

รายงานวิจัยฉบับสมบูรณ์

โครงการ การพัฒนาวัสดุปิดแผลที่ประกอบด้วยโปรตีนกาวใหม เซิริซินและใคโตซานไมโครสเฟียร์เพื่อกระตุ้นการหายของบาดแผล

โดย ศาสตราจารย์ ภญู. ดร. พรอนงค์ อร่ามวิทย์

รายงานวิจัยฉบับสมบูรณ์

โครงการ การพัฒนาวัสดุปิดแผลที่ประกอบด้วยโปรตีนกาวใหมเซิริซิน และใคโตซานไมโครสเฟียร์เพื่อกระตุ้นการหายของบาดแผล

ผู้วิจัย ศาสตราจารย์ คร. พรอนงค์ อร่ามวิทย์ สังกัด คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Executive Summary

โครงการ การพัฒนาวัสดุปิดแผลที่ประกอบด้วยโปรตีนกาวไหมเซิริซินและไคโตซานไมโครสเฟียร์ เพื่อกระตุ้นการหายของบาดแผล

สืบเนื่องจากงานวิจัยที่แสดงให้เห็นว่า โปรตีนกาวใหมที่ได้จากใหมสายพันธุ์จุล 1/1 ซึ่งมีรังใหมสีขาว เมื่อนำมาสกัดด้วยความร้อนภายใต้ความดัน จะทำให้ได้โปรตีนกาวใหมที่มีคุณสมบัติในการกระตุ้นการสร้าง คอลลาเจนได้ดี นอกจากนี้ยังสามารถกดการสร้างสารก่อการอักเสบอันได้แก่ interleukin-1 และ tumor necrosis factor-α ใด้อย่างมีประสิทธิภาพด้วย อย่างไรก็ตาม ความเข้มข้นของโปรตีนกาวใหมเซริซินที่ใช้จำเป็นต้องอยู่ ในความเข้มข้นที่เหมาะสม นอกจากนี้ แม้ว่าโปรตีนกาวใหมเซริซินจะมีคุณสมบัติในการกระตุ้นการสร้าง คอลลาเจนแต่โปรตีนดังกล่าวขาดคุณสมบัติในการฆ่าเชื้อซึ่งเป็นคุณสมบัติที่สำคัญอย่างหนึ่งที่จะช่วยเร่งการหาย ของบาดแผล งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อพัฒนาแผ่นปิดแผลที่ประกอบด้วยโปรตีนกาวใหมเซริซินและ ใกโตซานในรูปแบบใมโครสเฟียร์ ซึ่งใคโตซานที่มีคุณสมบัติในการฆ่าเชื้อแบบเนิ่นนาน นอกจากนี้ยังทำการศึกษา คุณสมบัติในการกระตุ้นการหายของบาดแผลในเซลล์เพาะเลี้ยงและในสัตว์ทดลองด้วย

ผลการศึกษาแสดงให้เห็นว่า ไกโตซานไมโกรสเฟียร์สามารถขึ้นรูปได้โดยใช้ ionic interaction technique นอกจากนี้ไมโกรสเฟียร์ดังกล่าวยังสามารถปลดปล่อยไกโตซานและมีฤทธิ์ฆ่าเชื้อในระยะเวลาเนิ่น นานด้วย เมื่อนำไมโกรสเฟียร์ไปเป็นส่วนประกอบของแผ่นเนื้อเยื่อปิดแผลที่พัฒนาจากโปรตีนกาวไหมเซริซิน พบว่าสามารถกระจายตัวได้อย่างสม่าเสมอ อีกทั้งยังให้วัสดุปิดแผลที่มีความคงตัวดี อย่างไรก็ตาม ฤทธิ์ในการฆ่า เชื้อแบบเฉียบพลันยังค่อนข้างค่ำ เพื่อให้วัสดุปิดแผลที่พัฒนาขึ้นสามารถออกฤทธิ์ฆ่าเชื้อได้อย่างเฉียบพลันเพิ่ม สูงขึ้น จึงนำแผ่นเนื้อเยื่อปิดแผลโปรตีนกาวไหมเซริซินที่มีไกโตซานไมโกรสเฟียร์เป็นองค์ประกอบไปชุบ สารละลายไกโตซานอีกครั้งหนึ่งเพื่อให้ปริมาณไกโตซานที่ถูกปลดปล่อยออกมาในระยะเริ่มแรกมีความเข้มข้น สูง ผลการศึกษาพบว่าแผ่นดังกล่าวสามารถกระตุ้นการหายของบาดแผลในสัตว์ทดลองได้อย่างมีประสิทธิภาพโดยไม่แสดงความเป็นพิษ นอกจากนี้แผ่นที่ผ่านการชุบสารละลายไกโตซานในความเข้มข้นร้อยละ 1.0-4.0 สามารถฆ่าเชื้อได้อย่างมีประสิทธิภาพทั้งแบบเฉียบพลันและเนิ่นนาน เนื่องจากความเข้มข้นข้องสารละลายไกโตซานเพียงร้อยละ 1.0 สามารถแสดงประสิทธิภาพได้อย่างดีแล้ว ความเข้มข้นนี้จึงถูกนำมาใช้ทดสอบใน สัตว์ทดลอง จากการศึกษาผลของแผ่นเนื้อเยื่อปิดแผลจากโปรตินกาวไหมที่ประกอบด้วยไกโตซานไมโครสเฟียร์ร่วมกับการชุบสารละลายไกโตซานร้อยละ 1.0 พบว่า แผ่นดังกล่าวสามารถกระคุ้นการหายของบาดแผล ได้โดยไม่ก่อให้เกิดการแพ้หรือระคายเคือง แผ่นดังกล่าวจึงเหมาะสมที่จะนำมาทดสอบทางคลินิกในผู้ป่วยเพื่อใช้รักษาบาดแผลหายขากและมีการติดเชื้อร่วมด้วยต่อไป

บทคัดย่อ

โปรตีนกาวใหมเป็นวัสคุที่เหลือใช้ทางการเกษตรซึ่งจากการศึกษาพบว่า โปรตีนกาวใหมที่ได้จากใหม่ สายพันธุ์จุล 1/1 ซึ่งมีรังใหม่สีขาว เมื่อนำมาสกัดด้วยความร้อนภายใต้ความดัน จะทำให้ได้โปรตีนกาวใหมที่มี คุณสมบัติในการกระตุ้นการสร้างคอลลาเจนได้ดี นอกจากนี้ยังสามารถกดการสร้างสารก่อการอักเสบอันได้แก่ interleukin-1 และ tumor necrosis factor-α ได้อย่างมีประสิทธิภาพด้วย อย่างไรกี่ตาม ความเข้มข้นของโปรตีน กาวใหมเซริซินที่ใช้จำเป็นต้องอยู่ในความเข้มข้นที่เหมาะสม นอกจากนี้ แม้ว่าโปรตีนกาวใหมเซริซินจะมี คุณสมบัติในการกระตุ้นการสร้างคอลลาเจนแต่โปรตีนดังกล่าวขาดคุณสมบัติในการฆ่าเชื้อซึ่งเป็นคุณสมบัติที่ สำคัญอย่างหนึ่งที่จะช่วยเร่งการหายของบาดแผล งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อพัฒนาแผ่นปิดแผลที่ ประกอบด้วยโปรตีนกาวใหมเซริซินและไดโตซานในรูปแบบไมโครสเฟียร์ ซึ่งไดโตซานที่มีคุณสมบัติในการฆ่าเชื้อได้ดีจะค่อย ๆ ถูกปลดปล่อยออกมาจากไมโครสเฟียร์ดังกล่าว นอกจากนี้ยังทำการศึกษาคุณสมบัติในการกระตุ้นการหายของบาดแผลในเซลล์เพาะเลี้ยงและในสัตว์ทดลองด้วย

ผลการศึกษาแสดงให้เห็นว่า ไลโดซานไมโลรสเฟียร์สามารถขึ้นรูปได้โดยใช้ ionic interaction technique นอกจากนี้ไมโลรสเฟียร์ดังกล่าวยังสามารถปลดปล่อยไลโตซานและมีฤทธิ์ฆ่าเชื้อในระยะเวลาเนิ่น นานด้วย เมื่อนำไมโลรสเฟียร์ไปเป็นส่วนประกอบของแผ่นเนื้อเชื่อปิดแผลที่พัฒนาจากโปรตีนกาวไหมเซริซิน พบว่าสามารถกระจายตัวได้อย่างสม่ำเสมอ อีกทั้งยังให้วัสดุปิดแผลที่มีความคงตัวดี เพื่อให้วัสดุปิดแผลที่ พัฒนาขึ้นสามารถออกฤทธิ์ฆ่าเชื้อใด้อย่างเฉียบพลันร่วมด้วย จึงนำแผ่นเนื้อเชื่อปิดแผลโปรตีนกาวไหมเซริซินที่ มีไลโตซานไมโลรสเฟียร์เป็นองค์ประกอบไปชุบสารละลายไลโตซานอีกครั้งหนึ่งเพื่อให้ปริมาณไลโตซานที่ถูก ปลดปล่อยออกมาในระยะเริ่มแรกมีความเข้มข้นสูง ผลการศึกษาพบว่าแผ่นดังกล่าวสามารถกระดุ้นการหายของ บาดแผลในสัตว์ทดลองได้อย่างมีประสิทธิภาพโดยไม่แสดงความเป็นพิษ นอกจากนี้แผ่นที่ผ่านการชุบ สารละลายไลโตซานในความเข้มข้นร้อยละ 1.0-4.0 สามารถฆ่าเชื้อได้อย่างมีประสิทธิภาพทั้งแบบเฉียบพลัน และเนิ่นนาน เนื่องจากความเข้มข้นข้องสารละลายไลโตซานเพียงร้อยละ 1.0 สามารถแสดงประสิทธิภาพได้ อย่างดีแล้ว ความเข้มข้นนี้จึงถูกนำมาใช้ทดสอบในสัตว์ทดลอง จากการศึกษาผลของแผ่นเนื้อเชื่อปิดแผลจากโปรตีนกาวไหมที่ประกอบด้วยไลโตซานไมโครสเฟียร์ร่วมกับการชุบสารละลายไลโตซานร็อง แผ่นดังกล่าวจึง เหมาะสมที่จะนำมาทดสอบทางคลินิกในผู้ป่วยเพื่อใช้รักษาบาดแผลหายยากและมีการติดเชื้อร่วมด้วยต่อไป

คำสำคัญ: โปรตีนกาวไหม, ไคโตซาน, ไมโครสเฟียร์, แผ่นเนื้อเยื่อปิดแผล

Abstract

Silk sericin, a degumming protein, is considered as waste product in textile manufacturing. Silk

sericin extracted by high pressure, high temperature degumming technique from Chul 1/1 strain, a white

cocoon shell, exhibits the highest collagen promotion activity. Moreover, it also can suppress the production

of pro-inflammatory cytokines such as interleukin-1 and tumor necrosis factor- \mathbf{Q} . However, the concentration

of sericin needs to be in the optimum range in order to show its benefit. Even though sericin can promote

collagen production but has no antibacterial activity and infection is another factor which can delay the wound

healing process. The objective of this study is to develop the wound dressing material containing silk sericin

and chitosan microsphere which can be an active wound dressing material. Microsphere can sustain the

release of sericin and provide optimum concentration while chitosan possess antibacterial activity. We also

would like to study its physical properties and develop the wound dressing material from this sericin/chitosan

microsphere. The wound healing property both in cell culture and in vivo will also be investigated.

Our results indicated that chitosan microsphere fabricated using ionic interaction technique can

sustain released chitosan and have antimicrobial activity. This microsphere when added into sericin scaffold

can homogenously distribute and form stable wound dressing material. In order to provide a strong immediate

antimicrobial activity, the sericin-chitosan microsphere scaffold was also soaked into chitosan solution in

order to get the burst release of chitosan. Our results indicated that this scaffold is very effective in promoting

the wound healing in vivo and show no toxicity. Moreover, the antimicrobial activity of this scaffold contained

1.0-4.0% chitosan solution exhibited both immediate and sustained antimicrobial activity. Since sericin-

chitosan microsphere soaked in 1.0% of chitosan solution still showed great activity, this concentration was

used for animal testing. The *in vivo* result indicated that sericin-chitosan microsphere can promote the healing

without irritation of allergic reaction. This product should be further investigated in clinical study in order to

develop the commercial wound dressing for hard-to-heal and infected wounds.

Abstract: Sericin, chitosan, microsphere, scaffold

สัญญาเลขที่ RSA5680004

โครงการ "การพัฒนาวัสดุปิดแผลที่ประกอบด้วยโปรตีนกาวใหมเซริซินและใคโตซานไมโครสเฟียร์ เพื่อกระตุ้นการหายของบาดแผล"

รายงานฉบับสมบูรณ์ เนื้อหางานวิจัย

สืบเนื่องจากงานวิจัยจำนวนมากทั้งในและต่างประเทศได้แสดงให้เห็นว่า โปรตีนกาวไหมหรือที่เรียกว่า เซริซินมีคุณสมบัติทางชีวภาพที่เหมาะสมต่อการนำมาใช้ประโยชน์มากมายเช่น มีคุณสมบัติในการต้านอนุมูล อิสระ สามารถป้องกันการเจริญเติบโตของแบคทีเรียได้ และเนื่องจากเซริซินเป็นสารที่สามารถคูคซึมน้ำได้ดีจึง สามารถทำให้ผิวหนังชุ่มชื้นอันเป็นคุณสมบัติที่ดีในการนำใช้กับบาดแผลเนื่องจากจะทำให้ผู้ป่วยเกิดความ ้เจ็บปวดน้อยลง นอกจากนี้ยังได้มีงานวิจัยพบว่าเซริซินสามารถกระตุ้นการสร้างและเพิ่มการยึดเกาะกันของ เซลล์สร้างเส้นใยผิวหนังของมนุษย์ใด้ (human skin fibroblasts) อีกทั้งยังพบอีกว่าเซริซินสามารถเพิ่มการสร้าง คอลลาเจนทำให้บาดแผลในหนูทดลองหายได้รวดเร็วขึ้น จากผลการศึกษาโครงการ คุณสมบัติทางกายภาพและ ชีวภาพของฟิล์มปิดแผลที่ผลิตจากโปรตีนกาวใหม (ทุนสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย สัญญาเลงที่ DBG5180017) พบว่าใหมสายพันธุ์ใทยมีคุณสมบัติไม่ค้อยไปกว่าใหมสายพันธุ์ต่างประเทศ เนื่องจากมีคุณสมบัติในการกระตุ้นการเจริญเติบโตของเซลล์ผิวหนังและกระตุ้นการสร้างคอลลาเจนได้ โดยเฉพาะอย่างยิ่งใหมสายพันธุ์จุล 1/1 จากบริษัทจุลใหมไทย จำกัด ซึ่งเป็นใหม bivoltine มีรังใหมสีขาว (รูปที่ 1) พบว่ามีคุณสมบัติในการกระตุ้นการเจริญเติบโตของเซลล์และการสร้างคอลลาเจนได้สูงกว่าใหมสายพันธุ์ ไทยอื่น ๆ ในขณะเดียวกันยังกระตุ้นการสร้าง proinflammatory cytokines อันได้แก่ interleukin-1β (IL-1β) และ tumor necrosis factor-α (TNF-α) ได้ต่ำที่สุด อย่างไรก็ตาม โปรตีนกาวใหมเซริซินไม่มีคุณสมบัติในการ ฆ่าเชื้อได้ดีนัก หากนำไปใช้พัฒนาเป็นแผ่นปิดแผลทางการแพทย์ อาจทำให้ผู้ป่วยเกิดการติดเชื้อได้ ด้วยเหตุนี้จึง ้มีแนวคิดที่จะพัฒนาอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและไคโตซานเพื่อบรรจุลงในแผ่นปิดแผล โดยใกโตซานเป็นสารที่มีคุณสมบัติในการฆ่าเชื้อได้ดี ซึ่งอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและ ้ใกโตซานจะมีคุณสมบัติทั้งในการกระตุ้นการสร้างคอลลาเจนและในขณะเคียวกันสามารถฆ่าเชื้อได้ด้วย

รูปที่ 1 รังใหมไทยสายพันธุ์จุล 1/1

ขั้นตอนการศึกษาทดลอง

1. การเตรียมอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและไคโตซาน

ในเบื้องต้นใด้มีการทดลองขึ้นรูปอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและ ไคโตซานด้วย วิธี emulsion แต่พบอุปสรรคเรื่องน้ำมันที่นำมาใช้ในปฏิกิริยาเนื่องจากความหนืดของน้ำมันทำให้ขึ้นรูปได้ยาก อีกทั้งยังมีปัญหาในการแยกอนุภาค เนื่องจากอนุภาคที่ผลิตได้มีขนาดเล็กจึงไม่สามารถแยกออกจากน้ำมันได้ นอกจากนี้เพื่อทำให้อนุภาคมีความบริสุทธิ์จำเป็นต้องล้างน้ำมันที่ติดอยู่ออกให้หมด ซึ่งใช้เวลานาน ส่งผลให้ อนุภาคเสื่อมสลายไปในขั้นตอนการล้างด้วย ด้วยเหตุนี้จึงเปลี่ยนมาใช้หลักการ coacervation ของสารสองตัวที่มี ประจุต่างกัน และสามารถเกิดอนุภาคในขั้นตอนเดียวมาขึ้นรูปอนุภาคแทน ซึ่งวิธีนี้ได้ถูกนำมาใช้ขึ้นรูปอนุภาค ใคโตซานกันอย่างแพร่หลาย ผู้วิจัยได้ทดลองวิธี coacervation ผ่านสภาวะที่มีความเป็นกรดค่างแตกต่างกัน หลายสภาวะ จนได้สภาวะที่เหมาะสมและสามารถขึ้นรูปอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและ ใคโตซานใด้อย่างมีประสิทธิภาพ ตามขั้นตอนดังนี้

- 1.1 เตรียมสารละลายใคโตซาน (ชนิคมวลโมเลกุลต่ำ) ความเข้มข้นร้อยละ 6 โดยน้ำหนักโดยปั่น สารละลายทิ้งไว้ข้ามคืนจนสารละลายหมด จากนั้นกรองสารละลายที่ได้อีกครั้งด้วยกระคาษกรอง Whatman ขนาด 4 แช่สารละลายที่ได้ไว้ที่อุณหภูมิ 4 องศาเซลเซียส เมื่อนำมาใช้ทำการทดลองให้เอาออกมาไว้ที่ อุณหภูมิห้องก่อนค่อยใช้
- 1.2 เตรียมสารสกัดเซริซินสายพันธุ์จุล 1/1 โดยชั่งรังใหมน้ำหนัก 40 กรัม เติมน้ำ reverse osmosis ปริมาตร 600 มิลลิลิตร เขย่าให้รังใหมจมน้ำจากนั้นนำไปผ่านกระบวนการสกัดด้วยการ autoclave ที่อุณหภูมิ 121 องศาเซลเซียส เป็นระยะเวลา 1 ชั่วโมง รอให้สารละลายที่ได้เย็นลงค่อยนำมากรองแยกกากรังใหมกับ สารละลายด้วยผ้าขาวบาง และวัดปริมาณเซริซินเริ่มต้นที่สกัดได้ด้วยชุดการทดลองสำเร็จรูปด้วยเทคนิค BCA assay (ภาคผนวก 1) เป็นวิธีใช้ในการวัดปริมาณโปรตีน โดยวัดค่าการดูดกลืนแสงที่ 562 นาโนเมตร และใช้

bovine serum albumin (BSA) เป็นสารมาตรฐาน นำสารสกัดโปรตีนกาวใหมเซริซินมาทำให้เข้มข้นโดยการ ระเหยน้ำออกจนได้สารละลายโปรตีนกาวใหมที่มีความเข้มข้นร้อยละ 10 โดยน้ำหนัก

1.3 เตรียมสารละลายผสมของสารละลายใกโตซานกับสารสกัดเซริซินโดยมีความเข้มข้นทั้งหมด เท่ากับร้อยละ 6 โดยน้ำหนัก และมีสัดส่วนโดยน้ำหนักของใกโตซานต่อโปรตีนกาวใหมเซริซินดังนี้ 50:50, 60:40, 70:30, 80:20 และ 100:0 (ที่เลือกสัดส่วนตามนี้เนื่องจากการเกิดอนุภาคใช้ใกโตซานในการเกิดปฏิกิริยา การเกิดเจลแบบใอออนิกจึงให้ใกโตซานมีปริมาณที่มากกว่าหรือเท่ากับเซริซินที่ใช้เป็นสารสำคัญ) ปั่นกวน สารละลายผสมทั้งสองเป็นเวลา 1 ชั่วโมง

1.4 นำสารละลายผสมของใกโตซานกับเซริซินที่ได้จำนวน 40 มิลลิลิตร จากนั้นค่อย ๆ หยดสารละลาย sodium tripolyphosphate (TPP) ความเข้มข้นร้อยละ 1 โดยน้ำหนัก ซึ่งสารละลายมีค่าความเป็นกรดค่าง ประมาณ 9.1-9.2 (มีการปรับค่าความเป็นกรดค่างให้ได้ 6.5) ปริมาตร 40 มิลลิลิตรด้วยกระบอกฉีดยาขนาด 3 มิลลิลิตร จนหมดจากนั้นปั่นกวนทิ้งไว้ที่อุณหภูมิห้องเป็นเวลา 1 ชั่วโมง จากนั้นทำการแยกอนุภาคที่ได้ออกจาก สารละลายด้วยเครื่องเหวี่ยงสู่ศูนย์กลาง (centrifuge) ความเร็วรอบ 4,500 รอบต่อนาที เป็นเวลา 5 นาที นำ อนุภาคที่ได้มาล้างด้วยน้ำปริมาตร 40 มิลลิลิตรอีกครั้งโดยปั่นกวน 10 นาที สุดท้ายแยกอนุภาคที่ได้ออกจากน้ำ ด้วยเครื่องเหวี่ยงสู่ศูนย์กลางความเร็วรอบ 4,500 รอบต่อนาทีเป็นเวลา 5 นาที นำตัวอย่างที่ได้แช่แข็งที่อุณหภูมิ -40 องศาเซลเซียส 24 ชั่วโมง และทำแห้งแบบเขือกแข็งเป็นเวลา 2 วัน รูปที่ 2 แสดงภาพของสารละลายไกโต-ซานกับเซริซินก่อนและหลังการเดิมสารละลาย TPP

รูปที่ 2 ลักษณะของสารละลายผสมใคโตซานกับเซริซิน (ซ้าย) ลักษณะของอนุภาคใคโตซานเซริซินที่ แขวนลอยในสารละลายหลังทำปฏิกิริยาเสร็จสิ้น (ขวา)

2. ลักษณะสัณฐานและวัคขนาดอนุภาค ใม โครสเฟียร์ค้วยกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด

ศึกษาโครงสร้างสัณฐานของอนุภาคใมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและ ใคโตซาน (morphology) โดยใช้กล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด (Scanning Electron Microscope, SEM-JSM-5410LV, JEOL Ltd., Japan) ดูลักษณะรูปร่าง พื้นผิวภายนอกของอนุภาค

ในส่วนของการศึกษาขนาดและการกระจายตัวของอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซิน และ ใคโตซาน วิเคราะห์โดยใช้เครื่อง Mastersizer 2000 (Malvern Instruments Ltd., UK) นำอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและ ใคโตซานประมาณ 2-3 มิลลิลิตร ผสมในน้ำปราสจากใอออนอนุภาคถูก ทำแขวนลอยและกระจายตัวไม่เกาะกลุ่มกันด้วยคลื่นอัลตร้าโซนิคเป็นเวลา 5 นาทีและปั่นกวนสารแขวนลอยนี้ ที่ความเร็ว 1,750 รอบต่อนาทีระหว่างการวิเคราะห์

3. การทดสอบความคงตัวและการปลดปล่อยของโปรตีนกาวใหมจากอนุภาคใมโครสเฟียร์

เนื่องจากอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและไคโตซานอาจจำเป็นต้องผ่าน กระบวนการเชื่อมโยงข้าม (cross-linking) ในกรณีที่ไม่คงตัวหรือละลายได้ง่ายจนเกินไป อย่างไรก็ตาม เนื่องจากไคโตซานเป็นสารที่มีประจุบวก ในขณะที่โปรตีนกาวไหมเซริซินเป็นสารที่มีประจุลบ การนำสารทั้ง 2 ชนิคมาผสมรวมกันจะทำให้เกิดปฏิกิริยา ionic cross-linking ซึ่งหากปฏิกิริยานั้น ๆ มีความแข็งแรงเพียงพอ จะ ส่งผลให้อนุภาคไมโครสเฟียร์ดังกล่าวมีความคงตัวและไม่จำเป็นต้องใช้กระบวนการเชื่อมโยงข้ามทางเคมีเข้า มาเพิ่มเติมอีก ซึ่งความคงตัวของอนุภาคไมโครสเฟียร์สามารถทดสอบได้โดยการศึกษากระบวนการย่อยสลาย ภายนอกร่างกาย ซึ่งมีขั้นตอนดังนี้

เตรียมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน 5 มิลลิกรัม ในหลอด microcentrifuge ที่มีฝาปิดแน่น ขนาด 1.5 มิลลิลิตรเติม 1 มิลลิลิตรของสารละลาย phosphate buffer solution (PBS, pH 7.4) นำไปบ่มในเครื่อง shaking water bath ที่อุณหภูมิ 37 องศาเซลเซียส ความเร็วรอบ 100 รอบต่อนาที เก็บตัวอย่างสารละลาย PBS ที่ เวลา 5 นาที, 10 นาที, 20 นาที, 1,3, 6, 24, 72 และ 192 ชั่วโมง ตามลำดับ หลังจาก centrifuge ให้อนุภาค ตกตะกอนด้วยความเร็วรอบ 4,500 รอบต่อนาทีเป็นเวลา 5 นาที และนำไปวิเคราะห์หาปริมาณเซริซินด้วย BCA assay เช่นเดียวกับที่กล่าวมาแล้วข้างต้น

4. การทคสอบอัตราการย่อยสลายทางชีวภาพภายนอกร่างกาย

การทคสอบอัตราการย่อยสถายทางชีวภาพภายนอกร่างกายของอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน คัดแปลงคั่วยวิธีการย่อยสถายในเอนไซม์ collagenase (CAS No. 9001-12-1) โคยคัดแปลงวิธีของ YS. Choi (1) ในการหาอัตราการย่อยสถายของอนุภาคไมโครสเฟียร์ไคโตซานเซริซินโดยแช่อนุภาคดังกล่าวในสารละถาย ฟอตเฟตบัฟเฟอร์ (PBS buffer) ที่ pH 7.4 ที่มีเอนไซม์ bacterial collagenase ความเข้มข้น 1 ยูนิต/มิลลิลิตร และ เก็บไว้ที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 2 สัปดาห์ โดยติดตามผล 1, 2, 3, 5, 7 และ 14 วัน จึงนำออกมาล้าง ด้วยน้ำกลั่นก่อนที่จะทำให้แห้งที่อุณหภูมิเยือกแข็ง

อัตราการย่อยสลายของอนุภาคไมโครสเฟียร์ไคโตซานเซริซินคำนวณได้จากสูตร

น้ำหนักที่เหลืออยู่ (%) =
$$W_{_1}/W_{_0} \times 100$$

โดย $\mathbf{W}_{_{0}}$ เป็นน้ำหนักเริ่มต้นของอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน และ $\mathbf{W}_{_{1}}$ เป็นน้ำหนักที่เวลาใดๆ ของอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน

5. การศึกษา Interaction ระหว่างโปรตีนกาวใหมเซริซินและใคโตซานค้วย FTIR

การทดลองทำโดยใช้เครื่อง Infrared spectrometer รุ่น Nicolet 6700 (Thermo Fisher Scientific, Waltham, MA, USA) ที่ใช้ตัวตรวจวัดสัญญาณ (detector) แบบ Mercury-Cadmium-Telluride (MCT) เทคนิคที่ ใช้วัดคือ ATR (Attenuated Total Reflection Fourier Transform) คือต้องมีการรวมแสงที่ออกจากเครื่อง spectrometer เข้าไปยัง microscope (รุ่น Continumm Infrared Microscope) และแสงที่ออกจาก microscope จะ ผ่านเลนส์ของกล้อง microscope ที่เรียกว่า buit-in 15X Schwarzschild-Cassegrain infrared objective แสงที่ผ่าน เลนส์จะถูกรวมอีกที่ผ่าน IRE วางตัวอย่างบน glass slide ที่อยู่บนฐานของ microscope แล้วเลื่อนฐาน microscope ขึ้นไปจนตัวอย่างสัมผัสกับ IRE แล้วกด take spectrum จะได้ผลเป็น spectrum ออกมา และ parameter ที่ตั้งคือ ใช้ resolution 4 cm⁻¹ ด้วย 128 co-addition scans

6. การประเมินประสิทธิภาพในการกักเก็บเซริซิน (encapsulation) ของอนุภาคไมโครสเฟียร์ไคโตซานเซ-ริซิน

ปริมาณการกักเก็บเซริซินหาได้จากปริมาณเซริซินที่เหลือในสารละลายหลังการขึ้นรูปอนุภาคไมโคร ใคโตซานแสดงถึงปริมาณเซริซินที่ถูกกักเก็บในอนุภาคนั้นสามารถหาได้โดยเริ่มต้นหาปริมาณเซริซินที่มีใน สารละลายผสมของไคโตซานกับเซริซินในปริมาตร 40 มิลลิลิตร (\mathbf{W}_1) และหลังการเกิดปฏิกิริยาจากการเติม สารละลายโซเดียมไตรพอลิฟอสเฟตจนเสร็จกระบวนการแล้วผ่านการปั่นเหวี่ยงแยกอนุภาคแล้วนำสารละลายที่ เหลือไปหาปริมาณเซริซิน (\mathbf{W}_2) ปริมาณเซริซินสามารถวัดด้วยเทคนิควิเคราะห์โปรตีน BCA assay เปรียบเทียบ กับกราฟมาตรฐานของโปรตีน BSA โดยใช้เครื่อง microplate reader

ประสิทธิภาพในการกักเกี้บเซริซิน (%โดยน้ำหนัก) =
$$\frac{(W_1-W_2)}{W_1} \times 100$$

7. การศึกษาคุณสมบัติในการฆ่าเชื้อของไมโครสเฟียร์ที่ประกอบด้วยโปรตีนกาวไหมเซริซินและไคโต-ซาน

การศึกษาคุณสมบัติในการยับยั้งการเจริญเติบโตของอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน ได้ศึกษา จากเชื้อทั้งแบคทีเรียแกรมบวกและลบจำนวนทั้งลิ้น 6 สายพันธุ์ที่พบได้ทั่ว ๆ ไปในบาคแผล อันได้แก่ แบคทีเรียแกรมอกคือ Escherichia coli ATCC 25922, Acinetobacter baumannii, Pseudomonas aeruginosa ATCC 27853 และแบคทีเรียแกรมบวกได้แก่ Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923 และ Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 6538 P ทดสอบคุณสมบัติในการ ยับยั้งการเจริญเติบโตของเชื้อแต่ละตัวโดยนำกระดาษกรองปลอดเชื้อไปชุบใส่สารละลายไมโครสเฟียร์ไคโต-ซานเซริซินชนิดต่าง ๆ อันได้แก่ C50S50, C60S40, C70S30, C80S20 และ C100 (อนุภาคไมโครสเฟียร์ที่มีใคโตซานแต่เพียงอย่างเดียว) ที่มีความเข้มข้นตั้งแต่ 5-200 มิลลิกรัม/มิลลิลิตร แล้วนำไปวางบน plate ที่มีเชื้อ แบคทีเรียชนิดต่าง ๆ อยู่ สังเกตและวัดขนาด clear zone ที่เกิดขึ้นเปรียบเทียบกับสารฆ่าเชื้อ chlorhexidine 0.5% ซึ่งเป็นสารฆ่าเชื้อที่มีอยู่ในแผ่นปิดแผลมาตรฐาน (Bactigras®) ที่ใช้กันทั่วไปในโรงพยาบาล

- 8. การเตรียม Scaffold polyvinyl alcohol (PVA)/gelatin + อนุภาคไมโครสเฟียร์ไคโตซานเซริซิน
- 8.1 เตรียมสารละลาย PVA ความเข้มข้น 4%w/v โดยละลายในน้ำ deionized water (DI) ที่อุณหภูมิ 80 องศาเซลเซียสเป็นเวลา 4 ชั่วโมง และเตรียมสารละลาย gelatin ความเข้มข้น 5% w/v โดยละลายในน้ำ DI ที่ อุณหภูมิ 40 องศาเซลเซียสเป็นเวลา 1 ชั่วโมง
- 8.2 เตรียมสารละลาย ใคโตซาน (ชนิคมวล โมเลกุลต่ำ) ความเข้มข้น 6 % โดยน้ำหนัก โดยปั่นสารละลาย ทิ้งไว้ข้ามคืน เพื่อให้สารละลายหมด จากนั้นกรองสารละลายที่ได้อีกครั้งด้วยกระดาษกรอง Whatman เบอร์ 4 แช่สารละลายที่ได้ไว้อุณหภูมิ 4 องศาเซลเซียส เมื่อนำมาใช้ทำการทดลองให้เอาออกมาไว้ที่อุณหภูมิห้องก่อน ค่อยใช้
- 8.3 เตรียมสารสกัดเซริซินสายพันธุ์จุล 1/1 โดยชั่งรังไหมน้ำหนัก 40 กรัม ใส่ในขวด duran ขนาด 1 ถิตร เติมน้ำ reverse osmosis (RO) ปริมาตร 600 มิลลิลิตร เขย่าให้รังไหมจมน้ำจากนั้นนำไปผ่านกระบวนการ สกัดด้วยการ autoclave ที่อุณหภูมิ 121 องศาเซลเซียส เป็นระยะเวลา 1 ชั่วโมง รอให้สารละลายที่ได้เย็นลงค่อย นำมากรองแยกกากรังไหมกับสารละลายด้วยผ้าขาวบาง และวัดปริมาณเซริซินเริ่มต้นที่สกัดได้ด้วยชุดการ ทดลองสำเร็จรูปด้วยเทคนิค BCA assay เป็นวิธีใช้ในการวัดปริมาณโปรตีน โดยวัดค่าการดูดกลืนแสงที่ 562 นาโนเมตร และใช้ BSA เป็นสารมาตรฐาน (เซริซินที่ได้เริ่มต้นประมาณ 1% w/v) และการเตรียมสารสกัดเซริซินที่ความเข้มข้นสูงขึ้นนั้นสามารถทำได้โดยให้ความร้อนกับสารสกัดเซริซินที่ได้เพื่อระเหยน้ำออก จนได้ ปริมาณเซริซินความเข้มข้นประมาณ 10% w/v ซึ่งสารสกัดที่ได้จะมีสีเข้มข้นและหนืดมากขึ้น สำหรับเซริซินที่

เตรียมไว้นั้นให้ เก็บที่อุณหภูมิ 4 องศาเซลเซียส ก่อนนำมาใช้ในการทคลองให้นำออกจากตู้เย็นจนหายเย็นและ นำมาให้ความร้อนจนสารสกัดเซริซินเปลี่ยนจากสถานะเจลเป็นสารละลาย

8.4 เตรียมสารละลายผสมของสารละลายใคโตซานกับสารสกัดเซริซินโดยมีความเข้มข้นทั้งหมดเท่ากับ 6%โดยน้ำหนัก โดยมีสัดส่วนโดยน้ำหนักของใคโตซานกับเซริซิน 80:20 ปั่นกวนสารละลายผสมทั้งสองเป็น เวลา 1 ชั่วโมง

8.5 นำสารละลายผสมของใกโตซานกับเซริซินที่ได้ปั่นกวนไว้บน stirrer ปริมาตร 40 มิลลิลิตร จากนั้น ก่อย ๆ หยดสารละลาย sodium tripolyphosphate (TPP) ความเข้มข้น 1% โดยน้ำหนัก ซึ่งสารละลายมีค่า pH ประมาณ 9.1-9.2 (มีการปรับ pH ให้ได้ 6.5) ปริมาตร 40 มิลลิลิตร ด้วย syringe ขนาด 3 มิลลิลิตร จนหมด จากนั้นปั่นกวนทิ้งไว้ที่อุณหภูมิห้องเป็นเวลา 1 ชั่วโมง จากนั้นจะทำการแยกอนุภาคที่ได้ออกจากสารละลายด้วย เครื่องเหวี่ยงสู่ศูนย์กลาง (centrifuge) ความเร็วรอบ 4500 rpm เป็นเวลา 5 นาที นำอนุภาคที่ได้มาล้างด้วยน้ำ ปริมาตร 40 มิลลิลิตร อีกครั้งโดยปั่นกวน 10 นาที สุดท้ายแยกอนุภาคที่ได้ออกจากน้ำด้วยเครื่องเหวี่ยงสู่ ศูนย์กลางความเร็วรอบ 4500 rpm เป็นเวลา 5 นาที

8.6 การเตรียมแผ่นเนื้อเชื่อ PVA/gelatin ที่มีการผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน เตรียมโดย ผสมสารละลาย PVA กับสารละลาย gelatin แล้วปั่นกวนไว้ที่อุณหภูมิ 40 องศาเซลเซียสเป็นเวลา 1 ชั่วโมง โดย มีสัดส่วนผสมของ PVA กับ gelatin ดังนี้ P0.5G3.5 (PVA 0.5% wt กับ gelatin 3.5% wt), P1.0G3.0 (PVA 1.0% wt กับ gelatin 3.0% wt), P1.5G2.5 (PVA 1.5% wt กับ gelatin 2.5% wt) และ P2.0G20 (PVA 2.0% wt กับ gelatin 2.0% wt) ซึ่งจะมีร้อยละ โดยน้ำหนักรวมเท่ากับ 4 ปริมาตรรวม 50 มิลลิลิตร จากนั้นผสมอนุภาคไคโตซานเซริซินไมโครสเฟียร์เปียก (สูตร C/S:80/20) ปริมาณความเข้มข้น 2% w/v สูตรต่าง ๆ ดังนี้ P0.5G3.5/2CS, P1.0G3.0 /2CS, P1.5G2.5/2CS, P2.0G20/2CS และ 4% w/v สูตรต่าง ๆ ดังนี้ P0.5G3.5/4CS, P1.0G3.0 /4CS, P1.5G2.5/4CS, P2.0G20/4CS ผสมและปั่นกวนไว้ที่อุณหภูมิ 40 องศาเซลเซียสเป็นเวลา 1 ชั่วโมง จากนั้น crosslink ด้วยสาร glutaraldehyde ความเข้มข้น 0.2% w/v เป็นเวลา 5 นาที ในที่มีด สารละลายจะเกิดเจลเล็กน้อย อนุภาคจะเกิดการแขวนลอยในสารละลายไม่ตกตะกอนลงมาด้านล่าง รีบเทใส่ภาชนะ โดยใช้ teflon mold ให้ 1 แผ่นมีปริมาตร 15 มิลลิลิตร แช่ตู้เย็นที่อุณหภูมิ 4 องศาเซลเซียสไว้ข้ามคืน จากนั้นล้างสาร glutaraldehyde ที่ เหลือออกด้วยสารละลาย glycine ความเข้มข้น 7.5 กรัมต่อลิตร เป็นเวลา 1 ชั่วโมง แล้วล้างด้วยน้ำ DI อีกสาม รอบ รอบละ 1 ชั่วโมง แล้วน้ำแผ่นที่ได้เข้าแช่แข็งที่อุณหภูมิ -40 องศาเซลเซียส 24 ชั่วโมง แล้วนำไป freeze dry ที่อุณหภูมิ -40 องศาเซลเซียส 1 ข้าโมง แล้วนำไป freeze dry ที่อุณหภูมิ -40 องศาเซลเซียสเป็นเวลา 3 วัน

หมายเหตุ: ต่อมาได้มีการนำแผ่นที่พัฒนาขึ้นไปชุบสารละลายไคโตซานอีกครั้งเพื่อเพิ่มฤทธิ์ในการฆ่าเชื้อ โดย ใช้สารละลายไคโตซาน 1% ใน 20% glycerin เพื่อช่วยลดการติดบาดแผลด้วย 9. โครงสร้างสัญฐานของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาค ไมโครสเฟียร์ ไคโตซานเซริซิน ศึกษาโครงสร้างสัญฐาน (morphology) ของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาค ไมโครสเฟียร์ ไคโต-ซานเซริซินโดยใช้กล้องจุลทรรศน์แบบส่องกราด (scanning electron microscope, SEM-JSM-5410LV, JEOL Ltd., Japan) คูลักษณะรูปร่าง พื้นผิวภายนอกของอนุภาค

10. การทคสอบการคูคน้ำ (swelling) ของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไม โครสเฟียร์ไค โตซาน เซริซิน

การทดสอบการดูดน้ำของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน คัดแปลงวิธีของ Gil ES. [Gil, ES. และคณะ, 2005] โดยคำนวณได้จากผลต่างของน้ำหนักแห้งและน้ำหนักเปียก ของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซินในสารละลาย PBS buffer ที่ pH 7.4 อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 1,2, 4, 6 และ 24 ชั่วโมง จากนั้นซับแผ่นดังกล่าวทั้งสองด้าน ๆ ละ 10 วินาทีด้วยกระดาษไม่มีขุย และชั่งน้ำหนักทันที จะได้เป็นค่าน้ำหนักเปียกของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน ซึ่งสามารถคำนวณ % swelling ได้จากสูตร

% swelling =
$$\frac{W_{so} - W_0}{W_o} \times 100$$

โดย $\mathbf{W}_{so} =$ น้ำหนักของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซินหลังจากที่ถูก ดูดซับน้ำ และ

 $\mathbf{W}_{_{\mathrm{Q}}} = \mathbf{u}^{'}$ าหนักเริ่มต้นของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน

11. การทคสอบอัตราการย่อยสลายทางชีวภาพภายนอกร่างกายของแผ่นเนื้อเยื่อ PVA/gelatin ผสม อนุภาคไมโครสเฟียร์ไคโตซานเซริซิน

การทดสอบอัตราการย่อยสถายทางชีวภาพภายนอกร่างกายของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาค ใมโครสเฟียร์ใคโตซานเซริซิน ด้วยวิธีการย่อยสถายในเอนไซม์ collagenase (CAS No. 9001-12-1 โดยดัดแปลง วิธีของ YS. Choi [Choi, Ys และคณะ, 1998] ในการหาอัตราการย่อยสถายของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ใคโตซานเซริซินโดยแช่แผ่นดังกล่าวขนาด 0.5×0.5 เซนติเมตร ในสารละลายฟอตเฟต บัฟเฟอร์ (PBS buffer) ที่ pH 7.4 ที่มีเอนไซม์ collagenase ความเข้มข้น 1 ยูนิต/มิลลิลิตร และเก็บไว้ที่อุณหภูมิ 37 องสาเซลเซียส เป็นเวลา 2 สัปดาห์ โดยติดตามผล 1, 3, 5, 7 และ 14 วัน จึงนำออกมาล้างด้วยน้ำกลั่นก่อนที่ จะทำให้แห้งที่อุณหภูมิเยือกแข็ง

อัตราการย่อยสถายของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซินคำนวณ ได้จากสูตร

น้ำหนักที่เหลืออยู่ (%) =
$$\frac{W_t}{W_a} \times 100$$

โดย $W_{_0}$ เป็นน้ำหนักเริ่มต้นของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไม โครสเฟียร์ ใค โตซานเซริซิน และ $W_{_1}$ เป็นน้ำหนักที่เวลาใด ๆ ของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไม โครสเฟียร์ ใค โตซานเซริซิน

12. การปลคปล่อยเซริซินจากแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไม โครสเฟียร์ไค โตซานเซริซินภาย นอกร่างกาย

เตรียมแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซินขนาด 1×1 ตาราง เซนติเมตร เติมสารละลาย PBS (pH 7.4) ปริมาตร 5 มิลลิลิตร นำไปบ่มในเครื่อง shaking water bath ที่อุณหภูมิ 37 องสาเซลเซียส ความเร็วรอบ 100 rpm เก็บตัวอย่างสารละลาย PBS ที่เวลา 5 นาที, 10 นาที, 20 นาที, 1, 3, 6, 24, 72 และ 168 ชั่วโมง (เก็บตัวอย่างสารละลาย PBS ในหลอดจำนวน 100 ไมโครลิตร แล้วใส่สารละลาย PBS ลงไปใหม่จำนวน 100 ไมโครลิตร) เก็บแบบ accumulation แล้วนำไปวิเคราะห์หาปริมาณเซริซินด้วยเทคนิค วิเคราะห์โปรตีน BCA assay เทียบกับกราฟมาตรฐานของโปรตีน BSA โดยใช้เครื่อง microplate reader

13. การประเมินฤทธิ์การฆ่าเชื้อของแผ่นปิดแผลที่ประกอบด้วยอนุภาคไม โครสเฟียร์ ใค โตซานเซริซิน นำแผ่น PVA/gelatin สูตร P2.0G2.0/2CS ชุบสารละลายไค โตซาน (x % w/v) ใน (20% v/v) กลีเซอรีน แช่แผ่นในสารละลายดังกล่าว 4 ชั่วโมง แล้วนำแผ่นมาวางทิ้งไว้ 12 ชั่วโมง จึงนำแผ่นไปฆ่าเชื้อด้วยการอบ แกมม่า จากนั้นนำมาทดสอบฤทธิ์ฆ่าเชื้อ 6 เชื้อดังนี้

หมายเลข 1 = 1%CS (chitosan 1% w/v) ใน 20% v/v กลีเซอรีน

หมายเลข 2 = 2%CS (chitosan 2% w/v) ใน 20% v/v กลีเซอรีน

หมายเลข 3 = 3%CS (chitosan 3% w/v) ใน 20% v/v กลีเซอรีน

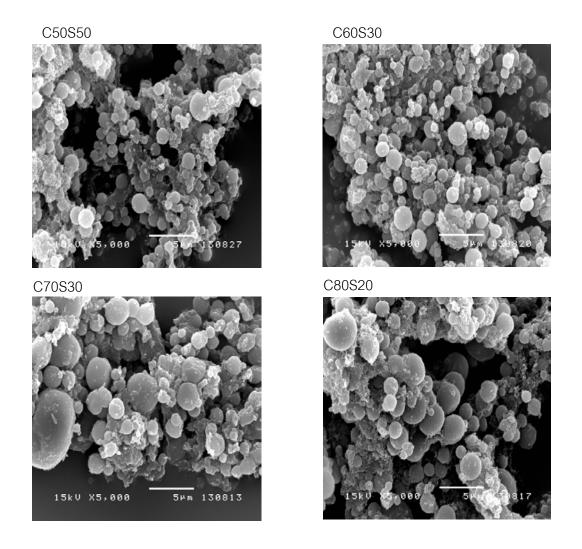
หมายเลข 4 = 4%CS (chitosan 4% w/v) ใน 20% v/v กลีเซอรีน

หมายเลข 5 = Acticoat ® (positve control)

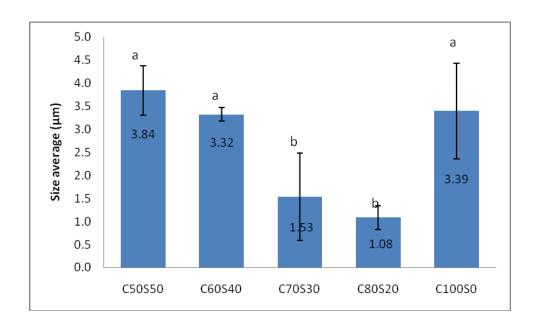
หมายเลข 6 = Guaze pads (negative control)

