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Project Summary



Project Summary

1.1 Hilbert space setting

Throughout this summary, we let H be a real Hilbert space with inner product
(-,-) and induced norm || - ||. Let C' be a closed convex subset of H. Let us recall the

following two major (nonlinear) problems:

Fixed Point Problem (FPP): Let T': C' — C be a mapping. An element u € C'
is a fized point of T if uw = T'u. The set of all fixed points of T' is denoted by
Fix(T).

Variational Inequality (VI): Let A: C — H. An element u € C is a solution of
a variational inequality for A if (v — w, Au) > 0 for all v € C. The set of all
solutions of a variational inequality for A is denoted by VI(C, A).

These two problems are related as follows:
FPP — VI: For a given T': C' — C, we have Fix(T) = VI(C,I —T).

VI = FPP: For a given A : C — H, we have VI(C, A) = Fix(Pc o (I — A)) where

P¢ is the metric projection from H onto C'.

However, each problem above can be solved in their own way.
In the paper Al, we introduced the concept of a “strongly quasinonexpansive

sequence of mappings”. This concept is very interesting and plays an important role

3



for proving a strong convergence of Halpern type iterative sequences. This is not only
a generalization of many known results in the literature but also give simple proofs
of them. For example, we obtain a simple proof of the general iterative method
for nonexpansive mappings which was established by Marino and Xu [Journal of
Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43-52, 2006.].

With the help of the results in A1, we discuss the split common fixed point prob-
lems. All results are presented in the paper A2. First, let us recall this problem. Let
H1 and Ho be two real Hilbert spaces. For a bounded linear operator A : Hi — Ho
and two quasinonexpansive mappings U : H; — Hy and T : Hy — Ho, the split
common fized point problem is to find u € Fix(U) such that Au € Fix(7T). This for-
mulation is very general because with appropriate setting we can obtain the following

problems as our corollaries:

o The split variational inequality problem studied by Censor, Gibali and Reich
[Numer. Algorithms 59 (2012) 301-323]

o The split common null point problem studied by Bryne, Censor, Gibali and
Reich [J. Nonlinear Convex Anal. 13 (2012) 759-775]

« Moudafi’s split feasibility problem [Nonlinear Anal. 79 (2013) 117-121]

We next consider the problem of finding a common element of the fixed-point
set of a certain mapping and the set of solutions of a variational inequality problem.
The result for this problem is presented in the paper A3. The scheme in this work is
inspired by the recent work of Maingé [A hybrid extragradient-viscosity method for
monotone operators and fixed point problems, STAM J. Control Optim. 47, 1499-1515
(2008)]. We also show that some assumption imposed in his result can be relaxed.
Moreover, our scheme is a genuine generalization of Maingé’s result because there is
a class of mappings to which our scheme is applicable, but which is beyond the scope

of his result.



The concept of subgradient extragradient method introduced by Censor, Gibali
and Reich [J. Optim. Theory Appl. 148, 318-335 (2011)] is an improvement of
that of extragradient method studied by Korpelevich [Ekon. Mat. Metody 12, 747—
756 (1976) (in Russian)]. It is known that these two method provides only weak
convergence. To obtain a more desirable result, that is, strong convergence, we present
two variants of the modified subgradient extragradient method. These results are

given in the paper A4.

1.2 Banach space setting

In this project, we also pay attention in a more general setting in Banach spaces.
We are interesting in two natural generalizations of cutter operators introduced by
Cegielski and Censor [Springer Optimization and its Applications No. 49 (2011)]. We
present our results in the paper A5. Throughout this subsection, let £ be a Banach
space with the dual space E*. Let (-,-) denote the dual pairing acting from E x E*
to R and let J : E — E* denote the mapping defined by = +— Jx € E* where Jx is
the element! such that

(x, Jz) = ||z||* = |||
Let C be a closed convex subset of E. A mapping T : C' — E is said to be

* a cutter operator of type (P) if Fix(T) # @ and (T'x — z, J(Txz — x)) < 0 for all
x € C and for all z € Fix(T);

e a cutter operator of type (Q) if Fix(T) # @ and (Tx — z, JTx — Jx) < 0 for all
x € C and for all z € Fix(T).

We obtain two iterative schemes for approximating a common fixed point of these
two operators. The first one is based on the Halpern type iteration and the second

one is on shrinking projection method of Takahashi-Takeuchi-Kubota.

We assume that E is smooth, that is, lim;—0(1/t)(||z + ty| — 1) exists for all z,y € E with
)l = llyll = 1.
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We prove a strong convergence theorem for strongly quasi-nonexpansive sequence of mappings in Hilbert spaces. Moreover, we
can improve the recent results of Tian and Jin (2011). We also give a simple proof of Marino-Xu’s result (2006).

1. Introduction

Let H be a Hilbert space with inner product (-, -) and induced
norm | - |l. Recall that a mapping T : H — H is said to
be L-Lipschitzian where L > 0 if |[Tx — Ty| < Llx — yl
for all x, y € H. In this paper, we are interested in nonex-
pansive mappings (that is, 1-Lipschitzian ones) and contrac-
tions (that is, L-Lipschitzian ones with L < 1). The problem
of finding a fixed point of such mappings plays an important
role in many nonlinear equations appearing in both pure
and applied sciences. The celebrated Banach’s contraction
principle is probably known as the major tool for the case of
contraction mappings. However, for nonexpansive mappings,
the situation is more difficult and different.

In 2000, Moudafi [1] introduced the viscosity approxima-
tion method, starting with an arbitrary initial x, € H, and
defined a sequence {x,,} by

1
1+¢

xm:%f(xnh Tx, (m=1), (1)

1+

n

where T is a nonexpansive mapping, f : H — Hisacontrac-
tion, and {e,} is a sequence in (0, 1) satisfying

(M1) lim,, _, &, = 0;
(MZ) ZZZI &, = 00

(M3) lim,, _, ,(1/¢,) = (1/g,,;) = 0.
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It was proved that the sequence {x,} generated by (1) con-
verges to a fixed point z of T and the following inequality
holds:

(f(e)-z,9q-2) <0 VYqeFix(T):={x€H:x=Tx}.
()

In the literature, Moudafi’s scheme has been widely studied
and extended (see [2, 3]). It should be noted that the
convergence of Moudafi’s scheme is equivalent to that of its
special setting with a constant contraction f (see [4]). In fact,
this follows from the role of the nonexpansiveness of T'.

In the earlier result, the following scheme was studied by
Halpern [5]; starting with an arbitrary initial x, € H and a
given u € H, he defined a sequence {x,} by

Xpp1 = Gl + (1 - ‘xn) Txn (n 2 1) > (3)

where {«,} is a certain sequence in (0, 1). In fact, Halpern
proved in 1967 the convergence of the iterative sequence {x,,}
where «, = n% and 8 € (0, 1). Many researchers (see, e.g.,
[6, 7]) have improved Halpern’s result from Hilbert spaces to
certain Banach spaces with the following conditions on {e, }:

(CY lim,, _, e, = 0;

(C2) Y2, &, = 003

(C3) lim,, _, oo (01, /t,41) = Lor Y02 let, — ety | < 00.
Halpern also showed that conditions (Cl) and (C2) are

necessary for the convergence of the sequence generated by
(3) for any given x,u € H.



On the other hand, Chidume-Chidume [8] and Suzuki [9]
independently discovered that together just conditions (Cl1)
and (C2) are sufficient for the convergence of the following
iterative sequence:

xpu€C, xpq=au+(l-a,)Tx, n=21), (4)
where T = AI + (1 - A)T and A € (0, 1). Recently, Saejung
[10] proved that the conclusion remains true if T is a strongly
nonexpansive mapping. It is noted that in Hilbert spaces the
mapping T) is strongly nonexpansive whenever A € (0,1).
Recall that a mapping T : H — H is strongly nonexpansive
(see [11, 12]) if it is nonexpansive and lim,, _, . lI(x, — ¥,) —

(Tx,, — Ty,)|l = 0 whenever {x,}, {y,} are sequences in H
such that {x, - y,} isbounded and lim,, _, . (llx,,— v, - I Tx,,—
Ty,l) = 0.

In the aforementioned results, it was assumed that T has a
fixed point; that is, Fix(T') # @. Now we consider the following
more general settings. A mapping T: H — H is

(1) quasi-nonexpansive if Fix(T) # @ and |[Tx — gl < [Ix -
qll for all x € H and q € Fix(T);

(ii) strongly quasi-nonexpansive if it is quasi-nonexpan-
sive and lim,, _, llx,, — Tx,|l = 0 whenever {x,} is a
bounded sequence in H such that lim,, _,  (llx,, —gll -
ITx, — gll) = 0 for some g € Fix(T).

In 2010, Maingé [2] proved the convergence of the sequence
{x,} defined by x; € H and

Xpsl = OCnf (xn) + (1 - 06”) men’ (5)

where T, = (1 - w)I + wT, w € (0,1/2) and T is a quasi-
nonexpansive mapping under the conditions (Cl) and (C2).
In 2011, Wongchan and Saejung [13] improved Maingé’s result
by replacing T,, with a strongly nonexpansive mapping T.
Hence, the restriction w € (0,1/2) can be extended to w €
(0, 1).

There are also some other iterative schemes closely related
to the schemes above studied by many authors. For example,
inspired by the scheme studied by Yamada [14], Tian and
Jin [15, 16] recently proposed the following iterative scheme,
starting with an arbitrary initial x, € H and

Xns1 = “an (xn) + (I - (an”F) men (I’l = 1) > (6)
where f and T, are the same as Maingé’s result but F : H —
H is strongly monotone and Lipschitzian.

A careful reading shows that there are some connections
between them. We will discuss and consolidate them into the
following scheme: Started with an arbitrary initial x, € H
and

Xps1 = &y (f (xn) +9 (Tnxn)) + (1 - 0(") Tnxn
n=>1),

where f, g are Lipschitzian and {T,} is a certain sequence of
quasi-nonexpansive mappings.
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2. Preliminaries

In this section, we collect together some known lemmas
which are our main tool in proving our results. Let C be
a closed and convex subset of H. Recall that the metric
projection P : H — C is defined as follows: for x € H,
Pex is the only one point in C satisfying

= Pox| = inf {|lx - y] : y € C}.. ®)
Lemma 1 (see [17]). Let C be a nonempty closed convex subset

of a Hilbert space H. Then for x € Hand y € C, y = Pox if
and only if (x — y,y —z) 20 forall z € C.

Lemma 2. Let H be a Hilbert space. Then

Ix+ y]* < Il + 2(p,x + y) ©)
forall x,y € H.

We also need the following lemma.

Lemma 3 (see [18, Lemma 2.5]). Let {a,} c [0,00), {a,} C
[0,1), and {b,} c (—c0,00), & € [0, 1) be such that
(i) {a,} is a bounded sequence;
(i) Gy < (1 = ,)a, + 20,8/@, /Gy + &b, for all
neN;

(iii) whenever {a,} is a subsequence of {a,} satisfying

liminf, (@, — a,) = 0, it follows that
limsupy _, ,,b, <0;
(iv) lim,, _, o0, = 0 and Y2 &, = c0.
Then lim,, _, . a, = 0.

Lemma 4 (see [19, Lemma 2.3]). Let {s,} be a sequence of
nonnegative real numbers, {«,} a sequence of real numbers
in [0,1] with Y72, o, = ©0, {u,} a sequence of nonnegative
real numbers with Yo u, < 0o, and {t,} a sequence of real
numbers with lim sup,, _, t, < 0. Suppose that

Spn < (1—a,)s, +oyt, +u, VYneN (10)

Then lim, =0.

n— 0oSn

3. Main Results

Recall that {T,, : H — H} is a strongly quasi-nonexpansive
sequence if it satisfies the following conditions:

M M2 Fix(T,) # s

(2) IT,x=pll < lx—pl forallx € Hand p € (2, Fix(T,,)
and foralln € N;

(3) lim,, _, ,llx,, — T,,x,,| = 0 whenever {x,} is a bounded
sequence in H such that lim, _, (%, — gl - [IT,,x, —
qll) = 0 for some q € (2, Fix(T},).

We also say that {T,,} satisfies the NST-condition if whenever
{z,} is a bounded sequence in H such that lim, _, |z, —
T,z,ll = 0 it follows that every weak cluster point of {z,}
belongs to (2, Fix(T,,).
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Remark 5.

(1) Being strongly nonexpansive the sequence and NST-
condition are apparently inherited by subsequences.

(2) Suppose that T, =T : H — H foralln > 1.

(i) If T is a strongly nonexpansive mapping, then
{T,} is a strongly nonexpansive sequence.

(ii) If I — T is demiclosed at zero, then {T},} satisfies
NST-condition.

Recall that I — T : H — H is demiclosed at zero if {x,} is
a sequence in H such that lim,, , . llx, — Tx,[l = 0 and w —
lim,,_, . x,, = p; then p € Fix(T).

We now state our main theorem.

Theorem 6. Let {T), H — Hj} be a strongly quasi-
nonexpansive sequence satisfying the NST-condition. Let f, g :
H — H be a- and B-Lipschitzian, respectively. Suppose that
{x,} is given by x, € H and

Xps1 = &y (f (xn) +9 (Tnxn)) + (1 -

‘XVI) T}‘lxn
(11)
(nz1),

where {«,} is a sequence in (0, 1) satisfying the conditions (CI)
and (C2). Suppose that ac+ 3 < 1. Then {x,,} converges strongly
to p = Pre pixer,y (f + 9)(p)-

Before we give the proof, we note that F := (2, Fix(T})
is closed and convex. It follows from a + 3 < 1 that f + gisan
(o + f)-contraction. Then the mapping Pr(f +g) : F — Fis
a contraction. By Banach’s contraction principle, there exists
aunique element p € F such that p = Pr(f + g)(p). It follows
then from Lemma 1 that ((f + g)(p) — p,z — p) < 0 for all
z€F.

Let us consider the following three lemmas first.

Lemma 7. The sequence {x,} is bounded. Hence, so are the
sequences { f (x,)}, {T,x,}, and {g(T,x,)}.

Proof. We consider the following inequality:

"xml - P” <oy "f (xn) +9 (Tnxn) - P" (12)
- ‘xn) ||Tnxn - p” .
Since each T,, is quasi-nonexpansive and p € (2, Fix(T},),
we have
1T = Pl < 1 = Pl 1)

It follows from the Lipschitzian conditions of f and g,
respectively that,

|| f () + 9 (T,x,) = pl
<o | f (x) - f (p)ll + 0,9 (Tox,) = g (P
) -l
= pll + Bet, [, — p
+a, || f (p -7l

+a, | f(p)+g(p (14)

< act |,

)+9(p)

13

Then, we have

e = £l
< (1-a, (1= (a+ ) x, - pl
”f (p)+9(p)-p| (15)
+a, (1-(a+p)) I (at )
If (p + g (p) -1l
< max {”xn -p|. s ) .
By induction, for all # > 1, we have
(p)+9(p) - pl
|1 = pll < max {"xl -7l (e p) | (16)
In particular, the sequence {x,,} is bounded. |
Lemma 8. The following inequality holds for alln > 1:
"xnﬂ - P”Z
< (1=a) e, = I + 2+ B) e, |, - a7
x ||xn+1 = pll+20,(f (P) + 9(P) = P Xpr = P)-

Proof. 1t follows from Lemma 2 that

s = Pl
= ”“n (f (xn) +9g (Tnxn) - P) +
< (1)’ T, — o’

+ 20‘71 <f (xn) +9 (Tnx") -

(1 - ‘xn) (Tnxn - P)||2

DX~ D)

(18)
Since each T, is quasi-nonexpansive and p € (.2, Fix(T,,),

1T = oI < e = I (19)

Next, we consider
(f (x) + g (T,x,) = Ps X = P)
= (f (%) = f(P)> %1 — P)
+{9(Tux,) = g (P)+ X1 = P)
+{f(p)+9(p) = X1 — P)
= Pl xs = ol + Bllxn =
pl+{f () +9(p) = Poxunr
= (a+ B) |xu = pllxues = 2l
+{f(p)+g(p)- -p)-

Hence, the result follows.

(20)

<alx,

-p)

X "‘xn-H

P’ X1



Lemma 9. If there is a subsequence {x, } of {x,} such that
liminf, | (llx -pll - IIxnk - pll) =0, then

m+1

lim sup (F@)+a(p)=pxyu—-p)<0. @

Proof. We note that lim; _, ,,a,, = 0. We consider the follow-

ing inequality:
0 <liminf (|x,, . = p[ - |, - 7))
<liminf (o, [ £ (x,) - 9 (T, x,) - 7]
(=0 ) [Ty, = o = - 2l) - @2

x"k - p”)

< —
lim inf (|,x,, - |

= 2 = [ = pl)) < 0

< lim sup (”Tnk
— 00

Then lim; _, ,(||T,, = pl = lx,, = pl) = 0. Since {T;}
is strongly quasi- nonexpanswe, 50 1s {T},}. This implies that
limy _, o lIx,, — T, x,, | = 0. Moreover,
"x”k+1 - x”k”
< ”x"k*l ” + "k Ko _x"k”
(23)
= Oy f (x"k) t9 (T"x"k) - T"kx"k”
+ "T"kx"k B x“k” :

Then lin.qkﬁoollxnk = Xl 0. Since {x,,} is bounded,
there exists a subsequence {xnk} of {xnk} such that w —
1

lim, —ooXn, =4 and
limsup (f () + 9 () = ., = p)
) (24)

= lim (f(p)+9(p) - poxs, ).

As limy _, o lIx,, — X, 41 = 0, we have limsup; _, ., (f(p) +

9(p) = p X1 — PY = (f(P) + g(p) — p,q — p). Since {T,}
satisfies NST-condition, we have g € F and hence (f(p) +

g(p) = p,q— p) < 0. Therefore,
limsup (F)+9(P)=pxyun-p) <0 (25)
as desired. 0O
Proof of Theorem 6. We are ready to apply Lemma 3. Set
a, = ||x,, - p||2,
b= (f(p)+9(p) - Xy = P) > (26)
a:=a+f.

