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Abstract
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Project Title: R-peak detection in ECG signals based on advanced signal processing methods
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Abstract:

The R-peak detection in the ECG signal is very crucial as a preliminary step before
subsequent analysis for inexpensive and noninvasive medical applications. The R-peak
detection algorithm is composed of two main steps: preprocessing and beat detection. The
objective of this research project is to develop a computer-based algorithm for automatically
detecting R peaks in the ECG signal. The main focus of this work is the noise removal in
preprocessing operation based on advanced signal processing methods, i.e. the quadratic
filter and the wavelet transform. Results show that the quadratic filter is successful in
improving QRS signal to noise ratio for some challenging situations such as low amplitude
QRS complex corrupted by baseline drift and a variety of abnormal morphologies. Using a
single fixed threshold without additional post-processing techniques in beat detection step,
the QRS detection algorithm can achieve the detection error rate of 0.38% validated with 48
records of ECG signals from the MIT-BIH arrhythmia database. To improve QRS detection
accuracy, we develop the QRS detection algorithm employing the efficient cascade of two
combination steps, i.e., the Mexican hat wavelet function and the maximal filter. Results
show that the Mexican hat wavelet function at scale 3 can significantly enhance QRS signal
to noise ratio in preprocessing step. The subsequent beat detection step based on the
maximal filter at the length of 195 ms is able to significantly reduce FP detections. Using a
single threshold without any additional post-processing techniques, the proposed algorithm
can achieve detection error rate of 0.27%. To obtain better detection accuracy, the use of
separable band and the dual-band wavelet transforms in preprocessing step and/or adaptive
thresholding techniques in beat detection step may allow us for better detection accuracy in

the QRS detection algorithm.

Keywords: Electromyography (ECG), ECG beat detection, Signal processing, QRS detection,

Quadratic filter, Wavelet transform
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Chapter 1

Introduction

1.1 Research Problem and its Significance

The electrocardiogram (ECG) provides very important information on the state of the
heart, which can be used for medical monitoring and diagnosis. Figure 1.1 shows an
example of three beats of ECG signal. Each beat consists of P wave, QRS complex, and
T wave. The objective of this research is to develop an automatic algorithm for detecting
R peaks, which is very crucial as a preliminary step for obtaining QRS complex, beat
segmentation, and beat-to-beat intervals.

Further processing of these preliminary steps can be employed for a variety of
medical applications. QRS complex can be used for monitoring the electrical activity of

the heart during the ventricular contraction. After beat segmentation, each individual

AN

Q

S

Figure 1.1: Three beats of ECG signal.
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Figure 1.2: Schematic diagram of R-peak detection algorithm.

beat can be further categorized into different types of arrhythmia, such as normal beats,
premature ventricular contraction beats, atrial premature beats, and other beats [1-3].
Series of beat-to-beat intervals is a basis used in analyzing heart rate variability. Heart
rate variability analysis is an inexpensive and noninvasive tool for a variety of medical
diagnoses such as obstructive sleep apnea syndrome [4,5] and congestive heart failure
[6,7]. In addition, the automatic QRS detection algorithm can be applied for discovering
an abnormal ECG activity in a mobile ECG monitoring and alert system for elderly
patients [§].

Figure 1.2 shows a schematic diagram of R-peak detection algorithm. The noises
in the ECG signal z[n| are removed in the preprocessing operation. Figure 1.3 shows an
example of 9-beat ECG signals before (z[n]) and after (y[n]) noise removal in the top
and bottom panels, respectively. Subsequently, to obtain the envelope signal z[n], y[n]
is processed with the envelope extraction algorithm. Figure 1.4 shows an example of
signals in beat detection algorithm. The signals y[n] and z[n| are shown using thin and
dotted lines, respectively. Then, the threshold value is defined as shown in Figure 1.4
with a thick line to determine the time interval [t; ¢o] where the R peak locates. Finally,
the R peak is detected from the determination of the time ¢z where the signal amplitude

1S maximum.
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Figure 1.3: Noise removal in preprocessing operation. Top panel: ECG signal before
noise removal (z[n]). Bottom panel: ECG signal after noise removal (y[n]).
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Figure 1.5: The number of publications categorized by preprocessing algorithms: linear
filtering (LF), wavelet transform (WT), and mathematical morphology (MM).

1.2 Literature Reviews

Based on literature reviews, the contents of R peak detection in ECG papers can be pre-
sented in the following 4 sections: ECG preprocessing, ECG beat detection, performance

evaluation, and performance comparison.

1.2.1 ECG Preprocessing

The aim of ECG preprocessing is to remove noises in ECG signals. Subsequently, further
processing algorithms are performed for extracting signal envelope. The main noises in
ECG signal can be divided into two types: low frequency noises and high frequency
noises. While the low frequency noises are T-wave noise and baseline wander noise, the
high frequency noises are muscle noise and power line noise. Based on literature reviews
of 29 papers, ECG preprocessing algorithms can be classified into 3 categories: linear
filtering (LF), wavelet transform (WT), and mathematical morphology (MM) as shown

in Figure 1.5.
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Firstly, the preprocessing operation in many previous publications employs LF
techniques for noise removal in ECG signals [9-20]. Its main processing is based on a
bandpass filter with a cutoff frequency 5-36 Hz, which is corresponding to the band-
width of QRS interval in the ECG signal. In addition, signals after filtering are further
processed with a variety of methods for calculating the envelope signal, for example,
moving average filter [9,10, 18], differential equation [9,10,12,16,17], squaring function
[9,10,16,17], genetic algorithm [11], Hilbert transform [12], and zero crossing [14].

Secondly, preprocessing algorithms based on WT are popularly used for remov-
ing noises in ECG signals [21-31]. After the output from wavelet transform is obtained,
further processing methods used for determining the envelope signal include differential
equation [22,27], moving average filter [26,29], filter bank [25], and zero crossing [24].
Thirdly, three papers of noise removal in ECG signals based on MM were published
[32-34]. The examples of further processing after MM are differential equation [32]
and wavelet transform [33]. Moreover, other noise removal techniques include artificial
neural network [35] and S-transform [36].

Figure 1.6 shows the number of publications regarding noise removal in ECG
signals categorized by 3 preprocessing algorithms covering the period 1985-2012. While
LF and W'T have gained popularity since 1985, the publication based on MM has begun
since 2009. During the period 1985-2000, there are 3 publications from LF and WT.
During the period 2001-2005, while the number of publication from LF is 3, the number
of publication from W'T decreases to 1. However, during the period 2006-2012, the
number of publications based on LF and W'T increases to 6 and 10, respectively. Since
2009, ECG noise removal based on MM has been of interest leading to 3 publications

during the period 2009-2012.

1.2.2 ECG Beat Detection

After the noises in the ECG signal are removed in the preprocessing operation, the signal

envelope is extracted, and the R peak is detected in ECG beat detection process. As
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Figure 1.6: The number of publications categorized by preprocessing algorithms and
publication years.

described in Figure 1.4, one can see that the threshold is a very important parameter.
The threshold can be classified into two types: fixed threshold and adaptive threshold.
The fixed threshold has an advantage of low computational complexity at an expense of
detection accuracy. There are two categories of fixed threshold, i.e., single level [21,28]
and multiple levels [15,25,29]. While an example of single fixed threshold is given by
28]

A = 0.3 x max(h), (1.1)

where A is a threshold and A is an envelope signal resulting from the absolute of product

of wavelet coefficients, an example of multiple fixed thresholds can be expressed as [15]

. 0 if 0< Xy <Ti,orTy < Xg <0
de:{ 1 df 1,0r Lo df (1.2)

de if de Z Tl,OI' de § Tg
To achieve better detection accuracy, the adaptive threshold is used. Similar
to the fixed threshold, the adaptive threshold can be categorized into single level [12,

14,22, 26,27,32-34] and multiple levels [9-11,13,17]. Examples of single and multiple



adaptive thresholds are given by [12]

0.39max(z), RMS(i) > 0.18 max(i)
& max(i) < 2max(i — 1)

thr(i) = { 0.39max(i —1), RMS(i) > 0.18max(i) (1.3)
& max(i) > 2max(i — 1)

L.6RMS(i), RMS(i) < 0.18 max(i)

and [13]
LLV, =V(n)+V(n—-1), RLV,=V(n)+V(n+1), (1.4)

respectively.
In addition, some post-processing algorithms are used to achieve better detec-
tion rate. These post-processing algorithms include the checkup for irregular beat-to-

beat interval information [9,17,27].

1.2.3 Performance Evaluation

The performance of QRS detection algorithm is evaluated with sensitivity (SEN), posi-

tive predictive rate (PPR), and detection error rate (DER). SEN is given by

TP

EN=——
5 TP + FN

x 100, (1.5)

where true positive (TP) is the number of correct QRS complex predictions. FN is the
false negative prediction. In other words, the algorithm predicts that there is no QRS

complex in the location where there is a real QRS complex. PPR can be expressed as

TP

PPR=-—
R="Tprwp

x 100, (1.6)

where FP is the false positive prediction. In other words, the algorithm predicts that
there is a QRS complex in the location where there is no QRS complex. DER is used
for evaluating the accuracy of algorithm including both FN and FP values, which can
be given by

DER = ——— x 100. (1.7)
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Table 1.1: The 8 most-cited papers that are popularly used as a comparison with the
new proposed R-peak detection algorithm.

Paper Type Thresholding (THV) Cited SEN(%) PPR(%) DER(%)
Pan [9] LF Four levels adaptive THV 12 99.75 99.54 0.71
Hamilton [10] LF Three levels adaptive THV 11 99.69 99.77 0.54
Poli [11] LF Three levels adaptive THV 7 99.60 99.50 0.90
Lee [13] LF Two levels adaptive THV 2 99.69 99.87 0.43
Li [23) WT  Four levels adaptive THV 6 99.89 99.94 0.17
Afonso [25] WT  Two levels fixed THV 10 99.55 99.59 0.86
Choi [27] WT  Single level adaptive THV 1 99.66 99.80 0.54
Zhang [32] MM  Single level adaptive THV 2 99.81 99.80 0.39

1.2.4 Performance Comparison

Based on the considerations of 29 papers, Table 1.1 shows 8 most-cited papers that
are popularly used as a comparison with the new proposed R peak detection algorithm
in terms of accuracy. The first four papers use LF in preprocessing step ([9-11, 13]).
Papers [9] and [10] are used in performance comparisons by other 12 and 11 papers,
respectively. Both papers remove noises using a bandpass filter with a cutoff frequency
5-15 Hz. Subsequently, the signal envelope is detected by the following operations:
differential equation, square function, and moving average filtering. The main difference
in both papers is the number of levels in adaptive thresholding. That is, while paper
[9] uses four levels of adaptive thresholding, paper [10] uses three levels of adaptive
thresholding. Results show that DER of [9] and [10] are 0.71% and 0.54%, respectively.
Paper [11] used in comparison with other 7 papers provides the DER value of 0.9%.
Paper [13] giving the DER value of 0.43% is used in comparison with other 2 papers.
Both papers employ multiple adaptive thresholding in beat detection algorithm.

The next three papers [23], [25], and [27] comprising WT in their preprocessing
step provide the DER values of 0.17%, 0.86%, and 0.54%, respectively. They are used
in performance comparisons by other 6, 10 and 1 papers, respectively. While discrete
wavelet transform for noise removal and single fixed thresholding for beat detection are
exploited in [23], filter bank and multiple fixed thresholding are used in [25]. Paper [27]

employs db 10 WT and Butterworth lowpass filter with a cutoff frequency 20 Hz for noise
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removal. Moreover, single adaptive thresholding is used for ECG beat detection. The
last paper [32] utilizes the MM based on multiscale mathematical morphology filtering
for removing noise. The single adaptive thresholding is used in beat detection step. Its

DER value is 0.39%. This paper was used in performance comparison by other 2 papers.

Table 1.2: ECG records that provide top five highest DER values.

Paper Type 1st 2nd 3rd 4th 5th

Pan [9) LF 108(12.38%) 222(7.10%) 105(3.43%) 203(2.76%) 228(1.46%)
Hamilton [10] LF 108(5.38%)  222(3.04%) 105(2.90%) 203(2.47%) 210(1.60%)
Poli [11] LF 207 108 105 104 203

Lee [13] LF 222(3.73%)  203(2.38%) 114(2.09%) 105(1.75%) 201(1.36%)
Li [23] WT  108(1.57%)  105(1.08%) 203(0.86%) 201(0.66%) 228(0.49%)
Afonso [25] WT  108(11.89%) 203(4.03%) 105(3.20%) 210(2.36%) 208(2.09%)
Choi [27] WT  108(4.71%)  228(3.56%) 201(2.39%) 203(2.05%) 105(2.02%)
Zhang [32] MM  106(2.00%)  116(1.27%) 113(1.16%) 105(1.00%) 223(0.99%)

Table 1.2 shows the ECG records that provide the top five highest DER values
in the papers from Table 1.1. Results show that the DER of ECG record 108 is highest
in 5 of 8 papers. In addition, ECG record 108 and 203 are found in all papers that use
LF and WT as a preprocessing step for noise removal (7 from 8 papers). However, the
ECG record 105 is found in all 8 papers. It is interesting to note that the ECG records
108 and 203 are not found in the paper that employs MM for noise removal. Other ECG

data found in 3 papers are 222, 228, and 201.

1.3 Objective

The objective of this research is to develop a computer-based algorithm for automatically
detecting R peaks in an ECG signal. The main focus of this work is to remove noise
and enhance QRS signal to noise ratio in preprocessing operation based on advanced
signal processing methods, i.e. quadratic filter (QF) and wavelet transform. If the R
peak can be emphasized by the preprocessing operation, the detection accuracy can
be obtained with minimal computational complexity because adaptive thresholding and

post-processing operations may not be required.
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1.4 Methodology

Quadratic Filter

To develop the R-peak detection algorithm based on the quadratic filter, the study

procedures are as follows.

e Maximize QRS signal to noise ratio in preprocessing step for noise removal by

investigating the most appropriate center frequency and bandwidth of the QF.

e Study computational complexity reduction of the QF using singular value decom-

position (SVD).

e Investigate the appropriate thresholding technique and post-processing methods
for the R-peak detection algorithm based on the QF to increase detection accu-
racy. In addition, the trade-off between detection accuracy and computational

complexity will be carefully studied.

Wavelet Transform

To develop the R-peak detection algorithm based on the wavelet transform, the study

procedures are as follows.

e Maximize QRS signal to noise ratio in preprocessing step for noise removal by in-
vestigating the most appropriate wavelet function, wavelet scale, and combination

of wavelet coefficients at various scales to maximize QRS signal to noise ratio.

e Investigate the most appropriate thresholding technique and post-processing meth-
ods for the R-peak detection algorithm based on the wavelet function to increase
detection accuracy. In addition, the trade-off between detection accuracy and

computational complexity will be carefully studied.
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1.5 Scope of Research

ECG data used in performance evaluation for the proposed algorithm are from MIT-BIH
arrhythmia database [37,38]. There are 48 records of ECG data. Each record consists
of slightly over 30 minutes from two-channel of ECG data. Each channel was acquired
at a sampling rate of 360 Hz. This database is considered as a class 1 database, which
has been carefully scrutinized, thoroughly annotated, and used in many well-known
publications. The ECG data from MIT-BIH have a variety of types including both
normal and abnormal ECG data. In addition, there is a marker for each beat given by
the expert demonstrating the QRS complex location and beat type. In this research
project, the QRS complex is detected using the ECG signal from channel 1 or lead II

only. In other words, the ECG signal from channel 1 was represented by z[n].

1.6 Expected Benefits

The knowledge resulting from this research can be integrated to be a part of computer
assisted system for ECG signal analysis. Their examples of applications include ECG
signal prescreening and ECG monitoring in the elderly. As the ECG signal prescreening,
it can help in the diagnosis of ECG abnormalities such as arrhythmia, obstructive sleep
apnea syndrome, and congestive heart failure. Moreover, the decrease in the number
of newborn babies and human longevity due to the development of science and public
health have brought Thailand to be a country of aging society since 2005. As a result,
the lack of a care taker for the elderly is a serious problem that is inevitable. To alleviate
the problems, the health monitoring systems and smart home research for the elderly has
been developed so that they can live independently on their own as much as possible. A
small device that can send signals from multiple sensors such as acceleration and ECG
electrodes used to check the movement of the elderly including the fall event notifications
has been developed. The care taker can monitor the status of the user closely and can

timely assist when situations are serious and in emergency. The knowledge resulting
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from this research is a very important part for detecting abnormalities in ECG signals.