14. การทดสอบความเข้ากัน ได้และความเป็นพิษของแผ่นปิดแผลที่ประกอบค้วยอนุภาคไม โครสเฟียร์ ใคโตซานเซริซินใน cell culture นำแผ่น PVA/gelatin/chitosan sericin microsphere สูตรต่าง ๆ ขนาด 1×1 ตารางเซนติเมตร แช่ใน อาหารเลี้ยงเซลล์ 10 มิลลิลิตรเป็นเวลา 24 ชั่วโมง และ เพาะเลี้ยงเซลล์จำนวน 20,000 เซลล์ในถาดเพาะเลี้ยง เซลล์ขนาด 48 well plate ไว้เป็นระยะเวลา 24 ชั่วโมงเพื่อให้เซลล์เกาะก่อน จากนั้นคูดอาหารเก่าออก และ เปลี่ยนอาหารมาใช้อาหารที่แช่แผ่น PVA/gelatin/chitosan sericin microsphere สูตรต่าง ๆ แล้วกรองด้วยหัว กรอง 0.22 ใมครอนเพื่อทำให้ปลอดเชื้อ ทำการเพาะเลี้ยงเซลล์ต่อเป็นระยะเวลา 24 , 48, 72 ชั่วโมง เก็บผล วิเคราะห์ด้วย MTT assay (ล้าง PBS ออกแล้วใส่สารละลาย MTT ปริมาตร 200 ใมโครลิตร บ่มที่อุณหภูมิ 37 องสาเซลเซียสเป็นเวลา 30 นาที นำสารละลายออก ใส่ DMSO 300 ใมโครลิตร วัดการคูดกลืนแสงที่ความยาว คลื่น 570 nm วิเคราะห์ปริมาณจำนวนเซลล์เทียบกับกราฟมาตรฐานที่ทราบจำนวนเซลล์)

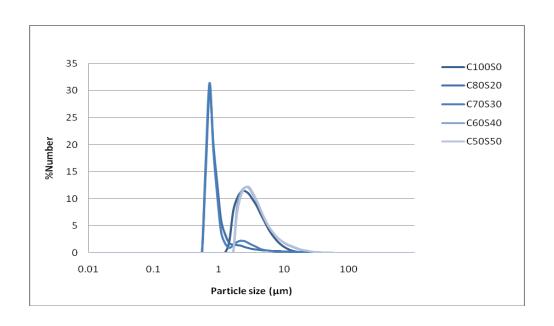
- 15. การทดสอบประสิทธิภาพการสมานแผลในหนูแรทของแผ่นปิดแผล เซริซินไค โตซานไมโคร-สเฟียร์ (รายละเอียดแสดงในภาคผนวก 2)
 - 1. ทดสอบในหนูแรท สายพันธุ์ Wistar เพศผู้อายุ 8 สัปดาห์ น้ำหนักตัว 300 ± 20 กรัมจำนวน 24 ตัว เลี้ยงในกรงพื้นตัน (shoe box cage) ขนาด $15 \times 10 \times 7$ นิ้ว 1 ตัว/กรง ให้หนูได้รับอาหารและน้ำ ad libitum และพักสัตว์ไว้ประมาณ 3 วันก่อนนำมาใช้ในการทดลอง
 - 2. โกนขนบริเวณด้านหลังลำตัวด้วยปัตตาเลี่ยนก่อนวันผ่าตัด 1 วัน สลบหนูด้วยการคมไอระเหยของ isofuran เมื่อหนูสลบแล้วทำการผ่าตัดแยกชั้นผิวหนังออกให้เกิดแผลขนาด 1.5×1.5 เซนติเมตร มี ความลึกถึงชั้น subcutaneous บริเวณด้านหลังลำตัวส่วนบนถัดลงมาจากสะบักทั้งสองข้าง ฉีดยาแก้ ปวด tramadol ขนาด 0.5-1.0 mg/kg ทางใต้ผิวหนัง ทุก 24 ชั่วโมงเป็นเวลา 3 วันติดต่อกัน
 - 3. ทำการทดลองเปรียบเทียบคุณสมบัติการสมานแผลของแผ่นปิดแผล Alleyvn® (control) และแผ่น ปิดแผลเซริซินไคโตซานไมโครสเฟียร์ (treatment) โดยแผลด้านซ้ายทดสอบด้วย Alleyvn® ส่วน แผลด้านขวาทดสอบด้วยแผ่นปิดแผลเซริซินไคโตซานไมโครสเฟียร์ปิดทับด้วยแผ่น Tegaderm® และพันทับด้วย Coban® เพื่อยึดให้แผ่นปิดแผลสัมผัสแผลไม่เลื่อนหลุด (เหตุที่เลือก Alleyvn® เป็นแผ่นปิดแผลควบคุมเนื่องจากมีลักษณะเป็นแผ่นสามมิติที่มีความหนา คล้ายกับตัวอย่างที่ต้องการทดสอบ)
 - 4. ในวันที่ 0, 3, 7, 14 และ 21 ของการทคลอง ทำความสะอาค วัคขนาค ถ่ายภาพการเปลี่ยนแปลงของ แผลทั้งสองข้าง ภายใต้กล้องจุลทรรศน์สเตอริโอและชุคถ่ายภาพ Motic และกล้องถ่ายภาพคิจิตอล วัคขนาคแผล โคยการทาบแผ่นพลาสติกใสปลอคเชื้อบนแผลแล้วใช้ปากกาเคมีวาคขอบแผลตาม รอยทาบ พร้อมทั้งสุ่มหนูออกมาตรวจสอบสภาพการสมานของแผลครั้งละ 6 ตัว
 - 5. คำนวณขนาดแผลด้วยเครื่อง Visitrak Digital


ผลการศึกษา

จากการขึ้นรูปอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและไคโตซานด้วยวิธี coacervation พบว่าอนุภาคที่ได้มีขนาดเล็ก ค่อนข้างมีขนาดสม่ำเสมอ เมื่อมองคูภายนอกจะมีลักษณะคล้ายผงแป้ง อนุภาคมี ขนาดกลม ลื่นเมื่อสัมผัส ดังแสดงในรูปที่ 3


รูปที่ 3 ลักษณะทางกายภาพของอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและไคโตซานที่ผลิตด้วยวิธี coacervation เมื่อมองด้วยตาเปล่า

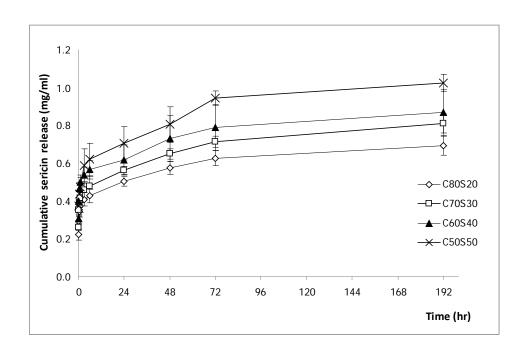
ลักษณะสัณฐานและวัดขนาดอนุภาคไมโครสเฟียร์ด้วยกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด
ผลการทดลองดังรูปที่ 4 พบว่าลักษณะโครงสร้างสัณฐานอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและใคโตซานมีรูปร่างเป็นทรงกลมและมีการเกาะกลุ่มกันมากในทุกอัตราส่วนผสมของไคโตซานกับ
เซริซิน แต่จากรูปจะเห็นได้ว่าในอัตราส่วนผสมที่ C50S50 (ไคโตซาน 50 และโปรตีนกาวไหมเซริซิน 50) กับ
C60S40 (ไคโตซาน 60 และโปรตีนกาวไหมเซริซิน 40) อนุภาคที่ได้จะมีขนาดใกล้เคียงกัน และอัตราส่วนที่
C70S30 (ไคโตซาน 70 และโปรตีนกาวไหมเซริซิน 30) กับ C80S20 (ไคโตซาน 80 และโปรตีนกาวไหมเซริซิน
20) อนุภาคที่เกิดขึ้นมีการเกิดอนุภาคที่ขนาดใหญ่ขึ้นเพิ่มจำนวนมากขึ้นทำให้มีความแตกต่างของขนาดที่
หลากหลายมากขึ้น


รูปที่ 4 ลักษณะ โครงสร้างสัณฐานของอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน โดยใช้เทคนิคกล้องจุลทรรศน์ อิเลคตรอนแบบส่องกราค ที่อัตราส่วนผสมของไคโตซานและเซริซิน 50:50 (C50S50), 60:40 (C60S40), 70:30 (C70S30), 80:20 (C80S20) (แถบสเกล = 5 ไมโครเมตร)

จากการทดลองสามารถหาขนาดอนุภาคเฉลี่ยและการกระจายตัวของอนุภาค ด้วยการนำเทคนิคการ กระเจิงของแสงด้วยเครื่อง masterziermalvidin ดังแสดงในรูปที่ 5 พบว่าเมื่อปริมาณไคโตซานที่ผสมกับเซริซิน สูงขึ้นจากร้อยละ 50 ไปถึงร้อยละ 80 ของปริมาณน้ำหนักรวมของสารผสมทั้งหมดจะมีผลทำให้ขนาดอนุภาค เฉลี่ยเล็กลง ขนาดอนุภาคเฉลี่ยจะแบ่งเป็นสองกลุ่ม กลุ่มแรกได้ขนาดประมาณ 3 ไมโครเมตรคือ C50S50 กับ C60S40 จะมีขนาดอนุภาคเฉลี่ยเท่ากับ 3.84±0.54 และ 3.32±0.15 ไมโครเมตร และอีกกลุ่มขนาดประมาณ 1 ไมโครเมตรคือ C70S30 กับ C80S20 มีขนาดอนุภาคเฉลี่ยเท่ากับ 1.53±0.94 และ 1.08±0.26 ไมโครเมตร ตามลำดับ

รูปที่ 5 ขนาดเฉลี่ยของอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและ ใคโตซานที่อัตราส่วนผสมของใค-โตซานและเซริซิน 50:50 (C50S50), 60:40 (C60S40), 70:30 (C70S30), 80:20 (C80S20) และ 100:0 (C100S0) [а และ b แสดงความแตกต่างกันอย่างมีนัยสำคัญ (p < 0.05)]

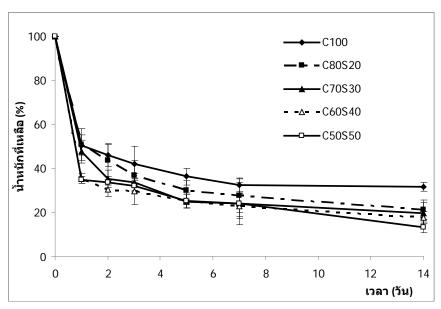
นอกจากการหาขนาดอนุภาคเฉลี่ยแล้วยังได้มีการวิเคราะห์ลักษณะการกระจายตัวดังรูปที่ 6 พบว่า ลักษณะการกระจายตัวของอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและไคโตซานที่อัตราส่วนต่าง ๆ ทำ ให้มีการกระจายตัวเกิดขึ้นเป็นสองชนิดคือ ที่ C70S30 กับ C80S20 ลักษณะการกระจายตัวจะแคบและเกิดช่วง ของการกระจายตัวเป็น 2 ช่วง แต่ที่ C50S50 กับ C60S40 การกระจายตัวจะกว้างกว่าและมีเพียงช่วงเดียวซึ่ง สอดคล้องกับภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดที่พบว่า เมื่อปริมาณไคโตซานใน สารละลายผสมสูงขึ้นทำให้การกระจายตัวของอนุภาคมีอนุภาคที่มีขนาดใหญ่เกิดขึ้น



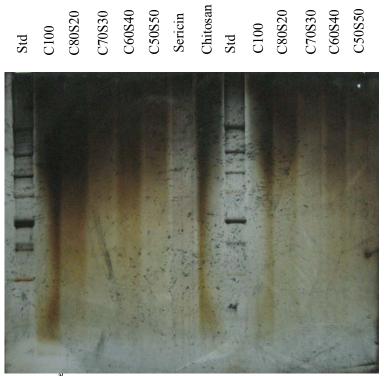
รูปที่ 6 การกระจายตัวของอนุภาค (size distribution) ของอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและ ใคโตซานที่อัตราส่วนผสมของไคโตซานและเซริซิน 50:50 (C50S50), 60:40 (C60S40), 70:30 (C70S30), 80:20 (C80S20) และ 100:0 (C100S0) ด้วย Masterziermalvidin 2000

การทคสอบความคงตัวและการปลดปล่อยของโปรตีนกาวใหมจากอนุภาคใมโครสเฟียร์

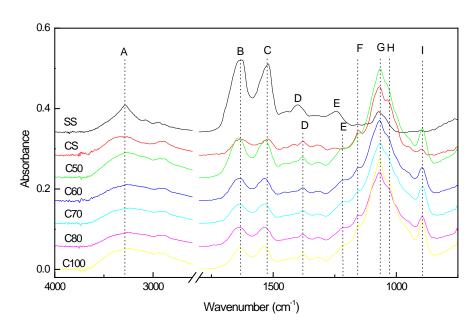
ผลการปลดปล่อยโปรตีนกาวใหมเซริซินที่ถูกกักเก็บในอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหม เซริซินและใคโตซานแสดงในรูปที่ 7 ผลการศึกษาพบว่าในทุกสัดส่วนของโปรตีนกาวใหมเซริซินและใคโตซานที่นำมาขึ้นรูปอนุภาค (สัดส่วนโดยน้ำหนักของใคโตซานต่อโปรตีนกาวใหมเซริซินดังนี้ 50:50, 60:40, 70:30, 80:20 และ 100:0) จะเกิดการปลดปล่อยโปรตีนกาวใหมเซริซินอย่างรวดเร็วในช่วงเวลา 6 ชั่วโมงแรก และมีปริมาณการปลดปล่อยของโปรตีนกาวใหมเซริซินที่สูงขึ้นตั้งแต่เวลาที่ 6 ชั่วโมงถึง 72 ชั่วโมงและหลังจาก 72 ชั่วโมงปริมาณการปลดปล่อยเริ่มอัตราคงที่จนที่เวลา 192 ชั่วโมง


เมื่อพิจารณาเปรียบเทียบอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและ ไคโตซานที่มีอัตราส่วน ของไคโตซานกับโปรตีนกาวไหมเซริซินที่อัตราส่วนต่าง ๆ พบว่า ปริมาณไคโตซานที่สูงขึ้นมีผลทำให้ปริมาณ การปลดปล่อยโปรตีนกาวไหมเซริซินลดลง โดยสูตร C50S50 (น้ำหนักของไคโตซานต่อโปรตีนกาวไหมเซริซิน 50:50) มีปริมาณการปลดปล่อยโปรตีนกาวไหมเซริซินสูงสุด อย่างไรก็ตาม อนุภาคไมโครสเฟียร์จาก โปรตีนกาวไหมเซริซินและ ไคโตซานจากทุกสูตรยังสามารถคงตัวโดยไม่มีการย่อยสลายไปทั้งหมดในเวลานาน ถึง 192 ชั่วโมง ซึ่งจัดได้ว่าเป็นอนุภาคที่มีความคงตัวดี ดังนั้นจึงไม่จำเป็นต้องผ่านกระบวนการเชื่อมโยงข้าม ทางเคมีเพื่อให้อนุภาคมีความคงตัวมากขึ้น

รูปที่ 7 ปริมาณการปลดปล่อยสะสมของโปรตีนกาวใหมเซริซินในอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหม เซริซินและ ใคโตซานที่อัตราส่วนผสมของใคโตซานและโปรตีนกาวใหมเซริซิน 50:50 (C50S50), 60:40 (C60S40), 70:30 (C70S30), 80:20 (C80S20) ตามลำดับ


การทดสอบอัตราการย่อยสลายทางชีวภาพภายนอกร่างกาย

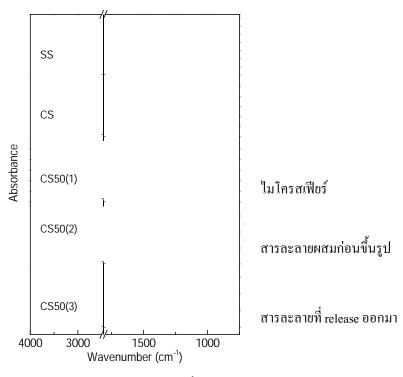
ผลการทดสอบอัตราการย่อยสลายทางชีวภาพภายนอกร่างกายของอนุภาคไมโครสเฟียร์จากโปรตีนกาว ใหมเซริซินและใคโตซานในอัตราส่วนต่าง ๆ แสดงในรูปที่ 8 จากรูปจะเห็นได้ว่าเมื่ออนุภาคมีส่วนประกอบ ของใคโตซานเพิ่มสูงขึ้น อัตราการย่อยสลายทางชีวภาพจะลดลง โดยอนุภาคที่ประกอบด้วยใคโตซานทั้งหมด (C100) จะมีอัตราการย่อยสลายทางชีวภาพต่ำสุด ในขณะที่อนุภาคที่มีโปรตีนกาวใหมเป็นองค์ประกอบอยู่สูง ที่สุดเมื่อเทียบกับอนุภาคอื่น ๆ (C50S50) จะมีอัตราการย่อยสลายสูงที่สุดสังเกตได้จากมีร้อยละของน้ำหนักที่ เหลือต่ำสุด อย่างไรก็ตาม เมื่อผ่านไป 14 วัน ปริมาณร้อยละน้ำหนักที่เหลือของสูตรที่ย่อยสลายสูงสุดก็ยังมี ปริมาณเหลืออยู่ประมาณร้อยละ 20


รูปที่ 8 อัตราการย่อยสลายทางชีวภาพภายนอกร่างกายของอนุภาคไมโครสเฟียร์จากโปรตีนกาวไหมเซริซินและ ไคโตซานในอัตราส่วนต่าง ๆ

น้ำหนักโมเลกุลของโปรตีนกาวไหมเซริซินที่อยู่ในอนุภาคไมโครสเฟียร์ค้วย SDS-PAGE

รูปที่ 9 รูป SDS-PAGE แสดงน้ำหนักโมเลกุลของโปรตีนกาวใหม, ใกโตซานและอนุภากไมโครสเฟียร์จาก โปรตีนกาวใหมเซริซินและใกโตซานในอัตราส่วนต่าง ๆ

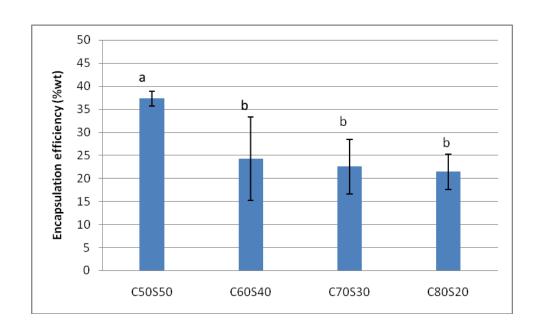
จากภาพจะเห็น ได้ว่า แถบน้ำหนักโมเลกุลของใกโตซานมีลักษณะคาบเกี่ยวกับแถบน้ำหนักโมเลกุล ของโปรตีนกาวใหม ทำให้ไม่สามารถวิเคราะห์ได้อย่างชัดเจนว่าโปรตีนที่ถูกปลดปล่อยออกมาจากอนุภาคไม-โครสเฟียร์จากโปรตีนกาวใหมเซริซินและใคโตซานในอัตราส่วนต่าง ๆ เกิดจากโปรตีนกาวใหมหรือใคโตซาน การศึกษา Interaction ระหว่างโปรตีนกาวใหมเซริซินและใคโตซานด้วย FTIR


รูปที่ 10 เปรียบเทียบ FTIR peak ระหว่าง ใคโตซาน (CS), เซริซิน (SS) และอนุภาคใมโครสเฟียร์จากโปรตีน กาวใหมเซริซินและใคโตซาน (C50S50, C60S40, C70S30, C80S20 และ CS100)

ตารางที่ 1 แสคง IR band ของใคโตซาน (CS), เซริซิน (SS) และอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซ-ริซินและใคโตซาน (C50S50, C60S40, C70S30, C80S20 และ C100)

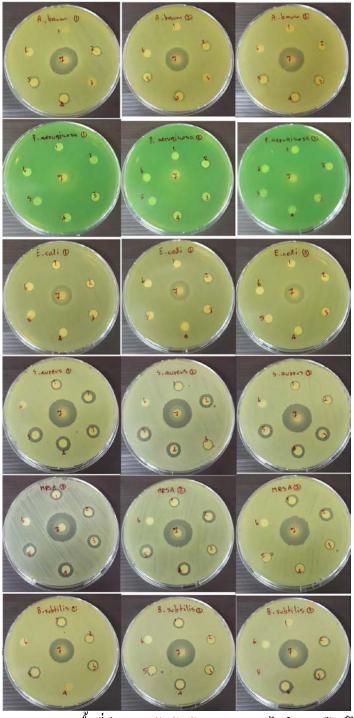
ตัวอย่าง	IR Band (cm ⁻¹)								
CS-SS	A	В	C	D	E	F	G	Н	I
CS	3309	1639	1521	1375	1215	1156	1064	1035	901
SS	3288	1620	1512	1401	1241	1157	1072	-	-
C50S50	3261	1640	1537	1376	1227	1155	1068	1023	893
C60S40	3286	1628	1537	1381	1219	1156	1069	1025	892
C70S30	3242	1633	1538	1380	1214	1152	1063	1035	893
C80S20	3252	1631	1528	1375	1213	1159	1064	1027	896
C100	3231	1639	1536	1381	1221	1157	1064	1024	893

ผลการเปรียบเทียบ IR Band ของอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและใคโตซาน


- 1. FTIR spectra ของเซริซิน (SS) จากการรายงานของ Sarovat S.R. และคณะ (2) พบว่าเซริซินที่สกัด ด้วยวิธีเดียวกันนี้ของสายพันธุ์จุล 1/1 มี spectra ที่พบดังนี้ NH stretching band ที่ 3440-3420 cm⁻¹ และ 1560-1530 cm⁻¹, OH stretching band ที่ 3600 cm⁻¹, C=O stretching band ที่ 1680-1640 cm⁻¹ และ C=O symmetry stretching ที่ 1400 cm^{-1} ซึ่งสอดคล้องกับผลการทดลองที่พบนี้
- 2. FTIR spectra ของใคโตซาน (CS) พบสาม peak คือที่ 3309 cm ื ของ v(OH) กับ NH, 1064 cm ื ของ v(C-O-C) และ 1639 cm ื ของ $v(NH_2)$ เป็น peak amide I, 1521 cm ื เป็น peak amide II (3, 4)
- 3. FTIR spectra ของอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและใคโตซานโคยมีทั้งหมด 5 สูตรตั้งแต่ปริมาณเซริซินมากไปน้อยจาก 50, 60, 70, 80% wt (C50S50, C60S40, C70S30 และ C80S20) และ C100 เป็นอนุภาคไมโครสเฟียร์ของใคโตซานที่ไม่มีการผสมเซริซิน ซึ่งใช้เป็นตัวควบคุมเทียบกับสูตรที่มีการผสมเซริซิน
- 4. เมื่อเปรียบเทียบอนุภาคไมโครสเฟียร์จากโปรตีนกาวใหมเซริซินและ ใคโตซาน (C50S50, C60S40, C70S30, C80S20 และ C100) กับเซริซินและ ใคโตซานก่อนการเกิดเป็นอนุภาคนั้น ยังพบ peak ที่แสดง องค์ประกอบของ ใคโตซานและเซริซินอยู่ แต่ peak A แสดง NH stretching band ของ ใคโตซานซึ่งเป็น องค์ประกอบหลักในอนุภาคจะพบว่า peak มีการ shift ไปทางขวาเล็กน้อยจาก 3309 cm⁻¹ เป็น 3261, 3286, 3242, 3252, 3231 cm⁻¹ ตามลำดับ แสดงถึงการเกิด hydrogen bond สูงขึ้น (4) และ peak B และ C ซึ่งเป็น peak หลัก ของเซริซินพบในอนุภาคเป็นการยืนยันว่ามีการเก็บเซริซิน ไว้ได้จริงแต่ความสูงของ peak จะต่ำ โดยเพิ่มสูงขึ้น ตามปริมาณเซริซิน ที่ใช้เป็นองค์ประกอบ และ peak E มีรายงานการวิจัยว่า เมื่อ crosslink ใคโตซานด้วย สารละลาย TPP จะพบ peak ที่ตำแหน่ง 1217 cm⁻¹ แสดง P=O stretching (4)

รูปที่ 11 เปรียบเทียบระหว่าง CS, SS กับ C50S50 (1) คือ C50S50 ที่เป็นไมโครสเฟียร์, C50S50 (2) คือ C50S50 ที่เป็นสารละลายก่อนขึ้นรูป, C50S50 (3) คือ C50S50 ที่ถูก release ออกมา

ผลการประเมินประสิทธิภาพในการกักเก็บเซริซิน (encapsulation) ของอนุภาคไมโครสเฟียร์ไคโตซาน เซริซิน


จากรูปที่ 12 แสดงประสิทธิภาพการกักเกี่บเซริซินของอนุภาคไมโครสเฟียร์ใคโตซานเซริซินพบว่าที่ อัตราส่วนของใคโตซานสูงขึ้นจากร้อยละ 50 ถึงร้อยละ 80 มีผลทำให้ประสิทธิภาพในการกักเก็บลดลง โดยที่ ประสิทธิภาพในการกักเก็บของเซริซินสูงสุดที่ C50S50 ซึ่งแตกต่างอย่างมีนัยสำคัญเมื่อเปรียบเทียบกับสูตรอื่นๆ ทั้งนี้เนื่องจากอนุภาคไมโครสเฟียร์ใคโตซานเซริซินที่ได้นั้นมีปริมาณไคโตซานที่ใช้แตกต่างกันและอนุภาคเกิด จากการเจลด้วยใอออนิกของไคโตซานซึ่งมีประจุบวกกับโซเดียมไตรพอลิฟอดเฟตซึ่งมีประจุลบ ซึ่งอนุภาคจะ เกิดขึ้นมากหรือน้อยขึ้นอยู่กับปริมาณไคโตซานที่ใช้ แต่จากการสังเกตสีของสารละลายหลังเกิดปฏิกิริยาพบว่า ยิ่งปริมาณไคโตซานสูงขึ้น สีของไคโตซานที่เหลือจะมีสีของสารละลายซึ่งมีลักษณะเป็นสีน้ำตาลเข้มขึ้น จาก ตัวอย่าง C50S50 C60S40 C70S30 C80S20 ที่มีสีเข้มนั้น แสดงถึงไคโตซานที่ใช้ในการเกิดปฏิกิริยายังคง เหลืออยู่ แม้ว่าในการศึกษานี้มีการเปลี่ยนแปลงปริมาณไคโตซานที่ใช้แต่ไคโตซานที่ถูกใช้ไปนั้นใช้ไม่หมดจึง เป็นไปได้ที่มีผลทำให้ประสิทธิภาพในการกักเก็บเซริซินลดต่ำลง

รูปที่ 12 ประสิทธิภาพการกักเก็บเซริซินของอนุภาคไมโครไคโตซานเซริซินที่อัตราส่วนผสมของไคโตซาน และเซริซิน 50:50 (C50S50), 60:40 (C60S40), 70:30 (C70S30), 80:20 (C80S20) [a และ b แสดงความแตกต่างกันอย่างมีนัยสำคัญ (p < 0.05)]

ผลการศึกษาคุณสมบัติในการฆ่าเชื้อของไมโครสเฟียร์ที่ประกอบค้วยโปรตีนกาวไหมเซริซินและไค-โตซาน

รูปที่ 13 แสดงการเกิด clear zone ของเชื้อที่ผ่านการสัมผัสกับสารละลายไมโครสเฟียร์ไคโตซานเซริซิน ที่ความเข้มข้น 200 มิลลิกรัม/มิลลิลิตร และตารางที่ 2 แสดงขนาดของ clear zone ที่เกิดขึ้น

รูปที่ 13 แสดงการเกิด clear zone ของเชื้อที่ผ่านการสัมผัสกับสารละลายไมโครสเฟียร์ ใกโตซานเซริซินที่ความ เข้มข้น 200 มิลลิกรัม/มิลลิลิตร โดย 1 = C100 หรือไมโครสเฟียร์ที่มีใคโตซานเป็นองค์ประกอบแต่เพียงอย่าง เดียว, 2 = C80S20, 3 = C70S30, 4 = C60S40, 5 = C50S50, 6 = negative control คือน้ำ ultrapure, <math>7 = positive control คือ 0.5% chlorhexidine โดย C หมายถึงใคโตซาน และ S หมายถึงเซริซิน

ตารางที่ 2 ขนาดเฉลี่ยของ clear zone ของเชื้อที่ผ่านการสัมผัสกับสารละลายไมโครสเฟียร์ไคโตซานเซริซินที่ ความเข้มข้น 200 มิลลิกรัม/มิลลิลิตร (ทำซ้ำ 3 ครั้ง)

	ขนาดเฉลี่ยของ clear zone (มิลลิเมตร)		
ชื่อเชื้อ (ตัวอย่าง)	สารละลายใมโครสเฟียร์ไคโตซานเซริซิน	0.5% Chlorhexidine	
	ในอัตราส่วนใคโตซาน:เซริซิน 80:20		
Acinetobacter baumannii	มีขอบใสแต่หน้าไม่ clear ทั้งหมด	20.67±1.15	
Pseudomonas aeruginosa ATCC 27853	มีขอบใสแต่หน้าไม่ clear ทั้งหมด	13.67±1.53	
Escherichia coli ATCC 25922	มีขอบใสแต่หน้าไม่ clear ทั้งหมด	14.67±0.58	
Methicillin-resistant Staphylococcus aureus	10.00±1.00	23.00±0.00	
(MRSA) ATCC 6538 P			
Bacillus subtilis ATCC 6633	8.67±1.15	21.33±1.15	
Staphylococcus aureus ATCC 25923	11.00±0.58	22.33±0.58	

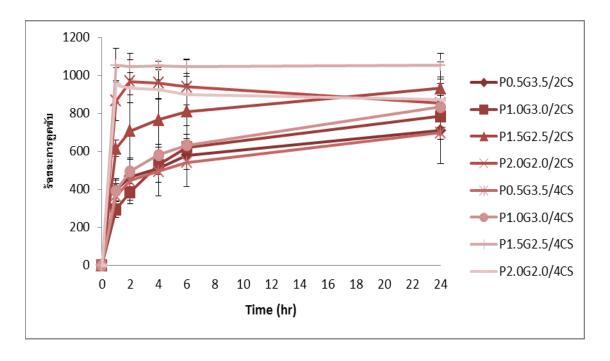
หมายเหตุ: ที่เลือกอัตราส่วนระหว่างใก โตซาน:เซริซิน 80:20 เนื่องจากเป็นสูตรที่มีประสิทธิภาพในการฆ่าเชื้อ ได้ดีที่สุดแต่ในขณะเดียวกันยังมีอัตราการย่อยสลาย การปลดปล่อยเซริซินออกมาไม่แตกต่างจากสูตรอื่นมากนัก

โดย negative control (น้ำบริสุทธิ์) ไม่มีการเกิดของ clear zone แต่อย่างใด ซึ่งจากผลการทดสอบการฆ่า เชื้อพบว่าไมโครสเฟียร์ ไค โตซานเซริซินในความเข้มข้นสูงถึง 200 มิลลิกรัม/มิลลิลิตร ไม่มีฤทธิ์ในการฆ่าเชื้อ โดยเฉพาะกับแบคทีเรียแกรมอบ ในขณะที่มีฤทธิ์ฆ่าเชื้อแบคทีเรียแกรมบวกแต่ไม่สูงเท่ากับ positive control (0.5% chlorhexidine) ทั้งนี้อาจเนื่องมาจากความเข้มข้นของไค โตซานในไมโครสเฟียร์ ไม่สูงมากพอ ซึ่งในกรณี นี้ผู้วิจัยคาดว่าจะแก้ไข โดยการนำแผ่นปิดแผลที่มีส่วนประกอบของไมโครสเฟียร์ ไค โตซานเซริซินที่มีความคง ตัวดี มาชุบสารละลายไค โตซานในขั้นตอนสุดท้ายอีกครั้งก่อนนำไปทำให้ปลอดเชื้อเพื่อใช้กับบาดแผล โดยจะ ทำให้ความเข้มข้นของไคโตซานเพิ่มขึ้นส่งผลให้ประสิทธิภาพในการฆ่าเชื้อดีขึ้น และไมโครสเฟียร์ไคโตซานเซริซินภายในจะค่อย ๆ ปลดปล่อยใคโตซานออกมาเพื่อให้การฆ่าเชื้อออกฤทธิ์ได้อย่างเนิ่นนานอีกด้วย

โครงสร้างสัญฐานของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาค ไม โครสเฟียร์ ใค โตซานเซริซิน รูปที่ 14 แสดงภาพ SEM ของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาค ไม โครสเฟียร์ ใค โตซานเซริซินที่ ผสม PVA และ gelatin ในความเข้มข้นต่าง ๆ กันคือ PVA 1% wt+ gelatin 3% wt (P1.0G3.0), PVA 1.5% wt+ gelatin 2.5% wt (P1.5G2.5), PVA 2% wt+ gelatin 2% wt (P2.0G2.0) จากภาพจะเห็นการฝังตัวของอนุภาค ใม-โครสเฟียร์ ใค โดซานเซริซินที่แผ่นเนื้อเยื่ออย่างสม่ำเสมอ

เมื่อตรวจวัดขนาดรูพรุนเฉลี่ยของแผ่นเนื้อเยื่อดังกล่าว ได้ก่าดังแสดงในตารางที่ 3

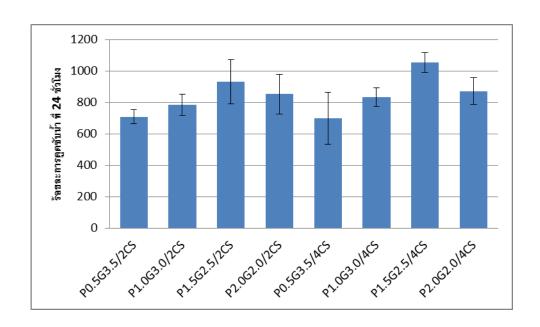
รูปที่ 14 แสดงภาพ SEM ของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซินที่ผสม PVA และ gelatin ในความเข้มข้นต่าง ๆ กันคือ PVA 1% wt+ gelatin 3% wt (P1.0G3.0), PVA 1.5% wt+ gelatin 2.5% wt (P1.5G2.5), PVA 2% wt+ gelatin 2% wt (P2.0G2.0)


ตารางที่ 3 ขนาครูพรุนเฉลี่ยของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ใคโตซานเซริซินที่ผสม PVA และ gelatin ในความเข้มข้นต่าง ๆ

ตัวอย่าง	ขนาด (ไมโครเมตร)
PVA 1% wt+ gelatin 3% wt (P1.0G3.0)	143.90 ± 40.18
PVA 1.5% wt+ gelatin 2.5% wt (P1.5G2.5)	76.97 ± 36.91
PVA 2% wt+ gelatin 2% wt (P2.0G2.0)	71.91 ± 72.12

การทดสอบการดูดน้ำ (swelling) ของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไม โครสเฟียร์ไค โตซาน-เซริซิน

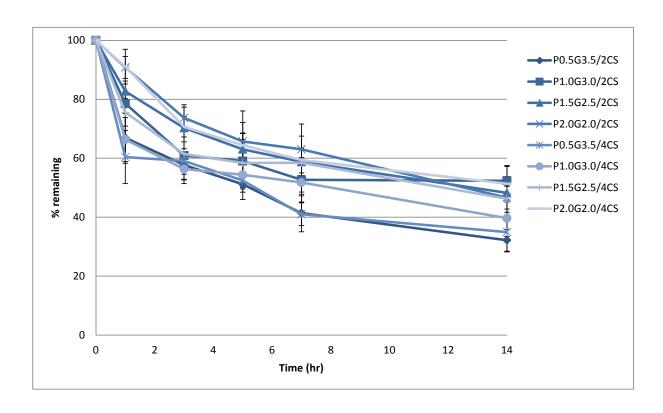
รูปที่ 15 แสดงผลการทดสอบการดูดน้ำของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโต-ซานเซริซินที่เวลา 1, 2, 4, 6 และ 24 ชั่วโมง และรูปที่ 16 แสดงร้อยละการดูดซับน้ำของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซินที่เวลา 24 ชั่วโมง


จากการทดลองการดูดซับน้ำ เมื่อพิจารณาการเปลี่ยนแปลงปริมาณ gelatin พบว่า แนวโน้มการดูดซับน้ำจะเกิดขึ้นอย่างรวดเร็วในช่วง 6 ชั่วโมงแรก เมื่อเปรียบเทียบกับสูตรที่มีปริมาณไมโครสเฟียร์มากกับน้อย ปริมาณไมโครสเฟียร์มากจะมีผลต่อการดูดซับได้สูงกว่า แต่เมื่อพิจารณาความแตกต่างของปริมาณ PVA กับ gelatin พบว่า สูตรที่มีปริมาณ gelatin ต่ำดูดซับน้ำได้สูงกว่าแต่ เมื่อสัดส่วนเท่ากัน ความสามารถในการดูดซับลดลง ซึ่งอาจเกิดจากปฏิกิริยาการ crosslink ของ PVA กับ gelatin ด้วยกลูตาอัลดีไฮด์ไปตัดหรือเพิ่มหมู่ที่ เกี่ยวข้องกับการดูดซับน้ำ

รูปที่ 15 ร้อยละการคูดซับน้ำของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน P0.5G3.5/2CS, P1.0G3.0/2CS, P1.5G2.5/2CS, P2.0G20/2CS และ P0.5G3.5/4CS, P1.0G3.0/4CS, P1.5G2.5/4CS, P2.0G20/4CS ที่เวลา 1, 2, 4, 6 และ 24 ชั่วโมง ตามลำคับ โดย

P0.5G3.5/2CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 2%wt P1.0G3.0/2CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 2%wt

P1.5G2.5/2CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 2%wt P0.5G3.5/4CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 4%wt P1.0G3.0/4CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 4%wt P1.5G2.5/4CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 4%wt



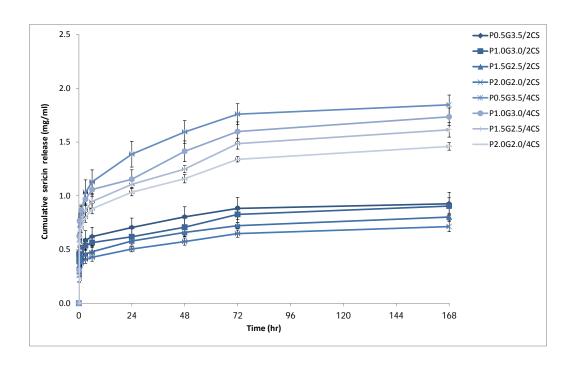
รูปที่ 16 ร้อยละการคูคซับน้ำขอแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน P0.5G3.5/2CS, P1.0G3.0 /2CS, P1.5G2.5/2CS, P2.0G20/2CS และ P0.5G3.5/4CS, P1.0G3.0/4CS, P1.5G2.5/4CS, P2.0G20/4CS ที่เวลา 24 ชั่วโมง โดย

P0.5G3.5/2CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 2%wt P1.0G3.0/2CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 2%wt P1.5G2.5/2CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 2%wt P0.5G3.5/4CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 4%wt P1.0G3.0/4CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 4%wt P1.5G2.5/4CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 4%wt

การทดสอบอัตราการย่อยสลายทางชีวภาพภายนอกร่างกายของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาค ใมโครสเฟียร์ไคโตซานเซริซิน

รูปที่ 17 แสดงร้อยละของน้ำหนักที่เหลือของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์-ใคโตซานเซริซินที่เวลาต่าง ๆ กัน จากผลการทดลองพบว่าร้อยละคงเหลือของตัวอย่างนั้นขึ้นกับปริมาณ gelatin ซึ่งเป็นโปรตีนในแผ่น เนื้อเยื่อ โดยสูตรที่มี gelatin สูงจะเกิดการย่อยสลายได้เร็วกว่าที่มี gelatin ต่ำ และการใส่อนุภาคไมโครสเฟียร์ ไคโตซานเซริซินเข้าไปในปริมาณที่ต่างกันมีผลเช่นกัน หากปริมาณอนุภาคไมโครสเฟียร์ไคโตซานเซริซินมาก จะทำให้การย่อยสลายเกิดได้รวดเร็ว

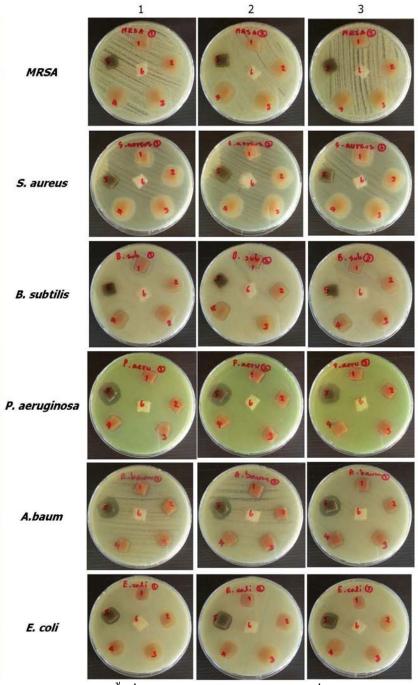
รูปที่ 17 ร้อยละของน้ำหนักที่เหลือของแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน P0.5G3.5/2CS, P1.0G3.0/2CS, P1.5G2.5/2CS, P2.0G20/2CS และ P0.5G3.5/4CS, P1.0G3.0/4CS, P1.5G2.5/4CS, P2.0G20/4CS ที่เวลาต่าง ๆ กันโดย


P0.5G3.5/2CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 2%wt P1.0G3.0/2CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 2%wt P1.5G2.5/2CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 2%wt P0.5G3.5/4CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 4%wt P1.0G3.0/4CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 4%wt P1.5G2.5/4CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 4%wt

การปลดปล่อยเซริซินจากแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ใคโตซานเซริซินภาย นอกร่างกาย

รูปที่ 18 แสดงผลการปลดปล่อยเซริซินจากแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ไคโต-ซานเซริซินภายนอกร่างกาย

จากผลการทดลองพบว่า

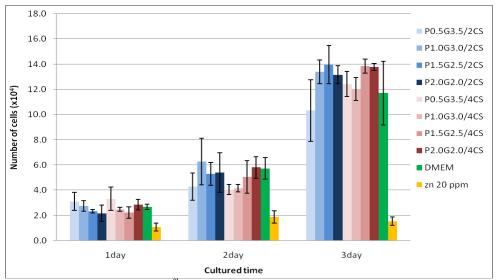

- 1. สูตรที่มีปริมาณอนุภาคไมโครสเฟียร์ใคโตซานเซริซินสูง (4% CS) มีปริมาณเซริซินปลดปล่อยสูง กว่าสูตรที่มีปริมาณอนุภาคไมโครสเฟียร์ใคโตซานเซริซินต่ำ (2% CS) เนื่องจากปริมาณอนุภาคไมโครสเฟียร์ ใคโตซานเซริซินต่ำ (3% CS) เนื่องจากปริมาณอนุภาคไมโครสเฟียร์ ใคโตซานเซริซินที่สูงขึ้นทำให้แผ่นมีความพรุนมากขึ้น จึงทำให้มีปริมาณเซริซินในไมโครสเฟียร์ปลดปล่อย ออกมาสูง
- 2. เมื่อเปรียบเทียบระหว่างสูตรที่มีการเปลี่ยนแปลงสัดส่วนของ PVA กับ gelatin พบว่าสูตรที่มีปริมาณ PVA ต่ำจะมีปริมาณเซริซินที่ออกมาสูง อาจเนื่องจากผลการย่อยสลายก่อนหน้านี้ ซึ่งสูตรที่มี PVA ต่ำ จะย่อย สลายได้รวดเร็วกว่า พอแผ่นเกิดการย่อยสลายทำให้อนุภาคไมโครสเฟียร์หลุดออกมาแล้วปลดปล่อยเซริซินที่กัก เก็บไว้ ส่วนในช่วงแรกที่มีเซริซินออกมาก่อนนั้นอาจเพราะอนุภาคไมโครสเฟียร์กระจายตัวอยู่ทั่วแผ่นเมื่อแผ่น ด้านนอกทั้งหกด้านสัมผัส PBS ทำให้อนุภาคไมโครสเฟียร์บางส่วนปลดปล่อยเซริซินออกมาก่อน อย่างไรก็ ตาม ปริมาณเซริซินที่ถูกปลดปล่อยออกมาในทุกสูตร มีความเข้มข้นสูงถึงระดับมิลลิกรัม/มิลลิลิตรซึ่งนับว่าสูง เพียงพอที่จะสามารถกระดุ้นการสร้างคอลลาเจนได้อย่างมีประสิทธิภาพ (ความเข้มข้นต่ำสุดของโปรตีนกาว ไหมเซริซินที่สามารถกระดุ้นการสร้างคอลลาเจนได้อย่างมีประสิทธิภาพ (ความเข้มข้นต่ำสุดของโปรตีนกาว การศึกษาก่อนหน้านี้: Aramwit et al. 2010) ดังนั้นจึงอาจกล่าวได้ว่าแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไม-โครสเฟียร์ไคโตซานเซริซินทุกสูตรมีคุณสมบัติในการกระดุ้นการสร้างคอลลาเจนจากเซลล์ได้

รูปที่ 18 ร้อยละของการปลดปล่อยเซริซินออกจากแผ่นเนื้อเยื่อ PVA/gelatin ผสมอนุภาคไมโครสเฟียร์ ไคโตซานเซริซินภายนอกร่างกายที่เวลาต่าง ๆ กันโดย

P0.5G3.5/2CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 2%wt P1.0G3.0/2CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 2%wt P1.5G2.5/2CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 2%wt P0.5G3.5/4CS = PVA 0.5% wt+ gelatin 3.5% wt+ chitosan/sericin microsphere 4%wt P1.0G3.0/4CS = PVA 1.0% wt+ gelatin 3.0% wt+ chitosan/sericin microsphere 4%wt P1.5G2.5/4CS = PVA 1.5% wt+ gelatin 2.5% wt+ chitosan/sericin microsphere 4%wt

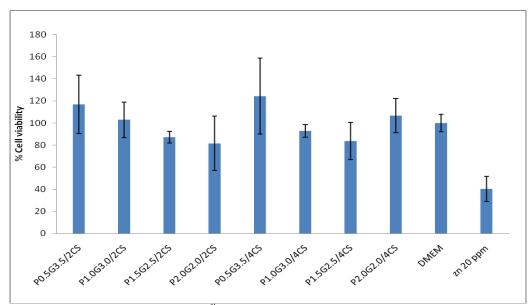
การประเมินฤทธิ์การฆ่าเชื้อของแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน รูปที่ 19 แสดงการเกิด clear zone ของเชื้อที่ผ่านการสัมผัสกับแผ่นปิดแผลที่ประกอบด้วยอนุภาคไม-โคร สเฟียร์ไคโตซานเซริซิน และตารางที่ 4 แสดงขนาดของ clear zone ที่เกิดขึ้น

รูปที่ 19 แสดงการเกิด clear zone ของเชื้อที่ผ่านการสัมผัสกับแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ ใคโตซานเซริซินชุบสารละลายใคโตซานที่ความเข้มข้นต่าง ๆ ระหว่าง 1-4% w/v โดย 1 = แผ่นที่ชุบสารละลาย ใคโตซานที่ความเข้มข้น 1% w/v ใน 20% v/v กลีเซอรีน, 2 = แผ่นที่ชุบสารละลายใคโตซานที่ความเข้มข้น 2% w/v ใน 20% v/v กลีเซอรีน, 3 = แผ่นที่ชุบสารละลายใคโตซานที่ความเข้มข้น 3% w/v ใน 20% v/v กลีเซอรีน, 4 = แผ่นที่ชุบสารละลายใคโตซานที่ความเข้มข้น 4% w/v ใน 20% v/v กลีเซอรีน, 5 = Acticoat® (positive control), 6 = Gauze patch (negative control)


ตารางที่ 4 ขนาดของ clear zone ที่เกิดขึ้นจากการสัมผัสกับแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์-ใคโตซานเซริซินชุบสารละลายใคโตซานที่ความเข้มข้นต่าง ๆ

