



# รายงานวิจัยฉบับสมบูรณ์

โครงการผลของ liver X receptors ต่อสมดุลของกลูโคส: บทบาทของตัวขนส่ง กลูโคสและการสร้างกลูโคสในไต

โดย รศ.ดร.ภก.สัณหภาส สุดวิลัย

ธันวาคม 2560

# รายงานวิจัยฉบับสมบูรณ์

โครงการผลของ liver X receptors ต่อสมดุลของกลูโคส: บทบาทของตัวขนส่ง กลูโคสและการสร้างกลูโคสในไต

ผู้วิจัย

สังกัด

รศ.ดร.ภก.สัณหภาส สุดวิลัย

ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัยและมหาวิทยาลัยมหิดล (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป) (ภาษาไทย)

โครงการวิจัยนี้ศึกษาบทบาทของ Liver X receptor (LXR) ต่อการควบคุมสมดุลกลูโคสในร่างกายโดยมุ่ง ศึกษาผลต่อตัวขนส่งกลูโคสและการสร้างกลูโคสในเซลล์หลอดไตส่วนต้น (renal proximal tubular cells) โดยได้ทำการศึกษาในเซลล์หลอดไตมนุษย์ 2 ชนิด ได้แก่ HK-2 และ RPTECT/TERT1 ซึ่งเป็นเซลล์ที่มีการ แสดงออกของตัวขนส่งกลูโคสชนิด glucose transporter-2 (GLUT2) และ sodium-glucose cotransporter 2 (SGLT2) สาร LXR agonist มีผลลดการขนส่งกลูโคสเข้าสู่เซลล์โดยมีผลทั้ง GLUT2 และ SGLT2 ผลของ LXR agonist ทั้งสองชนิดต่อการยับยั้งการทำงานของ GLUT2 และ SGLT2 อาศัยการทำงาน ของ LXR (LXR-dependent mechanism) การยับยั้งการทำงานของตัวขนส่งเกี่ยวข้องกับการลด maximal transport rate (Jmax) แต่ไม่มีผลปรับเปลี่ยนค่า Km ของตัวขนส่งกลูโคสทั้งสอง และผลที่พบมีความสัมพันธ์ กับการลดการแสดงออกของของโปรตีนที่งสองชนิด นอกจากนี้ยังพบว่า inhibitory effect ของ LXR agonist ไม่ได้เกิดจากความเป็นพิษของสาร T0901317 และ GW3965 นอกจากนี้ได้ทำการยืนยันผลของ LXR ใน เซลล์หลอดไตส่วนต้นของมนุษย์ที่มีการเพาะเลี้ยงให้ใกล้เคียงกับสภาพจริง โดยทำการศึกษาในเซลล์ RPTEC/TERT1 ที่เพาะเลี้ยงใน membrane insert พบว่า LXR มีผลลดการขนส่งกลูโคสเข้าสู่เซลล์ (canagliflozin-sensitive glucose transport) ยังพบอีกว่าการกระตุ้น LXR นอกจากจะมีผลลดการขนส่ง กลูโคสในเซลล์ที่เพาะเลี้ยงในสภาวะที่มีระดับน้ำตาลกลูโคสปกติแล้ว LXR ยังมีผลการทำงานของตัวขนส่งทั้ง SGLT2 และ GLUT2 ในสภาวะที่มีน้ำตาลสูงด้วย นอกจากนั้นยังพบว่า LXR agonist มีผลต่อการแสดงออก ของเอ็นไซม์ PEPCK และ G6Pase ซึ่งเป็นเอ็นไซม์ที่เกี่ยวข้องกับการสร้างกลูโคส (gluconeogenesis) ใน เซลล์หลอดไตส่วนต้น โดย LXR มีผลเพิ่มการแสดงออกของโปรตีนของ PEPCK แต่ลดการแสดงออกของ G6Pase การทดสอบฤทธิ์ของสาร LXR agonist ในหนูเบาหวานชนิดที่ 2 (Goto-Kakizaki rats) พบว่าสาร LXR agonist ที่ชื่อแลนโซพราโซลที่ขนาด 50 mg/kg/day มีผลลดระดับน้ำตาลในเลือดได้

คำสำคัญ นิวเคลียร์รีเซฟเตอร์ ไต การควบคุมการทำงาน กลูโคส เบาหวาน

### (ภาษาอังกฤษ)

The present study investigated the role of liver X receptor (LXR) in regulating of renal glucose transporters and its impact on glucose homeostasis. The study was performed in two types of human renal proximal tubular cell lines (HK-2 cell and RPTEC/TERT1 cells). LXR agonists, T0901317 and GW3965, inhibited GLUT2- and SGLT2-mediated glucose uptake in concentration-dependent manners. The effect of T0901317 and GW3965 was attenuated by a LXR antagonist. Thus, the inhibitory effect of LXR agonists on GLUT2 and SGLT2 was LXRdependent mechanism. In addition, the inhibitory effect of LXR agonists was not mediated by cytotoxicity. Exposing HK-2 cells, renal proximal tubular cell line, to LXR agonists significantly reduced the maximal transport rate (Jmax) of GLUT2 and SGLT2 without any effect on transporter affinity. Western blot analysis revealed LXR activation significantly decreased protein expression of SGLT2 with no change in mRNA level. In addition, LXR activation inhibited canagliflozin-sensitive short-circuits current which represents SGLT2mediated glucose transport in polarized human renal proximal tubular cell monolayer (RPTECT/TERT1 cell monolayer). Furthermore, LXR activation inhibited transport function of GLUT2 and SGLT2 in hyperglycemic conditions. As such, this study represents the evidence of LXR activation's inhibitory effect on glucose transport in human renal proximal tubular cells. LXR agonists also affect gluconeogenesis enzymes in renal proximal tubular cells. T0901317 and GW3965 increase protein expression of PEPCK whereas reduced G6Pase. In addition, the effect of LXR agonist on plasma glucose of type-2 diabetic rats was determined. Goto-Kakizaki (GK) rats were treated with 50 mg/kg/day lansoprazole (a LXR agonist) for 14 days. The results showed that LXR activation reduced plasma glucose compared with vehicle group and could be a potential target for diabetic treatment.

**Keyword:** nuclear receptors, kidney, regulation, glucose, diabetes

# บทสรุปผู้ปริหาร

Liver X receptor (LXR) เป็นนิวเคลียร์รีเซพเตอร์ที่มีหน้าที่ควบคุมการแสดงออกของยีนหลายชนิดที่มี ความสำคัญต่อการเจริญเติบโตของสิ่งมีชีวิตและกระบวนการเมทาบอลิซึมของร่างกาย LXR แบ่งออกเป็น 2 ชนิดคือ LXRlpha และ LXReta โดยทั้ง 2 ชนิดมี การแสดงออกในอวัยวะต่างๆที่แตกต่างกัน พบว่า LXRlphaแสดงออกมากที่ตับ ลำไส้เล็ก และไต ขณะที่ LXRβ พบการแสดงออกในเกือบทุกอวัยวะ LXR มีบทบาทสำคัย ต่อการควบคมเมทาบอลิซึมของโคเลสเตอรอล ไขมัน และน้ำตาลกลโคสในเนื้อเยื่อหลายชนิด อย่างไรก็ตาม บทบาทของ LXR ต่อการทำงานของไตยังไม่ได้รับการศึกษามากนัก ดังนั้นการวิจัยนี้ได้ทำการศึกษาผลของ สารกระตุ้น LXR ต่อการควบคุมสมดุลกลูโคสในร่างกายโดยมุ่งศึกษาผลต่อตัวขนส่งกลูโคสและการสร้าง กลูโคสในเซลล์หลอดไตส่วนต้น (renal proximal tubular cells) โดยได้ทำการศึกษาในเซลล์หลอดไตมนุษย์ 2 ชนิด ได้แก่ HK-2 และ RPTECT/TERT1 ซึ่งเป็นเซลล์ที่มีการแสดงออกของตัวขนส่งกลูโคสชนิด glucose transporter-2 (GLUT2) และ sodium-glucose co-transporter 2 (SGLT2) สาร LXR agonist มีผลลด การขนส่งกลูโคสเข้าสู่เชลล์โดยมีผลทั้ง GLUT2 และ SGLT2 ผลของ LXR agonist ทั้งสองชนิดต่อการยับยั้ง การทำงานของ GLUT2 และ SGLT2 อาศัยการทำงานของ LXR (LXR-dependent mechanism) การยับยั้ง การทำงานของตัวขนส่งเกี่ยวข้องกับการลด maximal transport rate (*Jmax*) แต่ไม่มีผลปรับเปลี่ยนค่า Km ของตัวขนส่งกลูโคสทั้งสอง และผลที่พบมีความสัมพันธ์กับการลดการแสดงออกของของโปรตีนที่งสองชนิด นอกจากนี้ยังพบว่า inhibitory effect ของ LXR agonist ไม่ได้เกิดจากความเป็นพิษของสาร T0901317 และ GW3965 นอกจากนี้ได้ทำการยืนยันผลของ LXR ในเซลล์หลอดไตส่วนต้นของมนุษย์ที่มีการเพาะเลี้ยงให้ ใกล้เคียงกับสภาพจริง โดยทำการศึกษาในเซลล์ RPTEC/TERT1 ที่เพาะเลี้ยงใน membrane insert พบว่า LXR มีผลลดการขนส่งกลูโคสเข้าสู่เซลล์ (canagliflozin-sensitive glucose transport) ยังพบอีกว่าการ กระตุ้น LXR นอกจากจะมีผลลดการขนส่งกลูโคสในเซลล์ที่เพาะเลี้ยงในสภาวะที่มีระดับน้ำตาลกลูโคสปกติ แล้ว LXR ยังมีผลการทำงานของตัวขนส่งทั้ง SGLT2 และ GLUT2 ในสภาวะที่มีน้ำตาลสูงด้วย นอกจากนั้นยัง พบว่า LXR agonist มีผลต่อการแสดงออกของเอ็นไซม์ PEPCK และ G6Pase ซึ่งเป็นเอ็นไซม์ที่เกี่ยวข้องกับ การสร้างกลูโคส (gluconeogenesis) ในเซลล์หลอดไตส่วนต้น โดย LXR มีผลเพิ่มการแสดงออกของโปรตีน ของ PEPCK แต่ลดการแสดงออกของ G6Pase การทดสอบฤทธิ์ของสาร LXR agonist ในหนูเบาหวานชนิดที่ 2 (GK rat) พบว่าสาร LXR agonist ที่ชื่อแลนโซพราโซลที่ขนาด 50 mg/kg/day เป็นเวลา 14 วัน มีผลลด ระดับน้ำตาลในเลือดได้ ข้อมูลที่ได้บ่งบองว่า LXR อาจเป็นเป้าหมายในการพัฒนาการรักษาโรคเบาหวานได้

# เนื้อหาการวิจัย

### บทนำ

ไตเป็นอวัยะที่มีความสำคัญในการควบคุมสมดุลของระดับกลูโคสในพลาสมา โดยทำหน้าที่ดูดกลับกลูโคสที่ผ่านการกรองกลับเข้าสู่กระแสเลือด (Chao and Henry, 2010; Wright, 2001) กระบวนการนี้เป็นกลไกที่สำคัญในการรักษาสมดุลของกลูโคสให้มีค่าคงที่ โดยการดูดกลับกลูโคสที่ไตอาศัยการทำงานของตัวขนส่งกลูโคสชื่อ sodium glucose co-transporters (SGLTs) และ facilitated glucose transporter 2 (GLUT2) ในภาวะปกติที่ร่างกายมีระดับกลูโคสในพลาสมาไม่เกิน 150 mg/dl จะไม่พบกลูโคสในถูกขับออกมากับปัสสาวะ SGLT2 เป็นตัวขนส่งที่ทำหน้าที่หลักในการดูดกลับกลูโคส ขณะที่ SGLT1 ดูดกลับกลูโคสน้อยกว่าพบการแสดงออกของ SGLT2 บนผิวเซลล์ของหลอดไตส่วนต้น (renal proximal tubule) ส่วน S1 ทำหน้าที่ดูดกลับกลูโคสประมาณร้อยละ 90 ของกลูโคสทั้งหมดที่ผ่านการกรอง โดยคุณสมบัติของ SGLT2 เป็นตัวขนส่งแบบ low affinity แต่ high capacity ขณะที่ SGLT1 เป็นแบบ high affinity แต่ low capacity และดูดกลับกลูโคสประมาณร้อลละ 10 ของกลูโคสที่ผ่านการกรองและพบในส่วนหลอดไตส่วนต้นส่วน S2 และ S3 (Chao and Henry, 2010)

กลูโคสถูกดูดกลับเข้าสู่พลาสมาอาศัยกระบวนการดูดกลับจากด้าน apical และ basolateral ของ เมมเบรน โดย SGLT2 ทำหน้าที่ดูดกลับกลูโคสเข้าสู่เซลล์ร่วมกับการดูดกลับโซเดียมไอออนในอัตราส่วน 1:1 เมื่อกลูโคสเข้าสู่เซลล์แล้วจะถูกขนส่งออกจากเซลล์เข้าสู่พลาสมาโดยอาศัยการทำงานของตัวขนส่งกลูโคสอีก ชนิดคือ glucose transporter type 2 (GLUT2) ดังนั้นการยับยั้งการทำงานของตัวขนส่งกลูโคสจึงทำให้การ ขับกลูโคสออกจากร่างกายมากขึ้นและทำให้ระดับกลูโคสในพลาสมาลดลงได้ การยับยั้งการทำงานของ SGLT จึงเป็นแนวทางใหม่ในการรักษาโรคเบาหวานได้ เมื่อไม่นานมานี้มีการพัฒนายาจากการที่มีฤทธิ์ยับยั้งการ ทำงานของ SGLT2 เนื่องจาก SGLT2 พบมากที่ไตแต่ไม่พบในระบบทางเดินอาหาร ดังนั้นการยับยั้ง SGLT2 จึงไม่มีผลทำให้เกิดอาการท้องเสียจากการลดการดูดซึมกลูโคส การค้นพบสาร phlorizin ที่มีผลยับยั้งการ เป็นสารที่สกัดได้จากเปลือกของต้นแอปเปิ้ล ทำงานของ SGLT1 และ SGLT2 โดยสาร phlorizin (Ehrenkranz et al. 2005) พบว่าการให้สาร phlorizin มีผลลดระดับกลูโคสในพลาสมาในหนูเบาหวาน (Rossetti et al. 1987; Freitas et al. 2008) ปัจจุบันสำนักงานอาหารและยาประเทศสหรัฐอเมริการได้ อนุญาตให้ใช้ canagliflozin รักษาโรคเบาหวาน นอกจากนี้ไตยังทำหน้าที่สร้างกลูโคสใหม่เพิ่มเข้าสู่กระแส เลือดด้วยในสภาวะที่ร่างกายอดอาหาร โดยอาศัยกระบวกการ gluconeogenesis ซึ่งมีเอ็นไซม์ที่สำคัญใน กระบวนการนี้ได้แก่ phosphoenolpyruvate carboxykinase (PEPCK) และ glucose-6-phosphatase (G6Pase) (Gerich et al. 2001; Ding, 2014)

Liver X receptor (LXR) เป็นนิวเคลียร์รีเซพเตอร์ที่มีหน้าที่ควบคุมการแสดงออกของยีนหลายชนิดที่ มีความสำคัญต่อการเจริญเติบโตของสิ่งมีชีวิตและกระบวนการเมทาบอลิซึมของร่างกาย (Kastner et al. 1995; Mangelsdorf et al. 1995) LXR แบ่งออกเป็น 2 ชนิดคือ LXRα และ LXRβ (Francis et al. 2003; Geyeregger et al. 2006) โดยทั้ง 2 ชนิดมี การแสดงออกในอวัยวะต่างๆที่แตกต่างกัน พบว่า LXRa แสดงออกมากที่ตับ ลำไส้เล็ก และไต ขณะที่ LXRβ พบการแสดงออกในเกือบทุกอวัยวะ (Steffensen and Gustafsson, 2004) LXR ทำหน้าที่ควบคุมการแสดงออกของยีนโดยจับกับ retinoid X receptor (RXR) เพื่อ heterodimer จากนั้นจะไปกระตุ้นยืนเป้าหมายเพื่อควบคุมกระบวนการสร้าง รวมตัวเป็น (Geyeregger et al. 2006) LXR มีผลเพิ่มการขนส่งโคเลสเตอรอลจากเนื้อเยื่ออื่นๆไปยังตับ กระบวนการนี้ อาศัยการเพิ่มการแสดงออกของตัวขนส่งโคเลสเตอรอลที่ผิวของเซลล์เมมเบรน เช่น ABCA1 (Laffitte et al. 2003) ที่มีหน้าที่หลักในการขนส่งโคเลสเตอรอลออกนอกเซลล์ โคเลสเตอรอลที่ได้รับการ ขับออกจากเซลล์จะ ถูกขนส่งกลับเข้าสู่ตับโดยอาศัยการทำงานของ high–density lipoprotein (HDL) เมื่อโคเลสเตอรอลเข้าสู่ตับ แล้วจะถูกขับออกนอกร่างกายในรูปของกรดน้ำดีต่อไป นอกจากผลต่อโคเลสเตอรอลและไขมันแล้วพบว่า LXR ยังทำหน้าที่ในการควบคุมกระบวบการเมทาบอลิซึมของกลูโคสด้วย จากการศึกษาของ Mitro และคณะพบว่า LXR ทำหน้าที่เป็นตัวตรวจวัดกลูโคส (glucose sensor) กล่าวคือ เมื่อระดับกลูโคสในเซลล์มากขึ้นจะมีผลไป กระตุ้นการทำงานของ LXR เพื่อรักษา ระดับของกลูโคสภายในเซลล์ ให้คงที่ตลอดเวลาโดยการยับยั้งการสร้าง กลูโคสภายในเซลล์ (Mitro et al. 2007)

จากรายงานการศึกษาที่ผ่านมาพบว่า LXR นอกจากจะควบคุมกระบวนการเมทาบอลิซึมของเซลล์ลัว ยังมีผลควบคุมการทำงานของตัวขนส่งสารผ่านเซลล์เมมเบรนด้วย โดยการกระตุ้น LXR ด้วย endogenous ligand หรือ synthetic agonist มีผลลดการทำงานของ membrane channels หลายชนิด เช่น epithelial sodium channel (ENaC) (Soodvilai et al. 2012) cystic fibrosis transmembrane conductance (CFTR) (Raksaseri et al. 2013) organic anion transporter 1 (OAT1) (Kittayaruksakul, Soodvilai et al. 2012) sodium-phosphate cotransporter (Na<sup>+</sup>-Pi) (Caldas, et, al. 2011) และ aquaporin (AQP) 1 and AQP2(Gabbi et al., 2012; Lu et al., 2016) ดังนั้นอาจเป็นไปได้ว่า LXR อาจมีผลต่อการทำงานของ GLUT2 และ SGLT2 ที่เซลล์หลอดไตส่วนต้น แม้ว่ามีการพัฒนายากลุ่ม SGLT2 inhibitor สำหรับรักษา โรคเบาหวานชนิดที่ 2 การควบคุมการขนส่งกลูโคสและการสร้างกลูโคสใหม่ที่เซลล์หลอดไตส่วนต้นอาจเป็น เป้าหมายอีกเป้านหมายหนึ่งในการพัฒนาวิธีการรักษารคเบาหวานชนิดที่ 2 โครงการวิจัยนี้มุ่งศึกษาบทบาท ของ LXR ต่อการควบคุมการทำงานของตัวขนส่งกลูโคสในเซลล์หลอดไตส่วนต้นและผลต่อเอ็นไซม์ PEPCK และ G6Pase

### ระเบียบวิธีวิจัย

# 1. การศึกษาการทำงานของของ GLUT2 และ SGLT2 ในการขนส่งกลูโคสเข้าสู่เซลล์

เมื่อเชลล์ HK-2 เจริญเต็มพื้นที่ของ 24 well- plate แล้ว (ประมาณ 2 วัน) นำเชลล์มาปรับสภาวะ ด้วย 1 มิลลิลิตรของ glucose transport buffer เป็นเวลา 15 นาที 2 ครั้ง ที่อุณหภูมิ 37 องศาเชลเชียส ก่อนเริ่มการทดลอง ทำการดูด transport medium ออกจาก well หลังจากนั้นเติม glucose transport buffer solution (140 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1 mM MgSO4, 1 mM KH2PO4, 10 mM HEPES) จำนวน 0.2 มิลลิลิตร ซึ่งประกอบด้วย 10 µM ³H-deoxyglucose ซึ่งเป็นสารที่ถูกขนส่งโดย ตัวขนส่งกลูโคส ทำการเติมสารยับยั้ง GLUT2 (10 µM cytosalasin B) ในสารละลายเพื่อวัดการขนส่งกลูโคส เข้าสู่เชลล์ที่เกิดจากการทำงานของ SGLT2 และทำการเติมสารยับยั้ง SGLT2 (10 µM canagliflozin) เพื่อทำการวัดการทำงานของ GLUT2 หลังจากนั้นทำการหยุดการทำงานของ GLUT2 หรือ SGLT2 โดยการดูด transport medium ออกแล้วล้างเชลล์ด้วย glucose transport buffer ที่เย็นเป็นจำนวน 3 ครั้ง จากนั้น ทำลายย่อยเชลล์ด้วย buffer ที่มีส่วนผสมของ 0.2 นอร์มอล โชเดียมไฮดรอกไซด์และ10% SDS เป็นเวลา 60 นาที จากนั้นเติม 0.1 มิลลิลิตร ของ 0.4 นอร์มอล กรดไฮโดรคลอริก จากนั้นนำเชลล์ที่ ได้รับการย่อยแล้วไป วัดหาปริมาณสารรังสีกลูโคสที่สะสมในเชลล์ ณ เวลาต่างๆ โดยใช้ liquid scintillation counter โดยสารรังสี ที่สะสมในเชลล์จะบ่งบอกการทำงานของ GLUT2 และ SGLT2

