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Model predictive control (MPC) is an advanced control algorithm which can effectively handle 

multiple input multiple output (MIMO) processes with constraints. However, a conventional MPC 

based on an LTI model is often unsuitable to handle nonlinear or uncertain systems. Robust model 

predictive control (RMPC) has been introduced to control uncertain systems. At each sampling 

time, a feedback gain that can robustly stabilize the closed-loop system is determined by 

minimizing the worst-case performance cost subjected to input, output and stability criteria 

constraints. Though, RMPC can handle uncertain systems, RMPC is computationally prohibitive in 

practical situations. To overcome an excessive computational cost of RMPC application, a 

synthesis of off-line RMPC for polytopic uncertain system has been motivated. 

This work studies interpolation techniques that can be employed on off-line robust 

constrained model predictive control for a discrete time-varying system with polytopic parametric 

uncertainty. A sequence of feedback gains is determined by solving off-line a series of optimal 

control optimization problems. A sequence of nested corresponding polyhedral invariant set is then 

constructed. At each sampling time, the smallest invariant set containing the current state is 

determined. If the current invariant set is the innermost set, the pre-computed gain associated with 

the innermost set is applied. If otherwise, a feedback gain is variable and determined by a linear 

interpolation of the pre-computed gains. Two interpolation algorithms are investigated. The 

proposed algorithms are illustrated with case studies of a two-tank system and a four-tank system. 

The simulation results showed that the proposed interpolation techniques can improve control 

performance of off-line robust model predictive control while on-line computation is still tractable. 

 

Keywords: Discrete-time polytopic uncertain system, polyhedral invariant set, robust model 

predictive control, off-line control, interpolation-based control 



Introduction

Model predictive control (MPC) is recognised as an advanced control algorithm
which can effectively handle multiple input multiple output (MIMO) processes
with constraints (Qin & Badgwell, 2003). Traditionally, MPC is derived by using
a linear time invariant (LTI) model. At each sampling time, the algorithm uses
an explicit LTI model to solve an optimal control problem, and implements the
first element of the optimal input sequence computed. However, the behaviour of
real process usually deviates from the linear model used in controller synthesis.
A discrepancy between the behaviour of the process and that of the model used
leads to deterioration of control performance. Thus, a conventional linear MPC
based on an LTI model is often unsuitable to deal with a nonlinear system or a
system containing uncertainty.

Robust model predictive control (RMPC) has been introduced to guarantee
robustness as well as constraint satisfaction against uncertainty. At each sam-
pling time, a feedback gain that can robustly stabilize the closed-loop system is
determined by solving an optimal control problem (Kothare et al., 1996; Schu-
urmans & Rossiter, 2000; Kouvaritakis et al., 2000; Lee & Kouvaritakis, 2002;
Bemporad et al., 2003; Veselý et al., 2010; Li & Xi, 2011; Wang, 2012; He et al.,
2014).

In Kothare et al. (1996), the optimisation problem involved is formulated as
minimisation of the worst-case performance cost subjected to input, output and
stability criteria constraints. The stability criteria constraint is derived based
on a single Lyapunov function (SLF). An ellipsoidal invariant set containing
the current state is constructed to guarantee robust stability. Any states in the
invariant set can be driven to the origin by using the feedback gain computed.

Several approaches have been introduced in order to improve control perfor-
mance of RMPC. RMPC algorithms based on a parameter dependent Lyapunov
function (PDLF) have been proposed (Cuzzola et al., 2002; Mao, 2003). The
idea of using PDLF was further extended to the case of LPV systems (Wada
et al., 2006) where a scheduling parameter is considered in controller synthesis.
However, the number of decision variables and constraints involved in an asso-
ciated optimisation problem drastically increases. Thus, an application of these
algorithms is limited to relatively slow dynamic processes.

RMPC algorithms usually assume that a feedback gain is constant through-
out an infinite horizon(Kothare et al., 1996). Thus, one way to improve con-
trol performance is to introduce a sequence of free control inputs to the con-
trol law (Schuurmans & Rossiter, 2000; Casavola et al., 2002; Bumroongsri &
Kheawhom, 2012b). Unfortunately, more on-line computational time is required
to calculate these free control inputs.

Though, RMPC can handle polytopic uncertain system, RMPC is compu-
tationally prohibitive in practical situations. To overcome an excessive compu-
tational cost of RMPC application, a synthesis of off-line RMPC for polytopic
uncertain system has been motivated (Nguyen et al., 2012; Wan & Kothare,
2003; Angeli et al., 2008).

In Nguyen et al. (2012), an explicit solution of multi-parametric optimisation



problem was used to construct a control law that is a piecewise affine feedback
defined over a polyhedral partition of the state space. In Wan & Kothare (2003),
on-line computational time was reduced by pre-computing off-line a sequence
of feedback gains corresponding to a sequence of ellipsoidal invariant sets. At
each sampling time, a feedback gain applied to the process is calculated by
linear interpolation between the pre-computed feedback gains. This strategy
was further extended by using nominal performance cost as proposed in Ding
et al. (2007).

An off-line robust model predictive control (RMPC) for LPV system was
introduced in Bumroongsri & Kheawhom (2012a). This algorithm used the al-
gorithm proposed in Wada et al. (2006) to compute a sequence of feedback gains
in off-line fashion. A sequence of corresponding ellipsoidal invariant sets is also
off-line pre-computed. At each sampling time, the smallest ellipsoid containing
the current state is determined. A feedback gain is obtained by linear interpola-
tion between the pre-computed feedback gains. As the interpolation technique
used does not require solving any optimisation problems, the computational
burden is very small.

Though a polyhedral invariant set has some advantages over an ellipsoidal
invariant set such as better handling of asymmetric constraints and enlargement
of domain of attraction, an ellipsoidal invariant set is usually used in RMPC for-
mulation due to its relatively low on-line computational burden. In recent years,
an off-line RMPC algorithm based on polyhedral invariant set has been devel-
oped in Bumroongsri & Kheawhom (2012c). A sequence of polyhedral invariant
sets corresponding to a sequence of pre-computed feedback gains is constructed
off-line by using the algorithm proposed in Pluymers et al. (2005a). At each
sampling time, the smallest polyhedral invariant set containing the current state
is determined. The corresponding feedback gain is then implemented to the
process without interpolation of the pre-computed feedback gains. This algo-
rithm provided a larger stabilisable region than off-line RMPC (Wan & Kothare,
2003). However, a spiking effect of control input caused by a switching of feed-
back gains was observed. Therefore, the algorithm requires constructing a large
number of polyhedral invariant sets in order to reduce the spiking effect as well
as to improve control performance. Consequently, large data storage is required.
Later, an interpolation technique for polyhedral invariant sets was introduced
to off-line RMPC for polytopic uncertain systems in order to improve control
performance (Bumroongsri & Kheawhom, 2013). The interpolation algorithm
could significantly improve control performance and eliminate the spiking effect
of control input.

An interpolation-based MPC using polyhedral invariant set was proposed in
Rossiter et al. (2004). The algorithm used decomposition variables and solved
on-line optimisation on performance index subjected to constraint set. The
paper highlighted the potential benefits of using interpolation to generate pre-
dictive control algorithm and to enlarge a stabilisable region. However, the
technique proposed was only developed for an LTI system.

In Nguyen et al. (2013), an interpolated vertex control for a linear time-
varying discrete-time system was introduced. The algorithm uses variable de-



composition and convex interpolation between vertex control law and local linear
feedback control law. At each sampling time, the algorithm solves linear pro-
gramming problems on variable decomposition as well as vertex control action.
This algorithm has advantages in terms of size of stabilisable region.

In this work, two interpolation techniques, employed on off-line robust model
predictive control (RMPC) based on polyhedral invariant set, were investigated.
The proposed algorithms are not based on variable decomposition. In the first
technique, the parameter used in the interpolation is minimized subjected to
constraint set. In the second technique, the parameter used in the interpolation
is obtained by minimizing constraint violation of the adjacent smaller invari-
ant set subjected to constraint set. The paper is organized as follows. The
background of RMPC as well as interpolation techniques used in off-line RMPC
were introduced in this section. Description of the system and control prob-
lem is then presented. RMPC and polyhedral invariant set construction are
described. Then, the proposed interpolation based algorithms are presented.
Implementation of the algorithms proposed is illustrated.

Notation:
For a matrix A, AT denotes its transpose, A−1 denotes its inverse. I denotes
an identity matrix. For a state vector x, xk denotes a state measured at time
k, xk+i denotes a state at prediction time k + i predicted at time k. yk and uk
denote an output and a control input at real time k, respectively. The symbol ∗
denotes the corresponding transpose of a lower block part of symmetric matrices.



Problem description

In this work, a discrete-time linear time-varying (LTV) system with polytopic
parametric uncertainty as shown in (1) is taken into account:

xk+1 = Akxk +Bkuk

yk = Ckxk (1)

where xk ∈ Rnx is a state vector that can be accurately measured or estimated.
uk ∈ Rnu is a control input vector, and yk ∈ Rny is a control output vector. A
system matrix Ak, a control matrix Bk, and an output matrix Ck are assumed
to be within a polytope:

[Ak, Bk, Ck] ∈ Co{[A1, B1, C1], ..., [Al, Bl, Cl], ..., [AL, BL, CL]}.

Co denotes a convex hull with [Al, Bl, Cl] uncertain vertices. Any [Ak, Bk, Ck]
within the polytope is a convex combination of all vertices such that:

[Ak, Bk, Ck] =

L∑
l=1

λl,k[Al, Bl, Cl]

L∑
l=1

λl,k = 1

where 0 ≤ λl,k ≤ 1 is an uncertain parameter vector.
The aim is to find a state feedback control law:

uk = Kkxk (2)

that can stabilize the system and achieve the minimum worst case performance
cost defined as in (3) while satisfying input, output and state constraints as in
(4-6):

min
uk+i

max
[A,B,C]∈Ω

∞∑
i=0

[
xk+i
uk+i ]T [ Θ 0

0 R ][
xk+i
uk+i ] (3)

s.t.uh,min ≤ uh,k+i ≤ uh,max, h = 1, ..., nu (4)

yr,min ≤ yr,k+i ≤ yr,max, r = 1, ..., ny (5)

xs,min ≤ xs,k+i ≤ xs,max, s = 1, ..., nx (6)

where Θ and R are weighting matrices of states and control inputs, respectively.



Robust model predictive control and polyhedral
invariant set

An on-line robust model predictive control (RMPC) for a system with poly-
topic uncertainty was introduced by Kothare et al. (1996). An optimal control
problem solved in each sampling time is shown in (7-11):

min
γ,Y,Q

γ (7)

s.t.

[
1 ∗
xk Q

]
≥ 0 (8)

Q ∗ ∗ ∗
AlQ+BlY Q ∗ ∗

Θ
1
2Q 0 γI ∗

R
1
2Y 0 0 γI

 ≥ 0,∀l = 1, ..., L (9)

[
X ∗
Y T Q

]
≥ 0, Xhh ≤ u2

h,max, h = 1, ..., nu (10)[
S ∗

(AlQ+BlY )TCT Q

]
≥ 0,∀l = 1, ..., L

Srr ≤ y2
r,max, r = 1, ..., ny (11)

where Q > 0 is a symmetrical matrix.
The problem presented in (7-11) is a convex optimisation problem with linear

matrix inequalities (LMI). By solving this problem, a state feedback control law
uk = Kxk with a feedback gain K = Y Q−1 that can stabilize the system while
satisfying input and output constraints, is obtained. A proof of this algorithm
can be found in Kothare et al. (1996).

At each sampling time, the algorithm constructs an ellipsoidal invariant set
S = {x|xTQ−1x ≤ 1} to guarantee stability of the closed loop system. The
advantage of using an ellipsoidal set lies in the fact that the constraints involved
can be expressed in an LMI form.

By giving a feedback gain K that can stabilize the system, the polyhedral
invariant set S = {x|Mx ≤ d} with largest domain of attraction can be con-
structed using the following procedure (Pluymers et al., 2005b).

Procedure 1

1. Set i = 0 ; Mi = [I, −I, C1, −C1, . . . , Cl, −Cl, . . . , CL, −CL, K, −K]T ;
di = [xmax, −xmin, ymax, −ymin, . . . , ymax, −ymin, . . . , ymax, −ymin, umax,
−umin]T ; Si = {x|Mix ≤ di}.

2. Set i = i + 1 ; Mi = [Mi−1, Mi−1[A1 + B1K], . . . , Mi−1[Al + BlK],
. . . , Mi−1[AL + BLK]]T ; di = [di−1, di−1, . . . , di−1, . . . , di−1]T ; Si =
{x|Mix ≤ di}, and eliminate redundant inequalities from the polytope Si.

3. If Si 6= Si−1 then repeat step 2, if otherwise stop the algorithm and
S = {x|Mix ≤ di}.



Theorem 1. For an LTV system as shown in (1), given the control law uk =
Kxk with a state feedback gain K = Y Q−1 provided by solving the optimisation
problem presented in (7-11), the polyhedral set S = {x|Mx ≤ d} constructed by
using Procedure 1 provides a set of states whereby the system will evolve to the
origin without input and output constraints violation.

Proof. The feedback gain K used in the construction of the polyhedral invariant
set is obtained by solving convex optimisation problem with LMI constraints
as shown in (7-11). The satisfaction of (9) for a state feedback gain K ensures
that:

[[Al+BlK]xk]T γQ−1[[Al+BlK]xk]−xTk γQ−1xk ≤ −[xTk Θxk+uTkRuk], l = 1, ..., L.(12)

Thus, Vk = xTk γQ
−1xk is a strictly decreasing Lyapunov function and the closed-

loop system is robustly stabilized by the state feedback gain K.
By following Procedure 1, state, output and input constraints at time step

k+ i, i = 0, ..., imax are repeatedly added to define a polyhedral invariant set Si
= {x|Mix ≤ di}, and all redundant constraints are removed. There must exist
a finite index i = imax such that Mi = Mi+1 because of the contraction as the
feedback gain K is able to ensure robust stability and constraint satisfaction
of the system. Hence, a set of initial states S = {x|Mx ≤ d} is constructed
such that all predicted states remain inside S and approach to the origin without
constraint violation. Moreover, the polyhedral invariant set constructed is never
an empty set because the feedback gain K given is a stabilisable gain.



Off-line RMPC and the proposed interpolation
algorithms

In this section, off-line RMPC and the proposed interpolation algorithms are
described. An off-line RMPC consists of off-line and on-line calculations. The
purpose of the off-line calculation is to generate a sequence of feedback gains,
and a sequence of nested polyhedral invariant sets. The off-line calculation
used in this work is identical to the off-line RMPC proposed in Bumroongsri &
Kheawhom (2012c). The purpose of the on-line calculation is to determine a
variable feedback gain applied to the process at each sampling time.

Off-line calculation

• Choose a sequence of states xm,m = 1, ...,mmax where xm+1 is closer to
the origin than xm. For each xm solve the optimisation problem in (7-10)
by replacing xk with xm in order to obtain a corresponding feedback gain:

Km = YmQ
−1
m . (13)

In addition, xm is chosen such that ε−1
m+1 ⊂ ε−1

m where εm = {x|xTQ−1
m x ≤

1}. Moreover, for each m 6= mmax, there must exist a matrix P > 0
satisfying:

P − [Al +BlKm]TP [Al +BlKm] > 0, l = 1, ..., L (14)

P − [Al +BlKm+1]TP [Al +BlKm+1] > 0, l = 1, ..., L (15)

to assure robust stability satisfaction of a feedback gain K = λ Km +
(1−λ) Km+1, 0 ≤ λ ≤ 1 which is a convex combination between Km and
Km+1.

Each feedback gain Km is derived based on the minimisation of the upper
bound of infinite horizon worst-case performance. The output constraint
in (11) is relaxed in order to enlarge the domain of attraction. The input,
output and state constraints are properly handled during the polyhedral
invariant set construction in the next step.

• For each feedback gain Km = YmQ
−1
m ,m = 1, ...,mmax as previously cal-

culated, the corresponding polyhedral invariant set Sm = {x|Mmx ≤ dm}
is constructed by using Procedure 1.

The existence of a common Lyapunov function P in (14) and (15) depends on the
difference between xm and xm+1. (14) and (15) can be satisfied by appropriately
selecting xm and xm+1. For example, xm and xm+1 should be close enough so
that Q−1

m can be used as a common Lyapunov function P between Km and
Km+1. In such case, (15) becomes:

Q−1
m − [Al +BlKm+1]TQ−1

m [Al +BlKm+1] > 0, l = 1, ..., L (16)



which defines the limit of Km+1.

On-line calculation

In the on-line calculation, a feedback gain applied at each sampling time is de-
termined. In Bumroongsri & Kheawhom (2012c), at each sampling time, the
smallest invariant set that can embed a measured state is determined, and a
corresponding feedback gain is then implemented. In this work, a feedback gain
at each sampling time is variable and computed using an interpolation technique.

Algorithm 1

The feedback gain implemented is computed by linear interpolation between
the pre-computed feedback gains. At each sampling time, the current state
xk is measured and the smallest polyhedral invariant set Sm={x|Mmx≤ dm}
containing the current state is determined.

If xk ∈ Sm and xk /∈ Sm+1,∀m ≤ mmax − 1, a variable feedback gain
Kk = λkKm + (1 − λk)Km+1 can be obtained by solving the optimisation
problem in (17-21):

min
λk

λk (17)

s.t. Mm[Al +BlKk]xk − dm ≤ [0, 0, ..., 0]T , l = 1, ..., L (18)

umin ≤ Kkxk ≤ umax (19)

Kk = λkKm + (1− λk)Km+1 (20)

0 ≤ λk ≤ 1. (21)

If otherwise, xk ∈ Smmax
, the constant feedback gain Kmmax

is applied.

The optimisation problem involved is formulated as linear programming and
the number of constraints involved is linearly dependent on the number of ver-
tices of the uncertain polytope.

Algorithm 2

The feedback gain implemented is computed by linear interpolation between
the pre-computed feedback gains to minimize largest constraint violation to
the adjacent smaller invariant set in one step prediction. At each sampling
time, the current state xk is measured and the smallest polyhedral invariant set
Sm={x|Mmx≤ dm} containing the current state is determined.

If xk ∈ Sm and xk /∈ Sm+1,∀m ≤ mmax − 1, a feedback gain Kk = λkKm +
(1− λk)Km+1 can be obtained by solving the problem in (22-27):



min
γkλk

γk (22)

s.t. Mm[Al +BlKk]xk − dm ≤ [0, 0, ..., 0]T , l = 1, ..., L (23)

Mm+1[Al +BlKk]xk − dm+1 ≤ [γk, γk, ..., γk]T , l = 1, ..., L (24)

umin ≤ Kkxk ≤ umax (25)

Kk = λkKm + (1− λk)Km+1 (26)

0 ≤ λk ≤ 1. (27)

If otherwise, xk ∈ Smmax
, the constant feedback gain Kmmax

is applied.

The optimisation problem involved is formulated as linear programming and
the number of constraints involved is linearly dependent on the number of ver-
tices of the uncertain polytope.

Theorem 2. For an LTV system as shown in (1), given an initial state xk ∈
Sm, the control law, provided by Algorithms 1 and 2, assures robust stability to
the closed-loop system while satisfying input, output and state constraints.

Proof. As (14) and (15) are satisfied, a common Lyapunov function Vk = xTk P
xk ensures that a feedback gain of Kk = λkKm + (1 − λk)Km+1, 0 ≤λk≤ 1,
which is a convex combination of Km and Km+1, is a stabilisable gain.

In solving the problem in (17-21), (20) and (21) restrict Kk to be a convex
combination. The input constraint is guaranteed by (19). The state and output
constraints are satisfied by forcing a one step prediction state xk+1 to remain
inside Sm as in (18). Thus, an initial state xk evolves closer to the origin by
passing Sm+1, Sm+2, ..., and Smmax

. A state inside Smmax
is then driven to

the origin by the constant feedback gain Kmmax because Smmax is satisfied with
Theorem 1. Thus, Algorithm 1 assures robust stability to the closed-loop system
with input, output and state constraints satisfaction.

In solving the problem in (22-27), (26) and (27) restrict Kk to be a convex
combination. The input constraint is guaranteed by (25). The state and output
constraints are satisfied by forcing a one step prediction state xk+1 to remain
inside Sm as in (23). Thus, an initial state xk evolves closer to the origin by
passing Sm+1, Sm+2, ..., and Smmax . A state inside Smmax is then driven to
the origin by the constant feedback gain Kmmax

because Smmax
is satisfied with

Theorem 1. Thus, Algorithm 2 assures robust stability to the closed-loop system
with input, output and state constraints satisfaction.



Case study

In this section, examples are presented to illustrate the proposed interpolation
algorithms. The latter are compared with on-line RMPC proposed in Kothare
et al. (1996), off-line RMPC algorithm proposed in Bumroongsri & Kheawhom
(2012c) and interpolated vertex control proposed in Nguyen et al. (2013). Nu-
merical simulation was performed in 2.3 GHz Intel Core i-5 with 16 GB RAM,
using SDPT3(Tütüncü et al., 2003) and YALMIP (Löfberg, 2004) within Mat-
lab R2011b environment.

Two-tank system

Application of a two-tank system which is similar to the system considered in
Dlapa (2007) was considered. Spherical tanks with radius 0.5 m are connected
as shown in Fig. 1. An outflow from each tank depends on its current liquid
level as F1 = 1.6971

√
h1 and F2 = 1.6971

√
h2. The system is modelled as

(28-29):

dh1

dt
= −1.6971

√
h1

πh1 − πh2
1

+
Fi

πh1 − πh2
1

(28)

dh2

dt
=

1.6971
√
h1

πh2 − πh2
2

− 1.6971
√
h2

πh2 − πh2
2

(29)

where h1 is a liquid level of tank 1, h2 is a liquid level in tank 2 and Fi is an
inlet flow rate.

h̄1 = h1−h1,eq, h̄2 = h2−h2,eq and F̄i = Fi−Fi,eq are defined. Subscript eq
denotes a corresponding variable at equilibrium condition, h1,eq = 50 cm, h2,eq

= 50 cm, and Fi,eq = 1.2 m3/hr.

The objective is to regulate h̄1 and h̄2 to the origin by manipulating F̄i.
An input constraint of −0.5 ≤ F̄i ≤ 0.5 m3/hr is symmetric. In addition,
output constraints of −0.45 ≤ h̄1 ≤ 0.45 and −0.45 ≤ h̄2 ≤ 0.45 are also
symmetric. It was assumed that the maximum values of following terms in-
cluding 1.6971/(πh1.5

1 − πh2.5
1 ) −1.6971/(π h1.5

1,eq − πh2.5
1,eq), 1/(πh1 − πh2

1)
−1/(πh1,eq − πh2

1,eq), 1.6971 / h0.5
1 (π h2 − π h2

2) −1.6971/ h0.5
1,eq (π h2,eq −

πh2
2,eq) and 1.6971/(πh1.5

2 −πh2.5
2 ) −1.6971/(πh1.5

2,eq−πh2.5
2,eq) are small enough to

be neglected. Thus, the system can be described in terms of deviation variables
as in (30-31):

dh̄1

dt
= − 1.6971

πh1.5
1 − πh2.5

1

h̄1 +
1

πh1 − πh2
1

F̄i (30)

dh̄2

dt
=

1.6971

πh2h0.5
1 − πh2

2h
0.5
1

h̄1 −
1.6971

πh1.5
2 − πh2.5

2

h̄2. (31)



Figure 1: Two-tank system considered in case study 1.



Figure 2: Invariant sets generated in case study 1.

By rearranging (30-31) all 16 vertices of the uncertainty polytope, the system
is represented by the following differential inclusion:

[
˙̄h1

˙̄h2

]
∈

16∑
l=1

λl(Al

[
h̄1

h̄2

]
+BlF̄i) (32)

where
∑16
l=1 λl= 1, and 0 ≤ λl ≤ 1.

A discrete-time model is obtained by discretisation of (32) using Euler first-
order approximation with a sampling period of 30 s. The said model is omitted
here for brevity. Tuning parameters are Θ = [[0, 0], [0, 1]]T and R = 0.01.

States of [h̄1, h̄2]T = [0.45, 0.45]T and [0.01, 0.01]T were used to generate
feedback gains and to construct polyhedral invariant sets (S1 and S2) using
the algorithms described previously. Figure 2 shows the polyhedral invariant
sets constructed. An initial state x ∈ S1 can be stabilized by off-line RMPC
(Bumroongsri & Kheawhom, 2012c) as well as the algorithms proposed. PN is
a maximal robustly controlled invariant set projected from S2. An initial state
x ∈ PN can be stabilized by interpolated vertex control (Nguyen et al., 2013).
This algorithm provided the largest stabilisable region.



Figure 3: Regulated state (h̄1) profiles for case study 1.

The system was regulated from an initial state of [h̄1, h̄2]T = [0.04, 0.3]T

to the origin. The chosen initial state belongs to the stabilisable region of all
algorithms.Profiles of regulated state (h̄1 and h̄2) are shown in Figs. 3 and 4.
All algorithms could drive the initial state to the origin without violation of
input and state constraints. As the tuning parameters of Θ = [[0, 0], [0, 1]]T and
R = 0.01 are concerned, only control input F̄i and state h̄2 contributed to the
performance cost. The settling times of on-line RMPC (Kothare et al., 1996)
and off-line RMPC (Bumroongsri & Kheawhom, 2012c) were about 2.0 hrs. In
comparison, the proposed algorithms could drive the system to the origin in
about 1.2 hrs. which is faster than on-line RMPC (Kothare et al., 1996) and
off-line RMPC (Bumroongsri & Kheawhom, 2012c). Interpolated vertex control
(Nguyen et al., 2013) is faster than on-line RMPC (Kothare et al., 1996) and
off-line RMPC (Bumroongsri & Kheawhom, 2012c) but slightly slower than the
proposed algorithms.

Figure 5 shows control input F̄i profiles. A spiking effect of control input
was noticed in off-line RMPC (Bumroongsri & Kheawhom, 2012c). The spik-
ing effect is caused by the switching of the feedback control law. Algorithms
1 and 2 produced similar responses and control input F̄i profiles. The control
input profiles of Algorithm 1 and 2 saturated between 0 to to 0.15 hr. Control
input saturation was then repealed when states move closer to the origin. In on-



Figure 4: Regulated state (h̄2) profiles for case study 1.



Figure 5: Control input F̄i profiles for case study 1.

line RMPC (Kothare et al., 1996), off-line RMPC (Bumroongsri & Kheawhom,
2012c) and interpolated vertex control (Nguyen et al., 2013), control input sat-
uration was not observed.

Figure 6 shows the cumulative performance cost. Control performance of
on-line RMPC (Kothare et al., 1996) was better than that of off-line RMPC
(Bumroongsri & Kheawhom, 2012c) because on-line RMPC solves the optimisa-
tion problem on-line and updates a feedback gain more frequently. Both on-line
RMPC (Kothare et al., 1996) and off-line RMPC (Bumroongsri & Kheawhom,
2012c) obtain a feedback gain based on the assumption that the feedback gain
remains constant throughout an infinite horizon. Saturation at one step in
the horizon requires a small gain for all steps in the horizon. Thus, control
performance deteriorates when input saturation occurs. Implementation of in-
terpolation algorithms proposed can improve control performance. Though the
proposed algorithms are also derived based on a constant feedback gain assump-
tion, at each sampling time, the proposed algorithms obtain a variable feedback
gain by solving a simple optimisation problem. Therefore, the proposed al-
gorithms provided better control performance than on-line RMPC (Kothare
et al., 1996) and off-line RMPC (Bumroongsri & Kheawhom, 2012c). Control
performance of interpolated vertex control (Nguyen et al., 2013) was also better
than that of on-line RMPC (Kothare et al., 1996) and off-line RMPC (Bum-
roongsri & Kheawhom, 2012c). However, control performance of interpolated



Figure 6: Cumulative cost for case study 1.

vertex control (Nguyen et al., 2013) was slightly lower than that of the proposed
algorithms.

Table 1 shows the on-line computational cost of each algorithm. For all
off-line RMPC algorithms, most computational burdens are moved off-line so
on-line computation is tractable. Off-line RMPC(Bumroongsri & Kheawhom,
2012c) does not solve optimisation problems on-line. Thus, this algorithm is
very fast. An optimisation problem involved in both Algorithms 1 and 2 is lin-
ear programming and the number of constraints involved is linearly dependent
on the number of vertices of the uncertain polytope and size of the polyhedral
invariant sets involved. The number of constraints involved in Algorithm 1 is
smaller than that of Algorithm 2. The online computational time of interpo-
lation vertex control (Nguyen et al., 2013) was comparable with the proposed
algorithms. At each sampling time, this algorithm requires solving linear pro-
gramming problems on variable decomposition as well as vertex control action.

Four-tank system

In this case study, simulation of a four-tank system which is similar to the
system considered in Johansson (2000) was considered. A schematic diagram of



Table 1: On-line computational time required in case study 1.

Algorithm On-line computational time
On-line RMPC(Kothare et al., 1996) 2.232 s
Off-line RMPC(Bumroongsri & Kheawhom, 2012c) <0.001 s
Algorithm 1 0.004 s
Algorithm 2 0.005 s
Interpolated vertex control(Nguyen et al., 2013) 0.007 s

this system is shown in Fig. 7. The system is described by (33-36):

dh1

dt
= −5.91

√
h1 + 5.91

√
h3 + 0.74F1 (33)

dh2

dt
= −5.91

√
h2 + 5.91

√
h4 + 0.74F2 (34)

dh3

dt
= −5.91

√
h3 + 1.73F2 (35)

dh4

dt
= −5.91

√
h4 + 1.73F1 (36)

where hi is a liquid level of tank i, i = 1, 2, 3, 4, and F1 and F2 are inlet
flow rates.

Let h̄i = hi − hi,eq, i = 1, 2, 3, 4 and F̄i = Fi − Fi,eq, i = 1, 2. Subscript
eq denotes a corresponding variable at equilibrium condition, h1,eq = 14.98 cm;
h2,eq = 14.98 cm; h3,eq = 7.34 cm; h4,eq = 7.34 cm and Fi,eq = 9.25 m3/hr,
i = 1, 2.

The objective is to regulate h̄i, i = 1, 2, 3, 4 to the origin by manipu-
lating F̄1 and F̄2. The input constraints of −9.25 ≤ F̄1 ≤ 9.25 m3/hr and
−9.25 ≤ F̄2 ≤ 9.25 m3/hr are symmetric. In contrast, output constraints of
−13.98 ≤ h̄1 ≤ 35.02 cm, −13.98 ≤ h̄2 ≤ 35.02 cm, −6.34 ≤ h̄3 ≤ 42.66 cm,
and −6.34 ≤ h̄4 ≤ 42.66 cm are asymmetric.

By rewriting (33-36) in deviation form and rearranging all uncertain vertices,
the system is written in differential inclusion form as follows:

[ ˙̄h1,
˙̄h2,

˙̄h3,
˙̄h4]T ∈

16∑
l=1

λl[Al[h̄1, h̄2, h̄3, h̄4]T +Bl[F̄1, F̄2]T ]. (37)

A discrete-time model is obtained by discretisation of (37) using Euler first-
order approximation with a sampling period of 0.1 min. The said model is
omitted here for brevity. Tuning parameters are R = [[0.01, 0], [0, 0.01]]T and
Θ = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]T . It should be noted that only



Figure 7: Four-tank system considered in case study 2.



Figure 8: Regulated state (h̄1) profiles for case study 2.

states h̄1 and h̄2 and control inputs F̄1 and F̄2 contributed to the performance
cost.

A sequence of six polyhedral invariant sets with associated feedback gains
were generated by using the following states, [13.5, 13.5, 6.3, 6.3]T , [4.0, 4.0,
2.0, 2.0]T , [2.5, 2.5, 1.0, 1.0]T , [1.0, 1.0, 0.5, 0.5]T , [0.2, 0.2, 0.1, 0.1]T and [0.05, 0.05,
0.01, 0.01]T . A maximal robustly controlled invariant set projected from the
innermost invariant set was also constructed for interpolated vertex control
(Nguyen et al., 2013). Interpolated vertex control (Nguyen et al., 2013) provided
the largest stabilisable region. The system was regulated from an initial state
of [h̄1, h̄2, h̄3, h̄4]T = [−12.0, 12.0, 10.0, 10.0]T that belongs to the stabilisable
region of all algorithms, to the origin.

Figures 8 and 9 show profiles of regulated states h̄1 and h̄2, respectively.
Figures 10 and 11 show profiles of control inputs F̄1 and F̄2, respectively. All
algorithms could drive the initial state to the origin without violation of input
and state constraints. The settling times of on-line RMPC (Kothare et al.,
1996) and off-line RMPC (Bumroongsri & Kheawhom, 2012c) were about 4.0
mins. In comparison, the proposed algorithms could drive the system to the
origin in about 1.8 mins. On-line RMPC(Kothare et al., 1996) and off-line
RMPC (Bumroongsri & Kheawhom, 2012c) provided slower responses than in-



Figure 9: Regulated state (h̄2) profiles for case study 2.



Figure 10: Control input F̄1 profiles for case study 2.



Figure 11: Control input F̄2 profiles for case study 2.



Figure 12: Cumulative cost for case study 2.

terpolated vertex control (Nguyen et al., 2013) and the proposed algorithms.
Interpolated vertex control (Nguyen et al., 2013) is slightly slower than the pro-
posed algorithms. Both Algorithms 1 and 2 produced similar responses. There
was a difference between Algorithm 1 and Algorithm 2 in control input F̄1 and
F̄2 profiles. Saturation of control input F̄1 was observed in Algorithms 1 and
2 from 0 to 0.75 min. A spiking effect of control input which is caused by the
switching of feedback control gains, was noticed in off-line RMPC (Bumroongsri
& Kheawhom, 2012c).

Figure 12 shows the cumulative performance cost. The cumulative cost of
Algorithms 1 and 2 were lower than those of on-line RMPC(Kothare et al.,
1996), off-line RMPC(Bumroongsri & Kheawhom, 2012c) and interpolated ver-
tex control (Nguyen et al., 2013). Control performance of Algorithm 1 was
slightly better than that of Algorithm 2.

Table 2 shows the on-line computational cost of each algorithm. Although,
on-line computational time of Algorithms 1 and 2 were higher than that of off-
line RMPC(Bumroongsri & Kheawhom, 2012c), the proposed algorithms were
much faster than on-line RMPC(Kothare et al., 1996). The online computa-
tional time of interpolation vertex control (Nguyen et al., 2013) was comparable
with the proposed algorithms. Computational times required in this case study



Table 2: On-line computational time required in case study 2.

Algorithm On-line computational time
On-line RMPC(Kothare et al., 1996) 14.639 s
Off-line RMPC(Bumroongsri & Kheawhom, 2012c) <0.001 s
Algorithm 1 0.012 s
Algorithm 2 0.018 s
Interpolated vertex control(Nguyen et al., 2013) 0.024 s

were larger than those of case study 1 because the number of vertices of the
uncertain polytope and the size of the polyhedral invariant set involved in case
study 2 were larger than those of case study 1.



