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Abstract

Purposes-The current study aimed to investigate effects of titanium surface topography and
simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells
(hBMSCs) in estrogen-deprived (ED) cell culture.

Materials and Methods-Human BMSCs were seeded on cell culture plates and titanium (T1)
disks, smooth and sandblasted and acid etched (SLA) Ti surfaces (Straumann, Switzerland), and
subsequently cultured in regular (FBS), estrogen-deprived (ED) and ED-with 100 nM
simvastatin (ED-SIM) growth or osteogenic (OS) media for 14 — 21 days. Live/dead cell
staining, scanning electron microscope (SEM) examination and cell viability assay were
performed to determine cell attachment, morphology and growth. Expression levels of
osteoblast-associated genes, Runx2 and bone sialoprotein (IBSP) and levels of alkaline
phosphatase (ALP) activity, calcium contents and osteocalcin in culture media were measured to
determine osteoblastic differentiation potenital. Expression levels of bone morphogenetic
protein 2 (BMP-2) was investigated to examine stimulating effects of simvastatin. [In vitro
mineralization was verified by calcein staining.

Results-Human BMSCs exhibited different cell attachment and shapes on smooth and SLA
titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth,
particularly on SLA titanium surface, but cells were able to grow to reach confluence on day 21
in ED-OS culture medium. Sandblasted and acid etch titanium surface promoted osteogenic
differentiation in FBS- and ED-OS, but the promoting effects of SLA titanium surface in ED-OS
were significantly decreased. Simvastatin significantly increased osteogenic differentiation of
hBMSCs on SLA titanium surface in ED-OS medium and the promoting effects of simvastatin
corresponded with the increasing of BMP-2 gene expression on SLA titanium surface in ED-OS-
SIM culture medium.

Conclusions-Estrogen-deprived cell culture model provided a well-defined platform for
investigating effects of hormone and growth factors on cells and titanium surface interaction.
Titanium surface microtopography of SLA surface and simvastatin synergistically promoted
osteoblastic differentiation of hBMSCs in ED condition and they might be applied to promote
osteointegration in osteoporotic bone.

Keywords: Estrogen-deprived, titanium surfaces, sand blasted and acid etched, simvastatin,

human bone marrow stromal cells, osteogenic differentiation
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1. anudaguaznnvasdynd

Osteoporosis, one of the public health problems associated with aging, might be
considered a risk in implant therapy. A decreasing of estrogen level in senile osteoporosis
decreases bone formation, promotes bone resorption and enhances adipogenic differentiation of
mesenchymal stem cells (MSCs) (1). Unbalanced bone remodeling and deteriorating
microarchitecture of osteoporotic bone create negative effects on osteointegration and implant
stability in ovarectomised rabbits, rats and sheep (2-4). Bone mineral density (BMD) in bone
marrow region of ovarectomized rats are significantly 30-40% lower than non-osteoporosis
group (4), and removal torque of implants in osteoporotic tibia of ovarectomized rabbits is
significantly decreased (3).

Various methods have been applied to increase BMD surrounding implant and
improve bone implant contact in osteoporotic bone including implant surface modifications(5)
and systemic and locally applied simvastatin (6, 7). Surface microtopography of titanium
surface has been shown to be a major factor regulating cell response to biomaterials (8, 9). It is
reported that rough titanium surface promotes osteogenic differentiation of hBMSCs (10, 11) and
increase bone implant contact (12, 13). Surface roughness of Sand blasted and acid etched
(SLA) titanium surface promotes early differentiation, bone formation, implant integration and
reduce healing time of the implants (14). Superior effects of the SLA titanium surface on
osteogenic differentiation have been well established (15, 16).

Simvastatin may synergistically enhance osteogenic differentiation of estrogen-
deprived MSCs on titanium surface.  Statin is primarily used in the treatment of
hypercholesterolemia and has been reported to possess anabolic effects on bone (Song et al

2008). Simvastatin is reported to decrease fracture risk, increase bone mineral density (BMD),
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enhance BMP2 expression and stimulate osteoblast differentiation in vitro (17). Enhancing
effects of simvastatin on expression levels of BMP-2, a strong osteoinductive gene may be able
to enhance osteogenic differentiation of estrogen-deprived hBMSCs on SLA titanium surface.
The current study aimed to establish estrogen-deprived cell culture model and
investigate effects of titanium surface microtopography, smooth and SLA titanium surfaces, and
simvastatin on growth and osteogenic differentiation of hBMSCs in estrogen-deprived cell
culture. It was hypothesized that SLA titanium surface would be able to promote growth and
osteogenic differentiation of estrogen-deprived human bone marrow stromal cells (ED-hBMSCs)

and the promoting effects would be further enhanced by simvastatin supplementation.
2. JagUszaed

The current study aimed to

1. Establish estrogen-deprived cell culture model and
2. Investigate effects of titanium surface microtopography, smooth and SLA titanium
surfaces, and simvastatin on growth and osteogenic differentiation of hBMSCs in

estrogen-deprived cell culture.

3. 3288035398 (Figure 1 and Tables 1 and 2)

Human bone marrow stromal cells (hBMSCs) at passages 3-5 in growth medium
(FBS-growth medium) were seeded on 24-well cell culture plate and smooth and sandblasted and
acid-etched titanium disks in non-treated 24-well cell culture plates. Cells were cultured in
minimal growth medium (300 pl) for 3 hr. and 1 ml of culture medium / well for 24 hr. Then

culture medium was changed to either regular with fetal bovine serum (FBS), estrogen-deprived
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with charcoal strip FBS (ED) or ED with simvastatin (ED-SIM) culture media for 14 — 21 days
according to groups of study (Figure 1 and Table 1).

To investigate cell adhesion, morphology and growth, Ilive/dead cell
(CellTracker™ Green / Propidium iodide) staining and cell viability assay were performed.
Quantitative real-time polymerase chain reaction (QRT-PCR) and alkaline phosphatase (ALP)
activity, calcium contents and osteocalcin assays were performed to examine osteoblastic
differentiation potential. After that growth and osteogenic differentiation of cells in different
culture media and cell culture surfaces were compared. Results were derived from 2-3
independent experiments. The investigations at each time point were performed in 4-5

consecutive samples (n=4-5, MEAN+SD) (Figure 1 and Table 2).



Figure 1 Outline of the study [ Human BMSCs ]
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Table 1 Groups of study

XI

Categories Culture media Groups  Description
A FBS- Plate
I Regular (FBS) B FBS- SM
C FBS-SLA
A ED-Plate
11 Estrogen-deprived (ED) B ED-SM
C ED-SLA
A ED-SIM- Plate
ED-Simvastatin
I B ED-SIM-SM
supplement (ED-SIM)
C ED-SIM- SLA

Note: FBS is an abbreviation for culture medium containing fetal bovine serum (FBS), ED-OS

for estrogen deprived osteogenic medium containing charcoal stripped FBS, SIM for simvastatin,

Plate, for cell culture plates and SM, smooth and SLA, sandblasted and acid etched titanium

surfaces.



Table 2 Summary of the investigations

BMP-2

Investigations Procedures Investigating time
At3h ft 11
Live/dead cell staining 3. Ours atter ee
seeding
Cell attachment,
spreading and Live/dead cell staining At 24 hr. and on day 21
morphology
SEM On days 7 and 21
Cell growth Cell viability assay On days 2, 7, 14 and 21
RT-PCR analysis of
a ana y§15 y On days 7 and 21
osteoblast-associated genes
Osteogenic . .
differentiation ALP activity analysis On days 7 and 21
Calcium content assay On day 21
Expression of .
qRT-PCR analysis On day 14

XII

Note: ALP is an abbreviation for alkaline phosphatase, BMP-2, bone morphogenetic protein-2,

qRT-PCR, quantitative Real-time polymerase chain reaction and SEM, scanning electron

microscope
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Table 3 Experimental time line

XIII

Activity
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Jan -
Mar
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- | Jul-
Sep

Oct -
Dec

Jan -
Mar

Apr -
Jun

July

Preparation

Facility & chemical

Experiment

Pilot study setting
up estrogen-
deprived cell culture

Pilot study on cell
culture on titanium
disks

Investigating cell
growth and
attachment on
titanium surface

Performing qRT-
PCR for gene
expression

Measuring ALP
activity and calcium
contents

Analysis

Pilot on simvastatin
supplement

I

Investigating effects
of simvastatin on
growth &
differentiation
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Effects of Titanium Surface Microtopography and Simvastatin on Growth
and Osteogenic Differentiation of Human Mesenchymal Stem Cells in
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(hBMSCs) on (A, B & E, F) smooth and (C, D & G, H) sandblasted and acid etched titanium
surfaces in (A, E & C, G) regular (FBS-OS) and (B, F & D, H) estrogen-deprived osteogenic
media (ED-OS) on (A-D) culture-days 7 (Day 7) and (E-H) 21 (Day 21). Images demonstrated
different cell shapes and growth on smooth and SLA titanium surfaces in FBS-OS and ED-OS
media. Cells formed cell sheet on smooth titanium surface (Smooth) but extended cytoplasmic
process to attach on rough surface forming cells with multiple cytoplasmic process and
intercellular network. Different cell spreading and growth in FBS-OS and ED-OS media were
clearly shown on SLA titanium surface (SLA). Size of cells and cell density appeared to be
smaller and lower in ED-OS (D & H) than FBS-OS culture media (C & G). On SLA titanium
surface, only cells in FBS-OS could grow to form loose cell sheet on day 21 (G). High

magnification images in the inlets magnified cell-surface contacts ............ccceeevveveieiiieeiieeniens 20

Figure 11 Scanning electron microscope images demonstrating intercellular-surface contact of
hBMSCs on rough, sandblasted and acid etched (SLA) titanium surface in conventional (FBS-
OS) and estrogen-deprived osteogenic mediums (ED-OS) on day 21, (A&B) in FBS-OS and
(C&D) ED-OS media. Human BMSCs established focal contact points on the rough surface
(arrows) by extending cell body across macro pores while attaching cytoplasmic process on
micro pores of the SLA surface. Arrows indicate cell intercellular-surface contact of

cytoplasmic processes on micro-pores of the SLA titanium surface. ..........cccoeecveveenieneeniennnnne. 21
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Figure 12 Cell viability assay demonstrates growth of human bone marrow stromal cells
(hBMSCs) in regular (FBS) (dot lines) and estrogen-deprived (ED) growth media (solid lines) on
cell culture plate (PL) and smooth (SM) and sandblasted and acid etched (SLA) titanium
surfaces. On Day 1, numbers of cells on SLA titanium surface tended to be lower than cell
culture plate and smooth titanium surface (p>0.05). Subsequently on days 7 — 21, numbers of
cells on SLA tended to be lower than SM (p>0.05). On days 7 and 14 growth of cells was
relatively stable and growth of cells on titanium surfaces in FBS-OS and ED-OS were not
significantly different (p>0.05). Growth of cells was significantly different on day 21, when
growth of cells on titanium surfaces in ED-OS was significantly lower than cell culture plate in
ED and titanium surfaces in FBS, and cell culture plate in FBS, respectively (+, p<0.05). Cells
on cell culture plate in FBS medium on day 21 showed the highest level of growth (*, p<0.05).
The symbol * represents significantly higher than other groups and +, lower than other groups at

P<0.05 @ (154, MEANESD). ...coorveeoeeeeeeeeeeeseeeseeess e eeseseeeesssseeeaessseeeesesseesessseeesesssseessesseeeeeee 23

Figure 13 Demonstrating osteogenic differentiation potential of human bone marrow stromal
cells (hBMSCs) in regular (FBS-OS) and estrogen-deprived osteogenic (ED-OS) media on cell
culture plate (PL) and smooth (SM) and sandblasted and acid etched (SLA) titanium surfaces on
culture-days 7 (Days 7) and 21 (Day 21), (A) quantitative real-time polymerase chain reaction
(qRT-PCR) exhibits expression of Runx2 and (B) bone sialoprotein (IBSP) genes, (C) alkaline
phosphatase activity and (D) calcium content levels.  Estrogen-deprived-OS medium
significantly increased expression levels of Runx2, but decreased IBSP expression, ALP activity
and calcium content levels (+, p<0.05). On day 21, (B) levels of IBSP expression and (D)
calcium contents on SLA titanium surface in FBS-OS were significantly higher than cell culture
plate and smooth titanium surface (*, p<0.05). (C) Levels of ALP activity in each culture
medium on days 7 and 21 were not significantly different (p>0.05). Symbols * represents
significant difference among surfaces in the same group and +, differences between media at

p<0.05. Data were from 2 independent experiment (n=4, MEAN=ZSD)........ccccoevvieiiieenieenneens 25