14
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It follows that

(i) {a,} is a bounded sequence (by Lemma 7);

(ii) a,,y < (1-a,)a, + 20,&/a,, /G, 1 +a,b, foralln > 1
(by Lemma 8);

(iii) whenever {a,} is a subsequence of {a,} satisfy-
ing liminfy _, (a, ., — a,) > 0, it follows that
limsupy _, ,,b,, <0 (by Lemma9).

Hence, lim,, _, o llx,, — pll = lim,

the proof.

a, = 0. This completes
O

11— 00

4. Deduced Results

4.1. Wongchan and Saejung’s Result. Settingg =0and T, =T
for all # € N in the proof of Theorem 6, we immediately have
the following result of Wongchan and Saejung ([13, Theorem
6]).

Corollary10. Let C be a closed convex subset of a Hilbert space
HandT : C — C a strongly quasi-nonexpansive mapping
such that I — T is demiclosed at zero. Suppose that f : C — C
is a contraction and a sequence {x,} is generated by x, € C and

Xne1 = ‘xnf (xn) + (1 - an) Txn’ (27)

where {«,} is a sequence in (0, 1) satisfying the conditions (C1)
and (C2). Then {x,,} converges strongly to p = Py (1) f(P).

4.2. Tian and Jin's Result I. Recall thatamapping F: H — H
is n-strongly monotone if (x — y, Fx — Fy) > nllx - y||2 for all
x,y € H.

Lemma 11. Let F : H — H be an n-strongly monotone
and «-Lipschitzian mapping. Then ||(I — uF)x — (I — uF)y| <
V1 =27|x — yll where T = u(n - (HKZ/Z))fOr allx,y € H.In
particular, if 0 < y < 2n/x?, then I — uF is a contraction.

Proof. Let x, y € H. Then

|1 = uF) x (1 - uF) y|
= (x - ) - u(Fx - Fy)|’

= |x = y|* - 20 (x - y, Fx - Fy)

+[42"FX—F}/"2 (28)
< o= I - 2unle - oI + ¥ - oI
~(1-2u(n- ) eop
= (1-27) |x -y O
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Theorem 12. Let T : H — H be a strongly quasi-nonexpan-
sive mapping such that 1 =T is demiclosed at zero. Let F : H —
H be an n-strongly monotone and k-Lipschitzian mapping. Let
f+H — H be an L-Lipschitzian mapping and let a sequence
{x,} be generated by x, € H and

Xpe1 = ‘Xn)/f (xn) + (I - ‘anF) Txn
where the sequence {,} C (0, 1) satisfies the conditions (CI)
and (C2). Suppose that 0 < p < 2n/i* and 0 < yL < 1 —
V1 -21, where T = u(n - (;,mz/2)). Then {x,} converges to
P = Peixery(I = uF + yf)p.

n>1), (29)

Proof. First we rewrite the iteration (29) as follows:
Xpe1 = &y (f(xn) + g(Txn)) + (1 - an) Txn’ (30)

where f = yf and § = I-uF. Note that f is a yL-Lipschitzian
and g is a V1 — 27-Lipschitzian. Using yL + V1 — 2L < 1 and
putting T, = T for all n € N in Theorem 6 imply that {x,,}
converges to p € Fix(T'), where

P = Priy(r) (J?*' ﬁ) (P) = Pexery [~ wF +yf) (p).  (3)
0

Lemma 13 (see [12]). IfT: H — H is a quasi-nonexpansive
mapping, then the mapping T,, := (1 — w)I + wT is strongly
quasi-nonexpansive wherever w € (0, 1).

Using Theorem 12 and Lemma 13, we immediately have
the following result which is an improvement of Tian and Jin’s
result ([15, Theorem 3.1]).

Theorem 14. Let T : H — H be a quasi-nonexpansive
mapping such that I - T is demiclosed at zero. Let F: H — H
be an n-strongly monotone and «-Lipschitzian mapping. Let
f:H — H bean L-Lipschitzian mapping and let the sequence
{x,} be generated by x, € H and

Xpy1 = “n)/f (xn) + (I - ‘anF) wan (I’l 2 1) > (32)
where T,, = (1 — w)I + T, w € (0,1) and the sequence {«,} C
(0,1) satisfies the conditions (C1) and (C2). Suppose that 0 <
Y < 2n/*and 0 < yL < 1 — V1-21 where t = u(n -
(yKZ/Z)). Then {x,} converges to p = Pyixery(I — uF + yf)(p).

Remark 15. Theorem 14 improves the result of Tian and Jin
([15, Theorem 3.1]) in the following ways.

(i) We assume that yL < 1 — v/1 — 27 while [15, Theorem
3.1] is proved under the assumptions yL < 7. We note

thatt < 1-+/1-271.

(ii) Our result allows us to choose w in the wider interval
(0,1) while [15, Theorem 3.1] is proved under the
assumptions w € (0, 1/2).

4.3. Tian and Jin’s Result II. Recall that a mapping A : H —
H is strongly positive with the coefficient y > 0 if

(Ax, x) = yllx* (33)
forall x € H.
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Lemma 16 (see [20]). Let A be a strongly positive self-adjoint
linear bounded operator with coefficienty > 0 on H and 0 <
p <Al Then || T pA |I< 1~ pY.

Theorem 17. Let T : H — H be a strongly quasi-nonex-
pansive mapping such that I — T is demiclosed at zero. Let
A : H — H be a bounded linear self-adjoint operator and
strongly positive with the coefficienty. Let f : H — H be an
a-contraction mapping and let a sequence {x, } be generated by
x, € H and

Xper = 0 pf (%) + (I -, A)Tx, (n>1), (34)
where the sequence {a,} C (0, 1) satisfies the conditions (CI)
and (C2). Suppose that 0 < ya < y. Then {x,} converges to

P = Prixry(I = A+ yf)p.

Proof. By Lemma 16, we can choose ¢ € (0, 1) such that || I —
tA || < 1 - ty. Rewrite the iteration (34) as follows:

Xne1 = &n (f(xn) + g(Txn)) + (1 - &n) Txn’ (35)

where f = tyf,§ = I -tAand &, = a,/t forall n € N,
Note that f is tya-Lipschitzian and g is (1 — ty)-Lipschitzian.
It follows from 0 < per < y that

tya+1-ty=1-t(y-ay) <Ll (36)

Setting T, = T for all n € N in Theorem 6 implies that {x,}
converges to p € Fix(T) such that p = Py er( f +g9)p =
Py (tyf +1-tA) ps thatis, {tyf(p)+ p-tAp-p,p-w) = 0
for all w € Fix(T). This implies that (yf(p) — Ap,p—w) >0
for all w € Fix(T); that is, p = Py (yf + I — A)p. This
completes the proof. O

Using Lemma 13 and Theorem 17, we immediately have
the following result which is an improvement of Tian and Jin’s
result ([16, Theorem 3.1]).

Theorem 18. Let T : H — H be a quasi-nonexpansive
mapping such that I - T is demiclosed at zero. Let A: H — H
be a bounded linear self-adjoint operator and strongly positive
with the coefficient y. Let f : H — H be an a-contraction
mapping, and let the sequence {x,} be generated by x, € H
and

Xn1 = “nyf (xn) + (I - anA) wan (n>1), (37)

where T, = (1 — w)I + wT, w € (0, 1) and the sequence {«,} C
(0,1) satisfies the conditions (Cl1) and (C2). Suppose that 0 <
ya < y. Then {x,,} converges to p = Pgyyy(I = A+ yf)p.

Remark 19. Theorem 18 improves the result of Tian and Jin
([16, Theorem 3.1]). In fact, their result was proved under the
assumption w € (0, 1/2) while our result allows us to choose
w in the wider interval (0, 1).



5. A Discussion on Marino-Xu’s Result

The following theorem is studied by many authors; for
example, see [3].

Theorem 20. Let C be a closed convex subset of a Hilbert space
H. Suppose that

()T : C — C is a nonexpansive mapping and

Fix(T) + O;

(ii) {a,} < (0,1) is a sequence satisfying the conditions
(C1), (C2), and (C3).

Define the following iterative sequence:
u,x; €C, (38)
X1 =t + (1 — o) Tx,,. (39)
Then {x,} converges to Prix(ryU.

Using the technique in [4], we can give a simple proof of
the following result proved by Marino and Xu [20].

Theorem 21. Suppose that

(i) A: H — H is a bounded linear self-adjoint operator
and it is strongly positive with the coefficient y;

@) T H — H is a nonexpansive mapping and
Fix(T) + 0;

(iii) f: H — H is an a-contraction;

(iv) y is a positive number such that 0 < ya < y;

() {a,} € (0,1) is a sequence satisfying the conditions
(C1), (C2), and (C3).

Define the following iterative sequence:
z, €H (40)
ZrH-l = an’yf (Zn) + (I - anA) Tzn' (41)

Then {z,} converges to z € Fix(T) and (AZ - yf(2),z—w) < 0
for all w € Fix(T).

Proof. Chooset € (0,1) such that || I—tA || < 1—ty. First we
show that I-tA+tyf is a contraction. To see this, let x, y € H.
Then

|(I=tA+tyf)x - (I-tA+tyf) y|
<|I-tA)x - -tA) y|+ty|f ) - fF (W)
<= tAlx =yl + ey |f o = fF D) (42)
< (1=19) Jx -y + tya|x - y|
=(1-t(y-ya)fx-y]-

It follows from ya < 7y that I — tA + tyf is a contraction.
Note that Py 7y is nonexpansive and hence Py (I — tA +
tyf) is a contraction from Fix(T) into itself. It follows
from the closedness of Fix(T) and the Banach’s contraction
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principle that there exists a unique element z € Fix(T') such
that

2 = Puyr) (I - tA+ tyf) (2). (43)
Therefore,
(AZ-yf(@),z2-w) <0 Vw € Fix(T). (44)
Now we define the following iterative sequence:
x| =2z,

(45)
Xpi1 = % ((I_tA)TE-f-tyf(E)) + (1 _ *)Tx

It follows from Theorem 20 that the sequence {x,,} converges
t0 Z = Pyiyery (I = tA + tyf)(2). Observe that

2, = “7 ((I-tA) Tz, +tyf () + (1 - "‘7) Tz, (46)
We next consider the following expression:

||Zn+1 - xn+1”

= ”(1 - “7) (Tz, - Tx,) + % (I-tA)(Tz, - TZ)

¢4 [29 — —~ —~
(1-2 )zl + 2 (1 - ) o2l + iy o2

= (1= %) e -l + (22 - 0, - v9) ) 2 - 2]
t t

Sty (£ (2) - £ )

IN

< (1 -, (? - }IOC)) ”Zn_xn" + (%_“H (?_Y(X)) ”xn - 2”

(1 -, (?_ }IOC)) ”Zn - xn" T &, (?_ }IOC)

« < (l/t),__(? - Y‘X) > ”xn _ 2” i
Y- ya
(47)

It follows from Lemma4 that lim,_ |z, — x,/ = 0.
Therefore, we conclude that {z,,} converges to z € le(T) and
(AZ-yf(2),z-w) < 0 for allw € Fix(T). This completes the
proof. |
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noted that Moudafi’s original scheme can conclude only weak convergence. As
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Keywords:

Spgt common fixed point problems problems for Lipschitz continuous and monotone operators, split common null point
Split feasibility problem problems for maximal monotone operators, and Moudafi’s split feasibility problem.
Split variational inequality problem © 2014 Elsevier Inc. All rights reserved.

Split null point problem

1. Introduction

Let C and @ be closed convex subsets of Hilbert spaces H; and #Ha, respectively and A : Hy — Ha be
a bounded linear operator. The split feasibility problem (SFP) which was first introduced by Censor and
Elfving [4] is to find

ZeC suchthat AZ e Q. (1)

Suppose that Pc and Pg are the (orthogonal) projections onto the sets C' and @, respectively. Assuming
that SFP is consistent (i.e., (1) has a solution), it is not difficult to see that Z € H; solves (1) if and only if
it solves the fixed-point equation

T = Pc([ + ’)/A*(PQ — I)A)EE\,

where v > 0 is any positive constant, I is the identity operator and A* denotes the adjoint of A. To solve (1),
in the setting of the finite dimensional case, Byrne [2] proposed the following so-called C'Q) algorithm:

Tns1 = Po(zn +7A' (Pg — )Az,), neN,

* Corresponding author.
E-mail addresses: rapeecpan@kku.ac.th (R. Kraikaew), sacjung@kku.ac.th (S. Saejung).

0022-247X/$ — see front matter © 2014 Elsevier Inc. All rights reserved.
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where v € |0, %[, with L being the largest eigenvalue of the matrix A*A (¢ stands for matrix transposition).
SFP is important and has been widely studied because it plays a prominent role in the signal processing
and image reconstruction problem. Initiated by SFP, several “split type” problems have been investigated
and studied, for example, the split variational inequality problem (SVIP) and the split null point problem
(SCNP). We will consolidate these problems. Let U : H; — Hj and T : Hy — Ha be two operators with
nonempty fixed point sets Fix(U) := {z € Hi: x = Uz} and Fix(T'), respectively. The split common fized
point problem (SCFP) is to find

Z € Fix(U) such that A7 € Fix(T).

If U :== Pc and T := Py, then Fix(U) = C and Fix(T) = @ and hence SCFP immediately reduces to
SFP. In the case that U and T are directed operators, Censor and Segal [5] proposed and proved, still in
finite-dimensional spaces, the convergence of the following algorithm:

Tpt1 = U(iL’n +~yAYT — I)A;L'n)7 n €N,

where v and L are as mentioned before. Note that a class of directed operators includes the metric projec-
tions. Hence the result of Censor et al. recovers Byrne’s CQ algorithm.

Moudafi [9] recently studied the convergence properties of a relaxed algorithm for SCFP for a class of
quasi-nonexpansive operators 7" such that I — T is demiclosed at zero. He also proved a weak convergence
theorem as shown below.

Theorem 1.1. Given a bounded linear operator A : Hy — Ha, let U : H1 — Hy and T : Ho — Ha be two
quasi-nonexpansive operators with nonempty sets Fix(U) = C and Fix(T) = Q. Assume that I — U and
I—T are demiclosed at zero. Suppose I' := {x € C: Ax € Q} # @ and define an iterative sequence {x,} by

o € H1,

Uy = Ty, +YBAY(T — I)Azyy,

Tn41 = (1 - U‘n)un + anU(un)a

where € 10,1[, o, €10,1[ and v € ]0, )\Lﬁ[ with X = ||A*A||. Then {x,} converges weakly to T € I" provided
that o, €10,1 — §[ for a small enough 6 > 0.

Note that, in the setting of finite dimensional spaces, weak and strong convergences are equivalent.
Differently, in infinite dimensional cases, they are not the same. Furthermore, Moudafi’s result [9] can
guarantee only weak convergence. In most cases, strong convergence is more desirable than weak convergence.
In this paper, we slightly modify the algorithm to obtain a strong convergence.

2. Definitions and preliminaries

Throughout, let H be a real Hilbert space with inner product (-,-) and the induced norm || - ||. We denote
the strong and weak convergence of a sequence {z,,} in H to an element z € H by z,, — z and z, — z,
respectively. For a closed convex subset C' of H, the (metric) projection Pc : H — C' is defined for each
z € ‘H as the unique element Pox € C' such that

|l — Pox|| = inf{||z — z||: 2 € C}.
For x € H and y € C, it is known that

y=Pecx <<= (y—z,z2—y)=20 foralzeC.
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In this paper, the fixed-point set of an operator 7' : H — H is denoted by Fix(T), that is, Fix(T) =
{e € H: © =Tz}
Let us recall some definitions of operators involved in our study.
Definition 2.1. An operator T : H — H is called:
e L-Lipschitzian if
Tz —Ty|| < L||z —y|| forall z,y € H;
e a contraction if it is a-Lipschitzian with « € [0,1[, and in this case, we also say that T' is a contraction
with the coefficient «;
e nonexpansive if T is 1-Lipschitzian;
o quasi-nonezpansive if Fix(T) # @ and

[Tz —p| < ||z —p|| forallzeH, peFix(T);
equivalently, for all x € H and p € Fix(T),
(o~ Top—2) < ~3 o — Tals
o strongly quasi-nonexpansive if T' is quasi-nonexpansive and
z, — T, — 0

whenever {z,} is a bounded sequence in H and ||z, — p|| — || Tz, — p|| = 0 for some p € Fix(T);
e monotone if

(Tz —Ty,x —y) >0 forall z,y € H.
Proposition 2.2. If T : H — H is a nonexpansive operator, then the following inequality holds for all x,y € H
1 2
(¢ =y, (I~ T)a— (I~ T)y) > L1~ D)o — (1 T
Proof. Since T is nonexpansive, we have

lz —yl? > | T - Ty|)?
= -T)z— I -T)y~ &~y
= =T)e— (I =T)y|* —2(z -y, (I - T)x — (I = T)y) + ||z — y|| -

Therefore we get
1 2
(#=y,(I=T)x = (I =T)y) > 5| =T)x = (I =Ty|". O
Corollary 2.3. Let S : H — H be a quasi-nonexpansive operator and

T:=(1-a)l+as,
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for some a €10,1]. Then, for all z € H and p € Fix(T), we have the following inequality
(¢~ Ta,p— o) <~ ~ Ta?
z—Tz,p—x) < ——|lz—Tz|*.
7p 2a
Proof. Obviously, Fix(T") = Fix(S). It follows from Proposition 2.2 that

1
(z = Ta,p—2) = ale - Sz,p—a) <~ — S = —5—|la - Tz|%.
«
The proof is finished. O
3. Main results
Let us recall first the result proved by the second author.
Theorem 3.1. (See [13].) Let C be a closed and convex subset of a Hilbert space H and let T : C — C be a
strongly quasi-nonezpansive operator such that I — T is demiclosed at zero. Suppose that o € C' and {z,}
is a sequence generated iteratively by 1 € C and

Tnt1 = apxo + (1 — )Ty,

where {an} is a sequence in ]0,1[ such that lim, oo an = 0 and Yo" o = 00. Then {z,} converges
strongly to a fized point PpigryTo of T.

