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Abstract

In this research, we propose methods for statistical models with ranking constraints,
consisting of three papers. In the first paper, we discuss methods for probability and moment
calculations of statistical models with ranking constraints in two important cases: the case where
the statistical variables are independent and the case where the statistical variables are
dependent but can be written in a one factor model. This can be useful for decision making when
we do not observe the actual values of the variables, but we do observe the ordering of the
variables. In such a case, prior information on the distributions and moments from the variables’
specified distributions can be updated by the observed ranking to provide improved posterior
information. While the calculations of the rank updated posterior distribution ostensibly involve
high-dimensional integral calculations, it is shown how the recursive integration methodology can
be applied so that the original high-dimensional integral can be evaluated as a series of one-
dimensional integration for the case of independent variables or a two-dimensional integration for
the case of dependent variables with one-factor model. In the first paper, we also show how to
apply the proposed methods to solve a portfolio selection problem with a real data set. In the
second and the third papers, we apply the Kolmogorov statistic to multiple comparison inference
problems. The Kolmogorov statistic can be considered a statistical model with ranking constraints
whose probability distribution can be computed by the methods proposed in the first paper. In the
second paper, the Kolmogorov statistic is applied to construct an exact confidence band for a
beta distribution function. Its application can be found in credit risk management. In the third
paper, the Kolmogorov statistic is applied to win-probabilities for comparing two Weibull models.

The results from the comparison will be useful for decision making in system reliability.
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1: Assume n variables with ranking X; < X, ... < X,,.

2: Discretization grid size A with lower bound xo, forming N + 1 grid points

{x0, %1, ..., xn}
where Xj = Xj_1+A4A forj=1,..,N.
3: Let ho(xj) = 1forj=0,1,..,N.
4.fori = 1tondo
5. Let, forj=1,...,N,
Ry = hi—l(xj—l)gi(xj—l)fi(xj—zl) + hi_1(x)9:(x) fi(x5)
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k=1
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7:end for
8:return A, = h,,(xy).
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1. Assume n variables with ranking X; < X, ... < X,,.
2: Discretization grid size 6 with lower bound m,, forming N + 1 grid points
{mg, my, ..., my}
wherem; = m;_; + S6forl =1, .., M.
3:.forl = 1toMdo
4. Discretization grid size A with lower bound xo, forming N + 1 grid points
{x0, %1, oy x5}
where Xj= Xj_1+ A forj=1,..,N.
Let ho(xj) = 1forj=0,1,..,N.
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7 2
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k=1
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11: end for
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B ¢ (mOh(m) + ¢ (m;_)h(m,_,)
;=
2
13.return 4, = ¥, hA.
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0.00001 0.03382186  0.03382190 3.982¢-08 1.36
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HIGHLIGHTS

An integration method is proposed for random variables conditioned on their ranking.

High dimensional integration effort is reduced to either one or two dimensional integration.
The method possesses a self-correction mechanism supported by numerical results.
Reinforcing ranking and opposing ranking are defined and their effects are investigated.
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1. Introduction

The computations of conditional probabilities and conditional moments are often the basis for a statistical analysis in the
sciences, social sciences, and engineering. This can be particularly true with a Bayesian approach. When updated information
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method, when it is available, can have many advantages. In this work, the envelope of numerical methods is expanded to
the computation of probability distribution and moments, that are conditioned on the important class of polytopes that are
formed by rankings.

Consider a set of independent continuous random variables X; with specified probability density functions fi(x;), 1 <i <
n. The moments of these random variables are thus determined by their specified distributions. Suppose that information
becomes available which indicates the ordering

X1 =X < <Xy (1

The objective of this paper is to show how the information provided by this ranking can be used to provide updated
distributions and moments for the random variables X;.

This problem has applications to many areas where the ranking of the variables can be determined without observing
the actual values of the variables. The literature on ranked set sampling provides discussions of many situations where
this is the case (see McIntyre (1952), Patil (2002), Chen et al. (2004) and Wolfe (2004) for example). However, in ranked
set sampling the information on the ordering of a set of variables is used to determine which variables to include in the
sample and to subsequently observe. In contrast, this paper considers the problem where the ordering of a set of variables
is used to augment prior information on their distributions, and the variables may never actually be observed. While these
applications of the ranking information are different, both cases are similar in that they utilize information on the ranking
of the variables without the full realizations of the variables being available.

As an example, suppose that prior distributions for the levels X; of a particular medical condition may be available for a
set of n patients based upon covariate values of the patients. While the actual levels of this condition may be very difficult
or impossible to measure, there may be an ancillary variable that can be measured for the patients and which is sufficiently
correlated with the condition of interest so that it can be used to infer the ranking of the X;. It is then useful to obtain updated
expectations and variances, say, of the levels X; of the medical condition of interest based upon the information provided by
the rankings.

Alternatively, Patil (2002) discusses a problem where a hazardous waste site inspector may be able to reliably rank areas
of soil with respect to concentrations of a toxic contaminant, based on features like surface staining, discoloration, or the
appearance of stressed vegetation. Thus, the actually contaminant levels X; may have specified prior distributions, but their
moments can be updated based upon the ranking provided by the soil features.

In general, additional information on ranking may be derived from different sources. Besides being derived from the
observation of a covariate, rankings may be derived from conditions of economic systems, as in Topkis (1998), Milgrom
and Roberts (1994), and Milgrom and Shannon (1994), for example. Furthermore, rankings can also be subjectively derived
from a systematic preference aggregation process, as in Kemeny and Snell (1962), Young (1995), and Ali and Meila (2012),
for example. The methodology described in this paper is an important tool to directly incorporate such ranking information
into the statistical inference process, as discussed by Chiarawongse et al. (2012), which can be applied in these various areas
of study.

Calculations of the conditional distributions and moments of the X; ostensibly involve the evaluation of an n-dimensional
integral expression. However, it will be seen that by employing the technique of recursive integration (discussed in Hayter
(2006)) the calculations can be performed easily as a series of 1-dimensional integral calculations. In fact, it will be seen that
the recursive integration technique can also be employed for more general problems when the distributions and moments
are conditioned on information more complex than just a simple ranking, and when the variables X; have a multivariate
normal distribution with a product correlation structure.

It is important that the recursive integration methodology does not suffer from a growth of errors that are compiled in
high dimensions. In this application of recursive integration to the particular problem of the computations of conditional
probabilities and conditional expectations, it is demonstrated that there exists a self-correction mechanism in the
computation that prevents any serious growth of the errors. This condition has never been discussed before in the literature
of recursive integration, and it confirms that the recursive integration technique is useful for high dimensional computations
such as these.

Some examples are provided to show how the information provided by the ranking can affect the distributions,
expectations, and variances of the random variables X;. In particular, a reinforcing ranking can be considered to be one
which is consistent with the rankings of the expectations of the distributions f;(x;) (the prior expectations of the X;), while
various degrees of opposing rankings have some discrepancies with the rankings of these prior expectations. As illustrated
in the examples, these different kinds of rankings will have different kinds of effects on the expectations and variances of
the variables. It is also illustrated how ranking information can be useful for an important problem in portfolio selection,
and applications of the proposed methodology to a real data set of asset returns are provided.

The layout of this paper is as follows. The theoretical discussion of how recursive integration can be used to calculate
the conditional distributions and moments is provided in Section 2 for independent random variables. An extension to
random variables X; with a multivariate normal distribution with a product correlation structure is also provided in Section 2.
Section 3 contains algorithms and details of the implementation of the procedure. A self-correction mechanism is discussed
together with error rates and computational times. Some illustrative examples are provided in Section 4, and finally a
conclusion is provided in Section 5.
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2. General theory

The general theory concerning how to use recursive integration to calculate quantities such as moments conditional
on information such as rankings is presented in this section, first for independent random variables and then for random
variables with a multivariate normal distribution with a product correlation structure. Finally, some extensions are also
discussed.

2.1. Independent random variables

Consider the set S C N" of values X = (Xq, ..., X;) defined by
S = 51,2 N 52,3 Nn---N Snfl_n

where the set S; ;11 places restrictions on only X; and X;;. Thus, the set S corresponds to the simple ordering in Eq. (1), for
example, with

Siiv1 = {X 1 Xi < Xiq}

fori<i<n-—1.
For any intervals (I;, u;), 1 < i < n, it follows that

P(liEXffuf;1§i§n|X65)=% (2)
where
n
A1=/-~/ [ [/ dxa ... dx,
XeS* =1
and

B:P(XeS):/--~/ [ [fix) dxs ... dx,
Xes =1

with
§*=S;,NS5,N---NS;

n—1,n

for

STo=S12N{X: L =Xi Sup, b <X Sup)
and

Stivr = Siie1 X 2 lipr < Xigpr < Ui}

for2<i<n-—1.
Similarly, for any functions g;(x;), 1 < i < n, it follows that

A
Elg1(X1)g2(X2) ... g2(Xn) | X € S] = 52 3)

where
po= [ [ Tl@eneo ... dx,
XeS =1

While A4, A;, and B are each ostensibly n-dimensional integrals, they are each of the form of the integral in Section 1
of Hayter (2006) with d = 1, and so they can each be evaluated in a straightforward manner with a series of
1-dimensional integral computations using recursive integration, regardless of the value of n. Thus, the probability in
Eq. (2) and the expectation in Eq. (3) can both be evaluated in a straightforward manner with a series of 1-dimensional
integral computations.

Notice that the conditional joint cumulative distribution function of the X; can be obtained from Eq. (2) with [; = —o0,
1 < i < n, and the conditional marginal distribution of a particular variable can be obtained by taking l; = —oco and u; = oo
for all of the other variables. Also, the conditional moments of X; can be calculated with gj(x;) = xﬁ‘ and with all the other
functions gj(x;) equal to one, while the conditional covariance of X;, and X;,, say, can be calculated with g;, (x;;) = x;, and
&, (xi,) = x;, and again with all the other functions g;(x;) equal to one.
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2.2. Multivariate normal distribution with a product correlation structure

If the random variables X; have a multivariate normal distribution with means u;, variances aiz, and covariances p;pj,
then it is possible to write

XiZMi-i-piM‘i‘\/ﬂZi’ IT=i=n, »

where M and the Z; are independent standard normal random variables. Conditional on the value of M, the random variables
X; are thus independent normal random variables.

For the evaluation of Egs. (2) and (3), conditioning on the value of M requires a 1-dimensional integral computation
over the values m of M, with the integrand being the equation evaluated at each given value m. Since the integrand
can be evaluated each time as a series of 1-dimensional integral computations, the overall computational intensity will
consequently be equivalent to a series of 2-dimensional integral computations, regardless of the value of n.

It can also be noted that if the covariances are all equal and positive, so that the p; are all equal to p, say, then for the
simple ordering given in Eq. (1) the set S depends only on the Z; and not on M. In this case, for moment calculations, the
overall computational intensity may only be that of a 1-dimensional integral computation, depending on the functions g;(x;).
This reduction in computational intensity is possible when evaluating the conditional expectations of the X;, for example,

since the conditional expectations of the X; will be equal to the conditional expectations of 1; + , /aiz — p2Z,.

2.3. Extensions

In addition to the simple ordering in Eq. (1), the set S upon which the expressions are conditioned can encompass other
types of information, such as the “umbrella” ordering

X1+C1§X2+C2S--'§Xu+CuZ-~-2Xn—1+Cn—1EXn-FCn (5)

for example, for any constants c;, which has received considerable attention in the statistical literature (see Hans and Dunson
(2005), Singh and Liu (2006), Nakas and Alonzo (2007), and Gaur et al. (2012), for example). Extensions can also be made to
orderings of the random variables which form a tree structure, as discussed in Section 4 of Hayter (2006).

The simplicity of the evaluations of Eqs. (2) and (3) as a series of 1-dimensional integral computations using recursive
integration is because of two conditions. These are firstly that the set S only places restrictions on “adjacent” variables X;
(although it should be remembered that any labeling of the n variables is permissible), and secondly that the integrand
factors into the product of separate terms for each of the variables. These conditions are seen to be met for the simple
ordering in Eq. (1) and the umbrella ordering in Eq. (5), and for independent variables X; where the expectation is required
of the product of the functions g;(x;). In fact, conditioning on Eq. (1), the term B is just the probability of this simple ordering,
and for independent random variables its evaluation by a series of 1-dimensional integral computations using recursive
integration was first shown in Hayter and Liu (1996).

If the random variables X; are not independent, or if the conditioning information imposes restrictions on non-adjacent
X;, then Ay, Ay, and B cannot necessarily be evaluated as a series of 1-dimensional integral computations. However, recursive
integration of a higher order, in which the evaluation can be performed as a series of r-dimensional integral computations
(with r > 2), say, may be possible depending upon the form of the expressions for A1, A, and B.