Figure 14 Demonstrating effects of simvastatin on growth, osteogenic differentiation potential
and expression of bone morphogenetic protein 2 (BMP-2) of human bone marrow stromal cells
(hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs, seeded on cell culture plate
(PL) and smooth (SM) and sandblasted and acid etched (SLA) titanium surfaces, were cultured
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in regular (FBS-OS), estrogen-deprived osteogenic (ED-OS) and ED-OS with 100 nM
simvastatin (ED-OS-SIM) culture media for 14 days. Investigated parameters were (A) cell
growth (cell viability assay), (B & C, E & F) osteogenic differentiation markers, (B) gqRT-PCR
of Runx2, (C) bone sialoprotein (IBSP), (E) alkaline phosphatase (ALP) activity and (F)
osteocalcin in culture media, and (D) qRT-PCR of bone morphogenetic protein-2 (BMP-2).
Simvastatin tended to decrease (A) cell growth on SLA and (B) expression levels of Runx2 on
SM (p>0.05). (B) Runx 2 expression levels on SM in ED-OS was significantly higher than PL in
ED-OS (*, p<0.05) and tended to be higher than other groups (p>0.05). (C) ED-OS-Sim
significantly increased expression levels of IBSP and (D) BMP-2 and (F) levels of osteocalcin on
SLA, and (E) enhanced ALP activity on SM and SLA titanium surfaces (*, p<0.05). In ED-OS
alone expression (C) levels of IBSP and (F) osteocalcin on SLA were significantly higher than
SM titanium surfaces (+, p<0.05) and the expressions on SLA titanium surface were significantly
increased in ED-OS-Sim medium (*, p<0.05). Symbols * represents significant difference
among surfaces in the same culture medium at p<0.05, and +, differences between groups of

culture medium at p<0.05. Data were from 2 independent experiment (n=4, MEAN=£SD)........ 29

Figure 15 Demonstrating calcein staining of in vitro mineralization of human bone marrow
stromal cells on (A & B) cell culture plate and (C-E) smooth and (F-H) sandblasted and acid
etched (SLA) titanium surfaces in (C & F) regular (FBS-OS), (D & G) estrogen-deprived (ED-
OS) and (E & H) ED-OS with 100 nM simvastatin (ED-OS-SIM) culture media. (A) Von Kossa
staining exhibited black staining on mineralized nodules in ECM (arrows) (positive control) and
(B) green calcein staining (arrows) on cell culture plate which corresponded with black staining

in (A). (C-H) Exhibiting varying levels of green calcein staining on mineralized nodules

(AITOWS). c.eveeeeteeeeiee ettt ettt ettt e et e et eetaeeetbeeeaseeesteeeasaeesbeessse e sseaessseeasaeeassaessseessseeansaeensseesseenaseennses 30
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INTRODUCTION

Osteoporosis, one of the public health problems associated with aging, might be
considered a risk in implant therapy. A decreasing of estrogen level in senile osteoporosis
decreases bone formation, promotes bone resorption and enhances adipogenic differentiation of
mesenchymal stem cells (MSCs) (1). Unbalanced bone remodeling and deteriorating
microarchitecture of osteoporotic bone create negative effects on osteointegration and implant
stability in ovarectomised rabbits, rats and sheep (2-4). Bone mineral density (BMD) in bone
marrow region of ovarectomized rats are significantly 30-40% lower than non-osteoporosis
group (4), and removal torque of implants in osteoporotic tibia of ovarectomized rabbits is
significantly decreased (3).

Various methods have been applied to increase BMD surrounding implant and
improve bone implant contact in osteoporotic bone including implant surface modifications(5)
and systemic and locally applied simvastatin(6, 7). Surface microtopography of titanium surface
has been shown to be a major factor regulating cell response to biomaterials (8, 9). It is reported
that rough titanium surface promotes osteogenic differentiation of h(BMSCs (10, 11) and increase
bone implant contact (12, 13). Surface roughness of Sand blasted and acid etched (SLA)
titanium surface promotes early differentiation, bone formation, implant integration and reduce
healing time of the implants (14). Superior effects of the SLA titanium surface on osteogenic
differentiation have been well established (15, 16).

Simvastatin may synergistically enhance osteogenic differentiation of estrogen-
deprived MSCs on titanium surface. Statin is primarily used in the treatment of
hypercholesterolemia and has been reported to possess anabolic effects on bone (Song et al

2008). Simvastatin is reported to decrease fracture risk, increase bone mineral density (BMD),
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enhances BMP2 expression and stimulates osteoblast differentiation in vitro (17).
Enhancing effects of simvastatin on expression levels of BMP-2, a strong osteoinductive gene
may be able to enhance osteogenic differentiation of estrogen-deprived hBMSCs on SLA
titanium surface.

The current study aimed to establish estrogen-deprived cell culture model and
investigate effects of titanium surface microtopography, smooth and SLA titanium surfaces, and
simvastatin on growth and osteogenic differentiation of hBMSCs in estrogen-deprived cell
culture. It was hypothesized that SLA titanium surface would be able to promote growth and
osteogenic differentiation of estrogen-deprived human bone marrow stromal cells (ED-hBMSCs)

and the promoting effects would be further enhanced by simvastatin supplementation.



MATERIALS AND METHODS

Outline of the study

Human bone marrow stromal cells (hBMSCs) at passages 3-5 in growth medium
(FBS-growth medium) were seeded on 24-well cell culture plate and smooth and sandblasted and
acid-etched titanium disks in non-treated 24-well cell culture plates. Cells were cultured in
minimal growth medium for 3 hr. and 1 ml of culture medium / well for 24 hr. Then culture
medium was changed to either regular, estrogen-deprived (ED) and ED with simvastatin culture
media for 14 — 21 days according to groups of study (Fig. 1 and Table 1).

To investigate cell adhesion, morphology and growth, live/dead cell
(CellTracker™ Green / Propidium iodide staining) and cell viability assay were performed.
Quantitative real-time polymerase chain reaction (qQRT-PCR) and ALP activity, osteocalcin in
culture medium and calcium contents in extra cellular matrix assays were performed to examine
osteoblastic differentiation potential. After that growth and osteogenic differentiation of cells in
different culture media and cell culture surfaces were compared. Results were derived from 2-3
independent experiments. The investigations at each time point were performed in 4-5

consecutive samples (n=4-5, MEAN+SD) (Fig. 1 and Table 2).

Groups of Study

The study was categorized into 3 categories and 3 groups, according to types of
culture media and cell culture surfaces, respectively, Category I-Regular (FBS), II-Estrogen-
deprived (ED) and III-ED-Simvastatin supplement culture media. In each category, cells were
seeded on 3 different surfaces, Groups A: cell culture plates and B: smooth and C: sandblasted

and acid etched titanium surfaces (Table 1).
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Table 1 Groups of study

Categories Culture media Groups  Description
A FBS- Plate
I Regular (FBS) B FBS- SM
C FBS-SLA
A ED-Plate
I Estrogen-deprived (ED) B ED-SM
C ED-SLA
A ED-SIM- Plate
ED-Simvastatin
I B ED-SIM-SM
supplement (ED-SIM)
C ED-SIM- SLA

Note: FBS is an abbreviation for culture medium containing fetal bovine serum (FBS), ED-OS
for estrogen deprived osteogenic medium containing charcoal stripped FBS, SIM for simvastatin,
Plate, for cell culture plates and SM, smooth and SLA, sandblasted and acid etched titanium

surfaces.
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Table 2 Summary of the investigations

BMP-2

Investigations Procedures Investigating time

Live/dead cell staining At3 'hours after cell
seeding

Cell attachment,

spreading and Live/dead cell staining At 24 hr. and on day 21

morphology
SEM On days 7 and 21

Cell growth Cell viability assay On days 2, 7, 14 and 21

RT-PCR analysis of

q CR ana y§IS © On days 7 and 21
osteoblast-associated genes

Osteogenic . .

differentiation ALP activity analysis On days 7 and 21
Calcium content assay On day 21

Expression of .

gRT-PCR analysis On day 14

Note: ALP is an abbreviation for alkaline phosphatase, BMP-2, bone morphogenetic protein-2,

qRT-PCR, quantitative Real-time polymerase chain reaction and SEM, scanning electron

microscope
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Human Bone Marrow Cell Culture

Obtaining a permission and approval from the Ethical Committee of Faculty of
Medicine, Prince of Songkla University (Permission number EC-54-286-19-1-2) and patient
written informed consent, human bone marrow stromal cells (hBMSCs) were harvested from
healthy adult patients (age 19-45 years) undergoing orthopedic surgery at Prince of
Songklanagarind hospital. Human BMSCs were harvested and expanded as described previously
(18). Human MSCs at passages 4-5 were used in the analyses (Figures 2 & 3).

Human BMSCs were cultured in regular (Fetal bovine serum, FBS), estrogen-
deprived (ED) and estrogen-deprived with simvastatin (ED-SIM) culture media. Regular growth
medium (FBS-growth) comprised of DMEM-F12 supplemented with 10% fetal bovine serum,
1% penicillin/streptomycin and 0.5% fungizone (all from Gibco BRL/Life technologies,
Rockville, MD, USA) (19). For estrogen-deprived growth medium (ED-growth), phenol red free
DMEM-F12 was supplemented with 10% charcoal stripped FBS (all from Gibco BRL/Life
technologies) and 0.5% ITS+3 Liquid Media Supplement (100x) (Sigma Chemical Co., St.
Louis, MO, USA), 1% penicillin/streptomycin and 0.5% fungizone (all from Gibco BRL/Life
technologies). For osteogenic differentiation (OS) medium (FBS-OS and ED-OS), FBS and ED
growth media were supplemented with 50 mM ascorbic acid, 10 mM B-glycerophosphate and
100 nM dexamethasone (all from Sigma Chemical Co.) (19). For ED-OS medium with 100 nM
simvastatin supplement (ED-OS-SIM), 100 uM simvastation in dimethyl sulfoxide (DMSO) was
supplemented just before used in a 1:1000 ratio of DMSO to culture medium. In a control group
for ED-OS-SIM cell culture, ED-OS medium was also supplemented with DMSO in a ratio of

1:1000. The amount of DMSO was limited to 0.1% (all from Sigma Chemical Co.).
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hBMSCs at Priary Paag ay 5 hMCs at 3 assage on Day 7
Figure 2 Images of hBMSCs at primary and third passages under inverted microscope, (A)
Demonstrating small individual spindle-shaped cells attaching on cell culture plate and floating
blood cells on day 5 after bone marrow cell seeding and (B) Exhibiting uniform fibroblast-like

cells of hBMSCs at passage 3 at 80% confluence and being ready for cell seeding.

hBMSCs on Cell Culture Plate

Figure 3 Confocal laser scanning microscope images of vital cell staining (CellTracker'™ Green,
Molecular Probes, USA) of hBMSCs at passage 4 on cell culture plate in growth medium on day
7. Images demonstrated viability of spindle-shape and fibroblast-like cells creating intercellular

contact at 70% confluence which were ready for cell seeding.
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Cell Seeding and Cell Culture Scheme

Titanium disks with smooth and sandblasted and acid-etched titanium surfaces, 15
mm in diameter with 1 mm thickness, were kindly provided by Straumann (Institut Straumann
AG, Basel, Switzerland) (Figure 5). Disks were placed in non-treated 24-well cell culture plate
(Costar, Pittsburgh, PA, USA), one well for one disk for cell seeding and culture.

Human BMSCs were seeded on 24-well cell culture plate (Costar) and titanium
disks, smooth and SLA titanium surfaces. Human BMSCs were seeded at 1x10* cells/cm® or
2x10* cells/disks for cell growth and attachment studies, and 2x10* cells/cm? or 4x10” cells/disk
for osteogenic differentiation study. Cells, 2x10* or 4x10” cells, were suspended in 300 pl of
growth medium and seeded on each well of 24-well cell culture plates and titanium disk. Then
seeded cells were cultured in minimal FBS-growth medium for 3 hr. and then 24 hr. in 1 ml
culture medium in a humidified incubator with 5% CO, at 37°C. After that FBS growth medium
was replaced with 1 ml ED-growth medium for 24 hr. wash out period (20). Subsequently, cells
were cultured either in FBS-or ED-growth or osteogenic media for 21 day, and ED-OS-SIM for

14 days according to groups of the study for investigations (Figure 5 & Table 2).

Figure 4 Scanning electron microscope images of titanium surfaces, (A) smooth and (B) rough,

sandblasted and acid-etched (SLA) titanium surfaces
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(A) Human BMSCs seeded on (B) Human BMSCs on titanium
titanium disks disks cultured in culture media

Figure 5 Demonstrating cell seeding on Ti disks and cell culture in different culture media

according to groups of study
Live and Dead Cell Staining

To examine cell attachment, spreading, viability and cell dead, cells were
incubated in a mixture of 5 uM CellTracker' ™ Green (Molecular Probes/Invitrogen, Carlsbad,
CA, USA) and 0.5 mg/ml propidium iodide (Sigma Chemical Co.) in ED growth medium for 30
minutes in a humidified incubator with 5% CO, at 37°C. After that the disks were rinsed twice
with phosphate buffer solution (PBS), fixed in 10% buffered formaldehyde and examined under
fluorescence microscope (Ti-S100, Nikon, Japan) or confocal laser scanning microscope
(CLSM) (FV300, Olympus, Japan). The staining was performed at 24 hr. after cell seeding in

growth medium and then on days 7 and 21 in osteogenic medium (n=3) (Table 2) (21).

Scanning Electron Microscope

Cell attachment and morphology on titanium disks were assessed optically by
scanning electron microscope (SEM) (5800LV, JEOL, Japan). At each investigation time, cells
were fixed in 4% glutaraldehyde, dehydrated in ethanol series of 30-100%, dried, gold sputter-

coated (SPI Module™ Sputter Coater, SPI, USA ) and examined under scanning electron
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microscope (SEM, 5800LV, JEOL)(22). The examination was performed on days 7 and 21

(n=3) (Table 2) (21).

