

## Abstract

**Project Code:** RSA5580050

**Project Title:** Mechanistic studies of 3-hydroxybenzoate 6-hydroxylase from *Rhodococcus jostii* RHA1

**Jeerus Sucharitakul**, Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University

**E-mail address:** [Jeerus.s@chula.ac.th](mailto:Jeerus.s@chula.ac.th)

**Project Period:** 16 July 2012-16 July 2015

Hydroxybenzoate 6-hydroxylase (3HB6H) from *Rhodococcus jostii* RHA1 is an NADH-specific flavoprotein monooxygenase containing flavin adenine dinucleotide (FAD) as a cofactor. The enzyme catalyzes para-hydroxylation of 3-hydroxybenzoate (3-HB) to form 2,5-dihydroxybenzoate (2,5-DHB). The enzyme reaction mechanism was studied using stopped-flow spectrophotometry and rapid-quench techniques. The overall catalytic reaction consists of two half-reactions. The reductive half-reaction is the reduction of FAD by NADH and an oxidative half-reaction is the hydroxylation of the aromatic substrate. Kinetics of enzyme reduction has indicated that 3-HB acts as an effector that can increase the reduction rate constant dramatically  $\sim$ 119-fold ( $0.43\text{ s}^{-1}$  in the absence of 3-HB versus  $51\text{ s}^{-1}$  in the presence of 3-HB). For the oxidative half-reaction, the reduced enzyme-3HB complex reacts with oxygen to form two intermediates. The first intermediate is C(4a)-peroxyflavin, which forms with a rate constant of  $1.13 \pm 0.01 \times 10^4\text{ M s}^{-1}$ , while the second intermediate is C(4a)-hydroperoxyflavin. The second intermediate formed with a slower rate constant in  $\text{D}_2\text{O}$  with a SKIE of 1.76, indicating that this step is involved with proton transfer. The hydroxylation occurs with the rate constant of  $35 \pm 2\text{ s}^{-1}$  and 86% of the product formation. The correlation between pre-steady state and steady-state kinetics indicates that the steps of product release ( $\sim 12\text{ s}^{-1}$ ) and hydroxylation partially control the overall catalytic turnover.

Based on the enzyme crystal structure, the residues H213 and Y217 potentially interact with 3-OH and carbonyl oxygen of 3-HB, respectively. Site-directed mutagenesis of these two residues are employed to investigate their functional roles. The H213A variant can form C4a-hydroperoxyflavin but cannot hydroxylate 3-HB. Both hydroxylation rate constant ( $1.6 \pm 0.02\text{ s}^{-1}$ ) and percentage of product formation (25%) of the H213S variant are less than those of the wild-type enzyme. Interestingly, the hydroxylation rate constant of H213E ( $35\text{ s}^{-1}$ ) is similar to the value of wild-type enzyme and the variant is more efficient in hydroxylation ( $\sim 92\%$  product formation). Studies of Y217 variants, Y217A, Y217F and Y217S, indicate that these enzymes cannot bind 3-HB well. The results indicate that H213 is important for hydroxylation while Y217 is necessary for substrate binding.

**Keywords:** Flavin, Flavin adenine dinucleotide (FAD), Flavoprotein hydroxylase, 3HB6H, 3-hydroxybenzoate 6-hydroxylase, 3HB, 3-hydroxybenzoate, para-hydroxylation, transient kinetics, rapid kinetics, pre-steady state kinetics

## บทคัดย่อ

สัญญาเลขที่: RSA5580050

ชื่อโครงการ: โครงการการศึกษากลไกปฏิกิริยาของเอนไซม์ 3-ไฮดรอกซีเบนโซเอต 6-ไฮดรอกซีเลสจากเชื้อโรടโโคคัลส์อสติโอล

จีรัสย์ สุจิตรกุล, Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University

E-mail address: [Jeerus.s@chula.ac.th](mailto:Jeerus.s@chula.ac.th)