เชื้อที่ทำการทดสอบ	ตัวอย่าง	ขนาด clear zone	
		(มิลลิเมตร)	
Methicillin-resistant Staphylococcus aureus	แผ่นชุบ 1% w/v chitosan solution	14.00 ± 1.00	
(MRSA) ATCC 6538 P	แผ่นชุบ 2% w/v chitosan solution	14.33 ± 0.58	
	แผ่นชุบ 3% w/v chitosan solution	15.00 ± 1.00	
	แผ่นชุบ 4% w/v chitosan solution	15.33 ± 0.58	
	Acticoat®	11.00 ± 0.00	
	Gauze pad	0.00 ± 0.00	
Staphylococcus aureus ATCC 25923	แผ่นชุบ 1% w/v chitosan solution	15.00 ± 1.41	
	แผ่นชุบ 2% w/v chitosan solution	14.67 ± 1.15	
	แผ่นชุบ 3% w/v chitosan solution	15.33 ± 1.15	
	แผ่นชุบ 4% w/v chitosan solution	15.00 ± 1.00	
	Acticoat®	12.67 ± 0.58	
	Gauze pad	0.00 ± 0.00	
Bacillus subtilis ATCC 6633	แผ่นชุบ 1% w/v chitosan solution	13.67 ± 0.58	
	แผ่นชุบ 2% w/v chitosan solution	15.00 ± 1.00	
	แผ่นชุบ 3% w/v chitosan solution	15.33 ± 0.58	
	แผ่นชุบ 4% w/v chitosan solution	15.00 ± 1.00	
	Acticoat®	12.33 ± 2.31	
	Gauze pad	0.00 ± 0.00	
Pseudomonas aeruginosa ATCC 27853	แผ่นชุบ 1% w/v chitosan solution	12.00 ± 0.00	
	แผ่นชุบ 2% w/v chitosan solution	13.00 ± 1.00	
	แผ่นชุบ 3% w/v chitosan solution	13.00 ± 0.00	
	แผ่นชุบ 4% w/v chitosan solution	11.33 ± 0.58	
	Acticoat®	18.67 ± 0.58	
	Gauze pad	0.00 ± 0.00	

Acinetobacter baumannii	แผ่นชุบ 1% w/v chitosan solution	12.67 ± 0.58
	แผ่นชุบ 2% w/v chitosan solution	13.00 ± 1.00
	แผ่นชุบ 3% w/v chitosan solution	13.67 ± 0.58
	แผ่นชุบ 4% w/v chitosan solution	12.00 ± 0.00
	Acticoat®	19.00 ± 1.00
	Gauze pad	0.00 ± 0.00
Escherichia coli ATCC 25922	แผ่นชุบ 1% w/v chitosan solution	12.00 ± 0.00
	แผ่นชุบ 2% w/v chitosan solution	13.67 ± 0.58
	แผ่นชุบ 3% w/v chitosan solution	14.67 ± 0.58
	แผ่นชุบ 4% w/v chitosan solution	13.00 ± 1.00
	Acticoat®	15.33 ± 0.58
	Gauze pad	0.00 ± 0.00


จากผลการศึกษาจะเห็นได้ว่า การนำแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ใคโตซานเซริซิน มาชุบสารละลายไคโตซาน จะทำให้แผ่นดังกล่าวมีประสิทธิภาพในการฆ่าเชื้อสูงขึ้นมากเมื่อเทียบกับแผ่นที่ ไม่ได้ชุบใคโตซาน ทั้งนี้อาจเนื่องมาจากไคโตซานไมโครสเฟียร์ที่อยู่ในแผ่นปิดแผลอาจต้องใช้ระยะเวลาในการ ปลดปล่อยเพื่อออกฤทธิ์ฆ่าเชื้อ ในขณะที่สารละลายไคโตซานสามารถออกฤทธิ์ฆ่าชื้อได้ทันที ผลจากการศึกษา ในตารางที่ 4 แสดงให้เห็นว่า แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลาย ไคโตซาน เมื่อนำมาชุบในความเข้มข้นที่สูงขึ้นจะมีประสิทธิภาพในการฆ่าเชื้อเพิ่มสูงขึ้นด้วย และพบว่าแผ่นปิด แผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซานมีประสิทธิภาพในการฆ่าเชื้อ แกรมบวกได้ดีกว่าแผ่นปิดแผล Acticoat ซึ่งเป็นแผ่นปิดแผลที่ประกอบด้วยสาร silver และมีประสิทธิภาพในการฆ่าเชื้อสูงที่สุดในท้องตลาด แต่มีคุณสมบัติในการฆ่าเชื้อแบคทีเรียแกรมลบได้ต่ำกว่า อย่างไรก็ตามแผ่นปิด แผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซานมีฤทธิ์ฆ่าเชื้อในทุกความ เข้มข้นและมีฤทธิ์ฆ่าเชื้อทุกตัว

การทคสอบความเข้ากัน ได้และความเป็นพิษของแผ่นปิดแผลที่ประกอบด้วยอนุภาค ใม โครสเฟียร์ ใค โตซานเซริซิน ใน cell culture

รูปที่ 20 ปริมาณเซลล์ที่วัดได้หลังจากเลี้ยงด้วยแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซาน เซริซินชุบสารละลายไคโตซานในความเข้มข้นต่าง ๆ กันนาน 1, 2 และ 3 วันตามลำดับ

เมื่อนำผลจากรูปที่ 20 มาคำนวณปริมาณเซลล์ โดยคิดเป็นร้อยละของเซลล์ที่รอดชีวิต พบว่าแผ่นปิดแผล ที่ประกอบด้วยอนุภาคใม โครสเฟียร์ใค โตซานเซริซินชุบสารละลายใค โตซานสูตรต่าง ๆ ไม่มีความเป็นพิษ เนื่องจากการทดสอบกับเซลล์ 24 ชั่วโมงแล้ว ร้อยละของการรอดชีวิตของเซลล์มากกว่า 80 (รูปที่ 21) และเมื่อ เลี้ยงเพิ่มระยะเวลามากขึ้นเป็น 2 และ 3 วัน พบว่าเซลล์เจริญเติบโตดี

รูปที่ 21 ร้อยละของเซลล์ที่รอดชีวิตหลังจากเลี้ยงด้วยแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซาน เซริซินชุบสารละลายไคโตซานในความเข้มข้นต่าง ๆ กันนาน 24 ชั่วโมง

จากผลการศึกษา จะเห็นได้ว่าแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบ สารละลายไคโตซานสูตรต่าง ๆ มีประสิทธิภาพในการฆ่าเชื้อได้ดี และไม่มีความเป็นพิษต่อเซลล์ ดังนั้น จึง เหมาะสมต่อการนำมาทดสอบประสิทธิภาพในการรักษาบาดแผลในสัตว์ทดลองต่อไป

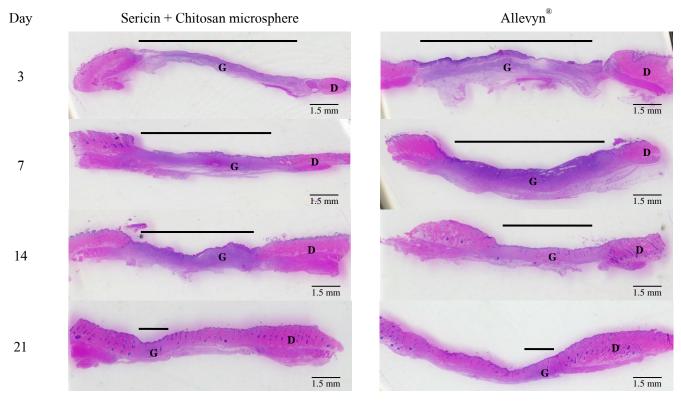
การทดสอบประสิทธิภาพการสมานแผลในหนูแรทของแผ่นปิดแผล เซริซินไค โตซานไมโครสเฟียร์ การทดลองแสดงในภาพ

รูปที่ 22 คมสถบหนู

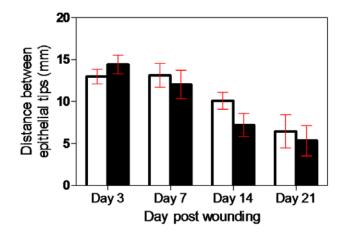
รูปที่ 23 Mark ตำแหน่งและขนาดพื้นที่หนังที่จะผ่าตัดออก

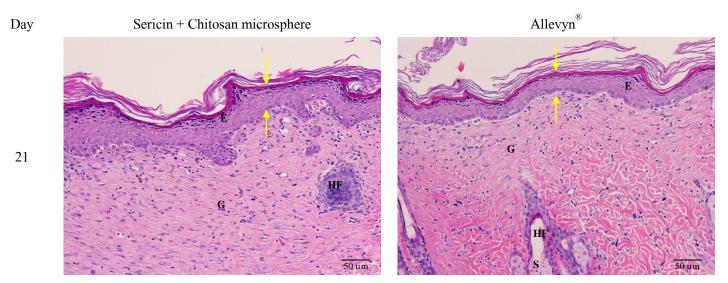
รูปที่ 24 และ 25 ผ่าตัดผิวหนังออก

ลักษณะแผลควบคุมและการเปลี่ยนแปลงในแต่ละช่วงการทคลอง (วันที่ 0, 3, 7, 14, 21)

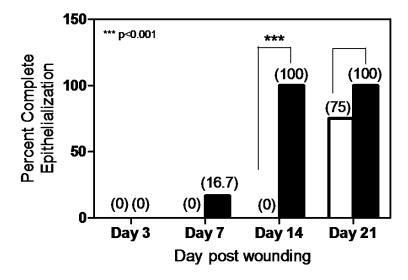

ลักษณะแผลทดลองและการเปลี่ยนแปลงในแต่ละช่วงการทดลอง (วันที่ 0, 3, 7, 14, 21)

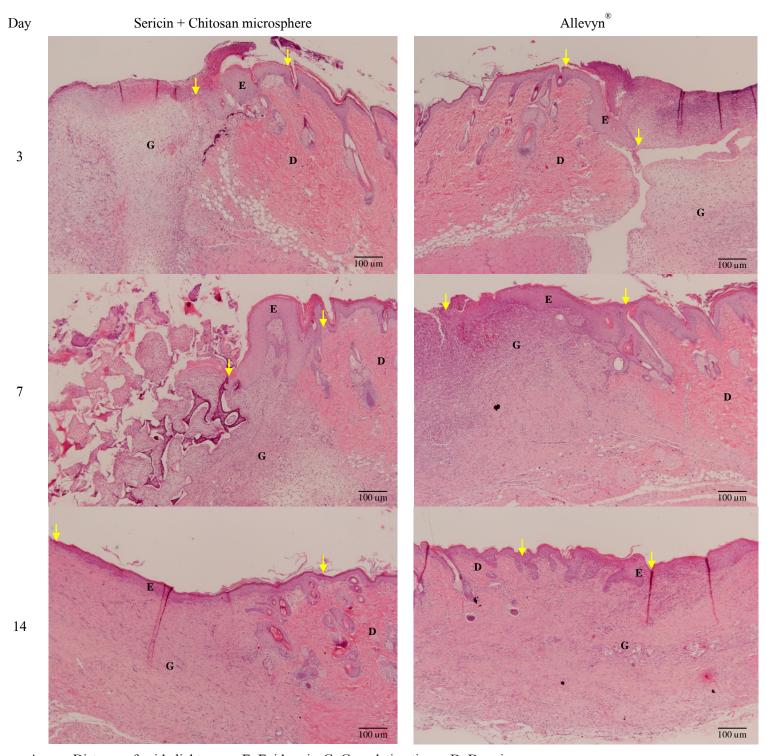
เมื่อทำการวิเคราะห์เนื้อเยื่อสัตว์ทดลองได้ผลการศึกษาดังนี้


1. Complete Epithelialization

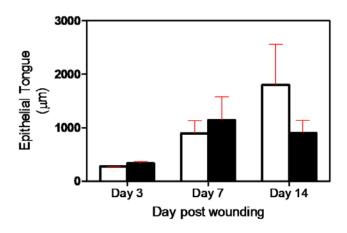

Epithelialization

Bar; Distance between epithelial tips, G; Granulation tissue, D; Dermis


■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]

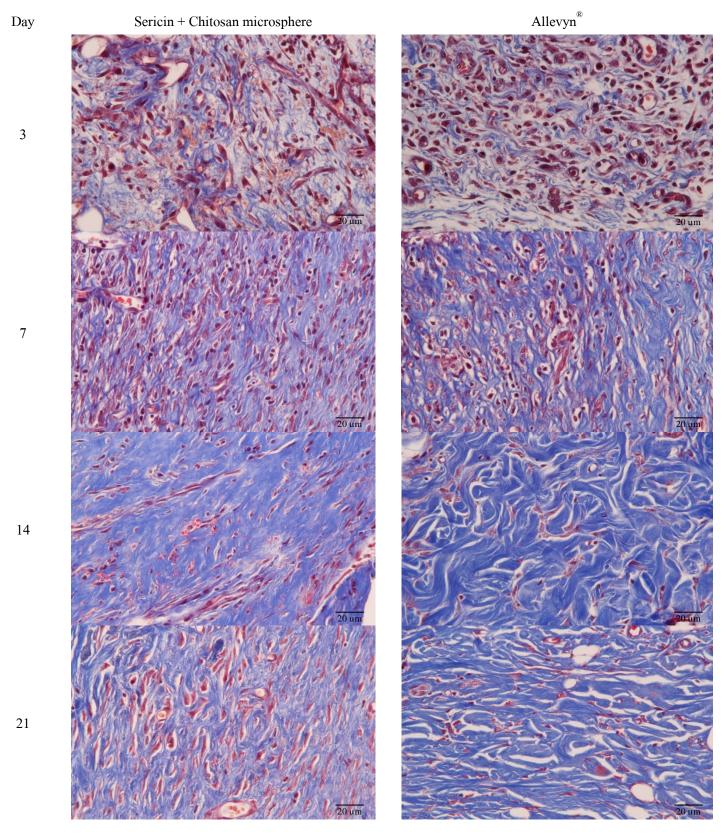


Arrow; Distance of epidermal width, E; Epidermis, G; Granulation tissue, HF; Hair follicle, S; Sebaceous gland

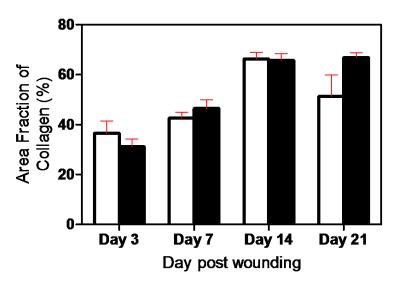

■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]

Arrow; Distance of epithelial tongue, E; Epidermis, G; Granulation tissue, D; Dermis

■ = Sericin/chitosan microsphere scaffold, □ = Allevyn®



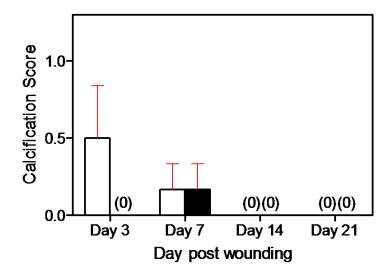
ผลการทคลอง


- 1. ทั้งแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ใกโตซานเซริซินชุบสารละลายไคโตซานและ Allevyn มีขนาดปากแผลที่วัดจาก epithelial tip ไม่แตกต่างกันในแต่ละวัน โดยมีแนวโน้มที่ลดลง ตั้งแต่วันที่ 7 ถึงวันที่ 21
- 2. แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ใกโตซานเซริซินชุบสารละลายไกโตซาน ทำให้เกิด complete epithelialization ครบ 100% ได้เร็วกว่า Allevyn® ตั้งแต่วันที่ 7 อย่างมีนัยสำคัญ
- 3. แต่อย่างไรก็ดี ค่าความกว้างของ epidermal width ในวันที่ 21 ของ Allevyn[®] ไม่แตกต่างจากแผ่นปิด แผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซาน
- 4. ส่วนความยาวของ epithelial tongue นั้น ทั้งสองกลุ่ม ไม่มีความแตกต่างกันในแต่ละช่วงเวลา และมี แนวโน้มเพิ่มขึ้นตั้งแต่วันที่ 7 14

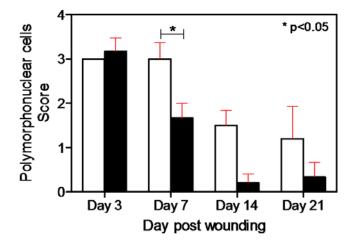
สรุปว่า แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซานกระตุ้น อัตราการเกิดหนังกำพร้าใหม่ และการหายของแผล (complete epithelialization) ได้เร็วกว่า Allevyn[®] แต่ทั้งสอง ต่างก็ส่งเสริมให้มีความหนาของชั้นหนังกำพร้าที่ไม่แตกต่างกัน

2. Collagen

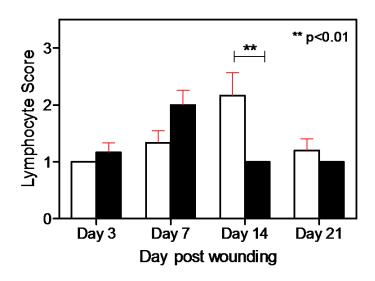
■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]



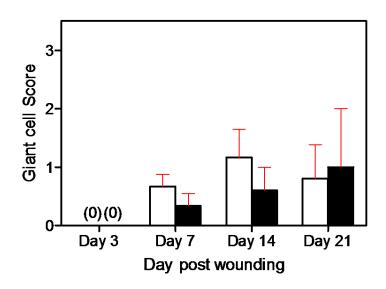
ผลการทดลอง

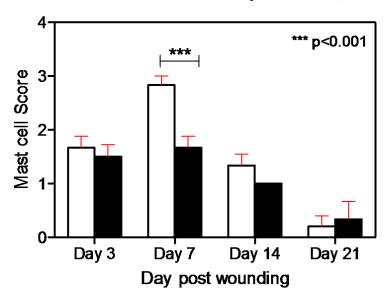

1. แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซานมี ปริมาณ collagen สะสมที่ไม่แตกต่างจาก Allevyn[®] มีแนวโน้มเพิ่มขึ้นตั้งแต่วันที่ 7 ถึงวันที่ 21

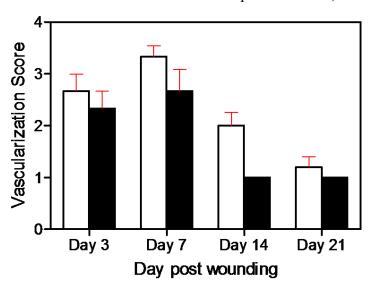
สรุปว่า แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซาน และ Allevyn[®] ส่งเสริมให้มีการสร้าง collagen ในผิวหนังชั้น dermis ได้ในระดับเดียวกัน

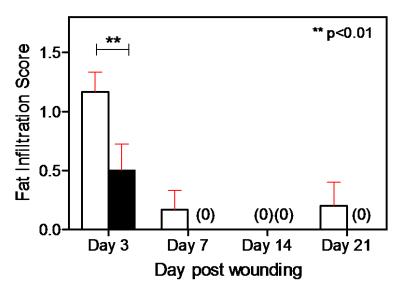

- 3. Tissue Irritation Test (Inflammatory และ Proliferation phase)
 - = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]

■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]


 \blacksquare = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]


 \blacksquare = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]


■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]


■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]

■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]

■ = Sericin/chitosan microsphere scaffold, \Box = Allevyn[®]

ผลการทคลอง

- 1. ระดับการเกิด calcification ของแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบ สารละลายไกโตซานและ Allevyn[®] ในทุกช่วงเวลาไม่มีความแตกต่างกัน และมีแนวโน้มสูงขึ้นตั้งแต่ วันที่ 3 และลดลงในวันที่ 7 จนกระทั่งไม่พบเลยในวันที่ 14-21
- ระดับการสะสมของ polymorphonuclear cells ของแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ ใคโตซานเซริซินชุบสารละลายไคโตซาน และ Allevyn[®] มีค่าสูงในวันที่ 3 และมีแนวโน้มที่ลดลงอย่าง

- ต่อเนื่องตั้งแต่วันที่ 7-21 โดยในวันที่ 7 Allevyn[®] มีค่าสูงกว่า แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโคร สเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซาน อย่างมีนัยสำคัญ
- 3. ระดับการสะสมของ lymphocyte ของแผ่นปิดแผลที่ประกอบด้วยอนุภาคใมโครสเฟียร์ใคโตซาน เซริซินชุบสารละลายใคโตซาน และ Allevyn[®] ในทุกช่วงเวลาไม่มีความแตกต่างกัน ยกเว้นในวันที่ 14 Allevyn[®] มีค่าสูงกว่า แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ใคโตซานเซริซินชุบสารละลาย ใคโตซาน อย่างมีนัยสำคัญ
- 4. ระดับการสะสมของ macrophage ของ แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ใคโตซาน เซริซินชุบสารละลายใคโตซานและ Allevyn[®] มีแนวโน้มลดลง ตั้งแต่วันที่ 7-21 และใน แผ่นปิดแผลที่ ประกอบด้วยอนุภาคไมโครสเฟียร์ใคโตซานเซริซินชุบสารละลายใคโตซาน มีค่าต่ำกว่า Allevyn[®] อย่าง มีนัยสำคัญในวันที่ 3 และ 14
- 5. ระดับการสะสมของ giant cell ของ แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน ชุบสารละลายไคโตซานและ Allevyn[®] ไม่มีความแตกต่างกันในแต่ละช่วงเวลา
- 6. ระดับการสะสมของ mast cell ของ Allevyn[®] ค่าสูงกว่า แผ่นปิดแผลที่ประกอบด้วยอนุภาคใมโคร สเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซาน อย่างมีนัยสำคัญในวันที่ 7 และทั้งสองมีแนวโน้ม ลดลงอย่างต่อเนื่องตั้งแต่วันที่ 7-21
- 7. ระดับการเกิด vascularlization ของ แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซิน ชุบสารละลายไกโตซานและ Allevyn® ในทุกช่วงเวลาไม่มีความแตกต่างกัน โดยมีระดับเพิ่มสูงขึ้นมาก ในวันที่ 7 จากนั้นจะมีแนวโน้มลดลงอย่างต่อเนื่องตั้งแต่วันที่ 14-21
- 8. ระดับการเกิด fat infiltration ของ แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบ สารละลายไคโตซานและ Allevyn มีความแตกต่างกันเฉพาะวันที่ 3 คือ Allevyn มากกว่า แผ่นปิดแผล ที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลายไคโตซาน อย่างมีนัยสำคัญและมี แนวโน้มลดลงอย่างต่อเนื่องตั้งแต่วันที่ 7-21 โดยเฉพาะในวันที่ 14 และ 21 ไม่พบการเกิด fat infiltration เลยในกลุ่ม แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซานเซริซินชุบสารละลาย ไคโตซาน

สรุปว่า ในภาพรวม ทั้งสองกลุ่มมีระดับการตอบสนองของเซลล์ต่าง ๆ ในระบบภูมิคุ้มกัน ที่ แตกต่างกันกันบ้างในบางช่วงเวลา รวมทั้ง ผลการทดลองสื่อให้เห็นได้ว่า Allevyn® อาจจะเหนี่ยวนำให้ เกิดปฏิกิริยาต่อต้านสารทดสอบได้มากกว่า แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ไคโตซาน เซริซินชุบสารละลายไคโตซาน ซึ่งเห็นได้จากการเพิ่มขึ้นของ mast cell และ fat infiltration

ซึ่งจะเห็นได้ว่า Allevyn[®] มักจะเหนี่ยวนำให้มีการสะสมของระดับ giant cell, mast cell และ fat infiltration ในระดับสูงอย่างน้อยหนึ่งช่วงเวลา ในขณะที่ แผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ ใคโตซานเซริซินชุบสารละลายไคโตซาน พบภาวะดังกล่าวน้อยกว่า

ส่วนการตอบสนองของเซลล์ต่าง ๆ ในระบบภูมิคุ้มกันนั้น มีลักษณะแปรปรวน ขึ้นบ้าง ลงบ้างในแต่ละ ช่วงเวลา อาจเป็นความแปรปรวนที่เกิดขึ้นจาก experimental environment, individual response หรือ experimental variation

จากผลการทดสอบในสัตว์ทดลองทั้งหมดจะเห็นได้ว่าบาดแผลที่ได้รับการรักษาด้วยแผ่นปิดแผลที่ ประกอบด้วยอนุภาคไมโครสเฟียร์ใคโตซานเซริซินชุบสารละลายไคโตซานมีอัตราการหายสูงกว่าบาดแผลที่ ได้รับการรักษาด้วยแผ่นปิดแผลที่มีจำหน่ายในท้องตลาด (Allevyn®) นอกจากนี้แผ่นปิดแผลที่พัฒนาขึ้นยังมี แนวโน้มที่จะก่อให้เกิดการแพ้หรือระคายเคืองน้อยกว่า ดังนั้นจึงเหมาะสมที่จะนำมาทดสอบประสิทธิภาพและ ความปลอดภัยในทางคลินิกต่อไป

สรุปผลการทดลอง

การนำโปรตีนกาวใหมมาพัฒนาเป็นวัสดุปิดแผลร่วมกับ ใกโตซานในรูปแบบของใมโครสเฟียร์ สามารถเพิ่มคุณสมบัติในการฆ่าเชื้อให้กับแผ่นปิดแผลได้อย่างมีประสิทธิภาพ โดยมีคุณสมบัติทางกายภาพที่ เหมาะสมทั้งในด้านกวามยืดหยุ่น การปลดปล่อยโปรตีนกาวใหมที่สามารถกระตุ้นการหายของบาดแผลรวมถึง การดูดซับของเหลว นอกจากนี้เมื่อมาทดสอบประสิทธิภาพและความปลอดภัยของวัสดุปิดแผลที่ประกอบด้วย อนุภาคไมโครสเฟียร์ใกโตซานเซริซินชุบสารละลายใกโตซานในสัตว์ทดลองพบว่า แผ่นปิดแผลที่พัฒนาขึ้น สามารถกระตุ้นการหายของบาดแผลได้อย่างมีประสิทธิภาพโดยไม่ก่อให้เกิดการแพ้หรือระคายเคืองเมื่อสังเกต บาดแผลด้วยตา นอกจากนี้เมื่อวิเคราะห์ชิ้นเนื้อเยื่อสัตว์ทดลองก็ยังพบว่าปฏิกิริยาของเซลล์ที่ก่อให้เกิดการแพ้ หรือระคายเคืองในบาดแผลที่รักษาด้วยแผ่นปิดแผลที่ประกอบด้วยอนุภาคไมโครสเฟียร์ใกโตซานเซริซินชุบ สารละลายใกโตซานมีจำนวนน้อยกว่าบาดแผลที่ได้รับการรักษาด้วย Allevyn อีกด้วย

เอกสารอ้างอิง

- Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS., Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials. 1999 March 20(5):409-417.
- 2. Sarovart S, Sudatis B, Meesilpa P, Grady BP, Magaraphan R., The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Rev Adv Mater Sci. 2003 April 5(2): 193-198.
- 3. Wu Y, Yang W, Wang C, Hu J, Fu S., Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005 May 295(1-2):235-45.
- 4. Dudhani AR, Kosaraju SL., Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohyr Polym. 2003 Jan 81: 243-251.
- 5. Xiao C, Sun F., Fabrication of distilled water-soluble chitosan/alginate functional multilayer composite microspheres. Carbohydr Polym. 2013 Nov 6; 98(2):1366-70.
- Mitra A, Dey B., Chitosan microspheres in novel drug delivery systems. Indian J Pharm Sci. 2011 Jul; 73(4):355-66.
- 7. Basu SK, Kavitha K, Rupeshkumar M., Evaluation of ionotropic cross-linked chitosan/gelatin B microspheres of tramadol hydrochloride. AAPS PharmSciTech. 2011 Mar; 12(1):28-34.

Output ที่ได้จากโครงการ

นอกเหนือจากองค์ความรู้เกี่ยวกับโปรตีนกาวใหมและการแปรรูปโปรตีนกาวใหมร่วมกับใคโตซานให้ เป็นปิดแผลที่มีความคงตัวดี สามารถกระตุ้นการหายของบาดแผลและมีคุณสมบัติในการฆ่าเชื้อแล้ว ผลจากการ ศึกษาวิจัย คณะผู้วิจัยได้เผยแพร่ผลงานที่ได้ในวารสารระดับนานาชาติดังนี้

- 1) S. Napavichayanun, P. Amornsudthiwat, P. Pienpinijtham, P. Aramwit. Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing. Materials Science and Engineering C. October 2015; 55: p. 95-104.
- 2) P. Aramwit, S. Ekasit, R. Yamdech The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin. Biomedical Microdevices. August 2015; 17(5): 84-92.
- 3) P. Aramwit, N. Jaichawa, J. Ratanavaraporn, T. Srichana. A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Materials Express. June 2015; 5(3): 241-248.
- 4) P. Aramwit, N. Bang, J. Ratanavaraporn, T. Thanavibul, S. Ekgasit. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Research Letters. March 2014; 9(1):136.
- 5) P. Wantanasiri, J. Ratanavaraporn, R. Yamdech, P. Aramwit. Fabrication of silk sericin/alginate microparticles by electrohydrodynamic spraying technique for the controlled release of silk sericin. Journal of Electrostatics. February 2014; 72(1): 22-27.

ภาคผนวก 1

BCATM Protein Assay Kit

23225 23227

1296.3

Number

Description

BCATM Protein Assay Kit, sufficient reagents for 500 test tube or 5,000 microplate assays

BCATM Protein Assay Kit, sufficient reagents for 250 test tube or 2,500 microplate assays

Kit Contents:

BCATM Reagent A, 1,000 ml (in Product No. 23225) or 500 ml (in Product No. 23227), containing sodium carbonate, sodium bicarbonate, bicinchoninic acid and sodium tartrate in 0.1 M sodium hydroxide

BCATM Reagent B, 25 ml, containing 4% cupric sulfate

Albumin Standard Ampules, 2 mg/ml, 10 x 1 ml ampules, containing bovine serum albumin (BSA) at 2.0 mg/ml in 0.9% saline and 0.05% sodium azide

Storage: Upon receipt store at room temperature. Product shipped at ambient temperature.

Note: If either Reagent A or Reagent B precipitates upon shipping in cold weather or during long-term storage, dissolve precipitates by gently warming and stirring solution. Discard any kit reagent that shows discoloration or evidence of microbial contamination.

Table of Contents

Introduction	1
Preparation of Standards and Working Reagent (required for both assay procedures)	2
Test Tube Procedure (Sample to WR ratio = 1:20)	
Microplate Procedure (Sample to WR ratio = 1:8)	
Troubleshooting	4
Related Pierce Products	
Additional Information	
Cited References	6
Product References	

Introduction

The BCATM Protein Assay is a detergent-compatible formulation based on bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total protein. This method combines the well-known reduction of Cu⁺² to Cu⁺¹ by protein in an alkaline medium (the biuret reaction) with the highly sensitive and selective colorimetric detection of the cuprous cation (Cu⁺¹) using a unique reagent containing bicinchoninic acid. The purple-colored reaction product of this assay is formed by the chelation of two molecules of BCA with one cuprous ion. This water-soluble complex exhibits a strong absorbance at 562 nm that is nearly linear with increasing protein concentrations over a broad working range (20-2,000 µg/ml). The BCATM method is not a true end-point method; that is, the final color continues to develop. However, following incubation, the rate of continued color development is sufficiently slow to allow large numbers of samples to be assayed together.

The macromolecular structure of protein, the number of peptide bonds and the presence of four particular amino acids (cysteine, cystine, tryptophan and tyrosine) are reported to be responsible for color formation with BCA. Studies with di-, tri- and tetrapeptides suggest that the extent of color formation caused by more than the mere sum of individual color-producing functional groups. Accordingly, protein concentrations generally are determined and reported with reference to standards of a common protein such as bovine serum albumin (BSA). A series of dilutions of known concentration are

Warranty: Pierce products are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sale for products used, handled and stored according to Pierce instructions. Pierce's sole liability for the product is limited to replacement of the product or refund of the purchase price. Pierce products are supplied for laboratory or manufacturing applications only. They are not intended for medicinal, diagnostic or therapeutic use. Pierce products may not be resold, modified for resale or used to manufacture commercial products without prior written approval from Pierce Biotechnology. Pierce strives for 100% customer satisfaction. If you are not satisfied with the performance of a Pierce product, please contact Pierce or your local distributor.

prepared from the protein and assayed alongside the unknown(s) before the concentration of each unknown is determined based on the standard curve. If precise quantitation of an unknown protein is required, it is advisable to select a protein standard that is similar in quality to the unknown; for example, a bovine gamma globulin (BGG) standard (see Related Pierce Products) may be used when assaying immunoglobulin samples.

Two assay procedures are presented. Of these, the Test Tube Procedure requires a larger volume (0.1 ml) of protein sample; however, because it uses a sample to working reagent ratio of 1:20 (v/v), the effect of interfering substances is minimized. The Microplate Procedure affords the sample handling ease of a microplate and requires a smaller volume (10-25 μ l) of protein sample; however, because the sample to working reagent ratio is 1:8 (v/v), it offers less flexibility in overcoming interfering substance concentrations and obtaining low levels of detection.

Preparation of Standards and Working Reagent (required for both assay procedures)

A. Preparation of Diluted Albumin (BSA) Standards

Use Table 1 as a guide to prepare a set of protein standards. Dilute the contents of one Albumin Standard (BSA) ampule into several clean vials, preferably using the same diluent as the sample(s). Each 1 ml ampule of 2.0 mg/ml Albumin Standard is sufficient to prepare a set of diluted standards for either working range suggested in Table 1. There will be sufficient volume for three replications of each diluted standard.

Table 1. Preparation of Diluted Albumin (BSA) Standards

Dilution Scheme	for Standard Test Tube Protoc	col and Microplate Procedure (Work	$\frac{1}{1}$ ing Range = 20–2,000 µg/ml)
<u>Vial</u>	Volume of Diluent	Volume and Source of BSA	Final BSA Concentration
A	0	300 μl of Stock	2,000 μg/ml
В	125 μl	375 μl of Stock	1,500 μg/ml
C	325 µl	325 μl of Stock	$1,000 \mu g/ml$
D	175 μ1	175 µl of vial B dilution	750 μg/ml
E	325 µl	325 µl of vial C dilution	500 μg/ml
F	325 µl	325 µl of vial E dilution	250 μg/ml
G	325 µl	325 µl of vial F dilution	125 μg/ml
Н	400 µl	100 μl of vial G dilution	25 μg/ml
I	400 μl	0	$0 \mu g/ml = Blank$

Dilution Scheme for Enhanced Test Tube Protocol (Working Range = 5-250 µg/ml)

<u>Vial</u>	Volume of Diluent	Volume and Source of BSA	Final BSA Concentration
A	700 μl	100 μl of Stock	250 μg/ml
В	400 μ1	400 μl of vial A dilution	125 μg/ml
С	450 µl	300 µl of vial B dilution	50 μg/ml
D	400 μl	400 μl of vial C dilution	25 μg/ml
E	400 μ1	100 μl of vial D dilution	5 μg/m1
F	400 μ1	0	$0 \mu g/ml = Blank$

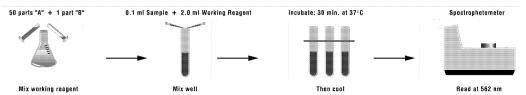
B. Preparation of the $BCA^{\mbox{\tiny TM}}$ Working Reagent (WR)

1. Use the following formula to determine the total volume of WR required:

(# standards + # unknowns) x (# replicates) x (volume of WR per sample) = total volume WR required

Example: for the Standard Test Tube Protocol with 3 unknowns and 2 replicates of each sample:

(9 standards + 3 unknowns) x (2 replicates) x (2 ml) = 48 ml WR required


Note: 2.0 ml of the WR is required for each sample in the Test Tube Procedure, while only 200 μ l of WR reagent is required for each sample in the Microplate Procedure.

Prepare WR by mixing 50 parts of BCATM Reagent A with 1 part of BCATM Reagent B (50:1, Reagent A:B). For the
above example, combine 50 ml of Reagent A with 1 ml of Reagent B.

Note: When Reagent B is first added to Reagent A, a turbidity is observed that quickly disappears upon mixing to yield a clear, green WR. Prepare sufficient volume of WR based on the number of samples to be assayed. The WR is stable for several days when stored in a closed container at room temperature (RT).

Procedure Summary (Test Tube Procedure, Standard Protocol)

Test Tube Procedure (Sample to WR ratio = 1:20)

- 1. Pipette 0.1 ml of each standard and unknown sample replicate into an appropriately labeled test tube.
- 2. Add 2.0 ml of the WR to each tube and mix well.
- 3. Cover and incubate tubes at selected temperature and time:

Standard Protocol: 37°C for 30 minutes (working range = 20-2,000 μg/ml)
 RT Protocol: RT for 2 hours (working range = 20-2,000 μg/ml)
 Enhanced Protocol: 60°C for 30 minutes (working range = 5-250 μg/ml)

Notes

- Increasing the incubation time or temperature increases the net 562 nm absorbance for each test and decreases both the minimum detection level of the reagent and the working range of the protocol.
- Use a water bath to heat tubes for either Standard (37°C incubation) or Enhanced (60°C incubation) Protocol. Using a forced-air incubator can introduce significant error in color development because of uneven heat transfer.
- 4. Cool all tubes to RT.
- 5. With the spectrophotometer set to 562 nm, zero the instrument on a cuvette filled only with water. Subsequently, measure the absorbance of all the samples within 10 minutes.

Note: Because the BCATM Assay does not reach a true end point, color development will continue even after cooling to RT. However, because the rate of color development is low at RT, no significant error will be introduced if the 562 nm absorbance measurements of all tubes are made within 10 minutes of each other.

- Subtract the average 562 nm absorbance measurement of the Blank standard replicates from the 562 nm absorbance measurement of all other individual standard and unknown sample replicates.
- Prepare a standard curve by plotting the average Blank-corrected 562 nm measurement for each BSA standard vs. its
 concentration in μg/ml. Use the standard curve to determine the protein concentration of each unknown sample.

Microplate Procedure (Sample to WR ratio = 1:8)

- Pipette 25 μl of each standard or unknown sample replicate into a microplate well (working range = 20-2,000 μg/ml).
 Note: If sample size is limited, 10 μl of each unknown sample and standard can be used (sample to WR ratio = 1:20). However, the working range of the assay in this case will be limited to 125-2,000 μg/ml.
- 2. Add 200 µl of the WR to each well and mix plate thoroughly on a plate shaker for 30 seconds.
- 3. Cover plate and incubate at 37°C for 30 minutes.
- 4. Cool plate to RT.
- 5. Measure the absorbance at or near 562 nm on a plate reader.

Notes:

- Wavelengths from 540-590 nm have been used successfully with this method.
- Because plate readers use a shorter light path length than cuvette spectrophotometers, the Microplate Procedure
 requires a greater sample to WR ratio to obtain the same sensitivity as the standard Test Tube Procedure. If higher
 562 nm measurements are desired, increase the incubation time to 2 hours.

- Increasing the incubation time or ratio of sample volume to WR increases the net 562 nm measurement for each well
 and lowers both the minimum detection level of the reagent and the working range of the assay. As long as all
 standards and unknowns are treated identically, such modifications may be useful.
- Subtract the average 562 nm absorbance measurement of the Blank standard replicates from the 562 nm measurements of all other individual standard and unknown sample replicates.
- Prepare a standard curve by plotting the average Blank-corrected 562 nm measurement for each BSA standard vs. its
 concentration in μg/ml. Use the standard curve to determine the protein concentration of each unknown sample.

Note: If using curve-fitting algorithms associated with a microplate reader, a four-parameter (quadratic) or best-fit curve will provide more accurate results than a purely linear fit. If plotting results by hand, a point-to-point curve is preferable to a linear fit to the standard points.

Troubleshooting

Problem	Possible Cause	Solution
No color in any tubes	Sample contains a copper chelating	Dialyze, desalt, or dilute sample
	agent	Increase copper concentration in working
		reagent (e.g., use 50:2, Reagent A:B)
		Remove interfering substances from sample
		using Product No. 23215
Blank absorbance is OK, but	Strong acid or alkaline buffer, alters	Dialyze, desalt, or dilute sample
standards and samples show less	working reagent pH	
color than expected	Color measured at the wrong	Measure the absorbance at 562 nm
	wavelength	
Color of samples appears darker	Protein concentration is too high	Dilute sample
than expected	Sample contains lipids or	Add 2% SDS to the sample to eliminate
	lipoproteins	interference from lipids ³
		Remove interfering substances from sample
		using Product No. 23215
All tubes (including blank) are dark	Buffer contains a reducing agent	Dialyze or dilute sample
purple	Buffer contains a thiol	Remove interfering substances from sample
	Buffer contains biogenic amines	using Product No. 23215
	(catecholamines)	
Need to measure color at a	Spectrophotometer or plate reader	Color may be measure at any wavelength
different wavelength	does not have 562 nm filter	between 540 nm and 590 nm, although the
		slope of standard curve and overall assay
		sensitivity will be reduced

A. Interfering substances

Certain substances are known to interfere with the BCA^{TM} Assay including those with reducing potential, chelating agents, and strong acids or bases. Because they are known to interfere with protein estimation at even minute concentrations, avoid the following substances as components of the sample buffer:

Ascorbic Acid	EGTA	Iron	Impure Sucrose
Catecholamines	Impure Glycerol	Lipids	Tryptophan
Creatinine	Hydrogen Peroxide	Melibiose	Tyrosine
Cysteine	Hydrazides	Phenol Red	Uric Acid

Other substances interfere to a lesser extent with protein estimation using the BCATM Assay, and these have only minor (tolerable) effects below a certain concentration in the original sample. Maximum compatible concentrations for many substances in the Standard Test Tube Protocol are listed in Table 2 (see last page of Instructions). Substances were compatible at the indicated concentration in the Standard Test Tube Protocol if the error in protein concentration estimation caused by the presence of the substance in the sample was less than or equal to 10%. The substances were tested using WR prepared immediately before each experiment. Blank-corrected 562 nm absorbance measurements (for a 1,000 μ g/ml BSA standard + substance) were compared to the net 562 nm measurements of the same standard prepared in 0.9% saline. In the Microplate Procedure, where the sample to WR ratio is 1:8 (v/v), maximum compatible concentrations will be lower.

B. Strategies for eliminating or minimizing the effects of interfering substances

The effects of interfering substances in the BCATM Protein Assay may be eliminated or overcome by one of several methods.

- Remove the interfering substance by dialysis or gel filtration.
- Dilute the sample until the substance no longer interferes. This strategy is effective only if the starting protein concentration is sufficient to remain in the working range of the assay upon dilution.
- Precipitate the proteins in the sample with acetone or trichloroacetic acid (TCA). The liquid containing the substance that interfered is discarded and the protein pellet is easily solubilized in ultrapure water or directly in the alkaline BCATM WR.⁴ A protocol for performing this on samples to be assayed with BCATM Protein Assay Reagent is available at the Pierce web site. Alternatively, Product No. 23215 may be used (see Related Pierce Products).
- Increase the amount of copper in the WR (prepare WR as 50:2 or 50:3, Reagent A:B), which may eliminate interference by copper chelating agents.

Note: For greatest accuracy, the protein standards must be treated identically to the sample(s).

Related Pierce Products

23209	Albumin Standard Ampules, 2 mg/ml, 10×1 ml ampules, containing bovine serum albumin (BSA) at 2.0 mg/ml in 0.9% saline and 0.05% sodium azide
23208	Pre-Diluted Protein Assay Standards: Bovine Serum Albumin (BSA) Set, 7×3.5 ml aliquots in the range of 125 - $2,000 \mu g/ml$
23212	Bovine Gamma Globulin Standard, 2 mg/ml, 10 x 1 ml ampules
23213	Pre-Diluted Protein Assay Standards, Bovine Gamma Globulin Fraction II (BGG) Set, 7×3.5 ml aliquots in the range of $125\text{-}2,000~\mu\text{g/ml}$
23221	BCA TM Reagent A, 1,000 ml
23223	BCATM Reagent A, 250 ml
23224	BCA TM Reagent B, 25 ml
23235	Micro BCA TM Protein Assay Kit, working range of 0.5-20 μg/ml
23236	Coomassie Plus TM Protein Assay Kit, working range of 1-1,500 µg/ml
23215	Compat-Able TM Protein Assay Preparation Reagent Set, sufficient reagents to pre-treat 500 samples to remove interfering substances before total protein quantitation

Additional Information

A. Please visit the Pierce web site for additional information on this product including the following items:

- Frequently Asked Questions
- Tech Tip protocol: Eliminate interfering substances from samples for BCATM Protein Assay
- Tech Tip protocol: Shorten BCATM Protein Assay incubation using a microwave oven

B. Response characteristics for different proteins

Each of the commonly used total protein assay methods exhibits some degree of varying response toward different proteins. These differences relate to amino acid sequence, pI, structure and the presence of certain side chains or prosthetic groups that can dramatically alter the protein's color response. Most protein assay methods utilize BSA or immunoglobulin (IgG) as the standard against which the concentration of protein in the sample is determined (Figure 1). However, if great accuracy is required, the standard curve should be prepared from a pure sample of the target protein to be measured.

Table 3 shows typical BCATM Protein Assay protein-to-protein variation in color response. All proteins were tested at a concentration of 1,000 μ g/ml using the 30-minute/37°C Test Tube Protocol. The average net color response for BSA was normalized to 1.00 and the average net color response of the other proteins is expressed as a ratio to the response of BSA.

Figure 1: Typical color response curves for BSA and BGG using the Standard Test Tube Protocol (37°C/30-minute incubation).

Table 3. Protein-to-Protein Variation. Absorbance ratios (562 nm) for proteins relative to BSA using the Standard Test Tube Protocol.

Ratio = (Avg "test" net Abs.) / (avg. BSA net Abs.)		
Protein Tested	<u>Ratio</u>	
Albumin, bovine serum	1.00	
Aldolase, rabbit muscle	0.85	
α-Chymotrypsinogen, bovine	1.14	
Cytochrome C, horse heart	0.83	
Gamma globulin, bovine	1.11	
IgG, bovine	1.21	
IgG, human	1.09	
IgG, mouse	1.18	
IgG, rabbit	1.12	
IgG, sheep	1.17	
Insulin, bovine pancreas	1.08	
Myoglobin, horse heart	0.74	
Ovalbumin	0.93	
Transferrin, human	0.89	
Average ratio	1.02	
Standard Deviation	0.15	
Coefficient of Variation	14.7%	

C. Alternative Total Protein Assay Reagents

If interference by a reducing substance or metal-chelating substance contained in the sample cannot be overcome, try the Coomassie PlusTM Protein Assay Kit (Product No. 23236), which is less sensitive to such substances.

D. Cleaning and Re-using Glassware

Exercise care when re-using glassware. All glassware must be cleaned and given a thorough final rinse with ultrapure water.

Cited References

- 1. Smith, P.K., et al. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76-85.
- Wiechelman, K., Braun, R. and Fitzpatrick, J. (1988). Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation. Anal Biochem. 175:231-7.
- 3. Kessler, R. and Fanestil, D. (1986). Interference by lipids in the determination of protein using bicinchoninic acid. Anal. Biochem. 159:138-42.
- 4. Brown, R., Jarvis, K. and Hyland, K. (1989). Protein measurement using bicinchoninic acid: elimination of interfering substances. *Anal. Biochem.* **180**:136-9.

Product References

Adilakshami, T. and Laine, R.O. (2002). Ribosomal protein S25 mRNA partners with MTF-1 and La to provide a p53-mediated mechanism for survival or death. J. Biol. Chem. 277:4147-51.

Fischer, T., et al. (1999). Clathrin-coated vesicles bearing GAIP possess GTPase-activating protein activity in vitro. Proc. Nat. Acad. Sci. 96:6722-7.

Prozialeck, W.C., et al. (2002). Chlamydia trachomatis disrupts N-cadherin-dependent cell-cell junctions and sequester β-catenin in human cervical epithelial cells. Infection and Immunity 70:2605-13.

