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Fig. 3.8 Integrated intensities of cQDs- and sQDs-related spectra for (a) 1.8/25/1.2 and (b)
1.8/25/1.5 QDMs, plotted as a function of temperature T and 1/kBT. The filled-square and open-
square symbols are measured values for cQDs- and sQDs-related spectra, respectively. The dashed
lines are single activation energy fittings with pre-exponential factor A= 3× 108 and EA as
indicated. Reproduced from [35] with permission from Elsevier

cQDs and 160 meV for sQDs, and in the 1.8/25/1.5 QDMs are 325 meV for cQDs
and 200 meV for sQDs. These values agree with the energetic difference between
the related peak energy and the WL energy. The fits for the 1.8/25/1.5 QDMs are
excellent: the cQD peak at 1.075 eV and the sQD peak at 1.195 eV are lower than
the 1.4-eV WL energy by 325 and 205 meV, respectively. The matches are almost
exact. The fits for the 1.8/25/1.2 QDMs are satisfactory for sQDs only: the cQD
peak at 1.075 eV and the sQD peak at 1.240 eV are lower than the 1.4-eV WL
energy by 325 and 160 meV, respectively. The corresponding best fits values are
250 and 150 meV. It is unclear what causes the large discrepancy in the case of
cQDs but possible causes include the presence of some small percentage of excited-
state excitons (which lowers the effective potential barrier or activation energy)
or defects in or around the nanohole-and-mound template (which introduces NRR
centers/channels).

3.5 Stacked QDMs

The existence of two ground-state energies makes lateral QDMs a promising
candidate as a broadband material for near-infrared (NIR) emissions, especially
if more than one active layer is present. It is typical for quantum wells (QWs)
or QDs active layers employed in superluminescent diodes (SLDs) to be chirped,
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i.e. stacked in the growth direction where each layer is grown differently [46, 47].
Broadband SLDs find applications in various fields, the most prominent of which
is possibly as the broadband source at the heart of optical coherence tomography
(OCT) [48]. The resolution of images acquired from OCT is inversely proportional
to the luminescent linewidth (FWHM) of the NIR source [49]. We proposed and
demonstrated that lateral QDMs are well suited as an active material for broadband
devices and systems. The main advantage over conventional QDs or QWs-based
chirped structures is the broader FWHM for the same number of stacked layer,
or smaller number of stacked layers for the same FWHM. This section describes
chirping schemes based on lateral QDMs bi-layers as the active material. The bi-
layers comprise four nominally different sub-ensembles; the PL in each of which
has a predictable temperature dependency, allowing easy design and optimization
of structures with a greater number of stacks.

3.5.1 Chirped Bi-Layers

A single layer of lateral QDMs exhibits two GS energies: a low-energy, narrow
emission from cQDs and a high-energy, broad emission from sQDs. A lateral QDMs
bi-layer thus exhibits four GS energies which, in order to maximize the FWHM for
broadband applications, can be designed to overlap in accordance with one of the
three schemes shown in Fig. 3.9a–c [23].

The straddled scheme or Type-I chirp depicted in Fig. 3.9a makes use of a wide
separation between the two GS energies of one layer (cQD1 and sQD1 in the figure,
unshaded curves) to straddle or sandwich the narrow separation of the other (cQD2

and sQD2, shaded). The wide separation can be achieved by a relatively thick
capping and regrowth, a condition where cQDs are filled but sQDs are forming
and still far from saturation. The 1.8/25/1.5 QDMs described in Sect. 3.4.2, for
example, meet this criteria. The spectrum shown in Fig. 3.5b indicates GS separation
as wide as 145 meV. The narrow separation, on the other hand, can be achieved by
a relatively thin capping and thick regrowth. The 2/6/1.4 QDMs described in Sect.
3.4.1 with PL spectrum in Fig. 3.4b, for example, show the separation of almost
zero as the cQD and sQD GS peaks are unresolved. Alternatively, a single cQD
peak can be employed. By growing a bi-layer of 2/26/2 QDM1 and 2/26/1.4 QDM2,
a Type-I chirp spectrum can be obtained. (Subscripts 1 and 2 indicate, respectively,
the lower and upper QDM layers in the growth sequence.) Figure 3.9d shows the PL
spectra of the bi-layer (upper spectrum) with respect to the controlled, single layer
2/25/1.4 QDMs. The latter, previously shown as a linear plot in Fig. 3.4b, exhibits
a single PL peak since the deep nanoholes have yet to be saturated. The former
exhibits three GS peaks: the minimum at 1.048 eV and the maximum at 1.214 eV
are from the 2/26/2 QDM1, whereas the intermediate peak at 1.086 eV is from the
2/26/1.4 QDM2. Multi-Gaussian function fits (dashed lines) show that the lower two
peak energies are narrow, indicative of cQDs-based origin, and the high peak energy
is broad, indicative of sQDs-based origin. The intermediate peak energy from the
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Fig. 3.9 Schematic spectral superposition of (a) straddled or Type-I, (b) staggered or Type-II, and
(c) broken-gap or Type-III chirped QDM bi-layers. The black (gray) bar marks the spectral range
between the cQD and sQD peaks of QDM1 (QDM2). Subscripts 1 and 2 denote the lower and
upper QDM layers, respectively. Measured 20 K PL spectra of samples containing single QDM
layer or chirped QDM bi-layer as active layers: (d) single 2/25/1.4 QDMs reference (lower plot),
and chirped 2/26/2.0 QDM1 bottom layer and 2/26/1.4 QDM2 top layer (upper); (e) single 1.9/6/1.7
QDM2 (lower), single 2/25/2.0 QDM1 (middle), and chirped QDM1/QDM2 bi-layer (upper); and
(f) single 2/6/1.4 QDM2 (lower), and chirped 2/15/1.7 QDM1 and 2/6/1.4 QDM2 bi-layer under
nominal (upper) and reduced excitations (middle). Dashed lines in (d–f) are multiple Gaussian
function fits. Spectra are offset for clarity. Adapted from [23]

