  psvs7pk NVB-HNB
Accuracy 0.88 0.78 0.76 0.75 0.74 0.75 0.82 0.88 0.85 0.91
Sensitivity,
P 0.83, 0.90 0.77,0.81 0.68,0.80 0.68,0.80 0.68,0.77 0.69,0.80 0.74,0.88 0.82,0.90 0.84,0.86 0.91,0.91
specificity
Number of 35 26 33 36 39 28 35 33 21 25
genes selected
TABLE 2: Actual performance results on leukemia (KRBDSR).
Filter Wrapper methods Hybrid methods
Criterion o RFE- RFE- RFE- RFE- RFE- RFE-
Fishersratio | vy op RFE-SSVM - yeqyyy RFERR - priba INwi INw2  Esvs7pk  NP-HNB
Accuracy 0.99 0.99 0.99 0.99 0.48 0.997 0.96 0.99 0.98 1.00
Sensitivity, 0.95,1.00  100,0.99 0.951.00 098,099 100,031 099,100 0.90,0.98 0.95,1.00 091,100 100,1.00
specificity
Number of 4 5 4 30 6 5 4 4 3 14
genes selected
Accuracy AUC
0.98 1
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0.94 |
0.9 -
0.92 |
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S @)
2 0.88 - = 0.8
5 <
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0.82 A
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0.8 -
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0.78 1 2 4 8 16 32 64 128
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FIGURE 4: Comparison of average accuracy results over all datasets
(Avg), 35 All-Paired datasets (AP) and 9 One-Versus-All (OVA)
datasets.

In this paper, a hybrid statistic-based machine learning
approach is suggested that utilizes a two-step heuristic to
dramatically reduce the computational time required by
HNB, while maintaining high-prediction accuracy when
comparing with the other state-of-the-art machine learning
techniques. Our proposed two-step framework includes (1)
attribute filtering using Naive Bayes (NB) to extract the most
informative features and thus greatly reduce the number
of data dimensions and (2) the subsequent higher order
classification using Hidden Naive Bayes (HNB). HNB can
be used to construct a high-dimensional classification model
that takes into account dependencies among the attributes

—o— AP-SVM-RFE
- AP-NB-HNB

—— OVA-SVM-RFE
—*— OVA-NB-HNB

FIGURE 5: AUC metrics comparing different approaches.

for analysis of complex biological -omics datasets containing
dependencies of features. The performance of the proposed
two-step Bayes classification framework was evaluated using
datasets from SNParray, cDNA expression microarray, and
SELDI-TOF proteomics. The proposed framework was com-
pared with SVM-RFE in terms of classification accuracy, area
under the ROC curve (AUC), sensitivity, specificity, and the
number of informative biomarkers used for classification.

2. Results and Discussion

In order to understand how a two-step Bayes classification
framework can be used to analyze -omics data, the exper-
iments in this section were performed in three different
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TABLE 3: Actual performance results on colon cancer (KRBDSR).
Filter Wrapper methods Hybrid methods
Criterion e RFE- RFE- RFE- RFE-  RFE- RFE-
Fishersratio vy gp RFE-SVM ooy RFERR - prpa INwi INw2  Bsvs7pk N-HNB

Accuracy 0.90 0.87 0.87 0.91 0.83 0.89 0.91 0.89 0.91 0.93
Sensitivity,

i 0.92, 0.88 0.89,0.85 0.92,0.79 097081 0.77,091 0.93,0.84 0.93,0.88 0.93,0.84 0.93,0.89 0.93,0.90
specificity
Number of 16 17 16 22 19 14 10 15 12 23

genes selected

scenarios. First, we need to know if Naive Bayes (NB) filtering
can select good (highly informative) candidate biomarkers,
for example, SNPs, genes, or proteins for construction of an
accurate classification model. Secondly, we need to demon-
strate that the two-step Bayes classification framework is at
least as good as a state-of-the-art method such as SVM-RFE.
Standard performance metrics were used to carry out the
head-to-head comparison. Finally, we show how the two-step
Bayes classification framework can also be applied to other
kinds of -omics datasets, in which SNP genotyping dataset
and proteomic profiles from SELDI-TOF were analyzed.