It is also worth noting that for any set T C R" of values X = (Xq, ..., X;,) defined by

T=TioNTh3N---NTh_1,

where the set T; ;11 places restrictions on only X; and X; 1, then the conditional probability P(X € T | X € S) is also equal to
A1/Bwith S, | = S;i11NT; 1. Thus, this conditional probability can also be evaluated as a series of 1-dimensional integral
computations using recursive integration.

The utility of the methodology that is presented here is paramount when the random variables X; have different
distributions. This is because if the X; are independent and identically distributed, then for the purpose of obtaining the
conditional distribution and moments of a specific X;, say, the information provided by the simple ordering in Eq. (1) is just
equivalent to the information that X; is the ith order statistic (the actual ordering of the i — 1 variables less than X; and
the n — i variables larger than X; is irrelevant). In this case, the standard literature on order statistics (such as Arnold et al.
(1992), Harter and Balakrishnan (1996), and David and Nagaraja (2003), for example) can be used to obtain the conditional
information on X;. However, when the random variables X; are not identically distributed, then the simple ordering in
Eq. (1) provides much more information than that X; is simply the ith order statistic, and the methodology presented here
allows all of that information to be utilized.

It may be the case that the ranking provided to the experimenter is incorrect, due to errors in its construction or
simply perceived uncertainties. In fact, in Section 6 of Chiarawongse et al. (2012) it is pointed out with respect to financial
applications that “When an analyst offers a qualitative view but is uncertain about its validity, it is useful for the decision
maker to be provided with a measure of confidence. This could take the form of a probability that the view is valid”.
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In this case of an “imperfect ranking”, Chiarawongse et al. (2012) proposed the shrinkage model
KkPXeC|XeS)+(1—-«k)P(Xe() (6)

where C is any event and S is the observed ranking. Eq. (6) simply indicates that the experimenter uses a convex combination
of the probability with the observed ranking and the prior probability. The additional parameter x represents the estimate
of the probability that the observed ranking is valid.

Notice that in this case the expectation of a variable can be expressed as a convex combination of the expectation with
the observed ranking and that without ranking information

KE[g(X) | X € S]+ (1 = k)E[g(X)]. (7)

Also, it can be seen that once the expressions under the observed ranking are obtained, Egs. (6) and (7) follow readily without
additional computational efforts. In what follows, we consider distribution and moment computations only for the observed
ranking. The computations for the case of an imperfect ranking under this shrinkage model then follow naturally from these
computations.

3. Implementation with recursive integration
In this section first some formulas are provided for the implementation of the methodology with recursive integration,

and the algorithms are explicitly provided. Finally, a discussion is provided of a self-correction mechanism and
computational times.

3.1. Formulas for the recursive integration

To evaluate Eq. (2) for the independent random variables case in Section 2.1, B and A, can be evaluated according to

the following recursive integration methodology. To evaluate B, the intermediate functions by, . . ., b,_1 can be sequentially
evaluated, each with a one-dimensional integration. Let by(z) = 1and fori = 1, ..., n — 1evaluate foreachz ¢ i
z
i) = [ biscofi dx (8)
—0o0
where f; is the density of X;. Then
o0
b= [ bo@h@d (9)
—00
To evaluate A; in a similar manner, the intermediate functions ay, ..., a,_; are sequentially evaluated. Here aq(z) = 1
andfori=1,...,n— 1, evaluate foreachz € i
max{min{z,u;},l;}
a@) = [ a1 (0 () dx (10)
li
so that
Un
t= [ a@he . (1)
In
To evaluate Eq. (3) for the independent random variables case in Section 2.1, B can be evaluated as above. To evaluate
A,, the intermediate functions hy, ..., h,_; can be sequentially evaluated, each with a one-dimensional integration. Let
ho(z) = 1andfori=1,...,n — 1evaluate foreachz € i
z
@ = [ he om0 d (12)
—00
Then
[o¢]
R reers (13)
—0oQ
To evaluate Eq. (2) for the multivariate normal case in Section 2.2, B and A; can be evaluated according to the following
recursive integration methodology. To evaluate B, the intermediate functions by, ..., b,_1 can be sequentially evaluated,
each with a two-dimensional integration complexity. Let bo(m, z) = 1and fori =1, ...,n — 1, evaluate foreachm,z ¢ i
Z
bi(m, z) = / bi_1(m, x)¢i(m, x) dx, (14)
—0oQ
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where ¢; is the density of a N(u; + pim, aiz — piz) random variable. Then with ¢ as the standard normal density

B= /oo /oo ¢(m)b,_1(m, z)¢p,(m, z) dz dm. (15)

To evaluate A; in a similar manner with the intermediate functionsay, ..., a,_1,letag(m,z) = 1andfori=1,...,n—1,
evaluate foreachm,z e i

max{min{z,u;}, ;}

ai(m,z) = /h aj_1(m, x)¢;(m, x) dx. (16)
Then

AL = /:_O_OO :; ¢(m)a,_1(m, z)¢p,(m, z) dz dm. (17)

To evaluate Eq. (3), the formulas for evaluating A, with the intermediate functions hy, ..., h,_ are ho(m,z) = 1, and

fori=1,...,n—1

hi(m, z) = /_; hi—1(m, X)gi(x)$i(m, x) dx (18)
with

A = f:_oc f:ioo ¢(Mhn_1(m, 2)gn(2)¢pn(m, 2) dz dm. (19)

3.2. Algorithms

The evaluations of Egs. (9), (11) and (13) are accomplished with a sequence of n 1-dimensional numerical integrations,
with each integration being evaluated by a sum on a truncated-discretized real line. Algorithm 1 can be used to compute
Eq. (13) with the integrals being performed with a first order Newton-Cotes formula (the trapezoidal rule). To compute
Eqgs. (9) and (11), simply replace g;,i = 1, ..., n in the algorithm with appropriate indicator functions or with a constant
function equal to one, respectively. R code is available from the authors to implement this algorithm.

Algorithm 1 Computation of A, in equation (13)

1: Assume n variables with ranking X; < X5 - -+ < X,
2: Discretization grid size A with lower bound xg, forming N + 1 grid points

{x0, X1, ..., xn},

wherex; =x;_1+ Aforj=1,...,N.

3: Let ho(xj)) = 1forj=0,1,...,N.
4: fori=1tondo
5. Let,forj=1,...,N,

hio  (X—)&i (Xi—1)fi(xi—1) + hi—1 (%) & ()i (%))

by =
J 2

6: Let,forj=1,...,N,

j
hi(x) = Z heA.
=1

and let hj(xg) = h;(x1).
end for
return A, = h,(xy).

0

The evaluations of Egs. (15), (17) and (19), require a sequence of 2-dimensional numerical integrations. Algorithm 2
can be used to compute (19) with the integrals being performed with the first order Newton-Cotes formula. To compute
Eqgs. (15) and (17), simply replace g;,i = 1, ..., n in Algorithm 2 with appropriate indicator functions or with a constant
function equal to one, respectively. Again, R code is available from the authors to implement this algorithm.



S. Kiatsupaibul et al. / Computational Statistics and Data Analysis 105 (2017) 229-242 235

Algorithm 2 Computation of A, in equation (19)

1: Assume n variables with ranking X; < X5 - - - < X,,.
2: Discretization grid size § with lower bound my, forming M + 1 grid points

{mo, mq, ..., my},

wherem; =m;_y+d8forl=1,..., M.
3: for| =0toMdo
4: Discretization grid size A with lower bound xg, forming N + 1 grid points

{x0, X1, ..., Xn},
wherex; =xj_1+ Aforj=1,...,N.
5. Lethg(m;, X)) =1forj=0,1,...,N

6: fori=1tondo
7: Let,forj=1,...,N,

hi_a (my, X-1)gi (Xi—1) @i (Mg, Xj_1) + hi—1(my, X;)gi (X)) Pi (my, X;)

hi =
J 2

8: Let,forj=1,...,N,
Jj
hi(my, x;) = thA
=

and let h;(my, xo) = hi(my, X1).

9: end for
10:  h(my) = h,(my, xy).
11: end for

12: Let,forl=1,..., M,

i, = $mOR(m) + @(mi_)h(m._1)
. .

13: return A, = Y\, his.

3.3. Self-correction mechanism

It is useful to point out that the conditional probability and the conditional expectation computations based on the
recursive integration methodology possess a self-correction mechanism. To see this, observe that the target value is of the
form

A

where A is either A, in Eq. (2) or A, in Eq. (3). Let A and B denote the computed values of A and B, respectively. The computed
value of the target quantity is then f (A, B), and with a first order approximation

f(A,B) ~ f(A, B) +f/(A, B)(A — A) + f;(A, B)(B — B)
1 . A . .
=f(A,B)+E(A—A)—E(B—B) (20)

where f] and f; are the partial derivatives of f with respect to its first and second arguments. If we let ¢, g4 and &5 be the
computational error of the target value, that of A and that of B, respectively, so that

then Eq. (20) implies that

1 A 1)
ER —E4 — —EB.
B4 gt

Thus, when A and both B are positive, and when ¢4 and e have the same sign, the computational errors of A and B tend to
cancel each other in producing the total error of the target value. Notice that for the applications in this paper, B is positive
since it is a probability, and A is positive when it is a probability and may be positive when it is an expectation.
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Table 1
The numerical errors and the computational times for the cumulative distribution function evaluated at three points for the 70th order statistic of n = 101
independent U[0, 1] random variables.

Grid size True value Comp. value Error Comp. time (s) Comp. value Error

With exact denominator

0.01 0.03382186 0.09552326 6.170e—02 0.00 231.1455 >1
0.60791267 0.65772572 4981e—02 0.00 1591.5334 >1
0.99628437 0.99005003 6.234e—03 0.00 2395.7061 >1

0.001 0.03382186 0.03422536 4,035e—04 0.00 0.03739016 3.568e—03
0.60791267 0.60800312 9.045e—05 0.02 0.66422472 5.631e—02
0.99628437 0.99620053 8.385e—05 0.00 1.08831847 9.203e—02

0.0001 0.03382186 0.03382585 3.987e—06 0.06 0.03385576 3.390e—05
0.60791267 0.60791339 7.206e—07 0.07 0.60845101 5.383e—04
0.99628437 0.99628353 8.411e—07 0.08 0.99716462 8.802e—04

0.00001 0.03382186 0.03382190 3.982e—08 1.36 0.03382220 3.387e—07
0.60791267 0.60791268 7.037e—09 1.20 0.60791805 5.380e—06
0.99628437 0.99628437 8.414e—09 1.42 0.99629317 8.797e—06

Table 2

The numerical errors and the computational times for the cumulative distribution function evaluated at three points for the 70th order statistic of n = 101
independent standard normal random variables.

Grid size True value Comp. value Error Comp. time (s) Comp. value Error

With exact denominator

0.01 0.03382186 0.03766693 3.845e—03 0.05 0.08004251 4.622e—02
0.60791267 0.61814333 1.023e—02 0.05 1.31355904 7.056e—01
0.99628437 0.99663459 3.502e—04 0.03 2.11785572 1.122e+00
0.001 0.03382186 0.03367669 1.452e—04 0.39 0.03393352 1.117e—-04
0.60791267 0.60697199 9.407e—04 0.36 0.61160101 3.688e—03
0.99628437 0.99632079 3.642e—05 0.39 1.00391914 7.635e—03
0.0001 0.03382186 0.03379485 2.701e—05 4.38 0.03379548 2.638e—05
0.60791267 0.60791453 1.860e—06 4.36 0.60792588 1.320e—05
0.99628437 0.99628272 1.657e—06 4.39 0.99630131 1.694e—05
0.00001 0.03382186 0.03382366 1.796e—06 38.64 0.03382172 1.365e—07
0.60791267 0.60791215 5.155e—07 36.95 0.60787742 3.525e—05
0.99628437 0.99628432 5.078e—08 38.14 0.99622740 5.697e—05

This error cancellation effect or self-correction mechanism is strongest when the values of A and B are comparable, and
when the values of ¢4 and e are comparable. For the problems considered in this paper, the processes of computing Aand
B share some common numerical integration sequences, and hence &4 and g will tend to have the same sign. However,
the level of the error cancellation depends upon the relative values of A and B, and the relative values of &4 and ¢g. This is
illustrated and further discussed in the following numerical examples.

