บทคัดย่อ

รหัสโครงการ: RSA5680021

ชื่อโครงการ: ศักยภาพของโลหะราคาถูกในการทดแทนโลหะมีตระกูลที่บรรจุลงบน

ตัวเร่งปฏิกิริยาประเภทซีโอไลท์สำหรับกระบวนการไพโรไลซิสยาง

รถยนต์หมดสภาพ

ชื่อนักวิจัย: รองศาสตราจารย์ ดร. ศิริรัตน์ จิตการค้า

E-mail Address: sirirat.j@chula.ac.th

Project Period: 15 มิถุนายน 2556 – 15 มิถุนายน 2559

ระยะเวลาโครงการ: 3 ปี

ในงานวิจัยเรื่องไพโรไลซิสยางรถยนต์หมดสภาพก่อนหน้า คณะวิจัยได้ทำการศึกษา ความเฉพาะเจาะจงของตัวเร่งปฏิกิริยาที่ประกอบไปด้วยโลหะมีตระกูล 6 ชนิดบนตัวรองรับ 3 ประเภท ในการผลิตก๊าซ น้ำมัน และสารปิโตรเคมีที่มีมูลค่า ซึ่งการทดลองครั้งนั้นพบว่า โลหะมี ตระกูลทุกตัวสามารถเพิ่มการผลิตสารที่มีมูลค่าดังกล่าวได้ แต่เนื่องจากโลหะมีตระกูลเกือบทุก จึงทำให้ไม่คุ้มค่าที่จะนำไปใช้ในโรงงานผลิตน้ำมันจากยางรถยนต์ที่มี ตัวมีราคาค่อนข้างแพง ขนาดเล็กและปานกลาง ในงานวิจัยนี้ จึงนำโลหะไม่มีตระกูล 5 ชนิด คือ คอปเปอร์ ซิงค์ เหล็ก โคบอลต์ และนิกเกิล มาทดลองใช้บนตัวรองรับประเภทเดียวกัน เพื่อใช้ทดแทนโลหะมีตระกูล การทดลองพบว่า โลหะไม่มีตระกูลเหล่านี้ มีความสามารถ 2 อย่างคล้ายกัน คือช่วยเพิ่มสารปิ โตรเคมีในน้ำมันและลดปริมาณกำมะถันในน้ำมันได้คล้ายๆ กัน และสามารถใช้ทดแทนโลหะมี ตระกูลได้ในหลายกรณี กล่าวคือ เหล็ก โคบอลต์ และซิงค์มีความโดดเด่นด้านผลิตแนฟธาเบา ซึ่งสามารถใช้ทดแทนโลหะแพลตินัม พัลเลเดียม หรือรูธีเนียมได้ นิกเกิลสามารถลดปริมาณโพ ลือโรมาติกส์ในน้ำมัน ซึ่งใช้ทดแทนโลหะแพลตินัมหรือรูธีเนียมได้ ในขณะที่คอปเปอร์บนเอ ชมอร์สามารถทดแทนโลหะเงิน โรเดียม และรีเนียมในการผลิตก๊าซหุงตัม โคบอลต์มีความโดด เด่นด้านการผลิตโอเลฟินส์เบาซึ่งสามารถใช้ทดแทนโลหะรูธีเนียม เงิน โรเดียม หรือรีเนียม นอกจากนี้โคบอลต์ยังมีความสามารถในการผลิตมิกซ์ซีโฟร์ ซึ่งคล้ายกับแพลทินัม เงิน หรือ โรเดียม โลหะไม่มีตระกูลทุกตัวที่นำมาทดสอบมีความโดดเด่นด้านการผลิตสารปิโตรเคมี สามารถใช้ทดแทนโลหะรูธีเนียม โรเดียมและรีเนียมได้ นอกเหนือไปจากนั้น คอปเปอร์ ซิงค์ นิกเกิล นิกเกิลโมลิบดินัม และนิกเกิลโมลิบดินัมซัลไฟด์มีความโดดเด่นด้านการลดสารกำมะถัน ในน้ำมัน ซึ่งสามารถใช้ทดแทนโลหะโรเดียมหรือเงินได้ ทั้งนี้ พึงระลึกว่าประสิทธิภาพของโลหะ ต่างๆ ขึ้นอยู่กับตัวรองรับที่ใช้ในปริมาณหนึ่งด้วย

คำหลัก: ตัวเร่งปฏิกิริยา; ยางรถยนต์หมดสภาพ; ไพโรไลซิส; น้ำมันจากยางรถยนต์; สารปิโตร เคมี.

Abstract

Project Code: RSA5680021

Project Title: Potential of Non-Noble Metals as Substitutes of Noble Metals

Supported on Zeolites as Catalysts for Waste Tire Pyrolysis

Investigator: Assoc. Prof. Dr. Sirirat Jitkarnka

The Petroleum and Petrochemical College

Chulalongkorn University

E-mail Address : sirirat.j@chula.ac.th

Project Period : June 15, 2013 – June 15, 2016

In our previous work on waste tire pyrolysis, the selectivity of various catalysts composed of six noble metals and three types of supports were investigated toward the production of various products such as valuable gases, oils, and some petrochemicals. Back then, it was found that most of noble metal-supported catalysts improved the production of such products. Due to a high price of most of the noble metals, it is difficult in economically applying these catalysts in a small- and medium-scale waste tirepyrolysis plant. In order to develop a cheaper catalyst, non-noble metals (Cu, Zn, Co, Fe, and Ni) were used in this work as alternative promoters on some zeolites with the aims of producing oil and gaseous products at a similar quantity and quality as using a noble metal catalyst. As a result, the non-noble metals were found to give similar activities among themselves; that are, they can outstandingly produce valuable petrochemicals and remove sulfur in oil. They can also be used to substitute noblemetals in various aspects. Fe, Co, and Zn were outstanding in light naphtha production, which can substitute Pt, Pd, and/or Ru. Ni can reduce poly-aromatics in oil, potentially being able to substitute Pt and/or Ru whereas Cu only on HMOR can substitute Ag, Rh, and/or Re in producing cooking gases. Co can substitute Ru, Ag, Rh, and/or Re for light olefins production, and can substitute Pt, Ag, and/or Rh for producing mixed C4s. All test non-noble metals have outstanding activity on enhancing valuable petrochemicals in oil, which can substitute Ru, Rh, and/or Re. Moreover, Cu, Zn, Ni, NiMo, and NiMoS are dominant on removal of sulfur from oil, which can replace Rh and/or Ag. However, it shall be noted that the activities depended on the supports used as well to some extent.

Keywords: Catalysts; Waste tire; Pyrolysis; Tire-derived oil; Petrochemicals