

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การประกอบควอนตัมดอตสารกึ่งตัวนำโดยการนำของเส้นเคลื่อนผิวร่วมใน เอพิแทกซีวิวิธพันธุ์แบบแลตทิซไม่เข้าคู่กัน

Guided assembly of semiconductor quantum dots via interfacial dislocations in lattice-mismatched heteroepitaxy

โดย รองศาสตราจารย์ ดร.ทรงพล กาญจนชูชัย และคณะ

กรกฎาคม ๒๕๕๘

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การประกอบควอนตัมดอตสารกึ่งตัวนำโดยการนำของเส้นเคลื่อนผิวร่วมใน เอพิแทกซีวิวิธพันธุ์แบบแลตทิชไม่เข้าคู่กัน

Guided assembly of semiconductor quantum dots via interfacial dislocations in lattice-mismatched heteroepitaxy

ผู้วิจัย

รศ.ดร. ทรงพล กาญจนชูชัย และคณะ สังกัด

ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัยและจุฬาลงกรณ์มหาวิทยาลัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. และจุฬาลงกรณ์มหาวิทยาลัย ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

กิตติกรรมประกาศ	
บทคัดย่อ	2
Abstract	3
Executive Summary	4
เนื้อหางานวิจัย	5
1. ที่มาและวัตถุประสงค์ (Rationale)	5
2. การทดลอง (Experiments)	6
3. ผลการทดลองและการอภิปราย (Results and Discussion)	9
4. สรุป (Conclusion)	20
Output	22
ภาคผนวก	23

กิตติกรรมประกาศ

โครงการ การประกอบควอนตัมดอตสารกึ่งตัวนำโดยการนำของเส้นเคลื่อนผิวร่วมในเอพิแทกชีวิวิธพันธุ์ แบบแลตทิชไม่เข้าคู่กัน (Guided assembly of semiconductor quantum dots via interfacial dislocations in lattice-mismatched heteroepitaxy) ตามสัญญาเลขที่ RSA-5580015 ระยะเวลาดำเนินโครงการ 3 ปี (16 กรกฎาคม พ.ศ. 2555 ถึง 15 กรกฎาคม พ.ศ. 2558) ได้รับงบประมาณ 1.2 ล้านบาท (จาก สกว. 800,000 บาท จากจุฬาฯ 400,000 บาท) ผลจากโครงการได้รับการตีพิมพ์ในวารสารวิชาการระดับนานาชาติ 3 บทความ ในหนังสือ 1 บท นำเสนอในที่ประชุมวิชาการระดับนานาชาติ 1 ครั้งและระดับชาติ 2 ครั้ง ผลิตมหาบัณฑิต 3 คน

โครงการนี้ลุล่วงได้ก็ด้วยแรงสนับสนุนจากหลายฝ่าย ข้าพเจ้าขอขอบคุณ สกว. จุฬาลงกรณ์มหาวิทยาลัย คณะวิศวกรรมศาสตร์ และภาควิชาวิศวกรรมไฟฟ้าสำหรับงบวิจัย เครื่องมือ อุปกรณ์ และสถานที่ กราบขอบ-พระคุณ ศาสตราจารย์ ดร.สมศักดิ์ ปัญญาแก้ว และขอบคุณบุคลากรของห้องปฏิบัติการวิจัยสิ่งประดิษฐ์สารกึ่ง ตัวนำ (Semiconductor Device Research Laboratory) ได้แก่ คุณศุภโชค ไทยน้อย คุณขวัญเรือน ไทยน้อย คุณพรชัย ช่างม่วง และคุณพัฒนา พันธุวงศ์ ที่ให้ความกรุณาและช่วยเหลือข้าพเจ้าและนิสิตในที่ปรึกษาโดยตลอด

ทรงพล กาญจนชูชัย

บทคัดย่อ

รหัสโครงการ : RSA5580015

โครงการ: การประกอบควอนตัมดอตสารกึ่งตัวนำโดยการนำของเส้นเคลื่อนผิวร่วมในเอพิแทกซี-

วิวิธพันธุ์แบบแลตทิซไม่เข้าคู่กัน

นักวิจัย : รศ.ดร.ทรงพล กาญจนชูชัย และคณะ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address : songphol.k@chula.ac.th

ระยะเวลาโครงการ : 16 กรกฎาคม พ.ศ. 2555 ถึง 15 กรกฎาคม พ.ศ. 2558

โครงสร้างควอนตัมดอต (QD) สารกึ่งตัวนำชนิด InAs บนเทมเพลตลายตาราง (CHP) InGaAs ถูก ปลูกขึ้นบนแผ่นฐาน GaAs โดยเทคนิคเอพิแทกซีลำโมเลกุล (MBE) การปลูกผลึกเดี่ยวที่ต่างชนิด ต่างพันธุ์ จากแผ่นฐานเรียกเอพิแทกซีวิวิธพันธุ์ และหากชั้นปลูกมีค่าคงตัวแลตทิชต่างจากแผ่นฐานจะเรียกเอพิแทกซี นั้นว่าเป็นแบบแลตทิชไม่เข้าคู่ การปลูกชั้น CHP โดยเทคนิคเอพิแทกซีวิวิธพันธุ์แบบแลตทิชไม่เข้าคู่ทำให้ เกิดเส้นเคลื่อนหรือดิสโลเคชันที่ผิวร่วม CHP/แผ่นฐาน หรือ InGaAs/GaAs เกิดสนามความเครียดที่ สามารถชักนำการก่อ QD ในกระบวนการถัดไปได้ โครงสร้างที่ปลูกมีหลายแบบ หลากวัตถุประสงค์ แต่ทุก โครงสร้างลัวนถูกตรวจสอบสัณฐานวิทยาโดยกล้องจุลทรรศน์แรงอะตอม (AFM) และสมบัติเชิงแสงโดย เทคนิคโฟโตลูมิเนสเซนส์ (PL) ซึ่งจำแนกย่อยเป็นเทคนิคแมโคร PL, เทคนิค PL ที่ตรวจวัดสมบัติโพลาไรซ์ ของแสงได้ (PPL), และเทคนิคไมโคร PL ซึ่งให้ผลเป็นสเปกตรัมใน 2 มิติคล้ายแผนที่ เรียก PL map ได้ แก่นของการทดลองมี 3 ประการ

- 1. ความหนาแน่นของ CHP สามารถควบคุมได้โดยปรับเศษส่วนโมลและความหนาของชั้น InGaAs ได้ตั้งแต่ความหนาแน่นต่ำ ๆ มีดิสโลเคชันในทิศเดียวคือให้ผลเป็นลายทาง ไปกระทั่งความหนาแน่นสูงซึ่ง ประยุกต์ใช้เป็นเทมเพลตเพื่อปลูก QD ชนิดที่มีสภาพแม่เหล็กเจือจางสำหรับประยุกต์เป็นหน่วยความจำ ความหนาแน่นสูงได้
- 2. โครงสร้างสายโซ่ QD ที่ซ้อนกันหลายชั้นบนเทมเพลต CHP มีผลึกที่สมบูรณ์เนื่องจากเปล่งแสง และตอบสนองต่อแสงได้ดี แสงที่เปล่งออกมาเป็นแสงโพลาไรซ์ อันดับขั้นของการโพลาไรซ์เพิ่มขึ้นตาม จำนวนชั้น QD แต่หากจำนวนชั้นสูงเกินไป คุณภาพของผลึกจะเลวลงอย่างรวดเร็ว การทดลองแสดงให้ เห็นว่า จำนวนชั้นที่ซ้อนกันไม่ควรเกิน 3
- 3. โครงสร้างสายโช่ QD ที่ซ้อนกันหลายชั้นเช่นเดียวกับข้างต้นถูกนำไปวัดไมโคร PL ให้ผลเป็น แผนที่สเปกตรัมที่ระบุว่า แสงที่เด่นที่สุดจากโครงสร้างเป็นแสงจาก QD ชั้นบนสุด หากกระตุ้นชิ้นงานด้วย แสงความเข้มสูง แสงจาก QD ชั้นล่างซึ่งมีพลังงานต่ำกว่าจึงจะทยอยปรากฏออกมาทีละชั้น ๆ แทนที่ความ เข้มที่เพิ่มขึ้นจะไปทำให้ QD ชั้นบนเริ่มเปล่งแสงจากสถานะกระตุ้น พฤติกรรมการตอบสนองเช่นเดียวกันนี้ สามารถใช้ระบุกลไกการถ่ายโอนพาหะในโครงสร้างนาโนทั่วไปที่ซ้อนกันหลายชั้นได้

คำหลัก: ควอนตัมดอต เส้นเคลื่อนผิวร่วม เอพิแทกซีวิวิธพันธุ์ แลตทิชไม่เข้าคู่กัน

Abstract

Project Code: RSA5580015

Project Title: Guided assembly of semiconductor quantum dots via interfacial dislocations in

lattice-mismatched heteroepitaxy

Investigator: Songphol Kanjanachuchai et al., Chulalongkorn University

E-mail Address : songphol.k@chula.ac.th

Project Period : 16 July 2012 – 15 July 2015

Self-assembled InAs quantum dots (QDs) are grown on InGaAs/GaAs cross-hatch pattern (CHP) template by molecular beam epitaxy (MBE). Lattice-mismatched heteroepitaxy of the CHP template results in interfacial dislocations whose strain fields guide the nucleation of subsequent QDs. Various structures are grown for different purposes. All of the grown structures are characterized by atomic force microscopy (AFM) to study QD morphology, and photo-luminescent (PL) to study the optical properties. The latter are divided into standard macro-PL, polarized PL (PPL) and micro-PL mapping (PL map). Three key results were achieved:

1. The CHP density can be controlled simply by varying the molar fraction and thickness of the InGaAs layer. It is possible to limit the dislocations to occur in just one main direction, thus creating a stripes template. On the other hand, densed CHPs can also be achieved. The latter is proposed as a template for the growth of high-density diluted magnetic semiconductor for memory applications.

2. Stacked QD chains on CHP template are of good crystalline quality as they are optically active. PL spectra show that the structure is capable of generating polarized light. The degree of polarization (DOP) increases with the number of stacks but there exists a limit before crystalline quality degrades. This maximum stack number has been experimentally determined to be 3.

3. The same stacked QD chains structure as above are mapped by micro-PL. The top most QD layer is found to be the dominant emission layer. Upon high excitation, however, emissions from lower layers start to emerge. This is in contrast to state-filling effect and be used as a guide to indicate carrier transfer mechanisms in multi-stacked nanostructures in general.

Keywords: quantum dots, interfacial dislocations, heteroepitaxy, lattice-mismatch

3

Executive Summary

โครงการ RSA5580015 การประกอบควอนตัมดอตสารกึ่งตัวนำโดยการนำของเส้นเคลื่อนผิวร่วมใน เอพิแทกซีวิวิธพันธุ์แบบแลตทิชไม่เข้าคู่กัน มีวัตถุประสงค์หลักคือ สังเคราะห์และวัดลักษณะสมบัติของโครงสร้าง ควอนตัมดอต (QD) InAs ที่ก่อตัวบนเทมเพลตลายตาราง InGaAs/GaAs ทั้ง InAs QD และ InGaAs/GaAs เทม เพลต ต่างเป็นโครงสร้างที่เกิดจากการปลูกผลึกชนิดหนึ่งบนผลึกอีกชนิดหนึ่ง (เอพิแทกซีวิวิธพันธุ์) ซึ่งมีค่าคงตัว แลตทิชต่างกัน (แลตทิชไม่เข้าคู่กัน) โครงสร้างถูกสังเคราะห์อย่างต่อเนื่องโดยเทคนิคเอพิแทกซีลำโมเลกุล คือ สังเคราะห์เทมเพลตก่อน ตามด้วย QD การก่อ QD จะถูกชักนำโดยเส้นเคลื่อนหรือดิสโลเคชัน ณ ผิวร่วม InGaAs/GaAs ที่อยู่ด้านล่าง หลังจากสังเคราะห์ สภาพผิวของโครงสร้างถูกวัดโดยกล้องจุลทรรศน์แรงอะตอม สมบัติเชิงแสงวัดโดยเทคนิคโฟโตลูมิเนสเซนส์ สมบัติเชิงแสงของโครงสร้างเชื่อมโยงกับสภาพผิว ผลจากการ ทดลองตลอดระยะเวลา 3 ปีของโครงการได้ให้ข้อมูลและความรู้พื้นฐานหลายอย่าง สรุปได้ 3 ประเด็น

- 1. การปลูก QD บนพื้นผิวลายตารางสามารถให้ QD ที่เรียงตัวเป็นสายโซ่ในทิศ [1-10] และ [110] ซึ่งตั้ง ฉากกัน หากปรับความเครียดและความหนาของชั้น InGaAs ให้ดีจะสามารถควบคุมให้เกิดเส้นเคลื่อนผิวร่วมใน แนวเดียวได้ หรืออาจควบคุมให้เกิดเส้นเคลื่อนผิวร่วมทั้งสองแนวอย่างหนาแน่น หากเจือ QD ด้วยธาตุแทรนซิชัน เช่น Mn จะพัฒนาโครงสร้างให้เป็นหน่วยความจำได้
- 2. แสงที่เปล่งออกจากสายโซ่ QD บนพื้นผิวลายตารางเป็นแสงโพลาไรซ์ เมื่อซ้อนชั้นสายโซ่ QD หลายชั้น อันดับขั้นของการโพลาไรซ์จะเพิ่มขึ้นเนื่องจาก QD จัดเรียงตัวเป็นระเบียบมากขึ้นตามจำนวนชั้นที่ซ้อนกัน อย่างไรก็ตาม เมื่อจำนวนชั้นเพิ่มขึ้น ความเครียดสะสมจะเพิ่มขึ้นตาม ชั้นฟิล์มอาจคลายความเครียดโดยก่อดิส โลเคชันเพิ่มเติม คุณภาพของผลึกจะเลวลงทันที การซ้อนชั้น QD เพื่อเพิ่มสมบัติโพลาไรซ์จึงมีขีดจำกัด
- 3. ในโครงสร้างสายโซ่ QD ที่ซ้อนกันบนพื้นผิวลายตาราง พาหะจะมาออกันที่ QD ชั้นบนสุดเสียเป็นส่วน ใหญ่ หากโครงสร้างถูกกระตุ้นด้วยแสงความเข้มสูง พาหะจะถูกถ่ายโอนจาก QD ชั้นบนลงมายังชั้นล่าง แทนที่จะ ไปปรากฏตัวอยู่ในสถานะกระตุ้นของ QD ชั้นบน

ผลจากประเด็นหลักทั้ง 3 ได้ตีพิมพ์ในสารสารวิชาการระดับนานาชาติซึ่งอยู่ในฐานข้อมูล ISI 3 ฉบับ นอกจากนี้ ยังมีประเด็นรองที่ตีพิมพ์เป็นบทของหนังสือ 1 บท นำเสนอในที่ประชุมวิชาการระดับนานาชาติ 1 ครั้ง และระดับชาติ 3 ครั้ง สุทธิ ผลิตมหาบัณฑิตได้ 3 คน

ศาสตร์ด้านการปลูกผลึกสารกึ่งตัวนำ โดยเฉพาะที่เกี่ยวกับดิสโลเคชันในเอพิแทกซีวิวิธพันธุ์ยังมีประเด็น พื้นฐานที่ยังไม่มีข้อสรุปอีกมาก หนึ่งในนั้นคือพฤติกรรมของดิสโลเคชัน การค้นคว้าวิจัยด้านเอพิแทกซีวิวิธพันธุ์ ยังคงดำเนินไปอย่างต่อเนื่องในมหาวิทยาลัยและศูนย์วิจัยชั้นนำทั่วโลก

เนื้อหางานวิจัย

1. ที่มาและวัตถุประสงค์ (Rationale)

สารกึ่งตัวนำ (semiconductors) เป็นวัสดุแก่นของอุตสาหกรรมไฟฟ้าและอิเล็กทรอนิกส์ โครงสร้างนา โน (nanostructures) ของสารกึ่งตัวนำ โดยเฉพาะโครงสร้างควอนตัมดอต (quantum dot, QD) สามารถนำไป สร้างอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ เช่น ทรานซิสเตอร์ ไดโอดเปล่งแสง และเซลล์สุริยะ ควอนตัมดอตสารกึ่งตัวนำ สามารถสังเคราะห์ได้หลายวิธี หนึ่งในวิธีที่สำคัญที่สุดคือการปลูกผลึก (crystal growth) หรือเอพิแทกชีวิวิธพันธุ์ (heteroepitaxy) เป็นการปลูกผลึกเดี่ยวที่ค่าคงตัวแลตทิช (lattice constant) ของชั้นที่ปลูก หรือชั้นเอพิ (epilayer) a_e ต่างไปจากของแผ่นฐาน (substrate) a_s การสังเคราะห์ควอนตัมดอตสารกึ่งตัวนำส่วนใหญ่กระทำ บนผิวเรียบ แต่สำหรับโครงการนี้กระทำบนผิวลายตาราง (cross-hatch pattern: CHP) ซึ่งเกิดจากเส้นเคลื่อนผิว ร่วม ประโยชน์คือควอนตัมดอตที่ได้จะมีการจัดเรียงตัวแบบมีระเบียบขึ้นเมื่อเทียบกับการปลูกบนผิวเรียบ ต้นคิด ของงานนี้เกิดราว ค.ศ. 1997 ในระบบ SiGe/Si [1,2] ต่อมาถูกนำไปใช้กับระบบอื่น รวมทั้ง InGaAs/GaAs เช่น เดียวกับโครงการนี้ด้วย [3] แม้จะมีการศึกษามานาน แต่สมบัติเชิงแสงของ QD บนเส้นเคลื่อน แม้กระทั่งการก่อ ตัวของเส้นเคลื่อนเองก็ยังไม่เป็นที่เข้าใจกันดี

โครงการมีวัตถุประสงค์หลักสามประการ ได้แก่

- ก. เพื่อศึกษาการก่อตัวของเส้นเคลื่อนผิวร่วม (interfacial dislocation lines) ในเอพิแทกซีวิวิธพันธุ์ แบบแลตทิชไม่เข้าคู่กัน (lattice-mismatched heteroepitaxy) ความเข้าใจกลไกการก่อตัว เคลื่อนตัว และ อันตรกิริยาของเส้นเคลื่อนผิวร่วมอาจนำไปสู่การควบคุมระยะห่างและความหนาแน่นของเส้นเคลื่อนฯ ทั้งในระบบ InGaAs/GaAs ที่ศึกษาหรือระบบแลตทิชไม่เข้าคู่กันทั่วไปได้
- ข. เพื่อใช้เส้นเคลื่อนผิวร่วมที่สังเคราะห์ได้เป็นเทมเพลต (template) ในการประกอบควอนตัมดอตสารกึ่ง ตัวนำในแนวนอนและแนวดิ่ง โดยทั่วไปควอนตัมดอตประกอบตนเอง (self-assemble) แบบสุ่ม ตำแหน่งของ QDs จะกระจัดกระจายทั่วทั้งแผ่นฐาน แต่หากแผ่นฐานมีผิวหน้าที่มีแบบรูปลายตาราง (CHP) QD ก็จะประกอบ ตัวเองบนลายตารางนั้น คือจะได้ QD ที่เรียงตัวกันเป็นแถวอย่างเป็นระเบียบในแนวนอนแทนที่จะประกอบตัวเอง แบบสุ่ม และหากทำการปลูก QD แบบกลบทับและปลูกซ้ำ (cap and regrowth) ก็จะให้ QD ที่เรียงตัวกันอย่าง เป็นระเบียบในแนวตั้งหรือในทิศทางของการปลูกผลึกด้วย การเรียงตัวมีประโยชน์คือ โครงสร้างที่ได้สามารถให้ หรือตอบสนองต่อแสงโพลาไรซ์ได้
- ค. เพื่อวัดลักษณะสมบัติเชิงโครงสร้างและเชิงแสงของโครงสร้างควอนตัมดอตที่ประกอบตนเองบนเส้น เคลื่อนผิวร่วมโดยเทคนิค microscopy และ spectroscopy โดยทั่วไป สมบัติของผลึกสารกึ่งตัวนำนอกจากจะ สัมพันธ์กับองค์ประกอบทางเคมีของผลึกแล้ว ยังสัมพันธ์กับสัณฐาน (morphology) ของผลึกอีกด้วย ในกรณีของ QD ที่ก่อตัวบนแผ่นฐานลายตาราง นอกจากสมบัติของ QD จะขึ้นอยู่กับขนาด เส้นผ่านศูนย์กลาง และเศษส่วน โมลของสารประกอบ ($In_xGa_{1-x}As$) แล้ว ยังขึ้นอยู่กับการเกาะกลุ่ม หรือในกรณีของ QD บน CHP จะขึ้นอยู่กับการ เรียงตัวกันเป็นเส้นอีกด้วยเนื่องจากระยะของ QD ที่ใกล้กัน ย่อมส่งผลให้ฟังก์ชันคลื่นของพาหะใน QD ซ้อน

เหลื่อมกัน เป็นเหตุให้สมบัติเชิงแสงแตกต่างไปจากโครงสร้างที่ QD กระจัดกระจายกันอยู่และฟังก์ชันคลื่นไม่ซ้อน เหลื่อมกัน เทคนิค spectroscopy เป็นการศึกษาผล (สมบัติเชิงแสง) ในขณะที่เทคนิค microscopy เป็นการ ศึกษาเหตุที่เชื่อมโยงกับผล ความเข้าใจที่ได้จะนำไปสู่การปรับเปลี่ยนพารามิเตอร์ที่ใช้สังเคราะห์วัสดุเพื่อให้ สามารถสร้างวัสดุที่มีสมบัติเชิงแสงที่ต้องการได้ในที่สุด

2. การทดลอง (Experiments)

การทดลองจำแนกเป็น 2 ส่วน ส่วนแรกเป็นการสังเคราะห์วัสดุโดยการปลูกผลึก ส่วนหลังเป็นการวัด ลักษณะสมบัติของวัสดุที่สังเคราะห์ได้

2.1 การปลูกผลึก (Crystal Growth)

การสังเคราะห์วัสดุทั้งหมดในงานวิจัยนี้กระทำโดยเทคนิคการปลูกผลึกแบบลำโมเลกุล (molecular beam epitaxy, MBE) เพื่อให้เป็นไปตามวัตถุประสงค์ ก. ในหัวข้อที่ 1 ได้ปลูกฟิล์มบาง $In_xGa_{1-x}As$ บนแผ่นฐาน GaAs และได้ปรับเปลี่ยนเศษส่วนโมลของฟิล์มที่ปลูกได้ (x) และความหนา (thickness, t) จึงสามารถควบคุม ระยะห่างเฉลี่ยระหว่างเส้นเคลื่อนที่ผิวร่วม InGaAs/GaAs ได้ การปลูกฟิล์มบาง $In_xGa_{1-x}As$ บนแผ่นฐาน GaAs เริ่มจากการเตรียมแผ่นฐาน GaAs เบื้องต้นโดยการให้ความร้อนแก่แผ่นฐานที่อุณหภูมิประมาณ $450^{\circ}C$ ในห้อง เตรียมแผ่นฐานโดยเฉพาะ การให้ความร้อนแก่แผ่นฐานเบื้องต้นนี้ใช้เวลาประมาณ 1 ชั่วโมง จัดเป็นการ outgas แผ่นฐานเบื้องต้น หลังจากนั้น ย้ายแผ่นฐานเข้าสู่ห้องปลูกผลึก (growth chamber) ซึ่งในภาวะเตรียมพร้อม (standby) จะอยู่ในภาวะสุญญากาศสูงยิ่ง (ultra high vacuum, UHV) หรือมีความดันในระดับ 10^{-10} Torr เมื่อ แผ่นฐานถูกย้ายเข้าไปในห้องปลูกผลึกและยึดเข้ากับตัวจัดการแผ่นฐาน (mani-pulator) แล้วก็จะเริ่มเข้าสู่ กระบวนการเตรียมผิวหน้าในขั้นตอนสุดท้ายก่อนปลูกผลึกจริง

การเตรียมผิวหน้าในขั้นตอนสุดท้ายเป็นการขับออกไซด์ธรรมชาติ (native oxide) ออกจากผิวหน้าของ แผ่นฐาน GaAs โดยความร้อน ปรกติการให้ความร้อนแก่แผ่นฐานภายใต้ไอออกซิเจนจะให้ชั้นออกไซด์พอกพูน ขึ้นมาจากผิวหน้า จัดเป็นการออกซิไดส์ (oxidation) แต่หากให้ความร้อนแก่แผ่นฐานภายใต้สุญญากาศ ชั้น ออกไซด์ที่มีอยู่จะไม่เสถียร หากอุณหภูมิสูงพอ ชั้นออกไซด์จะถูกขับออกในที่สุด จัดเป็นกระบวนการที่ตรงกันข้าม กับการออกซิไดส์ เรียกว่า deoxidation หรือสั้น ๆ เพียง deox สำหรับผิว (001)-GaAs อุณหภูมิ deox จะมีค่า ≈ 580°C แต่หากชั้นออกไซด์ธรรมชาติหนากว่าปรกติ เช่นแผ่นฐานถูกปล่อยไว้ในบรรยากาศเป็นเวลานาน อุณหภูมิ deox ก็จะสูงกว่านี้ การ deox กระทำโดยค่อย ๆ เพิ่มอุณหภูมิให้แก่แผ่นฐานอย่างช้า ๆ ≈ 30°C/min แล้วสังเกตความเปลี่ยนแปลงจากระบบวัด จุดเริ่มต้นและสิ้นสุดของการ deox สามารถรับรู้ได้ในเวลาจริง (real time) โดยการวัดมวลของสารที่อยู่ในบรรยากาศของห้องปลูก การวัดมวลกระทำโดย quadrupole mass spectrometer (QMS) เมื่อชั้นออกไซด์ธรรมชาติเริ่มถูกขับออกมา QMS จะแสดงมวลแปลกปลอมที่ถูกขับออกมาด้วย โดยเฉพาะ 28 amu (atomic mass unit) ของ CO (C 12 amu + O 16 amu) และเมื่อชั้นออกไซด์ถูกขับออก หมด ปริมาณของมวลดังกล่าวก็จะค่อย ๆ ลดลงกับเวลาเพราะถูกปั้มดูดออกไปจากห้องปลูกหรือไปเกาะติดผนัง ห้องปลูกผลึกซึ่งถูกหล่อเย็นโดยไนโตรเจนเหลว (77 K) ชั้นออกไซด์ธรรมชาติเป็นอสัณฐาน (amorphous) แต่ชั้น GaAs ที่อยู่ด้านล่างเป็นผลึกเดี่ยว (single crystal) สภาพผิวหน้า (ผลึกเดี่ยวหรือสัณฐาน) สามารถรับรูได้จาก

แบบรูปการเลี้ยวเบนลำอิเล็กตรอนพลังงานสูง (reflection high-energy electron diffraction, RHEED) ที่ตก กระทบผิวหน้าด้วยมุมประมาณ 1-3° ซึ่งแทบจะขนานไปกับผิวหน้า แบบรูปการเลี้ยวเบนจะปรากฏบนจอฟอสะเฟอร์คล้ายกับลำอิเล็กตรอนที่ตกกระทบจอโทรทัศน์แบบ cathode ray ในสมัยก่อน ผิวหน้าอสัณฐานจะไม่มี แบบรูป ภาพที่ปรากฏจะเป็นวงจาง ๆ ส่วนผิวหน้าผลึกเดี่ยวจะมีแบบรูปเป็นเส้น หลายเส้นและเข้ม ในระหว่าง การขับออกไซด์ แบบรูปจะค่อย ๆ เปลี่ยนจากวงจาง ๆ มาเป็นเส้นที่เข้มขึ้น สื่อถึงสัณฐานของผิวหน้าที่กำลัง เปลี่ยนจากอสัณฐานเป็นผลึกเดี่ยว จัดเป็นข้อมูลป้อนกลับสำคัญอีกชิ้นหนึ่งเพิ่มเติมจากการสังเกตมวลสารจาก ระบบ QMS หลังจากขับออกไซด์ธรรมชาติออกหมด ผิวหน้าจะค่อนข้างขรุขระ ยังไม่พร้อมแก่การปลูกชั้นไวงาน