The rest of this report is organized as follows. Chapter 2 presents the QRS
detection algorithm based on the QF. Subsequently, the QRS detection algorithm based
on the wavelet function is given in chapter 3. Then, chapter 4 demonstrate the possibility
in improving QRS signal to noise ratio using combination of the wavelet functions at
various scales. Finally, the conclusions of this research project and recommendations for

future work are stated in chapter 5.



Chapter 2

QRS Detection Based on Quadratic
Filter

2.1 Introduction

The main focus of this chapter is to propose the R-peak detection algorithm, which is
popularly known as the QRS detection algorithm in most previous publications, con-
sisting of the quadratic filter (QF) capable of enhancing QRS signal to noise ratio in
preprocessing operation. Results show that the QRS complex can be emphasized by the
preprocessing operation based on the QF because of the significant increase in the QRS
signal to noise ratio. As a result, the detection accuracy can be obtained without the
need for adaptive thresholding and post-processing operations.

The rest of this chapter is organized as follows. Section 2.2 presents the design
method for the QF. Section 2.3 describes the proposed QRS detection algorithm based
on the QF. Results are given in section 2.4. Finally, discussion is provided in section

2.5.

2.2 Quadratic Filter Design

The application of the QF, which is derived from the second-order Volterra filter, in
the ECG noise removal application has not been carefully studied. Unlike the linear
filtering, the important advantage of the QF is that it has various degrees of freedom

for optimization in removing noises contaminated in the ECG signal. Details of the QF

14
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Figure 2.1: The modified 2D Gaussian function in the frequency domain.

derivation are given as follows.

The design of QF for removing noises in ECG signals is performed in frequency
domain. Figure 2.1 shows an example of 2D magnitude frequency response of the QF.
The linear-phased QF' is designed based on the sum of two 2D Gaussian filters, which

is given by

G (wig, wa) + Ga(wik, way)

max{G; + G5} ’ (2.1)

G(Mk, W2z) =
where
Gz'(Wlka sz) =

exp{—[A(wlk — wai)Q + B(wlk — wm-)(wzl — wbi) -+ O(WQ[ — wbi>2]}, (22)
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Figure 2.2: The contour plot at -6 dB showing parameters in the design of the QF:
Passband width and center points.

for i = 1,2 with:

cos sin @
A = 2 2 2.3
(P () (23)
B - _31n220+51n220 (2.4)
o? o;
sin @ cos
C = 2 2, 2.5
o+ () (25)

The coefficient (wg;,wy;) is the center of Gaussian filter, o, is a constant that defines
the passband width along the cross-diagonal direction, o, is a constant that defines the

passband width along the diagonal direction, and € is the rotation angle.
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Note that the passband frequencies should be approximately placed at the pass-

band frequencies of the QRS response. To achieve the best filter for removing noise,
parameters should be adjusted to maximize QRS signal to noise ratio. Figure 2.2 shows
a contour plot at -6 dB of the magnitude of 2D frequency responses of the QF from
Figure 2.1. The centers of Gaussian function are at (wiy,ws) of (-15, 15) and (15, -15)
Hz. Other parameters, i.e., (04, 0y, 0) for the QF are (1.1, 0.55, -7 /4).

After the 2D magnitude frequency of the QF is formed, the frequency response

can be given by

H(ijlk, ejom) — G(wlk, wzl)ej¢>(w1k,mz)’ (2.6)

where G(wig,ws) represents the desired magnitude response based on the 2D Gaussian

filters given in (2.1) and ¢(wyx, wey) is the phase response, which can be expressed as

P(wik, war) = — way, (2.7)

where wy, = (27k/M;)—7m, k =0,1,...., Mi—1 and wy = (27l/My)—m,1 = 0,1, ..., My—1.
We use the QF size Ny = Ny = N. As a result, the phase delay of the signal output is
(N —-1)/2.

Subsequently, the filter coefficients h[ny, ns| can be obtained by the inverse DFT
of H(e*1k elw2). Please see [39] for more details. Figure 2.3 shows the coefficients of
the QF corresponding the design parameters shown in Figure 2.2. The ECG signal after
noise removal y[n| is produced by applying the QF coefficients to the ECG signal x[n],

which can be expressed as

Pz: hlk1, ko)z[n — kq]z[n — ks, (2.8)

HM.‘U

Once a quadratic kernel Hy is obtained, equation (2.8) can be rewritten in the

vector form as
y(n) = x" (n)Hox(n). (2.9)
Then, an eignenvalue decomposition (EVD) is performed to determine its dominant

modes (based on eigenvalue distribution). This has two possible advantages:
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e Under EVD, it is easy to identify and remove those modes that do not lead to an

improvement in noise removal capability.

e In cases when only one or two dominant eigenmodes of Hg produce most of the
energy, it is possible to implement the quadratic operator more efficiently. Specif-

ically, a separable implementation of a low-order quadratic filter can be used.

The EVD of the quadratic kernel Hy is given by,

Hy = WIAW, (2.10)
where W is a matrix composed of the eigenvectors wy,..., wp and A is the diagonal
matrix constructed from the corresponding eigenvalues, Aq,..., Ap, and P is the size of

QF. Then, based on the EVD of Hj, the estimation of quadratic components in equation
(2.9) can be expressed as

y(n) =x"(n)(WHAW)x(n)

= (Wx(n))" A(Wx(n)) (2.11)

_ gjl Aj [Pf w;(i)z(n — i)] .

2.3 Proposed Algorithm

Based on a schematic diagram of the QRS detection algorithm shown in Figure 1.2, the
noises in the ECG signal z[n| are removed in the preprocessing operation based on the
QF designed using the method described in Section 2.2. Figure 2.4(a) and (b) shows an
example of 10-beat ECG signals before and after noise removal in the top and bottom
panels, respectively.

Subsequently, to obtain the envelope signal z[n|, y[n] is processed with the en-
velope extraction algorithm. Figure 2.5(a) shows an example of signals in beat detection
algorithm. The signals y[n| and z[n] are shown with the thin and dotted lines, respec-
tively. Then, the threshold value is defined as shown in Figure 2.5(a) with a thick line

to determine the time interval [t; t5] where the QRS complex locates. Finally, the R
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Figure 2.4: Noise removal in preprocessing operation. (a) ECG signal before noise
removal z[n]. (b) ECG signal after noise removal y[n].

peak in QRS complex is detected from the determination of the time ¢t where the signal
amplitude is maximum. Figure 2.5(b) shows the ECG signal overlaid by the markers
from the proposed algorithm (square) and the expert (asterisk). The details of proposed

algorithm can be summarized as follows.

1. Determine the signal y[n] from the ECG signal x[n] by processing with the QF.

2. Determine the envelope signal z[n] from y[n] using the maximal filter with the

length L = 120 ms as given by

z[n] =  max  ylk]. (2.12)

= X
k€[n—L+1,n]
3. Detect the R peak in QRS complex using the following steps.

(a) Calculate a threshold value thv from thv = A\y,,[n], where y,,[n] is the maxi-

mum value of y[n| and A is a constant in the range of 0.10 to 0.17.
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Figure 2.5: ECG beat detection algorithm. (a) Thin line: ECG signal after noise removal
y[n]. Dotted line: Envelope signal z[n]. Thick line: Threshold value line. (b) ECG signal
overlaid by the markers from the proposed algorithm (square) and the expert (asterisk).
While the signal on the left hand side is a normal ECG beat, the signal on the right
hand side is a premature ventricular contraction beat.
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(b) Find the time duration where z[n] is greater than thv and determine the

beginning time ¢, the half-duration time ¢;, and the ending time 5.

(c) Determine the amplitude of y[n] at t,. If the amplitude is greater than zero,
which indicates that it is not a premature ventricular contraction beat, go to

step (d), else go to step (e).

(d) Determine R peak location tg from the time between [t; t5] in y[n] that gives

the maximum amplitude.

(e) Determine R peak location tg from the time between [¢; t5] in y[n] that gives

the maximum amplitude.

2.4 Results

2.4.1 Parameter Adjustment

To achieve the optimum QF filter for noise removal in ECG signals, parameters under
investigation are (wig,wy), 0z, 0y, and 6. However, the most important parameter is
oy, which defines the cutoff frequency in the diagonal direction capable of enhancing the
QRS signal to noise ratio. Figure 2.6 shows a comparison of 2D magnitude frequency
response of the QF when the values of o, in the filter design are 0.4, 0.55, 0.7, and 0.85.
We can clearly see that the higher in o, value, the wider in the passband width of the
QF along the major diagonal direction.

Figure 2.7 shows an average DER value from 48 records of ECG data as a
function of a o, value. Four values of o, are varied, i.e., 0.40, 0.55, 0.70, and 0.85 when
(wig,way) , 04, and O are fixed at (-15, 15), (15, -15) Hz, 1.1, and -7 /4, respectively.
Results show that the maximum average DER value of 0.38% can be obtained at the o,
of 0.70.

Figure 2.8 shows the DER value as a function of threshold value thv determined
using the increment step size of A = 0.1 from records 100, 108, 207, and 222. The result

from record 100 represents ECG data with low noise contamination. A wide range of
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Figure 2.6: Comparison of contour plot of 2D magnitude frequency response of the QF
when the values of o, are 0.4, 0.55, 0.7, and 0.85.
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the A values from 0.2 to 0.17, which are corresponding to the thv values from 0.056

to 0.478, can give the DER value of 0%. The results from record 108, 207, and 222
represent the ECG data consisting of various contaminated noises and irregular ECG
beats. Only a single value of thv value can give the minimum DER. For example, the
minimum DER of 4.08% for the record 108 can be obtained from the A\ value of 0.05,
which is corresponding to the thv value of 0.0876. Similar results also can be seen in

the record 207 and 222.

2.4.2 Enhancement of QRS Signal to Noise Ratio

To illustrate the capability of the QF in enhancing QRS signal to noise ratio, example
results from ECG data of record 121, 202, 200, 217, 105, and 108 are demonstrated.

Figure 2.9(a) shows the ECG data of record 121 from time 1650 s to time 1660
s. Although ECG data in this record are corrupted by baseline drift and some QRS
complexes have very low amplitude, significant improvement in QRS signal to noise
ratio of the ECG signal after noise removal y[n| resulting from the QF can be obtained
as shown in Figure 2.9(b). Figure 2.9(c) shows the envelope signal z[n| and the threshold
value thv, which allow us to correctly detect all QRS signals.

Figure 2.10(a) shows the ECG data of record 202 from time 760 s to time 770
s. ECG data in this record consist of 6 normal beats, an atrial premature beat, two
aberrated atrial premature beats, and a premature ventricular contraction beat. Figure
2.10(b) shows that the QRS signal to noise ratio of y[n] from the QF is good enough for
all beats to be correctly detected using the envelope signal z[n| and the threshold level
thv shown in Figure 2.10(c).

Figure 2.11(a) shows the ECG data of record 200 from time 600 s to time 610
s. ECG data in this record consist of a fusion of ventricular and normal beat (“F”). In
addition, we can see muscle noise in the segments [600-601 s| and [603-603.5 s]. Figure
2.11(b) shows that the QF can efficiently remove noise and enhance QRS signal to noise

ratio. There is an FN detection shown in Figure 2.11(c) at time 602 s because the
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Figure 2.9: Results of the proposed algorithm applied on the ECG signal record 121.
(a) The ECG signal before noise removal x[n] overlaid by the circle markers from the
expert. “N” stands for a normal beat. (b) The ECG signal after noise removal y[n]. (c)
The envelope signal z[n| (solid line) and the threshold level thv (dotted line).
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Figure 2.10: Results of the proposed algorithm applied on the ECG signal record 202.
(a) The ECG signal before noise removal x[n] overlaid by the circle markers from the
expert. “A” stands for an atrial premature beat, “a” for an aberrated atrial premature
beat, and “V” for a premature ventricular contraction beat. (b) The ECG signal after
noise removal y[n]. (c) The envelope signal z[n| (solid line) and the threshold level thv
(dotted line).



29

®

)
®
1H ) ¥ ® )
D o P
=
= 0
-1+
V) V) )
-2
(a)
2
1.5
= 1r
=
0.5
0 M/m " V\; I Ll\,\M\j\,

Z[n] and thv

P (IO (PO R IO AU [RRPRPRPRPRPOY S IR U AR IR N 1 P B L_‘\J

|
603 604 609 610
Time (s)

Figure 2.11: Results of the proposed algorithm applied on the ECG signal record 200.
(a) The ECG signal before noise removal x[n] overlaid by the circle markers from the
expert. “F” stands for a fusion of ventricular and normal beat. (b) The ECG signal
after noise removal y[n]. (c¢) The envelope signal z[n| (solid line) and the threshold level
thv (dotted line). “o” stands for an FN detection.



30

threshold level thv in this record is higher than the premature ventricular contraction
beat after applying with the QF.

Figure 2.12(a) shows the ECG data of record 217 from time 840 s to time 850 s.
In addition to normal beats and a premature ventricular contraction, ECG data in this
record is composed of fusion of paced and normal beats (“f”) and paced beats (“/”).
Moreover, we can see abrupt baseline shift at time 846 s. Figure 2.12(c) shows the
envelope signal z[n| resulting from the ECG signal after noise removal y[n| in Figure
2.12(b), two FN detections and an FP detection. While the 2 FN detections result from
their inherent low amplitudes, the FP detection is caused by the high peak from the
abrupt baseline shift after filtering.

Figure 2.13(a) shows the ECG data of record 105 from time 1321 s to time 1331
s. ECG data in this record are contaminated with high-grade noise. Although the QRS
complex can be emphasized by the QF as shown in Figure 2.13(b), the high-grade noise
is also amplified. The signal after filtering from high-grade noise causes 6 FP detections
as shown in Figure 2.13(c).

Figure 2.14(a) shows the ECG data of record 108 from time 1655 s to time
1665 s. We can see that the QRS complexes in this record have low amplitude and are
corrupted by muscle noise. The amplitude of noise after filtering from time 1662 s to
time 1663 s is higher than that of QRS signals from time 1663 s to time 1665 s as shown
in Figure 2.14(b). As a result, the proposed algorithm gives 2 FP detections and 2 FN

detections based on the threshold thv shown in Figure 2.14(c).

2.4.3 Performance Evaluation and Comparison

Table 2.1 shows performance evaluation of the proposed algorithm applied on all 48
records of ECG data when the parameters (wiy, ws) , 04, , 0y, and 6 of the QF are fixed
at (-15, 15), (15, -15) Hz, 1.1, 0.70, and -7 /4, respectively. The average DER value is
0.38%. The average values of TP, FN, FP, SEN, and PPR are 109281 beats, 202 beats,
210 beats, 99.82%, and 99.81%, respectively. While the maximum DER value is 4.08 %
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Figure 2.12: Results of the proposed algorithm applied on the ECG signal record 217.
(a) The ECG signal before noise removal x[n] overlaid by the circle markers from the
expert. “f” stands for a fusion of paced and normal beat and “/” for a paced beat. (b)
The ECG signal after noise removal y[n]. (c¢) The envelope signal z[n] (solid line) and
the threshold level thv (dotted line). “+” stands for an FP detection.
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Figure 2.13: Results of the proposed algorithm applied on the ECG signal record 105.
(a) The ECG signal before noise removal x[n] overlaid by the circle markers from the
expert. (b) The ECG signal after noise removal y[n]. (c¢) The envelope signal z[n] (solid
line) and the threshold level thv (dotted line).
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Figure 2.14: Results of the proposed algorithm applied on the ECG signal record 108.
(a) The ECG signal before noise removal z[n] overlaid by the circle markers from the
expert. (b) The ECG signal after noise removal y[n]. (¢) The envelope signal z[n] (solid
line) and the threshold level thv (dotted line)
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from the record 108, the minimum DER value is 0 % from 21 records (record 100, 102,

103, 107, 112, 113, 115, 117, 118, 121-124, 202, 212, 213, 219-221, 230, and 231).