Conclusion

In this paper, implementation of interpolation algorithms on RMPC of polytopic
uncertain discrete-time systems was studied. Control algorithms employed an
off-line solution of an optimal control optimisation problem to determine a feed-
back gain. A sequence of nested polyhedral invariant sets associated with each
feedback gain pre-computed was constructed. At each sampling time, the small-
est invariant set which contained the current state was identified. If the current
invariant set is the innermost set, the pre-computed feedback gain associated
with the innermost set is applied to the process. If otherwise, a feedback gain
is variable and determined by linear interpolation which is a convex combina-
tion of the pre-computed feedback gains associated with the current invariant
set and the adjacent smaller invariant set. Two interpolation algorithms were
proposed. Further, two case studies were used to illustrate the applicability of
the algorithms proposed. An optimisation problem involved in the proposed al-
gorithms was linear programming, and the number of constraints involved was
linearly dependent on the number of vertices of the uncertain polytope and the
size of the polyhedral invariant set involved. The number of constraints involved
in Algorithm 1 was smaller than that of Algorithm 2. The simulation results
showed that the proposed algorithms yielded better control performance than
existing RMPC algorithms while on-line computation was still tractable.

Future perspective

In this work, the interpolation based control algorithms was designed for a
linear system because of two reasons. First, computation of an invariant set for
a linear system is much more easy than that of a non-linear system. Second,
for the recursive feasibility and asymptotic stability proof of the interpolation
based control scheme, the linearity of the system and the convexity of the feasible
region shows important advantages.

For the class of nonlinear models, the analysis and control design is sig-
nificantly more difficult. There is no constructive procedure for computing
the feasible invariant sets for non-linear systems. In addition, these sets are
generally non-convex. Though, the interpolation principle is held, the practi-
cal computation of the level sets and the associated vertex control will not be
straightforward. If the linear assumptions are relaxed but a certain structure is
preserved, an invariant set for a certain class of homogeneous non-linear system
can be efficiently computed.
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This work studies interpolation techniques that can be employed on off-line robust constrained model
predictive control (MPC) for a discrete time-varying system with polytopic parametric uncertainty.
A sequence of feedback gains is determined by solving off-line a series of optimal control optimiza-
tion problems. A sequence of nested corresponding polyhedral invariant set is then constructed. At each
sampling time, the smallest invariant set containing the current state is determined. If the current invariant
set is the innermost set, the pre-computed gain associated with the innermost set is applied. If otherwise,
a feedback gain is variable and determined by a linear interpolation of the pre-computed gains. Two
interpolation algorithms are investigated. The proposed algorithms are illustrated with case studies of a
two-tank system and a four-tank system. The simulation results showed that the proposed interpolation
techniques can improve control performance of off-line robust MPC while on-line computation is still
tractable.

Keywords: discrete-time polytopic uncertain system; polyhedral invariant set; robust model predictive
control; interpolation-based control.

1. Introduction

Model predictive control (MPC) is recognized as an advanced control algorithm which can effectively
handle multiple input multiple output processes with constraints (Qin & Badgwell, 2003). Traditionally,
MPC is derived by using a linear time invariant (LTI) model. At each sampling time, the algorithm
uses an explicit LTI model to solve an optimal control problem, and implements the first element of
the optimal input sequence computed. However, the behaviour of real process usually deviates from
the linear model used in controller synthesis. A discrepancy between the behaviour of the process and
that of the model used leads to deterioration of control performance. Thus, a conventional linear MPC
based on an LTI model is often unsuitable to deal with a non-linear system or a system containing
uncertainty.

Robust MPC (RMPC) has been introduced to guarantee robustness as well as constraint satisfaction
against uncertainty. At each sampling time, a feedback gain that can robustly stabilize the closed-loop
system is determined by solving an optimal control problem (Kothare et al., 1996; Kouvaritakis et al.,

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2000; Schuurmans & Rossiter, 2000; Lee & Kouvaritakis, 2002; Bemporad et al., 2003; Veselý et al.,
2010; Li & Xi, 2011; Wang, 2012; He et al., 2014).

In Kothare et al. (1996), the optimization problem involved is formulated as minimization of the
worst-case performance cost subjected to input, output and stability criteria constraints. The stability
criteria constraint is derived based on a single Lyapunov function. An ellipsoidal invariant set containing
the current state is constructed to guarantee robust stability. Any states in the invariant set can be driven
to the origin by using the feedback gain computed.

Several approaches have been introduced in order to improve control performance of RMPC. RMPC
algorithms based on a parameter-dependent Lyapunov function (PDLF) have been proposed (Cuzzola
et al., 2002; Mao, 2003). The idea of using PDLF was further extended to the case of LPV systems
(Wada et al., 2006) where a scheduling parameter is considered in controller synthesis. However, the
number of decision variables and constraints involved in an associated optimization problem drastically
increases. Thus, an application of these algorithms is limited to relatively slow dynamic processes.

RMPC algorithms usually assume that a feedback gain is constant throughout an infinite horizon
(Kothare et al., 1996). Thus, one way to improve control performance is to introduce a sequence of free
control inputs to the control law (Schuurmans & Rossiter, 2000; Casavola et al., 2002; Bumroongsri &
Kheawhom, 2012b). Unfortunately, more on-line computational time is required to calculate these free
control inputs.

Though, RMPC can handle polytopic uncertain system, RMPC is computationally prohibitive in
practical situations. To overcome an excessive computational cost of RMPC application, a synthesis of
off-line RMPC for polytopic uncertain system has been motivated (Wan & Kothare, 2003; Angeli et al.,
2008; Nguyen et al., 2012).

In Nguyen et al. (2012), an explicit solution of multi-parametric optimization problem was used to
construct a control law that is a piecewise affine feedback defined over a polyhedral partition of the
state space. In Wan & Kothare (2003), on-line computational time was reduced by pre-computing off-
line a sequence of feedback gains corresponding to a sequence of ellipsoidal invariant sets. At each
sampling time, a feedback gain applied to the process is calculated by linear interpolation between the
pre-computed feedback gains. This strategy was further extended by using nominal performance cost
as proposed in Ding et al. (2007).

An off-line RMPC for LPV system was introduced in Bumroongsri & Kheawhom (2012a). This
algorithm used the algorithm proposed in Wada et al. (2006) to compute a sequence of feedback gains
in off-line fashion. A sequence of corresponding ellipsoidal invariant sets is also off-line pre-computed.
At each sampling time, the smallest ellipsoid containing the current state is determined. A feedback
gain is obtained by linear interpolation between the pre-computed feedback gains. As the interpola-
tion technique used does not require solving any optimization problems, the computational burden is
very small.

Though a polyhedral invariant set has some advantages over an ellipsoidal invariant set such as bet-
ter handling of asymmetric constraints and enlargement of domain of attraction, an ellipsoidal invari-
ant set is usually used in RMPC formulation due to its relatively low on-line computational burden.
In recent years, an off-line RMPC algorithm based on polyhedral invariant set has been developed
in Bumroongsri & Kheawhom (2012c). A sequence of polyhedral invariant sets corresponding to a
sequence of pre-computed feedback gains is constructed off-line by using the algorithm proposed in
Pluymers et al. (2005a). At each sampling time, the smallest polyhedral invariant set containing the cur-
rent state is determined. The corresponding feedback gain is then implemented to the process without
interpolation of the pre-computed feedback gains. This algorithm provided a larger stabilizable region
than off-line RMPC (Wan & Kothare, 2003). However, a spiking effect of control input caused by a
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switching of feedback gains was observed. Therefore, the algorithm requires constructing a large num-
ber of polyhedral invariant sets in order to reduce the spiking effect as well as to improve control per-
formance. Consequently, large data storage is required. Later, an interpolation technique for polyhedral
invariant sets was introduced to off-line RMPC for polytopic uncertain systems in order to improve con-
trol performance (Bumroongsri & Kheawhom, 2013). The interpolation algorithm could significantly
improve control performance and eliminate the spiking effect of control input.

An interpolation-based MPC using polyhedral invariant set was proposed in Rossiter et al. (2004).
The algorithm used decomposition variables and solved on-line optimization on performance index
subjected to constraint set. The paper highlighted the potential benefits of using interpolation to generate
predictive control algorithm and to enlarge a stabilizable region. However, the technique proposed was
only developed for an LTI system.

In Nguyen et al. (2013), an interpolated vertex control for a linear time-varying (LTV) discrete-time
system was introduced. The algorithm uses variable decomposition and convex interpolation between
vertex control law and local linear feedback control law. At each sampling time, the algorithm solves
linear programming problems on variable decomposition as well as vertex control action. This algorithm
has advantages in terms of size of stabilizable region.

In this paper, two interpolation techniques, employed on off-line RMPC based on polyhedral invari-
ant set, were investigated. The proposed algorithms are not based on variable decomposition. In the first
technique, the parameter used in the interpolation is minimized subjected to constraint set. In the second
technique, the parameter used in the interpolation is obtained by minimizing constraint violation of the
adjacent smaller invariant set subjected to constraint set. The paper is organized as follows. In Section 1,
the background of RMPC as well as interpolation techniques used in off-line RMPC were introduced. In
Section 2, description of the system and control problem is presented. In Section 3, RMPC and polyhe-
dral invariant set construction are described. In Section 4, the proposed control algorithms are presented.
In Section 5, implementation of the algorithms proposed is illustrated. In the final section, the paper is
concluded.

Notation

For a matrix A, A� denotes its transpose, A−1 denotes its inverse. I denotes an identity matrix. For a state
vector x, xk denotes a state measured at time k, xk+i denotes a state at prediction time k + i predicted at
time k. yk and uk denote an output and a control input at real time k, respectively. The symbol ∗ denotes
the corresponding transpose of a lower block part of symmetric matrices.

2. Problem description

In this work, a discrete-time LTV system with polytopic parametric uncertainty as shown in (2.1) is
taken into account:

xk+1 = Akxk + Bkuk

yk = Ckxk

(2.1)

where xk ∈ Rnx is a state vector that can be accurately measured or estimated. uk ∈ Rnu is a control input
vector, and yk ∈ Rny is a control output vector. A system matrix Ak , a control matrix Bk and an output
matrix Ck are assumed to be within a polytope:

[Ak , Bk , Ck] ∈ Co{[A1, B1, C1], . . . , [Al, Bl, Cl], . . . , [AL, BL, CL]}.
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Co denotes a convex hull with [Al, Bl, Cl] uncertain vertices. Any [Ak , Bk , Ck] within the polytope is a
convex combination of all vertices such that

[Ak , Bk , Ck] =
L∑

l=1

λl,k[Al, Bl, Cl]

L∑
l=1

λl,k = 1

where 0 � λl,k � 1 is an uncertain parameter vector.
The aim is to find a state feedback control law:

uk = Kkxk (2.2)

that can stabilize the system and achieve the minimum worst-case performance cost defined as in (2.3)
while satisfying input, output and state constraints as in (2.4–2.6):

min
uk+i

max
[A,B,C]∈Ω

∞∑
i=0

[
xk+i

uk+i

]� [
Θ 0
0 R

] [
xk+i

uk+i

]
(2.3)

s.t. uh,min � uh,k+i � uh,max, h = 1, . . . , nu (2.4)

yr,min � yr,k+i � yr,max, r = 1, . . . , ny (2.5)

xs,min � xs,k+i � xs,max, s = 1, . . . , nx (2.6)

where Θ and R are weighting matrices of states and control inputs, respectively.

3. RMPC and polyhedral invariant set

An on-line RMPC for a system with polytopic uncertainty was introduced by Kothare et al. (1996). An
optimal control problem solved in each sampling time is shown in (3.1–3.5):

min
γ ,Y ,Q

γ (3.1)

s.t.

[
1 ∗
xk Q

]
� 0 (3.2)

⎡
⎢⎢⎢⎣

Q ∗ ∗ ∗
AlQ + BlY Q ∗ ∗

Θ1/2Q 0 γ I ∗
R1/2Y 0 0 γ I

⎤
⎥⎥⎥⎦� 0 ∀l = 1, . . . , L (3.3)

[
X ∗

Y� Q

]
� 0, Xhh � u2

h,max, h = 1, . . . , nu (3.4)
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[
S ∗

(AlQ + BlY)�C� Q

]
� 0 ∀l = 1, . . . , L

Srr � y2
r,max, r = 1, . . . , ny (3.5)

where Q > 0 is a symmetrical matrix.
The problem presented in (3.1–3.5) is a convex optimization problem with linear matrix inequal-

ities (LMI). By solving this problem, a state feedback control law uk = Kxk with a feedback gain
K = YQ−1 that can stabilize the system while satisfying input and output constraints, is obtained. A proof
of this algorithm can be found in Kothare et al. (1996).

At each sampling time, the algorithm constructs an ellipsoidal invariant set S = {x|x�Q−1x � 1} to
guarantee stability of the closed loop system. The advantage of using an ellipsoidal set lies in the fact
that the constraints involved can be expressed in an LMI form.

By giving a feedback gain K that can stabilize the system, the polyhedral invariant set S =
{x|Mx � d} with largest domain of attraction can be constructed using the following procedure
(Pluymers et al., 2005b).

Procedure 1:

(1) Set i = 0; Mi = [I, −I, C1, −C1, . . . , Cl, −Cl, . . . , CL, −CL, K, −K]�; di = [xmax, −xmin,
ymax, −ymin, . . . , ymax, −ymin, . . . , ymax, −ymin, umax, −umin]�; Si = {x|Mix � di}.

(2) Set i = i + 1; Mi = [Mi−1, Mi−1[A1 + B1K], . . . , Mi−1[Al + BlK], . . . , Mi−1[AL + BLK]]�;
di = [di−1, di−1, . . . , di−1, . . . , di−1]�; Si = {x|Mix � di}, and eliminate redundant inequalities
from the polytope Si.

(3) If Si |= Si−1, then repeat Step 2, if otherwise stop the algorithm and S = {x | Mix � di}.
Theorem 3.1 For an LTV system as shown in (2.1), given the control law uk = Kxk with a state feed-
back gain K = YQ−1 provided by solving the optimization problem presented in (3.1–3.5), the polyhe-
dral set S = {x | Mx � d} constructed by using Procedure 1 provides a set of states whereby the system
will evolve to the origin without input and output constraints violation.

Proof. The feedback gain K used in the construction of the polyhedral invariant set is obtained by
solving convex optimization problem with LMI constraints as shown in (3.1–3.5). The satisfaction of
(3.3) for a state feedback gain K ensures that

[[Al + BlK]xk]�γ Q−1[[Al + BlK]xk] − x�
k γ Q−1xk � −[x�

k Θxk + u�
k Ruk], l = 1, . . . , L.

Thus, Vk = x�
k γ Q−1xk is a strictly decreasing Lyapunov function and the closed-loop system is robustly

stabilized by the state feedback gain K.
By following Procedure 1, state, output and input constraints at time step k + i, i = 0, . . . , imax are

repeatedly added to define a polyhedral invariant set Si = {x | Mix � di}, and all redundant constraints
are removed. There must exist a finite index i = imax such that Mi = Mi+1 because of the contraction as
the feedback gain K is able to ensure robust stability and constraint satisfaction of the system. Hence,
a set of initial states S = {x | Mx � d} is constructed such that all predicted states remain inside S and
approach to the origin without constraint violation. Moreover, the polyhedral invariant set constructed
is never an empty set because the feedback gain K given is a stabilizable gain. �
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4. Off-line RMPC and the proposed interpolation algorithms

In this section, off-line RMPC and the proposed interpolation algorithms are described. An off-line
RMPC consists of off-line and on-line calculations. The purpose of the off-line calculation is to gen-
erate a sequence of feedback gains, and a sequence of nested polyhedral invariant sets. The off-line
calculation used in this work is identical to the off-line RMPC proposed in Bumroongsri & Kheawhom
(2012c). The purpose of the on-line calculation is to determine a variable feedback gain applied to the
process at each sampling time.

4.1 Off-line calculation

• Choose a sequence of states xm, m = 1, . . . , mmax where xm+1 is closer to the origin than xm. For
each xm solve the optimization problem in (3.1–3.4) by replacing xk with xm in order to obtain a
corresponding feedback gain:

Km = YmQ−1
m .

In addition, xm is chosen such that ε−1
m+1 ⊂ ε−1

m where εm = {x | x�Q−1
m x � 1

}
. Moreover, for each

m |= mmax, there must exist a matrix P > 0 satisfying:

P − [Al + BlKm]�P[Al + BlKm] > 0, l = 1, . . . , L (4.1)

P − [Al + BlKm+1]�P[Al + BlKm+1] > 0, l = 1, . . . , L (4.2)

to assure robust stability satisfaction of a feedback gain K = λKm + (1 − λ)Km+1, 0 � λ � 1 which
is a convex combination between Km and Km+1.

Each feedback gain Km is derived based on the minimization of the upper bound of infinite hori-
zon worst-case performance. The output constraint in (3.5) is relaxed in order to enlarge the domain
of attraction. The input, output and state constraints are properly handled during the polyhedral
invariant set construction in the next step.

• For each feedback gain Km = YmQ−1
m , m = 1, . . . , mmax as previously calculated, the corresponding

polyhedral invariant set Sm = {x | Mmx � dm} is constructed by using Procedure 1.

The existence of a common Lyapunov function P in (4.1) and (4.2) depends on the difference between
xm and xm+1. (4.1) and (4.2) can be satisfied by appropriately selecting xm and xm+1. For example, xm

and xm+1 should be close enough so that Q−1
m can be used as a common Lyapunov function P between

Km and Km+1. In such case, (4.2) becomes

Q−1
m − [Al + BlKm+1]�Q−1

m [Al + BlKm+1] > 0, l = 1, . . . , L

which defines the limit of Km+1.

4.2 On-line calculation

In the on-line calculation, a feedback gain applied at each sampling time is determined. In Bumroongsri
& Kheawhom (2012c), at each sampling time, the smallest invariant set that can embed a measured state
is determined, and a corresponding feedback gain is then implemented. In this work, a feedback gain at
each sampling time is variable and computed using an interpolation technique.
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4.2.1 Algorithm 1 The feedback gain implemented is computed by linear interpolation between the
pre-computed feedback gains. At each sampling time, the current state xk is measured and the smallest
polyhedral invariant set Sm = {x | Mmx � dm} containing the current state is determined.

If xk ∈ Sm and xk /∈ Sm+1, ∀m � mmax − 1, a variable feedback gain Kk = λkKm + (1 − λk)Km+1 can
be obtained by solving the optimization problem in (4.3–4.7):

min
λk

λk (4.3)

s.t. Mm[Al + BlKk]xk − dm � [0, 0, . . . , 0]�, l = 1, . . . , L (4.4)

umin � Kkxk � umax (4.5)

Kk = λkKm + (1 − λk)Km+1 (4.6)

0 � λk � 1. (4.7)

If otherwise, xk ∈ Smmax , the constant feedback gain Kmmax is applied.
The optimization problem involved is formulated as linear programming and the number of con-

straints involved is linearly dependent on the number of vertices of the uncertain polytope.

4.2.2 Algorithm 2 The feedback gain implemented is computed by linear interpolation between the
pre-computed feedback gains to minimize largest constraint violation to the adjacent smaller invariant
set in one step prediction. At each sampling time, the current state xk is measured and the smallest
polyhedral invariant set Sm = {x | Mmx � dm} containing the current state is determined.

If xk ∈ Sm and xk /∈ Sm+1, ∀m � mmax − 1, a feedback gain Kk = λkKm + (1 − λk)Km+1 can be
obtained by solving the problem in (4.8–4.13):

min
γkλk

γk (4.8)

s.t. Mm[Al + BlKk]xk − dm � [0, 0, . . . , 0]�, l = 1, . . . , L (4.9)

Mm+1[Al + BlKk]xk − dm+1 � [γk , γk , . . . , γk]�, l = 1, . . . , L (4.10)

umin � Kkxk � umax (4.11)

Kk = λkKm + (1 − λk)Km+1 (4.12)

0 � λk � 1. (4.13)

If otherwise, xk ∈ Smmax , the constant feedback gain Kmmax is applied.
The optimization problem involved is formulated as linear programming and the number of con-

straints involved is linearly dependent on the number of vertices of the uncertain polytope.

Theorem 4.1 For an LTV system as shown in (2.1), given an initial state xk ∈ Sm, the control law,
provided by Algorithms 1 and 2, assures robust stability to the closed-loop system while satisfying
input, output and state constraints.

Proof. As (4.1) and (4.2) are satisfied, a common Lyapunov function Vk = x�
k Pxk ensures that a feed-

back gain of Kk = λkKm + (1 − λk)Km+1, 0 � λk � 1, which is a convex combination of Km and Km+1,
is a stabilizable gain.
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In solving the problem in (4.3–4.7), (4.6) and (4.7) restrict Kk to be a convex combination. The
input constraint is guaranteed by (4.5). The state and output constraints are satisfied by forcing a one
step prediction state xk+1 to remain inside Sm as in (4.4). Thus, an initial state xk evolves closer to the
origin by passing Sm+1, Sm+2, . . . , Smmax . A state inside Smmax is then driven to the origin by the constant
feedback gain Kmmax because Smmax is satisfied with Theorem 3.1. Thus, Algorithm 1 assures robust
stability to the closed-loop system with input, output and state constraints satisfaction.

In solving the problem in (4.8–4.13), (4.12) and (4.13) restrict Kk to be a convex combination.
The input constraint is guaranteed by (4.11). The state and output constraints are satisfied by forcing
a one step prediction state xk+1 to remain inside Sm as in (4.9). Thus, an initial state xk evolves closer
to the origin by passing Sm+1, Sm+2, . . . , Smmax . A state inside Smmax is then driven to the origin by the
constant feedback gain Kmmax because Smmax is satisfied with Theorem 3.1. Thus, Algorithm 2 assures
robust stability to the closed-loop system with input, output and state constraints satisfaction. �

5. Case study

In this section, examples are presented to illustrate the proposed interpolation algorithms. The latter
are compared with on-line RMPC proposed in Kothare et al. (1996), off-line RMPC algorithm pro-
posed in Bumroongsri & Kheawhom (2012c) and interpolated vertex control proposed in Nguyen et al.
(2013). Numerical simulation was performed in 2.3 GHz Intel Core i-5 with 16 GB RAM, using SDPT3
(Tütüncü et al., 2003) and YALMIP (Löfberg, 2004) within Matlab R2011b environment.

5.1 Two-tank system

Application of a two-tank system which is similar to the system considered in Dlapa (2007) was con-
sidered. Spherical tanks with radius 0.5 m are connected as shown in Fig. 1. An outflow from each tank
depends on its current liquid level as F1 = 1.6971

√
h1 and F2 = 1.6971

√
h2. The system is modelled as

(5.1) and (5.2):

dh1

dt
= −1.6971

√
h1

πh1 − πh2
1

+ Fi

πh1 − πh2
1

(5.1)

dh2

dt
= 1.6971

√
h1

πh2 − πh2
2

− 1.6971
√

h2

πh2 − πh2
2

(5.2)

where h1 is a liquid level of tank 1, h2 is a liquid level in tank 2 and Fi is an inlet flow rate.
h̄1 = h1 − h1,eq, h̄2 = h2 − h2,eq and F̄i = Fi − Fi,eq are defined. Subscript eq denotes a corresponding

variable at equilibrium condition, h1,eq = 50 cm, h2,eq = 50 cm and Fi,eq = 1.2 m3/h.
The objective is to regulate h̄1 and h̄2 to the origin by manipulating F̄i. An input con-

straint of −0.5 � F̄i � 0.5 m3/h is symmetric. In addition, output constraints of −0.45 � h̄1 �
0.45 and −0.45 � h̄2 � 0.45 are also symmetric. It was assumed that the maximum values
of following terms including 1.6971/

(
πh1.5

1 − πh2.5
1

)− 1.6971
(
πh1.5

1,eq − πh2.5
1,eq

)
, 1/

(
πh1 − πh2

1

)−
1/
(
πh1,eq − πh2

1,eq

)
, 1.6971/h0.5

1

(
πh2 − πh2

2

)− 1.6971/h0.5
1,eq

(
πh2,eq − πh2

2,eq

)
and 1.6971/

(
πh1.5

2 −
πh2.5

2

)− 1.6971/
(
πh1.5

2,eq − πh2.5
2,eq

)
are small enough to be neglected. Thus, the system can be described
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Fig. 1. Two-tank system considered in case study 1.

in terms of deviation variables as in (5.3) and (5.4):

dh̄1

dt
= − 1.6971

πh1.5
1 − πh2.5

1

h̄1 + 1

πh1 − πh2
1

F̄i (5.3)

dh̄2

dt
= 1.6971

πh2h0.5
1 − πh2

2h0.5
1

h̄1 − 1.6971

πh1.5
2 − πh2.5

2

h̄2. (5.4)

By rearranging (5.3) and (5.4) all 16 vertices of the uncertainty polytope, the system is represented
by the following differential inclusion:

[ ˙̄h1

˙̄h2

]
∈

16∑
l=1

λl

(
Al

[
h̄1

h̄2

]
+ BlF̄i

)
(5.5)

where
∑16

l=1 λl = 1, and 0 � λl � 1.
A discrete-time model is obtained by discretization of (5.5) using Euler first-order approximation

with a sampling period of 30 s. The said model is omitted here for brevity. Tuning parameters are
Θ = [[0, 0], [0, 1]]� and R = 0.01.

States of [h̄1, h̄2]� = [0.45, 0.45]� and [0.01, 0.01]� were used to generate feedback gains and to
construct polyhedral invariant sets (S1 and S2) using the algorithms described previously. Figure 2 shows
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Fig. 2. Invariant sets generated in case study 1.

the polyhedral invariant sets constructed. An initial state x ∈ S1 can be stabilized by off-line RMPC
(Bumroongsri & Kheawhom, 2012c) as well as the algorithms proposed. PN is a maximal robustly
controlled invariant set projected from S2. An initial state x ∈ PN can be stabilized by interpolated vertex
control (Nguyen et al., 2013). This algorithm provided the largest stabilizable region.

The system was regulated from an initial state of [h̄1, h̄2]� = [0.04, 0.3]� to the origin. The chosen
initial state belongs to the stabilizable region of all algorithms.Profiles of regulated state (h̄1 and h̄2) are
shown in Figs 3 and 4. All algorithms could drive the initial state to the origin without violation of input
and state constraints. As the tuning parameters of Θ = [[0, 0], [0, 1]]� and R = 0.01 are concerned,
only control input F̄i and state h̄2 contributed to the performance cost. The settling times of on-line
RMPC (Kothare et al., 1996) and off-line RMPC (Bumroongsri & Kheawhom, 2012c) were ∼2 hr. In
comparison, the proposed algorithms could drive the system to the origin in ∼1.2 hr. which is faster
than on-line RMPC (Kothare et al., 1996) and off-line RMPC (Bumroongsri & Kheawhom, 2012c).
Interpolated vertex control (Nguyen et al., 2013) is faster than on-line RMPC (Kothare et al., 1996) and
off-line RMPC (Bumroongsri & Kheawhom, 2012c) but slightly slower than the proposed algorithms.

Figure 5 shows control input F̄i profiles. A spiking effect of control input was noticed in off-line
RMPC (Bumroongsri & Kheawhom, 2012c). The spiking effect is caused by the switching of the feed-
back control law. Algorithms 1 and 2 produced similar responses and control input F̄i profiles. The
control input profiles of Algorithms 1 and 2 saturated between 0 and 0.15 hr. Control input saturation
was then repealed when states move closer to the origin. In on-line RMPC (Kothare et al., 1996), off-
line RMPC (Bumroongsri & Kheawhom, 2012c) and interpolated vertex control (Nguyen et al., 2013),
control input saturation was not observed.

Figure 6 shows the cumulative performance cost. Control performance of on-line RMPC (Kothare
et al., 1996) was better than that of off-line RMPC (Bumroongsri & Kheawhom, 2012c) because on-
line RMPC solves the optimization problem on-line and updates a feedback gain more frequently. Both
on-line RMPC (Kothare et al., 1996) and off-line RMPC (Bumroongsri & Kheawhom, 2012c) obtain a
feedback gain based on the assumption that the feedback gain remains constant throughout an infinite
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Fig. 3. Regulated state (h̄1) profiles for case study 1.

Fig. 4. Regulated state (h̄2) profiles for case study 1.

horizon. Saturation at one step in the horizon requires a small gain for all steps in the horizon. Thus, con-
trol performance deteriorates when input saturation occurs. Implementation of interpolation algorithms
proposed can improve control performance. Though the proposed algorithms are also derived based on
a constant feedback gain assumption, at each sampling time, the proposed algorithms obtain a variable
feedback gain by solving a simple optimization problem. Therefore, the proposed algorithms provided
better control performance than on-line RMPC (Kothare et al., 1996) and off-line RMPC (Bumroongsri
& Kheawhom, 2012c). Control performance of interpolated vertex control (Nguyen et al., 2013) was
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Fig. 5. Control input F̄i profiles for case study 1.

Fig. 6. Cumulative cost for case study 1.

also better than that of on-line RMPC (Kothare et al., 1996) and off-line RMPC (Bumroongsri &
Kheawhom, 2012c). However, control performance of interpolated vertex control (Nguyen et al., 2013)
was slightly lower than that of the proposed algorithms.

Table 1 shows the on-line computational cost of each algorithm. For all off-line RMPC algorithms,
most computational burdens are moved off-line so on-line computation is tractable. Off-line RMPC
(Bumroongsri & Kheawhom, 2012c) does not solve optimization problems on-line. Thus, this algorithm
is very fast. An optimization problem involved in both Algorithms 1 and 2 is linear programming and
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Table 1 On-line computational time required in case study 1

Algorithm On-line computational time (s)

On-line RMPC (Kothare et al., 1996) 2.232
Off-line RMPC (Bumroongsri & Kheawhom, 2012c) <0.001
Algorithm 1 0.004
Algorithm 2 0.005
Interpolated vertex control (Nguyen et al., 2013) 0.007

the number of constraints involved is linearly dependent on the number of vertices of the uncertain
polytope and size of the polyhedral invariant sets involved. The number of constraints involved in
Algorithm 1 is smaller than that of Algorithm 2. The on-line computational time of interpolation vertex
control (Nguyen et al., 2013) was comparable with the proposed algorithms. At each sampling time, this
algorithm requires solving linear programming problems on variable decomposition as well as vertex
control action.

5.2 Four-tank system

In this case study, simulation of a four-tank system which is similar to the system considered in Johans-
son (2000) was considered. A schematic diagram of this system is shown in Fig. 7. The system is
described by (5.6–5.9):

dh1

dt
= −5.91

√
h1 + 5.91

√
h3 + 0.74F1 (5.6)

dh2

dt
= −5.91

√
h2 + 5.91

√
h4 + 0.74F2 (5.7)

dh3

dt
= −5.91

√
h3 + 1.73F2 (5.8)

dh4

dt
= −5.91

√
h4 + 1.73F1 (5.9)

where hi is a liquid level of tank i, i = 1, 2, 3, 4, and F1 and F2 are inlet flow rates.
Let h̄i = hi − hi,eq, i = 1, 2, 3, 4 and F̄i = Fi − Fi,eq, i = 1, 2. Subscript eq denotes a corresponding

variable at equilibrium condition, h1,eq = 14.98 cm; h2,eq = 14.98 cm; h3,eq = 7.34 cm; h4,eq = 7.34 cm
and Fi,eq = 9.25 m3/hr, i = 1, 2.

The objective is to regulate h̄i, i = 1, 2, 3, 4 to the origin by manipulating F̄1 and F̄2. The input
constraints of −9.25 � F̄1 � 9.25 m3/hr and −9.25 � F̄2 � 9.25 m3/hr are symmetric. In contrast, output
constraints of −13.98 � h̄1 � 35.02 cm, −13.98 � h̄2 � 35.02 cm, −6.34 � h̄3 � 42.66 cm and −6.34 �
h̄4 � 42.66 cm are asymmetric.

By rewriting (5.6–5.9) in deviation form and rearranging all uncertain vertices, the system is written
in differential inclusion form as follows:

[ ˙̄h1, ˙̄h2, ˙̄h3, ˙̄h4
]� ∈

16∑
l=1

λl
[
Al
[
h̄1, h̄2, h̄3, h̄4

]� + Bl[F̄1, F̄2]�
]
. (5.10)
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Fig. 7. Four-tank system considered in case study 2.

A discrete-time model is obtained by discretization of (5.10) using Euler first-order approximation
with a sampling period of 0.1 min. The said model is omitted here for brevity. Tuning parameters
are R = [[0.01, 0], [0, 0.01]]� and Θ = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]�. It should be noted
that only states h̄1 and h̄2 and control inputs F̄1 and F̄2 contributed to the performance cost.

A sequence of six polyhedral invariant sets with associated feedback gains were generated by using
the following states, [13.5, 13.5, 6.3, 6.3]�, [4.0, 4.0, 2.0, 2.0]�, [2.5, 2.5, 1.0, 1.0]�, [1.0, 1.0, 0.5, 0.5]�,
[0.2, 0.2, 0.1, 0.1]� and [0.05, 0.05, 0.01, 0.01]�. A maximal robustly controlled invariant set projected
from the innermost invariant set was also constructed for interpolated vertex control (Nguyen et al.,
2013). Interpolated vertex control (Nguyen et al., 2013) provided the largest stabilizable region. The
system was regulated from an initial state of [h̄1, h̄2, h̄3, h̄4]� = [−12.0, 12.0, 10.0, 10.0]� that belongs
to the stabilizable region of all algorithms, to the origin.

Figures 8 and 9 show profiles of regulated states h̄1 and h̄2, respectively. Figures 10 and 11 show
profiles of control inputs F̄1 and F̄2, respectively. All algorithms could drive the initial state to the origin
without violation of input and state constraints. The settling times of on-line RMPC (Kothare et al.,
1996) and off-line RMPC (Bumroongsri & Kheawhom, 2012c) were ∼4.0 min. In comparison, the pro-
posed algorithms could drive the system to the origin in ∼1.8 min. On-line RMPC (Kothare et al., 1996)
and off-line RMPC (Bumroongsri & Kheawhom, 2012c) provided slower responses than interpolated
vertex control (Nguyen et al., 2013) and the proposed algorithms. Interpolated vertex control (Nguyen
et al., 2013) is slightly slower than the proposed algorithms. Both Algorithms 1 and 2 produced similar
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Fig. 8. Regulated state (h̄1) profiles for case study 2.

Fig. 9. Regulated state (h̄2) profiles for case study 2.

responses. There was a difference between Algorithms 1 and 2 in control input F̄1 and F̄2 profiles. Sat-
uration of control input F̄1 was observed in Algorithms 1 and 2 from 0 to 0.75 min. A spiking effect of
control input, which is caused by the switching of feedback control gains, was noticed in off-line RMPC
(Bumroongsri & Kheawhom, 2012c).

Figure 12 shows the cumulative performance cost. The cumulative cost of Algorithms 1 and 2 were
lower than those of on-line RMPC (Kothare et al., 1996), off-line RMPC (Bumroongsri & Kheawhom,
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Fig. 10. Control input F̄1 profiles for case study 2.

Fig. 11. Control input F̄2 profiles for case study 2.

2012c) and interpolated vertex control (Nguyen et al., 2013). Control performance of Algorithm 1 was
slightly better than that of Algorithm 2.