การปลูกผลึกจริงเริ่มจากการกลบผิวหน้าที่ขรุขระข้างต้นโดยวัสดุชนิดเดียวกับแผ่นฐาน หรือ GaAs ก่อนที่ จะปลูกชั้นลายตาราง InGaAs ทับลงไป ชั้น GaAs เป็นชั้นบัฟเฟอร์ (buffer) ชั้นลายตาราง InGaAs เป็นเทม เพลตให้แก่กระบวนการถัดไป การปลูก GaAs และ InGaAs มีขั้นตอนคล้ายกัน เริ่มจากการให้ความร้อนแก่ วัตถุดิบที่บรรจุอยู่ในเซลล์แพร่ (effusion cells) ให้ฟลักซ์อยู่ในระดับที่ต้องการ จากนั้นเพียงเปิด-ปิดชัตเตอร์ด้าน ทางออกของเซลล์แพร่ หากต้องการปลูก GaAs ก็เพียงเปิดชัตเตอร์ด้านหน้าเซลล์ Ga และเซลล์ As และหาก ต้องการปลูก InGaAs ก็เปิดชัตเตอร์เซลล์ In เพิ่มเติม พารามิเตอร์สำคัญสำหรับการปลูก GaAs คือความหนา ปรกติชั้น buffer จะหนาประมาณ 300 nm แต่หากผิวหน้าขรุขระมาก ก็จะปลูกให้หนา 500 nm โดยใช้ความ คมชัดของเส้น RHEED pattern เป็นเกณฑ์ ส่วนพารามิเตอร์สำคัญสำหรับการปลูก In $_{x}$ Ga $_{1.x}$ As คือความหนาและ เศษส่วนโมลของ In ($_{x}$) ก่อนปลูกชั้น InGaAs จะทำการสอบเทียบ (calibrate) อัตราการปลูก (growth rate, $_{x}$) ก่อนเสมอ หากอัตราการปลูกชั้น GaAs คือ $_{x}$ และชั้น InAs คือ $_{x}$ จะได้เศษส่วนโมล $_{x}$ $_{x}$ ส่วนความหนาของชั้นฟิล์มทั้งกรณีของ GaAs และ InGaAs สามารถกำหนดได้จากผลคูณระหว่างอัตราการปลูก และเวลาในการเปิดชัตเตอร์

เพื่อให้เป็นไปตามวัตถุประสงค์ ข. ในหัวข้อที่ 1 ได้ใช้ฟิล์มบาง InGaAs ดังกล่าวเป็นเทมเพลตในการปลูก ควอนตัมดอตต่อยอดขึ้นมา โดยหลังจากที่ปลูกชั้น InGaAs ข้างต้นเสร็จ ชัตเตอร์เซลล์ In และ Ga จะถูกปิด การ ปลูกจะหยุดลงชั่วขณะ เป็นเวลาขัดจังหวะ (growth interruption, GI) สั้น ๆ ประมาณ 30 วินาทีเพื่อให้อะตอมที่ ผิวหน้ามีเวลาเคลื่อนที่และจัดเรียงตัวให้เป็นระเบียบขึ้น ในระหว่างนี้ As จะยังคงตกกระทบผิวหน้าตลอดเวลา เนื่องจากแผ่นฐานอยู่ที่อุณหภูมิสูง (500°C) และมีแนวโน้มจะสูญเสียอะตอม As ที่ผิวหน้าหากไม่มี As มาชดเชย หลังจาก GI ชัตเตอร์ In จะถูกเปิด ลำโมเลกุลของ In จะตกกระทบผิวหน้าและที่ความหนา ~1.3 ชั้นมอโน (monolayer, ML) InAs จะก่อตัวเองเป็น QD โผล่ขึ้นมาจากผิวหน้า การก่อตัวเป็น QD ของ InAs บนผิวหน้า InGaAs หรือ GaAs เกิดจากการคลายความเครียดของชั้นฟิล์ม InAs ที่ตอนแรกถูกปลูกเป็นชั้น ๆ อย่างไรก็ตาม แลตทิชของ InAs และ GaAs นั้นไม่เข้าคู่กัน (lattice mismatched) ทำให้ฟิล์ม InAs ที่ก่อตัวขึ้นบน GaAs หรือ InGaAs นั้นมีความเครียดสะสมอยู่ การคลายความเครียดตามกลไก Stranski-Krastanow (SK) นี้เป็นกลไกทาง ธรรมชาติที่พบเห็นได้ในระบบสารกึ่งตัวนำอื่น เช่น Ge/Si หรือ InP/GaP ด้วย การก่อตัวของ QD สามารถรับรู้ได้ ในขณะปลูกจริงโดยการสังเกตแบบรูปของ RHEED แบบเส้นเกิดจากการเลี้ยวเบน ในขณะที่แบบรูปของ RHEED แบบเส้นเกิดจากการเลี้ยวเบน ในขณะที่แบบรูปของ RHEED แบบลุดเกิดจากการหะลุผ่าน (transmission) สี่อว่าผิวหน้าเกิด QD แล้ว หลังจากปลูก QD เสร็จ แผ่นฐานจะถูก

ลดอุณหภูมิลงทันทีเพื่อหยุดการเปลี่ยนแปลงสภาพผิวหน้าให้เร็วที่สุด นอกเสียจากว่าเป็นชิ้นงานที่ต้องถูกนำไป ศึกษาสมบัติเชิงแสง ซึ่งจะต้องกลบด้วยชั้น GaAs หนาประมาณ 100 nm ก่อนลดอุณหภูมิแผ่นฐานลง การกลบ ด้วยชั้น GaAs สุดท้ายนี้เพื่อลดผลกระทบจากสถานะผิว (surface states) ที่แย่งพาหะอิสระจากสารกึ่งตัวนำ

2.2 การวัดลักษณะสมบัติ (Characterization)

เพื่อให้เป็นไปตามวัตถุประสงค์ ค. ในหัวข้อที่ 1 วัสดุที่สังเคราะห์ได้จะถูกนำมาวัดสมบัติเชิงโครงสร้าง (ควอนตัมดอตบนเทมเพลต) โดยกล้องจุลทรรศน์แรงอะตอม (atomic force micro-scope, AFM) และสมบัติเชิง แสงโดยเทคนิคโฟโตลูมิเนสเซนส์ (Photoluminescence, PL)

การวัดสมบัติเชิงโครงสร้างโดย AFM เป็นการวัดในโหมดเคาะ (tapping mode) โพรบวัดจะกวาดผิวหน้า ของชิ้นงานที่วางในอากาศแล้วให้ข้อมูลความสูงต่ำออกมาเป็นภาพ 2 หรือ 3 มิติ ใช้เครื่อง AFM รุ่น SPA400

การวัดสมบัติเชิงแสงโดยเทคนิค PL เป็นการกระตุ้นชิ้นงานด้วยโฟตอนความยาวคลื่น 514.5 nm หรือ พลังงาน 2.4 eV ที่ถูกสร้างจากเลเซอร์อาร์กอน (Ar+ laser) เมื่อเลเซอร์พลังงานสูงตกกระทบชิ้นงานก็จะถูก ดูดกลืนโดยอิเล็กตรอนเวเลนซ์ ก่อให้เกิดคู่อิเล็กตรอน-โฮล (electron-hole pair, EHP) พลังงานกระตุ้น (2.4 eV) นั้นสูงกว่าช่องว่างพลังงาน (energy gap, E_G) ของทั้งแผ่นฐาน (GaAs, 1.42 eV) และInAs QDs (~1 eV) มาก ทำให้คู่อิเล็กตรอน-โฮลที่ก่อกำเนิดขึ้นมีพลังงานจลน์สูง อย่างไรก็ตาม อิเล็กตรอนนำจะสูญเสียพลังงานจลน์ ให้แก่ผลึก สุดท้ายเหลือแต่พลังงานคักย์ กล่าวคือ ตกมาอยู่ที่ขอบฉ่นของแถบการนำ (conduction band, CB) หรือที่ E_C ส่วนโฮลก็จะสูญเสียพลังงานจลน์ให้แก่ผลึก ตกมาอยู่ที่ขอบบนของแถบเวเลนซ์ (valence band, VB) หรือที่ E_V เมื่ออิเล็กตรอนและโฮลดังกล่าวผสมกลับ (recombine) ส่วนต่างพลังงาน $E_C - E_V$ จะถูกคายออกมากับโฟตอนซึ่งมีพลังงานประมาณ E_G เมื่อนำแสงที่ชิ้นงานเปล่งออกมาไปวิเคราะห์เพื่อกำหนดความเข้มและความ ยาวคลื่น ก็จะทำให้ทราบว่าโครงสร้างภายในมีสมบัติเชิงแสงที่ดีหรือไม่ดีอย่างไร แสงที่เข้มสื่อว่าโครงสร้างมี คุณภาพดี QD มีความสมบูรณ์เชิงผลึก มีจุดบกพร่อง (defects) น้อยหรือไม่มีเลย ส่วนความยาวคลื่น λ ที่ โครงสร้างเปล่งออกมาจะสามารถนำไปกำหนดช่องว่างพลังงานของชั้นไวงานได้จากความสัมพันธ์ของพลังค์ (Plank's relationship) ดัง $E_G = hc/\lambda$ เมื่อ h คือค่าคงตัวของพลังค์ (Plank constant) และ c คือความเร็วแสง

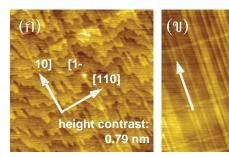
สมบัติโพลาไรซ์ของแสงที่ชิ้นงานเปล่งออกมาศึกษาโดยเทคนิค polarized photolumi-nescence (PPL) การจัดเตรียม (set up) อุปกรณ์วัดจะต่างจากการวัด PL อุปกรณ์ที่เพิ่มขึ้นมาสำหรับการวัด PPL ได้แก่โพ-ลาไร เซอร์ (polarizer) และแผ่นคลื่น (half waveplate) อุปกรณ์ทั้ง 2 จะถูกติดตั้งอยู่ด้านหน้ามอโนโครมาเตอร์ (monochromator) ก่อนที่แสงจากชิ้นงานจะถูกรวบรวมเข้าสู่ช่องเล็กยาวแสงเข้า (entrance slit) โพลาไรเซอร์ จะถูกยึดอยู่กับที่ มุมโพลาไรซ์ของมันจะขนานไปกับแกนโพลาไรซ์ของระบบซึ่งเป็นแกนที่มีประสิทธิภาพการแยก แสงสูงสุด สำหรับระบบของเราเป็นแนวตั้งซึ่งเป็นแนวที่ติดตั้งเกรตติง (grating) ของมอโนโครมาเตอร์ ส่วนแผ่น คลื่นจะติดตั้งอยู่ในตัวจับซึ่งมีมอเตอร์ควบคุมการหมุนได้โดยรอบ มอเตอร์ความแม่นยำสูงที่ใช้มีกลไกการตรวจแก้ ระยะคลอน (backlash correction) ทำให้สามารถทวนซ้ำผลการทดลองได้อย่างดีเยี่ยม การกวาดมุมเพื่อ วิเคราะห์แสงโพลาไรซ์กระทำทีละ 2 องศา มีรูปแบบการจัดเตรียมเพื่อวิเคราะห์แอนไอโซทรอปีของการโพลาไรซ์ (polarization anisotropy) 2 แบบ แบบที่ 1 ความยาวคลื่นตรวจหา (detection wavelength) คงตัวแล้วหมุน

แผ่นคลื่น และแบบที่ 2 กวาดความยาวคลื่นตรวจหาขณะที่แผ่นคลื่นถูกกำหนดมุมตายตัวให้สนามแสง (optical field) ขนาน ($E_{//}$) หรือตั้งฉาก (E_{\perp}) กับแกนยืดตัวของ QD หรือทิศ [1-10]

ช่วงท้ายของโครงการ ชิ้นงานบางส่วนถูกนำไปวัด PL map ที่ห้องปฏิบัติการ CNRS ณ ประเทศฝรั่งเศส ผล PL ที่ได้โดยเทคนิคนี้สามารถให้ข้อมูลสเปกตรัมในรูปของแผนที่ (map) ดังชื่อ กล่าวคือ ข้อมูลอยู่ในรูปของ สเปกตรัมแสง ณ แต่ละตำแหน่ง เลือกอินทีเกรตความเข้มเฉพาะค่าพลังงานที่สนใจได้ (energetically resolved) เมื่อแสดงเป็นภาพความเข้มแสงแบบ 2 มิติจะเห็นได้ด้วยตาว่า แสงที่ค่าพลังงานที่สนใจถูกเปล่งออกจากบริเวณใด (spatially resolved)

3. ผลการทดลองและการอภิปราย (Results and Discussion)

ผลการทดลองที่จะอภิปรายในหัวข้อนี้และที่จะสรุปในหัวข้อถัดไป เป็นแก่นของโครงการซึ่งได้ตีพิมพ์ใน วารสารวิชาการระดับนานาชาติ 3 ฉบับดังหัวข้อ Output บทความที่ 1.1, 1.2, 1.3 รายละเอียดตามลำดับดังนี้

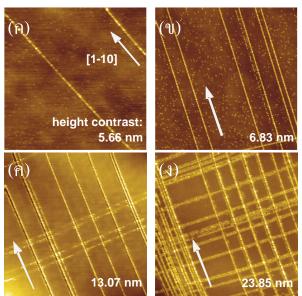

3.1 การจัดเรียงควอนตัมดอตภายใต้การนำโดยเส้นเคลื่อนผิวร่วม

Title: "InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium," *J Nanomaterials* 2013, 791782 (2013) (Output 1.1)

ผลจากการดำเนินงานวิจัยตามวัตถุประสงค์ข้อ ก. และ ข. ทำให้สามารถควบคุมระยะห่างเฉลี่ยระหว่าง เส้นเคลื่อนที่ผิวร่วม InGaAs/GaAs ได้ เส้นเคลื่อนจะชิดกันหาก x และ t มีค่าสูงและจะห่างกันหาก x และ t มีค่า ต่ำ ในกรณีลิมิตสูง เส้นเคลื่อนจะมีความหนาแน่นสูง ผิวหน้าจะขรุขระมากจนแทบจะนำไปใช้ประโยชน์ต่อไม่ได้ เลย ในกรณีลิมิตต่ำ เส้นเคลื่อนยังไม่ก่อตัวขึ้นเลย ผิวหน้าจะเรียบในระดับอะตอม ไม่สามารถนำมาใช้เป็นเทม เพลตเพื่อประโยชน์ในการเรียงควอนตัมดอตได้ ในทางปฏิบัติ ค่า x และ t ที่ใช้จะอยู่กึ่งกลางระหว่างลิมิตทั้งสอง โครงสร้างที่มีระยะห่างเฉลี่ยต่ำ หรือความถี่สูง เป็นโครงสร้างที่เหมาะแก่การสังเคราะห์ควอนตัมดอตความ หนาแน่นสูง หากนำไปใช้ในเซลล์สุริยะ จะมีปริมาตรดูดกลืนแสงย่านอินฟราเรดที่สูง ทำให้ประสิทธิภาพการแปลง พลังงานแสงมาเป็นพลังงานไฟฟ้า (conversion efficiency, η) สูงกว่าโครงสร้างเทียบเท่ากันแต่ไม่มีควอนตัม ดอตหรือมีควอนตัมดอตความหนาแน่นต่ำอยู่ภายใน หากนำไปใช้เป็นแม่แบบในการสังเคราะห์ควอนตัมดอตเพื่อ การบันทึกข้อมูล จะให้หน่วยความจำ (memory) ที่มีความจุสูง

สารแม่เหล็กที่ว่าเป็นสารกึ่งตัวนำที่ถูกเจือโดยสารแม่เหล็กแบบอ่อน ๆ (diluted magnetic semiconductor, DMS) ขอบเขตของบทความนี้อยู่ที่การสังเคราะห์ host ที่เป็นสารกึ่งตัวนำคือ InAs เท่านั้น ยังไม่มีการ เจือสารแม่เหล็ก เช่น Mn เข้าไปจริง ผลงานทดลองจำแนกออกเป็นสองส่วน ส่วนแรกแสดงพื้นผิวของเทมเพลต หรือ InGaAs ที่ปลูกบนแผ่นฐาน GaAs ส่วนหลังแสดงพื้นผิวของควอนตัมดอตที่ปลูกบนเทมเพลตอีกต่อหนึ่ง

ทั้งเทมเพลต InGaAs และควอนตัมดอต InAs อาศัยเทคนิคการปลูกคล้ายกัน ต่างกันเพียงพารามิเตอร์ หลักเพียงพารามิเตอร์เดียวคือระดับของความไม่เข้าคู่กัน (degree of mismatch) วัดจากค่าผิดสภาพของแลตทิช (misfit, ε) ดังคำจำกัดความ $\varepsilon \equiv (a_1 - a_0)/a_0$ เมื่อ a_0 และ a_1 คือค่าคงตัวแลตทิช (lattice constant) ของแผ่น ฐานและของฟิล์มบางที่ต้องการปลูกตามลำดับ หาก ε สูง โครงสร้างที่ได้จะเป็น QD แต่หาก ε ต่ำ โครงสร้างที่ได้ จะเป็น CHP



รูปที่ 1 ภาพ AFM ของชั้น 50-nm $\ln_x Ga_{1x}As$ บน (001)-GaAs ในช่วง (ก) ต้น หรือ (ข) ท้ายของการก่อกำเนิดเส้นเคลื่อนผิวร่วม ขนาดของรูป (ก) และ (ข) คือ $5\times5~\mu\text{m}^2$ และ $10\times10~\mu\text{m}^2$ ตามลำดับ เศษส่วนโมลของรูป (ก) คือ \times < 8% และ (ข) คือ \times = 15% ช่วงเปรียบต่างความสูงของรูป (ก) และ (ข) คือ 0.79 และ 2.97 nm ตามลำดับ

รูปที่ 1 แสดงภาพ AFM ของผิวหน้า 50-nm $\ln_x Ga_{1-x}As$ ที่ปลูกบน (001)-GaAs โดยรูปที่ 1 (ก) แสดง ช่วงต้นของการก่อ CHP เมื่อเศษส่วนโมลของ In มีค่า $x\approx 8\%$ หรือค่าผิดสภาพแลตทิช $\epsilon\approx 0.573\%$ ผิวหน้า ของชั้นฟิล์มที่ได้นั้นเรียบในระดับอะตอม แม้จะดูเหมือนขรุขระคล้ายกับคลื่น แต่ช่วงเปรียบต่างความสูง (height contrast) ของภาพเพียง 0.79 nm นั้นต่ำกว่า 2 เท่าของค่าคงตัวแลตทิชเสียอีก ภาพที่เห็นจึงแสดงขั้นอะตอม (atomic steps) เป็นลอนคลื่นในทิศ [110] นอกจากนี้ ภาพยังแสดงให้เห็นว่าลอนคลื่นส่วนหนึ่งในทิศ [1-10] กำลังผสานกัน (merging) การผสานลอนคลื่นในทิศ [1-10] นั้นเกิดก่อนทิศ [110] ทำให้เห็นเป็นเส้น เส้นดังกล่าว คือเส้นเคลื่อนผิวร่วมนั่นเอง สาเหตุที่การผสานลอนคลื่นในทิศทางทั้งสองเกิดขึ้นไม่พร้อมกันเพราะสภาพเคลื่อนที่ ได้ของอะตอมผิว (adatom mobility) นั้นไม่สมมาตรกัน ซึ่งเป็นผลสืบเนื่องมาจากธรรมชาติของแลตทิชแบบ ซึงก์เบลนด์ (zinc blende) อีกต่อหนึ่ง การที่ลอนคลื่นทั้งสองทิศผสานไม่พร้อมกันเป็นเหตุผลสำคัญที่ทำให้ความ หนาแน่นของเส้นเคลื่อนต่างกัน

รูปที่ 1 (ข) แสดงภาพ AFM ของผิวหน้า 50-nm $In_{0.15}Ga_{0.85}As$ ซึ่งมี $\varepsilon=1.075\%$ กรณีนี้ CHP ได้ก่อ ตัวอย่างสมบูรณ์แล้วโดยความหนาแน่นของเส้นเคลื่อนที่ขนานไปกับทิศ [1-10] จะสูงกว่าที่ขนานไปกับทิศ [110] เนื่องจากเวลาในการก่อตัวต่างกันดังที่ได้อธิบายไปข้างต้น ความสูงของ CHP มีค่าประมาณ 0.5-2 nm โดยเส้น เคลื่อนที่ขนานไปกับทิศ [1-10] นั้นจะสูงกว่าที่ขนานไปกับทิศ [110] เล็กน้อย

การประยุกต์ใช้ CHP ไปเป็นเทมเพลตเพื่อการจัดเรียง QD ความหนาแน่นสูงที่ประกอบตัวเองอย่างเป็น ระเบียบนั้นมีสิ่งที่น่าท้าทาย 2 ประการ ประการแรกเป็นขีดจำกัดด้านความเป็นระเบียบ ความหนาแน่นของเส้น เคลื่อนในทิศ [110] และ [1-10] ควรเท่ากัน แต่เนื่องจากแอนไอออนหรือโมเลกุล As_4 ที่ตกกระทบผิวหน้านั้นไม่ไว ต่อปฏิกิริยานัก เนื่องจากต้องแตกตัว (dissociate) เป็น As_2 ก่อนที่จะสร้างพันธะกับผิวหน้าและแคทไอออน (Ga หรือ In) จึงเป็นขีดจำกัดพื้นฐานของระบบ หากมีวาล์วแครกเกอร์ (valve cracker) ที่สามารถให้ความร้อนสูงแก่ โมเลกุล As_4 ก่อนที่จะตกกระทบผิวหน้า เพื่อทำให้โมเลกุล As_4 แตกตัวเป็น As_2 ก็อาจให้ CHP ที่สมมาตรมากขึ้น ประการที่สองเป็นขีดจำกัดด้านความหนาแน่น ค่า ε หรือ x จะต้องไม่สูงเกินไป มิฉะนั้นโหมดในการปลูกจะ เปลี่ยนจากแบบที่ให้ชั้นฟิล์มเป็นที่ให้โครงสร้าง 3 มิติหรือ OD แทน

รูปที่ 2 ภาพ AFM ขนาด $10\times10~\mu\text{m}^2$ ของ InAs QDs บน $\text{In}_x\text{Ga}_{1\cdot x}\text{As/GaAs}$ ซึ่งความไม่เข้าคู่กันของแลตทิชเพิ่มขึ้นจาก (ก) \times = 8% ไปเป็น (ข) 10% และ (ค) และ (ง) 15% ลูกศรแสดงทิศ [1-10] ช่วงเปรียบต่างความสูงของรูป (ก) (ข) (ค) และ (ง) คือ 5.66, 6.83. 13.07 และ 23.85 nm ตามลำดับ

การปลูก InAs QD บน InGaAs CHP ทำให้ QD ประกอบตัวเองแบบเรียงเป็นเส้นบนแนวของลายตาราง พารามิเตอร์หลักที่ใช้ควบคุมการปลูก ได้แก่ ช่วงขัดจังหวะ (GI) ซึ่งกระทบต่อความเป็นระเบียบของ QD บนลาย ตาราง [4] ความหนาและองค์ประกอบของชั้นลายตารางซึ่งกระทบต่อความหนาแน่นของเส้นเคลื่อน [5] อัตราเร็ว ในการปลูก การปลูกเกิน และการใช้ชั้นคั่นก่อนปลูก QD จริง [6] ปัจจุบัน เราเข้าใจเรื่องต้นกำเนิดและลำดับการ เกิดของ InAs QD ที่ประกอบตัวเองแบบเรียงตัวกันตามเส้นแนวของลายตาราง InGaAs CHP ดีพอสมควร [7,8] ความรู้ดังกล่าวสามารถประยุกต์ใช้กับผลึกสารกึ่งตัวนำระบบอื่นด้วย เนื้อหาในส่วนที่เหลือของบทความแสดงผล ของ InAs QD ที่ประกอบตัวเองบน InGaAs CHPs

รูปที่ 2 แสดงภาพ AFM ของ InAs QDs บน 50-nm In $_x$ Ga $_{1.x}$ As ที่ปลูกบนแผ่นฐาน GaAs เมื่อเศษส่วน โมลของ In เพิ่มจาก x=8% ในรูปที่ 2 (ก) ไปเป็น 10% ในรูปที่ 2 (ข) และ 15% ในรูปที่ 2 (ค) และ (ง) QD ที่ ประกอบตัวเองบนผิว CHP ของชิ้นงานทั้ง 3 แบ่งออกเป็น 2 กลุ่ม กลุ่มหนึ่งก่อตัวบนเส้นเคลื่อนระหว่างหน้าซึ่งฝัง ลึกลงจากผิวหน้าลงไปและแท้จริงเป็นจุดบกพร่องอะตอมที่เกิดขึ้นระหว่างหน้าหรือผิวสัมผัสระหว่าง InGaAs (CHP) กับ GaAs (แผ่นฐาน) ส่วนอีกกลุ่มหนึ่งก่อตัวบนพื้นผิวระหว่างเส้นเคลื่อนๆ สำหรับชิ้นงานในรูปที่ 2 (ก) ซึ่ง x=8% นั้น QD ส่วนใหญ่กระจายตัวแบบสุ่มระหว่างเส้นเคลื่อนๆ ส่วนน้อยเท่านั้นที่ก่อตัวบนเส้นเคลื่อนๆ ใดย QD ที่ก่อตัวบนเส้นเคลื่อนๆ จะสูงกว่าและอยู่ชิดกันมากกว่า QD ที่กระจายตัวกันอยู่ระหว่างเส้นเคลื่อนๆ สำหรับชิ้นงานในรูปที่ 2 (ข) ซึ่ง x=10% นั้นความหนาแน่นของเส้นเคลื่อนจะสูงกว่า ทำให้เส้นเคลื่อนอยู่ชิดกัน มากกว่ากรณีแรก (x=8%) ส่งผลให้สัดส่วนของ QD ที่ก่อตัวบนเส้นเคลื่อนหรือ ℓ ก็ยิ่งต่ำ ในกรณี ℓ 0 และ 6 ℓ 1 และ 6 ℓ 1 และ 6 ℓ 2 (ก) มีเพียงเส้นเคลื่อนในแนว [1-10] เท่านั้นที่ปรากฏในภาพ AFM เส้นเคลื่อนๆ มีระยะห่างเฉลี่ย ℓ 1 และ 5 ℓ 1 แก่ ส่วนในกรณี ℓ 1 แก่ 2 (ข) ℓ 2 (ข) ℓ 3 แก่ 2 (ข) ℓ 4 (ข) ℓ 5 (ข) ℓ 6 (ข) ℓ 7 (ข) ℓ 8 (ข) ℓ 9 (ข

แผ่นฐาน ความหนาแน่นจะต่ำเช่นดังที่ปรากฏในรูปที่ 2 (ค) แต่ห่างออกไปไม่ไกลความหนาแน่นจะสูงเช่นดังที่ ปรากฏในรูปที่ 2 (ง) ธรรมชาติของการเกิดเส้นเคลื่อนแบบสุ่มเป็นเหตุของความอสมมาตร แม้รูปที่ 2 (ก) จะ ไม่ได้แสดงถึงความอสมมาตรนี้ แต่ปรากฏการณ์เดียวกันน่าจะมีอยู่ รูปที่ 2 (ก) บ่งชี้ให้เห็นว่า หากทำการควบคุม พารามิเตอร์การปลูกให้เหมาะสม กล่าวคือ ให้ ε และ t เข้าใกล้ลิมิตต่ำ จะสามารถควบคุมให้ t มีค่ามากกว่าขนาด ของชิ้นงานได้ ทำให้เส้นเคลื่อนเกิดในแนวเดียวตลอดทั้งแผ่นฐาน ได้ผิวหน้าเป็นลายทาง (stripes) แทนที่จะได้ ลายตาราง (cross-hatch) ส่วนรูปที่ 2 (ค) และ (ง) บ่งชี้ว่า หาก t น้อยกว่าความยาวแพร่ (diffusion length) ของแอดอะตอม แอดอะตอมก็จะสามารถแพร่ไปยังเส้นเคลื่อนได้ทั้งหมดก่อนที่จะลดพลังงานและตกผลึกที่บริเวณ เส้นเคลื่อน บริเวณระหว่างเส้นเคลื่อนจึงไม่มี OD ก่อตัวขึ้นเลย