Cell Viability Assay

Growth curve was established using cell viability assay. Cell viability was
measured as an indicator of cell growth and CellTiter 96 Aqueous One Solution Cell
Proliferation Assay (Promega, Madison, WI, USA) was used following manufacturer’s
instructions. The formazan dye was quantified at 440 nm absorbance in duplicate using a
microplate reader (Multiskan GO, Thermo Scientific, Finland). Then optical density values were
extrapolated with a standard curve of cell numbers. Cell viability was determined on days 1, 7,

14 and 21 in growth media (n=4, Mean+SD) (Table 2) (21).

Quantitative Real-time Polymerase Chain Reaction (QRT-PCR)

Quantitative RT-PCR was performed to determine expression levels of early and
late osteoblastic differentiation associated genes, Runx2 and IBSP (23) and bone morphogenetic
protein-2 (BMP-2) gene. Total RNA was extracted using Trizol (Invitrogen) and 1ug of RNA
was reverse transcribed into c¢cDNA using ¢cDNA Reverse Transcription Kits (Applied
Biosystems, Foster City, CA, USA). Equal amount of cDNA was amplified by PCR using the
TagMan Gene Expression Master Mix (Applied Biosystems) and 20xTarget primers and Probe
(Applied Biosystems). Genes and primers used are as followed, Runx2 (Hs01047973 ml),
IBSP (Hs00173720 m1) and BMP-2 (Hs00154192 m1) (Applied Biosystems). The expression
of the genes was measured by qRT-PCR on the Rotor Gene Q Detection System (Qiagen,
Hilden, Germany). Levels of the target genes were normalized to the levels of glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (Hs02758991 g1) (Applied Biosystems) as an endogenous

reference. Subsequently, the expression levels of investigated genes were normalized to the
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expression levels of hBMSCs on cell culture plate in FBS-OS medium and reported as fold

changes. Data presented for were averaged from 3 independent cultures (n=3, MEAN=+SD) (24).

Alkaline Phosphatase (ALP) Activity Analysis

At each investigation time, hBMSCs on cell culture plates and titanium disks were
lyzed in 1% Triton X-100 (Sigma Chemical Co.) to obtain total protein lysate and cell pellets.
Amount of total protein contents and levels of alkaline phosphatase (ALP) activity in the protein
lysis solution were measured, and pellets from the same samples were kept for calcium content
assay (22).

The quantification of protein amount in cell lysate was performed using Bio-rad®
DC™ Protein assay kit (Bio-Rad, Hercules, California, USA) following manufacturer’s
instruction. The reactions were read at 650 nm absorbance in duplicate using a microplate reader
(Multiskan GO). Then ALP activity in cell lysate was measured. Procedures in brief: 100 pl
protein extract solution was added in 400 pl of 2 mg/ml p-Nitrophenylphosphate in 0.75 mM 2-
Amino-2-methyl-1-propanol, mixed well and incubated at 37°C for 1 hr. Then 500 ul of 50 mM
Sodium hydroxide was added to stop the reaction (all chemicals were from Sigma Chemical Co.)
Color intensity was read at 405 nm absorbance in duplicate using a microplate reader (Multiskan
GO). Optical density (OD) was extrapolated with a standard curve of serial dilutions of p-
nitrophenol (Sigma). Then ALP activity was normalized by the amount of total protein contents
of the same sample and reported as nano-Molar per milligram protein (nM/mg protein) (n=4,

Mean£SD) (22).
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Measuring Levels of Calcium Content in Extracellular Matrix

Following protein lysate procedures, cell pellets were demineralized at RT in 50
ul of 0.5 M HCL in PBS overnight on a horizontal shaker (HS260B, IKA® Werke, Germany),
then centrifuged (Labofuge 400R) at 12000 rpm for 10 minutes. Subsequently, amount of
calcium contents in the supernatant was measured using Calcium Colorimetric Assay kit
(Biovision Inc. Milpitas, California, USA) following a manufacturer’s instruction. The reactions
were read at 575 nm absorbance in duplicate using a microplate reader (Multiskan GO). Then
calcium content levels were normalized by the amount of total protein contents of the same
samples and reported as nano-gram calcium per milligram protein (ng/mg protein) (n=4,

Mean£SD) (22).

Measuring Osteocalcin Level in Culture Medium

On culture-day 20 in osteogenic medium, confluence cells were washed twice
with PBS and cells were incubated in phenol red free DMEM-F12 culture medium overnight.
After that culture medium was collected and centrifuged at 12000 rpm for 5 min. The
supernatant was measure for amount of osteocalcin in culture medium using Takara Bio
Osteocalcin ELISA Kit (TAKARA Bio Inc., Kyoto, Japan) following manufacturer’s instruction.
Optical density was measured at 450 nm in duplicate using a microplate reader (Multiskan GO),
and extrapolated with standard curves to determine amount of osteocalin. Osteocalcin was
reported in nano gram / mg protein contents of the same samples as ALP activity analysis. (n=4,

Mean£SD) (21).

In vitro Mineralization Staining

Live cell calcein staining was performed on culture-day 20. Cells were incubated

in ED-growth medium with 2 mg/ml calcein (Sigma Chemical Co.) overnight. Then culture
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medium was removed. After that cells were washed with PBS, fixed in 4% paraformaldehyde
(Sigma Chemical Co.) and examined under fluorescence microscope (n=3) (25). Positive calcein
staining was calibrated with von Kossa staining on the same cell culture disks of hBMSCs in
FBS-OS culture medium on cell culture plate on day 20. After cells were incubated with calcein
and examined under fluorescence microscope as stated above, cells were sequentially fixed in
4% Paraformaldehyde, incubated in 1% Silver nitrate in water (Sigma Chemical Co.) under UV
light for 1 hr., incubated in 5% Sodium thiosulfate (Sigma Chemical Co.) for 5 min and
examined under light microscope. Then positive green and black staining areas were compared
to verify positive staining of calcein on cell culture plates. Subsequently, calcein staining was

performed on titanium surfaces (26).

Statistical Analysis

The data were tested for normal distribution and homogeneity of variances then
differences among groups at each time point were analyzed using one-way analysis of variance
(ANOVA). When there were statistically differences, a multiple comparison test was then
performed with either the Tukey HSD or Dunnette T3 methods as appropriate. If the data
distribution was not normal, the Kruskal-Wallis analysis was used. Then if a difference was
statistically significant, a MANN-Whitney test was performed. Significant differences were set
at p<0.05. Data were derived from 3 independent experiments (n=4-5) and reported as

Mean+SD.
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RESULTS

Influences of titanium surface microtopography and estrogen-deprived cell culture
on cell attachment, shape and growth on titanium surfaces

Live and dead cell staining

Live and dead cell staining demonstrated different cell attachment and shapes on
smooth and SLA titanium surfaces. At 3 hr. after cell seeding in FBS growth medium, on
smooth titanium surface cells spread out cell cytoplasm creating large cell-surface contact area,
but on SLA titanium surface cells extended small cytoplasmic processes to attach on the rough
surface creating multiple small contact points (Figure 6). At 24 hr. after cell seeding, it could be
noticed that shapes of cells on smooth titanium surface and cell culture plates were similar, that
cell body was elongated with protruding cytoplasmic process in the opposite directions forming
spindle-shaped cells with a higher cell spreading on cell culture plate than titanium surface. On
SLA titanium surface cells exhibited star-like shape with small cell body and multiple small
cytoplasmic processes attaching on the rough surface. In addition, homogenous cell distribution
in a high density at 80 — 90% coverage on cell culture surfaces could be observed before cells
were cultured in ED-growth medium for 24 hr. wash out period (Figure 7). Human BMSCs
grew and stayed vital in ED-OS medium till day 21. On day 21, in regular (FBS-OS) and
estrogen-deprived osteogenic (ED-OS) media, cells grew in confluence and form multi-layer cell
sheet while different cell morphologies on cell culture plate smooth and SLA titanium surfaces
could be observed. Brighter green staining of cells in FBS-OS than ED-OS suggested lower cell
viability in ED-OS than FBS-OS media. Red staining of propidium iodide of dead cells could be

observed within the vital cell sheets (Figure 8).
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Smooth

SLA

At 3 hr. after Cell Seeding

Figure 6 Green fluorescence vital cell staining (CellTracker'™ Green ) of human bone marrow
stromal cells (hBMSCs) at 3 hr. after cell seeding examined under (A & C) fluorescence
microscope and (B & D) confocal laser scanning microscope; (A & B) on smooth and (C & D)
sandblasted and acid etched (SLA) titanium surfaces. (A & B) Images demonstrate cell
flattening cell body on the smooth surface (arrows) forming round shaped cells and (C & D) cell

extending small multiple cytoplasmic processes (arrows) to attach on rough surface of SLA

titanium surface forming start-like shaped cells.
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Smooth

24 hr. after Cell Seeding

Figure 7 Green fluorescence vital cell staining (CellTracker' ™ Green ) of human bone marrow
stromal cells (hBMSCs) at 24 hr. after cell seeding for an osteogenic differentiation study, (A)
examined under confocal laser scanning microscope and (B & C) fluorescence microscope; (A)
cell culture plate (Plate) and (B) smooth(Smooth) and (C) sandblasted and acid etched (SLA)
titanium surfaces. Images exhibit high cell density and homogenous distribution of (A) spindle
cell shaped on cell culture plate and (B) smooth titanium surface and (C) start-like shaped cells

on the SLA titanium surface (arrows).
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Plate Smooth

Cell Viability and Density on Day 21

FBS-0OS

ED-OS

Figure 8 Fluorescence microscope images of green and red fluorescence live/dead cell staining
(CellTracker™ Green/propidium iodide (PI)) of human bone marrow stromal cells (1BMSCs) on
day 21 in (A-C) regular (FBS-OS) and (D-E) estrogen-deprived osteogenic (ED-OS) media, (A,
D) on cell culture plate (Plate), and (B, E) smooth (Smooth) and (C, F) sandblasted and acid
etched (SLA) titanium surfaces. Green staining exhibited high level of cell viability and
confluence on all surfaces. Red staining of PI (arrows) identified few dead cells scattering
within confluence green viable cells on titanium surfaces. Brighter and greener staining in (A-C)

FBS-OS suggested higher cell viability in FBS-OS than (D-F) ED-OS cell culture.
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Scanning electron microscope

Scanning electron microscope images revealed that cell attachment, spreading and
growth on smooth and SLA titanium surfaces were markedly different. On smooth titanium
surface, cells were flattening out on the smooth surface, formed cell sheet and large cell-surface
contact area. On SLA titanium surface, cells extended cytoplasmic processes to anchor on the
rough surface and connect with other cells forming intercellular network (Figure 9). Multiple
small contact points were created on the rough surface (Figure 10).

A decreasing of cell growth and spreading on titanium surfaces, particularly on
SLA titanium surface might contribute to a lower cell density and smaller cell size in ED-OS
than FBS-OS media, particularly on SLA titanium surface (Figure 10 . Density of cell sheet in
FBS-OS appeared to be higher than ED-OS media. On SLA titanium surface, only cells in FBS-
OS medium were able to formed cell sheet on culture-day 21 and SLA surface in ED-OS

medium was covered with loose intercellular network (Figure 9).
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Day 7

Day 21

FBS-0S Smooth ED-0S FBS-0S SLA ED-0S

Figure 9 Scanning electron microscope (SEM) images of human bone marrow stromal cells
(hBMSCs) on (A, B & E, F) smooth and (C, D & G, H) sandblasted and acid etched titanium
surfaces in (A, E & C, G) regular (FBS-OS) and (B, F & D, H) estrogen-deprived osteogenic
media (ED-OS) on (A-D) culture-days 7 (Day 7) and (E-H) 21 (Day 21). Images demonstrated
different cell shapes and growth on smooth and SLA titanium surfaces in FBS-OS and ED-OS
media. Cells formed cell sheet on smooth titanium surface (Smooth) but extended cytoplasmic
process to attach on rough surface forming cells with multiple cytoplasmic process and
intercellular network. Different cell spreading and growth in FBS-OS and ED-OS media were
clearly shown on SLA titanium surface (SLA). Size of cells and cell density appeared to be
smaller and lower in ED-OS (D & H) than FBS-OS culture media (C & G). On SLA titanium
surface, only cells in FBS-OS could grow to form loose cell sheet on day 21 (G). High

magnification images in the inlets magnified cell-surface contacts
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SLA Titanium Surface

!