# 2. การวัดการทำงานของ SGLT2 ใน polarized cell monolayer ของเซลล์ RPTEC/TERT1 โดยวัด short circuit current (Isc)

เซลล์ RPTEC/TERT1 ซึ่งเป็นเซลล์หลอดไตส่วนต้นได้รับการเพาะเลี้ยงบนเมมเบรน (Snapwell insert) ด้วยอาหารเลี้ยงเซลล์เป็นเวลาอย่างน้อย 21วันเพื่อให้เซลล์เจริญเติบโตเต็มที่ โดยเซลล์จะได้รับการ เปลี่ยนอาหารเลี้ยงทุกสองวัน เฉพาะเซลล์ที่อยู่บนเมมเบรนที่มีค่าความต้านทาน (transepithelial resistance) ระหว่างส่วน apical และ basolateral มากกว่า 100 ohm.cm² (สามารถวัดได้โดยเครื่องมือ ohm-volt meter) เท่านั้นที่จะได้รับ การนำไปวัดค่า short circuit current (Isc) หลังจากนั้นนำเซลล์ ดังกล่าวไปใส่ใน Ussing chamber ที่มีสารละลายที่ใช้สำหรับการศึกษาการขนส่งสารและได้รับก๊าซออกซิเจน ตลอดการทดลอง เพื่อหาค่าการขนส่งของกลูโคส/โซเดียมที่ผ่านการทำงานของ SGLT2 จะใช้สาร canagliflozin ที่มีความจำเพาะในการยับยั้งการทำงานของ SGLT2 ค่าการขนส่งกลูโคส/โซเดียมที่เกิดจาก การทำงานของ SGLT2 สามารถคำนวนได้จากการนำค่า Isc ทั้งหมด (Isc total) ลบกับค่า Isc ที่อ่านได้ หลังจากการเติม canagliflozin แล้ว (amiloride-insensitive Isc) ค่าที่ได้จะเป็นการขนส่งกลูโคส/โซเดียมที่ ผ่านการทำงานของ SGLT2 (canagliflozin-sensitive Isc)

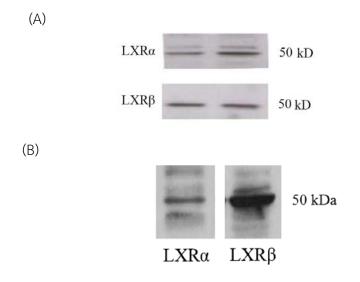
### 3. การวัดการแสดงออกของยืน GLUT2 และ SGLT2 โดยวิธี real-time PCR

ทำการแยก RNA จากเซลล์โดยใช้ TRIzol จากนั้นนำ RNA ประมาณ 1 ไมโครกรัมเพื่อนำไปทำ denatured ที่อุณหภูมิ 65 °C เป็นเวลา 5 นาที จากนั้นทำการสังเคราะห์ cDNA ที่อุณหภูมิ 42 °C เป็น เวลา 60 นาที โดยใช้ Superscript reverse transcriptase (BRL, Gaithersburg, MD) ทำการ วิเคราะห์หา ปริมาณ mRNA โดยใช้ SYBR Green Master Mix (Applied Biosystems) และ the Prism 7500 Real Time PCR Detection System (Applied Biosystems) สภาวะที่ใช้สำหรับการหาปริมาณ mRNA คือ 95°C เวลา 15 วินาที และ 60°C เวลา 1 นาทีเป็นจำนวน 40 รอบ

# 4. การวัดการแสดงออกของโปรตีน GLUT2 และ SGLT2 โดยวิธี Western blotting

เพื่อศึกษาผลของ LXR ต่อการแสดงออกของโปรตีน GLUT2 และ SGLT2 หรือไม่อย่างไร ดังนั้นทำ การแยกโปรตีนจากนั้นทำการวัดปริมาณโปรตีนโดยใช้ Coomassie reagent นำปริมาณโปรตีนที่เท่ากันไปทำ การ denatured ที่อุณหภูมิ 100 °C เป็นเวลา 10 นาที จากนั้นทำการแยกโปรตีนแต่ละชนิดออกจากกันโดย ใช้ SDS-PAGE และย้ายโปรตีนจากเจลไปสู่เมมเบรน nitrocellulose จากนั้นนำเมมเบรน nitrocellulose ไปใส่ใน 5% nonfat dry milk in Tris-buffered saline เป็นเวลา 24 ชั่วโมง นำเมมเบรน nitrocellulose ไปใส่ในสารบัฟเฟอร์ที่มี antibody ของ GLUT2 และ SGLT2 เป็นเวลา 1 ชั่วโมงตามด้วย horseradish peroxidase (HRP)-conjugated secondary antibody โปรตีน GLUT2 และ SGLT2 ได้รับการตรวจวัดโดย วิธี enhanced chemiluminescence โดยใช้ Gel and Graph Digitizing System

# 5. การศึกษาความเป็นพิษของสาร T0901317 และ GW3965 ต่อเซลล์ HK-2 และ RPTEC/TERT1

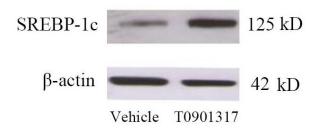

เพื่อศึกษาความเป็นพิษต่อเซลล์ของ LXR agonists นำเซลล์มาเพาะเลี้ยงใน 96-well plate แล้ว ประมาณ 2 วัน และ 10 วัน สำหรับเซลล์ HK-2 และ RPTEC/TERT1 จากนั้นเซลล์จะได้รับอาหารเลี้ยงเซลล์ที่ มีสาร LXR agonists ที่ความเข้มข้นต่างๆ เป็นเวลา 24 ชั่วโมง จากนั้นใส่สารละลาย Thiazelyl Blue Tetrazolium Bromide (0.5 mg/ml) MTT reagent เป็นเวลา 4 ชั่วโมง จากนั้นดูดสารละลายดังกล่าวทิ้ง แล้วเติม DMSO (100  $\mu$ L) ทิ้งไว้ 5-10 นาทีแล้วนำไปวัดค่าการดูดกลืนแสงที่ 540 นาโนเมตร คำนวณค่า cell viability

### ผลการวิจัย

## ส่วนที่ 1 การทดสอบ cell model ที่ใช้ในการทดลอง

### 1.1 การแสดงออกของ LXR ในเซลล์ HK-2 และ RPTECT/TERT1

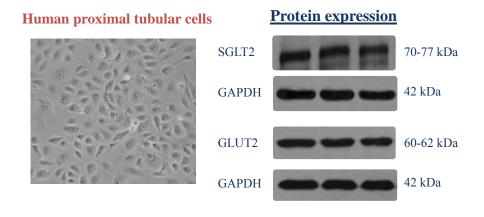
การทดลองนี้มุ่งเน้นเพื่อศึกษาว่าเซลล์ HK-2 และ RPTECT/TERT1 มีการแสดงออกของ LXR หรือไม่ ทำการแยกโปรตีนและปริมาณโปรตีนจากนั้นนำปริมาณโปรตีนที่เท่ากันไปทำการ denatured ที่อุณหภูมิ 100  $^{\circ}$ C เป็นเวลา 10 นาที แล้วทำการแยกโปรตีนแต่ละชนิดออกจากกันโดยใช้ SDS-PAGE และย้ายโปรตีนจากเจล ไปสู่เมมเบรน nitrocellulose จากนั้นนำเมมเบรน nitrocellulose ไปใส่ใน 5% nonfat dry milk in Trisbuffered saline เป็นเวลา 24 ชั่วโมง นำเมมเบรน nitrocellulose ไปใส่ในสารบัฟเฟอร์ที่มี antibody ของ human LXR $\alpha$  และ human LXR $\beta$  เป็นเวลา 1 ชั่วโมงตามด้วย horseradish peroxidase (HRP)-conjugated secondary antibody จากผลการทดลองพบว่าเซลล์ HK-2 และ RPTECT/TERT1 มีการ แสดงออกของทั้ง LXR $\alpha$  และ LXR $\beta$  ดังรูปที่ 1




ร**ูปที่ 1** การแสดงออกของ LXR ในเซลล์ HK-2 (A) และ RPTEC/TERT1 (B)

1.2 ผลของสารกระตุ้น LXR ต่อการแสดงออกของ LXR targeted protein ในเซลล์ HK-2

แม้ว่าสารกระตุ้น LXR มีรายงานว่าสามารถกระตุ้น LXR ได้แต่ยังไม่มีรายงานว่าสามารถกระตุ้น LXR ในเซลล์ HK-2 ได้ ดังนั้นเพื่อให้แน่ใจว่าสารที่ใช้มีผลกระตุ้นการทำงานของ LXR ในเซลล์ HK-2 ได้ ทำการศึกษาว่าสาร T0901317 มีผลการตุ้นการทำงานของ LXR ในเซลล์ HK-2 หรือไม่ทำการเพาะเลี้ยงเซลล์

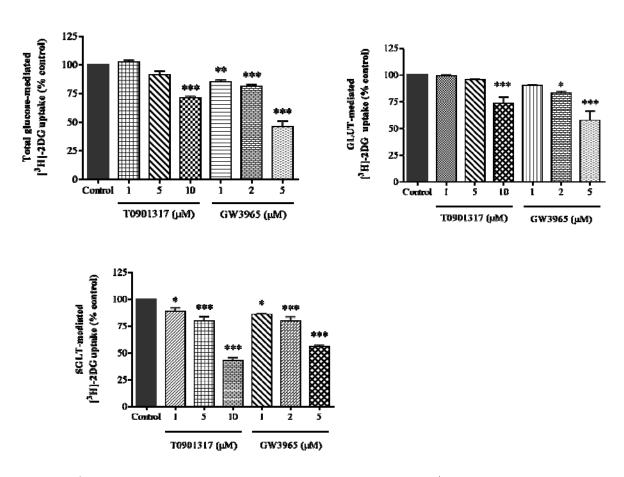

HK-2 ในอาหารลี้ยงเซลล์ที่มีและไม่มีสาร T0901317 ที่ความเข้มข้น 10 µM เป็นเวลา 24 ชั่วโมง จากนั้นทำ การวัดการแสดงออกของโปรตีน SERBP-1c ซึ่งเป็น target protein ของ LXR จากผลการทดลองพบว่าการ กระตุ้นเซลล์ด้วยสาร T0901317 มีผลกระตุ้นการแสดงออกของโปรตีน SREBP-1cข้อมูลบ่งชี้ว่าสาร LXR agonist (T0901317) สามารถกระตุ้นการทำงานของ LXR ในเซลล์ HK-2



ร**ูปที่ 2** ผลของ LXR agonist (T0901317) ต่อการแสดงออกของโปรตีน SREBP-1cในเซลล์ HK-2

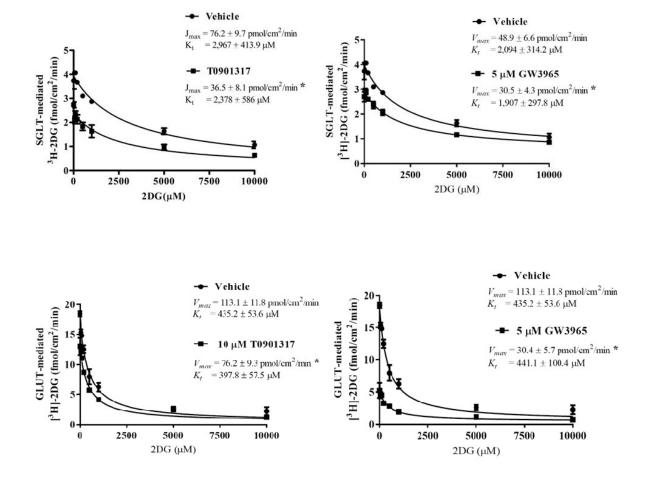
# 1.3 การแสดงออกของตัวขนส่งกลูโคสในเซลล์ HK-2

แม้ว่าเซลล์ HK-2 เป็นเซลล์ที่แยกจากหลอดไตส่วนต้นของมนุษย์แต่เพื่อให้แน่ใจว่าเซลล์ชนิดนี้มีการ แสดงออกของตัวขนส่งกลูโคส จึงได้ทำการวัดการแสดงออกของตัวขนส่งกลูโคสที่สำคัญในเซลล์หลอดไตส่วน ต้นคือ GLUT2 และ SGLT2 จากผลการทดลองพบว่าเซลล์ HK-2 มีการแสดงออกของตัวขนส่งกลูโคสชนิด GLUT2 และ SGLT2 ดังรูปที่ 3




ร**ูปที่ 3** การแสดงออกของตัวขนส่งกลุโคสในเซลล์ HK-2

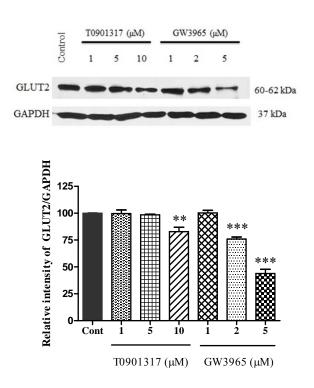
# ส่วนที่ 2 การศึกษาผลของ LXR agonists ต่อการขนส่งกลูโคสในเซลล์หลอดไตส่วนต้น


2.1 การทดสอบผลของ LXR agonist ต่อการขอส่งกลูโคสในเซลล์ HK-2

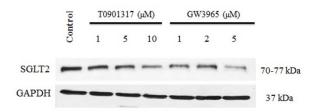
ทำการทดสอบผลของสารกระตุ้น LXR ต่อการทำงานของตัวขนส่งกลูโคสชนิด SGLT2 และ GLUT2 เซลล์ HK-2 ได้รับสาร T0901317 และ GW3965 ซึ่งเป็นสารกระตุ้น LXR เป็นเวลา 24 ชั่วโมง จากนั้นทำการ วัดการทำงานของตัวขนส่งกลูโคสโดยวัดการสะสมของสารรังสี <sup>3</sup>H-deoxyglucose จากผลการทดลองพบว่า สารกระต้น LXR ทั้งสองชนิดสามารถลดการทำงานของตัวขนส่งกลูโคสทั้ง SGLT2 และ GLUT2 ในเซลล์ HK-2 ดังรูปที่ 4

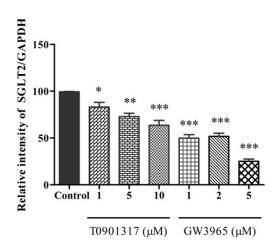


รูปที่ 4 แสดงผงของสารกระตุ้น LXR (T0901317 และ GW3965) ที่ความเข้มข้น 1-10  $\mu$ Mสำหรับ T0901317 และ 1-5  $\mu$ M สำหรับ GW3965 ต่อการทำงานของตัวขนส่งกลูโคสชนิด SGLT2 และ GLUT2 ข้อมูลแสดงการขนส่งสารรังสี  $^3$ H-deoxyglucose ในรูป % control (vehicle-treated cell) \* P< 0.05, \*\*\*\* P< 0.001 เมื่อเปรียบเทียบกับ control ค่าที่แสดงเป็นค่า mean  $\pm$  SE จากการทดลองจำนวน 3 ครั้ง


2.2 การศึกษากลไกของการกระตุ้น LXR ต่อการยับยั้งการทำงานของตัวขนส่งกลูโคสในเซลล์ HK-2 เพื่อศึกษากลไกของ LXR ในการยับยั้งการทำงานของตัวขนส่งกลูโคสชนิด SGLT2 และ GLUT2 ทำการวัดค่าการขนส่งสูงสุดของตัวขนส่งกลูโคส (Jmax) และค่า Kt ซึ่งแสดงค่า affinity ของตัวขนส่งกับกลูโคส จากข้อมูลที่ได้จาก kinetic study พบว่าการกระตุ้น LXR ด้วยสาร T0901317 หรือ GW3965 มีผลลดค่า Jmax ของตัวขนส่งกลูโคสทั้งสองชนิด แต่ไม่เปลี่ยนแปลงค่า Kt ดังรูปที่ 5 แสดงว่า LXR มีผลลดการทำงาน ของตัวขนส่งกลูโคสอาจมีผลจากการลดจำนวนตัวขนส่งที่อยู่บนผิวของเซลล์เมมเบรน




รูปที่ 5 แสดงค่า kinetic parameters ของตัวขนส่งกลูโคสชนิด SGLT2 และ GLUT2 เมื่งได้รับสาร กระตุ้น LXR T0901317 และ GW3965 ที่ความเข้มข้น 10 และ 5  $\mu$ M ตามลำดับเป็นเวลา 24 ชั่วโมง ค่าที่ แสดงเป็นค่า mean  $\pm$  SE จากการทดลองจำนวน 3 ครั้ง \* P<0.05 เมื่อเปรียบเทียบกับกลุ่มควบคุม

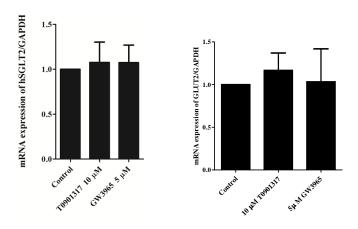

# 2.3 การทดสอบผลของ LXR agonist ต่อการแสดงออกของโปรตีนของตัวขนส่งกลูโคส GLUT2 และ SGLT2 ในเซลล์ HK-2

จากผลการทดลองข้างต้นพบว่า LXR agonist มีผลลดการทำงานของตัวขนส่งกลูโคส GLUT2 และ SGLT2 ในการขนส่งกลูโคสเข้าสู่เซลล์ การทดลองนี้มุ่งเน้นเพื่อศึกษากลไกเพื่ออธิบายผลการยับยั้ง ได้ทำการ ทดสอบผลของ LXR agonists (T0901317 และ GW3965) ที่ความเข้มข้น 1-10 µM สำหรับ T0901317 และ 1-5 µM สำหรับ GW3965 เป็นเวลา 24 ชั่วโมง ต่อการแสดงออกของโปรตีนของตัวขนส่งกลูโคส ชนิด GLUT2 และ SGLT2 ในเซลล์ HK-2 โดยทำการทดสอบการแสดงออกของโปรตีน GLUT2 และ SGLT2 โดย วิธี western blot analysis พบว่า ทั้ง GLUT2 และ SGLT2 มีการแสดงออกลดลง เมื่อทดสอบด้วย LXR agonist ทั้งสองชนิด (T0901317 และ GW3965) นอกจากนี้ เมื่อความเข้มข้นของสารกระตุ้นเพิ่มขึ้น การ แสดงออกของโปรตีน GLUT2 และ SGLT2 มีแนวโน้มลดลง เมื่อเปรียบเทียบกับ Control ดังรูปที่ 6



รูปที่ 6.1 ผลของ LXR agonist ต่อการแสดงออกของ GLUT2 เซลล์ HK-2 ถูกกระตุ้นด้วยสาร กระตุ้น LXR; T0901317 1-10 µM และ GW3965 1-5 µM เป็นเวลา 24 ชั่วโมง ต่อการแสดงออกของ โปรตีนของตัวขนส่งกลูโคส GLUT2 \*\* P< 0.05, \*\*\* P< 0.001 เมื่อเปรียบเทียบกับ control ค่าที่แสดงเป็น ค่า mean ± SE จากการทดลองจำนวน 3 ครั้ง

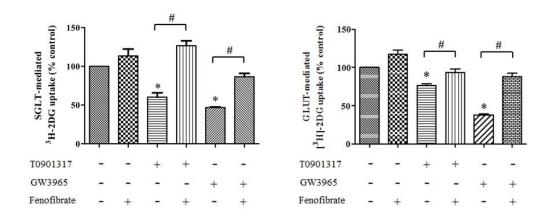





รูปที่ 6.2 ผลของ LXR agonist ต่อการแสดงออกของ SGLT2 เซลล์ HK-2 ถูกกระตุ้นด้วย T0901317 (1-10  $\mu$ M) และ GW3965 (1-5  $\mu$ M) เป็นเวลา 24 ชั่วโมง ต่อการแสดงออกของโปรตีนของตัว ขนส่งกลูโคส GLUT2 \* P< 0.05, \*\* P<0.01, \*\*\* P< 0.001 เมื่อเปรียบเทียบกับ control ค่าที่แสดงเป็นค่า mean  $\pm$  SE จากการทดลองจำนวน 3 ครั้ง

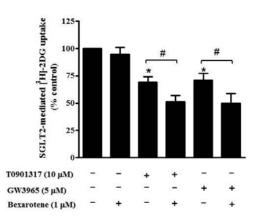
#### 2.4 การศึกษาผลของ LXR ต่อการแสดงออกของ mRNA ของ GLUT2 และ SGLT2