This self-correction mechanism caused by the cancellation of the errors from the numerator and the denominator is a
useful property of the implementation of the recursive integration methodology for the problems discussed in this paper.
In fact, even in the case where the exact value of the denominator B might be known, according to (21) it may be better that
Bis computed and employed in evaluating the ratio since the self-correction mechanism applies. The estimate obtained by
employing B can be interpreted as an estimate that has been formed by a legitimate discrete distribution induced by the
discretization procedure. The resulting estimate approaches the true value when the discretization becomes finer. In the
following examples it is shown that not taking advantage of this self-correction mechanism causes a significant increase in
the error of the estimate if the discretization is not fine enough.

Some calculations are now presented to demonstrate the errors for problems with independent identically distributed
random variables where the solutions are known. Specifically, consider the cases of n = 101 independent uniform [0, 1]
random variables or independent standard normal random variables. In both cases the cumulative distribution at three
points of X9, under the condition X; < --- < Xjg1, was evaluated by the recursive integration methodology for various
grid sizes, and the computed values of the probability, the computational errors, and the computational times are shown in
Tables 1 and 2 (note that the true values can be obtained from the cumulative distribution of a binomial distribution). The
computations were implemented in R on a 64-bit Windows machine with an Intel Core i5-2500 3.30 GHz CPU.

Next, the expectations of X;; and X5y, under the condition X; < --- < Xjo1, were evaluated by the recursive integration
methodology for various grid sizes, and the computed values of the expectations, the computational errors, and the
computational times are shown in Table 3 for the case of independent uniform [0, 1] variables and in Table 4 for the case of
independent standard normal variables. In the first case the true values of E[X;7] and E[X5;] are known to be 1/6 and 0.5,
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Table 3
The numerical errors and the computational times for the expectations of X(17) and X(s1) of n = 101 independent U[0, 1] random variables.

Grid size True value Comp. value Error Comp. time (s) Comp. value Error

With exact denominator

0.01 1/6 0.14369985 2.297e—02 0.00 347.7224 >1
0.5 0.48606226 1.394e—02 0.00 1176.1651 >1
0.001 1/6 0.16661772 4.894e—05 0.00 0.18202474 1.536e—02
0.5 0.49997063 2.937e—05 0.00 0.54620256 4.620e—02
0.0001 1/6 0.16666624 4.272e—07 0.05 0.16681363 1.470e—04
0.5 0.49999974 2.563e—07 0.06 0.50044193 4.419e—04
0.00001 1/6 0.16666666 4.215e—09 0.92 0.16666814 1.469e—06
0.5 0.50000000 2.529e—09 0.89 0.50000442 4.416e—06
Table 4

The numerical errors and the computational times for the expectations of X(17) and X(s1) of n = 101 independent standard normal random variables.

Grid size True value Comp. value Error Comp. time (s) Comp. value Error

With exact denominator

0.01 NA —0.9672 NA 0.04 —2.0552 NA

0.0000 0.0000 1.397e—14 0.05 0.0000 2.970e—14
0.001 NA —0.9779 NA 0.38 —0.9854 NA

0.0000 0.0000 1.734e—16 0.39 0.0000 1.747e—16
0.0001 NA —0.9780 NA 4.33 —0.9781 NA

0.0000 0.0000 9.826e—18 4.25 0.0000 9.826e—18
0.00001 NA —0.9780 NA 38.55 —0.9780 NA

0.0000 0.0000 1.281e—-17 37.22 0.0000 1.281e—17

while in the second case the true value of E[Xy;] is unknown but is about @ ~1(1/6) ~ 0.97, and the true value of E[Xs;] is
known to be zero.

In these tables the second column shows the known true values, while the third column shows the estimates from the
proposed methodology. The fourth and fifth columns show the errors (from the true values) and the computational time of
the proposed methodology. Also, both for the independent uniform [0, 1] variables and the independent standard normal
variables the true values of the denominators B in Egs. (2) and (3) are known to be 1/n!. The sixth and seventh columns then
show the estimates and errors when the true values of the denominators are employed and the recursive integration is used
only for computing the numerators A; and A;.

First of all, it can be seen from these tables that these calculations which involve 101 successive one-dimensional
numerical integrations attain a small error with a very reasonable computation time. In fact, with the potential optimization
of the coding on a low level computer programming language such as C++ or Java, the computation can be expected to be
accelerated even more.

Furthermore, special attention should be given to the results in the sixth and seventh columns. In the sixth column
the estimates computed by employing the true values for the denominators do not take advantage of the self-correction
mechanism feature of the proposed methodology given in Eq. (21). It can be seen that when the discretization grid sizes
are not very small, the errors can become so large that the estimates are unreasonable. Specifically, some estimates for the
conditional probabilities in Table 1 and in Table 2 when the grid sizes are 0.01 and 0.001 are much greater than one. Note
that such unreasonable values of the estimates do not occur when the methodology is applied appropriately to both the
numerators and the denominators and the self-correction mechanism applies (as shown in the third column of each table).

In almost all cases in Table 1 and in Table 2 the errors from the proposed methodology with self-correction mechanism
are much smaller than the corresponding values without the feature. The exceptions are row 4, row 7 and row 10 in Table 2.
The errors with the self-correction mechanism are not smaller than those without the feature in these cases, although they
are close. One explanation for this is that the distribution function is evaluated at a low quantile, so that A is much smaller
than B in Eq. (21). Furthermore, at this low quantile A and B do not share a lot of common integration sequences, so that
&4 and e may be quite different. Consequently, the error cancellation in Eq. (21) does not apply substantially, although in
these exceptional cases the differences between the errors are very small.

In Table 3 the estimates with the self-correction mechanism are much more accurate than those without the self-
correction mechanism. According to Eq. (21), this is because the value of A is comparable to that of B, causing a strong
error cancellation. In Table 4 when the true value of E[Xs¢] is known to be zero, A is zero. According to Eq. (21) there is
therefore no error cancellation, and consequently the errors of the estimates with or without self-correction mechanism
are quite similar. In the case where the true value of E[X;7] is unknown it can be observed that the estimate converges to a
certain value as the grid size becomes smaller. The estimate with the self-correction mechanism seems to converge more
quickly than the estimate without this feature.
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Table 5
Example 1—Medical conditions of five patients.
Reactor Expectation Standard deviation Correlation matrix P(Xi <5)
Prior
1 3 1.73 1 0 0 0 0 0.876
2 6 3.46 1 0 0 0 0.456
3 9 5.20 1 0 0 0.234
4 12 6.93 1 0 0.132
5 15 8.66 1 0.080

Reinforcing ranking X; < X; < X5 <X4 <Xs

1 2.32 122 1 0.36 0.17 0.08 0.03 0.968
2 4.89 2.03 1 0.49 0.24 0.10 0.578
3 8.19 3.05 1 0.52 0.23 0.132
4 12.86 4.63 1 0.45 0.010
5 2141 8.34 1 0.000

Opposing ranking Xs < X; < X3 <X, <X

1 7.99 2.18 1 0.82 0.69 0.57 0.40 0.064
2 6.68 1.86 1 0.85 0.70 0.49 0.184
3 5.64 1.69 1 0.82 0.58 0.382
4 458 1.56 1 0.71 0.641
5 3.24 1.45 1 0.881
4. Examples

Three examples are presented in this section. The first is a healthcare example where the random variables are taken
to have independent gamma distributions with equal shape parameters but different scale parameters. The second is a
soil contamination example where the random variables are taken to have a multivariate normal distribution with different
means but equal variances and covariances. It is shown how information on both reinforcing rankings and opposing rankings
affects the distributions, expectations, variances, and covariances of the variables. The third example concerns portfolio
selection in finance.

4.1. Healthcare

Suppose that the levels X; of a medical condition of n = 5 patients are of interest, but that they cannot be directly
measured. However, the levels can be modeled with a gamma distribution

1
x:3,0) = —x%e /0
J(:3.0) = 353

with a shape parameter k = 3 and with a scale parameter 6 that depends upon some covariate values of the patients.
Specifically, suppose that the five patients have scale parameters §; = i, 1 < i < 5, so that based upon these distributions
the prior expectations and variances are E(X;) = 3i and Var(X;) = 3i?, 1 < i < 5. It should also be noted that the variables
X; are modeled to be independent.

Now suppose that an ancillary measurement becomes available for the five patients that provides the information that

X1 =X <X3=<X4=Xs

(or equivalently, this same ranking with strict inequalities). This is a reinforcing ranking since it matches the ranking of
the prior expectations of the X;. It is interesting to note that under the prior distributions this reinforcing ranking has a
probability of 0.107 (this is B in Egs. (2) and (3)). Using the recursive integration techniques discussed in Section 2, the
conditional expectations, standard deviations, and correlations of the X; (conditionally the X; are no longer independent)
are shown in Table 5.

It can first be noted that with this reinforcing ranking the conditional expectations of the X; have maintained their
ordering but are now more spread out than the prior expectations. Furthermore, the conditional standard deviations are
each smaller than the prior standard deviations. Also, it can be seen that the correlations are largest for adjacent variables.

In addition, suppose that it has been decided that urgent corrective action needs to be taken whenever the level of this
deterioration condition is less than 5. Table 5 also shows how these probabilities change under the knowledge provided by
the reinforcing ranking. It can be seen that the probabilities that urgent corrective action needs to be taken become larger
for patients 1 and 2, and become smaller for patients 3, 4 and 5.

Now consider the opposing ranking

Xs < X4 =X35X; <Xy
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Table 6
Example 2—Toxic contamination levels at six locations.
Location Expectation Standard deviation Correlation matrix P(Xi > 18)
Prior
1 10 3 1 0.40 0.40 0.40 0.40 0.40 0.004
2 10 3 1 0.40 0.40 0.40 0.40 0.004
3 12 3 1 0.40 0.40 0.40 0.023
4 15 3 1 0.40 0.40 0.159
5 18 3 1 0.40 0.500
6 20 3 1 0.748

Reinforcing ranking X; < X, < X3 < X3 < Xs < Xs

1 8.21 2.59 1 0.79 0.67 0.59 0.56 0.52 0.000
2 10.28 2.45 1 0.78 0.65 0.60 0.55 0.001
3 12.47 2.45 1 0.74 0.62 0.56 0.012
4 15.12 2.50 1 0.71 0.58 0.125
5 17.97 2,54 1 0.69 0.494
6 20.95 2.71 1 0.863
Partially opposing ranking X; < X; < X5 < X4 < X3 <Xs

1 8.52 2.64 1 0.76 0.60 0.61 0.62 0.48 0.000
2 10.88 2.52 1 0.65 0.68 0.69 0.51 0.002
3 16.13 2.36 1 0.92 0.86 0.60 0.214
4 15.08 2.31 1 0.92 0.59 0.104
5 14.05 2.34 1 0.58 0.046
6 20.34 2.83 1 0.794

which is completely opposite to the ranking of the prior expectations of the X;. In fact, under the prior distributions this
opposing ranking has a very small probability of 0.00003. Under this opposing ranking the conditional expectations, standard
deviations, and correlations of the X; are also shown in Table 5.

It can be seen that with this opposing ranking the order of the conditional expectations has switched to match this
ranking, and that the conditional expectations are less spread out than the prior expectations. The conditional standard
deviations are also much smaller than the prior standard deviations, and their order also matches the opposing ranking.
Again, the correlations are largest for the adjacent variables, and they are all much larger than the correlations for the
reinforcing ranking. Also, the probabilities that urgent corrective action needs to be taken are now ordered to match the
opposing ranking.

In summary, this example illustrates how knowledge of the ranking can result in important changes in the distributions
and moments of the variables, which will be important information for practitioners.

4.2. Hazardous waste sites

Suppose that based upon knowledge of polluting activities, scientists originally model the unknown toxic contamination
levels X; at n = 6 locations with a multivariate normal distribution with means x4 = (10, 10, 12, 15, 18, 20), standard
deviations all equal to 3, and correlations all equal to 0.4. Then suppose that subsequently surface features indicate the
reinforcing ranking

X1 X2 X3 <X3 <X5 <Xs.

Under the prior distribution this reinforcing ranking has a probability of 0.111. In this case the conditional expectations,
standard deviations, and correlations of the toxic contamination levels are shown in Table 6.

It can be seen that with this reinforcing ranking the conditional expectations are quite similar to the prior expectations,
although for location 1 the expectation has decreased from 10 to 8.21, while for location 6 the expectation has increased
from 20 to 20.94. The standard deviations have all decreased and are all fairly similar, while the correlations have increased
and are largest for the adjacent variables.

