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Project Summary

1.1 Hilbert space setting

Throughout this summary, we let H be a real Hilbert space with inner product
⟨·, ·⟩ and induced norm ∥ · ∥. Let C be a closed convex subset of H. Let us recall the
following two major (nonlinear) problems:

Fixed Point Problem (FPP): Let T : C → C be a mapping. An element u ∈ C

is a fixed point of T if u = Tu. The set of all fixed points of T is denoted by
Fix(T ).

Variational Inequality (VI): Let A : C → H. An element u ∈ C is a solution of
a variational inequality for A if ⟨v − u,Au⟩ ≥ 0 for all v ∈ C. The set of all
solutions of a variational inequality for A is denoted by VI(C,A).

These two problems are related as follows:

FPP =⇒ VI: For a given T : C → C, we have Fix(T ) = VI(C, I − T ).

VI =⇒ FPP: For a given A : C → H, we have VI(C,A) = Fix(PC ◦ (I − A)) where
PC is the metric projection from H onto C.

However, each problem above can be solved in their own way.
In the paper A1, we introduced the concept of a “strongly quasinonexpansive

sequence of mappings”. This concept is very interesting and plays an important role
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for proving a strong convergence of Halpern type iterative sequences. This is not only
a generalization of many known results in the literature but also give simple proofs
of them. For example, we obtain a simple proof of the general iterative method
for nonexpansive mappings which was established by Marino and Xu [Journal of
Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006.].

With the help of the results in A1, we discuss the split common fixed point prob-
lems. All results are presented in the paper A2. First, let us recall this problem. Let
H1 and H2 be two real Hilbert spaces. For a bounded linear operator A : H1 → H2

and two quasinonexpansive mappings U : H1 → H1 and T : H2 → H2, the split
common fixed point problem is to find u ∈ Fix(U) such that Au ∈ Fix(T ). This for-
mulation is very general because with appropriate setting we can obtain the following
problems as our corollaries:

• The split variational inequality problem studied by Censor, Gibali and Reich
[Numer. Algorithms 59 (2012) 301–323]

• The split common null point problem studied by Bryne, Censor, Gibali and
Reich [J. Nonlinear Convex Anal. 13 (2012) 759–775]

• Moudafi’s split feasibility problem [Nonlinear Anal. 79 (2013) 117–121]

We next consider the problem of finding a common element of the fixed-point
set of a certain mapping and the set of solutions of a variational inequality problem.
The result for this problem is presented in the paper A3. The scheme in this work is
inspired by the recent work of Maingé [A hybrid extragradient-viscosity method for
monotone operators and fixed point problems, SIAM J. Control Optim. 47, 1499–1515
(2008)]. We also show that some assumption imposed in his result can be relaxed.
Moreover, our scheme is a genuine generalization of Maingé’s result because there is
a class of mappings to which our scheme is applicable, but which is beyond the scope
of his result.
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The concept of subgradient extragradient method introduced by Censor, Gibali
and Reich [J. Optim. Theory Appl. 148, 318–335 (2011)] is an improvement of
that of extragradient method studied by Korpelevich [Èkon. Mat. Metody 12, 747–
756 (1976) (in Russian)]. It is known that these two method provides only weak
convergence. To obtain a more desirable result, that is, strong convergence, we present
two variants of the modified subgradient extragradient method. These results are
given in the paper A4.

1.2 Banach space setting

In this project, we also pay attention in a more general setting in Banach spaces.
We are interesting in two natural generalizations of cutter operators introduced by
Cegielski and Censor [Springer Optimization and its Applications No. 49 (2011)]. We
present our results in the paper A5. Throughout this subsection, let E be a Banach
space with the dual space E∗. Let ⟨·, ·⟩ denote the dual pairing acting from E × E∗

to R and let J : E → E∗ denote the mapping defined by x 7→ Jx ∈ E∗ where Jx is
the element1 such that

⟨x, Jx⟩ = ∥x∥2 = ∥Jx∥2.

Let C be a closed convex subset of E. A mapping T : C → E is said to be

• a cutter operator of type (P) if Fix(T ) ̸= ∅ and ⟨Tx− z, J(Tx− x)⟩ ≤ 0 for all
x ∈ C and for all z ∈ Fix(T );

• a cutter operator of type (Q) if Fix(T ) ̸= ∅ and ⟨Tx− z, JTx− Jx⟩ ≤ 0 for all
x ∈ C and for all z ∈ Fix(T ).

We obtain two iterative schemes for approximating a common fixed point of these
two operators. The first one is based on the Halpern type iteration and the second
one is on shrinking projection method of Takahashi–Takeuchi–Kubota.

1We assume that E is smooth, that is, limt→0(1/t)(∥x + ty∥ − 1) exists for all x, y ∈ E with
∥x∥ = ∥y∥ = 1.
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We prove a strong convergence theorem for strongly quasi-nonexpansive sequence of mappings in Hilbert spaces. Moreover, we
can improve the recent results of Tian and Jin (2011). We also give a simple proof of Marino-Xu’s result (2006).

1. Introduction

Let! be aHilbert space with inner product ⟨⋅, ⋅⟩ and induced
norm ‖ ⋅ ‖. Recall that a mapping & : ! → ! is said to
be (-Lipschitzian where ( > 0 if ‖&) − &+‖ ≤ (‖) − +‖
for all ),+ ∈ !. In this paper, we are interested in nonex-
pansive mappings (that is, 1-Lipschitzian ones) and contrac-
tions (that is, (-Lipschitzian ones with ( < 1). The problem
of finding a fixed point of such mappings plays an important
role in many nonlinear equations appearing in both pure
and applied sciences. The celebrated Banach’s contraction
principle is probably known as the major tool for the case of
contractionmappings.However, for nonexpansivemappings,
the situation is more difficult and different.

In 2000, Moudafi [1] introduced the viscosity approxima-
tion method, starting with an arbitrary initial )1 ∈ !, and
defined a sequence {)!} by)!+1 = .!1 + .!/ ()!) + 11 + .!&)! (2 ≥ 1) , (1)

where& is a nonexpansivemapping,/ : ! → ! is a contrac-
tion, and {.!} is a sequence in (0, 1) satisfying
(M1) lim!→∞.! = 0;
(M2) ∑∞!=1 .! =∞;
(M3) lim!→∞(1/.!) − (1/.!+1) = 0.

It was proved that the sequence {)!} generated by (1) con-
verges to a fixed point 6 of & and the following inequality
holds:⟨/ (6) − 6, 8 − 6⟩ ≤ 0 ∀8 ∈ Fix (&) := {) ∈ ! : ) = &)} .

(2)

In the literature, Moudafi’s scheme has been widely studied
and extended (see [2, 3]). It should be noted that the
convergence of Moudafi’s scheme is equivalent to that of its
special setting with a constant contraction/ (see [4]). In fact,
this follows from the role of the nonexpansiveness of &.

In the earlier result, the following scheme was studied by
Halpern [5]; starting with an arbitrary initial )1 ∈ ! and a
given ; ∈ !, he defined a sequence {)!} by)!+1 = <!; + (1 − <!) &)! (2 ≥ 1) , (3)

where {<!} is a certain sequence in (0, 1). In fact, Halpern
proved in 1967 the convergence of the iterative sequence {)!}
where <! = 2−% and = ∈ (0, 1). Many researchers (see, e.g.,
[6, 7]) have improved Halpern’s result from Hilbert spaces to
certain Banach spaces with the following conditions on {<!}:

(C1) lim!→∞<! = 0;
(C2) ∑∞!=1 <! =∞;
(C3) lim!→∞(<!/<!+1) = 1 or ∑∞!=1 |<! − <!+1| <∞.

Halpern also showed that conditions (C1) and (C2) are
necessary for the convergence of the sequence generated by
(3) for any given )1, ; ∈ !.
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2 Abstract and Applied Analysis

On the other hand,Chidume-Chidume [8] and Suzuki [9]
independently discovered that together just conditions (C1)
and (C2) are sufficient for the convergence of the following
iterative sequence:)1, ; ∈ >, )!+1 = <!; + (1 − <!) &&)! (2 ≥ 1) , (4)

where && = ?@ + (1 − ?)& and ? ∈ (0, 1). Recently, Saejung
[10] proved that the conclusion remains true if & is a strongly
nonexpansive mapping. It is noted that in Hilbert spaces the
mapping && is strongly nonexpansive whenever ? ∈ (0, 1).
Recall that a mapping & : ! → ! is strongly nonexpansive
(see [11, 12]) if it is nonexpansive and lim!→∞‖()! − +!) −(&)! − &+!)‖ = 0 whenever {)!}, {+!} are sequences in !
such that {)!−+!} is bounded and lim!→∞(‖)!−+!‖−‖&)!−&+!‖) = 0.

In the aforementioned results, it was assumed that& has a
fixed point; that is, Fix(&) ̸=Ø.Nowwe consider the following
more general settings. A mapping & : ! → ! is

(i) quasi-nonexpansive if Fix(&) ̸=Ø and ‖&)− 8‖ ≤ ‖)−8‖ for all ) ∈ ! and 8 ∈ Fix(&);
(ii) strongly quasi-nonexpansive if it is quasi-nonexpan-

sive and lim!→∞‖)! − &)!‖ = 0 whenever {)!} is a
bounded sequence in! such that lim!→∞(‖)! −8‖−‖&)! − 8‖) = 0 for some 8 ∈ Fix(&).

In 2010, Maingé [2] proved the convergence of the sequence{)!} defined by )1 ∈ ! and)!+1 = <!/ ()!) + (1 − <!) &')!, (5)

where &' = (1 − B)@ + B&, B ∈ (0, 1/2) and & is a quasi-
nonexpansive mapping under the conditions (C1) and (C2).
In 2011,Wongchan and Saejung [13] improvedMaingé’s result
by replacing &' with a strongly nonexpansive mapping &.
Hence, the restriction B ∈ (0, 1/2) can be extended to B ∈(0, 1).

There are also some other iterative schemes closely related
to the schemes above studied by many authors. For example,
inspired by the scheme studied by Yamada [14], Tian and
Jin [15, 16] recently proposed the following iterative scheme,
starting with an arbitrary initial )1 ∈ ! and)!+1 = <!C/ ()!) + (@ − <!DE)&')! (2 ≥ 1) , (6)

where / and &' are the same as Maingé’s result but E : ! →! is strongly monotone and Lipschitzian.
A careful reading shows that there are some connections

between them.We will discuss and consolidate them into the
following scheme: Started with an arbitrary initial )1 ∈ !
and )!+1 = <! (/ ()!) + F (&!)!)) + (1 − <!) &!)!(2 ≥ 1) , (7)

where /, F are Lipschitzian and {&!} is a certain sequence of
quasi-nonexpansive mappings.

2. Preliminaries

In this section, we collect together some known lemmas
which are our main tool in proving our results. Let > be
a closed and convex subset of !. Recall that the metric
projection G( : ! → > is defined as follows: for ) ∈ !,G() is the only one point in > satisfyingHHHH) − G()HHHH = inf {HHHH) − +HHHH : + ∈ >} . (8)

Lemma 1 (see [17]). Let> be a nonempty closed convex subset
of a Hilbert space !. Then for ) ∈ ! and + ∈ >, + = G() if
and only if ⟨) − +,+ − 6⟩ ≥ 0 for all 6 ∈ >.
Lemma 2. Let! be a Hilbert space.ThenHHHH) + +HHHH2 ≤ ‖)‖2 + 2⟨+,) + +⟩ (9)

for all ),+ ∈ !.
We also need the following lemma.

Lemma 3 (see [18, Lemma 2.5]). Let {K!} ⊂ [0,∞), {<!} ⊂[0, 1), and {M!} ⊂ (−∞,∞), <̂ ∈ [0, 1) be such that
(i) {K!} is a bounded sequence;
(ii) K!+1 ≤ (1 − <!)2K! + 2<!<̂√K!√K!+1 + <!M! for all2 ∈ N;
(iii) whenever {K!!} is a subsequence of {K!} satisfying

lim inf)→∞(K!!+1 − K!!) ≥ 0, it follows that
lim sup)→∞M!! ≤ 0;

(iv) lim!→∞<! = 0 and ∑∞!=1 <! =∞.
Then lim!→∞K! = 0.
Lemma 4 (see [19, Lemma 2.3]). Let {P!} be a sequence of
nonnegative real numbers, {<!} a sequence of real numbers
in [0, 1] with ∑∞!=1 <! = ∞, {;!} a sequence of nonnegative
real numbers with ∑∞!=1 ;! < ∞, and {Q!} a sequence of real
numbers with lim sup!→∞Q! ≤ 0. Suppose thatP!+1 ≤ (1 − <!) P! + <!Q! + ;! ∀2 ∈ N. (10)

Then lim!→∞P! = 0.
3. Main Results

Recall that {&! : ! → !} is a strongly quasi-nonexpansive
sequence if it satisfies the following conditions:

(1) ⋂∞!=1 Fix(&!) ̸=Ø;
(2) ‖&!)−S‖ ≤ ‖)−S‖ for all ) ∈ ! andS ∈ ⋂∞!=1 Fix(&!)

and for all 2 ∈ N;
(3) lim!→∞‖)! − &!)!‖ = 0 whenever {)!} is a bounded

sequence in! such that lim!→∞(‖)! − 8‖ − ‖&!)! −8‖) = 0 for some 8 ∈ ⋂∞!=1 Fix(&!).
We also say that {&!} satisfies the NST-condition if whenever{6!} is a bounded sequence in ! such that lim!→∞‖6! −&!6!‖ = 0 it follows that every weak cluster point of {6!}
belongs to⋂∞!=1 Fix(&!).
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Remark 5.
(1) Being strongly nonexpansive the sequence and NST-

condition are apparently inherited by subsequences.
(2) Suppose that &! = & : ! → ! for all 2 ≥ 1.

(i) If & is a strongly nonexpansive mapping, then{&!} is a strongly nonexpansive sequence.
(ii) If @ − & is demiclosed at zero, then {&!} satisfies

NST-condition.

Recall that @ − & : ! → ! is demiclosed at zero if {)!} is
a sequence in ! such that lim!→∞‖)! − &)!‖ = 0 and T −
lim!→∞)! = S; then S ∈ Fix(&).

We now state our main theorem.

Theorem 6. Let {&! : ! → !} be a strongly quasi-
nonexpansive sequence satisfying the NST-condition. Let /,F :! → ! be <- and U-Lipschitzian, respectively. Suppose that{)!} is given by )1 ∈ ! and)!+1 = <! (/ ()!) + F (&!)!)) + (1 − <!) &!)!(2 ≥ 1) , (11)

where {<!} is a sequence in (0, 1) satisfying the conditions (C1)
and (C2). Suppose that <+U < 1.Then {)!} converges strongly
to S = G⋂∞#=1 Fix(+#)(/ + F)(S).

Before we give the proof, we note that E := ⋂∞!=1 Fix(&!)
is closed and convex. It follows from <+U < 1 that /+F is an(<+U)-contraction.Then the mapping G,(/+F) : E → E is
a contraction. By Banach’s contraction principle, there exists
a unique element S ∈ E such that S = G,(/+F)(S). It follows
then from Lemma 1 that ⟨(/ + F)(S) − S, 6 − S⟩ ≤ 0 for all6 ∈ E.

Let us consider the following three lemmas first.

Lemma 7. The sequence {)!} is bounded. Hence, so are the
sequences {/()!)}, {&!)!}, and {F(&!)!)}.
Proof. We consider the following inequality:HHHH)!+1 − SHHHH ≤ <! HHHH/ ()!) + F (&!)!) − SHHHH+ (1 − <!) HHHH&!)! − SHHHH . (12)

Since each &! is quasi-nonexpansive and S ∈ ⋂∞!=1 Fix(&!),
we have HHHH&!)! − SHHHH ≤ HHHH)! − SHHHH . (13)
It follows from the Lipschitzian conditions of / and F,
respectively that,<! HHHH/ ()!) + F (&!)!) − SHHHH≤ <! HHHH/ ()!) − / (S)HHHH + <! HHHHF (&!)!) − F (S)HHHH+ <! HHHH/ (S) + F (S) − SHHHH≤ <<! HHHH)! − SHHHH + U<! HHHH)! − SHHHH+ <! HHHH/ (S) + F (S) − SHHHH .