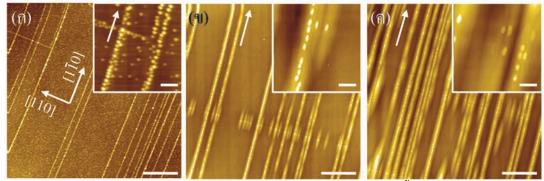
3.2 สมบัติเชิงแสงของควอนตัมดอตที่ซ้อนกันบนเทมเพลตลายตาราง

Title: "Polarization anisotropy of stacked InAs quantum dots on InGaAs/GaAs cross-hatch patterns," *J Crystal Growth* 378, 524-528 (2013). (Output 1.2)

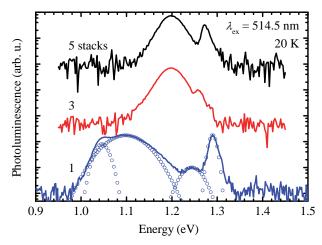
ผลจากการวัดสมบัติเชิงแสงของโครงสร้างตามวัตถุประสงค์ ค. ในหัวข้อที่ 1 ทำให้ทราบถึงลักษณะการ โพลาไรซ์ของแสงที่เปล่งออกมา ซึ่งจะเป็นประโยชน์ต่ออุปกรณ์เปล่งแสงที่ต้องการลำแสงที่มีแกนโพลาไรซ์ในทิศใด ทิศหนึ่งโดยเฉพาะ ผลการทดลองชี้ให้เห็นว่า สมบัติโพลาไรซ์ของแสงเปลี่ยนแปลงไปตามจำนวนชั้นของการซ้อน ทับควอนตัมดอต โดยเฉพาะลักษณะทางกายภาพของควอนตัมดอตชั้นบนสุด ได้แก่ aspect ratio และความสูง

ชิ้นงานในการศึกษามี 3 โครงสร้างซึ่งมีจำนวนชั้นควอนตัมดอต 1, 3 และ 5 ชั้น โครงสร้างของชิ้นงาน โดยสรุปประกอบด้วยชั้นบัฟเฟอร์ GaAs 300 nm, ชั้น In_{0.2}Ga_{0.8}As CHP 25 nm, GaAs 10 nm, "ชั้นไวงาน" และชั้นครอบ (capping) GaAs 100 nm ชั้นที่เป็นแก่นของโครงสร้างคือ "ชั้นไวงาน" ซึ่งประกอบด้วยชั้น InAs QDs และ GaAs 10 nm ช้อนกัน 1, 3 หรือ 5 ทบโดยที่ความหนาของ InAs QDs ของแต่ละทบเป็นความหนา วิกฤต หรือความหนาที่ทำให้แบบรูป RHEED เปลี่ยนจากแบบเส้นเป็นแบบจุด สำหรับ QD ชั้นแรก ความหนาดัง กล่าวคือ 1.7 ML ในขณะที่ความหนาของชั้นถัดไป (เฉพาะกรณีของชิ้นงานที่มีชั้น QD 3 และ 5 ชั้น) จะมีค่า ≈ 1.3 ML เท่านั้น QD ชั้นบนจะก่อตัวเร็วกว่าชั้นล่างเสมอ โดยเฉพาะเมื่อชั้นคั่นบาง [9] ชั้น QD ปลูกขึ้นช้า ๆ ด้วยอัตรา 0.01 ML/s ทำให้การควบคุมด้วยมือมีความแม่นยำกว่า 0.02 ML ชิ้นงานที่ปลูกมี 2 ชุด ชุดหนึ่งหยุด การปลูกไว้ที่ชั้น QD เพื่อใช้ศึกษาสัณฐานวิทยาพื้นผิว (surface morphology) โดยเทคนิค AFM ส่วนอีกชุดหนึ่ง จะเหมือนชุดแรก แต่กลบทับด้วยชั้นครอบ GaAs 100 nm เพื่อใช้ศึกษาสมบัติเชิงแสงของชิ้นงานโดยเทคนิค PL

ผลการวัดสมบัติเชิงแสงของชิ้นงานประกอบด้วย ผล PL แบบปรกติ และแบบที่ไวต่อแกนโพลาไรซ์ (polarized PL หรือ PPL) ผล PL แบบปรกติให้ข้อมูลที่อธิบายภาพรวมของแสงที่ชิ้นงานเปล่งออกมา ส่วนผล PPL ให้ข้อมูลที่แสดงถึงความแตกต่างของความเข้มแสงในแกนสองแกนที่ตั้งฉากกัน (orthogonal) อย่างเห็นได้ชัด เนื้อหาหลักของบทความอธิบายลักษณะพื้นผิว สมบัติเชิงแสงแบบ PL และแบบ PPL ของชิ้นงานทั้ง 3 ตามลำดับ


3.2.1 ลักษณะพื้นผิว

ลักษณะพื้นผิวของ QD ชั้นบนสุดของชิ้นงานที่โครงสร้างของชั้นไวงานประกอบด้วยชั้น QD 1, 3 และ 5 ชั้นถูกแสดงดังภาพ AFM ในรูปที่ 3 (ก), (ข) และ (ค) ตามลำดับ สำหรับชิ้นงานแรกที่มี QD 1 ชั้นจะพบ QD ที่ จัดเรียงตัวกันเป็นแนวบนลายตารางในทิศ [110] และ [1-10] และยังพบในบริเวณระหว่างกลางลายตารางอีกด้วย QD ที่พบระหว่างกลางลายตารางนี้จะค่อนข้างไวต่อปริมาณของ InAs ต่างจาก 2 ชิ้นงานที่เหลือซึ่งมีQD 3 และ 5 ชั้นจะมีเพียง QD ที่ก่อตัวเฉพาะบนลายตารางเท่านั้น ภาพ AFM ในรูปที่ 3 (ข) และ (ค) ชี้ให้เห็นว่าผิวหน้าของ ชิ้นงานทั้งสองนั้นมีลักษณะที่คล้ายกัน และต่างจากชิ้นงานแรกในประเด็นสำคัญ 3 ประเด็น ดังนี้


ประเด็นที่ 1 รูปร่างของ QD สำหรับชิ้นงานที่มีชั้น QD 1 ชั้น รูปร่างของ QD เมื่อมองจากด้านบนเกือบ จะเป็นวงกลม ขณะที่ชิ้นงานที่มี QD 3 และ 5 ชั้นจะถูกยืดให้ยาวออกในทิศ [1-10] ผิวหน้าของชิ้นงานหลังจาก QD ก่อตัวแทบจะหยุดการเปลี่ยนแปลงเมื่ออุณหภูมิของแผ่นฐานลดลงอย่างทันทีเนื่องจากแหล่งจ่ายไฟจะหยุด ป้อนกระแสให้แก่ตัวให้ความร้อนหลังแผ่นฐานทันทีที่แบบรูปของ RHEED กลายเป็นจุด ลักษณะการยืดตัวของ QD จึงเป็นลักษณะในตัว ต่างจาก QD ที่ถูกกลบซึ่งการยืดตัวมีสาเหตุมาจากปัจจัยอื่น

ประเด็นที่ 2 ขนาดของ QD เมื่อเปรียบเทียบขนาดของ QD ในทั้งสองทิศทาง คือ [110] และ [1-10] ที่ ชั้นบนสุดของชิ้นงานทั้งสามจะพบว่า ขนาดทั่วไปของ QD สำหรับชิ้นงานที่มี QD 3 และ 5 ชั้นมีค่าเท่ากัน โดยประมาณ คือ 35 nm ซึ่งใหญ่กว่า 30 nm ที่พบในชิ้นงานที่มี QD 1 ชั้นเล็กน้อย อย่างไรก็ตาม ในทิศ [1-10] ขนาดของ QD สำหรับชิ้นงานที่มี QD 3 และ 5 ชั้นจะมีค่าประมาณ 60 nm ซึ่งใหญ่กว่าชิ้นงานที่มี QD 1 ชั้นถึง เท่าตัว aspect ratio ของชิ้นงานที่มี QD 3 และ 5 ชั้นจึงมีค่าประมาณ 2 เท่าของชิ้นงานที่มี QD 1 ชั้น ส่วน ความสูงเฉลี่ยของ QD ที่พบในชิ้นงานที่มี QD 1,3 และ 5 ชั้นคือ 6, 8 และ 6 nm ตามลำดับ ทั้งความสูงและ aspect ratio ของ QD ต่างกระทบต่อผล PPL เป็นอย่างมากดังจะได้แสดงในลำดับต่อไป และ

ประเด็นที่ 3 ระยะห่างระหว่างดอต (interdot distance) ซึ่งกระทบต่อระดับขั้นของการซ้อนเหลื่อม ฟังก์ชันคลื่นของพาหะ (carrier coupling) เคยมีการศึกษาว่า สำหรับดอตขนาด 40 nm แล้ว พาหะในดอต 2 ดอตติดกันจะซ้อนเหลื่อมกันอย่างมีนัยสำคัญเมื่อระยะห่างระหว่างดอตไกลกันถึง 8 nm [10] แต่การซ้อนเหลื่อม จะลดลงอย่างรวดเร็วกับระยะห่างระหว่างดอตที่เพิ่มขึ้น ภาพส่วนแทรก (inset) ในรูปที่ 3 (ก)-(ค) แสดงให้เห็นว่า ระยะห่างระหว่างดอตเพิ่มขึ้นกับจำนวนชั้นของการซ้อนทับ QD ส่อความว่าระดับขั้นของการซ้อนเหลื่อมจะลดลง ตามลำดับ การซ้อนเหลื่อมฟังก์ชันคลื่นนำไปสู่การเปล่งแสงของ QD ที่พลังงานลดลง (red shift) [11] ดังจะได้ แสดงในลำดับต่อไป

รูปที่ 3 ภาพ AFM ขนาด (ภาพหลัก) 10×10 μm² และ (ภาพแทรก) 1×1 μm² แสดง QD ชั้นบนสุดของโครงสร้าง InAs QD ที่ ซ้อนทับกัน (ก) 1, (ข) 3 และ (ค) 5 ชั้น ลูกศรชี้ไปในทิศ [1-10] นอกเสียจากระบุเป็นอื่น เส้นสเกล (scale bar) ในภาพหลักยาว 2 μm และในภาพแทรกยาว 200 nm

รูปที่ 4 สเปกตรัม PL ที่อุณหภูมิ 20 K ของชิ้นงานที่มี InAs QD 1, 3 และ 5 ชั้นบนพื้นผิวลายตาราง InGaAs เส้นโค้งทั้งสามต่าง ถูกออฟเซตเพื่อความกระจ่าง สัญลักษณ์วงกลมในรูปล่างคือผลการจำลองโดยฟังก์ชันเกาส์เซียน

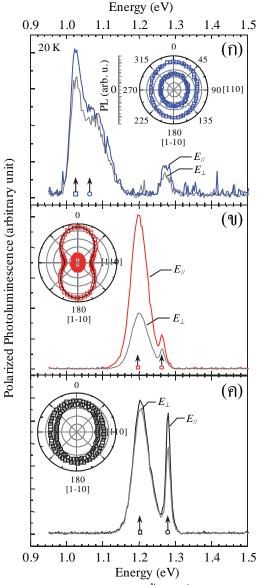
3.2.2 สมบัติเชิงแสงแบบ PL

ชิ้นงานทั้ง 3 มีคุณสมบัติเชิงแสงที่ดีเพราะสามารถเปล่งแสงได้อย่างมีประสิทธิภาพ เห็นได้จากสเปกตรัม PL ที่อุณหภูมิ 20 K ดังรูปที่ 4

สำหรับขึ้นงานที่มี QD 1 ชั้น สเปกตรัมมียอด 4 ยอด เกิดจากการเปล่งแสงของ QD ที่จัดเรียงตัวบนเส้น เคลื่อนในแนว [1-10] และในแนว [110] กลุ่มละยอด ของ QD ที่กระจายตัวกันแบบสุ่มบนผิวหน้าอีก 1 ยอด และ ของชั้นลายตาราง (InGaAs) เองอีก 1 ยอด รวมเป็น 4 ยอด ยอดทั้ง 4 สามารถอธิบายด้วยสมการคณิตศาสตร์ที่ อยู่ในรูปของฟังก์ชันเกาส์เซียน (Gaussian function) สื่อถึงธรรมชาติการกระจายตัวเชิงขนาดของชั้น QD และ เชิงเคมีของชั้นลายตาราง ยอด PL ที่มีพลังงานต่ำที่สุดเกิดที่ 1.05 eV จากการเปล่งแสงของ QD ที่จัดเรียงตัวบน เส้นเคลื่อนในแนว [1-10] เนื่องจาก QD จะเริ่มก่อตัวบนแนวนี้ก่อน ทำให้ QD มีขนาดใหญ่ที่สุด มีพลังงานต่ำที่สุด ยอด PL ที่มีพลังงานสูงขึ้นถัดมาคือยอด 1.10 eV จากการเปล่งแสงของ QD ที่จัดเรียงตัวบนเส้นเคลื่อนในแนว [110] เนื่องจาก QD ก่อตัวบนแนวนี้ถัดมาจากแนว [1-10] ถัดมาคือยอด 1.24 eV จาก QD ที่กระจายตัวกันแบบ สุ่มบนผิวหน้า สุดท้าย ยอด PL ที่มีพลังงานสูงที่สุดคือยอด 1.29 eV ซึ่งแคบที่สุดและเกิดจากชั้นลายตาราง InGaAs ลำดับการก่อตัวดังกล่าวถูกอธิบายโดยละเอียดในรายงานก่อนหน้านี้ [7,8,12] จากรูปจะเห็นว่า ผล PL ไม่ปรากฏสัญญาณที่ระดับพลังงานสูงกว่า 1.32 eV แสดงว่าพาหะแทบทั้งหมดที่ก่อกำเนิดจากการกระตุ้นเชิงแสง ในชั้นเมทริกซ์ (GaAs) และชั้นลดความตึงผิว (wetting layer, WL) ถูกถ่ายโอนไปยังชั้น QD อย่างมีประสิทธิภาพ

สำหรับชิ้นงานที่มี QD 3 และ 5 ชั้นมีผล PL คล้ายกันคือจะมียอดที่ค่อนข้างกว้างที่พลังงานประมาณ 1.20 eV และยอดที่ค่อนข้างแคบในช่วงพลังงาน 1.26-1.27 eV ยอดแคบในช่วง 1.26-1.27 eV อธิบายได้จากชั้น InGaAs ส่วนยอดกว้างที่ดูเหมือนเป็นยอดเดียวซึ่งแท้จริงเกิดจากยอด 2 ยอดที่อยู่ใกล้กัน แต่ซ้อนเหลื่อมกันจนดู เป็นเหมือนยอดเดียว ยอดทั้ง 2 เกิดจาก QD ที่เกิดบนแนวเส้นเคลื่อนในทิศ [110] และ [1-10] เช่นเดียวกับ ข้างต้น เพียงแต่ในกรณีนี้ ขนาดของ QD บนเส้นแนวทั้ง 2 นั้นมีขนาดและรูปร่างลักษณะคล้ายกันมาก จึงทำให้ แสงที่เปล่งออกมาจาก QD ทั้ง 2 กลุ่มมีสมบัติใกล้เคียงกัน จากรูปที่ 4 จะพบว่าสถานะพื้นของยอดที่พลังงาน

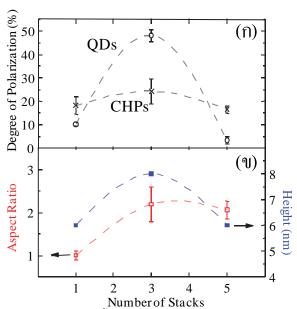
ต่ำสุดของชิ้นงานที่มี QD 1 ชั้นนั้นต่ำกว่าชิ้นงานที่มี QD 3 และ 5 ชั้นถึง 154 meV ซึ่งอธิบายได้ด้วยขนาดที่ แตกต่างกัน หรือการซ้อนเหลื่อมของฟังก์ชันคลื่นของพาหะในแนวระนาบ [11] นอกจากชิ้นงานทั้ง 3 จะเปล่งแสง ที่แตกต่างกันที่ค่ายอดพลังงานแล้ว ยังแตกต่างกันในแง่สมบัติโพลาไรซ์ด้วยดังจะเห็นได้จากผลการทดลอง PPL ใน ลำดับต่อไป

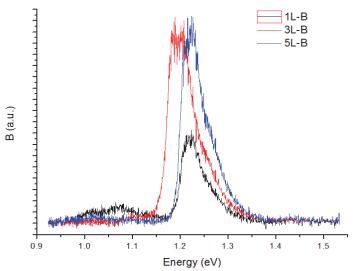

3.2.3 สมบัติเชิงแสงแบบ PPL

รูปที่ 5 (ก), (ข) และ (ค) แสดงสเปกตรัมแบบ PPL ของชิ้นงานที่มี QD 1, 3 และ 5 ชั้นตามลำดับ รูปทั้ง 3 ประกอบด้วยภาพหลักซึ่งมีกราฟ 2 เส้น และภาพแทรกซึ่งเป็นพล็อตเชิงขั้ว (polar plot) ภาพหลักของแต่ละ รูปแสดงสเปกตรัมเมื่อแผ่นคลื่นถูกปรับไปยังตำแหน่งที่ให้แสงที่เข้มที่สุดซึ่งสนามไฟฟ้าของแสงขนานไปกับทิศ [1-10] ระบุโดย $E_{I/}$ ในรูป นอกจากนี้ยังแสดงสเปกตรัมเมื่อแผ่นคลื่นถูกปรับไปยังตำแหน่งที่ให้แสงที่จางที่สุดซึ่ง สนามไฟฟ้าของแสงตั้งฉากกับทิศ [1-10] หรือ E_{\perp} อีกด้วย ส่วนภาพแทรกแสดงความเข้มของแสงที่ตำแหน่ง พลังงานตายตัว แต่ปรับมุมของแผ่นคลื่นจนครบหนึ่งรอบเพื่อวิเคราะห์ความเข้มของสนามแสงในแต่ละมุมซึ่งจะทำ ให้เห็นภาพสมบัติโพลาไรซ์ของแสงที่ขึ้นงานทั้ง 3 เปล่งออกมา ตำแหน่งพลังงานที่สนใจของแต่ละรูปถูกระบุโดย ลูกศรและสัญลักษณ์ \square และ \square หากแสงที่เปล่งออกมาไม่มีสมบัติโพลาไรซ์ ความเข้มจะต้องเท่ากันตลอด 360° หรือพล็อตเชิงขั้วต้องให้ผลเป็นวงกลม การที่พล็อตเชิงขั้วในรูปทั้ง 3 ไม่เป็นวงกลมแสดงว่า ขึ้นงานทั้ง 3 มีสมบัติโพลาไรซ์ เพียงแต่ระดับขั้นไม่เท่ากัน เพื่อให้สามารถเปรียบเทียบระดับขั้นของการโพลาไรซ์ (degree of polarization, DOP) ของแสงที่เปล่งจากขึ้นงานทั้ง 3 ได้ เราจะใช้ค่า DOP = $(I_{I/} - I_{\perp})/(I_{I/} + I_{\perp})$ เป็นเกณฑ์ใน การเปรียบเทียบ เมื่อ $I_{I/}$ และ I_{\perp} คือความเข้มแสงที่เข้มและจางที่สุดตามลำดับ การเปลี่ยนแปลงความเข้มของ PPL กับมุม I อธิบายได้ด้วยความสัมพันธ์ $I_{I/}$ cos² I I I อกจาวยกังคือย่างการคำนวณที่แสดงโดยเล้นทึบในภาพ แทรกของรูปที่ 5 (ข)

สำหรับชิ้นงานที่มี QD 1 ชั้น ค่า DOP ของยอดพลังงาน 1.02 eV และ 1.05 eV มีค่า 10% เท่ากัน แสดง ว่า เอกซิตอนใน QD ที่จัดเรียงตัวบนแนวเส้นเคลื่อน [1-10] ซึ่งเปล่งแสงที่ 1.02 eV นั้นมีการผสมกลับหรือการ เปลี่ยนสถานะระหว่างแถบ (interband transition) ที่คล้ายกับ QD ที่จัดเรียงตัวบนแนวเส้นเคลื่อน [110] ซึ่ง เปล่งแสงที่ 1.05 eV ค่า 10% ที่วัดได้นี้สูงกว่า 6% ที่พบใน In_{0.4}Ga_{0.6}As QD ที่เรียงตัวกันเป็นแถว [13] เราเชื่อ ว่า นี่เป็นผลจากระดับขั้นการซ้อนเหลื่อมพาหะที่สูงกว่าเนื่องจากระยะห่างระหว่างดอตต่ำกว่า และมีการจัดเรียง กันเป็นแนวถึง 2 แนว คือในทิศ [110] และ [1-10] แทนที่จะเป็นเพียงแนวเดียวเหมือนกับใน [13] ค่า DOP ที่วัด ได้นี้ไม่ขึ้นกับความเข้มของแสงกระตุ้นและมีค่าแทบไม่เปลี่ยนแปลงถึงอุณหภูมิประมาณ 150 K ซึ่งเป็นอุณหภูมิที่ ยังพอมีสัญญาณที่แรงพอจะวัดได้และมั่นใจอยู่บ้าง

สำหรับชิ้นงานที่มี QD 3 ชั้น ค่า DOP ของสถานะพื้นของ QD หรือที่ 1.2 eV นั้นสูงถึง 48% ซึ่งเป็นค่าที่ สูงขึ้นมากหากเทียบกับ 10% ที่วัดได้จากชิ้นงานที่มี QD 1 ชั้นข้างต้น ส่วนยอดพลังงานอีกยอดที่ 1.27 eV ซึ่ง เป็นยอดของชั้นลายตาราง InGaAs มี DOP สูงถึง 20% แท้จริงแล้ว ค่า DOP ของยอดของชั้นลายตาราง InGaAs ของชิ้นงานทั้ง 3 ต่างมีค่าประมาณ 20% ทั้งสิ้นแม้ว่าในการปลูกผลึกจริง ชั้นลายตารางอาจมีสมบัติเบี่ยงเบนจาก ค่าที่ออกแบบ (nominal) อยู่บ้าง เช่น ความหนาและเศษส่วนโมลของ In การที่เราสามารถวัด DOP ของชั้นลาย


ตารางได้ แม้ว่ามันจะเป็นแลตทิชลูกบาศก์ที่สมมาตรและไม่ควรมี DOP ไม่ถือเป็นเรื่องแปลก ในอดีตเคยมี รายงานว่า DOP ของชั้น InP QD ที่ปลูกบน In_{0.5}Ga_{0.5}P และ DOP ของชั้น In_{0.5}Ga_{0.5}P เองนั้นมีค่า 44% และ 83% ตามลำดับ จะเห็นว่า DOP ของชั้นเมทริกซ์นั้นมีค่าสูงกว่าของชั้น QD เสียอีก สาเหตุอาจมาจากการมอดูเลต องค์ประกอบ (compositional modulation) ของชั้นเมทริกซ์ [14] ชั้นลายตารางในชิ้นงานที่ปลูก (InGaAs) ก็ เป็นสารประกอบกึ่งตัวนำ 3 ธาตุคล้ายกับ InGaP จึงคาดได้ว่าการมอดูเลตองค์ประกอบมีบทบาททำให้ค่า DOP ในชิ้นงานเรามีค่าสูง ค่า DOP ที่ค่อนข้างคงตัวในชิ้นงานทั้ง 3 ทำหน้าที่เป็นข้อมูลสอบเทียบอย่างดีเพราะชิ้นงาน ทั้งหมดใช้เทมเพลตเดียวกัน ดังนั้นการเปลี่ยนแปลง DOP ของยอดพลังงานต่ำจึงเกิดจาก QD โดยแท้ ไม่ใช่จาก การจัดเตรียมระบบ


รูปที่ 5 สเปกตรัม PPL ที่อุณหภูมิ 20 K ภายใต้ภาวะ E_{II} และ E_{\perp} ของชิ้นงานที่มีจำนวน QD (ก) 1, (ข) 3 และ (ค) 5 ชั้น ภาพ แทรก (inset) แสดงพล็อตเชิงขั้วของความเข้มแสง ณ พลังงานตรวจวัด 2 พลังงานดังระบุโดยลูกศรและสัญลักษณ์ที่สอดคล้องกัน ในภาพหลัก

สำหรับชิ้นงานที่มี QD 5 ชั้น DOP ของสถานะพื้นของ QD หรือที่ 1.2 eV นั้นลดลงไปเหลือแค่ไม่กี่ เปอร์เซ็นต์ เมื่อสรุปผล DOP ของยอดพลังงานของชั้น QD และของชั้นลายตารางของชิ้นงานทั้ง 3 ดังรูปที่ 6 (ก) จะเห็นได้ว่ากราฟ DOP มีลักษณะคล้ายระฆังคว่ำ การเปลี่ยนแปลงดังกล่าวสอดคล้องกับ Sheng ซึ่งได้อธิบายไว้ ว่า DOP จะเพิ่มขึ้นแบบยกกำลังสองกับ aspect ratio ของ QD และจะลดลงอย่างรวดเร็วกับความสูงของ QD [15] รูปที่ 6 (ข) แสดงความสัมพันธ์ระหว่าง aspect ratio กับจำนวนชั้น QD และระหว่างความสูงกับจำนวนชั้น QD เมื่อจำนวนชั้นของ QD เพิ่มจาก 1 ไป 5 aspect ratio เพิ่มขึ้นอย่างรวดเร็วและอิ่มตัวขณะที่ความสูงเพิ่มขึ้น และกลับลดลง ค่า DOP ที่เพิ่มขึ้นประมาณ 38% จากการทดลองสอดคล้องเป็นอย่างดีกับการคำนวณของ Sheng ซึ่งได้คำนวณไว้ว่า aspect ratio ที่เพิ่มขึ้นจาก 1 ไป 2 จะทำให้ DOP สูงขึ้น 30% และความสูงของ QD ที่เพิ่มขึ้น 2 nm จะทำให้ DOP สูงขึ้นเพิ่มอีก 10% รวมเป็นประมาณ 40% ซึ่งใกล้เคียงกับผลการทดลอง (38%) มาก ค่า DOP ที่เพิ่มขึ้นกับความสูงของ InAs และ InGaAs QD ที่มีรูปร่างเหมือนเลนส์อธิบายได้จากพาหะที่ถูก บังคับให้ประจำที่ (localize) ในทิศ [110] และ [1-10] โดยความเครียดตามแกนคู่ (biaxial strain) [16]

แม้ว่าค่า DOP ที่เพิ่มขึ้นอย่างรวดเร็วเมื่อจำนวนชั้น QD เพิ่มขึ้นจาก 1 เป็น 3 จะอธิบายได้เป็นอย่างดีโดย aspect ratio และความสูงของ QD แต่ค่า DOP ที่ลดลงอย่างรวดเร็วเช่นกันเมื่อจำนวนชั้น QD เพิ่มขึ้นจาก 3 เป็น 5 ไม่อาจอธิบายได้ด้วยสาเหตุเดียวกันอย่างเป็นที่น่าพอใจนักเพราะค่า DOP ลดลงมากกว่า 40% ภายใต้ aspect ratio ที่ค่อนข้างคงตัวและความสูงของ QD ลดลงเพียง 2 nm ซึ่งผลการคำนวณของ Sheng คาดเดาว่า DOP จะลดลงเพียง 10% เท่านั้น แสดงว่าสมบัติโพลาไรซ์ของ QD ที่มี aspect ratio สูงอาจไวต่อความสูงใน ระดับที่มากกว่า QD ที่มี aspect ratio ต่ำก็เป็นได้