สารกระตุ้น LXR (T0901317 และ GW3965) มีผลลดการทำงานของ GLUT2 และ SGLT2 การ ทดลองนี้มุ่งทำการศึกษากลไกการออกฤทธิ์ของสารกระตุ้น LXR ในการควบคุมการทำงานของ GLUT2 และ SGLT2 ว่ามีผลต่อการแสดงออกในระดับ mRNA หรือไม่โดยใช้วิธี real-time PCR ทำการแยก RNA จาก เซลล์โดยใช้ TRIzol จากนั้นนำ RNA ประมาณ 1 ไมโครกรัมเพื่อนำไปทำ denatured ที่อุณหภูมิ 65 °C เป็น เวลา 5 นาที จากนั้นทำการสังเคราะห์ cDNA ที่อุณหภูมิ 42 °C เป็น เวลา 60 นาที โดยใช้ Superscript reverse transcriptase (BRL, Gaithersburg, MD) ทำการ วิเคราะห์หาปริมาณ mRNA โดยใช้ SYBR Green Master Mix (Applied Biosystems) และ the Prism 7500 Real-Time PCR Detection System


(Applied Biosystems) โดย primers ที่ใช้ได้จาก http://frodo.wi.mit.edu/cgi-bin/primer3/primer3\_www.cgi สภาวะที่ใช้สำหรับการหาปริมาณ mRNA คือ 95°C เวลา 15 วินาที และ 60°C เวลา 1 นาทีเป็นจำนวน 40 รอบ จากการทดลองพบว่า สารกระตุ้น LXR TO901317 และ GW3965 ไม่มีผลลดการแสดงออกของ GLUT2 และ SGLT2 ดังรูปที่ 7



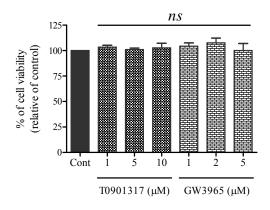
ร**ูปที่ 7** แสดงผลของ T0901317 และ GW3965 ต่อการแสดงออกของ mRNA ของ GLUT2 และ SGLT2 ในเซลล์ HK-2


2.5 การยืนยันผลของ LXR agonist ต่อการขนส่งกลูโคสในเซลล์ HK-2 อาศัยการทำงานของ LXR (LXR-dependent mechanism)

เพื่อให้แน่ใจว่าผลของสาร LXR agonistต่อการทำงานของ GLUT2 และ SGLT2 มีกลไกการทำงาน ผ่านของ LXR ดังนั้นการทดลองนี้มีจุดประสงค์เพื่อศึกษาผลของสาร LXR antagonist (สารที่ยับยั้งการทำงาน ของ LXR) ต่อผลของ LXR agonist (GW3965) เซลล์ HK-2 ได้รับการแบ่งออกเป็น 4 กลุ่มคือ 1) กลุ่มควบคุม 2) กลุ่ม GW3965 โดยเซลล์ได้รับสาร 5 µM GW3965เป็นเวลา 24 ชั่วโมง 3) กลุ่ม LXR antagonist (10 µM fenofibrate) โดยเซลล์ได้รับสาร fenofibrateเป็นเวลา 24 ชั่วโมง 4) กลุ่ม GW3965+fenofibrateโดย เซลล์ HK-2ได้รับ fenofibrate เป็นเวลา 4 ชั่วโมงจากนั้นได้รับสาร GW3965+fenofibrateเป็นเวลา 24 ชั่วโมง หลังจากครบ 24 ชั่วโมงนำเซลล์ทั้งกลุ่มควบคุมและกลุ่มทดลองมาทำการวัดการขนส่งกลูโคสเข้าสู่เซลล์ พบว่าเมื่อเซลล์ได้รับสาร fenofibrate ร่วมกับสาร GW3965สามารถลดผลของ T0901317 ในการลดการ ทำงานของทั้ง GLUT2 และ SGLT2 ได้ จากผลการทดลองบ่งบอกว่าผลของสาร LXR agonist ในการลดการ ทำงานของตัวขนส่งกลูโคสในเซลล์ HK-2 อาศัยการทำงานของ LXR ดังรูปที่ 8



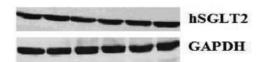
รูปที่ 8.1 แสดงผลของ LXR antagonist ต่อการยับยั้งการทำงานของ SGLT2 และ GLUT2 ที่ถูก เหนี่ยวนำด้วย T0901317 และ GW3965 \*P< 0.001 เมื่อเปรียบเทียบกับกลุ่มควบคุม และ #P< 0.001 เมื่อ เทียบกับกลุ่มที่ได้รับสาร T0901317 หรือ GW3965 เพียงอย่างเดียว ค่าที่แสดงเป็นค่า mean ± SE จากการ ทดลองจำนวน 3 ครั้ง


เนื่องจาก LXR ทำงานร่วมกับ RXR ดังนั้นจึงทำการทดสอบผลของตัวกระตุ้น RXR ต่อการยับยั้งการ ทำงานของตัวขนส่งกลูโคส เมื่อมีสารกระตุ้น LXR จากการทดลองพบว่าเมื่อเซลล์ HK-2 ได้รับสาร T0901317 หรือ GW3965 ที่ความเข้มข้น 5 µM เป็นเวลา 24 ชั่วโมงมีผลลดการทำงานของ SGLT2 ขณะที่ การกระตุ้น RXR ด้วยสารกระตุ้น Bexarotene ที่ความเข้มข้น 1 µM เป็นเวลา 24 ชั่วโมง ไม่มีผลต่อ SGLT2 เมื่อเซลล์ HK-2ได้รับสาร LXR agonist และ RXR agonist ผลการยับยั้งการทำงานของ SGLT มากกว่าการ ได้รับสาร LXR agonist เพียงอย่างเดียว ดังนั้นจึงสามารถสรุปได้ว่า RXR มีผลเพิ่มฤทธิ์ของ LXR ในการการ ยับยั้งการทำงานของ SGLT2



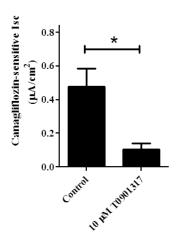
รูปที่ 8.2 ผลของ RXR agonist (Bexa) ต่อการทำงานของ SGLT \* P< 0.01 เมื่อเปรียบเทียบกับ กลุ่มควบคุม และ # และ \$ P< 0.05 เมื่อเทียบกับกลุ่มที่ได้รับสาร T0901317 และGW3965 ตามลำดับ เพียง อย่างเดียว ค่าที่แสดงเป็นค่า mean ± SE จากการทดลองจำนวน 3 ครั้ง

# 2.6 การทดสอบความเป็นพิษของสาร LXR agonists ในเซลล์ HK-2


การทดลองนี้มีวัตถุประสงค์เพื่อยืนยันผลการยับยั้งการทำงานของตัวขนส่งกลูโคสชนิด GLUT2 และ SGLT2โดยสาร T0901317 และ GW3965 นั้นไม่ได้เกิดจากความเป็นพิษของสาร ดังนั้นจึงทำการศึกษาศึกษา ความเป็นพิษของสารในเซลล์ HK-2 โดยวิธี MTT assay จากผลการทดลองพบว่าสาร LXR agonists (T0901317 และ GW3965) ที่มีบทบาทลดการทำงานของตัวขนส่งกลูโคสทั้ง SGLT และ GLUT2 ในเซลล์ HK-2 ที่ความเข้มข้นน้อยไปถึงความเข้มข้นที่สูง พบว่าเมื่อเพิ่มความเข้มข้นของสารจนถึงความเข้มข้นสูงสุดที่ นำมาศึกษาไม่พบความเป็นพิษต่อเซลล์ไต (HK-2) แสดงดังรูปที่ 9

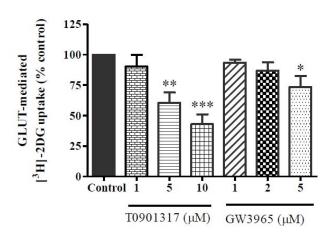


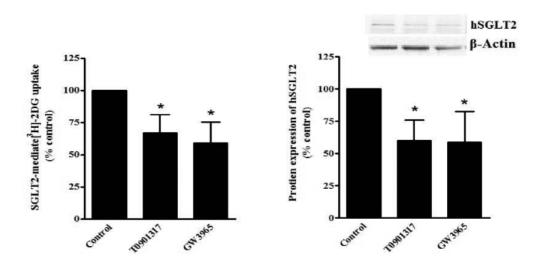
ร**ูปที่ 9** ผลของการทดสอบความเป็นพิษของสาร LXR agonists (T0901317 และ GW3965) ที่ ความเข้มข้นต่างๆ ข้อมูลแสดงผลในรูปของ % control, *ns* หมายถึง ไม่มีความแตกต่างอย่างมีนัยสัมพัทธ์ เมื่อเปรียบเทียบกับ control


2.7 การศึกษาผลของ LXR agonist ต่อการขนส่งกลูโคสในเซลล์ polarized RPTEC/TERT1 โดยวิธี electrophysiology

การทดลองนี้มีจุดประสงค์เพื่อยืนยั้นผลการศึกษาในเซลล์ HK-2 โดยทำการศึกษาผลของการกระตุ้น LXR ต่อการขนส่งกลูโคสเข้าสู่เซลล์หลอดไตส่วนต้นของมนุษย์ที่เพาะเลี้ยงให้เจริญใกล้เคียงในธรรมชาติโดย ทำการศึกษาโดยวิธี electrophysiology: Ussing technique ขั้นแรกทำการวัดการแสดงออกของตัวขนส่ง กลูคสในเซลล์ชนิดด้วยวิธี Western blot analysis จากผลการทดลองพบว่าเซลล์ RPTEC/TERT1 มีการ แสดงออกของตัวขนส่งกลูโคสทั้งชนิด SGLT2 ดังรูปที่ 10



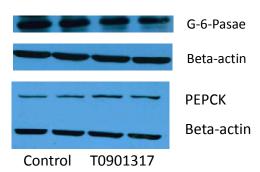

รูปที่ 10 แสดงการแสดงออกของของตัวขนส่งกลูโคสชนิด SGLT2 ในเซลล์ RPTEC/TERT1


จากนั้นทำการวัดการขนส่งกลูโคสในเซลล์ RPTECT/TERT1 ทำการเพาะเลี้ยงเซลล์ RPTEC/TERT1 บน membrane insert เป็นเวลา 21 วันเพื่อให้เซลล์เจริญแบบ polarized cell จากนั้นวัดการขนส่งกลูโคส เข้าสู่เซลล์ผ่านการทำงานของ SGLT2 ซึ่งจากค่า canagliflozin-sensitive short circuit current (Isc) จาก ผลการทดลองพบว่า สารกระตุ้น LXR (T0901317) มีผลลด canagliflozin-sensitive Isc ซึ่งบ่งบอกว่าการ กระตุ้น LXR มีผลลดการขนส่งกลูโคสใน polarized cells ดังรูปที่ 11



รูปที่ 11 แสดงผลของ LXR agonist ต่าการขนส่งกลูโคส ในเซลล์ RPTECT/TERT1 ค่าแสดง canagliflozin-sensitive Isc จาก 9 membrane inserts \* P< 0.001 เมื่อเปรียบเทียบกับกลุ่มควบคุม

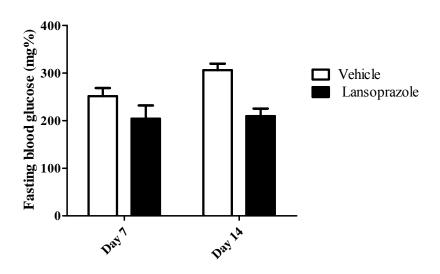
2.8 การทดสอบผลของ LXR ต่อการทำงานของ GLUT2 และ SGLT2 ในสภาวะ hyperglycemic เพื่อทดสอบว่า LXR จะมีผลอย่างไรต่อการทำงานของ GLUT2 และ SGLT2 ในการขนส่งกลูโคสในสภาวะที่ เซลล์ได้รับการเลี้ยงในอาหารที่มีระดับกลูโคสสูง หรทอการจำลองสภาวะเบาหวาน ทำการเพาะเลี้ยงเซลล์ใน อาหารเลี้ยงเซลล์ที่มีระดับกลูโคสสูง (25 mM) เป็นเวลา 3 passages จากผลการทดลองพบว่า LXR agonist ยังคงมีผลลดการทำงานของ GLUT2 และ SGLT2 นอกจากนี้ยังพบว่า LXR agonist มีผลลดการแสดงออก ของ SGLT2 ด้วย






ร**ูปที่ 12** ผลของ LXR ต่อ GLUT2 และ SGLT2 ในสภาวะ hyperglycemic (n=3) \*P< 0.001 เมื่อ เปรียบเทียบกับกลุ่มควบคุม

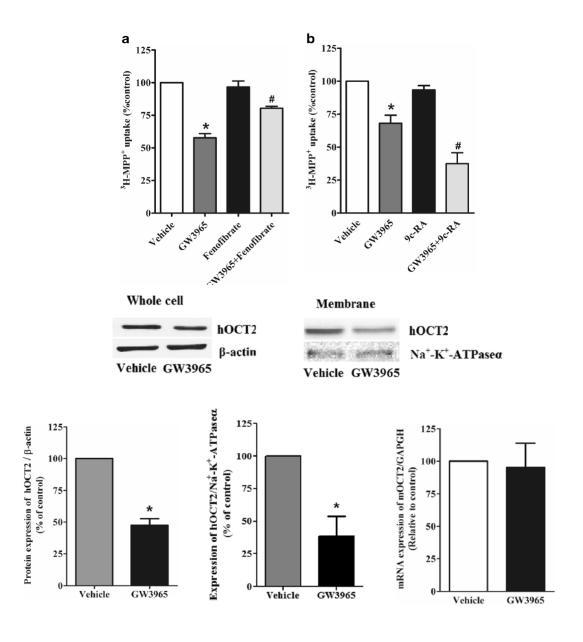
# ส่วนที่ 3 การศึกษาผลของ LXR ต่อการควบคุมการสร้างกลูโคสในเซลล์หลอดไตส่วนต้น


การวิจัยส่วนนี้มุ่นเน้นเพื่อศึกษาบทบาทของ LXR ต่อการสร้างกลูโคส (gluconeogenesis) ในเซลล์ หลอดไตส่วนต้น โดยกระบวนการสร้างกลูโคสอาศัยการทำงานของเอ็นไซม์หลัก 2 ชนิดคือ PEPCK และ G6Pase การเปลี่ยนแปลงการทำงานของเอ็นไซม์ทั้ง 2 ชนิดจึงมีผลโดยตรงต่อการสร้างกลูโคสของเซลล์ จาก ผลการทดลองพบว่าเมื่อเซลล์ HK-2 ได้รับสาร LXR agonist (T0901317) เป็นเวลา 24 ชั่วโมงมีผลเพิ่มการ แสดงออกของเอ็นไซม์ PEPCK แต่มีผลลดการแสองออกของ G6Pase ดังรูปที่ 13 การเพิ่มขึ้นของ PEPCK อาจเกิดจากการที่ G6Pase ถูกยับยั้งเนื่องจาก G6Pase เป็นเอ็นไซม์ที่ทำงานต่อจากเอ็นไซม์ PEPCK ใน กระบวนการสร้างกลูโคส



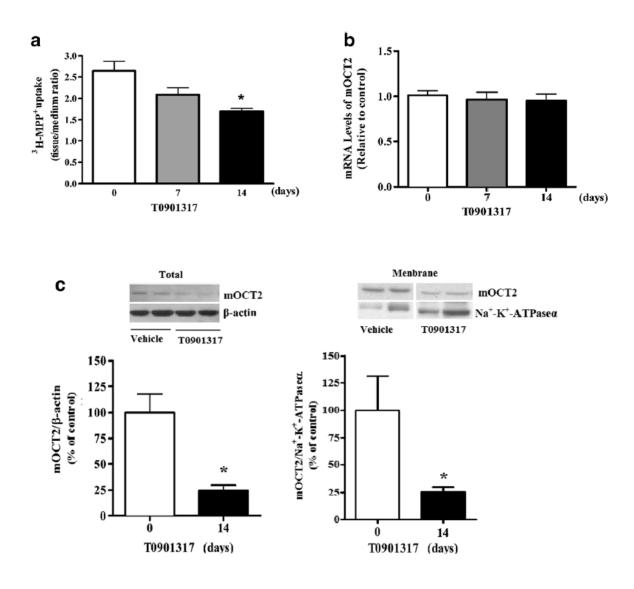
รูปที่ 13 แสดงผลของ LXR agonist ต่อการแสดงออกของโปรตีนของเอ็นไซม์ในกระบวนการ gluconeogenesis ในเซลล์ HK-2

# ส่วนที่ 4 การศึกษาผลของสาร LXR agonist ต่อระดับน้ำตาลในเลือดของหนูเบาหวาน


จากการศึกษาในเซลล์หลอดไตส่วนต้นของมนุษย์พบว่าการกระตุ้น LXR มีผลลดการทำงานของ GLUT2 และ SGLT2 ดั้งนั้นเพื่อทดสอบว่า LXR มีผลอย่างไรต่อระดับน้ำตาลในเลือดของหนูเบาหวาน ทำการศึกษาผลของยาแลนโซพราโซลซึ่งมีรายงานว่าเป็น LXR agonist ต่อระดับน้ำตาลในเลือดของหนู เบาหวานชนิดที่ 2 (GK rat) เมื่อหนู GK rat ที่มีอายุ 12 สัปดาห์ ทำการให้ยาแลนโซพราโซลที่ขนาด 50 mg/kg/day เป็นเวลา 14 วัน จากนั้นทำการวัดระดับน้ำตาลในเลือดภายหลังอดอาหาร 16 ชั่วโมงทุก จากผล การทดลองพบว่าแลนโซพราโซลมีผลลดระดับน้ำตาลในเลือดของหนูเบาหวาน ชนิดที่ 2 (GK rat)



ร**ูปที่ 14** ผลของแลนโซพราโซลต่อระดับน้ำตาลในเลือดของหนูเบาหวานชนิดที่ 2 (n=5)


# ส่วนที่ 5 การศึกษาผลของ LXR ต่อตัวขนส่งยา OCT2 ในเซลล์หลอดไตส่วนต้นของมนุษย์

เนื่องจากการรักษาผู้ป่วยเบาหวานชนิดที่ 2 นั้นจำเป็นต้องได้รับยาลดระดับน้ำตาลในเลือดหลายชนิด เช่น ยา metformin ซึ่งเป็นยาหลักที่ใช้ในการรักษา พบว่ายา metformin ถูกกำจัดออกจากร่างกายทาง ปัสสาสะโดยผ่านการทำงานของตัวขนส่งยา OCT2 ดังนั้นการเปลี่ยนแปลงการทำงานของตัวขนส่งยา OCT2 มีผลต่อระดับยาในเลือดของยา metformin ด้วย และเนื่องจาก LXR agonist อาจถูกพัฒนาเป็นยารักษา โรคเบาหวานในอนาคต โครงการวิจัยจึงได้ทำการศึกษาผลของ LXR ว่ามีผลต่อตัวขนส่งยา OCT2 ที่ไตหรือไม่ อย่างไร จากการศึกษาพบว่า LXR agonist มีผลลดการทำงานของตัวขนส่งยา OCT2 (ลดการขนส่งสาร ³H-MPP¹) ที่ไตโดยลดการแสดงออกของโปรตีนที่ผิวเซลล์เมมเบรนแต่ไม่มีผลต่อการสร้าง OCT2ในระดับยืน โดย ผลดังกล่าวถูกผ่านยับยั้งโดยสาร fenofibrate ซึ่งเป็น LXR antagonist ดังนั้นกลไกการยับยั้ง OCT2 เป็น แบบ LXR-dependent pathway และเนื่องจากปกติการทำงานงานของ LXR จะต้องอาศัยการทำงาน ร่วมกับ RXR ซึ่งรวมเป็น LXR-RXR complex จากผลการศึกษาพบว่าผลของ LXR agonist ต่อ OCT2 ค่า มากขึ้นเมื่อมีการกระตุ้นเซลล์ด้วย RXR agonist (9c-RA) ซึ่งอาจสรุปได้ว่ากลไกการยับยั้งการทำงานของ OCT2 เป็นแบบ LXR-RXR mechanism ดังรูปที่ 15



รูปที่ 15 ผลของ LXR ต่อการทำงานของตัวขนส่งยา OCT2 ในเซลล์ RPTEC/TERT1 \*P< 0.05 เมื่อ เปรียบเทียบกับกลุ่มควบคุม  $^{\#}$ P< 0.05 เมื่อเทียบกับ GW3965

ผลการยับยั้งการทำงานของ LXR ได้รับการยืนยันในระดับ *in vivo* โดยทำการป้อนสาร LXR agonist (T0901317 30 mg/kg/day) เป็นเวลา 14 วัน พบว่า T0901317 มีผลลดการทำงานของตวขนส่งยา OCT2 โดยลดการแสดงออกของโปรตีนขนส่งแต่ไม่มีผลต่อ mRNA ดังรูปที่ 16



