

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาการทำหน้าที่ของโปรตีน Nck ที่สัมพันธ์กับการ ทำงานของเอนไซม์ Lck ในการกระตุ้น T lymphocytes

โดย รศ.ดร.พญ.สุธาทิพย์ พงษ์เจริญและคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาการทำหน้าที่ของโปรตีน Nck ที่สัมพันธ์กับการทำงานของ เอนไซม์ Lck ในการกระตุ้น T lymphocytes

> ผู้วิจัย รศ.คร.พญ.สุธาทิพย์ พงษ์เจริญ สังกัคคณะแพทยศาสตร์ มหาวิทยาลัยนเรศวร

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัยและมหาวิทยาลัยนเรศวร (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว และมหาวิทยาลัยนเรศวรไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

กิตติกรรมประกาศ	4
Abstract	5
บทคัดย่อ	6
Executive summary เนื้อหางานวิจัย	7
Outputs ที่ได้จากโครงการ	13
ภาคผนวก	14

กิตติกรรมประกาศ

โครงการวิจัยนี้ได้รับทุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และทุนบางส่วน จากมหาวิทยาลัยนเรศวรให้การดำเนินการวิจัยมีประสิทธิภาพ และผู้วิจัยได้รับการสนับสนุนเป็น อย่างดียิ่งจากคณะแพทยศาสตร์ ในด้านห้องปฏิบัติการวิจัยและเวลาในการทำวิจัยตลอดมา ผู้วิจัย ขอขอบพระคุณ ศาสตราจารย์เกียรติคุณ.ดร.สพ.ญ.วันเพ็ญ ชัยคำภา ศาสตรจารย์ ดร.นายแพทย์ อภิวัฒน์ มุทิรางกูร ศาสตราจารย์เกียรติคุณ ดร.ประพนธ์ วิไลรัตน์ และเมธีวิจัยอาวุโสสาขา วิทยาศาสตร์การแพทย์อีกหลายท่านที่ผู้วิจัยไม่ได้เอ่ยนามในที่นี้ ที่ได้กรุณาให้คำแนะนำและ กำลังใจในการทำวิจัยที่มีคุณค่ายิ่งตลอดมา นอกจากนี้ ขอขอบคุณผู้บริหารคณะกรรมการและ เจ้าหน้าที่ของ สกว. ทุกท่านที่เอื้อเฟื้อ สนับสนุน และอำนวยความสะดวกในการทำงานด้านวิชาการ และการประชุมสัมมนาต่าง ๆ เป็นอย่างดียิ่ง

Abstract

T lymphocyte or T cell specifically recognizes antigenic peptide associated with major histocompatibility complex (MHC) molecules, by using T cell receptor-CD3 complex (TCR-CD3). This present work investigated the function of an adaptor protein Nck in relation to the function of an enzyme kinase Lck, which is directly involved in the TCR/CD3 proximal activation upon binding with peptide-MHC molecule. This was emphasized on the binding of the two proteins in terms of the conformation of Lck enzyme as well as the phosphorylated site on the Nck (non-catalytic region of tyrosine kinase) molecules. In this present work, the site-directed mutagenesis of Lck gene was performed to obtaine various conformations of Lck proteins expressed in JCam 1.6, a model of T cells that lacks Lck enzyme. In addition, mutant Nck at tyrosine 105 was constructed to study the phosphorylation of this residue associated with the function of Lck kinase. Work on Lck mutants expressed in J Cam 1.6 T cells would shed some light on understanding about Nck-Lck interaction in activated T cells. Lck was found to be important in CD3-Nck binding. I have reported in Journal of Immunology about the role of Nck in T cell activation with the novel findings that the Nck has a specific pattern of binding to CD3 epsilon chain which has led to a review issue in Immunology about the importance of signaling molecules including Nck adaptor protein in T cell activation. The knowledge of TCR proximal activation also led to another manuscript under revision for Frontiers in Immunology. The results obtained will shed light on molecular interaction of Nck-CD3 epsilon and Lck enzyme in T cell signaling and function of T cells.

บทคัดย่อ

T cell สามารถจดจำและจับ antigen peptide ที่อยู่กับโมเลกุล major histocompatibility complex (MHC) ได้อย่างจำเพาะโดยการใช้ T cell receptor-CD3 (TCR-CD3) complex โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการทำหน้าที่ของโปรตีน Nck ที่เกี่ยวข้องกับการทำงานของ เอนไซม์ Lck ซึ่งเกี่ยวข้องโดยตรงในการกระตุ้น T cell ที่จับกับ peptide-MHC โดยเน้นที่การจับกัน ของโปรตีนและเอนไซม์ดังกล่าวว่ามีบทบาทหรือไม่อย่างไรในการกระตุ้น T cell วิจัยคือทำการทคลองว่า conformation ของเอนไซม์ Lck เกี่ยวข้องอย่างไรกับการจับกับโปรตีน Nck เมื่อมีการกระตุ้น T lymphocyte ผ่านทาง T cell receptor ทำ site directed mutagenesis ของขึ้น Lck เพื่อให้ได้ยืนที่มีลักษณะของโปรตีนแบบต่าง ๆ ที่ต้องการแล้วจึงนำยืนเหล่านี้ transfect เข้าไปใน T cell ในที่นี้ใช้เซลล์ Jurkat ชนิด JCam 1.6 ซึ่งเป็นเซลล์ที่ขาดเอนไซม์ Lck จากนั้นจะนำเซลล์ที่ ได้มาทดลองกระตุ้นผ่าน T cell receptor เพื่อศึกษาผลของการกระตุ้นที่นำไปสู่การจับกันของ โมเลกุลที่เกี่ยวข้องโดยตรงในกระบวนการส่งสัญญาณเข้าสู่นิวเคลียสไปตามลำดับ ขณะเดียวกัน ได้ทุดลองเกี่ยวกับการที่โมเลกล Nck จะถกเติมหม่ฟอสเฟตได้โดย Lck ขณะนี้ได้เซลล์ที่มีโมเลกล Nck ที่มีการกลายพันธุ์ของตำแหน่งไทโรซีนที่ 105 ซึ่งกาดว่าจะเกี่ยวข้องกับ phosphorylation โดย เอนไซม์ Lck เพื่อเป็นพื้นฐานความเข้าใจและในการทคลองเชิงลึกต่อไปเกี่ยวกับบทบาทของ โมเลกูลนี้ในการทำหน้าที่ของ T cell ผลการทดลองพบว่าเอนไซม์ Lck มีความเกี่ยวข้องกับการจับ กันของ Nck และ CD3 epsilon ซึ่งพบว่ามีแบบแผนการจับกันที่มีลักษณะเฉพาะ ทำให้ผู้วิจัยได้ เผยแพร่ผลการวิจัยในวารสาร Journal of Immunology ในปีที่ผ่านมา และงานสังเคราะห์ความรู้ใน วารสาร Immunology ในปีนี้ ขณะเคียวกันความรัจากการทำปฏิกิริยาในตอนต้นของ TCR ทำให้ได้ มีงานวิจัยในวารสาร Frontiers Immunology ซึ่งขณะนี้อยู่ในระหว่างปรับเพิ่มเติมผลการทดลอง บางส่วนด้วย

Executive Summary

เนื้อหางานวิจัย

The T cell receptor (TCR) is associated with CD3 complex molecules (TCR/CD3). A T cell generally recognizes an antigenic peptide presented by an MHC molecule (pMHC molecule) on the surface of an antigen presenting cell (APC). Apropriate binding affinity of TCR and pMHC induces an enzyme called Lck (lymphocyte-specific protein tyrosine kinase) to phosphorylate the ITAMs (immune receptor tyrosine-based activation motifs) at the cytoplasmic tali of the TCR-CD3 complex. Then another enzyme known as ZAP-70 kinase is recruited to bind the phosphorylated ITAMs leading to phosphorylation and recruitment of other enzymes and adaptor protein molecules. These include, for instance, PLCγ (phospholipase Cγ), LAT (linker for activation of T cells), SLP-76 (SH2-domain-containing leukocyte protein of 76 kDa), and Nck (non-catalytic region of tyrosine kinase) [Samelson, 2002] to form a signaling complex that is important for activation of many signaling pathways and T cell activation [Horejsi *et al.*, 2004; Koretzky *et al.*, 2006]. Activation of T cells lead to T cell proliferation and differentiation as well as production of various cytokines and growth factors [Choudhuri *et al.*, 2005; Smith-Garvin *et al.*, 2009].

Nck is an adaptor protein composed of three SH3 domains at the amino-terminal and one SH2 domain at the carboxy-terminal [Buday et~al., 2002; Lettau et~al., 2009]. In humans, there are 2 Nck isoforms that are Nck1 or Nck α and Nck2 or Nck β (or another name is Grb4). The main function of Nck is to interact with other proteins to form a signaling complex. Studies in several cell types have shown that Nck can interact with more than 60 types of protein [Buday et~al., 2002; Li et~al., 2001]. Nck binds to phosphorylated protein via its SH2 domain and binds to proline-rich sequence via its SH3 domain. Thus, Nck functions to link a signal from the upstream phosphotyrosine (pTyr) via SH2 domain to the downstream effector via SH3 domain [Lettau et~al., 2009].

Lck is a kinase enzyme that plays a key role in T cell activation [Broman et al., 2004; Parsons and Parsons, 2004]. Upon TCR stimulation by binding with pMHC, the Lck molecules phosphorylate ITAMs of the TCR-CD3 complex to initiate intracellular signaling. Lck molecule is made up of lipids that undergo lipid modification including myristolylation and palmitoylation at the N-terminal. This structure is used to bind cell membranes. The N-terminal of Lck also contains 2 cysteine molecules for binding with CD4 or CD8 molecule. Lck has one SH3 and one SH2 domain, which can bind other proteins. Its SH3 domain binds to proline-rich sequence while its SH2 domain binds to phosphorylated protein. In addition, it is noted that the amino acids located between lipid modification and the SH3 domain are also proline-rich sequence that could bind other protein that carries SH3 domain. The C-terminal of Lck molecule is a catalytic tyrosine kinase domain [Turner et al., 1990; Kim et al., 2003].

Activation of Lck is induced by binding of TCR to pMHC. It is thought that activation of Lck molecules are associated with binding of CD4 or CD8 co-receptor molecules to MHC class II or MHC class I molecules, respectively. This is because Lck molecules are found to be associated with the CD4 and CD8 molecules on the cell membranes [Rudd et al., 1998, Veillette et al., 1988]. Moreover, activation of double

positive thymocytes is involved in simultaneous stimulation of TCR and co-receptors [Wiest et al., 1996]. However, deletion of CD4 or CD8 molecules does not affect T cell development and activation [Van Laethem et al., 2007]. Recent studies have shown that there are 2 types of Lck molecules. One is membreane associated with CD4 and CD8 molecules and the other one is free in the cytoplasm. This may explain the dispensable role of CD4 and CD8 molecules in thymocyte development as some Lck molecules exist in the cytoplasm. It has also demonstrated that up to 40% of Lck molecules are in a stimulatory state even though the T cell is not activated and stimulation of TCR or co-receptors does not increase the activity of Lck [Turner JM, 1990; Nika et al., 2010]. In many studies, for stimulation of primary T cells in vitro, anti-CD3 and anti-CD28 antibodies are generally used that can stimulate Lck, ITAMs and other proteins leading to T cell activation. Thus, Lck molecules may be activated without any involvement of co-receptors CD4 and CD8 molecules. The distribution of activated Lck molecules are found to be clustered with phosphorylated TCR molecules. Therefore, stimulation of TCR is believed to recruit Lck to the TCR-CD3 complex [Rossy et al., 2013].

After TCR ligation, there is a conformational change at the CD3£ causing an exposure of the prolinerich sequence (PRS) of the cytoplasmic tail of the CD3E. Then, Nck molecules are recruited to bind the CD3E. The Nck uses its SH3.1 domain to bind the PRS of the CD3£. This is thought to be important for stimulation of other proteins essential for phosphorylation of ITAMs leading to T cell activation [Gil et al., 2002]. As aforementioned that Lck also contains the PRS that can bind the Nck, it is possible that the recruitment of Lck to the TCR may relie on Nck molecules functioning as a mediator. When TCR is activated, binding of Nck to the PRS of the CD3E may facilitate the recruitment of Lck molecules to the CD3E. Lck molecules then phosphorylate ITAMs of the TCR-CD3 complex, thus, initiating the intracellular signaling and activation of the T cell. Nevertherless, there has been no direct evidence that shows that stimulation of Lck is a direct result of TCR activation. It is also questioned that whether or not the Nck is directly involed in Lck stimulation. Preliminary studies in my lab showed that when Jurkat T cells were stimulated with anti-TCR antibody, the Lck molecules were co-precipitated with CD3 molecules. In Nck1 and Nck2 knock-down Jurkat cells, there was a decline in co-precipitation of Lck and CD3 molecules. This finding demonstrates that upon T cell activation, Lck molecules are recruited to the TCR-CD3 complex and the Nck1 and Nck2 may function as a mediator. Besides that finding, Lck was also co-precipitated with Nck1 and Nck2. From these data, this study investigated activation of the TCR involving a recruitment of cytoplasmic Lck molecules to the TCR-CD3 complex and Nck adaptor protein. This event would be very important for the initation of T cell activation.

From the work we have performed experiments and reported about the pattern of Nck binding to the CD3 epsilon which comprises the SH3 domain of Nck binding to the PRS of CD3 and the SH2 Nck binding to the partial phosphorylated CD3 in <u>Journal of Immunology</u>. We also hypothesized and synthesis the signaling molecule mechanisms in a review issue of <u>Immunology</u>. In addition with a collaboration with Prof. Wolfgang Schamel in Freiburg University, Germany, we are reporting the differential function of Nck in the so called gamma/delta T cells in killing tumor cells in vitro and this manuscript is under minor revision for <u>Frontiers in</u>

<u>Immunology</u> at the time of writing this report. Work is also carried forward the study the role of Lck-Nck interaction in proximal TCR/CD3 proximal signaling.

The methods that were used in the present work are as followed

- 1) site-directed mutatgenesis of Lck gene: In order to construct the plasmids containing genes of various Lck mutants, including Lck (Y505F), Lck (Y394F), and Lck (Y505F,K293R), the plasmids that contain wild-type Lck will be used as a template. This is kindly provided by Prof. Dr Katharina Gaus, University of New South Wales, Sydney, Australia. Gene mutation and polymerase chain reaction (PCR) will be done using QuickChangeII Site-Directed Mutatgenesis kit (Stratagene) according to the manufacturer's instructions and as previously reported by our group and others [Ngoenkam et al 2014; Bondzi et al., 2000; Derkinderen P et al., 2005; Levin SD. et al., 1993; Nakahira K et al., 2013;]. After performing the PCR, *Dpn I* is added into the PCR tube and it is mixed by pipetting up and down before it is spun down. Then the sample is incubated at 37°C for 1 hour to digest the parental plasmid. After that, the *Dpn I*-treated plasmid DNA is transformed into XL1-Blue supercompetent cells before the cells are spread on LB agar plate containing ampicillin antibiotic that is then incubated at 37°C for 16 hours. The bacterial colony that grows on the agar plate is then taken to culture for next plasmid extraction. The precise order of nucleotides is then examined by DNA sequencing.
- 2) Gene transfection: Gene transfection will be performed to transfect wild-type (WT) and mutant Lck genes into the Lck-deficient Jurkat T cells (J.CaM1). Briefly, JCaM1 cells are cultured in complete RPMI 1640 medium. The cells are counted for electroporation using Neon™ Transfection system (Invitrogen) with the plasmids added at 1 microgram/ 1 reaction. The desired plasmids are WT Lck-GFP, Lck10-GFP, Lck (Y505F), Lck (Y394F), Lck (Y505F,K273R), Lck (C20/23A), and Lck (PRS mutant). The transfection assay is performed according to the kit's instruction with the pulse voltage/pulse width/pulse number of 1600/10/3 for microporation using the Digital Bio Technology, Taiwan. The transfected cells are then cultured for another 48 hours before they are lysed in lysis buffer and protein expression is then examined using protein detection kit (Peirce) according the kit's instruction. The expression of the Lck is studied using immunoblotting with antibodies against Lck and beta-actin for loading control.
- 3) Immunoprecipitation: Immunoprecipitation of the reconstituted JCaM1 cells will be performed after the cells are stimulated with anti-TCR (C305) IgM antibody at different time points. The objective is to precipitate the proteins of interest including CD3ɛ (being bound with Nck to examine for CD3ɛ-Nck interaction) and Nck (being bound with Lck to examine for Nck-Lck interaction). The total cell lysates are prepared using lysis buffer specially prepared for immunoprecipitation as previously reported by my research group [Yiemwattana et al., 2013, Ngoenkam et al., 2014]. The immunoprecipitation is performed using protein

G-Sepharose beads together with specific antibody for the protein of interest. The precipitated products are studied using SDS-PAGE using 10% polyacrylamide gel as separating gel for futher immunoblotting.

4) Immunoblotting: Immunoblotting, or Western blotting, will be used to detect the protein of interest using specific antibody. In this work the band of protein will be analyzed by an enhanced chemiluminescence method.

Blibiography

Alarcón B, et al.: The CD3-gamma and CD3-delta subunits of the T cell antigen receptor can be expressed within distinct functional TCR/CD3 complexes. *EMBO J.* 1991;10:903-912.

Artyomov MN, et al.: CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. *Proc. Natl. Acad. Sci. U.S.A.* 2010;107:16916–16921.

Ballek O, et al.: A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts. *Immunol Lett.* 2012;142:64-74.