1 2 3 4 5
Number of Stacks
รูปที่ 6 ผลกระทบของจำนวนชั้นของ QD ที่มีต่อ (ก) ระดับขั้นของการโพลาไรซ์ของแสงที่เปล่งออกมาจาก QD และชั้นลายตาราง
(CHP) (ข) aspect ratio และความสูงของ QD ชั้นบน

รูปที่ 7 สเปกตรัม PL แบบเส้น (300 K) ของชิ้นงานที่มี InAs QD 1, 3 และ 5 ชั้นบนพื้นผิวลายตาราง InGaAs

3.3 สมบัติเชิงกลของพาหะในสายโซ่ควอนตัมดอตที่ซ้อนกันบนเทมเพลตลายตาราง

Title: "Excitation transfer in stacked quantum dot chains," *Semiconductor Science and Technology* 30, 055005 (2015). (Output 1.3)

บทความนี้มิได้มีการปลูกชิ้นงานเพิ่มเติม แต่เป็นการวัดสมบัติเชิงแสงของชิ้นงานทั้ง 3 ของบทความที่แล้ว อาศัย set-up แบบ confocal และเป็นการวัดแบบ 2 มิติ หรือ PL map ที่อุณหภูมิฐาน (80 K) ถึงอุณหภูมิห้อง (300 K) การวัดสมบัติเชิงแสงของชิ้นงานที่อุณหภูมิต่ำใน cryostat ในบทความที่แล้วมีขีดจำกัดด้านการรวบรวม แสง (collection optics) ทำให้ไม่สามารถดักจับสัญญาณที่อุณหภูมิห้องได้เนื่องจาก signal to noise ratio (SNR) ต่ำ ขณะที่การวัดแบบ confocal ใช้เลนส์วัตถุ (objective lens) ของกล้องไมโครสโคป (100x) ทำให้ สามารถรวบรวมแสงได้มากกว่า SNR ดีกว่า จึงสามารถวัดการเปล่งแสงที่อุณหภูมิห้องได้ ชิ้นงานที่เปล่งแสงที่อุณหภูมิห้องได้จะต้องเป็นชิ้นงานที่คุณภาพดี และบ่งชี้ว่า สามารถนำไปประยุกต์ใช้ในอุตสาหกรรมได้จริง การ ทดลองนี้กระทำที่ห้องปฏิบัติการวิจัยของ CNRS ที่ฝรั่งเศส ภายใต้ความร่วมมือกับ Prof. Mohamed Boutchich จาก Pierre & Marie Curie University (UPMC)


ผลการวัดสเปกตรัมแบบเส้น (line spectrum) ของชิ้นงานทั้ง 3 ซึ่งมีชั้น QD 1, 3 และ 5 ชั้นปลูกทบกัน บนลายตารางถูกแสดงในรูปที่ 7 ซึ่งมีลักษณะคล้ายกับผล PL ที่อุณหภูมิต่ำที่ได้รายงานไปก่อนหน้านี้ ต่างกันเพียง ตำแหน่งของพลังงานเนื่องจากอุณหภูมิทดลองที่แตกต่างกัน

สเปกตรัมแบบเส้นมีชีดจำกัดสำคัญคือบ่งบอกถึงภาพรวมของการเปล่งแสงของวัสดุ ในกรณีของวัสดุนา โน แต่ละพื้นผิว แต่ละบริเวณ มักเปล่งแสงได้ไม่เท่ากัน และมักเปล่งแสงที่ความยาวคลื่นต่างกันด้วย เนื่องจาก สมบัติเชิงแสงของวัสดุนาโนจะถูกกำหนดโดยขนาดทางกายภาพเป็นหลัก เพื่อให้เข้าใจสมบัติเชิงแสงของวัสดุมาก ขึ้น การวัด PL map จึงเป็นสิ่งจำเป็น ขั้นตอนการวัด PL map สามารถสรุปโดยคร่าวดังนี้ เริ่มจากการวัด PL แบบจุดที่ตำแหน่งใดตำแหน่งหนึ่งบนผิวหน้าของชิ้นงาน หลังจากนั้นขยับชิ้นงานแกน x ไปทางขวาเล็กน้อย เช่น 0.5 μm แล้ววัด PL แบบจุดซ้ำ ก่อนที่จะขยับไปทางขวาอีกตามจำนวนจุดที่ต้องการ เมื่อครบแถวที่หนึ่ง ก็ขยับ

ชิ้นงานแกน y ไปด้านล่างเล็กน้อย โดยกำหนดให้ step size เท่ากับของแกน x หลังจากนั้น ก็ทำการวัด PL แบบ จุดไปเรื่อย ๆ ให้ครบอีกแถวที่สอง ทำเช่นนี้วนซ้ำไปเรื่อย ๆ จนได้สเปกตรัมของแต่ละจุดครอบคลุมบริเวณที่ ต้องการ เช่น 10 μ m x 10 μ m แล้วนำผลความเข้ม PL ทั้ง matrix มาประมวลโดยการอินทิเกรตความเข้ม เฉพาะช่วงพลังงานที่สนใจ ก็จะทำให้ทราบว่าบริเวณใดของชิ้นงานเปล่งแสงที่พลังงานนั้น ๆ

ผลการทดลองวัด PL map ของชิ้นงานที่มีควอนตัมดอตซ้อนทับกัน 1, 3 และ 5 ชั้นข้างต้นถูกแสดงในรูป ที่ 8 (ก), (ข) และ (ค) ตามลำดับ โดยลำดับรูปจากซ้ายไปขวาเป็นการเรียงพลังงานจากต่ำไปสูง โดยค่าพลังงาน เฉลี่ย (nominal) ในหน่วย electron-Volt (eV) ถูกแสดงโดยตัวเลข ณ มุมบนซ้ายของแต่ละรูป แบนด์วิดท์ของ การ integrate แต่ละรูปคือ 10 meV เช่นภาพซ้ายสุดของรูปที่ 8 (ก) สื่อถึงบริเวณที่เปล่งแสงได้ในช่วง 1.00 – 1.01 eV บริเวณที่จ้า หมายถึงบริเวณที่เปล่งหรือดักจับแสงในย่าน 1.00 – 1.01 eV ได้ ส่วนบริเวณที่มืดหมายถึง บริเวณที่ไม่สามารถเปล่งหรือดักจับแสงในย่าน 1.00 – 1.01 eV

สมบัติเชิงกลของพาหะในสายโซ่ควอนตัมดอตบนเทมเพลตลายตารางสามารถอนุมานได้จากลักษณะ สมบัติเชิงแสง จาก PL map จะเห็นว่าแสงที่เปล่งออกจาก QD ที่เรียงกันเป็นสายโซ่ (QD chain) ในทิศ [1-10] นั้นมีพลังงานต่ำกว่าในทิศ [110] สอดคล้องกับลำดับการก่อ QD ที่ได้รายงานว่า QD จะก่อตัวในทิศ [1-10] ก่อน จึงมีขนาดเฉลี่ยใหญ่กว่า ผล PL เชิงเส้นยังชี้ให้เห็นว่า เมื่อเพิ่มความเข้มของแสงกระตุ้นจนกระทั่งสถานะพื้นของ QD ชั้นบนอิ่มตัว แทนที่พาหะที่เพิ่มขึ้นมาจะไปครอบครองสถานะกระตุ้น (filling effect) มันกลับถูกถ่ายโอนไป ยังสายโซ่ QD ชั้นล่าง เห็นได้จากผลการวัด PL แบบ excitation dependent จะมียอดพลังงานต่ำโผล่ขึ้นมา หลังจากที่สถานะพื้นอิ่มตัว ลักษณะของการเปลี่ยนแปลงสมบัติเชิงแสงเช่นนี้ถูกเสนอในบทความนี้ว่า ใช้เป็น สัญญาณที่ระบุการมีอยู่ของกลไกการถ่ายโอนพาหะข้ามโครงสร้างควอนตัมทั่วไปได้

รูปที่ 8 PL maps ของชิ้นงานที่มี InAs QD (ก) 1, (ข) 3 และ (ค) 5 ชั้น (300 K) ที่พลังงานต่าง ๆ

4. สรุป (Conclusion)

โครงการ RSA5580015 การประกอบควอนตัมดอตสารกึ่งตัวนำโดยการนำของเส้นเคลื่อนผิวร่วมใน เอพิแทกชีวิวิธพันธุ์แบบแลตทิชไม่เข้าคู่กัน (Guided assembly of semiconductor quan-tum dots via interfacial dislocations in lattice-mismatched heteroepitaxy) มีวัตถุประ-สงค์หลักคือ สังเคราะห์และวัด ลักษณะสมบัติโครงสร้างควอนตัมดอตสารกึ่งตัวนำ InAs ที่ก่อตัวอย่างเป็นระเบียบบนเทมเพลตลายตาราง InGaAs/GaAs ทั้ง InAs QD และ InGaAs/GaAs template ต่างเป็นโครงสร้างที่เกิดจากการปลูกผลึกชนิดหนึ่ง บนผลึกอีกชนิดหนึ่ง (เอพิแทกชีวิวิธพันธุ์) ซึ่งมีค่าคงตัวแลตทิชต่างกัน (แลตทิชไม่เข้าคู่กัน) โครงสร้างทั้งหมดถูก สังเคราะห์แบบต่อเนื่อง กล่าวคือ สังเคราะห์เทมเพลตก่อน แล้วตามด้วย QD โครงสร้างถูกสังเคราะห์โดยเทคนิค เอพิแทกซีลำโมเลกุล (MBE) ถูกวัดสถานะพื้นผิว (surface morphology) โดยกล้องจุลทรรศน์แรงอะตอม (AFM) และถูกวัดสมบัติเชิงแสงโดยเทคนิคโฟโตลูมิเนสเซนส์ (PL, PPL, PL map) ผลจากการทดลองตลอดระยะเวลา 3 ปีของโครงการได้ให้ข้อมูลและความรู้พื้นฐานหลายอย่าง สรุปได้ 3 ประเด็น

- 1. การปลูก QD บนพื้นผิวลายตารางสามารถให้ QD ที่เรียงตัวเป็นสายโซ่ในทิศ [1-10] และ [110] ทิศ ทั้งสองตั้งฉากกัน ผลคือ QD เรียงตัวเป็นลายตาราง อย่างไรก็ตาม ลายตารางเกิดจากเส้นเคลื่อนผิวร่วมซึ่งเกิดใน ทิศ [1-10] ก่อน หากควบคุมขนาดของความเครียดและความหนาของชั้น InGaAs ให้ดีจะสามารถควบคุมให้เกิด เส้นเคลื่อนผิวร่วมในแนวเดียวได้ หรืออาจควบคุมให้เกิดเส้นเคลื่อนผิวร่วมทั้งสองแนวอย่างหนาแน่น หากเจือ QD ด้วยธาตุแทรนซิชัน เช่น Mn จะสามารถพัฒนาโครงสร้างให้เป็นหน่วยความจำความจุสูง (high-density memory) ได้ ผลและแนวคิดดังกล่าวตีพิมพ์ในบทความที่ 1.1 ของ Output (หัวข้อถัดไป)
- 2. แสงที่เปล่งออกจากสายโซ่ QD บนพื้นผิวลายตารางเป็นแสงโพลาไรซ์ เมื่อซ้อนชั้นสายโซ่ QD หลายชั้น อันดับขั้นของการโพลาไรซ์ (degree of polarization, DOP) จะเพิ่มขึ้นเนื่องจากการจัดเรียง QD เป็นระเบียบ มากขึ้นตามจำนวนชั้นที่ซ้อนกัน อย่างไรก็ตาม เมื่อจำนวนชั้นเพิ่มขึ้น ความเครียดสะสมจะเพิ่มขึ้นตาม ชั้นต่าง ๆ อาจคลายความเครียดโดยการก่อดิสโลเคชัน คุณภาพของผลึกจะเลวลงทันที การซ้อนชั้น QD เพื่อเพิ่ม DOP สำหรับอุปกรณ์เปล่งแสงจึงมีขีดจำกัด ผลการทดลองแสดงว่า DOP จะสูงที่สุดเมื่อจำนวนชั้นที่ซ้อนกันเท่ากับ 3 หลังจากนั้น ทั้ง DOP และคุณภาพเชิงแสงโดยรวมของโครงสร้างจะเลวลง สอดคล้องกับโครงสร้าง QD ที่ซ้อนกัน หลายชั้นที่ใช้ในรอยต่อ p-n ของเซลล์สุริยะ ผลดังกล่าวตีพิมพ์ในบทความที่ 1.2 ของ Output
- 3. ในโครงสร้างสายโซ่ QD ที่ซ้อนกันหลายชั้นบนพื้นผิวลายตารางนั้น พาหะจะมาออกันที่ QD ชั้นบนสุด เสียเป็นส่วนใหญ่ และหากโครงสร้างถูกกระตุ้นด้วยแสงความเข้มสูง (หรือถูกฉีดด้วยกระแสที่สูงเมื่ออยู่ในรอยต่อ p-n) พาหะจะทยอยถูกถ่ายโอนจาก QD ชั้นบนลงมายังชั้นล่าง แทนที่จะไปปรากฏตัวอยู่ในสถานะกระตุ้นของ QD ชั้นบน ข้อสรุปดังกล่าวเกิดจากผลการวัด PL map ควบคู่กับ PL แบบ excitation dependent แสดงให้ เห็นความเชื่อมโยงระหว่างสมบัติเชิงแสงและสมบัติเชิงกลของพาหะภายใน QD ผลและแนวคิดดังกล่าวตีพิมพ์ใน บทความที่ 1.3 ของ Output

ผลจากโครงการนี้ได้ข้อสรุปว่า เส้นเคลื่อนหรือดิสโลเคชัน มีประโยชน์ในการจัดเรียงโครง-สร้าง QD ได้ โดยไม่กระทบต่อสมบัติในตัว (intrinsic properties) ของ QD อีกทั้งยังช่วยปรับปรุงสมบัติโพลาไรซ์ของแสงได้ และยังใช้สังเคราะห์โครงสร้าง QD ซ้อนซึ่งเป็นประโยชน์ต่อการศึกษาปรากฏการณ์พื้นฐานทางฟิสิกส์ได้อีกด้วย เป็นที่น่าติดตามต่อไปว่า ดิสโลเคชันจะใช้ประโยชน์อย่างไรได้อีกหลังจากที่ไม่นานมานี้ มีการค้นพบว่า ดิสโลเคชัน มีอิทธิพลต่อการเคลื่อนที่ของอนุภาคในระดับไมโครด้วย [17]

เอกสารอ้างอิง

- [1] S. Y. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen, A. N. Larsen, *Phys. Rev. Lett.* **78** (1997) 503.
- [2] Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, E. A. Fitzgerald, *Appl. Phys. Lett.* **71** (1997) 3567.
- [3] K. Yamaguchi, E. Waki, H. Hasegawa, Jpn. J. Appl. Phys. 36 (1997) L871.
- [4] C.C. Thet, S. Panyakeow, and S. Kanjanachuchai, Microelectron. Eng. 84 (2007) 1562.
- [5] C.C. Thet, S. Sanorpim, S. Panyakeow, S. Kanjanachuchai, *Semicond. Sci. Technol.* **23** (2008) 055007.
- [6] S. Kanjanachuchai, M. Maitreeboriraks, C. C. Thet, T. Limwongse, S. Panyakeow, *Microelectron. Eng.* **86** (2009) 844.
- [7] T. Limwongse, S. Panyakeow, S. Kanjanachuchai, *Physica Status Solidi C* **6** (2009) 806.
- [8] S. Kanjanachuchai and T. Limwongse, J Nanosci. Nanotech. 11 (2011) 10787.
- [9] Q. Xie, A. Madhukar, P. Chen, N. P. Kobayashi, *Phys. Rev. Lett.* **75** (1995) 2542.
- [10] J. Peng, C. Hermannstädter, M. Witzany, M. Heldmaier, L. Wang, S. Kiravittaya, A. Rastelli, O.G. Schmidt, P. Michler, G. Bester, *Phys. Rev. B* 81 (2010) 205315.
- [11] P. Yu, W. Langbein, K. Leosson, J. M. Hvam, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A.Y. Egorov, A.E. Zhukov, A.F. Tsatsul'nikov, Y.G. Musikhin, *Phys. Rev. B* **60** (1999) 16680.
- [12] C. Himwas, S. Panyakeow, S. Kanjanachuchai, Nanoscale Res. Lett. 6 (2011) 496.
- [13] L. Villegas-Lelovsky, M. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. Liang, Y. Mazur, G. Marques, C. TralleroGiner, G. Salamo, *Nanoscale Res. Lett.* **6** (2011) 56.
- [14] M. Sugisaki, H.-W. Ren, S.V. Nair, K. Nishi, S. Sugou, T. Okuno, Y. Masumoto, *Phys. Rev. B* **59** (1999) R5300.
- [15] W. Sheng, S. J. Xu, Phys. Rev. B 77 (2008) 113305; W. Sheng, Phys. Status Solidi B 246 (2009) 876.
- [16] G. A. Narvaez, G. Bester, A. Zunger, J. Appl. Phys. 98 (2005) 043708.
- [17] S. Kanjanachuchai and P. Photongkam, Cryst. Growth Des. 15 (2015) 14.

Output

บทความวิจัยที่ได้จากโครงการและระบุรหัสโครงการใน Acknowledgment มี 4 กลุ่ม ดังนี้

1. ISI Journals

- 1.1. T. Limwongse, S. Thainoi, S. Panyakeow, and S. Kanjanachuchai, "InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium," *Journal of Nanomaterials* **2013** (2013) 791782.
- 1.2. T. Chokamnuai, P. Rattanadon, S. Thainoi, S. Panyakeow, S. Kanjanachuchai, "Polarization anisotropy of stacked InAs quantum dots on InGaAs/GaAs cross-hatch patterns," *Journal of Crystal Growth* **378** (2013) 524-8.
- 1.3. S. Kanjanachuchai, M. Xu, A. Jaffré, A. Jittrong, T. Chokamnuai, S. Panyakeow, M. Boutchich, "Excitation transfer in stacked quantum dot chains," *Semicon-ductor Science and Technology* **30** (2015) 055005.

2. Book Chapter

- 2.1. S. Kanjanachuchai, N. Patanasemakul, N. Thongkamkoon, N. Thudsalingkarn-sakul, N. Siripitakchai, P. Changmoang, S. Thainoi, S. Panyakeow, "Optical Properties of Lateral InGaAs Quantum Dot Molecules Single- and Bi-Layers," in *Quantum Dot Molecules*. vol. 14, J. Wu and Z. M. Wang, Eds., ed: Springer New York, pp. 51-75 (2014).
- 3. Proceedings (International Conference)
 - 3.1. M. Xu, A. Jaffré, J. Alvarez, J. Kleider, A. Jittrong, T. Chokamnuai, S. Panya-keow, M. Boutchich, S. Kanjanachuchai, "Temperature dependent photolu-minescence and micromapping of multiple stacks InAs quantum dots," *AIP Conference Proceedings* **1649** (2015) 3.

4. Proceedings (Domestic Conferences)

- 4.1. W. Eiwwongcharoen, S. Thainoi, S. Panyakeow, S. Kanjanachuchai, "The Effects of Long-Time Annealing of Subcritical InAs Layer on Cross-Hatch Patterns", Paper #EL005, The 37th Electrical Engineering Conference (EECON-37), 19-21 November 2557, Khon Kaen University.
- 4.2. A. Jittrong, N. Sivaarthitkul, T. Chokamnuai, S. Panyakeow, S. Kanjanachuchai, "Polarized photoluminescence of InAs quantum dots grown on InGaAs cross-hatch patterns", Paper #EL007, The 37th Electrical Engineering Conference (EECON-37), 19-21 November 2557, Khon Kaen University.
- 4.3. A. Jittrong, W. Eiwwongcharoen, N. Nakareseisoon, B.A. Trisna, S. Panyakeow, S. Kanjanachuchai, "Self-assembled InAs quantum dots approaching rectangular shapes with multi-stacked growth", Paper #EL009, The 37th Electrical Engineering Conference (EECON-37), 19-21 November 2557, Khon Kaen University. (Awarded Outstanding Paper)

ภาคผนวก

Manuscript reprints (Output บทความที่ 1.1, 1.2, 1.3, 2.1, 3.1, 4.1, 4.2, 4.3)

Hindawi Publishing Corporation Journal of Nanomaterials Volume 2013, Article ID 791782, 5 pages http://dx.doi.org/10.1155/2013/791782

Research Article

InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium

Teeravat Limwongse, Supachok Thainoi, Somsak Panyakeow, and Songphol Kanjanachuchai

Semiconductor Device Research Laboratory (Nanotec Center of Excellence), Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Correspondence should be addressed to Songphol Kanjanachuchai; songphol.k@chula.ac.th

Received 19 March 2013; Accepted 13 June 2013

Academic Editor: Sudhakar Nori

Copyright © 2013 Teeravat Limwongse et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Storage density on magnetic medium is increasing at an exponential rate. The magnetic region that stores one bit of information is correspondingly decreasing in size and will ultimately reach quantum dimensions. Magnetic quantum dots (QDs) can be grown using semiconductor as a host and magnetic constituents added to give them magnetic properties. Our results show how molecular beam epitaxy and, particularly, lattice-mismatched heteroepitaxy can be used to form laterally aligned, high-density semiconducting host in a single growth run without any use of lithography or etching. Representative results of how semiconductor QD hosts arrange themselves on various stripes and cross-hatch patterns are reported.

1. Introduction

Quantum dots (QDs) are very small regions of homogeneous material with typical size smaller than 100 nm for semiconductors [1]. There are two main approaches to synthesize QDs: top down and bottom up [2]. The top-down approach starts with a bulk material and scales it down to small feature using lithography and etching. The bottom-up approach starts with atoms or molecules and scales them up by chemical means to the required size. The quantum dots of interests are diluted magnetic semiconductor (DMS) which, as its name suggests, is electrically semiconducting and magnetically active [3]. While their applications in memory technology have not yet been fully realized, it is expected that various forms of DMS structures can be used as magnetic storage dots or read heads in hard disk drives (HDDs). (For examples, see US Patents no. 7249518 sensors based on giant planar hall effect in dilute magnetic semiconductors, no. 5294287 class of magnetic materials for solid state devices, 6999279 perpendicular patterned magnetic media, no. 6947235 Patterned multilevel perpendicular magnetic recording media, and no. 6906879 magnetic recording system with patterned multilevel perpendicular magnetic recording.) The paper is organized as follows. Section 2 reviews the current magnetic media technologies. Section 3 explains how DMS will benefit hard disk-based storage. Section 4 describes how QD semiconducting hosts for DMS are formed using molecular beam epitaxy (MBE), followed by the summary in Section 5.

2. Magnetic Media

A key characteristic of HDDs is storage capacity in gigabyte which is directly proportional to the areal density of the magnetic medium. The areal density in bits per square inch is a product of bits per inch along a recording track times the number of tracks per inch. Smaller magnetic bits will allow the increases in bits/inch and tracks/inch, resulting in increased areal density and storage capacity. One key goal in HDD research is to increase the areal density which has been increasing approximately at an exponential rate. The rapid increase is enabled by improvements in several technologies, mainly read-write heads and magnetic media.

Magnetic media generally contains Co, due to its high magnetocrystalline anisotropy and coercivity, and is alloyed with Cr and Pt. The magnetic media are in the form of thin film, typically less than 50 nm [4], deposited on a glass,

ceramic, or metal substrate by a vacuum deposition process or by sputtering. Information is stored in small magnetic grains (CoCrPt) segregated in an insulator (SiO₂). The grain size in current disk generation is kept between 10 and 50 nm and is a competition between fundamental limits and economic considerations: end users want high-capacity disks which drive down the grain size, but smaller grains are unstable as thermal energy can randomly revert magnetization direction and hence can corrupt the stored information. This superparamagnetic limit thus drives up the grain size and keeps it above 10 nm. Because of the randomness of the grain shapes and sizes, each bit written on the disk must cover about 100 grains to ensure reliable storage [5]. Our proposed approach provides a nonrandom semiconducting host (InAs QDs on cross-hatch pattern) that when diluted with a 3d transition element such as Mn can provide a magnetic medium that theoretically takes a single grain to store one bit. The semiconducting host is a prerequisite for diluted magnetic semiconducting media.

3. Diluted Magnetic Semiconductors

Diluted magnetic semiconductors are a class of material that exhibits both semiconducting and ferromagnetic properties and can thus provide a platform for data storage and processing in the same material. A DMS is traditionally defined as a diamagnetic semiconductor doped with a few to several atomic per cent of some transition metal with unpaired d electrons [6]. DMS materials can be realized by alloying a transition metal with III–V binary (GaMnAs, InMnAs, InMnSb, InFeAs, GaCrSb), ternary (GaInMnAs, GaAlMnSb, InMnAsSb, GaCrAsSb), and quaternary (GaInMnAsP, GaAlInMnSb) compounds [7].

One of the most studied DMS systems is $Ga_{1-x}Mn_xAs$ with 0 < x < 8% grown using MBE. Despite significant effort, the maximum Curie temperature of bulk (Ga, Mn)As is still well below room temperature, $T_c < 190$ K, yet theories predict that at x > 10% (Ga, Mn)As can exhibit room temperature ferromagnetism [8]. However, incorporation of Mn at such high concentration suffers from solid solubility limits and high vapor growth in MBE: Mn tends to agglomerate on the surface giving rise to elemental Mn clusters, as opposed to the desired random incorporation that results in carrier-mediated spin coupling. Migration-enhanced epitaxy may help but requires precise temperature control [8].

MBE is typically used to grow III–V compounds such as GaAs (the host for GaMnAs), InAs (host for InMnAs), and InGaAs (host for GaInMnAs); all are potential hosts for room-temperature DMS materials. Recently, it has been shown that GaMnAs nanodot arrays are a DMS with $T_c=140~\rm K~[9]$. The synthesis of such GaMnAs quantum dot arrays, however, requires top-down masking technique which creates structural defects and is thus inferior to self-assembled techniques that can grow defects-free QDs, particularly if the technique can grow self-assembled and self-aligned QDs.

4. Quantum Dots on Cross-Hatch Patterns

We demonstrated the use of lattice-mismatched InGaAs films grown on GaAs as templates for the growth of self-assembled and self-aligned QDs. By growing InAs QDs on a nonplanar surface, the nucleation positions of the QDs can be controlled. The use of InGaAs/GaAs stripes and cross-hatch patterns (CHPs) as templates for subsequent nucleation of QDs gives rise to laterally aligned QDs. The areal density of the QDs is dictated by the dislocation line densities. This section describes the results and explains the mechanisms related to the growths of QDs, CHPs, and QDs on CHPs, respectively.

4.1. Quantum Dots. When a material with atomic spacing a_1 is grown on a substrate with a different atomic spacing a_0 , the growth mode will be principally determined by the degree of misfit $\varepsilon \equiv (a_1 - a_0)/a_0$. For thin films with low misfits, the epilayer will grow layer by layer in the Frank-van der Merwe (FM) mode, resulting in smooth films. The growing layer, however, has a different atomic spacing (a_0) from thermal equilibrium (a_1) and is thus under strain. The associated strain energy is contained in this growing layer. As growth continues and the thickness increases, the strain energy will also increase. When the strain energy is too high, the twodimensional (2D) film is unstable and spontaneous formation of three-dimensional (3D) dots will occur, resulting in the reduction of the total energy of the system. The resulting dots are usually small and exhibit quantum behaviors, hence quantum dots. The growth of semiconductor QDs by this mechanism is a well-known phenomenon called Stranski-Krastanow (SK) growth mode [10] and has been observed in the growth of several semiconductor QD systems such as InAs on GaAs [11] or Ge on Si [12]. These QDs are defects-free and are electronically and optically active. Quantum effects which include delta function-like density of states and sizedependent electronic levels allow several physical properties to be tuned. Electronic devices that benefit from QDs as the active medium, or as part of the active layer, include singleelectron transistors [13], flash memory [14], and lasers [15]. With transition element incorporation, the magnetic properties of these QDs can also be tuned.