Recall that an operator T is demiclosed at zero [15] if
Tx =0 whenever x,, — z and Tx,, — 0.
3.1. The split common fixed point problem
Throughout this paper, let I" := {z € Fix(U): Az € Fix(T)}. It is clear that I" is closed and convex.
Theorem 3.2. Let U : H1 — Hi be a strongly quasi-nonexzpansive operator and T : Ho — Ha be a quasi-

nonexpansive operator such that both I —U and I —T are demiclosed at zero. Let A : Hq — Ho be a bounded
linear operator with L = || A*A||. Suppose that I # @. Let {x,} C H1 be a sequence generated by

o € Ha,
Tng1 = an@o + (1 — a)U (2 + A (T = I) Azy,),

where the parameter v and the sequence {a,} satisfy the following conditions:

(@) v€10, 7],
(b) {an} C10,1[, limy, o0 oty = 0 and Y07 oy, = 0.

Then x,, — Prxg.

The following lemma is extracted from Lemma 6.2 of [6] which is needed for proving our main result.
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Lemma 3.3. Let Hy and Ho be Hilbert spaces. Let T : Ho — Ho be a nonexpansive operator and A : Hi — Ho
be a bounded linear operator with L = ||A* A||. For a positive real number vy, define the operator W : Hy — H1
by

W =1+~A"(T —I)A.
Then the following hold:
o Forallx,y € Hi,
IWa =Wyl <l =yl +y(rL = DT~ DAz — (T~ D ay["

In addition, if T := (1 — a)I + aS where S : Ha — Ha is a nonexpansive operator, then
1 2
W= Wl? < 12 + 2 (2L - 3 )T - Do = (@ - Dy
o If Az € Fix(T), then o € Fix(W) and the converse holds provided that v € ]0, +[.

Proof. « Let 2,y € H,. Then we have

Wz — Wyl? = ||(z + vA*(T = D) Az) — (y + AT — 1) Ay)|)*
= (@ = y) + 7A* (T = D) Az — (T - ) Ay)|®
= |z = y|? + 29(x — y, A*((T — Az — (T — 1) Ay)) +*||A* (T — DAz — (T — I) Ay)||*
= ||z — ylI> + 2v(Az — Ay, (T — I) Az — (T — I) Ay)
+HA (T — DAz — (T — 1) Ay), A" (T — DAz — (T — 1) Ay))
= [lz — y|? + 2y(Az — Ay, (T — 1) Az — (T — I)Ay)
+7?{AA*((T — DAz — (T — ) Ay), (T — I)Az — (T — 1) Ay)
<z = yl1? + 2v(Aw — Ay, (T — D) Az — (T — I) Ay)
+92|AA*|[||(T = DAz — (T — 1) Ay|*.
Therefore we have
[Wa = Wyl? < [lo - y|* + 2v(Az — Ay, (T — I)Az — (T — I)Ay)
+7°L|(T = DAz — (T — ) Ay||. (2)

It follows from Proposition 2.2 that
IWa =Wyl < lo =yl +y(vL = DT~ DAz — (T~ D)y [*
Furthermore, if T := (1 — a)I + «S where S is a nonexpansive operator, then
<Az — Ay, (T — I)Ax — (T — I)Ay> = a<Az — Ay, (S —1)Az — (S — I)Ay>
< Sl =94y -1 - )40

1
= 5 (0 =) Ay — (1~ T)Aa.
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Hence from (2) and Proposition 2.2, we obtain
1 2
W = Wyl < o~ ol 49 (22 = 2 )T = Do (7 = Dy

« It is obvious that Az € Fix(T) implies z € Fix(W). To see the converse, let v € ]0, £[. Let 2 € Fix(W)
and z € H; be such that Az € Fix(T'). It follows that z € Fix(W) and hence we get

2
o = 2l* = [IWa = Wel* < ||l - 2 +y(vL = D|(T - D) Az ".
Since vL < 1, we have (T'— I)Az = 0, that is, Az € Fix(T). O

Corollary 3.4. Let T : Ho — Ha be a quasi-nonexpansive operator and A, W be operators defined as in
Lemma 3.3. Then

2
Wz — 2] < |z — 2| + v (/L = D|[(T - D Az,
for all x € Hy and z € Hy such that Az € Fix(T).

Lemma 3.5. Let U : H1 — Hi be a strongly quasi-nonexpansive operator and T : Ho — Ho be a quasi-
nonezpansive operator. Let A : Hy — Ha be a bounded linear operator with L = ||A* A||. Define the operator
W : Hy — Hi as in Lemma 3.3 where vL < 1. Suppose that Fix(U) NFix(W) # @ and {x,} is a bounded
sequence in Hq. Then the following are equivalent:

(a) UWax,, — Wa,, — 0 and Wz, — x,, — 0;
(b) UWzp — z, — 0;
(¢) l|lzn —pll = JUWzy, — p|| = O for some p € Fix(U) N Fix(W).

Proof. It is obvious that (a) = (b) = (c¢). We now show that (¢) = (a). Suppose that ||z, — p| —
|[UWz, — p|| = 0 for some p € Fix(U) N Fix(W). By using Corollary 3.4 and the quasi-nonexpansiveness
of U, we get

”UWIN 7PH < HWIn -pl < ”xn 7PH'

Therefore we have ||[Wx, — p|| — |[UW=z, — p|| — 0. Since U is strongly quasi-nonexpansive, we have
UWax,, — Wz, — 0. Notice that ||z, — p||?> — |[UWz,, — p||?> — 0. Using Corollary 3.4 again gives

2
V(1 = AL)|[(T = 1) Az,||” < ||z — pl* = [UW 2y, — pl* — 0.
Since vL < 1, we get Wa,, — x,, = yA*(T — I)Az,, — 0. Then (a) is satisfied and the proof is finished. O

Proof of Theorem 3.2. To conclude the result, by using Theorem 3.1, it suffices to show that:

(#) the operator UW is strongly quasi-nonexpansive, where W := I + yA*(T — I) 4;
(V) I —UW is demiclosed at zero.

We first note that I" = Fix(U) N Fix(W) = Fix(UW). Indeed, it follows from Lemma 3.3 that

I'={x € Hy: x € Fix(U) and Az € Fix(T)}
={z € H1: = € Fix(U) and z € Fix(W)}
= Fix(U) N Fix(W).
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Then Fix(U) N Fix(W) # @. We next show that Fix(U) N Fix(W) = Fix(UW). To see this, it suffices to
show Fix(UW) C Fix(U) NFix(W). Then let p € Fix(U) NFix(W) and z € Fix(UW). By using Lemma 3.5
with x,, = z, we get that Wz = x and UWz = Wa, that is, 2 € Fix(U) N Fix(W). So our assertion is
obtained. Combining this fact with Lemma 3.5, we have (#). To prove (V), let {z,} be a sequence such
that z, — UWx,, — 0 and z,, — z for some x € H;. It follows from Lemma 3.5 that x,, — Wx,, — 0 and
Yn — Uyn — 0 where y,, = Wx,,. Notice that y,, — x. Since I — U and I — T are demiclosed at zero, we
have z € Fix(W) NFix(U) = Fix(UW). O

4. Another split problems deduced from SCFP
4.1. The split variational inequality problem

Let H; and Hs be two real Hilbert spaces. Given operators f : H1 — H; and g : Ho — Ha, a bounded
linear operator A : H; — Hy and nonempty closed convex subsets C' C H; and Q C Ha, the split variational
inequality problem (SVIP) is the problem of finding a point Z € VIP(C, f) such that Az € VIP(Q, g), that is,

TeC suchthat (f(Z),z—Z)>0 forallzeC,
7:=AZ €Q suchthat (g(7),y—7) >0 forallyeqQ.

This is equivalent to the problem of finding Z € Fix(Pc(I — Af)) such that AZ € Fix(Pg(I — Ag)) where
A > 0. We denote the set of solutions by SVIP(A, C, Q, f, g). Therefore SVIP can be viewed as SCFP. Under
appropriate conditions of the operators f and g, we can apply our result for SVIP.

In the work of Censor et al. 6], the operators f and g are assumed to be a-inverse strongly monotone
where « > 0, that is,

(=9, f@) = 1) > o] f@) ~ F* and (u—v.9(u) - g(v) > allgu) - g()|",

for all z,y € Hy and u,v € Hso. It is known that if f is a-inverse strongly monotone and A € |0, 2a[ then
Po(I — Nf) is strongly quasi-nonexpansive and I — Po(I — A\f) is demiclosed at zero. Hence their result
becomes a special case of ours. However, since every a-inverse strongly monotone operator is monotone and
Lipschitz continuous, the latter class of operators is then more general. It is worth noting that there exists a
monotone Lipschitz continuous operator f such that Po(I — \f) fails to be quasi-nonexpansive [7]. Thanks
to the extragradient method introduced by Korpelevi¢ (8], we obtain a slight modification of such operators
and prove a strong convergence theorem for SVIP in the case when f and g are monotone and Lipschitz
continuous. More precisely, the following corollary is established.

Corollary 4.1. Let C' and Q be nonempty closed convex subsets of Hilbert spaces Hi and Ha, respectively. Let
f:H1— Hiand g : Ha — Ha be monotone and k-Lipschitz continuous operators on C' and @, respectively

and A : Hy — Ha a bounded linear operator with ||A*A|| = L. Suppose that SVIP(A, C,Q, f,g) # @. Define
an iterative sequence {x,} C Hi by

o € Ha,
Tpt1 = an@o + (1 — ay)U (2 + vA*(T = I) Azy,),

where v €10, £[,

U= Po(I = MfPo(I = Af)),
T:=Po(I = AgPo(I = Ag)), 3)

and X €0, %[ Then the sequence {x,} converges strongly to T € SVIP(A,C,Q, f,g)-
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Before giving a proof, we present the following two lemmas.

Lemma 4.2. Let f : H — H be monotone and k-Lipschitz continuous on C. Let S := Pc(I — \f) where
A > 0. If {z,} is a sequence in C satisfying x, — T and x,, — Sz, — 0, then T € VIP(C, f).

Proof. Since f is monotone and continuous, we have (see e.g., [14])
zeVIP(C, f) <— <f(x),x7§>>0 for all x € C.
Let z € C. Note that
<£L’n — M (zpn) — Sy, Sy, — :v> >0 forallneN.
Next, we consider

A f(@),zn —z) < (M (20), 20 — )

(

<)\f(zn),zn — Szn> + </\f(zn),Sa:n — r>

(A f(@n), o — Sap) — (@n — Mf(@n) — Sap, Sxy — 2) + (T — S2p, STy — )
(Af(@n), n — Sz ) + (T4 — S0, ST — T)

Allf@a)[len = Szall + llzn = SwallllSzn — 2l

N IN

Hence
1
<f(x)7ln - CC> < ||f(xn)||‘|xn - an” + XHxn - an”llsxn - "EH
Since {f(z,)} is bounded, z,, — Sz, — 0 and x,, — Z, we have
(f(x),2—z) = 7}LH;C<f(T)7$n —z) <0.
The proof is finished. O

The following lemma is extracted from [12].

Lemma 4.3. Let f : H — H be a monotone and k-Lipschitz operator on C and X be a positive number. Let
V= Po(I —Af) and S := Pc(I — A\fV'). Then, for all ¢ € VIP(C, f), we have

[z —qll* < llz = all* = (1 = A*s%) & — Ve *.
In particular, if kX < 1, then S is a strongly quasi-nonexpansive operator and Fix(S) = Fix(V') = VIP(C, f).
Proof. Let ¢ € VIP(C, f). Note that

ISz — gl)* < [|(z = A (V) —q|* — ||(z = Af(Va)) - Sz®
= |l — ql* + 2\ — Sz, f(Va)) — ||z — S|
= |z —ql|* + 2X{g — Vz, f(Vz) — f(q))
+20Mq =V, £(9)) + 22(Ve — Sz, f(Va)) — ||z — S|
<lz —gl? + 20V — Sz, f(Vz)) — ||lo — Sz|?
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= |lz — q|* + 2X(Vz — Sz, f(Vz)) — ||z — Vz|? — 2(z — Va,Vz — Sz) — |Vz — Sz|?
=|lz — gl = |l = Va|? - |Vz — Sz||? + 2(x = Af(Va) — Va, Sz — V).
Now we estimate the last term of the preceding expression

(z = Af(Va) = Va,Sz — Va) = (z — AMf(z) — Va,Sz — Vz) + (A f(z) — A\f(Vz), S5z — V)
< <)\f(;L') —Af(Vz), Sz — V:L’>
< Xeljle = Va||||Sz — V.

So we have
I8z — qll* < llo = ql® — l|lz = Va||* — |Va — Sz||* + 2A6]z — V||| Sz — Va|
<l — gl =l — Val]®  [Vio — Sz + A2 e — V| + |8z — V]
= o —al* = (1 = Nw%)||lz — V|2,
Assume further that kA < 1 and let {z,} be a sequence in H such that ||Sz,, — ¢|| — |z — q|| — 0 for

some ¢ € Fix(S). It follows from the above inequality that z, — Vz,, — 0 which can be easily deduced
to @, — Sz, — 0. Therefore S is strongly quasi-nonexpansive and it is not difficult to see that Fix(S) =
Fix(V) = VIP(C, f). O

Proof of Corollary 4.1. It follows from Lemma 4.3 that both operators U and T defined in (3) are strongly
quasi-nonexpansive. We next show that I — U is demiclosed at zero. Let {@,} be a sequence in H; such
that , — Uz, — 0 and x,, — x. Notice that ||z, — q||> — [|[Uz,, — ¢||> = 0 for some q € VIP(C, f). Using
Lemma 4.3, we get

(1= 2262) |20 — Pe(T = Af)zn|* < llzn — al® = |Uzn — g = 0.

Thus z, — Po(I — Af)x, — 0. Therefore, by Lemma 4.2, we get x € VIP(C, f) = Fix(U). Similarly, I — T
is also demiclosed at zero. Then the result follows from Theorem 3.2. O

4.2. The split common null point problem

Given two set-valued operators By C Hj X Hy and By C Hy X Ho and a bounded linear operator
A Hy — Ha, the split common null point problem (SCNP) is the problem of finding

Z €My suchthat 0e€ B(Z) and 0 € By(AZ). (4)

Recently, Byrne et al. [3] proposed a strong convergence theorem for finding such a solution Z when B
and Bs are maximal monotone. Recall that B C H x H is:

o monotone if (x —y,u —v) >0 for all (z,u) € By and (y,v) € Bo;
o mazimal monotone if it is monotone and its graph is not properly contained in the graph of any other
monotone operator.

For a maximal monotone operator B C H X H and A > 0, we can define a single-valued operator

JE=(I+AB)" U1 —H.
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It is known that Jf is firmly nonexpansive, that is, for all z,y € H,
(x =y, Iz — JPy) > | Jfz — IPy|",
and
0eB@) <<= zeFix(JP).
Therefore, the problem (4) is equivalent to the problem of finding
T€Hi suchthat 7€ Fix(JP) and A7 € Fix(J5?),

where A is a positive real number, that is, the SCNP reduces to the SCFP.
The result of Byrne et al. [3] is a consequence of our Theorem 3.2.

Corollary 4.4. (See [3].) Let Hi and Ho be two Hilbert spaces. Given two set-valued mazimal monotone
operators By : Hy — 2™ and By : Ha — 22 and a bounded linear operator A : Hy — Ha with L = |A*A]|,
we define an iterative sequence {x,} by

o € M1, ,
zn+1=anxo+(1—an)Jfl(a:n—i-'yA*(Jf?—I)Amn), (5)

where the parameters \, v and the sequence {a,} satisfy the following conditions:

(a) A>0,7€]0, 2],
(0) {om} C10,1], limpoo @y = 0 and > e ot = 00

Suppose that the solution set of (4), says I', is nonempty. Then x,, - T € I
Remark 4.5.
(1) Notice that Corollary 4.4 can be viewed as a corollary of our Theorem 3.2 for the following reasons.

(a) For a maximal monotone B and A > 0, it is known that J¥ is firmly nonexpansive and hence
nonexpansive. Moreover, I — J§ is demiclosed at zero [1] and

1.1
JP=C14+28
XT3 +27

for some nonexpansive operator S : H — H.
(b) For By and A defined as in Corollary 4.4, it follows from Lemma 3.3 with o = % that

Wz —y|? < |z -yl +~(vL — 2)|| (P2 — 1) Az,

for all z € #1 and y € Hy such that Ay € Fix(J?) where W := I +yA*(JP? — I)A. So, in this
case, the parameter ~ can be relaxed, that is, v € ]0, %[ instead of |0, %[
(2) Our Theorem 3.2 allows the parameter A for Jfl and J/j\% in Corollary 4.4 to be chosen differently.
(3) The strong limit Z of the sequence {z,} generated by (5) is indeed the nearest point projection of z
onto the solution set I'.
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4.3. Moudafi’s split feasibility problem

Let H1, Ho and Hs be Hilbert spaces and C' C Hi, @ C Hs be nonempty closed convex sets. Let
A:Hy — Hs, B:Ha — Hs be bounded linear operators. Moudafi’s split feasibility problem [10,11] is the
problem of finding

rz€Candye suchthat Az = By. (6)

We will transform this problem into the original SFP. Let us denote

H]_ = 'Hl X ’Hz,
Hz = Hg X Hg,
C:=Cx Q C H17
Q= {(z,w) € Hy: z =w}.
Define a linear operator A : Hy — Hy by
A(z,y) = (Az, By) for all (z,y) € Hy.
If the set I" := {(z,y) € C: A(xz,y) € Q} is nonempty, then (z,y) € Hy solves (6) if and only if
(z,y) = Pc(I + A" (Pq — I)A)(z,y).
Note that:
o Pc(z,y) = (Pex, Pgy) for all (z,y) € Hy;
o Po(z,w) = (554, =2) for all (z,w) € Hy;
o A*(z,w) = (A*z, B*w) for all (z,w) € Ha.
As a consequence of our Theorem 3.2, the following iterative sequence {(z,,y,)} defined by

,7/‘067'[1,
yo € Ha,

Tp4+1 = QpXo + (1 - an)PC (wTL + %A*(Byn - AfL'n))a

Ynt1 = QpYo + (1 - O‘n)PQ (yn + %B*(AT’VL - Byn)>7

converges strongly to (Z,y) which simultaneously solves Moudafi’s split feasibility problem (6) and is nearest
to the initial guess (zo, o).
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O The purpose of this article is to give a more general scheme for approximating a common element
of the fixed-point set of a certain mapping and the set of solutions of a variational inequality
problem. This scheme is inspired by the recent work of Maingé [A hybrid extragradient-viscosity
method for monotone operators and fixed point problems, SIAM J. Control Optim. 47, 1499-1515
(2008)]. We also show that some assumption imposed in his result can be relaxed. Moreover, our
scheme is a genuine generalization of Maingé’s result because there is a class of mappings to which
our scheme is applicable, but which is beyond the scope of his result.
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1. INTRODUCTION

Variational inequality problems for monotone mappings play an
important role in many branches in pure and applied sciences. To solve
these problems, various iterative methods have been proposed and studied
by many authors in the literature. The purpose of this article is to give a
short and simple proof of the recent method proposed by Maingé [12].