Also, suppose that it has been decided that decontamination needs to be taken whenever the toxic contamination level
is larger than 18. It can be seen from Table 6 that the reinforcing ranking has increased the probability that decontamination
needs to be taken at location 6 from 0.748 to 0.865, while these probabilities have fallen at the other 5 locations.

Now suppose that subsequently surface features indicate the partially opposing ranking

X1 =X =X =X3<X3<Xs

where the ordering of the toxic contamination levels at locations 3, 4, and 5 is opposite to their prior expectations. This
partially opposing ranking has a probability of 0.002 under the prior distribution.

Table 6 shows that the conditional expectations are now ordered in the same way as this ranking. In addition, the standard
deviations have decreased, but now there are very high correlations of 0.92 between locations 3 and 4, and between locations



240 S. Kiatsupaibul et al. / Computational Statistics and Data Analysis 105 (2017 ) 229-242

4 and 5, which are the locations where the ranking contradicts the prior expectations. The probabilities that decontamination
needs to be taken are now ordered in the same way as the partially opposing ranking, and specifically the probability at
location 3 has risen from 0.023 to 0.214.

As with Example 1, this example illustrates how the different rankings can result in important changes in the distributions
and moments of the variables, and the methodology presented in this paper allows practitioners to calculate those changes.

4.3. Portfolio selection

The celebrated mean-variance portfolio selection model requires two sets of moments (the means and the
variance-covariance matrix) of the returns on N assets in order to recommend the proportions of capital, or the portfolio
weights, to be invested in these N assets. The objective is to optimize the risk-return trade-off of the entire portfolio.

The problem can be expressed as

max /Ltth — Zw?tht (22)
we 2

where p, and X, are the mean vector and the variance-covariance matrix of the return (in excess of risk free) at time ¢,
y is a parameter representing risk aversion of the investor which we set equal to 1 in this analysis, and w; is the vector of
decision variables that represent the portfolio weights at time t. The objective function in (22) is the certainty-equivalent
return which is a utility function interpreted as the return that is penalized by risk. The solution to the optimization problem
is

wp = ek

172

(see, for example, DeMiguel et al. (2009) for more details). The main difference between one portfolio selection strategy and
another is how the parameter estimates ft, and 3., are obtained.

In this example the estimate fi, is based on the rank constrained statistical estimates proposed by Chiarawongse et al.
(2012), where the estimates are obtained by a Markov chain Monte Carlo. Here the calculations are replaced by the recursive
integration methodology presented in this paper in order to obtain more accurate estimates. Furthermore, in Chiarawongse
et al. (2012) the authors perform their experiments based on simulated data sets, whereas in this example a real data set
is considered instead of ten industry monthly asset returns during the period of 01/1999-06/2014 obtained from Kenneth
French’s web site.

Our objective is the same as that in Chiarawongse et al. (2012), which is to demonstrate the potential benefit of adopting
a rank constrained statistical estimate. Two experiments are performed, one using prior parameter estimates ji and the
other using rank constrained statistical estimates jt. The performances of the two models are then compared.

In the analysis that follows the rolling-sample approach appearing in DeMiguel et al. (2009) is employed. An estimation
window of length 66 months is fixed. Then, starting from t = 66 and applying the capital asset pricing model, the data from
month t — 65 to month t are used to estimate the prior parameters (fi;, ;). These are then applied to (23) to obtain the
weight vector w, fort = 66, 67, ..., 185. The weight at time t is applied to the out-of-sample returns at t + 1 and summed
across assets to provide 120 out-of-sample portfolio returns 7, t = 67, 68, ..., 186. Subsequently, the 120 portfolio returns
are then divided into 10 twelve-month periods. In each period a certainty equivalent return is estimated as

(23)

ﬁ1=?,—§12/2, i=1,~-~7109

where 7; and 5,2 are the averages and the sample variances of the 7; in period i. These certainty equivalent returns are
the performance measurements of the prior model which were compared with those obtained from the following rank
constrained statistical counterpart. _

The experiment was repeated with (f,, ;) in (23) to obtain different portfolio weights, where fi, are the rank
constrained estimates based on Chiarawongse et al. (2012) and ¥ is the same as in the prior model. To estimate e, (g, )
are first estimated as in the prior model, and then for each t = 66, 67, ..., 185, fi, is estimated as the expectation of a
multivariate normal distribution parameter (i&,, 0.1%,) conditioned on the ranking obtained from that of the ten industry
returns at time t 4 1. This can be interpreted as a process to improve the quality of prior mean estimates by a one-step ahead
ranking. Note that in practice the ranking would usually be obtained from another database of investor views. However, this
approach affords an understanding of the potential benefit of the one-step ahead ranking methodology. As with the prior
model, the portfolio returns 7, t = 67, 68, ..., 186 are computed for the rank constrained model, and finally the certainty
equivalent returns ii; are computed for the 10 twelve-month periods.

The certainty equivalence returns for the ten periods obtained from the prior model and the rank constrained model are
plotted against each other in Fig. 1. The certainty equivalence returns from the rank constrained model outperform those
from the prior model consistently in every period. This analysis indicates the potential benefit of the rank constrained model
and demonstrates the advantages in this area of study available from employing the recursive integration methodology
discussed in this paper.
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Fig. 1. Certainty equivalence returns of the 10 twelve-month period from the rank constrained model (solid line) and the prior model (dashed line). The
returns from the rank constrained model consistently outperform those from the prior model.

5. Conclusion

This paper has addressed the situation where a set of variables has independent specified prior distributions, and where
some information becomes available on the ordering of the variables. This is a common phenomenon which has been
discussed and utilized in other statistical methodologies such as ranked set sampling. In this paper it is shown how updated
distributions and moments of the variables can be calculated conditional on the knowledge provided by the ranking. It
has been shown how the technique of recursive integration can be used to perform these calculations in a straightforward
manner as a series of one-dimensional integral computations regardless of the number of variables.

For these particular problems of conditional probability and conditional expectation computations, it has been
demonstrated that the errors in the numerators and the denominators can partially cancel each other, providing a self-
correction mechanism that improves the accuracy of the recursive integration methodology.

The methodology presented in this paper has been implemented for a simple ordering of the variables. The methodology
has also been generalized to variables with a multivariate normal distribution with a product correlation structure. In
principle, the methodology can be extended to more complicated orderings such as an umbrella ordering or tree orderings,
which are topics planned for future research.

Examples have been presented which illustrate how different kinds of rankings, such as reinforcing rankings and
opposing rankings, can have different and substantial effects on the distributions, expectations, standard deviations, and
correlations of the variables. This can be valuable information for practitioners, and the methodology presented in this
paper allows this information to be obtained. Finally, the methodology has been applied to a decision problem in portfolio
selection with ranking information, where it has been shown to provide a potential benefit. R code is available from the
authors to replicate the tables and examples in this paper, and to implement the algorithms discussed
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HIGHLIGHTS

e An exact confidence band for loss given default distribution in credit risk management is proposed.

e The approach based on a multiple comparison technique for a beta distribution.
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distribution are established which enable the derivation of an efficient algorithm for the implementation
of the procedure. The methodology has important applications to financial risk management. Specifically,

Iégg:grr‘lj:k the analysis of loss given default (LGD) data are often modeled with a beta distribution. This new approach
Loss given default properly addresses model risk caused by inadequate sample sizes of LGD data, and can be used in
Beta distribution conjunction with the standard recommendations provided by regulators to provide enhanced and more
Multiple comparison informative analyses.

Confidence band © 2017 Elsevier B.V. All rights reserved.
1. Introduction The beta distribution is an important probability distribution

whose range is defined on the interval of real numbers between 0

Practitioners in risk management necessarily employ a wide ~ and 1. It may be employed to describe the probabilistic behavior
array of statistical estimation techniques in their day-to-day ac-  Of system responses as a percentage, or to describe the rate of
tivities. However, statistical inferences which quantify the reli- occurrence of an event, for example. Beta distributions also arise in
ability of an adopted statistical model based upon limited data measurements resulting from basic stochastic processes and order
have long been downplayed. For example, a 99% value at risk is statistics. In addition, the beta distribution is the conjugate prior of
regularly computed and shown on a risk management report, even the binomial likelihood (see, for example, Feller, 1971; Johnson et

. . . . al., 1995).
Etll]?::lfr?t :;vcaonn:;csleﬁf;ﬁgpﬁi:;;gﬁggﬁlé?;g;&irsloiﬁ(‘ nvlv;g} The probability density function of the standard beta distribution
. . R is

agers should now become equipped with novel statistical inference a1 e

tools that enable them to easily incorporate statistical inferences X (1-%)

into their standard risk management procedures. In this article, we B(a, b)

introduce these ideas through multiple comparisons on the beta where 0 < x < 1and B(a, b) = fl X=1(1 — x)'=1 dx is the beta

R . s o b)) = J,
distribution model with applications to credit risk measurement. function, which depends upon two positive shape parameters a

and b. Therefore, inferences on this distribution require simulta-
* Corresponding author. neous inferences of these two parameters, which is the objective
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Recent advances in the construction of simultaneous confi-
dence bands for distribution functions have focused on developing
exact bands (Frey, 2008; Kiatsupaibul and Hayter, 2015) rather
than using the traditional asymptotic bands (Cheng and Iles, 1983;
Bickel and Freedman, 1981; Bickel and Krieger, 1989). Parametric
exact confidence bands for distributions with multiple parameters
have been developed based on nonparametric statistics, such as
Kolmogorov statistics. The Weibull distribution (Hayter and Ki-
atsupaibul, 2013) and the gamma distribution (Hayter and Kiat-
supaibul, 2014) are two examples. Exact inferences are possible
from the principle of inverse hypothesis testing to construct a
confidence set for the parameters at a specified confidence level
1 — «. Confidence bands for the distribution function then follow
readily from a mapping of the confidence set into the distribution
function space.

This paper shows how exact confidence sets and exact confi-
dence bands can be constructed for the beta distribution based on
this methodology. As part of this process, a monotonicity property
of the beta distribution function with respect to its parameters is
established. This property proves useful in the efficient construc-
tion of the confidence set for the parameters, and consequently for
the construction of the confidence bands for the distribution.

Confidence bands for distribution functions have important
applications to risk management. For example, when a Weibull
distribution is adopted as a parametric model for a mortality
distribution of interest to an insurer, its confidence band (Hayter
and Kiatsupaibul, 2013) can be employed to measure the risk of
the portfolio of the life insurance products. In addition, when the
arrival times of abnormal internet connections are modeled by a
gamma distribution, its confidence band (Hayter and Kiatsupaibul,
2014) provides information about the risk of the internet security
system.

Furthermore, in the area of credit risk management the beta
distribution is recommended by some standards as a model for the
Loss Given Default (LGD). The LGD is a crucial factor in calculating
the loss in an event of a credit default, along with the default rate
and the exposure at default (see, for example, Gupton et al., 1997;
Duffie and Singleton, 2003; Altman, 2008; Frontczak and Rostek,
2015; Wei and Yuan, 2016). However, since there is uncertainty in
fitting the LGD model, financial institutions are recommended by
the regulators to perform stress tests, and a particularly rigorous
way of stress testing the LGD model is to use the confidence
band of the model distribution function. Therefore, an important
application of the confidence band methodology proposed in this
paper can be found in this process of credit risk management, and
an example is provided in this paper.

This paper is organized as follows. In Section 2 the proposed
methodology is described by first deriving a monotonicity property
of the distribution function as functions of its parameters. An algo-
rithm to construct the exact confidence set and confidence band
for the beta distribution is then provided. In Section 3 examples
of the confidence band construction are given for both simulated
data sets and a real data set. In the real data example it is shown
how to construct a confidence band for the LGD distribution and a
discussion is provided of its application in credit risk management.
Finally, a summary is provided in Section 4.

2. Methodology

In this section the proposed methodology for the construction
of confidence sets and confidence bands for a beta distribution is
provided. The theoretical development is discussed in Section 2.1,
and algorithms are outlined in Section 2.2.

Contour Plots of Beta Distribution Function, F(x;a,b)
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Fig. 1. Some contours of the distribution function F(x; a, b).

2.1. Theoretical development

Consider a vector of n independent identically distributed ran-
dom variables X = (Xi,...,X,) having the beta distribution
function F(x; a, b), with positive shape parameters a and b, given
by

X
F(x;a,b) = M (1)
Jo f(t:a, b)dt

where
f(x;a,b)=x""1(1—x)"".

