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ABSTRACT

Project Code: RSA5480031

Project Title: Remote Sensing Image Enhancement and Land Cover Mapping from Cloud-
Covered and Low Resolution Images by Fusing with Images from Different Modalities and
Times

Principle Investigator Asst. Dr. Teerasit Kasetkasem

Email Address: fengtsk@ku.ac.th

Project Period 15 July 2011 — 30 June 2013

The work in this report consists of three parts: 1) a joint image fusion algorithm from
mis-registered image pairs, 2) a land cover mapping algorithms algorithm for mis-registered
image datasets and 3) rice cultivation date estimation using cloudy multi-temporal Moderate
Resolution Imaging Spectroradiometer (MODIS). In a joint image fusion algorithm from mis-
registered image pairs, a new method for fusion and registration of low spatial and high
spectral resolution image with high spatial and low spectral resolution image in a single step
is developed. In the usual procedure, fusion is an independent process separated from
registration. However, both image registration and fusion can be formulated as estimation
problems. Hence, the registration parameters can be automatically tuned so that both fusion
and registration can be optimized simultaneously. Here, we concentrate on the relationship
between low-resolution multispectral and high-resolution panchromatic imagery. The
proposed technique is based on a statistical model. It employs the maximum a posteriori
(MAP) estimator to solve the fusion problem, and applies the Metropolis algorithm to solve
the joint optimization problem. A closed-form solution to find the fused high spatial and
spectral resolution image with correcting registration is also derived here. We examine our
algorithm into datasets.

In a land cover mapping algorithms algorithm for mis-registered image datasets, we
proposed a joint classification and registration technique based on a Markov random field
(MRF) model to simultaneously align two or more images and obtain a land cover map
(LCM) of the scene. The expectation maximization (EM) algorithm is employed to solve the
joint image classification and registration problem by iteratively estimating the map
parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP)
criterion is used to produce an optimum land cover map. We conducted experiments on a set
of four simulated images and one pair of remotely sensed images to investigate the
effectiveness and robustness of the proposed algorithm. Our results show that, with proper
selection of a critical MRF parameter, the resulting LCMs derived from an unregistered
image pair can achieve an accuracy as high as when images are perfectly aligned.
Furthermore, the registration error can be greatly reduced

In our last work, we developed a rice cultivation date estimation based on remote
sensing data, since rice is critical information to evaluate the damages in rice fields from
natural disasters. In this study, the 8-day composite normalized difference vegetation index
(NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data
was modeled as a triply modulated cosine function, and the extended Kalman filter (EKF) is
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used to estimate the mean, amplitude and phase parameters of the cosine function. The
cultivation dates are estimated as the date where the seasonal variation derived from the EKF
is greater than a threshold after its minimum. From the experimental results, the estimated
cultivation dates derived from the proposed algorithm agree with rice cultivation information
from the National Rice Department. The 73.3 percentages of the estimated cultivation dates is
within 16 days for the rain-fed rice areas, and more than 80 percentages of the estimated data
is within 16 days for irrigated areas with two crop cycles per year

Keyword: Markov Random Field, joint image fusion and registration, joint image land cover
mapping and registration, rice cultivation date estimation
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Executive Summary
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Remote Sensing Images due to their synoptic view and map like format are the crucial
part of agriculture monitoring and management systems since one remote sensing image can
capture a wide area. Furthermore, some remote sensing satellites can repeatedly capture
images of the same scene for every 1 or 2 days. As a result, the remote sensing images
provide timely and complete information on the ground cover. The various sectors in the Thai
government, thus, have used remote sensing images in both agriculture and non-agriculture
applications. For example, in 2004, the Thai government used remote sensing images in
disaster assessment after the world biggest Tsunami, and in 2011, the remote sensing images
was the vital parts in flood control and disaster relief effort in the recent massive flood.

Although remote sensing images have shown to be very promising, the use of remote
sensing images in Thaland is still limited due to the physical and environmental limitations in
Thailand. The common problems are 1) high cloud coverage, 2) high shadows and 3) the low
spatial and spectral resolutions of available remote sensing images.

To tackle these problems, there is a need of combining multiple remotely sensed
images together to reduce the effect of clouds and shadows and increase the spatial and
spectral resolutions. These remotely sensed images can be from multiple times or multiple
satellites. For multi-sensor image analysis, the registration process is a crucial initial step to
the use of multiple images. Registration aligns multiple satellite images into a common
coordinate system. Only when all of the input images are perfectly registered, the use of
multiple images can be performed. Otherwise mis-registration will reduce the performance. In
practice, perfect registration may not always be achievable since there are some unknown
variations on satellite platforms and flight paths when capturing images. As a result, the
performance is likely to suffer from mis-registration effects. As a result, in this research
project, we attempt to combine image registration algorithm with image analysis techniques,
namely, image fusion and land cover mapping to increase the image analysis. Since the
proposed image analysis algorithms can handle mis-registered images, the number of steps to
analyze images is reduced, and the image analysis algorithms are robust to image mis-
alignment. Lastly, we attempt to use multi-temporal MODIS images to reduce the effect of
cloud in the rice cultivation date estimation.

Operations Research

Since the goal of this research is aimed to fuse multiple images together to increase the
accuracy in image analysis algorithm. We divide our research into three parts:
1. Remote sensing image fusion algorithm for mis-registered images
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2. Land Cover Mapping algorithm from Mis-Registered Image Datasets
3. Rice cultivation date estimation using cloudy-multi-temporal Moderate Resolution
Imaging Spectroradiometer (MODIS)

Remote sensing image fusion algorithm for mis-registered images

This work presents a new method for fusion and registration of low spatial and high
spectral resolution image with high spatial and low spectral resolution image in a single step.
In the usual procedure, fusion is an independent process separated from registration.
However, both image registration and fusion can be formulated as estimation problems.
Hence, the registration parameters can be automatically tuned so that both fusion and
registration can be optimized simultaneously. Here, we concentrate on the relationship
between low-resolution multispectral and high-resolution panchromatic imagery. The
proposed technique is based on a statistical model. It employs the maximum a posteriori
(MAP) estimator to solve the fusion problem, and applies the Metropolis algorithm to solve
the joint optimization problem. A closed-form solution to find the fused high spatial and
spectral resolution image with correcting registration is also derived here. We examine our
algorithm into datasets. In the first dataset, a THEOS multispectral image with high spectral
resolution and a THEOS panchromatic image with high spatial resolution are combined to
produce a multispectral image with high spectral and spatial resolution. Similarly, in the
second datasets, we fuse a high spectral resolution hyperspectral image with a high spatial
resolution CCD image from SMMS satellite to produce a high-spatial resolution hyperspectral
image. The results of our experiment show that the proposed fusion and registration algorithm
can produce high quality high-resolution images from low spatial and high spectral resolution
image and high spatial and low spectral resolution images even when they are severely mis-
registered.

Land Cover Mapping algorithm from Mis-Registered Image Datasets

Traditional multi-modal and multi-temporal land cover mapping algorithms assume that all
images are perfectly aligned. However, since multi-modal and multi-temporal images are
likely to be obtained from different satellite platforms and/or acquired at different times,
perfect alignment is very difficult to achieve. As a result, a proper land cover mapping
algorithm must be able to correct registration errors as well as perform an accurate
classification. In this paper, we proposed a joint classification and registration technique based
on a Markov random field (MRF) model to simultaneously align two or more images and
obtain a land cover map (LCM) of the scene. The expectation maximization (EM) algorithm is
employed to solve the joint image classification and registration problem by iteratively
estimating the map parameters and approximate posterior probabilities. Then, the maximum a
posteriori (MAP) criterion is used to produce an optimum land cover map. We conducted
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experiments on a set of four simulated images and one pair of remotely sensed images to
investigate the effectiveness and robustness of the proposed algorithm. Our results show that,
with proper selection of a critical MRF parameter, the resulting LCMs derived from an
unregistered image pair can achieve an accuracy as high as when images are perfectly
aligned. Furthermore, the registration error can be greatly reduced

Rice cultivation date estimation using cloudy-multi-temporal Moderate Resolution Imaging
Spectroradiometer (MODIS)

Rice cultivation date estimation based on remote sensing data is critical information to
evaluate the damages in rice fields from natural disasters. In this study, the 8-day composite
normalized difference vegetation index (NDVI) derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) data was modeled as a triply modulated cosine function,
and the extended Kalman filter (EKF) is used to estimate the mean, amplitude and phase
parameters of the cosine function. The cultivation dates are estimated as the date where the
seasonal variation derived from the EKF is greater than a threshold after its minimum. From
the experimental results, the estimated cultivation dates derived from the proposed algorithm
agree with rice cultivation information from the National Rice Department. The 73.3
percentages of the estimated cultivation dates is within 16 days for the rain-fed rice areas, and
more than 80 percentages of the estimated data is within 16 days for irrigated areas with two
crop cycles per year

Output:

1. T. Sritarapipat, T. Kasetkasem, and P. Rakwatin, “Fusion and Registration of THEOS
Multispectral and Panchromatic Images,” under review at the International Journal of
Remote Sensing

2. T. Kasetkasem, P. Rakwating, R. Sirirsommai and A. Eitumnoh, “a Joing Land Cover
Mapping and Image Registration Algorithm Based on a Markov Random Field
Model,” under review at Remote Sensing

3. T. Kasetkasem, P. Rakwatin, R. Sirisommai, A. Euimnoh, and T. Isshiki, “A MRF-
Based Approach for a Multisensor Land Cover Mapping of Mis-Registered Images”
The 2012 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS2012), July 22-27, Munich, Germany

Conclusion: This project has successful answer the project objectives and research
problems
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Research Detail

1.  Image Fusion Algorithm for Mis-registered Images

1.1 Introduction

The fusion of multi-sensor image data is a widely used procedure for enhancing
information extraction. Fusion uses already-existing data from different sources, acquired at
different times, or captured by different sensors, to produce higher resolution data. When high
spatial resolution data are merged with the high spectral resolution data, the fused image has
both finer spatial and finer spectral resolution.

Image fusion algorithms can be divided into three categories, namely, feature-based,
pixel-based and transform-based methods. The feature-based methods first segment input
sources into homogeneous regions by using some segmentation techniques [1] and [2]
according to texture characteristics. Next, a data combination algorithm combines texture
information from different images together to produce a texture-enhanced image. The
transformation-based methods convert the input images into a common transformed domain,
such as intensity-hue-saturation (IHS) [3], principle components (PCA) [4], Brovey [5], 2D
wavelet [6], [7] and [8], 3D wavelet [9], pyramids [10] or high pass filtering [11]. Image
fusion is performed by combining the transform coefficients from all images. After that, the
combined image is transformed by the inverse-transformation into the original image space. In
the pixel-based methods [12] and [13], a pixel in the fused image is determined from a set of
pixels from the input sources. For example, Hardie [14] and Li [15] applied statistical models
to a pixel-based approach where intensity values form corresponding pixels from fusing
images statistically depend on the intensity value of a fused image. The approach detailed in
this paper is also pixel-based and use a statistical model.

Image registration is the process of transforming different sets of data into a single
coordinate system. Data may come from different sensors, from different times, or from
different viewpoints. Current registration methods can be classified into three categories,
feature-based, transform-based, and intensity-based methods [16]. The feature-based
approaches usually extract geometric features, also known as control points, such as
intersections and landmarks, and use a least square criterion to estimate the registration
parameters [17] and [18]. The transform-based methods work with images in the frequency
domain [19] and [20] to compute the registration parameters by utilizing the properties of
translation and rotation under the Fourier transform. In intensity-based methods, the
registration parameters are estimated by maximizing some similarity measure between pixel
values of the input images. Normalized cross-correlation [21], LS [22], and maximum
likelihood (ML) [23] are some popular criteria used to measure similarity.

Although many algorithms have been proposed for image registration and image fusion,
the operations are traditionally viewed as two independent processes. More precisely, image
registration is normally performed first, followed by image fusion, which usually assumes that
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perfect registration has been achieved [12], [13] and [24]. However, in practice, the
registration process is not guaranteed to be error-free, and this registration error can negatively
affect the fusion performance. The quality of fused images degrades significantly when the
multispectral and panchromatic images are not perfectly registered.

The work by Chen [25] attempts to join the fusion and registration processes together by
using the expectation maximization (EM) algorithm. However, they assume that the intensity
value in each pixel of the high spatial resolution image can be selected from any one of the
fused images. In the case of spatial enhancement, the intensity values of the fused image
should follow the intensity values from the multispectral image only. As a result, the
algorithm proposed in [25] is not suitable for spatial enhancement by combining multispectral
and panchromatic images (so called “pan-sharpening”). In pan-sharpening, the fused image
must have the same color distribution as the multispectral image but contain the spatial detail
from the higher resolution panchromatic image.

In this paper, we develop the maximum a posteriori (MAP) estimator [26] to
simultaneously fuse and register multispectral and panchromatic images to produce a high-
resolution multispectral image. Here, we focus on the use of high-resolution panchromatic
data to enhance multispectral imagery. However, the estimation framework developed here
can be extended for any number of spectral bands in the primary and auxiliary sensors. The
proposed technique is suitable for applications where some correlation, either localized or
global, exists between the auxiliary image and the image being enhanced. A spatially varying
statistical model is used to help exploit localized correlations between the primary and
auxiliary image. Another important aspect of the proposed algorithm is that it uses an accurate
observation model relating the “true” scene to the low-resolution observations. This means
that a potentially wavelength-dependent spatially-varying system point spread function (PSF)
can be incorporated into the estimator.

1.2 Observed Model

Let X(S) € RM*B be a fine spatial and spectral resolution image (FSSRI) having M pixels
and B bands where R is a real number. Here, § = {sy,...,sy} denotes a set of pixels
registered to some real world scene. The FSSRI is usually represented in a vector form so that,
x(s;) € RE is a fine spatial and spectral resolution vector (FSSRV) containing intensity values
of a pixel s; in the FRMI from all spectral bands. Here, we assume that the FSSRVs from
different pixels are statistically independent, and have identical multivariate Gaussian
distribution with a mean vector, u,, and a covariance matrix, C, . The marginal probability

density function (PDF) of the FRMI can therefore be written as

Hexp[;(x(si)ﬂ);)T Cy (x(si)—ﬂx)} (1.1)

5 (277)E |CX|

Pr(X)=
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We omit § for the sake of abbreviation. In this paper, we assume that the direct observation of
the FRMI is impossible, but we, instead, observe the coarse spatial and fine spectral resolution
image (CSFSRI), and the fine spatial and coarse spectral resolution image (FRCSRI) of the
same scene.

Let Y(T) € RV*B be the CSFSRI with N <M pixels and B bands where T =
{ty, ..., ty} is a set of pixels belonging to the CSFSRI. Since both CSFSRI and FSSRI are
taken from the same scene, the relationship between S and T can be determined. Let us denote
a coordinate of a pixel s in a FSSRI as (x, y) where x and y are the row and column of x(s)

. Similarly, we can write ¢ =(u,v) where u and v are the row and column of the pixel ¢ in
the CSFSRI. Hence, the relationship between s and ¢ can be written as

uy} _[ncosé nsinf]x [dx]

[v] N [—n sinf mncosf [y] + d, (1.2)
where 1, 6, dx, and dy are scale, rotation angle, translation in column direction and

translation in row direction between a pixel coordinates 1 and ¢, respectively. We denote
w=1[n 6 dy d,]T as the parameter vector. In practice, since the panchromatic and
multispectral images are captured from the same satellite, they are already somewhat pre-
registered to each other within the predefined accuracy range. As a result, the parameter
vector can be assumed to be uniformly distributed within the defined set, i.e,

L , e

pr(w) =1 [, =

0, otherwise

(1.3)

where Q  is the set of all possible values in the parameter space. If the parameter vector is

known, the CSFSRI can be remapped and resampled into the coordinate system S. As a result,
let us denote Y,,,(S) as the remapped version of CSFSRI into §. Clearly both X(§) and Y;,,(S)
have equal numbers of pixels and spectral bands. However, X(8) has finer and clear detail
than Y,,(S) since all the remapping algorithms use only information from the coarser
resolution image. We model this loss of finer and clearly detail as additive noise, i.e.,

Vo (8)=x(s)+n.(s) (1.4)

where y,,,(s) € R® is the vector containing intensity values from all bands of the remapped
CSFSRI, and n.(s) € RE is the additive noise vector. We assume further that noise vectors
from all pixels are independent and Gaussian distributed with a zero mean vectors and a

covariance matrix, C, . Hence, the conditional PDF of Y(S) give X(S) and the map parameter
is given by

Pr(Y|X,w) = HPr(ym (s)\x(s))

seS
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exp| = (¥ (5:)=X(5,)) €' (w0 ()= x(s,))
ottt |

ses (27)2 |C|

(1.5)

Next, let Z(S) € RM*P be the observed FSCSI having M pixels and b < B bands. Here, we
assume that the FSCSI has the same resolution as the FSSRI and is perfectly registered with
the coordinate system of FSSRI. We assume further that the FSCSI is the weighted band
summation of the FSSRI plus an additive noise, i.e.,

z(s) = Wx(s) + n,(s) (1.6)

where z(s) is the observation of the FSCSI at the pixel s, W is weight matrix, and n,(s) is
the additive noise to the FSCSI. Again, we also assume that noise vectors for all the pixels are
independent and Gaussian distributed with a zero mean vector and a covariance matrix, C,,

and that they are also independent of n,. (s) Hence, the conditional PDF of Z(S) give X(S)
is given by
Pr(zIX) = | [ Pra(s)lxcs)

SES

(1.7)

1 T ._
1_[ exp |- 5 (2(s) - Wx(s)) € (z(s) — W(s)) |
= b/21C _|1/2

] @D,
We formulate the image fusion problem as an M-ary hypothesis testing problem where each
hypothesis corresponds to a different FSSRI. Furthermore, since we formulate our problem as

an M-ary hypothesis testing problem, techniques developed to solve signal detection problems
can be employed. We provide our methodology in the next section.

1.3 Optimum Image Fusion Rules
The maximum a posteriori (MAP) criterion [26] is used for solving the above problem in
our work. This criterion is expressed as

(X,(’I)) = arg [(r)rfl,%()[Pr(X,wIY,Z)]] (1.8)

From Bayes’ rule and assuming conditional independence of Y and Z given X and @, Eq. (8)
can be rewritten as

()?,(’i)) = arg[max (1.9)

lPr(YlX, w) Pr(Z|X) Pr(X, w)”
X))

Pr(Y,Z)

Since Pr(Y,Z) is independent of the choice of (.X,®), it can be omitted and above equation

reduces to

_10_
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(X,®) = arg [(r)?%()[Pr(YIX, o) Pr(Z|X) Pr(X, w)]] (1.10)

By assuming further that X and e are statistically independent, and substituting Eq. (1.1),
Eq. (1.5), and Eq. (1.7) into Eq. (1.10), we have

(%) = arg [ (1—[ Pr(ym(9)|x(5)) Pr(z(s)|x(5)) Pr(x(s))) Pr(w)

SES
Eq. (1.11) can be rewritten as

(1.11)

e—

max
X))

(X,.@)=arg [(gp% [— Z{Ey(ym, X) + Ep(2,2) + Ex(0)} — Q||| (1.12)
N i
where
1 T B 1
EY(ym,x):E(ym—x) C. (ym—x)+51n27r+51n|CC| (1.13)
1 Ty b 1
E,(z,x) = E(z(s) —Wx(s)) 27 (z(s) — Wx(s)) +§ln 2 +§ln|CZ| (1.14)
and
1 T B 1
EX(x)zz(x(si)—,uX) Cy (x(si)—ﬂX)+Eln27z+Eln|CX| (1.15)

Again, we omit the term s for sake of abbreviation. Since the terms, gln 27, %ln|CC

B 1 . :
%lnICZI, Eln 2r, gln 2m, and 51n|CX| are just constants, they can be ignored. Therefore, the
optimum image fusion becomes

(X, @) =arg

1
Jpax [— 5 {(ym —0)7C (Ym — X)
+(2(5) = Wx()) 571 (2(8) = Wx() + (x = 0T CF (x — )} (116)

_lnlﬂwl

The above equation can be modified to

1.17
(X,w)) ( )

o 1
(6,8 = s g |- 35— om0 65~ 5 10) -
N
where

C,=[Cyt+Cc;r+wetwT) 1, (1.18)

_11_
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and

Us(Ym, 2z, ux) = Cs[Cxtpx + Clym + WTC,2 ] (1.19)

Next, we define the energy function £(.X,®) as the negative of the argument inside Eq. (19),

i.e.,
1 T 4
E(X, (I)) = EZ(x - Hs(}’m,zfﬂx)) CS (x - .Us(}’mrz;llx)) + lnl'Qa)I (120)
N

The optimum joint image fusion and registration problem becomes the energy minimization
problem, i.e.,

(X, ) ) = arg [&n;)r)l) E(X, w)] (1.21)

For a given map parameter vector w, the optimum FSSRI can be obtained by taking
derivative of Eq. (20) with respect to x, and the optimum FSSRYV is given by

x=pu (y,.24y) (1.22)

We note here that our result in Eq. (1.22) is similar to the work by Hardie (Hardie, 2004).
However, in their work, images to be fused are assumed to be perfectly aligned.
In order to obtain the map parameter, we need to find minimize Eq. (1.20) with respect to w.
However, the derivative of Eq. (1.21) with respect to the @ map parameter vector is very
difficult to obtain analytically. Furthermore, the energy function E (X, @) is an extremely non-
convex function. Hence, a gradient based approach cannot be used since the resulting map
parameter will very likely become stuck in one of many local optima. Instead, we employ the
Metropolis algorithm [27] for determining the optimum map parameter vector.

The Metropolis algorithm is a stochastic search method where, at each iteration, a new
value of @, is randomly proposed. If w,, results in a better fit (lower energy function), it is

accepted, and the Metropolis algorithm sets w = w,,. However, even if w,, corresponds to a
higher energy value, w,, is still accepted with some probability. These random moves allow
the Metropolis algorithm escape from local optima. By employing the Metropolis algorithm,
the optimization algorithm can be written as

1,

1. Set (X,w) = (Xo,wp) , h=1,and T=—"——
X, w) = (Xo, wo) tog (A1)

where X, and w, are the initial

FSSRI and map parameters, # is the iteration number, 7 is the initial temperature.

2. Find a FSSRI by using Eq. (1.23), and Let X be the resulting FSSRI.

3. Use Eq. (1.21) to compute energy function and assign E,;; = E(X, w).

_12_



RLAUN RSA5480031

4. A new map parameter w, is drawn from Eq. (1.3) and the corresponding energy
function E, (X, w,,) is computed using Eq. (1.22).

ETL(X!wn)_E(X!w) )

5. Assign w = w,, with probability P = max (1, exp [— p

Ty

6. Set h=h+land T=—2"—
log(h+1)

.Goto (2)if h<h, .

We observe that as the number of iteration increases to infinity, the temperature 7 decreases
to zero. This implies that, after a small number of iterations, the Metropolis algorithm is likely
to accept almost any proposed map parameter. However, when the number of iterations
becomes large, the Metropolis algorithm prefers to accept the map parameter that results in a
better fit (lower energy function). The convergence of the Metropolis algorithm to the global
optimum regarding the choice of the initial map parameter and FSSRI is guaranteed if 7 is
sufficiently large. However, this value is often too large to be practically implemented.
Nevertheless, in our problem, the initial map parameters and FSSRI are not far from the global
optimum since both multispectral and panchromatic sensors are mounted on the same satellite.
Figure 1.1 summarizes the proposed optimization algorithm in this paper.

Low-resolution Multispectral Image High-resolution Panchromatic Image

}

Initial Parameters

'

Affine Transform

,, !

Generate a new FRMI based on Metropolis algorithm

l

Parameter Correction

h>h 7

max

w |

Fused Image

Yes

Figure 1.1: Flowchart of the proposed algorithm

_13_



RLAUN RSA5480031

1.4 Experimental Results

THEOS Data set

To examine the performance of the proposed algorithm, we used various image scenes
from many parts of Thailand, namely, city (Figure 1.2), drought (Figure 1.3), agriculture
(Figure 1.4), mountain (Figure 1.5) and seashore (Figure 1.6) areas. Table 1.1 summarizes the
detailed information for all the scenes used in this experiment. Multispectral and panchromatic
images were acquired by THEOS, an Earth observation mission of Thailand, developed at
EADS Astrium SAS, Toulouse, France. THEOS was launched from Dombarovskiy, Russia at
06:37 GMT on 1 October 2008, by a Dnepr rocket.

Figure 1.2: 750x750 THEOS multispectral image of city area
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Figure 1.3: 750x750 THEOS multispectral image of drought area
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Figure 1.4: 750x750 THEOS multispectral image of agriculture area

Figure 1.5: 750x750 THEOS multispectral image of mountain area
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Figure 1.6: 750x750 THEOS reference multispectral image of seashore area

Table 1.1: Details of THEOS images in our experiment

Area Longitude Latitude Date Time

City 100.3845251902455N | 13.82391143621505E | 2009/12/13 10.32 AM
Drought 105.058671289676N | 15.92080873025695E | 2010/01/04 10.31 AM
Agriculture 100.5728597866535N | 14.6219909729372E | 2009/12/13 10.32 AM
Mountain 100.561439575278N | 19.69589619804945E | 2010/02/13 10.31 AM
Seashore 99.59914701590165N | 11.3390399265943E | 2010/03/06 10.33 AM

The THEOS imagery products include optical and near infrared spectroscopy as four
multispectral bands, plus panchromatic images. The THEOS satellite orbit parameters are
summarized in Table 1.2. Panchromatic products provide 2 meter resolution (at nadir) and 8
bits information depth. The output scene is a square scene of 22 km. x 22 km, and covers

wavelengths ranging from 450 to 900 nm as shown in Figure 1.7. The multispectral products
provide 15 meter resolution (at nadir) and 8 bits information depth. All four bands are
delivered as one file. The output scene is a square scene of 90 km. x 90 km. Wavelength
ranges are 450-520 nm for the blue band, 530-600 nm for green, 620-690 nm for red, and 770-

_17_
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900 nm for near infrared as shown in Figure 1.7. Table 1.3 summaries the information on
multispectral and panchromatic images provided by the THEOS satellite.

Table 1.2: Orbital characteristics of THEOS

Satellite THEOS
Orbit Sun synchronous recurrent frozen orbit
Altitude 822 km
Inclination 97.95 degree
Repetition cycle 31 days
Descending node (local time) 10:30 AM
Orbital period 101.4 minutes
On-board capacity 16 Gbits

09
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Nearinfrared

nce

c 06

Reflect

04

03

02

01

0
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Wavelength (pm)

Figure 1.7: Ideal spectral response of THEOS

Table 1.3: Technical specifications of THEOS payload

Panchromatic Multispectral

Blue: 450-520 nm
Green: 530-600 nm

Wavelength 450-900 nm Red: 620-690 nm
Near Infrared: 770-900 nm
Resolution 2m 15m
Swath width 22 km 90 km
Pixels 12000 6000

Since our algorithm performs both image fusion and registration at the same time, the
performance of our algorithm can be evaluated in terms of how far off the fused image is from
the actual FRMI, that is, the estimation error between the actual parameters that map between
the panchromatic and multispectral image pair and the estimated ones. If our algorithm
performs perfect registration and fusion, the fused image will be exactly equal to FRMI and
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the estimation error will be zero. In order to measure this key performance metric, we need to
know both actual FSSRI and the map parameters. However, since we use observed THEOS
multispectral and panchromatic images in this experiment, the actual FSSRI is unknown. As a
result, we treat the observed multispectral image as the reference FSSRI, and perform the
proposed image fusion algorithm on resampled multispectral and panchromatic image pairs.
In this experiment, we resample multispectral and panchromatic images to 112.5 and 15
meters resolution, respectively. The resampled images have a resolution of 7.5 times lower
than the original ones. After fusing a 112.5 meter multispectral image with a 15 meter
panchromatic image, we obtain the fused multispectral image at 15 meter resolution which
can be compared with the observed multispectral image.