In this article, let # be a real Hilbert space with inner product (-, ) and
the induced norm | - ||. Let C be a closed and convex subset of #. The
variational inequality problem for a given mapping A : C — 7 is the problem
of finding an element x* € C such that

(Ax*,x —x*) >0 Vxe C. (1)
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We denote the solution set of the problem above by VIP(C,A), that
is, x* € VIP(C,A) if and only if x* € C and (1) holds. Usually, the
variational inequality problem above is treated as the fixed point problem
for a certain mapping T : C — C, that is, the problem of finding an
element x* € C such that x* = Tx*. In fact, it is noted that for a
number A > 0

(Ax*,x — x*) > 0Vx e C
& (X — (x* — AAx"),x —x*) >0 VxeC
& x* = Po(I — AA)x",
where P is the metric projection from # onto C and I is the identity

mapping. To simplify the notation, let Fix(7T") denote the set of fixed points
of T. It follows then that

VIP(C, A) = Fix(Po(I — ZA)) Vi > 0.

Let us recall the following three interesting methods for variational
inequality problems and fixed point problems which have been studied by
many researchers in the literature. The related definitions and notions will
be given in Section 2.

1.1. Korpelevich’s Extragradient Method

Suppose that the mapping A : C — # is

e monotone, that is, (Ax — Ay,x —y) > 0 for all x,y € C;
o ic-Lipschitz continuous where x > 0, that is, ||[Ax — Ay|| < k||x — y|| for all
x,y € C.

Korpelevich [11] proposed the following so-called extragradient method
for finding an element in VIP(C, A):

x € C
Yn = P(;(X,, - IIAX,,) (2)
Xpy1 = PC(XIL - /’LAyn)a

where the stepsize A€ (0,1/x). It is known that if VIP(C,A) # &, the
sequence {x,} generated by (2) converges weakly to an element in
VIP(C, A). Recently, Censor et al. had made great progress in this method
(see [4-6]).
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1.2. Moudafi's Viscosity Method

Let T: C — C be a nonexpansive mapping, that is, it is 1-Lipschitz
continuous. Moudafi [14] proposed the so-called viscosity method for the
fixed point problem for T as follows:

vel ©
Xpy1 = O‘nf(xn) + (1 - o{n)rrxm

where f: C — C is a strict contraction, that is, f is L-Lipschitz continuous

mapping with 0 < L < 1, and {«,} is a sequence in (0, 1) satisfying

(C1) lim, o0, =0 and Y 7 o, = 00;

n=0

(CQ) Z?:() |O(n - OCn-%—l' < o0 or 1imn—>oc(an/an+l) =1

It is proved that if Fix(7) # @, then the sequence {x,} generated by (3)
converges strongly to an element z € VIP(Fix(7T), I — f), that is, z € Fix(T)
and (z — f(z),q — z) > 0 for all ¢ € Fix(T). In this setting, it is known that
Fix(7T) is closed and convex and VIP(Fix(7T), I — f) = {z}. Let us note that
Moudafi’s viscosity method is a variant of Halpern’s method [9].

1.3. Yamada’s Hybrid Steepest Descent Method

Let T:# — # be a nonexpansive mapping and A:# — # be an
L-Lipschitz continuous and strongly monotone mapping, that is, there exists
an 17 > 0 such that (Ax — Ay, x — y) > n|lx — y||? for all x,y € # (in this case,
we also say that A is g-strongly monotone). Yamada [20] proposed the
so-called hybrid steepest descent method for the fixed point problem for
T as follows:

e (4)

Xnt1 = Txn - OCMATX,“
where {a,} is a sequence in (0, 1) satisfying the conditions (C1) and (C2)

as in Moudafi’s method. It is proved that if Fix(7T") # &, then the sequence
{x,} generated by (4) converges strongly to an element z € VIP(Fix(7), A).

1.4. Maingé’s Recent Result

Recall the following concept: A mapping 7T :# — # is called
p-demicontractive, where f € [0,1) if Fix(T) # @ and for all x € # and ¢ €
Fix(7T)

ITx = qlI* < llx = qlI* + Bllx — Tx|l?,
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which is equivalent to

lx — Tx|>.

(x — Tx,x— q) > I;ﬁ

Remark that if 7 : # — # is nonexpansive, then

o [ — T is demiclosed at zero, that is, Tx = 0 whenever {x,} C # converges
weakly to x € # and {Tx,} converges strongly to zero.
e T is O-demicontractive if Fix(7T) # &.

Inspired by the preceding three methods and Nadezhkina—Takahshi’s
result [15], Maingé proved the following result.

Theorem 1. Let C be a closed convex subset of #, p €[0,1) and x,n, L >
0. Suppose that A : #H — # is monotone on C and k-Lipschitz continuous on
H, T :H — H is f-demicontractive such that I — T is demiclosed at zero and
VIP(C,A) NFix(T) # @. Suppose that F : # — # s L-Lipschilz continuous
and n-strongly monotone on C. Let {x,}, {y.} and {t,} be sequences in #
generated by

xX) € H
Yn = Pf(xn - /LnAxn)
tn = PC(Xn - )“nAyn) (5)

Up =ty — angtn

Xny1 = (1 - w)vn + UJT'Un,
where the parameters {1,,}, {o,} and w satisfy the following conditions:

(a) A, €la,d] C (0,1/x) for some a,b € (0,1/x);
(b) o, €10,1), lim, 0, =0 and Y o o, = 00;

(c) w e (0, lgﬂ].

Then all sequences {x,}, {y,}, and {t,} converge strongly to x* € VIP(C,A)N
Fix(T) and this x* is the only element such that

(Fx',x —x")y >0 Vxe VIP(C,A) NFix(T).

We will give a short and simple proof of Maingé’s theorem and we can
show that the result remains true under weaker assumptions. The proof
technique is based on the recent result of the author [16] and the elegant
observation of Aoyama and Kimura [1].
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2. DEFINITIONS AND PRELIMINARIES

Let # be a real Hilbert space. We denote the strong and weak
convergence of a sequence {x,} in # to an element x € # by x, - x and
x, = x, respectively.

The following inequalities are known in a Hilbert space #.

Lemma 1 [18]. For x,y € #, we have the following statements:

o [(x, | =< llxllyll;
o [lx+ 912 < |Ixl1®+ 2(y, x + y). (the subdifferential inequality)

For a closed convex subset C of #, the metric projection P; : # — C is
defined for each x € # as the unique element Pcx € C such that

|x — Pcx|| = inf{||x — z|| : z € C}.

Lemma 2 [8, 18]. Let C be a nonempty closed convex subset of #. Then, for all
x € # and y € C, the following are satisfied:

o y=Pcx if and only if (y — x,z—y) =0 forall z € C,
o [[Pex —ylI* < llx = ylI* = [[Pex — ||

Lemma 3 [13]. Let {a,} be a sequence of nonnegative real numbers such that
there exists a subsequence {anj} of {a,} such that ;< @11 for all j € N. Then
there exists a nondecreasing sequence {my} of N such that lim;_, o m, = 00 and
the following properties ave satisfied by all (sufficiently large) number k € IN:

Ay < Q1 ANA Gy < Qi1

In fact, my, is the largest number n in the set {1,2,...,k} such that a, < a,,
holds.

Lemma 4 ([17, 19]). Let {a,} be a sequence of nmonnegative real numbers,

{00} a sequence in (0,1) with Y o o, = 00, {b,} a sequence of nonnegative

real mumbers with Y oo | b, < 0o and {y,} a sequence of real numbers with

limsup, 7. < 0. Suppose that the following inequality
Ap 1 =< (1 - /‘Zn)(ln + OnYn + bn

holds for all n € N. Then lim, . a, = 0.
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Lemma 5 (Lemma 7.1.7 of [17]). Let C be a nonempty closed convex subset
of # and x* € C. Let A: C — # be a monotone and hemicontinuous mapping,
that is, for any x,y € C and z € #, the function

L (z, A(tx + (1 — t)y))
of [0, 1] into R is continuous. Then

x* € VIP(C,A) & (Ax,x —x") >0 forallx e C.

3. MAIN RESULT

Recall that a mapping 7 : C — Cis called

o quasi-nonexpansive if Fix(T) # & and || Tx — ¢q|| < ||x — ¢|| for all x € C
and ¢ € Fix(7T);

o strongly quasi-nonexpansive [3] if it is quasi-nonexpansive and x, — T, —
0 whenever {x,} is a bounded sequence in C such that ||x, — ¢l — || Tx, —
qll — 0 for some ¢ € Fix(T).

The concept of strong quasi-nonexpansiveness was introduced by Bruck
and Reich in 1977 [3]. Inspired by this, Aoyama et al. [2] introduced
the following natural generalization. A sequence {7, : C — C} of quasi-
nonexpansive mappings such that F':= N% Fix(T,) # @ is called a strongly
quasi-nonexpansive sequence if x, — T,x, — 0 whenever {x,} is a bounded
sequence in C such that ||x, — ¢l — | T,,x, — ¢ll — 0 for some ¢ € F.

Theorem 2. Suppose that {T,:# — #} is a strongly quasi-nonexpansive
sequence such that F := N Fix(T,) # &. Suppose that f:H — #H is a

n=0

contraction. Let {x,} be a sequence in # defined by

X = x € # arbitrarily chosen,

_ (6)
Xn+1 = O(nf(Tnxn) + (1 - an)Tnxn,

where {0} is a sequence in (0,1) satisfying

(Cl) lim, o o, = 0;
(€C2) 30, o = oo

Suppose that {T,} satisfies the condition (Z), that is,

0 {z,} CF whenever {z,} C# is bounded and z, — T,z, — 0.
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Here @,{z,} denoles the set of all weak cluster points of the sequence {z,}. Then the
sequence {x,} converges to an element z € F and the following inequality holds

(f(2) =2,¢—=2) <0
forall g € F.

Let us assume that ||f(x) — f(y)|| < «flx — y|| for all x,y € C, where a is a
real number in [0, 1). We split the proof into several lemmas.

Lemma 6. The sequence {x,} is bounded.

Proof. We consider the following inequality

%041 = 2l < ollf (Toxn) = zll + (1 = o) [ T — 2]l
< allf (Taxn) = [N + ollf(2) — 2l + (1 = o) | Toxy — 2]l
< ot Ty — 2l + o llf(2) — 2l + (1 — )| T — 2]l
< (oo + 1 — o) lx, =zl + onllf (z) — |

I/ (z) — =

= 1= oI =)l = 2ll + o, (1 — o)==

smax{nxn—ﬂl,”ﬂf)ﬁz”}.

By induction, we conclude that the sequence {|x, — z||} is bounded and,
hence, so is the sequence {x,}. a

Lemma 7. The following inequality holds for all n € IN:

||xn+1 - Z”2

< (=0 llx, — 2l1* + 20,002, — zll %01 — 2l 4 200, (f (2) — 2, X1 — 2).
Proof. It follows from the subdifferential inequality that

a1 = 201 = ot (F (Tua) — 2) + (1 — o) (T, — 2)|I°
< (1= o) Ty — 21 + 206, {f (T — 2, %1 — 2)
< (1= 0?13, — zlI* + 20, (f (Tx,) — f(2), %1 — 2)
+ 206, (f (2) — 2, Xpy1 — 2)
< (1= 0?20 — zlI* + 2ol (Tux) — £ (%01 — 2]l
+ 200, (f (2) — 2, X1 — 2)

41



Downloaded by [] at 00:39 23 January 2015

Hybrid Extragradient-Viscosity Method 39
< (1= 0)* o, — 2l* + 2a,00ll 2 — 2l %01 — 2]

+ 20, (f(2) = 2 X1 — 2). -

Lemma 8. If there exists a subsequence {x,,} of {x,} such that liminfy_,
(NN %n1 — zll = %y, — 2ll) = 0, then lim sup,HooQ‘(z) — 2, X1 —2) < 0.

Proof. First, we note that o, — 0 and let us consider the following
inequality

0 < liminf(||xy41 — 2l = N2, — 1)

k—00

< B inf(o, 1 (T ) = 2l + (1= 2, )1 T35, — 2l = 1%, — 21
R

= lim lnf(” ’rnkxnk - Z“ - ”xnk - Z“)
k—o00

< limsup(|| T, %, — 2ll — 1%, — 2I)
k—00

<0.

This implies that limy_,o(|[x,, — 2zl — | T3, %, — zIl) = 0. Since {7,} is a

strongly quasi-nonexpansive sequence, x,, — T,,x, — 0. In particular,
Xy, — X1 — 0. Since {x,,} is bounded, there exists a subsequence {x"k/} of
{x,,} such that x,, — ¢ and

lim (f(z) — z, Xy, — z) = limsup(f(z) — z, x,, — 2).

l—o00 h—00

It follows from property (Z) that ¢ € F. Then

lim (f(z) — 2, Xy, —2) =(f(2) —z,q—2) <0.

l—o0
Hence, limsup,  (f(z) =z, %41 — 2) = limsup,_ (f(z) — z,%,, —2) <0,
as desired. O
Proof of Theorem 2. Let us consider the following two cases.

Case 1: There exists an N € N such that [x,q —z| < ||x, — z||
for all n» > N. It follows then that lim,_ . ||x, — z|| exists and, hence,
liminf, o (|| %41 — 2l = llx, — z[|) = 0. This implies that limsup _ _(f(z) —
2z, Xp41 — 2) < 0. By Lemma 7, for all n > N,

”xn-H - Z”2 S (1 - dn)gnxn - Z”2 + 2(1,,@”%" - Z” ”xn-H - Z”
+ 20, (f (2) — 2, X1 — 2)

= (1 =20, + 20,0 [|x, — 2[I* + o3 l|x, — 2|
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+ 20(n<f(Z) — % Xp41 — Z)
= (1 - 2“7:(1 - OC))”xn - Z”2

an”xn - Z”2 + (f(Z) — Zy Xp+1 — Z>
2(1 — o) 1—o ’

+ 20,(1 — o) <

Notice that Y o\ 20, (1 — o) = 0o and

O‘n”xn - Z”2 U(Z) = Z Xp41 — Z)
(2(1—0() + 1—a )SO'

lim sup
n—0oo

By Lemma 4, we have lim,,_, ||x, — z||* = 0.

Case 2: There exists a subsequence {||x,y,j —z||} of {llx, —z|]} such
that 2, — zll < %41 — 2]l for all j € N. In this case, it follows from
Lemma 3 that there exists a nondecreasing sequence {m,} of N such that
limy_, o m, = oo and the following inequalities hold for all k € IN:

”xmk - Z” < ”‘xmk+l - Z” and ”xk - Z” < ||xlﬂk+1 - Z”
It follows from liminfy_,.(ll%u+1 — zll — [, — 2[I) > 0 that limsup,_
(f(2) — 2z, %11 — z) < 0. By discarding the repeated terms of {m;} but still

denoted by {m}, we can view {x,,} as a subsequence of {x,}. Hence, by
Lemma 7, we have

2
”xmk-H - Z”2 = (1 - amk) ”'xmk - Z”2 + 20(m;(ocllxmk - Z” ”xmk-H - Z”
+ Q“IHk (f(Z) = 2 Xy 41 — Z)
2 2
= (1 - amk) ”'xmk+1 - Z”2 + QofkaC”ka+1 - Z”
+ Q“mk (f(Z) = % Xy 41 — Z)
In particular, it follows that

(2 = oy, — 2001211 — 2I° < 2(f(2) = 2, X1 — 2).

This implies that

(2 — 200) lim sup |2, 41 — z||* < lim sup 2(f (z) — z, X1 — 2) < 0.

ko0 k=00
Hence,
limsup [|x, — z[|* < limsup [|x,,+1 — z||* = 0.
k00 k=00
Then lim;_ « ||x; — z||> = 0. This completes the proof. O

The following corollary recovers Yamada’s hybrid steepest descent
method.
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Corollary 1. Suppose that {T,:H — #} is a strongly quasi-nonexpansive
sequence such that F := N> Fix(T,) # . Suppose that F : H — # is L-
Lipschitz continuous and n-strongly monotone where L? < 2n. Let {x,} be a
sequence in # generated by

e (7)

— T
Xny1 = Tn'xn - anj Tn'xn:

where {0} is a sequence in (0,1) satisfying lim, o0, =0 and Y . o, = 00.
Suppose that {T,} satisfies the condition (Z). Then {x,} converges strongly to x* €
F and this x* is the only element such that

(Fx*',x—x"y>0 VxePF.

Proof. The proof is inspired by Aoyama and Kimura’s result but the
method given here is totally different. It is worth noting that we do assume
that each mapping 7, is quasi-nonexpansive and hence it is not necessarily
continuous. As mentioned by Aoyama and Kimura, the condition L* < 2y
is not restrictive because we may replace F by ¥ := (F where ¢ € (0,2n/L?)
and it is easy to see that VIP(F,F) = VIP(F, ?j).

We now rewrite the scheme (7) as follows:

x) € H

_ (8)
Xp+1 = O(nf(Tnxn) + (1 - OCn)Tan,

where f:=1—F is a contraction. The conclusion follows immediately
from our Theorem 2. ]

Here we give a useful lemma that is needed for showing how we obtain
Maingé’s result from the preceding corollary.