ร**ูปที่ 16** ผลของ LXR agonist ต่อตัวขนส่งยา OCT2 ในหนูไมค์ \*P< 0.05 เมื่อเปรียบเทียบกับกลุ่ม ควบคุม n=5-7

# สรุปและวิจารน์ผลการทดลอง

โครงการวิจัยนี้มีวัตถุประสงค์ที่จะศึกษาบทบาทของ LXR ต่อการควบคุมสมดุลกลูโคสในร่างกายโดย มุ่งศึกษาผลต่อตัวขนส่งกลูโคสและการสร้างกลูโคสในเซลล์หลอดไตส่วนต้น (renal proximal tubular cells) และศึกษาถึง potential application ของ LXR เพื่อเป็นเป้าหมายในการรักษาโรคเบาหวาน โดย ทำการศึกษาผลของการกระตุ้น LXR ต่อการลดระดับน้ำตาลในเลือดของหนูเบาหวานชนิดที่ 2 โครงการวิจัย แบ่งการศึกษาออกเป็น 5 ส่วนคือ 1) การทดสอบความเหมาะสมของเซลล์ที่จะใช้เป็นแบบในการศึกษา 2) การศึกษาผลของ LXR agonists ต่อการขนส่งกลูโคสในเซลล์ 3) การศึกษาผลของ LXR ต่อการควบคุมการ สร้างกลูโคสในเซลล์หลอดไตส่วนต้น 4) การศึกษาผลของสาร LXR agonist ต่อระดับน้ำตาลในเลือดของหนู เบาหวาน 5) การศึกษาผลของ LXR ต่อตัวขนส่งยา OCT2 ในเซลล์หลอดไตส่วนต้นของมนุษย์

ในการศึกษาครั้งนี้ทำการศึกษาผลของ LXR ในเซลล์หลอดไตส่วนต้นมนุษย์ 2 ชนิดคือเซลล์ HK-2 และ RPTEC/TERT1 ซึ่งพบว่ามีการแสดงออกของ LXR GLUT2 และ SGLT2 นอกจากนี้ LXR สามารถถูก กระตุ้นด้วย LXR agonists (T0901317 และ GW3965) ในเซลล์นี้ได้ เมื่อกระตุ้นเซลล์ด้วย LXR agonist ทั้ง สองชนิดมีผลยับยั้งการทำงานของ GLUT2และ SGLT2 ผลของ LXR agonist ไม่ได้เกิดจากความเป็นพิษของ สาร T0901317 และ GW3965 และผลของ LXR agonists ถูกยับยั้งด้วย LXR antagonist ซึ่งสามารถสรุป ได้ว่าผลของ LXR agonists ต่อ GLUT2 และ SGLT2 อาศัยการทำงานของ LXR (LXR-dependent mechanism) เมื่อกระตุ้น LXR ร่วมกับการกระตุ้น RXR ทีผลเพิ่มฤทธิ์ของ LXR แสดงให้เห็นว่าการทำงาน ของ LXR อาศัย LXR-RXR complex การยับยั้งการทำงานของตัวขนส่งกลูโคส GLUT2 และ SGLT2 เกี่ยวข้องกับการลด maximal transport rate (Jmax) แต่ไม่มีผลปรับเปลี่ยนค่า Kt ของตัวขนส่งกลุโคสทั้ง สอง ซึ่งมีความสัมพันธ์กับการลดการแสดงออกของของโปรตีนทั้งสองชนิด ยังพบอีกว่าการกระตุ้น LXR นอกจากจะมีผลลดการขนส่งกลูโคสในเซลล์ที่เพาะเลี้ยงในสภาวะที่มีระดับน้ำตาลกลูโคสปกติแล้ว LXR ยังมี ผลการทำงานของตัวขนส่งทั้ง SGLT2 และ GLUT2 ในสภาวะสูงด้วย ซึ่งแสดงให้เห็นว่า LXR นอกจากจะมี ับทบาทต่อการขนส่งกลูโคสในสภาวะปกติแล้วยังมีผลลดการทำงานของคัวขนส่งกลูโคสในสภาวะน้ำตาลสูง หรือเบาหวานได้ด้วย นอกจากนี้ได้ทำการยืนยันผลของ LXR ในเซลล์หลอดไตส่วนต้นของมนุษย์ที่มีการ เพาะเลี้ยงให้ใกล้เคียงกับสภาพจริง โดยทำการศึกษาในเซลล์ RPTEC/TERT1 ที่เพาะเลี่ยงใน membrane insert พบว่า LXR มีผลลดค่การขนส่งกลูโคสเข้าสู่เซลล์ (canagliflozin-sensitive glucose transport) ข้อมูลจากการศึกษาผลของ LXR agonist ต่อการแสดงออกของเอ็นไซม์ PEPCK และ G6Pase พบว่า LXR มี แนวโน้มเพิ่มการแสดงออกของ PEPCK แต่ลดการแสดงออกของ G6Pase สาเหตุที่พบการแสดงออกของ เอ็นไซม์ PEPCK สูงขึ้นขณะที่ G6Pase มีค่าลดลงอาจอธิบายได้จาก เอ็นไซม์ G6Pase เป็น rate-limiting step ในการสร้างกลูโคสในกระบวนการ gluconeogenesis เมื่อ LXR มีผลลดการแสดงออกของ G6Pase อาจประกระตุ้นการแสดงออกของ PEPCK ได้ซึ่งเป็นกระบวนการ compensation ของเซลล์

เนื่องจากการกระตุ้น LXR มีผลลดการขนส่งกลูโคสผ่านเซลล์หลอดไตส่วนต้นและมีโอกาสลดการ สร้างกลูโคสใหม่ที่เซลล์หลอดไตส่วนต้น ดังนั้นการกระตุ้น LXR อาจมีผลลดระดับน้ำตาลในเลือดได้ เพื่อ ทดสอบสมมุติฐานนี้จึงทำการทดสอบผลของสารกระตุ้น LXR ต่อระดับน้ำตาลในเลือดของหนูเบาหวานชนิดที่ 2 เมื่อหนูได้รับสารแลนโซพราโซลซึ่งเป็นยาที่มีรายงานว่าสามารถกระตุ้น LXR ได้ ระดับน้ำตาลในเลือดของ หนูเบาหวานที่ได้รับแลนโซพราโซลมีผลลดระดับน้ำตาลในเลือดเมื่อเปรียบเทียบกับกลุ่มควบคุม การทดลองนี้ ไม่ได้ทดสอบฤทธิ์ของสาร LXR agonist ที่ทดสอบในเซลล์เนื่องจากสาร T0901317 และ GW3965 มีราคาสูง มากไม่สามารถทดลองในสัตว์ทดลองได้ โครงการวิจัยนี้ได้ทดสอบผลของ LXR ต่อตัวขนส่งยา OCT2 ที่ทำ หน้าที่กำจัดยาเบาหวานออกจากร่างกายไปกับปัสสาวะ เช่น ยา metformin จากผลการศึกษาพบว่า LXR นอกจากจะมีผลลดการทำงานของตัวขนส่งกลูโคสแล้วยังมีผลลดการทำงานของตัวขนส่งยา OCT2 ซึ่งผลก็ สอดคล้องกับรายงานวิจัยก่อนหน้านี้ที่พบว่า LXR มีผลลดการทำงานของตัวขนส่งยาอื่นๆด้วย

ผลการวิจัยที่ได้จากโครงการวิจัยนี้แสดงให้เห็นว่าการกระตุ้น LXR มีผลลดการทำงานของตัวขนส่ง กลูโคสชนิด GLUT2 และ SGLT2 ซึ่งอาจมีผลลดการดูดกลับกลูโคสเข้าสู่กระแสเลือด นอกจากนี้ LXR ยังมีผล ลดการแสดงออกของเอ็นไซม์ G6Pase ซึ่งอาจมีผลลดการสร้างกลูโคสใหม่เข้าสู่กระแสเลือด จากผลดังกล่าว LXR อาจเป็นเป้าหมายสำหรับพัฒนาเป็นยาที่ผลลดระดับน้ำตาลในเลือดได้สำหรับรักษาโรคเบาหวาน อย่างไร ก็ตามการกระตุ้น LXR ยังมีผลลดการทำงานของตัวขนส่งยา OCT2 ซึ่งอาจมีผลเพิ่มระดับยา metformin ใน เลือดได้

## เอกสารอ้างอิง

- 1. Chao EC, and Henry RR. SGLT2 inhibition--a novel strategy for diabetes treatment. Nat Rev Drug Discov 9: 551-559, 2010.
- Ding L, Pang S, Sun Y, Tian Y, Yu L & Dang N (2014). Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. Int J Endocrinol 2014, 751859.
- 3. Ehrenkranz JR, Lewis NG, Kahn CR, and Roth J. Phlorizin: a review. Diabetes Metab Res Rev 21: 31-38, 2005.
- 4. Francis, G. A., E. Fayard, et al. (2003). "Nuclear receptors and the control of metabolism." Annu Rev Physiol 65: 261-311.
- 5. Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira-Souza M, Bordin S, and Machado UF. Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of

- diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology 149: 717-724, 2008.
- 6. Gabbi C, Kong X, Suzuki H, Kim HJ, Gao M, Jia X, Ohnishi H, Ueta Y, Warner M, Guan Y & Gustafsson JA (2012). Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor beta. *Proc Natl Acad Sci U S A* 109, 3030-3034.
- 7. Gerich, J.E., Meyer, C., Woerle, H. J., Stumvoll, M. (2001). Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care 24, 382-391.
- 8. Geyeregger, R., M. Zeyda, et al. (2006). "Liver X receptors in cardiovascular and metabolic disease." Cell Mol Life Sci 63(5): 524-39.
- 9. Kastner, P., M. Mark, et al. (1995). "Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life?" Cell 83(6): 859-69.
- 10. Laffitte, B. A., L. C. Chao, et al. (2003). "Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue." Proc Natl Acad Sci U S A 100(9): 5419-24.
- 11. Mangelsdorf, D. J., C. Thummel, et al. (1995). "The nuclear receptor superfamily: the second decade." Cell 83(6): 835-9.
- 12. Mitro, N., P. A. Mak, et al. (2007). "The nuclear receptor LXR is a glucose sensor." Nature 445(7124): 219-23.
- 13. Raksaseri P, Chatsudthipong V, Muanprasat C & Soodvilai S (2013). Activation of liver X receptors reduces CFTR-mediated Cl(-) transport in kidney collecting duct cells. Am J Physiol Renal Physiol 305, F583-591.
- 14. Rossetti L, Smith D, Shulman GI, Papachristou D, and DeFronzo RA (1987). Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79: 1510-151,.
- 15. Soodvilai, S., Jia, Z., Fongsupa, S., Chatsudthipong, V., and Yang, T. (2012). Liver X receptor agonists decrease ENaC-mediated sodium transport in collecting duct cells. Am J Physiol Renal Physiol 303, F1610-1616.
- 16. Steffensen, K. R. and J. A. Gustafsson (2004). "Putative metabolic effects of the liver X receptor (LXR)." Diabetes 53 Suppl 1: S36-42.
- 17. Wright EM (2001). Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 280: F10-18.

# Output จากโครงการวิจัย

### 1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

ผลงานวิจัยที่เผยแพร่แล้ว

- 1. Teerasak Wongwan, Suticha Kittayaruksakul, Nithi Asavapanumas, Varanuj Chatsudthipong and **Sunhapas Soodvilai\***, Activation of liver X receptor inhibits OCT2-mediated organic cation transport in renal proximal tubular cells. Pflugers Arch Eur J Physiol (2017) 469:1471–1481 (Impact factor 3.156; Q1)
- 2. Pattira Chonlaket, Teerasak Wongwan, and **Sunhapas Soodvilai\*,** Liver X receptor activation inhibits SGLT2-mediated glucose transport in human renal proximal tubular cells, Exp Physiol. 2017 Nov 11. doi: 10.1113/EP086478.

  (Impact factor 2.910; O2)

# การทำผลงานวิจัยไปใช้ประโยชน์ เชิงวิชาการ

มีการถ่ายทอดองค์ความรู้ที่ได้ให้แก่นักศึกษาปริญาเอกของภาควิชาสรีรวิทยา และนักศึกษาปริญญา โท พิษวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล เพื่อสร้างนักวิจัยใหม่คือ

- 1. นางสาวสุธิชา กฤตยารักษ์สกุลนักศึกษาโครงการปริญญาเอกกาจณาภิเษก หลักสูตรสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 2. นายชีรศักดิ์ วงค์วาน นักศึกษาโครงการปริญญาเอกกาจณาภิเษกซึ่งกำลังศึกษาหลักสูตร สรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
- 3. นางสาวภัทธิรา ชลเขต นักศึกษาหลักสูตรพิษวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

### ภาคผนวก

#### ION CHANNELS, RECEPTORS AND TRANSPORTERS



# Activation of liver X receptor inhibits OCT2-mediated organic cation transport in renal proximal tubular cells

Teerasak Wongwan  $^{1,2}$  · Suticha Kittayaruksakul  $^1$  · Nithi Asavapanumas  $^1$  · Varanuj Chatsudthipong  $^1$  · Sunhapas Soodvilai  $^{1,2,3}$ 

Received: 7 March 2017 / Revised: 9 July 2017 / Accepted: 11 July 2017 / Published online: 25 July 2017 © Springer-Verlag GmbH Germany 2017

**Abstract** Liver X receptor (LXR) is transcriptional factor that plays an important role in the regulation of energy metabolism such as cholesterol, lipid, and glucose metabolism as well as membrane transporters and channels. Using both in vitro and in vivo models, LXR regulation of the expression and function of renal organic cation transporter 2 (OCT2) was observed. Synthetic LXR agonist (GW3965) and endogenous LXR agonist (22R-hydroxycholesterol) significantly reduced the uptake of <sup>3</sup>H–MPP<sup>+</sup>, a prototypic substrate of OCT2, in both OCT2-Chinese hamster ovary K1 and human renal proximal tubular cells (RPTEC/TERT1). GW3965 decreased transport activity of OCT2 via a reduction of the maximal transport rate of MPP<sup>+</sup> without affecting transporter affinity. The inhibitory effect of GW3965 was attenuated by co-treatment with LXR antagonist (fenofibrate) indicating the inhibition was LXR-dependent mechanism. In addition, co-treatment with a retinoic X receptor (RXR) ligand, 9-cis retinoic acid enhanced the inhibitory effect of GW3965, indicating negative regulation of OCT2 transport activity by the LXR/RXR complex. Treatment RPTEC/TERT1

The original version of the article was revised: The original publication of this article contained an error in Fig. 6b.

**Electronic supplementary material** The online version of this article (doi:10.1007/s00424-017-2033-8) contains supplementary material, which is available to authorized users.

- Sunhapas Soodvilai sunhapas.soo@mahidol.ac.th
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
- Research Center of Transport Proteins for Medical Innovation, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand

cells with GW3965 significantly reduced OCT2 protein expression without changing mRNA expression. In parallel, the effect of LXR activation on OCT2 function was investigated in intact mouse kidney. Treating mice with 50 mg/kg BW T0901317 for 14 days significantly decreased <sup>3</sup>H–MPP<sup>+</sup> uptake into renal cortical slices, correlating with decreased OCT2 protein expression in renal cortex without changes in mRNA expression levels. Taken together, LXR/RXR activation downregulates the protein expression and function of OCT2 in renal proximal tubule, suggesting LXR might affect the total profile of renal excretion of cationic compounds.

**Keywords** Kidney · Regulation · Proximal tubule · Secretion · Nuclear receptors · Retinoic x receptor

#### Introduction

Renal organic cation transporters (OCTs) play a crucial role in tubular secretion of a wide range of endogenous organic cations, including creatinine, guanidine, choline, dopamine, epinephrine, and histamine [4, 42, 45]. In addition to transport of endogenous compounds, OCTs also transport many therapeutic drugs such as quinidine, cisplatin, metformin, phenoxybenzamine, prazosin, procainamide, and cimetidine [6, 17, 19]. Three members of the OCT (SLC22A) family of transport proteins have been cloned and characterized, including OCT1 (SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3) [13, 36]. Human OCT1 and OCT2 are highly expressed in liver and kidney, respectively, whereas OCT3 is ubiquitously expressed at a low level in multiple tissues, for instance, the skeletal muscle, brain, placenta, liver, and kidney [15, 19]. Renal organic cation secretion requires uptake of organic cations from the peritubular fluid into the renal proximal tubular epithelial cells via OCTs, which is driven by an



inside-negative membrane potential [31]. Transport of organic cation across the apical membrane into the tubular fluid is mediated largely by electroneutral H<sup>+</sup>/organic cation exchanger, multidrug and toxin extrusion 1 (MATE1/SLC47A1). MATE2-K/SLC47A2, and/or OCTN1/SLC22A4 [32]. Among the members of the OCT family, OCT2 (SLC22A2) localized at basolateral membrane has the highest expression levels in the kidney [29]. Therefore, alterations in functions and/or expression levels of OCT2 can affect tubular secretion of organic cationic therapeutic drugs, thereby affecting drug pharmacokinetics and therapeutic efficacies [16, 26]. Function of OCT2 is regulated by several factors in both short-term and long-term regulations (see detail in review) [7]. Several disease conditions, nuclear receptors, and protein kinases have been shown to modulate OCT2 function [41, 43]. The molecular structure of OCT2 contains phosphorylation sites for various protein kinases such as PKA, PKC, PKG, phosphatidylinositol-3-kinase (PI3-K), calcium/calmodulindependent protein kinase (CAMK), and mitogen-activated protein kinase (MAPK); thus, activation of these protein kinases can regulate the activity of OCT2 [38, 46]. In addition, OCT2 is upregulated by activation of several nuclear receptors including glucocorticoid receptor, androgen receptor, and pregnane X receptor [24, 37].

Liver X receptor (LXR) is a ligand-activated transcriptional factor belonging to the nuclear receptor superfamily regulating diverse aspects of cholesterol, lipid, and glucose metabolism as well as the expression of several membrane transport proteins [3, 14]. Two isoforms of LXR exist in mammals, LXR $\alpha$  (NR1H3) and LXR $\beta$  (NR1H2). LXR $\alpha$  is highly expressed in liver, spleen, lung, intestine, adipose tissue, and kidney, while LXRβ is ubiquitously expressed in all tissues with particularly high levels in the brain [9, 33]. Working as a heterodimer with retinoic X receptor (RXR, NR1B2), a common partner, LXR binds to LXR responsive element (LXRE) in the promoter region of target genes regulating gene transcription processes. LXR functions as a sterol sensor to protect from cellular cholesterol overload by promoting reverse cholesterol transport from peripheral tissue to liver as well as converting cholesterol to bile acids [3]. Also, LXR acts as an anti-diabetic glucose sensor, suppressing hepatic glucose output and stimulating peripheral glucose disposal [27]. Furthermore, LXR has been shown to regulate the expression and function of ATP-binding cassette (ABC) transporters such as ABCA1, ABCG1, ABCG5, and ABCG8 in macrophages and small intestine [48].

Indeed, LXR is present along the nephron, including the glomeruli, proximal tubule, and glomerular mesangial cells [28, 47]. Accordingly, LXR may be involved in the regulation of solutes, electrolytes, and water transport within renal cells. LXR is reported to regulate expression of renal transporters and channels, for example, Na-Pi transporters [5], epithelial sodium channel (ENaC) [39], and cystic fibrosis

transmembrane conductance regulator (CFTR) [35]. As previously shown, activation of LXR downregulates organic anion transporter 1 (OAT1) by reducing its protein expression [18]; however, whether LXR modulates OCT2-mediated organic cation transport is unknown. A possible hypothesis is that LXR also regulates OCT2 activity in renal proximal tubule. The present study investigated the effects and mechanisms of LXR activation on OCT2-mediated organic cation transport in OCT2 expressing cells systems including a Chinese hamster ovary (CHO-K1) cell stably transfected with rabbit (rb) OCT2 and human renal proximal tubular cells (RPTEC/TERT1 cells). Moreover, an in vivo mouse model was used to confirm LXR's effects.

#### Materials and methods

#### Chemicals

N-methyl-<sup>3</sup>H-4-phenylpyridinium acetate (<sup>3</sup>H-MPP<sup>+</sup>; 80 Ci/ mmol) was purchased from American Radio Labeled Chemical Inc. (MO, USA). Nutrient mixture F-12 Ham Kaighn's modification culture medium, Dulbecco's modified Eagle's medium (DMEM), Ham's F-12 nutrient mix (1:1), GW3965 (a synthetic LXR agonist), 9-cis retinoic acid (9c-RA; a RXR agonist), and 22(R)-hydroxycholesterol (endogenous ligand of LXR), fenofibrate, and human OCT2 antibody were from purchased Sigma-Aldrich (MO, USA). T0901317 (a synthetic LXR agonist) was purchased from Cayman Chemical Inn. (MI, USA). Mouse OCT2 antibody was purchased from LifeSpan BioSciences (WA, USA), and antibodies against LXR $\alpha$  and  $\beta$  were purchased from Abcam (MA, USA). Na<sup>+</sup>-K<sup>+</sup>-ATPaseα monoclonal antibodies was obtained from Novus Biologicals. Other chemicals used were of analytical grade from commercial sources.

