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Abstract
Project Code: RSA5780065
Project Title: “ldentification of candidate biomarkers for
synchronous hypopharyngeal and esophageal cancer in Southern
Thais using oncoproteomics analysis”
Investigator: Natini Jinawath, MD, PhD, DABMGG Faculty of
Medicine Ramathibodi Hospital, Mahidol University
E-mail Address: jnatini@hotmail.com
Project Period: June 16, 2014 - March 29, 2019
Abstract: Patients with head and neck squamous cell carcinoma
(HNSCC) are at increased risk of developing a second primary
malignancy (SPM), which is associated with poor prognosis and
early death. To help improve clinical outcome, we aimed to
identify biomarkers for SPM risk prediction using the routinely
obtained formalin-fixed paraffin-embedded (FFPE) tissues of the
index HNSCC. LC-MS/MS was initially performed for candidate
biomarker discovery in 16 pairs of primary HNSCC FFPE tissues
and their matched normal mucosal epithelia from HNSCC
patients with or without SPM. The 32 candidate proteins
differentially expressed between HNSCCs with and without SPM
were identified. Among these, 30 selected candidates and seven
more from literature review were further studied using NanoString
nCounter gene expression assay in an independent cohort of 49
HNSCC patients. Focusing on the p16-negative cases, we
showed that a multivariate logistic regression model comprising
the expression levels of ITPR3, KMT2D, EMILIN1, and the
patient’'s age can accurately predict SPM occurrence with 88%
sensitivity and 75% specificity. Furthermore, using Cox
proportional hazards regression analysis and survival analysis,
high expression levels of /TPR3 and DSG3 were found to be
significantly associated with shorter time to SPM development




(log-rank test P = 0.017). In summary, we identified a set of
genes whose expressions may serve as the prognostic
biomarkers for SPM occurrence in HNSCCs. In combination with
the histopathologic examination of index tumor, these biomarkers
can be used to guide the optimum frequency of SPM surveillance,
which may lead to early diagnosis and better survival outcome.

Keywords: BIOMARKERS / SECOND PRIMARY
MALIGNANCY / HEAD AND NECK SQUAMOUS CELL
CARCINOMA / LC-MS/MS / NANOSTRING



Research summary

1. Objectives

1) To discover molecular carcinogenesis mechanisms
underlying primary head and neck squamous cell carcinomas
(HNSCC) and their synchronous or metachronous second
primary malignancies (SPM)

2) To identify candidate biomarkers specific to synchronous/
metachronous SPM, which can be used as SPM early
detection biomarkers

3) To develop clinical test for SPM early detection and
optimize SPM surveillance protocol for primary HNSCC
patients based on their primary tumor tissues’ protein/gene
expression profiles (precision cancer medicine)

2. Introduction

Head and neck cancer is the seventh most common cancer
worldwide, with over 600,000 new cases in 2012 (1). About 90%
of all head and neck cancers are squamous cell carcinomas
(HNSCC). HNSCC is associated with an elevated likelihood of
developing second primary malignancy (SPM), which is defined
as a second malignancy that presents either simultaneously or
after the diagnosis of an index tumor. The overall incidence of
SPMs in HNSCC patients has been reported to range from 5.6%
to 35.9% (2, 3), with an annual incidence ranging from 3.2% to
4% (4). The common sites of SPM are the head and neck, lung,
and esophagus (5). Several risk factors for SPM in HNSCC
patients have been reported including the location of index tumor,
patient age, cigarette smoking, alcohol consumption, and betel
nut chewing (4).



Despite the progress in cancer molecular biology, the exact
underlying molecular mechanism of SPM is still poorly
understood. Field cancerization is one of the widely accepted
concepts that explains SPM tumorigenesis (6). According to this
concept, an area of the upper aerodigestive tract is considered
as a field that is continuously exposed to a diversity of
carcinogens resulting in multiple precancerous genetic changes,
even though the mucosal epithelia still retain their normal
histologic appearances. These precancerous fields may
eventually become malignant leading to multiple SPM
occurrences (7). Recently, Curtius et al. has reviewed the
evolutionary process that results in field creation (8). In this
context, a cancerized field is both enabled by and causes
alterations in the tissue microenvironment. Measurements of the
cancerized field evolution hold considerable promise as a new
class of biomarker for cancer risk.

SPMs are known to have a major negative impact on
HNSCC patients. The prognoses of HNSCC patients who
develop SPM are worse than those with index malignancies
alone (9), and it is also a leading long-term cause of mortality in
HNSCC patients (10). Early diagnosis of SPMs often allows less
invasive or curative treatments. However, current clinical
screening and surveillance methods including panendoscopy and
PET/CT scan still have clinical limitations (11, 12). Panendoscopy
is a relatively invasive procedure and can result in serious
complications such as esophageal perforation (11). While
PET/CT scan demonstrates high sensitivity for detecting
synchronous SPMs, its findings can be false-positive, and may
miss small and/or superficial synchronous SPMs (13).
Furthermore, the attempts to use chemoprevention for SPM risk
reduction have so far been unsuccessful (14). For these reasons,



novel screening approaches such as molecular biomarkers for
SPM risk prediction are very much needed.

Advances in omics technology have resulted in a better
understanding of HNSCC carcinogenesis, which in turn lead to
the development of novel molecular biomarkers for HNSCC that
can be successfully translated into routine clinical practice.
Human papillomavirus (HPV) has emerged as an important
etiologic factor of HNSCCs, particularly in oropharyngeal cancers.
HPV status is currently used as a prognostic biomarker for
HNSCC; HPV-positive HNSCCs have a favorable prognosis and
may benefit from less aggressive treatment regimens (15). The
recently released 8t edition of the American Joint Committee on
Cancer (AJCC) staging manual, Head and Neck section, has
acknowledged the importance of using p16 immunostaining as a
surrogate marker of HPV status, and issued a distinct staging
classification for HPV-associated oropharyngeal cancer,
separating it from cancer of the oropharynx related to other
causes (16). Despite these advances, to date, very few studies
have focused on SPM, particularly on a biomarker discovery
aspect (17, 18), and so far none has been successfully translated
into clinics.

In this study, we hypothesized that the cancerized fields in
HNSCC patients with or without SPM are diverse, leading to
distinct protein or gene expression patterns that can be exploited
as biomarkers. We then aimed to identify molecular biomarkers
for SPM risk prediction using the routinely collected formalin-fixed
paraffin-embedded (FFPE) tissue biopsies of the index HNSCCs.
Using liquid chromatography-tandem mass spectrometry (LC-
MS/MS), we identified a set of candidate biomarkers differentially
expressed in the primary tumors of HNSCC patients with or
without SPM after a minimum follow-up period of three years.
Next, we utilized a NanoString nCounter gene expression assay



to study the ability of selected biomarkers to predict SPM
development and the time to SPM occurrence in another
independent cohort of HNSCC patients. Our study permitted the
development of the first tissue-based gene-expression biomarker
panel for SPM that can easily be implemented in the routine
pathology practice.

3. Materials and Methods

Patient selection and sample description

All patients were clinically diagnosed with head and neck
cancer by the otolaryngologists or oncologists and had a
histopathological diagnosis of squamous cell carcinoma. The
patients with only a single primary tumor after a minimum follow-
up period of approximately three years were defined as “Pindex
group”. The HNSCC patients who developed SPM during the
same follow-up period were defined as “Pspm group”. The clinical
diagnosis of SPM was made based on the applied
recommendation from Warren and Gates’ criteria (19) as follows:
i) both index and secondary tumors had histologic confirmation of
squamous cell carcinoma; ii) the two malignancies were
anatomically separated by more than 2 cm of normal mucosa; iii)
the possibility of the SPM being a metastasis from the index
tumor was excluded. SPM was further classified as synchronous
SPM when the diagnosis of both index tumor and SPM was made
simultaneously or within 6 months after the index tumor, or as
metachronous SPM when the diagnosis of SPM was made longer
than 6 months after the index tumor (20).

Cohort 1 consisted of 16 HNSCC patients from
Songklanagarind Hospital (Prince of Songkla University,
Songkhla, Thailand). A pair of FFPE tissue blocks containing the



index tumor and normal mucosal epithelia was collected for each
patient, resulting in a total of 32 samples for proteomic analysis.
In addition, all SPM samples were previously confirmed to be
SPMs, not metastatic tumors, by comparing the loss of
heterozygosity (LOH) patterns identified by single nucleotide
polymorphism array between each index HNSCC and its
matched SPM (21). Cohort 2 was an independent multi-center
cohort comprising 49 HNSCC patients from Ramathibodi Hospital
(Mahidol University, Bangkok, Thailand), Siriraj Hospital (Mahidol
University, Bangkok, Thailand), and Songklanagarind Hospital.
Only FFPE tissue blocks containing the index tumor were
collected for each patient. This study was approved by the
Institutional Review Board (IRB) of all participating hospitals.

Sample preparation

FFPE tissue sections were prepared. Previously archived
hematoxylin and eosin stained tissue slides were evaluated for
tumor content and density by pathologists. The areas with at least
70% tumor cells and normal mucosal epithelial cells were marked
for manual macrodissection using a needle tip or scalpel. For LC-
MS/MS, dissected FFPE tissue was prepared for protein
digestion using the filter-assisted sample preparation (FASP)
method (22) and physically disrupted by sonication. For
NanoString gene expression assay, total RNA was isolated using
High Pure FFPET RNA Isolation Kit (Roche) according to the
manufacturer's instructions.



Liquid Chromatography-Tandem Mass Spectrometry
(LC-MS/MS)

LC-MS/MS analysis was performed as a service by
Bioproximity, LLC (Chantilly, VA, USA). In brief, proteins were
digested with trypsin, and digested peptides were desalted using
C18 stop-and-go extraction (STAGE) tips (23). Peptides were
then fractionated by strong anion exchange STAGE tip
chromatography (24). LC was performed on an Easy nanolLC Il
HPLC system (Thermo Fisher Scientific). The LC was interfaced
to a dual pressure linear ion trap mass spectrometer (LTQ Velos,
Thermo Fisher Scientific) via nano-electrospray ionization. MS
data were processed and the Mascot Generic Format (MGF) files
were searched using X!"Tandem, k-score scoring algorithms and
OMSSA (open mass spectrometry search algorithm). The
common Repository of Adventitious Proteins (cRAP) and the
Ensembl release 69 were used as protein databases for the
searches. Proteins were required to have 2 or more unique
peptides across the analyzed samples with E-value scores of
0.01 or less and protein E-value scores of 0.0001 or less (25).
The spectral count of each identified protein was initially scaled
by the total and/or maximum peptide counts of the same patient.
All scaled spectral counts were added with 0.01 to avoid division
by zero, and each scaled spectral count of tumor tissue was then
divided by the scaled spectral count of the corresponding normal
tissue from the same patient to normalize interindividual
variations.

Immunohistochemistry (IHC)

A Leica BOND-MAX™ automated staining system (Leica
Biosystems) was utilized according to the manufacturer’s protocol
for anti-CALML3 (1:1000, PA5-30232, Thermo Fisher Scientific),
and anti-CKMT2 (1:200, PA5-28591, Thermo Fisher Scientific). A



Ventana BenchMark XT automated staining system (Ventana
Medical Systems) was used according to the manufacturer’s
instructions for anti-DSG3 (1:50, MAB1720, R&D Systems), anti-
PLOD1 (1:50, NBP2-31885, Novus Biologicals), and anti-p16
(CINtec® p16 Histology, 705-4713, Ventana Medical Systems).
Blinded scoring was independently performed by two pathologists
using the same scoring criteria (Supplementary Table S1).

Digital gene expression quantification using
NanoString nCounter™

A NanoString nCounter™ Gene Expression Assay
(Nanostring Technologies) with the custom-designed CodeSets
containing 40 genes was performed following the standard
protocol. Data processing was conducted using nSolver Analysis
Software v3.0 (NanoString Technologies). Background correction
was made by subtracting the “mean+2SD” value of the negative
controls from the raw counts. Adjusted raw counts were then
normalized with the geometric mean of the positive controls in
each sample. The resulting data was normalized again using the
geometric mean of three housekeeping genes. Normalized data
was standardized using mean centering then divided by the
standard deviation to obtain the Z scores for subsequent
statistical analyses.

Bioinformatic and statistical analysis

Hierarchical cluster analysis (HCA) using average linkage
method was performed using Cluster 3.0
(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm),
and visualized by Java TreeView version 1.1.6r4
(http://jtreeview.sourceforge.net).  Functional annotation  of
candidate proteins was performed using DAVID 6.8




(https://david.ncifcrf.gov/). Statistical analyses were performed
using PASW Statistics version 18.0 for Windows (SPSS Inc.),
GraphPad Prism version 6.0 for Windows (GraphPad Software),
R-statistical software version 3.3.1 (R Foundation, http://www.r-
project.org), and ROCR package (26).

4. Results

Subject characteristics

Two independent cohorts of HNSCC patients were included
in this study. Among the 16 patients in cohort 1, 5 (31.25%) and
11 (68.75%) patients belonged to the Pindex and Pspm groups,
respectively. The median duration of follow-up to ensure no
occurrence of SPM was 30.8 (29.7-86.4) months in the Pingex
group. All SPMs were esophageal squamous cell carcinomas. No
statistically significant difference was detected between the
clinical characteristics of patients in the Pindex and Pspm groups.

In cohort 2, of the 49 HNSCC patients examined, 21
(42.86%) and 28 (57.14%) patients belonged to the Pindex and
Pspm groups, respectively. The median duration of follow-up was
54.1 (35.3-94.5) months in the Pindex group. All SPMs were
squamous cell carcinomas located in the esophagus, head and
neck, or lung. The patients’ age was the only clinical
characteristic with statistically significant difference between the
Pindex and Psem groups (P = 0.027). The detailed
clinicopathological and demographical characteristics of patients
in both cohorts are summarized in Table 1.

The HPV status of HNSCC tumors was also evaluated using
p16 IHC. The difference in HPV status based on p16-positivity
between the Pingex and Pspm groups from the two cohorts was not
statistically significant (Fisher's exact test P = 1.000). Of note,



only 3 cases out of the 49 HNSCCs in cohort 2 were p16-positive.
The p16 IHC results are shown in Supplementary Table S2.

LC-MS/MS analysis and validation by IHC

The detailed experimental outline of this study is
summarized in Figure 1. We first performed LC-MS/MS in 16
pairs of tumor-normal FFPE tissues from Pindex and Pspm groups
(cohort 1) as a means to discover candidate biomarkers for SPM.
A total of 2,816 proteins were initially identified. Proteins detected
in less than 10% of all samples were then filtered out, leaving a
total of 2,101 proteins for unsupervised hierarchical cluster
analysis (HCA). The resulted dendrogram showed that these
protein profiles could correctly classify the tumor and normal
tissue samples (Figure 2A). We further investigated the protein
profiles within the tumor or normal tissue subgroups separately
whether they could correctly define each sample as Pindex Or Pspm
by performing HCA of differentially expressed proteins (t-test P <
0.05). The results interestingly demonstrated that Pindex and Pspw
samples could be accurately clustered in both tumor and normal
tissue subgroups (Supplementary Figure S1).

In addition, IHC analysis of representative proteins was
performed to validate the accuracy of LC-MS/MS results. Four
proteins that were at least 2-fold up- (PLOD1) or down-regulated
(CKMT2, DSG3, CALML3) in tumors as compared to normal
tissues, and expressed in more than half of the samples, were
selected. The results demonstrated that IHC analysis showed the
same up- or down-regulated trend between normal and tumor
tissues as in the LC-MS/MS data in 3 of 4 proteins (DSG3,
CALML3, PLOD1) (Figure 2B-C).

Identification of candidate proteins biomarkers for SPM



To screen for the differentially expressed proteins between
HNSCC patients with and without SPM, the protein expression
ratio of tumor to matched normal tissue of each patient was
analyzed. The inclusion criteria for candidate proteins included: i)
proteins expressed in more than 50% of the samples, ii) proteins
showing at least 3-fold difference in expression level between the
Pindex and Pspm groups, and iii) proteins exhibiting statistically
significant differential expression between the two groups (t-test
P < 0.05). Based on these criteria, 32 candidate proteins were
identified (Supplementary Table S3). HCA using expression ratio
of these proteins demonstrated that all cohort 1 samples could be
correctly divided into Pindex and Pspm groups (Figure 3).

We further carried out gene-annotation enrichment analysis
using DAVID 6.8 to identify enriched biological functions of the
candidate proteins. Among the up-regulated proteins in Pspwm
samples, the statistically significant gene ontology (GO) term (P <
0.001) with highest enrichment score (3.88) was “intermediate
filament” (KRT37, KRT12, KRT86, KRT24). The other significant
GO terms (P < 0.05) were “cytoplasm” (UBE2N, PA2G4, S100A7,
ARPC2, SERPINB5, TRIM29, CRABP2, EIF5A, RPS20, AHNAK,
KRT24), and “poly(A) RNA binding” (UBE2N, PA2G4, EIF5A,
RPS20, AHNAK). In contrast, the significant GO terms with
highest enrichment score (1.31) among the down-regulated
proteins were “extracellular exosome” and “extracellular matrix”
(PTGES3, PLOD1, FBLN2, UGDH, CSRP1, ECM1, EMILIN1) (P
< 0.01) (Figure3 and Supplementary Table S4A-B).

Development of a predictive model for SPM occurrence
by NanoString nCounter gene expression analysis
Considering the difficulties in translating tissue-based
guantitative protein biomarkers into clinical practice, we set out to
alternatively utilize a NanoString nCounter gene expression



assay to optimize the biomarker selection in an independent
cohort (cohort 2). The 40-gene custom panel consisted of the 30
candidate proteins (of the 32 candidates, two did not have
specific CodeSets available), 3 housekeeping genes, and 7
frequently mutated genes in HNSCCs with synchronous nodal
metastasis or metachronous recurrence from literature review (27,
28) (Supplementary Table S5). HPV-positive and HPV-negative
HNSCCs are known to exhibit different clinical and molecular
characteristics (16). Since the number of p16-positive cases in
our cohort was limited (3 out of 49 cases), we focused on the 46
p16-negative HNSCC patients for further analyses.

To identify biomarkers that could accurately determine the
development of SPM, univariate logistic regression analysis of
the standardized NanoString gene expression levels and selected
clinical variables of the 46 p16-negative HNSCC patients was
carried out. The expression levels of three genes (/ITPR3, FATI,
KMT2D) and the patient's age at diagnosis were statistically
significantly associated with the development of SPM (P < 0.05)
(Figure 4A). The strongest risk factor for the development of SPM
was high /TPR3 level. An increase in one standard deviation (SD)
of /ITPR3 level was associated with 3.27 times higher risk of SPM
development (OR = 3.27; 95%CI [1.36-11.04]; P = 0.025). Other
significant risk factors included high FAT7 (OR = 2.25; 95%CI
[1.13-5.49]; P = 0.038) and KMTZ2D levels (OR = 2.20; 95%CI
[1.10-5.18]; P = 0.043). To minimize the effect of small sample
size, we performed 5,000 permutation tests to correct for non-
asymptotic properties of P-values by reshuffling the observed
data. The resulting P-values were reported as empirical P-values.
The analysis showed that the expression levels of two more
genes (EMILINT and ECMT1) were also statistically significantly
associated with SPM development (empirical P < 0.05). The
results of univariate logistic regression of all genes are shown in



Supplementary Table S6. Comparing between Pindex and Pspwm
groups, the expression levels of ITPR3, FAT1, KMT2D, and
ECM1 were higher in Pspm samples, whereas the level of
EMILINT was lower (Figure 4B).

We next aimed to identify the best combination of
biomarkers for SPM development prediction by analyzing the six
statistically significant variables (P < 0.05 or empirical P < 0.05)
from univariate logistic regression (/ITPR3, FAT1, KMTZ2D,
EMILINT, ECM1, and patient’'s age) using multivariate logistic
regression analysis. The most parsimonious final model based on
Akaike's Information Criterion (AIC), Bayesian information
criterion (BIC), and deviance test was the combination of /TPRS3,
KMT2D, EMILINT, and the patient's age. The AIC, and BIC
values of this model were 50.82 and 59.96, respectively. The
detailed results of all multivariate logistic regression models and
the final selection are shown in Supplementary Table S7 and S8.

To evaluate the performance of the selected multivariate
model in predicting SPM occurrence, a receiver operating
characteristic (ROC) analysis was performed and an area under
the ROC curve (AUC) value was calculated as 0.86 (95% CI
[0.75-0.97]). Moreover, this model has a sensitivity of 88.46%, a
specificity of 75.00% and an accuracy of 82.61% for predicting
the occurrence of SPM. We further performed a leave-one-out
cross-validation over the same 46 samples (cohort 2) to assess
the robustness of our model. The resulting AUC, sensitivity,
specificity and accuracy values were 0.80 (95% CI [0.66-0.94]),
76.92%, 70.00%, 73.91%, respectively (Figure 4C). These new
values were not significantly different from the original results,
confirming the validity of our predictive model.

Identification of biomarkers for predicting time to SPM
development



Next, we focused on HNSCC patients who eventually
developed SPM (Pspm group) in order to identify the biomarkers
associated with time to subsequent SPM occurrence. Univariate
Cox regression analysis using gene expression levels of the 26
p16-negative HNSCCs from cohort 2 was performed. The levels
of ITPR3, DBI, AHNAK, IGHV3-49, CALML3, ARPC2, DSG3, and
KRT37 were significantly associated with a shorter time to SPM
development (P < 0.05) (Figure 5A). The strongest association
was with /TPR3 level. An increase in one SD of /TPR3 level was
associated with 2.68 times higher risk of SPM development at
any given time after the index tumor diagnosis (HR = 2.68;
95%CI [1.53-4.72]; P = 0.001). The complete results of univariate
Cox regression analysis including the empirical P-values
generated by 5,000 permutation tests are shown in
Supplementary Table S9. Using multivariate Cox proportional
hazards regression analysis, the best model was the combination
of ITPR3 and DSG3 (Supplementary Table S10). Moreover, by
dividing the standardized /TPR3 and DSG3 level by the sample
mean of the 26 Pspm patients, survival analysis showed that the
patients with p16-negative HNSCC whose index tumors exhibited
high /TPR3 and DSG3 expression levels had the shortest time
interval between the diagnosis of an index HNSCC to subsequent
SPM development (log-rank test P = 0.017) (median time
difference between the high and low risk groups based on four
combinations of /TPR3 & DSG3 levels = 394 days) (Figure 5B
and Supplementary Table S11).

Comparison of the expression pattern of candidate
biomarkers between protein and mRNA levels

It is known that protein and mRNA expression levels often
do not directly correlate (29). To investigate whether our
candidate genes originally discovered by proteomics study



shared the same differential expression patterns as their protein
equivalents, we compared the standardized gene expressions of
the top 10 statistically significant genes identified by logistic
regression and Cox regression analyses to their standardized
protein levels obtained from LC-MS/MS. Seven of the 10
biomarkers (AHNAK, ARPCZ2, CALML3, DBI, DSG3, EMILINT,
KRT12) demonstrated a similar up- or down-regulation trend
between mMRNA and protein levels in the tumor samples across
the two patient cohorts (Figure 6).

5. Discussion

In this study, we identified a set of tissue-based biomarkers
for predicting SPM occurrence and time to SPM development in
HNSCC patients using a combination of high-throughput shotgun
proteomics and targeted gene expression analysis. These SPM
risk prediction biomarkers can help guide clinical management of
HNSCC patients, particularly in the frequency of SPM
surveillance after the diagnosis of an index tumor, and the choice
of treatments. The expected long-term benefit is an improvement
in overall survival of HNSCC patients, especially those who are
eligible for curative or less invasive therapy. Moreover, one of the
clinical strengths of this study is the use of index HNSCC FFPE
tissue as the preferred material for biomarker discovery. This
specimen is routinely acquired for histopathological diagnosis,
which makes it easier to incorporate our biomarker panel into the
current clinical practice. We believe that our study is the first to
identify prognostic biomarkers that can accurately predict SPM
occurrence, thus opening the door to the possibility of clinical
application of tissue-based biomarkers for SPM in HNSCC
patients.