2/26/1.4 QDM2 is sandwiched between the minimum and maximum from the 2/26/2
QDM1 as expected and provides a smoothening effect of the whole spectrum. The
bi-layer spectrum clearly demonstrates the superposition of individual PL peaks,
indicating that reabsorptions are insignificant.

The staggered scheme or Type-II chirp depicted in Fig. 3.9b makes use of two
QDM ensembles with similarly wide energetic separations and which are offset
along the energy scale. One possible implementation as shown in Fig. 3.9b positions
cQD2 between cQD1 and sQD1, and sQD1 between cQD2 and sQD2. This can
be achieved by designing the bi-layers to have different capping thickness, to ensure
separated cQD peak energies, but similar regrowth thickness. Figure 3.9e shows
the PL spectra of the 2/25/2 QDM1 and 1.9/6/1.7 QDM2 bi-layer (upper spectrum)
with respect to the controlled, single layers of 2/25/2 QDM1 (middle) and 1.9/6/1.7
QDM2 (lower). The lower spectrum shows the almost merged cQDs and sQDs
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peaks, similar to the 2/6/1.4 QDMs spectrum in Fig. 3.4b. The Gaussian fits (dashed
lines in the lower spectrum) reveal the constituent cQDs and sQDs peaks. The
middle spectrum shows two well-separated cQD and sQD peaks. The four peaks
from the lower and middle spectra are staggered in accordance with the design in
Fig. 3.9b. The dip in the middle of QDM1’s spectrum is made up by the rapid rise at
the same energetic position of QDM2’s spectrum, resulting in a smoothened overall
spectrum in the QDMs bi-layer. The bi-layer spectrum demonstrates that with proper
design a broad Gaussian spectrum can be obtained.

The broken-gap scheme or Type-III chirp depicted in Fig. 3.9c makes use of
two QDM ensembles with similarly narrow energetic separations where the highest
peak energy of one QDM ensemble is lower than the lowest peak energy of the
other. This can be achieved by designing the bi-layers to have different capping
thickness, to ensure separated cQD peak energies as in Type II, and similarly thick
regrowth, to ensure narrow cQD–sQD separation. Figure 3.9f shows the PL spectra
of the 2/15/1.7 QDM1 and 2/6/1.4 QDM2 bi-layer (upper spectrum) with respect
to the controlled, single layer of 2/6/1.4 QDM2 (lower). The existent of multiple
peaks in the upper spectrum of the bi-layers begs the question as to whether all
these four peaks are GS. To answer this we reduce the excitation power density
by two orders of magnitude, observe the linear decrease of the four peaks down to
almost the noise floor as shown in the middle spectrum, and thus confirm that all
the peaks in the upper spectrum are indeed GS peaks. Ignoring the small dip in the
middle, the spectrum has a broad FWHM of 170 meV. This non-optimized value
by chirping two layers of lateral QDMs compares favorably with 125 meV obtained
from chirping four layers of QDs [47], or 200 meV from sixty stacks of strain-
compensated structure [50]. Lateral QDM bi-layers thus provide the best active layer
in terms of cost-performance: a broader FWHM can be achieved for the same stack
number, or the smallest stack number is required for the same FWHM.