Roberts, K.P., Ensrud, K.M. and Hamilton, D.W. (2002). A comparative analysis of expression and processing of the rat epididymal fluid and sperm-bound forms of proteins D and E. Biology of Reproduction 67:525-33.

Triton® is a registered trademark of Rohm & Haas Co.

Brij®, Tween® and Span® are registered trademarks of ICI Americas.

 $Zwittergent ^{\circledast} \ is \ a \ registered \ trademark \ of \ American \ Hoechst \ Corporation.$

The BCATM Protein Assay is protected by U.S. Patent # 4,839,295

 ${\hbox{$\mathbb C$}$Pierce}$ Biotechnology, Inc., 10/2003. Printed in the USA.

Table 2. Compatible Substance Concentrations in the BCATM Protein Assay (see text for details).

Substance	Compatible	Substance	Compatible
Salts/Buffers	Concentration	Detergents**	Concentration
ACES, pH 7.8	25 mM	Brij®-35	5.0%
Ammonium sulfate	1.5 M	Bril®-56, Bril®-58	1.0%
Asparagine	1 mM	CHAPS, CHAPSO	5.0%
Bicine, pH 8.4	20 mM	Deoxycholic acid	5.0%
Bis-Tris, pH 6.5	33 mM	Octyl β-glucoside	5.0%
Borate (50 mM), pH 8.5 (# 28384)	undiluted	Nonidet P-40 (NP-40)	5.0%
B-PER® Reagent (#78248)	undiluted	Octyl β-thioglucopyranoside	5.0%
Calcium chloride in TBS, pH 7.2	10 mM	SDS	5.0%
Na-Carbonate/Na-Bicarbonate (0.2 M),	undiluted	Span® 20	1.0%
pH 9.4 (#28382)	ununuteu	Triton® X-100	5.0%
Cesium bicarbonate	100 mM	Triton® X-114, X-305, X-405	1.0%
CHES, pH 9.0	100 mM	Tween®-20, Tween®-60, Tween®-80	5.0%
Na-Citrate (0.6 M), Na-Carbonate (0.1	1:8 dilution*	Zwittergent® 3-14	1.0%
M), pH 9.0 (#28388)	1.0 dilation	Chelating agents	1.070
Na-Citrate (0.6 M), MOPS (0.1 M), pH 7.5	1:8 dilution*	EDTA	10 mM
(#28386)		EGTA	
Cobalt chloride in TBS, pH 7.2	0.8 mM	Sodium citrate	200 mM
EPPS, pH 8.0	100 mM	Reducing & Thiol-Containing Agents	1
Ferric chloride in TBS, pH 7.2	10 mM	N-acetylglucosamine in PBS, pH 7.2	10 mM
Glycine•HCl, pH 2.8	100 mM	Ascorbic acid	
Guanidine•HCl	4 M	Cysteine	
HEPES, pH 7.5	100 mM	Dithioerythritol (DTE)	1 mM
Imidazole, pH 7.0	50 mM	Dithiothreitol (DTT)	1 mM
MES, pH 6.1	100 mM	Glucose	10 mM
MES (0.1 M), NaCl (0.9%), pH 4.7 (#28390)	undiluted	Melibiose	
MOPS, pH 7.2	100 mM	2-Mercaptoethanol	0.01%
Modified Dulbecco's PBS, pH 7.4 (#28374)	undiluted	Potassium thiocyanate	3.0 M
Nickel chloride in TBS, pH 7.2	10 mM	Thimerosal	0.01%
PBS; Phosphate (0.1 M), NaCl (0.15 M), pH 7.2 (#28372)	undiluted	Misc. Reagents & Solvents Acetone	10%
PIPES, pH 6.8	100 mM	Acetonitrile	10%
RIPA lysis buffer, 50 mM Tris, 150 mM NaCl,	undiluted	Aprotinin	10 mg/L
0.5% DOC, 1% NP-40, 0.1% SDS, pH8.0	ananatoa	DMF, DMSO	10%
Sodium acetate, pH 4.8	200 mM	DMSO	10%
Sodium azide	0.2%	Ethanol	10%
Sodium bicarbonate	100 mM	Glycerol (Fresh)	10%
Sodium chloride	1 M	Hydrazides	
Sodium citrate, pH 4.8 or pH 6.4	200 mM	Hydrides (Na ₂ BH ₄ or NaCNBH ₃)	
Sodium phosphate	100 mM	Hydrochloric Acid	100 mM
Tricine, pH 8.0	25 mM	Leupeptin	10 mg/L
Triethanolamine, pH 7.8	25 mM	Methanol	10%
Tris	250 mM	Phenol Red	
TBS; Tris (25 mM), NaCl (0.15 M), pH 7.6	undiluted	PMSF	1 mM
(#28376)		Sodium Hydroxide	100 mM
Tris (25 mM), Glycine (192 mM), pH 8.0	1:3 dilution*	Sucrose	40%
(#28380)		TLCK	0.1 mg/L
Tris (25 mM), Glycine (192 mM), SDS	undiluted	TPCK	0.1 mg/L
(0.1%), pH 8.3 (#28378)		Urea	3 M
Zinc chloride in TBS, pH 7.2	10 mM	o-Vanadate (sodium salt), in PBS, pH 7.2	1 mM

^{*} Diluted with ultrapure water, ** Detergents were tested using Pierce high-purity Surfact-AmpsTM Products, which have low peroxide content; -- Dashed-line entry indicates that the material is incompatible with the assay.

ภาคผนวก 2

ANIMAL CARE AND USE PROTOCOL

Animal Care and Use Committee (NLAC-ACUC)

COVER SHEET

Protocol No.: This section will				
Received by NLAC-ACUC: be filled by				
Approved/disapproved by	the NLAC- ACUC			
Expiration Date:		only		
1. Protocol title: การทด บาคแผ	สอบประสิทธิภาพของวัสคุปิคแผลที่มีโปรตีเ เล	นกาวใหมเป็นองค์ประกอบในการรักษา		
The Ef	ficacy of Wound Dressing Materials Contain	ning Silk Sericin for Wound Healing		
2. Principal investigator:	ภญู.ศุภมาส นภาวิชยานันท์			
Position:	นิสิตปริญญาเอก Department: ภาควิชาเภ	สัชกรรมปฏิบัติ		
Faculty/Institute	คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย			
	Tel. 08-900-0271 Fax: 02-218-8403			
E-mail snsupamas@gmail.com				
3. Co-investigator(s):	ศ. คร. พรอนงค์ อร่ามวิทย์			
Position:	ศาสตราจารย์ Department: ภาควิชาเภสัชกรรมปฏิบัติ			
Faculty/Institute	คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย			
	Tel. 089-921-7255 Fax: 02-218-8403			
	E-mail Aramwit@gmail.com			
4. Anticipated project period: From สิงหาคม 2557 to ตุลาคม 2557				
5. Source of funding(s): (if applicable)				
6. Principal investigator :				
	(Signature) (Date)			
	(

Co- investigator :	:		
		(Signature)	(Date)
		()
Attending Veterinaria	n::		
		(Signature)	(Date)
		()
Head of Department :	:		
		(Signature)	(Date)
		()
Faculty/Institute:			
7. Approval			
NLAC-ACUC	Review:		
	Approved	Approval recommended	Disapproved
		(Chair, NLAC -ACUC Signature)	(Date)

1. Non-technical summary: (Provide a brief description of the project expressing its significance and needs for undertaking the study).

ใบโอเซลลูโลส เป็นเส้นใยที่ได้จากการหมักของเชื้อแบคทีเรียแกรมลบ Acetobacter xylinum โดยใช้น้ำ มะพร้าวเป็นอาหาร ใบโอเซลลูโลสมีลักษณะเป็นโครงเส้นไฟเบอร์ขนาดเล็กระดับนาโนเมตร มีคุณสมบัติใน การดูดซึมและเก็บกักน้ำได้ดี และมีความยืดหยุ่นสูง (1) จึงเหมาะกับการนำมาทำแผ่นปิดแผล เพื่อให้ได้แผ่นปิด แผลที่แนบสนิทกับผิวหนัง มีความยืดหยุ่นดี และมีการปลดปล่อยสารได้อย่างต่อเนื่อง สามารถนำมาพัฒนาเป็น แผ่นปิดแผลที่มีประสิทธิภาพดี อย่างไรก็ตามไบโอเซลลูโลสไม่มีคุณสมบัติในการกระตุ้นการหายของบาดแผล จึงจำเป็นต้องใส่สารชีวภาพที่มีฤทธิ์ในการกระตุ้นการหายของบาดแผลเช่น โปรตีนกาวไหม เข้าไปในแผ่นไบโอเซลลูโลสด้วย

ใหมเป็นวัสคุธรรมชาติที่มีผลิตในประเทศไทย ใหมมีโปรตีนเป็นองค์ประกอบหลัก ประมาณร้อยละ 97 ส่วนอื่น ๆ อีกร้อยละ 3 จะเป็นพวกขี้ผึ้ง คาร์โบไฮเดรต วัตถุมีสีและสารอินทรีย์ โดยใหมประกอบด้วย โปรตีนหลัก 2 ชนิด ได้แก่ ไฟโบรอิน (fibroin) ที่เป็นเส้นใยคู่ 2 เส้นประกบกัน หุ้มหรือเคลือบด้วยโปรตีน เซ ริซิน (sericin) หรือกาวไหม (silk glue) ซึ่งมีสีเหลืองและจะละลายออกเมื่อนำไปต้มในน้ำร้อนหรือสารละลายที่ เป็นค่าง โดยรังไหมในประเทศไทยมีเซริซินอยู่ค่อนข้างสูง คือร้อยละ 30

เซริซิน ได้มีการนำไปใช้เป็นส่วนผสมหลักในการทำเครื่องสำอางจนเป็นที่นิยมใช้กันอย่างแพร่ หลาย (2) เซริซิน หรือโปรตีนกาวไหม เป็นโปรตีนที่ได้จากรังไหมของ หนอนไหมพันธุ์ Bombyx mori ประกอบด้วย 18 amino acids เซริซินเป็นส่วนที่เหลือทิ้งจากกระบวนการผลิตสิ่งทอจากรังไหมกว่า 1 ล้านตัน ทั่วโลก (3) พบว่าเซริซินสามารถกระตุ้นการแบ่งเซลล์และการสร้าง collagen ซึ่งเป็นปัจจัยสำคัญของการหายของ บาดแผล ช่วยลดขนาดของบาดแผล โดยมีผลข้างเคียงต่ำ ดังนั้นเซริซินจึงถูกนำมาประยุกต์ใช้กับแผ่นปิดแผล โดยวิธีการสกัดเซริซินที่ดีที่สุด คือการสกัดด้วยความร้อนที่ 121 องสาเซลเซียส ภายใต้แรงดัน 15 ปอนด์ต่อ ตารางนิ้ว เนื่องจากจะให้โปรตีนกาวไหมเซริซินปริมาณมากที่สุด บริสุทธิ์ ไม่มีสารปนเปื้อน และสามารถ กระตุ้นการสร้าง collagen ได้สูงสุด (4) จากผลการศึกษาโปรตีนกาวไหมเซริซินครีม พบว่าสามารถลดขนาด บาดแผลในหนูได้ดี เพิ่มการสร้าง collagen ส่งผลให้ลดการอักเสบของบาดแผล และทำให้บาดแผลหายได้อย่าง รวดเร็ว และมีประสิทธิภาพมากยิ่งขึ้น โดยไม่พบผลข้างเคียง (5)

Polyhexamethylene biguanide (PHMB) เป็นสารที่มีประสิทธิภาพในการฆ่าเชื้อแบกทีเรียชนิดที่ใช้ ออกซิเจนได้ทั้งแกรมบวก แกรมลบ และแบคทีเรียชนิดที่ไม่ใช้ออกซิเจน มีคุณสมบัติเป็นประจุบวก ออกฤทธิ์ โดยจับกับหมู่ฟอสเฟตที่มีประจุลบของฟอส โฟลิปิดที่ผนังเซลล์ของแบคทีเรียแกรมบวก และเยื่อหุ้มเซลล์ของ แบคทีเรียแกรมลบ ทำให้ผนังเซลล์และเยื่อหุ้มเซลล์จัดเรียงตัวผิดปกติ การแพร่ผ่านและปริมาณของเหลวภายใน เซลล์แบคทีเรียแกรมลบ ทำให้ผนังเซลล์และเยื่อหุ้มเซลล์จัดเรียงตัวผิดปกติ การแพร่ผ่านและปริมาณของเหลวภายใน เซลล์แบคทีเรียหิดปกติ ส่งผลให้เซลล์แบคทีเรียตาย ซึ่งไม่มีผลต่อเซลล์ของมนุษย์และสัตว์ (๑) ใช้เป็น ส่วนประกอบในน้ำยากอนแทคเลนส์ (๓) และอุปกรณ์ทำแผล (๑) โดยความเข้มข้นของ PHMB ที่ใช้ฆ่าเชื้อแบคทีเรีย ในบาดแผลคือ ร้อยละ (๑.1 - 1.0 (๑, ๑) จากการศึกษาการใช้ PHMB เป็นส่วนประกอบในแผ่นปิดแผลใบโอ เซลลูโลส พบว่า มีประสิทธิภาพในการฆ่าเชื้อแบคทีเรียในบาดแผล มีความปลอดภัยต่อผู้ป่วย และสามารถลด ความเจ็บปวดของผู้ป่วยได้ และเมื่อเปรียบเทียบประสิทธิภาพของการใช้ PHMB และซิลเวอร์ เป็น ส่วนประกอบในแผ่นปิดแผล พบว่า ทั้ง PHMB และซิลเวอร์ สามารถลดความเจ็บปวดของผู้ป่วยและลดปริมาณ เชื้อแบคทีเรียได้ แต่อย่างไรก็ตาม พบว่า PHMB สามารถลดปริมาณแบคทีเรียได้รวดเร็วและดีกว่าซิลเวอร์ อย่าง มีนัยสำคัญ (แก่ นอกจากนี้ยังพบว่า PHMB มีรายงานการเกิดผลข้างเคียงต่ำ และยังไม่พบผลรายงานการดื้อยาของ PHMB (๑, 12)

คณะผู้วิจัยได้เสนอที่จะพัฒนาผลิตภัณฑ์วัสดุปิดแผลทางการแพทย์จากชีววัสดุที่หาได้ภายในประเทศ โดยมีโปรตีนกาวไหมและไบโอเซลลูโลสเป็นองค์ประกอบ เพื่อการสร้างมูลค่าเพิ่มให้แก่ผลิตผลการเกษตรของ ประเทศ ลดการนำเข้าและส่งเสริมการส่งออก การนำโปรตีนกาวไหมเซริซินซึ่งเป็นส่วนเหลือทิ้งจาก กระบวนการผลิตเส้นใยอุตสาหกรรม มาทำเป็นวัสดุทางการแพทย์จะเป็นการช่วยเพิ่มมูลค่ากับสินค้าทางการ

เกษตรได้อย่างมหาศาล นอกจากนั้นยังจะทำให้ประเทศไทยมีวัสดุปิดแผลที่ช่วยส่งเสริมการรักษาแผลใช้เอง ด้วยต้นทุนที่ต่ำ ซึ่งจะเป็นการช่วยยกระดับคุณภาพชีวิตของผู้ป่วยในประเทศให้ดีขึ้นและลดภาระทางสังคม ร่วมกับการใส่สารฆ่าเชื้อ PHMB เพื่อฆ่าเชื้อแบคทีเรียในบาดแผล วัตถุประสงค์หลักของโครงการคือ เพื่อ ประเมินศักยภาพของวัสดุปิดแผลที่มีโปรตีนกาวไหมและไบโอเซลลูโลสร่วมกับสารฆ่าเชื้อในการรักษา บาดแผลลึกในสัตว์ทดลอง

2. Rationale and literature review:

ในอดีต โปรตีนกาวใหมเซริซินนั้นจะถูกกำจัดทิ้ง เพราะเชื่อว่าเป็นพิษต่อเซลล์ในร่างกายคน แต่มีงานวิจัยพบว่าเซริซิน มีผลดีในการช่วยกระตุ้นเซลล์ให้เซลล์โตเร็วขึ้น โดยกระตุ้นการสร้างคอลลาเจนจากเซลล์ ทำให้ใช้เวลาในการรักษาบาดแผลลดลง และจากการศึกษาวิจัยในประเทศต่าง ๆ ทั่วโลกโดยเฉพาะประเทศ ญี่ปุ่น เกาหลี และจีน พบว่า โปรตีนใหมมีประโยชน์ทางการแพทย์มากมายไม่ว่าจะเป็นโปรตีนจากส่วนของ เส้นใย หรือโปรตีนกาวใหมเซริซิน ได้มีการศึกษาเพื่อนำโปรตีนใหมมาประยุกต์ใช้กับสัตว์ทดลองเพื่อ ประโยชน์ทางการแพทย์ เนื่องจากโปรตีนกาวใหมเซริซิน เป็นโปรตีนที่มีขนาดเล็ก สามารถละลายน้ำได้ง่าย และมีกรดอะมิโนที่จำเป็นต่อร่างกาย เช่น serine เป็นปริมาณมาก ดังนั้นโปรตีนกาวใหมเซริซินจึงมีคุณสมบัติในการเข้ากับร่างกายคนได้ดี (biocompatibility) สามารถย่อยสลายได้ในร่างกายมนุษย์ (biodegradable) อีกทั้ง ยังมีคุณสมบัติเป็นสารให้ความชุ่มชื้น สามารถด้านอนุมูลอิสระ (anti-oxidant) มีฤทธิ์ในการป้องกันผิวหนังจาก รังสียูวี ป้องกันการเกิดเนื้องอกในหนูอันเนื่องมาจากแสงแดดได้อีกด้วย มีการกันพบว่า ครีมโปรตีนกาวใหมเซริซินสามารถเพิ่มการเจริญเติบโตของ tibroblast ในหนูเม้าท์ สามารถเร่งอัตราการสมานแผลในหนูทดลอง ทำให้แผลในตัวหนูหายเร็วขึ้น อีกทั้งไม่ก่อให้เกิดการแพ้ ซึ่งเป็นจุดเริ่มต้นของการนำโปรตีนกาวใหมมาใช้อย่าง จริงจังในทางการแพทย์แต่อย่างไรก็ตามการใช้โปรตีนกาวใหมเซริซินกรีมก่อนจ้างยุ่งยาก ผู้ป่วยต้องกลับมาทำแผลทุกวัน เป็นการสูญเสียค่าใช้จ่าขมากขึ้น นอกจากกนี้ยังพบว่าโปรตีนกาวใหมเซริซินไม่มีคุณสมบัติในการ ข่าเพื้อ

ดังนั้นการนำโปรตีนกาวใหมเซริซินมาเป็นส่วนประกอบของแผ่นปิดแผลใบโอเซลลูโลสจึงช่วยเพิ่ม ประสิทธิภาพในการเพิ่มความชุ่มชื้นให้กับบาดแผล ช่วยลดขนาดของบาดแผล โดยมีผลข้างเคียงต่ำ รวมถึงการ ใส่สารฆ่าเชื้อ PHMB ส่งผลให้แผ่นปิดแผลมีคุณสมบัติในการฆ่าเชื้อแบคทีเรียทั้งชนิดที่ใช้ออกซิเจนและไม่ใช้ ออกซิเจนได้ จะช่วยให้ผู้ป่วยมีผลการรักษาที่มีประสิทธิภาพมากขึ้น ทำให้แผลหายได้อย่างรวดเร็ว

เอกสารอ้างอิง

- 1. Muangman P, Opasanon S, Suwanchot S, Thangthed O. Efficiency of Microbial Cellulose Dressing in Partial-Thickness Burn Wounds. Journal of the American College of Certified Wound Specialists. 2011;3:16-9.
- 2. Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials. 2005;26(21):4442-52. Epub 2005/02/11.
- 3. Aramwit P, Siritientong T, Srichana T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA. 2012;30(3):217-24. Epub 2011/05/12.
- 4. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production. International Journal of Molecular Sciences. 2010;11:2200-11.
- 5. Aramwit P, Sangcakul A. The Effects of Sericin Cream on Wound Healing in Rats. Japan Society for Bioscience, Biotechnology, and Agrochemistry. 2007;71(10):2473-7.
- 6. Hubner NO, Kramer A. Review on the efficacy, safety and clinical applications of polihexanide, a modern wound antiseptic. Skin pharmacology and physiology. 2010;23 Suppl:17-27. Epub 2010/09/21.
- 7. Paula GFd, Netto GI, Mattoso LHC. Physical and Chemical Characterization of Poly(hexamethylene biguanide) Hydrochloride. Polymers. 2011;3:928-41.
- 8. Roth B, Brill FH. Polihexanide for wound treatment--how it began. Skin pharmacology and physiology. 2010;23 Suppl:4-6. Epub 2010/09/21.
- 9. Moore K, Gray D. Using PHMB antimicrobial to prevent wound infection. Wounds UK. 2007;3(2):96-102.
- 10. Lenselink E, Andriessen A. A cohort study on the efficacy of a polyhexanide-containing biocellulose dressing in the treatment of biofilms in wounds. Journal of wound care. 2011;20(11):534, 6-9. Epub 2012/01/14.
- 11. Eberlein T, Haemmerle G, Signer M, Gruber Moesenbacher U, Traber J, Mittlboeck M, et al. Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. Journal of wound care. 2012;21(1):12, 4-6, 8-20. Epub 2012/01/14.

- 12. Kaehn K. Polihexanide: a safe and highly effective biocide. Skin pharmacology and physiology. 2010;23 Suppl:7-16. Epub 2010/09/21.
- 3. Objective(s): (Provide goal/specific aim of this project)
 - 1. เพื่อศึกษาคุณสมบัติของวัสคุปิดแผลที่มีโปรตีนกาวไหมพร้อมสารฆ่าเชื้อเป็นองค์ประกอบต่อ ความสามารถในการสมานแผลของหนูทดลอง
 - 2. เพื่อศึกษาผลข้างเคียงที่อาจเกิดขึ้นกับแผลสดจากการใช้วัสดุปิดแผลที่มีโปรตีนกาวใหมพร้อมสาร ฆ่าเชื้อเป็นองค์ประกอบ
- **4. Experimental design**: (Provide a detail of experimental design addressing a hypothesis.)

วัสดุอุปกรณ์และสารเคมีที่ใช้ในงานวิจัย

สัตว์ทดลอง

เพื่อศึกษาคุณสมบัติในการสมานแผลของวัสคุปิดแผลที่มีโปรตีนกาวไหมพร้อมสารฆ่าเชื้อเป็น องค์ประกอบ

กลุ่มที่ 1 ทคสอบแผ่นปิดแผล ใบโอเซลลู โลส ผสมโปรตีนกาวใหมและสารฆ่าเชื้อ PHMB Sprague Dawley เพศผู้ อายุประมาณ 8 สัปดาห์ น้ำหนัก 260±10 กรัม จำนวน 24 ตัว โดยแยกเลี้ยง 1 ตัว/กรง และแบ่งเป็นกลุ่มย่อยดังนี้

แผลด้านซ้าย แผ่นปิดแผล Bactigras[®], แผลด้านขวา แผ่นปิดแผลใบโอเซลลูโลส ผสมโปรตีนกาว ใหมและสารฆ่าเชื้อ PHMB ปิดทับให้วัสดุปิดแผลยึดติดกับบาดแผลด้วย Tegaderm[®] และพันทับด้วย Coban[®]

โดยหนูจะได้รับการผ่าตัดให้เกิดแผลที่ผิวหนังด้านหลัง โดยบาดแผลมีความลึกถึงชั้น subcutaneous หลังจากนั้นนำแผ่นปิดแผลแต่ละชนิดตามที่กล่าวข้างต้นมาปิดบาดแผล

เมื่อครบกำหนด 3, 7, 14 และ 21 วัน หนูจำนวนกลุ่มละ 6 ตัวจะถูกนำมาตัดชิ้นเนื้อเพื่อทำการวิเคราะห์ ทาง Histology ต่อไป

ให้หนูได้รับอาหารและน้ำ และจะพักสัตว์ไว้ประมาณ 3-5 วันก่อนนำมาใช้ในการทดลอง

กลุ่มที่ 2 ทคสอบแผ่นปิดแผล โปรตีนกาวไหมผสมสารฆ่าเชื้อที่เป็นไคโตซานไมโครสเฟียร์ Sprague Dawley เพศผู้ อายุประมาณ 8 สัปดาห์ น้ำหนัก 260±10 กรัม จำนวน 24 ตัว โดยแยกเลี้ยง 1 ตัว/กรง และแบ่งเป็นกลุ่มย่อยดังนี้ แผลด้านซ้าย แผ่นปิดแผล Bactigras[®], แผลด้านขวา แผ่นปิดแผลโปรตีนกาวใหมผสมสารฆ่าเชื้อที่ เป็นใกโตซานไมโกรสเฟียร์ ปิดทับให้วัสดุปิดแผลยึดติดกับบาดแผลด้วย Tegaderm[®] และพันทับด้วย Coban[®]

โดยหนูจะได้รับการผ่าตัดให้เกิดแผลที่ผิวหนังด้านหลัง โดยบาดแผลมีความลึกถึงชั้น subcutaneous หลังจากนั้นนำแผ่นปิดแผลแต่ละชนิดตามที่กล่าวข้างต้นมาปิดบาดแผล

เมื่อครบกำหนด 3, 7, 14 และ 21 วัน หนูจำนวนกลุ่มละ 6 ตัวจะถูกนำมาตัดชิ้นเนื้อเพื่อทำการวิเคราะห์ ทาง Histology ต่อไป

ให้หนูได้รับอาหารและน้ำ และจะพักสัตว์ไว้ประมาณ 3-5 วันก่อนนำมาใช้ในการทดลอง

กลุ่มที่ 3 ทคสอบแผ่นปิดแผลโปรตีนกาวไหมที่ผลิตด้วยกรรมวิธีชะเกลือ

Sprague Dawley เพศผู้ อายุประมาณ 8 สัปดาห์ น้ำหนัก 260±10 กรัม จำนวน 24 ตัว โดยแยกเลี้ยง 1 ตัว/กรง และแบ่งเป็นกลุ่มย่อยดังนี้

แผลด้านซ้าย แผ่นปิดแผล Bactigras[®], แผลด้านขวา แผ่นปิดแผลโปรตีนกาวใหมที่ผลิตด้วยกรรมวิธี ชะเกลือ ปิดทับให้วัสดุปิดแผลยึดติดกับบาดแผลด้วย Tegaderm[®] และพันทับด้วย Coban[®]

โดยหนูจะ ได้รับการผ่าตัดให้เกิดแผลที่ผิวหนังด้านหลัง โดยบาดแผลมีความลึกถึงชั้น subcutaneous หลังจากนั้นนำแผ่นปิดแผลแต่ละชนิดตามที่กล่าวข้างต้นมาปิดบาดแผล

เมื่อครบกำหนด 3, 7, 14 และ 21 วัน หนูจำนวนกลุ่มละ 6 ตัวจะถูกนำมาตัดชิ้นเนื้อเพื่อทำการวิเคราะห์ ทาง Histology ต่อไป

ให้หนูได้รับอาหารและน้ำ และจะพักสัตว์ไว้ประมาณ 3-5 วันก่อนนำมาใช้ในการทดลอง

กลุ่มที่ 4 ทดสอบแผ่นเนื้อเยื่อปิดแผล โปรตีนกาวไหมผสมสารฆ่าเชื้อ PHMB

Sprague Dawley เพศผู้ อายุประมาณ 8 สัปดาห์ น้ำหนัก 260±10 กรัม จำนวน 24 ตัว โดยแยกเลี้ยง 1 ตัว/กรง และแบ่งเป็นกลุ่มย่อยดังนี้

แผลด้านซ้าย แผ่นปิดแผล Bactigras[®], แผลด้านขวา แผ่นเนื้อเยื่อปิดแผลโปรตีนกาวใหมผสมสารฆ่า เชื้อ PHMB ปิดทับให้วัสดุปิดแผลยึดติดกับบาดแผลด้วย Tegaderm[®] และพันทับด้วย Coban[®]

โดยหนูจะ ได้รับการผ่าตัดให้เกิดแผลที่ผิวหนังด้านหลัง โดยบาดแผลมีความลึกถึงชั้น subcutaneous หลังจากนั้นนำแผ่นปิดแผลแต่ละชนิดตามที่กล่าวข้างต้นมาปิดบาดแผล

เมื่อครบกำหนด 3, 7, 14 และ 21 วัน หนูจำนวนกลุ่มละ 6 ตัวจะถูกนำมาตัดชิ้นเนื้อเพื่อทำการวิเคราะห์ ทาง Histology ต่อไป

ให้หนูได้รับอาหารและน้ำ และจะพักสัตว์ไว้ประมาณ 3-5 วันก่อนนำมาใช้ในการทดลอง

สารเคมี

- 1. แผ่นปิดแผลใบโอเซลลูโลส ผสมโปรตีนกาวใหมและสารฆ่าเชื้อ PHMB, แผ่นปิดแผลโปรตีนกาวใหมผสม สารฆ่าเชื้อที่เป็นใกโตซานไมโครสเฟียร์, แผ่นปิดแผลโปรตีนกาวใหมที่ผลิตด้วยกรรมวิธีชะเกลือ และแผ่น เนื้อเยื่อปิดแผลโปรตีนกาวใหมผสมสารฆ่าเชื้อ PHMB
- 2. แผ่นปิดแผล Bactigras®
- 3. Tegaderm
- 4. Coban
- 5. Normal Saline
- 6. 70% แอลกอฮอล์
- 7. ยาสถบ โซลิเทล 100 (Zoletil)
- 8. ยาแก้ปวด Rimadyle

วัสดุอุปกรณ์

- 1. อุปกรณ์ผ่าตัดชุดเล็ก (มีคผ่าตัด ใบมีค กรรไกรปลายแหลม กรรไกรปลายป้าน forceps)
- 2. เข็มฉีดยาเบอร์ 26 และกระบอกฉีดยา 1 ซีซี (เพื่อฉีดยาสลบ)
- 3. Beaker ขนาด 50 มิลลิลิตร
- 4. บัตตาเลียนหรือมีคโกนขน
- 5. sterile สำลี + cotton bud
- 6. ไม้บรรทัด
- 7. กล้องจุลทรรศน์กำลังขยายต่ำพร้อมชุดถ่ายภาพดิจิตอลและคอมพิวเตอร์ควบคุมโปรแกรมวัดขนาคภาพ
- 8. กระดาษรองผ่าตัด
- 9. กรงเลี้ยงแบบกรงแขวนเดี่ยว
- 10. Petri dishes
- 11. ขวดเก็บตัวอย่างขนาดเส้นผ่าศูนย์กลาง 1.5 นิ้ว สูง 6 ซม. 200 ขวด
- 12. ขวดเก็บตัวอย่างขนาดขวด isotope 800 ขวด
- 13. แผ่นพลาสติกขนาค 3 X 4 ซม.
- 14. Staple
- 15. Market ทนน้ำ + เทปกาว
- 16. แผ่นปิดแผล Bactigras®

17. heat pad หรือ hot pad

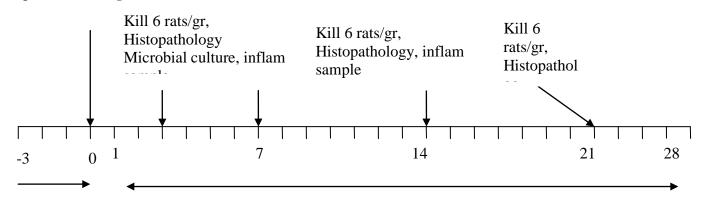
วิธีดำเนินการทดลอง

1. การทดสอบในสัตว์ทดลอง

เพื่อศึกษาคุณสมบัติในการสมานแผลของวัสคุปิดแผลที่มีโปรตีนกาวไหมเป็นองค์ประกอบ แผลด้านซ้าย แผ่นปิดแผล Bactigras®, แผลด้านขวา วัสคุปิดแผลที่มีโปรตีนกาวไหมเป็นองค์ประกอบ ตามที่ระบุไว้ข้างต้น

โดยหนูแต่ละกลุ่มจะได้รับการผ่าตัดให้เกิดแผลที่ผิวหนังด้านหลัง ตัวละ 2 แผลในขนาด 1.5 ซม.× 1.5 ซม. โดยบาดแผลมีความลึกถึงชั้น subcutaneous หลังจากนั้นนำแผ่นปิดแผลแต่ละชนิดตามที่กล่าวข้างต้นมาปิด บาดแผล

เมื่อครบกำหนด 3, 7, 14 และ 21 วัน หนูจำนวนกลุ่มละ 6 ตัวจะถูกนำมาตัดชิ้นเนื้อเพื่อทำการวิเคราะห์ ทาง Histology ต่อไป


ในกลุ่มที่ 2 ให้ถ่ายรูปแผลและวัดขนาดแผลในวันที่จะเก็บเนื้อเยื่อหนู ซึ่งจะต้องถ่ายรูปทุกตัวแม้ตัวที่ ไม่ได้จะทำการเก็บเนื้อเยื่อโดยทำการใส่หนูเข้าใน chamber เพื่อป้องกันการเคลื่อนไหวของหนูซึ่งจะทำให้ได้รูป ถ่ายที่ไม่ชัดเจน และ terminate หนู (ครั้งละ 6 ตัว) ในวันที่ 3, 7, 14 และ 21 เก็บตัวอย่างเนื้อเยื่อทำ histology เพื่อทำการวิเคราะห์ต่อไป พร้อมทั้งเขี่ยแผลเพาะเชื้อในวันดังกล่าวด้วย

ขั้นตอนการทดลอง -

- 1. สลบหนูทคลอง โดยใช้ Zoletel 100 ฉีดเข้ากล้ามเนื้อขาหลังหนู (IM injection) ขนาด 30 mg/kg BW
- 2. โกนขนบริเวณด้านหลังของหนู ใช้ปากกาทำเครื่องหมายบริเวณที่จะตัด (ขนาด 1.5×1.5 cm²) โดยทำ การวาง template ลงไปบนผิวหนังเพื่อให้ได้ขนาดที่เท่ากัน
- 3. เช็ดทำความสะอาคผิวหนังบริเวณที่โกนขนแล้วค้วย 70% alcohol
- 4. ตัดผิวหนังด้านหลังให้เป็นแผลขนาด 1.5×1.5 cm² โดยมีความลึกถึงชั้น subcutaneous (full thickness skin excision) ทำเป็น 2 แผลต่อ 1 ตัว โดยใช้วิธี aseptic surgery
- 5. ถ่ายภาพและวัดขนาดแผลก่อนและหลังทำความสะอาดแผลในวันที่จะทำการ terminate หนูโดยต้อง ถ่ายภาพจากหนูทุกตัวรวมถึงตัวที่จะไม่ถูก terminate ในวันนั้นด้วย
- 6. ทำความสะอาดแผลทุกแผลด้วย normal saline
- 7. ถ่ายภาพและวัดขนาดแผลอีกครั้งหนึ่งหลังจากทำความสะอาคด้วย normal saline เนื่องจากแผลที่หาย บางส่วนและตกเป็นสะเก็ดอาจถูกชะออกด้วย normal saline

- 8. ใช้แผ่นปิดแผลชนิดที่ระบุไว้ในแต่ละกลุ่มย่อยปิดบาดแผลให้ทั่วถึง
- 9. ติดตามดูผลการสมานแผลทุกวันเป็นเวลา 21 วัน พร้อมถ่ายภาพแผลทุกครั้งที่มีการ terminate หนู โดย จะทำความสะอาดแผลด้วย normal saline ทุกวัน(กำหนดเวลาการติดตามการสมานแผลให้ตรงกันทุก วันและบันทึกภาพ)
- 10. ฉีดยาแก้ปวด Rimadyle ขนาด 5 mg/kg ทางใต้ผิวหนัง ทุก 24 ชั่วโมงเป็นเวลา 5 วัน
- 11. มีการประเมินโดยการวัดขนาดแผลและถ่ายภาพแผลในวันที่ 0, 3, 7,14, 21 ในแต่ละกลุ่ม และสุ่มทำ การ terminate
 - กลุ่มละ 6 ตัว เพื่อทำการตัดผิวหนังบริเวณทดสอบสารไปตรวจทางพยาธิสภาพ (histological examination) รวมทั้งทำการเขี่ยแผลเพื่อนำไปตรวจนับปริมาณเชื้อ
- 12. เก็บตัวอย่างจากแผลทั้งจากกลุ่มทดลองและกลุ่มควบคุมเมื่อทำการ terminate หนูทดลองแล้วเพื่อนำไป ตรวจวิเคราะห์ปริมาณ collagen, nitric oxide, TNF factor และ interleukin ศึกษาสภาวะการอักเสบของ แผล
- 13. ประเมินผลการทคลองทุกวัน (ดูตามวิธีประเมินผลข้างล่าง)
- 14. เมื่อเสร็จสิ้นการทคลองซากสัตว์จะถูกนำไปเผาทำลายต่อไป

Experimental design

Observation: weight gain, toxicity, Photo/apply cream

วิธีการประเมินผล

- 1. ดูความเป็นพิษของสารต่อสัตว์ เช่น เบื่ออาหาร เดินเซ ซึม ไม่ถ่ายอุจจาระ หรืออุจจาระเหลว เป็นต้น
- 2. ชั่งน้ำหนักสัตว์และบันทึกการกินอาหารทุกวัน

- 3. ถ่ายภาพพัฒนาการเปลี่ยนแปลงของการสมานแผลในวันที่จะทำการ terminate หนู ก่อนทำความสะอาดแผล และหลังทำความสะอาดแผล ภายใต้กล้องจุลทรรศน์ Stereo และ กล้องบันทึกภาพคิจิตอลด้วยโปรแกรมการ บันทึกและวิเคราะห์ภาพ (วัดขนาดของแผลแล้วคำนวณหา wound size reduction ด้วยโปรแกรม image analysis) วัดบริเวณกึ่งกลางแผลทั้งแนวตั้งและแนวนอน
- 4. เก็บตัวอย่างเนื้อเยื่อเพื่อศึกษา Histogram และวัดผลของแผ่นเนื้อเยื่อต่อการอักเสบ โดยวัด TNF factor, nitric oxide, Interleukin และ collagen

5. Data analysis and statistical method:

ใช้สถิติ one-way analysis of variance (ANOVA) ที่ระดับความเชื่อมั่น 95% (p<0.05) แสดงค่าข้อมูล เป็น mean±SD

6. Animal model and species justification:

Description of animals

Common name	Species	Strain/ Stock	Age	Weight	Sex	Number
Rat	Rattus norvegicus	Sprague Dawley	8 wk	260 ± 10	male	24

Special consideration: (List specialized requirements for the research animals, e.g. certain antibody or virus free, *Pasteurella* free, etc.) ไม่มี

Source/Vendor: สำนักสัตว์ทดลอง มหาวิทยาลัยมหิดล

6.2 Scientific justification for animal species and number requested.

- 6.2.1 Explain why the proposed species is/are the most appropriate. เป็นพันธุ์ที่เลี้ยงง่าย นิยมใช้ในการทดลองและไม่มีข้อจำกัดในการศึกษาบาดแผลที่ผิวหนัง
- 6.2.2 Provide an explanation or statistical analysis on the number of animals to be used.

เนื่องจากได้มีผลการทดลองเบื้องต้นแสดงให้เห็นประสิทธิภาพของวัสดุปิดแผลที่มีโปรตีนกาว ใหมเป็นองค์ประกอบในการกระตุ้นการเจริญเติบโตและการเคลื่อนตัวของเซลล์ผิวหนังเพื่อการสมานแผล จึง เห็นสมควรให้มีการใช้ขนาดตัวอย่างให้เหมาะสมเพื่อให้สามารถคำนวณค่าทางสถิติ พร้อมทั้งเพิ่มกลุ่มควบคุม เพื่อเปรียบเทียบกับวิธีรักษาแผลวิธีอื่น ๆ ที่ใช้อยู่ในปัจจุบัน

7. Animal care:

7.1 Husba	andry consideration	on: (Briefly describe animal housing and living conditions, routine animal
observatio	ns, feed and water	provisions, etc).
7.1.1	Study location: (Animal house)
7.1.2	สำนักสัตว์ทคลอ	ง มหาวิทยาลัยมหิดล
7.1.3	Housing system:	
	Clean conv	ventional Strict hygienic conventional
	Isolator ma	aintained Barrier maintained
	Other, plea	se specify Strict hygiene conventionally
7.1.3 H	Iousing	
	Laminar flo	ow Environmental chamber Isolator
	Other, pleas	se specify : Open cage
7.1.4 (Caging:	
	Solid botto	m, open top Static filtered top cages
	Suspended	cages, wire bottom Metabolic cages
	Individual	ventilated cage (IVC)
	Other, plea	se specify
7.1.5 (Cage size (W x L x	H) 11x11.5x8 นิ้ว
7.1.6 0	Caging materials	
	Plastic	Stainless steel
	Other, plea	se specify
7.1.7	Number of animal	s per cage 1 ตัว
	Environmental req	
	Temperature: 2	5±2°C
	Humidity:	60±15
	Light:	Standard fluorescent
	8	Other, please specify
	Light cycle:	Standard 12:12 (light:dark)
	215111 07010.	Other, please specify

7.1.9 Foo	od:
Ту	pe of food: Standard diet Other, please specify
Fe	eding schedule:
	Routine feeding (Ad libitum)
	Other, please specify
7.1.10 Wat	ter:
Ту	rpe of water: Hyperchlorinated 10-12 ppm.
	Acidified, pH
	Other, please specify Provision of water:
	Routine feeding (Ad libitum)
	Other, please specify
7.1.11 Bed	ding or litters:
	No Yes , please specify Sterile Non-sterile
∠ Tv	rpe of bedding or litters:
,	Wood shaving Sawdust Paper Other, please specify
Scl	hedule of bedding changing:
	Weekly At specified interval, every 3-4 day(s)
7.2 Attending	veterinary care: (Describe the routine veterinary care. List the criteria used for health
evaluation while the	e animals are on study).
	ารม attending veterinarian care ของสำนักสัตว์ทคลองแห่งชาติ
8. Animal welfare:	
8.1 Does the p	roposed research duplicate any previous work?
Yes Liter	No rature search is attached Literature search was conducted on
1. Kweor	h HY, Cho CS. Biomedical applications of silk protein. <i>Int J Indust Entomol</i> .
2001:3	(1):1-6.

- 2. Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai T. Attachment and growth of cultured fibroblast cells on silk protein matrices. *J Biomed Mater Res* 1995;29:1215–21.
- 3. Tsukada M, Hayasaka S, Inoue K, Nishikawa S, Yamamoto S. Cell culture bed substrate for proliferation of animal cell and its preparation. *Japan Patent* 11-243948A, 1999.
- 4. Tsubouchi K. Occlusive dressing consisting essentially of silk fibroin and silk sericin and its production. *Japan Patent* 11-070160A, 1999.
- 5. Tsubouchi K, Igarashi Y, Takasu Y, Yamada H. Sericin enhances attachment of cultured human skin fibroblasts. *Biosci Biotechnol Biochem.* 2005;69(2):403-405.
- 6. Zhang Y. Applications of natural silk protein sericin in biomaterials. *Biotechnology Advances*. 2002;20(2):91-100.
- Lenselink E, Andriessen A. A cohort study on the efficacy of a polyhexanide-containing biocellulose dressing in the treatment of biofilms in wounds. Journal of wound care. 2011;20(11):534, 6-9. Epub 2012/01/14.

	Database used are	
If ves	s, explain why it is s	cientifically necessary to duplicate the experiment.

8.2 Replacement, reduction and refinement.

- 8.2.1 Replacement of animals (e.g., with *in vitro* models, computer models or less sentient animals): เนื่องจากงานวิจัยนี้ต้องการศึกษาดูเซลล์ที่เกี่ยวข้องกับการสมานของแผลสด จึงไม่สามารถใช้ model อื่นในการศึกษาได้
- 8.2.2 Reduction in the number of animals (e.g., using appropriate statistical methods in the design and analysis of the study; reduction in experimental variability by using animals of defined genetic or microbiological status.): การทดลองนี้ได้พยายามใช้สัตว์จำนวนน้อยที่สุดแต่ต้องเพียงพอที่จะนำมาคำนวณค่า ทางสถิติ และเพียงพอแก่การเก็บตัวอย่างทุก 7 วันเพื่อมาศึกษาลักษณะตัวอย่างของแผล อีกทั้งยังต้องมีกลุ่ม ควบคุมเพื่อให้ผลการทดลองสามารถนำมาอ้างอิงได้
- 8.2.3 <u>Refinement of experimental procedures to minimize pain or distress</u> (e.g., early endpoints; use of analgesics, anesthetics or sedatives; techniques that reduce stress in the animal):

การทดลองนี้จะทำ โดยสัตวแพทย์ที่มีประสบการณ์ในการปฏิบัติการผ่าตัดและมีการวางยาสลบก่อนการ ผ่าตัด และจะมีการให้ยาระงับการปวดแก่สัตว์ด้วย

8.3 Potential animal pain and distress assessment:

- 8.3.1 During the study:
 - 1) How often will the clinical condition of animals be monitored? ทุกวัน
 - 2) Who will monitor the clinical condition of the animals? สัตวแพทย์ประจำโครงการ
- 8.3.2 Are the animals expected to experience any specific study-induced or related problems (i.e. health problems, pain, distress, complications, etc.) or any health problems as a result of the phenotype of the animal? Yes If yes, please answer the following questions: 1) Describe the expected problems. 2) What criteria(s) will be used to assess pain, distress, or discomfort? Check all that apply: Inactivity Loss of appetite 10 % 15% Loss of weight Restlessness Abnormal resting postures, somnolence or hunched posture Licking, biting, scratching, or shaking a particular area Failure to show normal patterns of inquisitiveness Failure to groom, causing and unkempt appearance Guarding (protecting the painful area) Loss of mobility Red stain around the eyes of rats Self-mutilation Labored breathing Unresponsiveness

Other (please list)

8.3 Anesthesia
Yes No
If yes, please answer the following questions:
1) Preanesthetic preparation :
2) Type of anesthesia used: ยาสถิบชนิด Tiletamine/Zolazopam
3) Dose: 30 mg/kg
4) Route of administration :ทางกล้ามเนื้อ
5) Frequency of anesthesia : 1 ครั้งก่อนเลาะชั้นผิวหนังบริเวณลำตัวค้านหลังออก
6) Length of anesthesia : ประมาณ 1 ชั่วโมง
7) Who is responsible for maintaining anesthesia? : สัตวแพทย์
8) If inhalation anesthetics are used, describe the system for scavenging waste anesthetics
gas
9) What criteria(s) will be used to assess level of anesthesia?
Check all that apply:
Respiration rate Body temperature Heart rate
ECG Toe pinch Tail pinch
Corneal reflex Pedal reflex Muscular relaxation
Color of mucous membrane
Other (pulse oximeter, respirometer) please list
10) How animals are kept warm? ใช้ แผ่น heat pad รองให้สัตว์นอนจนรู้สึกตัวจึงจับเข้ากรง
8.4 Analgesics and/or tranquilizers:
Yes No
If yes, please specify
1) Type of analgesics used NSAID : Rimadyle
2) Dose 5 mg/kg
3) Route of administration ฉีดเข้าใต้ผิวหนัง
8.5 Describe post-anesthetic treatment or intervention: ฉีดยาแก้ปวดทุก 24 ชั่วโมงติดต่อกัน 5 วัน
9. Surgery:
Yes No

If yes, please answer the follo	wings:	
9.1 Surgical procedure is:	Non-survival	Survival
	Major	Minor
	One time	Multiple

9.2 Location: Give the location/room number for the proposed surgical procedure.
ห้องปฏิบัติการของหน่วยปฏิบัติการวิจัยในสัตว์ทคลองขนาดเล็ก ของสำนักสัตว์ทคลองแห่งชาติ

9.3 Surgeon/qualification: Indicate who will perform the surgery, and his/her qualifications, training, or experience in the proposed procedure.