(14)

Then, we haveHHHH)!+1 − SHHHH≤ (1 − <! (1 − (< + U))) HHHH)! − SHHHH+ <! (1 − (< + U)) HHHH/ (S) + F (S) − SHHHH1 − (< + U)≤ max{HHHH)! − SHHHH , HHHH/ (S) + F (S) − SHHHH1 − (< + U) } .
(15)

By induction, for all 2 ≥ 1, we haveHHHH)!+1 − SHHHH ≤ max{HHHH)1 − SHHHH , HHHH/ (S) + F (S) − SHHHH1 − (< + U) } . (16)
In particular, the sequence {)!} is bounded.
Lemma 8. The following inequality holds for all 2 ≥ 1:HHHH)!+1 − SHHHH2≤ (1 − <!)2HHHH)! − SHHHH2 + 2 (< + U) <! HHHH)! − SHHHH× HHHH)!+1 − SHHHH + 2<!⟨/ (S) + F (S) − S, )!+1 − S⟩. (17)
Proof. It follows from Lemma 2 thatHHHH)!+1 − SHHHH2= HHHH<! (/ ()!) + F (&!)!) − S) + (1 − <!) (&!)! − S)HHHH2≤ (1 − <!)2HHHH&!)! − SHHHH2+ 2<! ⟨/ ()!) + F (&!)!) − S,)!+1 − S⟩ .

(18)

Since each &! is quasi-nonexpansive and S ∈ ⋂∞!=1 Fix(&!),HHHH&!)! − SHHHH2 ≤ HHHH)! − SHHHH2. (19)

Next, we consider⟨/ ()!) + F (&!)!) − S,)!+1 − S⟩= ⟨/ ()!) − / (S) ,)!+1 − S⟩+ ⟨F (&!)!) − F (S) ,)!+1 − S⟩+ ⟨/ (S) + F (S) − S,)!+1 − S⟩≤ < HHHH)! − SHHHH HHHH)!+1 − SHHHH + U HHHH)! − SHHHH× HHHH)!+1 − SHHHH + ⟨/ (S) + F (S) − S,)!+1 − S⟩= (< + U) HHHH)! − SHHHH HHHH)!+1 − SHHHH+ ⟨/ (S) + F (S) − S,)!+1 − S⟩ .
(20)

Hence, the result follows.
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4 Abstract and Applied Analysis

Lemma 9. If there is a subsequence {)!!} of {)!} such that
lim inf)→∞(‖)!!+1 − S‖ − ‖)!! − S‖) ≥ 0, then

lim sup)→∞ ⟨/ (S) + F (S) − S,)!!+1 − S⟩ ≤ 0. (21)

Proof. We note that lim)→∞<!! = 0. We consider the follow-
ing inequality:0 ≤ lim inf)→∞ (HHHHH)!!+1 − SHHHHH − HHHHH)!! − SHHHHH)≤ lim inf)→∞ (<!! HHHHH/ ()!!) − F (&!!)!!) − SHHHHH+ (1 − <!!) HHHHH&!!)!! − SHHHHH − HHHHH)!! − SHHHHH)≤ lim inf)→∞ (HHHHH&!!)!! − SHHHHH − HHHHH)!! − SHHHHH)≤ lim sup)→∞ (HHHHH&!!)!! − SHHHHH − HHHHH)!! − SHHHHH) ≤ 0.

(22)

Then lim)→∞(‖&!!)!! − S‖ − ‖)!! − S‖) = 0. Since {&!}
is strongly quasi-nonexpansive, so is {&!!}. This implies that
lim)→∞‖)!! − &!!)!!‖ = 0. Moreover,HHHHH)!!+1 − )!!HHHHH≤ HHHHH)!!+1 − &!!)!!HHHHH + HHHHH&!!)!! − )!!HHHHH= <!! HHHHH/ ()!!) + F (&!)!!) − &!!)!!HHHHH+ HHHHH&!!)!! − )!!HHHHH .

(23)

Then lim)→∞‖)!!+1 − )!!‖ = 0. Since {)!!} is bounded,
there exists a subsequence {)!!$ } of {)!!} such that T −
lim-→∞)!!$ = 8 and

lim sup)→∞ ⟨/ (S) + F (S) − S, )!! − S⟩= lim-→∞⟨/ (S) + F (S) − S, )!!$ − S⟩ . (24)

As lim)→∞‖)!! − )!!+1‖ = 0, we have lim sup)→∞⟨/(S) +F(S) − S, )!!+1 − S⟩ = ⟨/(S) + F(S) − S, 8 − S⟩. Since {&!}
satisfies NST-condition, we have 8 ∈ E and hence ⟨/(S) +F(S) − S, 8 − S⟩ ≤ 0.Therefore,

lim sup)→∞ ⟨/ (S) + F (S) − S,)!!+1 − S⟩ ≤ 0, (25)

as desired.

Proof ofTheorem 6. We are ready to apply Lemma 3. SetK! := HHHH)! − SHHHH2,M! := ⟨/ (S) + F (S) − S, )!+1 − S⟩ ,<̂ := < + U. (26)

It follows that

(i) {K!} is a bounded sequence (by Lemma 7);

(ii) K!+1 ≤ (1−<!)2K!+2<!<̂√K!√K!+1+<!M! for all 2 ≥ 1
(by Lemma 8);

(iii) whenever {K!!} is a subsequence of {K!} satisfy-
ing lim inf)→∞(K!!+1 − K!!) ≥ 0, it follows that
lim sup)→∞M!! ≤ 0 (by Lemma 9).

Hence, lim!→∞‖)! − S‖ = lim!→∞K! = 0. This completes
the proof.

4. Deduced Results

4.1. Wongchan and Saejung’s Result. Setting F ≡ 0 and&! ≡ &
for all 2 ∈ N in the proof ofTheorem 6, we immediately have
the following result of Wongchan and Saejung ([13,Theorem
6]).

Corollary 10. Let> be a closed convex subset of aHilbert space! and & : > → > a strongly quasi-nonexpansive mapping
such that @ − & is demiclosed at zero. Suppose that / : > → >
is a contraction and a sequence {)!} is generated by )1 ∈ > and)!+1 = <!/ ()!) + (1 − <!) &)!, (27)

where {<!} is a sequence in (0, 1) satisfying the conditions (C1)
and (C2).Then {)!} converges strongly to S = GFix(+)/(S).
4.2. Tian and Jin’s Result I. Recall that amappingE : ! → !
is `-strongly monotone if ⟨) − +,E) − E+⟩ ≥ `‖) − +‖2 for all),+ ∈ !.
Lemma 11. Let E : ! → ! be an `-strongly monotone
and a-Lipschitzian mapping.Then ‖(@ − DE)) − (@ − DE)+‖ ≤√1 − 2b‖) − +‖ where b = D(` − (Da2/2)) for all ),+ ∈ !. In
particular, if 0 < D < 2`/a2, then @ − DE is a contraction.
Proof. Let ),+ ∈ !.ThenHHHH(@ − DE) ) − (@ − DE) +HHHH2= HHHH() − +) − D (E) − E+)HHHH2= HHHH) − +HHHH2 − 2D ⟨) − +,E) − E+⟩+ D2HHHHE) − E+HHHH2≤ HHHH) − +HHHH2 − 2D`HHHH) − +HHHH2 + D2a2HHHH) − +HHHH2= (1 − 2D(` − Da22 )) HHHH) − +HHHH2= (1 − 2b) HHHH) − +HHHH2.

(28)
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Theorem 12. Let & : ! → ! be a strongly quasi-nonexpan-
sive mapping such that @−& is demiclosed at zero. Let E : ! →! be an `-strongly monotone and a-Lipschitzian mapping. Let/ : ! → ! be an (-Lipschitzian mapping and let a sequence{)!} be generated by )1 ∈ ! and)!+1 = <!C/ ()!) + (@ − <!DE)&)! (2 ≥ 1) , (29)
where the sequence {<!} ⊂ (0, 1) satisfies the conditions (C1)
and (C2). Suppose that 0 < D < 2`/a2 and 0 < C( < 1 −√1 − 2b, where b = D(` − (Da2/2)). Then {)!} converges toS = GFix(+)(@ − DE + C/)S.
Proof. First we rewrite the iteration (29) as follows:)!+1 = <! (/̂ ()!) + F̂ (&)!)) + (1 − <!) &)!, (30)

where /̂ = C/ and F̂ = @−DE. Note that /̂ is a C(-Lipschitzian
and F̂ is a√1 − 2b-Lipschitzian. Using C( +√1 − 2( < 1 and
putting &! = & for all 2 ∈ N in Theorem 6 imply that {)!}
converges to S ∈ Fix(&), whereS = GFix(+) (/̂ + F̂) (S) = GFix(+) (@ − DE + C/) (S) . (31)

Lemma 13 (see [12]). If & : ! → ! is a quasi-nonexpansive
mapping, then the mapping &' := (1 − B)@ + B& is strongly
quasi-nonexpansive wherever B ∈ (0, 1).

Using Theorem 12 and Lemma 13, we immediately have
the following result which is an improvement of Tian and Jin’s
result ([15,Theorem 3.1]).

Theorem 14. Let & : ! → ! be a quasi-nonexpansive
mapping such that @−& is demiclosed at zero. Let E : ! → !
be an `-strongly monotone and a-Lipschitzian mapping. Let/ : ! → ! be an(-Lipschitzianmapping and let the sequence{)!} be generated by )1 ∈ ! and)!+1 = <!C/ ()!) + (@ − <!DE)&')! (2 ≥ 1) , (32)
where &' = (1 − B)@ + B&, B ∈ (0, 1) and the sequence {<!} ⊂(0, 1) satisfies the conditions (C1) and (C2). Suppose that 0 <D < 2`/a2 and 0 < C( < 1 − √1 − 2b where b = D(` −(Da2/2)).Then {)!} converges to S = GFix(+)(@ − DE + C/)(S).
Remark 15. Theorem 14 improves the result of Tian and Jin
([15,Theorem 3.1]) in the following ways.

(i) We assume that C( < 1 −√1 − 2b while [15,Theorem
3.1] is proved under the assumptions C( < b. We note
that b < 1 − √1 − 2b.

(ii) Our result allows us to choose B in the wider interval(0, 1) while [15, Theorem 3.1] is proved under the
assumptions B ∈ (0, 1/2).

4.3. Tian and Jin’s Result II. Recall that a mapping e : ! →! is strongly positive with the coefficient C > 0 if⟨e),)⟩ ≥ C‖)‖2 (33)
for all ) ∈ !.

Lemma 16 (see [20]). Let e be a strongly positive self-adjoint
linear bounded operator with coefficient C > 0 on ! and 0 <f ≤ ‖e‖−1.Then ‖ @ − fe ‖≤ 1 − fC.
Theorem 17. Let & : ! → ! be a strongly quasi-nonex-
pansive mapping such that @ − & is demiclosed at zero. Lete : ! → ! be a bounded linear self-adjoint operator and
strongly positive with the coefficient C. Let / : ! → ! be an<-contraction mapping and let a sequence {)!} be generated by)1 ∈ ! and)!+1 = <!C/ ()!) + (@ − <!e)&)! (2 ≥ 1) , (34)

where the sequence {<!} ⊂ (0, 1) satisfies the conditions (C1)
and (C2). Suppose that 0 < C< < C. Then {)!} converges toS = G,./(+)(@ − e + C/)S.
Proof. By Lemma 16, we can choose Q ∈ (0, 1) such that ‖ @ −Qe ‖ ≤ 1 − QC. Rewrite the iteration (34) as follows:)!+1 = <̂! (/̂ ()!) + F̂ (&)!)) + (1 − <̂!) &)!, (35)

where /̂ := QC/, F̂ := @ − Qe and <̂! ≡ <!/Q for all 2 ∈ N.
Note that /̂ is QC<-Lipschitzian and F̂ is (1− QC)-Lipschitzian.
It follows from 0 < C< < C thatQC< + 1 − QC = 1 − Q (C − <C) < 1. (36)

Setting &! ≡ & for all 2 ∈ N in Theorem 6 implies that {)!}
converges to S ∈ Fix(&) such that S = GFix(+)(/̂ + F̂)S =GFix(+)(QC/+@−Qe)S; that is, ⟨QC/(S)+S−QeS−S,S−T⟩ ≥ 0
for all T ∈ Fix(&).This implies that ⟨C/(S) − eS,S − T⟩ ≥ 0
for all T ∈ Fix(&); that is, S = GFix(+)(C/ + @ − e)S. This
completes the proof.

Using Lemma 13 and Theorem 17, we immediately have
the following result which is an improvement of Tian and Jin’s
result ([16,Theorem 3.1]).

Theorem 18. Let & : ! → ! be a quasi-nonexpansive
mapping such that @−& is demiclosed at zero. Lete : ! → !
be a bounded linear self-adjoint operator and strongly positive
with the coefficient C. Let / : ! → ! be an <-contraction
mapping, and let the sequence {)!} be generated by )1 ∈ !
and )!+1 = <!C/ ()!) + (@ − <!e)&')! (2 ≥ 1) , (37)

where &' = (1 − B)@ + B&, B ∈ (0, 1) and the sequence {<!} ⊂(0, 1) satisfies the conditions (C1) and (C2). Suppose that 0 <C< < C.Then {)!} converges to S = GFix(+)(@ − e + C/)S.
Remark 19. Theorem 18 improves the result of Tian and Jin
([16,Theorem 3.1]). In fact, their result was proved under the
assumption B ∈ (0, 1/2) while our result allows us to chooseB in the wider interval (0, 1).
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6 Abstract and Applied Analysis

5. A Discussion on Marino-Xu’s Result

The following theorem is studied by many authors; for
example, see [3].

Theorem 20. Let> be a closed convex subset of a Hilbert space!. Suppose that
(i) & : > → > is a nonexpansive mapping and

Fix(&) ̸=Ø;
(ii) {<!} ⊂ (0, 1) is a sequence satisfying the conditions

(C1), (C2), and (C3).

Define the following iterative sequence:;,)1 ∈ >, (38))!+1 = <!; + (1 − <!) &)!. (39)

Then {)!} converges to GFix(+);.
Using the technique in [4], we can give a simple proof of

the following result proved by Marino and Xu [20].

Theorem 21. Suppose that

(i) e : ! → ! is a bounded linear self-adjoint operator
and it is strongly positive with the coefficient C;

(ii) & : ! → ! is a nonexpansive mapping and
Fix(&) ̸=Ø;

(iii) / : ! → ! is an <-contraction;
(iv) C is a positive number such that 0 < C< < C;
(v) {<!} ⊂ (0, 1) is a sequence satisfying the conditions

(C1), (C2), and (C3).

Define the following iterative sequence:61 ∈ ! (40)6!+1 = <!C/ (6!) + (@ − <!e)&6!. (41)

Then {6!} converges to 6̂ ∈ Fix(&) and ⟨e6̂−C/(6̂), 6̂ −T⟩ ≤ 0
for all T ∈ Fix(&).
Proof. Choose Q ∈ (0, 1) such that ‖ @− Qe ‖ ≤ 1− QC. First we
show that @−Qe+QC/ is a contraction. To see this, let ),+ ∈ !.
ThenHHHH(@ − Qe + QC/) ) − (@ − Qe + QC/) +HHHH≤ HHHH(@ − Qe) ) − (@ − Qe)+HHHH + QC HHHH/ ()) − / (+)HHHH≤ ‖@ − Qe‖ HHHH) − +HHHH + QC HHHH/ ()) − / (+)HHHH≤ (1 − QC) HHHH) − +HHHH + QC< HHHH) − +HHHH= (1 − Q (C − C<)) HHHH) − +HHHH .

(42)

It follows from C< < C that @ − Qe + QC/ is a contraction.
Note that GFix(+) is nonexpansive and hence GFix(+)(@ − Qe +QC/) is a contraction from Fix(&) into itself. It follows
from the closedness of Fix(&) and the Banach’s contraction

principle that there exists a unique element 6̂ ∈ Fix(&) such
that 6̂ = GFix(+) (@ − Qe + QC/) (6̂) . (43)

Therefore,⟨e6̂ − C/ (6̂) , 6̂ − T⟩ ≤ 0 ∀T ∈ Fix (&) . (44)

Now we define the following iterative sequence:)1 = 61,)!+1 = <!Q ((@ − Qe)&6̂ + QC/ (6̂)) + (1 − <!Q ) &)!. (45)

It follows fromTheorem 20 that the sequence {)!} converges
to 6̂ = GFix(+)(@ − Qe + QC/)(6̂). Observe that6!+1 = <!Q ((@ − Qe)&6! + QC/ (6!)) + (1 − <!Q ) &6!. (46)
We next consider the following expression:HHHH6!+1 − )!+1HHHH= HHHHHHH(1 − <!Q ) (&6! − &)!) + <!Q (@ − Qe) (&6! − &6̂)+<!Q QC (/ (6!) − / (6̂))HHHHHHH≤ (1− <!Q ) HHHH6!−)!HHHH + <!Q (1 − QC) HHHH6!−6̂HHHH + <!C< HHHH6!−6̂HHHH= (1 − <!Q ) HHHH6! − )!HHHH + (<!Q − <! (C − C<)) HHHH6! − 6̂HHHH≤ (1 − <! (C − C<)) HHHH6!−)!HHHH + (<!Q −<! (C−C<)) HHHH)! − 6̂HHHH= (1 − <! (C − C<)) HHHH6! − )!HHHH + <! (C − C<)× ( (1/Q) − (C − C<)C − C< ) HHHH)! − 6̂HHHH .