Table 2.2 shows the performance comparison of the proposed algorithm with
that from other 7 state-of-the-art papers. The order of each method is sorted from
the minimal average DER value to the maximal average DER value. The minimal and
maximal average DER values are 0.17% [20] and 0.54% [27], respectively. The average
DER value from the proposed algorithm based on noise removal in ECG signals using
the QF is 0.38%. This result shows that the QF can significantly increase the QRS signal
to noise ratio. As a result, only the use of a single fixed threshold without additional
post-processing techniques can yield low average DER value.

Table 2.3 shows comparison results of the DER values of ECG record 121,
202, 200, 217, 105, and 108 from the proposed method with that from other 7 papers.
The minimum and maximum DER values for each record are shown using the boldface
and italics fonts, respectively. The DER values of ECG record 121 and 202 from the
proposed method are minimal at 0.00 %. For other ECG records, the DER values from
the proposed method are in the range between minimum and maximum DER values.

For ECG record 121 and 202, the proposed method performs better than the
others because of its capability in enhancing QRS signal to noise ratio for challenging
situations such as low amplitude ECG data corrupted with baseline drift and various
types of abnormal morphologies. As a result, only a simple beat detection step based
on a single fixed threshold with no additional post-processing techniques is enough for
achieving the DER value of 0 %. However, QRS signal to noise ratio from the QF
is not high enough in some situations such as abrupt baseline shift (record 217), high-
grade noise (record 105), and low amplitude QRS complex contaminated by muscle noise
(record 108). Therefore, FP and FN detections are obtained from the proposed method.
Other QRS algorithms overcome these problems using additional computations. On
the one hand, the algorithms in some previous publications reduce FN detections using

adaptive thresholding techniques [27,31,32,35,36] and false-noise detection algorithm
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Figure 2.15: Quadratic filters. (Left panel) Original design. (Right panel) Reconstruct
from the two largest modes of eigenvalue decomposition.

[20]. On the other hand, some algorithms in previous publications decrease FP detections
using the technique based on the refractory period of 200 ms [20, 30, 36]. In other
words, two consecutive QRS complexes cannot be detected within 200 ms. Another
example used to decrease FP detections is the check up for irregular beat-to-beat interval

information algorithm [27].

2.4.4 Computational Complexity Reduction

Figure 2.15(a) shows the quadratic filter from original design with a o, value of 0.7. After
EVD, its eigenvalues is shown in Figure 2.16. We can see that the first two numbers
of eigenvalues are significantly larger than the others. Therefore, for computational
complexity reduction, the new quadratic filter is reconstructed from the two largest
modes of EVD and shown in Figure 2.15(b). Figure 2.17 shows comparisons of ECG
signals after filtering y[n] from original design (solid line) with that from two largest
modes of eigenvalue decomposition (dotted line). We can see that both lines are in
agreement very well. These results indicate that computational complexity reduction

with reconstructing of the new quadratic filter based on EVD is feasible.

2.5 Discussion

This chapter proposed the QRS detection algorithm, which employed the quadratic filter

on enhancing QRS signal to noise ratio from ECG signals in preprocessing step. Results
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show that the quadratic filter achieves in improving QRS signal to noise ratio for some
challenging situations such as low amplitude QRS complex corrupted by baseline drift
and a variety of abnormal morphologies such as a fusion of ventricular and normal beat,
an atrial premature beat, an aberrated atrial premature beat, a premature ventricular
contraction beat, a fusion of paced and normal beat, and a paced beat. Subsequently, the
QRS complex is obtained with a simple beat detection algorithm based on an envelope
signal and a single fixed threshold without additional post-processing techniques. The
proposed algorithm was validated with the MIT-BIH arrhythmia database. The average
DER value from 48 records is at 0.38%.

In next chapter, we explore the combination of the Mexican hat wavelet function
in enhancing QRS signal to noise ratio in preprocessing step with the maximal filter in

reducing FP detection in beat detection step.



Table 2.1: Performance evaluation of proposed algorithm.

Record Total TP FN FP SEN%) PPR(%) DER(%)

100 2272 2272 0 0 100.00 100.00 0.00
101 1865 1865 0 4 100.00 99.79 0.21
102 2187 2187 0 0 100.00 100.00 0.00
103 2084 2084 0 0 100.00 100.00 0.00
104 2228 2223 5 20 99.78 99.11 1.12
105 2572 2558 11 28  99.57 98.92 1.52
106 2027 2024 3 4 99.85 99.80 0.35
107 2136 2136 0 0 100.00 100.00 0.00
108 1763 1710 93 19 96.99 98.90 4.08
109 2532 2531 1 0 99.96 100.00 0.04
111 2124 2123 1 0 99.95 100.00 0.05
112 2539 2539 0 0 100.00 100.00 0.00
113 1794 1794 0 0 100.00 100.00 0.00
114 1879 1878 1 5 99.95 99.73 0.32
115 1953 1953 0 0 100.00 100.00 0.00
116 2412 2393 19 2 99.21 99.92 0.87
117 1535 1535 0 0 100.00 100.00 0.00
118 2278 2278 0 0 100.00 100.00 0.00
119 1987 1987 0 1 100.00 99.95 0.05
121 1863 1863 0 0 100.00 100.00 0.00
122 2476 2476 0 0 100.00 100.00 0.00
123 1518 1518 0 0 100.00 100.00 0.00
124 1619 1619 0 0 100.00 100.00 0.00
200 2601 2598 3 2 99.88 99.92 0.19
201 1963 1959 4 3 99.80 99.85 0.36
202 2136 2136 0 0 100.00 100.00 0.00
203 2980 2958 22 35  99.26 98.83 1.91
205 2656 2654 2 0 99.92 100.00 0.08
207 1860 1845 15 26 99.19 98.61 2.20
208 2955 2933 22 13 99.26 99.56 1.18
209 3005 3005 0 1 100.00 99.97 0.03
210 2650 2642 8 7 99.70 99.74 0.57
212 2748 2748 0 0 100.00 100.00 0.00
213 3250 3250 0 0 100.00 100.00 0.00
214 2262 2256 6 0 99.73 100.00 0.27
215 3363 3363 0 1 100.00 99.97 0.03
217 2208 2206 2 4 99.91 99.82 0.27
219 2154 2154 0 0 100.00 100.00 0.00
220 2047 2047 0 0 100.00 100.00 0.00
221 2427 2427 0 0 100.00 100.00 0.00
222 2483 2472 11 13 99.56 99.48 0.97
223 2605 2604 1 1 99.96 99.96 0.08
228 2053 2043 10 16 99.51 99.22 1.27
230 2256 2256 0 0 100.00 100.00 0.00
231 1571 1571 0 0 100.00 100.00 0.00
232 1780 1780 0 1 100.00 99.94 0.06
233 3079 3077 2 3 99.94 99.90 0.16
234 2753 2753 0 1 100.00 99.96 0.04
Total 109483 109281 202 210 99.82 99.81 0.38
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Table 2.2: Performance comparison of the proposed algorithm with that from other 7

papers.
Method of noise removal TP FN FP SEN(%) PPR(%) DER(%)
Linear filtering [20] 109401 93 91 99.92 99.92 0.17
S-Transform [36] 108323 171 97  99.84 99.91 0.25
Artificial neural network [35] 109273 210 109 99.82 99.91 0.28
Wavelet transform [30] 109354 140 232 99.87 99.79 0.34
Quadratic filtering (This work) 109281 202 210 99.82 99.81 0.38
Matematical morphology [32] 109297 213 204 99.80 99.81 0.38
Wavelet transform [31] 115945 192 308 99.81 99.70 0.49
Wavelet transform [27] 109118 376 218 99.66 99.80 0.54

Table 2.3: Comparisons of the DER values in percent of ECG record 121, 202, 200, 217,
105, and 108 from the proposed method with that from other 7 papers.

Method of noise removal 121 202 200 217 105 108
Quadratic filtering (This work) 0.00 0.00 0.19 0.27 1.59 4.08
Wavelet transform [30] 0.10 0.09 0.30 0.23 081 840
Linear filtering [20] 0.11 0.09 0.15 0.09 125 0.57
S-Transform [36] 0.16 0.09 023 023 124 244
Artificial neural network [35] 0.16 033 031 0.64 0.23 0.51
Wavelet transform [27] 0.16 0.37 1.00 032 202 4.71
Wavelet transform [31] 0.32 0.00 0.19 0.27 241 12.40

Mathematical morphology [32] 0.70 0.37 0.50 0.23 1.01 0.68




Chapter 3

QRS Detection Based on Mexican
Hat Wavelet Function and Maximal
Filter

3.1 Introduction

This chapter proposes a QRS detection algorithm consisting of the Mexican hat wavelet
function and the maximal filter. While the Mexican hat wavelet function is capable of
enhancing QRS signal to noise ratio, the maximal filter is employed for reducing FP
detections. Results show that the excellent detection accuracy can be obtained without
the need for adaptive thresholding and post-processing operations.

The rest of this chapter is organized as follows. Section 3.2 presents the back-
ground on continuous wavelet transform (CWT). Section 3.3 describes the proposed
QRS detection algorithm. Results are given in section 3.4. Finally, discussion is stated

n section 3.5.

3.2 Continuous Wavelet Transform

The CWT has been gained popular uses for decomposing signals in many applications
including noise removal in ECG signals. Given the input signal z(t), which is the ECG

signal in this research project, the CWT of z(¢) can be expressed as

T,y = /'°° () (t - b) dt, (3.1)

a

40
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where T, is the CWT of z(¢), a is the dilation or scale parameter, b is the location
parameter, and 1*(¢) is the complex conjugate of the wavelet function. The scale and
the wavelet function are two important parameters affecting the performance of noise
removal in ECG signals.

There are a variety types of the wavelet function. However, the Maxican hat
wavelet function is selected in this research project for removing noises and enhancing
QRS signal to noise ratio because its similarity to the shape of the QRS complex from
the normal ECG beat [40]. The Maxican hat wavelet function, which is the second

derivative of a Gaussian function, is given by

o(t) = \/127(1 ) exp (f) (3.2)

3.3 Proposed Algorithm

Based on the block diagram shown in Figure 1.2, the QRS detection algorithm used for
evaluating wavelet functions consists of three steps: noise removal using CW'T, envelope

signal determination, and R peak detection. Details of each step are as follows.

1. Determine the signal after noise removal y[n| from the ECG signal x[n] by pro-
cessing based on the CWT with the Mexican hat wavelet function, which can be
expressed as

yln] = Ty, (3.3)

The scale parameter a was varied in the range of 2 to 4 to find the best scale in

maximizing QRS signal to noise ratio.

2. Determine the envelope signal z[n| from y[n| using the maximal filter with the
length L as given by

2lnl = ke[nn}%il,n] ylkl (34)

The length L was varied in the range of 120 ms to 270 ms to find the best length

of the maximal filter in minimizing total false detection (FN+FP) from 48 records
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of ECG data.

3. Detect the R peak r[n| in QRS complex using the following steps.

(a) Define a threshold value tho.

(b) Find the time duration where z[n] is greater than thv and determine the

beginning time ¢; and the ending time t,.

(c¢) Determine the R peak location tg from time between [t; t5] in y[n] that gives

the maximum amplitude.

3.4 Results

3.4.1 Scale and Filter Length

Figure 3.1 shows the number of total false detection (FP + FN) from 48 records of ECG
data as a function of a scale in CWT ranging from 2 to 4. Two examples of total false
detections determined using the filter length of 120 ms and 220 ms are shown using the
circle and pentagram markers, respectively. Results show that the scale 3 give smaller
total false detection compared to those from other scales in both cases. In other words,
the Mexican hat wavelet function at scale 3 provides the best QRS signal to noise ratio
enhancement. Subsequently, the length of maximal filter was varied to find the minimal
total false detection when the scale was fixed at 3.

Figure 3.2 shows the number of FN, FP, and FN+FP from 48 records of ECG
data as a function of a filter length L using the cross, circle, and pentagram markers,
respectively. Results show the trade-off between FN and FP detections when the filter
length increases. In other words, when the filter length increases, the FP detections
decrease but the FN detections increase. The minimal false detection rate at 309 FN+FP
beats consisting of 111 FN beats and 198 FP beats is obtained when the length of the

maximal filter L is 195 ms.
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Figure 3.1: The number of total false detection (FP + FN) from 48 records of ECG
data as a function of a scale in CWT when filter lengths were fixed at 120 ms (circle)
and 220 ms (pentagram).
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3.4.2 Signal Characteristic

To illustrate the capability of the combination between Mexican hat wavelet function
at scale 3 and the maximal length filter at length 195 ms in enhancing QRS signal to
noise ratio, example results from ECG data of record 118, 221, 232, 121, 200, 108, and
105 are demonstrated.

Figure 3.3(a) shows the ECG data of record 118 from time 1381 s to time 1391
s consisting of 9 right bundle branch block beats, a premature ventricular contraction
beat, and an atrial premature beat. Figure 3.3(b) shows the output signals from the
Mexican hat wavelet function. It can be clearly seen that the QRS signal to noise ratio
enhancement is obtained. Figure 3.3(c) shows the envelope signal z[n] with a solid line
and the threshold level thv with a dotted line. We can see that the threshold value thv
is appropriate with the envelope signal z[n]. As a result, all beats are correctly detected
as shown in Figure 3.3(d).

Figure 3.4(a) shows the ECG data of record 221 from time 838 s to time 848 s
consisting of 11 normal beats and 4 premature ventricular contraction beats. In addition,
3 beats of ventricular tachycardia can be observed at time 842-843 s. Enhancement of
QRS signal to noise ratio can be observed from the ECG signal after noise removal y[n]
shown in Figure 3.4(b). Based on the envelope signal z[n] and the threshold level thv
shown in Figure 3.4(c), all ECG beats are correctly detected as shown in Figure 3.4(d).

Figure 3.5(a) shows the ECG data of record 232 from time 717 s to time 727 s
consisting of 11 atrial premature beats and a right bundle branch block beat contami-
nated by noise. Figure 3.5(b) shows the ECG signal after noise removal y[n| with the
improvement in QRS signal to noise ratio. Figure 3.5(c) shows the envelope signal z[n]
using a solid line and the threshold level thv using a dotted line. Figure 3.5(d) shows all
correct beat detections from the proposed algorithm using a square marker compared
to those from the expert using an asterisk marker.

Figure 3.6(a) shows the ECG data of record 121 from time 1650 s to time 1660
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Figure 3.3: Results of the proposed algorithm applied on the ECG signal record 118. (a)
The ECG signal before noise removal z[n]. “R” stands for a right bundle branch block
beat, “V” for a premature ventricular contraction beat, and “A” for an atrial premature
beat. (b) The ECG signal after noise removal y[n]. (¢) The envelope signal z[n] shown
in a solid line and the threshold level thv shown in a dotted line. (d) The ECG signal
overlaid by the markers from the proposed algorithm (square) and the expert (asterisk).
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Figure 3.4: Results of the proposed algorithm applied on the ECG signal record 221.
(a) The ECG signal before noise removal z[n]. “N” stands for a normal beat. (b) The
ECG signal after noise removal y[n]. (¢) The envelope signal z[n] shown in a solid line
and the threshold level thv shown in a dotted line. (d) The ECG signal overlaid by the
markers from the proposed algorithm (square) and the expert (asterisk).
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Figure 3.5: Results of the proposed algorithm applied on the ECG signal record 232. (a)
The ECG signal before noise removal x[n]. (b) The ECG signal after noise removal y[n].
(¢) The envelope signal z[n] shown in a solid line and the threshold level thv shown in a
dotted line. (d) The ECG signal overlaid by the markers from the proposed algorithm
(square) and the expert (asterisk).
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Figure 3.6: Results of the proposed algorithm applied on the ECG signal record 121. (a)
The ECG signal before noise removal x[n]. (b) The ECG signal after noise removal y[n].
(c) The envelope signal z[n] shown in a solid line and the threshold level thv shown in a
dotted line. (d) The ECG signal overlaid by the markers from the proposed algorithm
(square) and the expert (asterisk). “o” stands for an FN detection.
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s. ECG data in this record are corrupted by baseline drift and some QRS complexes

have very low amplitude. Figure 3.6(b) shows significant improvement in QRS signal
to noise ratio of the ECG signal after noise removal y[n]. The corresponding envelope
signal z[n] and the threshold value thv are shown in Figure 3.6(c). There is an FN
detection shown in Figure 3.6(c) using a diamond marker at time 1654.2 s because the
threshold level thv in this record is higher than the normal beat after applying with the
CWT.