Examples of the distribution function contours at various x on
the parameter (a, b) plane are shown in Fig. 1, and notice that
F(x; a,b) =1— F(1 — x; b, a). The expectation of this distribution
is a/(a + b), which remains unchanged if the parameters a and
b are both scaled by the same quantity, and it can be seen that
the contours are reasonably straight lines extending out from the
origina =b = 0.
Consider the acceptance set A(a, b) defined by

A(a, b) = {X : sup|Gx(x) — F(x; a, b)| < da,n} , (2)

where Gx(x) is the empirical cumulative distribution function of
a sample of X and d, , is the Kolmogorov critical point. It follows
from Kolmogorov’s test that there is a probability of exactly 1 — «
that the observed X will fall within the acceptance set of the true
parameter values. Moreover, Eq. (2) can be written as

i i—1
— —don < FXiy; a,b) < —— +don,
n n

i=1,...,n, (3)
where X1y < --- < X are the ordered values of Xy, ..., X,.
Consequently, for an observed value X, a 100(1 — «)% confidence
set K, (X) for the beta parameters is the set of pairs (a, b) for which
(3) is satisfied.

It should be noted that the confidence set K, (X) may be empty.
This occurs when there are no values of a and b that satisfy Eq. (3),
and it alerts the experimenter to the fact that the data should not
be modeled with a beta distribution. In other words, the confidence
set K,(X) is empty if there is no beta distribution consistent with
the data according to Kolmogorov's test.
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The following theorem and corollary are useful for the construc-
tion of the algorithms in Section 2.2 for finding the solutions to
Eq. (3). Specifically, Theorem 1 states that the beta distribution
function at a given quantile, also known as the regularized incom-
plete beta function or the incomplete beta function ratio (see Johnson
et al., 1995; Johnson et al., 2005), is a monotone function in each
of the parameters. This implies that, with one parameter fixed, the
confidence set with respect to the other parameter is a connected
interval. This fact helps in the derivation of an efficient algorithm
to construct the desired confidence set of the parameters.

Theorem 1. Let F(x; a, b) be the cumulative distribution function
of the beta distribution given in Eq. (1). Then forany 0 < x < 1
and fixed b > 0, g(a) = F(x; a, b) is a continuous nonincreasing
function in a > 0. In addition, for any 0 < x < 1 and fixed a > 0,
h(b) = F(x; a, b) is a continuous nondecreasing function in b > 0.
Furthermore,

lim g(a) =0 = limh(b) and limg(a)=1= lim h(b).

a— 00 b—0 a—0 b—o0

Proof. For fixed b > 0, it is first shown that g(a;) > g(a,) for any

0 < a; < ay.Observe that

(x) = fx01.0) _ jay-ay)
f(x; ay, b)

is decreasing in x. Now define

Jo f(t; ar, b)dt fo

Jo f(t; az, bydt Jo fC

which is a weighted average of the decreasmg function s(x). There-
fore, for 0 < x; < xy,

fXth a, b )dt
fxzft a, b

Observe further that

f(t; aa, b)s(t )dt

f(t;az, b

u(x) =

s(x1) >

u(xy) >

(fxxz f(t; az, b)s(t) dt)
) = w - )+ (1 - w)- 2 |

J2f(t: ay, byde
where
Uf(t; az, b)dt

O<w="—"T"—— <1,

fo f(t; az, b)dt

so that u(x,) is a convex combination of u(x;) and the smaller term.
Hence, u(x1) > u(x,) which implies that for0 < x < 1,

X . 1 .
Jo f(t:ar, b)dt (0 > u(1) = Jo f(t: aq, b)dt

e 1 /| >
o £(t; az, b)dt [ f(t; az, b)dt
Multiplying both sides of this inequality by (fgf(t; as, b)dt/

folf(t; as, b)dt) gives the required result g(a;) > g(a,). Further-

more, it is clear that g is continuous in a > 0 since f is continuous
ina > 0.

It is now shown that lim,_, ,og(a) = 0 foreach 0 < x < 1. Fora
fixed x € (0, 1),

JoteTi (1 — 0Pt
fo ta=1(1 — t)b-1dt
a—17(1 _ #\b—1

- f 11 — )b de

f ta— 1( t)b_1 dt
- max{1, (1 —x)>~1} [t de
T min{1, (1 —x)-1) [ ea-1de

max{1, (1 — x)b~1}x?
min{1, (1 — x)P=1}(1 — x2)"

gla) =

Since 0 < x < 1, the last term goes to 0 so that g(a) — 0 as
a— oo.

Now it is shown that lim,_,og(a) = 1foreach0 < x < 1.Define
g(a) =1 — g(a). Then for a fixed x € (0, 1),

) fleeta— et
g(a) =
[ ee-1(1 — -1 dt
B fleta— et
Tt (1 =ttt

_ max(1,(1 - XP1y L tde
T min{1,(1—x)P-1} [}t Tde
max{1, (1 — x)>~1}(1 — x9)
min{1, (1 — x)b-1}xa

Now as a — O the last term goes to 0, and hence g(a) — 0 and
gla) > 1.

The analogous properties of h(b) can be obtained similarly, or
by recognizing that F(x; a,b) = 1—F(1 —x; b,a). O

The following corollary is useful for finding the solutions to
Eq. (3).

Corollary 1. For 0 < X(1) < --- < X < 1and fixed b > 0, there
exists an interval [lg, o] with l; > 0 such that a satisfies Eq. (3) iff
a € [lg, rq). In the same way, for a fixed a > 0 there exists an interval
[, rp] with I, > 0 such that b satisfies (3) iff b € [Iy, 1p].

Proof. For fixed b > Oand fixedi € {1, ...,
exists 0 < l;; < rg,; such that a satisfies

i—1
i a,b) < — +dyn (4)

n}, by Theorem 1 there

i
- _da,n SF(X(
n

iffa e [lg, rqi]. In fact the 1nterval [la.i, Tq ;] is the inverse mapping
of the interval [— dyn, 5 +da o] under g(a) = F(x;; a, b), which
is a bounded continuous nonincreasing function. Then

n
[la, rq] = m[la,iv Ta,il
i=1

which may be empty. In fact, [, = max;{l,;} and r, = min{rg;}
when the first of these is smaller than the second (and the interval
is empty otherwise). For fixed a > 0 the interval [, 1] can be
found in a similar way. O

2.2, Algorithms

This section contains an algorithm for obtaining the confidence
set from Eq. (3). R-code is available from the authors to implement
this algorithm.

Corollary 1 implies that the cross-section of the desired con-
fidence set K,(X) at a given b is a connected interval of a (and
similarly, at a given a is a connected interval of b). Therefore,
the confidence set construction can be reduced to finding these
two interval end points at each value of b, which can easily be
performed by, for example, the bisectioning method. Algorithm
1 illustrates a possible version of the confidence set construction
procedure.

In Algorithm 1, define the left and the right cross-sectional end
points at b as I, and 1 as in Corollary 2.2, so that

I, = arg min{(a, b) : (a, b) satisfies Eq. (3)},
a

r, = argmax{(a, b) : (a, b) satisfies Eq.(3)}.
a
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Algorithm 1 Confidence Set Construction

Require:
Adatasetofsize0 < Xy < -+ <Xy < L.
An initial pair of parameters (ag, bg) that satisfies equation (3).
Confidence level, 100(1 — «)%; precision parameter, A > O0;
cross-sectional tolerance, ¢ > 0; maximum of parameter b,
denoted by bpax.

: Setj = 0. Given bj, find I, and 1.

: while Ty — ij > ¢ and bj + A < bpax do

Setj < j+ 1.Let b; = bj_1 + A.Find lbj and T«

: end while

: Letjt =j,setj = —1andb_; = by — A. Given bj, find Ip; and
T'p..

: while r, — I, > e andb; — A > 0do

Setj <—j— 1.Letb; = bj_1 — A.Find lb}. and Tb;.

: end while

: return The confidence set, K, (X), defined by the sequences of
left end points and right end points:

{(ljfv bj7 )’ (lj7+]? bj7+1)’ e (lj+s bj )}’

(- by ), (11, by, (5, By

AW NN =

N O g

Once the confidence set K, (X) has been constructed, the confi-
dence band of the distribution function is the mapping into the dis-
tribution function space of all distribution functions with respect to
all parameter pairs in K, (X). Specifically, for each x the confidence
band of the distribution function at x has a lower bound Fj(x) and
an upper bound F,(x), where

Fi(x) = inf{F(x; a, b) : (a, b) € K,(X)},
and
Fy(x) = sup{F(x; a, b) : (a, b) € K,(X)}.

For each x, finding F,(x) and F,(x) is ostensibly an optimization
problem in two dimensions. However, by the monotonicity of the
distribution function with respect to the beta parameters given in
Theorem 1, it is known that Fj(x) and F,(x) can be found from the
boundary of K,(X). Therefore, once the confidence set has been
constructed, the confidence band construction entails only a one
dimensional optimization problem.

It is sometimes more convenient to construct the confidence
band of the distribution function from the quantile function. In this
case, for each probability 0 < g < 1, the lower bound, F,’](q) and
the upper bound F, !(q) of the quantile function are

F7'(q) = inf(F~'(x; a, b) : (a, b) € Ku(X)},
and
F7Y(q) = sup{F~Y(x; a, b) : (a, b) € K, (X)}.

u

Since F,' and F; ! form the same confidence band as those from
F, and F,, the values of Ffl(q) and Fu‘l(q) can also be found on
the boundary of K, (X). Notice that since the confidence set has an
exact confidence level of 1 — «, the confidence bands also have an
exact confidence level of 1 — «.

3. Examples

In this section examples of the confidence set and confidence
band construction are given simulated data sets in Section 3.1, and
for areal data setin Section 3.2. In the real data example it is shown
how to construct a confidence band for the Loss Given Default
(LGD) distribution and a discussion is provided of its application
in credit risk management.

Table 1

The simultaneous 95% confidence lower bounds and upper bounds for some key
quantities of the beta distribution constructed from the simulated data sets of sizes
25,50, 75 and 100 with parameters (a = 2, b = 5).

Parameter True value Size 25 Size 50
LCB UCB LCB UCB

a 2.000 0.504 30.766 0.932 15.518
b 5.000 1.213 107.213 2474 47.844
a/(a + b) (mean) 0.286 0.179 0.296 0.224 0.296
F~1(0.01) 0.027 0.000 0.147 0.003 0.133
F~1(0.25) 0.161 0.051 0.211 0.097 0.215
F~1(0.50) (median)  0.264 0.159 0279  0.200 0.286
F~1(0.75) 0.389 0.237 0.489 0.273 0.416
F~1(0.99) 0.706 0.311 0.959 0.380 0.838
Parameter True value  Size 75 Size 100

LCB UCB LCB UCB
a 2.000 1.042 8.730 1.150 6.171
b 5.000 2.646 25.126 2.863 17.513
a/(a + b) (mean) 0.296 0.248 0312 0250 0.308
F~1(0.01) 0.027 0.005 0.109  0.007 0.090
F~1(0.25) 0.161 0.111 0224 0.121 0.216
F~1(0.50) (median)  0.264 0.231 0299 0239 0.297
F~1(0.75) 0.389 0.300 0424 0312 0.424
F~1(0.99) 0.706 0.447 0.830 0.489 0.816

3.1. Simulated data

Observations were simulated from a beta distribution with
parameters a = 2 and b = 5 and with sample sizes n equal to 25,
50,75 and 100. In each case the methodology described in Section 2
was used to construct a 95% confidence set for the parameter pair
(a, b), which are shown in Fig. 2. These confidence sets were then
used to form 95% confidence bands for the cumulative distribution
function, which are shown in Fig. 3. Table 1 contains confidence
bounds for some key quantities of the beta distribution which are
obtained from the confidence sets in Fig. 2.

It can be seen from Fig. 2 that the confidence sets possess a
needle shape, which is not surprising considering the contour plots
shown in Fig. 2, and the fact that the expectation of the distribution
isa/(a+b), which remains unchanged if the parameters a and b are
both scaled by the same quantity, as discussed at the beginning of
Section 2.1. As expected, the confidence sets become dramatically
smaller when the sample size becomes larger, as shown by the ar-
eas given in Fig. 2. Each confidence set contains the true parameter
valuesa =2and b = 5.

It can be seen from Fig. 3 that, as expected, the confidence bands
becomes narrower when the sample size grows larger. In all cases
the band is widest at high quantiles, narrowest at mid quantiles,
and slightly wider again at low quantiles. Observe that even though
the confidence set areas in Fig. 2 become much smaller when
the sample size increases, there is not such a dramatic change
in the confidence band areas. The true distribution function with
parameter values a = 2 and b = 5 is shown by the dashed lines in
Fig. 3, and in all cases it stays within the confidence bands (since
the true parameter values are contained within the confidence sets
in Fig. 2). An estimated distribution function corresponding to the
maximum likelihood estimates of the parameters is also shown by
the dotted lines in Fig. 3. This estimate can be quite far from the true
distribution function, although it also stays within the confidence
bands.