Next, since our algorithm is designed to fuse unregistered image pairs, we would like
to investigate the performance of our algorithm for different scenarios of initial registration
errors. We would like to vary the relationship between the multispectral and panchromatic
images in a pair by applying different values of displacements and rotations. However, since
multispectral and panchromatic sensors are located at different locations on the THEOS
satellite, their images are not perfectly aligned to start with. To be sure that we can precisely
measure the amount of mis-registration we introduce, we manually register all multispectral
and panchromatic image pairs first, using nine or more ground control points with the second-
order polynomial transformation. The resulting root mean square errors were less than 0.0002
pixels for all images.

For the sake of brevity, we provide the details of our experiment only for the case of
the city area image. The other cases followed the same steps. The multispectral (Figure 1.2)
and the panchromatic (Figure 1.8) image pair were degraded by resampling to 112.5 (Figure
1.9) and 15 (Figure 1.10) meters resolution respectively. Then we fused the degraded images
with our proposed algorithm to obtain a 15 meter-resolution multispectral image. We use the
original 15-meter resolution multispectral image as the “ground truth” — that is, the (actually
unobservable) FRMI. Hence, in our experiment, the resulting fused image is compared with
the original multispectral image. If our algorithm performs perfect registration and fusion, the
resulting mean square error (MSE) between the resulting FRMI and the original multispectral
image will be zero.

In all of our experiments, the original multispectral and panchromatic registered
images are of size 750x750 and 5625x5625, respectively. Since the resolution ratio of the
multispectral to the panchromatic is 15/2 or 7.5, we need 7.5 times as many panchromatic
pixels as multispectral pixels to cover the same spatial extent.
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Figure 1.8: Panchromatic image of the city scene of size 5625x5625 pixels

Figure 1.9: Degraded multispectral image of city scene at 112.5x112.5 meters resolution
of size 100x100 pixels
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Figure 1.10: Degraded panchromatic image of the city scene at 15X15 meters resolution
of size 750x750 pixels

Mis-registration errors were deliberately introduced into the degraded image pairs.
Here, the affine transformation was used and there were four parameters, namely scale factor
7, rotation angle @ in degree, displacement in column direction d,, in pixel, and displacement
in row direction d,, in pixel. Table 1.4 summarizes all mis-registration errors introduced in
this experiment. Note here that mis-registration in the scale dimension was not investigated in
this paper since images are taken from the same satellite at the same time. Figure 1.11 shows a

panchromatic image distorted by 3 degrees of rotation, 3 pixels of displacement in the column
and 3 pixels of displacement in the row.

Table 1.4: The mis-registration errors examined in this experiment

Scale Ratio angle Displacement in | Displacement in
column direction | row direction
Case I 1 1 1 1
Case Il 1 -2 -2 -2
Case 111 1 3 3 3
Case IV 1 -4 -4 -4
Case V 1 5 5 5
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Figure 1.11: Degraded panchromatic image with mis-registration error of 3 degrees of
rotation, 3 pixels of displacement in column and 3 pixels in row

To find the appropriate benchmark for our algorithm, we first fuse the registered image
pair by using Eq. (1.23) and compare it to the FRMI from manual registration as shown in
Figure 1.12. We note here that our algorithm and the work by Hardie are equivalent if no
registration error is considered. In other words, the benchmark scenario is when we apply
Hardie algorithm directly to multispectral and panchromatic image pairs. The corresponding
MSE compared to the original multispectral image was equal to 7.2465.

To generate the initial FRMI for our algorithm for the non-benchmark case, we fused a
mis-registered image pair using Eq. (1.23) and used it as the initial FSSRI. An example of the
initial FSSRI for the case of 3 degrees of rotation, 3 pixels of displacement in column and 3
pixels in row is illustrated in Figure 1.13. It is obvious that the initial FSSRI appears to be
blurred and does not contain any sharp edges. Next, we submit the initial FSSRI to our
algorithm and iteratively refine it by applying different sets of transformation parameters as

selected by the algorithm . Here, we set 7, =0.1, &

m

« =200 iterations. The covariance
matrices of the noise introduced by resampling to create the CRMI from different spectral
bands are assumed to be statistically independent with variance of 25, i.e., C, =25 where /

is the identity matrix. Figure 1.14 displays the resulting FSSRI for the case of 3 degrees
of rotation, 3 pixels of displacement in column and 3 pixels in row. By visual inspection, we
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can observe that the resulting FRMI looks very similar to FRMI when perfect registration is
obtained.

The results summarized in Table 1.5 clearly show that our algorithm can move the
map parameters closer to the correct values. We note here that, for all cases, our algorithm
achieved lower RMSE values than those of the manual registration. These results imply that
the manual registration that we performed may not have been perfect after all. Some tiny
registration errors may still be present in the registered image pair.

Figure 1.12: THEOS fused multispectral image with city area and750x750 pixels
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Figure 1.13: THEOS initial fused multispectral image obtained by applying Hardie
algorithm to the unregistered image pair with 3 pixels displacement and 3 degrees
rotation with city scene

Figure 1.14: The resulting fused image for city area
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Table 1.5: Comparison of fusion performance for images of city area

Hardie algorithm with Fusion Result using Proposed joint image fusion
perfect registration Hardie algorithm without | and registration algorithm
registration error
correction
d, | dy, | 0 RMSE | d, | d, | 0 RMSE | d, d, |0 RMSE
0 0 0 7.2465 1 1 1 10.2043 | 0.4315 | 0.4195 0.1826 | 6.9368
0 0 0 7.2465 -2 -2 -2 9.7011 0.4426 | 0.4225 -0.0597 | 6.3584
0 0 0 7.2465 3 3 3 9.2295 1.5293 0.3358 | -0.0037 | 6.9519
0 0 0 7.2465 -4 -4 -4 9.0814 1.2999 | 0.6848 | -0.1954 | 7.4333
0 0 0 7.2465 5 5 5 8.8802 1.4716 | 0.6873 -0.0114 | 7.1084

Next, we investigated the other scenes. The resulting MSE and map parameters are
summarized in Tables 1.6-1.9, for drought, agriculture, mountain, and seashore scenes. It is
clear that the results from all cases are similar. Our algorithm can successfully move the map
parameters closer to correct values regardless of the size of mis-registrations. Furthermore, in
most cases, the resulting FSSRIs from the proposed algorithm yield lower RMSE values
compared to the perfect registration case. This suggests that our algorithm finds errors
remaining after manual registration.

Table 1.6: Comparison of fusion performance for images of drought area

Hardie algorithm with Fusion Result using Proposed joint image fusion
perfect registration Hardie algorithm without | and registration algorithm
registration error
correction
de | d, |0 |RMSE| d, | d, | & |RMSE| d, d, |0 RMSE
0 0 0 44493 |1 1 1 6.7294 | 0.4178 [ 1.6116 | -0.0425 | 4.4184
0 0 0 44493 |2 2 2 6.3793 | 0.4561 [ 0.5670 | -0.0832 | 3.5014
0 0 0 44493 |3 3 3 59539 | 1.4802 | 0.6065 | 0.0960 | 4.0669
0 0 0 44493 | -4 -4 -4 57613 | 1.5929 | 0.4242 | -0.1787 | 4.3226
0 0 0 44493 |5 5 5 55656 | 0.6040 | 0.4540 [ 0.0551 | 3.7374

Table 1.7: Comparison of fusion performance for images of agriculture area

Hardie algorithm with Fusion Result using Proposed joint image fusion
perfect registration Hardie algorithm without | and registration algorithm
registration error
correction
dy | dy, | 0 RMSE | d, | d, | 0 RMSE | d, d, |0 RMSE
0 0 0 8.0216 |1 1 1 11.3885 | 0.5491 [ 1.3608 | 0.0223 [ 5.6583
0 0 0 8.0216 | -2 2 2 11.3888 | 0.4865 | 0.5077 | 0.0182 | 5.7027
0 0 0 8.0216 |3 3 3 10.9708 [ 0.3072 [ 0.5173 | 0.0277 | 5.8182
0 0 0 8.0216 | -4 -4 -4 10.6829 | 0.5111 | 0.7775 [ -0.0304 | 5.6377
0 0 0 8.0216 |5 5 5 10.4727 | 0.4003 [ 0.6520 | 0.0465 | 5.9665
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Table 1.8: Comparison of fusion performance for images of mountain area

Hardie algorithm with Fusion Result using Proposed joint image fusion
perfect registration Hardie algorithm without | and registration algorithm
registration error
correction
d, | dy, | 0 RMSE | d, | d, | 0 RMSE | d, d, |0 RMSE
0 0 0 3.6175 1 1 1 4.4446 0.3589 | 0.6566 | -0.2068 | 3.2774
0 0 0 3.6175 -2 -2 -2 4.5898 0.4614 | 0.4915 -0.2390 | 3.3056
0 0 0 3.6175 3 3 3 4.6388 0.6505 | -0.5470 | -0.0401 | 3.2220
0 0 0 3.6175 -4 -4 -4 4.5726 0.8501 -0.4960 | 0.0323 3.1460
0 0 0 3.6175 5 5 5 4.6244 1.5957 ] 0.4378 | -0.0534 | 3.3172

Table 1.9: Comparison of fusion performance for images of sea shore area

Hardie algorithm with Fusion Result using Proposed joint image fusion
perfect registration Hardie algorithm without | and registration algorithm
registration error
correction
dy | dy | O RMSE | d, | d, | 0 RMSE | d, d, |0 RMSE
0 0 0 51446 | 1 1 1 7.4105 | 0.6091 [ 0.6279 | 0.0773 | 3.9202
0 0 0 51446 | 2 2 2 72712 [ 04977 [ 0.5948 | 0.0856 | 3.9134
0 0 0 51446 |3 3 3 7.0384 [ 0.3827 [ 1.3204 | 0.0796 | 4.1890
0 0 0 51446 | -4 -4 -4 6.7605 | 0.6050 | 0.6162 | 0.0149 | 3.8124
0 0 0 51446 |5 5 5 6.6767 | 0.5031 [ 0.6723 | -0.0195 [ 4.0117
Hyperspectral Data set

The small multi-mission satellite (SMMS) (HJ1-A) acquired an image data for our
experiment. There are HI of size 300 X 300 pixels (Figure 1.15(a)) with 115 bands and 100
meter resolution, and MI of size 900 X 900 pixels (Figure 1.15(b)) with 4 bands and 30

meters resolution. These images cover the area of Suwannaphoom Airport in Thailand.
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Figure 1.15: Hyperspectral and Multispectral image

To evaluate the performance of our proposed algorithm, the original hyperspectral
image and multispectral image is resampled to simulate the CSFSRI and FSCSRI at 300 meter
and 100 meter resolution resolutions, respectively. When these images are fused together, the
fused hyperspectral image at 100 meter resolution is obtained. We can then compare to the
original hyperspectral image to evaluate the quality of the fused image. First, the resampled
hyperspectral image and multispectral image are fused together to evaluate the performance of
the fusion algorithm when where two fusing images are perfectly registered. Here, the
spatially enhanced hyperspectral image with perfect registration is shown in Figure 1.16. For
more quantitative performance evaluation, the root mean square error (RMSE) between the
original hyperspectral image and spatially enhanced hyperspectral image with perfect
registration is computed and is equal to 3.3976.

To simulate the effect of the registration error, the resmapled hyperspectral image is
shifted 2 and 3 pixels in x and y directions, respectively. The resulting shifted and resampled
HI (SRHI) is the simulated CSFSRI with some registration errors in this work. Then, the
SRHI is fused with resampled FSSRI without registration error correction, and the resulting
spatial enhancement HI without misregistration correction is shown in Figure 1.17. Since the
misregestration is not corrected, the effect of misregistration is clearly visible, and the RME,

comparing to the original HI, is equal to 6.2308 (about 82% more error).
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Next, the SRHI together with the simulated CSFSRI is submitted to our proposed
algorithm to obtain the spatially enhanced and spatially corrected FSSRI (Figure 1.18). With
visual inspection, the effect of misregistration is no longer visible and the RME comparing to
the original HI becomes 2.617. The RMSE is 60% better than the spatially enhanced HI
without consider the registration error, and is 23% better than the spatially enhanced HI in the
idea case. The performance improvement for the latter case may be the result from the
registration error in the production of SMMS data in the first place. Our proposed algorithm
estimates the registration errors to be 1.8 and 3.5 pixels in x- and y-directions. The differences
of 0.2 and 0.5 in x- and y-direction from the experimental setup may be the original

registration error in the production of the SMMS data discussed earlier.

Figure 1.16: The fused hyperspectral image without registraion error
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Figure 1.17: The fused hyperspectral image wih registration error

Figure 1.18: The fused hyperspectral image with registration error using our algorithm

2. Land Cover Mapping algorithm from Mis-Registered Image Datasets

2.1 Introduction

For multi-sensor image classification, the registration process is a crucial initial step.
Registration aligns multiple satellite images into a common coordinate system. Only when all
of the input images are perfectly registered can a classification algorithm be applied.
Otherwise mis-registration will produce classification errors. In practice, perfect registration
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may not always be achievable since there are some unknown variations on satellite platforms
and flight paths when capturing images. As a result, the overall classification accuracy is
likely to suffer from mis-registration effects.

Mahapatra and Sun [28] proposed an idea to incorporate the reduction of image
registration error into an image classification tool. They attempted to integrate the
segmentation information into an elastic image registration by using a Markov random field
model. In their work, the configuration of a pixel contains both displacement of a pixel and a
segmentation label. The multi-resolution graph-cut approach was employed to achieve sub-
pixel registration accuracy. Although their results produced remarkable performance for non-
rigid body image registration, this algorithm cannot be applied for rigid body image
registration problems such as in the remote sensing since their model does not allow one set of
the registration parameters to govern the remapping process of entire image. Furthermore,
since they only consider the segmentation problem, their algorithm does not cover the multi-
class scenarios that are often considered in the land cover mapping of remotely sensed images.

Another work by Chen et al. in [25]investigated the problem of joint image fusion and
registration. In their paper, the observed images were remapped versions of the original
images with possibilities of polarity reverse and/or DC offset. Chen ef al. used an expectation
maximization algorithm to solve the estimation problems of registration parameters and the
true scene simultaneously. Different pairs of multi-sensor images were tested against the
proposed joint process. Under the assumption that registration performance affects the quality
of fusion result, the authors reported that better fusion performance can be achieved due to
reduced registration errors. However, their work did not cover the problem of image
classification in the presence of image registration errors.

In this paper, we employ an approach similar to [25] to incorporate correction of mis-
registration effects into the land cover mapping process. To do this, we assume that remotely
sensed images are derived from a common unobservable land cover map (LCM), and then
distorted, with unknown remapping parameters, into the observed remote sensing images.
(Note that if these map parameters are known, the observed remote sensing images can be
directly aligned with the land cover map.) Next, we assume that a land cover class of interest
i1s more likely to occupy several connected patches than a number of isolated pixels. As a
result, the Markov random field (MRF) is employed as the model of the LCM. MRF models
have been used in various fields ranging from statistical physics [29] and [30] to remote
sensing. The original work by Geman and Geman [31] on MRF-based statistical methodology
in 1984 has inspired a continuous stream of remote sensing researchers to employ the MRF
model for a variety of image analysis tasks (e.g., [32], [33], [34], [35], [36], [37], [38])).
Solberg et al. [32]developed MRF-based algorithms for image classification and change
detection using multi-source data. A significant increase in classification and change detection
accuracy was obtained using an MRF based classification algorithm compared to other
approaches. Kasetkasem and Varshney [33] and Bruzzone and Prieto [34] also applied MRF
models for an image change detection problem. Similarly, Xie et al. [35] applied the MRF
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model to the recurring problem of speckle reduction in synthetic aperture radar (SAR) images.
These promising results on image analysis problems have encouraged us to employ the
concept of MRF models to the problem of generating an LCM.

Based on our image model, the registration and classification process can be performed
in the following fashion. First, we estimate the unknown map transformation parameters based
on the maximum likelihood (ML) criteria, and, then use these parameters to computer
posterior probability for different arrangements of the land cover maps, where the MAP
classifier selects the most likely LCM. However, in order to find the map parameters, the
conditional probability of observed images given the map parameters is needed. This
conditional probability can only be obtained by summing the joint probabilities of observed
images and LCM associated with the map parameters, over all possible LCMs. This is
impossible to obtain in most practical scenarios. As a result, the expectation-maximization
(EM) algorithm [39] is also employed here. The EM algorithm iteratively searches for the
most likely map parameters. The resulting parameters converge to one of the local optimum
points of the likelihood function.

For a given iteration of the EM algorithm, our method computes the expected value of
the logarithm of the probability of the observed images and land cover map given the map
parameters, based on the a posterior probability of the LCM given observed remote sensing
images and the current estimated map parameters. Then, new map parameters are obtained by
maximizing the expected values. It has been shown in literature [39] that the new map
parameters always correspond to a higher value of the likelihood function. Since each iteration
of the EM algorithm calculates a posterior probability given the current estimated map
parameter, an optimum LCM under MAP criteria can be easily obtained by choosing the LCM
that maximizes a posterior probability. In other words, an optimum LCM for the most recent
estimate of the map parameters under the maximum a posteriori (MAP) criterion is obtained
on every iteration of the EM algorithm.

2.2 Problem Statement

Let X(8) denote the LCM where S is a set of pixels. We assume that there are L land
cover classes in the area of interest and we let A € {0,1,...,L — 1} be the class labels.
Therefore, we can express the LCM as X(S) € A°. The label of LCM at pixel s is denoted by
xs which can also be called the configuration of X(§) at the site 5. Since land cover classes are
more likely to occur in connected patches in the LCM than isolated pixels, the LCM is
assumed to satisfy the MRF properties with Gibbs potential V-(X). Hence, the marginal
probability density function (PDF) of a LCM can be written as

Pr(X) = %exp (— Z VC(X)> (2.1)

ccs
where Zy is a normalizing constant, C is a clique, and E(X) = Y. ccs Ve (X) is called the Gibbs

energy function [31]. Cliques are singleton or groups of pixels such that any two pixels are
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mutually neighbors. Figure 2.1 shows all possible clique types for 4- and 8-neighborhood
systems. The value of the Gibbs potential function depends on the configurations of the entire
LCM and the clique. Usually, low values of the potential function correspond to similar
configurations whereas high values correspond to dissimilar configurations of a clique. For
instance, the Ising model [29] and [30], given by,
—B;if xg = x, and r € NG
Visry(X) =1 B;if xs # x, and r € NG; (2.2)
0;if r € NG

for any two sites 7 and s, has been used extensively by statistical physicists to explain why
neighboring particles are more likely to rotate in the same direction (i.e., either clockwise or
counterclockwise). Here the notation NG; is a set of neighboring pixels of s. We can extend
the above model to our problem by letting x; and x, be the class labels of pixels s and r in S,
respectively. With this modification, the Ising model can be applied to describe the LCM
because land cover class distributions are similar to the phenomenon described above (i.e.,
classes occupying neighboring pixels are likely to be the same).

4-neighborhood
(a)

8-neighborhood

(b)

Figure 2.1: clique types for (a) 4-neighborhood; (b) 8-neighborhood

Furthermore, we assume that there are N remotely sensed images of the same scene
acquired from different sensors and/or at different times. Here, Y,(7;) € R/n*Bn;n =
1,2, ..., N denotes the n-th remotely sensed image where B,, denotes the number of spectral
bands, and 7;, is a map coordinate system to which the n-th remote sensing image is
registered. Since all remotely sensed images and the LCM are from the same scene, the
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relationship between § and 7, can be determined. Let us denote a coordinate of a pixel s in the
LCM as (x,y) where x and y are the column and row of x. Similarly, we can write t,, =
(u,, v,) € T, where u,, and v, are the column and row of the pixel t, in Y,. If the affine
transformation is used, the relationship between s and t,, can be written as
Myn Mon Msn
[ ] [mSn m4 n] [ ] + [m6,n] (23)
where m, ,, and m, ,, are scale parameters, m, , and m3 , are skew parameters, and ms, and
Mgy are displacement parameters in column and row-direction, respectively. We refer to
M, = [ml,m My 1, M3, My, Ms mﬁ,n] as the map parameter vector between coordinate
systems S and 7,.
When all the map parameter vectors are given, one can remap all remotely sensed images
to perfectly align with the LCM. Let us denote
Zn(S) = f(Yn(j;‘L):Mn) . (2.4)
as the remapped and resampled version of the n-th remote sensing image. Here, we assume

further that the remapped and resampled images are statistically independent for a given
LCM, i.e.,

N
Pr(Y|X(S), M) = Pr(Zy(S), ..., Zy(8S)|X(S)) = H Pr(Z,($)|X(S)). (2.5)

where M = {M,, ..., M,,} and Y = {Y;(77), ..., Y,,(7;,)} be collections of the map parameters
and the observed multispectral images. Moreover, the intensity vectors from different pixels in
Z,(8) are also assumed to be statistically independent when the LCM is given. Hence, the
joint conditional PDF can be written as

N
Pr(Y|X(S),M) = 1_[ 1_[ Pr(z,s|x) (2.6)
n=1 ses
where z,, ; € RPr denotes the intensity vector of the remapped image Z,,(S) at a pixel s. We
acknowledge that the assumption given in Eq.(2.6) may not always be true for all cases since
some land cover classes have textural structure. One can incorporate texture information into
our image model appropriately, which may further result in an increase in accuracy. This will,
however, result in very complex problems which may not be desirable in practice.
If we assume further that the intensity vector at a pixel s of the remapped image Z,,(S)
given the class label xg is a multivariate normal random vector with mean vector u,_, and
covariance matrix ,_j, Eq. (2.6) can be rewritten as

Pr(Y|X(S), M)
N

1 1 r
- 1_[ Bn 172 5P [_ Z 2 (Zns = Begn) on(Zns a7

n=1 (ZT[)Tl xs,nl SES

- ﬂxs,n)
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where T denotes the matrix transpose operation.
By using chain rule, the posterior probability of the LCM given the observed
multispectral images and the map parameters can be written as
Pr(Y|X, M) Pr(X)

Pr(X|¥, M) = ——- A (2.8)
Since Pr(¥Y, M) is independent of the choice of X, it can be treated as a constant. Hence,
we have
Pr(X|Y,M) = C Pr(Y|X, M) Pr(X). (2.9)
By substituting Eq. (1), and Eq. (7) into Eq. (9), we obtain
Pr(X|Y,M) = %e—mmm_ (2.10)

where Z' =%, _ s e EXIVM) g 4 normalizing constant and independent of the choice of X,
and

N
1 _
E(ler M) = Ez (Z (Zns - ﬂxs,n)T xsl,n(zn,s - ”xs,n) + lOgl xs,n|>

SES

+Z Ve(X)

ccs
is called a conditional Gibbs energy function. Since, in this paper, we consider cliques

comprised of pixel pairs only, hence, the conditional Gibbs energy function can be written as

E(XWM)-—Z(Z(ZM ) =) o] )

SES

+ EZ z V{s,r} (xs' xr)

SES TENGg
where NG denotes the set of neighboring pixels of s. The normalizing constant Z' cannot be

@2.11)

(2.12)

computed in most practical scenarios due to the large number possible configurations (e.g.,

there are more than 240%¢

possible configurations for binary LCM of size 64 X 64.) As a
result, we propose the use the mean field theorem [40] - [41] to remove the interaction
between neighboring pixels defined in V;(X). The mean field theorem approximates the

conditional Gibbs energy function as

1
EX|Y,M) = Ez hs(xs|Y, M) (2.13)

SES
where

N
h (xsly M = Z (Zn,s - ”xs,n)T ;Sl,n(zn,s - st,n) + logl xs,nl}
n=1 (2.14)

+ Z Exr[V{s,r}(xs»xr)]-

TENGs
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Here, Exr[V{s,r}(X)] is the expected value of the potential function with respect to the

configuration of x,. The expected value E,_ [V{S‘r}(xs,xr)] does not depends on x,, and is
equal to

ExT[V{S,r}(X)] = z V{s,r}(xsixr)pMF(xrlyl M) (215)

X €
1 1
where pMF(x,.|Y,M) = Zie_ihr(xrly'M). Note here that Z, = Y, ¢ e 2 VM i the
T

normalizing constant for a pixel r. By using the approximation given in Eq. (2.13), the
posterior probability can be written as

Pr(X|Y, M) ~ PrMF(X|Y, M) = anF(stY, M) (2.16)

SES
The approximation in Eq. (2.16) is closest to Pr(X|Y, M) from all approximations of the

form [[ses p(x5|Y, M) when the Kullback-Leibler (KL) divergence [42]- [43] is used as a
distance measure.

23 Optimum Image Registration and Land Cover Mapping Criteria

The standard approaches to multi-temporal and/or multi-modal image classification involve
two steps. First images from different sources and/or times are registered to produce a set of
images in a common coordinate system. Then, a land cover map is derived from this set of
registered images. In this work, even though we propose an algorithm to simultaneously
register and classify images, we still treat image registration and classification as two separate
problems to follow standard approaches. As a result, we propose different optimization
criteria for image registration and land cover mapping. However, we will show in Section IV
that both image registration and land cover mapping can be combined into one algorithm so
that the registration and land cover mapping can be performed simultaneously.

2.3.1  Optimum Image Registration

The maximum likelihood estimate (MLE) can be employed as the optimum map
parameter estimator since the MLE is known to a consistent estimator [44]. The goal of the
MLE is to determine the map parameters that maximize the joint probability density function
(PDF) of all the observed images given the map parameters, i.e.,

(Mg, ..., My)°Pt = argMT'?A)/(IN Pr(Yy, ..., Yy My, ..., My) (2.17)

In order to solve Eq. (2.17), the conditional PDF Pr(Yy,...,Yy|My, ..., My) must be
calculated and it is equal to

PrCYy o Yl My, o M) = D PR, oo, Y (), X(S)IM, ., M)

X€ENS

= ﬁ Z Pr(Z, 1X(S)) Pr(X(s))

n=1 XeA$

(2.18)
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Note here again that Z,, is the remapped and resampled version of Y;,. Since Eq. (2.18) is
written as a multiplication of )}y ps Pr(Zn | X(s )) Pr(X(S )), the solution of Eq. (2.17) can be
individually obtain, i.e.,

t
MP" = arg rr;/lix Z Pr(Zn |X(5)) PI‘(X(S)), (2.19)
X€EAS
forn=1,...,N. Since § is also unknown, there are many possible sets of M,, that maximize

Eq. (2.19). For instance, if M, =[1,0,0,1,0,0] is the solution of Eq. (2.19) for § =
{(0,0),(0,1), (1,0), (1,1)}, we have that M'; = [1,0,0,1,1,0] is also the solution of Eq. (19) for
§' ={(0,-1),(0,0),(1,—1),(1,0)}. As a result, it is imperative to limit the search space and
number of possible solutions. Furthermore, in most practical situations, we may wish to
produce the LCM registered to one of the input remote sensing images. Without lost of
generality, we assume that the LCM is registered to Y3, i.e., we have M; = M; = [1,0,0,1,0,0].

