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รายงานฉบับนี้ประกอบด้วยเนื้อหา 3  ส่วน คือ 1) ขั้นตอนวิธีรวมภาพโดยตรงจากภาพถ่ายดาวเทียม

ที่ไม่ว่างประทับกัน 2) ขั้นตอนวิธีการสร้างแผนที่จ าแนกชนิดโดยตรงจากภาพถ่ายดาวเทียมที่ไม่ว่างประทับกัน 
และ 3) ขั้นตอนวิธีในการระบุวันปลูกข้าวจากข้อมูลภาพ MODIS ทีมีเมฆปกคลุม  ในส่วนของวิธีรวมภาพ
โดยตรงจากภาพถ่ายดาวเทียมที่ไม่วางประทับกัน ผู้วิจัยได้น าเสนอขั้นตอนวิธีที่ใหม่ในการรวมภาพความ
ละเอียดเชิงพ้ืนที่ต่ าแต่มีความละเอียดเชิงสเปกตรัมสูงกับภาพความละเอียดเชิงพ้ืนที่สู งแต่มีความละเอียดเชิง
สเปกตรัมต่ าเข้าด้วยกัน โดยภาพทั้ง 2 ไม่จ าเป็นต้องวางประทับกัน จากปกติที่ต้องวางประทับภาพให้สมบูรณ์
ก่อนที่จะท าการรวมภาพ  ในผลงานวิจัยนี้ ขั้นตอนการวางประทับและการรวมภาพสามารถที่จะก าหนดให้อยู่
ในรูปแบบของปัญหาการประมาณค่า  ดังนั้นพารามิเตอร์ของการวางประทับภาพสามรถที่จะปรับค่าโดย
อัตโนมัติ เพ่ือให้ขั้นตอนการรวมภาพและการวางประทับภาพสามารถที่จะกระท าพร้อมกันได้ ขั้นตอนที่
น าเสนอให้รายงานฉบับนี้ อาศัยหลักเกณฑ์การประมาณค่าแบบ Maximum a posteriori (MAP) เพ่ือใช้ใน
การรวมภาพ และใช้วิธีการหาค่าดีที่สุดแบบ Metropolis เพ่ือหาค่าที่เหมาะสมที่สุดในส่วนของการวาง
ประทับและรวมภาพไปพร้อมๆกัน คณะผู้วิจัยได้ท าการคิดค้นสมการส าหรับการหาภาพรวมที่เหมาะสมที่สุด
มาในรายงานฉบับนี้ด้วย ผลการทดสอบจากการทดลองแบบต่างๆ พบว่าผลการรวมภาพของขั้นตอนวิธีที่
น าเสนอสร้างภาพที่มีคุณภาพเชิงพ้ืนที่ และคุณภาพเชิงสีที่ดี ถึงแม้ว่าภาพทั้ง 2  จะวางประทับผิดพลาดในตอน
เริ่มต้นอยู่มากก็ตาม 

ในการท าแผนที่จ าแนกชนิดจากข้อมูลภาพที่ไม่วางประทับกันอย่างสมบูรณ์   รายงานฉบับนี้น าเสนอ
ขั้นตอนวิธีการแบ่งแยกชนิดวัตถุร่วมกับการวางประทับภาพโดยอาศัยโมเดล Markov random field (MRF) 
เพ่ือที่จะวางประทับภาพไปพร้อมๆกับการท าแผนที่   คณะผู้วิจัยได้อาศัยขั้นตอนวิธี  Expectation-
Maximization (EM) ในการแก้ปัญหาการแบ่งแยกชนิดวัตถุร่วมกับการวางประทับภาพ โดยประมาณค่าการ
วางประทับสลับกับการประมาณค่าความน่าจะเป็นแบบ posterior ไปหลายๆรอบ  หลักจากนั้นได้น าเกณฑ์
แบบ Maximum a posteriori (MAP) มาใช้ในการท าแผนที่จ าแนกชนิด  ผู้วิจัยได้ท าการทดสอบขั้นตอนวิธีที่
พัฒนาขึ้นกับชุดข้อมูลหลายๆชนิดทั้งแบบที่เป็นแบบจ าลองและภาพจริง ผลที่ได้พบว่าเมื่อค่าพารามิเตอร์ของ 
MRF ได้รับการเลือกที่เหมาะสมแผนที่ที่ได้มีความถูกต้องเท่าๆกับกรณีที่ข้อมูลภาพทั้งหมดถูกวางประทับโดย
สมบูรณ์ 

ในส่วนของการประมาณวันเพาะปลูกข้าว คณะผู้วิจัยได้พัฒนาวิธีการประมาณวันเพาะปลูกข้าวจาก
ข้อมูล  normalized difference vegetation index (NVDI) แบบทุกๆ 8  วันจากภาพถ่าย  moderate 
resolution imaging spectroradiometer (MODIS)   สัญญาณ  NDVI จะถูกโมเดลด้วย triply modulated 
cosine function ที่ประกอบด้วยพารามิเตอร์หลัก 3  ตัวคือ ค่าเฉลี่ย ขนาดสัญญาณ และ เฟสของสัญญาณ 
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และได้  Extended Kalmann filter (EKF) ในการประมาณพารามิเตอร์หลักทั้ง 3  จากโมเดลนี้ คณะผู้วิจัย
สามารถลดผลกระทบของเมฆต่อสัญญาณ NDVI และพบว่าวันปลูกข้าวตรงกับวันที่ส่วนที่แปรผันเป็นฤดู มีค่า
เพ่ิมขึ้นจนเกินค่า threshold ที่ก าหนดไว้  จากการทดลองพบว่าขั้นตอนวิธีที่พัฒนาขึ้นสามารถระบุวัน
เพาะปลูกได้ผิดพลาดน้อยกว่า 16 วันจากข้อมูลที่กรมการข้าวได้ถึง 73.3 และ 80 เปอร์เซ็นต์ส าหรับนาปี และ
นาปรังที่ปลูก 2 ครั้งต่อปีตามล าดับ 

 

ค าหลัก: โมเดลมาคอรฟ์แรนดอมฟิวด์ การรวมภาพพร้อมกับการวางประทับภาพ การท าแผนที่พร้อมกับการ
วางประทับภาพ การประมาณวันเพาะปูลกข้าว  
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The work in this report consists of three parts: 1) a joint image fusion algorithm from 
mis-registered image pairs, 2) a land cover mapping algorithms algorithm for mis-registered 
image datasets and 3) rice cultivation date estimation using cloudy multi-temporal Moderate 
Resolution Imaging Spectroradiometer (MODIS). In a joint image fusion algorithm from mis-
registered image pairs, a new method for fusion and registration of low spatial and high 
spectral resolution image with high spatial and low spectral resolution image in a single step 
is developed. In the usual procedure, fusion is an independent process separated from 
registration. However, both image registration and fusion can be formulated as estimation 
problems. Hence, the registration parameters can be automatically tuned so that both fusion 
and registration can be optimized simultaneously. Here, we concentrate on the relationship 
between low-resolution multispectral and high-resolution panchromatic imagery. The 
proposed technique is based on a statistical model. It employs the maximum a posteriori 
(MAP) estimator to solve the fusion problem, and applies the Metropolis algorithm to solve 
the joint optimization problem. A closed-form solution to find the fused high spatial and 
spectral resolution image with correcting registration is also derived here. We examine our 
algorithm into datasets. 

In a land cover mapping algorithms algorithm for mis-registered image datasets, we 
proposed a joint classification and registration technique based on a Markov random field 
(MRF) model to simultaneously align two or more images and obtain a land cover map 
(LCM) of the scene. The expectation maximization (EM) algorithm is employed to solve the 
joint image classification and registration problem by iteratively estimating the map 
parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP) 
criterion is used to produce an optimum land cover map. We conducted experiments on a set 
of four simulated images and one pair of remotely sensed images to investigate the 
effectiveness and robustness of the proposed algorithm. Our results show that, with proper 
selection of a critical MRF parameter, the resulting LCMs derived from an unregistered 
image pair can achieve an  accuracy as high as when images are perfectly aligned. 
Furthermore, the registration error can be greatly reduced 

In our last work, we developed a rice cultivation date estimation based on remote 
sensing data, since rice is critical information to evaluate the damages in rice fields from 
natural disasters. In this study, the 8-day composite normalized difference vegetation index 
(NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data 
was modeled as a triply modulated cosine function, and the extended Kalman filter (EKF) is 
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used to estimate the mean, amplitude and phase parameters of the cosine function. The 
cultivation dates are estimated as the date where the seasonal variation derived from the EKF 
is greater than a threshold after its minimum. From the experimental results, the estimated 
cultivation dates derived from the proposed algorithm agree with rice cultivation information 
from the National Rice Department. The 73.3 percentages of the estimated cultivation dates is 
within 16 days for the rain-fed rice areas, and more than 80 percentages of the estimated data 
is within 16 days for irrigated areas with two crop cycles per year 

 
Keyword: Markov Random Field, joint image fusion and registration, joint image land cover 
mapping and registration, rice cultivation date estimation 
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 ภาพถ่ายระยะไกล (Remote Sensing Images) ที่ถูกถ่ายจากมุมสูงนั้นมีประโยชน์อย่างมากต่อการ
จัดการพืชผลทางการเกษตร เนื่องจากภาพถ่ายระยะไกล 1 รูปสามารถครอบคลุมพ้ืนที่เป็นบริเวณกว้าง  และ
ภาพเหล่านี้สามารถท าการถ่ายซ้ าๆบนพ้ืนที่ต่างในประเทศไทยในเวลาเพียงไม่กี่วัน  ท าให้การน าภาพถ่าย
ระยะไกลมาช่วยในการประมาณการปริมาณพืชผลทางการเกษตร จะได้รับข้อมูลที่ใหม่และครบถ้วนอยู่เสมอ 
หน่วยงานรัฐบาลได้น าภาพถ่ายระยะไกลมาใช้ในการแก้ไขและจัดการหลายๆอย่างในภาคการเกษตรและนอก
ภาคการเกษตรบ้างแล้ว เช่นการวางแผนการทรัพยากรน้ า การจัดการป่าไม้ หรือแม้แต่ปัญหาภัยพิบัติต่างๆ  
ตัวอย่างเช่นภายหลังการเกิดภัยพิบัติสึนามิในปี 2547 ประเทศไทยได้มีการน าภาพถ่ายระยะไกลมาช่วยบ่งบอก
และประมาณการความเสียหายที่เกิดจากภัยพิบัติ เช่นเดียวกันในฤดูฝนปี 2554 ที่เพ่ิงผ่านมาได้มีการน า
ภาพถ่ายระยะไกลมาช่วยในการจัดการอุทกภัยของประเทศ   

ถึงแม้ว่าเรามีแหล่งข้อมูลภาพถ่ายดาวเทียมจ านวนมาก การน าภาพถ่ายระยะไกลมาใช้งานต่างๆ ยัง
ประสบปัญหาหลายด้าน  เนื่องด้วยข้อจ ากัดทางกายภาพของภาพถ่าย และสภาพแวดล้อมของประเทศไทย ซึ่ง
ปัญหาที่พบบ่อยได้แก่ 1) เมฆที่ปกคลุมภาพถ่ายระยะไกลท าให้ไม่สามารถมองเห็นวัตถุที่ถูกบดบัง 2) เงาที่บด
บังวัตถุท่ีถูกปกคลุมโดยเงา และ 3) ความละเอียดเชิงพ้ืนที่และสเปกตรัมแสงของภาพที่ท าให้จ าแนกชนิดวัตถุได้
ไม่ถูกต้องตามที่ต้องการ 

เพ่ือแก้ปัญหาเหล่านี้ จ าเป็นต้องใช้ภาพถ่ายระยะไกลจากหลายๆเวลา หรือจากหลายๆดาวเทียมเพ่ือ
ลดผลกระทบของเมฆและเงาในภาพ และยังเพ่ือเพ่ิมคุณภาพเชิงพ้ืนที่และสเปกตรัมของภาพ อย่างไรก็ตามเมื่อ
น าภาพหลายภาพมาใช้งานร่วมกัน มีความจ าเป็นต้องวางประทับภาพเหล่านั้นให้ดี  การวางประทับภาพคือการ
ท าภาพถ่ายดาวเทียมอยู่ในแนวเดียวกัน เมื่อภาพเหล่านี้อยู่ในแนวเดียวกันแล้ว จึ งจะน าภาพไปใช้ได้  ถ้า
ขั้นตอนนีไม่สมบูรณ์ประสิทธิภาพของการน าภาพไปใช้จะลดลง  อย่างไรก็ตามไม่ขั้นตอนการวางประทับภาพใด
ที่สมบูรณ์ และการวางประทับภาพแต่ละอย่างมีวิธีการและขั้นตอนที่ต่างกัน ดังนั้นในงานวิจัยชิ้นนี้จึงเสนอให้
รวมขั้นตอนการประทับภาพเข้ากับขั้นตอนการวิเคราะห์ภาพเป็นขั้นตอนเดียว เพ่ือลดขั้นตอน และเพ่ือให้
ขั้นตอนการวิเคราะห์ภาพพิจารณาความผิดพลาดของการวางประทับภาพไว้ด้วย สุดท้ายผู้ วิจัยจะน าภาพถ่าย
ดาวเทียมหลายๆภาพมารวมกัน เพ่ือลดผลกระทบของเมฆในภาพและใช้ภาพเหล่านี้ในการระบุวันเพาะปลูก
ข้าวด้วย 
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การด าเนินโครงการ 

โครงการนี้ ได้ด าเนินการศึกษาและพัฒนาวิธีการอยู่หลายแบบโดยมุ่งเน้นไปที่การน าภาพหาลยๆชนิด
มารวมเข้าด้วยกัน เพ่ือสร้างเป็นแผนที่จ าแนกชนิดที่มีความถูกต้องมากขึ้น  คณะผู้วิจัยได้แบ่งการศึกษา
ออกเป็น 3 ส่วนหลักๆคือ  

1. พัฒนาขั้นตอนวิธีรวมภาพโดยตรงจากภาพถ่ายดาวเทียมที่ไม่วางประทับกัน 
2. พัฒนาขั้นตอนวิธีการสร้างแผนที่จ าแนกชนิดโดยตรงจากชุดข้อมูลภาพถ่ายดาวเทียมท่ีไม่วางประทับ

กัน 
3. พัฒนาขั้นตอนวิธีในการระบุวันปลูกข้าวจากข้อมูลภาพ MODIS ทีม่ีเมฆปกคลุม  

 
ขั้นตอนวิธีในการรวมภาพ 

ในส่วนนี้  ผู้วิจัยได้พัฒนาวิธีการรวมภาพแบบใหม่ ที่รวมขั้นตอนการรวมภาพและวางประทับภาพเข้า
ด้วยกันให้เหลือเพียง 1 ขั้นตอน  จากปกติที่มี 2 ขั้นตอน โดยเริ่มจากการวางประทับภาพ และหลังจากนั้นจะ
ถูกน าไปรวมกันภายใต้ข้อสมมติที่ว่าการวางประทับภาพท าได้สมบูรณ์ และไม่มีข้อผิดพลาดใดๆเกิดขึ้น อย่างไร
ก็ตาม ข้อสมมตินี้อาจจะไม่เป็นจริงเสมอไป  ดังนั้นจึงเสนอวิธีการรวมภาพที่ค านึงถึงว่าที่น ามารวมกันอาจจะไม่
วางประทับกันอย่างสมบูรณ์  เพ่ือให้รวมขั้นตอนทั้ง 2 เข้าด้วยกัน ขั้นตอนการวางประทับและการรวมภาพจะ
ถูกดัดแปลงให้อยู่ในรูปแบบของปัญหาการประมาณค่า  ดังนั้นพารามิเตอร์ของการวางประทับภาพสามารถที่
จะปรับค่าโดยอัตโนมัติ เพ่ือให้ขั้นตอนการรวมภาพและการวางประทับภาพสามารถที่จะกระท าพร้อมกันได้  
เพ่ือหาภาพรวมที่ดีที่สุด ผู้วิจัยได้น าหลักเกณฑ์การประมาณค่าแบบ Maximum a posteriori (MAP) เพ่ือใช้
หาภาพรวมที่เหมาะสมที่สุด และใช้วิธีการหาค่าดีที่สุดแบบ Metropolis เพ่ือหาค่าพารามิเตอร์ในการวาง
ประทับภาพเที่เหมาะสมที่สุด  คณะผู้วิจัยได้ท าการคิดค้นสมการส าหรับการหาภาพรวมที่เหมาะสมที่สุดมาใน
รายงานฉบับนี้ด้วย ผลการทดสอบจากการทดลองแบบต่างๆ พบว่าผลการรวมภาพของขั้นตอนวิธีที่น าเสนอ
สร้างภาพที่มีคุณภาพเชิงพ้ืนที่ และคุณภาพเชิงสีที่ดี ถึงแม้ว่าภาพทั้ง 2 จะวางประทับผิดพลาดในตอนเริ่มต้น
อยู่มากก็ตาม 

ขั้นตอนวิธีการสร้างแผนที่จ าแนกชนิดโดยตรงจากภาพถ่ายดาวเทียมท่ีไม่วางประทับกัน 
วิธีการท าแผนที่จากภาพจากชุดข้อมูลภาพที่วางประทับกันอย่างสมบูณ์ ไม่ว่าข้อมูลภาพเหล่านี้อาจจะ

มาจากภาพจากหลายๆเวลา หรือภาพจากหลายๆชนิด  โดยปกติมักจะสมมติว่าภาพทั้งหมดที่น ามาใช้ได้รับการ
วางประทับกันได้อย่างสมบูรณ์  อย่างไรก็ตามเพราะภาพเหล่านี้ถ่ายกันคนละเวลา หรือถ่ายโดยดาวเทียมคนละ
ดวงข้อสมมติที่ว่าการวางประทับกันอย่างสมบูรณ์มักจะไม่เป็นจริงเสมอไป  ดังนั้นขั้นตอนการท าแผนที่จ าแนก
ชนิดที่ดีควรจะแก้ไขการวางประทับที่ผิดพลาดเหล่านี้ให้ดีเท่ากับความสามารถในการแบ่งแยกวัตถุได้ถูกต้อง
แม่นย า  ในรายงานฉบับนี้น าเสนอข้ันตอนวิธีการแบ่งแยกชนิดวัตถุร่วมกับการวางประทับภาพโดยอาศัยโมเดล 
Markov random field (MRF) เพ่ือที่จะวางประทับภาพไปพร้อมๆกับการท าแผนที่  คณะผู้วิจัยได้อาศัย
ขั้นตอนวิธี Expectation-Maximization (EM) ในการแก้ปัญหาการแบ่งแยกชนิดวัตถุร่วมกับการวางประทับ
ภาพ โดยประมาณค่าการวางประทับสลับกับการประมาณค่าความน่าจะเป็นแบบ posterior ไปหลายๆรอบ  
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หลักจากนั้นได้น าเกณฑ์แบบ Maximum a posteriori (MAP) มาใช้ในการท าแผนที่จ าแนกชนิด  ผู้วิจัยได้ท า
การทดสอบขั้นตอนวิธีที่พัฒนาขึ้นกับชุดข้อมูลหลายๆชนิดทั้งแบบที่เป็นแบบจ าลองและภาพจริง ผมที่ได้พบว่า
เมื่อค่าพารามิเตอร์ของ MRF ได้รับการเลือกที่เหมาะสมแผนที่ที่ได้มีความถูกต้องเท่าๆกับกรณีที่ข้อมูลภาพ
ทั้งหมดถูกวางประทับโดยสมบูรณ์ 

ขั้นตอนวิธีในการระบุวันปลูกข้าวจากข้อมูลภาพ MODIS ทีมีเมฆปกคลุม 
 ในส่วนนี้  คณะผู้วิจัยได้ พัฒนวิธีการประมาณวันเพาะปลูกข้าวโดยอาศัยข้อมูล normalized 
difference vegetation index (NVDI) แบบทุกๆ 8 วันจากภาพถ่าย moderate resolution imaging 
spectroradiometer (MODIS)  การรู้วันเพาะปลูกข้าวนั้นส าคัญต่อการประเมินความเสียหายที่เกิดขึ้นจาก
ภัยพิบัตรไม่ว่าจะเกิดจากน้ าท่วมหรือภัยแล้ง และชดเชยความเสียหายให้กับเกษตรกรอย่างเหมาะสม   
คณะผู้วิจัยเลือกใช้ภาพถ่าย MODIS เพราะข้อมูลภาพเกือบทุกวัน และยังสามารถดาวน์โหลดได้โดยไม่มีค่าใช้
จ่าน นอกจากนี้แล้วข้อมูล NDVI ของ MODIS ยังได้รับความนิยมในการศึกษาในเรื่องของชีพลักษณ์ของพืชทาง
การเกษตร (crop phenology)   

ในรายงานฉบับนี้ผู้วิจัยได้โมเดล NDVI ด้วย triply modulated cosine function ที่ประกอบด้วย
พารามิเตอร์หลัก 3 ตัวคือ ค่าเฉลี่ย ขนาดสัญญาณ และ เฟสของสัญญาณ และใช้ Extended Kalmann filter 
(EKF) ในการประมาณพารามิเตอร์หลักทั้ง 3  จากโมเดลนี้ คณะผู้วิจัยพบว่าวันปลูกข้าวตรงกับวันที่ส่วนที่แปร
ผันเป็นฤดู มีค่าเพ่ิมข้ึนจนเกินค่า threshold ที่ก าหนดไว้  จากการทดลองพบว่าขั้นตอนวิธีที่พัฒนาขึ้นสามารถ
ระบวุันเพาะปลูกได้ผิดพลาดน้อยกว่า 16 วันจากข้อมูลที่กรมการข้าวได้ถึง 73.3 และ80 เปอร์เซ็นต์ส าหรับนา
ปี และนาปรังที่ปลูก2ครั้งต่อปีตามล าดับ 

ผลงานที่ได้:  
1. T. Sritarapipat, T. Kasetkasem, and P. Rakwatin, “Fusion and Registration of THEOS 

Multispectral and Panchromatic Images,” under review at the International Journal of 
Remote Sensing 

2. T. Kasetkasem, P. Rakwating, R. Sirirsommai and A. Eiumnoh, “a Joing Land Cover 
Mapping and Image Registration Algorithm Based on a Markov Random Field 
Model,” under review at Remote Sensing  

3. T. Kasetkasem, P. Rakwatin, R. Sirisommai, A. Euimnoh, and T. Isshiki, “A MRF-
Based Approach for a Multisensor Land Cover Mapping of Mis-Registered Images” 
The 2012 IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS2012), July 22-27, Munich, Germany   

 
บทสรุปโดยภาพรวม   โครงการฯได้ด าเนินวานบรรลุวัตถุประสงค์ และโจทย์วิจัยท่ีตั้งเป้าไว้ทุกประการ 
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Executive Summary 
 
Project Code: RSA5480031 
Project Name: Remote Sensing Image Enhancement and Land Cover Mapping from Cloud-
Covered and Low Resolution Images by Fusing with Images from Different Modalities and 
Times 
Principle Investigator: Assistant Professor Dr. Teerasit Kasetkasem  
Email Address: fengtsk@ku.ac.th 
Project Period: July 15th, 2011- July 14th, 2013 
 
 Remote Sensing Images due to their synoptic view and map like format are the crucial 
part of agriculture monitoring and management systems since one remote sensing image can 
capture a wide area. Furthermore, some remote sensing satellites can repeatedly capture 
images of the same scene for every 1 or 2 days. As a result, the remote sensing images 
provide timely and complete information on the ground cover. The various sectors in the Thai 
government, thus, have used remote sensing images in both agriculture and non-agriculture 
applications. For example, in 2004, the Thai government used remote sensing images in 
disaster assessment after the world biggest Tsunami, and in 2011, the remote sensing images 
was the vital parts in flood control and disaster relief effort in the recent massive flood.   
 Although remote sensing images have shown to be very promising, the use of remote 
sensing images in Thaland is still limited due to the physical and environmental limitations in 
Thailand. The common problems are 1) high cloud coverage, 2) high shadows and 3) the low 
spatial and spectral resolutions of available remote sensing images.  
 To tackle these problems, there is a need of combining multiple remotely sensed 
images together to reduce the effect of clouds and shadows and increase the spatial and 
spectral resolutions. These remotely sensed images can be from multiple times or multiple 
satellites. For multi-sensor image analysis, the registration process is a crucial initial step to 
the use of multiple images. Registration aligns multiple satellite images into a common 
coordinate system. Only when all of the input images are perfectly registered, the use of 
multiple images can be performed. Otherwise mis-registration will reduce the performance. In 
practice, perfect registration may not always be achievable since there are some unknown 
variations on satellite platforms and flight paths when capturing images. As a result, the 
performance is likely to suffer from mis-registration effects. As a result, in this research 
project, we attempt to combine image registration algorithm with image analysis techniques, 
namely, image fusion and land cover mapping to increase the image analysis. Since the 
proposed image analysis algorithms can handle mis-registered images, the number of steps to 
analyze images is reduced, and the image analysis algorithms are robust to image mis-
alignment. Lastly, we attempt to use multi-temporal MODIS images to reduce the effect of 
cloud in the rice cultivation date estimation.  
 
Operations Research 
 

Since the goal of this research is aimed to fuse multiple images together to increase the 
accuracy in image analysis algorithm. We divide our research into three parts: 

1. Remote sensing image fusion algorithm for mis-registered images 
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2. Land Cover Mapping algorithm from Mis-Registered Image Datasets 
3. Rice cultivation date estimation using cloudy-multi-temporal Moderate Resolution 

Imaging Spectroradiometer (MODIS) 
 
Remote sensing image fusion algorithm for mis-registered images 

 

This work presents a new method for fusion and registration of low spatial and high 
spectral resolution image with high spatial and low spectral resolution image in a single step. 
In the usual procedure, fusion is an independent process separated from registration. 
However, both image registration and fusion can be formulated as estimation problems. 
Hence, the registration parameters can be automatically tuned so that both fusion and 
registration can be optimized simultaneously. Here, we concentrate on the relationship 
between low-resolution multispectral and high-resolution panchromatic imagery. The 
proposed technique is based on a statistical model. It employs the maximum a posteriori 
(MAP) estimator to solve the fusion problem, and applies the Metropolis algorithm to solve 
the joint optimization problem. A closed-form solution to find the fused high spatial and 
spectral resolution image with correcting registration is also derived here. We examine our 
algorithm into datasets. In the first dataset, a THEOS multispectral image with high spectral 
resolution and a THEOS panchromatic image with high spatial resolution are combined to 
produce a multispectral image with high spectral and spatial resolution. Similarly, in the 
second datasets, we fuse a high spectral resolution hyperspectral image with a high spatial 
resolution CCD image from SMMS satellite to produce a high-spatial resolution hyperspectral 
image. The results of our experiment show that the proposed fusion and registration algorithm 
can produce high quality high-resolution images from low spatial and high spectral resolution 
image and high spatial and low spectral resolution images even when they are severely mis-
registered. 

Land Cover Mapping algorithm from Mis-Registered Image Datasets 

 
Traditional multi-modal and multi-temporal land cover mapping algorithms assume that all 
images are perfectly aligned. However, since multi-modal and multi-temporal images are 
likely to be obtained from different satellite platforms and/or acquired at different times, 
perfect alignment is very difficult to achieve. As a result, a proper land cover mapping 
algorithm must be able to correct registration errors as well as perform an accurate 
classification. In this paper, we proposed a joint classification and registration technique based 
on a Markov random field (MRF) model to simultaneously align two or more images and 
obtain a land cover map (LCM) of the scene. The expectation maximization (EM) algorithm is 
employed to solve the joint image classification and registration problem by iteratively 
estimating the map parameters and approximate posterior probabilities. Then, the maximum a 
posteriori (MAP) criterion is used to produce an optimum land cover map. We conducted 
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experiments on a set of four simulated images and one pair of remotely sensed images to 
investigate the effectiveness and robustness of the proposed algorithm. Our results show that, 
with proper selection of a critical MRF parameter, the resulting LCMs derived from an 
unregistered image pair can achieve an  accuracy as high as when images are perfectly 
aligned. Furthermore, the registration error can be greatly reduced 
 
Rice cultivation date estimation using cloudy-multi-temporal Moderate Resolution Imaging 
Spectroradiometer (MODIS) 
 

 Rice cultivation date estimation based on remote sensing data is critical information to 
evaluate the damages in rice fields from natural disasters. In this study, the 8-day composite 
normalized difference vegetation index (NDVI) derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) data was modeled as a triply modulated cosine function, 
and the extended Kalman filter (EKF) is used to estimate the mean, amplitude and phase 
parameters of the cosine function. The cultivation dates are estimated as the date where the 
seasonal variation derived from the EKF is greater than a threshold after its minimum. From 
the experimental results, the estimated cultivation dates derived from the proposed algorithm 
agree with rice cultivation information from the National Rice Department. The 73.3 
percentages of the estimated cultivation dates is within 16 days for the rain-fed rice areas, and 
more than 80 percentages of the estimated data is within 16 days for irrigated areas with two 
crop cycles per year 

 

Output:  
1. T. Sritarapipat, T. Kasetkasem, and P. Rakwatin, “Fusion and Registration of THEOS 

Multispectral and Panchromatic Images,” under review at the International Journal of 
Remote Sensing 

2. T. Kasetkasem, P. Rakwating, R. Sirirsommai and A. Eiumnoh, “a Joing Land Cover 
Mapping and Image Registration Algorithm Based on a Markov Random Field 
Model,” under review at Remote Sensing  

3. T. Kasetkasem, P. Rakwatin, R. Sirisommai, A. Euimnoh, and T. Isshiki, “A MRF-
Based Approach for a Multisensor Land Cover Mapping of Mis-Registered Images” 
The 2012 IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS2012), July 22-27, Munich, Germany   

 
Conclusion: This project has successful answer the project objectives and research 
problems 
 
  



สญัญาเลขที ่RSA5480031 

 

- 7 - 

- 7 - 

Research Detail 
 

1. Image Fusion Algorithm for Mis-registered Images 

1.1 Introduction 
The fusion of multi-sensor image data is a widely used procedure for enhancing 

information extraction. Fusion uses already-existing data from different sources, acquired at 
different times, or captured by different sensors, to produce higher resolution data. When high 
spatial resolution data are merged with the high spectral resolution data, the fused image has 
both finer spatial and finer spectral resolution. 

Image fusion algorithms can be divided into three categories, namely, feature-based, 
pixel-based and transform-based methods. The feature-based methods first segment input 
sources into homogeneous regions by using some segmentation techniques [1] and [2] 
according to texture characteristics. Next, a data combination algorithm combines texture 
information from different images together to produce a texture-enhanced image. The 
transformation-based methods convert the input images into a common transformed domain, 
such as intensity-hue-saturation (IHS) [3], principle components (PCA) [4], Brovey [5], 2D 
wavelet [6], [7] and [8], 3D wavelet [9], pyramids [10] or high pass filtering [11]. Image 
fusion is performed by combining the transform coefficients from all images. After that, the 
combined image is transformed by the inverse-transformation into the original image space. In 
the pixel-based methods [12] and [13], a pixel in the fused image is determined from a set of 
pixels from the input sources. For example, Hardie [14] and Li [15] applied statistical models 
to a pixel-based approach where intensity values form corresponding pixels from fusing 
images statistically depend on the intensity value of a fused image. The approach detailed in 
this paper is also pixel-based and use a statistical model. 