Table 2 shows the on-line computational cost of each algorithm. Although, on-line computational
time of Algorithms 1 and 2 were higher than that of off-line RMPC (Bumroongsri & Kheawhom,
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Fig. 12. Cumulative cost for case study 2.

Table 2 On-line computational time required in case study 2

Algorithm On-line computational time (s)

On-line RMPC (Kothare et al., 1996) 14.639
Off-line RMPC (Bumroongsri & Kheawhom, 2012c) <0.001
Algorithm 1 0.012
Algorithm 2 0.018
Interpolated vertex control (Nguyen et al., 2013) 0.024

2012c), the proposed algorithms were much faster than on-line RMPC (Kothare et al., 1996). The
on-line computational time of interpolation vertex control (Nguyen et al., 2013) was comparable with
the proposed algorithms. Computational times required in this case study were larger than those of case
study 1 because the number of vertices of the uncertain polytope and the size of the polyhedral invariant
set involved in case study 2 were larger than those of case study 1.

6. Conclusion

In this paper, implementation of interpolation algorithms on RMPC of polytopic uncertain discrete-time
systems was studied. Control algorithms employed an off-line solution of an optimal control optimiza-
tion problem to determine a feedback gain. A sequence of nested polyhedral invariant sets associated
with each feedback gain pre-computed was constructed. At each sampling time, the smallest invariant
set which contained the current state was identified. If the current invariant set is the innermost set, the
pre-computed feedback gain associated with the innermost set is applied to the process. If otherwise, a
feedback gain is variable and determined by linear interpolation which is a convex combination of the
pre-computed feedback gains associated with the current invariant set and the adjacent smaller invariant
set. Two interpolation algorithms were proposed. Furthermore, two case studies were used to illustrate
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the applicability of the algorithms proposed. An optimization problem involved in the proposed algo-
rithms was linear programming, and the number of constraints involved was linearly dependent on the
number of vertices of the uncertain polytope and the size of the polyhedral invariant set involved. The
number of constraints involved in Algorithm 1 was smaller than that of Algorithm 2. The simulation
results showed that the proposed algorithms yielded better control performance than existing RMPC
algorithms while on-line computation was still tractable.
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An Off-Line Formulation of Tube-Based Robust MPC
Using Polyhedral Invariant Sets

PORNCHAI BUMROONGSRI1 and SOORATHEP KHEAWHOM2

1Department of Chemical Engineering, Mahidol University, Nakhon Pathom, Thailand
2Department of Chemical Engineering, Chulalongkorn University, Bangkok, Thailand

In this paper, an off-line formulation of tube-based robust model predictive control (MPC) using polyhedral invariant sets is
proposed. A novel feature is the fact that no optimal control problem needs to be solved at each sampling time. Moreover, the
proposed tube-based robust MPC algorithm can deal with the linear time-varying (LTV) system with bounded disturbance. The
simulation results show that the state at each time step is restricted to lie within a tube whose center is the state of the nominal
LTV system that converges to the origin. Finally, the state is kept within a tube whose center is at the origin, so robust stability
is guaranteed. Satisfaction of the state and control constraints is guaranteed by employing tighter constraint sets for the nominal
LTV system.

Keywords: Bounded disturbance; Linear time-varying system; Robust stability; Tube-based robust MPC

Introduction

Tube-based robust model predictive control (MPC) is an
advanced control algorithm that can deal with model uncer-
tainty. The basic idea of tube-based robust MPC is to main-
tain a state trajectory of an uncertain system inside a
sequence of tubes (Rawlings and Mayne, 2009). Tube-based
robust MPC is motivated by the fact that a real state trajec-
tory differs from a state trajectory of a nominal system due
to uncertainty (Mayne and Langson, 2001). Chisci et al.
(2001) developed a tube-based robust model predictive
controller for the linear time-invariant (LTI) system subject
to bounded disturbance. The control law has the form
u¼Kxþ c, where K is obtained by solving an unconstrained
linear quadratic regulator (LQR) problem, x is the state, and
c is the vanishing input, that is, ci¼ 0 for i� control horizon.
The objective is to drive the state of an uncertain system to a
terminal set while using c as little as possible. Constraint ful-
fillment is guaranteed by replacing the original constraints
with more stringent ones. A larger control horizon implies
better control performance at the price of a higher computa-
tional load, so a suitable trade-off is required. Langson et al.
(2004) proposed tube-based robust MPC employing the
time-varying control inputs instead of the LTI control law.
A sequence of time-varying control inputs is obtained by
solving an optimal control problem subject to the additional
constraint sets in order to guarantee robust stability. Since

the control inputs are time-varying, the proposed MPC
algorithm can achieve better control performance than the
conventional tube-based MPC algorithm using the LTI con-
trol law. The price to be paid is the computational com-
plexity that increases with the prediction horizon.

Mayne et al. (2005) established robust exponential stab-
ility of the disturbance invariant set for the LTI system with
bounded disturbance. The optimal control problem solved
at each sampling time includes the initial state of the nom-
inal model as a decision variable. The result is that the value
function is zero in the disturbance invariant set so robust
exponential stability of the disturbance invariant set can be
established. The control law has the form u ¼ Kðx� �xxÞþ
�uu, where �xx and �uu are the state and control inputs of the nom-
inal system, respectively. Higher online computational time
is required because the optimal control problem with
increased decision variable has to be solved at each sampling
time. In the case when the state of the LTI system with
bounded disturbance is not exactly known, tube-based
robust MPC can be implemented based on the observer state
as proposed by Mayne et al. (2006). A simple Luenberger
observer is employed to estimate the state. The state esti-
mation and control errors at each time step are bounded
by minimal robust positively invariant sets. Hence, the
actual and observer states are restricted to lie within tubes
whose center is the state of the nominal system. The control
law has the form u ¼ Kðx̂x� �xxÞ þ �uu, where x̂x is the observer
state. The controller is based on the observer state so the
state �xx and control input �uu of the nominal system are subject
to tighter constraint sets than the case when the state is
exactly known. In Mayne et al. (2009), this idea is extended
to the case when the initial state estimation error does not lie
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in the minimal robust positively invariant set but it lies in the
time-varying set that converges to the minimal robust posi-
tively invariant set. In this case, higher online computational
time is required because the time-varying set is computed
online.

Tube-based robust MPC for tracking of LTI system with
bounded disturbance was presented by Limon et al. (2010).
The artificial steady variables are introduced as the decision
variables in the optimal control problem. If the target is
unreachable, the system will be steered to the neighborhood
of the artificial target. The proposed MPC algorithm is suit-
able for the system whose target is significantly changed.
However, the main drawback is that the proposed MPC
algorithm requires high online computational time because
some of the decision variables and constraints are intro-
duced to the optimal control problem. Gonzalez et al.
(2011) proposed tube-based robust MPC for tracking of lin-
ear time-varying (LTV) system subject to bounded disturb-
ance. The proposed MPC algorithm requires an additional
assumption that the time-varying parameter at each step
within the prediction horizon is known a priori. Then, a
reachable set at each time step is calculated instead of a dis-
turbance invariant set in order to reduce the conservative-
ness. Although the conservativeness is reduced, the
computational problem is more severe because both optimal
control problem and reachable set are computed online.

In this paper, an off-line formulation of tube-based robust
MPC using polyhedral invariant sets is proposed. The main
contributions are that: (i) we propose tube-based robust
MPC that solves all of the optimal control problems off-line,
so no optimal control problem needs to be solved online; (ii)
the proposed tube-based robust MPC algorithm can deal
with LTV system subject to bounded disturbance. Unlike
Gonzalez et al. (2011), the proposed algorithm does not
require an additional assumption that the time-varying para-
meter at each step within the prediction horizon is known a
priori. This article is organized as follows. The backgrounds
of the conventional tube-based robust MPC are described in
Backgrounds of Conventional Tube-Based Robust MPC sec-
tion. In An Off-Line Formulation of Tube-Based Robust
MPC Using Polyhedral Invariant Sets section, off-line
tube-based robust MPC is proposed. In Illustrative Example
section, the simulation results are presented. The conclusions
are then drawn in Conclusions section.

Nomenclature

Given two subsets X and Y of Rn, Minkowski set addition
and set difference are defined, respectively, by X�Y: ¼
fxþ yjx2X, y2Yg and X�Y: ¼fxjx�Y�Xg. The dis-
tance of a point x2R

n from a set Y�R
n is denoted by

d(x, Y): ¼ inffjx� yjjy2Yg where �j j denotes the Euclidean
norm. The distance of a point x2R

n from a point y2R
n

is denoted by d(x, y): ¼ jx� yj. For a matrix A, A> 0 means
that A is a positive-definite matrix and A< 0 means that A is
a negative-definite matrix. The spectral radius of a matrix A
is denoted by q(A). Convf � g denotes the convex hull of the
elements in f � g.

Backgrounds of Conventional Tube-Based Robust
MPC

In this section, some relevant backgrounds for the conven-
tional tube-based robust MPC are presented. Consider the
following discrete-time LTI system with disturbance

xþ ¼ Axþ Buþ w ð1Þ

where x2R
n is the state, u2R

m is the control input, w2R
n

is the bounded disturbance, and xþ2R
n is the successor

state. The system is subject to the state constraint x2X

and the control constraint u2U, where X�R
n and U�R

m

are compact, convex, and each set contains the origin as an
interior point. The disturbance is bounded, that is, w2W

where W�R
n is compact, convex, and contains the origin

as an interior point. The objective is to robustly stabilize
the system in Equation (1). The presence of a persistent dis-
turbance w means it is not possible to regulate the state x to
the origin. The best that can be hoped for is to regulate the
state to a neighborhood of the origin.

Let the nominal system be defined by

�xxþ ¼ A�xxþ B�uu ð2Þ

where �xx 2 Rn and �uu 2 Rm are the state and control inputs of
the nominal system, respectively. The predicted nominal state
trajectory and control sequence when the initial state is �xx0 are
denoted by �xx :¼ f�xx0; �xx1; . . . ; �xxNg and �uu :¼ f�uu0; �uu1; . . . ; �uuN�1g,
respectively, where N is the prediction horizon. Consider the
following equation which is the difference between Equations
(1) and (2)

xþ � �xxþ ¼ Aðx� �xxÞ þ Bðu� �uuÞ þ w ð3Þ
In order to counteract the effect of disturbance, the control

law u ¼ Kðx� �xxÞ þ �uu is employed, where K is the disturbance
rejection gain. The system in Equation (3) is rewritten as

xþ � �xxþ ¼ ðAþ BKÞðx� �xxÞ þ w ð4Þ

We will bound xþ � �xxþ by a robust positively invariant
set Z. The definition of Z for the LTI system with
disturbance is as follows:

Definition 1. The set Z�R
n is a robust positively invariant

set of the LTI system with disturbance xþ¼Axþw, if
AZ�W�Z for 8 x2Z and 8w2W.

For the system in Equation (4), it is clear that if K is
chosen such that q(AþBK)< 1, we can bound xþ � �xxþ

by a robust positively invariant set Z satisfying
(AþBK)Z�W�Z for 8ðx� �xxÞ 2 Z and 8 w2W. It is
desirable that Z be as small as possible. The minimal Z
can be calculated as (Kolmanovsky and Gilbert, 1998):

Z ¼ �
1

i¼0
ðAþ BKÞiW ¼W� ðAþ BKÞ

W� ðAþ BKÞ2W� ðAþ BKÞ3W� . . . ð5Þ
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If (AþBK) is nilpotent with index s, that is,
(AþBK)s¼ 0, then Z in Equation (5) can be finitely deter-
mined. In the case when (AþBK) is not nilpotent, Z in
Equation (5) can be approximated by using the method in
Raković (2005) and Raković et al. (2005).

Since xþ � �xxþ is bounded by Z, we can control the nom-
inal system �xxþ ¼ A�xxþ B�uu in such a way that LTI system
with disturbance xþ¼AxþBuþw satisfies the original state
and control constraints x2X and u2U, respectively. To
achieve this, the tighter constraint sets for the nominal sys-
tem are employed �xxi 2 X�Z, �uui 2 U�KZ for
i2f0, . . ., N� 1g. In order to ensure stability, an additional
terminal constraint is employed �xxN 2 X f � X�Z where
�XXf is the terminal constraint set. The cost function for a tra-
jectory of the nominal system �xxþ ¼ A�xxþ B�uu is

VNð�xx0; �uuÞ :¼
XN�1

i¼0
lð�xxi;�uuiÞ þ Vf ð�xxNÞ ð6Þ

where lð�xxi; �uuiÞ :¼ 1
2 ½�xxT

i Q�xxi þ �uuT
i R�uui	 is the stage cost;

Vf ð�xxNÞ :¼ 1
2

�xxT
NP�xxN is the terminal cost; Q, R, and P are

the positive definite weighting matrices. The terminal con-
straint set and the terminal cost must satisfy the following
usual assumptions (Mayne et al., 2000):

Assumption 1. ðAþBKÞ �XXf � �XXf ; �XXf �X�Z;KX f �U�;KZ.

Assumption 2. Vf ððAþ BKÞ�xxÞ þ lð�xx;K�xxÞ 
 Vf ð�xxÞ; 8�xx 2 �XXf .

In summary, at each sampling time the state x is mea-
sured and the following optimization problem is solved
online:

min
�xx0;�uu

VNð�xx0; �uuÞ ð7Þ

such that x 2 �xx0 � Z ð8Þ

�xxiþ1 ¼ A�xxi þ B�uui; i 2 f0; . . . ;N � 1g ð9Þ

�xxi 2 X� Z; �uui 2 U� KZ; i 2 f0; . . . ;N � 1g ð10Þ

�xxN 2 X f ð11Þ

Then, the control law u ¼ Kðx� �xxÞ þ �uu; �xx ¼ �xx0; �uu ¼ �uu0 is
implemented to the process.

An Off-Line Formulation of Tube-Based Robust MPC
Using Polyhedral Invariant Sets

It is seen that the conventional tube-based robust MPC in
Backgrounds of Conventional Tube-Based Robust MPC
section does not include a time-varying parameter in the
problem formulation. Moreover, the optimal control prob-
lem must be solved at each sampling time. In this section,
an off-line formulation of tube-based robust MPC is pre-
sented. No optimal control problem needs to be solved
online. Additionally, the time-varying parameter is included
in the problem formulation. Consider the following

discrete-time LTV system with disturbance

xþ ¼ Akxþ Bkuþ w ð12Þ

The descriptions for the state x2X, the control input
u2U, and the disturbance w2W are the same as in Back-
grounds of Conventional Tube-Based Robust MPC section.
The only difference is that, in this case, the matrices Ak and
Bk are not constant but they vary with the time-varying
parameter k. The time-varying parameter k can be measured
at each sampling time but its future values are uncertain. We
make the following assumption:

Assumption 3. ½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg, where
½AjBj	 are vertices of the convex hull and L is the number of
vertices of the convex hull. The pair ½Aj Bj	 is controllable.

Let the nominal LTV system be defined by

x0þ ¼ Akx0 þ Bku0 ð13Þ

where x0 2R
n and u0 2R

m are the state and control inputs
of the nominal LTV system, respectively. The pre-
dicted state trajectory and control sequence when the initial
state is x00 are denoted by x0 :¼ fx00; x01; . . . ; x0Ng and
u0 :¼ fu00; u01; . . . ; u0N�1g, respectively. Consider the following
equation which is the difference between the systems in
Equations (12) and (13):

xþ � x0þ ¼ Akðx� x0Þ þ Bkðu� u0Þ þ w ð14Þ

In order to counteract the effect of disturbance, the con-
trol law u¼K(x� x0)þ u0 is employed where K is the dis-
turbance rejection gain. The system in Equation (14) is
rewritten as

xþ � x0þ ¼ ðAk þ BkKÞðx� x0Þ þ w ð15Þ

We will bound xþ� x0þ by a robust positively invariant
set Z. The definition of Z for the LTV system with disturb-
ance is as follows:

Definition 2. The set Z�R
n is a robust positively

invariant set of the LTV system with disturbance
xþ¼Akxþw, if AkZ�W�Z for 8 x2Z, 8w2W, and

8Ak 2 ConvfAj; 8j 2 1; 2; . . . ;Lg.

For the system in Equation (15), it is clear that if K satis-
fies (A

j
þB

j
K)TP(A

j
þB

j
K)�P< 0, 8 j2f1, . . ., Lg where P is

a Lyapunov matrix, then ðAk þ BkKÞT PðAk þ BkKÞ�
P < 0; 8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg and we can
bound xþ� x0þ by a robust positively invariant set Z satisfy-
ing (AkþBkK)Z�W�Z for 8(x� x0)2Z, 8w2W and

8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg. It is desirable that
Z be as small as possible. Unlike Equation (5), in the case
of the LTI system with disturbance, the minimal Z of the
LTV system with disturbance is Z ¼ �1i¼0 ðAk þ BkKÞi W.
Since ½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg, the minimal
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Z of the LTV system with disturbance can be calculated as

Z ¼W� ConvfðAj þ BjKÞW; 8j 2 1; 2; . . . ;Lg
� ConvfðAj þ BjKÞðAl þ BlKÞ;W8j; l 2 1; 2; . . . ;Lg
� fConvðAj þ BjKÞðAl þ BlKÞðAm þ BmKÞ

W; 8j; l;m 2 1; 2; . . . ;Lg � . . . ð16Þ

Defining Fs :¼ �s�1
i¼0 ðAk þ BkKÞiW, F

s
can be properly

scaled for some finite integer s to obtain the outer approxi-
mation of Z in Equation (16). Since we can bound xþ�
x0þ by Z, the following proposition can be established:

Proposition 1. If x2x0 �Z and u¼K(x� x0)þ u0, then
xþ2 x0þ�Z for 8w2W and 8½AkBk	 2 Convf½AjBj	;
8j 2 1; 2; . . . ;Lg.

Proposition 1 states that the control law u¼K(x� x0)þ u0

keeps the state x of the LTV system with disturbance
xþ¼AkxþBkuþw close to the state x0 of the nominal
LTV system x0þ¼Akx0 þBku0. It is clear that if we can regu-
late x0 to the origin, then x must be regulated to a robust
positively invariant set Z whose center is at the origin. An
off-line robust MPC algorithm for the nominal LTV system
x0þ¼Akx0 þBku0 has been developed by Bumroongsri and
Kheawhom (2012). The problem of regulating the state x0

to the origin has been considered. In this approach, a
sequence of stabilizing feedback gains F

i
corresponding to

a sequence of polyhedral invariant sets P
i
, i¼f1, . . ., N

P
g,

where N
P

is the number of polyhedral invariant sets, is pre-
computed off-line by solving the optimal control problems
subject to LMI constraints (Boyd and Vandenberghe,
2004). At each sampling time, the state x0 is measured and
the smallest P

i
containing x0 is determined. Then, we set

the real-time stabilizing feedback gain F equal to F
i

and
apply the control law u0 ¼Fx0 to the process. The control
law u0 ¼Fx0 minimizes the following cost function:

V1ðx00; u0Þ :¼ max
½AkBk	2Convf½Aj Bj 	;8j21;2; ... ;Lg

X1
i¼0

x0Ti

Qx0i þ ðFx0iÞ
T RðFx0iÞ ð17Þ

where x0i is the state of the nominal LTV system at prediction
time i and Q and R are the positive-definite weighting
matrices. Additionally, the control law u0 ¼Fx0 ensures that
the Lyapunov function V(x0): ¼ x0T Px0 is a strictly decreas-
ing function satisfying

Vðx0þÞ � Vðx0Þ 
 �x0T Qx0 � ðFx0ÞT RðFx0Þ; 8½AkBk	 2
Convf½AjBj	; 8j 2 1; 2; . . . ;Lg ð18Þ

where P is a Lyapunov matrix. At each sampling time,
although the future values of the time-varying parameter k
in the prediction horizon (which is the infinite horizon in this
case) are unknown, the satisfaction of Equation (18) for the
stabilizing feedback gain F ensures that the time-varying set
of all future states Riþ1 ¼ ðAk þ BkFÞRi; Ro ¼ fx00g, con-
verges to the origin dð0;Riþ1Þ ! 0; 8½AkBk	 2 Conv

f½AjBj	; 8j 2 1; 2; . . . ;Lg. Hence, robust stability of the
nominal LTV system x0þ¼ (AkþBkF)x0 is guaranteed. In
order to guarantee satisfaction of the original state and con-
trol constraints, x2X and u2U, we must employ tighter
constraint sets for the nominal LTV system, that is, x0 2X�
Z and Fx0 2U�KZ. The control law u¼K(x� x0)þ u0 is
now rewritten as u¼K(x� x0)þFx0. An important
consequence is the following result:

Proposition 2 If x2x0 �Z, x0 2X� Z, and Fx0 2U�KZ,
then the control law u¼K(x� x0)þFx0 of the LTV system
with disturbance xþ¼AkxþBkuþw ensures satisfaction of
the original constraints x2X, u2U for 8w2W and

8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg.

Proposition 2 states that the control law u¼K(x� x0)þFx0

ensures satisfaction of the original state and control
constraints. In summary, off-line tube-based robust MPC for
LTV system with disturbance xþ¼AkxþBkuþw can be
formulated as follows:

Off-line:

Step 1: Calculate the disturbance rejection gain K satisfying
(A

j
þB

j
K)TP(A

j
þB

j
K)�P< 0, 8j2f1, . . ., Lg. Then,

calculate a tube Z in Equation (16).
Step 2: Calculate a sequence of stabilizing feedback gains F

i

and the corresponding sequence of polyhedral invariant
sets P

i
, i¼f1, . . ., N

P
g using the method in Bumroongsri

and Kheawhom (2012) with tighter constraint sets for
the nominal LTV system, that is, x0 2X� Z and
Fx0 2U�KZ.

Online:
At the first sampling time (t¼ 0) : Measure the state x and

the time-varying parameter k. Find the smallest polyhedral
invariant set P

i
containing the measured state x, set F¼F

i

and apply the control law u¼Fx to the process. Then, calcu-
late x0þ from x0þ¼ (AkþBkF)x. (Note that at the first sam-
pling time, x¼ x0 so the control law u¼K(x� x0)þFx0 is
reduced to u¼Fx.)

At each sampling time (t> 0) : Measure the state x and the
time-varying parameter k. Find the smallest polyhedral
invariant set P

i
containing x0 (which is calculated from the

previous step), set F¼F
i
, and apply the control law

u¼K(x� x0)þFx0 to the process. Then, calculate x0þ from
x0þ¼ (AkþBkF)x0.

Theorem 1. The proposed tube-based MPC algorithm steers
any initial state x of the system xþ¼AkxþBkuþw in a
sequence of polyhedral invariant setsP

i
, i¼f1, . . ., N

P
g to a

robust positively invariant set Z whose center is at the origin
and thereafter maintains the state in Z for 8w2W and

8½AkBk	 2 Convf½AjBj	; 8j 2 1; 2; . . . ;Lg.

Proof. Consider the following difference equation between
xþ¼AkxþBkuþw and x0þ¼Akx0 þBku0, where u¼K
(x� x0)þFx0 and u0 ¼Fx0,

xþ � x0þ ¼ ðAk þ BkKÞðx� x0Þ þ w ð19Þ
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The disturbance rejection gain K satisfies (A
j
þB

j
K)T

P(A
j
þB

j
K)�P< 0, 8 j2f1, . . ., Lg so xþ� x0þ is bounded

by a robust positively invariant set Z, that is, xþ2 x0þ�Z.
Since the stabilizing feedback gain F ensures that the Lyapu-
nov function is a strictly decreasing function satisfying
Equation (18), the state x0þ must converge to the origin
d(x0þ, 0)! 0. Since xþ2x0þ�Z, xþ must converge to a tube
Z whose center is at the origin d(xþ, Z)! 0. Finally, the dis-
turbance rejection controller u¼Kx keeps the state within a
tube Z whose center is at the origin. &

Corollary 1. The state of the LTV system with disturbance
xþ¼AkxþBkuþw at each time step is restricted to lie
within a tube whose center is the state of the nominal LTV
system x0þ¼Ak x0 þBku0.

Remark 1. For any initial state x contained in the first poly-
hedral invariant set P

1
(which is largest in the sequence ofP

i
,

i¼f1, . . ., N
P
g), there exists a control law that is able to steer

the state to a tube Z whose center is at the origin by satisfy-
ing all state and control constraints x2X, u2U for 8w2W

and 8½AkBk	 2 Convf½Aj Bj	; 8j 2 1; 2; . . . ;Lg. Hence, the
region of attraction for the proposed MPC algorithm is P

1
.

Illustrative Example

Example 1. Consider the following LTV system with
bounded disturbance

xþ ¼ 1 1
0 k

� �
xþ 0:5

1

� �
uþ w ð20Þ

The state x2X, where X: ¼fx2R
2j[0 1]x
 2g; the

control u2U, where U: ¼fu2 jjuj 
 1g; the disturbance
w2W, where W :¼ fw 2 R2j½�0:1� 0:1T 
 w 
 ½0:10:1Tg;
and the time-varying parameter k2L, where
L:¼fk2Rj0.9
 k
 1.1g. The weighting matrices in the cost
function (Equation (17)) are given as Q¼ I and R¼ 0.01.
The following nominal LTV system:

x0þ ¼ 1 1
0 k

� �
x0 þ 0:5

1

� �
u0 ð21Þ

is subject to tighter state and control constraints, that is,
x0 2X� Z and u0 2U�KZ. The disturbance rejection gain
K ¼ ½�0:66� 1:33	 satisfies (A

j
þB

j
K)TP(A

j
þB

j
K)�P< 0,

8 j2f1,2g. The difference equation between Equations (20)
and (21) can be written as

xþ � x0þ ¼ 1 1
0 k

� �
ðx� x0Þ þ 0:5

1

� �
ðu� u0Þ þ w ð22Þ

The closed-loop system is simulated using the initial state

x ¼ x0 ¼ ½�5� 2	T. The time-varying parameter k and the
disturbance w are varied as k¼ 1þ 0.1sin(4k) and

w ¼ ½0:1 sinð4kÞ0:1 sinð4kÞ	T , respectively, where k2f1, . . .,
19g is the simulation horizon.

Figure 1 shows a robust positively invariant set Z pre-
computed off-line. The set Z is shown in yellow. The blue
line represents the trajectory of the difference Equation
(22). Starting from the origin, it is seen that the trajectory
of the difference equation is restricted to lie within the set Z.

Figure 2 shows a sequence of 10 polyhedral invariant set-
sP

i
, i2f1, . . ., 10g precomputed off-line. In this example,

only 10 polyhedral invariant sets are precomputed because
P

i
are almost constant for i> 10. The red line represents

the trajectory of the nominal LTV system (Equation (21)).
Starting from the initial point x ¼ x0 ¼ ½�5� 2	T, the state
of the nominal LTV system at each time step is restricted
to lie within a sequence of 10 polyhedral invariant sets P

i
,

i2f1, . . ., 10g precomputed off-line. Finally, the state of
the nominal LTV system converges to the origin.

Fig. 1. The robust positively invariant set Z precomputed
off-line. The set Z is shown in yellow.

Fig. 2. A sequence of 10 polyhedral invariant sets Pi, i2f1, . . ., 10g
precomputed off-line. The polyhedral invariant sets are shown in
yellow.
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The trajectory of the LTV system with disturbance
(Equation (20)) is shown in Figure 3. The region shown in
green is the infeasible region of the state constraint X: ¼
fx2R

2j[0 1]x
 2g. The red line corresponds to the trajectory
of the nominal LTV system (Equation (21)). The cross-section
of a tube Z precomputed off-line is shown in yellow. It is seen
that the state of the LTV system with disturbance at each time
step is restricted to lie within a tube Z whose center is the state
of the nominal LTV system that converges to the origin.
Finally, the state of the LTV system with disturbance is kept
within a tube Z whose center is at the origin.

Figure 4 shows the control input as a function of sam-
pling time. The region shown in yellow is U�KZ. The red
line corresponds to the control input of the nominal LTV
system (Equation (21)). The black line corresponds to the
control input of the LTV system with disturbance (Equation
(20)). It can be observed that the control input of the

nominal LTV system is restricted to lie within the region
U�KZ so that the control input of the LTV system with dis-
turbance satisfies the control constraint U: ¼fu2 jjuj 
 1g.

Figure 5 shows the trajectories of the LTV system with
disturbance (Equation (20)) when the disturbance w2W is
randomly time-varying. At each time step, the states of the
LTV system with random disturbance lie within a tube Z
whose center is the state of the nominal LTV system that
converges to the origin.

Example 2. In this example, the proposed algorithm is applied
to a non-isothermal continuous stirred tank reactor (CSTR)
in which an irreversible exothermic reaction A!B takes
place. The dimensionless modeling equations of this CSTR
can be written as (Silva and Kwong, 1999; Nagrath et al.,
2002)

dx1

ds
¼ qðx1f � x1Þ � ux1 exp

x2

1þ x2

c

 !
þ w1 ð23Þ

dx2

ds
¼ qðx2f � x2Þ � dðx2 � x3Þ þ bux1 exp

x2

1þ x2

c

 !
þ w2

ð24Þ

dx3

ds
¼ d1½qcðx3f � x3Þ þ dd2ðx2 � x3Þ	 þ w3 ð25Þ

where x
1

is the dimensionless concentration of reactant A, x
2

is the dimensionless reactor temperature, and x
3
is the dimen-

sionless cooling jacket temperature. The manipulated
variable is the dimensionless coolant flow rate q

c
. The distur-

bances acting on the system are w
1
, w

2
, and w

3
. By linearizing

Fig. 3. The trajectory of the system when k¼ 1þ 0.1sin(4k) and

w ¼ ½0:1 sinð4kÞ 0:1 sinð4kÞ	T. The infeasible region of state con-

Fig. 4. The control input satisfying the input constraint U: ¼
fu2R jjuj 
 1g. The tightened input constraint U�KZ is shown
in yellow. The original input constraint U is shown in green.

Fig. 5. The trajectories of the system when k¼ 1þ 0.1sin(4k)
and w are randomly time-varying. The infeasible region of state
constraint is shown in green. The cross-section of tube is shown
in yellow.
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and discretizing Equation (23) to Equation (25) with a
sampling period DT, the following discrete-time state space
model is obtained:

where �xx1ðkÞ ¼ x1ðkÞ � x1S, �xx2ðkÞ ¼ x2ðkÞ � x2S, �xx3ðkÞ ¼
x3ðkÞ � x3S, �qqcðkÞ ¼ qcðkÞ � qcS, �ww1ðkÞ ¼ w1ðkÞ � w1S,
�ww2ðkÞ ¼ w2ðkÞ � w2S, �ww3ðkÞ ¼ w3ðkÞ � w3S, and jðx2SÞ ¼
exp x2S=1þ x2S

c

� �
. The model parameter values are shown

in Table I. The Damkohler number / is considered to be
uncertain and its value is randomly time-varying between
u

min
¼ 0.0648 and u

max
¼ 0.0792. The disturbances �ww1ðkÞ,

�ww2ðkÞ, and �ww3ðkÞ are randomly time-varying between �0.01
and 0.01. The constraints are �xx1ðkÞj j 
 0:5 and
�qqcðkÞj j 
 1:0. The weighting matrices in the cost function in

Equation (17) are Q¼ I and R¼ 0.1. The objective is to regu-
late the state from ð�xx1ð0Þ; �xx2ð0Þ; �xx3ð0ÞÞ ¼ ð0; 5; 0Þ to the
neighborhood of the origin by manipulating �qqcðkÞ.

Figure 6 shows a sequence of four polyhedral invariant
sets P

i
, i2f1, . . ., 4g precomputed off-line. Figure 7 shows

the trajectory of the uncertain CSTR. The black line is the
trajectory of the uncertain CSTR with disturbances (CSTR
containing both time-varying parameter and disturbances).
The red line is the trajectory of the uncertain CSTR with

no disturbances (CSTR containing only time-varying
parameter). It can be observed that the trajectory of the
uncertain CSTR with disturbances lies in a sequence of tubes

Table I. The model parameter values in Example 2

Parameter Value Parameter Value

q 1.0 d 0.3
x1f 1.0 b 8.0
u 0.0648–0.0792 d1 10
c 20 x3f �1.0
x2f 0.0 d2 1.0
x1S 0.8933 w1S 0.0
x2S 0.5193 w2S 0.0
x3S �0.5950 w3S 0.0
qcS 1.65

Fig. 6. A sequence of four polyhedral invariant sets Pi, i2f1, . . ., 4g
precomputed off-line. The polyhedral invariant sets are shown in
yellow.

�xx1ðk þ 1Þ
�xx2ðk þ 1Þ
�xx3ðk þ 1Þ

2
64

3
75

¼

1þ DT ½�q� ujðx2SÞ	 �DT ux1Sjðx2SÞ
1þx2S

cð Þ2
� �

0

DT ½bujðx2SÞ	 1þ DT �q� dþ bujðx2SÞx1S

1þx2S
cð Þ2

� �
DTd

0 DTdd1d2 1� DT ½d1qcS þ dd1d2	

2
666664

3
777775

�xx1ðkÞ
�xx2ðkÞ
�xx3ðkÞ

2
64

3
75

þ
0

0

DTd1½x3f � x3S	

2
64

3
75�qqcðkÞ þ DT

1 0 0

0 1 0

0 0 1

2
64

3
75

�ww1ðkÞ
�ww2ðkÞ
�ww3ðkÞ

2
64

3
75

ð26Þ

Figure 7. The trajectory of the uncertain CSTR. The
cross-section of tube is shown in yellow.

742 P. Bumroongsri and S. Kheawhom

D
ow

nl
oa

de
d 

by
 [

C
hu

la
lo

ng
ko

rn
 U

ni
ve

rs
ity

] 
at

 1
9:

58
 1

1 
A

pr
il 

20
16

 



shown in yellow. Finally, the state of the uncertain CSTR
with disturbances is steered to a tube whose center is at
the origin.

The proposed algorithm will be compared with
tube-based robust MPC algorithm of Mayne et al. (2005)
in which the online optimization problem must be solved
at each sampling time. In Mayne et al. (2005), only distur-
bances are included in the controller design so there is a mis-
match between the model and the process when the
time-varying parameter is present. From Figure 8, it is seen
that the proposed algorithm is able to steer the state of the
uncertain CSTR with disturbances to the neighborhood of
the origin faster than the algorithm of Mayne et al. (2005).
Moreover, the proposed algorithm requires significantly
less online computational time, as shown in Table II. The

computations are performed using Intel Core 2 Duo
(2.53 GHz), 2 GB RAM.

Conclusions

In this paper, we present an offline tube-based robust MPC
algorithm using polyhedral invariant sets. All of the optimal
control problems are solved off-line so no optimal control
problem needs to be solved online. The simulation results
show that the state at each time step of the LTV system with
disturbance is restricted to lie within a tube whose center is
the state of the nominal LTV system that converges to the
origin. Hence, the state of the LTV system with disturbance
converges to a tube whose center is at the origin. Robust
stability and satisfaction of the state and control constraints
are guaranteed. In future work, the proposed algorithm can
be extended to the nonlinear system with bounded
disturbance.

Funding

This research project is supported by Mahidol University
and Thailand Research Fund (TRF).

Fig. 8. The control performance (a) dimensionless concentration of reactant A; (b) dimensionless reactor temperature; (c) dimen-
sionless cooling jacket temperature; and (d) dimensionless coolant flow rate.