Mass spectrometry (MS) has been extensively used to
discover novel protein biomarkers (33). Proteins are the
functional molecules in the cell, and thus are the key players that
represent actual cellular physiology. For tissue-based protein
biomarkers, several laboratory methods such as IHC and
targeted MS can be used to develop the validated markers into
quantitative clinical assays but not without limitations. To date,
IHC is routinely performed in clinics to determine both the
qualitative and semi-quantitative aspects of a protein biomarker,
however it relies heavily on the quality of antibody and still lacks
interpretation standardization, resulting in poor reproducibility (34).
While targeted mass spectrometry can do marker multiplexing
and does not rely on antibody, it is technically complex and carry
a high developing cost (35). The development of tissue-based
high-throughput gene expression assays has greatly improved
the accuracy and reproducibility of quantitative measurement in
tissue biomarker studies. Currently, several such assays have
been integrated into clinical practice. For example, the Prosigna
breast cancer prognostic gene signature assay based on
NanoString nCounter analysis system was approved by U.S.
Food and Drug Administration in 2013 as a prognostic assay for
distant recurrence risk in breast cancer patients (36). In this study,
we sequentially utilized LC-MS/MS and NanoString nCounter
system in two independent cohorts of HNSCC patients in order to
identify the best set of SPM prediction biomarkers. In light of its
clinical translatability, technical reproducibility, and compatibility
with small biopsied FFPE tissues (37), the NanoString digital
gene expression platform was chosen for biomarker panel
development.

In cohort 1, the protein profiles were markedly different
between HNSCCs and their matched normal squamous mucosa,
which is in line with previous studies (17, 38). Interestingly, we



also observed distinct protein expression profiles between the
Pindex and Pspm subgroups when analyzing the tumor and normal
tissue samples separately. These results suggest that tissue
microenvironments of both tumor and surrounding normal
mucosal cells of the Pindex and Pspm patients may exhibit varying
levels of genetic diversity, resulting in distinct protein and/or gene
expression signatures. These findings strongly support our
hypothesis that the aberrant field effect in the biopsied index
tumors can be used to predict whether the patients are at risk of
subsequent SPM development. It is proposed that genetic
diversity can be utilized as a marker for field evolvability (8). In a
prospective pilot study by Roesch-Ely et al., by analyzing the
protein profiles of mucosal biopsies from the oropharynx,
hypopharynx, and three different regions of esophagus in
HNSCC patients and controls, tumor relapse was correctly
predicted (17). Taken together, these findings firmly established
an altered field as a promising cancer risk prediction marker.

Of note, among the candidate proteins differentially
expressed between Pindex and Pspv samples, up-regulated
proteins in Pspm group were significantly enriched with proteins
associated with intermediate filament, whereas those involved
with  extracellular matrix (ECM) were down-regulated.
Overexpression of keratins, the intermediate filament-forming
proteins of epithelial cells, is associated with enhanced tumor cell
migration and invasion through interactions with extracellular
environment (39). ECM proteins are associated with both tumor
suppression and tumor promotion. Interestingly, the majority of
down-regulated ECM proteins in Pspm samples including ECM1,
EMILIN1, and FBLN2 have demonstrated tumor suppressive
roles in various cancers (40-42). Based on our findings, aberrant
cytoskeletal activity and altered cell motility as a result of reduced



expression of ECM-associated tumor suppressors are among the
major molecular mechanisms underlying SPM development.
Recently, a large HNSCC genomics study from the Cancer
Genome Atlas (TCGA) consisting of mostly Caucasian patients
revealed that 64% and 6% of oropharyngeal and non-
oropharyngeal tumors, respectively, are HPV-positive (28). In
contrast, studies from Thailand reported that HPV status was
positive in only 26.09% of oropharyngeal cancers and in none of
the 80 non-oropharyngeal cancers tested (30). This fact is also
reflected in our largely p16-negative cohorts. In addition, multiple
studies have reported that patients with HPV-negative
oropharyngeal SCC have a higher risk of SPM development than
HPV-positive oropharyngeal SCC patients (31, 32). Since most of
our patients were p16-negative and HPV-negative HNSCC
patients are more likely to have SPM, we decided to focus on the
p16-negative cases in cohort 2 for our gene expression analyses.
For cohort 2, in addition to the candidate genes from our
proteomics study, seven genes from recent genomics literatures
(27, 28) were included in the gene expression panel. TP53 and
NOTCH1 are among the most commonly mutated genes in
HNSCC (28). A recent whole exome sequencing study of
HNSCCs has reported that C770rf104 and ITPR3 are specifically
mutated in synchronous nodal metastases but not in the primary
cancers, while DDRZ2 is exclusively mutated in metachronous
recurrent tumors (27). Additionally, FAT1 and KMT2D are found
to be mutated in both primary HNSCCs and their nodal
metastases (27). Hence, it is of interest to investigate whether
their expressions are associated with SPM risk. In this study, the
combination of three genes (ITPR3, KMT2D, EMILINT) and
patient’'s age allowed for the most accurate discrimination
between Pindex and Pspm groups with a sensitivity of 88.46% and a
specificity of 75.00%. Of note, while these numbers will require



validation in the future studies using larger sample size, our
panel showed a comparable level of performance to that of the
currently used clinical gene expression tests in breast cancer
including Oncotype Dx (sensitivity 71-85%, specificity $5-66% for
high and intermediate risk groups) and MammaPrint (sensitivity
83-92%, specificity 41-59%) (43).

In addition to its implications in HNSCC (27), increased
expression of ITPR3, a major intracellular Ca2+ release channel,
is associated with enhanced tumor proliferation and invasion in
breast and colorectal cancers (44, 45). KMTZ2D, which encodes a
histone H3 lysine 4 methyltransferase, is one of the most
commonly mutated genes in cancers (46). High KMT2D
expression has recently been reported to promote tumor
progression by inducing epithelial-mesenchymal transition (EMT),
and is a predictor of poor prognosis in esophageal squamous cell
carcinoma (Ref). In contrast, EMILIN1, which encodes an ECM
glycoprotein associated with the development of elastic tissues,
plays a suppressive role in tumor growth, tumor lymphatic vessel
formation, and metastatic spread to lymph nodes (47). A recent
report has suggested that a9p1 integrin, of which EMILIN1 is a
ligand, is the major integrin involved in regulating HNSCC cell
migration on ECM (47). In our study, increased /TPR3 and
KMTZ2D levels, as well as reduced EMILINT are significantly
associated with SPM in HNSCC. Their exact roles in SPM
tumorigenesis remain to be explored.

SPM can be classified into either a synchronous or
metachronous tumor. Since survival outcomes between
synchronous and metachronous SPM are different (5, 9), it is
clinically useful to be able to predict the time to SPM
development. The combination of two genes, /ITPR3 and DSG3,
was statistically significantly associated with the time to SPM
occurrence in our study. DSG3, a component of cell-cell



junctions, is overexpressed in HNSCCs, and its inhibition
significantly suppresses tumor growth (48). DSG3 has also been
proposed as a predictive biomarker for cervical lymph node
micrometastasis in oral cancer (Ref). In line with their roles in
promoting tumor proliferation and progression, high expression of
both /TPR3 and DSG3 contributed to the shortest time to SPM
development in patients with p16-negative HNSCC.

It is generally known that transcript levels by themselves are
by no means an accurate predicting factor for protein levels in
many scenarios (29). In this study, the majority of top candidate
biomarkers remarkably showed a similar pattern of differential
protein and mRNA expressions in the tumor samples across the
Pindex and Pspm subgroups of both cohorts. This finding partly
explains a smooth transition from protein to transcript level of this
particular set of markers in regard to SPM risk prediction, and
may also render future biomarker assay development the
flexibility and feasibility to use either gene expression or targeted
proteomic platforms.

According to the current follow-up recommendation by the
National Comprehensive Cancer Network (NCCN) guidelines for
head and neck cancers (version 2.2018) (49), history and
physical exams including a complete head and neck exam; and
mirror and fiberoptic examination should be performed at least
every three months during the first year, and at least every six
months in the second year. Based on our results, all patients with
high [/TPR3 and DSG3 levels developed SPM within
approximately 13 months (400 days) after the diagnosis of an
index tumor. Therefore, it may be beneficial to provide closer
monitoring of SPM for this group of patients during their first
years. Moreover, even though some synchronous SPMs develop
around the same time as the index tumor, they often cannot be
clinically detected until their sizes are big enough. The use of our



biomarkers should help increase early diagnosis of both
subclinical synchronous SPMs and subsequent metachronous
SPMs through a more rigorous surveillance protocol.

Limitations of this study include the relatively small sample
size and limited follow-up time to SPM occurrence. Others
include the use of a cohort of convenience where adequate FFPE
tissues was available, and the use of one tissue sample per
tumor, which may not represent intratumor heterogeneity.

In summary, our biomarkers demonstrate great potential as
a companion prognostic test for SPM risk prediction in routine
clinical practice. The expected long-term benefit of SPM early
detection is an improvement in overall survival of HNSCC
patients, especially those who are eligible for curative or less
invasive therapy. The results are compelling and warrant future
validation studies in larger HNSCC cohorts. The protein
signatures also hint at tumor-ECM interactions as a major player
in SPM tumorigenesis. Further functional studies of these
biomarkers may better clarify the clinical utility and their roles in
SPM development.
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7. Figure and Table Legends

Figure 1. Overview and experimental design of the
study. The biomarker identification steps were sequentially
conducted using liquid chromatography-tandem  mass
spectrometry (LC-MS/MS) in cohort 1 (Left), and NanoString
gene expression assay in cohort 2 (Right). Multiple statistical
analyses were performed to identify prognostic biomarkers for
second primary malignancy (SPM) occurrence and time to SPM
development. Pindex: index HNSCC without SPM, Pspm: index
HNSCC with SPM, FFPE: formalin-fixed paraffin-embedded, IHC:
immunohistochemistry, ROC: receiver operating characteristic.

Figure 2. Protein expression profiling by LC-MS/MS
and validation by IHC. (A) Dendrogram of unsupervised
hierarchical cluster analysis (HCA) of the 2,101 protein profiles
across the tumor samples and their matched normal mucosal
tissues in cohort 1. (B) Representative IHC images (x10
magnification) of the four selected proteins (CKMT2, DSGS3,
CALML3, and PLOD1). N: normal mucosal epithelial cells, T:
tumor cells. (C) Box plot showing the comparison between
normalized expression ratios (T/N) of the four selected proteins
analyzed by IHC and LC-MS/MS.

Figure 3. Hierarchical cluster analysis (HCA) of the
candidate proteins. A heatmap showing the 32 candidate
proteins differentially expressed between Pindex and Pspwm
subgroups with statistical significance (t-test P < 0.05) across
cohort 1 (Left), and the summary of gene-annotation enrichment
analysis of up- and down-regulated proteins of each subgroup
using DAVID bioinformatics resources 6.8 (Right). The color
scale is shown at the upper left corner. GO: Gene Ontology, Pindex:



index HNSCC without SPM, Pspm: index HNSCC with SPM,
*Statistically significant (P < 0.05), **Statistically significant (P <
0.01).

Figure 4. ldentification of biomarkers for SPM risk
prediction by NanoString gene expression analysis. (A)
The statistically significant variables identified by univariate
logistic regression across Pingex and Pspm subgroups of the p16-
negative tumors in cohort 2 (n = 46). The empirical P-values were
generated by 5,000 permutation tests. (B) Box plot depicting
expression levels of the five candidate genes identified by
univariate logistic regression across Pindex and Pspm subgroups of
the p16-negative tumors in cohort 2. All pairwise comparisons
show statistically significant differential expressions. (C) The
predictive performance of the selected multivariate logistic
regression model (/ITPR3-KMTZ2D-EMILIN1-patient's age) in
classifying SPM risk. The robustness of the model was assessed
by performing a leave-one-out cross-validation for each sample in
the same cohort. The unit of patient’'s age is year. *Statistically
significant (P < 0.05), **Statistically significant (P < 0.01), OR:
odds ratio, Cl: confidence interval, CV: cross-validation, AUC:
area under the ROC curve, SN: sensitivity, SP: specificity, AC:
accuracy.

Figure 5. Identification of biomarkers for predicting
time to SPM development. (A) The statistically significant
genes identified by univariate Cox regression across Pspw
patients with p16-negative tumor in cohort 2 (n = 26). The
empirical P-values were generated by 5,000 permutation tests.
(B) Kaplan-Meier curves showing the proportions of Pspwm
patients with p16-negative tumor stratified by standardized /TPR3
and DSG3 expression. High and low levels of /TPR3 and DSG3



expression were defined as standardized gene levels above or
below mean, respectively. Patients with high /TPR3 and high
DSG3 expression levels had the shortest time to SPM
development (log-rank test P = 0.017) HR: Hazard ratio, CI:
confidence interval, Statistically significant (P < 0.05),
“Statistically significant (P < 0.01).

Figure 6. Comparison of the expression patterns between
protein and mMRNA levels of the candidate biomarkers across the
Pindex and Pspm subgroups. The standardized NanoString gene
expressions of the top 10 statistically significant genes from
cohort 2 were compared to their standardized protein levels in the
tumor samples of cohort 1 as quantified by LC-MS/MS. Color
codes represent the standardized levels of protein and mRNA
expression from low (blue) to high (red).

Table

Table 1. Clinical characteristics of patients.
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Table 1.

Cohort 1 Cohort 2

Pindex Pspm Total P-value Pindex Pspm Total P-value
No. of patients 5 11 16 21 28 49
Age
mean (years) 61 57 58 0.387° 64 57 60 0.027*
<65 4 9 13 1.000° 11 22 33 0.053°
>65 1 2 3 10 6 16
Gender
Male 5 10 15 1.000° 18 28 46 0.072°
Female 0 1 1 3 0 3
Smoking status
Never 0 1 1 1.000° 2 2 4 1.000°
Former® 1 2 3 7 9 16
Active 2 5 7 11 16 27
Unknown 2 3 5 1 1 2
Alcohol consumption
Never 2 1 3 0.500° 5 1 6 0.128°
Former® 0 2 2 4 9
Active 1 3 4 10 18 28
Unknown 2 5 7 2 4 6
Site of primary (Index) tumor
Oral cavity 0 1 1 1.000° 6 4 10 0.172°
Oropharynx 0 2 2 3 8 11
Hypopharynx 4 7 11 5 12 17
Larynx 1 1 2 6 4 10
Nose & Paranasal sinus 0 0 0 1 1
AJCC stage (7€H ed) of primary (Index) tumor
| 0 3 3 0.646° 2 3 5 0.105°
Il 0 0 0 2 7 9
i 3 4 7 7 2 9
v 2 4 6 10 16 26
HPV status
pl6 (+) 1 2 3 1.000° 1 2 3 1.000°
p16 (-) 4 7 11 20 26 46
Unknown 0 2 2 0 0 0
Median time from inde
tumor diagnosis to last 30.8 (29.7-8¢ 54.1 (35.3-94
follow up or death
(months)
Classification of SPM
Synchronous SPM 4 12
Metachronous SPM 7 16
Site of SPM
Head and Neck 0 3
Esophagus 11 21
Lung 0 4
Median time from inde
tumor diagnosis to SPN 14.1 10.0

(0-118.6) (0-65.3)

occurrence (months)

t-test, bChi-Square test, “Fisher's exact test, dQuit smoking at least 1

year before this study began, *Statistically significant (P < 0.05)



Synchronous SPM = SPM diagnosed simultaneously or within 6 months
after the index tumor.

Metachronous SPM = SPM diagnosed more than 6 months after the
index tumor.

8. Supplementary figures and tables

Please see the link below for supplementary information;
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Abstract

Patients with head and neck squamous cell carcinoma are at increased risk of developing a second primary malignancy,
which is associated with poor prognosis and early death. To help improve clinical outcome, we aimed to identify biomarkers
for second primary malignancy risk prediction using the routinely obtained formalin-fixed paraffin-embedded tissues of the
index head and neck cancer. Liquid chromatography-tandem mass spectrometry was initially performed for candidate
biomarker discovery in 16 pairs of primary cancer tissues and their matched normal mucosal epithelia from head and neck
squamous cell carcinoma patients with or without second primary malignancy. The 32 candidate proteins differentially
expressed between head and neck cancers with and without second primary malignancy were identified. Among these,
30 selected candidates and seven more from literature review were further studied using NanoString nCounter gene
expression assay in an independent cohort of 49 head and neck cancer patients. Focusing on the pl6-negative cases, we
showed that a multivariate logistic regression model comprising the expression levels of ITPR3, KMT2D, EMILINI, and the
patient’s age can accurately predict second primary malignancy occurrence with 88% sensitivity and 75% specificity.
Furthermore, using Cox proportional hazards regression analysis and survival analysis, high expression levels of ITPR3 and
DSG3 were found to be significantly associated with shorter time to second primary malignancy development (log-rank test
P =0.017). In summary, we identified a set of genes whose expressions may serve as the prognostic biomarkers for second
primary malignancy occurrence in head and neck squamous cell carcinomas. In combination with the histopathologic
examination of index tumor, these biomarkers can be used to guide the optimum frequency of second primary malignancy
surveillance, which may lead to early diagnosis and better survival outcome.

Introduction associated with an elevated likelihood of developing second
primary malignancy, which is defined as a second malig-
nancy that presents either simultaneously or after the diag-

nosis of an index tumor. The overall incidence of second

Head and neck cancer is the seventh most common cancer
worldwide, with over 600,000 new cases in 2012 [1]. About

90% of all head and neck cancers are squamous cell car-
cinomas. Head and neck squamous cell carcinoma is
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primary malignancies in head and neck squamous cell
carcinoma patients has been reported to range from 5.6 to
35.9% [2, 3], with an annual incidence ranging from 3.2 to
4% [4]. The common sites of second primary malignancy
are the head and neck, lung, and esophagus [5]. Several risk
factors for second primary malignancy in head and neck
squamous cell carcinoma patients have been reported
including the location of index tumor, patient age, cigarette
smoking, alcohol consumption, and betel nut chewing [4].

Despite the progress in cancer molecular biology, the
exact underlying molecular mechanism of second primary
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malignancy is still poorly understood. Field cancerization is
one of the widely accepted concepts that explains second
primary malignancy tumorigenesis [6]. According to this
concept, an area of the upper aerodigestive tract is con-
sidered as a field that is continuously exposed to a diversity
of carcinogens resulting in multiple precancerous genetic
changes, even though the mucosal epithelia still retain their
normal histologic appearances. These precancerous fields
may eventually become malignant leading to multiple sec-
ond primary malignancy occurrences [7]. Recently, Curtius
et al. has reviewed the evolutionary process that results in
field creation [8]. In this context, a cancerized field is both
enabled by and causes alterations in the tissue micro-
environment. Measurements of the cancerized field evolu-
tion hold considerable promise as a new class of biomarker
for cancer risk.

Second primary malignancies are known to have a major
negative impact on head and neck cancer patients. The
prognoses of head and neck cancer patients who develop
second primary malignancy are worse than those with index
malignancies alone [9], and it is also a leading long-term
cause of mortality in head and neck cancer patients [10].
Early diagnosis of second primary malignancies often
allows less invasive or curative treatments. However, cur-
rent clinical screening and surveillance methods including
panendoscopy and positron emission tomography/computed
tomography (PET/CT) scan still have clinical limitations
[11, 12]. Panendoscopy is a relatively invasive procedure
and can result in serious complications such as esophageal
perforation [11]. While PET/CT scan demonstrates
high sensitivity for detecting synchronous second primary
malignancies, its findings can be false-positive, and
may miss small and/or superficial synchronous second pri-
mary malignancies [13]. Furthermore, the attempts to use
chemoprevention for second primary malignancy risk
reduction have so far been unsuccessful [14]. For these
reasons, novel screening approaches such as molecular
biomarkers for second primary malignancy risk prediction
are very much needed.

Advances in omics technology have resulted in a better
understanding of head and neck cancer carcinogenesis,
which in turn lead to the development of novel molecular
biomarkers for this type of cancer that can be successfully
translated into routine clinical practice. Human papilloma-
virus (HPV) has emerged as an important etiologic factor of
head and neck cancers, particularly in oropharyngeal can-
cers. HPV status is currently used as a prognostic biomarker
for head and neck cancer, HPV-positive head and neck
squamous cell carcinomas have a favorable prognosis and
may benefit from less aggressive treatment regimens [15].
The recently released 8th edition of the American Joint
Committee on Cancer (AJCC) Staging Manual, Head and
Neck Section, has acknowledged the importance of using
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pl6 immunostaining as a surrogate marker of HPV status,
and issued a distinct staging classification for HPV-
associated oropharyngeal cancer, separating it from cancer
of the oropharynx related to other causes [16]. Despite these
advances, to date, very few studies have focused on second
primary malignancy, particularly on a biomarker discovery
aspect [17, 18], and so far none has been successfully
translated into clinics.

In this study, we hypothesized that the cancerized fields
in head and neck squamous cell carcinoma patients with
or without second primary malignancy are diverse, lead-
ing to distinct protein or gene expression patterns that can
be exploited as biomarkers. We then aimed to identify
molecular biomarkers for second primary malignancy
risk prediction using the routinely collected formalin-
fixed paraffin-embedded tissue biopsies of the index
head and neck squamous cell carcinomas. Using liquid
chromatography-tandem mass spectrometry, we identified
a set of candidate biomarkers differentially expressed in
the primary tumors of head and neck squamous cell car-
cinoma patients with or without second primary malig-
nancy after a minimum follow-up period of 3 years. Next,
we utilized a NanoString nCounter gene expression assay
to study the ability of selected biomarkers to predict
second primary malignancy development and the time to
second primary malignancy occurrence in another inde-
pendent cohort of head and neck squamous cell carcinoma
patients. Our study permitted the development of the first
tissue-based gene expression biomarker panel for second
primary malignancy that can easily be implemented in the
routine pathology practice.

Materials and methods
Patient selection and sample description

All patients were clinically diagnosed with head and neck
cancer by the otolaryngologists or oncologists and had a
histopathological diagnosis of squamous cell carcinoma.
The patients with only a single primary tumor after a
minimum follow-up period of approximately 3 years were
defined as “Pj,4ex group”. The head and neck squamous cell
carcinoma patients who developed second primary malig-
nancy during the same follow-up period were defined as
“Pgpm group”. The clinical diagnosis of second primary
malignancy was made based on the applied recommenda-
tion from Warren and Gates’ criteria [19] as follows: (i)
both index and secondary tumors had histologic confirma-
tion of squamous cell carcinoma; (ii) the two malignancies
were anatomically separated by more than 2 cm of normal
mucosa; (iii) the possibility of the second primary malig-
nancy being a metastasis from the index tumor was
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excluded. Second primary malignancy was further classified
as synchronous second primary malignancy when the
diagnosis of both index tumor and second tumor was made
simultaneously or within 6 months after the index tumor, or
as metachronous second primary malignancy when the
diagnosis of second tumor was made longer than 6 months
after the index tumor [20].

Cohort 1 consisted of 16 head and neck squamous cell
carcinoma patients from Songklanagarind Hospital (Prince
of Songkla University, Songkhla, Thailand). A pair of
formalin-fixed paraffin-embedded tissue blocks containing
the index tumor and normal mucosal epithelia was collected
for each patient, resulting in a total of 32 samples for pro-
teomic analysis. In addition, all second primary malignancy
samples were previously confirmed to be second primary
malignancies, not metastatic tumors, by comparing the loss
of heterozygosity patterns identified by single nucleotide
polymorphism array between each index head and neck
squamous cell carcinoma and its matched second tumor
[21]. Cohort 2 was an independent multi-center cohort
comprising 49 head and neck squamous cell carcinoma
patients from Ramathibodi Hospital (Mahidol University,
Bangkok, Thailand), Siriraj Hospital (Mahidol University,
Bangkok, Thailand), and Songklanagarind Hospital. Only
formalin-fixed paraffin-embedded tissue blocks containing
the index tumor were collected for each patient. This study
was approved by the Institutional Review Board of all
participating hospitals.

Sample preparation

Formalin-fixed paraffin-embedded tissue sections were
prepared. Previously archived hematoxylin and eosin
stained tissue slides were evaluated for tumor content and
density by pathologists. The areas with at least 70% tumor
cells and normal mucosal epithelial cells were marked for
manual macrodissection using a needle tip or scalpel. For
liquid chromatography-tandem mass spectrometry, dis-
sected tissue was prepared for protein digestion using the
filter-assisted sample preparation method [22] and physi-
cally disrupted by sonication. For NanoString gene
expression assay, total RNA was isolated using High Pure
FFPET RNA Isolation Kit (Roche) according to the man-
ufacturer’s instructions.

