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Abstract 

 

The Watson and Crick model for DNA revolutionized thinking in biology and 
medicine, and initiated many discoveries, demonstrating that model building can not 
only explain the particular, but can provide deep insights into complex processes 
that trigger further fundamental advances. Cellular biology is presently characterized 
by cascading complexity, in the sense that closer inspection only reveals increasing 
complexity. However, since the Watson and Crick model, while the consequent 
advances in knowledge have been outstanding in terms of our understanding of 
some biological processes, there still remain many fundamental questions and there 
is much experimental data arising from sophisticated measurement that is in need of 
explanation. This theoretical proposal combines applied mathematics and computer 
sciences expertise and this purpose is to implement a program of fundamental 
model building in systems biology, molecular cell biology, material sciences, targeted 
drug delivery and molecular dynamics simulation. 
 The integration of nanomaterials with biomolecules yields novel hybrid 
nanobiomaterials having the combined properties and functions of each, and arising 
from the unique physical and chemical properties of nanomaterials and the unique 
recognition characteristics of the cells of the biomaterial. The interactions of 
nanobiomaterials with living cells offers new opportunities in research and medicine, 
including understanding cell biology, tissue engineering, drug and medical device 
development and regenerative medicine. To advance these applications, 
understanding the mechanisms of interaction with nanobiomaterials is important as 
the main objectives of this project.  
 

Keywords: Applied mathematical modelling, Cell mechanics, Cellular modelling  
 

 

 

 

 

 



2 
 

Executive Summary 
 
1. ความสาํคญัและที่มาของปัญหา  

 
The Watson and Crick model for DNA revolutionized thinking in biology and 

medicine, and initiated many discoveries, demonstrating that model building can not 
only explain the particular, but can provide deep insights into complex processes 
that trigger further fundamental advances. Cellular biology is presently characterized 
by cascading complexity, in the sense that closer inspection only reveals increasing 
complexity. However, since the Watson and Crick model, while the consequent 
advances in knowledge have been outstanding in terms of our understanding of 
some biological processes, there still remain many fundamental questions and there 
is much experimental data arising from sophisticated measurement that is in need of 
explanation. This theoretical proposal combines applied mathematics and computer 
sciences expertise and this purpose is to implement a program of fundamental 
model building in systems biology, molecular cell biology, material sciences, targeted 
drug delivery and molecular dynamics simulation. 
 The integration of nanomaterials with biomolecules yields novel hybrid 
nanobiomaterials having the combined properties and functions of each, and arising 
from the unique physical and chemical properties of nanomaterials and the unique 
recognition characteristics of the cells of the biomaterial. The interactions of 
nanobiomaterials with living cells offers new opportunities in research and medicine, 
including understanding cell biology, tissue engineering, drug and medical device 
development and regenerative medicine. To advance these applications, 
understanding the mechanisms of interaction with nanobiomaterials is important as 
the main objectives of this project.  
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2. วัตถุประสงค ์ 
1. Provide new advanced mathematical models for a range of problems in cell 

biology, impinging on cellular interactions with their selves, with material 
surfaces and with nanoparticles.  

2. Exploit continuous modelling approach used in nanotechnology in the 
context of cell biology, and in particular for cell-cell interactions, cell-
nanobiomaterial interactions for regulating cell behaviour, and to determine 
the effect of nanoparticles in a cellular environment. 

3. Use computer simulation technique to confirm mathematical finding. 
4. Encourage PhD students into the vital area of mathematical modelling in 

nanobiotechnology. 
 
 
3. ระเบยีบวิธีวิจัย  

1. Formulate a mathematical model to determine an interaction energy 
between cell and biomolecule where Lennard-Jones potential and the 
continuous approximation are utilized. 

2. In the case that there exists an electrostatic energy in the system, the 
Columbic potential may be included. 

3. Find an analytical expression to determine the molecular interaction for a 
range of problems in cell biology. 

4. Use computer simulation techniques such as molecular dynamic simulation 
or molecular mechanic simulation to compare the result with the one 
obtained by mathematical model. 

5. Modify our model to incorporate environment factors for example 
temperature and pressure of the system to make our model be more 
realistic.  
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4. แผนการดําเนนิงานวิจัยตลอดโครงการในแต่ละช่วง 6 เดือน  
 
First year 

Activities 
Months 

1-3 
Months 

4-6 
Months 

7-9 
Months 
10-12 

1. Formulate mathematical model to explain 
the interaction energy between cell and 
biomolecules. 

    

2. Determine our model numerically.      
3. Analyse our results and compare with 
computational simulation method.  

    

4.  Write a manuscript and submit for 
publication.  

    

5. PhD and Master degree students     

 
Second year 

Activities 
Months 

1-3 
Months 

4-6 
Months 

7-9 
Months 
10-12 

1. Modify our model to include 
environmental effects, i.e. temperature and 
pressure. 

    

2. Determine our model numerically.      

3. Analyse our results and compare with 
computational simulation method. 

    

4.  Write manuscript(s) and submit for 
publication.  

    

5. Study molecular dynamics simulation 
package(s). 

    

6. Attend a conference.      

7. PhD and Master degree students     
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Third year 

Activities 
Months 

1-3 
Months 

4-6 
Months 

7-9 
Months 
10-12 

1. Use molecular dynamics simulation 
technique to determine the interaction 
behaviour between cells and biomolecules. 

    

2. Analyse our results and compare with 
computational simulation method. 

    

3.  Write manuscript(s) and submit for 
publication.  

    

4. Attend conference(s).     

5. PhD and Master degree students     

 
 
 

 
5. ผลงาน/หัวข้อเรื่องทีค่าดว่าจะตีพิมพ์ในวารสารวิชาการระดับนานาชาติ  
 

With this research project, we promise to have one PhD student and one 
Master degree student involving in this project, and at least four accepted 
manuscripts. Tentative titles for the four manuscripts are as follow 
1. The role of applied mathematics in bionanotechnology; will be submitted to 

Nanoscale (IF 2013: 6.739) 
2. Theoretical prediction for the encapsulation of a drug molecule into lipid 

nanotubes; will be submitted to Journal of mathematical chemistry (IF 2013: 
1.270) 

3. Interaction behaviour between cells and bimolecules; will be submitted to 
Journal of mathematical chemistry (IF 2013: 1.270) 

4. Molecular dynamics simulation for molecular binding; will be submitted to 
Journal of computational and theoretical nanoscience (IF 2013: 1.032).  
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6. งบประมาณโครงการ  
    
 ปีที่ 1 ปีที่ 2 ปีที่ 3 รวม 
1. หมวดค่าตอบแทน 
   - ค่าตอบแทนหัวหน้าโครงการ    
       10,000 x 12 / ปี 

240,000 240,000 240,000 720,000 

2. หมวดค่าวัสดุ 
   - ค่าวัสดุทั่วไป อาทิเช่น วัสดุสํานักงาน  

  15,000 
      

  10,000 
      

  10,000 
      

  35,000 

3. หมวดค่าใช้สอย 
  - ค่าถ่ายเอกสาร 
  - ค่าตีพิมพ์ผลงานวิชาการ   
  - ค่าเข้าร่วมประชุมวิชาการ 

  35,000 
     5,000 
    10,000 
        - 

  80,000 
     5,000 
    50,000 
    25,000 

  80,000 
     5,000 
    50,000 
    25,000 

195,000 

4. ครุภัณฑ์ 
  - Computer notebook 1 

  50,000 
     

       -        -    50,000 

รวมงบประมาณโครงการ 340,000 330,000 330,000 1,000,000 
 
1 งานวิจัยหลักของโครงการวิจัยน้ีคือการคํานวณโดยใช้คอมพิวเตอร์ จึงจําเป็นที่ต้องใช้เคร่ือง
คอมพิวเตอร์ที่มีคุณภาพดีในการคํานวณ ดังน้ันจึงมีความจําเป็นที่ต้องซื้อเคร่ืองคอมพิวเตอร์โน้ตบุค
สําหรับงานวิจัยน้ี 
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 2.1 Name    Miss Duangkamon Baowan              Age 32 
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 2.4 Institute  Department of Mathematics, Faculty of Science,  
    Mahidol University 
       Address 272 Rama VI Road, Ratchathewi District, Bangkok 10400,  

THAILAND 
 2.5  Telephone 022015350, 0850760800 
  Email address duangkamon.bao@mahidol.ac.th 
 2.6  Weekly hours intended to spend on this project      20   hour per 
week 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 
 

เนื้อหางานวิจัย 
 
 Here we focus on using applied mathematical model to determine the 
energy for the systems consisting of bionanomolecules. Lennard-Jones potential 
function is utilized as a force field, and the continuous approximation where atoms 
on a molecule is assumed to be uniformly distribution on the surface or the volume 
of the molecule is employed to determined the total energy of the system. 
 Firstly, we review the use of applied mathematical modeling in order to 
determine the atomic and molecular interaction energies between nanoscale 
objects. In particular, we examine the use of the 6-12 Lennard-Jones potential and 
the continuous approximation, which assumes that discrete atomic interactions can 
be replaced by average surface or volume atomic densities distributed on or 
throughout a volume. The considerable benefit of using the Lennard-Jones potential 
and the continuous approximation is that the interaction energies can often be 
evaluated analytically, which means that extensive numerical landscapes can be 
determined virtually instantaneously. Formulae are presented for idealized 
molecular building blocks and then various applications of the formulae are 
considered. The modeling approach reviewed here can be applied to a variety of 
interacting atomic structures and leads to analytical formulae suitable for numerical 
evaluation. 
 On using the Lennard-Jones potential together with the continuous 
approximation, we determine the interaction energy of admantane molecules, the 
smallest diamondoid, and that of an admantane molecule and a carbon nanotube. 
Then, more complicated systems are studied which are the penetration of a 
spherical gold nanoparticle into a lipid nanotube and the encapsulation of a drug 
molecule encapsulated in lipid nanotube are determined. Finally, we determine the 
mechanical behavior of atomic force microscope cantilever system.  
    
1. Mathematical modeling of interaction energies between nanoscale objects 
 For much of this research we are concerned with evaluating the van der 
Waals interaction energy between atoms, molecules and nanostructures. There are a 
number of different potential functions which may be used to model the van der 
Waals potential function. However, we will primarily concern ourselves with the 
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Lennard-Jones potential function    which for two non-bonded atoms may be 
written in the form 

  6 12

A B
 

                                                         (1) 

where   is the distance between the interacting atoms, and A and B are empirically 
determined constants of attraction and repulsion, respectively. The graph of 
Lennard-Jones potential function is as shown in Fig. 1.  

 Fig.1 Lennard-Jones function 

 
 When calculating the van der Waals interaction between molecules 
containing a number of atoms, the pairwise interactions may be summed to derive a 
total interaction E which is given by  

 ij
i j

E                                                         (2) 

where the indices i and j vary over all the atoms in each molecule and ij  denotes 
the distance between atoms i and j. Obviously this formulation requires that we 
know the precise location of every atom in both molecules and we are required to 
perform ij individual calculations of the potential function  ij  to calculate the 
total interaction energy for the two molecules. These two considerations can be 
inconvenient or unnecessarily intensive computationally for situations when the 
exact orientations of the molecules are not specified or when large nanostructures 
are involved. Therefore, for most of this book we will make an approximation where 
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we assume that all the atoms are smeared over ideal lines or surfaces which 
represent the molecules that we are modelling. With this approximation we are able 
to replace the explicit summations in (2) with line or surface integrals that allow us 
to write 
 

 
1 2

1 1 2 1

S S

E dS dS                                                      (3) 

 
where here   denotes the distance between typical infinitesimal surface elements 

1dS  and 2dS  of the lines or surfaces 1S  and 2S , respectively, and the terms 1  and 

2  are the atomic densities (i.e. atoms per unit surface area) of the surfaces 1S  and 

2S , respectively. 
 From these considerations we see that the task of calculating the van der 
Waals interactions will be made considerably easier provided that there are methods 
to readily evaluate integrals of the form of (3) over various lines and surfaces which 
are relevant to problems in nanotechnology. It turns out that many of the molecules 
and nanostructures that we encounter can be modelled very realistically by the 
basic geometric objects of points, straight lines, flat planes, spheres and right circular 
cylinders, and therefore integrals over these objects will be needed frequently 
throughout the remainder of this research. Accordingly, the purpose of here is to 
address these integrals in a systematic way to facilitate the evaluation of ideal van 
der Waals interactions. 
 When we investigate the form of the Lennard-Jones potential function    
given in (1) in the context of the integral formulation of (3) we note that the 
attractive term 6  and the repulsive term 12  can be separated and integrated 
independently. We also note that the two terms only vary in terms of the 
coefficients A and B, and the magnitude of the index which is applied to the distance 
variable  . In subsequent sections we shall occasionally make use of the fact that 
the indices of   in (1) are both negative even integers which leads us to express the 
Lennard-Jones potential function    in the form 

 
     3 6AI BI                                                   (4) 
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where   2n
nI    and we will consider evaluating integrals of the form 

 

 
1 2

2 1n

S S

I I dS dS                                                       (5) 

  
 Finally, we must comment on why we seek analytical evaluation to integrals 
of the form given in (5). While such integrals can be handled reasonably easily using 
numerical methods it should be remembered that our goal is to elucidate as much 
as possible from the models that we develop. In some cases, this can involve 
constructing a broad landscape of data which might be extremely costly or even 
inaccessible using purely numerical methods but which may be accessed by 
evaluating analytical expressions for the potential functions in question. Analytical 
expressions can also be employed to derive expressions for other quantities, like the 
force experienced by a molecule would otherwise only be determined by further 
numerical evaluation. One can always move from the analytical to the numerical but 
the reverse is not possible. 
  

 
Fig. 2 Interaction of atoms with idealized building blocks: (a) point with line, (b) point with plane, 

(c) point with ring, (d) point with spherical surface, and (e) point with infinitely long right-
cylindrical surface. 

(D. Banwan and J.M. Hill, Advances in Mechanical Engineering 2016, Vol. 8(11) 1–16) 
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 Five possible configurations considered here are shown in Fig. 2, where we 
obtain the interaction energies for each type as shown in Table 1. 
Table 1: Equations for five interaction energy configurations where ܤሺݔ,  ሻ is theݕ
beta function and ܨሺݔ, ;ݕ ;ݖ  .ሻ is the hypergeometric functionݓ

Interaction energy 
between atom and 

Equation 

Atomic line ܫ ൌ ܤଵିଶ௡ߜ ൬݊ െ
1
2

,
1
2

൰ 

Atomic plane ܫ ൌ
ߨ

ሺ݊ െ 1ሻߜଶ௡ିଶ 

Atomic ring ܫ ൌ
ݍߨ2

ሺߚ െ ሻ௡݌ߙ ܨ ൬݊,
1
2

; 1;
ݍߙ2

ሺݍߙ െ ሻߚ
൰  

Atomic spherical surface ܫ ൌ
ܽߨ

ሺ݊ߜ െ 1ሻ
൤

1
ሺߜ െ ܽሻଶሺ௡ିଵሻ െ

1
ሺߜ ൅ ܽሻଶሺ௡ିଵሻ൨ 

Infinite atomic cylindrical 
surface 

ܫ ൌ
ܾߨ2

ଶ௡ିଵߜ ܤ ൬݊ െ
1
2

,
1
2

൰ ܨ ቆ݊ െ
1
2

, ݊ െ  
1
2

; 1;
ܾଶ

 ଶቇߜ

 
  
2. Continuous approximation for interaction energy of adamantane 

encapsulated in carbon nanotubes 
 The continuous or continuum approach is employed to determine the 
interaction energies between two adamantane molecules and that of an 
adamantane molecule inside a carbon nanotube using the Lennard-Jones 
potential function. Adamantane is modelled as a perfect sphere with sp3 
hybridization structure such as is found in diamond, while the carbon nanotube is 
assumed to be a cylinder with the sp2 hybridization structure such as is found in 
graphene.  
 Calculation of the interaction energy using a radius of 1.773 Å for the 
adamantane molecule, we find that the equilibrium distance between the two 
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adamantane molecules is 6.863 Å as measured from their centers which is within 
10% of ab inito DFT calculations. However, the predicted binding energy is 52% 
different from the DFT calculations since only the van der Waals energy is taken 
into account here.  
 It is also found that the smallest radius of carbon nanotube that can 
encapsulate the adamantane is 4.847 Å which is within 2% of ab inito DFT 
calculations. The offset position e from the tube axis is also examined, and a 

linear relation for   b – a - c is obtained where the distance between 

molecule and tube wall is c = 3.446 Å. The equilibrium distance between two 
molecules, suction energy for encapsulation and offset position depend linearly 
on the radius of the adamantane. We note that the structural information 
predicts the stable configurations close to those obtained from the DFT when 
taking only dipole-dipole interaction into account.  
 The major benefit of the mathematical modelling approach presented here is 
the use of significantly less computational resources and simplification reducing 
the trial-and-error process for designing experiments which allows to consider 
more complex systems. These findings constitute a first step toward the design of 
novel hybrid materials of carbon nanostructures. 

 
3. Penetration of spherical gold nanoparticle into a lipid bilayer 

 The continuous approach and the Lennard-Jones potential function were 
employed to determine the penetration behaviour for three spherical gold 
nanoparticles of different radii through a lipid hole. A circular hole is assumed to 
be in the bilayer and the particles are initiated at rest above the bilayer. Both 
surface and volume integrals are evaluated to calculate the total nonbonded 
interaction energy of the system. An analytical expression is obtained in terms of 
the particle radius a, the hole radius b and the perpendicular distance from the 
centre of the particle to the bilayer surface Z. 
 In all the three cases, there are similar regions for the penetration behaviour. 
In the first region, the nanoparticle behaves like a hard sphere. As the circular 
hole radius in the bilayer increases, the particle penetrates the bilayer and 
relocates inside the layer until the radius acquires a critical value, which for the 
three cases considered are b = 20.79, 23.14 and 27.02 Å corresponding to the 
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particle radii a = 10, 15 and 20 Å, respectively. Once the spherical gold 
nanoparticles enter the bilayer under no additional applied external force and 
charge, they tend to remain at the mid-point of the bilayer rather than 
penetrating further into the cell. 

 
4. Mathematical model for drug molecules encapsulated in lipid nanotubes 

 Lipid nanotube is considered as a nanocontainer for drug and gene delivery. It 
is important to understand a basic idea of the encapsulation process. In this 
work, we use the Lennard-Jones potential function and the continuous 
approximation to explain the energy behaviour of three hollow shapes of 
Doxorubicin (DOX) clusters that are a sphere, a cylinder, and an ellipsoid 
interacting with the lipid nanotube. The schematic model for lipid nanotube is 
shown in Fig. 3. 

 
 

 
 

Fig 3. Diagram for lipid nanotube 

 
On assuming that the surface areas of the three structures are equal, we can find the 
minimum size of the lipid nanotube that encapsulates DOX inside by determining the 
suction energy. Moreover, we find that a long cylindrical drug provides the largest 
suction energy among other structures studied here due to the perfect fit between 
the cylindrical drug and the cylindrical tube. This investigation is the first step to 
develop the design of nanocapsule for medical application. 
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5. Mathematical methods on atomic force microscope cantilever systems 
 Here a theoretical study of the AFM cantilever system is presented, 
employing the variational calculus and the Lennard-Jones potential to determine the 
bending behaviour of the system, and the calculation comprises two procedures, as 
shown in Fig. 4. Firstly, we compute the energy between the silicon tip and the 
graphene plane, assuming the silicon tip is a cone, and it can act both vertical and 
inclined to the plane. Secondly, we solve the potential equation for the plate to 
deduce a bending equation, for which the solution describes the bending behaviour, 
and it can be used to determine the spring constant and the potential energy that is 
stored in the cantilever beam. We propose that the geometry of the cantilever is an 
isosceles trapezoid, mainly focusing on a V-shaped cantilever. 
 In the first procedure, we obtain the energy equations of the right cone and 
that of the tilted cone. In the case of the tilted cone, when the tilted angle is zero, 
the energy equation gives rise to the energy of the right cone of the same cone 
angle. Both cases have an equilibrium distance at [B/(30A)]1/6. Moreover, the cone 
angle and the tilted angle do not affect the value of equilibrium distance where it is 
obtained as 0.206 nm. 
 In the second procedure, the bending profile tends to a parabola. On 
comparison with the spring constant to other works, our kw gives a lower value, the 
results show 30–50% difference and when r increases, this difference increases.  
 Our method gives an alternative approach to determine the bending 
behaviour of the cantilever and the tip response to the surface. This analytical 
method is relevant in the determination of the distance, energy, and force that are 
the main considerations in any study of the mechanics of the system. Our approach 
gives a better understanding of the relations between the substrate surface, the 
bending distance and the properties of the surface. Moreover, this approach can be 
applied to any shape of the cantilever and any surface. For a given substrate, we can 
calculate the appropriate distance between the tip and the sample so as to fix the 
position of the cantilever to accommodate the bending angle. Further, if we know 
the surface level from the monitor and we know the bending distance or angle, we 
can then predict the molecules on the substrate. In the theoretical analysis, our 
calculation utilizes the calculus of variation, and coordinate transformation of the 
atoms to model the cantilever system. The approach may involve some 
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approximations but it gives a numerical solution that is faster than that obtained by 
computer simulation. Hence, we believe that the approach adopted here might be 
used in many future studies, not only for the cantilever system but also for any 
mechanical systems involving a scanning step, so that we might quickly determine a 
reliable solution by means of a simple mathematical formula. 

 

 
 

Fig 4. Two energies contribution for AFM (modified from 
http://www.witec.de/techniques/afm/). 
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PENETRATION OF SPHERICAL GOLD NANOPARTICLE
INTO A LIPID BILAYER

D. BAOWAN1,2

(Received 23 April, 2012; accepted 8 July, 2014; first published online 19 August 2015)

Abstract

Safety issues for the use of products containing nanoparticles need to be considered,
since these nanoparticles may break through human skin to damage cells. In this paper,
applied mathematical techniques are used to model the penetration of a spherical gold
nanoparticle into an assumed circular hole in a lipid bilayer. The 6–12 Lennard-Jones
potential is employed, and the total molecular interaction energy is obtained using
the continuous approximation. Nanoparticles of three different radii, namely, 10, 15
and 20 Å, are studied, which are initiated at rest, confined to the axis of the hole. A
similar behaviour for these three cases is observed. The critical hole radii at which
these nanoparticles enter the bilayer are 12.65, 17.62 and 22.60 Å, respectively. Further,
once the hole radii become larger than 20.79, 23.14 and 27.02 Å, respectively, the gold
nanoparticles tend to remain at the mid-plane of the bilayer, and do not pass through the
bilayer.