The spontaneous formation of QDs via the SK growth mode is a statistical process; the positions of QDs are random, and an example is shown in the atomic force microscopic (AFM) image of InAs QDs on low-mismatched InGaAs in Figure 1. Though the size of the QDs is quite uniform, the positions are completely random. For QD hosts to be appropriate as a HDD medium, the QDs must not only have high density but they must also line up in accordance with data read-write scheme. For rotating media with information access by head gimbal assemblies (HGA), the QDs should line up radially. For stationary media with information access by multichannel read-write probe matrix, the QDs should line up orthogonally.

4.2. Cross-Hatch Patterns. Cross-hatch patterns are used as templates to influence the QDs to nucleate orthogonally.

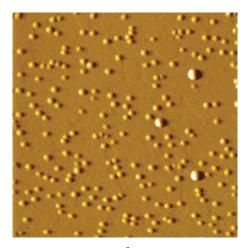


FIGURE 1: AFM image (2 \times 2 μm^2) of InAs QDs grown on planar InGaAs surface.

CHPs are formed by lattice-mismatched heteroepitaxy similar to the QDs above; the only difference is the degree of mismatch ε . To form a CHP instead of a QD, the misfit needs to be low. For a certain epilayer thickness there is a range of ε that will result in a cross-hatch pattern.

Figure 2 illustrates the case of lattice-mismatched epitaxy of 50 nm $\rm In_x Ga_{1-x} As$ on flat (001)-GaAs substrates. Figure 2(a) shows the primordial stage or the onset of CHP formation at low In molar fraction of $x\approx 8\%$ or misfit of $\varepsilon\approx 0.573\%$. The surface is atomically flat: the height contrast in the figure is only 0.79 nm, less than twice the lattice parameters. The AFM image clearly shows atomic steps with dominant surface ripples running along the [110] crystallographic direction. Some ripples running orthogonally, along the [1-10] direction, can be seen to be merging. The ripples along the [1-10] direction merge and form long lines before those along the [110] direction do due to asymmetric adatoms mobilities in the two orthogonal directions which explains the generally observed asymmetric misfit dislocation (MD) line densities.

Figure 2(b) shows the complete CHP formation at In molar fraction of x=15% or misfit of $\varepsilon=1.075\%$. The surface morphology exhibits asymmetrical cross-hatch pattern with MD line density along [1-10] direction greater than [110] direction due to the different formation times as explained above. The heights of most hatches range between 0.5 and 2 nm with those along the [1-10] direction slightly taller.

There are two challenges in employing CHPs as templates for the growth of regularly arranged, high-density QDs. First, the [110] and [1-10] line densities need be symmetrical. In view of different adatom mobilities as a result of solid source-derived As_4 , this asymmetry is fundamental and cannot be avoided. With the availability of a cracker valve or a higher cracking temperature source that yields the more reactive As_2 species, the degree of asymmetry is expected to decrease. Second, there is an upper limit to which ε (or equivalently x) can be increased before the growth mode changes from 2D (FM) to 3D (SK). This also sets the upper limit to subsequent QD areal density.

4.3. Quantum Dots on Cross-Hatch Patterns. Growth of InAs QDs on InGaAs CHPs leads to spontaneous alignment of QDs along the cross-hatches. Main parameters used to control/optimize QDs alignment are growth interruption which affects the orderliness of QDs on the hatches [16], cross-hatch layer thickness, and composition which affect MD line density [17], growth rates, excess growth, and the use of spacer layer prior to QD growth [18]. The origin and evolution of InAs QD alignment on InGaAs CHPs, which apply to other material systems, are now well understood [19, 20]. This section captures the main results of our continued efforts towards aligning InAs QDs on InGaAs CHPs.

Figure 3 shows the AFM images of InAs QDs on 50 nm $In_xGa_{1-x}As$ layer grown on (001)-GaAs when the In molar fraction (x) increases from 8% in Figure 3(a) to 10% in Figure 3(b) and to 15% in Figures 3(c) and 3(d). The QDs on the surfaces of these samples can be grouped into two broad categories: those nucleated along the buried dislocation lines and those nucleated on the flat regions between the dislocations. For x = 8%, Figure 3(a) shows that the majority QDs are dispersed randomly on the flat regions while the minority formed along the MD lines. The QDs along the MD lines are taller and more closely spaced. For x = 10%, Figure 3(b) shows that the MD line density is greater than that observed in Figure 3(a) and that the proportion of QDs on the MD lines increases as a result. The increased MD line density results from the increased misfit. The greater the misfit the shorter the average dislocation spacing l. In the case of x = 8%in Figure 3(a), only [1-10] MD lines are observed and the average dislocation spacing $l_{[1-10]} \approx 5 \,\mu\text{m}$. In the case of x =10% in Figure 3(b), $l_{[1-10]} \approx 1.5 \,\mu\text{m}$ while $l_{[110]} > 10 \,\mu\text{m}$. In the high-misfit case of x=15%, the dislocation distribution is highly irregular. Some parts of the wafer show moderate MD density as seen in Figure 3(c) while other parts show high or very high density as seen in Figure 3(d). The stochastic nature of dislocation formation gives rise to this asymmetrical behavior, and we believe this particular characteristic is also present in Figures 3(a) and 3(b), although it is possible to tune the growth parameters to obtain dislocation spacing in one direction to be greater than the sample size in which case the surface pattern would not be a cross-hatch one but rather stripes. When the cross-hatch spacing is smaller than adatoms diffusion lengths on the surface, all adatoms will be driven towards the dislocation lines leaving the regions in between completely free of QDs. The denuded zones can be observed in Figures 3(c) and 3(d).

5. Conclusion

InAs QDs on InGaAs/GaAs are grown by MBE. Lattice-mismatched epitaxy results in the formation of QDs, CHPs, stripes, and smooth films in decreasing order of misfit. For low-misfit InGaAs/GaAs, the dislocation lines making up the CHPs are widely spaced, resulting in stripes or cross-hatch patterns. For intermediate-misfit InGaAs/GaAs, surface CHPs are characterized by narrowly spaced dislocation lines along the two orthogonal directions with a different line density. Subsequent growth of high-misfit InAs or InGaAs

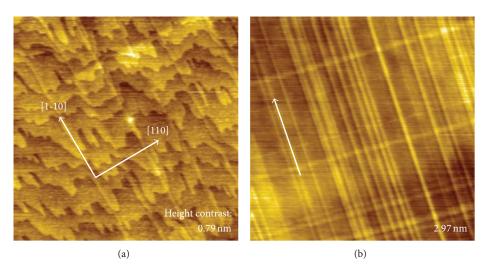


FIGURE 2: AFM images of 50 nm $In_xGa_{1-x}As$ films on (001)-GaAs during (a) early or (b) late stages of CHP formation. (a) Image size: $5 \times 5 \mu m^2$, height contrast: 0.79 nm, effective x < 8%. (b) Image size: $10 \times 10 \mu m^2$, height contrast: 2.97 nm, x = 15%.

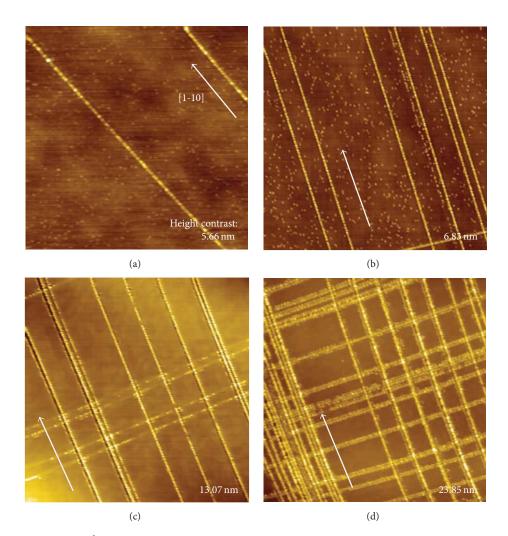


FIGURE 3: AFM images (10 \times 10 μ m²) of InAs QDs on In_xGa_{1-x}As/GaAs surfaces with increasing lattice mismatch, or In molar fraction from (a) x = 0.08 to (b) 0.10 and (c) and (d) 0.15.

on stripes or CHP surfaces results in uni- or bidirectionally aligned QDs, respectively. The unidirectionally aligned QDs result in QD chains with electronic and optical coupling between dots. The bidirectionally aligned QDs result in QD matrices. With appropriate alloying of a transition element and careful control of average dislocation spacings, these QD matrices can exhibit spin coupling and may serve as a high-density DMS medium/read head.

Acknowledgments

Pornchai Changmoang is acknowledged for maintaining the MBE system. This work is partially funded by I/UCRC in HDD Component, the Faculty of Engineering, Khon Kaen University (CPN R&D 01-18-53); NSTDA via Nectec and Nanotec; Thailand Research Fund (DPG5380002, RSA5580015); and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (EN1180A-56).

References

- [1] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, John Wiley & Sons, 2nd edition, 2005.
- [2] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004.
- [3] M. Jain, Ed., *Diluted Magnetic Semiconductors*, World Scientific, 1992.
- [4] S. O. Kasap, Principle of Electronic Materials and Devices, McGraw-Hill, 3rd edition, 2002.
- [5] Perpendicular Magnetic Recording Technologywhite Paper, Hitachi Global Storage Technology, 2011.
- [6] S. A. Chambers and B. Gallagher, "Focus on dilute magnetic semiconductors," New Journal of Physics, vol. 10, Article ID 055004, 2008.
- [7] L. L. Chang, L. Esaki, H. Munekata, H. Ohno, and S. von Molnar, "Class of magnetic materials for solid state devices," US patent #5296048.
- [8] T. Jungwirth, K. Y. Wang, J. Mašek et al., "Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors," *Physical Review B*, vol. 72, no. 16, Article ID 165204, 2005.
- [9] S. P. Bennett, L. Menon, and D. Heiman, "Magnetic properties of GaMnAs nanodot arrays fabricated using porous alumina templates," *Journal of Applied Physics*, vol. 104, no. 2, Article ID 024309, 4 pages, 2008.
- [10] I. N. Stranski and L. Krastanow, "Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander," Sitzungsberichte-Akademie Der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse Abteilung IIb, vol. 146, pp. 797– 810, 1938.
- [11] M. Grundmann, O. Stier, and D. Bimberg, "InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure," *Physical Review B*, vol. 52, no. 16, pp. 11969–11981, 1995.
- [12] F. K. Legoues, M. Copel, and R. M. Tromp, "Microstructure and strain relief of Ge films grown layer by layer on Si(001)," *Physical Review B*, vol. 42, no. 18, pp. 11690–11700, 1990.

[13] L. Zhuang, L. Guo, and S. Y. Chou, "Silicon single-electron quantum-dot transistor switch operating at room temperature," *Applied Physics Letters*, vol. 72, no. 10, pp. 1205–1207, 1998.

- [14] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, "Room temperature operation of a quantum-dot flash memory," *IEEE Electron Device Letters*, vol. 18, no. 6, pp. 278–280, 1997.
- [15] R. Mirin, A. Gossard, and J. Bowers, "Room temperature lasing from InGaAs quantum dots," *Electronics Letters*, vol. 32, no. 18, pp. 1732–1734, 1996.
- [16] C. C. Thet, S. Panyakeow, and S. Kanjanachuchai, "Growth of InAs quantum-dot hatches on InGaAs/GaAs cross-hatch virtual substrates," *Microelectronic Engineering*, vol. 84, no. 5–8, pp. 1562–1565, 2007.
- [17] C. C. Thet, S. Sanorpim, S. Panyakeow, and S. Kanjanachuchai, "The effects of relaxed InGaAs virtual substrates on the formation of self-assembled InAs quantum dots," Semiconductor Science and Technology, vol. 23, no. 5, Article ID 055007, 5 pages, 2008
- [18] S. Kanjanachuchai, M. Maitreeboriraks, C. C. Thet, T. Limwongse, and S. Panyakeow, "Self-assembled InAs quantum dots on cross-hatch InGaAs templates: excess growth, growth rate, capping and preferential alignment," *Microelectronic Engineering*, vol. 86, no. 4–6, pp. 844–849, 2009.
- [19] T. Limwongse, S. Panyakeow, and S. Kanjanachuchai, "Evolution of InAs quantum dots grown on cross-hatch substrates," *Physica Status Solidi (C) Current Topics in Solid State Physics*, vol. 6, no. 4, pp. 806–809, 2009.
- [20] S. Kanjanachuchai and T. Limwongse, "Nucleation sequence of InAs quantum dots on cross-hatch patterns," *Journal of Nano-science and Nanotechnology*, vol. 11, no. 12, pp. 10787–10791, 2011.

28 **1.1**

Contents lists available at SciVerse ScienceDirect

Journal of Crystal Growth

journal homepage: www.elsevier.com/locate/jcrysgro

Polarization anisotropy of stacked InAs quantum dots on InGaAs/GaAs cross-hatch patterns

T. Chokamnuai, P. Rattanadon, S. Thainoi, S. Panyakeow, S. Kanjanachuchai*

Semiconductor Device Research Laboratory (Nanotec Center of Excellence), Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

ARTICLE INFO

Available online 5 January 2013

Keywords:

- A1. Characterization
- A1. Optical microscopy
- A1. Photoluminescence A3. Molecular beam epitaxy
- A3. Ouantum dots
- B2. Semiconducting III-V materials

ABSTRACT

Stacked InAs quantum dots (QDs) are grown on InGaAs/GaAs cross-hatch patterns (CHPs) by molecular beam epitaxy. The QDs, found almost exclusively on the cross-hatches, have greater lateral aspect ratio and are taller than typical QDs on flat surfaces. Polarization-resolved photoluminescent measurements show that both the QDs and CHPs exhibit polarization anisotropy. But while the CHP-related anisotropy is constant, the QD-related anisotropy is significantly enhanced or suppressed as the aspect ratio and height of the QD ensemble vary with the number of stacks. The polarization anisotropy observed agrees well with multiband tight-binding theoretical calculations of interband polarization in InAs/GaAs QDs. © 2013 Elsevier B.V. All rights reserved.

1. Introduction

In(Ga)As quantum dots (QDs) are an important class of materials with excellent optical properties in the near infrared (NIR) regions. They can be grown by molecular beam epitaxy (MBE) in the Stranski-Krastanow (SK) growth mode where growth parameters can be tuned to achieve the desired optical output or response, making them one of the most versatile NIR materials. Tuning of growth parameters and structures are carried out mainly with the following aims in mind: first, to control the QD ensemble's mean size and the surrounding barriers in order to tune the dominant wavelength of the ground state emission or response [1]; second, to control the ensemble's size distribution in order to achieve the required full-width-at-half-maxima (FWHM) of the optical response [2]; third, to achieve lateral/vertical alignment of QDs to take advantage of electronic couplings [3,4]; fourth, to eliminate the spatial randomness of QDs intrinsic to the SK growth mode and achieve deterministic QDs by patterning [5]; fifth, to reduce the QD density to a level suitable for single dot spectroscopy, thus enabling single-photon emission and detection [6,7]; and finally, to control the polarization state of the optical output, mainly to maximize the degree of polarization (DOP) for polarized light sources [7], or to minimize it for indistinguishable photon light sources for quantum information processing [8]. Polarized photoluminescence has been observed in In(Ga)As QDs, the origins of which have been attributed to various forms of anisotropies, including shape [9-11], interface fluctuations [12] and strain [13]. Creating such anisotropies in a

2. Experiments The InAs QDs on InGaAs CHPs are grown by MBE using standard epi-ready (001)-GaAs substrates. The layer sequence from the starting GaAs substrate is as follows: 300-nm GaAs buffer, 25-nm In_{0.2}Ga_{0.8}As CHP layer, 10-nm GaAs, the stacked QD layers, and 100-nm GaAs capping layer. The stacked QD layers

resort to the use of nontraditional substrates [14,15], lithographically defined templates [16], or surfactants [17], all of which add another degree of complication to the epitaxial process. Yet it has recently been demonstrated that simple as-grown InAs SK QDs on common (001)-GaAs substrates yield room-temperature DOP as high as 35% [18]. The authors for the latter did not state whether such high DOP value has been optimized nor can be enhanced by

controllable manner is not trivial, however. Some groups have

In this paper we report the polarization anisotropy property of stacked InAs QDs grown on InGaAs cross-hatch patterns (CHPs) naturally formed in heteroepitaxial of thin In_{0.2}Ga_{0.8}As films on (001)-GaAs substrates. We found the DOP can be significantly enhanced, up to a certain stacking number before it is strongly suppressed. The variations of the DOP coincide with geometrical changes of the uppermost QD layer, mainly with the ensemble averages of aspect ratio and height. The results are in excellent agreement with recently reported multiband tight-binding theoretical calculations of interband polarization in InAs/GaAs QDs.

0022-0248/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jcrysgro.2012.12.092

> 1.2 29

comprise either 1, 3 or 5 stacks of "critical" InAs QDs and 10-nm GaAs spacer layer; "critical" in the sense that the In shutter is

closed as soon as the first sign of QDs appears on the reflection

^{*} Corresponding author. Tel.: +66 22186524. E-mail address: songphol.k@chula.ac.th (S. Kanjanachuchai).

high-energy electron diffraction (RHEED) screen. The two-dimensional (2D) equivalent critical thickness for the first layer is 1.7 monolayer (ML), and approximately 1.3 ML for subsequent layers. Upper QD layers always form slightly earlier than the first QD layer due to preferential nucleation on top of buried QDs, in the limiting case of thin spacer layer [19]. The slow InAs growth rate of 0.01 ML/s allows accurate manual control to better than 0.02 ML. Two sets of samples are grown: the ones with 100 nm GaAs capping layer for photoluminescent (PL) measurements, and the others without the capping layer for atomic force microscopy (AFM). Other growth details can be found in our previous reports [20].

For AFM, the surfaces are imaged in air in the tapping mode. For PL, samples are mounted on the cold finger of a variable temperature optical cryostat, and non-resonantly excited by a 514.5-nm Ar⁺ laser. The luminescence is dispersed in a 1-m monochromator and collected by a cooled InGaAs detector via standard lock-in detection. For emission polarization analyses, we use a combination of a fixed polarizer, positioned at the angle of greatest system efficiency, and a rotatable half waveplate; both are placed in front of the monochromator entrant slit. The waveplate is rotated by a motorized holder in the forward direction, with proper backlash correction, allowing excellent repeatability and angular resolution far better than the 2° step size used. To analyze the emission polarization anisotropy, either the detection wavelength is fixed and the waveplate rotated, or the detection wavelength swept and the waveplate angle fixed such that the optical field being analyzed is parallel (E_{II}) or perpendicular (E_{\perp}) to the QD elongation axis—the [1–10] direction.

3. Results and discussion

All three structures exhibit quantum dot chains along the orthogonal [110] and [1-10] directions with important differences in surface morphology, photoluminescence and polarization anisotropy as follows.

3.1. Morphology

 $10\times10~\mu m^2$ AFM images of the uppermost QD layer in the 1-, 3- and 5-stack InAs QDs on InGaAs/GaAs CHPs are shown in Fig. 1(a–c), respectively. The inset in each shows a magnified region $(1\times1~\mu m^2)$ representative of morphology around a dislocation intersection. For the 1-stack sample, QDs align themselves along the orthogonal [110] and [1–10] dislocation lines and also appear randomly between them. The presence of these free-standing QDs is very sensitive to the InAs amount, in contrast to the 3- and 5-stack samples where QDs always nucleate only along the dislocation lines. The AFM images in Fig. 1(b) and (c) indicate that the surface morphologies of the 3- and 5-stack samples are similar, but differ

from those of the 1-stack sample in three important aspects: QD shape, size and interdot distance.

The apparent shape of QDs for the 1-stack sample is almost circular while those for the 3- and 5-stack samples are elongated along the [1-10] direction. The surface nanostructures are frozen by immediately turning off the substrate's heater supply at the onset of the RHEED spots. The elongation observed is thus an as-grown characteristic intrinsic to the upper QD layers, in contrast to QD elongation in a single-stack structure observed only after capping.

The size of QDs among the three samples should be compared along both orthogonal axes. Along the [110] direction, typical QD size of the 3- and 5-stack samples is similar at 35 nm, slightly larger than 30 nm of the 1-stack sample. Along the [1–10] direction, however, typical QD size of the 3- and 5-stack samples is 60 nm, doubling those of the 1-stack sample. The aspect ratios of the QDs in the 3- and 5-stack samples thus approximately double those in the 1-stack sample. The average height of QDs increases from 6 nm for the 1-stack to 8 nm for the 3-stack sample but decreases to 6 nm for the 5-stack sample. The aspect ratio and height critically affect the polarization anisotropy to be discussed later.

The interdot distance dictates the degree of carrier coupling. Lateral dots with 40–nm diameter separated by up to 8 nm have been shown to exhibit significant interaction [21]. The coupling rapidly decreases with increasing dot separation. From the insets in Fig. 1(a–c) one can clearly see that mean QD separation increases with the number of stacks, implying that the degree of coupling decreases accordingly. Lateral coupling gives rise to a red-shift of QD ensemble's ground state in the PL spectra [22], which is reflected in the results discussed next.

3.2. Photoluminescence

The QDs in all samples are optically active as is evident in the high PL yields at 20 K shown in Fig. 2. For the 1-stack sample, luminescent peaks related to [1-10] and [110]-aligned QDs, freestanding QDs, and the InGaAs quantum well are clearly resolved and can be fitted with multiple Gaussian functions as shown in the figure. The lowest energy peak at 1.05 eV is attributed to QDs aligned along the [1-10] direction since they are the first to form and are the largest as a result. The next higher-energy peak at 1.10 eV is attributed to QDs aligned along the [110] direction since they are the next to form. The small peak at 1.24 eV results from the free-standing QDs since they are the smallest. The intense narrow peak at around 1.29 eV arises from the InGaAs CHP layer. The evolution of the QDs on CHPs and the correlation with peak assignments have been discussed in detail elsewhere [23–25]. There are no significant PL signal beyond \sim 1.32 eV, indicating that the non-resonantly excited carriers in the GaAs

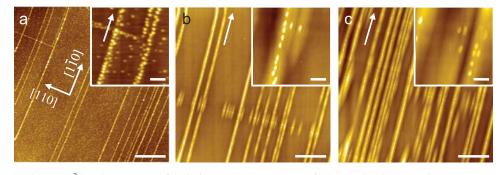
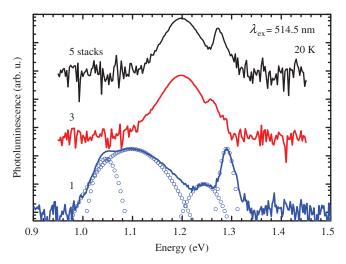
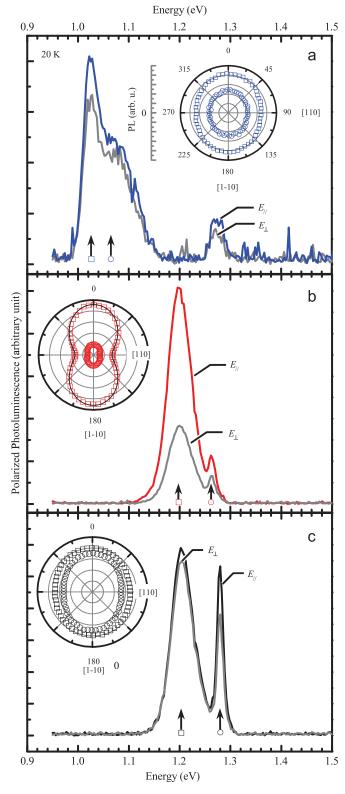



Fig. 1. $10 \times 10 \,\mu\text{m}^2$ (main) and $1 \times 1 \,\mu\text{m}^2$ (inset) AFM images of stacked InAs QDs grown on InGaAs/GaAs cross-hatch pattern. Shown are uncapped surfaces of the top QD layer when the number of stacks are (a) 1, (b) 3 and (c) 5. The arrows point along the [1–10] direction, unless labeled otherwise. The scale bars are 2 μ m in the main figures and 200 nm in the insets.

30 1.2

Fig. 2. 20–K PL spectra of 1-, 3- and 5-stack lnAs QDs on lnGaAs/GaAs cross-hatch pattern. Curves are offset for clarity. Open circles are multi-Gaussian function fits to the 1-stack PL data.


matrix and the wetting layer are effectively transferred to the OD layer.

The 3- and 5-stack samples show distinctly different PL spectra: in each there is one broad PL peak centered at around 1.20 eV and a narrow peak at 1.26–1.27 eV. While the latter can be simply attributed to the underlying InGaAs layer, the former is slightly more complicated as it in fact consists of not one but two closely spaced Gaussian peaks arising from the fact that the QDs along the [1-10] and [110] directions are almost identical in shape and size as can be seen when comparing the insets in Fig. 1(b) and (c). The ground state of the lowest energy peak of the 1-stack sample is red-shifted from those of the 3- and 5-stack samples by 154 meV and has been observed in situations where lateral coupling occurs [22]. Besides energetic difference, emissions from the three samples also differ in the degrees of polarization.

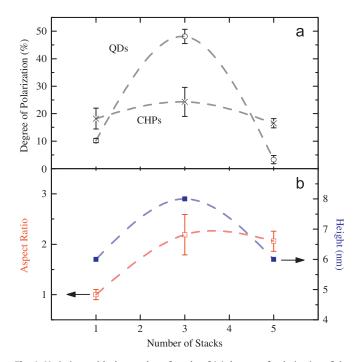
3.3. Polarization anisotropy

Polarization-resolved PL (PPL) spectra of the 1-, 3- and 5-stack samples under maxima and minima intensities—exhibited when the $\lambda/2$ waveplate angles offset by 45°, or polarization angle by 90°—are shown in Fig. 3(a-c), respectively. In all three samples, intensity maxima (minima) occur when the optical fields are parallel (perpendicular) to the [1-10] direction, or under E_{II} (E_{\perp}) condition. The inset in each figure shows the polar plot of the two peaks denoted by the arrows and the corresponding symbols in the main figure. The three polar plots are non-circular and hence a certain degree of polarizability exists in all samples. To quantify the polarization anisotropy at a particular detection energy, the DOP is calculated from $(I_{I/}-I_{\perp})/(I_{I/}+I_{\perp})$ where $I_{I/}$ and I_{\perp} represent the maximum and minimum intensities, respectively. The variation of the PPL with angle θ can be fitted with the relationship $I_{\parallel}\cos^2\theta + I_{\perp}\sin^2\theta$, an example of which is shown as the solid line in the polar plot of the QD ground state in the inset of Fig. 3b.

For the 1-stack sample, the DOPs of the 1.02 and 1.05 eV peaks are about the same, i.e. 10%, indicating that excitons in the [1-10]-aligned QDs (which emit at 1.02 eV upon recombination) and [110]-aligned QDs (1.05 eV) exhibit essentially the same interband transitions. This is slightly higher than the $\sim\!6\%$ reported for 1D chains of In $_{0.4}$ Ga $_{0.6}$ As QDs [26]. We believe this to be due to the stronger degree of coupling as a result of smaller interdot distance and the presence of 2D QD chains as opposed to the one-dimensional (1D) QD chains in [26]. The DOPs are found to be independent of excitation power and remain unchanged at

Fig. 3. 20–K polarized PL spectra under $E_{||}$ and E_{\perp} polarizations of the (a) 1-, (b) 3- and (c) 5-stack samples. The insets are polar plots of the intensities at the detection energies indicated by the arrows and the corresponding symbols in the main figures.

least up to 150 K where a respectable signal-to-noise ratio can still be achieved.