Table II. The online computational time

Algorithm
Online computational
time for each step (s)

Mayne et al. (2005) 0.067
The proposed algorithm 0.015
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Nomenclature
x state
u input
c vanishing input
�xx state of nominal system
x̂x observer state
�uu input of nominal system
N prediction horizon
K disturbance rejection gain
Z robust positively invariant set
w disturbance
�XXf terminal constraint set

Q state weighting matrix
R input weighting matrix
k time-varying parameter
x0 state of nominal LTV system
u0 input of nominal LTV system
P Lyapunov matrix
P

i
polyhedral invariant set i

F
i

stabilizing feedback gain corresponding
to P

i

F real-time stabilizing feedback gain
V(x0) Lyapunov function of variable x0

Example 1
x

1
state 1 of LTV system with disturbance

x
2

state 2 of LTV system with disturbance
x01 state 1 of nominal LTV system
x02 state 2 of nominal LTV system
u input of LTV system with disturbance
u0 input of nominal LTV system

Example 2
x

1
dimensionless concentration of reactant A

x
2

dimensionless reactor temperature
x

3
dimensionless cooling jacket temperature

q dimensionless reactor feed-flow rate
q

c
dimensionless coolant flow rate

w
i

disturbance variable i
�xxiðkÞ deviation form of state i at time k
x

iS
equilibrium point of state i

x
1f

dimensionless reactor feed concentration
x

2f
dimensionless reactor feed temperature

x
3f

dimensionless cooling jacket feed
temperature

b dimensionless heat of reaction
c dimensionless activation energy
d dimensionless heat transfer coefficient
d

1
dimensionless volume ratio of reactor to
cooling jacket

d
2

dimensionless density� heat capacity ratio of
reactor to cooling jacket

/ Damkohler number
s dimensionless time

Mathematical Symbols
X�Y Minkowski set addition between X and Y
X�Y Minkowski set difference between X and Y

d(x, Y) distance of a point x from a set Y
d(x, y) distance of a point x from a point y
�j j Euclidean norm

A> 0 A is a positive-definite matrix
A< 0 A is a negative-definite matrix
q(A) spectral radius of a matrix A
Convf�g convex hull of the elements in f�g
Abbreviations
MPC model predictive control
LTI linear time-invariant
LQR linear quadratic regulator
LTV linear time-varying
LMI linear matrix inequality
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A B S T R A C T

The influences of temperature on equilibrium solubility for the ternary liquid systems of water + di-(2-
ethylhexyl)phosphoric acid + organic diluents were investigated by cloud point titration at T = 303.2–
333.2 K and atmospheric pressure. Various organic diluents having different dielectric constants of
kerosene (n/a), n-heptane (1.9), chlorobenzene (5.6) and 1-octanol (10.3) were designated to observe the
polar influence on the solubility. All ternary systems exhibited the type II behavior, and their solubility
increased with the polarity and studied temperatures. The tie-line data for each ternary liquid system
were also studied and correlated by the Bachman plots. Moreover, the experimental solubility of water in
the organic phases were predicted using the modified Apelblat equation, and the results were validated
by the relative average deviation (RAD) as shown in a range of 0.01–4.09%. The dissolution
thermodynamics of water in the organic phases were studied using the van’t Hoff model in order to
determine its enthalpy (DHd), entropy (DSd) and Gibbs energy (DGd). The results indicated that the
dissolution of water in the organic phases was endothermic and a non-spontaneous process and driven
by entropy.

ã 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.else vie r .com/ locat e/fluid
1. Introduction

Solubility data of the ternary liquid systems have a fundamental
and important role in industry [1,2]. Such data are used to develop
and design the separation processes for economic [3] and
environmental issues [4]. Based on the above aspects, many
ternary liquid systems have been studied by varying the
temperature and type of organic diluents; their results present
different solubility behaviors [5–8]. This is because the solubility
depends on the chemical structures, polarity and temperatures of
the components used [9,10]. The mutual solubility of extractant,
organic diluent and water is also important in the separation
processes since it can change the separation efficiency [3,11]. Thus,
their solubility is primarily considered as an essential factor for
selecting a suitable organic diluent.

Di-(2-ethylhexyl)phosphoric acid extractant has been widely
used for the separation of metal ions [12,13]. However, the
molecule of this extractant is composed of the polar functional
* Corresponding author. Tel.: +66 2 2186891; fax: +66 2 2186877.
** Corresponding author. Tel.: +66 2 2186893; fax: +66 2 2186877.

E-mail addresses: ura.p@chula.ac.th (U. Pancharoen), soorathep.k@chula.ac.th
(S. Kheawhom).

http://dx.doi.org/10.1016/j.fluid.2015.05.017
0378-3812/ã 2015 Elsevier B.V. All rights reserved.
groups of P¼O and P��OH [14] that interact with the molecule of
water. Darvishi et al. [15] reported that the solubility of water in
the organic phase was increased in the similar trend with the
concentration of di-(2-ethylhexyl)phosphoric acid. In addition, the
quantity of water in the organic phase was varied according to the
dielectric constants of organic diluents and the temperatures [16–
18]. For these purposes, the temperature dependence is of interest
to study the solubility of di-(2-ethylhexyl)phosphoric acid, organic
diluent and water.

Models of thermodynamics are also important in the design of
separation processes. Their application has been used to predict
the thermodynamic properties of components in the ternary liquid
systems. For example, the modified Apelblat equation has a
reliability that can determine the temperature-dependent solubil-
ity [19–21]. Furthermore, the van’t Hoff model has been widely
used to obtain the thermodynamic parameters such as enthalpy
and entropy [22–24]. The results from the van’t Hoff model can
describe the relationship between the thermodynamic properties
and the dissolution processes.

The main purpose of this work is to provide solubility data and
thermodynamic properties. Ternary liquid systems of water + di-
(2-ethylhexyl)phosphoric acid + organic diluents were carried out
by cloud point titration [25–28] at the temperatures of 303.2–

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fluid.2015.05.017&domain=pdf
mailto:ura.p@chula.ac.th
mailto:soorathep.k@chula.ac.th
http://dx.doi.org/10.1016/j.fluid.2015.05.017
http://dx.doi.org/10.1016/j.fluid.2015.05.017
http://www.sciencedirect.com/science/journal/03783812
www.elsevier.com/locate/fluid


Nomenclature

A,B The parameters of the Bachman correlation
a, b, c The constant parameters in the correlated modified

Apelblat model
RAD Relative average deviation
mi Mass of component i (g)
Mi Molecular weight of component i (g/mol)
T Absolute temperature (K)
Tfus Fusion temperature
R2 Coefficient of determination
R Gas constant (J/mol K)
wi Mass fraction of component i
wij Mass fraction of component i in the j phase
xi Mole fraction of component i
DHd Molar enthalpy of dissolution (kJ/mol)
DSd Molar entropy of dissolution (kJ/mol)
DGd Molar Gibbs energy of dissolution (kJ/mol)
DHfus Molar enthalpy of fusion (kJ/mol)
DSfus Molar entropy of fusion (kJ/mol)
R Gas constant (8.314 J/mol K)
N The number of experiment points

Subscripts
i Indices for all components (1–3)
j Indices for all phases (1–3)

Greek letters
d Hansen solubility parameter (Pa1/2)
s Standard deviation

W. Srirachat et al. / Fluid Phase Equilibria 401 (2015) 34–47 35
333.2 K and the atmospheric pressure. The organic diluents having
different dielectric constants of kerosene, n-heptane, chloroben-
zene and 1-octanol were used in all experiments. The equilibrium
solubility was investigated and focused on the influences of
polarity and temperature. Tie-line data were determined and
correlated with the data from the Bachman equation. Thereafter,
Fig. 1. The structure of di-2(ethylhexyl) phosphoric acid [9].

Table 1
The properties of the pure components used in this work.

Properties Di-(2-ethylhexyl)phosphoric acid Kerosene

CAS no. 298-07-7 64742-47
Chemical
formula

C16H35O4P C6–C16

molecular weights (g/mol) 322.43 143a

Purity
(wt%)c

�98.5 �98.0b

Dielectric constant (pF/m) n/a n/a 

a Molar mass of kerosene (ExxsolTM D40 fluid) reported by Ref. [30].
b Aromatic content (0.00–2.0 wt%) of kerosene (ExxsolTM D40 fluid) reported by Ref.
c Is the purity of each component as obtained by its individual data sheet from the 

d Dielectric constant values at the temperature of 20 �C as reported by Ref. [31].
e Dielectric constant values at the temperature of 20 �C as reported by Ref. [32].
the solubility of water in the organic phases was predicted using
the modified Apelblat equation and its results were validated by
the RAD values. The thermodynamic parameters of enthalpy,
entropy and Gibbs energy were obtained using the van’t Hoff
model to study the relationship between the thermodynamic
properties and the dissolution of water in the organic phases.

2. Experimental

2.1. Chemicals

Di-(2-ethylhexyl)phosphoric acid – its chemical structure was
as shown in Fig. 1 – and 1-octanol were supplied by Merck. n-
Heptane and chlorobenzene were purchased from RCI Labscan.
Kerosene (ExxsolTM D40 fluid) was supplied by ExxonMobil. All
compounds were used without further purification and kept in a
light brown bottle containing dried molecular sieves. Then, the
bottle was tightly sealed to protect the contamination of water. The
composition of water in the organic diluents and di-(2-ethylhexyl)
phosphoric acid was determined by the Karl Fischer titration and
the oven evaporator [29], and found to be 0.001 wt% and 0.002 wt%,
respectively. More details of the components are listed in Table 1.
Distilled water was used throughout the experiments.

2.2. Apparatus and procedure

Equilibrium solubility for each ternary liquid system was
determined by the cloud point titration as shown in Fig. 2. The
weights of all components were obtained by an analytical precision
electronic balance (Sartorius, model 11222-46) with an uncertain-
ty of 0.0001 g. The temperatures of the systems were controlled by
a water jacket that was heated using a digital hotplate stirrer
(DAIHAN, MSH-20D) and checked by a precision Pt-100 thermo-
couple with an accuracy of �0.1 K. Moreover, an accurate
thermometer was immersed into the systems for controlling their
temperature. The binary mixtures of the given compositions of di-
(2-ethylhexyl)phosphoric acid and organic diluents were added
into the closed cell and then put in the water jacket. Both liquid
components were agitated by the magnetic stirrers at 200 rpm.
Thereafter, the mixtures were titrated with water in a precision
syringe until they became turbid. The end point of titration was
achieved when the mixtures remained turbid for 15 min. During
this time, the closed cell was agitated periodically to observe the
turbidity. These procedures were used to obtain the solubility of
the organic phase. The solubility of the aqueous phase was
determined using the binary mixtures of di-(2-ethylhexyl)phos-
phoric acid and water and operated in the same manner. The
organic diluents were added for titration. Moreover, the solubility
for binary liquid systems of (water + di-(2-ethylhexyl)phosphoric
acid) and (water + organic diluents) was investigated until the
 n-Heptane Chlorobenzene 1-Octanol Water

-8 142-82-5 108-90-7 111-87-5 7732-18-5
C7H16 C6H5Cl C8H17O H2O

100.20 112.56 130.23 18.02
�99.0 �99.5 �99.0 100

1.92d 5.69d 10.30d 80.10e

 [30].
manufacturing supplier.



Fig. 2. Schematic diagram of the liquid-liquid equilibrium apparatus: (1)
equilibrium cell surrounded by water (2) water jacket (3) Pt-100 probe with
feedback controller (4) glass thermometer (5) syringe needle (6) syringe (7)
magnetic bars and (8) digital hotplate magnetic stirrer.

Table 2
Equilibrium solubility data in form of mass percentage (%wi) for the ternary liquid
systems of water (1) + di-(2-ethylhexyl)phosphoric acid (2) + organic diluents (3) at
the temperatures of 303.2–333.2 K and the pressure of 0.1 MPa.a

Kerosene n-Heptane Chlorobenzene 1-Octanol

%w1 %w2 %w1 %w2 %w1 %w2 %w1 %w2

T = 303.2 K
0.007 0.000 0.017 0.000 0.041 0.000 4.932 0.000
0.077 9.918 0.159 9.843 0.318 9.939 5.198 4.738
0.162 19.829 0.248 19.776 0.795 19.971 5.161 14.999
0.277 29.710 0.332 29.712 1.108 29.825 5.134 24.767
0.339 39.657 0.424 39.556 1.259 38.952 5.099 35.079
0.375 49.644 0.435 49.767 1.735 49.049 5.047 45.341
0.409 59.605 0.703 59.325 2.191 58.654 4.724 55.347
0.369 69.584 0.742 69.210 2.567 67.818 4.207 65.711
0.313 79.704 0.925 79.059 2.608 77.644 3.641 76.467
1.290 88.685 1.685 88.338 2.582 87.462 3.082 86.797
2.399 97.601 2.399 97.601 2.399 97.601 2.399 97.601

99.998 0.000 99.997 0.000 99.951 0.000 99.948 0.000
99.990 0.010 99.990 0.010 99.990 0.010 99.990 0.010

T = 313.2 K
0.013 0.000 0.031 0.000 0.113 0.000 5.221 0.000
0.128 9.878 0.239 9.663 0.435 9.827 5.481 4.524
0.221 19.834 0.368 19.701 0.865 19.158 5.446 14.776
0.334 29.746 0.469 29.417 1.259 28.774 5.442 24.521
0.420 39.669 0.564 39.355 1.459 38.619 5.398 34.864
0.451 49.627 0.641 49.569 1.876 48.196 5.422 44.977
0.483 59.576 0.836 59.094 2.299 57.898 5.073 55.115
0.439 69.618 0.898 69.305 2.654 67.515 4.543 65.399
0.389 79.679 1.087 78.816 2.739 77.392 3.993 76.151
1.368 88.714 1.873 88.141 2.682 87.383 3.348 86.411
2.483 97.517 2.483 97.517 2.483 97.517 2.483 97.517

99.996 0.000 99.995 0.000 99.929 0.000 99.935 0.000
99.984 0.016 99.984 0.016 99.984 0.016 99.984 0.016

T = 323.2 K
0.019 0.000 0.048 0.000 0.192 0.000 5.337 0.000
0.166 9.871 0.383 9.699 0.521 9.570 5.579 4.429
0.293 19.783 0.523 19.399 0.976 19.051 5.625 14.630
0.416 29.716 0.631 29.456 1.419 28.617 5.680 24.265
0.542 39.517 0.771 39.274 1.586 38.469 5.645 34.623
0.544 49.512 0.866 49.323 1.996 48.069 5.606 44.736
0.560 59.479 1.021 59.116 2.407 57.669 5.298 54.874
0.519 69.533 1.057 69.339 2.755 67.336 4.815 65.109
0.469 79.603 1.252 78.664 2.846 77.222 4.231 75.885
1.450 88.617 2.077 87.937 2.786 87.295 3.564 86.317
2.521 97.479 2.521 97.479 2.521 97.479 2.521 97.479

99.995 0.000 99.994 0.000 99.903 0.000 99.911 0.000
99.982 0.018 99.982 0.018 99.982 0.018 99.982 0.018

T = 333.2 K
0.025 0.00 0.069 0.00 0.271 0.00 5.625 0.00
0.218 9.842 0.519 9.507 0.636 9.416 5.865 4.078
0.357 19.759 0.685 19.364 1.121 18.933 5.889 14.352
0.470 29.666 0.821 29.579 1.591 28.449 5.968 24.014
0.648 39.450 0.958 38.994 1.766 38.289 5.946 34.417
0.642 49.397 1.061 49.228 2.173 47.874 5.825 44.781
0.636 59.465 1.265 58.675 2.586 57.476 5.486 54.639
0.600 69.436 1.256 68.618 2.895 67.197 5.096 64.866
0.539 79.509 1.478 78.424 2.971 77.089 4.513 75.608
1.534 88.515 2.334 87.906 2.897 87.169 3.786 86.342
2.577 97.423 2.577 97.423 2.577 97.423 2.577 97.423

99.993 0.000 99.991 0.000 99.888 0.000 99.894 0.000
99.980 0.010 99.980 0.010 99.980 0.010 99.980 0.010
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samples became turbid. All samples were measured three times,
and the uncertainty of their compositions was �0.027 wt%.

The tie-line data were obtained from the ternary mixtures at
equilibrium. More water was added in the mixtures until they
transformed from homogeneous phase to heterogeneous one.
Thereafter, the mixtures were agitated vigorously at 500 rpm for
30 min and then centrifuged by Stanhope-Seta (model 9000) at
1500 rpm for 3 h to complete the separation of both phases. During
centrifuge, the temperatures of the mixtures were controlled and
presented the uncertainty of �1.0 K. The organic phase was
carefully withdrawn from the top layer of the closed cell by syringe
and then weighed. The composition of water in the organic phase
was determined by the Karl Fischer titration (Metrohm, model
759 KF) together with the oven evaporator that had the uncertainty
of 0.0021 wt% [29]. After this step, the composition of di-(2-
ethylhexyl)phosphoric acid was weighed to obtain its composition.
The composition of the organic diluent was obtained by the mass
balance equation that followed on the compositions of water and
di-(2-ethylhexyl)phosphoric acid. The remaining aqueous phase
was also weighed, and the compositions of the components were
calculated by the mass balance equation as based on the
compositions in the organic phase. All measurements were
repeated three times.

2.3. Analysis

The organic phase in the vial was weighed and then tightly
capped with an aluminum seal for analysis by the Karl Fischer
titration (756 KF Coulometer, Metrohm) together with the oven
evaporator at the setting temperature of 473 K. This operation
resulted in the evaporation of the water and the organic diluent
into the titration cell; only water was titrated by the iodine
solution (I2) to obtain its composition. Thereafter, di-(2-ethylhexyl)
phosphoric acid which remained in the vial was weighed to
determine its composition. The composition of the organic diluent
was determined by the mass balance equation after knowing the
compositions of water and di-(2-ethylhexyl)phosphoric acid.

2.4. Reliability of experimental results

According to NIST, the standard uncertainties, as expressed in
the respective footnote tables, were used to confirm the reliability
of the experimental results and were calculated based on Eqs. (1)



Fig. 3. The solubility curves for the ternary liquid systems of water (1) + di-(2-ethylhexyl)phosphoric acid (2) + organic diluents (3) ( = n-heptane; = kerosene;
= 1-octanol and = chlorobenzene) at the temperature of 303.2 K and the pressure of 0.1 MPa.
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and (2) [33] as follows:

uðxiÞ ¼ 1
nðn � 1Þ

Xn
k¼1
ðXi;k � XiÞ2

  !1=2

(1)

xi ¼ Xi ¼
1
n

Xn
k¼1

Xi;k (2)
Fig. 4. The dielectric constants of organic diluents a
where n is the number of independent observation, Xi,k is the input
quantity as obtained under the same conditions of measurement
and k = 1, 2, . . . , n.

3. Results and discussion

3.1. Liquid–liquid equilibrium solubility and tie-line data

The equilibrium solubility data for the ternary liquid systems of
water + di-(2-ethylhexyl) phosphoricacid + organic diluents at
nd water at the temperatures of 303.2–333.2 K.



Table 3
The equilibrium tie-line data in term of mass percentage (%wi) for the binary liquid systems of (water + di-(2-ethylhexyl)phosphoric acid) and (water + organic diluents) at the
temperatures of 303.2–333.2 K and the pressure of 0.1 MPaa (comparison between this work and the literature).

Binary system T (K) Aqueous phase Organic phase

%w1 %w2, literature %w1, literature %w2

Water (1) + di-(2-ethylhexyl)phosphoric acid (2) 303.2 99.990 0.010, 0.028 [46]b 2.399, 2.4 [47] 97.601
313.2 99.984 0.016, n/a 2.483, n/a 97.517
323.2 99.982 0.018, n/a 2.521, n/a 97.479
333.2 99.980 0.020, n/a 2.577, n/a 97.423

Water (1) + kerosene (2) 303.2 99.998 0.002, n/a 0.007, 0.003 [10] 99.993
313.2 99.996 0.004, n/a 0.013, n/a 99.987
323.2 99.995 0.005, n/a 0.019, n/a 99.981
333.2 99.993 0.007, n/a 0.025, n/a 99.975

Water (1) + n-heptane (2) 303.2 99.997 0.003, n/a 0.017, 0.014 [48] 99.983
313.2 99.995 0.005, n/a 0.031, 0.013 [49] 99.969
323.2 99.994 0.006, n/a 0.048, 0.025 [50] 99.952
333.2 99.991 0.009, n/a 0.069, n/a 99.931

Water (1) + chlorobenzene (2) 303.2 99.951 0.049, 0.054 [51] 0.041, 0.049 [51] 99.959
313.2 99.929 0.071, 0.068 [51] 0.113, 0.074 [51] 99.887
323.2 99.903 0.097, 0.088 [51] 0.192, 0.108 [51] 99.808
333.2 99.888 0.112, 0.116 [51] 0.271, 0.115 [51] 99.729

Water (1) + 1-octanol (2) 303.2 99.948 0.052, 0.064 [52] 4.932, 4.937 [52] 95.068
313.2 99.935 0.065, 0.065 [52] 5.221, 5.075 [52] 94.779
323.2 99.911 0.089, 0.105 [52] 5.337, 5.256 [52] 94.663
333.2 99.894 0.106, 0.088 [52] 5.625, 5.462 [52] 94.375

a Standard uncertainties, u; u(%wi) = 0.027, u(T) = 1.0 K and u(p) = 10 kPa.
b Is solubility at pH 3.0.

Fig. 5. Comparison of solubility for the ternary systems of water (1) + di-(2-ethylhexyl)phosphoric acid (2) + kerosene (3) ( = this work; = ref. [45] and = ref. [15])
at the temperature of 303.2 K and the pressure of 0.1 MPa.
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T = 303.2–333.2 K and the atmospheric pressure (0.1 MPa) are listed
in Table 2. The solubility curves for these ternary liquid systems at
the temperature of 303.2 K are examined in Fig. 3. From this figure,
only one liquid pair of (di-(2-ethylhexyl)phosphoric acid + organic
diluents) was completely soluble and two liquid pairs of (di-(2-
ethylhexyl)phosphoric acid + water) and (water + organic diluents)
were partially soluble. This demonstrated that all ternary systems
exhibited type II behavior according to Treybal’s classification [34].
As regards other temperatures studied, the solubility curves
showed a similar type of behavior. In addition, the areas of two-
phase region in this figure decreased in the following order of
organic diluents: kerosene > n-heptane > chlorobenzene > 1-octa-
nol. This indicated that water was most soluble in 1-octanol that
resulted from its strongest polarity [35–37]. An increase in



Fig. 6. The operating line of water solubility in organic phases (%w13) consisting of
di-(2-ethylhexyl)phosphoric acid in organic diluents (%w23) at the various
concentrations ( = n-heptane; = kerosene; = 1-octanol;

= chlorobenzene; = cyclohexane [45]; = chloroform [45]) at
the temperature of 303.2 K and the pressure of 0.1 MPa.

Table 4
The Hansen solubility parameter (d) of the pure components at T = 303.2 K.

Components Hansen solubility
parameter (Pa1/2)

Dd1 Dd2

Di-(2-ethylhexyl)phosphoric
acid (monomeric)

18.02a 29.8 0.00

Water 47.82b 0.00 29.8
Kerosene >15.90b <31.92 <2.12
n-Heptane 15.20b 32.62 2.82
Chlorobenzene 19.61b 28.21 1.59
1-Octanol 20.87b 26.95 2.85

Dd1 ¼ jdwater � ddiluent;extractantj and Dd2 ¼ jdextractant � ddiluent;waterj.
a The total solubility parameters as reported by Ref. [56].
b The total solubility parameters as reported by Ref. [57].

Table 5
The experimental tie-line data for water (1) + di-(2-ethylhexyl)phosphoric acid (2) + orga

Organic phase Aqueous phase 

%w1 %w2

Kerosene
T = 303.2 K
0.080 9.969 89.952 

0.279 29.842 69.879 

0.410 59.744 39.846 

1.327 88.873 9.801 

T = 313.2 K
0.131 9.926 89.943 

0.336 29.788 69.876 

0.486 59.662 39.852 

1.377 88.794 9.830 

T = 323.2 K
0.168 9.895 89.938 

0.418 29.721 69.861 

0.564 59.568 39.868 

1.468 88.687 9.846 

T = 333.2 K
0.221 9.843 89.936 

0.474 29.672 69.854 

0.639 59.463 39.899 

1.546 88.544 9.910 

n-Heptane
T = 303.2 K
0.182 10.094 89.724 

W. Srirachat et al. / Fluid Phase Equilibria 401 (2015) 34–47 39
dielectric constants of organic diluents led to an increase in the
solubility of water in the organic phases [38]. This is because the
dielectric constant presents the capacity of organic diluent to
produce a dipole force for interaction with water [39]. Moreover,
for each organic diluent the solubility of water in the organic phase
increased with temperature. It could be explained by the two
points of view. Firstly, the increment of temperature caused to the
increase in heat in the aqueous and organic phases which resulted
in the easier moving of water into the organic phase. In the case of
second point, the increment of temperature conduced to the
weaker force of hydrogen bonding in the water molecule that made
it easier to dissolve in the organic phase [40–41]. Furthermore, the
second point could be supported by the variation of dielectric
constants with temperatures as shown in Fig. 4 [42–44]. From this
figure, the dielectric constants of organic diluents slightly
decreased when the temperatures increased, but in the case of
water this value obviously decreased. According to the high
temperature, these tendencies resulted in the close values between
organic diluents and water that attained to the greater solubility of
water in the organic phases. Since the solubility of solute in the
solvent phase strongly depended on the difference between their
polarities, the smaller difference of polarities resulted in the great
solubility. Thus, the solubility of solute in the solvent phase
increased when the temperature increased.

The equilibrium solubility data for the binary liquid systems of
(water + di-(2-ethylhexyl)phosphoric acid) and (water + organic
diluents) were also presented in Table 3, and the results were
compared with the literature. Moreover, the equilibrium solubility
data for the ternary liquid system of (water + di-(2-ethylhexyl)
phosphoric acid + kerosene) were also compared with the previous
work as shown in Fig. 5. Furthermore, the operating lines plotting
between w23 and w13 for each organic diluent in this work and the
literature were also provided for the collection of data as shown in
Fig. 6.

The Hansen solubility parameter (d) was also studied to ensure
the solubility results of the ternary liquid systems. This parameter
nic diluents (3) at the temperatures of 303.2–333.2 K and the pressure of 0.1 MPa.a

Slope

%w3 %w1 %w2 %w3

99.950 0.048 0.002 0.110
99.879 0.116 0.005 0.425
99.787 0.211 0.002 1.494
99.714 0.282 0.004 9.043

99.946 0.051 0.003 0.110
99.880 0.118 0.002 0.425
99.784 0.214 0.002 1.492
99.713 0.285 0.002 9.004

99.943 0.054 0.003 0.109
99.879 0.118 0.003 0.424
99.757 0.239 0.004 1.488
99.699 0.297 0.004 8.983

99.938 0.058 0.004 0.109
99.880 0.116 0.004 0.423
99.736 0.259 0.005 1.484
99.698 0.297 0.005 8.905

99.947 0.051 0.002 0.112



Table 5 (Continued)

Organic phase Aqueous phase Slope

%w1 %w2 %w3 %w1 %w2 %w3

0.342 29.980 69.678 99.882 0.117 0.001 0.429
0.727 59.842 39.431 99.786 0.213 0.001 1.512
1.744 88.711 9.545 99.715 0.284 0.001 9.264

T = 313.2 K
0.252 10.015 89.733 99.947 0.051 0.002 0.111
0.476 29.862 69.662 99.882 0.116 0.002 0.427
0.845 59.671 39.485 99.786 0.213 0.001 1.506
1.895 88.417 9.688 99.715 0.282 0.003 9.099

T = 323.2 K
0.391 9.919 89.691 99.947 0.049 0.004 0.110
0.638 29.676 69.687 99.881 0.116 0.003 0.424
1.029 59.436 39.534 99.786 0.213 0.001 1.498
2.092 88.020 9.889 99.717 0.282 0.001 8.873

T = 333.2 K
0.533 9.814 89.653 99.947 0.050 0.003 0.109
0.821 29.362 69.817 99.882 0.116 0.002 0.419
1.272 59.153 39.575 99.786 0.213 0.001 1.489
2.302 87.514 10.184 99.718 0.281 0.001 8.566

Chlorobenzene
T = 303.2 K
0.341 10.286 89.374 99.908 0.053 0.039 0.115
1.098 29.101 69.801 99.872 0.095 0.033 0.416
2.183 58.199 39.619 99.838 0.136 0.026 1.467
2.594 87.580 9.827 99.768 0.221 0.011 8.900

T = 313.2 K
0.457 10.183 89.361 99.899 0.060 0.041 0.113
1.264 28.907 69.829 99.856 0.099 0.044 0.413
2.325 57.997 39.678 99.806 0.143 0.051 1.460
2.695 87.448 9.857 99.749 0.198 0.053 8.900

T = 323.2 K
0.556 10.063 89.381 99.885 0.068 0.048 0.112
1.427 28.690 69.883 99.842 0.105 0.054 0.409
2.434 57.820 39.747 99.787 0.154 0.060 1.453
2.787 87.308 9.905 99.736 0.201 0.063 8.850

T = 333.2 K
0.675 9.983 89.342 99.877 0.072 0.051 0.111
1.601 28.450 69.949 99.834 0.108 0.058 0.406
2.611 57.547 39.842 99.775 0.163 0.063 1.443
2.897 87.144 9.959 99.719 0.212 0.069 8.790

1-Octanol
T = 303.2 K
5.203 4.679 90.118 99.900 0.059 0.041 0.051
5.152 24.763 70.085 99.869 0.097 0.034 0.352
4.750 55.179 40.071 99.819 0.156 0.025 1.374
3.087 86.886 10.028 99.755 0.234 0.011 8.651

T = 313.2 K
5.488 4.337 90.175 99.900 0.045 0.055 0.048
5.467 24.319 70.214 99.871 0.081 0.048 0.345
5.105 54.710 40.184 99.828 0.137 0.035 1.359
3.359 86.483 10.158 99.760 0.224 0.016 8.506

T = 323.2 K
5.582 4.148 90.270 99.892 0.027 0.081 0.046
5.698 23.999 70.304 99.870 0.056 0.074 0.341
5.327 54.382 40.292 99.832 0.111 0.057 1.349
3.576 86.163 10.261 99.764 0.207 0.029 8.401

T = 333.2 K
5.869 3.812 90.319 99.884 0.015 0.101 0.042
5.974 23.703 70.323 99.867 0.042 0.091 0.337
5.517 54.086 40.397 99.830 0.097 0.073 1.339
3.835 85.858 10.306 99.767 0.194 0.039 8.343

a Standard uncertainties, u; u(%wi) = 0.027, u(T) = 1.0 K and u(p) = 10 kPa.
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Fig. 7. (a) The solubility curves and the tie-lines for the ternary liquid system of water (1) + di-(2-ethylhexyl)phosphoric acid (2) + kerosene (3) at the different temperatures of (fx2 =303.2K, fx3 = 313.2 K, fx4 = 323.2K and
fx5 =333.2 K) and the pressure of 0.1MPa. (b). The solubility curves and the tie-lines for the ternary liquid system of water (1) +di-(2-ethylhexyl)phosphoric acid (2) +n-heptane (3) at the different temperatures of (fx2 = 303.2K,
fx3 =313.2K, fx4 =323.2K and fx5 = 333.2K) and the pressure of 0.1MPa. (c) The solubility curves and the tie-lines for the ternary liquid system of water (1) +di-(2-ethylhexyl)phosphoric acid (2) + chlorobenzene (3) at the different
temperatures of (fx2 = 303.2K, fx3 = 313.2K, fx4 = 323.2K and fx5 = 333.2K) and the pressure of 0.1MPa. (d) The solubility curves and the tie-lines for the ternary liquid system of water (1) + di-(2-ethylhexyl)phosphoric acid (2) + 1-
octanol (3) at the different temperatures of (fx2 = 303.2K, fx3 = 313.2K, fx4 =323.2K and fx5 = 333.2K) and the pressure of 0.1MPa.
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Fig. 8. Bachman correlations for the ternary liquid systems of water (1) + di-(2-ethylhexyl)phosphoric acid (2) + organic diluents (3): (a) kerosene (b) n-heptane (c)
chlorobenzene and (d) 1-octanol at the different temperatures of (fx2 = 303.2 K, fx3 = 313.2 K, fx4 = 323.2 K and fx5 = 333.2 K) and the pressure of 0.1 MPa.

Table 6
Bachman parameters for the ternary liquid systems of water (1) + di-(2-ethylhexyl)
phosphoric acid (2) + organic diluents (3) and their standard deviation of error.

Organic diluents T (K) A B s

Kerosene 303.2 0.0441 99.68508 0.01876
313.2 0.0453 99.67567 0.01897
323.2 0.0461 99.66221 0.01828
333.2 0.0449 99.65814 0.01643

n-Heptane 303.2 0.0448 99.68123 0.01918
313.2 0.0445 99.68176 0.01916
323.2 0.0435 99.68434 0.01995
333.2 0.0428 99.68570 0.02042

Chlorobenzene 303.2 0.0284 99.74181 0.02369
313.2 0.0293 99.72841 0.02268
323.2 0.0284 99.71483 0.02184
333.2 0.0302 99.69724 0.01900

1-Octanol 303.2 0.0213 99.74638 0.02757
313.2 0.0206 99.75288 0.03282
323.2 0.0193 99.75828 0.03857
333.2 0.0176 99.76217 0.04067
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was concerned with dispersion force, intermolecular force and
hydrogen bonds between the solute and the solvent molecules
[53].

The differences of the Hansen solubility parameters between
water and each organic diluent/di-(2-ethylhexyl)phosphoric acid
(Dd1) and the differences of these between di-(2-ethylhexyl)
phosphoric acid and each organic diluent/water (Dd2) were
calculated as shown in Table 4. The results showed the highest
value of Dd1 for 1-octanol and its lowest value for kerosene. This
indicated that water was better soluble in 1-octanol than in
kerosene as corresponded to the above results. Moreover, the
lowest value of Dd2 appeared in the case of chlorobenzene. In other
words, di-(2-ethylhexyl)phosphoric acid was most soluble in
chlorobenzene. Since the intermolecular forces of organic diluents
were strongly depended on their polarity as follows: 1-octanol >
chlorobenzene > n-heptane � kerosene. Thus, chlorobenzene
broke its intermolecular forces easier than 1-octanol for renew
interaction with di-(2-ethylhexyl)phosphoric acid, and provided
the higher stability of solvation than n-heptane and kerosene. In
order to select the suitable organic diluent for use in the separation
processes, the solubility results of each organic diluent were
considered by concerning the loss of organic phase into the



Table 7
The modified Apelblat parameters for each organic diluent and their RAD values.