Image registration is the process of transforming different sets of data into a single 
coordinate system. Data may come from different sensors, from different times, or from 
different viewpoints. Current registration methods can be classified into three categories, 
feature-based, transform-based, and intensity-based methods [16]. The feature-based 
approaches usually extract geometric features, also known as control points, such as 
intersections and landmarks, and use a least square criterion to estimate the registration 
parameters [17] and [18]. The transform-based methods work with images in the frequency 
domain [19] and [20] to compute the registration parameters by utilizing the properties of 
translation and rotation under the Fourier transform. In intensity-based methods, the 
registration parameters are estimated by maximizing some similarity measure between pixel 
values of the input images. Normalized cross-correlation [21], LS [22], and maximum 
likelihood (ML) [23] are some popular criteria used to measure similarity. 

Although many algorithms have been proposed for image registration and image fusion, 
the operations are traditionally viewed as two independent processes. More precisely, image 
registration is normally performed first, followed by image fusion, which usually assumes that 
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perfect registration has been achieved [12], [13] and [24]. However, in practice, the 
registration process is not guaranteed to be error-free, and this registration error can negatively 
affect the fusion performance. The quality of fused images degrades significantly when the 
multispectral and panchromatic images are not perfectly registered.  

The work by Chen [25] attempts to join the fusion and registration processes together by 
using the expectation maximization (EM) algorithm. However, they assume that the intensity 
value in each pixel of the high spatial resolution image can be selected from any one of the 
fused images. In the case of spatial enhancement, the intensity values of the fused image 
should follow the intensity values from the multispectral image only. As a result, the 
algorithm proposed in [25] is not suitable for spatial enhancement by combining multispectral 
and panchromatic images (so called “pan-sharpening”). In pan-sharpening, the fused image 
must have the same color distribution as the multispectral image but contain the spatial detail 
from the higher resolution panchromatic image. 

In this paper, we develop the maximum a posteriori (MAP) estimator [26] to 
simultaneously fuse and register multispectral and panchromatic images to produce a high-
resolution multispectral image. Here, we focus on the use of high-resolution panchromatic 
data to enhance multispectral imagery. However, the estimation framework developed here 
can be extended for any number of spectral bands in the primary and auxiliary sensors. The 
proposed technique is suitable for applications where some correlation, either localized or 
global, exists between the auxiliary image and the image being enhanced. A spatially varying 
statistical model is used to help exploit localized correlations between the primary and 
auxiliary image. Another important aspect of the proposed algorithm is that it uses an accurate 
observation model relating the “true” scene to the low-resolution observations. This means 
that a potentially wavelength-dependent spatially-varying system point spread function (PSF) 
can be incorporated into the estimator. 

1.2 Observed Model 
  
Let  ( )       be a fine spatial and spectral resolution image (FSSRI) having M  pixels 
and B  bands where   is a real number. Here,   *       + denotes a set of pixels 
registered to some real world scene. The FSSRI is usually represented in a vector form so that, 
 (  )     is a fine spatial and spectral resolution vector (FSSRV) containing intensity values 
of a pixel is  in the FRMI from all spectral bands. Here, we assume that the FSSRVs from 
different pixels are statistically independent, and have identical multivariate Gaussian 
distribution with a mean vector, Xμ , and a covariance matrix, XC . The marginal probability 
density function (PDF) of the FRMI can therefore be written as   

  
     

 

1 

2

1exp
2Pr

2i

T
i X X i X

B
s S

X

s C s
X

C





 
   
 

x μ x μ
 

(1.1)  
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We omit   for the sake of abbreviation. In this paper, we assume that the direct observation of 
the FRMI is impossible, but we, instead, observe the coarse spatial and fine spectral resolution 
image (CSFSRI), and the fine spatial and coarse spectral resolution image (FRCSRI) of the 
same scene.  

Let  ( )       be the CSFSRI with N M  pixels and B  bands where   

*       + is a set of pixels belonging to the CSFSRI. Since both CSFSRI and FSSRI are 
taken from the same scene, the relationship between   and   can be determined. Let us denote 
a coordinate of a pixel s in a FSSRI as ( , )x y  where x  and y  are the row and column of ( )sx
. Similarly, we can write  ,t u v  where u  and v  are the row and column of the pixel t  in 

the CSFSRI. Hence, the relationship between s  and t  can be written as  

 0
 
 
1  [

          
           

] 0
 
 1  [

  

  
] (1.2)  

where  ,  , dx , and dy  are scale, rotation angle, translation in column direction and 
translation in row direction between a pixel coordinates   and t , respectively. We denote 
  ,      -  as the parameter vector. In practice, since the panchromatic and 
multispectral images are captured from the same satellite, they are already somewhat pre-
registered to each other within the predefined accuracy range. As a result, the parameter 
vector can be assumed to be uniformly distributed within the defined set, i.e, 

  

1 ,  Ω
ΩPr

0,      otherwise





 



ω
ωω  (1.3)  

where Ωω  is the set of all possible values in the parameter space. If the parameter vector is 
known, the CSFSRI can be remapped and resampled into the coordinate system  . As a result, 
let us denote   ( ) as the remapped version of CSFSRI into  . Clearly both  ( ) and   ( ) 
have equal numbers of pixels and spectral bands. However,  ( ) has finer and clear detail 
than   ( ) since all the remapping algorithms use only information from the coarser 
resolution image. We model this loss of finer and clearly detail as additive noise, i.e.,  

     ( )m Cs s s y x n  (1.4)  

where   ( )     is the vector containing intensity values from all bands of the remapped 
CSFSRI, and   ( )     is the additive noise vector. We assume further that noise vectors 
from all pixels are independent and Gaussian distributed with a zero mean vectors and a 
covariance matrix, CC . Hence, the conditional PDF of  ( ) give  ( ) and the map parameter 
is given by  

                    Pr | , Pr |   m
s S

Y X s s


ω y x  
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         

 

1 

2

1exp
2

2

T
m i i C m i i

B
s S

C

s s C s s

C





 
   
 

y x y x
 (1.5)  

 
Next, let  ( )       be the observed FSCSI having M  pixels and     bands. Here, we 
assume that the FSCSI has the same resolution as the FSSRI and is perfectly registered with 
the coordinate system of FSSRI. We assume further that the FSCSI is the weighted band 
summation of the FSSRI plus an additive noise, i.e.,  

  ( )    ( )    ( )  (1.6)  

where  ( ) is the observation of the FSCSI at the pixel s ,   is weight matrix, and   ( ) is 
the additive noise to the FSCSI. Again, we also assume that noise vectors for all the pixels are 
independent and Gaussian distributed with a zero mean vector and a covariance matrix,   , 
and that they are also independent of  .C sn  Hence, the conditional PDF of ( )Z S  give ( )X S  

is given by  

 

  ( | )  ∏  ( ( )| ( ))

    

 

 ∏
   0 

 
 

( ( )    ( ))
 
  

  ( ( )    ( )) 1

(  )   |  |   

   

 
(1.7)  

We formulate the image fusion problem as an M-ary hypothesis testing problem where each 
hypothesis corresponds to a different FSSRI. Furthermore, since we formulate our problem as 
an M-ary hypothesis testing problem, techniques developed to solve signal detection problems 
can be employed. We provide our methodology in the next section. 
 

1.3 Optimum Image Fusion Rules 
The maximum a posteriori (MAP) criterion [26] is used for solving the above problem in 

our work. This criterion is expressed as  

 ( ̂  ̂ )     [   
(   ))

,  (   |   )-] (1.8)  

From Bayes’ rule and assuming conditional independence of Y and Z given X and ω , Eq. (8) 
can be rewritten as 

 ( ̂  ̂ )     [   
(   ))

[
  ( |   )   ( | )   (   )

  (   )
]] (1.9)  

Since  Pr ,Y Z  is independent of the choice of  ,X ω , it can be omitted and above equation 

reduces to  
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 ( ̂  ̂ )     [   
(   ))

,  ( |   )   ( | )   (   )-] (1.10)  

By assuming further that X  and ω  are statistically independent, and substituting Eq. (1.1), 
Eq. (1.5), and Eq. (1.7) into Eq. (1.10), we have  

 ( ̂  ̂ )     [   
(   ))

[(∏  (  ( )| ( ))   ( ( )| ( ))

   

  ( ( )))  ( )]] (1.11)  

Eq. (1.11) can be rewritten as  

 ( ̂  ̂ )     [   
(   ))

[ ∑*  (    )    (   )    ( )+

 

   |  |]] (1.12)  

where  

      1 1 1, ln 2 ln
2 2 2

T
Y m m C m C

BE C C    y x y x y x  (1.13)  

 
  (   )  

 

 
( ( )    ( ))

 
  

  ( ( )    ( ))  
 

 
     

 

 
  |  | (1.14)  

and  

        1 1 1ln 2 ln
2 2 2

T
X i X X i X X

BE x s C s C    x μ x μ  (1.15)  

Again, we omit the term s  for sake of abbreviation. Since the terms, ln 2
2
B

 , 1 ln
2 CC , 

 

 
  |  |, ln 2

2
B

 ,  
 
    , and 1 ln  

2 XC  are just constants, they can be ignored. Therefore, the 

optimum image fusion becomes  

( ̂  ̂ )     [   
(   ))
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∑2(    )   

  (    )

 

 ( ( )    ( ))
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  (    )3
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(1.16)  

The above equation can be modified to  

( ̂  ̂ )     [   
(   ))

[ 
 

 
∑(    (       ))

 
  

  (    (       ))

 

   |  |]] (1.17)  

where  

    ,  
     

      
    -  , (1.18)  
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and   

   (       )    ,  
       

           - (1.19)  

Next, we define the energy function  ,E X   as the negative of the argument inside Eq. (19), 

i.e.,  

  (   )  
 

 
∑(    (       ))

 
  

  (    (       ))

 

   |  | (1.20)  

The optimum joint image fusion and registration problem becomes the energy minimization 
problem, i.e., 

 ( ̂  ̂ )     [    
(   ))

 (   )] (1.21)  

        For a given map parameter vector  , the optimum FSSRI can be obtained by taking 
derivative of Eq. (20) with respect to x , and the optimum FSSRV is given by 

  , ,s m Xzx μ y μ  (1.22)  

We note here that our result in Eq. (1.22) is similar to the work by Hardie (Hardie, 2004). 
However, in their work, images to be fused are assumed to be perfectly aligned.  
In order to obtain the map parameter, we need to find minimize Eq. (1.20) with respect to  . 
However, the derivative of Eq. (1.21) with respect to the   map parameter vector is very 
difficult to obtain analytically. Furthermore, the energy function  (   ) is an extremely non-
convex function. Hence, a gradient based approach cannot be used since the resulting map 
parameter will very likely become stuck in one of many local optima. Instead, we employ the 
Metropolis algorithm [27] for determining the optimum map parameter vector.  
 The Metropolis algorithm is a stochastic search method where, at each iteration, a new 
value of n  is randomly proposed. If    results in a better fit (lower energy function), it is 
accepted, and the Metropolis algorithm sets     . However, even if    corresponds to a 
higher energy value,    is still accepted with some probability. These random moves allow 
the Metropolis algorithm escape from local optima. By employing the Metropolis algorithm, 
the optimization algorithm can be written as  

1. Set (   )  (     ) , 1h  , and 
 

0

log 1
TT
h




  where    and    are the initial 

FSSRI and map parameters,  h  is the iteration number, 0T  is the initial temperature.   

2. Find a FSSRI by using Eq. (1.23), and Let   be the resulting FSSRI.  

3. Use Eq. (1.21) to compute energy function and assign       (   ).  
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4. A new map parameter    is drawn from Eq. (1.3) and the corresponding energy 
function   (    ) is computed using Eq. (1.22). 

5. Assign      with probability      .     0 
  (    )  (   )

 
1/. 

6.   Set 1h h   and 
 

0

log 1
TT
h




. Go to (2) if maxh h  . 

We observe that as the number of iteration increases to infinity, the temperature T  decreases 
to zero. This implies that, after a small number of iterations, the Metropolis algorithm is likely 
to accept almost any proposed map parameter. However, when the number of iterations 
becomes large, the Metropolis algorithm prefers to accept the map parameter that results in a 
better fit (lower energy function). The convergence of the Metropolis algorithm to the global 
optimum regarding the choice of the initial map parameter and FSSRI is guaranteed if 0T  is 
sufficiently large. However, this value is often too large to be practically implemented. 
Nevertheless, in our problem, the initial map parameters and FSSRI are not far from the global 
optimum since both multispectral and panchromatic sensors are mounted on the same satellite. 
Figure 1.1 summarizes the proposed optimization algorithm in this paper.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Affine Transform 
 

Generate a new FRMI based on Metropolis algorithm 
 

Fused Image 
 

Parameter Correction 
 

maxh h ? 
 

Initial Parameters 
 

No 
 
 

Yes 
 

Low-resolution Multispectral Image 
 

High-resolution Panchromatic Image 
 

Figure 1.1: Flowchart of the proposed algorithm 
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1.4 Experimental Results 
 
 
THEOS Data set 
 

To examine the performance of the proposed algorithm, we used various image scenes  
from many parts of Thailand, namely, city (Figure 1.2), drought (Figure 1.3), agriculture 
(Figure 1.4), mountain (Figure 1.5) and seashore (Figure 1.6) areas. Table 1.1 summarizes the 
detailed information for all the scenes used in this experiment. Multispectral and panchromatic 
images were acquired by THEOS, an Earth observation mission of Thailand, developed at 
EADS Astrium SAS, Toulouse, France. THEOS was launched from Dombarovskiy, Russia at 
06:37 GMT on 1 October 2008, by a Dnepr rocket. 

 

 
Figure 1.2: 750x750 THEOS multispectral image of city area 
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Figure 1.3: 750x750 THEOS multispectral image of drought area 
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Figure 1.4: 750x750 THEOS multispectral image of agriculture area 

 

 
Figure 1.5: 750x750 THEOS multispectral image of mountain area 
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Figure 1.6: 750x750 THEOS reference multispectral image of seashore area 

 

Table 1.1: Details of THEOS images in our experiment 

Area Longitude Latitude Date Time 

City 100.3845251902455N 13.82391143621505E 2009/12/13 10.32 AM 

Drought 105.058671289676N 15.92080873025695E 2010/01/04 10.31 AM 

Agriculture 100.5728597866535N 14.6219909729372E 2009/12/13 10.32 AM 

Mountain 100.561439575278N 19.69589619804945E 2010/02/13 10.31 AM 

Seashore 99.59914701590165N 11.3390399265943E 2010/03/06 10.33 AM 

 
The THEOS imagery products include optical and near infrared spectroscopy as four 

multispectral bands, plus panchromatic images. The THEOS satellite orbit parameters are 
summarized in Table 1.2. Panchromatic products provide 2 meter resolution (at nadir) and 8 
bits information depth. The output scene is a square scene of 22 km. x 22 km, and covers 
wavelengths ranging from 450 to 900 nm as shown in Figure 1.7. The multispectral products 
provide 15 meter resolution (at nadir) and 8 bits information depth. All four bands are 
delivered as one file. The output scene is a square scene of 90 km. x 90 km. Wavelength 
ranges are 450-520 nm for the blue band, 530-600 nm for green, 620-690 nm for red, and 770-
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900 nm for near infrared as  shown in Figure 1.7. Table 1.3 summaries the information on 
multispectral and panchromatic images provided by the THEOS satellite.  

 
 

Table 1.2: Orbital characteristics of THEOS 

Satellite THEOS 
Orbit Sun synchronous recurrent frozen orbit 

Altitude 822 km 
Inclination 97.95 degree 

Repetition cycle 31 days 
Descending node (local time) 10:30 AM 

Orbital period 101.4 minutes 
On-board capacity 16 Gbits 

 
Figure 1.7: Ideal spectral response of THEOS 

 

Table 1.3: Technical specifications of THEOS payload 

 Panchromatic Multispectral 
 
 
Wavelength 

 
 
450-900 nm 

Blue: 450-520 nm 
Green: 530-600 nm 
Red: 620-690 nm 
Near Infrared: 770-900 nm 

Resolution 2 m 15 m 
Swath width 22 km 90 km 
Pixels 12000 6000 

 
Since our algorithm performs both image fusion and registration at the same time, the 

performance of our algorithm can be evaluated in terms of how far off the fused image is from 
the actual FRMI, that is, the estimation error between the actual parameters that map between 
the panchromatic and multispectral image pair and the estimated ones. If our algorithm 
performs perfect registration and fusion, the fused image will be exactly equal to FRMI and 
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the estimation error will be zero. In order to measure this key performance metric, we need to 
know both actual FSSRI and the map parameters. However, since we use observed THEOS 
multispectral and panchromatic images in this experiment, the actual FSSRI is unknown. As a 
result, we treat the observed multispectral image as the reference FSSRI, and perform the 
proposed image fusion algorithm on resampled multispectral and panchromatic image pairs. 
In this experiment, we resample multispectral and panchromatic images to 112.5 and 15 
meters resolution, respectively. The resampled images have a resolution of 7.5 times lower 
than the original ones. After fusing a 112.5 meter multispectral image with a 15 meter 
panchromatic image, we obtain the fused multispectral image at 15 meter resolution which 
can be compared with the observed multispectral image. 

Next, since our algorithm is designed to fuse unregistered image pairs, we would like 
to investigate the performance of our algorithm for different scenarios of initial registration 
errors. We would like to vary the relationship between the multispectral and panchromatic 
images in a pair by applying different values of displacements and rotations. However, since 
multispectral and panchromatic sensors are located at different locations on the THEOS 
satellite, their images are not perfectly aligned to start with. To be sure that we can precisely 
measure the amount of mis-registration we introduce, we manually register all multispectral 
and panchromatic image pairs first, using nine or more ground control points with the second-
order polynomial transformation. The resulting root mean square errors were less than 0.0002 
pixels for all images.   

For the sake of brevity, we provide the details of our experiment only for the case of 
the city area image. The other cases followed the same steps. The multispectral (Figure 1.2) 
and the panchromatic (Figure 1.8) image pair were degraded by resampling to 112.5 (Figure 
1.9) and 15 (Figure 1.10) meters resolution respectively. Then we fused the degraded images 
with our proposed algorithm to obtain a 15 meter-resolution multispectral image. We use the 
original 15-meter resolution multispectral image as the “ground truth” – that is, the (actually 
unobservable) FRMI. Hence, in our experiment, the resulting fused image is compared with 
the original multispectral image. If our algorithm performs perfect registration and fusion, the 
resulting mean square error (MSE) between the resulting FRMI and the original multispectral 
image will be zero.  

In all of our experiments, the original multispectral and panchromatic registered 
images are of size 750750 and 56255625, respectively. Since the resolution ratio of the 
multispectral to the panchromatic is 15/2 or 7.5, we need 7.5 times as many panchromatic 
pixels as multispectral pixels to cover the same spatial extent. 
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Figure 1.8: Panchromatic image of the city scene of size 5625 5625 pixels 

 

 
Figure 1.9: Degraded multispectral image of city scene at 112.5 112.5 meters resolution 

of size 100 100 pixels 
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Figure 1.10: Degraded panchromatic image of the city scene at 15 15 meters resolution 

of size 750 750 pixels 
 

 
Mis-registration errors were deliberately introduced into the degraded image pairs. 

Here, the affine transformation was used and there were four parameters, namely scale factor 
 , rotation angle   in degree, displacement in column direction    in pixel, and displacement 
in row direction    in pixel. Table 1.4 summarizes all mis-registration errors introduced in 
this experiment. Note here that mis-registration in the scale dimension was not investigated in 
this paper since images are taken from the same satellite at the same time. Figure 1.11 shows a 
panchromatic image distorted by 3 degrees of rotation, 3 pixels of displacement in the column 
and 3 pixels of displacement in the row.   

 

Table 1.4: The mis-registration errors examined in this experiment 

 Scale Ratio angle Displacement in 
column direction 

Displacement in 
row direction 

Case I 1  1  1  1 
Case II 1 -2 -2 -2 
Case III 1  3  3  3 
Case IV 1 -4 -4 -4 
Case V 1  5  5  5 
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Figure 1.11: Degraded panchromatic image with mis-registration error of 3 degrees of 

rotation, 3 pixels of displacement in column and 3 pixels in row 
  

To find the appropriate benchmark for our algorithm, we first fuse the registered image 
pair by using Eq. (1.23) and compare it to the FRMI from manual registration as shown in 
Figure 1.12. We note here that our algorithm and the work by Hardie are equivalent if no 
registration error is considered. In other words, the benchmark scenario is when we apply 
Hardie algorithm directly to multispectral and panchromatic image pairs. The corresponding 
MSE compared to the original multispectral image was equal to 7.2465.  

To generate the initial FRMI for our algorithm for the non-benchmark case, we fused a 
mis-registered image pair using Eq. (1.23) and used it as the initial FSSRI. An example of the 
initial FSSRI for the case of 3 degrees of rotation, 3 pixels of displacement in column and 3 
pixels in row is illustrated in Figure 1.13. It is obvious that the initial FSSRI appears to be 
blurred and does not contain any sharp edges. Next, we submit the initial FSSRI to our 
algorithm and iteratively refine it by applying different sets of transformation parameters as 
selected by the algorithm . Here, we set 0 0.1T  , 500maxh   iterations. The covariance 
matrices of the noise introduced by resampling to create the CRMI from different spectral 
bands are assumed to be statistically independent with variance of 25, i.e., 25CC I  where I  
is the identity matrix. Figure 1.14 displays the resulting FSSRI for the case of 3 degrees 
of rotation, 3 pixels of displacement in column and 3 pixels in row. By visual inspection, we 
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can observe that the resulting FRMI looks very similar to FRMI when perfect registration is 
obtained.  

The results summarized in Table 1.5 clearly show that our algorithm can move the 
map parameters closer to the correct values. We note here that, for all cases, our algorithm 
achieved lower RMSE values than those of the manual registration. These results imply that 
the manual registration that we performed may not have been perfect after all. Some tiny 
registration errors may still be present in the registered image pair. 
 

 
Figure 1.12: THEOS fused multispectral image with city area and750x750 pixels 
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Figure 1.13: THEOS initial fused multispectral image obtained by applying Hardie 
algorithm to the unregistered image pair with 3 pixels displacement and 3 degrees 

rotation with city scene 

 
Figure 1.14: The resulting fused image for city area 
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Table 1.5: Comparison of fusion performance for images of city area 

Hardie algorithm with 
perfect registration 

Fusion Result using 
Hardie algorithm without 
registration error 
correction 

Proposed joint image fusion 
and registration algorithm 

        RMSE         RMSE         RMSE 
0 0 0 7.2465 1 1 1 10.2043 0.4315 0.4195 0.1826 6.9368 
0 0 0 7.2465 -2 -2 -2 9.7011 0.4426 0.4225 -0.0597 6.3584 
0 0 0 7.2465 3 3 3 9.2295 1.5293 0.3358 -0.0037 6.9519 
0 0 0 7.2465 -4 -4 -4 9.0814 1.2999 0.6848 -0.1954 7.4333 
0 0 0 7.2465 5 5 5 8.8802 1.4716 0.6873 -0.0114 7.1084 

 
Next, we investigated the other scenes. The resulting MSE and map parameters are 

summarized in Tables 1.6-1.9, for drought, agriculture, mountain, and seashore scenes. It is 
clear that the results from all cases are similar. Our algorithm can successfully move the map 
parameters closer to correct values regardless of the size of mis-registrations. Furthermore, in 
most cases, the resulting FSSRIs from the proposed algorithm yield lower RMSE values 
compared to the perfect registration case. This suggests that our algorithm finds errors 
remaining after manual registration. 

 

Table 1.6: Comparison of fusion performance for images of drought area 

Hardie algorithm with 
perfect  registration 

Fusion Result using 
Hardie algorithm without 
registration error 
correction 

Proposed joint image fusion 
and registration algorithm 

        RMSE         RMSE         RMSE 
0 0 0 4.4493 1 1 1 6.7294 0.4178 1.6116 -0.0425 4.4184 
0 0 0 4.4493 -2 -2 -2 6.3793 0.4561 0.5670 -0.0832 3.5014 
0 0 0 4.4493 3 3 3 5.9539 1.4802 0.6065 0.0960 4.0669 
0 0 0 4.4493 -4 -4 -4 5.7613 1.5929 0.4242 -0.1787 4.3226 
0 0 0 4.4493 5 5 5 5.5656 0.6040 0.4540 0.0551 3.7374 

 

Table 1.7: Comparison of fusion performance for images of agriculture area 

Hardie algorithm with 
perfect  registration 

Fusion Result using 
Hardie algorithm without 
registration error 
correction 

Proposed joint image fusion 
and registration algorithm 

        RMSE         RMSE         RMSE 
0 0 0 8.0216 1 1 1 11.3885 0.5491 1.3608 0.0223 5.6583 
0 0 0 8.0216 -2 -2 -2 11.3888 0.4865 0.5077 0.0182 5.7027 
0 0 0 8.0216 3 3 3 10.9708 0.3072 0.5173 0.0277 5.8182 
0 0 0 8.0216 -4 -4 -4 10.6829 0.5111 0.7775 -0.0304 5.6377 
0 0 0 8.0216 5 5 5 10.4727 0.4003 0.6520 0.0465 5.9665 
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Table 1.8: Comparison of fusion performance for images of mountain area 

Hardie algorithm with 
perfect  registration 

Fusion Result using 
Hardie algorithm without 
registration error 
correction 

Proposed joint image fusion 
and registration algorithm 

        RMSE         RMSE         RMSE 
0 0 0 3.6175 1 1 1 4.4446 0.3589 0.6566 -0.2068 3.2774 
0 0 0 3.6175 -2 -2 -2 4.5898 0.4614 0.4915 -0.2390 3.3056 
0 0 0 3.6175 3 3 3 4.6388 0.6505 -0.5470 -0.0401 3.2220 
0 0 0 3.6175 -4 -4 -4 4.5726 0.8501 -0.4960 0.0323 3.1460 
0 0 0 3.6175 5 5 5 4.6244 1.5957 0.4378 -0.0534 3.3172 

 

Table 1.9: Comparison of fusion performance for images of sea shore area 

Hardie algorithm with 
perfect  registration 

Fusion Result using 
Hardie algorithm without 
registration error 
correction 

Proposed joint image fusion 
and registration algorithm 

        RMSE         RMSE         RMSE 
0 0 0 5.1446 1 1 1 7.4105 0.6091 0.6279 0.0773 3.9202 
0 0 0 5.1446 -2 -2 -2 7.2712 0.4977 0.5948 0.0856 3.9134 
0 0 0 5.1446 3 3 3 7.0384 0.3827 1.3204 0.0796 4.1890 
0 0 0 5.1446 -4 -4 -4 6.7605 0.6050 0.6162 0.0149 3.8124 
0 0 0 5.1446 5 5 5 6.6767 0.5031 0.6723 -0.0195 4.0117 

 
 
 
Hyperspectral Data set 
 

The small multi-mission satellite (SMMS) (HJ1-A) acquired an image data for our 

experiment. There are HI of size         pixels (Figure 1.15(a)) with 115 bands and 100 

meter resolution, and MI of size         pixels (Figure 1.15(b)) with 4 bands and 30 

meters resolution. These images cover the area of Suwannaphoom Airport in Thailand. 
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Figure 1.15: Hyperspectral and Multispectral image 
 

To evaluate the performance of our proposed algorithm, the original hyperspectral 

image and multispectral image is resampled to simulate the CSFSRI and FSCSRI at 300 meter 

and 100 meter resolution resolutions, respectively. When these images are fused together, the 

fused hyperspectral image at 100 meter resolution is obtained. We can then compare to the 

original hyperspectral image to evaluate the quality of the fused image. First, the resampled 

hyperspectral image and multispectral image are fused together to evaluate the performance of 

the fusion algorithm when where two fusing images are perfectly registered. Here, the 

spatially enhanced hyperspectral image with perfect registration is shown in Figure 1.16. For 

more quantitative performance evaluation, the root mean square error (RMSE) between the 

original hyperspectral image and spatially enhanced hyperspectral image with perfect 

registration is computed and is equal to 3.3976.  

To simulate the effect of the registration error, the resmapled hyperspectral image is 

shifted 2 and 3 pixels in x and y directions, respectively. The resulting shifted and resampled 

HI (SRHI) is the simulated CSFSRI with some registration errors in this work. Then, the 

SRHI is fused with resampled FSSRI without registration error correction, and the resulting 

spatial enhancement HI without misregistration correction is shown in Figure 1.17. Since the 

misregestration is not corrected, the effect of misregistration is clearly visible, and the RME, 

comparing to the original HI, is equal to 6.2308 (about 82% more error).  
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Next, the SRHI together with the simulated CSFSRI is submitted to our proposed 

algorithm to obtain the spatially enhanced and spatially corrected FSSRI (Figure 1.18). With 

visual inspection, the effect of misregistration is no longer visible and the RME comparing to 

the original HI becomes 2.617. The RMSE is 60% better than the spatially enhanced HI 

without consider the registration error, and is 23% better than the spatially enhanced HI in the 

idea case. The performance improvement for the latter case may be the result from the 

registration error in the production of SMMS data in the first place. Our proposed algorithm 

estimates the registration errors to be 1.8 and 3.5 pixels in x- and y-directions. The differences 

of 0.2 and 0.5 in x- and y-direction from the experimental setup may be the original 

registration error in the production of the SMMS data discussed earlier.  

 

 

Figure 1.16: The fused hyperspectral image without registraion error 
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Figure 1.17: The fused hyperspectral image wih registration error 
 

 

Figure 1.18: The fused hyperspectral image with registration error using our algorithm 
 
 

2. Land Cover Mapping algorithm from Mis-Registered Image Datasets 

2.1 Introduction 
For multi-sensor image classification, the registration process is a crucial initial step. 

Registration aligns multiple satellite images into a common coordinate system. Only when all 
of the input images are perfectly registered can a classification algorithm be applied. 
Otherwise mis-registration will produce classification errors. In practice, perfect registration 
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may not always be achievable since there are some unknown variations on satellite platforms 
and flight paths when capturing images. As a result, the overall classification accuracy is 
likely to suffer from mis-registration effects.  

Mahapatra and Sun [28] proposed an idea to incorporate the reduction of image 
registration error into an image classification tool. They attempted to integrate the 
segmentation information into an elastic image registration by using a Markov random field 
model. In their work, the configuration of a pixel contains both displacement of a pixel and a 
segmentation label. The multi-resolution graph-cut approach was employed to achieve sub-
pixel registration accuracy. Although their results produced remarkable performance for non-
rigid body image registration, this algorithm cannot be applied for rigid body image 
registration problems such as in the remote sensing since their model does not allow one set of 
the registration parameters to govern the remapping process of entire image. Furthermore, 
since they only consider the segmentation problem, their algorithm does not cover the multi-
class scenarios that are often considered in the land cover mapping of remotely sensed images.  

Another work by Chen et al. in [25]investigated the problem of joint image fusion and 
registration. In their paper, the observed images were remapped versions of the original 
images with possibilities of polarity reverse and/or DC offset. Chen et al. used an expectation 
maximization algorithm to solve the estimation problems of registration parameters and the 
true scene simultaneously. Different pairs of multi-sensor images were tested against the 
proposed joint process. Under the assumption that registration performance affects the quality 
of fusion result, the authors reported that better fusion performance can be achieved due to 
reduced registration errors. However, their work did not cover the problem of image 
classification in the presence of image registration errors.  