Liquid chromatography-tandem mass spectrometry

Liquid chromatography-tandem mass spectrometry analysis
was performed as a service by Bioproximity, LLC (Chan-
tilly, VA, USA). In brief, proteins were digested with
trypsin, and digested peptides were desalted using C18
stop-and-go extraction (STAGE) tips [23]. Peptides were
then fractionated by strong anion exchange STAGE tip

chromatography [24]. Liquid chromatography was per-
formed on an Easy nanoLC II HPLC system (Thermo
Fisher Scientific). The liquid chromatography was inter-
faced to a dual pressure linear ion trap mass spectrometer
(LTQ Velos, Thermo Fisher Scientific) via nano-
electrospray ionization. Data from mass spectrometry
were processed and the Mascot generic format (MGF) files
were searched using X!!Tandem, k-score scoring algorithms
and OMSSA (open mass spectrometry search algorithm).
The common Repository of Adventitious Proteins and the
Ensembl release 69 were used as protein databases for the
searches. Proteins were required to have two or more unique
peptides across the analyzed samples with E-value scores of
0.01 or less and protein E-value scores of 0.0001 or less
[25]. The spectral count of each identified protein was
initially scaled by the total and/or maximum peptide counts
of the same patient. All scaled spectral counts were added
with 0.01 to avoid division by zero, and each scaled spectral
count of tumor tissue was then divided by the scaled
spectral count of the corresponding normal tissue from the
same patient to normalize interindividual variations.

Immunohistochemistry

A Leica BOND-MAX™ automated staining system (Leica
Biosystems) was utilized according to the manufacturer’s
protocol for anti-CALML3 (1:1000, PA5-30232, Thermo
Fisher Scientific), and anti-CKMT2 (1:200, PA5-28591,
Thermo Fisher Scientific). A Ventana BenchMark XT
automated staining system (Ventana Medical Systems) was
used according to the manufacturer’s instructions for anti-
DSG3 (1:50, MAB1720, R&D Systems), anti-PLODI1
(1:50, NBP2-31885, Novus Biologicals), and anti-pl16
(CINtec” p16 Histology, 705-4713, Ventana Medical Sys-
tems). Blinded scoring was independently performed by
two pathologists using the same scoring criteria (Supple-
mentary Table S1).

Digital gene expression quantification using
NanoString nCounter’

A NanoString nCounter’ Gene Expression Assay (Nano-
String Technologies) with the custom-designed CodeSets
containing 40 genes was performed following the standard
protocol. Data processing was conducted using nSolver
Analysis Software v3.0 (NanoString Technologies). Back-
ground correction was made by subtracting the “mean +
2 standard deviation” value of the negative controls from
the raw counts. Adjusted raw counts were then normalized
with the geometric mean of the positive controls in each
sample. The resulting data was normalized again using the
geometric mean of three housekeeping genes. Normalized
data was standardized using mean centering then divided by

SPRINGER NATURE



S. Bunbanjerdsuk et al.

Table 1 Clinical characteristics of patients

Cohort 1 Cohort 2
Pindex Pspm Total P-value Pindex Pspm Total P-value
No. of patients 5 11 16 21 28 49
Age
Mean (years) 61 57 58 0.387¢ 64 57 60 0.027%
<65 4 9 13 1.000° 11 22 33 0.053°
265 1 2 3 10 6 16
Gender
Male 5 10 15 1.000° 18 28 46 0.072°¢
Female 0 1 1 0 3
Smoking status
Never 0 1 1 1.000° 2 2 4 1.000°
Former 1 2 3 7 9 16
Active 2 5 7 11 16 27
Unknown 2 3 5 1 1 2
Alcohol consumption
Never 2 1 3 0.500¢ 5 1 6 0.128°
Former* 0 2 2 9
Active 1 3 4 10 18 28
Unknown 2 5 7 2 4 6
Site of primary (Index) tumor
Oral cavity 0 1 1 1.000° 6 4 10 0.172°
Oropharynx 0 2 2 3 8 11
Hypopharynx 4 7 11 5 12 17
Larynx 1 1 2 6 4 10
Nose & Paranasal 0 0 0 1 0 1
sinuses
Stage® of primary (Index) tumor
I 0 3 3 0.646° 2 3 5 0.105°
I 0 0 0 2 7 9
I 3 4 7 7 2 9
v 2 4 6 10 16 26
HPV status
pl6 (+) 1 2 3 1.000¢ 1 2 3 1.000°
pl6 (-) 4 7 11 20 26 46
Unknown 0 2 2 0 0 0
Median time from index 31 (30-86) 54 (35-95)
tumor diagnosis to last
follow-up or death
(months)
Classification of SPM
Synchronous SPM 4 12
Metachronous SPM 7 16
Site of SPM
Head and Neck 0 3
Esophagus 11 21
Lung 0 4
Median time from index 14 (0-119) 10 (0-65)

tumor diagnosis to SPM
occurrence (months)

SPM second primary malignancy, Synchronous SPM second primary malignancy diagnosed simultaneously or within 6 months after the index
tumor, Metachronous SPM second primary malignancy diagnosed more than 6 months after the index tumor

A test

bChi—Square test

‘Fisher’s exact test

4Quit smoking at least 1 year before this study began

“The American Joint Committee on Cancer staging (7th edition)
*Statistically significant (P < 0.05)
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the standard deviation to obtain the Z scores for subsequent
statistical analyses.

Bioinformatics and statistical analysis

Hierarchical cluster analysis using average linkage method
was performed using Cluster 3.0 (http://bonsai.hgc.jp/
~mdehoon/software/cluster/software.htm), and visualized
by Java TreeView version 1.1.6r4 (http:/jtreeview.
sourceforge.net). Functional annotation of candidate pro-
teins was performed using DAVID 6.8 (https://david.
ncifcrf.gov/). Statistical analyses were performed using
PASW Statistics version 18.0 for Windows (SPSS Inc.),
GraphPad Prism version 6.0 for Windows (GraphPad
Software), R-statistical software version 3.3.1 (R Founda-
tion, http://www.r-project.org), and ROCR package [26].

Results
Subject characteristics

Two independent cohorts of head and neck squamous cell
carcinoma patients were included in this study. Among the
16 patients in cohort 1, 5 (31%) and 11 (69%) patients
belonged to the Pj4.x and Pspy groups, respectively. The
median duration of follow-up to ensure no occurrence of
second primary malignancy was 31 (30-86) months in the
Pindex group. All second primary malignancies were eso-
phageal squamous cell carcinomas. No statistically sig-
nificant difference was detected between the -clinical
characteristics of patients in the P;,qex and Pgpy groups.

In cohort 2, of the 49 head and neck squamous cell
carcinoma patients examined, 21 (43%) and 28 (57%)
patients belonged to the Pj4.x and Pgspy groups, respec-
tively. The median duration of follow-up was 54 (35-95)
months in the Pj,qex group. All second primary malignancies
were squamous cell carcinomas located in the
esophagus, head and neck, or lung. The patients’ age was
the only clinical characteristic with statistically significant
difference between the Pj,qex and Pspy groups (P = 0.027).
The detailed clinicopathological and demographical char-
acteristics of patients in both cohorts are summarized in
Table 1.

The HPV status of head and neck tumors was also
evaluated using pl6 immunohistochemistry. The
difference in HPV status based on pl6-positivity between
the Pjhgex and Pspy groups from the two cohorts was not
statistically significant (Fisher’s exact test P =1.000). Of
note, only three cases out of the 49 head and neck squamous
cell carcinomas in cohort 2 were pl6-positive. The pl6
immunostaining results are shown in Supplementary
Table S2.

Liquid chromatography-tandem mass spectrometry
analysis and validation by immunohistochemistry

The detailed experimental outline of this study is sum-
marized in Fig. 1. We first performed liquid
chromatography-tandem mass spectrometry in 16 pairs of
tumor-normal formalin-fixed paraffin-embedded tissues
from Pj4.x and Pgpy groups (cohort 1) as a means to
discover candidate biomarkers for second primary
malignancy. A total of 2816 proteins were initially iden-
tified. Proteins detected in <10% of all samples were then
filtered out, leaving a total of 2101 proteins for unsu-
pervised hierarchical cluster analysis. The resulted den-
drogram showed that these protein profiles could correctly
classify the tumor and normal tissue samples (Fig. 2a).
We further investigated the protein profiles within the
tumor or normal tissue subgroups separately whether they
could correctly define each sample as Pj,qex Or Pgpy by
performing hierarchical cluster analysis of differentially
expressed proteins (¢ test P <0.05). The results interest-
ingly demonstrated that P;,4.x and Pgpy; samples could be
accurately clustered in both tumor and normal tissue
subgroups (Supplementary Figure S1).

In addition, immunohistochemistry analysis of repre-
sentative proteins was performed to validate the accuracy of
liquid chromatography-tandem mass spectrometry results.
Four proteins that were at least two-fold up- (PLODI) or
downregulated (CKMT2, DSG3, CALMLS3) in tumors as
compared to normal tissues, and expressed in more than half
of the samples, were selected. The results demonstrated that
immunohistochemistry analysis showed the same up- or
downregulated trend between normal and tumor tissues as
in the proteomics data in three of four proteins (DSG3,
CALML3, PLODI1) (Fig. 2b—c).

Identification of candidate proteins biomarkers for
second primary malignancy

To screen for the differentially expressed proteins between
head and neck squamous cell carcinoma patients with and
without second primary malignancy, the protein expression
ratio of tumor to matched normal tissue of each patient was
analyzed. The inclusion criteria for candidate proteins
included: (i) proteins expressed in more than 50% of the
samples, (ii) proteins showing at least three-fold difference
in expression level between the P;,4. and Pspy; groups, and
(iii) proteins exhibiting statistically significant differential
expression between the two groups (f test P < 0.05). Based
on these criteria, 32 candidate proteins were identified
(Supplementary Table S3). Hierarchical cluster analysis
using expression ratio of these proteins demonstrated that
all cohort 1 samples could be correctly divided into Pj,gex
and Pgpy; groups (Fig. 3).

SPRINGER NATURE


http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net
http://jtreeview.sourceforge.net
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.r-project.org

S. Bunbanjerdsuk et al.

Cohort 1

16 pairs of FFPE tissues from tumor
and matched normal mucosa
(Pindex =155 Pspm = 11)

|

LC-MS/MS
Validation of !
LC-MS/MS
results by 2,101 proteins
IHC of the 4 « ., cluding background proteins
up/down i e
regulated at expressed < 6)
proteins l

32 candidate proteins

Criteria

1. Proteins expressed in > 50% of
the total samples

2. 3-fold different in average
protein level between Pingex &

Pspm
3. 2-tailed t-test P-value < 0.05
between Pindex & Pspm

Fig. 1 Overview and experimental design of the study. The biomarker
identification steps were sequentially conducted using liquid
chromatography-tandem mass spectrometry in cohort 1 (left), and
NanoString gene expression assay in cohort 2 (right). Multiple sta-
tistical analyses were performed to identify prognostic biomarkers for
second primary malignancy occurrence and time to second primary

We further carried out gene-annotation enrichment ana-
lysis using DAVID 6.8 to identify enriched biological
functions of the candidate proteins. Among the upregulated
proteins in Pgpy; samples, the statistically significant gene
ontology term (P <0.001) with highest enrichment score
(3.88) was “intermediate filament” (KRT37, KRTI12,
KRT86, KRT24). The other significant gene ontology terms
(P<0.05) were “cytoplasm” (UBE2N, PA2G4, S100A7,
ARPC2, SERPINBS, TRIM29, CRABP2, EIF5A, RPS20,
AHNAK, KRT24), and “poly(A) RNA binding” (UBE2N,
PA2G4, EIFSA, RPS20, AHNAK). In contrast, the sig-
nificant terms with highest enrichment score (1.31) among
the downregulated proteins were ‘“‘extracellular exosome”
and “extracellular matrix” (PTGES3, PLODI1, FBLN2,
UGDH, CSRP1, ECM1, EMILIN1) (P<0.01) (Fig. 3 and
Supplementary Table S4A-B).

Development of a predictive model for second
primary malignancy occurrence by NanoString
nCounter gene expression analysis

Considering the difficulties in translating tissue-based
quantitative protein biomarkers into clinical practice, we
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Cohort 2

—> Independent sample set of 49 FFPE tumor tissues

v

46 FFPE tumor tissues with p16 IHC-negative
(Pindex = 20; Pspm = 26)

v

NanoString gene expression assay of 40 genes
* 30 from candidate proteins
o 7 from literature reviews
¢ 3 are housekeeping genes

v ‘
Biomarkers for
prediction of SPM
development

v v

Pindex VS Pspm Pspm
* Logistic regression - Cox proportional

Biomarkers for time to
SPM occurrence

*+ Permutation test hazards model

+ ROC analysis - Permutation test

+ “Leave-one-out” - Log-rank test
cross-validation - Kaplan-Meier analysis

\ '
ITPR3, KMT2D,
EMILIN1, and the
patient’s age

ITPR3, DSG3

malignancy development. SPM second primary malignancy, Pjpgex
index head and neck squamous cell carcinoma without second primary
malignancy, Pgpy index head and neck squamous cell carcinoma with
second primary malignancy, FFPE formalin-fixed paraffin-embedded,
LC-MS/MS liquid chromatography-tandem mass spectrometry, IHC
immunohistochemistry, ROC receiver operating characteristic

set out to alternatively utilize a NanoString nCounter gene
expression assay to optimize the biomarker selection in an
independent cohort (cohort 2). The 40-gene custom panel
consisted of the 30 candidate proteins (of the 32 candidates,
two did not have specific CodeSets available), three
housekeeping genes, and seven frequently mutated genes in
head and neck squamous cell carcinomas with synchronous
nodal metastasis or metachronous recurrence from literature
review [27, 28] (Supplementary Table S5). HPV-positive
and HPV-negative head and neck cancers are known to
exhibit different clinical and molecular characteristics [16].
Since the number of pl6-positive cases in our cohort was
limited (3 out of 49 cases), we focused on the 46 pl6-
negative head and neck squamous cell carcinoma patients
for further analyses.

To identify biomarkers that could accurately determine
the development of second primary malignancy, uni-
variate logistic regression analysis of the standardized
NanoString gene expression levels and selected
clinical variables of the 46 pl6-negative head and neck
squamous cell carcinoma patients was carried out. The
expression levels of three genes (ITPR3, FATI, KMT2D)
and the patient’s age at diagnosis were statistically
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Fig. 2 Protein expression profiling by liquid chromatography-tandem
mass spectrometry and validation by immunohistochemistry. a Den-
drogram of unsupervised hierarchical cluster analysis of the 2101
protein profiles across the tumor samples and their matched normal
mucosal tissues in cohort 1. b Representative immunohistochemistry
images (x10 magnification) of the four selected proteins (CKMT2,

significantly associated with the development of second
primary malignancy (P < 0.05) (Fig. 4a). The strongest
risk factor for the development of second primary
malignancy was high ITPR3 level. An increase in one
standard deviation of ITPR3 level was associated with
3.27 times higher risk of second primary malignancy
development (odds ratio = 3.27; 95% confidence interval
(CD [1.36-11.04]; P =0.025). Other significant risk fac-
tors included high FATI (odds ratio=2.25; 95% CI
[1.13-5.49]; P =0.038) and KMT2D levels (odds ratio =
2.20; 95% CI [1.10-5.18]; P =0.043). To minimize the
effect of small sample size, we performed 5000 permu-
tation tests to correct for non-asymptotic properties of
P-values by reshuffling the observed data. The resulting
P-values were reported as empirical P-values. The ana-
lysis showed that the expression levels of two more genes
(EMILINI and ECM1) were also statistically significantly
associated with second primary malignancy development
(empirical P <0.05). The results of univariate logistic
regression of all genes are shown in Supplementary
Table S6. Comparing between Pj4.x and Pgpy; groups, the
expression levels of ITPR3, FATI, KMT2D, and ECM1
were higher in Pgpy; samples, whereas the level of EMI-
LINI was lower (Fig. 4b).

We next aimed to identify the best combination of bio-
markers for second primary malignancy development

DSG3, CALML3, and PLOD1). N: normal mucosal epithelial cells, T:
tumor cells. ¢ Box plot showing the comparison between normalized
expression ratios (T/N) of the four selected proteins analyzed by
immunohistochemistry and liquid chromatography-tandem mass
spectrometry. IHC immunohistochemistry, LC-MS/MS liquid
chromatography-tandem mass spectrometry

prediction by analyzing the six statistically significant
variables (P <0.05 or empirical P<0.05) from univariate
logistic regression (ITPR3, FATI, KMT2D, EMILINI,
ECMI, and patient’s age) using multivariate logistic
regression analysis. The most parsimonious final model
based on Akaike’s information criterion, Bayesian infor-
mation criterion, and deviance test was the combination of
ITPR3, KMT2D, EMILINI, and the patient’s age. The
Akaike’s information criterion, and Bayesian information
criterion values of this model were 50.82 and 59.96,
respectively. The detailed results of all multivariate logistic
regression models and the final selection are shown in
Supplementary Table S7 and SS8.

To evaluate the performance of the selected multivariate
model in predicting second primary malignancy occurrence,
a receiver operating characteristic analysis was performed
and an area under the curve value was calculated as 0.86
(95% CI [0.75-0.97]). Moreover, this model has a sensi-
tivity of 88.46%, a specificity of 75.00% and an accuracy of
82.61% for predicting the occurrence of second primary
malignancy. We further performed a leave-one-out cross-
validation over the same 46 samples (cohort 2) to assess the
robustness of our model. The resulting area under the curve,
sensitivity, specificity and accuracy values were 0.80 (95%
CI[0.66-0.94]), 76.92%, 70.00%, and 73.91%, respectively
(Fig. 4c). These new values were not significantly different
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Fig. 3 Hierarchical cluster analysis of the candidate proteins. A heat-
map showing the 32 candidate proteins differentially expressed
between Pj4.x and Pgpy; subgroups with statistical significance (¢ test
P <0.05) across cohort 1 (left), and the summary of gene-annotation
enrichment analysis of up- and downregulated proteins of each sub-
group using DAVID bioinformatics resources 6.8 (right). The color

from the original results, confirming the validity of our
predictive model.

Identification of biomarkers for predicting time to
second primary malignancy development

Next, we focused on head and neck squamous cell car-
cinoma patients who eventually developed second pri-
mary malignancy (Pgpy group) in order to identify the
biomarkers associated with time to subsequent second
primary malignancy occurrence. Univariate Cox regres-
sion analysis using gene expression levels of the 26 p16-
negative head and neck squamous cell carcinomas from
cohort 2 was performed. The levels of ITPR3, DBI,
AHNAK, IGHV3-49, CALML3, ARPC2, DSG3, and
KRT37 were significantly associated with a shorter time to
second primary malignancy development (P <0.05)
(Fig. 5a). The strongest association was with ITPR3 level.
An increase in one standard deviation of ITPR3 level was
associated with 2.68 times higher risk of second primary
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scale is shown at the upper left corner. Pj,4: index head and neck
squamous cell carcinoma without second primary malignancy, Pgpy:
index head and neck squamous cell carcinoma with second primary
malignancy. *Statistically significant (P <0.05), **statistically sig-
nificant (P <0.01)

malignancy development at any given time after the
index tumor diagnosis (hazard ratio=2.68; 95% CI
[1.53-4.72]; P=0.001). The complete results of uni-
variate Cox regression analysis including the empirical P-
values generated by 5000 permutation tests are shown in
Supplementary Table S9. Using multivariate Cox pro-
portional hazards regression analysis, the best model was
the combination of ITPR3 and DSG3 (Supplementary
Table S10). Moreover, by dividing the standardized
ITPR3 and DSG3 level by the sample mean of the 26 Pgpy
patients, survival analysis showed that the patients with
pl6-negative head and neck squamous cell carcinoma
whose index tumors exhibited high I/TPR3 and DSG3
expression levels had the shortest time interval between
the diagnosis of an index head and neck squamous cell
carcinoma to subsequent second primary malignancy
development (log-rank test P =0.017) (median time dif-
ference between the high and low risk groups based on
four combinations of ITPR3 and DSG3 levels = 394 days)
(Fig. 5b and Supplementary Table S11).



Oncoproteomic and gene expression analyses identify prognostic biomarkers for second primary malignancy...

A *
Univariate logistic regression 4000 M
Odds ratio i, c ** *
(95% Cl) P Empirical P _% 30004 ™ ! T —
Clinical variable 8 * r
Age 0.93 (0.87-0.99)  0.025* % 20001 N
Markers 2 i
2 1000
ITPR3 3.27 (1.36-11.04)  0.025* 0.007** o I
* * X b T
G A e e
: B : . oS oS oS oS ot
EMILINT  0.52 (0.25-0.97)  0.055 0.046* PR RSP R AR R
ECMm1 2.71(1.13-9.73)  0.069 0.033* ITPR3 FAT1 KMT2D EMILINT ECM1
C Predictive model: ITPR3-KMT2D-EMILIN1-patient's age
Area under the curve %Sensitivity %Specificity %Accuracy
(95% ClI) (95% CI) (95% ClI) (95% ClI)
Samples cohort 2 0.86 88.46% 75.00% 82.61%
(n =46) (0.75-0.97) (69.85-97.55) (50.90-91.34) (68.58-92.18)
Cross-validation 0.80 76.92% 70.00% 73.91%
cohort 2 (n = 46) (0.66-0.94) (56.35-91.03) (45.72-88.11) (58.87-85.73)

Fig. 4 Identification of biomarkers for second primary malignancy risk
prediction by NanoString gene expression analysis. a The statistically
significant variables identified by univariate logistic regression across
Pindex and Pgpyp subgroups of the p16-negative tumors in cohort 2 (n =
46). The empirical P-values were generated by 5000 permutation tests.
b Box plot depicting expression levels of the five candidate genes
identified by univariate logistic regression across Pj,gx and Pgpy
subgroups of the pl6-negative tumors in cohort 2. All pairwise com-
parisons show statistically significant differential expressions. ¢ The
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Fig. 5 Identification of biomarkers for predicting time to second pri-
mary malignancy development. a The statistically significant genes
identified by univariate Cox regression across Pspy patients with p16-
negative tumor in cohort 2 (n=26). The empirical P-values were
generated by 5000 permutation tests. b Kaplan—-Meier curves showing
the proportions of Pgpy patients with pl16-negative tumor stratified by
standardized ITPR3 and DSG3 expression. High and low levels of

predictive performance of the selected multivariate logistic regression
model (ITPR3-KMT2D-EMILINI-patient’s age) in classifying second
primary malignancy risk. The robustness of the model was assessed by
performing a leave-one-out cross-validation for each sample in the
same cohort. The unit of patient’s age is year. Pj,qec: index head and
neck squamous cell carcinoma without second primary malignancy,
Pspyv: index head and neck squamous cell carcinoma with second
primary malignancy. *Statistically significant (P <0.05), **statisti-
cally significant (P <0.01), CI confidence interval
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ITPR3 and DSG3 expression were defined as standardized gene levels
above or below mean, respectively. Patients with high /TPR3 and high
DSG3 expression levels had the shortest time to second primary
malignancy development (log-rank test P =0.017). CI confidence
interval, *statistically significant (P <0.05), **statistically significant
(P<0.01)
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Comparison of the expression pattern of candidate
biomarkers between protein and mRNA levels

It is known that protein and mRNA expression levels often
do not directly correlate [29]. To investigate whether our
candidate genes originally discovered by proteomics study
shared the same differential expression patterns as their
protein equivalents, we compared the standardized gene
expressions of the top 10 statistically significant genes
identified by logistic regression and Cox regression ana-
lyses to their standardized protein levels obtained from
liquid chromatography-tandem mass spectrometry. Seven of
the 10 biomarkers (AHNAK, ARPC2, CALML3, DBI,
DSG3, EMILINI, KRTI12) demonstrated a similar up- or
downregulation trend between mRNA and protein levels in
the tumor samples across the two patient cohorts (Fig. 6).

Discussion

In this study, we identified a set of tissue-based biomarkers
for predicting second primary malignancy occurrence and
time to second primary malignancy development in head
and neck squamous cell carcinoma patients using a com-
bination of high-throughput shotgun proteomics and tar-
geted gene expression analysis. These second primary
malignancy risk prediction biomarkers can help guide
clinical management of head and neck squamous cell car-
cinoma patients, particularly in the frequency of second
primary malignancy surveillance after the diagnosis of an
index tumor, and the choice of treatments. The expected
long-term benefit is an improvement in overall survival of
head and neck cancer patients, especially those who are
eligible for curative or less invasive therapy. Moreover, one
of the clinical strengths of this study is the use of index head
and neck squamous cell carcinoma formalin-fixed paraffin-
embedded tissue as the preferred material for biomarker
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Fig. 6 Comparison of the expression patterns between protein and
mRNA levels of the candidate biomarkers across the Pj,qex and Pspy
subgroups. The standardized NanoString gene expressions of the top
10 statistically significant genes from cohort 2 were compared to their
standardized protein levels in the tumor samples of cohort 1 as
quantified by liquid chromatography-tandem mass spectrometry. Color
codes represent the standardized levels of protein and mRNA
expression from low (blue) to high (red)
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discovery. This specimen is routinely acquired for histo-
pathological diagnosis, which makes it easier to incorporate
our biomarker panel into the current clinical practice. We
believe that our study is the first to identify prognostic
biomarkers that can accurately predict second primary
malignancy occurrence, thus opening the door to the pos-
sibility of clinical application of tissue-based biomarkers for
second primary malignancy in head and neck squamous cell
carcinoma patients.