Day 21

Figure 10 Scanning electron microscope images demonstrating intercellular-surface contact of
hBMSCs on rough, sandblasted and acid etched (SLA) titanium surface in conventional (FBS-
OS) and estrogen-deprived osteogenic mediums (ED-OS) on day 21, (A&B) in FBS-OS and
(C&D) ED-OS media. Human BMSCs established focal contact points on the rough surface
(arrows) by extending cell body across macro pores while attaching cytoplasmic process on
micro pores of the SLA surface. Arrows indicate cell intercellular-surface contact of

cytoplasmic processes on micro-pores of the SLA titanium surface.
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Cell viability assay

Cell viability assay represented influences of estrogen-deprived cell culture and
titanium surfaces on cell growth. Growth of cells in regular (FBS) was higher than estrogen-
deprived (ED) growth media. In each cell culture medium, the highest level of cell growth was
found on cell culture plate followed by smooth and SLA titanium surfaces, respectively. As a
control group, hBMSCs on cell culture plate in FBS medium exhibited the highest levels of cell
growth (p<0.05), while the lowest cell growth was on SLA titanium surface in ED culture
medium (p<0.05). In FBS-medium, numbers of cells on every surface were continuously
increased and reached the highest level on day 21, but in ED-culture medium, growth of cells
were relatively stable on days 7 — 14 (p>0.05) and significantly decreased on day 21 (p<0.05).
On day 21, Growth of cells on smooth and SLA titanium surfaces in FBS-OS medium was
similar to growth of cells on cell culture plate in ED growth medium, which were significantly
higher than growth of cells on smooth and SLA titanium surfaces in ED-growth medium

(p<0.05) (Figure 11 ).
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Cell Viability Assay
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Figure 11 Cell viability assay demonstrates growth of human bone marrow stromal cells
(hBMSCs) in regular (FBS) (dot lines) and estrogen-deprived (ED) growth media (solid lines) on
cell culture plate (PL) and smooth (SM) and sandblasted and acid etched (SLA) titanium
surfaces. On Day 1, numbers of cells on SLA titanium surface tended to be lower than cell
culture plate and smooth titanium surface (p>0.05). Subsequently on days 7 — 21, numbers of
cells on SLA tended to be lower than SM (p>0.05). On days 7 and 14 growth of cells was
relatively stable and growth of cells on titanium surfaces in FBS-OS and ED-OS were not
significantly different (p>0.05). Growth of cells was significantly different on day 21, when
growth of cells on titanium surfaces in ED-OS was significantly lower than cell culture plate in
ED and titanium surfaces in FBS, and cell culture plate in FBS, respectively (+, p<0.05). Cells
on cell culture plate in FBS medium on day 21 showed the highest level of growth (*, p<0.05).
The symbol * represents significantly higher than other groups and +, lower than other groups at
p<0.05 a (n=4, MEAN+SD).
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Effects of Titanium Surfaces and Estrogen-deprived Cell Culture on Osteogenic
Differentiation of Human Bone Marrow Stromal cells (hBMSCs)

Quantitative real-time polymerase chain reaction (qRT-PCR)

ED-OS cell culture inhibited osteogenic differentiation of hBMSCs into mature
osteoblasts and minimized promoting effects of SLA titanium surface on osteogenic
differentiation of hBMSCs. Expression levels of Runx2, a marker of early osteoblastic
differentiation (23), in ED-OS medium on day 21 were significantly higher than ED-OS on day 7
and FBS-OS on days 7 and 21 (p<0.05) (Fig 12A). On the contrary, expression levels of IBSP, a
marker of late osteoblastic differentiation (23), on all surfaces in ED-OS medium were markedly
lower than FBS-OS on days 7 and 21 (p<0.05). In FBS-OS medium, expression levels of IBSP
on SLA titanium surface was significantly higher than smooth titanium surface and cell culture

plates, respectively (p<0.05) (Fig 12B).

Alkaline phosphatase (ALP) activity and calcium content levels

Estrogen-deprived cell culture decreased ALP activity and in vitro mineralization
(calcium contents), markers of early and late osteoblastic differentiation, respectively. Levels of
ALP activity and calcium contents of hBMSCs on all surfaces in ED-OS were significantly
lower than FBS-OS media (p<0.05). ALP activity on day 7 and calcium content levels on day 21
of hBMSCs on SLA in FBS-OS medium were significantly higher than cell culture plate and

smooth titanium surface (p<0.05) (Figs. 12C & D).
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Figure 12 Demonstrating osteogenic differentiation potential of human bone marrow stromal
cells (hBMSCs) in regular (FBS-OS) and estrogen-deprived osteogenic (ED-OS) media on cell
culture plate (PL) and smooth (SM) and sandblasted and acid etched (SLA) titanium surfaces on
culture-days 7 (Days 7) and 21 (Day 21), (A) quantitative real-time polymerase chain reaction
(qRT-PCR) exhibits expression of Runx2 and (B) bone sialoprotein (IBSP) genes, (C) alkaline
phosphatase activity and (D) calcium content levels.  Estrogen-deprived-OS medium
significantly increased expression levels of Runx2, but decreased IBSP expression, ALP activity
and calcium content levels (+, p<0.05). On day 21, (B) levels of IBSP expression and (D)
calcium contents on SLA titanium surface in FBS-OS were significantly higher than cell culture
plate and smooth titanium surface (*, p<0.05). (C) Levels of ALP activity in each culture
medium on days 7 and 21 were not significantly different (p>0.05). Symbols * represents
significant difference among surfaces in the same group and +, differences between media at
p<0.05. Data were from 2 independent experiment (n=4, MEAN+SD).
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Effects of Simvastatin on Osteogenic Differentiation of hBMSCs on Titanium
Surface in Estrogen-deprived Cell Culture

When simvastatin was supplemented in ED-growth medium for 14 days,
simvastatin tended to decrease cell growth on SLA titanium surface but the differences were not
significant (p>0.05) (Figure 13A). Simvastatin promoted late osteoblastic differentiation on
SLA titanium surface. Simvastatin tended to decrease expression levels of Runx2, but
significantly increase IBSP expression levels on titanium surfaces (p>0.05) (Figure 13B). It was
clearly shown that in ED-OS medium the expression level of IBSP on SLA titanium surface was
significantly higher than smooth titanium surface and cell culture plate (p<0.05) and simvastatin
markedly enhanced IBSP levels on SLA titanium surface (p<0.05). The highest level of IBSP
expression was on SLA titanium surface in ED-OS with simvastatin followed by SLA in ED-OS
only, smooth titanium surface in ED-OS-SIM and smooth titanium surface in ED-OS media,
respectively (p<0.05) (Figure 13C). Simvastatin markedly enhanced expression of BMP-2 on
SLA titanium surface. An expression level of BMP-2 on SLA titanium surface was significantly
higher than other groups (p<0.05) and the differences among other groups were not significant
(p>0.05) (Figure 13D).

Simvastatin promoted osteogenic differentiation in ED-cell culture. Simvastatin
increased levels of ALP activity and osteocalcin in culture medium. Levels of ALP activity on
smooth and SLA titanium surfaces in ED-OS medium with simvastatin were significantly higher
than cell culture plate and smooth and SLA titanium surfaces in ED-OS alone (p<0.05). The
activity levels on cell culture plate and smooth and SLA titanium surfaces in ED-OS alone were
not significantly different (p>0.05) (Figure 13E).

Simvastatin increased osteocalcin levels on titanium surfaces in ED-OS cell

culture. Levels of osteocalcin on titanium surfaces in ED-OS-Sim were significantly higher than
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ED-OS alone (p<0.05). The highest level was on SLA in ED-OS-SIM, followed by SLA in ED-
OS alone and SM in ED-OS-SIM and cell culture plate in ED-OS alone, and smooth titanium
surface in ED-OS alone, repectively, p<0.05). The levels of SLA in ED-OS alone and SM in
ED-OS-SIM and cell culture plate in ED-OS alone were not significantly different (p>0.05)
(Figure 13F).

In vitro calcein staining verified in vitro mineralization on titanium surfaces by
exhibiting varying levels of green staining of calcium deposition on extracellular matrix of
hBMSCs in FBS-OS, ED-OS and ED-OS supplemented with simvastatin. Calcein staining on
cell culture plate was similar to von Kossa staining, a positive control stain (Figure 15 A&B)
Bright green staining was clearly shown on titanium surfaces in simvastatin supplemented

groups, particularly on SLA titanium surfaces (Figure 14C-I).
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Figure 13 Demonstrating effects of simvastatin on growth, osteogenic differentiation potential
and expression of bone morphogenetic protein 2 (BMP-2) of human bone marrow stromal cells
(hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs, seeded on cell culture plate
(PL) and smooth (SM) and sandblasted and acid etched (SLA) titanium surfaces, were cultured
in regular (FBS-OS), estrogen-deprived osteogenic (ED-OS) and ED-OS with 100 nM
simvastatin (ED-OS-SIM) culture media for 14 days. Investigated parameters were (A) cell
growth (cell viability assay), (B & C, E & F) osteogenic differentiation markers, (B) gqRT-PCR
of Runx2, (C) bone sialoprotein (IBSP), (E) alkaline phosphatase (ALP) activity and (F)
osteocalcin in culture media, and (D) qRT-PCR of bone morphogenetic protein-2 (BMP-2).
Simvastatin tended to decrease (A) cell growth on SLA and (B) expression levels of Runx2 on
SM (p>0.05). (B) Runx 2 expression levels on SM in ED-OS was significantly higher than PL in
ED-OS (*, p<0.05) and tended to be higher than other groups (p>0.05). (C) ED-OS-Sim
significantly increased expression levels of IBSP and (D) BMP-2 and (F) levels of osteocalcin on
SLA, and (E) enhanced ALP activity on SM and SLA titanium surfaces (*, p<0.05). In ED-OS
alone expression (C) levels of IBSP and (F) osteocalcin on SLA were significantly higher than
SM titanium surfaces (+, p<0.05) and the expressions on SLA titanium surface were significantly
increased in ED-OS-Sim medium (*, p<0.05). Symbols * represents significant difference
among surfaces in the same culture medium at p<0.05, and +, differences between groups of

culture medium at p<0.05. Data were from 2 independent experiment (n=4, MEAN=SD).
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Figure 14 Demonstrating calcein staining of in vitro mineralization of human bone marrow
stromal cells on (A & B) cell culture plate and (C-E) smooth and (F-H) sandblasted and acid
etched (SLA) titanium surfaces in (C & F) regular (FBS-OS), (D & G) estrogen-deprived (ED-
0OS) and (E & H) ED-OS with 100 nM simvastatin (ED-OS-SIM) culture media. (A) Von Kossa
staining exhibited black staining on mineralized nodules in ECM (arrows) (positive control) and
(B) green calcein staining (arrows) on cell culture plate which corresponded with black staining
in (A). (C-H) Exhibiting varying levels of green calcein staining on mineralized nodules

(arrows).
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DISCUSSION

In an effort to improve osteoblastic differentiation in osteoporotic bone, the
current study investigated effects of titanium surface microtopography, smooth and SLA
titanium surfaces, and simvastatin on growth and osteogenic differentiation of hBMSCs in

estrogen-deprived cell culture (ED-hBMSCs).

Estrogen-deprived cell culture

A long term estrogen-deprived (ED) cell culture model was established to mimic
estrogen deprived condition of hBMSCs in menopause osteoporotic cases. Estrogen-deprived
condition was created by utilizing phenol red free culture medium and charcoal stripped bovine
serum (27, 28). Estrogen-deprived cell culture with low levels of growth factors and lipophilic
materials was a harsh condition for cell growth and differentiation, particularly for 21 day cell
culture. As previously published, it was found that growth factor deprivation decreased cell
attachment, cytoplasmic spreading and cell growth (29). Therefore to minimize adverse effects
of complex hormone and growth factor deprivation on cell growth and functions in ED-cell
culture, a liquid media supplement was supplemented in culture media and cells were seeded in a
high cell density. Liquid media supplementation added essential factors for cell growth and
function, which are insulin-transferrin-sodium selenite and linoleic;oleic-BSA and has been used
as a supplement in serum free cell culture (Sigma Chemical Co) (30). At the same time high cell
density promotes intercellular communication and paracrine and autocrine functions of cells
(31). Thus medium supplement and inter-cellular communication might have supported ED-
hBMSCs to sustain low levels of growth and osteoblastic differentiation of ED-hBMSCs
throughout cell culture. As a result, cells in ED-deprived culture media were able to reach

confluence and grow in multilayer and mineralize ECM on culture-day 21. In the current study,
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hBMSCs were cultured in ED-growth medium for 24 hr. wash-out period before starting the
experiment to ensure a removal of serum residual effects (20). In summary, a well define

experimental model for hormone and growth factor cell response was established.

Effects of titanium surfaces and estrogen-deprived-cell culture on growth and
osteogenic differentiation

Different cell growth and differentiation on smooth and SLA titanium surfaces
might relate to different cell attachment and shapes on smooth and SLA titanium surfaces. The
results agree with previous studies that cell attachment and proliferation of hBMSCs are
decreased, but osteoblastic differentiation is supported on SLA titanium surface (32-34).
Sandblasted and acid etched titanium surface increased expression levels of late osteoblastic
differentiation markers IBSP, alkaline phosphatase (ALP) activity and osteocalcin (OCN)
production (15, 35, 36). Scanning electron microscope (SEM) images of hBMSC on SLA
titanium surface suggested that surface microtopography of SLA titanium surface supported
attachment of cells by promoting multiple contact points of cell cytoplasm and cytoplasmic
processes on the macro and micro pores of the surface (12, 16). Promoting effects of SLA
titanium surface on osteogenic differentiation could be results of morphological change during
cell attachment on different substrate architectures that stimulate focal adhesion signal
transduction and adhesion molecules (37-39). In the current study, surface microtopography
must have influenced cell functions since initial cell seeding, as different cell shapes on smooth
and rough surfaces had been shown since 3 hr. after cell seeding and continued throughout 21-
day cell culture.