ระยะเวลา: ๑๖ กรกฎาคม ๒๕๕๕ ถึงวันที่ ๑๖ กรกฎาคม ๒๕๕๕

เอนไซม์ 3-ไฮดรอกซีเบนโซเอต 6-ไฮดรอกซีเลส (3HB6H) จากเชื้อโรടโโคคัลส เป็นเอนไซม์ที่เร่งปฏิกิริยาการเกิดไฮดรอกซีเลชันของสับสเตรท 3-ไฮดรอกซีเบนโซเอต (3HB) ได้สารผลิตภัณฑ์เป็น 2,5-ไดไฮดรอกซีเบนโซเอต (2,5-DHB) เอนไซม์ดังกล่าวจดอยู่ในกลุ่มฟลาโวโปรตีนซึ่งมี ฟลาวินอะเดนีนไนโวคลีโอไทด์ (FAD) เป็นโคแฟคเตอร์ ในงานวิจัยนี้เป็นการศึกษากลไกปฏิกิริยาของเอนไซม์ในระดับ pre-steady state kinetic ซึ่งใช้เครื่องมือที่เรียกว่า stopped-flow spectrometer เพื่อวัดสารตัวกลางที่เกิดขึ้นและถ่ายอย่างรวดเร็วระหว่างการเกิดปฏิกิริยา ปฏิกิริยาของเอนไซม์ประกอบด้วย 2 ส่วน ส่วนแรกเรียกว่า รีดักที่ฟาร์ฟรีแอคชัน เกิดจากนิโคตินาไมด์อะเดนีนไดนิวคลีโอไทด์ (NADH) ซึ่งเป็นสับสเตรทของจะให้อิเลคตรอนแก่เอนไซม์ โดย FAD โคแฟคเตอร์ของเอนไซม์จะปันตัวรับอิเลคตรอน ผลการทดลองพบว่า เมื่อมี 3HB จะช่วยเร่งการเกิดปฏิกิริยาให้เร็วขึ้นประมาณ 119 เท่า (จาก  $0.435 \text{ s}^{-1}$  เป็น  $51 \text{ s}^{-1}$ ) ส่วนอีกปฏิกิริยาเรียกว่า ออกซิเดทฟาร์ฟรีแอคชัน เกิดจากรีดิวน์เอนไซม์จากขั้นแรกทำปฏิกิริยากับออกซิเจนและเกิดเป็นสารตัวกลางเรียกว่า C4a-hydroperoxyflavin ด้วยค่าคงที่อัตราเร็วปฏิกิริยาเท่ากับ  $1.13 \pm 0.01 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$  และสารตัวกลางดังกล่าวทำให้เกิดปฏิกิริยาไฮดรอกซีเลชันของสับสเตรท ด้วยค่าคงที่อัตราเร็วปฏิกิริยาเท่ากับ  $35 \pm 2 \text{ s}^{-1}$  และเกิดสารผลิตภัณฑ์ประมาณ 80% เมื่อเทียบกับความเข้มข้นตั้งต้นของเอนไซม์ จากข้อมูลโครงสร้างโมเลกุลสามมิติของเอนไซม์พบว่ากรดอะมิโน H213 สามารถเกิดพันธะไฮโดรเจนกับหมุนพังชันก์ 3-ไฮดรอกซีของสับสเตรท และกรดอะมิโน Y217 สามารถพันธะไฮโดรเจนกับหมุนพังชันก์ carcinobacteriellin ของสับสเตรท เมื่อเปลี่ยนกรดอะมิโน H213 ไปเป็น alanine ทำให้เอนไซม์ไม่สามารถสร้างสารผลิตภัณฑ์ได้ ในขณะที่เปลี่ยนไปเป็น aspartate และ serine กลับสร้างสารผลิตภัณฑ์ได้ลดลง แต่เมื่อเปลี่ยนเป็น glutamate กลับสร้างสารผลิตภัณฑ์ได้มากกว่า wild type เอนไซม์เป็น 92% แสดงว่ากรดอะมิโนดังกล่าวสำคัญต่อการเกิดปฏิกิริยาไฮดรอกซีเลชัน เมื่อเปลี่ยนกรดอะมิโน Y217 ไปเป็น alanine serine phenylalanine พบว่าเอนไซม์ไม่สามารถจับกับสับสเตรท และแสดงว่ากรดอะมิโนดังกล่าวสำคัญต่อการจับกับสับสเตรท

คำสำคัญ: Flavin, Flavin adenine dinucleotide (FAD), Flavoprotein hydroxylase, 3HB6H, 3-hydroxybenzoate 6-hydroxylase, 3HB, 3-hydroxybenzoate, para-hydroxylation, transient kinetics, rapid kinetics, pre-steady state kinetics