(47)

It follows from Lemma 4 that lim!→∞‖6! − )!‖ = 0.
Therefore, we conclude that {6!} converges to 6̂ ∈ Fix(&) and⟨e6̂−C/(6̂), 6̂ −T⟩ ≤ 0 for allT ∈ Fix(&).This completes the
proof.
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Based on the convergence theorem recently proved by the second author, we modify
the iterative scheme studied by Moudafi for quasi-nonexpansive operators to obtain
strong convergence to a solution of the split common fixed point problem. It is
noted that Moudafi’s original scheme can conclude only weak convergence. As
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1. Introduction

Let C and Q be closed convex subsets of Hilbert spaces H1 and H2, respectively and A : H1 → H2 be
a bounded linear operator. The split feasibility problem (SFP) which was first introduced by Censor and
Elfving [4] is to find

x̂ ∈ C such that Ax̂ ∈ Q. (1)

Suppose that PC and PQ are the (orthogonal) projections onto the sets C and Q, respectively. Assuming
that SFP is consistent (i.e., (1) has a solution), it is not difficult to see that x̂ ∈ H1 solves (1) if and only if
it solves the fixed-point equation

x̂ = PC

(
I + γA∗(PQ − I)A

)
x̂,

where γ > 0 is any positive constant, I is the identity operator and A∗ denotes the adjoint of A. To solve (1),
in the setting of the finite dimensional case, Byrne [2] proposed the following so-called CQ algorithm:

xn+1 = PC

(
xn + γAt(PQ − I)Axn

)
, n ∈ N,
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where γ ∈ ]0, 2
L [, with L being the largest eigenvalue of the matrix AtA (t stands for matrix transposition).

SFP is important and has been widely studied because it plays a prominent role in the signal processing
and image reconstruction problem. Initiated by SFP, several “split type” problems have been investigated
and studied, for example, the split variational inequality problem (SVIP) and the split null point problem
(SCNP). We will consolidate these problems. Let U : H1 → H1 and T : H2 → H2 be two operators with
nonempty fixed point sets Fix(U) := {x ∈ H1: x = Ux} and Fix(T ), respectively. The split common fixed
point problem (SCFP) is to find

x̂ ∈ Fix(U) such that Ax̂ ∈ Fix(T ).

If U := PC and T := PQ, then Fix(U) = C and Fix(T ) = Q and hence SCFP immediately reduces to
SFP. In the case that U and T are directed operators, Censor and Segal [5] proposed and proved, still in
finite-dimensional spaces, the convergence of the following algorithm:

xn+1 = U
(
xn + γAt(T − I)Axn

)
, n ∈ N,

where γ and L are as mentioned before. Note that a class of directed operators includes the metric projec-
tions. Hence the result of Censor et al. recovers Byrne’s CQ algorithm.

Moudafi [9] recently studied the convergence properties of a relaxed algorithm for SCFP for a class of
quasi-nonexpansive operators T such that I − T is demiclosed at zero. He also proved a weak convergence
theorem as shown below.

Theorem 1.1. Given a bounded linear operator A : H1 → H2, let U : H1 → H1 and T : H2 → H2 be two
quasi-nonexpansive operators with nonempty sets Fix(U) = C and Fix(T ) = Q. Assume that I − U and
I −T are demiclosed at zero. Suppose Γ := {x ∈ C: Ax ∈ Q} ̸= ∅ and define an iterative sequence {xn} by

⎧
⎪⎨

⎪⎩

x0 ∈ H1,

un = xn + γβA∗(T − I)Axn,

xn+1 = (1 − αn)un + αnU(un),

where β ∈ ]0, 1[, αn ∈ ]0, 1[ and γ ∈ ]0, 1
λβ [ with λ = ∥A∗A∥. Then {xn} converges weakly to x̂ ∈ Γ provided

that αn ∈ ]δ, 1 − δ[ for a small enough δ > 0.

Note that, in the setting of finite dimensional spaces, weak and strong convergences are equivalent.
Differently, in infinite dimensional cases, they are not the same. Furthermore, Moudafi’s result [9] can
guarantee only weak convergence. In most cases, strong convergence is more desirable than weak convergence.
In this paper, we slightly modify the algorithm to obtain a strong convergence.

2. Definitions and preliminaries

Throughout, let H be a real Hilbert space with inner product ⟨·,·⟩ and the induced norm ∥ · ∥. We denote
the strong and weak convergence of a sequence {xn} in H to an element x ∈ H by xn → x and xn ⇀ x,
respectively. For a closed convex subset C of H, the (metric) projection PC : H → C is defined for each
x ∈ H as the unique element PCx ∈ C such that

∥x− PCx∥ = inf
{
∥x− z∥: z ∈ C

}
.

For x ∈ H and y ∈ C, it is known that

y = PCx ⇐⇒ ⟨y − x, z − y⟩ ! 0 for all z ∈ C.
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In this paper, the fixed-point set of an operator T : H → H is denoted by Fix(T ), that is, Fix(T ) =
{x ∈ H: x = Tx}.

Let us recall some definitions of operators involved in our study.

Definition 2.1. An operator T : H → H is called:

• L-Lipschitzian if

∥Tx− Ty∥ " L∥x− y∥ for all x, y ∈ H;

• a contraction if it is α-Lipschitzian with α ∈ [0, 1[, and in this case, we also say that T is a contraction
with the coefficient α;

• nonexpansive if T is 1-Lipschitzian;
• quasi-nonexpansive if Fix(T ) ̸= ∅ and

∥Tx− p∥ " ∥x− p∥ for all x ∈ H, p ∈ Fix(T );

equivalently, for all x ∈ H and p ∈ Fix(T ),

⟨x− Tx, p− x⟩ " −1
2∥x− Tx∥2;

• strongly quasi-nonexpansive if T is quasi-nonexpansive and

xn − Txn → 0

whenever {xn} is a bounded sequence in H and ∥xn − p∥ − ∥Txn − p∥ → 0 for some p ∈ Fix(T );
• monotone if

⟨Tx− Ty, x− y⟩ ! 0 for all x, y ∈ H.

Proposition 2.2. If T : H → H is a nonexpansive operator, then the following inequality holds for all x, y ∈ H

〈
x− y, (I − T )x− (I − T )y

〉
! 1

2
∥∥(I − T )x− (I − T )y

∥∥2
.

Proof. Since T is nonexpansive, we have

∥x− y∥2 ! ∥Tx− Ty∥2

=
∥∥(I − T )x− (I − T )y − (x− y)

∥∥2

=
∥∥(I − T )x− (I − T )y

∥∥2 − 2
〈
x− y, (I − T )x− (I − T )y

〉
+ ∥x− y∥2.

Therefore we get

〈
x− y, (I − T )x− (I − T )y

〉
! 1

2
∥∥(I − T )x− (I − T )y

∥∥2
. ✷

Corollary 2.3. Let S : H → H be a quasi-nonexpansive operator and

T := (1 − α)I + αS,
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for some α ∈ ]0, 1]. Then, for all x ∈ H and p ∈ Fix(T ), we have the following inequality

⟨x− Tx, p− x⟩ " − 1
2α∥x− Tx∥2.

Proof. Obviously, Fix(T ) = Fix(S). It follows from Proposition 2.2 that

⟨x− Tx, p− x⟩ = α⟨x− Sx, p− x⟩ " −α

2 ∥x− Sx∥2 = − 1
2α∥x− Tx∥2.

The proof is finished. ✷

3. Main results

Let us recall first the result proved by the second author.

Theorem 3.1. (See [13].) Let C be a closed and convex subset of a Hilbert space H and let T : C → C be a
strongly quasi-nonexpansive operator such that I − T is demiclosed at zero. Suppose that x0 ∈ C and {xn}
is a sequence generated iteratively by x1 ∈ C and

xn+1 = αnx0 + (1 − αn)Txn,

where {αn} is a sequence in ]0, 1[ such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Then {xn} converges
strongly to a fixed point PFix(T )x0 of T .

Recall that an operator T is demiclosed at zero [15] if

Tx = 0 whenever xn ⇀ x and Txn → 0.

3.1. The split common fixed point problem

Throughout this paper, let Γ := {x ∈ Fix(U): Ax ∈ Fix(T )}. It is clear that Γ is closed and convex.

Theorem 3.2. Let U : H1 → H1 be a strongly quasi-nonexpansive operator and T : H2 → H2 be a quasi-
nonexpansive operator such that both I−U and I−T are demiclosed at zero. Let A : H1 → H2 be a bounded
linear operator with L = ∥A∗A∥. Suppose that Γ ̸= ∅. Let {xn} ⊂ H1 be a sequence generated by

{
x0 ∈ H1,

xn+1 = αnx0 + (1 − αn)U
(
xn + γA∗(T − I)Axn

)
,

where the parameter γ and the sequence {αn} satisfy the following conditions:

(a) γ ∈ ]0, 1
L [,

(b) {αn} ⊂ ]0, 1[, limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then xn → PΓx0.

The following lemma is extracted from Lemma 6.2 of [6] which is needed for proving our main result.
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Lemma 3.3. Let H1 and H2 be Hilbert spaces. Let T : H2 → H2 be a nonexpansive operator and A : H1 → H2
be a bounded linear operator with L = ∥A∗A∥. For a positive real number γ, define the operator W : H1 → H1
by

W := I + γA∗(T − I)A.

Then the following hold:

• For all x, y ∈ H1,

∥Wx−Wy∥2 " ∥x− y∥2 + γ(γL− 1)
∥∥(T − I)Ax− (T − I)Ay

∥∥2
.

In addition, if T := (1 − α)I + αS where S : H2 → H2 is a nonexpansive operator, then

∥Wx−Wy∥2 " ∥x− y∥2 + γ

(
γL− 1

α

)∥∥(T − I)Ax− (T − I)Ay
∥∥2

.

• If Ax ∈ Fix(T ), then x ∈ Fix(W ) and the converse holds provided that γ ∈ ]0, 1
L [.

Proof. • Let x, y ∈ H1. Then we have

∥Wx−Wy∥2 =
∥∥(x + γA∗(T − I)Ax

)
−

(
y + γA∗(T − I)Ay

)∥∥2

=
∥∥(x− y) + γA∗((T − I)Ax− (T − I)Ay

)∥∥2

= ∥x− y∥2 + 2γ
〈
x− y,A∗((T − I)Ax− (T − I)Ay

)〉
+ γ2∥∥A∗((T − I)Ax− (T − I)Ay

)∥∥2

= ∥x− y∥2 + 2γ
〈
Ax−Ay, (T − I)Ax− (T − I)Ay

〉

+ γ2〈A∗((T − I)Ax− (T − I)Ay
)
, A∗((T − I)Ax− (T − I)Ay

)〉

= ∥x− y∥2 + 2γ
〈
Ax−Ay, (T − I)Ax− (T − I)Ay

〉

+ γ2〈AA∗((T − I)Ax− (T − I)Ay
)
, (T − I)Ax− (T − I)Ay

〉

" ∥x− y∥2 + 2γ
〈
Ax−Ay, (T − I)Ax− (T − I)Ay

〉

+ γ2∥∥AA∗∥∥∥∥(T − I)Ax− (T − I)Ay
∥∥2

.

Therefore we have

∥Wx−Wy∥2 " ∥x− y∥2 + 2γ
〈
Ax−Ay, (T − I)Ax− (T − I)Ay

〉

+ γ2L
∥∥(T − I)Ax− (T − I)Ay

∥∥2
. (2)

It follows from Proposition 2.2 that

∥Wx−Wy∥2 " ∥x− y∥2 + γ(γL− 1)
∥∥(T − I)Ax− (T − I)Ay

∥∥2
.

Furthermore, if T := (1 − α)I + αS where S is a nonexpansive operator, then
〈
Ax−Ay, (T − I)Ax− (T − I)Ay

〉
= α

〈
Ax−Ay, (S − I)Ax− (S − I)Ay

〉

" −α

2
∥∥(I − S)Ay − (I − S)Ax

∥∥2

= − 1
2α

∥∥(I − T )Ay − (I − T )Ax
∥∥2

.
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Hence from (2) and Proposition 2.2, we obtain

∥Wx−Wy∥2 " ∥x− y∥2 + γ

(
γL− 1

α

)∥∥(T − I)Ax− (T − I)Ay
∥∥2

.

• It is obvious that Ax ∈ Fix(T ) implies x ∈ Fix(W ). To see the converse, let γ ∈ ]0, 1
L [. Let x ∈ Fix(W )

and z ∈ H1 be such that Az ∈ Fix(T ). It follows that z ∈ Fix(W ) and hence we get

∥x− z∥2 = ∥Wx−Wz∥2 " ∥x− z∥2 + γ(γL− 1)
∥∥(T − I)Ax

∥∥2
.

Since γL < 1, we have (T − I)Ax = 0, that is, Ax ∈ Fix(T ). ✷

Corollary 3.4. Let T : H2 → H2 be a quasi-nonexpansive operator and A, W be operators defined as in
Lemma 3.3. Then

∥Wx− z∥2 " ∥x− z∥2 + γ(γL− 1)
∥∥(T − I)Ax

∥∥2
,

for all x ∈ H1 and z ∈ H1 such that Az ∈ Fix(T ).

Lemma 3.5. Let U : H1 → H1 be a strongly quasi-nonexpansive operator and T : H2 → H2 be a quasi-
nonexpansive operator. Let A : H1 → H2 be a bounded linear operator with L = ∥A∗A∥. Define the operator
W : H1 → H1 as in Lemma 3.3 where γL < 1. Suppose that Fix(U) ∩ Fix(W ) ̸= ∅ and {xn} is a bounded
sequence in H1. Then the following are equivalent:

(a) UWxn −Wxn → 0 and Wxn − xn → 0;
(b) UWxn − xn → 0;
(c) ∥xn − p∥ − ∥UWxn − p∥ → 0 for some p ∈ Fix(U) ∩ Fix(W ).

Proof. It is obvious that (a) ⇒ (b) ⇒ (c). We now show that (c) ⇒ (a). Suppose that ∥xn − p∥ −
∥UWxn − p∥ → 0 for some p ∈ Fix(U) ∩ Fix(W ). By using Corollary 3.4 and the quasi-nonexpansiveness
of U , we get

∥UWxn − p∥ " ∥Wxn − p∥ " ∥xn − p∥.

Therefore we have ∥Wxn − p∥ − ∥UWxn − p∥ → 0. Since U is strongly quasi-nonexpansive, we have
UWxn −Wxn → 0. Notice that ∥xn − p∥2 − ∥UWxn − p∥2 → 0. Using Corollary 3.4 again gives

γ(1 − γL)
∥∥(T − I)Axn

∥∥2 " ∥xn − p∥2 − ∥UWxn − p∥2 → 0.

Since γL < 1, we get Wxn − xn = γA∗(T − I)Axn → 0. Then (a) is satisfied and the proof is finished. ✷

Proof of Theorem 3.2. To conclude the result, by using Theorem 3.1, it suffices to show that:

(♠) the operator UW is strongly quasi-nonexpansive, where W := I + γA∗(T − I)A;
(♥) I − UW is demiclosed at zero.

We first note that Γ = Fix(U) ∩ Fix(W ) = Fix(UW ). Indeed, it follows from Lemma 3.3 that

Γ =
{
x ∈ H1: x ∈ Fix(U) and Ax ∈ Fix(T )

}

=
{
x ∈ H1: x ∈ Fix(U) and x ∈ Fix(W )

}

= Fix(U) ∩ Fix(W ).
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Then Fix(U) ∩ Fix(W ) ̸= ∅. We next show that Fix(U) ∩ Fix(W ) = Fix(UW ). To see this, it suffices to
show Fix(UW ) ⊂ Fix(U)∩Fix(W ). Then let p ∈ Fix(U)∩Fix(W ) and x ∈ Fix(UW ). By using Lemma 3.5
with xn ≡ x, we get that Wx = x and UWx = Wx, that is, x ∈ Fix(U) ∩ Fix(W ). So our assertion is
obtained. Combining this fact with Lemma 3.5, we have (♠). To prove (♥), let {xn} be a sequence such
that xn − UWxn → 0 and xn ⇀ x for some x ∈ H1. It follows from Lemma 3.5 that xn −Wxn → 0 and
yn − Uyn → 0 where yn ≡ Wxn. Notice that yn ⇀ x. Since I − U and I − T are demiclosed at zero, we
have x ∈ Fix(W ) ∩ Fix(U) = Fix(UW ). ✷

4. Another split problems deduced from SCFP

4.1. The split variational inequality problem

Let H1 and H2 be two real Hilbert spaces. Given operators f : H1 → H1 and g : H2 → H2, a bounded
linear operator A : H1 → H2 and nonempty closed convex subsets C ⊂ H1 and Q ⊂ H2, the split variational
inequality problem (SVIP) is the problem of finding a point x̂ ∈ VIP(C, f) such that Ax̂ ∈ VIP(Q, g), that is,

{
x̂ ∈ C such that

〈
f(x̂), x− x̂

〉
! 0 for all x ∈ C,

ŷ := Ax̂ ∈ Q such that
〈
g(ŷ), y − ŷ

〉
! 0 for all y ∈ Q.

