

บทคัดย่อ

รหัสโครงการ: RSA5880008

ชื่อโครงการ: การศึกษาการเข้าสู่เซลล์ของอาร์เอ็นเอสายคุ้มและการแพร่กระจายแบบ systemic ของ RNAi ในกุ้งขาว

ชื่อนักวิจัย: ดร.พงส์สิรี อัตสาสัตร์

สถาบันชีววิทยาศาสตร์มหิดล มหาวิทยาลัยมหิดล

อีเมล์: pongsopee.att@mahidol.ac.th และ attasart_aung@hotmail.com

ระยะเวลาโครงการ: 3 ปี

เทคนิค RNAi ได้มีการนำมาใช้ในงานวิจัยด้านกุ้งอย่างแพร่หลายเพื่อการศึกษาการทำงานของยีนและการพัฒนาให้ได้รับการป้องกันกุ้งจากไวรัส แต่ยังขาดความรู้ความเข้าใจในกระบวนการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์กุ้ง ซึ่งจาก การศึกษา ก่อนหน้านี้พบว่าในสัตว์ไม่มีกระดูกสันหลังจะมีกระบวนการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์อยู่ 2 วิธีคือ กระบวนการที่อาศัยการส่งผ่าน SID1 ซึ่งเป็นโปรตีนบนผิวเซลล์ และกระบวนการที่อาศัย endocytosis ในกระบวนการนี้ต้องการศึกษาว่าการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์กุ้งและการแพร่กระจาย RNAi ในกุ้งอาศัยกระบวนการใดบ้าง ในการศึกษาความเกี่ยวข้องของ SID1 ในกระบวนการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์กุ้ง เริ่มจากการให้อาร์เอ็นเอสายคุ้มแบบเป็นลำดับ โดยกุ้งจะได้รับอาร์เอ็นเอสายคุ้มเพื่อกระตุ้นการแสดงออกของยีน SID1 ก่อนแล้วจึงทำการให้อาร์เอ็นเอสายคุ้มตัวที่สอง (ที่มีความจำเพาะกับยีน STAT หรือยีน CHC ของกุ้ง) เพื่อไปปลดการแสดงออกของยีนเป้าหมาย จากการส่องภายใต้กล้องคอนฟอยล์พบร่วงเซลล์เม็ดเลือดของกุ้งที่มีการกระตุ้นการแสดงออกของ SID1 ก่อนจะมีจุดแสดงฟลูออเรสเซนท์ (Cy3) ของอาร์เอ็นเอสายคุ้มตัวที่สองมากกว่าเซลล์ของกุ้งที่ไม่ได้มีการกระตุ้น SID1 และยังพบว่ากุ้งที่มีการกระตุ้นให้มี SID1 มากขึ้น มีการลดระดับของยีนเป้าหมายที่จำเพาะกับอาร์เอ็นเอสายคุ้มตัวที่สอง (ในเนื้อเยื่อเหงือก) มากกว่ากุ้งควบคุม ซึ่งถ้าทำการให้อาร์เอ็นเอสายคุ้มเข้าสู่เซลล์เหงือก กุ้งจะแสดงให้เห็นว่า SID1 มีส่วนเกี่ยวข้องกับการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์เหงือก กุ้งและการแพร่กระจาย RNAi ในตัวกุ้ง nok จากนี้ยังทำการทดสอบความเกี่ยวข้องของกระบวนการ endocytosis ในกระบวนการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์ตับและเหงือก กุ้งโดยการฉีดด้วย โดยจะทำการยับยั้งกระบวนการนี้ก่อนด้วยยา yb-ยัง (chlorpromazine และ baflomycin-A1) และวิจัยตามด้วยการฉีดอาร์เอ็นเอสายคุ้มตัวที่สอง พบว่าการลดระดับของยีนเป้าหมายในเนื้อเยื่อตับจะลดลงเมื่อมีการยับยั้ง endocytosis ก่อน แต่จะไม่พบการเปลี่ยนแปลงนี้ในเหงือก แสดงว่ากระบวนการ endocytosis มีส่วนเกี่ยวข้องในการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์ตับ แต่ไม่เกี่ยวข้องในเซลล์เหงือก nok จากนี้ยังได้ทำการทดสอบว่ากระบวนการ endocytosis มีส่วนเกี่ยวข้องในการนำอาร์เอ็นเอสายคุ้มเข้าสู่กุ้งโดยการฉีดด้วยหรือไม่ โดยการใช้ตัวยับยั้งก่อนการให้กุ้งกินอาหารที่มีอาร์เอ็นเอสายคุ้ม ผลการทดลองพบว่ามีการลดระดับการแสดงออกของยีนเป้าหมายเฉพาะในกุ้ง (ทั้งในเนื้อเยื่อตับและเหงือก) ที่ไม่ได้รับการยับยั้งกระบวนการ endocytosis มาก่อน แต่กุ้งที่ได้รับตัวยับยั้งไม่มีการเปลี่ยนแปลงยีนเป้าหมาย แสดงให้เห็นว่ากุ้งใช้กระบวนการ endocytosis ในกระบวนการนำอาร์เอ็นเอสายคุ้มเข้าสู่เซลล์ตับที่ได้รับอาร์เอ็นเอสายคุ้มโดยการกิน