Next, let us consider a small LCM of size 100 X 100 pixels. In this case, there are
210000 & 2 x 103910 possible binary LCMs. Therefore, the direct calculation of Eq. (2.19) is
an impossible task, and hence, the solution of the MLE cannot be obtained in reasonable time.
As a result, the expectation-maximization (EM) algorithm [39] is employed instead. The EM
algorithm is an iterative parameter estimator which produces a new estimate for every
iteration. It has been shown in [39]that this new estimate always results in higher or at least
the same value of the likelihood function. In other words, if we let Mt = {M}, M}, ..., M5} be
the collection of all estimated parameters at the #-th iteration from the EM algorithm, we will
have Pr(Yy,...,Yy|MY) > Pr(Yy,...,Yy|M*1) where M1 is the collection of estimated
parameters at (t — 1)-th iteration. Here, and throughout the rest of the paper, we omit § and
T, for the sake of abbreviation. In Section 4, we will discuss the details of the EM algorithm
employed in this work and how it can be combined with the land cover mapping process.
However, before going into the detail of the proposed algorithm, let us state the optimization
criterion for the land cover mapping considered in this paper.

2.3.2  Optimum Land Cover Map

The classifier based on the maximum a posteriori (MAP) criteria selects the most likely LCM
given the observed data and the map parameters since the resulting probability of error is
minimum among all other classifiers [44]- [45]. The optimum solution under the MAP
criterion is expressed as

Xt = arg m)?x[Pr(XIY, M)]. (2.20)

In general, Pr(X|Y, M) is non-concave function and, therefore, conventional gradient-based
optimization algorithms are not applicable for the solution of Eq. (2.20). Furthermore, the
number of possible solutions is also very large. A direct search for the solution of Eq. (2.20) is
too expensive to be practically implemented. As a result, we propose the use the mean field
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theorem [40]- [41] to remove the interaction between neighboring pixels defined in V;(X).
Hence, by substituting Eq. (2.16) into Eq. (2.20), the optimization problem becomes

XPt = arg max [l_[ pME (x,|Y, M)

SES
Since the optimizing function in Eq. (2.21) is written in the form of the multiplication of

. (2.21)

functions of an individual pixels, and pM¥ (x4|Y, M) is a non-negative function, the optimum
solution can be solved from an individual function, i.e., for s € §,

x°Pt = arg m)?X[pMF(XsW, M)]. (2.22)
which is equivalent to
xSOPt = arg mXin[hs(xS|Y, M)] (223)

24  Joint Image Registration and Land Cover Mapping Algorithm

Since the EM algorithm is employed in this literature as the parameter estimator, we
begin our discussion with the details of the EM algorithm. The EM algorithm [39] consists of
two steps, namely the expectation (or E) and maximization (or M) steps. In the E-step, the EM
algorithm finds the lower bound of the likelihood function given in the right hand side of Eq.
(20) by calculating the expected value of the joint log-likelihood function of the observed
images and the LCM. Here, the expected value is computed over the LCMs given the most
recent estimate of the map parameter vectors and observed data, i.e.,

Q(M||M*Y) = E[log Pr(Y, X|M) |Y, M*1]
= E[log Pr(Y|X, M) + log Pr(X) |V, M*™1]
where Y ={V;,...,Yy} is the set of all observed remotely sensed images, M =
{M,, ..., My} is the set of all unknown map parameters, and M* = {M¢, ..., M%} is the set of all
estimated parameters from the #-th iteration of the EM algorithm. Note here that Mf = M;. By
substituting Eq. (2.1) and Eq. (2.7) into Eq. (2.24), the expected value becomes
QMM

(2.24)

T _
1 N Z(Zn,s - ﬂxs,n) xsl,n (Zn,s - ”xs,n) -1 (2.25)
=E 3 SES _ZVC(X)_ZX Y M

n=1 +1log| x n|—log(2m)Bn ccs

In the M-step, the expected value given in Eq. (2.25) is maximized and a new set of map
parameter vectors is obtained, i.e.,

t — t-1
M" = arg M‘rngllazxM{ QM| |M*1) (2.26)
Clearly, the terms log| xs,nla log(2m)B", ¥ ccs Ve (X), and Zy in Eq. (2.25) do not depend
on M. Hence, Eq. (2.25) can be modified to
t _ t—1
M' = arg max . Q M||M*) (2.27)

=M
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where
Q (Mim*)
1w r. . (2.28)
= arg M,rI\EIlla=XM{ E|- EZ zs(zn,s - I’lxs,n) xgm (Zn,s - st,n) Y M .
n=1 se

To find the solution of Eq. (2.28), the a posteriori probability of the LCM given the
observed images and the map parameters from the (#-1)-th iteration must be calculated in
order to find the expected value. From the same reason as discussed in Section 2, the posterior
probability cannot be practically calculated due to the huge number of possible LCMs. As a
result, we employ the approximation given in Eq. (2.16), and hence, we have

1 1 t-1
PrCXY, MO ~ [ [ Gty Mety = | [ -enzhbeme), (229)

SES SES s

By substituting d Eq. (2.26) into Eq. (2.29), we have
Q (MIME) ~ QMF (M| M)

N
1 —
) Z Z 2 (Zns = Hegn)  xon(Zns (2.30)

n=1 seS xs€
- ”xs,n)pém: (xs|Y: Mt_l)
Hence, in the M-step, the new map parameters can be obtained by maximizing the
approximation given Eq. (1.30), i.e.,
t — MF t-1
M*' = arg M,rI\EIlla=XM{ Q" (M||M*1) (2.31)

Since z,, ¢ depends only M,, and the right hand side of Eq. (1.30) is written as the summation
of z, ; from different images, the above optimization problem can be rearranged into the
optimization of each individual mapping parameters, i.e.,

My = argmax Q" (My||M*™);n = 2,...,N (2.32)

where
n (M| |M*1)

1 T _ _
= _Ez z (Zn,s - ”xs,n) xsl,n(zn,s - st,n)pém:(xslyf Mt 1)- (2'33)

SES xs€E
Using the approximations given above, the modified EM algorithm is displayed in Figure
2.2. For each iteration, the posterior probability Pr(X|Y, M%) is approximated by recalculating
hs(xs|Y,M"). We follow the work by Zhang [9] which suggested that hs(x|Y, M%) can be
obtained from
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hs(xslyr Mt) = hobv(xslz) + hng(xslxNG)

N
= nZl {(Zn,s - ”xs,n)T ;sljn(zn,s - ”xs,n) + 10g| xg,ﬂ'} (234)
+ Z Visry (s, 2 )pMF (xs|Y, M),
X €

where hgp,(x51Z) and hy,g(xs|Xyg) are the potential functions depending upon the

observation and neighboring pixels, respectively.

4 1\

Find initial mapping vectors M, [ Stop J
& l J
e ~

Letr=1, MO = M}, Mt~! =
M,, and estimate Pr(x,|Y, M?)

Does the EM
algorithm
converge?

E-Step:
Compute the expected
value QMF (M| |Mt1).

[Lett=t+1 ]

A

M-Step: Approximate
Find the new map parameter Pr(X|Y, M¢) by
vectors M* by solving Eq. > using Eq. (2.28).
(2.32). J L

Figure 2.2: Block diagram of the modified EM algorithm

Since hg(xs|Y, M?) is recalculated for every iteration of the EM algorithm, we can choose
a land cover class that minimizes hs(x¢|Y,M!), and obtain the optimum LCM based on
criterion given in Eq. (2.23) By combining the EM algorithm given in Figure 2.2 and the land
cover mapping process by minimizing Eq. (2.23), the joint image registration and land cover
mapping algorithm is given as

1. Initialize map parameters, i.e., MY = M; and M° = {M?, ..., M2}, let t = 1, and assign
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pMF (x,|Y, M?) based on some prior knowledge.

2. Compute Q¥F(M,,||M*1) forn =2,...,N.

3. Obtain MY by solving Eq. (2.32) for n = 2,...,N., and assignM{ = Mj and M' =
(M}, -, My]

4. Compute hg(x;|Y, M") by using Eq. (2.34).

5. Find the new LCM that minimizes h(x;|Y, M) forall s € S.

6. Lett =t + 1, and go to Step 2 if a convergence criterion is not satisfied.

The critical step in the successful implementation of the joint image registration and land
cover mapping algorithm proposed above is how to solve Eq. (2.32) efficiently. Here to find
the maxima, we employ the particle swarm optimization (PSO) algorithm [46] since the
traditional gradient search approaches are likely to fall into one of the local optimum points of
QMF(M||M*~1) due to its non-convexity. The PSO exploit the cooperative behavior for a
group of animals such as birds and insects. In the PSO, an individual animal is called a
particle and a group of animals is called swarm. These particles are initially distributed
throughout the search space, and move around the search space. Based on some social and
cooperative criteria, these particles will eventually cluster in the regions where the global
optima can be found.

In our work, for a given image Y,,, each particle represents a mapping parameter and we
denote the i-th particle as M, ;. At each iteration, the i-th particle moves by a velocity V;
which is a function of the best-known positions (mapping parameter) discovered by the i-th
particle (P;) itself, and from all particles (G), i.e.,

Vi =wV/ ™+ §01u1(Pi - M£;1) T 92Uz (G - Mrrl.fl (2.35)
and
My, =Myt + V] (2.36)

forn = 2, ..., N. where w is the inertial weight, ¢, and ¢, are acceleration constants, and u,
and u, are uniform random numbers between zero and one. The velocity is usually kept in the
range of [Vinin, Vnax] to make sure that My ; is in the valid regions. Note here that the
performance of the PSO depends on the selection of, w, ¢; and ¢,, and the number of
iterations. In this paper, we set the number of particles to 80 and the maximum number of
iterations to be 200 as a suitable setup for our experiment. We acknowledge that different
setups of these parameters may result in different convergence rate. However, the
investigation of the optimum parameter selection of the PSO in term of convergence rate is

out of scope of this paper. We refer to the work by [47] for more details.
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2.5 Experimental Results

In this section, we provide the results of two experiments based on the methodology
derived in Section 4 to jointly register and classify a set of remotely sensed images. The first
experiment is conducted over a simulated dataset in order for us to investigate many aspects of
our proposed algorithm. Next, we will examine the performance of our algorithm in the actual
remote sensing image. For both examples, the goal is to examine the performance of
algorithm to different degrees of initial registration errors. If our algorithm performs perfectly,
it should be able to align images together and produce a LCM from unregistered images as
accurate as when images are registered.

Experiment 1:

In the experiment, we examine the performance of the proposed algorithm in term of
classification performance and registration accuracy by attempting to produce a land cover
map from a set of four simulated images. All the simulated images have an equal size of
512x512 pixels (Figure 2.3) and contain four land cover classes (Classes 1-4) with intensity
values of zero, one, two and three for black, dark gray, light gray and white areas,
respectively. Based on the noiseless image, the ground truth image in this example is given in
Figure 2.4 where the blue, black, green and red colors correspond to Classes 1-4, respectively.
Next, all of the input images are added with the independent and identical Gaussian noise with
zero mean and standard deviation of ¢ = 1 to examine the performance of our proposed
algorithm to the image noise. Figure 2.5 shows an example of the input image for ¢ = 1. We
observe that the observed image appears to be very noisy.

Figure 2.3: Noiseless Simulated Image in Example 1
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Figure 2.4: The ground data of Example 1

Figure 2.5: An example of the noisy input image at 6=1 in Example 1

Since our algorithm performs both image registration and land cover mapping at the same
time, the performance of our algorithm can be evaluated in terms of how much the resulting
LCM deviates from the reference LCM, and the estimation error between our calculated map
parameters and the actual parameters that relate the LCM to the simulated images. If our
algorithm performs perfect registration and land cover mapping, the resulting percentages of
mis-classified pixels will be zero, and the registration error between images and LCM will be
zero. In this example, the correct mapping parameters for all observed images are the same
and equal to Mperfece = [1,0,0,1,0,0] which correspond to unit scale, zero skew, and zero
displacement. Next, since we want to examine the effect of the initial registration errors to the
performance of our algorithm, we investigate different scenarios of initial registration errors
by varying the initial mapping parameters between the observed images and LCM at different
values of displacement, scale and skew parameters. In particular, we investigate three
scenarios for the only displacement, only scale and only skew errors, respectively. Table 2.1
shows the initial mapping parameters for all three scenarios. Here, §, p and 7 are the initial
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displacement, scale, and skew parameter errors. Note that the initial mapping parameter errors
for Image 1 for all scenarios are zero since we assume that the first image is registered to the
LCM as mentioned in Section 2.31.

Before examining the performance of our proposed algorithm, we examine the effect of
registration errors to the performance of image classification. This value can be viewed as the
worst case scenario where the LCM is derived directly from the set of mis-registered images.
Here, we employ the maximum likelihood classifier (MLC) [44] to the set of four remapped
images, and the LCM is obtained from

4
xé\/ILC = arg mxin [Z {(Zn,s - st,n)T ;Sl,n(zn,s - ”xs,n) + logl xsnl} (2-37)
n=1

where the subscript n denotes the n-th remapped image. We note here that Eq. (2.37) is the
special of the optimum LCM obtained from Eq. (2.22) when £ = 0. Figure 2.6 (a), (b) and (¢)
display the resulting LCM for 6 = 12 and o = 1 for Scenario I, p = 0.05 and o = 1 for
Scenario II, and n =0.05 and o0 =1 for Scenario IIl. The averaged percentages of
misclassified pixels after a hundred independent runs are equal to 28.66%, 31.93 and 27.03,
for Scenarios I, II and III given above, respectively.

Table 2.1: Mapping parameter errors are three scenarios in Example 1

Image Mapping parameters
my m, mgy my msg mg
Scenario I: 1 1 0 0 1 0 0
Displacement 2 1 0 0 1 0
error (4) 3 1 0 0 1 0 =
4 1 0 0 1 =) 6
Scenario II: 1 1 0 0 1 0 0
Scale  error 2 1+p 0 0 1 0 0
(p) 3 1 0 0 |1+p| O 0
4 1—p 0 0 1-p 0 0
Scenario I1I: 1 1 0 0 1 0 0
Sheer  error 2 1 ] 0 1 0 0
(M) 3 1 0 n 1 0 0
4 1 -n -n 1 0 0
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(2) (b) (©)

Figure 2.6: Examples of the MLC-Based LCMs for (a) Scenario I with 6=12 and o=1; (b)
Scenario II with p=0.05 and 6=1; and (c) Scenario III with 1=0.05 and o=

Next, the proposed algorithm is applied to the above datasets. The whole process was
implemented using CUDA on NVIDIA Tesla M2090 with 1 GB memory. Here, we assign

pMF (x,|Y,M°) = i as the most extreme case where no prior information is given. In different
trials, the value of f is set to be 0.00, 0.25, 0.50, and 0.75(see Eq. (2)). Since our algorithm
performs both image classification and registration, the termination criteria must ensure the

convergences in both the estimated posterior probability and mapping parameters. As a result,
we define

Pchanges = |5|Z Z Ips"" (xs|Y, M*) — pg'" (x| Y, ME~ 1), (2.38)

SES x5€

to measure changes in the posterior probabilities from two consecutive iterations. We also
define

1
dmovement,n = 171 § \/(thl - xfl_l)z + (_'Vﬁ - yri_l)z (2.39)
n

(Un,vn)ET,

to characterize the movement of coordinates of the remapped image Z,, from two
consecutive iterations where

] ml n un mS n (
m3 n m6 n 40)
Here, m{n denotes the mapping parameter m; from the n™ at the /" iteration. In this example,

the algorithm terminates when pepanges 18 less than pp,;, = 107°, and dypopement.n 18 less than

0.1 pixels for five consecutive iterations for n = 2,3,4. To create a benchmark for our
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proposed algorithm, we examined two extreme cases where LCMs are derived directly from
the unregistered image pairs and from perfect registered image pair. The LCMs from these
extreme cases are classified using our proposed algorithm by fixing M* = M*. For perfect
registration, we have M™ = My, r..c Whereas, for unregistered image pairs, we set M™ equal
the values given in Table 2.1 for the respective scenarios. The first extreme case can be
considered as the lower limit on the classification accuracy if we perform the land cover
mapping without alignment of images first. The second case is an upper bound on the
classification accuracy when we produce a map from a registered image pair. By setting up
our experiment in this fashion, we can investigate how much improvement our algorithm can
gain by integrating the registration and classification together, and how far the performance of
our algorithm is from the upper limit where all uncertainties in registration are removed. To
ensure the statistical significance of our experiment, all experiments are repeated ten times.
Table 2.2 displays the averaged percentages of misclassified pixels (PMP) of the LCMs
for different values of f and for Scenario I with § = 12, Scenario II with p = 0.05 and
Scenario III with n = 0.05 when o = 1. Note here that, in this example, we employ the
percentages of mis-classified pixels as the performance metric to evaluate the classification
performance rather than the overall accuracy to highlighted small differences in the
classification performance between LCMs derived from image datasets without registration
error and LCMs obtained from our proposed algorithm. From Table 2.2, it is clear that, from
all scenarios, the PMPs derived from image datasets without registration errors corrections are
always significance poorer than those derived from registered image datasets. These results
support our claims that it is important to consider lack of alignments in performing image
classification. We also observe that, for f = 0.25,0.5 and 0.75, our proposed algorithm
produced the LCM with the accuracy similar to those obtained from image dataset without
any registration error. These results imply that our proposed algorithm attain the upper-bound
accuracy with proper selection of MRF parameter. To ensure the statistical significance, we
compute the pairwise #-statistics for unequal variance populations [43] of the PMPs obtained
from LCMs derived from the proposed algorithm for various initial registration errors against
those obtained from image dataset with no registration error, and the resulting p-values [43] of
the t-statistics are given in Table 2.3. The p-value represents the probability that there is no
difference in PMPs. Hence, a smaller p-value implies that PMPs from two experiments are
different. We also compute the t-statistics comparing LCMs obtained from image dataset with
and without registration errors. The resulting p-values of these t-statistics are also summarized
in Table 2.3. It is clear from Table 2.3 that there is significant differences in term of PMPs
from LCMs obtained from image dataset with and without registration errors. Furthermore,
the p-values also support our claim that or f = 0.25,0.5 and 0.75, our proposed algorithm
produced the LCM with the accuracy similar to those obtained from image dataset without
any registration error. However at § = 0, our proposed algorithm perform significantly poorer
than those of perfect registration. In fact, at § = 0, our proposed algorithm achieves roughly
the same performance as in situation where there is no registration error correction since at
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B = 0, our proposed algorithm cannot correctly estimate the map vectors. Figure 2.7 shows
examples of the resulting LCMs at § = 0.75 for all scenarios. We observe that all the LCMs
appeared to be more connected than the MLC-based LCMs given in Figure 2.6: Examples of
the MLC-Based LCMs for (a) Scenario I with 6=12 and 6=1; (b) Scenario II with p=0.05 and
o=1; and (c¢) Scenario III with n=0.05 and 6=

Table 2.2: Comparison of the averaged percentages of misclassified pixels (PMP) between
two extreme cases and our proposed algorithm

B | No No registration error correction Proposed Algorithm with initial
registrat registration errors
ion Scenario I | Scenario Il | Scenario III | Scenario I | Scenario II | Scenario III
Error with with with with with with
6 =12 p = 0.05 n = 0.05 6 =12 p = 0.05 n = 0.05
0.0 |25.65% | 28.66% 26.87% 27.05% 28.65% 26.07% 27.12%
0.25 | 0.43% 4.81% 5.96% 6.45% 0.45% 0.43% 0.43%
0.5 0.039% | 4.24% 5.65% 6.21% 0.039% 0.041% 0.043%
0.75 |0.021% | 4.19% 5.56% 6.13% 0.024% 0.032% 0.026%

Table 2.3: the p-values of the pairwise t-test with unequal variances of our proposed algorithm
to the perfect registration cases, and no registration error correction to the perfect registration

cases
B No No registration error correction Proposed Algorithm with initial registration
registrati errors
on Error | Scenario I Scenario 11 Scenario III | Scenario I Scenario 11 Scenario 111
with § =12 | with with with§d =12 | with with
p = 0.05 n = 0.05 p = 0.05 n = 0.05
0.0 1 1.5x10722 | 1.6 x107* | 40x 10718 | 19x1072% | 40x 1075 | 3.9 x 10715
025 |1 20x107Y7 | 35x107% | 3.6 x 1078 | 0.457 0.717 0.500
0.5 1 1.5x 107 | 28x 10717 | 1.8x 107t | 0.712 0.167 0.401
075 |1 1.5x 107" | 1.4x10715 | 6.2%x 10717 | 0.060 0.033 0.079
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(2) (b) (©)

Figure 2.7: Examples of the resulting LCMs from our proposed algorithm (a) Scenario I
with 6=12 and o6=1; (b) Scenario II with p=0.05 and 6=1; and (c) Scenario III with
1n=0.05 and o=1

Since at B = 0.75, our proposed algorithm achieves highest performance, we examine the
effect of the initial registration errors to the performance of our algorithm by varying values of
4, p, and n for Scenarios I, II and III, respectively for f = 0.75. Again, ten independent runs
are performs to ensure the statistical significance and the results are given in Table 2.4. We
observe that, for all scenarios, the PMPs are roughly the same In other words, the initial
registration errors have little effect on the performance of our algorithm. These results imply
the robustness of our proposed algorithm to the initial mis-registration errors if the proper
value of 8 is chosen.

Table 2.4: The averaged percentages of mis-classified pixels as the function of the initial
registration error for all Scenarios

Scenario | Scenario 11 Scenario III
1) PMP p PMP n PMP
0 0.019% -0.05 0.035% -0.05 0.036%
4 0.032% -0.03 0.035% -0.03 0.029%
8 0.029% -0.01 0.022% -0.01 0.043%
12 0.026% 0.01 0.030% 0.01 0.040%
0.03 0.024% 0.03 0.036%
_ 0.05 0.032% 0.05 0.026%
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Another key performance metric in this example is the residual registration errors after
processing. Table 2.5 displays the means and standard deviations of the root mean square
errors (RMSEs) from ten independent runs between each simulated images and the reference
LCM. The RMSE of the n-th image is computed from

1 2 2
RMSE, = 1 Z \/ (et = x)" + (0" = pst) (2.41)
n

(Un,vn)ET,

where (x7 Lyd t) and (x£5¢,y2St) are the ground truth and estimated coordinates. Here, the

ground truth coordinates obtained by letting M, = Myeyfec. Clear, for f = 0.25,0.5, and
0.75, our algorithm can successfully registered all images with the LCMs. However, at § = 0
our algorithm cannot align these images with the LCM. The results in Table 2.5 emphasize the
importance of parameter selection. Note here that the RMSE of Image 1 is not shown in the
Table 2.5 since it is assumed to be perfectly aligned (registration error is zero.) with the
LCM. Next, we examine the effect of image noise to the registration accuracy by varying the
noise variance ¢2 from -30dB to 0 dB and the resulting averaged RMSEs for f = 0.0 and
0.75 are given in Table 2.6 and Table 2.7, respectively. We observe here that there are slight
performance differences in term of the RMSEs for a2of -30, -20 and -10 dB for both g =
0.00 and 0.75. However, for the noise variance equal to 0 dB, our algorithm can only
correctly aligned Images 2-4 to the LCM at f = 0.00. This result emphasizes the importance
of a parameter selection to the convergence of our algorithm. For the performance
comparison, we compare the registration accuracy of our proposed algorithm for various
scenarios and 8 = 0.75 with a traditional image-to-image registration technique. Here we
employ the mean square error criteria (MSEC) [16] since the MSEC is suitable for register
images with the same modality and suffered from additive Gaussian noise. For the traditional
image-to-image registration, we register Images 2-4 with Image 1 since Image 1 is assumed to
be aligned with the LCM. The averaged RMSEs from ten independence runs for various noise
variances are given in Table 2.8. Again the particle swamp optimization algorithm with eighty
particles is employed to ensure global optimality. As expected, the registration accuracy
decreases as the noise variance increase. By comparing Table 2.6 and Table 2.8, the RMSEs
from our proposed algorithm seem to be lower (better) than those obtained from the MSEC for
noise variances equal to -20, -10 and 0 dBs. Next, we again perform the pairwise #-test to
determine whether there are significant differences in RMSEs obtained from our proposed
algorithm and the MSEC, and the resulting p-values [43] are shown in Table 2.9. From the p-
values, we can conclude that our proposed algorithm achieves significantly better registration
accuracies than those obtained from the MSEC for the noise variances of —20,—10 and 0
dBs. Note here that, for a noise variance equal to -30 dB, the registration errors from our
proposed algorithm and the MSEC are roughly zero and, therefore there is no different in term
of registration accuracy.
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Table 2.5: The residue registration errors of our proposed algorithm for various scenarios and

values of f.
Scenario No =00 | =025| p=050| =075
registration
Error
Correction
I Image 2 | Mean | 12 11.99 0.111 0.295 0.280
(6 =12) STD | - 0.0015 0.259 0.139 0.100
Image 3 | Mean | 12 11.99 0.031 0.192 0.312
STD | - 0.0018 0.020 0.120 0.156
Image 4 | Mean | 16.97 16.96 0.213 0.338 0.212
STD | - 0.0017 0.566 0.088 0.136
II Image 2 | Mean | 14.06 13.56 0.028 0.281 0.327
(p = 0.05) STD | - 0.072 0.010 0.130 0.113
Image 3 | Mean | 14.06 13.49 0.020 0.353 0.312
STD | - 0.032 0.080 0.102 0.106
Image 4 | Mean | 21.97 20.97 0.253 0.245 0.315
STD | - 0.095 0.636 0.120 0.082
I Image 2 | Mean | 14.76 14.71 0.025 0.295 0.296
(n = 0.05) STD | - 0.204 0.020 0.149 0.098
Image 3 | Mean | 14.76 14.73 0.017 0.415 0.350
STD | - 0.182 0.006 0.090 0.136
Image 4 | Mean | 21.72 22.04 0.350 0.312 0.371
STD | - 0.0325 0.983 0.155 0.088

Table 2.6: The residue registration errors for various noise variances and =0.75.

Noise Average root mean square errors
variance Scenario I, § = 12 Scenario II, p = 0.05 Scenario III, n = 0.05
(dB) Image | Image | Image | Image | Image | Image | Image | Image | Image
2 3 4 2 3 4 2 3 4
-30 0.007 ]0.011 |0.009 |0.006 |0.010 |0.019 |0.012 |0.019 |0.013
-20 0.010 |0.012 |0.009 |0.023 |0.016 |0.012 |0.017 |0.016 |O0.011
-10 0.036 |0.035 |0.037 |0.028 |0.018 |0.029 |0.028 |0.030 | 0.022
0 0.244 |0.280 |0.185 |0.119 |0.138 |0.071 |[0.078 |0.053 | 0.200
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Table 2.7: The residue registration errors for various noise variances and =0.

Noise Average r00t mean square errors
variance | Scenario I, § = 12 Scenario II, p = 0.05 Scenario III, n = 0.05
(dB) Image | Image | Image | Image | Image | Image | Image | Image | Image
2 3 4 2 3 4 2 4
-30 0.016 | 0.08 0.010 |0.015 |0.007 |0.019 |0.009 |0.011 |0.019
-20 0.017 |0.012 |0.014 |0.015 |0.018 |0.015 |0.010 |0.015 |0.017
-10 0.014 |0.018 |0.015 |0.018 |0.018 |0.023 |0.019 |0.016 |0.014
0 11.99 | 1199 |1697 |1191 |11.89 |20.28 |12.75 |12.79 |20.61

Table 2.8: The residue registration errors using the minimum mean square error criteria for
various noise variances.