3.2. Loss given default (LGD) data

In credit risk management the loss from a default to a loan can
be estimated by the following simple relationship

Expected Loss = PD x LGD x Exposure, (5)
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Fig. 2. The exact 95% confidence sets for the beta distribution parameters (a, b) constructed from simulated data sets of sizes 25, 50, 75 and 100 with parameters

(a=2,b=5).

where PD is the probability of default, LGD is the loss given default,
and Exposure is the outstanding value of the loan at the time of the
estimation (see, for example, Duffie and Singleton, 2003; Altman,
2008). In practice, the LGD is often modeled as a random quantity,
and its expectation is substituted into Eq. (5). To guard against
risk in economic downturns, the BIS Basel II (2004) financial reg-
ulations suggested that financial institutions perform stress tests
on their LGD. Moreover, the Federal Reserve System of the United
States recommends that a downturn LGD of the form

LGD in Downturn = 0.08 + 0.92E[LGD]

is employed where E[LGD] is the expected loss given default (Alt-
man, 2008).

].P. Morgan’s CreditMetrics™ recommends a beta distribution
for LGD (Gupton et al., 1997), which provides a motivation for the
work in this paper. This recommendation can provide more infor-
mation about an LGD other than merely its expected value. With
a distribution specified for the LGD, risk managers are equipped
with a more powerful tool to assess and manage risk in different
economic climates. Of course, the distribution of the LGD cannot
be known with certainty, and so the methodology developed in this
paper can be used to make inferences about the LGD.

Neither the downturn LGD suggested by the US Federal Reserve
System nor the beta model suggested by CreditMetrics™ account
for the model risk caused by an inadequate sample size. Therefore,
it is proposed that an upper confidence band (UCB) fitted to a
data set of LGD values experienced by financial institutions can
be employed in conjunction with the recommendations already
in place. This will be a rigorous stress test model for credit risk
management purposes because this confidence band aggregates

the information regarding the recovery risk and the model risk.
In addition, it is a distribution function in its own right that can
conveniently be applied to a wide range of risk calculations.

As a demonstration of the new suggested approach using the
methodology developed in this paper, Moody’s Default & Recovery
Database was used to obtain a data set of defaults during the 10-
year period from 2006 to 2015 whose recovery rate was greater
than zero and less than one. This data set contains 249 events. The
recovery rate of an event was computed from the weighted average
of the discounted settlements corresponding to the instruments of
the event. The LGD was then calculated as one minus the recovery
rate.

Confidence sets and confidence bands at 95% and 99% confi-
dence levels based on the proposed methodology were constructed
from the data set of 249 LGD events, and they are shown in Fig. 4.
Some key quantities obtained from the confidence set and the
confidence bands are given in Table 2. Notice that the confidence
sets in Fig. 4 is not empty, which confirms that this data set of LGD
events can be modeled with a beta distribution.

From Fig. 4, it is natural that the 99% confidence set is larger than
and covers the 95% confidence set. As a result, the 99% confidence
band is also wider than the 95% confidence band. Observe that the
area of a 99% confidence band is 0.1520/0.1212 =~ 1.25 times
that of 95% confidence band. This ratio can be considered as the
average ratio between the 99% and 95% confidence intervals of a
quantile of the estimated beta distribution. Recall that the width
of a 99% confidence interval formed by a normal distribution is
Z0.005/Z0.025 = 1.31times that of the corresponding 95% confidence
interval. Therefore, the ratio from the newly proposed methodol-
ogy is not very far from the ratio from a regular normal approxi-
mation (1.25 versus 1.31). However, in this case, the new method
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Fig. 3. The exact 95% confidence bands for the cumulative distribution function constructed from simulated data sets of sizes 25, 50, 75 and 100 with parameters

(a=2,b=5).

Table 2

Some key quantities of the beta distribution fitted to the 249 LGD events. The point
estimates are computed using the maximum likelihood estimates of the parame-
ters. The lower confidence bounds (LCB) and the upper confidence bounds (UCB),
at 95% and 99% confidence levels, are computed using the new proposed method-
ology.

Parameter Point estimates  95% Conf. Interval  99% Conf. Interval
Max likelihood  LCB UCB LCB UCB
a 1.1611 0.7487 2.0453 0.6695 2.3580
b 1.3215 0.8665 2.4215 0.7715 2.7915
a/(a + b) (mean) 0.4677 04211 0.5057 0.4095 0.5173
Downturn LGD? 0.5103 0.4674 05453 0.4568 0.5559
F~1(0.01) 0.0146 0.0025 0.0533 0.0014 0.0672
F~1(0.25) 0.2417 0.1801 03113 0.1642 0.3286
F~1(0.50) (median)  0.4579 0.4002 0.5074 0.3859 0.5222
F~1(0.75) 0.6864 0.6065 0.7436 0.5917 0.7622
F~1(0.99) 0.9732 0.9087 0.9935 0.8900 0.9961

o

Downturn LGD is defined as 0.08 4+ 0.92a/(a + b).

comparatively provides a little more aggressive 99% confidence
interval.

In Table 2 the point estimates can be viewed as standard
CreditMetrics™ estimates. The point estimate of the mean 0.4677
is computed from the mean formula of the beta distribution, and
is almost the same as the sample mean 0.4634. Consequently, the
downturn LGD suggested by the US Federal Reserve System would
become slightly lower (0.5064) if the mean was replaced by the
sample mean.

The UCB column contains the new estimates based on the
proposed upper confidence band. The mean in the UCB column is
computed from the maximum of a/(a + b) over all pairs (a, b) in

the confidence set K, (X) shown in the left panel of Fig. 4. It is then
substituted into the downturn LGD formula to obtain the UCB of
the downturn LGD. The values for the quantiles in the UCB column
are taken from the upper confidence band shown in the right panel
of Fig. 4.

The UCB values are naturally larger than the point estimates,
with the discrepancies reflecting the model risk caused by the
finiteness of the sample size. This implies that the UCB approach is
more conservative, and hence more appropriate for a comprehen-
sive risk management program that aims to take into consideration
model risk. It is therefore proposed that this new UCB approach be
employed in conjunction with the methodology developed in this
paper. The discrepancies between the UCB estimates and the point
estimates will become smaller as the analysis is based on larger
data sets.

4. Summary

A new methodology has been proposed to construct an exact
confidence set and exact confidence bands for a beta distribution.
This involves simultaneous inference on the two parameters of the
beta distribution, based upon the inversion of Kolmogorov tests.

It has been shown that the distribution function of the beta
distribution is a monotone function with respect to either of its
parameters, and this has enabled the derivation of an efficient al-
gorithm for the confidence set and confidence band constructions.
The methodology has been demonstrated with simulated data sets
of different sample sizes.

Moreover, the methodology has been applied to an important
problem in financial risk management. For the analysis of loss
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Fig. 4. The exact 95% and 99% confidence sets and confidence bands for the beta distribution fitted to the data set of 249 LGD events during the period 2006-2015 obtained

from Moody’s Default & Recovery Database.

given default (LGD) data, it has been proposed that the method-
ology be employed to calculate upper confidence bounds (UCB) for
the quantities of interest. This new approach properly addresses
model risk caused by inadequate sample sizes of LGD data, and
can be used in conjunction with the standard recommendations
provided by regulators to provide enhanced and more conservative
analyses.
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ABSTRACT ARTICLE HISTORY

This paper considers the problem of comparing two processes or Accepted 10 May 2016
treatments which are each modelled with a Weibull distribution. Win- Published online 19 July 2016
probabilities are considered, which compare potential single future KEYWORDS
observations from each of the two treatments. This information can Weibull distribution; failure
be useful in helping decide which of the two treatments to adopt, times; win-probabilities;
and can be combined with other factors relevant to a practitioner joint confidence sets;

such as the availabilities, costs and side-effects of the two treatments. confidence intervals;

A methodology employing joint confidence sets is developed which two-sample problem

not only allows estimation and confidence interval construction for
the win-probabilities, but at the same guaranteed confidence level
also tests whether Weibull distributions are appropriate for the data,
identifies any common Weibull distributions for the two processes and
also provides individual inferences for the two Weibull distributions.
Examples are given to illustrate the implementation and application
of this methodology, for which R computer code is available from the
authors. This methodology can be extended to different models such
as other two-parameter and three-parameter Weibull models, and to
the comparison of three or more Weibull distributions.

1. Introduction

Let

a (x\e-1 a
A :_(_) —(x/n)
f(x;a,X) -3 e

be the probability density function of a Weibull distribution with parameters a and A, with
a cumulative distribution function

Flx;a,\) = 1 — e~ @/M°,

for x > 0, with a > 0 and A > 0. This distribution has received considerable attention
in the reliability literature, and most standard approaches to making inferences with this
model involve graphical methods or approximate theoretical methods (see, for example,
Abernethy, 2006; Lawless, 2003; Rinne, 2008).

Consider the two sample problem with independent data Xj;, 1 < i < nj, from a
Weibull distribution with parameters a; and X;, and independent data Xp;, 1 < i < ny,
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from a Weibull distribution with parameters a, and A,, with all four parameters being
unknown. The comparison of these two Weibull distributions based on the two samples
is a difficult problem, and the methodologies available in the literature generally rely on
asymptotic approximate arguments with some assumptions about the parameters.

For example, Schafer and Sheffield (1976) discuss how to test the equality of the two
scale parameters A1 and 1, under the assumption that the two shape parameters a; and a;
are equal. More recently, Hudak and Tiryakioglu (2011) show how to compare the shape
parameters of two Weibull distributions and discuss applications to the fracture properties
of ceramics and metals. Also, Louzada-Neto, Bolfarine, and Rodrigues (2002) provide a
good motivation for the related problem of comparing two Weibull regression models with
respect to assessing the reliability of manufactured items, and provide a Bayesian solution
for accelerated data. Finally, Parsi, Ganjali, and Farsipour (2011) provide approximate
methods for this two sample problem based on the asymptotic normality of the maximum
likelihood estimators and using bootstrap methods when there is Type-II progressive
censoring.

In this paper, the comparison of the two Weibull distributions is based upon the
construction of joint confidence sets for the parameters, and the consideration of win-
probabilities which are defined as follows. Let X} be a potential future observation from
the Weibull distribution with parameters a; and A, and let XJ be a potential future
observation from the Weibull distribution with parameters a, and A,. Then for p > 0 a
win-probability is defined as

Wa(p) = P(X5 = pX7) =/0 f(x; a1, A1) (A — F(px; az, A2))dx

e8] a;—1
- / afx o= /D™ 4= (px/32)™ 45
0o A \M

For 7 = pA;/A; thisis
o0 a a
Wi (p) = / apx® e HEDR) g (1)
0

Thus, if the two Weibull distributions represent two processes or treatments, and if
larger observations are better, then the win-probability W>(1) provides the probability
that a potential future observation from the second treatment will be at least as large as a
potential future observation from the first treatment. The values of W, (p) for other values
of p also provide further information on how much better the observation from the second
treatment will be. Also, it is clear that

Wi(p) = P(X{ = pX;) =1— Wa(1/p)

and if small observations are better then these win-probabilities can similarly be used to
compare the two distributions.

The information provided by the win-probabilities can be of direct use in helping decide
which of the two treatments to adopt when a practitioner has a choice between the two
treatments, and it can be combined with other factors relevant to a practitioner such as the
availabilities, costs and side-effects of the two treatments. Discussions of win-probabilities
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can also be found in Hayter (2013) for normally distributed data, in Wiwatwattana, Hayter,
and Kiatsupaibul (2015) for binomial data, in Hayter (in press) for Poisson data, and in
Hayter (2012) for regression models.

Standard approaches to two sample problems generally involve testing the equality
of parameters and comparing expectations and quantiles. This can be useful from a
policy perspective in the sense that allocating all future observations to the treatment
with the largest expectation, say, will guarantee the largest long run average for the future
observations. However, as has been discussed, there are no direct procedures available
to apply these standard approaches to the situation of two Weibull distributions without
resorting to asymptotic arguments and assumptions.

The use of win-probabilities provides a way around this problem, and it also provides
more pertinent information from an individual perspective rather than from a policy
perspective. This is because an individual will have a potential outcome X} if the first
treatment is undertaken, and a potential outcome X3 if the second treatment is undertaken.
The win-probabilities then provide direct information to the individual concerning what
might happen if either treatment is taken, and this information can be combined with
other considerations such as the costs, availabilities and side-effects of the two treatments
which may be specific to that individual for that particular decision.