Mass spectrometry has been extensively used to discover
novel protein biomarkers [30]. Proteins are the functional
molecules in the cell, and thus are the key players that
represent actual cellular physiology. For tissue-based pro-
tein biomarkers, several laboratory methods such as
immunohistochemistry and targeted mass spectrometry can
be used to develop the validated markers into quantitative
clinical assays but not without limitations. To date, immu-
nohistochemistry is routinely performed in clinics to
determine both the qualitative and semi-quantitative aspects
of a protein biomarker, however, it relies heavily on the
quality of antibody and still lacks interpretation standardi-
zation, resulting in poor reproducibility [31]. While targeted
mass spectrometry can do marker multiplexing and does not
rely on antibody, it is technically complex and carry a high
developing cost [32]. The development of tissue-based
high-throughput gene expression assays has greatly
improved the accuracy and reproducibility of quantitative
measurement in tissue biomarker studies. Currently, several
such assays have been integrated into clinical practice. For
example, the Prosigna breast cancer prognostic gene sig-
nature assay based on NanoString nCounter analysis system
was approved by U.S. Food and Drug Administration in
2013 as a prognostic assay for distant recurrence risk in
breast cancer patients [33]. In this study, we sequentially
utilized liquid chromatography-tandem mass spectrometry
and NanoString nCounter system in two independent
cohorts of head and neck squamous cell carcinoma patients
in order to identify the best set of second primary malig-
nancy prediction biomarkers. In light of its clinical trans-
latability, technical reproducibility, and compatibility with
small biopsied formalin-fixed paraffin-embedded tissues
[34], the NanoString digital gene expression platform was
chosen for biomarker panel development.

In cohort 1, the protein profiles were markedly different
between head and neck squamous cell carcinomas and their
matched normal squamous mucosa, which is in line with
previous studies [17, 35]. Interestingly, we also observed
distinct protein expression profiles between the Pj,q.x and
Pspy subgroups when analyzing the tumor and normal tis-
sue samples separately. These results suggest that tissue
microenvironments of both tumor and surrounding normal
mucosal cells of the Pj,qex and Pspy; patients may exhibit
varying levels of genetic diversity, resulting in distinct
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protein and/or gene expression signatures. These findings
strongly support our hypothesis that the aberrant field effect
in the biopsied index tumors can be used to predict whether
the patients are at risk of subsequent second primary
malignancy development. It is proposed that genetic
diversity can be utilized as a marker for field evolvability
[8]. In a prospective pilot study by Roesch-Ely et al., by
analyzing the protein profiles of mucosal biopsies from the
oropharynx, hypopharynx, and three different regions of
esophagus in head and neck squamous cell carcinoma
patients and controls, tumor relapse was correctly predicted
[17]. Taken together, these findings firmly established an
altered field as a promising cancer risk prediction marker.

Of note, among the candidate proteins differentially
expressed between Pjq4.x and Pgpy samples, upregulated
proteins in Pgpy; group were significantly enriched with
proteins associated with intermediate filament, whereas
those involved with extracellular matrix were down-
regulated. Overexpression of keratins, the intermediate
filament-forming proteins of epithelial cells, is associated
with enhanced tumor cell migration and invasion through
interactions with extracellular environment [36]. Extra-
cellular matrix proteins are associated with both tumor
suppression and tumor promotion. Interestingly, the
majority of downregulated extracellular matrix proteins in
Pspm samples including ECM1, EMILIN1, and FBLN2
have demonstrated tumor suppressive roles in various can-
cers [37-39]. Based on our findings, aberrant cytoskeletal
activity and altered cell motility as a result of reduced
expression of extracellular matrix-associated tumor sup-
pressors are among the major molecular mechanisms
underlying second primary malignancy development.

Recently, a large head and neck squamous cell carci-
noma genomics study from The Cancer Genome Atlas
(TCGA) consisting of mostly Caucasian patients revealed
that 64% and 6% of oropharyngeal and non-oropharyngeal
tumors, respectively, are HPV-positive [28]. In contrast,
studies from Thailand reported that HPV status was positive
in only 26.09% of oropharyngeal cancers and in none of the
80 non-oropharyngeal cancers tested [40, 41]. This fact is
also reflected in our largely p16-negative cohorts. In addi-
tion, multiple studies have reported that patients with HPV-
negative oropharyngeal squamous cell carcinoma have a
higher risk of second primary malignancy development than
HPV-positive oropharyngeal squamous cell carcinoma
patients [42, 43]. Since most of our patients were pl6-
negative and HPV-negative head and neck squamous cell
carcinoma patients are more likely to have second primary
malignancy, we decided to focus on the pl6-negative cases
in cohort 2 for our gene expression analyses.

For cohort 2, in addition to the candidate genes from our
proteomics study, seven genes from recent genomics lit-
eratures [27, 28] were included in the gene expression

panel. TP53 and NOTCH]I are among the most commonly
mutated genes in head and neck squamous cell carcinoma
[28]. A recent whole exome sequencing study of head and
neck squamous cell carcinomas has reported that C170rf104
and ITPR3 are specifically mutated in synchronous nodal
metastases but not in the primary cancers, while DDR?2 is
exclusively mutated in metachronous recurrent tumors [27].
Additionally, FATI and KMT2D are found to be mutated in
both primary head and neck squamous cell carcinomas and
their nodal metastases [27]. Hence, it is of interest to
investigate whether their expressions are associated with
second primary malignancy risk. In this study, the combi-
nation of three genes (ITPR3, KMT2D, EMILINI) and
patient’s age allowed for the most accurate discrimination
between Pj,q.x and Pspyr groups with a sensitivity of 88.46%
and a specificity of 75.00%. Of note, while these numbers
will require validation in the future studies using larger
sample size, our panel showed a comparable level of per-
formance to that of the currently used clinical gene
expression tests in breast cancer including Oncotype Dx
(sensitivity 71-85%, specificity 55-66% for high and
intermediate risk groups) and MammaPrint (sensitivity
83-92%, specificity 41-59%) [44].

In addition to its implications in head and neck squamous
cell carcinoma [27], increased expression of ITPR3, a major
intracellular Ca’t release channel, is associated with
enhanced tumor proliferation and invasion in breast and
colorectal cancers [45, 46]. KMT2D, which encodes a his-
tone H3 lysine 4 methyltransferase, is one of the most
commonly mutated genes in cancers [47]. High KMT2D
expression has recently been reported to promote tumor
progression by inducing epithelial-mesenchymal transition
(EMT), and is a predictor of poor prognosis in esophageal
squamous cell carcinoma [48]. In contrast, EMILINI, which
encodes an extracellular matrix glycoprotein associated
with the development of elastic tissues, plays a suppressive
role in tumor growth, tumor lymphatic vessel formation,
and metastatic spread to lymph nodes [38]. A recent report
has suggested that a9f1 integrin, of which EMILINI is a
ligand, is the major integrin involved in regulating head and
neck squamous cell carcinoma cell migration on extra-
cellular matrix [49]. In our study, increased ITPR3 and
KMT2D levels, as well as reduced EMILINI are sig-
nificantly associated with second primary malignancy in
head and neck squamous cell carcinoma. Their exact roles
in second primary malignancy tumorigenesis remain to be
explored.

Second primary malignancy can be classified into either
a synchronous or metachronous tumor. Since survival out-
comes between synchronous and metachronous second
primary malignancies are different [5, 9], it is clinically
useful to be able to predict the time to second tumor
development. The combination of two genes, ITPR3 and

SPRINGER NATURE



S. Bunbanjerdsuk et al.

DSG3, was statistically significantly associated with the
time to second primary malignancy occurrence in our study.
DSG3, a component of cell—cell junctions, is overexpressed
in head and neck squamous cell carcinomas, and its inhi-
bition significantly suppresses tumor growth [50]. DSG3
has also been proposed as a predictive biomarker for cer-
vical lymph node micrometastasis in oral cancer [51]. In
line with their roles in promoting tumor proliferation and
progression, high expression of both ITPR3 and DSG3
contributed to the shortest time to second primary malig-
nancy development in patients with pl6-negative head and
neck squamous cell carcinoma.

It is generally known that transcript levels by themselves
are by no means an accurate predicting factor for protein
levels in many scenarios [29]. In this study, the majority of
top candidate biomarkers remarkably showed a similar
pattern of differential protein and mRNA expressions in the
tumor samples across the Pj,qex and Pgpy; subgroups of both
cohorts. This finding partly explains a smooth transition
from protein to transcript level of this particular set of
markers in regard to second primary malignancy risk pre-
diction, and may also render future biomarker assay
development the flexibility and feasibility to use either gene
expression or targeted proteomic platforms.

According to the current follow-up recommendation by
the National Comprehensive Cancer Network (NCCN)
Guidelines for Head and Neck Cancers (version 2.2018)
[52], history and physical exams including a complete head
and neck exam; and mirror and fiberoptic examination
should be performed at least every 3 months during the first
year, and at least every 6 months in the second year. Based
on our results, all patients with high ITPR3 and DSG3 levels
developed second primary malignancy within ~13 months
(400 days) after the diagnosis of an index tumor. Therefore,
it may be beneficial to provide closer monitoring of second
primary malignancy for this group of patients during their
first years. Moreover, even though some synchronous sec-
ond primary malignancies develop around the same time as
the index tumor, they often cannot be clinically detected
until their sizes are big enough. The use of our biomarkers
should help increase early diagnosis of both subclinical
synchronous second primary malignancies and subsequent
metachronous second primary malignancies through a more
rigorous surveillance protocol.

Limitations of this study include the relatively small
sample size and limited follow-up time to second primary
malignancy occurrence. Others include the use of a cohort
of convenience where adequate formalin-fixed paraffin-
embedded tissues was available, and the use of one tissue
sample per tumor, which may not represent intratumor
heterogeneity.

In summary, our biomarkers demonstrate great potential
as a companion prognostic test for second primary
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malignancy risk prediction in routine clinical practice. The
expected long-term benefit of early detection of second
primary malignancy is an improvement in overall survival
of head and neck cancer patients, especially those who are
eligible for curative or less invasive therapy. The results are
compelling and warrant future validation studies in larger
head and neck squamous cell carcinoma cohorts. The pro-
tein signatures also hint at tumor-extracellular matrix
interactions as a major player in second primary malignancy
tumorigenesis. Further functional studies of these bio-
markers may better clarify the clinical utility and their roles
in second primary malignancy development.
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Intrahepatic cholangiocarcinoma (ICC) is the cancer of the intrahepatic bile ducts,
and together with hepatocellular carcinoma (HCC), constitute the majority of primary
liver cancers. ICC is a rare disorder as its overall incidence is <1/100,000 in the
United States and Europe. However, it shows much higher incidence in particular
geographical regions, such as northeastern Thailand, where liver fluke infection is the
most common risk factor of ICC. Since the early stages of ICC are often asymptomatic,
the patients are usually diagnosed at advanced stages with no effective treatments
available, leading to the high mortality rate. In addition, unclear genetic mechanisms,
heterogeneous nature, and various etiologies complicate the development of new
efficient treatments. Recently, a number of studies have employed high-throughput
approaches, including next-generation sequencing and mass spectrometry, in order
to understand ICC in different biological aspects. In general, the majority of recurrent
genetic alterations identified in ICC are enriched in known tumor suppressor genes
and oncogenes, such as mutations in TP53, KRAS, BAP1, ARID1A, IDH1, IDHZ2,
and novel FGFR2 fusion genes. Yet, there are no major driver genes with immediate
clinical solutions characterized. Interestingly, recent studies utilized multi-omics data
to classify ICC into two main subgroups, one with immune response genes as
the main driving factor, while another is enriched with driver mutations in the
genes associated with epigenetic regulations, such as IDH7 and IDHZ2. The two
subgroups also show different hypermethylation patterns in the promoter regions.
Additionally, the immune response induced by host-pathogen interactions, i.e., liver
fluke infection, may further stimulate tumor growth through alterations of the tumor
microenvironment. For in-depth functional studies, although many ICC cell lines have
been globally established, these homogeneous cell lines may not fully explain the highly
heterogeneous genetic contents of this disorder. Therefore, the advent of patient-derived
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xenograft and 3D patient-derived organoids as new disease models together with
the understanding of evolution and genetic alterations of tumor cells at the single-cell
resolution will likely become the main focus to fill the current translational research gaps

of ICC in the future.

Keywords: intrahepatic cholangiocarcinoma, high-throughput technology, integrative multi-omics analysis,
molecular biomarker, disease model, translational medicine, precision oncology

BACKGROUND

The biliary system includes bile ducts and gallbladder. The
main functions of bile ducts are to transfer bile from the liver
and gallbladder to the small intestine to help with the digestion
and absorption of dietary fats. Bile ducts can be classified into
several parts based on the anatomical locations and structures.
Peripheral branches of intrahepatic bile ducts drain into the right
and left hepatic ducts, which then merge into a larger tube outside
the liver, called the common hepatic duct. This extrahepatic bile
duct further combines with the cystic duct from the gallbladder
and becomes the common bile duct. Cholangiocarcinoma (CCA)
is a group of heterogeneous malignancies that occurs in any part
of the bile ducts. It can be further classified into three different
categories based on the anatomical positions. The tumors that
occur in the intrahepatic bile ducts are termed intrahepatic
cholangiocarcinoma (ICC), while those located between the
secondary branches of the right and left hepatic ducts and the
common hepatic duct proximal to the cystic duct origin, and
in the common bile duct are classified as perihilar and distal
cholangiocarcinomas, respectively (Blechacz, 2017; Figure 1). As
ICC occurs inside the liver, it is also one of the two main types of
primary liver cancers besides hepatocellular carcinoma (HCC).
In this review, we aim to provide a comprehensive update and
novel insights on ICC, the rare type of CCA, which is known
for its extraordinary complexity and heterogeneity, along with
dismal prognosis.

Based on a 31-year study in the United States, ICC accounts
for only 8% of all CCA cases, and is considered to be a rare
disorder (DeOliveira et al., 2007). ICC occurs with the highest
prevalence in Hispanic Americans (1.22 per 100,000 people) and
lowest in African Americans (0.3 per 100,000 people) (McLean
and Patel, 2006). By contrast, it is more common in East
Asian and Southeast Asian countries. ICC has an incidence
of around 10 per 100,000 people in China (males), and the
highest frequency of occurrence, 71 per 100,000 people (males),
is found in the northeastern part of Thailand (Shin et al., 2010a).
Interestingly, the global incidence of ICC seems to have increased
in recent years (Khan et al., 2012).

Risk factors of ICC include bile duct cysts, chronic
biliary irritation, parasitic or viral infections, inflammatory
bowel disease, abnormal bile ducts, and exposure of chemical
carcinogens. Chronic inflammation caused by parasitic infection,
particularly liver flukes (Opisthorchis viverrini and Clonorchis
sinensis), is a well-known risk factor of ICC in northeastern
Thailand (Sripa et al., 2007; Sripa and Pairojkul, 2008). Eating raw
or uncooked fermented fish, a common local dish in this area,
results in the high incidence of recurrent liver fluke infections,

which are strongly associated with ICC. Several mechanisms have
been proposed to explain the association between liver fluke
infection and ICC (Sripa et al., 2007). First, when liver flukes
start their parasitic life in humans, they attach themselves to
the bile duct epithelia using their suckers, which cause damage
to the epithelial walls of the ducts. The repeated damage-repair
processes may result in the epithelial-mesenchymal transition
(EMT) of cell states. Second, the inflammation reactions induced
by parasites and the chemicals secreted by them, as well as
mutagens from fermented food, may create more carcinogens
that damage DNA and result in irreversible oncogenic mutations.

Other than parasitic infections, hepatitis B virus (HBV) and
hepatitis C virus (HCV) infections are also associated with ICC.
HBV and HCV nucleic acids have been found in 27% of ICC
tumors in a US-based study (Perumal et al., 2006). Another study
in China has shown a strong association between chronic HBV
infection and ICC in a total of 317 patients, and further suggested
that ICC and HCC may share a common carcinogenesis process
(Zhou et al., 2010). In addition, HBV and HCV infections are
proposed to be associated with increasing incidence of ICC from
several case-control studies (Yamamoto et al.,, 2004; Fwu et al,,
2011; Sempoux et al., 2011; Yu et al., 2011; Zhou et al., 2012; Li
et al,, 2015). Other possible risk factors of ICC include smoking,
alcohol drinking, obesity and diabetes mellitus, which are mostly
observed in western countries (Tyson and El-Serag, 2011). A
detailed summary of established risk factors for ICC and their
relative risks are shown in Table 1.

The most fundamental categorization of ICC is based on
the macroscopic features established by the Liver Cancer Study
Group of Japan in 2003 (Yamasaki, 2003). The authors described
three macroscopic subtypes of ICC, namely, mass-forming
type (MF), periductal-infiltrating type (PDI) and intraductal
growth (IDG) type. MF type forms a definite mass in the
liver parenchyma. PDI type is defined as tumors that extend
longitudinally along the ducts, while the IDG type forms a
papillary growth inside the lumen of intrahepatic ducts. MF
subtype is the most common subtype (about 65%), whereas PDI
and IDG types are less prevalent (around 5% each), and mixed-
type (MF+PDI) accounts for ~25% of the cases (Yamasaki,
2003; Sempoux et al.,, 2011). However, based on more recent
data, a noteworthy degree of heterogeneity of ICCs in regard
to their histopathological and molecular features was observed.
Therefore, in addition to the traditional classifications, multiple
new criteria were proposed in order to subcategorize ICC (Vijgen
etal., 2017).

Serum biomarkers are usually used to help screen cancer at
its earliest stages. A wide variety of markers have been tested
in bile and serum with limited success. To date, disease-specific
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HCC

FIGURE 1 | Overview of the anatomical structures, macroscopic subtypes, and recurrent genetic alterations in ICCs. Left panel; an illustration showing the
anatomical structures of biliary system and their associated malignancies. HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; PCC, perihilar
cholangiocarcinoma; GB, gallbladder cancer; DCC, distal cholangiocarcinoma; PDAC, pancreatic ductal adenocarcinoma. Middle panel; an illustration showing the
three macroscopic subtypes of ICC. MF, mass-forming type; PDI, periductal-infiltrating type; IDG, intraductal growth type. Right panel; a summary of recurrent
genetic alterations and their reported frequencies in ICCs. @The mutation frequency of each gene is calculated by dividing the combined number of ICC cases
presenting the mutation with the total number of ICC cases analyzed in all four cohorts included in the cBioPortal for Cancer Genomics database (www.cbioportal.
org). PThe frequency of each fusion gene were obtained from previous literatures (Nakamura et al., 2015; Moeini et al., 2016). ©Different hypermethylation patterns of
liver fluke-associated and non-liver fluke-associated ICCs and their associated alterations were summarized based on a previous study (Jusakul et al., 2017).
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biomarkers for CCA have yet to be established (Valle et al,
2016) and are urgently needed. The most frequently used
biomarker for diagnostic and treatment prediction in CCA
patients in clinical practice is carbohydrate antigen 19-9 (CA
19-9) (Liang et al., 2015), which is the standard tumor marker
for pancreatic adenocarcinoma (Ballehaninna and Chamberlain,
2012). Nevertheless, serum levels of CA 19-9 are also elevated in
benign cholestasis such as primary sclerosing cholangitis (PSC),
complicating its usage in clinic (Lin et al., 2014). A serum CA 19-
9 level >100 U/mL has quite limited sensitivity and specificity
(75 and 80%, respectively) in identifying PSC patients with
CCA (Chalasani et al.,, 2000). In ICC, a large cohort analysis
by Bergquist et al reported an elevated CA 19-9 level as an
independent risk factor for mortality. Elevation of CA 19-9
independently predicted increased mortality with impact similar
to node-positivity, positive-margin resection, and non-receipt of
chemotherapy (Bergquist et al., 2016).

Since the clinical presentation of ICC is not specific and the
disease in its early stage is usually asymptomatic, the patients are
often diagnosed at an advanced stage. Surgical resection, which
is the only curative treatment, remains the anchor of therapy
for patients with resectable ICC (Weber S. M. et al, 2015).
Nevertheless, because of the late presentation of symptoms and

the central hepatic location of ICC, only ~30% of the patients
are deemed eligible for resection by the time of diagnosis. This
results in a low 5-year survival and high recurrent rate after
resections (Hyder et al.,, 2013). Loco-regional therapies (LRT)
including intra-arterial embolotherapy (IAT) and radiofrequency
ablation have been reported as the feasible and effective palliative
treatments for patients with unresectable ICC (Savic et al., 2017).
Overall, systemic cytotoxic chemotherapy is still the mainstay
of treatment for patients with advanced unresectable, recurrent
or metastatic ICC. In a landmark phase III randomized study
in patients with advanced biliary tract cancer (BTC), doublet
chemotherapy (addition of cisplatin to gemcitabine) improved
the response rate from 72 to 81% (P = 0.049) and overall survival
from 8.1 to 11.7 months (hazard ratio 0.64; P < 0.001) (Valle
et al., 2010). Thus, it has since been considered as the standard
of care although the efficacy remains limited. Of note, CCA only
accounts for ~60% of all BTC patients enrolled in this study.
Another well-established combination chemotherapy regimen
for advanced BTC is GEMOX, which consists of gembitabine
plus oxaliplatin (Sharma et al., 2010). So far, several clinical
trials investigating the efficacy of targeted therapies, such as
cetuximab, panitumumab, erlotinib, selumetinib, sunitinib, and
bevacizumab, have failed to demonstrate the survival benefits for
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TABLE 1 | Established risk factors of cholangiocarcinoma.

Risk factors Relative risk References
(95% CI)
Liver Flukes
Opisthorchis viverrini (OV)& 4.8 (2.8-8.4) Shin et al., 2010b
Clonorchis sinensis ( CS)b
Viral Hepatitis
Hepatitis C virus (HCV) 1.8-4.84 Shin et al., 2010b; Palmer
and Patel, 2012
Hepatitis B virus (HBV) 2.6-5.1
Cirrhosis 5.03-27.2 Tyson and El-Serag, 2011;

Palmer and Patel, 2012

Primary Sclerosing Lifetime risk 5-35%  Tyson and El-Serag, 2011

Cholangitis (PSC)

Inflammatory bowel disease  1.7-4.67 Tyson and El-Serag, 2011

(IBD)

Obesity 1.56-1.60 Jing et al., 2012; Palmer
and Patel, 2012

Type Il diabetes 1.43-1.89 Ren et al., 2011; Palmer
and Patel, 2012

Hepatolithiasis 5.8-50.0 Tyson and El-Serag, 2011

Congenital abnormalities in 10.7-47 1 Tyson and El-Serag, 2011

biliary tract

Alcohol 2.81 (1.62-5.21) Palmer and Patel, 2012

Genetic polymorphisms® 0.23-5.38 Tyson and El-Serag, 2011

aEndemic in Northeastern Thailand, Lao, Vietnam, Cambodia.

bEndemic in South China, Japan, Korea, Taiwan.

CHFR 677CC+TSER 2R; GSTO1*A140D; MRP2/ABCC2 variant ¢.3972C>T; (NKG2D
rs11053781, rs2617167) +PSC; MICA5.1+PSC; CYP1A2*TA/*1A; NAT2*13,*6B,*7A;
XRCCI194W; XRCC1 R280H, PYGS2 Ex10+837 (Tyson and El-Serag, 2011).

this group of patients (Zhu et al., 2010; Bekaii-Saab et al., 2011;
Jensen et al., 2012; Lee et al., 2012; Yi et al., 2012; Malka et al.,
2014).

Taken together, even though ICC is considered a rare
cancer type, it represents an emerging health problem with
increasing incidence worldwide. ICC is usually diagnosed at
late stages and has poor prognosis, partly due to the complex
anatomical structure of the biliary system, its various etiologies,
heterogeneous subclassifications, and the lack of effective
biomarkers and treatments. To date, the genetic signatures of
ICC are still limitedly understood and no major driver mutations
with clinical actionability have been identified. An overview of
current challenges in the treatment of ICC is outlined in Box 1.
In the next sections, we aim to provide an in-depth update on the
application of recent advances in high-throughput technologies
that can help expedite the translation of research discoveries in
ICC and related cancers, as well as current disease models used
to facilitate the development of precision oncology in ICC.