%w23

0 10 20 30 40 50 60 70 80 90 100

Kerosene
a 1054.6 750.70 175.29 1.14 �70.72 �25.75 56.65 91.37 18.79 �8.86 �142.60
b �53778 �38421 �10616 �1675.6 1416.1 �380.95 �3984.2 �5495.5 �1982.2 �71.67 6382.1
c �154.80 �110.05 �25.26 0.15 10.99 4.18 �8.13 �13.31 �2.61 1.29 21.07
%RAD 1.85 2.74 0.67 1.06 0.92 0.18 0.15 0.16 0.12 0.01 0.27

n-Heptane
a 485.46 �81.00 192.62 135.69 �5.26 399.96 �167.63 48.80 �14.53 �41.92 �151.84
b �27074 293.77 �12066 �9046.7 �2131.7 �21355 6208.1 �3773.9 �591.88 1158.9 6815.9
c �70.54 13.19 �27.47 �19.18 1.55 �58.25 25.27 �6.82 2.49 6.39 22.43
%RAD 0.85 1.90 0.64 0.24 1.05 0.82 0.25 0.26 0.33 0.16 0.31

Chlorobenzene
a 1989.2 370.51 �203.26 �12.79 135.68 �15.97 �53.44 �39.66 10.54 �9.23 �108.37
b �99109 �19460 8545.9 �394.67 �7295.8 157.93 2088.9 1555.6 �815.05 147.71 4746.7
c �291.87 �54.22 30.19 2.08 �19.89 2.40 7.89 5.81 �1.59 1.32 16.02
%RAD 4.09 1.51 0.25 0.028 0.75 0.24 0.24 0.11 0.099 0.009 0.14

1-Octanol
a 40.70 39.00 27.26 20.16 11.15 71.24 66.28 35.34 62.91 34.59 �104.95
b �2222.9 �2108.6 �1573.3 �1266.9 �842.74 �3642.7 �3419.1 �2043.8 �3389.5 �2061.5 4580.1
c �6.03 �5.79 �4.04 �2.97 �1.63 �10.53 �9.79 �5.17 �9.23 �5.05 15.52
%RAD 0.41 0.40 0.20 0.14 0.12 0.29 0.15 0.12 0.27 0.12 0.12
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aqueous phase [54]. Thus, the organic diluent with low solubility in
water should be selected [55]. From the results, chlorobenzene and
1-octanol were not recommended although they were highly
soluble with di-(2-ethylhexyl)phosphoric acid.

The tie-line data of the ternary liquid systems for each
temperature were listed in Table 5 and also plotted in Fig. 7(a)
to (d). The slopes (S) of all tie-lines were calculated as shown in
Eq. (3) and their values are reported in Table 5. From this table, the
slope values slightly decreased when the temperatures increased.
The decrease in slope values indicates the decrease in di-(2-
ethylhexyl)phosphoric acid composition in the organic phase and
it increased in the aqueous phase. This is because the slope of the
tie-lines expresses its composition in the organic and aqueous
phases. The increase in di-(2-ethylhexyl)phosphoric acid compo-
sition in the aqueous phase was resulted from the decrease in
polarity of water until closing to the polarity of di-(2-ethylhexyl)
phosphoric acid.

S ¼ w23 � w21

w33 � w31
(3)

where w21 and w23 are the mass percentages of di-(2-ethylhexyl)
phosphoric acid in the aqueous and organic phases, and w31 and
w33 are the mass percentages of organic diluent in the aqueous and
organic phases, respectively.

The Bachman equation was also applied to align with the
experimental tie-line data, and its equation was shown below [58]:

w23 ¼ A þ B
w23

w11

� �
(4)

where w11 and w23 are the mass percentages of water and di-(2-
ethylhexyl)phosphoric acid in the aqueous and organic phases,
respectively. A and B are the parameters in the Bachman equation.

The plots between w23 and w23/w11 for each organic diluent and
studied temperature are presented in Fig. 8 to observe their
linearity and obtain the Bachman parameters of A and B. From
these figures, the graphs showed good linearity where R2

approached to 1.0000. The Bachman parameters of A and B were
obtained from the interceptions and slopes of graphs, respectively.
Their values are shown in Table 6. In addition, the standard
deviations of error (s) between calculated and experimental
results were also determined and reported in this table. The small
values of standard deviations of error indicated the accuracy of the
experimental tie-line results

3.2. The correlation of solubility data by the modified Apelblat
equation

The modified Apelblat equation was applied to predict the
solubility of the solid component in the organic phase [36].
Furthermore, Marche et al. [59] used this model to predict the
solubility of n-alkanes (C6–C8) in water. In this work, the modified
Apelblat equation was used to predict the solubility of water in the
organic phases by varying the temperatures. Moreover, mole
fraction of water (x1) was obtained as shown in Eq. (5) for use in the
modified Apelblat equation:

x1 ¼
m1=M1

m1=M1 þ m2=M2 þ m3=M3
(5)

where m1, m2, m3 and M1, M2, M3 are the masses and molecular
weights of water, di-(2-ethylhexyl)phosphoric acid and organic
diluent, respectively.

The relationship between solubility and temperature for any
organic diluents could be described by the modified Apelblat
equation as follows [60,61]:

lnðx1Þ ¼ a þ b
T=K
þ clnðT=KÞ (6)

where a, b and c are the modified Apelblat parameters as obtained
by the experimental solubility data and T is the absolute
temperature (K).

The correlation of calculated and experimental results was
shown by the relative average deviation (RAD) as defined below:

RAD ¼ 1
N

Xn
i¼1
j
xi;exp � xi;cal

xi;exp
j (7)

where N is the number of experimental points and xi,exp and xi,cal
are the experimental and calculated solubility values, respectively.

The modified Apelblat parameters of a, b and c together with the
RAD values are listed in Table 7. From this table, the calculated and



Fig. 9. The van’t Hoff plots of ln x1 versus 1/T for the different organic diluents (fx2 = n-heptane, fx3 = kerosene, fx4 = 1-octanol and fx5 = chlorobenzene).
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experimental results showed a good correlation as confirmed by
the RAD values in the range of 0.01–4.09%. The results demon-
strated that the modified Apelblat equation had the reliability to
describe the relationship of solubility and temperature for any
organic diluents.

3.3. The thermodynamic parameters for dissolution of water in the
organic phases

The dissolution of water in each organic phase by varying the
temperatures was considered by the van’t Hoff equation to
determine their thermodynamic parameters of enthalpy and
entropy. The equation was shown below as follows [62]:

lnx1 ¼
DHfus

R
1

T fus
� 1
T

� �
¼ �DHfus

RT
þDSfus

R
(8)
where x1 is the mole fraction of water in the organic phase, Tfus is
the fusion temperature (melting point) of the water, T is the
organic temperature (K), DHfus is the molar fusion enthalpy of
water (kJ/mol), DSfus is the molar fusion entropy of water (kJ/mol)
and R is the gas constant (=8.314 J/mol K).

The molar enthalpy (DHfus) and molar entropy (DSfus) were
accounted for replacing DHfus by the dissolution enthalpy (DHd)
and DSfus by the dissolution entropy (DSd) as shown in Eq. (9) [63]:

lnx1 ¼ �DHd

RT
þDSd

R
(9)

From Eq. (9), ln x1 was plotted with 1/T by varying the
compositions of di-(2-ethylhexyl)phosphoric acid in the organic
phase. The results are shown in Figs. 9(a)–(d). The linearity of these
plots was observed, and DHd and DSd were determined by the
slopes and interceptions of the graphs, respectively. Their values
are presented in Table 8 and the linearity of the graphs was also



Table 8
The dissolution enthalpy (DHd, kJ/mol) and the dissolution entropy (DSd, J/mol K) for the dissolution of water in the organic phases.

%w23

0 10 20 30 40 50 60 70 80 90 100

Kerosene
DHd 38.00 28.12 21.69 14.70 17.56 14.27 11.65 10.53 9.57 4.00 1.37
DSd 64.56 52.68 37.68 19.26 30.74 21.18 13.81 11.40 9.64 �1.22 �5.32
R2 0.9715 0.9786 0.9950 0.9922 0.9970 0.9999 0.9987 0.9966 0.9998 0.9999 0.9792

n-Heptane
DHd 38.67 33.09 27.89 24.52 22.16 23.77 15.16 13.31 11.38 7.19 1.37
DSd 70.11 70.40 57.65 49.55 44.39 50.99 26.87 22.30 18.65 10.30 �5.31
R2 0.9938 0.9955 0.9967 0.9987 0.9969 0.9865 0.9957 0.9995 0.9985 0.9974 0.9690

Chlorobenzene
DHd 52.42 18.21 8.73 8.78 7.91 4.95 3.40 2.40 2.54 2.26 1.40
DSd 127.90 31.35 7.37 10.59 9.16 2.02 �1.11 �2.97 �1.92 �2.47 �5.23
R2 0.9509 0.9874 0.9806 0.9999 0.9999 0.9949 0.9790 0.9847 0.9988 0.9994 0.9591

1-Octanol
DHd 2.42 2.10 2.34 2.64 2.66 2.41 2.54 3.30 3.73 3.77 1.39
DSd �1.24 �1.84 �0.81 0.44 0.75 0.23 0.66 2.87 3.95 3.56 �5.26
R2 0.9760 0.9701 0.9929 0.9975 0.9985 0.9736 0.9764 0.9963 0.9912 0.9972 0.9729

Fig. 10. The dissociation enthalpy (a) and the dissociation entropy (b) for the dissociation of water in the organic phases versus the mass percentages of di-(2-ethylhexyl)
phosphoric acid in the different organic diluents (fx2 = n-heptane; fx3 = kerosene; fx4 = 1-octanol and fx5 = chlorobenzene).

Table 9
The Gibbs energy (DGd) for water solubility in the organic phases.

T (K) DGd (kJ/mol)

%w23

0 10 20 30 40 50 60 70 80 90 100

Kerosene
303.2 18.65 12.30 10.31 8.87 8.24 7.84 7.48 7.10 6.65 4.37 2.92
313.2 17.51 11.40 9.86 8.69 7.97 7.64 7.32 6.94 6.54 4.38 3.00
323.2 16.96 11.07 9.45 8.40 7.57 7.41 7.18 6.83 6.45 4.40 2.99
333.2 16.72 10.67 9.20 8.33 7.34 7.21 7.07 6.76 6.36 4.41 2.95

n-Heptane
303.2 17.52 11.75 10.46 9.53 8.71 8.40 6.98 6.56 5.72 4.05 2.92
313.2 16.59 11.10 9.80 8.97 8.28 8.58 6.79 6.31 5.53 3.97 3.00
323.2 15.93 10.21 9.19 8.48 7.74 7.97 6.50 6.10 5.38 3.87 2.99
333.2 15.42 9.70 8.75 8.05 7.41 7.14 6.17 5.88 5.15 3.74 2.95

Chlorobenzene
303.2 14.06 8.78 6.45 5.56 5.16 4.33 3.72 3.29 3.13 3.01 2.94
313.2 11.84 8.28 6.47 5.46 5.00 4.32 3.76 3.34 3.14 3.04 2.99
323.2 10.81 8.08 6.38 5.35 4.97 4.32 3.78 3.37 3.17 3.06 2.99
333.2 10.21 7.81 6.23 5.25 4.87 4.26 3.75 3.38 3.19 3.08 2.95

1-Octanol
303.2 2.80 2.67 2.59 2.51 2.43 2.35 2.36 2.44 2.55 2.70 2.94
313.2 2.79 2.66 2.59 2.50 2.42 2.31 2.32 2.39 2.48 2.65 2.99
323.2 2.84 2.72 2.61 2.51 2.42 2.33 2.32 2.37 2.46 2.62 2.99
333.2 2.83 2.71 2.61 2.50 2.41 2.34 2.34 2.35 2.43 2.59 2.95
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expressed by R2. From this table, the positive values of DHd and DSd
indicated that the dissolution of water in all organic phases was
endothermic and driven by the entropy.

In addition, the plots between DHd or DSd values and the
compositions of di-(2-ethylhexyl)phosphoric acid in the organic
phases are presented in Fig. 10(a) and (b). Both values decreased
when the compositions of di-(2-ethylhexyl)phosphoric acid
increased. The decrease in dissolution enthalpy meant that the
dissolution of water in the organic phases required little energy for
use in the process. For dissolution entropy, the decrease of its
results demonstrated the order of dissolution process [64].

The Gibbs energy (DHd) of water solubility in the organic phase
for each organic diluent and studied temperature was also
determined from Eqs. (10) and (11) [65] and used the DHd and
DSd values in Table 9 for calculation:

DGd ¼ DHd � TDSd (10)

DGd ¼ �RTlnx1 (11)

The plots of DGd and ln x1 for each organic diluent and studied
temperature are presented in Fig. 11. Gibbs energy decreased when
the solubility of water in the organic phases increased. The Gibbs
energy values are also listed in Table 9 and their positive values



Fig. 11. The Gibbs energy for the dissociation of water in the organic phases versus its solubility in term of logarithm at the different temperatures (fx2 = 303.2 K, fx3 = 313.2 K,
fx4 = 323.2 K and fx5 = 333.2 K) and the pressure of 0.1 MPa.
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demonstrated that the dissociation of water in the organic phases
was a non-spontaneous process.

4. Conclusion

The equilibrium solubility for the ternary systems of water + di-
(2-ethylhexyl)phosphoric acid + organic diluents (kerosene, n-
heptane, chlorobenzene and 1-octanol) exhibited type II behavior
at the temperature of 303.2–333.2 K and the pressure of 0.1 MPa.
Solubility increased when the polarity of organic diluents and the
temperatures increased. The solubility of water in the organic
phases simultaneously increased. When the temperature in-
creased, the slopes of tie-lines decreased which indicated the
decrease in composition of di-(2-ethylhexyl)phosphoric acid in the
organic phases and its solubility in the aqueous phases. The
solubility of water in the organic phases was calculated by the
modified Apelblat equation which showed a good correlation with
the experimental results as confirmed by the RAD values of 0.01–
4.09%. The thermodynamic parameters of enthalpy, entropy and
Gibbs energy were calculated using the van’t Hoff model. Their
positive values demonstrated that the dissociation of water in the
organic phases was endothermic and a non-spontaneous process
and driven by the entropy. Based on the important role of solubility
and temperature for the separation processes, kerosene was found
to be the most suitable organic diluent in this work and should be
further recommended.
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The fixed-bed designs are basically updraft or downdraft. In downdraft gasifiers, the fuel and gasification 
agent flow in the same direction and the gas leaves the reactor near the hottest zone, which makes the tar 
concentration much lower than in updraft gasifiers. In the other hand, the fuel bed moves downwards and 
the gasification agent flows from the bottom upwards in updraft gasifiers, As the gas leaves the reactor 
near the pyrolysis zone, the gas generated in updraft gasifiers has a high content of organic components 
(tar). The solid carbon in the fuel is almost completely converted into gas and tar. However, updraft 
gasifiers can be used for wet fuels and are relatively intensive to the fuel size.  Updraft gasifiers generally 
operate with high overall carbon conversion, high thermal efficiency, high residence time of solids, low gas 
velocity and low ash carry-over. The updraft gasifiers are suitable for small-scale systems. The maximum 
size of these units is limited to a few MW fuel power because of the problem of maintaining a regular 
conversion front in a wide fixed bed. 
Biomass gasifiers are complex facilities, which makes it difficult to investigate their various operating 
conditions. The characteristics of biomass greatly influence the performance of a biomass gasifier. A 
proper understanding of the physical and the chemical properties of biomass feedstock is essential for the 
design and operation of a biomass gasifier to be reliable. Numerous models for biomass gasifier have 
been developed. These models can be categorized into two groups: (1) thermodynamic equilibrium 
models and (2) kinetic models. The thermodynamic equilibrium models, also known as zero-dimensional 
(0D) models, are widely used among researchers to predict the composition of the produced syngas and 
the equilibrium temperature by assuming that the chemical reactions reach equilibrium. However, these 
models cannot provide highly accurate results and also cannot provide the concentration or temperature 
profiles inside the reactor. Because this approach is independent of the gasifier design, kinetic models, 
which take into account the reaction kinetics and the transfer phenomena among the phases, one-
dimensional (1D) biomass gasification models have been developed. These models simulated the 
variations in the physical and chemical properties along the reactor height by considering the vertical 
movements. A 1D unsteady mathematical model of updraft wood gasifier was developed and used to 
simulate the structure of the reaction fronts and the gasification behavior of a laboratory-scale plant (Blasi, 
2004). Blasi and Branca (2013) developed a mathematical model of an open-core downdraft gasifier with 
dual air entry. The reaction front structure varies with percentage and position of secondary air. Thus, char 
and tar conversion can be improved. Two-dimensional (2D) models have been developed to improve an 
insight on the effects of the reactor geometry. Wu et al. (2013) developed a 2D computational fluid 
dynamics (CFD) model for downdraft gasifier with preheated air and steam in order to investigate various 
operating conditions. Zhang et al. (2011) used 2D CFD model for and updraft gasifier to perform a 
simulation of municipal solid waste gasification.  
In this study, we developed a 1D mathematical model of small-scale updraft biomass gasifier. Rice straw 
was used as fuel feed. The model developed was validated with experimental data. The mathematical 
model constructed was then used to investigate the effects of varying moisture content and air feed 
temperature. The paper is organized as follows. In section 2, principles of biomass gasification are 
presented. In section 3, experimental setup used to validate the model developed is presented. In section 
4, the model development and validation are presented. In sections 5, the effects of various parameters 
are discussed. In the last section, we conclude the paper. 

2. Principles of biomass gasification  
Gasification is partial thermal oxidation resulting in a high proportion of gaseous products, small quantities 
of char, ash and condensable compounds. Steam, air or oxygen is supplied to the reaction as a gasifying 
agent. The chemistry of biomass gasification is complex and consists of the following stages: 

2.1 Drying 
In this stage, the moisture content of the biomass is reduced. The typical moisture content of biomass 
ranges from 5 to 60%. Most gasification systems use dry biomass with moisture content of 10 to 20%. The 
final drying takes place at about 400 - 500 K after the feed enters the gasifier, where it receives heat from 
the hot zone downward. This heat dries the feed, which releases water. As the temperature rises, the low-
molecular-weight extractives start volatilizing. This process continues until a temperature of approximately 
500 K is reached. 

2.2 Thermal decomposition 
In pyrolysis no external agent is added. The oxygen is largely diminished. The volatile matter in the 
biomass is reduced. Consequently, hydrocarbon gases are released from the biomass, and the biomass is 
reduced to solid charcoal. The hydrocarbon gases can condense at a sufficiently low temperature to 
generate liquid tars. 
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2.3 Gasification 
The gasification step involves chemical reactions among the hydrocarbons in fuel, steam, carbon dioxide, 
oxygen, and hydrogen in the reactor, as well as chemical reactions among the evolved gases. Char 
gasification is the most important. The char produced through pyrolysis of biomass is not necessarily pure 
carbon. It contains a certain amount of hydrocarbon comprising hydrogen and oxygen. Gasification of 
biomass char involves several reactions between the char and the gasifying mediums. In the absence of 
oxygen, several reduction reactions occur in the 1100 - 1300 K temperature range. These reactions are 
mostly endothermic. 

2.4 Combustion 
Most gasification reactions are endothermic. To provide the required heat of reaction as well as that 
required for heating, drying, and pyrolysis, a certain amount of exothermic combustion reaction is allowed 
in a gasifier. Combustion is a reaction between solid carbonized biomass and oxygen in the air, resulting in 
formation of carbon dioxide. Hydrogen present in the biomass is also oxidized to generate water. A large 
amount of heat is released with the oxidation of carbon and hydrogen. Combustion reactions are generally 
faster than gasification reactions under similar conditions. 

3. Experimental setup 
A small-scale updraft biomass gasifier has been devised. Figure 1 shows a schematic diagram of the 
updraft gasifier used in this work. The reactor is a vertically cylindrical chamber with 0.15 m diameter and 
0.6 m height. The fuel feed, rice straw, was introduced from the top of a chamber using a continuous 
screw feeding system. Gasifying medium (air) was preheated to 313.5 K by an external heater to maintain 
a stable operation, and fed to the chamber through a grid at the bottom of the chamber. The gas then rose 
through a bed of descending fuel or ash in the gasifier chamber. The grate stopped biomass/char particles, 
resulting in a charcoal bed. The temperature of 1500 K was the highest temperature being close to the 
grate, where oxygen met and burned the char. Hot gas produced by combustion traveled up, providing 
heat to the endothermic gasification reactions at 1000 to 1200 K, and met pyrolyzing biomass at a lower 
temperature of 500 to 800 K. Primary tar was produced in this temperature range. The temperatures were 
measured using thermocouple probes located at the centerline along the height of the reactor in various 
different reaction zones. The product gas, which was sampled at the outlet, leaved from the top while 
solids left from the bottom. The feedstock used for this study was rice straw, 0.01 m in diameter, with an 
average length/diameter ratio of 1 to 2.5. The bulk density of rice straw was 150 kg/m3. The properties of 
the feedstock are shown in Table 1.  

Table 1:  Characterization of the feedstock, rice straw. 

Proximate analysis Ultimate analysis 
Total moisture (%) 12.00 C (%) 37.48 
Ash (%, dry basis) 12.65 H (%) 4.41 
Volatile matter (%, dry basis) 56.46 O (%) 33.27 
Fixed carbon (%, dry basis) 18.88 N (%) 0.17 
  S (%) 0.04 

4. Model development and validation 
Updraft gasifier was modeled by means of the equations of conservation of mass and energy for the solid 
and gas phases. The model was derived as an unsteady system for a one-dimensional along reactor axis. 
Fuel was assumed to be the same size and shape with constant porosity, and without intraparticle 
gradients of temperature. Turbulence in chamber was taken in to account through the correlations for the 
heat/mass transfer coefficients. In addition, constant pressure along the axis of chamber was considered. 
The main processes modeled included: (1) moisture evaporation/condensation, (2) finite-rate kinetics of 
biomass devolatilization to gaseous species, primary tar, and char, (3) primary tar degradation to gaseous 
species and refractory tar, (4) heterogeneous gasification and combustion of char, (5) combustion of 
volatile species, (6) steam reforming of methane and refractory tar, (7) finite-rate gas-phase water–gas 
shift, (8) extra-particle mass transfer resistances, (9) heat and mass transfer across the bed resulting from 
macroscopic (convection) and molecular (diffusion and conduction) exchanges, (10) absence of thermal 
equilibrium, (11) solid- and gas-phase heat transfer with the reactor walls, (12) radiative heat transfer 
through the porous bed, and (13) variable solid and gas flow rates.  
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The conservation equations are governed based on the work by Blasi (2004) as following equations. 
Biomass: 

∂
∂t

ρbiomass + ∂
∂z

Usρbiomass = −rp1

 (1) 

Moisture: 

∂
∂t

ρmoisture + ∂
∂z

Usρmoisture = −mmoisture
  (2) 

Gas-phase species: 

ε ∂
∂t

ρi + ∂
∂z

Ugρi = ∂
∂z

(εDi ρg

∂
∂z

Yi ) + Mi υij rj +υi rp1
j
 +υi

*rp2

 
(3) 

Where i = O2, H2, CO, CO2, CH4, j = c1-c6, g1-g3, wg, sr1, sr2 
Steam: 

ε ∂
∂t

ρwater + ∂
∂z

Ugρwater = ∂
∂z

(εDvρg

∂
∂z

Ywater ) + Mwater υwater, j rj +υwaterrp1
+υwater

* rp2
j
 + mmoisture

 
(4) 

Where j = c1-c5, g1-g3, wg, sr1, sr2 
Vapor-phase primary tar: 

ε
∂ρ tar1

∂t
+

∂(Ugρ tar1
)

∂z
= ∂

∂z
(εDtar1

ρg

∂
∂z

Ytar1
) + vtar1

rp1
− rp2

− M tar1
rc1

 (5) 

Vapor-phase refractory tar: 

ε
∂ρ tar2

∂t
+

∂(Ugρ tar2
)

∂z
= ∂

∂z
(εDtar2

ρg

∂
∂z

Ytar2
) + vtar2

rp2
− M tar2

rc5
− M tar2

rsr1
 (6) 

Nitrogen: 

ρN2
= ρg − ρi

i≠N2

  
(7) 

Total gas continuity: 

ε ∂
∂t

ρg + ∂
∂z

Ugρg = υij Mirj + mmoisture + (1−υchar )
j


i
 rp1

 
(8) 

Where i = O2, H2, CO, CO2, CH4, N2, H2O, j = c6, g1-g3 
Solid-phase enthalpy: 

 

Figure 1: Diagram of an updraft gasifier. Figure 2: Experimental and predicted temperatures. 
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∂
∂t

( ρicsi (Ts − T0 )
i
 ) = ∂

∂z
(λs

* ∂Ts

∂z
) + ∂

∂z
(Us ρi

i
 csi (Ts − T0 )) − rj ΔH j − hsgApνp (Ts − Tg) + 4hsw

d
(Tw − Ts) − mmoistureΛ

j
  

(9) 

Where i = biomass, char, moisture, j = c5, g1-g3, p1. 
Gas-phase enthalpy: 

∂
∂t

( ρicgi (Tg − T0 )
i
 ) = ∂

∂z
(λg

* ∂Tg

∂z
) + ∂

∂z
(Ug ρi

i
 cgi (Tg − T0 )) − rj ΔH j − hsgApνp (Ts − Tg) +

4hgw

d
(Tw − Tg)

j
  

(10) 

Where i = N2, O2, H2, CO, CO2, CH4, water, tar1, tar2, j = c1-c5, wg, p2, sr1, sr2. 
Ideal gas law: 

P =
ρgRTg

MiYi
i


 
(11) 

Where i = N2, O2, H2, CO, CO2, CH4, water, tar1, tar2. 
T denotes temperature. U denotes velocity. Y represents mass fraction. D stands for diffusion coefficient. d 
represents reactor diameter. Ap is particle surface area. m is evaporation rate. M is molecular weight. ρ is 
gas phase mass concentration. ε is porosity. Λ is moisture enthalpy. hsg and hsw are solid-gas and solid-
wall heat transfer coefficients. The subscripts s, g, and w stand for solid, gas and wall, respectively. The 
reactions p1 is related to thermal decomposition where the fractions of gas, primary tar and char 
generated. Primary tar undergoes secondary cracking to produce gases and refractory tar in reaction p2. 
The reaction of steam reforming of refractory tar and methane were taken into account through reactions 
sr1 and sr2. Combustion of volatile products including the reactions for primary and refractory tars, 
methane, carbon monoxide, and hydrogen were modeled in reactions c1 to c5. Heterogeneous reactions of 
char were modeled as reaction c6, g1, g2 and g3. The reaction wg is related to water-gas shift. These 
reactions with corresponding kinetic parameters, as well as moisture evaporation rate and heat and mass 
transfer coefficients were modeled the same way as in Blasi and Branca (2013), but omitted here for 
brevity. 

At the bottom of reactor ( z= 0 ), temperature, velocity, and densities of the feed air were given. The solid 
was assumed to be at ambient temperature. At the top of the chamber, the fuel feed properties and a 
convective outflow conditions were assigned. At initial, the gasifier filled with biomass was fed by hot feed 
air. After a certain time, the feed air temperature was set back to the predefined conditions. The simulation 
was then performed with selected parameters. 
Model validation was performed using experimental data. The moisture content of rice straw used as fuel 
feed was 12%. The mass flow rate of fuel feed, and feed air were 1.65 and 2.15 kg/h, respectively. Feed 
air and fuel were preheated to 313.5 K by an external heater to maintain a stable operation. Figure 2 
shows the comparison of the predicted and experimental temperature profiles, at the bottom of the reactor, 
temperature drastically increases from ambient to 1600 K, which is the highest temperature. The 
temperature predictions were in good agreement with the experimental data. The gas produced at the 
outlet was about 450 K. Biomass devolatilization occurred at the temperature above 650 K. The rapid rise 
of the solid temperature approached 1600 K at slightly above the grate resulted from char combustion. 

5. Effects of parameters 
The performance of the gasification process was evaluated based on efficiency term defined as the ratio of 
the exergy of the syngas to the exergy of the biomass (Ptasinski, 2008). 

5.1 The effects of moisture content in fuel feed 
The moisture content of fuel feed was varied from 8 to 20 % while keeping the other parameters constant. 
The performance of the gasifier was directly influenced by the moisture content of fuel feed. Figure 3 
shows the performance of gasifer at different moisture contents of fuel feed. The fuel with higher moisture 
content lowered the performance of the gasification process. Fuel feed with higher moisture content 
required longer drying zone resulting in a relative decrease in the biomass resident time. In addition, more 
energy was used to dry biomass, and the temperature inside the chamber decreased. 

5.2 The effects and air feed temperature 
Air feed temperature was preheated to varying temperatures ranging from 313.5 to 338.5 K while keeping 
the other parameters constant. Figure 4 shows the performance of gasifer at different air feed 
temperatures. The higher temperature of air feed resulted in higher performance with lower tar content. 
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The highest temperature inside the chamber increased as the air feed temperature increased. Because, 
the hot feed air with higher enthalpy induced an increase of the temperature. The positive impacts of the 
higher bed temperature were higher chemical reaction rates and enhanced heat transfer. The drying zone 
was significantly reduced. 

6. Conclusions 
In this work, a one-dimensional mathematical model for the simulation of a small-scale fixed-bed updraft 
gasifier has been developed and validated with experimental data of small-scale updraft gasifier of rice 
straw. Good agreement between the model developed and experimental data has been obtained. The 
mathematical model constructed was then used to study the effects of varying moisture content and air 
feed temperature. The fuel with higher moisture content lowered the performance of the gasification 
process. But, higher temperature of air feed resulted in higher performance with lower tar content and 
more environmentally preferable. 
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Abstract. In this paper, interpolation-based off-line robust MPC for uncertain polytopic 
discrete-time systems is presented. Instead of solving an on-line optimization problem at 
each sampling time to find a state feedback gain, a sequence of state feedback gains is pre-
computed off-line in order to reduce the on-line computational time. At each sampling 
time, the real-time state feedback gain is calculated by linear interpolation between the pre-
computed state feedback gains. Three interpolation techniques are proposed. In the first 
technique, the smallest ellipsoids containing the measured state are approximated and the 
corresponding real-time state feedback gain is calculated. In the second technique, the pre-
computed state feedback gains are interpolated in order to get the largest possible real-time 
state feedback gain while robust stability is still guaranteed. In the last technique, the real-
time state feedback gain is calculated by minimizing the violation of the constraints of the 
adjacent inner ellipsoids so the real-time state feedback gain calculated has to regulate the 
state from the current ellipsoids to the adjacent inner ellipsoids as fast as possible. As 
compared to on-line robust MPC, the proposed techniques can significantly reduce on-line 
computational time while the same level of control performance is still ensured.   
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1. Introduction 
 
Model predictive control (MPC) has originated in the industry as an on-line computer control algorithm to 
solve multivariable control problems. At each sampling instant, MPC uses an explicit process model to 
solve the optimization problem and only the first computed input is implemented to the process. Although 
MPC has been successfully implemented to many industrial processes, it is well-known that stability of 
MPC cannot be guaranteed in the presence of model uncertainty [1]. For this reason, synthesis approaches 
for robust MPC have been widely investigated [2-6]. 

On-line robust MPC has been proposed by many researchers. Kothare et al. [2] proposed the algorithm 
that constructs an invariant ellipsoid containing the measured state at each sampling instant. Any states in 
this invariant ellipsoid can be driven to the origin by using the stabilizing state feedback gain. Thus, robust 
stability is guaranteed. The stabilizing state feedback gain is derived by using a single Lyapunov function so 
a certain degree of conservativeness is obtained. The conservativeness can be reduced by on-line robust 
MPC formulation using parameter-dependent Lyapunov function as proposed in [3-6]. However, the 
number of decision variables and constraints also increases. Thus, the algorithms are not suitable for 
relatively fast dynamic processes.  Another approach to reduce the conservativeness is to increase the 
degrees of freedom in solving the optimization problem by adding a sequence of free control inputs to the 
state feedback control law [7-11]. By doing so, larger on-line computational time is required to calculate a 
sequence of free control inputs so the algorithms can only be implemented to slow dynamic processes. 

In order to reduce on-line computational time, various researchers have studied off-line robust MPC 
[12-20]. Wan and Kothare [12] proposed an off-line robust MPC formulation using linear matrix 
inequalities (LMIs). The on-line computational time is reduced by pre-computing off-line a sequence of 
state feedback gains corresponding to a sequence of ellipsoidal invariant sets. At each sampling instant, the 
state is measured and the real-time state feedback gain is calculated by linear interpolation between the pre-
computed state feedback gains. Although the on-line computational time is significantly reduced, a certain 
degree of conservativeness is obtained because the algorithm is derived by minimizing the worst-case 
performance cost. This strategy can be further improved by using the nominal performance cost as 
proposed by Ding et al. [13]. However, the approach in [13] is restricted to the case of a single Lyapunov 
function. Another idea is to incorporate the scheduling parameter into off-line MPC formulation. In [14], 
the sequences of state feedback gains corresponding to the sequences of ellipsoids are pre-computed off-
line. At each sampling instant, the scheduling parameter is measured and the real-time state feedback gain is 
calculated by linear interpolation between the pre-computed state feedback gains of each sequence. Off-line 
robust MPC can also be formulated by using polyhedral invariant sets [15-20] in order to enlarge the size of 
stabilizable region. Later, an interpolation technique for polyhedral invariant sets was developed to reduce 
conservativeness and improve the control performances [21].  

Recently, Bumroongsri and Kheawhom [22] have developed on-line robust MPC based on nominal 
performance cost by extending the results of Ding et al. [13] to the case of parameter-dependent Lyapunov 
function. However, the optimization problem solved at each sampling instant has many decision variables 
and constraints so its application is rather restricted to relatively slow dynamic processes. This algorithm 
was then further improved by off-line pre-computing a sequence of state feedback gains corresponding to 
the sequences of ellipsoidal invariant sets [23]. 

In this paper, the off-line robust MPC based on nominal performance cost for uncertain polytopic 
discrete-time systems [23] is further improved by implementing interpolation techniques. Three 
interpolation techniques are proposed. A sequence of state feedback gains is pre-computed off-line. At each 
sampling time, the real-time state feedback gain is calculated by linear interpolation between the pre-
computed state feedback gains. The control performance of each technique is evaluated and compared 
within an example.  

The paper is organized as follows. In section 2, the problem description is presented. In section 3, 
interpolation-based off-line robust MPC is presented. In section 4, we present an example to illustrate the 
implementation of the proposed algorithm. Finally, in section 5, we conclude the paper. 

 
2. Problem Description 
 
The model considered here is the following  linear time varying (LTV) system with polytopic uncertainty  
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where )(kx  is the vector of states, )(ku  is the vector of control inputs and )(ky  is the vector of plant 

outputs. Moreover, we assume that 
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kikx   denotes the predicted nominal state, 0  and 0R  are symmetric weighting matrices, 

subject to input and output constraints 
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where 
un   is the number of control inputs and 

yn  is the number of plant outputs. 

In [22], the optimization problem (5) is formulated as the convex optimization involving linear matrix 
inequalities (LMIs). At each sampling time, the state feedback control law which minimizes the upper 
bound n  on the nominal performance cost )(, kJn  and asymptotically stabilizes the closed-loop systems 
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where ],[
^^

BA  denotes the nominal model of the plant, the symbol   denotes the corresponding transpose 

of the lower block part of symmetric matrices, I denotes the identity matrix, X is the diagonal matrix of 

input constraints and S  is the diagonal matrix of output constraints. 
Robust stability is guaranteed by the Lyapunov stability constraint (10). For proof details, the reader is 

referred to [22]. Since the on-line optimization problem contains many decision variables and constraints, 
the algorithm requires large on-line computational time.  Moreover, the number of constraints grows 
exponentially with the number of vertices of the polytope Ω . 