Thus, even ifitis possible to establish that the first treatment has a larger expectation than
the second treatment, say, with larger observations being better, for a particular individual
it may be advantageous to take the second treatment if it is more readily available, has a
substantially lower cost or if its detrimental side-effects are less. If it is found that W5 (p)
is not too small for certain values p of interest, then it may be judged that the ‘penalty’ for
taking the second treatment due to its smaller expectation is not too severe, and so it may
be considered to be the better decision when all aspects are taken into account.

These win-probabilities can be used in any of the reliability areas where the Weibull
distribution is typically adopted. Thus, the two treatments may correspond to two manu-
facturing processes, say, or to different carbon fibres as illustrated in Example 1 in Section
4.2. Also, an application of win-probabilities to compare the costs of two processes is
provided in Example 2 in Section 4.2. The win-probabilities can be particularly relevant
to medical studies where a patient may be faced with choosing between two medical
treatments, and where measurements of interest such as times to recovery or failure can
reasonably be modelled with a Weibull distribution.

In the medical setting, increasing attention has been directed recently towards non-
inferiority studies (see, for example, Fleming, 2008; Kwong, Cheung, Hayter, and Wen,
2012), where it has been recognized that as long as a new treatment is not worse than
a standard treatment by more than a specified non-inferiority margin, then it can be
preferable due to other reasons such as cost and availability. The calculation of win-
probabilities W5 (p) with p corresponding to a particular non-inferiority margin can be
particularly useful in this case.

Kundu and Gupta (2006) provide a nice discussion of the estimation of the win-
probability W5 (p) when p = 1 and when it is assumed that the two shape parameters a;
and a; are equal. They show how to obtain an approximate maximum likelihood estimate
of the win-probability in this setting, and they derive approximate confidence intervals
based on asymptotic normality arguments, bootstrap methods and also using a Bayesian
approach.
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Kundu and Gupta motivate the problem with respect to a standard engineering context
concerning the mechanical reliability of a system, in which the first treatment corresponds
to the stress that a system is subjected to, while the second treatment corresponds to its
strength. Thus, W(1) is the probability that the system’s strength is larger than the stress to
which it is subjected, in which case there will be no failure. This problem is also considered
by Lin and Ke (2013) for general location-scale distributions with progressive Type-II
censored data.

The approach taken in this paper is to consider inferences on win-probabilities W, (p)
for general values of p, and without the assumption of equal shape parameters. Further-
more, the objective is to obtain confidence intervals for the win-probabilities that guarantee
a nominal confidence level through the construction of confidence sets for the two sets of
parameters with a guaranteed confidence level.

Moreover, a practitioner will usually be interested in a range of questions for this two-
sample problem, starting with an assessment of whether the two data-sets can actually be
modelled with Weibull distributions, progressing to whether there is a difference between
the two distributions and leading to questions about the magnitude of such a difference
if it exists. In addition, if one or both of the treatments are selected for further use, then
individual inferences will be required on one or both of the distributions. Usually these
questions are tackled separately with distinct error rates, which make it difficult to assess
the overall confidence level of the complete statistical analysis.

The methodology presented in this paper through the construction of confidence sets
for the two sets of parameters allows all of these questions to be answered with a guaranteed
specified overall simultaneous confidence level. The use of a procedure such as this which
addresses the multiplicity of the range of questions of interest to the practitioner has been
discussed in Hayter (2014) with respect to normally distributed data.

The layout of this paper is as follows. Section 2 discusses the estimation of the win-
probabilities, while the general methodology which in particular allows confidence interval
construction for the win-probabilities is considered in Section 3. Some examples and
illustration of these methodologies are provided in Section 4, and Section 5 contains a
summary.

2. Estimation of the win-probabilities

It can be seen from Equation (1) that the win-probability W»(p) depends upon ay, a; and
T = pAi1/Xz. To provide an indication of this dependence, Figures 1-3 provide contour
plots of W»(p) for t = 1,2 and 3 (for t = 1/2 and 1/3 the contour plots can be obtained
from those for T = 2 and 3 by switching a; and a, and subtracting the contour values
from 1). Also, Figure 4 provides an illustration of how the win-probabilities depend upon
the value of p for several sets of parameter values. The R code to calculate the win-
probabilities, which is available from the authors, uses R’s standard numerical methodolo-
gies to evaluate the integral in Equation (1).

For given data-sets X};, 1 <i < n; and X, 1 < i < ny, the win-probability W (p) for
a particular value p of interest can be estimated by evaluating Equation (1) with estimates
of the parameters

oo ~ o
0
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Figure 1. Contour plot of the win-probability W (p) fort = 1.
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Figure 2. Contour plot of the win-probability W, (p) for t = 2.

where # = pi1/A,. These parameter estimates may, for example, be obtained by maximum
likelihood, as discussed by Balakrishnan and Kateri (2008).

Specifically, for data X3;, 1 < i < nj, from a Weibull distribution with parameters a;
and Aj, the derivatives of the log-likelihood function [ are
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Table 1. Averages from N = 100 simulations of the maximum likelihood estimates (with standard
deviations in brackets) and 1 — a = 0.95 confidence intervals for the win-probabilities.

a=2Mm=1 a=3rn=1
n =ny W5(0.5) = 0.869 Wy (1) = 0.527 W5(2) = 0.193

20 0.874  (0.056)  (0.534,0.997)  0.534  (0.092) (0.193,0.862) 0.194  (0.062)  (0.010,0.526)
40 0.868  (0.037)  (0.630,0.989) 0.522  (0.060)  (0.273,0.766)  0.183  (0.045)  (0.029,0.417)
70 0.869  (0.028)  (0.693,0.975)  0.521 (0.050)  (0.336,0.712)  0.186  (0.038)  (0.058,0.364)
100 0.866  (0.025) (0.723,0.964) 0.525 (0.037)  (0.365,0.684) 0.192  (0.027)  (0.074,0.338)
200 0.871 (0.019)  (0.771,0.944)  0.527  (0.031)  (0.4150.642) 0.191 (0.022)  (0.104,0.292)

ag=2x1=1 ay=3x1x=06
n =ny W5(0.5) = 0.634 W5 (1) = 0.261 W5 (2) = 0.077

20 0648  ( (0.290,0.932) 0263  ( ) (0.032,0615) 0.077 ( ) (0.001,0.381)
40 0642 ( (0.389,0873)  0.266  ( ) (0.072,0.508)  0.079  ( ) (0.004,0.280)
70 0.636  (0.041)  (0.444,0.818) 0.259  (0.041)  (0.106,0.445)  0.076 ~ (0.022)  (0.010,0.223)
( ( ) (0.034)  ( (0.017) )
( ) (0.023) ( (0.012) )

100 0.638 0.474,0.788 0.262 0.127,0412)  0.077 (0.015,0.197
200 0.635 0.024)  (0.520,0.744 0.260 0.162,0.366)  0.076 (0.026,0.157

a=2Mm=1 a=3x1rn=14
ny=ny W,(0.5) = 0.945 W, (1) =0.719 W,(2) = 0.331

20 0947  (0.031) (063510000 0730 (0.087) (0.3740.972) 0339  (0.098)  (0.073,0.695)
40 0.944 (0.024) (0.734,0.998) 0.715 (0.060) (0.457,0.923) 0.325 (0.061) (0.114,0.574)
70 0946  (0.016)  (0.803,0996) 0720  (0.042)  (0.530,0.888) 0329  (0.044)  (0.160,0.517)
100 0942  (0.014) (0.8260992) 0709  (0.035)  (0.549,0.853) 0318  (0.035)  (0.174,0472)
200 0.945 (0.009) (0.869,0.986) 0.719 (0.025) (0.606,0.823) 0.332 (0.029) (0.229,0.443)
9l n n n n
1 _ _
— = — —mylogh; + ZlogXli + A, " log Ay ZX?} — A ZX?} log X1;,
day ap : ’ -
i=1 i=1 i=1
and

a
o !
Setting these derivatives to be zero gives A; = (n_ll > Xlail> " and

ni ny ay
n ny Y i1 X;; log Xy,
—+ ) logXj; — = =
ai ; 2 X

A method such as Newton-Raphson can be used to solve this latter equation to give a;,
which can then be used to obtain ):1. In a similar way the estimates a, and )12 can be
obtained from the data X5;, 1 < i < n,.

Indications of the accuracy of these maximum likelihood estimates of the win-
probabilities are given by Table 1 and Figure 6 which are discussed in the subsequent
sections.

3. Confidence interval construction for the win-probabilities

Confidence intervals for the win-probabilities W5 (p) can be derived from confidence sets
for a;, a; and 7. In order to construct confidence intervals that guarantee a nominal
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Figure 3. Contour plot of the win-probability W, (p) for t = 3.
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Figure 4. Dependence of the win-probability W, (p) on p for various parameter values.

confidence level of 1 — «, the method of Hayter and Kiatsupaibul (2013) can be employed
which derives a confidence set for the two parameters of a Weibull distribution with a
guaranteed confidence level.

This method can be used to generate a confidence set for a; and A; based on the data
Xii, 1 < i < ny, with a confidence level of 1 — «, and a confidence set for a, and A, based
on the data X5;, 1 < i < n,, with a confidencelevel of 1 — . If 1 —a = (1 —a1)(1 — ap)
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then these confidence sets can be used to provide confidence intervals for W,(p) with a
guaranteed confidence level of 1 — «.

In addition to providing confidence intervals for the win-probabilities, these two confi-
dence sets for the parameters can also be used to indicate whether the data-sets fit Weibull
distributions, since as explained by Hayter and Kiatsupaibul the confidence sets will be
empty if there are no plausible Weibull distributions that fit the data. Furthermore, the
intersection of the two confidence sets also indicates whether there are any common
Weibull distributions which fit the two data-sets, and if so what their parameter values are.
Finally, the confidence sets can also be used to provide individual confidence bounds on
the two distribution functions, and all of these inferences are provided with a guaranteed
overall simultaneous confidence level of 1 — o = (1 — a1)(1 — a»).

For the Weibull parameterization used in this paper, the method of Hayter and Kiatsu-
paibul can be employed as follows. For order statistics Xj(1) < ... < Xj(z,) from a Weibull
distribution with parameters a; and A;, the 1 — «; confidence set for these parameters is
given by
i—1

ny

i NPRY
—daymy +— <1-— e~ Ko/ < daym +
ni
for 1 <i < nj, where dy, », is the Kolmogorov critical point. Equivalently,
hi < arlogXigy —ailogir < uy;

for 1 <i < ny, where

lli = log <maX {0, — IOg (nln_ 1 + doq,m) })
1
—i+1
uy; = log (—log <max {0, % — daymy })) :
1

Consequently, the values of a; satisfy

and

hi . .|y .
max { — — logXy(;,1 <i<m <min{— —logX;;),1 <i=<m (2)
ay ay

and for these values of a; the parameter A satisfies

e min{u;/a;—log Xy (),1<i<ni} < < e_max{lli/al—logxl(i)»lfifnl}' (3)

Therefore, the confidence set can be constructed by first finding the upper and lower
bounds for a; from Equation (2). After this confidence interval for a; has been obtained,
it is then straightforward to calculate the bounds on A; corresponding to each value of a;
from Equation (3). The confidence set for a; and A, based on the data X5;, 1 < i < ny,
with a confidence level of 1 — «, can be constructed in a similar manner.

A confidence interval for W, (p) with a guaranteed confidence level of 1 — o = (1 —
a1)(1 — ay) can be derived from these confidence sets as follows. Notice that W, (p) is
monotonically decreasing in A; and monotonically increasing in A, so that Wy (p) is
maximized by searching for the maximum value of
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Figure 5. Confidence sets with individual confidence levels of +/0.95 for simulated data-sets with
n1 = ny = 60 from Weibull distributions with parametersa; = 3and A1 = 1,anda; = 1and 1, = 1.

S ( a min /4 max%2
—1 — x4 (pxA A )
/ ax™ e (pxA™/35°) dx
0

over the confidence intervals for a; and a,, and W>(p) is minimized by searching for the

minimum value of o
1 — (x4 (pxamax A‘min az)
/ alx“”le( (o487 ) g
0

over the confidence intervals for a; and a,, where

Arlrlax = max{h;/a1—log X;(;,1<i<n;}

)Lxlnin —e min{u;/a;—log Xy (),1<i<ni}

)\1211ax — e max({b;/a;—log X(j),1<i<ny}

and
)énin — min{ug,-/az—long(i),lgifnz}‘

It can be noted that the Kolmogorov critical point, required for this methodology, has
been extensively tabulated. In addition, it can be conveniently obtained from the R package
using the routine ‘kolmim’, which uses the algorithm proposed by Marsaglia, Tsang, and
Wang (2003) with an improvement by Luis Carvalho. Another efficient set of codes to
compute the Kolmogorov critical point in C and Java has been provided by Simard and
L’Ecuyer (2011).
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Figure 6. Estimates and confidence intervals for the win-probabilities W, (p) with a confidence level of
0.95 for simulated data-sets with ny = n, = 60 from Weibull distributions with parameters a; = 3 and
M =1,anda; =Tand Ay = 1.