Lemma 9. Let A:# — # be monotone and k-Lipschitz continuous on C. Let
S = Pc(I —tA) where t > 0. If {x,} is a sequence in C satisfying x, = x and
%, — Sx, = 0, then x € VIP(C, A) = Fix(S). In particulay, if {z,} is a bounded
sequence in C such that z, — Pc(z, — 1,Az,) — 0, where {1} C [a, b] C (0,00),
then w,{z,} C VIP(C, A).

Proof. Since A is monotone and hemicontinuous, it suffices to show that
(Ax,x —x) >0 for all x € C. Let x € C and 7 > 0. Note that (x, — TAx, —
Sx,, Sx, — x) > 0 for all n € N. Next, we consider

(tAx,, x, — x) = (tAx,, x, — Sx,,) + (tAx,, Sx, — x)
= (TAxm Xp — an> - (xn - TAxn - an, an - X)

+ (X,, - ana an - X)
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= <'EAX”, Xp — an) + ('xn - an, an - x)
< tllAx, 1, — Sxall 4 [l — S [[ ]S, — ]|

Since {Ax,} is bounded and x, — Sx, — 0, it follows from the monotonicity
of A that

R 1 1
(Ax,x — x) = = limsup(tAx, x, — x) < — limsup(tAx,, x, — x) < 0.
T o T oo

The proof is finished. (]

The following estimate plays an important role in this article. In fact,
it is extracted from Nadezhkina—Takahshi’s article [15] and included here
for the reader’s convenience.

Lemma 10. Let A: % — # be a monotone and k-Lipschitz mapping on C and
A be a positive number such that ki < 1. Let T := Pc(I — JA) and S := Pc(I —
AAT). Then, for all ¢ € VIP(C, A), we have

[Sx — qlI* < llx — qlI* — (1 = 22k%)|lx — Tx]|*. 9)
Proof. Note that

I1Sx — glI* < ll(x = AATx) — ¢|I* — [[(x — AATx) — Sx||*
= [[(x — q) — AATx|]* — [|[(x — Sx) — LATx]|?
=|lx— q||2 — |lx — Sx||* + 2M(q — Sx, ATx).
It follows from the monotonicity of A and ¢ € VIP(C,A) that (q—
Tx,ATx — Aq) <0 and (¢ — Tx, Aq) <0, respectively. Hence, we have the
following estimation,
(q — Sx,ATx) = (¢ — Tx, ATx — Aq) + (¢ — Tx, Aq)
+ (Tx — Sx, ATx)
< (Tx — Sx, ATx).

Moreover,

lx — Sx||? = |[(x — Tx) + (Tx — Sx)|°
= |lx — Tx||®> + 2(Tx — Sx, x — Tx) + || Tx — Sx||*
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Then we get

I1Sx — glI* < llx — gll* = llx = Tx|l* — || Tx — Sx||*
— 2(Tx — Sx, x — Tx) + 24(Tx — Sx, ATx)

= [lx—qlI* = lx— Tx||* = | Tx— Sx||* + 2(Tx— Sx, Tx— (x— 1ATx)).
Now we will estimate the last term of the preceding expression. It follows
from Tx = P¢(x — AAx) and Lemma 2 that (Tx — Sx, Tx — (x — AAx)) < 0.
Hence,

2(Tx — Sx, Tx — (x — AATX))

=2(Tx — Sx, Tx — (x — LAx)) + 2(Tx — Sx, ALATx — LAx)

< 2(Tx — Sx, LATx — AAx)

< 2| Tx — Sx||||Ax — ATx||

< 2x|| Tx — Sx||||x — Tx]|

< 1 Tx — Sx|* + A*x®||x — Tx|)*.
So we have
I1Sx—gll* < lx—qll* =l x=Tx||* = | Tx— Sx[|* + | Tx— Sx[|* + A*K*||x — Tx|®
= llx = ql* = (1 = 22 llx — Tx|)%,
as desired. O

Corollary 2. Let C be a closed convex subset of %, f € [0,1). Suppose that
A:H — H is monotone on C and k-Lipschitz continuous on #, T : # — H
is P-demicontractive such that I — T is demiclosed at zero and VIP(C,A) N
Fix(T) # . Suppose that F : # — H is L-Lipschitz continuous and n-strongly
monotone on C. Let {x,}, {y,} and {t,} be sequences in # generated by

Xy € #H
Y = P(*(X" - /LnAxn)
tn = P(J('xn - )“nAyn) (10)

v, = t, — 0, Ft,
Xpt1 = (1 - U))"IJ" + U)T"IJ",
where the parameters {1,,}, {o,} and w satisfy the following conditions:

(a) 4, €la,b] C (0,1/x) for some a,b € (0,1/K);
(b) limn%oo oy = 0 and Z?:O %y = 00,
(c) e (0,1=0p).
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Then all sequences {x,}, {y,} and {t,} converge strongly to x* € VIP(C,A) N
Fix(T) and this x* is the only element such that

(Fx*,x—x*) >0 VxeVIP(C,A) NFix(T).
Proof. Set

S, :=Pc(I — LA(Pc(I — A,A))), S:=0-w)l+owT,
T,:=8,08, f:=1—-1tF, x, =1,

n

where ¢ € (0,2n/L?). Then f is a contraction and
X1 = 0f (1) + (1 —00) T

To complete the proof, it suffices to show that
(®) {T.,} is a strongly quasi-nonexpansive sequence;
(V) {T.,} satisfies property (Z).
For simplicity, we let F :=VIP(C,A) NFix(T). We first observe the
following two inequalities: for x € # and ¢ € F,
1S. = qlI* < llx = glI* = (1 = k) |x = Pe(x = A, A0) |,
182 = glI* = (1 — @)x + @ Tx — ¢|*
= |x — qlI> = 20(x — ¢, x — Tx) + &*| Tx — x|*
<llx—qlI* — (1 = B — o)|lx — Tx|*.
It follows then that
ITx = qll* = 1S,8x — qII*
< 8% = glI* = (1 = 2361 Sx — Pe(Sx — 2, ASx)||?
< llx = ql* — o = - o)|lx — Tx|*
— (1 = 22K [|Sx — Pe(Sx — 2,AS%) . (11)

First noting that Fix(7,) = F. It is obvious that F' C Fix(T,). To see the
converse, let x € Fix(7,) and ¢ € F. Then by (11) we have

lx = ql* = 1 Tx — gII?
< lx =gl —o(l = - w)llx = Tx|*

— (1= 226 || Sx — Po(Sx — 7, ASx)||2.
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Hence, x = Tx and Sx = Pc(Sx — 4,ASx). It follows that x = Sx and
therefore x = Po(x — A,Ax), that is, x € F. We now show (#). It can be
easily seen, by using (11), that each T, is a quasi-nonexpansive mapping.
Next, let {z,} be a bounded sequence in C such that |z, — qll — | Tz, —
qll = 0 for some ¢ € F. Hence, replacing x by z, in (11) gives z, — Tz, —
0 and Sz, — Pc(I — A,A)Sz, — 0. It follows that z, — Sz, = w(z, — 12,) — 0
and, therefore, z, — Pc(I — 4,A)Sz, — 0. So we get

1Tazn = zull < 1 Tazw = Pe(I = 20 A) Szl + I1Pe(T = A, A) Sz — 2|
= |Pc(I — 2, APc(I — 2,4)) Sz, — Pe(I — 7,A) Sz, |
+ 1Pl = 70A4) Sz, — 2
< 182, — 2 AP(I — 4,A) Sz, — (Sz, — 2,ASz,) ||
+ 1P = 2,A) Sz, — 2|
= |2, APc(I — 4, A) Sz, — 2, ASz, || + | Pe(] — 4,A) Sz, — 2|
< k|| PeI — 2,A4) Sz, — Szl + I|1Pe(d — 2,A) Sz, — 2,]| — 0.

This shows that {7} is a strongly quasi-nonexpansive sequence and, hence,
(®) is asserted.

To show (), let {z,} be a bounded sequence in # such that z, —
T,z, = 0. We show that w,{z,} C F. It follows from the assumption
that ||z, — ¢q|l — | Tz, — qll — 0 for some ¢ € F. As a consequence of the
proof in (#), we have z, — Tz, — 0 and z, — Pc(z, — 4,Az,) = 0. Now
assume that {z,} is a subsequence of {z,} such that z, — z. Hence, we
immediately get that z,, — 7%, — 0 and z,, — Pc(z,, — Ay, Az,) = 0. By
Lemma 9 and the demiclosedness of the mapping / — 7', we conclude that
z € F =Fix(T,). Therefore w,{z,} C F, that is, the sequence {7,} satisfies
condition (Z) as desired. d

The limitation on the use of Maingé’s result and our Corollary 2
happens when dealing with f-demicontractive mappings where ff = 1. We
will modify the preceding construction of a strongly quasi-nonexpansive
mappings from a l-demicontractive mapping which is L-Lipschitzian by
using Ishikawa’s idea (see [10]).

Proposition 1. Let T :# — # be a y-Lipschitzian and 1-demicontractive
mapping. Define the mappings S and U for some positive valued o. by

S:=10—-u)I+uaT,
U:=1—-a)]+aTS.
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Then
1Ux — glI* < llx = qll* + o (o*y* + 200 — Dl|x — Tx||*,
Jor all (x,q) € # x Fix(T).
In addition, if o< (0, L ETQH), then U is a strongly quasi-nonexpansive
mapping. '
Proof. Let (x,q) € # x Fix(T). Note that

1Ux — ql* = (1 = 2)(x — @) +2(TSx — ¢)|I*
= (1= )llx = gl* + 2l TSx — gl|* — o1 — o) || TSx — x||*.  (12)

Since T is 1-demicontractive, we have
ITSx — qlI* < 11Sx — qll* + 11 Sx — TSx|I*. (13)
Next we estimate two terms on the right of the preceding inequality:

lISx — qlI*
=11 =) (x — ¢) +o(Tx — I*
= (1= 0)llx = gl* +all Tx — g|* — (1 — )| Tx — x|*
< lx = ql* +allx — Tx|* — a(1 — )| Tx — x|*
= llx — qlI* + o*llx — Tx||*; (14)

|| Sx — TSx|?
= (1 — o) (x — TSx) + a( Tx — TSx)||*
= (1 —a)||x — TSx||* + al| Tx — TSx||* — a(1 — o) || Tx — x||?
< (1= o)llx = TSx|* + [l — Sx||* — (1 — o) | Txx — x]|*
= (1 —w)llx = TSx|I* + ay*o*[|x — Tx||* — (1 — o) | T — ||
= (1 —a)|lx — TSx||* + a(y*o® + o — 1)||x — Tx|> (15)

From (13), (14), and (15), we obtain

1TSx — qlI* < llx — qlI* + a(y%® + 200 — 1) || x — Tx|?
+ (1 —a)|lx — TSx||%. (16)

49



Downloaded by [] at 00:39 23 January 2015

Hybrid Extragradient-Viscosity Method 47
It follows from (12) and (16) that
1Ux = qlI* < llx = qll* + o*(y*0* + 20 = D Tx — x||*.

This proves the first assertion.
Finally, we prove the last assertion. Note that «?(y%a® + 20 — 1) < 0 for

all o« € (O,L{m). It follows from the inequality obtained in the first
part that Fix(U) = Fix(7T). Then it is clear that U is a quasi-nonexpansive
mapping. To prove that U is a strongly quasi-nonexpansive mapping, let
{x,} be a bounded sequence in # such that ||x, — ¢|| — || Ux, — ¢l — 0, for
some ¢ € Fix(U)(=Fix(7T)). From the last inequality, we have

0 < —o(y*® + 20 — DI Tx, — x,[I* < llx, — qlI* = | Ux, — qlI* — 0.

This implies that x, — Sx, = a(x, — Tx,) — 0. By the continuity of T,
we also get Tx, — TSx, — 0. Then x, — TSx, — 0 and hence x, — Ux, =
o(x, — TSx,) — 0. The proof is finished. O

Corollary 3. Let C be a closed convex subset of # and i,y,1, L > 0. Suppose
that A :#H — # is monotone and k-Lipschitz continuous, T : # — # is 1-
demicontractive y-Lipschitz continuous such that I — T is demiclosed at zero and
VIP(C,A) NFix(T) # @. Suppose that F : # — # s L-Lipschitz continuous
and n-strongly monotone. Let {x,}, {y,} and {t,} be sequences in # generated by
the following scheme:

X €H

Vo = Pe(x, — A, Ax,)

ty = Pe(x, — 2, Ay,) (17)
v, = t, — 0, T,

Xpy1 = Uv,,

where U = (1 — T + ET((1 — &I + ET) and the paramelers {4,}, {a,}, and &
satisfy the following conditions:

(a) 4, €la,b] C (0,1/x) for some a,b € (0,1/x);
(b) lim,_c o, =0 and Y o, o, = 00;

(c) Ee (0, =),

Then all sequences {x,}, {y,}, and {t,} converge strongly to x* € VIP(C,A)N
Fix(T) and this x* is the only element such that

(Fx*,x—x*) >0 Vx e VIP(C,A) NFix(T).
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Finally, we remark that our scheme is a genuine generalization of
Maingé’s result because there is a l-demicontractive and Lipschitzian
mapping which is not f-demicontractive for all f € [0,1). The following
mapping is introduced by Chidume and Mutangadura [7].

Example 1. Let H=R:,B={xeR?:|x| <1},Bi={xeB:|x| <
%}and By={xeB:§<|x| <1}. For x=(a,b) € ¥, let x* = (b,—a).
Define the mapping 7 : B — B by

x4+ xt if x € By;
= X
Tx — —x+xt ifxeB.
[l

It is easy to see that Fix(7) = {0}. It was proved in [7] that T is
5-Lipschitzian and

1T — T1* < llx = yI° + lx = Tx — (y = T)II* (18)

for all x,y€ B. In particular, 7T is 1l-demicontractive. Moreover, the
inequality (18) becomes an equality whenever x € By and y = 0, that is,

2 L2 2 L2 2 2
ITx)" = llx + 2717 = llxl" + a1 = Nxll” + [lx — T]]".

This shows that 7" cannot be a -demicontractive mapping where f € [0,1).
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Abstract Building upon the subgradient extragradient method proposed by Censor
et al., we prove the strong convergence of the iterative sequence generated by a mod-
ification of this method by means of the Halpern method. We also consider the prob-
lem of finding a common element of the solution set of a variational inequality and
the fixed-point set of a quasi-nonexpansive mapping with a demiclosedness property.

Keywords Subgradient extragradient method - Halpern method -
Variational inequality - Quasi-nonexpansive mapping - Fixed point

1 Introduction

Many problems in science and engineering can be recast as variational inequalities
(see, for example, [1-8]). Iterative methods for solving these problems have been
proposed and analyzed by many authors (see, for example, [9-12] and references
therein). In this paper, we are interested in the extragradient method proposed by
Korpelevi¢ [13] and the modified one by Censor et al. [14]. For the former method,
two calculations of the projection onto a closed and convex subset are needed. As
mentioned in [14] this may affect the efficiency of the method, and Censor et al.
modified Korpelevi¢’s method by replacing the second projection onto the closed and
convex subset with the one onto the subgradient half-space. So the latter method is
called the subgradient extragradient method. The same authors continued the study of
this method in [15, 16]. Under some appropriate setting, the subgradient extragradient
method [14] converges weakly to a solution of a variational inequality. The purpose
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of this paper is to develop the method of Censor et al. [14] together with the Halpern
method [17, 18] to obtain the strong convergence. The original result of Halpern [17]
deals with the problem of finding a fixed point of a single operator and Bauschke
[19] extended to that of finding a common fixed point of finitely many operators. We
refer the readers to Cegielski’s book [20] for the recent progress on this subject. It
is worth reminding the reader that our approach and the one in [15] are different.
More precisely, Algorithm 3.6 (and hence 5.1) of [15] seems to be difficult to use
in practice because the computation of the next iterate becomes a subproblem of
finding a point in the intersection of two additional half-spaces. Our method does not
involve this subproblem but, as mentioned by the reviewer, our method may cause
some numerical instabilities.

The paper is organized as follows. In Sect. 2, we collect together definitions and
some preliminaries that pertain the argument of the paper with corresponding refer-
ences. Our main results are presented in Sects. 3 and 4. Finally, we summarize our
results in Sect. 5.

2 Definitions and Preliminaries

Throughout, let / be a real Hilbert space with inner product (-, -) and the induced
norm || - ||. For a closed and convex subset C of H, the (metric) projection Pc : H —
C is defined, for each x € H, as the unique element Pcx € C such that

lx — Pex|| =inf{llx —z]| :z€ C}.
For x € H and y € C, it is known that
y=Pcx < (y—x,z—y)>0 foralzeC.

For other relevant properties of the projection, the interested readers are referred
to, for example, Chap. 3 in the book by Goebel and Reich [21].

In this paper, the fixed-point set of a mapping T : H — H is denoted by Fix(T),
that is, Fix(T') := {x € H : x = Tx}. For a given closed and convex subset C C H, we
are interested in the so-called variational inequality [4, 5] for a mapping f : H — H,
that is, the problem of finding an element X € C such that

(f(f),x —55)20 forallx e C.
We denote the set of all such X by VI(C, f). Hence
x e VI(C, f)

&L (f(f),x—?c\)zo forallx e C
(f—(f—)»f(?c\)),x—f)zo forall x € C, forall A > 0

—
& XI=Pc(X—Af®@)=Pc(—rf)x foralli>0.

Let us recall some definitions of mappings involved in our study.

@ Springer
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Definition 2.1 [6] A mapping T : H — H is called

e L-Lipschitzian, where L > 0, iff
ITx =Tyl <Lllx—yll forallx,yeH;

e nonexpansive iff T is 1-Lipschitzian;
e quasi-nonexpansive iff Fix(T) # & and

ITx — p|l <l|lx —pl forallx eH, peFix(T);

o monotone iff

(Tx —Ty,x —y)>0 forallx,ye™H.

For solving the variational inequality for f : H — H, which is monotone and
L-Lipschitzian continuous on C, a well-known algorithm is the extragradient method
proposed by Korpelevich [13] for the Euclidean case and by Censor et al. for the
Hilbert space case [14]. More precisely, this method generates the following iterative
sequence {x,}:

xpeC
Yn = Pc(xn — Tf (x)) (H
Xn+1= Pc(xp —tf (yn)),

where the stepsize t €]0, %[. It was proved that, if VI(C, f) # @, then {x,} con-
verges weakly to an element in VI(C, f).