2010 Mathematics subject classification: primary 74G65; secondary 00A69.

Keywords and phrases: gold nanoparticles, interaction energy, Lennard-Jones potential,
lipid bilayer.

1. Introduction

Nanoparticles have many potential benefits which can outweigh any potential hazard
and possible side effects [7]. They are widely used in many industrial and consumer
products, such as stain-resistant textiles or cosmetics [16, 23]. These products, while
they are close to the human skin, raise many health and environmental issues. For
example, nanocomposites on cloth may be released during the washing process, or
nanosomes in cosmetics may penetrate the skin and subsequently damage the skin
cells [23].

Gold nanoparticles have been comprehensively studied in many biological and
medical areas, and extensive reviews can be found in the literature [4, 5, 9, 17, 18].
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Moreover, it has been shown that mammalian cells can uptake gold nanoparticles [6],
and they have been successfully employed in cancer therapies [12]. As a result,
gold nanoparticles may be used as an example to study the penetration behaviour of
nanoparticles through human skin. There are various shapes of gold nanoparticles
which can be controlled during the growth processes. In this paper, the gold
nanoparticle is assumed to be a dense sphere.

A lipid bilayer is very thin as compared to its lateral dimensions with a hydrophilic
head group on the outer surface of thickness 8–9 Å, and with a hydrophobic
core typically approximately 30–40 Å thick, depending on the chain length and
chemistry [13, 20]. In terms of energy determination, Berger et al. [3] have
utilized molecular dynamics simulations together with the 6–12 Lennard-Jones
potential function and an electrostatic term to study the interaction for the bilayer
of dipalmitoylphosphatidylcholine (DPPC) under various conditions. Further, other
researchers have adopted a coarse grain model to study the behaviour of the lipid
bilayer, which reduces the complexity of the bilayer system [8, 15, 21, 22, 24].
Moreover, Shelley et al. [21] have concluded that the coarse grain model is
more efficient than the Monte Carlo simulations to model the self-assembly of
phospholipids. The physical translocation of various nanoparticle shapes through
the bilayer has been studied by Yang and Ma [25], and their findings provide a
practical guide to the geometry considerations for drug and gene carriers. Further,
a mathematical modelling approach was used by Baowan et al. [1] to study the
penetration of a C60 fullerene into the lipid bilayer, and a relation between particle size,
hole size and the location of the particle in the bilayer was determined. Here, a model
similar to that given by Baowan et al. [1] is employed to determine the corresponding
penetration behaviour for gold nanoparticles.

In this paper, the penetration of a spherical gold nanoparticle through an assumed
circular hole in a lipid bilayer is investigated. The Lennard-Jones potential and a
continuous approach are introduced in Section 2. The continuous approach assumes
that atoms in a molecule are uniformly distributed over a surface or throughout the
volume of the molecule, and then an integration approach is employed to evaluate the
total energy of the system. Assuming that the gold nanoparticle is a dense sphere
and that the head (tail) group of the bilayer is represented by a flat plane (rectangular
box), the surface integral and the volume integral approach to determine the molecular
interaction energy are detailed in Section 3. Numerical results obtained from the
analytical expressions are given in Section 4 and, finally, a summary of the analysis is
presented in Section 5.

2. The Lennard-Jones function and continuous approximation

This study aims at computing the energy of a system involving a nanoparticle and
a biomolecule of several nanometres in size. The mere size of the system renders an
atomistic modelling approach very expensive. Even a coarse grained particle approach
would involve computing around thousands of pairwise interactions. Instead, a much
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more efficient continuous approach is used that considers the same typical nonbonded
interaction. Moreover, it has been shown that such interaction based on the Lennard-
Jones potential plays a major role in order to determine an equilibrium configuration
of nanomaterials [2].

The classical 6–12 Lennard-Jones function is given by

Φ = −
A
ρ6 +

B
ρ12 = 4ε

[
−

(
σ

ρ

)6
+

(
σ

ρ

)12]
,

where ρ denotes the distance between two typical points, and A and B are attractive
and repulsive Lennard-Jones constants, respectively. Further, ε is a well depth and σ
represents a van der Waals diameter of an atom. The Lennard-Jones parameters in a
system of two atomic species can be obtained using the empirical combining laws or
mixing rules [11], which are given by ε12 =

√
ε1ε2 and σ12 = (σ1 + σ2)/2, where 1 and

2 refer to the respective individual atoms.
Using the continuous approach, where the atoms at discrete locations on the

molecule are averaged over a surface or a volume, the total energy is obtained by
calculating integrals over the surface or the volume of each molecule, given by

E = η1η2

∫
S2

∫
S1

(
−

A
ρ6 +

B
ρ12

)
dS1 dS2,

where η1 represents the mean volume density of the volume element S1 on the
nanoparticle. The second element S2 is assumed to be either the head or the tail group
of the lipid with the mean surface or the mean volume density η2, respectively. Further,
the integral In is defined as

In =

∫
S1

∫
S2

ρ−2n dS2 dS1, n = 3, 6, (2.1)

and, therefore, E = η1η2(−AI3 + BI6).
The Lennard-Jones parameters for the lipid bilayer are taken from the work of

Marrink et al. [15]. The head group is assumed to be a charged site Q, whereas the
tail group is assumed to be an apolar site C, both interacting with a nonpolar and
nonhydrogen bonding gold nanoparticle N0. The parameter values for Q, C and N0
can be found in the work of Marrink et al. [15], and these values for both head and tail
groups are the same. From the coarse grain model, there are two and eight interaction
sites for the head and tail groups, respectively [15], which contribute to the total energy
of the system. Further, the head group is assumed to be represented as a flat plane,
while the tail group is described as a rectangular box with a tail length `. The mean
atomic surface density for the head group and the mean atomic volume density for the
tail group are based on the work of Baowan et al. [1].

The Lennard-Jones parameters for gold nanoparticles are taken from the work of
Pu et al. [19]. Since gold adopts a face-centred-cubic (FCC) crystal structure where
there are four atoms occupied in a unit cell, the mean atomic volume density for the
gold nanoparticle can be determined using the atomic radius of 1.44 Å. The parameters
used in this model are given in Table 1.
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Table 1. Numerical values of constants used in the model.

Well depth of Au atoms within gold nanoparticle (meV) ε1 = 1.691
Well depth of atoms within the head group (meV) ε2 = 35.24
Well depth of atoms within the tail group (meV) ε3 = 35.24
van der Waals radius of Au atoms within gold nanoparticle (Å) σ1 = 2.934
van der Waals radius of atoms within the head group (Å) σ2 = 4.70
van der Waals radius of atoms within the tail group (Å) σ3 = 4.70
Length of lipid tail group (Å) ` = 15
Mean atomic volume density for gold nanoparticle (Å−3) ηg = 0.1675
Mean atomic surface density for head group lipid bilayer (Å−2) ηhead = 0.0308
Mean atomic volume density for tail group lipid bilayer (Å−3) ηtail = 0.1231/`

3. Interaction energy of system

Here the energy behaviour for a gold nanoparticle of radius a moving through a
circular hole in a lipid bilayer of radius b is considered. Further, the gold nanoparticle
is assumed to be a dense sphere. Also, the lipid bilayer is assumed to be an infinite
plane consisting of two head groups and two tail groups with a separation distance of
δ = 3.36 Å between the two layers [1] (see Figure 2). The total energy between a lipid
bilayer and a spherical nanoparticle comprises the interaction for:

(i) two head groups and a spherical nanoparticle,
(ii) two tail groups and a spherical nanoparticle.

First, the volume integral for a spherical nanoparticle interacting with a single
atom is considered and described in Section 3.1. Then the interaction energy between
a sphere and a flat plane, and that between a sphere and a box, are presented in
Sections 3.2 and 3.3, respectively.

3.1. Volume integral of a sphere interacting with single atom The model
formation for the interaction energy between a sphere and a point is shown in Figure 1.
Then the integral In defined by (2.1) becomes

In =

∫ π

−π

∫ a

0

∫ π

0

r2 sin φ
(r2 + ξ2 + 2rξ cos φ)n dφ dr dθ,

where ρ2 = r2 + ξ2 + 2rξ cos φ and ξ is the distance from the single atom to the
centre of the sphere. On making a substitution t = r2 + ξ2 + 2rξ cos φ and, since In
is independent of θ,

In =
π

ξ

∫ a

0

∫ (ξ+r)2

(ξ−r)2
r

1
tn dt dr

=
π

ξ(n − 1)

∫ a

0
r
[ 1
(ξ − r)2(n−1) −

1
(ξ + r)2(n−1)

]
dr.
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Figure 1. Model formation for a sphere interacting with an atom where the single atom is assumed to be
located at the origin.

Finally, using integration by parts,

In =
π

ξ(n − 1)

[
−

a
(3 − 2n)

{ 1
(ξ − a)2n−3 +

1
(ξ + a)2n−3

}
−

1
(3 − 2n)(4 − 2n)

{ 1
(ξ − a)2n−4 −

1
(ξ + a)2n−4

}]
.

For n = 3 and 6, placing fractions over common denominators, expanding and
reducing to fractions in terms of powers of (ξ2 − a2) yield

I3 =
4
3
πa3 1

(ξ2 − a2)3 , (3.1)

I6 =
2πa3

45

[ 30
(ξ2 − a2)6 +

216a2

(ξ2 − a2)7 +
432a4

(ξ2 − a2)8 +
256a6

(ξ2 − a2)9

]
. (3.2)

Therefore, the total interaction energy between the volume of a spherical nanoparticle
and a single atom is given by

Esp = ηg(−AI3 + BI6),

where ηg is the mean volume density of the gold nanoparticle.
For convenience, define the integral

Jn =

∫
S2

1
(ξ2 − a2)n dS2, (3.3)

where n is a positive integer corresponding to the degree of the polynomials in (3.1)
and (3.2).
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Figure 2. Model formation for a sphere interacting with bilayer where the hole in H1 is assumed to be
located at z = 0.

3.2. Interaction energy between a sphere and two head groups The model
formation for a spherical gold nanoparticle interacting with a lipid bilayer is depicted
in Figure 2. Here H1 is defined as the head group located on the xy-plane and H2 as
the other head group located at z = −2` − δ. Then the interaction energy between the
head group H1 and the sphere is determined. A typical point of H1 has coordinates
(r cos θ, r sin θ, 0), where r ∈ (b,∞) and b is the radius of the hole. The centre of the
gold nanoparticle is assumed to be located on the z-axis at (0, 0,Z), where Z represents
the perpendicular distance from the upper surface to the centre of the sphere, and at
the mid-plane of the bilayer Z = −` − δ/2. Therefore, the distance from the centre of
the nanoparticle to a typical point on the infinite plane is given by ξ2 = r2 + Z2, and
the integral in (3.3) becomes

Jn =

∫ 2π

0

∫ ∞

b

r
(r2 + Z2 − a2)n dr dθ =

π

(n − 1)(Z2 + b2 − a2)n−1 .

Hence, the interaction energy between the head group H1 and the nanoparticle is

EH(Z) = 2
[
ηgηhead

{
−

4
3
πa3AJ3 +

2πa3B
45

(30J6 + 216a2J7 + 432a4J8 + 256a6J9)
}]
,

(3.4)

where the factor 2 comes from the number of interaction sites on the head group based
on the Martini force field [15].
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The interaction energy between the head group H2 and the spherical gold
nanoparticle can be obtained in precisely the same way by substituting Z + 2` + δ
for Z in (3.4), where δ is the equilibrium spacing between the two layers of the lipid
given by 3.36 Å [1].

3.3. Interaction energy between a sphere and two tail groups On assuming that
the tail group can be modelled as a rectangular box, the interaction energy between
the two tail groups and the spherical gold nanoparticle can be determined. Here T1
is defined as the tail group connected to the head group H1, and T2 as the other
tail group which is connected to the head group H2. A typical point of T1 has
coordinates (r cos θ, r sin θ,−z), where z ∈ (0, `), and ` is the tail length. The distance
between the centre of the nanoparticle and the surface of the tail group T1 is given by
ξ2 = r2 + (Z + z)2, and the integral Jn in (3.3) becomes

Jn =

∫ 2π

0

∫ `

0

∫ ∞

b

r
[r2 + (Z + z)2 − a2]n dr dz dθ

=
π

(n − 1)

∫ `

0

1
[b2 + (Z + z)2 − a2]n−1 dz.

Next, the substitution Z + z =
√

b2 − a2 tan φ yields

Jn =
π

(n − 1)(b2 − a2)n−3/2

∫ tan−1((Z+`)/
√

b2−a2)

tan−1(Z/
√

b2−a2)
cos2n−4 φ dφ (3.5)

for n = 3, 6, 7, 8 and 9. The above integral can be found in the work of Gradshteyn and
Ryzhik [10, p. 153, 2.513.3], which is∫

cos2p φ dφ =
1

22p

[(2p
p

)
φ +

p−1∑
k=0

(
2p
k

)
sin(2(p − k)φ)

p − k

]
,

where
(

x
y

)
is the usual binomial coefficient and p = n − 2.

The total interaction energy between the tail group T1 and the spherical gold
nanoparticle is

ET (Z) = 8
[
ηgηtail

{
−

4
3
πa3AJ3 +

2πa3B
45

(30J6 + 216a2J7 + 432a4J8 + 256a6J9)
}]
,

(3.6)

where in this case Jn is defined by (3.5) and the factor 8 is the number of the interaction
sites of the lipid tail group [15]. The interaction energy for the tail group T2 and
the spherical gold nanoparticle can be obtained by precisely the same technique on
replacing Z by Z + ` + δ in (3.6).

4. Numerical results
The total interaction between a gold nanoparticle and a lipid bilayer with a hole

radius b is given by

Etotal = EH(Z) + EH(Z + 2` + δ) + ET (Z) + ET (Z + ` + δ),
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Figure 3. Energy profile versus the distance Z for the particles of radii a = 10, 15 and 20 Å, where b is
fixed to be 20 Å (Colour available online).

where EH and ET are defined in (3.4) and (3.6), respectively. Here, three sizes of the
spherical gold nanoparticles are considered, where their radii are 10, 15 and 20 Å. The
energy profiles for these three cases are depicted in Figure 3, where the hole radius b
is fixed to be 20 Å. The equilibrium positions for the particles of radii 10 and 15 Å are
observed to be in the bilayer while the particle of radius 20 Å cannot pass into the
bilayer.

The relation between the minimum energy locations Zmin and the circular hole
radius b is graphically shown in Figure 4. A positive value of Zmin indicates that the
spherical gold nanoparticle is located above the lipid bilayer, while a negative value of
Zmin shows that the nanoparticle penetrates into the bilayer. The penetration behaviours
of the three cases are similar, and there are two regions which need to be examined.

In the first region, the particles behave like hard spheres, and they do not penetrate
into the bilayer until the hole radii in the bilayer are larger than the critical values
12.65, 17.62 and 22.60 Å of bc for the particle radii 10, 15 and 20 Å, respectively.
These values come from the physical particle radii plus the van der Waals repulsive
region around the atoms. The three curves in this region are quarter-circles with the
radii bc; then a simple curve fitting can be used. Further, the curve fittings for these
cases are determined and they are given by

a = 10, Zmin = (12.6492 − b2)1/2;
a = 15, Zmin = (17.6202 − b2)1/2;
a = 20, Zmin = (22.6032 − b2)1/2.

In the second region, the particles penetrate into the bilayer and, as b increases
further, the particles eventually find the equilibrium position located at the mid-plane
of the bilayer, which is at Z = −16.68 Å. Note that this finding is similar to a previous
work by the author [1]. The ranges for the hole radii in the second region are
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Figure 4. Relation between equilibrium location Zmin and hole radius b where the radii of gold
nanoparticles are assumed to be a = 10, 15 and 20 Å (Colour available online).

12.65 Å < b < 20.79 Å, 17.62 Å < b < 23.14 Å and 22.60 Å < b < 27.02 Å for particle
radii a = 10, 15 and 20 Å, respectively. The following curve fittings for the second
region are obtained from the rational nonlinear fit using OriginPro 8:

a = 10 Å, Zmin = (−0.365 + 0.014b)−1, R2 = 0.986;
a = 15 Å, Zmin = (−0.434 + 0.016b)−1, R2 = 0.999;
a = 20 Å, Zmin = (−0.594 + 0.020b)−1, R2 = 0.967.

Note that the dotted line joining region 1 and region 2 shows the jump behaviour of
the nanoparticles.

This result agrees well with the work of Lin et al. [14], where the gold nanoparticle
does not pass through the lower layer of the lipid. In order to induce the uptake process
into the cell, charged nanoparticles may be used to disrupt the hydrophilic head group
in forming a vesicle; then an endocytosis process may occur.

5. Summary

The continuous approach and the Lennard-Jones potential function were employed
to determine the penetration behaviour for three spherical gold nanoparticles of
different radii through a lipid hole. A circular hole is assumed to be in the bilayer and
the particles are initiated at rest above the bilayer. Both surface and volume integrals
are evaluated to calculate the total nonbonded interaction energy of the system. An
analytical expression is obtained in terms of the particle radius a, the hole radius b and
the perpendicular distance from the centre of the particle to the bilayer surface Z.

In all the three cases, there are similar regions for the penetration behaviour. In the
first region, the nanoparticle behaves like a hard sphere. As the circular hole radius
in the bilayer increases, the particle penetrates the bilayer and relocates inside the
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layer until the radius acquires a critical value, which for the three cases considered
are b = 20.79, 23.14 and 27.02 Å corresponding to the particle radii a = 10, 15 and
20 Å, respectively. Once the spherical gold nanoparticles enter the bilayer under no
additional applied external force and charge, they tend to remain at the mid-point of
the bilayer rather than penetrating further into the cell.
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[16] A. Nel, T. Xia, L. Mädler and N. Li, “Toxic potential of materials at the nanolevel”, Science 311
(2006) 622–627; doi:10.1126/science.1114397.

[17] D. Pissuwan, T. Niidome and M. B. Cortie, “The forthcoming applications of gold nanoparticles
in drug and gene delivery systems”, J. Control. Release 149 (2011) 65–71;
doi:10.1016/j.jconrel.2009.12.006.

[18] D. Pissuwan, S. M. Valenzuela, M. C. Killingsworth, X. Xu and M. B. Cortie, “Targeted
destruction of murine macrophage cells with bioconjugated gold nanorods”, J. Nanopart. Res.
9 (2007) 1109–1124; doi:10.1007/s11051-007-9212-z.

[19] Q. Pu, Y. Leng, X. Zhao and P. T. Cummings, “Molecular simulations of stretching gold nanowires
in solvents”, Nanotechnology 18 (2007) 424007; doi:10.1088/0957-4484/18/42/424007.

[20] W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham and E. Evans, “Effect of chain length and
unsaturation on elasticity of lipid bilayers”, Biophys. J. 79 (2000) 328–339;
doi:10.1016/S0006-3495(00)76295-3.

[21] J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, P. B. Moore and M. L. Klein,
“Simulations of phospholipids using a coarse grain model”, J. Phys. Chem. B 105 (2001)
9785–9792; doi:10.1021/jp011637n.

[22] W. Shinoda, R. DeVane and M. L. Klein, “Zwitterionic lipid assemblies: molecular dynamics
studies of monolayers, bilayers, and vesicles using a new coarse grain force field”, J. Phys. Chem.
B 114 (2010) 6836–6849; doi:10.1021/jp9107206.

[23] T. Thomas, K. Thomas, N. Sadrieh, N. Savage, P. Adair and R. Bronaugh, “Research strategies
for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale
materials”, Toxicol. Sci. 91 (2006) 14–19; doi:10.1093/toxsci/kfj129.

[24] E. J. Wallace and M. S. P. Sansom, “Carbon nanotube/detergent interactions via coarse-grained
molecular dynamics”, Nano Lett. 7 (2007) 1923–1928; doi:10.1021/nl070602h.

[25] K. Yang and Y.-Q. Ma, “Computer simulation of the translocation of nanoparticles with different
shapes across a lipid bilayer”, Nat. Nanotechnol. 5 (2010) 579–583; doi:10.1038/nnano.2010.141.

http://dx.doi.org/10.1021/jp036508g
http://dx.doi.org/10.1126/science.1114397
http://dx.doi.org/10.1016/j.jconrel.2009.12.006
http://dx.doi.org/10.1007/s11051-007-9212-z
http://dx.doi.org/10.1088/0957-4484/18/42/424007
http://dx.doi.org/10.1016/S0006-3495(00)76295-3
http://dx.doi.org/10.1021/jp011637n
http://dx.doi.org/10.1021/jp9107206
http://dx.doi.org/10.1093/toxsci/kfj129
http://dx.doi.org/10.1021/nl070602h
http://dx.doi.org/10.1038/nnano.2010.141


Review

Advances in Mechanical Engineering
2016, Vol. 8(11) 1–16
� The Author(s) 2016
DOI: 10.1177/1687814016677022
aime.sagepub.com

Mathematical modeling of interaction
energies between nanoscale objects: A
review of nanotechnology applications

Duangkamon Baowan1,2 and James M Hill3

Abstract
In many nanotechnology areas, there is often a lack of well-formed conceptual ideas and sophisticated mathematical
modeling in the analysis of fundamental issues involved in atomic and molecular interactions of nanostructures.
Mathematical modeling can generate important insights into complex processes and reveal optimal parameters or situa-
tions that might be difficult or even impossible to discern through either extensive computation or experimentation. We
review the use of applied mathematical modeling in order to determine the atomic and molecular interaction energies
between nanoscale objects. In particular, we examine the use of the 6-12 Lennard-Jones potential and the continuous
approximation, which assumes that discrete atomic interactions can be replaced by average surface or volume atomic
densities distributed on or throughout a volume. The considerable benefit of using the Lennard-Jones potential and the
continuous approximation is that the interaction energies can often be evaluated analytically, which means that extensive
numerical landscapes can be determined virtually instantaneously. Formulae are presented for idealized molecular build-
ing blocks, and then, various applications of the formulae are considered, including gigahertz oscillators, hydrogen stor-
age in metal-organic frameworks, water purification, and targeted drug delivery. The modeling approach reviewed here
can be applied to a variety of interacting atomic structures and leads to analytical formulae suitable for numerical
evaluation.
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Introduction

For the past two decades, nanotechnology has been a
major focus in science and technology. However, in
various areas of physics, chemistry, and biology, both
past and current research involving interacting atomic
structures are predominantly either experimental or
computational in nature. Both experimental work and
large-scale computation, perhaps using molecular
dynamics simulations, can often be expensive and time-
consuming. On the other hand, applied mathematical
modeling often produces analytical formulae giving rise
to virtually instantaneous numerical data. This can

significantly reduce the time taken in the trial-and-error
processes leading to applications and which in turn sig-
nificantly decreases the research cost. Here, applied
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mathematical modeling in nanotechnology is reviewed,
and particularly, the work of the present authors and
their colleagues in the use of classical mathematical
modeling procedures to investigate the mechanics of
interacting nanoscale systems for various applications,
including nano-oscillators, metal-organic frameworks
(MOFs), molecular selective separation, and drug
delivery.