Effects of surface microtopography on growth and osteogenic differentiation were
influenced by hormones and growth factors in local environment, as promoting effects of SLA

titanium surface on osteoblastic differentiation was significantly decreased in ED-OS medium.
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Decreasing of osteogenic differentiation of hBMSCs on titanium surfaces in ED-OS medium
could be a result of a reduction of ECM synthesis in estrogen-deprived cell culture. Because
estrogen promotes extracellular matrix (ECM) synthesis (40, 41) and ECM provides external
signal regulating growth and survival of contact dependent cells (42), a reduction of ECM in ED-
cell culture might attribute to a decreasing of cell growth, attachment and osteogenic
differentiation of ED-hBMSCs, particularly on SLA titanium surface. As a result, growth and
osteogenic differentiaion on SLA titanium surface were severely affected by ED-condition and

promoting effects of SLA surface was markedly decreased in ED cell culture.

Effects of simvastain on growth and osteogenic differentiation

Simvastatin was able to promote osteogenic differentiation on titanium surface in
ED-OS medium and promoting effects of simvastatin was increased on SLA titanium surface.
Significant increase of IBSP expression and levels of ALP activity and osteocalcin on SLA
titanium surface with simvastatin supplement corresponded with a markedly increase of BMP2
expression levels on SLA titanium surface in ED-OS medium with simvastatin supplement. The
findings suggested that enhancing effects of simvastatin on osteogenic differentiation on SLA
titanium surface was at least partially mediated by inducing BMP-2 (43). Promoting effects of
simvastatin supports a previous study finding a correlation between increasing of bone formation
markers and levels of simvastatin in serum (44) and underlines promoting effects of simvastatin

on bone healing and osteointegration in animal and clinical studies (45, 46).

The association between the findings and in vivo and clinical studies

In contrast, the results are contradicted to clinical reports on implant survival that
survival of dental implant is not effected by osteoporosis and up to now, osteoporosis is not a

contra indication for dental implant placement (47). This might be because impaired
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osteogenesis in osteoporotic bone prolongs secondary stability buildup time and increases
dipping levels of primary strength during 2-4 week after implant insertion (16). At the same
time, these defects could be minimized by applying good clinical care such as surgical
techniques, longer non-loading time and good dental implant prosthesis (48). Thus effects of
osteoporosis on osteointegration could be subtle and manageable and might not affect implant
survival. However, based on previous reports (2, 4) and the current study, implant placement in
osteoporotic bone requires close attention to ensure osteointegration and function of dental
implant. Careful surgical technique, proper clinical management and implant dental prosthesis

designs are recommended to accommodate compromised osteogenesis in an osteoporotic bone.

Limitations of the study design

Limiting of cell growth and attachment on titanium surface in ED-cell culture
could be considered as a limitation of ED-cell culture model that could not completely simulate
clinical situation in skeletal defects. In clinical environment, titanium surface inserted in the
osteoporotic bone will be covered with blood clot and body fluid that would be able to enhance
cell attachment and growth on the titanium surfaces and alleviated direct effects of estrogen-
deficiency on growth and differentiation on titanium surface and osteointegration (49, 50). Thus,
the effects of estrogen-deficiency on osteointegation might be delay or obscured in animal and

clinical studies (2-4).

CONCLUSION

In conclusion, the current cell culture model provided a well control experimental
model for studying effects of hormones and growth factors on growth and differentiation of cells
on titanium surfaces in vitro. It was clearly shown that SLA titanium surface microtopography
and simvastatin synergistically promoted osteoblastic differentiation of ED-hBMSCs. The
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findings underscore hypotheses that estrogen deficiency in postmenopausal osteoporosis cases
could compromise osteointegration of the dental implants, and simvastatin supplement would

enhance osteointegration on SLA titanium surface in osteoporotic bone.

LIMITATIONS OF THE STUDY

Estrogen deprived cell culture

Estrogen-deprived cell culture model was changed from using Fulvestrant to
block function of estrogen receptor alpha generating estrogen-receptor alpha deficient hBMSCs
to be cell culture in charcoal strip and phenol red free culture medium. This was because an
inconsistent result of fulvestrant blocking and the proposed culture model did not support a long
term estrogen-deprived cell culture of 21 day. Thus author changed a culture model, as stated in

previous progress reports.

Changing scope of the study

Scope of the current study was narrower than the one stated in a proposal.
Because technical, financial difficulties and unexpected loss of sample, study model was
modified and the second objective of the study, examining regulating roles of Wnt10b and
mechanotransduction genes and signals, generated by cell surface contact on titanium surfaces,
on osteogenic differentiation of ERa-def-hMSCs on titanium surfaces, was not performed.
Difficulties were difficulty in determining working concentration and condition of fulvestrant
and estrogen supplements, technical difficulty for western blotting, requiring large numbers of

titanium disks, very high cost of qRT-PCR and insufficient funding of the project.

Requiring large numbers of disks and cells

Large numbers of titanium disks and hBMSCs were required for the experiments

and analysis. Low levels of ALP levels and cell growth in ED-OS and a necessity to use high
fauavii RSA5580016
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concentration protein lysis compelled a combining of 4 titanium disks for one sample or 16 disks
per group for n=4 at each investigation time, and also an increasing of cell seeding density to
4x10* cells/disk. This resulted in a handle of large numbers of titanium disks and a demand for
large numbers of cells at each round of the experiment. Titanium disks should have a larger
diameter to fit in 6 well-cell cell culture plates instead of 24 well-cell culture plates as used in the

current study.
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Abstract

Purposes-The current study aimed to investigate effects of titanium surface topography and
simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells

(hBMSCs) in estrogen-deprived (ED) cell culture.

Materials and Methods-Human BMSCs were seeded on cell culture plates, smooth surface
titanium (T1) disks, and sandblasted with large grits and acid etched (SLA) surface Ti disks; and
subsequently cultured in regular (FBS), estrogen-deprived (ED) and ED-with 100 nM
simvastatin (ED-SIM) osteogenic (OS) media for 14 — 21 days. Live/dead cell staining, scanning
electron microscope examination and cell viability assay were performed to determine cell
attachment, morphology and growth. Expression levels of osteoblast-associated genes, Runx2
and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium contents and
osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression
levels of bone morphogenetic protein 2 was investigated to examine stimulating effects of

simvastatin (n=4-5, Mean+SD). In vitro mineralization was verified by calcein staining.

Results-Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium
surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on
the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-
OS culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly
decreased. Simvastatin significantly increased osteogenic differentiation of hBMSCs on the
SLA titanium surface in ED-OS medium and the promoting effects of simvastatin corresponded
with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM

culture medium.
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Conclusions-Estrogen-deprived cell culture model provided a well-define platform for
investigating effects of hormone and growth factors on cells and titanium surface interaction.
Titanium, the SLA surface and simvastatin synergistically promoted osteoblastic differentiation
of hBMSCs in ED condition and might be useful to promote osteointegration in osteoporotic

bone.

Keywords

Estrogen-deprived, osteogenic differentiation, sand blasted and acid etched, simvastatin, titanium

surfaces
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INTRODUCTION

Osteoporosis, one of the public health problems associated with aging, might be
considered a risk in implant therapy. A decreasing of estrogen level in senile osteoporosis
decreases bone formation, promotes bone resorption and enhances adipogenic differentiation of
mesenchymal stem cells (MSCs) (1). Unbalanced bone remodeling and deteriorating
microarchitecture of osteoporotic bone create negative effects on osteointegration and implant
stability in ovarectomised rabbits, rats and sheep (2-4). Bone mineral density (BMD) in bone
marrow region of ovarectomized rats are significantly 30-40% lower than non-osteoporosis
group (4), and removal torque of implants in osteoporotic tibia of ovarectomized rabbits is
significantly decreased (3).

Various methods have been applied to increase BMD surrounding an implant and
improve bone implant contact in osteoporotic bone including implant surface modifications(5)
and systemic and locally applied simvastatin(6, 7). Surface microtopography of titanium surface
has been shown to be a major factor regulating cell response to biomaterials (8, 9). It is reported
that rough titanium surface promotes osteogenic differentiation of hABMSCs (10, 11) and increase
bone implant contact (12, 13). Surface roughness of sand blasted with large grits and acid etched
(SLA) titanium surface promotes early differentiation, bone formation, implant integration and
reduce healing time of implants (14). Superior effects of the SLA titanium surface on osteogenic
differentiation have been well established (15, 16).

Simvastatin may synergistically enhance osteogenic differentiation of estrogen-
deprived MSCs on titanium surface. Statin is primarily used in the treatment of
hypercholesterolemia and has been reported to possess anabolic effects on bone (17).

Simvastatin is reported to decrease fracture risk, increase bone mineral density (BMD), enhances
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BMP2 expression and stimulates osteoblast differentiation in vitro (18). Enhancing effects of
simvastatin on expression levels of BMP-2, a strong osteoinductive gene may be able to enhance
osteogenic differentiation of estrogen-deprived hBMSCs on SLA titanium surface.

The current study aimed to establish estrogen-deprived cell culture model and
investigate effects of titanium surface microtopography, smooth and SLA titanium surfaces, and
simvastatin on growth and osteogenic differentiation of hBMSCs in estrogen-deprived cell
culture. It was hypothesized that SLA titanium surface would be able to promote growth and
osteogenic differentiation of estrogen-deprived human bone marrow stromal cells (ED-hBMSCs)

and the promoting effects would be further enhanced by simvastatin supplementation. .
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MATERIALS AND METHODS

Human Bone Marrow Cell Culture

Obtaining a permission and approval from the Ethical Committee of Faculty of
Medicine, Prince of Songkla University and a patient written informed consent, human bone
marrow stromal cells (hBMSCs) were harvested from 4 healthy adult male patients (age 19-30
years) undergoing orthopedic surgery at Songklanagarind hospital, Prince of Songkla University.
Human BMSCs were harvested and expanded as described previously (19). Human MSCs at
passages 4-5 were used in the analyses.

Human BMSCs were cultured in regular (Fetal bovine serum, FBS), estrogen-
deprived (ED) and estrogen-deprived with simvastatin (ED-SIM) culture media. Regular growth
medium (FBS-growth) comprised of DMEM-F12 supplemented with 10% fetal bovine serum,
1% penicillin/streptomycin and 0.5% fungizone (all from Gibco BRL/Life technologies,
Rockville, MD, USA) (20). For estrogen-deprived growth medium (ED-growth), phenol red free
DMEM-F12 was supplemented with 10% charcoal stripped FBS (all from Gibco BRL/Life
technologies) and 0.5% ITS+3 Liquid Media Supplement (100x) (Sigma Chemical Co., St.
Louis, MO, USA), 1% penicillin/streptomycin and 0.5% fungizone. = For osteogenic
differentiation (OS) medium (FBS-OS and ED-OS), FBS and ED growth media were
supplemented with 50 mM ascorbic acid, 10 mM B-glycerophosphate and 100 nM
dexamethasone (all from Sigma Chemical Co.) (20). For ED-OS medium with 100 nM
simvastatin supplement (ED-OS-SIM), 100 uM simvastation in dimethyl sulfoxide (DMSO) was
supplemented just before used in a 1:1000 ratio of DMSO to culture medium. In a control group
for ED-OS-SIM cell culture, ED-OS medium was also supplemented with DMSO in a ratio of

1:1000. The amount of DMSO was limited to 0.1% (all from Sigma Chemical Co.).
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Groups of Study

The study was categorized into 3 categories and 3 groups, according to types of
culture media and cell culture surfaces, respectively, Category I-Regular (FBS), II-Estrogen-
deprived (ED) and III-ED-Simvastatin supplement culture media. In each category, cells were
seeded on 3 different surfaces, Groups A: cell culture plates and B: smooth and C: sandblasted

and acid etched titanium surfaces (Table 1).

Cell Seeding and Cell Culture Scheme

Smooth Titanium disks and sandblasted with large grits and acid-etched surface
(SLA) titanium disks, 15 mm in diameter with 1-mm thick, were kindly provided by Straumann
(Institut Straumann AG, Basel , Switzerland) (Fig 1). Disks were placed in non-treated 24-well
cell culture plate (Costar, Pittsburgh, PA, USA), one well for one disk for cell seeding and
culture.