Figure 3.7(a) shows the ECG data of record 200 from time 1070 s to time
1080 s consisting of 7 normal beats, 7 premature ventricular contraction beats, and a
fusion of ventricular and normal beat. Note that the fusion of ventricular and normal
beat has very low amplitude. Figure 3.7(b) and (c) show the ECG signal after noise
removal y[n] and the corresponding envelope signal z[n] as well as the threshold value
thv, respectively. Figure 3.7(d) shows an FN detection at time 1072 s because of the
low amplitude of fusion of ventricular and normal beat after QRS signal to noise ratio
enhancement with CWT.

Figure 3.8(a) shows the ECG data of record 108 from time 1710 s to time 1720
s., which are contaminated by the respiratory related rhythms and muscle artifacts. The
high degree of noise cannot be completely removed as shown in Figure 3.8(b). Figure
3.8(c) shows the envelope signal z[n] with a solid line and the threshold level thv with a
dotted line. We can see that the amplitudes of noises within the envelop signals at time
1712 and 1713 s are higher than those of ECG signals. As a result, two FN beats and
two FP beats are detected and shown in Figure 3.8(d).

Figure 3.9(a) shows the ECG data of record 105 from time 1321 s to time 1331
s. ECG data in this record are contaminated with high-grade noise. Although the QRS
complex can be emphasized by the CWT as shown in Figure 3.9(b), the high-grade noise
is also amplified. Figure 3.9(c) shows the envelope signal z[n] and the threshold level
thv. The signal after filtering from high-grade noise causes 2 FP detections and an FN

detections as shown in Figure 3.9(d).
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Figure 3.7: Results of the proposed algorithm applied on the ECG signal record 200.
(a) The ECG signal before noise removal z[n]. “F” stands for a fusion of ventricular and
normal beat. (b) The ECG signal after noise removal y[n]. (c) The envelope signal z[n]
shown in a solid line and the threshold level thv shown in a dotted line. (d) The ECG
signal overlaid by the markers from the proposed algorithm (square) and the expert
(asterisk).
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Figure 3.8: Results of the proposed algorithm applied on the ECG signal record 108. (a)
The ECG signal before noise removal x[n]. (b) The ECG signal after noise removal y[n].
(c) The envelope signal z[n] shown in a solid line and the threshold level thv shown in a
dotted line. (d) The ECG signal overlaid by the markers from the proposed algorithm
(square) and the expert (asterisk). “+” stands for an FP detection.
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Figure 3.9: Results of the proposed algorithm applied on the ECG signal record 105. (a)
The ECG signal before noise removal x[n]. (b) The ECG signal after noise removal y[n].
(c) The envelope signal z[n] shown in a solid line and the threshold level thv shown in a
dotted line. (d) The ECG signal overlaid by the markers from the proposed algorithm
(square) and the expert (asterisk).
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3.4.3 Performance Evaluation and Comparison

Table 3.1 shows performance evaluation of the proposed algorithm applied on all 48
records of ECG data when the scale of wavelet function and the length of the maximal
filter are fixed at 3 and 195 ms, respectively. The average DER value is 0.27%. The
values of total TP, FN, and FP beats are 109293 beats, 198 beats, 111 beats, respectively.
The average values of SEN and PPR are 99.83% and 99.90%, respectively. While the
maximum DER value is 2.15% from the record 203, the minimum DER value is 0% from
20 records, i.e. record 100, 102, 103, 107, 109, 112, 113, 115, 117, 118, 122-124, 212,
219, 220, 221, 230, 231, and 234.

Table 3.2 shows the performance comparison of the proposed algorithm with
that from other 7 state-of-the-art papers. The order of each method is sorted from
the minimal average DER value to the maximal average DER value. The minimal and
maximal average DER values are 0.17% [20] and 0.54% [27], respectively. The average
DER value from the proposed algorithm based on the combination of Mexican hat
wavelet function at scale 3 and the maximal filter at length 195 ms is 0.27%. This result
shows that the Mexican hat wavelet function at scale 3 can significantly increase the
QRS signal to noise ratio and the maximal filter at length 195 ms can efficiently reduce
FP detections. As a result, only the use of a single fixed threshold without additional
post-processing techniques can yield low average DER value.

Table 3.3 shows comparison results of the DER values of ECG record 118, 221,
232, 121, 200, 108, and 105 from the proposed method with that from other 7 papers.
The minimum and maximum DER values for each record are shown using the boldface
and italics fonts, respectively. The DER values of ECG record 118 and 221 from the
proposed method are minimal at 0%. For other ECG records, the DER values from the

proposed method are in the range between minimum and maximum DER values.
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3.5 Discussion

This chapter proposes the QRS detection algorithm employing the efficient cascade of
two combination steps, i.e., the Mexican hat wavelet function on enhancing QRS signal
to noise ratio in preprocessing step and the maximal filter on reducing FP detections in
beat detection step. Results show that the proposed algorithm achieved in enhancing
QRS signal to noise ratio from a variety of beat types such as a right bundle branch
block beat, a premature ventricular contraction beat, an atrial premature beat, and a
fusion of ventricular and normal beat. The subsequent beat detection step based on
the maximal filter is capable of reducing FP detection into a same level among the top
previous publications. Using a single threshold without any additional post-processing
techniques, the proposed algorithm can achieve DER value of 0.27% validated with 48
records of MIT-BIH arrhythmia database.

In addition to a single scale wavelet function used in the QRS detection algo-
rithm as shown in this chapter, in next chapter we investigate the utilization of wavelet
functions at various scales in the preprocessing step of QRS detection algorithm to
improve QRS signal to ratio and QRS detection accuracy. Moreover, quantitative mea-
surement of efficiency of wavelet function types in enhancing QRS signal to noise ratio

is also studied.



Table 3.1: Performance evaluation of proposed algorithm.

Record Total TP FN FP SEN%) PPR(%) DER(%)

100 2273 2273 0 0 100.00 100.00 0.00
101 1865 1865 0 4 100.00 99.79 0.21
102 2187 2187 0 0 100.00 100.00 0.00
103 2084 2084 0 0 100.00 100.00 0.00
104 2228 2223 1 8 99.96 99.64 0.40
105 2572 2554 18 16 99.30 99.38 1.32
106 2027 2025 2 4 99.90 99.80 0.30
107 2136 2136 0 0 100.00 100.00 0.00
108 1763 1748 15 12 99.15 99.32 1.53
109 2532 2532 0 0 100.00 100.00 0.00
111 2124 2123 1 0 99.95 100.00 0.05
112 2539 2539 0 0 100.00 100.00 0.00
113 1794 1794 0 0 100.00 100.00 0.00
114 1879 1876 3 4 99.84 99.79 0.37
115 1953 1953 0 0 100.00 100.00 0.00
116 2412 2392 20 2 99.17 99.92 0.91
117 1535 1535 0 0 100.00 100.00 0.00
118 2278 2278 0 0 100.00 100.00 0.00
119 1987 1987 0 1 100.00 99.95 0.05
121 1863 1862 1 1 99.95 99.95 0.11
122 2476 2476 0 0 100.00 100.00 0.00
123 1518 1518 0 0 100.00 100.00 0.00
124 1619 1619 0 0 100.00 100.00 0.00
200 2601 2598 3 0 99.88 100.00 0.12
201 1963 1953 10 3 99.49 99.85 0.66
202 2136 2135 1 1 99.95 99.95 0.09
203 2980 2928 52 12 98.26 99.59 2.15
205 2656 2651 5 0 99.81 100.00 0.19
207 1860 1850 10 17 99.46 99.09 1.45
208 2955 2939 16 9 99.46 99.69 0.85
209 3005 3005 0 1 100.00 99.97 0.03
210 2650 2644 6 4 99.77 99.85 0.38
212 2748 2748 0 0 100.00 100.00 0.00
213 3251 3248 3 2 99.91 99.94 0.15
214 2262 2257 5 0 99.78 100.00 0.22
215 3363 3359 4 0 99.88 100.00 0.12
217 2208 2205 3 1 99.86 99.95 0.18
219 2154 2154 0 0 100.00 100.00 0.00
220 2047 2047 0 0 100.00 100.00 0.00
221 2427 2427 0 0 100.00 100.00 0.00
222 2483 2477 6 1 99.76 99.96 0.28
223 2605 2604 1 0 99.96 100.00 0.04
228 2053 2044 9 7 99.56 99.66 0.78
230 2256 2256 0 0 100.00 100.00 0.00
231 1571 1571 0 0 100.00 100.00 0.00
232 1780 1780 0 1 100.00 99.94 0.06
233 3079 3076 3 0 99.90 100.00 0.10
234 2753 2753 0 0 100.00 100.00 0.00
Total 109491 109293 198 111 99.83 99.90 0.27
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Table 3.2: Performance comparison of the proposed algorithm with that from other 7

papers.

Method of noise removal TP FN FP SEN(%) PPR(%) DER(%)
Linear filtering [20] 109401 93 91 99.92 99.92 0.17
S-Transform [36] 108323 171 97  99.84 99.91 0.25
This work 109293 198 111 99.83 99.90 0.27
Artificial neural network [35] 109273 210 109 99.82 99.91 0.28
Wavelet transform [30] 109354 140 232 99.87 99.79 0.34
Matematical morphology [32] 109297 213 204 99.80 99.81 0.38
Wavelet transform [31] 115945 192 308 99.81 99.70 0.49
Wavelet transform [27] 109118 376 218 99.66 99.80 0.54

Table 3.3: Comparisons of the DER values in percent of ECG record 118, 221, 232, 121,
200, 108, and 105 from the proposed method with that from other 7 papers.

Method of noise removal 118 221 232 121 200 108 105

This work 0.00 0.00 0.06 0.11 0.12 1.53 1.32
Wavelet transform [30] 0.08 008 0.11 0.10 030 840 0.81
Linear filtering [20] 0.04 0.00 0.06 0.11 0.15 0.57 1.25
S-Transform [36] 0.22 0.16 0.06 0.16 023 244 1.24
Artificial neural network [35] 0.00 033 0.62 016 031 0.51 0.23
Wavelet transform [27] 0.22 0.16 0.06 0.16 1.00 4.71 2.02
Wavelet transform [31] 0.04 004 011 032 019 1240 2.41
Mathematical morphology [32] 0.22 0.49 0.09 0.70 0.50 0.68 1.01




Chapter 4

QRS Signal to Noise Ratio and
Wavelet Functions

4.1 Introduction

The algorithm of R peak detection in the QRS complex is composed of two main steps,
i,e. ECG pre-processing and ECG beat detection. The objective of the ECG pre-
processing step is to remove a variety of noises in the ECG signal, such as the muscle
noise, the power line noise, and the baseline drift noise. Examples of the methods used
for noise removal in the ECG signal include the linear filtering technique [9], the wavelet
transform technique [28], and mathematical morphology technique [33]. In ECG beat
detection step, the envelope signal is obtained from the ECG signal after noise removal
and the threshold is defined to determine the time period where the QRS complex
locates. The R peak can be detected from the time position where the amplitude of the
ECG signal after noise removal is maximum.

Generally, more complicated threshold techniques such as multiple levels fixed
threshold and the single level adaptive threshold are used because the ECG signals after
noise removal from different beat types, such as normal beat and premature ventricular
contraction beat, have significant difference in their amplitudes due to their difference
in frequency components. All wavelet functions in previous publications were selected
based on their efficiency in removing noise. However, their effects on QRS signal to

noise ratio and the detection accuracy are not yet considered. Therefore, the proposed

o8
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comparison measurements of the wavelet function in CW'T are presented in section 4.2 of
this chapter to demonstrate both QRS signal to noise ratio enhancement and detection
accuracy so that the reduction in the computational complexity of the algorithm in the
R peak detection step can be obtained.

Moreover, the ECG pre-processing step is very important because if noises in the
ECG signal can be effectively removed in this step, the computational complexity of the
algorithm in the ECG beat detection step can be reduced. Therefore, we proposed the
noise removal algorithm based on the dual-band continuous wavelet transform (CWT)
in section 4.2 of this chapter to effectively remove noises in the ECG signal.

The rest of this chapter is organized as follows. While section 4.2 presents the
method and evaluation results of wavelet functions on QRS signal to noise ratio, section
4.3 describes possible method and results of enhancing QRS signal to noise ratio based

on dual-band CWT. Finally, discussion is given in section 4.4.

4.2 Effect of Wavelet Functions on QRS Signal to
Noise Ratio

4.2.1 QRS Detection Algorithm

Based on the block diagram shown in Figure 1.2, the QRS detection algorithm used for
evaluating wavelet functions consists of three steps: noise removal using CW'T, envelope

signal determination, and R peak detection. Details of each step are as follows.

1. Determine the signal after noise removal y[n] from the ECG signal z[n] by pro-

cessing based on the CWT, which can be expressed as
yln] = T3, (4.1)

There are various types of the wavelet functions that are successfully used for re-
moving noises in ECG signals from previous publications including Biorl.3 [21],

Db10 [27], and Mexican hat wavelet [41] functions. This section proposes to study
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and quantitatively compare the performance of these three wavelet functions on
their capability in enhancing QRS signal to noise ratio and demonstrate its poten-

tial application in QRS detection algorithm of ECG data.

2. Determine the envelope signal z[n] from y[n| using the maximum filter with the

length L = 120 ms as given by

2ln) = ke[g%)il,n] ylk] (42)

3. Detect the R peak r[n| in QRS complex using the following steps.

(a) Define a threshold value thu.

(b) Find the time duration where z[n] is greater than thv and determine the

beginning time ¢; and the ending time t,.

(c) Determine the R peak location tg from time between [t; t5] in y[n] that gives

the maximum amplitude.

Figure 4.1 shows an example of signal characteristics determined from the QRS
detection algorithm. Figure 4.1(b) shows an example of two beats of the ECG signal
x[n]. While the beat on the left hand side is a normal ECG beat, the beat on the right
hand side is a premature ventricular contraction beat. The noises in the ECG signal
x[n| are removed based on the CWT to obtain y[n]. Figure 4.1(a) shows an example of
the ECG signal after noise removal y[n] as described in the first step of the algorithm
using a thin line. While the normal beat has a single peak after noise removal, the
premature ventricular contraction beat has double peaks. Subsequently, the envelope
signal z[n] is calculated from y[n] as described in the second step of the algorithm and is
shown in Figure 4.1(a) using a dotted line. Then, the threshold value thv is defined as
shown in Figure 4.1(a) using a thick line. Finally, the R peak in the QRS complex r[n]
is determined from the time where the maximum peak occurs within the time period

defined by z[n] and the threshold value as described in the third step of the algorithm.
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Figure 4.1: Signal characteristics in QRS detection algorithm. (a) Thin line: ECG signal
after noise removal y[n]. Dotted line: Envelope signal z[n|. Thick line: Threshold value
line. (b) ECG signal overlaid by the markers from the algorithm (square) and the expert
(asterisk). While the signal on the left hand side is a normal ECG beat, the signal on
the right hand side is a premature ventricular contraction beat.
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Figure 4.1(a) shows an example of the beginning time ¢;, the ending time ¢, and the time
tr where the maximum peak locates. The z,,,, and z,,;, are maximum beat amplitude
and minimum beat amplitude, respectively. In addition, the ECG signal overlaid by
the markers from the proposed algorithm (square) and the expert (asterisk) is shown in
Figure 4.1(b). The time ¢, and ¢, are the position of R peak given by the algorithm and

the position of R peak given by the expert, respectively.