Throughout, the dominant mechanisms behind these
nanoscale systems are assumed to arise from atomic
and molecular interactions that can be modeled by the
6-12 Lennard-Jones potential function (see equation
(4)), and further simplifications are made by adopting
the continuous or continuum assumption. This approx-
imation assumes that two interacting molecules can be
replaced by two surfaces or two regions, for which the
discrete atomic structure is averaged over the surface or
the volume with a constant atomic surface density or a
constant atomic volume density, respectively. Basically,
the continuous assumption gives an average result, and
it is much better suited to those situations involving
well-defined surfaces with evenly distributed atoms,
such as graphene, carbon nanotubes, or carbon fuller-
enes. In each of these instances, there exists a uniform
distribution of atoms, and the continuous approxima-
tion might be most accurate. In the case of non-evenly
distributed atomic structures, a hybrid approach is
adopted, which deals with the isolated atoms individu-
ally, and the continuous approximation is adopted for
the remainder. For example, a methane molecule CH4

is assumed to be replaced by a spherical surface of a
certain radius with a constant hydrogen atomic surface
density, together with a single carbon atom located at
the center of the spherical surface.1,2

In this review, we comment that we do not include
the mechanics of dislocations in metallic materials or
the use of the Cauchy–Born rule to bridge interactions
since the modeling here assumes that there is no defor-
mation of any surface due to the van der Waals interac-
tions. We refer the reader to Van der Giessent and
Needleman3 for a comprehensive study of plastic dis-
crete dislocations and to Biner and Morris4 for a com-
putational simulation of the discrete dislocation
method. Furthermore, a review of the Cauchy–Born
rule can be found in Ericksen.5

In the following section, both the 6-12 Lennard-
Jones potential function and the continuous approxi-
mation are introduced. In the section thereafter,
analytical expressions are presented for the interaction
energies of the basic molecular building blocks, namely,
points, lines, planes, rings, spheres, and cylinders, all
deduced utilizing the 6-12 Lennard-Jones potential
function together with the continuous approximation.
In the section on the mechanics of nanostructures, the
mechanics of the so-called gigahertz oscillators is
reviewed, including the determination of the energy

and force distributions of this nanostructured device.
The development of a mathematical model of MOFs
for gas storage is presented in the section thereafter. In
the next section, the modeling approach is reviewed for
molecular selectivity and separation for water purifica-
tion, ion separation, and biomolecule selection. In the
targeted drug delivery section, we present a review of
applied mathematical modeling for targeted drug deliv-
ery. A brief overall summary is presented in the final
section of this article.

Lennard-Jones atomic interaction
potential and the continuous approach

For two separate non-bonded molecular structures, the
interaction energy E can be evaluated either directly
using a discrete atom–atom formulation or approxi-
mately using the continuous approach. Thus, the non-
bonded interaction energy may be obtained either as a
summation of the individual interaction energies
between each atomic pair, namely

E=
X

i

X
j

F(rij) ð1Þ

where F(rij) is the potential function for atoms i and j
located a distance rij apart on two distinct molecular
structures, assuming that each atom on the two mole-
cules has a well-defined coordinate position.
Alternatively, the continuous approximation assumes
that the atoms are uniformly distributed over the entire
surface of the molecule, and the double summation in
equation (1) is replaced by a double integral over the
surface of each molecule, thus

E=h1h2

ðð
F(r)dS1dS2 ð2Þ

where h1 and h2 represent the mean surface densities of
atoms on the two interacting molecules, and r is the
distance between the two typical surface elements dS1

and dS2 located, respectively, on the two interacting
molecules. Note that the mean atomic surface density is
determined by dividing a number of atoms which make
up the molecule by the surface area of the molecule.
The continuous approximation is rather like taking the
average or mean behavior, and in the limit of a large
number of atoms, the continuous approximation
approaches the energy arising from the discrete model.

The hybrid discrete–continuous approach applies to
the modeling of irregularly shaped molecules, such as
drugs, and constitutes an alternative approximation to
determine the interaction energy. The hybrid approach
is represented by elements of both equations (1) and (2)
and can be effective when a symmetrical molecule is
interacting with a molecule comprising asymmetrically
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located atoms. In this case, the interaction energy is
given as follows

E =
X

i

h

ð
F(ri)dS ð3Þ

where h is the surface density of atoms on the symme-
trical molecule, and ri is the distance between a typical
surface element dS on the continuously modeled mole-
cule and atom i in the molecule which is modeled as
discrete. Again, F(ri) is the potential function, and the
energy is obtained by summing overall atoms in the
drug or the molecule which is represented discretely.

The continuous approach is an important approxi-
mation, and Girifalco et al.6 state that

From a physical point of view the discrete atom-atom
model is not necessarily preferable to the continuum
model. The discrete model assumes that each atom is the
center of a spherically symmetric electron distribution
while the continuum model assumes that the electron dis-
tribution is uniform over the surface. Both of these
assumptions are incorrect and a case can even be made
that the continuum model is closer to reality than a set of
discrete Lennard-Jones centers.

One such example is a C60 fullerene, in which the
molecule rotates freely at high temperatures so that the
continuous distribution averages out the effect. Qian
et al.7 suggest that the continuous approach is more
accurate for the case where the ‘‘C nuclei do not lie
exactly in the center of the electron distribution, as is
the case for carbon nanotubes.’’ However, one of the
constraints of the continuous approach is that the
shape of the molecule must be reasonably well defined
in order to evaluate the integral analytically, and there-
fore, the continuous approach is mostly applicable to
highly symmetrical structures, such as cylinders,
spheres, and cones. Hodak and Girifalco8 point out
that for nanotubes, the continuous approach ignores
the effect of chirality, so that effectively nanotubes are
only characterized by their diameters. For the graphite-
based and C60-based potentials, Girifalco et al.6 state
that calculations using the continuous and discrete
approximations give similar results, such that the dif-
ference between equilibrium distances for the atom–
atom interactions is less than 2%. Hilder and Hill9

undertake a detailed comparison of the continuous
approach, the discrete atom–atom formulation and a
hybrid discrete–continuous formulation, for a range of
molecular interactions involving a carbon nanotube,
including interactions with another carbon nanotube
and the three fullerenes C60, C70, and C80. In the hybrid
approach, only one of the interacting molecules is dis-
cretized, while the other is considered to be continuous.
The hybrid discrete–continuous formulation enables
non-regular-shaped molecules to be described and is

particularly useful for drug delivery systems which
employ carbon nanotubes as carriers and discussed
subsequently. The Hilder and Hill9 investigation
obtains estimates of the anticipated percentage errors
which may occur between the various approaches in a
specific application. Although, it is shown that the
interaction energies for the three approaches can differ
on average by at most 10%, while the forces can differ
by at most 5%, with the exception of the C80 fullerene.
For the C80 fullerene, while the intermolecular forces
and the suction energies are shown to be in reasonable
overall agreement, the pointwise energies may be signif-
icantly different. This is perhaps due to the differences
in modeling the geometry of the C80 fullerene, noting
that the suction energies involve integrals of the energy,
and therefore, any error or discrepancy in the pointwise
energy tends to be smoothed out to give reasonable
overall agreement for the former quantities.

The continuum or continuous approximation has
been successfully applied to a number of systems,
including the interaction energy between nanostruc-
tures of various types and shapes, namely, carbon full-
erenes,6,10,11 carbon nanotubes,6,12–21 carbon nanotube
bundles,22–24 carbon nanotori,25–30 carbon nano-
cones,31–34 carbon nanostacked cups,35 fullerene–nano-
tube,8,36–46 and TiO2 nanotubes.47–49 Moreover, this
method has also been used in systems involving pro-
teins and enzymes,50–52 DNA,52–55 lipid bilayer and
lipid nanotube,56–58 water molecule,59–64 benzene,2,65–69

methane,2,3,70–75 ions,75–79 and gas storage and porous
aromatic frameworks.80–88

The Lennard-Jones potential function F(r) which
accounts for the interaction of two non-bonded atoms
can be written in the following form

F rð Þ= � A

r6
+

B

r12
= 4e � s

r

� �6

+
s

r

� �12
" #

ð4Þ

where A= 4es6 and B= 4es12 are positive constants
which are referred to as the Lennard-Jones constants.
They are empirically determined and correspond to the
constants of attraction and repulsion, respectively.
Furthermore, s is the van der Waals diameter, and e
denotes the energy well depth. The equilibrium distance
r0 is given by r0 = 21=6s= ½(2B)=A�1=6, where
e=A2=(4B), as shown in Figure 1. Moreover, when
experimental information on particular atomic interac-
tions is lacking, it is possible to use the so-called
empirical combining laws or mixing rules,89 which have
no theoretical basis but are nevertheless used in many
calculations. Thus, if the parameters e and s are known
for the self-interactions of two distinct atomic species
designated by 1 and 2, then the parameters for atomic
species 1 interacting with atomic species 2 are assumed
to be given by the geometric and arithmetic means,
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namely, e12 =(e1e2)
1=2 and s12 =(s1 +s2)=2.

Following the work by Mayo et al.90 and Rappe
et al.,91 some illustrative numerical values for the
Lennard-Jones constants are given in Table 1.

When the Lennard-Jones potential function F(r) is
used in the context of the integral formulation of equa-
tion (2), we observe that the attractive term r�6 and the
repulsive term r�12 can be separated and integrated
independently. Furthermore, the two terms only vary
in the coefficients A and B and the magnitude of the
index, applying to the distance variable r. Accordingly,
for convenience, the Lennard-Jones potential function
F(r) is expressed in the following form

F rð Þ= � AI3 rð Þ+BI6 rð Þ ð5Þ

where In(r)= r�2n, and in the following section, inte-
grals of the following form

I =

ð
S1

ð
S2

In rð ÞdS2dS1 ð6Þ

must be evaluated. In many instances, integrals of this
type can be given explicitly in terms of the

hypergeometric function F(a, b; c; z) which is a standard
function of mathematical analysis that can be readily
evaluated from algebraic packages such as Maple and
MATLAB. There are many important results relating
to the hypergeometric function, and we refer the reader
to Erdélyi et al.92 and Bailey,93 but the principal for-
mula required for the determination of interaction
energies is the integral representation

F(a, b; c; z)=
G(c)

G(b)G(c� b)

ð1
0

tb�1(1� t)c�b�1(1� tz)�adt

ð7Þ

provided that <(c).<(b).0 and j arg (1� z)j\p.92

Analytical expressions for idealized
molecular building blocks

In this section, the approach adopted by Thornton and
colleaugues80–82 and Lim et al.87 is summarized using
idealized building blocks to represent the interactions
of both simple and more complicated geometries of
nanostructures yielding simple and elegant analytical
models. First, the analytical representations of the van
der Waals interaction between an atom and the build-
ing blocks, which are represented by standard geometri-
cal shapes such as points, lines, planes, rings, spheres,
and cylinders are determined. At first sight, such a dra-
matically simplified modeling approach may seem geo-
metrically severe, but in many situations, it has been
shown to provide the major contribution to the interac-
tion energy of the actual structure.

Interaction of two atomic points

Given the coordinates of two atoms, P=(xp, yp, zp) and
Q=(xq, yq, zq), the Lennard-Jones potential between
the two atoms can be obtained by substituting the para-
meter r into equation (4) which is the distance between
the two atoms and is given as follows

Figure 1. Lennard-Jones potential.

Table 1. Numerical values for the Lennard-Jones constants taken from Mayo et al.90

Site–site s (Å) e (kcal/mol) A (eVÅ6) B (eVÅ12)

H 3.1950 0.0152 1.4023 745.8187
O 3.4046 0.0957 12.9264 10,065.7103
N 3.6621 0.0774 16.1917 19,527.3227
C 3.8983 0.0951 28.9469 50,795.2337
B 4.0200 0.0950 34.7736 73,379.6427
P 4.1500 0.3200 141.7777 362,131.6551
Si 4.2700 0.3100 162.9665 493,896.0409
Ti 4.5400 0.0550 41.7703 182,882.5525
Fe 4.5400 0.0550 41.7703 182,882.5525
Zn 4.5400 0.0550 41.7703 182,882.5525
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r2 =(xq � xp)
2 +(yq � yp)

2 +(zq � zp)
2

Interaction of atomic point with atomic line

The perpendicular (closest) distance between an atomic
point and an atomic line is denoted by d. The line para-
metrically by L(p)= (p, 0)a and the point P=(0, d) are
defined, as illustrated in Figure 2(a). Note that the line
element is given by dp, and therefore, the integral of
interest is given as follows

I =

ð‘
�‘

p2 + d2
� ��n

dp

On making a change of variable and substituting
p= d tanc, the integral becomes as follows

I = d1�2n

ðp=2

�p=2

cos2n�2 cdc ð8Þ

which can then be evaluated using

ðp=2

0

sinp u cosq udu=
1

2
B

p+ 1

2
,

q+ 1

2

� �
ð9Þ

to obtain

I = d1�2nB n� 1=2, 1=2ð Þ ð10Þ

Interaction of atomic point with atomic plane

This situation is relevant to modeling nanostructures as
it corresponds to the case of an individual atom inter-
acting with a graphene sheet. Again, the perpendicular
spacing between the point and the plane is assumed to
be d, and therefore, the plane P(p, q)= (p, q, 0) and the
point P=(0, 0, d) are defined, as shown in Figure 2(b).
In this case, the area element of the plane is given by
dpdq, and therefore, the integral required to evaluate I
is given as follows

I =

ð‘
�‘

ð‘
�‘

p2 + q2 + d2
� ��n

dpdq ð11Þ

The substitution p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 + d2

p
tanc is made and

proceeded as in the previous section to produce the
following

I =B n� 1

2
,

1

2

� � ð‘
�‘

q2 + d2
� �1=2�n

dq

Figure 2. Interaction of atoms with idealized building blocks: (a) point with line, (b) point with plane, (c) point with ring, (d) point
with spherical surface, and (e) point with infinitely long right-cylindrical surface.
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On making a further substitution of q= d tanf, the
integral becomes as follows

I = d2�2nB n� 1

2
,

1

2

� �
B n� 1,

1

2

� �
=

p

(n� 1)d2n�2

Interaction of atomic point with atomic ring

The interaction of a point with a ring can be categor-
ized into two cases which are as follows: (1) the point is
interacting with the ring from the side and (2) the point
is interacting with the ring from the top or bottom. For
the first case, the point P is assumed to be located at
(d, 0). Furthermore, the center of the ring Q(q, u) of
radius q is assumed to be located at the origin where its
coordinates are Q=(q cos u, q sin u), as depicted in
Figure 2(c). With the line element qdu, equation (6)
becomes as follows

I =

ðp
�p

q

(q� d)2 + 4qd sin2 (u=2)
� �n du

On making the substitution t= sin2 (u=2) yields the
following

I =
2q

(q� d)n

ð1
0

t�1=2(1� t)�1=2(1� mt)�ndt

where m= � 4qd=(q� d)2. This integral can be written
in a standard hypergeometric form as follows

I =
2q

(q� d)2n

G(1=2)G(1=2)

G(1)
F n,

1

2
; 1; m

� �

=
2pq

(q� d)2n
F n,

1

2
; 1; m

� �

The Pfaff transformation is
utilized,94F(a, b; c, z)= (1� z)�bF(c� a, b; c; z=(z� 1))
to produce a terminating hypergeometric series, thus

I =
2pq

(q� d)2n�1(q+ d)
F 1� n,

1

2
; 1;

4qd

(q+ d)2

� �

In the case of an atomic point P with coordinates
P=(x, y, z), and assumed to be located either at the top
or the bottom of the ring Q(q, u), which is assumed to
be located at the origin of the xy-plane with coordinates
(q cos u, q sin u, 0), so that

r2 =(x� q cos u)2 +(y� q sin u)2 + z2

=b� aq cos (u� u0)

where b= x2 + y2 + z2 + q2, a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
, and

u0 = arctan (y=x). Following the work by Tran-Duc
et al.,67I becomes as follows

I =

ðp
�p

q

b� aq cos (u� u0)½ �n du

=
2pq

(b� aq)n
F n,

1

2
; 1;

2aq

(aq� b)

� � ð12Þ

Interaction of atomic point with atomic spherical
surface

The atomic point with Cartesian coordinates
P=(0, 0, d) is considered, which is at a distance d from
the center of an atomic spherical surface of radius a,
parameterized using the spherical coordinates
S(u,f)= (a, u,f), as indicated in Figure 2(d). In terms
of these coordinates, the integral required to evaluate
equation (6) is given as follows

I = a2

ðp
�p

ðp
0

sin u

½a2 sin2 u+(a cos u� d)2�n
dudf

Since the integrand in this case is independent of f,
the integration involving f can be effected immediately
and then by re-organizing the denominator to deduce

I = 2pa2

ðp
0

sin u

½d2 + a2 � 2da cos u�n
du ð13Þ

which on making the substitution t = d2 + a2�
2da cos u becomes as follows

I =
pa

d

ð(d+ a)2

(d�a)2

dt

tn
=

pa

d(1� n)

1

tn�1

	 
(d+ a)2

(d�a)2

=
pa

d(n� 1)

1

(d� a)2(n�1)
� 1

(d+ a)2(n�1)

	 


Interaction of atomic point with infinite atomic
cylindrical surface

Here, the interaction of an arbitrary atomic point P

with an atomic cylindrical surface C of radius b and
assumed to be infinite in length is determined. The
cylinder is represented parametrically by the coordi-
nates C(u, z)= (b, u, z), where �p\u�p and
�‘\z\‘. Due to the rotational and translational
symmetry of the problem, the point P in Cartesian
coordinates is given by (d, 0, 0), where 0� d\b, as indi-
cated in Figure 2(e). Accordingly, the distance from P

to a typical surface element on C is given as follows

r2 =(b cos u� d)2 + b2 sin2 u+ z2

= d2 + b2 � 2db cos u+ z2

=(b� d)2 + 4db sin2 (u=2)+ z2
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so that, the following integral must be evaluated

I = b

ð‘
�‘

ðp
�p

1

(b� d)2 + 4db sin2 (u=2)+ z2
� �n dudz

By defining l2 =(b� d)2 + 4db sin2 (u=2) and mak-
ing the substitution z= l tanc gives the following

I = b

ðp=2

�p=2

cos2n�2 cdc

ðp
�p

1

l2n�1
du

= bB n� 1

2
,

1

2

� � ðp
�p

1

l2n�1
du

Now on making the further substitution
t = sin2 (u=2) yields the following

I =
2b

(b� d)2n�1
B n� 1

2
,

1

2

� �

3

ð1
0

t�1=2(1� t)�1=2(1� mt)1=2�ndt

ð14Þ

where m= � 4bd=(b� d)2. This integral is now in the
Euler form as follows

I =
2b

(b� d)2n�1
B n� 1

2
,

1

2

� �
G(1=2)G(1=2)

G(1)

3 F n� 1

2
,

1

2
; 1; m

� �

=
2pb

(b� d)2n�1
B n� 1

2
,

1

2

� �
F n� 1

2
,

1

2
; 1; m

� �

Note that in terms of the usual parameters of the
hypergeometric function where c= 2b, and by employ-
ing a quadratic transformation (see Erdélyi et al.92

equation (24) on page 64), the integral I yields the
following

I =
2pb

(b� d)2n�1
B n� 1

2
,

1

2

� �
b� d

b

� �2n�1

3 F n� 1

2
, n� 1

2
; 1;

d2

b2

� �

=
2p

b2n�2
B n� 1

2
,

1

2

� �
F n� 1

2
, n� 1

2
; 1;

d2

b2

� �

Next, the total interaction of an atomic point P,
which is offset from the axis by a distance d, and a
cylindrical surface C of radius b are considered where
d.b. In this case, the calculation follows along similar
lines to the above except that the terms are rearranged
so as to pick up a different solution of the

hypergeometric equation, which is a solution with the
argument inverse to that given in the previous section.

The same cylinder defined in cylindrical coordinates
by C(u, z)= (b, u, z), where �p\u�p, and �‘\z\‘

is determined. The atomic point with Cartesian coordi-
nates P=(d, 0, 0) is defined, but in this case, d.b.
Following the above steps, an expression for the dis-
tance r, from the point P to an arbitrary area element
on the surface of the cylinder C is as follows

r2 =(d� b)2 + 4db sin2 (u=2)+ z2

In a similar manner to that described above, the inte-
gral I is of the following form

I =
2pb

(d� b)2n�1
B n� 1

2
,

1

2

� �
F n� 1

2
,

1

2
; 1;� 4db

(d� b)2

� �

whereupon on again employing the quadratic
transformation

I =
2pb

d2n�1
B n� 1

2
,

1

2

� �
F n� 1

2
, n� 1

2
; 1;

b2

d2

� �

Some important mathematical formulae are derived
which may be exploited to calculate the interaction
energy between two nanostructures. Analytical expres-
sions for an atomic point (i.e. a single atom) with vari-
ous shaped molecules have been determined. In more
complicated atomic configurations involving two or
more molecules, another surface integral of the atomic
point must be evaluated to determine the total interac-
tion energy of the system. In the following sections, a
number of nanotechnology applications are surveyed
which have exploited these formulae to determine the
properties of the systems.