2.1. Evaluation of Naive Bayes Filtering. First, we hypothe-
sized that the Naive Bayes (NB) ranking module can precisely
extract the most informative biomarkers to maximize the
accuracy of the corresponding classification model. To our
knowledge, the use of NB as a filter method for identify-
ing highly informative markers is novel. NB allows us to
interrogate each marker separately if it can predict the class
outcomes with high confidence. The marker can be combined
with other informative markers and collectively improve the
prediction accuracy in successive multifeature classification
HNB step. The experiments were performed using three
microarray datasets, namely, breast cancer (24481 genes),
leukemia (7129 genes), and colon cancer (2000 genes), from
the Kent Ridge Biomedical Data Set Repository (KRBDSR)
[3]. The NB and HNB modules from the popular open
source machine learning software, Waikato Environment for
Knowledge Analysis (Weka) [14], were employed for the two-
step Bayes classification framework. The NB module was used
to select the top features (genes), whose prediction accuracies
are greater than or equal to 75%. Using this criterion, approx-
imately 40 genes were selected by the NB filtering module as
the top-ranked informative markers. From empirical testing
of several datasets, we have found that this filtering criterion
is broadly applicable for reducing the number of markers to
a level practical for the subsequent HNB module, without
reducing the accuracy of the final HNB classification. The
sampling-with-replacement of 20 markers was done from both
the top 40 group as well as the remaining unselected markers
in the three datasets. The classification accuracy of each
sampling was tested using the Hidden Naive Bayes (HNB)
module with 10-fold cross-validation classification available
in Weka. Twenty genes were sampled from the selected top
40 and the unselected lower-ranked genes for 100,000 and 1
million times, respectively. The frequencies for each classifi-
cation accuracy event were recorded. The results for the breast

cancer, leukemia, and colon cancer data are shown in Figures
1, 2, and 3, respectively. Most importantly, sampling from
the top 40 NB-selected genes gives the highest prediction
accuracy, and the density distribution plots from the selected
top 40 and unselected lower-ranked genes give minimal or
no overlap. These results suggest that the NB filtering module
is effective for selection of the most informative markers to
be used in the following classification model construction
by HNB. The threshold of top-ranked m-genes could be
optimized for each type of dataset; that is, more or fewer than
40 markers may give slightly better prediction accuracy in the
final HNB constructed model. However, in this paper, we did
not exhaustively test different m-thresholds, as our focus is
more to demonstrate the NB-HNB combination approach.

When the top NB selected genes were used for classifica-
tion by HNB, the prediction accuracy was excellent for the
leukemia dataset (average accuracy 92.90%; range 100% to
87.5%) and good for the breast (average 84.67%; range 96.90-
70.10%) and colon cancer datasets (average 86.53%; range
96.77-70.97%). In contrast, the HNB prediction accuracy
using markers from the lower-ranked unselected genes was
markedly poor: breast cancer average prediction accuracy
5716% (range 84.54-27.84%), leukemia average accuracy
72.14% (range 97.22-40.28%), and colon cancer average
accuracy 50.16% (range 53.16-30.65%).

It should be noted that NB filtering is not a good realistic
statistical model because of the underlying independency
assumption among the features (see Section 4.2). In other
words, the top NB selected attributes may not always contain
the optimal set of features for classification. Nonetheless,
when feeding the NB top-ranked attributes to the successive
HNB step, HNB was able to better construct a higher order
interaction prediction model from these features without
exhaustively searching for all different combinations.