Inspired by the extragradient method, Censor et al. [14, 16] recently modified this
algorithm and called it the subgradient extragradient method. Since the computation
of the projection onto a general closed and convex set C is rather complicated, the
purpose of this modification is to replace two projections onto C to one projection
onto C and one onto a half-space. Let us note that the latter projection (onto a half-
space) is easier to compute. We summarize their result as follows.

Theorem 2.1 Let f : H — H be a monotone and L-Lipschitz mapping on C and
VI(C, f) # . Let {x,} and {y,} be generated by

X0 € H,

Yn = Pc(xp — tf (xn)), 2)
Ty ={weH: {xp —1f(xn) = yn, w — yn) <0},

Xpt1 = Pp,, (xp —1f (),

where T €]0, %[. Then {x,} and {y,} converge weakly to u, where u € VI(C, f) and
moreover, & = limy,_, o0 Pvi(c, f)(Xn)-

Here we recall some known results with the corresponding references.
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Lemma 2.1 [6] For x,y € H, we have the following statements:

o [, = llxllylls
o lx+yI2<IxI?+ 2(y, x + y) (the subdifferential inequality).

Lemma 2.2 [22] Let {a,} be a sequence of real numbers such that there exists a
subsequence {am;} of {an} such that ay; < am;+1 for all j € N. Then there exists
a nondecreasing sequence {ny} of N such that limy_, 5, ny = 0o and the following
properties are satisfied by all (sufficiently large) number k € N:

Any, = Any+1 and ag < Ang+1-
In fact, ny, is the largest number n in the set {1, ..., k} such that a, < a,+1 holds.

Lemma 2.3 [23, 24] Let {a,} be a sequence of non-negative real numbers, {o,} a
sequence in 10, 1] with Y n2 | oty = 00, {b,} a sequence of non-negative real numbers
with Y 02 by < 00 and {y,} a sequence of real numbers with limsup,_, .o ¥» < 0.

Suppose that the following inequality: -
an+1 < (1 —ay)an +anyn + by

holds for all n € N. Then lim,,_, o, a,, = 0.

A special case of this lemma already appears in the proof of Theorem 1 of [25].

Let C be a nonempty, closed and convex subset of a Hilbert space  and A : C —
‘H be a mapping. Then A is called hemicontinuous [26] iff, for any x,y € C and
z € H, the function

te (2 A(tx + (1= 1)y))

of [0, 1] into R is continuous.

Lemma 2.4 (See, e.g., [27, Lemma 7.1.7]) Let C be a nonempty, closed and convex
subset of a Hilbert space H. Let A : C — H be a monotone and hemicontinuous
mapping and X € C. Then

xeVI(C,A) & (Ax,x—Xx)>0 forallxeC.

3 The Subgradient Extragradient Algorithm

Inspired by Halpern’s result [17], we introduce the subgradient extragradient algo-
rithm which finds a solution of the variational inequality and we also prove a strong
convergence theorem. Our strong convergence theorem is quite different from the
scheme proposed by Censor et al. [15]. In fact, we do not need to calculate the pro-
jections onto the constructible sets C,, and Q, as in [15]. It seems to us that we
simplify their result with the same conclusion.

The following lemma is extracted from Lemma 5.2 of [14].

@ Springer

o8



J Optim Theory Appl (2014) 163:399-412 403

Lemma 3.1 Let f : H — H be a monotone and L-Lipschitz mapping on C and t be
a positive number and suppose that VI(C, f) is nonempty. Let x € H. Define

U(x):= Pc(x —tf(x))
T :={weH:(x —tf(x) - Ux), w—Ux) <0}
V(x):= Pre(x — tf (U(x))).
Then, for all u € VI(C, f), we have
V) —ul’ <llx—ulP—A =) |x—U@|* =1 =<L) [V — U@ |*. 3)
In particular, if tTL < 1, we have ||V (x) — ul| < |lx —u].

Proof First, we consider

[veo —ul < [(x = e (U@) —ul* = [ (x =2/ (U @) - V@) |*
= llx —ul? +2t(u — V@), f(U@)) - |x = Vo
=llx —ul® +2t(u — Ux), fF(U®)) — f@))
+21(u — U @), f@)+21(Ux) = Vx), F(U®)) =[x = V@)
<lx —ul* +2t{Ux) = V), F(U®)) - |x - V(x)||2
= x —ul® +20{U ) — Vo), F(UW)) ~ |x = U@
—2t(x —UM), U) = V) — [U@) = V)
=lx—ul®~[x — V@[>~ [U®) - Vo |
+2x —tf(U) = U ), V(x) = Ux)).

2

Now we estimate
(x=1f(U®) = U,V —U)
=(x—tf(X)—UX), V&) —U@)+(tf(x) —tf (U®), V(x) = Ux))
<(tf@) = tf(UW). V) = U@)
<tL|x=UW||VEx) —UW|.
So we have
Voo —ul® < = ul? =[x = v - Jue - v ?
+21L[x = U ||Vx) —UW)|
=lx—ul>—(A—tD)|x—U®|* = A —tL)|[U®) - V)|
il —v@] - v - vy’
<lx—ulP = —tL)|x—U@| - —tL)|Ux) - Vo) | O
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We denote the strong and weak convergence of a sequence {x,} in H to an element
x € H by x, — x and x,, — x, respectively.

Recall that the mapping I — T is demiclosed at zero [28] iff x € Fix(T) whenever
xp — x and x, — Tx, — 0. It is known that, if T : H — H is nonexpansive, then
I — T is demiclosed at zero.

The next result is the demiclosedness-like property for the mapping Pc(I — tf).
Note that we do not use the concept of the maximal monotonicity of f + N¢, where
Nc is the normal cone of C, as was the case in other papers (see, e.g., [9-11]).

Lemma 3.2 Let f : H — H be a monotone and L-Lipschitz mapping on C. Let
U := Pc(I — tf) where t > 0. If {x,} is a sequence in C satisfying x, — X and
X, — U(x,) — 0, thenx € VI(C, f) =Fix(U).

Proof Since f is monotone and hemicontinuous, it suffices to show that
(fx).x=%)>=0 forallxeC.
Let x € C and 7 > 0. Note that
(xn = Tf (tn) = U(xn), U(xy) —x) =0 forallneN.
Next, we consider
(2 Gon)xn = x) = (2 f (w20 = U )} + (2 Gn) U () = )
= (Tf @)y X0 — U (i) = (x — Tf () = U (), U () — x)
+ (xn = Uxn), U(xy) — x)

<(tf xn), Xa = U@n)) + (X0 — Ux), U (xy) — x)

st fea | = U@ + xn = UE U6 —x].
Since { f (x,)} is bounded and x, — U (x,) — 0, limsup,,_, .. (tf (xp), x, —x) <0. It

follows from the monotonicity of f that

~ I 1.
(f(x),x —x> = ;hmsup(rf(x),xn —x) < ;hmsup(rf(x,,),xn —x) <0.

n—oo n—o0

The proof is finished. |

Now we study the following algorithm. For a mapping f : H — H and a closed
and convex subset C of H, define two iterative sequences {x,} and {y,} by

X0 EH,

Yn = Pc(xn — Tf (xn)),

Ty:={weH: {xn —7f(xn) — Yo, w — yn) <0},
Xp41 1 =opxo + (1 — an)PTn xn —7f (Yn)),

“

where {o,} is a sequence in ]0, 1] satisfying lim,— ~ oy, = 0 and fo’:l oy = 00.
Note that 7, in (4) is just 7% in Lemma 3.1.
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Throughout this paper, we assume that VI(C, f) is nonempty and we denote
wyw{z,} the set of all weak cluster points of the sequence {z,}.

Lemma 3.3 Let f : H — H be a monotone and L-Lipschitz mapping on C and t
be a positive real number such that t L < 1. Then the sequence {x,} generated by (4)
satisfies the following inequality:

X1 — zll < ollxo — zll + (1 — ap)llxn — zll,

forall z € VI(C, f). In particular, {x,} is bounded.

Proof Let z € VI(C, f). For convenience, write
wy = Pr, (I —tf Pc(I = Tf))xy.

Hence x,4+1 = ayxo + (1 — a,)w,. It follows from Lemma 3.1 that ||w, — z| <
llx; — z|| and hence

[%n+1 = zll < anllxo — zll + (1 — etn) lwn — 2]l

< apllxo =zl + (1 —an)llxn —zll-

In particular,
41 — zll < max{llxo — zll, llxa — zl}.

By induction, we have
lx: — zll < llxo —z|| foralln eN.

Hence, the sequence {x,} is bounded. O

Theorem 3.1 Let f : H — H be a monotone and L-Lipschitz mapping on C and t
be a positive real number such that TtL < 1. Let {x,} C ‘H be a sequence generated
by (4). Then x, — Pyi(c, f)Xo-

Proof Recall that x, 11 = a,xo + (1 — ay)w,. Put z = Pyyc, r)Xo.- Let us start from
the following inequalities, which are consequences of (4) and the subdifferential in-
equality:

b+t = 2l? < (1= @) lwn = 2l + 20 (x0 = 2, Xn 1 = 2)

< (1 —ap)llxn — z)1* 4 20 (X0 — 2, Xp1 — 2)- Q)

Let us consider the following two cases.

Case 1: There exists an ng € N such that ||x,+1 — z|| < ||x, — z|| for all n > ng. Then
lim,,_,  ||x, — z|| exists. It follows from (5) that

2 2
lwn = zlI* = llxn — 2[I* = 0.
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By Lemma 3.1, we conclude that
xn — Pc(xp — Tf (x5)) = 0.

Using Lemma 3.2, we have w,{x,} C VI(C, f). Passing to a suitable subsequence
{xp;}, we assume that

limsup{xp — 2, Xy41 —2) = lim {(xg — z, xp, — 2)
n—o00 1—>00

and

xp, =7 forsome z' € VI(C, f).

i

Consequently,

limsup(xo — z, Xp41 — 2) = (x0 — Pvi(c, p)%0. 2’ — Pvicc, f)xo) < 0.
n—o0

By Lemma 2.3, we have lim,,— o || X, — z||2 =0, that is, x, — z.

Case 2: There exists a subsequence {x;, j} of {x,} such that
lxm, — 2l < llxm;1 — 2l forall j N.

From Lemma 2.2, there exists a nondecreasing sequence {n;} of N such that
limg_, oo nx = 00 and the following inequalities hold for all £ € N:

lxn, — zll < lXne+1 — 2zl and  lxg — zll < llxn+1 — zll- (6)
Note that

X0, = 2l < lxn 1 = 2ll < @ llxo — zll + (1 = o) [ wny, — 2l

<anlxo —zll + (1 — an ) llxn, — 2zl
It follows from lim,,_, oo ot;; = O that
lwn, —zll = %, — zll = 0.

By discarding the repeated terms of {n}, but still denoted by {n}, we can view {x,, }
as a subsequence of {x,}. Hence, by Lemma 3.1 and Lemma 3.2, we have

Xp, — Pc(xnk — rf(xnk)) — 0 and wy{x,} C VI(C, f).

Note that x,,, — x,,+1 — 0. In fact, it follows from Lemma 3.1 with the same notion
U that |lw,, — U, )|l = 0, |U(xp;,) — Xn, |l — 0 and

||xnk+1 — Xny | = Hankxo +d - ank)wnk — Xny ”
< Oy ||X0 — Xny ” + (1 - ank)llwnk — Xny ”
<t l1x0 = xne Il + A = ) (| wn, — UG ||+ |U Gon) = xn, |)

— 0.
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As proved in the first case, we can conclude that

limsup(xp — z, X, +1 — 2) = limsup(xg — z, x,, —2) <0 7)
k—00 k—00

It follows then from (5) and (6) that
bnget1 = 201 = (1= o) 12, = 2117 + 20, (X0 = 2. X 41 — 2)
< (1= ) 41 = 2017 + 20, (%0 = 2 X1 = 2)-
In particular, since a;,, > 0,
bk = 201 < oon41 = 20> < 2000 = 2, X1 — 2)-
Hence, by (7), we have

limsup ||xx — z||2 <2limsup{xo — z, Xp+1 — 2) < 0.
k— 00 k— 00

Therefore, x; — z. O

4 The Modified Subgradient Extragradient Algorithm

Inspired by the second main result of Censor et al. [14], we present a modified sub-
gradient extragradient algorithm for finding a solution of the variational inequality
which is also a fixed point of a given nonexpansive mapping. Our algorithm is as
follows.

For mappings f, S : H — H and a closed and convex subset C of , define three
iterative sequences {x,}, {y,} and {z,} by

X()GH,
Yn = Pc(xy — tf (x4)),
T, ={weH: (xy —tf(xn) — yn, w—yu) <0}, ®)

Zn = opxo + (1 — an) Pr, (xn — Tf (Yn)),
Xnt1 = Bpxp + (A — Bp)Szs,

where {8,} C [a, b] C]0, 1[ for some a, b €]0, 1[ and {,} is a sequence in ]O, 1]
satisfying lim, oo o, =0 and ) 7| o = 00.

Theorem 4.1 Let S : H — H be a quasi-nonexpansive mapping such that I — S
is demiclosed at zero and f :H — H a monotone and L-Lipschitz mapping on
C. Let Tt be a positive real number such that TL < 1. Suppose that VI(C, f) N
Fix(S) is nonempty. Let {x,} C H be a sequence generated by (8). Then x, —
Pyi(c, f)nFix($)X0-

We split the proof into several lemmas.
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Lemma 4.1 The sequence {x,} is bounded.
Proof Letu € VI(C, f) NFix(S). Then we have
%41 — ull < Bullxn — ull + (1= Ba) || S@n) —ul
< Bullxy —ull+ (1 = Bu)llzn —ull
= Bullxn — ull + (1 = B) | etnxo + (1 — o) wy — u|
< Bullxn —ull + A = Bo) (anllxo — ull + (1 — ) wy — ull)
< Bullxn — ull + (1 = Bp) (nllxo — ull + (1 — o) [y — ull)
< max{|lxo — ul|, [lx, — ull}.
By induction, the sequence {x,} is bounded. O
Lemma 4.2 The following inequality holds for all u € VI(C, ) NFix(S) andn € N,
et =l < (1= (1 = Ba)) 13 — ull® + 20 (1 = Ba) (x0 — tt, 20 — u) o
2
= Bu(1— lgn)”xn - S(Zn)” .

Proof Let u € VI(C, f) N Fix(S) and put w, := P, — tf(Pc({ — tf))x,. It
follows from Lemma 3.1 with 7L < 1 and the subdifferential inequality that

st — 1l = | B Cen — ) + (1= B)(Szn) — u) |
= Bullen =l + (1= B) | S@n) — u|® = BuCl = B) |20 — Sa)|*
< Bullxa — ull® + (1 = B)llzn — ull® = Bu(1 = Bo) | xn — S ||
= Ballx — ul® + (1= B) | aaxo + (1 — @)y —u®

— Ba(l = B) |0 — S|
< Bullxa =l = Ba(l = B0 — SCn)|*

+ (1= B ((1 = o) |wy — ull® + 200 (x0 — 1, 20 — 1))
< Bullxa =l = Bu(1 = B xn — SCzn)|*

+ (1= B (1 = o)l — ull® + 200 (X0 — 20 — )

= (1= ot (1 = B)) 1 — ell* + 200 (1 = Ba) (X0 — u, 20 — 11)

2
_lgn(l_ﬁn)”xn_s(zn)” . u
Lemma 4.3 Let u € VI(C, f) NFix(S). If there exists a subsequence {x,,} of {x,}
such that iminfi_, oo (|| X, 41 — ull — |Xn, — ull) > 0, then wy{x,,} C VI(C, f) N
Fix(S).
@ Springer
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Proof Observe that, whenever liminfy_ oo ([X,+1 — #|| — [lx, — u|) >0, we get
0 < timinf(|ty 1 — ull = ln, —ull)
=< l}(rgiogf(ﬂnk %, — ull + (1 — ,Bnk)”S(ankxO +(1- Olnk)wnk) - u“ = llxn, — M”)
< liminf(1 — B, ) (et llx0 — el + (1 = ) Wiy, — ull = |10, — uell)
k— 00
=liminf(1 — B,) ([l wn, — ull — |10, — ull)
k— 00
< (1 —a) liminf(lwy, — ul =[x, —ul)
k— 00
< (1 —a)limsup(|lwp, —ull = [, —ul))
k— 00
<0.
Hence ||lw,, — ull — llxn, — ull = 0. It follows from Lemma 3.1 and Lemma 3.2 that
Xp, —wp, — 0 and  wy{x,,} C VI(C, f). (10)

We next show that wy, {x,, } C Fix(S). By (9), we have

0 < liminf(||x, 41 — ull* — [lxn, — ull?)
k—o00
< Timinf(—a, (1 = Bu) 1ny, — wll* + 20, (1 = By ) (X0 — 4, 2y, — 1)
k—o00

— B (1= Bu) |30, — S [*)

= —limsup B, (1 = Bup) | — S |
k— o0
< —a(l —b)limsup || x, — S|
k—o00

Hence x,, — S(zy,) — 0. It follows from (10) that
Zny _xnk:an(xo_xnk)+(l _an)(wnk _xnk)—>0. arn
Therefore

”an - S(an)“ = ”an — Xy ” + “x”’k - S(an)” — 0.

By (11) and the demiclosedness of the mapping I — S, we get
0y {Xn, } = owlzn } CFix(S).