Mechanics of nanostructures

Nanostructures such as carbon nanotubes, nanopea-
pods, nanocones, and carbon onions exhibit outstand-
ing physical and mechanical properties such as their
high strength, high flexibility, and low weight, and they
provide a basis for the creation of many novel nano-
devices. One particular application which has attracted
much attention is the nano-oscillator,12,37,95,96 which is
able to generate frequencies in the gigahertz range,12

and which may form the basis of a number of
ultrahigh-frequency devices in the computer industry.
Since the discovery of ultra low friction by Cumings
and Zettl,95 double-walled carbon nanotube oscillators
have been widely studied using both molecular
dynamics simulations and experiments.12,13,96–98 In
addition, carbon nanotubes have received much atten-
tion for medical applications, especially their use
as nanocontainers for drug and gene delivery.
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In particular, a well-known self-assembled hybrid car-
bon nanostructure, so-called nanopeapods, may be
regarded as a model for possible drug carriers, where
the carbon nanotube can be thought of as the nanocon-
tainer, and the C60 molecular chain can be considered
as the drug molecule.99 Nanocones have received less
attention in the literature, primarily because only a
small amount are produced in the production pro-
cess.100 However, the narrow vertex of the cone makes
an ideal candidate as a nanoprobe in scanning tunnel-
ing microscopes.101

The Lennard-Jones potential together with the con-
tinuous approximation has been successfully employed
in a number of studies to determine the van der Waals
interaction energy and the force between two interact-
ing non-bonded nanostructures. In particular, several
authors determine the molecular interaction between a
fullerene and carbon nanotubes.8,36–46 Girifalco36

determines the interaction energy between two C60 full-
erenes and extends the study in Girifalco et al.6 to find
the energy between two identical parallel carbon nano-
tubes of infinite length and between a carbon nanotube
and a C60 fullerene. Girifalco et al.6 also provide the
value of the interaction constants in the Lennard-Jones
potential for carbon atoms in graphene–graphene, C60–
C60, and C60–graphene. Furthermore, Hodak and
Girifalco8 propose an energy formula for universal gra-
phitic systems including the interaction of an ellipsoid
inside a single-walled carbon nanotube. In general, it is
possible to combine both the continuous and discrete
approaches to model the interaction between two
nanostructures. As shown in both Hilder and Hill9 and
Verberck and Michel,102 the single-walled carbon nano-
tube is modeled continuously, while the fullerene is
modeled as a discrete atomic structure.

Cox et al.38,39 have proposed the important notions
of suction and acceptance energies for the encapsula-
tion behavior of an atom and a C60 fullerene when
sucked inside a carbon nanotube. The suction energy is
defined as the total work performed by the van der
Waals interactions on an atom or molecule entering the
carbon nanotube. The acceptance energy is the total
work performed by van der Waals interactions on the
atom or molecule entering the nanotube, up to the
point that the van der Waals force once again becomes
attractive.38 The forces acting on the atom or a C60 full-
erene interacting with carbon nanotube of finite length
can be approximated by two equal and opposite Dirac
delta functions operating at the extremities of the tubes,
as shown in Figure 3. Once the atom or molecule is
encapsulated inside the tube, these forces tend to keep
them oscillating inside, and this is the physical basis of
the nano-oscillator.

Cox et al.40,43,44 also study the mechanics of spheri-
cal and spheroidal fullerenes entering carbon nano-
tubes. Particularly, Figure 4 shows the energy profiles
for spheroidal C70 and C80 fullerenes interacting with
carbon nanotubes for various offset distances e and tilt
angles c, and two distinct and approximately equal
local minima are observed. Baowan et al.42 determine
the encapsulation mechanics of the C60 into a carbon
nanotube where the C60 is initiated outside the tube in
the absence of any applied external forces.42 Once a
number of C60 fullerenes are encapsulated inside the
tube, two patterns emerge which are termed zigzag and
spiral,41 and the composite nanostructures are referred
to as nanopeapods. Moreover, the spiral motion of car-
bon atoms and C60 fullerenes inside single-walled car-
bon nanotubes is investigated by Chan et al.45 and
Chan and Hill.46

Figure 3. Plot of forces for (a) atom oscillating inside (6, 6) carbon nanotube and (b) C60 fullerene oscillating inside (10, 10) carbon
nanotube.
Schematic representation reproduced from Cox et al.39 (authors are allowed to re-use parts of their own work in derivative works without seeking

the Royal Society’s permission).
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For two concentric cylindrical carbon nanotubes,
Zheng and Jiang12 determine the van der Waals restor-
ing force between the inner and outer shells of a multi-
walled carbon nanotube and subsequently predict a
gigahertz frequency of the oscillatory motion. Baowan
and colleagues14,15 determine analytical expressions for
the suction energy and offset configurations of double-
walled carbon nanotubes and also predict the gigahertz
frequency for the nanotube oscillators. A similar
approach has been adopted by Cox16 to model the
behavior of forced double-walled nanotube oscillators.
Ansari and colleagues18–20 consider the effects of geo-
metrical parameters on the force distributions for the
oscillatory behavior of double-walled carbon nano-
tubes. The effect of capped ends of double-walled car-
bon nanotubes is also studied by Baowan,17 and the
effect of tube radii is investigated by Tiangtrong and
Baowan.21

Ruoff and Hickman103 consider the interaction
between a spherical fullerene and a graphite sheet. For
spherical carbon onions CN1

@CN2
(N2.N1), Iglesias-

Groth et al.104 also adopt the Lennard-Jones potential
and the continuous approximation to determine the
interlayer interaction. Using the formula of Iglesias-
Groth et al.,104 Guérin105 obtains the interaction energy
between the interlayer of carbon onions which is in
excellent agreement to that obtained from a discrete
atom–atom summation model given in Lu and
Yang.106 Furthermore, Baowan et al.10 predict the
interlayer spacing for each shell of the carbon onions.
Moreover, they observe that the equilibrium spacing

decreases as the shell is further away from the inner
core, and this is due to the decreasing curvature for
larger spheroids. Thamwattana et al.11 also exploit the
Lennard-Jones potential and the continuous approxi-
mation to focus on various interactions involving a full-
erene and other carbon nanostructures, and analytical
expressions are obtained. The study by Thamwattana
et al.11 confirms that molecules are likely to be at a cer-
tain distance apart in order to minimize the total inter-
action energy.

Henrard et al.107 use a similar technique to that pro-
posed by Girifalco36 and obtain the potential for bun-
dles of single-walled carbon nanotubes. Cox and
colleagues22–24 study extensively the mechanics of car-
bon atoms and nanotubes oscillating in carbon nano-
tube bundles and again utilizing the Lennard-Jones
potential together with the continuous approximation,
and the results obtained can be used to predict the
oscillator bundle configuration which optimizes the
suction energy and therefore leads to the maximum fre-
quency oscillator.

The equilibrium configurations of carbon atoms and
C60 fullerenes inside carbon nanotori have been deter-
mined by Hilder and Hill,25–27 Chan and colleagues,28,29

and Sumetpipat et al.30 Even though complicated ana-
lytical expressions are derived, the energy profiles are
easily obtained utilizing algebraic packages such as
Maple. Furthermore, the interaction energy between
two nanocones has been investigated by Baowan and
Hill31–33 and Ansari et al.,34 where the spacing between
the two cone surfaces is determined to be 3 Å. The

Figure 4. Contour plot of interaction energy for (a) C70 fullerene for a 8.0-Å radius nanotube and (b) C80 fullerene for a 8.3-Å
radius nanotube, showing two distinct and approximately equal local minima.
Schematic representation reproduced from Cox et al.44 (DOI:10.1088/1751-8113/41/23/235209) �IOP Publishing. Reproduced by permission of IOP

Publishing. All rights reserved.
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equilibrium arrangement between two carbon nanos-
tacked cups, which are truncated cones that are found
as the hollow cores of carbon nanofibers,108–112 is deter-
mined by Baowan et al.35 again using the Lennard-
Jones potential and the continuous approach.

MOFs and gas storage

MOFs comprise metal atoms or clusters that are linked
periodically by organic molecules to establish an array
such that each atom forms part of an internal surface.
MOFs have delivered the highest surface areas and
hydrogen storage capacities for any physisorbent and are
shown to be the most practically promising material for
gas storage.113 Exposed metal sites114,115 pore sizes,116 and
ligand chemistries117,118 have been found to be the most
effective routes for increasing the hydrogen enthalpy of
adsorption within MOFs. The MOF adsorbent that pre-
sently holds the record for gravimetric hydrogen storage
capacity at room temperature is the first structurally char-
acterized beryllium-based framework, Be-BTB (benzene
tribenzoate). Be-BTB has a Brunauer–Emmett–Teller
(BET)119surface area of 4400m2g21 and can adsorb
2.3wt% hydrogen at 298K and 100bar.120 We refer the
reader to Furukawa et al.121 for a comprehensive review
of the chemistry and the applications of MOFs.

The so-called Topologically Integrated Mathematical
Thermodynamic Adsorption Model (TIMTAM), as
proposed by Thornton and colleagues,81,82 assumes the
ideal building blocks described in the section on analyti-
cal expressions for idealized molecular building blocks
to represent the cavity of the structure, and then, these
expressions are exploited to calculate the potential
energy interactions between the gas and the adsorbate.
The major advantage of the TIMTAM approach is that
it provides analytical formulae that are computationally
instantaneous, and therefore, many distinct scenarios
can be rapidly investigated which evidently serves to
accelerate material design.81 A schematic representation
for MgC60@MOF for a MOF cavity impregnated with
magnesium-decorated C60 is shown in Figure 5, where
the TIMTAM model is utilized to determine the energy
level in the cavity for the magnesium atom.81 Moreover,
the same approach has also been proved as a useful
technique to investigate the effect of pore size in
MOFs.80–82,86,87

Furthermore, Chan and Hill84 investigate the stor-
age of hydrogen molecules inside graphene-oxide fra-
meworks comprising two parallel graphenes rigidly
separated by perpendicular ligands. These authors find
6.33wt% for GOF-28 at a temperature of 77K and a
pressure of 1 bar which is consistent with several experi-
mental and other computational results.122–124 Based
on the assumption of no steric hindrance and a small

electronic barrier, Chan and Hill83 model the interac-
tion of a rigidly suspended benzene molecule within a
MOF, which is then used as a building block in more
complex MOFs.

For the specific gas molecule, benzene, Tran-Duc
and colleagues65–69 extensively investigate the equili-
brium configuration of benzene dimer adsorbed on gra-
phene sheet, C60 fullerene, and carbon nanotubes. They
obtain an analytical expression as a function of the dis-
tance between the gas molecule and the material sur-
faces and the rotational configuration of the benzene
itself. This analysis might be exploited to improve the
design of the gas storage system.69 For methane, Adisa
et al.1,2,70–73 investigate the encapsulation and packing
of methane in various carbon nanostructures such as
spherical fullerenes, nanotubes, and nanobundles. In
terms of clean energy and the effect on the environ-
ment, the theoretical study73 indicates a promising
future using natural gas storage in molecular structures.

Molecular selective and separation

Water molecule has a simple chemical structure and is
often a basic unit in many biomolecules. The determi-
nation of water separation can be envisaged as the first
step in a study of the selective separation of more com-
plicated molecules. Hilder and Hill59 determine the
maximum velocity for a single water molecule entering
a carbon nanotube, and their model predicts that the
radius of the carbon nanotube must be at least 3.464 Å

Figure 5. Model for C60@MOF where Mg atom locates within
cavity surface at radius r1, r is distance between gas molecule
and center of cavity, and b denotes radius of C60. The color bar
indicates the energy value of MgC60@MOF.
Reprinted with permission from Thornton et al.81 Copyright 2009

American Chemical Society.
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for acceptance of a water molecule, and that a radius
of 3.95 Å provides the maximum uptake or suction
energy. Chan and Hill61 utilize the same mathematical
technique to investigate the transport of water through
carbon nanotubes and suggest that their results rapidly
reduce the computational time for the full numerical
calculation. As an alternative for molecular selectivity,
Garalleh et al.62–64 determine the interaction energy
between water and various other biomolecules.

Ions are atoms or molecules in which the total num-
ber of electrons does not equal the total number of pro-
tons, giving the atom a net positive or negative
electrical charge. On using the applied mathematical
approach, Chan and Hill75,76 investigate the interaction
energy between various types of atoms and ions,
namely, Mn2+, Au, Pt, Na1+, and Li1+ on graphene
sheet. These authors determine the equilibrium position
for the atom/ion on the surface of the graphene sheet
and the minimum intermolecular spacing between two
graphene sheets. Furthermore, carbon nanotubes have
been used to facilitate the transport and separation of
atoms and ions.77,78 Similarly, Rahmat et al.79 deter-
mine the suction and the acceptance behavior of C60

molecule, Li+ , Na+, Rb+, and Cl2 ions and ion–
water clusters into peptide nanotubes. A critical tube
radius of 8.5 Å is determined such that all the ions are
accepted into the peptide nanotubes, whereas the C60 is

rejected. This work has many potential applications
involving ion separation, including drug delivery sys-
tems and high-performance alkali batteries using nano-
materials as components.

The selective separation of biomolecules is a critical
process in food, biomedical, and pharmaceutical
industries. Baowan and Thamwattana50 utilize the
Lennard-Jones potential function and the continuous
approximation to separate trypsin and lysozyme using
mesoporous silica. These authors predict that the silica
pores with radii lying in the range 17.23 and 21.24 Å
will only allow lysozyme to be encapsulated. Using the
same approach, Thamwattana et al.51 investigate three
model configurations for bovine serum albumin to be
encapsulated inside carbon nanotubes, as indicated in
Figure 6. They conclude that a critical radius of pore
or tube is crucial for the design to facilitate maximum
loading of proteins and drug molecules.

The far more complicated biomolecule DNA has
been examined by Alshehri et al.,52–55 who determine
equilibrium positions of a DNA strand absorbed onto
a graphene sheet or encapsulated inside a carbon nano-
tube. These authors find that a space of approximately
20 Å is required for the absorption of DNA onto the
graphene sheet.53 Moreover, they observe that double-
stranded DNA is encapsulated inside a single-walled
carbon nanotube of radius larger than 12.30 Å, and

Figure 6. Three possible configurations for bovine serum albumin encapsulated in a carbon nanotube and modeled: (a) as three-
connected spheres, (b) as a prolate-ellipsoid, and (c) as a right-cylinder.
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they show that the optimal radius of the single-walled
carbon nanotube to enclose a double-stranded DNA is
12.8 Å.52,54,55 Furthermore, since lipid bilayers, lipid
nanotubes, and liposomes are potential candidates for
use in molecular separation, Baowan et al.56 determine
the penetration and encapsulation of C60 fullerene
through/in lipid bilayer family. Furthermore, the pene-
tration and encapsulation of silica nanoparticles are
examined in Baowan et al.57 and silver and gold nano-
particles in Baowan and Thamwattana.58 Although
electrostatic interaction energy may arise from hydro-
phobic layers of the lipid, these authors show that the
dominant energy contribution originates from the van
der Waals interactions.

Targeted drug delivery

The prospect that nanocapsules may realize the ‘‘magic
bullet’’ concept, as first proposed at the beginning of
the 20th century by the Nobel Prize winner Paul
Ehrlich (1854–1915), generated immense interest in
their development. The ideal drug carrier, or ‘‘magic
bullet,’’ is envisaged as a transporter of drugs or other
molecular cargo to a specific site in the body which then

unloads the cargo in a controlled manner. Although
this notion may sound like science fiction, the advent of
nanotechnology means that it is rapidly becoming sci-
entific fact. Despite the prominence of carbon nano-
tubes in the broader area of nanotechnology, the field
of nanotube biotechnology is in its infancy, and there is
still much work that needs to be accomplished before
specific products can be produced. Drug delivery is one
of the most promising biomedical applications of nano-
technology, and as stated by Hillebrenner et al.125 in a
review of template-synthesized nanotubes for biomedi-
cal delivery applications, ‘‘The future challenges for
nanotubes as drug delivery vehicles are substantial but
not insurmountable.’’

Again following the Lennard-Jones potential func-
tion and the continuous approximation approach,
Hilder and Hill determine the energy behavior and suc-
tion characteristics in the encapsulation of various
drugs into nanotubes including cisplatin,126,127 pacli-
taxel, and doxorubicin128 and into other nanotubes
such as boron nitride, silicon, and boron carbide.129

Their results predict an appropriate tube size that gives
rise to the optimum encapsulation mechanics for a pre-
scibed drug molecule. Moreover, Hilder and Hill130

Figure 7. Outline of proposed drug delivery process: (a) nanotube surface is functionalized with a chemical receptor and drug
molecules are encapsulated, (b) open end is capped, (c) nanocapsule is ingested and locates to target site due to functionalized
surface, (d) cell internalizes capsule, for example, by receptor-mediated endocytosis, (e) cap is removed or biodegrades inside cell,
and (f) drug molecules are released.
Schematic representation reproduced with permission from Hilder and Hill.131 Copyright 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

12 Advances in Mechanical Engineering



also examine nanosyringes comprising double-walled
carbon nanotubes to inject DNA or anticancer drugs
directly into the cell. The reader is referred to Hilder
and Hill131 for a comprehensive review on the various
models for drug release using a nanotube carrier, as
indicated in Figure 7. Ansari et al.132 employ both a
hybrid discrete–continuum model and molecular
dynamics simulation to study the offset of cisplatin in a
single-walled carbon nanotube and conclude that the
methods give comparable results.

Summary

This review has focused on the use of applied mathe-
matical modeling to determine the mechanical energy
behavior of nanostructures. We have concentrated on
those applications for which the 6-12 Lennard-Jones
potential energy function and the continuous approxi-
mation apply. The continuous approximation assumes
that the total molecular interaction energy of the sys-
tem involving a discrete atomic configuration can be
approximated by a uniform distribution of atoms,
either throughout a region or over a bounding surface.
First, analytical expressions for various molecular
building blocks are evaluated to provide the major con-
tribution to the interaction energy of the actual compli-
cated atomic configuration. The principal mechanical
properties of the nanostructure can then be determined
from the energy distribution, which gives rise to the
force distribution, equilibrium configurations, and
oscillatory behavior. Moreover, this applied mathemat-
ical approach has been illustrated to determine the gas
storage characteristics of MOFs. The same approach
has also been successfully applied to both organic and
inorganic molecules, including systems of biomolecules
involving protein and enzyme selective separation and
targeted drug delivery. In summary, although this
robust mathematical approach has already been suc-
cessfully exploited in many applications, its most
important future role will likely be either as a compo-
nent or as the first iteration in large-scale computa-
tional calculations to determine the molecular
interaction energy of complex atomic configurations,
and such use will significantly increase computational
efficiency.
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thods on atomic force
microscope cantilever systems

Kanes Sumetpipat,a Duangkamon Baowan,*a Barry J. Coxb and James M. Hillc

The ever increasing demand to analyse substrates means that an improved theoretical understanding is

necessary for atomic force microscope cantilevers. In this study, we utilize fundamental mathematical

modelling, comprising the Lennard-Jones potential and techniques involving the calculus of variations, to

obtain the energy equations arising from the probe and the substrate, leading to the deflection equations of

the cantilever. Here we assume a silicon tip and the substrate surface is assumed to be a graphene sheet.

Based on an energy calculation, the most stable system occurs where the probe is 0.206 nm away from the

substrate, and this value exists independently of the size and tilt angle of the probe. For the deflection of the

cantilever, we apply the calculus of variations to the separate domains, considering derivatives up to third

order at the connection point. The deflection behaviour of a V shaped plate depends primarily on its length,

and the spring constants of various cantilevers are calibrated from the deflection equations. In comparison

to the zeroth order method of previous studies, our method predicts a 30–50% difference in the value of

their spring constants. Moreover, we observe the bending behaviour of cantilever systems by considering

the energy between the probe and the substrate together with the bending energy in the cantilever, and we

find that the maximum bending distance at the tip is in the range between 0.09 nm and 0.2 nm.
1 Introduction

Atomic force microscope (AFM) cantilevers can be used to
measure the properties of substrate surfaces in the nanometer
to micrometer range, and are becoming increasingly adopted in
many diverse areas requiring an ever increasing accuracy. The
operating modes of AFM cantilevers can be divided into three
main categories which are the contact mode, the tapping mode,
and the non-contact mode, and each mode has different
advantages and applications. AFM cantilevers may be used to
scan either rigid bodies, or liquid surfaces, or biological mate-
rials and can clarify shapes and response characteristics in
various environments. For example, Kasas et al.1 use an AFM in
biological systems to investigate the RNA, collagen ber, virus
and kidney cells, and Franz et al.2 employ an AFM to study the
mechanics of cell adhesion.

There have been numerous investigations on AFM cantilever
properties.3 The most important aspect of any AFM cantilever is
the accuracy of the measurements involving elasticity,
geometric shape, temperature, spring constant including
adhesive force, type of substrate and the loading position. To
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obtain this data and minimize any errors in measurement,
many interesting techniques have been proposed, such as
uncertainty analysis, focused curve analysis, focused ion beam
with spatial marker, where the shape of the cantilever and the
tip, and the spring calibration constant are the two main
aspects of the investigations.4–7 Sader et al.8 propose a theoret-
ical model to determine the spring constant for isosceles trap-
ezoidal and V-shaped thin plates. Based on the well-known
elastic strain equations for an arbitrary thin plate,9 these
authors derive the deection equations for such cantilevers.
The deection equations are solved using a zeroth order
method and a second order method where the former method
assumes a solution in one variable. Their results show that both
methods give similar results in determining the spring constant
and they are in a good agreement as compared to a nite
element calculation. Moreover, their second order method can
also be used for more general cantilever geometries.

Cleveland et al.10 also derive the spring constant for AFM
cantilevers, and measure the resonant frequency of tungsten
spheres with different masses with a force loading at the end.
The spring constants obtained in their study are in agreement
with the theoretical result shown in.11 Sader et al.12 analyze the
effect of air damping and the cantilever position where the force
is applied, and the spring constant obtained aer considering
the air damping term shows excellent agreement with Cleveland
et al.10 Sader et al.12 comment that the cantilever thickness and
the gold coating also affect the observed frequency.
This journal is © The Royal Society of Chemistry 2016
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Besides direct calculation of the spring constant, a number
of researchers consider torsional spring constants, because
AFM cantilevers might be acted upon by lateral forces during
their operation. Green et al.13 extend the solutions of Sader
et al.14 and Cleveland et al.10 to nd such torsional spring
constants. Hoogenboom et al.15 employ the Fabry–Perot inter-
ferometer together with the cantilever to scan the surface of
aqueous or liquid environments by considering thermal noise
and the frequency of the silicon cantilever. Fukuma et al.16

develop a cantilever system that is more sensitive to the noise so
that it can be applied in diverse environments.