2.2. Head-to-Head Comparison with SVM-RFE. In order to
clearly demonstrate the performance of the two-step Bayes
classification framework, a head-to-head performance eval-
uation between the state-of-the-art machine learning tech-
nique, recursive feature elimination support vector machine
(SVM-RFE), and our proposed framework was performed.
There are 42 previously published SVM-RFE analyses for
comparison (see full listing in Section 4). The performance
of the two-step Bayes classification framework was com-
pared with the results published in [15]. Nine different
machine learning techniques, grouped as filtering, wrapper,
and hybrid methods, were compared using breast cancer,
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TABLE 4: Performance comparison between NB-HNB and SVM-RFE on GEMLeR datasets.
Data NB-HNB SVM-RFE
Accuracy Number of genes selected Accuracy Number of genes selected
AP _Breast_Colon 0.96 22 0.96 8
AP Breast_Kidney 0.96 17 0.96 8
AP Breast_Lung 0.94 27 0.94 16
AP _Breast_Omentum 0.95 25 0.96 32
AP _Breast_Ovary 0.96 17 0.96 16
AP _Breast_Prostate 0.99 28 0.99
AP _Breast_Uterus 0.96 27 0.95
AP _Colon_Kidney 0.97 10 0.98 32
AP _Colon_Lung 0.95 17 0.94 32
AP_Colon_Omentum 0.95 18 0.94 32
AP_Colon_Ovary 0.95 11 0.94 16
AP _Colon_Prostate 0.98 20 0.98 8
AP_Colon_Uterus 0.96 10 0.95 16
AP_Endometrium_Breast 0.97 20 0.97 32
AP_Endometrium_Colon 0.95 21 0.97 32
AP_Endometrium_Kidney 0.98 17 0.98 32
AP_Endometrium_Lung 0.94 27 0.95 32
AP_Endometrium_Omentum 0.92 14 0.9 32
AP_Endometrium_Ovary 0.91 12 0.92 32
AP_Endometrium_Prostate 0.98 20 0.99 4
AP_Endometrium_Uterus 0.9 14 0.76 256
AP _Lung_Kidney 0.96 7 0.96 32
AP_Lung_Uterus 0.93 22 0.93 32
AP_Omentum_Kidney 0.97 18 0.98 16
AP_Omentum_Lung 0.94 24 0.9 128
AP_Omentum_Ovary 0.98 27 0.76 4
AP_Omentum_Prostate 0.98 30 0.98 16
AP_Omentum_Uterus 0.91 15 0.88 16
AP _Ovary_Kidney 0.97 14 0.97 32
AP _Ovary_Lung 0.94 15 0.93 32
AP _Ovary_Uterus 0.88 21 0.89 64
AP _Prostate_Kidney 0.98 20 0.98 2
AP _Prostate_Lung 0.98 14 0.98 4
AP _Prostate_Ovary 0.98 19 0.98 2
AP _Prostate_Uterus 0.97 28 0.99
AP _Uterus_Kidney 0.96 12 0.97 32
Average 0.954 18.89 0.94 30.5
Standard deviation 0.02568 0.05357
OVA _Breast 0.94 15 0.96 32
OVA _Colon 0.96 19 0.97 16
OVA_Endometrium 0.97 6 0.96 2
OVA _Kidney 0.98 20 0.98 8
OVA_Lung 0.97 24 0.97 4
OVA_Omentum 0.95 3 0.95 2
OVA_Ovary 0.92 10 0.93 32
OVA _Prostate 0.99 13 0.997 2
OVA_Uterus 0.97 21 0.93 32
Average 0.96 14.55 0.96 14.44
Standard deviation 0.02147 0.02198
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TABLE 5: Actual performance result on SNPs data (Bovine) from
IBHM.

Number of
Accuracy  Sensitivity  Specificity  selected
SNP
NB-HNB 0.92 0.92 0.99 33

leukemia, and colon cancer datasets from KRBDSR. The
criteria used to measure the performance of different meth-
ods include prediction accuracy, sensitivity, specificity, and
the number of selected genes. We tested the proposed two-
step Bayes classification framework against these datasets
and augmented our performance in conjunction with the
tables published in [15]. Tables 1, 2, and 3 show the results

TABLE 6: Actual performance result of NB-HNB from SELDI-TOF.

Number of
Accuracy  Sensitivity  Specificity selected
genes
Prostate 0.86 0.86 0.89 8
Ovarian 0.98 0.98 0.97 8