Barda-Saad M, et al.: Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. *Nat Immunol.* 2005;6: 80-89.

Billadeau DD, et al.: Regulation of T-cell activation by the cytoskeleton. Nat. Rev. Immunol. 2007;7:131-143.

Bladt F, et al.: The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network. *Mol Cell Biol*, 2003;23:4586–4597.

Boggon TJ et al.: Structure and regulation of Src family kinases. Oncogene. 2004; 23: 7918-7927.

Borroto A, et al.: Characterization of the region involved in CD3 pairwise interactions within the T cell receptor complex. *J Biol Chem.* 1998;273:12807-12816.

Bondzi C, et al.: Src family kinase activity is required for Kit-mediated mitogen-activated protein (MAP) kinase activation, however loss of functional retinoblastoma protein makes MAP kinase activation unnecessary for growth of small cell lung cancer cells. *Cell Growth Differ*, 2000;11:305-314.

Borroto A, et al.: Nck recruitment to the TCR required for ZAP70 activation during thymic development. *J Immunol*. 2013;190:1103-1112.

Bromann PA, et al.: The interplay between Src family kinases and receptor tyrosine kinases. *Oncogene*. 2004; 23, 7957–7968.

Buday L, et al.: The Nck family of adapter proteins: Regulators of actin cytoskeleton. *Cell. Signalling*. 2002;14, 723-731.

Choudhuri K, et al.: Immunology: how do T cells recognize antigen? Curr Biol. 2005;15:R382-385.

Derkinderen P, et al.: Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. *J Neurosci.* 2005;25:6584-6593.

Filipp D, et al.: Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. *Front Immunol.* 2012;3:155.

Frese S, et al.: The phosphotyrosine peptide binding specificity of Nck1 and Nck2 Src homology 2 domains. *J Biol Chem.* 2006;281:18236-18245.

Gil D, et al.: Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. *Cell.* 2002;109:901–912.

Horejsí V: The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev. 2003;191:148-164.

Horejsi V, et al.: Transmembrane adaptor proteins: organizers of immunoreceptor signalling. *Nat Rev Immunol*. 2004;4:603–616. *Review*.

Iwashima M, et al.: Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. *Science*. 1994;263:1136–1139.

Janeway CA, et al.. Janeway's Immunobiology. The Immune System in Health and Disease. 7th edition. New York: Garland Science. 2007.

Kim PW, et al.: A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science. 2003;301:1725–1728.

Koretzky GA, et al.: SLP76 and SLP65: complex regulation of

signalling in lymphocytes and beyond. Nat Rev Immunol. 2006;6:67-78.

Kuo CT,et al.: Transcriptional regulation of T lymphocyte development and function. *Annu Rev Immunol*. 1999;17:149-187.

Lettau M, et al.: Nck adapter proteins: functional versatility in T cells. Cell Commun Signal. 2009;7:1-13.

Li W, et al.: Nck/Dock: an adapter between cell surface receptors and the actin cytoskeleton. *Oncogene*. 2001;20:6403-6417.

Levin SD, et al.:The protein tyrosine kinase p56lck regulates thymocyte development independently of its interaction with CD4 and CD8 coreceptors. *J Exp Med.* 1993;178:245-55.

Mingueneau M, et al.: The proline-rich sequence of CD3epsilon controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. *Nat Immunol.* 2008;9:522-532.

Molnár E, et al.: Pre-clustered TCR complexes. FEBS Lett. 2010;584:4832-4837.

Nakahira K, et al.: Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS One, 2013;8:10.

Ngoenkam J, et al.: Non-overlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. *Cell Commun Signal*. 2014;12:21.

Nika K, et al.: Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. *Immunity*. 2010;32:766-777.

Otáhal P, et al.: A new type of membrane raft-like microdomains and their possible involvement in TCR signaling. *J Immunol*. 2010;184:3689-3696.

Parsons SJ et al.: Src family kinases, key regulators of signal transduction. Oncogene. 2004;23, 7906–7909.

Reicher B, et al.: Multiple pathways leading from the T-cell antigen receptor to the actin cytoskeleton network. *FEBS Lett.* 2010;584:4858-4864.

Rodgers W, et al.: Merging complexes: properties of membrane raft assembly during lymphocyte signaling. *Trends Immunol*, 2005;26:97-103.

Rossy J, et al.: Conformational states of the kinase Lck regulate clustering in early T cell signaling. *Nat Immunol*. 2013;14(1):82-89.

Rudd CE, et al.: The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. *Proc. Natl. Acad. Sci. USA*. 1988;85:5190–5194.

Samelson LE: Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. *Annu Rev Immunol*. 2002;20:371-94.

Saunders AE, et al.: Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. *Cell Signal*. 2010;22:339-348.

Shaw AS, et al.; The lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. *Cell*. 1989;59:627-636.

Smith-Garvin JE, et al.: T cell activation. Annu Rev Immunol. 2009;27:591-619.

Stefanová I, et al.: TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. *Nat Immunol*. 2003;4:248-254.

Szymczak AL, et al.: The CD3E proline-rich sequence, and its interaction with Nck, is not required for T cell development and function. *J. Immunol.* 2005;175:270–275.

Tailor P, et al.: The proline-rich sequence of CD3epsilon as an amplifier of low-avidity TCR signaling. *J Immunol*. 2008;181:243-255.

Turner JM, et al.: Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. *Cell*. 1990;60:755–765.

van Leeuwen JE, et al.: T cell antigen-receptor signal transduction. Curr Opin Immunol. 1999;11:242-248.

Van Laethem F, et al.: Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. *Immunity*. 2007;27:735-750.

Van Oers NS, et al.: Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. *J Exp Med.* 1996;**183**:1053–1062.

Veillette A, et al.: The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. *Cell*. 1988;55:301-308.

Wiest DL, et al.: TCR activation of ZAP70 is impaired in CD4+CD8+ thymocytes as a consequence of intrathymic interactions that diminish available p56lck. *Immunity*. 1996;4:495-504.

Wunderlich L, et al.: Downward J, & Buday L: Association of Nck with tyrosine-phosphorylated SLP-76 in activated T lymphocytes. *Eur J Immunol*. 1999;29:1068–1075.

Yiemwattana I, et al.: Essential role of the adaptor protein Nck1 in Jurkat T cell activation and function. *Clin Exp Immunol.* 2012;167:99-107.

Output ที่ได้จากโครงการ

- Paensuwan P, Hartl FA, Yousefi OS, Nogenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. (2016) Nck binds to the T cell antigen receptor using its SH3.1 and SH2 domains in a cooperative manner, promoting TCR functioning. The Journal of Immunology, 196:448-458. 2016 IF 4.9
- Ngoenkam J, Schamel WW, Pongcharoen S. (2018) Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology, 153:42-50. 2016 IF 3.7
- Juraske C, Wipa P, Morath A, Hidalgo JV, Hartl F, Raute K, Oberg H-H, Wesch D, Fisch P, Minguet S, Pongcharoen S, Schamel WW. under minor revision for Frontiers in Immunology 2016 IF 6.4

+

ภาคผนวก

<u>ผลงานตีพิมพ์</u>

โปรดดูหน้าถัดไป

Selected signalling proteins recruited to the T-cell receptor—CD3 complex

Jatuporn Ngoenkam, ¹ D Wolfgang W. Schamel^{2,3,4} and Sutatip Pongcharoen^{5,6,7}

¹Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand, ²Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, ³BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, ⁴Centre for Chronic Immunodeficiency (CCI), Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany, 5Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, ⁶Centre of Excellence in Petroleum, Petrochemicals and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, and ⁷Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand

doi:10.1111/imm.12809
Received 14 June 2017; revised 26 July 2017; accepted 27 July 2017.
Correspondence: Assoc. Prof. Dr. Sutatip Pongcharoen, Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Muang, Phitsanulok 65000, Thailand. Email: sutatipp@nu.ac.th
Senior author: Assoc. Prof. Dr. Sutatip Pongcharoen

Summary

The T-cell receptor (TCR)–CD3 complex, expressed on T cells, determines the outcome of a T-cell response. It consists of the TCR- $\alpha\beta$ heterodimer and the non-covalently associated signalling dimers of CD3 $\epsilon\gamma$, CD3 $\epsilon\delta$ and CD3 $\zeta\zeta$. TCR- $\alpha\beta$ binds specifically to a cognate peptide antigen bound to an MHC molecule, whereas the CD3 subunits transmit the signal into the cytosol to activate signalling events. Recruitment of proteins to specialized localizations is one mechanism to regulate activation and termination of signalling. In the last 25 years a large number of signalling molecules recruited to the TCR–CD3 complex upon antigen binding to TCR- $\alpha\beta$ have been described. Here, we review knowledge about five of those interaction partners: Lck, ZAP-70, Nck, WASP and Numb. Some of these proteins have been targeted in the development of immunomodulatory drugs aiming to treat patients with autoimmune diseases and organ transplants.

Keywords: protein—protein interaction; signal transduction; T-cell activation; T-cell receptor—CD3 complex.

Introduction

Immune responses to infectious pathogens serve to maintain body homeostasis. Among various immune cells, T cells play an important role to fulfil this critical function. A T-cell response to foreign antigen is initiated by the binding of the T-cell receptor (TCR)–CD3 complex to a

foreign peptide bound to an MHC molecule presented on an antigen-presenting cell. Information of this binding is transmitted into the cytosol to activate many signalling proteins. The final targets are transcription factors, to alter the gene expression profile, metabolic enzymes, to change metabolic activity, and cytoskeletal rearrangement. Together this leads to cell proliferation and effector

Abbreviations: CAR, chimeric antigen receptor; ERK, extracellular signal-regulated kinase; ITAMs, immunoreceptor tyrosine-based activation motifs; LAT, linker for the activation of T cells; Lck, lymphocyte-specific protein tyrosine kinase; Nck, non-catalytic region of tyrosine kinase; PRS, proline-rich sequence; SH, Src-homology; SLP-76, SH2-domain-containing leucocyte protein of 76 000 MW; TCR, T-cell receptor; TSAd, T-cell specific adaptor protein; VCA, verprolin homology domain-cofilin homology domain-acidic region; WASP, Wiskott–Aldrich syndrome protein; WAS, Wiskott–Aldrich syndrome; ZAP-70, ζ chain-associated protein kinase of 70 000 MW

molecule production and secretion, which are crucial for T-cell-mediated immune responses.⁴

The TCR-CD3 complex is a multisubunit protein complex. It is composed of an antigen-binding TCRaB heterodimer non-covalently associated with the non-variable signal transduction subunits; the CD3 heterodimers CD3 $\varepsilon \gamma$ and CD3 $\varepsilon \delta$ as well as the CD3 $\zeta \zeta$ homodimers.⁵⁻⁷ The cytoplasmic tails of CD3 ε , CD δ , and CD3 γ each contain one immunoreceptor tyrosine-based activation motif (ITAM) and that of CD3ζ contains three ITAMs, hence one TCR-CD3 complex comprises 10 ITAMs. The conserved amino acid sequence of the ITAMs is D/ExYxxLx (6-8)YxxL. Antigen binding to TCR- $\alpha\beta$ results in phosphorylation of the ITAM residues, leading to recruitment and activation of multiple downstream signalling molecules including enzymes and adaptor proteins. 1,4 As there is a myriad of signalling molecules, regulated proteinprotein interactions are one of the critical mechanisms for regulating specificity in signal transduction. Over the past decades a large number of proteins have been reported to be recruited to the TCR-CD3 complex. Here, we review recent data on five (direct or indirect) interaction partners of the TCR-CD3 complex, including the lymphocyte-specific protein tyrosine kinase (Lck), CD3ζassociated protein kinase of 70 000 MW (ZAP-70), noncatalytic region of tyrosine kinase (Nck), Wiskott-Aldrich syndrome protein (WASP), and the inhibitor of Notch-1 signalling Numb (Table 1). Other proteins associated with the TCR-CD3 complex have been discussed elsewhere and they are not covered in this review.8-13 The effects of some mutations of these proteins on TCR signalling is shown in Table 2.

T cells develop in the thymus where self-reactive T cells are deleted by a process called negative selection, which is based on a strong signal elicited by high-affinity binding to the self-peptide MHC. A lack of, or mutation in, the critical proteins involved in TCR–CD3 signalling, such as ZAP-70 and WASP, causes a reduction of the TCR–CD3 signalling strength that allows autoreactive T cells to escape from negative selection and reach peripheral tissues. These autoreactive T cells can be activated in response to self-peptide, which consequently

leads to tissue injury known as autoimmune disease. ^{15,21} Hence, chemical agents blocking specifically the T-cell activation process are promising therapeutic interventions for the treatment of T-cell-driven diseases. Here, we cover the information on some inhibitors that target the signalling proteins at the TCR–CD3 as they may have a potential to be used for the treatment of autoimmune disorders and in organ transplantations.

Lck

Members of the Src family of protein tyrosine kinases modulate signal transduction downstream of transmembrane receptors in most, if not all, cell types. In T cells, Lck is a member of the Src family of 56 000 MW. TCR—CD3 engagement with an antigenic peptide MHC triggers the phosphorylation of the ITAM tyrosines by Lck.²² Phosphorylated ITAMs then become a docking site for ZAP-70, which is also activated by Lck upon binding to the ITAMs.²³ Subsequently, ZAP-70, together with Lck, phosphorylates downstream signalling molecules, to activate TCR—CD3-controlled signalling cascades.

Lck contains an N-terminal membrane anchor region (SH4 domain), a unique domain, an Src-homology 3 (SH3) domain, an SH2 domain, a catalytic kinase domain and a short C-terminal tail (Fig. 1a). The SH4 domain is post-translationally modified by the addition of lipids, including myristoylation and palmitoylation, which allows the attachment of Lck to the plasma membrane. A serine 59 residue in a unique domain of Lck can be phosphorylated by the extracellular signal-regulated kinase (ERK)²⁴ and phosphorvlation of this residue inhibits Lck activity.²⁵ In addition, Lck activity is tightly regulated by a conformational state mainly depending on the phosphorylation and dephosphorylation of two tyrosine residues (Y394 and Y505) on the catalytic kinase domain and the C-terminal tail, respectively.26 Phosphorylation of Y505 by the C-terminal Src kinase mediates an intramolecular interaction with the SH2 domain, resulting in an inactive or closed conformation of Lck. When Y505 is dephosphorylated by the phosphatase CD45 or SHP-1, the SH2 domain detaches from Y505, so promoting an opened

Table 1. Selected proteins interacting with the T-cell receptor (TCR) -CD3 complex

Proteins associated with TCR–CD3	Binding domain of the associated protein	Binding motif of the TCR-CD3	Effect on TCR signalling	References
Lck	SH2	Phospho-ITAM	Enhancement	38
ZAP-70	SH2	Phospho-ITAM	Enhancement	86
Nck	SH3.1 and SH2	Proline-rich sequence (PRS) and Phospho-ITAM within CD3ε	Enhancement	40, 65
WASP	SH3 domain bind to Nck	Indirect via Nck	Unknown	79
Numb	Phosphotyrosine binding (PTB) domain	NPDY motif within CD3 ϵ	Decrease	84

Table 2. Mutations of T-cell receptor (TCR) -CD3 binding proteins with their effects on TCR signalling

TCR–CD3 binding proteins	Mutations	Effects on TCR signalling	References
Lck	R154K (SH2 mutant)	Inhibits Lck association with ZAP-70 and CD3ζ	38
	Y192F	Inhibits Lck association with TSAd, Itk, Pyk2 and SHP-1 and enhances tyrosine-phosphorylated proteins	
	Y394F	Closed conformation with decreased kinase activity	35,88
	Y505F	Open conformation with increased enzymatic activity	35,88
	Y505F, K273R	Open conformation but lacking kinase activity	35
ZAP70	Y315F	Inhibition of Vav–ZAP-70 interaction and reduction of tyrosine phosphorylation	89
	Y319F	Impairment of Ca^{2+} mobilization, Ras activation and activation of phospholipase $C\gamma 1$	54
	W131A	Increases kinase activity of ZAP-70	90
	Y315, 319A	Open conformation with increased kinase activity of ZAP-70	51
	Y315, 319F	Closed conformation with ZAP-70 kinase inactive	51
	D461N	Inactivates the kinase domain known as 'kinase dead'	50
	Y493F	Inactivates ZAP-70 catalytic activity	91
Nck	Nck1(W38K) (SH3.1 mutant)	Impairs the binding of Nck1 to CD3ε and decreases ERK activation	65
	Nck1(W143K) (SH3.2 mutant)	Impairs the binding of Nck1 to Cbl	92
	Nck1(W229K) (SH3.3 mutant)	Impairs the expression of CD69 expression and ERK phosphorylation	63
	Nck1(R308K) (SH2 mutant)	Impairs the binding of Nck1 to CD3 ϵ Abrogates the binding of Nck1 to ADAP	65,93
WASP	WASPΔC (deletion of amino acids 444–502 at C terminus)	Inhibits actin polymerization but enhances the activation of NFAT transcription factor and ERK phosphorylation in human T cells	94
	L46P (WH1 mutant)	Impairs the chemotactic migration of human T cells and actin cytoskeleton reorganization	95
	A47D (WH1 mutant)	Impairs the chemotactic migration of human T cells and actin cytoskeleton reorganization	95
Numb	Δ Numb (condition deletion of <i>Numb</i>)	Normal CD3ζ phosphorylation in murine T cells	96

conformation. The opened conformation allows phosphorylation of Y394 by Lck trans-autophosphorylation. 26,27 However, doubly phosphorylated tyrosines Y394 and Y505 might also exist and confer a dominant effect of kinase activity over the inhibitory Y505. 28

Different pools of Lck have been identified, including Lck in the cytoplasm, Lck anchored to the plasma membrane and Lck associated with the co-receptors CD4 and CD8.²⁹ Approximately 40% of Lck is already active (phosphorylated at Y394) in resting T cells and upon TCR engagement the amount of active Lck increases, as seen by Forster resonance energy transfer. 30-32 In addition, the distribution of Lck to its correct destination may regulate the function of Lck in phosphorylating its substrates.²⁶ Several lines of evidence have also suggested that initial phosphorylation of the CD3's ITAMs is mediated by free Lck, whereas the co-receptor-associated Lck acts as an adaptor molecule to bring the CD4 or CD8 molecule to the phosphorylated TCR-CD3 complex in a later step. 33,34 Furthermore, it has been suggested that the conformation of Lck determines its distribution. Lck in the opened conformation might allow clusters of Lck, whereas the closed conformation inhibits the clustering. TCR triggering induces the clustering of Lck with the phosphorylated TCR–CD3, suggesting that conformation-driven Lck clustering may determine its localization to perform its activity.³⁵ These findings suggest that Lck recruitment to the TCR–CD3 complex induces the phosphorylation of the ITAMs.