For the 3-stack sample, the DOP of the QD ground state at 1.20 eV is $\sim\!48\%$, a significant increase from 10% observed in the 1-stack sample. The 1.27–eV peak originating from the InGaAs

31 1.2

CHP also exhibits a 20% DOP. In fact, CHP-related DOPs in all three samples stay virtually constant at 20% despite small deviations in thickness and In molar fraction from the nominally 25-nm In_{0.2}Ga_{0.8}As layer. The observation of non-zero DOPs arising from the CHPs, supposedly a symmetric cubic lattice, is not unusual. Sugisaki et al., for example, reported the DOPs of InP QDs and the underlying In_{0.5}Ga_{0.5}P matrix of 44% and 83%, respectively, and attributed the high matrix DOP to compositional modulation planes along the [1-10] and [110] directions [27]. The InGaAs CHP in our case is chemically similar to the InGaP matrix and In adatoms are known to have greater diffusion lengths along the [1-10] than the [110] direction [28], it can thus be expected that such modulation planes also exist in our structures. The constant CHP DOPs of the three samples, grown under nominally the same conditions but placed in the cryostat at different orientations, serve as a controlled polarization source which further proofs that the observed anisotropies are not system related.

In contrast to the constant CHP-related DOPs, the QD-related DOPs increases from 10% in the 1-stack sample to $\sim\!48\%$ in the 3-stack sample, but then decreases to $\sim\!a$ few percent in the 5-stack sample, as shown in Fig. 4a. The change in QD DOPs with the number of stacks is non-monotonous and compares well with theoretical calculations based on a multiband tight-binding formalism by Sheng who predicted a quadratic dependency of DOPs with QD's aspect ratio and diminishing DOP with QD's height [29,30].

Fig. 4b shows the relationship between QD's lateral aspect ratio and height with the number of stacks. As the number of stacks increases from one to five, the aspect ratio rapidly increases and saturates, while the height first increases but then decreases. The $\sim 38\%$ DOP increase observed in our experiment is in excellent agreement with the aforementioned calculations by Sheng who predicted that an increase in QD's lateral aspect ratio from 1 to 2 would result in the increase of QD DOP by 30%, and the increase in QD height by 2 nm would also result in the increase of QD DOP by an additional 10% [29]. The linear combination of the increases (40%) almost exactly matches our

Fig. 4. Variations with the number of stacks of (a) degrees of polarization of the QDs and CHPs and (b) QD's lateral aspect ratio and height. Dashed lines are guides for the eye.

results. The increase in DOP with QD height in In(Ga)As lens-shaped QD systems has also been explained in terms of carrier localizations along the [1-10] and [110] directions by biaxial strain [31]. While the significant DOP increase in our structure can be satisfactorily explained by lateral aspect ratio and height, the more significant DOP decrease from the 3- to the 5-stack sample cannot be explained by the same factors since the decrease occurs with a near constant aspect ratio and similar height difference of ~ 2 nm. The polarization dependency on QD height for large aspect ratio QDs may thus be much greater than those for small aspect ratio QDs.

4. Conclusion

Single- and multi-layers of InAs SK QDs on InGaAs/GaAs crosshatch patterns are grown on standard (001)-GaAs substrates. The end of QD deposition is triggered by the RHEED spots, giving critical QDs whose morphology evolves from a circular to an elongated shape as the number of stacks increases. The QD height follows a non-monotonous trend: increasing by 2 nm as the number of stacks increases from one to three, and decreasing by a similar amount as the number of stacks further increases to five. Polarization-resolved PL measurements show that the degree of polarization is significantly enhanced as the aspect ratio and height increase, but is significantly suppressed as the height alone decreases. While the former is in excellent qualitative and quantitative agreements with theoretical calculations [29,30], the latter only agrees with a qualitative description and points towards the greater effect of QD height on polarization anisotropy than appreciated in the literature.

Acknowledgments

P. Changmoang is acknowledged for systems maintenance. This work is funded by Thailand Research Fund (RSA5580015, DPG5380002); the 90th anniversary of Chulalongkorn University fund (Ratchadaphiseksomphot Endowment Fund); Integrated Innovation Academic Center (IIAC), Chulalongkorn University Centenary Academic Development Project; Nanotec and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (CU56-EN09).

References

- [1] A.E. Zhukov, et al., Semiconductor Science and Technology 14 (1999) 575.
- [2] T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, Y. Arakawa, Applied Physics Letters 84 (2004) 2817.
- [3] O.G. Schmidt, Lateral Alignment of Epitaxial Quantum Dots, Springer, Berlin, 2007.
- [4] V.A. Shchukin, D. Bimberg, Reviews of Modern Physics 71 (1999) 1125.
- [5] L. Wang, A. Rastelli, S. Kiravittaya, P. Atkinson, F. Ding, C.C.B. Bufon, C. Hermannstädter, M. Witzany, G.J. Beirne, P. Michler, O.G. Schmidt, New Journal of Physics 10 (2008) 045010.
- [6] Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Science 295 (2002) 102.
- [7] P. Bhattacharya, D. Basu, A. Das, D. Saha, Semiconductor Science and Technology 26 (2011) 014002.
- [8] C. Santori, J.V. David Fattal, G.S. Solomon, Y. Yamamoto, Nature 419 (2002) 594.
 [9] Y. Nabetani, T. Ishikawa, S. Noda, A. Sasaki, Journal of Applied Physics 76
- (1994) 347.
 [10] H. Lee, W. Yang, P. Sercel, A. Norman, Journal of Electronic Materials 28
- (1999) 481. [11] S. Cortez, O. Krebs, P. Voisin, J.M. Gérard, Physical Review B 63 (2001) 233306
- [12] D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park, Physical Review Letters 76 (1996) 3005.
- [13] H. An, J. Motohisa, T. Fukui, Japanese Journal of Applied Physics 40 (2001) 2312.

- [14] M. Henini, S. Sanguinetti, S.C. Fortina, E. Grilli, M. Guzzi, G. Panzarini, L.C. Andreani, M.D. Upward, P. Moriarty, P.H. Beton, L. Eaves, Physical Review B 57 (1998) R6815.
- [15] K.F. Karlsson, V. Troncale, D.Y. Oberli, A. Malko, E. Pelucchi, A. Rudra, E. Kapon, Applied Physics Letters 89 (2006) 251113.
- [16] J. Yuan, H. Wang, R.P. van Veldhoven, J. Wang, T. de Vries, B. Smalbrugge, C.Y. Jin, P. Nouwens, E.J. Geluk, A.Y. Silov, R. Nötzel, Applied Physics Letters 98 (2011) 201904.
- [17] W. Lei, H.H. Tan, C. Jagadish, Applied Physics Letters 99 (2011) 193110.
- [18] J. Beyer, I.A. Buyanova, S. Suraprapapich, C.W. Tu, W.M. Chen, Applied Physics Letters 98 (2011) 203110.
- [19] Q. Xie, A. Madhukar, P. Chen, N.P. Kobayashi, Physical Review Letters 75 (1995) 2542.
- [20] S. Kanjanachuchai, M. Maitreeboriraks, C.C. Thet, T. Limwongse, S. Panyakeow, Microelectronic Engineering 86 (2009) 844; C.C. Thet, S. Panyakeow, S. Kanjanachuchai, Microelectronic Engineering 84 (2007) 1562.
- [21] J. Peng, C. Hermannstädter, M. Witzany, M. Heldmaier, L. Wang, S. Kiravittaya, A. Rastelli, O.G. Schmidt, P. Michler, G. Bester, Physical Review B 81 (2010) 205315.

- [22] P. Yu, W. Langbein, K. Leosson, J.M. Hvam, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, A.F. Tsatsul'nikov, Y.G. Musikhin, Physical Review B 60 (1999) 16680.
- [23] T. Limwongse, S. Panyakeow, S. Kanjanachuchai, Physica Status Solidi C 6 (2009) 806.
- [24] S. Kanjanachuchai, T. Limwongse, Journal of Nanoscience and Nanotechnology 11 (2011) 10787.
- [25] C. Himwas, S. Panyakeow, S. Kanjanachuchai, Nanoscale Research Letters 6 (2011) 496.
- [26] L. Villegas-Lelovsky, M. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. Liang, Y. Mazur, G. Marques, C. Trallero-Giner, G. Salamo, Nanoscale Research Letters 6 (2011) 56.
- [27] M. Sugisaki, H.-W. Ren, S.V. Nair, K. Nishi, S. Sugou, T. Okuno, Y. Masumoto, Physical Review B 59 (1999) R5300.
- [28] T. Mano, R. Notzel, D. Zhou, G.J. Hamhuis, T.J. Eijkemans, J.H. Wolter, Journal of Applied Physics 97 (2005) 014304. [29] W. Sheng, S.J. Xu, Physical Review B 77 (2008) 113305. [30] W. Sheng, Physica Status Solidi B 246 (2009) 876.

- [31] G.A. Narvaez, G. Bester, A. Zunger, Journal of Applied Physics 98 (2005) 043708

Semicond. Sci. Technol. 30 (2015) 055005 (7pp)

doi:10.1088/0268-1242/30/5/055005

Excitation transfer in stacked quantum dot chains

Songphol Kanjanachuchai¹, Ming Xu², Alexandre Jaffré², Apichart Jittrong¹, Thitipong Chokamnuai¹, Somsak Panyakeow¹ and Mohamed Boutchich²

E-mail: songphol.k@chula.ac.th

Received 10 December 2014, revised 3 February 2015 Accepted for publication 27 February 2015 Published 31 March 2015

Abstract

Stacked InAs quantum dot chains (QDCs) on InGaAs/GaAs cross-hatch pattern (CHP) templates yield a rich emission spectrum with an unusual carrier transfer characteristic compared to conventional quantum dot (QD) stacks. The photoluminescent spectra of the controlled, single QDC layer comprise multiple peaks from the orthogonal QDCs, the free-standing QDs, the CHP, the wetting layers and the GaAs substrate. When the QDC layers are stacked, employing a 10 nm GaAs spacer between adjacent QDC layers, the PL spectra are dominated by the top-most stack, indicating that the QDC layers are nominally uncoupled. Under high excitation power densities when the high-energy peaks of the top stack are saturated, however, low-energy PL peaks from the bottom stacks emerge as a result of carrier transfers across the GaAs spacers. These unique PL signatures contrast with the state-filling effects in conventional, coupled QD stacks and serve as a means to quickly assess the presence of electronic coupling in stacks of dissimilar-sized nanostructures.

S Online supplementary data available from stacks.iop.org/SST/30/055005/mmedia

Keywords: quantum dot chains, photoluminescent mapping, electronic coupling, cross-hatch patterns, InAs, vertical stacking, excitation transfer

(Some figures may appear in colour only in the online journal)

1. Introduction

Semiconductor quantum dots (QDs) grown by molecular beam epitaxy (MBE) are often stacked in order to increase the active optical volume and to tune the emission or detection wavelength and polarization of the QD ensembles [1, 2]. Stacking QDs is achieved through thin spacer layers which physically separate but often electronically couple adjacent QD layers [3]. Understanding the coupling nature of vertically stacked QD structures is of fundamental importance to the operation and optimization of QD-based devices such as memory [4], lasers [5] and solar cells [6, 7]. Though useful, coupling is not always necessary or desired, particularly for broadband applications which benefit from the superposition of different wavelengths from individual QD layers [8]. If present, electronic coupling results in the lowering of the excitonic ground-state (GS) energy, and consequently a redshift of photoluminescent peak [3, 9]. The degree of coupling is thus usually inferred from the magnitude of the energetic red-shift relative to those emitted from a single QD layer structure [3]. This approach can be misleading in stacked QDs as the strain profile at the growth front is affected by the underlying nanostructures: subsequent QD layers usually nucleate at a lower deposition amount [9, 10]. If grown at the same two-dimensional (2D) equivalent thickness throughout, upper QD layers would be bigger than those of the lower QD layers, with a concomitant red-shift due to size-not coupling. One way to unambiguously identify the presence and

© 2015 IOP Publishing Ltd Printed in the UK

0268-1242/15/055005+07\$33.00 34

¹ Semiconductor Device Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

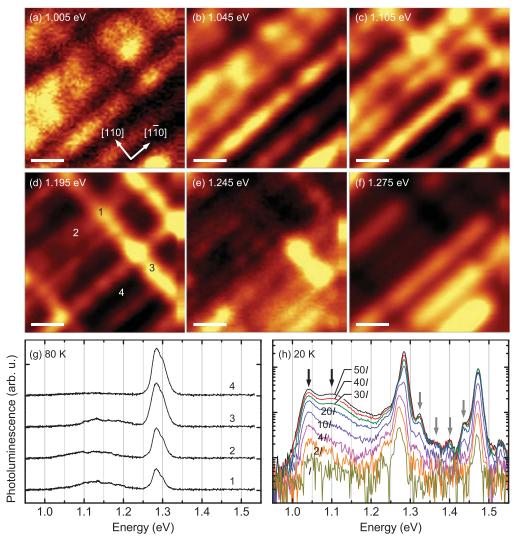
² GeePs, CNRS UMR8507, CentraleSupelec, Univ Paris-Sud, Sorbonne Universités—UPMC, Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France

evaluate the strength of coupling is to vary the spacer thickness and observe the changes in PL signals as a result of excitation transfer of carriers. This approach has been adopted to study coupling between, for example, stacked QDs [11] and stacked quantum dots and wells [12]. Alternatively, one can fix the spacer thickness, vary the size of each stack, perform PL measurements and simply count the number of GS peaks: a single (multiple) GS peak indicates the presence (absence) of coupling [11]. This article adopts the latter approach to study an unusual coupling property of stacked quantum dot chains (QDCs) on cross-hatch pattern (CHP) templates.

QDCs or laterally-coupled QDs have garnered significant interest in the past decade [13] and have recently gained renewed interest due to their unique geometry suitable for fundamental transport studies [14] and polarization-sensitive optoelectronic devices [15]. However, QDCs are rarely studied in stacked forms due to their complex optical char-[16], particularly when coupling simultaneously occur laterally and vertically as is the case here. In this paper, stacked InAs QDCs on InGaAs/GaAs CHP templates grown by molecular beam epitaxy (MBE) are characterized by photoluminescence (PL) and a complete PL fingerprint of QDCs/CHP structures is reported. Under high excitation power densities, stacked QDCs do not exhibit statefilling effects as would be observed in stacked QDs. The otherwise excited-state carriers are instead transferred toward the lower QDC layer, an effect attributed to the combination of extended wavefunctions, resonant tunnelling thermalization.

2. Experimental

The structures investigated comprise multiple stacks of InAs QDCs grown on partially-relaxed InGaAs film on GaAs by solid-source MBE Using Riber's 32P MBE system, and after in situ thermal cleaning of GaAs (001) surface, growth starts from 300 nm GaAs buffer layer, followed by 25 nm In_{0.2}Ga_{0.8}As, 10 nm GaAs spacer, and 1, 3, or 5 stacks of InAs QDC/10 nm GaAs spacer pairs. The cross-hatch pattern surface of the InGaAs layer serves as a template on which chains of QDs form along the orthogonal [110] and [110] directions. The smoothness of the growth fronts and the formation of QDs are monitored in situ via streaky and spotty reflection high-energy electron diffraction (RHEED) patterns, respectively. Each QD layer is grown until the RHEED pattern changes from streaks to spots, i.e., at the onset of QD formation. The 2D equivalent thicknesses of the bottom-most stack are 1.7 monolayer (ML) and the remaining stacks are 1.3 ML. Finally, all samples are capped with 100 nm GaAs for PL measurements. Two PL set-ups are employed. For free-space, macro-PL setup, the samples are fixed in a cryostat, excited by a broad beam (2.39 mm spot size), 514.5 nm Ar⁺ laser, and emission detected by a liquid nitrogen-cooled InGaAs point detector (Hamamatsu's G7754) using standard lock-in techniques. For confocal, micro-PL setup, the sample is mounted on a piezoelectric-driven platform (Witec's alpha300), excited by a narrow beam ($\sim 1 \, \mu \mathrm{m}$ spot size) frequency-doubled 532 nm Nd:YAG laser operating in continuous mode, and emission detected by a thermoelectrically-cooled InGaAs array detector (Andor's DU491A). Spatial-and energy-resolved PL maps are acquired from the micro-PL setup by raster scanning and simultaneously collecting point spectra. All maps shown represent PL intensities integrated over a 10 meV bandwidth around energies of interest.


3. Results and discussion

Conventional InAs Stranski-Krastanow (SK) QDs grown on flat GaAs (001) are randomly distributed and typically emit a single PL peak at around 1 µm with a full width at half maximum (FWHM) of a few 10 s meV [17]. Certain growth conditions can extend the wavelength to the $1.3-1.55 \mu m$ telecom window [18] or lead to bimodal or multimodal size distributions with multiple PL peaks [19–21], while random distribution remains. In contrast, InAs QDs grown on CHPs are guided, forming chains along the orthogonal [110] and [110] directions, each direction with its own size, size distribution, and wetting layer (WL) due to the asymmetry of the underlying dislocations [22]. The formation of QDs along the orthogonal dislocation chains has been established by planview transmission electron microscopy (TEM) [23], whereas vertical correlation of QDs with 10 nm GaAs spacer has been confirmed by cross-sectional TEM [24]. The 60° dislocations at the lower InGaAs/GaAs interface, typical in zincblende heteroepitaxy, cause surface strain fields that affect adatoms motion during growth [25], but do not affect the intrinsic emission efficiency of the overlying QDs [26]. The PL spectrum of a QDC layer would thus contain many more PL peaks than those of conventional SK QDs due to the coexistence of many optically active structures.

This section is divided into three parts. The first part describes the PL maps and spectra of the 1-stack QDC layer, showing all the possible luminescent peaks. The second part shows that luminescence is dominated by the uppermost QDC layer which is nominally uncoupled to the underlying QDC layers. The third part shows that the luminescence from the bottom QDC layers emerges at high excitation level, and provides a qualitative explanation of the underlying mechanism.

3.1. Single QDC layer: basic emission peaks

The 1-stack QDC sample emits in the 1–1.4 eV range similar to conventional SK QDs, but with a much richer optical feature. Figures 1(a)–(f) show spatial- and energy-resolved spectral maps of the same $20\times20\,\mu\text{m}^2$ area of the sample at 80 K. The PL maps, integrated over increasing energies from 1.005 eV in figure 1(a) to 1.275 eV in figure 1(f), show spatially non-uniform emissions with a cross-hatch pattern resembling the surface undulation of the underlying InGaAs/GaAs template. Figure 1(a) shows that at 1 eV, the lower energetic end of the spectra, emissions emerge from bright patches which look like stripes along the [110] direction. The

Figure 1. PL of a single InAs QD chain layer on an InGaAs/GaAs cross-hatch pattern. Same-area, $20 \times 20 \,\mu\text{m}^2$ micro-PL maps at increasing integrated intensity from (a) 1.005 to (b) 1.045, (c) 1.105, (d) 1.195, (e) 1.245 and (f) 1.275 eV. Spectra at pixels 1–4 in (d) are shown in (g): pixel 1 is taken at an intersection between [110] and [110] dislocation lines, 2 on a [110] dislocation line, 3 on a [110] dislocation line, and 4 on a dislocations-free area. (h) Macro-PL spectra measured at increasing excitation power density from, bottom to top, $I = 0.11 \,\text{W cm}^{-2}$ to 2, 4, 10, 20, 30, 40 and 50 times I. The scale bars in (a)–(f) are 4 μ m. Spectra in (g) are offset for clarity.

stripes become clearer and better resolved as the energy increases to 1.045 eV in figure 1(b). The dottiness of the lines making up the stripes is simply a reflection of the variation in local QD density, in good agreement with the morphology of uncapped samples (see the supplementary data, available at stacks.iop.org/SST/30/055005/mmedia). When the energy increases to 1.105 eV in figure 1(c), emissions from the existing [110] direction begin to fade while those from the orthogonal, [110] direction emerge. The emissions from the [110] and [110] stripes overlap and yield the characteristic CHP luminescence observed in figure 1(c). As the energy continues to increase to $1.195 \, \text{eV}$ in figure 1(d), the $[1\bar{1}0]$ emission peters out, whereas the [110] emission intensifies. And as the energy keeps on increasing to 1.245 eV in figure 1(e) and 1.275 eV in figure 1(f), the [110] and [$1\overline{1}0$] emissions are extinguished, replaced by bright patches emerging in the previously dark areas—i.e., the bright/dark regions in figures 1(a) and (f) are reversed. (The reversal is easily recognized in the first video in the supplementary data).

The QDs can be categorized, in evolution sequence [27] and with corresponding labels shown in figure 1(d), into four distinct groups: 1. at the intersection of the orthogonal [110] and [110] dislocations, 2. on the [110] dislocation lines, 3. on the [110] dislocation lines, and 4. on the remaining areas. The four QD ensembles emit slightly differently. Figure 1(g) shows point spectra at pixels 1–4 in figure 1(d), corresponding to the four QD ensembles above. Emissions from pixels 1–3 comprise two principal peaks: a broad peak centered at around 1.15 eV and a narrow peak at 1.27 eV. In contrast, emission from pixel 4 comprises only one narrow peak, also centered at 1.27 eV.

The broad peaks result from QD chains along the $[1\bar{1}0]$ and [110] directions as unequivocally proven by microscopy and spectroscopy. The micro-PL maps in figures 1(a)–(f)

provide the microscopic proof, whereas the macro-PL spectra in figure 1(h) provide the spectroscopic confirmation. It has long been known that the underlying InGaAs/GaAs CHPs are asymmetric: the [110] stripes nucleate earlier, have greater density, and result in surface steps which are taller than the [110] stripes [28]. The asymmetry is transferred to the overgrown layers, resulting in QDs along the [110] direction forming slightly earlier and are thus taller and emit at a lower energy than those along the orthogonal [110] direction [22, 27, 29]. The microscopic images in figures 1(c)-(d) provide a clear visual evidence of QD luminescence decorating the [110] and [110] stripes, at slightly different energies. This small energy difference however cannot be resolved in the corresponding point spectra: figure 1(g) shows that pixel 2, taken along the [110] direction, emits at a slightly lower peak energy than pixel 3, taken along the orthogonal [110] direction. Though these two peaks are spatially resolved in microscopy, they are spectrally unresolved as a result of micro-PL setup's fast integration time. The macro-PL setup, in contrast, has a much longer integration time and can provide complementary spectra with greater signal-to-noise ratios. Figure 1(h) shows excitation power-dependent macro-PL spectra of the same sample (but on a different area) at 20 K. The lowest two energetic peaks—1.04 eV for the [110]-aligned QDs and 1.10 eV for the [110]-aligned QDs hilighted by the black arrows—can now be clearly resolved at high excitation powers.

The narrow 1.27 eV peak is asymmetric: the left and right sides of the 1.27 eV peak in figure 1(g) tail off slightly differently—a characteristic of two unresolved Gaussian peaks with different FWHM. The closely-spaced emissions arise from the superposition or spectral overlap of the small free-standing QDs and the underlying InGaAs CHP template. The PL map in figure 1(f) shows that the areas that give off this luminescence are those between the cross hatches which happen to be the nucleation sites for free-standing QDs, too.

The four small peaks between 1.3 and 1.47 eV (observed only in the macro-PL setup as indicated by the grey arrows in figure 1(h)) are most likely associated with multiple wetting layers, some of which were previously identified [22]. For conventional InAs/GaAs SK QDs, a single WL exists and emits at around 1.44 eV. This is true even if bimodal size distributions are present [21], as long as the growth front is flat. For InAs QDs on InGaAs CHPs, the growth front is not flat. In fact, the surface steps in the [110] and [110] directions are different [28]. The WL underneath the QD chains along the [110] and [110] directions can thus be expected to be different—for example, they could form one-dimensional wetting wires [30]—but similar structures investigated so far reported just a single WL energy [22].

The multiple WL peaks above are only observed close to the carbon-impurity, 1.49 eV peak and the bulk GaAs, 1.52 eV peak. Measurements taken at different areas where the 1.49 and 1.52 eV peaks are absent do not reveal the multiple WL peaks. This indicates the possibility that bulk C centers render ineffectual the carrier capture by QDs from the GaAs matrix and the WLs, and explain the elusiveness of the multiple WL luminescence. It is a normal practice for those

carrying out PL measurements to shine the exciting laser on a spot that yields the best signal and in so doing move away from areas with large local concentrations of C, and hence miss the WL peaks.

It is worth pointing out that the multimodal size distribution of the 1-stack layer which gives rise to multiple emission peaks has not been optimized for broadband applications. If desired, one can increase the inhomogeneity of the spectrum by, for instance, growing the QDs at a higher rate or subjecting them to rapid thermal annealing [31]. In addition, one can also increase the luminous efficacy of real devices by soft-annealing under hydrogen so that most defects are neutralized and do not adversely affect long-term reliability [22].

3.2. Multi-stack QDCs: dominant emission from top-most layers

In reflection-based PL set-ups, the 1-stack QDC layer enjoys an unobstructed output window but the 3- and 5-stack QDC layers may not. This depends on electronic coupling. If the stacked layers are coupled, they behave as a single ensemble and should enjoy an unobstructed output window as is the case for the 1-stack sample. But if the stacked layers are uncoupled, luminescence from all the layers should be detectable, unless some are obstructed—reabsorbed, scattered, or reflected—in which case the emissions are dominated by the overlying structures due to geometrical advantage. Such behaviour in stacks of randomly distributed QDs cannot be proven through spectroscopy alone. But if the random distribution is reduced, as is the case for QDCs, and with PL mapping capability, it is possible to draw such a conclusion as shown below.

Figures 2(a)–(d) show the PL maps of the 3-stack QDC sample at increasing integrated energy from 1.075 eV in figure 2(a) to 1.235 eV in figure 2(d). Similarly, figures 2(e)-(h) show the PL maps of the 5-stack QDC sample from 1.075 eV in figure 2(e) to 1.235 eV in figure 2(h) (see animated videos in the supplementary data for the complete ranges). The maps show luminescence which is CHP-like for the 3-stack sample, but stripes-like for the 5-stack sample. Since adjacent stacks are separated by a 10 nm GaAs spacer which is sufficiently thin to allow coupling in conventional SK QD stacks [11], a question emerges as to why CHP-like luminescence similar to the 1-stack sample described above is not observed in the 5-stack case, or is not more clearly observed in the 3-stack case because the bottom-most QDC layer for the three samples is identically grown, has the biggest dot size and the lowest GS energies, and should thus provide the same optical features (CHP-like) as observed in the previous section. The maps shown in figure 2 instead more closely match the AFM morphologies of the top-most QDC layer where the number density of QDs along the [110] direction is significantly reduced (see the supplementary data), implying that the emission is dominated by the topmost layer. The bottom-most QDC layer buried along the [110] direction is almost undetectable; it can be barely distinguished by the collinearity of bright or dark spots, as indicated by broken lines in figure 2.

4

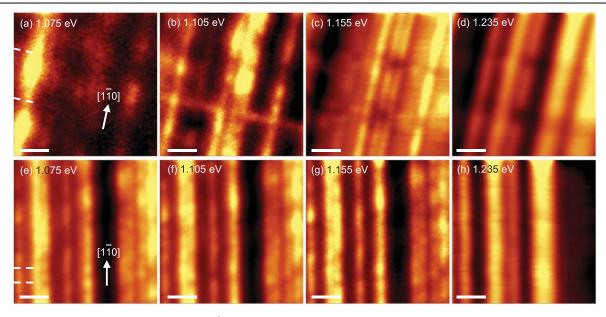
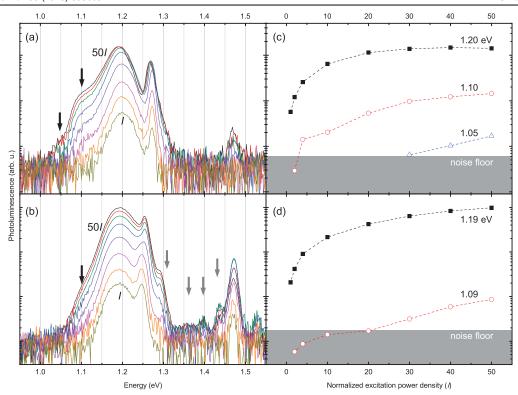


Figure 2. Same-area, room-temperature, $10 \times 10 \, \mu \text{m}^2$ micro-PL maps of (upper panels) the 3-stack QD chain sample at increasing integrated intensity from (a) 1.075 to (b) 1.105, (c) 1.155 and (d) 1.235 eV, and (lower panels) the 5-stack QD chain sample from (e) 1.075 to (f) 1.105, (g) 1.155 and (h) 1.235 eV. The scale bars are 2 μ m. The broken lines are guide to the eye and indicate some of the buried [110] dislocation lines.