Name	Description of relevant experience or training
น.สพ. สุเมธ อำภาวงษ์	ผ่านการฝึกปฏิบัติการการผ่าเลาะผิวหนังจากการทดลองเบื้องต้น
สพ.ญ วัชราภรณ์ เศษบุปผา	ผ่านการฝึกอบรมวิธีการ anesthesia ในสัตว์ทคลองขนาดเล็ก และมี ประสบการณ์จากการศึกษาขั้นปฐมภูมิของโครงการนี้
สพ.ญ เกสรา ชุมพลกูลวงศ์	ผ่านการฝึกปฏิบัติการการผ่าเลาะผิวหนังจากการทดลองเบื้องต้น

9.4 Procedure: Describe in detail the surgical procedure.

ตามข้อ 3 Experimental design หัวข้อ ขั้นตอนการทดลอง ข้อที่ 3-7

Reference: Mohantyb M., Fernandezc AC., Mohananc PV., Jayakrishnan A. Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2006; 27: 1355–1361

9.5 Pre- and post-operative provision: Detail the provision for both pre-and post-operative care, including provisions for post-surgical observation.

ตามแนวทางปฏิบัติของสำนักสัตว์ทคลองแห่งชาติในส่วนการทำศัลยกรรมในสัตว์ทคลอง

9.6 Describe long-term care of chronic survival procedure.

ตามแนวทางปฏิบัติของสำนักสัตว์ทคลองแห่งชาติในส่วนการทำศัลยกรรมในสัตว์ทคลอง

9.7 Multiple survival surgery procedures: Multiple major operative procedures on the same animal must be adequately justified for scientific reasons by the principal investigator in writing.

9.7.1 Procedure:	
9.7.2 Scientific justification:	

10. Blood or body fluid withdrawal/tissue collection/injections, tail clip, gavaging

Describe in detail : method(s), needle size(s), volume(s) collected or administered, and frequency of collection or injection.

	Anatomic	Needle size/	Biopsy	Volume	Volume	Frequency
	location	catheter size	size	collected	administered	(times per day)
		and length		(ml)	(ml)	
Blood withdrawal						
Body Fluid withdrawal						
Tissue collection						
Injection/ infusion						
Tail clip						
Gavaging						
Other						

Total blood volume ml. in total study days or months
11. Restraint with mechanical devices:
Yes No
If yes, describe device, duration of restraint, frequency of observation, conditioning procedures and steps
to assure comfort and well-being.
If prolonged restraint is used, must provide justification:

12. Project involving food and water deprivation, or dietary manipulation:

Yes	No					
If yes, describe methodology. State objective criteria used to assess physical condition and pain,						
discomfort, stress, and distress during the course of study. Include clinical signs or manifestations						
expected from	the procedure. What o	eriteria will be use	ed to determine a	humane endpoint	before severe	
morbidity and o	leath?					
I	ndividual animal's we	eight is monitored	l every	days.		
I	ndividual animal's we	eight is not monit	ored.			
	Amount	Duration	Compound	Compound	Frequency	
	restricted/added		supplemented	deleted		
Food						
restriction		••••••	••••••	••••••	••••••	
Fluid						
restriction		••••••	••••••	••••••	••••••	
Nutrient						
alterations		••••••	••••••	••••••	••••••	
13. Tumor and	disease models, tox	icity testing:				
Yes	No					
If yes, desc	ribe methodology use	ed for tumor/disea	ase and/or toxicity	testing. State ob	jective criteria us	
assess phys	assess physical condition and pain, discomfort, stress, and distress during the course of study, including					
clinical sig	clinical signs or manifestations expected from the procedure. What criteria will be used to determine a					
humane en	dpoint before severe i	morbidity and dea	ath?			
14. Behavioral	studies:					
Yes No						
If yes, desc	If yes, describe in detail types of behavioral manipulations, including placement in testing chambers or					
apparatus, use o	of adversive stimuli, d	luration of test pe	riods, and frequer	ncy of test period	s	

15.1 Disposal of animals after completion of activity: Euthanatized Return to production/breeding unit/facility inventory Transfer to another research project: - Protocol No. and investigator..... Other (Please describe) 15.2 Euthanasia method Anesthetic overdose, please list Drugs used for euthanasia Anesthal Dose: 30 mg/kg Route of administration: Intraperitoneal Cervical dislocation Decapitation CO, Chamber Other (Please describe)..... 16. Study endpoint: (State the project study endpoint for the animals. Indicate whether recovery, euthanasia, or death is/are expected; specific plan for determining when the animal experimentation phase will be stopped). ตามที่กำหนดในแผนการทดลอง Early endpoint is used (the animals are humanely euthanized prior to the expected terminate study day: Yes Early endpoint criteria used are ใช้เกณฑ์ในข้อ 7.3.2 เป็นข้อมูลในการตัดสินใจทำลายสัตว์ในระหว่างการ ทดลอง หากพบว่ามีผลต่อสวัสดิภาพของสัตว์ 17. Biohazard/safety: Infectious agent (s) is/are used: specify..... Biohazardous chemical or carcinogen or radioactive material is/are used specify Recombination agent(s) is/are used: specify 17.1 Provide a list of any potential biohazards associated with this protocol. Specify biosafety level. BSL 1 BSL 2 BSL 3 BSL 4

15. Euthanasia / Disposition of animals

	17.2 Explain any safety precaution or program designed to protect personnel from biohazard and an
sι	urveillance procedure in place to monitor potential exposure
	17.3 Explain how the waste is decontaminated and disposed
	17.4 List primary safety equipment and personnel protective equipment requirement
	17.5 List procedures if any accident, injury or illness occurs.
	17.6 List specific treatment provision for accidental exposure.
	17.7 List relevant occupational medical health provision.

18. Qualification of personnel:

List all individuals who will be working with the animals on this project. Include all investigators, students, post-doctoral researchers, staff research associates and laboratory assistants who will actually work with the animals. If personnel do not have experience, state how they will be trained:

Name	Responsibilities	Description of relevant experience or training

As Principal investigator on this protocol, I verifies that the information herein is true and correct and that I am familiar with and will comply with standard of animal care and use established under the ethical guidelines and policies of Mahidol University, and Office of the National Research Council of Thailand (NRCT).

Additionally, I acknowledge my responsibilities and provide assurances for the followings:

- **A. Animal use:** The animals authorized for use in this protocol will be used only in the activities and in the manner described herein, unless a deviation is specifically approved by the MU-ACUC.
- **B. Duplication of effort:** I have made a reasonable, good faith effort to ensure that this protocol is not an unneccessary duplication of previous experiments.
- **C. Statistical assurance:** I assure that I have consulted with qualified statistician to evaluate the statistical design or strategy of this proposal, and that the minimum number of animals needed for scientific validity are used.

D. Biohazard/safety: I have taken into consideration, and I have made the proper coordinations regarding all applicable rules and regulations concerning radiation protection, biosafety, recombinant issues, etc., in the preparation of this protocol.

E. Training: I verify that the personnel performing the animal procedures/manipulations described in this protocol are technically competent and have been properly trained to ensure that no unneccessary pain or distress will be caused as a result of the procedures/manipulations.

F. Responsibility: I acknowledge the inherent moral and administrative obligations associated with the performance of this animal use protocol, and I assure that all individuals associated with this project will demonstrate a concern for the health, comfort, welfare, and well-being of the research animals. Additionally, I pledge to conduct this study in the responsibility for implementing animal use alternatives where feasible, and conducting humane and lawful research.

G. Scientific review: This proposed animal use protocol has received appropriate peer scientific review, and is consistent with good scientific research practice.

H. Research studies: This protocol **IS** or **IS NOT** (circle one) associated with a grant application. If yes, I certify that this protocol is essentially the same as the study found in the grant application or program/project. The MU-ACUC and the funding agency will be notified of any changes in the proposed project, or personnel, relative to this application. I will not proceed with animal experiment until approval by the MU-ACUC is granted.

(Principal investigator)	Date

ภาคผนวก 3

ใบรับรองโครงการวิจัยในสัตว์ทดลอง คณะกรรมการกำกับดูแลการเลี้ยงและการใช้สัตว์ทดลอง ศูนย์สัตว์ทดลองแห่งชาติ มหาวิทยาลัยมหิดล

รหัสโครงการ # NLAC-MU Protocol No. RA 2014-03	
ชื่อข้อเสนอการวิจัยการทดสอบประสิทธิภาพของวัสดุปิดแ	ผลที่มีโปรตีนกาวไหมเป็นองก์ประกอบในการรักษา
บาดแผล ในหนูแรก	
ชื่อ-สกุล ผู้เสนอข้อเสนอการวิจัยนางสาววรรณี อ	งักศิริสรรพ
หน่วยงานที่สังกัด (คณะ/กอง) ศูนย์สัตว์ทคลองเ	เห่งชาติ
(มหาวิทยาลัย/กรม)มหาวิทยาลัยมหิด	na
(กระทรวง)กระทรวงศึกษาธิ	การ
ข้อเสนอการวิจัยนี้ได้ผ่านการพิจารณาจากคณะกรรมกา	รกำกับดูแลการเลี้ยงและใช้สัตว์ทคลองแล้ว จึงเห็นสมควร
ให้คำเนินการเลี้ยงและใช้สัตว์ตามข้อเสนอการวิจัยนี้ใค้	
	1/
anny = at	231731
(นางระพี อินปั๋นแก้ว)	(นางกาญจนา เข่งคุ้ม)
ตำแหน่ง ประธานคณะกรรมการกำกับดูแลการเลี้ยงและใช้สัตว์	ตำแหน่ง ผู้อำนวยการศูนย์สัตว์ทคลองแห่งชาติ
วัน /เดือน /ปี 16/07/57	วัน /เดือน /ปี 16/07/57

ภาคผนวก 4

FISEVIER

Contents lists available at ScienceDirect

Materials Science and Engineering C

journal homepage: www.elsevier.com/locate/msec

Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing

Supamas Napavichayanun a,b, Phakdee Amornsudthiwat c, Prompong Pienpinijtham d, Pornanong Aramwit a,b,*

- ^a Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Thailand
- b Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok 10330, Thailand
- ^c Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
- d Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand

ARTICLE INFO

Article history: Received 4 November 2014 Received in revised form 15 March 2015 Accepted 7 May 2015 Available online 09 May 2015

Keywords:
Biocellulose
Silk sericin
Polyhexamethylene biguanide
Antimicrobial activity
Wound dressing
Interaction

ABSTRACT

An ideal wound dressing should keep the wound moist, allow oxygen permeation, adsorb wound exudate, accelerate re-epithelialization for wound closure, reduce pain and healing time, and prevent infection. Our novel biocellulose-based wound dressing was composed of three components: 1) biocellulose (BC), intended to create a moist and oxygen-permeated environment with exudate adsorption; 2) silk sericin (SS) known for its enhancement of collagen type I production, which is critical for re-epithelialization; and 3) the antiseptic polyhexamethylene biguanide (PHMB). To deliver an effective BC wound dressing, the interactions between the components (PHMB vs. SS) needed to be thoroughly analyzed. In this study, we investigated important parameters such as the loading sequence, loading concentration, and loading amount of the active compounds to ensure that the BC wound dressing could provide both antimicrobial activity and promote collagen production during healing. The loading sequence of SS and PHMB into BC was critical to maintain PHMB antimicrobial activity; silk sericin needed to be loaded before PHMB to avoid any negative impacts. The minimum PHMB concentration was 0.3% w/v for effective elimination of all tested bacteria (*Bacillus subtilis, Staphylococcus aureus*, methicillin-resistant *S. aureus*, *Escherichia coli*, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa*). The amounts of SS and PHMB in BC were optimized to ensure that the dressings released the optimal amounts of both SS to enhance fibroblast collagen production and PHMB for effective antimicrobial activity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ideal wound dressing should promote a suitable environment for wound healing, enable fast tissue regeneration, reduce pain, and prevent infection during the healing process [1]. To accelerate the healing, the wound needs to be moisturized while the excess exudate and toxins must be removed to minimize maceration. In addition, oxygen must be able to permeate through the dressing to supply regenerating cells. Recently, biocellulose (also known as bacterial cellulose) has been developed for several applications, including wound dressing [2,3]. Unlike plant-based cellulose, biocellulose (BC) has an ultrafine network with high porosity which allows a high capability for water uptake [2,4], making it becomes an ideal material for the healing of high exudate wound. The highly uniaxial-oriented nanofibers (3–8 nm) of BC contribute to a high crystallinity content (60–80%) [2], providing impressive mechanical strength for ease of handling in the wet state. Furthermore, BC is considered as an electrostatically neutral material [5], enabling it

E-mail address: aramwit@gmail.com (P. Aramwit).

appropriate for the loading of either positively-charged or negatively-charged bioactive compounds. In addition, the high water retention characteristics of BC create a moist wound healing environment [2,4], which allows for faster healing than a dried environment [6–8].

Up to date, commercial BC wound dressings are available. Some of them are incorporated with drugs or active compounds (i.e., iodine. chlorhexidine, and silver) for antimicrobial purpose. In this study, polyhexamethylene biguanide (PHMB) was chosen as an antiseptic drug to be incorporated in the BC dressing because it displays advantages over other antiseptics [1,9,10]. PHMB (molecular weight 3000 Da) is known as a cationic and strong base which interacts with acids and negatively charged molecules, such as phospholipids found in bacterial membranes [11]. The antimicrobial activity is based on the interaction between PHMB and bacterial phospholipids, which disrupts the integrity of the bacterial membrane, leading to the intrusion of PHMB into the cytoplasm, causing a malfunction in metabolic activity and resulting in the death of the bacterium [12,13]. It is reported that PHMB shows antimicrobial effect against various microorganisms such as yeasts, fungi, and bacteria (both Gram-positive and Gram-negative) with low toxicity in mammalian cells [1,11–13]. PHMB has been loaded into different types of wound dressings, e.g., gauze and bandages [14,15], foam [16,17], nanofibrous membranes of cellulose acetate and polyester urethane

^{*} Corresponding author at: Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok 10330, Thailand.

[18], or BC dressings [10,19,20]. Some of BC dressings loaded with PHMB are commercially available.

To improve the effectiveness of this BC dressing, we here introduce another bioactive factor for an enhancement of the re-epithelialization process which is one of the critical steps in wound healing process. Silk sericin (SS) is chosen for this purpose. SS (molecular weight of 20-310 kDa) is an adhesive protein that binds two fibroin strands in silk fibers [21]. It is a hydrophilic, biocompatible, biodegradable, negatively-charged material [22,23] with various biological properties [24]. It has been used to promote proliferation of human fibroblasts [25] or human epithelial HeLa cells [26] and prevent the UVB-induced apoptosis in human skin keratinocytes [27]. The addition of SS to culture media enhances collagen type I production by the L929 mouse fibroblast cell line [23] and promotes L929 migration [28]. An animal model revealed that SS-treated wounds had reduced inflammatory reactions and faster healing time than Betadine®-treated wounds [29]. In the clinical tests of split-thickness skin wounds, the complete healing time of wounds treated with a SS-releasing dressing was significantly shorter than that required for wounds treated with Bactigras® [30]. Furthermore, SS was shown to enhance re-epithelialization [23,28–33].

To our design, the combination of SS and PHMB into a BC wound dressing should capture the unique benefits of both SS and PHMB. In this study, the interactions between these components that affect the biological properties of BC dressing were investigated. The interaction between PHMB and SS was evaluated by attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). The loading quantities and sequence of both compounds were optimized. The antimicrobial test was performed by both the disc diffusion and broth dilution techniques using both Gram-positive (Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant S. aureus) and Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa) to determine minimum bactericidal concentration of PHMB. Then, the SS loading amount was varied to achieve an effective released amount which was suitable for collagen-I production by fibroblast cells. The in vitro release of PHMB and SS from the BC dressing was also evaluated. Finally, the effects of the dual-loaded SS/PHMB released from the BC dressing on the antimicrobial effect were compared with other commercially available antimicrobial wound dressings.

2. Materials and methods

2.1. Materials

Coconut water was obtained from coconuts purchased locally. Ammonium phosphate $((NH_4)_3PO_4)$, glacial acetic acid (CH_3COOH) , and other chemicals used were of analytical grade (Sigma-Aldrich, USA). Polyhexamethylene biguanide was kindly provided by Lonza Group Ltd. (Basel, Switzerland). Silk sericin was extracted according to a high temperature and high pressure degumming method described in a previous report [23]. Proteoglycan-IPC, a soluble PG extracted from the nasal cartilage of *Oncorhynchus keta* (Salmonidae), was purchased from Icimaru Pharcos Co., Ltd. (Gifu, Japan).

2.2. Preparation of biocellulose

Biocellulose was prepared from a static culture of an *Acetobacter xylinum* strain (Kasetsart University, Bangkok, Thailand) which was isolated from nata de coco, using a coconut water-based medium. The preparation of the medium was slightly modified from the method developed by Verschuren et al. [34]. One liter of coconut water was boiled and supplemented with 50 g of sucrose, 5 g of (NH₄)₃PO₄, and 10 mL of CH₃COOH. The pH of the medium was adjusted to 4.5 with CH₃COOH. Then, 10 mL of *A. xylinum* was added into the pH-adjusted coconut water based medium and poured into molds for fermentation. The fermentation was carried out under sterilized static conditions at 30 °C for 3–5 days to pre-culture the *A. xylinum* strain. After obtaining the

stock solution of *A. xylinum*, the fermentation was incubated at 30 $^{\circ}$ C under static conditions for another 7 days to form the BC. The formed bacterial nanocellulose gels were washed with 2% aqueous NaOH solution at 70 $^{\circ}$ C for 10 min, and then washed repeatedly until a neutral pH was obtained.

2.3. Preparation of the BC wound dressing containing bioactive compounds

The BC wound dressing was loaded with PHMB and SS. Proteoglycan (PG) which is known as a healing-promoting agent was used as a control for SS. All samples prepared in this study were summarized in Table 1. Each dressing was loaded with either one or two components. In the first study, the BC wound dressing was immersed into PHMB solutions with different concentrations (0.0125–0.6% w/v) for 2 h to determine the minimum bactericidal concentration (MBC) of PHMB loaded into the BC wound dressing.

The second experiment was intended to study the interaction between PHMB and two compounds (SS or PG), the loading sequence of each compound and MBC of PHMB in the dual-loaded BC. The BC wound dressing was immersed in a solution of the first compound for 2 h. Subsequently, the soaked BC was allowed to dry before being soaked in a solution of the second compound for another 2 h. The dual-loaded BC was air-dried before the tests. The PHMB concentration was varied from 0.2–0.4% w/v while the concentration of SS or PG was fixed at 1% w/v.

After the MBC of PHMB was obtained, the loading amount of PHMB was then optimized. In this experiment, SS was first loaded into the BC (the size of BC was $10 \times 10 \times 0.01~\text{cm}^3$) before PHMB. The loading amount of SS was fixed at 2 mL of SS solution (1% w/v) per side of the BC wound dressing (or total loading of 4 mL). After 2 h of SS adsorption, PHMB was added into the BC/SS wound dressing; the loading amount ranged from 3 to 6 mL of PHMB solution (0.3% w/v) per side of BC/SS (or total loading was from 6 to 12 mL). Before the tests, the dual-loaded BC was air-dried for 2 h.

Finally, the loading amount of SS on BC was optimized for the effective release amount of sericin. In this experiment, SS was first loaded into BC with different loading amounts, ranging from 2 to 3 mL of SS solution (1% w/v) per side of the BC wound dressing (or total loading of 4 to 6 mL). After 2 h of SS adsorption, the PHMB solution (0.3% w/v) was added to the BC/SS wound dressing at a fixed amount of 5 mL per side of BC/SS or total loading of 10 mL. The dual-loaded BC was air-dried for 2 h before the in vitro release test of SS. In this experiment, the single loaded PHMB on BC was used as a negative control for the SS release experiment.

2.4. Antimicrobial efficacy test

Antimicrobial efficacy of different types of PHMB loaded on BC was evaluated in triplicate by the disc diffusion method (CLSI M2-A9) and the broth dilution method (CLSI M7-A7). Six strains of bacteria were selected for these tests: B. subtilis (ATCC 6633, Gram-positive), S. aureus (ATCC 25923, Gram-positive), methicillin-resistant S. aureus (MRSA, Gram-positive), E. coli (ATCC 25922, Gram-negative), A. baumannii (ATCC 19606, Gram-negative), and P. aeruginosa (ATCC 27853, Gramnegative). Müller Hinton (MH) agar was used for culture, inoculation and antimicrobial efficacy tests. All bacterial strains were cultured on an agar plate at 37 °C for 24 h right before preparation of the inoculum. The inoculum was prepared by selecting three to five isolated colonies of bacteria into 5 mL of Tryptone Soya Broth (TSB), and followed by incubation at 37 °C for 4-6 h. The content of bacteria was verified by a UV/VIS spectrometer (Lambda 25, Perkin Elmer, Waltham, MA, USA) at 625 nm. The absorbance of the inoculum should be between 0.08 and 0.13 for a bacterial content of 1.5×10^8 CFU/mL.

For the disc diffusion method (CLSI M2-A9), one swab was applied on the entire surface of the MH agar plate. Then, the BC containing PHMB ($1 \times 1 \times 0.1 \text{ cm}^3$) was placed on the MH agar plate and incubated

Table 1Summary of components loaded in different BC wound dressings used in this study.

Experimental aim(s)	Sample	1st bioactive com	1st bioactive compound loading		2nd bioactive compound loading	
		Compound	Conc./amount	Compound	Conc./amount	
Effective PHMB concentration in BC	PHMB	PHMB	0.0125-0.6%	N/A	_	
Interaction study between two compounds & effective PHMB	SS	Silk sericin	1%	N/A	_	
concentration in the dual loaded BC	PG	Proteoglycan	1%	N/A	_	
	SS/PHMB	Silk sericin	1%	PHMB	0.2-0.4%	
	PHMB/SS	PHMB	0.2-0.4%	Silk sericin	1%	
	PG/PHMB	Proteoglycan	1%	PHMB	0.2-0.4%	
	PHMB/PG	PHMB	0.2-0.4%	Proteoglycan	1%	
Optimization of PHMB loading amount in the dual loaded BC	SS2/PHMB3	Silk sericin	2 mL	PHMB ^a	3 mL	
	SS2/PHMB4	Silk sericin	2 mL	PHMB ^a	4 mL	
	SS2/PHMB5	Silk sericin	2 mL	PHMB ^a	5 mL	
	SS2/PHMB6	Silk sericin	2 mL	PHMB ^a	6 mL	
Optimization of SS loading amount in the dual loaded BC	PHMB5	PHMB ^a	5 mL	N/A	-	
	SS2/PHMB5	Silk sericin	2 mL	PHMB ^a	5 mL	
	SS3/PHMB5	Silk sericin	3 mL	PHMB ^a	5 mL	

^a Concentration of PHMB for loading on BC was 0.3% w/v

at 37 $^{\circ}$ C for 24 h. The distance between each BC was much higher than the inhibition zone. After incubation, the size of the inhibition zone was immediately measured. The size of the inhibition zone was reported as the diameter with reference to the diagonal length of the BC square.

For the broth dilution method (CLSI M7-A7), the inoculum was diluted to achieve a bacterial concentration of 5×10^5 CFU/mL before placing the BC containing different amounts of PHMB in a test tube. After 24 h of incubation at 37 °C, one swab of the broth was applied to the entire surface of the MH agar plate. The agar plate was then incubated for another 24 h at 37 °C before evaluating the MBC, which was based on no observation of bacterial colony on the agar plate.

2.5. Attenuated total reflection Fourier Transform Infrared spectroscopy

Attenuated total reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy was employed to investigate the molecular interactions between PHMB and SS or PG molecules. The spectra of pure compounds and their mixtures were collected by a Nicolet 6700 FTIR spectrometer coupled to a continuum FTIR microscope and a mercury-cadmiumtelluride (MCT) detector. A homemade slide-on Ge micro internal reflection element (µIRE) accessory was employed for all spectral acquisitions. The IRE was aligned and fixed at the optimum position of the slide-on housing where the contact tip coincided with the focal point of the built-in 15× Cassegrain infrared objective lens. The spectral acquisitions were performed in the reflection mode of infrared spectroscopy. A sample was prepared by dropping 1% of SS, 1% of PG, 0.3% of PHMB, and their mixture sample solutions on a glass slide and drying them using a vacuum pump at room temperature. For spectral acquisition of the sample, a dried sample on a glass slide was brought into contact with the IRE. All spectra were collected with 256 scans at a resolution of 4 cm⁻¹. Each sample was examined at several points for comparison purposes.

2.6. In vitro release test of PHMB and SS

The BC wound dressing was cut to a size of $1 \times 1 \times 0.1$ cm³ and placed in triplicate in a vessel containing 3 mL of phosphate-buffered saline solution (PBS, pH 7.4) at 37 °C. The PBS solutions were collected at pre-determined time points (0.5, 2, 4, 8, 24, 48, 72 and 168 h) and shaken before measurement. In the SS case, the BCA protein assay kit (Pierce, Rockford, IL, USA) was used to measure the released amount of SS protein. The absorbance of the solution was measured with an UV/VIS spectrometer at a wavelength of 562 nm. The amount of SS was determined from a standard curve prepared from different concentrations of bovine serum albumin. For PHMB, the solution absorbance was measured with

the same spectrometer at a wavelength of 235.5 nm. The concentrations of released PHMB at different times were calculated by evaluating the solution absorbance against a standard curve, prepared from different known PHMB concentrations.

2.7. Preparation of fibroblast cell for collagen type 1 production test

The fibroblast cells were produced with slightly modified method of our previous work [23]. Briefly, Dulbecco Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) and antibiotics (100 U penicillin and 100 U streptomycin per mL) was used to culture the mouse fibroblast cell lines L929 which were purchased from the Chinese Academy of Preventive Medical Sciences, Beijing, China under 5% CO₂ at 37 °C. The medium was replaced every 2 days. Then, cells were collected by using 0.25% trypsin-EDTA (Gibco®, California, USA) and added fresh culture medium to create a new single cell suspension for further incubation.

2.8. Collagen type 1 production test

The 2.5×10^4 cells/well of mouse fibroblast cell lines L929 were seeded in a 48-well plate DMEM solution containing 10% FBS. After 24 h, the mediums were replaced with released solution of SS2/PHMB5 and BC wound dressing which were filter sterilized by 0.22 μ m membrane filters (triplicate samples). After 30 min, the mediums were changed with DMEM containing the same sericin concentration as the 24 h released sericin solution from SS2/PHMB5 dressing. After 3 days, the total amounts of soluble collagen type 1 were assayed by using the Sircol® collagen assay kit (Biocolor Ltd., Northern Ireland, UK). Microplate reader (Biohit 830, Biohit®, Helsinki, Finland) was used for detection of the outcomes at 500 nm. The results were calculated compared with standard curve of soluble collagen which was prepared from standard bovine collagen type 1.

2.9. Statistical analysis

All statistical evaluations were performed using SPSS version 17.0 (SPSS. Co., Ltd., Bangkok, Thailand). Differences in the data were considered statistically significant at p < 0.05, using one way ANOVA.

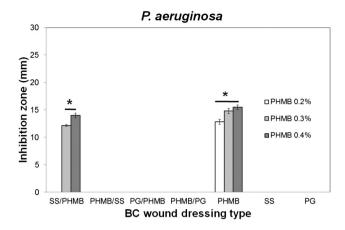
3. Results and discussion

3.1. PHMB minimum bactericidal concentration used for loading into the BC wound dressing

The BC wound dressing was immersed in different concentrations of PHMB (0.0125%, 0.025%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.6% w/v) for

2 h to determine the effective concentration for antimicrobial activity. The broth dilution technique was employed for this evaluation.

Table 2 shows the PHMB concentration which killed all bacteria entirely as no colonies were observed after 24 h when one swab of the bacterial broth (which had been incubated with BC loaded with different PHMB concentrations for 24 h at 37 °C) was applied on the MH agar plate and culture continued for 24 h at 37 °C. The MBC of PHMB was 0.2% w/v for effective bactericidal activity. The highest PHMB concentration was needed to kill MRSA in the group of the Gram-positive bacteria and *P. aeruginosa* for the Gram-negative case. This concentration range was close to the reported values of commercial wound dressings: 0.2% PHMB in Kerlix AMDTM antimicrobial gauze and bandages [14], 0.3% PHMB in Suprasorb® X + PHMB, and 0.5% PHMB in the KendallTM AMD antimicrobial foam [16].


3.2. Interaction study between two compounds and the effective PHMB concentration in the dual loaded BC wound dressing

The BC wound dressing was loaded with two different compounds to evaluate the dual release of two bioactive compounds: PHMB for its antimicrobial activity, and either SS or PG to enhance wound repair. However, the interaction between the two bioactive compounds needed to be investigated in terms of the loading sequence and loading amount since they could impair the antimicrobial activity, which is the main requirement of using a BC dressing to treat infected wounds. In this test, only *P. aeruginosa* was selected because it had the highest resistance to PHMB, as shown in the previous section. The single loaded PHMB dressing was used as a positive control, while the single loaded SS and PG dressings were used as the negative control.

Fig. 1 shows the results from the disc diffusion test regarding the P. aeruginosa inhibition zone distance, influenced by different types of BC wound dressings (note: SS/PHMB: silk sericin was loaded into the dressing before PHMB; PHMB/SS: PHMB was loaded into the dressing before SS; PG/PHMB: proteoglycan was loaded into the dressing before PHMB; PHMB/PG: PHMB was loaded into the dressing before PG; PHMB: this dressing was only loaded with PHMB; SS: this dressing was only loaded with SS; and PG: this dressing was only loaded with PG). The effects of the loading sequences and the interactions among all ingredients were obvious. There was no antimicrobial activity which could be seen in the SS, PG, PHMB/SS, PG/PHMB, and PHMB/PG dressings. For the dual-loaded dressing, the antimicrobial activity was only observed in the SS/PHMB dressing. The larger SS molecules (MW = 20-310 kDa, [29]) could potentially block the smaller PHMB molecules (MW = 3 kDa, [1]) if PHMB was loaded before SS in the case of the PHMB/SS dressing (see Fig. 2B for a graphical illustration). This situation might hinder PHMB from reacting with the bacterial membrane, compared with the SS/PHMB dressing. In the SS/PHMB dressing, there would be higher amount of PHMB available for inhibiting bacterial activities (Fig. 2A). There was some interaction between SS and PHMB because the effective concentration of PHMB was increased to 0.3% w/v, compared to 0.2% w/v in the single PHMB loaded dressing. However, this interaction between SS and PHMB was

Table 2 The PHMB minimal bactericidal concentrations of the tested bacteria, observed after applying one swab of bacterial broth dilution (which had incubated with BC loaded with different PHMB concentrations for 24 h at 37 $^{\circ}$ C) on the MH agar plate and continued culture for 24 h at 37 $^{\circ}$ C.

Bacteria strain	PHMB minimal bactericidal concentration for loading into the BC wound dressing (% w/v)
B. subtilis	0.025
S. aureus	0.050
MRSA	0.100
E. coli	0.050
A. baumannii	0.025
P. aeruginosa	0.200

Fig. 1. The inhibition zone distance against *P. aeruginosa*, 24 h after placing different types of loaded BC wound dressings on a MH agar plate, which was cultured at 37 °C (* indicates statistical difference between the pair, p < 0.05).

probably weak because PHMB still maintained its antimicrobial activity with a higher loaded PHMB concentration.

In the case of the proteoglycan-containing dressings (PG/PHMB and PHMB/PG), PHMB was ineffective at inhibiting *P. aeruginosa*, regardless of the loading sequence. PHMB might have been caught in the highly branched PG network (Fig. 2C & D). In addition, the positively charged PHMB might form strong interactions with the highly negatively-charged PG molecules [12,13]. Müller et al. [35] also found that highly negatively-charged glycosaminoglycan (chondroitin sulfate) completely neutralized the antimicrobial effects of PHMB against *S. aureus*, *Enterococcus faecium*, and *E. coli*.

The electrostatic force was found to be a major interaction between positively-charged PHMB and other charged molecules. The attraction force was reported in the case of PHMB with a negatively-charged plant cellulose [36] through hydrogen bonding. Dilamian et al. [37] reported that PHMB formed an attractive interacteraction with negatively-charged poly(ethylene oxide) and a repulsive interaction with and positively-charged chitosan; however these electrostatic interactions did not impair the antimicrobial activity of PHMB. The electrostatic interaction issue would be elevated if PHMB interacts with highly negatively-charged molecules such as PG (reported in this work) or chondroitin sulfate (reported by Müller et al. [35]). The antimicrobial activity of PHMB might be totally ineffective for certain bacterial strains which are difficult to treat.

3.3. ATR-FTIR study investigating the interaction between two compounds

In order to understand the interaction details, ATR-FTIR was employed to evaluate the molecular interaction between two compounds (PHMB vs. SS, and PHMB vs. PG).

In Fig. 3A, the pure SS sample shows three peaks at 1650, 1624, and 1518 cm⁻¹ attributed to amide I, amide I, and amide II, respectively, which are characteristic of protein. When the SS sample was mixed with the PHMB sample, the peak shoulder at 1650 cm⁻¹ (in the spectrum of the mixture) of amide I (from SS molecules) slightly decreased, which indicates a change in the secondary structure of the protein [2]. The amide I peak at 1624 cm⁻¹ was unaffected. However, the band at $1544 \, \mathrm{cm}^{-1}$ (in the spectrum of the mixture) was a combination of the peaks at 1545 and 1518 cm⁻¹ attributed to the C=N stretching vibration mode of PHMB molecules and amide II of SS molecules, respectively. It seems that there was no interaction between C=N of PHMB molecules and amide II of SS molecules. These results also suggest that there was a weak interaction between SS and PHMB molecules which slightly affected the amide I region or the secondary structure of the protein. This finding corresponds to the previous conclusion of the bacterial test that SS only had a weak interaction with PHMB, necessitating

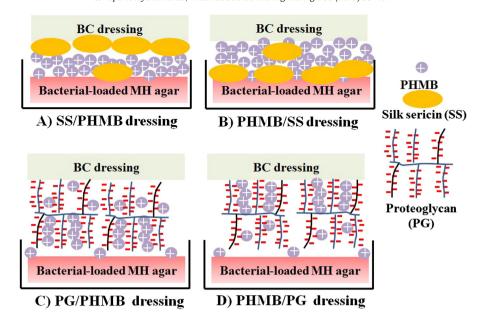


Fig. 2. An illustration of the loading sequence of bioactive compounds: positively charged PHMB, SS, and highly negatively-charged PG into the neutral BC wound dressing: A) SS/PHMB dressing in which SS was loaded into the dressing before PHMB, B) PHMB/SS dressing in which PHMB was loaded into the dressing before SS, C) PG/PHMB dressing in which PG was loaded into the dressing before PHMB, and D) PHMB/PG dressing in which PHMB was loaded into the dressing before PG.

a higher PHMB concentration (0.3% w/v compared to 0.2% w/v in single loaded PHMB dressing).

In Fig. 3B, the pure PG sample shows a peak at 1650 cm⁻¹ attributed to C=O stretching vibration mode and the pure PHMB sample shows a peak at 1545 cm⁻¹ attributed to C=N stretching vibration mode. In the mixture of PG and PHMB, the C=O peak slightly shifted from 1650 cm⁻¹, compared to the pure PG sample, while the C=N peak significantly shifted to 1558 cm⁻¹ from 1545 cm⁻¹ in the pure PHMB sample. This shift indicates that there was a strong molecular interaction between the C=O functional group of PG molecules and the C=N functional group of PHMB molecules in the mixture [38]. It is possible that lone pair electrons from the C=O of PG formed a hydrogen bond with H-N=C of PHMB, as shown in Fig. 4.

This finding is in agreement with those reported by Zhang and Magnes, who indicated that peak shifts are caused by hydrogen bonding [39,40]. Moreover, the precipitation of PG and PHMB could be observed when the PG solution was mixed with the PHMB solution during the preparation of the PG/PHMB mixture. The precipitation might result from electrostatic interactions between the negatively charged

functional group of PG and positively charged PHMB. From the above findings, it can be concluded that there was a strong molecular interaction between PHMB and PG molecules. This strong interaction could explain the previous results in Section 3.2 in that there was no antimicrobial activity found in the PG/PHMB and PG/PHMB dressings (Fig. 1)

In addition, the interaction between BC and other molecules (SS, PHMB, and PG) could not be observed as a change in the ATR-FTIR spectra (data was not shown here). The interaction was suspected to be a hydrogen bond between the –OH groups of BC and the C=O groups of the protein in SS, H–N=C in PHMB, or C=O/–OH groups in PG, as shown in Fig. 5. However, the strength of these interactions might not be strong enough to shift the peak of BC due to the molecular size and steric hindrance of structures.

In summary, PG should not be loaded with PHMB if antimicrobial activity is required against various bacterial strains. The dual loading system of SS and PHMB into the BC dressing was still effective if SS was loaded before PHMB. In addition, the concentration of PHMB must be at least 0.3% w/v to maintain antimicrobial effectiveness.

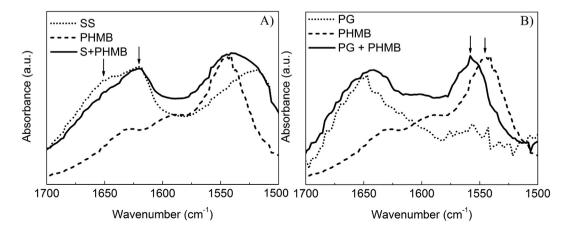


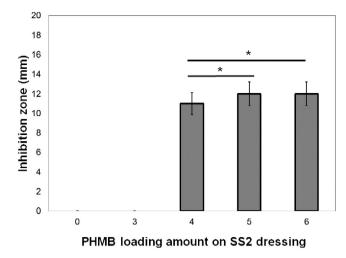
Fig. 3. ATR-FTIR spectra: A) shows the spectra of pure SS, pure PHMB, and the SS and PHMB mixture (SS + PHMB) while B) shows the spectra of pure PG, pure PHMB, and the PG and PHMB mixture (PG + PHMB), the downward arrows indicating a noticeable difference between the mixture and either pure SS or pure PHMB.

Fig. 4. An illustration of hydrogen bonding between PHMB and chondroitin sulfate A, which is a part of the PG molecule.

3.4. Optimization of the PHMB loading amount in pre-adsorbed SS on the BC wound dressing

P. aeruginosa was the only bacterial strain selected for the optimization of the PHMB (0.3% w/v) loading amount on pre-adsorbed SS (2 mL/side of a 1% w/v SS solution) on the BC wound dressing, since this strain showed the highest resistance to the antimicrobial activity of PHMB. Fig. 6 illustrates the results from the disc diffusion test of the inhibition zone size, as influenced by different PHMB loading amounts on pre-adsorbed SS on the BC wound dressing against *P. aeruginosa*. PHMB solution (0.3% w/v) needed to be loaded in a minimum amount of 4 mL per side of the wound dressing for effective inhibition of *P. aeruginosa* growth. The dressing loaded with 5 mL and 6 mL of PHMB solution showed significantly higher inhibition zone than that loaded with 4 mL of PHMB solution. The broth dilution results also indicated that the loading of 4 mL of PHMB solution (0.3% w/v) was essential for complete elimination of *P. aeruginosa*.

3.5. Optimization of the SS loading amount in the dual loaded BC for effective SS release in PBS


This experiment was intended to determine the right SS loading amounts into the BC wound dressing, so the optimal concentration of

the released SS was at 100 µg/mL to promote fibroblast collagen production, without losing cell viability [23]. Fig. 7 illustrates the released profile of SS in PBS. For both formulations (SS2/PHMB5 and SS3/PHMB5), an initial burst release of SS was observed. In the first 4 h, the concentration of SS reached the effective level (100 µg/mL) to promote fibroblast collagen production. A steady release period was observed from 24 h onward. During the whole test, there were no statistical differences between the SS2/PHMB5 and SS3/PHMB5 formulations at the same time points. The SS2/PHMB5 formulation was preferable over SS3/PHMB5 in terms of promoting fibroblast collagen production, since the released amount was closer to 100 µg/mL.

3.6. Collagen type 1 production from SS2/PHMB5 and BC wound dressing

The enhancement of collagen type 1 produced by fibroblast cells cultured with the released solution of SS2/PHMB5 formulation was elucidated in Fig. 8. It was shown that the cells cultured with the released solution of SS2/PHMB5 formulation produced significantly higher amount of collagen type 1 than those cultured with the BC wound dressing. This data supported our results that SS which released from SS2/PHMB5 steadily at around 100 $\mu g/mL$ could efficiently induce the production of collagen type 1 by fibroblast cells.

Fig. 5. An illustration of hydrogen bonding between BC and other molecules (SS protein, PHMB, and PG).

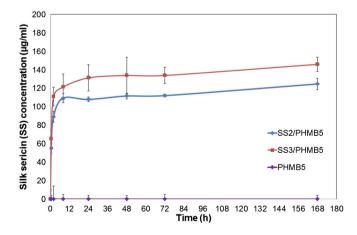
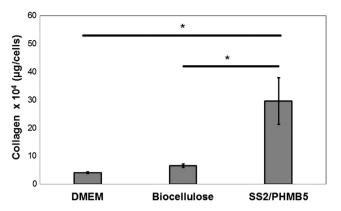


Fig. 6. The effects of different PHMB loading amounts (mL per side) loaded on the BC wound dressing which was pre-adsorbed with 2 mL/side of SS solution (1% w/v) on the inhibition zone distance against *P. aeruginosa*, 24 h after placing the BC dressing containing PHMB on a bacteria-loaded MH agar plate, cultured at 37 °C (* indicates a statistical difference (p < 0.05) between the pair).


3.7. Minimum bactericidal concentration of the PHMB solution

Before the in vitro release of PHMB from the BC wound dressings, the minimum PHMB concentration was evaluated for its antimicrobial activity against various bacterial strains by the broth dilution technique. In this test, the MBC was evaluated directly with PHMB solutions at different concentrations. There were no BC wound dressings involved in these tests, unlike in Section 3.1. These test results were used as a guideline for selecting the effective formulation of the BC dressing. The concentration of the released PHMB must be at least equal to the minimum bactericidal concentration, obtained in these tests. Table 3 summarizes the PHMB concentration which killed all bacteria entirely as no colonies were observed after 24 h when one swab of bacterial broth dilution (which had been incubated with different PHMB concentrations for 24 h at 37 °C) was applied on the MH agar plate and culture was continued for 24 h at 37 °C.

The concentration of PHMB must be at least 0.005% w/v to be able to kill all bacterial strains. Previously Müller et al., reported that a PHMB

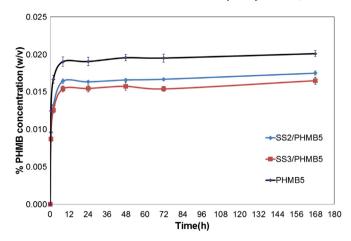
Fig. 7. The amount of SS released in a PBS solution from different types of BC wound dressings: SS2/PHMB5 [2 mL/side of SS solution (1% w/v) loaded onto the BC wound dressing before adding 5 mL/side of PHMB solution (0.3% w/v)], SS3/PHMB5 [3 mL/side of SS solution (1% w/v) loaded onto the BC wound dressing before adding 5 mL/side of PHMB solution (0.3% w/v)], and PHMB5 [5 mL/side of PHMB solution (0.3% w/v) only loaded in the BC wound dressing] (there were no statistically significant differences in the amount of SS released from SS2/PHMB5 and SS3/PHMB5 formulations at the same time points).

Fig. 8. The amount of collagen type 1 in released solution of SS2/PHMB5 and BC wound dressing; SS2/PHMB5 [2 mL/side of SS solution (1% w/v) loaded onto the BC wound dressing before adding 5 mL/side of PHMB solution (0.3% w/v)] (* indicates a statistical difference (p < 0.05) between the pair).

concentration of 0.005% is effective for the extermination of *S. aureus* and *E. coli* [41].

3.8. In vitro release of PHMB in PBS

Fig. 9 shows the amount of PHMB released from different types of BC wound dressings during the week-long testing period. After only 30 min, the concentrations of released PHMB in PBS were higher than 0.005% w/v, as observed from all BC wound dressings (SS2/PHMB5, SS3/PHMB5, and PHMB5). This concentration was sufficient for effective elimination of all bacterial strains as found in the previous test (Section 3.7). The PHMB concentration in PBS released from the SS2/PHMB5 dressing was found to be insignificantly higher than the amount released from the SS3/PHMB5 dressing at all time points during the test; this was because there was a weak interaction between SS and PHMB molecules, which slightly affected the secondary structure of the protein in the amide I region (Fig. 3A). The PHMB concentration released from the PHMB5 dressing was significantly higher than the level released from the SS2/PHMB5 and SS3/PHMB5 dressings (p < 0.05).


From in vitro release results of both SS and PHMB, it could be concluded that the formulation of SS2/PHMB5 was better than SS3/PHMB5 since the released SS concentration was close to the optimal value which enhances fibroblast collagen production. In addition, the release of PHMB was slightly higher in the SS2/PHMB5 formulation than the SS3/PHMB5 formulation.

3.9. The comparison of antimicrobial activities between the dual loaded SS/PHMB BC wound dressing (SS2/PHMB5) and the single loaded PHMB BC wound dressing (PHMB5)

The dual-loaded SS/PHMB BC wound dressing (SS2/PHMB5) had more benefit than the single loaded PHMB BC wound dressing (PHMB5), since SS released from the SS2/PHMB5 wound dressing enhanced fibroblast collagen production. In Section 3.2, the interaction

Table 3 Minimal bactericidal concentrations of PHMB solution against the tested bacteria, observed after applying one swab of bacterial broth dilution (which had incubated with different PHMB concentration for 24 h at 37 $^{\circ}$ C) on the MH agar plate and continued culture for 24 h at 37 $^{\circ}$ C.

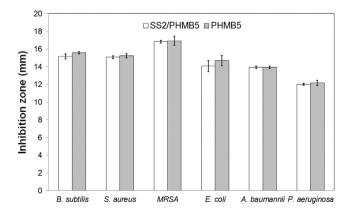
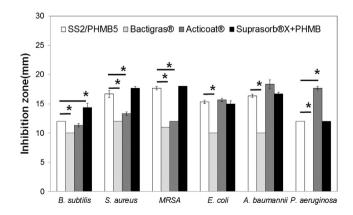

Bacteria strain	Minimal bactericidal concentration of PHMB solution (% w/v)
B. subtilis	0.00375
S. aureus	0.00150
MRSA	0.00150
E. coli	0.00150
A. baumannii	0.00375
P. aeruginosa	0.00500

Fig. 9. The amount PHMB released into PBS solution from different types of BC wound dressings: SS2/PHMB5 [2 mL/side of SS solution (1% w/v) loaded onto the BC wound dressing before adding 5 mL/side of PHMB solution (0.3% w/v)], SS3/PHMB5 [3 mL/side of SS solution (1% w/v) loaded onto the BC wound dressing before adding 5 mL/side of PHMB solution (0.3% w/v)], and PHMB5 [5 mL/side of PHMB solution (0.3% w/v) only loaded onto the BC wound dressing] (there were no statistically significant differences in the amount of PHMB released from SS2/PHMB5, SS3/PHMB5 and PHMB5 formulations at the same time points).

between SS and PHMB was found to have minimal negative effects on PHMB antimicrobial activity against *P. aeruginosa* if SS was loaded before PHMB in the BC wound dressing. However, there might be some variation against other bacterial strains. In this experiment, the antimicrobial effectiveness of dual-loaded SS2/PHMB5 was compared to the PHMB5 formulation against all bacterial strains using both discs the diffusion and broth dilution techniques.

Fig. 10 shows the comparison of antimicrobial activity between the dual loaded SS/PHMB BC wound dressing (SS2/PHMB5) and the single loaded PHMB BC wound dressing (PHMB5) against all bacterial strains. There were no statistical differences in the inhibition zone observed between the two types of wound dressing with the same bacteria. This finding confirmed that the PHMB antimicrobial activities against all tested bacteria were not compromised by the addition of SS, if it was loaded first in the BC wound dressing before PHMB. Based on the broth dilution results, there were no differences in the PHMB antimicrobial activity observed between the SS2/PHMB5 and PHMB5 formulation wound dressings even after the agar plates were left for 72 h.