In this paper, we employ an approach similar to [25] to incorporate correction of mis-
registration effects into the land cover mapping process. To do this, we assume that remotely 
sensed images are derived from a common unobservable land cover map (LCM), and then 
distorted, with unknown remapping parameters, into the observed remote sensing images. 
(Note that if these map parameters are known, the observed remote sensing images can be 
directly aligned with the land cover map.) Next, we assume that a land cover class of interest 
is more likely to occupy several connected patches than a number of isolated pixels. As a 
result, the Markov random field (MRF) is employed as the model of the LCM. MRF models 
have been used in various fields ranging from statistical physics [29] and [30] to remote 
sensing. The original work by Geman and Geman [31] on MRF-based statistical methodology 
in 1984 has inspired a continuous stream of remote sensing researchers to employ the MRF 
model for a variety of image analysis tasks (e.g., [32], [33], [34], [35], [36], [37], [38]). 
Solberg et al. [32]developed MRF-based algorithms for image classification and change 
detection using multi-source data. A significant increase in classification and change detection 
accuracy was obtained using an MRF based classification algorithm compared to other 
approaches. Kasetkasem and Varshney [33] and Bruzzone and Prieto [34] also applied MRF 
models for an image change detection problem. Similarly, Xie et al. [35] applied the MRF 
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model to the recurring problem of speckle reduction in synthetic aperture radar (SAR) images. 
These promising results on image analysis problems have encouraged us to employ the 
concept of MRF models to the problem of generating an LCM.  

Based on our image model, the registration and classification process can be performed 
in the following fashion. First, we estimate the unknown map transformation parameters based 
on the maximum likelihood (ML) criteria, and, then use these parameters to computer 
posterior probability for different arrangements of the land cover maps, where the MAP 
classifier selects the most likely LCM. However, in order to find the map parameters, the 
conditional probability of observed images given the map parameters is needed. This 
conditional probability can only be obtained by summing the joint probabilities of observed 
images and LCM associated with the map parameters, over all possible LCMs. This is 
impossible to obtain in most practical scenarios. As a result, the expectation-maximization 
(EM) algorithm [39] is also employed here. The EM algorithm iteratively searches for the 
most likely map parameters. The resulting parameters converge to one of the local optimum 
points of the likelihood function.  

For a given iteration of the EM algorithm, our method computes the expected value of 
the logarithm of the probability of the observed images and land cover map given the map 
parameters, based on the a posterior probability of the LCM given observed remote sensing 
images and the current estimated map parameters. Then, new map parameters are obtained by 
maximizing the expected values. It has been shown in literature [39] that the new map 
parameters always correspond to a higher value of the likelihood function. Since each iteration 
of the EM algorithm calculates a posterior probability given the current estimated map 
parameter, an optimum LCM under MAP criteria can be easily obtained by choosing the LCM 
that maximizes a posterior probability. In other words, an optimum LCM for the most recent 
estimate of the map parameters under the maximum a posteriori (MAP) criterion is obtained 
on every iteration of the EM algorithm.  

2.2 Problem Statement 
 
Let  ( ) denote the LCM where   is a set of pixels. We assume that there are   land 

cover classes in the area of interest and we let     *         + be the class labels. 
Therefore, we can express the LCM as  ( )     . The label of LCM at pixel   is denoted by 
   which can also be called the configuration of  ( ) at the site s. Since land cover classes are 
more likely to occur in connected patches in the LCM than isolated pixels, the LCM is 
assumed to satisfy the MRF properties with Gibbs potential   ( ). Hence, the marginal 
probability density function (PDF) of a LCM can be written as 

 
  ( )  

 

  
   ( ∑   ( )

   

) (2.1) 

where    is a normalizing constant,   is a clique, and  ( )  ∑   ( )    is called the Gibbs 
energy function [31]. Cliques are singleton or groups of pixels such that any two pixels are 
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mutually neighbors. Figure 2.1 shows all possible clique types for 4- and 8-neighborhood 
systems. The value of the Gibbs potential function depends on the configurations of the entire 
LCM and the clique. Usually, low values of the potential function correspond to similar 
configurations whereas high values correspond to dissimilar configurations of a clique. For 
instance, the Ising model [29] and [30], given by,  

 
 *   +( )  {

                     

                     

          

 (2.2) 

for any two sites r and s, has been used extensively by statistical physicists to explain why 
neighboring particles are more likely to rotate in the same direction (i.e., either clockwise or 
counterclockwise). Here the notation     is a set of neighboring pixels of  . We can extend 
the above model to our problem by letting    and    be the class labels of pixels   and   in  , 
respectively. With this modification, the Ising model can be applied to describe the LCM 
because land cover class distributions are similar to the phenomenon described above (i.e., 
classes occupying neighboring pixels are likely to be the same).  

 

 
 
 
 
Furthermore, we assume that there are   remotely sensed images of the same scene 

acquired from different sensors and/or at different times. Here,   (  )           

        denotes the  -th remotely sensed image where    denotes the number of spectral 
bands, and    is a map coordinate system to which the n-th remote sensing image is 
registered. Since all remotely sensed images and the LCM are from the same scene, the 
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Figure 2.1: clique types for (a) 4-neighborhood; (b) 8-neighborhood 
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relationship between   and    can be determined. Let us denote a coordinate of a pixel s in the 
LCM as (   ) where   and   are the column and row of   . Similarly, we can write    

(     )     where    and    are the column and row of the pixel    in   . If the affine 
transformation is used, the relationship between   and    can be written as  

0
  

  
1  0

        

        
1 0

 
 1  0

    

    
1 (2.3) 

where      and      are scale parameters,      and      are skew parameters, and      and 
     are displacement parameters in column and row-direction, respectively. We refer to 
   [                             ] as the map parameter vector between coordinate 
systems   and   .  

When all the map parameter vectors are given, one can remap all remotely sensed images 
to perfectly align with the LCM. Let us denote 

  ( )   (  (  )   )    (2.4) 
as the remapped and resampled version of the n-th remote sensing image. Here, we assume 
further that the remapped and resampled images are statistically independent for a given 
LCM, i.e.,  

  ( | ( )  )    (  ( )     ( )| ( ))  ∏  (  ( )| ( ))

 

   

   (2.5) 

where   *       + and   *  (  )     (  )+ be collections of the map parameters 
and the observed multispectral images. Moreover, the intensity vectors from different pixels in 
  ( ) are also assumed to be statistically independent when the LCM is given. Hence, the 
joint conditional PDF can be written as 

   ( | ( )  )  ∏∏  (    |  )

   

 

   

  (2.6) 

where          denotes the intensity vector of the remapped image   ( ) at a pixel  . We 
acknowledge that the assumption given in Eq.(2.6) may not always be true for all cases since 
some land cover classes have textural structure. One can incorporate texture information into 
our image model appropriately, which may further result in an increase in accuracy. This will, 
however, result in very complex problems which may not be desirable in practice.  

If we assume further that the intensity vector at a pixel   of the remapped image   ( ) 
given the class label     is a multivariate normal random vector with mean vector       and 
covariance matrix      , Eq. (2.6) can be rewritten as  

  ( | ( )  )

 ∏
 

(  )
  
 |     |

   
   [ ∑

 

 
(          )

 
     

  (    

   

 

   

      )]  

(2.7) 
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where   denotes the matrix transpose operation. 
By using chain rule, the posterior probability of the LCM given the observed 

multispectral images and the map parameters can be written as 

  ( |   )  
  ( |   )   ( )

  (   )
  (2.8) 

Since   (   ) is independent of the choice of  , it can be treated as a constant. Hence, 
we have   

  ( |   )     ( |   )   ( )  (2.9) 
By substituting Eq. (1), and Eq. (7) into Eq. (9), we obtain  

  ( |   )  
 

  
   ( |   )  (2.10) 

where    ∑    ( |   )
      is a normalizing constant and independent of the choice of  , 

and  

 ( |   )  
 

 
∑ (∑(          )

 
     

  (          )

   

    |     |)

 

   

 ∑   ( )

   

 
(2.11) 

is called a conditional Gibbs energy function. Since, in this paper, we consider cliques 
comprised of pixel pairs only, hence, the conditional Gibbs energy function can be written as  

 ( |   )  
 

 
∑ (∑(          )

 
     

  (          )

   

    |     |)

 

   

 
 

 
∑ ∑  *   +(     )

        

 
(2.12) 

where     denotes the set of neighboring pixels of  . The normalizing constant    cannot be 
computed in most practical scenarios due to the large number possible configurations (e.g., 
there are more than       possible configurations for binary LCM of size      .) As a 
result, we propose the use the mean field theorem [40] - [41] to remove the interaction 
between neighboring pixels defined in   ( ). The mean field theorem approximates the 
conditional Gibbs energy function as  

 ( |   )  
 

 
∑  (  |   )

   

 (2.13) 

where  

  (  |   )  ∑ 2(          )
 
     

  (          )     |     |3

 

   

 ∑    
[ *   +(     )]

     

  
(2.14) 
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Here,    
[ *   +( )] is the expected value of the potential function with respect to the 

configuration of   . The expected value    
[ *   +(     )] does not depends on   , and is 

equal to  

   
[ *   +( )]  ∑  *   +(     ) 

  (  |   )

    

 (2.15) 

where    (  |   )  
 

  
  

 

 
  (  |   ). Note here that    ∑   

 

 
  (  |   )

     is the 

normalizing constant for a pixel  . By using the approximation given in Eq. (2.13), the 
posterior probability can be written as  

  ( |   )      ( |   )  ∏   (  |   )

   

 (2.16) 

The approximation in Eq. (2.16) is closest to   ( |   ) from all approximations of the 
form ∏  (  |   )    when the Kullback-Leibler (KL) divergence [42]- [43] is used as a 
distance measure.  

2.3 Optimum Image Registration and Land Cover Mapping Criteria   
 

The standard approaches to multi-temporal and/or multi-modal image classification involve 
two steps. First images from different sources and/or times are registered to produce a set of 
images in a common coordinate system. Then, a land cover map is derived from this set of 
registered images. In this work, even though we propose an algorithm to simultaneously 
register and classify images, we still treat image registration and classification as two separate 
problems to follow standard approaches. As a result, we propose different optimization 
criteria for image registration and land cover mapping. However, we will show in Section IV 
that both image registration and land cover mapping can be combined into one algorithm so 
that the registration and land cover mapping can be performed simultaneously.   
2.3.1 Optimum Image Registration 

 
The maximum likelihood estimate (MLE) can be employed as the optimum map 

parameter estimator since the MLE is known to a consistent estimator [44]. The goal of the 
MLE is to determine the map parameters that maximize the joint probability density function 
(PDF) of all the observed images given the map parameters, i.e.,  

 (       )           
       

  (       |       ) (2.17) 
In order to solve Eq. (2.17), the conditional PDF   (       |       ) must be 

calculated and it is equal to  

 

  (       |       )  ∑   (  (  )     (  )  ( )|       )

    

 ∏ ∑   (   | ( ))   ( ( ))

    

 

   

 
(2.18) 
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Note here again that    is the remapped and resampled version of   . Since Eq. (2.18) is 
written as a multiplication of ∑   (   | ( ))  ( ( ))    , the solution of Eq. (2.17) can be 
individually obtain, i.e.,  

   
           

  

∑   (   | ( ))   ( ( ))

    

  (2.19) 

for        . Since   is also unknown, there are many possible sets of    that maximize 
Eq. (2.19). For instance, if    ,           - is the solution of Eq. (2.19) for   

*(   ) (   ) (   ) (   )+, we have that     ,           - is also the solution of Eq. (19) for 
   *(    ) (   ) (    ) (   )+. As a result, it is imperative to limit the search space and 
number of possible solutions. Furthermore, in most practical situations, we may wish to 
produce the LCM registered to one of the input remote sensing images. Without lost of 
generality, we assume that the LCM is registered to   , i.e., we have      

  ,           -.  
Next, let us consider a small LCM of size         pixels. In this case, there are 

                  possible binary LCMs. Therefore, the direct calculation of Eq. (2.19) is 
an impossible task, and hence, the solution of the MLE cannot be obtained in reasonable time. 
As a result, the expectation-maximization (EM) algorithm [39] is employed instead. The EM 
algorithm is an iterative parameter estimator which produces a new estimate for every 
iteration. It has been shown in [39]that this new estimate always results in higher or at least 
the same value of the likelihood function. In other words, if we let    *  

    
      

 + be 
the collection of all estimated parameters at the t-th iteration from the EM algorithm, we will 
have    (       |  )    (       |    ) where       is the collection of estimated 
parameters at (   )-th iteration. Here, and throughout the rest of the paper, we omit   and 
   for the sake of abbreviation. In Section 4, we will discuss the details of the EM algorithm 
employed in this work and how it can be combined with the land cover mapping process. 
However, before going into the detail of the proposed algorithm, let us state the optimization 
criterion for the land cover mapping considered in this paper.  

 
2.3.2 Optimum Land Cover Map 

 
The classifier based on the maximum a posteriori (MAP) criteria selects the most likely LCM 
given the observed data and the map parameters since the resulting probability of error is 
minimum among all other classifiers [44]- [45]. The optimum solution under the MAP 
criterion is expressed as  

           
 

,  ( |   )-  (2.20) 
In general,   ( |   ) is non-concave function and, therefore, conventional gradient-based 
optimization algorithms are not applicable for the solution of Eq. (2.20). Furthermore, the 
number of possible solutions is also very large. A direct search for the solution of Eq. (2.20) is 
too expensive to be practically implemented. As a result, we propose the use the mean field 
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theorem [40]- [41] to remove the interaction between neighboring pixels defined in   ( ). 
Hence, by substituting Eq. (2.16) into Eq. (2.20), the optimization problem becomes  

           
 

[∏   (  |   )

   

]  (2.21) 

Since the optimizing function in Eq. (2.21) is written in the form of the multiplication of 
functions of an individual pixels, and    (  |   ) is a non-negative function, the optimum 
solution can be solved from an individual function, i.e., for    , 

  
          

 
,   (  |   )-  (2.22) 

which is equivalent to  
  

          
 

,  (  |   )-  (2.23) 
 

2.4 Joint Image Registration and Land Cover Mapping Algorithm 
 

Since the EM algorithm is employed in this literature as the parameter estimator, we 
begin our discussion with the details of the EM algorithm. The EM algorithm [39] consists of 
two steps, namely the expectation (or E) and maximization (or M) steps. In the E-step, the EM 
algorithm finds the lower bound of the likelihood function given in the right hand side of Eq. 
(20) by calculating the expected value of the joint log-likelihood function of the observed 
images and the LCM. Here, the expected value is computed over the LCMs given the most 
recent estimate of the map parameter vectors and observed data, i.e.,  

 
 ( ||    )   ,     (   | ) |      - 

  ,     ( |   )       ( ) |      - 
(2.24) 

where   *       + is the set of all observed remotely sensed images,   

*       + is the set of all unknown map parameters, and    *  
      

 + is the set of all 
estimated parameters from the t-th iteration of the EM algorithm. Note here that   

    
 . By 

substituting Eq. (2.1) and Eq. (2.7) into Eq. (2.24), the expected value becomes  

 

 ( ||    )
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∑ (

∑(          )
 
     

  (          )

   

    |     |     (  )  
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 ∑   ( )    

   

|      ] 
(2.25) 

In the M-step, the expected value given in Eq. (2.25) is maximized and a new set of map 
parameter vectors is obtained, i.e.,  

          
       

 
 ( ||    ) (2.26) 

Clearly, the terms    |     |,    (  )  , ∑   ( )   , and    in Eq. (2.25) do not depend 
on  . Hence, Eq. (2.25) can be modified to  

          
       

 
  ( ||    ) (2.27) 
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where  

 

  ( ||    )
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  (          )

   

 

   

|      ]  
(2.28) 

To find the solution of Eq. (2.28), the a posteriori probability of the LCM given the 
observed images and the map parameters from the (t-1)-th iteration must be calculated in 
order to find the expected value. From the same reason as discussed in Section 2, the posterior 
probability cannot be practically calculated due to the huge number of possible LCMs. As a 
result, we employ the approximation given in Eq. (2.16), and hence, we have   

  ( |      )  ∏  
  (  |      )

   

 ∏
 

  
  

 
 
  (  |      ) 

   

 (2.29) 

By substituting d Eq. (2.26) into Eq. (2.29), we have  

 

  ( ||    )     ( ||    )
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      )  
  (  |      ) 

(2.30) 

Hence, in the M-step, the new map parameters can be obtained by maximizing the 
approximation given Eq. (1.30), i.e.,  

          
       

 
   ( ||    ) (2.31) 

Since      depends only    and the right hand side of Eq. (1.30) is written as the summation 
of      from different images, the above optimization problem can be rearranged into the 
optimization of each individual mapping parameters, i.e., 

   
        

 
  

  (  ||    )          (2.32) 
where  

 
  

  (  ||    )

  
 

 
∑ ∑ (          )

 
     

  (          )  
  (  |      )

       

  (2.33) 

Using the approximations given above, the modified EM algorithm is displayed in Figure 
2.2. For each iteration, the posterior probability   ( |    ) is approximated by recalculating 
  (  |    ). We follow the work by Zhang [9] which suggested that   (  |    ) can be 
obtained from  
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  (  |    )      (  | )     (  |   )
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(2.34) 

where     (  | ) and    (  |   ) are the potential functions depending upon the 
observation and neighboring pixels, respectively.  

 
 

 
 
 
Since   (  |    ) is recalculated for every iteration of the EM algorithm, we can choose 

a land cover class that minimizes   (  |    ), and obtain the optimum LCM based on 
criterion given in Eq. (2.23) By combining the EM algorithm given in Figure 2.2 and the land 
cover mapping process by minimizing Eq. (2.23), the joint image registration and land cover 
mapping algorithm is given as 

1. Initialize map parameters, i.e.,   
    

  and    *  
      

 +, let    , and assign 

Find initial mapping vectors      

Let t     
    

 ,      
  , and estimate   (  |    ) 

E-Step: 
Compute the expected 
value    ( ||    ). 

M-Step: 
Find the new map parameter 
vectors    by solving Eq. 
(2.32). 

Let        

Does the EM 
algorithm 
converge? 

No 

Stop 

Yes 

Approximate 
  ( |    ) by 
using Eq. (2.28). 

Figure 2.2: Block diagram of the modified EM algorithm 
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   (  |    ) based on some prior knowledge. 
2. Compute   

  (  ||    ) for        . 
3. Obtain   

  by solving Eq. (2.32) for        ., and assign  
    

  and     

,  
      

 -  
4. Compute   (  |    ) by using Eq. (2.34). 
5. Find the new LCM that minimizes   (  |    ) for all    . 
6. Let      , and go to Step 2 if a convergence criterion is not satisfied.  
 
The critical step in the successful implementation of the joint image registration and land 

cover mapping algorithm proposed above is how to solve Eq. (2.32) efficiently. Here to find 
the maxima, we employ the particle swarm optimization (PSO) algorithm [46] since the 
traditional gradient search approaches are likely to fall into one of the local optimum points of 
   ( ||    ) due to its non-convexity. The PSO exploit the cooperative behavior for a 
group of animals such as birds and insects. In the PSO, an individual animal is called a 
particle and a group of animals is called swarm. These particles are initially distributed 
throughout the search space, and move around the search space. Based on some social and 
cooperative criteria, these particles will eventually cluster in the regions where the global 
optima can be found. 

In our work, for a given image   , each particle represents a mapping parameter and we 
denote the i-th particle as      . At each iteration, the i-th particle moves by a velocity    
which is a function of the best-known positions (mapping parameter) discovered by the i-th 
particle (  ) itself, and from all particles ( ), i.e.,   

  
     

        (       
   )      (      

   ) (2.35) 

and  

    
      

      
  (2.36) 

for          where   is the inertial weight,    and    are acceleration constants, and    
and    are uniform random numbers between zero and one. The velocity is usually kept in the 
range of ,         ] to make sure that     

  is in the valid regions. Note here that the 
performance of the PSO depends on the selection of,  ,    and   , and the number of 
iterations. In this paper, we set the number of particles to 80 and the maximum number of 
iterations to be 200 as a suitable setup for our experiment. We acknowledge that different 
setups of these parameters may result in different convergence rate. However, the 
investigation of the optimum parameter selection of the PSO in term of convergence rate is 
out of scope of this paper. We refer to the work by [47] for more details. 
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2.5  Experimental Results 
 

In this section, we provide the results of two experiments based on the methodology 
derived in Section 4 to jointly register and classify a set of remotely sensed images. The first 
experiment is conducted over a simulated dataset in order for us to investigate many aspects of 
our proposed algorithm. Next, we will examine the performance of our algorithm in the actual 
remote sensing image. For both examples, the goal is to examine the performance of 
algorithm to different degrees of initial registration errors. If our algorithm performs perfectly, 
it should be able to align images together and produce a LCM from unregistered images as 
accurate as when images are registered.  

 
Experiment 1: 

In the experiment, we examine the performance of the proposed algorithm in term of 
classification performance and registration accuracy by attempting to produce a land cover 
map from a set of four simulated images. All the simulated images have an equal size of 
512512 pixels (Figure 2.3) and contain four land cover classes (Classes 1-4) with intensity 
values of zero, one, two and three for black, dark gray, light gray and white areas, 
respectively. Based on the noiseless image, the ground truth image in this example is given in 
Figure 2.4 where the blue, black, green and red colors correspond to Classes 1-4, respectively. 
Next, all of the input images are added with the independent and identical Gaussian noise with 
zero mean and standard deviation of     to examine the performance of our proposed 
algorithm to the image noise. Figure 2.5 shows an example of the input image for    . We 
observe that the observed image appears to be very noisy.  

 

 
Figure 2.3: Noiseless Simulated Image in Example 1 
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Figure 2.4: The ground data of Example 1 

 

 
Figure 2.5: An example of the noisy input image at σ=1 in Example 1 

 

Since our algorithm performs both image registration and land cover mapping at the same 
time, the performance of our algorithm can be evaluated in terms of how much the resulting 
LCM deviates from the reference LCM, and the estimation error between our calculated map 
parameters and the actual parameters that relate the LCM to the simulated images. If our 
algorithm performs perfect registration and land cover mapping, the resulting percentages of 
mis-classified pixels will be zero, and the registration error between images and LCM will be 
zero. In this example, the correct mapping parameters for all observed images are the same 
and equal to          ,           - which correspond to unit scale, zero skew, and zero 
displacement. Next, since we want to examine the effect of the initial registration errors to the 
performance of our algorithm, we investigate different scenarios of initial registration errors 
by varying the initial mapping parameters between the observed images and LCM at different 
values of displacement, scale and skew parameters. In particular, we investigate three 
scenarios for the only displacement, only scale and only skew errors, respectively. Table 2.1 
shows the initial mapping parameters for all three scenarios. Here,  ,   and    are the initial 
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displacement, scale, and skew parameter errors. Note that the initial mapping parameter errors 
for Image 1 for all scenarios are zero since we assume that the first image is registered to the 
LCM as mentioned in Section 2.31. 

Before examining the performance of our proposed algorithm, we examine the effect of 
registration errors to the performance of image classification. This value can be viewed as the 
worst case scenario where the LCM is derived directly from the set of mis-registered images. 
Here, we employ the maximum likelihood classifier (MLC) [44] to the set of four remapped 
images, and the LCM is obtained from  

  
          

 
[∑ 2(          )

 
     

  (          )     |    |3

 

   

] (2.37) 

where the subscript   denotes the n-th remapped image. We note here that Eq. (2.37) is the 
special of the optimum LCM obtained from Eq. (2.22) when    . Figure 2.6 (a), (b) and (c) 
display the resulting LCM for      and     for Scenario I,        and     for 
Scenario II, and        and     for Scenario III. The averaged percentages of 
misclassified pixels after a hundred independent runs are equal to 28.66%, 31.93 and 27.03, 
for Scenarios I, II and III given above, respectively.  
 

Table 2.1: Mapping parameter errors are three scenarios in Example 1 

 
 

Image Mapping parameters 
                  

Scenario I:  
Displacement 
error ( ) 

1 1 0 0 1 0 0 
2 1 0 0 1   0 
3 1 0 0 1 0    
4 1 0 0 1      

Scenario II:  
Scale error 
( ) 

1 1 0 0 1 0 0 
2     0 0 1 0 0 
3 1 0 0     0 0 
4     0 0     0 0 

Scenario III:  
Sheer error 
( ) 

1 1 0 0 1 0 0 
2 1   0 1 0 0 
3 1 0   1 0 0 
4 1       1 0 0 
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(a) 

 
(b) 

 
(c) 

Figure 2.6: Examples of the MLC-Based LCMs for (a) Scenario I with δ=12 and σ=1; (b) 
Scenario II with ρ=0.05 and σ=1; and (c) Scenario III with  η=0.05 and σ= 

 
 
 
Next, the proposed algorithm is applied to the above datasets. The whole process was 

implemented using CUDA on NVIDIA Tesla M2090 with 1 GB memory. Here, we assign 
   (  |    )  

 

 
 as the most extreme case where no prior information is given. In different 

trials, the value of   is set to be 0.00, 0.25, 0.50, and 0.75(see Eq. (2)). Since our algorithm 
performs both image classification and registration, the termination criteria must ensure the 
convergences in both the estimated posterior probability and mapping parameters. As a result, 
we define  

         
 

| |
∑ ∑ |  

  (  |    )    
  (  |      )|

       

  (2.38) 

to measure changes in the posterior probabilities from two consecutive iterations. We also 
define  

            
 

|  |
∑ √(  

    
   )  (  

    
   ) 

(     )   

 (2.39) 

to characterize the movement of coordinates of the remapped image    from two 
consecutive iterations where  

[
  

 

  
 ]  [

    
     

 

    
     

 ]

  

[
       

 

       
 ]  

(
40) 

Here,     
  denotes the mapping parameter    from the nth at the tth iteration. In this example, 

the algorithm terminates when          is less than          , and             is less than 
0.1 pixels for five consecutive iterations for        . To create a benchmark for our 
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proposed algorithm, we examined two extreme cases where LCMs are derived directly from 
the unregistered image pairs and from perfect registered image pair. The LCMs from these 
extreme cases are classified using our proposed algorithm by fixing      . For perfect 
registration, we have             whereas, for unregistered image pairs, we set    equal 
the values given in Table 2.1 for the respective scenarios. The first extreme case can be 
considered as the lower limit on the classification accuracy if we perform the land cover 
mapping without alignment of images first. The second case is an upper bound on the 
classification accuracy when we produce a map from a registered image pair. By setting up 
our experiment in this fashion, we can investigate how much improvement our algorithm can 
gain by integrating the registration and classification together, and how far the performance of 
our algorithm is from the upper limit where all uncertainties in registration are removed. To 
ensure the statistical significance of our experiment, all experiments are repeated ten times.  

Table 2.2 displays the averaged percentages of misclassified pixels (PMP) of the LCMs 
for different values of   and for Scenario I with     , Scenario II with        and 
Scenario III with        when    . Note here that, in this example, we employ the 
percentages of mis-classified pixels as the performance metric to evaluate the classification 
performance rather than the overall accuracy to highlighted small differences in the 
classification performance between LCMs derived from image datasets without registration 
error and LCMs obtained from our proposed algorithm. From Table 2.2, it is clear that, from 
all scenarios, the PMPs derived from image datasets without registration errors corrections are 
always significance poorer than those derived from registered image datasets. These results 
support our claims that it is important to consider lack of alignments in performing image 
classification. We also observe that, for            and     , our proposed algorithm 
produced the LCM with the accuracy similar to those obtained from image dataset without 
any registration error. These results imply that our proposed algorithm attain the upper-bound 
accuracy with proper selection of MRF parameter. To ensure the statistical significance, we 
compute the pairwise t-statistics for unequal variance populations [43] of the PMPs obtained 
from LCMs derived from the proposed algorithm for various initial registration errors against 
those obtained from image dataset with no registration error, and the resulting p-values [43] of 
the t-statistics are given in Table 2.3. The p-value represents the probability that there is no 
difference in PMPs. Hence, a smaller p-value implies that PMPs from two experiments are 
different. We also compute the t-statistics comparing LCMs obtained from image dataset with 
and without registration errors. The resulting p-values of these t-statistics are also summarized 
in Table 2.3. It is clear from Table 2.3 that there is significant differences in term of PMPs 
from LCMs obtained from image dataset with and without registration errors. Furthermore, 
the p-values also support our claim that or            and     , our proposed algorithm 
produced the LCM with the accuracy similar to those obtained from image dataset without 
any registration error. However at    , our proposed algorithm perform significantly poorer 
than those of perfect registration. In fact, at    , our proposed algorithm achieves roughly 
the same performance as in situation where there is no registration error correction since at 
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   , our proposed algorithm cannot correctly estimate the map vectors. Figure 2.7 shows 
examples of the resulting LCMs at        for all scenarios. We observe that all the LCMs 
appeared to be more connected than the MLC-based LCMs given in Figure 2.6: Examples of 
the MLC-Based LCMs for (a) Scenario I with δ=12 and σ=1; (b) Scenario II with ρ=0.05 and 
σ=1; and (c) Scenario III with  η=0.05 and σ= 

  
 

Table 2.2: Comparison of the averaged percentages of misclassified pixels (PMP) between 
two extreme cases and our proposed algorithm 

  No 
registrat
ion 
Error 

No registration error correction Proposed Algorithm with initial 
registration errors 

Scenario I 
with 
     

Scenario II 
with 
        

Scenario III 
with 
       

Scenario I  
with 
     

Scenario II 
with 
        

Scenario III 
with 
       

0.0 25.65% 28.66% 26.87% 27.05% 28.65% 26.07% 27.12% 
0.25 0.43% 4.81% 5.96% 6.45% 0.45% 0.43% 0.43% 
0.5 0.039% 4.24% 5.65% 6.21% 0.039% 0.041% 0.043% 
0.75 0.021% 4.19% 5.56% 6.13% 0.024% 0.032% 0.026% 
  

Table 2.3: the p-values of the pairwise t-test with unequal variances of our proposed algorithm 
to the perfect registration cases, and no registration error correction to the perfect registration 
cases 

  No 
registrati
on Error 

No registration error correction Proposed Algorithm with initial registration 
errors 

Scenario I 
with      

Scenario II 
with 
        

Scenario III 
with 
       

Scenario I 
with      

Scenario II 
with 
        

Scenario III 
with 
       

0.0 1                                                             
0.25 1                               0.457 0.717 0.500 
0.5 1                               0.712 0.167 0.401 
0.75 1                               0.060 0.033 0.079 
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(a) 

 
(b) 

 
(c) 

Figure 2.7: Examples of the resulting LCMs from our proposed algorithm (a) Scenario I 
with δ=12 and σ=1; (b) Scenario II with ρ=0.05 and σ=1; and (c) Scenario III with  

η=0.05 and σ=1 
 
Since at         our proposed algorithm achieves highest performance, we examine the 

effect of the initial registration errors to the performance of our algorithm by varying values of 
 ,    and   for Scenarios I, II and III, respectively for    0.75. Again, ten independent runs 
are performs to ensure the statistical significance and the results are given in Table 2.4. We 
observe that, for all scenarios, the PMPs are roughly the same In other words, the initial 
registration errors have little effect on the performance of our algorithm. These results imply 
the robustness of our proposed algorithm to the initial mis-registration errors if the proper 
value of   is chosen.  