Lck can be co-immunoprecipitated with the TCR–CD3 complex upon TCR–CD3 ligation, suggesting that these two proteins can interact directly or indirectly with each other. The interaction might be mediated by RhoH, a haematopoietic-specific Rho GTPase. The direct interaction might be mediated by the SH2 domain of Lck and phosphorylated ITAMs. The interaction the SH2 domain of Lck can also interact with lipid within the plasma membrane upon TCR activation. This binding might be crucial for a lateral diffusion of Lck to interact with the triggered TCR–CD3 complex. These data indicate that localization of Lck to TCR–CD3s that are phosphorylated on few tyrosines facilitates the phosphorylation of the other ITAM tyrosines within CD3.

Our own data have suggested that the resting TCR–CD3 is in a closed conformation, in which the ITAM tyrosines are not exposed, but hidden within the quartenary structure of the TCR–CD3 complex. Upon peptide–MHC binding to TCR- $\alpha\beta$ an open CD3

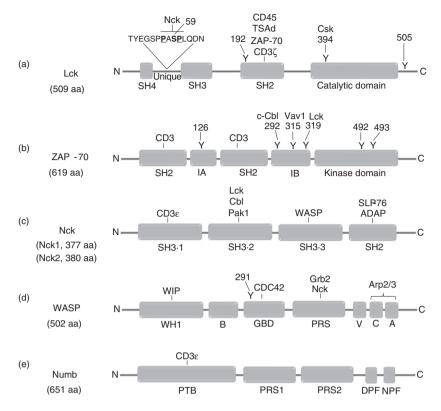


Figure 1. Modular composition of proteins associated with the T-cell receptor (TCR) –CD3 complex. (a) Lck consists of an Src homology 4 (SH4) domain, a unique domain, an SH3 and SH2 domain, the catalytic domain and a C-terminal region. The serine (S) and tyrosines (Y) depicted can be phosphorylated upon TCR–CD3 ligation. (b) ZAP-70 contains an N-terminal SH2 domain, an interdomain A (IA), a C-terminal SH2 domain, an interdomain B (IB) and the kinase domain. The tyrosine residues indicated can be phosphorylated upon TCR–CD3 triggering. (c) The Nck family has two members, Nck1 and Nck2, both being composed of three SH3 domains and a C-terminal SH2 domain. (d) WASP consists of a WH1 (WASP homology 1) and basic domain, followed by a GTPase-binding domain (GBD), a proline-rich sequence (PRS) and verprolin homology domain–cofilin homology domain-acidic region domains (VCA). (e) Numb contains a phospho-tyrosine binding (PTB) domain, two PRSs and DPF (Asp-Pro-Phe) and NPF (Asn-Pro-Phe) tri-peptide motifs at the C-terminus.

conformation is stabilized, that allows access of Lck to the ITAM tyrosine.⁴² This might be one explanation of how peptide–MHC binding to the TCR–CD3 complex causes CD3 phosphorylation by Lck.

As Lck expression is found only in T cells and natural killer cells, selective inhibitors that target Lck would potentially provide a safe treatment of diseases mediated by over-activation of T cells such as rheumatoid arthritis, inflammatory bowel disease, psoriasis and organ graft rejection. As a large number of compounds have been reported that selectively inhibit Lck activity by binding to the ATP pocket of Lck's kinase domain. Some of those inhibitors prevent the allograft rejection in mouse models, and one inhibits the hind paw swelling in an adjuvant-induced rat arthritis model.

ZAP-70

ZAP-70 is a cytoplasmic tyrosine kinase expressed predominantly in T and natural killer cells. The importance of ZAP-70 in humans has been demonstrated as a lack of

ZAP-70 causes a profound combined immunodeficiency, which is characterized by an absence of CD8 T cells and a defective function of CD4 T cells. ^{17,18} Combined mutations of R192W and R360P in ZAP-70 cause an autoimmune syndrome. The former mutation results in decreased binding to phospho-CD3, whereas the latter mutation reduces an autoinhibitory mechanism. ⁴⁸ These mutations that alter TCR signalling thresholds cause autoimmune diseases as phenotypically demonstrated by uncontrollable bullous pemphigoid, colitis and proteinuria. ⁴⁸

ZAP-70 is structurally composed of two SH2 domains separated by a so-called interdomain A. Following the tandem SH2 domains is the interdomain B and the kinase domain⁴⁹ (Fig. 1b). There are several tyrosine residues on the interdomain B and kinase domain that can be phosphorylated after TCR stimulation. These tyrosines have various functions including regulation of the catalytic activity of ZAP-70 and interaction with other signalling molecules. Tyrosine 292 (Y292), Y315 and Y319 are located within the interdomain B, whereas Y492 and Y493 are located in the kinase domain. In resting T cells, ZAP-

70 is in an autoinhibited conformation mediated by the intramolecular interaction of Y315 and Y319 with the kinase domain.50 Upon TCR engagement, the tandem SH2 domains of ZAP-70 are recruited to doubly phosphorylated ITAMs of the CD3 subunits. Binding to the CD3 subunits changes ZAP-70 conformation to an opened conformation with the release of Y315 and Y319 from the kinase domain. This facilitates the phosphorylation of Y315 and Y319 by either Lck^{51,52} or by trans-autophosphorylation.⁵³ Likewise, the conformational change also gives rise to a more flexible kinase domain, resulting in phosphorylation of Y493, which is located within the activation loop of the kinase domain, by either Lck or by trans-autophosphorylation.⁵¹ Phosphorylation of Y493 allows ZAP-70 to be catalytically active. Lck can bind with its SH2 domain to phospho-Y319 of ZAP-70 and is required to mediate the phosphorylation of various tyrosine residues on ZAP-70.54 Mutation of ZAP-70's Y31953 or Lck's SH2 domain⁵⁴ abrogates the Lck-ZAP-70 interaction and consequently impairs downstream signalling. Taken together, the activation of ZAP-70 relies on two steps: first binding of the tandem SH2 domains of ZAP-70 to doubly phosphorylated tyrosines within the ITAMs of CD3, causing a conformational change, and second the Lck- and ZAP-70-mediated phosphorylation of Y315, Y319 and Y493 resulting in full ZAP-70 activation. 49–51

By comparing the different ITAMs among the CD3 subunits (CD3 ζ , CD3 δ , CD3 ϵ and CD3 γ), it is likely that ZAP-70 preferentially binds to fully phosphorylated CD3\(\zeta\). Recently, a 'catch-and-release' model for ZAP-70 activation has been proposed by Katz et al.55 After recruitment of ZAP-70 to the phosphorylated TCR-CD3 complexes and ZAP-70 phosphorylation by Lck, activated ZAP-70 is released from the TCR-CD3 complexes into the plane of the plasma membrane. The association of ZAP-70 with the membrane might be mediated by the binding of the SH2 domains to lipids or of phosphotyrosines to other membrane-associated proteins. Consequently, empty phospho-TCR-CD3 complexes allow the recruitment of additional ZAP-70 molecules to the TCR-CD3 for activation of additional ZAP-70. The released ZAP-70 translocates within the membrane into adjacent protein islands to mediate phosphorylation of its substrates including the linker for the activation of T cells (LAT) and the SH2-domain-containing leucocyte protein of 76 000 MW (SLP-76).55 Phosphorylated LAT and SLP-76 adaptor proteins have various interacting partners such as the phospholipase C-γ1, which is recruited to these two proteins to form the LAT/SLP-76 signalosome. 56 Forming of this signalosome results in T-cell activation, proliferation and differentiation.

As ZAP-70 is required to initiate T-cell activation, inhibition of ZAP-70 from interacting with the TCR-CD3 by small molecules may be used to treat patients with autoimmune diseases and organ transplants. High-throughput

screening of a library of 132 842 compounds has been conducted to find inhibitors that would disrupt the interaction of ZAP-70 with CD3 ζ .⁵⁷ A series of pyrimidine derivatives that can inhibit ZAP-70 activity have been identified and patented by researchers and Novartis companies.⁵⁸

In recent years, chimeric antigen receptor (CAR)expressing T cells have been used for tumour immunotherapy. CARs consist of an extracellular anti-tumour antigen single Fv fragment, a transmembrane region and the cytoplasmic tail of CD3ζ. CAR signalling relies on tumour antigen-binding-induced CD3 ζ tail phosphorylation. An in silico model has suggested that the sensitivity of TCR signalling is modulated by the differential affinities of ZAP-70 to the ITAMs of CD3ζ, and sequential phosphorylation of these ITAMs leading to a 'switch-like' response of TCR signalling.⁵⁹ Cytokine production by T cells could occur without phosphorylation of the CD3 ζ , CD3 δ , CD3 γ chains when there are intact CD3ε chains.⁶⁰ It has been suggested that no matter which ITAMs are phosphorylated, the number of ITAMs to be phosphorylated would determine the outcome of the T-cell response.⁶¹ Hence, to obtain effective CAR-T cells with a strong anti-tumoral cytotoxic function but without producing too much cytokine, preventing the so-called cytokine storm, one may optimize CD3 ζ signalling by titrating the number of ITAMs to be phosphorylated and by using other CD3 chains than CD3ζ.

Nck

Nck is a 47 000 MW cytosolic adapter protein that is composed of three SH3 domains (SH3.1, SH3.2 and SH3.3) and one SH2 domain (Fig. 1c). In humans, two Nck isoforms exist; Nck1/Nck α and Nck2/Nck β , which share 68% amino acid sequence similarity. Although redundant roles of Nck1 and Nck2 have been reported, our previous work has shown that Nck1 and Nck2 molecules are functionally non-redundant in T-cell activation. In response to TCR triggering, Nck is recruited to SLP-76 to mediate actin rearrangement, which is essential for immunological synapse formation, T-cell activation and cell movement. Nck is doing so by binding to WASP.

In addition, inducible direct association of Nck to the TCR–CD3 complex occurs when the latter is triggered. For this association, Nck simultaneously uses its SH3.1 and SH2 domains.⁶⁵ The SH3.1 domain directly interacts with the PxxPxxDY sequence located within the proline-rich sequence (PRS) of the CD3ε.⁴⁰ For this association to occur the TCR needs to be in its *Active* CD3 conformation and the tyrosine needs to be in the non-phosphorylated state.^{40,66} The SH2 domain interacts with the second tyrosine of the CD3ε ITAM, when this tyrosine is phosphorylated.⁶⁵ The functions of Nck–CD3 interaction is not well understood. A knock-in mouse

strain was generated in which the CD3E PRS was replaced with another sequence, abolishing the binding to the SH3.1 domain of Nck, but most likely also to Numb (see below).67 The fact that Nck is a positive and Numb a negative regulator of signalling, might explain why the phenotype of the mutant T cells was mild. To only block the Nck-CD3 interaction, another knock-in mouse line with point mutations of the two central prolines of the PxxP motif of CD3e PRS to alanine has been generated.⁶⁸ Indeed, T cells from these knock-in mice do not recruit Nck to the TCR upon stimulation. In addition, this mutation is accompanied with impaired CD3ζ phosphorylation and decreased ZAP-70 recruitment to the TCR-CD3 complex, as well as impaired ZAP-70 phosphorylation.⁶⁸ Moreover, the SH3.2 domain of Nck can bind to a proline motif in the unique domain of Lck.⁶⁹ Recently, another adaptor protein called the T-cell specific adaptor protein (TSAd) was identified that interacts with the Src family of proteins including Lck and promotes actin polymerization via interaction with Nck. 70 Nck and Lck contain multiple binding sites on TSAd. The Nck SH2 interacts with phospho-TSAd whereas the Nck SH3.1 and SH3.3 interact with TSAd PRS. The SH2 Lck binds to phospho-TSAd and the Lck SH3 binds to the TSAd PRS. Taken together, Nck recruitment to the TCR-CD3 complex may also bring Lck to TCR.

Interestingly, the importance of the Nck-CD3 interaction might depend on the antigen quality, as this interaction was critical for stimulation of T cells with weak (low-affinity) antigens, but not with strong (high-affinity) antigens.⁷¹ Foreign antigens are often of high affinity and self antigen of low affinity.⁷² Hence, the requirement of Nck recruitment for T-cell activation only by low (and not by high) affinity antigens has raised the possibility for inhibition of the Nck-CD3 interaction as a target for treatment of autoimmune diseases caused by self-reactive T cells. Borroto et al. 73 have chemically generated a lowmolecular-weight inhibitor targeting a non-canonical pocket within the Nck SH3.1 domain. As expected, this inhibitor prevented the binding of Nck to the TCR-CD3 complex. T-cell activation in response to low-affinity antigens was strongly inhibited by this inhibitor, as seen in mouse models for psoriasis, asthma and multiple sclerosis. Interestingly, the T-cell response to a mouse pathogen acting as a strong high-affinity peptide was normal after treatment with this inhibitor. Altogether, these results indicate that this synthetic inhibitor could be a candidate to be evaluated in clinical trials to treat various T-cellmediated autoimmune diseases.⁷³

WASP

WASP belongs to the WASP family of proteins consisting of WASP, N-WASP and WAVE/SCAR molecules.⁷⁴

Mutation of WASP or lack of WASP expression causes the Wiskott–Aldrich syndrome (WAS), which is characterized by thrombocytopenia, eczema, increased susceptibility to infection and increased risk to develop autoimmune disease.^{20,75} WASP contains a WASP homology 1 domain, a basic domain, a PRS, a GTPase-binding domain and a verprolin homology domain–cofilin homology domain–acidic region (VCA) domain (Fig. 1d). These domains are required for binding to different cytoskeleton-regulating proteins. For instance, the GTPase-binding domain binds CDC42,⁷⁶ whereas the PRS acts as a binding site for various SH3-containing proteins such as Nck.⁷⁷ The function of WASP at the SLP-76 signalosome in regulating actin skeleton dynamics is well described.⁷⁸

As WASP is the binding partner of Nck,⁷⁷ we tested whether recruitment of Nck to the TCR–CD3 complex may also bring WASP to the TCR–CD3. We found that WASP is co-immunoprecipitated with the TCR–CD3 complex after T-cell activation.⁷⁹ However, whether this was mediated by Nck is not known. Although the function of WASP recruitment to the TCR–CD3 complex has not been investigated, these results suggest that there would be an alternative pathway of WASP (besides the SLP-76 signalosome) to regulate actin reorganization in the vicinity of the TCR–CD3 complex.

Numb

Numb is an adaptor protein that regulates receptor internalization. Numb is up-regulated in the active phase of multiple sclerosis⁸⁰ and type 1 diabetes.⁸¹ Two homologues of Numb including Numb and Numb-like have been identified in mammals.⁸² Numb is composed of a phosphotyrosine binding domain, several proline-rich regions at the centre of the molecule and two tri-peptide motifs (Fig 1e).82 Numb is involved in the development of murine thymocytes by regulating pre-TCR signalling.⁸³ In addition, Numb may control TCR signalling in mature T cells. Constitutive expression of CD69 and interferon-y, as well as constitutively phosphorylated ERK, are found in the CD4+ T cells from dominant negative Numb transgenic mice. Upon stimulation, CD4⁺ T cells from these mice exhibit higher ERK, ZAP-70 and Akt phosphorylation than those of the wild-type mice, indicating that Numb may be required for a negative control of TCR-mediated signal transduction.84 It was suggested that Numb plays a role in TCR degradation by simultaneously binding to both Cbl and a site within CD3ε that overlaps with the Nck binding site, thus mediating TCR degradation.⁸⁴

Numb can bind with its phosphotyrosine binding domain to the cytoplasmic tail of CD3 ε within the PRS to the sequence NPDY.⁸⁴ Indeed, an endocytosis motif in CD3 ε in this region has been identified,⁸⁵ suggesting that

J. Ngoenkam et al.

Numb might be involved in TCR-CD3 endocvtosis. Interestingly, Numb was suggested to constitutively associate with CD3ɛ. So far, not much is known about the order of binding of the TCR-CD3 binding partners. Here, we propose that in resting T cells, CD3ɛ is occupied with Numb that impedes TCR signalling. Upon TCR ligation, a conformational change of the CD3ε may result in the release of Numb and exposure of the CD3E PRS, which is the site that interacts with Nck. Recruitment of Nck to the TCR also brings Lck to the TCR to facilitate ITAM phosphorylation. Full ITAM phosphorylation then releases Nck so that ZAP-70 can bind. Once the TCR signal is transmitted, ZAP-70 is replaced by Numb to mediate TCR degradation and these cause a deviation of T-cell activation. However, further studies are required to elucidate the mechanism underlying Numb-regulated TCR signalling and the related TCR degradation pathways.