3.5.2 Temperature Dependencies

The optical properties of a lateral QDM single layer has been shown to follow
the bimodal optical characteristics explained in Sect. 3.4.3, it is thus expected
that the bi-layer should follow the same temperature dependencies since both
layers are separated by a thick 100-nm GaAs spacer layer and hence should be
optically uncoupled. Though reabsorptions (of QDM1 emissions by QDM2, and
vice versa) are a concern, low-temperature PL spectra in the three chirping schemes
above indicate that they do not qualitatively affect the wavelength superposition.
Variable temperature PL spectra in this section additionally indicate that they do
not qualitatively affect the underlying carrier escape and redistribution from and
between cQDs and sQDs either.

The temperature-dependent PL spectra of the Types I–III chirped samples above
are shown in Fig. 3.10a–c, respectively. The overall spectra are similarly quenched
as the temperature increases, and beyond 250 K no luminescence can be measured.
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Fig. 3.10 Temperature-dependent PL of chirped QDM bi-layers: measured PL spectra of Types
(a) I, (b) II, and (c) III; simulated PL spectra of Types (d) I, (e) II, and (f) III. Line spectra in (a–f)
are offset for clarity. Simulated line spectra in (d–f) are performed at the same temperatures as the
measured spectra in (a–c), respectively. Adapted from [23]

This is not to be taken as a limiting factor for room-temperature operations as the
structures have yet to be optimized. The overarching trend in all samples is the
subsequent quenching from the high-energy ends. In Fig. 3.10a, for example, the
highest-energy peak at 1.214 eV is the first to be quenched, followed by the next
immediate peak at 1.086 eV, and finally by the lowest-energy peak at 1.048 eV. Such
orderly quenching is characteristic of thermal activation of carriers out of QDs into
the adjacent WL and/or GaAs matrix where carriers recombine non-radiatively. The
multiplicity of luminescent peaks in the QDM bi-layers makes it difficult to identify
the NRR channels and associated activation energies without prior knowledge from
controlled single QDM layer structures. If our hypothesis of optical independence
between the QDM bi-layer is correct, the main escape channel should be the same
as QDM single layers, i.e. the WL as identified by the Arrhenius plots in Fig. 3.8.

In order to identify the NRR channels and to understand the temperature
dependencies of the three chirp structures, the spectra are fitted to the equation:

I =
4

∑
i=1

Ii exp(E −Ei)
2/Γ 2

i

1+A exp−(E −EWL)/ηikBT
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Table 3.1 Simulation parameters for the PL maps and spectra of chirped
QDM bi-layers

QDM1 QDM2

cQD1 sQD1 cQD2 sQD2

Type I—straddled
Ii 1.000 0.094 0.358 0.071
Ei (eV) 1.048 1.214* 1.085 1.114*
FWHM (meV) 30.6 77.7* 28.3 51.8*
η i 1.0–1.6 1.1–1.9 1.0–1.6 1.1–1.9
Type II—staggered
Ii 1.000 0.315 0.591 0.044
Ei (eV) 1.077 1.160* 1.120 1.213*
FWHM (meV) 40.0 53.0* 40.0 49.5*
η i 1–1.4 1–1.8 1–1.4 1–1.8
Type III—broken-gap
Ii 1.0 1.0 0.7 0.7
Ei (eV) 1.078 1.121 1.170 1.220*
FWHM (meV) 33.0 42.4 33.0 65.9*
η i 1.1–2 1.1–2 1.1–2 1.0–2

Twenty-Kelvin peak energy position Ei, relative intensity Ii, and FWHM of
cQDs and sQDs ensembles of Types I–III chirped QDM bi-layers extracted
from Fig. 3.10a–c, respectively. The ideality factor η i varies linearly with
temperature from the lower limit value at 20 K to the upper limit value
at 300 K. Subscripts 1 and 2 represent the lower and upper QDM layers,
respectively. Ei’s temperature dependency follows Varshni’s equation un-
less marked by * where it instead follows the sigmoidal behavior. FWHM
is assumed constant unless marked by * where it follows the anomalous
temperature behavior. The FWHM is related to the standard deviation
of the Gaussian distribution or the broadening parameter Γ through the
relationship: FWHM (meV)= 1,665.11×Γ . Reproduced from [23]

where the overall intensity I at energy E and temperature T is a summation of
constituent intensities from QDM1 (cQD1 and sQD1) and QDM2 (cQD2 and sQD2),
hence the summation from i= 1 to 4. Each constituent’s luminescence has a low-
temperature intensity Ii at a peak energy Ei, a broadening parameter Γ i and is
quenched by thermal escape to the WL level EWL. A is the pre-exponential factor,
kB is the Boltzmann’s constant and η i is the ideality factor indicating the dominance
of the WL over other NRR channel(s). If the WL is the sole factor responsible for
quenching, then η i = 1. If other NRR channel(s) co-exist and acting in parallel, then
η i > 1. The further η i is from 1, the less significant the WL is as excitons escape
route. The fitting parameters extracted from the measured spectra are summarized
in Table 3.1.