 
Table 2.4: The averaged percentages of mis-classified pixels as the function of the initial 
registration error for all Scenarios 

Scenario I Scenario II Scenario III 
  PMP   PMP   PMP 

0 0.019% -0.05 0.035% -0.05 0.036% 
4 0.032% -0.03 0.035% -0.03 0.029% 
8 0.029% -0.01 0.022% -0.01 0.043% 
12 0.026% 0.01 0.030% 0.01 0.040% 
  0.03 0.024% 0.03 0.036% 
  0.05 0.032% 0.05 0.026% 
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Another key performance metric in this example is the residual registration errors after 
processing. Table 2.5 displays the means and standard deviations of the root mean square 
errors (RMSEs) from ten independent runs between each simulated images and the reference 
LCM. The RMSE of the n-th image is computed from  

      
 

|  |
∑ √(  

  
   

   )
 
 (  

  
   

   )
 

(     )   

 (2.41) 

where (  
  

   
  

) and (  
      

   ) are the ground truth and estimated coordinates. Here, the 
ground truth coordinates obtained by letting            . Clear, for           , and 
      our algorithm can successfully registered all images with the LCMs. However, at     
our algorithm cannot align these images with the LCM. The results in Table 2.5 emphasize the 
importance of parameter selection. Note here that the RMSE of Image 1 is not shown in the 
Table 2.5  since it is assumed to be perfectly aligned (registration error is zero.) with the 
LCM. Next, we examine the effect of image noise to the registration accuracy by varying the 
noise variance    from -30dB to 0 dB and the resulting averaged RMSEs for       and 
     are given in Table 2.6 and Table 2.7, respectively. We observe here that there are slight 
performance differences in term of the RMSEs for   of -30, -20 and -10 dB for both   

     and     . However, for the noise variance equal to 0 dB, our algorithm can only 
correctly aligned Images 2-4 to the LCM at       . This result emphasizes the importance 
of a parameter selection to the convergence of our algorithm. For the performance 
comparison, we compare the registration accuracy of our proposed algorithm for various 
scenarios and        with a traditional image-to-image registration technique. Here we 
employ the mean square error criteria (MSEC) [16] since the MSEC is suitable for register 
images with the same modality and suffered from additive Gaussian noise. For the traditional 
image-to-image registration, we register Images 2-4 with Image 1 since Image 1 is assumed to 
be aligned with the LCM. The averaged RMSEs from ten independence runs for various noise 
variances are given in Table 2.8. Again the particle swamp optimization algorithm with eighty 
particles is employed to ensure global optimality. As expected, the registration accuracy 
decreases as the noise variance increase. By comparing Table 2.6 and Table 2.8, the RMSEs 
from our proposed algorithm seem to be lower (better) than those obtained from the MSEC for 
noise variances equal to -20, -10 and 0 dBs. Next, we again perform the pairwise t-test to 
determine whether there are significant differences in RMSEs obtained from our proposed 
algorithm and the MSEC, and the resulting p-values [43] are shown in Table 2.9. From the p-
values, we can conclude that our proposed algorithm achieves significantly better registration 
accuracies than those obtained from the MSEC for the noise variances of         and 0 
dBs. Note here that, for a noise variance equal to -30 dB, the registration errors from our 
proposed algorithm and the MSEC are roughly zero and, therefore there is no different in term 
of registration accuracy.  
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Table 2.5: The residue registration errors of our proposed algorithm for various scenarios and 
values of β. 

Scenario   No 
registration 
Error 
Correction 

                           

I 
(    ) 

Image 2 Mean 12 11.99 0.111 0.295 0.280 
STD - 0.0015 0.259 0.139 0.100 

Image 3 Mean 12 11.99 0.031 0.192 0.312 
STD - 0.0018 0.020 0.120 0.156 

Image 4 Mean 16.97 16.96 0.213 0.338 0.212 
STD - 0.0017 0.566 0.088 0.136 

II 
(      ) 

Image 2 Mean 14.06 13.56 0.028 0.281 0.327 
STD - 0.072 0.010 0.130 0.113 

Image 3 Mean 14.06 13.49 0.020 0.353 0.312 
STD - 0.032 0.080 0.102 0.106 

Image 4 Mean 21.97 20.97 0.253 0.245 0.315 
STD - 0.095 0.636 0.120 0.082 

III 
(      ) 

Image 2 Mean 14.76 14.71 0.025 0.295 0.296 
STD - 0.204 0.020 0.149 0.098 

Image 3 Mean 14.76 14.73 0.017 0.415 0.350 
STD - 0.182 0.006 0.090 0.136 

Image 4 Mean 21.72 22.04 0.350 0.312 0.371 
STD - 0.0325 0.983 0.155 0.088 

 
Table 2.6: The residue registration errors for various noise variances and β=0.75. 

Noise 
variance 
(dB) 

Average root mean square errors  
Scenario I,      Scenario II,        Scenario III,        
Image 

2 
Image 

3 
Image 

4 
Image 

2 
Image 

3 
Image 

4 
Image 

2 
Image 

3 
Image 

4 

-30  0.007 0.011 0.009 0.006 0.010 0.019 0.012 0.019 0.013 
-20 0.010 0.012 0.009 0.023 0.016 0.012 0.017 0.016 0.011 
-10 0.036 0.035 0.037 0.028 0.018 0.029 0.028 0.030 0.022 
0 0.244 0.280 0.185 0.119 0.138 0.071 0.078 0.053 0.200 
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Table 2.7: The residue registration errors for various noise variances and β=0. 

Noise 
variance 

(dB) 

Average root mean square errors  
Scenario I,      Scenario II,        Scenario III,        
Image 

2 
Image 

3 
Image 

4 
Image 

2 
Image 

3 
Image 

4 
Image 

2 
Image 

3 
Image 

4 

-30 0.016 0.08 0.010 0.015 0.007 0.019 0.009 0.011 0.019 
-20 0.017 0.012 0.014 0.015 0.018 0.015 0.010 0.015 0.017 
-10 0.014 0.018 0.015 0.018 0.018 0.023 0.019 0.016 0.014 
0 11.99 11.99 16.97 11.91 11.89 20.28 12.75 12.79 20.61 
 

Table 2.8: The residue registration errors using the minimum mean square error criteria for 
various noise variances. 

Noise 
variance 

(dB) 

Image 2 Image 3 Image 4 
Mean STD Mean STD Mean STD 

-30 0.008 0.0029 0.007 0.0041 0.010 0.0054 
-20 0.422 0.0040 0.425 0.0033 0.423 0.0049 
-10 0.663 0.0037 0.665 0.0014 0.664 0.0017 
0 0.875 0.516 1.637 1.441 1.352 0.9744 

 

Table 2.9: The p-value from the pairwise t-test between the traditional registration method and 
our proposed algorithm for various Scenario at β=0.75. 
Noise 
variance 
(dB) 

Average root mean square errors 
Scenario I,      Scenario II,        Scenario III,        

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 

-30  0.829 0.402 0.883 0.413 0.413 0.201 0.507 0.092 0.407 
-20                                                                         
-10                                                                          
0 0.004 0.016 0.004 0.001 0.001 0.003 0.0010 0.007 0.004 

 
Figure 2.8 shows the averaged numbers of iterations that the algorithm requires before the 

convergence criterion is satisfied for different scenarios and  . For            and 0.75, 
more iterations are needed as the value of   increases. However, at    , our algorithm 
terminates at the higher numbers of iterations for Scenarios II and III. The main reason to the 
slow convergences is due to the small changes in the mapping parameters from one iteration to 
another and since    , this small changes in the mapping parameters have significant 
influence on the posterior probability.  
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Figure 2.8: The averaged number of iterations required before the termination criteria 

are satisfied for different scenarios in Example 1 
 

Experiment 2 
A QuickBird dataset consisting of one multispectral image (MI) of size         pixels 

and one panchromatic image (PAN) of size           pixels was used in this experiment 
(Figure 2.9). The MI and PAN have resolutions of 2.4 and 0.6 meters, respectively. Both 
images captured a part of Kasetsart University in Bangkok, Thailand, covering around 0.2592 
in km2 on July 10th, 2008. By visual interpretation, we classified the area into five classes, 
namely, water, shadows, vegetations and impervious type 1 and impervious type 2, and the 
ground truth image is shown in Figure 2.10 where blue, black, green, red and white colors 
correspond to water, shadow, vegetation, impervious type 1 and impervious type 2, 
respectively. Here, the impervious is divided into two types due to different roof and 
pavement colors in the scene. By using both PAN and MI images, we randomly select 1000 
samples for each land cover classes. 
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(a) 

  
(b) 

Figure 2.9: QUICKBIRD dataset of a part of Kasetsart University (a) False color 
composite MI; and (b) PAN 

 

 
Figure 2.10: Ground truth image for Example 2 (green, blue, black, red and white colors 

for vegetation, water, shadow, impervious type 1 and impervious type 2, respectively) 

 
 
In Experiment 2, we focused on the robustness of the proposed algorithm with different 

degrees of the initial displacement, scale and rotation errors. In fact, there are six displacement 
errors in x-direction and y- directions, four scale errors and six rotational errors used in this 
experiment. The termination criteria used in this example is similar to those in Example 1, i.e., 
our algorithm is terminated if          (see Eq. (2.38)) is less than      and              
(see Eq. (2.39)) is less than 0.1 pixels for five consecutive iterations. Before examining the 
robustness of our algorithm, we determined the benchmark performance of the MRF-based 
land cover mapping when MI and PAN are perfectly registered. The resulting LCMs are 
shown in Figure 2.11. Again, as we progress to greater values of  , more connected LCMs are 
obtained. The overall accuracy graph shown in Figure 2.12 agrees with the visual inspection 
that the classification performance increases as the values of   increases. In this example, we 
employ the overall accuracy rather than the percentages of mis-classified pixels used in 
Example 1 since overall accuracy is more widely used performance metrics in remote sensing 
image classification. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.11: LCMs for the perfect registration case for (a) β=0; (b) β=0.25; (c) β=0.50; 
and (d) β=0.75 

 

 
Figure 2.12: Overall accuracies for different values of β when MI and PAN are perfectly 

aligned 
 

Since the PAN has a higher resolution, we assume that it is aligned with the LCM, and we 
only need to find map parameters of the MI. Here, the PAN has a higher resolution than the 
multispectral image by the factor of four, and both MI and PAN are obtained from the same 
satellite, the optimal map parameter vector relating the two images should be equal to  

     ,                 -. 
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To investigate the robustness of our algorithm to displacement, scale and rotation errors, 
we introduce the registration errors in displacement in x-direction, displacement in y-direction, 
scale and rotation into the MI and PAN pair. If we introduce the displacements into the image 
pair, the initial map parameter is set to be equal to  

   ,                  - 
and 

   ,                  -  
for displacement errors in x- and y-direction, respectively. Here, the values of    and    are 
set to be                and  . For the scale and rotation errors, we assume that the both 
images are aligned at mid points, i.e., the pixel (75,150) of MI is at a pixel (300,600) of PAN. 
Next, we apply the initial scale errors,   , of                   and 5% when 
comparing with the PAN image to the multispectral image. Here, the scale errors of 
                   and 5% correspond to the initial scales of PAN to MI of 3.8, 3.9, 
4.0, 4.1 and 4.2, respectively. For rotation errors, we rotate the MI by    degrees in the 
counter clockwise direction. Here, the initial rotation errors    are set to be 
                   and   . The initial RMSEMI (see Eq. (41)) for all cases are given in 
Table 2.10. Again, if our algorithm performs perfectly, the estimated map parameter will 
converge back to     . In other words, we will eventually have        . Once the correct 
map parameter vector is obtained, the classification accuracies of the LCMs should be equal to 
that in the perfect registration cases (Figure 2.11 (a)-(d)). In this example, we again assign 
   (  |    )  

 

 
 , the most extreme case where no prior information is given. 

 
 

Table 2.10: The initial RMSEMI in meters (pixels in LCM) for various cases in Example 2 

Error in x- direction Error in y- direction Error in scale Error in Rotation 
   RMSEM    RMSEM    RMSEM    RMSEM 
-5 12 (20) -5 12 (20) -5% 21.3 (36) -3 11.12 (19) 
-3 7.2 (12) -3 7.2 (12) -2.5% 10.7 (18) -2 7.45 (12) 
-1 2.4 (4) -1 2.4 (4) 0% 0.0 (0) -1 3.72 (6.2) 
1 2.4 (4) 1 2.4 (4) 2.5% 10.7 (18) 1 3.72 (6.2) 
3 7.2 (12) 3 7.2 (12) 5% 21.3 (36) 2 7.45 (12) 
5 12 (20) 5 12 (20)   3 11.12 (19) 

 
The overall accuracies as the function of           and    are shown in Figure 2.13 (a)-

(d), respectively. From all most all scenarios, the overall accuracies increase as the value of   
increase since the MRF model promote more connected land cover maps, and, therefore, 
remove the isolated misclassified pixels. However, for      and     , the overall 
accuracies of our algorithms decrease as   increases. The main reason to these performance 
degradations are due to the fact that our algorithm terminate on one of the local optima since 
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the EM algorithm employed in our work cannot guarantee the global optimum solution. The 
evidence can be seen in Figure 2.14 (a) and (b). In Figure 2.13: The effect of initial 
registration errors to the overall accuracies 

 

 

 (a), we observe that, in almost all of the initial values of   , the number of iterations 
increases as the value   increases. However, for       , our algorithm terminates at only 
75, 109 and 129 iterations for            and      whereas, for      , our algorithm 
terminates after 180 iterations. Similarly, we observe the same phenomenal in Figure 2.13  (b) 
for        where the algorithm terminates at the lower number of iterations for        
than            and 0.50. This result shows the effect of the initial registration errors to the 
convergence of our algorithm. In most practical situation, such an large initial registration 
errors is unlikely to occur since most remote sensing images are embedded with coordinate 
information from a producer.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.13: The effect of initial registration errors to the overall accuracies 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.14: The effect of the initial registration errors to the number of iterations 

 
 
Similar to previous example, we also compare the performance of our proposed algorithm 

(PA) with two extreme cases where images are perfectly registered (PR) and there is no 
registration error correction (NC) and the results are given in Tables 2.11-2.14. From this 
comparison, we observe that if our algorithm converges to the global optimum solutions, the 
resulting overall accuracies from our proposed algorithm are similar to those of the perfect 
registration cases, and the significant improvements are obtained from the cases where there is 
no registration error correction. The maximum performance improvements from no 
registration error correction for each cases are 12.6% for       and       , 12.4% for 
      and       , 17.4% for        and       , and 14.9% for       and 
      . We observe that the maximum improvements are achieve at       . This 
observation suggests that a higher performance gain can be obtain by increasing the value of 
 . Next, we also notice that our proposed algorithm can sometimes achieve even higher 
accuracies than those of the prefect registration cases. The reason is due to the fact that our 
algorithm requires more iterations than the scenarios where image pair is perfectly registered 
since our algorithm terminates if both the estimated map parameters and the resulting LCM 
converge whereas, in the perfect registration case, the process terminates if only the resulting 
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LCM converges. Hence, our algorithm may terminate at lower percentages of changes in the 
LCM, and result in more accurate LCM which results in higher precision.  

 

Table 2.11: Overall accuracies for different values of β on two extreme cases and our 
proposed algorithm for different initial displacement error in x-direction  x where PA and NC 
denote the cases of the proposed algorithm and no registration error correction, res 

  PR                                              
PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.7 57.6 67.8 62.2 67.7 66.9 67.8 66.7 67.7 61.8 67.8 57.0 
0.25 69.4 70.0 58.8 69.8 63.7 69.8 68.6 69.9 68.3 70.0 63.4 59.3 58.4 
0.5 70.3 71.8 59.7 71.4 64.6 70.6 69.6 70.9 69.2 71.5 64.4 60.2 59.2 
0.75 71.1 72.8 60.2 72.2 65.2 71.5 70.3 71.8 70.0 72.7 65.0 60.4 59.9 

 

Table 2.12: Overall accuracies for different values of β on two extreme cases and our 
proposed algorithm for different initial displacement error in y-direction  y where PA and NC 
denote the cases of the proposed algorithm and no registration error correction, res 

  PR                                              
PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.7 57.6 67.7 62.2 67.7 66.9 67.7 66.7 67.7 61.8 67.8 57.0 
0.25 69.4 69.9 58.8 69.9 63.7 69.8 68.6 70.1 68.3 70.1 63.4 70.3 58.4 
0.5 70.3 71.6 59.7 71.2 64.6 70.5 69.6 71.8 69.2 71.8 64.4 68.6 59.2 
0.75 71.1 72.5 60.1 71.9 65.2 71.2 70.3 73.4 70.0 73.4 64.9 62.9 59.9 

 
 

Table 2.13: Overall accuracies for different values of β on two extreme cases and our 
proposed algorithm for different initial scale error  s where PA and NC denote the cases of 
the proposed algorithm and no registration error correction, respectively. 

  PR                                     
PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.8 52.7 67.7 61.0 67.7 67.5 67.8 64.9 67.8 57.8 
0.25 69.4 69.6 53.4 69.5 62.4 70.0 69.4 70.3 66.1 70.2 58.9 
0.5 70.3 71.1 54.2 70.6 63.3 71.0 70.3 71.6 67.0 72.1 59.7 
0.75 71.1 72.1 54.7 71.5 64.2 71.1 71.1 72.7 67.6 73.4 60.1 
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Table 2.14: Overall accuracies for different values of β on two extreme cases and our 
proposed algorithm for different rotation error  θ where PA and NC denote the cases of the 
proposed algorithm and no registration error correction, respectively. 

  PR                                        
PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.6 57.3 67.6 60.8 67.6 65.3 67.7 64.8 67.7 59.8 67.8 55.5 
0.25 69.4 69.9 58.5 69.8 62.2 69.7 66.9 69.9 66.5 69.7 61.1 69.8 56.6 
0.5 70.3 71.6 59.3 71.4 63.0 71.0 67.8 71.1 67.4 71.4 62.0 71.5 57.4 
0.75 71.1 73.0 59.7 72.3 63.6 71.9 68.4 71.9 68.1 72.5 62.6 72.9 58.0 

 
Another key performance metric of our algorithm is the resulting registration errors. 

Figure 2.15 (a)-(d) show the residue registration errors in term of RMSE (in meters) between 
the MS image and the LCM for different initial registration errors. We observe that, if our 
algorithm converges to the global optimum solutions, it can successful reduce the registration 
error down to around 1.8 meters in the LCM (or equivalently 0.75 pixels on MS image and 3 
pixels on PAN image and LCM). These results imply that our algorithm can align images 
together to the accuracy less than those of the lowest resolution (here is MS image). For each 
initial registration error cases, the minimum RMEs of 1.718 (2.86 pixels in the LCM) meters 
for       , 1.672 (2.79 pixels in the LCM) meters for       , 1.730 (2.88 pixels in the 
LCM) meters for       and 1.704 (2.84 pixels in the LCM) meters for        occurs at 
      . These results suggest that, if our algorithm converges, the larger value of   
increases the accuracy of registration as well as the classification. However, for the cases of 
    5.0 and       , our algorithm cannot register the MS image to the LCM since our 
algorithm is stuck in one of the local optima. The residue registration errors for        are 
1.896 (3.16), 10.96 (18.3), 11.14 (18.6), and 11.41 (19.0) meters (pixels in the LCM), and for 
       are 1.827 (3.05), 1.834 (3.06), 3.133 (5.22) and 11.57 (19.3) meters (pixels in the 
LCM) for                , and 0.75, respectively. Here, the initial displacement error 
corresponds to the RME of 20 pixels in the LCM. Such a large initial RME are only found 
when remote sensing images have significant different in spatial resolutions. LCMs derived 
from remote sensing image dataset with such a large scale difference are often unreliable and 
not often found in practice.  

For performance comparison, we apply the normalized cross correlation method [16] to 
register PAN and MS images together and the resulting RME is equal to 1.836 meters or 3.06 
pixels in the LCM. From Figures 2.15(a)-(d), we found that, with proper parameter selections 
and the initial registration errors, our proposed algorithm can achieved higher registration 
accuracy than those from the normalized cross correlation method. For example, our 
algorithm obtains the registration errors of       (2.86 pixels) meters for        and 
    , 1.671 (2.79 pixels) meters for        and     , or 1.702 (2.84 pixels  )meters 
for        and         
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.15: The effect of the initial registration errors to the residue registration error 
of our proposed algorithm in Example2 
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3. Rice Cultivation Date Estimation Using the Cloudy-Multi-Temporal Moderate 
Resolution Imaging Spectroradiometer 

3.1 Introduction 
As an agricultural country, Thailand has many vital industrial crops such as rice, oil palm, 
rubber tree and cassava. Among them, rice is the most important crop since it is a major 
exporting vegetation product of Thailand and it is also a staple food of many people around 
the world. Particularly, Thai HomMalee rice is also the federation of rice which is famous 
around the world. In Thailand, rice fields are located mostly in the central and north-earth 
regions which are low-land and flat areas. Due to its low attitude and flatness, the rice 
cultivation in these areas can be easily damaged by natural disaster such as floods, draught 
and storm [48]. In order to evaluate the damage in rice fields, the cultivation date is a crucial 
factor that can used to assess the compensation from those disasters, can be used in estimating 
crop progress as well as crop yield in an agricultural support system [49]. 
 To achieve this goal, we need the monitoring system that can cheaply monitor the rice 
field area in the county-wide area. A good candidate for such the monitoring equipment is the 
remote sensing satellite due to its synoptic view and map-like format. Among the remote 
sensing satellites, the Modorate Resolution Imaging Spectroradiometer (MODIS) is most 
promising since its daily repeated cycle and free access to the raw and processed data. In 
literatures [50], [51], and [52] the time-series data of the normalized difference vegetation 
index (NDVI) and the enhanced vegetation index (EVI) are the most commonly used remote 
sensing data. They have been used extensively in vegetation-condition monitoring, land-cover 
classification and mapping, and environment-impact analysis. The EVI has a higher sensitive 
than that of the NDVI in high biomass areas, but the EVI have only 500-m resolution on 
MODIS imagery [53] which is too coarse to be used for most rice field in Thailand. The 
NDVI, on the other hand, can provide a higher resolution than EVI. However, it includes 
various noise components such as clouds, aerosols and bidirectional reflectance distribution 
factors. Therefore, noise reduction is important method before data will be used [54]. 

Time-series NDVI has been used for detecting phenology dates of corn and soybean. 
Zha et al. [49] proposed crop phenology date estimation method in the United States by 
comparing two techniques between Savitzky-Golay filter and the double logistic function to 
smooth MODIS NDVI data from daily surface reflectance data at 250 m resolution and then 
using first and second derivatives to extract date from smoothed data. They concluded that 
two techniques have their own advantages and their error result is less than 2 weeks.  

The work by Kleynhans et al. in [55] used the extended Kalman filter and a triply 
modulated cosine function phase with the 8-days composited MODIS NDVI data at 500 m 
resolution to classify between settlement and natural vegetation in northern South Africa. The 
NDVI data are classified by its mean, amplitude and phase parameters. Then, the classifier 
used the mean and amplitude parameters to divide a remotely sensed image into the settlement 
and natural vegetation areas. The classification accuracy result from their approach is higher 
than those from the method using the Fourier transform. Kleynhas et al. also used the same 
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method and the same data to estimate the land cover changes in [56]. Here, the mean and 
amplitude parameters are used to characterize changes in term of a change index. Their result 
of change detection has an accuracy of 89% with a 13% false alarm rate.  

In this study, the extended Kalman filter and a triply modulated cosine function with 
MODIS NDVI time-series data (8-days composited with 250 m resolution) are applied to 
estimate rice cultivation date. The triply modulate cosine function can be divided into 2 
components, namely, the long-term trend and the periodic part [57]. Since rice cultivation 
changes from low NDVI to a high NDVI value from the growing period and return from high 
to low NVDI for harvestmen. Hence, the rice growing period for one cycle produces a NVDI 
signal that appears to be the inverted bell structure. Therefore, the cultivation time of rice 
should be appeared in the area where the NVDI signal changes from low to high values. In our 
work, we use the point where the season variation of the seasonal part from the triply 
modulate cosine function crosses a given threshold as the rice cultivate date. 
 

3.2 Data Description  
 
The study areas consists of Bangkok, Chachoengsao, Nonthaburi, Saraburi, Chainat, 
Chaiyaphum, Khonkaen and Ayutthaya provinces with the rice cultivation information 
obtained from the rice department of Thailand (Figure 3.1). Chainat and Khonkaen provinces 
are located in northeast part of Thailand and the others are located in the central area of 
Thailand. Northeast Thailand is arable for major rice. The rain-fed rice or major rice is the 
highest quality rice which can be cultivated only one time in a year. They are planted in rainy 
season and have crop cycle of about six months. Almost all irrigated rice or out of season rice 
are grown in the central of Thailand. They can be cultivated many times in a year with the 
cultivation period about four months. The irrigated rice had many characteristics such as two 
crop cycles in a year and three crop cycles in a year. Examples of the rice phenology are 
showed in Figure 3.2 for rain-fed and irrigated rice.  
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Figure 3.1: Study  areas and rice coordinates relate to data from the National Rice 

Department. 

 

Figure 3.2: NDVI rice phenology (a) rain-fed rice; (b) two crops cycle in a year; and (c) 
three crops cycle in a year. 
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3.2.1 Ground-truth 
The rice cultivation information provided by the rice department contains the UTM 

coordinates, province, planting date and harvest date of rice. This ground data are used to 
examine the accuracy of the proposed rice estimation date algorithm. The obtained data can be 
divided into 45 samples for rain-fed rice, 24 sample for two crops cycle and 15 samples for 
three crops cycle. In order to separate areas into rice and non-rice, we employ the K-mean 
algorithm to classify the MODIS NDVI time-series data into two classes since the NDVI 
pattern from rice and non-rice area is very different (Figure 3.3). 

 

Figure 3.3:  NDVI pattern; (a) Rain-fed rice; (b) Water;(c) City; and (d) Forrest. 

 
3.2.2 NDVI Time-series Data 

The 8-day MODIS/Terra data (MOD09Q1) acquired from NASA from 2000 to 2012 
used in this analysis. It has two spectral bands for red and near-infrared spectral bands with a 
spatial resolution of 250 meters. The data were re-projected to the Geographic coordinate over 
Thailand. The NDVI is used to study the vegetation growth estimation is normalized 
transform of the near-infrared to red reflectance ratio follow as 

     
(       )

       
 

where NIR and RED are the digital numbers in near-infrared and red spectral bands, 
respectively. Since vegetation reflect the NIR color spectral better than the red color, the 
NDVI has a higher value if there is more vegetation, and NDVI is low when a scene does not 
have any vegetation. Usually, the NDVI data is between -1 and 1 where 1 and -1 indicates full 
vegetation and no vegetation, respectively. To create the time-series dataset for this 13 year 
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period; the NDVIs for every 8day MODIS scene were computed from the 8-day MODIS data. 
There are in total of 587 NDVI data for each pixel from Feb. 18, 2000 to Dec. 11, 2012.  
 

3.3 Proposed Algorithm  
 
3.3.1 A triply modulated cosine function 

The NDVI time-series for a given pixel is modeled by a triply modulated cosine 
function [8][9] given as 
 
             (     )     (3.1) 
 
where    is the observed value of the NDVI time-series at time   and    is the noise sample 
at time k. Here, the cosine function at the time   is modeled to have the angular frequency of 
 , mean of   , amplitude of   , and phase of   . The angular frequency can be explicitly 
computed as      , where   is based on the annual vegetation growth cycle. Given the 
eight daily composite MODIS data, f is equal to 8/365 in rain-fed rice data, and 8/240 in 
irrigated rice data. The values of   ,    and    are functions of time and must be estimated 
given    for             where      . 
 
3.3.2 The Extended Kalman Filter 

The estimation of triply modulated cosine function parameters is nontrivial and 
requires a nonlinear estimator. According to the EKF formulation, for every increment of   
(the discrete time), a state vector    is defined containing the parameters to be estimated in the 
form      ,      - . The relation between    and      is given by a function  ( ) 
which is a known and can be a nonlinear function. The state vector    is related to the 
observation vector    via a nonlinear measurement function  ( )  Due to noisy nature of the 
measurement, both systems are corrupted with unknown noises, and they can be written as  
 
     (    )      (3.2) 
 
and 
     (  )     (3.3) 
 
for the estimations of the state and observation vectors, respectively. The terms    and    are 
process and observation noises, respectively. The state vector parameters may be estimated 
over time   by recursive iteration based on the observation data    up to the time  . In the 
observation equation (3),    is the predicted measurement. 
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3.3.3 Cultivation Time Estimation Method 
 Interpretation of the term    and        (     ) of a triply modulated cosine 
function can be given that    can be considered as the trend variation and should be 
associated with long term vegetation changes such as the deforestation whereas the term 
       (     ) can be considered as the seasonal variation, and should be related to the 
growth of rice. As a result, we use only the term        (     ) in the estimation of 
cultivation time in this paper.  
 Before cultivation, the rice field is clear of vegetation as a result, the NDVI is low. As 
rice grow up, more vegetation cover the rice field and the NDVI increase. However, in certain 
area, farmer put down the some other crops such as green beans or grasses before cultivate 
rice to increase the Nitrogen in the soil. Hence, we identify the rice cultivation date as the first 
time instance that seasonal term        (     ) is greater than a predefined threshold   
after the lowest point.  
 

3.4 Experimental Results 
 
The initial state parameters of EKF method as well as the variances of observation and process 
noise are estimated based on known training data from the study areas. The training data were 
used all of time-series data at its pixel. The initial state parameters calculated using simple 
mathematic formula as 
 
 

   ∑
     

 

 

   

 
(3.4) 

 
and 
 

   
   (    )     (    )

 
 

(3.5) 

 
where   is the number of train time-series and       is the NDVI component of the time-
series  . The NDVI time-series data starts at Feb. 18, 2000 so the rain-fed rice should start in 
stage after harvesting and the irrigated rice should start in maturing stage from the observed. 
When comparing the characteristics of the cosine, the initial phase    parameter is assumed to 
be 120 degree for rain-fed rice and 0 degree for irrigated rice. 

Brute-force algorithm was selected to find best case of noise in mean, amplitude and 
phase from 0.01 to 5 and observation noise from 0.1 to 50. Here, we fix the noise of mean, 
amplitude, phase and observed be equal to 0.1, 0.05, 1 and 20, respectively in rain-fed rice 
area and 0.1, 0.05, 100 and 40, respectively in irrigated rice area. 

The NDVI time-series data are submitted to the EKF model and the resulting estimated 
NDVI data are plotted together with the raw NDVI data in Figure 3.4 for rain-fed rice, and in 
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Figure 3.5 for irrigated rice. The raw NDVI data appears to be very noisy due to cloud and 
aerosol in the atmosphere during the image capturing. The predicted NDVI data from the EKF 
appears to be less noisy, and smooth. The EKF-derived mean is an average of NDVI time-
series. It represents the averaged vegetation coverage of the pixel of interest. Hence, the mean 
parameter cannot be used to identify the cultivation of rice. The other two remaining 
parameters, the amplitudes and phases are generated to the seasonal variation that related to 
the cultivations of rice. Here, we observe that the amplitude parameter fluctuates up and down 
corresponding to the cultivation and un-cultivation period of the rice. In this work, we choose 
the threshold   to be -0.02 and -0.07 for rain-fed and irrigated rice areas, respectively. Figures 
6 and 7 display the seasonal terms and the corresponding cultivation dates for the rain-fed and 
irrigated rice, respectively.  

 
Figure 3.4: Comparing between the raw NDVI time-series data and EKF measurement 

data in rain-fed rice from 2000 to 2012. 

 

Figure 3.5: Comparing between the raw NDVI time-series data and EKF measurement 
data in irrigated rice from 2000 to 2012 
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Figure 3.6: (top) Intersection of two lines between the seasonal variation and crossing 
line and (bottom) Rain-fed NDVI time-series with estimated cultivation dates 

 

Figure 3.7: (top) Intersection of two lines between the seasonal variation and crossing 
line and (bottom) Irrigated NDVI time-series with estimated cultivation dates. 