Then wy{x,,} C VI(C, f) NFix(). O

Proof of Theorem 4.1 Let z := Pyy(c, r)nFix(s)Xo- Since B, < 1 for all n € N, it fol-
lows from (9) that

a1 — 21 < (1= (1 = B)) 1% — ull® + 200 (1 — Bu)(x0 — u, 20 — ). (12)

@ Springer
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Case 1: There exists an ng € N such that ||x,+1 — z|| < ||x, — z|| for all n > ng. Then
lim,— o0 ||Xn, — z]|| exists. In particular, liminf,— oo (|l x;+1 — zll — lx, — z]l) = 0. It
follows from Lemma 4.3 that w,,{x,} C VI(C, f) N Fix(S) and w, — x,, — 0. Since
Zn — Xn = ap(xg — x,) + (1 — o) (w, — x,) — 0, we have wy {z,} = @y {x,} Since
{xn} is bounded, there exists a subsequence {x,, } of {x,} such that x,, — X and

lim (xo — z, xp, — 2) =limsup(xp — z, x, — z) =limsup(xp — z, Zn — 2).
k—00 n—o0o n— 00

Because w,,{x,} C VI(C, f), we have
lim (xo — z, Xy, —2) = (X0 — 2, X — z) <0.
k— 00
Hence limsup,,_, ,{(xo — 2,2, — z) < 0. By applying Lemma 2.3 to (12), we have
lxn — z|| = O, that is, x,, — z.
Case 2: There exists a subsequence {x,, } of {x,} such that

;= 2l < llxm+1 — 2l forall j €N.

From Lemma 2.2, there exists a nondecreasing sequence {n;} of N such that
limg_, oo nx = oo and the following inequalities hold for all £ € N:

Ixne = 2l < lxmer1 — 2l and [l — 2|l < {241 — 2lI- 13)

By discarding the repeated terms of {n}, but still denoted by {n}, we can view {x,,}
as a subsequence of {x,}. In this case, we have liminfy_, oo ([l Xp, 41 — zll — llxn, —
z|l) = 0. Hence wy, {x,, } C VI(C, f) NFix(S) and, by the same argument as in the
first case, wy{zn,} = @wlxy,}. It follows from the boundedness of {x,,} that there
exists a subsequence {xp } of {x,,} such that x,, — X and

lim (xg — z, Xy, — z) =limsup(xg — z, x,, — z) =limsup(xo — z, z,, — 2).
[—o00 k— 00 k— 00

Because wy, {x,, } C VI(C, f), we have

limsup(xp — z, z,, — z) = lim {xg — 2, X, —2) = (X0 — 2, X — 2) <0.
k—o00 [=00 !

It follows from (12) and (13) that

g1 — 203 < (1= g (1= Bu) ) 1%, — wll* + 200, (1 — B ) (X0 — t, 2y — 1)
< (1= e, (1= Bu)) 1xme1 — ull® + 200, (1 = By ) (X0 — u, 2, — u1).
In particular, since o, (1 — B, ) > 0 forall k e N,

2 2
lxx — zlI” < lIxpe1 — zll° <2(x0 — 2, X1 — 2)-

Consequently,
limsup ||x,, — z||2 <limsup2(xg — 2z, 2n, —2) < 0.
k— 00 k— 00
Therefore x; — z. d
@ Springer
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We next introduce another algorithm, which is a slight modification of (8). The it-
eration is obtained in the theorem below by using the same restrictions on parameters
as in Theorem 4.1. Under some appropriate conditions, this new iterative sequence
not only converges to a common solution of a variational inequality and a fixed point
of a given quasi-nonexpansive mapping, but it also includes the algorithm (4) when
S is the identity mapping. Since the proof of this result is very similar to that of
Theorem 4.1, we leave the proof for the reader to verify.

Theorem 4.2 Let S : H — H be a quasi-nonexpansive mapping such that I — S is
demiclosed at zero and f : H — H a monotone and L-Lipschitz mapping on C. Let
T be a positive real number such that tL < 1. Suppose that VI(C, f) N Fix(S) is
nonempty. Let {x,}, {yn}, {zn} C H be sequences generated by

X0 eH,

Yn = Pc(xp — Tf(xn)),

Ty ={weH:{xn —1f(xn) — yn, w—yn) <0}
Zn = opxo + (1 — o) P, (X — Tf (W),

Xn+1 = Bnzn + (1 — Bu)Szn,

where {B,} C la, b] C]0, 1[ for some a,b €]0, 1[ and {a,} is a sequence in 10, 1[
satisfying limy,_, oo oty = 0 and Zzil oy = 00. Then x, — Pyi(c, f)nFix(s)X0-

5 Conclusions

The subgradient extragradient method initiated by Censor et al. [14] provides a weak
convergence theorem for variational inequalities of monotone and Lipschitz contin-
uous operators in Hilbert spaces. In this paper, we modified this method to obtain
strong convergence by means of Halpern method [17, 18]. It should be noted that
our strong convergence theorem is different from the one studied in [15]. We also
presented two iterative methods for the problem of finding a common element of
the solution set of a variational inequality and of the set of fixed point of a quasi-
nonexpansive mapping with a demiclosedness property. Since every nonexpansive
mapping with a fixed point is quasi-nonexpansive and satisfies a demiclosedness
property, it follows that our two methods improve and extend the corresponding result
of Censor et al. [14].

Acknowledgements The authors thank Professor Franco Giannessi and the two referees for their in-
sightful suggestions. The second author is supported by the TRF Research Career Development Grant
(RSA5680002).

References

1. Kassay, G., Kolumban, J., Piles, Z.: On Nash stationary points. Publ. Math. (Debr.) 54, 267-279
(1999)

2. Kassay, G., Kolumbdn, J., Pdles, Z.: Factorization of Minty and Stampacchia variational inequality
systems. Interior point methods. Eur. J. Oper. Res. 143, 377-389 (2002)

@ Springer

67



412 J Optim Theory Appl (2014) 163:399-412

3. Kassay, G., Kolumbadn, J.: System of multi-valued variational inequalities. Publ. Math. (Debr.) 56,
185-195 (2000)

4. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.
Academic Press, New York (1980)

5. Lions, J.-L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493-519
(1967)

6. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama
(2009)

7. Browder, FE.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am.
Math. Soc. 74, 660-665 (1968)

8. Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the
fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619-655
(2004)

9. Censor, Y., Gibali, A., Reich, S.: A von Neumann alternating method for finding common solutions
to variational inequalities. Nonlinear Anal. 75, 4596-4603 (2012)

10. Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities. Set-Valued
Var. Anal. 20, 229-247 (2012)

11. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer.
Algorithms 59, 301-323 (2012)

12. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in
reflexive Banach spaces. SIAM J. Optim. 21, 1319-1344 (2011)

13. Korpelevi¢, G.M.: An extragradient method for finding saddle points and for other problems. Ekon.
Mat. Metody 12, 747-756 (1976) (In Russian)

14. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational in-
equalities in Hilbert space. J. Optim. Theory Appl. 148, 318-335 (2011)

15. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the
variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827-845 (2011)

16. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational
inequality problem in Euclidean space. Optimization 61, 1119-1132 (2012)

17. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957-961 (1967)

18. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces.
J. Math. Anal. Appl. 75, 287-292 (1980)

19. Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in
Hilbert space. J. Math. Anal. Appl. 202, 150-159 (1996)

20. Cegielski, A.: Iterative methods for fixed point problems. In: Hilbert Spaces. Lecture Notes in Math-
ematics, vol. 2057. Springer, Heidelberg (2012)

21. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings.
Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (1984)

22. Maingé, PE.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert
spaces. Comput. Math. Appl. 59, 74-79 (2010)

23. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of
a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350-2360
(2007)

24. Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. (2) 66, 240-256 (2002)

25. Reich, S.: Constructive techniques for accretive and monotone operators. In: Applied Nonlinear Anal-
ysis, Proc. Third Internat. Conf., Univ. Texas, Arlington, TX, 1978, pp. 335-345. Academic Press,
New York (1979)

26. Minty, G.J.: On a “monotonicity” method for the solution of non-linear equations in Banach spaces.
Proc. Natl. Acad. Sci. USA 50, 1038-1041 (1963)

27. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

28. Browder, FE.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am.
Math. Soc. 74, 660-665 (1968)

@ Springer

68



A5: Kimura, Yasunori; Saejung, Satit. Strong convergence for a common fixed
point of two different generalizations of cutter operators. Linear and Nonlinear

Analysis, 1 (2015), no. 1, 53-65.

69



. ) ; Yokohaina Pudlisiors
2?/255/’&"}2(/ \Q%.z[/ggmn j@g{g/ﬂ; LI'.“J) e mnmne Copyfight 2015

Volume 1, Number 1, 2015, 33-65

STRONG CONVERGENCE FOR A COMMON FIXED POINT OF
TWO DIFFERENT GENERALIZATIONS OF CUTTER
OPERATORS

YASUNORI KIMURA AND SATIT SAEJUNG®

ABSTRACT. We propose two iterative methods for finding a common fixed point
of two different generalizations of cutter mappings in Banach spaces. The results
obtained in this paper extend the recent results announced by Kimura et al.

1. INTRODUCTION

Let H be a real Hilbert space with inner product {-,-) and induced norm || - {-
We say that T : H — H is a cutter operator if Fix(T) := lee H:x=Tz} £ 2
and

(Te -2, Tz —xy <0 forallze Hand z€ Fix(T).

This type of operators was studied by Bauschke and Combettes [5} and Combetics
[9]. The term cutter operator was proposed by Cegielski and Censor [7]. These
operators play an important and interesting role in various nounlinear problems.
The purpose of this paper is to continue the study of these operators in Banach
space setting.

Let E be a real Banach space with the norm || - |. We say that E is
o smooth if the limit limwoﬂwgl_—“m—“ exists for all z,y € E with |jz| =
Iyl = &
o Fréchet smooth if the limit above does not only exists but is also attained
uniformly for all ||yll = 1 whenever x is fixed and li=ll = 1;
o uniformly smooth if the limit above does not only exists but is also attained
uniformly for all z,y € E with [|z|| = [lyl]l = 1.

For more details on the geometry of Banach spaces we refer the reader to [18].
Throughout the paper, we denote by £~ the dual space of F and denote by {-,-}

the dual pairing acting from E x E” into R, that is, whenever z € F and z° € E*,

(z,z*) denote the value of =" at =. We use the notions — and — for strong and

2010 Mathematics Subject Classification. 47H10, 47H09.

Key words and phrases. Strong convergence theorem, generalized cutter operator, common fixed
point, Halpern type iteration, shrinking projection method.

*Corresponding author. The second author was supported by the Thailand Research Fund and
Khon Kaen University under Grant Number REA5680002.

71



-

54 Y. KIMURA AND S. SAEJUNG

weak convergences, respectively. For a bounded sequence {zn}, let
woltn} = {2 : I{an } C {2} such that T, =z as k— oo}
The duality mapping J : E — 2F" is the point-to-set mapping defined by
zor Jr={z* € B {z,2%) = lz||? = ||=*||2}. '
The following facts are known and referred in the paper.

e If & is smooth, then Jx is a singleton for all z € E, and hence we treat .J
as a single-valued mapping from F into F*.
o If E is Fréchet smooth, then J : B — E* is norm-to-norm continuous.
.o If-F is uniformly smooth, then J : £ - E* is uniformly norm-to-norm
- continuous on bounded subsets of E.
‘e If E* is Fréchet smooth and {25} is a sequence in E such that z,, — z and
lznll - llzll, then @, — .

In a similat way, we consider the duality mapping J* : F* — 28" It is not hard to
see that if & and E* are smooth and E is reflexive, then J : F — E* is bijective and
J* = J~t We refer the readers to [8] and its review {21]for further information on

duality mappings, .

~ Let € be a closed and convex subset of a smooth Banach space £. The follow-

e ADE mappings are twa different generalizations of cutter operators in Banach space
~ setting. A mapping T': ¢’ — F is said to be '

e cutter mapping of type (P} if Fix(T) # @ and (Tz — z, J(Tz —z)) <0 for
allz € Cand z Fix(T};

o cutter mapping of type (Q) if Fix(T) # @ and (Tz — z, JTz — Jzy <0 for
~all z.e € and z € Fix(T).

The notations (P) and (Q) are from the recent paper of Aoyama et al. (see [3]). This

definition of mappings is a particular case of the quasi-Bregman firmly nonexpansive

‘mappings which was introduced first in 2003 by Bauschke, Borwein and Combettes

_in [4]. This class and several more class of operators with respect to Bregman

distances were-studied. intensively during the last ten years (see, for instance, i4, 17,
24]).
We recall the concept of the distance-like function in a smooth Banach space E.
Let w1 ' x E — R be defined by
ol y) = |zl = 2z, Jy) + yl® for all 2,y € E.

It is clear that ([lz]] — lyl)? < p(z,y) < Uzl + lyl)? for all 2,y € E. If E is a

-Hilbert space, then w(w;y) = ||z —y||2. It is also known that if & and £ are smooth
.- spaces, then .. .

olr,y) =0 <= z=1.

Due to this function ¢, Alber [1] introduced the following type of projection.
Suppose that F is a reflexive Banach space such that E and E* are smooth, dnd
C' is a nonempty, closed and convex subset of £. It is known that for each z ¢

there exists a unique element z in €', denoted by Hox, such that

vz, r) = inf{ply,x) 1y € C}.
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Moreover, the relation above can be characterized by the following inequalities: for

z€C,

z=Hex = {y—2,Jz—Jz) <0 forally e O
= oy, z) +@lz,z) < py,z) foralyed

It is not hard to see that o : F — ' is a cutter mapping of type (Q).

In this paper, we also deal with the metric projection. For a closed and convex
subset € and for € E, there exists a unique element z in C, denoted by Fez, such
that

|Poz — 2| = inf{lly — || : y € C}.

It is also not hard to see that P : E — € is a cutter mapping of type (P) (for
example, see [28]).

The following result shows a relation between convergences in the sense of v and
of the norm.

Lemma 1.1 (Kamimura and Takahashi [12]). Suppose that E is a smooth Banach
space and B* is uniformly smooth. If {x,} end {yn} are sequences in E such that
one of them is bounded and (2o, yn) — 0, then l#n = ynl| = 0.

We also need the following lemma proved by Maingé.

Lemma 1.2 ([16]). Let {7} be a sequence of real numbers such that therc exists
a subsequence {vn,} of {vn} such that v, < ;4 forallj > 1. Then there exists
a nondecreasing sequence {my} of positive integers such that limg oo Mg = 00 and
the follaowing two inequaliiies:

Yrmg < Vmprl O Ve S Vit

hold for all (sufficiently large) numbers k. In fact, my is the largest number n in
the set {1,2,...,k} such that the condition yn < Yn4i holds.

2. MAIN RESULTS

2.1. Strong convergence via a new averaged projection method of Halpern
type. Recall that a mapping U : ¢ — E is closed at zero if whenever {z,} is a
sequence in C such that z, — p € C and Uz, — 0 it follows that Up = 0.

Theorem 2.1. Suppose that E and E* arc uniformly smooth spaces. Let C be o
closed and conver subset of E. Suppose that S,T : C — C' are two mappings such
that the following properties are satisfied:

S iz a cutter mapping of type (P);
T is a cutter mapping of type (Q);
F .= Fix(8) NFix(T) # 2;

I — S and I — T are closed at zero.
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Define an iterative sequence {z,} 0y the following way:

x1 =72 € C is arbitrarily chosen;

Ap ={z€C:{(Szp— 2 J(Szn —xp)) <0}
B, ={ze€C: Ty — 2z JTry — Jon) <0}
Cr = An 1 By;

= i JJT + (1 - O ) (Z B,’iJHgk:rn) ;

k=1

Tnp1 = eIty

where {any and {f5}, x are sequences in (0,1) such that

(1) limpoos on = 0 and 3 07, oy = 00;

(2) SSp_ Bk =1 for alln;

(3) litn 00 B = B € (0,1) for all k and iMoo Y j—y |8k — gF|=0.
Then the sequence {z,} converges to IIpZ.

Remark 2.2. It follows from the assumptions of the theorem that Y 32, g5 =1.
We split the proof of Theorem 2.1 into the following six lemmas.

Lemma 2.3. If the element oy, is defined, then C, is o closed and conver subset
containing F. ~

Denote z := e ¢, and Up == JH (3 BEJ g, ).
Lemma 2.4. For each n > 1, the following inequalities hold:

@(z,2n11) < Gnip(2,7) + (1 - an )2, Unn)
< oz, %) + (1 — tn ) (‘70(27 Tn) — Zﬁﬁ@(ﬂckzmxn))
k=1

< onp(z,7) + (1 - an)iplz, @n).
In particular, the sequence {x,} is bounded.
Lemma 2.5. For each n > 1, the following inequality holds:
s} < (1— an)pl(z, 50) + 20 (74 — 2, JE = J2).
Proof. We first observe the following inequality
wlu, J v+ (1—7)Jw)) < (l—w)w(u,w)+2ﬁ/(J_1(7JU+(1~’y)Jw)4u, Ju—Ju)

whenever u,v,w € E and v € (0,1). In fact, it follows from the subdifferential
inequality of || - [[* on £*. Consequently,

@z, T yn)

= (z, J 1 (anJ§+ (1— an) (i ﬁﬁJﬂCkIn)))
k=1
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< {1 -y (V J! (Z ijjﬂ'ckxn)> + 200 (J 7yl — 2, JE — J2).

fes1
Note that z € (1}7, C. Hence
iﬂ(z: HCkIn) é {P(Z, HCk:‘En) + SD(HC;C'TTM xn) S SD(Z: In)
It follows then that

w(z, gt (Z ﬁfzmokzn)) <N BEo(z, o, 2n) < oz, @)
k=1

k=1
Therefore, since z € C', we have
oz, o) <oz, J8) < (1 - an)p(z, 2,) + 200, (J 7Nyt — 2, JT— T2y, OO
The following resuit can be easily obtained by the recent result of Nilsrakco and
Saejung [20].
Lemma 2.6. Suppose that

U=J- (i ﬁkJHck)

k=1

and that {2y} is a bounded sequence in C. Then the following are equivalent:

o 2y — o zm —+0asm — oo for alln e N;

o z,, —Uzy —+ 0.
In particular, Fix(U) = (1,2, C. Moreover, JU, — JU uniformly on bounded
sets., .
Proof. We prove only the last assertion. Let B be a bounded set and let M be
a number such that ||zf| < M for all x € B. It follows from z € {32, C; that
(2l = e,z ])? < oz, He,2) < plz,z) < (2l +]2])? < (2] + M)? for all 3 € B
and k € N. Hence || fI x| < 2||z|| + M for all z € B and &k € N. Consequently, for
z € B, we get

[Unz — JU|{ = | > (85 - B*) I Mgz + Y 8%JIIc.x
) k=1 k=n+1
<Y O1Bh - BTl + Y AF||J g, )
k=1 k=nt1
<(S-s1- 3 e
k=1 k=n+1
It follows that limg oo sup{||JUnz — JUz|| : z € B} = 0. 0

Lemma 2.7. If there erists a subsequence {xm,} of {xn} such that

Hminf (i (2, 2m, 1) — (2, 7m,)) 2 0,
j—oo

then wu{Zm; 152, C (Vo) Cn. Moreover, lim supj%m(J‘ly;j —z,JE - Jz) <0.
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Proof. Tt follows from Lemma 2.4 and limy,_yc0 @n = 0 that

J—oo

Ty
lim Z )87;:1] ‘P(HC)!; Ly -'L'mj) =0
k=1

In particular, for each &, we have
k 1: : k
6 j1-1—>rgo @(Hckmmjamm_j) =_]li~)lgho ﬂmj‘ﬂ(ﬂckxmjyxmj) - O

This implies that &, — g, 2m; - 0 as j — oo because £ is uniformly smooth.
Consequently, wy,{Tm,} C Ck. Since the last inclusion holds for all k € N, we have
oo
ww{ﬂb’m]} . nk:l Ck-
Finally, to prove the “Morecver” part, we claim that J _ly:nj —Zm; — Dasj — oo.
If this is so, then it follows from wy, {%m,}52; C [Nz2; Ck that
lim sup(J"ly;J -z, JT— Jz)
j—s00
= lim sup{zpm,; — Hppe o> JT — Tl | .2 < 0.