Conclusion

TCR-CD3 complex is the key molecule to initiate biochemical events in T-cell activation and differentiation that can lead to different outcomes, depending on the quantity and quality of the stimulus. Nevertheless, how stimulation of the TCR-CD3 complex can give rise to distinct outcomes still remains unclear. Based on the recent findings, we propose that distinct outcomes may be due to the different interaction partners to be recruited to the TCR-CD3 complex upon TCR-CD3 engagement (Fig. 2). These protein partners are involved in both enhance and decrease of TCR signalling and in different downstream signalling pathways. Lck can interact directly or indirectly with the TCR-CD3 complex and phosphorylate the ITAMs to initiate signal transduction. ZAP-70 directly interacts with the TCR-CD3 complex upon CD3 phosphorylation and activates downstream

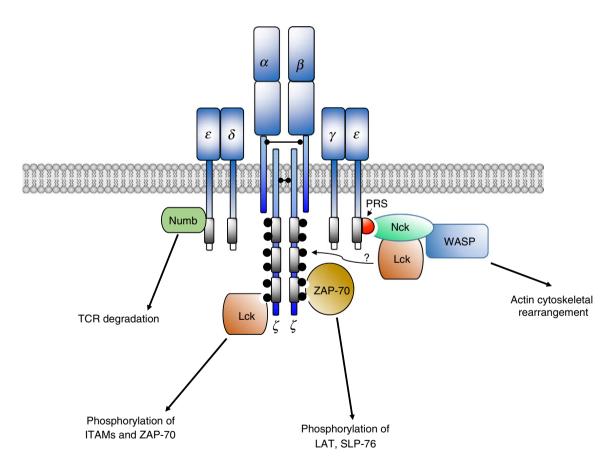


Figure 2. Selected signalling proteins at TCR–CD3 complex. TCR–CD3 ligation induces a conformational change of CD3ε, leading to the exposure of its proline-rich sequence (PRS). Nck is then recruited to the PRS within the cytoplasmic tail of the CD3ε. Subsequently, Lck is associated with Nck upon TCR activation. Hence, Nck recruitment to TCR may also bring Lck to TCR–CD3 complex to mediate phosphorylation of the ITAM motif. In addition, Lck can directly interact with phospho-ITAM. When the second tyrosine of the CD3ε ITAM is phosphorylated, Nck can bind with CD3ε using its SH3.1 and SH2 domains in a co-operative manner. In proximity to the TCR–CD3 complex, Lck phosphorylates tyrosines in each ITAM of the CD3 chains. ZAP-70 is then recruited to bind to the phospho-ITAMs, where ZAP-70 itself is phosphorylated by Lck. WASP can be associated with Nck upon TCR activation to regulate actin polymerization. Numb can be associated with the CD3ε to regulate in TCR degradation leading to a decrease in TCR signalling.

signalling cascades. Nck is recruited to CD3ε and might co-recruit Lck and WASP to the TCR–CD3 complex. TCR–CD3-recruited WASP might control actin reorganization at TCR–CD3. Numb is a new binding partner of the TCR–CD3 complex and participates in TCR degradation to lessen TCR signalling after T-cell stimulation. However, the exact molecular mechanisms underlying the dynamic distributions of these proteins into and out of the TCR–CD3 complex still need further clarification.

Acknowledgements

JN received research grants from Naresuan University (no. R2559B064) and the Thailand Research Fund (TRG5880030). SP received research grants from Naresuan University (no. R2559B025) and the Thailand Research Fund (RSA5880009). Further, this work was funded by the Deutsche Forschungsgemeinschaft (DFG) through EXC294 (Centre for Biological Signalling Studies, BIOSS) to WWS.

Disclosures

The authors declare no conflict of interest.

References

- 1 Brownlie RJ, Zamoyska R. T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 2013; 13:257–69.
- 2 Acuto O, Di Bartolo V, Michel F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol 2008; 8:699–712.
- 3 Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity 2013; 38:633–43.
- 4 Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol 2009; 27:591–619.
- 5 Kane LP, Lin J, Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol 2000; 12:242–9.
- 6 Jacobs H. Pre-TCR/CD3 and TCR/CD3 complexes: decamers with differential signalling properties? *Immunol Today* 1997; 18:565–9.
- 7 Alarcón B, Gil D, Delgado P, Schamel WW. Initiation of TCR signalling: regulation within CD3 dimers. *Immunol Rev* 2003; 191:38–46.
- 8 Dong G, Kalifa R, Nath PR, Gelkop S, Isakov N. TCR crosslinking promotes Crk adaptor protein binding to tyrosine-phosphorylated CD3ζ chain. Biochem Biophys Res Commun 2017; 488:541–6.
- 9 Love PE, Hayes SM. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol 2010; 2:a002485.
- 10 de Aós I, Metzger MH, Exley M, Dahl CE, Misra S, Zheng D et al. Tyrosine phosphory-late ion of the CD3-ε subunit of the T cell antigen receptor mediates enhanced association with phosphatidylinositol 3-kinase in Jurkat T cells. J Biol Chem 1997; 272:25310–8.
- 11 DeFord-Watts LM, Young JA, Pitcher LA, van Oers NS. The membrane-proximal portion of CD3ε associates with the serine/threonine kinase GRK2. J Biol Chem 2007; 282:16126–34.
- 12 Delgado P, Cubelos B, Calleja E, Martínez-Martín N, Ciprés A, Mérida I et al. Essential function for the GTPase TC21 in homeostatic antigen receptor signalling. Nat Immunol 2009; 10:880–8.
- 13 Borrotto A, Abia D, Alarcon B. Crammed signaling motifs in the T-cell receptor. Immunol Lett 2014; 161:113–7.
- 14 Morris GP, Allen PM. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 2012; 13:121–8.
- 15 von Boehmer H, Melchers F. Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 2010; 11:14–20.
- 16 Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 2003; 426:454–60.

- 17 Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM. Defective T cell receptor signalling and CD8⁺ thymic selection in humans lacking zap-70 kinase. Cell 1994; 76:947– 58
- 18 Elder ME, Lin D, Clever J, Chan AC, Hope TJ, Weiss A et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 1994; 264:1596–9.
- 19 Roifman CM, Dadi H, Somech R, Nahum A, Sharfe N. Characterization of ζ-associated protein, 70 kd (ZAP70)-deficient human lymphocytes. J Allergy Clin Immunol 2010; 126:1226–33.
- 20 Wu J, Liu D, Tu W, Song W, Zhao X. T-cell receptor diversity is selectively skewed in T-cell populations of patients with Wiskott–Aldrich syndrome. J Allergy Clin Immunol 2015: 135:209–16.
- 21 Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H. The role of the T cell in autoimmune inflammation. *Arthritis Res Ther* 2005; 7(Suppl 2):S4–14.
- 22 van Oers NS, Killeen N, Weiss A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med 1996; 183:1053–62.
- 23 Iwashima M, Irving BA, van Oers NS, Chan AC, Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 1994; 263:1136–9.
- 24 Schröder AJ, Quehl P, Müller J, Samstag Y. Conversion of p56(lck) to p60(lck) in human peripheral blood T lymphocytes is dependent on co-stimulation through accessory receptors: involvement of phospholipase C, protein kinase C and MAP-kinases in vivo. Eur J Immunol 2000; 30:635–43.
- 25 Joung I, Kim T, Stolz LA, Payne G, Winkler DG, Walsh CT et al. Modification of Ser59 in the unique N-terminal region of tyrosine kinase p56lck regulates specificity of its Src homology 2 domain. Proc Natl Acad Sci USA 1995; 92:5778–82.
- 26 Rossy J, Williamson DJ, Gaus K. How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Front Immunol 2012; 3:167.
- 27 Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene 2004; 23:7918–27.
- 28 Filipp D, Ballek O, Manning J. Lck, membrane microdomains, and TCR triggering machinery: defining the new rules of engagement. Front Immunol 2010; 3:155.
- 29 Kim PW, Sun ZY, Blacklow SC, Wagner G, Eck MJ. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 2003; 301:1725–8.
- 30 Nika K, Soldani C, Salek M, Paster W, Gray A, Etzensperger R, et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. *Immunity* 2010; 32:766–77.
- 31 Stirnweiss A, Hartig R, Gieseler S, Lindquist JA, Reichardt P, Philipsen L et al. T cell activation results in conformational changes in the Src family kinase Lck to induce its activation. Sci Sienal 2013: 6:ra13.
- 32 Philipsen L, Reddycheria AV, Hartig R, Gumz J, Kastle M, Kritikos A et al. De novo phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling. Sci Signal 2017; 10:pii: eaaf4736.
- 33 Xu H, Littman DR. A kinase-independent function of Lck in potentiating antigen-specific T cell activation. Cell 1993; 74:633–43.
- 34 Casas J, Brzostek J, Zarnitsyna VI, Hong JS, Wei Q, Hoerter JA et al. Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat Commun 2014; 5:5624.
- 35 Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K. Conformational states of the kinase Lck regulate clustering in early T cell signalling. Nat Immunol 2013; 14:82–9.
- 36 Stefanová I, Hemmer B, Vergelli M, Martin R, Biddison WE, Germain RN. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol 2003; 4:248–54.
- 37 Chae HD, Siefring JE, Hildeman DA, Gu Y, Williams DA. RhoH regulates subcellular localization of ZAP-70 and Lck in T cell receptor signalling. PLoS One 2010; 5:e13970.
- 38 Straus DB, Chan AC, Patai B, Weiss A. SH2 domain function is essential for the role of the Lck tyrosine kinase in T cell receptor signal transduction. J Biol Chem 1996; 271:9976–81.
- 39 Sheng R, Jung DJ, Silkov A, Kim H, Singaram I, Wang ZG et al. Lipids regulate Lck protein activity through their interactions with the Lck Src homology 2 domain. J Biol Chem 2016: 291:17639–50.
- 40 Gil D, Schamel WW, Montoya M, Sánchez-Madrid F, Alarcón B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signalling and synapse formation. Cell 2002; 109:901–12.
- 41 Minguet S, Swamy M, Alarcon B, Luescher IF, Schamel WW. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. *Immunity* 2007; 26:43–54.
- 42 Swamy M, Beck-Garcia K, Beck-Garcia E, Hartl FA, Morath A, Yousefi OS et al. A cholesterol-based allostery model of T cell receptor phosphorylation. *Immunity* 2016; 44:1001–101
- 43 Kamens JS, Ratnofsky SE, Hirst GC. Lck inhibitors as a therapeutic approach to autoimmune disease and transplant rejection. Curr Opin Investig Drugs 2001; 2:1213–9.
- 44 Bhagwat SS. Kinase inhibitors for the treatment of inflammatory and autoimmune disorders. Purinergic Signal 2009; 5:107–15.

J. Ngoenkam et al.

- 45 Waegell W, Babineau M, Hart M, Dixon K, McRae B, Wallace C et al. A420983, a novel, small molecule inhibitor of LCK prevents allograft rejection. Transplant Proc 2002; 34:1411–7.
- 46 Burchat A, Borhani DW, Calderwood DJ, Hirst GC, Li B, Stachlewitz RF. Discovery of A-770041, a src-family selective orally active lck inhibitor that prevents organ allograft rejection. Bioorg Med Chem Lett 2006; 16:118–22.
- 47 Maier JA, Brugel TA, Sabat M, Golebiowski A, Laufersweiler MJ, VanRens JC et al. Development of N-4,6-pyrimidine-N-alkyl-N'-phenyl ureas as orally active inhibitors of lymphocyte specific tyrosine kinase. Bioorg Med Chem Lett 2006; 16:3646–50.
- 48 Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med 2016; 213:155–65.
- 49 Wang H, Kadlecek TA, Au-Yeung BB, Goodfellow HE, Hsu LY, Freedman TS et al. ZAP-70: an essential kinase in T-cell signalling. Cold Spring Harb Perspect Biol 2010; 2: a002279.
- 50 Yan Q, Barros T, Visperas PR, Deindl S, Kadlecek TA, Weiss A et al. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol Cell Biol 2013: 33:2188–201.
- 51 Brdicka T, Kadlecek TA, Roose JP, Pastuszak AW, Weiss A. Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Mol Cell Biol 2005; 25:4924–33.
- 52 Klammt C, Novotná L, Li DT, Wolf M, Blount A, Zhang K et al. T cell receptor dwell times control the kinase activity of Zap70. Nat Immunol 2015: 16:961–9.
- 53 Di Bartolo V, Mège D, Germain V, Pelosi M, Dufour E, Michel F et al. Tyrosine 319, a newly identified phosphorylation site of ZAP-70, plays a critical role in T cell antigen receptor signalling. J Biol Chem 1999; 274:6285–94.
- 54 Williams BL, Irvin BJ, Sutor SL, Chini CC, Yacyshyn E, Bubeck Wardenburg J et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γ1 and Ras activation. EMBO J 1999; 18:1832–44.
- 55 Katz ZB, Novotná L, Blount A, Lillemeier BF. A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat Immunol 2017; 18,96,05
- 56 Tomlinson MG, Lin J, Weiss A. Lymphocytes with a complex: adapter proteins in antigen receptor signalling. *Immunol Today* 2000; 21:584–91.
- 57 Visperas PR, Wilson CG, Winger JA, Yan Q, Lin K, Arkin MR et al. Identification of inhibitors of the association of ZAP-70 with the T cell receptor by high-throughput screen. SLAS Discov 2017: 22:324–31.
- 58 Kaur M, Singh M, Silakari O. Insight into the therapeutic aspects of 'Zeta-chain associated protein kinase 70 kDa' inhibitors: a review. Cell Signal 2014; 26:2481–92.
- 59 Mukhopadhyay H, Cordoba SP, Maini PK, van der Merwe PA, Dushek O. Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol 2013; 9:e1003004.
- 60 Guy CS, Vignali KM, Temirov J, Bettini ML, Overacre AE, Smeltzer M et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol 2013; 14:262–70.
- 61 Holst J, Wang H, Eder KD, Workman CJ, Boyd KL, Baquet Z et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevent autoimmunity. Nat Immunol 2008; 9:658–66.
- 62 Lettau M, Pieper J, Janssen O. Nck adapter proteins: functional versatility in T cells. Cell Commun Signal 2009; 7:1.
- 63 Ngoenkam J, Paensuwan P, Preechanukul K, Khamsri B, Yiemwattana I, Beck-García E et al. Non-overlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. Cell Commun Signal 2014; 12:21.
- 64 Burkhardt JK, Carrizosa E, Shaffer MH. The actin cytoskeleton in T cell activation. Annu Rev Immunol 2008; 26:233–59.
- 65 Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E et al. Nck binds to the T cell antigen receptor using its SH3.1 and SH2 domains in a cooperative manner, promoting TCR functioning. J Immunol 2016; 196:448–58.
- 66 Kesti T, Ruppelt A, Wang JH, Liss M, Wagner R, Tasken K et al. Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3s. J Immunol 2007: 179:878–85.
- 67 Mingueneau M, Sansoni A, Gregoire C, Roncagalli R, Aguado E, Weiss A et al. The proline-rich sequence of CD3epsilon controls T cell antigen receptor expression on and signalling potency in preselection CD4⁺CD8⁺ thymocytes. Nat Immunol 2008; 9:522–32.
- 68 Borroto A, Arellano I, Dopfer EP, Prouza M, Suchanek M, Fuentes M et al. Nck recruitment to the TCR required for ZAP70 activation during thymic development. J Immunol 2013; 190:1103–12.
- 69 Vazquez ML. Biological consequences of the phosphorylation of serine 59 on the tyrosine kinase Lck. [PhD Thesis]. West Lafayette, IN: Purdue University; 2007.
- 70 Hem CD, Sundvold-Gjerstad V, Granum S, Koll L, Abrahamsen G, Buday L et al. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Commun Signal 2015; 13:31.
- 71 Tailor P, Tsai S, Shameli A, Serra P, Wang J, Robbins S et al. The proline-rich sequence of CD3epsilon as an amplifier of low-avidity TCR signalling. J Immunol 2008; 181:243– 55.