 

3. The Proposed Algorithm 
 

In this section, interpolation-based off-line robust MPC for uncertain polytopic discrete-time systems is 
presented. The aim is to reduce the on-line computational burdens while the same level of control 
performance is still ensured. The on-line computational time is reduced by solving off-line the optimization 

problem (8) to find a sequence of state feedback gain NiKi ,...,2,1 ,  corresponding to the sequences of 

ellipsoids  1/ 1
,,   xQxx ji

T
ji  where Ni ,...,2,1  is the number of ellipsoids and Lj ,...,2,1  is the 

number of vertices of polytope Ω . At each sampling time, the real-time state feedback gain is calculated by 
linear interpolation between the pre-computed state feedback gains.  
 
3.1. Interpolation-Based Off-Line Robust MPC 
 

Off-line: Choose a sequence of states Nixi ,...,2,1 ,  . For each ix , substitute )/( kkx  in (9) by ix  and 
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On-line: The real-time state feedback gain is calculated by linear interpolation between the pre-computed 
state feedback gains. Three interpolation techniques are proposed as follows 
 
Technique 1: The first technique is based on an approximation of the smallest ellipsoids containing the 
measured state. Instead of solving the optimization problem (8) at each sampling instant, the solution of 
the optimization problem (8) is approximated by finding the smallest ellipsoids containing the measured 
state. Then the corresponding real-time state feedback gain can be calculated by linear interpolation 

between the pre-computed state feedback gains. At each sampling time, when ,)( ,)( ,1, jiji kxkx    

NiL...,j   ,,,21 , the real-time state feedback gain 1))(1()())((  ii KkKkkK   can be calculated 

from )(k  obtained by solving the following problem.  
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 1)(0  k  (16) 

 

It is seen that 0)( k  and 1)( k  correspond to the ellipsoids ji ,1  and ji, , respectively. Thus, 

the smallest ellipsoids containing the measured state )(kx  can be found by minimizing )(k  in (14). 

Moreover, it is seen that the optimization problem (14) is linear programming and the number of 
constraints grows only linearly with the number of vertices of the polytope Ω . 

Figure 1 shows the graphical representation of the state feedback gain in each prediction horizon. It is 

seen that the same state feedback gain ))(( kK  is implemented throughout the prediction horizon and 

control horizon. Thus, the state must be restricted to lie in the smallest ellipsoids approximated by (15) and 
robust stability is guaranteed. 
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Fig.1. The graphical representation of the state feedback gain in each prediction horizon of technique 1. 
 
Technique 2: In the second technique, the pre-computed state feedback gains NiKi ,...,2,1 ,   are 

interpolated in order to get the largest possible real-time state feedback gain. Since the pre-computed state 

feedback gains are larger as i  increases, when the measured state lies between 
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ji ,1 , this technique 

tries to use the value of 
1iK  as much as possible in the interpolation. This technique can implement larger 

real-time state feedback gain compared to technique 1 so faster response is obtained. At each sampling time, 
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1iK  is always larger than iK  because input and output constraints impose less limit on the state 

feedback gain as i  increases. Thus, the largest possible real-time state feedback gain 

1))(1()())((  ii KkKkkK   can be calculated by minimizing )(k  in (17). The next predicted state 

is restricted to lie in the ellipsoidal invariant set by (18) so robust stability is still guaranteed. The input 
constraint is guaranteed by (19). Note that the output constraint does not need to be incorporated into the 
problem formulation because the satisfaction of (18) also guarantees output constraint satisfaction. It is 
seen that the optimization problem (17) is formulated as the convex optimization involving linear matrix 
inequalities (LMIs) and the number of constraints grows only linearly with the number of vertices of the 
polytope Ω . 

 Figure 2 shows the graphical representation of the state feedback gain in each prediction horizon. It is 

seen that the largest possible real-time state feedback gain ))(( kK  is only implemented at each sampling 

time k . At time 1k  and so on, the state feedback gain iK  is implemented. Thus, the state must be 

restricted to lie in the ellipsoids ji,  and robust stability is guaranteed.   

 

 
Fig.2. The graphical representation of the state feedback gain in each prediction horizon of technique 2. 

 
Technique 3: In the last technique, the real-time state feedback gain is calculated by minimizing the 

violation of the constraints of the adjacent inner ellipsoids.  When the measured state lies between ji,  and 
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ji ,1 , the real-time state feedback gain calculated has to drive the state from ji,  to ji ,1  as fast as 

possible in order to minimize the violation of the constraints of ji ,1 . At each sampling time, when 

NiL...,jkxkx jiji     ,,,21  ,)(  ,)( ,1,  , the real-time state feedback gain 

1))(1()())((  ii KkKkkK   can be calculated from )(k  obtained by solving the following problem.  
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By applying Schur complement to (22), we obtain )(1)1()1( 1
,1 kkxQkx jji

T
j  


 where 

)()))((()1( kxkKBAkx jjj  . By minimizing )(k  in (21), the real-time state feedback gain 

1))(1()())((  ii KkKkkK   calculated has to regulate the state from the current ellipsoids ji,  to the 

adjacent inner ellipsoids ji ,1  as fast as possible. The next predicted state is restricted to lie in the 

ellipsoidal invariant set by (23) so robust stability is still guaranteed. The input constraint is guaranteed by 
(24). Note that the output constraint does not need to be incorporated into the problem formulation 
because the satisfaction of (23) also guarantees output constraint satisfaction. It is seen that the 
optimization problem (21) is formulated as the convex optimization involving linear matrix inequalities 
(LMIs) and the number of constraints grows only linearly with the number of vertices of the polytope Ω . 

Figure 3 shows the graphical representation of the state feedback gain in each prediction horizon. It is 

seen that the real-time state feedback gain calculated ))(( kK   is only implemented at each sampling time k . 

At time 1k  and so on, the state feedback gain iK  is implemented. Thus, the state must be restricted to lie 

in the ellipsoids ji,  and robust stability is guaranteed.   

 

 
Fig. 3. The graphical representation of the state feedback gain in each prediction horizon of technique 3. 
 

4. Example 
 
We will consider an application of our approach to an angular positioning system [2]. The system consists 
of an electric motor driving a rotating antenna so that it always points in the direction of a moving object. 
The motion of the antenna can be described by the following discrete-time equation 



DOI:10.4186/ej.2014.18.1.87 

ENGINEERING JOURNAL Volume 18 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 93 

 )(
0787.0

0

)(

)(

)(1.010

1.01

)1(

)1(
.. ku

k

k

kk

k





























































  

   















)(

)(
01)( .

k

k
ky



                                                                            (26) 

where )(k  is the angular position of the antenna, )(
.

k  is the angular velocity of the antenna and  )(ku  is 

the input voltage to the motor. The uncertain parameter )(k  is proportional to the coefficient of viscous 

friction in the rotating parts of the antenna. It is assumed to be arbitrarily time-varying in the range of 

10)(1.0  k . Since the uncertain parameter )(k  is varied between 0.1 and 10, we conclude that 

ΩkA )(   where Ω  is given as follows   
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The objective is to regulate   to the origin by manipulating u . The input constraint is 2)( ku volts. 

Here )(, kJ n   is given by (5) with 









00

01
Θ  and .00002.0R  

Figure 4 shows two sequences of ellipsoids  21 921 ,1/ 1
,, ,j,,...,,ixQxx ji

T
ji    constructed off-line. 

Note that the ellipsoids are constructed such that jiji ,,1   . In this example, two sequences of ellipsoids 

are constructed because the polytope Ω  has two vertices. Each sequence contains 9 ellipsoids. 
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 921 ,1/    a) 1

1,1, ,...,,ixQxx i
T

i    

 

 
 921 ,1/    b) 1

2,2, ,...,,ixQxx i
T

i    

 

Fig. 4. Two sequences of ellipsoids
 

 21 921 ,1/ 1
,, ,j,,...,,ixQxx ji

T
ji   , each sequence has 9 

ellipsoids. 
 

Figure 5 shows norm of state feedback gains 9,...,2,1 , iKi . It is seen that norm of iK increases as i

increases. This is due to the fact that input constraint imposes less limit on the state feedback gain as i  
increases. 
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Fig. 5. Norm of state feedback gains 9,...,2,1 , iKi . 

 
Figure 6 shows the closed-loop responses of the system when )(k  is randomly time-varying between 

10)(1.0  k . As compare to on-line robust MPC [22], technique 1 gives slower response because the 

real-time state feedback gain and the ellipsoids calculated in technique 1 are only approximations of those 
calculated by solving on-line optimization problem (8). In comparison, technique 2 and technique 3 give 
faster responses than technique 1 because they are based on ideas that are completely different from 
technique 1. In technique 2, the pre-computed state feedback gains are interpolated to get the largest 
possible real-time state feedback gain so technique 2 tends to make the process responses less sluggish than 
technique 1.  In technique 3, the real-time state feedback gain calculated has to regulate the state from the 

current ellipsoids ji,  to the adjacent inner ellipsoids ji ,1  as fast as possible in order to minimize the 

violation of the constraints of the adjacent inner ellipsoids. For this reason, technique 3 tends to produce 
faster responses than technique 1.  
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a) The regulated output. 

 

    
b) The control input. 

 
Fig. 6. The closed-loop responses of the system when )(k  is randomly time-varying between 

10)(1.0  k ; a) The regulated output; b) The control input. 

 
Figure 7 shows the state trajectories. It can be observed that the states at each time step of techniques 2 

and 3 are closer to the origin that that of technique 1. In this example, techniques 2 and 3 behave almost 
identically in regulating the states. 
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 921 ,1/    a) 1

1,1, ,...,,ixQxx i
T

i  
 

 

 
 921 ,1/    b) 1

2,2, ,...,,ixQxx i
T

i    

 
Fig. 7. The state trajectories: a) 1,i ; b) 2,i . 

 
Table 1 shows the on-line computational time at each sampling instant. By using the proposed 

techniques, it is seen that the on-line computational time is significantly reduced. Technique 1 gives the 
smallest on-line computational time because only linear programming is involved in the optimization 
problem. The numerical simulations have been performed in Intel Core i-5 (2.4GHz), 2 GB RAM, using 
SeDuMi [24] and YALMIP [25, 26] within Matlab R2008a environment. 
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Table 1. The on-line computational time at each sampling instant. 

Algorithms On-line computational time (s) 
On-line robust MPC [17] 0.213 
Technique 1 0.001 
Technique 2 0.047 
Technique 3 0.101 

 
Next, the effect of the number of ellipsoids constructed off-line is investigated. Figures 8 and 9 show 

the sequences of ellipsoids when the number of ellipsoids constructed off-line is varied from 9 in Fig. 4 to 3 
and 5, respectively. Less computer memory is required as the number of ellipsoids constructed off-line is 

decreased. Note that in the construction of ellipsoids, the inequality ,0)()( 1
1

,1
1

,  





ijjli
T

ijjji KBAQKBAQ  

....L,l....L,j 21,21  must be satisfied. This inequality tends to be violated if the number of ellipsoids 

constructed off-line is too small. 
 

 
 

 321 ,1/    a) 1

1,1, ,,ixQxx i

T

i    

      
 

 321 ,1/    b) 1

2,2, ,,ixQxx i

T

i    

 

Fig. 8. Two sequences of ellipsoids
 

 21 321 ,1/ 1

,, ,j,,,ixQxx ji

T

ji   , each sequence has 3 ellipsoids. 
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 521 ,1/    a) 1

1,1, ,...,,ixQxx i

T

i  
 

 
 521 ,1/    b) 1

2,2, ,...,,ixQxx i

T

i    

 

Fig. 9. Two sequences of ellipsoids
 

 21 5...21 ,1/ 1

,, ,j,,,ixQxx ji

T

ji   , each sequence has 5 

ellipsoids. 
 
Figure 10 shows the closed-loop responses of technique 1 when the number of ellipsoids constructed 

off-line is varied from 3, 5 and 9. The basic idea of this technique is to approximate the smallest ellipsoids 
containing the measured state. The approximated ellipsoids become closer to the ellipsoids computed on-
line as the number of ellipsoids constructed off-line is increased. Thus, the control performance of 
technique 1 becomes closer to on-line robust MPC [22] as the number of ellipsoids constructed off-line is 
increased. 
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a) The regulated output 

 

 
   b)     The control input 

 
Fig. 10. The closed-loop responses of technique 1 when the number of ellipsoids constructed off-line is 

varied from 3, 5 and 9; a) The regulated output;  b) The control input. 
 
Figure 11 shows the closed-loop responses of technique 2 when the number of ellipsoids constructed 

off-line is varied from 3, 5 and 9. Since 1iK  is larger than iK  as shown in Fig. 5, larger real-time state 

feedback gain is obtained as the number of ellipsoids is decreased. For this reason, technique 2 tends to 
produce faster responses as the number of ellipsoids is decreased. 
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a) The regulated output. 

 

 
b)     The control input. 

 
Fig. 11. The closed-loop responses of technique 2 when the number of ellipsoids constructed off-line is 

varied from 3, 5 and 9; a) The regulated output; b) The control input. 
 
Figure 12 shows the closed-loop responses of technique 3 when the number of ellipsoids constructed 

off-line is varied from 3, 5 and 9. The real-time state feedback gain calculated has to regulate the state from 

the current ellipsoids ji,  to the adjacent inner ellipsoids ji ,1  as fast as possible in order to minimize the 

violation of the constraints of ji ,1 . As the number of ellipsoids is decreased, ji ,1  are closer to the 

origin so faster responses are obtained.  
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a) The regulated output. 

 

 
b) The control input. 

 
Fig. 12. The closed-loop responses of technique 3 when the number of ellipsoids constructed off-line is 

varied from 3, 5 and 9: a) The regulated output; b) The control input. 
 

5. Conclusions 
 
This paper presents interpolation-based off-line robust MPC for uncertain polytopic discrete-time systems. 
The algorithm pre-computes off-line a sequence of state feedback gains corresponding to the sequences of 
ellipsoids. At each sampling time, the real-time state feedback gain is calculated by linear interpolation 
between the pre-computed state feedback gains. Three interpolation techniques are proposed. As compared 
to on-line robust MPC, the on-line computational time is significantly reduced while the same level of 
control performance is still ensured. 
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Robust distributed framework of interpolation-based control for
polytopic uncertain systems

Soorathep Kheawhom1 and Pornchai Bumroongsri2

Abstract— Distributed control is an important framework to
handle large-scale systems, however, robust distributed control
for polytopic uncertain systems still being a challenge. In
this work, we propose a robust distributed framework for
interpolation-based control of polytopic uncertain systems.
The algorithms proposed consist of both off-line and on-
line computations. The entire system is decomposed into a
number of subsystems with smaller number of control inputs.
A sequence of nested invariant sets for the entire system,
and sequences of state feedback gains corresponding to each
subsystem are constructed off-line by minimizing the upper
bound of worst-case performance cost in a centralized scheme.
The invariant sets constructed are polyhedral sets. At each
control iteration, when the state measured lies between any two
adjacent invariant sets constructed, a state feedback gain for
each subsystem is determined by an interpolation of associated
state feedback gains pre-computed. The interpolation problems
are based on minimization of a distant from the current state
to the adjacent smaller invariant set, solved in a centralized
fashion or iteratively solved in a cooperative scheme. Simulation
example of quadruple tank system is used to illustrate the
algorithms proposed. The cooperative algorithm is capable of
inheriting the properties of centralized control scheme but
requires lower computational burdens.

I. INTRODUCTION

Model predictive control (MPC) is known as an effec-
tive control algorithm to deal with multiple input-multiple
output processes with constraints on process variables [1].
Conventional MPC is based on a linear model. To guarantee
satisfaction on robustness against model uncertainty, robust
model predictive control (RMPC) has been introduced [2].
The goal is to calculate a state feedback gain that robustly
stabilizes the closed-loop system. The state feedback gain
is derived by minimizing the worst-case performance cost.
At each sampling instant, an invariant ellipsoid containing
the current state measured is constructed to guarantee robust
stability. Since the entire optimization problem is solved on-
line, the algorithm usually requires high on-line computa-
tional time. Therefore, its application is rather restricted to
the relatively slow dynamic processes. For this reason, the
synthesis approaches for off-line RMPC have been widely
investigated. An off-line formulation of RMPC using LMI
was developed [3]. A sequence of state feedback gains
corresponding to a sequence of ellipsoidal invariant sets is

1Soorathep Kheawhom is with Computational Process
Engineering, Department of Chemical Engineering, Faculty of
Engineering, Chulalongkorn University, Bangkok 10330 Thailand
soorathep.k@chula.ac.th, corresponding author

2Pornchai Bumroongsri is with Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Nakhon Pathom 73170 Thai-
land pornchai.bum@mahidol.ac.th

computed off-line. At each sampling instant, a smallest ellip-
soidal invariant set containing the current state is determined
and a state feedback gain is calculated by linear interpolation
between the pre-computed state feedback gains. Although
the algorithm substantially reduces on-line computational
burdens, the algorithm is rather conservative because the
invariant ellipsoids used provides small domain of attraction.

An ellipsoidal off-line MPC algorithm for linear param-
eter varying (LPV) systems was introduced [4]. For LPV
systems, the algorithm is less conservative as compared with
[3] because the scheduling parameter is included in the
controller synthesis. However, the algorithm is still based
on an ellipsoidal invariant set. Moreover, the algorithm can
handle only an uncertainty in a state matrix.

The invariant sets generally used in the controller design
are either ellipsoidal or polyhedral sets. Though the polyhe-
dral invariant set has some advantages over the ellipsoidal in-
variant set such as better handling of asymmetric constraints
and enlargement of domain of attraction, the ellipsoidal
invariant set is usually used in RMPC formulation due to
its relatively lower on-line computational burdens. In recent
years, an off-line RMPC algorithm based on a polyhedral
invariant set has been developed [5]. The algorithm computes
off-line a sequence of state feedback gains corresponding
to a sequence of polyhedral invariant sets. At each con-
trol iteration, a smallest polyhedral invariant set containing
the current state is determined and a corresponding state
feedback gain is implemented to the process. Although
the polyhedral invariant set which usually provides larger
domain of attraction is used, the conservatism is still obtained
because the control law implemented at each time step is an
approximation of an optimal control law. Moreover, a jerking
of control input caused by a switching of state feedback gains
is observed. Therefore, the algorithm requires constructing a
large number of polyhedral invariant sets, hence large data
storage is required, in order to improve a control performance
and to reduce the jerking effect. Later, an interpolation
technique for polyhedral invariant sets was introduced to
off-line RMPC for polytopic uncertain systems in order to
improve the control performances [6], [7]. Another technique
to deal with polytopic uncertain systems with input and
output constraints can be based on a vertex control which
is also an interpolation-based controller [8].

Practically, the systems to be handled are increasing
complexity. It is difficult to handle these systems with a
centralized MPC due to a limitation on computational bur-
dens. Thus, distributed MPC (DMPC) schemes have received
increasing attention because of their advantage for providing

347978-1-4799-5081-2/14/$31.00 ©2014 IEEE 



similar performance to a centralized MPC while maintaing
flexibity and requiring lower computational burdens. The
basic concept of DMPC is to implement a number of local
controllers controlling different sets of process input and
outputs [9].

Generally, the DMPC strategies developed are based on
linear time invariant (LTI) systems [10]. The robustness of
DMPC strategies to model uncertainty has been identified
as an important factor for the successful implementation
of DMPC [11]. However, only a few works have been
studied on DMPC for linear time-varying (LTV) systems. An
algorithm for robust DMPC (RDMPC) has been introduced
for polytopic uncertain systems [12]. The algorithm decom-
poses the entire system into a number of subsystems and
iteratively solves associated convex optimization problems to
minimize an upper bound on a worst-case performance cost.
However, this algorithm requires high on-line computational
time. Later, an RDMPC algorithm with lower requirement
on computational time has been developed [13]. This algo-
rithm uses dual-mode approach, and involves off-line and
on-line computations. Consequently, most of computational
burdens are moved off-line. In [14], an RDMPC for polytopic
uncertain systems subject to actuator saturation has been
introduced.

In this paper, we present a robust distributed framework for
interpolation-based control of polytopic uncertain systems.
The paper is organized as follows. In section 2, the problem
description is presented. In section 3, an on-line centralized
RDMPC is presented, and polyhedral invariant set construc-
tion is described. The proposed algorithms are introduced in
section 4. In section 5, we illustrate an implementation of
the algorithms proposed. Finally, in section 6, we conclude
the paper.

Notation: Throughout this paper, a superscript T denotes a
transpose operation. I denotes an identity matrix. A symbol
∗ denotes a corresponding transpose of a lower block part of
symmetric matrices.

II. PROBLEM DESCRIPTION

In this work, the discrete-time linear time-varying (LTV)
system as shown in Eq. 1 is taken into account.

xk+1 = Akxk +Bkuk,

yk =Ckxk, (1)

where xk ∈ Rnx is a vector of states at time k. We assume that
a full-state measurement is available. uk ∈ Rnu is a vector of
control inputs at time k, and yk ∈ Rny is a vector of outputs
at time k. It is assumed that a system matrix Ak, a control
matrix Bk, and an output matrix Ck are within a polytope,

[Ak,Bk,Ck] ∈Co{[A1,B1,C1], ..., [AL,BL,CL]},

Co denotes a convex hull with [Al ,Bl ,Cl ] vertices. Any
[Ak,Bk,Ck] within the polytope is a convex combination
of the vertices such that [Ak,Bk,Ck] = ∑L

l=1 λl,k[Al ,Bl ,Cl ],
∑L

l=1 λl,k= 1, where 0 ≤ λl,k ≤ 1 is an uncertain parameter
vector. In addition, the system is observable and controllable.

The model described in Eq. 1 can be decomposed into N
subsystems as shown in Eq. 2.

xk+1 = Akxk +
N

∑
i=1

Bk,iuk,i,

yk =Ckxk, (2)

where uk,i ∈ Rnui is a vector of control inputs in subsystem
i. The vectors of control inputs uk, j ∈ Rnu j in other sub-
systems j ̸= i are also available to subsystem i via data
communication. A state matrix Ak, a control matrix Bk,i,
and an output matrix Ck can be represented as a convex
combination of the vertices such that [Ak, Bk,1,. . . , Bk,N ,Ck]
= ∑L

l=1 λl,k[Al ,Bl,1,. . . ,Bl,N ,Cl ],∑L
j=1 λl,k= 1, where 0≤ λl,k ≤

1 is an uncertain parameter vector. N is the number of
subsystems. Our aim is to find a state feedback control law
of each local controller i,

uk,i = Kixk (3)

that robustly stabilizes the system described in Eq. 2 and
achieves the minimum worst-case performance cost while
satisfying input, state and output constraints.

III. RMPC AND POLYHEDRAL INVARIANT SET

An on-line centralized robust model predictive control for
LTV systems was introduced in [2]. For a distributed system
defined as Eq. 2, a similar formulation can be derived. A
control objective for the entire system is to minimize the
upper bound on infinite horizon worst-case performance cost
while satisfying input and output constraints.

The optimization problem for centralized robust model
predictive control is shown in Eqs. 4-8.

min
γ,Y1,...,Yi,...,YN ,Q

γ (4)

s.t.
[

1 ∗
xk Q

]
≥ 0, (5)

Q ∗ ∗ ∗ ... ∗
AlQ+∑N

i=1 Bl,iYi Q ∗ ∗ ... ∗
Θ

1
2 Q 0 γI ∗ ... ∗

R1
1
2 Y1 0 0 γI ... ∗
...

...
...

...
. . .

...
RN

1
2 YN 0 0 0 ... γI


≥ 0,

∀l = 1, ...,L, (6)[
X ∗

Yi
T Q

]
≥ 0,

Xhh ≤ u2
i,h,max,h = 1, ...,nui ,∀i = 1, ...,N, (7)[

S ∗
(AlQ+∑N

i=1 Bl,iYi)
TCT Q

]
≥ 0,∀l = 1, ...,L,

Srr ≤ y2
r,max,r = 1, ...,ny, (8)

where Θ > 0 is a diagonal weighting matrix of states,
Ri > 0 is a diagonal weighting matrix of control inputs
of subsystem i. The optimization problem is solved in a
centralized fashion. For each subsystem i, the control input
uk,i = YiQ−1xk is implemented to the process.
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Typically two types of invariant sets including ellipsoidal
and polyhedral sets are usually considered. In this work, the
algorithms proposed are based on a polyhedral set.

By giving a feedback gain Ki, and control input uk,i =Kixk
for each subsystem i in the system defined in Eq. 2, the
polyhedral invariant set with largest domain of attraction can
be estimated. The polyhedral invariant set S = {x|Mx ≤ d}
can be constructed by using the following procedure.

Procedure 1
1) Set o= 0, Mo = [C1;−C1; . . . ; CL;−CL; I; −I; K1; −K1;

. . . ; KN ; −KN ], do = [ymax; −ymin; . . . ; ymax; −ymin;
xmax; −xmin; u1,max; −u1,min; . . . ; uN,max; −uN,min], So
= {x|Mox ≤ do}.

2) Set o = o+ 1, Mo = [Mo−1; Mo−1[A1 + ∑N
i=1 B1,iKi];

. . . ; Mo−1[AL + ∑N
i=1 BL,iKi]] and do = [do−1; do−1;

. . . ; do−1], So = {x|Mox ≤ do} and eliminate redundant
inequalities from the polytope So.

3) If So ̸= So−1 then repeat step 2, if otherwise stop the
algorithm and S = {x|Mox ≤ do}.

Theorem 1: For a distributed system as shown in Eq. 2,
given the control law uk,i = Kixk for each subsystem i with
a state feedback gain Ki = YiQ−1 provided by solving the
optimization problem presented in Eqs.4-8. The polyhedral
set, S = {x|Mx ≤ d}, constructed by using Procedure 1
provides a set of states that the system will evolve to the
origin without input, state and output constraints violation.

Proof: The satisfaction of Eq. 6 for all state
feedback gains K1, ...,KN ensures that γxT

k Q−1xk − [[Al +

∑N
i=1 Bl,iKi]xk]

T γQ−1[[Al + ∑N
i=1 Bl,iKi]xk] ≥ [xT

k Θ xk +

∑N
i=1 uT

k,iRiuk,i], ∀l = 1, ...,L Thus, Vk = xT
k γQ−1xk is a strictly

decreasing Lyapunov function and the closed-loop system is
robustly stabilized by the state feedback gains K1, ...,KN . By
following Procedure 1, we iteratively add output, state and
input constraints at the time k+o, o = 0, ...,omax to define a
polyhedral invariant set So = {x|Mox ≤ do}, and eliminate
all redundant constraints. There exists a finite index o = omax
such that Mo = Mo+1 because of the contraction as the
closed-loop stability is guarantee. Thus, we can construct a
set of initial states S = {x|Mx ≤ d} such that all future states
remain inside S and approach to the origin while satisfying
the constraints.

IV. THE PROPOSED ALGORITHM

In this section, the proposed algorithms of RDMPC are
described. The algorithms proposed consist of off-line and
on-line calculations.

A. Algorithm 1 (decentralized control)

1) off-line computation:
• Choose a sequence of states xm,m = 1, ...,mmax

such that xm+1 is closer to the origin than xm. For
each xm, solve the optimization problem in Eqs.
4-7 by replacing xk with xm in order to obtain the
corresponding state feedback gain Ki,m = Yi,mQ−1

m
for each subsystem i. xm is chosen such that
ε−1

m+1 ⊂ ε−1
m , where εm = {x|xT Q−1

m x ≤ 1}. The

state feedback gains are derived based on the mini-
mization of upper bound of infinite horizon worst-
case performance. However, the output constraints
are not taken into account here in order to enlarge
the domain of attraction. The output constraints are
then properly handled during polyhedral invariant
set construction.

• Given the state feedback gains Ki,m =Yi,mQ−1
m , i =

1, ...,N previously calculated. A polyhedral in-
variant set Sm = {x|Mmx ≤ dm} associated with
each state feedback gain is constructed by using
Procedure 1 previously described.

2) On-line computation:
At each control iteration, a current state xk is measured,
a smallest polyhedral invariant set Sm={x|Mmx≤ dm}
containing the current state measured is determined.
A state feedback control law uk,i=Ki,mxk for each
subsystem i is implemented.

Theorem 2: For a distributed system as shown in Eq. 2,
given an initial measured state xk ∈ Sm, the control law
provided by Algorithm 1 assures robust stability to the
closed-loop system with input, output and state constraints
satisfaction.

Proof: From Theorem 1, with the state feedback control
law uk,i=Ki,mxk for each subsystem i, the polyhedral set Sm
provides a set of states that the system will evolve to the
origin without input and output constraints violation. Thus,
any initial states xk ∈ Sm are guaranteed that all future state
trajectories evolve closer to the origin by passing Sm+1, Sm+2,
..., and Smmax . Thus, the control law provided by Algorithm 1
assures robust stability to the closed-loop system with input,
output and state constraints satisfaction.

B. Algorithm 2 (centralized control)

1) off-line computation:
An off-line computation used in this algorithm is
as same as that of Algorithm 1. However, xm, m =
1, ...,mmax must be chosen such that for each m ̸=mmax,
there must exist a matrix P > 0 satisfying

P− (Al +
N

∑
i=1

Bl,iKi,m)
T P(Al +

N

∑
i=1

Bl,iKi,m)> 0,

(9)

P− (Al +
N

∑
i=1

Bl,iKi,m+1)
T P(Al +

N

∑
i=1

Bl,iKi,m+1)> 0,

(10)

for all l = 1, ...,L, to assure robust stability satisfaction
of a convex combination between Ki,m and Ki,m+1.

2) On-line computation:
A state feedback gain for each subsystem is calculated
by linear interpolation between the pre-computed state
feedback gains to obtain the minimum violation of the
constraints γk of the adjacent inner invariant sets. The
state feedback gain calculated has to regulate the state
from the current invariant set to the adjacent inner
invariant set as fast as possible.
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At each control iteration, if x(k) ∈ Sm and x(k) /∈
Sm+1,∀m ≤ mmax − 1, for subsystem i a control
law uk,i =Kk,ixk with a state feedback gain Kk,i =
λk,iKi,m+(1− λk,i)Ki,m+1 can be obtained by solving
the optimization problem in Eqs. 11-16.

min
λk,1,...,λk,N ,γk

γk (11)

s.t.

Mm[Al +
N

∑
i=1

Bl,iKk,i]xk −dm ≤ 0, l = 1, ...,L (12)

Mm+1[Al +
N

∑
i=1

Bl,iKk,i]xk −dm+1 ≤ γk, l = 1, ...,L (13)

ui,min ≤ Kk,ixk ≤ ui,max, i = 1, ...,N, (14)
Kk,i = λk,iKi,m +(1−λk,i)Ki,m+1, i = 1, ...,N, (15)
0 ≤ λk,i ≤ 1, i = 1, ...,N. (16)

If x(k) ∈ Smmax , a control law ui(k)=Ki,mmaxx(k) is
implemented in each subsystem i.

Theorem 3: For a distributed system as shown in Eq. 2,
given an initial measured state xk ∈ Sm, the control law
provided by Algorithm 2 assures robust stability to the
closed-loop system with input, output and state constraints
satisfaction.

Proof: As Eqs. 9 and 10 are satisfied, a Lyapunov
function Vk = xT

k Pxk ensures robust stability of each feedback
gain Kk,i = λk,iKi,m + (1 − λk,i)Ki,m+1, 0 ≤ λk,i ≤ 1, which
is a convex combination of Ki,m and Ki,m+1. In solving the
problem in Eqs. 11-16, Eqs. 15 and 16 restrict Kk,i to be a
convex combination of Ki,m and Ki,m+1. The input constraint
is guarantee by Eq. 13. State and output constraints do not
need to be explicitly incorporated into the problem formula-
tion because the satisfaction of Eq. 12 also guarantees state
and output constraints satisfaction. The constraints in Eq. 12
guarantee that one step prediction of xk+1 remains in Sm.
Thus, any initial states xk ∈ Sm are guaranteed that all future
state trajectories evolve closer to the origin by passing Sm+1,
Sm+2, ..., and Smmax .

C. Algorithm 3 (cooperative control)

1) off-line computation:
An off-line computation used in this algorithm is as
same as that of Algorithm 2.

2) On-line computation:
The state feedback gain is also calculated by linear
interpolation between the pre-computed state feedback
gains to obtain the minimum violation of the con-
straints γk of the adjacent inner invariant sets. An
ideal communication network is assumed so that the
controllers can exchange their information without
delays. The goal of performing communication and
exchanging solutions among controllers is to achieve
the optimal solution of the entire system in an iterative
fashion.
At each control iteration, if xk ∈ Sm and xk /∈
Sm+1,∀m ≤ mmax−1, all the controllers exchange their

local states measurements and initial estimates λk,i = 1
via communication. The optimization problem in Eqs.
17-22 is then solved for λk,i. The information of λk,i
calculated is then broadcasted to all subsystems. The
optimization problem is then recursively solved and
exchange information. The state feedback control law
for subsystem i, uk,i = [λk,iKi,m+(1−λk,i)Ki,m+1]x(k)
is then obtained.

min
λk,i,γk

γk (17)

s.t.

Mm[Al +
N

∑
i=1

Bl,iKk,i]xk −dm ≤ 0, l = 1, ...,L (18)

Mm+1[Al +
N

∑
i=1

Bl,iKk,i]xk −dm+1 ≤ γk, l = 1, ...,L (19)

ui,min ≤ Kk,ixk ≤ ui,max, i = 1, ...,N, (20)
Kk,i = λk,iKi,m +(1−λk,i)Ki,m+1, i = 1, ...,N, (21)
0 ≤ λk,i ≤ 1, i = 1, ...,N. (22)

If x(k) ∈ Smmax , a control law ui(k)=Ki,mmaxx(k) is
implemented in each subsystem i.

Theorem 4: For a distributed system as shown in Eq. 2,
given an initial measured state xk ∈ Sm, the control law
provided by Algorithm 3 assures robust stability to the
closed-loop system with input, output and state constraints
satisfaction.

Proof: As Eqs. 9 and 10 are satisfied, a Lyapunov
function Vk = xT

k Pxk ensures robust stability of each feedback
gain Kk,i = λk,iKi,m + (1 − λk,i)Ki,m+1, 0 ≤ λk,i ≤ 1, which
is a convex combination of Ki,m and Ki,m+1. In solving the
problem in Eqs. 17-22, Eqs. 21 and 22 restrict Kk,i to be a
convex combination of Ki,m and Ki,m+1. The input constraint
is guarantee by Eq. 19. State and output constraints do not
need to be explicitly incorporated into the problem formula-
tion because the satisfaction of Eq. 18 also guarantees state
and output constraints satisfaction. The constraints in Eq. 18
guarantee that one step prediction of xk+1 remains in Sm.
Thus, any initial states xk ∈ Sm are guaranteed that all future
state trajectories evolve closer to the origin by passing Sm+1,
Sm+2, ..., and Smmax .