MOLECULAR FEATURES AND SUBTYPES
OF ICC IDENTIFIED BY
HIGH-THROUGHPUT APPROACHES

Advances in high-throughput screening methods such as next-
generation sequencing (NGS) and liquid chromatography-mass

Box 1 | Challenges in ICC treatment.

e Intrahepatic cholangiocarcinoma (ICC), a subtype of biliary tract cancer,
is considered as a rare disorder with an overall incidence of 1-2 cases
per 100,000 people in the US and Europe. However, ICC exhibits vastly
different incidence in different parts of the world, mainly based on exposure
to the specific risk factors that are common in the regions such as the
Southeast Asian liver flukes. The incidence of ICC is currently increasing
worldwide.

e Early stages of ICC are usually asymptomatic. The patients are usually
diagnosed at advanced stages and metastases are frequently observed.
Additionally, a high recurrent rate after tumor resection, which is the sole
curative treatment, is also common. The 5-year survival rate for localized
disease is only ~15% (American Cancer Society, Inc., 2018).

e The existing serum tumor markers, namely carbohydrate antigen 19—
9 (CA19-9) and carcinoembryonic antigen (CEA), lack sensitivity and
specificity to detect ICC at an early stage. To date, efficient strategies for
the screening and surveillance of ICC have not been established.

e Chemotherapy is a standard of care for advanced disease; however, the
efficacy remains limited. Several targeted therapies and their predictive
biomarkers have failed to demonstrate survival benefits for this group of
patients. Immunotherapy such as checkpoint inhibitor may be effective
only in patients with microsatellite instability (MSI), which is uncommon in
ICC.

¢ The highly heterogeneous nature of ICC, comprising both locally advanced
and metastatic disease, along with the lack of common genetic alterations
and clinically actionable molecular classifications, make it difficult to design
the effective clinical trials and assess the efficacy of each treatment
regimen. Multiple studies focusing on integrative multi-omics analyses
have recently been conducted to identify the molecular classifications of
ICC that can help optimize clinical decision.

spectrometry (LC-MS) have enabled broader interrogation of
genetic diseases and other disorders. The so-called “omics” data
can be defined and categorized according to different groups
of biological molecules and regulatory processes, which provide
different information of the cells. Given the advantages of
broader and deeper scales of available data, different types of
omics are applied widely and rapidly to study the associations
between different variations and phenotypes, and also used to
predict prognosis. It also helps in the classification of subtypes
of a disease, which may require different treatment guidelines
(Kristensen et al., 2014).

Genomics is one of the earliest to be introduced among the
omics data series. Common types of somatic DNA alterations
including single nucleotide variants (SNVs), insertions and
deletions (INDELs), copy number alterations (CNAs), and
structural variations (SVs) have all been shown to play important
roles in development and progression of ICC (Zou et al., 2014).
Comparative genomics of cancer and normal cells serve as
an important platform to investigate molecular mechanisms
of cancers; however, biological functions of oncogenes largely
depend on how they are expressed (or not expressed) into
functional oncoproteins and which tissues they are expressed
in. Transcriptomics describes the abundance of transcribed
messenger RNA (mRNA) and other non-coding RNAs. Even
though most transcriptomic studies on ICC and relating cancers
have been focused on mRNA (Jinawath et al., 2006), dysfunction
of non-coding RNAs, particularly microRNA (miRNA) and
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long non-coding (IncRNA), have recently been found to
play roles in ICC as well (Wang et al, 2016; Yang et al,
2017; Zheng et al, 2017). Other than transcriptional level,
transcriptomic profiling by RNA-Seq data also provides novel
information on alternative splicing isoforms of a gene and
confirms the expression of novel fusion gene transcripts, which
is surprisingly prevalent in ICC (Arai et al., 2014; Borad et al,,
2014; Ross et al., 2014; Nakamura et al., 2015; Sia et al,
2015). Transcriptional levels significantly depend on epigenetic
configuration of regulatory elements targeting the oncogenes and
tumor suppressor genes. It has been shown in CCA, including
ICC, that DNA methylation is markedly enriched in either
CpG islands or shores, which are regulatory regions enriched
in cytosine and guanine nucleotides (Jusakul et al, 2017).
Downstream to transcriptomes, proteomics has been widely used
to quantify peptide sequences, post-translational modifications,
protein abundance and interactions. Aberrant proteins secreted
by cancer cells and released into various kinds of body fluids, such
as blood, urine and saliva, provide good non-invasive biomarkers
for early detection of cancer and the recurrent disease. A few
studies have proposed potential biomarkers for CCA and HCC
based on mass spectrometry analysis of cancer-specific secreted
proteins (Srisomsap et al., 2010; Cao et al, 2013). Another
high-throughput approach, metabolomics study, quantifies small
molecules, such as amino acids, fatty acids, carbohydrates,
or other compounds related to cellular metabolic functions.
Metabolite levels and relative ratios reflect metabolic function,
and out of normal range perturbations are often indicative of
disease, as also shown in ICC (Murakami et al., 2015).

One of the most apparent applications of omic techniques
on cancer research is the characterization of cancer subtypes
and their signatures, which frequently leads to personalized
treatments for cancer patients bearing different tumor signatures.
For instance, based on a large whole exome (WES) and genome
sequencing (WGS) dataset of 7,042 tumors generated from
30 primary cancer types, cancers could be categorized into
21 different molecular signatures (Alexandrov et al, 2013).
Molecular signature 1, for example, has the highest prevalence
in all the cancer samples (~70%), and is mostly associated with
age. Signature 3 accounts for about 10% of the prevalence and
is associated with mutations in BRCA1/2. Therefore, combining
signature 1 and 3 explains over 80% of the breast cancer
cases. Even though within each cancer type, the prevalence of
somatic mutations varies significantly, they can be distinguished
using different combinations of signatures. In parallel, another
study categorized 3,299 tumors from The Cancer Genome Atlas
(TCGA) comprising 12 cancer types into two main classes,
one with dominant oncogenic signatures of somatic mutations
(M class), and the others with dominant signatures of CNAs
(C class) (Ciriello et al., 2013). The M class tumors show
primarily genomic mutations and epigenetic alterations, such
as DNA hypermethylation. Conversely, the C class tumors
show primarily CNAs, particularly high-level of amplifications
and homozygous deletions. Targetable molecular alterations
in a tumor class allow the use of class-specific combination
cancer therapy. More recently, an integrated analysis of genetic
alterations focusing on the 10 canonical signaling pathways in

the 9,125 TCGA-profiled tumors from 33 cancer types including
CCA has underlined significant representation of individual
and co-occurring actionable alterations among these pathways,
which suggests targeted and combination therapy opportunities
(Sanchez-Vega et al., 2018). In addition, WES and transcriptome
data were applied to identify molecular signatures of metastatic
solid tumors from 500 adult patients (Robinson et al., 2017).
Altogether, such systematic approaches can potentially be applied
specifically to ICCs, where each tumor may carry different
underlying genetic mechanisms and prognoses, in order to obtain
more effective treatment for individual patients.

To overcome the challenges in ICC diagnosis and treatment
(Box 1), multiple high-throughput omics studies have been
performed in order to discover the underlying molecular
mechanisms that can be translated into precision oncology
application. In order to better understand the current progress
in ICC translational research, here we review the various
subclassifications of ICC with regard to its cells of origin,
different etiologies and unique clinicomolecular aspects of this
rare disorder. The detailed summary of the high-throughput
omics studies of ICC can be seen in Table 2.

Cells of Origin of ICC

Primary liver cancer, which is the second leading cause of cancer-
related death worldwide, is mainly composed of ICC and HCC.
The molecular and clinical features of the two cancers are distinct
in most cases. Many studies have shown that the two cancers
may share the same driver genes, which may be due to the fact
that they also share the same cells of origin; hepatocytes and
cholangiocytes arise from a common progenitor, hepatoblasts.
ICC usually has poorer prognosis than HCC due to the difficulties
in early disease detection and poorly understood carcinogenesis
mechanisms. In a small proportion of the cases, ranging from
0.4 to 14% depending on the geographical regions, the patients
developed combined hepatocellular cholangiocarcinoma (CHC)
(Theise et al., 2010), which was proposed to be of monoclonal
origin based on a recent study (Wang et al., 2018).

Various genetically engineered mouse models have been
generated to study the cellular origin of primary liver cancers;
however, the results are still inconclusive. By ablation of genes
in Hippo signaling pathways (Lee et al, 2010; Lu et al,
2010) or knocking out neurofibromatosis type 2 (Nf2) gene
(Benhamouche et al., 2010) in mouse, the authors proposed
that ICC and HCC may share the same progenitor cells since
all surviving mice eventually developed both CCA and HCC.
A similar result was achieved by performing transduction
of oncogenes, ie., H-Ras or SV40LT, in mouse primary
hepatic progenitor cells, lineage-committed hepatoblasts, and
differentiated adult hepatocytes. Regardless of the hepatic lineage
hierarchy, transduced cells were able to give rise to a continuous
spectrum of liver cancers from HCC to CCA suggesting that
any hepatic lineage cell can be cell-of-origin of primary liver
cancer (Holczbauer et al., 2013). Several large multi-omics studies
have shown that ICC and HCC share recurrently mutated genes
including TP53, BAPI, ARIDIA, ARID2 (Chaisaingmongkol
et al., 2017; Farshidfar et al, 2017; Wang et al, 2018).
Furthermore, ICC together with HCC can be categorized into
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Cl and C2 subtypes. ICC-C1 and HCC-C1 share similar
transcriptomic patterns that are significantly different from those
of ICC-C2 and HCC-C2. Interestingly, ICC-C1 and HCC-C1 are
enriched for aberrant mitotic checkpoint signaling, suggesting
a high rate of chromosomal instability, while C2 groups are
enriched for the cell immunity-related pathways, which implies
an association with inflammatory responses (Chaisaingmongkol
et al., 2017). These findings indicate that ICC and HCC, while
clinically treated as separate entities, share common molecular
subtypes with similar actionable drivers that can be exploited to
improve precision therapy.

It should be noted that ICC- or HCC-specific alterations
also exist. Aberrant activation of NOTCH signaling and
gain-of-function mutations in the genes encoding isocitrate
dehydrogenases (IDHI and IDH2) are required for ICC
development, and thus are significantly more common in ICC
than in HCC (Sekiya and Suzuki, 2012; Moeini et al., 2016).
In addition, activation of KRAS and deletion of PTEN in the
mouse model will only generate ICC (Ikenoue et al., 2016).
Multiple studies have identified different molecular features of
ICC and HCC by applying large-scale high-throughput datasets.
By combining metabolomics and transcriptomics data from 10
ICC and six HCC samples together with their paired normal
tissues, a research team showed that ICC can be distinguished
from HCC by the distinct expression patterns of 62 mRNAs, 17
miRNAs, and 14 metabolites (Murakami et al., 2015), leading
to the conclusion that ICC and HCC have different oncogenic
mechanisms. Recently, Farshidfar et al. conducted a meta-
analysis study by combining sequencing data from a total of
458 ICC, 153 pancreatic ductal adenocarcinoma (PDAC), and
196 HCC samples from multiple studies including TCGA. They
identified a distinct subtype of ICC enriched for IDH mutants,
and found that HCC can be characterized by CTNNBI and TERT
promoter mutations, which are absent in ICC (Farshidfar et al.,
2017).

In conclusion, although ICC shares some molecular changes
with HCC, likely because of the same cells of origin, this rare
cancer also possesses its own unique differentiation and evolution
pathways, as well as specific genetic alterations and distinct gene
expression patterns.

Different Etiologies of ICC

Parasitic infection by liver flukes, ie., O. viverrini (OV) and
C. sinensis, is a well-known ICC risk factor, particularly in
Thailand. The chronic liver fluke infection is estimated to
account for 8-10% of the overall ICC incidences (Gupta and
Dixon, 2017). The gene expressions studied by Jinawath et al.
(2006) was one of the first reports to elucidate the different
genetic mechanisms between liver fluke- and non-liver fluke-
associated ICCs. Using cDNA microarray, the authors compared
the two groups of ICC at the transcriptional level, and found
that genes involved in xenobiotic and endobiotic metabolisms,
i.e., UDP-glucuronosyltransferase (UGT2B11, UGT1A10) and
sulfotransferases (CHST4, SUTICI), have higher expression in
liver fluke-associated ICCs comparing to non-liver fluke group.
These genes are believed to play important roles in detoxification
of carcinogens such as nitrosamines from preserved food and,

if any, toxic substances released from the parasites or created
by parasite-induced chronic inflammation. On the other hand,
genes involved in growth factor signaling show higher expression
in non-liver fluke ICCs.

Different causative etiologies may induce distinct somatic
alterations. Recurrent infection of liver flukes, particularly OV,
has been associated with different DNA mutation signatures in
ICCs. A WES study demonstrated that the frequently mutated
genes in OV-related ICCs comprise both known cancer genes,
such as TP53, KRAS and SMAD4, and newly implicated cancer
genes including MLL3, ROBO2, RNF43, PEG3, and GNAS, which
are genes involved in histone methylation, genome stability,
and G-protein signaling (Ong et al., 2012). Another WES study
further showed that TP53 mutations are more enriched in OV-
related ICCs, while mutations in BAPI, IDHI, and IDH2 genes
are more common in non-OV-related tumors (Chan-On et al.,
2013).

A recent multi-omics study analyzed the combined datasets
of WGS, WES, CNAs, transcriptomes and epigenomes, and
identified four CCA clusters likely driven by distinct etiologies,
with separate genetic, epigenetic, and clinical features (Jusakul
etal., 2017). The results showed that liver fluke infection is one of
the most important classification factors and is also the factor that
leads to poorer prognosis. From this study, clusters 1 and 2, which
are liver fluke positive, are enriched for recurrent mutations
in TP53, ARIDIA and BRCA1/2, and ERBB2 amplifications. In
contrast, clusters 3 and 4, which comprise mostly non-liver
fluke-associated tumors, are enriched for recurrent mutations
in epigenetic-related genes, i.e., BAP1 and IDHI/2, as well as
FGFR rearrangements, and have high PD-1/PD-L2 expression.
Additionally, DNA hypermethylation of CpG islands and high
levels of mutations in H3K27me3-associated promoters were
only observed in clusters 1, while cluster 4 exhibited DNA
hypermethylation in CpG shores. These findings suggest different
mutational pathways across all four CCA subtypes.

Other than liver fluke, hepatitis virus infection has been
proposed to be associated with an increased risk of ICC as
well. A meta-analysis of the combined 13 case-control studies
and three cohorts of ICC patients has reported a statistically
significant increased risk of ICC incidence with HBV and
HCV infection (OR = 3.17, 95% CI, 1.88-5.34, and OR =
3.42, 95% CI, 1.96-5.99, respectively) (Zhou et al., 2012). To
investigate whether viral hepatitis-associated ICC may harbor
specific histomorphological and genetic features, Yu et al
analyzed the 170 ICC patients who were either seropositive
or seronegative for HBV or HCV. The authors identified N-
cadherin as an immunohistochemistry (IHC) marker for viral
hepatitis-associated ICC. N-cadherin IHC positivity is also
strongly associated with cholangiolar morphology, lack of CEA,
high MUC2 expression, and low KRAS mutation frequency
(Yu et al, 2011). In line with these findings, another study
conducting WES in ICCs found that HBV-associated ICCs
carry high TP53 mutation loads, while mutations in KRAS are
almost exclusively identified in tumors of HBV-seronegative
patients (Zou et al., 2014). However, larger scale high-throughput
studies have yet to be performed in viral hepatitis-associated
ICCs.
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Other Molecular and Clinical Aspects

Based on gene expression and SNP microarrays, two main
subtypes of ICC, proliferation (PF) and inflammation (IF), were
identified (Sia et al., 2013a). The PF subtype is more common
and can be characterized by activation of oncogenic signaling
pathways, DNA amplifications of 11q13.2 (including CCNDI and
FGFI9 gene loci), deletions of 14q22.1 (including SAVI gene
locus), mutations in KRAS and BRAF, and is associated with a
poor prognosis. In contrast, the IF subtype is characterized by
activation of inflammatory signaling pathways, overexpression of
cytokines and STAT3 activation, and is associated with a better
prognosis. Another study led by Anderson et al. classified ICC
patients into two subgroups based on 5-year survival rate, time
to recurrence, and the absence or presence of KRAS mutations.
Similarly, KRAS mutations are associated with poor clinical
outcomes (Andersen et al., 2013).

As mentioned earlier, based on a large-scale TCGA study,
mutational signatures can be divided into two major classes,
namely M and C (Ciriello et al., 2013). By combining WES and
transcriptomic data, a study showed that ICCs carry signatures
of both M and C classes as well (Kim et al., 2016). ICC of C
class harbors recurrent focal CNAs including deletions involving
CDKN2A, ROBOI, ROBO2, RUNX3, and SMAD4, while those
of M class harbor recurrent mutations in the genes frequently
mutated in ICC, i.e., TP53, KRAS, and IDH1, as well as epigenetic
regulators and genes in TGFp signaling pathway.

Focusing on the genomic findings from all ICC studies
discussed above, recurrent mutations of ICC are enriched in
tumor suppressor genes, i.e., ARIDIA, ARID1B, BAP1, PBRMI,
TP53, STK11, and PTEN, and oncogenes, ie., IDHI, IDH2,
KRAS, BRAF, and PIK3CA. The frequencies of these recurrent
mutations in ICC across multiple studies are summarized in
Figure 1. The majority of these genes are associated with
genome instability and epigenetic alterations, which are the
common underlying mechanisms of cancer. Recurrent mutations
of BRCA2, MLL3, APC, NFI, and ELF3 tumor-suppressor
genes have also been reported in ICC (Farshidfar et al., 2017).
Using transcriptomic analysis, fibroblast growth factor receptor
2 (FGFR2) fusion genes, i.e., FGFR2-AHCYL, FGFR2-BICCI
typel, FGFR2-BICCI type2, FGFR2-PPHLNI, FGFR2-MGEA5,
FGFR2-TACC3, FGFR2-KIAA 1598, FGFR2-KCTD1, and FGFR2-
TXLNA, are found to be one of the most prevalent alterations
in ICC (Jiao et al., 2013; Borad et al., 2014; Ross et al., 2014;
Murakami et al., 2015; Sia et al., 2015; Farshidfar et al., 2017;
Figure 1). Furthermore, they are reported to be exclusively
present in ICC, but not ECC and gallbladder cancer (Nakamura
et al,, 2015). FGFR2 fusion proteins have been shown to facilitate
oligomerization and FGFR kinase activation, resulting in altered
cell differentiation and increased cell proliferation (Wu et al,
2013). Although the genomic and transcriptomic analyses of
ICC support the use of targeted therapeutic interventions, there
is currently no targeted therapy considered effective for this
disorder. In order to develop a strategy to overcome this
challenge, a disease model that mimics most or all biological
and genetic aspects of ICC is an ideal tool for performing
functional studies of the target genes or screening potential
anticancer drugs. In the coming sections, we will update the

recent progress and introduce new disease models that may
expedite the discovery of novel treatment for ICC.

CURRENT DISEASE MODELS OF ICC

The first ICC cell line, HChol-Y1, was established in 1985. The
cell line secretes very low levels of CEA and high level of CA 19-
9, which are the markers of various kind of cancers (Yamaguchi
et al., 1985). Since then, many more ICC cell lines originating
from ICCs with different etiologies have been established around
the world. PCI:SG231 (Storto et al., 1990), CC-SW-1 (Shimizu
et al, 1992), CC-LP-1 (Shimizu et al., 1992) cell lines were
established from patients in the US. HuH-28 (Kusaka et al., 1988),
KMCH-2 (Yano et al,, 1996), RBA (Enjoji et al., 1997), SSP-25
(Enjoji et al., 1997), NCC-CC1, NCC-CC3-1, NCC-CC3-2, and
NCC-CC4-1 (Ojima et al., 2010) were derived from Japanese
patients. SNU-1079 (Ku et al., 2002) was derived from a Korean
patient, while HKGZ-CC (Ma et al., 2007), and HCCC-9810 (Liu
et al., 2013) were derived from Chinese patients. In particular,
HuCCA-1 was established from the tumor removed from a Thai
patient with liver fluke infection (Sirisinha et al., 1991). This
cell line is from epithelial cell origin and secretes a number of
non-specific tumor markers including CA125 (Srisomsap et al.,
2004).

Unlike most of the ICC cell lines established directly
from primary tumor cells, two cell lines, namely MT-CHCO1
and KKU-213L5, were established by generating xenograft,
which is the growing of human primary tumor cells in the
immunodeficient mice, such as nonobese diabetic (NOD)/Shi-
severe combined immunodeficient (scid)—ILZry"”” mice (NOG
mice). MT-CHCO1 was established from a xenograft derived
from the tumor of an Italian patient. After growing primary
tumor cells in NOD/Shi-scid mice for four generations, the
xenograft was stabilized, and the tumors were resected from
mice to generate xenograft-derived cell lines. MT-CHCO1 retains
epithelial cell markers, and shows stemness and pluripotency
markers (Cavalloni et al., 2016b). After subcutaneous injection,
it retains in vivo tumorigenicity and expresses CEA and CA19-9;
KRAS G12D mutation is also maintained in this cell line. KKU-
213L5 was recently derived from its parental cell line, KKU-213,
which was established from the primary tumor of a Thai patient.
KKU-213L5 was selected in vivo through five serial passages
of pulmonary metastasized tissues via tail-vein injection into
NOD/scid/Jak3 mice (Uthaisar et al., 2016). Compared to KKU-
213, KKU-213L5 possesses higher metastatic behaviors, such as
higher migration and invasion abilities, and also shows stem cell
characteristics. The cells exhibit significantly higher expression
of anterior gradient protein-2 (AGR2) and suppression of KiSS-1,
which are associated with metastasis in the later stages of disease
(Figure 2A).

Recently, the use of human tumor xenograft or patient-
derived xenograft (PDX) provides a “patient-like” environment
in animal models for a better study of human cancers.
To generate PDX, tumor cells are transplanted into
immunocompromised animals either by subcutaneous injection
or by injecting into the desired organs directly. An orthotopic
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« HUCCA-1 : liver fluke infected, Thai patient (Srisomap et al. 2004)
« MT-CHCO1 : Xenograft-derived, Italian pateint (Cavalloni et al. 2016b)
« KKU-213L5 : Xenograft-derived, Thai patient (Uthaisar et al. 2016)

Cell Lines
3D Tissue -like Organoids
(o)

Genetically Engineered Mouse Model (GEMM)

+ Kras mutation and Pten homozygous deletion in
mouse liver resulted in ICC (Ikenoue et al. 2016).

D Orthotopic Patients-derived Xenograft (PDX) Mouse

« ICC with KRAS mutation from an Italian patient was
= @ successfully engrafted in mice (Cavalloni et al. 2016a).

CRISPR/Cas9

« Pten, Apc, Tet2, Cdkn2a-ex2, Trp53, and Arid1a mutations
were significantly more frequent in mouse ICC induced by
CRISPR/Cas9-based multiplex mutagenesis (Weber et al. 2015a).

FIGURE 2 | Current disease models for studying ICC. (A) ICC cancer cell lines. There are many cell lines established from primary tumor cells. Three representative cell
lines are listed. HUCCA-1 was derived from a Thai patient with liver fluke infection. MT-CHCO1 and KKU-213L5 were both established from patient-derived xenografts
(PDX). (B) 3D patient-derived tissue-like organoids. Organoids preserve the properties of primary tumor cells as well as tissue heterogeneity. (C) Genetically engineered
mouse model (GEMM). A GEMM of ICC was generated by inducing oncogenic KRAS mutation and homozygous PTEN deletion in mouse liver. (D) Orthotopic
patient-derived xenograft (PDX). In orthotopic PDX mouse models, patient-derived tumor cells are transplanted into the same organ from which the patient’s cancer
originated, followed by stabilizing the tumors in the animals. (E) A mouse model of ICC created by CRISPR/Cas9 gene editing. CRISPR/Cas9 is used to introduce
mutations to the selected tumor suppressor genes including Arid1a, Trp53, Tet2, Pten, Cdkn2a, Apc, Brca1/2, and Smad4, which lead to ICC in the gene-edited mice.