Fig. 10. The comparison of antimicrobial activity between two wound dressings: the dual loaded SS/PHMB BC wound dressing (SS2/PHMB5) and the single loaded PHMB BC wound dressing (PHMB5) against all tested bacteria (*B. subtilis, S. aureus, MRSA, E. coli, A. baumannii,* and *P. aeruginosa*), 24 h after placing the BC dressings containing PHMB on bacteria-loaded MH agar plates which were cultured at 37 °C (there were no statistically significant differences in the inhibition zone observed between the two types of wound dressing using the same bacteria).

3.10. The comparison of the antimicrobial activity of the BC wound dressing (SS2/PHMB5) with other commercially available antimicrobial wound dressings

To evaluate the potential of commercialization of our novel BC wound dressing, the comparison of antimicrobial activity was conducted between the SS2/PHMB5 wound dressing and other commercially available antimicrobial dressings such as Bactigras® (Smith & Nephew plc., London, UK), Acticoat® (Smith & Nephew plc), and Suprasorb®X + PHMB.

It is clear from Fig. 11 that SS2/PHMB5 is far superior in terms of antimicrobial activity against all bacterial strains than Bactigras, a paraffinimpregnated gauze dressing containing chlorhexidine acetate. In comparison with silver-loaded Acticoat®, the antimicrobial activity of the SS2/PHMB5 dressing was better against Gram-positive bacteria often found in chronic wounds (S. aureus and MRSA). In the case of Gramnegative bacteria, the antimicrobial activity of the SS2/PHMB5 dressing was comparable to that of Acticoat®, but had less of an effect on inhibiting *P. aeruginosa* growth. The antimicrobial difference between the SS2/PHMB5 dressing and Suprasorb®X + PHMB was only noticed for B. subtilis. However, it is inconclusive that Suprasorb®X + PHMB would be better than the SS2/PHMB5 dressing for treating chronically infected wounds, because B. subtilis has not been reported in infected wounds [42,43]. These results suggest that the antimicrobial activity of the SS2/PHMB5 dressing is comparable to that of commercially available dressings. There was no single dressing which was more effective than others for treating all tested bacteria. The advantage of SS2/ PHMB5 over the commercial dressings is the promotion of wound healing from SS.

Comparing to the report on BC dressing of other studies, our SS2/PHMB5 dressing would show higher potential in term of the enhancement of collagen type 1 production than the single-loading of antiseptics in BC dressings, such as silver/silver chloride nanoparticles [44–52], silver sulfadiazine [5], benzalkonium chloride [53], chitosan [54,55], and PHMB [56]. Considering the study that loaded two compounds into BC dressing (negatively-charged gold nanoparticles and positively-charged lysozyme [57], or negatively-charged phosvitin and positively-charged chitosan [58] loaded into negatively-charged cellulose acetate by a layer-by-layer self-assembly technique), the goal of the compounds loaded was difference from ours. Best on our best knowledge, this study is the first report of the release of the antiseptic and the bioactive compound simultaneously from BC wound dressing for the antimicrobial activity and acceleration of wound healing.

Fig. 11. A comparison of the antimicrobial activity of the BC wound dressing developed in this work (SS2/PHMB5) with commercially available antimicrobial wound dressings [Bactigras®, Acticoat® and Suprasorb®X + PHMB] against all tested bacteria (B. subtilis, S. aureus, MRSA, E. coli, A. baumannii, and P. aeruginosa), 24 h after placing the BC dressings containing PHMB on bacteria-loaded MH agar plates which were cultured at 37 °C (* indicates a statistically significant difference (p < 0.05) between the SS2/PHMB5 dressing and other commercial dressings).

4. Conclusions

We have successfully developed a BC wound dressing loaded with SS, a compound known to enhance fibroblast collagen production without negative impacts on the antimicrobial effects of PHMB. The loading concentration of PHMB needed to be at least 0.3% w/v for effective elimination of all tested bacteria (B. subtilis, S. aureus, MRSA, E. coli, A. baumannii, and P. aeruginosa). For dual loading, the type of compound and the loading sequence could have an undesirable negative impact on PHMB antimicrobial activity. Highly negatively-charged PG completely impaired PHMB antimicrobial activity against certain bacteria that are difficult to treat, e.g., P. aeruginosa. The loading sequence was crucial in the formulation containing PHMB and SS. Silk sericin needed to be loaded first to maintain the antimicrobial effects of PHMB. The SS2/PHMB5 formulation was found to be the best, since it released SS at a concentration close to the optimal conditions to enhance fibroblast collagen production and released PHMB at a higher concentration than the other dual formulations. In addition, the antimicrobial activity of SS2/PHMB5 was comparable to that of commercially available antimicrobial wound dressings.

Acknowledgments

The authors gratefully acknowledge the financial support from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0200/2553) to Supamas Napavichayanun and Pornanong Aramwit and the Thailand Research Fund at Chulalongkorn University (Contract number RSA5680004).

References

- V. Edwards-Jones, Antimicrobial Dressings, Russell, Hugo & Ayliffe's: Principles and Practice of Disinfection, Preservation and Sterilization, 2012. 514–519.
- [2] W. Czaja, A. Krystynowicz, S. Bielecki, R.M. Brown Jr., Microbial cellulose the natural power to heal wounds, Biomaterials 27 (2006) 145–151.
- [3] W.K. Czaja, D.J. Young, M. Kawecki, R.M. Brown Jr., The future prospects of microbial cellulose in biomedical applications, Biomacromolecules 8 (2007) 1–12.
- [4] W. Czaja, D. Romanovicz, R.M. Brown, Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose 11 (2004) 403–411.
- [5] J. Luan, J. Wu, Y. Zheng, W. Song, G. Wang, J. Guo, X. Ding, Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing, Biomed. Mater. (Bristol) 7 (2012).
- [6] G. Chaby, P. Senet, M. Vaneau, P. Martel, J.C. Guillaume, S. Meaume, L. Téot, C. Debure, A. Dompmartin, H. Bachelet, H. Carsin, V. Matz, J.L. Richard, J.M. Rochet, N. Sales-Aussias, A. Zagnoli, C. Denis, B. Guillot, O. Chosidow, Dressings for acute and chronic wounds: a systematic review, Arch. Dermatol. 143 (2007) 1297–1304.
- [7] C.D. Hinman, H. Maibach, Effect of air exposure and occlusion on experimental human skin wounds [31], Nature 200 (1963) 377–378.
- [8] G.D. Winter, Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig, Nature 193 (1962) 293–294.
- [9] A.M. Milstone, C.L. Passaretti, T.M. Perl, Chlorhexidine: expanding the armamentarium for infection control and prevention, Clin. Infect. Dis. 46 (2008) 274–281.
- [10] T. Eberlein, G. Haemmerle, M. Signer, U. Gruber-Moesenbacher, J. Traber, M. Mittlboeck, M. Abel, R. Strohal, Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds, J. Wound Care 21 (2012) 12–20.
- [11] L. Hadaway, Polyhexamethylene biguanide dressing another promising tool to reduce catheter-related bloodstream infection, JAVA 15 (2010) 203–206.
- [12] T. Ikeda, S. Tazuke, M. Watanabe, Interaction of biologically active molecules with phospholipid membranes. I. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain, BBA - Biomembranes 735 (1983) 380–386.
- [13] T. Ikeda, S. Tazuke, C.H. Bamford, A. Ledwith, Spectroscopic studies on the interaction of polymeric in-chain biguanide biocide with phospholipid membranes as probed by 8-anilinonaphthalene-l-sulfonate, Bull. Chem. Soc. Jpn. 58 (1985) 705–709.
- [14] K. Moore, D. Gray, Using PHMB antimicrobial to prevent wound infection, Wounds UK 3 (2007) 96–102.
- [15] S. Davis, P.M. Mertz, A. Cazzaniga, V. Serralta, R. Orr, W. Eaglstein, The use of new antimicrobial gauze dressings: effects on the rate of epithelialization of partialthickness wounds, Wounds 14 (2002) 252–256.
- [16] K.R. Kirker, S.T. Fisher, G.A. James, D. McGhee, C.B. Shah, Efficacy of polyhexamethylene biguanide-containing antimicrobial foam dressing against MRSA relative to standard foam dressing, Wounds 21 (2009) 229–233.
- [17] R.G. Sibbald, P. Coutts, K.Y. Woo, Reduction of bacterial burden and pain in chronic wounds using a new polyhexamethylene biguanide antimicrobial foam dressingclinical trial results, Adv. Skin Wound Care 24 (2011) 78–84.

- [18] X. Liu, T. Lin, Y. Gao, Z. Xu, C. Huang, G. Yao, L. Jiang, Y. Tang, X. Wang, Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing, J. Biomed. Mater. Res. B Appl. Biomater. 100 (B) (2012) 1556–1565.
- [19] J.G. Alblas, A. Andriessen, R.J. Klicks, A.M. Wiersema, J. Van Doorn, G. Elzinga, H. Spits, A. Post, M. Van Gent, Clinical evaluation of a PHMB-impregnated biocellulose dressing on paediatric lacerations, J. Wound Care 20 (2011) 280–284.
- [20] P. Basmaji, G.M. de Olyveira, M.L. dos Santos, A.C. Guastaldi, Novel antimicrobial peptides bacterial cellulose obtained by symbioses culture between polyhexanide biguanide (PHMB) and green tea, J. Biomater. Tissue Eng. 4 (2014) 59–64.
- [21] C. Vepari, D.L. Kaplan, Silk as a biomaterial, Prog. Polym. Sci. 32 (2007) 991–1007.
- [22] N. Minoura, S.I. Aiba, Y. Gotoh, M. Tsukada, Y. Imai, Attachment and growth of cultured fibroblast cells on silk protein matrices, J. Biomed. Mater. Res. 29 (1995) 1215–1221.
- [23] P. Aramwit, S. Kanokpanont, T. Nakpheng, T. Srichana, The effect of sericin from various extraction methods on cell viability and collagen production, Int. J. Mol. Sci. 11 (2010) 2200–2211.
- [24] W. Tao, M. Li, R. Xie, Preparation and structure of porous silk sericin materials, Macromol. Mater. Eng. 290 (2005) 188–194.
- [25] K. Tsubouchi, Y. Igarashi, Y. Takasu, H. Yamada, Sericin enhances attachment of cultured human skin fibroblasts, Biosci. Biotechnol. Biochem. 69 (2005) 403–405.
- [26] S. Terada, T. Nishimura, M. Sasaki, H. Yamada, M. Miki, Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma, Cytotechnology 40 (2003) 3–12.
- [27] R. Dash, M. Mandal, S.K. Ghosh, S.C. Kundu, Silk sericin protein of tropical tasar silk-worm inhibits UVB-induced apoptosis in human skin keratinocytes, Mol. Cell. Biochem. 311 (2008) 111–119.
- [28] P. Aramwit, S. Palapinyo, T. Srichana, S. Chottanapund, P. Muangman, Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds, Arch. Dermatol. Res. 305 (2013) 585–594.
- [29] P. Aramwit, A. Sangcakul, The effects of sericin cream on wound healing in rats, Biosci. Biotechnol. Biochem. 71 (2007) 2473–2477.
- [30] T. Siritientong, A. Angspatt, J. Ratanavaraporn, P. Aramwit, Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites, Pharm. Res. 31 (2014) 104–116.
- [31] P. Aramwit, S. Kanokpanont, W. De-Eknamkul, K. Kamei, T. Srichana, The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide, J. Biomater. Sci. Polym. Ed. 20 (2009) 1295–1306.
- [32] T. Siritienthong, J. Ratanavaraporn, P. Aramwit, Development of ethyl alcoholprecipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of fullthickness wounds, Int. J. Pharm. 439 (2012) 175–186.
- [33] P. Aramwit, T. Siritienthong, T. Srichana, J. Ratanavaraporn, Accelerated healing of full-thickness wounds by genipin-crosslinked silk sericin/PVA scaffolds, Cells Tissues Organs 197 (2013) 224–238.
- [34] P.G. Verschuren, T.D. Cardona, M.J.R. Nout, K.D. De Gooijer, J.C. Van Den Heuvel, Location and limitation of cellulose production by *Acetobacter xylinum* established from oxygen profiles, J. Biosci. Bioeng. 89 (2000) 414–419.
- [35] G. Müller, A. Kramer, In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate, Chem.-Biol. Interact. 124 (2000) 77–85.
- [36] R.S. Blackburn, A. Harvey, L.L. Kettle, J.D. Payne, S.J. Russell, Sorption of poly(hexamethylenebiguanide) on cellulose: mechanism of binding and molecular recognition, Langmuir 22 (2006) 5636–5644.
- [37] M. Dilamian, M. Montazer, J. Masoumi, Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride, Carbohydr. Polym. 94 (2013) 364–371.
- [38] M. Jackson, H.H. Mantsch, The use and misuse of FTIR spectroscopy in determination of protein structure, Crit. Rev. Biochem. Mol. Biol. 30 (1995) 95–120.
- [39] J. Zhang, P. Zhang, K. Ma, F. Han, G. Chen, X. Wei, Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study, Sci. China, Ser. B: Chem. 51 (2008) 420–426.
- [40] B. Magnes, Hydrogen-bonding interactions of photoacids: correlation of optical solvatochromism with IR absorption spectra, Solid State Ionics 168 (2004) 225–233
- [41] G. Müller, A. Kramer, Effect of selected wound antiseptics on adult articular cartilage (bovine sesamoid bone) in the presence of *Escherichia coli* and *Staphylococcus aure-us*, J. Orthop. Res. 23 (2005) 127–133.
- [42] C.E. Davies, M.J. Wilson, K.E. Hill, P. Stephens, C.M. Hill, K.G. Harding, D.W. Thomas, Use of molecular techniques to study microbial diversity in the skin: chronic wounds reevaluated, Wound Repair Regen. 9 (2001) 332–340.
- [43] K. Gjødsbøl, J.J. Christensen, T. Karlsmark, B. Jørgensen, B.M. Klein, K.A. Krogfelt, Multiple bacterial species reside in chronic wounds: a longitudinal study, Int. Wound J. 3 (2006) 225–231.
- [44] T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydr. Polym. 72 (2008) 43–51.
- [45] J. Wu, Y. Zheng, W. Song, J. Luan, X. Wen, Z. Wu, X. Chen, Q. Wang, S. Guo, In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing, Carbohydr. Polym. 102 (2014) 762–771.
- [46] J. Wu, Y. Zheng, X. Wen, Q. Lin, X. Chen, Z. Wu, Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo, Biomed. Mater. (Bristol) 9 (2014) 1–12.
- [47] D. Sun, J. Yang, J. Yu, X. Yang, Preparation of novel Ag/bacterial cellulose hybrid nanofibers for antimicrobial wound dressing, Adv. Mater. Res. 152–153 (2011) 1771–1774.
- [48] C. Liu, D. Yang, Y. Wang, J. Shi, Z. Jiang, Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory, J. Nanoparticle Res. 14 (2012) 1–12.

- [49] Z. Peršin, U. Maver, T. Pivec, T. Maver, A. Vesel, M. Mozetič, K. Stana-Kleinschek, Novel cellulose based materials for safe and efficient wound treatment, Carbohydr. Polym. 100 (2014) 55–64.
- [50] S. Berndt, F. Wesarg, C. Wiegand, D. Kralisch, F.A. Müller, Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles, Cellulose 20 (2013) 771–783.
- [51] W. Hu, S. Chen, X. Li, S. Shi, W. Shen, X. Zhang, H. Wang, In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes, Mater. Sci. Eng. C 29 (2009) 1216–1219.
- [52] X. Zhang, Y. Fang, W. Chen, Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 43 (2013) 907–913.
- [53] B. Wei, G. Yang, F. Hong, Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties, Carbohydr. Polym. 84 (2011) 533–538.
- [54] A.L. Harkins, S. Duri, L.C. Kloth, C.D. Tran, Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility, J. Biomed. Mater. Res. B Appl. Biomater. 102 (2014) 1199–1206.
- [55] U. Fu, W. Wang, L. Yu, S. Zhang, G. Yang, Fabrication of novel cellulose/chitosan artificial skin composite, Mater. Sci. Forum (2009) 1034–1038.
- [56] C. Wiegand, M. Abel, P. Ruth, U.C. Hipler, HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide, Wound Repair Regen. 17 (2009) 730–738.
- [57] B. Zhou, Y. Hu, J. Li, B. Li, Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition, Int. J. Biol. Macromol. 64 (2014) 402–408.
 [58] B. Zhou, Y. Li, H. Deng, Y. Hu, B. Li, Antibacterial multilayer films fabricated by layer-
- [58] B. Zhou, Y. Li, H. Deng, Y. Hu, B. Li, Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers, Colloids Surf. B 116 (2014) 432–438.

The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin

Pornanong Aramwit¹ Sanong Ekasit² · Rungnapha Yamdech¹

© Springer Science+Business Media New York 2015

Abstract Silk sericin is recently shown to possess various biological activities for biomedical applications. While various sericin carriers were developed for drug delivery system, very few researches considered sericin as a bioactive molecule itself. In this study, sericin incorporated in the chitosan-based microspheres was introduced as a bioactive molecule and bioactive carrier at the same time. The chitosan/sericin (CH/SS) microspheres at different composition (80/20, 70/30, 60/40, and 50/50) were successfully fabricated using anhydroustripolyphosphate (TPP) as a polyanionic crosslinker. The microspheres with an average size of 1-4 µm and narrow size distribution were obtained. From FT-IR spectra, the presence of both chitosan and sericin in the microspheres confirmed the occurrence of ionic interaction that crosslink them within the microspheres. We also found that the CH/SS microspheres prepared at 50/50 could encapsulate sericin at the highest percentage (37.28 %) and release sericin in the most sustained behavior, possibly due to the strong ionic interaction of the positively charged chitosan and the negatively charged sericin. On the other hand, the composition of CH/SS had no

Electronic supplementary material The online version of this article (doi:10.1007/s10544-015-9991-4) contains supplementary material, which is available to authorized users.

Pornanong Aramwit aramwit@gmail.com

Published online: 02 August 2015

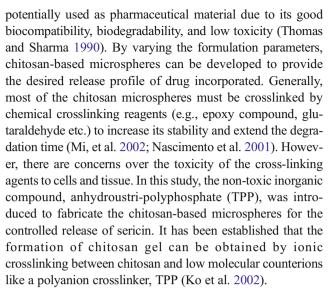
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan Bangkok 10330, Thailand
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 PhyaThai Road, Patumwan Bangkok 10330, Thailand

effect on the degradation rate of microspheres. All microspheres continuously degraded and remained around 20 % after 14 days of enzymatic degradation. This explained that the ionic crosslinkings between chitosan and sericin could be demolished by the enzyme and hydrolysis. Furthermore, we have verified that all CH/SS microspheres at any concentrations showed non-toxicity to L929 mouse fibroblast cells. Therefore, we suggested that the non-toxic ionic-crosslinked CH/SS microspheres could be incorporated in wound dressing material to achieve the sustained release of sericin for accelerated wound healing.

Keywords Sericin · Chitosan · Tri-polyphosphate · Microspheres · Ionic crosslinking · Controlled release

1 Introduction

Sericin (SS) is a globular water-soluble protein synthesized by Bombyx mori silkworms to being the glue that envelops fibroin fibers and forms the cocoon. The silkworm cocoons constitute around 20-30 % sericin with the molecular weight ranging from 10 to over 400 kDa (Kundu et al. 2008). Usually, sericin is produced during the production process of raw silk fibers in silk industries and is discarded as a waste by-product. Recently, the biological roles of sericin in biomedical application have been reported. It is found to promote attachment and proliferation of several mammalian cell lines (Morikawa et al. 2009; Terada et al. 2002). Sericin also shows excellent waterretaining characteristics due to its high hydrophilic amino acids content (Kundu et al. 2008; Zhang 2002). The serinerich residue of sericin was found to be a cryoprotectant for cells (Tsujimoto et al. 2001). It also shows anti-bacterial and anti-oxidant activities as well as the resistant to UV light (Dash et al. 2007; Fan et al. 2009; Zhang 2002). Furthermore,



sericin is known to possess anti-tumor properties with non-immunogenicity (Aramwit et al. 2009; Zhaorigetu et al. 2003). Therefore, it has been widely used as ingredient in the food industries and in cosmetics/biomedical applications (Aramwit et al. 2009, 2012; Kitisin et al. 2013; Masahiro et al. 2000).

Nevertheless, sericin itself forms a non-stable material because it is easily soluble in water. The blending of sericin with other materials was established to improve properties of sericin-based materials. It has been demonstrated that sericin blended with polymers (e.g., gelatin, polyvinyl alcohol, etc.) can form the scaffolds with suitable properties for tissue engineering and wound dressing applications (Aramwit et al. 2010a, b; Mandal et al. 2009). The application of sericin in drug delivery system is also challenging. Drug delivery system is the method to control the release or delivery of a pharmaceutical or bioactive compound to achieve a therapeutic effect. Currently, various formulations of controlled release system have been investigated (Freiberg and Zhu 2004; Ganji and Vasheghani-Farahani 2009; Mengatto et al. 2012; Tang et al. 2003). Microparticle is one of the widely studied forms of controlled release carriers because it can be used to deliver drug in a rate-controlled and targeted manner and can also be applied either as implantable or injectable carriers (Freiberg and Zhu 2004; Mandal and Kundu 2009).

The development of sericin-based microspheres has been reported by several research groups (Nayak et al. 2014; Zhang et al. 2004). Zhang et al. have fabricated the sericin microparticles by spray-drying and glutaraldehyde crosslinking for the delivery of anti-leukemic enzyme L-asparaginase (Zhang et al. 2004). The L-asparaginase immobilized in the sericin microspheres showed significantly higher stability and preferable resistance to trypsin digestion as compared with native enzyme. Nayak et al. (2014) have prepared the microcapsules composed of sericin and alginate micro bead as inner core and chitosan as an outer shell via electrohydrodynamic spraying and genipin crosslinking techniques for live cell encapsulation. It was suggested that the developed sericin-alginate-chitosan microcapsule supported the viability of hepatocyte cells encapsulated, contributing towards the development of cell encapsulation model. Nevertheless, we found that very few researches are interested in the development of drug delivery system by considering sericin itself as a bioactive molecule to be released for biological functions even though sericin possess various biological activities. Then, the development of carrier for the controlled release of sericin as a bioactive molecule is our aim in this study.

Among various types of carriers, chitosan-based microspheres have been widely investigated for the controlled release of different drugs (Sinha et al. 2004). Chitosan is a polysaccharide obtained by alkaline deacetylation of a naturally occurring abundant polysaccharide, chitin. The molecular structure of chitosan consists of glucosamine and Nacetylglucosamine repeating units. Chitosan has been

Therefore, the aim of this study was to develop the chitosan-based microspheres for the controlled release of sericin using the non-toxic TPP crosslinking technique. Various blending compositions of chitosan and sericin (CH/SS at 80/20, 70/30, 60/40, and 50/50) were investigated in the formation of CH/SS microsphere. Morphological and chemical structures of the microspheres were evaluated by a scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR), respectively. Stability, biodegradation rate, encapsulation efficiency and the release profiles of sericin from the microspheres were investigated. In addition, the *in vitro* cytotoxic test of the microspheres to L929 mouse fibroblast cells was performed. This chitosan-based microspheres releasing sericin would be incorporated into the wound dressing material and applied to accelerate the wound healing process.

2 Materials and methods

2.1 Materials

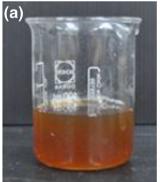
Low molecular weight chitosan (chitosan oligosaccharide (CH), molecular weight~5000 Da) was purchased from Shenzhen Naturactive Inc., China (CAS number 9012-76-4). Fresh bivoltine white-shell cocoons of *B. mori* produced in a controlled environment were kindly supplied by Chul Thai Silk Co., Ltd. (Petchaboon province, Thailand). Sodium tripolyphosphate (TPP) was obtained from Sigma-Aldrich Co. Ltd. (USA). Other chemicals were analytical grade and used without further purification.

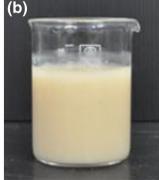
2.2 Preparation of sericin solution

The silkworm cocoons were cut into small pieces, and sericin (SS) was extracted using a high temperature and high-pressure degumming technique (Lee et al. 2003). Briefly, the cocoons

were put into deionized (DI) water and then autoclaved at 120 °C for 60 min. After filtration through a filter paper to remove fibroin fibers, the sericin solution was concentrated to 6 wt%, measured by the BCA protein assay kit (Pierce, Rockford, IL, USA). The molecular weight of sericin obtained ranged from 25 to 150 kDa, as reported previously (Aramwit et al. 2010a, b).

2.3 Fabrication of chitosan-based microsphere using TPP


Chitosan solution (6 wt%) was prepared in DI water under stirring overnight. The chitosan and sericin solutions were mixed at the different blending ratios (CH/SS: 80/20, 70/30, 60/40, and 50/50) to obtain the final solution concentration of 6 wt%. The CH/SS mixture was stirred at room temperature for 1 h. Then, 40 mL of TPP solution (1 wt%, pH 6.5) was slowly dropped into the CH/SS mixture and stirred at room temperature for 1 h. The white colloid of CH/SS microspheres was obtained (Fig. 1). The CH/SS microspheres were separated from the colloid suspension by centrifugation at 4500 rpm for 5 min. The microspheres at the bottom of centrifugal tube were collected and washed repeatedly with DI water prior to freeze-drying to obtain the dried CH/SS microspheres.


2.4 Morphological observation

The morphology of CH/SS microspheres was observed on a scanning electron microscope (SEM, JSM 5400, JEOL) at an accelerating voltage of 12e15 kV after sputter-coating with gold.

2.5 Average size measurement

Average size of CH/SS microspheres was measured using Mastersizer 2000 (Malvern Instruments Ltd., UK). The

Fig. 1 The appearance of (a) CH/SS solution before adding the TPP solution and (b) white colloid of CH/SS microspheres obtained after adding the TPP solution (1 wt%) and stirred at room temperature for 1 h

microspheres were suspended in DI water and ultrasonicated for 5 min to disperse them prior to the measurement.

2.6 Fourier transform infrared spectroscopy (FT-IR) analysis

Attenuated total reflection (ATR) FT-IR spectra of the CH/SS microspheres were collected using a homemade slide-on micro-ATR accessory with a dome-shaped singe reflection Ge-µIRE attached to a built-in 15X Schwarzschild-Cassegrain infrared objective of a Continuum infrared microscope (Ekgasit et al. 2007). The microscope, equipped with a mercury-cadmium-telluride (MCT) detector, was connected to a Nicolet 6700 FT-IR spectrometer. To acquire an ATR FT-IR spectrum, the microsphere sample was securely mounted onto a sample stage beneath the infrared objective. Spectral acquisition was achieved at a defined position by raising the sample stage until the scaffold came into optical contact with the tip of the Ge-µIRE. The degree of contact was monitored and controlled using a built-in pressure sensor. All ATR spectra were collected with a resolution of 4 cm⁻¹ with 128 co-addition scans.

2.7 Evaluation of encapsulation efficiency of sericin in microspheres

The amount of sericin initially mixed with the chitosan solution was defined as w_I . The amount of sericin after the microsphere fabrication was determined from the supernatant of the mixture after the microspheres were collected, defined as w_2 . The amount of sericin in the supernatant was measured by the BCA protein assay kit. The encapsulation efficiency of sericin in the microspheres was calculated according to the following equation;

Encapsulation efficiency of sericin (%) =
$$\left(\frac{w_1 - w_2}{w_1}\right) \times 100$$
 (1)

2.8 In vitro release test of sericin from microspheres

The CH/SS microspheres (5 mg) were placed into 1 mL phosphate-buffered saline solution (PBS, pH 7.4) and incubated at 37 °C with a continuous stirring at 100 rpm. The PBS solutions were collected and replaced with fresh at different time points and the amount of sericin released into the solution was measured using a BCA protein assay kit. The amount of sericin released was determined from a standard curve prepared from different concentrations of sericin solutions. Percentage of cumulative release of sericin from the microspheres was plotted.

2.9 In vitro enzymatic biodegradation test

The CH/SS microspheres (5 mg) were incubated in 1 Unit/mL collagenase solution (CAS No. 9001-12-1) at pH 7.4 and 37 °C. The enzyme solution was changed every 2 days to ensure continuous enzyme activity. At each time interval, the remaining microsphere were collected, rinsed repeatedly with DI water, and freeze-dried. The dried microspheres were weighed and the remaining weight percentage was calculated using the following equation:

Percentage of weight remaining (%) =
$$\left(\frac{w_t}{w_0}\right) \times 100$$
 (2)

where w_0 and w_t represent the weight of the microspheres before degradation and the weight of the microspheres after degradation at different time intervals, respectively (n=3).

2.10 Stability test

The stability of CH/SS microspheres was determined by freeze-thaw technique according to the previous report (O'Regan and Mulvihill 2010). The microspheres (5 mg) were subjected into the freeze-thaw cycle as following: (1) -20 °C for 46 h, (2) thaw at room temperature for 30 min, and (3) incubate at 40 °C for 1.5 h. These 3 steps were counted as 1 cycle. The microspheres were subjected into 4 cycles of freeze-thawing process. The microspheres collected from each cycle were incubated in PBS solution at 37 °C for 24 h, then the amount of sericin released into the PBS supernatant was measured by BCA assay as described previously.

2.11 In vitro cytotoxic test

The cytoxicity of CH/SS microspheres was evaluated using indirect method (extract method) on L929 mouse fibroblast cells according to the Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity (ISO 10993-Part 5 (1992)). The ethylene oxide-sterilized microspheres (1 mg/mL) were incubated in Dulbecco's modified eagle powder medium (DMEM) for 24 h in order to obtain the microspheres' extract. The concentration of the microspheres' extracted solution (1 mg/mL) was diluted to three different concentrations (0.5, 0.25, and 0.125 mg/mL) by culture medium. L929 mouse fibroblast cells were seeded at a density of 1×10^4 cells/well of 48 well plate and incubated at 37 °C and 5 % CO2 for 24 h. After cell attachment, the medium was removed and replaced with the microspheres' extracted solution and continued the culture for further 24 h. The viability of cells was measured using MTT assay (Mosmann 1983).

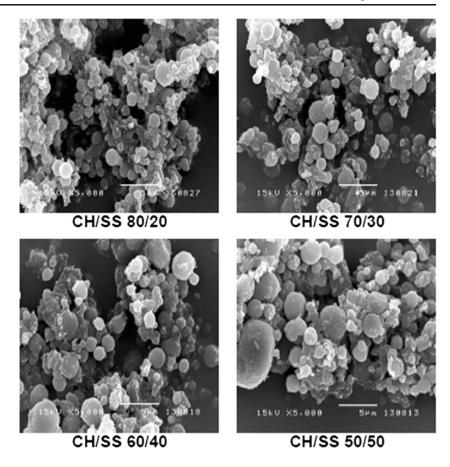
All of the results were statistically analyzed using the unpaired student's t-test, and p<0.05 was considered to be statistically significant. Data were expressed as the mean \pm the standard deviation.

3 Results

3.1 Morphology and size distribution of CH/SS microspheres

Morphology of the dried CH/SS microspheresis showed in Fig. 2. Aggregated microspheres were found for all formulations while their size distribution seemed homogeneous. The size distribution pattern of each microsphere formulation is displayed in Fig. 3. All formulations had rather narrow size distribution. The CH/SS microspheres prepared at 80/20 and 70/30 had average sizes of 1.08-1.53 μ m while the average sizes of microspheres prepared at 60/40 and 50/50 were around 3.32-3.84 μ m, as presented in Table 1. The average sizes of CH/SS microspheres prepared at 80/20 and 70/30 were significantly smaller than those of the CH/SS microspheres prepared at 60/40 and 50/50 (p<0.05).

3.2 Chemical characteristics of CH/SS microspheres


Figure 4 shows FT-IR spectra of CH/SS microspheres, chitosan (CH) and sericin powder (SS). All CH/SS microspheres showed the characteristic absorption peaks of sericin protein including amide I (1700–1600 cm⁻¹), amide II (1560–1500 cm⁻¹) and amide III (1300–1200 cm⁻¹) (Khan et al. 2013). On the other hand, 6 characteristic absorption peaks of chitosan were appeared for all CH/SS microspheres. The vibrations of hydroxyl and free amine groups were found at 3450 and 3324 cm⁻¹, respectively. The absorption peaks at 1655, 1560, and 1381 cm⁻¹ indicated C=O stretching, -NH₂ bending and C-O stretching of primary alcohol groups while that of 1152 cm⁻¹ represented -C-O-C- glycosidic linkage between chitosan monomers (Shanmugasundaram et al. 2001; Sionkowska et al. 2004).

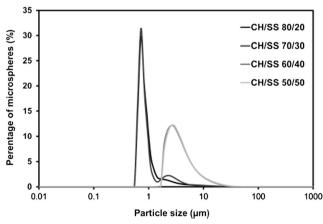
3.3 Encapsulation efficiency of sericin in CH/SS microspheres

The amount of sericin encapsulated and its encapsulation efficiency in CH/SS microspheres is presented in Table 1. The CH/SS microspheres prepared at 50/50 could encapsulate sericin at the highest amount (373 mg/g microspheres) while the amount and encapsulation efficiencies of sericin in

Fig. 2 Morphology of CH/SS microspheres prepared at different mixing compositions (80/20, 70/30, 60/40, and 50/50). Scale bar=5 um

microspheres prepared at 80/20, 70/30, and 60/40 were lower (214–242 mg/g microspheres).

3.4 In vitro release of sericin from CH/SS microspheres


Figure 5 demonstrated the profiles of sericin released from CH/SS microspheres after incubated in PBS solution for different periods. The small burst release was observed for all microspheres. The microspheres prepared at 50/50 released sericin at the lowest percentage along the period. On the other hand, the highest percentage of sericin release was found on the microspheres prepared at 60/40. The release of sericin from all microspheres seemed to be sustained after 72 h.

3.5 *In vitro* enzymatic biodegradation rate of CH/SS microspheres

The *in vitro* biodegradation profiles of CH/SS microspheres after incubated in collagenase solution for different periods are shown in Fig. 6. Along the period, all microspheres were degraded in similar rate. The microspheres seemed to degrade rapidly in the first day and continuously degraded thereafter. The percentages of weight remaining of all microspheres after 14 days were around 18–22 %.

3.6 Stability of sericin in CH/SS microspheres after freeze-thawing process

Figure 7 elucidated the stability of sericin in CH/SS microspheres after each cycle of freeze-thawing process. After each cycle of freeze-thawing process, the amount of sericin released from microspheres depended on the amount of sericin incorporated in the microspheres. The microspheres with the

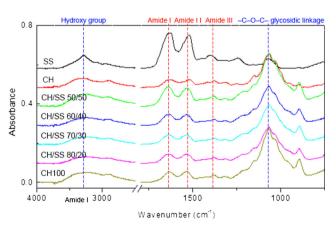
Fig. 3 Size distribution of CH/SS microspheres prepared at different mixing compositions (80/20, 70/30, 60/40, and 50/50)

Table 1 Average size of CH/SS microspheres and encapsulation efficiency of silk sericin in CH/SS microspheres

Microspheres	Average size (μm)	Encapsulation efficiency (%)	Amount of sericin encapsulated (mg/g microspheres)
CH/SS 80/20	1.08±0.26 *	21.42±1.59	214.16±15.92
CH/SS 70/30	1.53±0.94 *	22.57±9.05	225.73±90.54
CH/SS 60/40	3.32 ± 0.15	24.21 ± 5.89	242.09 ± 58.93
CH/SS 50/50	3.84 ± 0.54	37.28±3.88	372.84 ± 38.84

The microspheres were prepared at different CH/SS blending compositions: 80/20, 70/30, 60/40, and 50/50

higher content of sericin released sericin at the higher amount. Considering the effect of freeze-thawing cycle, the microspheres prepared at 60/40 and 50/50 showed the lower amount of sericin release after 3 and 4 freeze-thawing cycles. On the other hand, the release of sericin from microspheres prepared at 80/20 and 70/30 was not affected by the freeze-thawing process.


3.7 In vitro cytotoxicity of microspheres to L929 mouse fibroblasts

The viability of L929 mouse fibroblasts when cultured with different concentrations of microspheres for 24 h was shown in Fig. 8. The viabilities of L929 cultured with all microspheres at any concentrations were comparable to that cultured with DMEM in the absence of microspheres (90–100 %). On the other hand, cells cultured with Zn as a positive control of the test remained only 20 %.

4 Discussion

84

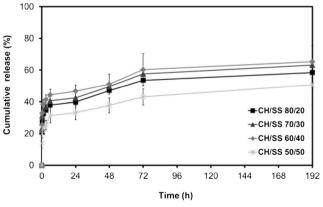

Sericin has recently been introduced as carriers in drug delivery system due to its biocompatibility, biodegradability, nonimmunogenicity, water-retaining property, and ability to be

Fig. 4 FT-IR spectra of CH/SS microspheres prepared at different mixing compositions (100/0, 80/20, 70/30, 60/40, and 50/50), chitosan (CH) and sericin powder (SS)

fabricated into various forms by blending with other materials or crosslinking (Aramwit et al. 2009, 2010a, b; Dash et al. 2007; Fan et al. 2009; Kundu et al. 2008; Mandal et al. 2009; Morikawa et al. 2009; Terada et al. 2002; Tsujimoto et al. 2001; Zhang 2002; Zhaorigetu et al. 2003). However, sericin itself possess various biological activities, for example, anti-bacterial, anti-oxidant, and anti-tumor activates (Dash et al. 2007; Fan et al. 2009; Zhang 2002), as well as the potential to promote attachment and proliferation of several mammalian cell lines (Terada et al. 2002). We have previously showed that sericin released from various kinds of wound dressing materials could result in the significant wound size reduction and accelerated healing rate due to the enhanced epithelialization and collagen formation (Aramwit et al. 2013; Siritienthong et al. 2012, 2013, 2014). Sericin was then considered as accelerating material for wound healing applications.

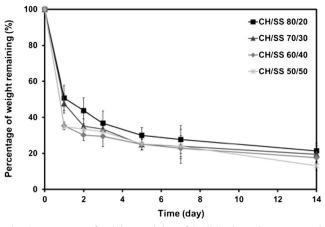
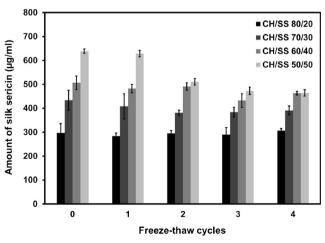
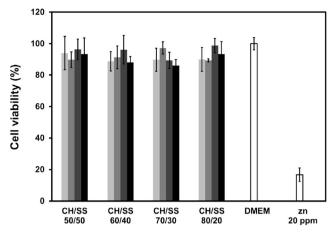

Thus, sericin should be considered as a bioactive molecule and bioactive carrier at the same time. In this study, the sericin-containing microspheres were developed for the controlled release purpose of sericin itself. We previously found that sericin only could not form the stable materials to suit tissue engineering and wound dressing applications. It must be blended with other polymers like polyvinyl alcohol (PVA)

Fig. 5 Percentage of cumulative release of sericin from CH/SS microspheres prepared at different mixing compositions (80/20, 70/30, 60/40, and 50/50) after incubated in PBS solution (pH 7.4) at 37 °C for different periods


^{*}Indicated significant difference compared to average size of microspheres at other CH/SS ratios


Fig. 6 Percentage of weight remaining of CH/SS microspheres prepared at different mixing compositions (80/20, 70/30, 60/40, and 50/50) after incubated in 1 Unit/mL collagenase solution (pH 7.4) at 37°C for different periods

and the scaffolds with good mechanical properties could be obtained (Aramwit et al. 2010a, b). Herein, we found that, with the sericin only, the stable microspheres could not be fabricated. Chitosan was introduced to blend with sericin and fabricate the chitosan-based microspheres for the controlled release of various amounts of sericin (CH/SS at 80/20, 70/30, 60/40, and 50/50). We have tried to fabricate the CH/SS microspheres from higher ratio of sericin, however, the round-shaped microspheres could not be formed. When the amount of sericin was higher than chitosan, the micro-flakes were obtained (data not shown). It might because that the high amount of water-soluble sericin could not be crosslinked within the microspheres. In this part, we proved that chitosan must be added at least 50 % of total concentration to form the stable round-shaped CH/SS microspheres.

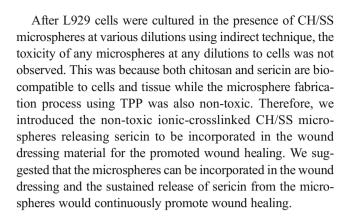
Among various techniques to fabricate chitosan-based microspheres, the using anhydrous tri-polyphosphate (TPP) as

Fig. 7 Stability of sericin in CH/SS microspheres prepared at different mixing compositions (80/20, 70/30, 60/40, and 50/50) after each cycle of freeze-thawing process

Fig. 8 Percentage of viability of L929 mouse fibroblasts when cultured in the presence of CH/SS microspheres prepared at different mixing compositions (80/20, 70/30, 60/40, and 50/50) at 4 diluted concentrations. Cells cultured in DMEM in the absence of microspheres were served as a negative control while cells cultured in the presence of 20 ppm Zn were served as a positive control

the chitosan counter ions to form the ionic crosslinked chitosan microspheres is one of the easiest techniques while the using of toxic chemical crosslinking agents can be avoided (Ko et al. 2002). TPP is nontoxic and multivalent anions that can form gel by ionic interaction between positively charged amino groups of chitosan and negatively charged counterion of TPP (Shu and Zhu 2000, 2001). This interaction could be controlled by the charge density of TPP and chitosan. To fabricate the CH/SS microspheres in our study, the ionic method using TPP counter ions would be very suitable to handle with the positively charged chitosan and the negatively charged sericin and TPP. In this work, the ionic crosslinked CH/SS microspheres at different blending compositions were successfully fabricated by TPP technique. The CH/SS microspheres with average size around 1-4 µm and narrow size distribution were obtained. We found that the microspheres containing higher sericin content (CH/SS at 60/40 and 50/ 50) had the slightly larger average size than the microspheres containing lower sericin content (CH/SS at 80/20 and 70/30). This might be explained that the CH/SS microspheres prepared at 60/40 and 50/50 could encapsulate more amount of sericin (24 and 37 %), possibly because of the optimal ionic interaction between the density of positive and negative charges. It was interesting to note that about 63–79 % of sericin was not encapsulated in the microspheres. It may be lost during the washing step of the fabrication process. However, the small amount of sericin encapsulated in each microsphere formulation would be enough to exhibit some biological effects because the sericin was reported to show biological activities even at low concentration (Aramwit et al. 2010a, b).

Although both chitosan and sericin are hydrophilic, FT-IR results confirmed the presence of them (chitosan and sericin) in the CH/SS microspheres even after the microspheres were



washed repeatedly with DI water during the fabrication process. This strengthened that ionic crosslinking between positively charge chitosan and negatively charged sericin and TPP was occurred. The spectra also suggested that there are interaction between chitosan and sericin at the molecular level as the amide I and amide II bands of sericin were drastically changed after mixing. The aggregated β-strand was red-shifted from 1620 to 1625 cm $^{-1}$. The β -turn was blue-shifted from 1690 to 1684 cm⁻¹. The shifts of crystalline structure toward amorphous structure indicate an increment of disorder after the mixing. The decovoluted spectra of the amide I region (Figure S1) showed the insignificant change of β-turn (1684 cm^{-1}) , α -helix (1658 cm^{-1}) , random coil (1646 cm^{-1}) , and aggregated β-strand (1620 cm⁻¹) upon an increment of chitosan content, suggesting that an increment of chitosan content did not alter the secondary structure of the sericin protein.

When subjected CH/SS microspheres into the *in vitro* release test in PBS solution, the CH/SS microspheres prepared at 50/50 showed the most sustained release behavior of sericin. It could possibly be explained by the strong ionic interaction of the positively charged chitosan and the negatively charged sericin, as mentioned previously. This also verified that the release profile of sericin from CH/SS microspheres could be controlled by changing of charge density of the two molecules.

On the other hand, we found that the composition of CH/SS had no effect on the degradation of microspheres. The rapid degradation of the microspheres at initial may come from the weak ionic interaction of the two molecules at the other surface of microspheres. Thereafter, all microspheres continuously degraded. This proved that the ionic crosslinkings between chitosan and sericin could be demolished by the enzyme and hydrolysis. Nevertheless, all microspheres remained around 20 % after 14 days of enzymatic degradation, indicating somewhat high stability of these CH/SS microspheres.

To further prove the stability of CH/SS microspheres, 1-4 cycles of freeze-thawing process were performed with the microspheres. This freeze-thawing test is useful to confirm the stability of microspheres after storage at freezing condition and thawing to use at room temperature. Mostly, the release behavior of sericin from the microspheres was not much changed. This meant that the freeze-thawing process did not alter the stability of microspheres. Exceptionally, the release of sericin from CH/SS microspheres prepared at 60/40 and 50/ 50 was slightly reduced after 2-4 freeze-thawing cycles. It was suspected that the chemical structure of sericin in microspheres would change from random coil to β-sheet due to the repeated freeze-thawing steps. The randomly coiled structure of sericin easily changed to β -sheet structure as a consequence of repeated moisture absorption and mechanical stretching (Voegeli et al. 1993). The β-sheet structure of sericin was more stable, resulting in the lower amount of sericin released from the microspheres.

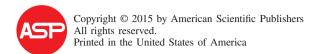
5 Conclusion

The CH/SS microspheres at different composition were successfully fabricated using TPP ionic crosslinking technique. The microspheres with an average size of $1-4~\mu m$ and narrow size distribution were obtained. The presence of both chitosan and sericin in the microspheres confirmed the occurrence of ionic interaction that crosslinked them within the microspheres. The CH/SS microspheres prepared at 50/50 could encapsulate sericin at the highest percentage and release sericin in the most sustained behavior, possibly due to the strong ionic interaction of the positively charged chitosan and the negatively charged sericin. In addition, we have verified that all microspheres were not toxic to L929 cells. This microspheres was suggested to be incorporated in wound dressing material to achieve the sustained release of sericin for accelerated wound healing.

Acknowledgments We gratefully acknowledged the financial support from Thailand Research Fund (Contract number RSA5680004) and Chulalongkorn University.