Cai et al.17 design the shape of cantilevers to achieve a wide
range of frequencies so that small changes in the cantilever
probe can be detected. Stevens et al.18 utilize the nanotube as
a probe and report that the image resolution of the general
silicon tip and nanotube tip are similar. Further, the nanotube
can give better accuracy of the image height than the general
silicon tip. There are also other studies that calibrate the spring
constant and propose new techniques for cantilever use and we
direct the interested reader to the following studies.19–28

Even though the literature contains many results from
experiments on AFM cantilevers, further analytical and theo-
retical methods are required to better explain the function of
the cantilevers. In this work, we study the cantilever system by
employing classical mathematical modelling techniques to
calculate forces and energies of the system, and involving two
procedures. Firstly, we discuss the energy between the probe
and the surface that is being scanned. Assuming only van der
Waals forces, we utilize the Lennard-Jones potential to deter-
mine the energy of the system, where the probe is assumed to be
a conical shape, and the surface is modelled as an innite at
plane. Secondly, we discuss the bending of the cantilever to
calculate the potential energy including its spring constant. The
cantilever geometry considered in this work is the isosceles
trapezoidal shape both with and without an isosceles trape-
zoidal hole. We then combine the results of these two calcula-
tions to determine the total energy of the system.

The calculation of the interaction between the probe and the
surface and the calculation of the deecting cantilever are
presented in Section 2. Additionally, the basic formulae for the
molecular interactions and the calculus of variations formulae
are also detailed in this section. Results for the mechanical
system for the AFM cantilever are discussed in Section 3, and
nally, we give some concluding remarks in Section 4.
Fig. 1 Configuration of point and plane surface.
2 Mathematical derivations
2.1 Interaction between tip and surface

We employ a Lennard-Jones potential to determine the energy
between two non-bonded molecules. The Lennard-Jones
potential may be expressed in two equivalent forms

FðrÞ ¼ 43

"
�
�
s

r

�6

þ
�
s

r

�12
#
¼ �A

r6
þ B

r12
;

where 3 is the well depth, s is the van der Waals diameter and r

is the distance between atoms. We note that, A ¼ 43s6 and B ¼
This journal is © The Royal Society of Chemistry 2016
43s12 are the attractive and repulsive constants, respectively. For
two different atoms, we employ the empirical mixing rules for 3
and s which are 3 ¼ (3132)

1/2 and s ¼ (s1 + s2)/2, where the
numerals 1 and 2 refer to the two atomic species. For two
molecules, the total energy can be obtained by summing all
atomic pairs from the two molecules. However, the number of
atoms in the systems considered in this paper are very large and
we calculate the total energy via a continuous approximation
assuming that the atoms are uniformly distributed over the
materials. Hence, the total interaction energy may be approxi-
mated as an integral

E ¼ h1h2

ð
S1

ð
S2

FðrÞdS2dS1;

where h1 and h2 are the mean surface or the mean volume
densities of the materials, and S1 and S2 are the surface or
volume elements.

2.1.1 Interaction between a point and a plane surface. We
start by calculating the energy between a point and a plane
surface. The surface is assumed to be an innite plane and
located at z ¼ 0. The distance between the point and such
a plane is denoted by u, and the coordinates of the point are (0,
0, u) as shown in Fig. 1. Thus, the total interaction energy has
the form

Epp ¼ hp

ð ​N
�N

ðN
�N

FðrÞdxdy;

which we write as

Epp ¼ hpð � AI3 þ BI6Þ;
where hp is the mean surface density of the plane, and

In ¼
ð
​
N

�N

ðN
�N

r�2ndxdy ¼
ð
​
N

�N

ðN
�N

�
x2 þ y2 þ u2

��n
dxdy:
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Fig. 3 Configuration of tilted cone and plane surface.
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We make the substitution x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ u2

p
tanðjÞ to obtain

In ¼ Bðn� 1=2; 1=2Þ
ðN
�N

�
y2 þ u2

�1=2�n
dy;

where B(m, n) is the beta function, and then let y ¼ u tan(j) to
deduce

In ¼ u2ð1�nÞBðn� 1; 1=2ÞBðn� 1=2; 1=2Þ ¼ p

n� 1
u2ð1�nÞ; (1)

so that we have

Epp ¼ hp

h
� A

� p

2u4

�
þ B

� p

5u10

�i
:

2.1.2 Interaction between a cone and a plane surface. Next,
we consider the energy between a cone and a plane surface as
illustrated in Fig. 2. We assume that the right-circular cone is
given by the equation,

x2

k2
þ y2

k2
¼ z2:

Assume also that is the plane is located below the vertex of
the cone at a distance 3, so that the distance between any point
of the cone located on the z-axis and the plane is u ¼ z + 3. The
cone base area that is parallel to the plane at a height u ¼ z + 3

has the area Az ¼ pk2z2, and the cone angle is denoted by a, so
tan(a/2) ¼ k. Let the integral Jn be dened by

Jn ¼
ðN
0

InAzdz;

where In is dened by (1), then we may deduce

Ecp ¼ hphc(�AJ3 + BJ6).
Fig. 2 Configuration of right cone and plane surface.
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For the right cone, we may have

J right
n ¼ p

n� 1

ðN
0

ðzþ 3Þ2ð1�nÞpk2z2dz

¼ p2k2

ðn� 1Þ32ðn�1Þ

ðN
0

z2

ðz=3þ 1Þ2ðn�1Þ dz

¼ p2k2

ðn� 1Þ32n�5
Bð2n� 5; 3Þ:

The tilted cone system can be established by rotating the
right cone through an angle q as shown in Fig. 3, so that we have

xN ¼ x, yN ¼ y cos q � z sin q, zN ¼ y sin q + z cos q.

From the equation for a right cone, we substitute the rela-
tions for x, y and z to obtain

(x/k)2 + [(y cos q � z sin q)/k]2 ¼ (y sin q + z cos q)2,

from which we may deduce

(x/k)2 + Gy2 � Hy ¼ F,

where

G ¼ cos2 q

k2
� sin2

q;H ¼ z sinð2qÞ
�
1þ 1

k2

�
;

F ¼ z2
�
cos2 q� sin2

q

k2

�
:

The equation for the tilted cone may be written in the elliptic
form given by

x2

k2GW
þ ðy�H=2GÞ2

W
¼ 1;
This journal is © The Royal Society of Chemistry 2016



Fig. 4 Cantilever configuration, where y1, y2, y�1 and y�2 are linear
functions for outside and inside isosceles trapezoid's edges, �m are
slope of edges, C and E are shown widths, and L and ‘ are shown
lengths.
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where W ¼ (F/G) + (H2/4G2). Thus, the cone base area parallel to

the plane at location z is Az ¼ pk
ffiffiffiffiffiffiffiffi
GW

p ffiffiffiffiffi
W

p ¼ pkW
ffiffiffiffi
G

p
, and we

write W
ffiffiffiffi
G

p ¼ Xz2, that X ¼ ðW ffiffiffiffi
G

p Þz¼1, and

J tilt
n ¼ p

n� 1

ðN
0

ðzþ 3Þ2ð1�nÞ
pkXz2dz

¼ p2kX

ðn� 1Þ32ðn�1Þ

ðN
0

z2

ðz=3þ 1Þ2ðn�1Þ dz:

Similarly for the case of the right cone, the integral Jn
tilt becomes

J tilt
n ¼ p2kX

ðn� 1Þ32n�5
Bð2n� 5; 3Þ;

and Jn(q/0)
tilt / Jn

right. We dene 3min to be the equilibrium distance 3
that gives the minimum energy, and both the right cone and the
tilted cone systems yield 3min ¼ [B/(30A)]1/6 where A and B are the
attractive and repulsive Lennard-Jones constants, respectively.

2.2 Calculus of variations method on cantilever plate

Functionals involving the derivatives of higher order have the
form

vðyðxÞÞ ¼
ðx1
x0

F
�
x; yðxÞ; y0ðxÞ;.; yðnÞðxÞ

�
dx;

where the integrand F involves derivatives of order n with
respect to x. On using the variational calculus, the Euler–
Lagrange equation can be obtained as,

Fy � d

dx
Fy0 þ d2

dx2
Fy00 þ.þ ð�1Þn d

n

dxn
FyðnÞ ¼ 0;

the general solution of this equation has 2n arbitrary constants
which are obtained from the 2n boundary conditions,

y(x0) ¼ y0, y
0(x0) ¼ y00,.,y(n�1)(x0) ¼ y0

(n�1),

and this solution provides an extremum for the functional v(y(x)).
2.2.1 Deection equations. The approximate potential

energy V for an arbitrary cantilever plate may be given by

V¼ 1

2

ðð
D

(�
v2w

vx2
þ v2w

vy2

�2

�2ð1� nÞ
"
v2w

vx2

v2w

vy2
�
�
v2w

vxvy

�2
#)

dx dy;

where w(x, y) is a deection function, D ¼ E*t3/[12(1 � n2)] with
Young's modulus E*, the thickness t, and Poisson's ratio n. The
boundary conditions of this cantilever are w(0, y) ¼ 0, wx(0, y) ¼
0, w(L, y) ¼ d, wxx(L, y) ¼ 0 and wy(0, y) ¼ 0, where d denotes the
bending distance of the cantilever. The conguration of the
cantilever is as shown in Fig. 4. We assume w to depend only on
x, w(x), which is assumed to satisfy the prescribed condition on
wy(0, y) and the potential energy function becomes

V ¼ 1

2

ðð
Dw002dx dy

¼ D

2

ð ​ L
0

ð�mxþC

mx�C

ðw00Þ2dy dx� D

2

ð ​ ‘
0

ð�mxþE

mx�E

ðw00Þ2dy dx

¼ D

2

ð‘
0

2ðw00Þ2ðC � EÞdxþ D

2

ðL
‘

2ðw00Þ2ð�mxþ CÞdx: (2)
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From the Euler–Lagrange equation of second order

Fw � d

dx
Fw0 þ d2

dx2
Fw00 ¼ 0;

and from the rst integral of (2), we may deduce

w(x) ¼ T3x
3 + T2x

2 + T1x + T0, (3)

where T0, T1, T2 and T3 are constants, and 0 # x # ‘. Next, by
using the Euler–Lagrange equation again for the second inte-
gral term in (2), we nd

w(4)(x) � 2w000(x)/(x � x) ¼ 0, (4)

where x¼ C/m. On solving (4) using the integrating factor to give
w000(x) ¼ l/(x � x)2, we have

w(x) ¼ l(x � x)(log|x � x| � 1) + K2x
2 + K1x + K0, (5)

where l, K0, K1 and K2 are all constants, and 0 # x # ‘.
Next, we use the boundary conditions to nd the unknown

constants. Considering w(0) ¼ 0 and w0(0) ¼ 0 in (3) shows that
T0 ¼ T1 ¼ 0, and the solution becomes

w(w) ¼ T3x
3 + T2x

2. (6)

The other two conditions, w(L) ¼ d and w00(L) ¼ 0, are now
applied to (5) to obtain

d ¼ l(x � L)(log|x � L| � 1) + K2L
2 + K1L + K0, (7)

K2 ¼ �l/[2(x � L)]. (8)

We now need to nd the constants K0, K1, T2 and T3
assuming that the function w(x) at x ¼ ‘ is continuous and
smooth up to the third derivative; whichmeans, w(‘), w0(‘), w00(‘)
and w000(‘) from (5) and (6) must coincide, and the four equa-
tions are
RSC Adv., 2016, 6, 46658–46667 | 46661



Fig. 5 Energy of right circular cones for various cone angles a ¼ p/16,
p/10, p/6 and p/4.
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T3‘
3 + T2‘

2 ¼ l(x � ‘)(log|x � ‘| � 1) + K2‘
2 + K1‘ + K0,

3T3‘
2 + 2T2‘ ¼ �l log|x � ‘| + 2K2‘ + K1,

6T3‘ + 2T2 ¼ l/(x � ‘) + 2K2,

T3 ¼ l/[6(x � ‘)2]. (9)

From (7)–(9), both solutions from (5) and (6) may be given by

w1ðxÞ¼ lx3

6ðx� ‘Þ2 þ
l

2

 
1

ðx� ‘Þ �
1

ðx� LÞ �
‘

ðx� ‘Þ2
!
x2; 0# x# ‘;

(10)

w2ðxÞ ¼ lðx� xÞðlog|x� x|� 1Þ � l

2ðx� LÞx
2

þl

 
� ‘2

2ðx� ‘Þ2 þ
‘

x� ‘
þ log|x� ‘|

!
xþ lðx� ‘Þ

� lx log|x� ‘|� l‘2

2ðx� ‘Þ þ
l‘3

6ðx� ‘Þ2 ; ‘# x#L; (11)

where

l ¼ d

"
ðx� LÞðlog|x� L|� 1Þ � L2

2ðx� LÞ

þ
 
� ‘2

2ðx� ‘Þ2 þ
‘

x� ‘
þ log|x� ‘|

!
Lþðx� ‘Þ � x log|x� ‘|

� ‘2

2ðx� ‘Þ þ
‘3

6ðx� ‘Þ2
#�1

;

and where x ¼ C/m.
2.2.2 Energy and spring constant. The spring constant, kw,

is calculated from the energy per unit area. Here, the force is
assumed to be applied to the end of the probe and the distance
is taken to be w(L) which we denote by d. Thus,

kw ¼ V

d2

¼ D

2d2

(
ð2C � 2EÞl2

"
‘3

3ðx� ‘Þ4 �
‘2

ðx� ‘Þ2
�

1

x� ‘
� 1

x� L

�

þl

�
1

x� ‘
� 1

x� L

�2
#
þ 2l2ðL� ‘Þ

 
C

ðx� LÞ2 �
2m

x� L

!

� 2ml2 log

				x� L

x� ‘

				� ml2ðL2 � ‘2Þ
ðx� LÞ2

)
;

where V is dened by (2).

3 Results and discussion

The present section is divided into three subsections. In the rst
subsection, we discuss the interaction between the cone and the
plane. Then we consider the bending behaviour of the canti-
lever system using the calculus of variations, and nally, we
combine the two to model the mechanical cantilever system.

3.1 Interaction between cone and plane

Here we assume the cone or the tip to be made from silicon
whereas the plane surface is assumed to be a graphene sheet.
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We choose graphene as an example because our approach
assumes a two-dimensional at surface. Moreover, graphene is
a very stable nanomaterial, for which there is little chance to
form chemical bonding with the molecules on the tip, and the
interaction forces are dominated only by the van der Waals
interactions. The constant values A ¼ 7.8497 J nm6 mol�1 and B
¼ 0.0179 J nm12 mol�1 in Lennard-jones potential are obtained
from the silicon and carbon data in Rappé et al.,29 and the value
of the density hC ¼ 38.12 nm�2 is taken from Cox et al.30 The
volume density of silicon is obtained by converting the units
from kilogram per cubic meter to atom per cubic nanometer,
and hSi ¼ 49.977 nm�3. In this section, we examine the energy
between the cone and the plane surface Ecp and the equilibrium
distance 3min for various cones is deduced.

From Fig. 5, the energy of the system becomes positive when
the vertex of the cone becomes close to the graphene plane. The
systems are unstable when 3 is less than 0.149 nm, and the
equilibrium distance is obtained as 3min ¼ 0.206 nm. Our
results show that the cone vertex experiences a strong repulsive
force, whereas the bulk of the cone makes a much smaller
contribution to the energy. Fig. 6 shows that the larger the cone
angle a, the lower the energy. In other words, more atoms on the
cone give rise to a larger interaction force between the cone and
the plane. The smallest cone (a¼ p/16 or 11.25�) gives rise to an
energy of �1.65 � 10�21 J while the largest one (a ¼ p/4 or 45�)
gives rise to an energy of �29.19 � 10�21 J.

The tilted cone system behaves similarly in terms of the 3

value. However, in Fig. 7, the system which has a larger rota-
tional angle q will have a lower energy. Moreover, the value of
3min for the tilted cone system is the same as that for the right
cone case, that is, 0.206 nm because q + a/2 is not much greater
than p/2. This means that the closest point between the cone
and the plane is at the tip, and therefore the most important
parameter is the interspacing 3. We note that the energy of the
right cone system can also be obtained from the tilted cone case
by using Jn(q/0)

tilt. Fig. 8 shows the possible lowest energy of the
tilted cone for any q. From the graph, the cone with a¼ p/16 has
a difference in energy around 10� 10�21 J on rotating q by 1 rad,
whereas the cone with a ¼ p/4 has an energy difference of
This journal is © The Royal Society of Chemistry 2016



Fig. 6 Relation between energy of right cone and cone angle a at
equilibrium distance 3min ¼ 0.206 nm.

Fig. 7 Energy of tilted cone for various cone angles a¼ p/16, p/16, p/
6 and p/4.

Fig. 8 Energy of tilted cone for 3min¼ 0.206 nm and a¼p/16,p/10,p/
6 and p/4.

Table 1 Size of cantilevers used in this paper,Dn¼0.25¼ 0.3029� 10�8 J

L (mm) ‘ (mm) C (mm) E (mm) m

Type 1 182 107.2 91 53.6 0.5
Type 2 176 139.46 79 62.6 0.4489
Type 3 89.2 61.34 45.15 31.05 0.5062
Type 4 89.4 41.54 45.2 21 0.5056
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around 30 � 10�21 J corresponding to rotating q through
0.6 rad.
Fig. 9 Behaviour of bending plates of Type 1 and Type 4 cantilevers for
equivalent deflection distance and comprising two different examples:
dType 1 ¼ 0.4 nm for s1 and dType 1 ¼ 0.5 nm for s2. Note that units of x-
axis are micrometers while units of y-axis are nanometers, (dashed
line: Type 1 and solid line: Type 4).
3.2 Bending of cantilever

In this section, we consider a triangular cantilever with a trian-
gular hole shape (V shape) in order to compare our results with
the results of earlier studies. This means that the slope m ¼ C/L
¼ E/‘ as shown in Fig. 4. Additionally, w1(x) and w2(x) from (10)
and (11) approach a parabolic function dx2/L2. First of all, we
consider the bending behaviour of four cantilevers as shown in
Table 1 which are those considered by Sader et al.12 Here, we
focus on comparing the predicted values of the spring
constants, and we also discuss the spring constant values ob-
tained by the zeroth order method and by our method.

The bending distance of Type 4 cantilever, dType 4, is calcu-
lated from the bending distance of Type 1 cantilever, dType 1,
This journal is © The Royal Society of Chemistry 2016
with the conditions that the deection distance w(x) is equal
(see Fig. 9) and the energy is equal (see Fig. 10). Further, we
examine two values of dType 1 which are 0.4 nm and 0.5 nm. We
note that these two values of the bending distances are very
small compared with the length of cantilever L, and the bending
distance d measured vertically in the x-direction.

From (10) and (11), our bending behaviour does not depend
on D. So, even for different materials, the same bending proles
RSC Adv., 2016, 6, 46658–46667 | 46663



Fig. 10 (left) Behaviour of bending plates of Type 1 and Type 4 cantilevers for equivalent energy comprising two different examples: dType 1¼ 0.4
nm for s1 and dType 1 ¼ 0.5 nm for s2. Assuming units of x-axis are micrometers while units of y-axis are nanometers. (right) Gradient at the end of
bending cantilever, (dashed line: Type 1 and solid line: Type 4).

Table 2 Spring constants obtained by four methods, kclv is taken from
(ref. 10), ksd is given in (ref. 12), kz is formulated by the zeroth order
method presented in (ref. 8), and kw is obtained in this work. We use
Dn¼0.25 ¼ 0.3029 � 10�8 J for kz and kw

kclv ksd kz kw

Type 1 0.091 0.092 0.102 0.06
Type 2 0.044 0.044 0.05 0.033
Type 3 0.28 0.29 0.333 0.203
Type 4 0.46 0.47 0.536 0.301
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(Fig. 9 and 10) will be obtained converging to the parabolic
prole dx2/L2. Furthermore, our solutions approach dx2/L2

indicating that the bending behaviour is the same when C and E
are different. Moreover, ‘ does not appear in the parabolic
solution, that is, the equivalent V-shaped cantilevers with and
without holes give the same bending behaviour. This is because
our approach ignores the variable y, which is acceptable if
Fig. 11 Relation between krel ¼ kw/kz and r ¼ (C � E)/2C where (left) n ¼
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twisting or distortions do not occur in the y-direction.8 The
major factor on the bending behaviour is the length of the
cantilever L. From Fig. 9, the bending behaviour of Type 1 and
Type 4 cantilevers are similar but the parabolae have different
deectionmagnitudes. In Fig. 10 (le), there is more interesting
behaviour showing that Type 1 cantilevers bendmore than Type
4 cantilevers with the same energy in the two systems. The ratio
of the bending distance between Type 1 and Type 4 cantilevers
dType 4/dType 1 is 0.4458 at the equivalent energy condition. We
may infer that a longer cantilever bends more than a shorter
one, as expected. Additionally, when we compare the gradient
between Type 1 and Type 4 cantilevers as shown in Fig. 10
(right), Type 1 cantilever has the larger gradient as compared to
that of Type 4, and therefore, Type 1 would require a larger
bending angle q.

Next, we consider the spring constants, k, presented in Table
2, where kclv is obtained by Cleveland et al.,10 ksd is taken from
Sader et al.,12 while kz is obtained by the zeroth order method
0 and (right) n ¼ 0.25.

This journal is © The Royal Society of Chemistry 2016



Fig. 12 (a) Geometry of cantilever, (b) relation between q and u0(L)
where q ¼ arctan (w0(L)), and (c) geometry of cone with height p and
base q.
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given in (ref. 8) and kw is that obtained in this study. We nd
that kz is greater than kclv and ksd, while kw is less than kclv and
ksd for all four types of cantilevers. The differences are due to the
different calculations, and as shown in (ref. 12) who discuss the
effect of air damping and loading position which also affect the
spring constant. We comment that from Table 2, the value of kz
is larger than the value of kw by approximately 30–50%.
However, Sader et al. state that their spring constant kz differs by
13%,8,14 and when we decrease our kw values by 13%, kw differs
from kclv and ksd by approximately 25–36%. This predicted
difference is still large for a nano-scaled system where an
angstrom change will make a major difference to the overall
system.