4.2.2 Performance Measurement

Three parameters were used in evaluating the performance of the wavelet function in
the CWT consisting of the ratio of the maximum beat amplitude z,,,, to the minimum
beat amplitude z,,;, (RMM), the sum of absolute of time error (MATE), and the figure

of merit (FOM). Their details are as follows.

e RMM: The RMM can be expressed as

RMM = a2 (4.3)

Zmin

If the value of RMM is closed to 1, the amplitude of all beats in the envelope signal
z[n] is almost equal. In other words, the QRS signal to noise ratio is maximized.
As a result, the single fixed threshold technique can be used instead of the adaptive
threshold technique. This is important because it can reduce the computational

complexity of QRS detection algorithm.
e MATE: The MATE in the unit of millisecond (ms) is given by
1 N
MATE = — > |t,(k) — te(k)], (4.4)
N

where N is the total number of ECG beats under considerations, ¢,(k) is the time
where the R peak locates determined from the algorithm and t.(k) is the time
where the R peak locates determined from the expert. The best value of MATE
is 0, which means that all R peaks in the QRS complex are correctly detected by

the algorithm.



63
e FOM: The FOM can be defined by

1
~ RMM x MATE"

FOM (4.5)

FOM is determined using the combination of RMM and MATE. The higher FOM,
the more appropriate for the wavelet function in removing noises from the ECG

signal and equalizing the amplitude of ECG beats after processing with the CW'T.

4.2.3 Results

Comparisons of Wavelet Functions

We measure the performance of wavelet functions Biorl.3, Db10, and Mexican hat with
the ECG data record 207 containing the mixture of normal beats and premature ven-
tricular contraction beats from MIT-BIH arrhythmia database [38]. The QRS complex
is detected using the ECG signal from channel 1 or lead II only. In other words, the
ECG signal from channel 1 was represented by z[n].

Figure 4.2 shows the results of RMM as a function of the scale from 1 to 8
applied on the ECG signal record 207 from time 12.6 s to 22.6 s. In other words, the
CWT processing method is T, when the scale a is varied from 1 to 8. Results from
the Biorl.3, Db10, and Mexican hat wavelet functions are shown using square, circle,
and asterisk markers, respectively. The RMM values from all wavelet functions tend to
decrease when the scales increase from 1 to 8. The RMM values from the Db10 wavelet
function are greater than those from other wavelet functions at same scale (Except the
scale 1). The maximum RMM is 11.69 at the scale 4 of the Db10 wavelet function and
the minimum RMM is 1.51 at the scale 8 of the Mexican hat wavelet function.

Figure 4.3 shows the results of MATE as a function of the scale from 1 to 8
applied on the ECG signal record 207 from time 12.6 s to 22.6 s. Results from the
Biorl.3, Db10, and Mexican hat wavelet functions are shown using square, circle, and
asterisk markers, respectively. The MATE values from all wavelet functions tend to

increase when the scales increase from 1 to 8. The MATE values from the Db10 wavelet
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Figure 4.2: Comparisons of the RMM value as a function of scale from three wavelet
functions. Results from the Biorl.3, Db10, and Mexican hat wavelet functions are shown
using square, circle, and asterisk markers, respectively.
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Figure 4.3: Comparisons of the MATE value as a function of scale from three wavelet
functions. Results from the Biorl.3, Db10, and Mexican hat wavelet functions are shown
using square, circle, and asterisk markers, respectively.
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Figure 4.4: Comparisons of the FOM value as a function of scale from three wavelet
functions. Results from the Biorl.3, Db10, and Mexican hat wavelet functions are shown
using square, circle, and asterisk markers, respectively.

function are greater than those from other wavelet functions at same scale (Except the
scale 2). The maximum MATE is 56.4 ms at the scale 6 of the Db10 wavelet function
and the minimum MATE is 1.7 ms at the scale 4 of the Mexican hat wavelet function.

Figure 4.4 shows the results of FOM as a function of the scale from 1 to 8
applied on the ECG signal record 207 from time 12.6 s to 22.6 s. Results from the
Bior1l.3, Db10, and Mexican hat wavelet functions are shown using square, circle, and
asterisk markers, respectively. The FOM values from first five scales of the Mexican hat
wavelet function are greater than those from other wavelet functions at the same scale.
However, at the scale 6, 7 and 8, the FOM values from the Biorl.3 wavelet function are

greater than those from other wavelet functions.
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Signal Characteristics

To gain more insight of the performance measurement, signal characteristics from the
scale 8 of the Mexican hat wavelet function, the scale 4 of the Mexican hat wavelet
function, and the scale 4 of the Db10 wavelet function are shown and discussed. While
the signal characteristics from the scale 8 and 4 of the Mexican hat wavelet function are
the representation for the best RMM and MATE, respectively, the signal characteristics
from the scale 4 of the Db10 wavelet function are the representation of the worst FOM.
Figure 4.5 shows signal characteristics of the proposed algorithm from the scale
8 of the Mexican hat wavelet function applied on the ECG signal record 207. Figure
4.5(a) shows the ECG signal before noise removal x[n] from time 12.6 s to 22.6 s. The
ECG signal z[n] consists of 5 normal beats and 5 premature ventricular contraction
beats. Figure 4.5(b) shows the ECG signal after noise removal y[n]. While the normal
beat has a single peak amplitude, the premature ventricular contraction beat comprises
double peak amplitudes where the left peak is greater than the right peak. Figure 4.5(c)
shows the envelope signal z[n|. While the fifth beat has maximum amplitude, the forth
beat has minimum amplitude. As a result, the best RMM value of 1.51 is determined.
Figure 4.5(d) shows the ECG signal overlaid by the markers from the proposed algorithm
(square) and the expert (asterisk). While all R peaks in QRS complex of normal beats
are correctly detected, all R peaks in QRS complex of premature ventricular contraction
beats are slightly incorrectly detected because the algorithm detects the left peak, which
is greater than the right peak in all premature ventricular contraction beats. This leads
to the MATE value of 34.3 ms. The corresponding FOM value in this case is 0.02.
Figure 4.6 shows signal characteristics resulting from the scale 4 of the Mexican
hat wavelet function applied on the ECG signal record 207. Figure 4.6(b) shows the
ECG signal after noise removal y[n]. Similar to the case in Figure 4.5, while the normal
beat has single peak amplitude, the premature ventricular contraction beat comprises

double peak amplitudes. However, the position of the larger peak amplitude in each
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Figure 4.5: Signal characteristics from the scale 8 of the Mexican hat wavelet function
applied on the ECG signal record 207. (a) The ECG signal before noise removal z[n]. (b)
The ECG signal after noise removal y[n]. (c) The envelope signal z[n]. (d) The ECG
signal overlaid by the markers from the proposed algorithm (square) and the expert
(asterisk).
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Figure 4.6: Signal characteristics from the scale 4 of the Mexican hat wavelet function
applied on the ECG signal record 207. (a) The ECG signal before noise removal z[n]. (b)
The ECG signal after noise removal y[n]. (c) The envelope signal z[n]. (d) The ECG
signal overlaid by the markers from the proposed algorithm (square) and the expert
(asterisk).
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premature ventricular contraction beat is on the right hand side. Figure 4.6(c) shows
that the maximum beat amplitude and the minimum beat amplitude locate at the forth
beat and the fifth beat, respectively. Consequently, the RMM value of 3.28 is obtained.
Figure 4.6(d) shows the ECG signal overlaid by the markers from the proposed algorithm
(square) and the expert (asterisk). All R peaks in QRS complex of both normal beats and
premature ventricular contraction beats are almost correctly detected. All R peaks in
QRS complex of premature ventricular contraction beats are correctly detected because
the proposed algorithm detects the right peak, which is greater than the left peak in all
premature ventricular contraction beats. As a result, the best value of MATE 1.7 ms is
achieved. In addition, the corresponding value of FOM in this case is the best at 0.18.

Figure 4.7 shows signal characteristics resulting from the scale 4 of the Db10
wavelet function applied on the ECG signal record 207. Figure 4.7(b) shows the ECG
signal after noise removal y[n] consisting of multiple peaks, which are different from
double peaks in the case of Mexican hat wavelet function. Figure 4.7(c) show the
envelope signal z[n]. The position of maximum z[n] and the position of minimum z[n]
are at the fifth beat and the eighth beat, respectively. This results in the worst RMM
value of 11.69. Figure 4.7(d) shows the ECG signal overlaid by the markers from the
proposed algorithm (square) and the expert (asterisk). All R peaks in QRS complex of
both normal beats and premature ventricular contraction beats are incorrectly detected.
Therefore, the high value of MATE at 41.9 ms is obtained. Moreover, the corresponding

value of FOM in this case is the worst at 0.002.
Performance Comparisons

To demonstrate the potential of selected wavelet functions, we apply the QRS detection
algorithm to the whole ECG data of record 207. Table 4.1 shows the performance
comparisons of the algorithm with those from other 3 papers ([26,27,42]), which use
the wavelet transform, single level adaptive thresholding techniques, and additional post

processing methods in QRS detection algorithms such as irregular RR interval checkup
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Figure 4.7: Signal characteristics from the scale 4 of the Db10 wavelet function applied
on the ECG signal record 207. (a) The ECG signal before noise removal x[n]. (b) The
ECG signal after noise removal y[n|. (¢) The envelope signal z[n]. (d) The ECG signal
overlaid by the markers from the proposed algorithm (square) and the expert (asterisk).



72

Table 4.1: Performance comparisons of the algorithm from scale 4 and 8 of the Mexican
hat wavelet functions with those from other 3 publications.

Method Total TP FN FP SEN(%) PPR(%) DER(%)
Scale 4 1860 1852 8 12 9957  99.36  1.08
Scale 8 1860 1843 17 7  99.09  99.62  1.29
Choi [27] 1860 1848 12 10 99.35  99.46  1.18
Chen [26] 1863 1860 3 24 99.84 9872 145

Zidelmala [42] 1872 1860 12 8 99.36 99.57 1.08

strategy [27]. Note that each R peak from the proposed algorithm is considered as a
correct detection when it locates within £50 ms from the position of the R peak given
by the expert. The DER value from the scale 4 of the Mexican hat wavelet function
(1.08%) is smaller than that from the scale 8 of the Mexican hat wavelet function
(1.29%). Results show that the DER values from both wavelet functions are in the
same range as those from other publications. However, the proposed algorithm uses

only a single fixed threshold without any additional post-processing techniques.

4.3 QRS Signal to Noise Ratio Enhancement and
Dual-Band CWT

4.3.1 Proposed Algorithm

Based on the block diagram shown in Figure 1.2, the ECG signal z[n| is determined
from the ECG signal z(t) at a sampling rate of 200 Hz. Details of the QRS detection

algorithm used for enhancing signal to noise ratio with dual-band CW'T are as follows.

1. Determine the signal after noise removal y[n| from the ECG signal x[n] by pro-

cessing based on the CWT, which can be expressed as

y[n] = Ta21,b + T,

a2,b*

(4.6)
2. Determine the envelope signal z[n| from y[n] using the maximum filter with the

length L = 120 ms as given by

)= g, oA ()
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Figure 4.8: ECG beat detection algorithm. (a) Thin line: ECG signal after noise removal
y[n]. Dotted line: Envelope signal z[n]. Thick line: Threshold value line. (b) ECG signal
overlaid by the markers from the proposed algorithm (square) and the expert (asterisk).
While the signal in the left hand side is a normal ECG beat, the signal in the right hand
side is a premature ventricular contraction beat.
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3. Detect the R peak r[n] in QRS complex using the following steps.

(a) Define a threshold value tho.

(b) Find the time duration where z[n] is greater than thv and determine the

beginning time ¢; and the ending time %s.

(c) Determine the R peak location tx from time between [t; 5] in y[n] that gives

the maximum amplitude.

Figure 4.8(b) shows an example of two beats of the ECG signal xz[n]. While
the beat in the left hand side is a normal ECG beat, the beat in the right hand side is
a premature ventricular contraction beat. Then, the noises in the ECG signal z[n] are
removed based on the CWT to obtain y[n]. Three types of the CWT processing method

are explored and compared as follows:
o A: Tg% p T; b
e B: Téb + T62’ b
o C: Tg% p T+ T627 b

While case A and case B are the representative of a single-band CW'T processing
method, case C is the representative of a dual-band CWT processing method. Figure
4.8(a) shows an example of the ECG signal after noise removal y[n] with the CWT
method of case C using a thin line. While the normal beat has a single peak after noise
removal, the premature ventricular contraction beat has double peaks. Subsequently,
the envelope signal z[n| is calculated from y[n| as shown in Figure 4.8(a) using a dotted
line. Then, the threshold value is defined as shown in Figure 4.8(a) using a thick line.
Finally, the R peak in the QRS complex r[n] is determined from the time where the
maximum peak occurs within the time period defined by z[n| and the threshold value.
Figure 4.8(a) shows an example the time period ¢, where the maximum peak locates. In
addition, the ECG signal overlaid by the markers from the proposed algorithm (square)

and the expert (asterisk) is shown in Figure 4.8(b).
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4.3.2 Results

Scale Adjustment

Figure 4.9 shows results of the proposed algorithm case A applied on the ECG signal
record 207. Figure 4.9(a) shows the ECG signal before noise removal z[n] from time 17
s to 27 s. The ECG signal z[n] consists of 5 normal beats and 5 premature ventricular
contraction beats. Figure 4.9(b) shows the ECG signal after noise removal y[n]. While
the normal beat has a single peak amplitude, the premature ventricular contraction
beat comprises double peak amplitudes. Figure 4.9(c) shows the envelope signal z[n]
using a solid line and the threshold level thv using a dotted line. While the first beat
has maximum amplitude, the last beat has minimum amplitude. Figure 4.9(d) shows
the ECG signal overlaid by the markers from the proposed algorithm (square) and the
expert (asterisk). In this case, all R peaks in QRS complex are correctly detected.

Figure 4.10 shows results of the proposed algorithm case B applied on the ECG
signal record 207. Figure 4.10(b) shows the ECG signal after noise removal y[n]. Similar
to case A, the normal beat has a single peak amplitude and the premature ventricular
contraction beat comprises double peak amplitudes. However, the position of maximum
peak in each premature ventricular contraction beat is different from that in case A
except the second beat. Figure 4.10(c) shows that the maximum beat and the minimum
beat locate at the first beat and the second beat, respectively. Figure 4.10(d) shows
that there are four wrong beat detections.

Figure 4.11 shows results of the proposed algorithm case C applied on the ECG
signal record 207. The ECG signal after noise removal y[n| and the envelope signal z[n]
shown in Figure 4.11(b) and (c) are slightly different from those in case A and case B in
terms of both the position of the maximum peak in y[n] and the maximum beat and the
minimum beat in z[n|. In addition, there is a single false detection in the last beat shown
in Figure 4.11(d). As more quantitative details on performance comparisons, Table 4.2

shows the values of Z,4z, Zmin, RMM, and MATE from all cases. Case A gives the best
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Figure 4.9: Results of the proposed algorithm case A applied on the ECG signal record
207. (a) The ECG signal before noise removal z[n]. (b) The ECG signal after noise
removal y[n]. (¢) The envelope signal z[n] shown in a solid line and the threshold level
thv shown in a dotted line. (d) The ECG signal overlaid by the markers from the
proposed algorithm (square) and the expert (asterisk).
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Figure 4.10: Results of the proposed algorithm case B applied on the ECG signal record
207. (a) The ECG signal before noise removal x[n]. (b) The ECG signal after noise
removal y[n]. (c) The envelope signal z[n] shown in a solid line and the threshold level
thv shown in a dotted line. (d) The ECG signal overlaid by the markers from the
proposed algorithm (square) and the expert (asterisk).
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Figure 4.11: Results of the proposed algorithm case C applied on the ECG signal record
207. (a) The ECG signal before noise removal z[n]. (b) The ECG signal after noise
removal y[n]. (¢) The envelope signal z[n] shown in a solid line and the threshold level
thv shown in a dotted line. (d) The ECG signal overlaid by the markers from the
proposed algorithm (square) and the expert (asterisk).
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Table 4.2: Performance comparison of the proposed algorithm.
Method  zmaz Zmin RMM MATE
A 3.32 091 3.65 0.25
B 6.05 2.25 2.69 2.39
C 469 154 3.05 0.69

MATE among all cases at an expense of the worst RMM. In contrast, case B gives the
best RMM among all cases at an expense of the worst MATE. However, with the use of
the dual-band CWT processing technique (case C), the improvement in terms of both
the RMM and the MATE is possible as shown in the third row of Table 4.2. In other
words, while the RMM of case C decreases from 3.65 to 3.05 compared to case A, the
MATE of case C decreases from 2.39 to 0.69 compared to case B.