V. SIMULATION OF QUADRUPLE TANK SYSTEM

In this section, we present an example that illustrates the
implementation of the proposed algorithms. The numerical
simulations have been performed in 2.3 GHz Intel Core
i-5 with 16 GB RAM, using SDPT3[15], Gurobi[16] and
YALMIP [17] within Matlab R2011b environment. We il-
lustrate our proposed algorithms in a quadruple tank system,
which is similar to the system considered in [18]. The system
is described by Eqs. 23-26.
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ḣ1 =−5.91
√

h1 +5.91
√

h3 +0.74u1, (23)

ḣ2 =−5.91
√

h2 +5.91
√

h4 +0.74u2, (24)

ḣ3 =−5.91
√

h3 +1.73u2, (25)

ḣ4 =−5.91
√

h4 +1.73u1. (26)

Where ht is a water level in tank t, t = 1,2,3,4. u1 and
u2 are water flowrates. Let h̄t = ht − ht,eq, t = 1,2,3,4 and
ūt = ut −ut,eq, t = 1,2. Subscript eq denotes a corresponding
variable at equilibrium condition, ht,eq = 14.98 cm, t = 1,2
and ht,eq = 7.34 cm, t = 3,4. Our aim is to regulate h̄1, h̄2,
h̄3 and h̄4 to the origin by manipulating ū1 and ū2. Input
constraints are symmetric ūi ≤ 9.25 cm3/min. In addition,
symmetric output constraints −13.98 ≤ h̄t ≤ 13.98, t = 1,2
and −6.34 ≤ h̄t ≤ 6.34, t = 3,4 are considered.

By rewriting Eqs. 23-26 in deviation form and rearranging
along all uncertainty vertices. Our system is written in
differential inclusion form as following

[ ˙̄h1; ˙̄h2; ˙̄h3; ˙̄h4] ∈
16

∑
l=1

λl [Al [h̄1; h̄2; h̄3; h̄4]+Bl [ū1; ū2]], (27)

The discrete-time model is obtained by discretization of
Eq. 27 using Euler first-order approximation with a sampling
period of 0.2 min and it is omitted here for brevity. The
tuning parameters are

R =

[
0.01 0

0 0.01

]
and Θ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

The system is decomposed into two subsystems. A se-
quence of six polyhedral invariant sets with associated state
feedback gains are generated by using the following states,
[13.5; 13.5; 6.3; 6.3], [4.0; 4.0; 2.0; 2.0], [2.5; 2.5; 1.0;
1.0], [1.0; 1.0; 0.5; 0.5], [0.2; 0.2; 0.1; 0.1] and [0.05; 0.05;
0.01; 0.01]. Algorithm 1, Algorithm 2, Algorithm 3, and
decentralized control based on ellipsoidal invariant set [2]
are performed to stabilize the system from a deviated state
of [12.0; 12.0; 6.0; 6.0] to the origin. The performance of
each algorithm is then compared. Figures 1 and 2 depict
the performance of each algorithm in terms of the regulated
states h̄1 and h̄3. The profiles of h̄2 is identical to h̄1. In
the same manner, the profiles of h̄3 is identical to h̄4 With
only two iterations, the performance of Algorithm 3 (coop-
erative control) approaches that of Algorithm 2 (centralized
control). Both algorithms is less conservative as compared to
Algorithm 1 (decentralized control) and decentralized control
based on ellipsoidal invariant set [2].

Figure 3 shows the profiles of control input ū1. The
profiles of ū2 is identical to ū1. A jerking in control input
appeares in case of Algorithm 1 (decentralized control) and
decentralized control based on ellipsoidal invariant set [2].
This jerking effect is caused by the switching of feedback
gains. by a switching of state feedback gains. In comparison,
we can overcome this problem by using centralized control

Fig. 1. Regulated state h̄1 of the quadruple tank system.

Fig. 2. Regulated state h̄3 of the quadruple tank system.

or cooperative control. The cooperative algorithm is capable
of inheriting the properties of centralized control scheme,
and provides similar control performance.

Figure 4 shows the cumulative performance cost. The
lowest cumulative performance cost is obtained by using
decentralized control based on ellipsoidal invariant set [2].
In addition, the cooperative control converges to centralized
control within two iterations.

The on-line computational burdens are shown in Table I.
For all algorithms, most of the computational burdens are
moved off-line so the on-line computation is tractable. The
optimization problem involved in cooperative control and
centralized control is independent of the number of vertices
of the uncertain polytope. Algorithms 2 and 3 require solving
a linear programming. The number of decision variables
involved in Algorithm 3 is lower than that of Algorithm
2. Thus, Algorithm 2 requires higher computational time
compared with other Algorithms. In contrast, Algorithm 1
does not solve any optimization problems.
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Fig. 3. Control input ū1 of the quadruple tank system.

Fig. 4. The cumulative cost ∑t
k=0[x

T
k Θxk +∑N

i=1 uT
k,iRuk,i].

VI. CONCLUSIONS

We have proposed a framework for robust distributed
interpolation-based control targeting at polytopic uncertain
systems. The algorithm satisfies a cooperative scheme, and
requires iteratively solving a number of linear programming
problems in parallel. Simulation example of quadruple tank
system are used to illustrate the application of the algorithm.
The algorithm is favorable for large-scale systems with
many inputs and states, because of reduction of on-line
computational burdens. The cooperative algorithm is capable
of inheriting the properties of centralized control scheme, and
provides similar control performance.
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TABLE I
THE ON-LINE COMPUTATIONAL BURDENS

Algorithm On-line CPU time(s)/step
Decentralized control
with ellipsoidal set [2] < 0.0001
Algorithm 1
(decentralized control) < 0.0001
Algorithm 2
(centralized control) 0.01
Algorithm 3
(cooperative control with 2 iterations) 0.002
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Interpolation-based robust constrained model predictive output
feedback control

Soorathep Kheawhom1 and Pornchai Bumroongsri2

Abstract— In this paper, a problem of output feedback
robust control of polytopic uncertain discrete-time systems
is addressed. The output feedback control law proposed is
a function of estimated state determined by mapping of the
current output measured. An appropriate estimator is defined,
and a sequence of feedback gains is computed by solving off-line
a series of optimal control optimization problems. A sequence of
nested polyhedral invariant sets associated with each feedback
gain pre-computed is then constructed as a mapping on a
system output. At each control iteration, a smallest polyhedral
invariant set containing the current output is determined.
A corresponding feedback gain is then implemented to the
process. Further, an interpolation algorithm is proposed to
improve control performance. In the interpolation scheme, a
feedback gain is computed from convex combination between
a feedback gain associated with the current invariant set and
that of the adjacent smaller invariant set, where a parameter
used in the combination is minimized subjected to a set
of constraints associated with the current invariant set. The
controller design is illustrated with a case study of nonlinear
two-tank system formulated as a polytopic uncertain system.
The simulation results showed that the proposed algorithms
can drive the system to the origin without input and output
constraints violation. The interpolation algorithm proposed can
improve control performances while on-line computation is still
tractable.

I. INTRODUCTION

Model predictive control (MPC) is an advanced control
technique capable of dealing with multiple input multiple
output processes with constraints on process variables. Gen-
erally, MPC is designed based on a linear time invariant (LTI)
system. Robust model predictive control (RMPC) has been
developed to guarantee satisfaction on robustness against
model uncertainties.

RMPC proposed in [1] is a classic example of algorithm
which can deal with polytopic parametric uncertainties. At
each control iteration, the optimal state feedback gain that
robustly stabilizes the closed-loop system is determined by
minimizing the worst-case performance cost subject to input,
output and stability criteria constraints. The optimization
problem involved is a convex problem with linear matrix
inequalities (LMI). This problem is required to be solved
on-line. Thus, the algorithm usually requires high on-line
computational burdens. Therefore, its application is rather

1Soorathep Kheawhom is with Computational Process
Engineering, Department of Chemical Engineering, Faculty of
Engineering, Chulalongkorn University, Bangkok 10330 Thailand
soorathep.k@chula.ac.th, corresponding author

2Pornchai Bumroongsri is with Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Nakhon Pathom 73170 Thai-
land pornchai.bum@mahidol.ac.th

restricted to the relatively slow dynamic processes. There-
fore, the synthesis approaches for off-line RMPC have been
widely investigated.

An off-line formulation of RMPC using LMI was devel-
oped [2]. A sequence of state feedback gains corresponding
to a sequence of ellipsoidal invariant sets is computed
off-line. At each sampling instant, the smallest ellipsoidal
invariant set containing the currently measured state is de-
termined and the state feedback control law is calculated
by linear interpolation between the pre-computed feedback
gains. Although the algorithm substantially reduces on-line
computational burdens compared with an on-line RMPC,
the algorithm is rather conservative due to the fact that the
algorithm is designed based on invariant ellipsoids providing
small domain of attraction.

An ellipsoidal off-line MPC algorithm for linear parameter
varying (LPV) systems was introduced [3]. For LPV systems,
the algorithm is less conservative as compared with the algo-
rithm proposed by [2], because the scheduling parameter is
included in the controller synthesis. However, the algorithm
is still based on an ellipsoidal invariant set. Moreover, the
algorithm can handle only the uncertainty in the state matrix.

The invariant sets generally used in the controller design
are either ellipsoidal or polyhedral sets. Though the polyhe-
dral invariant set has some advantages over the ellipsoidal in-
variant set such as better handling of asymmetric constraints
and enlargement of domain of attraction [4], the ellipsoidal
invariant set is usually used in RMPC formulation due to
its relatively low computational complexity. In recent years,
an off-line RMPC algorithm based on polyhedral invariant
set has been developed [5]. The algorithm computes off-
line a sequence of state feedback gains corresponding to
a sequence of polyhedral invariant sets. At each control
iteration, the smallest polyhedral invariant set containing
the currently measured state is determined and the corre-
sponding state feedback gain is implemented to the process.
Although the polyhedral invariant set which usually provides
larger domain of attraction is used, the algorithm is still
conservative because the control law implemented at each
control iteration is only an approximation of the optimal
feedback gain. Moreover, the jerking in control input caused
by the switching between state feedback gains is occurred.
In order to improve the control performance and to eliminate
jerking in control input, the algorithm requires constructing
high number of polyhedral invariant sets, hence a large data
storage is required. An interpolation technique for polyhedral
invariant sets was introduced to off-line RMPC for polytopic
uncertain systems in order to reduce conservatism and im-
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prove the control performance [6], [7]. Another technique to
deal with polytopic uncertain systems with input and output
constraints can be based on a vertex control which is also
an interpolation-based controller [8].

Information on a system state is also important to the
performance of RMPC. In a state feedback RMPC, full
state information is required in order to predict behaviours
of a system. Unfortunately, the system state is not always
accurately measurable, only information on a system output
is available. In this case, an output feedback control is
more practical than the state feedback control. [9] proposed
an output feedback MPC, where a stable Luenberger state
estimator was used, and an error on a state estimation
was incorporated. [10] developed an output feedback RMPC
(OFRMPC) for polytopic uncertain systems by also using a
Luenberger state estimator. [11] developed OFRMPC based
on dynamic output feedback control, where the control law
is parameter-dependent.

In this paper, we present an off-line robust constrained
output feedback model predictive control based on polyhe-
dral invariant sets for polytopic uncertain systems. Moreover,
an interpolation scheme to further improve control perfor-
mances of the proposed algorithm is introduced. The paper
is organized as follows. In section 2, the problem descrip-
tion is presented. The robust model predictive control and
polyhedral invariant set construction are presented in section
3. In section 4, the proposed algorithms are described. In
section 5, we illustrate the implementation of the algorithms
proposed. Finally, in the last section, we conclude the paper.

Notation: For a matrix A, AT denotes its transpose, A−1

denotes its inverse. I denotes the identity matrix. For a state
vector x, xk denotes the state measured at real time k, xk+i
denotes the state at prediction time k + i predicted at real
time k. x̂k is the estimated state at real time k. yk and uk
denote the output measured and the control input at real
time k, respectively. The symbol ∗ denotes the corresponding
transpose of a lower block part of symmetric matrices.

II. PROBLEM DESCRIPTION

In this work, a discrete-time linear time-varying (LTV)
system with polytopic parametric uncertainties as shown (1)
is taken into account.

xk+1 = Akxk +Bkuk,

yk =Ckxk, (1)

where xk ∈ Rn is a vector of state variables. uk ∈ Rnu is a
vector of control inputs, and yk ∈ Rn is a vector of control
outputs. The states cannot be accurately measured, but can be
estimated by using the current outputs, which are accurately
measureable. In addition, the system matrix Ak, the control
matrix Bk, and the output matrix Ck are assumed to be within
a polytope,

[Ak,Bk,Ck] ∈Co{[A1,B1,C1], ..., [AL,BL,CL]},

Co denotes convex hull with [Al ,Bl ,Cl ] vertices. Any
[Ak,Bk,Ck] within the polytope is a convex combination of

the vertices such that [Ak, Bk, Ck] = ∑L
l=1 λl,k[Al ,Bl ,Cl ],

∑L
l=1 λl,k= 1, where 0 ≤ λl,k ≤ 1 is an uncertain parameter

vector. Ck is assumed to be an invertible matrix. In addition,
the system is observable and controllable.

As the state vector xk cannot be accurately measured on-
line, the estimated state vector x̂k are determined through a
mapping of the output vector.

x̂k = Eyk, (2)

where E is an n×n estimator matrix.
Our aim is to find a feedback control law

uk = Kx̂k = KEyk, (3)

that stabilizes the LTV system as shown in (1) and achieves
the minimum worst case performance cost defined as in (4)
subjected to input, output and state constraints as in (5)-(7).

min
uk+i

max
[A,B,C]∈Ω

∞

∑
i=0

[
xk+i
uk+i ]

T [Θ 0
0 R ][

xk+i
uk+i ], (4)

s.t.uh,min ≤ uh,k+i ≤ uh,max,h = 1, ...,nu, (5)
yr,min ≤ yr,k+i ≤ yr,max,r = 1, ...,n, (6)
xs,min ≤ xs,k+i ≤ xs,max,s = 1, ...,n, (7)

where Θ > 0 and R > 0 are diagonal weighting matrices of
states and control inputs, respectively.

III. ROBUST MODEL PREDICTIVE CONTROL AND
POLYHEDRAL INVARIANT SET

An on-line robust model predictive state feedback control
for LTV systems was introduced in [1]. The optimization
problem is shown in (8)-(12).

min
γ ,Y,Q

γ (8)

s.t.
[

1 ∗
xk Q

]
≥ 0, (9)

Q ∗ ∗ ∗
AlQ+BlY Q ∗ ∗

Θ
1
2 Q 0 γI ∗

R
1
2 Y 0 0 γI

≥ 0,∀l = 1, ...,L, (10)

[
X ∗

Y T Q

]
≥ 0,Xhh ≤ u2

h,max,h = 1, ...,nu, (11)[
S ∗

(AlQ+BlY )TCT
l Q

]
≥ 0,∀l = 1, ...,L,

Srr ≤ y2
r,max,r = 1, ...,n, (12)

where Q is a symmetric matrix.
By solving the optimization problem presented in (8)-(12),

we obtain a state feedback control law uk = Kxk with a state
feedback gain K =Y Q−1 that can stabilize the system while
satisfying the input and output constraints.

However, the current state vector xk cannot be accurately
measured on-line. The estimated state vector x̂k is estimated
via estimator matrix E as x̂k = Eyk. The estimator matrix E
can be chosen as an inverse of a nominal output matrix C̄−1.
The nominal output matrix is obtained by taking the centroid
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of all output matrices at each uncertainty vertex. We design
a feedback control law of the form uk = KEyk.

xk =C−1
k yk

yk = yk

uk = KEyk

xk+1 = [Ak +BkKECk]C−1
k yk

yk+1 =Ck+1[Ak +BkKECk]C−1
k yk

uk+1 = KECk+1[Ak +BkKECk]C−1
k yk

... =
...

xk+n = [
n

∏
i=1

[Ak+n−i +Bk+n−iKECk+n−i]]C−1
k yk

yk+n =Ck+n[
n

∏
i=1

[Ak+n−i +Bk+n−iKECk+n−i]]C−1
k yk

uk+n = KECk+n[
n

∏
i=1

[Ak+n−i +Bk+n−iKECk+n−i]]C−1
k yk

To guarantee that the estimator matrix E can be used
incorporation with feedback gain K in an output feedback
scheme, there must exist a matrix P > 0 satisfying

P− [Al +BlKECl ]
T P[Al +BlKECl ]≥ 0, l = 1, ...,L. (13)

Theorem 1: For an LTV system as shown in (1), given the
initial measured output yk with the estimator matrix E, the
control law uk = KEyk with a state feedback gain K =Y Q−1

provided by solving the optimization problem presented in
(8)-(12) and satisfication of (13), provides robust stability to
the closed-loop system.

Proof: The satisfaction of (13) for the feedback gain
K and the estimator matrix E ensures that xT

k Pxk−[[Al +
BlKECl ]xk]

T P [[Al +BlKECl ]xk] ≥ 0, l = 1, ...,L. That means
xT

k Pxk−xT
k+1 P xk+1 ≥ 0. Thus, Vk = xT

k Pxk is a strictly
decreasing Lyapunov function and the closed-loop system
is robustly stabilized.

By giving a state feedback gain K with an estimator
matrix E satisfying (13), and control inputs uk = KEyk, the
polyhedral invariant set with largest domain of attraction can
be constructed. The polyhedral invariant set mapped on the
output vector, S = {y|My ≤ d}, can be constructed by using
the following procedure.

Procedure 1

1) Set i = 0, Mi = [C−1
1 ;−C−1

1 ; . . . ; C−1
L ; −C−1

L ; I; −I;
. . . ; I; −I; KE; −KE; . . . ; KE; −KE], Ni = [I;−I;
. . . ; I;−I; C1; −C1; . . . ; CL; −CL; KEC1; −KEC1; . . . ;
KECL; −KECL], di = [xmax; −xmin; . . . ; xmax; −xmin;
ymax; −ymin; . . . ; ymax; −ymin; umax; −umin; . . . ; umax;
−umin], Si = {y|Miy ≤ di}.

2) Set i = i+ 1, Mi = [Mi−1; Ni−1[A1 + B1KEC1]C−1
1 ;

. . . ; Ni−1[AL + BLKECL]C−1
L ], Ni = [Ni−1; Ni−1[A1 +

B1KEC1]; . . . ; Ni−1[AL + BLKECL]], di = [di−1; di−1;
. . . ; di−1], Si = {y|Miy ≤ di}, and eliminate redundant
inequalities from the polytope Si, and also eliminate
the corresponding row from Ni.

3) If Si ̸= Si−1 then repeat step 2, if otherwise stop the
algorithm and S = {y|Miy ≤ di}.

Theorem 2: For an LTV system as shown in (1), given the
estimator matrix E, and the control law uk = KEyk with a
state feedback gain K satisfying Theorem 1. The polyhedral
set, S = {y|My ≤ d}, constructed by using Procedure 1
provides a set of outputs that the system will evolve to the
origin without input and output constraints violation.

Proof: By following Procedure 1, we iteratively add
state, output and input constraints at the time k + i, i =
0, ..., imax to define a polyhedral invariant set S = {y|My
≤ d}, and eliminate all redundant constraints. Thus, we
can construct a set of initial outputs, y ∈ S, such that all
future outputs from time k to k+ imax remain inside S and
satisfy the constraints. In addition, there exists a finite index
i= imax such that Mi = Mi+1 because of the contraction as the
satisfaction of Theorem 1 ensures the closed-loop stability.
Thus, we can construct a set of initial outputs S= {y|My≤ d}
such that all future outputs remain inside S and approach to
the origin while satisfying the constraints.

IV. THE PROPOSED ALGORITHM

In this section, the proposed algorithms of robust con-
strained output feedback control are described. The algo-
rithms proposed consist of off-line and on-line calculations.

Algorithm 1
1) off-line computation:

• Choose a sequence of states xm,m = 1, ...,mmax,
where xm+1 is close to the origin than xm. For
each xm, solve the optimization problem in (8)-
(12) by replacing xk with xm in order to obtain a
corresponding state feedback gain Km = YmQ−1

m .
Moreover, xm is chosen such that ε−1

m+1 ⊂ ε−1
m ,

where εm = {x|xT Q−1
m x ≤ 1}. The estimator ma-

trix E is chosen such that (13) is satisfied. The
estimator matrix E can be chosen as an inverse of
a nominal output matrix C̄−1.

• By using the estimator matrix E, and a sequence of
state feedback gains Km = YmQ−1

m ,m = 1, ...,mmax
previously calculated. A polyhedral invariant set
Sm = {y|Mmy ≤ dm} associated with each state
feedback gain is constructed by using Procedure
1 previously described.

2) on-line computation: At each control iteration, yk
is measured, a smallest polyhedral invariant set
Sm={y|Mmy≤ dm} containing the current output
measured is determined. The feedback control law
uk=KmEyk is implemented to the system.

Theorem 3: For an LTV system as shown in (1), given
the initial measured output yk ∈ Sm, the control law provided
by Algorithm 1 assures robust stability to the closed-loop
system, while satisfying input, output and state constraints.

Proof: From Theorem 2, with the estimator matrix
E, and the control law uk = KmEyk, the polyhedral set Sm
provides a set of outputs that the system will evolve to
the origin without input and output constraints violation.
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Thus, any initial states with measured outputs yk ∈ Sm are
guaranteed that all future output trajectories evolve closer
to the origin by passing Sm+1, Sm+2, ..., and Smmax . Thus,
the control law provided by Algorithm 1 assures robust
stability to the closed-loop system with input, output and
state constraints satisfaction.

The output feedback control algorithm proposed in Al-
gorithm 1 is further improved by implementing an inter-
polation technique. In this technique, a feedback gain is
calculated from convex combination between a feedback
gain associated with the current invariant set and that of the
adjacent smaller invariant set, where a parameter used in the
combination is minimized subjected to a set of constraints
associated with the current invariant set.

Algorithm 2
1) off-line computation: An off-line computation used

in this algorithm is as same as that of Algorithm 1.
However, xm, m = 1, ...,mmax must be chosen such that
for each m ̸= mmax, there must exist a matrix P > 0
satisfying

P− [Al +BlKmECl ]
T P[Al +BlKmECl ]≥ 0, (14)

P− [Al +BlKm+1ECl ]
T P[Al +BlKm+1ECl ]≥ 0, (15)

for all l = 1, ...,L, to assure robust stability satisfaction
of a convex combination between Km and Km+1.

2) on-line computation: At each control iteration, when
yk ∈ Sm and yk /∈ Sm+1,∀m ≤ mmax − 1, the feedback
gain Kk = λkKm + (1− λk)Km+1 can be obtained by
solving the problem in (16)-(20).

min
λk

λk (16)

s.t.Mm[Ci(A j +B jKkEC j)C−1
j yk]−dm ≤ 0, (17)

i = 1, ...,L, j = 1, ...,L,
umin ≤ KkEyk ≤ umax, (18)
Kk = λkKm +(1−λk)Km+1, (19)
0 ≤ λk ≤ 1. (20)

If yk ∈ Smmax , the feedback control law uk=KmmaxEyk
is implemented to the system.

The optimization problem involved is formulated as a linear
programming and the number of constraints involved grows
with the number of vertices of the uncertain polytope.

Theorem 4: For an LTV system as shown in (1), given
the initial measured output yk ∈ Sm, the control law provided
by Algorithm 2 assures robust stability to the closed-loop
system, while satisfying input, output and state constraints.

Proof: As (14) and (15) are satisfied, a Lyapunov
function Vk = xT

k Pxk ensures robust stability of the feedback
gain Kk = λkKm + (1 − λk)Km+1, 0 ≤ λk ≤ 1, which is a
convex combination of Km and Km+1. In solving the problem
in (16)-(20), (20) restricts Kk to be a convex combination of
Km and Km+1. The input constraint is guaranteed by (18). The
state constraint does not need to be explicitly incorporated
into the problem formulation because the satisfaction of
(17) also guarantees state and output constraints satisfaction.

The constraints in (17) guarantee that one step prediction
output yk+1 remains in Sm. Thus, the feedback control law
uk = KkEyk obtained from solving the optimization problem
in (16)-(20) assures robust stability to the closed-loop system
with input, output and state constraints satisfaction.

V. CASE STUDY

In this section, we present an example that illustrates the
implementation of the proposed algorithms. The numerical
simulations have been performed in 2.3 GHz Intel Core
i-5 with 16 GB RAM, using SDPT3[12], Gurobi[13] and
YALMIP [14] within Matlab R2011b environment. We con-
sider the application of our approach to the nonlinear two-
tank system, which is described by (21)-(22).

ḣ1 =−0.0161
√

h1 +0.4u, (21)

ḣ2 = 0.0252
√

h1 −0.0112
√

h2. (22)

Where h1 is the water level in tank 1, h2 is the water level
in tank 2 and u is the water flowrate.

Let h̄1 = h1 −h1,eq, h̄2 = h2 −h2,eq and ū = u−ueq. Sub-
script eq denotes the corresponding variable at equilibrium
condition, h1,eq = 14 cm and h2,eq = 70 cm. The objective
is to regulate h̄1 and h̄2 to the origin by manipulating ū.
The input constraint is asymmetic −1.5kg/s ≤ ū ≤ 1.0kg/s.
Similarly, asymmetric state constraints −13cm ≤ h̄1 ≤ 71cm,
and −69cm ≤ h̄2 ≤ 29cm are considered.

By evaluating the Jacobian matrix of (21)-(22) along the
vertices of the constraints set, the solutions of (21)-(22) are
also the solution of the following differential inclusion

[
˙̄h1
˙̄h2

]
∈

4

∑
l=1

λl [Al

[
h̄1
h̄2

]
+Bl ū], (23)

where ∑L
l=1 λl= 1, and 0 ≤ λl ≤ 1.

The measurable outputs, h̃1 and h̃2, are assumed to be
inside the following polytopes,[

h̃1
h̃2

]
∈

2

∑
l=1

λlCl

[
h̄1
h̄2

]
, (24)

C1 =

[
0.9 0.0
0.0 0.8

]
, (25)

C2 =

[
1.2 0.0
0.0 1.1

]
, (26)

where ∑L
l=1 λl= 1, and 0 ≤ λl ≤ 1.

The discrete-time model is obtained by discretization of
(23) using Euler first-order approximation with a sampling
period of 0.1 s and it is omitted here for brevity. The tuning
parameters are Θ=[ 0 0

0 1 ] and R = 0.01.
The estimator matrix of E=[ 0.95 0.00

0.00 1.05 ] is used to construct
a sequence of six polyhedral invariant sets by using the
following states, [−12;28], [1.4;1.8], [0.6;0.6], [0.2;0.3],
[0.08;0.12] and [0.01;0.04]. Figure 1 shows the constructed
polyhedral invariant sets mapping on h̃1 and h̃2. By using a
different estimator matrix or a different sequence of states,
the invariant set obtained may be different.
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Fig. 1. The invariant sets with mapping on outputs for the case study

Fig. 2. The profiles of regulated state (h̄2) for the case study

We regulate the system from the initial state with measured
output of (h̃1, h̃2) = [29;−40] to the origin. Figure 2 shows
the profiles of regulated state (h̄2). Both algorithms can drive
the states to the origin without input and state constraints
violation. Algorithm 1 provides a slower response than
Algorithm 2, because the real-time feedback gain used in
Algorithm 1 is an approximation of the optimal feedback
gain. For instance, by Algorithm 1, if we start from an initial
state with output yk ∈ Sm but yk /∈ Sm+1, a feedback gain Km
is implemented. The system is driven to the next state xk+1
where the Lyapunov function Vk+1 < Vk. If yk+1 ∈ Sm but
yk+1 /∈ Sm+1, Km is still used as a feedback gain. We see
that |uk+1| < |uk|, as Vk+1 < Vk. In other words, Algorithm
1 implements the feedback gain Km for the whole region
yk ∈ Sm but yk /∈ Sm+1. By using interpolation as in Algorithm
2, we can achieve a better control performance. For each
yk ∈ Sm but yk /∈ Sm+1, a feedback gain Kk obtained by
solving an optimization problem is implemented. We see
that Kk ̸= Km. Thus, a preferable control performance can

Fig. 3. The profiles of control input ū for the case study

Fig. 4. The cummulative cost for the case study

be obtained. Therefore, Algorithm 1 is more conservative
that Algorithm 2.

Figure 3 shows the profiles of control input ū. Algorithm
1 does not implement any interpolation techniques, thus, the
feedback gain used updates only when the current output
measured switches from one invariant set to another smaller
invariant set. Consequently, a conservative control input
profile is observed in Algorithm 1. In comparison, Algorithm
2 implements more aggressive control input profile, as the
interpolation technique is implemented.

Figure 4 shows the cumulative performance cost. The
cumulative performance cost of Algorithm 2 is lower than
the cumulative cost of Algorithm 1.

Figures 5 and 6 show state, estimaed state and output
trajectories from initial output of (h̃1, h̃2) = [29;−40] to the
origin. The discrepancies between states and estimated states
decrease as the system evolves. Algorithm 2 produces the
trajectory with better control performances.

For both algorithms, most of the computational burdens
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Fig. 5. State, estimated state and output trajectories of the algorithm 1 for
the case study

Fig. 6. State, estimated state and output trajectories of the algorithm 2 for
the case study

are moved off-line so the on-line computation is tractable.
The optimization problem involved in Algorithm 2 is a linear
programming and the constraints involved is dependent of the
number of vertices of the uncertain polytope. In each time
step, computational times required for Algorithm 1 and 2 are
1 and 4 ms., respectively.

VI. CONCLUSIONS

In this paper, we have presented an output feedback robust
model predictive control of polytopic uncertain discrete-time
systems. The output feedback control law is parameterized
as a function of estimated state determined by mapping of
the current output measured. The proposed algorithms use an
off-line solution of a series of optimal control optimization
problems to determine a sequence of feedback gains. A
sequence of nested polyhedral invariant sets associated with
each feedback gain pre-computed is constructed. At each
control iteration, the smallest invariant containing the mea-
sured output is identified, and the corresponding feedback

gain is implemented. In addition, the interpolation algorithm
is proposed to improve control performance. A case study of
nonlinear two-tank system formulated as a polytopic uncer-
tain system is used to illustrate the algorithms proposed. The
simulation results showed that the proposed algorithms can
drive the system to the origin while satisfying input, output
and state constraints. An interpolation-based algorithm can
improve control performance. The interpolation technique
used requires on-line solving a linear programming, where
the complexity of the problem is dependent of the number
of vertices of the uncertain polytope.
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Abstract: A robust model predictive control (RMPC) using polyhedral invariant sets for linear
parameter varying (LPV) systems is presented in this work. A sequence of state feedback gains
associated with a sequence of nested polyhedral invariant sets is constructed off-line in order
to reduce the computational burdens. At each control iteration, when the measured state
lies between any two adjacent polyhedral invariant sets constructed, a state feedback gain
is determined by interpolation of two pre-computed state feedback gains incorporated with
scheduling parameters. Three interpolation algorithms are proposed. In the first algorithm,
the real-time state feedback gain is determined by maximizing the state feedback gain with
subjected to a set of constraints associated with current invariant set. In the second algorithm,
the real-time state feedback gain is calculated by minimizing the violation of the constraints of
the adjacent inner invariant set with subjected to a set of constraints associated with current
invariant set. In the last algorithm, the real-time state feedback gain is obtaned by minimizing
the upper bound of infinite horizon worst case performance cost, which is estimated by Lyapunov
function at current state, with subjected to a set of constraints associated with current invariant
set. The controller design is illustrated with a case study of nonlinear two-tank system. The
simulation results showed that the proposed RMPC with interpolation provides a better control
performance while on-line computation is still tractable as compared to previously reported
algorithms.

Keywords: linear parameter varying system; polyhedral invariant set; model predictive control;
robust stability; stabilizable region.

1. INTRODUCTION

Model predictive control (MPC) is known as an effective
control algorithm to deal with multiple input-multiple
output processes. At each control iteration, MPC uses an
explicit model to solve an optimal control problem, and
implements the first element of the optimal input sequence
computed. However, conventional MPC based on a linear
model is often unsuitable for controlling nonlinear systems.
The performance of linear MPC will deteriorate as the
discrepancy between the real process and the model used
increases (Morari and Lee, 1999).

Though, the behaviour of a nonlinear system is preferably
captured by a nonlinear process model, MPC based on
nonlinear model is computationally prohibitive in practi-
cal situations. To overcome the excessive computational
cost of MPC application for large-scale nonlinear systems,
representing the process model in a form of Linear Param-
eter Varying (LPV) systems has been recieving increasing
attention(Paijmans et al., 2008). Thus, the synthesis of
MPC for LPV system has been motivated(Lu and Arkun,
2000).

An on-line RMPC for LPV systems using parameter-
dependent Lyapunov function was introduced by Wada
et al. (2006). At each control iteration, the ellipsoidal
invariant set containing the measured state is constructed
in order to guarantee robust stability. However, the asso-
ciated optimization problem must be solved on-line, the
algorithm requires a relatively high computational effort.

Bumroongsri and Kheawhom (2012a) introduced an off-
line RMPC for LPV systems. The sequences of state feed-
back gains corresponding to the sequences of ellipsoidal
invariant sets are pre-computed off-line. At each control
iteration, the smallest ellipsoid containing the state mea-
sured is determined. The corresponding real-time state
feedback gain is obtained by linear interpolation between
the pre-computed state feedback gains. The ellipsoidal
invariant set computed at each control iteration is only an
approximation. Thus, the algorithm trades off optimality
in order to reduce on-line computational time.

Though the polyhedral invariant set has some advantages
over the ellipsoidal invariant set such as better handling
of asymmetric constraints and enlargement of stabilizable
region (Pluymers et al., 2005), the ellipsoidal invariant set
is usually used in robust model predictive control(RMPC)
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formulation due to its relatively low on-line computational
complexity. In recent years, an off-line RMPC algorithm
based on polyhedral invariant set has been developed
by Bumroongsri and Kheawhom (2012b). A sequence of
polyhedral invariant sets corresponding to a sequence of
pre-computed state feedback gains is constructed off-line.
At each control iteration, the smallest polyhedral invari-
ant set containing the measured state is determined. The
corresponding state feedback gain is then implemented
to the process without interpolation of the pre-computed
state feedback gains. Unfortunately, the conservativeness
is obtained because the control law implemented at each
control iteration is an approximation of the optimal con-
trol law. Moreover, the input discontinuities caused by
a switching between state feedback control laws are oc-
curred. Therefore, the algorithm requires constructing a
large number of polyhedral invariant sets, hence large data
storage, in order to improve the control performance and
reduce the input discontinuities. Later, an interpolation
technique for polyhedral invariant sets was introduced to
off-line RMPC for polytopic uncertain systems in order to
reduce conservativeness and improve the control perfor-
mances (Kheawhom and Bumroongsri, 2013; Bumroongsri
and Kheawhom, 2013).