The simulated line spectra of Types I–III chirps at selected temperatures are
shown underneath the measured spectra in Fig. 3.10d–f, respectively. A white noise
is added to the simulated data to reflect the actual noise levels in our setup. The
full simulations of Types I–III chirps covering the 20–300 K temperature range
are shown in the PL maps I(E, T) in Fig. 3.11a–c, respectively. The dashed lines
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Fig. 3.11 Simulated PL maps I(E, T) of Types (a) I, (b) II, and (c) III chirped QDM bi-layers.
Dashed lines are bandgap variations with temperature according to Varshni’s equation with bulk
InAs parameters, linearly shifted to match the lowest-energy cQD peaks. Adapted from [23]

in the PL maps are calculated temperature variations of the cQD peak based on
Varshni’s equation and bulk InAs parameters; the trend is followed only by cQDs-
related peaks. Despite the simplicity of the approach, the fits predict all the major
characteristics of the measured spectra at all experimental temperatures. Though
we can further improve the simulations by incorporating the recently reported
parameters for the Fan model [37], it does not change the qualitative nature of our
conclusions that the WL is the main escape path and that the activation energy falls
somewhere between the ideal case where η i = 1 and the limiting case where η i = 2.

Though the chirping schemes described in Sect. 3.5.1 and the demonstrated
optical characteristics in Sect. 3.5.2 employ a QDM bi-layer as the active layer,
the same fundamental concepts can be readily extended to structures with number
of stacks greater than two, or to other material systems in order to increase the
bandwidth or to shift the nominal wavelength to other region of the electromagnetic
spectrum, respectively.

3.6 Conclusion

Lateral InGaAs quantum dot molecules are grown by solid-source MBE via the
partial-cap and regrowth process using the nanohole-and-mound template. Each
QDM comprises two types of QDs: a cQD located at the nanohole center, and
sQDs surrounding it. Differences in nucleation locations and dynamics result in
cQDs and sQDs having different sizes and degrees of homogeneity: cQDs are
generally taller and more uniform than sQDs. Temperature-dependent photolu-
minescent spectra reflect the geometrical differences: cQDs typically emit at a
low GS energy around 1.05 eV with a narrow FWHM below 30 meV whereas
sQDs emit at about 150 meV higher with a broad FWHM that more than doubles
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those of cQDs. As sample temperature varies, cQDs emission is found to simply
follow the InAs bulk bandgap variation in accordance with Varshni’s equation.
On the contrary, sQDs exhibit a sigmoidal temperature behavior resulting from
carrier redistribution among inhomogeneous QDs. The two qualitatively different
temperature-dependent PL or the bimodal optical property results from the intrinsic
bimodal size distribution of our lateral QDM ensemble. With this unique property
we proposed and demonstrated a QDM bi-layer structure that exhibits four GS
energies whose spectra can be arranged to overlap in three basic configurations:
straddled, staggered, and broken-gap. A non-optimized, proof-of-principle structure
shows a broadband spectrum with FWHM of 170 meV. The spectra are well
explained by multi-Gaussian functions with carrier redistributions among sQDs
and quenching via thermal escape and recombination via the wetting layer and
non-radiative recombination centers/channels acting in parallel. We introduced an
ideality factor to indicate the dominance of the WL as the quenching channel. Well-
understood optical properties of lateral QDM single- and bi-layers are necessary if
they are to serve as an active material for devices destined for broadband absorption
such as solar cells or for broadband emissions such as superluminescent diodes.
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direction, but the top view of the structures looks like 
square more than circular shapes. The high aspect ratio 
in the [1-10] direction comes from the length of dots 
having longer in the [110] direction. This should come 
from the high density of the QDs created in the [1-10] 
line, then each dot in the line tries to extend its shape to 
[110] direction instead of the [1-10] direction. In the 
same manner, like square shapes of the QDs in the [110] 
direction should be caused from the lower density of the 
QDs created in that line then the structures are free to 
extend both directions, so the structures become 
approximately the square shapes. 
 
4. Conclusion

As we have grown the InAs QDs on InGaAs with a 
thin thickness of GaAs spacer, so the shapes become 
rectangular in the [1-10] direction and like square shapes 
in the [110] direction. The result indicates that we can 
optimize the asymmetric structures of QD shapes by 
using the control of strain distribution. The number of 
stacks, molar fraction of InxGa1-xAs and thickness of 
GaAs spacer are good parameters to make considering 
for the strain distribution. These asymmetric shapes can 
be continued to study in the optical properties such as 
polarizations and emission wavelengths which are 
required in many applications. 
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