Figure 4.12(a) shows the results of RMM as a function of the second scale from
1 to 8 applied on the ECG signal record 207. In other words, the CWT processing
method is Tg% b —i—Tf’b when the first scale is fixed at 3 and the second scale is varied from
1 to 8. The maximum RMM is 3.91 at the second scale 4 and the minimum RMM is
2.16 at the second scale 8. Figure 4.12(b) shows the results of MATE as a function of
the second scale from 1 to 8. The maximum MATE is 2.69 at the second scale 8 and
the minimum MATE is 0.25 at the second scale 3. These results show that the second

scale 6 is the optimized selection because it can achieve both RMM and MATE.
Wavelet Function

In addition to the scale and scale combination, the type of wavelet function is another
important parameter affecting the SNR. Figure 4.13 shows the results from the Haar
wavelet function. The RMM and MATE are 2.38 and 18.1, respectively. Figure 4.14
shows the results from the 2.2 reverse biorthogonal wavelet function with the RMM
and MATE of 3.72 and 0.25, respectively. These results confirm the importance of the

wavelet function selection.
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Figure 4.14: Results of the proposed algorithm with the 2.2 reverse biorthogonal wavelet
function.
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4.4 Discussion

We compare the capability of wavelet functions used for noise removal in QRS detection
algorithm as details shown in section 4.2 of this chapter. The effects of the wavelet
function on the performance in terms of QRS signal to noise ratio enhancement and
detection accuracy are carefully studied and evaluated using three measurement param-
eters, i.e., RMM, MATE, and FOM. Three wavelet functions from previous publications
are explored consisting of the Biorl.3, Db10, and Mexican hat wavelets functions. Re-
sults show that the Mexican hat wavelet function is the most appropriate for the QRS
detection algorithm because it can give good results in terms of both QRS signal to
noise ratio enhancement (scale 8 of the Mexican hat wavelet function) and detection
accuracy (scale 4 of the Mexican hat wavelet function), which opens the opportunity for
the use of a single level fixed threshold for all records of ECG data.

Moreover, we present the improvement of signal to noise ratio in ECG signals
based on dual-band CWT as details shown in section 4.3 of this chapter. The ECG signal
after noise removal using the dual-band CWT at dilation parameter combination of 3
and 6 shows the feasibility of the method in maximizing the signal to noise ratio without
the loss of accuracy compared to the single-band CW'T at the dilation parameter of 3
and the dilation parameter of 6.

In this chapter we show the opportunity in improving the QRS signal to noise
ratio based on the separable band CWT and the dual-band CW'T, which can be ob-
tained for increasing the QRS detection accuracy. In next chapter, the conclusions and

recommendations for future work of this research project will be presented.



Chapter 5

Conclusions and Recommendations
for Future Work

5.1 Conclusions

We develop a QRS detection algorithm in the electrocardiogram (ECG) signals, which
provides very important information on the state of the heart used for medical monitor-
ing and diagnosis, based on advanced signal processing methods in this research project.
Two advanced signal processing methods used in this research project are the quadratic
filter (QF) and the wavelet transform.

The QRS detection algorithm based on the QF presented in chapter 2 is capable
of enhancing QRS signal to noise ratio from ECG signals in preprocessing step. Results
show that the QF achieves in improving QRS signal to noise ratio for some challenging
situations such as low amplitude QRS complex corrupted by baseline drift and a variety
of abnormal morphologies such as a fusion of ventricular and normal beat, an atrial
premature beat, an aberrated atrial premature beat, a premature ventricular contraction
beat, a fusion of paced and normal beat, and a paced beat. In beat detection step, the
QRS complex is simply obtained based on an envelope signal and a single fixed threshold
without additional post-processing techniques. The average DER value validated with
48 records of ECG signals from the MIT-BIH arrhythmia database is at 0.38%.

To improve QRS detection accuracy, the QRS detection algorithm employing

the efficient cascade of two combination steps, i.e., the Mexican hat wavelet function
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on enhancing QRS signal to noise ratio in preprocessing step and the maximal filter on
reducing FP detections in beat detection step was developed in chapter 3. Results show
that the proposed algorithm is successful in enhancing QRS signal to noise ratio from a
variety of abnormal beat types such as a right bundle branch block beat, a premature
ventricular contraction beat, an atrial premature beat, and a fusion of ventricular and
normal beat. The subsequent beat detection step based on the maximal filter is capable
of reducing FP detections into a same level among the top previous publications. Using
a single threshold without any additional post-processing techniques, the proposed al-
gorithm can achieve DER value of 0.27% validated with 48 records of ECG signals from
MIT-BIH arrhythmia database.

To gain more improvement in detection accuracy, we propose the QRS detection
algorithms based on the separable band continuous wavelet transform (CWT) and the
dual-band CWT in preprocessing step described in chapter 4. Results show that both
proposed methods are feasible. In other words, for the separable band CWT, while
the scale 8 of the Mexican hat wavelet function gives the best QRS signal to noise
ratio enhancement, the scale 4 of the Mexican hat wavelet function provides the best
detection accuracy. This opens an opportunity in using one scale of wavelet function in
preprocessing step and using another scale of wavelet function in beat detection step.
For the dual-band CW'T, the enhancement of QRS signal to noise ratio is obtained from

the combination of two wavelet functions with dilation parameters of 3 and 6.

5.2 Recommendations for Future Study

There are several ways for improving the accuracy of QRS algorithm detection. We
categorize the methods of improvement into two directions, i.e. the ways of improvement
in preprocessing step and the ways of improvement in beat detection step. Details are

as follows.



86
Improvement in Preprocessing Step

To achieve a better detection accuracy of the QRS detection algorithm, we may use
more sophisticated signal processing techniques in enhancing QRS signal to noise ratio in
preprocessing step. Examples include the separable band CWT and the dual-band CWT
presented in chapter 4. The results from chapter 4 suggest combine wavelet functions
from multiple scales instead of using a single scale wavelet function as published in
previous literature. In other words, the combination of multiple scale wavelet functions
may simultaneously allow for both the enhancement QRS signal to noise ratio and the
increase in detection accuracy. However, more studies on other combinations of dilation
parameters should be performed and performance evaluation to all records of ECG data
in MIT-BIH arrhythmia database should be investigated. In addition, others wavelet

functions should be carefully considered.

Improvement in Beat Detection Step

To achieve a better detection accuracy of the QRS detection algorithm for abrupt base-
line shift, high-grade noise, and low amplitude QRS complex contaminated by muscle
noise, more computations in beat detection step may be added. The employment of
more sophisticated thresholding techniques such as the multiple levels of fixed thresh-
old, the single level of adaptive threshold, and the multiple levels of adaptive threshold
may be used for decreasing FN detections. Moreover, FP detections may be reduced

using the algorithm based on the refractory period of 200 ms.
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QRS detection in the electrocardiogram signal is very crucial as a preliminary step for obtaining QRS
complex, beat segmentation, and beat-to-beat intervals. Two main problems in QRS detection are a vari-
ety of noise types and various types of abnormal morphologies. We propose a QRS detection algorithm
consisting of the quadratic filter for enhancing QRS signal to noise ratio. Results show that significant
improvement in QRS signal to noise ratio can be obtained from challenging situations including low
amplitude QRS complexes corrupted by baseline drift and abnormal morphologies such as an aberrated
atrial premature beat, a premature ventricular contraction beat, a fusion of ventricular and normal beat,
and a fusion of paced and normal beat. The enhancements in QRS signal to noise ratio allow us to use a
single fixed threshold without any additional post-processing techniques in beat detection step. The
performance of proposed algorithm was evaluated with the electrocardiogram data from MIT-BIH
arrhythmia database. Results show that the quadratic filter is capable of enhancing QRS signal to noise
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very well leading to the average detection error rate of 0.38% from 48 records.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The electrocardiogram (ECG) provides very important informa-
tion on the state of the heart, which can be used for medical
monitoring and diagnosis. Each beat of ECG consists of P wave,
QRS complex, and T wave. An automatic QRS detection algorithm
is very crucial as a preliminary step for obtaining QRS complex, beat
segmentation, and beat-to-beat intervals. Further processing of
these preliminary steps can be employed for a variety of medical
applications. QRS complex can be used for monitoring the electrical
activity of the heart during the ventricular contraction. After beat
segmentation, each individual beat can be further categorized into
different types of arrhythmia, such as normal beats, premature
ventricular contraction beats, atrial premature beats, and other beats
(Dutta, Chatterjee, & Munshi, 2010; Koriirek & Dogan, 2010; Kutlu &
Kuntalp, 2012). Series of beat-to-beat intervals is a basis used in
analyzing heart rate variability. Heart rate variability analysis is
an inexpensive and noninvasive tool for a variety of medical diag-
noses such as obstructive sleep apnea syndrome (Babaeizadeh,
White, Pittman, & Zhou, 2010; Yildiz, Akin, & Poyraz, 2011) and
congestive heart failure (Yu & Lee, 20124, 2012b). In addition, the
automatic QRS detection algorithm can be applied for discovering
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an abnormal ECG activity in a mobile ECG monitoring and alert
system for elderly patients (Shih, Chiang, Lin, & Lin, 2010).

To accurately detect the QRS complex, two steps of processing
algorithms are needed, i.e., ECG preprocessing and ECG beat detec-
tion. The aim of ECG preprocessing is to remove noises in ECG sig-
nals. The main noises in ECG signal can be divided into two types:
low frequency noises and high frequency noises. While the low
frequency noises are the T-wave noise and the baseline wander
noise, the high frequency noises are the muscle noise and the
power line noise. Based on previous publications, the noise
removal algorithms in preprocessing step can be classified into 2
main categories: linear filtering and wavelet transform.

The preprocessing operation in many previous publications
employs linear filtering techniques for noise removal in ECG sig-
nals (Adnane, Jiang, & Choi, 2009; Arzeno, Deng, & Poon, 2008;
Benitez, Gaydecki, Zaidi, & Fitzpatrick, 2001; Hamilton &
Tompkins, 1986; Kohler, Hennig, & Orglmeister, 2003; Lee, Kim,
Lee, Lee, & Lee, 2002; Manikandan & Soman, 2012; Pan &
Tompkins, 1985; Poli, Cagnoni, & Valli, 1995; Slimane & Ali,
2010; Yeh & Wang, 2008; Zhu & Dong, 2013). Its main processing
is based on a bandpass filter with a cutoff frequency 5-36 Hz,
which is corresponding to the bandwidth of QRS interval in the
ECG signal. In addition, signals after filtering are further processed
with a variety of methods for calculating the envelope signal, for
example, moving average filter (Hamilton & Tompkins, 1986; Pan
& Tompkins, 1985; Slimane & Ali, 2010), differential equation
(Adnane et al., 2009; Arzeno et al., 2008; Benitez et al., 2001;
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Fig. 2. The contour plot at —6 dB showing parameters in the design of the QF: Passband width and center points.

Hamilton & Tompkins, 1986; Pan & Tompkins, 1985), squaring differential equation (Choi et al., 2010; Madeiro et al., 2012),
function (Adnane et al.,, 2009; Arzeno et al., 2008; Hamilton & moving average filter (Chen et al,, 2006; Chouakri et al., 2011),
Tompkins, 1986; Pan & Tompkins, 1985), genetic algorithm (Poli filter bank (Afonso et al., 1999), and zero crossing (Bahoura et al.,
et al,, 1995), Hilbert transform (Benitez et al., 2001), and zero 1997).
crossing (Kohler et al., 2003). In addition to linear filtering and wavelet transform, other noise
Preprocessing algorithms based on wavelet transform are popu- removal techniques include mathematical morphology (Zhang &
larly used for removing noises in ECG signals (Abibullaev & Seo, Bae, 2012; Zhang & Lian, 2009, 2011), artificial neural network
2011; Afonso, Tompkins, Nguyen, Michler, & Luo, 1999; Bahoura, (Arbateni & Bennia, 2014), and S-transform (Zidelmal, Amirou,
Hassani, & Hubin, 1997; Bouaziz, Boutana, & Benidir, 2014; Chen, Ould-Abdeslamb, Moukadem, & Dieterlen, 2014). Further process-
Chen, & Chan, 2006; Choi et al., 2010; Chouakri, Reguig, & ing techniques after mathematical morphology are differential
Ahmed, 2011; Karimipour & Homaeinezhad, 2014; Li, Zheng, & equation (Zhang & Lian, 2009) and wavelet transform (Zhang &
Tai, 1995; Madeiro, Cortez, Marques, Seisdedos, & Sobrinho, Lian, 2011).
2012; Zidelmala, Amiroua, Adnaneb, & Belouchranib, 2012). After After the noises in the ECG signal are removed in the prepro-
the output from wavelet transform is obtained, further processing cessing operation, the envelope signal is extracted, and the QRS
methods used for determining the envelope signal include complex is detected in the ECG beat detection process. In this step,
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Fig. 4. Schematic diagram of QRS detection algorithm.

(b)

Fig. 5. Noise removal in preprocessing operation. (a) ECG signal before noise removal x[n]. (b) ECG signal after noise removal y[n].

a threshold is a very important parameter. The threshold can be
classified into two types: fixed threshold and adaptive threshold.
The fixed threshold has an advantage of low computational com-
plexity at an expense of detection accuracy. There are two cate-
gories of fixed threshold, i.e., single level (Abibullaev & Seo,
2011; Zidelmala et al., 2012) and multiple levels (Afonso et al.,
1999; Chouakri et al., 2011; Yeh & Wang, 2008). To achieve better
detection accuracy, the adaptive threshold is used. Similar to the

fixed threshold, the adaptive threshold can be categorized into
single level (Benitez et al., 2001; Chen et al., 2006; Choi et al,,
2010; Kohler et al., 2003; Madeiro et al., 2012; Zhang & Bae,
2012; Zhang & Lian, 2009, 2011) and multiple levels (Adnane
et al., 2009; Hamilton & Tompkins, 1986; Lee et al., 2002; Pan &
Tompkins, 1985; Poli et al, 1995). In addition, some post-
processing algorithms are used to achieve better detection rate.
These post-processing algorithms include the checkup for irregular
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(b)

Fig. 6. ECG beat detection algorithm. (a) Thin line: ECG signal after noise removal y[n]. Dotted line: Envelope signal z[n]. Thick line: Threshold value line. (b) ECG signal
overlaid by the markers from the proposed algorithm (square) and the expert (asterisk). While the signal on the left hand side is a normal ECG beat, the signal on the right

hand side is a premature ventricular contraction beat.
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Fig. 7. Results of the proposed algorithm applied on the ECG signal record 121. (a) The ECG signal before noise removal x[n] overlaid by the circle markers from the expert. “N”
stands for a normal beat. (b) The ECG signal after noise removal y[n]. (c) The envelope signal z[n] (solid line) and the threshold level thv (dotted line).

beat-to-beat interval information (Adnane et al., 2009; Choi et al.,
2010; Pan & Tompkins, 1985).

The main focus of this work is to propose the QRS detection
algorithm consisting of the quadratic filter (QF) capable of enhanc-
ing QRS signal to noise ratio in preprocessing operation. Results

show that the QRS complex can be emphasized by the preprocess-
ing operation based on the QF because of the significant increase in
the QRS signal to noise ratio. As a result, the detection accuracy can
be obtained without the need for adaptive thresholding and post-
processing operations.
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Fig. 8. Results of the proposed algorithm applied on the ECG signal record 202. (a) The ECG signal before noise removal x[n] overlaid by the circle markers from the expert. “A”
stands for an atrial premature beat, “a” for an aberrated atrial premature beat, and “V” for a premature ventricular contraction beat. (b) The ECG signal after noise removal

y[n]. (c) The envelope signal z[n] (solid line) and the threshold level thv (dotted line).

The rest of this paper is organized as follows. Section 2 presents
the design method for the QF. Section 3 describes the proposed
QRS detection algorithm as well as the measure and the ECG data-
base used for performance evaluation. Results and discussion are
given in Section 4. Finally, conclusions are drawn in Section 5.