Noise Image 2 Image 3 Image 4
variance Mean STD Mean STD Mean STD
(dB)
-30 0.008 0.0029 0.007 0.0041 0.010 0.0054
-20 0.422 0.0040 0.425 0.0033 0.423 0.0049
-10 0.663 0.0037 0.665 0.0014 0.664 0.0017
0 0.875 0.516 1.637 1.441 1.352 0.9744

Table 2.9: The p-value from the pairwise t-test between the traditional registration method and
our proposed algorithm for various Scenario at f=0.75.

Noise Average root mean square errors

variance | Scenariol, § = 12 Scenario II, p = 0.05 Scenario 111, n = 0.05

(dB) Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4
-30 0.829 0.402 0.883 0.413 0.413 0.201 0.507 0.092 0.407

-20 1x107® | 4x1071* | 2x 10721 | 1x 10713 | 1x1071 | 3x 107 | 2x 10713 | 2x 10718 | 5x 10717
-10 31071 | 2x 107 | 3x107™ | 3x 10715 | 3x 10715 | 5x1071® | 2x 10723 | 1x 107 | 7x 107Y
0 0.004 0.016 0.004 0.001 0.001 0.003 0.0010 0.007 0.004

Figure 2.8 shows the averaged numbers of iterations that the algorithm requires before the
convergence criterion is satisfied for different scenarios and f. For f = 0.25,0.5 and 0.75,
more iterations are needed as the value of f increases. However, at f = 0, our algorithm
terminates at the higher numbers of iterations for Scenarios II and III. The main reason to the
slow convergences is due to the small changes in the mapping parameters from one iteration to
another and since f = 0, this small changes in the mapping parameters have significant
influence on the posterior probability.
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Figure 2.8: The averaged number of iterations required before the termination criteria
are satisfied for different scenarios in Example 1

Experiment 2

A QuickBird dataset consisting of one multispectral image (MI) of size 150 X 300 pixels
and one panchromatic image (PAN) of size 600 X 1,200 pixels was used in this experiment
(Figure 2.9). The MI and PAN have resolutions of 2.4 and 0.6 meters, respectively. Both
images captured a part of Kasetsart University in Bangkok, Thailand, covering around 0.2592
in km? on July 10™, 2008. By visual interpretation, we classified the area into five classes,
namely, water, shadows, vegetations and impervious type 1 and impervious type 2, and the
ground truth image is shown in Figure 2.10 where blue, black, green, red and white colors
correspond to water, shadow, vegetation, impervious type 1 and impervious type 2,
respectively. Here, the impervious is divided into two types due to different roof and
pavement colors in the scene. By using both PAN and MI images, we randomly select 1000
samples for each land cover classes.
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(2)
(b)

Figure 2.9: QUICKBIRD dataset of a part of Kasetsart University (a) False color
composite MI; and (b) PAN

Figure 2.10: Ground truth image for Example 2 (green, blue, black, red and white colors
for vegetation, water, shadow, impervious type 1 and impervious type 2, respectively)

In Experiment 2, we focused on the robustness of the proposed algorithm with different
degrees of the initial displacement, scale and rotation errors. In fact, there are six displacement
errors in x-direction and y- directions, four scale errors and six rotational errors used in this
experiment. The termination criteria used in this example is similar to those in Example 1, i.e.,
our algorithm is terminated if pcpgnges (se€ Eq. (2.38)) is less than 107> and Amovement M1
(see Eq. (2.39)) is less than 0.1 pixels for five consecutive iterations. Before examining the
robustness of our algorithm, we determined the benchmark performance of the MRF-based
land cover mapping when MI and PAN are perfectly registered. The resulting LCMs are
shown in Figure 2.11. Again, as we progress to greater values of 5, more connected LCMs are
obtained. The overall accuracy graph shown in Figure 2.12 agrees with the visual inspection
that the classification performance increases as the values of f§ increases. In this example, we
employ the overall accuracy rather than the percentages of mis-classified pixels used in
Example 1 since overall accuracy is more widely used performance metrics in remote sensing
image classification.
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(a) (b)

(©) (d)

Figure 2.11: LCMs for the perfect registration case for (a) p=0; (b) p=0.25; (c) p=0.50;
and (d) p=0.75

Figure 2.12: Overall accuracies for different values of § when MI and PAN are perfectly
aligned

Since the PAN has a higher resolution, we assume that it is aligned with the LCM, and we
only need to find map parameters of the MI. Here, the PAN has a higher resolution than the
multispectral image by the factor of four, and both MI and PAN are obtained from the same

satellite, the optimal map parameter vector relating the two images should be equal to
M°Pt =10.25,0,0,0.25,0,0].
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To investigate the robustness of our algorithm to displacement, scale and rotation errors,
we introduce the registration errors in displacement in x-direction, displacement in y-direction,
scale and rotation into the MI and PAN pair. If we introduce the displacements into the image
pair, the initial map parameter is set to be equal to

M° =10.25,0,0,0.25, x,0]
and

M° =[0.25,0,0,0.25,0, y],
for displacement errors in x- and y-direction, respectively. Here, the values of x and y are
set to be —5,—3,—1, 1, 3, and 5. For the scale and rotation errors, we assume that the both
images are aligned at mid points, i.e., the pixel (75,150) of MI is at a pixel (300,600) of PAN.
Next, we apply the initial scale errors, s, of—5%,—2.5%, 0%, 2.5% and 5% when
comparing with the PAN image to the multispectral image. Here, the scale errors of
—5%, —2.5%, 0%, 2.5% and 5% correspond to the initial scales of PAN to MI of 3.8, 3.9,
4.0, 4.1 and 4.2, respectively. For rotation errors, we rotate the MI by 6 degrees in the
counter clockwise direction. Here, the initial rotation errors 6 are set to be
-3,-2,-1,1,2, and 3 . The initial RMSEy; (see Eq. (41)) for all cases are given in
Table 2.10. Again, if our algorithm performs perfectly, the estimated map parameter will
converge back to M°Pt, In other words, we will eventually have M® = M°P*. Once the correct
map parameter vector is obtained, the classification accuracies of the LCMs should be equal to
that in the perfect registration cases (Figure 2.11 (a)-(d)). In this example, we again assign

1 . S
pMF (xs|Y,M°) = e the most extreme case where no prior information is given.

Table 2.10: The initial RMSEMI in meters (pixels in LCM) for various cases in Example 2

Error in x- direction | Error in y- direction ‘ Error in scale ‘ Error in Rotation |

X RMSEy y RMSEy s RMSEy ) RMSEy
5 12 (20) 5 12 (20) -5% 21.3 (36) 3 11.12 (19)
-3 7.2 (12) 3 72(12) | -25% | 10.7(18) 2 7.45(12)
-1 2.4 (4) -1 2.4 (4) 0% 0.0 (0) -1 3.72(6.2)

2.4 (4) 1 2.4 (4) 2.5% 10.7 (18) 1 3.72(6.2)

3 7.2 (12) 3 72 (12) 5% 213 (36) 2 7.45 (12)

12 (20) 5 220 1 11.12 (19)

The overall accuracies as the function of x, y, s,and 6 are shown in Figure 2.13 (a)-
(d), respectively. From all most all scenarios, the overall accuracies increase as the value of 8
increase since the MRF model promote more connected land cover maps, and, therefore,
remove the isolated misclassified pixels. However, for x =05 and y =15, the overall
accuracies of our algorithms decrease as [ increases. The main reason to these performance

degradations are due to the fact that our algorithm terminate on one of the local optima since

_54_



RLAUN RSA5480031

the EM algorithm employed in our work cannot guarantee the global optimum solution. The
evidence can be seen in Figure 2.14 (a) and (b). In Figure 2.13: The effect of initial
registration errors to the overall accuracies

(a), we observe that, in almost all of the initial values of x, the number of iterations
increases as the value [ increases. However, for x = 5.0, our algorithm terminates at only
75, 109 and 129 iterations for f = 0.25,0.5 and 0.75 whereas, for f = 0.0, our algorithm
terminates after 180 iterations. Similarly, we observe the same phenomenal in Figure 2.13 (b)
for Ax = 5.0 where the algorithm terminates at the lower number of iterations for f = 0.75
than f = 0.0,0.25 and 0.50. This result shows the effect of the initial registration errors to the
convergence of our algorithm. In most practical situation, such an large initial registration
errors is unlikely to occur since most remote sensing images are embedded with coordinate
information from a producer.

(a) (b)

(©) (d)

Figure 2.13: The effect of initial registration errors to the overall accuracies
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(2) (b)

() (d)

Figure 2.14: The effect of the initial registration errors to the number of iterations

Similar to previous example, we also compare the performance of our proposed algorithm
(PA) with two extreme cases where images are perfectly registered (PR) and there is no
registration error correction (NC) and the results are given in Tables 2.11-2.14. From this
comparison, we observe that if our algorithm converges to the global optimum solutions, the
resulting overall accuracies from our proposed algorithm are similar to those of the perfect
registration cases, and the significant improvements are obtained from the cases where there is
no registration error correction. The maximum performance improvements from no
registration error correction for each cases are 12.6% for Ax = —5 and f = 0.75, 12.4% for
Ay = =5 and f = 0.75, 17.4% for As = —5% and f = 0.75, and 14.9% for A = 3° and
B = 0.75. We observe that the maximum improvements are achieve at f = 0.75. This
observation suggests that a higher performance gain can be obtain by increasing the value of
B. Next, we also notice that our proposed algorithm can sometimes achieve even higher
accuracies than those of the prefect registration cases. The reason is due to the fact that our
algorithm requires more iterations than the scenarios where image pair is perfectly registered
since our algorithm terminates if both the estimated map parameters and the resulting LCM
converge whereas, in the perfect registration case, the process terminates if only the resulting
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LCM converges. Hence, our algorithm may terminate at lower percentages of changes in the
LCM, and result in more accurate LCM which results in higher precision.

Table 2.11: Overall accuracies for different values of B on two extreme cases and our
proposed algorithm for different initial displacement error in x-direction x where PA and NC
denote the cases of the proposed algorithm and no registration error correction, res

B | PR Ax =—=50 | Ax =-3.0 | Ax =-1.0 Ax = 1.0 Ax = 3.0 A =5.0
PA |[NC |PA |NC |[PA |NC |PA |NC |PA |[NC |PA |NC
0.0 |67.5 |67.7 |57.6 |67.8 | 622 |67.7 |669 |67.8 |66.7 |67.7 |61.8 |67.8 |57.0
0.25 [ 69.4 | 70.0 |58.8 | 69.8 | 63.7 |69.8 | 68.6 |69.9 |68.3 |70.0 |63.4 |59.3 |584
0.5 [703 |71.8 [59.7 |71.4 | 64.6 |70.6 | 69.6 |70.9 |69.2 |71.5 | 64.4 |60.2 |59.2
0.75 | 71.1 | 72.8 [60.2 | 722 | 652 |71.5 |70.3 |71.8 |70.0 |72.7 | 65.0 |60.4 |59.9
Table 2.12: Overall accuracies for different values of § on two extreme cases and our
proposed algorithm for different initial displacement error in y-direction y where PA and NC
denote the cases of the proposed algorithm and no registration error correction, res
B | PR Ay=-50 | Ay=-30 | Ay=-10 | Ay=1.0 Ay = 3.0 Ay = 5.0
PA |[NC |PA |NC |[PA |NC |PA |NC |PA |[NC |PA |NC
0.0 |67.5 |67.7 |57.6 |67.7 |622 |67.7 |669 |67.7 |66.7 |67.7 |61.8 |67.8 |57.0
0.25 1694 | 699 |58.8 [699 |63.7 |69.8 |68.6 |70.1 |683 |70.1 |63.4 |70.3 |584
0.5 703 |71.6 |59.7 |71.2 [ 64.6 |70.5 | 69.6 |71.8 |69.2 |71.8 | 644 |68.6 |59.2
0.75 | 71.1 | 72,5 | 60.1 |71.9 [ 652 |71.2 |70.3 |73.4 |70.0 |73.4 |649 |62.9 |599

Table 2.13: Overall accuracies for different values of f on two extreme cases and our
proposed algorithm for different initial scale error s where PA and NC denote the cases of
the proposed algorithm and no registration error correction, respectively.

B | PR As = —=5% | As = —-2.5% As = 0% As = 2.5% As = 5%
PA NC PA NC PA NC PA NC PA NC

0.0 |67.5 |67.8 |527 677 |[610 |677 |675 |678 |649 |67.8 |57.8
0251694 696 |534 695 [624 |70.0 |[694 |703 |66.1 |70.2 |589
05 |703 |71.1 |542 |706 [633 |71.0 703 |71.6 |67.0 |72.1 |59.7
075 | 71.1 | 72.1 |547 |71.5 |(642 |71.1 |71.1 |727 |67.6 |73.4 |60.1
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Table 2.14: Overall accuracies for different values of § on two extreme cases and our
proposed algorithm for different rotation error 6 where PA and NC denote the cases of the
proposed algorithm and no registration error correction, respectively.

B | PR Af = -3° Af = —-2° A8 = —1° A8 = 1° AG = 2° A8 = 3°

PA  |[NC |PA |[NC |PA |NC |PA |NC |PA |[NC |PA |NC
0.0 675 |67.6 573 |67.6 [60.8 |67.6 |653 |67.7 |64.8 |[67.7 |59.8 |67.8 |555
0.25 1694 | 699 |585 |698 [622 |69.7 |669 |699 |665 |69.7 |61.1 |69.8 |56.6
0.5 703 |71.6 |593 | 714 [63.0 |71.0 |67.8 |71.1 |674 |71.4 |62.0 |71.5 |574
0.75 | 71.1 | 73.0 |59.7 | 723 |63.6 |71.9 | 684 |719 |68.1 |72.5 [62.6 |72.9 |58.0

Another key performance metric of our algorithm is the resulting registration errors.
Figure 2.15 (a)-(d) show the residue registration errors in term of RMSE (in meters) between
the MS image and the LCM for different initial registration errors. We observe that, if our
algorithm converges to the global optimum solutions, it can successful reduce the registration
error down to around 1.8 meters in the LCM (or equivalently 0.75 pixels on MS image and 3
pixels on PAN image and LCM). These results imply that our algorithm can align images
together to the accuracy less than those of the lowest resolution (here is MS image). For each
initial registration error cases, the minimum RMEs of 1.718 (2.86 pixels in the LCM) meters
for Ax = 1.0, 1.672 (2.79 pixels in the LCM) meters for Ay = 1.0, 1.730 (2.88 pixels in the
LCM) meters for As = 0% and 1.704 (2.84 pixels in the LCM) meters for A@ = —1° occurs at
B = 0.75. These results suggest that, if our algorithm converges, the larger value of [
increases the accuracy of registration as well as the classification. However, for the cases of
Ax = 5.0 and Ay = 5.0, our algorithm cannot register the MS image to the LCM since our
algorithm is stuck in one of the local optima. The residue registration errors for Ax = 5.0 are
1.896 (3.16), 10.96 (18.3), 11.14 (18.6), and 11.41 (19.0) meters (pixels in the LCM), and for
Ay = 5.0 are 1.827 (3.05), 1.834 (3.06), 3.133 (5.22) and 11.57 (19.3) meters (pixels in the
LCM) for f = 0.0,0.25,0.50, and 0.75, respectively. Here, the initial displacement error
corresponds to the RME of 20 pixels in the LCM. Such a large initial RME are only found
when remote sensing images have significant different in spatial resolutions. LCMs derived
from remote sensing image dataset with such a large scale difference are often unreliable and
not often found in practice.

For performance comparison, we apply the normalized cross correlation method [16] to
register PAN and MS images together and the resulting RME is equal to 1.836 meters or 3.06
pixels in the LCM. From Figures 2.15(a)-(d), we found that, with proper parameter selections
and the initial registration errors, our proposed algorithm can achieved higher registration
accuracy than those from the normalized cross correlation method. For example, our
algorithm obtains the registration errors of 1.718 (2.86 pixels) meters for f = 0.75 and
Ax =1, 1.671 (2.79 pixels) meters for f = 0.75 and Ay = 1, or 1.702 (2.84 pixels )meters
for § = 0.75 and AG = —1°.
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Figure 2.15: The effect of the initial registration errors to the residue registration error

of our proposed algorithm in Example2
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3. Rice Cultivation Date Estimation Using the Cloudy-Multi-Temporal Moderate
Resolution Imaging Spectroradiometer

3.1 Introduction

As an agricultural country, Thailand has many vital industrial crops such as rice, oil palm,
rubber tree and cassava. Among them, rice is the most important crop since it is a major
exporting vegetation product of Thailand and it is also a staple food of many people around
the world. Particularly, Thai HomMalee rice is also the federation of rice which is famous
around the world. In Thailand, rice fields are located mostly in the central and north-earth
regions which are low-land and flat areas. Due to its low attitude and flatness, the rice
cultivation in these areas can be easily damaged by natural disaster such as floods, draught
and storm [48]. In order to evaluate the damage in rice fields, the cultivation date is a crucial
factor that can used to assess the compensation from those disasters, can be used in estimating
crop progress as well as crop yield in an agricultural support system [49].

To achieve this goal, we need the monitoring system that can cheaply monitor the rice
field area in the county-wide area. A good candidate for such the monitoring equipment is the
remote sensing satellite due to its synoptic view and map-like format. Among the remote
sensing satellites, the Modorate Resolution Imaging Spectroradiometer (MODIS) is most
promising since its daily repeated cycle and free access to the raw and processed data. In
literatures [50], [51], and [52] the time-series data of the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI) are the most commonly used remote
sensing data. They have been used extensively in vegetation-condition monitoring, land-cover
classification and mapping, and environment-impact analysis. The EVI has a higher sensitive
than that of the NDVI in high biomass areas, but the EVI have only 500-m resolution on
MODIS imagery [53] which is too coarse to be used for most rice field in Thailand. The
NDVI, on the other hand, can provide a higher resolution than EVI. However, it includes
various noise components such as clouds, aerosols and bidirectional reflectance distribution
factors. Therefore, noise reduction is important method before data will be used [54].

Time-series NDVI has been used for detecting phenology dates of corn and soybean.
Zha et al. [49] proposed crop phenology date estimation method in the United States by
comparing two techniques between Savitzky-Golay filter and the double logistic function to
smooth MODIS NDVI data from daily surface reflectance data at 250 m resolution and then
using first and second derivatives to extract date from smoothed data. They concluded that
two techniques have their own advantages and their error result is less than 2 weeks.

The work by Kleynhans er al. in [55] used the extended Kalman filter and a triply
modulated cosine function phase with the 8-days composited MODIS NDVI data at 500 m
resolution to classify between settlement and natural vegetation in northern South Africa. The
NDVI data are classified by its mean, amplitude and phase parameters. Then, the classifier
used the mean and amplitude parameters to divide a remotely sensed image into the settlement
and natural vegetation areas. The classification accuracy result from their approach is higher
than those from the method using the Fourier transform. Kleynhas et al. also used the same
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method and the same data to estimate the land cover changes in [56]. Here, the mean and
amplitude parameters are used to characterize changes in term of a change index. Their result
of change detection has an accuracy of 89% with a 13% false alarm rate.

In this study, the extended Kalman filter and a triply modulated cosine function with
MODIS NDVI time-series data (8-days composited with 250 m resolution) are applied to
estimate rice cultivation date. The triply modulate cosine function can be divided into 2
components, namely, the long-term trend and the periodic part [57]. Since rice cultivation
changes from low NDVI to a high NDVI value from the growing period and return from high
to low NVDI for harvestmen. Hence, the rice growing period for one cycle produces a NVDI
signal that appears to be the inverted bell structure. Therefore, the cultivation time of rice
should be appeared in the area where the NVDI signal changes from low to high values. In our
work, we use the point where the season variation of the seasonal part from the triply
modulate cosine function crosses a given threshold as the rice cultivate date.

3.2  Data Description

The study areas consists of Bangkok, Chachoengsao, Nonthaburi, Saraburi, Chainat,
Chaiyaphum, Khonkaen and Ayutthaya provinces with the rice cultivation information
obtained from the rice department of Thailand (Figure 3.1). Chainat and Khonkaen provinces
are located in northeast part of Thailand and the others are located in the central area of
Thailand. Northeast Thailand is arable for major rice. The rain-fed rice or major rice is the
highest quality rice which can be cultivated only one time in a year. They are planted in rainy
season and have crop cycle of about six months. Almost all irrigated rice or out of season rice
are grown in the central of Thailand. They can be cultivated many times in a year with the
cultivation period about four months. The irrigated rice had many characteristics such as two
crop cycles in a year and three crop cycles in a year. Examples of the rice phenology are
showed in Figure 3.2 for rain-fed and irrigated rice.
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Figure 3.1: Study areas and rice coordinates relate to data from the National Rice
Department.

Figure 3.2: NDVI rice phenology (a) rain-fed rice; (b) two crops cycle in a year; and (c)
three crops cycle in a year.
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3.2.1  Ground-truth

The rice cultivation information provided by the rice department contains the UTM
coordinates, province, planting date and harvest date of rice. This ground data are used to
examine the accuracy of the proposed rice estimation date algorithm. The obtained data can be
divided into 45 samples for rain-fed rice, 24 sample for two crops cycle and 15 samples for
three crops cycle. In order to separate areas into rice and non-rice, we employ the K-mean
algorithm to classify the MODIS NDVI time-series data into two classes since the NDVI
pattern from rice and non-rice area is very different (Figure 3.3).

Figure 3.3: NDVI pattern; (a) Rain-fed rice; (b) Water;(c) City; and (d) Forrest.

3.2.2  NDVI Time-series Data

The 8-day MODIS/Terra data (MODO09Q1) acquired from NASA from 2000 to 2012
used in this analysis. It has two spectral bands for red and near-infrared spectral bands with a
spatial resolution of 250 meters. The data were re-projected to the Geographic coordinate over
Thailand. The NDVI is used to study the vegetation growth estimation is normalized
transform of the near-infrared to red reflectance ratio follow as
(NIR — RED)

NIR + RED

where NIR and RED are the digital numbers in near-infrared and red spectral bands,
respectively. Since vegetation reflect the NIR color spectral better than the red color, the
NDVI has a higher value if there is more vegetation, and NDVI is low when a scene does not
have any vegetation. Usually, the NDVI data is between -1 and 1 where 1 and -1 indicates full
vegetation and no vegetation, respectively. To create the time-series dataset for this 13 year

NDVI =
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period; the NDVIs for every 8day MODIS scene were computed from the 8-day MODIS data.
There are in total of 587 NDVI data for each pixel from Feb. 18, 2000 to Dec. 11, 2012.

33 Proposed Algorithm

3.3.1 A triply modulated cosine function
The NDVI time-series for a given pixel is modeled by a triply modulated cosine
function [8][9] given as

Yk = U + arcos(wk + @) + ny (3.1)

where y;, is the observed value of the NDVI time-series at time k and ny is the noise sample
at time k. Here, the cosine function at the time k is modeled to have the angular frequency of
w, mean of u;, amplitude of a;, and phase of ¢,. The angular frequency can be explicitly
computed as w = 2rf, where f is based on the annual vegetation growth cycle. Given the
eight daily composite MODIS data, f is equal to 8/365 in rain-fed rice data, and 8/240 in
irrigated rice data. The values of pu;, aj and ¢, are functions of time and must be estimated
given y, fork € 1,...,N where N = 587.

3.3.2  The Extended Kalman Filter

The estimation of triply modulated cosine function parameters is nontrivial and
requires a nonlinear estimator. According to the EKF formulation, for every increment of k
(the discrete time), a state vector xj, is defined containing the parameters to be estimated in the
form x;, = [Mk Ak  ®x]T. The relation between x; and xj_; is given by a function f(.)
which is a known and can be a nonlinear function. The state vector xj is related to the
observation vector y; via a nonlinear measurement function h(.). Due to noisy nature of the
measurement, both systems are corrupted with unknown noises, and they can be written as

xi = fO—1) +wy, (3.2)

and
Vi = h(xy) + vy (3.3)

for the estimations of the state and observation vectors, respectively. The terms w, and vy, are
process and observation noises, respectively. The state vector parameters may be estimated
over time k by recursive iteration based on the observation data y, up to the time k. In the
observation equation (3), yy is the predicted measurement.
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3.3.3  Cultivation Time Estimation Method

Interpretation of the term p;, and a; cos(wk + @) of a triply modulated cosine
function can be given that y;, can be considered as the trend variation and should be
associated with long term vegetation changes such as the deforestation whereas the term
ay cos(wk + ;) can be considered as the seasonal variation, and should be related to the
growth of rice. As a result, we use only the term a; cos(wk + @) in the estimation of
cultivation time in this paper.

Before cultivation, the rice field is clear of vegetation as a result, the NDVI is low. As
rice grow up, more vegetation cover the rice field and the NDVI increase. However, in certain
area, farmer put down the some other crops such as green beans or grasses before cultivate
rice to increase the Nitrogen in the soil. Hence, we identify the rice cultivation date as the first
time instance that seasonal term a cos(wk + ¢,) is greater than a predefined threshold 7
after the lowest point.

34 Experimental Results

The initial state parameters of EKF method as well as the variances of observation and process
noise are estimated based on known training data from the study areas. The training data were
used all of time-series data at its pixel. The initial state parameters calculated using simple
mathematic formula as

~ ZN:NDVIi (3-4)
U1 = : N
=1
and
max(NDVI) — min(NDVI) (3.5)
a, =
2

where N is the number of train time-series and NDVI; is the NDVI component of the time-
series i. The NDVI time-series data starts at Feb. 18, 2000 so the rain-fed rice should start in
stage after harvesting and the irrigated rice should start in maturing stage from the observed.
When comparing the characteristics of the cosine, the initial phase ¢, parameter is assumed to
be 120 degree for rain-fed rice and 0 degree for irrigated rice.

Brute-force algorithm was selected to find best case of noise in mean, amplitude and
phase from 0.01 to 5 and observation noise from 0.1 to 50. Here, we fix the noise of mean,
amplitude, phase and observed be equal to 0.1, 0.05, 1 and 20, respectively in rain-fed rice
area and 0.1, 0.05, 100 and 40, respectively in irrigated rice area.

The NDVI time-series data are submitted to the EKF model and the resulting estimated
NDVI data are plotted together with the raw NDVI data in Figure 3.4 for rain-fed rice, and in
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Figure 3.5 for irrigated rice. The raw NDVI data appears to be very noisy due to cloud and
aerosol in the atmosphere during the image capturing. The predicted NDVI data from the EKF
appears to be less noisy, and smooth. The EKF-derived mean is an average of NDVI time-
series. It represents the averaged vegetation coverage of the pixel of interest. Hence, the mean
parameter cannot be used to identify the cultivation of rice. The other two remaining
parameters, the amplitudes and phases are generated to the seasonal variation that related to
the cultivations of rice. Here, we observe that the amplitude parameter fluctuates up and down
corresponding to the cultivation and un-cultivation period of the rice. In this work, we choose
the threshold 7 to be -0.02 and -0.07 for rain-fed and irrigated rice areas, respectively. Figures
6 and 7 display the seasonal terms and the corresponding cultivation dates for the rain-fed and
irrigated rice, respectively.