#### **Cell cultures**

CHO-K1 cells stably transfected with rbOCT2 (OCT2-CHO-K1 cells) were kindly provided by Prof. Stephen H. Wright, University of Arizona, USA. They were cultured in F12 Ham Kaighn's modification (F12 K) medium supplement with 10% FBS, 100 U/ml penicillin and 100  $\mu$ g/ml streptomycin under a humidified 5% CO<sub>2</sub>/95% air at 37 °C. The RPTEC/TERT1 cells were obtained from American Type Culture Collection (ATCC) and cultured in mixture of DMEM and Ham's F-12 (1:1) supplemented with 5  $\mu$ g/ml insulin, 5  $\mu$ g/ml transferrin, 5 ng/ml sodium selenite, 100 U/ml penicillin, 100  $\mu$ g/ml streptomycin, 10 ng/ml epithelial growth factor, and 36 ng/ml hydrocortisone, 100 U/ml penicillin, and 100  $\mu$ g/ml streptomycin in humidified incubator under 5% CO<sub>2</sub>/95% air at 37 °C.



#### Uptake experiments in cell culture studies

The transport activity of OCT2 in OCT2-CHO-K1 and RPTEC/TERT1 cells was quantified by <sup>3</sup>H–MPP<sup>+</sup> uptake as described previously [1, 38]. Briefly, cells were cultured in 24-well plates until confluent, and then cells were treated with test compounds. At the end of incubation period, cells were washed twice with 1 ml of Dulbecco's modified phosphate-buffered saline (D-PBS) solution containing NaCl 137 mM, KCl 3 mM, NaHPO<sub>4</sub>.7H<sub>2</sub>O 0.5 mM, KH<sub>2</sub>PO<sub>4</sub> 1 mM, CaCl<sub>2</sub>.2H<sub>2</sub>O 1 mM, MgCl<sub>2</sub>.6H<sub>2</sub>O 0.5 mM, and D-glucose 5.6 mM at pH 7.4. Then, the cells were further preincubated in 37 °C for 30 min.

The uptake experiment was performed by incubating the cells with 200  $\mu$ l of D-PBS containing ~10 nM of  $^3H$ –MPP+, which is a prototypic substrate of OCT2 [19], for 1 and 5 min at 37 °C for OCT2-CHO-K1 and RPTEC/TERT1 cells, respectively. Then, cells were washed three times with ice-cold D-PBS solution containing 100  $\mu$ M unlabeled MPP+ to stop transport activity. Cells were then lysed by adding 200  $\mu$ l of 0.4 N NaOH in 10% SDS and left for at least 3 h. The samples were neutralized by adding 1 N HCl into each well, and then transferred into scintillation vials. Accumulated labeled MPP+ was determined by liquid scintillation counter. The  $^3H$ –MPP+ uptake were calculated as fmol/min/cm² of the confluent monolayer surface and expressed as percentage of control.

#### Kinetic analysis of OCT2 transport function

OCT2-CHO-K1 and RPTEC/TERT1 cells were cultured in 24-well plates and were subsequently treated with vehicle or GW3965 for 24 h. Then, <sup>3</sup>H–MPP<sup>+</sup> uptake was measured after incubating the cells with D-PBS solution containing 10 nM <sup>3</sup>H–MPP<sup>+</sup> in the presence of various concentrations of unlabeled MPP<sup>+</sup>. The <sup>3</sup>H–MPP<sup>+</sup> uptake was calculated as fmol/min/cm<sup>2</sup> of the confluent monolayer surface and calculated for kinetic parameters using Michaelis-Menten equation of competitive interaction between labeled and unlabeled MPP<sup>+</sup> [25].

#### Cell viability assay

Cell viability was determined using 3-(4,5-dimethyl-thiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The OCT2-CHO-K1 or RPTEC/TERT1 cells were seeded on 96-well plates, and subsequently incubated with vehicle or LXR agonists at the indicated concentrations for 24 h. At the end of the incubation period, cells were incubated with MTT reagent (0.5 mg/ml) at 37 °C for 2 h. Then, the medium was replaced with 0.15 ml of 100% dimethylsulfoxide (DMSO) before measuring absorbance at 540 nm (EL 312 spectrophotometer, Bio-Kinetics Reader; Bio-Tek Instruments Inc., Helsinki,

Finland). Results are expressed as a percent viability compared to that of the control value.

#### Animals

Male CD1-ICR-outbred mice (8 weeks old, 35–40 g) were obtained from the National Laboratory Animal Center at Salaya Campus, Mahidol University. All of the animal experiments were conducted in accordance with the Guidelines for Laboratory Animal Ethical Committee of Mahidol University, Bangkok, Thailand. Mice were fed with standard laboratory chow and water ad libitum and were administered with vehicle or 50 mg/kg T0901317 for 7 and 14 days via oral gavage.

#### Renal cortical slice preparation and uptake study

Renal cortical slice preparation was performed as previously described [1, 34]. In Brief, mice were sacrificed by intraperitoneal sodium pentobarbital injection, and then kidneys were removed. Renal cortical slices (≤0.5 mm; 5-10 mg, wet weight) were cut with Stadie-Riggs microtome and incubated in ice-cold oxygenated modified Cross and Taggart buffer containing NaCl 95 mM, KCl 5 mM, CaCl<sub>2</sub>.2H<sub>2</sub>O 0.74 mM, Na<sub>2</sub>HPO<sub>4</sub>.7H<sub>2</sub>O 9.5 mM, mannitol 80 mM, and Tris-ultra pure 20 mM at pH 7.4. For uptake experiments, the slices were incubated in 0.5 ml of buffer containing 10 nM of <sup>3</sup>H–MPP<sup>+</sup> for 30 min. The <sup>3</sup>H–MPP<sup>+</sup> uptake was stopped by washing the slices in an ice-cold buffer solution containing 100 µM unlabeled MPP+. Then, the slices were blotted, weighed, solubilized in 1 N NaOH overnight, and neutralized with 1 N HCl prior to determining <sup>3</sup>H-MPP<sup>+</sup> accumulation using liquid scintillation analyzer. The uptake of <sup>3</sup>H–MPP<sup>+</sup> was calculated and expressed as tissue per medium (T/M) ratio (dpm/mg of tissue divided by dpm/µl of transport buffer).

#### Real-time PCR

Total RNA from RpTEC/TERT1 cells and mouse renal cortex tissues was extracted using TRIZOL reagent (Invitrogen, Carlsbad, CA), and cDNA was synthesized using iScript cDNA Synthesis Kit (Bio-Rad). PCR amplification was then performed using the KAPA SYBR FAST master mix (KAPA Biosystem, Wobun, MA, USA). The primers (forward/reverse) used in this study are the following:

- mouseOCT2
- Forward: 5'-CAACCCAACCTCACTTACCCCTGA-3'
- Reverse: 5'-AGCTTAGCCCCCTCTTCTTG-3'
- mouse GAPDH
- Forward: 5'-GCCAAGAGGGTCATCATCTC-3'
- Reverse: 5'-GCATTCCCCAGGACTGTTGAGAG-3'
- human OCT2



- Forward: 5'-AGTCTGCCTGGTCAATGCT-3'
- Reverse: 5'-AGGAATGGCGTGATGATGC-3
- · human GAPDH
- Forward: 5'-CAAGCTCATTTCCTGGTATGAC-3'
- Reverse: 5'-GTGTGGTGGGGGACTGAGTGTGG-3'

The cycle threshold ( $C_{\rm T}$ ) values were obtained from ABI Prism 7500 Sequence Detection System (Applied Biosystems), and the relative expression levels of mRNA were determined by the  $2^{-\Delta\Delta Ct}$  method [23].

#### **Isolation of membrane proteins**

Biotinylation: membrane expression of hOCT2 was determined by cell-surface biotinylation using the membraneimpermeable biotinylation reagents EZ-Link Sulfo-NHSSS-Biotin (Thermo Scientific). RPTEC/TERT1 cells were incubated on ice with biotinylation reagents for 30-min periods then rinsed with PBS/Ca<sup>2</sup>/Mg<sup>2</sup> buffer containing 0.1 M glycine. To ensure complete quenching of the unchanged biotinylation reagents, the cells were incubated on ice with the same solution for 20 min. The cells were harvested in lysis buffer and 4 °C centrifuged at 1,2000 rpm for 20 min, and supernatants were incubated with 150 µl streptavidin-agarose beads (Thermo Scientific) with end-over-end mixing at 4 °C for overnight. The beads were collected and then three times washed with lysis buffer and once with PBS. The surface proteins were released by incubation with buffer containing 100 mM dithiothreitol at 50 °C for 30 min.

Isolation of membrane fraction of mouse renal proximal tubule: the renal cortex was dissected and homogenized in ice-cold solution containing sucrose 0.25 M, 10 mM KCl, 1.5 mM MgCl, 0.684 mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF), and complete protease inhibitor with pH 7.2. The tissue homogenate were centrifuged at 12,000 rpm for 20 min at 4 °C, and the supernatant was kept at -80 °C. The whole cell lysate was taken and centrifuged at 100,000 g at 4 °C for 20 min. The pallet was a membrane fraction and was resuspended with buffer containing 10 mM Tris-HCl, 125 mM sucrose, 0.684 mM EDTA, 2 mM PMSF, and complete protease inhibitor.

#### Western blot analysis

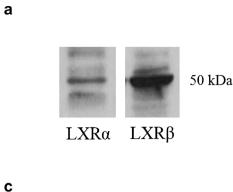
Equal amounts of protein from the lysate were separated by 10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane. The membranes were blocked by incubation in 5% non-fat dry milk for 1 h at room temperature and then blotted with rabbit polyclonal antibody against human or mouse OCT2 overnight at 4 °C. After washing three times with Tris-buffered saline (TBST) for 15 min each, the membrane was incubated with goat antirabbit horseradish peroxidase (HRP)-conjugated secondary

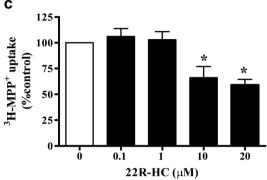
antibody for 1 h at room temperature. Then, immunoreactivity was detected using enhanced chemiluminescence (ECL) detection kit (Perkin Elmer, MA, USA). The protein expression levels were quantified by the Gel and Graph Digitizing System.

#### Total cellular cholesterol level determination

Total cellular cholesterol levels were determined using the Amplex Red Cholesterol Assay Kit according to the manufacturer's protocol (Invitrogen, CA, USA). Briefly, OCT2-CHO-K1 cells were seeded in a 96-well plate and cultured for 2 days until confluence. After treating the cells with vehicle or LXR agonists for 24 h, the cells were lyzed and resuspended in 100 µl of reaction buffer containing potassium phosphate 0.1 mM, NaCl 0.05 mM, cholic acid 5 mM, and Triton X-100 0.1% at pH 7.4. The reaction was initiated by addition of a working solution composed of Amplex Red Reagent 300 µM, horseradish peroxidase 2 U/ml, cholesterol oxidase 2 U/ml, and cholesterol esterase 0.2 U/ml for 30 min at 37 °C. Subsequently, Amplex Red Fluorescence was measured on a Wallac Victor 2 V1420 Multilabel HTS Counter (Perkin Elmer, MA, USA) using an excitation wavelength of 570 nm and an emission wavelength of 590 nm. Total cellular cholesterol was measured as cholesterol per well, estimated from a standard curve using the supplied cholesterol reference standards, and normalized to the total protein content for each sample.

#### Statistical analysis


All data are presented as mean and standard error of mean (mean  $\pm$  S.E.). A minimum of three separate experiments were performed to generate each data point. Data from kinetic studies and intact renal tissue were analyzed by using unpaired student t test or one-way analysis of variance (one-way ANOVA) with the post hoc Newman-Keuls test. A P value of less than 0.05 was set for testing the significant difference between each group of data.

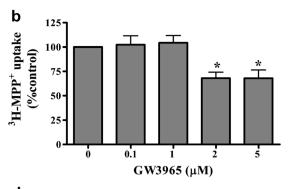

#### **Results**

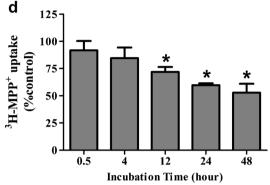
#### Effect of LXR agonists on OCT2-mediated MPP<sup>+</sup> uptake

To determine whether LXR could regulate the transport activity of OCT2, the dose-response of a synthetic LXR agonist (GW3965) on OCT2-mediated  $^3H-MPP^+$  uptake in OCT2-CHO-K1 cells was investigated. Protein expressions of LXR $\alpha$  and LXR $\beta$  are found in in CHO-K1 cells (Fig. 1a). The cells were treated with vehicle or various concentrations of GW3965 for 24 h, and then the  $^3H-MPP^+$  uptake was measured. As shown in Fig. 1b, treatment with GW3965 (2–5  $\mu M$ )









**Fig. 1** Effect of LXR agonists on OCT2-mediated  $^3H$ –MPP $^+$  uptake. **a** Protein expression of LXR $\alpha$  and LXR $\beta$  in CHO-K1 cells. Dose-response effect of GW3965 (**b**) and 22R–HC (**c**); OCT2-CHO-K1 cells treated with vehicle (DMSO) or various concentrations of GW3965 or 22R–HC for 24 h. **d** The time course of responses to 5 μM GW3965 followed

resulted in a decrease of  $^3H$ –MPP $^+$  uptake. To establish whether the 22(R)-hydroxycholesterol (22R–HC), endogenous ligand of LXR, was also capable of inhibiting OCT2 transport activity, the effect of 22R–HC on  $^3H$ –MPP $^+$  uptake was examined in OCT2-CHO-K1 cells. As expected, OCT2-mediated  $^3H$ –MPP $^+$  uptake was reduced by 33.8  $\pm$  10.7% inhibition following 10  $\mu$ M 22R–HC treatments for 24 h (Fig. 1c). Next, a time-response experiment was performed in order to determine the optimal time for LXR agonist to exert its action. The suppressive effect of GW3965 treatment on OCT2 activity began after 12 h incubation and increased by 24 h. Longer exposure time, to 48 h, however, did not appear to increase inhibition (Fig. 1d).

# Effect of LXR agonists on cell viability, interaction with OCT2, and cellular cholesterol levels

To test whether the inhibitory effect of LXR agonists on OCT2-mediated  $^3H$ –MPP+ uptake was associated with the reduced cell viability, OCT2-CHO-K1 cells were treated with either GW3965 (5  $\mu$ M) or 22R–HC (10  $\mu$ M) for 24 h before determining cell viability using MTT assay. As shown in Fig. 2a, GW3965 and 22R–HC did not affect cell viability in OCT2-CHO-K1 cells compared with controls. In addition, *cis*-effect of LXR agonists on OCT2-mediated  $^3H$ –MPP+ uptake was performed to determine whether LXR agonists interact with





by  $^3\text{H-MPP}^+$  uptake measurement. The accumulation of  $^3\text{H-MPP}^+$  was determined, and the data are expressed as a mean percentage of control (mean  $\pm$  S.E.) from four independent experiments. \*Significantly different from control (P < 0.05)

the OCT2 leading to inhibition of its transport activity. Results showed that GW3965 and 22R–HC produced no significant cis-effect on  $^3H$ –MPP $^+$  uptake (Fig. 2b). Cholesterol level has an impact on the function and expression on SLC transporters [8]. To establish whether the inhibitory effect on OCT2-mediated  $^3H$ –MPP $^+$  uptake was the result of a reduction in cellular cholesterol levels, cellular cholesterol levels in OCT2-CHO-K1 cells were measured. As shown in Fig. 2c, no difference was observed in the total cellular cholesterol levels after 24 h treatment with vehicle or 5  $\mu$ M GW3965.

# Effect of LXR antagonist and RXR and on GW3965's effect

To determine whether the inhibitory effect of GW3965 is LXR-dependent mechanism, the effect of LXR antagonist, fenofibrate [40], on GW3965-induced inhibition of <sup>3</sup>H–MPP<sup>+</sup> uptake was determined. The results showed that fenofibrate had no effect on OCT2-mediated <sup>3</sup>H–MPP<sup>+</sup> uptake, but it significantly attenuated inhibitory effect of GW3965 on OCT2-mediated <sup>3</sup>H–MPP<sup>+</sup> uptake (Fig. 3a). In addition, we determined whether RXR activation potentiated LXR's effect on OCT2 transport activity. The effect of 9-cis retinoic acid (9c–RA), a RXR agonist, on GW3965-induced the inhibition was examined. As shown in Fig. 3b, treatment with GW3965 alone significantly inhibited the <sup>3</sup>H–MPP<sup>+</sup>



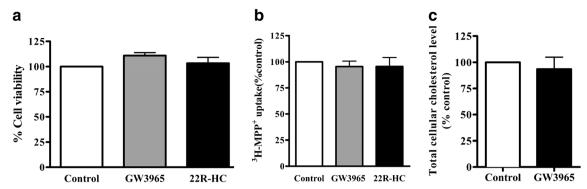
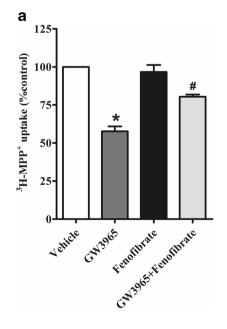
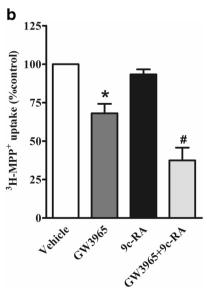



Fig. 2 Effect of LXR agonists on cell viability, cis-effect of LXR agonists, and total cellular cholesterol levels after exposure to LXR agonist. a The OCT2-CHO-K1 cells were treated with vehicle, 5 µM GW3965, or 20 µM 22R–HC as indicated for 24 h. Following incubation, cell viability was measured using MTT assay. b Interaction of LXR agonists with OCT2. Cis-effect was determined by measuring <sup>3</sup>H-MPP<sup>+</sup>

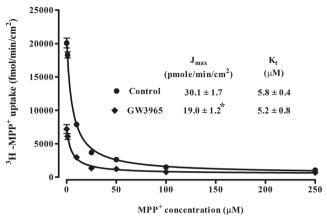

uptake in the presence of 5 μM GW3965 or 10 μM 22R-HC. c The effect of LXR agonist on total cellular cholesterol level. Cells were incubated with vehicle or 5  $\mu M$  GW3965 for 24 h. The data are shown as mean percentage of control (mean  $\pm$  S.E.) from four independent experiments. \*P < 0.05 vs control


uptake, whereas treatment with 1 uM 9c-RA produced a slight effect on OCT2 activity. Interestingly, exposing cells to GW3965 and 9c-RA simultaneously resulted in a statistically significant reduction of OCT2-mediated <sup>3</sup>H–MPP<sup>+</sup> uptake compared with GW3965 alone.

#### Kinetic study on LXR activation inhibited **OCT2-mediated MPP**<sup>+</sup> uptake

To investigate the mechanism by which LXR inhibited OCT2mediated MPP<sup>+</sup> uptake, a kinetic study was performed. As shown in Fig. 4, treating the cells with 5 µM GW3965 for 24 h significantly decreased  $J_{\text{max}}$  from 30.1  $\pm$  1.7 to  $19.0 \pm 1.2 \text{ pmol/min/cm}^2$ , whereas GW3965 had no effect on  $K_t$  indicating a decrease in the functional number of OCT2 in the cell membrane but not the affinity of OCT2 with its substrate.

Fig. 3 Effect of LXR antagonist and RXR activation on OCT2mediated <sup>3</sup>H-MPP<sup>+</sup> uptake in OCT2-CHO-K1 cells. a Cells were treated with vehicle, 5 µM GW3965, 10 µM fenofibrate, and GW3965 plus fenofibrate for 24 h followed by uptake of <sup>3</sup>H-MPP<sup>+</sup>. **b** The <sup>3</sup>H–MPP<sup>+</sup> uptake was evaluated after 24 h incubation with vehicle alone or together with LXR agonist (5 µM GW3965) and/or RXR agonist (1 μM 9c-RA) as indicated. Values are represented as mean  $\pm$  S.E. from five independent experiments. \*P < 0.05compared to vehicle-group.  $^{\#}P < 0.05$  compared to GW3965treatment group






#### LXR activation reduced <sup>3</sup>H-MPP<sup>+</sup> uptake in human renal proximal tubular cells

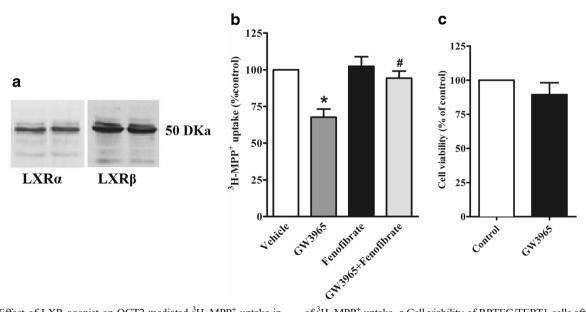
The effect of LXR agonist on OCT2 transport activity in human renal proximal tubular cells was investigated using RPTEC/TERT1 cells which show characteristics of human renal proximal tubular cells and express OCT2 [2, 44]. This cell line expresses both LXRα and LXRβ (Fig. 5a). The RPTEC/TERT1 cells were treated with six different treatments: (1) vehicle, (2) 5 µM GW3965, (3) 10 µM fenofibrate, (4) 5 μM GW3965 plus 10 μM fenofibrate. For group 4, the cells were pretreated with 10 µM fenofibrate for 4 h, followed by incubation with GW3965 plus fenofibrate for a further 24 h. After incubation, <sup>3</sup>H-MPP<sup>+</sup> uptake was determined. As expected, GW3965 reduced <sup>3</sup>H-MPP<sup>+</sup> uptake. Interestingly, fenofibrate significantly attenuated the inhibitory effects of GW3965 (Fig. 5b). To investigate whether the decrease of





**Fig. 4** Kinetic studies of OCT2-mediated  $^3H$ –MPP $^+$  uptake in OCT2-CHO-K1 cells. OCT2-CHO-K1 cells were treated with vehicle or 5  $\mu$ M GW3965 for 24 h, followed by the determination of  $^3H$ –MPP $^+$  uptake in the presence of various concentrations of unlabeled MPP $^+$ . Results are shown as mean  $\pm$  S.E. from three experiments.  $^*P$  < 0.05 vs control

OCT2-mediated <sup>3</sup>H–MPP<sup>+</sup> uptake following GW3965 treatment was caused by toxicity of LXR agonist to the cells, MTT assay was performed. Exposing the cells to 5 µM GW3965 for 24 h had no effect on cell viability (Fig. 5c).