from our proposed framework (NB-HNB) in comparison
with other methods. NB-HNB outperformed other machine
learning methods in terms of prediction accuracy, sensitivity,
and specificity. The greater marker requirement of NB-HNB
indicates that the Naive Bayes filtering probably did not rank
the top dependent features that can optimally construct an
accurate classification model in the correct order. Hence to
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TABLE 7: Summary of the information about each dataset, for example, sample sizes, number of attributes.
SNP array c¢DNA microarray SELDI-TOF
IBHM [3] KRBDSR [4] GEMLER [5] NCICPD [6]
Number of SNP Number of genes Number of genes Number of genes
Data (Number of Data (Number of Data (Number of Data (Number of
samples) samples) samples) samples)
. 9239 . 7129 10935 . 15154
Bovine (497) Leukemia 72) Colon (286) Ovarian (253)
2000 10935 15154
Colon cancer (62) Breast (344) Prostate (266)
24481 . 10935
Breast cancer (78) Endometrium (61)
4026 . 10935
Lymphoma (47) Kidney (260)
12600 10935
Prostate (102) Lung (126)
7129 10935
Lung cancer (96) Omentum 77)
7129 10935
Nervous (60) Ovary (198)
10935
Prostate (69)
10935
Uterus (124)

achieve 100% accuracy from the training set, HNB required
more genes to classify.

Since the three datasets from KRBDSR are insufficient
to demonstrate the performance of our two-step Bayes
classification framework, we compared the NB-HNB frame-
work against SVM-RFE using 45 microarray datasets from
GEMLeR. The performance results were recorded in terms
of (1) classification accuracy, (2) area under the ROC curve
(AUC), (3) sensitivity, (4) specificity, and (5) the number
of informative biomarkers used for classification. The com-
parison results of all experiments, including 36 all-possible
pairs (AP) datasets and 9 one-tissue-type versus all-other-
types (OVA) datasets, are shown in Table 4. In summary,
NB-HNB outperformed SVM-RFE on most performance
metrics. Figure 4 presents the average classification accuracy
versus the number of selected genes. For all datasets, the
accuracy of NB-HNB is better when the number of selected
genes is larger than 16. A similar pattern is also observed when
comparing AUC between the two approaches (Figure 5).
Moreover, the accuracy and AUC do not vary much across
different datasets since the standard deviations (Table 4)
between NB-HNB and SVM-RFE are similar.

2.3. Experiments on Other Types of -Omics Datasets. We
tested whether HNB could also be applied for class prediction
from SNP genotyping and SELDI-TOF proteomics datasets.
For the bovine dataset, NB-HNB was able to achieve 92%
accuracy with 92% sensitivity and as high as 99% specificity
using only 33 SNPs, as shown in Table 5. NB-HNB can also
be applied to classify cancer proteomics data obtained from
SELDI-TOF experiments. For prostate cancer, NB-HNB was
able to reach 86% accuracy with 86% sensitivity and 89%
specificity using only 8 protein markers. The performance is

even better with ovarian cancer, in which NB-HNB demon-
strated 98% accuracy at 98% sensitivity and 97% specificity
using only 8 protein markers, as shown in Table 6.

3. Conclusions

The proposed two-step Bayes classification framework out-
performed SVM-RFE in all previously reported experi-
ments. Furthermore, we demonstrated that this two-step
Bayes classification framework could address the biomarker
selection and classification problem beyond the analysis
of expression microarray data. Since the two-step Bayes
classification framework utilizes Naive Bayes filtering prior
to HNB classification, the complexity of this classification
framework is very low permitting analysis of data with many
features.

4. Material and Methods

4.1. Datasets. The datasets used in the experiments com-
prise three groups: (1) genomic (2) transcriptomic, and (3)
proteomic categories. The first category is SNP genotyp-
ing data obtained from the International Bovine HapMap
(IBHM) [3] consortium containing 230 individual samples
from 19 cattle breeds, each of which has 9,239 SNPs. For
the transcriptomic datasets, microarray gene expression data
were downloaded from two main repositories: the Gene
Expression Machine Learning Repository (GEMLeR) [5] and
the Kent Ridge Biomedical Data Set Repository (KRBDSR)
[4]. GEMLeR contains microarray data from 9 different
tissue types including colon, breast, endometrium, kidney,
lung, omentum, ovary, prostate, and uterus. Each microarray
sample is classified as tumor or normal. The data from
this repository were collated into 36 possible pairings of



two tissue types, termed all-possible pairs (AP) datasets
and 9 one-tissue-type versus all-other-types (OVA) datasets
where the second class is labeled as “other” All GEMLeR
microarray datasets have been analyzed by SVM-RFE, the
results of which are available from the same resource. The
datasets from KRBDSR contain 7 case-control microarray
experiments (tumor versus normal). However, the SVM-RFE
results are available only for five datasets from [8, 15, 17],
namely, leukemia, colon cancer, breast cancer, lymphoma,
and prostate cancer. Ovarian and prostate cancer SELDI-
TOF proteomic datasets were obtained from the National
Cancer Institute Clinical Proteomics Database (NCICPD)
[6]. The information about each dataset, that is, sample size
and number of features, is summarized in Table 7.