This is equivalent to the problem of finding x̂ ∈ Fix(PC(I − λf)) such that Ax̂ ∈ Fix(PQ(I − λg)) where
λ > 0. We denote the set of solutions by SVIP(A,C,Q, f, g). Therefore SVIP can be viewed as SCFP. Under
appropriate conditions of the operators f and g, we can apply our result for SVIP.

In the work of Censor et al. [6], the operators f and g are assumed to be α-inverse strongly monotone
where α > 0, that is,

〈
x− y, f(x) − f(y)

〉
! α

∥∥f(x) − f(y)
∥∥2 and

〈
u− v, g(u) − g(v)

〉
! α

∥∥g(u) − g(v)
∥∥2

,

for all x, y ∈ H1 and u, v ∈ H2. It is known that if f is α-inverse strongly monotone and λ ∈ ]0, 2α[ then
PC(I − λf) is strongly quasi-nonexpansive and I − PC(I − λf) is demiclosed at zero. Hence their result
becomes a special case of ours. However, since every α-inverse strongly monotone operator is monotone and
Lipschitz continuous, the latter class of operators is then more general. It is worth noting that there exists a
monotone Lipschitz continuous operator f such that PC(I − λf) fails to be quasi-nonexpansive [7]. Thanks
to the extragradient method introduced by Korpelevič [8], we obtain a slight modification of such operators
and prove a strong convergence theorem for SVIP in the case when f and g are monotone and Lipschitz
continuous. More precisely, the following corollary is established.

Corollary 4.1. Let C and Q be nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Let
f : H1 → H1 and g : H2 → H2 be monotone and κ-Lipschitz continuous operators on C and Q, respectively
and A : H1 → H2 a bounded linear operator with ∥A∗A∥ = L. Suppose that SVIP(A,C,Q, f, g) ̸= ∅. Define
an iterative sequence {xn} ⊂ H1 by

{
x0 ∈ H1,

xn+1 = αnx0 + (1 − αn)U
(
xn + γA∗(T − I)Axn

)
,

where γ ∈ ]0, 1
L [,

U := PC

(
I − λfPC(I − λf)

)
,

T := PQ

(
I − λgPQ(I − λg)

)
, (3)

and λ ∈ ]0, 1
κ [. Then the sequence {xn} converges strongly to x̂ ∈ SVIP(A,C,Q, f, g).
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Before giving a proof, we present the following two lemmas.

Lemma 4.2. Let f : H → H be monotone and κ-Lipschitz continuous on C. Let S := PC(I − λf) where
λ > 0. If {xn} is a sequence in C satisfying xn ⇀ x̂ and xn − Sxn → 0, then x̂ ∈ VIP(C, f).

Proof. Since f is monotone and continuous, we have (see e.g., [14])

x̂ ∈ VIP(C, f) ⇐⇒
〈
f(x), x− x̂

〉
! 0 for all x ∈ C.

Let x ∈ C. Note that
〈
xn − λf(xn) − Sxn, Sxn − x

〉
! 0 for all n ∈ N.

Next, we consider
〈
λf(x), xn − x

〉
"

〈
λf(xn), xn − x

〉

=
〈
λf(xn), xn − Sxn

〉
+
〈
λf(xn), Sxn − x

〉

=
〈
λf(xn), xn − Sxn

〉
−
〈
xn − λf(xn) − Sxn, Sxn − x

〉
+ ⟨xn − Sxn, Sxn − x⟩

"
〈
λf(xn), xn − Sxn

〉
+ ⟨xn − Sxn, Sxn − x⟩

" λ
∥∥f(xn)

∥∥∥xn − Sxn∥ + ∥xn − Sxn∥∥Sxn − x∥.

Hence

〈
f(x), xn − x

〉
"

∥∥f(xn)
∥∥∥xn − Sxn∥ + 1

λ
∥xn − Sxn∥∥Sxn − x∥.

Since {f(xn)} is bounded, xn − Sxn → 0 and xn ⇀ x̂, we have
〈
f(x), x̂− x

〉
= lim

n→∞

〈
f(x), xn − x

〉
" 0.

The proof is finished. ✷

The following lemma is extracted from [12].

Lemma 4.3. Let f : H → H be a monotone and κ-Lipschitz operator on C and λ be a positive number. Let
V := PC(I − λf) and S := PC(I − λfV ). Then, for all q ∈ VIP(C, f), we have

∥Sx− q∥2 " ∥x− q∥2 −
(
1 − λ2κ2)∥x− V x∥2.

In particular, if κλ < 1, then S is a strongly quasi-nonexpansive operator and Fix(S) = Fix(V ) = VIP(C, f).

Proof. Let q ∈ VIP(C, f). Note that

∥Sx− q∥2 "
∥∥(x− λf(V x)

)
− q

∥∥2 −
∥∥(x− λf(V x)

)
− Sx

∥∥2

= ∥x− q∥2 + 2λ
〈
q − Sx, f(V x)

〉
− ∥x− Sx∥2

= ∥x− q∥2 + 2λ
〈
q − V x, f(V x) − f(q)

〉

+ 2λ
〈
q − V x, f(q)

〉
+ 2λ

〈
V x− Sx, f(V x)

〉
− ∥x− Sx∥2

" ∥x− q∥2 + 2λ
〈
V x− Sx, f(V x)

〉
− ∥x− Sx∥2
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= ∥x− q∥2 + 2λ
〈
V x− Sx, f(V x)

〉
− ∥x− V x∥2 − 2⟨x− V x, V x− Sx⟩ − ∥V x− Sx∥2

= ∥x− q∥2 − ∥x− V x∥2 − ∥V x− Sx∥2 + 2
〈
x− λf(V x) − V x, Sx− V x

〉
.

Now we estimate the last term of the preceding expression
〈
x− λf(V x) − V x, Sx− V x

〉
=

〈
x− λf(x) − V x, Sx− V x

〉
+

〈
λf(x) − λf(V x), Sx− V x

〉

"
〈
λf(x) − λf(V x), Sx− V x

〉

" λκ∥x− V x∥∥Sx− V x∥.

So we have

∥Sx− q∥2 " ∥x− q∥2 − ∥x− V x∥2 − ∥V x− Sx∥2 + 2λκ∥x− V x∥∥Sx− V x∥

" ∥x− q∥2 − ∥x− V x∥2 − ∥V x− Sx∥2 + λ2κ2∥x− V x∥2 + ∥Sx− V x∥2

= ∥x− q∥2 −
(
1 − λ2κ2)∥x− V x∥2.

Assume further that κλ < 1 and let {xn} be a sequence in H such that ∥Sxn − q∥ − ∥xn − q∥ → 0 for
some q ∈ Fix(S). It follows from the above inequality that xn − V xn → 0 which can be easily deduced
to xn − Sxn → 0. Therefore S is strongly quasi-nonexpansive and it is not difficult to see that Fix(S) =
Fix(V ) = VIP(C, f). ✷

Proof of Corollary 4.1. It follows from Lemma 4.3 that both operators U and T defined in (3) are strongly
quasi-nonexpansive. We next show that I − U is demiclosed at zero. Let {xn} be a sequence in H1 such
that xn − Uxn → 0 and xn ⇀ x. Notice that ∥xn − q∥2 − ∥Uxn − q∥2 → 0 for some q ∈ VIP(C, f). Using
Lemma 4.3, we get

(
1 − λ2κ2)∥∥xn − PC(I − λf)xn

∥∥2 " ∥xn − q∥2 − ∥Uxn − q∥2 → 0.

Thus xn − PC(I − λf)xn → 0. Therefore, by Lemma 4.2, we get x ∈ VIP(C, f) = Fix(U). Similarly, I − T

is also demiclosed at zero. Then the result follows from Theorem 3.2. ✷

4.2. The split common null point problem

Given two set-valued operators B1 ⊂ H1 × H1 and B2 ⊂ H2 × H2 and a bounded linear operator
A : H1 → H2, the split common null point problem (SCNP) is the problem of finding

x̂ ∈ H1 such that 0 ∈ B1(x̂) and 0 ∈ B2(Ax̂). (4)

Recently, Byrne et al. [3] proposed a strong convergence theorem for finding such a solution x̂ when B1
and B2 are maximal monotone. Recall that B ⊂ H×H is:

• monotone if ⟨x− y, u− v⟩ ! 0 for all (x, u) ∈ B1 and (y, v) ∈ B2;
• maximal monotone if it is monotone and its graph is not properly contained in the graph of any other

monotone operator.

For a maximal monotone operator B ⊂ H×H and λ > 0, we can define a single-valued operator

JB
λ =: (I + λB)−1 : H → H.
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It is known that JB
λ is firmly nonexpansive, that is, for all x, y ∈ H,

〈
x− y, JB

λ x− JB
λ y

〉
!

∥∥JB
λ x− JB

λ y
∥∥2

,

and

0 ∈ B(x̂) ⇐⇒ x̂ ∈ Fix
(
JB
λ

)
.

Therefore, the problem (4) is equivalent to the problem of finding

x̂ ∈ H1 such that x̂ ∈ Fix
(
JB1
λ

)
and Ax̂ ∈ Fix

(
JB2
λ

)
,

where λ is a positive real number, that is, the SCNP reduces to the SCFP.
The result of Byrne et al. [3] is a consequence of our Theorem 3.2.

Corollary 4.4. (See [3].) Let H1 and H2 be two Hilbert spaces. Given two set-valued maximal monotone
operators B1 : H1 → 2H1 and B2 : H2 → 2H2 and a bounded linear operator A : H1 → H2 with L = ∥A∗A∥,
we define an iterative sequence {xn} by

{
x0 ∈ H1,

xn+1 = αnx0 + (1 − αn)JB1
λ

(
xn + γA∗(JB2

λ − I
)
Axn

)
,

(5)

where the parameters λ, γ and the sequence {αn} satisfy the following conditions:

(a) λ > 0, γ ∈ ]0, 2
L [,

(b) {αn} ⊂ ]0, 1[, limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Suppose that the solution set of (4), says Γ , is nonempty. Then xn → x̂ ∈ Γ .

Remark 4.5.

(1) Notice that Corollary 4.4 can be viewed as a corollary of our Theorem 3.2 for the following reasons.
(a) For a maximal monotone B and λ > 0, it is known that JB

λ is firmly nonexpansive and hence
nonexpansive. Moreover, I − JB

λ is demiclosed at zero [1] and

JB
λ = 1

2I + 1
2S,

for some nonexpansive operator S : H → H.
(b) For B2 and A defined as in Corollary 4.4, it follows from Lemma 3.3 with α = 1

2 that

∥Wx− y∥2 " ∥x− y∥2 + γ(γL− 2)
∥∥(JB2

λ − I
)
Ax

∥∥2
,

for all x ∈ H1 and y ∈ H2 such that Ay ∈ Fix(JB2
λ ) where W := I + γA∗(JB2

λ − I)A. So, in this
case, the parameter γ can be relaxed, that is, γ ∈ ]0, 2

L [ instead of ]0, 1
L [.

(2) Our Theorem 3.2 allows the parameter λ for JB1
λ and JB2

λ in Corollary 4.4 to be chosen differently.
(3) The strong limit x̂ of the sequence {xn} generated by (5) is indeed the nearest point projection of x0

onto the solution set Γ .
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4.3. Moudafi’s split feasibility problem

Let H1, H2 and H3 be Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty closed convex sets. Let
A : H1 → H3, B : H2 → H3 be bounded linear operators. Moudafi’s split feasibility problem [10,11] is the
problem of finding

x ∈ C and y ∈ Q such that Ax = By. (6)

We will transform this problem into the original SFP. Let us denote

H1 := H1 ×H2,

H2 := H3 ×H3,

C := C ×Q ⊂ H1,

Q :=
{
(z, w) ∈ H2: z = w

}
.

Define a linear operator A : H1 → H2 by

A(x, y) = (Ax,By) for all (x, y) ∈ H1.

If the set Γ := {(x, y) ∈ C: A(x, y) ∈ Q} is nonempty, then (x, y) ∈ H1 solves (6) if and only if

(x, y) = PC
(
I + γA∗(PQ − I)A

)
(x, y).

Note that:

• PC(x, y) = (PCx, PQy) for all (x, y) ∈ H1;
• PQ(z, w) = ( z+w

2 , z+w
2 ) for all (z, w) ∈ H2;

• A∗(z, w) = (A∗z,B∗w) for all (z, w) ∈ H2.

As a consequence of our Theorem 3.2, the following iterative sequence {(xn, yn)} defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H1,

y0 ∈ H2,

xn+1 = αnx0 + (1 − αn)PC

(
xn + γ

2A
∗(Byn −Axn)

)
,

yn+1 = αny0 + (1 − αn)PQ

(
yn + γ

2B
∗(Axn −Byn)

)
,

converges strongly to (x̂, ŷ) which simultaneously solves Moudafi’s split feasibility problem (6) and is nearest
to the initial guess (x0, y0).
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MONOTONE OPERATORS AND FIXED POINT PROBLEMS
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� The purpose of this article is to give a more general scheme for approximating a common element
of the fixed-point set of a certain mapping and the set of solutions of a variational inequality
problem. This scheme is inspired by the recent work of Maingé [A hybrid extragradient-viscosity
method for monotone operators and fixed point problems, SIAM J. Control Optim. 47, 1499–1515
(2008)]. We also show that some assumption imposed in his result can be relaxed. Moreover, our
scheme is a genuine generalization of Maingé’s result because there is a class of mappings to which
our scheme is applicable, but which is beyond the scope of his result.
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1. INTRODUCTION

Variational inequality problems for monotone mappings play an
important role in many branches in pure and applied sciences. To solve
these problems, various iterative methods have been proposed and studied
by many authors in the literature. The purpose of this article is to give a
short and simple proof of the recent method proposed by Maingé [12].

In this article, let � be a real Hilbert space with inner product 〈·, ·〉 and
the induced norm ‖ · ‖. Let C be a closed and convex subset of � . The
variational inequality problem for a given mapping A : C → � is the problem
of finding an element x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C � (1)
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Hybrid Extragradient-Viscosity Method 33

We denote the solution set of the problem above by VIP(C ,A), that
is, x∗ ∈ VIP(C ,A) if and only if x∗ ∈ C and (1) holds. Usually, the
variational inequality problem above is treated as the fixed point problem
for a certain mapping T : C → C , that is, the problem of finding an
element x∗ ∈ C such that x∗ = Tx∗. In fact, it is noted that for a
number � > 0

〈Ax∗, x − x∗〉 ≥ 0∀x ∈ C

⇔ 〈x∗ − (x∗ − �Ax∗), x − x∗〉 ≥ 0 ∀x ∈ C

⇔ x∗ = PC(I − �A)x∗,

where PC is the metric projection from � onto C and I is the identity
mapping. To simplify the notation, let Fix(T ) denote the set of fixed points
of T . It follows then that

VIP(C ,A) = Fix(PC(I − �A)) ∀� > 0�

Let us recall the following three interesting methods for variational
inequality problems and fixed point problems which have been studied by
many researchers in the literature. The related definitions and notions will
be given in Section 2.

1.1. Korpelevich’s Extragradient Method

Suppose that the mapping A : C → � is

• monotone, that is, 〈Ax − Ay, x − y〉 ≥ 0 for all x , y ∈ C ;
• �-Lipschitz continuous where � > 0, that is, ‖Ax − Ay‖ ≤ �‖x − y‖ for all
x , y ∈ C .

Korpelevich [11] proposed the following so-called extragradient method
for finding an element in VIP(C ,A):

x0 ∈ C
yn = PC(xn − �Axn)
xn+1 = PC(xn − �Ayn),

(2)

where the stepsize � ∈ (0, 1/�). It is known that if VIP(C ,A) �= �, the
sequence �xn� generated by (2) converges weakly to an element in
VIP(C ,A). Recently, Censor et al. had made great progress in this method
(see [4–6]).
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34 R. Kraikaew and S. Saejung

1.2. Moudafi’s Viscosity Method

Let T : C → C be a nonexpansive mapping, that is, it is 1-Lipschitz
continuous. Moudafi [14] proposed the so-called viscosity method for the
fixed point problem for T as follows:{

x0 ∈ C
xn+1 = �nf (xn) + (1 − �n)Txn ,

(3)

where f : C → C is a strict contraction, that is, f is L-Lipschitz continuous
mapping with 0 ≤ L < 1, and ��n� is a sequence in (0, 1) satisfying

(C1) limn→∞ �n = 0 and
∑∞

n=0 �n = ∞;
(C2)

∑∞
n=0 |�n − �n+1| < ∞ or limn→∞(�n/�n+1) = 1.