# Mechanism of action of LXR activation on OCT2 function in human renal proximal tubular cells

To determine whether LXR affected expression of OCT2, RPTEC/TERT1 cells were treated with vehicle or 5  $\mu M$ 

GW3965 for 24 h followed by measurement of expression of OCT2. Our result showed that treating RPTEC/TERT1 cells with GW3965 significantly reduced total and membrane protein expression of OCT2 compared with vehicle treatment (Fig. 6a), whereas it had no effect on OCT2 mRNA expression (Fig. 6b).

# Effect of LXR agonist on <sup>3</sup>H–MPP<sup>+</sup> uptake in mouse intact renal proximal tubule

In order to confirm the inhibitory effects of LXR agonists observed in cell culture systems were reflective of those in intact renal tissues, the effects of potent LXR agonist, T0901317, on the transport function of OCT2 in mouse kidney were examined by assessing <sup>3</sup>H–MPP<sup>+</sup> uptake. As shown in Fig. 7a, treating mice with T0901317 (50 mg/kgBW) for 7 days tended to inhibit <sup>3</sup>H–MPP<sup>+</sup> uptake into intact renal cortical slices. Increasing exposure time to T0901317 for 14 days produced a significant reduction of <sup>3</sup>H–MPP<sup>+</sup> uptake compared with vehicle-treated mice. Furthermore, when mRNA and protein expression of OCT2 following treatment with T0901317 for 14 days was measured, there was no significant difference of mRNA expression of OCT2 in renal cortex between vehicle- and T0901317-treated groups (Fig. 7b). In contrast to mRNA expression, total and membrane protein expressions of OCT2 were significantly decreased after treatment with T0901317 compared with vehicle treatment (Fig. 7c).



**Fig. 5** Effect of LXR agonist on OCT2-mediated  $^3H$ –MPP $^+$  uptake in RPTEC/TERT1 cells. **a** Protein expression of LXR $\alpha$  and LXR $\beta$  in RPTEC/TERT1 cells. **b** RPTEC/TERT1 cells were treated with vehicle alone or together with LXR agonist (5 μM GW3965) and/or LXR antagonist (10 μM fenofibrate) as indicated for 24 h followed by measurement

of  $^3$ H–MPP<sup>+</sup> uptake. **c** Cell viability of RPTEC/TERT1 cells after exposure to vehicle or 5  $\mu$ M GW3965 for 24 h. Data are obtained from three experiments. \*P < 0.05 compared to vehicle-group. \* $^{\#}P$  < 0.05 compared to GW3965-treatment group



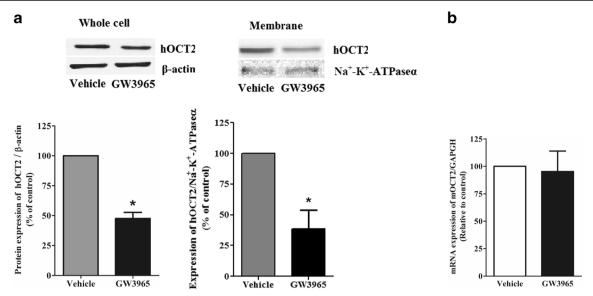
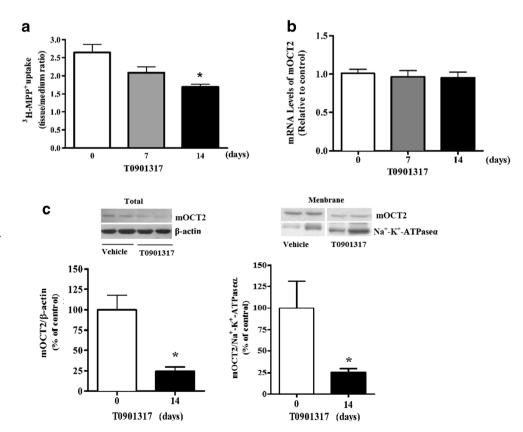



Fig. 6 Mechanisms of action of LXR activation on OCT2 function in RPTEC/TERT1 cells. a Representative Western blots and the densitometry quantification of OCT2 protein. b Expression mRNA expression


following treatment with 5  $\mu$ M GW3965 for 24 h. The data are shown as mean  $\pm$  S.E. from three independent experiments. \*P < 0.05 compared with vehicle-treated group

#### **Discussion**

OCT2-mediated organic cation uptake in renal proximal tubular cells is an important process in excretion of cationic xenobiotic compounds [19]. Therefore, modulation of this transporter will affect total profile excretion of drugs subsequently

altering drug efficacy. Accordingly, understanding the regulation of renal OCT2 is crucial. As previously shown, activation of LXR regulates renal transporters and channels including Na-Pi co-transporters, OAT1, ENaC, CFTR, and aquaporin [5, 10, 35, 39]; thus, LXR has a potential role in regulating renal OCT2. To address concerns regarding LXR activation's

Fig. 7 Effect of LXR agonist on <sup>3</sup>H-MPP<sup>+</sup> transport in mouse model. a <sup>3</sup>H-MPP<sup>+</sup> uptake in renal cortical slice was determined from mice treated with vehicle or T0901317 (50 mg/ kg BW). <sup>3</sup>H–MPP<sup>+</sup> uptake was calculated as tissue per medium ration. b Quantitative real-time PCR analysis of mRNA from mouse renal cortex-treated with T0901317 for 14 days. The results were normalized to GAPDH and represented as relative expression to control. c Representative Western blots and the densitometry quantification of OCT2 protein expressions in mouse renal cortex following treatment with T0901317 for 14 days. Data are expressed as mean  $\pm$  S.E. from five animals. \*P < 0.05 compared with vehicletreated





impact on organic cation transport in renal proximal tubular cells, the current study investigated LXR's effect on OCT2-meditated organic cation transport in different models including cell culture systems (heterologous and endogenous OCT2-expressing cell lines) and intact renal proximal tubule.

The present study demonstrated that LXR agonists, both synthetic ligand (GW3965) and physiological LXR ligand (22R-HC), inhibited OCT2-mediated <sup>3</sup>H-MPP<sup>+</sup> MPP<sup>+</sup> uptake in OCT2 singly expressing CHO-K1 cells. The timeresponse effect of the LXR agonists on OCT2 activity in CHO-K1 cells revealed a significant decrease in <sup>3</sup>H–MPP<sup>+</sup> uptake after 12 h incubation of GW3965, indicating LXR agonists have a slow mode of action on OCT2. As cell viability was unaffected by LXR agonists, it seemed unlikely that the inhibitory effects observed were the results of toxicity and ability to act as OCT2 inhibitors, because the agonists produced no interaction with the OCT2. Since LXR is a wellcharacterized cholesterol sensor modulating cellular cholesterol levels via cholesterol transporter regulation [49], one speculation was LXR activation-mediated cholesterol efflux in OCT2-CHO-K1 cells. Notably, cholesterol itself could affect OCT2 transporter activity, because, reportedly, it regulates gene expression of OCT1 and Na<sup>+</sup>-bile acid co-transporter in HepG2 cells [8]. Exposure to LXR agonist did not alter cellular cholesterol levels in OCT2-CHO-K1 cells, illustrating that the inhibitory effect caused by LXR agonist was not associated with changes in cellular cholesterol levels.

To be certain that the inhibitory effect of GW3965 is LXRdependent mechanism, the effect the LXR blocking by its antagonist was determined. The inhibitory effect of GW3965 was attenuated by LXR antagonist indicating the inhibitory effects of LXR agonist required LXR activation. LXR requires RXR to form a heterodimer before regulating target genes [22]. Possibly, RXR activation potentiates the inhibitory effect of LXR. Investigating the role of LXR and RXR in regulating OCT2 activity, RXR agonist alone had no effect on OCT2 activity; however, when co-incubating OCT2-expressing cells with LXR and RXR agonist, further inhibition occurred. Therefore, RXR potentiated the effect of LXR on OCT2 transport function, likely acting through the LXR/RXR heterodimer. Although the heterologous cell system (OCT2-CHO-K1 cells) is widely used to study single transporters, the transfecting process can alter the characteristic of the cells. Therefore, the effects of LXR agonist on OCT2 transport function in renal proximal tubule cells endogenously expressing OCT2, RPTEC/TERT1 cells, were investigated, and the results were similar to the results in OCT2-CHO-K1 cells.

The transport function of OCT2 could be altered by changing of the affinity of the transporter with its substrate or the functional number of transporters [12]. Consequently, the inhibitory effect of LXR might be mediated by changing those factors. The mechanism by which LXR's effects was investigated using kinetic analysis. Using heterologous OCT2-

expressing cells, GW3965 decreased maximal transport; thus, LXR might inhibit OCT transport function by reducing the number of transporters at the membrane which could be a result of reduced transporter synthesis. We further determined whether LXR activation reduced expression of OCT2. Western blotting revealed activation of LXRs significantly decreased total and membrane protein expressions of OCT2 without change in mRNA, implying LXR activation decreases protein expression of transporters, and subsequently, reducing membrane expression by post transcriptional processes. However, the target of LXR in regulating OCT2 at post transcriptional process is unknown. This notion should be verified in the future.

To be certain, the data obtained from OCT2-expressing cell lines were relevant; the effect of LXR on the transport activity of OCT2 was further investigated in intact renal proximal tubule. Then, the effect of LXR on <sup>3</sup>H-MPP<sup>+</sup> uptake was validated in mouse renal cortex tissues that expressed LXR [47]. Consistent with in vitro findings, administration of T0901317, an active LXR agonist in the in vivo mouse model [20, 21] and decreased <sup>3</sup>H-MPP<sup>+</sup> uptake in RPTEC/TERT1 cells (supplement data), decreased <sup>3</sup>H-MPP<sup>+</sup> uptake into mouse cortical kidney slices. Although OCT2 plays a major role in renal proximal tubule of human, OCT1 and OCT3 also play a role in transport of cations in mouse renal proximal tubule [46]. Therefore, the possibility remains that LXR might regulate transport function of OCT1/3. As found in in vitro model, Western blot analysis revealed a significant reduction of OCT2 protein expression after LXR agonist treatment in mouse renal cortex; nonetheless, the mRNA expression of OCT2 was unchanged. Therefore, downregulation of OCT2 by LXR activation at post-transcription steps seems likely which is consistent with OCT2-expressing cells and other recently reports showing LXR agonists decreased protein expression of OAT1, CFTR, and Pit-2 proteins without affecting mRNA levels [5, 18, 35].

Since LXR is the key regulatory factor controlling energy metabolism [27], one may speculate LXR functions as a physiological link between cellular energy metabolism and clearance of organic compounds. The data obtained from this study may explain the pathological conditions of energy imbalance affecting the total profile of organic compound excretion. Given previous reports that type I and type II diabetes decrease the protein expression and function of OCT2 in rat kidneys [11, 30], and LXR is upregulated by hyperglycemia state [27], there is considerable data supporting the idea that LXR activation in high plasma glucose conditions might downregulate renal OCT2 expression. The downregulation may lead to decreased renal tubular uptake of organic cations and may alter of cationic drug pharmacokinetics.

In conclusion, we have demonstrated that LXR exerts an inhibitory effect on OCT2-mediated organic cation transport in OCT2-expressing cells and in an in vivo mouse model. Reduced OCT2 transport function is likely caused by



reduction protein expression without interfering mRNA level. Altogether, the data enhance understanding of renal excretion of organic cationic compounds during LXR activation states.

**Acknowledgements** This research project has been supported by the Thailand Research Funds and Mahidol University (grant no. RSA5780033 to Sunhapas Soodvilai) and the Royal Golden Jubilee (RGJ; grant no. PHD/0238/2553).

#### References

- Asavapanumas N, Kittayaruksakul S, Meetam P, Muanprasat C, Chatsudthipong V, Soodvilai S Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARalphaindependent pathways. Drug Metab Pharmacokinet 27:513–519
- Aschauer L, Carta G, Vogelsang N, Schlatter E, Jennings P (2015) Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol in Vitro 30:95–105. doi: 10.1016/j.tiv.2014.12.003
- Baranowski M (2008) Biological role of liver X receptors. J Physiol Pharmacol 59(Suppl 7):31–55
- Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352
- Caldas YA, Giral H, Cortazar MA, Sutherland E, Okamura K, Blaine J, Sorribas V, Koepsell H, Levi M Liver X receptoractivating ligands modulate renal and intestinal sodium-phosphate transporters. Kidney Int 80:535–544
- Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484
- Ciarimboli G, Schlatter E (2005) Regulation of organic cation transport. Pflugers Archiv: Eur J Physiol 449:423–441. doi:10.1007/s00424-004-1355-5
- Dias V, Ribeiro V (2007) The expression of the solute carriers NTCP and OCT-1 is regulated by cholesterol in HepG2 cells. Fundam Clin Pharmacol 21:445–450
- Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JA (2008) Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci U S A 105:13445–13450
- Gabbi C, Kong X, Suzuki H, Kim HJ, Gao M, Jia X, Ohnishi H, Ueta Y, Warner M, Guan Y, Gustafsson JA Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor beta. Proc Natl Acad Sci USA 109:3030–3034
- Grover B, Buckley D, Buckley AR, Cacini W (2004) Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther 308:949–956
- Guckel D, Ciarimboli G, Pavenstadt H, Schlatter E Regulation of organic cation transport in isolated mouse proximal tubules involves complex changes in protein trafficking and substrate affinity. Cell Physiol Biochem 30:269–281
- Hosoyamada M, Sekine T, Kanai Y, Endou H (1999) Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Phys 276:F122–F128

- Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996)
   An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731
- Jonker JW, Schinkel AH (2004) Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 308:2–9
- Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH (2003) Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/ Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 23:7902–7908
- Kimura N, Okuda M, Inui K (2005) Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm Res 22:255–259
- Kittayaruksakul S, Soodvilai S, Asavapanumas N, Muanprasat C, Chatsudthipong V Liver X receptor activation downregulates organic anion transporter 1 (OAT1) in the renal proximal tubule. Am J Physiol Renal Physiol 302:F552–F560
- Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251
- Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, Walter M, Roth MG, Lazo JS (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer's disease. J Biol Chem 280:4079–4088
- Kuipers I, Li J, Vreeswijk-Baudoin I, Koster J, van der Harst P, Sillje HH, Kuipers F, van Veldhuisen DJ, van Gilst WH, de Boer RA Activation of liver X receptors with T0901317 attenuates cardiac hypertrophy in vivo. Eur J Heart Fail 12:1042–1050
- Liang Y, Lin S, Beyer TP, Zhang Y, Wu X, Bales KR, DeMattos RB, May PC, Li SD, Jiang XC, Eacho PI, Cao G, Paul SM (2004) A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J Neurochem 88:623–634
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408
- Maeda T, Oyabu M, Yotsumoto T, Higashi R, Nagata K, Yamazoe Y, Tamai I (2007) Effect of pregnane X receptor ligand on pharma-cokinetics of substrates of organic cation transporter Oct1 in rats. Drug Metab Dispos 35:1580–1586
- 25. Malo C, Berteloot A (1991) Analysis of kinetic data in transport studies: new insights from kinetic studies of Na(+)-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus. J Membr Biol 122:127–141
- 26. Matsuzaki T, Morisaki T, Sugimoto W, Yokoo K, Sato D, Nonoguchi H, Tomita K, Terada T, Inui K, Hamada A, Saito H (2008) Altered pharmacokinetics of cationic drugs caused by down-regulation of renal rat organic cation transporter 2 (Slc22a2) and rat multidrug and toxin extrusion 1 (Slc47a1) in ischemia/reperfusion-induced acute kidney injury. Drug Metab Dispos 36:649–654
- Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A, Saez E (2007) The nuclear receptor LXR is a glucose sensor. Nature 445:219–223
- Morello F, de Boer RA, Steffensen KR, Gnecchi M, Chisholm JW, Boomsma F, Anderson LM, Lawn RM, Gustafsson JA, Lopez-Ilasaca M, Pratt RE, Dzau VJ (2005) Liver X receptors alpha and beta regulate renin expression in vivo. J Clin Invest 115:1913–1922
- Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874



- Nowicki MT, Aleksunes LM, Sawant SP, Dnyanmote AV, Mehendale HM, Manautou JE (2008) Renal and hepatic transporter expression in type 2 diabetic rats. Drug Metab Lett 2:11–17
- Okuda M, Urakami Y, Saito H, Inui K (1999) Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim Biophys Acta 1417:224–231
- Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 102:17923–17928
- Peet DJ, Janowski BA, Mangelsdorf DJ (1998) The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev 8:571–575
- Pritchard JB (1995) Intracellular alpha-ketoglutarate controls the efficacy of renal organic anion transport. J Pharmacol Exp Ther 274:1278–1284
- Raksaseri P, Chatsudthipong V, Muanprasat C, Soodvilai S Activation of liver X receptors reduces CFTR-mediated Cl(-) transport in kidney collecting duct cells. Am J Physiol Renal Physiol 305:F583–F591
- Schomig E, Spitzenberger F, Engelhardt M, Martel F, Ording N, Grundemann D (1998) Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Lett 425:79–86
- Shu Y, Bello CL, Mangravite LM, Feng B, Giacomini KM (2001)
   Functional characteristics and steroid hormone-mediated regulation
   of an organic cation transporter in Madin-Darby canine kidney
   cells. J Pharmacol Exp Ther 299:392–398
- Soodvilai S, Chatsudthipong A, Chatsudthipong V (2007) Role of MAPK and PKA in regulation of rbOCT2-mediated renal organic cation transport. Am J Physiol Renal Physiol 293:F21–F27
- Soodvilai S, Jia Z, Fongsupa S, Chatsudthipong V, Yang T Liver X receptor agonists decrease ENaC-mediated sodium transport in collecting duct cells. Am J Physiol Renal Physiol 303:F1610–F1616
- Thomas J, Bramlett KS, Montrose C, Foxworthy P, Eacho PI, McCann D, Cao G, Kiefer A, McCowan J, Yu KL, Grese T, Chin WW, Burris TP, Michael LF (2003) A chemical switch regulates

- fibrate specificity for peroxisome proliferator-activated receptor alpha (PPARalpha) versus liver X receptor. J Biol Chem 278:2403–2410. doi:10.1074/jbc.M209629200
- Thomas MC, Tikellis C, Burns WC, Thallas V, Forbes JM, Cao Z, Osicka TM, Russo LM, Jerums G, Ghabrial H, Cooper ME, Kantharidis P (2003) Reduced tubular cation transport in diabetes: prevented by ACE inhibition. Kidney Int 63:2152–2161
- Urakami Y, Kimura N, Okuda M, Inui K (2004) Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 21:976–981
- Wang L, Sweet DH Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease. Aaps J 15:53–69
- 44. Wieser M, Stadler G, Jennings P, Streubel B, Pfaller W, Ambros P, Riedl C, Katinger H, Grillari J, Grillari-Voglauer R (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 295:F1365–F1375. doi:10.1152/ajprenal.90405.2008
- Wright SH (2005) Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol Appl Pharmacol 204:309–319
- Wright SH, Dantzler WH (2004) Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 84:987–1049
- 47. Zhang Y, Zhang X, Chen L, Wu J, Su D, Lu WJ, Hwang MT, Yang G, Li S, Wei M, Davis L, Breyer MD, Guan Y (2006) Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. Am J Physiol Renal Physiol 290:F1065–F1073
- Zhao C, Dahlman-Wright K Liver X receptor in cholesterol metabolism. J Endocrinol 204:233–240
- Zhou X, Yin Z, Guo X, Hajjar DP, Han J Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux. J Biol Chem 285: 6316–6326



Liver X receptor activation inhibits SGLT2-mediated glucose transport in human renal proximal tubular cells

Pattira Chonlaket<sup>1,2</sup>, Teerasak Wongwan<sup>2</sup>, and Sunhapas Soodvilai<sup>2</sup>

<sup>1</sup>Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University,

Bangkok, 10400, Thailand

<sup>2</sup>Research Center of Transporter Protein for Medical Innovation, Department of Physiology, Faculty of
Science, Mahidol University, Bangkok, 10400, Thailand

Type of article: Regular article

Running Title: LXR regulates renal glucose transport

Keywords: kidney, regulation, SGLT2, nuclear receptor, hyperglycemia

**Total word count:**5471

**Total references: 34** 

This is an Accepted Article that has been peer-reviewed and approved for publication in the Experimental Physiology, but has yet to undergo copy-editing and proof correction. Please cite this article as an Accepted Article; <u>doi: 10.1113/EP086478</u>.