Figure 3.4: Comparing between the raw NDVI time-series data and EKF measurement
data in rain-fed rice from 2000 to 2012.

Figure 3.5: Comparing between the raw NDVI time-series data and EKF measurement
data in irrigated rice from 2000 to 2012
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Figure 3.6: (top) Intersection of two lines between the seasonal variation and crossing
line and (bottom) Rain-fed NDVI time-series with estimated cultivation dates

Figure 3.7: (top) Intersection of two lines between the seasonal variation and crossing
line and (bottom) Irrigated NDVI time-series with estimated cultivation dates.

The results shown Table 3.1 is the estimation date error in terms of rice crop cycle. In
single rice crop, the accuracy when errors are less than +8 and +16 equal 53.33 and 75.56
percent, respectively. The accuracy in double rice crop equal 54.17 and 83.33 percent.
However, for area where rice is cultivated three times in a year, the estimation accuracy is low
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accuracy because of NDVI time-series data had been rapidly changes and 8-day composite is
too coarse to detect this rapid changes. .

Table 3.1: Error comparison between the ground truth and estimated rice cultivation date.

Rice crop cycle | Error ratio between ground-
truth and estimation date
< < Overall
+8days | X16days | data
Single rice crop | 24 34 45
(53.33%) | (75.56%) | (100%)
Double rice | 13 20 24
crop (54.17%) | (83.33%) | (100%)
Triple rice crop | 1 4 15
(6.67%) | (26.67%) | (100%)

3.5 Discussion

The estimated rice cultivation date using the EKF based on a triply modulated cosine
function can estimate the cultivation date in rain-fed rice and irrigated rice (two crops cycle)
with reasonable accuracies. However, for irrigated rice which is cultivated three times per
years, it has low estimation accuracies due to high cloud cover in the rainy season since clouds
block the reflectance from the ground and result in incorrect NDVI data. Since the rice is
cultivated three times per year, it has a high chance that the cultivation time is coincided with
high cloud cover period. Moreover, since our data is eight-day composites, it cannot cope with
the rapidly changes in the three crop-per-years rice.

In Figure 3.8, we display the cultivated dates for the rain-fed rice in June 2004 in Khonkaen
provinces. We observe that the rain-fed rice in the areas near water sources was grown faster
than other area. We also observe that the cultivation dates of neighboring proximity are likely
to the same since all rain-fed rice will start cultivation after the first rain of the rainy season
and the neighboring area are likely to have similar date for the first rain.
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Figure 3.8: (top) Location of rain-fed rice in Khonkaen; and (bottom) Distribution of
rain-fed rice cultivation date in Khonkaen and near province in 2004
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ABSTRACT

The traditional land cover mapping (LCM) algorithms assume that
images are perfectly registered. In practice, this assumption may
not always be valid since these images may be acquired from dif-
ferent sensor platforms, or at different time which may suffer small
variations in platform flight paths. As a result, it is imperative to
incorporate the registration error into the land cover mapping algo-
rithm. In this paper, we propose a joint LCM and image registra-
tion algorithm under the Markov random field model. Here, the
expectation-maximization algorithm is employed to search for the
optimum LCM as well as the map parameters. Our result shows that
the proposed MRF-Based approach can increase the accuracies of
the classification maps as well as the map parameter estimation.

Index Terms— Remote sensing, joint land cover mapping and
registration, Markov random fields, EM algorithm

1. INTRODUCTION

A Land cover map is an important application of remote sensing
data. A number of image classification algorithms [1] have been de-
veloped to extract this information from a variety of remote sensing
data. The performance of these classification algorithms depends
on the quality of the input data, i.e., the classification accuracy is
improved if features from different classes become more separable.
One approach to increase the separation of classes is to use multi-
temporal or multi-sensor data. Reports in [2, 3, 4, 5, 6] has shown
that the accuracy of the resulting land cover map can be greatly
increased when multi-sensor data are combined. The common as-
sumption in these papers [2, 3, 4, 5, 6] is that images are perfectly
registered, i.e., the corresponding pixels from different images oc-
cupy the identical area in the actual scene. In practice, this assump-
tion may not always be valid since these images may be acquired
from different sensor platforms. Even with images from the same
platform, this assumption of the perfect registration can still be vio-
lated if images are acquired at different times due to the small vari-
ations of the platform flight path. As a result, it is imperative to
incorporate the registration error into the land cover map algorithm.

As a result, in this paper, we consider the problem of land cover
mapping of mis-registered images. Here, we model that the observed
multispectral images are a remapped version of the registered images
where the remap parameters are partially known, i.e., there are a
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small errors in the remap parameters. Similar idea can be found
in the work by Chen er. al. [7] where the joint image fusion and
registration was considered. In their paper, observed images are the
remapped version of the original image with possibilities of polarity
reverse and/or DC offset. However, their goal is different from us
since their goal is to estimate the original image whereas the problem
considered in this paper is to estimate the LCM.

Since the LCM is more likely to occur into patches of land cover
classes, the Markov random field (MRF) is employed as the model
of the the LCM where the optimum LCM is chosen based on the
maximum a posteriori (MAP) criteria. Under the perfect registra-
tion scenario, the resulting LCM has the minimum probability of
error among all other mapping algorithms. However, if the im-
ages are not perfectly aligned the resulting probability of error is
not optimum. To improve the mapping accuracy, the expectation-
maximization (EM) algorithm is used as the parameter estimator.
For every iteration of the EM algorithm, a new set of the map param-
eters are computed and the a posteriori probability is approximated.
Our result shows that the accuracy in terms of both the percentage of
correctly classified pixels and mis-registration errors can be signifi-
cantly improved.

2. PROBLEM STATEMENT

Let S be a set of sites (pixels) and A € {0,1,...,L— 1} be the phase
space (class labels). Furthermore, let X € AS be the LCM of the size
M x N pixels. Note that L is the number of land cover classes of
interest. The LCM is assumed to satisfy the MRF properties with a
Gibbs potential V¢ (X) [8]. Hence, we can write the marginal proba-
bility density function (PDF) of the LCM as

CeS

Pr(X) = 5-exp ( y VC(X)> ()

where Zx is a normalizing constant. Note that X is a realization
of a LCM, C is a clique, and Y <V (X) is called the Gibbs energy
function. A clique is a singleton or any subsets of whose two distinct
elements are mutual neighbors. The popular model of the Gibbs
energy function is the Ising model [8], given by,

—B; if x; = xrand r € N
B;ifxg#x,andr e Ny . 2)

Vs.,r (X) =
ol 0;r ¢ Ny

IGARSS 2012


fengpwk
Typewriter

fengpwk
Text Box
Reprint


where N is a set of a neighboring site of s and f3 is a non-negative
constant. In this paper, this model is also applied to describe the
LCM because this model promotes the LCM with connected land
cover classes. Let Y| € R5*B1 and ¥, € R5*B2 be the observed reg-
istered images of the scene S capturing by two different sensors or
the same sensor at two different time where B; and B, are the num-
ber of spectral bands of Y;and Y;, respectively. Here, we assume that
observations from Y| and Y, are statistically independent given the
LCM,i.e.,

PN, |X)=pM[X)p(Y2[X) 3)
where p denotes the PDF. Furthermore, for a given LCM, the obser-

vations of Y] and Y, from different site (pixels) are assumed to be
statistically independent, i.e.,

p(YalX) = HP (Yas |xs) €

seS

where a € {1,2} is an index indicating the image of interest, and
Yas € RB« and x, are the observed vector of an image Y and the
class label at a site s, respectively.

Due to imperfections in the image acquisition and capturing pro-
cess, both images are not perfectly aligned to the LCM. Here, we
denote 6, as the unknown map parameters for Y, over X. In other
word, if 8, is known, the observed image can therefore be registered
with the LCM. Hence, the conditional PDF of the mis-registeredY,
given X and the mapping parameter is given by

p(Ya ‘Xvea):HP(ya,S(ea)‘XS)‘ (5)
seS

3. OPTIMUM SOLUTION AND PROPOSED ALGORITHM

For given map parameters, the LCM can be obtained under the max-
imum a posteriori (MAP) criteria as

XM = arg {m)gx Pr(X[¥1,¥2.6,,6 )] } | ©

where Pr(X|Y1,Y2,01,6,) is the posterior probability of the LCM
given observed images and map parameters. The resulting probabil-
ity of error is minimum among all other classifiers [9]. By using the
definition of conditional probability, eq. (6) can be rewritten as

opt __ p(11,Y21X,01,6,)Pr(X)
X *arg{mxax[ p (Y1, Y]61,0) SN

Since p(Y1,Y»]6;,6,) is independent of the choice of X,eq. (7) re-
duces to

Xxopt :arg{m)?x [p(Y1,Y> |X791,92)Pr(X)]} ®)

Substituting eq. (1) and eq. (5) into eq.(8) the optimization problem
becomes

x7 g {2 61,03} ©)
where
E(61,6:) = Ei(61)+Ex(62)+ ) Ve(X) (10)
ées

is called the energy function of a LCM given observations and map
parameters, and E, (6,) = YsesIn[p (Ya,s(64) x5 )] for a € {1,2}.

In general, E (01, 6,) is a non-convex function and, therefore,
conventional optimization algorithms cannot be applied to solve
eq. (9). Furthermore, the number of possible LCMs is extremely
large. Therefore, we approximate eq. (10) by using the mean field
theory [10]. Basically, for a pixel s and a clique of type C = {s,r},
the potential function Vi, ,, (xs,x,) is replaced by its expected value

<V{S7,}()cs7)c,)>xr‘y]7}/2791762 where (F(x)), denotes the expected

value F' of over a random variable x. From the above equation, the
energy function defined in eq. (10) can be approximated as

E(61,6) ~ Y wi(61,6,) (an
seS
where
W (61,62) =w! (1) +w2(62) + ¥ <v{s_,}(xs,x,)> ,
reN; x(r)
and

w§ (6,) =In[p (Ya,s(6a) x5 )] fora € {1,2}

Since wy (6,0,) depends only on x;, the optimization problem of
X reduces to search for the individual x; that minimizesw; (6, 6,).
Hence, the optimum solution can be easily obtained. Furthermore,
we observe that the right hand side of eq. (11) can be written as the
addition of the configurations of LCM from an individual pixel. As
a result, the posterior probability of a configuration at a pixel s, x;,
given the mis-registered observations is approximated as

Pr (x; |Y1,Y2, 61,6, ) ~ Be™"s(01:02) (12)

where B is a normalizing constant.

For the parameter estimation, the EM algorithm [11] is em-
ployed in this paper. The EM algorithm seeks the solution of the
MLE by iteratively performs two steps. First, the EM algorithm find
the expected value of the log-likelihood function of the observed
images and the LCM given the map parameters over the conditional
PDF of a LCM given observed images and the current estimated
parameters, i.e., the EM algorithm computes the following equation,

0(61,6(/61,6) = (In(p(11,%2,X|61.62))) v, vy 00 (13)

This step is called the E-step. We observe that the computation of
the expected values in the E-step requires the posterior probability
of X given the observations and the estimated map parameters. By
using the result, in eq. (4), eq. (5) and eq. (12), the expected value
can be approximated as

0(61.6,(/61,05) ~DY gy(61,6,)e" (%62 (14)
seS
where D = (Pr(X))x\y, y, 6:,0: does not depend on 6jand 6;, and

45(61,62) =1In[p (y1,5(61),¥2,5(62)]xs)] -
After the E-step, the EM algorithm estimates a new set of the
map parameters by maximizing eq. (13), i.e.,

(o .07") = oy lo(ovsfjob )] 19

The second step, here, is called the M-step. By using the approxima-
tion in eq. (14), eq. (15) becomes

<9{+179£+l)
— max ZSESZ?;QI In [p (YI,s(el):YZ,s(GZ)l-xs = l)] (16)
(61,0) x e "s(61,6;

By combining the result for eq. (9) and eq. (16), our algorithm
can be summarized as follows.
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(a) (b)

Fig. 1: Observed images; a) SMMS image and b) PALSAR Image

Fig. 2: Ground Data (green: sugarcane and red: others)

—_

. SetPr(xs =1]Y1,Y2,01,6,) = %, set 610 and 6§) to some initial
values, and let 7 = 0.

[\

. Compute the expected value of potential functions V/; (o5, X7)
or <V{w} (xs,xr)>

3. Approximate a posterior probability using eq. (12) and
choose the value of B such that the total probability is one.

x,|Y1,Y2,61,6,

4. Estimate a new set of mis-registration parameters using eq.
(16).

5. Sett =1+ 1. If t is greater than some predefined values,
terminate the algorithm and compute the LCM using eq. (9)
with the energy function defined in eq. (11). Otherwise go to
Step 2.

4. EXPERIMENTAL RESULT

In this example, we use one optical image of size 335 x 332 pixels
(Fig. (1a)) acquired by CCD sensor on board the small multi-mission
satellite (SMMS) and one SAR image of size 670 x 665 pixels (Fig.
(1b)) acquired by PALSAR. Both images covered the part of Sakaew
province in Thailand. The SMMS image was taken on Nov 27",
2010 while PALSAR image was taken on Aug 28, 2010. In this
example, only two classes are considered, namely, sugarcane and
others, and the ground truth image is shown in (2) where the green
and red colors are associated with sugarcane and others, respectively.

To test the performance of our algorithm, we assume that the
PALSAR image is perfectly registered to the LCM. Only the map
parameter of the SMMS image is unknown. From our dataset, we
manually register the SMMS image with the PALSAR image to ob-

Fig. 3: The LCM without registration error correction

tain the map parameter which can be written in a matrix form as

_| ™ r2 s
6, =
21 2 13

where r11 and rp; is a scale factors, ro; and rp; are the skewness, 73
and rp3 are displacement, in column and row directions, respectively.
The correct values are rj; =rypp =05, and rip =) =ri3=rp3 =
0. Next, we modify the map parameters to new values of r|| =
0.517 oy = 0.49, rFip =nmn1 = 0, ri3 = —2, and 3 = 2 which results
in the mis-registration of 6.7 pixels on average. Hence, the incorrect
map parameter is given by

(o051 0

M= -2.0

0 049 20

Then, the LCM are obtained directly from the mis-registered im-
age pair (Fig. 3), and we found that the initial LCM has many iso-
lated pixels and the percentage of the correct classification is equal
to 73.28%.

Next, the proposed algorithm is applied to the above dataset. The
whole process is implemented using CUDA on NVIDIA GeForce
GTS 450 with 1 GB memory. Each iteration takes between 3 and
4.5 seconds to perform. Here, the value of 3 is set to be between
0 and 1 (see eq. (2)), and the algorithm terminates when the num-
ber of iteration, ¢, is greater than 500 and the resulting LCMs are
given in Fig. 4 for B = 0,0.3,0.6 and 1.0, respectively. From eq.
(2), the value of 8 controls the probability that the configurations of
neighboring pixels are the same. In other words, the configurations
of neighboring pixels are more likely to the same as the value of 3
increases. By comparing the resulting LCM for f =0 and 8 = 1.0,
we observe that the LCM for § = 1.0 is more connected whereas,
for B = 0, there are a large number of isolated pixels in the LCM.
Note here that B = 0 implies there is no interaction among neigh-
boring pixels. The percentages of correct classification are equal to
74.09% (+0.81%), 77.49% (+4.21%), 78.17% (+4.89%) and 78.47%
(+5.19%) for B = 0,0.3,0.6 and 1.0, respectively. We note here that
the number inside parenthesis is the improvement in percentage from
the initial LCM. Again, these results further emphasize that the MRF
model increases the performance of the classification process.

Another key performance of our algorithm is the accuracy of
the estimated parameters. Here, if the algorithm performs perfectly,
the original scale factor and the displacement should be obtained
without additional modifications in skewness. Table 1 displays the
estimated parameters, and the corresponding registration errors are
1.566, 1.013, 1.377, and 2.1667 pixels for § =0, 0.3, 0.6 and 1.0,
respectively. We observe that there exists an optimum value of f that
results in the minimum registration error. Furthermore, we also plot

5416



(@ (b)

(© (d)

Fig. 4: The resulting LCM for the value of8 equal to a) 0.0; b) 0.3;
¢)0.6;and d) 1.0

| B [ 0.0 [ 0.3 [ 0.6 [
1 0.4984 | 0.500 | 0.500 | 0.501 0.5
2 0.001 0.000 | 0.000 | 0.001 0.0
1 0.001 0.001 | 0.001 | 0.001 0.0
) 0.498 0.498 | 0.497 | 0.496 0.5
3 0.241 | -0.301 | -0.354 | 0.989 0.0
3 0.308 0.288 | 0.466 | 0.775 0.0
Error (pixels) 1.566 1.013 1.370 | 2.166 -

Table 1: The resulting estimated map parameters and mis-
registration errors

the mis-registration error as the function of iterations number for all
cases in Fig.5. We observed that higher value of 8 results in a slower
convergence rate of the estimatation of the map parameters.

5. SUMMARY

In this paper, a joint image classification and registration based on
the MRF model is proposed. It is assumed that the observed im-
ages are remapped version of the registered image to the LCM. The
results show that our proposed algorithm can successfully register
images as well as produce more accurate LCMs.
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Abstract: Traditional multi-modal and multi-temporal land cover mapping algorithms assume that all
images are perfectly aligned. However, since multi-modal and multi-temporal images are likely to be
obtained from different satellite platforms and/or acquired at different times, perfect alignment is very
difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct
registration errors as well as perform an accurate classification. In this paper, we proposed a joint
classification and registration technique based on a Markov random field (MRF) model to
simultaneously align two or more images and obtain a land cover map (LCM) of the scene. The
expectation maximization (EM) algorithm is employed to solve the joint image classification and
registration problem by iteratively estimating the map parameters and approximate posterior
probabilities. Then, the maximum a posteriori (MAP) criterion is used to produce an optimum land
cover map. We conducted experiments on a set of four simulated images and one pair of remotely
sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results
show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an
unregistered image pair can achieve an accuracy as high as when images are perfectly aligned.
Furthermore, the registration error can be greatly reduced.

Keywords: Joint land cover mapping and registration; Markov random field; optimum
classifier; mean field theory; EM algorithm

1. Introduction

Remotely sensed images captured from satellites have been widely used for land cover mapping
applications because of their capability to allow classification of different land cover types without
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having to physically assess the area of interest. In a situation where a single image does not provide
sufficient classification performance, integrating multiple images of the same area is a common
practice to increase the discrimination capability. Some applications, especially agricultural field
mapping, particularly benefit from using multi-temporal sequences of satellite images because
vegetation appearance often changes according to the season. Moreover, multiple input images from
different satellites can be used to further improve classification performance by providing better
spectral separation characteristics that a single sensor alone cannot provide. A practical application is
reported in [ 1] where multi-temporal sequences of synthetic aperture radar (SAR) images and a single
optical image were used. The results from this study showed that overall discrimination performance
was increased, consistent with other similar research where multi-sensor data have been combined.
Skriver, et al [2] emphasized the benefits of using multi-temporal SAR images in short succession
(weekly to monthly acquisitions) for crop classification. These authors reported improved
classification accuracy by using multi-temporal information. The authors in [3'] exploited the crop
phenology information to determine the growth stages by using multi-temporal TerraSAR-X,
ASAR/ENVISAT and PALSAR/ALOS. They reported a significant correlation between
backscattering coefficient and the normalized vegetation index obtained from SPOT4-5 images.

For multi-sensor image classification, the registration process is a crucial initial step.
Registration aligns multiple satellite images into a common coordinate system. Only when all of the
input images are perfectly registered can a classification algorithm be applied. Otherwise mis-
registration will produce classification errors. In practice, perfect registration may not always be
achievable since there are some unknown variations on satellite platforms and flight paths when
capturing images. As a result, the overall classification accuracy is likely to suffer from mis-
registration effects.

Mahapatra and Sun [4] proposed an idea to incorporate the reduction of image registration error
into an image classification tool. They attempted to integrate the segmentation information into an
elastic image registration by using a Markov random field model. In their work, the configuration of a
pixel contains both displacement of a pixel and a segmentation label. The multi-resolution graph-cut
approach was employed to achieve sub-pixel registration accuracy. Although their results produced
remarkable performance for non-rigid body image registration, this algorithm cannot be applied for
rigid body image registration problems such as in the remote sensing since their model does not allow
one set of the registration parameters to govern the remapping process of entire image. Furthermore,
since they only consider the segmentation problem, their algorithm does not cover the multi-class
scenarios that are often considered in the land cover mapping of remotely sensed images.

Another work by Chen ef al. in [5] investigated the problem of joint image fusion and
registration. In their paper, the observed images were remapped versions of the original images with
possibilities of polarity reverse and/or DC offset. Chen et al. used an expectation maximization
algorithm to solve the estimation problems of registration parameters and the true scene
simultaneously. Different pairs of multi-sensor images were tested against the proposed joint process.
Under the assumption that registration performance affects the quality of fusion result, the authors
reported that better fusion performance can be achieved due to reduced registration errors. However,
their work did not cover the problem of image classification in the presence of image registration
erTors.
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In this paper, we employ an approach similar to [5] to incorporate correction of mis-registration
effects into the land cover mapping process. To do this, we assume that remotely sensed images are
derived from a common unobservable land cover map (LCM), and then distorted, with unknown
remapping parameters, into the observed remote sensing images. (Note that if these map parameters
are known, the observed remote sensing images can be directly aligned with the land cover map.)
Next, we assume that a land cover class of interest is more likely to occupy several connected patches
than a number of isolated pixels. As a result, the Markov random field (MRF) is employed as the
model of the LCM. MRF models have been used in various fields ranging from statistical physics [6]
and [7] to remote sensing. The original work by Geman and Geman [8] on MRF-based statistical
methodology in 1984 has inspired a continuous stream of remote sensing researchers to employ the
MRF model for a variety of image analysis tasks (e.g., [9] — [15]). Solberg et al. [9] developed MRF-
based algorithms for image classification and change detection using multi-source data. A significant
increase in classification and change detection accuracy was obtained using an MRF based
classification algorithm compared to other approaches. Kasetkasem and Varshney [9] and Bruzzone
and Prieto [11] also applied MRF models for an image change detection problem. Similarly, Xie et al.
[12] applied the MRF model to the recurring problem of speckle reduction in synthetic aperture radar
(SAR) images. These promising results on image analysis problems have encouraged us to employ the
concept of MRF models to the problem of generating an LCM.

Based on our image model, the registration and classification process can be performed in the
following fashion. First, we estimate the unknown map transformation parameters based on the
maximum likelihood (ML) criteria, and, then use these parameters to computer posterior probability
for different arrangements of the land cover maps, where the MAP classifier selects the most likely
LCM. However, in order to find the map parameters, the conditional probability of observed images
given the map parameters is needed. This conditional probability can only be obtained by summing the
joint probabilities of observed images and LCM associated with the map parameters, over all possible
LCMs. This is impossible to obtain in most practical scenarios. As a result, the expectation-
maximization (EM) algorithm [16] is also employed here. The EM algorithm iteratively searches for
the most likely map parameters. The resulting parameters converge to one of the local optimum points
of the likelihood function.

For a given iteration of the EM algorithm, our method computes the expected value of the
logarithm of the probability of the observed images and land cover map given the map parameters,
based on the a posterior probability of the LCM given observed remote sensing images and the current
estimated map parameters. Then, new map parameters are obtained by maximizing the expected
values. It has been shown in literature [16] that the new map parameters always correspond to a higher
value of the likelihood function. Since each iteration of the EM algorithm calculates a posterior
probability given the current estimated map parameter, an optimum LCM under MAP criteria can be
easily obtained by choosing the LCM that maximizes a posterior probability. In other words, an
optimum LCM for the most recent estimate of the map parameters under the maximum a posteriori
(MAP) criterion is obtained on every iteration of the EM algorithm.

The remainder of this paper is organized as follows. The next section will define the problem and
our model. In Section 3, we will derive the optimum land cover mapping and image registration
process based on the model presented in Section 2. The optimization problem and its corresponding
solution are presented in Section 4. Our experiments to evaluate our proposed approach are described
in Section 5. Finally, Section 6 offers concluding remarks.
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2. Problem Statement

Let X(S) denote the LCM where S is a set of pixels. We assume that there are L land cover
classes in the area of interest and we let A € {0,1,...,L — 1} be the class labels. Therefore, we can

express the LCM as X(§) € A®. The label of LCM at pixel s is denoted by x; which can also be
called the configuration of X(8) at the site s. Since land cover classes are more likely to occur in
connected patches in the LCM than isolated pixels, the LCM is assumed to satisfy the MRF properties
with Gibbs potential V(X). Hence, the marginal probability density function (PDF) of a LCM can be

written as
Pr(X) = %exp <— > vc<x>> (1)

ccs
where Zy is a normalizing constant, C is a clique, and E(X) = Y,ccs Vo (X) is called the Gibbs energy

function 8. Cliques are singleton or groups of pixels such that any two pixels are mutually neighbors.
Figure 1 shows all possible clique types for 4- and 8-neighborhood systems. The value of the Gibbs
potential function depends on the configurations of the entire LCM and the clique. Usually, low values
of the potential function correspond to similar configurations whereas high values correspond to
dissimilar configurations of a clique. For instance, the Ising model 5 and 7, given by,
—B;if x; = x, and r € NG,
Visy(X) =1 B;if xg # x, andr € NG, (2)
0;if r € NG,

for any two sites r and s, has been used extensively by statistical physicists to explain why neighboring
particles are more likely to rotate in the same direction (i.e., either clockwise or counterclockwise).
Here the notation NG is a set of neighboring pixels of s. We can extend the above model to our
problem by letting x, and x, be the class labels of pixels s and r in §, respectively. With this
modification, the Ising model can be applied to describe the LCM because land cover class
distributions are similar to the phenomenon described above (i.e., classes occupying neighboring pixels
are likely to be the same).

Figure 1: clique types for (a) 4-neighborhood; (b) 8-neighborhood

4-neighborhood

(a)\

8-neighborhood

(h)
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Furthermore, we assume that there are N remotely sensed images of the same scene acquired
from different sensors and/or at different times. Here, Y, (7;,) € R’ *Bn;n = 1,2, ..., N denotes the n-th
remotely sensed image where B,, denotes the number of spectral bands, and 7, is a map coordinate
system to which the n-th remote sensing image is registered. Since all remotely sensed images and the
LCM are from the same scene, the relationship between § and 7, can be determined. Let us denote a
coordinate of a pixel s in the LCM as (x,y) where x and y are the column and row of x,. Similarly, we
can write t, = (u,,v,) € J;, where u, and v,, are the column and row of the pixel t,, in Y,. If the
affine transformation is used, the relationship between s and t,, can be written as

u m My, 1X] (M

4 Rl KA | g B ®)
where m,,, and my, are scale parameters, m,, and ms, are skew parameters, and ms, and mg, are
displacement ~ parameters in  column and  row-direction,  respectively. We  refer to
M, = [ml‘n, My, M35, My, Ms me,n] as the map parameter vector between coordinate systems S and 7, .