« ICC organoid cultures successfully
developed from primary liver cancer
cells (Broutier et al. 2017).

xenograft model is generated by either implanting or injecting
human tumor cells into the equivalent organ from which the
cancer originated. It is widely believed that orthotopic PDX
reflects the original tumor microenvironment much better than
the conventional subcutaneous xenograft models. Recently, a
novel PDX model was generated from an Italian patient with
ICC. This PDX shows the same biliary epithelial markers,
tissue architecture, and genetic aberrations as the primary
tumor (Cavalloni et al., 2016a) (Figure 2D). Other than PDX, a
genetically engineered mouse model of ICC has been generated
by inducing oncogenic Kras mutation and homozygous Pten
deletion in the liver. The tumors induced in this model are
exclusively ICCs and show histological phenotype similar to
human ICC with cholangiocyte origin. This mouse line is

suited for the development of new therapies for ICCs with an
oncogenic KRAS mutation and the activated PI3K pathway
(Ikenoue et al, 2016) (Figure2C). The latest gene-editing
technology, CRISPR/Cas9 technique, has successfully been used
to induce ICC in mice. A study led by Weber J. et al. (2015)
introduced mutations in a set of tumor suppressor genes often
altered in human ICC/HCC such as Aridla, Pten, Smad4, Trp53,
Apc, Cdkn2a, and in a few rarely mutated genes including Tet2,
Brcal/2, in mice by conducting multiplex CRISPR/Cas9 gene
editing. The results showed that CRISPR/Cas9-induced mouse
ICCs preferentially carry higher frequencies of mutations in
the frequently dysregulated genes in human ICCs, especially
those related to chromatin modification. However, the authors
unexpectedly observed a high mutation frequency of Tet2,
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which has never been observed in human ICCs. Although TET2
mutations have not been reported in human ICC, TET2 is
believed to harbor tumor suppressive function linked to IDH1/2,
which are among the commonly mutated oncogenes in ICC.
The authors, therefore, brought up the importance of genetic
screening in pinpointing the cancer genes that may not be
mutated, but altered by other mechanisms (Weber J. et al., 2015)
(Figure 2E).

TRANSLATIONAL CLINICAL ASPECTS
AND FUTURE DIRECTIONS

Looking ahead on the future of cancer research, one of
the most exciting trends is the application of patient-derived
organoids, which serve as a source of expanded in vitro patient-
derived cancer cells (Figure 2B). This essentially provides a
3D semi-solid tissue-like architecture that captures the real
structure and heterogeneity of a solid tumor, a quality that is
lacking in the commonly used immortalized cancer cell lines.
Organoid, therefore, serves as a good model for studying the
underlying carcinogenesis mechanisms, as well as for drug
sensitivity testing and developing targeted therapies (Lancaster
and Knoblich, 2014). Recently, human cholangiocytes were
isolated and propagated from human extrahepatic biliary tree
in the form of organoids as a proof-of-concept experiment for
regenerative medicine applications (Sampaziotis et al., 2017).
These extrahepatic cholangiocyte organoids can form tissue-like
structures with biliary characteristics when transplanted into
immunocompromised mice, and can reconstruct the gallbladder
wall by repairing the biliary epithelial cells in a mouse model
of injury. The results showed that bioengineered artificial
ducts can functionally mimic the native common bile duct.
Recently, Broutier et al. has successfully developed organoids
from primary cell culture of HCC, CHC, ICC, and perihilar
CCA (Broutier et al,, 2017). By generating ICC organoids that
reflect the heterogeneous origins and etiologies, we foresee a
possibility of identifying the functions of somatic alterations in
ICC by systematically conducting CRISPR/Cas9 gene editing. In
addition, one can investigate the effects of microenvironment
more thoroughly (i.e., tumor-immune interactions and cell-
cell communications), the cell state transition, and test the
efficacy of drugs in a high-throughput manner. Ultimately,
patient-derived organoids together with PDX mice may serve
as two of the most important models for the development of
precision medicine in ICC and other rare cancers. In Figure 3, we
summarize the application of precision oncology through the use
of high-throughput technologies and disease models to expedite
translational research outcomes in ICC.

Intra-tumor heterogeneity reflects the diverse clonal evolution
of tumor cells. Tumor evolution is proposed to have one of the
following characteristics; hypermutability phenotypes, various
mutation signature patterns, weak clonal selection, and high
heterogeneity of tumor cell subclones (Schwartz and Schaffer,
2017). Extensive intra-tumor heterogeneity of ICC has lately
been observed using WES, which identified branch evolution
collectively shaped by parallel evolution and chromosome

instability as the predominant pattern of ICC (Dong et al,
2018). As single-cell omics technologies have become more
matured recently, it is now possible to characterize the reference
expression patterns of individual cells in human (Nawy, 2014)
in order to provide the most fundamental knowledge for
understanding human health and diseases (Rozenblatt-Rosen
et al., 2017). Such advanced technologies will also expedite
understanding of carcinogenesis mechanisms, including those of
ICC. These approaches include generating transcriptomes and
epigenomes at the single-cell level (scRNA-seq and scATAC-seq,
respectively), as well as spatial transcriptomes, which can be
used to investigate physical relationships of each cell in a tumor
mass (Stahl et al., 2016). Single-cell genomics has also become
another important tool for understanding the clonal evolution
of tumor cells phylogenetically by exploring the mutating ability
of cancer cells (Kim and Simon, 2014; Miiller and Diaz, 2017).
In the same way, single-cell genomics may help better elucidate
the heterogeneity of ICC, particularly when combined with other
multi-level omics data generated from either primary tumor cells
or the patient-derived 3D tumor model such as organoids. A
recent study by Roerink et al. has investigated the nature and
extent of intra-tumor diversification at the single cell level by
characterizing organoids derived from multiple single cells from
three colorectal cancers and adjacent normal intestinal crypts.
Interestingly, the responses to anticancer drugs between even
closely related cells of the same tumor are markedly different,
emphasizing the importance of studying individual cancer cells
(Roerink et al., 2018).

With the current advances in NGS technology, the genomic
landscapes of ICC have been largely revealed, which is critically
important for the clinical development of novel drugs. In
addition, the multi-omics profiles that can classify tumor types
based on molecular features may be essential for the clinical
success in treating the patients. Toward this direction, the clinical
trials driven by biomarkers are being conducted. Many ongoing
clinical trials of all types of CCA including ICC are listed in
Table 3. Among these, targeting FGFR alterations appear to be
particularly promising. A phase 2 study of BGJ398, a selective
pan-FGFR inhibitor, in metastatic FGFR-altered CCA patients
who failed or were intolerant to platinum-based chemotherapy
demonstrated impressive anti-tumor activity (Javle et al., 2016).
Among the 22 evaluable metastatic patients harboring FGFR2
fusions or other alterations, three patients achieved partial
response (PR) and 15 patients had stable disease (SD). A
Phase 1 study of ARQ 087, an oral pan-FGFR inhibitor, in
patients harboring FGFR2 fusions demonstrated two patients
with a confirmed PR and one with durable SD at >16 weeks
(Papadopoulos et al.,, 2017). A phase 3 study of ARQ 087 is
ongoing and recruiting more patients with FGFR2 fusions as
well as inoperable or advanced ICC (NCT03230318). Other
novel drugs targeting FGFR fusions such as INCB054828, H3B-
6527, erdafitinib, and INCB062079 are in early phases of clinical
development (Table 3).

Mutations of IDHI were reported in up to 25% of CCA
(Lowery et al., 2017). AG-120, a highly selective small molecule
inhibitor of mutant IDH1 protein, demonstrated a preliminary
efficacy in refractory CCA patients with IDHI mutations. A
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FIGURE 3 | A schematic diagram proposing the application of precision oncology in ICC through the use of high-throughput technologies and disease models. By
applying high-throughput technologies on large numbers of patient samples, different levels of omics data can be obtained and provide information of the molecular
changes in the tumor cells or microenvironments (Left panel). Aberrant alterations identified from omics data can then be functionally validated in disease models.
Organoids and patient-derived xenograft (PDX) mouse are new disease models (Right panel). The two “next-generation” tumor avatars provide “patient-like” models
for integrative multi-omics analyses to study the underlying mechanisms of disorders. The avatars can be used for the following studies: single cell sequencing for
understanding clonal evolution and heterogeneity of tumors, disease models for gene editing, tumor microenvironments, and high-throughput systematic drug
screening and testing. They can further be biobanked for future studies (Far right panel).

phase 1 study of AG-120 reported one patient who achieved
PR and five patients with SD >6 months (Lowery et al., 2017).
A phase 3 randomized placebo-controlled study of AG-120 in
IDHI mutation-positive patients is underway (NCT02073994)
(Table 3).

Immunotherapy such as checkpoint inhibitor may be effective
only in patients with mismatch-repair deficiency (AMMR). In
CCA including ICC, incidences of dAMMR and/or microsatellite
instability-high (MSI-H) were variously reported as quite low
(Liengswangwong et al.,, 2003, 2006; Limpaiboon et al., 2006;
Walter et al., 2017). A phase 2 non-randomized study of
pembrolizumab, an anti-PD1 antibody, in 41 patients with
progressive metastatic carcinoma demonstrated an immune-
related objective response rate of 40, 71, and 0% for the
patients who have colorectal cancer with dMMR, CCA and
other cancers with dMMR, and colorectal cancer with mismatch-
repair proficiency (pMMR), respectively (Le et al, 2015).
In addition, WES revealed an average of 1,782 somatic
mutations for each dMMR tumor compared with only 73
for a pMMR tumor (P = 0.007). High somatic mutation
loads were also associated with prolonged progression-free
survival (PFS) (P = 0.02). Hence, dMMR tumors with a large
number of somatic mutations may be more susceptible to
immune checkpoint blockade, as a result of the substantial

amount of new immunogenic antigens produced. Based on
these findings, US FDA (Food and Drug Administration) has
granted accelerated approval to pembrolizumab in patients
with unresectable or metastatic solid tumors with MSI-H or
dMMR. A phase 1b study of pembrolizumab (KEYNOTE-028)
with 89 advanced biliary tract cancer patients has reported
a preliminary efficacy of checkpoint inhibitor (Bang et al,
2015). Overall response rate was observed in ~17% of the
patients. Several other ongoing studies of checkpoint inhibitors
are being investigated in combination with other drugs including
chemotherapy, targeted drugs, and other immunotherapies
(Table 3).

CONCLUSIONS

In summary, we have described how the advances in high-
throughput technologies have provided a massive amount
of information in understanding the genetic mechanisms of
disorders, including rare cancers, and in particular, ICC. To
be able to effectively utilize such high-throughput methods in
cancer research, one should take the following into consideration.
First, the determination of clinical information, such as risk
factor exposure or etiologies, disease stages, responsiveness to
therapy, histology subtypes and anatomical locations, prior to
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TABLE 3 | Ongoing clinical trials of targeted therapy in cholangiocarcinoma?@.

Drug Targets Phase = Combination Trial number
DRIVER MUTATIONS
Dasatinib IDH1/2 Il NCT02428855
AG-120 IDH1 (Al NCT02073994,
NCT02989857
Metformin IDH1/2 /1 Chloroquine NCT02496741
Varlitinib EGFR (ErbB-1), Il NCT02609958
Her-2/neu (ErbB-2)
Leucovorin and nal-IRI EGFR, KRAS I 5-FU NCT03043547
Niraparib BAP1 I NCT03207347
Merestinib c-Met, HGFR | Gemcitabine + Cisplatin NCT03027284
LOXO-195 NTRK1, NTRK2, NTRK3 /11 NCT03215511
Trastuzumab Emtansine HER2 Il NCT02999672
DKN-01 Wnt, DKK1 | Gemcitabine + Cisplatin NCT02375880
Copanlisib (BAY 80-6946)  PI3K signaling pathway Il Gemcitabine + Cisplatin NCT02631590
Panitumumab EGF Il Gemcitabine + Irinotecan NCT00948935
FUSION GENE
ARQ 087 FGFR2 /0 NCT01752920,
NCT03230318
BGJ398 FGFR2 I NCT02150967
INCB054828 FGFR2 I NCT02924376
H3B-6527 FGFR4 | NCT02834780
Erdafitinib FGFR Il NCT02699606
Ceritinib (LDK378) ROS1, ALK I NCT02638909,
NCT02374489
INCB062079 FGFR4, FGF19 | NCT03144661
Entrectinib ROS1, ALK Il NCT02568267
TrkA, TrkB, TrkC
LOXO-101 NTRK fusion Il NCT02576431
ANGIOGENESIS
Apatinib VEGFR-2 1l NCT03251443
Ramucirumab VEGFR-2 I NCT02520141
Regorafenib VEGFR, RET, RAF-1, KIT, PDGFRB, FGFR1, TIE2, Il NCT02053376
BRAF(VE00E)
Pazopanib VEGF, PDGFR, FGFR, KIT Il Gemcitabine NCT01855724
VEGFR/PDGFR/Raf | GSK1120212 NCT01438554
MEK MAPK/ERK
CHECKPOINT INHIBITOR
Durvalumab (MEDI 4736) PD-L1, PD-1 | Guadecitabine (SGI-110) NCT03257761
Pembrolizumab PD-1 I Peginterferon alpha-2b (Sylatron) NCT02982720
PD-L1, PD-L2 | XL888 NCT03095781
HSP90
Atezolizumab PD-L1 I Cobimetinib NCT03201458
PD-L1 | Gemcitabine+ Cisplatin NCT03267940
Nivolumab PD-1, PD-L1 Il Entinostat NCT03250273
HDAGC inhibitor
CTLA-4 Il Ipilimumab NCT02834013
PD-1
ABBV-181 PD-1, PD-L1 | Rovalpituzumab Tesirine NCT03000257
ABBV-368 OX40 | Monotherapy or combination with ABBV-181 NCT03071757
OTHER PATHWAYS
RRx-001 G6PD I Gemcitabine + Cisplatin NCT02452970
CX-4945 CK2 /1l Gemcitabine + Cisplatin NCT02128282
Melphalan/HDS Induce covalent guanine N7-N7 intra- and 117111 Gemcitabine + Cisplatin NCT03086993
inter-crosslinks and alkylation of adenine N3 of DNA.
BBI503 Cancer stem cell (CSC) I NCT02232633
Acelarin (NUC-1031) dFJCDP, dFdCTP | Cisplatin NCT02351765
CX-2009 Tumor-associated antigen (TAA) CD166 /11 NCT03149549

anformation acquired from Clinicaltrials.gov.
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inclusion of the clinical samples is crucial, as it may affect
the overall success of downstream analyses. For ICC, liver
fluke and hepatitis virus infections are both strongly associated
with the disease. Hence, additional information on whether the
patients are seropositive for these infections may help better
characterize the sample subgroups. Furthermore, ICC can also
be subcategorized by macroscopic features, i.e., MF, IDG, and
PDI, which rely on accurate pathological determination of the
tumor sections. Secondly, insufficient sample size is one of the
greatest challenges in studying ICC and other rare cancer types.
This cancer in particular is prevalent in certain regions in Asia,
such as northeastern Thailand, where most patients are believed
to be associated with liver fluke infection. Finding a suitable
ICC cohort with adequate sample size is difficult. Earlier studies
have combined patients from different countries/geographical
regions as well as other different types of BTC e.g., ECC
and gallbladder cancer, in order to elucidate the molecular
mechanisms and treatment responses. These cohorts, particularly
in the form of clinical trials, are consisted of patients and
tumors with different genetic backgrounds, which may have
resulted in therapeutic failure due to the confounding factors
and selection biases. Lastly, the small amount or low quality of
source clinical materials limit the comprehensive applications
of true “multi-omics” approaches. The majority of previous
studies relied on obtaining multiple levels of omics information
from different sets of ICC patients. The restricted amount of
biological materials from one patient is the main hindrance of
performing multiple omics analyses at once to comprehensively
investigate the correlation and connections between multiple
regulatory processes. Therefore, in addition to a good systematic
longitudinal collection of clinical specimens from cancer patients
in a tumor biobank, having organoids or PDX mouse models
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1 | INTRODUCTION

Abstract

Pancreatic ductal adenocarcinoma (PDAC), either sporadic or familial, has a dismal prognosis and
finding candidate genes involved in development of the cancer is crucial for the patient care. First,
we identified two patients with germline alterations in or adjacent to CDH10 by chromosome
studies and sequencing analyses in 41 familial pancreatic cancer (FPC) cases. One patient had a
balanced translocation between chromosome 5 and 20. The breakpoint on chromosome band
5p14.2 was ~810 Kb upstream of CDH10, while that on chromosome arm 20p was in the pericen-
tromeric region which might result in inactivation of one copy of the gene leading to reduced
expression of CDH10. This interpretation was supported by loss of heterozygosity (LOH) seen in
this region as determined by short tandem repeat analyses. Another patient had a single nucleo-
tide variant in exon 12 (p.Argé88GIn) of CDH10. This amino acid was conserved among
vertebrates and the mutation was predicted to have a pathogenic effect on the protein by several
prediction algorithms. Next, we analyzed LOH status in the CDH10 region in sporadic PDAC and
at least 24% of tumors had evidence of LOH. Immunohistochemical stains with CDH10 antibody
showed a different staining pattern between normal pancreatic ducts and PDAC. Taken together,
our data supports the notion that CDH10 is involved in sporadic pancreatic carcinogenesis, and
might have a role in rare cases of FPC. Further functional studies are needed to elucidate the
tumor suppressive role of CDH10 in pancreatic carcinogenesis.

cancers. Up to 10% of pancreatic cancer patients are designated fami-
lial pancreatic cancer (FPC),* which is defined as a kindred with at least

Pancreatic cancer has a dismal prognosis. The most common type of
pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which

is generally sporadic in origin and accounts for >90% of pancreatic

*Current address: Program in Translational Medicine, Faculty of Medicine Ram-
athibodi Hospital, Mahidol University, Bangkok, Thailand; and Integrative
Computational Bioscience Center, Mahidol University, Nakhon Pathom,
Thailand

TCurrent address: Kennedy Krieger Institute, Baltimore, MD, USA

*Current address: ProPath Services, Dallas, Texas, USA

two first-degree relatives affected by pancreatic cancers.?

Large-scale genome-wide screening, for example, next generation
sequencing and SNP array analysis, provides an extensive and unbiased
way to search for susceptibility genes in cancers. Using these
approaches, genomic regions showing copy number variations and
mutations are often found in PDAC.2~> Jones et al.* showed that point
mutations contributed the most to the genetic alterations in PDAC by
analyzing sequences of ~23,000 transcripts in 24 pancreatic cancers

using Sanger sequencing. These mutations may change expression of
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genes involving in core signaling pathway and regulatory processes,
such as DNA damage control (TP53), KRAS signaling (KRAS), and homo-
philic cell adhesion (CDH gene family). Further whole-exome or whole-
genome sequencing studies help identify more genomic aberrations in
PDAC, which can be further categorized into four different subtypes—
stable, locally rearranged, scattered, and unstable—with potential clini-
cal utility.>®

Although relatively rare, several genes associated with FPC such as
BRCA2, BRCA1, STK11, CDKN2A, PALB2, ATM, and mismatch repair
genes®™? have been identified. Conducting whole-genome sequencing
of 638 patients with FPC and exome sequencing of 39 FPC tumor
tissues, a recent study further identified more genes carrying private
heterozygous premature truncations or deleterious mutations in FPC.8
However, variants identified in the FPC kindreds are highly heteroge-
neous—more than 60% of the genes identified only appear in one
single FPC kindred. As the risk of developing pancreatic cancer is
significantly higher—4.6 to 32 fold—in members of FPC kindreds,?°
it remains an important task to understand the genetic underpinning
of FPC.

Either familial or sporadic, finding candidate genes that are
involved in PDAC tumorigenesis should contribute to the development
of early detection biomarkers, offer the opportunities of preventive
medicine.

In this study, we first performed chromosome studies in 41 FPC
cases followed by direct sequencing of cadherin-10 (CDH10) gene, a

2 in all

lesser-known gene that encodes a type Il classical cadherin,
cases. We further carried out the loss of heterozygosity (LOH) analysis
of CDH10 in 50 sporadic PDAC tissues. Our results found alterations
of CDH10 genes and LOH of CDH10 regions in PDAC tissues, suggesting

that CDH10 may be involved in pancreatic carcinogenesis.

2 | MATERIALS AND METHODS

2.1 | Materials

This study was approved by Johns Hopkins University Institutional
Review Board. For FPC cases, DNA from lymphoblastoid cell lines cre-
ated from individuals in the National Familial Pancreas Tumor Registry
(NFPTR; www.nfptr.org) was used. Individuals studied had pancreatic
cancer documented by review of the pathology report with the first
degree member of the family also having pancreatic cancer (Supporting
Information Table S1). Individuals (n = 39) or other family members
(n=2) had been tested for mutations in BRCA2 and PALB2 and they
were negative (Supporting Information Table S1).

For sporadic pancreatic carcinoma cases, formalin-fixed, paraffin-
embedded (FFPE) tissue from 28 individuals at Johns Hopkins Hospital
and snap-frozen fresh tissue from 22 individuals at Thomas Jefferson
University were used. Pancreas cancer cell lines including Hs766T,
PL45, MIA PaCa-2, Capan-1, and BxPC-3 were used in this study.

Anonymized samples of bone marrow or peripheral blood from
individuals serving as bone marrow transplantation donors were used

as controls for sequencing.

2.2 | Copy number and SNP array analysis of T(5;20)
somatic cell hybrids

Genomic DNAs for SNP array analysis were isolated from two t(5;20)
human/mouse somatic cell hybrid clones (human der(5)- and der(20)-
retaining clones). Copy number variation was evaluated using lllumina
HumanHap 550 arrays. SNP genotyping was performed at the SNP
Center of The Johns Hopkins University Genetic Resources Facility.
Samples were processed and analyzed according to the Infinium Il
Assay protocol (lllumina, San Diego, CA) and the processed BeadChips
were imaged on an lllumina BeadArray reader. The signal intensity (log
R ratio) and allelic composition (B allele frequency) of human der(5) and
der(20) chromosomes were analyzed by direct observation of the scan
data using BeadStudio v.3.0.27. The minimal size of detected aberrant
findings was calculated from the base position of the proximal and
distal aberrant SNPs based on the UCSC Genome Browser, Human
Dec. 2013 assembly (hg38). It is estimated that <3% of human SNP
probes on lllumina array are potentially conserved in rodent. Therefore,
the human DNA signals can be clearly separated from those of
mouse, and balanced translocation breakpoints can be mapped with

high resolution using this method.

2.3 | Genomic DNA and total nucleic acid isolation

Genomic DNAs were isolated from peripheral blood, bone marrow,
somatic cell hybrid clones or transformed lymphoblast cells with the
Gentra PureGene DNA isolation kit or QIAGEN QlAamp Midi kit
(Qiagen, Valencia, CA) according to the manufacturer’s instructions.
Total nucleic acid was isolated from the FFPE tumor samples using the
Agencourt FormaPure kit (Agencourt Bioscience Corp., Beverly, MA)
according to the manufacturer's protocol. Isolated DNA and total
nucleic acid were quantified by Nanodrop and examined for size by

agarose gel electrophoresis.

2.4 | Polymerase chain reaction (PCR) and direct
sequencing of CDH10

PCR reactions using primers for CDH10 gene (Supporting Information
Table S2) were carried out in a reaction containing 1X PCR buffer,
0.2 mM dNTP, 1.5 mM MgCl,, 0.25 uM each of forward and reverse
primers, 1.25 units Platinum Tag DNA polymerase (Invitrogen, Carls-
bad, CA), and 20 ng of DNA in a 20-pL reaction volume. PCR amplifica-
tion was performed using the ABI9700 and touchdown thermal cycling
conditions as follows: 94°C for 2 min; 3 cycles of 94°C for 30 s, 64°C
for 30 s, 72°C for 30 s; 3 cycles of 94°C for 30 s, 61°C for 30 s, 72°C
for 30 s; 3 cycles of 94°C for 30 s, 58°C for 30 s, 72°C for 30 s;
35 cycles of 94°C for 30 s, 57°C for 30 s, 72°C for 30 s, and a final
extension at 72°C for 7 min.

PCR products were purified using QiaQuick reagents (Qiagen,
Valencia, CA) or ExoSAP-IT (USB Corp., Cleveland, OH) and were cycle
sequenced using Big Dye v3.1 reagents (Applied Biosystems, Foster
City, CA) and the standard M13F or M13R sequencing primers accord-
ing to the manufacturer's protocol. Sequencing products were purified

with CleanSEQ Sequencing Purification System (Agencourt Bioscience


http://www.nfptr.org

JINAWATH ET AL

Corp., Beverly, MA), and automated sequencing was performed by cap-
illary electrophoresis (CE) on an ABI3700 (Applied Biosystems, Foster
City, CA). Sequences were aligned and examined using Sequencher
software (Gene Codes, Ann Arbor, Ml).

2.5 | Short tandem repeat (STR) analysis

The following six STRs around CDH10 on chromosome 5 were ana-
lyzed: D552845 (5p14.3), D551473 (5p14.2), D55813 (5p14.2), D55648
(5p14.1), D55S814 (5p14.1), D55419 (5p14.1) (Supporting Information
Table S3). No STRs are described within CDH10 itself. Reactions were
individually prepared and thermalcycled according to the PCR protocol
described above. After amplification, 2 uL of each PCR product was
mixed with 8 uL of deionized formamide/GeneScan 500 [ROX] size
standard (Applied Biosystems, Foster City, CA). Samples were dena-
tured at 95°C for 2 min and placed on ice for at least 1 minbefore ana-
lyzing on the ABI3100 Genetic Analyzer (Applied Biosystems, Foster
City, CA). CE data from the tumor samples and from nontumor control
samples were analyzed to identify alleles at each locus and determine

the allelic ratios.