Accepted Articl

Corresponding Author: Sunhapas Soodvilai, Ph.D. Department of Physiology, Faculty of Science,

Mahidol University Rama VI Road, Bangkok 10400 Thailand

Phone

number: +66-2-2015516 Fax number: +66-2-3547154 Email:sunhapas.soo@mahidol.ac.th

Subject Area: Renal

**New findings** 

What is the central question of this study?

LXR has been reported to regulate several membrane transporters. It is imperative to invextigate whether LXR activation regulates SGLT2-mediated glucose transport in human renal proximal tubular cells.

What is the main finding and its importance?

LXR activation inhibits SGLT2 transport function in normal and high glucose conditions via reduction of SGLT2 protein expression.

Abstract

Liver X receptors (LXRs) are members of a nuclear receptor family consisting of two isoforms, LXR- $\alpha$  and LXR- $\beta$ . They play a major role in energy metabolism including lipid and glucose metabolism. Recent studies reported LXRs regulate plasma glucose although the mechanism is still uncertain. The present study investigated whether LXR activation regulates sodium glucose cotransporter2 (SGLT2) in human renal proximal tubular cells. LXR agonists, T0901317 and GW3965, inhibited SGLT2-

mediated glucose uptake in concentration-dependent manners. The effect of T0901317 and GW3965 was attenuated by a LXR antagonist, fenofibrate. Activation of retinoid X receptor (RXR) agonist, bexarotene, potentiates the inhibitory effect of these ligands. Thus, the inhibitory effect of LXR agonists on SGLT2 was mediated and facilitated by LXR and RXR activation, respectively. In addition, the inhibitory effect of LXR agonists was not mediated by cytotoxicity. Exposing HK-2 cells, renal proximal tubular cell line, to LXR agonists significantly reduced the maximal transport rate ( $J_{max}$ ) of SGLT2 without any effect on transporter affinity. Western blot analysis revealed LXR activation significantly decreased protein expression of SGLT2 with no change in mRNA level. In addition, LXR activation inhibited canagliflozin-sensitive short-circuits current which represents SGLT2-mediated glucose transport in polarized human renal proximal tubular cell monolayer. Furthermore, LXR activation inhibited transport function of SGLT2 in hyperglycemic conditions. As such, this study represents the evidence of LXR activation's inhibitory effect on glucose transport in human renal proximal tubular cells.

## Introduction

Glucose homeostasis enlists complex mechanisms, coordinating regulation of several organs including liver, pancreas, adipose tissue, muscle, and kidney. Kidneys play an important role in regulating glucose homeostasis by preventing glucose excretion (Vallon, 2015). Filtered glucose is reabsorbed back into blood circulation via renal proximal tubule using two steps requiring renal glucose transporters. First, glucose is taken up from tubular lumen into renal tubular cells via sodium-glucose co-transporters (SGLTs), including SGLT2 and SGLT1, localized on the brush border membrane of proximal tubule S1/S2 and S3 segments, respectively (Wright, 2001). SGLT-mediated

glucose transport is a secondary active process, moving glucose into the cell using energy derived from the sodium electrochemical potential gradient across the brush border membrane and maintained by the transport of intracellular sodium into the blood via Na<sup>+</sup>-K<sup>+</sup>-ATPase at the basolateral membrane. In contrast, GLUT facilitate passive transport of glucose across membranes and do not require an energy source (Brown, 2000). Although, SGLT1 expressed in renal proximal tubular cells, SGLT2 plays more significant roles in apical glucose uptake (Hediger *et al.*, 1995; Wright, 2001).

Mutations of SGLT2 (SLC5A2) have been found to be associated with impaired renal glucose reabsorption leading to glucosuria with no intestinal phenotype and kidney function impairment (Santer & Calado, 2010). Expression and function of SGLT2 was increased in type 2 diabetes (Rahmoune *et al.*, 2005) and diabetic rodent models (Vallon *et al.*, 2013). The mechanisms involved in upregulation of SGLT2 in type 2 diabetes are little known. Studies reported that SGLT2 activity is stimulated by protein kinase C (PKC) and protein kinase A (PKA) (Ghezzi & Wright, 2012) whereas expression of SGLT2 is upregulated by hepatocyte nuclear factor-1α (HNF-1α) (Freitas *et al.*, 2008). The involvement of SGLT2 in type 2 diabetes raises the rationale of SGLT2 inhibitor development as diabetic drugs. Several evidences reported that SGLT2 inhibitors reduced hyperglycemia in type 2 diabetes via insulin-independent mechanism in the absence of clinically relevant hypoglycemia (Chao & Henry, 2010).

Liver X receptors (LXRs) are members of a nuclear receptor family consisting of two isoforms, LXR- $\alpha$  and LXR- $\beta$  (Willy *et al.*, 1995). LXRs play a major role in glucose, lipid, and cholesterol metabolism (Costet *et al.*, 2000; Repa *et al.*, 2002; Tontonoz & Mangelsdorf, 2003; Mitro *et al.*, 2007). LXR activation controls glucose homeostasis by reducing liver glucose output and increasing peripheral glucose elimination. Wild-type mice treated with LXR agonist downregulate

gluconeogenesis in their livers through a decrease in the expression of the key enzymes like phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) (Ding *et al.*, 2014). In addition to energy metabolism, LXR activation has been reported to regulate kidney function. LXRs have been shown to regulate membrane transport proteins including cystic fibrosis transmembrane conductance (CFTR) (Raksaseri *et al.*), epithelial sodium channel (ENaC) (Soodvilai *et al.*, 2012), organic anion transporter 1 (OAT1) (Kittayaruksakul *et al.*, 2012), sodium-phosphate cotransporter (Na<sup>+</sup>-Pi) (Caldas *et al.*, 2011), and aquaporin (AQP) 1 and AQP2 (Gabbi *et al.*, 2012; Lu *et al.*, 2016).

Therefore, it is possible that LXR activation regulates glucose transport in the renal proximal tubular cells by modulating transport function of SGLT2. Although SGLT2 inhibition by its inhibitors is found to improve diabetes, downregulation of SGLT2 such as a reduction of protein expression may be a novel treatment of DM. The present study investigated the role of LXRs in regulation of SGLT2-mediated glucose uptake in human renal proximal tubular cells.

### **Materials and Methods**

#### Chemicals

T0901317 was purchased from Cayman Chemical, Inc. (MI, USA). GW3965, fenofibrate, cytochalasin B, deoxy-D-glucose, thiazolyl tetrazolium bromide (MTT), and phlorizin were purchased from Sigma Aldrich (MO, USA). Canagliflozin was obtained from Hang Zhou API Chem. (Zhejiang, China). Deoxy-D-glucose, 2-[1, 2-3H (N)] ([3H]-2DG) was purchased from PerkinElmer (MA, USA). SGLT 1 and 2 antibodies were purchased from Santa Cruz Biotechnology, Inc. (TX, USA). Secondary

antibody, horseradish peroxidase-conjugated goat anti rabbit IgG, and hyperfilm enhanced chemiluminescence (ECL) were purchased from Millipore (Bangkok, Thailand). All other chemicals were purchased from standard sources and were generally the highest purity available.

## **Cell Culture**

Human renal proximal tubular cell lines including human kidney-2 (HK-2) and RPTEC/TERT1 cells were obtained from American Type Culture Collection (ATCC). HK-2 cells were cultured in low glucose Dulbecco's Modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS; Millipore), 100 U/ml penicillin, and 100  $\mu$ g/ml streptomycin. RPTEC/TERT1 cells were cultured in 1:1 mixture of DMEM and Ham's F-12 nutrient mix supplemented with 5  $\mu$ g/ml insulin, 5  $\mu$ g/ml transferrin, 5  $\mu$ g/ml sodium selenite, 100 U/ml penicillin, 100  $\mu$ g/ml streptomycin, 10  $\mu$ g/ml epithelial growth factor, and 36  $\mu$ g/ml hydrocortisone. Cells were cultured routinely in a T75 flask at 37 °C in a 5% CO<sub>2</sub> and 95% humidified atmosphere.

# **Cell viability assay**

Cell viability was evaluated by measuring mitochondrial activity of cells with MTT assay. HK-2 cells were seeded on 96-well tissue culture microplates at  $1.5 \times 10^4$  cells/well for 48 h and then the cells were incubated with different treatments for 24 h. After incubation, medium was replaced with 100  $\mu$ l/well of MTT solution (0.5 mg/ml in serum-free medium) and further incubated for 2 h. The MTT solution was removed and the formazan salt form was dissolved by 100  $\mu$ l/well of DMSO and an absorbance at 570 nm was measured by microplate reader. The data were shown as percentage of cell viability compared with control group.

#### Measurement of SGLT2-mediated glucose uptake in renal proximal tubular cells

SGLT2-mediated glucose uptake was determined using radioactive labelled glucose analogue, [³H]-2DG, as a tracer. The accumulation of radioactive labeled glucose analogue in the cells was measured by scintillation counting. The cells were seeded on 24-well plates to allow cells to form a confluent monolayer. Then, the cell monolayer was washed twice with 1 ml of glucose transport buffer solution (140 mM NaCl, 5 mM KCl, 2.5 mM CaCl<sub>2</sub>, 1 mM MgSO<sub>4</sub>, 1 mM KH<sub>2</sub>PO<sub>4</sub>, 10 mM HEPES) and incubated for a further 15 minutes. After the preincubation period, 200 µl of glucose transport buffer containing 10 nM [³H]-2DG and 10 µM cytochalasin B, a non-selective inhibitor of GLUTs, was added to each well for 10 min. Cells were washed three times with 1 ml icecold transport buffer to stop transport activity of transporter. The cells were then solubilized with 0.4 N NaOH in 10% SDS for at least 4 h, and neutralized with 1 N HCl. The samples were transferred to scintillation vials for measurement of accumulated radioactivity. Uptake rates were expressed as moles per square centimeter of surface area of confluent monolayer. The SGLT2-mediated uptake was calculated by subtraction of the total uptake of [³H]-2DG from uptake of [³H]-2DG in the presence of 10 µM canagliflozin.

### **Kinetic study**

Cells were incubated with glucose transport buffer containing [ $^3$ H]-2DG plus various concentrations of non-radioactive 2-deoxy glucose (10  $\mu$ M-10,000  $\mu$ M) for 10 minutes. Cellular uptake was calculated as fmol/min/cm $^2$  of the confluent monolayer surface. The kinetic parameters including maximal rate of transport ( $J_{max}$ ) and  $K_t$  were determined by Michaelis-Menten kinetics of competitive interaction of unlabeled and labeled of [ $^3$ H]-2DG as defined by the following equation (Malo & Berteloot, 1991)

$$J = \frac{J_{\text{max}} [*T]}{K_{\text{t}} + [*T] + [T]} + C$$

J represents the rate of [ $^3$ H]-2DG transport at the concentration of [ $^3$ H]-2DG equal to [ $^*$ T];  $J_{max}$  represents the maximum rate of glucose transport;  $K_t$  represents the concentration of unlabeled glucose that resulted in half-maximal transport; [T] represents the concentration of unlabeled glucose in the transport reaction; and C is a constant that represents the component of total glucose uptake that is not saturated over the range of substrate concentrations tested.

## **Electrophysiological study**

Short-circuit current (*Isc*) was used to monitor electrogenic transport function of SGLT in polarized human renal proximal tubular cells, RPTEC/TERT1 cells. Cells were cultured on Snapwell insert for at least 21 days before experiments. Only the cell monolayers that developed resistance >  $100~\Omega$ .cm² were used for transport studies. The confluent monolayer was assembled to Ussing chambers and the spontaneous potential difference across monolayer was clamped to 0 mV. The short-circuit current (*Isc*) was recorded continuously using a VC600 voltage clamp (Physiologic Instruments, CA, USA) with Ag/AgCl electrodes and 3 M KCl agar bridges. The apical and basolateral sides of the cell monolayers were bathed in physiological solution containing (mM) 117 NaCl, 25 NaHCO<sub>3</sub>, 4.7 KCl, 1.2 MgSO<sub>4</sub>, 2.5 CaCl², 1.2 KH<sub>2</sub>PO<sub>4</sub>, 11 D-glucose at pH 7.4. The solution was maintained at 37 °C and bubbled with 95 % O<sub>2</sub> and 5% CO<sub>2</sub> to maintain pH. To measure SGLT2-mediated Na<sup>+</sup>/glucose flux, 10  $\mu$ M of cangliflozin was added into the apical part. The transport function of SGLT2 is shown as canagliflozin-sensitive *Isc*.

#### Western blot analysis

Cells were lysed with modified RIPA lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM NaF, 1 mM Na<sub>2</sub>VO<sub>4</sub>, 1 mM PMSF, and protease inhibitor cocktail). After 20 minutes of incubation on ice and being centrifuged at 12,000 rpm for 20 minutes, the supernatants were collected and the protein concentration was measured by BCA (Bicinchoninic acid) method. Equal amounts of protein samples were mixed with 5X loading dye buffer and heated for 5 minutes at 95°C. Protein was resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and subsequently, transferred to a nitrocellulose membrane by electroblotting. Membranes were incubated overnight at 4°C with anti-SGLT1 and anti-SGLT2 (Santa Cruz), anti-actin (Sigma Aldrich), and anti-GAPDH (Cell Signaling). Signals were detected using the enhanced chemiluminescence procedure.

## **Real-time PCR**

PCR amplification was then performed using the KAPA SYBR FAST master mix (KAPA Biosystem, Wobun, MA, USA). The primers (forward/reverse) of hSGLT1 and hSGLT2 used in this study are followings: hSGLT1 5-CATTCGCAGGACAGCTCTTAC-3/5-ACCAAAACCAGGGCATTCCA-3, hSGLT2 5-AGTGCCTGCTCTGGTTTTGT-3/ 5-GAGGCTGTGGCTTATGGTGT-3, hGAPDH 5-CAAGCTCATTTCCTGGTATGAC-3/5-GTGTGGTGGGGGGACTGAGTGTGG-3. The values of cycle threshold ( $C_T$ ) were obtained from ABI Prism 7500 Sequence Detection System (Applied Biosystems) and the mRNA expressions were determined using  $2^{-\Delta ACt}$  method (Livak & Schmittgen, 2001).

#### **Results**

#### LXR agonists inhibit SGLT2-mdiared glucose uptake in renal proximal tubular cells

As previously demonstrated, LXRQ and LXRB are expressed and activated in the presence of LXR agonist in HK-2 cells (Fongsupa et al., 2015). Expression of SGLT1 and SGLT2 in HK-2 cells was determined by qPCR. Our data showed that mRNA expression of SGLT2 was about 9 fold higher than that of SGLT1. Transport function of SGLT2 in HK-2 cell was verified using phlorizin and canagliflozin, a non-selective and a selective SGLT2 inhibitor, respectively. The results showed that canagliflozin significantly inhibited [3H]-2DG uptake in this cell model. Phlorizin produced a slightly more inhibition of [3H]-2DG uptake compared with canagliflozin indicating SGLT2 plays a major route of glucose uptake (Fig. 1A). Next, the effect of LXR agonists on SGLT2-mediated uptake in HK-2 cells was determined. Confluent cell monolayer of HK-2 cells was 12 h fasted and treated with vehicle (0.1% DMSO) or various concentrations of synthetic LXR agonists, T0901317 (1-10 μM) and GW3965 (1-5  $\mu$ M), for 24 h in serum-free medium. At the end of the incubation period, 10 minute uptake of glucose into HK-2 cells was measured. As shown in Fig. 1B, T0901317 and GW3965 inhibited SGLT2mediated [<sup>3</sup>H]-2DG transport in a concentration-dependent manner. To verify whether a decrease in the transport activity of HK-2 cells was caused by toxicity, HK-2 cells were incubated for 24 h with vehicle (0.1% DMSO) or LXR agonists including T0901317 (1-  $10 \mu M$ ) and GW3965 (1-  $5 \mu M$ ) for 24 h. Treating cells with T0901317 and GW3965 produced no effect on viability of HK-2 cells following 24 h treatment (Fig. 1C).

### LXR agonists' inhibitory effect on SGLT2 requires LXR-RXR activation

To determine whether the inhibitory effect of LXR agonist on SGLT2-mediated glucose uptake involved a LXR-dependent mechanism, fenofibrate (a LXR antagonist) (Thomas *et al.*, 2003),

was applied to HK-2 cells. The cells were fasted for 12 h, then the cells were treated with 6 different treatments: 1) vehicle (0.1% DMSO), 2) 10  $\mu$ M T0901317, 3) 5  $\mu$ M GW3965, 4) 10  $\mu$ M fenofibrate, 5) 10  $\mu$ M T0901317 plus 10  $\mu$ M fenofibrate, and 6) 5  $\mu$ M GW3965 plus 10  $\mu$ M fenofibrate. For group 5 and 6, the cells were pretreated with 10  $\mu$ M fenofibrate for 4 h, followed by incubation with T0901317 and GW3965 plus fenofibrate for a further 24 h. After incubation, SGLT2-mediated glucose uptake was determined. As expected, T0901317 and GW3965 reduced SGLT2-mediated glucose uptake. Interestingly, fenofibrate significantly attenuated the inhibitory effects of both T0901317 and GW3965 (Fig. 2A). LXR usually heterodimerizes with RXR, we then determined whether RXR activation potentiated the inhibitory effect of LXR. The cells were incubated with 6 different conditions including vehicle (0.1% DMSO), 10  $\mu$ M T0901317, 5  $\mu$ M GW3965, 1  $\mu$ M bexarotene (an agonist of RXR), 5) 10  $\mu$ M T0901317 plus 1  $\mu$ M bexarotene, and 6) 5  $\mu$ M GW3965 plus 1  $\mu$ M bexarotene. The results showed that bexarotene produced additional inhibitory effects of both T0901317 and GW3965 (Fig. 2B).

## Mechanism of LXR activation regulating SGLT2-mediated glucose uptake

HK-2 cell monolayers were incubated with vehicle (0.1% DMSO), 10  $\mu$ M T0901317, and 5  $\mu$ M GW3965 for 24 h. Then, kinetic parameters including  $J_{max}$  and  $K_t$ , were determined. As shown in Fig. 3, treating HK-2 cell monolayer with T0901317 and GW3965 significantly decreased  $J_{max}$ , but not  $K_t$  of SGLT-mediated glucose uptake compared with vehicle control.

# Effect of LXR activation on SGLT2 protein expression

Since, LXR activation inhibited [ $^3$ H]-2DG in HK-2 cells, we then determined whether it affected protein expression of SGLT2; confluent monolayers of HK-2 cell were fasted for 12 h and then exposed to vehicle (0.1% DMSO), T0901317 (10  $\mu$ M), and GW3965 (5  $\mu$ M) for 24 h. The

expression of SGLT2 was measured by Western blot analysis. As shown in Fig. 4, T0901317 and GW3965 significantly reduced SGLT2 expression in HK-2 cells compared with vehicle. To determine whether down-regulation of SGLT2 was a result of gene expression, the effect of LXR activation on SGLT2 mRNA expression was determined. The results showed that treating HK-2 cell monolayers with T0901317 or GW3965 for 24 h had no effect on mRNA expression of SGLT2.

## Effect of LXR activation on glucose transport in polarized renal proximal tubular cells

SGLT2-mediated glucose uptake is a rate-limiting step for transepithelial transport of glucose in renal proximal tubular cells. To determine the effect of LXR activation on transepithelial glucose transport, a polarized cell system (RPTEC/TERT1 cells) was employed. First, the expression of SGLT2 in RPTEC/TERT1 cells that expressed LXR $\alpha$ / $\beta$  (Wongwan *et al.*, 2017) was determined. The results showed that RPTEC/TERT1 cells highly expressed SGLT2 whereas weakly expressed SGLT1 (Fig. 5A). Next, the effect of LXR activation of SGLT2-mediated glucose transepithelial transport was determined by using electrophysiological study. Treating cell monolayer growing on membrane inserts with 5 and 10  $\mu$ M T0901317 for 24 h significantly reduced canagliflozin-sensitive *lsc* compared with vehicle treatment (Fig. 5B).

# Effect of LXR activation on glucose uptake in renal proximal tubular cell under high glucose conditions

The effect of LXR agonist on SGLT2-mediated uptake in HK-2 cells was determined after culturing cells in a high concentration of glucose (25 mM) media for at least 3 passages. As shown in Fig. 6A, SGLT2-mediated [<sup>3</sup>H]-2DG uptake in cells cultured in high glucose condition was higher than cells cultured in normal glucose condition without changing of protein expression of SGLT2. To determine whether LXR activation could inhibit SGLT2 function under hyperglycemic conditions, the

effect of LXR agonists on SGLT2 was investigated. Cell monolayers were treated with vehicle (0.1% DMSO) or LXR agonists, T0901317 (10  $\mu$ M) and GW3965 (5  $\mu$ M), for 24 h in serum-free medium. Treating cells with LXR agonists, T0901317 and GW3965, significantly inhibited SGLT2-mediated [ $^3$ H]-2DG uptake (Fig. 6B) and decreased protein expression of SGLT2 compared with vehicle-treated group (Fig. 6C).