It is proved that if Fix(T ) �= �, then the sequence �xn� generated by (3)
converges strongly to an element z ∈ VIP(Fix(T ), I − f ), that is, z ∈ Fix(T )
and 〈z − f (z), q − z〉 ≥ 0 for all q ∈ Fix(T ). In this setting, it is known that
Fix(T ) is closed and convex and VIP(Fix(T ), I − f ) = �z�. Let us note that
Moudafi’s viscosity method is a variant of Halpern’s method [9].

1.3. Yamada’s Hybrid Steepest Descent Method

Let T : � → � be a nonexpansive mapping and A : � → � be an
L-Lipschitz continuous and strongly monotone mapping, that is, there exists
an � > 0 such that 〈Ax − Ay, x − y〉 ≥ �‖x − y‖2 for all x , y ∈ � (in this case,
we also say that A is �-strongly monotone). Yamada [20] proposed the
so-called hybrid steepest descent method for the fixed point problem for
T as follows: {

x0 ∈ �
xn+1 = Txn − �nATxn ,

(4)

where ��n� is a sequence in (0, 1) satisfying the conditions (C1) and (C2)
as in Moudafi’s method. It is proved that if Fix(T ) �= �, then the sequence
�xn� generated by (4) converges strongly to an element z ∈ VIP(Fix(T ),A).

1.4. Maingé’s Recent Result

Recall the following concept: A mapping T : � → � is called
�-demicontractive, where � ∈ [0, 1) if Fix(T ) �= � and for all x ∈ � and q ∈
Fix(T )

‖Tx − q‖2 ≤ ‖x − q‖2 + �‖x − Tx‖2,
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Hybrid Extragradient-Viscosity Method 35

which is equivalent to

〈x − Tx , x − q〉 ≥ 1 − �

2
‖x − Tx‖2�

Remark that if T : � → � is nonexpansive, then

• I − T is demiclosed at zero, that is, Tx = 0 whenever �xn� ⊂ � converges
weakly to x ∈ � and �Txn� converges strongly to zero.

• T is 0-demicontractive if Fix(T ) �= �.

Inspired by the preceding three methods and Nadezhkina–Takahshi’s
result [15], Maingé proved the following result.

Theorem 1. Let C be a closed convex subset of � , � ∈ [0, 1) and �, �,L >

0. Suppose that A : � → � is monotone on C and �-Lipschitz continuous on
� , T : � → � is �-demicontractive such that I − T is demiclosed at zero and
VIP(C ,A) ∩ Fix(T ) �= �. Suppose that � : � → � is L-Lipschitz continuous
and �-strongly monotone on C. Let �xn�, �yn� and �tn� be sequences in �
generated by 

x0 ∈ �
yn = PC(xn − �nAxn)
tn = PC(xn − �nAyn)
vn = tn − �n� tn
xn+1 = (1 − 	)vn + 	Tvn ,

(5)

where the parameters ��n�, ��n� and 	 satisfy the following conditions:

(a) �n ∈ [a, b] ⊂ (0, 1/�) for some a, b ∈ (0, 1/�);
(b) �n ∈ [0, 1), limn→∞ �n = 0 and

∑∞
n=0 �n = ∞;

(c) 	 ∈ (0, 1−�

2 ].

Then all sequences �xn�, �yn�, and �tn� converge strongly to x∗ ∈ VIP(C ,A) ∩
Fix(T ) and this x∗ is the only element such that

〈� x∗, x − x∗〉 ≥ 0 ∀x ∈ VIP(C ,A) ∩ Fix(T )�

We will give a short and simple proof of Maingé’s theorem and we can
show that the result remains true under weaker assumptions. The proof
technique is based on the recent result of the author [16] and the elegant
observation of Aoyama and Kimura [1].
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36 R. Kraikaew and S. Saejung

2. DEFINITIONS AND PRELIMINARIES

Let � be a real Hilbert space. We denote the strong and weak
convergence of a sequence �xn� in � to an element x ∈ � by xn → x and
xn ⇀ x , respectively.

The following inequalities are known in a Hilbert space � .

Lemma 1 [18]. For x , y ∈ � , we have the following statements:

• |〈x , y〉| ≤ ‖x‖‖y‖;
• ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (the subdifferential inequality)

For a closed convex subset C of � , the metric projection PC : � → C is
defined for each x ∈ � as the unique element PCx ∈ C such that

‖x − PCx‖ = inf�‖x − z‖ : z ∈ C��

Lemma 2 [8, 18]. Let C be a nonempty closed convex subset of � . Then, for all
x ∈ � and y ∈ C, the following are satisfied:

• y = PCx if and only if 〈y − x , z − y〉 ≥ 0 for all z ∈ C,
• ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖PCx − x‖2.

Lemma 3 [13]. Let �an� be a sequence of nonnegative real numbers such that
there exists a subsequence �anj � of �an� such that anj < anj+1 for all j ∈ �. Then
there exists a nondecreasing sequence �mk� of � such that limk→∞ mk = ∞ and
the following properties are satisfied by all (sufficiently large) number k ∈ �:

amk ≤ amk+1 and ak ≤ amk+1�

In fact, mk is the largest number n in the set �1, 2, � � � , k� such that an < an+1

holds.

Lemma 4 ([17, 19]). Let �an� be a sequence of nonnegative real numbers,
��n� a sequence in (0, 1) with

∑∞
n=1 �n = ∞, �bn� a sequence of nonnegative

real numbers with
∑∞

n=1 bn < ∞ and ��n� a sequence of real numbers with
lim supn→∞ �n ≤ 0. Suppose that the following inequality

an+1 ≤ (1 − �n)an + �n�n + bn

holds for all n ∈ �. Then limn→∞ an = 0.
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Hybrid Extragradient-Viscosity Method 37

Lemma 5 (Lemma 7.1.7 of [17]). Let C be a nonempty closed convex subset
of � and x∗ ∈ C. Let A : C → � be a monotone and hemicontinuous mapping,
that is, for any x , y ∈ C and z ∈ � , the function

t �→ 〈z,A(tx + (1 − t)y)〉

of [0, 1] into � is continuous. Then

x∗ ∈ VIP (C ,A) ⇔ 〈Ax , x − x∗〉 ≥ 0 for all x ∈ C �

3. MAIN RESULT

Recall that a mapping T : C → C is called

• quasi-nonexpansive if Fix(T ) �= � and ‖Tx − q‖ ≤ ‖x − q‖ for all x ∈ C
and q ∈ Fix(T );

• strongly quasi-nonexpansive [3] if it is quasi-nonexpansive and xn − Txn →
0 whenever �xn� is a bounded sequence in C such that ‖xn − q‖ − ‖Txn −
q‖ → 0 for some q ∈ Fix(T ).

The concept of strong quasi-nonexpansiveness was introduced by Bruck
and Reich in 1977 [3]. Inspired by this, Aoyama et al. [2] introduced
the following natural generalization. A sequence �Tn : C → C� of quasi-
nonexpansive mappings such that F := ∩∞

n=0Fix(Tn) �= � is called a strongly
quasi-nonexpansive sequence if xn − Tnxn → 0 whenever �xn� is a bounded
sequence in C such that ‖xn − q‖ − ‖Tnxn − q‖ → 0 for some q ∈ F .

Theorem 2. Suppose that �Tn : � → �� is a strongly quasi-nonexpansive
sequence such that F := ∩∞

n=0Fix(Tn) �= �. Suppose that f : � → � is a
contraction. Let �xn� be a sequence in � defined by{

x1 = x ∈ � arbitrarily chosen;
xn+1 = �nf (Tnxn) + (1 − �n)Tnxn ,

(6)

where ��n� is a sequence in (0, 1) satisfying

(C1) limn→∞ �n = 0;
(C2)

∑∞
n=1 �n = ∞.

Suppose that �Tn� satisfies the condition (Z), that is,

	w�zn� ⊂ F whenever �zn� ⊂ � is bounded and zn − Tnzn → 0�
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38 R. Kraikaew and S. Saejung

Here 	w�zn� denotes the set of all weak cluster points of the sequence �zn�. Then the
sequence �xn� converges to an element z ∈ F and the following inequality holds

〈f (z) − z, q − z〉 ≤ 0

for all q ∈ F .

Let us assume that ‖f (x) − f (y)‖ ≤ �‖x − y‖ for all x , y ∈ C , where � is a
real number in [0, 1). We split the proof into several lemmas.

Lemma 6. The sequence �xn� is bounded.

Proof. We consider the following inequality

‖xn+1 − z‖ ≤ �n‖f (Tnxn) − z‖ + (1 − �n)‖Tnxn − z‖
≤ �n‖f (Tnxn) − f (z)‖ + �n‖f (z) − z‖ + (1 − �n)‖Tnxn − z‖
≤ �n�‖Tnxn − z‖ + �n‖f (z) − z‖ + (1 − �n)‖Tnxn − z‖
≤ (�n� + 1 − �n)‖xn − z‖ + �n‖f (z) − z‖
= (1 − �n(1 − �))‖xn − z‖ + �n(1 − �)

‖f (z) − z‖
1 − �

≤ max
{
‖xn − z‖, ‖f (z) − z‖

1 − �

}
�

By induction, we conclude that the sequence �‖xn − z‖� is bounded and,
hence, so is the sequence �xn�. �

Lemma 7. The following inequality holds for all n ∈ �:

‖xn+1 − z‖2

≤ (1 − �n)
2‖xn − z‖2 + 2�n�‖xn − z‖‖xn+1 − z‖ + 2�n〈f (z) − z, xn+1 − z〉�

Proof. It follows from the subdifferential inequality that

‖xn+1 − z‖2 = ‖�n(f (Tnxn) − z) + (1 − �n)(Tnxn − z)‖2

≤ (1 − �n)
2‖Tnxn − z‖2 + 2�n〈f (Tnxn) − z, xn+1 − z〉

≤ (1 − �n)
2‖xn − z‖2 + 2�n〈f (Tnxn) − f (z), xn+1 − z〉

+ 2�n〈f (z) − z, xn+1 − z〉
≤ (1 − �n)

2‖xn − z‖2 + 2�n‖f (Tnxn) − f (z)‖‖xn+1 − z‖
+ 2�n〈f (z) − z, xn+1 − z〉
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Hybrid Extragradient-Viscosity Method 39

≤ (1 − �n)
2‖xn − z‖2 + 2�n�‖xn − z‖‖xn+1 − z‖

+ 2�n〈f (z) − z, xn+1 − z〉�
�

Lemma 8. If there exists a subsequence �xnk � of �xn� such that lim infk→∞
(‖xnk+1 − z‖ − ‖xnk − z‖) ≥ 0, then lim supk→∞〈f (z) − z, xnk+1 − z〉 ≤ 0.

Proof. First, we note that �nk → 0 and let us consider the following
inequality

0 ≤ lim inf
k→∞

(‖xnk+1 − z‖ − ‖xnk − z‖)
≤ lim inf

k→∞
(�nk‖f (Tnk xnk ) − z‖ + (1 − �nk )‖Tnk xnk − z‖ − ‖xnk − z‖)

= lim inf
k→∞

(‖Tnk xnk − z‖ − ‖xnk − z‖)
≤ lim sup

k→∞
(‖Tnk xnk − z‖ − ‖xnk − z‖)

≤ 0�

This implies that limk→∞(‖xnk − z‖ − ‖Tnk xnk − z‖) = 0. Since �Tn� is a
strongly quasi-nonexpansive sequence, xnk − Tnk xnk → 0. In particular,
xnk − xnk+1 → 0. Since �xnk � is bounded, there exists a subsequence �xnkl � of
�xnk � such that xnkl ⇀ q and

lim
l→∞

〈f (z) − z, xnkl − z〉 = lim sup
k→∞

〈f (z) − z, xnk − z〉�

It follows from property (Z) that q ∈ F . Then

lim
l→∞

〈f (z) − z, xnkl − z〉 = 〈f (z) − z, q − z〉 ≤ 0�

Hence, lim supk→∞〈f (z) − z, xnk+1 − z〉 = lim supk→∞〈f (z) − z, xnk − z〉 ≤ 0,
as desired. �

Proof of Theorem 2. Let us consider the following two cases.

Case 1: There exists an N ∈ � such that ‖xn+1 − z‖ ≤ ‖xn − z‖
for all n ≥ N . It follows then that limn→∞ ‖xn − z‖ exists and, hence,
lim infn→∞(‖xn+1 − z‖ − ‖xn − z‖) = 0. This implies that lim supn→∞〈f (z) −
z, xn+1 − z〉 ≤ 0. By Lemma 7, for all n ≥ N ,

‖xn+1 − z‖2 ≤ (1 − �n)
2‖xn − z‖2 + 2�n�‖xn − z‖‖xn+1 − z‖

+ 2�n〈f (z) − z, xn+1 − z〉
≤ (1 − 2�n + 2�n�)‖xn − z‖2 + �2n‖xn − z‖2
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40 R. Kraikaew and S. Saejung

+ 2�n〈f (z) − z, xn+1 − z〉
= (1 − 2�n(1 − �))‖xn − z‖2

+ 2�n(1 − �)

(
�n‖xn − z‖2

2(1 − �)
+ 〈f (z) − z, xn+1 − z〉

1 − �

)
�

Notice that
∑∞

n=N 2�n(1 − �) = ∞ and

lim sup
n→∞

(
�n‖xn − z‖2

2(1 − �)
+ 〈f (z) − z, xn+1 − z〉

1 − �

)
≤ 0�

By Lemma 4, we have limn→∞ ‖xn − z‖2 = 0.

Case 2: There exists a subsequence �‖xnj − z‖� of �‖xn − z‖� such
that ‖xnj − z‖ < ‖xnj+1 − z‖ for all j ∈ �. In this case, it follows from
Lemma 3 that there exists a nondecreasing sequence �mk� of � such that
limk→∞ mk = ∞ and the following inequalities hold for all k ∈ �:

‖xmk − z‖ ≤ ‖xmk+1 − z‖ and ‖xk − z‖ ≤ ‖xmk+1 − z‖�
It follows from lim infk→∞(‖xmk+1 − z‖ − ‖xmk − z‖) ≥ 0 that lim supk→∞〈f (z) − z, xmk+1 − z〉 ≤ 0. By discarding the repeated terms of �mk� but still
denoted by �mk�, we can view �xmk � as a subsequence of �xn�. Hence, by
Lemma 7, we have

‖xmk+1 − z‖2 ≤ (1 − �mk )
2‖xmk − z‖2 + 2�mk�‖xmk − z‖‖xmk+1 − z‖

+ 2�mk 〈f (z) − z, xmk+1 − z〉
≤ (1 − �mk )

2‖xmk+1 − z‖2 + 2�mk�‖xmk+1 − z‖2

+ 2�mk 〈f (z) − z, xmk+1 − z〉�
In particular, it follows that

(2 − �mk − 2�)‖xmk+1 − z‖2 ≤ 2〈f (z) − z, xmk+1 − z〉�
This implies that

(2 − 2�) lim sup
k→∞

‖xmk+1 − z‖2 ≤ lim sup
k→∞

2〈f (z) − z, xmk+1 − z〉 ≤ 0�

Hence,

lim sup
k→∞

‖xk − z‖2 ≤ lim sup
k→∞

‖xmk+1 − z‖2 = 0�

Then limk→∞ ‖xk − z‖2 = 0. This completes the proof. �

The following corollary recovers Yamada’s hybrid steepest descent
method.
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Hybrid Extragradient-Viscosity Method 41

Corollary 1. Suppose that �Tn : � → �� is a strongly quasi-nonexpansive
sequence such that F := ∩∞

n=0Fix(Tn) �= �. Suppose that � : � → � is L-
Lipschitz continuous and �-strongly monotone where L2 < 2�. Let �xn� be a
sequence in � generated by{

x0 ∈ �
xn+1 = Tnxn − �n�Tnxn ,

(7)

where ��n� is a sequence in (0, 1) satisfying limn→∞ �n = 0 and
∑∞

n=0 �n = ∞.
Suppose that �Tn� satisfies the condition (Z). Then �xn� converges strongly to x∗ ∈
F and this x∗ is the only element such that

〈� x∗, x − x∗〉 ≥ 0 ∀x ∈ F �

Proof. The proof is inspired by Aoyama and Kimura’s result but the
method given here is totally different. It is worth noting that we do assume
that each mapping Tn is quasi-nonexpansive and hence it is not necessarily
continuous. As mentioned by Aoyama and Kimura, the condition L2 < 2�
is not restrictive because we may replace � by �̂ := t� where t ∈ (0, 2�/L2)
and it is easy to see that VIP(F ,� ) = VIP(F , �̂ ).