In Fig. 11, we use A0 ¼ 2C/L to indicate the different types of
cantilevers and r ¼ (C � E)/2C to represent the distance in the
x-axis, in order to mimic the situation shown in Fig. 7 of Sader
and White.8 Fig. 11 shows that kw is 30–50% different from kz
as obtained in,8 but for small values of r, kw and kz are
comparable. However, the value of krel ¼ kw/kz is as much as
0.5 for a larger value of r, and it gives a difference of
approximately 50%. Moreover, the relation between krel and r
does not depend on A0. We believe that the differences
Fig. 13 Energy comparison, Ecp for cone and plane, and Ebend is potent

This journal is © The Royal Society of Chemistry 2016
between the two methods occurs because the potential energy
equation is assumed to have only a force applying at the end
of the tip and does not have any boundary edge forces. Our
method also predicts bending of the plate smoothly up to the
third order derivatives at x¼ l. So, the curvature the cantilever
does not arise and is assumed to be small in the zeroth order
method. For the case of Poisson's ratio n ¼ 0.25, the differ-
ences are also approximately 30–50%. Moreover, krel is
around 0.53 when r is very large. In comparison with Fig. 7
presented in,8 both Fig. 11 (le) and Fig. 11 (right) are
completely different, since Sader's graphs8 evidently show
different behaviour for each A0. Additionally, when r tends to
0.5, their krel approaches unity whereas our krel approaches
0.5. We comment that when r is zero, there is a singular point,
and that from a reduction of 13% difference in kz, our kw
shows a 25–43% difference.
3.3 Mechanical cantilever system

Here, we consider the mechanical performance between the tip
and the bending cantilever by employing both solutions ob-
tained from the potential energy calculation and the bending
behaviour. Type 1 and Type 4 cantilevers are modelled and
investigated, and Fig. 12 shows the geometries of the cantilever
and the tip. In Fig. 13, we employ the values p¼ 17 mm, q¼ 4 mm
so that a¼ 0.234 rad. From the relation q¼ arctan(w0(L)), we can
plot energy versus bending distance d and interspacing 3. We
consider the negative bending energy Ebend because it can be
easily compared to the magnitude of the potential energy Ecp.
The mechanical cantilever operates when Ecp # Ebend. For Type
1 cantilever, the farthest bending distance d is approximately
0.2 nm for which 3¼ 0.206 nm, and q¼ 2.18� 10�6 rad, and for
Type 4, we have d¼ 0.09 nm at 3¼ 0.206 nm and q¼ 9.22� 10�6

rad. The energy of each type at maximum d is approximately
�2.35 � 10�21 J. The tip of the cantilever has an initial swing to
detect the surface of the substrate and the length units of the
cantilever are in micrometers whereas the bending distance
units are in nanometers.
ial energy in cantilever, (left) Type 1 and (right) Type 4 cantilevers.
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4 Conclusion

Here a theoretical study of the AFM cantilever system is pre-
sented, employing the variational calculus and the Lennard-
Jones potential to determine the bending behaviour of the
system, and the calculation comprises two procedures. Firstly,
we compute the energy between the silicon tip and the graphene
plane, assuming the silicon tip is a cone, and it can act both
vertical and inclined to the plane. Secondly, we solve the
potential equation for the plate to deduce a bending equation,
for which the solution describes the bending behaviour, and it
can be used to determine the spring constant and the potential
energy that is stored in the cantilever beam.We propose that the
geometry of the cantilever is an isosceles trapezoid, mainly
focussing on an V-shaped cantilever so as to compare our
results with those of Sader et al.8,12 and Cleveland et al.10

In the rst procedure, we obtain the energy equations of the
right cone and that of the tilted cone. In the case of the tilted
cone, when the tilted angle q is zero, the energy equation gives
rise to the energy of the right cone of the same cone angle a.
Both cases have an equilibrium distance 3min at [B/(30A)]1/6.
Moreover, the cone angle and the tilted angle do not effect the
value of 3min where it is obtained as 0.206 nm. Both cases are
unstable if 3 is less than 0.149 nm, and the different values of
3min occur if and only if we use differentmaterials for the tip and
the plane.

In the second procedure, the bending prole tends to
a parabola (d/L2)x2. For any given bending distance d, L will be
a dominant parameter that affects the bending prole. On
comparison with the spring constant given in (ref. 12), our kw
gives a lower value while kz given in (ref. 8) shows larger values
for all types of cantilevers. By comparing between kz and kw, the
results show 30–50% difference and when r increases, this
difference increases. Additionally, the 13% difference for kz
mentioned in (ref. 8) is reduced, but still gives 25–36% differ-
ence for our spring constant.

Finally, on combining the rst and the second procedures to
observe the energy relation, we choose a cone radius a ¼ 0.234
rad and use the parameter values given in Table 1. We predict
a maximum bending distance d between 0.2 nm and 0.09 nm
corresponding to tilted angles q ¼ 2.18 � 10�6 rad and q ¼ 9.22
� 10�6 rad for Type 1 and Type 4, respectively, and the energies
arising from both procedures are �2.35 � 10�21 J.

Our method gives an alternative approach to determine the
bending behaviour of the cantilever and the tip response to the
surface. This analytical method is relevant in the determination
of the distance, energy, and force that are the main consider-
ations in any study of the mechanics of the system. Our
approach gives a better understanding of the relations between
the substrate surface, the bending distance and the properties
of the surface. Moreover, this approach can be applied to any
shape of the cantilever and any surface. For a given substrate,
we can calculate the appropriate distance between the tip and
the sample so as to x the position of the cantilever to accom-
modate the bending angle. Further, if we know the surface level
from the monitor and we know the bending distance or angle,
46666 | RSC Adv., 2016, 6, 46658–46667
we can then predict the molecules on the substrate. In the
theoretical analysis, our calculation utilizes the calculus of
variation, and coordinate transformation of the atoms to model
the cantilever system. The approach may involve some approx-
imations but it gives a numerical solution that is faster than
that obtained by computer simulation. Hence, we believe that
the approach adopted here might be used in many future
studies, not only for the cantilever system but also for any
mechanical systems involving a scanning step, so that we might
quickly determine a reliable solution by means of a simple
mathematical formula.
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• Interaction energy between three shapes of DOX and lipid nanotube is studied.
• Lennard-Jones potential and continuous approximation are utilized to determine such energy.
• We find that a thin cylindrical DOX gives a maximum suction energy among other cases.
• The main results are mathematical expressions.
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a b s t r a c t

Lipid nanotube is considered as a nanocontainer for drug and gene delivery. It is important
to understand a basic idea of the encapsulation process. In this paper, we use the Lennard-
Jones potential function and the continuous approximation to explain the energy behaviour
of three hollow shapes of Doxorubicin (DOX) clusters that are a sphere, a cylinder, and
an ellipsoid interacting with the lipid nanotube. On assuming that the surface areas of
the three structures are equal, we can find the minimum size of the lipid nanotube that
encapsulates DOX inside by determining the suction energy. Moreover, we find that a
long cylindrical drug provides the largest suction energy among other structures studied
here due to the perfect fit between the cylindrical drug and the cylindrical tube. This
investigation is the first step to develop the design of nanocapsule for medical application.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the health problems occurring around the world is cancer, and there are a number of people who suffer and die
from this disease [1,2]. Although cancer is currently cured by chemotherapy, the normal cells of human body are damaged by
this treatment.With the emerging of technological innovation, drugdelivery applicationhas expensively beendeveloped [3],
where nanocarriers can carry drug to targeted cells. There are some advantages of nanocarriers such as to reduce the harmful
and to decrease the toxic on healthy cells. In this paper, we employ the lipid nanotube as a carrier to deliver Doxorubicin to
the targeted cells.

Doxorubicin (DOX) is used as a chemotherapy drug. Due to the fact that treating by DOX causes damage to human tissue,
many researchers attempt to transport DOX to the targeted cells without the side effect. Meng et al. [4] employmesoporous
silica nanoparticle as a drug carrier to deliver DOX and Pgp siRNA to a drug-resistant cancer cell line (KB-V1 cells).

∗ Corresponding author at: Department of Mathematics, Faculty of Science, Mahidol University, Rama VI, Bangkok 10400, Thailand.
E-mail address: duangkamon.bao@mahidol.ac.th (D. Baowan).

http://dx.doi.org/10.1016/j.physa.2016.05.027
0378-4371/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2016.05.027
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2016.05.027&domain=pdf
mailto:duangkamon.bao@mahidol.ac.th
http://dx.doi.org/10.1016/j.physa.2016.05.027


S. Putthikorn, D. Baowan / Physica A 461 (2016) 46–60 47

Lu et al. [5] use the multi-walled carbon nanotubes (MWCNTs) and iron oxide magnetic nanoparticles to transport DOX
to the cancer cells. Their results indicate that DOX encapsulated in MWCNTs can destroy cancer cells more efficient than
free DOX.Moreover, Meng et al. [6] utilize single-walled carbon nanotubes (SWNTs) as a drug vehicle to carry DOX to cancer
tissue, and they find the highly efficient DOX loading onto SWNTs.

Zhou et al. [7] describe that the lipid nanotube is an open-ended and hollow cylinder consisting of rolled-up bilayer
membrane due to the self-assembling of lipidmolecules in lipidmedia. The lipid nanotube has several template-synthesized
such as nanotubes [8], concentric tubular hybrids [9], complex helical architectures [10] as well as one-dimensional arrays
of quantum dots where its diameter and length can be controlled. Besides, Shimizu [8] finds that dimensions including
inner and outer diameters of the lipid nanotube can be controlled by the self-assembly of amphiphilic lipid monomers.
Consequently, it may be used as a nanocarrier for the encapsulation of nanomaterials and biomolecules.

Another important topic on the drug delivery system is the drug release. Leo et al. [11] utilize the dynamic dialysis
technique to evaluate the drug unload for the doxorubicin (DXR)-gelatin nanoparticle conjugates. Further, Liu et al. [12]
study the system of DOX contained inside single-walled carbon nanotube with the poly(ethylene glycol) (PEG) decoration.
They report that the complex nanocontainer is sensitive to the acidic solution and the drug can release rapidly. Dali
et al. [13] synthesis the supramolecular amphiphilic block copolymers by the formation of multiple hydrogen interactions
between adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) so that the
constructed copolymers can self-assemble into the water-stable micelles. These micelles can unload DOX at the pH of 5.0
that is faster than physiological pH. Here as a first step to study the drug delivery system, we focus on the uptake behaviour
of the lipid nanotube containing the DOX molecule.

In terms ofmathematicalmodel, Baowan et al. [14] study the toxicity of a C60 fullerene by investigating the penetration of
C60 through the lipid bilayer. They use the Lennard-Jones potential function and the continuous approximation to calculate
the total energy of the system. In addition, Baowan et al. [15] compute the interaction energy between either gold or silver
spherical nanoparticle and the lipid nanotube. Cox et al. [16,17] study the energy behaviour of the spherical and spheroidal
fullerenes interactingwith the carbon nanotube, and their results demonstrate that those nanoparticles can be encapsulated
in the tube.

Here,we employ the same concept proposed by Baowan et al. [14] to investigate the encapsulation of three hollow shapes
of the DOX which are a sphere, a cylinder and an ellipsoid entering the lipid nanotube. Further, we focus on the interaction
energy between the nanotube and those three shapes with the hollow structure, and determine the optimal radius of the
lipid nanotube encapsulating the different shapes of the DOX drug molecule. We comment that due to the complicated
chemical structure of the DOX, more sophisticated mathematical derivation is required.

In the following section, the Lennard-Jones potential function and the continuous approximation used to calculate the
interaction energy between the DOX and the lipid nanotube are described. The mathematical derivation and the interaction
energy of the DOX and the lipid nanotube are presented in Section 3. Finally, the numerical results are reported and the
findings are summarized.

2. Interaction energy and continuous approximation

The Lennard-Jones potential function is widely used to approximate the interaction energy between two non-bonded
atoms. The Lennard-Jones function is of the form

Φ = −
A
ρ6

+
B
ρ12

, (1)

where ρ represents the distance between two typical non-bonded atoms, A and B denote attractive and repulsive Lennard-
Jones constants, respectively. Since A = 4ϵσ 6 and B = 4ϵσ 12 where ϵ is the well depth and σ is the van derWaals diameter,
then (1) can be rewritten as

Φ = 4ϵ


−


σ

ρ

6

+


σ

ρ

12

.

The interaction energy between two non-bonded molecules may be determined by using the continuous approximation
where atoms at discrete locations on the molecule are assumed to be uniformly distributed over the surface or the volume
of the molecule. Therefore, the total interaction energy can be written as

E = η1η2


Σ1


Σ2


−

A
ρ6

+
B
ρ12


dΣ2dΣ1,

where η1 and η2 denote the mean surface or the mean volume densities of atoms on each molecule and ρ is the distance
between two typical surface or two typical volume elements dΣ1 and dΣ2. Moreover, we define the integral In as

In =


Σ1


Σ2

ρ−2ndΣ2dΣ1, n = 3, 6,
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Fig. 1. Schematic of lipid nanotube.

Table 1
The values of parameters used in this work.

Atom type ϵ (kJ/mol) σ (nm) η (nm−2)

Qo 5.000 0.4700 3.13 × 10−4

Qa 5.600 0.4700 3.13 × 10−4

Na 4.500 0.4700 3.13 × 10−4

C1 2.300 0.4700 7.81 × 10−4

then the total molecular interaction energy can be rewritten as

E = η1η2(−AI3 + BI6). (2)

Here, we focus on the radius of the lipid nanotube giving themaximum suction energy. The suction energy proposed by Cox
et al. [18] is the total interaction energy on the DOX molecule entering the nanotube. The suction energy is defined by

W =


∞

−∞

F(Z)dZ = −


∞

−∞

∂E
∂Z

dZ = E(−∞)− E(∞), (3)

where E is given by (2).
The loading capacity of drugs or other nanoparticles in vehicle has been investigated using variety of intermolecular

interactions, which are reviewed in Ref. [19]. In this study, the interaction energy between DOX and lipid nanotube is
dominated by the van der Waals energy because the carrier is not decorated with the special chemical groups that may
impact on the interaction energy of the system. We can ignore the electrostatic interaction due to the zero point charge
on the DOX in vacuum environment [20]. Further, the van der Waals interaction plays an important role comparing to the
electrostatic energy as described in Ref. [21].

The Dipalmitoylphosphatidylcholine (DPPC) lipid is employed as a lipid membrane and its coarse grain structure
proposed by Martini et al. [22] is utilized in this work. The lipid nanotube is composed of the head group, the intermediate
layer and the tail group. In terms of the head group, there are choline (Qo) and phosphate (Qa) groups. A glycerol group (Na)
is an intermediate layer and the carbon chain (C1) is represented as a tail group. A schematic model of the lipid nanotube is
illustrated in Fig. 1, where the head group thickness and tail group thickness are taken to be 0.4 nm and 1.6 nm, respectively.
Furthermore, Table 1 shows the value of the well depth ϵ and the van der Waals diameter σ for Qo, Qa, Na and C1, which
are taken fromMartini et al. [22]. The attractive (A) and the repulsive (B) constants can be calculated from the proportional
of atoms on the drug molecule and that of atoms on each layer of the lipid nanotube. Hence, an empirical mixing rule is
presented to evaluate the constants A and B for the interaction between DOX and each layer of the tube. The constants used
in this work can be found in Sumatpipat et al. [23] and restated in Table 2.

In this study, we utilize DOX, of which a chemical formula is C27H29NO11, as a drugmolecule entering the lipid nanotube.
The mean atomic surface of this DOX is 0.3047 nm−2 [23].

3. Mathematical derivations

Here, we investigate the interaction energy between the three hollow shapes of DOX and the lipid nanotube. In terms of
the lipid nanotube, it is assumed to be six layers which are consisted of two head groups, two intermediate layers and two
tail groups. The head group and the tail group are considered as a cylinder with thickness l while the intermediate layer is
modelled as a cylindrical surface. Consequently, the total interaction energy for each shape of the drug comprises:
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Table 2
Attractive and repulsive constants for DOX interacting with three layers of lipid
nanotube taken from Ref. [23].

Type of layer A (kJ nm6 mol−1) B (10−5 kJ nm6 mol−1)

Head (H) 0.01778 6.90489
Intermediate (I) 0.01639 6.36178
Tail (T) 0.01172 4.54817

1. Interaction energies between the drug molecule and the two head groups using cylindrical volume integral.
2. Interaction energies between the drug molecule and the two intermediate layers using cylindrical surface integral.
3. Interaction energies between the drug molecule and the two tail groups using cylindrical volume integral.

In the following subsection, we examine the energy behaviour for a spherical drug molecule. Analytical calculations for a
cylindrical shape and an ellipsoidal shape of DOX are given in Sections 3.2 and 3.3, respectively.

3.1. Spherical drug molecule

In the case of a spherical drug molecule, we determine the interaction energy arising from the surface of the drug. In
order to obtain the interaction energy between a spherical molecule and the nanotube, we start by considering the energy
of a single atom interacting with the surface of a spherical molecule. The interaction energy between a single atom and a
spherical surface is defined by

E1
= ηs


s
Φ(ρ)ds,

where ηs is the mean surface density of the sphere. In the spherical coordinate, it may deduce

E1
= ηs

 π

−π

 π

0
Φ(ρ)a2 sinφdφdθ,

where a denotes a radius of a spherical molecule and δ is the distance between a point and a centre of the sphere as shown
in Fig. 2. Now, we determine

I1n =

 π

−π

 π

0

a2 sinφ
ρ2n

dφdθ, n = 3, 6.

The coordinates of a point are given by (0, 0, 0) while the coordinates of the surface of the sphere are represented by
(a cos θ sinφ, a sin θ sinφ, a cosφ + δ). Thus, the distance between a surface of a spherical molecule and a point is

ρ2
= (a cos θ sinφ)2 + (a sin θ sinφ)2 + (a cosφ + δ)2 = a2 + δ2 + 2aδ cosφ.

Here, the integral I1n becomes

I1n =

 π

−π

 π

0

a2 sinφ
(a2 + δ2 + 2aδ cosφ)n

dφdθ

= 2π
 π

0

a2 sinφ
(a2 + δ2 + 2aδ cosφ)n

dφ.

On letting u = a2 + δ2 + 2aδ cosφ, we may deduce

I1n =
aπ
δ

 (δ+a)2

(δ−a)2

1
un

du

=
aπ

δ(n − 1)


1

(δ − a)2(n−1)
−

1
(δ + a)2(n−1)


.

After substituting n = 3 and n = 6, we obtain the integral I1n expressed in terms of Jm

I13 [Jm] = 4πa2(J3 + 2a2J4), (4)

I16 [Jm] =
4πa2

5
(5J6 + 80a2J7 + 336a4J8 + 512a6J9 + 256a8J10), (5)

where

Jm =
1

(δ2 − a2)m
, (6)

and m represents a positive integer of the power of the polynomials shown in (4) and (5).
Next, we determine the interaction energy between a spherical surface of the drugmolecule and the tube where another

surface or another volume integral for a cylindrical nanotube is evaluated.
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Fig. 2. Spherical surface interacting with single atom.

Fig. 3. Spherical molecule entering the lipid nanotube.

3.1.1. Surface integral of a cylindrical tube
In the Cartesian coordinate system, the centre of a sphere is assumed to be located at (0, 0, Z) and the typical point on

a cylindrical surface of radius b is given by (b cos θ, b sin θ, z) then the distance δ2 = b2 + (z − Z)2. A schematic model for
this interaction is illustrated in Fig. 3. Thereby, we need to calculate

J sm = η∗

s

 π

−π

 L1

0

b
[b2 + (z − Z)2 − a2]m

dzdθ

= 2η∗

s bπ
 L1

0

1
[b2 + (z − Z)2 − a2]m

dz,

where η∗
s is the mean surface density of the lipid nanotube and L1 denotes the length of the tube. We let z − Z =

√
b2 − a2 tan x, then we may deduce

J sm = 2η∗

s bπ
 tan−1


L1−Z

√
b2−a2


− tan−1


Z√

b2−a2


√
b2 − a2 sec2 x

[b2 + (b2 − a2) tan2 x − a2]m
dx

=
2η∗

s bπ
(b2 − a2)m−1/2

 tan−1


L1−Z
√

b2−a2


− tan−1


Z√

b2−a2

 cos2(m−1) xdx. (7)

From Gradshteyn and Ryzhik [24] on page 153, we have
cos2(m−1) xdx =

1
22(m−1)


2(m − 1)
(m − 1)


x +

m−2
k=0


2(m − 1)

k


sin[(2m − 2k − 2)x]

(m − k − 1)


. (8)

On substituting (8) into (7) for any givenm, the analytical expansion for J sm can be determined.
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3.1.2. Volume integral of a cylindrical tube with thickness l
For this case, the integral Jm is of the form

Jvm = η∗

v

 π

−π

 b+l

b

 L1

0

r
[r2 + (z − Z)2 − a2]m

dzdrdθ

= 2η∗

vπ

 b+l

b

 L1

0

r
[r2 + (z − Z)2 − a2]m

dzdr,

where η∗
v denotes the mean volume density of the lipid nanotube and l represents the thickness of the tube. On letting

u = r2 + (z − Z)2 − a2, the integral Jvm becomes

Jvm =
η∗
vπ

(1 − m)

 L1

0


1

[(b + l)2 + (z − Z)2 − a2]m−1
−

1
[b2 + (z − Z)2 − a2]m−1


dz.

Next, we substitute z − Z =

(b + l)2 − a2 tan x to the first term and z − Z =

√
b2 − a2 tan x to the second term, hence,

the integral Jvm is

Jvm =
η∗
vπ

(1 − m)


1

[(b + l)2 − a2]m−3/2

 tan−1


L1−Z

√
(b+l)2−a2



− tan−1


Z√

(b+l)2−a2

 cos2(m−2) xdx

−
1

(b2 − a2)m−3/2

 tan−1


L1−Z
√

b2−a2


− tan−1


Z√

b2−a2

 cos2(m−2) xdx

,

which can be analytically calculated using (8).
Finally, we need to consider the suction energy defined by (3), and on taking a limit of the interaction energy from

Z = −∞ to Z = ∞, the suction energy is obtained.

3.2. Cylindrical drug molecule

We are interested in both the cylindrical surface area and the two circular ends of the cylindrical drug molecule. Here,
the total length of the cylindrical drug molecule is denoted by 2L2, the radius of the drug is assumed to be a, and there are
four configurations of the cylindrical shape studied here.