When all the map parameter vectors are given, one can remap all remotely sensed images to

perfectly align with the LCM. Let us denote

Zn(8) = f((T), M) . (4)
as the remapped and resampled version of the n-th remote sensing image. Here, we assume further that
the remapped and resampled images are statistically independent for a given LCM, i.e.,

N
Pr(Y|X(8), M) = Pr(Zy(S), .., Zy(8)|X(S)) = 1_[ Pr(Z,($)]X(S)). (5)
n=1

where M = {M;, ..., M, } and Y = {Y;(77), ..., Y,,(T7;,)} be collections of the map parameters and the
observed multispectral images. Moreover, the intensity vectors from different pixels in Z,, (§) are also
assumed to be statistically independent when the LCM is given. Hence, the joint conditional PDF can

be written as
N

Pr(Y|X(S),M) = 1_[ 1_[ Pr(z,|x;) (6)

n=1 ses§
where z, ; € RB» denotes the intensity vector of the remapped image Z,(S) at a pixel s. We
acknowledge that the assumption given in Eq.(6) may not always be true for all cases since some land
cover classes have textural structure. One can incorporate texture information into our image model
appropriately, which may further result in an increase in accuracy. This will, however, result in very
complex problems which may not be desirable in practice.
If we assume further that the intensity vector at a pixel s of the remapped image Z, (S) given the
class label x; is a multivariate normal random vector with mean vector p,_, and covariance matrix

Z, > Eq. (6) can be rewritten as
N

Prr (), = | | —
n=1 (ZE)lexs,nl
where T denotes the matrix transpose operation.

By using chain rule, the posterior probability of the LCM given the observed multispectral
images and the map parameters can be written as

Pr(Y|X, M) Pr(X
Pr(X|Y, M) = r( llr T I)W)r( ). (8)

1

1
TP [‘Z 3o =) S )| ()

SES
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Since Pr(Y, M) is independent of the choice of X, it can be treated as a constant. Hence, we have

Pr(X|Y,M) = C Pr(Y|X, M) Pr(X). )
By substituting Eq. (1), and Eq. (7) into Eq. (9), we obtain
1
Pr(X|Y, M) = — e EITAD, (10)
where Z' = Yy cps e FEIYM s a normalizing constant and independent of the choice of X, and
EQX|Y, M) = —Z (Z(zns Beon) Zitn(Zns = tepn) + loglzxs,n|> FD V0 D
SES Ccs

is called a conditlonal Glbbs energy function. Since, in this paper, we consider cliques comprised of
pixel pairs only, hence, the conditional Gibbs energy function can be written as

E(le M) - _Z (Z(zns st ) Z n(zns ”xs,n) + loglzxs,n|>

SES

+Ez Z V{s,r}(xs'xr)

SES TENG;
where NG, denotes the set of neighboring pixels of s. The normalizing constant Z’ cannot be computed

(12)

in most practical scenarios due to the large number possible configurations (e.g., there are more than
2409 possible configurations for binary LCM of size 64 X 64.) As a result, we propose the use the
mean field theorem [17]-[18] to remove the interaction between neighboring pixels defined in V;(X).

The mean field theorem approximates the conditional Gibbs energy function as

1
EQXIY, M) % 5 by (5,]Y, M) (13)
SES
where

N
e, |¥, M) = z (Zns = teyn) Bl (Zns = Beyn) + log|Ze, ]}
n=1 (14)
+ z Exr [V{s,r}(xs'xr)]'
TrENG,
Here, E, [V{S,r}(X )] is the expected value of the potential function with respect to the configuration of

x,. The expected value E, [V{S_r}(xs, xr)] does not depends on x,., and is equal to

By, [Viers (0] = . Vi) (o 20 G, 1Y, M) s
X, EA
where pMF (x,.|Y,M) = — __h Cr VM) Note here that Z, = =Yy ene ~ghr Ger V.0 is the normalizing

constant for a pixel 7. By using the approximation given in Eq. (13), the posterior probability can be
written as

Pr(X|Y,M) ~ PrMF (X|Y, M) = HpMF(xSIY, M) (16)

SES
The approximation in Eq. (16) is closest to Pr(X|Y,M) from all approximations of the form

[Ises p(xs|Y, M) when the Kullback-Leibler (KL) divergence [18]-[19] is used as a distance measure.
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3. Optimum Image Registration and Land Cover Mapping Criteria

The standard approaches to multi-temporal and/or multi-modal image classification involve two steps.
First images from different sources and/or times are registered to produce a set of images in a common
coordinate system. Then, a land cover map is derived from this set of registered images. In this work,
even though we propose an algorithm to simultaneously register and classify images, we still treat
image registration and classification as two separate problems to follow standard approaches. As a
result, we propose different optimization criteria for image registration and land cover mapping.
However, we will show in Section IV that both image registration and land cover mapping can be
combined into one algorithm so that the registration and land cover mapping can be performed
simultaneously.

3.1 Optimum Image Registration

The maximum likelihood estimate (MLE) can be employed as the optimum map parameter estimator
since the MLE is known to a consistent estimator [20]. The goal of the MLE is to determine the map
parameters that maximize the joint probability density function (PDF) of all the observed images given
the map parameters, i.e.,
(Mg, ..., My)°Pt = arg max Pr(Yy, ..., Yy|Mq, ..., My) (17)
1,-oMIN

In order to solve Eq. (17), the conditional PDF Pr(Yy, ..., Yy|Mj, ..., My) must be calculated and it is
equal to

PE(YE, o) Yy M, o M) = PROAED, oo, Yy (), X(S) My, e, My)

XEAS

ﬁ z Pr(Z, |1X(S)) Pr(X(s))

n=1 XeAS
Note here again that Z,, is the remapped and resampled version of ¥,,. Since Eq. (18) is written as a

multiplication of Yyeys Pr(Z, |X(S )) Pr(X(S )), the solution of Eq. (17) can be individually obtain,
1.€.,

(18)

t
Mt = argnlqvax z Pr(Zn |X(S)) PI‘(X(S)), (19)
X€eAS
forn =1,...,N. Since S is also unknown, there are many possible sets of M,, that maximize Eq. (19).

For instance, if M,, = [1,0,0,1,0,0] is the solution of Eq. (19) for § = {(0,0), (0,1), (1,0), (1,1)}, we
have that M'; = [1,0,0,1,1,0] is also the solution of Eq. (19) for 8’ = {(0,—1),(0,0), (1,—-1),(1,0)}.
As a result, it is imperative to limit the search space and number of possible solutions. Furthermore, in
most practical situations, we may wish to produce the LCM registered to one of the input remote
sensing images. Without lost of generality, we assume that the LCM is registered to Yi, i.e., we have
M; = M{ =[1,0,0,1,0,0].

Next, let us consider a small LCM of size 100 x 100 pixels. In this case, there are 219900 ~
2 x 103910 possible binary LCMs. Therefore, the direct calculation of Eq. (19) is an impossible task,
and hence, the solution of the MLE cannot be obtained in reasonable time. As a result, the expectation-
maximization (EM) algorithm [16] is employed instead. The EM algorithm is an iterative parameter
estimator which produces a new estimate for every iteration. It has been shown in [16] that this new
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estimate always results in higher or at least the same value of the likelihood function. In other words, if
we let Mt = {M}, M5, ..., M} be the collection of all estimated parameters at the #-th iteration from the
EM algorithm, we will have Pr(Y;, ..., Yy|M?) > Pr(Y, ..., Yy|M*™1) where M'~! is the collection of
estimated parameters at (¢t — 1)-th iteration. Here, and throughout the rest of the paper, we omit § and
T,, for the sake of abbreviation. In Section 4, we will discuss the details of the EM algorithm employed
in this work and how it can be combined with the land cover mapping process. However, before going
into the detail of the proposed algorithm, let us state the optimization criterion for the land cover
mapping considered in this paper.

3.2 Optimum Land Cover Map

The classifier based on the maximum a posteriori (MAP) criteria selects the most likely LCM given
the observed data and the map parameters since the resulting probability of error is minimum among
all other classifiers [21]-[22]. The optimum solution under the MAP criterion is expressed as

Xt = arg m)?x[Pr(XIY, M)]. (20)

In general, Pr(X|Y,M) is non-concave function and, therefore, conventional gradient-based
optimization algorithms are not applicable for the solution of Eq. (20). Furthermore, the number of
possible solutions is also very large. A direct search for the solution of Eq. (20) is too expensive to be
practically implemented. As a result, we propose the use the mean field theorem [17]-[18] to remove
the interaction between neighboring pixels defined in V;(X). Hence, by substituting Eq. (16) into Eq.
(20), the optimization problem becomes

Xort = arg max [1_[ pMF (x|Y, M)

SES
Since the optimizing function in Eq. (21) is written in the form of the multiplication of functions of an

. 1)

individual pixels, and pM¥ (x,|Y, M) is a non-negative function, the optimum solution can be solved
from an individual function, i.e., for s € S,
x;OPt = argm)?x[pMF(xle, M)]. (22)

which is equivalent to
xs%Pt = arg rr%(in[hs(xS|Y, M)]. (23)

4. Joint Image Registration and Land Cover Mapping Algorithm

Since the EM algorithm is employed in this literature as the parameter estimator, we begin our
discussion with the details of the EM algorithm. The EM algorithm [16] consists of two steps, namely
the expectation (or E) and maximization (or M) steps. In the E-step, the EM algorithm finds the lower
bound of the likelihood function given in the right hand side of Eq. (20) by calculating the expected
value of the joint log-likelihood function of the observed images and the LCM. Here, the expected
value is computed over the LCMs given the most recent estimate of the map parameter vectors and
observed data, i.e.,
Q(M||M™Y) = E[log Pr(Y, X|M) |¥, M*™1]

= E[log Pr(Y|X, M) + log Pr(X) |¥, M*™1]

where Y = {V}, ..., Yy} is the set of all observed remotely sensed images, M = {Mj, ..., My} is the set of

(24)

all unknown map parameters, and M® = {M%, ..., M§} is the set of all estimated parameters from the -
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th iteration of the EM algorithm. Note here that M{ = M;. By substituting Eq. (1) and Eq. (7) into Eq.
(24), the expected value becomes

Q(M||M*1)
N Te-1
1 Z(zn,s - st,n) sz,n (Zn,s - ”xs,n) 25
=E _Ez S€S = ) Ve(X) = Zx [Y, M1 3)
n=1 +log|Z,, | — log(2m)®n ccs

In the M-step, the expected value given in Eq. (25) is maximized and a new set of map parameter
vectors is obtained, i.e.,

t — t—1
M* = arg X, QM||M*™) (26)
,log(2m)Bn, ¥ rcs Ve (X), and Zy in Eq. (25) do not depend on M. Hence,

Clearly, the terms 10g|2x5’n
Eq. (25) can be modified to

Mt = arngn?la_XM* Q’(MHMt_l) (27)
» —M1
where
N
, . 1 T _
Q' (MiM™t) — arngA‘glla_XM*E _Ez Z(Zn,s — W) Zitn(Zns = Byn) |Y. M1 1]' (28)
AT n=1 ses

To find the solution of Eq. (28), the a posteriori probability of the LCM given the observed
images and the map parameters from the (#-1)-th iteration must be calculated in order to find the
expected value. From the same reason as discussed in Section 2, the posterior probability cannot be
practically calculated due to the huge number of possible LCMs. As a result, we employ the

approximation given in Eq. (16), and hence, we have
_ _ 1 _1h Y Mt—l
Pr(X|Y,M* 1) = ﬂpéw(xSlY,Mt D= Hz—e 2hs (xs V.M (29)
SES ses

By substituting d Eq. (26) into Eq. (29), we have
Q' (MIMT) ~ QMF (|| Mt~1)

N
1 T . _
= _Ez z z (Zn,s - st,n) szl,n (Zn,s - st,n)péwF(xle' Mt 1)
n=1 seS x;eA

Hence, in the M-step, the new map parameters can be obtained by maximizing the approximation
given Eq. (30), i.e.,

(30)

t MF t—1
M ‘argM,rI&‘f":XM;Q (M||M*) (31)

Since z, ; depends only M,, and the right hand side of Eq. (30) is written as the summation of z,, ¢
from different images, the above optimization problem can be rearranged into the optimization of each
individual mapping parameters, i.e.,

M. = arg max QMF(M,|IM*" ) ;n=2,..,N (32)
where
B 1 T _ -
#F(Mn”Mt 1) = _E Z (Zn,s - ”xs,n) szl,n(zn,s - ”xs,n)péwp(xsly: Mt 1)- (33)
SES xgEA

Using the approximations given above, the modified EM algorithm is displayed in Figure 2. For each
iteration, the posterior probability Pr(X|Y, M") is approximated by recalculating hy(x,|Y, M"). We
follow the work by Zhang [19] which suggested that hg(x,|Y, M") can be obtained from
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hS(XS|Y, Mt) = hobv (XS|Z) + hng (xslxNG)

N
= nZ:l {(zn,s - st,n)TZ;sl,Tl (Zn,s - ”'xs‘n) + 10g|2x5,n|} (34)
+ Z Visry (s, 2 )pMF (s |Y, METY),
X EA

where hgp,,, (x5|Z) and hy,, (xs|Xp¢) are the potential functions depending upon the observation and
neighboring pixels, respectively.

Figure 2: Block diagram of the modified EM algorithm

( 1\

Find initial mapping vectors M [ Stop J
. ¢ J
e N

Let t=1, M) =M; , M =
M, and estimate Pr(x,|Y, M°)
&

Does the EM

algorithm

converge?

E-Step:
Compute the expected
value QMF (M||Mt~1).

[Lett=t+1 ]

A

M-Step: Approximate
Find the new map parameter . .
vectors M* by solving Eq. "l Pr(X|Y,M") by
(32). using Eq. (28).

Since hg(x¢|Y, M") is recalculated for every iteration of the EM algorithm, we can choose a land
cover class that minimizes hy(x;|¥, M"), and obtain the optimum LCM based on criterion given in Eq.
(23) By combining the EM algorithm given in Figure 2 and the land cover mapping process by
minimizing Eq. (23), the joint image registration and land cover mapping algorithm is given as

1. Initialize map parameters, i.e., M) = M; and M° = {M?,..,M%}, let t =1, and assign
pMF (x,|Y, M?) based on some prior knowledge.
Compute QYF (M, ||M*™1) forn =2, ...,N.
Obtain M by solving Eq. 32 forn = 2, ..., N., and assignM{ = M} and M* = [M},---, M}/]
Compute hg(xs|Y, M") by using Eq. (34).
Find the new LCM that minimizes h, (x,|Y, M) forall s € S.
Lett =t + 1, and go to Step 2 if a convergence criterion is not satisfied.

AN
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The critical step in the successful implementation of the joint image registration and land cover
mapping algorithm proposed above is how to solve Eq. (32) efficiently. Here to find the maxima, we
employ the particle swarm optimization (PSO) algorithm [23] since the traditional gradient search
approaches are likely to fall into one of the local optimum points of QM* (M||M*~1) due to its non-
convexity. The PSO exploit the cooperative behavior for a group of animals such as birds and insects.
In the PSO, an individual animal is called a particle and a group of animals is called swarm. These
particles are initially distributed throughout the search space, and move around the search space. Based
on some social and cooperative criteria, these particles will eventually cluster in the regions where the
global optima can be found.

In our work, for a given image Y,, each particle represents a mapping parameter and we denote
the i-th particle as M, ; . At each iteration, the i-th particle moves by a velocity V; which is a function
of the best-known positions (mapping parameter) discovered by the i-th particle (P;) itself, and from all
particles (G), i.e.,

V=V + orug (P — ML) + ooun (G — ML ! (35)
and
M, =Mt + V] (36)

forn = 2, ..., N. where w is the inertial weight, ¢; and ¢, are acceleration constants, and u; and u,
are uniform random numbers between zero and one. The velocity is usually kept in the range of
[Vinin » Vimax ] to make sure that My ; is in the valid regions. Note here that the performance of the PSO
depends on the selection of, w, ¢ and ¢,, and the number of iterations. In this paper, we set the
number of particles to 80 and the maximum number of iterations to be 200 as a suitable setup for our
experiment. We acknowledge that different setups of these parameters may result in different
convergence rate. However, the investigation of the optimum parameter selection of the PSO in term
of convergence rate is out of scope of this paper. We refer to the work by [24] for more details.

5. Experiments

In this section, we provide the results of two experiments based on the methodology derived in Section
4 to jointly register and classify a set of remotely sensed images. The first experiment is conducted
over a simulated dataset in order for us to investigate many aspects of our proposed algorithm. Next,
we will examine the performance of our algorithm in the actual remote sensing image. For both
examples, the goal is to examine the performance of algorithm to different degrees of initial
registration errors. If our algorithm performs perfectly, it should be able to align images together and
produce a LCM from unregistered images as accurate as when images are registered.
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Experiment 1:

In the experiment, we examine the performance of the proposed algorithm in term of classification
performance and registration accuracy by attempting to produce a land cover map from a set of four
simulated images. All the simulated images have an equal size of 512x512 pixels (Figure 3) and
contain four land cover classes (Classes 1-4) with intensity values of zero, one, two and three for
black, dark gray, light gray and white areas, respectively. Based on the noiseless image, the ground
truth image in this example is given in Figure 4 where the blue, black, green and red colors correspond
to Classes 1-4, respectively. Next, all of the input images are added with the independent and identical
Gaussian noise with zero mean and standard deviation of ¢ = 1 to examine the performance of our
proposed algorithm to the image noise. Figure 5 shows an example of the input image for o0 = 1. We
observe that the observed image appears to be very noisy.

Figure 3: Noiseless Simulated Image in Example 1

Figure 4: The ground data of Example 1
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Figure 5: An example of the noisy input image at =1 in Example 1

Since our algorithm performs both image registration and land cover mapping at the same time,
the performance of our algorithm can be evaluated in terms of how much the resulting LCM deviates
from the reference LCM, and the estimation error between our calculated map parameters and the
actual parameters that relate the LCM to the simulated images. If our algorithm performs perfect
registration and land cover mapping, the resulting percentages of mis-classified pixels will be zero, and
the registration error between images and LCM will be zero. In this example, the correct mapping
parameters for all observed images are the same and equal to M,efer = [1,0,0,1,0,0] which
correspond to unit scale, zero skew, and zero displacement. Next, since we want to examine the effect
of the initial registration errors to the performance of our algorithm, we investigate different scenarios
of initial registration errors by varying the initial mapping parameters between the observed images
and LCM at different values of displacement, scale and skew parameters. In particular, we investigate
three scenarios for the only displacement, only scale and only skew errors, respectively. Table 1 shows
the initial mapping parameters for all three scenarios. Here, §, p and 7 are the initial displacement,
scale, and skew parameter errors. Note that the initial mapping parameter errors for Image 1 for all
scenarios are zero since we assume that the first image is registered to the LCM as mentioned in
Section 3.1.

Before examining the performance of our proposed algorithm, we examine the effect of
registration errors to the performance of image classification. This value can be viewed as the worst
case scenario where the LCM is derived directly from the set of mis-registered images. Here, we
employ the maximum likelihood classifier (MLC) [21] to the set of four remapped images, and the
LCM is obtained from

4
xé\/ILC = arg I’nxil’l [Z {(zn,s - ”xs,n)TE;sl,n (zn,s - ”xs,n) + loglzxsn

n=1

} (37)

where the subscript n denotes the n-th remapped image. We note here that Eq. (37) is the special of the
optimum LCM obtained from Eq. (22) when = 0. Figure 6 (a), (b) and (c) display the resulting LCM
for § = 12 and ¢ = 1 for Scenario I, p = 0.05 and o = 1 for Scenario II, and n = 0.05 and o0 = 1 for
Scenario III. The averaged percentages of misclassified pixels after a hundred independent runs are
equal to 28.66%, 31.93 and 27.03, for Scenarios I, IT and III given above, respectively.
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Table 1: Mapping parameter errors are three scenarios in Example 1

Image Mapping parameters
my m, ms my ms mg
Scenario I: 1 1 0 0 1 0 0
Displacement 2 1 0 0 1 6 0
error (6) 3 1 0 0 1 0 | -5
4 1 0 0 1 -6 6
Scenario II: 1 1 0 0 1 0 0
Scale  error 2 1+p 0 0 1 0 0
) 3 1 0 0 [1+p| O 0
4 1-p 0 0 1-p 0 0
Scenario III: 1 1 0 0 1 0 0
Sheer  error 2 1 0 1 0 0
() 3 1 1 1 0 0
4 1 -7 -n 1 0 0

Figure 6: Examples of the MLC-Based LCMs for (a) Scenario [ with 6=12 and o=1; (b) Scenario II
with p=0.05 and 6=1; and (c¢) Scenario Il with n=0.05 and 6=1

(2) (b) (c)

Next, the proposed algorithm is applied to the above datasets. The whole process was
implemented using CUDA on NVIDIA Tesla M2090 with 1 GB memory. Here, we assign

pMF (x, |V, M?) = %as the most extreme case where no prior information is given. In different trials,
the value of £ is set to be 0.00, 0.25, 0.50, and 0.75(see Eq. (2)). Since our algorithm performs both

image classification and registration, the termination criteria must ensure the convergences in both the
estimated posterior probability and mapping parameters. As a result, we define
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Pchanges = I'S Z Z |p£4F(x |Y Mt - pévlF(xslyr Mt_l)l: (38)

SES xgEA

to measure changes in the posterior probabilities from two consecutive iterations. We also define

1
dmovement n = m Z \/(xrtl - xrtl_l)z + (yri - er_l)z (39)
" (up,vn)ET,

to characterize the movement of coordinates of the remapped image Z, from two consecutive

[ ] mln - Uy, — mg,n (40)
yn m3 n Up — mén .

Here, mf,n denotes the mapping parameter m; from the n™ at the / iteration. In this example, the

iterations where

algorithm terminates when ppanges 18 less than pp, = 107>, and d,ppement n 1s less than 0.1 pixels
for five consecutive iterations for n = 2,3,4. To create a benchmark for our proposed algorithm, we
examined two extreme cases where LCMs are derived directly from the unregistered image pairs and
from perfect registered image pair. The LCMs from these extreme cases are classified using our
proposed algorithm by fixing M* = M*. For perfect registration, we have M* = My, fece Whereas, for
unregistered image pairs, we set M* equal the values given in Table 1 for the respective scenarios. The
first extreme case can be considered as the lower limit on the classification accuracy if we perform the
land cover mapping without alignment of images first. The second case is an upper bound on the
classification accuracy when we produce a map from a registered image pair. By setting up our
experiment in this fashion, we can investigate how much improvement our algorithm can gain by
integrating the registration and classification together, and how far the performance of our algorithm is
from the upper limit where all uncertainties in registration are removed. To ensure the statistical
significance of our experiment, all experiments are repeated ten times.

Table 2 displays the averaged percentages of misclassified pixels (PMP) of the LCMs for different
values of 8 and for Scenario I with § = 12, Scenario II with p = 0.05 and Scenario III with n = 0.05
when o = 1. Note here that, in this example, we employ the percentages of mis-classified pixels as the
performance metric to evaluate the classification performance rather than the overall accuracy to
highlighted small differences in the classification performance between LCMs derived from image
datasets without registration error and LCMs obtained from our proposed algorithm. From Table 2, it
is clear that, from all scenarios, the PMPs derived from image datasets without registration errors
corrections are always significance poorer than those derived from registered image datasets. These
results support our claims that it is important to consider lack of alignments in performing image
classification. We also observe that, for § = 0.25, 0.5 and 0.75, our proposed algorithm produced the
LCM with the accuracy similar to those obtained from image dataset without any registration error.
These results imply that our proposed algorithm attain the upper-bound accuracy with proper selection
of MRF parameter. To ensure the statistical significance, we compute the pairwise z-statistics for
unequal variance populations [20] of the PMPs obtained from LCMs derived from the proposed
algorithm for various initial registration errors against those obtained from image dataset with no
registration error, and the resulting p-values [20] of the t-statistics are given in Table 3. The p-value
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represents the probability that there is no difference in PMPs. Hence, a smaller p-value implies that
PMPs from two experiments are different. We also compute the t-statistics comparing LCMs obtained
from image dataset with and without registration errors. The resulting p-values of these t-statistics are
also summarized in Table 3. It is clear from Table 3 that there is significant differences in term of
PMPs from LCMs obtained from image dataset with and without registration errors. Furthermore, the
p-values also support our claim that or § = 0.25,0.5 and 0.75, our proposed algorithm produced the
LCM with the accuracy similar to those obtained from image dataset without any registration error.
However at f = 0, our proposed algorithm perform significantly poorer than those of perfect
registration. In fact, at § = 0, our proposed algorithm achieves roughly the same performance as in
situation where there is no registration error correction since at § = 0, our proposed algorithm cannot
correctly estimate the map vectors. Figure 7 shows examples of the resulting LCMs at § = 0.75 for all
scenarios. We observe that all the LCMs appeared to be more connected than the MLC-based LCMs
given in Figure 6: Examples of the MLC-Based LCMs for (a) Scenario I with 6=12 and o=1; (b)
Scenario II with p=0.05 and o=1; and (c) Scenario III with 1=0.05 and 6=1

Table 2: Comparison of the averaged percentages of misclassified pixels (PMP) between two extreme
cases and our proposed algorithm

B | No No registration error correction Proposed Algorithm with initial registration
registration errors
Error Scenario I | Scenario II | Scenario III | Scenario I | Scenario II | Scenario Il
with § = 12 | with p = | with n=|withéd =12 | with p = | with n=
0.05 0.05 0.05 0.05

0.0 |25.65% 28.66% 26.87% 27.05% 28.65% 26.07% 27.12%

0.25 | 0.43% 4.81% 5.96% 6.45% 0.45% 0.43% 0.43%

0.5 0.039% 4.24% 5.65% 6.21% 0.039% 0.041% 0.043%

0.75 1 0.021% 4.19% 5.56% 6.13% 0.024% 0.032% 0.026%

Table 3: the p-values of the pairwise #-test with unequal variances of our proposed algorithm to the

perfect registration cases, and no registration error correction to the perfect registration cases

B | No No registration error correction Proposed Algorithm with initial registration
registration errors
Error Scenario I | Scenario II | Scenario III | Scenario I | Scenario II | Scenario 1II
with § =12 | with p = | with n=|withd =12 | with p = | with n=
0.05 0.05 0.05 0.05
0.0 |1 1.5%x107%% | 1.6 x107* | 40x107® | 1.9x 10723 | 40x 1071 | 3.9x 10715
025 |1 2.0x 10717 | 35%x1071° | 3.6x 10718 | 0.457 0.717 0.500
05 |1 1.5%x107% | 28x 10717 | 1.8x 10716 | 0.712 0.167 0.401
0.75 |1 1.5x107™ | 1.4x10715 | 6.2x10717 | 0.060 0.033 0.079
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Figure 7: Examples of the resulting LCMs from our proposed algorithm (a) Scenario I with 6=12 and
o=1; (b) Scenario II with p=0.05 and o=1; and (c) Scenario III with 1=0.05 and o=1

(2) (b) (c)

Since at f = 0.75, our proposed algorithm achieves highest performance, we examine the effect of
the initial registration errors to the performance of our algorithm by varying values of §, p, and n for
Scenarios I, II and III, respectively for f = 0.75. Again, ten independent runs are performs to ensure
the statistical significance and the results are given in Table 4. We observe that, for all scenarios, the
PMPs are roughly the same In other words, the initial registration errors have little effect on the
performance of our algorithm. These results imply the robustness of our proposed algorithm to the
initial mis-registration errors if the proper value of § is chosen.