We now rewrite the scheme (7) as follows:{
x0 ∈ �
xn+1 = �nf (Tnxn) + (1 − �n)Tnxn ,

(8)

where f := I − � is a contraction. The conclusion follows immediately
from our Theorem 2. �

Here we give a useful lemma that is needed for showing how we obtain
Maingé’s result from the preceding corollary.

Lemma 9. Let A : � → � be monotone and �-Lipschitz continuous on C. Let
S := PC(I − �A) where � > 0. If �xn� is a sequence in C satisfying xn ⇀ x̂ and
xn − Sxn → 0, then x̂ ∈ VIP(C ,A) = Fix(S). In particular, if �zn� is a bounded
sequence in C such that zn − PC(zn − �nAzn) → 0, where ��n� ⊂ [a, b] ⊂ (0,∞),
then 	w�zn� ⊂ VIP(C ,A).

Proof. Since A is monotone and hemicontinuous, it suffices to show that
〈Ax , x − x̂〉 ≥ 0 for all x ∈ C . Let x ∈ C and � > 0. Note that 〈xn − �Axn −
Sxn , Sxn − x〉 ≥ 0 for all n ∈ �. Next, we consider

〈�Axn , xn − x〉 = 〈�Axn , xn − Sxn〉 + 〈�Axn , Sxn − x〉
= 〈�Axn , xn − Sxn〉 − 〈xn − �Axn − Sxn , Sxn − x〉

+ 〈xn − Sxn , Sxn − x〉
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42 R. Kraikaew and S. Saejung

≤ 〈�Axn , xn − Sxn〉 + 〈xn − Sxn , Sxn − x〉
≤ �‖Axn‖‖xn − Sxn‖ + ‖xn − Sxn‖‖Sxn − x‖�

Since �Axn� is bounded and xn − Sxn → 0, it follows from the monotonicity
of A that

〈Ax , x̂ − x〉 = 1
�
lim sup

n→∞
〈�Ax , xn − x〉 ≤ 1

�
lim sup

n→∞
〈�Axn , xn − x〉 ≤ 0�

The proof is finished. �

The following estimate plays an important role in this article. In fact,
it is extracted from Nadezhkina–Takahshi’s article [15] and included here
for the reader’s convenience.

Lemma 10. Let A : � → � be a monotone and �-Lipschitz mapping on C and
� be a positive number such that �� < 1. Let T := PC(I − �A) and S := PC(I −
�AT ). Then, for all q ∈ VIP(C ,A), we have

‖Sx − q‖2 ≤ ‖x − q‖2 − (1 − �2�2)‖x − Tx‖2� (9)

Proof. Note that

‖Sx − q‖2 ≤ ‖(x − �ATx) − q‖2 − ‖(x − �ATx) − Sx‖2

= ‖(x − q) − �ATx‖2 − ‖(x − Sx) − �ATx‖2

= ‖x − q‖2 − ‖x − Sx‖2 + 2�〈q − Sx ,ATx〉�

It follows from the monotonicity of A and q ∈ VIP(C ,A) that 〈q −
Tx ,ATx − Aq〉 ≤ 0 and 〈q − Tx ,Aq〉 ≤ 0, respectively. Hence, we have the
following estimation,

〈q − Sx ,ATx〉 = 〈q − Tx ,ATx − Aq〉 + 〈q − Tx ,Aq〉
+ 〈Tx − Sx ,ATx〉

≤ 〈Tx − Sx ,ATx〉�

Moreover,

‖x − Sx‖2 = ‖(x − Tx) + (Tx − Sx)‖2

= ‖x − Tx‖2 + 2〈Tx − Sx , x − Tx〉 + ‖Tx − Sx‖2�
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Hybrid Extragradient-Viscosity Method 43

Then we get

‖Sx − q‖2 ≤ ‖x − q‖2 − ‖x − Tx‖2 − ‖Tx − Sx‖2

− 2〈Tx − Sx , x − Tx〉 + 2�〈Tx − Sx ,ATx〉
= ‖x−q‖2−‖x−Tx‖2−‖Tx−Sx‖2 + 2〈Tx−Sx ,Tx−(x−�ATx)〉�

Now we will estimate the last term of the preceding expression. It follows
from Tx = PC(x − �Ax) and Lemma 2 that 〈Tx − Sx ,Tx − (x − �Ax)〉 ≤ 0.
Hence,

2〈Tx − Sx ,Tx − (x − �ATx)〉
= 2〈Tx − Sx ,Tx − (x − �Ax)〉 + 2〈Tx − Sx , �ATx − �Ax〉
≤ 2〈Tx − Sx , �ATx − �Ax〉
≤ 2�‖Tx − Sx‖‖Ax − ATx‖
≤ 2��‖Tx − Sx‖‖x − Tx‖
≤ ‖Tx − Sx‖2 + �2�2‖x − Tx‖2�

So we have

‖Sx−q‖2 ≤ ‖x−q‖2−‖x−Tx‖2−‖Tx−Sx‖2 + ‖Tx−Sx‖2 + �2�2‖x − Tx‖2

= ‖x − q‖2 − (1 − �2�2)‖x − Tx‖2,

as desired. �

Corollary 2. Let C be a closed convex subset of � , � ∈ [0, 1). Suppose that
A : � → � is monotone on C and �-Lipschitz continuous on � , T : � → �
is �-demicontractive such that I − T is demiclosed at zero and VIP(C ,A) ∩
Fix(T ) �= �. Suppose that � : � → � is L-Lipschitz continuous and �-strongly
monotone on C. Let �xn�, �yn� and �tn� be sequences in � generated by

x0 ∈ �
yn = PC(xn − �nAxn)
tn = PC(xn − �nAyn)
vn = tn − �n� tn
xn+1 = (1 − 	)vn + 	Tvn ,

(10)

where the parameters ��n�, ��n� and 	 satisfy the following conditions:

(a) �n ∈ [a, b] ⊂ (0, 1/�) for some a, b ∈ (0, 1/�);
(b) limn→∞ �n = 0 and

∑∞
n=0 �n = ∞;

(c) 	 ∈ (0, 1 − �).
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44 R. Kraikaew and S. Saejung

Then all sequences �xn�, �yn� and �tn� converge strongly to x∗ ∈ VIP(C ,A) ∩
Fix(T ) and this x∗ is the only element such that

〈� x∗, x − x∗〉 ≥ 0 ∀x ∈ VIP(C ,A) ∩ Fix(T )�

Proof. Set

Sn := PC(I − �nA(PC(I − �nA))), S := (1 − 	)I + 	T ,

Tn := Sn ◦ S , f := I − t� , x∗
n := vn−1,

where t ∈ (0, 2�/L2). Then f is a contraction and

x∗
n+1 = �nf (Tnx∗

n) + (1 − �n)Tnx∗
n �

To complete the proof, it suffices to show that

(♠) �Tn� is a strongly quasi-nonexpansive sequence;

(♥) �Tn� satisfies property (Z ).

For simplicity, we let F := VIP(C ,A) ∩ Fix(T ). We first observe the
following two inequalities: for x ∈ � and q ∈ F ,

‖Snx − q‖2 ≤ ‖x − q‖2 − (1 − �2n�
2)‖x − PC(x − �nAx)‖2,

‖Sx − q‖2 = ‖(1 − 	)x + 	Tx − q‖2

= ‖x − q‖2 − 2	〈x − q , x − Tx〉 + 	2‖Tx − x‖2

≤ ‖x − q‖2 − 	(1 − � − 	)‖x − Tx‖2�

It follows then that

‖Tnx − q‖2 = ‖SnSx − q‖2

≤ ‖Sx − q‖2 − (1 − �2n�
2)‖Sx − PC(Sx − �nASx)‖2

≤ ‖x − q‖2 − 	(1 − � − 	)‖x − Tx‖2

− (1 − �2n�
2)‖Sx − PC(Sx − �nASx)‖2� (11)

First noting that Fix(Tn) = F . It is obvious that F ⊂ Fix(Tn). To see the
converse, let x ∈ Fix(Tn) and q ∈ F . Then by (11) we have

‖x − q‖2 = ‖Tnx − q‖2

≤ ‖x − q‖2 − 	(1 − � − 	)‖x − Tx‖2

− (1 − �2n�
2)‖Sx − PC(Sx − �nASx)‖2�
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Hybrid Extragradient-Viscosity Method 45

Hence, x = Tx and Sx = PC(Sx − �nASx). It follows that x = Sx and
therefore x = PC(x − �nAx), that is, x ∈ F . We now show (♠). It can be
easily seen, by using (11), that each Tn is a quasi-nonexpansive mapping.
Next, let �zn� be a bounded sequence in C such that ‖zn − q‖ − ‖Tnzn −
q‖ → 0 for some q ∈ F . Hence, replacing x by zn in (11) gives zn − Tzn →
0 and Szn − PC(I − �nA)Szn → 0. It follows that zn − Szn = 	(zn − Tzn) → 0
and, therefore, zn − PC(I − �nA)Szn → 0. So we get

‖Tnzn − zn‖ ≤ ‖Tnzn − PC(I − �nA)Szn‖ + ‖PC(I − �nA)Szn − zn‖
= ‖PC(I − �nAPC(I − �nA))Szn − PC(I − �nA)Szn‖

+ ‖PC(I − �nA)Szn − zn‖
≤ ‖Szn − �nAPC(I − �nA)Szn − (Szn − �nASzn)‖

+ ‖PC(I − �nA)Szn − zn‖
= ‖�nAPC(I − �nA)Szn − �nASzn‖ + ‖PC(I − �nA)Szn − zn‖
≤ �n�‖PC(I − �nA)Szn − Szn‖ + ‖PC(I − �nA)Szn − zn‖ → 0�

This shows that �Tn� is a strongly quasi-nonexpansive sequence and, hence,
(♠) is asserted.

To show (♥), let �zn� be a bounded sequence in � such that zn −
Tnzn → 0. We show that 	w�zn� ⊂ F . It follows from the assumption
that ‖zn − q‖ − ‖Tnzn − q‖ → 0 for some q ∈ F . As a consequence of the
proof in (♠), we have zn − Tzn → 0 and zn − PC(zn − �nAzn) → 0. Now
assume that �znk � is a subsequence of �zn� such that znk ⇀ z. Hence, we
immediately get that znk − Tznk → 0 and znk − PC(znk − �nkAznk ) → 0. By
Lemma 9 and the demiclosedness of the mapping I − T , we conclude that
z ∈ F = Fix(Tn). Therefore 	w�zn� ⊂ F , that is, the sequence �Tn� satisfies
condition (Z) as desired. �

The limitation on the use of Maingé’s result and our Corollary 2
happens when dealing with �-demicontractive mappings where � = 1. We
will modify the preceding construction of a strongly quasi-nonexpansive
mappings from a 1-demicontractive mapping which is L-Lipschitzian by
using Ishikawa’s idea (see [10]).

Proposition 1. Let T : � → � be a �-Lipschitzian and 1-demicontractive
mapping. Define the mappings S and U for some positive valued � by

S := (1 − �)I + �T ,

U := (1 − �)I + �TS �
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46 R. Kraikaew and S. Saejung

Then

‖Ux − q‖2 ≤ ‖x − q‖2 + �2(�2�2 + 2� − 1)‖x − Tx‖2,

for all (x , q) ∈ � × Fix(T )�

In addition, if � ∈ (0, −1+
√

�2+1
�2

), then U is a strongly quasi-nonexpansive
mapping.

Proof. Let (x , q) ∈ � × Fix(T ). Note that

‖Ux − q‖2 = ‖(1 − �)(x − q) + �(TSx − q)‖2

= (1 − �)‖x − q‖2 + �‖TSx − q‖2 − �(1 − �)‖TSx − x‖2� (12)

Since T is 1-demicontractive, we have

‖TSx − q‖2 ≤ ‖Sx − q‖2 + ‖Sx − TSx‖2� (13)

Next we estimate two terms on the right of the preceding inequality:

‖Sx − q‖2

= ‖(1 − �)(x − q) + �(Tx − q)‖2

= (1 − �)‖x − q‖2 + �‖Tx − q‖2 − �(1 − �)‖Tx − x‖2

≤ ‖x − q‖2 + �‖x − Tx‖2 − �(1 − �)‖Tx − x‖2

= ‖x − q‖2 + �2‖x − Tx‖2; (14)

‖Sx − TSx‖2

= ‖(1 − �)(x − TSx) + �(Tx − TSx)‖2

= (1 − �)‖x − TSx‖2 + �‖Tx − TSx‖2 − �(1 − �)‖Tx − x‖2

≤ (1 − �)‖x − TSx‖2 + ��2‖x − Sx‖2 − �(1 − �)‖Tx − x‖2

= (1 − �)‖x − TSx‖2 + ��2�2‖x − Tx‖2 − �(1 − �)‖Tx − x‖2

= (1 − �)‖x − TSx‖2 + �(�2�2 + � − 1)‖x − Tx‖2� (15)

From (13), (14), and (15), we obtain

‖TSx − q‖2 ≤ ‖x − q‖2 + �(�2�2 + 2� − 1)‖x − Tx‖2

+ (1 − �)‖x − TSx‖2� (16)
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It follows from (12) and (16) that

‖Ux − q‖2 ≤ ‖x − q‖2 + �2(�2�2 + 2� − 1)‖Tx − x‖2�

This proves the first assertion.
Finally, we prove the last assertion. Note that �2(�2�2 + 2� − 1) < 0 for

all � ∈ (0, −1+
√

�2+1
�2

). It follows from the inequality obtained in the first
part that Fix(U ) = Fix(T ). Then it is clear that U is a quasi-nonexpansive
mapping. To prove that U is a strongly quasi-nonexpansive mapping, let
�xn� be a bounded sequence in � such that ‖xn − q‖ − ‖Uxn − q‖ → 0, for
some q ∈ Fix(U )(= Fix(T )). From the last inequality, we have

0 ≤ −�2(�2�2 + 2� − 1)‖Txn − xn‖2 ≤ ‖xn − q‖2 − ‖Uxn − q‖2 → 0�

This implies that xn − Sxn = �(xn − Txn) → 0. By the continuity of T ,
we also get Txn − TSxn → 0. Then xn − TSxn → 0 and hence xn − Uxn =
�(xn − TSxn) → 0. The proof is finished. �

Corollary 3. Let C be a closed convex subset of � and �, �, �,L > 0. Suppose
that A : � → � is monotone and �-Lipschitz continuous, T : � → � is 1-
demicontractive �-Lipschitz continuous such that I − T is demiclosed at zero and
VIP(C ,A) ∩ Fix(T ) �= �. Suppose that � : � → � is L-Lipschitz continuous
and �-strongly monotone. Let �xn�, �yn� and �tn� be sequences in � generated by
the following scheme: 

x0 ∈ �
yn = PC(xn − �nAxn)
tn = PC(xn − �nAyn)
vn = tn − �n� tn
xn+1 = Uvn ,

(17)

where U = (1 − 
)I + 
T ((1 − 
)I + 
T ) and the parameters ��n�, ��n�, and 

satisfy the following conditions:

(a) �n ∈ [a, b] ⊂ (0, 1/�) for some a, b ∈ (0, 1/�);
(b) limn→∞ �n = 0 and

∑∞
n=0 �n = ∞;

(c) 
 ∈ (0, −1+
√

�2+1
�2

).

Then all sequences �xn�, �yn�, and �tn� converge strongly to x∗ ∈ VIP(C ,A) ∩
Fix(T ) and this x∗ is the only element such that

〈� x∗, x − x∗〉 ≥ 0 ∀x ∈ VIP(C ,A) ∩ Fix(T )�
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48 R. Kraikaew and S. Saejung

Finally, we remark that our scheme is a genuine generalization of
Maingé’s result because there is a 1-demicontractive and Lipschitzian
mapping which is not �-demicontractive for all � ∈ [0, 1). The following
mapping is introduced by Chidume and Mutangadura [7].