One possible explanation for the much reduced [110] emission is carrier tunnelling from the bottom to the top QDC layer as has been observed in the QD bi-layer reported by Heitz *et al* [11]. However, this mechanism cannot explain the missing CHP-like emissions because carriers always tunnel towards the lower energetic state, i.e., the bottom-most QDC layer (1.1 eV active), not the top-most QDC layer (1.2 eV). If inter-stack tunnelling were present, the CHP-like emissions would have been enhanced, not suppressed.

Another possible explanation is that the top QDC layer has the highest quantum efficiency, thus dominating the weaker emission from the low quantum efficiency bottom stacks. The QDC stack is strained throughout as it is sandwiched between the top GaAs capping layer and the bottom partially-relaxed InGaAs CHP layer which in turn rests on a GaAs buffer. Since the top stack is in contact with the dislocations-free GaAs cap layer, whereas the bottom stack is in close proximity to the dislocations-prone CHP layer, the top stack would have a greater optical quality. Unless the strain profile surrounding each QD layer is carefully compensated [32], increasing the number of QD layers would in general result in accumulated strain that ultimately degrades the optical quality of the whole QD stack [33].

3.3. Multi-stack QDCs: excitation transfer


After many trials to uncover the bottom layer emissions—mostly by varying the optical path from normal to edge—it was found that the elusive emissions are not entirely missing, only significantly diminished since they are partially retrieved simply by increasing the excitation power density. This approach is however against a normal PL practice of using minimum excitation to study the true ground-state energies of QDs [9] and also to avoid sample heating.

Figures 3(a) and (b) show the macro-PL spectra of the 3and 5-stack QDC samples, respectively. The spectra are measured from a low excitation power density I_0 of $0.11 \,\mathrm{W\,cm}^{-2}$ to $50I_0$. For the 3-stack sample, increasing excitation results in intensity saturation of the 1.2 eV peak emissions from the top-most layer. Such saturation in conventional SK QDs would coincide with the appearance of one or more higher energy peaks as a result of state filling, and this is true for both single-layered and stacked QDs [12]. The spectra in figure 3(a) are however the opposite: as the 1.2 eV peak saturates, a lower energy peak emerges at around 1.1 eV, and at $40I_0$ excitation, another peak at an even lower energy of around 1.05 eV can be seen to be emerging. The sequential appearance of the 1.1 and 1.05 eV peaks upon saturation of the 1.2 eV peak is evident in the excitation-dependent PL intensity plots at the three energies shown in figure 3(c). The two additional peaks—1.1 and 1.05 eV—coincide with those of the 1-stack layer described earlier, strongly indicating that they arise from the bottom-most QDC layer.

The partial recovery of the bottom-most QDC emissions could be a direct or an indirect result of increased excitation, or a combination of both. The direct result is simply due to the greater availability of photons reaching the bottom-most stack. The indirect result is due to excitation transfer of carriers from the top- (high energy) to the bottom (low energy) layer, which is energetically favorable but ineffective at low-level excitations. The inefficiency is a result of suppressed tunnelling. At 10 nm (~36 ML), the GaAs spacer is sufficiently thin that tunnelling readily occur among stacks of conventional SK QDs [11]. But this is not the case for stacks of QDCs here. The tunnelling between stacks of QDCs must have been suppressed by the presence of the underlying misfit dislocations—the sole differentiating factor between the QDC

1.3

38

Figure 3. Macro-PL spectra of the (a) 3- and (b) 5-stack QDC samples measured at increasing excitation power density from, bottom to top, $I = 0.11 \text{ W cm}^{-2}$ to 2, 4, 10, 20, 30, 40 and 50 times I. The solid arrows indicate peaks that appear only at high excitation levels. The grey arrows point to WL-related peaks. The increase in PL intensity as a function of excitation power density (normalized to I) for the (c) 3- and (d) 5-stack QDC samples at selected energies.

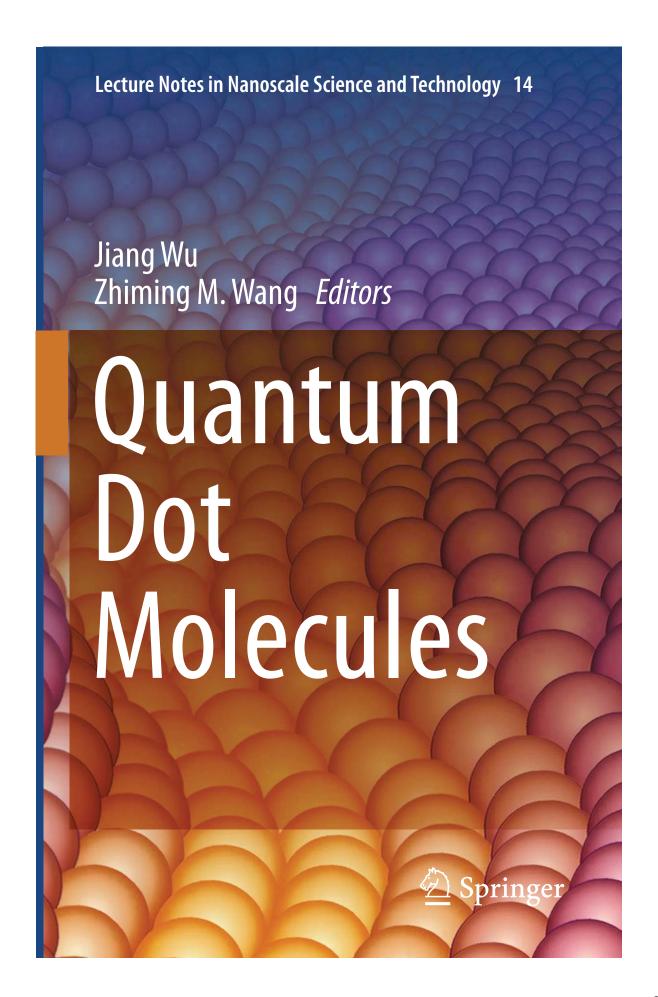
and QD stacks. Often associated with dislocations are strain fields known to cause local inhomogeneities in various physical properties [34]. The strain fields can be so strong that they affect surface atom motion and guide the nucleation of nanoscale QDs [35, 36] or the running direction of micron scale droplets [37]. Their effects on coupling are thus not surprising. External strains applied via piezoelectric crystal, for example, have been shown to affect fundamental QD excitonic properties [38], particularly to tune the excitonic binding energies [39]. Internal strains caused by interfacial misfit dislocations should likewise affect excitonic GS wavefunctions as a result of electric field induced by piezoelectric effects and/or strain gradients. Electric fields, built-in or externally applied, increase the effective distance between carriers confined in vertically-stacked quantum structures, and thus decrease coupling. The decrease is offset at high-level optical excitation. As the GS becomes saturated from the increased excitation, the first excited state (ES) would normally emerge in uncoupled nanostructures. For the multistack QDC structures, however, the ES wavefunctions extend further in space (are less localized) than those of the GS, penetrating further into the GaAs spacer and subsequently falling into the lower GS of the bottom stack. The extra carriers that would normally give rise to the higher-energy ES peaks thus avail themselves of the lower-energy GS of another stack which explains the successive emergence of the lower-energy PL peaks and the absence of state-filling effects in figure 3(a). Excitation transfer between an ES of one nanostructure and a GS of another in resonant has been reported in many systems [11, 12].

For the 5-stack sample, increasing excitation also results in intensity saturation of the 1.19 eV peak of the top-most QD layer and the appearance of the 1.09 eV peak as shown in the spectra in figure 3(b) and the excitation-dependent PL intensity plots of the two peaks in figure 3(d). The saturation of the 1.19 eV peak and the emergence of the 1.09 eV peak seen in figure 3(d) are, however, more gradual than those of their equivalence in the 3-stack sample—the 1.2 and 1.1 eV peaks—in figure 3(c). This possibly results from the greater saturated intensity due simply to the 5-stack sample's greater QD areal density—approximately by 5/3 times. The statefilling effects are also absent; the high energy peaks between 1.3 and 1.47 eV are WLs as described while discussing the 1stack sample earlier. These WL peaks cannot be observed in figure 3(a) since this is a low C-impurity area evidenced by the 3-stack sample's lowest 1.47 eV peak among the three samples.

4. Conclusion

MBE-grown InAs QD chains on InGaAs/GaAs CHPs are optically active and rich with luminescent signatures from QD ensembles, CHP template, and multiple wetting layers. The latter have so far evaded detection and can only be observed around areas with relatively high concentrations of C-

impurity evidenced from their co-occurrence with the 1.49 eV peak. Based on this observation, we recommend that PL signals should be optimized around a known impurity peak in order to obtain a fuller picture of physics-albeit at the expense of signal strength. When these InAs QD chains are stacked and separated by GaAs spacers, the top-most QDC layer dominates the emissions. The bottom-stack emissions are however missing—an unexpected result from energetic consideration since the bottom-stack QDs are the biggest and thus have the lowest energetic states. The missing emissions are likely due to degraded bottom layer with increasing number of QDC layers and the non-coupling nature of the QDC stacks. Only by increasing excitation power density until the top-most QDC layer is saturated do PL signatures from the bottom layers appear—without state-filling effects in the top-most QDC layer. The extended wavefunctions of the ES are responsible for enhanced carrier tunnelling from the high-energy top layer to the low-energy bottom layer. This unique evolution of spectral changes with increased excitation power can be used to identify carrier transfer among stacks of dissimilar-sized nanostructures.


Acknowledgments

This work is supported by Thailand Research Fund (RSA5580015), Chulalongkorn University, the French Ministère des affaires étrangères et européennes (MAEE) and the Centre National de la Recherche Scientifique (CNRS) through the STIC ASIA 2D nanotech project. SK would like to thank Suwat Sopitpan for technical assistance.

References

- Wasilewski Z R, Fafard S and McCaffrey J P 1999 J. Cryst. Growth 201-202 1131
- [2] Inoue T, Asada M, Yasuoka N, Kojima O, Kita T and Wada O 2010 Appl. Phys. Lett. 96 211906
- [3] Solomon G S, Trezza J A, Marshall A F and Harris J J S 1996 Phys. Rev. Lett. 76 952
- [4] Cortez S, Krebs O, Laurent S, Senes M, Marie X, Voisin P, Ferreira R, Bastard G, Gérard J M and Amand T 2002 Phys. Rev. Lett. 89 207401
- [5] Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 939
- [6] Luque A and Marti A 1997 Phys. Rev. Lett. 78 5014
- [7] Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J and Johnson J C 2010 Chem. Rev. 110 6873
- [8] Patanasemakul N, Panyakeow S and Kanjanachuchai S 2012 Nanoscale Res. Lett. 7 207
- [9] Le Ru E C, Howe P, Jones T S and Murray R 2003 Phys. Rev. B 67 165303
- [10] Joyce P B, Le Ru E C, Krzyzewski T J, Bell G R, Murray R and Jones T S 2002 Phys. Rev. B 66 075316
- [11] Heitz R, Mukhametzhanov I, Chen P and Madhukar A 1998 Phys. Rev. B 58 R10151

- [12] Mazur Y I, Dorogan V G, Marega E, Zhuchenko Z Y, Ware M E, Benamara M, Tarasov G G, Vasa P, Lienau C and Salamo G J 2010 J. Appl. Phys. 108 074316
- [13] Schmidt O G 2007 Lateral Alignment of Epitaxial Quantum Dots (Berlin: Springer)
- [14] Kunets V P, Dias M R S, Rembert T, Ware M E, Mazur Y I, Lopez-Richard V, Mantooth H A, Marques G E and Salamo G J 2013 J. Appl. Phys. 113 183709
- [15] Mazur Y I, Dorogan V G, Ware M E, Marega E, Lytvyn P M, Zhuchenko Z Y, Tarasov G G and Salamo G J 2012 J. Appl. Phys. 112 084314
- [16] Chokamnuai T, Rattanadon P, Thainoi S, Panyakeow S and Kanjanachuchai S 2013 J. Cryst. Growth 378 524
- [17] Marzin J-Y, Gérard J-M, Izraël A, Barrier D and Bastard G 1994 Phys. Rev. Lett. 73 716
- [18] Seravalli L, Trevisi G and Frigeri P 2012 Cryst. Eng. Comm. 14 6833
- [19] Thongkamkoon N, Patanasemakul N, Siripitakchai N, Thainoi S, Panyakeow S and Kanjanachuchai S 2011 J. Cryst. Growth 323 206
- [20] Lee S J, Noh S K, Choe J W and Kim E K 2004 J. Cryst. Growth 267 405
- [21] Lee H, Lowe-Webb R, Johnson T J, Yang W and Sercel P C 1998 Appl. Phys. Lett. 73 3556
- [22] Himwas C, Panyakeow S and Kanjanachuchai S 2011 Nanoscale Res. Lett. 6 496
- [23] Zhang C L, Wang Z G, Zhao F A, Xu B and Jin P 2004 J. Cryst. Growth 265 60
- [24] Xie Q, Madhukar A, Chen P and Kobayashi N P 1995 *Phys. Rev. Lett.* **75** 2542
- [25] Andrews A M, LeSar R, Kerner M A, Speck J S, Romanov A E, Kolesnikova A L, Bobeth M and Pompe W 2004 J. Appl. Phys. 95 6032
- [26] Pan D, Xu J, Towe E, Xu Q and Hsu J W 1998 Appl. Phys. Lett. 73 2164
- [27] Kanjanachuchai S and Limwongse T 2011 J. Nanosci. Nanotechnol. 11 10787
- [28] Limwongse T, Panyakeow S and Kanjanachuchai S 2009 Phys. Status Solidi C 6 806
- [29] Welsch H, Kipp T, Köppen T, Heyn C and Hansen W 2008 Semicond. Sci. Technol. 23 045016
- [30] Wang X, Wang Z M, Liang B, Salamo G J and Shih C-K 2006 Nano. Lett. 6 1847
- [31] Yang T, Tatebayashi J, Aoki K, Nishioka M and Arakawa Y 2007 Appl. Phys. Lett. 90 111912
- [32] Akahane K and Yamamoto N 2011 *J. Cryst. Growth* **323** 154
- [33] Laouthaiwattana K, Tangmattajittakul O, Suraprapapich S, Thainoi S, Changmuang P, Kanjanachuchai S, Ratanathamaphan S and Panyakeow S 2009 Sol. Energy Mater. Sol. Cells 93 746
- [34] Freund L B and Suresh S 2006 Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge: Cambridge University Press)
- [35] Shiryaev S Y, Jensen F, Hansen J L, Petersen J W and Larsen A N 1997 *Phys. Rev. Lett.* **78** 503
- [36] Xie Y H, Samavedam S B, Bulsara M, Langdo T A and Fitzgerald E A 1997 *Appl. Phys. Lett.* **71** 3567
- [37] Kanjanachuchai S and Photongkam P 2015 *Cryst. Growth Des.*
- [38] Huo Y H et al 2014 Nat. Phys. 10 46
- [39] Ding F et al 2010 Phys. Rev. Lett. 104 067405

Chapter 3 Optical Properties of Lateral InGaAs Quantum Dot Molecules Single- and Bi-Layers

Songphol Kanjanachuchai, Nirat Patanasemakul, Natapong Thongkamkoon, Nitidet Thudsalingkarnsakul, Naparat Siripitakchai, Pornchai Changmoang, Supachok Thainoi, and Somsak Panyakeow

Abstract Growth of InGaAs nanostructures by molecular beam epitaxy using partial-cap and regrowth technique results in an ensemble of lateral quantum dot molecules (QDMs). Each QDM comprises a large, central quantum dot and several small, satellite quantum dots which emit at different energies and exhibit qualitatively different optical behaviors. This chapter reviews, explains, and discusses the various fundamental aspects of lateral QDM single layers: the nucleation mechanism, the photoluminescent spectra, and the unique bimodal optical characteristics. The chapter ends by demonstrating the usefulness of lateral QDM bi-layers as a promising broadband near-infrared material.

3.1 Introduction

Semiconductor quantum dots (QDs) have been intensively investigated for several decades since early pioneering work show them to be of high crystalline quality, capable of optical emission in the near-infrared region [1]. They are usually grown by metal-organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) with elemental solid sources or compound gas sources. The standard route

S. Kanjanachuchai (🖾) • N. Patanasemakul • N. Thudsalingkarnsakul • N. Siripitakchai P. Changmoang • S. Thainoi • S. Panyakeow
Semiconductor Device Research Laboratory, Department of Electrical Engineering,
Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

e-mail: songphol.k@chula.ac.th; nirat.pat@gmail.com; smearsand@hotmail.com; s.naparat@gmail.com; pornchai.c@chula.ac.th; Supachok.t@chula.ac.th; s_panyakeow@yahoo.com

N. Thongkamkoon

International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

e-mail: ixohoxi_35847@hotmail.com

J. Wu and Z.M. Wang (eds.), *Quantum Dot Molecules*, Lecture Notes in Nanoscale Science and Technology 14, DOI 10.1007/978-1-4614-8130-0_3, © Springer Science+Business Media New York 2014

51

for growing them is via the Stranski-Krastanow (SK) growth mode where lattice mismatch between the growing epilayer and the substrate is relaxed by the formation of a thin wetting layer (WL) and a three-dimensional (3D) QD structure whose size, density, and uniformity are dictated by growth conditions and are a subject of intensive investigations during the past decade [2, 3]. Another route for growing QDs follows a two-step, droplet epitaxial (DE) process where, typically, group-III metallic droplets are first grown on a III-V substrate and subsequently crystallized by a group-V element at low temperatures to preserve the original droplet geometry [4]. Both routes yield good quality QDs whose properties can be engineered. Optical properties in particular are tunable as they are sensitive to QD geometry; the latter dictates the degree of zero-dimensionality or quantum confinements. For InGaAs QDs, the effective mass for holes is much greater than those for electrons and, as a result, holes are confined within the QDs whereas extended states of electrons exist outside the QDs [5]. This offers the possibility of controlling the overlapping or coupling electron wavefunctions between two nearby QDs and is one of the main forces that drive the MBE and MOCVD communities towards the growth of QD molecules (ODMs).

Quantum coupling between or among constituent QDs in a QDM can occur vertically, in the growth direction, or laterally, in the growth plane [6]. Vertical geometry allows precise control of tunnel barrier thickness and it is this advantage that is critical to the demonstrated quantum coupling [7] and state entanglements [8] which form the foundation of quantum computation [9]. Unfortunately for the vertical geometry, access to the barrier, key to coupling control, is limited to top and bottom contacts. Lateral geometry, on the other hand, lacks precise control over barrier thickness but allows better electrostatic control of the tunnel barriers using top- and/or side gates which can be readily fabricated using well-established planar technology.

This chapter begins by giving a general overview of the growth procedures used to form lateral QDMs where coupling occurs in the growth plane. This includes a specific growth procedure central to this chapter called partial-cap and regrowth process. The optical properties of the resulting QDMs are then explained and compared with typical QDs as well as QDMs obtained from other techniques. The chapter ends by discussing stacked QDM structures in the form of bi-layers and demonstrating their broadband characteristics which are potentially useful for devices such as solar cells and superluminescent diodes.

3.2 Growth of Lateral QDMs

Lateral QDM is a term used to broadly describe ensembles of QDs that, by design, are closely connected in the horizontal direction or the growth plane. Many growth procedures have demonstrated successful formation of lateral QDMs with high crystalline quality; yet, there is still no consensus as to which procedure would yield QDMs with characteristics that best match requirements for quantum coupling

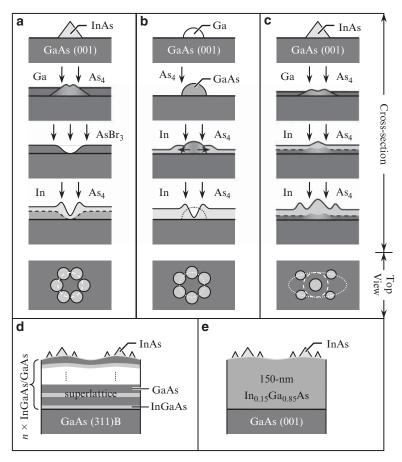


Fig. 3.1 Growth process and evolution schematics of lateral QDMs grown on various templates: (a) nanohole, (b) nanomound, and (c) nanohole-and-mound. Schematic cross-sectional structures of lateral QDMs formed on (d) InGaAs/GaAs-(3 1 1)B superlattice and (e) InGaAs/GaAs-(0 0 1) cross-hatch pattern templates

and coupling control. Most procedures reported so far are based on InGaAs/GaAs systems using some kinds of templates and employ standard (001)-GaAs substrates as summarized in Fig. 3.1 and described below.

3.2.1 QDMs on Nanohole Templates

This procedure was first reported by Songmuang et al. in 2003 [10] and shown in Fig. 3.1a. The first step is the formation of standard InAs QDs on a flat GaAs substrate. The seed QDs are then capped with 10-nm GaAs, resulting in QDs

collapsing and elongating along the [1-10] direction. The surface is then exposed to AsBr₃ which selectively etches the seed QDs away while the GaAs surface remains relatively unscathed. Holes formed from the etched QDs are typically 5-nm deep, approximately the nominal height of the seed QDs. The nanoholes are used as a template for subsequent regrowth of InAs, but In–Ga intermixing and Ga diffusion result in InGaAs QDMs. During regrowth, adatoms arriving at the surface preferentially attach to the nanohole rim. By varying the deposition amount and the substrate temperature, the number of constituent QDs making up a QDM along the rim can be varied between 2 and 6; the latter is shown in the plane-view schematic drawing in the bottom of Fig. 3.1a. These QDMs are of high crystalline quality as the reported photoluminescent (PL) intensity is similar to the original QDs [10].

3.2.2 QDMs on Nanomound Templates

Nanomound templates can also be used to form lateral InGaAs QDMs as reported by Lee et al. in 2006 [11]. This approach is best described as a hybrid process between droplet homoepitaxy and standard SK heteroepitaxy as summarized in Fig. 3.1b. The procedure begins by the formation of a few monolayers (MLs) Ga droplets at high substrate temperatures without the presence of arsenic. The large lattice mismatch between the metallic Ga and the semiconducting GaAs substrate means that Ga droplets readily form on the flat GaAs surface via the Volmer-Weber growth mode. The substrate temperature is then lowered, typically to below 200°C, and the surface exposed to As4 which then crystallizes the Ga droplets into GaAs nanomounds with base length and height around 100 and 50 nm, respectively. These nanomounds serve as a template for subsequent overgrowth in a similar fashion to the nanohole approach described above. The substrate temperature, kept low during crystallization to preserve the original mound geometry, is raised prior to the deposition of InAs. By varying the deposition amount the number of InAs QDs nucleated around the GaAs nanomounds can be varied between 2 and 6, similar to the previous approach. GaAs nanomounds not only serve as a spatial template but also act as a Ga reservoir since Ga atoms get incorporated into the growing In(Ga)As QDs. These QDMs also have high crystalline quality as shown by strong PL.

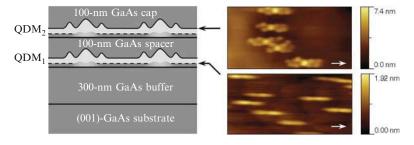
A variant of the above hybrid DE–SK approach is also reported by Strom et al. where, using different conditions, the starting Ga droplets are crystallized into nanorings and subsequent overgrowth results in the formation of InAs QDs inside and outside the rings with a significant amount of GaAs rings still remaining after crystallization [12]. While the QDs which nucleate outside the nanorings are closely spaced and likely be coupled, those nucleated inside are completely decoupled as they are isolated from outside QDs by the thick GaAs nanorings.

3.2.3 QDMs on Nanohole-and-Mound Templates

Similar to the two approaches above, this third approach by Suraprapapich et al. employs a unique template shaped like the back of a camel (side-view) or a two-blade propeller (top-view) and is thus originally referred to as a camel-like nanostructure and nanopropeller [13]. Overgrowth of InAs on this template create a unique lateral QDM geometry as summarized in Fig. 3.1c. The process starts from the deposition of 1.8–2 ML of InAs QDs at a slow growth rate of 0.01 ML/s, followed by a short growth interruption to reduce the substrate temperature from 500 to 470°C before capping the seed QDs by GaAs. The thin GaAs cap layer does not completely cover the original QDs. The apex is hence thermodynamically unstable, resulting in In out-diffusion and a shallow dip, or nanohole, in the middle. The out-diffusing In atoms then react with the incoming Ga and the existing Ga atoms on the surface to form InGaAs nanomounds with a pronounced elongation along the [1-10] direction. The nanoholes are the most favorable locations for QD formation, followed by the edges of the surrounding nanomounds. Subsequent regrowth of InAs always yields InAs QDs inside the nanoholes before the nucleation and growth on nanomounds. While the number of QDs inside the nanohole is limited to one, those along the edges of the nanomounds can be varied from 1 to as many as 13 simply by changing the deposition amount [14]. These QDMs are also of high crystalline quality, exhibiting room-temperature luminescence with noticeable polarization anisotropy [15].

3.2.4 QDMs on Strain-Modulated Templates

This approach is fundamentally different from the above approaches by its use of strain-modulated templates where strains are global in nature, i.e. present on a wafer scale, as opposed to local strains effective only around nanoholes or nanomounds.


One implementation of this approach by Lippen et al. and with schematic cross section in Fig. 3.1d uses a superlattice (SL) template of InGaAs/GaAs on (3 1 1)B-GaAs to form a slowly modulated strained network that upon overgrowth results in a lattice of ordered QDMs [16]. These QDMs are optically active up to room temperature and exhibit a complex PL behaviors [17].

Another implementation by Thet et al. and with schematic cross section in Fig. 3.1e uses as template a network of orthogonal, interfacial dislocations which under optical microscopy appears as a cross-hatch pattern (CHP) to form a slowly varying surface undulations that also supports the growth of QDM lattice [18]. Despite the presence of dislocation, QD chains grown on these kinds of templates have been shown to exhibit high crystalline quality [19, 20]. QDMs on these kinds of templates are expected to have high crystalline quality as well though no PL results have been reported so far. Recently, Seravelli et al. reported PL results of QDs grown on thick metamorphic InGaAs/GaAs templates and found QDs to be of high crystalline quality [21].

3.3 Structure, Morphology, and Evolution

The cross-sectional schematic showing the QDM-embedded structures grown on the nanohole-and-mound template described above is shown in Fig. 3.2. All growth takes place in a Riber's 32P solid-source MBE chamber. Growth on epi-ready (001)-GaAs substrate starts from thermal desorption of the surface oxide at 580°C, growth of a 300-nm GaAs smoothening layer at 610°C, a brief pause to bring down the substrate temperature to 500°C before the growth of x ML of InAs QD seed layer at a rate of 0.01 ML/s where x is between 1.8 and 2. This results in a QD ensemble with typical base width of 30-50 nm and height of 5 nm. The onset of QD formation, monitored in situ via the reflection high-energy electron diffraction (RHEED) pattern, is confirmed by the appearance of the transmission spots which subsequently develop into chevrons [22]. The substrate temperature is then brought down further to 470°C before the InAs QDs are partially capped with y ML of GaAs where y is typically between 6 and 25. This ensures a successful formation of the nanoholes whose depth can be varied approximately between 0.2 and 1 nm. Each nanohole sits atop a nanomound elongated along the [1-10] direction as shown in the lower atomic force microscopy (AFM) image in Fig. 3.2. The elongation observed is a result of asymmetrical In adatom diffusion lengths along the $\langle 1 \ 1 \ 0 \rangle$ directions which can be enhanced or suppressed by simply increasing or decreasing the capping temperature [15]. To form the QDMs at the same temperature used for capping, z ML of InAs is regrown on top of the nanohole-and-mound template where z is typically between 1 and 2.5 for fully-developed molecules. For the sake of convenience and precision, a ODM ensemble formed from x-ML InAs seed ODs, y-ML GaAs partial capping, and z-ML InAs overgrowth is hereafter referred to as x/y/z QDMs.