- 72 Morris GP, Allen PM. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 2012; 13:121–8.
- 73 Borrotto A, Reyes-Garau D, Jimenez MA, Carrasco E, Moreno B, Martinez-Pasamar S et al. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci Transl Med 2016: 8:370ra184.
- 74 Takenawa T, Miki H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 2001; 114:1801–9.
- 75 Vignesh P, Suri D, Rawat A, Lau YL, Bhatia A, Das A et al. Sclerosing cholangitis and intracranial lymphoma in a child with classical Wiskott–Aldrich syndrome. Pediatr Blood Cancer 2017: 64:106–9.
- 76 Miki H, Miura K, Takenewa T. N-WASP, a novel actin depolymerization protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 1996; 15:5326–35.
- 77 Rohatgi R, Nollau P, Ho HY, Kirschner MW, Mayer BJ. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 2001; 276:26448–52.
- 78 Zeng R, Cannon JL, Abramham RT, Way M, Billadeau DD, Bubeck-Wardenberg J et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J Immunol 2003; 171:1360–8.
- 79 Paensuwan P, Ngoenkam J, Khamsri B, Preechanukul K, Sanguansermsri D, Pongcharoen S. Evidence for inducible recruitment of Wiskott–Aldrich syndrome protein to T cell receptor–CD3 complex in Jurkat T cells. Asian Pac J Allergy Immunol 2015; 33:189–95.
- 80 Ferrandi C, Richard F, Tavano P, Huaben E, Barbie V, Gotteland JP et al. Characterization of immune cell subsets during the active phase of multiple sclerosis reveals disease and c-Jun N-terminal kinase pathway biomarkers. Mult Scler 2011; 17:43–56.
- 81 Yang M, Ye L, Wang B, Gao J, Liu R, Hong J et al. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 2015; 7:158–65.
- 82 Gulino A, Di Marcotullio L, Screpanti I. The multiple functions of Numb. Exp Cell Res 2010: 316:900-6
- 83 Aguado R, Martin-Blanco N, Caraballo M, Canelles M. The endocytic adaptor Numb regulates thymus size by modulating pre-TCR signaling during asymmetric division. Blood 2010: 116:1705–14.
- 84 Martin-Blanco N, Jimenez Teja D, Bretones G, Borroto A, Caraballo M, Screpanti I et al. CD3e recruits Numb to promote TCR degradation. Int Immunol 2016; 28:127–37.
- 85 Borroto A, Lama J, Niedergang F, Dautry-Varsat A, Alarcón B, Alcover A. The CD3epsilon subunit of the TCR contains endocytosis signals. J Immunol 1999; 163:25–31.
- 86 Isakov N, Wange RL, Burgess WH, Watts JD, Aebersold R, Samelson LE. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med 1995; 181:375–80.
- 87 Granum S, Sundvold-Gjerstad V, Gopalakrishnan RP, Berge T, Koll L, Abrahamsen G et al. The kinase Itk and the adaptor TSAd change the specificity of the kinase Lck in T cells by promoting the phosphorylation of Tyr192. Sci Signal 2014; 7:ra118.
- 88 D'Oro U, Sakaguchi K, Appella E, Ashwell JD. Mutational analysis of Lck in CD45negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol Cell Biol 1996; 16:4996–5003.
- 89 Wu J, Zhao Q, Kurosaki T, Weiss A. The Vav binding site (Y315) in ZAP-70 is critical for antigen receptor-mediated signal transduction. J Exp Med 1997; 185:1877–82.
- 90 Deindl S, Kadlecek TA, Cao X, Kuriyan J, Weiss A. Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Proc Natl Acad Sci USA 2009; 106:20699–704.
- 91 Chan AC, Dalton M, Johnson R, Kong GH, Wang T, Thoma R et al. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J 1995; 14:2499–508.
- 92 Miyoshi-Akiyama T, Aleman LM, Smith JM, Adler CE, Mayer BJ. Regulation of Cbl phosphorylation by the Abl tyrosine kinase and the Nck SH2/SH3 adaptor. Oncogene 2001; 20:4058–69.
- 93 Lettau M, Kliche S, Kabelitz D, Janssen O. The adaptor proteins ADAP and Nck cooperate in T cell adhesion. Mol Immunol 2014: 60:72–9.
- 94 Silvin C, Belisle B, Abo A. A role for Wiskott–Aldrich syndrome protein in T-cell receptor-mediated transcriptional activation independent of actin polymerization. J Biol Chem 2001; 276:21450–7.
- 95 Jain N, Tan JH, Feng S, George B, Thanabalu T. X-linked thrombocytopenia causing mutations in WASP (L46P and A47D) impair T cell chemotaxis. J Biomed Sci 2014; 21:91.
- 96 Anderson AC, Kitchens EA, Chan SW, St Hill C, Jan YN, Zhong W et al. The Notch regulator Numb links the Notch and TCR signaling pathways. J Immunol 2005; 174:890–7.

Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning

Pussadee Paensuwan,* Frederike A. Hartl,[†] O. Sascha Yousefi,^{†,‡} Jatuporn Ngoenkam,* Piyamaporn Wipa,* Esmeralda Beck-Garcia,^{†,§} Elaine P. Dopfer,[†] Boonruang Khamsri,* Donruedee Sanguansermsri,* Susana Minguet,[†] Wolfgang W. Schamel,^{†,1} and Sutatip Pongcharoen^{¶,||,#,1}

Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the non-phosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning. *The Journal of Immunology*, 2016, 196: 448–458.

oncatalytic region of tyrosine kinase (Nck) is a ubiquitously expressed adapter protein that is composed of three SH3 domains (SH3.1, SH3.2, and SH3.3) and one SH2 domain, and thus it potentially interacts with proline-rich sequence (PRS)—bearing proteins and tyrosine phosphorylated

*Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; †Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; *Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany; *International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany; *Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; *Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and *Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok

¹W.W.S. and S.P. contributed equally to this work.

ORCID: 0000-0001-5304-729X (O.S.Y.).

Received for publication April 27, 2015. Accepted for publication October 23, 2015.

P.P. and P.W. were supported by the Royal Golden Jubilee Ph.D. Programme of the Thailand Research Fund. S.P. has received support from Naresuan University Grant R2558B105 and by Thailand Research Fund Grant RSA5880009. This work was also supported by German Research Foundation Grant EXC294 (BIOSS) (to O.S.Y., S.M., and W.W.S.), European Union Grant FP7/2007-2013 (SYBILLA) (to W.W.S. and E.P.D.), and by an Innovationfonds Forschung 2012 grant (to F.A.H. and S.M.).

Address correspondence and reprint requests to Dr. Sutatip Pongcharoen or Prof. Wolfgang W. Schamel, Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok 65000, Thailand (S.P.) or Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, 79108 Freiburg, Germany (W.W.S.). E-mail addresses: sutatipp@nu.ac.th (S.P.) or wolfgang.schamel@biologie.uni-freiburg.de (W.W.S.)

The online version of this article contains supplemental material.

Abbreviations used in this article: Nck, noncatalytic region of tyrosine kinase; PLA, proximity ligation assay; PRS, proline-rich sequence; PV, pervanadate; sh, short hairpin; SV, streptavidin; WT, wild-type.

Copyright © 2015 by The American Association of Immunologists, Inc. 0022-1767/15/\$30.00

proteins (1). In humans, two Nck isoforms exist (Nck1/Nck α and Nck2/Nck β), which share 68% amino acid identity (2). Nck plays a pivotal role in actin reorganization, cell movement, and cell adhesion (3). Nck also acts as a linker for the recruitment and activation of other proteins in multiple intracellular signaling pathways (1, 2).

In $\alpha\beta$ T cells, the TCR contains the TCR $\alpha\beta$ heterodimer, which is responsible for Ag, that is, peptide-MHC, recognition. This heterodimer is noncovalently associated with two CD3 dimers (CD3δε, CD3γε) and a ζζ dimer, which are responsible for signal transduction (4, 5). The TCR bears 10 ITAMs (YXXI/I-X₆₋₈, YXXL/I) (6), a single ITAM in each CD3ε, CD3γ, and CD3δ, and three ITAMs in the ζ -chains (7). The phosphorylation of the tyrosine residues in the ITAMs can be promoted by the Src family kinase Lck and Fyn, resulting in the initiation of downstream signaling cascades (8). The doubly phosphorylated ITAMs recruit the tyrosine kinase ZAP70 by its tandem SH2 domains. Subsequently, ZAP70 phosphorylates adaptor proteins, such as SLP-76 and LAT (9, 10), thereby promoting signaling events, as for example Ca²⁺ mobilization and Erk and PI3K/Akt pathway activation. Phosphorylated SLP-76 can bind to the SH2 domain of Nck [SH2(Nck)], recruiting Nck to the "SLP-76 signalosome" (10–12).

It has been suggested that the TCR exists in two reversible conformations: the Ag-induced or "active conformation" and the "inactive conformation" adopted by nonengaged TCRs (13, 14). The peptide–MHC- or anti-TCR/CD3 Ab-induced conformational change at CD3 is required for TCR functioning (15, 16). For example, expressing a mutant CD3 ϵ chain, in which a point mutation in the extracellular part inhibits the switch to the active conformation, results in a block of T cell activation (16) and T cell development (17).

In the active TCR conformation, the PRS in the cytoplasmic tail of CD3 ϵ is exposed, and only in this conformation can the SH3.1

The Journal of Immunology 449

domain of Nck [SH3.1(Nck)] bind to the CD3ε PRS, as shown in a pull-down assay using a recombinant GST-SH3.1(Nck) fusion protein (13, 16, 18–22). Using biochemical approaches, it has been proposed that the recruitment of Nck to the TCR occurs earlier and independently of tyrosine phosphorylation (13). Another report has demonstrated that tyrosine phosphorylation is required for Nck recruitment to the plasma membrane (11); however, whether it was recruited to the TCR, to SLP-76, or to any other proteins remained unresolved. Whether tyrosine phosphorylation is needed for Nck recruitment is thus a matter of debate.

Recently, we have demonstrated that Nck1, rather than Nck2, plays a major role in TCR signaling in human cells (23). In the present work, we have focused on the functional role of Nck1 in cells conditionally lacking Nck2 to investigate the molecular mechanism governing the Nck-CD3ɛ interaction. Our data revealed that Nck needs both the SH3.1 and SH2 domains to bind to CD3ɛ. The requirement of tyrosine phosphorylation for CD3ɛ-Nck interaction was also studied using a pull-down assay with synthetic biotinylated CD3ɛ cytoplasmic tail peptides to mimic different CD3ɛ phosphorylation patterns. We show that Nck recruitment is dependent on a specific pattern of CD3ɛ tyrosine phosphorylation. Taken together, we suggest that the cointeraction of the SH3.1 and SH2 domains of Nck with partially phosphorylated CD3ɛ is required for efficient Nck binding and TCR phosphorylation.

Materials and Methods

Reagents and Abs

In this study, the following Abs were used: rabbit anti-Nck1, phospho-AKT (S473), phospho-ERK (T202/T204), and phospho-ZAP70 (Y319) Abs were purchased from Cell Signaling Technology; the mouse anti-CD3 (OKT-3) Ab was from eBioscience; the anti-idiotypic TCR Ab (C305) was from Millipore; the anti-ZAP70 and goat anti-CD3ε M20 Abs were from Santa Cruz Biotechnology; the anti-GST Ab was from Bethyl Laboratories; the antistreptavidin (SV)-HRPO Ab was from SouthernBiotec; and the antiphospho-ζ Ab (pTyr¹⁴²) and the inhibitor of Src family kinases PP2 were from Sigma-Aldrich (St. Louis, MO). The anti-ζ antiserum 448 and the antiphospho-CD3ε antiserum (anti-phospho-εY1) have been described (24, 25). The below-mentioned peptides were obtained from Eurogentec: pepePP, YWSKNRKAKAKPVTRGTGAGSRPRGQNKERPPPVPNPDYEPIRKGQ-RDLYGLNQRAV; pepyPP, AGQDGVRQSRASDKQTLLQNEQLYQPLK-DREYDQYSHLQGNQLRKK; and pep8PP, GHETGRPSGAAEVQALL-KNEQLYQPLRDREDTQYSRLGGNWPRNKKS (the Y in bold is phosphorylated).

Generation of double Nck1/2 knock-down cells and Nck1 mutants

Jurkat cells were cultured and expression of Nck1 and Nck2 was silenced simultaneously as previously described (23, 26). Briefly, cells were cotransfected with 0.5 µg pLVX-short hairpin (sh)Nck1 and pLVX-shNck2. Stable double Nck1/2 knock-down cells were selected by culturing the transfected cells in medium supplemented with 1.0 µg/ml puromycin and 1 mg/ml G418. The single clone was obtained from these lines by limiting dilution. For construction of double Nck1/2 knock-down cell-expressing Nck1 mutants, human Flag-tagged Nck-1 cDNA contained in the pEBB plasmid, provided by Prof. Bruce J. Mayer (Connecticut University Health Center, Farmington, CT), was used as a mutagenesis template. The wild-type Nck1 (WT-Nck1) and its mutant constructs, SH3.1*-Nck1 (W38K) and SH2*-Nck1 (R308K), were generated from the Nck1-pEBB plasmid using sited-directed mutagenesis with the QuickChange mutagenesis kit (Stratagene) using the following primers: 5'-GTGACCATGTGGGTTCCCTCT-CCGAGAAATTAGCAGC-3' and 5'-GCTGCTAATTTCTCGGAGAGGG-AACCCACATGGTCAC-3' for WT-Nck1, 5'-GCTTCTGGATGATTCTA-AGTCCAAGTGGCGAGTTCGAAATTCC-3' and 5'-GGAATTTCGAAC-TCGCCACTTGGACTTAGAATCATCCAGAAGC-3' for SH3.1*-Nck1, and 5'-GGGGATTTCCTCATTAAGGATAGTGAATCTTCGCC-3' and 5'-G-GCGAAGATTCACTATCCTTAATGAGGAAATCCCC-3' for SH2*-Nck1. The introduction of the expected mutation was confirmed by DNA sequencing. The sites of the mutated residues have been previously indicated as being important for ligand binding (27, 28), but without effect on the binding of the other unmutated domains (29). Double Nck1/2 knockdown cells were cotransfected with either plasmid-expressing WT-Nck1, SH3.1*-Nck1, or SH2*-Nck1 and pDsRed-Monomer-Hyg-N1 (0.1 μ g DNA) (Clonetech), which provides resistance to hygromycin, with an electroporator using an Amaxa Nucleofector II and the manufacturer's protocol X-005. The transfectants were selected after 48 h in medium supplemented with 400 μ g/ml hygromycin. Nck1 expression was assessed by immunoblotting. TCR expression was evaluated by flow cytometry, and for further studies, clones with similar expression levels were selected.

Cell stimulation, lysis, immunoprecipitation, and pull-down assay

Cells, including Jurkat, J.Cam1.6, as well as primary human CD4⁺ T cells, were harvested and starved in RPMI 1640 medium without FBS for 1 h at 37°C. Jurkat and J.Cam1.6 cells were from the American Type Culture Collection (Rockville, MD). The primary CD4⁺ T cells were isolated from buffy coats of the Blood Bank Centre of Naresuan University Hospital under the approval of Naresuan University Research Ethics Committee (Institutional Review Board no. 226/56). Subsequently, cells were either stimulated with the anti-TCR Ab C305 (1:50) for the indicated time points or left untreated. The Ab dilution (1:50) used in this study corresponds to ~0.12 µg/ml C305. For pervanadate (PV) treatment, cells were stimulated 1 mM PV for the indicated time points. In some experiments, cells were pretreated with 20 µM Src kinase inhibitor PP2 for 30 min at 37°C before stimulation. Cells were then lysed in 100 µl lysis buffer (20 mM Tris-HCl [pH 8], 137 mM NaCl, 2 mM EDTA, 10% glycerol, protease inhibitor mixture [Sigma-Aldrich]), 1 mM PMSF, 5 mM iodoacetamide, 0.5 mM sodium orthovanadate, 1 mM NaF, and 0.3% Brij96V) for 30 min on ice (30). TCRs from the total cellular lysates were either immunoprecipitated with 1 μg anti-CD3ε (OKT3) Ab-coupled protein-G Sepharose beads (Amersham Pharmacia Biotech), or pulled down with 4 μg of the indicated biotinylated CD3 peptide-coupled SV beads (Amersham Pharmacia Biotech). SDS-PAGE and immunoblotting were performed with the desired Abs, and visualization was done using a CCD camera (ImageQuant LAS 4000; GE Healthcare Life Sciences). Band intensity was assessed by the ImageJ software.

In situ proximity ligation assay

Jurkat or primary CD4⁺ T cells were grown on diagnostic microscopic slides (Thermo Scientific). Cells were left unstimulated, stimulated with the anti-TCR Ab C305, stimulated with C305 in the presence of 20 μM PP2 (after PP2 pretreatment), or treated with 1 mM PV at 37°C for 5 min. Cells were then fixed with paraformaldehyde, permeabilized with 0.5% saponin, and blocked with blocking solution. Cells were then coincubated with the goat anti-CD3ε (Ab M20 [Santa Cruz Biotechnology]) and a rabbit anti-Nck1 Ab (Cell Signaling Technology). A proximity ligation assay (PLA) between the CD3ε and Nck1 molecules was performed according to the manufacturer's instructions with the Duolink kit (Olink Bioscience), resulting in red fluorescence signals. Cell nuclei were stained with DAPI. A confocal microscope (Nikon C2) was used for imaging and analysis. The number of the PLA signal dots was scored with the Blob-Finder program (Uppsala University).

T cell activation assays

For the measurement of the kinetics of phosphorylation of AKT, MEK, and Erk, cells were stimulated with the anti-TCR Ab C305 (1:50) at 37°C for the indicated time points. SDS-PAGE and immunoblotting were performed with the Abs indicated, which were visualized using a CCD camera (ImageQuant LAS 4000; GE Healthcare Life Sciences). Quantification of the band intensities was assessed by the ImageJ software. To induce CD69 expression, 2×10^5 cells were starved overnight in a medium containing 1% serum at 37°C . Cells were incubated with the anti-TCR Ab C305 (1:50) at 37°C for 6 h and were then stained with an allophycocyaniconjugated anti-CD69 Ab. The percentage of CD69+ cells was analyzed on a Beckman Coulter CyAn ADP flow cytometer. FlowJo 6.1 software was used for data analysis.

Ca²⁺ influx measurement

Five million cells were resuspended in 1 ml RPMI 1640 medium supplemented with 1% FCS and labeled in the dark with 0.1% pluronic acid, 2.6 μ M Fluo-3 AM, and 5.5 μ M Fura Red AM (Life Technologies) for 30 min at 37°C. The stained cells were washed and kept on ice in the dark until the measurement. For calcium influx, cells were diluted 1:10 with prewarmed medium and maintained at 37°C during the event collection on a Beckman

Coulter CyAn ADP flow cytometer. Baseline fluorescence was monitored for 30 s, and then either medium or C305 (1:50) was added and the stimulation was recorded for 10 min. Data were analyzed with the FlowJo 6.1 software.

Statistical analysis

Data are represented as means \pm SEM. All differences between experimental groups were analyzed with the Student t test. Significant differences were considered when the p values were <0.05.