Example 1. Let � = �2,B = �x ∈ �2 : ‖x‖ ≤ 1�,B1 = �x ∈ B : ‖x‖ ≤
1
2� and B2 = �x ∈ B : 1

2 ≤ ‖x‖ ≤ 1�. For x = (a, b) ∈ � , let x⊥ = (b,−a).
Define the mapping T : B → B by

Tx =
x + x⊥ if x ∈ B1;

x
‖x‖ − x + x⊥ if x ∈ B2�

It is easy to see that Fix(T ) = �0�. It was proved in [7] that T is
5-Lipschitzian and

‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖x − Tx − (y − Ty)‖2 (18)

for all x , y ∈ B. In particular, T is 1-demicontractive. Moreover, the
inequality (18) becomes an equality whenever x ∈ B1 and y = 0, that is,

‖Tx‖2 = ‖x + x⊥‖2 = ‖x‖2 + ‖x⊥‖2 = ‖x‖2 + ‖x − Tx‖2�

This shows that T cannot be a �-demicontractive mapping where � ∈ [0, 1).
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Abstract Building upon the subgradient extragradient method proposed by Censor
et al., we prove the strong convergence of the iterative sequence generated by a mod-
ification of this method by means of the Halpern method. We also consider the prob-
lem of finding a common element of the solution set of a variational inequality and
the fixed-point set of a quasi-nonexpansive mapping with a demiclosedness property.

Keywords Subgradient extragradient method · Halpern method ·
Variational inequality · Quasi-nonexpansive mapping · Fixed point

1 Introduction

Many problems in science and engineering can be recast as variational inequalities
(see, for example, [1–8]). Iterative methods for solving these problems have been
proposed and analyzed by many authors (see, for example, [9–12] and references
therein). In this paper, we are interested in the extragradient method proposed by
Korpelevič [13] and the modified one by Censor et al. [14]. For the former method,
two calculations of the projection onto a closed and convex subset are needed. As
mentioned in [14] this may affect the efficiency of the method, and Censor et al.
modified Korpelevič’s method by replacing the second projection onto the closed and
convex subset with the one onto the subgradient half-space. So the latter method is
called the subgradient extragradient method. The same authors continued the study of
this method in [15, 16]. Under some appropriate setting, the subgradient extragradient
method [14] converges weakly to a solution of a variational inequality. The purpose
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of this paper is to develop the method of Censor et al. [14] together with the Halpern
method [17, 18] to obtain the strong convergence. The original result of Halpern [17]
deals with the problem of finding a fixed point of a single operator and Bauschke
[19] extended to that of finding a common fixed point of finitely many operators. We
refer the readers to Cegielski’s book [20] for the recent progress on this subject. It
is worth reminding the reader that our approach and the one in [15] are different.
More precisely, Algorithm 3.6 (and hence 5.1) of [15] seems to be difficult to use
in practice because the computation of the next iterate becomes a subproblem of
finding a point in the intersection of two additional half-spaces. Our method does not
involve this subproblem but, as mentioned by the reviewer, our method may cause
some numerical instabilities.

The paper is organized as follows. In Sect. 2, we collect together definitions and
some preliminaries that pertain the argument of the paper with corresponding refer-
ences. Our main results are presented in Sects. 3 and 4. Finally, we summarize our
results in Sect. 5.

2 Definitions and Preliminaries

Throughout, let H be a real Hilbert space with inner product 〈·, ·〉 and the induced
norm ‖ · ‖. For a closed and convex subset C of H, the (metric) projection PC :H →
C is defined, for each x ∈H, as the unique element PCx ∈ C such that

‖x − PCx‖ = inf
{‖x − z‖ : z ∈ C

}
.

For x ∈H and y ∈ C, it is known that

y = PCx ⇐⇒ 〈y − x, z − y〉 ≥ 0 for all z ∈ C.

For other relevant properties of the projection, the interested readers are referred
to, for example, Chap. 3 in the book by Goebel and Reich [21].

In this paper, the fixed-point set of a mapping T : H → H is denoted by Fix(T ),
that is, Fix(T ) := {x ∈H : x = T x}. For a given closed and convex subset C ⊂ H, we
are interested in the so-called variational inequality [4, 5] for a mapping f :H → H,
that is, the problem of finding an element x̂ ∈ C such that〈

f (̂x), x − x̂
〉 ≥ 0 for all x ∈ C.

We denote the set of all such x̂ by VI(C,f ). Hence

x̂ ∈ VI(C,f )

def⇐⇒ 〈
f (̂x), x − x̂

〉 ≥ 0 for all x ∈ C

⇐⇒ 〈̂
x − (̂

x − λf (̂x)
)
, x − x̂

〉 ≥ 0 for all x ∈ C, for all λ > 0

⇐⇒ x̂ = PC

(̂
x − λf (̂x)

) = PC(I − λf )̂x for all λ > 0.

Let us recall some definitions of mappings involved in our study.
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Definition 2.1 [6] A mapping T : H → H is called

• L-Lipschitzian, where L > 0, iff

‖T x − Ty‖ ≤ L‖x − y‖ for all x, y ∈H;

• nonexpansive iff T is 1-Lipschitzian;
• quasi-nonexpansive iff Fix(T ) �= ∅ and

‖T x − p‖ ≤ ‖x − p‖ for all x ∈H,p ∈ Fix(T );

• monotone iff

〈T x − Ty,x − y〉 ≥ 0 for all x, y ∈H.

For solving the variational inequality for f : H → H, which is monotone and
L-Lipschitzian continuous on C, a well-known algorithm is the extragradient method
proposed by Korpelevich [13] for the Euclidean case and by Censor et al. for the
Hilbert space case [14]. More precisely, this method generates the following iterative
sequence {xn}: ⎧⎨⎩

x0 ∈ C

yn = PC(xn − τf (xn))

xn+1 = PC(xn − τf (yn)),

(1)

where the stepsize τ ∈]0, 1
L
[. It was proved that, if VI(C,f ) �= ∅, then {xn} con-

verges weakly to an element in VI(C,f ).
Inspired by the extragradient method, Censor et al. [14, 16] recently modified this

algorithm and called it the subgradient extragradient method. Since the computation
of the projection onto a general closed and convex set C is rather complicated, the
purpose of this modification is to replace two projections onto C to one projection
onto C and one onto a half-space. Let us note that the latter projection (onto a half-
space) is easier to compute. We summarize their result as follows.

Theorem 2.1 Let f : H → H be a monotone and L-Lipschitz mapping on C and
VI(C,f ) �= ∅. Let {xn} and {yn} be generated by⎧⎪⎪⎨⎪⎪⎩

x0 ∈ H,

yn = PC(xn − τf (xn)),

Tn = {w ∈H : 〈xn − τf (xn) − yn,w − yn〉 ≤ 0},
xn+1 = PTn(xn − τf (yn)),

(2)

where τ ∈]0, 1
L
[. Then {xn} and {yn} converge weakly to û, where û ∈ VI(C,f ) and

moreover, û = limn→∞ PVI(C,f )(xn).

Here we recall some known results with the corresponding references.
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Lemma 2.1 [6] For x, y ∈H, we have the following statements:

• |〈x, y〉| ≤ ‖x‖‖y‖;
• ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 (the subdifferential inequality).

Lemma 2.2 [22] Let {an} be a sequence of real numbers such that there exists a
subsequence {amj

} of {an} such that amj
< amj +1 for all j ∈ N. Then there exists

a nondecreasing sequence {nk} of N such that limk→∞ nk = ∞ and the following
properties are satisfied by all (sufficiently large) number k ∈N:

ank
≤ ank+1 and ak ≤ ank+1.

In fact, nk is the largest number n in the set {1, . . . , k} such that an < an+1 holds.

Lemma 2.3 [23, 24] Let {an} be a sequence of non-negative real numbers, {αn} a
sequence in ]0,1[ with

∑∞
n=1 αn = ∞, {bn} a sequence of non-negative real numbers

with
∑∞

n=1 bn < ∞ and {γn} a sequence of real numbers with lim supn→∞ γn ≤ 0.
Suppose that the following inequality:

an+1 ≤ (1 − αn)an + αnγn + bn

holds for all n ∈ N. Then limn→∞ an = 0.

A special case of this lemma already appears in the proof of Theorem 1 of [25].
Let C be a nonempty, closed and convex subset of a Hilbert space H and A : C →

H be a mapping. Then A is called hemicontinuous [26] iff, for any x, y ∈ C and
z ∈ H, the function

t �→ 〈
z,A

(
tx + (1 − t)y

)〉
of [0,1] into R is continuous.

Lemma 2.4 (See, e.g., [27, Lemma 7.1.7]) Let C be a nonempty, closed and convex
subset of a Hilbert space H. Let A : C → H be a monotone and hemicontinuous
mapping and x̂ ∈ C. Then

x̂ ∈ VI(C,A) ⇔ 〈Ax,x − x̂〉 ≥ 0 for all x ∈ C.

3 The Subgradient Extragradient Algorithm

Inspired by Halpern’s result [17], we introduce the subgradient extragradient algo-
rithm which finds a solution of the variational inequality and we also prove a strong
convergence theorem. Our strong convergence theorem is quite different from the
scheme proposed by Censor et al. [15]. In fact, we do not need to calculate the pro-
jections onto the constructible sets Cn and Qn as in [15]. It seems to us that we
simplify their result with the same conclusion.

The following lemma is extracted from Lemma 5.2 of [14].
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Lemma 3.1 Let f : H →H be a monotone and L-Lipschitz mapping on C and τ be
a positive number and suppose that VI(C,f ) is nonempty. Let x ∈H. Define

U(x) := PC

(
x − τf (x)

)
T x := {

w ∈H : 〈x − τf (x) − U(x),w − U(x)
〉 ≤ 0

}
V (x) := PT x

(
x − τf

(
U(x)

))
.

Then, for all u ∈ VI(C,f ), we have∥∥V (x)−u
∥∥2 ≤ ‖x −u‖2 − (1 − τL)

∥∥x −U(x)
∥∥2 − (1 − τL)

∥∥V (x)−U(x)
∥∥2

. (3)

In particular, if τL ≤ 1, we have ‖V (x) − u‖ ≤ ‖x − u‖.

Proof First, we consider∥∥V (x) − u
∥∥2 ≤ ∥∥(

x − τf
(
U(x)

)) − u
∥∥2 − ∥∥(

x − τf
(
U(x)

)) − V (x)
∥∥2

= ‖x − u‖2 + 2τ
〈
u − V (x), f

(
U(x)

)〉 − ∥∥x − V (x)
∥∥2

= ‖x − u‖2 + 2τ
〈
u − U(x), f

(
U(x)

) − f (u)
〉

+ 2τ
〈
u − U(x), f (u)

〉 + 2τ
〈
U(x) − V (x), f

(
U(x)

)〉 − ∥∥x − V (x)
∥∥2

≤ ‖x − u‖2 + 2τ
〈
U(x) − V (x), f

(
U(x)

)〉 − ∥∥x − V (x)
∥∥2

= ‖x − u‖2 + 2τ
〈
U(x) − V (x), f

(
U(x)

)〉 − ∥∥x − U(x)
∥∥2

− 2τ
〈
x − U(x),U(x) − V (x)

〉 − ∥∥U(x) − V (x)
∥∥2

= ‖x − u‖2 − ∥∥x − U(x)
∥∥2 − ∥∥U(x) − V (x)

∥∥2

+ 2
〈
x − τf

(
U(x)

) − U(x),V (x) − U(x)
〉
.

Now we estimate〈
x − τf

(
U(x)

) − U(x),V (x) − U(x)
〉

= 〈
x − τf (x) − U(x),V (x) − U(x)

〉 + 〈
τf (x) − τf

(
U(x)

)
,V (x) − U(x)

〉
≤ 〈

τf (x) − τf
(
U(x)

)
,V (x) − U(x)

〉
≤ τL

∥∥x − U(x)
∥∥∥∥V (x) − U(x)

∥∥.

So we have∥∥V (x) − u
∥∥2 ≤ ‖x − u‖2 − ∥∥x − U(x)

∥∥2 − ∥∥U(x) − V (x)
∥∥2

+ 2τL
∥∥x − U(x)

∥∥∥∥V (x) − U(x)
∥∥

= ‖x − u‖2 − (1 − τL)
∥∥x − U(x)

∥∥2 − (1 − τL)
∥∥U(x) − V (x)

∥∥2

− τL
(∥∥x − U(x)

∥∥ − ∥∥V (x) − U(x)
∥∥)2

≤ ‖x − u‖2 − (1 − τL)
∥∥x − U(x)

∥∥2 − (1 − τL)
∥∥U(x) − V (x)

∥∥2
. �
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We denote the strong and weak convergence of a sequence {xn} in H to an element
x ∈ H by xn → x and xn ⇀ x, respectively.

Recall that the mapping I − T is demiclosed at zero [28] iff x ∈ Fix(T ) whenever
xn ⇀ x and xn − T xn → 0. It is known that, if T : H → H is nonexpansive, then
I − T is demiclosed at zero.

The next result is the demiclosedness-like property for the mapping PC(I − τf ).
Note that we do not use the concept of the maximal monotonicity of f + NC , where
NC is the normal cone of C, as was the case in other papers (see, e.g., [9–11]).

Lemma 3.2 Let f : H → H be a monotone and L-Lipschitz mapping on C. Let
U := PC(I − τf ) where τ > 0. If {xn} is a sequence in C satisfying xn ⇀ x̂ and
xn − U(xn) → 0, then x̂ ∈ VI(C,f ) = Fix(U).

Proof Since f is monotone and hemicontinuous, it suffices to show that〈
f (x), x − x̂

〉 ≥ 0 for all x ∈ C.

Let x ∈ C and τ > 0. Note that〈
xn − τf (xn) − U(xn),U(xn) − x

〉 ≥ 0 for all n ∈N.

Next, we consider〈
τf (xn), xn − x

〉 = 〈
τf (xn), xn − U(xn)

〉 + 〈
τf (xn),U(xn) − x

〉
= 〈

τf (xn), xn − U(xn)
〉 − 〈

xn − τf (xn) − U(xn),U(xn) − x
〉

+ 〈
xn − U(xn),U(xn) − x

〉
≤ 〈

τf (xn), xn − U(xn)
〉 + 〈

xn − U(xn),U(xn) − x
〉

≤ τ
∥∥f (xn)

∥∥∥∥xn − U(xn)
∥∥ + ∥∥xn − U(xn)

∥∥∥∥U(xn) − x
∥∥.

Since {f (xn)} is bounded and xn − U(xn) → 0, lim supn→∞〈τf (xn), xn − x〉 ≤ 0. It
follows from the monotonicity of f that〈

f (x), x̂ − x
〉 = 1

τ
lim sup
n→∞

〈
τf (x), xn − x

〉 ≤ 1

τ
lim sup
n→∞

〈
τf (xn), xn − x

〉 ≤ 0.

The proof is finished. �

Now we study the following algorithm. For a mapping f : H → H and a closed
and convex subset C of H, define two iterative sequences {xn} and {yn} by⎧⎪⎪⎨⎪⎪⎩

x0 ∈H,

yn := PC(xn − τf (xn)),

Tn := {w ∈H : 〈xn − τf (xn) − yn,w − yn〉 ≤ 0},
xn+1 := αnx0 + (1 − αn)PTn(xn − τf (yn)),

(4)

where {αn} is a sequence in ]0,1[ satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.
Note that Tn in (4) is just T xn in Lemma 3.1.
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Throughout this paper, we assume that VI(C,f ) is nonempty and we denote
ωw{zn} the set of all weak cluster points of the sequence {zn}.

Lemma 3.3 Let f : H → H be a monotone and L-Lipschitz mapping on C and τ

be a positive real number such that τL ≤ 1. Then the sequence {xn} generated by (4)
satisfies the following inequality:

‖xn+1 − z‖ ≤ αn‖x0 − z‖ + (1 − αn)‖xn − z‖,
for all z ∈ VI(C,f ). In particular, {xn} is bounded.

Proof Let z ∈ VI(C,f ). For convenience, write

wn = PTn

(
I − τf PC(I − τf )

)
xn.

Hence xn+1 = αnx0 + (1 − αn)wn. It follows from Lemma 3.1 that ‖wn − z‖ ≤
‖xn − z‖ and hence

‖xn+1 − z‖ ≤ αn‖x0 − z‖ + (1 − αn)‖wn − z‖
≤ αn‖x0 − z‖ + (1 − αn)‖xn − z‖.

In particular,

‖xn+1 − z‖ ≤ max
{‖x0 − z‖,‖xn − z‖}.

By induction, we have

‖xn − z‖ ≤ ‖x0 − z‖ for all n ∈ N.

Hence, the sequence {xn} is bounded. �

Theorem 3.1 Let f : H → H be a monotone and L-Lipschitz mapping on C and τ

be a positive real number such that τL < 1. Let {xn} ⊂ H be a sequence generated
by (4). Then xn → PVI(C,f )x0.

Proof Recall that xn+1 = αnx0 + (1 − αn)wn. Put z = PVI(C,f )x0. Let us start from
the following inequalities, which are consequences of (4) and the subdifferential in-
equality:

‖xn+1 − z‖2 ≤ (1 − αn)
2‖wn − z‖2 + 2αn〈x0 − z, xn+1 − z〉

≤ (1 − αn)‖xn − z‖2 + 2αn〈x0 − z, xn+1 − z〉. (5)

Let us consider the following two cases.