The QDMs are then capped with 100-nm GaAs where the first 10 nm is grown at 470°C and the remaining 90 nm is grown while ramping the temperature up to 500°C. For a single-layered QDM structure, the sample is quenched after completing the 100-nm GaAs growth. For a bi-layer QDM structure, another cycle of x/y/z QDM (with different values of x, y, and/or z from the first QDM layer) and

Fig. 3.2 (*Left*) Cross-sectional structures of lateral QDMs grown on the nanohole-and-mound template via the partial-cap and regrowth process. (*Right*) $1\mu m \times 0.5\mu m$ AFM images of (*lower image*) nanohole template and (*upper*) lateral QDMs. The arrows point along the [1 –1 0] direction

47 2.1

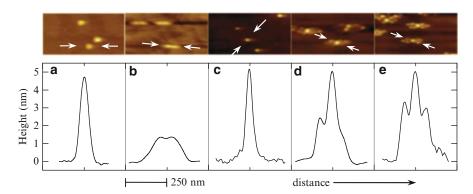


Fig. 3.3 AFM images $(1\mu m \times 0.5\mu m)$ and line scans elucidating the evolution of lateral QDMs grown on the nanohole-and-mound template: (a) seed InAs QDs, (b) nanoholes and mounds—formed after partial capping the seed InAs QDs with GaAs, (c) cQDs—overgrown on the nanohole-and-mound template, (d) partially-formed QDMs comprising saturated cQDs and non-saturated sQD, and (e) fully-formed QDMs comprising saturated cQDs and sQDs. For the AFM images, the horizontal direction is the $[1-1\ 0]$ direction, and the *arrows* indicate the sections where line scans are taken

100-nm GaAs is repeated. After quenching and removing from the growth chamber, the sample is mounted in a variable temperature optical cryostat and characterized by PL using the 476.5-nm line of an Ar⁺ laser as the excitation source. The PL signal is dispersed by a 1-m monochromator and collected by a liquid nitrogen cooled InGaAs detector using standard lock-in detection technique.

The morphology of the QDMs is obtained by quenching the sample as soon as the regrowth of InAs on the nanohole-and-mound template finishes and probing the surface in air using AFM in the tapping mode. A typical QDM morphology is shown in the upper AFM image in Fig. 3.2.

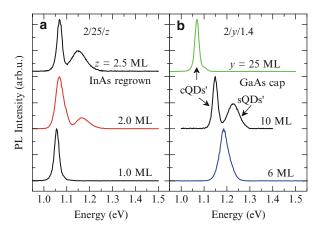
By varying the regrowth thickness (z) it is possible to observe the various stages of QDM growth. The evolution of the QDM structure—from the seed QD layer to the complete molecule formation for 2/6/z QDMs—is shown in a series of AFM images and line profiles in Fig. 3.3. Right after the seed QD formation, Fig. 3.3a shows that the base length of a typical QD is approximately 50 nm while the height is 5 nm. Upon partial capping, the QD height collapses, the base elongates towards the [1-10] direction, and a shallow dimple \sim 0.2-nm deep appears in the center as shown in Fig. 3.3b. After only 0.5-ML InAs regrowth, an indication that a QD is being formed at the center of each nanohole is shown in Fig. 3.3c. Usually this submonolayer amount is taken up as a WL on flat GaAs surfaces. This clearly shows the much lower chemical potentials associated with the nanohole and mound. With a thicker 1-ML InAs regrowth, a few QDs are formed in addition to the central QD as shown in Fig. 3.3d. The QD at the center is referred to as the central QD (cQD) while those nucleated around it are called satellite QDs (sQDs). With 1-ML regrowth, cQDs are well saturated while sQDs are only starting to form. And, finally, with 1.4-ML InAs regrowth, cQDs and sQDs are saturated, forming fullygrown QDMs as shown in Fig. 3.3e. Exceeding the saturation, free-standing QDs

48 **2.1**

will be formed on the previously denuded regions between QDMs. The cQDs and sQDs exhibit fundamentally different optical behaviors and can interact due to their proximity as described next.

3.4 Optical Properties of QDMs

The macro-PL results described in this section are obtained at 20 K under a low excitation power density of 0.45 W/cm², unless otherwise stated. The QDMs are of high crystalline quality with clear, separate emission peaks from the cQDs and sQDs as described in Sect. 3.4.1. Transfers of luminescent intensity between cQDs and sQDs as temperature varies are reported in Sect. 3.4.2 and explained in terms of phonon-assisted carrier transfer between the constituent QDs. The QDM ensemble exhibits a unique, bimodal *optical* characteristics explained in Sect. 3.4.3 which differ from bimodal *size* distributions generally reported for intermediate sized QDs.


3.4.1 cQDs and sQDs Emissions

This sub-section describes the PL of six QDM samples. Each sample is grown using a different QDM recipe, i.e. different *x*, *y*, and/or *z*, with identical procedures for the rest of the structure as described in Sect. 3.3. The first series of three samples is grown with the same nanohole template obtained from 2-ML InAs seed QDs and 25-ML GaAs partial-cap layer. The nanoholes are filled with either 1, 2, or 2.5-ML InAs, resulting in 2/25/1, 2/25/2 or 2/25/2.5 QDMs, respectively. The second series of three samples is grown with the same 2-ML InAs seed QDs and 1.4-ML InAs regrown QDMs, but with different GaAs capping layer thickness of 6, 10, or 25 ML, resulting in 2/6/1.4, 2/10/1.4, or 2/25/1.4 QDMs, respectively. Systematic variation of parameters in the two series enables unambiguous assignment of PL peaks to the constituent cQDs and sQDs in the QDMs [23].

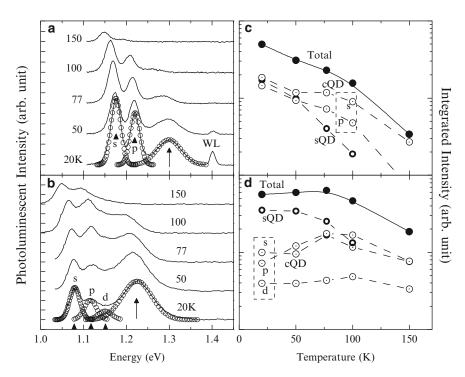
Figure 3.4a shows, from bottom to top, the PL spectra from the first sample series which contain 2/25/z QDMs where z=1, 2, and 2.5 ML, respectively. The 2/25/1 QDMs emission is dominated by a single peak at 1.056 eV with a narrow full-width at half-maximum (FWHM) of 24 meV. The 2/25/2 QDMs emission shows a low-energy peak also at 1.068 eV with FWHM of 40 meV, and a high-energy peak at 1.168 eV with FWHM of 68 meV. The 2/25/2.5 QDMs emission show the same low-energy peak at 1.068 eV but with a slightly narrower FWHM of 25 meV, and a high-energy peak at 1.150 eV with FWHM of 73 meV. The double peak feature of the latter two samples go up and down together under excitation-dependent experiments, indicating that the high-energy peak is not an excited state (ES) arising from the saturation of the low-energy, ground-state (GS) peak. In addition to confirming GS emission, it is necessary to identify the sources and predict the characteristics of the two peaks if the QDMs are to be optimized and employed in devices.

49 2.1

Fig. 3.4 Twenty-Kelvin PL spectra of (a) 2/25/z QDMs with z = 1, 2 or 2.5 ML, and (b) 2/y/1.4 QDMs with y = 6, 10 or 25 ML. Spectra are offset and rescaled for clarity. Reproduced from [23]

By comparing the PL spectra with surface morphologies obtained from AFM images, the origins of the low- and high-energy PL peaks can be attributed to the cQDs and sQDs, respectively. A typical 2/25/1 QDM contains just a single dot nucleated inside the nanohole, or cQD, similar to Fig. 3.3c while 2/25/2 QDM has in addition another dot or two outside the nanohole, or sQDs, similar to Fig. 3.3d, and 2/25/2.5 QDM has at least four sQDs, forming a fully-developed molecule similar to Fig. 3.3e. The presence of cQDs and absence of sQDs in 2/25/1 QDM ensemble is a definitive confirmation that the 1.056-eV peak originates from the cQDs. All three samples share almost identical cQD GS energy at around 1.06 eV which is not surprising because they all share the same nanohole template and similar size cQDs. After the nanoholes are saturated, sQDs start nucleating which coincides with the appearance of the high-energy PL peak. The 1.168-eV peak for 2/25/2 QDMs and 1.15-eV peak for 2/25/2.5 QDMs must therefore originate from the GS of sQDs as excitation-dependent experiments already rule them out as an ES.

The energetic position, the intensity, and the FWHM of these high-energy GS peaks agree with surface morphologies and reaffirm their assignments to sQDs. Figure 3.3 shows that cQDs must first be saturated before sQDs are nucleated. It is important to note that the base of cQDs is limited by the nanohole template, while the nominal height of cQDs is always higher than sQDs even though a greater amount of deposited materials seems to be taken up by the sQDs. This is simply due to the greater sQD density: four (or more) sQDs per QDM as opposed to one cQD per QDM. The maximum regrowth thickness for the three samples is 2.5 ML, with at least 0.5 ML taken up entirely by cQDs and at most 2 ML by sQDs, the per-dot material accumulated by an sQD is thus much lower than by a cQD. This translates to smaller sQD and higher GS energy than cQD. It is informative to compare the energetic positions and integrated intensities of the sQDs in 2/25/2 and 2/25/2.5 QDMs. The sQD PL in 2/25/2 and 2/25/2.5 QDMs peak at 1.168 and 1.150 eV, respectively. This is simply due to the latter gaining more material, becoming larger, and thus emitting at a lower GS energy. As more sQDs are nucleated, the relative intensity of sQDs with respect to cQDs also increases as obvious from the progressively greater proportion of the sQD peaks in Fig. 3.4a.


The FWHM of the 1.168-eV peak in the case of 2/25/2 QDMs (68 meV) and the 1.150-eV peak in the case of 2/25/2.5 QDMs (73 meV) are higher than those of the 1.068-eV peak (25 meV), indicating that the inhomogeneous broadening of sQDs is worse than those of cQDs. This is expected, considering the almost simultaneous nucleation of cQDs in the nanoholes across the wafer, and the sequential, random nucleation of sQDs only after the nanoholes are saturated with cQDs.

The PL spectra from the second sample series affirm the peak assignments above and elucidate the role of nanohole depth. Figure 3.4b shows, from bottom to top, the PL spectra of 2/y/1.4 QDMs where y = 6, 10, and 25 ML, respectively. The 2/6/1.4 QDMs emit a single PL peak at 1.186 eV, the 2/10/1.4 QDMs a double peak at 1.150 and 1.226 eV, and the 2/25/1.4 QDMs a single peak at 1.068 eV. Since the thicknesses of the seed QDs x and regrown QDs z are identical, the differences in the three spectra originate from the GaAs capping thickness y. The GaAs capping thickness y dictates the degree of In out-diffusion from the seed InAs QDs and thus the nanohole depth which has been carefully characterized and found to vary almost linearly from 0.4 to 1 nm as y increases from 6 to 25 ML [14]. The shallower the nanohole, the easier for it to be saturated, or the smaller the cQDs.

In the case of 2/6/1.4 QDMs with the most shallow nanoholes, both cQDs and sQDs co-exist and the average sizes of cQDs and sQDs do not much differ, resulting in a near-merged spectra. Though the bottom spectrum in Fig. 3.4b shows a single peak, closer examination of its semi-logarithmic plot reveals different rise and fall characteristics, indicating different origins. In the case of 2/25/1.4 QDMs with deepest nanoholes, on the other hand, only cQDs exist, resulting in a single Gaussian peak at 1.068 eV shown in the top spectrum of Fig. 3.4b. This peak is located at the same energetic position as the 2/25/1 QDMs from the first series but is narrower (FWHM = 21 meV), possibly due to the better uniformity achieved when approaching full saturation condition at a thicker regrowth thickness of 1.4 ML. Finally, in the case of 2/10/1.4 QDMs with nanohole depth intermediate between the two extreme cases above, both cQDs and sQDs co-exist and their average sizes are distinctly difference, resulting in two well-separated PL peaks with the low-energy portion attributed to cQDs and the high-energy to sQDs.

3.4.2 cQD-sQD Coupling

The presence of the WL and the proximity between cQDs and sQDs bring with them the possibility of tunnel coupling, especially in view of the fact that electron wavefunctions are not well confined and the existent of extended states has been confirmed [5, 17]. Microscopically, coupling gives rise to bonding and anti-bonding molecular states, resulting in energetic separation or anti-crossings when the luminescence is measured under varying electromagnetic fields [24, 25]. Macroscopically, coupling gives rise to electron transfer between QDs, resulting in PL intensity transfer between or among related energy levels. Tunnel coupling in

Fig. 3.5 Temperature-dependent PL spectra of (a) 1.8/15/1.2 and (b) 1.8/25/1.5 QDMs. Text labels (s, p, and d) indicate cQD emissions; the *arrow*, sQD emissions. The *dotted lines* are multiple Gaussian function fits to the 20 K data. Graphs are offset for clarity. Temperature-dependent integrated intensities of constituent peaks of (c) 1.8/15/1.2 QDMs extracted from (a), and (d) 1.8/25/1.5 QDMs extracted from (b). The *dotted lines* are guide to the eye. Adapted from [27] with permission from Elsevier

lateral QDMs are due to electrons only; holes are well confined in the QDs due to high effective mass [26]. The macro-PL setup used in our experiments only allow the observation of the macroscopic PL intensity transfer.

Two QDM samples are grown to study the coupling effects: One sample contains a single layer of 1.8/15/1.2 QDMs, the other a single layer of 1.8/25/1.5 QDMs [27]. Temperature-dependent PL spectra of the two samples illustrate the differences in tunneling strength, and the competition between tunneling and thermionic emissions. The former maintains the total integrated intensity whereas the latter quenches it due to carrier losses to non-radiative recombination (NRR) channels. Both samples are excited at a high excitation power density of 20 W/cm² sufficient for the observation of ES as tunneling into ES is easier than into GS due to the wider spread of ES wavefunctions.

The PL spectra of the 1.8/15/1.2 and 1.8/25/1.5 QDMs are shown in Fig. 3.5a, b, respectively. The broad, high-energy peaks indicated by arrows in both figures are related to sQDs as explained previously. The narrow, low-energy peaks are

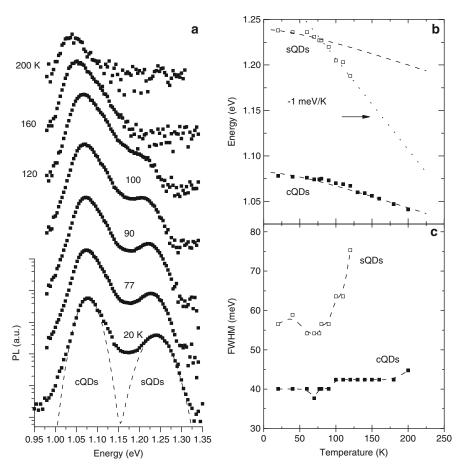
due to cQDs. The labels s, p, and d denote the ground, first, and second excited states, respectively. The nature of excited states has been confirmed by excitation-dependent experiments. For 1.8/15/1.2 QDMs in Fig. 3.5a, the spacing between the ground and first excited states, or the s–p spacing, is 45 meV. For 1.8/25/1.5 QDMs in Fig. 3.5b, the s–p and p–d spacings are approximately 37 meV. These values are within the expected range for QDs of similar size [28]. The equi-distance of the s–p and p–d spacings results from the harmonic oscillator-type potentials in the growth plane and is also expected [29]. The overall spectra can be fitted with multi-Gaussian functions which are shown as examples in the 20-K spectra in both figures. The fits allow the FWHM of all the spectral peaks to be accurately determined which together with the associated peak intensity yield the integrated intensity (II) vs. temperature plots of the 1.8/15/1.2 and 1.8/25/1.5 QDMs in Fig. 3.5c, d, respectively. Non-monotonous variations of integrated intensity with temperature are evident in both cases.

For ensembles of isolated QDs, a simple, monotonous decrease of II with increasing temperature is expected due to the presence of NRR channels [30] or reduced PL yields [31]. For laterally-coupled QDMs, the temperature dependency of the PL spectra is complicated by tunnel coupling which has many possible routes and is also temperature dependent. The overarching monotonous II reduction with increasing temperature for 1.8/15/1.2 QDMs in Fig. 3.5c results from carriers gaining sufficient energy, escaping into the WL and/or GaAs matrix before recombining with NRR centers/channels as is typical for InAs/GaAs QD systems [32]. Close examination of the constituent IIs shows that the monotonous reduction of the total II results from a rapid, monotonous decrease of sQDs II and a non-monotonous decrease of cQDs II. In fact, a slight increase of the cQDs GS is registered at around 75 K. This increase can be interpreted as typical carrier redistribution between QD ensembles of different nominal size, or bimodal QDs where carriers in sQDs may escape, diffuse towards the cQD, and be captured. Or it can be interpreted as resulting from direct tunnel coupling. The underlying mechanism(s) that governs the temperature dependency of the II for this particular QDMs is not clear.

The 1.8/25/1.5 QDMs exhibit a qualitatively different II temperature dependency as shown in Fig. 3.5d. This is due to the bigger cQDs and sQDs as compared to the 1.8/15/1.2 QDMs above. The total II in this case is virtually constant from 20 to 75 K, above which it decreases monotonously. The overall change results from the complex behaviors of the s and p peaks of the cQDs while the sQDs exhibit a simple, monotonous decrease in intensity. As the temperature increases from 20 to 50 K, the II of the p peak significantly increases. The intensity gain cannot originate from carrier redistribution as the temperature is still too low for excitons to appreciably escape the potential barriers. The most likely mechanism is thus tunnel coupling, from sQDs to cQDs. AFM images show that the cQDs and sQDs in 1.8/25/1.5 QDMs almost merge which supports the conclusion. The II of the p peaks keeps on increasing with temperature up to 75 K before carrier loss from sQDs to NRR channels begin to aversely impact the availability of carriers tunneling to cQDs, and thus the intensities of the s, p, and d peaks. The II of the s peak is approximately constant between 20 and 50 K, indicating saturation. It, however, increases as the

temperature reaches 75 K which contradicts the saturation interpretation. Closer inspection of the PL spectra shows that the II increases not by increasing peak intensity but by broadening. The saturation conclusion thus remains valid.

The observation of intensity transfer and the implied underlying mechanism via tunnel coupling in our lateral QDMs are at first surprising, considering the significant dot-to-dot separation in the order of 50 nm. Tunnel coupling decreases exponentially with distance and Szafran and Peeters predicted that coupling is negligible for a dot-to-dot distance of 20 nm [33]. This, however, is strictly true for isolated QDs with a thin WL acting as the main coupling path. Our lateral QDMs, especially the sQDs, form on the nanomound template which in itself can act as a low barrier region connecting the constituent QDs in a QDM. A similar "basin" has recently been demonstrated to be acting as a coupling channel for double InGaAs QDs spaced as far as 40 nm apart [34].


3.4.3 Bimodal Optical Characteristics

Depending on growth procedures, lateral QDMs can take shape in many different geometries, with varying degrees of uniformity and size distribution. The latter can be categorized into a mono-, bi-, or multi-modal size distribution. This section describes a novel bimodal *optical* characteristics which results from the bimodal *size* distribution of QDMs. The converse is not necessarily true. The unique bimodal optical characteristics stems from specific spatial arrangement of constituent QDs resulting from the partial-cap and regrowth process.

To demonstrate the unique bimodal optical properties, temperature-dependent GS PL spectra of the 1.8/25/1.2 and 1.8/25/1.5 QDMs are shown in Figs. 3.6a and 3.7a, respectively [35]. The two QDM ensembles mainly differ in the nominal size of sQDs, and consequently the degree of cQD–sQD coupling. The excitation power density at 2 W/cm² is sufficiently low to avoid filling up the GS and complicating peak analyses with ES. The spectra can be fitted with double Gaussian functions; examples are shown as the dashed lines in the 20-K spectra of both figures. The fittings allow temperature variations of peak position, intensity, FWHM, and hence II to be accurately determined.

The cQD and sQD peak energy variations with temperature of the 1.8/25/1.2 and 1.8/25/1.5 QDMs are shown in Figs. 3.6b and 3.7b, respectively. In both cases, the cQDs and sQDs exhibit fundamentally different behaviors: the cQDs-related peak energies exhibit a slow red-shift with increasing temperature throughout the experimental temperatures, while the sQDs-related peak energies exhibit a slow red-shift only up to a certain temperature (~75 K for 1.8/25/1.2 QDMs and 100 K for 1.8/25/1.5 QDMs) before they rapidly decrease at a rate of 1 meV/K. Dashed (dotted) lines in the figures approximate the slow (fast) red-shift of peak energies.

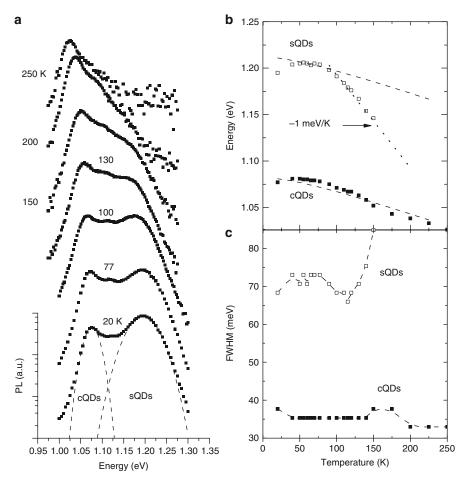

The cQDs's energy slow red-shift can be readily explained in terms of bandgap variations with temperature. The dashed lines in the figures are obtained from Varshni's equation [36] using bulk InAs bandgap parameters, shifted up the energy

Fig. 3.6 Optical properties of 1.8/25/1.2 QDMs: (a) PL spectra at various temperatures, shifted vertically for clarity; temperature dependencies of (b) peak energy positions and (c) FWHM of cQDs- and sQDs-related spectra. The *dashed curves* in (a) are double Gaussian functions fit. The *filled-square* and *open-square* symbols in (b) and (c) are measured values for cQDs- and sQDs-related spectra, respectively. The *lower* and *upper dashed lines* in (b) are bulk InAs bandgap temperature variation according to Varshni's equation, shifted along the energy axis by 0.667 and 0.824 eV, respectively. The *dashed lines* in (c) are guide to the eye. Reproduced from [35] with permission from Elsevier

scale to aid visual comparison. The agreement between the experimental trend and the trend calculated based on Varshni's equation is good, except for the small diversion at low temperatures which can be further improved by the Fan model [37].

The sQDs's energy fast red-shift, usually referred to as sigmoidal [38], has been reported by many groups [32, 39–41] and is attributed to carrier escape and redistribution among inhomogeneous QDs. This occur concurrently with an anomalous FWHM reduction which is indeed observed here and best explained together.

Fig. 3.7 Optical properties of 1.8/25/1.5 QDMs: (a) PL spectra at various temperatures, shifted vertically for clarity; temperature dependencies of (b) peak energy positions and (c) FWHM of cQDs- and sQDs-related spectra. The *dashed curves* in (a) are double Gaussian functions fit. The *filled-square* and *open-square* symbols in (b) and (c) are measured values for cQDs- and sQDs-related spectra, respectively. The *lower* and *upper dashed lines* in (b) are bulk InAs bandgap temperature variation according to Varshni's equation, shifted along the energy axis by 0.667 and 0.797 eV, respectively. The *dashed lines* in (c) are guide to the eye. Reproduced from [35] with permission from Elsevier

The cQD and sQD FWHM variations with temperature of the 1.8/25/1.2 and 1.8/25/1.5 QDMs are shown in Figs. 3.6c and 3.7c, respectively. Again, the variations due to cQDs and sQDs are fundamentally different: the cQDs-related FWHM are approximately the same and are almost constant (40 and 35 meV for the 1.8/25/1.2 and 1.8/25/1.5 QDMs, respectively) while the sQDs-related FWHM decrease towards a minimum at intermediate temperatures before increasing again at high temperatures. The minimum for 1.8/25/1.2 QDMs occurs at around 75 K while those for 1.8/25/1.5 QDMs occurs at around 100 K.

The FWHM reduction at intermediate temperatures is well explained by thermal escape and carrier redistribution. At low temperatures, excitons are created, confined, and recombined radiatively in individual QDs. The FWHM reflects QD size distribution. For uniform ensembles, the FWHM can be lower than 30 meV [42] while for nonuniform ones the FWHM can be greater than 100 meV [43]. As sample temperature increases, carriers are thermally activated out of individual QDs, into the WL and/or the GaAs barriers where they can subsequently be re-trapped by nearby QD. Since confined electron levels in small dots are higher than in large dots, or the thermal energy required by the electrons to escape into the adjacent WL is smaller for small dots than for large dots, it is more probable for carriers to be distributed from small to large dots. As temperature increases, the dominant emitting structure thus shifts from small to large dots, resulting in a peak energy shift much faster than the rate due to bulk bandgap reduction with temperature. This explains the dotted lines in Figs. 3.6b and 3.7b.

The carrier redistribution occurs at a slightly lower temperature in the 1.8/25/1.2 QDMs (\sim 75 K) than in the 1.8/25/1.5 QDMs (100 K). This is possibly due to the smaller sQDs in the former because the regrown InAs thickness is 1.2 ML, lower than 1.5 ML in the latter. The smaller sQDs emit at 1.240 eV while the bigger sQDs emit at 1.195 eV. The smaller sQDs thus require a slightly lower thermal energy to escape to the 1.4-eV WL previously identified in Fig. 3.5a.

The co-existence of slow, Varshni type, and fast sigmoidal changes in the same sample is unusual. The slow red-shift that follows Varshni's equation is usually observed in QD ensembles which are carefully grown to achieve low FWHM, especially if they are later to be fabricated into lasers [42]. On the other hand, the fast red-shift is usually observed in highly inhomogeneous QD ensembles, particularly if the FWHM is greater than 80 meV [39, 40] and if they are later to be fabricated into superluminescent diodes [44]. The two types of QD ensembles are achieved with conflicting growth parameters and not usually observed on the same sample even when clear bimodal size distribution exists. Kissel et al., for example, reported the growth of intermediate sized QD ensembles with clear bimodal size distribution but both exhibit essentially the same sigmoidal behavior [45].

Carrier redistribution from small to large sQDs is effective up to a certain temperature beyond which thermal broadening will increase the FWHM and carrier loss to NRR channels will quench the overall PL signal. The more complicated growth procedure of lateral QDMs as compared to standard SK QDs makes it likely that additional NRR channels/centers maybe present and limit the usefulness of QDMs.

Using Arrhenius plots and simple, single activation energy fittings we prove that these concerns are unwarranted as the main loss mechanism is caused by the WL, as is the case for typical SK QDs. Figure 3.8a, b shows the IIs vs. inverse temperature plots for the 1.8/25/1.2 and 1.8/25/1.5 QDMs, respectively. The dashed lines are fits to the equation $I = I_0/[1 + A \exp(-E_A/k_BT)]$ where I stands for the integrated intensity, I_0 is the low-temperature integrated intensity, A is the pre-exponential factor, E_A is the activation energy, k_B is the Boltzmann's constant, and T is the temperature. The best-fit values for E_A in the 1.8/25/1.2 QDMs are 250 meV for