บทคัดย่อ

รหัสโครงการ: RSA5680019

ชื่อโครงการ: กลไกระดับโมเลกุลของการกระตุ้นให้เกิดการลดลงของการเติมหมู่เมทิลที่ดีเอ็น

เอไลน์วันโดยภาวะเครียดจากออกซิเดชั่นในเซลล์มะเร็งกระเพาะปัสสาวะ

ชื่อนักวิจัย: ชาญชัย บุญหล้า จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: chanchai.b@chula.ac.th

ระยะเวลาโครงการ: 3 ปี

งานวิจัยนี้ศึกษากลไกของ oxidative stress-induced LINE-1 hypomethylation การแสดงออกของ 5-methylcytosine (5mC), hOGG1, LINE-1 ORF1 protein (ORF1p) และ oxidative stress marker (4-HNE) ในเนื้อเยื่อมะเร็งกระเพาะปัสสาวะ และศึกษากลไกการแสดงออกของ ORF1p ภายใต้ภาวะ oxidative stress ในเซลล์มะเร็งกระเพาะปัสสาวะ ผลการศึกษาพบว่า reactive oxygen species (ROS) กระตุ้น oxidative stress และทำให้การสร้าง methyl donor S-adenosylmethionine (SAM) ในเซลล์ลดลง ส่งผลให้ เกิด DNA hypomethylation ที่ LINE-1 elements ขณะที่สารต้านอนุมูลอิสระ (tocopheryl acetate และ Nacetylcysteine) และสารตัวกลางใน one-carbon metabolism (methionine, SAM และ folic acid) สามารถ ียับยั้งการเกิด ROS-induced LINE-1 hypomethylation ได้ ระดับการแสดงออกของ 5mC ลดลง ขณะที่ ORF1p และ 4-HNE เพิ่มสูงขึ้นในเนื้อเยื่อมะเร็งกระเพาะปัสสาวะเมื่อเปรียบเทียบกับเนื้อเยื่อข้างเคียงที่ ไม่ใช่มะเร็ง การแสดงออกของ ORF1p ใน muscle-invasive และ high-grade tumors สูงกว่าใน nonmuscle-invasive และ low-grade tumors อย่างมีนัยสำคัญ ในเซลล์ VM-CUB-1 ที่ถูกกระตุ้นด้วย ROS มี การแสดงออกของ ORF1p เพิ่มขึ้นอย่างมีนัยสำคัญ แต่ ROS ไม่สามารถกระตุ้นให้มีสร้างใหม่ของ ORF1p ได้ใน UM-UC-3 เซลล์ TCCSUP และ UM-UC-3 ที่ถูกกระตุ้นด้วย ROS เคลื่อนที่ได้เร็วกว่าเซลล์ควบคุมที่ ไม่ได้รับการกระตุ้นด้วย ROS ผลการทดลอง ChIP-qPCR พบ enrichment ของ full-length LINE-1 elements ที่ active chromatin mark H3K18ac ในเซลล์ VM-CUB-1 ที่ถูกกระตุ้นด้วย ROS ขณะที่ในเซลล์ UM-UC-3 ที่ถูกกระตุ้นด้วย ROS จะพบ enrichment ของ full-length LINE-1 elements ที่ heterochromatin H3K9me3 และ H3K27me3 งานวิจัยนี้สรุปว่า ROS ทำให้เกิด LINE-1 hypomethylation โดยลดการสร้าง SAM ในเซลล์ และ ROS ทำให้เซลล์มะเร็งมี progression มากขึ้น การแสดงออกของ ORF1p สูงขึ้นในชิ้นเนื้อมะเร็งกระเพาะปัสสาวะและสัมพันธ์กับ tumor progression ผลการศึกษาใน เซลล์มะเร็งกระเพาะปัสสาวะบ่งชี้ว่า ROS กระตุ้นให้มีการแสดงออกมากขึ้นโดยเพิ่มการเกิด open chromatin mark H3K18ac ที่ full-length LINE-1 elements อย่างไรก็ตาม ROS ไม่สามารถกระตุ้นให้เกิด de novo expression ของ ORF1p ได้ ผลที่ได้จากการศึกษานี้แนะนำว่าการใช้สารที่สามารถลดระดับ oxidative stress ได้ น่าจะเป็นประโยชน์ต่อการป้องกันการเกิด LINE-1 hypomethylation ในมะเร็ง กระเพาะปัสสาวะ และช่วยยับยั้ง tumor progression ได้

คำหลัก : ไลน์วัน, ภาวะเครียดจากออกซิเดชั่น, มะเร็งกระเพาะปัสสาวะ, ภาวะเหนือพันธุกรรม, การดำเนิน โรคมะเร็ง

Abstract

Project Code: RSA5680019

Project Title: The molecular mechanisms of oxidative stress-induced LINE-1

hypomethylation in bladder cancer cells

Investigator: Chanchai Boonla Chulalongkorn University

E-mail Address : chanchai.b@chula.ac.th

Project Period: 3 years

In this study, we investigated mechanism of oxidative stress-induced LINE-1 hypomethylation, expressions of 5-methylcytosine, hOGG1, LINE-1 ORF1 protein (ORF1p) and oxidative stress marker (4-HNE) in bladder cancer tissues, and mechanism of reactive oxygen species (ROS) on induction of ORF1p expression in bladder cancer cells. Our data showed that ROS provoked oxidative stress, caused depletion of cellular methyl donor S-adenosylmethionine (SAM), and that subsequently led to hypomethylation of LINE-1 elements. Supplements with either antioxidants (tocopheryl acetate and N-acetylcysteine) or metabolites in one-carbon metabolism pathway (methionine, SAM and folic acid) significantly inhibited the ROS-induced LINE-1 hypomethylation. Expression level of 5mC was significantly decreased, while ORF1p and 4-HNE were increased, in bladder cancer tissues compared with the noncancerous counterparts. ORF1p expression in muscle-invasive and high-grade tumors were significantly higher than that of noninvasive and low-grade tumor, respectively. In VM-CUB-1 cells treated with ROS, expression of ORF1p was significantly increased compared with the untreated controls. However, ROS was not able to induce de novo expression of ORF1p in ORF1p-silencing UM-UC-3 cells. TCCSUP and UM-UC-3 cells exposed to ROS migrated faster than the unexposed cells. Based on ChIP-qPCR, full-length LINE-1 elements were enriched by active chromatin mark H3K18ac in ROS-treated VM-CUB-1 cells. In contrast, enrichment of LINE-1 elements in ROS-treated UM-UC-3 cells was found at heterochromatin H3K9me3 and H3K27me3. In conclusion, we demonstrated that LINE-1 hypomethylation induced by ROS was mediated through SAM depletion. ROS also promoted progression of bladder cancer cells. Expression of ORF1p was elevated in bladder cancer tissues and its increment was associated with increased tumor progression. Experimentally, we showed that ROS induced ORF1p expression through formation of open chromatin mark H3K18ac. However, ROS was not capable of inducing de novo expression of ORF1p in ORF1p-silencing cells. Approaches to attenuate oxidative stress might be useful for preventing LINE-1 hypomethylation and reactivation in bladder cancer and hence decelerating tumor progression.

Keywords: LINE-1, oxidative stress, bladder cancer, epigenetic, tumor progression