#### Discussion

Renal SGLT2-mediated glucose reabsorption is a late-limiting step for renal glucose reabsorption which is a key mechanism to prevent glucose loses (Hediger *et al.*, 1995; Wright, 2001; Chao & Henry, 2010). Accordingly, factors affecting transport function of SGLT2 will affect total renal glucose reabsorption and plasma glucose. LXRs, as transcription factors, likely regulate the expression of the genes that encode those membrane transport proteins (Caldas *et al.*, 2011; Gabbi *et al.*, 2012; Kittayaruksakul *et al.*, 2012; Soodvilai *et al.*, 2012; Raksaseri *et al.*, 2013; Lu *et al.*, 2016). Therefore, the role of LXR in regulating renal glucose transporter-mediated uptake of glucose was investigated using pharmacological approaches. Although, SGLT1 was found in HK-2 cells (Solocinski *et al.*, 2015), contribution of SGLT1 in glucose transport in HK-2 cells may be minor as evidence showed that mRNA expression of SGLT1 in HK-2 cells was very low compared with SGLT2. The present study unveils the novel finding that LXR activation inhibits transport function of SGLT2 in human renal proximal tubular cells. Uptake studies revealed exposing HK-2 cells to LXR agonists (T0901317 and GW3965) for 24 h led to a significant inhibition of SGLT2-mediated glucose uptake. As such, LXRs might be involved in regulation of glucose uptake in human renal proximal tubular cells. The inhibitory effect of LXR agonist was attenuated by LXR antagonist indicating the inhibitory

effects of LXR agonist required LXR activation. In addition, both LXR agonists had no significant effect on cell viability; therefore, the inhibitory effect of these agonists was not mediated by their toxicities. RXR is a common partner of LXRs (Wan *et al.*, 2000); we then determined whether RXR potentiated the LXR's effect. In the presence of agonists of both RXR and LXR, an additive of suppression of SGLT2 transport function was observed. These results indicate that LXR-RXR activation inhibits transport function of SGLT2 in mediating glucose transport in renal proximal tubular cells. It should be noted that the results obtained from the present study rely on the pharmacological approaches, the molecular approaches, LXR or RXR knockdown cells, may be needed to strengthen the conclusion.

Reduced membrane expression or affinity of transporters could contribute to reduced transport function of glucose membrane transporters (Ghezzi & Wright, 2012). To determine the mechanism responsible for down-regulation of glucose transport induced by LXR activation, a kinetic study was performed. Cells treated with LXR agonists for 24 h had significantly reduced  $J_{\text{maxo}}$  but not  $K_{\text{t}}$ , for SGLT2 suggesting down-regulation of SGLT2 may be mediated by reduced functional SGLT2 expression on cell membrane. Reduction of SGLT2 expression could be a result of reduced the transporter synthesis. Western blot analysis revealed activation of LXRs by T0901317 and GW3965 significantly decreased total protein expression of SGLT2, indicating LXR activation decreases protein expression of SGLT2. Although, mRNA levels of SGLT2 would be expected to reduce in response to activation of LXR, interestingly, SGLT2 mRNA expression was not altered following LXR activation. These data indicated that SGLT2 might not a direct target of LXR activation for transcriptional regulation. It has been reported that LXR activation regulates low-density lipoprotein receptor (LDLR) via post-transcriptional regulation of lipoprotein receptors through ubiquitination (Sorrentino & Zelcer, 2012). Therefore, modification of translational processes or protein degradation in the

post-translational process of SGLT2 was suspected to be the target of LXR activation. This notion requires further investigation.

Since, SGLT2 mediating glucose uptake is a rate-limiting step for renal glucose reabsorption in intact tubule, electrophysiological study was used to confirm the effect of LXR activation on SGLT2-mediated glucose in polarized renal proximal tubular cell monolayer which mimics the intact cell monolayer of renal proximal tubular cells. Although, HK-2 cells show characteristics of renal proximal tubular cells, low transepithelial electrical resistance (TEER) is observed when this cell line is cultured on membrane insert (Wieser *et al.*, 2008). A new model of renal proximal tubular cell for determining transepithelial transport, RPTEC/TERT1 cell line, was piloted because it shows expression of SGLT2 and high TEER when cultured on membrane insert. As expected, LXR agonist reduces canagliflozin-sensitive Isc representing sodium glucose cotransport mechanism. These data indicate that LXR activation inhibits SGLT2-mediated transport of glucose in polarized renal proximal tubular cell monolayer.

Although, hyperglycemic conditions increase glucose transport in renal proximal tubular cells via induction of expression of SGLT2 and GLUT2 to increase glucose reabsorption in diabetic mice (Marks *et al.*, 2003; Vallon *et al.*, 2013), our data showed that high glucose condition did not stimulate protein expression of SGLT2 but increased transport function in HK-2 cells. This phenomenon might be the adaptive process to limit glucose accumulation because the experimental model used in this study is nonpolarized cells that have no vectorial transport of glucose. Hyperglycemic condition-induced upregulation of PKC and PKA might implicate the increase in SGLT2 function (Park *et al.*, 2001; Ghezzi & Wright, 2012; Deb *et al.*, 2017). We next determine whether the inhibitory effect of LXR on SGLT2 transport function was existed in the hyperglycemic condition. The

determined. Our data showed that transport function and protein expression of SGLT2 was reduced under LXR activation in high glucose condition as found in low glucose. These data indicate that LXR impacts regulation of SGLT2 in hyperglycemic condition.

In summary, LXR activation regulates renal glucose transport by decreasing SGLT2 transport function in human renal proximal cells in both normal and high glucose conditions. The inhibitory effect of LXR activation on glucose transport is mediated by down-regulation of SGLT2 protein expression. This is evidence reporting LXR involvement in regulation of SGLT2 mediating glucose transport in human renal proximal tubular cells.

#### **Author contributions**

S.S. conceived and designed the experiments; P.C., T.W. and S.S. performed the experiments and analysed the data; S.S. wrote the paper; P.C., T.W, and S.S reviewed and approved the submission.

## **Acknowledgements**

This research project has been supported by grants from the Thailand Research Funds and Mahidol University (grant no. RSA5780033 to Sunhapas Soodvilai).

# **Conflict of interest**

There is no conflict of interest in this study

#### References

- Brown GK (2000). Glucose transporters: structure, function and consequences of deficiency. *J Inherit Metab Dis* **23,** 237-246.
- Caldas YA, Giral H, Cortazar MA, Sutherland E, Okamura K, Blaine J, Sorribas V, Koepsell H & Levi M (2011). Liver X receptor-activating ligands modulate renal and intestinal sodium-phosphate transporters. *Kidney Int* **80**, 535-544.
- Chao EC & Henry RR (2010). SGLT2 inhibition--a novel strategy for diabetes treatment. *Nat Rev Drug Discov* **9**, 551-559.
- Costet P, Luo Y, Wang N & Tall AR (2000). Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. *J Biol Chem* **275**, 28240-28245.
- Deb DK, Bao R & Li YC (2017). Critical role of the cAMP-PKA pathway in hyperglycemia-induced epigenetic activation of fibrogenic program in the kidney. *Faseb j* **31**, 2065-2075.
- Ding L, Pang S, Sun Y, Tian Y, Yu L & Dang N (2014). Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. *Int J Endocrinol* **2014**, 751859.
- Fongsupa S, Soodvilai S, Muanprasat C, Chatsudthipong V & Soodvilai S (2015). Activation of liver X receptors inhibits cadmium-induced apoptosis of human renal proximal tubular cells. *Toxicol Lett* **236**, 145-153.
- Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira-Souza M, Bordin S & Machado UF (2008). Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. *Endocrinology* **149**, 717-724.

- Gabbi C, Kong X, Suzuki H, Kim HJ, Gao M, Jia X, Ohnishi H, Ueta Y, Warner M, Guan Y & Gustafsson JA (2012). Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor beta. *Proc Natl Acad Sci U S A* **109**, 3030-3034.
- Ghezzi C & Wright EM (2012). Regulation of the human Na+-dependent glucose cotransporter hSGLT2. *Am J Physiol Cell Physiol* **303**, C348-354.
- Hediger MA, Kanai Y, You G & Nussberger S (1995). Mammalian ion-coupled solute transporters. *J Physiol* **482**, 7S-17S.
- Kittayaruksakul S, Soodvilai S, Asavapanumas N, Muanprasat C & Chatsudthipong V (2012). Liver X receptor activation downregulates organic anion transporter 1 (OAT1) in the renal proximal tubule. *Am J Physiol Renal Physiol* **302**, F552-560.
- Livak KJ & Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402-408.
- Lu X, Wang F, Xu C, Soodvilai S, Peng K, Su J, Zhao L, Yang KT, Feng Y, Zhou SF, Gustafsson JA & Yang T (2016). Soluble (pro)renin receptor via beta-catenin enhances urine concentration capability as a target of liver X receptor. *Proc Natl Acad Sci U S A* **113**, E1898-1906.
- Malo C & Berteloot A (1991). Analysis of kinetic data in transport studies: new insights from kinetic studies of Na(+)-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus. *J Membr Biol* **122**, 127-141.
- Marks J, Carvou NJ, Debnam ES, Srai SK & Unwin RJ (2003). Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. *J Physiol* **553**, 137-145.

- Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A & Saez E (2007). The nuclear receptor LXR is a glucose sensor. *Nature* **445**, 219-223.
- Park SH, Choi HJ, Lee JH, Woo CH, Kim JH & Han HJ (2001). High glucose inhibits renal proximal tubule cell proliferation and involves PKC, oxidative stress, and TGF-beta 1. *Kidney Int* **59**, 1695-1705.
- Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G & Brown J (2005). Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulindependent diabetes. *Diabetes* **54**, 3427-3434.
- Raksaseri P, Chatsudthipong V, Muanprasat C & Soodvilai S (2013). Activation of liver X receptors reduces CFTR-mediated Cl(-) transport in kidney collecting duct cells. *Am J Physiol Renal Physiol* **305**, F583-591.
- Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H & Mangelsdorf DJ (2002). Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. *J Biol Chem* **277**, 18793-18800.
- Santer R & Calado J (2010). Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. *Clin J Am Soc Nephrol* **5**, 133-141.
- Solocinski K, Richards J, All S, Cheng KY, Khundmiri SJ & Gumz ML (2015). Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. *Am J Physiol Renal Physiol* **309**, F933-942.
- Soodvilai S, Jia Z, Fongsupa S, Chatsudthipong V & Yang T (2012). Liver X receptor agonists decrease ENaC-mediated sodium transport in collecting duct cells. *Am J Physiol Renal Physiol* **303**, F1610-1616.

Sorrentino V & Zelcer N (2012). Post-transcriptional regulation of lipoprotein receptors by the E3ubiquitin ligase inducible degrader of the low-density lipoprotein receptor. *Curr Opin Lipidol* **23**, 213-219.

Thomas J, Bramlett KS, Montrose C, Foxworthy P, Eacho PI, McCann D, Cao G, Kiefer A, McCowan J, Yu KL, Grese T, Chin WW, Burris TP & Michael LF (2003). A chemical switch regulates fibrate specificity for peroxisome proliferator-activated receptor alpha (PPARalpha ) versus liver X receptor. *J Biol Chem* **278**, 2403-2410.

Tontonoz P & Mangelsdorf DJ (2003). Liver X receptor signaling pathways in cardiovascular disease. *Mol Endocrinol* **17**, 985-993.

Vallon V (2015). The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66, 255-270.

Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC & Rieg T (2013). Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. *Am J Physiol Renal Physiol* **304**, F156-167.

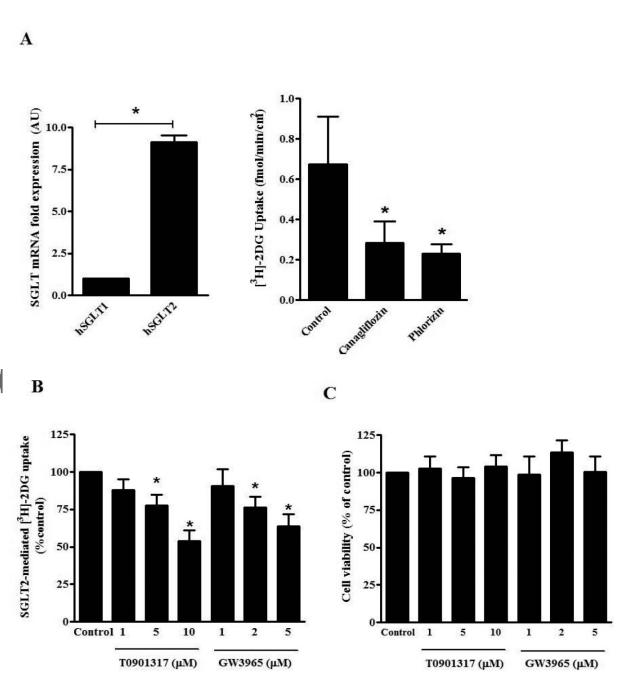
Wan YJ, An D, Cai Y, Repa JJ, Hung-Po Chen T, Flores M, Postic C, Magnuson MA, Chen J, Chien KR, French S, Mangelsdorf DJ & Sucov HM (2000). Hepatocyte-specific mutation establishes retinoid X receptor alpha as a heterodimeric integrator of multiple physiological processes in the liver. *Mol Cell Biol* **20**, 4436-4444.

Wieser M, Stadler G, Jennings P, Streubel B, Pfaller W, Ambros P, Riedl C, Katinger H, Grillari J & Grillari-Voglauer R (2008). hTERT alone immortalizes epithelial cells of renal proximal tubules

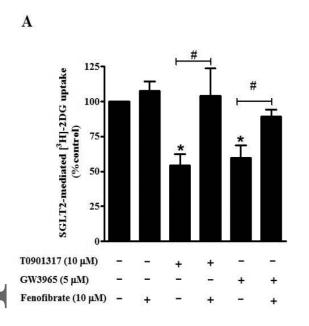
without changing their functional characteristics. *Am J Physiol Renal Physiol* **295,** F1365-1375.

Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA & Mangelsdorf DJ (1995). LXR, a nuclear receptor that defines a distinct retinoid response pathway. *Genes Dev* **9**, 1033-1045.

Wongwan T, Kittayaruksakul S, Asavapanumas N, Chatsudthipong V & Soodvilai S (2017). Activation of liver X receptor inhibits OCT2-mediated organic cation transport in renal proximal tubular cells. *Pflugers Arch* **469**, 1471-1481.


Wright EM (2001). Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 280, F10-18.

### **Figure legends**


Figure 1 Effect of LXR agonists (T0901317 and GW3965) on [ $^3$ H]-2DG uptake in HK-2 cells. (A) mRNA expression and transport function of SGLT2 in HK-2 cells; canagliflozin (10  $\mu$ M) and phlorizin (200  $\mu$ M) was used to inhibit SGLT2 and SGLT1/2, respectively. Data are shown as mean  $\pm$  SD of 3 experiments. (B) HK-2 cells were incubated with vehicle (0.1% DMSO), T0901317 (1-10  $\mu$ M), and

GW3965 (1-5  $\mu$ M) for 24 h. (C) The effect of T0901317 and GW3965 on cell viability of HK-2 cells.

Error bars are mean  $\pm$  SD of 5 different experiments compared with control. \*P<0.01 compared with control.



**Figure 2** Effect of LXR activation on SGLT2-mediated [ $^3$ H]-2DG uptake. The effect of LXR antagonist (fenofibrate) (A) and RXR agonist (bexarotene) (B), on the inhibitory effect of T0901317 and GW3965. The data are shown as mean  $\pm$  SD. Data are obtained from 5 experiments. \*P<0.05 compared to vehicle-treated cells and  $^\#P$ <0.05 compared to T0901317- and GW3965-treated cells.



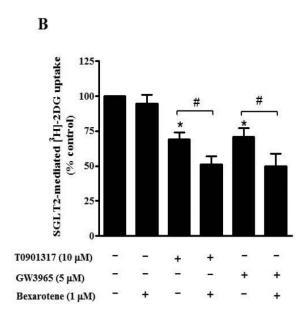
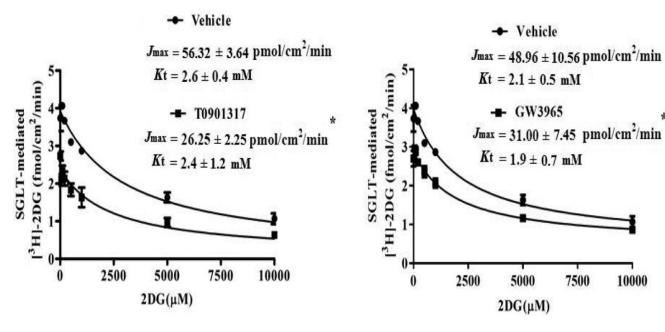



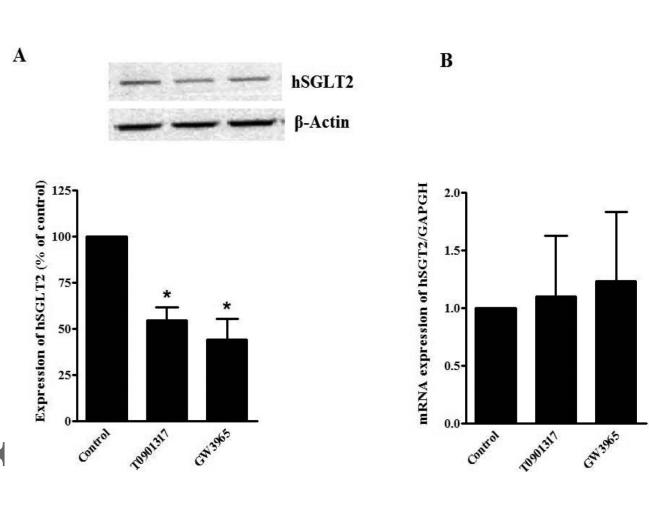

Figure 3 Effect of LXR activation on kinetic parameters of SGLT-mediated glucose transport into HK-2 cells. Cells were treated with vehicle (0.1% DMSO) or LXR agonists (10  $\mu$ M T0901317 or 5  $\mu$ M

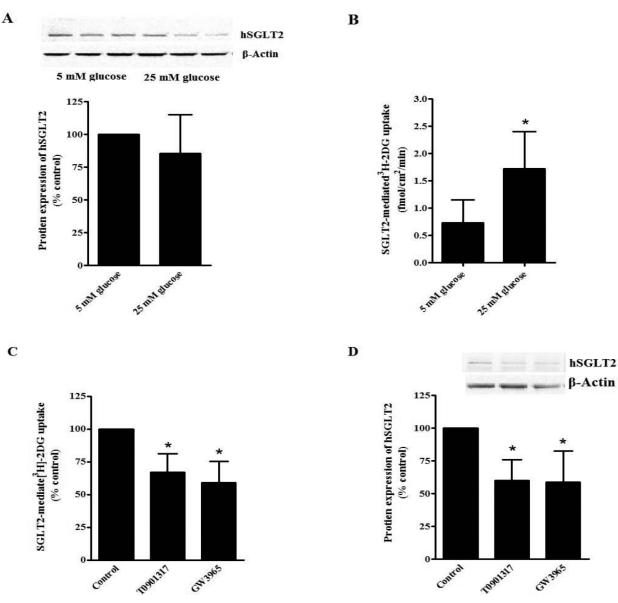
GW3965) for 24 h. The kinetic parameters were determined following the treatment period. Values of  $K_t$  and  $V_{max}$  are means  $\pm$  SD of 3 independent experiments. \*P<0.05 compared with control.



**Figure 4** Effect of T0901317 (10  $\mu$ M) and GW3965 (5  $\mu$ M) on SGLT2 protein expression and mRNA expression in HK-2 cells. (A) Representative bands of SGLT2 and β-actin are shown. Band intensities of SGLT2 are represented as bar graphs of 5 independent experiments. (B) mRNA expression of This article is protected by copyright. All rights reserved.

hSGLT2 determined by qPCR obtained of 3 experiments. \*P<0.05 compared with vehicle-treated cells.





Figure 5 Effect of LXR activation on glucose transport in RPTEC/TERT1 cells. (A) mRNA and protein expression of SGLT1 and SGLT2 in RPTEC/TERT1 cells and (B) the effect of LXR on canagliflozin-

sensitive Isc. Data are expressed as means ± SD of 3 experiments and data for each experiment

which was obtained from at least 3 inserts. \*P<0.05 compared with control.



**Figure 6** Effect of LXR on [ $^3$ H]-2DG uptake mediated by SGLT2 in HK-2 cells under high glucose conditions. Protein expression (A) and transport function (B) of SGLT2 in low (5 mM) and high (25 mM) glucose condition (n=3). Effect of LXR agonists on SGLT2-mediated [ $^3$ H]-2DG glucose uptake (C) and protein expression of SGLT2 (D) under high glucose conditions. Error bars are mean  $\pm$  SD of 4 independent experiments. \**P*<0.05 compared with control.