2.6 | CDH10 immunohistochemistry (IHC)

Unconjugated Rabbit Anti-Human CDH10, C-Terminus polyclonal anti-
body was obtained from Abgent, San Diego CA(Cat.# AP1482b). Chro-
mogenic IHC labeling for CDH10 was performed as follows: 5 um
tissue sections of FFPE tissues on charged slides were deparaffinized
and rehydrated by sequential 10 min room temperature incubations in
xylene, 100% ethanol, 95% ethanol, 70% ethanol, and distilled water. A
60-s immersion in distilled water containing 1% Tween-20 detergent
(Sigma-Aldrich, St. Louis, MO, Cat. # P-7949) was followed by heat-
induced antigen retrieval. The slides were immersed in an EDTA target
retrieval buffer (Invitrogen, Carlsbad, CA, #00-5500) and steamed in a
vegetable steamer (Black and Decker Handy Steamer Plus, Black and
Decker, Towson, MD) for 45 min. Endogenous peroxidase activity was
blocked by 10 min treatment with peroxidase blocking reagent (Dako,
Carpinteria, CA, Cat. # 52001). The primary antibody was applied at a
dilution of 1:50 diluted in antibody dilution buffer (ChemMate Cat. #
ADB250) and incubated 14 h at 4°C. The primary antibody was
detected using the Power Vision Plus HRP-polymer detection system
(Leica Cat. # PV6119) per manufacturer's instructions. All washing
steps utilized Tris Buffered Saline with Tween (TBST; Sigma-Aldrich,
Cat. # T-9039). DAB chromogen (Sigma-Aldrich, Cat. # D4293) was
applied to develop the secondary detection reagent. Slides were then
counter stained with Mayer's hematoxylin (Dako Cat. # S3309), dehy-

drated and cover slips were mounted.

2.7 | Databases

Single Nucleotide Polymorphism Database (dbSNP, https://www.ncbi.
nlm.nih.gov/projects/SNP/) build 147, 1000 Genomes May 2013
release (http://browser.1000genomes.org/), and the Exome Aggrega-
tion Consortium (EXAC, http://exac.broadinstitute.org/) were used to

identify the minor allele frequency of CDH10’s missense mutations.

WILEYL?

Expression level of CDH10 in various tissue types was obtained from
the Unigene's expressed sequence tag (EST) database, and the
Genotype-Tissue Expression project (GTEx Portal, http://www.
gtexportal.org/home/).

3 | RESULTS

3.1 | Germline alterations of CDH10 identified in FPC

Through routine karyotyping of lymphoblastoid cell lines of NFPTR
enrollees, we identified one individual with a typical pancreatic adeno-
carcinoma showing a balanced constitutional translocation t(5;20)(p14;
p11.1) in all metaphases (Figure 1A). Metaphase fluorescent in-situ
hybridization (FISH) using bacterial artificial chromosomes (BACs)
obtained from the BACPAC Resource Center (Children’s Hospital
Oakland, Oakland, CA) were used to further define the breakpoint.
Several primer sets (Figure 1D) were designed in the regions covered
by the BAC clone that straddled the breakpoint on chromosome 5
(Figure 1B). We further conducted lllumina HumanHap 550 array
analysis of the human-mouse somatic cell hybrid clones containing
only the derivative chromosomes to identify the translocation break-
point on chromosome 5 (Figure 1C).

Interestingly, the breakpoint is at 810 kb upstream of (CDH10),
which is the nearest gene without any microdeletions or duplications in
the putative breakpoint regions (Figure 1D). Subsequent sequencing
analysis identified no germline CDH10 mutation in this individual. We
further analyzed the genomic stability of the patient’s tumor using 6
STR markers on chromosome band 5p14.2. The results demonstrated a
region of LOH covering CDH10 (Figure 3, Familial t(5;20) case), which
is commonly seen in cancers. This indicated that CDH10 might be
associated with FPC. However, limited tumor tissue was available from
a biopsy of this patient’'s tumor and no additional materials were
available for CDH10 expression analysis by RT-PCR or IHC.

We further extended our studies by performing karyotyping and
all-exon sequencing of germline CDH10 in 41 FPC cases. CDH10
germline sequence changes were also analyzed in 106 deidentified
normal bone marrow donors. CDH10 polymorphisms were checked
against public variant databases (dbSNP build 147, 1000 Genomes
May 2013 release) before reporting as a possible novel variant.

Among 41 patients, we observed a patient who demonstrated a
germline G > A transition base substitution at coding DNA position
2063 resulting in an amino acid arginine (R) to glutamine (Q) substitu-
tion at amino acid codon 688 (p.R688Q) (Figure 2A). This alteration
occurs in a highly conserved cadherin cytoplasmic domain in exon 12.
The amino acid is conserved among vertebrates (Figure 2B). To be
noted, this patient had two first degree relatives who had developed
pancreatic cancer. Tumor tissue was not available from this individual
for analysis. In contrast, no nonsynonymous changes in exon 12 were
found among the 106 control samples or in public databases (dbSNP
build 147, 1000 Genomes May 2013 release; see more detail in discus-
sion). Although one synonymous alteration in coding sequence of exon
12 that had not been previously described was found in two control
individuals, this variant was less likely to cause any deleterious effect
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FIGURE 1 Identification of the translocation breakpoint in a FPC patient with t(5;20)(p14;p11.1). (A) The G-banded chromosomes 5 and
20 from a lymphoblastoid cell line of the FPC patient showing an apparently balanced translocation t(5;20)(p14;p11.1) (black arrows). der(5),
derivative chromosome 5; der(20), derivative chromosome 20. (B) FISH analysis of the translocation breakpoint. Left panel: Oligonucleotide
probes PCR-amplified from RP11-184E9 (chromosome band 5p14) shows green split signals (white arrows) between chromosome arms 5p
and 20p. Right panel: BAC FISH analysis showing the split signals (white arrows) of RP11-108H13 (chromosome band 20q11.1; green) on
20p and 5p, while those of RP11-348i14 (chromosome band 20q11.1; orange) are intact. (C) lllumina HumanHap550 genotyping beadchip
analysis of the human-mouse somatic cell hybrids containing a copy of der(20). Log R ratio and B allele frequency plots demonstrating the
translocation breakpoints on chromosomes 5 (left panel) and 20 (right panel). The breakpoint flanking SNPs are also shown (black arrows).
Both der(5) and der(20)-containing somatic hybrids were analyzed with SNP array, but this figure only shows der(20) cell results. (D) A
schema illustrating the translocation breakpoint regions on chromosomes 5 and 20 identified using a combination of FISH, somatic cell
hybrid coupled with SNP array analysis. The nearest genes to the putative breakpoints on chromosome bands 5p14 and 20p11.1 are
CDH10 and hsa-miR-663, respectively. Genomic locations shown are based on the UCSC genome browser (hg38). [Color figure can be
viewed at wileyonlinelibrary.com]

on CDH10 function (DNA position 2019 C > T). These results further of this variant with disease causing probabilities 1.00 (MutationTaster2),
suggest that alteration of CDH10 gene may be related to small portion 0.982 (PolyPhen-2), and 100% (SIFT).
of FPC cases.

To |nvest|gat.e wheth'er the amino acid chang'e a.t the position 688 3.2 | Somatic alterations in CDH10 gene region
affects the protein function, we performed predictions of the patho-
genic effect of this variant using MutationTaster2,'2 PolyPhen-2,*3 and We further examined if somatic alteration in CDH10 gene region is pres-

SIFT.** As expected, all three algorithms suggested pathogenic effect ent in sporadic PDAC, and analyzed LOH status using six microsatellite
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FIGURE 2 CDH10 single nucleotide changes identified in the FPC and sporadic PDAC cases. (A) A diagram of CDH10 protein showing the
locations of conserved domains and related domain superfamily as predicted by NCBI conserved domains. All previously reported CDH10
somatic mutations (dotted line) and a novel germline variant (p.R688Q; solid line) identified in our study are clustered in exon 12
(Cadherin_C superfamily), which corresponds to the predicted cadherin cytoplasmic superfamily region. (B) Comparison between conserved
amino acids of the existing cadherin cytoplasmic domains across vertebrate species. R688 is among the highly conserved amino acid
component of this domain. Genomic locations shown are based on the UCSC genome browser (hg38). [Color figure can be viewed at

wileyonlinelibrary.com]

markers surrounding CDH10. DNA isolated from 28 microdissected
FFPE PDACs and 22 grossly dissected fresh frozen PDACs were ana-
lyzed to identify somatic alterations. For LOH analysis, we included one
sample of familial tumor for comparisons. One tumor (1/51, 2%) demon-
strated an A > T transition at 2176, which resulted in amino acid threo-
nine (T) to serine (S) substitution at codon 726 (p.T726S; mutation id:
COSMB84892). We subsequently confirmed that this mutation was iden-
tified in the tumor cell line from the same individual.* Additional muta-
tions were not identified.

Next, we examined LOH status of a total of 51 samples including
50 sporadic tumors and one familial tumor, which was included for com-
parisons. Twelve cases (24%) including 11 FFPE samples and 1 fresh
PDAC sample demonstrated LOH at one or more of the markers most
proximal to CDH10, that is, D55813 or D55648 (Figure 3 and Table 1).

The remaining 38 sporadic cases (76%) demonstrated no definitive evi-
dence of LOH at a locus adjacent to CDH10, whereas the familial tumor
from the patient with a constitutional t(5;20) demonstrated LOH at a
locus adjacent to CDH10. Among the 38 cases without evidence of
LOH in the two loci, 7 of them showed LOH in at least one of the 4 loci
analyzed (14%; Locus D552845, D551473, D55814, and D55419).

We noted that STR marker D55648, the closest upstream marker
to CDH10, was only informative in 13 out of the 50 tumors tested
(26%; Figure 3). The heterozygosity scores for this STR marker were
shown to be similar to D55813, which are 0.74 and 0.75, respectively.
However, STR D55813 was informative (heterozygous) in 64% of the
tumors (32/50).

In addition, DNA microdissected from FFPE specimens demonstrated

a significantly higher frequency of LOH compared to DNA isolated from
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FIGURE 3 Summary of LOH analysis of CDH10 gene region in
sporadic PDACs. LOH analysis using 6 STR markers on chromosome
5p14.1-5p14.3 in 28 FFPE samples from Johns Hopkins Hospital and
22 fresh frozen tumor specimens from Thomas Jefferson University.
Additionally, one FPC with t(5;20) was also analyzed. CDH10 gene is
located between D55813 and D55648 (indicated by arrow).

Red = LOH, Blue = not compatible with LOH, NI = not informative.
[Color figure can be viewed at wileyonlinelibrary.com]

fresh tumor specimens (11/28, 39.3% vs. 1/22, 4.5%, respectively). This
raises the possibility that some of the DNA isolated from fresh frozen
tumors may have contained a low percentage of tumor cells, which made
it inadequate for LOH detection.

Because of this concern, we analyzed DNA from each tumor speci-
men for oncogene KRAS codons 12 and 13 mutations as evidence of
tumor content. DNA isolated from FFPE has a significantly higher
mutant allele percentage compared to DNA isolated from fresh tissue
[39.68+-4.20% and 21.12+3.26% (mean =+ SEM),
P =.026; Table 1). In general, a tumor percentage >30% is needed to

respectively,

identify LOH. Although a low or negative KRAS result is not definitive
for a low percentage of tumor DNA present in the sample, our results
suggest that some of our DNA specimens may have had an inadequate
percentage of tumor cells to detect LOH (or mutations) and actual fre-

quency of LOH in this region may be higher.

3.3 | Localization of CDH10 protein in PDAC

Lastly, we examined CDH10 protein expression in PDACs in order to
determine whether CDH10 expression and distribution is altered.
Immunohistochemical stains (IHC) with anti-CDH10 were performed
on 31 sporadic PDACs on a tissue microarray with two normal pancre-
atic tissues as a control. The polyclonal antibody we used targets the
C-terminal region of CDH10 corresponding to the cytoplasmic domain
region. The two normal pancreas tissue samples demonstrated a stain-
ing pattern consistent with localization of the protein to gap/tight junc-
tions (Figure 4AB). In contrast, very weak cytoplasmic staining was
observed with CDH10 in PDAC specimens (Figure 4C,D). Expression
of CDH10 in PDAC specimens was greatly reduced compared to that
in normal pancreas. IHC was also attempted with another polyclonal
antibody to CDH10 (Sigma HPA010651) but this antibody failed to
stain normal controls. These results suggest that decreased CDH10
expression in PDAC possibly correlates with LOH in CDH10 gene

region.

4 | DISCUSSION

Abnormal cadherin expression has been associated with a large spec-
trum of disease, including metastatic cancer (Berx and van Roy, 2009).
Members of the cadherin superfamily are increasingly shown to have a
defining role in cancer. Its best-known member, E-cadherin, has been
shown to suppress invasion and metastasis, and germline mutations in
this gene causes an autosomal dominant predisposition to diffuse gas-
tric cancer and early onset breast cancer.’>'® CDH10 was found to be
one of a number of genetically altered cadherins involved in the homo-
philic cell adhesion pathway in pancreatic cancer, where it was consid-
ered a driver mutation.* We hypothesized that CDH10 may play a role
in the development of pancreatic cancer. Here we identified two novel
germline alterations in individuals with FPC, who were negative for
mutations in other known pancreatic cancer risk/causative genes
(BRCA2 and PALB2). Of note, one of two cases had variant of uncertain
significance (VUS) in BRCA1 and FANCA genes (data not shown), and

significance of these alterations in pathogenesis is not known. Roberts

TABLE1 Summary of LOH and KRAS mutation analysis in sporadic
pancreatic cancer cases from formalin fixed paraffin embedded tis-
sue (FFPE PDAC) and fresh tissue (Fresh PDAC)

FFPE PDAC  Fresh PDAC  Total

Number of cases 28 22 50
LOH at loci adjacent 11 (39.5%) 1 (4.5%) 12 (24%)

to CDH10 (D55813

and/or D55648)
Suspicious for LOH 5 (10.7%) 2 (18.2%) 5 (10%)
KRAS mutation 24 (85.7%) 17 (77.3%) 41 (82%)
% of mutant allele 39.68 +4.2 21.12+3.3 322+3.12

(mean = SEM)

Suspicious for LOH: at least one loci showing LOH in another four loci if
both D55813 and D55648 are not informative.
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FIGURE 4 Immunohistochemical stains with CDH10 antibody on normal pancreatic ducts (A and B) and PDACs (C and D). Images were
taken at 200X (A and C) and 400X% (B and D) original magnification. [Color figure can be viewed at wileyonlinelibrary.com]

et al.® showed that more than half of the germline alterations in FPC
were only found in one kindred, indicating that most FPC-associated
variants are very heterogeneous and only contribute to a small number
of cases. It is known that whole genome sequencing approach is more
technically challenging to identify structural variation. In addition, dis-
covering structural variants especially in primary tumors is difficult due
to the artifact created by contamination of normal stromal cells and
lymphocytes.

CDH10 has been proposed to be one of the driver mutation genes
in sporadic PDACs.* Additionally, cadherins are important in cell-cell
adhesion, and are known to function in cell recognition, coordinated
cell movement, and inducing and maintaining both structural and func-
tional cell and tissue polarity. Abnormal expression of cadherins, such
as the most well-known member E-cadherin, often results in increased
tumor cell invasion, which ultimately leads to metastasis of tumors.t”
CDH10 is a lesser known gene that encodes a type Il classical cadherin,
which is defined based on the lack of a HAV cell adhesion recognition
sequence specific to type | cadherins.* It is predominantly expressed
in brain and is putatively involved in synaptic adhesions and in axon
outgrowth and guidance.’®? Recent studies further suggest that
somatic mutations in CDH10 are associated with colorectal cancer, gas-
tric cancer, and lung cancer.?°722 Therefore, it is of interest to clarify
the association between genetic alterations in CDH10 and pancreatic

cancer.

In our study, germline alterations in or nearby CDH10 were
observed in 2 out of 41 FPC patients using a combination of classical
chromosome analysis and direct sequencing in order to precisely cap-
ture the multifaceted genetic alterations. First, we identified a patient
with FPC who has a balanced translocation between chromosome 5
and 20 by analyzing karyotypes of participants in National Familial
Pancreas Tumor Registry (NFPTR). We narrowed the breakpoints of
the constitutional t(5;20)(p14.2p11.1) using FISH with BAC and long-
range PCR probes, somatic cell hybrids and SNP array to a region 810
Kb from CDH10 on chromosome 5 and in the pericentromeric region
of chromosome 20. We postulate that CDH10 expression has been
affected by proximity to the pericentromeric region of chromosome
20. Genomic rearrangements that put euchromatic genes near the het-
erochromatin of a centromere often result in gene inactivation due to
the proximity of heterochromatin.?® This effect, known as position
effect variegation, has been recognized since 1930, although direct
demonstration of this effect in humans has been limited, possibly due
to the difficulty of cloning breakpoints that involve heterochromatin.
There are identified examples in humans of cis-acting elements that
mediate their effect on gene regulation over large genomic distances.
Individuals with campomelic dysplasia without a mutation in the coding
region of SOX9, a gene known to cause the syndrome, have been
found; several have translocations with breakpoints up to 932 kb

upstream of the gene.24 Other examples include a noncoding sequence


http://wileyonlinelibrary.com

JINAWATH ET AL

“ | WILEY

~10 kb downstream of the promoter of RET in Hirschsprung disease,
and a SNP within a conserved noncoding sequence 10 kb upstream
from the promoter of IRF6 in Van der Woude syndrome (reviewed in
Ref. 25).

The second germline alteration, a missense variant, has previously
been reported as somatic mutation in lung adenocarcinoma.?¢?” This
missense variant (p.R688Q; mutation id: COSM738261) occurs in the
predicted cadherin cytoplasmic superfamily region. Therefore, while it
is difficult to predict exactly what effect this missense variant would
exert on the function of CDH10, comparison between the conserved
amino acids of the existing cadherin cytoplasmic domains in various
cadherin genes shows that R688 is among the highly conserved amino
acid sequences of this domain. This suggests that the amino acid sub-
stitution may be significant. Although further functional analysis of
CDH10 is required to elucidate this, all three predictions algorithms
suggested the variant likely has a pathogenic effect on the protein.
Additionally, the allele frequency of this missense variant is reported to
be 0.00000826 in EXAC database version 0.3.1 (http://exac.broadinsti-
tute.org/variant/5-24488076-C-T) suggesting that it may be a rare
pathogenic variant. However, a recent whole genome sequencing
study by Roberts et al. on 638 FPC cases and 967 controls identified
only one premature truncating variant in CDH10. Hence, CDH10 altera-
tions we identified may be an uncommon cause of FPC.

Next, we studied a possible role of somatic alterations of CDH10
in sporadic pancreatic tumors. We identified one mutation and a signifi-
cant number of tumors with LOH in the region. Our analysis may
underestimate LOH for several reasons. First, there may not have been
enough tumor cell percentage in the specimens analyzed to accurately
identify LOH. Second, the marker closest to CDH10 (D55648) had a
much lower heterozygosity than expected. Since normal tissue from
these tumors was not available for comparison, it is possible that we
have underestimated the frequency of LOH at the D55648 locus. This
speculation is supported by the result of LOH status of PDAC cell lines:
4 out of the 5 cell lines showed noninformative in locus D55648 (Sup-
porting Information Figure S1). Since cell lines are pure populations of
tumor cells, there is high frequency of “noninformative” allele, which
could be a result of LOH. Third, FFPE tissues have degraded DNA, and
3 of six markers (D551473, D55813, and D55419) had relatively long
allele lengths (>200 bp), causing variations in the ratios we observed in
our normals and therefore a relatively wide range of ratios consistent
with no loss. Nevertheless, our data indicate that CDH10 alteration is
seen in both familial and sporadic pancreatic cancer patients, which is
consistent with recent observations showing FPC undergoes a similar
somatic molecular pathogenesis as sporadic PDAC.!

Unigene’s EST profiles show that CDH10 is highly expressed in
brain (23/1,092,688 total ESTs), while lower expression has been
detected in pancreas (2/213,440 total ESTs). GTEx (http://www.gtex-
portal.org/home/), which contains gene expression data from microar-
ray and RNA-Seq platforms, shows that CDH10 has the highest
expression in brain, particularly cerebellar hemisphere. Medium Reads
Per Kilobase of transcript per Million mapped reads of the tissue is

around 15, while it is very low or not detectable in pancreases. Our

data indicate that CDH10 protein expression is altered in PDAC.
CDH10 expression was previously shown in normal human prostate
luminal epithelial cells but was absent in prostate cancer.?® The authors
developed their own antisera to CDH10, and concluded that expres-
sion of CDH10 was involved in a specific role of secretory cell terminal
differentiation. Using commercially available antisera, we preliminarily
demonstrated a difference in expression and localization in normal pan-
creas as compared with normal prostate.

Mature cadherin proteins are composed of a large N-terminal
extracellular domain, a single membrane-spanning domain, and a small,
highly conserved C-terminal cytoplasmic domain. The extracellular
domain consists of five subdomains, each containing a cadherin motif,
and appears to determine the specificity of the protein’s homophilic
cell adhesion activity. Relatively little is known about CDH10. It was
first discovered in 19991! and was found to be expressed in brain,
where it was shown to be involved in blood-brain barrier “synaptic
adhesions, axon outgrowth and guidance.”*” CDH10 spans 157.7kb on
chromosome 5 (chr5: 24,487,209-24,645,087, hg38), and produces
two transcript variants. It is a Type Il (atypical) cadherin, that is, it lacks
a HAV cell adhesion recognition sequence specific to type | cadherins.

Previous literature suggests that sequences near CDH10 might be
involved in synaptic adhesion, axon outgrowth and guidance and
genetic variations nearby CDH10 are associated autism.2?*° In addi-
tion, Biankin et al.> found aberrations in axon guidance pathway genes
in pancreatic cancer genomes. Furthermore, mutations in CDH10 were
identified in colorectal cancer and lung cancer recently.2°22 These
findings are in line with our studies that variations in CDH10 coding or
nearby genomic regions may play roles in pancreatic cancer.

In summary, we have found germline alterations in and adjacent to
CDH10 in 2 of 41 individuals with FPC suggesting CDH10 genomic alter-
ations may play an as yet undefined role in predisposition of selected
individuals for development of pancreatic cancer. The finding of LOH at
the region most proximal to CDH10 gene in at least 24% of sporadic pan-
creas cancer confirms and extends the report of Jones et al.* Our data
supports the notion that CDH10 is involved in sporadic pancreatic carci-
nogenesis, and might have some roles in rare cases of FPC. Further evalu-

ation of the function of CDH10 in epithelial neoplasms is warranted.
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Abstract

With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments,
global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, tran-
scripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these
molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics,
where several network properties have been shown to be functionally important. Here, we discuss how such meth-
odology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of
genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently
used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using can-
cer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small
molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treat-
ments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may
provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems,

treatment of the world’s major diseases.

leading to rapid advances in medicine. From the clinicians’ point of view, it is necessary to bridge the gap between
theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and

Keywords: Network biology, Systems biology, Biomedical research, Cancers, Personalized therapy

Background

Next-generation sequencing (NGS) and other high-
throughput experiments highlight one of the most signif-
icant advances in molecular biology over the past decade.
Such technological improvements enable a large number
of molecules, including genes, transcripts, and proteins
to be simultaneously measured in different conditions
over time. This rapid generation of data has transformed
molecular biology from a “data poor” to “data rich”
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discipline, leading to the emergence of systems biology
[1-4]. The key challenges and bottlenecks of the modern-
day molecular biology have shifted from simply gather-
ing information to the analysis and interpretation of large
quantities of data that can now be obtained.

Network representations have been widely used in
physics and social science for decades, and are now
among the most frequently used tools in systems biology.
This technique provides not only a systematic represen-
tation of both the presence and abundance of biological
molecules, but also displays the relationships or interac-
tions between them. Networks have been used to repre-
sent the interactions between different types of biological
molecules, e.g. protein—protein interactions [5-8], and
in various biological systems including transcriptional
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regulation [9-11], signaling [12—-14], and metabolic path-
ways [15, 16]. Analyses of network sub-structures have
revealed fundamental insights into how biological mol-
ecules are organized [17-20], which would not have been
possible by studying individual genes or proteins.