Table 4: The averaged percentages of mis-classified pixels as the function of the initial registration
error for all Scenarios

Scenario I Scenario II Scenario III
) PMP p PMP n PMP

0 0.019% -0.05 0.035% -0.05 0.036%

4 0.032% -0.03 0.035% -0.03 0.029%

8 0.029% -0.01 0.022% -0.01 0.043%

12 0.026% 0.01 0.030% 0.01 0.040%
0.03 0.024% 0.03 0.036%
0.05 0.032% 0.05 0.026%

Another key performance metric in this example is the residual registration errors after
processing. Table 5 displays the means and standard deviations of the root mean square errors
(RMSEs) from ten independent runs between each simulated images and the reference LCM. The
RMSE of the n-th image is computed from
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1 2 2
T > G ) O ) )
n

(up,vn)ET,

RMSE, =

where (x,ft,yngt) and (x&5t,y?t) are the ground truth and estimated coordinates. Here, the ground
truth coordinates obtained by letting M, = My, fe; - Clear, for f = 0.25, 0.5, and 0.75, our algorithm
can successfully registered all images with the LCMs. However, at f = 0 our algorithm cannot align
these images with the LCM. The results in Table 5 emphasize the importance of parameter selection.
Note here that the RMSE of Image 1 is not shown in the Table 5 since it is assumed to be perfectly
aligned (registration error is zero.) with the LCM. Next, we examine the effect of image noise to the
registration accuracy by varying the noise variance o> from -30dB to 0 dB and the resulting averaged
RMSEs for f = 0.0 and 0.75 are given in Table 6 and Table 7, respectively. We observe here that
there are slight performance differences in term of the RMSEs for a2of -30, -20 and -10 dB for both
B = 0.00 and 0.75. However, for the noise variance equal to 0 dB, our algorithm can only correctly
aligned Images 2-4 to the LCM at f = 0.00. This result emphasizes the importance of a parameter
selection to the convergence of our algorithm. For the performance comparison, we compare the
registration accuracy of our proposed algorithm for various scenarios and f = 0.75 with a traditional
image-to-image registration technique. Here we employ the mean square error criteria (MSEC) [25]
since the MSEC is suitable for register images with the same modality and suffered from additive
Gaussian noise. For the traditional image-to-image registration, we register Images 2-4 with Image 1
since Image 1 is assumed to be aligned with the LCM. The averaged RMSEs from ten independence
runs for various noise variances are given in Table 8. Again the particle swamp optimization algorithm
with eighty particles is employed to ensure global optimality. As expected, the registration accuracy
decreases as the noise variance increase. By comparing Tables 6 and 8, the RMSEs from our proposed
algorithm seem to be lower (better) than those obtained from the MSEC for noise variances equal to -
20, -10 and 0 dBs. Next, we again perform the pairwise f¢-test to determine whether there are
significant differences in RMSEs obtained from our proposed algorithm and the MSEC, and the
resulting p-values [20] are shown in Table 9. From the p-values, we can conclude that our proposed
algorithm achieves significantly better registration accuracies than those obtained from the MSEC for
the noise variances of —20,—10 and 0 dBs. Note here that, for a noise variance equal to -30 dB, the
registration errors from our proposed algorithm and the MSEC are roughly zero and, therefore there is
no different in term of registration accuracy.
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Table 5: The residue registration errors of our proposed algorithm for various scenarios and values of

'gcenario No registration B =0.0 B =0.25 L = 0.50 B =0.75
Error Correction
[(6 =12) Image2 | Mean 12 11.99 0.111 0.295 0.280
STD - 0.0015 0.259 0.139 0.100
Image 3 Mean 12 11.99 0.031 0.192 0.312
STD - 0.0018 0.020 0.120 0.156
Image 4 | Mean 16.97 16.96 0.213 0.338 0.212
STD - 0.0017 0.566 0.088 0.136
II(p=0.05) | Image2 | Mean 14.06 13.56 0.028 0.281 0.327
STD - 0.072 0.010 0.130 0.113
Image 3 | Mean 14.06 13.49 0.020 0.353 0.312
STD - 0.032 0.080 0.102 0.106
Image 4 | Mean 21.97 20.97 0.253 0.245 0.315
STD - 0.095 0.636 0.120 0.082
I (n = 0.05) | Image 2 Mean 14.76 14.71 0.025 0.295 0.296
STD - 0.204 0.020 0.149 0.098
Image 3 | Mean 14.76 14.73 0.017 0.415 0.350
STD - 0.182 0.006 0.090 0.136
Image 4 | Mean 21.72 22.04 0.350 0.312 0.371
STD - 0.0325 0.983 0.155 0.088

Table 6: The residue registration errors for various noise variances and § = 0.75.

Noise variance Average root mean square errors
(dB) Scenario I, 6 = 12 Scenario II, p = 0.05 Scenario III, n = 0.05

Image2 | Image3 | Image4 | Image2 | Image3 | Image4 | Image2 | Image3 | Image4
-30 0.007 0.011 0.009 0.006 0.010 0.019 0.012 0.019 0.013
-20 0.010 0.012 0.009 0.023 0.016 0.012 0.017 0.016 0.011
-10 0.036 0.035 0.037 0.028 0.018 0.029 0.028 0.030 0.022
0 0.244 0.280 0.185 0.119 0.138 0.071 0.078 0.053 0.200
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Table 7: The residue registration errors for various noise variances and = 0.
Noise variance Average root mean square errors
(dB) Scenario I, § = 12 Scenario II, p = 0.05 Scenario III, = 0.05

Image2 | Image3 | Image4 | Image2 | Image3 | Image4 | Image2 | Image3 | Image4
-30 0.016 0.08 0.010 0.015 0.007 0.019 0.009 0.011 0.019
-20 0.017 0.012 0.014 0.015 0.018 0.015 0.010 0.015 0.017
-10 0.014 0.018 0.015 0.018 0.018 0.023 0.019 0.016 0.014
0 11.99 11.99 16.97 11.91 11.89 20.28 12.75 12.79 20.61

Table 8: The residue registration errors using the minimum mean square error criteria for various noise

variances.

Noise variance Image 2 Image 3 Image 4

(dB) Mean STD Mean STD Mean STD
-30 0.008 0.0029 0.007 0.0041 0.010 0.0054
-20 0.422 0.0040 0.425 0.0033 0.423 0.0049
-10 0.663 0.0037 0.665 0.0014 0.664 0.0017
0 0.875 0.516 1.637 1.441 1.352 0.9744

Table 9: The p-value from the pairwise t-test between the traditional registration method and our
proposed algorithm for various Scenario at § = 0.75.

Noise Average root mean square errors
variance - - -
(dB) Scenario I, § = 12 Scenario II, p = 0.05 Scenario 111, n = 0.05

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4
-30 0.829 0.402 0.883 0.413 0.413 0.201 0.507 0.092 0.407
-20 1x1071® | 4x 10714 | 2x 1072t | 1x1071 | 1x1071 | 3x1071 | 2x10713 | 2x1071® | 5x 107V
-10 3x1071 | 2x 1071 | 3x 107 | 3x1071 | 3x1071 | 5x 10716 | 2x 10728 | 1x 107 | 7x107Y
0 0.004 0.016 0.004 0.001 0.001 0.003 0.0010 0.007 0.004

Figure 8 shows the averaged numbers of iterations that the algorithm requires before the

convergence criterion is satisfied for different scenarios and . For f = 0.25,0.5 and 0.75, more

iterations are needed as the value of § increases. However, at f = 0, our algorithm terminates at the

higher numbers of iterations for Scenarios II and III. The main reason to the slow convergences is due

to the small changes in the mapping parameters from one iteration to another and since f = 0, this

small changes in the mapping parameters have significant influence on the posterior probability.
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Figure 8: The averaged number of iterations required before the termination criteria are satisfied for
different scenarios in Example 1

Experiment 2

A QuickBird dataset consisting of one multispectral image (MI) of size 150 X 300 pixels and
one panchromatic image (PAN) of size 600 X 1,200 pixels was used in this experiment (Figure 9).
The MI and PAN have resolutions of 2.4 and 0.6 meters, respectively. Both images captured a part of
Kasetsart University in Bangkok, Thailand, covering around 0.2592 in km® on July 10", 2008. By
visual interpretation, we classified the area into five classes, namely, water, shadows, vegetations and
impervious type 1 and impervious type 2, and the ground truth image is shown in Figure 10 where
blue, black, green, red and white colors correspond to water, shadow, vegetation, impervious type 1
and impervious type 2, respectively. Here, the impervious is divided into two types due to different
roof and pavement colors in the scene. By using both PAN and MI images, we randomly select 1000
samples for each land cover classes.

Figure 9: QUICKBIRD dataset of a part of Kasetsart University (a) False color composite MI; and (b)
PAN

(2)
(b)
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Figure 10:Ground truth image for Example 2 (green, blue, black, red and white colors for vegetation,
water, shadow, impervious type 1 and impervious type 2, respectively)

In Experiment 2, we focused on the robustness of the proposed algorithm with different degrees
of the initial displacement, scale and rotation errors. In fact, there are six displacement errors in x-
direction and y- directions, four scale errors and six rotational errors used in this experiment. The
termination criteria used in this example is similar to those in Example 1, i.e., our algorithm is
terminated if pcpanges (se€e Eq. (38)) is less than 107> and d o pement 1 (see Eq. (39)) is less than 0.1
pixels for five consecutive iterations. Before examining the robustness of our algorithm, we
determined the benchmark performance of the MRF-based land cover mapping when MI and PAN are
perfectly registered. The resulting LCMs are shown in Figure 11. Again, as we progress to greater
values of f§, more connected LCMs are obtained. The overall accuracy graph shown in Figure 12
agrees with the visual inspection that the classification performance increases as the values of
increases. In this example, we employ the overall accuracy rather than the percentages of mis-
classified pixels used in Example 1 since overall accuracy is more widely used performance metrics in
remote sensing image classification.

Figure 11: LCMs for the perfect registration case for (a) f = 0; (b) § = 0.25; (¢) f = 0.50; and (d)
B =0.75

(a) (b)

© ()
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Figure 12: Overall accuracies for different values of f when MI and PAN are perfectly aligned

Since the PAN has a higher resolution, we assume that it is aligned with the LCM, and we only
need to find map parameters of the MI. Here, the PAN has a higher resolution than the multispectral
image by the factor of four, and both MI and PAN are obtained from the same satellite, the optimal
map parameter vector relating the two images should be equal to

M°Pt =10.25,0,0,0.25,0,0].

To investigate the robustness of our algorithm to displacement, scale and rotation errors, we
introduce the registration errors in displacement in x-direction, displacement in y-direction, scale and
rotation into the MI and PAN pair. If we introduce the displacements into the image pair, the initial
map parameter is set to be equal to

M° = [0.25,0,0,0.25, Ax, 0]
and

M° =[0.25,0,0,0.25,0, Ay],
for displacement errors in x- and y-direction, respectively. Here, the values of Ax and Ay are set to be
—5,—3,—1, 1, 3, and 5. For the scale and rotation errors, we assume that the both images are aligned
at mid points, i.e., the pixel (75,150) of MI is at a pixel (300,600) of PAN. Next, we apply the initial
scale errors, As, of—5%, —2.5%, 0%, 2.5% and 5% when comparing with the PAN image to the
multispectral image. Here, the scale errors of —5%, —2.5%, 0%, 2.5% and 5% correspond to the
initial scales of PAN to MI of 3.8, 3.9, 4.0, 4.1 and 4.2, respectively. For rotation errors, we rotate the
MI by A6 degrees in the counter clockwise direction. Here, the initial rotation errors A8 are set to be
—3°,—2°—1°,1°2° and 3°. The initial RMSEy; (see Eq. (41)) for all cases are given in Table 10.
Again, if our algorithm performs perfectly, the estimated map parameter will converge back to M°Pt,
In other words, we will eventually have M® = M°P* . Once the correct map parameter vector is
obtained, the classification accuracies of the LCMs should be equal to that in the perfect registration

cases (Figure 11 (a)-(d)). In this example, we again assign p"¥ (x,|¥, M?) = % , the most extreme case

where no prior information is given.
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Table 10: The initial RMSEy in meters (pixels in LCM) for various cases in Example 2

Error in x- direction Error in y- direction Error in scale Error in Rotation
Ax | RMSEym Ay | RMSEy As | RMSEy A6 | RMSEym
-5 12 (20) -5 12 (20) -5% 21.3 (36) -3 [ 11.12 (19)
-3 7.2 (12) -3 7.2 (12) -2.5% | 10.7 (18) -2 | 7.45(12)
-1 24 (4) -1 24 4) 0% 0.0 (0) -1 13.72(6.2)
1 24 (4) 1 24 4) 2.5% | 10.7 (18) 1 3.72 (6.2)
3 7.2 (12) 3 7.2 (12) 5% 21.3(36) 2 7.45 (12)
5 12 (20) 5 12 (20) _ 3 [11.12(19)

The overall accuracies as the function of Ax, Ay, As, and A8 are shown in Figure 13 (a)-(d),
respectively. From all most all scenarios, the overall accuracies increase as the value of f§ increase
since the MRF model promote more connected land cover maps, and, therefore, remove the isolated
misclassified pixels. However, for Ax =5 and Ay =5, the overall accuracies of our algorithms
decrease as § increases. The main reason to these performance degradations are due to the fact that our
algorithm terminate on one of the local optima since the EM algorithm employed in our work cannot
guarantee the global optimum solution. The evidence can be seen in Figures Figure 14 (a) and (b). In
Figure 14 (a), we observe that, in almost all of the initial values of Ax, the number of iterations
increases as the value f§ increases. However, for Ax = 5.0, our algorithm terminates at only 75, 109
and 129 iterations for § = 0.25, 0.5 and 0.75 whereas, for f = 0.0, our algorithm terminates after 180
iterations. Similarly, we observe the same phenomenal in Figure 14 (b) for Ay = 5.0 where the
algorithm terminates at the lower number of iterations for f = 0.75 than f = 0.0, 0.25 and 0.50. This
result shows the effect of the initial registration errors to the convergence of our algorithm. In most
practical situation, such an large initial registration errors is unlikely to occur since most remote
sensing images are embedded with coordinate information from a producer.
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Figure 13: The effect of initial registration errors to the overall accuracies

(a) (b)

(c) (d)

Figure 14: The effect of the initial registration errors to the number of iterations

(a) (b)

(c) (d)

25
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Similar to previous example, we also compare the performance of our proposed algorithm (PA)
with two extreme cases where images are perfectly registered (PR) and there is no registration error
correction (NC) and the results are given in Tables 11-14. From this comparison, we observe that if our
algorithm converges to the global optimum solutions, the resulting overall accuracies from our
proposed algorithm are similar to those of the perfect registration cases, and the significant
improvements are obtained from the cases where there is no registration error correction. The
maximum performance improvements from no registration error correction for each cases are 12.6%
for Ax = —=5and f = 0.75, 12.4% for Ay = =5 and f = 0.75, 17.4% for As = —5% and § = 0.75,
and 14.9% for A@ = 3° and § = 0.75. We observe that the maximum improvements are achieve at
B = 0.75. This observation suggests that a higher performance gain can be obtain by increasing the
value of . Next, we also notice that our proposed algorithm can sometimes achieve even higher
accuracies than those of the prefect registration cases. The reason is due to the fact that our algorithm
requires more iterations than the scenarios where image pair is perfectly registered since our algorithm
terminates if both the estimated map parameters and the resulting LCM converge whereas, in the
perfect registration case, the process terminates if only the resulting LCM converges. Hence, our
algorithm may terminate at lower percentages of changes in the LCM, and result in more accurate
LCM which results in higher precision.

Table 11: Overall accuracies for different values of B on two extreme cases and our proposed
algorithm for different initial displacement error in x-direction Ax where PA and NC denote the cases
of the proposed algorithm and no registration error correction, respectively.

B | PR Ax =-=5.0 | Ax=-3.0 | Ax =-1.0 Ax = 1.0 Ax = 3.0 Ax = 5.0
PA |[NC |PA |NC |PA |NC |PA |NC |PA |NC |PA |NC

0.0 |675 67.7 |57.6 |67.8 [ 622 |67.7 | 669 |67.8 |66.7 |67.7 |61.8 |67.8 |57.0
0.25 | 694 70.0 | 58.8 | 69.8 [63.7 [69.8 | 68.6 |699 |683 |70.0 |[63.4 |593 |584
0.5 |703 71.8 | 59.7 | 714 | 64.6 [70.6 [69.6 | 709 |69.2 |71.5 |64.4 |60.2 |59.2
0.75 | 71.1 72.8 1602 | 722 [ 652 |71.5 | 703 |71.8 |70.0 | 72.7 | 65.0 | 60.4 |59.9

Table 12: Overall accuracies for different values of B on two extreme cases and our proposed
algorithm for different initial displacement error in y-direction Ay where PA and NC denote the cases
of the proposed algorithm and no registration error correction, respectively.

g [PR Ay=-50] Ay=-30 | Ay=-10] Ay=10 | Ay=3.0 | Ay=50

PA |[NC |PA |[NC |PA |[NC |PA [NC |PA [NC |PA [NC
00 [675 67.7 | 57.6 [67.7 [ 622 [67.7 [66.9 |67.7 [66.7 [67.7 |[61.8 [67.8 [57.0
0.25 | 69.4 69.9 | 58.8 [69.9 [63.7 [69.8 [68.6 |70.1 [68.3 |[70.1 |63.4 |703 |58.4
0.5 |70.3 71.6 |59.7 [ 712 |64.6 | 705 [69.6 |71.8 [69.2 |71.8 | 64.4 |68.6 |59.2
0.75 | 71.1 725 | 60.1 [71.9 (652 [71.2 [703 [73.4 [70.0 [73.4 [ 649 [62.9 [59.9
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Table 13: Overall accuracies for different values of B on two extreme cases and our proposed
algorithm for different initial scale error As where PA and NC denote the cases of the proposed
algorithm and no registration error correction, respectively.

B | PR As =—=5% | As =—-2.5% As = 0% As = 2.5% As = 5%
PA NC PA NC PA NC PA NC PA NC

0.0 |675 67.8 527 |67.7 |61.0 |677 |[675 |67.8 |649 |678 |57.8
0.25 | 69.4 69.6 |534 |695 |624 |70.0 [694 |703 |66.1 |70.2 |589
0.5 |70.3 71.1 | 542 |70.6 |633 |71.0 [703 |71.6 |67.0 |72.1 |59.7
0.75 | 71.1 72.1 | 547 | 715 642 |71.1 |71.1 | 727 |67.6 |734 |60.1

Table 14: Overall accuracies for different values of B on two extreme cases and our proposed
algorithm for different rotation error A@ where PA and NC denote the cases of the proposed algorithm
and no registration error correction, respectively.

B | Perfect AG = —3° A = =2° A = —1° AG = 1° AG = 2° AG = 3°

registration [, TC [PA |[NC |PA |NC |PA |[NC |PA |NC |PA |NC
00 675 676 | 573 |67.6 | 608 |67.6 |653 | 67.7 | 648 | 677 | 59.8 |67.8 | 555
025 | 69.4 690 | 585 |69.8 | 622 | 697 |669 | 69.9 |665 |69.7 |61.1 |69.8 | 56.6
05 1703 716 | 593 | 714 | 630 |71.0 |678 | 711 | 674 | 714 |62.0 |715 | 574
0.75 | 71.1 730 | 597 | 723 | 63.6 |71.9 | 684 | 71.9 |68.1 | 725 | 62.6 | 729 | 58.0

Another key performance metric of our algorithm is the resulting registration errors. Figure
15(a)-(d) show the residue registration errors in term of RMSE (in meters) between the MS image and
the LCM for different initial registration errors. We observe that, if our algorithm converges to the
global optimum solutions, it can successful reduce the registration error down to around 1.8 meters in
the LCM (or equivalently 0.75 pixels on MS image and 3 pixels on PAN image and LCM). These
results imply that our algorithm can align images together to the accuracy less than those of the lowest
resolution (here is MS image). For each initial registration error cases, the minimum RMEs of 1.718
(2.86 pixels in the LCM) meters for Ax = 1.0, 1.672 (2.79 pixels in the LCM) meters for Ay = 1.0,
1.730 (2.88 pixels in the LCM) meters for As = 0% and 1.704 (2.84 pixels in the LCM) meters for
AB = —1° occurs at f = 0.75. These results suggest that, if our algorithm converges, the larger value
of B increases the accuracy of registration as well as the classification. However, for the cases of Ax =
5.0 and Ay = 5.0, our algorithm cannot register the MS image to the LCM since our algorithm is stuck
in one of the local optima. The residue registration errors for Ax = 5.0 are 1.896 (3.16), 10.96 (18.3),
11.14 (18.6), and 11.41 (19.0) meters (pixels in the LCM), and for Ay = 5.0 are 1.827 (3.05), 1.834
(3.06), 3.133 (5.22) and 11.57 (19.3) meters (pixels in the LCM) for f = 0.0, 0.25, 0.50, and 0.75,
respectively. Here, the initial displacement error corresponds to the RME of 20 pixels in the LCM.
Such a large initial RME are only found when remote sensing images have significant different in
spatial resolutions. LCMs derived from remote sensing image dataset with such a large scale difference
are often unreliable and not often found in practice.
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For performance comparison, we apply the normalized cross correlation method [25] to register
PAN and MS images together and the resulting RME 1is equal to 1.836 meters or 3.06 pixels in the
LCM. From Figures 15(a)-(d), we found that, with proper parameter selections and the initial
registration errors, our proposed algorithm can achieved higher registration accuracy than those from
the normalized cross correlation method. For example, our algorithm obtains the registration errors of
1.718 (2.86 pixels) meters for f = 0.75 and Ax = 1, 1.671 (2.79 pixels) meters for § = 0.75 and
Ay =1, or 1.702 (2.84 pixels)meters for f = 0.75 and A8 = —1°.

Figure 15: The effect of the initial registration errors to the residue registration error of our proposed
algorithm in Example2

(a) (b)

(©) (d)

6. Conclusion

In this paper, we propose a joint image registration and land cover mapping algorithm based on a
Markov random field model. The algorithm assumes that observed remote sensing images are derived
from a hidden LCM and captured with an unknown misalignment. Two adjacent pixels of the LCM are
more likely to belong to the same land cover class than different classes. By integrating this fact into
the model, a large number of misclassified pixels, which often appear as isolated pixels, are removed
from the resulting LCM. Since the map parameter vector relating the different images is unknown, we
employ the EM procedure to simultaneously estimate the map parameters and use mean field theory to
approximate the posterior probability.
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We performed an experimental study using one simulated dataset, and one real remote sensing
data set of 2.4m QUICKBIRD multispectral and 0.6m QUICKBIRD panchromatic images. Our results
show that, for the first data set, our algorithm can successfully classify image pairs and align them in
different initial registration errors with proper selection of the MRF parameter. In fact, if the MRF
parameter is chosen properly, our algorithm can classify mis-registered image pair with similar
accuracy to the situation where images are perfectly aligned. For the real remote sensing dataset, we
focused the investigation on the robustness of our algorithm to the initial alignment of image pair. The
study showed that our algorithm is less sensitive to the initial alignment when value of the MRF
parameter, [ is small since the EM algorithm tends to converges faster. However, if the degree of
misalignment is beyond a certain level, our algorithm cannot estimate the map parameter vector
accurately since the EM algorithm employed here tends to become trapped in a local optimum. Hence,
in the future we plan to investigate how to incorporate another variation of the EM algorithm that can
escape from local optima in order to make our algorithm more robust.
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This paper presents a new method for fusion and registration of THEOS (Thailand Earth
Observation Satellite) multispectral and panchromatic images in a single step. In the usual
procedure, fusion is an independent process separated from registration. However, both image
registration and fusion can be formulated as estimation problems. Hence, the registration
parameters can be automatically tuned so that both fusion and registration can be optimized
simultaneously. Here, we concentrate on the relationship between low-resolution multispectral and
high-resolution panchromatic imagery. The proposed technique is based on a statistical model. It
employs the maximum a posteriori (MAP) estimator to solve the fusion problem, and applies the
Metropolis algorithm to solve the joint optimization problem. A closed-form solution to find the
fused multispectral image with correcting registration is also derived here. In our experiment, a
THEOS multispectral image with high spectral resolution and a THEOS panchromatic image with
high spatial resolution are combined to produce a multispectral image with high spectral and
spatial resolution. The results of our experiment show that the proposed fusion and registration
algorithm can produce high quality high-resolution multispectral images from low-resolution
multispectral and high-resolution panchromatic images even when they are severely mis-
registered.

1. Introduction

Many applications such as vegetation mapping, environmental monitoring, mineral mapping,
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oil exploration, hydrology, disaster response and agricultural yield prediction cannot be
successful without the information provided by remote sensing images. The use of remote
sensing data is increasing due to the increasing availability of high quality images with a
reasonable cost and the declining price of computational power.

Current applications continue to demand data with higher spatial and spectral precision to
generate even more spatial detail in maps with many different land cover classes. These
requirements can be fulfilled either by building new satellites with superior resolution or by
utilizing image processing techniques. The main advantages of the second approach are its lower
cost and greater timeliness. It is not necessary to wait for a new satellite to be designed, built and
launched.

The fusion of multi-sensor image data is a widely used procedure for enhancing information
extraction. Fusion uses already-existing data from different sources, acquired at different times,
or captured by different sensors, to produce higher resolution data. When high spatial resolution
data are merged with the high spectral resolution data, the fused image has both finer spatial and
finer spectral resolution.

Image fusion algorithms can be divided into three categories, namely, feature-based, pixel-
based and transform-based methods. The feature-based methods first segment input sources into
homogeneous regions by using some segmentation techniques (Clausi and Deng, 2004; Shi and
Manduchi, 2003) according to texture characteristics. Next, a data combination algorithm
combines texture information from different images together to produce a texture-enhanced
image. The transformation-based methods convert the input images into a common transformed
domain, such as intensity-hue-saturation (IHS) (Carper, 1990), principle components (PCA)

(Chavez and Kwarteng, 1989), Brovey (Civco et al., 1995), 2D wavelet (Gomez et al., 2001;



Gonzalez et al., 2004; Amolins et al., 2007), 3D wavelet (Zhang and He, 2007), pyramids (Liu et
al., 2001) or high pass filtering (Shettigare, 1992). Image fusion is performed by combining the
transform coefficients from all images. After that, the combined image is transformed by the
inverse-transformation into the original image space. In the pixel-based methods (Petrovic and
Xydeas, 2004; Xia and Kamel, 2007), a pixel in the fused image is determined from a set of
pixels from the input sources. For example, Hardie (Hardie et al., 2004) and Li (Li and Leung,
2009) applied statistical models to a pixel-based approach where intensity values form
corresponding pixels from fusing images statistically depend on the intensity value of a fused
image. The approach detailed in this paper is also pixel-based and use a statistical model.

Image registration is the process of transforming different sets of data into a single coordinate
system. Data may come from different sensors, from different times, or from different
viewpoints. Current registration methods can be classified into three categories, feature-based,
transform-based, and intensity-based methods (Zitova and Flusser, 2003). The feature-based
approaches usually extract geometric features, also known as control points, such as intersections
and landmarks, and use a least square criterion to estimate the registration parameters (Arun et
al., 1987; Umeyama, 1991). The transform-based methods work with images in the frequency
domain (Reddy and Chatterji, 1996; Stone et al., 2003) to compute the registration parameters by
utilizing the properties of translation and rotation under the Fourier transform. In intensity-based
methods, the registration parameters are estimated by maximizing some similarity measure
between pixel values of the input images. Normalized cross-correlation (Van Den Elsen, 1994),
LS (Thevenaz, 1998), and maximum likelihood (ML) (Costa, 1993) are some popular criteria
used to measure similarity.