Abstract

Project Code: RSA5880008

Project Title: Characterization of dsRNA cellular uptake and systemic RNAi in shrimp (*Litopenaeus vannamei*)

Investigator: Dr. Pongsopee Attasart

Institute of Molecular Biosciences, Mahidol University

E-mail Address: pongsopee.att@mahidol.ac.th, attasart_aung@hotmail.com

Project Period: 3 years

RNA interference (RNAi) technology has been widely applied to shrimp research for functional genomics, as well as for investigation of its potential anti-viral applications. However, the mechanism of extracellular dsRNA uptake into shrimp cells has not been determined. In invertebrates, uptake of an extracellular dsRNA can occur through two different mechanisms; the transmembrane channel-mediated mechanism, requires a multispan transmembrane protein called systemic RNA interference defective 1 (SID1), and endocytosis-mediated mechanism. This project, we aim to investigate the molecular mechanisms underlying the uptake of dsRNA and systemic RNAi in shrimp (*Litopenaeus vannamei*). To elucidate the role of *LvSID-1* in dsRNA uptake, a strategy of sequential introduction of dsRNAs was employed. Shrimp were initially injected with a long dsRNA to induce *LvSID-1* mRNA expression before administration of the second dsRNA (dsRNA-STAT or dsRNA-CHC). Under a confocal microscope, the Cy3 signal of second dsRNA in the *LvSID-1* induced hemocytes was significantly higher than the signal in naïve hemocytes. Significantly, improved suppression of STAT and CHC was found in gills of the *LvSID-1* induced shrimp. Similar result was observed when shrimp was pre-injected with dsRNA-GIH to induce expression of the *LvSID1* and fed with diet containing dsRNA-STAT. These results indicate that the *LvSID1* participates in the uptake of the injected dsRNA and involves in systemic RNAi in shrimp. The possible involvement of endocytosis in the delivery of injected dsRNA into shrimp hepatopancreatic and gill cells was also evaluated. Clathrin-mediated endocytosis was inhibited through the injection of shrimp with two pharmacological endocytosis inhibitors (chlorpromazine and baflomycin-A1) before injection of dsRNA directed against STAT (dsSTAT). Inhibition of clathrin-mediated endocytosis showed a reduction of STAT suppression in the shrimp hepatopancreas. In contrast, neither chlorpromazine nor baflomycin-A1 effectively blocked dsSTAT inhibition of STAT in gill tissue, suggesting that clathrin-mediated endocytosis participates in dsRNA uptake into hepatopancreas but not gills. Moreover, mechanism for uptake of dsRNA from environment (food) was also evaluated. Chlorpromazine was used to block the clathrin-mediated endocytosis before continuous feeding the formulated food containing dsRNA specific to shrimp Rab7 gene for 6 days. Level of Rab7 mRNA suppression in gill and hepatopancreas tissues were monitored every day (12 hours after feeding of each day) by RT-PCR. Suppression of Rab7 mRNA was detected in gill and hepatopancreas tissues at day6 only in dsRNA-Rab7 fed shrimp without chlorpromazine treatment. In contrast, the Rab7 mRNA level was not changed in dsRNA-Rab7 fed shrimp treated with chlorpromazine. The results indicate that the clathrin-mediated endocytosis participates in dsRNA uptake in shrimp by feeding.

Keywords: RNAi, dsRNA, uptake, systemic and shrimp