To prove the last claim, let us note from the first part that z,, — ¢, Tm; — 0 as

j — oo forall k = 1,2,.... In virtue of Lemma 2.6, we have @y, — Uy, — 0 as
J = o0 and hence Jzp, — JUzp, — 0as j — co. Note that JU,, — JU uniformly
on bounded sets. It follows then that Jx,,, — y:nj = JTim; — JUn;Zm; — 0 as
7 — oo, that is, J‘ly;“nJ — &, — 0 8s j — oo 0

The following lemma also plays an important role in this subsection. However,
its proof given there is not quite accurate.

Lemma 2.8 (Saejung and Yotkacw [26]). Let {sn} be a sequence of nonnegative
real numbers, {an} be a sequence in (0,1) such that 3 7, an = 00, and {t,} be ¢
sequence of real numbers. Suppose that

St < (1 — an)8n F Gnln foralln =1
Ifimsup; oo tm; < 0 for every subsequence {sm;} of {sn} satisfying
}i}ggf(smfrl — smj) >0,
then limy,—yee 85, = 0.

Proof. The proof is split into two cases.

Case 1: There exists an ng € N such that sp1 < s, for all n > ng. It follows
then that limy, e Sn = & for some s > 0. In particular, iminf, oo(sn11 —
5n) = 0 and hence limsup, ,t» < 0. On the other hand, for n > ng, we
have

Qﬂ(sn - tn) < 8p — Snil-
Let ¢ > 0 be given. Then there exists an integer ny > ng such that s, > s—¢
and t, < £ for all n» > ny. For any n > n1, we have

apls — 2e) < anlsn = tn) < 8n — Sny1-
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In particular,

[o.w]
(s —2¢) Z 0 < 8p, — 5 < 00
n=rj
It follows from > 7 &, = oo that 5 < 2=. Since ¢ > 0 is arbitrary, we:
conclude that s = 0.

Case 2: There exists a subsequence {s,,} of {s,} such that s,, < s, 4y for
all 7 € N. In this case, we can apply Lemma 1.2 to find a nondecreas-
ing sequence {my} of positive integers such that lim; ., i = co and the
following two inequalities:

S S Smy+1 and Sk S S +1

hold for all (sufficiently large) numbers k. Note that {s, } is not necessarily
a subsequence of {s,}. Let {p;] be the subsequence of {my} such that
{p;} is strictly increasing and each term in {my} belongs to {p;}. Now
{sp;} is a subsequence of {s,}. It follows from the first inequality that
liminf;o0(sp,+1 — spj.) > 0 and hence limsup, . t,, < 0. Morcover, by
the first inequality again, we have
sl S (1= o )sp; + apyty; S (L —apy)span + oty

In particular, since each ap, > 0, we have sy 11 < ¢, Finally, it follows
from the second inequality that

limsup s < limsup 85, 41 = 1ir_n SUp Sp,+1 < lir_n supty; <0.
k—oo : k—oo oo J—roo

Hence limg., o 51 = 0.
This completes the proof. O
We now give the proof of the main resuls.
Proof of Theorem 2.1. Denote s, := {2z, x,) and %, = 2(J 1y* — 2,JT — Jz). It
follows from Lemma 2.5 that
Spt1 = (L— @n)én + anly foralln > 1

All prerequisites of Lemma 2.8 are satisfied. Then z, - Z.
We are going to make use of the closedness of I — S and [ — 1" at zero. Since
z=Mre o T € ie, A C Ap for all n and Sz, = Pa, &n, we have
Mez1Cs k=1

Sz, — znl| <z —2nfl — 0.

It follows then that z = Sz. Similarly, since z = IIn= ¢, T € Mo, Bn C By for all
n and Tz, = g =, we have

(T, 2n) < @z, 20} = 0.

In particular, £, — Tz, — 0 by Lemma 1.1 and hence 2 =Tz,
Moreover, it follows from z = Ine ¢, % and F C (72, Cn that ¢(z,%) <
w(ITp%,Z). Because z € F, so z = IIpz. The proof is finished. ]

Using the same proof (with a slight modification) as the preceding result, we also
have the following:
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Theorem 2.9. Suppose that E and E* are uniformly smooth. Let C be a closed
convez subset of E. Suppose that T : C = C and S : C — C are two mappings
such that the following properiies are satisfied:

o S is a cutter mapping of type (P); .
o T is relatively quasi-nonexpansive, that s, Fix(T) # @ and o(z,Tx) <
@(z,x) for all z € C and z € Fix(T);
o F:= Fix{S) NFix(T) # 2;
o [ — 5 and I =T are closed at zero.
Define an iterative sequence {,} by the following woy:
xy =T € C is arbitrarily chosen;
A, ={z€C:{Stn—2,J(STn —aa)) < 0};
Bn={z€C:p(z,Tan) < @(z,Tn) 5
Ch = Ap N By;

y:—l =, JT + (1 - an) (Z ﬁﬁjﬂckmn) 3

k=1

| #ner = Hod 745
where {an} and {35}, are sequences in (0,1) such that

(1) limy, oo Cn = 0 and 3 074 O = 00;

(2) ST BE =1 forallm;

(3) limn 50 G5 = 8% € (0,1) for all k and limn o SR 1BE— gF = 0.
Then the sequence {@n} converges to IlpT.

Remark 2.10. Theorem 2.9 can be viewed as an extension of the recent result
of Kimura et al. [15]. It is worth mentioning that our assumption on the sequence
{BEY & is strictly weaker than that of the aforementioned result. In fact, if {BFY i is
a sequence in (0, 1) such that 3¢ gk —1forallnand ) 7, S 1BE—gE ] < oo
and imp e 85 = B¢ € (0,1) for all k, then limy oo > k- | gk~ gk =0.

Remark 2.11. Theorem 2.1 itself can be regarded as an extension of Kimura et
al. In fact, let T/ : C — H be a quasi-nonexpansive mapping. It is easy %o see that

fzeC:llz=Ta|| <lz—az|}={z€C: (Tx — z,Tx —x) <0}
where T' = £(I +T"}. Moreover, T is & cutter mapping.
2.9. Strong convergence via the shrinking projection method. In this sub-
section, we present another strong convergence theorerm without assuming the uni-
form smoothness of E and EY.
Let us recall the concept of Mosco convergence [19] for a sequence of closed and
convex sets in a Banach space. Suppose that F is a reflexive Banach space and

{Cn} is a sequence of nonempty closed and convex subsets of E. We consider the
following two sets:

7 € sliminf, oo Cn = Hazn} C I such that @, — = and z, € Cy, for all o;
T & w-limsup,, _yee On Inx} C {n} J{zr} C E such that zx =«
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Theorem 2.9. Suppose that E and E* are uniformly smooth. Let C be a closed
convex subset of E. Suppose that T : C — C and § : C — C are two mappings
such that the following properties are satisfied:

o S is a cutter mapping of type (P);
o T is relatively quasi-nonezpensive, that is, Fix(T) # & and p{z,Tz) <
w(z,x) for all z € C and z € Fix(T);
o F:=Fix(S)NFix(T) # @;
o [ — S and I —T are closed at zero.
Define an iterative sequence {z,} by the following way:
T =% € C is arbitrarily chosen;
Ap = {z € C : {Sxy — 2,J(STn — 2n)) < 0}
Bp ={zeC:p(z,Tay) < p(z,2n)};
Chn = An N By,

T
Y = o JT + (1 — an) (Z foLJHCk:En) 5

k=1

) ~1
Tni1 = e g

where Lo} and { 8K} are sequences in (0,1) such that

(1) limp—e0 Ctn = 0 and Yo, = 00;

(2) Y7, BF =1 for alln;

(3) Timy, 00 A% = 8% € (0,1) for all k and limn e S IpE - pF =0
Then the sequence {zn} converges o IIpZ.

Remark 2.10. Theorem 2.9 can be viewed as an extension of the recent result
of Kimura et al. [15]. It is worth mentioning that our assumption on the sequence
{BEY, i is strictly weaker than that of the aforementioned result. In fact, if {ﬁ,ﬁ}n:k is
a sequence in (0, 1) such that > j_; f% = 1 for alln and S TR BB <
and limy o0 35 = 8¢ € (0,1) for all k, then limpsoo 2 ks |gE — Bl = 0.

Remark 2.11. Theorem 2.1 itself can be regarded as an extension of Kimura et
al. In fact, let 7" : C — H be a quasi-nonexpansive rmapping. It is easy to see that

{zeC:|z-Tza| <z 2} ={z€C: (Tz —=2,Tx —z) <0}
where T = %(I 4+ T"). Moreover, T' is a cutter mapping.
2.2. Strong convergence via the shrinking projection method. In this sub-
section, we present another strong convergence theorem without assuming the uni-
form smoothness of B and ™.

Let us recall the coneept of Mosco convergence [19] for a sequence of closed and
convex sets in a Banach space. Suppose that E is a reflexive Banach space and
{C,} is a sequence of nonempty closed and convex subsets of E. We consider the
following two sets:

v € s liming, oo Cn &= Huz,} C E such that zn, — z and z, € C,, for all m;

2 € wolimsup, . Cn <= FHni} € {n} Haw} C E such that o —
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and zy € O, for all .

If there exists a subset Oy € & such that O = s-liminf,,—e O = w-limsup,_, . Cn,
then we say that {C,} converges to Cy in the sense of Mosco and we write Cpy =

M-limy, 500 Cr. The proof of the following main result makes use of the so-called
Tsukada’s Theorem.

Lemma 2.12 (Tsukada {30]). Suppose that E is a smooth Banach space and E* is
Fréchet smooth. If {Cr} is a sequence of nonempty closed and convez subsets of E
such that Cy = M-lim,_, o, C, # &, then Po,x — Pox for allz € E.

We also need the following lemma.

Lemma 2.13. Suppose that E and E* are Fréchet smooth. If {z,} and {y,} are
two sequences in B such that o(Tn,yn) = 0 and y, — 2 € E, then 2, — 2.

Proof. Note that {z,} and {y,} are bounded, ¢(y,,z) — 0, and Jy, — Jz. Con-
sequently,
90($m Z) - (P(-'Em yn) =+ (P(yna z) + 2(.’1,‘71 = Yns Jyn - Jz) — 0.
Next, we show that wy{z,} = {z}. Suppose that z,,, — 2’ for some {z,,} C {z.}.
It follows then that
o7, ) < Uminf(|lze, |? — 2(zn,, J2) + ||2]|?) = liminf p(z,, , z) = 0.
E—oo k—o0

In particular, 2’ = z. Hence, 2, — 2. It follows from ||z,| — ||z|| that z, = 2. O

Theorem 2.14. Let E be o Banach space such that both E and tts dual space
E* are Fréchet smooth. Let C be a closed and convex subset of E. Suppose that
S, T C — C are two mappings such that the following properties are satisfied:

e S is a culter mapping of type (P);
e T is a cutter mapping of type (Q});
o F:=Fix(S)NINx(T) # o;
e [ — S and I —T are closed al zero.
Define an sterative sequence {zn} by the following way:
x1 =1 € Cy := C is arbitrarily chosen;
A, ={ze€C: {8ty — 2z, J(Sx, —z,)) <0}
B,={zeC: Tz, —2 JTz, — Jo,) <0};
Cpe1 = An N By N Clh;
Tnp1 = Fo,,, -
Then the sequence {z,} converges to Ppi.

Proof. Tt is clear from. the assumption that F < A, N B, for all n and hence
F c (2, Cn. In particular, each Cp 1s & nonempty closed and convex subset of E.
Thus {z,} is well-defined. Note that C,, © Cj+y for all n. This implies that

Co:=M-limC;, = () Cn# 2.

n=1

30
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It follows from Lemma 2.12 that z, — P, 7 =: 2/. It is clear from the iteration
that

Sty = P4 xn and T, =Ipg z,.
As 41 € Cpe1 € Ap N By, we have
1Szn — ol <llzni1 —zall and  @(Ton, 2n) < @(Tne1, Tn).

We will prove that
(1) =’ & Fix(S);
(2) =’ € Fix(1).
To see (1), we will make use of the.closedness of { — 5 at zero. It is clear that
Sz, = =’ and hence (1) holds.
To see (2), let us note from Lemma 2.13 and o{Tzn, %n) — 0 that Tz, — z'. It
follows from the closedness of 7 — T at zero that (2) holds.
Finally, it follows from F C (2, C,, and =’ € F that 2’ = PrZ. 0

Remark 2.15. This type of iterative scheme called the shrinking projection method
was first proposed by Takahashi et al. [29]. The technique of the proof using Mosco
convergence is due to Kimura and Takahashi [14}; see also [L3].

The following result can be ohtained with a slight modification of the preceding
proof so its proof is omitted.

Theorem 2.16. Let E be a Banach space such that both E and its dual space E* are
Fréchet smooth. Let C be a closed and conver subset of E. Suppose thatT : C — C
and S : C — C are two mappings such thal the following properties are satisfied:
S is a cutter mapping of type (P);

T is relatively quasi-nonerpansive;

F =TFix(8)nFix(T) # @;

o [~ 5 and I — T are closed at zero.

Define an ilerative sequence {z,} by the following way:
xy =% € C:= (1 is arbitrarily chosen;
Ap=4z€ C:{(Stp — z,J(Sxn — xn)) <0}
B,=1{z¢C:9(z,Tx,) <plz,z,)};
Cpnir= AN B, NCy;
Tne1 = Fo, . T .

Then the sequence {x, } converges to PrZ.

Remark 2.17. Let us note that the metric projection involved in our iterations
in the preceding two theorems can be replaced by Alber’s generalized projections.
To prove this, we just invoke the analogue of Tsukada’s Theorem for generalized
projections. In fact, in the same setting as Tsukada’s theorem, Ibaraki et al. [11]
proved that Tg, z — Hgyz for all z € E.

Finally, we present a related rcsult which is deduced from cur Theorem 2.14
where T is the identity mapping.
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Theorem 2.18. Let F be a smooth Banach space such that E* is Fréchetl smooth.
Let C be o closed and conver subset of E. Suppose that [ - C' x € — R satisfies the
following conditions:
o flz,xz) =20 forallx e C;
s flz,y)+ f(y,2) <0 for all z,y € C;
e flx,-) is conver and lower semicontinuous for oll z € C;
e for every z € C and % € E* the follownng implication holds:
flz,p) +{z — 2,2 <0 ¥Vz2eC = flzy)+{y—=z,z") >0 Yyel.
Define an iterative sequence {x,} by the following way:
zy =% € O =: C1 15 arbitrarily chosen;
Copr={2€C: {(Fy #n— 2, JFr,Tn — Tn)) € 0} NCh;
T+t = PCn+]‘EE1

where {r,} 1s o sequence of positive real numbers such that lminfp_orn > 0. If
EP(f) # @, then the sequence {x,} converges to Pup(nT. Here for each z € E and
r >0, the element F.z is a unique element in C such that

1
flFzy)+ -y — Fa, J(Fe—x)) >0 YycC.

T
Remark 2.19. The preceding theorem is proved in [27, Theorem 3.2] under the
assumption that E* is uniformly smooth. It is noted that Fr is a cutter mapping
of type (P} and Fix{F,) = EP(f). Moreover, the proof of Theorem 2.14 does not
alter if we can replace a single mapping S with a sequence of mappings {55} such
that o2, Fix(Sn) # @ and the following condition holds:

o0

{zn} C©C, 20 — 2, Spzn -2z = z € m Fix(Sn).

n=1
3. CONCLUDING REMARKS

We propose a new alternative iterative scheme for approximation of a common
fixed point of two different types of generalizations of cutters mappings. This ap-
pears as the first theoretical framework dealing with two different types of mappings
in just only one scheme. Let us consider the convex feasibility problem, that is, the
problem of fining a common element in the intersection of two {or more) closed
and convex subsets of a certain Banach space. As already mentioned that there
are two types of projections for these two sets, we can choose the easier calculated
projection on each set. If these two projections are different, the schemes in this
paper will generates an appropriate sequence for the problem.

The calculation of the projection onto general closed and convex sets is a hard
task. However, if ¢ in our theorems is the whole space E, the closed and convex
set we are dealing with is a half space. To calculate such a projection, we refer to
a formula proposed by Butnariu and Resmerita (see [6, Theorem 4.7) with p = 2).

Tn the recent works of Reich and Sabach (see [22, 23, 24, 25, 17]), they considered
the classes of operators containing the cutter mappings of type (Q). It is very
interesting to extend our results to these classes.
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