 
The results shown Table 3.1 is the estimation date error in terms of rice crop cycle. In 

single rice crop, the accuracy when errors are less than  8 and  16 equal 53.33 and 75.56 
percent, respectively. The accuracy in double rice crop equal 54.17 and 83.33 percent. 
However, for area where rice is cultivated three times in a year, the estimation accuracy is low 
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accuracy because of NDVI time-series data had been rapidly changes and 8-day composite is 
too coarse to detect this rapid changes. . 

 
 

Table 3.1: Error comparison between the ground truth and estimated rice cultivation date.  

Rice crop cycle Error ratio between ground-
truth and estimation date  
 

 8days 
 

 16days 
Overall 
data 

Single rice crop 24 
(53.33%) 

34 
(75.56%) 

45 
(100%) 

Double rice 
crop  

13 
(54.17%) 

20 
(83.33%) 

24 
(100%) 

Triple rice crop  1 
(6.67%) 

4 
(26.67%) 

15 
(100%) 

 

3.5 Discussion 
 

The estimated rice cultivation date using the EKF based on a triply modulated cosine 
function can estimate the cultivation date in rain-fed rice and irrigated rice (two crops cycle) 
with reasonable accuracies. However, for irrigated rice which is cultivated three times per 
years, it has low estimation accuracies due to high cloud cover in the rainy season since clouds 
block the reflectance from the ground and result in incorrect NDVI data. Since the rice is 
cultivated three times per year, it has a high chance that the cultivation time is coincided with 
high cloud cover period. Moreover, since our data is eight-day composites, it cannot cope with 
the rapidly changes in the three crop-per-years rice. 

In Figure 3.8, we display the cultivated dates for the rain-fed rice in June 2004 in Khonkaen 
provinces. We observe that the rain-fed rice in the areas near water sources was grown faster 
than other area. We also observe that the cultivation dates of neighboring proximity are likely 
to the same since all rain-fed rice will start cultivation after the first rain of the rainy season 
and the neighboring area are likely to have similar date for the first rain.  
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Figure 3.8: (top) Location of rain-fed rice in Khonkaen; and (bottom) Distribution of 

rain-fed rice cultivation date in Khonkaen and near province in 2004 
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ABSTRACT

The traditional land cover mapping (LCM) algorithms assume that
images are perfectly registered. In practice, this assumption may
not always be valid since these images may be acquired from dif-
ferent sensor platforms, or at different time which may suffer small
variations in platform flight paths. As a result, it is imperative to
incorporate the registration error into the land cover mapping algo-
rithm. In this paper, we propose a joint LCM and image registra-
tion algorithm under the Markov random field model. Here, the
expectation-maximization algorithm is employed to search for the
optimum LCM as well as the map parameters. Our result shows that
the proposed MRF-Based approach can increase the accuracies of
the classification maps as well as the map parameter estimation.

Index Terms— Remote sensing, joint land cover mapping and
registration, Markov random fields, EM algorithm

1. INTRODUCTION

A Land cover map is an important application of remote sensing
data. A number of image classification algorithms [1] have been de-
veloped to extract this information from a variety of remote sensing
data. The performance of these classification algorithms depends
on the quality of the input data, i.e., the classification accuracy is
improved if features from different classes become more separable.
One approach to increase the separation of classes is to use multi-
temporal or multi-sensor data. Reports in [2, 3, 4, 5, 6] has shown
that the accuracy of the resulting land cover map can be greatly
increased when multi-sensor data are combined. The common as-
sumption in these papers [2, 3, 4, 5, 6] is that images are perfectly
registered, i.e., the corresponding pixels from different images oc-
cupy the identical area in the actual scene. In practice, this assump-
tion may not always be valid since these images may be acquired
from different sensor platforms. Even with images from the same
platform, this assumption of the perfect registration can still be vio-
lated if images are acquired at different times due to the small vari-
ations of the platform flight path. As a result, it is imperative to
incorporate the registration error into the land cover map algorithm.

As a result, in this paper, we consider the problem of land cover
mapping of mis-registered images. Here, we model that the observed
multispectral images are a remapped version of the registered images
where the remap parameters are partially known, i.e., there are a

small errors in the remap parameters. Similar idea can be found
in the work by Chen et. al. [7] where the joint image fusion and
registration was considered. In their paper, observed images are the
remapped version of the original image with possibilities of polarity
reverse and/or DC offset. However, their goal is different from us
since their goal is to estimate the original image whereas the problem
considered in this paper is to estimate the LCM.

Since the LCM is more likely to occur into patches of land cover
classes, the Markov random field (MRF) is employed as the model
of the the LCM where the optimum LCM is chosen based on the
maximum a posteriori (MAP) criteria. Under the perfect registra-
tion scenario, the resulting LCM has the minimum probability of
error among all other mapping algorithms. However, if the im-
ages are not perfectly aligned the resulting probability of error is
not optimum. To improve the mapping accuracy, the expectation-
maximization (EM) algorithm is used as the parameter estimator.
For every iteration of the EM algorithm, a new set of the map param-
eters are computed and the a posteriori probability is approximated.
Our result shows that the accuracy in terms of both the percentage of
correctly classified pixels and mis-registration errors can be signifi-
cantly improved.

2. PROBLEM STATEMENT

Let S be a set of sites (pixels) and Λ ∈ {0,1, . . . ,L−1} be the phase
space (class labels). Furthermore, let X ∈ ΛS be the LCM of the size
M×N pixels. Note that L is the number of land cover classes of
interest. The LCM is assumed to satisfy the MRF properties with a
Gibbs potential VC(X) [8]. Hence, we can write the marginal proba-
bility density function (PDF) of the LCM as

Pr(X) =
1

ZX
exp

(
− ∑

C∈S
VC(X)

)
(1)

where ZX is a normalizing constant. Note that X is a realization
of a LCM, C is a clique, and ∑C∈S VC(X) is called the Gibbs energy
function. A clique is a singleton or any subsets of whose two distinct
elements are mutual neighbors. The popular model of the Gibbs
energy function is the Ising model [8], given by,

V{s,r}(X) =

⎧⎨
⎩
−β ; if xs = xr and r ∈ Ns
β ; if xs �= xr and r ∈ Ns
0;r /∈ Ns

. (2)
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where Ns is a set of a neighboring site of s and β is a non-negative
constant. In this paper, this model is also applied to describe the
LCM because this model promotes the LCM with connected land
cover classes. Let Y1 ∈ℜS×B1 and Y2 ∈ℜS×B2 be the observed reg-
istered images of the scene S capturing by two different sensors or
the same sensor at two different time where B1 and B2 are the num-
ber of spectral bands of Y1and Y2, respectively. Here, we assume that
observations from Y1 and Y2 are statistically independent given the
LCM, i.e.,

p(Y1,Y2 |X ) = p(Y1 |X ) p(Y2 |X ) (3)

where p denotes the PDF. Furthermore, for a given LCM, the obser-
vations of Y1 and Y2 from different site (pixels) are assumed to be
statistically independent, i.e.,

p(Ya |X ) = ∏
s∈S

p(ya,s |xs ) (4)

where a ∈ {1,2} is an index indicating the image of interest, and
ya,s ∈ ℜBa and xs are the observed vector of an image Yaand the
class label at a site s, respectively.

Due to imperfections in the image acquisition and capturing pro-
cess, both images are not perfectly aligned to the LCM. Here, we
denote θa as the unknown map parameters for Ya over X . In other
word, if θa is known, the observed image can therefore be registered
with the LCM. Hence, the conditional PDF of the mis-registeredYa
given X and the mapping parameter is given by

p(Ya |X ,θa ) = ∏
s∈S

p(ya,s (θa) |xs ) . (5)

3. OPTIMUM SOLUTION AND PROPOSED ALGORITHM

For given map parameters, the LCM can be obtained under the max-
imum a posteriori (MAP) criteria as

Xopt = arg

{
max

X
[Pr(X |Y1,Y2,θ1,θ2 )]

}
. (6)

where Pr(X |Y1,Y2,θ1,θ2 ) is the posterior probability of the LCM
given observed images and map parameters. The resulting probabil-
ity of error is minimum among all other classifiers [9]. By using the
definition of conditional probability, eq. (6) can be rewritten as

Xopt = arg

{
max

X

[
p(Y1,Y2 |X ,θ1,θ2 )Pr(X)

p(Y1,Y2|θ1,θ2)

]}
. (7)

Since p(Y1,Y2|θ1,θ2) is independent of the choice of X ,eq. (7) re-
duces to

Xopt = arg

{
max

X
[p(Y1,Y2 |X ,θ1,θ2 )Pr(X)]

}
(8)

Substituting eq. (1) and eq. (5) into eq.(8) the optimization problem
becomes

Xopt = arg

{
min

X
[E (θ1,θ2)]

}
. (9)

where

E (θ1,θ2) = E1 (θ1)+E2 (θ2)+ ∑
C∈S

VC(X) (10)

is called the energy function of a LCM given observations and map
parameters, and Ea (θa) = ∑s∈S ln [p(ya,s(θa) |xs )] for a ∈ {1,2}.

In general, E (θ1,θ2) is a non-convex function and, therefore,
conventional optimization algorithms cannot be applied to solve
eq. (9). Furthermore, the number of possible LCMs is extremely
large. Therefore, we approximate eq. (10) by using the mean field
theory [10]. Basically, for a pixel s and a clique of type C = {s,r},
the potential function V{s,r}(xS,xr) is replaced by its expected value〈

V{s,r}(xs,xr)
〉

xr |Y1,Y2,θ1,θ2

where 〈F(x)〉x denotes the expected

value F of over a random variable x. From the above equation, the
energy function defined in eq. (10) can be approximated as

E (θ1,θ2) ≈ ∑
s∈S

ws (θ1,θ2) (11)

where

ws (θ1,θ2) = w1
s (θ1)+w2

s (θ2)+ ∑
r∈Ns

〈
V{s,r}(xs,xr)

〉
x(r)

,

and
wa

s (θa) = ln [p(ya,s(θa) |xs )] for a ∈ {1,2}
Since ws (θ1,θ2) depends only on xs, the optimization problem of
X reduces to search for the individual xs that minimizesws (θ1,θ2).
Hence, the optimum solution can be easily obtained. Furthermore,
we observe that the right hand side of eq. (11) can be written as the
addition of the configurations of LCM from an individual pixel. As
a result, the posterior probability of a configuration at a pixel s, xs,
given the mis-registered observations is approximated as

Pr(xs |Y1,Y2,θ1,θ2 )≈ Be−ws(θ1,θ2) (12)

where B is a normalizing constant.
For the parameter estimation, the EM algorithm [11] is em-

ployed in this paper. The EM algorithm seeks the solution of the
MLE by iteratively performs two steps. First, the EM algorithm find
the expected value of the log-likelihood function of the observed
images and the LCM given the map parameters over the conditional
PDF of a LCM given observed images and the current estimated
parameters, i.e., the EM algorithm computes the following equation,

Q
(
θ1,θ2

∥∥θ t
1,θ

t
2

)
= 〈ln(p(Y1,Y2,X |θ1,θ2))〉X |Y1,Y2,θ t

1,θ t
2

(13)

This step is called the E-step. We observe that the computation of
the expected values in the E-step requires the posterior probability
of X given the observations and the estimated map parameters. By
using the result, in eq. (4), eq. (5) and eq. (12), the expected value
can be approximated as

Q
(
θ1,θ2

∥∥θ t
1,θ

t
2

)≈ D ∑
s∈S

qs(θ1,θ2)ews(θ t
1,θ t

2) (14)

where D = 〈Pr(X)〉X |Y1,Y2,θ t
1,θ t

2
does not depend on θ1and θ2, and

qs(θ1,θ2) = ln
[
p
(
y1,s(θ1),y2,s(θ2)|xs

)]
.

After the E-step, the EM algorithm estimates a new set of the
map parameters by maximizing eq. (13), i.e.,(

θ t+1
1 ,θ t+1

2

)
= max

(θ1,θ2)

[
Q
(
θ1,θ2

∥∥θ t
1,θ

t
2

)]
. (15)

The second step, here, is called the M-step. By using the approxima-
tion in eq. (14), eq. (15) becomes(

θ t+1
1 ,θ t+1

2

)
= max

(θ1,θ2)

[
∑s∈S ∑L−1

l=0 ln
[
p
(
y1,s(θ1),y2,s(θ2)|xs = l

)]
×e−ws(θ t

1,θ t
2)

]
(16)

By combining the result for eq. (9) and eq. (16), our algorithm
can be summarized as follows.
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(a) (b)

Fig. 1: Observed images; a) SMMS image and b) PALSAR Image

Fig. 2: Ground Data (green: sugarcane and red: others)

1. Set Pr(xs = l |Y1,Y2,θ1,θ2 )=
1
L , set θ 0

1 and θ 0
2 to some initial

values, and let t = 0.

2. Compute the expected value of potential functions V{s,r}(xs,xr)

or
〈

V{s,r}(xs,xr)
〉

xr |Y1,Y2,θ1,θ2

.

3. Approximate a posterior probability using eq. (12) and
choose the value of B such that the total probability is one.

4. Estimate a new set of mis-registration parameters using eq.
(16).

5. Set t = t + 1. If t is greater than some predefined values,
terminate the algorithm and compute the LCM using eq. (9)
with the energy function defined in eq. (11). Otherwise go to
Step 2.

4. EXPERIMENTAL RESULT

In this example, we use one optical image of size 335× 332 pixels
(Fig. (1a)) acquired by CCD sensor on board the small multi-mission
satellite (SMMS) and one SAR image of size 670×665 pixels (Fig.
(1b)) acquired by PALSAR. Both images covered the part of Sakaew
province in Thailand. The SMMS image was taken on Nov 27th,
2010 while PALSAR image was taken on Aug 28th, 2010. In this
example, only two classes are considered, namely, sugarcane and
others, and the ground truth image is shown in (2) where the green
and red colors are associated with sugarcane and others, respectively.

To test the performance of our algorithm, we assume that the
PALSAR image is perfectly registered to the LCM. Only the map
parameter of the SMMS image is unknown. From our dataset, we
manually register the SMMS image with the PALSAR image to ob-

Fig. 3: The LCM without registration error correction

tain the map parameter which can be written in a matrix form as

θ2 =

[
r11 r12 r13

r21 r22 r23

]

where r11 and r22 is a scale factors, r21 and r22 are the skewness, r13

and r23 are displacement, in column and row directions, respectively.
The correct values are r11 = r22 = 0.5, and r12 = r21 = r13 = r23 =
0. Next, we modify the map parameters to new values of r11 =
0.51, r22 = 0.49, r12 = r21 = 0, r13 =−2, and r23 = 2 which results
in the mis-registration of 6.7 pixels on average. Hence, the incorrect
map parameter is given by

M =

[
0.51 0 −2.0

0 0.49 2.0

]

Then, the LCM are obtained directly from the mis-registered im-
age pair (Fig. 3), and we found that the initial LCM has many iso-
lated pixels and the percentage of the correct classification is equal
to 73.28%.

Next, the proposed algorithm is applied to the above dataset. The
whole process is implemented using CUDA on NVIDIA GeForce
GTS 450 with 1 GB memory. Each iteration takes between 3 and
4.5 seconds to perform. Here, the value of β is set to be between
0 and 1 (see eq. (2)), and the algorithm terminates when the num-
ber of iteration, t, is greater than 500 and the resulting LCMs are
given in Fig. 4 for β = 0,0.3,0.6 and 1.0, respectively. From eq.
(2), the value of β controls the probability that the configurations of
neighboring pixels are the same. In other words, the configurations
of neighboring pixels are more likely to the same as the value of β
increases. By comparing the resulting LCM for β = 0 and β = 1.0,
we observe that the LCM for β = 1.0 is more connected whereas,
for β = 0, there are a large number of isolated pixels in the LCM.
Note here that β = 0 implies there is no interaction among neigh-
boring pixels. The percentages of correct classification are equal to
74.09% (+0.81%), 77.49% (+4.21%), 78.17% (+4.89%) and 78.47%
(+5.19%) for β = 0,0.3,0.6 and 1.0, respectively. We note here that
the number inside parenthesis is the improvement in percentage from
the initial LCM. Again, these results further emphasize that the MRF
model increases the performance of the classification process.

Another key performance of our algorithm is the accuracy of
the estimated parameters. Here, if the algorithm performs perfectly,
the original scale factor and the displacement should be obtained
without additional modifications in skewness. Table 1 displays the
estimated parameters, and the corresponding registration errors are
1.566, 1.013, 1.377, and 2.1667 pixels for β = 0, 0.3, 0.6 and 1.0,
respectively. We observe that there exists an optimum value of β that
results in the minimum registration error. Furthermore, we also plot
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(a) (b)

(c) (d)

Fig. 4: The resulting LCM for the value ofβ equal to a) 0.0; b) 0.3;
c) 0.6; and d) 1.0

β 0.0 0.3 0.6 1.0 Actual Value

r11 0.4984 0.500 0.500 0.501 0.5

r12 0.001 0.000 0.000 0.001 0.0

r21 0.001 0.001 0.001 0.001 0.0

r22 0.498 0.498 0.497 0.496 0.5

r13 0.241 -0.301 -0.354 0.989 0.0

r23 0.308 0.288 0.466 0.775 0.0

Error (pixels) 1.566 1.013 1.370 2.166 -

Table 1: The resulting estimated map parameters and mis-
registration errors

the mis-registration error as the function of iterations number for all
cases in Fig.5. We observed that higher value of β results in a slower
convergence rate of the estimatation of the map parameters.

5. SUMMARY

In this paper, a joint image classification and registration based on
the MRF model is proposed. It is assumed that the observed im-
ages are remapped version of the registered image to the LCM. The
results show that our proposed algorithm can successfully register
images as well as produce more accurate LCMs.
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Abstract: Traditional multi-modal and multi-temporal land cover mapping algorithms assume that all 
images are perfectly aligned. However, since multi-modal and multi-temporal images are likely to be 
obtained from different satellite platforms and/or acquired at different times, perfect alignment is very 
difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct 
registration errors as well as perform an accurate classification. In this paper, we proposed a joint 
classification and registration technique based on a Markov random field (MRF) model to 
simultaneously align two or more images and obtain a land cover map (LCM) of the scene. The 
expectation maximization (EM) algorithm is employed to solve the joint image classification and 
registration problem by iteratively estimating the map parameters and approximate posterior 
probabilities. Then, the maximum a posteriori (MAP) criterion is used to produce an optimum land 
cover map. We conducted experiments on a set of four simulated images and one pair of remotely 
sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results 
show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an 
unregistered image pair can achieve an  accuracy as high as when images are perfectly aligned. 
Furthermore, the registration error can be greatly reduced.  

Keywords: Joint land cover mapping and registration; Markov random field; optimum 
classifier; mean field theory; EM algorithm 

1. Introduction 

Remotely sensed images captured from satellites have been widely used for land cover mapping 
applications because of their capability to allow classification of different land cover types without 
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having to physically assess the area of interest. In a situation where a single image does not provide 
sufficient classification performance, integrating multiple images of the same area is a common 
practice to increase the discrimination capability. Some applications, especially agricultural field 
mapping, particularly benefit from using multi-temporal sequences of satellite images because 
vegetation appearance often changes according to the season. Moreover, multiple input images from 
different satellites can be used to further improve classification performance by providing better 
spectral separation characteristics that a single sensor alone cannot provide. A practical application is 
reported in [1] where multi-temporal sequences of synthetic aperture radar (SAR) images and a single 
optical image were used. The results from this study showed that overall discrimination performance 
was increased, consistent with other similar research where multi-sensor data have been combined. 
Skriver, et al [2] emphasized the benefits of using multi-temporal SAR images in short succession 
(weekly to monthly acquisitions) for crop classification. These authors reported improved 
classification accuracy by using multi-temporal information. The authors in [31] exploited the crop 
phenology information to determine the growth stages by using multi-temporal TerraSAR-X, 
ASAR/ENVISAT and PALSAR/ALOS. They reported a significant correlation between 
backscattering coefficient and the normalized vegetation index obtained from SPOT4-5 images.  

For multi-sensor image classification, the registration process is a crucial initial step. 
Registration aligns multiple satellite images into a common coordinate system. Only when all of the 
input images are perfectly registered can a classification algorithm be applied. Otherwise mis-
registration will produce classification errors. In practice, perfect registration may not always be 
achievable since there are some unknown variations on satellite platforms and flight paths when 
capturing images. As a result, the overall classification accuracy is likely to suffer from mis-
registration effects.  

Mahapatra and Sun [4] proposed an idea to incorporate the reduction of image registration error 
into an image classification tool. They attempted to integrate the segmentation information into an 
elastic image registration by using a Markov random field model. In their work, the configuration of a 
pixel contains both displacement of a pixel and a segmentation label. The multi-resolution graph-cut 
approach was employed to achieve sub-pixel registration accuracy. Although their results produced 
remarkable performance for non-rigid body image registration, this algorithm cannot be applied for 
rigid body image registration problems such as in the remote sensing since their model does not allow 
one set of the registration parameters to govern the remapping process of entire image. Furthermore, 
since they only consider the segmentation problem, their algorithm does not cover the multi-class 
scenarios that are often considered in the land cover mapping of remotely sensed images.  

Another work by Chen et al. in [5] investigated the problem of joint image fusion and 
registration. In their paper, the observed images were remapped versions of the original images with 
possibilities of polarity reverse and/or DC offset. Chen et al. used an expectation maximization 
algorithm to solve the estimation problems of registration parameters and the true scene 
simultaneously. Different pairs of multi-sensor images were tested against the proposed joint process. 
Under the assumption that registration performance affects the quality of fusion result, the authors 
reported that better fusion performance can be achieved due to reduced registration errors. However, 
their work did not cover the problem of image classification in the presence of image registration 
errors.  

                                                 
1 6:37 PM 
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In this paper, we employ an approach similar to [5] to incorporate correction of mis-registration 
effects into the land cover mapping process. To do this, we assume that remotely sensed images are 
derived from a common unobservable land cover map (LCM), and then distorted, with unknown 
remapping parameters, into the observed remote sensing images. (Note that if these map parameters 
are known, the observed remote sensing images can be directly aligned with the land cover map.) 
Next, we assume that a land cover class of interest is more likely to occupy several connected patches 
than a number of isolated pixels. As a result, the Markov random field (MRF) is employed as the 
model of the LCM. MRF models have been used in various fields ranging from statistical physics [6] 
and [7] to remote sensing. The original work by Geman and Geman [8] on MRF-based statistical 
methodology in 1984 has inspired a continuous stream of remote sensing researchers to employ the 
MRF model for a variety of image analysis tasks (e.g., [9] – [15]). Solberg et al. [9] developed MRF-
based algorithms for image classification and change detection using multi-source data. A significant 
increase in classification and change detection accuracy was obtained using an MRF based 
classification algorithm compared to other approaches. Kasetkasem and Varshney [9] and Bruzzone 
and Prieto [11] also applied MRF models for an image change detection problem. Similarly, Xie et al. 
[12] applied the MRF model to the recurring problem of speckle reduction in synthetic aperture radar 
(SAR) images. These promising results on image analysis problems have encouraged us to employ the 
concept of MRF models to the problem of generating an LCM.  

Based on our image model, the registration and classification process can be performed in the 
following fashion. First, we estimate the unknown map transformation parameters based on the 
maximum likelihood (ML) criteria, and, then use these parameters to computer posterior probability 
for different arrangements of the land cover maps, where the MAP classifier selects the most likely 
LCM. However, in order to find the map parameters, the conditional probability of observed images 
given the map parameters is needed. This conditional probability can only be obtained by summing the 
joint probabilities of observed images and LCM associated with the map parameters, over all possible 
LCMs. This is impossible to obtain in most practical scenarios. As a result, the expectation-
maximization (EM) algorithm [16] is also employed here. The EM algorithm iteratively searches for 
the most likely map parameters. The resulting parameters converge to one of the local optimum points 
of the likelihood function.  

For a given iteration of the EM algorithm, our method computes the expected value of the 
logarithm of the probability of the observed images and land cover map given the map parameters, 
based on the a posterior probability of the LCM given observed remote sensing images and the current 
estimated map parameters. Then, new map parameters are obtained by maximizing the expected 
values. It has been shown in literature [16] that the new map parameters always correspond to a higher 
value of the likelihood function. Since each iteration of the EM algorithm calculates a posterior 
probability given the current estimated map parameter, an optimum LCM under MAP criteria can be 
easily obtained by choosing the LCM that maximizes a posterior probability. In other words, an 
optimum LCM for the most recent estimate of the map parameters under the maximum a posteriori 
(MAP) criterion is obtained on every iteration of the EM algorithm.  

The remainder of this paper is organized as follows. The next section will define the problem and 
our model. In Section 3, we will derive the optimum land cover mapping and image registration 
process based on the model presented in Section 2. The optimization problem and its corresponding 
solution are presented in Section 4. Our experiments to evaluate our proposed approach are described 
in Section 5. Finally, Section 6 offers concluding remarks. 
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2. Problem Statement 

Let 𝑋(𝒮) denote the LCM where 𝒮 is a set of pixels. We assume that there are 𝐿 land cover 
classes in the area of interest and we let Λ ∈   0, 1, … , 𝐿 − 1  be the class labels. Therefore, we can 
express the LCM as 𝑋(𝒮) ∈  Λ𝒮 . The label of LCM at pixel 𝑠 is denoted by 𝑥𝑠  which can also be 
called the configuration of 𝑋 𝒮  at the site s. Since land cover classes are more likely to occur in 
connected patches in the LCM than isolated pixels, the LCM is assumed to satisfy the MRF properties 
with Gibbs potential 𝑉𝐶(𝑋). Hence, the marginal probability density function (PDF) of a LCM can be 
written as 
 

Pr 𝑋 =
1

𝑍𝑋
exp  −  𝑉𝐶 𝑋 

𝐶⊂𝒮

  (1) 

where 𝑍𝑋  is a normalizing constant, 𝐶 is a clique, and 𝐸 𝑋 =  𝑉𝐶 𝑋 𝐶⊂𝒮  is called the Gibbs energy 
function 8. Cliques are singleton or groups of pixels such that any two pixels are mutually neighbors. 
Figure  1 shows all possible clique types for 4- and 8-neighborhood systems. The value of the Gibbs 
potential function depends on the configurations of the entire LCM and the clique. Usually, low values 
of the potential function correspond to similar configurations whereas high values correspond to 
dissimilar configurations of a clique. For instance, the Ising model 5 and 7, given by,  
 

𝑉 𝓈,𝑟  𝑋 =  

−𝛽; 𝑖𝑓 𝑥𝑠 = 𝑥𝑟  𝑎𝑛𝑑 𝑟 ∈ 𝑁𝐺𝑠

𝛽; 𝑖𝑓 𝑥𝑠 ≠ 𝑥𝑟  𝑎𝑛𝑑 𝑟 ∈ 𝑁𝐺𝑠

0; 𝑖𝑓 𝑟 ∉ 𝑁𝐺𝑠

  (2) 

for any two sites r and s, has been used extensively by statistical physicists to explain why neighboring 
particles are more likely to rotate in the same direction (i.e., either clockwise or counterclockwise). 
Here the notation 𝑁𝐺𝑠  is a set of neighboring pixels of 𝑠. We can extend the above model to our 
problem by letting 𝑥𝑠  and 𝑥𝑟  be the class labels of pixels 𝑠  and 𝑟  in 𝒮 , respectively. With this 
modification, the Ising model can be applied to describe the LCM because land cover class 
distributions are similar to the phenomenon described above (i.e., classes occupying neighboring pixels  
are likely to be the same).  
 

 

4-neighborhood 

C1 C2 
C3 

(a) 

8-neighborhood 

C1 C2 
C3 

C4 
C5 

C6 C7 
C8 C9  C10 

(b) 

Figure  1: clique types for (a) 4-neighborhood; (b) 8-neighborhood 
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Furthermore, we assume that there are 𝑁 remotely sensed images of the same scene acquired 

from different sensors and/or at different times. Here, 𝑌𝑛 𝒯𝑛 ∈ ℜ𝒯𝑛 ×𝐵𝑛 ; 𝑛 = 1,2, … , 𝑁 denotes the 𝑛-th 
remotely sensed image where 𝐵𝑛  denotes the number of spectral bands, and 𝒯𝑛  is a map coordinate 
system to which the n-th remote sensing image is registered. Since all remotely sensed images and the 
LCM are from the same scene, the relationship between 𝒮 and 𝒯𝑛  can be determined. Let us denote a 
coordinate of a pixel s in the LCM as (𝑥, 𝑦) where 𝑥 and 𝑦 are the column and row of 𝑥𝑠. Similarly, we 
can write 𝑡𝑛 =  𝑢𝑛 , 𝑣𝑛 ∈ 𝒯𝑛  where 𝑢𝑛  and 𝑣𝑛  are the column and row of the pixel 𝑡𝑛  in 𝑌𝑛 . If the 
affine transformation is used, the relationship between 𝑠 and 𝑡𝑛  can be written as  

 
𝑢𝑛

𝑣𝑛
 =  

𝑚1,𝑛 𝑚2,𝑛

𝑚3,𝑛 𝑚4,𝑛
  

𝑥
𝑦 +  

𝑚5,𝑛

𝑚6,𝑛
  (3) 

where 𝑚1,𝑛  and 𝑚4,𝑛  are scale parameters, 𝑚2,𝑛  and 𝑚3,𝑛  are skew parameters, and 𝑚5.𝑛  and 𝑚6,𝑛  are 
displacement parameters in column and row-direction, respectively. We refer to 
𝑀𝑛 =  𝑚1,𝑛 , 𝑚2,𝑛 , 𝑚3,𝑛 , 𝑚4,𝑛 , 𝑚5,𝑛 , 𝑚6,𝑛  as the map parameter vector between coordinate systems 𝒮 and 𝒯𝑛 .  

When all the map parameter vectors are given, one can remap all remotely sensed images to 
perfectly align with the LCM. Let us denote 

𝑍𝑛 𝒮 = 𝑓 𝑌𝑛 𝒯𝑛 , 𝑀𝑛   . (4) 
as the remapped and resampled version of the n-th remote sensing image. Here, we assume further that 
the remapped and resampled images are statistically independent for a given LCM, i.e.,  

Pr 𝒀 𝑋 𝒮 , 𝑴 = Pr 𝑍1 𝒮 , … , 𝑍𝑁 𝒮 |𝑋 𝒮  =  Pr 𝑍𝑛 𝒮 |𝑋 𝒮  

𝑁

𝑛=1

 . (5) 

where 𝑴 =  𝑀1, … , 𝑀𝑛  and 𝑌 =  𝑌1 𝒯1 , … , 𝑌𝑛 𝒯𝑛   be collections of the map parameters and the 
observed multispectral images. Moreover, the intensity vectors from different pixels in 𝑍𝑛 𝒮  are also 
assumed to be statistically independent when the LCM is given. Hence, the joint conditional PDF can 
be written as 

 Pr 𝒀 𝑋 𝒮 , 𝑴 =   Pr 𝒛𝑛,𝑠|𝑥𝑠 

𝑠∈𝒮

𝑁

𝑛=1

  (6) 

where 𝒛𝑛,𝑠 ∈ ℝ𝐵𝑛  denotes the intensity vector of the remapped image 𝑍𝑛(𝑆)  at a pixel 𝑠 . We 
acknowledge that the assumption given in Eq.(6) may not always be true for all cases since some land 
cover classes have textural structure. One can incorporate texture information into our image model 
appropriately, which may further result in an increase in accuracy. This will, however, result in very 
complex problems which may not be desirable in practice.  