Results

Active Lck is required for the interaction between Nck and the TCR upon TCR engagement

The binding of the TCR to beads coupled to the SH3.1(Nck) domain has been studied extensively (13, 16, 18, 19). However, the molecular requirements for the interaction between the TCR and endogenous Nck have not yet been fully explored. To determine whether the binding of Nck to the TCR is dependent on signal transduction, Jurkat cells were either pretreated with the Src tyrosine kinase inhibitor PP2 to prevent TCR phosphorylation by Lck and Fyn, or left untreated. Subsequently, cells were stimulated with the anti-idiotypic, anti-TCR Ab C305 or left unstimulated. In situ PLA is a technique that allows visualization (by a red fluorescent dot) of close proximity between endogenous proteins in fixed cells (31). Using PLA, we investigated the proximity of Nck with the cytoplasmic tail of CD3ε. Significantly more Nck-CD3ε PLA red dots were detected in stimulated compared with unstimulated cells (Fig. 1A), suggesting that endogenous Nck was recruited to the TCR upon TCR stimulation. In sharp contrast, PP2 treatment prevented the C305-induced proximity, indicating that Src kinase activity is necessary for the interaction of endogenous Nck to the triggered TCR. As a control, there was no PLA signal detected in the absence of either the anti-CD3e or the anti-Nck1 primary Ab (Fig. 1A).

To test whether the induced Nck-TCR proximity was caused by Nck binding to the TCR, Jurkat cells were stimulated under the same conditions as in Fig. 1A and subjected to immunoprecipitation with anti-CD3 Abs. Consistent with the data from the PLA, Nck binding to the TCR was increased upon TCR triggering (Fig. 1B). Importantly, lower amounts of Nck were coimmunoprecipitated with the TCR from C305-stimulated and PP2-pretreated cells compared with C305-stimulated cells alone (Fig. 1B). As expected, PP2 was able to prevent tyrosine phosphorylation at CD3ε after TCR Ab-mediated engagement. When the coimmunoprecipitation experiment was performed using Lck-deficient Jurkat cells (J.Cam1.6), there was no increase of the TCR-Nck interaction upon C305 stimulation (Fig. 1C). Collectively, these data indicate that Lck activity is required for an efficient recruitment of Nck to the TCR.

Next, we performed a time course experiment of Nck coimmunopurification with the TCR using C305 as a TCR stimulus (Fig. 1D). At early time points (1 and 5 min) the increase in the association of Nck to the TCR correlated with the increase in CD3\varepsilon phosphorylation. However, at 10 min of stimulation, CD3\varepsilon phosphorylation still increased, whereas Nck recruitment decreased. This indicated that the recruitment of Nck might depend on another interaction besides the one using tyrosine phosphorylation of CD3ε. As before, stimulation of cells, in which tyrosine phosphorylation was inhibited by PP2, resulted in significantly weakened, but not absent, Nck recruitment. This might have been due to low levels of Lck activity or to binding of the SH3.1 domain of Nck to the PRS of CD3ε. Moreover, the requirement of Src kinase activity for Nck binding to the TCR was also observed in primary CD4⁺ T cells (Fig. 1E, 1F), because the Nck-TCR interaction was sharply declined in the presence of PP2.

Taken together, these data suggest that active Src tyrosine family kinases, such as Lck, are critical mediators for Nck recruitment. Therefore, CD3 phosphorylation seems to be required for an efficient Nck-TCR interaction upon TCR stimulation.

PV treatment does not induce the Nck-TCR interaction

Having found that TCR phosphorylation is needed for an efficient Nck1–TCR interaction, we tested whether massive phosphorylations, as induced by the phosphatase inhibitor PV, are sufficient to induce Nck binding to the TCR. To this end, Jurkat cells were either stimulated with PV alone or with the anti-TCR Ab C305 and PV simultaneously, or with C305 alone, or left unstimulated. As before, the close proximity between Nck and CD3ɛ was investigated using PLA. First, PV alone was not able to induce close proximity between Nck and the TCR and, second, PV even inhibited the C305-induced Nck–TCR proximity (Fig. 2A).

Likewise, Nck was not copurified with the TCR upon PV treatment and PV inhibited the C305-induced copurification of Nck with the TCR (Fig. 2B). Phosphorylation of CD3ɛ was strongly induced by PV, suggesting that massive CD3ɛ phosphorylation might interfere with the Nck–TCR interaction. Furthermore, the inhibitory effect of PV on the Nck–TCR interaction was confirmed using primary human CD4⁺ T cells (Fig. 2C, 2D), because the association of Nck to the TCR was dramatically decreased in the PV treatment.

Collectively, our data suggest that an intermediate level of tyrosine phosphorylation at CD3 is required for an efficient interaction between endogenous Nck and the triggered TCR.

Partial phosphorylation of CD3\varepsilon is required for efficient Nck binding

To test our hypothesis that only an intermediate pattern of tyrosine phosphorylation at CD3 ϵ mediates Nck binding to the TCR, synthetic biotinylated peptides corresponding to the complete cytoplasmic tail of CD3 ϵ were used (Fig. 3A): the nonphosphorylated CD3 ϵ tail (ϵ), the CD3 ϵ tail with the first cytoplasmic tyrosine phosphorylated (p39 ϵ), with the second cytoplasmic tyrosine phosphorylated (p50 ϵ), and the doubly phosphorylated CD3 ϵ tail (pp ϵ).

The different biotinylated CD3e peptides were bound to SVcoupled beads, and their binding to the SH2(Nck), SH3.1(Nck), and full-length Nck as GST fusion proteins was tested in a pulldown assay (Fig. 3B). GST-SH2(Nck) was bound to all the phosphorylated CD3ɛ peptides (p39ɛ, p50ɛ, and ppɛ), but not to the nonphosphorylated peptide. In contrast, GST-SH3.1(Nck) was only bound to nonphosphorylated (ε) and the second tyrosine phosphorylated CD3ε peptide (p50ε) (Fig. 3B). These results are in line with our earlier findings that the SH3.1 domain binds to the PRS of CD3e (13, 15), and that phosphorylation of the first tyrosine, which is located within the SH3.1 binding motif, inhibits SH3.1 binding (32–34). Interestingly, the GST–Nck full-length fusion protein was only bound to the p50e peptide, suggesting that both an SH3.1–PRS (in the absence of Y39 phosphorylation) and an SH2-phosphotyrosine interaction were simultaneously needed for optimal Nck association (Fig. 3B).

Next, we repeated the CD3 ϵ peptide pull-down assay using cellular lysates of Jurkat cells expressing endogenous Nck, instead of recombinantly expressed GST–Nck fusion proteins. Again, we saw that Nck bound strongly to the cytoplasmic sequence of CD3 ϵ when the second tyrosine was phosphorylated alone (p50 ϵ , Fig. 3C). Additionally, Nck bound weaker to the non-phosphorylated CD3 ϵ (ϵ) peptide, indicating that the SH3.1(Nck) domain alone can mediate weak binding to CD3 ϵ . Because the other CD3 subunits also contain phophorylatable tyrosines, we test

The Journal of Immunology 451

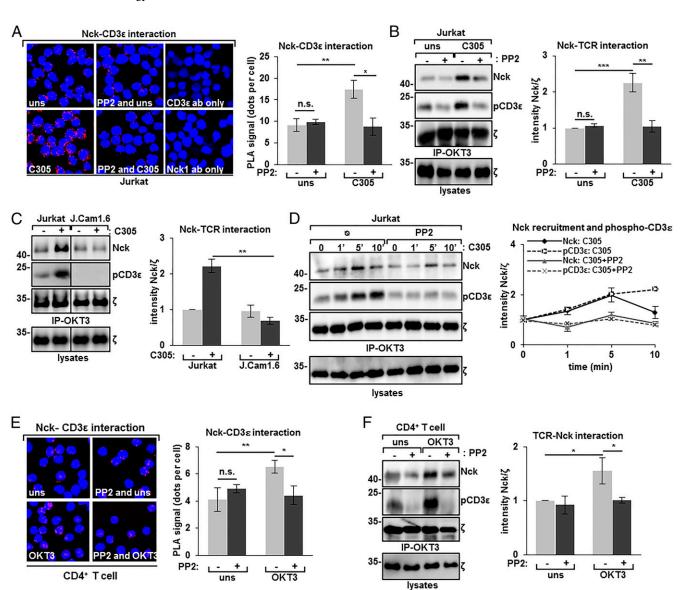
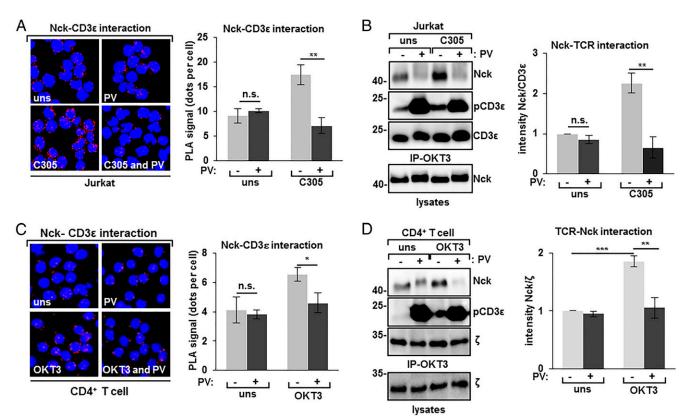



FIGURE 1. Lck activity is needed for Nck recruitment to the TCR. (A) Close proximity between the TCR and Nck was detected by in situ PLA. Jurkat cells were either pretreated with 20 µM PP2 or left untreated at 37°C for 30 min. Subsequently, cells were stimulated with the anti-TCR Ab (C305, 1:50) with or without PP2 at 37°C for 5 min or left unstimulated (uns). After fixation and permeabilization, PLA was performed using the primary Abs goat anti-CD3ɛ (M20) and rabbit anti-Nck1, as well as the corresponding secondary Abs. Negative controls, in which one of the primary Abs was omitted, were included (CD3E Ab only, Nck1 Ab only). Nuclei were stained with DAPI. The corresponding quantification of the red PLA dots was scored from three independent experiments (data represent the mean ± SEM). (B) Jurkat cells were pretreated with PP2 and stimulated as in (A). Cell lysates were subjected to immunoprecipitation with the anti-CD3 Ab (OKT3). After SDS-PAGE, the Western blot was developed with anti-Nck1, anti-phospho-CD3ɛ (pCD3ɛ), and anti-ζ Abs. The corresponding lysates were developed with anti-ζ. Data are representative of five experiments. The intensity of the Nck1 and CD3ζ bands was quantified using ImageJ software and is presented as a ratio of Nck1 to CD3ζ normalized to the unstimulated cells (data represent the mean ± SEM). (C) Jurkat and J.Cam1.6 cells were either stimulated with C305 or left unstimulated, and immunoprecipitation with OKT3 was performed. SDS-PAGE, Western blotting, and quantification were done as in (B). Data are representative of five experiments. (D) Jurkat cells were either pretreated with PP2 or left untreated. Cells were then stimulated with C305 for the indicated times in the presence or absence of PP2. Immunoprecipitation, SDS-PAGE, and immunoblotting were done as in (B). Data are representative of at least two independent experiments. The intensity of the Nck1, pCD3 ϵ , and ζ bands was quantified and is presented as a ratio of Nck1 or pCD3ε to ζ normalized to the unstimulated cells. (E) Primary human CD4+T cells were purified from buffy coats. Cells were either pretreated with 20 µM PP2 or left untreated at 37°C for 30 min. Then cells were stimulated with 1 µg/ml OKT3 in the presence or absence of PP2 at 37°C for 5 min or left unstimulated (uns). PLA was performed as in (A). The corresponding quantification of the red PLA dots was scored and analyzed as in (A). Data are representative of three independent experiments (mean ± SEM). (F) Primary human CD4⁺ T cells were either left untreated or stimulated as in (E). Immunoprecipitation, SDS-PAGE, Western blotting, and analysis were done as in (B). Data are representative of three independent experiments. (A and E) Original magnification $\times 600$. *p < 0.05, **p < 0.01, ***p < 0.001.

whether the SH2(Nck) domain might be sufficient to bind full-length Nck to CD3 γ and CD3 δ . To this end, we repeated the pull-down assay using the nonphosphorylated, singly phosphorylated, and doubly phosphorylated peptides corresponding to the complete cytoplasmic tails of CD3 γ and CD3 δ (Fig. 3D). We found that Nck could not bind to CD3 γ and CD3 δ , even when they

carried full tyrosine phosphorylation. Next, we examined whether the simultaneous SH3.1–PRS and SH2–phosphotyrosine interactions have to take place in cis, that is, the PRS and phosphotyrosine have to be present within one CD3 ε molecule, or can also take place in trans, that is, the PRS and the phosphotyrosine can be located on different CD3 ε molecules. To this end, Jurkat lysates

FIGURE 2. PV treatment does not induce Nck binding to the TCR. (**A**) Nck–TCR proximity was detected by in situ PLA. Jurkat cells were either stimulated with the anti-TCR Ab C305 with or without simultaneous treatment with PV, or with PV alone at 37°C for 5 min or left unstimulated. Experiment and analysis were done as in -. 1A. The corresponding quantification is shown as mean ± SEM of three independent experiments. (**B**) Jurkat cells were stimulated as in (A). Cellular lysates were subjected to immunoprecipitation with the anti-CD3 Ab OKT3. After SDS-PAGE the Western blot was developed with anti-Nck1, anti-pCD3ε, and anti-ζ Abs. The lysates were developed with anti-ζ. Data are representative of five experiments, and the statistical analysis was done as in Fig. 1B. (**C**) Primary human CD4⁺ T cells were purified from buffy coats and either stimulated with 1 μg/ml OKT3 with or without simultaneous treatment with PV, or with PV alone at 37°C for 5 min or left unstimulated. PLA was performed as in Fig. 1A. The corresponding quantification of the red PLA dots was scored and analyzed. Data are representative of three independent experiments (mean ± SEM). (**D**) Primary human CD4⁺ T cells were stimulated as in (C). Immunoprecipitation, SDS-PAGE, Western blotting, and analysis were done as in (B). Data are representative of three independent experiments. (A and C) Original magnification ×600. *p < 0.05, **p < 0.01, ***p < 0.001.

were used in a pull-down experiment with a mixture of the unphosphorylated CD3 ϵ (ϵ , only allowing SH3.1 binding) and the double phosphorylated CD3 ϵ peptides being bound to the SV-coupled beads. As a control, the unphosphorylated CD3 ϵ peptide was mixed with the double phosphorylated CD3 ϵ or CD3 ϵ peptides (pp ϵ 0 or pp ϵ 0), which cannot mediate SH2 binding (Fig. 3E). We kept the total amount of peptide constant in each sample. Endogenous Nck protein from the cell lysates bound better to the mixture of ϵ and pp ϵ 2 than to ϵ 3 alone or pp ϵ 3 alone (Fig. 3E). Importantly, there was a synergistic effect, in that more Nck bound to ϵ 3 and pp ϵ 4 than the sum of Nck binding to ϵ 4 alone and pp ϵ 6 alone. This synergistic effect was not observed when ϵ 8 was mixed with pp ϵ 9 or pp ϵ 9 (Fig. 3D). Collectively, these data suggest that Nck is able to interact with juxtaposed CD3 ϵ 9, with one being non-phosphorylated and one being phosphorylated.

Nck requires the SH3.1 and SH2 domains to bind to the TCR

Because we found that partial CD3ε phosphorylation was required for an efficient Nck binding, we hypothesized that Nck might use both its SH3.1 and SH2 domains to bind to the TCR. Hence, we simultaneously knocked down the expression of Nck1 and Nck2 in Jurkat cells using Nck1- and Nck2-specific shRNAs (shNck1/2 cells). Nck1/2 protein expression in shNck1/2 cells was reduced by ~80% compared with control-shRNA–transfected cells (see Supplemental Fig. 1). shNck1/2 cells were reconstituted with Flag-tagged Nck constructs encoding either WT Nck1 (WT-

Nck1), or Nck1 in which the first tryptophan in the WW motif at position 38 within the SH3.1 domain was mutated to lysine (SH3.1*-Nck1), or Nck1 in which arginine at position 308 within the SH2 domain was mutated to lysine (SH2*-Nck1) (Fig. 4A). The W38K point mutation in the SH3.1 domain disrupts the interaction of Nck with proline-rich proteins, whereas the R308K point mutation in the SH2 domain mutant impairs binding to phosphorylated tyrosine residues (2). The SH3.1*-Nck1 protein was expressed to a similar level as the WT-Nck1 protein, and the expression level of both proteins was >5-fold increased compared with the remaining level of endogenous Nck1 after the knockdown (Fig. 4B, data not shown). In contrast, the SH2*-Nck1 protein was only weakly expressed, and had a similar expression level as endogenous Nck after the knock down (Fig. 4B). All cells expressed similar amounts of TCR on their cell surface as shown by flow cytometry (Fig. 4C).