Case 1: There exists an n0 ∈ N such that ‖xn+1 − z‖ ≤ ‖xn − z‖ for all n ≥ n0. Then
limn→∞ ‖xn − z‖ exists. It follows from (5) that

‖wn − z‖2 − ‖xn − z‖2 → 0.
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By Lemma 3.1, we conclude that

xn − PC

(
xn − τf (xn)

) → 0.

Using Lemma 3.2, we have ωw{xn} ⊂ VI(C,f ). Passing to a suitable subsequence
{xpi

}, we assume that

lim sup
n→∞

〈x0 − z, xn+1 − z〉 = lim
i→∞〈x0 − z, xpi

− z〉

and

xpi
⇀ z′ for some z′ ∈ VI(C,f ).

Consequently,

lim sup
n→∞

〈x0 − z, xn+1 − z〉 = 〈
x0 − PVI(C,f )x0, z

′ − PVI(C,f )x0
〉 ≤ 0.

By Lemma 2.3, we have limn→∞ ‖xn − z‖2 = 0, that is, xn → z.

Case 2: There exists a subsequence {xmj
} of {xn} such that

‖xmj
− z‖ < ‖xmj+1 − z‖ for all j ∈ N.

From Lemma 2.2, there exists a nondecreasing sequence {nk} of N such that
limk→∞ nk = ∞ and the following inequalities hold for all k ∈N:

‖xnk
− z‖ ≤ ‖xnk+1 − z‖ and ‖xk − z‖ ≤ ‖xnk+1 − z‖. (6)

Note that

‖xnk
− z‖ ≤ ‖xnk+1 − z‖ ≤ αnk

‖x0 − z‖ + (1 − αnk
)‖wnk

− z‖
≤ αnk

‖x0 − z‖ + (1 − αnk
)‖xnk

− z‖.
It follows from limn→∞ αn = 0 that

‖wnk
− z‖ − ‖xnk

− z‖ → 0.

By discarding the repeated terms of {nk}, but still denoted by {nk}, we can view {xnk
}

as a subsequence of {xn}. Hence, by Lemma 3.1 and Lemma 3.2, we have

xnk
− PC

(
xnk

− τf (xnk
)
) → 0 and ωw{xnk

} ⊂ VI(C,f ).

Note that xnk
− xnk+1 → 0. In fact, it follows from Lemma 3.1 with the same notion

U that ‖wnk
− U(xnk

)‖ → 0, ‖U(xnk
) − xnk

‖ → 0 and

‖xnk+1 − xnk
‖ = ∥∥αnk

x0 + (1 − αnk
)wnk

− xnk

∥∥
≤ αnk

‖x0 − xnk
‖ + (1 − αnk

)‖wnk
− xnk

‖
≤ αnk

‖x0 − xnk
‖ + (1 − αnk

)
(∥∥wnk

− U(xnk
)
∥∥ + ∥∥U(xnk

) − xnk

∥∥)
→ 0.
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As proved in the first case, we can conclude that

lim sup
k→∞

〈x0 − z, xnk+1 − z〉 = lim sup
k→∞

〈x0 − z, xnk
− z〉 ≤ 0 (7)

It follows then from (5) and (6) that

‖xnk+1 − z‖2 ≤ (1 − αnk
)‖xnk

− z‖2 + 2αnk
〈x0 − z, xnk+1 − z〉

≤ (1 − αnk
)‖xnk+1 − z‖2 + 2αnk

〈x0 − z, xnk+1 − z〉.
In particular, since αnk

> 0,

‖xk − z‖2 ≤ ‖xnk+1 − z‖2 ≤ 2〈x0 − z, xnk+1 − z〉.
Hence, by (7), we have

lim sup
k→∞

‖xk − z‖2 ≤ 2 lim sup
k→∞

〈x0 − z, xnk+1 − z〉 ≤ 0.

Therefore, xk → z. �

4 The Modified Subgradient Extragradient Algorithm

Inspired by the second main result of Censor et al. [14], we present a modified sub-
gradient extragradient algorithm for finding a solution of the variational inequality
which is also a fixed point of a given nonexpansive mapping. Our algorithm is as
follows.

For mappings f,S : H → H and a closed and convex subset C of H, define three
iterative sequences {xn}, {yn} and {zn} by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 ∈H,

yn := PC(xn − τf (xn)),

Tn := {w ∈H : 〈xn − τf (xn) − yn,w − yn〉 ≤ 0},
zn := αnx0 + (1 − αn)PTn(xn − τf (yn)),

xn+1 := βnxn + (1 − βn)Szn,

(8)

where {βn} ⊂ [a, b] ⊂]0,1[ for some a, b ∈]0,1[ and {αn} is a sequence in ]0,1[
satisfying limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Theorem 4.1 Let S : H → H be a quasi-nonexpansive mapping such that I − S

is demiclosed at zero and f : H → H a monotone and L-Lipschitz mapping on
C. Let τ be a positive real number such that τL < 1. Suppose that VI(C,f ) ∩
Fix(S) is nonempty. Let {xn} ⊂ H be a sequence generated by (8). Then xn →
PVI(C,f )∩Fix(S)x0.

We split the proof into several lemmas.
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Lemma 4.1 The sequence {xn} is bounded.

Proof Let u ∈ VI(C,f ) ∩ Fix(S). Then we have

‖xn+1 − u‖ ≤ βn‖xn − u‖ + (1 − βn)
∥∥S(zn) − u

∥∥
≤ βn‖xn − u‖ + (1 − βn)‖zn − u‖
= βn‖xn − u‖ + (1 − βn)

∥∥αnx0 + (1 − αn)wn − u
∥∥

≤ βn‖xn − u‖ + (1 − βn)
(
αn‖x0 − u‖ + (1 − αn)‖wn − u‖)

≤ βn‖xn − u‖ + (1 − βn)
(
αn‖x0 − u‖ + (1 − αn)‖xn − u‖)

≤ max
{‖x0 − u‖,‖xn − u‖}.

By induction, the sequence {xn} is bounded. �

Lemma 4.2 The following inequality holds for all u ∈ VI(C,f )∩ Fix(S) and n ∈N,

‖xn+1 − u‖2 ≤ (
1 − αn(1 − βn)

)‖xn − u‖2 + 2αn(1 − βn)〈x0 − u, zn − u〉
− βn(1 − βn)

∥∥xn − S(zn)
∥∥2

.
(9)

Proof Let u ∈ VI(C,f ) ∩ Fix(S) and put wn := PTn(I − τf (PC(I − τf )))xn. It
follows from Lemma 3.1 with τL < 1 and the subdifferential inequality that

‖xn+1 − u‖2 = ∥∥βn(xn − u) + (1 − βn)
(
S(zn) − u

)∥∥2

= βn‖xn − u‖2 + (1 − βn)
∥∥S(zn) − u

∥∥2 − βn(1 − βn)
∥∥xn − S(zn)

∥∥2

≤ βn‖xn − u‖2 + (1 − βn)‖zn − u‖2 − βn(1 − βn)
∥∥xn − S(zn)

∥∥2

= βn‖xn − u‖2 + (1 − βn)
∥∥αnx0 + (1 − αn)wn − u

∥∥2

− βn(1 − βn)
∥∥xn − S(zn)

∥∥2

≤ βn‖xn − u‖2 − βn(1 − βn)
∥∥xn − S(zn)

∥∥2

+ (1 − βn)
(
(1 − αn)

2‖wn − u‖2 + 2αn〈x0 − u, zn − u〉)
≤ βn‖xn − u‖2 − βn(1 − βn)

∥∥xn − S(zn)
∥∥2

+ (1 − βn)
(
(1 − αn)‖xn − u‖2 + 2αn〈x0 − u, zn − u〉)

= (
1 − αn(1 − βn)

)‖xn − u‖2 + 2αn(1 − βn)〈x0 − u, zn − u〉
− βn(1 − βn)

∥∥xn − S(zn)
∥∥2

. �

Lemma 4.3 Let u ∈ VI(C,f ) ∩ Fix(S). If there exists a subsequence {xnk
} of {xn}

such that lim infk→∞(‖xnk+1 − u‖ − ‖xnk
− u‖) ≥ 0, then ωw{xnk

} ⊂ VI(C,f ) ∩
Fix(S).
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Proof Observe that, whenever lim infk→∞(‖xnk+1 − u‖ − ‖xnk
− u‖) ≥ 0, we get

0 ≤ lim inf
k→∞

(‖xnk+1 − u‖ − ‖xnk
− u‖)

≤ lim inf
k→∞

(
βnk

‖xnk
− u‖ + (1 − βnk

)
∥∥S

(
αnk

x0 + (1 − αnk
)wnk

) − u
∥∥ − ‖xnk

− u‖)
≤ lim inf

k→∞ (1 − βnk
)
(
αnk

‖x0 − u‖ + (1 − αnk
)‖wnk

− u‖ − ‖xnk
− u‖)

= lim inf
k→∞ (1 − βnk

)
(‖wnk

− u‖ − ‖xnk
− u‖)

≤ (1 − a) lim inf
k→∞

(‖wnk
− u‖ − ‖xnk

− u‖)
≤ (1 − a) lim sup

k→∞
(‖wnk

− u‖ − ‖xnk
− u‖)

≤ 0.

Hence ‖wnk
− u‖ − ‖xnk

− u‖ → 0. It follows from Lemma 3.1 and Lemma 3.2 that

xnk
− wnk

→ 0 and ωw{xnk
} ⊂ VI(C,f ). (10)

We next show that ωw{xnk
} ⊂ Fix(S). By (9), we have

0 ≤ lim inf
k→∞

(‖xnk+1 − u‖2 − ‖xnk
− u‖2)

≤ lim inf
k→∞

(−αnk
(1 − βnk

)‖xnk
− u‖2 + 2αnk

(1 − βnk
)〈x0 − u, znk

− u〉

− βnk
(1 − βnk

)
∥∥xnk

− S(znk
)
∥∥2)

= − lim sup
k→∞

βnk
(1 − βnk

)
∥∥xnk

− S(znk
)
∥∥2

≤ −a(1 − b) lim sup
k→∞

∥∥xnk
− S(znk

)
∥∥2

.

Hence xnk
− S(znk

) → 0. It follows from (10) that

znk
− xnk

= αn(x0 − xnk
) + (1 − αn)(wnk

− xnk
) → 0. (11)

Therefore ∥∥znk
− S(znk

)
∥∥ ≤ ∥∥znk

− xnk

∥∥ + ∥∥xnk
− S(znk

)
∥∥ → 0.

By (11) and the demiclosedness of the mapping I − S, we get

ωw{xnk
} = ωw{znk

} ⊂ Fix(S).

Then ωw{xnk
} ⊂ VI(C,f ) ∩ Fix(S). �

Proof of Theorem 4.1 Let z := PVI(C,f )∩Fix(S)x0. Since βn < 1 for all n ∈ N, it fol-
lows from (9) that

‖xn+1 − z‖2 ≤ (
1 − αn(1 − βn)

)‖xn − u‖2 + 2αn(1 − βn)〈x0 − u, zn − u〉. (12)
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Case 1: There exists an n0 ∈ N such that ‖xn+1 − z‖ ≤ ‖xn − z‖ for all n ≥ n0. Then
limn→∞ ‖xn − z‖ exists. In particular, lim infn→∞(‖xn+1 − z‖ − ‖xn − z‖) = 0. It
follows from Lemma 4.3 that ωw{xn} ⊂ VI(C,f ) ∩ Fix(S) and wn − xn → 0. Since
zn − xn = αn(x0 − xn) + (1 − αn)(wn − xn) → 0, we have ωw{zn} = ωw{xn} Since
{xn} is bounded, there exists a subsequence {xnk

} of {xn} such that xnk
⇀ x̂ and

lim
k→∞〈x0 − z, xnk

− z〉 = lim sup
n→∞

〈x0 − z, xn − z〉 = lim sup
n→∞

〈x0 − z, zn − z〉.

Because ωw{xn} ⊂ VI(C,f ), we have

lim
k→∞〈x0 − z, xnk

− z〉 = 〈x0 − z, x̂ − z〉 ≤ 0.

Hence lim supn→∞〈x0 − z, zn − z〉 ≤ 0. By applying Lemma 2.3 to (12), we have
‖xn − z‖ → 0, that is, xn → z.

Case 2: There exists a subsequence {xnk
} of {xn} such that

‖xmj
− z‖ < ‖xmj+1 − z‖ for all j ∈ N.

From Lemma 2.2, there exists a nondecreasing sequence {nk} of N such that
limk→∞ nk = ∞ and the following inequalities hold for all k ∈N:

‖xnk
− z‖ ≤ ‖xnk+1 − z‖ and ‖xk − z‖ ≤ ‖xnk+1 − z‖. (13)

By discarding the repeated terms of {nk}, but still denoted by {nk}, we can view {xnk
}

as a subsequence of {xn}. In this case, we have lim infk→∞(‖xnk+1 − z‖ − ‖xnk
−

z‖) ≥ 0. Hence ωw{xnk
} ⊂ VI(C,f ) ∩ Fix(S) and, by the same argument as in the

first case, ωw{znk
} = ωw{xnk

}. It follows from the boundedness of {xnk
} that there

exists a subsequence {xnkl
} of {xnk

} such that xnkl
⇀ x̂ and

lim
l→∞〈x0 − z, xnkl

− z〉 = lim sup
k→∞

〈x0 − z, xnk
− z〉 = lim sup

k→∞
〈x0 − z, znk

− z〉.

Because ωw{xnk
} ⊂ VI(C,f ), we have

lim sup
k→∞

〈x0 − z, znk
− z〉 = lim

l→∞〈x0 − z, xnkl
− z〉 = 〈x0 − z, x̂ − z〉 ≤ 0.

It follows from (12) and (13) that

‖xnk+1 − z‖2 ≤ (
1 − αnk

(1 − βnk
)
)‖xnk

− u‖2 + 2αnk
(1 − βnk

)〈x0 − u, znk
− u〉

≤ (
1 − αnk

(1 − βnk
)
)‖xnk+1 − u‖2 + 2αnk

(1 − βnk
)〈x0 − u, znk

− u〉.
In particular, since αnk

(1 − βnk
) > 0 for all k ∈ N,

‖xk − z‖2 ≤ ‖xnk+1 − z‖2 ≤ 2〈x0 − z, xnk+1 − z〉.
Consequently,

lim sup
k→∞

‖xnk
− z‖2 ≤ lim sup

k→∞
2〈x0 − z, znk

− z〉 ≤ 0.

Therefore xk → z. �
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We next introduce another algorithm, which is a slight modification of (8). The it-
eration is obtained in the theorem below by using the same restrictions on parameters
as in Theorem 4.1. Under some appropriate conditions, this new iterative sequence
not only converges to a common solution of a variational inequality and a fixed point
of a given quasi-nonexpansive mapping, but it also includes the algorithm (4) when
S is the identity mapping. Since the proof of this result is very similar to that of
Theorem 4.1, we leave the proof for the reader to verify.

Theorem 4.2 Let S : H → H be a quasi-nonexpansive mapping such that I − S is
demiclosed at zero and f : H → H a monotone and L-Lipschitz mapping on C. Let
τ be a positive real number such that τL < 1. Suppose that VI(C,f ) ∩ Fix(S) is
nonempty. Let {xn}, {yn}, {zn} ⊂ H be sequences generated by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 ∈H,

yn := PC(xn − τf (xn)),

Tn := {w ∈H : 〈xn − τf (xn) − yn,w − yn〉 ≤ 0},
zn := αnx0 + (1 − αn)PTn(xn − τf (yn)),

xn+1 := βnzn + (1 − βn)Szn,

where {βn} ⊂ [a, b] ⊂]0,1[ for some a, b ∈]0,1[ and {αn} is a sequence in ]0,1[
satisfying limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Then xn → PVI(C,f )∩Fix(S)x0.

5 Conclusions

The subgradient extragradient method initiated by Censor et al. [14] provides a weak
convergence theorem for variational inequalities of monotone and Lipschitz contin-
uous operators in Hilbert spaces. In this paper, we modified this method to obtain
strong convergence by means of Halpern method [17, 18]. It should be noted that
our strong convergence theorem is different from the one studied in [15]. We also
presented two iterative methods for the problem of finding a common element of
the solution set of a variational inequality and of the set of fixed point of a quasi-
nonexpansive mapping with a demiclosedness property. Since every nonexpansive
mapping with a fixed point is quasi-nonexpansive and satisfies a demiclosedness
property, it follows that our two methods improve and extend the corresponding result
of Censor et al. [14].
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