3.2.1. Cylindrical surface area of drug molecule
The centre of the drug molecule is assumed to be located at (0, 0, Z). In the Cartesian coordinates, atoms on a cylindrical

surface of the drug and a lipid nanotube of radius b are given by (a cos θ1, a sin θ1, z1) and (b cos θ2, b sin θ2, z2), respectively.
Now, the distance ρ between the two surface elements is given by

ρ2
= (b cos θ2 − a cos θ1)2 + (b sin θ2 − a sin θ1)2 + (z2 − z1)2

= (b − a)2 + (z2 − z1)2 + 4ab sin2

θ2 − θ1

2


.

The schematic model for this system is shown in Fig. 4. Using cylindrical surface integral, the interaction energy between a
cylindrical surface of the drug and that of the tube is given by

E2s
1 = abηsη∗

s


S1


S2
Φ(ρ)dS2dS1,

where again ηs is the mean surface density of the drug and η∗
s represents the mean surface density of the tube. Next, we

define

I2n =

 π

−π

 π

−π

 L1

0

 Z+L2

Z−L2

dz1dz2dθ1dθ2
(b − a)2 + (z2 − z1)2 + 4ab sin2


θ2−θ1

2

n . (9)

To evaluate the above integral I2n , we let ω2
= (b − a)2 + 4ab sin2


θ2−θ1

2


and define

I2∗n =

 L1

0

 Z+L2

Z−L2

dz1dz2
[ω2 + (z2 − z1)2]n

.
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Fig. 4. (a) Cylindrical molecule entering the lipid nanotube and (b) four possible structures of cylindrical drug molecule.

On setting z2 − z1 = ω tanψ , we acquire

I2∗n =

 Z+L2

Z−L2

 tan−1

L1−z1
ω


− tan−1


z1
ω

 ω sec2 ψ
(ω2 + ω2 tan2 ψ)n

dψdz1 =
1

ω2n−1

 Z+L2

Z−L2

 tan−1

L1−z1
ω


− tan−1


z1
ω

 cos2(n−1) ψdψdz1,

which may be analytically determined by using (8). For n = 3, we have

I2∗3 =
1
ω5

 Z+L2

Z−L2


3
8
tan−1


L1 − z1
ω


+

3
8
tan−1

 z1
ω


+

3ω(L1 − z1)
8[ω2 + (L1 − z1)2]

+
3ωz1

8(ω2 + z21)
+

ω3(L1 − z1)
4[ω2 + (L1 − z1)2]2

+
ω3z1

4(ω2 + z21)2


dz1.

On substituting t1 =
L1−z1
ω

and t2 =
z1
ω
, and changing the integration variable, we may deduce

I2∗3 =
1
ω4


3(L1 + L2 − Z)

8ω
tan−1


L1 + L2 − Z

ω


−

ω2

8[ω2 + (L1 + L2 − Z)2]

−
3(L1 − L2 − Z)

8ω
tan−1


L1 − L2 − Z

ω


+

ω2

8[ω2 + (L1 − L2 − Z)2]
+

3(Z + L2)
8ω

tan−1

Z + L2
ω


−

ω2

8[ω2 + (Z + L2)2]
−

3(Z − L2)
8ω

tan−1

Z − L2
ω


+

ω2

8[ω2 + (Z − L2)2]


.

In the case of I2∗6 , we utilize the same technique as described for I2∗3 to obtain

I2∗6 =
1
ω10


63(L1 + L2 − Z)

256ω
tan−1


L1 + L2 − Z

ω


−

21ω2

256[ω2 + (L1 + L2 − Z)2]
−

21ω4

640[ω2 + (L1 + L2 − Z)2]2

−
3ω6

160[ω2 + (L1 + L2 − Z)2]3
−

ω8

80[ω2 + (L1 + L2 − Z)2]4
−

63(L1 − L2 − Z)
256ω

tan−1

L1 − L2 − Z

ω


+

21ω2

256[ω2 + (L1 − L2 − Z)2]
+

21ω4

640[ω2 + (L1 − L2 − Z)2]2
+

3ω6

160[ω2 + (L1 − L2 − Z)2]3

+
ω8

80[ω2 + (L1 − L2 − Z)2]4
+

63(Z + L2)
256ω

tan−1

Z + L2
ω


−

21ω2

256[ω2 + (Z + L2)2]

−
21ω4

640[ω2 + (Z + L2)2]2

−
3ω6

160[ω2 + (Z + L2)2]3
−

ω8

80[ω2 + (Z + L2)2]4
−

63(Z − L2)
256ω

tan−1

Z − L2
ω


+

21ω2

256[ω2 + (Z − L2)2]

+
21ω4

640[ω2 + (Z − L2)2]2
+

3ω6

160[ω2 + (Z − L2)2]3
+

ω8

80[ω2 + (Z − L2)2]4


.
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Finally, there are other two integrals for I23 and I26 that must be determined which are

Cm =

 π

−π

 π

−π

dθ1dθ2
ωm(ω2 + G2

i )
n
,

Dm =

 π

−π

 π

−π

1
ωm

tan−1

Gi

ω


dθ1dθ2, i = 1, 2, 3, 4,

wherem and n denote the positive integers,ω2
= (b−a)2+4ab sin2


θ2−θ1

2


and G1 = Z+L2, G2 = Z−L2, G3 = L1+L2−Z ,

and G4 = L1 − L2 − Z . On letting

C∗

m =

 π

−π

dθ2
µ+ ν sin2


θ2−θ1

2

m/2 
µ+ ν sin2


θ2−θ1

2


+ G2

i

n ,
where µ = (b − a)2 and ν = 4ab, we can show that C∗

m is independent of θ1 which can be demonstrated as

dC∗
m

dθ1
=

 π

−π

−
∂

∂θ2

 1
µ+ ν sin2


θ2−θ1

2

m/2 
µ+ ν sin2


θ2−θ1

2


+ G2

i

n
 dθ2 = 0.

Hence, θ1 may be given as a constant so we deduce

Cm = 8π
 π

2

0

dx
(ω∗)m[(ω∗)2 + G2

i ]
n
.

Similarly, Dm is obtained as

Dm = 8π
 π

2

0

1
(ω∗)m

tan−1


Gi

ω∗


dx,

where (ω∗)2 = (b − a)2 + 4ab sin2 x. Therefore, once Cm and Dm are substituted back to I23 and I26 defined by (9), we obtain
the interaction energy between the surface of the cylindrical drug and the lipid nanotube that is given by

E2s
1 = abηsη∗

s (−AI23 + BI26 ).

Next, we consider the interaction energy for a cylindrical surface of the drugmolecule interactingwith the lipid nanotube
of thickness l that can be given by

E2v
1 = aηsη∗

v


V


S
rΦ(ρ)dSdV ,

where η∗
v denotes the mean volume density of the tube and the distance ρ becomes

ρ2
= (r − a)2 + (z2 − z1)2 + 4ar sin2


θ2 − θ1

2


,

where r ∈ [b, b + l]. Now, we need to determine

I3n =

 π

−π

 π

−π

 b+l

b

 L1

0

 Z+L2

Z−L2

rdz1dz2drdθ1dθ2
(r − a)2 + (z2 − z1)2 + 4ar sin2


θ2−θ1

2

n .
Similar with the determination described for I2n , we finally obtain

I33 = 8π
 π

2

0

 b+l

b

r
λ4


3(L1 + L2 − Z)

8λ
tan−1


L1 + L2 − Z

λ


−

λ2

8[λ2 + (L1 + L2 − Z)2]

−
3(L1 − L2 − Z)

8λ
tan−1


L1 − L2 − Z

λ


+

λ2

8[λ2 + (L1 − L2 − Z)2]
+

3(Z + L2)
8λ

tan−1

Z + L2
λ


−

λ2

8[λ2 + (Z + L2)2]
−

3(Z − L2)
8λ

tan−1

Z − L2
λ


+

λ2

8[λ2 + (Z − L2)2]


drdx,
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and

I36 = 8π
 π

2

0

 b+l

b

r
λ10


63(L1 + L2 − Z)

256λ
tan−1


L1 + L2 − Z

λ


−

21λ2

256[λ2 + (L1 + L2 − Z)2]
−

21λ4

640[λ2 + (L1 + L2 − Z)2]2

−
3λ6

160[λ2 + (L1 + L2 − Z)2]3
−

λ8

80[λ2 + (L1 + L2 − Z)2]4
−

63(L1 − L2 − Z)
256λ

tan−1

L1 − L2 − Z

λ


+

21λ2

256[λ2 + (L1 − L2 − Z)2]
+

21λ4

640[λ2 + (L1 − L2 − Z)2]2
+

3λ6

160[λ2 + (L1 − L2 − Z)2]3

+
λ8

80[λ2 + (L1 − L2 − Z)2]4
+

63(Z + L2)
256λ

tan−1

Z + L2
λ


−

21λ2

256[λ2 + (Z + L2)2]
−

21λ4

640[λ2 + (Z + L2)2]2

−
3λ6

160[λ2 + (Z + L2)2]3
−

λ8

80[λ2 + (Z + L2)2]4
−

63(Z − L2)
256λ

tan−1

Z − L2
λ


+

21λ2

256[λ2 + (Z − L2)2]

+
21λ4

640[λ2 + (Z − L2)2]2
+

3λ6

160[λ2 + (Z − L2)2]3
+

λ8

80[λ2 + (Z − L2)2]4


drdx.

There are two integrations that need to be determined which are

Km = 8π
 π

2

0

 b+l

b

r
λm(λ2 + G2

i )
n
drdx,

Lm = 8π
 π

2

0

 b+l

b

r
λm

tan−1

Gi

λ


drdx, i = 1, 2, 3, 4,

where λ2 = (r − a)2 + 4ar sin2 x, m and n are the positive integers and again G1 = Z + L2, G2 = Z − L2, G3 = L1 + L2 − Z ,
and G4 = L1 − L2 − Z . We determine these integrals numerically. Thus, the interaction energy between the surface of the
cylindrical drug molecule and the tube of thickness l can be given by

E2v
1 = aηsη∗

v(−AI33 + BI36 ).

3.2.2. Circular ends for cylindrical drug molecule
Here, the coordinates of atoms on the circular ends are defined by (r1 cos θ1, r1 sin θ1, Z ± L2) where r1 ∈ [0, a] and the

coordinates of the tube are given by (b cos θ2, b sin θ2, z). Accordingly, we have
ρ2s
1 = (b cos θ2 − r1 cos θ1)2 + (b sin θ2 − r1 sin θ1)2 + [z − (Z + L2)]2

= (b − r1)2 + [z − (Z + L2)]2 + 4r1b sin2

θ2 − θ1

2


,

ρ2s
2 = (b cos θ2 − r1 cos θ1)2 + (b sin θ2 − r1 sin θ1)2 + [z − (Z − L2)]2

= (b − r1)2 + [z − (Z − L2)]2 + 4r1b sin2

θ2 − θ1

2


.

Consequently, the interaction energy between the circular areas at the two ends and the cylindrical surface of the tube is

E2s
2 = bηsη∗

s

 π

−π

 π

−π

 a

0

 L1

0
r1Φ(ρ2s

i )dzdr1dθ1dθ2, i = 1, 2.

We define I4n for this interaction energy that is defined by

I4n =

 π

−π

 π

−π

 a

0

 L1

0

r1
(ρ2s

i )
n
dzdr1dθ1dθ2,

where i = 1, 2 and n = 3, 6. With the similar techniques presented in Section 3.2.1, we finally deduce

I43 = 8π
 π

2

0

 a

0

r1
γ 5
1


3
8
tan−1


L1 − Gi

γ1


+

3γ1(L1 − Gi)

8[γ 2
1 + (L1 − Gi)2]

+
γ 3
1 (L1 − Gi)

4[γ 2
1 + (L1 − Gi)2]2

+
3
8
tan−1


Gi

γ1


+

3γ1Gi

8(γ 2
1 + G2

i )
+

γ 3
1 Gi

4(γ 2
1 + G2

i )
2


dr1dx,
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and

I46 = 8π
 π

2

0

 a

0
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γ 11
1


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tan−1

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
+
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+
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+
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1 + (L1 − Gi)2]3

+
9γ 7

1 (L1 − Gi)

80[γ 2
1 + (L1 − Gi)2]4

+
γ 9
1 (L1 − Gi)

10[γ 2
1 + (L1 − Gi)2]5

+
63
256

tan−1

Gi

γ1


+

63γ1Gi

256(γ 2
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i )
+

21γ 3
1 Gi

128(γ 2
1 + G2

i )
2

+
21γ 5

1 Gi

160(γ 2
1 + G2

i )
3

+
9γ 7

1 Gi

80(γ 2
1 + G2

i )
4

+
γ 9
1 Gi

10(γ 2
1 + G2

i )
5


dr1dx,

where γ 2
1 = (b− r1)2 + 4r1b sin2 x, G1 = Z + L2 and G2 = Z − L2. Now, we need to consider the two integrations for I4n that

are given by

Fm = 8π
 π

2

0

 a

0

r1
γ m
1

tan−1

Gi

γ1


dr1dx,

Hm = 8π
 π

2

0

 a

0

r1Gi

γ m
1 (γ

2
1 + G2

i )
n
dr1dx, i = 1, 2, 3, 4.

These two integrals are determined numerically.
Next, we examine the interaction energy for the circular areas at two ends and a cylindrical tube with thickness lwhich

is given by

E2v
2 = ηsη

∗

v

 π

−π

 π

−π

 a

0

 b+l

b

 L1

0
rr1Φ(ρ2v

i )dzdrdr1dθ1dθ2, i = 1, 2,

where now

ρ2v
1 = (r − r1)2 + [z − (Z + L2)]2 + 4rr1 sin2


θ2 − θ1

2


,

ρ2v
2 = (r − r1)2 + [z − (Z − L2)]2 + 4rr1 sin2


θ2 − θ1

2


.

We also define I5n for the interaction energy between the two circular ends and a tube with thickness l that is

I5n =

 π

−π

 π

−π

 a

0

 b+l

b

 L1

0

rr1
(ρ2v

i )
n
dzdrdr1dθ1dθ2,

where again i = 1, 2 and n = 3, 6. Similarly, we employ the techniques detailed in Section 3.2.1, and obtain

I53 = 8π
 π

2
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 a

0
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
+
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+
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+
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
drdr1dx,

and

I56 = 8π
 π

2
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
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where γ 2
2 = (r − r1)2 + 4rr1 sin2 x, G1 = Z + L2 and G2 = Z − L2. There are two types for I5n which are

Pm = 8π
 π
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We note that these two integrations are also determined numerically using algebraic package MAPLE. Subsequently, the
interaction energies for the circular areas at the two ends interacting with the cylindrical surface and with the cylinder of
thickness l are obtained, respectively, as

E2s
2 = bηsη∗

s (−AI43 + BI46 ),

E2v
2 = ηsη

∗

v(−AI53 + BI56 ).

The total interaction energy arising from the surface of the tube is E2s
= E2s

1 + E2s
2 and that arising from the volume of the

tube is E2v
= E2v

1 + E2v
2 . Finally, the suction energy is examined using (3).

3.3. Ellipsoidal drug molecule

For the case of an ellipsoidal drug molecule interacting with the cylindrical surface, we define the coordinates of atoms
on an ellipsoid surface centred at (0, 0, Z) as (c1 sinφ cos θ1, c1 sinφ sin θ1, c2 cosφ + Z). Similarly, the coordinates for the
nanotube are (b cos θ2, b sin θ2, z). Therefore, we have

ρ2
= (b cos θ2 − c1 sinφ cos θ1)2 + (b sin θ2 − c1 sinφ sin θ1)2 + [z − (c2 cosφ + Z)]2

= (b − c1 sinφ)2 + [z − (c2 cosφ + Z)]2 + 4bc1 sinφ sin2

θ2 − θ1

2


.

A schematic model for this interaction is illustrated in Fig. 5. Hence, the interaction energy for a surface of an ellipsoidal
drug molecule interacting with a surface of the tube becomes

E3s
= bηsη∗

s


S1


S2
Φ(ρ)dS2dS1.

Now, we need to determine

I6n =

 π

−π

 π

−π

 π

0

 L1

0

c1 sinφ

(c1 cosφ)2 + (c2 sinφ)2

ρn
dzdφdθ1dθ2,

where c1 and c2 are a minor axis and amajor axis of an ellipsoid, respectively. On determining these integrals, we utilize the
techniques described in Section 3.2, thus, we have

I63 = 8c1π
 π

2
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+
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+
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and
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where α2
= (b − c1 sinφ)2 + 4bc1 sinφ sin2 x.
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Fig. 5. Ellipsoidal drug molecule entering lipid nanotube.

Moreover, the interaction energy between a surface of an ellipsoidal drug molecule and the tube with thickness l is
defined by

E3v
= ηsη

∗

v


V


S
Φ(ρ)dSdV .

In this case, we wish to evaluate

I7n =

 b+l

b
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−π

 π

−π
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0
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ρn
dzdφdθ1dθ2dr.

With the similar techniques presented in Section 3.2, we also have

I73 = 8c1π
 π

2
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and
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where β2
= (r − c1 sinφ)2 + 4c1r sinφ sin2 x. Due to the complicated formulae, the algebraic package MAPLE is utilized to

determine the total interaction energies which are given by
E3s

= bηsη∗

s (−AI63 + BI66 ),

E3v
= ηsη

∗

v(−AI73 + BI76 ),
and also the suction energy defined by (3) can be obtained by taking a limit of the energy from Z = −∞ to Z = ∞.



58 S. Putthikorn, D. Baowan / Physica A 461 (2016) 46–60

Table 3
Values of b0 , bmax , and Smax for all cases studied here.

Shapes b0 (nm) bmax (nm) Smax (kJ/mol)

a = 12 nm
Sphere (r = a) 12.2487 12.3069 1.2896 × 10−2

Cylinder (r = a/2) 6.2765 6.3343 6.2849 × 10−2

Cylinder (r = a) 12.2768 12.3357 3.6046 × 10−2

Cylinder (r = 0.7321a) 9.0615 9.1143 5.2086 × 10−2

Cylinder (r = 0.4494a) 5.6701 5.7289 6.4818 × 10−2

Ellipsoid (c1 = 0.9441a and c2 = 1.114a) 11.5776 11.6354 1.3930 × 10−2

a = 30 nm
Sphere (r = a) 30.2484 30.3069 5.0334 × 10−2

Cylinder (r = a/2) 15.2775 15.3343 3.7935 × 10−1

Cylinder (r = a) 30.2786 30.3357 2.1708 × 10−1

Cylinder (r = 0.7321a) 22.2384 22.2986 3.1651 × 10−1

Cylinder (r = 0.4494a) 13.7615 13.8208 3.9033 × 10−1

Ellipsoid (c1 = 0.9441a and c2 = 1.114a) 28.5713 28.6306 5.4431 × 10−2

4. Numerical results and discussion

We assume the length of the lipid nanotube to be L1 = 200 nm, and fix the surface areas of the three shapes of DOX
cluster to be equal. The surface areas for the three shapes of the drug molecule can be evaluated using the formulae

1. Spherical area = 4πa2,
2. Cylindrical area (including two circular ends) = 2πa(2L2)+ 2πa2,

3. Ellipsoidal area = 2πc21


1 +

c2 sin−1
√

1−c21/c
2
2

c1
√

1−c21/c
2
2


.

We consider a sphere of radius awhile a cylindrical structure is determined in four cases; that are, radii a/2, a, 0.7321a,
and 0.4494a corresponding to the length L2 of 7a/4, a/2, a, and 2a, respectively. Moreover, a minor and a major axes of
an ellipsoidal drug molecule are taken to be 0.9441a and 1.114a, respectively, giving rise to the equal surface area of the
sphere and representing an ellipsoidal structure. We employ the algebraic package MAPLE to numerically calculate the
suction energy. Here, we assume two values for a which are 12 and 30 nm to represent a small and a large cluster of DOX.
As illustrated in Fig. 6 for the case of a = 12 nm, we can predict the radius of the lipid nanotube that can encapsulate each
shape of the DOX, and the numerical values are presented in Table 3. We note that for a = 12 nm, the surface areas of all
shapes are 1809 nm2. The minimum value of the inner most radius of the lipid nanotube that accepts the drug is denoted
by b0, and that gives the maximum suction energy is denoted by bmax. We comment that the volume integral for the solid
structures of DOXs can be determined by including another integral dimension. For the case of spherical solid DOX with
a = 12 nm, we obtain b0 = 12.1902 nm and bmax = 12.2504 nm which are comparable with the hollow spherical shape.

From themaximum suction energy shown in Table 3, we observe that the best structure of the drugmolecule is a cylinder
with L2 = 2a. It offers the suction energy of 6.4818×10−2 kJ/mol that is greater than other cases in our study. This is because
the best fit configuration where the surfaces of the lipid nanotube and the drug molecule interact perfectly.

Further, we determine the suction behaviour for a = 30 nm that is larger than the tail length l, and it is depicted in Fig. 7.
In this case, all the surface areas of DOX drug molecule are fixed to be 11,309 nm2. The numerical results are also reported
in Table 3, and we find that a cylinder of the length L2 = 2a is also an appropriate shape with the maximum suction energy
3.9033× 10−1 kJ/mol. The long cylinder maximizes the suction energy, therefore, it may be a good candidate among other
possible structures of the drugmolecules studied here to interact with the lipid nanotube.We comment that both small and
large drug molecules present a similar suction behaviour. On defining δ = bmax − r which is the interspacing between the
surface of the drug and the inner most radius of the tube giving rise to the maximum suction energy, for the three shapes
and for both sizes, we have δ ≈ 0.3 nm.

Furthermore, an appropriate shape of the drug is also related to the size of the lipid nanotube. For example, when the
lipid nanotube is small, we can employ a thin cylinder since it requires a small tube radius. In addition, if there is a large size
of the lipid nanotube, then either a cylindrical structure of radius a or a spherical molecule may be used to obtain a more
stable system, see Figs. 6 and 7.

5. Summary

The work presented in this paper focuses on the interaction energy between the three hollow shapes of DOX cluster
and the lipid nanotube. Those three shapes consist of a sphere, a cylinder, and an ellipsoid. We derive the mathematical
expression, and use the Lennard-Jones potential function and the continuous approximation to examine the energy
behaviour for each system of DOX entering the lipid nanotube. Further, the suction energy is determinedwhere we find that
a thin cylindrical DOX molecule gives a maximum suction energy among other cases. Finally, we can predict the minimum
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Fig. 6. Suction energy for DOX entering lipid nanotube where a = 12 nm.