References

- P. Aramwit, S. Kanokpanont, P. Punyarit, T. Srichana, Wounds 21, 198 (2009)
- P. Aramwit, S. Kanokpanont, T. Nakpheng, T. Srichana, Int. J. Mol. Sci. 11, 2200 (2010a)
- P. Aramwit, T. Siritientong, S. Kanokpanont, T. Srichana, Int. J. Biol. Macromol. 47, 668 (2010b)
- P. Aramwit, T. Siritientong, T. Srichana, Waste Manag. Res. 30, 217 (2012)
- P. Aramwit, T. Siritienthong, T. Srichana, J. Ratanavaraporn, Cells Tissues Organs 197, 224 (2013)
- R. Dash, C. Acharya, P.C. Bindu, S.C. Kundu, BMB Rep. 41, 236 (2007)
- S. Ekgasit, N. Pattayakorn, D. Tongsakul, C. Thammacharoen, T. Kongyou, Anal. Sci. 23, 863 (2007)
- J.B. Fan, L.P. Wu, L.S. Chen, X.Y. Mao, F.Z. Ren, J. Food Biochem. 33, 74 (2009)
- S. Freiberg, X.X. Zhu, Int. J. Pharm. 282, 1 (2004)
- F. Ganji, E. Vasheghani-Farahani, Iran. Polym. J. 18, 63 (2009)



- M.R. Khan, M. Tsukada, X. Zhang, H. Morikawa, J. Mater. Sci. 48, 3731 (2013)
- T. Kitisin, P. Maneekan, N. Luplertlop, J. Agric. Sci. 5, 1916 (2013)
- J.A. Ko, H.J. Park, S.J. Hwang, J.B. Park, J.S. Lee, Int. J. Pharm. 249, 165 (2002)
- S.C. Kundu, B.C. Dash, R. Dash, Prog. Polym. Sci. 33, 998 (2008)
- K. Lee, H. Kweon, J.H. Yeo, S.O. Woo, Y.W. Lee, C.S. Cho, K.H. Kim, Y.H. Park, Int. J. Biol. Macromol. 33, 75 (2003)
- B.B. Mandal, S.C. Kundu, Nanotechnology 20, 355101 (2009)
- B.B. Mandal, A.S. Priya, S.C. Kundu, Acta Biomater. 5, 3007 (2009)
- S. Masahiro, Y. Hideyuki, K. Norihisa, Nutr. Res. 20, 1505 (2000)
- L.N. Mengatto, I.M. Helbling, J.A. Luna, Recent Pat. Drug Deliv. Formul. 6, 156 (2012)
- F.L. Mi, Y.C. Tan, H.F. Liang, H.W. Sung, Biomaterials 23, 181 (2002)
- M. Morikawa, T. Kimura, M. Murakami, K. Katayama, S. Terada, A. Yamaguchi, J. Hepatobiliary Pancreat. Surg. 16, 223 (2009)
- T. Mosmann, J. Immunol. Methods 65, 55 (1983)
- A. Nascimento, M.C. Laranjeira, V.T. Favere, A. Josue, J. Microencapsul. 18, 679 (2001)
- S. Nayak, S. Dey, S.C. Kundu, Int. J. Biol. Macromol. **65**, 258 (2014) J. O'Regan, D.M. Mulvihill, Food Chem. **119**, 182 (2010)
- N. Shanmugasundaram, P. Ravichandran, P.R. Neelakanta, N. Ramamurty, S. Pal, K.P. Rao, Biomaterials **22**, 1943 (2001)
- X.Z. Shu, K.J. Zhu, Int. J. Pharm. 201, 51 (2000)

- X.Z. Shu, K.J. Zhu, J. Microencapsul. 18, 237 (2001)
- V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan, Int. J. Pharm. 274, 1 (2004)
- A. Sionkowska, M. Wisniewski, J. Skopinska, C.J. Kennedy, T.J. Wess, Biomaterials 25, 795 (2004)
- T. Siritienthong, J. Ratanavaraporn, P. Aramwit, Int. J. Pharm. 439, 175 (2012)
- T. Siritienthong, J. Ratanavaraporn, T. Srichana, P. Aramwit, BioMed Research International, Article ID 904314 (2013)
- T. Siritienthong, A. Angspatt, J. Ratanavaraporn, P. Aramwit, Pharm. Res. 31, 104 (2014)
- Y. Tang, S.Y. Liu, S.P. Armes, N.C. Billingham, Biomacromolecules 4, 1636 (2003)
- S. Terada, T. Nishimura, M. Sasaki, H. Yamada, M. Miki, Cytotechnology 40, 3 (2002)
- C. Thomas, P. Sharma, Biomater. Artif. Cells Artif. Org 18, 1 (1990)
- K. Tsujimoto, H. Takagi, M. Takahashi, H. Yamada, S. Nakamori, J. Biochem. 129, 979 (2001)
- R. Voegeli, J. Meier, R. Blust, Cosmetics Toiletries 108, 101 (1993)
- Y.Q. Zhang, Biotechnol. Adv. 20, 91 (2002)
- Y.Q. Zhang, M.L. Tao, W.D. Shen, Y.Z. Zhou, Y. Ding, Y. Ma, W.L. Zhou, Biomaterials 25, 3751 (2004)
- S. Zhaorigetu, N. Yanaka, M. Sasaki, H. Watanabe, N. Kato, J. Photochem. Photobiol. B 71, 11 (2003)

Materials Express

2158-5849/2015/5/241/008 doi:10.1166/mex.2015.1233 www.aspbs.com/mex

A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds

Pornanong Aramwit^{1,*}, Nungruthai Jaichawa¹, Juthamas Ratanavaraporn², and Teerapol Srichana³

Delivered by Publishing Technology to: CHULALONGKORN UNIVERSITY, CENTER OF ACADEMIC RESOURCE

IP: 161.200.184.174 On: Fri, 27 Mar 2015 09:51:24 Copyright: American Scientific Publishers

ABSTRACT

This study aimed to compare type A (GA) and type B gelatin (GB) nanoparticles in terms of physico-chemical properties and the release behavior of different model compounds (methylene blue, eosin, and sericin) incorporated in both nanoparticles. The GA and GB nanoparticles (397-501 nm in diameter) were successfully fabricated by water in oil emulsion technique following by the glutaraldehyde crosslinking. GB nanoparticles showed the higher crosslinking degree, consequently resulted in the slower degradation rate than the GA nanoparticles. The model compounds having different charge characteristics including the positive-charged methylene blue and the negative-charged eosin, were loaded in the nanoparticles. We found that the entrapment and loading efficiencies of methylene blue and eosin depended upon the type of gelatin nanoparticles. The positive-charged methylene blue could entrap in the negative-charged GB nanoparticles at the high entrapment and loading efficiencies (92% and 46%, respectively), possibly due to their attractive electrostatic interaction. Correspondingly, the negative-charged eosin would repel the GB nanoparticles which had the same charge, resulted in the low entrapment and loading efficiencies (25% and 12%, respectively). On the other hand, the entrapment and loading efficiencies of sericin, a model of active compound, in the nanoparticle could not be explained by the electrostatic interaction. The negative-charged GB nanoparticles could entrap the negative-charged sericin at the high extent. The different profiles of methylene blue, eosin and sericin released from the GA and GB nanoparticles were obtained. The release profiles of methylene blue and eosin were mainly influenced by the type of gelatin nanoparticles. The sericin-encapsulated nanoparticles were cultured with L929 cells in order to confirm the biological activities of sericin. The sericin-encapsulated nanoparticles and the control sericin at all sericin concentrations were not toxic to L929 cells. Interestingly, the cells cultured in the presence of GA and GB nanoparticles loaded with 8 mg/mL sericin produced the significant amount of collagen, compared to those cultured with pure sericin control. This was possibly due to that the sericin-encapsulated gelatin nanoparticles

¹Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phatumwan, Bangkok 10330, Thailand ²Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Phatumwan, Bangkok 10330, Thailand

³Department of Pharmaceutical Technology and Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand

^{*}Author to whom correspondence should be addressed. Email: aramwit@gmail.com

were uptaken by cells and target the intracellular signaling of collagen production. From this study, we suggested that the selection of type of gelatin nanoparticles would be very important to get the desired release profile of each compound. The data from this study would be useful for the application of gelatin nanoparticles in drug delivery system.

Keywords: Type A Gelatin, Type B Gelatin, Nanoparticles, Release Carrier, Methylene Blue, Eosin, Sericin.

1. INTRODUCTION

The administration of drug by oral or intravenous routes has been applied for the treatment of human diseases for centuries. Though effective, this kind of administration requires high dose of drug to achieve its effect at a target site, and thereby results in the systemic side effect to the other organs in some cases. To solve these problems, drug delivery system has been developed. Drug delivery system refers to the technology for transporting a drug or pharmaceutical compound to achieve its desired therapeutic effect at the target site. Furthermore, the drug delivery system can prolong the effectiveness of a therapy and reduce the repeated administration. (1) Implantable drug delivery system at a local site is one of the most interesting approaches. The concept of implantable drug delivery system was first described in 1938. (2) In 1960s, Folkman and Long were the pioneers for the development of implantable silicone rubber capsules which succeeded in the controlled release of many different classes of drugs. (3) After that, the implantable drug delivery system at the local site has been received increasing interest. Many researchers have attempted to investigate on various types of release carriers as well as their interaction to drugs in order to understand the controlled release mechanism and the optimal dose of drug required for the treatment. To obtain the desired therapeutic effects, the selection of appropriate release carrier to encapsulate and release a specific drug is very important.

Various formulations of carriers including films, (4) hydrogels, (5) micelles/liposomes, (6) as well as nano/ microparticles^(7,8) have been investigated for the controlled release of drugs. The film and hydrogel carriers usually showed high drug encapsulation efficiency and slow biodegradation rate, however, the surgery is required for the carrier implantation at the target site. (2) Micelles and liposomes are the nano-sized carriers that are widely used to encapsulate hydrophilic/hydrophobic drug, but their encapsulation efficiency is usually low and showed undesirably fast release profiles. (9) Alternatively, nano/microparticles which have high surface area/volume for drug adsorption showed the high drug encapsulation efficiency while the controlled release could be accomplished. (10) Furthermore, the nano/microparticles can be locally applied as injectable carriers without the need of surgery. Nanoparticles can be produced from various materials including natural polymers (gelatin, chitosan, alginate, etc.)(11,12) and synthetic polymers (poly(vinyl alcohol), poly(lactic-co-glycolic acid), etc.).^(13, 14) In this study, the gelatin nanoparticles were of our interest to be investigated as the release carriers for various model compounds.

Gelatin is the denatured product of collagen in which its structure consists of amino acids mainly glycine, proline and hydroxyproline. It is biocompatible, biodegradable, nonimmunogenic and non-antigenic. There are two types of gelatin which are type A gelatin (GA) derived from an acid-treated and type B gelatin (GB) derived from an alkali-treated processes. Different production processes affect on the isoelectric point (pI), pH and other properties of GA and GB obtained. GA has an pI between 8 and 9 (positive charge at neutral pH) while GB has an pI between 4.8 and 5.4 (negative charge at neutral pH). (15) In this study, GA and GB were fabricated into nanoparticles by water in oil emulsion technique. The physico-chemical properties of both nanoparticles were characterized and compared. The GA and GB nanoparticles were introduced as carriers for the delivery of various model compounds. It was suspected that the GA and GB nanoparticles having different physico-chemical properties would interact and release various compounds in a different manner. Herein, the compounds including methylene blue, eosin, and sericin were introduced as drug models to study their release behaviors from the GA and GB nanoparticles. Methylene blue and eosin are the representative models of positive-charged and negative-charged compounds, respectively, while sericin is a model of biological active molecules. The encapsulation efficiencies and release profiles of methylene blue, eosin, and sericin from GA and GB nanoparticles were evaluated at physiological condition. In addition, the sericin-encapsulated nanoparticles were subjected into the culture of L929 cells. The cell viability and collagen production were assessed. Based on our best knowledge, the direct comparison on the properties of GA and GB nanoparticles as release carriers has not been performed. The results from this study gave the useful information and idea for the matching of gelatin nano-carriers and drug type to obtain the desired release profile for various applications.

2. EXPERIMENTAL DETAILS

2.1. Materials

Type A (GA, pI 9) and type B (GB, pI 5) gelatin were supplied from Nitta Gelatin Inc. (Osaka, Japan). Glutaraldehyde solution, methylene blue and eosin was purchased

from Ajax Finechem (New Zealand). Sericin was extracted from the silkworm cocoons using a high temperature and pressure degumming technique as described previously. (16) The sericin with an pI \sim 4–5, a concentration of 7 wt%, and the molecular weight ranging from 25 to 150 kDa was obtained. (17) Other reagents used were analytical grade.

2.2. Method

The gelatin nanoparticles were fabricated by water in oil (w/o) emulsion technique according to a method reported previously. (18) Briefly, 2.5 wt% GA and GB aqueous solutions were prepared at 50 °C. Then, the GA and GB solutions were added drop wise into 600 mL of pre-warmed soybean oil, followed by homogenization at 50 °C, 3400 rpm for 15 min to prepare a water in oil emulsion. The emulsion temperature was decreased to 4 °C for the gelation of gelatin nanoparticles. At this step, the non-crosslinked GA and GB nanoparticles were obtained. The nanoparticles obtained were washed repeatedly with cold acetone in combination with centrifugation at 4 °C to completely remove residual oil. Then, the nanoparticles were air dried at 4 °C. The non-crosslinked nanoparticles (1 g) were immersed in 0.05 vol\% glutaraldehyde in acetone:water (3:1) solution at 4 °C for 20 h under darkness for the crosslinking, followed by agitated in 100 mM agueous glycine solution for 2 h to block the residual aldehyde groups of glutaraldehyde and washed repeatedly with deionized water. After freeze-drying, the glutaraldehydecrosslinked GA and GB nanoparticles were obtained.

2.3. Measurements

GA and GB nanoparticles were homogenously suspended in deionized water (pH 5.5). Zeta potentials and sizes of the GA and GB suspensions were measured by electron spectrometry (ELS, ELS-7000AS instrument, Otsuka Electronic, Japan) at 25 °C and an electric field strength of 100 V/cm. The zeta potential was automatically calculated using the Smoluchowski equation. The zeta potentials of sericin solution were also measured (n = 3).

The amount of free amino (NH₂) groups in the nanoparticles before and after crosslinked with glutaraldehyde was evaluated using the modified 2,4,6-trinitrobenzene sulphonic acid (TNBS) method. (19) Briefly, 5 mg nanoparticles was treated with 1 mL of 4 wt% sodium hydrogen carbonate (NaHCO₃, pH 8.5) and 1 mL of 0.5 wt% TNBS at 40 °C for 2 h. Then, 2 mL of 6 N hydrochloric acid (HCl) was added to the reacting solution and further incubated at 60 °C overnight. The absorbance of the solution was spectrophotometrically determined at 415 nm after suitable dilution. The amount of free NH2 groups was determined from a standard curve prepared from various concentrations of β -alanine. The crosslinking degree of glutaraldehyde-crosslinked GA and GB nanoparticles was calculated in relative to non-crosslinked nanoparticles as a control (n = 3).

Morphology of the dried nanoparticles was observed on a scanning electron microscope (SEM, JSM 5400, JEOL, Japan) at an accelerating voltage of 12–15 kV after sputter coating with gold.

2.4. In Vitro Biodegradation Test

Known weights of the nanoparticles were incubated in 1 Unit/mL collagenase solution (pH 7.4) containing 0.01 wt% sodium azide as an anti-bacterial at 37 °C. The enzyme solution was changed every 2 days to ensure continuous enzyme activity. At the pre-determined time, the remained nanoparticles were washed repeatedly with deionized water, and freeze dried. The dried nanoparticles were weighed and the percentage of remaining weight was calculated as follows:

Remaining weight (%) =
$$(W_t/W_0) \times 100$$

where W_0 and W_t represent the weights of nanoparticles before and after degradation at different time intervals, respectively (n = 3).

2.5. Entrapment Efficiency

Methylene blue and eosin solutions (0.05 wt%) were incubated with the GA and GB nanoparticles at room temperature for 24 h for physical absorption. After air drying, the methylene blue- or eosin-encapsulated nanoparticles were obtained. To evaluate the encapsulation efficiency, methylene blue and eosin entrapped in the nanoparticles were washed out repeatedly with dimethyl sulfoxide (DMSO). The absorbance of methylene blue and eosin dissolved in DMSO was measured using a spectrophotometer at the wavelengths of 570 nm and 522 nm, respectively. The amounts of methylene blue and eosin were determined from the standard curves prepared from various dilutions of methylene blue and eosin, respectively.

Sericin solution (8, 20, and 40 wt%) were incubated with the GA and GB nanoparticles at 4 °C for 24 h for physical absorption. After air drying, the sericinencapsulated nanoparticles were obtained. To evaluate the encapsulation efficiency of sericin in the nanoparticles, the nanoparticles were hydrolyzed with 6 N hydrochloric acid. The concentration of sericin (total concentration of protein subtracted with the concentration of gelatin nanoparticles) in the supernatant was measured by the BCA protein assay kit. The amount of sericin was determined from the standard curves prepared from various dilutions of sericin. The entrapment efficiencies of methylene blue, eosin, and sericin were calculated according to following equation;

Entrapment Efficiencies (EE, %) =
$$(C_E/C_0) \times 100$$

Loading Efficiency (LE, %) = $(C_E/C_{MS}) \times 100$

where C_0 and C_E represent the amounts of compound loaded and entrapped in the nanoparticles, respectively while $C_{\rm MS}$ represents the amount of nanoparticles (n=3).

2.6. In Vitro Release Test

The methylene blue-, eosin-, and sericin-encapsulated nanoparticles were placed in 10 mL PBS at 37 °C under shaking. At the pre-determined time points, the supernatant was collected and replaced with same volume of fresh PBS solution. The concentration of methylene blue, eosin, and sericin released into the supernatant was measured as described previously. The percentages of cumulative release of methylene blue, eosin, and sericin from the nanoparticles were calculated (n = 3).

2.7. In Vitro Cell Viability Test

L929 mouse fibroblast cells were seeded on the 24-well pates at a density of 2×10^4 cells/well and cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10 vol% fetal bovine serum (FBS) and 100 U/mL penicillin/streptomycin at 37 °C, 5 vol% CO₂. At 1 day after seeding, the medium was removed and refreshed with fresh medium containing the GA and GB nanoparticles loaded with sericin and the control sericin at 8, 20, and 40 mg/mL. The viability of cells cultured in the presence of sericin-encapsulated GA and GB nanoparticles and the control sericin for 72 h was quantified using the conventional 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay (n = 3). (20) The cell culture supernatants were collected for the assess of the amount of soluble type I collagen produced by cells using the Sircol® collagen assay kit (Biocolor Ltd., Northern Ireland, UK). The results were determined using a microplate reader (Biohit 830, Biohit®, Helsinki, Finland) at a wavelength of 500 nm. The amount of collagen was calculated based on a standard curve of soluble collagen (bovine type I collagen, produced from USA disease free animals) (n = 3).

All quantitative data were shown as mean \pm standard deviation. The statistical significance was determined by paired and unpaired Student's *t*-tests along with ANOVA. A value of p < 0.05 was considered to be significant.

3. RESULTS

3.1. Physico-Chemical Properties

The physico-chemical properties of GA and GB nanoparticles are presented in Table I. The zeta potential of GA solution equaled to +11.57 mV while that of GB solution was -11.70 mV (p=0.0003). When formed into nanoparticles, the morphology of the non-crosslinked

Table I. Physico-chemical properties of GA and GB nanoparticles.

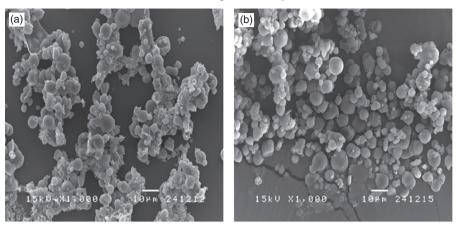
Sample	Zeta potential (mV)	Crosslinking degree (%)	Average size (nm)
GA	$+11.57 \pm 0.12$	36.98 ± 1.38	576.80 ± 49.15
GB	$-11.70 \pm 0.90^*$	$40.39 \pm 2.02^*$	$970.37 \pm 145.8^*$

Note: *p < 0.05 significant difference against the value of GA nanoparticles.

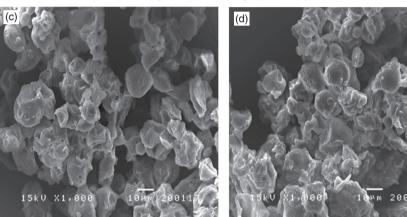
and glutaraldehyde-crosslinked GA and GB nanoparticles observed by SEM was shown in Figure 1. The irregular-shaped and aggregated nanoparticles were observed. The average size of glutaraldehyde-crosslinked GA nanoparticles (576.80 nm), as determined by ELS technique, was significantly smaller than that of GB nanoparticles (970.37 nm) (p = 0.0028). The glutaraldehyde-crosslinked GB nanoparticles (40.39%) showed higher crosslinking degree than the glutaraldehyde-crosslinked GA nanoparticles (36.98%) (p = 0.0073).

3.2. Biodegradation Rate

Figure 2 presents the percentage of remaining weight of the glutaraldehyde-crosslinked GA and GB nanoparticles after incubated in PBS (pH 7.4) containing 1 Unit/mL collagenase at 37 °C for different periods. The glutaraldehyde-crosslinked GB nanoparticles showed higher percentage of remaining weight than the glutaraldehyde-crosslinked GA nanoparticles along 14-day period. The degradation rate of glutaraldehyde-crosslinked GB nanoparticles was around 1.2% per day while that of glutaraldehyde-crosslinked GA nanoparticles was 6.6% per day.


3.3. Entrapment Efficiency

The entrapment and loading efficiencies of methylene blue, eosin, and sericin in the GA and GB nanoparticles were presented in Table II. The entrapment and loading efficiencies of methylene blue in GB nanoparticles (92.7 and 46.3%, respectively) were significantly higher than those of GA nanoparticles (39.5 and 19.8%, respectively) (p = 0.0001 - 0.0042). On the other hand, the eosin loaded on GA nanoparticles showed the higher entrapment and loading efficiencies (42.2 and 21.1%, respectively) than that loaded on the GB nanoparticles (25.4 and 12.7%, respectively) (p = 0.0001 - 0.0026). In case of sericin, the entrapment efficiency in the GB nanoparticles (50.1%) was significantly higher than that of GA nanoparticles (15.3%) (p = 0.0011). On the other hand, the loading efficiencies of sericin in GA and GB nanoparticles were very low (0.1-0.4%).


3.4. In Vitro Release Profiles

The profiles of methylene blue, eosin, and sericin released from the GA and GB nanoparticles were illustrated in Figure 3. The methylene blue and eosin were released from the GA nanoparticles at the lower extent than that of the GB nanoparticles along the period (Figs. 3(a)–(b)). The release of methylene blue became stable after 7 h while the release of eosin reached the plateau after 60 h of incubation. In case of sericin, the opposite trend was observed. Sericin was burst and completely released from GA nanoparticles within the first few hours of incubation. On the other hand, sericin was gradually released from the GB nanoparticles until completely at 72 h.

Non-crosslinked gelatin nanoparticles

Glutaraldehyde-crosslinked gelatin nanoparticles

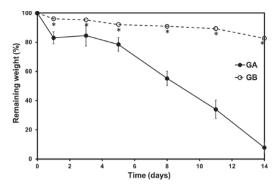
Delivered by Publish

EMIC RESOURCE

Fig. 1. SEM images of the non-crosslinked and glutaraldehyde-crosslinked gelatin nanoparticles. (a), (c) GA and (b), (d) GB nanoparticles. (Scale bar = $10 \mu m$).

3.5. Viability

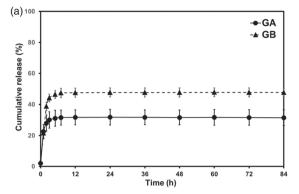
The viability of L929 cells cultured in the presence of sericin-encapsulated GA and GB nanoparticles and the control sericin was demonstrated in Figure 4(a). The cell viability was around 80–100% when cultured in the presence of any concentrations of sericin. The collagen production of cells was shown in Figure 4(b). The cells cultured in the presence of GA and GB nanoparticles encapsulating 8 mg/mL sericin showed a significant amount of collagen production, comparing to those cultured in the presence of GA and GB nanoparticles encapsulating 20 and 40 mg/mL sericin.

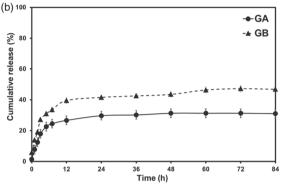

4. DISCUSSION

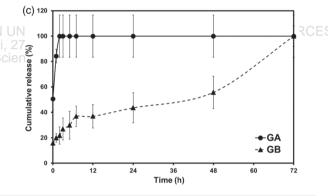
In this study, we have investigated the controlled release of various model compounds from the nano-carrier, gelatin nanoparticles. Both type A (GA) and type B gelatins (GB) were used to fabricate the nanoparticles by water in oil emulsion technique. The physico-chemical properties of GA and GB nanoparticles were characterized and compared. Then, the GA and GB nanoparticles were

introduced as the release carriers for various model compounds including methylene blue, eosin, and sericin. The release behaviors of each compound from the nanoparticles were comparatively studied.

GA and GB nanoparticles were successfully fabricated by water in oil emulsion technique. The nanoparticles obtained had irregular shape with the average size at around 576-970 nm (Table I). The fabrication of gelatin nanoparticles by the water in oil emulsion technique using the high speed homogenization has been reported elsewhere. (21) Although the gelatin nanoparticles are widely studied, the comparison between GA and GB nanoparticles in term of drug release carriers has not been performed. Because the GA and GB are obtained from the different production processes, their physico-chemical characteristics (e.g., bloom strength, pI etc.) are different. Thus, when formed into the nanoparticles, the properties of GA and GB nanoparticles were supposed to be different. The different properties of GA and GB nanoparticles would consequently result in the specific release profile of each drug incorporated. Because gelatin is watersoluble, the gelatin nanoparticles must be crosslinked in


Mater. Express, Vol. 5, 2015 245




Fig. 2. The percentage of remaining weight of the glutaraldehydecrosslinked GA and GB nanoparticles after incubated in PBS (pH 7.4) containing 1 Unit/mL collagenase at 37 °C for different periods. *p < 0.05 significant against the value of GA nanoparticles at the corresponding concentration.

order to reduce the solubility and increase their stability. Glutaraldehyde which is a protein crosslinking agent was selected to crosslink the GA and GB nanoparticles in this study. By glutaraldehyde reaction, the crosslinking bonds between amine groups (NH₂) of gelatin and aldehyde groups of glutaraldehyde were formed. (22) The extent of glutaraldehyde crosslinking mainly depends on the extent of free amine group of gelatin. GB nanoparticles which had more free amine groups showed the higher crosslinking degree than the GA nanoparticles (Table I). This was corresponded to the results reported previously that the GB electrospun fiber mats were crosslinked by dehydrothermal and glutaraldehyde vapor to the higher extent than the GA electrospun fiber mats due to the more free amine groups of GB. (23) The GB nanoparticles with higher crosslinking extent showed the slower degradation rate than the GA nanoparticles with lower crosslinking extent (Fig. 2).

Model compounds having different charge characteristics including the positive-charged methylene blue and the negative-charged eosin, were loaded in the nanoparticles. It was found that the entrapment and loading efficiencies of methylene blue and eosin depended mainly upon type of gelatin nanoparticles. The positive-charged methylene blue could be entrapped in the negative-charged GB nanoparticles at the high efficiency, possibly due to their attractive electrostatic force. On the other hand, the positive-charged methylene blue would repel the GA nanoparticles which had the same charge. The entrapment and loading efficiencies of eosin in the GA and GB

Fig. 3. The percentage of cumulative release of (a) methylene blue; (b) eosin; (c) sericin, SS, from the glutaraldehyde-crosslinked GA and GB nanoparticles after incubated in PBS (pH 7.4) at 37 °C for different periods.

nanoparticles could also be explained with the same mechanism as in the case of methylene blue (Table II). The phenomenon of electrostatic interaction between drug and carrier was also reported elsewhere. (24)

In addition to the methylene blue and eosin, sericin was introduced as the model of active compound to be

Table II. Entrapment efficiency (EE) and loading efficiency (LE) of methylene blue, eosin, and sericin on GA and GB nanoparticles.

Methylene blue		Ео	Eosin		Sericin	
Sample	EE (%)	LE (%)	EE (%)	LE (%)	EE (%)	LE (%)
GA GB	39.5 ± 0.5 $92.7 \pm 7.2^*$	$19.8 \pm 0.2 \\ 46.3 \pm 3.6^*$	42.2 ± 2.2 $25.4 \pm 0.5^*$	21.1 ± 1.1 $12.7 \pm 0.3*$	15.3 ± 2.5 $50.1 \pm 4.0^*$	0.1 ± 0.02 0.4 ± 0.03

Note: *p < 0.05 significant difference against the value of GA nanoparticles.

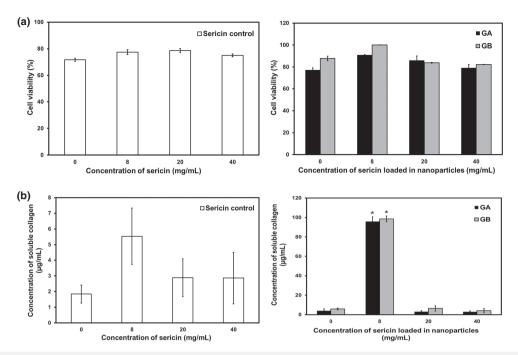


Fig. 4. (a) The viability percentage and (b) the production of soluble type I collagen of L929 cells cultured in the presence of GA and GB nanoparticles releasing sericin and the control sericin at 37 °C, 5% CO_2 for 72 h. *p < 0.05 significant against the value of sericin control at the corresponding concentration.

investigated its release pattern from the GA and GB nanoparticles. Herein, the sericin at 8, 20, and 40 mg/mL showed negative charge at -5.4, -12.3, and -17.5 mV, respectively. Interestingly, we found that the negativecharged sericin could be entrapped in the negative-charged GB nanoparticles at the high extent although they are the same charge. This meant that the electrostatic interaction might not always be the main mechanism for the encapsulation of sericin in the nanoparticles. The other factors such as the molecular size of active compounds and size of carriers would also have influence on the release behavior over the electrostatic interaction. Methylene blue and eosin were the small molecules with the molecular weight of 319 and 691 Da, respectively, while the sericin has a broad molecular weight between 25-150 kDa. It is possible that the large molecule of sericin would be preferable to entrap in the larger size of GB nanoparticles.

Considering the release behavior, GA and GB showed the different release profiles of methylene blue and eosin. The release mechanism of methylene blue and eosin was mainly the diffusion because there was no enzymatic degradation in the release experiment. We also found that the release mechanism could not always be explained by the electrostatic interaction. The repulsive force of same-charged molecules (methylene blue and GA) did not always accelerate the release of compound (Fig. 3(a)). There might be the other forces e.g., van der Waals, hydrogen bonding, etc. that governed the release behaviors of molecules from carriers. The release of sericin from GA and GB nanoparticles showed significantly different

profiles (Fig. 3(c)). Sericin could not be controlled released from GA nanoparticles. It was completely burst out at the beginning, possibly because of the low stability of the lower crosslinking GA nanoparticles. On the other hand, the higher crosslinking GB nanoparticles could control the release of sericin. Furthermore, the small size of GA nanoparticles would not support the entrapment of the large molecule of sericin, then it may accelerate the burst release. When comparing the release profiles between small molecule (methylene blue and eosin) and large molecule (sericin), the noticeably difference was observed. This may be explained that the release profile of molecules also depended on the loading mechanism. Large molecule of sericin may be adsorbed only on the surface but not entrapped inside the nanoparticles while small molecules like methylene blue and eosin may be loaded inside the nanoparticles.

The sericin-encapsulated nanoparticles were further tested for their biological activities with L929 cells. Because the sericin had biological effects in a dose-dependent manner, various concentrations of sericin were loaded into the GA and GB nanoparticles. The concentrations of sericin loaded into nanoparticles were selected based on the data of our previous study. (17) The sericin-encapsulated nanoparticles and the free sericin at all concentrations were not toxic to L929 cells (Fig. 4(a)). Surprisingly, we found that the cells cultured in the presence of GA and GB nanoparticles loaded with 8 mg/mL sericin produced the highest amount of collagen. The reason for this phenomenon was not clear at present. It was

likely to be that this concentration range of sericin released from the GA and GB nanoparticles loaded with 8 mg/mL sericin was optimal to activate the collagen production of L929 cells, compared to the nanoparticles loaded with sericin and free sericin at other concentrations. Furthermore, the sericin-encapsulated gelatin nanoparticles would be uptaken by cells to promote intracellular signaling for collagen production, resulting in the enhanced biological activities. The uptake of nano-carrier by cells to promote biological signaling was reported elsewhere. (25, 26)

Taken together, it could be summarized that different model compounds showed the different release behaviors when incorporated in GA and GB nanoparticles. The selection of type of gelatin nanoparticles would be very important to get the desired release profile of each compound. Furthermore, the release mechanisms of compounds from carriers would be explained by electrostatic force, van der Waals, hydrogen bonding, or some others. We also concluded that the active compound like sericin when incorporated in the gelatin nanoparticles remained its biological activities. Based on our best knowledge, we are the first report of the direct comparison on the properties of GA and GB nanoparticles as the release carriers. The data from this study would be informative for the application of gelatin nanoparticles in drug delivery system.

Acknowledgment: This research was supported by the Thailand research fund (TRF) under grant number 318. K. Hayashi and Y. Tabata; Preparation of stem cell aggregates with RSA5680004. The authors also wish to thank Associate Professor Siriporn Damrongsakkul and Assistant Professor Sorada Kanokpanont for the use of their facilities at Faculty of Engineering, Chulalongkorn University.

References and Notes

- 1. G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, and S. K. Bannerjee; Drug delivery systems: An updated review; Int. J. Pharm. Investig. 2, 2 (2012).
- 2. L. W. Kleiner, J. C. Wright, and Y. Wang; Evolution of implantable and insertable drug delivery systems; J. Control. Release. 181, 1
- 3. J. Folkman and D. M. Long: The use of silicone rubber as a carrier for prolonged drug therapy; J. Surg. Res. 4, 139 (1964).
- 4. S. Bhattacharyya, A. Agrawal, C. Knabe, and P. Ducheyne; Sol-gel silica controlled release thin films for the inhibition of methicillinresistant Staphylococcus aureus; Biomaterials 35, 509 (2014).
- 5. A. Altunbas, S. J. Lee, S. A. Rajasekaran, J. P. Schneider, and D. J. Pochan; Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles; Biomaterials 32, 5906 (2011).
- 6. R. L. Thangapazham, A. Puri, S. Tele, R. Blumenthal, and R. K. Maheshwari; Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells; Int. J. Oncol. 32, 1119 (2008).
- 7. Q. Gan and T. Wang; Chitosan nanoparticle as protein delivery carrier: Systematic examination of fabrication conditions for efficient loading and release; Colloid Surface B 59, 24 (2007).

- 8. J. Ratanavaraporn, S. Kanokpanont, and S. Damrongsakkul; The development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperine; J. Mater. Sci: Mater. Med. 25, 401 (2014).
- 9. J. L. Woodhead and C. K. Hall; Encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles; Macromolecules 44, 5443 (2011).
- 10. N. Pirooznia, S. Hasannia, A. S. Lotfi, and M. Ghanei; Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles: In vitro characterization as an effective aerosol formulation in pulmonary diseases; J. Nanobiotechnology 10, 20 (2012).
- 11. J. J. Wang, Z. W. Zeng, T. X. Xiao, G. L. Zhou, X. R. Zhan, and S. L. Wang; Recent advances of chitosan nanoparticles as drug carriers; Int. J. Nanomedicine 6, 765 (2011).
- 12. J. Vandervoort and A. Ludwig; Preparation and evaluation of drugloaded gelatin nanoparticles for topical ophthalmic use; Eur. J. Pharm. Biopharm. 57, 251 (2004).
- 13. J. K. Li, N. Wang, and X. S. Wu; Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery; J. Control. Release 56, 117 (1998).
- 14. I. Bala, S. Hariharan, and M. N. Kumar; PLGA nanoparticles in drug delivery: The state of the art; Crit. Rev. Ther. Drug Carrier Syst. 21, 387 (2004).
- 15. C. R. Maxey and M. R. Palmer; Photographic Gelatin II; Academic Press, London (1967).
- 16. K. Lee, H. Kweon, J. H. Yeo, S. O. Woo, Y. W. Lee, C. S. Cho, K. H. Kim, and Y. H. Park; Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin; Int. J. Biol. Macromol. 33, 75 (2003).
- 17. P. Aramwit, S. Kanokpanont, T. Nakpheng, and T. Srichana; The effect of sericin from various extraction methods on cell viability and collagen production; Int. J. Mol. Sci. 11, 2200 (2010).
 - gelatin microspheres to enhance biological functions; Acta Biomater. 7, 2797 (2011).
 - 19. W. A. Bubnis and C. M. Ofner; The determination of ε -amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzene-sulfonic acid; Anal Biochem. 207, 129 (1992).
 - 20. T. Mosmann; Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays; J. Immunol. Methods 65, 55 (1983).
 - 21. J. K. Li, N. Wang, and X. S. Wu; Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method; J. Microencapsulation. 15, 163 (1998).
 - 22. A. R. Kulkarni, K. S. Soppimath, and T. M. Aminabhavi; Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde; Pharm. Acta Helv. 74, 29 (1999).
 - Ratanavaraporn, R. Rangkupan, H. Jeeratawatchai, S. Kanokpanont, and S. Damrongsakkul; Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats; Int. J. Biol. Macromol. 47, 431 (2010).
 - 24. M. Okhawilai, R. Rangkupan, S. Kanokpanont, S. Damrongsakkul; Preparation of Thai silk fibroin/gelatin electrospun fiber mats for controlled release applications; Int. J. Biol. Macromol. 46, 544 (2010).
 - 25. TdeL. Karlson, Y. Y. Kong, C. L. Hardy, S. D. Xiang, and M. Plebanski; The signaling imprints of nanoparticle uptake by bone marrow derived dendritic cells; Methods 60, 275 (2013).
 - 26. F. M. Mickler, L. Möckl, N. Ruthardt, M. Ogris, E. Wagner, and C. Bräuchle; Tuning nanoparticle uptake: Live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand; Nano Lett. 12, 3417 (2012).

Received: 15 August 2014. Revised/Accepted: 17 February 2015.

NANO EXPRESS Open Access

Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

Pornanong Aramwit^{1*}, Nipaporn Bang¹, Juthamas Ratanavaraporn² and Sanong Ekgasit³

Abstract

In this study, a 'green chemistry' approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO₃, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO₃ were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO⁻ and NH₂ ⁺ groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications.

Keywords: Green synthesis; Silver nanoparticle; Silk sericin; Alkaline degradation; Anti-bacterial activity

Background

Over the last decades, silver nanoparticles (AgNPs) have been widely used in catalytic, optic, electronic, and other applications due to their unique size-dependent properties and high surface-to-volume ratio, which are significantly different from those of the corresponding bulk materials [1]. Recently, there has been a great deal of interest in the effective anti-bacterial/anti-fungal activity of AgNPs [2-5]. In fact, it is well known that Ag ions (Ag⁺) and Ag-based compounds have strong biocidal effects on as many as 12 species of bacteria including *Escherichia coli* [6]. Das et al. showed that AgNPs with a 12-nm size could be used as effective growth inhibitors against *Bacillus subtilis, Staphylococcus aureus*, and *Pseudomonas aeruginosa* [3]. Kim et al. reported that yeast and *E. coli* were inhibited at the low concentration of AgNPs

[7]. Furthermore, silver exhibits low toxicity and minimal risk in the human body [8].

AgNPs can be synthesized by a variety of methods such as reverse micelle process [9], chemical reduction [10], microwave dielectric heating reduction [11], ultrasonic irradiation [12], radiolysis [13], solvothermal synthesis [14], electrochemical synthesis [15], bacterial synthesis [16], etc. Among these methods, chemical reduction is one of the easiest and widely used techniques. Solomon et al. have reported the chemical reduction of silver nitrate using sodium borohydride to synthesize stable and nonaggregated AgNPs [17]. Sodium dodecyl sulfate, sodium citrate, and hydrazine hydrate solution were also used as stabilizing and reducing agents to prepare AgNPs with high anti-microbial activity against gram-positive bacteria [18]. However, these chemical methods use organic solvents and toxic reducing agents, consume high energy, and require difficult waste treatment. Recently, researchers have an increasing awareness about the environment. The use of toxic chemicals and solvents should be avoided, contributing to the emergence of 'green chemistry' for the synthesis of AgNPs [19-23]. Utilizations of

Full list of author information is available at the end of the article

^{*} Correspondence: aramwit@gmail.com

¹Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 PhyaThai Road, Patumwan, Bangkok 10330, Thailand

environmentally friendly or naturally derived materials are some of the key issues of a green synthesis strategy [19-23]. Various types of microorganisms have been reported to synthesize AgNPs either intra- or extracellularly [19,20]. Also, stable AgNPs could be synthesized by using polysaccharides such as starch as both reducing and stabilizing agents [21,22]. AgNPs were synthesized by autoclaving a solution of AgNO₃ and starch [21]. Starch undergoes hydrothermal hydrolysis in an autoclave to produce glucose. Thus, starch can be used instead of pure glucose for the synthesis of AgNPs. In addition to polysaccharides, proteins, which are naturally abundant nontoxic materials and available from various sources, are introduced for AgNP synthesis. Zhao et al. have synthesized a AgNP-embedded soy protein isolation (SPI) film [24]. The whole reaction process was carried out by exposure to white light at ambient temperature, which is highly energy-efficient and eco-friendly. Moreover, the AgNP-embedded SPI film showed an effective antimicrobial activity against both gram-positive and gramnegative bacteria. Sasikala et al. have introduced the capabilities of the miracle bean soybean *Glycine max* as a stabilizer in the production of AgNPs [25]. Irwin et al. reported that keratin-stabilized AgNPs at 0.3 to 3 µM completely inhibited the growth of an equivalent volume of ca. 10³ to 10⁴ colony-forming units per milliliter (CFU/mL) of S. aureus, Salmonella typhimurium, or E. coli [26].

In this study, silk sericin protein was introduced for AgNP synthesis. Silk sericin (SS) is a water-soluble protein extracted from silkworms. Currently, SS is considered as a waste product from the textile industry. It is highly hydrophilic with strong polar side chains such as hydroxyl, carboxyl, and amino groups. Recently, SS has been widely used in biomaterial applications due to its biocompatibility, biodegradability, and anti-oxidative and bioactive activities. We herein introduced SS as a reducing and stabilizing agent for AgNP synthesis. Due to the results, SS can be used instead of other natural products to easily produce AgNPs. The effects of reaction conditions including the pH value and concentrations of SS and silver nitrate (AgNO₃) solutions on AgNP formation were investigated via a UV-visible (UV-Vis) spectrophotometer, transmission electron microscope (TEM), and colorimeter. The size and zeta potential of the SS-capped AgNPs were determined by using Zetasizer. The chemical structure of the SS-capped AgNPs was analyzed by attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. The antimicrobial activity of the SS-capped AgNPs against grampositive and gram-negative bacteria was evaluated.

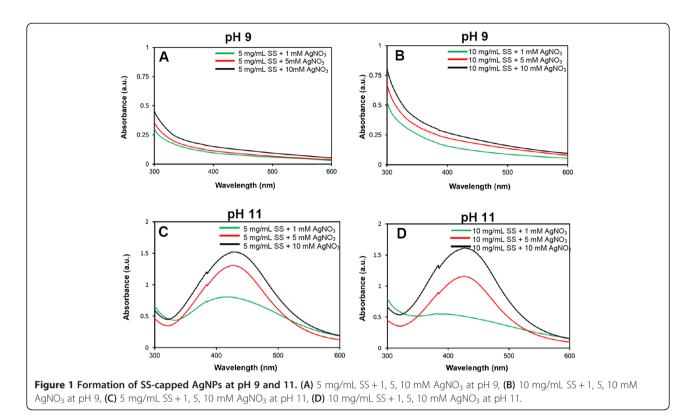
Methods

Materials

Fresh bivoltine white-shell cocoons of *Bombyx mori* produced in a controlled environment were kindly supplied by

Chul Thai Silk Co., Ltd. (Petchaboon province, Thailand). Silver nitrate (AgNO₃), sodium hydroxide (NaOH), and other chemicals were of analytical grade and used without further purification.

Preparation of silk sericin solution


The silkworm cocoons were cut into small pieces, and SS was extracted using a high-temperature and high-pressure degumming technique [27]. Briefly, the cocoons were put into deionized (DI) water and then autoclaved at 120°C for 60 min. After filtration through a filter paper to remove fibroin fibers, the SS solution was concentrated until the desired concentration was achieved (approximately 7 wt%, measured by the BCA protein assay kit, Pierce, Rockford, IL, USA). This SS solution was used as a stock solution. The molecular weight of the SS obtained ranged from 25 to 150 kDa, as reported previously [28].

Synthesis of SS-capped AgNPs

The SS solution was diluted to 5, 10, and 20 mg/mL, and NaOH was added to adjust the pH of the SS solution to be 9 and 11. The prepared SS solution was added to the AgNO₃ solution (1, 5, and 10 mM) under constant stirring. The mixture was stirred at room temperature overnight. The transparent solution which turned yellow indicated the formation of SS-capped AgNPs.

Characterization of SS-capped AgNPs

UV-Vis absorption spectra of the SS-capped AgNPs were measured using a UV-Vis spectrophotometer (Perkin-Elmer LAMBDA 25, Waltham, MA, USA), from 300 to 600 nm, to evaluate the formation and yield of SS-capped AgNPs. For the stability test, the SS-capped AgNP suspension was stored at different temperatures (4°C, 25°C, and 37°C) and the yield was analyzed at each pre-determined time. The concentrations of formed AgNPs were obtained from the calibration method. To construct the calibration curve, AgNP colloid standards at various initial AgNO₃ concentrations were prepared by reducing AgNO3 with NaBH₄ in the SS solution. The amount of NaBH₄ used in the reaction was excessive, and the dissolved silver ions completely transformed into metallic silver. The characteristic plasmon absorption at 420 nm was plotted against the initial concentration of AgNO₃ and employed as a calibration curve. The plasmon absorption intensity at 420 nm directly related to the amount of AgNPs formed. The color of the SS-capped AgNP suspension was determined using a colorimeter (Konica Minolta CR 400, Chiyoda-ku, Japan). The CIELab scale was used; lightness (L^*) and chromaticity parameter b^* (yellow-blue) were measured. The size and zeta potential of SS-capped AgNPs were determined by Zetasizer Nano Range (Malvern Instruments Ltd, Malvern, UK). A drop of SS-capped AgNPs was placed on carbon-coated

copper grids and observed on TEM (Hitachi H-7650, Chivoda-ku, Japan).

The chemical structure of the SS-capped AgNPs was analyzed by ATR FT-IR spectroscopy. Briefly, the SScapped AgNP suspension was dropped on a glass slide and left to dry overnight under an ambient condition. The ATR spectrum was collected by a germanium microinternal reflective element (IRE) attached onto the builtin × 15 infrared objective. A sufficient contact between the tip of the IRE and the sample was achieved by raising the sample stage towards the IRE. The degree of contact was monitored by a built-in pressure sensor on the sample stage. The ATR spectra were collected via a continuum infrared microscope attached to a Nicolet 6700 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using a 256-scan co-addition at a resolution of 4 cm⁻¹ with a built-in nitrogen-cooled mercury-cadmiumtelluride (MCT) detector.

Evaluation of anti-bacterial activities of SS-capped AgNPs

All bacterial experiments were performed in a laminar flow hood according to the full aseptic technique protocol. The researchers wore a cap, a mask, and gloves during the experiment to prevent the contamination of harmful bacteria. The anti-bacterial activities of SScapped AgNPs were analyzed by broth dilution method against six different pathogenic microorganisms including gram-positive bacteria (Bacillus subtilis, S. aureus, and methicillin-resistant S. aureus (MRSA)) and gramnegative bacteria (E. coli, P. aeruginosa, and Acinetobacter baumannii). The pure cultures of bacteria were subcultured on Mueller-Hinton agar (MHA). Each strain was inoculated into soybean casein digest (tryptic soy broth (TSB)) for 4 to 6 h at 37°C. The growth cultures were diluted to 5×10^5 CFU/mL. AgNP suspension (1 mL) was added to the mixture of TSB (1 mL) and the bacterial culture (1 mL). After incubation at 37°C for 24 h, the

Table 1 Yield, size, and zeta potential of SS-capped AgNPs synthesized from SS and AgNO₃ at pH 11

			. h
Sample	Yield of AgNPs (mM)	Size (nm)	Zeta potential (mV)
5 mg/mL SS + 1 mM AgNO ₃	0.06	95.8 ± 0.9	-23.7 ± 0.6
5 mg/mL SS + 5 mM AgNO ₃	0.75	48.8 ± 0.1*	-25.2 ± 0.2
5 mg/mL SS + 10 mM AgNO ₃	0.88	55.2 ± 0.6*	-17.1 ± 0.6
10 mg/mL SS + 1 mM AgNO₃	0.04	117.0 ± 6.8	-22.0 ± 0.1
10 mg/mL SS + 5 mM AgNO ₃	0.66	48.1 ± 0.2*	-25.5 ± 0.9
10 mg/mL SS + 10 mM AgNO ₃	0.93	63.6 ± 1.6*	-18.8 ± 2.3

^{*}p < 0.05, significant against the values of SS-capped AgNPs synthesized from 1 mM AgNO₃ at the corresponding SS concentration.

minimal inhibitory concentration (MIC) was examined. It is expressed as the lowest dilution which inhibited growth, judged by the lack of turbidity in the tube. After the bacterial experiment, the used cap, mask, and gloves were autoclaved before disposal. The flasks were autoclaved for sterilization, and the area was disinfected with 70% ethanol.