Although many algorithms have been proposed for image registration and image fusion, the



operations are traditionally viewed as two independent processes. More precisely, image
registration is normally performed first, followed by image fusion, which usually assumes that
perfect registration has been achieved (Petrovic and Xydeas, 2004; Xia and Kamel, 2007;
Zhengnd et al., 2007). However, in practice, the registration process is not guaranteed to be
error-free, and this registration error can negatively affect the fusion performance. The quality of
fused images degrades significantly when the multispectral and panchromatic images are not
perfectly registered.

The work by Siyue (Siyue et al., 2010) attempts to join the fusion and registration processes
together by using the expectation maximization (EM) algorithm. However, they assume that the
intensity value in each pixel of the high spatial resolution image can be selected from any one of
the fused images. In the case of spatial enhancement, the intensity values of the fused image
should follow the intensity values from the multispectral image only. As a result, the algorithm
proposed in (Siyue et al., 2010) is not suitable for spatial enhancement by combining
multispectral and panchromatic images (so called “pan-sharpening”). In pan-sharpening, the
fused image must have the same color distribution as the multispectral image but contain the
spatial detail from the higher resolution panchromatic image.

In this paper, we develop the maximum a posteriori (MAP) estimator (Kay, 1993) to
simultaneously fuse and register multispectral and panchromatic images to produce a high-
resolution multispectral image. Here, we focus on the use of high-resolution panchromatic data
to enhance multispectral imagery. However, the estimation framework developed here can be
extended for any number of spectral bands in the primary and auxiliary sensors. The proposed
technique is suitable for applications where some correlation, either localized or global, exists

between the auxiliary image and the image being enhanced. A spatially varying statistical model



is used to help exploit localized correlations between the primary and auxiliary image. Another
important aspect of the proposed algorithm is that it uses an accurate observation model relating
the “true” scene to the low-resolution observations. This means that a potentially wavelength-
dependent spatially-varying system point spread function (PSF) can be incorporated into the
estimator.

The paper is organized as follows. Section I describes the study area and dataset for our
experiment. Section II gives the details of the observation model relating low-resolution
multispectral and high-resolution panchromatic images. Section III introduces the maximum a
posteriori (MAP) estimator for fusing images and the Metropolis algorithm for solving the joint
optimization problem. In Section IV, experimental results are presented and discussed. Finally in

Section V, we offer our conclusions.

2. Observation Model

Let X(S) € RM*5 be a fine resolution multispectral image (FRMI) having M pixels and B
bands where R is a real number. Here, § = {s, ..., S)y} denotes a set of pixels registered to some
real world scene. The fine resolution multispectral image is usually represented in a vector form
so that, x(s;) € RE is a fine resolution multispectral vector (FRMV) containing intensity values
of a pixel s, in the FRMI from all spectral bands. Here, we assume that the FRMVs from different
pixels are statistically independent, and have identical multivariate Gaussian distribution with a

mean vector, u,, and a covariance matrix, C, . The marginal probability density function (PDF)

of the FRMI can therefore be written as
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We omit § for the sake of abbreviation. In this paper, we assume that the direct observation of the
FRMI is impossible, but we, instead, observe the coarse resolution multispectral image (CRMI),

and the panchromatic image (PI) of the same scene.

Let Y(T) € RV*B be the CRMI with N <M pixels and B bands where T = {¢ty, ..., ty} is
a set of pixels belonging to the CRMI. Since both CRMI and FRMI are taken from the same
scene, the relationship between § and T can be determined. Let us denote a coordinate of a pixel s

in a FRMI as (x,y) where x and y are the row and column of x(s). Similarly, we can write
tz(u,v) where u and v are the row and column of the pixel ¢ in the CRMI. Hence, the

relationship between s and ¢ can be written as

[u] _ [ ncos@ 7nsinf [x] + [dx]

vl ™ |-nsind ncosé|lyl " |d, (2)
where 17, 8, dx, and dy are scale, rotation angle, translation in column direction and translation

in row direction between a pixel coordinates 7 and ¢, respectively. We denote
w=[n 6 dy d,]T as the parameter vector. In practice, since the panchromatic and
multispectral images are captured from the same satellite, they are already somewhat pre-
registered to each other within the predefined accuracy range. As a result, the parameter vector

can be assumed to be uniformly distributed within the defined set, i.e,



3)

0, otherwise

where Q is the set of all possible values in the parameter space. If the parameter vector is

known, the CRMI can be remapped and resampled into the coordinate system S. As a result, let us
denote Y,,,(§) as the remapped version of CRMI into §. Clearly both X(§) and Y,,,(S) have equal
numbers of pixels and spectral bands. However, X(8) has finer and clear detail than Y,,(S) since
all the remapping algorithms use only information from the coarser resolution image. We model

this loss of finer and clearly detail as additive noise, i.e.,
Y, (s):x(s)+nc(s) 4)

where y,,(s) € RE is the vector containing intensity values from all bands of the remapped
CRMLI, and n.(s) € RE is the additive noise vector. We assume further that noise vectors from all
pixels are independent and Gaussian distributed with a zero mean vectors and a covariance

matrix, C. . Hence, the conditional PDF of Y (§) give X(S) and the map parameter is given by

Pr(YlX,w)= HPr(ym (S)|x(s))

seS

1 "o
H exp[—z(ym (Si ) - x(SiB)) C. (ym (Si)_ x(Si ))} (5)
seS (272')E |CC|

Next, let Z(S) € RM*! be the observed panchromatic image (PI) having M pixels and only

one band. Here, we assume that the PI has the same resolution as the FRMI and is perfectly



registered with the coordinate system of FRMI. We assume further that the PI is the weighted

band summation of the FRMI plus an additive noise, i.¢.,
z(s):wa(S)+nZ(s) (6)

where z(s) is the observation of the PI at the pixel s, w=[w --- wB]T is weight vectors, and
n_(s) 1s the additive noise to the PI. Again, we also assume that noise values for all the pixels are
independent and Gaussian distributed with a zero mean and a variance, 022 , and that they are also

independent of n. (s) Hence, the conditional PDF of Z(S) give X(S) is given by

Pr(Z|X)= HPr(z(s)|x(s))

seS

1 —%(z(s)—wrx(s))

—_— 20—2

B g wf27r0'z2 ) @)

We formulate the image fusion problem as an M-ary hypothesis testing problem where each

hypothesis corresponds to a different FRMI. Furthermore, since we formulate our problem as an
M-ary hypothesis testing problem, techniques developed to solve signal detection problems can

be employed. We provide our methodology in the next section.
3. Optimum Image Fusion

The maximum a posteriori (MAP) criterion (Kay, 1993) is used for solving the above

problem in our work. This criterion is expressed as

()?, ) ) = arg [&%{)[PF(X’ w|Y,Z)] (8)



From Bayes’ rule and assuming conditional independence of Y and Z given X and w, Eq. (8) can

be rewritten as

Pr(Y,Z) ©)

Pr(Y|X, ) Pr(Z|X) Pr(X, )
Xw)) ”

(%)= arg[max [

Since Pr(Y A ) is independent of the choice of (X ,w) , it can be omitted and above equation

reduces to

(X, 7 ) = arg [(r)rfl’g%g[Pr(YlX, w) Pr(Z|X) Pr(X, w)]] (10)

By assuming further that X and e are statistically independent, and substituting Eq. (1), Eq.

(5), and Eq. (7) into Eq. (10), we have

(X,®)=arg

max Kn Pr(y.,(s)1x(s)) Pr(z(s)|x(s)) Pr(x(s))> Pr(w)” (11)

SES

Eq. (11) can be rewritten as

(X,@)=arg [(9333«) [— Z{Ey(ym,»o + Ep(Z,%) + Ex (%)} — In| Q|

(12)
where
1 T B 1
Ey(ym,x)zz(ym—x) C. (ym—x)+51n27r+§1n|CC| (13)
E,(2%) = = (2(s)~w'x(s)) + 2127+~ Ino7
(z,x 2U2zs)wxs ;27 +-Ino; (14)

and
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) . .. ) B 1 1 5
Again, we omit the term s for sake of abbreviation. Since the terms, Eln 2r, Eln|CC , Eln o

B 1 ) . . . .
—In2rx, Eln|C X| are just constants, they can be ignored. Therefore, the optimum image fusion

becomes
oo\ L 1 — (z—-wlx)
(%) =arg|max | -5 S Om = 2)TC Om =) + =3
(16)
+ (0 — ) Cx M (x — MX)} - lnlﬂwll
The above equation can be modified to
o 1 T .4
(X'w) = arg (r)?f}s() _EZ('x - .Us(}’m:Z»Mx)) CS (x - .Us(}’m:Z'ﬂx)) - lnlﬂa)l 17
S
where
T -1
C :{C}l +C! +%} , (18)
and
1 _1 w
”s(ym’Z’luX):C€|:CX”X+CC ym+?z:| (19)

Next, we define the energy function £ (X , a)) as the negative of the argument inside Eq. (19),

1e.,
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1
E(X,w) = EZ(x — ts(Ym, ZrﬂX))TCs_l(x — ts(Ym, ZrﬂX)) + In|Q,,| (20)

The optimum joint image fusion and registration problem becomes the energy minimization

problem, i.e.,
(X, &) =arg [(I}l;)r)l) E(X, w)] Q1)

For a given map parameter vector w, the optimum FRMI can be obtained by taking

derivative of Eq. (20) with respect to x, and the optimum FRMYV is given by

x:ﬂs(ym’z’”X) (22)

We note here that our result in Eq. (22) is similar to the work by Hardie (Hardie, 2004). However,

in their work, images to be fused are assumed to be perfectly aligned.

In order to obtain the map parameter, we need to find minimize Eq. (20) with respect to w.
However, the derivative of Eq. (21) with respect to the @ map parameter vector is very difficult
to obtain analytically. Furthermore, the energy function E (X, w) is an extremely non-convex
function. Hence, a gradient based approach cannot be used since the resulting map parameter will
very likely become stuck in one of many local optima. Instead, we employ the Metropolis

algorithm (Diaconis and Salo-Coste, 1998) for determining the optimum map parameter vector.
The Metropolis algorithm is a stochastic search method where, at each iteration, a new value of
o, 1s randomly proposed. If w,, results in a better fit (lower energy function), it is accepted, and

the Metropolis algorithm sets w = w,. However, even if w,, corresponds to a higher energy

value, w,, is still accepted with some probability. These random moves allow the Metropolis
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algorithm escape from local optima. By employing the Metropolis algorithm, the optimization
algorithm can be written as

1

1. Set (X,w) = (X,, wg) , h:ljand T=—"0
(X, w) = (Xo, wo) tog(h+1)

where X, and w, are the initial FRMI

and map parameters, /4 is the iteration number, 7; is the initial temperature.

2. Find a FRMI by using Eq. (23), and Let X be the resulting FRMI.
3. Use Eq. (21) to compute energy function and assign E, ;4 = E (X, w).

4. A new map parameter w,, is drawn from Eq. (3) and the corresponding energy function

E, (X, w,) is computed using Eq. (22).

k)t 0]

5. Assign w = w,, with probability P = max (1, exp [— p

6. Set A=h+1 and TzL.Goto )it h<h, .
log(h+1)

We observe that as the number of iteration increases to infinity, the temperature 7 decreases to
zero. This implies that, after a small number of iterations, the Metropolis algorithm is likely to
accept almost any proposed map parameter. However, when the number of iterations becomes
large, the Metropolis algorithm prefers to accept the map parameter that results in a better fit
(lower energy function). The convergence of the Metropolis algorithm to the global optimum

regarding the choice of the initial map parameter and FRMI is guaranteed if 7| is sufficiently

large. However, this value is often too large to be practically implemented. Nevertheless, in our

problem, the initial map parameters and FRMI are not far from the global optimum since both
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multispectral and panchromatic sensors are mounted on the same satellite. Figure 1 summarizes

the proposed optimization algorithm in this paper.

[Figure 1 about here.]

4. Experimental Results

To examine the performance of the proposed algorithm, we used various image scenes from
many parts of Thailand, namely, city (Figure 2), drought (Figure 3), agriculture (Figure 4),
mountain (Figure 5) and seashore (Figure 6) areas. Table 1 summarizes the detailed information
for all the scenes used in this experiment. Multispectral and panchromatic images were acquired
by THEOS, an Earth observation mission of Thailand, developed at EADS Astrium SAS,
Toulouse, France. THEOS was launched from Dombarovskiy, Russia at 06:37 GMT on 1

October 2008, by a Dnepr rocket.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Table 1 about here.]

The THEOS imagery products include optical and near infrared spectroscopy as four
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multispectral bands, plus panchromatic images. The THEOS satellite orbit parameters are
summarized in Table 2. Panchromatic products provide 2 meter resolution (at nadir) and 8 bits
information depth. The output scene is a square scene of 22 km. x 22 km, and covers
wavelengths ranging from 450 to 900 nm as shown in Figure 7. The multispectral products
provide 15 meter resolution (at nadir) and 8 bits information depth. All four bands are delivered
as one file. The output scene is a square scene of 90 km. x 90 km. Wavelength ranges are 450-
520 nm for the blue band, 530-600 nm for green, 620-690 nm for red, and 770-900 nm for near
infrared as shown in Figure 7. Table 3 summaries the information on multispectral and
panchromatic images provided by the THEOS satellite.

[Table 2 about here.]

[Figure 7 about here.]

[Table 3 about here.]

Since our algorithm performs both image fusion and registration at the same time, the
performance of our algorithm can be evaluated in terms of how far off the fused image is from
the actual FRMI, that is, the estimation error between the actual parameters that map between the
panchromatic and multispectral image pair and the estimated ones. If our algorithm performs
perfect registration and fusion, the fused image will be exactly equal to FRMI and the estimation
error will be zero. In order to measure this key performance metric, we need to know both actual
FRMI and the map parameters. However, since we use observed THEOS multispectral and
panchromatic images in this experiment, the actual FRMI is unknown. As a result, we treat the
observed multispectral image as the reference FRMI, and perform the proposed image fusion

algorithm on resampled multispectral and panchromatic image pairs. In this experiment, we
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resample multispectral and panchromatic images to 112.5 and 15 meters resolution, respectively.
The resampled images have a resolution of 7.5 times lower than the original ones. After fusing a
112.5 meter multispectral image with a 15 meter panchromatic image, we obtain the fused
multispectral image at 15 meter resolution which can be compared with the observed
multispectral image.

Next, since our algorithm is designed to fuse unregistered image pairs, we would like to
investigate the performance of our algorithm for different scenarios of initial registration errors.
We would like to vary the relationship between the multispectral and panchromatic images in a
pair by applying different values of displacements and rotations. However, since multispectral
and panchromatic sensors are located at different locations on the THEOS satellite, their images
are not perfectly aligned to start with. To be sure that we can precisely measure the amount of
mis-registration we introduce, we manually register all multispectral and panchromatic image
pairs first, using nine or more ground control points with the second-order polynomial
transformation. The resulting root mean square errors were less than 0.0002 pixels for all images.

For the sake of brevity, we provide the details of our experiment only for the case of the
city area image. The other cases followed the same steps. The multispectral (Figure 2) and the
panchromatic (Figure 8) image pair were degraded by resampling to 112.5 (Figure 9) and 15
(Figure 10) meters resolution respectively. Then we fused the degraded images with our
proposed algorithm to obtain a 15 meter-resolution multispectral image. We use the original 15-
meter resolution multispectral image as the “ground truth” — that is, the (actually unobservable)
FRMI. Hence, in our experiment, the resulting fused image is compared with the original

multispectral image. If our algorithm performs perfect registration and fusion, the resulting mean



16

square error (MSE) between the resulting FRMI and the original multispectral image will be
Zero.

In all of our experiments, the original multispectral and panchromatic registered images
are of size 750x750 and 5625x5625, respectively. Since the resolution ratio of the multispectral
to the panchromatic is 15/2 or 7.5, we need 7.5 times as many panchromatic pixels as

multispectral pixels to cover the same spatial extent.

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

Mis-registration errors were deliberately introduced into the degraded image pairs. Here,
the affine transformation was used and there were four parameters, namely scale factor 7,
rotation angle 6 in degree, displacement in column direction d, in pixel, and displacement in
row direction d,, in pixel. Table 4 summarizes all mis-registration errors introduced in this
experiment. Note here that mis-registration in the scale dimension was not investigated in this
paper since images are taken from the same satellite at the same time. Figure 11 shows a
panchromatic image distorted by 3 degrees of rotation, 3 pixels of displacement in the column

and 3 pixels of displacement in the row.

[Table 4 about here.]

[Figure 11 about here.]
To find the appropriate benchmark for our algorithm, we first fuse the registered image

pair by using Eq. (23) and compare it to the FRMI from manual registration as shown in Figure
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12. We note here that our algorithm and the work by Hardie are equivalent if no registration error
is considered. In other words, the benchmark scenario is when we apply Hardie algorithm
directly to multispectral and panchromatic image pairs. The corresponding MSE compared to the
original multispectral image was equal to 7.2465.

To generate the initial FRMI for our algorithm for the non-benchmark case, we fused a
mis-registered image pair using Eq. (23) and used it as the initial FRMI. An example of the
initial FRMI for the case of 3 degrees of rotation, 3 pixels of displacement in column and 3
pixels in row is illustrated in Figure 13. It is obvious that the initial FRMI appears to be blurred
and does not contain any sharp edges. Next, we submit the initial FRMI to our algorithm and
iteratively refine it by applying different sets of transformation parameters as selected by the

algorithm . Here, we set 7, =0.1, A, =500 iterations. The covariance matrices of the noise

introduced by resampling to create the CRMI from different spectral bands are assumed to be

statistically independent with variance of 25, i.e., C. =25/ where [ is the identity matrix.

Figure 14 displays the resulting FRMI for the case of 3 degrees ofrotation, 3 pixels of
displacement in column and 3 pixels in row. By visual inspection, we can observe that the
resulting FRMI looks very similar to FRMI when perfect registration is obtained.

The results summarized in Table 5 clearly show that our algorithm can move the map
parameters closer to the correct values. We note here that, for all cases, our algorithm achieved
lower RMSE values than those of the manual registration. These results imply that the manual
registration that we performed may not have been perfect after all. Some tiny registration errors

may still be present in the registered image pair.

[Figure 12 about here.]
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[Figure 13 about here.]

[Figure 14 about here.]

[Table 5 about here.]

Before testing our proposed algorithm with other image scenes, we examined our
hypothesis that the gradient search optimization approach cannot be applied to this problem by
varying the displacement in column direction, d,,, and computing the energy function from Eq.21.
The result is shown in Figure 15. We observed that there are many local optima as expected.
Next, we plotted the energy function produced from our algorithm against the number of
iterations as shown in Figure 16. It is obvious that our approach continuously achieved lower
energy values as the number of iterations increased. This result illustrates the success of the

Metropolis algorithm employed in this research.

[Figure 15 about here.]

[Figure 16 about here.]
Next, we investigated the other scenes. The resulting MSE and map parameters are summarized
in Tables 6-9, for drought, agriculture, mountain, and seashore scenes. It is clear that the results
from all cases are similar. Our algorithm can successfully move the map parameters closer to
correct values regardless of the size of mis-registrations. Furthermore, in most cases, the
resulting FRMIs from the proposed algorithm yield lower RMSE values compared to the perfect
registration case. This suggests that our algorithm finds errors remaining after manual

registration.

[Table 6 about here.]
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[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

5. Conclusion

This paper has developed a method to simultaneously register and fuse THEOS
multispectral and panchromatic images. The fusion and registration are executed in a single step.

Our algorithm is based on a statistical model. In the estimation strategy, a MAP criterion
is employed for estimation from the observation model to produce the fused image. The
Metropolis algorithm is used to solve the joint optimization problem. A closed-form solution of
the fused images with registration is also derived in this paper.

In our experiment, we compared the performance of our proposed fusion and registration
technique with a fusion algorithm without correcting registration. The experimental results
confirm that our proposed fusion and registration technique provides good performance in both
of spatial and spectral resolution. The root mean square errors between the simulated FRMI and
the fused image are lower than for the Hardie algorithm for the case of perfect registration for all
image scenes. We believe that the manual registrations of panchromatic and multispectral image
pairs are not perfect and these registration errors affect the performance of the Hardie algorithm
for all image scenes although our proposed algorithm and Hardie algorithm are similar for the

case where no registration is performed.
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Figure 1. Flowchart of the proposed algorithm

23



Figure 2. 750x750 THEOS multispectral image of city area
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Figure 3. 750x750 THEOS multispectral image of drought area
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Figure 4. 750x750 THEOS multispectral image of agriculture area
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Figure 5. 750x750 THEOS multispectral image of mountain area
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Figure 6. 750x750 THEOS reference multispectral image of seashore area
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Figure 7. Ideal spectral response of THEOS
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Figure 8: Panchromatic image of the city scene of size 5625x5625 pixels

29



Figure 9: Degraded multispectral image of city scene at 112.5x112.5 meters resolution of size
100x100 pixels
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Figure 10: Degraded panchromatic image of the city scene at 15x15 meters resolution of size
750750 pixels
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Figure 11: Degraded panchromatic image with mis-registration error of 3 degrees of rotation, 3
pixels of displacement in column and 3 pixels in row



Figure 12. THEOS fused multispectral image with city area and750x750 pixels
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Figure 13.THEOS initial fused multispectral image obtained by applying Hardie algorithm to the
unregistered image pair with 3 pixels displacement and 3 degrees rotation with city scene
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Figure 14. The resulting fused image for city area

Figure 15.Energy function defined in Eq. 21 of the displacement pixels in row column direction.



Figure 16. Energy function for each iteration of the Metropolis algorithm
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Table 1: Details of THEOS images in our experiment

37

Area Longitude Latitude Date Time

City 100.3845251902455N | 13.82391143621505E | 2009/12/13 10.32 AM
Drought 105.058671289676N | 15.92080873025695E | 2010/01/04 10.31 AM
Agriculture 100.5728597866535N | 14.6219909729372E | 2009/12/13 10.32 AM
Mountain 100.561439575278N | 19.69589619804945E | 2010/02/13 10.31 AM
Seashore 99.59914701590165N | 11.3390399265943E | 2010/03/06 10.33 AM

Table 2: Orbital characteristics of THEOS

Satellite THEOS
Orbit Sun synchronous recurrent frozen orbit
Altitude 822 km
Inclination 97.95 degree
Repetition cycle 31 days
Descending node (local time) 10:30 AM
Orbital period 101.4 minutes
On-board capacity 16 Gbits




Table 3: Technical specifications of THEOS payload

Panchromatic Multispectral
Blue: 450-520 nm
Green: 530-600 nm
Wavelength 450-900 nm Red: 620-690 nm
Near Infrared: 770-900 nm
Resolution 2m I5m
Swath width 22 km 90 km
Pixels 12000 6000
Table 4: The mis-registration errors examined in this experiment
Scale Ratio angle Displacement in | Displacement in
column direction | row direction
Case | 1 1 1 1
Case II 1 -2 -2 -2
Case 111 1 3 3 3
Case IV 1 -4 -4 -4
Case V 1 5 5 5
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Table 5: Comparison of fusion performance for images of city area

Hardie algorithm with
perfect registration

Fusion Result using Hardie
algorithm without
registration error correction

Proposed joint image fusion and

registration algorithm

dy | d, [6 [RMSE | d, [d, [6 [RMSE | d, d, |6 RMSE
0 0 0 7.2465 1 1 1 10.2043 0.4315 0.4195 0.1826 6.9368
0 0 0 7.2465 -2 -2 -2 9.7011 0.4426 0.4225 -0.0597 | 6.3584
0 0 0 7.2465 3 3 3 9.2295 1.5293 0.3358 -0.0037 | 6.9519
0 0 0 7.2465 -4 -4 -4 9.0814 1.2999 0.6848 -0.1954 | 7.4333
0 0 0 7.2465 5 5 5 8.8802 1.4716 0.6873 -0.0114 | 7.1084

Table 6: Comparison of fusion performance for images of drought area

Hardie algorithm with
perfect registration

Fusion Result using Hardie
algorithm without
registration error correction

Proposed joint image fusion and

registration algorithm

de | dy [0 [RMSE [ d, [ d, [0 [RMSE | d, | d, |6 [RMSE
0 0 0 4.4493 1 1 1 6.7294 0.4178 | 1.6116 | -0.0425 | 4.4184
0 0 0 4.4493 -2 -2 -2 6.3793 0.4561 | 0.5670 | -0.0832 | 3.5014
0 0 0 4.4493 3 3 3 5.9539 1.4802 | 0.6065 | 0.0960 | 4.0669
0 0 0 4.4493 -4 -4 -4 5.7613 1.5929 | 0.4242 | -0.1787 | 4.3226
0 0 0 4.4493 5 5 5 5.5656 0.6040 | 0.4540 | 0.0551 | 3.7374

Table 7: Comparison of fusion performance for images of agriculture area
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Hardie algorithm with
perfect registration

Fusion Result using Hardie

algorithm without

registration error correction

Proposed joint image fusion and

registration algorithm

dy | d, [6 [RMSE | d, [ d, [6 [RMSE | d, d, |0 RMSE
0 0 0 8.0216 1 1 1 11.3885 0.5491 1.3608 0.0223 5.6583
0 0 0 8.0216 -2 -2 -2 11.3888 0.4865 0.5077 0.0182 5.7027
0 0 0 8.0216 3 3 3 10.9708 0.3072 0.5173 0.0277 5.8182
0 0 0 8.0216 -4 -4 -4 10.6829 0.5111 0.7775 -0.0304 | 5.6377
0 0 0 8.0216 5 5 5 10.4727 0.4003 0.6520 0.0465 5.9665

Table 8: Comparison of fusion performance for images of mountain area

Hardie algorithm with
perfect registration

Fusion Result using Hardie

algorithm without

registration error correction

Proposed joint image fusion and

registration algorithm

dy | dy [0 [RMSE [ d, [d, [6 [RMSE| d, | 4, |6 RMSE
0 0 0 3.6175 1 1 1 4.4446 0.3589 | 0.6566 | -0.2068 | 3.2774
0 0 0 3.6175 -2 -2 -2 4.5898 0.4614 | 0.4915 | -0.2390 | 3.3056
0 0 0 3.6175 3 3 3 4.6388 0.6505 | -0.5470 | -0.0401 | 3.2220
0 0 0 3.6175 -4 -4 -4 4.5726 0.8501 | -0.4960 | 0.0323 | 3.1460
0 0 0 3.6175 5 5 5 4.6244 1.5957 | 04378 | -0.0534 | 3.3172




Table 9: Comparison of fusion performance for images of sea shore area

Hardie algorithm with
perfect registration

Fusion Result using Hardie
algorithm without
registration error correction

Proposed joint image fusion and
registration algorithm

dy | d, [6 [RMSE | d, [d, [6 [RMSE | d, d, |6 RMSE
0 0 0 5.1446 1 1 1 7.4105 0.6091 0.6279 0.0773 3.9202
0 0 0 5.1446 -2 -2 -2 7.2712 0.4977 0.5948 0.0856 39134
0 0 0 5.1446 3 3 3 7.0384 0.3827 1.3204 0.0796 4.1890
0 0 0 5.1446 -4 -4 -4 6.7605 0.6050 0.6162 0.0149 3.8124
0 0 0 5.1446 5 5 5 6.6767 0.5031 0.6723 -0.0195 | 4.0117
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