Human BMSCs were seeded on 24-well cell culture plate and titanium disks,
smooth and SLA titanium surfaces. Human BMSCs were seeded at 1x10* cells/cm” or 2x10*
cells/disks for cell growth and attachment studies, and 2x10* cells/cm® or 4x10* cells/disk for
osteogenic differentiation study. Cells, 2x10” or 4x10* cells, were suspended in 300 pl of growth
medium and seeded in each well of 24-well cell culture plates and titanium disk. Then seeded
cells were cultured in minimal FBS-growth medium for 3 hr. and then 24 hr. in 1 ml culture
medium in a humidified incubator with 5% CO, at 37°C. After that FBS growth medium was
replaced with 1 ml ED-growth medium for 24 hr. wash out period (21). Subsequently, cells were
cultured either in FBS-or ED-growth or osteogenic media for 21 day, and ED-OS-SIM for 14

days according to groups of the study for investigations (Table 2).
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Live and Dead Cell Staining

To examine cell attachment, spreading, viability and cell dead, cells were
incubated in a mixture of 5 uM CellTracker™ Green (Molecular Probes/Invitrogen, Carlsbad,
CA, USA) and 0.5 mg/ml propidium iodide (Sigma Chemical Co.) in ED growth medium for 30
minutes in a humidified incubator with 5% CO, at 37°C. After that the disks were rinsed twice
with phosphate buffer solution (PBS), fixed in 10% buffered formaldehyde and examined under
a fluorescence microscope (Ti-S100, Nikon, Japan) or confocal laser scanning microscope
(CLSM) (FV300, Olympus, Japan). The staining was performed at 24 hr. after cell seeding in

growth medium and then on days 7 and 21 in osteogenic medium (n=3) (Table 2) (22).

Scanning Electron Microscope

Cell attachment and morphology on titanium disks were assessed optically by a
scanning electron microscope (SEM) (5800LV, JEOL, Japan). At each investigation time, cells
were fixed in 4% glutaraldehyde, dehydrated in ethanol series of 30-100%, dried, gold sputter-
coated (SPI Module™ Sputter Coater, SPI, USA ) and examined under scanning electron
microscope (SEM, 5800LV, JEOL)(23). The examination was performed on days 7 and 21

(n=3) (Table 2) (22).

Cell Viability Assay

Growth curve was established using cell viability assay. Cell viability was
measured as an indicator of cell numbers and CellTiter 96° Aqueous One Solution Cell
Proliferation Assay (Promega, Madison, WI, USA) was used following manufacturer’s
instructions. The formazan dye was quantified at 440 nm absorbance in duplicate using a

microplate reader (Multiskan GO, Thermo Scientific, Finland). Then optical density values were
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extrapolated with a standard curve of cell numbers. Cell viability was determined on days 1, 7,

14 and 21 in growth media (n=4, Mean+SD) (Table 2) (22).

Quantitative Real-time Polymerase Chain Reaction (QRT-PCR)

Quantitative RT-PCR was performed to determine expression levels of early and
late osteoblastic differentiation associated genes (24) and bone morphogenetic protein-2 (BMP-
2) gene. Total RNA was extracted using Trizol (Invitrogen) and 1ug of RNA was reverse
transcribed into cDNA using cDNA Reverse Transcription Kits (Applied Biosystems, Foster
City, CA, USA). Equal amount of cDNA was amplified by PCR using the TagMan Gene
Expression Master Mix (Applied Biosystems) and 20xTarget primers and Probe (Applied
Biosystems). Genes and primers used are as followed, Runx2 (Hs01047973 ml), IBSP
(Hs00173720 _m1) and BMP-2 (Hs00154192 m1) (Applied Biosystems). The expression of the
genes was measured by qRT-PCR on the Rotor Gene Q Detection System (Qiagen, Hilden,
Germany). Levels of the target genes were normalized to the levels of glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (Hs02758991 g1) (Applied Biosystems) as an endogenous
reference. Subsequently, the expression levels of investigated genes were normalized to the
expression levels of hBMSCs on cell culture plate in FBS-OS medium and reported as fold

changes. Data presented for were averaged from 3 independent cultures (n=3, MEAN=SD) (25).

Alkaline Phosphatase (ALP) Activity Analysis

At each investigation time, hBMSCs on cell culture plates and titanium disks were
lyzed in 1% Triton X-100 (Sigma Chemical Co.) to obtain total protein lysate and cell pellets.
Amount of total protein contents and levels of alkaline phosphatase (ALP) activity in the protein
lysis solution were measured, and pellets from the same samples were kept for calcium content

assay (23).
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The quantification of protein amount in cell lysate was performed using Bio-rad®
DC™ Protein assay kit (Bio-Rad, Hercules, California, USA) following manufacturer’s
instruction. The reactions were read at 650 nm absorbance in duplicate using a microplate reader
(Multiskan GO). Then ALP activity in cell lysate was measured. Procedures in brief: 100 ul
protein extract solution was added in 400 pl of 2 mg/ml p-Nitrophenylphosphate in 0.75 mM 2-
Amino-2-methyl-1-propanol, mixed well and incubated at 37°C for 1 hr. Then 500 pl of 50 mM
Sodium hydroxide was added to stop the reaction (all chemicals were from Sigma Chemical Co.)
Color intensity was read at 405 nm absorbance in duplicate using a microplate reader (Multiskan
GO). Optical density (OD) was extrapolated with a standard curve of serial dilutions of p-
nitrophenol (Sigma). Then ALP activity was normalized by the amount of total protein contents
of the same sample and reported as nano-Molar per milligram protein (nM/mg protein) (n=4,

Mean£SD) (23).

Measuring Levels of Calcium Content in Extracellular Matrix

Following protein lysate procedures, cell pellets were demineralized at RT in 50
ul of 0.5 M HCL in PBS overnight on a horizontal shaker (HS260B, IKA® Werke, Germany),
then centrifuged (Labofuge 400R) at 12000 rpm for 10 minutes. Subsequently, the amount of
calcium contents in the supernatant was measured using Calcium Colorimetric Assay kit
(Biovision Inc. Milpitas, California, USA) following manufacturer’s instructions. The reactions
were read at 575 nm absorbance in duplicate using a microplate reader (Multiskan GO). Then
calcium content levels were normalized by the amount of total protein contents of the same
samples and reported as nano-gram calcium per milligram protein (ng/mg protein) (n=4,

Mean+SD) (23).
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Measuring Osteocalcin Level in Culture Medium

On culture-day 20 in osteogenic medium, confluence cells were washed twice
with PBS and cells were incubated in phenol red free DMEM-F12 culture medium overnight.
After that culture medium was collected and centrifuged at 12000 rpm for 5 min. The
supernatant was measure for the amount of osteocalcin in culture medium using Takara Bio
Osteocalcin  ELISA Kit (TAKARA Bio Inc., Kyoto, Japan) following manufacturer’s
instructions. Optical density was measured at 450 nm in duplicate using a microplate reader
(Multiskan GO), and extrapolated with standard curves to determine amount of osteocalin.
Osteocalcin was reported in nano gram / mg protein contents of the same samples as ALP

activity analysis. (n=4, Mean+SD) (22).

In vitro Mineralization Staining

Live cell calcein staining was performed on culture-day 20. Cells were incubated
in ED-growth medium with 2 mg/ml calcein (Sigma Chemical Co.) overnight. Then culture
medium was removed. After that cells were washed with PBS, fixed in 4% paraformaldehyde
(Sigma Chemical Co.) and examined under fluorescence microscope (n=3) (26). Positive calcein
staining was calibrated with von Kossa staining on the same cell culture disks of hBMSCs in
FBS-OS culture medium on cell culture plate on day 20. After cells were incubated with calcein
and examined under fluorescence microscope as stated above, cells were sequentially fixed in
4% Paraformaldehyde, incubated in 1% Silver nitrate in water (Sigma Chemical Co.) under UV
light for 1 hr., incubated in 5% Sodium thiosulfate (Sigma Chemical Co.) for 5 min and
examined under light microscope. Then positive green and black staining areas were compared
to verify positive staining of calcein on cell culture plates. Subsequently, calcein staining was

performed on titanium surfaces.

Manuscript JOMI-2015-504-4969



12
“Titanium surface and simvastatin in estrogen-deprived cell culture”

Statistical Analysis

The data were tested for normal distribution and homogeneity of variances. The
differences among groups of normally distributed data were analyzed using one-way analysis of
variance (ANOVA) and either the Tukey HSD or Dunnette T3 methods as appropriate. When
the data distribution was not normal, the Kruskal-Wallis analysis and a MANN-Whitney test was
performed were performed. Significant differences were set at p<0.05. Data were derived from

3 independent experiments (n=4-5) and reported as Mean+SD.
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RESULTS

Influences of titanium surface microtopography and estrogen-deprived cell culture
on cell attachment, shape and growth on titanium surfaces

Live and dead cell staining demonstrated different cell attachment and shapes on
smooth and SLA titanium surfaces. At 3 hr. after cell seeding in FBS growth medium, on the
smooth titanium surface, cells spread out cell cytoplasm creating large cell-surface contact area,
but on the SLA titanium surface cells extended small cytoplasmic processes to attach on the
rough surface creating multiple small contact points (Fig 2). At 24 hr. after cell seeding, it could
be noticed that shapes of cells on smooth titanium surface and cell culture plates were similar,
that cell body was elongated with protruding cytoplasmic process in the opposite directions
forming spindle-shaped cells with a higher cell spreading on cell culture plate than titanium
surface. On the SLA titanium surface cells exhibited star-like shape with small cell body and
multiple small cytoplasmic processes attaching on the rough surface. In addition, homogenous
cell distribution in a high density at 80 — 90% coverage on cell culture surfaces could be
observed before cells were cultured in ED-growth medium for 24 hr. wash out period (Fig 3).
Human BMSCs were grown and stayed vital in ED-OS medium till day 21. On day 21, in
regular (FBS-OS) and estrogen-deprived osteogenic (ED-OS) media, cells grew to confluence
and form multi-layer cell sheet while different cell morphologies on cell culture plate smooth and
SLA titanium surfaces could be observed. Brighter green staining of cells in FBS-OS than ED-
OS suggested lower cell viability in ED-OS than FBS-OS media. Red staining of propidium
iodide of dead cells could be observed within the vital cell sheets (Fig 4).

Scanning electron microscope images revealed that cell attachment, spreading and
growth on smooth and SLA titanium surfaces were markedly different. On the smooth titanium

surface, cells were flattening out on the smooth surface, formed cell sheet and large cell-surface
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contact area. On the SLA titanium surface, cells extended cytoplasmic processes to anchor on
the rough surface and connect with other cells forming intercellular network. Multiple small
contact points were created on the rough surface (Fig 5).

A decreasing of cell growth and spreading on titanium surfaces, particularly on
SLA titanium surface might contribute to a lower cell density and smaller cell size in ED-OS
than FBS-OS media, particularly on the SLA titanium surface. Density of cell sheet in FBS-OS
appeared to be higher than ED-OS media. On the SLA titanium surface, only cells in FBS-OS
medium were able to formed cell sheet on culture-day 21 and the SLA surface in ED-OS
medium was covered with loose intercellular network (Fig 5).

Cell viability assay reflected influences of estrogen-deprived cell culture and
titanium surfaces on cell growth. The growth of cells in regular (FBS) was higher than estrogen-
deprived (ED) growth media. In each cell culture medium, the highest level of cell growth was
found on cell culture plate followed by smooth and SLA titanium surfaces, respectively. As a
control group, hBMSCs on cell culture plate in FBS medium exhibited the highest levels of cell
growth (p<0.05), while the lowest cell growth was on the SLA surface in ED culture medium
(p<0.05). In FBS-medium, numbers of cells on every surface were continued to increase and
reached the highest level on day 21, but in ED-culture medium, growth of cells were relatively
stable on days 7 — 14 (p>0.05) and were significantly decreased on day 21 (p<0.05). On day 21,
the growth of cells on smooth and SLA titanium surfaces in FBS-OS medium was similar to
growth of cells on cell culture plate in ED growth medium, which were significantly higher than
the growth of cells on smooth and SLA titanium surfaces in ED-growth medium (p<0.05) (Fig

6).
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Effects of Titanium Surfaces and Estrogen-deprived Cell Culture on Osteogenic
Differentiation of Human bone marrow stromal cells (hnBMSCs)

ED-OS cell culture inhibited osteogenic differentiation of hBMSCs into mature
osteoblasts and minimized promoting effects of the SLA titanium surface on osteogenic
differentiation of hBMSCs. Expression levels of runx2, a marker of early osteoblastic
differentiation (24), in ED-OS medium on day 21 were significantly higher than ED-OS on day 7
and FBS-OS on days 7 and 21 (p<0.05) (Fig 7A). On the contrary, expression levels of IBSP, a
marker of late osteoblastic differentiation (24), on all surfaces in ED-OS medium were markedly
lower than FBS-OS on days 7 and 21 (p<0.05). In FBS-OS medium, expression levels of IBSP
on the SLA titanium surface was significantly higher than the smooth titanium surface and cell
culture plates, respectively (p<0.05) (Fig 7B).

Estrogen-deprived cell culture decreased ALP activity and in vitro mineralization
(calcium content), markers of early and late osteoblastic differentiation, respectively. Levels of
ALP activity and calcium contents of hBMSCs on all surfaces in ED-OS medium were
significantly lower than FBS-OS medium (p<0.05). ALP activity on day 7 and calcium content
levels on day 21 of hBMSCs on the SLA surface in FBS-OS medium were significantly higher

than cell culture plate and the smooth titanium surface (p<0.05) (Figs 7C and D).