The cell lysates of shNck1/2 and WT-Nck1– and SH3.1*-Nck1– expressing shNck1/2 cells were subjected to the pull-down assay using different synthetic CD3ε peptides as in Fig. 3 (Fig. 4D). There was a substantial binding of the WT-Nck protein to the p50ε peptide and a weaker binding to the nonphosphorylated ε peptide, corroborating our findings of Fig. 3. In sharp contrast, the SH3.1*-Nck1 mutant did not bind strongly to any peptide, indicating that the SH3.1(Nck) domain is crucial for Nck binding to the TCR. Again, endogenous residual Nck bound best to the p50ε (Fig. 4D, 4F). Next, we repeated this experiment using the SH2*-Nck1–

The Journal of Immunology 453

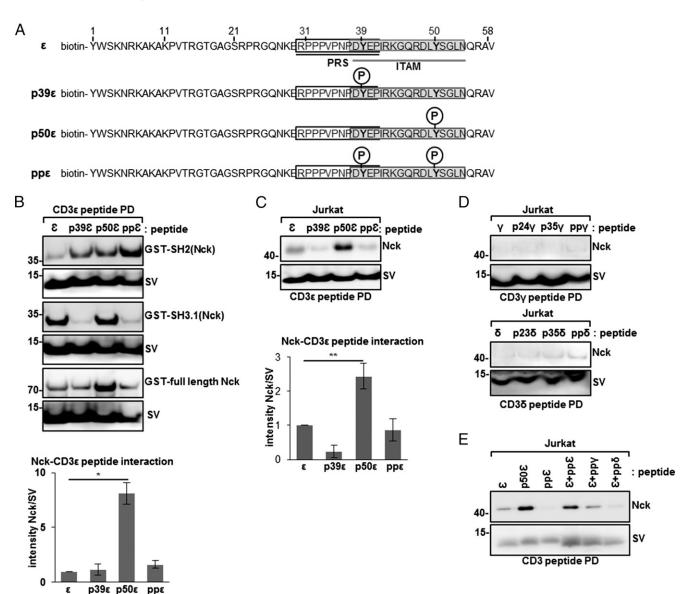


FIGURE 3. Only partially phopshorylated CD3ε can bind to Nck. (A) Schematic representation of the amino acid sequence of the different biotinylated CD3ε cytoplasmic tail synthetic peptides. Phosphorylations are indicated with a P. (B) The different synthetic CD3ε peptides shown in (A) were coupled to SV beads and incubated with the GST–SH2(Nck), GST–SH3.1(Nck), and GST–full-length Nck fusion proteins as indicated. Bead-bound proteins were separated by SDS-PAGE and the Western blot developed with an anti-Nck1 Ab as well as SV. Data are representative of three experiments. The intensity of the Nck and biotinylated peptide bands using full-length Nck was quantified using the ImageJ software and is presented as a ratio of Nck to peptide normalized to the value of the Nck/nonphosphorylated CD3ε peptide ratio (data represent the mean \pm SEM). (C) Jurkat lysates were incubated with SV beads bound to different biotinylated CD3ε peptides. Bead-bound proteins were detected as in (B). The statistical analysis of Nck1 binding to the different CD3ε forms was done as in (B). (D) Jurkat lysates were incubated with SV beads bound to the indicated biotinylated CD3ε peptides. Beadsbound proteins were assessed as in (B). (E) Jurkat lysates were incubated with SV beads bound to the different biotinylated CD3ε peptides or to a mixture of unphosphorylated CD3ε and doubly phosphorylated CD3ε, CD3γ, or CDδ peptides as indicated. Bead-bound proteins and the lysates as controls were detected as in (B). * *p < 0.05, * *p < 0.01.

expressing cells (Fig. 4E, 4F). We found that, in contrast to the endogenous or WT-Nck, the SH2*-Nck1 protein could not bind strongly to the p50ε peptide, indicating that the SH2(Nck) domain is important for Nck binding to the TCR. Moreover, the binding to the unphosphorylated peptide was unchanged, indicating that the binding by the SH3.1 mutated was unaffected by the SH2 mutation. Altogether, these data indicate that Nck binding to the TCR crucially depends on the SH3.1 domain and it is stabilized or enhanced by the interaction of the SH2 domain with the phospho-Y50 of the CD3ε chain.

To further establish the loss of Nck recruitment to the TCR in cells that expressed the SH3.1*-Nck1 mutant, PLA was performed to determine the close proximity between SH3.1*-Nck

and CD3ɛ molecules (Fig. 4G). There were a few PLA dots in shNck1/2 cells possibly due to residual endogenous Nck expression (Supplemental Fig. 1), which were used as a negative control. The number of PLA dots were significantly declined in SH3.1*-Nck1-expressing cells following TCR engagement as compared with stimulated WT-Nck1-expressing cells, corroborating our finding that the SH3.1(Nck) domain is critical for the Nck-TCR interaction. In stimulated SH3.1*-Nck1-expressing cells more PLA dots were detected than in stimulated shNck1/2 cells, suggesting that Nck was able to bind very weakly to the TCR through its SH2 domain (Fig. 4G). Consistent with the result from the PLA assay, the SH3.1*-Nck mutant was less coprecipitated with the TCR compared with the WT-Nck1 protein (Fig. 4H). Owing to the low

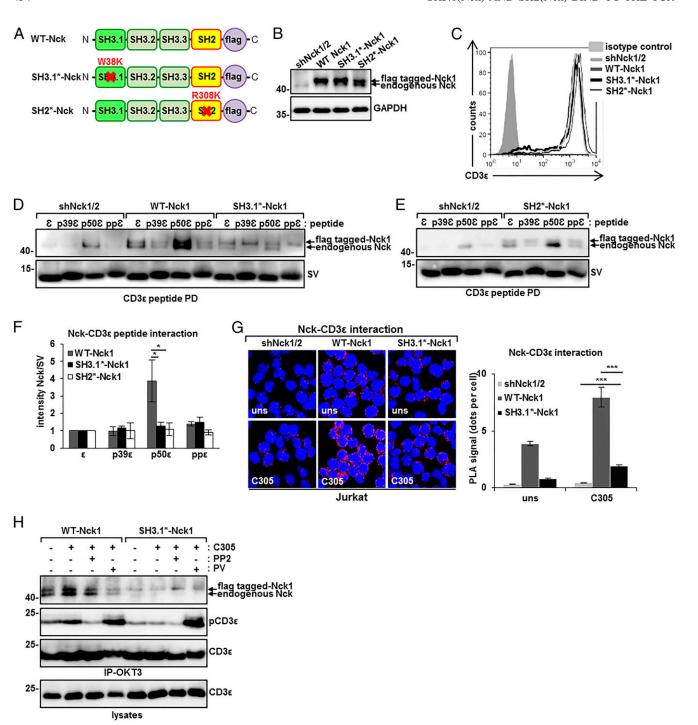


FIGURE 4. Nck needs the SH3.1 and SH2 domains to bind to the TCR. (**A**) Schematic illustration of Flag-tagged wild-type Nck (WT-Nck), SH3.1*-Nck (W38K) containing a non-functional SH3.1 domain, and SH2*-Nck (R308K) containing a nonfunctional SH2 domain. (**B**) Flag-tagged Nck1 expression from double Nck1/2 knock-down cells (shNck1/2) stably expressing WT-Nck1, SH3.1*-Nck1, or SH2*-Nck1. Lysates of the indicated cells were analyzed using immunoblotting with anti-Nck1 and anti-GAPDH Abs as a loading control. (**C**) Cells were stained with allophycocyanin-conjugated anti-CD3ε Ab UCHT1. Fluorescence intensities were measured by flow cytometry. (**D**) Lysates of shNck1/2 cells and WT-Nck1- and SH3.1*-Nck1-expressing cells were incubated with the indicated CD3ε peptides bound to SV-coupled beads. Bound proteins were detected as in Fig. 3. (**E**) Lysates of shNck1/2 and SH2*-Nck1-expressing cells were treated as in (E). (**F**) The statistics from three independent experiments as in (D) and (E) are presented as a ratio of Flag-tagged Nck to peptides normalized to the value of the Nck/nonphosphorylated CD3ε peptide ratio (data represent the mean \pm SEM). (**G**) shNck1/2-, WT-Nck1-, and SH3.1*-Nck1-expressing cells were either left untreated or treated with anti-TCR (C305) Ab at 37°C for 5 min. The close proximity between Nck and TCR in these cells was detected using in situ PLA as done in Fig. 1A. The corresponding quantification of PLA signal dots was collected from three independent experiments and analyzed as in Fig. 1A (data represent the mean \pm SEM). Original magnification ×600. (**H**) The WT-Nck1- and SH3.1*-Nck1-expressing cells were treated with indicated treatments or left untreated. Cell lysates were subjected to immunoprecipitation with anti-CD3 Ab (OKT3) following immunoblotting with anti-Nck1, anti-pCD3ε, and anti-ζ Abs. *p < 0.05, ***p < 0.001.

The Journal of Immunology 455

expression level of SH2*-Nck, we did not perform these experiments with the SH2 domain mutant Nck. Taken together, these findings indicated that Nck binding to the stimulated TCR is mediated by the SH3.1(Nck) and SH2(Nck) domains.

Impairment of the Nck-CD3 ϵ interaction impairs T cell activation

It has been suggested that the PRS of CD3ε and its interaction with Nck are required for optimal signaling induced by the TCR (13, 22, 35). To substantiate these findings, we analyzed the involvement of Nck's interaction with the TCR for T cell activation, by using SH3.1*-Nck1-expressing shNck1/2 cells. The SH3.1*-Nck1 protein cannot bind to the TCR, but it retains other functions such as interactions using its SH3.2, SH3.3, and SH2 domains. WT-Nck1- and SH3.1*-Nck1-expressing shNck1/2 cells were stimulated with the anti-TCR Ab C305 in a time course experiment

(Fig. 5A). The phosphorylation of CD3ɛ and recruitment of ZAP70 to the TCR were impaired in the shNck1/2 cells, but restored in the WT-Nck1 reconstituted cells, indicating that Nck is involved in these processes. A functional SH3.1(Nck) domain is important for these activities, because SH3.1*-Nck1 could not restore CD3ɛ phosphorylation or ZAP70 binding to the TCR. This suggests that Nck binding to the TCR is involved in CD3 phosphorylation.

Next we assessed whether the reduced signaling at the TCR also impaired downstream events. We found that the TCR-induced phosphorylations of Akt and Erk1/2 were strongly reduced in cells expressing SH3.1*-Nck1 compared with the cells expressing WT-Nck1 (Fig. 5B). A very weak phosphorylation of Erk in the SH3.1*-Nck1-expressing cells as well as in the control shNck1/2 cells was observed, indicating that this activity might be due to the low expression levels of endogenous Nck proteins (Supplemental Fig. 1).

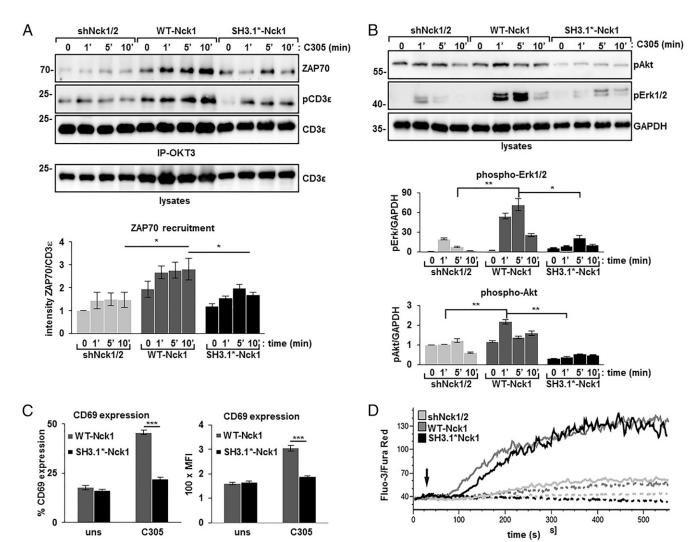


FIGURE 5. Preventing the Nck1–CD3ε association impairs T cell activation. (**A**) shNck1/2 cells stably expressing WT-Nck1 or SH3.1*-Nck1 were stimulated with the anti-TCR Ab C305 for the indicated times. The CD3 immunoprecipitates were immunoblotted with the indicated Abs. The signal intensity of ZAP70 was quantified and presented as a ratio of ZAP70 to CD3ζ normalized to unstimulated shNck1/2 cells (data are representative for three experiments). (**B**) The indicated cells were treated as in (A) and cell lysates were separated by SDS-PAGE and the Western blot developed with anti–phospho-Akt (pAkt) and anti–phospho-Erk1/2 (pErk1/2) Abs. GAPDH serves as a loading control. The quantified signal intensities are presented as a ratio of the phospho-Erk1/2 and phospho-Akt to the corresponding GAPDH values normalized to the value of unstimulated shNck1/2 cells. Data are representative of three experiments (data represent the mean \pm SEM). (**C**) WT-Nck1– and SH3.1*-Nck1–expressing shNck1/2 cells were stimulated with C305 for 6 h and stained with an anti-CD69 Ab following flow cytometry quantification. The percentage of CD69* cells (*left panel*) and their mean fluorescence intensity (MFI, *right panel*) are displayed. Data are representative of four experiments and represent the mean \pm SEM. (**D**) shNck1/2-, WT-Nck1–, and SH3.1*-Nck1–expressing cells were either left untreated (dotted line) or treated with anti-TCR Ab C305 (solid line) and Ca²⁺ influx was measured using flow cytometry. *p < 0.05, **p < 0.01, ***p < 0.001.

Activation of Erk is required for CD69 expression in T cells (36, 37). In line with this, TCR-induced CD69 expression was absent in the SH3.1*-Nck1-expressing cells, whereas expression of CD69 was induced in the WT-Nck1-expressing cells (Fig. 5C).

Finally, we tested the influence of the SH3.1*-Nck1 mutant on calcium influx. The calcium response was strongly impaired in shNck1/2 cells, indicating that Nck is required for coupling the TCR to calcium influx. However, in the SH3.1*-Nck-expressing cells the same extent of calcium influx was detected as in WT-Nck1-expressing cells (Fig. 5D). This could suggest that strong Nck binding to the TCR is not required for TCR-induced calcium influx.

Taken together, these data indicate that strong Nck recruitment to the TCR is required for some (Akt, Erk1/2, CD69), but not for all (calcium), signaling events downstream of the TCR.

Discussion

The interaction of the recombinant SH3.1 domain of Nck with CD3ε has been studied in detail (13, 18–22). However, the molecular mechanism by which full-length Nck binds to the TCR has not been studied to date, although it has been speculated that recruitment of Nck to the TCR plays an important role for TCR triggering (13, 22, 35). In this study, we show that Nck uses both its SH3.1 and SH2 domains in a cooperative manner to bind to partially phosphorylated CD3ε.

Using the in situ PLA and coimmunopurifications, we found that Nck and the TCR associate with each other upon anti-TCR Ab stimulation. TCR triggering leads to the exposure of the CD3E PRS to which the SH3.1(Nck) domain can bind (13), providing a molecular explanation for the ligand-induced recruitment of Nck to the TCR. However, we surprisingly found that Nck was not recruited to the TCR upon anti-TCR stimulation when tyrosine phosphorylation was inhibited using the kinase inhibitor PP2 or when Lck-deficient cells were used. Because the active TCR conformation is stabilized by ligand binding also in the presence of PP2 (14, 15, 18), our data suggest that TCR phosphorylation is needed for efficient Nck binding. Furthermore, we found that the Nck-TCR interaction increased within the first 5 min after TCR ligation, correlating with the increase of TCR phosphorylation. Moreover, phosphorylation of the second tyrosine (Y50) of the CD3ɛ is essential for Nck binding. These data again support the notion that TCR phosphorylation enhances Nck recruitment to the TCR. However, phosphorylation of tyrosine 39 (Y39) within the CD3E PRS blocks binding of the SH3.1(Nck) domain to the CD3ε PRS (32).

The requirement of TCR phosphorylation for Nck recruitment to the TCR suggested that the SH2(Nck) domain might play a previously unappreciated role. Indeed, we found that the purified SH2(Nck) domain can bind to the cytoplasmic tail of CD3 ϵ , but only when one or both of the CD3 ϵ tyrosines were phosphorylated. Likewise, an intact SH2 domain in full-length Nck was required for a strong association of Nck to the TCR. Thus, the interaction between the SH2(Nck) domain and a phosphotyrosine of CD3 ϵ is required for optimal Nck recruitment to the stimulated TCR.

Next, we induced massive phosphorylation of the TCR using the phosphatase inhibitor PV, which does not stabilize the active TCR conformation and thus does not result in the binding of the purified SH3.1(Nck) domain to the TCR (13, 18). Based on our finding that the SH2(Nck) domain can bind to phosphorylated CD3ɛ tyrosines, we expected to detect Nck binding to the TCR upon PV stimulation. However, PV did not induce Nck recruitment to the TCR. Furthermore, PV treatment prevented Nck association when combined with anti-TCR Ab stimulation. Thus, it seems that

massive phosphorylation of the TCR abolishes Nck recruitment, being in line with the finding that phosphorylation of the CD3ɛ residue Y39 within the PRS abrogates SH3.1(Nck) binding (32). Indeed, NMR structures of the PRS binding to SH3.1(Nck) revealed that the nonphosphorylated Y39 is a crucial interaction point with the hydrophobic pocket of SH3.1(Nck) (33, 34). Indeed, the Nck–TCR interaction decreased at 10 min after TCR ligation, correlating with very strong CD3ɛ phosphorylation.

As discussed, the PV data suggested that the SH3.1(Nck) domain might interact with the nonphosphorylated and exposed CD3ε PRS. Indeed, we and others (13, 18) found that the purified SH3.1(Nck) domain can bind to the cytoplasmic tail of CD3ε, but only when Y39 was not phosphorylated. Likewise, an intact SH3.1 domain in full-length Nck was required for a stable association of Nck to the TCR. Thus, the interaction between the SH3.1(Nck) domain and the nonphosphorylated PRS is required for Nck recruitment to the stimulated TCR.