If we assume further that the intensity vector at a pixel 𝑠 of the remapped image 𝑍𝑛(𝑆) given the 
class label 𝑥𝑠   is a multivariate normal random vector with mean vector 𝝁𝑥𝑠 ,𝑛  and covariance matrix 
Σ𝑥𝑠 ,𝑛 , Eq. (6) can be rewritten as  

Pr 𝒀 𝑋 𝒮 , 𝑴 =  
1

 2𝜋 
𝐵𝑛
2  Σ𝑥𝑠 ,𝑛  

1/2
exp  − 

1

2
 𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑠∈𝑆

 

𝑁

𝑛=1

  (7) 

where 𝑇  denotes the matrix transpose operation. 
By using chain rule, the posterior probability of the LCM given the observed multispectral 

images and the map parameters can be written as 

Pr 𝑋 𝒀, 𝑴 =
Pr 𝒀 𝑋, 𝑴 Pr 𝑋 

Pr(𝒀, 𝑴)
. (8) 
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Since Pr(𝒀, 𝑴) is independent of the choice of 𝑋, it can be treated as a constant. Hence, we have   
Pr 𝑋 𝒀, 𝑴 = 𝐶 Pr 𝒀 𝑋, 𝑴 Pr 𝑋 . (9) 

By substituting Eq. (1), and Eq. (7) into Eq. (9), we obtain  

Pr 𝑋 𝒀, 𝑴 =
1

𝑍′
𝑒−𝐸 𝑋|𝒀,𝑴 . (10) 

where 𝑍′ =  𝑒−𝐸 𝑋|𝒀,𝑴 
𝑋∈Λ𝒮   is a normalizing constant and independent of the choice of 𝑋, and  

𝐸 𝑋|𝒀, 𝑴 =
1

2
    𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑠∈𝑆

+ log Σ𝑥𝑠 ,𝑛   

𝑁

𝑛=1

+  𝑉𝐶 𝑋 

𝐶⊂𝒮

 (11) 

is called a conditional Gibbs energy function. Since, in this paper, we consider cliques comprised of 
pixel pairs only, hence, the conditional Gibbs energy function can be written as  

𝐸 𝑋|𝒀, 𝑴 =
1

2
    𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑠∈𝑆

+ log Σ𝑥𝑠 ,𝑛   

𝑁

𝑛=1

+
1

2
  𝑉 𝑠,𝑟 (𝑥𝑠 , 𝑥𝑟)

𝑟∈𝑁𝐺𝑠𝑠∈𝒮

 
(12) 

where 𝑁𝐺𝑠 denotes the set of neighboring pixels of 𝑠. The normalizing constant 𝑍′ cannot be computed 
in most practical scenarios due to the large number possible configurations (e.g., there are more than 
24096  possible configurations for binary LCM of size 64 × 64.) As a result, we propose the use the 
mean field theorem [17]-[18] to remove the interaction between neighboring pixels defined in 𝑉𝐶 𝑋 . 
The mean field theorem approximates the conditional Gibbs energy function as  

𝐸 𝑋|𝒀, 𝑴 ≈
1

2
 𝑕𝑠(𝑥𝑠|𝒀, 𝑴)

𝑠∈𝒮

 (13) 

where  

𝑕𝑠 𝑥𝑠|𝒀, 𝑴 =    𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 
𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 + log Σ𝑥𝑠 ,𝑛   

𝑁

𝑛=1

+  𝐸𝑥𝑟
 𝑉 𝑠,𝑟 (𝑥𝑠 , 𝑥𝑟) 

𝑟∈𝑁𝐺𝑠

. 
(14) 

Here, 𝐸𝑥𝑟
 𝑉 𝑠,𝑟 (𝑋)  is the expected value of the potential function with respect to the configuration of 

𝑥𝑟 . The expected value 𝐸𝑥𝑟
 𝑉 𝑠,𝑟 (𝑥𝑠 , 𝑥𝑟)  does not depends on 𝑥𝑟 , and is equal to  

𝐸𝑥𝑟
 𝑉 𝑠,𝑟 (𝑋) =  𝑉 𝑠,𝑟  𝑥𝑠 , 𝑥𝑟 𝑝

𝑀𝐹 𝑥𝑟  𝒀, 𝑴 

𝑥𝑟∈Λ

 (15) 

where 𝑝𝑀𝐹 𝑥𝑟  𝒀, 𝑴 =
1

𝑍𝑟
𝑒−

1

2
𝑕𝑟 𝑥𝑟 |𝒀,𝑴 . Note here that 𝑍𝑟 =  𝑒−

1

2
𝑕𝑟 𝑥𝑟 |𝒀,𝑴 

𝑥𝑟∈Λ  is the normalizing 

constant for a pixel 𝑟. By using the approximation given in Eq. (13), the posterior probability can be 
written as  

Pr 𝑋 𝒀, 𝑴 ≈ Pr𝑀𝐹 𝑋 𝒀, 𝑴 =  𝑝𝑀𝐹 𝑥𝑠 𝒀, 𝑴 

𝑠∈𝒮

 (16) 

The approximation in Eq. (16) is closest to Pr 𝑋 𝒀, 𝑴  from all approximations of the form 
 𝑝 𝑥𝑠 𝒀, 𝑴 𝑠∈𝒮  when the Kullback-Leibler (KL) divergence [18]-[19] is used as a distance measure.  
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3. Optimum Image Registration and Land Cover Mapping Criteria   

The standard approaches to multi-temporal and/or multi-modal image classification involve two steps. 
First images from different sources and/or times are registered to produce a set of images in a common 
coordinate system. Then, a land cover map is derived from this set of registered images. In this work, 
even though we propose an algorithm to simultaneously register and classify images, we still treat 
image registration and classification as two separate problems to follow standard approaches. As a 
result, we propose different optimization criteria for image registration and land cover mapping. 
However, we will show in Section IV that both image registration and land cover mapping can be 
combined into one algorithm so that the registration and land cover mapping can be performed 
simultaneously.   

 3.1 Optimum Image Registration 
 
The maximum likelihood estimate (MLE) can be employed as the optimum map parameter estimator 
since the MLE is known to a consistent estimator [20]. The goal of the MLE is to determine the map 
parameters that maximize the joint probability density function (PDF) of all the observed images given 
the map parameters, i.e.,  
  𝑀1, … , 𝑀𝑁 𝑜𝑝𝑡  = arg max

𝑀1 ,…,𝑀𝑁

Pr 𝑌1, … , 𝑌𝑁 𝑀1, … , 𝑀𝑁  (17) 
In order to solve Eq. (17), the conditional PDF Pr 𝑌1, … , 𝑌𝑁 𝑀1, … , 𝑀𝑁  must be calculated and it is 
equal to  

 

Pr 𝑌1, … , 𝑌𝑁 𝑀1, … , 𝑀𝑁 =  Pr 𝑌1 𝒯1 , … , 𝑌𝑁 𝒯𝑛 , 𝑋 𝒮  𝑀1, … , 𝑀𝑁 

𝑋∈Λ𝒮

 

=   Pr 𝑍𝑛  |𝑋 𝒮  Pr X 𝒮  

𝑋∈Λ𝒮

𝑵

𝑛=1

 
(18) 

Note here again that 𝑍𝑛  is the remapped and resampled version of 𝑌𝑛 . Since Eq. (18) is written as a 
multiplication of  Pr 𝑍𝑛  |𝑋 𝒮  Pr X 𝒮  𝑋∈Λ𝒮 , the solution of Eq. (17) can be individually obtain, 
i.e.,  

 𝑀𝑛
𝑜𝑝𝑡  = arg max

𝑀𝑛

 Pr 𝑍𝑛  |𝑋 𝒮  Pr X 𝒮  

𝑋∈Λ𝒮

, (19) 

for 𝑛 = 1, … , 𝑁. Since 𝒮 is also unknown, there are many possible sets of 𝑀𝑛  that maximize Eq. (19). 
For instance, if 𝑀𝑛 =  1,0,0,1,0,0  is the solution of Eq. (19) for 𝒮 =   0,0 ,  0,1 ,  1,0 , (1,1) , we 
have that 𝑀′1 =  1,0,0,1,1,0  is also the solution of Eq. (19) for 𝒮′ =   0, −1 ,  0,0 ,  1, −1 , (1,0) . 
As a result, it is imperative to limit the search space and number of possible solutions. Furthermore, in 
most practical situations, we may wish to produce the LCM registered to one of the input remote 
sensing images. Without lost of generality, we assume that the LCM is registered to 𝑌1, i.e., we have 
𝑀1 = 𝑀1

∗ = [1,0,0,1,0,0].  
Next, let us consider a small LCM of size 100 × 100 pixels. In this case, there are 210,000 ≈

2 × 103,010  possible binary LCMs. Therefore, the direct calculation of Eq. (19) is an impossible task, 
and hence, the solution of the MLE cannot be obtained in reasonable time. As a result, the expectation-
maximization (EM) algorithm [16] is employed instead. The EM algorithm is an iterative parameter 
estimator which produces a new estimate for every iteration. It has been shown in [16] that this new 
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estimate always results in higher or at least the same value of the likelihood function. In other words, if 
we let 𝑴𝑡 =  𝑀1

𝑡 , 𝑀2
𝑡 , … , 𝑀𝑁

𝑡   be the collection of all estimated parameters at the t-th iteration from the 
EM algorithm, we will have  Pr 𝑌1, … , 𝑌𝑁 𝑴𝑡 ≥ Pr 𝑌1, … , 𝑌𝑁 𝑴𝑡−1  where  𝑴𝑡−1 is the collection of 
estimated parameters at (𝑡 − 1)-th iteration. Here, and throughout the rest of the paper, we omit 𝒮 and 
𝒯𝑛  for the sake of abbreviation. In Section 4, we will discuss the details of the EM algorithm employed 
in this work and how it can be combined with the land cover mapping process. However, before going 
into the detail of the proposed algorithm, let us state the optimization criterion for the land cover 
mapping considered in this paper.  

 3.2 Optimum Land Cover Map 
 
The classifier based on the maximum a posteriori (MAP) criteria selects the most likely LCM given 
the observed data and the map parameters since the resulting probability of error is minimum among 
all other classifiers [21]-[22]. The optimum solution under the MAP criterion is expressed as  

𝑋𝑜𝑝𝑡 = arg max
X

 Pr 𝑋 𝒀, 𝑴  . (20) 
In general, Pr 𝑋 𝒀, 𝑴  is non-concave function and, therefore, conventional gradient-based 
optimization algorithms are not applicable for the solution of Eq. (20). Furthermore, the number of 
possible solutions is also very large. A direct search for the solution of Eq. (20) is too expensive to be 
practically implemented. As a result, we propose the use the mean field theorem [17]-[18] to remove 
the interaction between neighboring pixels defined in 𝑉𝐶 𝑋 . Hence, by substituting Eq. (16) into Eq. 
(20), the optimization problem becomes  

𝑋𝑜𝑝𝑡 = arg max
X

  𝑝𝑀𝐹 𝑥𝑠 𝒀, 𝑴 

𝑠∈𝒮

 . (21) 

Since the optimizing function in Eq. (21) is written in the form of the multiplication of functions of an 
individual pixels, and 𝑝𝑀𝐹 𝑥𝑠 𝒀, 𝑴  is a non-negative function, the optimum solution can be solved 
from an individual function, i.e., for 𝑠 ∈ 𝒮, 

𝑥𝑠
𝑜𝑝𝑡 = arg max

X
 𝑝𝑀𝐹 𝑥𝑠 𝒀, 𝑴  . (22) 

which is equivalent to  
𝑥𝑠

𝑜𝑝𝑡 = arg min
X

 𝑕𝑠 𝑥𝑠|𝒀, 𝑴  . (23) 

4. Joint Image Registration and Land Cover Mapping Algorithm 
 
Since the EM algorithm is employed in this literature as the parameter estimator, we begin our 
discussion with the details of the EM algorithm. The EM algorithm [16] consists of two steps, namely 
the expectation (or E) and maximization (or M) steps. In the E-step, the EM algorithm finds the lower 
bound of the likelihood function given in the right hand side of Eq. (20) by calculating the expected 
value of the joint log-likelihood function of the observed images and the LCM. Here, the expected 
value is computed over the LCMs given the most recent estimate of the map parameter vectors and 
observed data, i.e.,  

 
𝑄 𝑴||𝑴𝑡−1 = 𝐸 log Pr 𝒀, 𝑋 𝑴  𝒀, 𝑴𝒕−𝟏  

= 𝐸 log Pr 𝒀 𝑋, 𝑴 + log Pr 𝑋  𝒀, 𝑴𝒕−𝟏  
(24) 

where 𝒀 =  𝑌1, … , 𝑌𝑁  is the set of all observed remotely sensed images, 𝑴 =  𝑀1, … , 𝑀𝑁  is the set of 
all unknown map parameters, and 𝑴𝑡 =  𝑀1

𝑡 , … , 𝑀𝑁
𝑡   is the set of all estimated parameters from the t-
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th iteration of the EM algorithm. Note here that 𝑀1
𝑡 = 𝑀1

∗. By substituting Eq. (1) and Eq. (7) into Eq. 
(24), the expected value becomes  

 

𝑄 𝑴||𝑴𝑡−1 

= 𝐸  −
1

2
  

  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 
𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑠∈𝑆

+ log Σ𝑥𝑠 ,𝑛  − log 2𝜋 𝐵𝑛

 

𝑁

𝑛=1

−  𝑉𝐶 𝑋 − 𝑍𝑋

𝐶⊂𝒮

 𝒀, 𝑴𝒕−𝟏  
(25) 

In the M-step, the expected value given in Eq. (25) is maximized and a new set of map parameter 
vectors is obtained, i.e.,  

 𝑴𝑡 = arg max
𝑴,𝑀1=𝑀1

∗
𝑄 𝑴||𝑴𝑡−1  (26) 

Clearly, the terms log Σ𝑥𝑠 ,𝑛  , log 2𝜋 𝐵𝑛 ,  𝑉𝐶 𝑋 𝐶⊂𝒮 , and 𝑍𝑋  in Eq. (25) do not depend on 𝑴. Hence, 
Eq. (25) can be modified to  

 𝑴𝑡 = arg max
𝑴,𝑀1=𝑀1

∗
𝑄′ 𝑴||𝑴𝑡−1  (27) 

where  

 𝑄′ 𝑴||𝑴𝑡−1 = arg max
𝑴,𝑀1=𝑀1

∗
𝐸  −

1

2
   𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑠∈𝑆

𝑁

𝑛=1

 𝒀, 𝑴𝒕−𝟏 . (28) 

To find the solution of Eq. (28), the a posteriori probability of the LCM given the observed 
images and the map parameters from the (t-1)-th iteration must be calculated in order to find the 
expected value. From the same reason as discussed in Section 2, the posterior probability cannot be 
practically calculated due to the huge number of possible LCMs. As a result, we employ the 
approximation given in Eq. (16), and hence, we have   

Pr 𝑋 𝒀, 𝑴𝑡−1 ≈  𝑝𝑠
𝑀𝐹 𝑥𝑠|𝒀, 𝑴𝑡−1 

𝑠∈𝒮

=  
1

𝑍𝑠
𝑒−

1
2
𝑕𝑠 𝑥𝑠|𝒀,𝑴𝑡−1 .

𝑠∈𝒮

 (29) 

By substituting d Eq. (26) into Eq. (29), we have  

 

𝑄′ 𝑴||𝑴𝑡−1 ≈ 𝑄𝑀𝐹 𝑴||𝑴𝑡−1  

= −
1

2
    𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 𝑝𝑠
𝑀𝐹 𝑥𝑠|𝒀, 𝑴𝑡−1 

𝑥𝑠∈Λ𝑠∈𝑆

𝑵

𝑛=1

 
(30) 

Hence, in the M-step, the new map parameters can be obtained by maximizing the approximation 
given Eq. (30), i.e.,  

 𝑴𝑡 = arg max
𝑴,𝑀1=𝑀1

∗
𝑄𝑀𝐹 𝑴||𝑴𝑡−1  (31) 

Since 𝒛𝑛,𝑠 depends only 𝑀𝑛  and the right hand side of Eq. (30) is written as the summation of 𝒛𝑛,𝑠 
from different images, the above optimization problem can be rearranged into the optimization of each 
individual mapping parameters, i.e., 
 𝑀𝑛

𝑡 = arg max
𝑀

𝑄𝑛
𝑀𝐹 𝑀𝑛 ||𝑴𝑡−1 ; 𝑛 = 2, … , 𝑁 (32) 

where  

 𝑄𝑛
𝑀𝐹 𝑀𝑛 ||𝑴𝑡−1 = −

1

2
   𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑇
Σ𝑥𝑠,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 𝑝𝑠
𝑀𝐹 𝑥𝑠|𝒀, 𝑴𝑡−1 

𝑥𝑠∈Λ𝑠∈𝑆

. (33) 

Using the approximations given above, the modified EM algorithm is displayed in Figure 2. For each 
iteration, the posterior probability Pr(𝑋|𝒀, 𝑴𝑡) is approximated by recalculating 𝑕𝑠 𝑥𝑠|𝒀, 𝑴𝑡 . We 
follow the work by Zhang [19] which suggested that 𝑕𝑠 𝑥𝑠|𝒀, 𝑴𝑡  can be obtained from  
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𝑕𝑠 𝑥𝑠|𝒀, 𝑴𝑡 = 𝑕𝑜𝑏𝑣  𝑥𝑠 𝒁 + 𝑕𝑛𝑔  𝑥𝑠 𝑋𝑁𝐺 

=    𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 
𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 + log Σ𝑥𝑠 ,𝑛   

𝑁

𝑛=1

+  𝑉 𝑠,𝑟  𝑥𝑠 , 𝑥𝑟 𝑝
𝑀𝐹 𝑥𝑠 𝒀, 𝑴𝒕−𝟏 

𝑥𝑟∈Λ

. 

(34) 

where 𝑕𝑜𝑏𝑣  𝑥𝑠 𝒁  and 𝑕𝑛𝑔  𝑥𝑠 𝑋𝑁𝐺  are the potential functions depending upon the observation and 
neighboring pixels, respectively.  
 
 

 
 
Since 𝑕𝑠 𝑥𝑠|𝒀, 𝑴𝑡  is recalculated for every iteration of the EM algorithm, we can choose a land 

cover class that minimizes 𝑕𝑠 𝑥𝑠|𝒀, 𝑴𝑡 , and obtain the optimum LCM based on criterion given in Eq. 
(23) By combining the EM algorithm given in Figure 2 and the land cover mapping process by 
minimizing Eq. (23), the joint image registration and land cover mapping algorithm is given as 

1. Initialize map parameters, i.e.,  𝑀1
0 = 𝑀1

∗  and 𝑴0 =  𝑀1
0 , … , 𝑀𝑛

0 , let 𝑡 = 1 , and assign 
𝑝𝑀𝐹 𝑥𝑠 𝒀, 𝑴0  based on some prior knowledge. 

2. Compute 𝑄𝑛
𝑀𝐹 𝑀𝑛 ||𝑴𝑡−1  for 𝑛 = 2, … , 𝑁. 

3. Obtain 𝑀𝑛
𝑡  by solving Eq. 32 for 𝑛 = 2, … , 𝑁., and assign𝑀1

𝑡 = 𝑀1
∗ and  𝑴𝒕 =  𝑀1

𝑡 , ⋯ , 𝑀𝑁
𝑡    

4. Compute 𝑕𝑠 𝑥𝑠|𝒀, 𝑴𝑡  by using Eq. (34). 
5. Find the new LCM that minimizes 𝑕𝑠 𝑥𝑠|𝒀, 𝑴𝑡  for all 𝑠 ∈ 𝒮. 
6. Let 𝑡 = 𝑡 + 1, and go to Step 2 if a convergence criterion is not satisfied.  

Find initial mapping vectors  𝑴𝟎  

Let t = 1, 𝑀1
0 = 𝑀1

∗ , 𝑴𝑡−1 =

𝑴0, and estimate Pr 𝑥𝑠 𝒀, 𝑴0  

E-Step: 
Compute the expected 
value 𝑄𝑀𝐹 𝑴||𝑴𝑡−1 . 

M-Step: 
Find the new map parameter 
vectors 𝑀𝑡  by solving Eq. 
(32). 

Let 𝑡 = 𝑡 + 1  

Does the EM 

algorithm 

converge? 

No 

Stop 

Yes 

Approximate 

Pr(𝑋|𝒀, 𝑴𝑡)  by 

using Eq. (28). 

Figure 2: Block diagram of the modified EM algorithm 
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The critical step in the successful implementation of the joint image registration and land cover 

mapping algorithm proposed above is how to solve Eq. (32) efficiently. Here to find the maxima, we 
employ the particle swarm optimization (PSO) algorithm [23] since the traditional gradient search 
approaches are likely to fall into one of the local optimum points of 𝑄𝑀𝐹 𝑴||𝑴𝑡−1  due to its non-
convexity. The PSO exploit the cooperative behavior for a group of animals such as birds and insects. 
In the PSO, an individual animal is called a particle and a group of animals is called swarm. These 
particles are initially distributed throughout the search space, and move around the search space. Based 
on some social and cooperative criteria, these particles will eventually cluster in the regions where the 
global optima can be found. 

In our work, for a given image 𝑌𝑛 , each particle represents a mapping parameter and we denote 
the i-th particle as 𝑀𝑛,𝑖 . At each iteration, the i-th particle moves by a velocity 𝑉𝑖  which is a function 
of the best-known positions (mapping parameter) discovered by the i-th particle (𝑃𝑖) itself, and from all 
particles (𝐺), i.e.,   

𝑉𝑖
𝑟 = 𝜔𝑉𝑖

𝑟−1 + 𝜑1𝑢1 𝑃𝑖 − 𝑀𝑛,𝑖
𝑟−1 + 𝜑2𝑢2 𝐺 − 𝑀𝑛,𝑖

𝑟−1  (35) 

and  

𝑀𝑛,𝑖
𝑟 = 𝑀𝑛,𝑖

𝑟−1 + 𝑉𝑖
𝑟  (36) 

for 𝑛 = 2, … , 𝑁. where 𝜔 is the inertial weight, 𝜑1  and 𝜑2  are acceleration constants, and 𝑢1  and 𝑢2 
are uniform random numbers between zero and one. The velocity is usually kept in the range of 
[𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 ] to make sure that 𝑀𝑛,𝑖

𝑟  is in the valid regions. Note here that the performance of the PSO 
depends on the selection of, 𝜔, 𝜑1  and 𝜑2 , and the number of iterations. In this paper, we set the 
number of particles to 80 and the maximum number of iterations to be 200 as a suitable setup for our 
experiment. We acknowledge that different setups of these parameters may result in different 
convergence rate. However, the investigation of the optimum parameter selection of the PSO in term 
of convergence rate is out of scope of this paper. We refer to the work by [24] for more details. 
 
 
5. Experiments  
 

In this section, we provide the results of two experiments based on the methodology derived in Section 
4 to jointly register and classify a set of remotely sensed images. The first experiment is conducted 
over a simulated dataset in order for us to investigate many aspects of our proposed algorithm. Next, 
we will examine the performance of our algorithm in the actual remote sensing image. For both 
examples, the goal is to examine the performance of algorithm to different degrees of initial 
registration errors. If our algorithm performs perfectly, it should be able to align images together and 
produce a LCM from unregistered images as accurate as when images are registered.  
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Experiment 1: 

In the experiment, we examine the performance of the proposed algorithm in term of classification 
performance and registration accuracy by attempting to produce a land cover map from a set of four 
simulated images. All the simulated images have an equal size of 512512 pixels (Figure 3) and 
contain four land cover classes (Classes 1-4) with intensity values of zero, one, two and three for 
black, dark gray, light gray and white areas, respectively. Based on the noiseless image, the ground 
truth image in this example is given in Figure 4 where the blue, black, green and red colors correspond 
to Classes 1-4, respectively. Next, all of the input images are added with the independent and identical 
Gaussian noise with zero mean and standard deviation of 𝜍 = 1 to examine the performance of our 
proposed algorithm to the image noise. Figure 5 shows an example of the input image for 𝜍 = 1. We 
observe that the observed image appears to be very noisy.  
 
Figure 3: Noiseless Simulated Image in Example 1 

 
 

Figure 4: The ground data of Example 1 
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Figure 5: An example of the noisy input image at σ=1 in Example 1 

 

 

Since our algorithm performs both image registration and land cover mapping at the same time, 
the performance of our algorithm can be evaluated in terms of how much the resulting LCM deviates 
from the reference LCM, and the estimation error between our calculated map parameters and the 
actual parameters that relate the LCM to the simulated images. If our algorithm performs perfect 
registration and land cover mapping, the resulting percentages of mis-classified pixels will be zero, and 
the registration error between images and LCM will be zero. In this example, the correct mapping 
parameters for all observed images are the same and equal to 𝑀𝑝𝑒𝑟𝑓𝑒𝑐𝑡 =  1,0,0,1,0,0  which 
correspond to unit scale, zero skew, and zero displacement. Next, since we want to examine the effect 
of the initial registration errors to the performance of our algorithm, we investigate different scenarios 
of initial registration errors by varying the initial mapping parameters between the observed images 
and LCM at different values of displacement, scale and skew parameters. In particular, we investigate 
three scenarios for the only displacement, only scale and only skew errors, respectively. Table 1 shows 
the initial mapping parameters for all three scenarios. Here, 𝛿, 𝜌 and  𝜂 are the initial displacement, 
scale, and skew parameter errors. Note that the initial mapping parameter errors for Image 1 for all 
scenarios are zero since we assume that the first image is registered to the LCM as mentioned in 
Section 3.1. 

Before examining the performance of our proposed algorithm, we examine the effect of 
registration errors to the performance of image classification. This value can be viewed as the worst 
case scenario where the LCM is derived directly from the set of mis-registered images. Here, we 
employ the maximum likelihood classifier (MLC) [21] to the set of four remapped images, and the 
LCM is obtained from  

𝑥𝑠
𝑀𝐿𝐶 = arg min

𝑥
    𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 

𝑇
Σ𝑥𝑠 ,𝑛

−1  𝒛𝑛,𝑠 − 𝝁𝑥𝑠 ,𝑛 + log Σ𝑥𝑠𝑛   

4

𝑛=1

  (37) 

where the subscript 𝑛 denotes the n-th remapped image. We note here that Eq. (37) is the special of the 
optimum LCM obtained from Eq. (22) when 𝛽 = 0. Figure 6 (a), (b) and (c) display the resulting LCM 
for 𝛿 = 12 and 𝜍 = 1 for Scenario I, 𝜌 = 0.05 and 𝜍 = 1 for Scenario II, and 𝜂 = 0.05 and 𝜍 = 1 for 
Scenario III. The averaged percentages of misclassified pixels after a hundred independent runs are 
equal to 28.66%, 31.93 and 27.03, for Scenarios I, II and III given above, respectively.  
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Table 1: Mapping parameter errors are three scenarios in Example 1 
 Image Mapping parameters 

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 

Scenario I:  

Displacement 
error (𝛿) 

1 1 0 0 1 0 0 

2 1 0 0 1 𝛿 0 

3 1 0 0 1 0 −𝛿 

4 1 0 0 1 −𝛿 𝛿 

Scenario II:  

Scale error 
(𝜌) 

1 1 0 0 1 0 0 

2 1 + 𝜌 0 0 1 0 0 

3 1 0 0 1 + 𝜌 0 0 

4 1 − 𝜌 0 0 1 − 𝜌 0 0 

Scenario III:  

Sheer error 
(𝜂) 

1 1 0 0 1 0 0 

2 1 𝜂 0 1 0 0 

3 1 0 𝜂 1 0 0 

4 1 −𝜂 −𝜂 1 0 0 

 
 
Figure 6: Examples of the MLC-Based LCMs for (a) Scenario I with δ=12 and σ=1; (b) Scenario II 
with ρ=0.05 and σ=1; and (c) Scenario III with  η=0.05 and σ=1 

 
(a) 

 
(b) 

 
(c) 

 
Next, the proposed algorithm is applied to the above datasets. The whole process was 

implemented using CUDA on NVIDIA Tesla M2090 with 1 GB memory. Here, we assign 
𝑝𝑀𝐹 𝑥𝑠 𝒀, 𝑴0 =

1

4
 as the most extreme case where no prior information is given. In different trials, 

the value of 𝛽 is set to be 0.00, 0.25, 0.50, and 0.75(see Eq. (2)). Since our algorithm performs both 
image classification and registration, the termination criteria must ensure the convergences in both the 
estimated posterior probability and mapping parameters. As a result, we define  
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𝑝𝑐𝑕𝑎𝑛𝑔𝑒𝑠 =
1

 𝒮 
   𝑝𝑠

𝑀𝐹 𝑥𝑠|𝒀, 𝑴𝑡 − 𝑝𝑠
𝑀𝐹 𝑥𝑠|𝒀, 𝑴𝑡−1  

𝑥𝑠∈Λ𝑠∈𝒮

, (38) 

to measure changes in the posterior probabilities from two consecutive iterations. We also define  

𝑑𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ,𝑛 =
1

 𝒯𝑛  
   𝑥𝑛

𝑡 − 𝑥𝑛
𝑡−1 2 +  𝑦𝑛

𝑡 − 𝑦𝑛
𝑡−1 2

 𝑢𝑛 ,𝑣𝑛  ∈𝒯𝑛

 (39) 

to characterize the movement of coordinates of the remapped image 𝑍𝑛  from two consecutive 
iterations where  

 
𝑥𝑛

𝑡

𝑦𝑛
𝑡  =  

𝑚1,𝑛
𝑡 𝑚2,𝑛

𝑡

𝑚3,𝑛
𝑡 𝑚4,𝑛

𝑡  

−1

 
𝑢𝑛 − 𝑚5,𝑛

𝑡

𝑣𝑛 − 𝑚6,𝑛
𝑡  . (40) 

Here, 𝑚𝑖,𝑛
𝑡  denotes the mapping parameter 𝑚𝑖  from the nth at the tth iteration. In this example, the 

algorithm terminates when 𝑝𝑐𝑕𝑎𝑛𝑔𝑒𝑠  is less than 𝑝𝑚𝑖𝑛 = 10−5, and 𝑑𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ,𝑛  is less than 0.1 pixels 
for five consecutive iterations for 𝑛 = 2,3,4. To create a benchmark for our proposed algorithm, we 
examined two extreme cases where LCMs are derived directly from the unregistered image pairs and 
from perfect registered image pair. The LCMs from these extreme cases are classified using our 
proposed algorithm by fixing 𝑀𝑡 = 𝑀∗. For perfect registration, we have 𝑀∗ = 𝑀𝑝𝑒𝑟𝑓𝑒𝑐𝑡  whereas, for 
unregistered image pairs, we set 𝑀∗ equal the values given in Table 1 for the respective scenarios. The 
first extreme case can be considered as the lower limit on the classification accuracy if we perform the 
land cover mapping without alignment of images first. The second case is an upper bound on the 
classification accuracy when we produce a map from a registered image pair. By setting up our 
experiment in this fashion, we can investigate how much improvement our algorithm can gain by 
integrating the registration and classification together, and how far the performance of our algorithm is 
from the upper limit where all uncertainties in registration are removed. To ensure the statistical 
significance of our experiment, all experiments are repeated ten times.  