Effects of Simvastatin on Osteogenic Differentiation of hBMSCs on Titanium
Surface in Estrogen-deprived Cell Culture

When simvastatin was supplemented in ED-growth medium for 14 days,
simvastatin tended to decrease cell growth on the SLA titanium surface but the differences were
not significant (p>0.05) (Fig 8A). Simvastatin promoted late osteoblastic differentiation on the
SLA titanium surface. Simvastatin tended to decrease expression levels of Runx2, but

significantly increase IBSP expression levels on titanium surfaces (p>0.05) (Fig 8B). It was
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clearly shown that in ED-OS medium the expression level of IBSP on the SLA was significantly
higher than the smooth titanium surface and cell culture plate (p<0.05) and simvastatin markedly
enhanced IBSP levels on the SLA titanium surface (p<0.05). The highest level of IBSP
expression was on the SLA titanium surface in ED-OS with simvastatin followed by the SLA in
ED-OS only, the smooth titanium surface in ED-OS-SIM and the smooth titanium surface in ED-
OS media (p<0.05) (Fig 8C). Simvastatin markedly enhanced expression of BMP-2 on the SLA
titanium surface. An expression level of BMP-2 on the SLA titanium surface was significantly
higher than other groups (p<0.05) and the differences among those groups were not significant
(p>0.05) (Fig 8D).

Simvastatin promoted osteogenic differentiation in ED-cell culture. Simvastatin
increased levels of ALP activity and osteocalcin in culture medium. Levels of ALP activity on
titanium surfaces both smooth and SLA in ED-OS medium with simvastatin were significantly
higher than all groups in ED-OS only (p<0.05). However the activity levels among each groups
in ED-OS only was not significantly different (p>0.05) (Fig 8E).

Simvastatin increased osteocalcin levels on titanium surfaces in ED-OS cell
culture, particularly SLA titanium surface. Levels of osteocalcin in culture media on SLA
titanium surface and cell culture plate were significantly higher than the smooth titanium surface
(p<0.05). The highest level of osteocalcin was on the SLA titanium surface in ED-OS with
simvastatin (ED-OS-SIM), followed by the SLA titanium surface in ED-OS and the smooth
titanium in ED-OS-SIM, cell culture plate and the smooth titanium surface in ED-OS only
(p<0.05) (Fig 8F).

In vitro calcein staining verified in vitro mineralization on titanium surfaces by

exhibiting varying levels of green staining of calcium deposition on extracellular matrix of
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hBMSCs in FBS-OS, ED-OS and ED-OS supplemented with simvastatin. Calcein staining on a
cell culture plate was similar to a positive control stain of von Kossa staining (Fig 9A and B).
Bright green staining was clearly shown on titanium surfaces in simvastatin supplemented

groups, particularly on SLA titanium surfaces (Fig 9).
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DISCUSSION

In an effort to improve osteoblastic differentiation in osteoporotic bone, the
current study investigated effects of titanium surface microtopography, smooth and SLA
titanium surfaces, and simvastatin on growth and osteogenic differentiation of hBMSCs in
estrogen-deprived cell culture (ED-hBMSCs).

A long term estrogen-deprived (ED) cell culture model was established to mimic
estrogen deprived condition of hBMSCs in menopause osteoporotic cases. The estrogen-
deprived condition was created by utilizing phenol red free culture medium and charcoal stripped
bovine serum (27, 28). The ED-culture with low levels of growth factors and lipophilic
materials was a harsh condition for cell growth and differentiation, particularly for 21 day cell
culture. As previously published, it was found that growth factor deprivation decreased cell
attachment, cytoplasmic spreading and cell growth (29). Therefore to minimize adverse effects
of complex hormone and growth factor deprivation on cell growth and functions in ED-cell
culture, a liquid media supplement was supplemented in culture media and cells were seeded in a
high cell density. Liquid media supplementation added essential factors for cell growth and
function, which are insulin-transferrin-sodium selenite and linoleic;oleic-BSA and has been used
as a supplement in serum free cell culture (Sigma Chemical Co) (30). At the same time high cell
density promotes intercellular communication and paracrine and autocrine functions of cells
(31). Thus medium supplement and inter-cellular communication might have supported ED-
hBMSCs to sustain low levels of growth and osteoblastic differentiation of ED-hBMSCs
throughout cell culture. As a result, cells in ED-deprived culture media were able to reach
confluence and grow in multilayer and mineralize ECM on culture-day 21. In the current study,

hBMSCs were cultured in ED-growth medium for 24 hr. wash-out period before starting the
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experiment to ensure elimination of serum residual effects (21). In summary, a well define
experimental model for hormone and growth factor cell response was established.

Different cell growth and differentiation on smooth and SLA titanium surfaces
might relate to different cell attachment and shapes on smooth and SLA titanium surfaces.The
results agree with previous studies that cell attachment and proliferation of hBMSCs are
decreased, but osteoblastic differentiation is supported on the SLA titanium surface (32-34). The
sandblasted with large grits and acid etched titanium surface increased expression levels of late
osteoblastic differentiation markers IBSP, alkaline phosphatase (ALP) activity and osteocalcin
(OCN) production (15, 35, 36). Scanning electron microscope (SEM) images of hBMSC on the
SLA titanium surface suggested that surface microtopography of the SLA titanium surface
supported attachment of cells by promoting multiple contact points of cell cytoplasm and
cytoplasmic processes on the macro and micro pores of the surface (12, 16). Promoting effects
of SLA titanium surface on osteogenic differentiation could be results of morphological change
during cell attachment on different substrate architectures that stimulate focal adhesion signal
transduction and adhesion molecules (37-39). In the current study, surface microtopography has
influenced on cell functions since initial cell seeding, as different cell shapes on smooth and
rough surfaces had been shown since 3 hr. after cell seeding and continued throughout 21-day
cell culture.

Effects of surface microtopography on growth and osteogenic differentiation were
influenced by hormones and growth factors in local environment, as promoting effects of the
SLA titanium surface on osteoblastic differentiation was significantly decreased in ED-OS
medium. Decreasing of osteogenic differentiation of hBMSCs on titanium surfaces in ED-OS

medium could be a result of a reduction of ECM synthesis in estrogen-deprived cell culture.
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Because estrogen promotes extracellular matrix (ECM) synthesis (40, 41) and ECM provides
external signal regulating growth and survival of contact dependent cells (42), a reduction of
ECM in ED-cell culture might attribute to a decreasing of cell growth, attachment and osteogenic
differentiation in ED-hBMSCs, particularly on the SLA titanium surface. As a result, growth
and osteogenic differentiaion on the SLA titanium surface were severely affected by ED-
condition and promoting effects of the SLA surface was markedly decreased in ED cell culture.

Limiting of cell growth and attachment on the titanium surface in ED-cell culture
could be considered as a limitation of ED-cell culture model that could not completely simulate
clinical situation in skeletal defects. In clinical environment, titanium surface inserted in the
osteoporotic bone will be covered with blood clot and body fluid that would be able to enhance
cell attachment and growth on the titanium surfaces and alleviated direct effects of estrogen-
deficiency on growth and differentiation of osteogenic cells on the titanium surface and
osteointegration (43, 44). Thus, the effects of estrogen-deficiency might delay or jeopardize
osteointegation in animal and clinical studies (2-4).

Simvastatin was able to promote osteogenic differentiation on titanium surface in
ED-OS medium and promoting effects of simvastatin was increased on the SLA titanium
surface. Significant increase of IBSP expression and levels of ALP activity and osteocalcin on
the SLA titanium surface with simvastatin supplement corresponded with a markedly increase of
BMP2 expression levels on the SLA titanium surface in ED-OS medium with simvastatin
supplement. The findings suggested that enhancing effects of simvastatin on osteogenic
differentiation on the SLA titanium surface was at least partially mediated by inducing BMP-2
(17). Promoting effects of simvastatin supports a previous study that found a correlation

between increasing of bone formation markers with levels of simvastatin in serum (45) which
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underlined promoting effects of simvastatin on bone healing and osteointegration in animal and

clinical studies (46, 47).

CONCLUSION

In conclusion, the current cell culture model provided a well control experimental
model for studying effects of hormones and growth factors on growth and differentiation of cells
on titanium surfaces in vitro. It was clearly shown that the SLA titanium surface
microtopography and simvastatin synergistically promoted osteoblastic differentiation of ED-
hBMSCs. The findings underscore hypotheses that estrogen deficiency in postmenopausal
osteoporosis cases could compromise osteointegration of the dental implants, and simvastatin

supplement would enhance osteointegration on the SLA titanium surface in osteoporotic bone.
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FIGURE LEGENDS

Fig 1.

Scanning electron microscope images of titanium surfaces, (A) smooth and (B) sandblasted with

large grits and acid etched (SLA) titanium surfaces.

Fig 2.

Green fluorescence vital cell staining (CellTracker' ™ Green ) of human bone marrow stromal
cells (hnBMSCs) at 3 hr. after cell seeding examined under (A & C) Fluorescence microscope and
(B & D) confocal laser scanning microscope; (A & B) on smooth and (C & D) sandblasted and
acid etched (SLA) titanium surfaces. (A & B) Images demonstrate cell flattening cell body on
the smooth surface (arrows) forming round shaped cells and (C & D) cell extending small
multiple cytoplasmic processes (arrows) to attach on rough surface of SLA titanium surface

forming start-like shaped cells.
Fig 3.

Green fluorescence vital cell staining (CellTracker'™ Green ) of human bone marrow stromal
cells (hBMSCs) at 24 hr. after cell seeding for an osteogenic differentiation study, (A) examined
under confocal laser scanning microscope and (B & C) Fluorescence microscope; (A) cell
culture plate (Plate), (B) smooth(Smooth) titanium surface and (C) sandblasted with large grits
and acid etched (SLA) Ti surface. Images exhibit high cell density and homogenous distribution
of (A) spindle cell shaped on cell culture plate and (B) smooth Ti surface and (C) star-like

shaped cells on the SLA Ti surface (arrows).
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Fig 4.

Fluorescence microscope images of green and red fluorescence live/dead cell staining
(CellTrackerTM Green/propidium iodide (PI)) of human bone marrow stromal cells (hBMSCs)
on day 21 in (A-C) regular (FBS-OS) and (D-E) estrogen-deprived osteogenic (ED-OS) media,
(A, D) on cell culture plate (Plate), (B, E) smooth titanium (Ti) surface (Smooth) and (C, F)
sandblasted with large grits and acid etched (SLA) Ti surface. Green staining exhibited high
level of cell viability and confluence on all surfaces. Red staining of PI (arrows) identified few
dead cells that could be seen scattering within confluence green viable cells on titanium surfaces.
Brighter and greener staining in (A-C) FBS-OS suggested higher cell viability in FBS-OS than

(D-F) ED-OS cell culture.

Fig 5.

Scanning electron microscope (SEM) images of human bone marrow stromal cells (h(BMSCs) on
(A, B & E, F) smooth titanium (T1) surface and (C, D & G, H) sandblasted with large grits and
acid etched (SLA) Ti surface in (A, E & C, G) regular (FBS-OS) and (B, F & D, H) estrogen-
deprived osteogenic media (ED-OS) on (A-D) culture-days 7 (Day 7) and (E-H) 21 (Day 21).
Images demonstrated different cell shapes and growth on smooth and SLA titanium surfaces in
FBS-OS and ED-OS media. Cells formed cell sheet on smooth titanium surface (Smooth) but
extended cytoplasmic process to attach on rough surface forming cells with multiple cytoplasmic
process and intercellular network. Different cell spreading and growth in FBS-OS and ED-OS
media were clearly shown on SLA titanium surface (SLA). Size of cells and cell density

appeared to be smaller and lower in ED-OS (D & H) than FBS-OS culture media (C & G). On
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SLA titanium surface, only cells in FBS-OS could grow to form loose cell sheet on day 21 (G).

High magnification images in the inlets magnified cell-surface contacts.

Fig 6.

Cell viability assay demonstrates growth of human bone marrow stromal cells (h(BMSCs) in
regular (FBS) (dot lines) and estrogen-deprived (ED) growth media (solid lines) on cell culture
plate (PL), smooth (SM) titanium surface and sandblasted with large grits and acid etched (SLA)
Ti surface. On Day 1, numbers of cells on SLA titanium surface tended to be lower than cell
culture plate and smooth titanium surface (p>0.05). Subsequently on days 7 — 21, numbers of
cells on SLA tended to be lower than SM (p>0.05). On days 7 and 14 growth of cells was
relatively stable and growth of cells on titanium surfaces in FBS-OS and ED-OS were not
significantly different (p>0.05). Growth of cells was significantly different on day 21, when
growth of cells on titanium surfaces in ED-OS was significantly lower than cell culture plate in
ED and titanium surfaces in FBS, and cell culture plate in FBS, respectively (+, p<0.05). Cells
on cell culture plate in FBS medium on day 21 showed the highest level of growth (*, p<0.05).
The symbol * represents significantly higher than other groups and +, lower than other groups at

p<0.05 a (n=4, MEAN+SD).

Fig 7.

Demonstrating osteogenic differentiation potential of human bone marrow stromal cells
(hBMSCs) in regular (FBS-OS) and estrogen-deprived osteogenic (ED-OS) media on cell culture
plate (PL) and smooth (SM) titanium (Ti) surface and sandblasted and acid etched (SLA) Ti
surfaces on culture-days 7 (Days 7) and 21 (Day 21), (A) quantitative real-time polymerase chain

reaction (QRT-PCR) exhibits expression of Runx2 and (B) bone sialoprotein (IBSP) genes, (C)
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alkaline phosphatase activity and (D) calcium content levels. Estrogen-deprived-OS medium
significantly increased expression levels of Runx2, but decreased IBSP expression, ALP activity
and calcium content levels (+, p<0.05). On day 21, (B) levels of IBSP expression and (D)
calcium contents on SLA titanium surface in FBS-OS were significantly higher than cell culture
plate and smooth Ti surface (*, p<0.05). (C) Levels of ALP activity in each culture medium on
days 7 and 21 were not significantly different (p>0.05). Symbols * represents significant
difference among surfaces in the same group and +, differences between media at p<0.05. Data

were from 2 independent experiment (n=4, MEAN+SD).