4.2. Methods. The two-step Bayes classification framework is
composed of two modules: Naive Bayes (NB) filtering and
Hidden Naive Bayes (HNB) classification. Figure 6 shows
the overall two-step Bayes classification framework. For
continuous signal data (e.g., cDNA expression microarray),
the data must first be preprocessed by (feature) discretization
[20]. The process simply involves processing the data into a
series of bins according to the range of values in the dataset.
Ten bins were used to group the continuous microarray data
by loosely setting each interval (bin) to have the same range.
This was done using the Weka discretize module with the
following settings: —B = 10 and -M = -1.0 where —B
specifies the number of bins and —M indicates the weight
of instances per interval to create bins of equal interval size.
For evaluation of the performance of the NB-HNB model, an
independent test dataset is required. We obtained test dataset
by randomly selecting 10% of the data from the original
dataset that is reserved as a blind dataset (i.e., the data that
are analyzed only once using the final classification model)
while the rest are used as training data for feature selection
and the model classification.

The number of m top-ranked features for NB filtering
is selected by the user, who inputs the cutoff for individual
marker prediction accuracy. From our empirical studies, the
top-ranked 40 features provide 75% or greater prediction
accuracy. Therefore, we chose this cutoff as the number of
markers which can be practically used for HNB processing
on a typical desktop computer containing 4 GB RAM with
multicore architecture. Obviously with greater computing
power, more features could be chosen for higher accuracy.
From the NB filtered list of features, an HNB classification
model is constructed. The lowest-ranked feature is then
removed and another HNB classifier model constructed,
which is compared with the previous model for classification
accuracy. The process of model building and feature elimina-
tion is repeated until the minimum feature subset is obtained
which gives a classifier model with the maximum prediction
accuracy.

Intuitively, NB filtering operates by constructing a density
estimator using standard Naive Bayes. The class ¢ of sample E
with attributes can be classified by

¢ (E) = argmaxP (c) P (a;,a,,...,a, | ¢). a)
ceC
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Naive Bayes assumes that all attributes are independent for a
given class. We can then simply represent the above equation

by

c(E) = arg maxP (c) HP (a; | ¢) (2)

i=1

The filtering step is performed to quickly extract all the
informative features. The ranking is done by sorting the value
P(c)P(a; | c), which can be run very quickly by simply
counting the number of feature occurrences in each of the
corresponding classes; the time complexity is thus O(n). This,
however, does not guarantee that the top-ranked features will
contain the optimal set of features that will give the most
accurate classification model. The more realistic approach
would be to consider all possible dependencies amongst
features. However, it has been known that building an optimal
Bayesian network classifier is NP hard. To overcome this
limitation, we proposed that Hidden Naive Bayes (HNB)
should be used to construct the more realistic classification
model from the set of NB filtered attributes.

Instead of building a complete Bayesian graph, which
is intractable, HNB is used to construct the dependen-
cies between attributes A; with a hidden parent A, . The
modification with the dependency from the hidden parent
makes HNB become more realistic by adjusting the weight
influenced by all other attributes. A classifier of a sample E
with attributes [a,,a,, ..., a,] can be represented by

c(E) =arg rnaxP(c) HP (a | ay, ,c) (3)
i=1

where

ZWXP( ac)

j=Lj#i

P(ai | ahpi,c) =

(4)
_ I(Az4;1C)

W, = ,
L Yl (454;1C)

where the conditional mutual information I,(A;; A i | C) can
be computed as

I, (A3A;1C)

P(a< a | c)

(5)
_ 1 e :
ahzaj;’CP(a 4, C) Og(P(a,- | c)P(aj | C))
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