บทคัดย่อ

รหัสโครงการ: RSA5680032

ชื่อโครงการ: โครงการการศึกษาการควบคุมการแสดงออกของยืนและบทบาทการทำงานของ

โปรตีนแชเปอโรนิน 60 ภายใต้เครียดจากสภาพแวดล้อมในโมเดลสาหร่ายสี

เขียวเซลล์เดียว

ชื่อนักวิจัย: รศ. ดร.กิตติศักดิ์ หยกทองวัฒนา

E-mail Address: kittisak.yok@mahidol.ac.th

ระยะเวลาโครงการ: 3 ปี

โมเลกุลาร์แชเปอโรน หรือ ฮีทช็อคโปรตีน เป็นกลุ่มโปรตีนที่มีบทบาทที่สำคัญต่อการดำรงชีวิต ของสิ่งมีชีวิตทุกชนิด ในบรรดาโปรตีนในกลุ่มนี้นั้น ข้อมูลทางวรรณกรรมเกี่ยวกับ HSP90B และ CPN60 นั้นยังมีอยู่น้อยมาก ในโครงการวิจัยนี้ ได้ศึกษาถึงการแสดงออกรวมทั้งการศึกษาโปรโมเตอร์ของยืน HSP90B ในสาหร่ายโมเดล Chlamydomonas reinhardtii ผลการทดลองพบว่ายืน HSP90B นั้นถูก กระตุ้นได้ด้วยอุณหภูมิที่สูงขึ้นและการกระตุ้นให้เกิด ER stress การศึกษาโปโมเตอร์ด้วย promoter truncation และ chromatin immunoprecipitation พบว่าโปรโมเตอร์ทำงานอยู่ในช่วง –1 to –253 bp จาก ตำแหน่งเริ่มการถอดรหัส และยังพบด้วยว่าส่วนของโปรโมเตอร์ที่เลย –253 bp ขึ้นไปเล็กน้อยน่าจะเป็น ตำแหน่งที่ repressor มาจับเพื่อควบคุมการแสดงออกของยืน นอกจากนี้ โครงการวิจัยนี้ยังได้แสดงให้ เห็นว่าการถ่ายยืนที่สร้างหน่วยย่อยของโปรตีน CPN60 จาก Chlamydomonas ไปยังแบคทีเรีย E. coli ยังสามารถสร้างโปรตีนลูกผสมระหว่างหน่วยย่อยของ CPN60 กับ GroEL อีกด้วย

คำหลัก: แชเปอโรนิน; สาหร่าย Chlamydomonas; CPN60; ฮีทช็อคโปรตีน; HSP90; การศึกษา

โปรโมเตอร์; หน่วยย่อยของโปรตีน

Abstract

Project Code: RSA5680032

Project Title: Regulation of gene expression and functional analyses of chloroplast-

localized chaperonin 60 under environmental stresses in the model

unicellular green alga Chlamydomonas reinhardtii

Investigator: Dr. Kittisak Yokthongwattana, Associate Professor

E-mail Address: kittisak.yok@mahidol.ac.th

Project Period: 3 years

Molecular chaperones or heat shock proteins are a large protein family with important functions in every cellular organism. Among all types of the heat shock proteins, information on the ER-localized HSP90 protein (HSP90B) and CPN60 along with their encoding genes is relatively scarce in the literature. In this study, expression profiles as well as promoter sequence of the *HSP90B* gene were investigated in the model green alga *Chlamydomonas reinhardtii*. We have found that *HSP90B* is strongly induced by heat and ER stresses, while other short-term exposure to abiotic stresses, such as salinity, dark-to-light transition or light stress does not appear to affect the expression. Promoter truncation analysis as well as chromatin immunoprecipitation using the antibodies recognizing histone H3 and acetylated histone H3, revealed a putative core constitutive promoter sequence between –1 to –253 bp from the transcription start site. Our results also suggested that the nucleotides upstream of the core promoter may contain repressive elements such as putative repressor binding site(s). In addition, we also demonstrated that the chloroplast chaperonin 60 subunits, when heterologous expressed in *E. coli*, could interact with and assemble into high-molecular-weight tetradecameric complex.

Keywords: Chaperonin; Chlamydomonas; CPN60; heat-shock protein; HSP90; promoter

analysis; subunits