Statistical analysis

All the results were statistically analyzed by the unpaired Student's t test, and p < 0.05 was considered to be statistically significant. Data were expressed as the mean \pm standard deviation.

Results and discussion

In this work, SS was selected as a reducing and a stabilizing agent for the synthesis of AgNPs under an alkaline condition due to its being environmentally friendly, biocompatibility, and functional groups with reducing potential. The effects of pH and concentrations of AgNO₃ and SS on the formation of SS-capped AgNPs are shown in Figure 1. It was found that the SS-capped AgNPs could not be formed at pH 9 at any concentration of SS and AgNO₃. On the other hand, at pH 11, all concentrations of SS (5 and 10 mg/mL) and AgNO₃ (1, 5, and 10 mM) formed SS-capped AgNPs with different yields. This is because the functional groups with reducing potential of SS could be obtained from the alkaline degradation [29-31]. SS is a hydrophilic protein with strong polar side chains such as hydroxyl, carboxyl, and amino groups. It was supposed that the SS degraded under strong alkaline condition would generate the reducing species that could reduce silver ions [21]. Furthermore, the abundant hydroxyl groups of SS were expected to complex with the silver ion and prevent aggregation or precipitation of AgNPs [21,32]. The effect of the acidicalkaline treatment of soluble starch on the synthesis of metal nanoparticles was reported by Tongsakul et al. [29]. They found that degraded intermediates with reducing potential (i.e., aldehyde and α-hydroxy ketone) of starch are concomitantly generated when the alkaline concentration is greater than 0.025 M and the in situ generated species could completely reduce platinum ions (20 mM) and sufficiently stabilize the obtained platinum nanoparticles (5 mM) of uniform particle size (2 to 4 nm).

Table 2 Color quantitative results of SS-capped AgNP suspension synthesized from SS and AgNO₃ at pH 11

Sample	L*	b*
5 mg/mL SS + 5 mM AgNO ₃	17.7 ± 0.0	0.3 ± 0.0
10 mg/mL SS + 5 mM AgNO ₃	17.7 ± 0.4	0.4 ± 0.1

 L^* indicates brightness ranging from black (L^* =0) to white (L^* =100). b^* indicates blue-yellow color, value ranged from –60 (blue) to 60 (yellow).

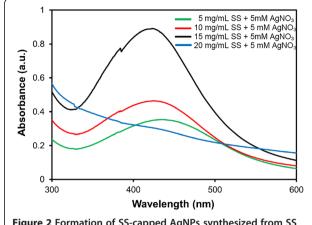


Figure 2 Formation of SS-capped AgNPs synthesized from SS and $AgNO_3$ at pH 11.

The SS-capped AgNPs had a yellow-brown color with a typical absorption peak of AgNPs at 420 nm [21]. The yield of SS-capped AgNPs increased with the increasing concentration of AgNO₃. However, the concentration of SS seemed to show less effect on the yield of SS-capped AgNPs. Yields of SS-capped AgNPs synthesized at pH 11 are presented in Table 1. It was clearly seen that the yields of SS-capped AgNPs synthesized from 10 mg/mL SS+ 1 mM AgNO₃ were the lowest (0.04 mM) while those synthesized from 10 mg/mL SS + 10 mM AgNO₃ were the highest (0.93 mM) according to the absorption intensity and AgNP concentration standard curve. At both 5 and 10 mg/mL SS, AgNO₃ at 5 and 10 mM produced 0.66 to 0.93 mM SS-capped AgNPs. The colors of the AgNP suspension were quantitatively evaluated as presented in Table 2. L^* and b^* indicated the lightness and yellow-blue color of the suspension, respectively. The AgNP suspensions synthesized from 5 or 10 mg/mL SS + 1 mM AgNO₃ were lighter (higher L* values) and more likely yellow (higher b^* values) than those synthesized from 5 or 10 mg/mL SS + 5 mM AgNO₃. The lighter color of the AgNP suspension indicated a lower yield of SS-capped AgNPs than the darker (brown) suspension. Thus, the higher concentration of AgNO₃ produced the higher yield of SS-capped AgNPs.

The effects of the wider range of SS concentration (5, 10, 15, and 20 mg/mL) at a fixed concentration of AgNO₃ (5 mM) on the formation of SS-capped AgNPs were

Table 3 Yield of SS-capped AgNPs synthesized from SS and AgNO₃ at pH 11

Sample	Yield of AgNPs (mM)
5 mg/mL SS + 5 mM AgNO ₃	0.47
10 mg/mL SS + 5 mM AgNO $_3$	0.63
15 mg/mL SS + 5 mM AgNO $_3$	1.26
20 mg/mL SS + 5 mM AgNO ₃	-

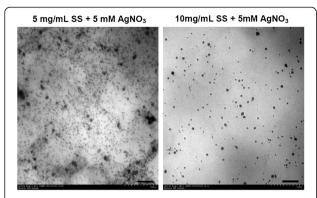
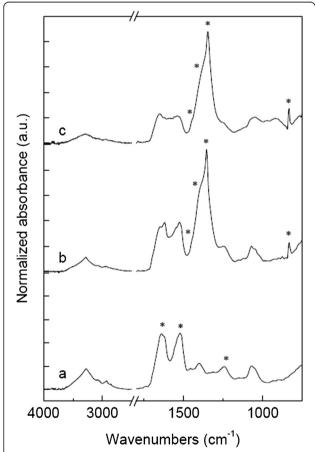



Figure 3 Morphology of SS-capped AgNPs synthesized from SS and AgNO₃ at pH 11, observed on TEM. Scale bar = 1 μ m.

Figure 4 Normalized ATR FT-IR spectra of virgin sericin and AgNPs. The intensity was normalized against the absorption at 1,070 cm⁻¹. **(A)** Original SS shows characteristic absorptions of protein including amide I (1,700 to 1,600 cm⁻¹, asterisk), amide II (1,560 to 1,500 cm⁻¹, asterisk), and amide III (1,300 to 1,200 cm⁻¹, asterisk). **(B)** SS-capped AgNPs show new functional groups including carboxylate (1,451, 1,404, 1,353 cm⁻¹, asterisk) and amine salt (830 cm⁻¹, asterisk). **(C)** Thermally treated SS-capped AgNPs show the same functional groups as those in **(B)**.

Table 4 Infrared band assignment of silk sericin and SS-capped AgNPs

IR band (cm ⁻¹)	Band assignment
1,700 to 1,600	Amide I (C = O stretching vibration)
1,560 to 1,500	Amide II (N-H bending and C-N stretching vibration)
1,300 to 1,200	Amide III (C-N-H in-plane bending and C-N stretching vibration)
1,451, 1,404, 1,353	Free carboxylate groups (COO ⁻ stretching vibration)
830	Amine salt

further investigated, as shown in Figure 2. It was found that 5, 10, and 15 mg/mL of SS + 5 mM of AgNO $_3$ could produce SS-capped AgNPs and the yield increased with the increasing concentration of SS (0.47, 0.63, and 1.26 mM, respectively), as presented in Table 3. Interestingly, at 20 mg/mL of SS, the peak absorption at 420 nm was not observed. The mechanism of this phenomenon was not clearly understood at present. It was supposed that the high SS concentration provided excessive stabilization of Ag $^+$. As a result, Ag $^+$ was slowly reduced. An increase in the absorption at 420 nm or intense yellow color over time was observed.

Sizes and zeta potentials of SS-capped AgNPs synthesized at pH 11 are presented in Table 1. The SS-capped AgNPs synthesized from 5 or 10 mg/mL SS+1 mM AgNO₃ showed the largest size (95.8 and 117 nm, respectively). When the concentration of AgNO₃ was increased to 5 or 10 mM, SS-capped AgNPs with smaller size (48 to 63 nm) were formed. However, it seemed that sizes of all nanoparticles were in a similar range (48 to 117 nm). TEM images in Figure 3 qualitatively show the round shape of SS-capped AgNPs and confirm their size

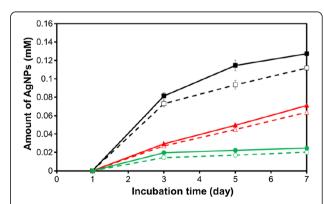


Figure 5 Stability of SS-capped AgNPs synthesized at pH 11 when stored at different temperatures. (empty square) 5 mg/mL SS+5 mM AgNO $_3$, 37°C, (filled square) 10 mg/mL SS+5 mM AgNO $_3$, 25°C, (filled triangle) 10 mg/mL SS+5 mM AgNO $_3$, 25°C, (filled triangle) 10 mg/mL SS+5 mM AgNO $_3$, 25°C, (empty circle) 5 mg/mL SS+5 mM AgNO $_3$, 4°C, (filled circle) 10 mg/mL SS+5 mM AgNO $_3$, 4°C.

0.004

Gram	Bacterial strain	Concentration of SS-capped AgNPs (mM)				MIC (mM)	
		0.001	0.004	0.008	0.017	0.034	
+	MRSA	Т	T/C	С	С	С	0.008
+	S. aureus	Т	T/C	C	C	C	0.008
+	B. subtilis	Т	T/C	C	C	C	0.008
_	P. aeruginosa	Т	C	C	C	C	0.004
_	A. baumannii	C	C	C	C	C	0.001

Table 5 Anti-bacterial activity of SS-capped AgNPs (5 mg/mL SS + 5 mM AgNO₃) against gram-positive and gram-negative bacteria

 $\overline{}$

as reported in Table 1. Zeta potentials of all SS-capped AgNPs were around -25 to -17 mV, indicating their high stability.

Figure 4 and Table 4 show the normalized ATR FT-IR spectra and infrared band assignment of the original SS and SS-capped AgNPs. The spectrum of the original SS (Figure 4(A)) showed characteristic absorptions of protein including amide I (1,700 to 1,600 cm⁻¹), amide II $(1,560 \text{ to } 1,500 \text{ cm}^{-1})$, and amide III $(1,300 \text{ to } 1,200 \text{ cm}^{-1})$ [33]. After the addition of silver salt under an alkaline condition (Figure 4(B)), an obvious presence of new functional groups including carboxylate (1,451, 1,404, 1,353 cm⁻¹) and amine salt (830 cm⁻¹) was observed. The new absorptions indicated the hydrolysis of amide linkage into its basic structural units [34]. The carboxylate groups also function as a weak reducing agent for the generation of AgNPs [35-38]. This FT-IR data proved the mechanism of how SS under an alkaline condition formed the AgNPs. In addition, the reduction reaction was accelerated by the thermal treatment of the SS-capped AgNPs (Figure 4(C)). The carboxylate (COO⁻) and amine (NH₂ ⁺) moieties were clearly present. It was reported that these moieties could stabilize AgNPs through the donated lone pair electrons to the surface of metal nanoparticles [35,38]. An excellent stabilization of AgNPs by COO⁻ and NH₂ groups also prevented precipitation and aggregation of the nanoparticles [21,32].

The synthesized SS-capped AgNPs were stored at different temperatures (4°C, 25°C, and 37°C) for 7 days to observe their stability, as shown in Figure 5. It was found that the SS-capped AgNPs stored at 4°C were rather stable along the 7-day period; on the other hand, more SS-capped AgNPs were formed when stored at 25°C and 37°C. This might be that the reduction reaction continued at higher temperature.

The anti-bacterial activity of SS-capped AgNPs against gram-positive and gram-negative bacteria is shown in Table 5. The SS-capped AgNPs synthesized from 5 mg/mL SS + 5 mM AgNO₃ were selected for the study due to their high yield and stability. We found that the growth of all gram-positive bacteria (MRSA, *S. aureus*, and

B. subtilis) was potentially inhibited by SS-capped AgNPs (MIC 0.008 mM) while the SS-capped AgNPs inhibited the growth of gram-negative bacteria at a lower MIC (0.004 mM for P. aeruginosa and E. coli and 0.001 mM for A. baumannii). This result clearly elucidated the effectiveness of our SS-capped AgNPs for antibacterial applications.

Conclusions

SS-capped AgNPs were successfully synthesized under an alkaline condition (pH 11) via a green chemistry approach using SS as a reducing and stabilizing agent. The higher concentrations of SS and AgNO₃ increased the yield of SS-capped AgNPs. Sizes of the SS-capped AgNPs were around 48 to 117 nm. The FT-IR result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO⁻ and NH⁺₂ groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive and gram-negative bacteria. We therefore introduced the SS-capped AgNPs as a safe candidate for anti-bacterial applications.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PA designed all the experiments and interpreted and discussed all the results. NB did the microbiology study. JR drafted the manuscript. TT performed some parts of the experiments. SE ran the FT-IR experiment. All authors read and approved the final manuscript.

Acknowledgements

This research was supported by Thailand Research Fund (TRF).

Author details

¹Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 PhyaThai Road, Patumwan, Bangkok 10330, Thailand. ²Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, 254 PhyaThai Road, Patumwan, Bangkok 10330, Thailand. ³Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 PhyaThai Road, Patumwan, Bangkok 10330, Thailand.

T, turbid suspension; T/C, slightly turbid suspension; C, clear solution.

Received: 26 November 2013 Accepted: 10 February 2014 Published: 17 February 2014

References

- Feldheim DL, Foss CA: Metal Nanoparticles: Synthesis, Characterization and Applications. New York: Marcel Dekker; 2002.
- Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006. 5:916–924.
- Das R, Gang S, Nath SS: Preparation and antibacterial activity of silver nanoparticles. J Biomater Nanobiotechnol 2011, 2:472–475.
- Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010. 85:1115–1122.
- Chao L, Xiansong W, Feng C, Chunlei Z, Xiao Z, Kan W, Xiangcui D: The antifungal activity of graphene oxide–silver nanocomposites. *Biomaterials* 2013, 34:3882–3890.
- Zhao G, Stevens SE Jr: Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998, 11:27–32.
- Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH: Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3:95–101.
- 8. Lansdown AB: Silver in health care: antimicrobial effects and safety in use. *Curr Probl Dermatol* 2006, **33**:17–34.
- Xie Y, Ye R, Liu H: Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surfaces A 2006, 279:75–178.
- Pillai ZS, Kamat PV: What factors control the size and shape of silver nanoparticles in the citrate ion reduction method. J Phys Chem B 2004, 108:945–951.
- Patel K, Kapoor S, Dave DP, Murherjee T: Phenomenon is related to size of colloidal silver particles. J Chem Sci 2005, 117:53–60.
- Salkar RA, Jeevanandam P, Aruna ST, Koltypin Y, Gedanken A: The sonochemical preparation of amorphous silver nanoparticles. J Mater Chem 1999, 9:1333–1335.
- Soroushian B, Lampre I, Belloni J, Mostafavi M: Radiolysis of silver ion solutions in ethylene glycol: solvated electron and radical scavenging yields. Radiat Phys Chem 2005, 72:111–118.
- Starowicz M, Stypula B, Banace J: Electrochemical synthesis of silver nanoparticles. Electrochem Commun 2006, 8:227–230.
- Zhu JJ, Liao XH, Zhao XN, Hen HY: Preparation of silver nanorods by electrochemical methods. Mater Lett 2001, 49:91–95.
- Thomas R, Viswan A, Mathew J, Radhakrishnan EK: Evaluation of antibacterial activity of silver nanoparticles synthesized by a novel strain of marine Pseudomonas sp. Nano Biomed Eng 2012, 4:139–143.
- Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C: Synthesis and study of silver nanoparticles. J Chem Educ 2007, 84:322–325.
- 18. Guzmán MG, Dille J, Godet S: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. *Int J Chem Biol Eng* 2009, **2**:104–111.
- Rani PU, Rajasekharreddy P: Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surfaces A 2011, 389:188–194.
- Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L: Fungusmediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 2012, 13:466–476.
- Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV: A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch. Carbohyd Res 2006, 341:2012–2018.
- Oluwafemi OS, Vuyelwa N, Scriba M, Songca SP: Green controlled synthesis of monodispersed, stable and smaller sized starch-capped silver nanoparticles. Mater Lett 2013, 106:332–336.
- Senthamilselvi S, Kumar P, Prabha AL, Govindaraju M: Green simplistic biosynthesis of anti-bacterial silver nanoparticles using Annona squamosa leaf extract. Nano Biomed Eng 2013, 5:102–106.
- Zhao S, Yao J, Fei X, Shao Z, Chen X: An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. *Mater Lett* 2013, 95:142–144.

- Sasikala D, Govindaraju K, Tamilselvan S, Singaravelu G: Soybean protein: a natural source for the production of green silver nanoparticles. Biotechnol Bioprocess Eng 2012, 17:1176–1181.
- Irwin P, Martin J, Nguyen LH, He Y, Gehring A, Chen CY: Antimicrobial
 activity of spherical silver nanoparticles prepared using a biocompatible
 macromolecular capping agent: evidence for induction of a greatly
 prolonged bacterial lag phase. J Nanobiotechnology 2010, 8:34.
- Lee K, Kweon H, Yeo JH, Woo SO, Lee YW, Cho CS, Kim KH, Park YH: Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin. Int J Biol Macromol 2003, 33:75–80.
- Aramwit P, Kanokpanont S, Nakpheng T, Srichana T: The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 2010, 11:2200–2211.
- Tongsakul D, Wongravee K, Thammacharoen C, Ekgasit S: Enhancement of the reduction efficiency of soluble starch for platinum nanoparticles synthesis. Carbohyd Res 2012, 357:90–97.
- Knill CJ, Kennedy JF: Degradation of cellulose under alkaline conditions. Carbohydr Polym 2003, 51:281–300.
- 31. Clarke MA, Edye LA, Eggleston G: *Advances in Carbohydrate and Biochemistry*. San Diego: Academic; 1997:449–455.
- Shin Y, Bae IT, Exarhos GJ: Green approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions. *Colloids Surface A* 2009. 348:191–195.
- Khan MR, Tsukada M, Zhang X, Morikawa H: Preparation and characterization of electrospun nanofibers based on silk sericin powders. J Mater Sci 2013, 48:3731–3736.
- 34. Socrates G: Infrared and Raman Characteristic Group Frequencies: Table and Chart. Chichester: Wiley; 2000.
- 35. Rafey A, Shrivastavaa KBL, Iqbal SA, Khan Z: **Growth of Ag-nanoparticles using aspartic acid in aqueous solutions**. *J Colloid Interf Sci* 2011, **354**:190–195.
- Dong Q, Su H, Zhang D: In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J Phys Chem B 2005, 109:17429–17434.
- Zhong Z, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A: The surface chemistry of Au colloids and their interactions with functional amino acids. J Phys Chem B 2004, 108:4046–4052.
- Song J, Roh J, Lee I, Jang J: Low temperature aqueous phase synthesis of silver/silver chloride plasmonic nanoparticles as visible light photocatalysts. *Dalton Trans* 2013, 42:13897–13904.

doi:10.1186/1556-276X-9-79

Cite this article as: Aramwit *et al.*: Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. *Nanoscale Research Letters* 2014 **9**:79.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com

ELSEVIER

Contents lists available at ScienceDirect

Journal of Electrostatics

journal homepage: www.elsevier.com/locate/elstat

Fabrication of silk sericin/alginate microparticles by electrohydrodynamic spraying technique for the controlled release of silk sericin

Peepattra Wantanasiri ^a, Juthamas Ratanavaraporn ^b, Rungnapha Yamdech ^a, Pornanong Aramwit ^{a,*}

ARTICLE INFO

Article history: Received 20 March 2013 Received in revised form 7 October 2013 Accepted 8 November 2013 Available online 20 November 2013

Keywords: Silk sericin Alginate Microparticle Electrospraying Electrostatic force Drug delivery

ABSTRACT

Silk sericin has been recently investigated for many biological roles. This study aimed to develop the new delivery system to control the release of silk sericin. The alginate microparticles encapsulating silk sericin were fabricated by electrospraying technique. Concentrations of silk sericin and alginate polyelectrolyte solutions were investigated. All microparticles had an average size of $264-284~\mu m$ and could entrap silk sericin with high entrapment efficiency (84-89%). The microparticles could deliver silk sericin in a rate-controlled manner. This study would show a promising controlled release application of silk sericin protein from alginate microparticles fabricated by the means of electrostatic forces.

Published by Elsevier B.V.

1. Introduction

Electrospraying (electrohydrodynamic spraying) is a method of liquid atomization by means of electrical forces. In this process, the high voltage is applied to a liquid flowing out of a capillary nozzle. The liquid is forced by the electric field to be dispersed into fine droplets. Since the droplets are electrically charged so that their motion is facilitated, the droplet coagulation is not occurred. The size of electrosprayed droplets can range from hundreds micrometers down to tens of nanometer and their size distribution can be nearly monodisperse. The droplet size can be easily controlled by adjusting the operating conditions, such as feed rate, working voltage, the distance from needle-to-collector, needle diameter and polyelectrolyte concentrations [1]. Electrospraying technique has been widely applied in both industrial processes and scientific research applications. It has also opened new routes to micro- and nano-technology, for example, micro- or nano-particle production and micro- or nano-capsule formation [2-4]. Many researches in electro-microencapsulation are aimed at developing new drug delivery systems [2,3,5].

Controlled release system has been used to deliver drugs or bioactive molecules in order to achieve a therapeutic effect at a target site. The advantages of controlled release system are lower dose of drug required and avoiding the side effect of drug to other organs. Various formulations of controlled release system including films, hydrogels, micelles, as well as microparticles have been investigated [6–9]. Recently, microparticles are widely used as controlled release carriers because they can deliver drug in a rate-controlled and targeted manner and can also be applied either as implantable or injectable carriers [9,10].

Natural materials are widely used to produce microparticles due to their biocompatibility and biodegradability. Alginate is one of the most commonly used biomaterials. Alginate is a naturally occurring anionic polysaccharide found in cell walls of marine brown algae. It is a linear copolymer with homopolymeric blocks of (1-4)-linked β -p-mannuronate (M) and its C-5 epimer α -L-guluronate (G) residues, respectively, covalently linked together in different sequences or blocks. Alginate shows gelling properties in the presence of divalent cations such as Ca²⁺, Sr²⁺ or Zn²⁺. The gelation phenomenon can be explained by the egg-box model in which divalent cation

^a Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok 10330, Thailand

b Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok 10330, Thailand

^{*} Corresponding author. Tel.: +66 89 921 7255; fax: +66 2 218 8403. E-mail address: aramwit@gmail.com (P. Aramwit).

binds to two carboxyl groups on the adjacent alginate molecules [11,12]. The hydrogel properties of calcium alginate beads have been proposed for controlling the release of small molecules and proteins [13,14].

Silk sericin, a biocompatible protein derived from the silkworm cocoons, is highly hydrophilic with strong polar side chains such as hydroxyl, carboxyl and amino groups. The biological roles of silk sericin have been recently investigated by many researchers [15,16]. They reported that silk sericin is an anti-oxidant, bio-adhesive and bioactive agent, as well as a promising implant for tissue-supporting prosthetics of human body [16]. It has been demonstrated that after blending with other polymers, silk sericin can form a scaffold with suitable properties for tissue engineering applications [17,18]. It was also reported that silk sericin enhanced attachment and proliferation of human skin fibroblasts [19,20]. Although many biological properties of silk sericin have been established, the delivery of sericin still needs further development in order to achieve the controlled release of sericin and provide the optimum concentration for its biological effects at a target site.

In this study, silk sericin/alginate microparticles were produced by electrospraying technique aimed at the controlled release of silk sericin. Concentrations of silk sericin and alginate polyelectrolyte solutions were varied to investigate the formulation of microparticles which provided the controlled release of silk sericin. Size of microparticles and encapsulation efficiency of silk sericin in microparticles were evaluated. The *in vitro* release test of silk sericin from the microparticles was performed in phosphate buffered saline (PBS, pH 7.4). This study would show a promising controlled release application of silk sericin protein from alginate microparticles fabricated by the means of electrostatic forces.

2. Materials and methods

2.1. Materials

The fresh bivoltine white-shell cocoons of *Bombyx mori* produced in a controlled environment were kindly supplied by Chul

Thai Silk Co., Ltd. (Petchaboon province, Thailand). Alginate acid sodium salt (180947, MW 120,000–190,000 g/mol, viscosity 15—20 cP for 1% in water) was purchased from Sigma—Aldrich Co., Ltd. Other chemicals were analytical grade and used without further purification.

2.2. Preparation of silk sericin solution

The silkworm cocoons were cut into small pieces and the sericin was extracted using a high temperature and pressure degumming technique [21]. Briefly, the cocoons were put into deionized (DI) water and then autoclaved at 120 °C for 60 min. After filtration through a filter paper to remove fibroin fibers, the silk sericin solution was concentrated until the desired concentration was achieved (approximately 7 wt%, measured by the BCA protein assay kit, Pierce, Rockford, IL, USA). The molecular weight of silk sericin obtained was ranging from 25 to 150 kDa, as reported previously [22].

2.3. Preparation of silk sericin/alginate microparticles by electrospraying technique

The preparation of silk sericin/alginate microparticles was carried out according to the scheme presented in Fig. 1 (the photograph of instrument set up was shown in Fig. S1). The microparticles were fabricated by electrospraying of silk sericin/alginate solution into CaCl₂ solution, according to the method reported by Zahoor et al. (2006) with slight modifications [23]. Briefly, stock solutions of silk sericin and alginate were prepared in deionized water under magnetic stirring at 500 rpm, 40 °C. Silk sericin (2% and 3% w/v) and alginate solutions (0.25% and 0.5% w/v) were mixed to obtain homogeneous silk sericin/alginate solutions. The viscosity of the solutions was determined at 25 °C in a water bath using a viscometer (Model LVDV-II+, BROOKFIED) while the electrical conductivity of the solutions was measured using a multimeter (Model tetracon 325, Inolab).

Then, the silk sericin/alginate solutions were extruded dropwise into CaCl₂ solution (2.5% w/v) through a 18-gauge blunt needle of a

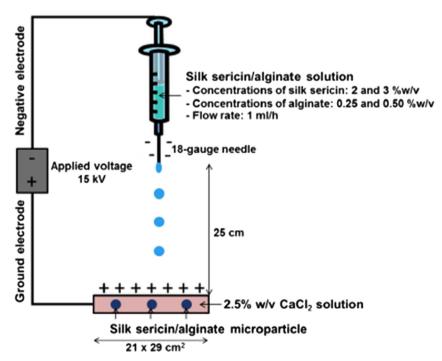


Fig. 1. Scheme production of silk sericin/alginate microparticles by electrospraying technique.

glass syringe connected with the syringe pump (Model 781100, KD Scientific), the negative generator high voltage (Model UC5-30N, Gamma High Voltage Research) and power supply (HY3003, Gold-Tool). The applied voltage and feeding flow rate were fixed at 15 kV and 1 ml/h, respectively. Under gentle magnetic stirring at 100 rpm, room temperature for 30 min, microparticles were formed in CaCl $_2$ solution. Then, the microparticles in CaCl $_2$ solution were centrifuged at 5000 rpm for 10 min to collect the microparticles. The microparticles were washed twice with deionized water and then frozen at $-20~^{\circ}\mathrm{C}$ overnight prior to lyophilization process for 2 days. The microparticles were kept at 4 $^{\circ}\mathrm{C}$ until used for experiments.

2.4. Morphological observation and size measurement

The morphology of silk sericin/alginate microparticles was observed on a scanning electron microscope (SEM, JSM 5400, JEOL) at an accelerating voltage of 12—15 kV after sputter-coating with gold. The average size of the microparticles was measured from the randomly selected 100 microparticles per each formulation when observed on an inverted microscopy.

2.5. Silk sericin entrapment efficiency

The total content of silk sericin in silk sericin/alginate microparticles was evaluated. The dried microparticles were accurately weighed and put in tri-sodium citrate buffer followed by continuous shaking at 200 rpm to completely dissolve the silk sericin/alginate microparticles. The concentration of silk sericin protein in the supernatant was measured by the BCA protein assay kit. The entrapment efficiency of silk sericin was calculated according to following equation;

%Entrapment efficiency of silk sericin
$$= \left(\frac{C_x}{C_i}\right) \times 100$$

where C_x is the amount of silk sericin entrapped in microparticles and C_i is the amount of silk sericin initially incorporated into silk sericin/alginate solution.

2.6. In vitro release of silk sericin from microparticles

The silk sericin/alginate microparticles (10 mg) were placed into 1 ml phosphate-buffered saline solution (PBS, pH 7.4) and incubated at 37 °C with a continuous stirring at 200 rpm. The PBS solutions were collected at different time points and the amount of silk sericin released into the solution was measured using a BCA protein assay kit. The absorbance was measured at 562 nm and the amount of sericin released was determined from a standard curve prepared from different concentrations of silk sericin solutions. All experiments were performed in triplicate.

2.7. Statistical analysis

All the results were statistically analyzed by paired and unpaired Student's t-tests and ANOVA. The value of p < 0.05 was considered to be statistically significant. Data were expressed as the mean \pm the standard deviation.

3. Results

3.1. Viscosity and electrical conductivity of the silk sericin/alginate solutions

Viscosity and conductivity of the silk sericin/alginate solutions were presented in Table 1. The viscosities of the solutions prepared

from 3% w/v silk sericin (30–34 cP) were significantly higher than those of the solutions prepared from 2% w/v silk sericin (7–7.5 cP). On the other hand, the doubled concentration of alginate solution slightly increased the solution's viscosity. The similar trend was also observed for the electrical conductivity. The solutions prepared from 3% w/v silk sericin showed significantly higher conductivity than those prepared from 2% w/v silk sericin. The concentration of silk sericin solution seemed to have more effect on the viscosity and conductivity of the solutions than the concentration of alginate solution.

3.2. Morphology and size of microparticles

Morphology of silk sericin/alginate microparticles was shown in Fig. 2. The homogeneous size distribution was observed for every microparticle formulation. However, the surface of microparticles prepared from the higher concentration of silk sericin (3% w/v) was rougher than those prepared from the 2% w/v silk sericin. Size of all microparticles was around 264–284 μ m, irrespective of silk sericin/alginate compositions (Table 2). The significant difference in size of microparticles among formulations was not observed.

3.3. Entrapment efficiency of silk sericin

Entrapment efficiency of silk sericin in microparticles was presented in Table 2. The microparticles prepared from 2% w/v silk sericin and 0.25% w/v alginate showed the lowest silk sericin entrapment efficiency (84.49%). On the other hand, the highest entrapment efficiency of silk sericin (\sim 89%) was obtained from the microparticles prepared from 3% w/v silk sericin and 0.25-0.5% w/v alginate. The entrapment efficiency of silk sericin was increased with the increasing amounts of silk sericin and alginate incorporated in the microparticles.

3.4. In vitro release profiles of silk sericin from microparticles

Fig. 3 shows the percentage of cumulative release of silk sericin from the microparticles after incubated in PBS solution at 37 $^{\circ}$ C. All formulations of microparticles showed burst release of silk sericin at initial time. After that, silk sericin was continuously released from the microparticles. At any amounts of silk sericin incorporated, the microparticles prepared from 0.25% w/v alginate released silk sericin at the higher extent than those prepared from 0.50% w/v alginate along the incubation period. After 8 h of incubation, the silk sericin was released completely from the microparticles prepared from 0.25% w/v alginate while the release from the microparticles prepared from 0.50% w/v alginate was only around 30–50%. On the other hand, at the same amount of alginate, there was no significant difference in the cumulative release of silk sericin among microparticles prepared from different amounts of silk sericin (2% and 3% w/v).

 Table 1

 Viscosity and conductivity of silk sericin/alginate solutions.

Type of microparticles	Viscosity (cP)	Conductivity (µs/cm)
2%SS + 0.25%Alg	7.05 ± 0.49	1216.75 ± 2.06
2%SS + 0.50%Alg	7.50 ± 0.91	1225.50 ± 1.915
3%SS + 0.25%Alg	$30.33\pm0.89^*$ †	$1946.50 \pm 5.196^* \dagger$
3%SS + 0.50%Alg	$34.75\pm1.59^*\dagger$	$1875.75 \pm 3.862^* \dagger$

*p<0.05 significant against the value of 2%SS + 0.25%Alg microparticles. †p<0.05 significant against the value of 2%SS + 0.50%Alg microparticles.

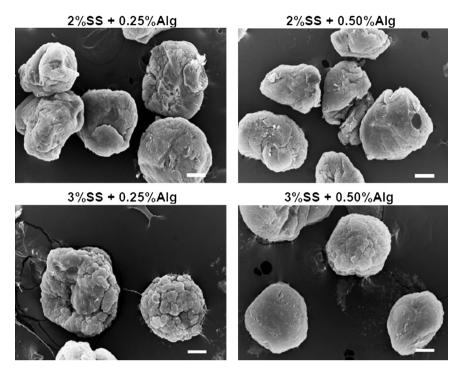


Fig. 2. SEM images of silk sericin/alginate microparticles (scale bar $= 100 \ \mu m$).

4. Discussion

The aim of this study was to develop new system for controlled delivery of silk sericin using the method of liquid atomization by means of electrical forces. Alginate hydrogels have been widely investigated for controlling the release of drugs, small molecules, and proteins [13,14,24,25]. For example, alginate beads could be used for a potential oral controlled release system of blue dextran [13]. It was found that the release of blue dextran from alginate beads was strongly affected by blue dextran/sodium alginate ratio. The encapsulation of enzyme, invertase, in the conventional alginate beads was studied [24]. It was shown that drying method, composition, as well as pH of the release medium could be managed to control the release of enzyme. The bovine serum albumin (BSA)-incorporated alginate microparticles were fabricated by the electrospraying technique [25]. It was proved that the electrospraying technique could be applied to prepare alginate in micro size and successfully encapsulated BSA. Alginate microparticles could be optimized for oral delivery of BSA in a controlled behavior.

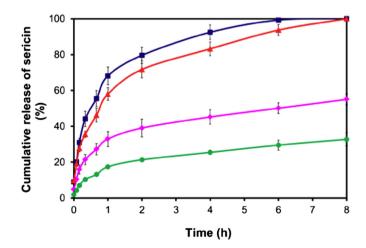

In this study, the alginate microparticles were proposed for the controlled release of silk sericin. Silk sericin was encapsulated in alginate microparticles and fabricated by electrospraying technique. By the electrospraying technique, a polyanionic or polycationic aqueous solution was electrosprayed into an aqueous solution containing a polyelectrolyte with the opposite charge. A

Table 2Size of microparticles and entrapment efficiency of sericin in microparticles.

Type of microparticles	Size of microparticles (μm)	Entrapment efficiency of sericin (%)
2%SS + 0.25%Alg 2%SS + 0.50%Alg 3%SS + 0.25%Alg 3%SS + 0.50%Alg	$\begin{array}{c} 284.53 \pm 62.89 \\ 284.47 \pm 45.71 \\ 264.53 \pm 35.17 \\ 281.10 \pm 41.51 \end{array}$	$\begin{array}{c} 84.49 \pm 0.78 \\ 88.26 \pm 0.66^* \\ 89.43 \pm 0.29^* \\ 89.91 \pm 0.46^* \end{array}$

^{*}p < 0.05 significant against the value of 2%SS + 0.25%Alg microparticles.

spherical interface consisting of a polyelectrolyte complex was formed by electrostatic interaction to produce microparticles. Size of microparticles could be controlled by varying the operating conditions, such as feed rate, working voltage, the distance from needle-to-collector, needle diameter and polyelectrolyte concentrations [1,26]. In this study, concentrations of silk sericin and alginate polyelectrolyte solutions were varied to investigate the formulation of microparticles which provided the controlled release behavior of silk sericin. We found that the concentrations of silk sericin and alginate solutions influenced the solution's viscosity and conductivity (Table 1). Both viscosity and electrical conductivity are known to play an important role in electrospraying and hence controlling the properties of the microparticles obtained. It was reported that the higher conductivity and less viscous solution could form the smaller-size particles [27,28]. However, in this study,

the viscosities of all solutions were in the range of low viscous solution (<250 cP), thus the size of all microparticles were similar [25]. Although the conductivities of solutions prepared from 3% w/v silk sericin tended to be higher than those of 2% w/v silk sericin, the difference was not high enough to make an effect on the particle size. The solution with as high conductivity as 8000 μ s/cm produced the nano-size microparticles, as reported by Chen et al. [29].

In the electrospraying process, it was supposed that the corona discharge was occurred because the silk sericin and alginate polyelectrolyte solutions flowed through the conductor applied with high voltage, brought to the ionization of a fluid surrounding a conductor. The strength (potential gradient) of the electric field around the conductor was high enough to form a conductive region and to overcome the surface tension of the solution, but not sufficient to cause electrical breakdown to nearby objects, then the solution was discharged from the needle. It was observed that the radius of the conductive fluid at the tip was less than a centimeter.

From all formulations fabricated at the operating conditions of this study (18-gauge blunt needle, 15 kV applied voltage, 1 ml/h feeding flow rate), the silk sericin/alginate microparticles with an average size of 264–284 µm were obtained (Table 2). This size of microparticles could be applied as injectable carriers which were easily access to specific target sites without the need of operation. Fukui et al. reported that alginate/chitosan microcapsules with the size range of 80–230 μm could be produced by the electrospraying technique by varying feed rate, working voltage, needle-tocollector distance, inner diameter of needle, concentration of sodium alginate solution, and concentration of chitosan solution [26]. Suksamran et al. have also fabricated BSA/alginate microparticles by electrospraying technique [25]. They found that size and shape of microparticles depended on concentrations of alginate and calcium chloride solutions and electrical potential. The low viscous alginate solution (0.5% w/v) could form small semi-circle particles while the medium viscous alginate solution (2-3% w/v) tended to form large sphere particles. They also reported that the decreasing concentration of alginate solution resulted in the decrease in mean particle size. It was explained that as polymer concentration was decreased, the surface tension force that leads to reduce size of the droplet was reduced, therefore the smaller size of particles was formed. However, in this study, the concentration of alginate solution did not affect on size of the microparticles obtained, possibly due to that the concentrations of alginate solution used in this study (0.25 and 0.5% w/v) was in the range of low viscous alginate solution (<250 cP) in which the similar size of alginate microparticles were formed. The rough surface of microparticles prepared from 3% w/v silk sericin (Fig. 2) was possibly a result of the high viscosity of their solutions (Table 1).

Silk sericin could be successfully entrapped in alginate microparticles possibly through the ionic interactions between anion-charged alginate and cation-charged amino acids of sericin. The entrapment efficiency was found to be in the range of 84–89% depending on the concentrations of both silk sericin and alginate solutions (Table 2). When increased the concentration of silk sericin, it seemed that more amount of silk sericin was encapsulated within alginate microparticles. This corresponded to the results reported elsewhere [25]. Increasing amount of alginate also increased the entrapment efficiency of silk sericin because there was more alginate available to entrap silk sericin. The encapsulation of protein, drug and yeast within the alginate-based microparticles with high encapsulation efficiencies was reported [25,26,30].

The silk sericin/alginate microparticles could deliver silk sericin in a rate-controlled manner (Fig. 2). The release of silk sericin from alginate microparticles was governed by the diffusion through the swollen matrix. High amount of silk sericin was diffusional released

at initial due to the swelling of alginate matrix. Thereafter, the release of silk sericin became stable because there was no enzymatic degradation of the matrix. We also found that the release behavior of silk sericin mainly depended on the concentration of alginate solution. The microparticles containing higher amount of alginate showed more sustained release of silk sericin. This may be explained by ionic interactions between silk sericin and alginate. At higher concentration of alginate solution, the more ionic interactions between highly anion-charged alginate and the cationcharged amino acids of sericin would be formed, resulting in the stronger binding between them. The strongly-bound molecules would show less diffusional release. This controlled release of silk sericin from alginate microparticles would be beneficial in term of achieving the optimum concentration of silk sericin for biological effects at a target site. The controlled release of various drugs and proteins from alginate-based microparticles was also reported [25,30-33].

Furthermore, the molecular size of silk sericin released from the microparticles into PBS solution was analyzed by SDS-PAGE technique. The band pattern of silk sericin released from all microparticles was similar to that of silk sericin standard (unpublished data). This meant that the molecular weight of silk sericin did not change after the encapsulation process, indicating the stability of silk sericin [34,35].

In summary, the silk sericin/alginate microparticles could be successfully fabricated by electrospraying technique for the delivery of silk sericin in a rate-controlled manner. The entrapment efficiency and release behavior of silk sericin depended mainly on the concentration of silk sericin and alginate solutions. The results from this preliminary study would be beneficial for further development of microparticles by mean of electrostatic forces to deliver silk sericin in order to achieve its biological effects at a target site.

5. Conclusion

Silk sericin/alginate microparticles were developed as the new delivery system of silk sericin. By an electrospraying technique, silk sericin/alginate microparticles with an average size of 264–284 µm were obtained. Silk sericin could be successfully entrapped in alginate microparticles with the entrapment efficiency around 84-89% depending on the concentrations of both silk sericin and alginate solutions. The silk sericin/alginate microparticles could deliver silk sericin in a rate-controlled manner. The release behavior of silk sericin also depended on the concentration of alginate solution. The microparticles containing higher amount of alginate showed more sustained release of silk sericin. Therefore, the silk sericin/alginate microparticles could be applied as carriers for the controlled release of silk sericin. This study would show a promising controlled release application of silk sericin protein from alginate microparticles fabricated by the means of electrostatic forces.

Declaration of interest

There are no conflicts of interest in this study.

Acknowledgment

This research was supported by Thailand Research Fund (TRF).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.elstat.2013.11.003.

References

- A. Jaworek, Review. Micro- and nanoparticle production by electrospraying, Powder Technol. 176 (2007) 18-35.
- [2] Y. Wu, I.C. Liao, S.J. Kennedy, J. Du, J. Wang, K.W. Leong, R.L. Clark, Electrosprayed core—shell microspheres for protein delivery, Chem. Commun. (Camb.) 46 (2010) 4743–4745.
- [3] A. Bohra, J. Kristensen, E. Stride, M. Dyas, M. Edirisinghe, Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying, Int. J. Pharm. 412 (2011) 59–67.
- [4] P.H.M. Böttger, Z. Bi, D. Adolph, K.A. Dick, L.S. Karlsson, M.N.A. Karlsson, B.A. Wacaser, K. Deppert, Electrospraying of colloidal nanoparticles for seeding of nanostructure growth, Nanotechnology 18 (2007) 105304.
- [5] M. Rajaonarivony, C. Vauthier, G. Couarraze, F. Puisieux, P. Couvreur, Development of a new drug carrier made from alginate, J. Pharm. Sci. 82 (1993) 912–917
- [6] L.N. Mengatto, I.M. Helbling, J.A. Luna, Recent advances in chitosan films for controlled release of drugs, Recent Pat. Drug Deliv. Formul. 6 (2012) 156–170.
- [7] F. Ganji, E. Vasheghani-Farahani, Hydrogels in controlled drug delivery systems, Iran Polym. J. 18 (2009) 63–88.
- [8] Y. Tang, S.Y. Liu, S.P. Armes, N.C. Billingham, Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers, Biomacromolecules 4 (2003) 1636–1645.
- [9] S. Freiberg, X.X. Zhu, Polymer microspheres for controlled drug release, Int. J. Pharm. 282 (2004) 1–18.
- [10] B.B. Mandal, S.C. Kundu, Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery, Nanotechnology 20 (2009) 355101.
- [11] L.W. Chan, Y. Jin, P.W.S. Heng, Cross-linking mechanisms of calcium and zinc in production of alginate microsphere, Int. J. Pharm. 242 (2002) 255–258.
- [12] P. Heng, L. Chan, T. Wong, Formation of alginatemicrospheres produced using emulsification technique, J. Microencapsul. 20 (2003) 401–413.
- [13] C.K. Kim, E.J. Lee, The controlled release of blue dextran from alginate beads, Int. J. Pharm. 79 (1992) 11–19.
- [14] W.R. Gombotz, S.F. Wee, Protein release from alginate matrices, Adv. Drug Deliv. Rev. 31 (1998) 267–285.
- [15] L. Cuttle, M. Kempf, G.E. Phillips, J. Mill, M.T. Hayes, J.F. Fraser, X.Q. Wang, R.M. Kimble, A porcine deep dermal partial thickness burn model with hypertrophic scarring, Burns 32 (2006) 806–820.
- [16] N.S. Gibran, S. Boyce, D.G. Greenhalgh, Cutaneous wound healing, J. Burn Care Res. 28 (2007) 577–579.
- [17] B.B. Mandal, A.S. Priya, S.C. Kundu, Novel silk protein sericin gelatin 2D films and 3D scaffolds: fabrication, characterization and optimization for potential tissue engineering applications, Acta Biomater. 5 (2009) 3007–3020.
- [18] P. Aramwit, T. Siritientong, S. Kanokpanont, T. Srichana, Formulation and characterization of silk sericin-PVA scaffold crosslinked with genipin, Int. J. Biol. Macromol. 47 (2010) 668-675.
- [19] S. Terada, T. Nishimura, M. Sasaki, H. Yamada, M. Miki, Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma, Cytotechnology 40 (2002) 3–12.

- [20] K. Tsubouchi, Y. Igarashi, Y. Takasu, H. Yamada, Sericin enhances attachment of cultured human skin fibroblasts, Biosci. Biotechnol. Biochem. 69 (2005) 403–405.
- [21] K. Lee, H. Kweon, J.H. Yeo, S.O. Woo, Y.W. Lee, C.S. Cho, K.H. Kim, Y.H. Park, Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin, Int. J. Biol. Macromol. 33 (2003) 75–80.
- [22] P. Aramwit, S. Kanokpanont, T. Nakpheng, T. Srichana, The effect of sericin from various extraction methods on cell viability and collagen production, Int. J. Mol. Sci. 11 (2010) 2200–2211.
- [23] A. Zahoor, R. Pandey, S. Sharma, G.K. Khuller, Evaluation of antitubercular drug loaded alginate nanoparticles against experimental tuberculosis, J. Nanosci. 1 (2006) 81–85.
- [24] P.R. Santagapita, M.F. Mazzobre, M.P. Buera, Formulation and drying of alginate beads for controlled release and stabilization of invertase, Biomacromolecules 12 (2011) 3147—3155.
- [25] T. Suksamran, P. Opanasopit, T. Rojanarata, T. Ngawhirunpat, U. Ruktanonchai, P. Supaphol, Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein, J. Microencapsul. 26 (2009) 563–570.
- [26] Y. Fukui, T. Maruyama, Y. Iwamatsu, A. Fujii, T. Tanaka, Y. Ohmukai, H. Matsuyama, Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique, Colloid Surf. A Physicochem. Eng. Asp. 370 (2010) 28–34.
- [27] A.M. Ganan-Calvo, J. Davila, A. Barrero, Current and droplet size in the electrospraying of liquids: scaling laws, J. Aerosol Sci. 28 (1997) 249–275
- [28] S.N. Jayasinghe, M.J. Edirisinghe, Effect of viscosity on the size of relics produced by electrostatic atomization, J. Aerosol Sci. 33 (2002) 1379–1388.
- [29] D.R. Chen, D.Y.H. Pui, S.L. Kaufman, Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range, J. Aerosol Sci. 26 (1995) 963–977.
- [30] M. Tavakol, E. Vasheghani-Farahani, T. Dolatabadi-Farahani, S. Hashemi-Najafabadi, Sulfasalazine release from alginate-N,O-carboxymethyl chitosan gel beads coated by chitosan, Carbohydr. Polym. 77 (2009) 326–330
- [31] C.Y. Yu, X.C. Zhang, F.Z. Zhou, X.Z. Zhang, S.X. Cheng, R.X. Zhuo, Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems, Int. J. Pharm. 357 (2008) 15–21.
- [32] A. Nochos, D. Douroumis, N. Bouropoulos, In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads, Carbohydr. Polym. 74 (2008) 451–457.
- [33] X. Wang, E. Wenk, X. Hu, G.R. Castro, L. Meinel, X. Wang, C. Li, H. Merkle, L. Kaplan, Silk coatings on PLGA and alginate microspheres for protein delivery, Biomaterials 28 (2007) 4161–4169.
- [34] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685.
- [35] X. Li, X. Kong, S. Shi, X. Zheng, G. Guo, Y. Wei, Z. Qian, Preparation of alginate coated chitosan microparticles for vaccine delivery, BMC Biotechnol. 8 (2008) 89–99.