Table 2 displays the averaged percentages of misclassified pixels (PMP) of the LCMs for different 
values of 𝛽 and for Scenario I with 𝛿 = 12, Scenario II with 𝜌 = 0.05 and Scenario III with 𝜂 = 0.05 
when 𝜍 = 1. Note here that, in this example, we employ the percentages of mis-classified pixels as the 
performance metric to evaluate the classification performance rather than the overall accuracy to 
highlighted small differences in the classification performance between LCMs derived from image 
datasets without registration error and LCMs obtained from our proposed algorithm. From Table 2, it 
is clear that, from all scenarios, the PMPs derived from image datasets without registration errors 
corrections are always significance poorer than those derived from registered image datasets. These 
results support our claims that it is important to consider lack of alignments in performing image 
classification. We also observe that, for 𝛽 = 0.25, 0.5 and 0.75, our proposed algorithm produced the 
LCM with the accuracy similar to those obtained from image dataset without any registration error. 
These results imply that our proposed algorithm attain the upper-bound accuracy with proper selection 
of MRF parameter. To ensure the statistical significance, we compute the pairwise t-statistics for 
unequal variance populations [20] of the PMPs obtained from LCMs derived from the proposed 
algorithm for various initial registration errors against those obtained from image dataset with no 
registration error, and the resulting p-values [20] of the t-statistics are given in Table 3. The p-value 



Remote Sens. 2013, 5                            
 

 

16 

represents the probability that there is no difference in PMPs. Hence, a smaller p-value implies that 
PMPs from two experiments are different. We also compute the t-statistics comparing LCMs obtained 
from image dataset with and without registration errors. The resulting p-values of these t-statistics are 
also summarized in Table 3. It is clear from Table 3 that there is significant differences in term of 
PMPs from LCMs obtained from image dataset with and without registration errors. Furthermore, the 
p-values also support our claim that or 𝛽 = 0.25, 0.5 and 0.75, our proposed algorithm produced the 
LCM with the accuracy similar to those obtained from image dataset without any registration error. 
However at 𝛽 = 0 , our proposed algorithm perform significantly poorer than those of perfect 
registration. In fact, at 𝛽 = 0, our proposed algorithm achieves roughly the same performance as in 
situation where there is no registration error correction since at 𝛽 = 0, our proposed algorithm cannot 
correctly estimate the map vectors. Figure 7 shows examples of the resulting LCMs at 𝛽 = 0.75 for all 
scenarios. We observe that all the LCMs appeared to be more connected than the MLC-based LCMs 
given in Figure 6: Examples of the MLC-Based LCMs for (a) Scenario I with δ=12 and σ=1; (b) 
Scenario II with ρ=0.05 and σ=1; and (c) Scenario III with  η=0.05 and σ=1 

.  
 

Table 2: Comparison of the averaged percentages of misclassified pixels (PMP) between two extreme 
cases and our proposed algorithm 

𝛽 No 
registration 
Error 

No registration error correction Proposed Algorithm with initial registration 
errors 

Scenario I 
with 𝛿 = 12 

Scenario II 
with 𝜌 =

0.05  

Scenario III 
with 𝜂 =

0.05 

Scenario I  
with 𝛿 = 12 

Scenario II 
with 𝜌 =

0.05  

Scenario III 
with 𝜂 =

0.05 

0.0 25.65% 28.66% 26.87% 27.05% 28.65% 26.07% 27.12% 

0.25 0.43% 4.81% 5.96% 6.45% 0.45% 0.43% 0.43% 

0.5 0.039% 4.24% 5.65% 6.21% 0.039% 0.041% 0.043% 

0.75 0.021% 4.19% 5.56% 6.13% 0.024% 0.032% 0.026% 

 
Table 3: the p-values of the pairwise t-test with unequal variances of our proposed algorithm to the 
perfect registration cases, and no registration error correction to the perfect registration cases 

𝛽 No 
registration 
Error 

No registration error correction Proposed Algorithm with initial registration 
errors 

Scenario I 
with 𝛿 = 12 

Scenario II 
with 𝜌 =

0.05  

Scenario III 
with 𝜂 =

0.05 

Scenario I 
with 𝛿 = 12 

Scenario II 
with 𝜌 =

0.05  

Scenario III 
with 𝜂 =

0.05 

0.0 1 1.5 × 10−22 1.6 × 10−14 4.0 × 10−18 1.9 × 10−23 4.0 × 10−15 3.9 × 10−15 

0.25 1 2.0 × 10−17 3.5 × 10−19 3.6 × 10−18 0.457 0.717 0.500 

0.5 1 1.5 × 10−15 2.8 × 10−17 1.8 × 10−16 0.712 0.167 0.401 

0.75 1 1.5 × 10−14 1.4 × 10−15 6.2 × 10−17 0.060 0.033 0.079 
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Figure 7: Examples of the resulting LCMs from our proposed algorithm (a) Scenario I with δ=12 and 
σ=1; (b) Scenario II with ρ=0.05 and σ=1; and (c) Scenario III with  η=0.05 and σ=1 

 
(a) 

 
(b) 

 
(c) 

 
Since at 𝛽 = 0.75, our proposed algorithm achieves highest performance, we examine the effect of 

the initial registration errors to the performance of our algorithm by varying values of 𝛿, 𝜌, and 𝜂 for 
Scenarios I, II and III, respectively for 𝛽 = 0.75. Again, ten independent runs are performs to ensure 
the statistical significance and the results are given in Table 4. We observe that, for all scenarios, the 
PMPs are roughly the same In other words, the initial registration errors have little effect on the 
performance of our algorithm. These results imply the robustness of our proposed algorithm to the 
initial mis-registration errors if the proper value of 𝛽 is chosen.  

 
Table 4: The averaged percentages of mis-classified pixels as the function of the initial registration 
error for all Scenarios 

Scenario I Scenario II Scenario III 

𝛿 PMP 𝜌 PMP 𝜂 PMP 

0 0.019% -0.05 0.035% -0.05 0.036% 

4 0.032% -0.03 0.035% -0.03 0.029% 

8 0.029% -0.01 0.022% -0.01 0.043% 

12 0.026% 0.01 0.030% 0.01 0.040% 

  0.03 0.024% 0.03 0.036% 

  0.05 0.032% 0.05 0.026% 

 
 
Another key performance metric in this example is the residual registration errors after 

processing. Table 5 displays the means and standard deviations of the root mean square errors 
(RMSEs) from ten independent runs between each simulated images and the reference LCM. The 
RMSE of the n-th image is computed from  
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𝑅𝑀𝑆𝐸𝑛 =
1

 𝒯𝑛  
   𝑥𝑛

𝑔𝑡
− 𝑥𝑛

𝑒𝑠𝑡  
2

+  𝑦𝑛
𝑔𝑡

− 𝑦𝑛
𝑒𝑠𝑡  

2

 𝑢𝑛 ,𝑣𝑛  ∈𝒯𝑛

 (41) 

where  𝑥𝑛
𝑔𝑡

, 𝑦𝑛
𝑔𝑡

  and (𝑥𝑛
𝑒𝑠𝑡 , 𝑦𝑛

𝑒𝑠𝑡 ) are the ground truth and estimated coordinates. Here, the ground 
truth coordinates obtained by letting 𝑀𝑛 = 𝑀𝑝𝑒𝑟𝑓𝑒𝑐𝑡 . Clear, for 𝛽 = 0.25, 0.5, and 0.75, our algorithm 
can successfully registered all images with the LCMs. However, at 𝛽 = 0 our algorithm cannot align 
these images with the LCM. The results in Table 5 emphasize the importance of parameter selection. 
Note here that the RMSE of Image 1 is not shown in the Table 5 since it is assumed to be perfectly 
aligned (registration error is zero.) with the LCM. Next, we examine the effect of image noise to the 
registration accuracy by varying the noise variance 𝜍2 from -30dB to 0 dB and the resulting averaged 
RMSEs for 𝛽 = 0.0 and 0.75 are given in Table 6 and Table 7, respectively. We observe here that 
there are slight performance differences in term of the RMSEs for 𝜍2of -30, -20 and -10 dB for both 
𝛽 = 0.00 and 0.75. However, for the noise variance equal to 0 dB, our algorithm can only correctly 
aligned Images 2-4 to the LCM at 𝛽 = 0.00. This result emphasizes the importance of a parameter 
selection to the convergence of our algorithm. For the performance comparison, we compare the 
registration accuracy of our proposed algorithm for various scenarios and 𝛽 = 0.75 with a traditional 
image-to-image registration technique. Here we employ the mean square error criteria (MSEC) [25] 
since the MSEC is suitable for register images with the same modality and suffered from additive 
Gaussian noise. For the traditional image-to-image registration, we register Images 2-4 with Image 1 
since Image 1 is assumed to be aligned with the LCM. The averaged RMSEs from ten independence 
runs for various noise variances are given in Table 8. Again the particle swamp optimization algorithm 
with eighty particles is employed to ensure global optimality. As expected, the registration accuracy 
decreases as the noise variance increase. By comparing Tables 6 and 8, the RMSEs from our proposed 
algorithm seem to be lower (better) than those obtained from the MSEC for noise variances equal to -
20, -10 and 0 dBs. Next, we again perform the pairwise t-test to determine whether there are 
significant differences in RMSEs obtained from our proposed algorithm and the MSEC, and the 
resulting p-values [20] are shown in Table 9. From the p-values, we can conclude that our proposed 
algorithm achieves significantly better registration accuracies than those obtained from the MSEC for 
the noise variances of −20, −10 and 0 dBs. Note here that, for a noise variance equal to -30 dB, the 
registration errors from our proposed algorithm and the MSEC are roughly zero and, therefore there is 
no different in term of registration accuracy.  
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Table 5: The residue registration errors of our proposed algorithm for various scenarios and values of 
𝛽. 
Scenario   No registration 

Error Correction 
𝛽 = 0.0 𝛽 = 0.25 𝛽 = 0.50 𝛽 = 0.75 

I (𝛿 = 12) Image 2 Mean 12 11.99 0.111 0.295 0.280 

STD - 0.0015 0.259 0.139 0.100 

Image 3 Mean 12 11.99 0.031 0.192 0.312 

STD - 0.0018 0.020 0.120 0.156 

Image 4 Mean 16.97 16.96 0.213 0.338 0.212 

STD - 0.0017 0.566 0.088 0.136 

II (𝜌 = 0.05) Image 2 Mean 14.06 13.56 0.028 0.281 0.327 

STD - 0.072 0.010 0.130 0.113 

Image 3 Mean 14.06 13.49 0.020 0.353 0.312 

STD - 0.032 0.080 0.102 0.106 

Image 4 Mean 21.97 20.97 0.253 0.245 0.315 

STD - 0.095 0.636 0.120 0.082 

III (𝜂 = 0.05) Image 2 Mean 14.76 14.71 0.025 0.295 0.296 

STD - 0.204 0.020 0.149 0.098 

Image 3 Mean 14.76 14.73 0.017 0.415 0.350 

STD - 0.182 0.006 0.090 0.136 

Image 4 Mean 21.72 22.04 0.350 0.312 0.371 

STD - 0.0325 0.983 0.155 0.088 

 
Table 6: The residue registration errors for various noise variances and 𝛽 = 0.75. 
Noise variance 
(dB) 

Average root mean square errors  

Scenario I, 𝛿 = 12 Scenario II, 𝜌 = 0.05 Scenario III, 𝜂 = 0.05 

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 

-30  0.007 0.011 0.009 0.006 0.010 0.019 0.012 0.019 0.013 

-20 0.010 0.012 0.009 0.023 0.016 0.012 0.017 0.016 0.011 

-10 0.036 0.035 0.037 0.028 0.018 0.029 0.028 0.030 0.022 

0 0.244 0.280 0.185 0.119 0.138 0.071 0.078 0.053 0.200 
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Table 7: The residue registration errors for various noise variances and 𝛽 = 0. 
Noise variance 
(dB) 

Average root mean square errors  

Scenario I, 𝛿 = 12 Scenario II, 𝜌 = 0.05 Scenario III, 𝜂 = 0.05 

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 

-30  0.016 0.08 0.010 0.015 0.007 0.019 0.009 0.011 0.019 

-20 0.017 0.012 0.014 0.015 0.018 0.015 0.010 0.015 0.017 

-10 0.014 0.018 0.015 0.018 0.018 0.023 0.019 0.016 0.014 

0 11.99 11.99 16.97 11.91 11.89 20.28 12.75 12.79 20.61 

 
Table 8: The residue registration errors using the minimum mean square error criteria for various noise 
variances.  
Noise variance 
(dB) 

Image 2 Image 3 Image 4 

Mean STD Mean STD Mean STD 

-30  0.008 0.0029 0.007 0.0041 0.010 0.0054 

-20 0.422 0.0040 0.425 0.0033 0.423 0.0049 

-10 0.663 0.0037 0.665 0.0014 0.664 0.0017 

0 0.875 0.516 1.637 1.441 1.352 0.9744 

 
Table 9: The p-value from the pairwise t-test between the traditional registration method and our 
proposed algorithm for various Scenario at 𝛽 = 0.75. 
Noise 
variance 
(dB) 

Average root mean square errors  

Scenario I, 𝛿 = 12 Scenario II, 𝜌 = 0.05 Scenario III, 𝜂 = 0.05 

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 

-30  0.829 0.402 0.883 0.413 0.413 0.201 0.507 0.092 0.407 

-20 1 × 10−18 4 × 10−14 2 × 10−21 1 × 10−13 1 × 10−13 3 × 10−15 2 × 10−13 2 × 10−13 5 × 10−17 

-10 3 × 10−14 2 × 10−14 3 × 10−14 3 × 10−15 3 × 10−15 5 × 10−16  2 × 10−23 1 × 10−14 7 × 10−17 

0 0.004 0.016 0.004 0.001 0.001 0.003 0.0010 0.007 0.004 

 
Figure 8 shows the averaged numbers of iterations that the algorithm requires before the 

convergence criterion is satisfied for different scenarios and 𝛽 . For 𝛽 = 0.25, 0.5  and 0.75, more 
iterations are needed as the value of 𝛽 increases. However, at 𝛽 = 0, our algorithm terminates at the 
higher numbers of iterations for Scenarios II and III. The main reason to the slow convergences is due 
to the small changes in the mapping parameters from one iteration to another and since 𝛽 = 0, this 
small changes in the mapping parameters have significant influence on the posterior probability.  
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Figure 8: The averaged number of iterations required before the termination criteria are satisfied for 
different scenarios in Example 1 

 
 

Experiment 2 
A QuickBird dataset consisting of one multispectral image (MI) of size 150 × 300 pixels and 

one panchromatic image (PAN) of size 600 × 1,200 pixels was used in this experiment (Figure 9). 
The MI and PAN have resolutions of 2.4 and 0.6 meters, respectively. Both images captured a part of 
Kasetsart University in Bangkok, Thailand, covering around 0.2592 in km2 on July 10th, 2008. By 
visual interpretation, we classified the area into five classes, namely, water, shadows, vegetations and 
impervious type 1 and impervious type 2, and the ground truth image is shown in Figure 10 where 
blue, black, green, red and white colors correspond to water, shadow, vegetation, impervious type 1 
and impervious type 2, respectively. Here, the impervious is divided into two types due to different 
roof and pavement colors in the scene. By using both PAN and MI images, we randomly select 1000 
samples for each land cover classes. 

 
Figure 9: QUICKBIRD dataset of a part of Kasetsart University (a) False color composite MI; and (b) 
PAN 

 

 

 
(a) 

 

 
(b) 
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Figure 10:Ground truth image for Example 2 (green, blue, black, red and white colors for vegetation, 
water, shadow, impervious type 1 and impervious type 2, respectively) 

 
 
In Experiment 2, we focused on the robustness of the proposed algorithm with different degrees 

of the initial displacement, scale and rotation errors. In fact, there are six displacement errors in x-
direction and y- directions, four scale errors and six rotational errors used in this experiment. The 
termination criteria used in this example is similar to those in Example 1, i.e., our algorithm is 
terminated if 𝑝𝑐𝑕𝑎𝑛𝑔𝑒𝑠  (see Eq. (38)) is less than 10−5 and 𝑑𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ,𝑀𝐼  (see Eq. (39)) is less than 0.1 
pixels for five consecutive iterations. Before examining the robustness of our algorithm, we 
determined the benchmark performance of the MRF-based land cover mapping when MI and PAN are 
perfectly registered. The resulting LCMs are shown in Figure 11. Again, as we progress to greater 
values of 𝛽, more connected LCMs are obtained. The overall accuracy graph shown in Figure 12 
agrees with the visual inspection that the classification performance increases as the values of 𝛽 
increases. In this example, we employ the overall accuracy rather than the percentages of mis-
classified pixels used in Example 1 since overall accuracy is more widely used performance metrics in 
remote sensing image classification. 

 
Figure 11: LCMs for the perfect registration case for (a) 𝛽 = 0; (b) 𝛽 = 0.25; (c) 𝛽 = 0.50; and (d) 
𝛽 = 0.75 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 12: Overall accuracies for different values of β when MI and PAN are perfectly aligned 

 
 

Since the PAN has a higher resolution, we assume that it is aligned with the LCM, and we only 
need to find map parameters of the MI. Here, the PAN has a higher resolution than the multispectral 
image by the factor of four, and both MI and PAN are obtained from the same satellite, the optimal 
map parameter vector relating the two images should be equal to  

𝑀𝑜𝑝𝑡 =  0.25,0,0,0.25,0,0 . 
To investigate the robustness of our algorithm to displacement, scale and rotation errors, we 

introduce the registration errors in displacement in x-direction, displacement in y-direction, scale and 
rotation into the MI and PAN pair. If we introduce the displacements into the image pair, the initial 
map parameter is set to be equal to  

𝑀0 =  0.25,0,0,0.25, Δ𝑥, 0  
and 

𝑀0 =  0.25,0,0,0.25,0, Δ𝑦 , 
for displacement errors in x- and y-direction, respectively. Here, the values of Δ𝑥 and Δ𝑦 are set to be 
−5, −3, −1, 1, 3,  and 5. For the scale and rotation errors, we assume that the both images are aligned 
at mid points, i.e., the pixel (75,150) of MI is at a pixel (300,600) of PAN. Next, we apply the initial 
scale errors, Δ𝑠, of−5%, −2.5%, 0%, 2.5% and 5% when comparing with the PAN image to the 
multispectral image. Here, the scale errors of −5%, −2.5%, 0%, 2.5% and 5% correspond to the 
initial scales of PAN to MI of 3.8, 3.9, 4.0, 4.1 and 4.2, respectively. For rotation errors, we rotate the 
MI by Δ𝜃 degrees in the counter clockwise direction. Here, the initial rotation errors Δ𝜃 are set to be 
−3°, −2°, −1°, 1°, 2°, and 3°. The initial RMSEMI (see Eq. (41)) for all cases are given in Table 10. 
Again, if our algorithm performs perfectly, the estimated map parameter will converge back to 𝑀𝑜𝑝𝑡 . 
In other words, we will eventually have 𝑀𝑡 = 𝑀𝑜𝑝𝑡 . Once the correct map parameter vector is 
obtained, the classification accuracies of the LCMs should be equal to that in the perfect registration 
cases (Figure 11 (a)-(d)). In this example, we again assign 𝑝𝑀𝐹 𝑥𝑠 𝒀, 𝑴0 =

1

5
 , the most extreme case 

where no prior information is given. 
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Table 10: The initial RMSEMI in meters (pixels in LCM) for various cases in Example 2 
Error in x- direction Error in y- direction Error in scale Error in Rotation 

Δ𝑥 RMSEM Δ𝑦 RMSEM Δ𝑠 RMSEM Δ𝜃 RMSEM 

-5 12 (20) -5 12 (20) -5% 21.3 (36) -3 11.12 (19) 

-3 7.2 (12) -3 7.2 (12) -2.5% 10.7 (18) -2 7.45 (12) 

-1 2.4 (4) -1 2.4 (4) 0% 0.0 (0) -1 3.72 (6.2) 

1 2.4 (4) 1 2.4 (4) 2.5% 10.7 (18) 1 3.72 (6.2) 

3 7.2 (12) 3 7.2 (12) 5% 21.3 (36) 2 7.45 (12) 

5 12 (20) 5 12 (20)   3 11.12 (19) 

 
The overall accuracies as the function of Δ𝑥, Δ𝑦, Δ𝑠, and Δ𝜃  are shown in Figure 13 (a)-(d), 

respectively. From all most all scenarios, the overall accuracies increase as the value of 𝛽 increase 
since the MRF model promote more connected land cover maps, and, therefore, remove the isolated 
misclassified pixels. However, for Δ𝑥 = 5  and Δ𝑦 = 5 , the overall accuracies of our algorithms 
decrease as 𝛽 increases. The main reason to these performance degradations are due to the fact that our 
algorithm terminate on one of the local optima since the EM algorithm employed in our work cannot 
guarantee the global optimum solution. The evidence can be seen in Figures Figure 14 (a) and (b). In 
Figure 14 (a), we observe that, in almost all of the initial values of Δ𝑥, the number of iterations 
increases as the value 𝛽 increases. However, for Δ𝑥 = 5.0, our algorithm terminates at only 75, 109 
and 129 iterations for 𝛽 = 0.25, 0.5 and 0.75 whereas, for 𝛽 = 0.0, our algorithm terminates after 180 
iterations. Similarly, we observe the same phenomenal in Figure 14 (b) for Δ𝑦 = 5.0  where the 
algorithm terminates at the lower number of iterations for 𝛽 = 0.75 than 𝛽 = 0.0, 0.25 and 0.50. This 
result shows the effect of the initial registration errors to the convergence of our algorithm. In most 
practical situation, such an large initial registration errors is unlikely to occur since most remote 
sensing images are embedded with coordinate information from a producer.   
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Figure 13: The effect of initial registration errors to the overall accuracies 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14: The effect of the initial registration errors to the number of iterations 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Similar to previous example, we also compare the performance of our proposed algorithm (PA) 
with two extreme cases where images are perfectly registered (PR) and there is no registration error 
correction (NC) and the results are given in Tables 11-14. From this comparison, we observe that if our 
algorithm converges to the global optimum solutions, the resulting overall accuracies from our 
proposed algorithm are similar to those of the perfect registration cases, and the significant 
improvements are obtained from the cases where there is no registration error correction. The 
maximum performance improvements from no registration error correction for each cases are 12.6% 
for Δ𝑥 = −5 and 𝛽 = 0.75, 12.4% for Δ𝑦 = −5 and 𝛽 = 0.75, 17.4% for Δ𝑠 = −5% and 𝛽 = 0.75, 
and 14.9% for Δ𝜃 = 3° and 𝛽 = 0.75. We observe that the maximum improvements are achieve at 
𝛽 = 0.75. This observation suggests that a higher performance gain can be obtain by increasing the 
value of 𝛽. Next, we also notice that our proposed algorithm can sometimes achieve even higher 
accuracies than those of the prefect registration cases. The reason is due to the fact that our algorithm 
requires more iterations than the scenarios where image pair is perfectly registered since our algorithm 
terminates if both the estimated map parameters and the resulting LCM converge whereas, in the 
perfect registration case, the process terminates if only the resulting LCM converges. Hence, our 
algorithm may terminate at lower percentages of changes in the LCM, and result in more accurate 
LCM which results in higher precision.  

 
Table 11: Overall accuracies for different values of β on two extreme cases and our proposed 
algorithm for different initial displacement error in x-direction Δ𝑥 where PA and NC denote the cases 
of the proposed algorithm and no registration error correction, respectively. 
𝛽 PR Δ𝑥 = −5.0 Δ𝑥 = −3.0 Δ𝑥 = −1.0 Δ𝑥 = 1.0 Δ𝑥 = 3.0 Δ𝑥 = 5.0 

PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.7 57.6 67.8 62.2 67.7 66.9 67.8 66.7 67.7 61.8 67.8 57.0 

0.25 69.4 70.0 58.8 69.8 63.7 69.8 68.6 69.9 68.3 70.0 63.4 59.3 58.4 

0.5 70.3 71.8 59.7 71.4 64.6 70.6 69.6 70.9 69.2 71.5 64.4 60.2 59.2 

0.75 71.1 72.8 60.2 72.2 65.2 71.5 70.3 71.8 70.0 72.7 65.0 60.4 59.9 

 
 
Table 12: Overall accuracies for different values of β on two extreme cases and our proposed 
algorithm for different initial displacement error in y-direction Δ𝑦 where PA and NC denote the cases 
of the proposed algorithm and no registration error correction, respectively. 
𝛽 PR Δ𝑦 = −5.0 Δ𝑦 = −3.0 Δ𝑦 = −1.0 Δ𝑦 = 1.0 Δ𝑦 = 3.0 Δ𝑦 = 5.0 

PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.7 57.6 67.7 62.2 67.7 66.9 67.7 66.7 67.7 61.8 67.8 57.0 

0.25 69.4 69.9 58.8 69.9 63.7 69.8 68.6 70.1 68.3 70.1 63.4 70.3 58.4 

0.5 70.3 71.6 59.7 71.2 64.6 70.5 69.6 71.8 69.2 71.8 64.4 68.6 59.2 

0.75 71.1 72.5 60.1 71.9 65.2 71.2 70.3 73.4 70.0 73.4 64.9 62.9 59.9 
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Table 13: Overall accuracies for different values of β on two extreme cases and our proposed 
algorithm for different initial scale error Δ𝑠  where PA and NC denote the cases of the proposed 
algorithm and no registration error correction, respectively. 
𝛽 PR Δ𝑠 = −5% Δ𝑠 = −2.5% Δ𝑠 = 0% Δ𝑠 = 2.5% Δ𝑠 = 5% 

PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.8 52.7 67.7 61.0 67.7 67.5 67.8 64.9 67.8 57.8 

0.25 69.4 69.6 53.4 69.5 62.4 70.0 69.4 70.3 66.1 70.2 58.9 

0.5 70.3 71.1 54.2 70.6 63.3 71.0 70.3 71.6 67.0 72.1 59.7 

0.75 71.1 72.1 54.7 71.5 64.2 71.1 71.1 72.7 67.6 73.4 60.1 

 
Table 14: Overall accuracies for different values of β on two extreme cases and our proposed 
algorithm for different rotation error Δ𝜃 where PA and NC denote the cases of the proposed algorithm 
and no registration error correction, respectively. 
𝛽 Perfect 

registration 
Δ𝜃 = −3° Δ𝜃 = −2° Δ𝜃 = −1° Δ𝜃 = 1° Δ𝜃 = 2° Δ𝜃 = 3° 

PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.6 57.3 67.6 60.8 67.6 65.3 67.7 64.8 67.7 59.8 67.8 55.5 

0.25 69.4 69.9 58.5 69.8 62.2 69.7 66.9 69.9 66.5 69.7 61.1 69.8 56.6 

0.5 70.3 71.6 59.3 71.4 63.0 71.0 67.8 71.1 67.4 71.4 62.0 71.5 57.4 

0.75 71.1 73.0 59.7 72.3 63.6 71.9 68.4 71.9 68.1 72.5 62.6 72.9 58.0 

 
Another key performance metric of our algorithm is the resulting registration errors. Figure 

15(a)-(d) show the residue registration errors in term of RMSE (in meters) between the MS image and 
the LCM for different initial registration errors. We observe that, if our algorithm converges to the 
global optimum solutions, it can successful reduce the registration error down to around 1.8 meters in 
the LCM (or equivalently 0.75 pixels on MS image and 3 pixels on PAN image and LCM). These 
results imply that our algorithm can align images together to the accuracy less than those of the lowest 
resolution (here is MS image). For each initial registration error cases, the minimum RMEs of 1.718 
(2.86 pixels in the LCM) meters for Δ𝑥 = 1.0, 1.672  (2.79 pixels in the LCM) meters for Δ𝑦 = 1.0, 
1.730 (2.88 pixels in the LCM) meters for Δ𝑠 = 0% and 1.704 (2.84 pixels in the LCM) meters for 
Δ𝜃 = −1° occurs at 𝛽 = 0.75. These results suggest that, if our algorithm converges, the larger value 
of 𝛽 increases the accuracy of registration as well as the classification. However, for the cases of Δ𝑥 = 
5.0 and Δ𝑦 = 5.0, our algorithm cannot register the MS image to the LCM since our algorithm is stuck 
in one of the local optima. The residue registration errors for Δ𝑥 = 5.0 are 1.896 (3.16), 10.96 (18.3), 
11.14 (18.6), and 11.41 (19.0) meters (pixels in the LCM), and for Δ𝑦 = 5.0 are 1.827 (3.05), 1.834 
(3.06), 3.133 (5.22) and 11.57 (19.3) meters (pixels in the LCM) for 𝛽 = 0.0, 0.25, 0.50, and 0.75, 
respectively. Here, the initial displacement error corresponds to the RME of 20 pixels in the LCM. 
Such a large initial RME are only found when remote sensing images have significant different in 
spatial resolutions. LCMs derived from remote sensing image dataset with such a large scale difference 
are often unreliable and not often found in practice.  
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For performance comparison, we apply the normalized cross correlation method [25] to register 
PAN and MS images together and the resulting RME is equal to 1.836 meters or 3.06 pixels in the 
LCM. From Figures 15(a)-(d), we found that, with proper parameter selections and the initial 
registration errors, our proposed algorithm can achieved higher registration accuracy than those from 
the normalized cross correlation method. For example, our algorithm obtains the registration errors of 
1.718 (2.86 pixels) meters for 𝛽 = 0.75  and Δ𝑥 = 1, 1.671 (2.79 pixels) meters for 𝛽 = 0.75  and 
Δ𝑦 = 1, or 1.702 (2.84 pixels)meters for 𝛽 = 0.75 and Δ𝜃 = −1°. 

 
Figure 15: The effect of the initial registration errors to the residue registration error of our proposed 
algorithm in Example2 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
 
6. Conclusion 
 
In this paper, we propose a joint image registration and land cover mapping algorithm based on a 
Markov random field model. The algorithm assumes that observed remote sensing images are derived 
from a hidden LCM and captured with an unknown misalignment. Two adjacent pixels of the LCM are 
more likely to belong to the same land cover class than different classes. By integrating this fact into 
the model, a large number of misclassified pixels, which often appear as isolated pixels, are removed 
from the resulting LCM. Since the map parameter vector relating the different images is unknown, we 
employ the EM procedure to simultaneously estimate the map parameters and use mean field theory to 
approximate the posterior probability.   
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We performed an experimental study using one simulated dataset, and one real remote sensing 
data set of 2.4m QUICKBIRD multispectral and 0.6m QUICKBIRD panchromatic images. Our results 
show that, for the first data set, our algorithm can successfully classify image pairs and align them in 
different initial registration errors with proper selection of the MRF parameter. In fact, if the MRF 
parameter is chosen properly, our algorithm can classify mis-registered image pair with similar 
accuracy to the situation where images are perfectly aligned. For the real remote sensing dataset, we 
focused the investigation on the robustness of our algorithm to the initial alignment of image pair. The 
study showed that our algorithm is less sensitive to the initial alignment when value of the MRF 
parameter, 𝛽 is small since the EM algorithm tends to converges faster. However, if the degree of 
misalignment is beyond a certain level, our algorithm cannot estimate the map parameter vector 
accurately since the EM algorithm employed here tends to become trapped in a local optimum. Hence, 
in the future we plan to investigate how to incorporate another variation of the EM algorithm that can 
escape from local optima in order to make our algorithm more robust. 
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This paper presents a new method for fusion and registration of THEOS (Thailand Earth 
Observation Satellite) multispectral and panchromatic images in a single step. In the usual 
procedure, fusion is an independent process separated from registration. However, both image 
registration and fusion can be formulated as estimation problems. Hence, the registration 
parameters can be automatically tuned so that both fusion and registration can be optimized 
simultaneously. Here, we concentrate on the relationship between low-resolution multispectral and 
high-resolution panchromatic imagery. The proposed technique is based on a statistical model. It 
employs the maximum a posteriori (MAP) estimator to solve the fusion problem, and applies the 
Metropolis algorithm to solve the joint optimization problem. A closed-form solution to find the 
fused multispectral image with correcting registration is also derived here. In our experiment, a 
THEOS multispectral image with high spectral resolution and a THEOS panchromatic image with 
high spatial resolution are combined to produce a multispectral image with high spectral and 
spatial resolution. The results of our experiment show that the proposed fusion and registration 
algorithm can produce high quality high-resolution multispectral images from low-resolution 
multispectral and high-resolution panchromatic images even when they are severely mis-
registered. 