2. Quadratic filter design

The application of the QF, which is derived from the second-
order Volterra filter, in the ECG noise removal application has not
been carefully studied. Unlike the linear filtering, the important
advantage of the QF is that it has various degrees of freedom for
optimization in removing noises contaminated in the ECG signal.
Details of the QF derivation are given as follows.

The design of QF for removing noises in ECG signals is
performed in frequency domain. Fig. 1 shows an example of 2D
magnitude frequency response of the QF. The linear-phased QF is
designed based on the sum of two 2D Gaussian filters, which is
given by

Gi (w1, o) + G (g, @)
max{G; + Gy}

G(w1, W) =

: (1)
where

Gi(W1k, a1) = exp{—[A(W1k — Wai)* + B(W1x — Wa) (W21 — W)
+ C(wa — 0y)*]}, 2)

fori=1,2 with:

2 . 2
Ao (cosH) n (sm@) 7 3)
Oy oy
B_ 7512220 51222(9‘ )
X y
. 2 2
c_ <516n()> N <coo_s()> ' (5)
x y

The coefficient (g, wy;) is the center of Gaussian filter, o, is a con-
stant that defines the passband width along the cross-diagonal
direction, o, is a constant that defines the passband width along
the diagonal direction, and 6 is the rotation angle.

Note that the passband frequencies should be approximately
placed at the passband frequencies of the QRS response. To achieve
the best filter for removing noise, parameters should be adjusted to
maximize QRS signal to noise ratio. Fig. 2 shows a contour plot at
—6 dB of the magnitude of 2D frequency responses of the QF from
Fig. 1. The centers of Gaussian function are at (wqy, wy) of (=15,
15) and (15, —15) Hz. Other parameters, i.e., (0x,0,,0) for the QF
are (1.1, 0.55, —m/4).

After the 2D magnitude frequency of the QF is formed, the fre-
quency response can be given by

H(elw, @®2) = G(wqy, y)e* @) (6)
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where G(w1y, @) represents the desired magnitude response based
on the 2D Gaussian filters given in (1) and ¢ (w1, wy) is the phase
response, which can be expressed as

Ny -1 N, -1
d(W1k, W) = — 12 22

where wy, = 2nk/M,) —m,k=0,1,...,M; — 1 and wy = (27l/M>)
—7m,1=0,1,...,M, — 1. We use the QF size N; = N, = N. As a result,
the phase delay of the signal output is (N —1)/2.

Subsequently, the filter coefficients h{n;,n,] can be obtained by
the inverse DFT of H(e/“w,e/*2), Please see Phukpattaranont and
Limsakul (2009) for more details. Fig. 3 shows the coefficients of
the QF corresponding the design parameters shown in Fig. 2. The
ECG signal after noise removal y[n] is produced by applying the
QF coefficients to the ECG signal x[n], which can be expressed as

P-1 P-1

yin =" hiks, koJx[n — kiJx[n — ky). (8)

k1=0 k,=0

W1 — Wy, (7)

3. Materials and methods
3.1. Proposed algorithm
Fig. 4 shows a schematic diagram of the proposed QRS detection

algorithm. The noises in the ECG signal x[n] are removed in the pre-
processing operation based on the QF designed using the method

P. Phukpattaranont /Expert Systems with Applications 42 (2015) 4867-4877

described in Section 2. Fig. 5(a) and (b) shows an example of 10-
beat ECG signals before and after noise removal in the top and bot-
tom panels, respectively.

Subsequently, to obtain the envelope signal z[n],y[n] is pro-
cessed with the envelope extraction algorithm. Fig. 6(a) shows an
example of signals in beat detection algorithm. The signals y[n]
and z[n] are shown with the thin and dotted lines, respectively.
Then, the threshold value is defined as shown in Fig. 6(a) with a
thick line to determine the time interval [t; t;] where the QRS com-
plex locates. Finally, the R peak in QRS complex is detected from
the determination of the time tz where the signal amplitude is
maximum. Fig. 6(b) shows the ECG signal overlaid by the markers
from the proposed algorithm (square) and the expert (asterisk).
The details of proposed algorithm can be summarized as follows.

1. Determine the signal y[n] from the ECG signal x[n] by processing
with the QF.

2. Determine the envelope signal z[n] from y[n] using the maxi-
mum filter with the length L = 120 ms as given by

Zi = max ylkl. 9)

ke[n—L+1,n]
3. Detect the R peak in QRS complex using the following steps.
(a) Calculate a threshold value thv from thv = ly,[n],
where y,,[n] is the maximum value of y[n] and 7 is a
constant in the range of 0.10 to 0.17.
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Fig. 9. Results of the proposed algorithm applied on the ECG signal record 200. (a) The ECG signal before noise removal x[n] overlaid by the circle markers from the expert. “F”
stands for a fusion of ventricular and normal beat. (b) The ECG signal after noise removal y[n]. (c) The envelope signal z[n] (solid line) and the threshold level thv (dotted line).

“{$" stands for an FN detection.
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Fig. 10. Results of the proposed algorithm applied on the ECG signal record 217. (a) The ECG signal before noise removal x[n] overlaid by the circle markers from the expert.
“f” stands for a fusion of paced and normal beat and “/” for a paced beat. (b) The ECG signal after noise removal y[n]. (c) The envelope signal z[n] (solid line) and the threshold

level thv (dotted line). “+” stands for an FP detection.

(b) Find the time duration where z[n] is greater than thv
and determine the beginning time t;, the half-duration
time t;, and the ending time t,.

(c) Determine the amplitude of y[n] at t;,. If the amplitude is
greater than zero, which indicates that it is not a pre-
mature ventricular contraction beat, go to step (d), else
go to step (e).

(d) Determine R peak location tz from the time between
[t1 £5] in y[n] that gives the maximum amplitude.

(e) Determine R peak location t; from the time between
[t1 tn] in y[n] that gives the maximum amplitude.

3.2. Performance measurement

The performance of QRS detection algorithm is evaluated with
sensitivity (SEN), positive predictive rate (PPR), and detection error
rate (DER). SEN is given by
SEN =

% 100, (10)

TP
TP +FN
where true positive (TP) is the number of correct QRS complex pre-
dictions. FN is the false negative prediction. In other words, the
algorithm predicts that there is no QRS complex in the location
where there is a real QRS complex. PPR can be expressed as

TP

PPR=Tp 1~

100, (11)

where FP is the false positive prediction. In other words, the
algorithm predicts that there is a QRS complex in the location
where there is no QRS complex. DER is used for evaluating the
accuracy of algorithm including both FN and FP values, which can
be given by

FN +FP

DER =15 N

100. (12)

3.3. ECG database

ECG data used in performance evaluation for the proposed algo-
rithm are from MIT-BIH arrhythmia database (Goldberger et al.,
2000; Moody & Mark, 2001). There are 48 records of ECG data.
Each record consists of slightly over 30 min from two-channel of
ECG data. Each channel was acquired at a sampling rate of
360 Hz. This database is considered as a class 1 database, which
has been carefully scrutinized, thoroughly annotated, and used in
many well-known publications. The ECG data from MIT-BIH have
a variety of types including both normal and abnormal ECG data.
In addition, there is a marker for each beat given by the expert
demonstrating the QRS complex location and beat type. In this
paper, the QRS complex is detected using the ECG signal from
channel 1 or lead II only. In other words, the ECG signal from chan-
nel 1 was represented by x[n].
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Fig. 11. Results of the proposed algorithm applied on the ECG signal record 105. (a) The ECG signal before noise removal x[n] overlaid by the circle markers from the expert.
(b) The ECG signal after noise removal y[n]. (c) The envelope signal z[n] (solid line) and the threshold level thv (dotted line).

4. Results and discussion
4.1. Enhancement of QRS signal to noise ratio

To illustrate the capability of the QF in enhancing QRS signal to
noise ratio, example results from ECG data of record 121, 202, 200,
217,105, and 108 are demonstrated.

Fig. 7(a) shows the ECG data of record 121 from time 1650 s to
time 1660 s. Although ECG data in this record are corrupted by
baseline drift and some QRS complexes have very low amplitude,
significant improvement in QRS signal to noise ratio of the ECG sig-
nal after noise removal y[n] resulting from the QF can be obtained
as shown in Fig. 7(b). Fig. 7(c) shows the envelope signal z[n| and
the threshold value thv, which allow us to correctly detect all
QRS signals.

Fig. 8(a) shows the ECG data of record 202 from time 760 s to
time 770 s. ECG data in this record consist of 6 normal beats, an
atrial premature beat, two aberrated atrial premature beats, and
a premature ventricular contraction beat. Fig. 8(b) shows that the
QRS signal to noise ratio of y[n] from the QF is good enough for
all beats to be correctly detected using the envelope signal z[n]
and the threshold level thv shown in Fig. 8(c).

Fig. 9(a) shows the ECG data of record 200 from time 600 s to
time 610 s. ECG data in this record consist of a fusion of ventricular
and normal beat (“F”). In addition, we can see muscle noise in the
segments [600-601 s] and [603-603.5 s]. Fig. 9(b) shows that the

QF can efficiently remove noise and enhance QRS signal to noise
ratio. There is an FN detection shown in Fig. 9(c) at time 602 s
because the threshold level thv in this record is higher than the
premature ventricular contraction beat after applying with the QF.

Fig. 10(a) shows the ECG data of record 217 from time 840 s to
time 850 s. In addition to normal beats and a premature ventricular
contraction, ECG data in this record is composed of fusion of paced
and normal beats (“f’) and paced beats (“/”). Moreover, we can see
abrupt baseline shift at time 846 s. Fig. 10(c) shows the envelope
signal z[n] resulting from the ECG signal after noise removal y[n|
in Fig. 10(b), two FN detections and an FP detection. While the 2
FN detections result from their inherent low amplitudes, the FP
detection is caused by the high peak from the abrupt baseline shift
after filtering.

Fig. 11(a) shows the ECG data of record 105 from time 1321 s to
time 1331 s. ECG data in this record are contaminated with high-
grade noise. Although the QRS complex can be emphasized by
the QF as shown in Fig. 11(b), the high-grade noise is also ampli-
fied. The signal after filtering from high-grade noise causes 6 FP
detections as shown in Fig. 11(c).

Fig. 12(a) shows the ECG data of record 108 from time 1655 s to
time 1665 s. We can see that the QRS complexes in this record have
low amplitude and are corrupted by muscle noise. The amplitude
of noise after filtering from time 1662 s to time 1663 s is higher
than that of QRS signals from time 1663 s to time 1665 s as shown
in Fig. 12(b). As a result, the proposed algorithm gives 2 FP
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Fig. 12. Results of the proposed algorithm applied on the ECG signal record 108. (a) The ECG signal before noise removal x[n] overlaid by the circle markers from the expert.
(b) The ECG signal after noise removal y[n]. (c) The envelope signal z[n] (solid line) and the threshold level thv (dotted line).

detections and 2 FN detections based on the threshold thv shown
in Fig. 12(c).

4.2. Performance evaluation and comparison

Table 1 shows performance evaluation of the proposed algo-
rithm applied on all 48 records of ECG data when the parameters
(w1k, 1), 0x, 0y, and 0 of the QF are fixed at (-15, 15), (15,
—15)Hz, 1.1, 0.70, and —7t/4, respectively. The average DER value
is 0.38%. The average values of TP, FN, FP, SEN, and PPR are
109,281 beats, 202 beats, 210 beats, 99.82%, and 99.81%, respec-
tively. While the maximum DER value is 4.08% from the record
108, the minimum DER value is 0% from 21 records (record 100,
102, 103, 107, 112, 113, 115, 117, 118, 121-124, 202, 212, 213,
219-221, 230, and 231).

Table 2 shows the performance comparison of the proposed
algorithm with that from other 7 state-of-the-art papers. The order
of each method is sorted from the minimal average DER value to
the maximal average DER value. The minimal and maximal average
DER values are 0.17% (Zhu & Dong, 2013) and 0.54% (Choi et al.,
2010), respectively. The average DER value from the proposed
algorithm based on noise removal in ECG signals using the QF is
0.38%. This result shows that the QF can significantly increase
the QRS signal to noise ratio. As a result, only the use of a single
fixed threshold without additional post-processing techniques
can yield low average DER value.

Table 3 shows comparison results of the DER values of ECG
record 121, 202, 200, 217, 105, and 108 from the proposed method
with that from other 7 papers. The minimum and maximum DER
values for each record are shown using the boldface and italics

fonts, respectively. The DER values of ECG record 121 and 202 from
the proposed method are minimal at 0.00%. For other ECG records,
the DER values from the proposed method are in the range
between minimum and maximum DER values.

For ECG record 121 and 202, the proposed method performs
better than the others because of its capability in enhancing
QRS signal to noise ratio for challenging situations such as low
amplitude ECG data corrupted with baseline drift and various
types of abnormal morphologies. As a result, only a simple beat
detection step based on a single fixed threshold with no addi-
tional post-processing techniques is enough for achieving the
DER value of 0%. However, QRS signal to noise ratio from the
QF is not high enough in some situations such as abrupt baseline
shift (record 217), high-grade noise (record 105), and low ampli-
tude QRS complex contaminated by muscle noise (record 108).
Therefore, FP and FN detections are obtained from the proposed
method. Other QRS algorithms overcome these problems using
additional computations. On the one hand, the algorithms in
some previous publications reduce FN detections using adaptive
thresholding techniques (Arbateni & Bennia, 2014; Choi et al.,
2010; Karimipour & Homaeinezhad, 2014; Zhang & Lian, 2009;
Zidelmal et al., 2014) and false-noise detection algorithm (Zhu
& Dong, 2013). On the other hand, some algorithms in previous
publications decrease FP detections using the technique based
on the refractory period of 200 ms (Bouaziz et al., 2014; Zhu &
Dong, 2013; Zidelmal et al, 2014). In other words, two
consecutive QRS complexes cannot be detected within 200 ms.
Another example used to decrease FP detections is the check up
for irregular beat-to-beat interval information algorithm (Choi
et al., 2010).
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Table 1
Performance evaluation of proposed algorithm.
Record  Total TP FN FP  SEN(%) PPR(%) DER (%)
100 2272 2272 0 0 100.00 100.00 0.00
101 1865 1865 0 4 100.00 99.79 0.21
102 2187 2187 0 0 100.00 100.00 0.00
103 2084 2084 0 0 100.00 100.00 0.00
104 2228 2223 5 20 99.78 99.11 1.12
105 2572 2558 11 28 99.57 98.92 1.52
106 2027 2024 3 4 99.85 99.80 0.35
107 2136 2136 0 0 100.00 100.00 0.00
108 1763 1710 53 19 96.99 98.90 4.08
109 2532 2531 1 0 99.96 100.00 0.04
111 2124 2123 1 0 99.95 100.00 0.05
112 2539 2539 0 0 100.00 100.00  0.00
113 1794 1794 0 0 100.00 100.00 0.00
114 1879 1878 1 5 99.95 99.73 0.32
115 1953 1953 0 0 100.00 100.00  0.00
116 2412 2393 19 2 99.21 99.92 0.87
117 1535 1535 0 0 100.00 100.00 0.00
118 2278 2278 0 0 100.00 100.00 0.00
119 1987 1987 0 1 100.00 99.95 0.05
121 1863 1863 0 0 100.00 100.00 0.00
122 2476 2476 0 0 100.00 100.00 0.00
123 1518 1518 0 0 100.00 100.00 0.00
124 1619 1619 0 0 100.00 100.00 0.00
200 2601 2598 3 2 99.88 99.92 0.19
201 1963 1959 4 3 99.80 99.85 0.36
202 2136 2136 0 0 100.00 100.00 0.00
203 2980 2958 22 35 99.26 98.83 191
205 2656 2654 2 0 99.92 100.00 0.08
207 1860 1845 15 26 99.19 98.61 2.20
208 2955 2933 22 13 99.26 99.56 1.18
209 3005 3005 0 1 100.00 99.97 0.03
210 2650 2642 8 7 99.70 99.74 0.57
212 2748 2748 0 0 100.00 100.00 0.00
213 3250 3250 0 0 100.00 100.00 0.00
214 2262 2256 6 0 99.73 100.00 0.27
215 3363 3363 0 1 100.00 99.97 0.03
217 2208 2206 2 4 99.91 99.82 0.27
219 2154 2154 0 0 100.00 100.00 0.00
220 2047 2047 0 0 100.00 100.00  0.00
221 2427 2427 0 0 100.00 100.00 0.00
222 2483 2472 11 13 99.56 99.48 0.97
223 2605 2604 1 1 99.96 99.96  0.08
228 2053 2043 10 16 99.51 99.22 1.27
230 2256 2256 0 0 100.00 100.00 0.00
231 1571 1571 0 0 100.00 100.00  0.00
232 1780 1780 0 1 100.00 99.94 0.06
233 3079 3077 2 3 99.94 99.90 0.16
234 2753 2753 0 1 100.00 99.96 0.04

Total 109,483 109,281 202 210 99.82 99.81 0.38

Table 2
Performance comparison of the proposed algorithm with that from other 7 papers.