As an illustration of this methodology, data-sets of size n; = n, = 60 were simulated
from Weibull distributions with parameters a; = 3 and A; = 1, and with g, = 1 and
A2 = 1. The resulting confidence sets for the two sets of parameters with 1 — o; =
1 — a3 = +/0.95 are shown in Figure 5. The first thing to note from Figure 5 is that neither
confidence set is empty, which implies that both data-sets can be modelled with a Weibull
distribution, as would be expected. If this methodology is applied and a confidence set is
empty, then this is a warning that a Weibull distribution is not appropriate for that data-set.

Furthermore, it is interesting to note from Figure 5 that there is a small non-empty
intersection of the two confidence sets. This indicates that it is plausible that the two
data-sets could be modelled with a common Weibull distribution, which would have a
shape parameter a between 1.53 and 1.82 and a scale parameter A between 1.00 and 1.11.
The confidence sets can also be used to provide confidence bands for the two individual
distribution functions, as explained in Hayter and Kiatsupaibul (2013).

Confidence intervals for the win-probabilities W>(p) for all p can also be obtained
which together with all of these other inferences have an overall simultaneous confidence
level of 0.95. Figure 6 shows the true values of the win-probabilities together with their
maximum likelihood estimates discussed in Section 2, which can be seen to be very close
for these sample sizes.

The confidence intervals are also shown, and for example, despite the difference in
the shape parameters, the true value of W5 (1) is close to 0.5 and the confidence interval
W>(1) € (0.295,0.667) is obtained. Thus, the inference can be drawn from the data-sets
that the probability that a potential future observation from the second treatment will
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exceed a potential future observation from the first treatment is at least 0.295 but no more
than 0.667.

In addition, the lower confidence interval is equal to 0.5 when p = 0.44, and so it can be
inferred that it is at least as likely as not that a potential future observation from the second
treatment will exceed 44% of a potential future observation from the first treatment. Also,
the upper confidence interval is equal to 0.5 when p = 1.62, and so it can be inferred that
it is at least as likely as not that a potential future observation from the first treatment will
exceed 1/1.62 = 62% of a potential future observation from the second treatment.

4. Examples and illustrations

In this section, some simulations and examples are presented to illustrate the methodology
proposed in this paper.

4.1. Simulations

Table 1 shows some simulation results of the estimates of the win-probabilities W, (0.5),
W3(1) and W>(2), together with their confidence intervals with a guaranteed confidence
level of 1 — @ = 0.95. Three sets of parameter configurations are considered, and the
averages of N = 100 simulations are presented, together with the sample standard
deviations of these 100 values. Individual confidence levels of +/0.95 were used for the
two confidence sets of the parameters.

These results provide an indication of how the confidence interval lengths depend
upon the sample sizes, which are taken to be equal for the two treatments. It should be
remembered that many other inferences besides the assessment of the win-probabilities
are included with this confidence level, as illustrated in the following two examples.

4.2. Examples

Two examples with real data-sets are presented to illustrate the methodologies proposed
in this paper.

Example 1: Kundu and Gupta (2006) analyse data on carbon fibre strengths taken from
Badar and Priest (1982). In their example, the first sample is n; = 69 observations of fibre
strengths for gauge lengths of 20 mm, while the second sample is #n, = 63 observations
of fibre strengths for gauge lengths of 10 mm. They argue that Weibull distributions are
appropriate to model the two data-sets when a value of 0.75 has been subtracted from the
strengths.

Figure 7 shows the individual +/0.95 level confidence sets for the Weibull parameters
of these two data-sets (with 0.75 subtracted). It is first important to note that neither
confidence set is empty, which confirms the analysis of Kundu and Gupta that the two
data-sets can be modelled with Weibull distributions. It is also interesting to note that the
two confidence sets are disjoint, which establishes that the two data-sets cannot be modelled
with a common Weibull distribution. Thus, a hypothesis test that the two treatments have
identical Weibull distributions is rejected at size @ = 0.05.

Figure 8 shows the estimates and confidence intervals for the win-probabilities W5 (p),
and Table 2 provides some values of these estimates and confidence intervals together with
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Figure 7. Confidence sets with individual confidence levels of 4/0.95 for the carbon fibre strength data
in Example 1.

Table 2. Some estimates and confidence intervals for the carbon fibre strength data in Example 1 with
an overall simultaneous confidence level of 0.95.

W5 (0.5)
Wy (1)
W>(2)

Expectation
F~1(0.05)
F~1(0.25)
F~1(0.50)
F=1(0.75)
F~1(0.95)

Expectation
F~1(0.05)
F~1(0.25)
F~1(0.50)
F=1(0.75)
F=1(0.95)

Win-probabilities
0.980
0.765
0.182

Gauge length 20 mm
1.700
0.868
1.360
1.709
2.047
2.501

Gauge length 10 mm
2.304

1.191
1.850
2.317
2.766
3.369

(0.903,0.999)
(0.566,0.907)
(0.032,0.347)

(1.517,1.875
(0.481,1.254
(1.096,1.581
(1.518,1.891
(1.820,2.333
(2.088,3.356

(2.018,2.519
(0.730,1.607
(1.562,2.074
(2.021,2.542
(2.461,3.150
(2.755,4.433

some inferences on the expectations and quantiles of the individual strengths of the two
types of carbon fibres. It can be seen that W5 (1) is estimated to be 0.765 with a confidence
interval (0.566,0.907) so that it can be inferred that a 10 mm fibre has at least a 0.566
probability of having a strength greater than a 20 mm fibre. In fact, the confidence interval
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Figure 8. Estimates and confidence intervals for the win-probabilities W, (p) with a confidence level of
0.95 for the carbon fibre strength data in Example 1.

for W, (2) indicates that there could be a probability of as high as 0.347 that a 10 mm fibre
has a strength at least twice that of a 20 mm fibre.

Kundu and Gupta discuss several ways of calculating approximate confidence intervals
for W5(1) under the assumption that the shape parameters are equal (which is not an
unreasonable assumption for these data where the maximum likelihood estimates are
4, = 3.844, %, = 1.880, 4, = 3.910, and A, = 2.545). They report similar estimates of
about 0.762 for W, (1) with approximate 95% confidence intervals of about (0.700, 0.828),
which are substantially shorter than the confidence interval given in Table 2. From this
perspective Kundu and Gupta’s method is preferable.

However, this is balanced by the fact that with the guaranteed nominal confidence
level of 0.95, the methodology presented in this paper has also tested whether the data
can be modelled with Weibull distributions (this is examined separately by Kundu and
Gupta with its own individual error rate), has established that the two data-sets cannot be
modelled with a common Weibull distribution, has provided confidence intervals on the
win-probabilities W, (p) for all values of p, and has provided confidence intervals on the
expectations and quantiles of the individual strengths of the two types of carbon fibres,
without having to assume that the two shape parameters are equal. The next example
considers a situation where it is not reasonable to assume that the two shape parameters
are equal.

Example 2: A communication switching machine undergoes cycles of up-time when it
functions, and down-time when it is out of order and requires repairing. The following
data-sets contain n; = 38 down-times of the machine and n, = 44 up-times of the machine
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Figure 9. Confidence sets with individual confidence levels of 4/0.95 for the down-times and up-times
data in Example 2.

in hours. This original real data-set was extracted from the log file of a communication
switching machine operating in Khon Kaen University in Thailand.
Down-times:
6.650 0.233 0.683 0.450 2.417 2.933
3.334 0.867 3.200 0.200 1.233 6.361
0.019 1.683 11.467 2.917 0.093 0.783
0.933 3.951 4.592 28.101 0.0003 0.283
8.167 6.183 0.0006 0.0003 0.133 1.800
7.650 5.533 0.13310.417 1.117 3.483
0.767 0.550

Up-times:

1.333  35.783 119.167 233.817 1323.133 68.017
120.967 1100.317 716.017 52.517 476.467 0.050
314.150 12.183 233.050 42.750 149.417 818.383
154.483 67.500 19.333 0.001 0.0008 0.0006
0.0006  1.050 23.617 8.117  0.050 0.002
0.002  0.006 0.003 4.517 243.217 182.417
13.133 305.050 171.050 325.400 138.317 513.083

40.583  2.000

It is useful to be able to compare the distributions of the down-times and the up-
times. Specifically, if the benefits of the machine functioning are a linear function of the
up-time, while the repair costs are a linear function of the down-time, then the win-
probabilities provide an assessment of the benefit to cost ratios of this communication
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Figure 10. Estimates and confidence intervals for the win-probabilities W, (p) with a confidence level of
0.95 for the down-times and up-times data in Example 2.

switching machine. For example, if the benefit per unit time is twice the repair cost per
unit time, then W,(0.5) is the probability that one cycle of repairing the machine and
running it until failure will be economically advantageous.

Figure 9 shows the individual +/0.95 level confidence sets for the Weibull parameters of
these two data-sets, which can be seen to be disjoint and possessing quite different shapes.
First of all, the fact that neither confidence set is empty indicates that both data-sets can
be modelled with a Weibull distribution. In addition, since the confidence sets are disjoint
it can be inferred that the two data-sets cannot be modelled with a common Weibull
distribution. In fact, while the up-times are generated from the machine reliability, the
down-times depend upon the human repair policy, and so it is quite reasonable to expect
that the two distributions would be unequal.

The parameter estimates are a; = 0.572, A = 2.314, 4, = 0.324, and A, = 58.276,
and even though the projections of the two confidence sets onto the shape parameter
axis have some intersection, the non-intersected parts are much larger. Consequently, it
is unreasonable to simplify the analysis by assuming that the two data-sets have identical
shape parameters.

Figure 10 shows the estimates and confidence intervals for the win-probabilities W5 (p).
For example, W;(0.5) is estimated to be 0.787 with a confidence interval of (0.540, 0.963),
so that (when the benefit per unit time is twice the repair cost per unit time) it can be
inferred that one cycle of repairing the machine and running it until failure is more likely
than not to be economically advantageous, with an estimated chance of about 79%. Also,
W, (1) is estimated to be 0.743 with a confidence interval of (0.509,0.945), and W, (2) is



16 A.J.HAYTER ET AL.

estimated to be 0.693 with a confidence interval of (0.477,0.924). Thus, it can be inferred
that there is atleast about a 48% chance that one cycle of repairing the machine and running
it until failure will generate benefits of four times the cost, and that this can be estimated
to occur with a chance of about 69%.

On the other hand, in this communications setting a shutdown can be catastrophic in
terms of cost, and so it may be the case that the benefit per unit time is only 1% of the repair
cost per unit time. In this case W;(100) is estimated to be 0.326 with a confidence interval
of (0.156,0.629) so that there is an estimated chance of only about 33 that one cycle of
repairing the machine and running it until failure will be economically advantageous.

5. Summary

This paper has considered the problem of comparing two Weibull distributions. The
current statistical literature does not offer much scope for addressing this problem, with
available procedures relying on large sample asymptotic results and assumptions about the
parameters.

The procedure proposed in this paper allows a thorough investigation of the two Weibull
distributions, so that testing whether Weibull distributions are appropriate, identifying
whether the two Weibull distributions can be taken to be identical (and if so, identification
of the common parameter values), and comparisons of the difference between the two
Weibull distributions with win-probabilities are all achieved with a guaranteed overall
simultaneous confidence level.

The win-probabilities with different choices of p allow an assessment of the practical
difference between the two Weibull distributions. They can be particularly useful when
a choice must be made between the two distributions and provide information that can
be combined with other factors such as the costs, availabilities and side-effects of the two
choices. R code is available to implement the methodology discussed in this paper, and it
can be requested from the authors.

This methodology can also be applied to making inferences on other parametric models,
and in particular to the wide range of additional two-parameter and three-parameter
Weibull models, which are discussed in Murthy, Bulmer, and Eccleston (2004a, 2004b) and
Nadarajah and Kotz (2008), for example. Extensions can also be made to the comparisons
of three or more distributions through the construction of joint confidence sets for the
parameters from each of the distributions.
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