To resolve our seemingly paradoxical findings, we used synthetic CD3e cytoplasmic tail peptides to mimic unphosphorylated and different patterns of phosphorylated CD3ε. Full-length Nck could only strongly associate to the peptide where the first tyrosine (Y39) was not phosphorylated, thus allowing the SH3.1(Nck) domain to bind, and when the second tyrosine (Y50) was phosphorylated, thus promoting SH2(Nck) domain binding. Because the interaction with one domain alone was not sufficient for optimal Nck binding, we conclude that both interactions have to occur in a collaborative manner (Fig. 6). Therefore, the exact pattern of phosphorylation of CD3e determines Nck recruitment and could thus specify downstream signaling. It has been shown that agonistic stimulation leads to a different pattern of CD3 ζ phosphorylation than antagonistic stimulation (38). However, whether this different pattern causes differentially downstream signaling is not yet resolved (39).

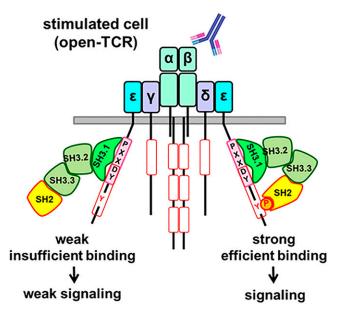


FIGURE 6. Illustration of Nck-binding to the ligand-/Ab-engaged TCR. Triggering of the TCR induces a conformational change of CD3ε (active TCR conformation), resulting in the exposure of the PRS (pink boxes). The exposed PRS can consequently interact with the SH3.1 domain of Nck (*left*), but only when the tyrosine contained in the PRS is not phosphorylated. This binding mode is suboptimal, thus promoting weak TCR signaling (*left*). If the second ITAM tyrosine of CD3ε is phosphorylated in the active TCR, Nck can bind with its SH3.1 and SH2 domains in a cooperative manner (*right*). This binding mode is strong, allowing optimal recruitment of Nck to the TCR promoting TCR signaling (*right*).

The Journal of Immunology 457

Although the endogenous Nck needs both the SH3.1 and the SH2 domains to optimally bind to the TCR, the purified SH3.1(Nck) domain binds with sufficient avidity to be used in a pull-down assay to purify the TCR in its active conformation (13, 15). According to the law of mass action, we suggest that the huge excess of SH3.1 (Nck), as used in the pull-down assays, shifts the equilibrium toward TCR binding. The same might hold true for the SH2(Nck) domain under similar conditions. An alternative interpretation would be that Nck exists in an autoinhibited state, in which the SH3.1 domain cannot bind to the TCR and SH2 binding would free the SH3.1 domain. The isolated SH3.1 domain would always be available for binding to the CD3ε PRS.

Although the exact architecture of the TCR complex is unknown, some studies suggest that the CD3 heterodimers are clustered on one side of the TCR (40). Specifically, the two CD3 ϵ chains seem to be juxtaposed to each other. We demonstrated that one Nck molecule can simultaneously interact with two CD3 ϵ cytoplasmic tail peptides, one providing the SH3.1(Nck) interaction and the other one the SH2(Nck) interaction. However, phosphorylated CD3 γ and CD3 δ peptides cannot substitute for the phosphorylated CD3 ϵ peptide, suggesting that the CD3 ϵ subunit is the optimal binding site for Nck and that two Nck molecules can potentially simultaneously bind to the TCR.

Nck has been discussed to play a role at the TCR by binding to CD3 ϵ (13, 22, 35) and at SLP76 by binding to phosphorylated SLP76 using its SH2(Nck) domain (10–12). Additionally, the SH3.3(Nck) domain binds to WASp, thus recruiting WASp to the SLP76 signalosome, promoting actin polymerization (11, 41, 42). Because Nck binds to WASp with its SH3.3(Nck) domain (42), it is possible that Nck serves as a physical bridge between the TCR and WASp (43), regulating cytoskeleton dynamics from the TCR.

In the present study, we used the shNck1/2 cells to express Nck1 molecules in which only the SH3.1 domain was mutated, and thus Nck was not able to optimally bind to the TCR. We found that after TCR engagement, CD3 was phosphorylated less in shNck1/2 and SH3.1*-Nck cells as compared with WT-Nck cells. This was associated with a decrease of ZAP70 recruitment to the TCR in the shNck1/2 and SH3.1*-Nck cells. Thus, Nckbinding to the TCR plays a crucial role by promoting CD3 phosphorylation. These findings are in agreement with a study using knock-in TCR transgenic mice bearing a CD3\varepsilon PRS mutation (22). Additionally, we showed that phosphorylation of Erk and expression of CD69 were strongly reduced in shNck1/2 and SH3.1*-Nck1 cells, as expected from reduced CD3 phosphorylation.

Furthermore, TCR-induced Ca²⁺ influx was defective in shNck1/2 cells but restored in the SH3.1*-Nck1-expressing cells. This could indicate that Nck is required for Ca²⁺ mobilization independent of its TCR binding capability. However, because CD3 phosphorylation is upstream of Ca²⁺ influx (44), we suggest that residual CD3 phosphorylation might be sufficient to promote Ca²⁺ signaling in our setting. This is in line with studies where mutation of the CD3ε PRS still allowed TCR-induced Ca²⁺ influx (45), but not with others where Ca²⁺ signaling was drastically reduced upon prevention of the CD3ε-Nck interaction (17, 46). This discrepancy might be related to the different mutations used. In conclusion, it seems that the level or the pattern of TCR phosphorylation needed for induction of Ca²⁺ influx is quantitatively or/and qualitatively different from the one needed to induce Erk or AKT phosphorylation.

We speculate that phosphorylation of the two CD3ɛ tyrosines is differentially regulated in time (Y50 is phosphorylated earlier than Y39), so that Nck is initially recruited to the TCR, promoting TCR activation, but dissociates after longer stimulation times to qualitatively and/or quantitatively alter TCR signaling. Thus, CD3

tyrosines are not redundant and might have specific roles. The implications need to be explored.

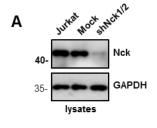
In summary, in the present study we identify the molecular requirements for Nck binding to the TCR, highlighting that the exact pattern of CD3 phosphorylation (in this case a partial CD3 ϵ phosphorylation) might be critical for TCR functioning and T cell activation (Fig. 6). Thus, Nck is an important adaptor protein that participates in the initiation of TCR signaling at the TCR.

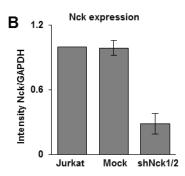
Acknowledgments

We thank Sang Sri-ampai, Kwansuda Supalap, Pimporn Udompol, and Sirirat Bunarsa (Biomedical Research Unit, Faculty of Medicine, Naresuan University) for technical assistance. We thank Prof. Dr. Bruce J. Mayer (Connecticut University Health Center, Farmington, CT) for providing human Nck1 cDNA and the BIOSS toolbox for providing us with reagents. Thanks go to Dr. Sarawut Kumphune and Dr. Rerngwit Boonyom, Department of Medical Technology, Faculty of Allied Health Science, as well as Dr. Pannika Ritvirool, Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, for technical suggestions.

Disclosures

The authors have no financial conflicts of interest.


References


- Buday, L., L. Wunderlich, and P. Tamás. 2002. The Nck family of adapter proteins: regulators of actin cytoskeleton. Cell. Signal. 14: 723–731.
- Lettau, M., J. Pieper, and O. Janssen. 2009. Nck adapter proteins: functional versatility in T cells. Cell Commun. Signal. 7: 1.
- Burkhardt, J. K., E. Carrizosa, and M. H. Shaffer. 2008. The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26: 233–259.
- Jacobs, H. 1997. Pre-TCR/CD3 and TCR/CD3 complexes: decamers with differential signalling properties? *Immunol. Today* 18: 565–569.
- Alarcón, B., D. Gil, P. Delgado, and W. W. Schamel. 2003. Initiation of TCR signaling: regulation within CD3 dimers. *Immunol. Rev.* 191: 38–46.
- Love, P. E., and S. M. Hayes. 2010. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Perspect. Biol. 2: a002485.
- 7. Reth, M. 1989. Antigen receptor tail clue. Nature 338: 383-384
- 8. Lin, J., and A. Weiss. 2001. T cell receptor signalling. J. Cell Sci. 114: 243–244.
- Guy, C. S., and D. A. Vignali. 2009. Organization of proximal signal initiation at the TCR:CD3 complex. *Immunol. Rev.* 232: 7–21.
- Wunderlich, L., A. Faragó, J. Downward, and L. Buday. 1999. Association of Nck with tyrosine-phosphorylated SLP-76 in activated T lymphocytes. *Eur. J. Immunol.* 29: 1068–1075.
- Barda-Saad, M., A. Braiman, R. Titerence, S. C. Bunnell, V. A. Barr, and L. E. Samelson. 2005. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. *Nat. Immunol.* 6: 80–89.
- Jordan, M. S., and G. A. Koretzky. 2010. Coordination of receptor signaling in multiple hematopoietic cell lineages by the adaptor protein SLP-76. Cold Spring Harb. Perspect. Biol. 2: a002501.
- Gil, D., W. W. Schamel, M. Montoya, F. Sánchez-Madrid, and B. Alarcón. 2002. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. *Cell* 109: 901–912.
- Minguet, S., and W. W. Schamel. 2008. Permissive geometry model. Adv. Exp. Med. Biol. 640: 113–120.
- Minguet, S., M. Swamy, B. Alarcón, I. F. Luescher, and W. W. Schamel. 2007. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. *Immunity* 26: 43–54.
- Martínez-Martín, N., R. M. Risueño, A. Morreale, I. Zaldívar, E. Fernández-Arenas, F. Herranz, A. R. Ortiz, and B. Alarcón. 2009. Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3e. Sci. Signal. 2: ra43.
- Blanco, R., A. Borroto, W. Schamel, P. Pereira, and B. Alarcon. 2014. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci. Signal. 7: ra115.
- Gil, D., A. G. Schrum, B. Alarcón, and E. Palmer. 2005. T cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J. Exp. Med. 201: 517–522.
- Risueño, R. M., D. Gil, E. Fernández, F. Sánchez-Madrid, and B. Alarcón. 2005. Ligand-induced conformational change in the T-cell receptor associated with productive immune synapses. *Blood* 106: 601–608.
- Risueño, R. M., H. M. van Santen, and B. Alarcón. 2006. A conformational change senses the strength of T cell receptor-ligand interaction during thymic selection. *Proc. Natl. Acad. Sci. USA* 103: 9625–9630.
- de la Cruz, J., T. Kruger, C. A. Parks, R. L. Silge, N. S. van Oers, I. F. Luescher, A. G. Schrum, and D. Gil. 2011. Basal and antigen-induced exposure of the proline-rich sequence in CD3ε. J. Immunol. 186: 2282–2290.

- Borroto, A., I. Arellano, E. P. Dopfer, M. Prouza, M. Suchànek, M. Fuentes, A. Orfao, W. W. Schamel, and B. Alarcón. 2013. Nck recruitment to the TCR required for ZAP70 activation during thymic development. *J. Immunol.* 190: 1103–1112
- Ngoenkam, J., P. Paensuwan, K. Preechanukul, B. Khamsri, I. Yiemwattana, E. Beck-García, S. Minguet, W. W. Schamel, and S. Pongcharoen. 2014. Nonoverlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. Cell Commun. Signal. 12: 21.
- San José, E., A. G. Sahuquillo, R. Bragado, and B. Alarcón. 1998. Assembly of the TCR/CD3 complex: CD3ε/δ and CD3ε/γ dimers associate indistinctly with both TCR α and TCR β chains. Evidence for a double TCR heterodimer model. Eur. J. Immunol. 28: 12–21.
- Dopfer, E. P., B. Schöpf, C. Louis-Dit-Sully, E. Dengler, K. Höhne, A. Klescová, M. Prouza, M. Suchanek, M. Reth, and W. W. Schamel. 2010. Analysis of novel phospho-ITAM specific antibodies in a S2 reconstitution system for TCR-CD3 signalling. *Immunol. Lett.* 130: 43–50.
- Paensuwan, P., J. Ngoenkam, D. Sanguansermsri, B. Khamsri, I. Yiemwattana, A. Wangteeraprasert, and S. Pongcharoen. 2014. RNAi down-regulation of Nck1 adaptor protein in Jurkat T cells. Sci. Asia 40: 340–347.
- Lu, W., S. Katz, R. Gupta, and B. J. Mayer. 1997. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7: 85–94.
- Chen, M., H. She, A. Kim, D. T. Woodley, and W. Li. 2000. Nckβ adapter regulates actin polymerization in NIH 3T3 fibroblasts in response to plateletderived growth factor bb. Mol. Cell. Biol. 20: 7867–7880.
- Tanaka, M., R. Gupta, and B. J. Mayer. 1995. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. *Mol. Cell. Biol.* 15: 6829–6837.
- Schamel, W. W., I. Arechaga, R. M. Risueño, H. M. van Santen, P. Cabezas, C. Risco, J. M. Valpuesta, and B. Alarcón. 2005. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. *J. Exp. Med.* 202: 493–503.
- Söderberg, O., M. Gullberg, M. Jarvius, K. Ridderstråle, K. J. Leuchowius, J. Jarvius, K. Wester, P. Hydbring, F. Bahram, L. G. Larsson, and U. Landegren. 2006. Direct observation of individual endogenous protein complexes in situ by proximity ligation. *Nat. Methods* 3: 995–1000.
- Kesti, T., A. Ruppelt, J. H. Wang, M. Liss, R. Wagner, K. Taskén, and K. Saksela. 2007. Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3e. J. Immunol. 179: 878–885.
- Takeuchi, K., H. Yang, E. Ng, S. Y. Park, Z. Y. Sun, E. L. Reinherz, and G. Wagner. 2008. Structural and functional evidence that Nck interaction with CD3e regulates T-cell receptor activity. J. Mol. Biol. 380: 704–716.

- Santiveri, C. M., A. Borroto, L. Simón, M. Rico, B. Alarcón, and M. A. Jiménez. 2009. Interaction between the N-terminal SH3 domain of Nck-α and CD3ε-derived peptides: non-canonical and canonical recognition motifs. *Biochim. Biophys. Acta* 1794: 110–117.
- Borroto, A., I. Arellano, R. Blanco, M. Fuentes, A. Orfao, E. P. Dopfer, M. Prouza, M. Suchànek, W. W. Schamel, and B. Alarcón. 2014. Relevance of Nck-CD3e interaction for T cell activation in vivo. *J. Immunol.* 192: 2042–2053.
- D'Ambrosio, D., D. A. Cantrell, L. Frati, A. Santoni, and R. Testi. 1994. Involvement of p21^{ras} activation in T cell CD69 expression. *Eur. J. Immunol.* 24: 616–620.
- Villalba, M., J. Hernandez, M. Deckert, Y. Tanaka, and A. Altman. 2000. Vav modulation of the Ras/MEK/ERK signaling pathway plays a role in NFAT activation and CD69 up-regulation. Eur. J. Immunol. 30: 1587–1596.
- Kersh, E. N., A. S. Shaw, and P. M. Allen. 1998. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281: 572–575.
- Pitcher, L. A., P. S. Ohashi, and N. S. van Oers. 2003. T cell antagonism is functionally uncoupled from the 21- and 23-kDa tyrosine-phosphorylated TCR ζ subunits. J. Immunol. 171: 845–852.
- Kuhns, M. S., A. T. Girvin, L. O. Klein, R. Chen, K. D. Jensen, E. W. Newell, J. B. Huppa, B. F. Lillemeier, M. Huse, Y. H. Chien, et al. 2010. Evidence for a functional sidedness to the αβTCR. *Proc. Natl. Acad. Sci. USA* 107: 5094–5099.
- Fuller, C. L., V. L. Braciale, and L. E. Samelson. 2003. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. *Immunol. Rev.* 191: 220–236.
- Zeng, R., J. L. Cannon, R. T. Abraham, M. Way, D. D. Billadeau, J. Bubeck-Wardenberg, and J. K. Burkhardt. 2003. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. *J. Immunol.* 171: 1360–1368.
- Paensuwan, P., J. Ngoenkam, B. Khamsri, K. Preechanukul, D. Sanguansermsri, and S. Pongcharoen. 2015. Evidence for inducible recruitment of Wiskott-Aldrich syndrome protein to T cell receptor-CD3 complex in Jurkat T cells. Asian Pac. J. Allergy Immunol. 33: 189–195.
- Feske, S. 2007. Calcium signalling in lymphocyte activation and disease. *Nat. Rev. Immunol.* 7: 690–702.
- Mingueneau, M., A. Sansoni, C. Grégoire, R. Roncagalli, E. Aguado, A. Weiss, M. Malissen, and B. Malissen. 2008. The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4⁺ CD8⁺ thymocytes. *Nat. Immunol.* 9: 522–532.
- Tailor, P., S. Tsai, A. Shameli, P. Serra, J. Wang, S. Robbins, M. Nagata, A. L. Szymczak-Workman, D. A. Vignali, and P. Santamaria. 2008. The prolinerich sequence of CD3ε as an amplifier of low-avidity TCR signaling. *J. Immunol*. 181: 243–255.

Figure S1 Nck expression in shNck1/2 cells

Supplemental Figure S1.

(A) Jurkat T cells were either transfected with a control vector (mock) or Nck1 and Nck2-specific shRNA expression vector (shNck1/2). Single clones were selected by limiting dilution technique. Individual clones were analyzed the expression of Nck protein using immunoblotting with anti-Nck1 and anti-GAPDH antibodies as a loading control. A single clone with the most down-regulated Nck1/2 expression was selected for further study. (B) The quantified signal intensities are presented as a ratio of Nck to the corresponding GAPDH values normalized to the value of Jurkat cells. Data are representative of three experiments. The mean ± SEM is shown.