In this paper, we present a robust model predictive con-
trol (RMPC) based on polyhedral invariant sets for LPV
systems. The algorithm constructs off-line a sequence of
nested polyhedral invariant sets corresponding to a se-
quence of state feedback gains. At each control iteration,
when the state measured lies between any two adjacent
polyhedral invariant sets constructed, a real-time state
feedback gain is determined by interpolation of two pre-
computed state feedback gains incorporated with schedul-
ing parameters. Three interpolation algorithms are pro-
posed. The algorithm proposed requires very small com-
putation complexity. The paper is organized as follows. In
section 2, the problem description is presented. In section
3, the RMPC with interpolation algorthms proposed are
presented. In section 4, we illustrate the implementation of
the algorithms proposed. Finally, in section 5, we conclude
the paper.

Notation: For a matrix A, AT denotes its transpose, A−1

denotes its inverse. I denotes the identity matrix. For
a vector x, x(k/k) denotes the state measured at real
time k, x(k + i/k) denotes the state at prediction time
k + i predicted at real time k. The symbol ∗ denotes
the corresponding transpose of the lower block part of
symmetric matrices.

2. PROBLEM DESCRIPTION

In this work, the discrete-time LPV system as shown in
Eq. 1 is taken into accounted.

x(k + 1) = A(p(k))x(k) +B(p(k))u(k),

y(k) = Cx(k), (1)

where x(k) ∈ Rnx is the state of the plant and u(k) ∈ Rnu

is the control input. The scheduling parameter p(k) is
assumed to be on-line measurable at each control iteration
k. In addition, the system matrix A(p(k)) and the control
matrix B(p(k)) are assumed to be within a polytope Ω,

Ω = Co{[A1, B1], [A2, B2], ..., [AL, BL]}. (2)

Co denotes convex hull. [Aj , Bj ] is the vertex of the convex
hull. Any [A(p(k)), B(p(k))] being inside the polytope Ω
is a convex combination of all vertices such that

[A(p(k)), B(p(k))] =

L∑
j=1

pj(k)[Aj , Bj ], (3)

L∑
j=1

pj(k) = 1, 0 ≤ pj(k) ≤ 1. (4)

The objective is to find a state feedback control law

u(k + i/k) = Kx(k + i/k), (5)

that stabilises the LPV system and achieves the minimum
worst case performance cost.

min
u(k+i/k)

max
[A,B]∈Ω

∞∑
i=0

[ x(k+i/k)
u(k+i/k)

]T [Θ 0
0 R ][ x(k+i/k)

u(k+i/k)
], (6)

s.t.|uh(k + i/k)| ≤ uh,max, h = 1, 2, ..., nu, (7)

|yr(k + i/k)| ≤ yr,max, r = 1, 2, ..., ny. (8)

3. THE PROPOSED ALGORITHM

In this section, the RMPC based on polyhedral invariant
set with interpolation algorithms proposed are described.
The on-line computational time is reduced by solving off-
line the optimization problem shown in Eqs. 9-12 in order
to find a sequence of state feedback gains Ki, i = 1, 2, ..., N
associated with a sequence of polyhedral invariant sets.
An approach to construct the polyhedral invariant set
proposed by (Pluymers et al., 2005) is adopted here. At
each control iteration, when the measured state lies be-
tween two adjacent polyhedral invariant sets, the real-time
state feedback gain is calculated by solving optimization
problem based on linear interpolation between two pre-
computed state feedback gains.

Off-line:

(1) Choose a sequence of states xi, i = 1, 2, ..., N . For
each xi, solve the optimization problem in Eqs. 9-12
by replacing x(k/k) with xi in order to obtain the
corresponding state feedback gain Ki = YiG

−1
i ,

min
γi,Yi,Qi

γi (9)

s.t.

[
1 ∗
xi Qi

]
≥ 0, (10)

Qi ∗ ∗ ∗
AjQi +BjYi Qi ∗ ∗

Θ
1
2Qi 0γiI ∗

R
1
2Yi 0 0 γiI

 ≥ 0,

∀j = 1, 2, ..., L, (11)[
X ∗
Y T
i Qi

]
≥ 0, Xhh ≤ u2

h,max, h = 1, 2, ..., nu.

(12)

xi is chosen such that Q−1
i+1 ⊂ Q−1

i . Moreover, for
each i ̸= N , the following inequality must be satisfied
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Q−1
i − (Aj +BjKi+1)

TQ−1
i (Aj +BjKi+1) ≥ 0, ∀j =

1, 2, ..., L to assure robust stability satisfaction of a
convex combination between Ki and Ki+1. The state
feedback gains are derived based on the minimization
of upper bound of infinite horizon worst-case perfor-
mance proposed by (Kothare et al., 1996). However,
the output constraints are not taken into account
here in order to enlarge the stabilizable region. The
ouput constraints are then properly handled in the
next step.

(2) Given the state feedback gains Ki = YiQ
−1
i , i =

1, 2, ..., N previously calculated from step 1. For each
Ki, the corresponding polyhedral invariant set Si =
{x|Mix ≤ di} is constructed by following these steps:
(a) Set Mi=[CT , −CT , KT

i , −KT
i ]

T , di=[yTmax, y
T
min,

uT
max, u

T
min]

T and m = 1.
(b) Select row m from (Mi, di) and check ∀j whether

Mi,m(Aj +BjKi)x ≤ di,m by solving the follow-
ing problem 13:

max
x

Wi,m,j (13)

s.t.Wi,m,j = Mi,m(Aj +BjKi)x− di,m,
(14)

Mix ≤ di. (15)

IfWi,m,j ≥ 0, the constraintMi,m(Aj+BjKi)x ≤
di,m is non-redundant with respect to (Mi, di),
then, add non-redundant constraints to (Mi, di)
by assigning Mi = [MT

i , (Mi,m(Aj + BjKi))
T ]T

and di = [dTi , d
T
i,m]T .

(c) Let m = m + 1 and return to step (b). If m
is strictly larger than the number of rows in
(Mi, di), the algorithm is stopped.

On-line: The real-time state feedback gain is calculated
by linear interpolation between the pre-computed state
feedback gains. Three interpolation algorithms are pro-
posed.

Algorithm 1: In the first algorithm, the pre-computed
state feedback gains Ki = 1, 2, ..., N are interpolated
in order to get the largest possible state feedback gain
while robust stability is still guaranteed. At each control
iteration, when x(k) ∈ Si and x(k) /∈ Si+1, ∀i ≤ N − 1,
the real-time state feedback gain K(k) = λ(k)Ki + (1 −
λ(k))Ki+1 can be obtained by solving the problem in Eqs.
16-20.

min
λ(k)

λ(k) (16)

s.t.Mi

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di ≤ 0, (17)

|K(k)x(k)h| ≤ uh,max, h = 1, 2, ..., nu, (18)

K(k) = λ(k)Ki + (1− λ(k))Ki+1, (19)

0 ≤ λ ≤ 1. (20)

If x(k) ∈ SN , the real-time state feedback gain is KN .

Ki+1 is always larger than Ki because input and output
constraints impose less limit on the state feedback gain
as i increases. Thus, the largest possible state feedback
gain can be obtained by minimizing λ(k), while robust
stability is still guaranteed by Eq. 17. The input constraint
is guaranteed by Eq. 18. The output constraint does not

need to be incorporated into the problem formulation
because the satisfaction of Eq. 17 also guarantees output
constraint satisfaction. The optimization problem involved
is formulated as a linear programming and the number of
constraints is independent of the number of vertices of the
polytope Ω.

Algorithm 2: The real-time state feedback gain is ob-
tained by minimizing the violation of the contraints (γ(k))
of the adjacent inner invariant sets, so the real-time state
feedback gain calculated has to regulate the state from the
current invariant set to the adjacent inner invariant set as
fast as possible. At each control iteration, when x(k) ∈ Si

and x(k) /∈ Si+1, ∀i ≤ N − 1, the real-time state feedback
gain K(k) = λ(k)Ki + (1− λ(k))Ki+1 can be obtained by
solving the optimization problem in Eqs. 21-26.

min
λ(k),γ(k)

γ(k) (21)

s.t.Mi

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di ≤ 0, (22)

Mi+1

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di+1 ≤ γ(k),

(23)

|K(k)x(k)h| ≤ uh,max, h = 1, 2, ..., nu, (24)

K(k) = λ(k)Ki + (1− λ(k))Ki+1, (25)

0 ≤ λ ≤ 1. (26)

If x(k) ∈ SN , the real-time state feedback gain is KN .

By minimizing γ(k), the real-time state feedback gain cal-
culated has to regulate the state from the current invariant
set to the adjacent inner invariant set as fast as possible.
Robust stability as well as output constraint satisfaction
are guaranteed by Eq. 22. The input constraint is guar-
anteed by Eq. 24. The optimization problem involved is
formulated as a linear programming and the number of
constraints is independent of the number of vertices of the
polytope Ω. However, the number of constraints involved
is larger than that of algorithm 1.

Algorithm 3: In the last algorithm, the real-time state
feedback gain is obtaned by minimizing the upper bound
of infinite horizon worst case performance cost, which is
estimated by Lyapunov function at current state, with
subjected to a set of constraints associated with current
invariant set. At each control iteration, when x(k) ∈ Si

and x(k) /∈ Si+1, ∀i ≤ N − 1, the real-time state feedback
gain K(k) = λ(k)Ki + (1− λ(k))Ki+1 can be obtained by
solving the optimization problem in Eqs. 27-32.

min
λ(k),γ(k)

γ(k) (27)

s.t.Mi

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di ≤ 0, (28)[
γ(k) x(k)T

x(k) Qi

]
≥ 0, (29)

|K(k)x(k)h| ≤ uh,max, h = 1, 2, ..., nu, (30)

K(k) = λ(k)Ki + (1− λ(k))Ki+1, (31)

0 ≤ λ ≤ 1. (32)

If x(k) ∈ SN , the real-time state feedback gain is KN .
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By minimizing γ(k), the real-time state feedback gain
calculated has to regulate the system by using the mini-
mum infinite horizon worst case performance cost. Robust
stability and output constraint satisfaction are guaranteed
by Eq. 28. The input constraint is guaranteed by Eq.
30. The optimization problem involved is formulated as
a convex optimization involving linear matrix inequalities
(LMIs) and the number of constraints is independent of
the number of vertices of the polytope Ω.

4. CASE STUDY

In this section, we present an example that illustrates
the implementation of the proposed robust MPC algo-
rithms. The numerical simulations have been performed
in 2.3 GHz Intel Core i-5 with 16 GB RAM, using
SDPT3(Tütüncü et al., 2003), Gurobi(Gurobi Optimiza-
tion, 2012) and YALMIP (Löfberg, 2004) within Matlab
R2011b environment. We will consider the application of
our approach to the nonlinear two-tank system (Angeli
et al., 2000), which is described by Eqs. 33-34.

ρs1ḣ1 = −ρa1
√
2gh1 + u, (33)

ρs2ḣ2 = ρa1
√
2gh1 − ρa2

√
2gh2. (34)

Where h1 is the water level in tank 1, h2 is the water
level in tank 2 and u is the water flowrate. The operating
parameters are shown in table 1.

Table 1. The parameters of two-tank system

Parameters Value

s1 2500 cm2

s2 1600 cm2

a1 9 cm2

a2 4 cm2

g 980 cm/s2

ρ 0.001 kg/cm3

h1,eq 14 cm
h2,eq 70 cm

Let h̄1 = h1 − h1,eq, h̄2 = h2 − h2,eq and ū = u −
ueq. Subscript eq denotes the corresponding variable at
equilibrium condition. The objective is to regulate h̄2 to
the origin by manipulating ū. The input constraint are
symmetic ū ≤ 1.5kg/s. In contrast, asymmetric output
constraints −13 ≤ h̄1 ≤ 71, and −69 ≤ h̄2 ≤ 29 are
considered.

By evaluating the Jacobian matrix of Eqs. 33 and 34 along
the vertices of the constraints set, the solutions of Eqs. 33
and 34 are also the solution of the following differential
inclusion

[
ρs1

˙̄h1

ρs2
˙̄h2

]
∈

4∑
j=1

pjAj

[
h̄1

h̄2

]
+

[
1
0

]
ū, (35)

where Aj , j = 1, ..., 4 are given by

A1 =


−ρa1

√
2g

h1,min
0

ρa1

√
2g

h1,min
−ρa2

√
2g

h2,min

 ,

A2 =


−ρa1

√
2g

h1,max
0

ρa1

√
2g

h1,max
−ρa2

√
2g

h2,min

 ,

A3 =


−ρa1

√
2g

h1,min
0

ρa1

√
2g

h1,min
−ρa2

√
2g

h2,max

 ,

A4 =


−ρa1

√
2g

h1,max
0

ρa1

√
2g

h1,max
−ρa2

√
2g

h2,max

 , (36)

and pj , j = 1, ..., 4 are given by

p1 = [

1√
h1,max

− 1√
h1

1√
h1,max

− 1√
h1,min

][

1√
h2,max

− 1√
h2

1√
h2,max

− 1√
h2,min

],

p2 = [

1√
h1

− 1√
h1,min

1√
h1,max

− 1√
h1,min

][

1√
h2,max

− 1√
h2

1√
h2,max

− 1√
h2,min

],

p3 = [

1√
h1,max

− 1√
h1

1√
h1,max

− 1√
h1,min

][

1√
h2

− 1√
h2,min

1√
h2,max

− 1√
h2,min

],

p4 = [

1√
h1

− 1√
h1,min

1√
h1,max

− 1√
h1,min

][

1√
h2

− 1√
h2,min

1√
h2,max

− 1√
h2,min

]. (37)

The discrete-time model is obtained by discretization of
Eq.35 using Euler first-order approximation with a sam-
pling period of 0.1 s and it is omitted here for brevity.
The proposed algorithm will be compared with an off-line
RMPC algorithm based on polyhedral invariant set with-
out interpolation(Bumroongsri and Kheawhom, 2012b).
The tuning parameters are Θ=[ 0 0

0 1 ] and R = 0.01.

A sequence of four polyhedral invariant sets is constructed.
Figure 1 shows the polyhedral invariant sets constructed.
As the output constraints considered in this case are not
symmetric. It affects the constructed polyhedral invariant
sets of S1 and S2. Thus, these two invariant sets are also
asymmetric.

Figure 2 shows the regulated output (h̄2). The RMPC
without interpolation gives the slowest response, because
the real-time state feedback gain used is an approximation
of optimal state feedback gain. For instance, if we start
from an initial state x(k) ∈ Si but x(k) /∈ Si+1, a state
feedback gain Ki is implemented. The system is driven to
x(k + 1), where |x(k + 1)| < |x(k)|. If x(k + 1) ∈ Si but
x(k + 1) /∈ Si+1, Ki is still used as a state feedback gain.
We see that |u(k + 1)| < |u(k)|, as |x(k + 1)| < |x(k)|. In
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Fig. 1. The constructed polyhedral invariant sets.

Fig. 2. Regulated output of the nonlinear two-tank system.

other words, this algorithm implements the state feedback
gain Ki for the whole region x(k) ∈ Si but x(k) /∈ Si+1.

By using interpolation, we can achieve better control per-
formance. For each x(k) ∈ Si but x(k) /∈ Si+1, a state feed-
back gain K(k) obtained by solving a simple optimization
problem is implemented. We see that K(k) ̸= Ki. Thus, a
preferable control performance can be obtained.

Algorithm 1 yields the best control performance. In com-
parison, algorithms 2 and 3 give similar responses being
slower than that of algorithm 1. In algorithm 1, the pre-
computed state feedback gains are interpolated to get the
largest possible real-time state feedback gain, so algorithm
1 tends to produce fastest responses. In algorithm 2, the
violation of the contraints of the adjacent inner invariant
sets is minimized. Thus, a state feedback gain obtained
from algorithm 2 leads to the shortest path to the inner
adjacent invariant set. However, the shortest path to the
inner adjacent invariant set does not guarantee the small-
est worst case performance cost. Algorithm 3 minimizes
the upper bound of infinite horizon worst case perfor-
mance cost, which is estimated by Lyapunov function at
current state. Unfortunately, Lyapunov function at each
state is not determined on-line. Thus, Lyapunov function

Fig. 3. Control input of the nonlinear two-tank system.

Fig. 4. The cumulative cost
∑t

i=0 x(i)
TΘx(i)+u(i)TRu(i).

obtained off-line is used. That is for each x(k) ∈ Si but
x(k) /∈ Si+1, Lyapunov function Q−1

i is used for the whole
region. Therefore, algorithm 3 becomes more conservative
than algorithm 1.

Figure 3 shows the profiles of control input ū. The input
discontinuities appeared in the response of the RMPC
without interpolation are caused by the switching of feed-
back gains based on the distance between the state and
the origin. In comparison, we can overcome this issue by
using the interpolation algorithms proposed.

Figure 4 shows the cumulative performance cost. The
cumulative performance costs of RMPC with interpolation
are lower than the cumulative cost of the RMPC without
interpolation. The lowest cumulative performance cost is
obtained by using algorithm 1.

Table 2. The on-line computational burdens

Algorithm On-line CPU time(s)/step

Without interpolation < 0.0001
Algorithm 1 0.0001
Algorithm 2 0.0001
Algorithm 3 0.1800
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Fig. 5. State trajectories from initial condition of
(h̄1, h̄2) = (10,−30) to the origin.

Figure 5 shows state trajectories from initial condition of
(h̄1, h̄2) = (10,−30) to the origin. Algorithm 1 produces
the trajectory with lowest control performance cost.

The on-line computational burdens are shown in table 2.
For all algorithms, most of the computational burdens
are moved off-line so the on-line computation is tractable.
The optimization problem involved in each interpolation
algorithm is independent of the number of vertices of the
polytope Ω. Algorithms 1 and 2 use a linear programming.
The number of constraints involved in algorithm 1 is lower
than that of algorithm 2. In contrat, algorithm 3 uses a
convex optimization involving LMIs. Thus, algorithm 3
requires higher computational time compared with other
algorithms.

5. CONCLUSIONS

In this paper, we have presented an interpolation-based
RMPC algorithms using polyhedral invariant sets for LPV
systems. The proposed algorithms computes off-line a se-
quence of polyhedral invariant sets. The real-time con-
trol law is then calculated by interpolation between the
two state feedback gains corresponding to two adjacent
polyhedral invariant sets. Three interpolation algorithms
are proposed. The controller design is illustrated with a
case study of nonlinear two-tank system. The simulation
results showed that the proposed RMPC with interpola-
tion provides a better control performance while on-line
computation is still tractable.
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Abstract: Interpolation-based off-line MPC for LPV systems is presented in this work. The on-line 
computational time is reduced by pre-computing off-line the sequences of state feedback gains 

corresponding to the sequences of ellipsoidal invariant sets. At each sampling time, the real-time state 

feedback gain is calculated by linear interpolation between the pre-computed state feedback gains. Four 

interpolation techniques are presented. In the first technique, the smallest ellipsoid containing the current 

state measured is approximated and the corresponding real-time state feedback gain is calculated. In the 

second technique, the pre-computed state feedback gains are interpolated in order to get the largest 

possible real-time state feedback gain while robust stability is still guaranteed. In the third technique, the 

real-time state feedback gain is calculated by minimizing the violation of the constraints of the adjacent 
inner ellipsoids so the real-time state feedback gain calculated has to regulate the state from the current 

ellipsoids to the adjacent inner ellipsoids as fast as possible. In the last technique, the real-time state 

feedback gain is calculated by minimizing the one-step cost function so the real-time state feedback gain 

calculated has to regulate the next predicted state to the origin as fast as possible. A case study of 

nonlinear CSTR is presented to illustrate the implementation of the proposed techniques. The results 

show that the proposed interpolation techniques 2, 3 and 4 tend to produce less sluggish responses than 

the technique 1. 

Keywords: Off-line MPC, LPV systems, Interpolation techniques. 

 

1. INTRODUCTION 

Model predictive control (MPC) has originated in the 
industries as an effective control algorithm to solve 

multivariable control problem. Although MPC based on a 

linear model has been successfully implemented in many 

industrial applications, it is well-known that the stability of 

MPC based on a linear model cannot be guaranteed in the 

presence of process nonlinearity (Morari and Lee, 1999). 
This has motivated the synthesis of MPC using linear 

parameter varying (LPV) model whose dynamics depend on 

the scheduling parameter that can be measured on-line (Lu 

and Arkun, 2000). 

Wada et al. (2006) proposed on-line MPC for LPV systems 
using parameter-dependent Lyapunov function. At each 

sampling instant, the ellipsoidal invariant set containing the 

measured state is constructed so robust stability is 

guaranteed. Since the optimization problem has to be solved 

on-line at each sampling instant, the algorithm requires a 

relatively high computational effort.  

Some researchers have proposed a dual-mode MPC for LPV 
systems (Casavola et al., 2002; Bumroongsri and Kheawhom, 

2012a). The control law has the form cKxu   for the first 

N steps and Kxu   for the rest of the infinite horizon. 

Although the degrees of freedom are increased, larger on-line 

computational time is required because the size of on-line 

optimization problem grows significantly with respect to N.  

In order to reduce on-line computational time, off-line 
formulation of MPC have been proposed (Wan and Kothare, 

2003; Bumroongsri and Kheawhom, 2012c). A sequence of 

state feedback gains corresponding to a sequence of invariant 

sets is pre-computed off-line. At each sampling instant, the 

real-time state feedback gain is calculated by linear 
interpolation between the pre-computed state feedback gains. 

Although the on-line computational time is significantly 

reduced, the conservativeness can be obtained in control of 

LPV systems because the scheduling parameter is not 

included in the controller design.  

Off-line MPC for LPV systems was proposed by 
Bumroongsri and Kheawhom (2012b). The sequences of state 

feedback gains corresponding to the sequences of ellipsoids 

are pre-computed off-line. At each sampling instant, the 

scheduling parameter is measured and the smallest ellipsoid 

containing the measured state is approximated. The 

corresponding real-time state feedback gain is then calculated 

by linear interpolation between the pre-computed state 

feedback gains. The ellipsoid computed at each sampling 

instant is only an approximation so the algorithm sacrifices 
optimality in order to reduce on-line computational time. To 

improve the control performances of off-line MPC algorithm, 

an interpolation technique has been introduced (Kheawhom 
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and Bumroongsri, 2013; Bumroongsri and Kheawhom, 

2013.)    

In this paper, interpolation-based off-line MPC for LPV 
systems is presented. Four interpolation techniques based on 

different ideas are proposed. The aim is to develop new 

interpolation techniques that can achieve good control 

performance while robust stability is still guaranteed. 

The paper is organized as follows. In section 2, the problem 

description is presented. In section 3, interpolation-based off-

line MPC for LPV systems is presented. In section 4, we 

present an example to illustrate the implementation of the 

proposed techniques. Finally, in section 5, we conclude the 

paper. 

 

Notation: For a matrix A , TA  denotes its transpose, 1A  
denotes its inverse. I  denotes the identity matrix. For a 

vector x , )/( kkx  denotes the state measured at real time k , 

)/( kikx   denotes the state at prediction time ik   predicted 

at real time k . The symbol   denotes the corresponding 

transpose of the lower block part of symmetric matrices. 

 

2. PLOBLEM DESCRIPTION 

The model considered here is the following discrete-time 

LPV system: 

 

                      
)()(

)()())(()1(

kCxky

kBukxkpAkx



                         (1) 

where )(kx  
is the state of the plant and )(ku  is the control 

input. We assume that the scheduling parameter )(kp  is 

measurable on-line at each sampling time. Moreover, we 

assume that 

 

               },...,,{  ,))(( 21 LAAACoΩΩkpA                (2) 

 

where Ω  is the polytope, Co  denotes the convex hull, jA  

are the vertices of the convex hull. Any ))(( kpA  within the 

polytope Ω  is a linear combination of the vertices such that 

 

      

1)(0 ,1)(,)())((
11


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kpkpAkpkpA j

L

j
jj

L

j
j       (3) 

 

The aim of this research is to find the state feedback control 

law 

 

                    
)())(()( kxkpKku                                             (4) 

that stabilizes (1) and satisfies the input and output 

constraints 

 

                   uhh nhukiku ,...,3,2,1,)/( max,                     (5) 

                   yrr nrykiky ,...,3,2,1,)/( max,                        

(6) 

 

Wada et al. (2006) proposed on-line MPC for LPV systems 

using parameter-dependent Lyapunov function. At each 

sampling instant, the state feedback control law which 

minimizes the upper bound   on the following worst-case 

performance cost  
)(maxmin

0,))(()/(
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where   and R  are weighting matrices, and asymptotically 

stabilizes the discrete-time LPV system (1) is given by 





L

j

-
jjjjj GYKKkpkpKkxkpKku

1

1  ,)())((  ),())(()(  where 

jY  and jG  are obtained by solving the following problem 
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          (12) 

Since the optimization problem has to be solved on-line at 

each sampling instant, the algorithm requires a relatively high 
computational effort. 

3. INTERPOLATION-BASED OFF-LINE MPC 

In this section, interpolation-based off-line MPC for LPV 
systems is presented. The sequences of state feedback gains  
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jiK ,  corresponding to the sequences of ellipsoids 

 1/ 1
,,   xQxx ji

T
ji  are pre-computed off-line where 

Ni ,...,3,2,1  denote the number of ellipsoids in each 

sequence and Lj ,...,3,2,1  denote the vertices of the 

polytope Ω . At each sampling time, the real-time state 

feedback gain is calculated by linear interpolation between 

the pre-computed state feedback gains. 

3.1 Interpolation-based off-line MPC 

Off-line: Choose a sequence of states Nixi ,...,3,2,1 ,  . For 

each ix , substitute )/( kkx  in (9) by ix  and solve the 

optimization problem (8) to obtain the corresponding state 

feedback gain 
1

,,,
 jijiji GYK  and ellipsoids 

 1/ 1
,,   xQxx ji

T
ji . Note that ix  should be chosen such 

that jiji ,,1   . Moreover, for each Ni  , the inequality 

,0)()( ,1

1

,,1

1

,  







jijli

T

jijji BKAQBKAQ ,,...,3,21 L,j   

L,l ,...,3,21  must be satisfied. 

 

On-line: The real-time state feedback gain is calculated by 

linear interpolation between the pre-computed state feedback 

gains. Four interpolation techniques are proposed as follows 

 

Technique 1: (Bumroongsri and Kheawhon, 2012b) The first 
technique is based on an approximation of the smallest 

ellipsoid containing the measured state. At each sampling 

time, when )(kx  satisfies ,)( , jikx   ,)( ,1 jikx   
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  1)()])())[(1(])()[(()(
1

1
,1

1

1
,  








 kxQkpkQkpkkx
L

j

jij

L

j

jij
T                                                         

                                                                                            (13)                     

 

It is seen that 0)( k  and 1)( k  correspond to the 

ellipsoids ji ,1  and ji, , respectively. In this technique, no 

optimization problem is needed to be solved on-line. Figure 1 
shows the graphical representation of the state feedback gain 

in each prediction horizon. It is seen that the state feedback 

gain ))(( kK 
 

is implemented throughout the prediction 

horizon. Thus, the state must be restricted to lie in the 
smallest ellipsoid approximated by (13) and robust stability is 

guaranteed. 

 
Technique 2: In the second technique, the pre-computed state 

feedback gains 
jiK ,
 are interpolated in order to get the 

largest possible real-time state feedback gain while robust 

stability is still guaranteed. At each sampling time, when 

)(kx  satisfies ,)( , jikx   ,)( ,1 jikx   ,,...,3,21 L,j   
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following problem 
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                    1)(0  k                        (17) 

 

jiK ,1
is always larger than 

jiK ,
 because input and output 

constraints impose less limit on the state feedback gain as i  

increases. Thus, the largest possible real-time state feedback 

gain ))(( kK   can be calculated by minimizing )(k  in (14) 

while robust stability is still guaranteed by (15). The input 

constraint is guaranteed by (16). 

 

Figure 2 shows the graphical representation of the state 

feedback gain in each prediction horizon. It is seen that the 

largest possible real-time state feedback gain ))(( kK  is 

only implemented at each sampling time
 

k . At time 1k  

and so on, the state feedback gain 



L

j

jiji KkpK
1

,)(  is 

implemented. Thus, the state must be restricted to lie in the 

ellipsoids ji,  and robust stability is guaranteed.   

Technique 3: In the third technique, the real-time state 
feedback gain is calculated by minimizing the violation of the 

constraints of the adjacent inner ellipsoids so the real-time 

state feedback gain calculated has to regulate the state from 

the current ellipsoids ji,  to the adjacent inner ellipsoids 

 
Fig.2. The graphical representation of the state feedback 

gain in each prediction horizon of technique 2. 

 
Fig.1. The graphical representation of the state feedback 
gain in each prediction horizon of technique 1. 
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ji ,1  as fast as possible. At each sampling time, when )(kx  

satisfies NiL,jkxkx jiji     ,,...,3,21  ,)(  ,)( ,1,  , the 

real-time state feedback gain 
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can be calculated from )(k  obtained by solving the 

following problem. 
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 1)(0  k                        (22) 

 

By applying Schur complement to (19), we obtain 

)(1)1()1( 1
,1 kkxQkx ji

T  
 . By minimizing )(k  in 

(18), the real-time state feedback gain ))(( kK   calculated 

has to regulate the state from the current ellipsoids ji,  to the 

adjacent inner ellipsoids ji ,1  as fast as possible. Robust 

stability is guaranteed by (20). The input constraint is 

guaranteed by (21).  

 

Figure 3 shows the graphical representation of the state 

feedback gain in each prediction horizon. It is seen that the 

real-time state feedback gain ))(( kK   calculated is only 

implemented at each sampling time
 

k . At time 1k  and so 

on, the state feedback gain 
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
L

j

jiji KkpK
1

,)(  is 

implemented. Thus, the state must be restricted to lie in the 

ellipsoids ji,  and robust stability is guaranteed.    

 

Technique 4: In the last technique, the real-time state 
feedback gain is calculated by minimizing the one-step cost 

function so the real-time state feedback gain calculated has to 

regulate the next predicted state to the origin as fast as 

possible. At each sampling time, when the measured state 

)(kx  satisfies NiL...,jkxkx jiji     ,,,21  ,)(  ,)( ,1,  , 

the real-time state feedback gain 
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can be calculated from )(k  obtained by solving the 

following problem. 
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By applying Schur complement to (24), we obtain 

)1()1(  kxkxJ T
k 

 

where   is the weighting matrix. 

Thus, kJ  in (23) is the one-step cost function. Robust 

stability is guaranteed by (25). The input constraint is 

guaranteed by (26).  

 

Figure 4 shows the graphical representation of the state 

feedback gain in each prediction horizon. It is seen that the 

real-time state feedback gain ))(( kK   calculated is only 

implemented at each sampling time
 

k . At time 1k  and so 

on, the state feedback gain 



L

j

jiji KkpK
1

,)(  is 

implemented. Thus, the state must be restricted to lie in the 

ellipsoids ji,  and robust stability is guaranteed. 

   

 

 

 
Fig.4. The graphical representation of the state feedback 

gain in each prediction horizon of technique 4. 

 
Fig.3. The graphical representation of the state feedback 

gain in each prediction horizon of technique 3. 

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

84



 

 

     

 

4. EXAMPLE 

In this section, we present an example that illustrates the 

implementation of the proposed off-line MPC algorithm. The  

numerical simulations have been performed in Intel Core i-5 

(2.4GHz), 2 GB RAM, using SeDuMi (Sturm, 1998) and 

YALMIP (Löfberg, 2004) within Matlab R2008a 

environment. We will consider the application of our 
approach to the following nonlinear model for CSTR where 

the consecutive reaction CBA   takes place 
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where 1x  denotes the dimensionless concentration of A
 
and 

2x  denotes the dimensionless concentration of .B  The 

control variable u  corresponds to the inlet concentration of 

A . The operating parameters are 1Da =1 and 22 Da .  

 

Let   eqxxx  ,111  , eqxxx  ,222    and
  equuu 

 
where subscript eq   is used to denote the corresponding 

variable at the equilibrium condition,
 
the input and output 

constraints are given as         

  

               5.01 x , 5.02 x , 5.0u                             (29) 

 

By evaluating the Jacobian matrix of (28) along the vertices 

of the constraints set (29), we have that all the solutions of 

(28) are also the solutions of the following differential 

inclusion 
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where 2,1, jAj  are given by 
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and 2,1, jp j  are given by     
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The discrete-time model is obtained by discretization of (30) 

using Euler first-order approximation with a sampling period 

of 0.1 min and it is omitted here for brevity. The weighting 

matrices are 










10

01
Θ and .01.0R  

 

Figure 5 shows two sequences of ellipsoids constructed off-

line. Each sequence has three ellipsoids ).2 3,( ,  j,iji  In 

this example, two sequences of ellipsoids are constructed 

because the polytope Ω  has two vertices. 
 

 

   a) }3,2,1 ,1/{ 1
1,1,   ixQxx i

T
i   

 

   b) }3,2,1 ,1/{ 1
2,2,   ixQxx i

T
i   

 

Fig. 5. Two sequences of ellipsoids constructed off-line. 

 

Figure 6 shows the closed-loop responses of the system. In 

technique 1, the smallest ellipsoid containing the measured 

state is approximated at each sampling instant and the 

corresponding real-time state feedback gain is calculated. 

Since the same real-time state feedback gain ))(( kK   is 

implemented throughout the prediction horizon as shown in 

Fig.1, technique 1 tends to produce relatively slow responses 

compared to other techniques. In technique 2, the pre-

computed state feedback gains are interpolated in order to get 

the largest possible real-time state feedback gain ))(( kK  . 

At each sampling time, the largest possible real-time state 

feedback gain is implemented as shown in Fig. 2 so 

technique 2 tends to produce less sluggish responses than 

technique 1. In this example, technique 2 gives 0.5% better 

performance cost (7) compared to technique 1. In technique 

3, the real-time state feedback gain is calculated by 

minimizing the violation of the constraints of the adjacent 

inner ellipsoids. At each sampling time, the real-time state 

feedback gain ))(( kK   is implemented as shown in Fig. 3 so 

the state has to be regulated from the current ellipsoids ji,  

to the adjacent inner ellipsoids ji ,1  as fast as possible. In 

this example, technique 2 and technique 3 behave almost 

identically in regulating the output. In technique 4, the real-

time state feedback gain is calculated by minimizing the one-
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step cost function so the real-time state feedback gain 

calculated has to regulate the next predicted state to the origin 

as fast as possible. As shown in Fig. 6, technique 4 tends to 

produce the fastest responses among all techniques. In this 

example, technique 4 gives 0.6% better performance cost (7) 

compared to technique 1. 

 

 
a) Output 

 

 
b) Input 

Fig. 6. The closed-loop responses. 

 

Table 1.  The on-line computational time. 

Algorithm CPU time (s) 

Technique 1 0.001 

Technique 2 0.047 

Technique 3 0.101 

Technique 4 0.075 

 

Table 1 shows the on-line computational time. It is seen that 

technique 1 has the smallest on-line computational time 

because no optimization problem is needed to be solved on-

line. In comparison, technique 3 has the largest on-line 
computational time because many LMIs constraints are 

involved in the on-line optimization problem. 

5. CONCLUSIONS 

In this paper, we have presented interpolation-based off-line 
MPC for LPV systems. The sequences of state feedback 

gains are pre-computed off-line. The real-time state feedback 

gain is calculated by linear interpolation between the pre-

computed state feedback gains. Four interpolation techniques 

are presented. It is shown that the proposed techniques give 

better control performance than the old technique. 
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