Network representation and analysis has been success-
fully applied to study many systems in molecular biol-
ogy [21]; however, the use of these tools in translational
medicine and drug discovery is relatively new [22-24].
This might be due in part to the knowledge and under-
standing gaps between clinicians and systems biologists.
By convention, clinicians typically focus on specific sets
of key genetic markers associated with diseases, to iden-
tify the most probable drug targets. In contrast, systems
biologists have strong computational and analytical skills,
but frequently lack hands-on experimental experience.
The lack of interaction of systems biologists with patients
can prevent a full appreciation of the complexity of the
problems and hindrances in biomedical research [25, 26].
In this review, we aim to improve the understanding of
challenges in biomedical research and establish a com-
mon ground between clinicians and systems biologists
to further promote the application of network biology in
translational medicine.

Network biology in a nutshell

What are networks; what do they represent?

We first outline the fundamental concepts of a network
representation. In general, a network represents the pres-
ence of objects or entities in a system as “nodes’, and the
relationships or interactions among the nodes are called
“edges” (Fig. 1). In biology, nodes can represent biological
molecules such as genes, proteins, and ligands, or even
larger entities such as cells or individual humans. Edges
represent physical interactions or contacts between bio-
logical molecules, biochemical processes between sub-
strates and products, genetic interactions between genes,
and in some cases, interactions between cells or individ-
ual organisms.

Biological information described in a network is not
restricted to the presence of nodes and their relation-
ships. The size of node, for instance, can reflect abun-
dance of biological molecules (e.g. gene expression
levels). Nodes can also be drawn in different shapes and/
or colors according to the classification of interest (e.g.
gene/protein family). Likewise, the thickness of an edge
or the distance between nodes may represent the fre-
quency or strength of pairwise interaction (e.g. affinity of
protein—protein interaction); whereas colors can indicate
different types of interactions (e.g. physical or genetic
interaction). In addition, edges can be directional or
non-directional, solid or dotted, depending on the types
of interactions. Thus, networks are information-rich
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representations, which are widely used to summarize,
visualize, and analyze large-scale datasets obtained from
high-throughput experiments. To give an overview of the
current application of networks in biomedical-related
fields, here we review two major types of biological
networks.

Interaction networks

We first illustrate the components of interaction net-
works, where the edges represent a “direct” relationship
between nodes (Fig. 1, left). For instance, protein inter-
action networks, i.e. interactomes, describe physical
interactions between proteins, usually obtained from
high-throughput screening techniques such as yeast-two
hybrid [6, 27], or affinity purification followed by mass
spectrometry [5, 28]. In humans, analyses of protein—
protein interaction networks have shown that dysfunc-
tional interactions can lead to several diseases including
neurological disorders such as ataxias [29], autism [30],
several types of cancers including breast [31] and colo-
rectal cancers [32], acute lymphoblastic leukemia [33], as
well as other inheritable genetic diseases [34—37].

Transcriptional regulation networks (also known as
Gene Regulatory Networks, GRNs) are widely used to
illustrate the binding events of regulatory proteins, such
as transcription factors, to the promoters of targeted
genes, and this technique has been employed in the anal-
ysis of bacteria [38], budding yeasts [9], worms [39], and
embryonic stem cells [40, 41]. GRNs are directional, and
the relationship between two nodes is represented by
an arrow starting from a regulator and pointing toward
a targeted gene. Mis-regulation of gene expression leads
to various diseases especially cancers, as seen in the
genome-wide transcription network of the vertebrate
transcription factor SOX4 [42], and the androgen recep-
tor, a transcription factor that regulates the onset and
progression of prostate cancer [43].

Interaction networks have also been used to describe
the binding and affinity of ligands or small molecules to
targeted proteins. As seen in a drug-target network [44],
a list of drugs approved by the Food and Drug Admin-
istration (FDA) were linked to proteins according to
drug-target binary associations. The analysis of these
networks revealed that many drugs have overlapping
but not identical sets of targets. In addition, the network
analysis indicated that new drugs tend to be, at least
partly, linked to well-characterized proteins already tar-
geted by previously developed drugs. This suggests that
the pharmaceutical industry might be shifting toward
polypharmacology, to systematically address complex
diseases using multiple drugs aimed at multiple specific
targets in related pathways to improve treatment efficacy
[45, 46].
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Fig. 1 Interaction networks (Left) represent direct interactions between biological molecules (e.g. transcripts, proteins, and ligands). The interactions
represented include direct physical interaction (e.g. protein—protein, and gene regulatory networks) or transition (e.g. metabolic network). Associa-
tion networks (Right) represent biological molecules that are linked based on their shared and/or common properties (e.g. co-expression)

Metabolic networks differs from other networks
described earlier in the sense that the edges between
two nodes (metabolites) do not represent physical con-
tacts, but instead biochemical reactions that convert
one metabolite to another. Recent studies have recon-
structed and explored genome-scale metabolic networks
in pathogenic microbes including Staphylococcus aureus
[47], M. tuberculosis [48], as well as in human hosts [49].
These analyses may lead to a better understanding of
host-pathogen interactions, and could aid in the design
of drugs that specifically target the metabolic pathways
of microbes and cause minimal interference with those of
the hosts.

Association networks

Networks can also be used to visualize and summa-
rize the overlap in expression profiles for thousands of
transcripts/proteins obtained from high-throughput
methods, such as expression microarray, RNA-seq, or
short-gun proteomics [50]. In co-expression networks,
two or more genes are linked if their products (mRNAs
or proteins) exhibit similar expression profiles, with the
strength/thickness of the edges proportional to how
often the two transcripts are expressed at the same time
and/or place [51, 52]. Co-expression networks are widely
used as a starting point for inferring the cellular functions
of uncharacterized genes, as in many cases, genes with
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related functions show overlapping expression patterns
[53]. New disease markers can be discovered from clus-
ters of genes that are co-expressed with known disease-
associated genes, as they frequently show differential
expression between the normal and diseased populations
[54-57].

Other association networks include drug target-pro-
tein networks [44], where each node is a protein and
two proteins are linked if they are targeted by the same
compounds. These networks can be computationally
derived from the drug-target network described in the
previous section. It provides a complementary protein-
centric view by focusing on the proteins that are often
co-targeted, and might be involved in related pathways.
Conversely, two or more drugs can be linked in a net-
work based on common properties, such as targeting
specific proteins or side effects. It has been shown that
documented adverse side effects could be used to infer
molecular drug-target interactions [58]. This type of net-
work has the potential to predict whether or not exist-
ing and routinely used drugs have additional unknown
off-targets, allowing for these drugs to be candidates for
additional, distinct therapeutic categories. Illustrations
of the potential of alternative uses for current drugs are
sildenafil, losartan, and fenofibrate. Sildenafil (e.g. Via-
gra® Pfizer Incorporated) was initially developed to
treat angina, but a side effect (prolong penile erection)
discovered during clinical trial has become its main use.
The antihypertensive drug losartan blocks angiotensin II
type 1, and is now a candidate drug for preventing aortic
aneurysm complications in Marfan syndrome patients,
through reduction of TGF-p activitiy [59, 60]. Fenofi-
brate, a drug mainly used for controlling cholesterol lev-
els in cardiovascular patients, has also been shown to
suppress growth of hepatocellular carcinoma [61].

Global disease networks offer a useful insight into how
human disorders are related. In the “human disease net-
work” [62], disease nodes are connected if they share at
least one gene with mutations associated with both dis-
eases. Complementarily, the gene-centric version of this
network comprises nodes of disease genes, linked if they
are associated with the same disorders. Such networks
not only represent a framework to visualize all known
disease genotype-phenotype associations, but also reveal
that human diseases are much more genetically related
than previously appreciated [63]. This is highlighted by
a gigantic network comprising over 500 interconnected
human diseases [7].

What can we learn from networks and their properties?

In addition to being a framework for visualizing and
documenting all the known relationships between
nodes, earlier analyses of large-scale networks from
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high-throughput studies have revealed many interest-
ing biologically relevant properties, which cannot be
obtained by studying genes and proteins individually
[64—66]. One of the most frequently observed proper-
ties of biological networks is the connectivity distribution
that follows a power-law distribution, known as “scale-
free networks” This pattern of connections, also known
as the “small world property’, has also been extensively
studied for their statistical features in different types of
networks, including social networks, scientific collabo-
ration networks, and the World Wide Web [67-72]. In
brief, a scale-free network consists of a small number
of “hubs’, i.e. nodes that are connected to a larger num-
ber of other nodes, through different types of interac-
tions aforementioned. In contrast to hubs, the majority
of nodes in the network have much fewer connections.
Several studies have documented similar observation for
biological networks, including protein—protein interac-
tion networks [6, 17, 73] and metabolic networks [15, 74].
Because of their connectivity distribution, scale-free
networks are robust against random deletion of nodes.
That is, the connections between a node and most other
nodes remain intact, if nodes are removed randomly. In
contrast, scale-free networks quickly become non-func-
tional if hubs are targeted. Earlier studies have shown
that many pathogenic organisms have evolved to target
the central components (i.e. hubs) of a human protein
interaction network, and quickly disrupt various cellular
functions, including the immune response [75, 76]. Simi-
larly, one would expect drugs that specifically inhibit the
central components of the regulatory circuits in a patho-
gen will rapidly disrupt their homeostatic processes, and
thus efficiently eliminate them. As a result, these hubs
from pathogenic organisms could be promising candi-
dates for novel drugs. Network connectivity distribu-
tion is one of the better-studied areas, and a number of
insightful reviews and analyses are available [77, 78].
Another interesting example of biological network
properties are the network motifs, which are sets of well-
defined interconnection patterns between nodes [19].
These connectivity patterns, or network sub-circuits,
recur in biological networks at a frequency significantly
higher than in randomized networks [79-81], signifying
their important roles as building blocks for the large-
scale organization of interactions. The patterns and pro-
portions of sub-circuits used in different networks are
distinct, depending on the functionality required under
different conditions. Interestingly, it has been shown in
a yeast transcription regulatory network that sub-net-
work structures, facilitating fast signal propagation (e.g.
single-inputs), are more frequently employed to respond
to external stressors and sudden environmental changes
(e.g. DNA damage or diauxic shift), because a rapid
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response is required against the stressors. In contrast,
motifs that buffer spurious inputs or only respond to per-
sistent signals (e.g. feed-forward-loops) are more suitable
for analysis of normal growth stages (e.g. sporulation)
[18, 82].

Applications of network biology in translational
medicine
Disease network and drug discovery
Using a transistor radio as an analog of a biological sys-
tem, Yuri Lazebnik described how a biologist would fix
a broken radio, assuming no prior knowledge of how
the radio components were wired together [83]. A tra-
ditional biological approach would involve removing
(gene knockout, mutagenesis) each part of a functioning
radio and track the changes in performance (phenotype).
However, the human “radios” are different and repeating
this process on all the components would generate an
enormous amount of data, some of which may be redun-
dant or contradictory. In contrast, a typical engineering
approach would involve systematic reconstruction of
a component diagram from a normal radio (e.g. regula-
tory network), and compare the broken radios with the
normal reference. Can a similar problem-solving mindset
help expedite advances in biomedical research?

If regulatory circuits that control biological activities in
a human body can be represented using a complex net-
work, then a diseased state would be expected to occur
when the normal state of the network is perturbed. Fail-
ure of key components (e.g. mutations in hub genes in
genetic diseases) or external stimuli (e.g. invasion of
pathogens in infectious diseases) would lead to loss of
network integrity. Diseased perturbations can occur at
different regulatory levels, as illustrated in Fig. 2. Firstly,
the absence or malfunction in important network com-
ponents can lead to diseases, such as the loss of a par-
ticular gene. The absence of TBX1, in 22q11.2 deletion
syndrome (DiGeorge syndrome) is responsible for the
majority of characteristic features of this disease [84]
(Fig. 2a, the absence of node is illustrated in red). Simi-
larly, inappropriate levels of gene expression can cause
disorders (Fig. 2b, altered node size). For example, spe-
cific mutations in the FGFR3 gene result in an overac-
tive receptor and lead to the short stature phenotype
observed in achondroplasia [85]. Some diseased states
can be explained by mis-regulation of the interactions
between key components of the network (Fig. 2c, miss-
ing edge), as well as mis-direction (Fig. 2d, mis-directed
edge) or strength (Fig. 2e, altered edge’s thickness) of
interactions. The diseases that can be linked to errone-
ous interactions include neurodegenerative and neurode-
velopmental diseases, genetic disorders, and cancers. In
these cases, mutations in multiple relevant genes lead to
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abnormal protein interactions, and disrupt networks (see
[29, 30, 36, 37] for details).

Some of the long-standing challenges in drug discovery
are lack of specificity, high incidence of adverse effects,
and unpredicted toxicities of new therapeutic compounds
[86]. As a result, modern-day drug discovery employs
more targeted approaches, such as virtual screening and
structure-based drug design to complement conventional
in vitro high-throughput screening [46, 87]. These new
approaches rely on an accurate global understanding of
the mechanisms of diseases. Comprehensive understand-
ing of the network and regulatory circuit for a particular
disease process would help to identify network hubs with
the potential to be novel drug targets.

A network model of cancers

In the past decades, chemotherapy had been the back-
bone for systemic treatment of cancers. When admin-
istered to patients, these drugs target rapidly dividing
cells but lack specificity. Survival of both cancer cells and
normal, rapidly growing cells are impaired, resulting in
side effects such as bone marrow suppression and hair
loss, due to toxicity toward bone marrow cells and hair
follicles, respectively. With recent advances in molecu-
lar biology and genetics, several genetic mutations and
other alterations have been described for various cancers,
and these changes specific to cancer cells have become
an attractive target for novel therapies. The concept of
“driver” and “passenger” mutations in carcinogenesis is
comparable to hubs and peripheral nodes in a network,
whereby a subset of somatic alterations present in each
tumor is a driver of the oncogenic process [88]. Acting
as a complex network hub, these driver mutations pro-
mote cancer cell survival, resistance to apoptosis, and
lead to carcinogenesis (so-called “oncogene addiction”).
This idea is supported by successful identification of new
cancer fusion drivers from the network hubs and their
partners, as the fusion mutation can lead to functional
de-regulation of multiple genes and pathways [89]. Inhi-
bition of the driver mutation has the potential to induce
cell death, and thus becomes a strong candidate for tar-
geted therapy [90]. As cancer cells are addicted to this
driver mutation, specifically blocking these hubs would
theoretically be more effective and less toxic compared to
conventional chemotherapy.

To date, many targeted therapies have been approved
as a standard of care in various cancers with additional
clinical studies underway. Identification of a true driver;
however, remains one of the biggest challenges. Patho-
genesis of cancer development is usually complex and
involves several molecules and pathways. Therefore, tar-
geting one particular molecule or pathway might not be
effective, as cancer cells may utilize alternative pathways
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Healthy Diseased

Fig. 2 Biological networks of healthy (left panel) and diseased (right panel) individuals. Biological components in healthy individuals are represented
as green nodes in a network. Pathological perturbation, represented by red nodes that lead to morbidity, can occur at different stages of the regula-
tion of key components: a presence and absence of key component (green for presence and red for absence), b mis-regulated gene expression,
leading to over- or under-expression (node sizes represent expression levels), € absence or erroneous interactions with interacting partners (dotted
lines represent erroneous interactions), d mis-regulated directions (mis-directed arrows), or e strengths of interactions (thicknesses of arrows and
accompanying numbers denote interaction strengths)
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to promote cell survival. Additionally, with the advent of
next-generation sequencing, the previously well-accepted
but unproven concept of tumor genetic heterogeneity
has been solidly confirmed [91]. Sequential use of more
than one targeted cancer therapy to finish off resistant
clones, such as in the case of tumor recurrence, is likely
to become a trend in cancer genomic medicine [92].

Breast cancer network: mechanisms of resistance

The regulatory network in breast cancer is a particularly
interesting case study, due to its heterogeneous histologi-
cal and molecular features, and clinical manifestations
that lead to multiple molecular sub-types. Based on
gene expression profiling, breast cancer can be catego-
rized into four main molecular sub-types: (i) basal-like
breast cancer (mainly estrogen-receptor (ER)-negative,
progesterone-receptor (PR)-negative, and human epi-
dermal growth factor receptor 2 (HER2)-negative); (ii)
luminal-A cancer (ER-positive or ER+, and histologically
low-grade); (iii) luminal-B cancer (ER+ and histologi-
cally high-grade); and (iv) HER2-positive (HER2+) can-
cer (over-expression and/or amplification of HER2). Each
molecular sub-type has a distinct course of disease pro-
gression and responds differently to specific treatments,
including endocrine therapy, anti-HER2 drugs and cyto-
toxic chemotherapy [93].

As shown in Fig. 3, ER and HER2 can be considered
as hubs of the breast cancer network. The ER+ breast
cancer cells depend on activation of ER by estrogen, a
sex steroid hormone. ER acts as a transcription factor
in the nucleus when bound by estrogen in the genomic
(nuclear) pathway, resulting in tumor cell proliferation
[94]. The signal can also be activated through the non-
genomic (non-nuclear) pathway, where estrogen binds to
membrane-associated ER. Endocrine therapy against the
ER hubs is one of the cornerstones of treatment for ER+/
HER2- breast cancers (luminal-A and B) [95]. The pre-
dominant endocrine therapies are a selective ER modula-
tor (SERM), an aromatase inhibitor (AI), and selective ER
down-regulators (SERD), such as tamoxifen, anastrozole,
and fulvestrant [96].

HER2, a member of the epidermal growth factor recep-
tor tyrosine kinase family, is a hub in the HER2+ breast
cancer network. Over-expressed and/or amplified HER2
is found in approximately 20-30% of invasive breast
cancers [97]. HER2 activates intracellular signaling cas-
cades, leading to tumor cell proliferation. Inhibition of
HER2 through the use of anti-HER2 drugs significantly
prolongs survival in HER2+ breast cancer patients. Cur-
rently, several anti-HER2 drugs are FDA-approved for
HER2+ breast cancer, including trastuzumab, lapatinib,
pertuzumab, and trastuzumab emtansine (T-DM1).
Resistance to each of these specific treatments has been
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observed, as well as interactions between the ER and
HER?2 hubs (Fig. 3) [94, 98]. Since ER+/HER2+ tumor
cells depend on both hubs, endocrine therapy alone
cannot completely inhibit signals with tumor cell pro-
liferation continuing to be activated through HER2 (so-
called “cross-talk”). This has been identified as a primary
mechanism of resistance in ER+/HER2+ breast cancer
patients with a low response to endocrine therapy. With a
better understanding of global gene regulation networks
and the interplay between the two hubs, a combined
treatment of endocrine therapy and anti-HER2 drugs was
proposed. Several phase 3 clinical studies have already
demonstrated increased efficacy of endocrine therapy
in the ER+/HER2+ breast cancer when combined with
anti-HER2 drugs [99-101].

On the other hand, ER+/HER— breast cancer does not
depend on the HER2 hub, and is thus usually responsive
to the first line endocrine therapy. However, resistance
can still occur leading to less effective endocrine therapy.
Blocking the ER hub with any endocrine therapy would
inhibit only the genomic pathway, but not the non-
genomic pathway where abnormal activation of the PI3K/
Akt/mTOR pathway by somatic mutations can result in
either de novo or acquired endocrine therapy resistance
[102, 103]. Understanding this relationship has led to
a second line of endocrine therapy using mTOR inhibi-
tors. A large phase 3 clinical study of metastatic ER+/
HER2— breast cancer patients, who failed the first line Al
treatment, reported longer progression-free survival in a
group treated with a combination of an mTOR inhibitor
and another different AI [104, 105].

Having a comprehensive understanding of the interac-
tions between network components of specific disease
should lead to improved efficacy in treatments, similar
to those elucidated using the breast cancer model above.
Indeed, a number of groups have already begun utilizing
network biology to address different aspects of cancers
with the goal to improve diagnosis and treatment. A model
to identify genes potentially associated with high risks of
breast cancer has been developed by integrating data from
co-expression, biochemical, and protein interaction net-
works. Using this model, Pujana and coworkers success-
fully identified Hyaluronan Mediated Motility Receptor
(HMMR), a hub of the integrated network, as a novel high
risk associated locus [31]. The gene regulatory network
for breast cancer has also been constructed [106]. Taylor
and colleagues merged spatial gene expression informa-
tion with the protein interaction network to highlight the
interactions that are active in specific tissues, where the
interacting partners are also co-expressed [107]. This work
also revealed the loss of key interactions between the net-
work hubs, such as BRCAI and their binding partners, in
patients who died of breast cancer due to mis-regulation
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of the partner proteins. In contrast, the expression of hubs
and their partners were strongly correlated in surviving
patients. The complexity of the disease network is not only
restricted to the gene—gene and gene-drug interactions,
but also hinges upon the interactions between disease/
drug and the host (i.e. genetic background of the patients),
as we discuss in the next section.

From individual network to personalized medicine
As we are approaching the so-called personalized and
precision medicine era, where does network biology fit in
the picture? Figure 4 depicts our view on how networks
can be an important tool to help clinicians understand
the physiological complexity of individual humans, pre-
dict possible failure of certain components that may lead
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to morbidity, and deduce the most suitable preventa-
tive and treatment plans for individual patients. Genetic
variation between human individuals is estimated to be
less than 1% of the human genome, but through sophis-
ticated regulation of genes and other genetic elements,
this small amount of genetic variation accounts for much
greater differences in terms of our appearance, intellect,
and health [108]. On top of genomes, which encode indi-
vidual sets of gene products (e.g. proteins, mRNA), indi-
vidual networks represent the unique interplay between
different components in each patient. Understanding the
extent of variations between individual networks may
allow clinicians to statistically and quantitatively distin-
guish normal variations in healthy individuals (Fig. 4,
upper panel) from critical perturbations that lead to dis-
eases and disorders (Fig. 4, lower panel). Network biology
enables researchers to assess multiple components that
do not show distinguishable differences between healthy
individuals and those with cancers, but are collectively
dysfunctional in cancers. A sub-network in which overall

activity can be discriminated between patients versus
controls has been shown to be a more reproducible prog-
nostic marker of diseases than individual genes in the
sub-network, which are not significantly differentially
expressed [109, 110].

Single nucleotide polymorphisms (SNPs) and other
genetic variations add another dimension of disease-host
interaction to disease networks. SNPs can provide clini-
cians with a good indication on how likely an individual
might be to develop certain genetic diseases, assuming
that all genetic elements associated with diseases are
eventually identified. In addition, networks of individuals
can, in part, aid pharmacogenomic progress by explain-
ing why the efficacy and toxicity profiles for the same
drug may differ in each patient. For instance, tamoxifen
is metabolized by CYP2D6 and variations in this gene
among individuals may affect the response to the drug
[111].

No matter how comprehensive, a genetic map cannot
capture environmental factors (e.g. lifestyle, contact with
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pathogens) that heavily influence biochemical stages. Thus,
outcomes for the interplay between genetics and environ-
ment may be absent in the analysis. Having a network that
combines both the genetic variations and measurable bio-
chemical outcomes, such as gene expression, should assist
in turning conceptual ideas into more quantitative models,
which in turn would enhance the accuracy of prognosis
and predictions of disease progression in each patient (as
demonstrated in Fig. 4). Such a complete individual net-
work may not be possible in the near future; however, we
start to see that the integration of genetic variations and
biochemical outcomes (gene expression and protein inter-
action profiles) has utility in helping identify new disease-
associated marker genes [110, 112, 113].

Thanks to considerable effort and resources the com-
munity has put into developing computational tools for
biological network analysis, we are now well-equipped
with a range of user-friendly software that can be
employed to handle, visualize, and analyze large-scale
datasets. Importantly, the tools that will be particularly
useful for translational medical research need to be able
to combine multiple layer datasets (e.g. genomics, tran-
scriptomics, proteomics, and metabolomics) and/or
heterogeneous datasets (e.g. from different platforms or
formats) [3]. The most commonly known network analy-
sis tools currently available are Cytoscape [114], NAViGa-
TOR [115], VisANT [116], CellDesigner [117], and the
commercial software Ingenuity IPA (Ingenuity Systems
Inc., Redwood City, CA). More recently introduced tools
include NaviCell, which has been developed for online
network visualization and curation [118], and BNOmics
[119], which can be used for inference and visualization
of Bayesian networks of large heterogeneous data. Com-
prehensive guides to network biology tools, as well as
detailed discussion on their key features and functional-
ity can be found in earlier review articles [3, 120].

Conclusions

Network biology provides an opportunity to image a
clear global picture of drug-disease-host interactions and
the biological complexity of diseases more easily from an
unprecedented top-down vantage. This will allow a bet-
ter understanding of the relationships between multiple
genes and other biological entities, as well as identify
the missing links in our knowledge. These strategies are
required to fully grasp the intricacies of diseases, which
cannot be obtained by studying an individual or a smaller
set of genes. The complexity of the therapeutic networks
is ever-growing, and many new nodes are being discov-
ered every day. In the future, some of these nodes may
become new hubs for targeted therapy.
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