Fig. 7. Suction energy for DOX entering lipid nanotube where a = 30 nm.

size of the tube that accepts the drug inside, consider an appropriate shape of the drugmolecule that can be encapsulated by
the lipid nanotube, and determine the optimal size of the tube for each shape of DOX.We also obtain that the value of b0 − r
is approximate 0.2 nm, and bmax − r is around 0.3 nm for all cases. All in all, our study is a basic knowledge to understand
the encapsulation behaviour that may play an important role in application of drug and gene delivery.
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1. Introduction

Conceivably, linear forms of crystalline diamond constitute a
new one-dimensional nanomaterial. They are believed to assemble
within carbon nanotubes which serve as a template and by taking
diamondoids as building blocks. Template synthesis of linear chain
nanodiamonds have been considered recently using diamantine
polymers [1]. The smallest building block of diamond is adaman-
tane, which is the smallest unit with a diamond lattice. We exam-
ine here the interaction energy of adamantane in canbon
nanotubes assuming the Lennard-Jones potential and the continu-
ous approximation. Analytical expressions are derived using a
highly simplified model, and the derived structural parameters
are close to density functional calculations [2].

Adamantane (C10H16) is the smallest diamondoid with sp3

hybridization and hydrogen on its surface [3–5]. It consists of four
connected cyclohexane rings, in armchair configuration, and in
three dimensions arranges to form a cage, with bond angles the
same as those found in diamond. While hydrocarbons with only
r-bonds are relatively chemically inert, adamantane is highly reac-
tive. The four 3-coordinated carbon atoms are particularly reactive
while the remaining six 2-coordinated carbon atoms are less
reactive. Adamantanes and its derivatives are also used in medical
applications, for example; to treat flu [6], avian influenza virus
[7,8] and to act as an antiviral agent against HIV [9,10] or as a
lubricant stable at elevated temperatures.

In this study, we aim to determine the interaction energy
between two adamantane moleclues and that of an adamantane
molecule interacting with a carbon nanotube taking only dipole-
dipole interaction into account. The equilibrium position of two
adamantanes and the encapsulation behaviour of an adamantane
molecule are determined. The continuum approach utilised here
might also be useful when applied to future one-dimensional
nanomaterials or relevant biomedical systems.

In terms of energy calculations, McIntosh et al. [11] use density
functional theory and propose that the encapsulation of adaman-
tane molecules inside carbon nanotubes occurs spontaneously.
Moreover, they suggest that the (7,7) carbon nanotube (r ¼ 4:75 Å)
has the ideal radius to contain a single adamantane molecule with
optimal suction energy, and the peapod structure [12–14] of the
adamantane molecules is found when the radius of the tube is
increased. Linear assemblies of adamantanes inside double-wall
carbon nanotubes have been studied by Zhang et al. [2] who sug-
gest that the equilibrium distance between two adamantane mole-
clues is approximately 6.2 Å. Shi et al. [15] report a method for the
bulk production of long linear carbon chains in double-walled car-
bon nanotubes. Further, they find that the equilibrium spacing in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2017.12.064&domain=pdf
https://doi.org/10.1016/j.cplett.2017.12.064
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the carbon chain that is encapsulated in a carbon nanotube is
3.378 Å.

In this paper, we employ applied mathematical modelling to
derive analytical expressions for the energy of the system involving
adamantane molecules and a carbon nanotube. The Lennard-Jones
potential for the non-bonded atoms is assumed to approximate
the van der Waals interactions, since it has been confirmed that
the dipole-dipole interactions play an important role in systems
of adamantanes and carbon nanotubes [2,11,15]. Furthermore, we
assume that the continuous approximation, where atoms on the
surface of the molecule are assumed to be uniformly distributed
over the molecule, can be used to evaluate the total energy of the
system. The continuous or continuum approach has been success-
fully used to determine the energy behaviuor of several nano-
scaled systems and, in particular, it has been adopted to determine
C60 fullerene patterns inside carbon nanotubes, referred as nano-
peapods [14] or nobel gases encapsulated in carbon nanotubes [16].

The Lennard-Jones potential function and the continuous
approach are presented in the following section and mathematical
derivations for spherical and cylindrical shapes are given in Sec-
tion 3. The results of our findings are presented in Section 4 and
finally, a brief summary is given in Section 5.

2. Lennard-Jones potential and continuous approximation

We employ the Lennard-Jones potential and continuous
approximation to determine the molecular interatomic energy
between two molecules. We assume the 6–12 Lennard-Jones
potential given by

U ¼ � A
q6 þ

B
q12 ;

where q denotes the distance between two atoms, A ¼ 4�r6 and
B ¼ 4�r12 are respectively the attractive and repulsive constants,
and where � is the energy well depth and r is the inter-atomic dis-
tance when the potential is zero. The minimum of the potential well

is located at distance q0 ¼ ð2B=AÞ1=6 ¼ 21=6r. Using a continuum
approach, atoms at discrete locations on the molecule are assumed
to be averaged over its surface, which means that summations over
all atoms involved is replaced by surface integrals. The molecular
interatomic energy is then obtained by calculating integrals over
the surface of each molecule, given by

E ¼ g1g2

Z
S1

Z
S2

� A
q6 þ

B
q12

� �
dS2dS1; ð1Þ

where g1 and g2 represent the mean surface density of atoms on
each molecule. Further, by writing

In ¼
Z
S1

Z
S2

q�2ndS2dS1; ðn ¼ 3;6Þ; ð2Þ

Eq. (1) can then be written as

E ¼ g1g2ð�AI3 þ BI6Þ: ð3Þ
To determine the radius of the tube which will maximise the

suction energy, we utilize the suction energy concept as proposed
in [17]. The suction energyW is defined as the total energy or work
gained by the van der Waals interactions acquired by a particular
molecule to enter the tube,

W ¼
Z 1

�1
FðZÞdZ ¼

Z 1

�1
� @E
@Z

dZ; ð4Þ

where E is as given in (3) and Z is a distance between two mole-
cules. Note that due to the symmetry of the systems studied here
we only need to consider axial forces.
The numerical values of the Lennard-Jones parameters used for
nonbonded adamantane sp3 hybridization and carbon nanotube
sp2 hybridiztion are taken from the work of Rappé et al. [18] where
� ¼ 0:105 kcal/mol and r ¼ 3:851 Å for both hybridizations. The
mean atomic surface density of the carbon nanotube is taken to
be 0.3812 Å�2 [19], and the adamantane molecule (C10H16) is mod-
elled as a sphere. For any given radius a of an adamantane, the
mean atomic surface density of carbon atoms on the surface of
an adamantane is given by 10=ð4pa2Þ Å�2.

We note that since the energy well depth of hydrogen is
approximately six times less that of carbon, only the carbon atoms
are considered and the effect of the hydrogen is ignored. We note
that there are two categories of carbon atoms on the adamantane
molecule connecting to hydrogen atoms; one category are those
which are bonded to only one hydrogen atom, while the other cat-
egory are those bonded to two hydrogen atoms. Further, the loca-
tions of hydrogen are not well defined, since the spherical
adamantane molecule has a large curvature. Moreover, hydrogen
has already been incorporated in the Lennard-Jones parameter val-
ues for sp3 hybridization.

3. Interaction energy

Here we investigate the energy behaviour of an adamantane
molecule inside a single-walled carbon nanotube. Firstly, we deter-
mine the equilibrium distance between two adamantane mole-
cules assuming they form a linear array. Secondly, the
encapsulation behaviour of an adamantane molecule in a carbon
nanotube is studied to determine the tube radius that can encapsu-
late the molecule.

As mentioned in Section 2, the Lennard-Jones potential is used
to determine the interaction energy between two non-bonded
atoms. The atoms are uniformly distributed on the surface of the
molecule or nanotube and hence an integral expression is utilised
using uniform atom densities to determine the total interaction
energy between two molecules.

We start by considering a spherical adamantane molecule, con-
sisting of carbon atoms, interacting with a single atom, as
described in the following subsection. Subsequently, we assume
that the single atom is located either on another spherical adaman-
dane molecule or on the surface of a cylindrical carbon nanotube,
and the interaction between two spheres and the interaction
between a sphere and a cylinder are determined as described in
Sections 3.2 and 3.3, respectively.

Noting that the encapsulation of nano-scaled materials is also
dependent on the temperature, other environmental effects and
impurities or adsorbed species. The mathematical modelling pre-
sented here is an idealised approach which provides reasonably
accurate estimates for stable configurations of pristine systems.

3.1. Interaction between sphere and single atom

Here, we determine the interaction energy between a spherical
surface and a single atom, a configuration shown in Fig. 1. In the
Cartesian coordinate system with origin at the centre of the sphere,
the single atom is assumed to be located at ð0;0; dÞ, so that the
integral In defined in (2) becomes

In ¼
Z p

�p

Z p

0

a2 sin/

ða2 þ d2 � 2ad cos/Þn
d/dh;

where q2 ¼ a2 þ d2 � 2ad cos/ and d is the distance from the single
atom to the centre of the sphere. By making the substitution
t ¼ a2 þ d2 � 2ad cos/ and using the fact that In is independent of
h, we may deduce



Fig. 1. Geometry for interaction between sphere and atom.
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In ¼ ap
d

Z ðdþaÞ2

ðd�aÞ2
1
tn
dt ¼ ap

dðn� 1Þ
1

ðdþ aÞ2ðn�1Þ �
1

ðd� aÞ2ðn�1Þ

" #
; ð5Þ

and in particular,

I3 ¼ ap
2d

1

ðdþ aÞ4
� 1

ðd� aÞ4
" #

¼ 4pa2 1

ðd2 � a2Þ3
þ 2a2

ðd2 � a2Þ4
" #

; ð6Þ

I6 ¼ ap
5d

1

ðdþ aÞ10
� 1

ðd� aÞ10
" #

¼ 4pa2

5
5

ðd2 � a2Þ6
þ 80a2

ðd2 � a2Þ7
þ 336a4

ðd2 � a2Þ8
þ 512a6

ðd2 � a2Þ9
þ 256a8

ðd2 � a2Þ10
" #

:

ð7Þ

Thus, the total interaction energy between a spherical molecule and
a single atom is given by

Esp ¼ g1ap
d

�A
2

1

ðdþ aÞ4
� 1

ðd� aÞ4
" #

þ B
5

1

ðdþ aÞ10
� 1

ðd� aÞ10
" #( )

;

ð8Þ
where g1 is the mean atomic surface density of the adamantane
molecule.

3.2. Interaction between two spherical molecules

Here, we aim to determine the interaction energy between two
spherical adamantane molecules by evaluating two spherical sur-
face integrals. The schematic of this problem is presented in
Fig. 2. The distance from the centre of one sphere centred at the
origin to an arbitrary point of the other sphere centred at the
ð0;0; ZÞ is given by d2 ¼ a2

2 þ Z2 � 2a2Z cos/where Z is the distance
between their centres. From the integral In defined by (5), the other
surface evaluation becomes

I0n ¼ a1p
ðn� 1Þ

Z p

�p

Z p

0

a22 sin/
d

1

ðd� a1Þ2ðn�1Þ �
1

ðdþ a1Þ2ðn�1Þ

" #
d/dh;
Fig. 2. Geometry for interaction between two spheres.
where a2 denotes the radius of the sphere S2. As there is no depen-
dence on h in the integrand, this can be done immediately and we
make the substitution of variable of d for /, which yields

I0n ¼ 2p2a1a2
Zðn� 1Þ

Z Zþa2

Z�a2

1

ðd� a1Þ2ðn�1Þ �
1

ðdþ a1Þ2ðn�1Þ

" #
dd

¼ 2p2a1a2
Zðn� 1Þð2n� 3Þ

1

ðZ � a1 � a2Þ2n�3 �
1

ðZ þ a1 � a2Þ2n�3

"

� 1

ðZ � a1 þ a2Þ2n�3 þ
1

ðZ þ a1 þ a2Þ2n�3

#
: ð9Þ

Thus, the total van der Waals interaction energy between two
spheres becomes

Ess ¼ g1g2ð�AI03 þ BI06Þ; ð10Þ
where I0n is defined by (9), and g1 and g2 are the mean surface den-
sities for the two spheres.

3.3. Interaction between sphere and cylinder

In order to determine the molecular interaction energy between
a spherical adamantane molecule and a cylindrical carbon nan-
otube, we need to perform another surface integral of (6) and (7)
which are given respectively by

I003 ¼ 4pa2
Z
S

1

ðd2 � a2Þ3
þ 2a2

ðd2 � a2Þ4
" #

dS; ð11Þ

I006 ¼ 4pa2

5

Z
S

5

ðd2 � a2Þ6
þ 80a2

ðd2 � a2Þ7
þ 336a4

ðd2 � a2Þ8
"

þ 512a6

ðd2 � a2Þ9
þ 256a8

ðd2 � a2Þ10
#
dS: ð12Þ

For convenience, we define the integrals Jn given by

Jn ¼
Z
S

1

ðd2 � a2Þn
dS; ð13Þ

where n is a positive integer corresponding to the power of polyno-
mials appearing in the above equations for I003 and I006.

Assuming that all the carbon atoms are distributed over its sur-
face, a surface integral technique can be employed to determine
the interaction energy between a spherical adamantane molecule
and a cylindrical tube, and the schematic representation of this
system is shown in Fig. 3.

In Cartesian coordinates, the tube is assumed to have length L
with radius b, and its open end is assumed to be located at the ori-
gin. Further, the sphere is assumed to be centred at ðe;0; ZÞwhere Z
is the distance between the tube open end to the centre of the
sphere, and e is the off-set distance from the tube axis. Positive
and negative values of Z indicate that the sphere is inside and out-
side the tube, respectively. The distance from the centre of the
sphere to a typical point of the tube is given by

d2 ¼ ðb cos h� eÞ2 þ ðb sin hÞ2 þ ðz� ZÞ2;
¼ ðb� eÞ2 þ 4eb sin2ðh=2Þ þ ðz� ZÞ2;

so that the cylindrical surface integral of Jn defined by (13) becomes

Jn ¼
Z p

�p

Z L

0

b

½ðb� eÞ2 þ 4eb sin2ðh=2Þ þ ðz� ZÞ2 � a2�n
dzdh:

We let k2 ¼ ðb� eÞ2 þ 4eb sin2ðh=2Þ � a2, and we introduce
z� Z ¼ k tanw to obtain



Fig. 3. Geometry for interaction between sphere and cylindrical tube.
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Jn ¼ b
Z p

�p

1
k2n�1

Z tan�1 ½ðL�ZÞ=k�

� tan�1ðZ=kÞ
cos2n�2 wdwdh:

From Gradshteyn and Ryzhik (formula 2.513.3) [20], the above inte-
gral with w can be determined for any given n, namely

Z
cos2n xdx ¼ 1

22n

2n
n

� �
xþ

Xn�1

k¼0

2n
k

� �
sin½ð2n� 2kÞx�

n� k

" #
;

and we have

Jn ¼ b

22ðn�1Þ �
Z p

�p

1
k2n�1

2n� 2
n� 1

� �
w

�

þ
Xn�2

k¼0

2n� 2
k

� �
sin½ð2n� 2� 2kÞw�

n� 1� k

#�����
tan�1 ½ðL�ZÞ=k

w¼� tan�1ðZ=kÞ
dh: ð14Þ

For any given integer n, the above integration is numerically evalu-
ated using the mathematical package MAPLE. We then substitute Jn
as defined by (14) into I003 and I006 defined by (11) and (12), respec-
tively, and finally the interaction energy between a spherical
adamantane molecule and a cylindrical carbon nanotube is given by

Esc ¼ g1g3ð�AI003 þ BI006Þ; ð15Þ

where g3 represents the mean atomic surface density of the carbon
nanotube which is 0.3812 Å�2.
Fig. 4. (a) Potential profile for interaction energy between two spherical adamantane
adamantane molecules at minimum energy location Z0.
4. Numerical results

We consider first the interaction energy between two adaman-
tane molecules. Fig. 4 traces the energy as a function of inter
molecular distance by evaluating the analytic expression for the
interaction energy as outlined in Section 3.2 and assuming the
molecular radius to be of 1.773 Å. This is the average geometric
distance of the ten atoms from the center of an adamantane mole-
cule. As a result the closest distance Z or spacing between surfaces
n of the two adamantane molecules can be determined noting that
Z0 ¼ nþ 2a. A schematic of the two molecules appears as an insert
in Fig. 4(a). We find that the equilibrium distance between the two
spheres Z0 is 6.863 Å and the spacing n is 3.317 Å. This finding is
within 10% of Zhang et al. [2] who report an equilibrium distance
of 6.2 Å when using ab inito calculations using density functional
theory. The binding energy is 0.076 eV whereas that obtained by
Zhang et al. [2] is 0.16 eV. The 52% difference is due to the fact that
we take only dipole induced forces into account.

To obtain the same spacing between the adamantine molecules
(Z0 = 6.2 Å) with our analytic approach one would need to reduce
the molecular radius by 20% to 1.427 Å. Since the exact radius a
of the sphere which represents adamantane molecule, is not
known, we can calculate Z0 or n as a function of radius. Fig. 4(b)
shows the relation between n and a, and we find that the value
of n decreases to 3.285 Å when the radius a becomes larger. A lar-
ger sphere reduces the effect of curvature, increases the interaction
and reduces the intermolecular distance.
molecules of radius a ¼ 1:773 Å and (b) closest distance n between two spherical
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We incorporate the effect of hydrogen in our model by taking
the upper limit of the carbon-hydrogen bond length, which tends
to increase the equilibrium distance by approximately 2.200 Å.

The suction energy, the gain of energy through encapsulation
per molecule and as a function of tube radius, has been traced in
Fig. 5(a) after evaluating the expression of the suction energy
derived in Section 3.3 and Eq. (4) for a molecular radius a =
1.773 Å. Here we suppose that the adamantane molecule is located
on the tube axis so that e ¼ 0, and we find that the minimum
radius of the tube b0 that can draw the molecule inside is 4.847
Å which is close to the diameter of a (7,7) tube. Further we see that
the maximum suction energy will occur when the nanotube has a
radius of about bmax = 5.426 Å corresponding to an armchair (8,8)
tube which has a radius of 5.424 Å.

As mentioned by McIntosh et al. [11] and Zhang et al. [2], the
smallest carbon nanotube according to DFT calculations that can
encapsulate a molecule of adamantane is a (7,7) tube having a
radius of 4.747 Å which is only 2% off when taking only van der
Waals interaction into account and using the continuum approach.

The adamantane radius which fits with the DFT calculations of
the minimum tube radius (4.747 Å) is 6.3% smaller (1.668 Å). We
observe that the tube radii b0 and bmax are both linearly dependent
Fig. 5. (a) Suction energy for an adamantane of radius a ¼ 1:773 Å encapsulated in carbon
carbon nanotube b0 that can encapsulate adamantane molecule and radius of tube bmax

Fig. 6. (a) Interaction energy corresponding to offset location e for adamantane molecule
and carbon nanotube radius b when a ¼ 1:773 Å.
on the adamantane radius a as shown in Fig. 5(b). Fig. 5(b) also
shows the difference between the tube and molecular radius
denoted as cb0 and cbmax , are constant when changing the molecular
radius. That means that the adamantane will enter the carbon nan-
otube when the radius of the tube is approximately cb0 = 3.050 Å
larger than that of the adamantane, and we have b0 ¼ aþ cb0 . Sim-
ilarly the maximum suction energy will occur when the radius of
the tube is around cbmax ¼ 3:610 Å in excess of that of the adaman-
tane molecule.

When increasing the nanotube radius, the molecules prefer to
be close to one of the walls and not be arranged along the tube axis.
Fig. 6(a) traces the interaction of an admantane molecule inside the
nanotube as a function of the offset position e for three different
nanotube radii between 5 Å and 9 Å. Fig. 6(b) shows the offset posi-
tion as a function of tube radius and it is linearly dependent on car-
bon nanotube radius and that the distance between molecule and
tube wall ce is constant, ce ¼ 3:446 Å. That means the offset posi-
tion is given by the tube and molecular radii, and the distance
between molecule and tube wall e � b� a� ce Å.

We note that the equilibrium distance between the spherical
adamantane and the cylindrical carbon nanotube (ce = 3.446 Å) is
very close to the inter-layer distance in graphite (3.414 Å) as given
nanotube of radius b and (b) relation of adamantane radius a, the smallest radius of
that gives maximum suction energy.

inside a tube of radii b ¼ 5; 7; 9 Å and (b) linearly dependence of offset distance e
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by Girifalco et al. [21], or Shi et al. [15] who propose the value of
3.378 Å for the distance between a carbon chain and the carbon
nanotube wall.

We have ignored here the effect of hydrogen due to its small
mass and small Lennard-Jones potential parameters. However, if
the hydrogen atoms were included we might expect slightly larger
values of b0 and bmax for the radii of carbon nanotubes that would
encapsulate an adamantane molecule.

5. Summary

The continuous or continuum approach is employed to deter-
mine the interaction energies between two adamantane molecules
and that of an adamantane molecule inside a carbon nanotube
using the Lennard-Jones potential function. Adamantane is mod-
elled as a perfect sphere with sp3 hybridization structure such as
is found in diamond, while the carbon nanotube is assumed to be
a cylinder with the sp2 hybridization structure such as is found
in graphene.

Calculation of the interaction energy using a radius of 1.773 Å
for the adamantane molecule, we find that the equilibrium dis-
tance between the two adamantane molecules is 6.863 Å as mea-
sured from their centers which is within 10% of ab inito DFT
calculations. However, the predicted binding energy is 52% differ-
ent from the DFT calculations since only the van der Waals energy
is taken into account here.

It is also found that the smallest radius of carbon nanotube that
can encapsulate the adamantane is 4.847 Å which is within 2% of
ab inito DFT calculations. The offset position e from the tube axis
is also examined, and a linear relation for e � b� a� ce is obtained
where the distance between molecule and tube wall is ce ¼ 3:446
Å. The equilibrium distance between two molecules, suction
energy for encapsulation and offset position depend linearly on
the radius of the adamantane. We note that the structural informa-
tion predicts the stable configurations close to those obtained from
the DFT when taking only dipole-dipole interaction into account.

The major benefit of the mathematical modelling approach pre-
sented here is the use of significantly less computational resources
and simplification reducing the trial-and-error process for design-
ing experiments which allows to consider more complex systems.
These findings constitute a first step toward the design of novel
hybrid materials of carbon nanostructures.
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