 

1. Introduction 

Many applications such as vegetation mapping, environmental monitoring, mineral mapping, 
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oil exploration, hydrology, disaster response and agricultural yield prediction cannot be 

successful without the information provided by remote sensing images. The use of remote 

sensing data is increasing due to the increasing availability of high quality images with a 

reasonable cost and the declining price of computational power.  

Current applications continue to demand data with higher spatial and spectral precision to 

generate even more spatial detail in maps with many different land cover classes. These 

requirements can be fulfilled either by building new satellites with superior resolution or by 

utilizing image processing techniques. The main advantages of the second approach are its lower 

cost and greater timeliness. It is not necessary to wait for a new satellite to be designed, built and 

launched.  

The fusion of multi-sensor image data is a widely used procedure for enhancing information 

extraction. Fusion uses already-existing data from different sources, acquired at different times, 

or captured by different sensors, to produce higher resolution data. When high spatial resolution 

data are merged with the high spectral resolution data, the fused image has both finer spatial and 

finer spectral resolution. 

Image fusion algorithms can be divided into three categories, namely, feature-based, pixel-

based and transform-based methods. The feature-based methods first segment input sources into 

homogeneous regions by using some segmentation techniques (Clausi and Deng, 2004; Shi and 

Manduchi, 2003) according to texture characteristics. Next, a data combination algorithm 

combines texture information from different images together to produce a texture-enhanced 

image. The transformation-based methods convert the input images into a common transformed 

domain, such as intensity-hue-saturation (IHS) (Carper, 1990), principle components (PCA) 

(Chavez and Kwarteng, 1989), Brovey (Civco et al., 1995), 2D wavelet (Gomez et al., 2001; 
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Gonzalez et al., 2004; Amolins et al., 2007), 3D wavelet (Zhang and He, 2007), pyramids (Liu et 

al., 2001) or high pass filtering (Shettigare, 1992). Image fusion is performed by combining the 

transform coefficients from all images. After that, the combined image is transformed by the 

inverse-transformation into the original image space. In the pixel-based methods (Petrovic and 

Xydeas, 2004; Xia and Kamel, 2007), a pixel in the fused image is determined from a set of 

pixels from the input sources. For example, Hardie (Hardie et al., 2004) and Li (Li and Leung, 

2009) applied statistical models to a pixel-based approach where intensity values form 

corresponding pixels from fusing images statistically depend on the intensity value of a fused 

image. The approach detailed in this paper is also pixel-based and use a statistical model. 

Image registration is the process of transforming different sets of data into a single coordinate 

system. Data may come from different sensors, from different times, or from different 

viewpoints. Current registration methods can be classified into three categories, feature-based, 

transform-based, and intensity-based methods (Zitova and Flusser, 2003). The feature-based 

approaches usually extract geometric features, also known as control points, such as intersections 

and landmarks, and use a least square criterion to estimate the registration parameters (Arun et 

al., 1987; Umeyama, 1991). The transform-based methods work with images in the frequency 

domain (Reddy and Chatterji, 1996; Stone et al., 2003) to compute the registration parameters by 

utilizing the properties of translation and rotation under the Fourier transform. In intensity-based 

methods, the registration parameters are estimated by maximizing some similarity measure 

between pixel values of the input images. Normalized cross-correlation (Van Den Elsen, 1994), 

LS (Thevenaz, 1998), and maximum likelihood (ML) (Costa, 1993) are some popular criteria 

used to measure similarity. 

Although many algorithms have been proposed for image registration and image fusion, the 
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operations are traditionally viewed as two independent processes. More precisely, image 

registration is normally performed first, followed by image fusion, which usually assumes that 

perfect registration has been achieved (Petrovic and Xydeas, 2004; Xia and Kamel, 2007; 

Zhengnd et al., 2007). However, in practice, the registration process is not guaranteed to be 

error-free, and this registration error can negatively affect the fusion performance. The quality of 

fused images degrades significantly when the multispectral and panchromatic images are not 

perfectly registered.  

The work by Siyue (Siyue et al., 2010) attempts to join the fusion and registration processes 

together by using the expectation maximization (EM) algorithm. However, they assume that the 

intensity value in each pixel of the high spatial resolution image can be selected from any one of 

the fused images. In the case of spatial enhancement, the intensity values of the fused image 

should follow the intensity values from the multispectral image only. As a result, the algorithm 

proposed in (Siyue et al., 2010) is not suitable for spatial enhancement by combining 

multispectral and panchromatic images (so called “pan-sharpening”). In pan-sharpening, the 

fused image must have the same color distribution as the multispectral image but contain the 

spatial detail from the higher resolution panchromatic image. 

In this paper, we develop the maximum a posteriori (MAP) estimator (Kay, 1993) to 

simultaneously fuse and register multispectral and panchromatic images to produce a high-

resolution multispectral image. Here, we focus on the use of high-resolution panchromatic data 

to enhance multispectral imagery. However, the estimation framework developed here can be 

extended for any number of spectral bands in the primary and auxiliary sensors. The proposed 

technique is suitable for applications where some correlation, either localized or global, exists 

between the auxiliary image and the image being enhanced. A spatially varying statistical model 
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is used to help exploit localized correlations between the primary and auxiliary image. Another 

important aspect of the proposed algorithm is that it uses an accurate observation model relating 

the “true” scene to the low-resolution observations. This means that a potentially wavelength-

dependent spatially-varying system point spread function (PSF) can be incorporated into the 

estimator. 

The paper is organized as follows. Section I describes the study area and dataset for our 

experiment. Section II gives the details of the observation model relating low-resolution 

multispectral and high-resolution panchromatic images. Section III introduces the maximum a 

posteriori (MAP) estimator for fusing images and the Metropolis algorithm for solving the joint 

optimization problem. In Section IV, experimental results are presented and discussed. Finally in 

Section V, we offer our conclusions. 

2. Observation Model 

Let           be a fine resolution multispectral image (FRMI) having M  pixels and B  

bands where   is a real number. Here,             denotes a set of pixels registered to some 

real world scene. The fine resolution multispectral image is usually represented in a vector form 

so that,          is a fine resolution multispectral vector (FRMV) containing intensity values 

of a pixel is  in the FRMI from all spectral bands. Here, we assume that the FRMVs from different 

pixels are statistically independent, and have identical multivariate Gaussian distribution with a 

mean vector, Xμ , and a covariance matrix, XC . The marginal probability density function (PDF) 

of the FRMI can therefore be written as   
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We omit   for the sake of abbreviation. In this paper, we assume that the direct observation of the 

FRMI is impossible, but we, instead, observe the coarse resolution multispectral image (CRMI), 

and the panchromatic image (PI) of the same scene.  

Let           be the CRMI with N M  pixels and B  bands where             is 

a set of pixels belonging to the CRMI. Since both CRMI and FRMI are taken from the same 

scene, the relationship between   and   can be determined. Let us denote a coordinate of a pixel s 

in a FRMI as ( , )x y  where x  and y  are the row and column of ( )sx . Similarly, we can write 

 ,t u v  where u  and v  are the row and column of the pixel t  in the CRMI. Hence, the 

relationship between s  and t  can be written as  

  
 
 
   

          
           

  
 
    

  

  
  (2)  

where  ,  , dx , and dy  are scale, rotation angle, translation in column direction and translation 

in row direction between a pixel coordinates   and t , respectively. We denote 

            as the parameter vector. In practice, since the panchromatic and 

multispectral images are captured from the same satellite, they are already somewhat pre-

registered to each other within the predefined accuracy range. As a result, the parameter vector 

can be assumed to be uniformly distributed within the defined set, i.e, 
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  

1 ,  Ω
ΩPr

0,      otherwise





 



ω
ωω  (3)  

where Ωω  is the set of all possible values in the parameter space. If the parameter vector is 

known, the CRMI can be remapped and resampled into the coordinate system  . As a result, let us 

denote       as the remapped version of CRMI into  . Clearly both      and       have equal 

numbers of pixels and spectral bands. However,      has finer and clear detail than       since 

all the remapping algorithms use only information from the coarser resolution image. We model 

this loss of finer and clearly detail as additive noise, i.e.,  

     ( )m Cs s s y x n  (4)  

where          is the vector containing intensity values from all bands of the remapped 

CRMI, and          is the additive noise vector. We assume further that noise vectors from all 

pixels are independent and Gaussian distributed with a zero mean vectors and a covariance 

matrix, CC . Hence, the conditional PDF of      give      and the map parameter is given by  

                    Pr | , Pr |   m
s S

Y X s s


ω y x  

  
         

 

1 

2

1exp
2

2

T
m i i C m i i

B
s S

C

s s C s s

C





 
   
 

y x y x
 (5)  

 

Next, let           be the observed panchromatic image (PI) having M  pixels and only 

one band. Here, we assume that the PI has the same resolution as the FRMI and is perfectly 
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registered with the coordinate system of FRMI. We assume further that the PI is the weighted 

band summation of the FRMI plus an additive noise, i.e.,  

     ( )T
zz s s n s w x  (6)  

where ( )z s  is the observation of the PI at the pixel s ,  1
T

Bw ww  is weight vectors, and 

( )zn s  is the additive noise to the PI. Again, we also assume that noise values for all the pixels are 

independent and Gaussian distributed with a zero mean and a variance, 2
z , and that they are also 

independent of  .C sn  Hence, the conditional PDF of ( )Z S  give ( )X S  is given by  

                    Pr | Pr |
s S

Z X z s s


 x  

  
    2

1  
2

2

1
2

T

z
z s s

s S z

e 



 




w x

 (7)  

We formulate the image fusion problem as an M-ary hypothesis testing problem where each 

hypothesis corresponds to a different FRMI. Furthermore, since we formulate our problem as an 

M-ary hypothesis testing problem, techniques developed to solve signal detection problems can 

be employed. We provide our methodology in the next section. 

3. Optimum Image Fusion 

The maximum a posteriori (MAP) criterion (Kay, 1993) is used for solving the above 

problem in our work. This criterion is expressed as  

                 
      

               (8)  
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From Bayes’ rule and assuming conditional independence of Y and Z given X and ω , Eq. (8) can 

be rewritten as 

                 
      

 
                       

       
   (9)  

Since  Pr ,Y Z  is independent of the choice of  ,X ω , it can be omitted and above equation 

reduces to  

                 
      

                           (10)  

By assuming further that X  and ω  are statistically independent, and substituting Eq. (1), Eq. 

(5), and Eq. (7) into Eq. (10), we have  

                 
      

                              

   

                 (11)  

Eq. (11) can be rewritten as  

                 
      

                           

 

          (12)  

where  

      1 1 1, ln 2 ln
2 2 2

T
Y m m C m C

BE C C    y x y x y x  (13)  

 
      

2 2
2

1 1 1, ln 2 ln
2 2 2

T
z P

z

E z z s s  


   x w x  (14)  

and  
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        1 1 1ln 2 ln
2 2 2

T
X i X X i X X

BE x s C s C    x μ x μ  (15)  

Again, we omit the term s  for sake of abbreviation. Since the terms, ln 2
2
B

 , 1 ln
2 CC , 21 ln

2 P , 

ln 2
2
B

 , 1 ln  
2 XC  are just constants, they can be ignored. Therefore, the optimum image fusion 

becomes  

                
      

  
 

 
           

         
       

  
 

 

       
   

                   

(16)  

The above equation can be modified to  

                
      

  
 

 
                

 
  
                 

 

          (17)  

where  

 
1

1 1
2

T

S X C
z

wwC C C




  
   
 

, (18)  

and   

   1 1
2, ,s m X s X X C m
z

wz C C C z


  
   

 
μ y μ μ y  (19)  

Next, we define the energy function  ,E X   as the negative of the argument inside Eq. (19), 

i.e.,  
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        (20)  

The optimum joint image fusion and registration problem becomes the energy minimization 

problem, i.e., 

                 
      

        (21)  

        For a given map parameter vector  , the optimum FRMI can be obtained by taking 

derivative of Eq. (20) with respect to x , and the optimum FRMV is given by 

  , ,s m Xzx μ y μ  (22)  

We note here that our result in Eq. (22) is similar to the work by Hardie (Hardie, 2004). However, 

in their work, images to be fused are assumed to be perfectly aligned.  

In order to obtain the map parameter, we need to find minimize Eq. (20) with respect to  . 

However, the derivative of Eq. (21) with respect to the   map parameter vector is very difficult 

to obtain analytically. Furthermore, the energy function        is an extremely non-convex 

function. Hence, a gradient based approach cannot be used since the resulting map parameter will 

very likely become stuck in one of many local optima. Instead, we employ the Metropolis 

algorithm (Diaconis and Salo-Coste, 1998) for determining the optimum map parameter vector.  

The Metropolis algorithm is a stochastic search method where, at each iteration, a new value of 

n  is randomly proposed. If    results in a better fit (lower energy function), it is accepted, and 

the Metropolis algorithm sets     . However, even if    corresponds to a higher energy 

value,    is still accepted with some probability. These random moves allow the Metropolis 
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algorithm escape from local optima. By employing the Metropolis algorithm, the optimization 

algorithm can be written as  

1. Set               , 1h  , and 
 

0

log 1
TT
h




  where    and    are the initial FRMI 

and map parameters,  h  is the iteration number, 0T  is the initial temperature.   

2. Find a FRMI by using Eq. (23), and Let   be the resulting FRMI.  

3. Use Eq. (21) to compute energy function and assign            .  

4. A new map parameter    is drawn from Eq. (3) and the corresponding energy function 

         is computed using Eq. (22). 

5. Assign      with probability              
               

 
  . 

6.   Set 1h h   and 
 

0

log 1
TT
h




. Go to (2) if maxh h  . 

We observe that as the number of iteration increases to infinity, the temperature T  decreases to 

zero. This implies that, after a small number of iterations, the Metropolis algorithm is likely to 

accept almost any proposed map parameter. However, when the number of iterations becomes 

large, the Metropolis algorithm prefers to accept the map parameter that results in a better fit 

(lower energy function). The convergence of the Metropolis algorithm to the global optimum 

regarding the choice of the initial map parameter and FRMI is guaranteed if 0T  is sufficiently 

large. However, this value is often too large to be practically implemented. Nevertheless, in our 

problem, the initial map parameters and FRMI are not far from the global optimum since both 
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multispectral and panchromatic sensors are mounted on the same satellite. Figure 1 summarizes 

the proposed optimization algorithm in this paper.  

[Figure 1 about here.] 

 

4. Experimental Results 

To examine the performance of the proposed algorithm, we used various image scenes  from 

many parts of Thailand, namely, city (Figure 2), drought (Figure 3), agriculture (Figure 4), 

mountain (Figure 5) and seashore (Figure 6) areas. Table 1 summarizes the detailed information 

for all the scenes used in this experiment. Multispectral and panchromatic images were acquired 

by THEOS, an Earth observation mission of Thailand, developed at EADS Astrium SAS, 

Toulouse, France. THEOS was launched from Dombarovskiy, Russia at 06:37 GMT on 1 

October 2008, by a Dnepr rocket. 

[Figure 2 about here.]   

[Figure 3 about here.]    

[Figure 4 about here.]   

[Figure 5 about here.]   

[Figure 6 about here.]   

 

[Table 1 about here.]    

The THEOS imagery products include optical and near infrared spectroscopy as four 
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multispectral bands, plus panchromatic images. The THEOS satellite orbit parameters are 

summarized in Table 2. Panchromatic products provide 2 meter resolution (at nadir) and 8 bits 

information depth. The output scene is a square scene of 22 km. x 22 km, and covers 

wavelengths ranging from 450 to 900 nm as shown in Figure 7. The multispectral products 

provide 15 meter resolution (at nadir) and 8 bits information depth. All four bands are delivered 

as one file. The output scene is a square scene of 90 km. x 90 km. Wavelength ranges are 450-

520 nm for the blue band, 530-600 nm for green, 620-690 nm for red, and 770-900 nm for near 

infrared as  shown in Figure 7. Table 3 summaries the information on multispectral and 

panchromatic images provided by the THEOS satellite.  

[Table 2 about here.]   

[Figure 7 about here.]   

[Table 3 about here.]   

Since our algorithm performs both image fusion and registration at the same time, the 

performance of our algorithm can be evaluated in terms of how far off the fused image is from 

the actual FRMI, that is, the estimation error between the actual parameters that map between the 

panchromatic and multispectral image pair and the estimated ones. If our algorithm performs 

perfect registration and fusion, the fused image will be exactly equal to FRMI and the estimation 

error will be zero. In order to measure this key performance metric, we need to know both actual 

FRMI and the map parameters. However, since we use observed THEOS multispectral and 

panchromatic images in this experiment, the actual FRMI is unknown. As a result, we treat the 

observed multispectral image as the reference FRMI, and perform the proposed image fusion 

algorithm on resampled multispectral and panchromatic image pairs. In this experiment, we 
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resample multispectral and panchromatic images to 112.5 and 15 meters resolution, respectively. 

The resampled images have a resolution of 7.5 times lower than the original ones. After fusing a 

112.5 meter multispectral image with a 15 meter panchromatic image, we obtain the fused 

multispectral image at 15 meter resolution which can be compared with the observed 

multispectral image. 

Next, since our algorithm is designed to fuse unregistered image pairs, we would like to 

investigate the performance of our algorithm for different scenarios of initial registration errors. 

We would like to vary the relationship between the multispectral and panchromatic images in a 

pair by applying different values of displacements and rotations. However, since multispectral 

and panchromatic sensors are located at different locations on the THEOS satellite, their images 

are not perfectly aligned to start with. To be sure that we can precisely measure the amount of 

mis-registration we introduce, we manually register all multispectral and panchromatic image 

pairs first, using nine or more ground control points with the second-order polynomial 

transformation. The resulting root mean square errors were less than 0.0002 pixels for all images.   

For the sake of brevity, we provide the details of our experiment only for the case of the 

city area image. The other cases followed the same steps. The multispectral (Figure 2) and the 

panchromatic (Figure 8) image pair were degraded by resampling to 112.5 (Figure 9) and 15 

(Figure 10) meters resolution respectively. Then we fused the degraded images with our 

proposed algorithm to obtain a 15 meter-resolution multispectral image. We use the original 15-

meter resolution multispectral image as the “ground truth” – that is, the (actually unobservable) 

FRMI. Hence, in our experiment, the resulting fused image is compared with the original 

multispectral image. If our algorithm performs perfect registration and fusion, the resulting mean 
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square error (MSE) between the resulting FRMI and the original multispectral image will be 

zero.  

In all of our experiments, the original multispectral and panchromatic registered images 

are of size 750750 and 56255625, respectively. Since the resolution ratio of the multispectral 

to the panchromatic is 15/2 or 7.5, we need 7.5 times as many panchromatic pixels as 

multispectral pixels to cover the same spatial extent. 

[Figure 8 about here.]   

[Figure 9 about here.]   

[Figure 10 about here.]   

Mis-registration errors were deliberately introduced into the degraded image pairs. Here, 

the affine transformation was used and there were four parameters, namely scale factor  , 

rotation angle   in degree, displacement in column direction    in pixel, and displacement in 

row direction    in pixel. Table 4 summarizes all mis-registration errors introduced in this 

experiment. Note here that mis-registration in the scale dimension was not investigated in this 

paper since images are taken from the same satellite at the same time. Figure 11 shows a 

panchromatic image distorted by 3 degrees of rotation, 3 pixels of displacement in the column 

and 3 pixels of displacement in the row.   

[Table 4 about here.]   

[Figure 11 about here.]   

To find the appropriate benchmark for our algorithm, we first fuse the registered image 

pair by using Eq. (23) and compare it to the FRMI from manual registration as shown in Figure 
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12. We note here that our algorithm and the work by Hardie are equivalent if no registration error 

is considered. In other words, the benchmark scenario is when we apply Hardie algorithm 

directly to multispectral and panchromatic image pairs. The corresponding MSE compared to the 

original multispectral image was equal to 7.2465.  

To generate the initial FRMI for our algorithm for the non-benchmark case, we fused a 

mis-registered image pair using Eq. (23) and used it as the initial FRMI. An example of the 

initial FRMI for the case of 3 degrees of rotation, 3 pixels of displacement in column and 3 

pixels in row is illustrated in Figure 13. It is obvious that the initial FRMI appears to be blurred 

and does not contain any sharp edges. Next, we submit the initial FRMI to our algorithm and 

iteratively refine it by applying different sets of transformation parameters as selected by the 

algorithm . Here, we set 0 0.1T  , 500maxh   iterations. The covariance matrices of the noise 

introduced by resampling to create the CRMI from different spectral bands are assumed to be 

statistically independent with variance of 25, i.e., 25CC I  where I  is the identity matrix. 

Figure 14 displays the resulting FRMI for the case of 3 degrees of rotation, 3 pixels of 

displacement in column and 3 pixels in row. By visual inspection, we can observe that the 

resulting FRMI looks very similar to FRMI when perfect registration is obtained.  

The results summarized in Table 5 clearly show that our algorithm can move the map 

parameters closer to the correct values. We note here that, for all cases, our algorithm achieved 

lower RMSE values than those of the manual registration. These results imply that the manual 

registration that we performed may not have been perfect after all. Some tiny registration errors 

may still be present in the registered image pair. 

[Figure 12 about here.]    
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[Figure 13 about here.]   

[Figure 14 about here.]    

[Table 5 about here.]   

Before testing our proposed algorithm with other image scenes, we examined our 

hypothesis that the gradient search optimization approach cannot be applied to this problem by 

varying the displacement in column direction,   , and computing the energy function from Eq.21. 

The result is shown in Figure 15. We observed that there are many local optima as expected. 

Next, we plotted the energy function produced from our algorithm against the number of 

iterations as shown in Figure 16. It is obvious that our approach continuously achieved lower 

energy values as the number of iterations increased. This result illustrates the success of the 

Metropolis algorithm employed in this research.  

[Figure 15 about here.]   

[Figure 16 about here.]   

Next, we investigated the other scenes. The resulting MSE and map parameters are summarized 

in Tables 6-9, for drought, agriculture, mountain, and seashore scenes. It is clear that the results 

from all cases are similar. Our algorithm can successfully move the map parameters closer to 

correct values regardless of the size of mis-registrations. Furthermore, in most cases, the 

resulting FRMIs from the proposed algorithm yield lower RMSE values compared to the perfect 

registration case. This suggests that our algorithm finds errors remaining after manual 

registration. 

[Table 6 about here.]   
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[Table 7 about here.]    

[Table 8 about here.]   

[Table 9 about here.]   

5. Conclusion 

This paper has developed a method to simultaneously register and fuse THEOS 

multispectral and panchromatic images. The fusion and registration are executed in a single step.  

Our algorithm is based on a statistical model. In the estimation strategy, a MAP criterion 

is employed for estimation from the observation model to produce the fused image. The 

Metropolis algorithm is used to solve the joint optimization problem. A closed-form solution of 

the fused images with registration is also derived in this paper. 

In our experiment, we compared the performance of our proposed fusion and registration 

technique with a fusion algorithm without correcting registration. The experimental results 

confirm that our proposed fusion and registration technique provides good performance in both 

of spatial and spectral resolution. The root mean square errors between the simulated FRMI and 

the fused image are lower than for the Hardie algorithm for the case of perfect registration for all 

image scenes. We believe that the manual registrations of panchromatic and multispectral image 

pairs are not perfect and these registration errors affect the performance of the Hardie algorithm 

for all image scenes although our proposed algorithm and Hardie algorithm are similar for the 

case where no registration is performed. 
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Figure 1. Flowchart of the proposed algorithm 

 

 

 

 

 

 

Affine Transform 

 

Generate a new FRMI based on Metropolis algorithm 

 

Fused Image 

 

Parameter Correction 

 
maxh h ? 

 

Initial Parameters 

 

No 

 

Yes 

 

Low-resolution Multispectral Image 

 

High-resolution Panchromatic Image 

 



24 

 

 

 

 

 

Figure 2. 750x750 THEOS multispectral image of city area 
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Figure 3. 750x750 THEOS multispectral image of drought area  
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Figure 4. 750x750 THEOS multispectral image of agriculture area 
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Figure 5. 750x750 THEOS multispectral image of mountain area 
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Figure 6. 750x750 THEOS reference multispectral image of seashore area  
 

 
 

 

Figure 7. Ideal spectral response of THEOS 
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Figure 8: Panchromatic image of the city scene of size 56255625 pixels 
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Figure 9: Degraded multispectral image of city scene at 112.5112.5 meters resolution of size 
100100 pixels 
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Figure 10: Degraded panchromatic image of the city scene at 1515 meters resolution of size 
750750 pixels 
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Figure 11: Degraded panchromatic image with mis-registration error of 3 degrees of rotation, 3 
pixels of displacement in column and 3 pixels in row 
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Figure 12. THEOS fused multispectral image with city area and750x750 pixels 
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Figure 13.THEOS initial fused multispectral image obtained by applying Hardie algorithm to the 
unregistered image pair with 3 pixels displacement and 3 degrees rotation with city scene 
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Figure 14. The resulting fused image for city area  
 

 

 

 

 

Figure 15.Energy function defined in Eq. 21 of the displacement pixels in row column direction. 
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Figure 16. Energy function for each iteration of the Metropolis algorithm 
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 Table 1: Details of THEOS images in our experiment 
 

Area Longitude Latitude Date Time 

City 100.3845251902455N 13.82391143621505E 2009/12/13 10.32 AM 

Drought 105.058671289676N 15.92080873025695E 2010/01/04 10.31 AM 

Agriculture 100.5728597866535N 14.6219909729372E 2009/12/13 10.32 AM 

Mountain 100.561439575278N 19.69589619804945E 2010/02/13 10.31 AM 

Seashore 99.59914701590165N 11.3390399265943E 2010/03/06 10.33 AM 

 

 

Table 2: Orbital characteristics of THEOS 
 

Satellite THEOS 
Orbit Sun synchronous recurrent frozen orbit 

Altitude 822 km 
Inclination 97.95 degree 

Repetition cycle 31 days 
Descending node (local time) 10:30 AM 

Orbital period 101.4 minutes 
On-board capacity 16 Gbits 

 
 

 

 

 

 

 

 

 

 

 



38 

 

Table 3: Technical specifications of THEOS payload  
 

 Panchromatic Multispectral 

 

 

Wavelength 

 

 

450-900 nm 

Blue: 450-520 nm 

Green: 530-600 nm 

Red: 620-690 nm 

Near Infrared: 770-900 nm 

Resolution 2 m 15 m 

Swath width 22 km 90 km 

Pixels 12000 6000 

 
 
 

Table 4: The mis-registration errors examined in this experiment 
 

 Scale Ratio angle Displacement in 
column direction 

Displacement in 
row direction 

Case I 1 1 1 1 
Case II 1 -2 -2 -2 
Case III 1 3 3 3 
Case IV 1 -4 -4 -4 
Case V 1 5 5 5 
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Table 5: Comparison of fusion performance for images of city area 
 

Hardie algorithm with 
perfect registration 

Fusion Result using Hardie 
algorithm without 
registration error correction 

Proposed joint image fusion and 
registration algorithm 

        RMSE         RMSE         RMSE 

0 0 0 7.2465 1 1 1 10.2043 0.4315 0.4195 0.1826 6.9368 

0 0 0 7.2465 -2 -2 -2 9.7011 0.4426 0.4225 -0.0597 6.3584 

0 0 0 7.2465 3 3 3 9.2295 1.5293 0.3358 -0.0037 6.9519 

0 0 0 7.2465 -4 -4 -4 9.0814 1.2999 0.6848 -0.1954 7.4333 

0 0 0 7.2465 5 5 5 8.8802 1.4716 0.6873 -0.0114 7.1084 

 

 

Table 6: Comparison of fusion performance for images of drought area 
 

Hardie algorithm with 
perfect  registration 

Fusion Result using Hardie 
algorithm without 
registration error correction 

Proposed joint image fusion and 
registration algorithm 

        RMSE         RMSE         RMSE 

0 0 0 4.4493 1 1 1 6.7294 0.4178 1.6116 -0.0425 4.4184 

0 0 0 4.4493 -2 -2 -2 6.3793 0.4561 0.5670 -0.0832 3.5014 

0 0 0 4.4493 3 3 3 5.9539 1.4802 0.6065 0.0960 4.0669 

0 0 0 4.4493 -4 -4 -4 5.7613 1.5929 0.4242 -0.1787 4.3226 

0 0 0 4.4493 5 5 5 5.5656 0.6040 0.4540 0.0551 3.7374 

 

 

 

Table 7: Comparison of fusion performance for images of agriculture area 
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Hardie algorithm with 
perfect  registration 

Fusion Result using Hardie 
algorithm without 
registration error correction 

Proposed joint image fusion and 
registration algorithm 

        RMSE         RMSE         RMSE 

0 0 0 8.0216 1 1 1 11.3885 0.5491 1.3608 0.0223 5.6583 

0 0 0 8.0216 -2 -2 -2 11.3888 0.4865 0.5077 0.0182 5.7027 

0 0 0 8.0216 3 3 3 10.9708 0.3072 0.5173 0.0277 5.8182 

0 0 0 8.0216 -4 -4 -4 10.6829 0.5111 0.7775 -0.0304 5.6377 

0 0 0 8.0216 5 5 5 10.4727 0.4003 0.6520 0.0465 5.9665 

 
 

Table 8: Comparison of fusion performance for images of mountain area 
 

Hardie algorithm with 
perfect  registration 

Fusion Result using Hardie 
algorithm without 
registration error correction 

Proposed joint image fusion and 
registration algorithm 

        RMSE         RMSE         RMSE 

0 0 0 3.6175 1 1 1 4.4446 0.3589 0.6566 -0.2068 3.2774 

0 0 0 3.6175 -2 -2 -2 4.5898 0.4614 0.4915 -0.2390 3.3056 

0 0 0 3.6175 3 3 3 4.6388 0.6505 -0.5470 -0.0401 3.2220 

0 0 0 3.6175 -4 -4 -4 4.5726 0.8501 -0.4960 0.0323 3.1460 

0 0 0 3.6175 5 5 5 4.6244 1.5957 0.4378 -0.0534 3.3172 
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Table 9: Comparison of fusion performance for images of sea shore area 
 

Hardie algorithm with 
perfect  registration 

Fusion Result using Hardie 
algorithm without 
registration error correction 

Proposed joint image fusion and 
registration algorithm 

        RMSE         RMSE         RMSE 

0 0 0 5.1446 1 1 1 7.4105 0.6091 0.6279 0.0773 3.9202 

0 0 0 5.1446 -2 -2 -2 7.2712 0.4977 0.5948 0.0856 3.9134 

0 0 0 5.1446 3 3 3 7.0384 0.3827 1.3204 0.0796 4.1890 

0 0 0 5.1446 -4 -4 -4 6.7605 0.6050 0.6162 0.0149 3.8124 

0 0 0 5.1446 5 5 5 6.6767 0.5031 0.6723 -0.0195 4.0117 
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