Fig 8.

Demonstrating effects of simvastatin on growth, osteogenic differentiation potential and
expression of bone morphogenetic protein 2 (BMP-2) of human bone marrow stromal cells
(hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs, seeded on cell culture plate
(PL), smooth (SM) titanium (Ti) surface and sandblasted and acid etched (SLA) Ti surface were
cultured in regular (FBS-OS), estrogen-deprived osteogenic (ED-OS) and ED-OS with 100 nM
simvastatin (ED-OS-SIM) culture media for 14 days. Investigated parameters were (A) cell
growth (cell viability assay), (B & C, E & F) osteogenic differentiation markers, (B) qRT-PCR
of Runx2, (C) bone sialoprotein (IBSP) (E) alkaline phosphatase (ALP) activity and (F)
osteocalcin in culture media, and (D) qRT-PCR of bone morphogenetic protein-2 (BMP-2).
Simvastatin tended to decrease (A) cell growth on SLA and (B) expression levels of Runx2 on
SM (p>0.05). (B) Runx 2 expression levels on SM in ED-OS was significantly higher than PL in
ED-OS (*, p<0.05) and tended to be higher than other groups (p>0.05). (C) ED-OS-Sim
significantly increased expression levels of IBSP and (D) BMP-2 and (F) levels of osteocalcin on

SLA, and (E) enhanced ALP activity on SM and SLA (*, p<0.05). In ED-OS, (C) expression

Manuscript JOMI-2015-504-4969



10

11

12

13

14

32
“Titanium surface and simvastatin in estrogen-deprived cell culture”

levels of IBSP and (F) osteocalcin on SLA were significantly higher than SM (+, p<0.05) and the
expressions on SLA Ti surface were significantly increased in ED-OS-Sim medium (*, p<0.05).
Symbols * represents significant difference among surfaces in the same culture medium at
p<0.05, and +, differences between groups of culture medium at p<0.05. Data were from 2

independent experiment (n=4, MEAN+SD).

Fig 9.

Demonstrating calcein staining of in vitro mineralization of human bone marrow stromal cells on
(A & B) cell culture plate and (C-E) smooth titanium (Ti) surface and (F-H) sandblasted with
large grits and acid etched (SLA) Ti surface in (C & F) regular (FBS-OS), (D & G) estrogen-
deprived (ED-OS) and (E & H) ED-OS with 100 nM simvastatin (ED-OS-SIM) culture media.
(A) Von Kossa staining exhibited black staining on mineralized nodules in ECM (arrows)
(positive control) and (B) corresponding green calcein staining (arrows) on cell culture plate to

(A). (C-H) Exhibiting varying levels of green calcein staining on mineralized nodules (arrows)
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Table 1
Groups of study
Categories Culture media Groups Description
I Regular (FBS) A FBS- Plate
B FBS- SM
C FBS-SLA
1 Estrogen-deprived (ED) A ED-Plate
B ED-SM
C ED-SLA
i ED-Simvastatin A ED-SIM- Plate
supplement (ED-SIM)
B ED-SIM-SM
C ED-SIM- SLA

Note: FBS is an abbreviation for culture medium containing fetal bovine serum (FBS), ED-OS
for estrogen deprived osteogenic medium containing charcoal stripped FBS, SIM for
simvastatin, Plate, for cell culture plates and SM, smooth and SLA, sandblasted with

large grits and acid etched titanium surfaces.
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Table 2

2 Summary of the investigation procedures

Investigations

Procedures

Investigating time

Live/dead cell staining

At 3 hours after cell
seeding

Cell attachment,
spreading and

Live/dead cell staining

At 24 hr. and on day 21

BMP-2

morphology
SEM On days 7 and 21

Cell growth Cell viability assay On days 2, 7, 14 and 21
qRT-PCR analy§1s of On days 7 and 21
osteoblast-associated genes

Osteogenic .. .

differentiation ALP activity analysis On days 7 and 21
Calcium content assay On day 21

Expression of .

qRT-PCR analysis On day 14

34

4  Note: ALP is an abbreviation for alkaline phosphatase, BMP-2, bone morphogenetic protein-2,

5 qRT-PCR, Quantitative real-time polymerase chain reaction and SEM, scanning electron
6 microscope
7
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Titanium Surfaces

AN

Smooth Rough (SLA)

Fig 1.

Scanning electron microscope images of titanium surfaces, (A) smooth and (B) sandblasted with

large grits and acid etched (SLA) titanium surfaces.
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Smooth

SLA

At 3 hr. after Cell Seeding

Fig 2.

Green fluorescence vital cell staining (CellTracker™ Green ) of human bone marrow stromal
cells (hBMSCs) at 3 hr. after cell seeding examined under (A & C) Fluorescence microscope and
(B & D) confocal laser scanning microscope; (A & B) on smooth and (C & D) sandblasted and
acid etched (SLA) titanium surfaces. (A & B) Images demonstrate cell flattening cell body on
the smooth surface (arrows) forming round shaped cells and (C & D) cell extending small
multiple cytoplasmic processes (arrows) to attach on rough surface of SLA titanium surface

forming start-like shaped cells.
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Smooth

24 hr. after Cell Seeding

Fig 3.

Green fluorescence vital cell staining (CellTracker™ Green ) of human bone marrow stromal
cells (hBMSCs) at 24 hr. after cell seeding for an osteogenic differentiation study, (A) examined
under confocal laser scanning microscope and (B & C) Fluorescence microscope; (A) cell
culture plate (Plate), (B) smooth(Smooth) titanium surface and (C) sandblasted with large grits
and acid etched (SLA) Ti surface. Images exhibit high cell density and homogenous distribution
of (A) spindle cell shaped on cell culture plate and (B) smooth Ti surface and (C) star-like

shaped cells on the SLA Ti surface (arrows).
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Plate Smooth

SLA

Cell Viability and Density on Day 21

FBS-0OS

ED-OS

Fig 4.

Fluorescence microscope images of green and red fluorescence live/dead cell staining
(CellTrackerTM Green/propidium iodide (PI)) of human bone marrow stromal cells (hBMSCs)
on day 21 in (A-C) regular (FBS-OS) and (D-E) estrogen-deprived osteogenic (ED-OS) media,
(A, D) on cell culture plate (Plate), (B, E) smooth titanium (Ti) surface (Smooth) and (C, F)
sandblasted with large grits and acid etched (SLA) Ti surface. Green staining exhibited high
level of cell viability and confluence on all surfaces. Red staining of PI (arrows) identified few
dead cells that could be seen scattering within confluence green viable cells on titanium surfaces.
Brighter and greener staining in (A-C) FBS-OS suggested higher cell viability in FBS-OS than

(D-F) ED-OS cell culture.
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Day 7

Day 21

Fig 5.

Scanning electron microscope (SEM) images of human bone marrow stromal cells (h(BMSCs) on
(A, B & E, F) smooth titanium (Ti) surface and (C, D & G, H) sandblasted with large grits and
acid etched (SLA) Ti surface in (A, E & C, G) regular (FBS-OS) and (B, F & D, H) estrogen-
deprived osteogenic media (ED-OS) on (A-D) culture-days 7 (Day 7) and (E-H) 21 (Day 21).
Images demonstrated different cell shapes and growth on smooth and SLA titanium surfaces in
FBS-OS and ED-OS media. Cells formed cell sheet on smooth titanium surface (Smooth) but
extended cytoplasmic process to attach on rough surface forming cells with multiple cytoplasmic
process and intercellular network. Different cell spreading and growth in FBS-OS and ED-OS
media were clearly shown on SLA titanium surface (SLA). Size of cells and cell density
appeared to be smaller and lower in ED-OS (D & H) than FBS-OS culture media (C & G). On
SLA titanium surface, only cells in FBS-OS could grow to form loose cell sheet on day 21 (G).

High magnification images in the inlets magnified cell-surface contacts.
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Cell Viability Assay
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Fig 6.

Cell viability assay demonstrates growth of human bone marrow stromal cells (hBMSCs) in
regular (FBS) (dot lines) and estrogen-deprived (ED) growth media (solid lines) on cell culture
plate (PL), smooth (SM) titanium surface and sandblasted with large grits and acid etched (SLA)
Ti surface. On Day 1, numbers of cells on SLA titanium surface tended to be lower than cell
culture plate and smooth titanium surface (p>0.05). Subsequently on days 7 — 21, numbers of
cells on SLA tended to be lower than SM (p>0.05). On days 7 and 14 growth of cells was
relatively stable and growth of cells on titanium surfaces in FBS-OS and ED-OS were not
significantly different (p>0.05). Growth of cells was significantly different on day 21, when
growth of cells on titanium surfaces in ED-OS was significantly lower than cell culture plate in
ED and titanium surfaces in FBS, and cell culture plate in FBS, respectively (+, p<0.05). Cells
on cell culture plate in FBS medium on day 21 showed the highest level of growth (*, p<0.05).
The symbol * represents significantly higher than other groups and +, lower than other groups at

p<0.05 a (n=4, MEAN=+SD).
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Fig 7.

Demonstrating osteogenic differentiation potential of human bone marrow stromal cells
(hBMSCs) in regular (FBS-OS) and estrogen-deprived osteogenic (ED-OS) media on cell culture
plate (PL) and smooth (SM) titanium (Ti) surface and sandblasted and acid etched (SLA) Ti
surfaces on culture-days 7 (Days 7) and 21 (Day 21), (A) quantitative real-time polymerase chain
reaction (QRT-PCR) exhibits expression of Runx2 and (B) bone sialoprotein (IBSP) genes, (C)
alkaline phosphatase activity and (D) calcium content levels. Estrogen-deprived-OS medium
significantly increased expression levels of Runx2, but decreased IBSP expression, ALP activity
and calcium content levels (+, p<0.05). On day 21, (B) levels of IBSP expression and (D)
calcium contents on SLA titanium surface in FBS-OS were significantly higher than cell culture
plate and smooth Ti surface (*, p<0.05). (C) Levels of ALP activity in each culture medium on
days 7 and 21 were not significantly different (p>0.05). Symbols * represents significant
difference among surfaces in the same group and +, differences between media at p<0.05. Data

were from 2 independent experiment (n=4, MEAN+SD).
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Fig 8.

Demonstrating effects of simvastatin on growth, osteogenic differentiation potential and
expression of bone morphogenetic protein 2 (BMP-2) of human bone marrow stromal cells
(hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs, seeded on cell culture plate
(PL), smooth (SM) titanium (Ti) surface and sandblasted and acid etched (SLA) Ti surface were
cultured in regular (FBS-OS), estrogen-deprived osteogenic (ED-OS) and ED-OS with 100 nM
simvastatin (ED-OS-SIM) culture media for 14 days. Investigated parameters were (A) cell
growth (cell viability assay), (B & C, E & F) osteogenic differentiation markers, (B) gqRT-PCR
of Runx2, (C) bone sialoprotein (IBSP) (E) alkaline phosphatase (ALP) activity and (F)
osteocalcin in culture media, and (D) qRT-PCR of bone morphogenetic protein-2 (BMP-2).
Simvastatin tended to decrease (A) cell growth on SLA and (B) expression levels of Runx2 on
SM (p>0.05). (B) Runx 2 expression levels on SM in ED-OS was significantly higher than PL in
ED-OS (*, p<0.05) and tended to be higher than other groups (p>0.05). (C) ED-OS-Sim
significantly increased expression levels of IBSP and (D) BMP-2 and (F) levels of osteocalcin on
SLA, and (E) enhanced ALP activity on SM and SLA (*, p<0.05). In ED-OS, (C) expression
levels of IBSP and (F) osteocalcin on SLA were significantly higher than SM (+, p<0.05) and the
expressions on SLA Ti surface were significantly increased in ED-OS-Sim medium (*, p<0.05).
Symbols * represents significant difference among surfaces in the same culture medium at
p<0.05, and +, differences between groups of culture medium at p<0.05. Data were from 2

independent experiment (n=4, MEAN+SD).
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Smooth

SLA

ED-OS-SIM

Fig 9.

Demonstrating calcein staining of in vitro mineralization of human bone marrow stromal cells on
(A & B) cell culture plate and (C-E) smooth titanium (Ti) surface and (F-H) sandblasted with
large grits and acid etched (SLA) Ti surface in (C & F) regular (FBS-OS), (D & G) estrogen-
deprived (ED-OS) and (E & H) ED-OS with 100 nM simvastatin (ED-OS-SIM) culture media.
(A) Von Kossa staining exhibited black staining on mineralized nodules in ECM (arrows)
(positive control) and (B) corresponding green calcein staining (arrows) on cell culture plate to

(A). (C-H) Exhibiting varying levels of green calcein staining on mineralized nodules (arrows)
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