Method of noise removal TP FN FP SEN PPR DER
(%) (%) (%)

Linear filtering (Zhu &
Dong, 2013)

S-transform (Zidelmal
et al,, 2014)

Artificial neural network
(Arbateni & Bennia,
2014)

Wavelet transform
(Bouaziz et al., 2014)

Quadratic filtering (This
work)

Mathematical
morphology (Zhang &
Lian, 2009)

Wavelet transform
(Karimipour &
Homaeinezhad, 2014)

Wavelet transform (Choi
et al., 2010)

109,401 93 91 9992 9992 0.17

108,323 171 97 99.84 9991 0.25

109,273 210 109 99.82 9991 0.28

109,354 140 232 99.87 99.79 0.34

109,281 202 210 99.82 99.81 0.38

109,297 213 204 99.80 99.81 0.38

115,945 192 308 99.81 99.70 0.49

109,118 376 218 99.66 99.80 0.54

Table 3
Comparisons of the DER values in percent of ECG record 121, 202, 200, 217, 105, and
108 from the proposed method with that from other 7 papers.

Method of noise removal 121 202 200 217 105 108

Quadratic filtering (This 0.00 0.00 0.19 027 159 4.08
work)

Wavelet transform (Bouaziz 0.10 0.09 030 023 081 840
et al., 2014)

Linear filtering (Zhu & Dong, 0.11 0.09 0.15 0.09 1.25 0.57
2013)

S-transform (Zidelmal et al., 016 009 023 023 124 244
2014)

Artificial neural network 0.16 033 031 064 023 0.51
(Arbateni & Bennia, 2014)

Wavelet transform (Choi 0.16 037 1.00 032 202 471
et al,, 2010)

Wavelet transform 032 0.00 019 027 241 1240
(Karimipour &

Homaeinezhad, 2014)
Mathematical morphology
(Zhang & Lian, 2009)

070 037 050 023 1.01 0.68

The minimum and maximum DER values for each record are shown in bold and
italics, respectively.

5. Conclusions

This paper proposed the QRS detection algorithm, which
employed the quadratic filter on enhancing QRS signal to noise ratio
from ECG signals in preprocessing step. Results show that the
quadratic filter achieves in improving QRS signal to noise ratio for
some challenging situations such as low amplitude QRS complex
corrupted by baseline drift and a variety of abnormal morphologies
such as a fusion of ventricular and normal beat, an atrial premature
beat, an aberrated atrial premature beat, a premature ventricular
contraction beat, a fusion of paced and normal beat, and a paced
beat. Subsequently, the QRS complex is obtained with a simple beat
detection algorithm based on an envelope signal and a single fixed
threshold without additional post-processing techniques. The
proposed algorithm was validated with the MIT-BIH arrhythmia
database. The average DER value from 48 records is at 0.38%.

To improve the accuracy of proposed QRS detection algorithm
for abrupt baseline shift, high-grade noise, and low amplitude
QRS complex contaminated by muscle noise, more computations
in beat detection step can be added. The employment of more
sophisticated thresholding techniques such as the multiple levels
of fixed threshold, the single level of adaptive threshold, and the
multiple levels of adaptive threshold can be used for decreasing
FN detections. Moreover, FP detections can be reduced using the
algorithm based on the refractory period of 200 ms.
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Abstract—For ECG signal analysis, a QRS detection algorithm
is very important. The QRS detection algorithm consists of
two steps, i.e., ECG preprocessing and ECG beat detection.
In preprocessing step, noises in ECG signals are removed.
The higher signal to noise ratio (SNR) after noise removal in
preprocessing step leads to the less complicated algorithm in beat
detection step and the increase in accuracy. However, ECG signals
have various types in the real situation such as normal beat and
premature ventricular contraction (PVC) beat. Each type of beat
has its own frequency response. Therefore, we propose the dual-
band continuous wavelet transform to maximize the SNR of ECG
signals after noise removal in this paper. The proposed algorithm
was evaluated with the ECG signals from MIT-BIH arrhythmia
database. Results demonstrate the feasibility of the method.

I. INTRODUCTION

World Health Organization (WHO) reported that 17.5 mil-
lion people died of cardiovascular disease in 2005. It has been
the first cause of death for people around the world. This
disease tends to increase steadily. It is expected that 20 million
people will die from this disease in 2015 [1],[2]. In Thailand,
the death rate from cardiovascular disease is found to be the
top three. In other words, there are 35050 Thai people die
from this disease in 2009 or the average death rate from this
disease is four people per hour [3].

The early detection of the heart disease is very important.
One of the measurement used for checking the condition of the
heart is the electrocardiogram (ECG) signal. The components
of each ECG beat consist of the P wave, the QSR complex,
and the S wave. The detection of the R peak in the QRS
complex is a preliminary step to other ECG signal analysis
such as arrhythmia analysis [4] and heart rate variability
(HRV) analysis [5].

Generally, the algorithm of R peak detection in the QRS
complex is composed of two main steps, i.e. ECG pre-
processing and ECG beat detection. The objective of the ECG
pre-processing step is to remove a variety of noises in the ECG
signal, such as the muscle noise, the power line noise, and the
baseline drift noise. Examples of the methods used for noise
removal in the ECG signal include the linear filtering technique
[6], the wavelet transform technique [7], and mathematical
morphology technique [8]. In ECG beat detection step, the
envelope signal is obtained from the ECG signal after noise
removal and the threshold is defined to determine the time
period where the QRS complex locates. The R peak can be

978-616-361-823-8 © 2014 APSIPA

detected from the time position where the amplitude of the
ECG signal after noise removal is maximum.

The ECG pre-processing step is very important because
if noises in the ECG signal can be effectively removed in
this step, the computational complexity of the algorithm in
the ECG beat detection step can be reduced. Therefore, we
proposed the noise removal algorithm based on the dual-
band continuous wavelet transform (CWT) in this paper to
effectively remove noises in the ECG signal.

II. CONTINUOUS WAVELET TRANSFORM

The CWT have been gained popular uses for decomposing
signals in many applications including ECG noise removal.
Given the input signal z(t), which is the ECG signal in this
paper, the CWT of z(¢) can be expressed as

o0 1, (t—b
Ta,bz/_Oo x(t)ﬁw (&) dt ey

where T 5 is the CWT of z(t), a is the dilation parameter, b
is the location parameter, and *(t) is the complex conjugate
of the wavelet function. There are a variety types of the
wavelet function. However, the Maxican-hat wavelet function
is selected in this paper for removing noises because its
similarity to the shape of the QRS complex from the normal
ECG beat [9]. The Maxican-hat wavelet function, which is the
second derivative of a Gaussian function, is given by

)
0O = = (1 E)exp (;) @

III. MATERIALS AND METHODS
A. Proposed Algorithm

Fig. 1 shows a block diagram of the proposed QRS detection
algorithm. The ECG signal x[n] is determined from the ECG
signal x(¢) at a sampling rate of 200 Hz. Fig. 2(b) shows an
example of two beats of the ECG signal z[n]. While the beat
in the left hand side is a normal ECG beat, the beat in the
right hand side is a premature ventricular contraction (PVC)
beat. Then, the noises in the ECG signal z[n] are removed
based on the CWT to obtain y[n]. Three types of the CWT
processing method are explored and compared as follows:

o AT, + T3,

o BiT¢, +1T¢,
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l x[n]

Remove noise using CWT

yln]

Determine envelope signal

z[n]

Detect R peak

l r[n]

Fig. 1. Block diagram of the proposed QRS detection algorithm.

Fig. 2. ECG beat detection algorithm. (a) Thin line: ECG signal after noise
removal y[n]. Dotted line: Envelope signal z[n]. Thick line: Threshold value
line. (b) ECG signal overlaid by the markers from the proposed algorithm
(square) and the expert (asterisk). While the signal in the left hand side is a
normal ECG beat, the signal in the right hand side is a PVC beat.

° CZ T32,b + T62,b'

While case A and case B are the representative of a single-
band CWT processing method, case C is the representative
of a dual-band CWT processing method. Fig. 2(a) shows an
example of the ECG signal after noise removal y[n] with the
CWT method of case C using a thin line. While the normal
beat has a single peak after noise removal, the PVC beat
has double peaks. Subsequently, the envelope signal z[n] is
calculated from y[n] as shown in Fig. 2(a) using a dotted line.
Then, the threshold value is defined as shown in Fig. 2(a)
using a thick line. Finally, the R peak in the QRS complex
r[n] is determined from the time where the maximum peak
occurs within the time period defined by z[n] and the threshold

Anl
o

Anl

Z[n] and thv
3 E
F 3

17 18 19 20 21 22 23 24 25 26 27
(d) Time (s)

Fig. 3. Results of the proposed algorithm case A applied on the ECG signal
record 207. (a) The ECG signal before noise removal z[n]. (b) The ECG
signal after noise removal y[n]. (c) The envelope signal z[n] shown in a
solid line and the threshold level thv shown in a dotted line. (d) The ECG
signal overlaid by the markers from the proposed algorithm (square) and the
expert (asterisk).

value. Fig. 2(a) shows an example the time period ¢, where the
maximum peak locates. In addition, the ECG signal overlaid
by the markers from the proposed algorithm (square) and the
expert (asterisk) is shown in Fig. 2(b).

B. Performance Evaluation

Two parameters were used in the performance evaluation of
the proposed method. The first parameter is the ratio of the
maximum z[n] to the minimum z[n] (RMM), which can be
expressed as

RMM = Z'rnaw/z’min- (3)

If the value of RMM is closed to 1, the maximum amplitude
of all beats in the envelope signal z[n| is almost equal. In
other words, the signal to noise ratio (SNR) of the 2z,
beat is maximized. As a result, the fixed threshold technique
can be used instead of the adaptive threshold technique.
This is important because it can reduce the computational
complexity of QRS detection algorithm without compromising
of accuracy. The second parameter is the time period indicating
false detection (FD), which is the average of absolute of time
error in the unit of ms. The best value of FD is 0, which means
that all R peaks in the QRS complex are correctly detected by
the proposed algorithm.

IV. RESULTS AND DISCUSSION

A. Scale adjustment

Fig. 3 shows results of the proposed algorithm case A
applied on the ECG signal record 207. Fig. 3(a) shows the
ECG signal before noise removal z[n| from time 17 s to 27 s.
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Fig. 4. Results of the proposed algorithm case B applied on the ECG signal
record 207. (a) The ECG signal before noise removal z[n]. (b) The ECG
signal after noise removal y[n]. (c) The envelope signal z[n] shown in a
solid line and the threshold level thv shown in a dotted line. (d) The ECG
signal overlaid by the markers from the proposed algorithm (square) and the
expert (asterisk).

The ECG signal x[n| consists of 5 normal beats and 5 PVC
beats. Fig. 3(b) shows the ECG signal after noise removal
y[n]. While the normal beat has a single peak amplitude,
the PVC beat comprises double peak amplitudes. Fig. 3(c)
shows the envelope signal z[n| using a solid line and the
threshold level thv using a dotted line. While the first beat has
maximum amplitude, the last beat has minimum amplitude.
Fig. 3(d) shows the ECG signal overlaid by the markers from
the proposed algorithm (square) and the expert (asterisk). In
this case, all R peaks in QRS complex are correctly detected.

Fig. 4 shows results of the proposed algorithm case B
applied on the ECG signal record 207. Fig. 4(b) shows the
ECG signal after noise removal y[n]. Similar to case A, the
normal beat has a single peak amplitude and the PVC beat
comprises double peak amplitudes. However, the position of
maximum peak in each PVC beat is different from that in case
A except the second beat. Fig. 4(c) shows that the maximum
beat and the minimum beat locate at the first beat and the
second beat, respectively. Fig. 4(d) shows that there are four
wrong beat detections.

Fig. 5 shows results of the proposed algorithm case C
applied on the ECG signal record 207. The ECG signal after
noise removal y[n| and the envelope signal z[n| shown in
Fig. 5(b) and (c) are slightly different from those in case A
and case B in terms of both the position of the maximum
peak in y[n] and the maximum beat and the minimum beat
in z[n]. In addition, there is a single false detection in the
last beat shown in Fig. 5(d). As more quantitative details on
performance comparisons, Table I shows the values of 2,4,
Zmin, RMM, and FD from all cases. Case A gives the best FD
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Fig. 5. Results of the proposed algorithm case C applied on the ECG signal
record 207. (a) The ECG signal before noise removal z[n]. (b) The ECG
signal after noise removal y[n]. (c) The envelope signal z[n] shown in a
solid line and the threshold level thv shown in a dotted line. (d) The ECG
signal overlaid by the markers from the proposed algorithm (square) and the
expert (asterisk).

TABLE 1
PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM.

Method  zZmazx Zmin RMM FD
A 3.32 0.91 3.65 2.5
B 6.05 2.25 2.69 23.9
C 4.69 1.54 3.05 6.9

among all cases at an expense of the worst RMM. In contrast,
case B gives the best RMM among all cases at an expense of
the worst FD. However, with the use of the dual-band CWT
processing technique (case C), the improvement in terms of
both the RMM and the FD is possible as shown in the third
row of Table I. In other words, while the RMM of case C
decreases from 3.65 to 3.05 compared to case A, the FD of
case C decreases from 23.9 to 6.9 compared to case B.

Fig. 6(a) shows the results of RMM as a function of the
second scale from 1 to 8 applied on the ECG signal record
207. In other words, the CWT processing method is 75 , 477, ,
when the first scale is fixed at 3 and the second scale is varied
from 1 to 8. The maximum RMM is 3.91 at the second scale
4 and the minimum RMM is 2.16 at the second scale 8. Fig.
6(b) shows the results of FD as a function of the second scale
from 1 to 8. The maximum FD is 26.9 at the second scale
8 and the minimum FD is 2.5 at the second scale 3. These
results show that the second scale 6 is the optimized selection
because it can achieve both RMM and FD.

B. Wavelet function

In addition to the scale and scale combination, the type of
wavelet function is another important parameter affecting the
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Fig. 6. (a) RMM as a function of the second scale from 1 to 8. (b) FD as a
function of the second scale from 1 to 8.

An
=)

Z[n] and thv
o
(9]

17 18 19 20 21 22 23 24 25 26 27
(d) Time (s)

Fig. 7. Results of the proposed algorithm with the Haar wavelet function.

SNR. Fig. 7 shows the results from the Haar wavelet function.
The RMM and FD are 2.38 and 18.1, respectively. Fig. 8
shows the results from the 2.2 reverse biorthogonal wavelet
function with the RMM and FD of 3.72 and 2.5, respectively.
These results confirm the importance of the wavelet function
selection.

V. CONCLUSIONS

We present the improvement of signal to noise ratio (SNR)
in ECG signals based on dual-band continuous wavelet trans-
form (CWT). The ECG signal after noise removal using the
dual-band CWT at dilation parameter combination of 3 and 6
shows the feasibility of the method in maximizing the SNR
without the loss of accuracy compared to the single-band CWT
at the dilation parameter of 3 and the dilation parameter of
6. However, more studies on other combinations of dilation
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Fig. 8. Results of the proposed algorithm with the 2.2 reverse biorthogonal
wavelet function.

parameters should be performed and performance evaluation
to all records of ECG data in MIT-BIH arrhythmia database
should be investigated. In addition, others wavelet functions
should be carefully considered. The results will be reported
soon in the near future.
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